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Preface

Number theory begins with the integers

z ={... ,-3, -2, -1,0, 1,2,3, ...}

and their natural operations:

addition and multiplication.

Functions f : zn --+ Z formed using only addition and multiplication are
polynomial functions; so a system of polynomial equations

1 ~ j:5 m,

to be solved in integers Xl, ... ,Xm E Z reflects the innermost structure
of the fundamental operations, addition and multiplication, performed on
the most fundamental of mathematical objects, the integers. Systems of
polynomial equations (*) are called Diophantine equations after Diophan
tus (~W4>aVTOl;) of Alexandria, ca. A.D. 100, whose Arithmetica contains
numerous solved problems of this type.
From a geometric perspective, the complex solutions to a system of

equations such as (*) form an algebraic variety. Algebraic geometry, the
study of algebraic varieties, also has a long and honorable history, although
not quite as venerable as that of number theory. During the course of the
20th century it became clear that the deep and powerful concepts and meth
ods of algebraic geometry are ideal for the study of Diophantine equations.
This led Serge Lang in 1961 to coin the phrase "Diophantine Geometry"
for the title of a book in which he sought to exploit the most powerful
techniques of algebraic geometry to study Diophantine equations in their
most general setting.
Later in the century, the field of algebraic geometry itself was reformu

lated by the Grothendieck school in such a way that one might plausibly
argue that number theory, or at least the theory of Diophantine equations,
is simply the special case of algebraic geometry over the spectrum of a
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Dedekind domain! This view of number theory, sometimes dubbed "arith
metic geometry," has enjoyed considerable success, but to fully understand
and exploit its power requires a substantial background in Grothendieck
style algebraic geometry, with the material in a book such as Hartshorne [1]
providing a bare beginning.
In this volume we study Diophantine equations using tools from al

gebraic number theory and "classical" algebraic geometry. Our goal is to
prove four of the fundamental finiteness theorems in Diophantine geometry:

* Mordell-Weil Theorem
The group of rational points on an abelian variety is finitely generated.

* Roth's Theorem
An algebraic number has finitely many approximations of order 2+ E.

* Siegel's Theorem
An affine curve of genus 9 2: 1 has finitely many integral points.

* Faltings' Theorem
A curve of genus 9 2: 2 has finitely many rational points.

We have chosen to avoid the use of scheme-theoretic language and con
cepts in our main development and in our proofs, so as to make the results
more easily accessible, but we do include a substantial amount of supple
mentary material of a more advanced nature, usually without proof. We
have also included a lengthy introduction to algebraic geometry in Part A,
since our experience is that the real conundrum for students attempting to
study Diophantine geometry is how to acquire a sufficient grasp of algebraic
geometry without first spending years on purely geometric study.
The last decade of the 20th century saw explosive progress in the study

of Diophantine geometry, but each major advance serves to highlight just
how little we know and how much is left to discover and to prove. It is our
hope that this book will help you, the reader, to appreciate some of the
deep and elegant Diophantine results currently known and will inspire you
to add to our knowledge of this beautiful subject.
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Introduction

Diophantine equations are systems of polynomial equations to be solved
in integers or rational numbers, and Diophantine geometry is the study of
Diophantine equations using ideas and techniques from algebraic geometry.
This is a very natural approach, since the basic objects studied in algebraic
geometry, namely algebraic varieties, are themselves defined by systems of
polynomial equations. The difference is that a (classical) algebraic geome
ter studies solutions in complex numbers or in some other algebraically
closed field, while a number theorist studies solutions in a ring or field of
arithmetic interest.
The most obvious way to classify polynomial equations is by their

degrees, but whether one studies algebraic geometry or Diophantine equa
tions, it soon becomes clear that such a classification is sadly lacking. For
example, the equations

and

appear similar, but VI has infinitely many solutions in rational numbers x
and y, while Vi! has only finitely many such solutions, and indeed has only
finitely many solutions with x and y chosen from any number field. One is
inexorably led to search for more intrinsic invariants. For curves such as VI
and V2 , the desired quantity is the genus; more generally, useful invariants
may be defined using, for example, sheaves of differentials. In any case,
one attempts to classify varieties geometrically according to various discrete
and/or continuous parameters, and to describe the parameter spaces, which
themselves often turn out to be varieties.
The geometric classification of curves (Le., irreducible varieties of di

mension 1) is extremely easy to describe. First, every curve is birational to
a unique nonsingular projective curve. Second, every such curve has asso
ciated to it a nonnegative integer called its genus. Third, the isomorphism
classes of nonsingular projective curves of a given genus 9 form (in a certain
complicated, but well-defined, sense) a family of dimension ma.x{39 - 3, 9}.
The proof of these assertions is not difficult.
The arithmetic classification of curves is almost as easy to describe,

but many of the proofs lie very deep and will be our principal concern
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for much of this volume. To simplify matters, we will assume that the
curve C is projective and nonsingular of genus g, and that it has at least
one rational point. Then the fundamental Diophantine finiteness theorems
for curves can be summarized in the following short table.

Genus Points "at Infinity" Integer Solutions

g=O :::;1 infinite set

g=O =2 finitely generated group

g=O ~3 finite set

g=1 =0 finitely generated group

g=1 ~1 finite set

g~2 ~O finite set

The Arithmetic Classification of Curves

(By convention, if a curve or equation has zero points at infinity, then its
integer solutions coincide with its solutions in rational numbers.) If we
introduce the Euler characteristic

x(C) = 2 - 2g - (# of points "at infinity"),

then the above results take the strikingly simple form

Euler Characteristic Integer Solutions

X(C) > 0 infinite set

X(C) = 0 finitely generated group

X(C) < 0 finite set

This innocuous little table includes major theorems associated with the
names Dirichlet, Mordell, Siegel, Weil, and Faltings.

A fundamental lesson to be learned from the above table is that at
least for curves, and at least in a qualitative sense,

IGeometry Determines ArithmeticI
This, then, is the principal motivation and ultimate goal of Diophantine
geometry-to describe the solutions of systems of Diophantine equations in
terms of the geometric properties and invariants of the associated algebraic
varieties. For curves, this task has been largely completed at the qualitative
level, although there are many questions of a more refined nature that
remain unanswered. For surfaces and varieties of higher dimension, the
task is barely begun, and indeed in many cases the "right" conjectures
have only recently been or are yet to be formulated.
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Our study of Diophantine geometry begins in Part A with geometry.
We give an overview of the algebro-geometric material that will be used
in the rest of the book. This part discusses algebraic varieties, divisors,
linear systems, algebraic curves (and surfaces), abelian varieties, Jacobian
varieties, and schemes. Virtually all of this material, other than the section
on schemes, is used in our subsequent work, but this does not mean that
we recommend reading Part A in full before proceeding to the later parts
of the book. Instead, we suggest briefly looking over Part A to see what it
contains, and then jumping directly into the arithmetic material of Part B
and beyond. Then return to Part A to fill in the algebraic geometry as it
is needed in the later sections of the book.
The first arithmetic portion ofthe book, Part B, deals with the theory

of height functions. These are functions that on the one hand measure
the arithmetic complexity of a point on a variety, and on the other hand
satisfy nice geometric transformation laws. Briefly, the theory of height
functions is a tool that transforms geometric facts into number theoretic
facts. More precisely, it transforms a divisor relation into an arithmetic
complexity relation. These arithmetic relations are, in general, given only
up to undetermined bounded quantities, but on abelian varieties it is pos
sible to pick out particular height functions, called canonical heights, for
which the arithmetic relations become exact. The material on heights and
canonical heights required in Parts C-E is covered in Sections B.I-B.6.
Section B.7 contains some useful lemmas used in subsequent sections, and
Sections B.8-B.I0 describe further important topics, often without proof,
that are used only in Part F.
We then come to the Diophantine core of the book in Parts C, D,

and E. The first of these, Part C, contains a proof of the Mordell-Weil
theorem: The group of rational points on an abelian variety is finitely gen
erated. It also includes in Sections C.4 and C.5 a discussion of Galois
cohomology and the Selmer and Tate-Shafarevich groups, which are used
for studying the refined properties of the Mordell-Weil group. Next, in
Part D, we give a proof of Roth's theorem: There are only finitely many
rational numbers that approximate a given algebraic number to order 2 +~.

We then use this fundamental theorem on Diophantine approximation and
the arithmetic-geometric relations provided by the theory of heights to
prove Siegel's theorem: A curve of genus g ~ 1 has only finitely many in
teger points. Finally, in Part E we take up the question of curves of higher
genus and prove Mordell's 1922 conjecture (Faltings [1], 1983): A curve of
genus g ~ 2 has only finitely many rational points. The proof that we give
is based on Diophantine approximation techniques similar to those used in
the proof of Roth's theorem. This alternative proof of Faltings' theorem is
due to Vojta [1), with substantial simplifications by Bombieri [1).
The preceding material easily fills the present volume, but leaves un

mentioned many important Diophantine results and an even larger number
of important Diophantine conjectures. As a means of introducing the reader
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to this additional material, we include in Part F an overview of further re
sults and open problems. Topics covered include rational and algebraic
points on curves and abelian varieties, the discreteness of algebraic points
relative to the height metric, bounds for height functions (both proven and
conjectural), the search for effectivity in the Mordell-Wei! theorem and in
Faltings' theorem, and a further discussion of how geometry governs arith
metic, including deep conjectures of Batyrev, Bombieri, Lang, Manin, and
Vojta that provide much of the focus for current research in Diophantine
geometry.
Readers should be aware that even with the survey material included

in Part F, we have been forced to leave out or only touch upon many topics
that are relevant to the Diophantine problems studied in this volume. These
topics include:

(a) Baker's Method
Effectivity in Diophantine geometry is discussed in Part F, but at
present the only general effective theorems come from Baker's method
giving lower bounds for linear forms in logarithms. Since it would
be impossible to do justice to this vast subject without significantly
increasing the size of the present volume, we content ourselves with
quoting an exemplary result in (D.9.5).

(b) Arakelov Geometry
During the past fifteen years, Arakelov geometry has been one of the
main sources of inspiration both for developing the theory of Dio
phantine geometry and for solving Diophantine problems. We give
a motivated introduction in Section B.IO, but again even a complete
volume (such as Lang [7)) is hardly enough to do justice to the subject.

(c) Existence ofRational Points
Most of the principal theorems in this volume assert the finiteness of
the set of rational points on certain varieties or, failing that, give an
estimate for the number of rational points of bounded height. We thus
do not address the important problem of deciding whether a variety
possesses any rational points at all. The main tools for addressing
this important Diophantine problem are cohomological. We discuss
this question in Part C, but only for homogeneous spaces of abelian
varieties as it relates to the Mordell-Wei! theorem.

(d) Function Fields
The celebrated analogies between number fields and function fields are
discussed in Section A.9. These form the starting point of Arakelov
theory. Indeed, the theory of heights and all of the main theorems
proven in this volume can be described in a common language over
both number fields and function fields, or more generally over finitely
generated fields, as is done in the seminal work of Lang [6]. We apolo
gize for our lack of generality, but we note that there are often better
methods involving the use of derivations available in the function field
case that are unavailable when one is working over number fields.
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Prerequisites

The main prerequisite for reading this book is a solid understanding of
basic algebraic number theory, including such topics as rings of integers,
completions, ramification, ideal class groups, and unit groups. This mate
rial is covered in any standard text such as Lang [9]. A second prerequisite
for understanding the main theorems in this book is a working knowledge
of algebraic geometry. In order to make this volume as self-contained as
possible, we have included an introduction to algebraic geometry in Part A;
but it is also a truism that when studying Diophantine problems, one can
never know too much algebraic geometry, so any previous exposure is sure
to be helpful.

References and Exercises

We have divided the book into six lettered parts, A-F, and each part is
divided into sections and subsections. Items in each section are numbered
consecutively, and cross-references are given in full, for example (A.8.2.2)
or (E.1O.3). Exercises appear at the end of each part, except for the lengthy
part A, which has exercises at the end of each section. Exercises are num
bered consecutively and are fully referenced, so for example, Exercise A.4.6
is the sixth exercise in Section A.4, and Exercise E.5 is the fifth exercise in
Part E. Bibliographic references are given by the author's name followed
by a reference number in square brackets, for example Tate [3, Theorem 2].
This volume contains numerous exercises. The reader desiring to gain

a real understanding of the subject is urged to attempt as many as possible.
Some of these exercises are (special cases of) results that have appeared in
the literature. A list of comments and citations for the exercises will be
found at the end of the book. Exercises marked with a single asterisk are
somewhat more difficult, and two asterisks signal an unsolved problem.

Standard Notation

Throughout this book, we use the symbols

to represent the integers, rational numbers, real numbers, complex num
bers, field with q elements, and p-adic integers, respectively. Further, if R
is any ring, then R* denotes the group of invertible elements ofR; and if A
is an abelian group, then Am or A[m] denotes the subgroup of A consisting
of all elements whose order divides m. A detailed list of notation will be
found at the end of the book.



PART A

The Geometry of Curves and
Abelian Varieties

The heavens rejoice in motion, why should I
Abjure my so much lov'd variety.
John Donne, Elegies

Do Not Read
Put A

Now that we have your attention, let us explain why we would recom
mend that you not read part of this book. Part A contains a summary
of the main results from algebraic geometry that will be needed in
our arithmetic investigations. If you begin your study of Diophantine
geometry by attempting to read all of Part A and doing all of the ex
ercises, you are likely to feel overwhelmed by the geometry before you
reach any of the beautiful arithmetic results. So we suggest that you
begin by skimming Part A, possibly reading more closely any material
that Covers gaps in your knowledge. Then as you read the rest of this
book, use Part A as a reference source for geometric facts as they are
needed. Having offered this warning and advice, we now begin our (far
from brief) survey of algebraic geometry.

A general principle suggests that before tackling a Diophantine problem, it
is necessary first to understand the underlying geometry. The initial part of
this book develops the geometry necessary to do arithmetic on curves, that
is, on algebraic varieties of dimension one. However, we cannot be content
to work only with varieties of dimension one. For example, we will want to
work with surfaces that are the product of two curves. More importantly,
many of the deeper properties of a curve are best analyzed by studying a
certain variety of higher dimension called the Jacobian of the curve. The
Jacobian of a curve is a group variety. It represents a kind of linearization
of the curve, that is, it is a space where we can add points on the curve to
one another. Jacobians are special instances of abelian varieties, and the
theory gains unity when developed in this generality.
After a brief survey of the basic concepts of algebraic geometry in a

preliminary section, we describe with a bit more detail divisors and linear
systems on varieties in the next two sections. In Section A.4 we give a
succinct account of the geometry of curves, centered on the notion of genus
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and the Riemann-Roch theorem. We then pursue the theory of Jacobians
and abelian varieties in the next four sections. These four sections form the
core of this geometric part. We develop first the theory of abelian varieties
and Jacobians analytically over C and then algebraically over an arbitrary
field, often giving two proofs or at least offering two different perspectives
on parallel results.

Ultimately, we want to study arithmetic, that is, points defined over
number fields. So the reader may be surprised that we devote so much
space to complex varieties. There are several reasons for this. The first
is historical. Algebraic geometry was originally developed (by Riemann
and others) as a part of complex function theory, and imitating history
often gives valuable insight into a subject. Secondly, there is the so-called
Lefschetz principle, which says that geometry over any algebraically closed
field of characteristic 0 is essentially the same as over C. This metaprinciple
is true because any field of characteristic 0 and finite (or countable) tran
scendence degree over Q can be embedded into C, and virtually all objects
of an algebraic nature are defined over such fields. Further, Galois theory
provides a tool that often allows one to descend from the algebraic closure
ofQ to a number field (see Proposition A.2.2.1O for a precise statement). A
third, equally compelling, reason to study complex varieties is the philoso
phy of Arakelov, which casts the complex points of a variety as the "fiber
at infinity" that "compactifies" a model of the variety over Z. We will be
able to give only a brief introduction to these ideas and win not rely on
them for proofs, but their importance in the development of Diophantine
geometry (past and future) can hardly be overstated. Arakelov's philoso
phy was utilized by Faltings in the original proof of Morden's conjecture,
and the generalization of Arakelov's ideas to higher dimensions played a
very significant role in the second proof, found by Vojta.

However, working over C is clearly not sufficient for our needs. It
is important to know that constructions such as the Jacobian of a curve
can be done over the field of definition of the curve. Also, when studying
varieties defined over a number field, one is naturally led to specialize them
"mod p." This requires geometry in characteristic p. So we will also need
to employ the tools of abstract algebraic geometry.

It will not be possible for us to provide full proofs of all of the state
ments in this part. Instead, we will state general theorems and definitions
of algebraic geometry and provide adequate references. We give more de
tails on the specific applications to curves and abelian varieties, but even
here we have had to omit some important results due to lack of space and
time. We have tried to keep our baggage to a minimum, often at the risk
of appearing "old-fashioned."
Finally, a word of caution. Although the geometry we develop will suf

fice to prove the Morden-Weil theorem and Faltings' theorem (Morden's
conjecture), there is little doubt that further progress is likely to require
the sophisticated apparatus of modem algebraic geometry. The language
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of schemes is essential both for its powerful technical versatility and for the
valuable insights it provides for arithmetic geometry. We give an introduc
tion to this deep subject in a last section presented as a variation on the old
theme of "analogies between function fields and number fields." Especially,
we describe what is meant by a curve "over Z" and by an abelian variety
"over Z," and we explain what "reducing modulo p" means in this context.
General references on algebraic geometry include Hartshorne [1], Grif

fiths-Harris [1], Shafarevich [1], and Mumford [4,6]. There is a vast litera
ture on curves; we mention Walker [1], Fulton [1], and at the other end of
the spectrum, Arbarelo-Cornalba-Griffiths-Harris [1]. Textbooks on Jaco
bians and abelian varieties are rarer. Complex abelian varieties and theta
functions are nicely introduced in Swinnerton-Dyer [1], K. Murty [1], and
Lang [4], and thoroughly treated in Lange and Birkenhake [1]. The alge
braic aspects may be found in Lang [3], Mumford [2], and Weil's original
books [2,3]. The survey of Bost [1] provides an excellent presentation of
Jacobian varieties, and Mumford's lectures [3] give a pleasant account of
curves and their Jacobians. Jacobians are also treated in an analytical fash
ion in Griffiths-Harris [1] and Gunning [1], while the algebraic construction
ofWeil is described in Serre [1]. Finally, we point out the excellent surveys
and bibliographies in the papers of Rosen [1] and Milne [1,2].

A.I. Algebraic Varieties

This preliminary chapter is essentially a glossary and a herbarium. We
review the basic definitions of algebraic geometry and collect examples of
varieties and maps. It can safely be omitted by any reader with some
knowledge of algebraic geometry. Throughout we work with the following
notation:

k a perfect field.

k an algebraic closure of k.

Gk = Gal(k/k), the Galois group of k over k.

The reason for working in this generality is that we want to be able to
study fields k of arithmetic interest, such as Q, Qp, or lFp, but geometric
properties are best expressed over algebraically closed fields. As a naive
example, we might consider the equation x2 + y2 + 1 = 0 as giving a curve
defined over Q, yet this curve is an empty set in the sense that it has no
points with x and y in Q. Hence to "see" the curve, we must look at all
the points with coordinates in Q. The restriction to perfect fields is usually
not essential, but it is made to simplify our work. Especially, the notion of
"being defined over k" is unambiguous in this context (see Exercise A.1.13).
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We begin our review with affine n-space.

Definition. Affine n-space (over k), which we denote by An or Ak, is the
set

An = {(Xl, ... ,Xn ) IXi E k}.
The set of k-mtional points ofAn is the set

An(k) = {(Xl, ... ,Xn) E An IXi E k}.

Remarks. (i) One may also characterize the set of k-rational points of An
as the set

An(k) = {(Xl, ... ,Xn) E An 100(Xi) = Xi for all 0" E Gk}.

(ii) The notation An(k) is, in fact, that of a functor. The functor An
associates to each field k the set An (k).
Now let I be an ideal in k[XI , . .. ,Xn ] = k[X]. We associate to I its

set of zeros,
Z(I) = {x E An IP(x) = 0 for all PE I}.

In some sense the primary goal of algebraic geometry is to understand the
spaces thus defined. Similarly, to each subset S of An we associate the
ideal of polynomials vanishing on S,

Is = {P E k[X] IP(x) = 0 for all XES}.

Definition. An affine algebmic set S is a set of the form S = Z(I) for
some ideal I in k[X]. The set S is said to be defined over k if its ideal Is
can be generated by polynomials in k[X].

For example, a point a = (al"'" an) is an algebraic set defined by
the ideal generated by the polynomials Xl - aI, ... , X n - an, and obviously
it is defined over k if and only if each ai belongs to k.

Remarks. (i) The Hilbert basis theorem says that any ideal of polyno
mials is generated by a finite number of polynomials. See, for example,
Atiyah-Macdonald [1, Theorem 7.5] or Lang [2, Section 6.2]. Thus alge
braic sets can always be written as the common zeros of a finite collection
of polynomials.
(ii) If V is an algebraic set defined over k by some ideal I, then its set
of k-rational points is defined by

V(k) = {x E An(k) IP(x) = 0 for all PEl}

= {x E V 100(x) =X for all 0" E Gk }.

(iii) It is also convenient to define

Iv,k = {P E k[X] IP(x) = 0 for all X E V}.

Note that we always have IV,k . k[X] C IV,k = Iv, and equality occurs
exactly when V is defined over k.
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Recall that for any ring R, the mdical Vi of an ideal I C R is defined
to be

vi = {a E R IaT E I for some r ~ 1 }.

We now describe the correspondence between algebraic sets and polynomial
ideals.

Lemma A.l.l.l. (i) Let Vi be algebraic subsets of An. Then arbitrary
intersections ni Vi and finite unions VI U ... U ~ are algebraic sets.
(ii) If81 C 82 C An, then lSI:) Is2 .
(iii) Ifh c 12 C k[X], then Z(Il) :) Z(h).
(iv) If V is an algebraic set, then Z(lv) = V.
(v) If I is an ideal in k[X], then IZ(I) = Vi.

PROOF. Statement (i) is clear from the equalities ni Vi = ZCEJv,) and
V1UV2 = Z(IvI ·Iv2 ). The rest is easy except for (v), which is a consequence
of the next theorem. 0

Theorem A.l.l.2. (Hilbert's Nullstellensatz) Let I be an ideal of the
ring k[X1 , ..• , X n ] and let P be a polynomial vanishing at every point in
Z(I). Then there is an integer r ~ 1 such that pT E I.

PROOF. See Lang [2, Section 10.2] or Atiyah-Macdonald [1, Chapter 7,
Exercise 14]. It is, of course, essential to formulate the theorem over k.

o

Lemma A.1.!.1 says that there is a natural bijection between algebraic
sets and reduced ideals, that is, ideals that are equal to their own radical.
The first part of Lemma A.1.!.1 can be reformulated by saying that alge
braic sets satisfy the axioms of the closed sets of a topology. Note that An
and the empty set are algebraic sets, since

and 0= Z(k[X]).

Definition. The Zariski topology on An is the topology whose closed sets
are algebraic sets. The Zariski topology on an algebraic set 8 is the topology
induced by the inclusion 8 cAn.

Definition. A nonempty subset Z of a topological space X is irreducible
if it cannot be written as the union of two proper closed subsets of Z (for
the induced topology).

Example. An is irreducible for the Zariski topology. To see this, we
observe that the Zariski topology is highly non-Hausdorff. Indeed, any
nonempty open subset of An is dense in It.n, and hence the intersection of
any two such open sets is always nonempty.

Definition. An affine variety is an irreducible algebraic subset (for the
Zariski topology) of some An.
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Lemma A.1.1.3. (i) An algebraic set V is irreducible if and only if its
ideal Iv is a prime ideal.
(ii) An algebraic set is a finite union of varieties. If we insist, as we
may, that none of the varieties be contained in another one, then this
decomposition is unique.

The varieties in the decomposition (ii) of an algebraic set are called the
irreducible components of the algebraic set.

PROOF. Easy. See Hartshorne [1, 1.1.6]. 0

Example A.1.1.4. (Affine hypersurfaces) Let P E k[XI, ... ,Xn ] be a
polynomial and let V = Z(P) be the algebraic set defined by P. Suppose
that P = P{"l ... p;:'r is the decomposition of P into irreducible factors,
and set Vi = Z(Pi ). Then the Vi's are the irreducible components of V.
Indeed, each Vi is a variety, V = U~=l Vi, and Vi et. \ij for i =F j.

The algebra of polynomials in n variables is naturally associated to
the affine space An. When we restrict polynomial functions to an affine
subvariety V, it is natural to identify any two polynomials that give the
same function on V. Thus we are led to the following definition:

Definition. Let V be an affine subvariety of An. The affine coordinate
ring o/V is

k[V] = k[xl, ... ,xnl/Iv .

We will see in the next section that this algebra completely character
izes the variety V.

Example A.1.1.5. (Products of affine varieties) We observe that there is
an obvious isomorphism Am x An ~ Am+n given by the map

((Xl,'" ,Xm), (YI,"" Yn)) 1---+ (Xl,"" Xm,YI,··· ,Yn)'

(Although "isomorphism" is not formally defined until the next section, the
meaning is clear here.) If V ~ Am and W ~ An are two affine varieties,
then we define their product V x W to be the affine variety whose ideal is
generated by Iv and Iw inside k[XI,,,,,Xm,YI, ... ,Yn]' It is not hard to
verify that

k[V x W] ~ k[V] ~ k[W].

(See Hartshorne [1, I, Exercise 3.15]. This is still true with k in place of k,
provided that we keep the assumption that k is perfect.)
Since at least the work of Desargues it has been known that geometry

is easier if one adds "points at infinity" in order to make affine space "com
plete." For example, one wants the following kinds of statements to be
true: Two distinct lines in the plane meet in one point, a line meets a conic
in two points (counted with multiplicities), etc. Clearly, these statements
are false in the affine plane A2 , since parallel lines do not meet. In order
to make them true, we introduce projective space.
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Definition. Projective n-space IF is the set of lines through the origin in
An+l. In symbols,

n {(xo, ... ,xn)EAn+llsomexiI=O} An+l,{O}
lP' = =,

f"V f"V

where the equivalence relation f"V is defined by

(Xo, ... ,xn) f"V (Yo, ... ,Yn)

{=:::} (xo, ... ,xn) = >'(Yo, ... ,Yn) for some>. E k*.

If PElF is the point representing the equivalence class of the (n + 1)
tuple (xo, ... , xn), the Xi'S are called homogeneous or projective coordinates
for the point P. The set of k-mtional points ofIF , denoted by IF(k), is the
set of lines through the origin in An+l that are defined over k. This is the
set of points in lP'n for which we can find some homogeneous coordinates in
An+l(k). Equivalently, these are the points (xo, ... ,Xn) with the property
that for any nonzero coordinate Xj, all of the ratios xi/Xj are in k.
The Galois group Gk acts on IF by acting on the coordinates,

a(P) = (a(xo), ... ,a(xn)) for P = (xo, . .. ,xn ) E lP'n and a E Gk .

Then one can show that (Exercise A.1.16)

The field of definition of a point P = (xo, ... , Xn) E IF is the smallest
extension of k over which P is rational, namely,

for any j with Xj 1= o.

Equivalently, k(P) is determined by the property

Gal(k/k(P)) = {a E Gk Ia(P) = Pl·

In order to define projective algebraic sets, we recall that a polynomial
ideal is homogeneous if it is generated by homogeneous polynomials, or,
alternatively, if the homogeneous components of any polynomial in the
ideal are again in the ideal. If P is a homogeneous polynomial, then

P(xo, ... ,xn ) = 0 {=:::} P(>.xo, ... ,>.xn ) = 0 for all >. E k*.

We can thus define projective algebraic sets in a fashion entirely analogous
to our definition of affine algebraic sets, provided that we use homogeneous
polynomials and ideals.
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Definition. A projective algebraic set is the set of zeros in IP'n of a homo
geneous ideal in k[xo, ... , xn]. The Zariski topology on IP'n is defined by
taking the projective algebraic sets to be the closed sets, and the Zariski
topology on an algebraic set is the topology induced from the Zariski topol
ogy on IP'n. A projective variety is a projective irreducible algebraic set. It
is said to be defined over k if its ideal can be generated by polynomials in
k[xo, . .. ,xn].

The correspondence between homogeneous ideals and projective alge
braic sets is very similar to the affine one; the only difference is the existence
of an "irrelevant" ideal, namely the ideal 1o generated by XO, ••. ,xn . No
tice that 1o defines the empty subset of IP'n, and any homogeneous ideal
different from k[xo, ... ,xn] is contained in 1o. Let us define a saturated
ideal as a homogeneous ideal I such that if xii E I for all i = 0, ... ,n,
then f E I; clearly, the ideal of polynomials vanishing on a projective alge
braic set is saturated. More precisely, the map I ~ Z (/) gives a bijection
between reduced saturated ideals and projective algebraic sets. Further,
a projective algebraic set Z is a projective variety if and only if Iz is a
(homogeneous) prime ideal in k[xo, ... ,xn].

Example A.1.1.6. A variety defined by linear forms

is called a linear subvariety of pn. For example, a point with projective
coordinates (ao, ... , an) is defined by the linear forms aiXj - ajXi = O. An
algebraic set defined by one nonzero homogeneous polynomial is called a
projective hypersurface. A linear hypersurface is called a hyperplane.

Just as with affine varieties, we look at the quotient of the polynomial
algebra by the homogeneous ideal of a projective variety.

Definition. The homogeneous coordinate ring of a projective variety V C
pn is the quotient

S(V) = k[xo, ... ,xnl/Iv.

Note that unlike the case of k(V] for affine varieties, the elements of S(V)
do not define functions on a projective variety V. An even more important
observation is that the homogeneous coordinate ring depends on the em
bedding ofV in IP'n, it is not an intrinsic invariant of V (see Exercise A.1.4).

Let us explain now how to cover IP'n (or any projective variety) by affine
spaces and thereby recover the classical description of IP'n as the union of
affine space An together with a hyperplane at infinity.

Definition. Let (xo, ... , xn) be homogeneous coordinates on pn. The
standard (affine) open subset Ui is the complement of the hyperplane de
fined by Xi = O.
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It is obvious that the open sets Ui cover Ipm, and it is easy to see that
the map

is a homeomorphism with inverse

Thus Ui is isomorphic to An, and since the hyperplane Xi = 0 is isomorphic
to lPn-I, we obtain a description of pn as the union of affine space with a
hyperplane at infinity. Repeating this process gives a cellular decomposi
tion

Example A.l.l.7. The completion of an affine variety to a projective va
riety can be done very concretely by homogenizing the polynomials defining
it. Similarly, one can find an open affine subset of a projective variety by
dehomogenizing its defining polynomials.

For example, let U be the affine parabola defined by y - x 2 = 0 in
A2 . Then the homogeneous equation ZY - X 2 = 0 defines a projective
variety V, and the map (X, Y, Z) I---> (XjZ, YjZ) defines an isomorphism
from V n {Z -=I O} to U. Similarly, the set V n{X -=I O} is isomorphic to the
affine hyperbola uv - 1 = 0 by the map (X, Y, Z) I---> (YjX, Z j X). Notice
that the parabola has one point at infinity, while the hyperbola has two.

It is convenient to be able to speak of open subsets of varieties as
varieties themselves, so we enlarge our category a bit.

Definition. A quasi-projective algebraic set is an open subset of a pro
jective algebraic set. A quasi-projective variety is an irreducible quasi
projective algebraic set.

Notice that affine and projective varieties are quasi-projective, but
there are quasi-projective varieties that are neither affine nor projective.
For example, 1P2 " {(O, 0, I)} is quasi-projective, but it is neither affine nor
projective. On the other hand, any quasi-projective variety can be covered
by affine open subsets, because the complement of a hypersurface in An is
an affine variety. (See Hartshorne [1,1.4.2 and Exercises 1.3.5, 1.3.6]). This
suggests the following principle: Global properties are better studied in
the context of projective varieties, whereas local properties are most easily
verified on open affine sets.
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Having defined algebraic varieties, we need to define maps between them.
For many reasons, we want to have a coordinate-free approach and to
consider varieties independent of any particular embedding in An or IPn.
Roughly speaking, an algebraic map between varieties is a map that can
be defined by polynomials or rational functions. We start by defining the
functions on a variety X, that is, maps from X to A l = k.

Definition. Let X be a variety and x' a point on X. A function f : X -+ k
is regular at x' if there exists an open affine neighborhood U C X of x',
say U cAn, and two polynomials P, Q E k[xl, ... ,xnl such that Q(x' ) =1= 0
and f(x) = P(x)/Q(x) for all x E U. The function f is regular on X if it is
regular at every point of X. The ring 01 regular functions on X is denoted
by (,)(X).

Note that if 1 is regular on X, it need not be true that there are
fixed polynomials P, Q such that f = P/Q at every point of X, although
this will be true for affine varieties (see Theorem A.1.2.1 below). The
definition of regularity is local, so it may be necessary to choose different
polynomials at different points. More precisely, if 1 is regular on X, then
one can write X as a finite union of affine open subsets Ui , and one can
find polynomials Pi, Qi such that f(x) = ~(X)/Qi(X) for all x E Ui.
We also note that the property of being regular is open. If f is regular

at x, then it is regular at every point in some neighborhood of x. This
suggests looking at the collection of functions that are regular at a given
point.

Definition. Let x be a point on a variety X. The local ring of X at x
is the ring of functions that are regular at x, where we identify two such
functions if they coincide on some open neighborhood of x. This ring is
denoted by (')x,x, or simply by (')X if no confusion is likely to arise.

More generally, we can define the ring of functions regular along a
subvariety of X.

Definition. Let X be a variety and Y C X a subvariety. The local ring of
X along Y, denoted by (')Y,X' is the set of pairs (U, f), where U is an open
subset of X with Un Y =1= 0 and f E (,)(U) is a regular function on U, and
where we identify two pairs (Ul, II) = (U2, h) if II = 12 on U1 n U2. The
ring (')Y,X is a local ring, its unique maximal ideal being given by

My,x = {f E (')Y,X If(x) = 0 for all x E Y}.

For example, ('){x},X is just the local ring of X at x, while the local
ring (')x,x turns out to be a field.
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Definition. Let X be a variety. The function field of X, denoted by k(X),
is defined to be Clx,x, the local ring of X along X. In other words, k(X)
is the set of pairs (U, J), where U is an open subset of X and f is a regular
function on U, subject to the identification (Ub II) = (U2 , h) if II = 12
on Ul n U2 • (N.B. An element f of k(X) is not a function defined at every
point of X. Instead, f is a function that is defined at some point of X, and
hence is defined on a nonempty open set of points of X.)

It is easy to check that k(X) is a field that contains every local
ring Cly,x ofX, and that for any subvariety Y c X, we have Cly,x/My,X ~

k(Y). The function fields of An and IP'n are both equal to k(Xb"" xn),
the field of rational functions in n indeterminates. If X is an affine hy
persurface defined by an irreducible polynomial P(Xl"" ,xn) in which the
variable Xn appears, then k(X) is an algebraic extension of k(Xb ... ,Xn-l)
generated by any root a of the equation P(Xl,"" Xn-b a) = O. The local
ring of a point (al,"" an) E An is the ring of polynomials k[Xl"'" Xn]
localized at the ideal (Xl - al,'" ,Xn - an)' We are now ready to define
maps between varieties.

Definition. A map </J : X ~ Y between varieties is a morphism if it is
continuous, and if for every open set U C Y and every regular function f
on U, the function f 0 </J is regular on </J-l(U). A map is regular at a point
X if it is a morphism on some open neighborhood of x.

In a less intrinsic way, one can show that f is regular at X if there
is an affine neighborhood U CAm of x in X and an affine neighborhood
V cAn of </J(X) in Y such that </J sends U into V and such that </J can be
defined on U by n polynomials in m variables. That these definitions are
equivalent comes from the fact that a morphism of affine varieties is defined
globally by polynomials, as can be deduced readily from Theorem A.1.2.1
below. The word "morphism" is short for "morphism in the category of
algebraic varieties." Just as with rational functions, it is often convenient
to consider maps between varieties that are defined only on an open subset.
We therefore introduce one more definition.

Definition. A rational map from a variety X to a variety Y is a map
that is a morphism on some nonempty open subset of X. A rational map
</J : X ~ Y is said to be dominant if </J(U) is dense in Y for some (and
consequently every) nonempty open set U C X on which it is a morphism.
A birational map is a rational map that has a rational inverse. Two

varieties are said to be birationally equivalent if there is a birational map
between them.

Remark. Let </J : X ~ Y be a rational map. Then there is a largest open
subset U on which </J is a morphism. This open subset is called the domain
of</J·

We have defined morphisms and rational maps purely in terms of local
properties. We now examine their global behavior, distinguishing carefully
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between affine and projective varieties. Notice that almost by definition,
a morphism if> : V --+ W of affine varieties induces a ring homomorphism
¢* : k[W] --+ k[V] defined by f ~ f 0 if>.

Theorem A.1.2.1. (i) Let V be an affine variety. Then C>(V) ~ k[V].
(ii) Let V, W be affine varieties. The natural map

Mor(V, W) ---+ HOmk_Alg(k[W], k[V]),

if> 1---+ (f~foif»,

is a bijection. In fancy language, the association V --+ k[V] is a contravari
ant functor that induces an equivalence between the category of affine va
rieties and the category of finitely generated integral k-algebras.

PROOF. Hartshorne [1, 1.3.2]. o

Thus an affine variety is completely determined by its ring of regular
functions. This stands in stark contrast to the next two results.

Lemma A.1.2.2. A regular function on a projective variety is constant.

PROOF. Hartshorne [1, 1.3.4(a)]. o

Theorem A.1.2.3. The image of a projective variety by a morphism
is a projective variety. More generally, if X is a projective variety, the
projection X x Y --+ Y is a closed map.

PROOF. This is essentially equivalent to the main theorem of elimination
theory; see Van der Waerden [1, vol. II, §80] or Shafarevich [1, 1.2 Theo
rems 2, 3].

o

Notice that the image of an affine variety by a morphism need not
be an affine variety, so there is no analogue of Theorem A.1.2.3 for affine
varieties.
We now look at local rings and function fields. Recall that if p is a

prime ideal in a ring A, then the localized ring at p is

A p = {EIa, b E A, b rt p} .
If P is a homogeneous ideal in a graded ring A, the homogeneous localized
ring at p is

A(p) = {EIa, bE A, deg(a) = deg(b), b rt p} .

In both cases, the local ring is a subring of the ring of frlU:tions of A, which
we denote by FrlU:(A). Of course, if A is a domain, then FrlU:(A) is a field.
For the general theory of localization, see, for example, Lang [2, 11.3] or
Matsumura [1, I.1].
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Theorem A.1.2.4. (i) Let P be a point on an affine variety V, and let
Mp be the ideal of functions in k[V] that vanish at P. Then

C) p,v = k[V]Mp and k(V) = Frac(k[V]).

(ii) Let P be a point on a projective variety V, and let Mp be the ideal
generated by homogeneous polynomials vanishing at P. Then

and k(V) = S(V)«O».

PROOF. (i) Hartshorne [1, I.3.2(c,d)].
(ii) Hartshorne [1, I.3.4(b,c)]. o

Notice that the elements of S[V1(Mp) may be viewed as functions on V
because they are of degree zero, which means that their value at a point is
independent of the choice of homogeneous coordinates for that point. Of
course, they need not be defined at every point of V.

Theorem A.1.2.5. Let I : V ---t W be a rational map between two
varieties.
(i) If I is regular at P and Q = I(P), then the map

1* : 9 r-----t 9 0 I,

is a homomorphism of local rings. In particular, f*(MQ) C Mp.
(ii) If I is dominant, then 1* defines a field homomorphism k(W) ~

k(V). Conversely, every such field homomorphism corresponds to a dom
inant rational map. In other words, the association X ---t k(X) is a con
travariant functor that induces an equivalence between the category of
varieties with dominant rational maps and the category of fields of finite
transcendence degree over k.
(iii) In particular, two varieties are birationally equivalent if and only if

their function fields are isomorphic.

PROOF. See Hartshorne [1,1.4, Theorem 4]. o

We define one more type of map. These maps play a role in algebraic
geometry analogous to the role that covering maps play in topology.

Definition. Let ¢ : V ---t W be a morphism of affine varieties, and use
the map ¢* : k[W] ---t k[V] described in (A.1.2.1(ii)) to make k[V] into a
k[W]-module. The morphism ¢ is called finite if k[V] is a finitely generated
k[W]-module.
A morphism ¢ : V ---t W between varieties is finite if for every affine

open subset U C W, the set ¢-l(U) is affine and the map ¢ : ¢-l(U) ---t U
is finite.
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Notice that a map 4J between affine varieties is dominant if and only
if 4J* is injective, so we say that 4J is finite surjective if it is finite and 4J* is
injective. It is true, but not obvious from the definition, that a finite map is
also finite in the intuitive sense. That is, if 4J : V --+ W is a finite map, then
it is a closed map and all fibers 4J-1 (x) consist of a finite number of points.
Further, there is an integer d and a nonempty open U c 4J(V) such that
#4J-1(x) = d for all x E U. The degree d can be described algebraically as
the degree of the associated field extension, and we define this quantity to
be the degree of the finite map 4J,

deg(4J) = [key) : 4J*k(W)].

Under further hypothesis, for example that W is smooth or normal (see
Section AA and Exercise A.l.I5 for these notions), it is even true that for
all x E 4J(V) we have #4J-1(x) :s; deg(4J). However, this is not true in
general; see Exercise A.1.I5 for an example.

This section has been somewhat barren of examples, so we offer the
following collection as a remedy. (See the exercises for more examples,
especially Exercises A.1.6, A.1.7, and A.1.8). All of these examples are
important tools for proving results in algebraic and arithmetic geometry.

Examples A.1.2.6. (a) (d-uple embedding) Let Mo(x), ... , MN(x) be the
complete collection of monomials of degree d in the variables Xo, ... , x n .

Note that N = (n~d) - 1. Then the map

~d: lF
x

is called the d-uple embedding of IF. It is a morphism, and in fact it is
actually an embedding of lF into pN.
(b) (Segre maps) Let m, n ~ 1 be integers and let N = (n + I)(m+ 1) - 1.
We define the Segre map Sn,m by the formula

Sn,m: lF xF
(x, y)

pN ,
(XiYj) O:::;i~n ,

O~j~m

where we have written x = (xo, ... , x n ) E pn and Y = (Yo, ... , Ym) E
pm. The Segre maps are again morphisms and give embeddings of the
product pn x pm into pN. This construction explicitly displays the product
of projective varieties as a projective variety.
(c) (Linear projections) Let L o, ... ,Lr be independent linear forms in the
variables (xo, ... ,xn ), and denote by Z the linear subvariety of lF defined
by L o = ... = L r = o. Then we can define a rational map by the formula

7f: pn ---+ r,
x t---+ (Lo(x), ... ,Lr(x)).
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The domain of 1r clearly equals pn" Z. We call1r the linear projection with
center Z.
(d) More generally, let Po, ... , Pr E k[xo, ... , xnl be homogeneous polyno
mials of degree d, and let Z be the algebraic subset of pn defined by the
equations Po = ... = Pr = O. Then we can define a map

<jJ: pn _ r

x t----+ (Po(x), ... ,Pr(x»)

which is again a rational map on pn. Further, if the greatest common
divisor of the Pi'S is 1, the domain of <jJ is equal to pn " Z. To see this, note
that since homogeneous polynomials of degree d are linear combinations
of monomials of degree d, it is easy to write <jJ as the composition of the
d-uple embedding followed by a linear projection.
In examples (a)-(d) we wrote maps using only one chart. The next

example shows that sometimes more than one chart is necessary.
(e) Let C be the curve defined in JP2 by the equation

Zy2 = X 3 + AXZ2 + BZ3
•

We define a rational map <jJ : C - pI by setting <jJ(X, Y, Z) = (X, Z). This
is the restriction to C of a linear projection. The map is clearly regular
except possibly at the point (X, Y, Z) = (0, 1,0). But observe that we can
use the homogeneity of the coordinates and the equation for C to rewrite <jJ
as

<jJ(X, Y,Z) = (X,Z) = (X3 ,ZX2 ) = (Zy2 - AXZ2
- BZ3 ,ZX2

)

= (y2 _ AXZ - BZ2 ,X2 ),

where this calculation is valid at all points on the curve with X Z =/:. O.
This formula shows that <jJ(O, 1, 0) = (1,0), and that <jJ is well-defined in
a neighborhood of (0,1,0). Thus <jJ is a morphism from C to pl. It is a
general fact that a rational map from a smooth curve to a projective variety
is always a morphism (see Theorem AA.1.4 below).
The map <jJ is clearly finite of degree 2. In fact, #<jJ-I(p) = 2 except

for P = (1,0) and the points P = (a, 1) with a3 + Aa + B = O.
(f) (Blowup of a point) Consider the projective algebraic set defined by

Z = { (xo, ... , xn ), (Yo, ... ,Yn-d) E pn X pn-l IXiYj - XjYi = 0

for all 0 :::; i :::; n, 0 :::; j :::; n - 1}.

One can check that Z is the closure in pn x pn-l of the graph of the
linear projection with center at Po = (0,0, ... ,0,1). Let p : Z _ pn



§A.1.2. Algebraic Maps and Local Rings 21

and q : Z - IPn - 1 be the projections on the first and second factors,
respectively, and define a map

Then it is easy to see that </> is a rational map from jpn to Z that is defined
everywhere except at the point Po. Furthermore,</> and p are clearly inverse
to one another at every point where they are defined, so they are in fact
birational maps. We observe that p-l{p} consists of the single point </>(P)
except when P = Po, in which case

The map p : Z - jpn is called the blowup of the point Po on jpn. It
has the effect of replacing the point Po with the projective space jpn-l,
while leaving all other points unchanged. In essence, the point Po is being
replaced by the set of tangent directions through Po.

If Po is a point on a projective variety V, the blowup of Vat the point
Po is defined as follows. First embed V into some IPn so that the image of
Po is the point (0, ... ,0,1). The inverse image ofV by the map p: Z - jpn

consists of two piec~. One piece is p-l{PO} = {Po} x IPn
-
1 , and we denote

the other piece by V. The map p' : V - V induced by p is called the
blowup of Vat Po. It can be shown that this construction is independent
of the chosen embedding. Clearly, the map p' is an isomorphism from
V" p'-l{PO} to V" {Po}, so in particular p' is a birational morphism.
For more about blowingup and some examples, see Hartshorne [1, I §4
and II §7].
(g) (Cremona transformation) The Cremona transformation from 1P2 to 1P2

is the rational map defined by

</>(X,Y,Z) = (X- 1,Y-l,Z-1) = (YZ,XZ,XY).

This is readily seen to be a birational involution (i.e., </>o</>(P) = P wherever
it is defined), and the domain of </> is clearly the complement of the three
points P = (1,0,0), Q = (0,1,0), and R = (0,0,1). We also observe that 4>
takes the line through P, Q and sends it to the point R, and similarly for the
lines through P, Rand Q, R. Another, fancier, description of the Cremona
transformation is to say that it first blows up the three points P, Q, R, and

+---+ +---+ +---+

then it blows down the three lines PQ, PR, QR.
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A.1.3. Dimension

A. The Geometry of Curves and Abelian Varieties

The notion of dimension is one of the most intuitive ideas in geometry,
and in fact, the theorems of this section are intuitively quite clear, even
if their proofs are not easy. Clearly, the dimension of a variety should be
a birational invariant, and hence it is natural to define it in terms of the
function field of the variety.

Definition. The dimension of a variety V defined over k is the transcen
dence degree of its function field k(V) over k. The dimension of an algebraic
set is the maximum of the dimensions of its irreducible components.

Not surprisingly, both An and IPn have dimension n. Similarly, the
dimension of a hypersurface in An or IPn (Examples A.1.1.4 and A.1.1.6) is
n - 1. In fact, a kind of converse is true.

Proposition A.1.3.1. A variety V of dimension n -1 is birational to a
hypersurface in An (or IPn ).

PROOF. This follows at once from the structure of finitely generated fields.
Indeed, one can show that the field k(V) is a finite separable extension
of k(Xl' ... ,Xn-l), and so by the primitive element theorem, it is generated
by a single element. See Hartshorne [1, 1.4.9] for further details. 0

There is another definition of dimension, which relies on the Krull
dimension of a ring.

Definition. The height of a prime ideal 13 in a ring A is the supremum of all
n such that there exists a chain of distinct prime ideals Po c ... c Pn = p.
The Krull dimension of the ring A is the supremum of the heights of its
prime ideals.

The link between the Krull dimension and the geometric dimension is
provided by the following theorem.

Theorem A.1.3.2. (i) Let V be an affine algebraic set. Then

dim(V) = Krulldim(k[V]).

(ii) Let V be an affine variety and let 13 be a prime ideal in k[V]. Then

height(p) +Krulldim(k[V]lp) = Krulldim(k[V]).

(iii) Let W be a subvariety ofV. Then

Krulldim(Ow,v) = dim(V) - dim(W).

PROOF. See Hartshorne [1, Theorem U.8.A and Exercise 3.13], Atiyah
Macdonald [1, XI] or Matsumura [1, V.14].

o

In particular, we have the following useful corollary.
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Corollary A.1.3.3. Let V be a variety, and let W be a closed algebraic
subset oEV. IEW # V, then dimW < dimV (strict inequality).

To conform with the usual terminology, a variety of dimension one is
called a curve, and a variety of dimension two is called a surface. Ofcourse,
if we are working over the field k = C, then a curve is also sometimes called
a Riemann surface. Hopefully, this will not cause too much confusion.
In order to compute the dimension of a variety, we need to know how

the dimension behaves for intersections of algebraic sets.

Proposition A.1.3.4. Let V be an affine variety oE dimension i in An,
and let Z be a hypersurEace in An. Then either V is contained in Z, or else
all oE the components oE V n Z have dimension exactly i-I. (Note that
V n Z may consist oE zero components!)

PROOF. See Shafarevich [1, 1.6, Theorem 4]. o

Theorem A.1.3.5. Let V and W be affine varieties in An oE dimensions
i and m, respectively. Then every component oE V n W has dimension at
least i + m - n.

PROOF. The proof is by "reduction to the diagonal." First observe that
V nW is isomorphic to the intersection in A2n of the diagonal A and V xW.
Next note that A is defined by n hyperplanes Xi -Yi = O. So n applications
of Proposition A.l.3.4 gives the theorem. 0

Theorem A.1.3.6. Let V and W be projective varieties in ]pn ofdimen
sions i and m, respectively. Then every component oEVnW has dimension
at least f +m - n. Furthermore, iEf +m - n 2: 0, then V n W is not empty.

PROOF. Let iT be the closure in An+! of the inverse image of V under
the natural map An+! " {O} ~ ]pn+!. This is called the affine cone of V.
Similarly, let W be the affine cone of W. By the previous theorem, all
components of if n W have dimension at least i + m - n + 1, and hence
the dimension of the corresponding projective variety V n W is at least
i+m-n. Moreover, ifnw contains the point 0 E An+! , so if f+m-n 2: 0,
then iT n W will contain an affine line and V n W will be nonempty. 0

Theorem A.1.3.7. Let f : X ~ Y be a surjective morphism oE vari
eties.
(i) dim(J-l{y}) 2: dim(X) - dim(Y) Eor all y E Y.
(ii) There is a nonempty open subset U C Y such that

dim(J-l{y}) = dim(X) - dim(Y) Eor all y E U.
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PROOF. See Shafarevich [1, 1.6, Theorem 7]. The statements are true even
with 1-1 {y} replaced by any of its irreducible components. 0

Notice that the example of a blowup (Example A.1.2.6(f)) shows that
the dimension of the fibers of a morphism need not be constant. As a
special case of Theorem A.1.3.7, we note that if ¢ : X - Y is a finite
surjective morphism, then dim(X) = dim(Y).

A.1.4. Tangent Spaces and Differentials

The purpose of this section is to define the classical differential calculus in
a purely algebraic manner so that we can apply concepts like smoothness,
tangent spaces, and differentials.
Let V be an affine variety defined by the equations

!I(Xl,'" ,xn) = ... = Im(Xl, ... ,xn) = O.

A natural way to define the tangent space to V at the point P = (aI, ... ,an)
is by the equations

n 81L 8: (P)(Xi - ai) = 0 for 1 ::; j ::; m.
i=1 t

Of course, derivatives of polynomials can be defined formally over any
field, without recourse to any limiting process, by repeated application of
the familiar rules

d (I ) dl dg d d ( Xn) Xn-1
dX + 9 = dX + dX an dX a = an .

One should perhaps also quote Leibniz's rule
d dg dl

dX(Jg) = I dX + 9 dX'

To see that the definition of the tangent space is intrinsic, that is, indepen
dent of the particular defining equations for V, we give another definition,
which is valid for arbitrary varieties.

Definition. Let P be a point on a variety V. The tangent space to V at
P is the k-vector space

2 
Tp(V) = Homii: (Mp,v/Mp,v, k).

In other words, the tangent space is defined to be the dual of the vec
tor space M P,v /M~,v· We naturally call M p,v/M~,v the cotangent space
to V at P. It is easy to see that the tangent and cotangent spaces are
k-vector spaces, since Op,v/Mp,v ~ k. It is also not hard to check that
this definition agrees with the naive definition; see, for example, Shafare
vich [1, 11.1, Theorem 1] or Mumford [6, 111.4]. We also note that the
tangent and cotangent spaces are defined at every point of V, not only
at the "nonsingular points." In fact, we will use the tangent space in the
definition of nonsingularity.
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Theorem A.1.4.1. Let V be a variety. Then dim(Tp(V)) ~ dim(V) for
all P E V. Furthermore, there exists a nonempty open subset U C V such
that dim (Tp(V) ) = dim(V) for all P E U.

PROOF. See Hartshorne [1, 1.5, Proposition 2A and Theorem 3) or Sha
farevich [1, 11.1, Theorem 3].

o

Definition. A point P on a variety V is singular if dim(Tp (V)) > dim(V),
and it is nonsingular (or smooth) if dim(Tp(V)) =dim(V). The variety V
is called nonsingular or smooth if all of its points are nonsingular.

We see from Theorem A.1.4.1 that a variety always has an open subset
of smooth points. The following criterion is frequently used to compute the
singular points of a variety.

Lemma A.1.4.2. (Jacobian criterion) Let V be an afIine variety defined
by the equations

and let P = (al,' .. ,an) be a point on V. Then P is a smooth point if and
only if

Rank (~f; (P») . = n - dim(V).
UXi l:::;,:::;m

l:::;i:::;n

PROOF. See Hartshorne [1, 1.5) or Mumford [6, 111.4, Corollary 1). 0

Consider a rational map f : V -- W that is regular at P, and let
Q = f(P). We have seen that f induces a homomorphism of local rings,
r :C)Q,w -- C)p,v, and hence it induces a k-linear map

which we again denote by r.
Definition. The tangent map df(P) : Tp(V) -- TQ(W) is the transpose
of the map r :MQ ,W jM~,W --MP,v jM'j" v·

Theorem A.1.4.3. Let V be a variety and let P E V be a smooth point.
Then the local ring C)P, v is a regular local ring.

PROOF. This is clear from the definitions and Theorem A.1.3.2(i), since
C)P,v is regular if the dimension of M P,v jM'j" v is equal to the Krull di
mension of C)P,v.

o
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Theorem A.1.4.4. Let </> be a rational map from a smooth variety V to
a projective variety. Then

codimv (V " dom(</») ~ 2.

In other words, a rational map on a smooth variety is defined except pos
siblyon a set of codimension at least 2.

PROOF. See Shafarevich [1,111.3, Theorem 3] or Silverman [2, IV.6.2.I].
o

We now discuss the theory of differential forms on a variety X. Prob
ably the right language to use is that of sheaves, but for the moment we
will take a more concrete approach. The starting point is the differential
of a function f E k(X)*. For any point x E dom(f) we have a tangent
map df(x) : Tx(X) ---+ Tf(x)(A1

) = k, so df(x) is a linear form on Tx(X).
We note that the classical rules d(f + g) = df +dg and d(fg) = f dg +9 df
are valid. Thus we may view df as a map that associates to each point
x E dom(f) a linear form on Tx(X) (Le., a cotangent vector). We call
such a map an abstract differential form, but of course we need to impose
some sort of continuity condition as x varies. So we take all of the abstract
differential forms that can be built up out of the d/'s.

Definition. A regular differential I-form on a variety X is an abstract
differential form w such that for all x E X there is a neighborhood U of
x and regular functions Ii, gi E <9 (U) such that w = E fi dgi on U. We
denote the set of regular I-forms on X by 01[X]. It is clearly a k-vector
space, and in fact, it is an <9(X)-module.

Examples A.1.4.5.
(1) The space of regular differential I-forms on affine space An is

n

0 1[An] = E9 k[tb ... ,tn]dti,
i=1

where tb"" t n are affine coordinates for An. Indeed, klAn] = k[t1 , ••• , tn],
and the differentials of polynomials clearly belong to and generate this
space.
(2) Let w be a regular differential I-form on lpm. Then on any An c lpm,
it must have the shape w = E~=l ~(t)dti' However, if any of the Pi'S are
nonzero, w will have poles along the hyperplane at infinity, so it will not
be regular. Therefore, 01(lpn] = o.
So we see that global I-forms behave quite differently from local ones.

We next want to write 0 1[U] as a direct sum in a manner analogous to the
description for Ol[An] in A.1.4.5.
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Definition. Let x be a nonsingular point on a variety X of dimension n.
Functions tl, ... , tn E Ox are called local parameters at x if the ti'S are in
M x and if they give a basis of Mx/M~. The functions tl,"" tn give local
coordinates on X if t~ := ti - ti(X) give local parameters at all x in X.

Recall that Mx/M~ is dual to the tangent space, so local parameters
exist only at nonsingular points. It is easy to see that tl> ... , tn are local
parameters if and only if ni ker(dti(x)) = {O} in TAX), and thus that
local parameters give local coordinates on a neighborhood of x. From
Nakayama's lemma one may deduce the following result.

Proposition A.1.4.6. Let x be a nonsingular point on X. Then there
exist local parameters tl, ... , t n at x and a neighborhood U of x such that
0 1[U] = EBi=10(U)dti'

PROOF. See Shafarevich [1, IlIA Theorem 1]. o

So far, we have considered only the tangent vector spaces Tx(X) and
their duals, but we may also construct their exterior powers /{ Tx(X)* and
copy the classical definition of differential forms of higher order. (Recall
that I\r V is the space of r-linear skew-symmetric forms on the vector
space V.)

Definition. An abstract r-form w on a variety X assigns to each x E X a
linear map w(x) : I\r Tx(X) --+ k. A regular r-form w on X is an abstract
r-form such that for all x E X there is a neighborhood U containing x and
functions Ii, 9il,... ,i r E O(U) such that

We will let nr[U] denote the space of regular r-forms on U. It is clearly
an o(U)-module. The analogue of Proposition A.1.4.6 is true. If tl>' .. ,tn
are local coordinates on U, then

or[u] = EB O(U)dti1 /\ ... /\ dti r '

i 1<···<ir

For some examples of computation with differentials see Exercises A.1.lO,
A.2.7, and A.4.2.(f) and Theorem AA.2.6 and the remarks following it.
It is convenient to define a rational differential form to be a form that

is regular on an open subset, where we identity two differential forms if
they coincide on some open subset. The space of such forms is denoted
by or(x) and is clearly a vector space of dimension (;) over k(X), where
n = dim(X).
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Definition. Let c/> : X -+ Y be a morphism of smooth varieties. Then
there is a map c/>* : nr[y] -+ nr[X] defined by the formula

c/>*(Lgil,.",irdfil 1\ .. ·I\dlir) = 'L)gi}"."ir 0 c/»d(h 0 c/» 1\ ... 1\ d(k oc/».

As usual, the spaces of differential forms are functorial and contravari
ant, that is, (c/>ot/J)*(w) = t/J*(c/>*(w». One of the features that makes spaces
of differential forms important is they can be used to define invariants of a
variety X.

Lemma A.1.4.7. Let c/>: X --+ Y be a dominant rational map between
smooth projective varieties. Then c/>*(nr[yD c nr[X]. In other words, the
poles of c/> do not create any poles for the differential form c/>*(w). Hence if
c/> is a birational map, then nr[X] and nr[y] are isomorphic.

PROOF. See Shafarevich [1, III.5, Theorem 2]. 0

For example, we will see that if X is a (smooth) projective variety of
dimension n, then g(X) := dimnn[X] is finite. This follows from Corol
lary A.3.2.7 below, and in fact, every nr[X] is finite-dimensional. The
quantity g(X) is called the geometric genus of X. We will study it in detail
for curves in Section A.4.
We close this section with some material on algebraic groups.

Definition. An algebmic group defined over k is a variety G defined over k,
a point e E G(k), and morphisms m : G x G -+ G and i : G -+ G satisfying
the axioms of a group law:

(i) m(e,x) = m(x, e) = x.
(ii) m(i(x),x) = m(x,i(x») = e.
(iii) m(m(x,y),z) =m(x,m(y,z»).

Remark. Sometimes this definition of algebraic group is relaxed to include
reducible sets with a group law. Then the irreducible components are
disjoint and form a finite group, which we denote by C)(G). The connected
component of G containing e, denoted by GO, is then an algebraic group
in the above sense; we call it the identity component of G.

Using the definitions, one sees that for any 9 E G, the right and left
translation maps

Rg : G ~ G, and Lg : G ---. G,
h 1------+ meg, h), h 1------+ m(h, g),

are isomorphisms. From this remark we deduce that algebraic groups are
smooth varieties. Indeed, if there were a singular point, then using the
translation maps and their tangent maps, we would deduce that all points
are singular, contradicting Theorem A.1.4.1. It is also easy to see that the
tangent map at the origin associated to the group operation m,

dm(e,e) : T(e,e)(G x G) = Te(G) x Te(G) -+ Te(G),

is just the addition of vectors in Te (G).
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Examples A.1.4.8. (a) The additive group Ga is the variety iV with the
group law being addition:

m(x,y) = x + y.

(b) The multiplicative group Gm is the variety AI" {O} with the group law
being multiplication:

m(x,y) = xy.

(c) The general linear group GL(n) is the group of n x n invertible matrices
with the group law being matrix multiplication. Note that although GL(n)
is naturally defined as the quasi-projective variety

GL(n) = {(Xij) E An2 1 det(xij):I O},

it is actually an affine variety, since we can also define it as

GL(n) = {(Xij,t) EA
n2
x Alltdet(xij) = I}.

It is known that every affine algebraic group is a subgroup ofGL(n) for
some n. It is harder to give examples of algebraic groups that are not affine.
We will see in Section A.4 that smooth plane cubics are algebraic groups,
called elliptic curves. In fact, elliptic curves and their higher-dimensional
analogues, abelian varieties, will be one of our main objects of study in this
book.

Definition. An abelian variety is a projective variety that is also an alge
braic group.

Although it is far from obvious from looking at the definition, it can be
shown that the group law on an abelian variety is necessarily commutative.
(See Lemma A.7.1.3). For perspective, we quote the following structure
theorem.

Theorem A.1.4.9. (Chevalley) Let G be an algebraic group defined
over k. There exists a maximal connected affine subgroup H ofG. This
subgroup H is defined over k and is a normal subgroup ofG. The quotient
ofG by H has a natural structure as an abelian variety.

PROOF. See Rosenlicht [1, Theorem 16].

EXERCISES

o

A.!.!. (a) Let V be a variety that is both affine and projective. Prove that V
consists of a single point.
(b) Let V be a projective variety, let W be an affine variety, and let ¢ :
V ---> W be a regular map. Prove that ¢ is constant.
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A.1.2. Let X and Y be projective varieties defined over a field k.
(a) If X(k) 1= 0 and there is a k-morphism f : X -+ Y, prove that
Y(k) 1= 0.
(b) If X and Y are k-birationally equivalent, prove that X(k) is dense in
X (for the Zariski topology) if and only if Y(k) is dense in Y.
(c) Prove that if X has a smooth k-rational point and if there exists a
rational map from X to Y defined over k, then Y(k) 1= 0. (Hint. Take
well-chosen hyperplane sections and use induction on the dimension to
reduce to the case that X is a curve.) Deduce that if X and Y are smooth
and k-birationally equivalent, then X(k) 1= 0 if and only if Y(k) 1= 0. (For
the necessity of the smoothness assumption, see the next exercise.)

A.1.3. (a) Show that the Cremona map (x, y, z) >-+ (X-I, y-l, Z-l) on 1P'2 gives
a birational isomorphism between the two curves 0 and 0' defined by
x2+ y2 = az2 and y2 z2+ X

2
Z
2= ax2y2.

(b) Let a E k* and assume that char(k) 1= 2. Verify that 0 is smooth
and that 0' has three singular points, namely (0 : 0 : 1), (0 : 1 : 0), and
(1:0:0).
(c) Show that if k = Q, the set O(Q) is empty for some values of a (e.g.,
for a = 3). Conclude that the property of having a k-rational point is not
a birational property of (singular) varieties, even in dimension 1.

A.1.4. (a) Show that over an algebraically closed field, a smooth conic is isomor
phic to the projective line. (Hint. See Section A.4.3 below.)
(b) Show that the rings k[X, Yj and k[XO,XI ,X2l!(Xg - X I X2) are not
isomorphic, and conclude that the homogeneous coordinate ring of a va
riety V C IP'n is not an invariant of V. In other words, the homogeneous
coordinate ring depends on the projective embedding. (Hint. Show that
the second ring is not a unique factorization domain.)

A.1.5. Let f: X -+ Y be a morphism of affine varieties.
(a) Prove that 1* is injective if and only if f is dominant (Le., f(X) is
dense in Y).
(b) Prove that 1* is surjective if and only if f is a closed embedding (Le.,
f(X) is a closed subvariety of Y and f : X -+ f(X) is an isomorphism).
(c) Show that V = A2 " {(O, On is not an affine variety. (Hint. Show that
the injection of V into A2 induces an isomorphism between k[A2

] and (l(V)
and use Theorem A.1.2.1 to derive a contradiction.)
(d) Show that the only regular functions on X = 1P'2 " {(I, 0, On are the
constants. Deduce that X is neither affine nor projective.

A.1.6. Let Rand Q be homogeneous polynomials of degree 2, and let V be the
smooth cubic surface in ~ defined by

(a) Show that ¢(xo, ... ,X3) = (xo, Xl) defines a morphism from V to 1P'1.
(b) Show the same for 'l/J(xo, ... ,X3) = (X2, X3)'
(c) Prove that the map ¢ x 'l/J : V -+ IP'I X IP'I is a birational morphism.
(d) Prove that such a birational morphism exists for any smooth cubic
surface containing two skew lines. (In fact, two such lines always exist,
although they may be defined only over an extension of k.)
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A.1.7. (Frobenius map) In this exercise we work with the finite fields IFpr con
taining pr elements. Let V be a quasi-projective variety defined over IFpr,
and let F be the map F(xo, . .. , xn ) := (x~, .. . ,x~).
(a) Show that F maps V onto another quasi-projective variety V(p) defined
over lFp r •

(b) If V is projective (respectively affine), prove that V(p) is also projective
(respectively affine).
(c) Prove that F : V -+ V(p) is a bijection on points, but that it is not an
isomorphism of varieties.
(d) Suppose that V is defined over lFp • Prove that V(p) = V and that

Here F T = F 0 F 0'" 0 F is the r-fold iterate of F.

A.1.B. (a) Show that the map f : (xo,xI) ....... (x~,xox~,xf) is a morphism from
]pi to ]p2. Show that the image of f is a projective curve C and find its
equation. Is the map f : ]pi -+ C a bijection on points? Is it birational? Is
it an isomorphism?
(b) Answer the same questions for the map 9 : pi -+ p2 defined by the
formulag: (xo,xI) ....... (x~,xo(x~ -X~),Xi(X~ -xm.

A.1.9. (Resolution of the singularities of a map). Let f : X --+ Y be a ra
tional map between varieties. Show that there exists a variety X with a
morphism 1 :X -+ Y and a birational morphism p : X -+ X such that
1 = fop. FUrthermore, show that we may impose the condition that
p : p-i(dom(f» -+ dom(f) is an isomorphism. (Hint. Choose X equal
to the closure of the graph of f in X x Y, and take p and 1 to be the
projections onto X and Y.)

A.1.lO. For each of the following varieties X, describe the space of regular r
forms W[X) for each 0 :5 r :5 dimX.
(a) X =An.
(b) X = ]pn.
(c) X C ]p2 is the smooth projective cubic curve x3 + y3 + z3 = O. (Hint.
Show that 0 1 [Xl is a vector space of dimension 1.)
(d) Let 17 be a third root of unity and define ¢(x, y, z) = (x, 1]Y, z). Check
that ¢ is an automorphism of the curve in (c) and compute ¢*(w) for any
I-form w.

A.1.11. (Grassmannian varieties) Consider V = An+I as a vector space of di
mension n + 1, and let ]PV = ]pn be its associated projective space. Let
Gras(k, ]PV) = Gras(k, n) be the set of all linear subspaces of dimension k
in PV = pn, or equivalently, the set of vector subspaces of dimension k + 1
in An+1. We want to give Gras(k, n) the structure of a projective algebraic
variety.
(a) Let W be a subspace of V of dimension k + 1 and select a basis
Wo,· .. ,Wk. Then the (multi)vector wo/\ ... /\ Wk is a nonzero element
of I\.k+l V and thus defines a point in IP'(I\.Hi V). Show that the map thus
defined from Gras(k, PV) to P(I\.k+I V) is well-defined (i.e., independent
of choice of basis) and injective. Denote by X the image of this map in
]P(I\.HI V).
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(b) Let w E /\k+l V, and show that the map o(w) : v t-+ w /\ v from V
to /\k+2 V has rank less than n - k if and only if w EX. Conclude that
X is a projective algebraic set and thus that we may endow Gras(k,n)
with the structure of an algebraic variety. (Hint. The entries of a matrix
describing o(w) are linear forms, and X will be defined by the vanishing of
some minors of this matrix.)
(c) Recall that there is a natural (but unique only up to scalars) isomor
phism between /\HI V and /\n-k V*, where· denotes the dual space. We
denote one such isomorphism by w t-+ w·. For w E /\k+1 V we get a map
o'(w) : v· t-+ v· /\ w· from V* to /\n-HI V·. Show that w is in X if and
only if 0' (w) has rank at most k + 1, and that the subspace W correspond
ing to w is the orthogonal complement of ker 0'(w). That is, the transpose
maps to(w) : /\H2 V· -+ V· and to'(w) : /\n-k V -+ V have orthogonal
images.
(d) Deduce from part (c) that w E p(/\k+1 V) is in X if and only if

(th(w)(x*), th'(w)(x)) = 0 for all x* E /\H2 V·, x E /\n-k V.

Deduce that X is cut out by quadratic forms.
(e) Notice that Gras(O,n) = pn and Gras(n - 1,n) = pV· ~ pn. Show
that Gras(l, 3), the variety of lines in ~, is a quadric in 12'5.
(f) Show that there is a transitive action of GL(n+ 1) on Gras(k, n) defined
by the map (f, W) t-+ feW). Deduce that Gras(k, n) is an irreducible
smooth variety of dimension (k + 1)(n - k). (Hint. To find the dimension,
compute the dimension of the fibers of the map f t-+ feW) for a fixed W.)
Remark. The embedding described in this exercise is classically called
the Plucker embedding, the coordinates on 12'(/\HI V) are called Plucker
coordinates, and the quadratic forms of part (d) are called Plucker rela
tions. It can be shown that the Plucker relations generate the ideal defining
Gras(k, n) inside 12'(/\HI V).

A.1.12. Let x be a smooth point on X, and let UI, •.. ,Un be local parameters.
Recall that this means that Ui E M x c (9x,x and UI, ..• , Un generate
Mx/M~ as a k-vector space.
(a) Show that for all regular functions f E (9x,x there is a unique polyno
mial Sm of degree at most m such that f - Sm(UI, . .. , Un) E M~+I.
(b) Show that S(n := limSm exists in k[X1 , .•. ,Xn ] and that the re
sulting map S : (9x,x -+ k[X1 , . .. , X n] is an injective ring homomorphism.
(Hint. Use the fact that nm M~ = {O}.)
(c) The ring k[Xl,"" X n ] has a natural topology given by the powers of
the ideal generated by XI, ... ,Xn , and with this topology, k[Xl, ... ,Xn ]

is complete. One can similarly endow (9x,x with the topology defined
by the powers of M x . Show that S is continuous with dense image, and
conclude that if CJx,x denotes the completion of (9x,x, then S extends to
an isomorphism S: CJx,x -+ k[X1, ... ,Xn ].

A.1.13. (a) Let k be a perfect field, and let X be an affine (or projective) variety
defined over k. Prove that the following three conditions are equivalent:
(i) X is the set of common zeros of polynomials with coefficients in k.
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(ii) The ideal defining X is generated by polynomials with coefficients
in k.
(iii) X is globally invariant under the action of Gal(kjk). That is, if

x E X(k) and u E Gal(kjk), then u(x) E X(k).
(b) Give an example to show that (a) need not be true over a nonperfect
field such as k = lFp(T).

A.l.I4. A variety is said to be complete or proper over k if every projection
X x Y ---> Y is closed (i.e., the image of every closed subset is closed).
(a) Prove that projective varieties are complete.
(b) Show that a regular function f on a complete variety must be con
stant (Hint. Consider the closed set {(x,t) E X X Al I f(x)t = I} and its
projection to AI

.)

A.l.I5. A variety X is called nonnalat a point x if the local ring C)."x is integrally
closed. The variety X is normal if it is normal at every point.
(a) Prove that a smooth variety is normal.
(b) If X is affine, show that X is normal if and only if k[X] is integrally
closed. Assuming char(k) =I 2, use this to prove the normality of the affine
cone X in A3 given by the equation x 2 + y2 - Z2 = O. (Notice that X is
not smooth.)
(c) Let X be an affine variety with coordinate ring R, and let J( be the
integral closure of R, so J( is a finitely generated k-algebra. (Prove this
yourself or see Zariski-Samuel [1, Chapter V, Theorem 9].) Thus J( corre
sponds to a normal affine variety X', and there is a morphism v : X' ---> X.
Show that v is a finite surjective birational morphism with the following
universal property: For any normal variety Z and any dominant morphism
¢ : Z ---> X, there is a unique morphism ¢' : Z ---> X' such that ¢ = v 0 ¢'.
Intuitively, X' is the usmallest" normal variety that maps onto X. (Hint.
The integral closure of ¢·k[X] sits inside k[Z] and is isomorphic to k[X'].)
The variety X' is called the normalization ofX.
(d) Show that a curve is normal if and only it is smooth. Hence normal
ization provides a method to resolve the singularities of a curve.

A.l.I6. Let P E lPn
• Prove that P has homogeneous coordinates (xo, ... ,xn )

with all Xi E k if and only if u(P) = P for all u E Gk. (Hint. You will need
to use Hilbert's theorem 90, HI(Gk' k·) = 0.)

A.l.I7. Let V be a closed subvariety of dimension r in lPn. Let pn denote the
projective space dual to lPn and identify points in pn with hyperplanes in
lPn

. We set

Zv = {(x;Ho, ... ,Hr ) E V X (pnr+I I x E Ho n ... nHr}.

Compute the dimension of Zv and conclude that the set

is a hypersurface in (pn) r+I. The multihomogeneous form Fv that defines
Yv is unique up to a scalar; it is called the Chow form ofV. IfV' is another
subvariety of the same dimension, show that FVI is a scalar multiple of Fv
if and only if V = V'. (Hint: Use the dimension theorems).
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A polynomial in one variable is determined up to a scalar by its roots,
counted with multiplicities. A polynomial in several variables is deter
mined, again up to a scalar, by the hypersurfaces counted with multiplic
ities on which it vanishes. Further, these hypersurfaces with their multi
plicities correspond exactly to the decomposition of the polynomial into
irreducible factors. The theory of divisors is a device that generalizes this
idea to arbitrary varieties, where unique factorization no longer holds. We
will look at two ways of defining divisors. The first, due to Weil, is as
a sum of subvarieties of codimension one. The second, due to Cartier, is
as objects that are locally defined by one equation. Weil's definition is
more concrete and works well on normal varieties, but Cartier's definition
is frequently easier to work with and yields a better theory on nonnormal
varieties and more general schemes.
Throughout most of this section we work over an algebraically closed

field k. It will not be until we get to Proposition A.2.2.1O that we will
explain why everything we have done carries over to arbitrary perfect fields.
This proposition is easy, but it will be fundamental for our further work.

A.2.1. Weil Divisors

As indicated above, a Weil divisor is a sum of subvarieties of codimension
one.

Definition A.2.1.1. Let X be an algebraic variety. The group of Weil
divisors on X is the free abelian group generated by the closed subvarieties
of codimension one on X. It is denoted by Div(X).

In other words, a divisor is a finite formal sum of the form D = I:nyY ,
where the ny's are integers and the Y's are codimension-one subvarieties
of X. For example, if X is a curve, then the Y's are points; if X is a
surface, then the Y's are (irreducible) curves; and so on.
The support of the divisor D = I:nyY is the union of all those Y's

for which the multiplicity ny is nonzero. It is denoted by supp(D). The
divisor is said to be effective or positive if every ny 2: o.
We recall that if Y is an irreducible divisor on X, then <9y,x is the

local ring of functions regular in a neighborhood of some point of Y.
In particular, if the variety X is nonsingular, or more generally if it is
nonsingular along Y, then <9y,x is a discrete valuation ring. We write
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ordy : C>y,X ...... {OJ -+ Z for the normalized valuation on C>Y,X, and we ex
tend ordy to the fraction field k(X)* in the usual way. We refer the reader
to Fulton [11 for the definition of ordy in the general case. The following
lemma (see also Exercise A.2.3) summarizes its main properties.

Lemma A.2.1.2. The order function ordy : k(X)* -+ Z described above
has the following properties:
(i) ordy(fg) = ordy(f) + ordy(g) for all I,g E k(X)*.
(ii) Fix IE k(X)*. There are only finitely many Y's with ordy(f) f: O.
(iii) Let I E k(X)*. Then ordy(f) 2: 0 if and only if I E C>y,x. Similarly,
ordy(f) = 0 if and only if IE c>y,x.
(iv) Assume further that X is projective, and let I E k(X)*. Then the

following are equivalent:
(a) ordy(f) 2: 0 for all Y.
(b) ordy(f) = 0 for all Y.
(c) IE k*.

The properties of ordy described in Lemma A.2.1.2 allow us to define the
divisor of a function.

Definition. Let X be a variety, and let IE k(X)* be a rational function
on X. The divisor of I is the divisor

div(f) = L ordy(f)Y E Div(X).
y

A divisor is said to be principal if it is the divisor of a function. Two
divisors D and D' are said to be linearly equivalent, denoted by D rv D',
if their difference is a principal divisor. For brevity, we also sometimes
write (f) for the divisor of I.
The divisor 01 zeros 01 I, denoted by (f)o, and the divisor 01 poles

01 I, denoted by (f)oo, are defined by

(f)o = L ordy(f)Y
ordy(f»O

and (f)oo = L - ordy(f)Y.
ordy(f)<O

Thus the divisor of a function is the difference of its zeros and its poles
(counted with the appropriate multiplicities).
Let us briefly comment on the origin of the term linear equivalence.

Suppose that D rv D', say D' = D + div(f). For each point (a, b) E
pI, define a divisor D(a,b) := D + div(a + bf). The divisors D(a,b) are
parametrized by the points of the line pI, and clearly D(1,o) = D and
DCO,I) = D'. So there is a family of divisors, parametrized by the points of
a line, that deforms D to D'.

Definition. The divisor class group 01 X is the group of divisor classes
modulo linear equivalence. It is denoted by CI(X). The linear equivalence
class of a divisor D will be denoted by CI(D).
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As an important example, we can compute CI(lP'n).

Proposition A.2.1.3. Let deg(Z) denote the degree of an irreducible
hypersurface Z c r, and extend the function deg by linearity to the group
of divisors Div(r). Then a divisor DE Div(r) is principal if and only if
it has degree 0, and the induced map

is an isomorphism.

PROOF. A hyperplaneHer has degree deg(H) = 1, so the degree map
is surjective. We must show that its kernel consists of exactly the principal
divisors.
Let f E k(r)*. We can write f = P/Q with P,Q homogeneous

polynomials of degree d. We factor P and Q into irreducible factors as
P = pm· ... p;'"r and Q = Q~l ...Q-:', and we set Yi = Z(Pi) and Zj =
Z(Qj)' Thus the Yi's and Z/s are irreducible hypersurfaces in r, and it is
clear from the definitions that div(J) = E~=1 miYi - Ej=1 njZj. Further,

T S

deg(div(J)) =L ffii deg(Yi) - L nj deg(Zj) = deg P - degQ= 0,
i=1 j=1

which shows that principal divisors have degree zero.
Conversely, suppose that D is a divisor with deg(D) = o. Then we

can write D as D = E~=lmiYi - Ej=lnjZj, where Emideg(Yi) =
E nj deg(Zj). Let Pi be an irreducible homogeneous polynomial defin
ing Yi, and similarly let Qj define Zj, and set P = P:"l ... p;'"r and
Q = Q~l ... Q-:'. Then

T T

deg P =L mi deg(Pi) =L mi deg(Yi)
i=1 i=1

Therefore, f = P/Q is in k(r), and clearly div(J) = D, which proves that
every divisor of degree zero is principal. 0

Remark A.2.1.4. By the same method, one can show that

See Exercise A.2.1.
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Remark A.2.1.5. Consider the natural map k(X)* ~ Div(X) that takes
a function to its divisor. Lemma A.2.1.2(iv) says that if X is projective,
then the kernel of this map consists of only the constant functions. So on a
projective variety, the divisor class group fits into (and can be defined by)
the exact sequence

o-- k* -- k(X)* ~ Div(X) -- CI(X) -- O.

This sequence is the analogue of the exact sequence relating the unit group
R'K and the ideal class group CIK of a number field K,

o-- R'K -- K* -- {Fractional ideals} -- CIK -- O.

If X is affine and A = k[X] is integrally closed, the analogy can be pushed
even further, since then CI(X) = 0 if and only if A is a UFD, i.e., a unique
factorization domain. (See Exercise A.2.8).

A.2.2. Cartier Divisors

A subvariety of codimension one on a normal variety is defined locally as
the zeros and poles of a single function. The idea of a Cartier divisor is to
take this local property as the definition, subject to the condition that the
functions fit together properly.

Definition. A Cartier divisor on a variety X is an (equivalence class of)
collections of pairs (Ui, fi)iEI satisfying the following conditions:

(i) The Ui's are open sets that cover X.
(ii) The li's are nonzero rational functions Ii E k(Ui)* = k(X)*.
(iii) fJj- l E O(Ui n Uj )* (i.e., fJj-

l has no poles or zeros on Ui n Uj ).

Two collections {(Ui, fi) liE I} and {(l-j, 9j) Ij E J} are considered to be
equivalent (define the same divisor) if fi9i l E O(Ui n l-j)* for all i E I and
j E J.
The sum of two Cartier divisors is

With this operation, the Cartier divisors form a group that we denote by
CaDiv(X). The support of a Cartier divisor is the set of zeros and poles
of the fi'S. A Cartier divisor is said to be effective or positive if it can be
defined by a collection {(Ui, Ii) liE I} with every fi E ~(Ui). (That is, fi
has no poles on Ud
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Associated to a function f E k(X)* is its Cartier divisor, denoted by

div(f) = {(X, 1)}.

Such a divisor is called a principal Cartier divisor. Two divisors are said to
be linearly equivalent if their difference is a principal divisor. The group of
Cartier divisor classes modulo linear equivalence is called the Picard group
ofX and is denoted by Pic(X). (In many texts the Picard group is defined
as the group of line bundles or invertible sheaves on X. We will generally
be working with varieties, for which these two groups coincide.)

Remark. The reader with more knowledge of sheaf cohomology will rec
ognize that a Cartier divisor is nothing more than a global section of the
quotient sheaf Xx/Ox. The principal divisors are those that come from
global sections of X*, and one can show that the group of Cartier divi
sor classes Pic(X) is isomorphic to the cohomology group H1(X, Ox). For
more details, see Hartshorne [1, II §6] and the introduction to Section A.3.3.

We now compare the two types of divisors. Let Y be an irreducible
subvariety of codimension 1 in X, and let D be a Cartier divisor defined by
{(Ui' Ji) liE I}. We define the order of D along Y, denoted by ordy(D),
as follows. Select one of the open subsets Ui such that Ui n Y =I- 0 and
set ordy(D) = ordy(Ji). It is easily seen that ordy(D) is independent of
the choice of (Ui, Ji), so we obtain a map from Cartier divisors to Weil
divisors by sending D to Eordy(D)Y. Clearly, this map sends effective
Cartier divisors to effective Weil divisors and principal Cartier divisors to
principal Weil divisors, and hence it induces a map from Pic(X) to CI(X).
In general, this map is neither surjective nor injective. For example, see
Fulton [2, Examples 2.1.2 and 2.1.3] or Hartshorne [1, 11.6.11.3]. However,
there are a number of important cases for which it is a bijection, including
the one described in the following theorem.

Theorem A.2.2.1. Let X be a smooth variety. Then the natural maps

CaDiv(X)~ Div(X)

are isomorphisms.

and Pic(X) ~ CI(X)

PROOF. See Hartshorne [1, 11.6.11]. In fact, it suffices to assume that the
local rings of X are unique factorization domains. 0

In the sequel we will consider only Cartier divisors when the variety
in question might be singular, and we will freely identify Weil and Cartier
divisors when we work with smooth varieties.

Example A.2.2.2. The Divisor Cut Out by a Hypersurface. Let X ~ IP'n
be a projective variety, let Ix be its homogeneous ideal, and let F be a
homogeneous polynomial of degree d not in Ix. Note that this means
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that F does not vanish identically on X. We want to associate to F a
divisor (F)x that corresponds to the intersection ofX and the zero locus F.
To do this, we cover X by the affine open subsets Ui =X " {Xi = O}, and
then (Fh is defined by the collection

Notice that P/xt is a well-defined rational function on Ui , and that the
ratio (F/xt)(F/xj)-1 = (Xj/Xi)d has no zeros or poles on Ui nuj , so these
functions patch together to give a Cartier divisor. Further, F/xt clearly
has no poles on Ui , so the divisor (F)x is effective. Finally, we observe that
if G is any other homogeneous polynomial of degree d not in Ix, then F / G
is a rational function on X and

(F)x - (G)x = div(F/G),

so (F)x and (G)x are linearly equivalent. In this way we obtain a natural
injection Z '-+ Pic(X) associated to the embedding X '-+ IPn.

Example A.2.2.3. The Canonical Divisor on a Smooth Variety. Let X
be a smooth variety of dimension n, and let w be a nonzero differential n
form on X. We can construct a divisor associated to w as follows. On any
affine open subset U of X with local coordinates Xl, ••• ,Xn we can write
w = fu dXl/\' • ,/\xn for some rational function fu E k(X). We then define
the divisor of w by the collection

div(w) = {(U'/u)}.

Taking different affine coordinates will give an equivalent collection, and
the Jacobian transformation formula for differential forms shows that the
pairs (U, fu) patch together to produce a well-defined divisor on X.
Any other nonzero differential n-form w' on X has the form w' = fw

for some rational function f E k(X)*. It follows that

div(w') = div(w) + div(f),

so the divisor class associated to an n-form is independent of the chosen
form. This divisor class is called the canonical class ofX. It is an extremely
important invariant of the variety X. By abuse of language, any divisor
in the canonical class is called a canonical divisor and is denoted by K x.
We also observe that though we cannot speak of the value of a differential
form at some point, it makes sense to say that it vanishes at some point.

Example A.2.2.4. The Canonical Divisor on Projective Space. Let h be
the divisor class of a hyperplane in projective space IPn. Then the canonical
divisor on IPn is given by Kpn rv -(n + l)h. See Exercise A.2.4.
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In general, objects constructed in mathematics are useful only if they
have some functoriality properties. For this reason, we will attach to each
morphism (and even each rational map) between varieties a map between
their Picard groups. In this way the association X ~ Pic(X) will become
a contravariant functor.

Definition. Let g : X --4 Y be a morphism of varieties, let D E CaDiv(Y)
be a Cartier divisor defined by {(Ui' Ii) liE I}, and assume that g(X)
is not contained in the support of D. Then the Cartier divisor g*(D) E
CaDiv(X) is the divisor defined by

It is immediate from the definition that g*(D + E) = g*(D) + g*(E)
whenever they are defined, and that if g : X --4 Y and I : Y --4 Z are two
morphisms of varieties, then (f 0 g)* = g* 0 f*. It is also clear that

g* (div(f») = div(f 0 g),

provided that the rational function I E key) gives a well-defined rational
function on g(X). However, unless I is a dominant map (i.e., unless the
image is dense), then f*(D) will not be well-defined for all D. The next
lemma allows us to move D in its linear equivalence class, and thereby to
define f* on all of Pic(X).

Lemma A.2.2.5. Let I : X --4 Y be a morphism oE varieties.
(i) Let D, D' E CaDiv(Y) be linearly equivalent divisors. IE I(X) is not
contained in suppeD) U supp(D'), then f*(D) rv f*(D').
(ii) (Moving lemma) For every Cartier divisor DE CaDiv(Y) there exists

another Cartier divisor D' E CaDiv(Y) satisfying

D rvD' and I(X) et suppeD').

PROOF. We are given that D' = D+div(g). If D is defined by {(Ui,Ii)},
then D' is defined by {(Ui,lig)}. Hence f*(D) and f*(D') are defined
respectively by {(f-IUi , Ii 0 I)} and {(f-lUi , (fig) 0 I)}, which shows
that f* D' = f* D + div(g 0 I). This proves (i).
To prove the moving lemma, we again let D be defined by {(Ui' Ii)}.

For any fixed index j E I we define a divisor Dj by {(Ui , Ii Ij-
l
)}. Then

Dj = D - div(/j), so Dj rv D, and clearly Uj n supp(Dj ) = 0. 0

As an immediate consequence of Lemma A.2.2.5, we obtain the fol
lowing result.
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Proposition A.2.2.6. Let f : X -+ Y be a morphism of varieties.
The map r : CaDiv(Y) -+ CaDiv(X), which is well-defined only for
D such that f(X) rt supp(D), induces a (well-defined) homomorphism
r :Pic(Y) -+ Pic(X).

Example A.2.2.7. (a) Let ~d : IF -+ pN be the d-uple embedding
(A.1.2.6(a)). Using the isomorphism Pic(IPN) = Z described in Proposi
tion A.2.1.3, the map ~d : Pic(pN) -+ pic(pn) is simply the multiplication
by-d map Z -+ Z, Z I--t dz.
(b) Let S : pm x IF -+ pN be the Segre map (A.1.2.6(b)). Using the iso
morphisms Pic(pm x IF) = Z2 and Pic(pN) = Z from Proposition A.2.1.3
and the remark following it, the map S* : Pic(pN) -+ Pic(pm x IF) is the
diagonal map Z -+ Z2, Z I--t (z, z).
(c) Let i : X ~ IF be an embedding of a projective variety X into projec
tive space. Then the divisor (F)x on X cut out by a hypersurface Z(F)
(see A.2.2.2) is equal to i*(Z(F)).
(d) Let f E k(X) be a nonconstant function on a smooth curve X. Then 1
defines a morphism 1:X -+ pI, and clearly

1*((0) - (00)) = div(f).

More generally, if X is any smooth variety and 1 E k(X) any nonconstant
function, then 1 extends to a rational map 1 : X -+ pI that is well
defined except possibly on a set of codimension at least 2. Hence we can
define 1*((0) - (00)), and again we find that it is equal to div(f).

As an illustration of the general theory, we will compute the effect
of f* on the canonical class of a variety when 1 is a finite map. To do this,
we need to measure the ramification of 1 along a divisor.

Definition. Let 1 : X -+ Y be a finite map of smooth projective varieties,
let Z be an irreducible divisor on X, and let Z' = f(Z) be the image of Z
under I. Note that the dimension theorem (A.1.3.7) tells us that Z' is
an irreducible divisor on Y. Let Sz be a generator of the maximal ideal
of C)z,x, and similarly let sz' be a generator of the maximal ideal of C)z"y.
(That is, Sz and sz' are local equations for Z and Z'.) The mmification
index 01 1 along Z is defined to be the integer

ez = ez(f) = ordz(sz' 0 J),

where we recall that ordz : C)Z,x -+ Z is the valuation on C)z,x. Equiva
lently, sz' 01 = us~z for some function u E C)Z x. The map f is said to be
mmified along Z if ez(f) ~ 2. '

We now investigate how the pullback of the canonical class on Y com
pares with the canonical class on X.



42 A. The Geometry of Curves and Abelian Varieties

Proposition A.2.2.8. (Hurwitz formula) Let f :X --+ Y be a finite map
between smooth projective varieties.
(i) The map f is ramified only along a finite number of irreducible divi
sors.
(ii) Ifwe assume further either that the characteristic ofk is 0 or that the

characteristic of k does not divide any of the ramification indices, then we
have the formula

Kx '" J*(Ky) + ~]ez(J) - l)Z.
z

PROOF. The proof of the first assertion will follow from the proof of the
second one. We prove the formula (ii). Let n = dim(X) = dim(Y), and
choose an n-form w on Y. We will compare div(f*(w») and f*(div(w»).
Let Z be an irreducible divisor on X, and let e = ez(J) be its ramification
index. Fix local coordinates Yl,"" Yn on Y so that t = Yl is a local
equation for Z' = f(Z) (this may require shrinking a little bit the open set
on which we work). We select local coordinates XI, •.. ,Xn on X as follows:
s = Xl is a local equation for Z, and Xi = Yi 0 f for i = 2, ... , n. We write

We know that t 0 f = use for some function u that does not have a zero
or a pole along Z, so we get dYl 0 f = ese-Ids + sedu. Notice that the
hypothesis on the characteristic implies e t= 0 in k, so e E k*. Hence we
obtain

J*(w) = 1> 0 f se-lu' dXl /\ ... /\ dXn with u' E (9:Z,x·

We conclude that ordz (f* (w)) = ordz (f* (div(w))) + (ez -1). Now, both
ordz(f*(w)) and ordz(f* (div(w))) are zero except for a finite number of
divisors Z; this proves (i), and Hurwitz's formula follows by summing over
all divisors Z. 0

To each divisor D we associate the vector space of rational functions
whose poles are no worse than D. The precise definition is as follows.

Definition. Let D be a divisor on a variety X. The vector space L(D) is
defined to be the set of rational functions

L(D) = {J E k(X)* ID + div(J) :?: o} U{O}.

The dimension of L(D) as a k-vector space is denoted by £(D).
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To check that L(D) is a vector space, we use the fact that ordy is a
valuation. Thus if f,g E L(D), then for any irreducible divisor Y we have

ordy(f+ g) ~ min{ordy(f), ordy(g)} ~ - ordy(D).

Summing over Y shows that f + g E L(D). It will be shown in the next
section that the dimension l(D) is finite when X is projective. We also
note the following elementary properties, whose proof we will leave to the
reader (see Exercise A.2.5).

Lemma A.2.2.9. Let X be a variety and let D, D' E Div(X).
(i) k c L(D) if and only ifD ~ O.
(ii) IfD ::; D', then L(D) C L(D').
(iii) IfD' = D +div(g), then the map f ~ gf gives an isomorphism of k

vector spaces L(D') --+ L(D). In particular, the dimension l(D) depends
only on the class ofD in Pic(X).

We close this section on divisors by explaining what happens when
the field k is not assumed to be algebraically closed. So for the rest of this
section we drop the assumption that k is algebraically closed and assume
for simplicity only that k is perfect. (If one needs to work with nonperfect
fields such as IFq(T), one should use the separable closure instead of the
algebraic closure in the following discussion.) We first need to explain what
it means for a divisor to be defined over k. We do this by using the action
of the Galois group Gk := Gal(kjk).

Definition. Let X be a variety defined over k. A divisor D is said to be
defined over k if it is invariant under the action of the Galois group Gk.

For example, a hypersurface X C jpn that is defined over k is a di
visor defined over k. Similarly, the principal divisor div(f) of a rational
function f E k(X) is defined over k.

If the divisor D is defined over k, we consider the k-vector space Lk(D)
defined by

Lk(D) = {J E k(X) ID + div(f) ~ O}.
The next proposition clarifies the connection between Lk(D) and L(D) =
L"k(D) and justifies the assertion that for questions concerning divisors, it
generally suffices to work over k.

Proposition A.2.2.10. Let k be a perfect field, let k be an algebraic
closure of k, let X be a variety defined over k, and let D be a divisor on X
defined over k.
(i) The k-vector space L"k(D) = L(D) has a basis of elements in k(X). In

other words, there is a natural identification Lk(D) ®k k = L(D), and in
particular, dimLk(D) = dimL(D) = l(D).
(ii) Assume further that X is projective. If there exists a rational func
tion f E k(X) with D = div(f), then there exists a rational function f' E
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k(X) with D = div(f'). In other words, the natural map from Pic(X)k

to Pic(X) is injective.

PROOF. (i) It suffices to prove that every element ofL(D) can be expressed

as a k-linear combination of elements of k(X). Let f E L(D), and let K/k

be a finite Galois extension such that f E LK(D). Further let aI."" an

be a basis for Kover k, and let Gal(K/k) = {C71,""C7n}. It is a basic

fact of Galois theory that det (C7i (aj)) i= OJ see, for example, Lang [2,

Chapter VIII, Corollary 5.4]. Define rational functions gi by

n

gi = LC7j(ai!),
j=1

1:::; i:::; n.

It is easy to check that the gi's are Gal(K/k)-invariant, and thus are

in k(X). And the invertibility of the matrix (C7i(aj)) shows that f (and in

fact, all of the C7j f's) are in the k-span of g1, ... ,gn'

(ii) By assumption, D = div(f) for some f E k(X). We fix a finite Galois

extension K/k such that f E K(X). The fact that C7(D) = D for all C7 E

Gal(K/k) means that div(C7(f)/f) = O. It follows from Lemma A.2.1.4(iv)

that C7(f)/ f is constant, say C7(f)/f = a(C7) E K*. One easily verifies

that the map C7 -+ a(C7) is a one-cocycle from Gal(K/k) to K*. Hilbert's

theorem 90 (Serre [1, Chapter 10, Proposition 2) or Exercise A.2.6) tells us

that it is a coboundary, so there is abE K* such that a(C7) = b· C7(b)-1

for all C7 E Gal(K/k). It follows that C7(bf) = bf for all C7 E Gal(K/k) ,

so bf E k(X). Since we clearly have div(bf) = div(f) = D, this completes

the proof. 0

A.2.3. Intersection Numbers

A classical part of algebraic geometry called enumerative geometry is ded

icated to counting the number of points (or curves, etc.) satisfying certain

properties. We will introduce one basic tool used in studying this kind

of problem. By the general theorems on dimensions (reviewed in Sec

tion A.1.3) we expect that a collection of n hypersurfaces on a variety of

dimension n will intersect in a finite set of points. We would like to count

these points, including some sort of multiplicity to account for tangencies

and self-intersections. We begin by defining the intersection multiplicity

of n irreducible divisors D 1 , ... ,Dn at a point x E X under the assump

tion that ni D i consists of discrete points.

Definition. Let X be a variety of dimension n, and let D 1 , ••. , Dn E

Div(X) be irreducible divisors with the property that dim(ni D i ) = O.
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Choose local equations !I, ... , fn for D 1, ••• , Dn in a neighborhood of a
point x E X. The (local) intersection index of Db"" Dn at x is

One can check that this dimension is always finite and does not depend on
the selected local equations. Further, it is positive if and only if x E ni D i .

We define the intersection index (or number) of D1, ••• , Dn to be

(D1, ••• , Dn) = L (Db"" Dn)x.
xEX

If the Di's intersect transversally, that is, if each (D1, ... ,Dn)x is
either 0 or 1, then (D1 , . •• , Dn ) actually counts the number of points in
D 1 n ... n D n . We can easily extend this definition by linearity so as to
define the intersection number of any n divisors, as long as their intersection
consists only of points. To go further, we need the following invariance
property.

Lemma A.2.3.1. Let X be a normal projective variety and D1, •.. , Dn E
Div(X).
(i) There exist divisors D~, ... ,D~ E Div(X) with the property that

D i '" D~ for all 1 ~ i ~ n and (0 SUPp(DD) = o.

(ii) Let D~, ... ,D~ be as in (i), and suppose that D 1 , ... , Dn also sat
isfy dim(n i supp(Di )) = O. Then the intersection numbers are equal,

(Db"" Dn) = (D~, ... ,D~).

PROOF. The first part can easily be proven in the same way as the moving
lemma A.2.2.5(ii). For the second part, see Shafarevich [1, IV.I, Theorem
~. 0

Lemma A.2.3.1 enables us to define the intersection number of any
n-uple of divisors.

Definition. Let X be a normal projective variety of dimension n. For
any divisors D 1 , •.. , Dn on X, choose divisors D~, ... ,D~ E Div(X) as
in (A.2.3.I(i)). Thus D i '" D~ for all 1 ~ i ~ n and dim(ni supp(DD) = O.
We define the intersection index (or number) of Db"" Dn to be

(Db ... ,Dn) = (D~, ... ,D~).

Note that Lemma A.2.3.1(ii) assures us that this number is independent of
the choice of D~, ... ,D~.
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The following important theorem explains how intersection indices
transform under finite morphisms.

Theorem A.2.3.2. Let X and Y be normal projective varieties ofdimen
sion n, and let f :X ---+ Y be a finite morphism. Let D1 , ... , Dn E Div(Y).
Then

(f*D 1,···, r Dn)x = deg(f) . (D1 , ... , Dn)y.

PROOF. See Mumford [2, II.6] or Exercise A.2.1O. o

Finally, we define the degree of a subvariety with respect to a divisor.

Definition. Let X be a projective variety, let i : Z '---+ X be a subvariety
of dimension r, and let D E Div(X). The degree of Z with respect to D is
defined to be

degD(Z) = ~*(D), ... ,i*(D~ z.
'"r times

When X = pn and D = H is a hyperplane, the degree of Z with respect
to H is called the projective degree of Z. In this case, the degree is just the
number of points in the intersection of Z with a general linear subvariety of
codimension r. For example, the degree of a hypersurface with respect to
a hyperplane is the degree of the polynomial that defines the hypersurface.
Similarly, the degree of a point with respect to a hyperplane is one.

Remark. (i) The intersection numbers actually satisfy a much stronger
invariance property than that of Lemma A.2.3.1, although we will not
need to use this fact. They are invariant by algebraic deformation; that is,
the intersection number does not change if each divisor is changed to an
algebraically equivalent divisor. We recall that two divisors Db D2 on X
are algebraically equivalent if there exists a connected algebraic set T, two
points tb t2 E T, and a divisor 'D on X x T such that D i = 1>lxx{t;}

for i = 1,2. See, for example, Hartshorne [1, V, Exercise 1.7] or Griffiths
Harris [1, pages 461-2].
(ii) Although the degree is defined with respect to any divisor, it is a useful
concept only when the divisor is ample (a notion introduced in the next
section). In this case the degree has a simple geometric interpretation; see
Exercise A.3.6.

EXERCISES

A.2.1. (a) Show that an (irreducible) hypersurfa.ce Y in lP := lPn } x ... x lPnr is
defined by an (irreducible) multihomogeneous polynomial of multidegree
(d1, ... ,dr ).

(b) Use linearity to define a map deg : Div(lP) -> zr and show that it
induces an isomorphism between Pic(l!») and zr.
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A.2.2. (a) Show that an automorphism I of IPn must transform a hyperplane
into a hyperplane.
(b) Let H be a hyperplane in IPn. Using the action of I on L(H), con
clude that all automorphisms of IPn are linear. In other words, prove that
Aut(IPn) = PGL(n + 1).

A.2.3. Prove in detail Lemma A.2.1.2. For part (ii), first reduce to an affine
open subset U on which I is regular, and then show that ordy(l) > 0 if
and only if Y is contained in the closed subset of U defined by the ideal
I . k[U] C k[U]. For part (iv) use the fact that the only regular functions
on a projective variety are constants.

A.2.4. Compute the canonical class of pn. (Hint. Use the differential W :=

dxl /\ ••• /\ dxn, where Xi = Xi/Xo, and show that div(w) = -en + l)Ho
for a certain hyperplane Ho.)

A.2.5. (a) Verify Lemma A.2.2.9, and prove that if D, D' are two divisors on a
variety X, then there is a well-defined map

Ii : L(D) ~ L(D') -+ L(D + D'), Ii: (I,f') I---> If'·

Show that in general this map is neither surjective nor injective. (See
Exercise A.3.8 for more on the map Ii.)
(b) Let X, Y be smooth varieties with canonical divisor classes Kx, Ky.
Prove that K x x y = pi (Kx) + P2 (Ky ), where PI, P2 are the projections
from X x Y to X and Y. Use this to compute the canonical class on
IPn1 x ... x IPnr •

A.2.6. Prove Hilbert's theorem 90; Let K/k be a finite Galois extension and
let a; Gal(K/k) -+ K* be a map such that a(ur) = u(a(r»a(u). Prove
that there exists abE K* such that a(u) = b/u(b). (Hint. Consider
b = L"EGal(K/k) a(u)u(u), and show that u E K can be chosen so that
b =F 0.)

A.2.7. (a) Let X be a smooth hypersurface in IPn defined by a homogeneous
polynomial F of degree d. Compute the canonical class Kx of X. (Hint.
Use the forms

Wi := (-1)i _dx_l _/\_'~';;-';:;/\..,dx;::-i-~I;-/\_dx_H..:...-I_/\_'-;';-'_/\_dx--'.n
(8F/8Xi)(1, Xl, . .. , Xn)

to compute the canonical class.)
(b) Generalize (a) to the case that X is a codimension r smooth com
plete intersection of r hypersurfaces defined by polynomials F i of degree
di. (Hint. For I a subset of cardinality r of [1, n], define

and dXI = dxl /\ .. ·/\dXi /\ ... /\ dXn with each dxi deleted when i E Ij then
use the forms WI = dXI/t::.I(X) to show that Kx is dl + ... + dr - 1 - n
times a hyperplane section.)

A.2.8. Let X be a smooth affine variety, and let A = C>(X) be its coordinate
ring. Show that CI(X) = 0 if and only if A is a UFD.
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A.2.9. (a) Let p : X x An -+ X be projection onto the first factor. Prove that
the map p* : CI(X) --+ CI(X x An) is an isomorphism, and similarly with
Pic instead of Cl.

(b) Can you describe CI(X x pn) or Pic(X x pn)?

A.2.1O. Let I : X -+ Y be a finite morphism of degree d between projective
varieties of dimension n. The purpose of this exercise is to furnish a proof
of the formula

stated in Theorem A.2.3.2.

(a) Reduce to the case where the divisors D i are effective and n~=1 D i

is finite and avoids the ramification locus. (Use linearity, invariance of
intersection numbers, and the moving lemma.)

(b) Suppose that the differential dlx is injective for some x E X, assume
y = I(x), and let /1, ... , In be local equations for D I , ... , Dn at y. Prove
that /l 0 I, ... , In 0 I are local equations for r D I , ... ,rDnat x, and that

(c) Conclude the proof.

A.2.11. Recall the construction of the Grassmannian variety Gras(k, n) of linear
subspaces of dimension k in PV = lP'n, and identify Gras(k, n) with the
image of its Plucker embedding into lP'(/\k+l V) (see Exercise A.1.11). Let
Z be a linear subspace of dimension n - k. Then Z corresponds to a
(multi)vector W E /\n-k V 9:! /\k+l V*j hence it gives a linear form on
P(/\k+l V). Let U' be the affine subset defined by the nonvanishing of this
form, and let U = U' n Gras(k, n).
(a) Show that U is isomorphic to the affine space A(k+l)(n-k) and that
Gras(k, n) is covered by such open subsets. (Hint. Show that U can be
identified with Hom(V/Z, Z).) Notice that this gives another proof that
Gras(k,n) is smooth and irreducible of dimension (k + l)(n - k).

(b) Show that Pic(Gras(k, n)) =Z, a generator being given by the class of
a hyperplane section H = Gras(k, n) "U.
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In this section we will describe a correspondence between morphisms to
projective space and families of effective divisors. The underlying idea is
quite simple. To each embedding X <-+ pn there corresponds its family
of hyperplane sections, that is, the intersection of the image of X with all
possible hyperplanes in pn. In this section we reverse this construction.
For each family of effective divisors (a linear system) we will describe an
associated rational map to a projective space. It is natural to ask under
what conditions this map is a morphism or an embedding. This leads to
the notion of base points and ampleness. Finally, we introduce the pow
erful language of sheaves and bundles, which are often more convenient
than divisors. We explain why Cartier divisor classes are the same as is0
morphism classes of line bundles (or line sheaves) and provide a dictionary
for translating the various notions from one language to the other. In this
section, whenever the variety we work with is not smooth, the word divisor
means a Cartier divisor, since this notion is somewhat better behaved. For
simplicity, throughout this section we assume that the base field k is alge
braically closed. (See Section A.2.2, especially Proposition A.2.2.1O, for an
explanation of why this suffices for most applications.)

A.3.1. Linear Systems and Maps

Recall that to each divisor D on a variety X we have associated the vector
space

L(D) = {J E k(X) ID + div(J) ~ o} U{O},

whose dimension is denoted by leD). (Note that 0 is included in L(D) by
convention, or one could say that it is in L(D), because the zero function
vanishes to arbitrarily high order along every irreducible divisor.) The set
of effective divisors linearly equivalent to D is naturally parametrized by
the projective space

P(L(D») ~ pl(D)-l.

This parametrization is given by

P(L(D» --. {D' ID' ~ 0 and D' rv D}, f mod k* 1----+ D + div(f).

The following definition slightly generalizes this construction.

Definition. A linear system on a variety X is a set of effective divisors
all linearly equivalent to a fixed divisor D and parametrized by a linear
subvariety of P(L(D») ~ pl(D)-l. The dimension of the linear system is
the dimension of the linear subvariety. (Some authors use the synonym
linear series.)
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Example A.3.1.1. The set of effective divisors linearly equivalent to D
is a linear system called the complete linear system of D. It is denoted
by IDI.

Another way to define a linear system L is to say that it is a subset
of some IDI such that {J E k(X)* ID + div(f) E L} U {O} is a k-vector
subspace of k(X).

Example A.3.1.2. Let D = 0 be the zero divisor on An. Then L(D) =
k[X1 , ..• ,Xnl, and IDI is the set of all hypersurfaces in An. Clearly, L(D)
and IDI are infinite-dimensional.

Example A.3.1.3. Let d be a positive integer, and let H be the hyper
plane {xo = O} in Div(pn). Then L(dH) = {F/xg IFE k[xo, ... ,xnld, so
L(dH) has dimension N = (n~d). The linear system IdHI is the linear
system of all hypersurfaces of degree d in jpn; it has dimension N - 1.

These last two examples suggest that complete linear systems are likely
to be more useful on projective varieties than they are on affine varieties.
We will see below (A.3.2.7) that a linear system on a projective variety is
always finite dimensional.

Example A.3.1.4. Let X ~ pn be a projective variety, let Ix be the
homogeneous ideal of X, and let d be a positive integer. Each form F of
degree d not in Ix cuts out an effective divisor (F)x on X; see (A.2.2.2).
The collection of these divisors defines a linear system on X,

Lx(d) := {(F)x IF E (k[xo, .. . ,xnl/Ix)d " {On·

As we will see below, this linear system determines the embedding X ~ pn
up to a change of coordinates in pn.

Example A.3.1.5. Let f : X ~ Y be a morphism and let L be a linear
system on Y such that f(X) is not contained in any DEL. Then the
set of effective divisors {/*DID E L} is a linear system on X. Under
some conditions we can even extend this to the case where f is only a
rational map. Suppose that f : X ~ Y is a dominant rational map and
that f is regular on U := X" Z with codimx(Z) ~ 2. If X is smooth,
this last condition is automatic. We then observe that (flu)* D is a well
defined divisor on U. Further, the inclusion U C X induces a natural map
Div(X) ~ Div(U), which must be a bijection because of the codimension
assumption. We may then define f*DE Div(X) as the unique divisor such
that (f* D) Iu = (flu )*D. In this way we can pull linear systems back using
rational maps.

We now describe the rational map associated to a finite-dimensional
linear system.
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Definition. Let L be a linear system of dimension n parametrized by a
projective space fi»(V) c fi»(L(D». Select a basis fo, ... , In of V C L(D).
The rational map associated to L, denoted by <h, is the map

<h: X ~ fi»n,
x t-----+ Uo(x), ... ,ln(x».

Remarks. (i) The map <PL is clearly defined outside of the poles of the
individual Ii's and the set of common zeros of the Ii's
(ii) The map <PL depends on the choice of the basis, so it is well-defined
only up to an automorphism of ]pn. It can be defined canonically with
values in fi»(V).
(iii) If L is a linear system on X and Do is an effective divisor, then the
set {D +Do IDE L} is also a linear system, and clearly the map it defines
is the same as the map defined by L.

These remarks suggest the following definitions.

Definition. The set of base points of a linear system L is the intersection
of the supports of all divisors in L. We will say that a linear system is base
point free if this intersection is empty, and we will say that a divisor D is
base point free if the complete linear system IDI is base point free.
For a nonempty linear system L, it is easy to show that <PL is regular

outside of the base points of L (see Exercise A.3.5). However, the domain of
</JL need not be exactly the complement of the base points, simply because
fQr any effective divisor E, the linear system L' = E+L:= {D+E IDE L}
defines the same rational map. This new linear system clearly has the
support of E among its base points.

Definition. The fixed component 01 a linear system L is the largest divisor
Do such that for all DEL, we have D ~ Do. If Do = 0, we say that the
linear system has no fixed component.

We can now formulate the correspondence between rational maps and
linear systems.

Theorem A.3.1.6. There is a natural bijection between:
(i) Linear systems L of dimension n without fixed components.
(ii) Morphisms </J : X -+ ]pn with image not contained in a hyperplane,
up to projective automorphism. (That is, we identify two rational maps
</J, </J' : X -+ IF if there is an automorphism a E PGL(n + 1) such that
</J' = a 0 </J)

PROOF. The proof is not difficult. For details, see Mumford [4, Theo
rem 6.8] or Hartshorne [1, 11.7.1 and 11.7.8.1].

o

We close this section by giving some examples that illustrate the gen
eral theory.
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Examples A.3.1.7. (a) Let i : X ......... IPn be a projective variety not con
tained in any hyperplane. Notice that the linear system Lx(l) (A.3.1.4)
defines the embedding i. If L C Lx(l), then the associated rational map
is the linear projection with center the intersection of the hyperplanes in
L. See Exercise A.3.1 for an analysis of the base points of this linear pro
jection.
(b) More generally, the map associated to the linear system Lx (d) de
scribed in Example A.3.1.4 is essentially the embedding i of X composed
with the d-uple embedding (A.1.2.6(a)). Precisely, consider the composi
tion ~d 0 i : X ......... IPn -+ IPN • The ideal of X will contain homogeneous
forms of degree d when d is large, so the map associated to Lx(d) is the
same map, but with the image restricted to the smallest linear subvariety
containing ~d 0 i(X).
(c) The Cremona transformation (A.1.2.6(g)) is defined by the linear sys
tem of conics passing through the points (0,0,1), (0,1,0), and (1,0,0).

A.3.2. Ampleness and the Enriques-Severi-Zariski Lemma

In this section we describe methods for determining whether a linear system
provides an embedding.

Definition. A linear system L on a projective variety X is very ample if
the associated rational map <PL : X -+ pn is an embedding, that is, <PL is a
morphism that maps X isomorphically onto its image <PL(X), A divisor D
is said to be very ample if the complete linear system IDI is very ample. A
divisor D is said to be ample if some positive multiple of D is very ample.

Notice that very ample divisors are hyperplane sections for some em
bedding. Also, the linear systems Lx(d) are clearly very ample. We will see
(A.3.2.5) that in some sense, up to composition with a d-uple embedding,
all embeddings are given by such a linear system. Recall that a morphism is
an embedding if it is injective and its tangent map at each point is injective.
This allows us to give the following criterion.

Theorem A.3.2.1. A linear system L on a variety X is very ample if
and only if it satisfies the following two conditions:
(i) (Separation of points) For any pair ofpoints x, y E X there is a divisor

DEL such that xED and y fj. D.
(ii) (Separation of tangent vectors) For every nonzero tangent vector t E

Tx(X) there is a divisor DEL such that xED and t fj. Tx(D).

PROOF. See Hartshorne [1, II, Proposition 7.3 and Remark 7.8.2]. 0

For curves this translates easily into the following useful criterion.
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Corollary A.3.2.2. Let D be a divisor on a curve C.
(a) The divisor D is base point free if and only if for all P E C we have
l(D - P) = l(D) - 1.
(b) The divisor D is very ample if and only if for all points P, Q E C we
have l(D - P - Q) = l(D) - 2. (Note that we allow P = Q, which corre
sponds to the separation of tangent vectors condition in Theorem A.3.2.1.)

PROOF. See Hartshorne [1, IV, Proposition 3.1] or Exercise A.3.2. 0

These criteria enable us to prove that the set of ample divisors gener
ates the group of divisors, and thus also generates the Picard group.

Theorem A.3.2.3. Every divisor can be written as the difference of two
(very) ample divisors. More precisely, let D be an arbitrary divisor and let
H be a very ample divisor.
(i) There exists an m ~ 0 such that D + mH is base point free.
(ii) IfD is base point free, then D + H is very ample.

PROOF. Clearly, we may assume that X ~ pn and that H is a hyper
plane section. We first use the moving lemma (A.2.2.5) to find divisors
D1,.··,Dr, all linearly equivalent to D, such that nsupp(Di ) = 0. We
may write Di as an effective divisor minus a divisor E j mijYij, where each
Yij is an irreducible subvariety of codimension 1 in X defined, say, by a set
of forms Fijk , and each mij is greater than O. We select an integer

d> max{"'mo.degpok}- i L..J tJ tJ
j,k

and proceed to show that D + dH is base point free.
Let x E X, and choose some D i such that x ~ supp(Di ). For each j

there is then an index kj with Fijkj (x) :f:. O. Also, let L be any linear form
not vanishing at x, let N = E j mij degFijkj , and define

G = (IIFi";; )Ld
-

N
•

J

Note that N ::; d. Further, G is a form of degree d, so (G)x f"V dH and
D i + (G)x f"V D + dH. On the other hand, we can compute

Di + (G)x ~ - LmijYij + Lmij(Fijkj)x + (d - N)(L)x ~ O.
j j

Finally, we note that by construction, x ~ supp(Di + (G)x). This proves
that x is not a base point of D + dH, which completes the proof of (i).
We assume now that D is base point free and prove that D +H is very

ample by verifying the criteria of Theorem A.3.2.1. Let x and y be distinct
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points on X. Then we can find an effective divisor E, linearly equivalent to
D, with Y ¢ supp(E), and a hyperplane section Ho such that x E Ho but
Y ¢ Ho· Clearly, x E supp(E+Ho), whereas y ¢ supp(E+Ho), which shows
that the linear system separates points. Next, let t E Tx(X) be a tangent
vector. Then we select an effective divisor E, linearly equivalent to D, such
that x ¢ supp(E), and we take a hyperplane section Ho passing through
x but not containing the line generated by t. Then x E supp(E + Ho)
and t rt Tx(E + Ho), which shows that the linear system separates tangent
vectors. Hence the linear systems is very ample by Theorem A.3.2.1. 0

Remark. Theorem A.3.2.3 can be used to give the following presentation
of Pic(X). Define Emb(X) to be the free group generated by the embed
dings of X into some ]pn. To any embedding ¢ we associate the divisor class
c", = ¢*(H) E Pic(X). By linearity we obtain a map, which we still call c,
from Emb(X) to Pic(X). The previous theorem tells us that this map is a
surjection. Let H(X) be the kernel of the map Emb(X) -+ Pic(X). It is
clear that the following three sorts of elements are in H(X):
(i) Let 0: E PGL(n + 1) and let ¢ : X ~ ]pn. Then coo", - c'" E H(X).
(ii) Let i : jpn ~ ]pn+l be a linear injection and let ¢ : X ~ jpn. Then

c.;o'" - c'" E H(X)
(iii) Let ¢ : X ~ jpn and'lj; : X ~ jpm be embeddings, let S : jpn X jpm -+

jpN be the Segre embedding (A.1.2.6), let ~ : X -+ X x X be the diagonal
embedding, and define a map by the composition

s
----+

Then c"'~t/J - c'" - CtIJ E H(X).
It can be shown that H(X) is generated by these three types of ele

ments.

We describe now the behavior of these notions under pullbacks.

Proposition A.3.2.4. (i) Let f : X -+ Y be a morphism between two
projective varieties. If D is 8. base point free divisor on Y, then f* D is a
base point free divisor on X.
(ii) Let f : X -+ Y be a finite morphism between two projective varieties.
IfD is an ample divisor on Y, then f* D is an ample divisor on X.

PROOF. The first part is very easy, but the second part is deeper. See
Hartshorne [1, III, Exercise 5.7] for a proof. 0

Notice that the pullback of a very ample divisor by a finite morphism
need not be very ample. For example, consider the morphism ¢ described
in (A.1.2.6(e)).
We now come to the proof that on a projective variety, the vector

space L(D) is finite-dimensional.
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Theorem A.3.2.5. (Enriques-Severi-Zariski) Let X ~ jpn be a normal
projective variety. There exists an integer do = do(X) such that for all
integers d ~ do, the linear system Lx(d) is a complete linear system. In
other words, ifD is an effective divisor on X that is linearly equivalent to d
times a hyperplane section, then there is a homogeneous polynomial F of
degree d such that D = (F) x .

PROOF. Let us denote by H a hyperplane section and suppose that D is an
effective divisor on X linearly equivalent to dH. Writing Hi for the divisor
cut out by Xi = 0 on X, we obtain functions Ii such that div(fi) = D 
dHi. Since div(fJj-

1
) = div(xidxj), we get relations IJj-

1 = AijxidX1
for certain constants Aij =I- O. Multiplying the /i's by some constant, we
may assume that all Aij are equal to 1. Let A = k[xo, ... ,xnJlIx be the
homogeneous coordinate ring of X, let Frac(A) be its fraction field, and let
AM denote the homogeneous piece of A of degree M. We observe that the
function F = /ixf is independent of i and sits in Frac(A). Furthermore,
the function Ii has no pole outside Hi; hence it lies in the integral closure
of the affine ring of X " Hi, hence in the ring itself, since it is integrally
closed (the variety X is normal by hypothesis). So each Ii has the shape
Fi/X":i for some homogeneous form Fi of degree mi. So taking M large
enough, we see that xf'l-dF = xf'l Ii = xf'l-miFi belongs to AM' We now
apply the following lemma from commutative algebra.

Lemma A.3.2.6. Let 1 be a homogeneous ideal in k[xo, ... ,xn], and let
A = k[xo, ... ,xn]/1. There exists an integer do = do(1) such that for all
d ~ do, all N ~ 0, and all F E Frac(A),

x~F,xfF, ... ,x~F E AN+d~ F E Ad.

PROOF. See Mumford [4, Proposition 6.11 part 2]. o

Returning to the proof ofTheorem A.3.2.5, we see that if our d is larger
than the do given by Lemma A.3.2.6, then F is in Ad and D is the divisor
cut out by (a representative of) F. This is the desired conclusion. 0

We now have all the tools to complete the promised proof of finiteness
of l(D) for projective varieties. This is a special case of rimch more general
finiteness results (see, for example, Hartshorne [1, Theorem 111.2]).

Corollary A.3.2.7. Let D be a divisor on a projective variety. Then
l(D) = dim L(D) is finite.

PROOF. We first assume that the projective variety X is normal. Clearly,
we may assume that l(D) ~ 1. This means that D is linearly equivalent to
an effective divisor. The dimension l(D) depends only on the linear equiva
lence class ofD, so we may take D to be effective. We also fix an embedding
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x ~ IPn and choose a homogeneous polynomial G E k[xQ, ... ,xn ] that van
ishes on the support ofD, but not on all of X. We choose a G whose degree
is larger than the integer do(X) described in Theorem A.3.2.5. Replacing G
by some power Gm to account for the multiplicities of the components ofD,
we may assume that (G)x 2 D. It follows that L(D) C L((G)x). But
from the previous theorem (A.3.2.5), we know that L((G)x) = Lx(d) is
of finite dimension. Hence the same is true of L(D). Now, if X is not
normal, consider its normalization v : X' --+ X (see Exercise A.1.I5); the
map v* provides an injection of L(D) into L(v*(D)), and the latter has
finite dimension by the previous argument. 0

A.3.3. Line Bundles and Sheaves

In this section we introduce the powerful and versatile language of sheaves
and (vector) bundles. These two objects are used throughout modem math
ematics and already occur in the very definition of schemes. We give here
only the most basic definitions and explain how the previous two sections
can be reformulated in this terminology. This turns out to be more than
mere paraphrasing, since the use of sheaves and bundles simplifies con
structions and proofs and provides valuable insights. The reader should
be aware that for the arithmetic applications contained in the subsequent
parts of this book we will need only the theory of I-dimensional vector
bundles (Le., line bundles).
Sheaves are devices to describe the local behavior of objects and to

describe how local information is glued together to form global objects. In
order to motivate the definition, we look at a familiar example from topol
ogy. Consider the set of continuous functions from a topological space X
into another topological space Y. More generally, for any open subset
U C X we can look at the set of continuous functions U --+ Y, which we
denote by e(U) or e(U, Y). If V c U, then the restriction of a continu
ous function to V is again continuous, and hence we get a restriction map
res~ : e(U) --+ e(V). These maps have the following obvious compatibil
ity: If W eVe U, then res~ = resW 0 res~. Next we observe that two
functions that agree locally are equal. That is, if we cover U by open sets,
U = Ui Ui, and if two functions f, 9 E e(U) satisfy resgi(I) = resgi (g) for
all i, then f = g.
Conversely, if we know locally functions that "match on the overlap,"

then we can glue them together. In other words, suppose that we have
a covering U = Ui Ui as above; suppose that we are given functions Ii E

e(Ui ); and suppose that for all pairs of indices i, j we have res~:nuj (Ii) =

res~:nu/Ii). Then there exists a function f E e(U) satisfying resgi(l) =
Ii-
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This example serves as a guide to the definition of a sheaf. We will
soon realize that, like Monsieur Jourdain, we have already used several
sheaves without knowing that we were doing so.

Definition. Let X be a topological space. A presheaj~ on X consists of
the following data:
(i) For every open subset U in X, a set ~(U).
(ii) For all open subsets V cUe X, a map TU, v ~(U) -+ ~(V)

satisfying

TU,U = id3-'(u) and TU,W = TV,W o TU,V.

In many cases we may think of the maps TU, v as restriction maps.
This is especially true if they happen to be injective. If the ~(U)'s have
some additional structure, for example if the ~(U)'s are groups, rings, or
modules over some ring, then we speak of a presheaj oj groups, rings, or
modules.

Definition. A morphism oj presheaves f : ~l -+ ~2 is a collection of maps
f(U) : ~l(U) -+ ~2(U) such that for every V C U, the maps f(U) and
j(V) are compatible with restriction, T'tJ v 0 j(U) = f(V) 0 Tb v. If the ~i 's
are presheaves of groups (respectively rings, modules), then ~e insist that
the j(U)'s should be group (respectively ring, module) homomorphisms.

A presheaf on X attaches a set to each open subset of X, and also
assigns various restriction maps. A sheaf is a presheaf in which local data
determines global properties. In other words, if U = Ui Ui is an open
covering ofU, then ~(U) should be completely determined by the ~(Ui)'S,
the ~(Ui n Uj)'s, and the various restriction maps connecting them. We
make this precise in the following definition.

Definition. Let X be a topological space. A sheaf ~ on X is a presheaf
with the property that for every open subset U C X and every open cov
ering U = Ui Ui , the following two properties are true:
(1) Let x,y be elements of ~(U) such that TU,U;(X) = TU,U;(Y) for all i.
Then x = y.
(2) Let Xi E ~(Ui) be a collection of elements such that for every pair
of indices i, j, we have TUi ,UinUj (Xi) = TUj ,UinUj (Xj ). Then there exists a
(unique) X E ~(U) such that TU,U; (x) = Xi for all i.

These properties can be paraphrased as follows:
• Elements are uniquely determined by their local behavior;
• Compatible local data can be patched together (in a unique way) to
form a global element.

Examples A.3.3.!.
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(a) The fundamental example in classical algebraic geometry is the sheaf
of regular functions on a variety X equipped with the Zariski topology.
Thus C)x is the sheaf defined by

c)x(U) = {regular functions on U},

and rv,v is the natural restriction of a function from U to V. It is immediate
that C)x is a sheaf of rings. This construction is so fundamental that from
the point of view of schemes (see Section A.9), a variety is a pair (X, C)x).
(b) The sheaf of invertible functions C)X associates to an open set U the
set of regular functions without zeros on U. It is a sheaf of groups. Notice
that C)x(U) is exactly the group of units in the ring C)x(U), hence the
notation.
(c) On a variety X, the sheaf of rational functions Xx attaches to each
open set U the set of rational functions on U. It is a constant sheaf in the
sense that all of the maps rv,v are isomorphisms.
(d) The sheaf of differential r-forms Ox on a variety X associates to an
open set U the set of regular r-differentials on U.
(e) Our motivating example, the presheaf of continuous functions on a
topological space, is a sheaf. Similarly, on a Coo manifold X we can define
a sheaf of Coo functions by the rule

eOO(U) = {f : U -+ IR I f is a Coo function}.

In modem language, the different types of geometry (e.g., differential, an
alytic, algebraic) are defined by attaching a certain type of structure sheaf
to a certain type of topological space.

There is an obvious way to form the direct sum and tensor product of
two sheaves of modules:

(9'" EEl 9)(U) = 9'"(U) EEl 9(U) and (9'" ~ 9)(U) = 9'"(U) ~ 9(U).

Next we consider what happens when we look at a sheaf in an infinites
imal neighborhood of a point. This is the algebraic analogue of the germs
of functions used in analysis.

Definition. The stalk of a sheaf 9'" at a point x E X, by 9'"x, is the direct
limit of the 9'"(U)'s over all open sets U containing x. Thus

9'"x = lim 9'"(U),
xEU

where the limit is taken with respect to the restriction maps rv,v. Intu
itively, an element of the stalk 9'"x is an element s E 9'"(U) for some open
set containing x, where we identify s and s' E 9'"(U') if s and s' have the
same restriction to U nU'.
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It is clear that the stalk of a sheaf of groups (respectively rings, mod
ules) is a group (respectively ring, module). The elements of 5"x are called
germs at x. If x E U, we get a map 5"(U) -+ 5"x. The image of s E 5"(U) in
5"x is called the germ of s at x.

Example. Let Ox be the sheaf of regular functions on a variety X as
described in (A.3.3.1(a)). Then the stalk of Ox at x is just the local ring
Ox,x.

The stalks of a sheaf contain local information. The local-to-global
nature of sheaves is illustrated by the fact that many global properties of
sheaves can be checked on the stalks. For example, a morphism 5"1 -+ 5"2
of sheaves is an isomorphism if and only if all of the maps on the stalks,
5"l,x -+ 5"2,x, are isomorphisms. See Hartshorne [1, Chapter II, Proposition
1.1].

Definition. Let 5" be a sheaf on X. The set of global sections of 5" is the
set 5"(X). This set is also frequently denoted by qX,:7).

For example, if X is an affine variety with coordinate ring R = k[X],
then qx, Ox) = R and qx, Ox) = R*. However, if X is a projective
variety, then qx, Ox) = k and r(X, Ox) = k*.
Some of the most important sheaves in algebraic geometry have the

property that the sets 5"(U) are naturally modules over the ring Ox(U).
We formalize this idea in the following definition.

Definition. Let X be a variety. An Ox-module is a sheaf 5" on X such
that:
(1) For every U C X, 5"(U) is a module over the ring Ox(U).
(2) For every V cUe X, the map ru,v : 5"(U) -+ 5"(V) is a homomor
phism of modules. In other words, if Sl,82 E 5"(U) and h,h E Ox(U),
then

Note that there are two different restriction maps ru,v here, one for 5" and
one for Ox.

For example, the sheaves Xx and Ox are clearly Ox-modules. Simi
larly, the direct sum Ox EEl ... EEl Ox = Ox is an Ox-module called a free
Ox-module of rank r.

Definition. Let 5" be an Ox-module on X. We say that 5" is locally free
if each point in X has a neighborhood over which 5" is free. The rank of
a locally free sheaf 5" is the integer r such that 5"(U) ~ Ox (uy for all
sufficiently small open sets U. A locally free sheaf of rank 1 is called an
invertible sheaf (or sometimes a line sheaf).
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For example, when X is smooth, the sheaf of r-forms Ox is a locally
free sheaf. This is a reformulation of Proposition A.1.4.6. On the other
hand, the sheaf of rational functions Xx is not locally free. The reason that
locally free sheaves of rank 1 are called "invertible" is because they are the
sheaves :.r for which there exists another sheaf :.r' such that :.r~ :.r' ~ C)x .
(See Exercise A.3.13.) Thus the set of invertible sheaves naturally form
a group, using tensor product as the group law and c)x as the identity
element.

Remark. We now reinterpret the notion of a Cartier divisor by associating
an invertible sheaf to each Cartier divisor. Let D = {(Ui,fi) liE I}
be a Cartier divisor. We define the sheaf LD to be the subsheaf of Xx
determined by the conditions

for all i E I.

This determines LD' since the Ui's cover X. It is not hard to check that L D
is well-defined and is locally free of rank 1. It is also easy to see that up to
isomorphism, L D depends only on the linear equivalence class of D, and
that

LD+D' = LD ~LD"

The association Cl(D) ~ L D thus defines a homomorphism from Pic(X)
to the group of invertible sheaves (modulo isomorphism), and one can show
that this map is in fact an isomorphism. See Hartshorne [1, Proposition
II.6.13] or Shafarevich [1, Theorem 3, Chapter VI.1.4].

It turns out that locally free sheaves (of finite rank) can also be de
scribed by a more geometric object. The basic idea is that a locally free
sheaf on X corresponds to a family of vector spaces parametrized continu
ously by the points of X.

Definition. A vector bundle of rank r over a variety X is a variety E and
a morphism P : E -- X with the following two properties:
(1) Each fiber Ex = p-I{X} is a vector space of dimension r.
(2) The fibration p is locally trivial. This means that for each point x E X
there is a neighborhood U containing x over which the fibration is trivial.
In other words, if we write E u = p-I(U), then there is an isomorphism 4>u
from Eu to U x AT such that the following diagram is commutative:

Eu
P'\.

U

Here PI is the projection on the first factor. The maps 4>u are called local
trivializations of E. A vector bundle of rank 1 is called a line bundle.
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We will also need the notion of morphisms between vector bundles.
They are morphisms of varieties that respect the bundle structure.

Definition. Let p : E ~ X and p' : E' ~ X' be vector bundles. A
morphism of vector bundles is a pair of morphisms f : E ~ E ' and f :
X ~ X' such that lop = p' 0 f and such that for every x E X, the map
f x : Ex ~ E~ is a linear transformation of vector spaces.

The trivial bundle of rank r over X is X x AT ~ X. The following
example of a nontrivial bundle is fundamental in (projective) algebraic
geometry.

Example A.3.3.2. Let V =An+l, and consider IPn to be the set of lines
of V through O. Define a variety

E = {(x, v) E IPn x V Iv lies on the line x}.

Then projection onto the first factor, p : E _lPn, gives E the structure of a
line bundle. Indeed, the first condition is clear, and it is easy to check that
the fibration p trivializes above each standard affine open subset. Thus if
we let Uj = IF" {Xj = OJ, then the trivialization is given explicitly by

Uj X A 1
---+ Euj , ( (

>.xo >'Xl >'Xn ))(x,>')t--t x, -,-, ... ,-- .
Xj Xj Xj

We will develop tools below that can be easily used to show that E is not
trivial, that is, E is not isomorphic to IPn x A1.

Example A.3.3.3. (Tangent bundle) Let X cAn be an affine variety
with ideal Ix = (fl, ... , fm). We define a variety T(X) by

T(X) ~ { (x, t) E X x A" I~~ (x)t, ~ 0 to' alII"" j "" m } ,

and we let p: T(X) - X be projection onto the first factor. IfX is smooth,
then T(X) is a vector bundle of rank equal to the dimension of X called
the tangent bundle ofX. The bundle T(X) will be trivial over any open set
where some fixed minor of the Jacobian ({)/j/{)Xi) does not vanish. This
construction can be generalized to arbitrary varieties by taking an affine
covering and then gluing the pieces together. For example, the tangent
bundle of an algebraic group is trivial (see Exercise A.3.12).

Definition. Let p : E - X be a vector bundle. A section of E is a
morphism s : X - E such that p 0 s = idx. Similarly, a rational section
of E is a rational map s : X --+ E such that po s = idx.
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The set of sections to a vector bundle clearly form a vector space, which
we will denote by r(X, E). IfX is a projective variety, it is easy to see that
r(X, X x An = AT, since a projective variety has no nonconstant regular
functions. On the other hand, if E is the line bundle of Example A.3.3.2,
then one can check that r(lPn

, E) = {O}. The advantage of considering
rational sections is that a vector bundle always has nontrivial (i.e., nonzero)
rational sections.
The connection between locally free sheaves and vector bundles is now

easy to describe. Let p : E --+ X be a vector bundle. We associate to each
open set U the vector space of sections r(U, Eu). Notice that r(U, Eu)
is actually an <9x (U)-module (by the rule (fs)(x) = f(x)s(x)). It is easy
to check that the association U --+ r(U, Eu) defines a locally free sheaf
L E whose rank is equal to the rank of the vector bundle E. In fact, the
association E ~ LEis a bijection between (isomorphism classes of) vector
bundles of rank r and (isomorphism classes of) locally free sheaves of rank r.
See Hartshorne [1, II, Exercise 5.18] or Shafarevich [1, Theorem 2, VI.1.3].
For this reason we will use these notions interchangeably.
Next we describe how to construct bundles by gluing locally trivial

bundles. The basic observation is that a vector bundle E and local trivial
izations ifJu give isomorphisms

<l>u, <l>Uj
Eu,nu; ---+ (Ui n Uj ) x AT f-- Eu,nu;

1
Ui nUj

We thus obtain isomorphisms ifJu; 0 ifJli: : (Ui nUj ) x AT --+ (Ui nUj ) x AT
that must be ofthe shape (x,v) ~ (X,gji(X)V). Here gji is an r x r matrix
with entries in O(Ui nUj ). The gil'S are called tronsition functions. The
following identities are immediate:

gii = id and

The set of gij'S determines the vector bundle E. Conversely, any set of
gij satisfying these identities can be used to construct a vector bundle by
gluing together trivial bundles.

Using this construction, we can define the dual of a vector bundle E
to be the bundle E whose fibers are the dual vector spaces of the fibers of
E. Similarly, we define the tensor product of two bundles E and E' to be
the bundle E ® E' whose fibers are the tensor products of the fibers of E
and E'. We also define the pullback of a bundle p : E --+ X by a morphism
f : Y --+ X to be the fibered product

f*E = E Xx Y = {(y,e) E Y x Elf(y) =p(e)}.

Notice that if E and E' are line bundles, then E, E®E', and r E are also
line bundles.
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We next describe how to associate a line bundle to a Cartier divisor.
A Cartier divisor on X is represented by a set of pairs {(Ui , li)hEI, where
the U/s form a covering X and IJj-

l E <9(Ui n Uj ). We glue the trivial
line bundles Ui x Al - Ui via the isomorphisms

(Ui n Uj ) x Al -+ (Ui n Uj ) x Al
, (x, A) 1--+ (x, A{filj-l)(x»).

This gives a line bundle on X. We further observe that replacing the Ii's
by Iii does not affect the construction, so the isomorphism class of the
resulting line bundle depends only on the linear equivalence class of D.

Notation. Let D be a Cartier divisor. The line bundle associated to D as
described above will be denoted by CJ(D).

Theorem A.3.3.4. The BSSociation D 1-+ <9(D) induces a functorial
isomorphism between the group of Cartier divisor clBSSes and the group of
isomorphism classes of line bundles on X. More precisely,

CJ(D + D') = CJ(D) ® CJ(D') and CJ(-D) = CJ(Df.

Further, CJ(f* D) = f*CJ(D) for any morphism I of varieties.

PROOF (sketch). One actually shows a little more. To each rational section
s of a line bundle E one can associate a divisor div(s) such that E =
CJ(div(s». Further, the set of divisors obtained by varying s is the linear
equivalence class

{div(s)Is Er(X,CJ(D») ,-O} = IDI.
The functorial formulas then follow easily. See Shafarevich [1, Theorem 3,
VI.1.4] for more details. 0

We see that in this language, the space of sections r(x, CJ(D») is in
bijection with the functions in L(D). A linear system on X is thus given
by choosing a vector subspace of r(X, E) for some line bundle E on X.

Example A.3.3.5. It is classical (apres Serre) to denote by CJpn (1) or CJ(l)
the line bundle associated to a hyperplane. It is easy to see that CJ(l) is
the dual of the line bundle defined in Example A.3.3.2. The global sections
of <9(1) can be identified with linear forms,

r(pn, CJ(l») = kXo EB··· EB kXn.

We let CJ(d) denote the line bundle obtained by tensoring CJ(l) with itself d
times. The global sections of CJ(d) are the homogeneous polynomials of
degree d,

r(lPn,CJ(d») = ED kxi 1
•• ·X~n.

i1+···+in=d

Observe that there is a natural product on sections of line bundles. If
s E r(X, E) and s' E r(X, E'), then (s ® s')(x) = s(x) ® s'(x) E Ex ® E~

defines a section of E ® E'. With this in mind, the following translation of
the Enriques-Severi-Zariski theorem (A.3.2.5) is immediate.
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Corollary A.3.3.6. Let X <---. IPn be a normal projective variety and let
D be a hyperplane section. Then for all sufliciently large d, the restriction
map r(lPn,O(d» - r(X,O(dD» is surjective. In other words, every sec
tion (of a suitable power) ofO(D) is given by homogeneous polynomials.

EXERCISES

A.3.1. Let X be a projective variety, and let L be a linear subsystem of Lx(l)
with associated map rPL. Let B be the intersection of the hyperplanes in
L.
(a) Prove that 4>L is induced by the linear projection with center B.
(b) Describe the base locus of 4>L.

A.3.2. Let D be a divisor on a curve C. This exercise asks you to prove
(A.3.2.2).
(a) Let PEe. Prove that l(D) ~ l(D - P) +1. Prove that l(D) = l(D
P) +1 if and only if there is a function f in L(D) with ordp(f) =ordp(D).
(Hint. Use the injection L(D - P) '-> L(D).)
(b) Prove that D is base point free if and only if l(D - P) = l(D) - 1 for
every point PEe.
(c) Prove that D is very ample if and only if the linear system ID - PI is
base point free for all PEe.
(d) Prove that D is very ample if and only if l(D - P - Q) = l(D) - 2 for
every pair of (not necessarily distinct) points P, Q E C.

A.3.3. Let L be a linear system of dimension 2 contained in the complete linear
system of divisors of degree 3 on pl. Show that the associated map 4>L is
a morphism 4>L : pI ---+ p2. Show that 4>L maps ]pI birationally onto its
image 4>L(]pl), but that the map is not an isomorphism. (Hint. Show that
the image has a singular point.)

A.3.4. (a) Show that up to (linear) automorphism, any rational map

f : ]pn + ]pm

is the composition of a d-uple embedding (A.1.2.6(a)), a linear projection
(A.1.2.6(c)), and a linear injection (xo, . .. , x r ) t-+ (xo, ... , X r , 0, ... ,0).
(b) If n > m, prove that there are no nonconstant morphisms from ]pn to
]pm.

(c) Prove that every morphism ]pm ---+ ]pm is given by m + 1 homogeneous
polynomials (Po, ... ,Pm), where PI, ... , Pm have no nontrivial common
zeros.

A.3.5. Let L be a linear system on a variety X, let BL be the set of base points
of L, and let 4>L be the associated map 4>L : X --+ ]pn. Prove that the
restriction of 4>L to X " BL is a morphism.
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A.3.6. (a) Let D be a very ample divisor on X, let ¢: X -+lP'n be the associated
embedding, and let Y be a subvariety ofX. Prove that the projective degree
of ¢(Y) is equal to the degree of Y with respect to D. In particular, the
projective degree of ¢(X) is the intersection number D n = (D, D, ... , D).
(b) Let D be a divisor on X that is effective and ample, and let Y C X be
a subvariety of dimension at least one. Show that the intersection Y n D
is nonempty.

A.3.7. Let X be a projective variety of dimension n.
(a) Show that if D is (very) ample and D' f'V D, then D' is also (very)
ample.
(b) Show that if D is ample, then (i) D n > o. (li) For every subvariety
Y eX, we have y.Ddim(Y) > o.
(c) The Nakai-Moishezon criterion states that if a divisor has the positivity
properties described in part (b), then it is ample. Use the Nakai-Moishezon
criterion to show that if D is ample and if D' is algebraically equivalent
to D, then D' is ample. (For a further discussion of the Nakai-Moishezon
criterion, see Hartshorne [1, V, Theorem 1.10] for the case of surfaces and
Hartshorne [1, Appendix A, Theorem 5.1] for the general case.)
(d) Give an example where D is very ample and D' is algebraically equiva
lent to D, but D' is not very ample (Hint. On a smooth curve, two divisors
are algebraically equivalent if and only if they have the same degree.)

A.3.B. (a) Let £1 and £2 be two nonempty linear systems, and let L be the linear
system spanned by the two. Show that the sum map from £1 x £2 to L is
algebraic with finite fibers.
(b) Let D 1 and D2 be two divisors on a variety. Show that if l(DI) ~ 1
and l(D2) ~ 1, then l(D1 ) + l(D2) ~ l(DI + D2) + l.
(c) If D 1 and D2 are base point free, prove that l(D I + D2) ~ l(D1 )l(D2).
(Hint. Use the morphisms ¢D; and the Segre map.)

A.3.9. Show that Cartier divisors on a variety X, as we have defined them, can
naturally be identified with global sections of the quotient sheaf Xx /(Jx.
(Warning. If 9 is a subsheaf of~, it is not true in general that the presheaf
U -+ ~(U)/9(U) defines a sheaf. See Exercise A.3.15 below for the precise
definition of the quotient sheaf~/9.)

A.3.1O. Prove that (Jx(U) = n"'EU (J""x (the intersection is over all points
x E U). This shows that one can reconstruct the sheaf (Jx from knowledge
of the stalks (local rings). Prove also that one may reconstruct the function
field of X from the sheaf (Jx by the formula k(X) = lim (Jx(U) (the limit
is over all nonempty open sets U eX). U

A.3.n. Let D and E two very ample divisors on a variety X, let Xo, ... ,Xm

(respectively Yo, . .. , Yn) be a basis of rex, (J(D)) (respectively a basis of
rex, (J(E))), and let d and e be positive integers.
(a) Let s be a section of (J(dD - eEl. Prove that yfs is a section of (J(dD).
Deduce that if d is large enough, then there exist homogeneous polynomials
P; of degree d inxo, ... ,Xm such that yfs = Pi(xo, ... ,xm ).

(b) Conversely, suppose that we are given polynomials Pf;l, ..• , Pn , homo
geneous of degree d such that yjP;(xo, ... ,xm ) - yfPj(xo, ... ,xm ) = O.
Show that these define a global section of (J(dD - eE) as in (a).
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A.3.12. Let G be an algebraic group, let T(G) be the tangent bundle of G as de
scribed in (A.3.3.3), and let 9 E G. Consider the translation map Rg(x) =
gx and its associated differential, which we denote by tg : Te(G) -> Tg(G).
Prove that the map

¢ : G x Te(G) ----+ T(G), (g, Y) >---> (g, tg(Y)),

is an isomorphism of vector bundles, and deduce that the tangent bun
dle T(G) is trivial. Prove further that the vector bundle of differential
forms over G is also trivial.

A.3.13. Let X be a variety.
(a) Let :J' be a locally free sheaf of rank r on X, and let j be the dual of

• 2
:J'. Prove that :J' ~:J' is isomorphic to to the free sheaf CJ'X. In particular,
if:J'is an invertible sheaf (Le., r = 1), then:J' ~ j ~ CJx.
(b) 1f:J' is locally free and if there exists a sheaf :r such that :J'~:r ~ CJx ,
prove that :J' is of rank one.
(c) Let:J' be a sheaf on X, and let f : X -> Y be a morphism of varieties.
Prove that the formula

(fS)(U) = :J'(r1(U))

defines a sheaf f.:J' on Y. 1f:J' is locally free (of rank r), is it necessarily
true that f.:J' is locally free (ofrank r)?

A.3.14. Let p : E -> X be a vector bundle defined via an open covering Ui and
transition functions gij.

(a) Give a description of the dual vector bundle of E in terms of an open
covering and transition functions. Give a similar description of r E, where
f : Y -> X is a morphism of varieties.
(b) If E has rank r, prove that E ~ E is a trivial bundle of rank r 2

•

A.3.15. (Kernel, image, and quotient of sheaves)
(a) Let ¢ : :J' -> 9 be a morphism of sheaves. Prove that each of the maps

U >---> ker(¢(U) : :J'(U) -> 9(U)),

U >---> Image(¢(U) : :J'(U) -> 9(U)),

U >---> 9(U)/¢(:J'(U)),

defines a presheaf on X, but that in general only the first one defines a
sheaf.
(b) It is possible to attach to every presheaf :J' a "smallest" sheaf?f con
taining:J'. One can describe ?f by universal mapping properties, but the
following description provides a concrete construction. We define ?f(U)
to be the set of functions f : U -> UxEU:J'x such that for each x E U,
f(x) E :J'x, and further such that there is a neighborhood V of x contained
in U and agE :J'(V) such that for all y E V, the germ gy of gat y is equal
to f(y).

Using this description, prove that ?f is a sheaf, that there is a natural
inclusion :J' -> ?f, and that :J' and ?f have the same stalk at every point ofX.
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In particular, if:7 is already a sheaf, then ~ =:7. (See [Hartshorne 1,11.1.2]
for further details.)
(c) Continuing with the notation from (a), the image sheaf Image(¢) is
the sheaf associated as in (b) to the presheaf U 1-+ Image(¢(U». Simi
larly, the quotient (or cokemel) sheaf9/4>(:f) is the sheaf associated to the
presheaf U 1-+ 9(U)/4>(:f(U». As an example, see Exercise A.3.9 for an
interpretation of the quotient sheaf Xx /()x.

A.4. Algebraic Curves

This section features algebraic curves, the heroes of this book. The most
naive examples are affine plane curves given by P(x, y) = O. A first guess
would be that the higher the degree of the polynomial P, the more com
plicated the curve. This is not quite true. There is a subtler invariant
called the genus, which is a much better measure of the complexity of the
curve. The genus, usually denoted by g, is a nonnegative integer. If the
curve C is projective and nonsingular and defined over C, then its genus is
the number of holes (or handles) in the Riemann surface C(e).
A curve is a variety of dimension one, so its field of rational func

tions has transcendence degree one. It is natural to consider two curves
equivalent if they have isomorphic function fields, since there will then
be a birational isomorphism between them. We explain in Section A.4.1
that every curve is birational to a plane curve with only mild singulari
ties, and that each equivalence class of curves contains exactly one smooth
projective curve. We then focus our attention on these smooth models
in Section A.4.2. The Riemann-Roch theorem is a basic tool that counts
the dimension of linear systems and embeddings. It provides a convenient
abstract definition of the genus and will be the basis of much of our subse
quent work. We then display the basic trichotomy of curves, dividing our
study into curves of genus 0, curves of genus 1, and curves of genus greater
than or equal to 2. The curves of genus 0 are easy to analyze, at least
over an algebraically closed field, since such curves are isomorphic to ]pI.
Curves of genus 1 are more interesting, and we will show that they can be
given the structure of an algebraic group (once a point has been selected
as origin). Finally, we will discuss briefly the geometry of curves of higher
genus. However, many of the deeper properties of curves of higher genus
are best understood in terms of their associated Jacobian variety. We will
discuss Jacobian varieties later, in Sections A.6 and A.B.
At the end of this section we include a very short subsection on al

gebraic surfaces, mainly aimed at treating the example of the product of
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a curve with itself. This example will be vital in the proof of Mordell's
conjecture.
We close this introduction with a brief table that exhibits the geo

metric and arithmetic trichotomies of curves. One of the most striking
paradigms of modem Diophantine geometry is that the underlying geom
etry of a variety should determine the qualitative arithmetic properties of
the variety. This idea has been fully realized in the case of curves. It is the
goal of this book to explain and prove this realization as shown especially
in the last column of the following table.

The Trichotomy of Curves
C a smooth projective curve defined over a number field K

Algebraic Geometry Complex Geometry Arithmetic
genus canonical universal constant C(K)
g ofC divisor cover curvature (if C(K) is

onC of C(C) on C(C) not empty)

=0 -Kc ample pl (C) ",>0 Pl(K) I
=1 Kc=O C ",=0

a finitely

Igenerated
group

~2 K c ample {izi < I} ",<0 finite I
A.4.1. Birational Models of Curves

A curve C is a variety of dimension one, so its function field k(C) is of
transcendence degree one. It follows that k(C) is algebraic over any subfield
k(x) generated by a nonconstant function x E k(C). Hence we may write
k(C) = k(x, y), where x and y are nonconstant functions on C satisfying an
algebraic relation P(x, y) = O. Let Co C A2 denote the affine plane curve
defined by P, and let C1 C p2 be the projective plane curve defined by the
homogenized polynomial zdegPP(XjZ, YjZ). Clearly, C is birational to
both Co and C1 . Any curve birational to C is called a model of C (or of
the function field k(C)), so we can say that every curve has a plane affine
model and a plane projective model. It will soon be clear that these models
cannot always be smooth (see the remarks after Theorem AA.2.6), so we
must allow singular points, but we should look for the mildest possible
singularities. The next definition describes one sort of mild singularity.

Definition. An ordinary singularity is a singularity whose tangent cone
is composed of distinct lines. The multiplicity of an ordinary singularity is
the number of lines in its tangent cone.

For example, the point P = (0,0) is an ordinary singularity on the
curve defined by y2 = x 3 + x 2 (if char(k) f= 2), and more generally P is an
ordinary singularity on the curve yn = x n+1 + x n (if char(k) t n). On the
other hand, P = (0,0) is not an ordinary singularity on the curve y2 = x3 .
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Notice that the multiplicity of an ordinary singularity P is just the number
of distinct tangent directions at P. We have illustrated various singularities
in Figure A.I.

y2 = x3 + x 2 xy(x _ y) = xS + yS
Node Triple point

Ordinary and nonordinary singularities
Figure A.I

We now formally introduce some maps, already studied in (A.I.2.6(g)),
that can be used to transform a complicated plane curve into a simpler one.

Definition. A Cremona, or quadmtic, tmnsformation is a birational invo
lution from IP'2 to IP'2 that, after a linear change of variables on the domain
and range, is defined by Q(X,Y,Z) = (YZ,XZ,XY).

Theorem A.4.1.1. An algebraic curve is birational to a plane projective
curve with only ordinary singularities. More precisely, any plane curve
can be transformed by a finite sequence of Cremona transformations into
a plane curve with only ordinary singularities.

PROOF. See Walker [1, III, Theorem 7.4] or Fulton [1, VIlA, Theorem 2].
One can, in fact, show that every curve is birational to a plane projective
curve with only nodes as singularities (these are points with two distinct
tangents), but this requires transformations more general than the Cre
mona transformations (see Hartshorne [1, IV, Corollary 3.6 and Theorem
3.10] for a proof). 0

Theorem A.4.1.2. A rational map from a smooth curve to a projective
variety extends to a morphism defined on the whole curve.

PROOF. This is a special case of Theorem A.1.4A. o

Corollary A.4.1.3. A birational morphism between two smooth projec
tive curves is an isomorphism.

PROOF. Clear from the previous theorem.

We can now state the main result of this section.

o
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Theorem A.4.1.4. Any algebraic curve is birational to a unique (up to
isomorphism) smooth projective curve.

PROOF. See Walker [1, VI, Theorem 6.9], Fulton [1, VII.5, Theorem 3]
or Hartshorne [1, I, Corollary 6.11]. The uniqueness follows immediately
from Corollary A.4.1.3. Using more advanced commutative algebra, a quick
proof of the existence can be given by constructing the normalization of
the curve, which must be smooth. A more constructive or geometric proof
consists in repeatedly blowing up the singular points and showing that this
process eventually terminates. (See (A.1.2.6(f)) for the notion of blowing
up.) For example, an ordinary singularity can be resolved by a single
blowup (see Exercise A.4.1). 0

A.4.2. Genus of a Curve and the Riemann-Roch Theorem

In view of Theorem A.4.1.4, we will concentrate on smooth projective
curves. A divisor on such a curve C is simply a finite formal sum D =
E npP, and we can define the degree of D to be deg(D) = E np. We will
denote a canonical divisor on C by Kc. Finally, we recall that

L(D) = {J E k(C) I(f) +D ~ o}

is a vector space of finite dimension £(D). The lliemann-Roch theorem,
which allows us to compute this dimension in most cases, is of inestimable
value in the study of algebraic curves.

Theorem A.4.2.1. (lliemann-Roch theorem) Let C be a smooth pro
jective curve. There exists an integer g ~ 0 such that for all divisors
DE Div(C),

£(D) - £(Kc - D) = deg(D) - g + 1.

PROOF. See Serre [1, 11.9, TMoreme 3], Lang [4, I, Theorem 2.7], Hart
shorne [1, IV, Theorem 1.3] or Fulton [1, VIII.6]. The "modern" proof is
often divided into two parts. The first is a duality theorem expressing the
left-hand side as an Euler-Poincare characteristic. The second part is to
calculate this Euler-Poincare characteristic. 0

The lliemann-Roch theorem is often stated and the proof given over
an algebraically closed field, but using Proposition A.2.2.1O, we see that it
remains valid over any field of definition of C and D.



§A.4.2. Genus of a Curve and the Riemann-Roch Theorem 71

Definition. The integer 9 is called the genus of the smooth projective
curve C. When C is not necessarily smooth or projective, its genus is
defined to be the genus of the smooth projective curve that is birational
to C (A.4.1.4).

It is tautological from this definition that the genus is a birational
invariant. We next deduce several important corollaries from the Riemann
Roch theorem and devise various means of computing the genus of a curve.

Corollary A.4.2.2. Let C be a smooth projective curve ofgenus g. Then

£(Ke) = 9 and deg(Ke) = 2g - 2.

PROOF. We first apply the Riemann-Roch theorem to the divisor D = 0
to get 1 - £(Ke) = -g + 1. Note that £(0) = 1, since the only regular
functions on a projective variety are the constant functions. Next we apply
the theorem to D = Ke to get £(Ke) - 1 = deg(Ke) - 9 + 1. 0

We have seen that there are no regular differentials on ]pI, so £(K e) =
O. It follows from (A.4.2.2) that ]pI has genus O.

Corollary A.4.2.3. Let C be a smooth projective curve of genus 9 and
let DE Div(C).
(i) If deg(D) < 0, then £(D) = O.
(ii) If deg(D) ~ 2g - 1, then £(D) = deg(D) - 9 + 1.
(iii) (Clifford's theorem) If £(D) =F 0 and £(Ke - D) =F 0, then we have

£(D) ::; 4deg(D) + 1.
PROOF. If f E L(D) is a nonzero function, then D + (I) is effective, so
0::; deg(D+ (I)) = deg(D). (Note that functions have degree 0.) Hence if
deg(D) < 0, then L(D) = {OJ, so £(D) = O. This proves (i), and then (ii)
follows from (i), (A.4.2.2), and the Riemann-Roch theorem.

To prove (iii), we observe that the linear systems IDI and IKe - DI are
nonempty and that the addition map IKe - DI x jDj -+ IKel is finite-to
one (Exercise A.3.B). Therefore, £(Ke - D) - 1+ £(D) - 1 ::; £(Ke ) - 1.
Combining this inequality with the Riemann-Roch theorem applied to D
yields the desired result. 0

Corollary A.4.2.4. Let C be a smooth projective curve of genus 9 and
let D E Div(C).
(i) If deg(D) ~ 2g, then D is base point free.
(ii) Ifdeg(D) ~ 2g + 1, then D is very ample.
(iii) D is ample if and only if deg(D) > O.

PROOF. From the general considerations of Section A.3, especially Corol
lary A.3.2.2, we deduce that D is base point free if and only if £(D - P) =
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= ddeg(Kc') + L (ep - 1) = d(2g' - 2) + L (ep -1).
PEC PEC

£(D) - 1 for all P E C. Similarly, we see that D is very ample if and
only if £(D - P - Q) = £(D) - 2 for all P, Q E C. Since £(Kc - E) = 0
when deg(E) > 2g - 2, statements (i) and (ii) follow. Then (iii) is a simple
consequence of (ii) and the fact that £(D) = 0 when deg(D) < O. 0

A geometric version of (A.4.2.4(iii)) states that if C is a curve and if
U c C is an open subset of C with U =I- C, then U is affine. Indeed, it is
true in general that the complement of an ample divisor is affine. We now
describe a useful formula that can frequently be used to compute the genus
of a curve.

Theorem A.4.2.5. (Riemann-Hurwitz formula) Let C be a curve of
genus g, let C' be a curve of genus g', and let f : C - C' be a finite
separable map of degree d ~ 1. For each point P E C, write ep for the
ramification index of f at P, and assume either that char(k) = 0 or else
that char(k) does not divide any of the ep's. Then

2g - 2 = d(2g' - 2) + L (ep - 1).
PEC

PROOF. From our analysis of differential forms (see Proposition A.2.2.8),
we know that f* Kc' + I:PEdep - l)P is a canonical divisor Kc on C.
Taking degrees and using Corollary A.4.2.2 twice gives

2g - 2 = deg(Kc) = deg(rKc' + L (ep - l)P)
PEC

o
This formula gives a very convenient method to compute the genus

of a curve, provided that we know, for example, one morphism from the
curve to !pi. It is also easy to deduce from it that the genus of a curve
(in characteristic zero) is the number of handles of the associated Riemann
surface. Another way to compute the genus is to write down the divisor
of a differential form and then apply Corollary A.4.2.2. We illustrate this
second method in the proof of the next theorem.

Theorem A.4.2.6. Let C be a smooth projective plane curve of degree
n. Then the genus g ofC is given by the formula

(n - l)(n - 2)
g = 2 .

PROOF. We construct a (regular) differential form whose divisor has degree
n(n - 3). Then (A.4.2.2) implies that n(n - 3) = deg(Kc) = 2g - 2, which
gives the desired result.
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dx dy vn - 3dv
W= =- =

~(x,y,l) Px (x,y,l) Px(u,l,v)'

(The subscripts indicate partial differentiation.) The fact that C is smooth
means that P(x, y, 1), ~(x, y, 1), and Px(x, y, 1) cannot all vanish, so W

has no poles on U. Further, either x or y is a local parameter at each
point in U, so w has no zeros on U, either. Thus div(w)u = O. Finally,
the last expression for w shows that ordQ;(w) = n - 3 for every i, so
div(w) = (n - 3) ~~=1 (Qi)' In particular, deg(w) = (n - 3)n, which com
pletes the proof of the theorem.

Let P(X, Y, Z) = °be the homogeneous equation giving the curve.
After a change of coordinates, we may assume that the line Z = °cuts the
curve in n distinct points Q}, ... , Qn, that none of these points lies on the
line Y = 0, and that the function v = Z/Y is a local parameter at each of
the Qi's. In other words, ordQ ; (v) = 1 for every i.
In the affine coordinates (x, y) = (X/Z, Y/Z) , the affine curve U =

C,,- {Ql"'" Qn} has equation P(x, y, 1) = 0, and we may take (u, v) =
(X/Y, Z/Y) as coordinates near the Qi'S. We then define a differential
form

o

Remarks. (i) Notice that the canonical divisor of a smooth plane curve of
degree n is n - 3 times a hyperplane section; hence the canonical divisor is
very ample if n 2: 4. This implies (see Theorem AA.5.1 below) that smooth
plane curves of degree n 2: 4 are not hyperelliptic.
(ii) Continuing with the notation from the proof of Theorem AA.2.6, the
form Wij = xiyiw is easily seen to be regular on U if i,i 2: O. It is also not
hard to compute ordQ(wij) at the points Ql,"" Qn and verify that Wij is
regular at these points if and only if i + i ::; n - 3. The set

{xiyiwli,i 2: 0, i+i::;n-3}

thus consists of (n - 1)(n - 2)/2 regular differential forms, and they are
clearly linearly independent, so they provide a basis for the space r(c, Oc)
of regular differential forms on C.
(iii) Lines and conics in lP'2 have genus 0, and in fact any curve of genus 0
defined over any field k is isomorphic over k to such a curve. (See Theo
rem A.4.3.1 for a precise statement.) Smooth cubics in lP'2 have genus 1,
and every curve of genus 1 defined over k that also possesses a k-rational
point is isomorphic to a plane cubic. (See Theorem AAA.l). On the other
hand, it is clear that not every curve can be isomorphic to a smooth plane
curve. In particular, the genus of a smooth plane curve is not arbitrary,
since it must have the form (n - 1)(n - 2)/2. For example, a curve of
genus 2, 4, 5, 7,8 or 9 cannot have a smooth projective plane model.

When a plane curve has singularities, the formula for the genus must
be modified.
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Theorem A.4.2.7. Let C be a projective plane curve of degree n with
only ordinary singularities. Then its genus is given by the formula

_ (n - l)(n - 2) _ " mp(mp - 1)
g- 2 L...J 2 '

PES

where S is the set of singular points and mp the multiplicity ofC at P.

PROOF. See Walker [1, VI, Theorem 5.1] or FUlton [1 ,VIII.3, Proposi
tion 5]. The formula of the theorem still holds for curves with arbitrary
singularities, provided that we include in S the "infinitely near" points of a
nonordinary singularity. See Hartshorne [1, V.3, page 392] for the definition
of infinitely near points and a proof of the assertion. 0

A.4.3. Curves of Genus 0

Let C be a (smooth projective) curve of genus 0 defined over a field k.
Let Kc be a canonical divisor defined over k. Then -Kc is a divisor
of degree 2 (A.4.2.2), is defined over k, and is very ample (A.4.2.4(ii».
The Riemann-Roch theorem tells us that the dimension of the associated
embedding is l(-Kc) = 3. Hence C can be embedded into]p2 as a smooth
curve X of degree 2 (i.e., as a conic) defined over k.

If X(k) 1= 0, we can do better. Indeed let Po E X(k). We can
identify ]pI with the space of lines in ]p2 that go through Po and use this
identification to define two maps as follows (see Figure A.2):

¢> :X -----+ ]pI,
{

+--+

P 1------4 P Po if P 1= Po,
tangent line to X at Po if P = Po.

L -----+ the point PL such that L n X = {Po, Pd.

The parametrization of a conic containing a rational point
Figure A.2
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It is clear that these maps are (at least) rational maps whose compo
sition is the identity. Now, either by an easy computation or by invoking
Corollary A.4.1.3 we see that they are isomorphisms. We have thus proven
most of the following result, and we leave the remaining easy bits for the
reader.

Theorem A.4.3.1. Let C be a smooth projective curve ofgenus 0 defined
over a field k.
(i) The curve C is isomorphic over k to a conic in p2.
(ii) The curve C is isomorphic over k to pI if and only if it possesses a

k-rational point.

Notice in particular that over an algebraically closed field, all curves
of genus 0 are isomorphic to pl.

Definition. A curve is said to be mtional if it is birational to the projective
line. (Warning. Be sure you understand the two very different meanings of
the word "rational" in the phrase "let P be a rational point on the rational
curve C.")

Rational curves can be parametrized, and hence their set of rational
points can be entirely described. Theorem A.4.3.1 says that a smooth
projective curve is rational if it has genus 0 and possesses a rational point.
Over a number field the existence of a rational point can be determined by
the following important local-to-global criterion.

Theorem A.4.3.2. (Hasse principle) A conic defined over a number
field k has a k-rational point if and only if it has a rational point over all
completions of k.

PROOF. This is actually a special case of the Hasse principle, valid for all
quadratic forms. See, for example, Serre [2, IV.3, Theoreme 8). 0

We conclude by giving an easy geometric criterion for rationality.

Lemma A.4.3.3. Let C be a smooth projective curve. Then the follow
ing are equivalent:
(i) C has genus O.
(ii) There exists a point P E C such that £(P) = 2.
(iii) For every point P E C we have £(P) = 2.

PROOF. Clearly, (iii) implies (ii), and applying (A.4.2.3(ii» with g = 0
shows that (i) implies (iii). Finally, if (ii) holds, then the linear system
associated to the divisor P gives a morphism C -. PL(P) = pI of degree
one, which, since C and pI are smooth curves, must be an isomorphism.
This proves that (ii) implies (i). 0
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A.4.4. Curves of Genus 1

There are many books dedicated to unveiling the rich arithmetic structure
of curves of genus 1. See, for example, Cassels [2], Knapp [1], Lang [5, 11]'
Silverman [1,2], and the survey articles of Cassels [1] and Tate [2]. In this
section we will be content to describe the group law on curves of genus 1,
thereby providing our first examples of abelian and Jacobian varieties.
Let C be a curve of genus 1 defined over a field k. We know from

(A.4.2.2) that any canonical divisor Kc has deg(Kc) = 0 and f(Kc) = 1.
Thus we can find an effective canonical divisor Kc with degree 0, which
means that Kc = O. In other words, the zero divisor is a canonical divisor.
This means that there exists a regular differential form without zeros, a
fact that will be explained when we show that C is an algebraic group.

Let D be a nonzero effective divisor on C. The Riemann-Roch theorem
(with 9 = 1 and Kc = 0) tells us that f(D) = deg(D). Fix a point
Po E C(k), and for each n 2:: 1, consider the vector space

Ln = L(n(Po)) whose dimension is dimLn = n.

Notice that these vector spaces are nested, L 1 C L 2 C L3 C .... Using
our knowledge of the dimension of each L n , we can find two functions
x, y E k(C) such that

L1 = k, L2 = k EIJ kx, L3 = k EIJ kx EIJ kyo

Notice that x has a pole of order 2 at Po, that y has a pole of order 3 at Po,
and that x and y have no other poles. Using x and y, we can fill out L 4

and L 5 ,

L 5 = k EIJ kx EIJ ky EIJ kx2 EIJ kxy.

Notice that the functions 1, x, y, x 2 , xy are linearly independent over k,
since they each have different-order poles at Po.
But when we look at L 6 , we find that there are 7 functions that can

be naturally constructed using x and y, namely

The vector space L 6 has dimension 6, so these functions satisfy a nontrivial
k-linear relation. This gives part of the next result.

Theorem A.4.4.1. Let C be a curve ofgenus 1 defined over a field k, and
let Po E C(k). Then there exist constants a1, a2, a3, a4, a6 E k such that C
is isomorphic over k to the smooth plane cubic given by the equation
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Under this isomorphism, the point Po is mapped to the inflection point
(X, Y, Z) = (0,1,0) E E.

If the characteristic of k is not 2 or 3, then by completing the square
in y and the cube in x, one can find for E a curve given by an equation of
the form

E : y 2Z = X 3 + AXZ2 + BZ3, A,BEk.

For a curve given in this form, the nonsingularity of E is equivalent to the
nonvanishing of the discriminant 4A3 + 27B2 =I- O.

Definition. An elliptic curve is a pair (C, Po), where C is a (smooth pro
jective) curve of genus 1 and Po is a point on C. The elliptic curve is
defined over k if the curve C is defined over k and also Po E C(k). Thus
Theorem A.4A.1 says that every elliptic curve is isomorphic to a smooth
plane cubic with Po corresponding to an inflection point "at infinity." An
equation of the form

Y 2Z + a1XYZ + a3YZ2 = X 3 + a2X2Z + a4XZ2 + a6Z3

or

is called a Weierstrass equation for E. Frequently, these equations are
written in affine coordinates (i.e., by setting Z = 1), where it is understood
that there is one additional point Po = (0,1,0) at infinity.

PROOF (of Theorem AAA.l). We know by Corollary AA.2A that the lin
ear system associated to the vector space £3 is a very ample linear system.
This means that the rational map

P f------+ (l,x(P),y(P)),

extends to an isomorphism between C and its image ~(C). In particu
lar, ~(C) is a smooth plane curve.

We have already observed above that x and y satisfy a relation of the
form

ay2 + bxy + cy = dx3 + ex2 + jx + 9

for certain constants a, b, c, d, e, j, 9 E k, not all zero. Further, x (respec
tively y) has a pole of order 2 (respectively 3) at Po. Thus only the y2
and x 3 terms have poles of order 6, so either the coefficients a and dare
both nonzero, or they both vanish. But if a = d = 0, then every term has
a different-order pole at Po, so all of the other coefficients would have to
vanish. Hence ad =I- O. This allows us to replace (x, y) by (adx, a~y) and
cancel a3cr, which gives an equation of the desired form.

Finally, if the characteristic of k is not 2 or 3, we can "complete the
cube and the square" by making the linear transformation

X' = X 4a2 + a~ Z
+ 12 '

Y' = Y + al X + a3 Z.
2 2
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This gives an equation y'2Z' = X,3 + AX'Z,2 + BZ'2. We leave for the
reader the easy task of verifying the nonsingularity condition. 0

The labeling of the ai coefficients of a Weierstrass equation is tradi
tional and arises in the following way. Given any Weierstrass equation
for E, we can make a change of coordinates X' = u2X and Y' = u3 y to
obtain a new isomorphic equation for E. The ai's of the new equation are
then related to the old ai's by the formula a~ = uiai. Thus the subscripts
reflect the weights of the ai's under change of coordinates.
For the remainder of this section we will assume that the characteristic

of k is not 2 or 3, and we will work with an elliptic curve given by the affine
Weierstrass equation

E : y2 = x3 + Ax + B.

However, everything we do can be formulated to carry over to the general
case; see Silverman [1, III and Appendix A].
We begin by defining an involution [-1] on E,

[-1] : E ----+ E, (x, y) J-----+ (x, -y).

Next we define a tangent and chord operation, which we will denote by
"+." Let P, Q E E. If P and Q are distinct, let L be the line through P
and Q, while if P = Q, let L be the tangent line to E at P. The line L
will meet E at a third point R, counting multiplicities, and then we set

P+Q= [-1]R.

(See Figure A.3.)
The next theorem justifies the notations P + Q and [-1] P by showing

that with these operations, the points of E become a group. Furthermore,
this group law is algebraic and intrinsic. That is, it is given by rational
functions and does not depend on the particular equation or embedding
of E. The group law depends only on the abstract curve E and the choice
of the point Po.

Theorem A.4.4.2. Let E be a smooth projective cubic given by a Weier
strass equation

y 2Z = X 3 + AXZ2 + BZ3.

Then the maps (P,Q) -> P + Q and P -> [-l]P defined above give E
the structure ofa commutative algebraic group with identity element Po =
(0,1,0). Furthermore, the map

P J-----+ divisor class of (P) - (Po),

is a group isomorphism.

PROOF. We start by explicitly computing the addition law, thereby veri
fying that the map "+" from Ex E to E is algebraic. Let P = (Xl, Yl)
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The addition law on a plane cubic curve E
Figure A.3
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and Q = (X2, Y2) be two points of E distinct from the point at infinity. If
Xl = X2 and YI = -Y2, then P = [-l]Q, and P+Q is the point at infinity.
Otherwise, let Y = AX + J.L be the equation of the line L through P and Q.
Thus

A = YI - Y2 and J.L = Y2 X I - YIX2 if P i= Q,
Xl - X2 Xl - X2

\ __ 3x~ + A and I/. __ -X~ + AXI + 2B
/I r if P = Q.

2YI 2YI
To show that the two formulas for A patch together to give an algebraic
map on Ex E, we observe that a straightforward computation using the
relation Y; = x~ + AXi + B gives

YI - Y2 x~ + XIX2 + x~ + A

Xl - X2 Yl + Y2

Setting YI = Y2 gives the desired equality. (Note that we are assuming that
YI i= -Y2.)

The intersection of L and E consists of the points satisfying the equa
tions

and Y = Ax + J.L.

Eliminating Y leads to a cubic in X, and we know that this cubic has Xl
and X2 as two of its roots. Thus

for some X3.
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Comparing'coefficients, we find that Xl + X2 + X3 = A2 . This gives the
value of X3, and then substituting into y = Ax + JL gives the value of Y3.

This proves that the intersection of the line L and the curve E consists of
the three points (Xl, YI)' (X2' Y2), and

Finally, applying the involution [-1], we obtain the explicit addition for
mula

where A,JL E k(XI,Yl,X2,Y2) are the rational functions given above.
This formula shows that the addition law + : E x E ~ E is a rational

map, and our earlier remark shows that it is a morphism except possibly on
the set where Xl - X2 = YI +Y2 = O. But these are precisely the points that
are mapped by addition to the point at infinity. We omit the verification
that addition is again a morphism at these points (one needs to change
coordinates or use a translation argument; see Silverman {I, III.3.6]). It
is easy to see that the law is symmetric (abelian), that Po := (0,1,0) is
the identity element for the group, and that [-1] provides an inverse. This
justifies the notation.
It remains to show that addition on E is associative. This can be done

by a direct calculation, using the explicit formulas, but the calculation is
quite lengthy. We will avoid this by showing that the map K is a bijection
and that K(P + Q) = K(P) + K(Q), which clearly implies the rest of the
theorem. (N.B. The symbol + is being used here to represent two entirely
different operations. When we write K(P + Q), the symbol + means the
addition law on the elliptic curve E, and so is given by the complicated,
case-by-case formulas described above. When we write K(P) + K(Q), we
mean addition of divisor classes, which is a much easier operation.)
Suppose first that P,Q E E are distinct points with K(P) = K(Q).

This means that there is a function f E k(C) with div(f) = (P) - (Q).
But then the map (f, 1) : E ~ pI has degree 1, hence is an isomorphism,
contradicting the fact that E has genus 1. This proves that K is injective.
Next let D E Div(E) be any divisor of degree O. Then Riemann-Roch

tells us that £(D+ (Po)) = 1, so there is an effective divisor (necessarily of
degree 1) which is linearly equivalent to D + (Po). In other words, there is
a point PEE with (P) f'V D + (Po), and hence K(P) is equal to the divisor
class of D. This shows that K is surjective.
It remains to show that K satisfies K(P +Q) = K(P) + K(Q). Observe

that the addition law can be characterized by the rule

P + Q + R = Po if and only if P, Q, and R lie on a line.
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But Po is an inflection point, so the colinearity of P, Q, and R amounts to
saying that (P) + (Q) + (R) rv 3{Po). In other words,

P + Q + R = Po if and only if K{P) + K{Q) + K{R) = O.

Now everything is clear. 0

Elliptic curves provide our first example of abelian varieties. When we
define the Jacobian of a curve in Sections A.6 and A.8, we will rephrase
the last statement of Theorem A.4.4.2 by saying that an elliptic curve is
isomorphic to its own Jacobian. Note that it is quite remarkable that the
abstract group Pico(E) turns out to have a natural structure as an algebraic
variety, just as it is remarkable that an abstract curve of genus 1 should
have a natural group structure.
Finally, we would remiss if we did not point out that deciding whether

a curve of genus 1 has any rational points can be a very difficult problem.
In particular, if the ground field is a number field, the analogue of Theo
rem A.4.3.2 is false. There are curves C of genus 1 defined over a number
field k such that C{kv ) i= 0 for every completion kv of k, yet C{k) = 0. A
famous example, due to Selmer, is the curve

C : 3X3 + 4y3 + 5Z3 = o.

(See Cassels [1, Appendix Al, or Silverman [1, X.6.5], or Part C of this
book.)

A.4.5. Curves of Genus at Least 2

We have already seen examples of curves of genus 0 and 1; in fact, we
have seen all of them. It is considerably harder to describe all curves of
genus 9 2: 2, so we start modestly by giving some examples of such curves.
One way to proceed is to try to describe a curve as a (finite) covering of
pI, since every curve admits many such maps. We begin with the first
nontrivial case.

Definition. A curve of genus 9 2: 2 is called a hyperelliptic curve if it is a
double covering of the projective line.

We will now describe these curves, where to simplify our discussion, we
will work over an algebraically closed field k with char{k) i= 2. The function
field of a hyperelliptic curve C is a quadratic extension of k{pl), hence has
the shape k{x, y), where y2 = F(x) for some polynomial F(x) E k[x]. This
equation gives an affine model for C. If the polynomial P has a double
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root, say a, then we can replace y by (x - a)y and cancel (x - a)2. So we
may assume that C is given by an affine equation

C : y2 = F(x) for some F(x) E k[x) with distinct roots.

(See Exercise A.4.2 for details on this and on what follows.) The affine
curve y2 = F(x) is smooth. We can obtain a complete smooth model for C
by gluing this piece to the affine curve given by the equation

v2 = F*(u) := udF(u- I
),

where d = deg(F) if deg(F) is even, and d = deg(F) + 1 if deg(F)
is odd. The two affine pieces of C are glued together using the map
(u, v) = (X-I, yx-d / 2 ).

We can use the the Riemann-Hurwitz formula (A.4.2.5) to calculate
the genus of C. Thus the map C -+ pI has degree 2 and is ramified at d
points. (It is ramified at the points where F(x) = 0, and if the degree of F
is odd, it is also ramified at the point at infinity.) The ramification index
at each ramified point must be 2, so

2g - 2 = deg(C -+pl)(2g(lP'I) - 2) + L (ep - 1) = -4 + d,
PEe

and we thus find that 9 = (dj2) -1. In particular, C has genus 1 if and only
if F has degree 3 or 4. Notice also that there exist hyperelliptic curves of
every possible genus. (But you should be aware that many people use the
term "hyperelliptic curve" only in reference to curves of genus at least 2.)
Rather than creating C by gluing together two affine curves, we can

instead use the functions x and y to embed C into lP'9+I via the map

P 1---+ (I,x(P),x(p?, ... ,X(P)9,y(P)).

Notice that the case deg(F) = 3 is just the embedding of an elliptic curve
into lP'2 described in (A.4.4.1).

We have already mentioned that curves of genus 9 ~ 2 are charac
terized by the fact that their canonical divisors are ample. The following
theorem provides a further description of the canonical divisor.

Theorem A.4.5.1. Let C be a smooth projective curve of genus g.
(i) The canonical divisor Ke is base point free if and only if 9 ~ 1.
(ii) The canonical divisor Ke is ample if and only if 9 ~ 2.
(iii) The canonical divisor K e is very ample if and only if 9 ~ 3 and the

curve is not hyperelliptic.
(iv) The bicanonical divisor 2Ke is very ample if and only if 9 ~ 3.
(v) The divisor 3Ke is very ample if and only if 9 ~ 2.

PROOF. If Ke is not base point free, then there is a point P E C with
f(Ke - P) = f(Ke) = g. Hence f(P) = f(Ke - P) + 2 - 9 = 2, and this
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implies by Lemma AA.3.3 that C is rational. This gives (i). Next, we have
already seen that if C has genus 1, then Ke = O. Riemann-Roch tells us
that deg(Ke) = 9 and that Ke is ample if and only if deg(Ke ) > 0, which
proves (ii). For the remaining parts of the theorem we may assume that
9 ~ 2.
Next we observe that any curve of genus 2 is hyperelliptic. More pre

cisely, if C has genus 2, then Riemann-Roch says that l(Ke) = deg(Ke) =
2, so the linear system IKe I gives a map of degree 2 from C to pl.
Corollary A.3.2.2 tells us that Ke is very ample if and only if for all

points P, Q E C, we have

l(Ke - P - Q) = l(Kc) - 2 = 9 - 2.

On the other hand, the Riemann-Roch theorem says that

l(P + Q) -l(Kc - P - Q) = deg(P + Q) - 9 + 1 = 3 - 9.
Combining these two equations, we find that

Ke is very ample -<===> l(P + Q) = 1 for all P, Q E C.

If C is hyperelliptic, say C -+ pl, then the inverse image of any point in pl
consists of two points P,Q that satisfy l(P+Q) = 2. Thus Ke is not very
ample on a hyperelliptic curve. Conversely, if Kc is not ample, then there
are two points P, Q E C with l(P + Q) = 2, and hence the linear system
IP + QI defines a map of degree 2 from C to pl. This completes the proof
of (iii).
Next, if 9 ~ 3, then deg(2Ke) ~ 29 + 1, so Corollary AA.2.4 says

that the divisor 2Kc is very ample. But if 9 = 2, then l(2Ke) = 3, so
the linear system 12Kel maps C into p2, and we know that a plane curve
of genus 2 cannot be smooth. This proves (iv). Finally, if 9 ~ 2, then
deg(3Ke) ~ 2g + 1, so (AA.2.4) tells us that the divisor 3Ke is very
ample. 0

During the proof of the preceding theorem we showed that every curve
of genus 2 is hyperelliptic. More precisely, if C has genus 2, then the linear
system IKel gives a map C -+ pl of degree 2. This gives a good descrip
tion of all curves of genus 2. On the other hand, one can show that a
"generic" curve of genus 9 ~ 3 is not hyperelliptic. For example, smooth
plane quartics have genus 3 (Theorem AA.2.6) and are not hyperelliptic,
since a hyperplane section gives a canonical divisor (see Exercise AA.3).
In a certain sense that we will not make precise, the set of all (isomor
phism classes of) curves of genus 9 ~ 2 is parametrized by a variety 9Jlg
of dimension 3g - 3, while the subset of hyperelliptic curves corresponds
to a subvariety of 9Jlg of dimension 2g - 1. Notice that these dimensions
. coincide for 9 = 2, in accordance with our observation that every curve of
genus 2 is hyperelliptic. For an informal discussion of these varieties, called
moduli spaces, see Mumford [3], and for a complete treatment see Mumford
and Fogarty [1].
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A.4.6. Algebraic Surfaces

This section is a very brief introduction to the geometry of smooth projec
tive varieties of dimension two. Our main goal is to treat the case of the
product of a curve with itself.
On a surface, divisors are formal sums of irreducible curves. (Note

that the curves need not be smooth.) We can compute the intersection
index of two such curves, or even the self-intersection of a single curve.
The archetypical theorem of intersection theory is Bezout's theorem for
the projective plane.

Theorem A.4.6.1. (Bezout's theorem) Let C and D be curves on the
surface W2 defined by irreducible equations of degree m and n. Then the
intersection index ofC and D is C.D = mn. In particular, ifC i- D, then
the number of points of intersection counted with multiplicities is mn.

PROOF. For a full proof, see Walker [1, IV.5, Theorem 4], Hartshorne [1, I,
Corollary 7.8], Shafarevich [1, page 145] or Fulton [1, V.3]. We also observe
that using the properties of the intersection index stated in Lemma A.2.3.1,
the proof reduces to the case of two lines, where it is trivial. 0

There is a remarkable connection between the genus of a curve and its
self-intersection on a surface.

Theorem A.4.6.2. (Adjunction formula) Let S be a smooth projec
tive surface, let Ks be a canonical divisor on S, and let C be a smooth
irreducible curve ofgenus g on S. Then

C 2 + C.Ks = 2g - 2.

PROOF. See Hartshorne [1, V, Proposition 1.5] or Serre [1, IV.8, Lemme 2].
The formula is actually valid for a singular C, provided that we replace g
by the arithmetic genus (see Serre [1, IV.8, Proposition 5]). 0

Notice that (A.4.6.2) can be used to quickly rederive the formula for
the genus of a smooth plane curve. Thus let C C W2 be a smooth plane
curve of genus g and degree n, and letHe W2 be a line. Then K p2 = -3H,
and C '" nH, so the adjunction formula gives

2g - 2 = C2+ C.Kp2 = (nH}2 + (nH).( -3H) = n2 - 3n.

(Note that H 2 = 1, since any two lines are linearly equivalent, and two lines
intersect in a single point.) One can similarly use (A.4.6.2) to compute the
genus of curves lying on the quadric W1 x W1 ; see Exercise A.4.4.
Just as for curves, one of the central results of the theory of surfaces

is the Riemann-Roch theorem.
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Theorem A.4.6.3. (Riemann-Roch for surfaces) Let S be a smooth
surface, and let K s be a canonical divisor on S. There exists an integer
Pa(S) such that for any divisor D E Div(S),

1
£(D) - 8(D) + £(Ks - D) = "2D.(D - Ks) + 1 + Pa(S)

for some nonnegative integer 8(D).

PROOF. See Hartshorne [1, V, Theorem 1.6J or Serre [1, IV.8, Proposi
tion 4]. The integer Pa(S) is the arithmetic genus of S, and the inte
ger 8(D) is historically called the superabundance. These quantities can
be interpreted in terms of the dimensions of certain cohomology groups.
For example, 8(D) is the dimension of H 1 (S,O(D»). 0

Examples A.4.6.3.1. (i) The projective plane 1P2 has arithmetic genus
Pa(1P2

) = O.
(ii) Let C1 and C2 be smooth projective curves of genus gl and g2 respec
tively. Then the arithmetic genus of the product C1 x C2 is

Pa(C1 x C2) = glg2 - gl - g2·

Remark A.4.6.3.2. The integer 8(D) is often difficult to compute. When
the characteristic of the ground field is zero, a useful tool is Kodaira's
vanishing theorem, which states in our case that if D is ample, then
8(Kx + D) = O. The proof uses complex-analytic differential geometry
and therefore does not extend to characteristic p. Indeed, there are known
to be counterexamples in characteristic p.

Remark A.4.6.3.3. Let D be an ample divisor on a projective variety X.
If X is a curve of genus 9 and if m is large enough (m > (2g - 2)/ deg(D)
will suffice), then £(mD) = mdeg(D) = 1 - g. If X is a surface, one can
show that 8(mD) = 0 for m sufficiently large, and hence

2D·D D·Kx
£(mD)=m -2-- m 2 +1+p.

If X is an abelian variety, we will see (Theorem A.5.3.3) that

D dim(X)_ dim(X)
£(mD) - m dim(X)!'

The general theorem of Riemann-Roch-Hirzebruch, combined with a van
ishing theorem of Serre, shows that this remains approximately true in the
general case, and we have

Ddim(X) ( )£(mD) = mdim(X) + 0 m dim(X)-l
dim(X)! .

We conclude this section by computing some interesting intersections
on the product of a curve with itself.
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Proposition A.4.6.4. Let C be a smooth projective curve of genus g,
fix a point Po on C, and let S = C x C. Denne divisors D 1 , D2 , A E Div(S)
by

D 1 = C x {Po}, D2 = {Po} xC, A = {(P,P) E SIP E C}.

Notice that A is the diagonal ofC x C.
(i) D~ = D~ = O.
(ii) D1 .D2 = A.D1 = A.D2 = 1.
(iii) A2 = 2 - 2g.

PROOF. Part (i) follows by moving {Po} in its linear equivalence class so
that the resulting divisors no longer intersect. Part (ii) is immediate from
set theory, since the indicated pairs of divisors intersect transversally at
the single point (Po, Po) E S. Finally, to prove (iii), we apply the ad
junction formula to A. As a curve, A is isomorphic to C, so its genus
is g. On the other hand, the canonical divisor of a product is given by
Ks = Kc xC+C x Kc (see Exercise A.2.5(b». It follows from the ad
junction formula (A.4.6.2) that

2g - 2 = A 2 + A.Ks = A 2 + A.(Kc x C) + A.(C x Kc)

= A 2 + 2deg(Kc) = A2 + 4g - 4.

Hence A2 = 2 - 2g.

EXERCISES

o

A.4.l. Let C be a curve, let P be a point on C, and let C' be the blowup of the
curve C at P.
(a) If P is a node, show that C' is smooth at the two points above P.
(b) More generally, suppose that P is an ordinary singularity with n dis
tinct tangent directions. Prove that there are n distinct nonsingulax points
on C' lying above P

A.4.2. (Hyperelliptic curves) Recall that a smooth projective curve C of genus
9 ;:::: 2 is called hyperelliptic if there exists a double covering 7r : C -+ pl.
Let C be a hyperelliptic curve defined over a field k with chax(k) 1= 2.
(a) Show that C has an affine model U given by an equation of the form
y2 = F(x), where F(x) is a polynomial with distinct roots.
(b) Let 9 = [(degF -1)/2], and let F*(u) = U 29+2F(u- I

). Show that the
equation v2 = F* (u) also defines a smooth affine model U' of C.
(c) More precisely, show that there is an isomorphism

{(x, y) E V Ix 1= o} --> {(u, v) E V' Iu 1= O}, (x, y) f-+ (X-I, yx- 9 -
1

).
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Prove that C is isomorphic to the curve obtained by using this map to
glue U and U' together.
(d) Let U and U' be as in (c), and define a map

Prove that ,p is an embedding. Prove that the Zariski closure of ,p(U)
in lP'9+ I is smooth, and hence that it is isomorphic to C.
(e) Prove that the map 7r : C -> pI is ramified at exactly 2g + 2 points,
and use the Riemann-Hurwitz formula to deduce that C has genus g. If
C is given by the affine model y2 = F(x) with 7r(x,y) = x, identify the
ramification points.
(f) Prove that the set {xi dx / y Ii = 0, 1, ... ,9 - I} is a basis for the space
of regular differential forms on C.

AA.3. (Curves of genus 3)
(a) Show that on a smooth quartic curve in p2, a hyperplane section is a
canonical divisor.
(b) If C is a smooth projective curve of genus 3, show that either C is
hyperelliptic or else the canonical linear system IKel embeds C as a plane
quartic in lP'2. This gives a complete description of curves of genus 3.

AAA. Compute the genus of a smooth curve of bidegree (a, b) in pI x pI, and
conclude that pI x ]pI contains smooth curves of every genus. (This is in
marked contrast to ]p2.)

AA.5. (Curves of genus 4) Let C be a smooth projective curve of genus 4 that
is not hyperelliptic.
(a) Show that the canonical linear system IKel embeds C as a curve of
degree 6 in jp3 .
(b) Prove that C lies on a quadric surface Q = 0 in jp3. (Hint. Compare
the dimension of L(2Ke) to the dimension of the space of homogeneous
polynomials of degree 2.)
(c) Prove that C also lies on an irreducible cubic surface F = O.
(d) Conclude that C is the intersection of a quadric and a cubic.
(e) Conversely, prove that if a quadric surface and a cubic surface in jp3
intersect in a smooth curve C, then C is a curve of genus 4 embedded via
its canonical linear system. In particular, C not hyperelliptic.

AA.6. Let Q(x) E k[x] be a polynomial of degree d with distinct roots, let C
be a smooth projective curve with an affine model yn = Q(x), and assume
that char(k) is 0 or does not divide n. Prove that the genus 9 of C satisfies

2g - 2 = nd - n -d - gcd(n,d).

AA.7. The purpose of this exercise is to prove the following theorem:
Theorem. (Belyi) Let C be a smooth projective curve
defined over C. Then C is defined over ij if and only if
there exists a finite map C -> ]pI ramified only above
the three points {O, 1,00}.
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(a) Assume that C is defined over Q. In order to prove that there is a finite
map C -> pI ramified only over 0,1,00, show that it suffices to prove the
following statement: Let S C pl(Q) be finite set of algebraic points. Then
there exists a finite map f : pI --+ pI such that every ramification point
of f and every point in S gets mapped by f into {O, 1,00}.
(b) Reduce the proof of the previous statement to the case where S c
pl(Q). (Hint. If (a,1) E S with [Q(a) : Q] = d =1= 1, let F be the minimal
polynomial of a and consider the map x f-+ F(x) from pI to pl. Show that
repeated application of this process will yield a map h : pI --+ pI that
sends S and its ramification points into pl(Q).)
(c) Let c E Q* and a,b E Z with a,b,a - b =1= O. Show that the map
x f-+ cx"(1 - x? from pI to pI is ramified only at the four points 0, 1, 00,
and a/(a + b). Show that for an appropriate choice of c, the map sends
these four ramification points into {O, 1,00}.
(d) Now use induction on the number of points in S C pI (Q) to finish the
proof of one direction of Belyi's theorem.
(e) Conversely, assuming that there is a finite map C --+ pI ramified only
above {O, 1, oo}, prove that C is defined over Q.

A.4.8. Let C be a smooth plane cubic curve defined over an algebraically closed
field k with char(k) =1= 3. Let Po E C(k) be an inflection point, and use Po
as the identity element to give C a group structure. Prove that the points of
order 3 in the group C(k) are the other inflection points of C. Compute the
number of such points, and use your result to describe the group structure
of {P E C(k) 13P = Po}.

A.4.9. Let C be a smooth cubic curve defined by aX3 +by3 +cZ3 +dXYZ = o.
(a) Write down the condition on a, b, c, d for the curve to be smooth. (No
tice in particular that the characteristic must be different from 3.)
(b) Let P = (x,y,z) E C, and let L be the tangent line to C at P. Then
L n C consists of the point P with multiplicity 2 and a third point P'.
Compute the coordinates of P' explicitly in terms of the coefficients of C
and the coordinates of P.
(c) Assume now k = Q and that a, b, c, d are square-free integers with
a,b,c distinct. Let P = (x,y,z) E C(Q) be a point with x,y,z E Z
and gcd(x, y, z) = 1, and similarly write the point P' described in (b)
as P' = (x',y',z') with x',y',z' E Z and gcd(x',y',z') = 1. Prove that
Ix'y'z'l > Ixyzl· Conclude that C(Q) is either empty or infinite, and find
examples of both instances.

A.4.lO. Let k be a field with char(k) =1= 2,3, and let C be a smooth projective
cubic curve given by the affine equation y2 = x 3 + Ax + B. Prove directly
that the space of regular differential forms on C has dimension 1 and that
dx/y is a basis.

A.4.11. Let f : C' --+ C be a nonconstant (hence finite) separable morphism
between smooth curves of genus g' and g, respectively.
(a) Prove that g' ~ g.
(b) Prove that g' = 9 if and only if one of the following is true: (i) g' =
9 = O. (ii) 9 = 1 and f is unramified. (iii) f is an isomorphism.
(c) Dropping the separability assumption, assume that C is defined over a
field of characteristic p > 0, and let F : C --+ C(p) be the Frobenius map
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(see Exercise A.1.7). Then F is not an isomorphism (Exercise A.1.7(c)).
Prove that C and C(p) have the same genus.

AA.12. Let C be a hyperelliptic curve of genus 9 ~ 2 defined over k.
(a) Prove that the canonical map 4>Kc gives a map from C onto a rational
curve Co of degree 9 - 1 in pg-1. Further, show that the map 4>Kc and the
rational curve Co can both be taken to be defined over k.
(b) If 9 is even, prove that Co has a k-rational point, and hence is isomor
phic over k to p1 .
(c) Give an example of a curve C of genus 3 defined over Q such that Cis
hyperelliptic over Q, but such that there does not exist a morphism C -+ pI
of degree 2 defined over Q.

AA.13. Let C be a smooth curve in pn of projective degree N not contained in
any hyperplane.
(a) Prove that we can choose projective coordinates Xo, ••• , X n on pn such
that the following two conditions hold:

(i) C n {Xi = Xj = O} =0 for 0 ~ i < j ~ n.

(ii) k(Xl/XO,Xi/Xj) = k(C) for 2 ~ i < j ~ n.

(b) Prove that there is a polynomial Gij E k[X, Yj of total degree less than
N 2 such that Gij(X1/XO,Xi/Xj) = O.

AA.14. (Weierstrass points) Let C be a smooth projective curve of genus g. For
each point P E C, define a set of integers

G(P) = {n ~ 1Il(nP) = l((n -1)P)}.

(a) Show that

#G(P) = 9 and G(P) C {1,2, ... ,2g-1}.

Further, show that N" G(P) is a semigroup and that n E G(P) if and only
if there is a regular differential form w with ordp(w) = n - 1. (Hint. Use
the Riemann-Roch theorem.)
(b) Show that the following conditions on P are equivalent:

(i) G(P) =I {1,2, ... ,g}.
(ii) l(gP) ~ 2 (Le., there is a nonconstant function f on C with a
pole at P of order at most 9 and with no other poles).

(iii) There is a regular differential form w on C with ordp(w) ~ g.
A point P satisfying these conditions is called a Weierstrass point. Show
that a curve of genus 0 or 1 has no Weierstrass points.
(c) Define the Weierstrass weight of P to be

w(P) = L n _ g(g; 1) .

nEG(P)

Prove the following properties of the Weierstrass weight.
(i) w(P) ~ O.
(ii) w(P) > 0 if and only if P is a Weierstrass point.
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(iii) w(P) ~ g(g - 1)/2.
(Hint. Show that the largest possible w(P) is obtained when G(P) =
{1,3, ... ,2g-1}.)
(d) Let x be a local coordinate and let WI, .•. ,Wg be a basis of regular
differential I-forms. Write each Wi as Wi = Ii dx and consider the Wronskian
determinant

(
dj-l/i(X) )

W(x) = det dxj-I •

I~i.j~g

We define a differential form w of weight g(g + 1)/2 on C (i.e., a global
section of n~g(g+J)/2) by the formula w= W(x)(dx)g(9+J)/2. Show that w
is independent (up to a scalar) of the choice of the local coordinate x and
differentials WI, ... ,wg • Prove that the divisor ofw is

div(w) = L w(P)P.
PEG

Deduce that there are only finitely many Weierstrass points on C.
(e) If C has genus 9 ~ 2, prove that

2g + 2 ~ #{Weierstrass points of C} ~ l- g.

Show that the lower bound is possible by proving that a hyperelliptic curve
has exactly 2g + 2 Weierstrass points. (Hint. They are the ramification
points of the double cover C ~ pl.)

AA.15. Let C be a smooth projective curve C of genus g, and let Aut(C) denote
the group of automorphisms of C.
(a) Prove that Aut(pl) = PGL(2).
(b) Suppose now that 9 = 1, fix a point Po E C, and use Po as usual to
define a group law on C. For each point Q E C we can define a translation
by-Q map

Prove that the map C ~ Aut(C), Q ~ tQ, is an injective homomorphism.
Define a subgroup G = {a E Aut(C) Ia(Po) = Po}, and define a map

'I/J : Aut(C) ~ G by ¢(a)(P) = a(P) - a(Po). Prove that the following
sequence is exact and that it can be split:

t '"0---+ C ---+ Aut(C) ---+ G ---+ D.

In other words, prove that Aut(C) is the semidirect product C ~ G via the
obvious action of G on C. Finally, prove that the group G is finite. (See
Exercise A.5A for a determination of G in case of characteristic 0.)
(c) Suppose now that 9 ~ 2. Prove that Aut(C) is finite. (Hint. Show, for
example, that an automorphism preserves the set of Weierstrass points.)
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A.4.16. (Weil's reciprocity law) Let C be a smooth curve and let D = E npP E
Div(C). For f E k(C) such that the support of D and div(f) are disjoint,
we define

f(D) = II f(p)n p
•

PEG

Let f, 9 E k(C) be functions whose divisors with disjoint supports. Prove
Weil's reciprocity formula

f(div(g)) = g(div(f))

using the following steps.
(a) Let </> : C1 -+ C2 be a covering of smooth curves. Prove that if f E
k(CI)- and D E Div(C2), then f(</>- D) = (</>_f)(D). Similarly, prove that
if f E k(C2 )* and D E Div(CI), then f(</>.D) = (</>. f)(D).
(b) For the case C = p1, prove the reciprocity law by a direct computa
tion.
(c) In the general case, use the morphism 9 : C -+ p1 and part (a) to
reduce to the previous case.

A.5. Abelian Varieties over C

We begin by recalling that an abelian variety is an algebraic group that is
also a projective variety. With some knowledge of Lie groups, it is easily
seen that the set of complex points of such a variety forms a complex torus
(see Exercise A.5.1). That is, the complex points of an abelian variety are
isomorphic to C9/ A for some lattice A. For example, the complex points
of an elliptic curve form a torus C/('L.ul + 'L.u2)' Note, however, that iso
morphic means isomorphic as complex-analytic varieties. The isomorphism
will be given by holomorphic functions, not by rational functions.
In dimension 1, every complex torus is analytically isomorphic to an

abelian variety. It is a somewhat surprising fact that this is not true in
dimension greater than or equal to 2. One of the central theorems of
this chapter will be the following characterization describing exactly which
complex tori C9/ A are abelian varieties, that is, which complex tori admit
a complex-analytic embedding into some projective space r(C).

Theorem A.5.0.1. Let A be a lattice in C9. The complex torus C9 /A is
an abelian variety if and only if there exists a positive definite Hermitian
form on C9 x C9 whose imaginary part takes integer values when restricted
to A x A.

In light of this statement, we introduce a definition.
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Definition. A Riemann form with respect to a lattice A is a Hermitian
form on C9 x C9 whose imaginary part takes integer values when restricted
to A x A. A Riemann form is called nondegenemte if it is positive definite.

Recall that a Hermitian form is a map

that is linear with respect to the first set of variables and satisfies

H(z,w) = H(w,z).

Theorem A.5.D.1 says that a complex torus can be embedded into a pro
jective space pn if and only if it possesses a nondegenerate Riemann form.
This chapter is devoted to the proof of Theorem A.5.D.!. Another descrip
tion of Riemann forms is given by the following easy lemma, whose proof
we will leave for the reader.

Lemma A.5.0.2. Let V be a complex vector space. There is a nat
ural correspondence between Hermitian forms H : V x V -+ C and real
bilinear alternating forms E: V x V -+ lR satisfying E(ix, iy) = E(x, y).
This correspondence matches a Hermitian form H with its imaginary part
E = Im(H), and it takes a bilinear alternating form E and attaches it to
the Hermitian form H(x, y) = E(ix, y) + iE(x, y).

Examples A.5.0.3. (a) All tori of dimension one are abelian varieties.
Indeed, let Zw1 + Zw2 be a lattice in C. We can define a nondegenerate
Riemann form on this lattice by the formula

(b) If the dimension of the lattice is greater than one, then there are
many tori that do not admit a nonzero Riemann form. For example, let
el, e2, e3, e4 be vectors in C2 whose coordinates are all algebraically inde
pendent over Q, and let A be the lattice that they span. Then the torus
C2 j A is not an abelian variety.
(c) Let 'T be a 9 x 9 symmetric matrix whose imaginary part is positive
definite. Then H(z, w) = tz(Im 'T)-lW defines a Riemann form with respect
to the lattice Y+'TZ9. Hence the torus C9 j(Z9+'TV) is an abelian variety.
We will use this in the next section to show that the Jacobian variety of a
curve is an abelian variety.
(d) The following construction of abelian varieties with complex multipli
cation (often abbreviated eM) is due to Shimura and Taniyama [1]. Let
Ko be a totally real number field of degree g, let K be a totally imaginary
quadratic extension of K o, and let RK be the ring of integers of K. The
fact that K is totally imaginary means that the embeddings of K in C
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come in conjugate pairs. Let 0"1, ••. , 0"9 : K <.....+ C be a set of nonconjugate
embeddings. We use these embeddings to define a map

Then A = cp(RK) is a lattice in C9. We can construct a nondegenerate
Riemann form as follows. Choose an element ~ E RK such that -e is a
totally positive element of Ko. Then

9

H(z,w) = 2 LIm(O"j(~))ZjWj
j=1

defines a nondegenerate Riemann form on the torus C9 j A. To see this, we
note that

ImH(CP(x), cp(y)) = Trace:§ (~'Y(x)y) E il,

where 'Y is the nontrivial element of the Galois group GK/ K o'

We also observe that the endomorphism ring End(C9 j A) naturally
contains RK, where the action is induced by multiplication,

As specific examples we can take K o = Q (v'2) and ~ = i, or K o =
Q(cos(27rjn)) and ~ = 2isin(27rjn).

A.5.l. Complex Tori

A complex torus T is a compact complex Lie group. In other words, T is a
complex manifold of the form VjA, where V is a complex vector space and
A c V is a lattice of rank 2dim(V). We begin by studying the analytic
morphisms between two complex tori T1 and T2 • By composing an arbitrary
morphism with a translation, it suffices to consider morphisms that send
the origin of T1 to the origin of T2 •

Lemma A.5.l.l. Let T1 = Vi/A1 and T2 = V2jA2 be complex tori, and
let

a: T1 ---+ T2

be a holomorphic map with a(O) = O. Then a is a homomorphism that is
induced by a C-linear map a: V1 -+ V2 satisfyinga(Ad C A2 .

PROOF. A complex vector space is simply connected, so the composition
V1 -+ T1 ~ T2 lifts to a holomorphic map a : V1 -+ V2. We necessarily
have a(A1 ) c A2 , and a is uniquely determined if we further require that
a(O) = o.
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To see that a is a homomorphism, we write VI = em and V2 = en,
and we choose coordinate functions Zi, ... , Zm for VI and Wi, ... , W n for V2.
Then for each 1 ~ i ~ n we can write

m

a"(dwi) = Laij(z)dzj .

j=1

The fact that a is holomorphic means that each of the aij(z)'S is a holomor
phic function on VI = em. On the other hand, the periodicity of a means
that the ai/s descend to give functions on the compact space T I = VI!A.
The only holomorphic functions on a compact complex manifold are the
constant functions (maximum principle), so aij E e for all i, j. It follows
that a is the linear map defined by the matrix (aij)' 0

Remark A.5.1.2. If T I = T2 = T, then "multiplication by an integer n"
gives an endomorphism of T, which we will denote by [n]T or [n]. In this
way we see that End(T) contains Z. Further, the kernel of multiplication
by-n, which we denote by Tn or ker[n]T' is given by

ker[n]T = (I/n)A/A ~ (Z/nZ)2dirnT.

So the kernel of multiplication by n is a free Z/nZ-module ofrank 2dimT.
Let a: T I --t T2 be a holomorphic map as in (A.5.l.I). We observe that

the image a(TI ) is again a complex torus, and similarly that the connected
component of the kernel of a is a complex torus. It is also immediate that
a subtorus of an abelian variety and the homomorphic image of an abelian
variety are again abelian varieties.

Example A.5.1.3. Let T = e/(Z + Zr) be a complex torus of dimen
sion one. Then End(T) = Z unless r generates a (necessarily imaginary)
quadratic extension of Q. If [Q(r) : Q] = 2, then r satisfies a relation of
the form

Ar2+Br+C= 0 with A, B, C E Z and gcd(A, B, C) = 1,

and we have End(T) = Z + ZAr.
More generally, let T I = e/(Z+Zrl) and T2= e/(Z+Zr2) be complex

tori of dimension one. The group Hom(TI , T2 ) will be nontrivial if and only
if there are rational numbers a, b, C, d such that

Query A.5.1.4. Let r be a symmetric 9 x 9 matrix with positive definite
imaginary part, and let T := e 9/(Z9 + rZ9 ). When is it true that End(T)
is strictly larger than Z?
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Definition. Let G1 and G2 be two algebraic (or analytic) groups. A map
a E Hom(G1 , G2 ) is called an isogeny if it is surjective, has finite kernel,
and dimG1 = dimG2. The cardinality of ker(a) is called the degree of a.
(N.B. This definition of the degree is appropriate only for separable maps.)

It is clear that if G2 is connected, then two of the defining proper
ties of an isogeny imply the third. Our first examples of isogenies are
the multiplication-by-n maps (A.5.1.2). The next lemma says that every
isogeny between tori factors through a multiplication map.

Lemma A.5.l.5. Let T1 and T2 be complex tori, and let a : T1 -. T2 be
an isogeny of degree d. There exists a unique isogenya :T2 -. T1 such that
a 0 a = [d]T2 and a 0 a = [d]T, . The isogenya is called the dual isogeny
to a.

PROOF. By definition, a is surjective, and the definition of its degree im
plies that ker(a) c ker[d]T1 • It follows that there is a unique a such that
a 0 a = [d]T, . But then

aoaoa(x) = a ([d]T, (x)) = [d]T2 (a(x)),

so we also obtain a 0 a = [d]T2' o

Remark A.5.l.6. Let a : T1 -. T2 be an isogeny of degree d as described
in (A.5.1.5), and let 9 = dim(Td· The multiplication map [d]T, has de
gree ~g, so we see that deg(a) = deg(a)2g -1. Lemma A.5.1.5 shows that
the relation ''T1 is isogenous to T2" is symmetric. We also observe that the
lemma can be proven with d equal to the exponent of ker(a), rather than
its cardinality, albeit with a different a.

The next theorem is the first that requires the torus to have the struc
ture of an abelian variety. It is not valid for tori in general, since its proof
relies on the existence of a nondegenerate Riemann form.

Theorem A.5.1.7. (Poincare irreducibility theorem) Let A = VIA be
an abelian variety, and let B be an abelian subvariety of A. Then there
exists another abelian subvariety C such that B + C = A and B n C is
B.nite. In other words, the map

is an isogeny.

B xC --+ A, (b, c) t--+ b+ c,

PROOF. Let H be a nondegenerate Riemann form for A, and let E be its
imaginary part. The tangent space of A is naturally identified with V, and
we let VI C V be the tangent space of B. We also set Al = VI n A, so
B = VI!AI' Now consider the orthogonal complement of VI with respect
to H,

V2 = {v E V IH(v, w) = 0 for all W E VI}.
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If w E Vl, then also iw E Vl, since Vl is a complex vector space. By
definition we have H(v, w) = E(v, -iw) + iE(v, w), so we can also write V2

as
V2 = {v E V IE(v, w) = 0 for all w E VI}.

Now we look at

A2 = AnV2 = {x E AI E(x,y) = 0 for all y E AI}.

The assumption that E is nondegenerate combined with the fact that Al

is a lattice in Vl means that A2 has rank

rankA2 = rank A - rankAl = 2dime V2 •

Hence A2 is a lattice in V2, and C = V2/A2 is an abelian subvariety of
A. Since V = Vl EB ViI, we deduce that B + C = A and that B n C is
finite. 0

Definition. A torus is said to be simple if it does not contain any nontrivial
subtori.

A straightforward consequence of Poincare's irreducibility theorem is
the next result.

Corollary A.5.l.8. Any abelian variety A is isogenous to a product of
the form

where the Ai'S are simple, pairwise nonisogenous abelian varieties.

PROOF. The proof is by induction on the dimension of A. An abelian
variety of dimension 1 is automatically simple. Suppose now that dim(A) =
d and that the theorem has been proven for lower dimensions. IfA is simple,
we are done. Otherwise, Theorem A.5.1.7 tells us that A is isogenous to a
product B x C, and we can apply the induction hypothesis to both factors
to conclude the proof. 0

Remark A.5.1.9. Let A be a simple abelian variety. Then one can show
that its endomorphism ring End(A) is an order in a division algebra. It
follows that End(An) is the ring Mat(n, End(A)) of n x n matrices with co
efficients in the ring End(A). Further, nonisogenous simple abelian varieties
admit no nontrivial maps from one to another. So if A = A~' X .•. x A~s
with the Ai's simple and pairwise nonisogenous as in Corollary A.5.1.8,
then End(A) = rr:=l Mat(ni, End(Ai )). For more details and a precise
description of the possible division algebras, see Mumford [2, Section 19].
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The projectivity of a variety is equivalent to the existence of an ample divi
sor. Therefore, in order to prove Theorem A.S.O.l, we must study divisors
on tori. Such divisors are defined similarly to Cartier divisors, but with
analytic functions in place of rational functions. Let us denote by p the
projection p : V = e9 -+ VIA. Then a divisor on the torus VIA induces
a divisor p.D on V =e9 , aIld this divisor must be invariant under trans
lation by A. If one knows Cousin's theorem (which we will not use), one
knows that p.D must be a principal divisor; that is, p.D = div(f) for
some meromorphic function f. The invariance property of p.D implies a
functional equation of the form f(z +~) = exp(g,\(z))f(z). Conversely, a
function with such a functional equation defines a divisor on VIA. Liou
ville's theorem implies that a A-periodic entire function must be constant,
so we cannot hope to construct any interesting functions using constant
g,\ 'so This leads us to take the next simplest sort of functions, which mo
tivates the following definition.

Definition. An entire function f on e9 is a theta function relative to the
lattice A if it satisfies a functional equation of the form

f(z +~) = exp(g,\(z))f(z) for all ~ E A,

where g,\ is an affine function of z. That is, 9 : e9 -+ e has the property
that g(z + w) + g(O) = g(z) + g(w) for all z,W E e9 .
The function exp(g,\(z)) is sometimes called the automorphy factor of

the theta function.

Examples A.5.2.1. (a) (Weierstrass sigma function) Let A be a lattice
in e, let A' = A " {O}, and define

It is clear that u vanishes precisely on A with multiplicity 1, so div(u) =
A. Hence u induces the divisor (0) on the elliptic curve elA. Let us
verify that u is a theta function with respect to A. Taking the logarithmic
derivative yields the Weierstrass zeta function

u'(z) 1 ""' (1 1 z)
«(z) = u(z) = ~ + fe:., z - ~ + ~ + ~2 .

Differentiating once more, we obtain the Weierstrass p-function

p(z) = -('(z) = :2 + ,\~, ((z ~ ~)2 - ;2) .
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for all z E Cg and i,n E zg.

It is not hard to check that p is periodic relative to A. Then two integrations
of p(z + A) = p(z) gives first

«(Z+A) = «(Z)+1](A), and then a(z+A) = a(z) exp(1](A)z+a(A»).

Here 1](A) and a(A) are constants depending on A that are independent
of z. For further details on the Weierstrass a, (, and p functions, see, for
example, Lang [11), Silverman [1, Chapter VI), or Silverman [2, Chapter I].
(b) (Riemann's theta function) We consider as in Example A.5.0.3(c) a
lattice A = zg + rZg in Cg , and we define

O(z) = O(z, r) = L exp{7ri tmrm + 27ri tmz}.
mEZ9

Then 0 satisfies the functional equation

O(z+i+rn) = O(z) exp(-27ri 1lz-7ri 1lrn)

Indeed, we need merely observe that

thrh+2 th(z+i+rn) = ~h+n)r(h+n)+2t(h+n)z+2thi-21lz- 1lrn

and translate the variable of summation in the series by n.

The following fundamental theorem justifies the introduction of these
quasi-periodic theta functions. It says that they can be used to represent
all divisors on complex tori.

Theorem A.5.2.2. (Poincare) Let D be an effective analytic divisor on
a complex torus T = VIA. Then there exists an entire theta function with
respect to A that represents that divisor.

PROOF. For the general case, we refer the reader to Lang [4, X, Theo
rem 1.1] or Swinnerton-Dyer [1, II Theorem 18). We merely note that if
T = CIA is of dimension one, the proof is easy using the sigma func
tion (A.5.2.1(a». For in this case a divisor has the form D = L: niPi.

So we choose Ui E C such that Pi = Ui mod A, and then the function
O(z) := IIa(z - Ui)n, is a theta function that induces the divisor D.

o

One might ask to what extent a divisor D determines a theta function.
The next lemma answers this question.

Lemma A.5.2.3. Let 01 and O2 be theta functions with respect to a
lattice A, and suppose that they define the same divisor. Then there ex
ists a quadratic form Q, a linear form R, and a constant S such that
01(z)102(z) = exp(Q(z) + R(z) + S).

PROOF. The function 01(z)102(z) is an entire nonvanishing function, so
we can write it as exp(J(z») for some entire function f. Applying the
functional equations of 01 and O2 , we find that

exp(J(z + A) - f(z») = exp(L,\(z)),
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where L>.(z) is an affine function of z. It follows that fez + A) - fez) is
also affine in z. Therefore, all second-order derivatives of f are A-periodic
and entire, hence constant. This proves that f is a polynomial of degree at
most 2, so it can be written in the form fez) = Q(z) + R(z) + S, with Q a
quadratic form, R a linear form, and S a constant. 0

Definition. A theta function of the form exp(Q(z) + R(z) +S), where Q
is a quadratic form, R is a linear form, and S is a constant, will be called
a trivial theta function.

We will now reverse the above procedure and associate to each theta
function a Riemann form. To ease notation, we set

e(z) = exp(27riz).

The functional equation of a theta function () with respect to the lattice A
can be written as

()(z + A) = ()(z) e(L(z, A) + J(A»,

where L(z, A) is a linear function of z. We use this formula to expand
()(z + A+ J1.)/()(z) in two ways, which yields the result

L(z, A+ J1.) - L(z, J1.) - L(z, A) - L(A, J1.) + J(A + J1.) - J(A) - J(J1.) E Z

for all (z, A, J1.) E CY x A x A.

By continuity we further deduce that:

(1) L(z, A+ J1.) = L(z,J1.) + L(z, A).
(2) J(A + J1.) - J(A) - J(J1.) == L(A, J1.) (mod Z).
(3) L(A, J1.) == L(J1., A) (mod Z).
From (1) we see that L(z, A) is Z-linear in A, so it can be extended

JR.-linearly in the second variable to give a map

L:VxV--C.

In other words, L(z,w) is C-linear in z and JR.-linear in w. From (3) we
deduce that the form E(z,w) = L(z,w) - L(w,z) takes integral values on
A x A. But E is JR.-linear and V = A ® JR., so we see that E is, in fact,
real-valued.

Next we observe that

E(iz, iw) - E(z, w) = L(iz, iw) - L(iw, iz) - L(z, w) + L(w, z)

= iL(z, iw) - iL(w, iz) + iL(iz, w) - iL(iw, z)

= i(E(z,iw) + E(iz,w»).

But E takes on only real values, so we must have E(iz, iw) = E(z, w). We
summarize this discussion in the next proposition.
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Proposition A.5.2.4. Let () be a theta function with respect to the
lattice A, and write the functional equation of () as

()(z + A) = ()(z) e(L(z, A) + J(A»).

Then the formulas

E(z,w) = L(z,w) - L(w,z) and H(z, w) = E(iz, w) + iE(z, w)

define a Riemann form with respect to the lattice A. Further, H depends
only on the divisor of(), and if we denote by HD the Riemann form associ
ated to a divisor D, then we have the addition law HD+DI = HD + HD'.

PROOF. Only the last assertion remains to be proven, and it follows from
a straightforward computation. 0

The most important property of the Riemann form associated to a
theta function is given by the next proposition.

Proposition A.5.2.5. (a) The Riemann form H associated to a theta
function is positive.
(b) Let W = ker H C V. Then the form H' induced by H on V/W is
positive definite. Let A' be the image of A in V/W. Then the function ()
is constant on cosets w + W, and it induces a theta function with respect
to the lattice A' whose associated Riemann form is H'.

PROOF. We start by multiplying the given theta function by a trivial one
in order to obtain a nicer functional equation.

Lemma A.5.2.6. Let ()o be a theta function with respect to a lattice A,
and let H be its Riemann form. Then there exists a theta function () with
the same divisor (and Riemann form) such that

()(z + A) = exp (1rH(z, A) + -iH(A, A) + 21riK(A») ()(z),

where K : A -+ IR is a function satisfying the identity

Furthermore, there is a constant C = C«() such that the function () satisfies
the growth estimate
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PROOF. Let Q be a bilinear form. We are going to consider the func
tion (h(z) = exp(Q(z,z))Oo(z). If the function e(LO(z, A) + JO(A)) is the
automorphy factor of 00 , then the automorphy factor of 01 will have the
form

e(L(z, A) + J(A)) with L(z, A) = Lo(z, A) + 2Q(z, A).

Notice that by varying the bilinear form Q, we are able to obtain all linear
forms L that satisfy L(z,w) - L(w,z) = E(z,w). Indeed, this condition is
necessary, and if it is satisfied, then L - Lo is symmetric. But since H is
Hermitian and E = ImH, we know that

1 1-==-"7
2i H (z,w) - 2iH(z,w) = E(z,w).

Therefore, we may select Q such that L(z, w) = ~H(z, w). This means
that if we set K1(A) = J(A) - t;H(A, A), then the functional equation of
01 can be rewritten as

Multiplying 01 by e(R(z)) with R linear will not change L and will re
place K1(A) by K(A) = K1(A) + R(A). Now using relation (2) between J
and L = ~H, we find that

Hence we may assume that ImKl is Z-linear and extend it to V by lR
linearity. Taking R(z) = - 1mK1(iz) - ImK1(z), we obtain a C-linear
function such that K(A) = K1(A) + R(A) is real. This gives the first part
of the lemma. To prove the second part, we merely need to observe that
the function

is A-periodic and continuous, hence bounded. o

We return to the proof of Proposition A.5.2.5. Suppose that there
exists some Vo E V with H(vo,vo) < O. For every z E C we have the
estimate

IO(zvo)!:::; Cexp(ilzI2H(vo,vo))

from (A.5.2.6), so we see that O(zvo) --t 0 as z --t 00. From Liouville's
theorem we conclude that O(zvo) = O. But by continuity, the inequality
H (v, v) < 0 must remain true for all v in a small neighborhood of Vo. This
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would imply that 0 vanishes identically. Hence the Riemann form H is
positive, which proves (a).
For (b), we note that if w E W, then

IO(z + w)1 :::; C exp (~H(z+ w, z + w)) = C exp (~H(z, z)) .

Hence applying Liouville again, we see that O(z + w) = O(z), and the rest
of the proposition is just linear algebra. 0

Let 0 be a theta function with divisor D for a lattice A in V = C9 .
We write L(O) for the vector space of all theta functions with the same
functional equation. We will see in the next section that L(0) is finite
dimensional, so choosing a basis 00 , .• . , On for L(O), we get a holomorphic
map

zmodAt------+ (Oo(z), ... ,On(Z)).

In order to state the next theorem, which clearly implies Theorem A.5.D.I,
we introduce the following ad hoc definition.

Definition. The divisor D on the torus VIA is very ample if the map 4>0
described above is an embedding. The divisor D is ample if some positive
multiple of D is very ample.

Notice that if we know, a priori, that VIA is an algebraic variety, then
this definition of ample coincides with the one given in Section A.3. To ease
notation, we may take the given theta function 0 to be 00 , Then for every
I E L(D), the function O(z)/(z) is entire and belongs to L(O). Conversely,
each Ii = 0dO is an abelian function with D + (Ii) 2: D. Hence L(D)
and L(O) are isomorphic, and we may speak of the linear system associated
to a theta function.

Theorem A.5.2.7. Let D be an effective divisor on a torus. The IDe
mann form attached to D is nondegenerate if and only ifD is ample.

PROOF. If the Riemann form H attached to D is degenerate, then by
Proposition A.5.2.5, all of the theta functions in L(O) are constant on the
cosets w + kerH. It follows that the map 4>0 :VIA ~ IP'n cannot be an
embedding.

Suppose now that H is nondegenerate. To prove that 4>mo is an em
bedding, we must construct theta functions 00"", On associated to mH
such that 00 , ... , On have no common zeros and separate tangent vectors.
This will be done in the next section using a theorem of Lefschetz and a
Riemann-Roch theorem for complex tori. 0
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The purpose of this section is to compute the dimension of the linear system
L(O) and to finish the proof that a divisor with a positive definite Riemann
form is ample. The computation of leD) involves the determinant of the
associated alternating form. We recall how this quantity is computed.

Lemma A.5.3.1. (Frobenius) Let A be a free abelian group of rank 2g
(i.e., A ~ 7/.,2

g
). Let E be a nondegenerate bilinear alternating form on A

with values in 7/.,. There exist positive integers dt, ... ,dg with dddHl and
a basis el, ... , eg , fl , ... ,fg ofA such that

and

The product dl ... dg is the square root of the determinant of E.

PROOF. We use induction on g. Note that the set {E(x, y) Ix, YEA} is an
ideal of 7/." so it is a principal ideal, generated by some positive integer dl =
E(el, fd. Applying the induction hypothesis to the orthogonal complement
of 7/.,el + 7/.,fl in A finishes the proof. 0

Definition. Let E be a nondegenerate bilinear alternating form on A ~

7/.,2g with values in 7/.,. A basis el, ... , e g , fl , ... , fg for A as in Lemma A.5.3.1
is called a Frobenius basis, and the di's are called the invariants of E.
Further, we define the Pfaffian of E to be the quantity

Our next task is to modify a given theta function to produce the
simplest possible functional equation.

Lemma A.5.3.2. Let 0 be a theta function with nondegenerate Riemann
form H on the lattice A c V = Cg

• Let {et, ... ,eg , fl , ... ,fg } be a Frobe
nius basis for the fOrn! E = 1mH on A, and let dl , ... ,dg be the associated
invariants.
(a) The set {el,'" ,eg } is a C-basis ofV.
(b) After multiplication by a suitable trivial theta function, the functional
equation of 0 takes the form

and

We use (a) to write z = E Ziei.

PROOF. (a) Let W = lRel + ... + lReg C V. Then E vanishes on W, so if
x, yEW and x + iy = 0, then iy E W and E(iy, y) = 0. This implies that
y = x = 0, and hence that V = W + iW.
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(b) The functional equation reads O(z + >.) =O(z) e(L(z, >.) + J(>.)). But
for x,y E W, we know that L(x,y) - L(y,x) = E(x,y) = 0, so L is
symmetric on W x W. We define a bilinear form Q by requiring that
Q(ei,ej) = -~L(ei,ej), and we multiply 0 by e(Q(z,z)). The new theta
function will have an L satisfying

and

In other words, L(z,ei) = 0, and if we write z = I:>jej, then L(z,fi ) =
dizi. Finally, we know that

So if we let R be the linear form determined by R(ei) = -J(ei) and
multiply 0 by e(R(z)), we obtain a new function J such that J(ei) = O.
The lemma is then proven with Ci = J (fi ). 0

Theorem A.5.3.3. (Riemann-Roch for abelian varieties) Let D be a
divisor on an abelian variety, let H D be the nondegenerate Riemann form
for D, let ED = ImHD, and let pf(ED) be its Pfaflian. Then leD) =
Pf(ED).

PROOF. The proof is a simple consequence of the results proven above. We
may suppose that D is defined by a theta function 0 with functional equa
tion as in Lemma A.5.3.2. Note that any theta function with the same func
tional equation as 0 is will be periodic with respect to A = !leI + '" + !leg.
Identifying A with zg, we can expand () as a Fourier series,

()(z) = L a(m) e( tmz).
mEZ9

The second half of the functional equation gives a recursion formula for the
coefficients a(m), namely

It is immediate that all of the a(m)'s are determined uniquely by the values
of a(m) for

m E {(ml, ... ,mg) E zg lOS mi S di - I}.

This set has cardinality d l ·· ·dg , which shows that l(D) S Pf(ED)' In or
der to show that we have equality, it remains only to show that each choice
of a(m)'s with m in this set leads, via the above recursion, to a Fourier
series that converges. This fact is an easy consequence of the following
lemma.
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Then the coefficients a(m) have the form

where R is linear and the imaginary part of Q is positive definite.
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PROOF. We leave the first part as an exercise and just prove that 1mQ > O.
Let Z E nUl + ... + lIUg. We write z = x + iy with x, y E ReI + ... +Reg.
Then L(z, z) = L(x, z) + iL(y, z), where L(x, z) = E(x, z) and L(y, z) =
E(y, z) are real. Hence we obtain

Im(-L(z, z)) = -L(y, z) = E(z, y) = E(x, y) + E(iy, y) = H(y, y) > 0,

as was to be shown. o

We give two consequences that will be used in the proof of Theo
rem A.5.3.6 below.

Corollary A.5.3.5. Let (}o be a theta function for the lattice A, and
assume that the form associated to (}o is nondegenerate.
(i) There exists a theta function in L((}o) that is not a theta function for
any lattice strictly containing A.
(ii) Every (} E L((}o) depends on each of the variables Zl, ... , Zg.

PROOF. Suppose that A' ::J A with A' =1= A. The set of (} E L((}o) that are
theta functions for A' form a subspace whose dimension is some Pfaffian
which strictly divides the Pfaffian of (}o. But there are only countably many
lattices containing A, and a countable union of proper subspaces cannot fill
a (complex) vector space. This proves (i).

For (ii), we suppose that 8(}/8z1 = o. Then L(z, >.) does not depend
on Zl; hence L(el' w) = 0 and E(iel' el) = H(el. el) = O. This contradicts
the nondegeneracy. 0

Finally, we prove the fundamental embedding theorem of Lefschetz.

Theorem A.5.3.6. (Lefschetz) Let (} be a theta function with divisor D
and nondegenerate Riemann form H.
(i) The divisor 2D is base point free.
(ii) The divisor 3D is very ample.

PROOF. Note that this gives a broad generalization of the corresponding
result on elliptic curves. The proof of (i) is easy and only requires D to
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be effective. To ease notation, we write Ow(z) = O(z - w). Notice that
Ow(z)O-w(z) E L(02). If Zo were a base point of 02, then we would have

for all w.

But this is impossible unless 0 = O. Hence 2D is base point free.
Next we observe that for any u, v, the product OuOvO-u-v is in L(03).

We are going to prove that these theta functions span a very ample linear
system. Let <P : iCg / A --+ IPL(03 ) be the holomorphic map associated
to L(03). Using Corollary A.5.3.5, we may assume that 0 is not quasi
periodic with respect to any lattice strictly larger than A.
We begin by showing that <P is injective. Suppose that <P(x) = <P(y).

Then for every u, v there is some a E ic· such that

This implies that O(x - u) = O(y - u)g(u) for some nonvanishing entire
function g. But 9 must then be a trivial theta function and must satisfy
g(u +,x) = e(L(x - y,,x))g(u) for all ,x E A. One easily gets from this
that g(u) = g(O) e(-L(u, x - y)), and this in turn implies O(z+ (x - y)) =
O(z)e(-L(z,x - y) + c). Hence 0 is a theta function with respect to the
lattice A+ Z(x - y). However, we know that A is the largest lattice for
which 0 is a theta function, so we have proven that x - YEA. This
completes the proof that <P is injective.
In order to prove that <P is an embedding, it remains to show that it

separates tangent directions. Suppose to the contrary that the differential
of <P annihilates a tangent vector at some point w. We may assume that
O(w) :f= 0, and after a change of coordinates we may assume that all of the
functions f = ()u()vO-u-v/f]3 satisfy OflOZ1(W) = O. Let r = O-l(O()/OZl).
Taking the logarithmic derivative of f at w, we find that

r(w - u) + r(w - v) + r(w + u + v) - 3r(w) = O.

This implies that r(u + w) = ao + alUl + ... + agug is an affine function
of u, and then integrating with respect to Ul gives a new theta function 0'
such that

O(u + w) exp( -(ad2)uD = O'(U2,"" ug ).

But the existence of this theta function contradicts Corollary A.5.3.5(ii).
This completes the proof that <P is an embedding. 0
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A.5.l. Let G c pn(C) be a complex projective variety with a group law given
by algebraic functions (i.e., G is a projective group variety). This exercise
sketches a proof that G is analytically isomorphic to a complex torus. In
particular, the compactness of G implies that the group law is abelian.
(a) For each 9 E G, consider the conjugation map ¢>(g) : G -+ G, ¢>(g)(h) =
ghg- 1

• Denote the differential of ¢>(g) at the identity e by D(g) : Te(G) -+

Te(G). Using the maximum principle (from complex function theory), show
that D(g) is the identity map. Use this to deduce that ¢>(g) is also the
identity, and hence that G is abelian.
(b) Prove that the exponential map Te(G) -+ G is surjective with discrete
kernel A. Use the fact that G is compact to conclude that rank A = 2dim G,
and hence that G is isomorphic to a complex torus. (For basic properties
of the exponential map, see, for example, Bourbaki [1, Chapter III).)

A.5.2. Let n be a 9 x 2g matrix with coefficients in C. Prove that the existence
of a nondegenerate Riemann form on the torus A = cg /nz2g is equivalent
to the existence of a nondegenerate alternating 2g x 2g matrix J with
coefficients in Z satisfying

and

Here S > 0 means that the matrix S is symmetric and positive definite.

A.5.3. Use the previous exercise to construct a torus of dimension 2 that is not an
abelian surface. (Hint. Show that the existence of a Riemann form implies
that that coefficients of the matrix of periods satisfy nontrivial relations
over Z.)

A.5A. Let E = C/A be a complex torus of dimension 1 (i.e., a complex elliptic
curve) and let

Aut(E,O) = {analytic isomorphisms ¢> : E -+ E with ¢>(O) = O}.

In other words, G is the group of analytic automorphisms of the group
variety E. Also, let p = e21ri

/
3 be a primitive cube root of unity. Prove

that

{

Z/6Z if E ~ C/(Z + Zp),
Aut(E,O) = Z/4Z if E ~ C/(Z +Zi),

Z/2Z otherwise.

In particular, Aut(E,O) is always finite. Do there exist abelian varieties of
dimension greater than 1 with infinite automorphism groups?

A.5.5. (Theorem of Appell-Humbert and the dual abelian variety) Let A = V/A
be a complex torus, and denote by NS(V/A) the group of Riemann forms
on V /A. Also, let SI = {z E C Ilzl = 1} be the circle group. We say that
a map x: A -+ SI is a semicharocter for the Riemann form H if it satisfies
the functional equation

xC>' + 1-') = X(>')X(I-') e (~ 1mH(>., 1-')) for all .x, I-' E A.
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We also define a group

P(VjA) = {(H, X) IHE NS(VjA) and X is a semicharacter for H}.

The group law on P(VjA) is (H1,X1)' (H2,X2) = (H1+ H2,X1X2).
(a) Show that Theorem A.5.2.2 and Lemma A.5.2.6 associate to each di
visor D an element (HD,XD) E P(VjA). Check that this induces an iso
morphism from Pic(VjA) to P(VjA).
(b) Show that under this isomorphism, the subgroup PicO(VjA) contained
in Pic(VjA) is naturally identified with Hom(A, Sl).
(c) Let V = Homc(V, C) be the space of C-antilinear forms on V (i.e.,
l(zv) = zl(v». For lEV and v E V, let (l,v) = Im(l(v»), and define
A = {l E V I(l,A) E Z}. Prove that the map

l~ e«l, . »),

is a surjective homomorphism with kernel A. Further, prove that A is a
lattice in V, and use the resulting isomorphism V j A ...... Hom(A, Sl) to
deduce that Hom(A,Sl) has the structure of a complex torus.
(d) Show that if A = V j A is a complex abelian variety, then the torus
..4. = V jA described in (c) is also an abelian variety. It is called the dual
abelian variety and is isomorphic to PicO(A).
(e) Let A be an abelian variety, and let D E Pic(A). For each a E A, let
t a : A ...... A denote the translation map ta(x) = x + a. Define a map

<I>D : A --+ Pic(A), <I>D(a) = CI(t~D - D).

Prove that <I>D has the following properties: (i) The image of <I>D lies in
Pic°(A) = A. (ii) The map <I>D depends only on D mod PicO(A). (iii) If
the associated Riemann form HD is positive definite (i.e., if D is ample),
then <I>D is an isogeny from A to A.

A.5.6. (Poincare divisor) In the previous exercise we associated to a complex
abelian variety A = V j A its dual abelian variety ..4. =V j A. We now define
a pairing on V x V by

H : (V x V) x (V x V) ...... C,

(a) Prove that H is a Riemann form with respect to AxA and that X(A, l) =
e OIm(l(A»)) is a semicharacter for H. It follows from Exercise A.5.5

above that the pair (H, X) defines a divisor class :P E Pic(A x ..4.). The
divisor class :P is called the Poincare divisor class.
(b) Let ia : A ...... A x..4. be the map ia(a) = (a,a). Prove that iaP is the
divisor class on A corresponding to a.
(c) Let io :..4. ...... A x..4. be the map io(a) = (0,0.). Prove that i(jP = O.
(d) Prove that the Poincare divisor class :P is uniquely characterized by
the two properties described in (b) and (c). (For further properties of the
Poincare divisor class, see Section A.7.)
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A.5.7. Let A = VIA and B = VIA' be two complex abelian varieties of di
mensions 9 and h, respectively. By Lemma A.5.1.I, any homomorphism
a : A -+ B lifts to a ('>linear map a : V -+ V' satisfying a(A) c A'. We
thus obtain two representations

Pc : Hom(A, B) --+ Homc(V, V') and PQ: Hom(A, B) -+ Homz(A, A'),

called reSpectively the complex representation and the mtional representa
tion of Hom(A, B).

(a) Show that the two representations Pc and PQ are related by

where p denotes the complex conjugate of p.

(b) For every integer m, prove that a maps Am into Bm, where recall that
Am denotes the kernel of the multiplication-by-m map on A, and similarly
for Bm . Take the inverse limit of the maps

to obtain a homomorphism Z~9 --+ Z~h. (Hint. Recall that Am 9:! (Z/mZ)29

and B m 9:! (Z/mZ)2h, and use the definition of the p-adic integers). Ten
soring with Qp, we obtain a homomorphism PQp : Q;g -+ Q;h. The repre
sentation

is called the p-adic representation of Hom(A, B). Prove that

(The importance of the p-adic representation is that it exists over any base
field of characteristic f:. p.)

(c) Let A = B and let a : A -+ A be an isogeny. Prove that deg(a) =
det(PQ(a).

A.5.B. Let A be a simple abelian variety (Le., an abelian variety containing no
abelian subvarieties other than {OJ and itself). Let D be a nonzero effective
divisor on A. Prove that D is ample. Show that the conclusion may be
false if A is not assumed to be simple.

A.5.9. Let 8(z) be Riemann's theta function as described in Example A.5.2.1.
Show that the associated normalized theta function (in the sense of Lemma
A.5.2.6) is (h(z) = 8(z) exp (~tz(ImT)-lz), and that the corresponding
"K-function" is K(m + Tn) = mn/2.
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A.6. Jacobians over C

A. The Geometry of Curves and Abelian Varieties

In this section we will sketch the construction of the Jacobian of a com
pact Riemann surface. The Jacobian will be a complex torus carrying a
nondegenerate Riemann form, that is, an abelian variety. The complex
analytic theory in this section parallels the algebra-geometric theory that
we will develop in Section A.8. The Jacobian is one of the central tools
in studying curves and is the reason why abelian varieties enter into the
picture. Indeed, the theory of Jacobians plays an essential role in the proof
of Mordell's conjecture. Combining the theory of Jacobians with Theo
rem A.5.0.1 from the previous section, we also get a proof that all compact
Riemann surfaces can be embedded into projective space.
This section is essentially historical and contains few proofs. There

are many sources for readers wishing to pursue this very beautiful subject,
for example Bost [1], Griffiths and Harris [1], Gunning [1], Lang [4], or the
original works of Abel, Jacobi, Riemann, and others.

A.6.l. Abelian Integrals

The theory of abelian varieties arose during the nineteenth century through
the attempt to compute or describe integrals of the form JR(t, JP(t) )dt,
where R is a rational function and P is a polynomial. More generally,
one may consider integrals JR(t, s) dt, where s and t satisfy an algebraic
relation P(s, t) = O. Such integrals eventually came to be called abelian
integrals.
As a first example, consider the integral u = J;1/~ dt. Every

student of calculus knows that u = sin-1 (x), so it is easier to look at the
inverse function to u. In other words, we consider the function S satisfying
x = S(u), and then we find that S is the sine function. In particular,
it has a period S(u + 27r) = S(u) and it satisfies a differential equation
S(U)2 + S'(u? = 1. More precisely, the map u ~ (S(u),S'(u)) gives a
parametrization of the curve x2 + y2 = 1.
We are now going to consider the next nontrivial case. Let Q(t) be a

polynomial of degree 3 or 4 with distinct roots, and consider the integral
u = J; 1/JQ(t) dt. As before, we consider the inverse function, which we
will denote by x = f(u). The function f has two lR-linearly independent
periods, and it satisfies the differential equation l'(U)2 = Q (J (u) ). The
map u ~ (J (u), l'(u)) parametrizes the curve y2 = Q(x). This curve is
called an elliptic curve because integrals of this sort arise when one tries to
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compute the arc length of an ellipse. For a similar reason, such integrals are
called elliptic integrals, and the corresponding inverse functions are called
elliptic functions.
Notice that in both cases, the existence of periods for the inverse func

tion comes from the multivaluedness of the integrals. Carrying on with
this analogy, we observe that the trigonometric functions satisfy an addi
tion formula,

S(u + v) = S(u)S'(v) - S'(v)S(u),

and similarly an elliptic function f(u) as above will satisfy an addition
formula

f(u + v) = F(J(u), f'(u), f(v), f'(v))

for some rational function F. When Q(t) = t3 + At+ B, we have explicitly
computed the rational function F, see (A.4.4).

An important discovery of Abel was that when one considers integrals
of the form u = J; 1/JQ(t) dt with deg(Q) 2: 5, then one needs to use
additional variables. The number of required variables is the "genus" of the
integral. For example, suppose that Q has degree 5 or 6 and has distinct
roots. Then we define two functions, each depending on two variables, by

l
X1

1 l x2

1u = --dt + --dt
1 0 JQ(t) 0 JQ(t) ,

r 1 t r 2 t
U2 = Jo JQ(t) dt + Jo JQ(t) dt.

Consider "inverse functions" !I and 12 satisfying Xl + X2 = f1 (U1' U2) and
X1X2 = h(ullu2). Then one can show that !I and 12 have four lR-linearly
independent periods (in (;2). Further, they satisfy an addition formula
in which each fi(Ul + VI, U2 + V2) can be expressed as a rational function
of !I, 12, and their derivatives.

A.6.2. Periods of Riemann Surfaces

We now give the modern formulation of the material discussed in the pre
vious section. Let X be a compact Riemann surface of genus 9 (i.e., a
smooth projective curve over (;, as we will see). For any regular I-form w
on X and any path 'Y on X, we can compute the integral J-y w.

Example A.6.2.1. Let P be a polynomial of degree 29 + 2 without mul
tiple roots, and let X be the Riemann surface obtained by gluing the two
affine curves y2 = P(x) and v2 = P*(u) = u2g+2P(u-1) using the map
(u,v) = (x- 1,yx-1-g). The set {dx/y,xdx/y, ... ,xg-1dx/y} is a basis of
regular differentials on X. (See Section A.4.5 and Exercise AA.2 for further
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information about these hyperelliptic curves.) Let W = dx/y, and let 'Y be
a path on X going from (a, JP(a)) to (b, JP(b)). Then the line integral
J'Y W on the Riemann surface X gives a precise meaning to the multivalued

integral J: 1/JP(t) dt. Of course, it is the choice of the path 'Y that has
eliminated the indeterminacy.

The dependence of the integral on the path is best formulated in terms
of homology. Let 'Yl, ... ,'Y2g be a basis of the homology HI (X, Z) of X.
If 'Y and 'Y' are two paths joining the points A and B, then 'Y followed by
the reverse of 'Y' is a closed path, so it is homologous to E mi'Yi for some
integers mi' It follows that for any regular I-form we have

Now let WI, ... ,wg be a basis of the vector space of regular I-forms,
and let 0 be the g x 2g matrix with entries

o = (O{) l~i9g = (1 Wj) . .
1<j<g 'Y' l~t~2g
- - • l~j~g

We call 0 a period matrixofX, and we let Ln be the Z-module generated by
the columns of O. (It will soon be apparent that Ln is a lattice.) Choosing
a different basis for the homology and the space of I-forms will give another
period matrix 0' = AOM, where A E GL(g,q and M E GL(2g,Z). The
following beautiful theorem was discovered by Riemann:

Theorem A.6.2.2. (Riemann's period relations) Let 'Y1I'" ,'Y2g be a
basis for the homology group HI (X, Z), chosen to satisfy the following
intersection property: For each 1 :S i :S g,

_{I if j = i + g,'Yi . 'Y' -
J 0 otherwise.

(See Figure A.4 for the case of genus 2.) Then for any nonzero regular
I-forms wand w',

PROOF. The proofmay be found in Bost [1, III.1.2], Griffiths and Harris [1,
page 231], Lang [4, IVA], or Swinnerton-Dyer [1, I, Theorem 8]. 0
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A curve of genus 2 with a homology basis
Figure A.4

If we decompose 0 = (Ol, O2 ), where each of Ol and O2 is a 9 x 9
matrix, then Riemann's relations can be written in matrix form as

and

(We write M > 0 to indicate that a matrix M is positive definite. That
is, tyMY ~ 0, with equality if and only if Y = 0.) We claim that Ol is
invertible. To see this, suppose that tn l Y = O. Then

so Y = O. Hence Ol is invertible.
We can thus change our basis of differential forms to transform Ol into

the identity matrix and O2 into the matrix r = 0 110 2 . In terms of the
new period matrix 0 = (I, r), Riemann's relations say that r is symmetric
and that its imaginary part Im(r) is positive definite. The next result is
an easy consequence of these observations.

Corollary A.6.2.3. The column vectors of 0 generate a lattice Ln in
side (;g.

PROOF. Using the new basis, the lattice has the form Ln = Z9 + rZg •

o

A.6.3. The Jacobian of a Riemann Surface

We retain the setting and notation from the previous section.

Definition A.6.3.1. The Jacobian of a Riemann surface X is the complex
torus Jac(X) = (;g / Ln, where Ln is the lattice generated by the columns
of the period matrix O. (See Corollary A.6.2.3.)
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We next give a more intrinsic formulation. Let V* denote the dual
vector space of a complex vector space V, let HO(X, 0i-) be the vector
space of regular differentials on X, and let HI (X, Z) be the homology
group of X. We can identify H1(X,Z) as a lattice in HO(X,Oi-)* via the
map

Then the Jacobian of X is equal to

We now explicitly construct a Riemann form with respect to the lat
tice Ln. We may assume the lattice to be normalized, Ln = Z9 + TZ9.

Then the form is easy to write down, namely H(z,w) = tzlm(T)-lw. This
form is positive definite from Riemann's relations, and if k, l, m, n are vec
tors with integer coordinates, then ImH(m + Tn, k + Tl) = W - fnk is
an integer. Hence H is a Riemann form. It follows from Theorem A.5.D.l
that the Jacobian C9 / Ln is a projective variety. This implies that X is
also projective, since X can be embedded in its Jacobian. More precisely,
for each fixed basepoint a E X we define a holomorphic map

cI>a : X ~ Jac(X) = C9 /Ln,

The map cI>a is called the Jacobian embedding ofX. (We will explain below
why it is an embedding when g 2: 1.)
We observe that up to translation, the map cI>a is independent of a.

Thus cI>a,(b) = cI>a(b) - cI>a(a'). So if we extend cI>a linearly to the divisor
group, then it will be completely independent of a on the the group of
divisors of degree zero. We denote this map by cI>,

cI> : Divo(X)~ Jac(X),

The importance of the map cI> comes from the following celebrated theorem.

Theorem A.6.3.2. (Abel-Jacobi) The map cI> : Divo(X) ~ Jac(X) is
surjective, and its kernel is exactly the subgroup of principal divisors.

PROOF. See Griffiths and Harris [1, pages 232-237], Lang [4, IV.2.3], or
Bost [1, Corollary 11.3.5). 0

Corollary A.6.3.3. Assume that X has genus g 2: 1. Then the map
cI>a : X ---4 Jac(X) is an embedding.

PROOF. Using the theorem, we can identify Jac(X) with Pico(X). If
cI>a(x) = cI>a(Y), then (x) '" (y), so x = y. (Otherwise, X would be a



§A.6.3. The Jacobian of a Riemann Surface 115

rational curve, contrary to assumption.) This shows that 4>a is injective.
Further, we see directly from the definition that 4>~(dZi) = Wi, hence 4>a is
an embedding. 0

One consequence of (A.6.3.3) is that if X has genus one, then X is
isomorphic to its Jacobian. Further, a divisor Eni(Pi) will be principal
if and only ifE ni = 0 and E niPi = O. Of course, we already know this
from the algebraic proof of Theorem A.4.4.2.
Suppose now that X has genus 9 2: 2. Then the r-fold sum

is a subvariety of Jac(X) of dimension min(r, g). In particular, 8 =
Wg - 1(X) is a divisor on J. Note that up to translation, 8 is independent
of the choice of basepoint a EX. It can be shown that the Riemann form
associated to this divisor is precisely the Riemann form we constructed. In
particular, the divisor 8 is ample, since the corresponding form is nonde
generate (Theorem A.5.2.7). This is a consequence of the following more
precise result.

Theorem A.6.3.4. (Riemann) Let Ln = V + TV be the normalized
lattice of periods of a Riemann surface X. Then the Riemann theta func
tion

O(z) = O(Z,T) = L exp(7ri~Tm + 27ri~z)
mEZg

has associated Riemann form

The divisor associated to this Riemann form is a translate of8.

PROOF. The first statement is essentially the computation of the functional
equation of 0 done in (A.5.2.I(b)). For the second statement, see Bost [1,
theorem I1L5.I], Griffiths and Harris [1, page 338], or Mumford [5, II,
Corollary 3.6]. 0

Remark A.6.3.5. The importance of the Riemann form and its associated
divisor e comes from the fact that the curve X is characterized (up to
isomorphism) by the pair (Jac(X),e). For 9 = 2 this is immediate from
Theorem A.6.3.4, since in this case e itself is isomorphic to X. The general
case is called Torelli's theorem.
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A.6.4. Albanese Varieties

In this brief section we explain how the construction of the Jacobian extends
to varieties of higher dimension. Let X be a smooth projective variety, and
let HO(X, Ok) be the vector space of holomorphic 1-forms on X. Just as
for curves, we can embed the first homology group Hl (X, Z) into the dual
of HO(X, Ok) via the map

The Albanese variety of x, denoted by Alb(X), is defined to be the torus

Alb(X) = HO(X, 0k)* / H l (X, Z).

It can be shown that H l (X, Z) is a lattice in HO(X, Ok)", so Alb(X) is
indeed a torus, and in fact, it is an abelian variety (see Weil [5]). Further,
there is a map ~a : X --. Alb(X) defined in exactly the same way as for
curves. This construction, although sometimes useful, is not as powerful
as the corresponding result for curves, because in general ~a will not be
injective. More precisely, the map ~a is the maximal map of X into an
abelian variety in the sense that any other map to an abelian variety will
factor through ~a. It follows that a smooth projective variety admits a
nonconstant map to an abelian variety if and only if it possesses a nonzero
regular I-form. For example, a smooth hypersurface X c pn with n ~ 3
has Alb(X) = {O}.

EXERCISES

A.6.!. Let P(s,t) E C[s,t] be a polynomial such that the curve P(s,t) = 0
is a rational plane curve, and let R(s, t) E C(s, t) be a function on this
curve. Prove that the integral JR(s, t) dt can be transformed by a change
of variables into an integral JF(u) du for some F(u) E C(u). Note that
this last integral can be explicitly computed using standard techniques (i.e.,
partial fractions).

A.6.2. Consider the ellipse (xja)2+(yjb)2 = 1with a ~ b > 0, and letc2 = a2_b2

with c > O. Show that the computation of the arc length of this ellipse leads
to the computation of an integral of the form

Show that the curve w2 = (1 - U2 )(C2U2 + b2
) is an elliptic curve except

when c = 0, that is, when the ellipse is a circle.
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A.6.3. Let 0 be a period matrix and let J be the skew symmetric matrix whose
coefficients are the intersection indices "Ii '''Ij. Prove that Riemann's period
relations can be written as

and

A.6.4. Let X be a Riemann surface.

(a) Show that the Jacobian embedding ~a : X -+ Jac(X) induces an is0
morphism between HO(X, 0 1 ) and H°(Jac(X), 0 1 ).
(b) Prove that HO(Jac(X), 0 1 ) is canonically isomorphic to the tangent
space at the origin, To(Jac(C)).

A.6.5. The purpose of this exercise is to develop a method to compute the period
matrix 0 = (1, T) of certain special curves. In particular, we will compute
the period matrix for the curve C : y2 = x6 - 1. We will need to assume
some nontrivial topological facts about Riemann surfaces; see, for example,
Lange and Birkenhake [1, Chapter 11, Section 7].
(a) Let "11, ... , "I2g be a basis of HI(C, Z) as described in (A.6.2.2), and let
WI, ... ,Wg be a basis of HO(C,Ob). Any automorphism f E Aut(C) acts
on differential forms and on homology. Let

and U E Mat(g x g,C)

be respectively the matrices giving the actions of f on homology and on
differential forms. Prove that

T = (aT + b)(cr + d)-I and U = t(cr+d).

(b) Let ~ = exp(21ri/6) be a primitive sixth root of unity. Consider the
curve C : y2 = x 6 - 1, the automorphism f(x, y) = (~x, -y), and the
differentials (WI,W2) = (dx / y, xdx / y). Prove that the corresponding trans
formation matrix U' described in (a) is given by

, (-~ 0)U = 0 -e .

Deduce that Trace(U) = -iv'3 and det(U) = -1.
(c) Topologically, C may be constructed as a two-sheeted covering of pI
ramified above the six points 1,~, ... ,~5. Thus it can be represented as
two sheets (i.e., two copies of the complex plane) glued along three cuts
("schnitten") joining these ramification points as illustrated in Figure A.5
(cf. Lange-Birkenhake [1, page 346]). The figure also shows four loops
"11, ... , "14 that form a basis for HI (C, Z), where the dashed lines indicate
the parts of the paths lying on the lower sheet.
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The Riemann surface y2 = x6
- 1 with cuts and loops

Figure A.5

Show that the transformation matrix of! described in (a) is given by

(

0 -~ =~)
tM=

1 0 0
-1 1

(Hint. Compute intersections !(,i) . 'Yj.)
(d) Piece together the information gathered above to show that C has a
period matrix given by

A_ (2i/-/3 i/-/3 10)
.. - i/-/3 2i/-/3 0 1 .

(e) Let p = (-1 +iv3)/2, and let E be the elliptic curve E = iC/(Z+Zp).
Prove that Jac(C) is isogenous to the product E x E.
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In this section we will give a purely algebraic description of the geome
try of abelian varieties. In particular, we allow the field of definition to
have positive characteristic. Our main tools will be projective geometry
and the addition law, in particular the translation maps ta : A -+ A and
multiplication maps [n] : A -+ A.

A.7.1. Generalities

We start by recalling that any algebraic group, such as an abelian variety,
is automatically smooth. This is true because it has at least one smooth
point, ~nce a smooth open subset U, and then the translation maps can
be used to cover the algebraic group with copies of U. On the other hand,
we have defined an abelian variety to be a projective algebraic group, and
it is not at all obvious from this definition that the group law must be
commutative. In order to prove this fact, we will need the following basic
lemma from projective geometry.

Lemma A.7.1.l. (Rigidity lemma) Let X be a projective variety, let Y
and Z be any varieties, and let f : X x Y -+ Z be a morphism. Suppose
that there is a point Yo E Y such that f is constant on X x {Yo}. Then f
is constant on every slice X x {y}.

If f is also constant on some slice {xo} x Y, then f is a constant
function on all ofX x Y.

PROOF. The variety X is projective, and projective varieties are proper
(Hartshorne [1, Theorem 11.4.9]), so the projection map p : X x Y -+ Y is
closed. Hence if U is an affine neighborhood of Zo = f(x, Yo), then the set
W = p(f-l(Z " U)) is closed in Y. By the hypothesis, Yo ¢: Wj hence
Y" W is a dense open subset of Y. For any y ¢: W, the projective variety
f(X x {y}) is contained in the affine open set U, hence is reduced to a
point. This completes the proof of the first statement of the lemma, and
the second statement is clear. 0

Notice that the hypothesis that X is projective is crucial. For example,
the map Al xA1 -+ Al given by (x, y) ~ xy is constant on the slices Al x{O}
and {O} x A!, but it is certainly not the constant map.

Corollary A.7.l.2. Let </J: A -+ B be a morphism between two abelian
varieties. Then </J is the composition ofa translation and a homomorphism.

PROOF. Let eA and eB be the identity elements of A and B, respectively.
Composing </J with a translation, we may assume that </J(eA) = eB. Since we
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do not yet know that the group laws are commutative, we will temporarily
write them multiplicatively. Consider the map

f: A x A --- B,

It is clear that f( {eA} xA) = {eB} and f(A x {eA}) = {eB}, so the rigidity
lemma (A.7.1.I) says that f is a constant. Hence f(x, y) = f(eA' eA) = eB,
which means precisely that </> is a homomorphism. 0

Notice that Corollary A.7.1.2 is analogous to Lemma A.5.1.1.

Lemma A.7.1.3. An abelian variety is a commutative algebraic group.

PROOF. Corollary A.7.1.2 tells us that the inversion morphism i ~ -+ A,
i(x) = x- i , must be a homomorphism. Hence i(xy) = i(x)i(y), so A is
commutative. (See Exercise A.7.3 for another proof closer to the analytic
~) 0

We now know that the group law on an abelian variety is commutative,
so we will henceforth write the group law additively.
Rational maps from varieties to group varieties have the following im

portant property.

Lemma A.7.1.4. (Weil) A rational map from a smooth variety into an
algebraic group either extends to a morphism or is undefined on a set of
pure codimension one.

PROOF. See Weil [2,3], Artin [1, Proposition 1.3], or Silverman [2, IV.6.2].
o

Corollary A.7.1.5. A rational map from a smooth variety into an
abelian variety extends to a morphism.

PROOF. Since an abelian variety is projective, the set of points where the
map is not defined has codimension at least two (Theorem A.1.4.4). Then
we can use Lemma A.7.1.4 to conclude that the map extends to a morphism.

o

For example, Corollary A.7.1.5 implies that a rational map from IP'n to
an abelian variety is constant (see Exercise A.7.4). Corollary A.7.1.5 is a
powerful tool in analyzing maps to an abelian variety. It is complemented
by the next proposition, which describes maps from an abelian variety.

Proposition A.7.1.6. Let A be an abelian variety, and let f : A -+ Y
be a morphism. Then there is an abelian subvariety B of A such that for
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any x E A, the connected component of f- l (f(x)) containing x is equal
to B+x.

PROOF. Let Cx be the connected component of f-l{f(x)} containing x,
and let B = Co. We consider the map

¢ : A x Cx --+ Y, (a, u) t------+ f(a + u).

We note that ¢({O} x Cx) is a point. The rigidity lemma (A.7.1.I) implies
that ¢({a} x Cx) is a point for any a. Equivalently, f(a+ Cx) = f(a+x).
But a - x +Cx is connected and contains a, so we see that a - x +Cx C Ca'
By symmetry, we must have equality. (Note that the rigidity lemma applies
to each irreducible component.) Putting a = 0 gives Cx = x + B, so it
remains to show that B is a subgroup. If b E B, then C-b = -b + B,
so 0 E C-b. Hence C-b = B, or equivalently, -b + B c B, which shows
that B is a subgroup. 0

A.7.2. Divisors and the Theorem of the Cube

In this section we will study divisors on abelian varieties. Since abelian
varieties are smooth, we do not need to worry about distinguishing between
Cartier and Well divisors, So we will write Pic(A) for the divisor class group
of A and we will use '" to denote linear equivalence. We are especially
interested in divisor relations that reflect the group structure, and we will
also want to derive a criterion for ampleness.
In order to state our first result, we need to define various projection

summation maps. Thus for any subset I of {I, 2, 3}, we define a map

81 : A x A x A --+ A, 81(Xl,X2,X3) = LXi.

iEl

For example, S13(Xl,X2,X3) = Xl +X3 and 82(Xl,X2,X3) = X2. We are now
ready for the following fundamental theorem.

Theorem A.7.2.1. (Theorem of the cube on abelian varieties) Let A
be an abelian variety. Then for every divisor D E Div(A), the following
divisor class relation holds in A x A x A:
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PROOF. To ease notation, we will let

cube(D) = Si23D - Si2D - Si3D - S23D + siD + S2D + sjD

L (-l)#I s j(D)
IC{I,2,3}

be the divisor sum we are studying. We start by giving a proof when the
ground field is C. It is enough to prove the theorem for effective divisors D,
which means that D is the divisor of some theta function 9. We define a
function on A x A x A by

F( .) 9(ZI + Z2 + z3)9(zd9(Z2)9(Z3)
Zl, Z2, Z3 = 9(ZI + z2)9(ZI + z3)9(Z2 + Z3)'

It is clear that div(F) = cube(D). Further, using the functional equation
of the function 9, we find that the automorphy factor of F is trivial. In
other words, F is a meromorphic function on A x A x A whose divisor is
cube(D), so cube(D) rv O.
This proves the theorem over C, and so by the Lefschetz principle

over any field of characteristic zero. In the general case, we can deduce
Theorem A.7.2.1 from the following more general result, which also explains
the word "cube" in the name of the theorem.

Theorem A.7.2.2. (Theorem of the cube) Let X, Y, and Z be pr~

jective varieties, and let (xo, Yo, zo) E X x Y x Z. Let D be a divisor on
X x Y x Z whose linear equivalence class becomes trivial when restricted
to each of the three slices

X x Y x {zo}, X x {Yo} x Z, and {Xo} x Y x Z.

Then D is linearly equivalent to zero on X x Y x Z.

PROOF. See Mumford [2, II.6]. o

We now explain how Theorem A.7.2.2 can be used to prove Th~
rem A.7.2.1. Let i be the injection

i : A x A -+ A x A x A,

We apply Theorem A.7.2.2 with X = Y = Z = A and Xo = Yo = Zo =
O. Theorem A.7.2.2 (and symmetry) say that it is enough to show that
i*(cube(D») = 0 in Pic(A x A). To do this, we compute

S123 0 i(XI' X2) = Xl + X2 = S12 0 i(xll X2),

S23 0 i(X1' X2) = X2 = S2 0 i(X1, X2),
S13 0 i(X1, X2) = Xl = SI 0 i(Xl, X2),

S3 0 i(Xl,X2) = o.
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Hence all of the terms in the sum

i*(cube(D)) = L (-I)#(I)(SI O i)*(D)
IC{1,2,3}

cancel. This completes the proof of Theorem A.7.2.2.
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o

Let P23,P13,P12 be the projections from X x Y x Z onto Y x Z, X X Z,
and X x Y, respectively. Then the theorem of the cube can be rephrased
as saying that the map

Pic(Y x Z) x Pic(X x Z) x Pic(X x Y) -+ Pic(X x Y x Z),
(Cl, C2, C3) t---+ P23cl +phC2 + phC3,

is surjective, or in fancier language, that the functor Pic is quadratic. (See
Mumford [2, II.6] or Serre [3].) The theorem is not true with only two
factors. For example, let C be a curve of genus 9 ~ 1, and let D be the
divisor Ll-C x {P} - {P} xC on the product C xC. Then the restrictions
of D to the two slices {P} x C and C x {P} are trivial, but the restriction
of D to ex {Q} is (the class of) (Q) - (P), which is not trivial unless
P = Q or C is rational. The correct statement for two factors, which is
an intermediate step in the proof of the theorem of the cube, is called the
seesaw principle.

Lemma A.7.2.3. (Seesaw principle) Let X and Y be two varieties, let
C E Pic(X x Y), and define maps ix(Y) = (x, y) and Pl (x, y) = x.
(i) H i;(c) = 0 in Pic(Y) for all x E X, then there exists a class d E
Pic(X) such that c = pi(d).
(ii) If furthermore c is trivial when restricted to some slice X x {Yo}, then
c = 0 in Pic(X x Y).

PROOF. (Sketch) Let D be a divisor in the class c. For all x in some
open subset U of X, we have i;(D) = div(J:z,). Set g(x, y) = fAy) and
D' = D - (g). Then, possibly after shrinking U, we find that i;(D') = 0
for all x E U. Hence the support of D' is concentrated on (X" U) x Y,
and thus D' has the form D" x Y = piD". The second statement is clear.

o

We deduce several important corollaries from the theorem of the cube.

Corollary A.7.2.4. Let A be an abelian variety, let V be an arbitrary
variety, and let f, g, h : V -+ A be three morphisms from V to A. Then for
any divisor D E Div(A),

(J+g+h)* D-(J+g)*D-(J+h)*D- (h+g)* D+r D+g*D+h*D rv O.
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Note that this is a linear equivalence on V x V x V, where for example the
map (f + h) : V x V x V --+ A is given by (f + h)(x, y, z) = f(x) + h(z).

PROOF. Let cube(D) be the divisor described in Theorem A.7.2.1. Then
the divisor we are analyzing is the pullback of the divisor cube(D) by the
map (f,g,h) : V x V x V --+ A x A x A. But cube(D) rv °from (A.7.2.I),
so we are done. 0

Corollary A.7.2.4 implies that for any divisor class c E Pic(A), the
map

Mor(V, A) xMor(V, A) -+ Pic(V x V), (f,g)~ (f+g)*c-J*c-g*c,

is bilinear. The next corollary gives a quadratic property.

Corollary A.7.2.5. (Mumford's formula) Let D be a divisor on an
abelian variety A, and let [nJ : A --+ A be the multiplication-by-n map.
Then

[nJ*(D) rv (n
2

; n) D + (n
2
; n) [-IJ*(D).

In particular,

[ J*(D) rv {n2D ifD is symmetric ([-1]*D rv D),
n nD ifDis antisymmetric ([-1]*D rv -D).

PROOF. The formula is trivially true for n = -1, n = 0, and n = 1. Next
we apply Corollary A.7.2.4 with f = [n], 9 = [1] and h = [-1] to obtain

[n+ l]*D + [n -IJ*D - 2[nJ*D rv D+ [-I]*D.

Now an easy induction, both upwards and downwards from n = 0, gives
the desired result. Or one can use the following elementary lemma. 0

Lemma A.7.2.6. Let G be an abelian group, and let f : Z --+ G be a
map with the property that fen + 1) - 2f(n) + fen - 1) is constant. Then

n2+ n n2 - n
fen) = -2-f (1) + -2- f (-I) - (n2 -I)f(O).

PROOF. Any quadratic function g(n) = an2 + 1m +c has the property that
g(n + 1) - 2g(n) + g(n - 1) is constant. In particular, this is true of the
function g(n) = ~(n2 + n)f(I) + ~(n2 - n)f(-1) - (n2 - I)f(O). On the
other hand, any function with this property is completely determined by
its values at n = -1,0,1. Since g(n) = fen) for n = -1,0,1, it follows
that g(n) = fen) for all n. 0

We now can give an algebraic proof that the kernel of multiplication
by n on an abelian variety of dimension 9 is isomorphic to (Z/nZ)2g , pro
vided that n is relatively prime to the characteristic of the base field. Notice
that this fact is obvious for complex tori.
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Theorem A.7.2.7. Let A be an abelian variety of dimension 9 over an
algebraically closed field k of characteristic p ~ O.
(i) The multiplication-by-n map In] : A ---+ A is a degree n2g isogeny.
(ii) Assume either that p = 0 or that p tn. Then

A[n] = ker[n] ~ (Z/nZ)2g.

(iii) If p > 0, then Afpt] ~ (Z/ptzy for some integer 0 :$ r :$ g.

PROOF. (i) The addition map J.L : A x A ---+ A on the abelian variety A
induces a map J.L* : To(A) x To(A) ---+ To(A) on the tangent space of Ax A
at (0,0), and it is not hard to see that J.L* is simply the addition map on
the tangent space. It follows by induction that [n]* is multiplication by n
on the tangent space. If p = 0 or if p t n, then [n]* is an isomorphism on
To(A). Therefore, dim([n]A) = dim(A), which shows that In] is surjective
and hence is an isogeny. If pin, then In] is still an isogeny, but since we will
not need to use this fact, we will refer the reader to Mumford [2,11.6, page
64] for the proof.

We will use the following lemma to compute the degree of In].

Lemma A.7.2.8. Let A be an abelian variety of dimension 9 over an
algebraically closed field k of characteristic p ~ 0, and let ¢ : A ---+ A be an
isogeny.
(a) Let DI, ... , Dg E Div(A). Then

(¢*DI,···, ¢*Dg)A = deg(¢)(DI , ... , Dg)A.

(See Section A.2.3 for a general discussion of intersection indices.)
(b) If DE Div(A) is ample, then Dg = (D, D, ... ,D)A > O.

PROOF. (a) This is a special case of Theorem A.2.3.2.
(b) Replacing D with a multiple, we may assume that D is very am
ple and use it to define an embedding F : A ---+ IF'. Since A has di
mension g, we can choose hyperplanes HI, ... ,H9 such that the intersec
tion F(A) n HI n ... n Hg is finite, say consisting of N points. Then
Dg = (F*HI, ... ,F*Hg) ~ N > O. 0

We now resume the proof of Theorem A.7.2.7. Let D E Div(A) be
an ample symmetric divisor. (For example, let D' be very ample and take
D = D' + [-1]*D'.) Then

deg([n])Dg = ([n]* D)g (from Lemma A.7.2.8(a)),
= (n2 D)g (from Corollary A.7.2.5),
= n2g Dg (by linearity of intersection index).

But we also know from Lemma A.7.2.8(b) that Dg > 0, so we conclude
that deg([n]) = n 2g . This completes the proof of part (i) of (A.7.2.7).
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Suppose now that p = char(k) = 0 or that p f n. Then the isogeny [n]
is separable, since its degree is prime to p, so its kernel has order equal to
the degree. In other words, #A[n] = n 2g . Further, this formula is true for
every such integer n. The following elementary lemma implies that A[n] ~
(Z/nZ)2g, which will complete the proof of part (ii) of (A.7.2.7). Finally,
since we will not need part (iii), we refer the reader to Mumford [2, 11.6,
page 64] for its proof.

Lemma. Let A be a finite abelian group of order nr, and suppose that
for every integer mlnr, the m-torsion subgroup A[m] satisfies #A[m] = m r.
Then A ~ (Z/nZt.

PROOF. For any integer d ~ 2, let C(d) denote a cyclic group of order d.
The structure theorem for finite abelian groups says that there are integers
d1!d2!·· . Ids such that A ~ C(dd EB··· EB C(ds).
First we observe that ds kills A, so nr = #A = #A[ds] =~. Thus

ds = n. Next we note that d1 divides each di , so C(di)[d1 ] ~ C(d1 ),

and hence d1 = #A[d1] = df· Therefore, r = s. Now, for each i, let
ei = dr/di = nidi, so the ei's are integers. Then

nr = #A = d1d2··· dr = nr/(ele2··· er).

It follows that el = ... = er = 1, so di = n for all n. Hence A ~ C(nt,
which completes the proof of the lemma. 0

Having studied the effect of multiplication-by-n on divisors, we next
describe the action of the translation maps.

Theorem A.7.2.9. (Theorem of the square) Let A be an abelian variety,
and for each a E A, let ta : A - A be the translation-by-a map ta(x) =
x+a. Then

for all D E Div(A) and a, b E A.

In other words, for any divisor class c E Pic(A), the map

~c : A --+ Pic(A),

is a group homomorphism.

a t---t t~(c) - c,

PROOF. We just need to apply Corollary A.7.2.4 with the maps f(x) = x,
g(x) = a, and h(x) = b. 0

In this section we have used the theorem of the cube as the cornerstone
of our theory, but we want to mention that it is also possible to start with
the theorem of the square and deduce the theorem of the cube (see Exer
cise A.7.5). Notice that over C, the theorem of the square is an immediate
consequence of the fact that the automorphy factor of a theta function is
linear.
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Notation. For any divisor D E Div(A), we let

«PD : A ----+ Pic(A), a 1------+ class(t:(D) - D),

be the homomorphism described in (A.7.2.9), and we let K(D) = ker(<<PD)'

The group K(D) can be used to give an ampleness criterion for divisors
on abelian varieties.

Theorem A.7.2.10. Let D be an effective divisor on an abelian variety
A. Then the linear system 12DI is base-point free, and the following four
conditions are equivalent:
(i) D is ample.
(ii) The group K(D) = {a E A It~(D) '" D} is finite.
(iii) The stabilizer G(D) = {a E A It~(D) = D} is finite.
(iv) The morphism A -+ lPL(2D) associated to 2D is a finite morphism.

PROOF. By the theorem of the square, t*-xD + t;D '" 2D, and clearly a
point yEA cannot be on every translate of D. Hence 2D is base-point
free.
Let 1 : A -+ lPL(2D) be the morphism associated to 2D, and let

B(D) be the abelian subvariety attached to 1 by Proposition A.7.1.6. Then
1-1 (J(a)) = B(D)+a for every a E A. In particular, 1-1 (J(a)) is invariant
under translation by any point bE B(D). It follows that ti, 01* = 1* as
maps on divisors. In particular, if we take a hyperplane H in lPL(2D) with
1*H = 2D, then we find that

2D = 1*(H) = ti, 01*(H) = ti,(2D) = 2ti,D.

(N.B. This is an equality of divisors, not merely of divisor classes.) Hence
bE G(D), so we have proven that B(D) C G(D).
(ii) ==> (iii) This is obvious from the trivial inclusion G(D) C K(D).
(iii) ==> (iv) The map 1 is finite if and only if its fibers have dimension 0,
so if and only if B(D) is finite. Hence the inclusion B(D) C G(D) proven
above gives the desired result.
(iv) ==> (i) This is a special case of Proposition A.3.2.4(ii)
(i) ==> (iii) Let a E A be a point with a ~ D, and let V = a+G(D) C A.
We claim that V n D = 0. To see this, suppose that x E V n D. Then
x = a + 9 for some 9 E G(D), and so a = x - 9 E D - 9 = D, since D
is invariant under translation by g. This contradicts the choice of a, so
we see that V n D = 0. But D is effective and ample by assumption, so
Exercise A.3.6(b) implies that dim(V) = O. Therefore, G(D) is finite.
(iv) ==> (ii) Let b be in a connected component K(D)o. Then «P2D otb =
Lb0 «P2D for some Lb E PGL(.e(2D)). The map b 1-+ Lb is from a projective
variety to an affine group, hence must be constant. We conclude that «P2D
is constant on K(D)O, which therefore must be a point. 0
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A.7.3. Dual Abelian Varieties and Poincare Divisors

The main purpose of this section is to show that Pic(A) has a "connected
component" that is itself an abelian variety. We start by giving one de
scription of this connected component.

Definition. Let A be an abelian variety. The group Pic°(A) is the group
of translation-invariant divisor classes,

Pic°(A) = {e E Pic(A) It~e = e for all a E A}.

Theorem A.7.3.1. Let A be an abelian variety, let e E Pic(A), and let

<I>c : A --t Pic(A), a t------t t~e - e,

be the homomorphism described in Theorem A.7.2.9.
(a) The image oE<I>c lies in Pico(A).
(b) IEne E Pic°(A) for some integer n =/; 0, then e E Pic°(A).
(c) H the divisor class e is ample, then <I>c : A ~ Pic°(A) is surjective and
has a finite kernel.

PROOF. (a) This is clear from the theorem ofthe square (A.7.2.9),

(b) It is clear from the definition of <I>c that <I>c+c' = <I>c + <I>c" so using (a)
and the definition of Pico(A), we can say that there is an exact sequence

o ~ Pic°(A) ~ Pic(A) --t Hom(A,PicO(A)) ,
e t------t <I>c.

Now suppose that nc E Pic°(A). Then for all a E A we have

But A is n-divisible (i.e., [n](A) = A), so <I>c is the zero map. Hence
e E Pico(A).
(c) See Mumford [2, 11.8, Theorem 1] or Lang [3, IV.2, Theorem 4] A
proof over C is sketched in Exercise A.5.5. 0

Remark. The Nbun-Severi group ofA, denoted by NS(A), is the quotient
group NS(A) = Pic(A)/ Pico(A). Theorem A.7.3.1(b) says that NS(A)
has no torsion. We also see that the map e 1--+ <I>c induces an injective
homomorphism NS(A) '-+ Hom(A,Pico(A)).

The divisor classes in Pic°(A) can also be characterized as the anti
symmetric or odd classes.
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Proposition A.1.3.2. Let c E Pic(A). The following are equivalent:
(i) [-I]*c = -c.
(ii) c E Pic°(A), or equivalently, K(c) = A.
(iii) shc - pic - pic = 0, where S12,P1,P2 : A x A -+ A are the usual
maps, S12(X,y) =X+Y,P1(X,y) =X, andp2(x,y) =y.

PROOF. To ease notation, we will write r c = 8i2c - pic - pic. Also, for
any a E A, we let i a : A -+ A x A be the map ia(x) = (a,x). Notice that
812 oia(x) = ta(x), PI oia(x) = a, and P2 oia(x) = x. Using these formulas,
we obtain the relation

since [-1] 0 ta = La 0 [-1]

theorem of the square (A.7.2.9)
where d = t~c - c (Theorem A.7.3.I
says that d E Pico(A).)
from (ii)~ (i).=0

(iii) ~ (ii) We are given that r c = 0, so t~c - c = i~(rc) = O. Hence
c E Pico(A).
(ii)~ (iii) We are given that t~c - c = 0 for every a E A, so i~(rc) = O.
Further, r c is clearly trivial when restricted to A x {O}, so the seesaw
principle (A.7.2.3) implies that r c = o.
(ii) ~ (i) Fix an ample symmetric divisor class CO E Pic(A). Theo
rem A.7.3.I(c) says that there is an a E A such that c = t~Co - CO. We use
the theorem of the square (A.7.2.9) to calculate

[-I]*c = [-I]*t:Co - [-I]*Co = t~aCo - Co = -t:Co + Co = -c.

(i) ~ (ii) For an arbitrary c E Pic(A), we claim that c - [-I]*c is in
Pico(A). To verify this, we compute

t:(c - [-I]*c) - (c - [-I]*c)
= t:c - [-I]*t~ac - c+ [-I]*c
= (t:c - c) - [-I]*(t~ac - c)
= (t:c - c) - [-I]*(c - t:c)
= c' + [-I]*c'

Now suppose that [-I]*c = -c. Then by what we just proved, 2c =
c- [-I]*c E Pico(A). It follows from Theorem A.7.3.I(b) that c E Pico(A),
which completes the proof of the theorem. 0

We can give a similar characterization of symmetric or even classes.

Proposition A.1.3.3. Let c E Pic(A). The following are equivalent:
(i) [-I]*c=c.
(ii) shc + dhc = 2pic + 2pic, where 812,PI, P2 are as in (A. 7.3.2) and

d12(X, y) = x - y.

PROOF. Let r c = shc + dhc - 2pic - 2pic, and let j : A -+ A x A be the
map j(x) = (0, x). Then

812 0 j(x) = X, d12 0 j(x) = -x, PI 0 j(x) = 0, and P2 0 j(x) = x,
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j*(rc ) = j*(Si2C + di2c - 2pic - 2p;c) = c + [-l]*c - 0 - 2c = [-l]*c - c.

(ii)~ (i) This implication is clear from the relation j*(rc) = [-l]*c - c.
(i)~ (ii) Let ia(x) = (x,a) be as in the proof of Proposition A.7.3.2.
Then the theorem of the square (A.7.2.9) tells us that

In other words, the divisor class r c is trivial on every slice A x {a}. Notice
that we have not yet used the assumption that [-l]*c = c. However, if we
make that assumption, then we get j* (rc) = 0 from above, so r c is also
trivial on the slice {O} x A. It follows from the seesaw principle (A.7.2.3)
that r c = o. 0

Notice that Propositions A.7.3.2 and A.7.3.3 say that odd divisor
classes have a certain linear property and that even divisor classes have
a quadratic property.
We now come to the classical, yet astonishing, fact that Pico(A) can be

given the structure of an abelian variety. We formalize the correspondence
in the following way.

Definition. An abelian variety A is called the dual abelian variety of A if
there exists a divisor class :P on A x A such that the maps

and
A~ Pic°(A),

A ~ Pic°(A),

are both bijections. (Here ia : A --+ A x A is the map ia(a) = (a, a), and
i a : A --+ A x A is the map ia(a) = (a, a).) The divisor class :P is called the
Poincare divisor class.

Theorem A.7.3.4. The dual abelian variety A exists and together with
the Poincare class:P E Pic(A x A) is unique up to isomorphism. Further,
the Poincare class :P is even.

PROOF. We will give the proof below in the case that there is a divi
sor class c E Pic(A) with K(c) = O. In general, one chooses any am
ple c. Then K(c) is finite (A.7.3.1), and one takes A to be the quotient
AjK(c). The Poincare class is constructed by showing that the divisor
class si2c - pic - P2c on A x A descends to the quotient A x A. For fur
ther details, see Mumford [2, 11.8]. See also Exercise A.5.6 for a proof over
the complex numbers. 0

The map lPc : A -+ Pico(A) will induce an isogeny lPc : A -+ A,
provided that its kernel K(c) is finite, or equivalently by (A.7.2.10), c is
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ample. Such an isogeny is called a polarization. It is said to be a principal
polarization if K(c) = {O}. Thus c gives a principal polarization if the
map cI>c : A ~ A is an isomorphism. Not every abelian variety admits a
principal polarization, but we will see in the next section that Jacobian
varieties come naturally equipped with a principal polarization. If A does
admit a principal polarization, then A is its own dual and it is possible to
describe the Poincare divisor quite precisely.

Theorem A.7.3.5. Suppose that there exists a divisor class c E Pic(A)
such that K(c) = 0, where K(c) = {a E A It~c = c}. Then A is its own
dual, and

si2c - pic - p;c E Pic(A x A)

is a Poincare divisor class.

PROOF. Let 3> = si2c - pic - pic, and for each YEA, let i y : A ~ A x A
be the map iy(x) = (x, y). The divisor 3> is clearly symmetric, so it suffices
to show that the map

is an isomorphism. Notice that

S12 0 iy(x) = x +Y = ty(X), PI 0 iy(x) = x, and P2 0 iy(x) = y.

Using these, we can compute

In other words, the map y 1---+ i;3> is equal to cI>c. But our assumption that
K(c) = 0 means that cI>c is an isomorphism (A.7.3.1(c)), so 3> is a Poincare
divisor. 0

We close this section with a brief mention of how some of these con
structions generalize to an arbitrary smooth projective variety V. One
can define Pico(V) to be the subgroup of Pic(V) composed of divisor
classes algebraically equivalent to zero (see the remark at the end of Sec
tion A.2.3). The group Pico(V) can always be given the structure of an
abelian variety, which is called the Picard variety of V. The quotient
NS(V) = Pic(V)/ Pic°(V) is called the Neron-Severi group of V and is a
finitely generated group. For example, if A is an abelian variety over C,
then NS(A) is the group of Riemann forms on A, and if C is a smooth
projective curve, then NS(C) = Z.
There is another abelian variety associated to V, called the Albanese

variety Alb(V). (See Section A.6.4 for a discussion of Alb(V) when V is
defined over C.) The Albanese variety is the maximal abelian variety into
which V maps. In other words, there is a map 7r : V ~ Alb(V) such that
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for every abelian variety B and every morphism 1 : V -+ B there is a
unique 10 : Alb(V) -+ B such that 1 = 10 0 1r. If V = A is an abelian
variety, it is clear that Alb(A) = A. If V is a curve, we will see in the
next section that the Albanese variety is the Jacobian, hence is isomorphic
to the Picard variety. In general, the connection between the Picard and
Albanese varieties is as described in the following result.

Proposition A.7.3.6. Let 1r : V -+ Alb(V) be the universal map from
V to its Albanese variety. Then the pullback map 1r* : Pic°(Alb(V)) -+

Pic° (V) is an isomorphism. In particular, the Albanese and Picard varieties
are dual to each other.

PROOF. See Lang [3, Section IV.4 and VI.1, Theorem 1].

EXERCISES

o

A.7.1. Let D and E be divisors on an abelian variety, and let m be a nonzero
integer. Prove that K(mD) = [m]-l(K(D)) and K(D) n K(E) c K(E +
D).

A.7.2. Let A be a complex abelian variety of dimension g, and let D be an
ample divisor on A. Show that there exist integers d1 , ... , dg such that
K(D) ~ (Zjd 1Z)2 EB ... EB (ZjdgZ)2 and l(D) = dl ... dg = J#K(D). Ex
tend this to the case where A is defined over an arbitrary field of charac
teristic zero.

A.7.3. This exercise provides an "analytic" proof that the group law on an abelian
variety is abelian.
(a) Let G be a projective algebraic group, and for each 9 E G define a
map ¢>(g) : G -> G by ¢>(g)(h) = ghg- 1

• The map ¢(g) induces an endo
morphism of the local ring (ge,G, and hence an endomorphism ¢k(g) of the
vector space (ge,GjM~,G for any integer k. Prove that ¢k(g) is the identity
map for all k. (Hint. A morphism from a projective variety to an affine
variety must be constant.)
(b) Use (a) to prove that ¢(g) induces the identity map on (ge,G. Deduce
that ¢(g) itself is the identity, and hence that G is commutative.

A.7.4. The purpose of this exercise is to show that a rational map from lP'n to
an abelian variety A is constant.
(a) Let G be an algebraic group, and assume that G can be embedded as a
dense open subset of a smooth projective variety X. Prove that any rational
map f : G --+ A must be a homomorphism followed by a translation.
(Hint. By Corollary A.7.1.5, f is a morphism and the map (x, y) ....... f(xy)
f(x) - f(y) extends to X x X -> A. Use Lemma A.7.1.1 to finish the
proof.)
(b) Now let f : lP'n --+ A be a rational map. Prove that f is constant.
(Hint. Note that lP'n contains the group G:; and the group G;:.)
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A.7.5. Show that the theorem of the cube (A.7.2.1) can be deduced directly
from the theorem of the square (A.7.2.9) and the seesaw principle (A.7.2.3).
Thus we could have used the theorem of the square as our starting point
to prove the basic divisor relations on abelian varieties.

A.7.6. In this exercise we sketch the proof of the following theorem of Lang. Let
X be a projective variety, let e E X be a point, and let m : X X X - X
be a morphism such that

m(e,x) = m(x, e) = x for all x E X.

Then X is an abelian variety. To ease notation, we write m(x, y) = xy.
(a) Consider the map 'Ij;: X x X - X x X defined by 'Ij;(x,y) = (xy,y).
Show that 'Ij;-l(e,e) = {(e,en, and hence that 'Ij; is onto (Hint. Use the
dimension theorems.)
(b) Show that there exists an irreducible component r of the algebraic set
{(x, y) E X x X Ixy = e} satisfying 1'2(r) = X. Show that r also satisfies
Pl(r) = x.
(c) Now consider the map

</>: r x X -- X ((x',x),y) >-+ x'(xy).

Prove that ¢>((x',x),y) = y. (Hint. Use the rigidity lemma.) Show also
that xx' = x'x = e for all (x',x) E r.
(d) Use the map

rxx xX-X, ((x',x),y,z) 1-+ x((x'y)z),

to show that the law is associative. Conclude that (X, m) is an algebraic
group, and hence an abelian variety.

A.7.7. Let G be an algebraic group. For any (closed) subvariety V and any 9 E G
we let 9V = {gx Ix E V} be the translate of V, and we define the stabilizer
of V to be the set

Stabv = {g E GlgV =V}.

Prove that Stabv is a (possibly reducible) algebraic subgroup of G.

A.7.S. (Wei! pairing). Let Ajk be an abelian variety, let m be a positive integer,
and let aE AIm] correspond to a divisor D in PicO(A). (If char(k) = P > 0,
we also assume that P f m.)
(a) Show that there exist rational functions f,g E k(A) such that mD =
(f) and f(mx) =g(x)m.
(b) Let a E A[m]. Prove that the function g(x+a)g(x)-l is constant, that
its value depends only on a and a, and that the value lies in the set of m th
roots of unity J.l.m. We will denote this value by em {a, a).
(c) Show that em is a perfect pairing em : AIm] x A[m] -> J.l.m.
(d) Let C E Pic(A) be an ample divisor defined over k, assume that m is
coprime with card(K(c)), and let 4>c : A - Pic°(A) = A be the associated
polarization 4>c(a) = t~c - c. Prove that the pairing

ec,m : A[m] x AIm] -> J.l.m, ec,m(a,b) = em(a,4>c(b)),

is a nondegenerate skew-symmetric pairing.
(e) Show that k(J.l.m) C k(A[mJ).



134 A. The Geometry of Curves and Abelian Varieties

A.7.9. Let A be an abelian variety, let D E Div(A), and define a map a(x,y) =
(x+y,x - y).
(a) Show that a is an isogeny from A x A to A x A. What is its degree?
(b) If D is symmetric, prove that

a*(D x A + A x D) rv 2(D x A + A x D).

(c) If Dis antisymmetric, prove that a*(D x A + A x D) rv 2(D x A).

A.7.1O. Let A be an abelian variety, and set EndQ(A) = End(A) I8l Q.
(a) Let a E End(A). Prove that a is an isogeny if and only if a E
EndO(A)*.
(b) Suppose that A is simple. Prove that EndQ(A) is a skew field (i.e.,
Endo(A) satisfies all of the axioms of a field except that its multiplication
may not be commutative).
(c) Again suppose that A is simple, let K = EndQ(A), and let B = Am.
Prove that Endo(B) = Mat(m x m, K).

A.B. Jacobians over Arbitrary Fields

In this section we develop the algebraic theory of Jacobians for smooth pro
jective curves. The Jacobian of a curve C is an abelian variety that is nat
urally isomorphic to Pic°(C). We sketch the construction in Section A.8.l,
the main results being given in Theorems A.8.l.l and A.8.2.l. The con
struction relies on some knowledge of families of varieties (Hilbert or Chow
spaces), which we briefly describe in an appendix. Readers desirous of
delving further into the matter should consult the survey of Milne [2] and
the delightful book of Mumford [3]. The book of Serre [1] also contains the
construction of Jacobians and generalized Jacobians.

A.B.1. Construction and Properties

A curve of genus 0 has Pico (C) = 0, so we will concentrate on curves
of positive genus. Our first theorem describes the main properties of the
Jacobian of such curves.

Theorem A.B.I.1. Let C be a smooth projective curve of genus g 2:: 1.
There exists an abelian variety Jac(C), called the Jacobian of C, and an
injection j : C '---+ Jac(C), called the Jacobian embedding of C, with the
following properties:
(i) Extend j linearly to divisors on C. Then j induces a group isomor

phism between Pico(C) and Jac(C).
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(ii) For each r ~ 0, define a subvariety W r C Jac(C) by

Wr = j(C) + ... + j (C) ., '...
r copies

(By convention, Wo = {O}.) Then

135

dim(Wr ) = min(r,g) and W g = Jac(C).

In particular, dim(Jac(C)) = g.
(iii) Let e = Wg - 1 . Then e is an irreducible ample divisor on Jac(C).

Remarks. (i) It is clear that the curve C determines the pair (Jac(C), e)
up to a natural isomorphism. The converse is called Torelli's theorem: Over
an algebraically closed field, the isomorphism class of the pair (Jac(C), e)
determines the isomorphism class of the curve C. See Milne [2, Theo
rem 12.1] for a further discussion.
(ii) Suppose that the curve C is defined over a field k. Then its Jacobian
variety Jac(C) is also defined over k. Unfortunately, it may not be possible
to define the injection j : C'---+ Jac(C) over k. More precisely, the map j
is defined by choosing a divisor D of degree 1 and then setting

j : C'---+ Pic°(C) ~ Jac(C), j(P) = CI((P) - D).

In particular, if there is a point Po E C(k), then we can take D = (Po) to
get a map j that is defined over k. This will suffice for our proof of Faltings'
theorem (Mordell conjecture), since if C has no k-rational points, then it
is not difficult(!) to prove that C(k) is finite. We also note that once we
have identified Jac(C) and Pic°(C), then the embedding j is unique up to
translation.
(iii) There is, of course, a more intrinsic definition of the Jacobian as a
variety representing the functor Pico. See Milne [2] for details and Exer
cise A.8.3 for some functoriality properties.

The fundamental tool for the algebraic construction of the Jacobian
is the Riemann-Roch theorem for curves. We briefly sketch the first such
construction, which is due to Weil [2,3]. Consider the symmetric powers
of the curve C,

Symr C = (C x··· x C)/Sr.

Here Sr denotes the symmetric group on r letters acting in the obvious way
on the product of r copies of C. (See Appendix A.8.3 for more details.)
We can identify Symr C with the set of effective divisors of degree r on C.

If Jac(C) exists, then there must be a birational morphism Symg C ---+

Jac(C), and hence one should be able to "see" the group law on Symg C. In
fact, the Riemann-Roch theorem tells us that if D is a divisor of degree g,
then f(D) ~ 1. Further, for "most" choices of D, there is an equality
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i(D) = 1. (See Lemma A.8.2.2 below for a precise statement.) So if we fix
an effective divisor Do E Symg C, then we can add two divisors D 1 , D2 E
Symg C by setting their sum equal to the divisor D 3 E Sym

g C satisfying
D1+D2 rv D3 +Do. Notice that the divisor D3 will be uniquely determined
if and only if i(DI + D2 - Do) = 1. This will define a rational map
Symg C x Symg C -+ Symg C that satisfies the axioms of a commutative
group law, except for the minor drawback that since it is only a rational
map, it is not defined at all pairs of points.
Weil then proceeds to show that such a group law defined by ratio

nal maps can be transformed into an honest group law. More precisely,
he shows in this situation that there exists an algebraic group G and a
birational isomorphism p : Symg C -+ G such that p(x ffi y) = p(x) + p(y)
wherever it is defined. He then uses the valuative criterion of properness
to show that G is an abelian variety, and hence that p must be a morphism
(Corollary A.7.1.5).
We are going to present a similar construction due to Chow [1], which

is perhaps less natural, but is simpler technically. The idea is to consider
Symn C for some large n (it suffices to take n ~ 2g - 1). Then the map
Symn C -+ Jac(C) should be a fibration, and the Riemann-Roch theorem
implies that the fibers are projective spaces of dimension n - g. Now, all
points play the same role, so we will not need any birational transforma
tions. We obtain Jac(C) directly as a projective variety that parametrizes
the IP'n-g's lying in Symn C. We now give the details of this construc
tion, modulo some general facts about varieties parametrizing families of
subvarieties that are discussed in Appendix A.8.3.

PROOF. (sketch of Theorem A.8.1.1) For simplicity we assume that C has a
k-rational point Po E C(k). We select an integer n large enough so that for
any divisor D of degree n we have i(D) = n - 9+ 1. (The Riemann-Roch
theorem (A.4.2.3) says that any n ~ 29 - 1 will suffice.) Now consider the
variety Symn C, whose points we identify with effective divisors of degree n
on C. We set Do = n(Po). We will use Do as a base point on Symn C.

IfDE Symn C, then the linear system IDI has dimension n-g. Notice
that the elements of IDI are points of Symn C, so IDI is a subset of Symn C.
In fact, it is a subvariety. In other words, a linear system of degree n
corresponds to a subvariety of SymnC that is isomorphic to IP'n-g. Let

J = {linear systems of degree n on C},

and let 7r be the map

7r: SymnC _ J, D~IDI·

At this point, J is just a set, but we do know that the fibers of 7r are
isomorphic to pn-g.
We can use our basepoint Do to define an addition map

m:JxJ-J,
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This construction using families of linear systems is very natural, so it is
not hard to believe the following two facts (for further details, see Ap
pendix A.8.3):

Fact 1. J is an algebraic set, and the map 11" is an algebraic morphism.

Fact 2. The map m : J x J - J is an algebraic morphism.

Since Symn C is a projective variety and 11" is surjective, Fact 1 implies
that J is a projective variety. Then the dimension theorem (A.1.3.7) and
our knowledge of the fibers of 11" give us the dimension of J,

dim(J) = dim(Symn C) - dim(lI"n-9 ) = n - (n - g) = g.

Next we show that m defines a group law on J. The formulas

m(IDI, IDol) = m(IDol, IDI) = IDI and m(IDI, 12Do- DI) = IDol

show that IDo I is the identity element and that inverses exist. To check
associativity, we compute

m(m(ID11, ID2 1), ID3 1) = m(ID1 + D2 - Dol, ID31)
= ID1 + D2 + D3 - 2Dol

= m(IDll, ID2 + D3 - Dol)
= m(lD11,m(ID2 1, ID31)).

Hence m defines a group law on J, so J is an abelian variety.
We can now define a map

j : C ---+ J, P~ I(p) + (n -1)(Po)l,

and we can extend j linearly to get a map

class(D)~ ID + Dol·

Now the following result completes the proof of the first part of Theo
rem A.8.1.1.

Proposition A.8.1.2. The map j is an isomorphism from Pico(C) to J.

PROOF. Let D be a divisor of degree n. Then j(D - Do) = IDI, so j is
surjective. Next suppose that j(D) = IDol. This means that ID + Dol =
IDol, and hence D is a principal divisor. Therefore, j is injective. 0

Next consider the setWr = j(C)+·· ·+j(C). It is the image in J of the
projective variety C x ... x Cj hence Wr is a projective variety of dimen
sion at most T. Also, Wr+1 is clearly equal to Wr + j(C) and contains Wr ,
so either Wr+1 =Wr or else dim(Wr+I) = dim(Wr ) + 1. (Note that all of
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the Wr's are irreducible.) But if there is some r with Wr+l = Wr, then
by induction we see that Ws = Wr for all s ~ r. However, the surjectivity
of the map j : Pico(C) --+ J (A.8.l.2) tells us that the union of the Wr's
fills up J, and we know from above that J has dimension g. It follows that
dim(Wr ) = r for all r ~ g, and that dim(Wr ) = 9 for all r ~ g.
This completes the proof of Theorem A.8.l.l except for the assertion

that the divisor e is ample. We will leave this for the next section, where we
will show that K(8) = {O}, which implies ampleness by Theorem A.7.2.1O.

o

A.8.2. The Divisor e

The addition law on the Jacobian J is closely related to the addition of
divisors on the curve C. Not surprisingly, this interplay leads to interesting
divisor relations when one pulls back the theta divisor 8 to C. Similarly,
one would expect an interesting divisor by pulling back the Poincare divisor
she - pie - P2e from J x J to C x C. The next theorem describes some
of these relations.

Theorem A.8.2.1. Let C be a curve of genus g, let Po E C(k), and let
J = Jac(C) ~ Pico(C) be the Jacobian variety ofC. Let j : C --+ J be the
Jacobian embedding that sends a point P to the divisor class of(P) - (Po),
and for any c E J, let jc(P) = j(P) +c. Further, let 8 = j(C) + ... + j(C)
be the theta divisor on J, and let e- = [-1]*8.
(i) There is a point J<i, E J such that

8- = t~e.

More precisely, let Kc be a canonical divisor on C. Then J<i, = j(Kc).
(ii) With J<i, as in (i), for any c E J we have

and

(iii) Let ~ C C x C be the diagonal. Then

PROOF. Formula (i) comes from the Riemann-Roch theorem. Let D be an
effective divisor of degree 9 -1, so j(D) E 8. The Riemann-Roch theorem
says that

i(Kc - D) = deg(D) - 9 + 1+ i(D) = i(D) ~ 1,



§A.8.2. The Divisor e 139

which means that Ke - D is linearly equivalent to an effective divisor E
of degree 9 - 1. Then j(Ke) - jeD) = j(E) E 8, and hence jeD) E
8- + j(Ke ). This holds for all effective divisors D of degree 9 - 1, which
proves that 8 C 8- + j(Kc). Writing /'i, = j(Kc), this implies that
t~8 c 8-, and since they are both irreducible divisors, they must be
equal. This proves (i).
In order to prove (ii), we will make use of the following lemma.

Lemma A.8.2.2. (Weil) Let 0 ~ d ~ 9 be an integer. There is a
nonempty open subset U C Symd C such that leD) = 1 for all D E U.
Equivalently, the map Symd C -+ J = Jac(C) is injective on the set U.
(By convention, we set SymO C to be the set consisting of the divisor 0.)

PROOF. We first observe that if D' is any effective divisor with leD') ;::: 1,
then

{p E C Il(D' - P) = l(D') - I}

is open and nonempty. This is true because if we fix a nonzero function
f E L(D'), then

L(D' - P) = L(D') =} f E L(D' - P)

=} div(f) + D' - P ;::: 0

=} P E suppeD') or f(P) = o.

Hence {p E C Ii(D' - P) = l(D')} is contained in the union of the support
of D' and the set of zeros of f, so it is finite. Now apply this with D' =
Ke - D for some effective divisor D E Symd C. We find that there is a
nonempty open set U C C such that

i(Ke - D) ;::: 1=} i(Ke - (D + P») = i(Ke - D) - 1 for all P E U.

Since it is trivially true that

i(Ke - D) = 0 =} i(Ke - (D + P») = 0 for all P E C,

we see by an easy induction on the degree of D that

{D E SymdC li(Ke - D) = 9 - d}

is open. (Note that l(Ke) = g.) But Riemann-Roch says that this is
precisely the set of D such that leD) = 1, which completes the proof of
Lemma A.8.2.2. D

We now resume the proof of Theorem A.8.2.1(ii). Let U C Symg C
be a nonempty open set such that Symg C -+ J is injective on C and such
that every D = E(Pi) E U is a sum of distinct points Pi. Lemma A.8.2.2
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tells us that such a set exists. Let c E -j(U). Then g(Po) - c is linearly
equivalent to exactly one effective divisor (PI) + ... + (Pg ), and further,
the Pi'S are distinct.
Now suppose that PEe is any point in the support of j~e-. Then

(P) - (Po) + c '"oJ -D + (g - l)(Po)

for some effective divisor D of degree g - 1, so (P) + D '"oJ g(Po) - c. It
follows that (P) + D = (PI) + ... + (Pg ). (N.B. This is an equality of
divisors, not just a linear equivalence.) Therefore, the only points that
appear in j~e- are Pll ... , Pg , and since they are distinct, they appear
with multiplicity one. Hence j~8- = (PI) + ... + (Pg ) '"oJ g(Po) - c. This
proves the desired result for all c in an open subset U of J.
To prove that j~e- '"oJ g(Po) - c for all c E J, we use the theorem of

the square (A.7.2.9). Thus for any a, b, c E J we have

Further, j* 0 t~ = j~, so we see that if the desired formula is true for a, b, c,
then it is also true for a + b - c. But it is easy to see that the map from

UxUxU--+J, (a, b, c) 1------+ a + b - c,

is onto. Indeed, the map (b, c) ....... b - c is already onto, since if x E J, then
(U - x) n U ¥- 0, and so x = v - u with u, v E U. This completes the proof
of the first part of (ii)
To obtain the second part of (ii), we combine the first part with (i).

Thus

(iii) By the seesaw principle (A.7.2.3), it suffices to prove that the two
divisors are linearly equivalent on each slice {P} x e and e x {P}, and
by symmetry it suffices to use only the slices {P} x e. To ease notation,
we let 6 = si28 - pie - pie, and we let ip : e -+ e x e be the inclusion
ip(Q) = (P, Q).

It is clear that (for P ¥- Po) we have

ip(-~ + (e x {Po}) + ({Po} x e)) = -(P) + (Po).

To compute ip(j x j)*6, we compute each term separately. Notice that

PI 0 (j X j) 0 ip = constant

so we find that

and P2 0 (j X j) 0 ip = j,

i p 0 (j x j)* 0 pi(e) '"oJ 0, i p 0 (j x j)* 0 p;(e) = j*8 '"oJ g(Po) + K,.
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For the last linear equivalence we have used (ii) with c = O.
Similarly,

(812 0 (j x j) 0 ip)(Q) = j(P) + j(Q) = Ji(p)(Q),

which gives

where again we have used (ii). Combining these calculations gives

iF 0 (j x j)*(8) '" iF 0 (j x j)* 0 8i2(8) - iF 0 (j x j)* 0 pi(8)

- iF 0 (j x j)* 0 P2(8)

rv (g(po) - j(P) + It) - 0 - (g(Po)+ It)
= -j(P) rv -(P) + (Po).

This completes the proof of Theorem A.8.2.1.
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o

We now use Theorem A.8.2.1 to show that the theta divisor on a
Jacobian variety gives a principal polarization, and hence that Jacobian
varieties are self dual. If we identify J with J, then (A.7.3.5) says that

defines a Poincare divisor class. Thus Theorem A.8.2.1(iii) is really a de
scription of the pullback of the Poincare class from J x J to C x C. Since J
is self-dual, we will generally work directly on J x J and avoid the formal
ism of dual abelian varieties.

Corollary A.8.2.3. Let C be a curve ofgenus 9 2: 1, let 8 be the theta
divisor on its Jacobian J, and let K(8) = {a E J It~e '" 8}.
(a) K(8) = {O}, so 8 gives a principal polarization

epa : J ~ Pico(J) ~ J.

(b) e is an ample divisor.
(c) Let P be a Poincare divisor on J x J. Then

PROOF. (a) Let a E K(e). Then t~8 '" 8, so two applications of Theo
rem A.8.2.1(ii) gives

g(Po) + It '" j*e '" j*(t:e) '" j:8 '" g(Po) - a + It.
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Hence a = O. This proves that K(8) = 0, so by definition, e defines a
principal polarization. Theorem A.7.3.1 then implies that ella is an isomor
phism.
(b) This is immediate from Theorem A.7.2.10, which says that a divisor D
is ample if and only if K(D) is finite.
(c) This is a restatement of Theorem A.7.3.5 and the fact that e defines
a principal polarization. 0

A.8.3. Appendix: Families of Subvarieties

We give here an introduction, via several examples, to a fundamental idea
in algebraic geometry. This idea says that sets of (isomorphism classes of)
varieties or maps between varieties are often themselves algebraic varieties.
One example we have already met is IF, which can be described as

the set of lines through 0 in An +1. Grassmann varieties (Exercise A.l.ll)
generalize this example. A second example is the variety Symn C. This
variety parametrizes effective divisors of degree n on C (Le., unordered n
tuples of points on C). Finally, and most importantly, we have the variety
of divisor classes of degree 0 on a curve C, which is precisely the Jacobian
variety Jac(C) that we have been studying in this section. We will discuss
Symn C and Jac(C) further below.
There is a vast literature on the general problem of moduli spaces,

which are spaces that classify isomorphism classes of natural algebra-geo
metric objects. For example, the set of isomorphism classes of curves of
genus 9 is a moduli space M g , and the set of isomorphism classes of princi
pally polarized abelian varieties of dimension 9 is a moduli space A g , and
both M g and Ag have natural structures as quasi-projective varieties. We
will not deal with these more difficult moduli problems, and we refer the
interested reader to Mumford-Fogarty [1] for further details.
First we explain how the quotient Symn C = (C x ... x C)/Sn can be

given the structure of a variety. More generally, we describe the quotient
of a variety by a finite group. We begin with a definition that describes
what properties a quotient variety should have.

Definition. Let G be an algebraic group acting algebraically on a variety
X (Le., G is a subgroup of Aut(X)). A geometric quotient ofX by G is a
variety Y and a morphism 7r : X ---+ Y such that:
(1) The fibers of 7r are the orbits of the action of G. That is, for every
XEX,

rr- 1 (7r(x)) = Gx = {<7X 1<7 E G}.



§A.8.3. Appendix: Families of Subvarieties 143

(2) Let f : X -+ Z be a G-invariant morphism of varieties (i.e., f(ax) =
f(x) for all x E X and all a E G). Then there is a morphism 9 : Y -+ Z
such that f = 9 0 7r.

It is clear that if the quotient of X by G exists, then it is unique up
to isomorphism. We denote the quotient, if it exists, by X/G.
The existence of such a quotient is far from automatic. One necessary

condition for the existence of the quotient is that all orbits be closed. For
example, the orbits ofGL(n) acting on An are not all closed, so the quotient
does not exist in this case. As the following theorem indicates, the situation
is much simpler in the case of finite groups.

Theorem A.8.3.1. The geometric quotient ofa variety by a finite group
exists.

PROOF. We start with an affine variety X and a finite group G c Aut(X)
and construct a morphism of affine varieties 7f' : X -+ X/G. The funda
mental result from algebra that we need is a famous theorem of Hilbert.

Proposition A.8.3.2. (Hilbert) Let A be an integral domain that is a
finitely generated k-algebra. Let G be a finite group that acts on A as a
k-algebra. Then the fixed subalgebra

AG = {a E A Ia(a) = a for all a E G}

is again a finitely generated k-algebra.

PROOF. Let Xl,"" X n generate the k-algebra A, so A = k[XI, ••• , xn ].

Consider the polynomials

Pi(X) = II (X - a(xi)) = LbijXj E A[X].
uEG j

The algebra B = k[bll , ... , bng] is a finitely generated k-algebra, hence is
Noetherian by the Hilbert basis theorem. Further, A is integral over B by
construction, and A is clearly finitely generated as a B-algebra, so A is
finitely generated as a B-module.
Note that every bij is in AG (i.e., bij is fixed by G), so AG is a B

submodule of the finitely generated B-module A. Hence AG is itself a
finitely generated B-module, say AG = BUI + ... + BUm. Then AG =
k[bll , ... , bng ,UI,.'" urn], which proves that AG is a finitely generated k
algebra.

o

Now let X/k be an affine variety, and let A = k[X] = CJ(X) be its ring
of regular functions. The finite group G c Aut(X) acts on A. Hilbert's
theorem (A.8.3.2) tells us that the ring AG is a finitely generated k-algebra.
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Using the fact that the category of affine varieties is fully equivalent to the
category of finitely generated integral k-algebras, we can find an affine vari
ety Y/k with k[Y] = AG. Then the natural inclusion AG '--+ A corresponds
to a morphism 7r : X ~ Y. We claim that Y is a geometric quotient of X
byG.
By construction, 7r* is the inclusion of AG into A, so for any a E G we

have
(7r 0 a)* = a* 0 7r* = 7r* .

Hence 7r 0 a = 7r, which implies that the orbits of G are contained in the
fibers of 7r.
Next let x, x' E X have different G-orbits. Since X is affine, we can

find a function F E k[X] that vanishes at x' but does not vanish at the
finitely many points in the orbit Gx of x. Then the function IIo-EG F(a(z»)
is in AG, vanishes at x', and does not vanish at x. This implies that
7r(x' ) =1= 7r(x), and hence that the fibers of 7r are exactly the orbits of G.

Finally, consider a G-invariant morphism f : X ~ Z. This induces
a homomorphism f* : k[Z] ~ k[X] = A whose image sits in AG, which
means that f* factors through 7r*. It follows that f factors through 7r. This
completes the proof of Theorem A.8.3.1 in the case that X is affine.
In general, if X is a quasi-projective variety, we cover X by G-invariant

open affine subvarieties Xi, construct the quotients Xi/G, and glue the quo
tients together to obtain X/G. In order to obtain G-invariant affine open
subsets, we take any hyperplane section H and note that H' = Uo-EG a(H)
is again a hyperplane section (the sum of very ample divisors is again very
ample). Then X" H' is affine and G-invariant, and by varying H we can
cover X with such sets. We leave the details for the reader. 0

An immediate application of Theorem A.8.3.1 is that the symmet
ric product Symn V of any variety is again a variety. Indeed, Symn V is
the quotient of the product vn by the natural action of the symmetric
group on the n coordinates. We also mention that if C is a smooth curve,
then Symn C will be a smooth variety. For example, one can show that
Symn A1 ~ Anand Symn pl ~ pn. However, if dim(V) ~ 2, then Symn V
will generally have rather nasty singularities.
As a second application, we can combine (A.8.3.1) with Poincare's

irreducibility theorem (A.5.1.7) to construct the geometric quotient of an
abelian variety by an abelian subvariety. Let A be an abelian variety, and
let B c A be an abelian subvariety. Poincare's theorem says that there is
another abelian subvariety C c A such that the map

s:BxC~A, (b,c)~ b+c,

is an isogeny (Le., s is surjective with finite kernel). Notice that A is equal
to the geometric quotient of B x C by the group ker(s). We also note that
B n C ~ ker(s) via the map (b) I-t (b, -b), so B n C is finite. Let Y be
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the geometric quotient of C by the finite group B n C. Then the map
B x C -+ B x Y -+ Y factorizes through A ~ (B x C)jker(s) -+ Y, and it
is easily checked that this provides a geometric quotient of A by B.
We now come to the main task of this section. Let C be a curve of

genus 9 ~ 1. The points of the variety SymnC correspond to effective
divisors of degree n on C, and for any Do E Symn C, the associated linear
system

IDol = {D E SymnCID rv Do}

is a subset (in fact, a subvariety) of Symn C. We want to prove that the
set of linear systems J can be given the structure of an algebraic variety
so that the natural map

D t--+ IDI,

is a morphism. Of course, we also want to endow J with the structure of
an algebraic group. Our main tool is a variant of Lemma A.8.2.2, which
we state explicitly for clarity.

Lemma A.8.3.3. Let C be a curve of genus 9 ~ 1, and let D be an
effective divisor of degree n - 9 on C. There exists a nonempty open set
UD C SymnC such that f(D' - D) = 1 for all D' E UD. Further, as D
varies, the open sets UD cover Symn C.

PROOF. See Milne [2, Proposition 4.2]. The proof is very similar to the
proof of Lemma A.8.2.2. 0

Theorem A.8.3.4. Let C be a curve ofgenus 9 ~ 1, and let n ~ 29+ 1
be an integer. Then there exists an abelian variety J and an identification

J one~one {linear systems IDI of degree non C}

such that the natural map 7r : SymnC -+ J, D .- ID I, is a morphism.

PROOF. (sketch) For each effective divisor !::i of degree n - 9 (Le., !::i E
Symn-9(C», we define two sets:

Ut:. = {D ESymn(C) If(D -!::i) = I},
Vt:. = {D E Sym9(C) ID +!::i E Ut:.}.

Lemma A.8.3.3 says that Ut:. is open in Symn(C), and consideration of the
map

it:. : Sym9(C) ---+ Symn(c), D t--+ D +!::i,

shows that Vt:. = i;;l(Ut:.) is open in Sym9(C).
Let J be the set of linear systems of degree n on C, and consider the

map
It:. :Sym9 (C) ---+ J, D t--+ ID + !::i/.
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We write JI), for the image of fl),. It is clear that 7r 0 il), = fl), on VI)" and
we claim that it:. : VI), --+ JI), is a bijection. Indeed, if fl),(D) = it:.(D'),
then D + ~ I"V D' +~. But by the definition of VI), and UI)" we know that
D +~ is the unique effective divisor containing ~ in its linear equivalence
class. Therefore, D +~ = D' + ~, and hence D = D'.

We use the bijection fl), : VI), --+ JI), to endow JI), with the structure of
the variety VI),. We also note that if ~' is another effective divisor of degree
n - g, then fl), and fl),1 agree on VI), n VI),I , so we can glue the algebraic
structure on the JI), 's to give all of J the structure of an algebraic variety.
The next step is to show that the map 7r is a morphism. We will not

give the details and will just mention that this can be done by showing
that 7r is a fibration whose fibers are isomorphic to pn-g. More precisely,
we can cover Symn(C) with open sets Ui such that each Ui is isomorphic to
Vi x Ipm-g for some open subset Vi C J and such that the map 7r : Ui --+ J
is equal to the composition

In order to describe the group law on J, we begin by observing that
the map C n x Cm --+ cn+m --+ Symn+m C is algebraic and clearly invari
ant by Sn xSm, so it induces a morphism Symn C x Symm C --+ Symn+m C.
The composition of this morphism with the projection Symn+m C --+ J is
invariant by linear equivalence on both factors, so it factors through an
algebraic map J x J --+ J. (See the remark below for quotients by equiv
alence relations.) We will leave it to the reader to verify that this map is
precisely the group law on J. This concludes our sketch of the construction
of the Jacobian variety. 0

Remark. More generally, one defines the geometric quotient of an alge
braic variety X by an equivalence relation ~ to be a variety Y and a
morphism 7r : X --+ Y satisfying:
(1) The fibers of 7r are the equivalence classes of~. In other words, for
each x E X,

7r-1(7r(X») = {x' E X Ix' I"V:R x}.

(2) Let f :X --+ Z be an ~-invariantmorphism of varieties. Then there is
a morphism 9 : Y --+ Z such that f = 9 0 7r.

A necessary condition for the existence of the quotient is that equiva
lence classes should be Zariski closed. Needless to say, it is a very difficult
problem in general to give sufficient conditions for the existence. Notice
that we have shown (or rather sketched) that the Jacobian variety J of C
is the geometric quotient of Symn C by the linear equivalence relation on
effective divisors of degree n for any fixed n 2: 2g + 1.
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A.8.l. Assume that the characteristic of k is not 2, and let el, ... ,e2g+1 E k be
distinct. Let G be the hyperelliptic curve defined by the equation y2 =
(x - eI) ... (x - e2g+I), where G includes the point 00 at infinity.
(a) Write P. = (ei, 0) E G. Prove that

div(x - ei) = 2(P.) - 2(00),

div(y) = (PI) + ... + (P2g+d - (2g + 1)(00).
(b) Let j : G -+ Pic°(G) = J be the embedding j(P) = CI((P) - (00».
Prove that j(H), ... ,j(P2g+d generate the 2-torsion subgroup of J.
(c) Describe all linear relations satisfied by j(P1), ... ,j(P2g+1), and use
your results to prove directly that J[2] ~ Z/229Z.

A.8.2. Let G be a smooth projective curve of genus 9 ~ 1, fix a divisor D E
Div(G) of degree n ~ 1, and use it to define a map

ID : G ----+ Pico(G) = J, P 1-----+ CI(n(P) - D).

(a) Let 8 E Div(J) be a theta divisor on J. (Note that 8 is well-defined
only up to a translation.) Prove that

ID(8 +8-) '" 2nD + n 2Kc,

where 8- = [-1]·8 and Kc is a canonical divisor on G. In particular, this
divisor class is independent of the choice of 8.
(b) Let :P = si2(8) - pi(8) - p;(8) be the Poincare divisor on J x J as
described in (A.7.3.5). Prove that

(fD x ID)*(:P) '" neD x G) + neG x D) - n2.6..

(c) Take D = Kc, and let 8 = 8 +8-. Prove that
(fD x ID)*(gS~28 - (g + 1)p~8 - (g + 1)P28) '" -8g(g -1)2.6..

Similarly, let d12 : J x J -+ J be the map d12 (X, y) = X - Y and prove that

(g - l)(fD X ID)* (p~8+ P28) '" gd~28 - 8g(g - 1)2.6..

A.8.3. (F\mctoriality of the Jacobian) Let 71" : G' -+ G be a morphism between
two smooth projective curves, and let J = Jac(G) and J' = Jac(G'). We
can use 71" and the identifications J = Pic°(G) and J' = Pic°(G') to define
morphisms 71". : J -+ J' and 71". : J' -+ J as follows. The map 71". is given
by pullback on divisor classes, and the map 71". is defined by the formula
7I".(CI(2:niP.)) = CI(2: n i7l"(p'».
(a) Prove that 71". is a well-defined homomorphism. (Hint. The map 71"

enables us to view keG') as a finite extension of keG). In particular, there
is a norm map N : keG') -+ keG). Prove that if 2:niPi = div(f), then
2: ni7l"(P.) = div(N(f».)
(b) If p : Gil -+ G' is another morphism, show that (71" 0 p)* = p. 071"· and
(7I"Op).=7I".op•.
(c) Assume that 71" is nonconstant, hence surjective. Prove that 71". is sur
jective. Is 71". always injective? Does 71". always have a finite kernel?
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A.8A. Let k be a field with char(k) i= 2, and let a, b E k*. Consider the smooth
projective curve C containing an affine piece U defined by the equation
y2 = (x2 _ a2)(x2 _ a-2)(x2 _ b2)(X2 _ b-2).

(a) Show that if (a2 -I)(b2 -I)(a2 - b2
) i= 0, then U is smooth and C has

genus 3.
(b) Show that the three maps

rPl : C --+ p2,

rP2:C--+r,

rP3:C--+p2,

rPI(X,y) = (x2,y),

rP2(X, y) = (x + x-I, yx-2),

rP3(X,y) = (x - x-l,yx-2),

induce morphisms ofdegree two from C to three elliptic curves E I,~, E3.
(c) Conclude that the Jacobian of Cis isogenous to E I x E2 X E3. (Hint.
Use the previous exercise to build a map between Jac(C)and E I x E2 X E3,
and compute the tangent or cotangent map.)

A.8.5. Show that the Jacobian embedding j : C -+ J = Jac(C) induces an iso
morphism between regular differential I-forms on J and regular differential
I-forms on C. (Notice that this is transparent from the analytic definition
if k = C, and it provides a bridge between the complex definition given in
Section A.6 and the algebraic definition given in the present section.)

A.8.6. Let C be a smooth projective curve of genus g. The curve C is called
hyperelliptic if there is a map f : C -+ pI of degree 2; it is called trigonal
if there is a such map of degree 3; and more generally, for any r :::; g, the
curve C is called r-gonal if there is a map of pI of degree r. The smallest
such r is sometimes called the ganality of the curve. Prove that the map
Symr C -+ J is injective if and only if the gonality of C is greater than r.

A.8.7. For any divisor class c E Pic(C) of degree 1, let

P~ CI(P) - c),

be the associated embedding, and let 8 c = jc(C) + ... + jc(C) be the
corresponding theta divisor. Prove that there exists a c such that the
divisor class of 8 c is symmetric (i.e., [-I]*8c rv 8 c ). How many such c's
are there?

A.8.8. (a) Let C = pl. Prove that Symn C = pn. (Hint. Use symmetric polyno
mials.)
(b) Let C be a curve of genus 1 (Le., an elliptic curve). Prove that there
is a morphism Sym2 C -+ C whose fibers are all isomorphic to pl. In other
words, Sym2 C is a pI-bundle over C.
(c) Let C be a curve of genus 2. Prove that Sym2 C is isomorphic to the
Jacobian of C blown up at one point.

A.8.9. (Hyperelliptic Jacobians) This exercise describes the Jacobian variety
of a hyperelliptic curve. For further details, see Mumford [5, Volume 2,
Chapters 1,2].

Let C be a hyperelliptic curve consisting of an affine piece given by
the equation y2 = F(x) = (x - eI) ... (x - e2g+d, together with a point 00
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at infinity. Let u denote the involution (x,y) 1-+ (x, -y) on C. Use 00 to
embed C '-+ Jac(C), and let 8 be the corresponding theta divisor.
(a) Show that a function whose only pole is at 00 must have the shape
u(x) + yv(x) with u, v E k[x]. Use this to show that if D = E:=l Pi is a
divisor such that Pi =1= 00 and Pi =1= u(Pj ) for i =1= j, then l(D) = 1. (Hint.
If IE L(D), then Inez - x(Pi » has poles only at 00.)
(b) For each integer r ;::: 0, define a set of effective divisors of degree r by

Show that there is a natural identification of the set TI g with the set
Jac(C) ,8.
(c) Show one can give an "explicit" set of equations for the affine variety
Jac(C) ,8 as follows. For any D = E(Pi ) E TI g , let UD(X) = n(x-x(Pi ».
Prove that there is a unique polynomial VD of degree at most 9 - 1 such
that y(~) = VD(X(P.) for alII ~ i ~ g. (If Pi appears with multiplicity m
in D, we impose the condition that VD(x)-yfF(x) should vanish to orderm
at x = x(Pi ).) Further, prove that there is a unique monic polynomial WD
of degree 9 + 1 such that

F(x) - VD(X)2 =UD(X)WD(Z). (*)

Show that the coefficients of U, V, W, subject to the equation (*), realize
TI g as an affine subvariety in A3g+1.

(d) Recall from Exercise A.B.l that the points Ei = CI«(ei' 0) - (00» gen
erate the 2-torsion subgroup J[2] of J = Jac(C). Prove that

n (8+E)=0
"'EJ[2]

and that J = U «(J, 8) +E).
"'EJ[2]

In other words, the translations ofJ, 8 by 2-torsion points give a covering
of J by affine open sets.
(e) Prove that every divisor of degree zero is linearly equivalent to a unique
divisor D = E;=l(Pi )-r(oo) satisfying 0 ~ r ~ g, ~ =1= 00, and P; =1= u(Pj )

for i =1= j. Show that this gives a stratification of J as a disjoint union

J = TI g U ... U TIo.

Note that one can then describe the addition law as "take the sum of the
two divisors and use the recipe described above to reduce it to a divisor
lying in one of the TIr's."

A.B.lO. (Generic group law on a hyperelliptic Jacobian). Show that the following
procedure generically defines the group law on the Jacobian of a hyperel
liptic curve. That is, it defines the group law on an open subset of J x J.
We retain the notation from the previous exercise. Let

a = 9 ; 2 and b = 3: if 9 is even,
g-l 3g-1

a = -2- and b = -2- if 9 is odd.
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Let D =E;=l (Pi) - g(oo) and D' =E;=l (PI) - g(oo) be divisors, and let
g = (Xi,Yi) and PI = (x~,yD. Prove that there are unique polynomials A
and B, with A monic of degree a and B of degree at most b, such that

and for all i = 1, ... ,g.

Z(C, T) = II (1 - Tdeg(D)r l

DE1rrc

Show that the function A(x)y + B(x) vanishes at the 3g points

u(Pd, .. . ,00(Pg), O'(P{), .. . ,u(P;),Ql, ... ,Qg,

where the Qi's have the property that D +D' rv E;=l (Qi) - 9(00). Using
the identification from the previous problem, the divisor E(Qd is thus the
sum of D and D' on J. Can you give a precise description of the open
subset of J x J for which this procedure is well-defined?

A.8.ll. Let C be a smooth projective curve of genus 9 defined over the finite field
IFq and let J be its Jacobian. Call h = card(J(IFq»the "class number,"
and let 6 be the smallest positive degree of a divisor rational over IFq (we
will see that 6 = 1). Define

an = card{D E Div(Chq ID ~ 0 and deg(D) = n} and
00

Z(C/IFq,T) = Z(T) = L:anTn E ZIT].
n=O

(a) Start by showing that if 6 does not divide n, then an = OJ whereas if 6
divides n and n ~ 29 -1, then an = h(qn+l-g

- l)/(q - 1). Show also that
for any divisor class c, we have card{D Eel D ~ O} = (ql(c) -l)/(q -1).
(b) Give an expression for Z(T) as a rational function of T.
(c) Let Irrc denote the set of effective IFq-irreducible divisors on C. Show
that

either as a formal product or as a convergent one if ITI < q-l.
(d) Verify that Z(CjIFqr,T) = TI(r=l Z(CjlFq,(T) and use this to show
that 6 = 1.
(e) Show that there exists a polynomial L(C/IFq,T) = L(T) E Z[T] such
that Z(T) = L(T)j(l- T)(l - qT). Show that Z(T) satisfies the following
functional equation:

(f) Show that there exist algebraic integers aI, ... ,a2g such that L(T) =
n:~l (1 - aiT). Show that

2g

card{C(IFq",» = qm + 1 - (ai" +... + a~) and h = II(1 - ai).
i=l

(This exercise is essentially due to F. K. Schmidtj a further property is the
so-called Riemann hypothesis for curves over finite fields: lail = .j'ii; see
Hartshorne [1, Exercise V.l.lO and Appendix C].)
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This chapter is merely an introduction to the rich gallery of arithmetic
schemes. We give an intrinsic meaning to the notion of good reduction and
examine the minimal model of a curve and the Neron model of an abelian
variety. Prerequisites for this chapter are more demanding: Most proofs in
the first two sections are not that hard, but it would take too much space
to fill in all the details, whereas proofs of the statements in Sections 3 and 4
are beyond the scope of this book.

A.9.1. Varieties over Z

The idea of a scheme-a theory due entirely to one man: Grothendieck-is
to abstract what we know of varieties in purely algebraic terms. A variety
is covered by affine open subvarieties Ui , and to each such subvariety there
corresponds a ring Rt. (a finitely generated integral k-algebra). The gluing
of these open subsets can be done via the sheaf C) of regular functions, which
in particular satisfies C)(Ui ) = Rt.. Points correspond to maximal ideals of
Rt.. The Zariski topology can be recovered, since a basis for the topology
is given by open subsets of the type Uf,i := Ui " {x I I(x) = O}; and the
sheaf of regular functions is entirely characterized by CJ (Uf, i) = Rt. [y] and
by the restriction maps Rt.[y] - Rt.[~] for f dividing g.
We begin with the definition of an affine scheme. A first natural gen

eralization is to drop all restrictions on the ring R: It need not be integral
(it may even have nilpotent elements), nor contain a field, nor be finitely
generated. A subtler shift is the passage from maximal ideals to prime ide
als; one motivation for this shift is simply that the inverse image of a prime
ideal is a prime ideal, whereas the same is not true for maximal ideals. For
example, consider the inclusion Z <-+ Q; the ideal {O} is maximal in Q, but
not in Z.

Definition. Let R be a commutative ring. The spectrum 01 R, Spec(R), is
a pair consisting of a topological space (by abuse of notation, also denoted
by Spec(R)) and a sheaf CJ. The topological space Spec(R) is the set of
prime ideals of R endowed with a topology whose closed sets are the sets
V(I) := {p E Spec(R) II C p} for any ideal I of R. The sheaf C) is
characterized by c)(Spec(R) " V((f))) = Rf for any element 1 E R, taken
with the obvious restriction maps.

The next proposition justifies part of this construction.



152 A. The Geometry of Curves and Abelian Varieties

Proposition A.9.l.l.
(a) The sheafC) = C)R is entirely characterized by its values on the principal
open subsets Uf := Spec(R) " V«(f)). In fact, one has

c)(U) = li!!l C)(Uf)·
UfCU

(b) For P E Spec(R) the stalk of the sheaf C) at p is (isomorphic to) the
local ring R p•

A morphism of varieties was defined as a continuous function that
sends regular functions to regular functions. We generalize this notion in
the following way.

Definition.
(i) A ringed space is a pair (X, C)x) consisting of a topological space X
and a sheaf of rings C)x on X. It is a locally ringed space if for all x EX,
the stalk C)X is a local ring. The sheaf C)X is called the structure sheaf of
the ringed space.
(ii) A morphism of ringed spaces is a pair f, f~ : (X, C)x) ---7 (Y, C)y),
where f : X ---7 Y is continuous and jU : C)y ---7 f"C)x is a morphism of
sheaves over Y, Le., a collection of maps f~(U) : C)y(U) ---7 C)x(f-l(U))
such that ru,v 0 f~(U) = f~(V) 0 ru,v. It is a morphism of locally ringed
spaces if further for all x in X, the map f~ induces a local ring homomor
phism f~ : C) f(x) ---7 C)X (Le., the inverse image of the maximal ideal is the
maximal ideal).

Examples of locally ringed spaces include algebraic varieties with their
sheaves of regular functions and differential (respectively analytic) varieties
with their sheaves of differentiable (respectively analytic) functions.
Clearly, (Spec(R), C)R) is a locally ringed space. These locally ringed

spaces are taken as the building blocks to construct schemes.

Definition. A locally ringed space of the form (Spec(R), C)R) is called an
affine scheme, where R may be any ring.

Morphisms between affine schemes are described completely analo
gously to morphisms between affine varieties. A ring homomorphism 4> :
R ---7 S induces a morphism of locally ringed spaces 4>sch = (f, jU) :
(Spec(S), C)s) ---7 (Spec(R), C)R) as follows:
• If P is a prime ideal of B, set f(p) := 4>-I(p) .
• If Ug := Spec(R) " Z(g), then f-l(Ug ) = Spec(S) " Z(4)(g)), and we
set f~(Ug) : R g ---7 S¢(g) to be the natural map induced by 4> on the
local rings.

It is easily seen that this defines a morphism of locally ringed spaces. We
formally state the converse.
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Proposition A.9.1.2. Any morphism of affine schemes Spec(S) -+

Spec(R) has the form tj>sch for some ring homomorphism tj>: R -+ S.

PROOF. See, for example, Hartshorne [1, Proposition II.2.3]. o

Z(p) := {~ E Q I b¢ pZ} .

The scheme Spec(Z(p») consists of two points, the generic point 1] corre
sponding to the ideal (0) and a unique closed point p corresponding to the

Definition. A scheme is a locally ringed space (X, C)x) that can be cov
ered by open subsets U such that (U, C)x

lU
) is isomorphic to some affine

scheme (Spec(R), C)R)' A morphism 0/ schemes is a morphism of locally
ringed spaces that are schemes. A scheme is called reduced if the rings of
the structure sheaf contain no nilpotent elements, irreducible if the 8$Oci
ated topological space is irreducible, and integral if it is both reduced and
integral.

The philosophy of Grothendieck also suggests that one should always
look at relative situations. This means studying schemes over S, or S
schemes, which are schemes X that come equipped with a morphism X -+

S. In this context, if / : X -+ Sand g: Y -+ S are two S-schemes, then an
S-morphism is a morphism tj> : X -+ Y satisfying / = gotj>. This generalizes
the notion of varieties and morphisms defined over k, which corresponds to
the case S = Spec(k). We also note that every scheme is a Spec(Z)-scheme,
because every ring R admits a (unique) homomorphism Z -+ R.

Examples. (a) To any affine variety X over an algebraically closed field k
we can associate a k-scheme, denoted by xsch, which is simply Spec(k[X]).
The closed points of Xsch (Le., the maximal ideals of k[X]) correspond to
the points of the variety X and are called geometric points. However, Xsch
has many other (nonclosed) points, in fact, one for each irreducible closed
subvariety of X. Of particular interest is the ideal (0), which is dense in
xsch and is called the generic point 0/ X. Further, Proposition A.9.1.2
and Theorem A.1.2.1 say that morphisms between X and Y correspond
bijectively to k-morphisms from Xsch to ysch, since they are both in natural
bijection with the k-algebra homomorphisms from k[Y] to k[X].
Having turned affine varieties into schemes, it is easy to extend the

construction to any quasi-projective variety X. We simply cover X by
affine open sets Ui, form the affine schemes U:ch , and then glue the UF's
together to form the scheme Xsch.
(b) Of course, schemes are more general than varieties. If k is a field, the
scheme Spec(k) has only one point. But there are other rings with only
one prime ideal, for example Z/pnz and k[x]/(xn) (see Exercise A.9.9).
For example, the scheme X = Spec(Z/pnz) has only one point, but it is
certainly not a variety. It is irreducible, but not reduced when n ;::: 2.
Another interesting example is the spectrum of an integral local ring such
as
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ideal pZ(p).
(c) A scheme of fundamental importance is the affine scheme Spec(Z). It
has one generic point TJ, corresponding to the ideal {O}, and all ofits other
points are closed and correspond to prime numbers,

Spec(Z) = {(O), 2Z, 3Z, ... ,pZ, ...}.

The structure sheaf of Spec(Z) is easy to describe:

[
1 1 1 ]e>(Spec(Z) " {P1Z, ... ,PkZ}) = Z -, -, ... , - .
Pl P2 Pk

The function field of Spec(Z) (i.e., the stalk at TJ) is Q. Notice that since
every ring R has a canonical homomorphism Z --t R, all schemes have a
canonical morphism to Spec(Z), so every scheme is a scheme over Spec(Z).

The last example shows that Spec(Z) bears a curious resemblance to an
algebraic curve. We can make this more precise by defining the dimension
of a scheme.

Definition. The dimension of an irreducible scheme X is the maximal
length n of a chain of distinct irreducible closed subsets X o C Xl C ... C
X n = X. The dimension of a scheme is the maximal dimension of its
irreducible components.

Examples. (a) Clearly, dimSpec(R) = Krulldim(R), so the dimension of
a variety X is the same as the dimension of the scheme X sch .
(b) The scheme of integers satisfies dim Spec(Z) = 1, and more generally,

dim Spec(Z[X1, ... ,Xn ]) = n + 1.

(c) If R is a Dedekind domain, then Spec(R) is irreducible, reduced, and
has dimension 1.

In particular, we see that an algebraic curve and Spec(Z) are two
instances of integral schemes of dimension one! Similarly, the scheme
Ai := Spec(Z[X]), called the "affine line over Z", has dimension two and
is analogous to A~ := Spec(k[X, YD, the "affine plane over the field k."
The theory of finite coverings can thus be phrased to encompass both

extensions of number fields and coverings of a curve. Field extensions
Q C K and k(G) c k(G') induce finite morphisms Spec(RK) --t Spec(Z)
and G' --t G, and the cardinality of the fiber over a closed point is less
than or equal to [K : Ql or [keG) : keG')), respectively, with equality at
all but finitely many points. The points where equality fails to hold are
called ramification points. We will pursue these analogies further in the
next section.
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We now sketch a few salient areas where the language of schemes sheds
new light on old topics or suggests new concepts and techniques.

Algebra/Geometry Schemes enable mathematicians to precisely formu
late algebraic constructions in a geometric fashion. For example, the fact
that k[X, Y] is not principal is transparent from the fact that it corre
sponds to a variety of dimension two, which implies that the ideal of a
closed point cannot be principal. The same argument "explains" why Z[X]
is not principal, since it is also of dimension two. (See Exercise A.9.6 for
a description of the points of Spec(Z[X]).) Many other algebraic ideas
acquire a geometric flavor. Some examples are listed in the following table.

Algebra

ring localization
quotient ring
integral closure
tensor product

~ Geometry

~ restriction to open subset
~ closed subscheme
~ normalization
~ geometric product

Functor of Points IfX is a variety defined over a field k, a point in X(k)
becomes, in the language of schemes, a morphism Spec(k) -+ Xsch. It is
therefore natural to define a point in X with value in S to be a morphism
S -+ Xj in other words, we define X(S) := Mor(S,X). Note that S can be
the spectrum of a ring, or more generally any scheme! In fancy language,
the association S~ X (S) defines a contravariant functor from the category
of schemes to the category of sets. A point x in a scheme defines a local ring
Ox, namely the stalk of the structure sheaf at x, hence a maximal ideal Mx
and a residue field k(x) := Ox/Mx. In fact, a morphism Spec(K) -+ X is
equivalent to the data of a point x E X and an injection of fields k(x) '-+ K.
For example, one can interpret a closed k-point in a variety X as a Galois
conjugacy class of points in X(k).

Smoothness and Regularity A variety X is nonsingular at a point x if
and only if dim X = dimk (Mx /M;). Similarly, if x is a point of a scheme X,
then we have a local ring C)X (the stalk at x of the structure sheaf) and
hence a maximal ideal M x and a residue field k(x). We define X to be
regular at x if dimX = dimk(x) (Mx/M;). (The local ring is also said to be
regular in that case.) Notice that the point x is not assumed to be closed,
so this defines the notion of "X being nonsingular along the irreducible
subvariety Y := {x}."

Fibered Products Let f : Y -+ X and g : Z -+ X be morphisms of
schemes. A fibered product of Y and Z over X, denoted by Y x x Z, is
a scheme P with morphisms PI : p -+ Y and P2 : p -+ Z such that
f 0 PI = g 0 P2 and satsifying the following universal property: For all
schemes pI with morphisms ql : pI -+ Y and q2 : pI -+ Z there exists
a unique morphism ¢ : pI -+ P such that ql = PI 0 ¢ and q2 = P2 0 ¢.
Intuitively, at least at the level of closed points, P looks like the set of



156 A. The Geometry of Curves and Abelian Varieties

pairs (y, z) with f (y) = g(z). Notice that if X, Y, and Z are varieties,
then P need not be a variety; for example, it may be reducible. However,
within the category of schemes, fibered product do exist.

Proposition A.9.1.3. Let f : Y --+ X and g : Z --+ X be morphisms
of schemes. Then the fibered product Y Xx Z exists and is unique up
to canonical isomorphism. Further, if X = Spec(R) , Y = Spec(A), and
Z = Spec(B) are afIine, then the fibered product is afIine and can be
described as Y Xx Z = Spec(A ®R B).

PROOF. See Hartshorne [1, Chapter II, Theorem 3.3]. o

An important special case of fibered products is extension of scalars.
Let X be a scheme over a ring R (Le., X is a Spec(R)-scheme), and let
f : R --+ R' be a ring homomorphism. Then f induces a morphism r :
Spec(R') --+ Spec(R), and we extend scalars on X by forming the Spec(R')
scheme X XSpec(R) Spec(R'). To save space, people frequently say that X
is an R-scheme, and write the extension as X x R R'.

Fibers of a Morphism Let f : X --+ Y be a morphism of schemes and
let y be a not necessarily closed point of Y. The point y corresponds to a
morphism Spec(k(y)) --+ Y, and we define the fiber of f over y to be the
scheme X y := X Xy Spec(k(y)). Notice that even if y is a geometric point
and if X and Y are varieties, then X y need not be irreducible or reduced,
so schemes furnish a natural language for discussing "multiple fibers." As
an example, consider the hypersurface X in A3 defined by the equation
x3 + t y 2 + t = 0 and the morphism f : X --+ At defined by the projection
(x, y, t) 1--+ t. The generic fiber of f is the curve with the same equation
over the field k(t). For every closed point a E At except for a = 0, the fiber
X a is the elliptic curve given by the equation x 3 + ay2 + a = o. However,
the fiber over a = 0 is a triple line, Xo = Spec(k[x, yJj(x3 )).

Families of Schemes A family of schemes is just the set of fibers of a
morphism of schemes f : X --+ Y. If Y is irreducible and TJ is its generic
point, we call X'1 := X Xy Spec(k(Y)) the generic fiber of the family. The
fiber X y over a closed point y E Y is called the special fiber at y. Notice
that these definitions encompass two apparently (or at least historically)
different ideas. First, if Y is an algebraic curve and X is a variety defined
over an algebraically closed field k, then a family is an "algebraic defor
mation parametrized by a curve." The special fibers are defined over k,
and the generic fiber is defined over the function field k(Y). Second, if
Y = Spec(Z), we get a family of schemes, where each fiber is defined over
a field of different characteristic (the generic fiber being defined over Q).
Since we will be especially interested in families of schemes over curves (Le.,
schemes over an algebraic curve or over Spec(Z)), we state a result deeper
than the ones previously quoted that describes a property of the fibers of
such a family.
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Proposition A.9.1.4. (Zariski's connectedness principle) Let f : X --+ S
be an irreducible family of projective schemes over an irreducible curve S
(i.e., a irreducible scheme of dimension 1). Then the generic fiber of f
is irreducible. Further, every special fiber of f is connected, and all but
finitely many of them are irreducible.

PROOF. See Hartshorne [1, Chapter III, Exercise 11.4]. o

Models and Good Reduction We wish to reverse the above construc
tion by starting with a variety X and creating a family of schemes whose
generic fiber is X. Let K be either a number field or the function field k(C)
of a smooth projective curve, and let X be a smooth projective variety de
fined over K. Let S = Spec(RK) if K is a number field, and let S = Csch
if K is a function field. It is easy to see that there exists a scheme X --+ R
that is projective (by which we mean that all fibers are projective varieties)
and whose generic fiber X1/ = X Xs Spec(K) is isomorphic to X. Indeed,
fix an embedding i : X <-+ PK. We know that PKis the generic fiber of the
scheme lP~ --+ S (see Exercise A.9.7), so we may take X to be the Zariski
closure of i(X) inside lPR. Of course, the X that we produce in this way
may have many "bad" special fibers (e.g., reducible and/or nonreduced).

Definition. Let K and S be as above, and let X be a variety over K. A
model for X over S is a scheme X --+ S whose generic fiber is isomorphic
to X.

For example, S is by construction a model for Spec(K). The scheme
lPzis a model for lP& over Spec(Z) (see Exercise A.9.7). Clearly, models
are not unique. One generally requires that a model have some further
properties. For example, one usually insists that the morphism X --+ R
should be surjective and that each fiber should have the same dimension
(the construction we sketched gives this). If X is affine, we can proceed
very explicitly. Suppose that the ideal defining X in An is generated by
the polynomials PI, ... ,Pr . Clearing denominators, we may assume that
Pi E Z[TI , .. . , Tn]. Then Spec(Z[TI , ... , Tn]/(PI , ... , Pr) gives a model for
X whose special fiber at p is the scheme over IFp defined by the equations
PI = ... = Pr = 0 in Aw. This illustrates that taking special fibers of a

"model makes precise the notion of "reducing a variety modulo p". Notice
that this notion is completely intrinsic once the model is chosen (but the
special fiber thus obtained may depend on the chosen model). Further, the
special fiber inherits a scheme structure, so we can speak of nonreduced
fibers, multiple fibers, etc.

If we are given a morphism f : X --+ Y defined over K and models
X --+ S and ~ --+ S, it is natural to ask whether f extends to a morphism
1: X --+ ~ over S. If the generic fiber is dense in X, then there is at most
one such extension, but in general we get only a rational map. For example,
a linear morphism a : lPn --+ IP'n over Ql extends to a morphism a : JPZ -+ lPz
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if and only if a can be described by a matrix having integer coordinates
and determinant ±1. The following elementary result gives one reason why
projective models are good.

Lemma A.9.l.5. Let K and S be as above (i.e., S is regular of di
mension 1). Let X be a variety over K, and let X ~ S be a projective
model of X. Then every K-rational point Spec(K) ~ X of X extends to
a morphism (a section) S ~ X. In other words, there is a natural bijection
between X(K) and X(S).

PROOF. In the geometric case, the lemma follows from the fact that a
rational map from a smooth curve to a projective variety is a morphism.
A proof of the arithmetic case can be given along the same lines. 0

It is natural, given a model X ~ R of XIK, to say that X has good
reduction at x if the fiber Xx is smooth. (Sometimes one adds additional
requirements, for example that some endomorphism a : X ~ X extends
to a : Xx ~ Xx.) To help explain the next definition, we observe that the
fiber Xx is the same as the one obtained by first extending scalars to the
local ring Ox, next forming X Xs Sx ~ Sx = Spec(Ox), and then taking its
(unique) special fiber.

Definition. A smooth projective variety XIK has good reduction at x if
there exists a projective model of X over Ox whose special fiber is smooth.
If such a model does not exist, we say that X has bad reduction at x.

Proposition A.9.1.6. Let X be a smooth projective variety defined
over K.
(i) The variety X has good reduction at all but finitely many points.
(ii) Let T c S be the (finite) set of points where X has bad reduction.
Let ST = Spec(RK,T) in the number field case, and ST = C " T in the
function field case. Then there exists a projective model ofX over ST all
of whose fibers are smooth.

PROOF. (sketch) (a) Let X be the projective model built as in the previous
remarks. The smoothness of the algebraic variety X can be expressed by
the nonvanishing of certain minors M i of certain matrices with entries in
K. If we let T' be the set of all points where the matrix entries have poles
together with the points where the minors vanish, then Xs will be smooth
for every point s E S " T'.
(b) We get from (a) a smooth scheme X' ~ ST' for some finite set T'
containing T. By hypothesis, for each t E T' " T there is a smooth scheme
Xt ~ St. Since all these schemes have isomorphic generic fibers, we may
glue them via these isomorphisms and obtain the required scheme. 0

For example, lP'nIQ has good reduction everywhere, whereas the pro
jective quartic curve x 3y + y3z + z3x = 0 has good reduction except at the
point (prime) p = 7.
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A.9.2. Analogies Between Number Fields and Function Fields

A one-dimensional affine integral regular scheme is either a smooth curve
C over a field k or an open subset of the spectrum of a Dedekind ring, e.g.,
the ring of integers of a number field. Analogies between these two objects
have fascinated many mathematicians.
Notice that in these cases the function field can be used to reconstruct

the "most complete" version of the underlying scheme. Thus if we start
with a field K containing an algebraically closed field k, there is a unique
(up to isomorphism) smooth projective curve over k having K as its func
tion field. Similarly, if K is a finite extension of (fl, the ring of integers RK
is the unique maximal order in K, and the associated scheme is Spec(RK)'
We call these two situations the geometric case and the arithmetic case,
respectively.
It is thus reasonable to work at the level of the field K. Valuation

theory is the classical device that is used to describe the "points" of the
underlying scheme.

Definition. An absolute value of a field K is a map I . I: K -+ IR such
that:
(i) Ixl ~ 0 for all x, and Ixl = 0 if and only if x = o.
(ii) Ixyl = Ixl . Iyl·
(iii) Ix + yl ~ Ixl + Iyl (triangle inequality).

If further we have the stronger inequality

Ix + yl ~ max (lxi, Iyl) for all x, y E K,

then the absolute value is called ultmmetric or nonarchimedean. Other
wise, it is called archimedean. The absolute value Ixl = 1 for all x i= 0 is
called the trivial absolute value.

Examples. (a) Let K be a number field. For each embedding u: K <.......t IR
or C we get an absolute value Ixl,," := lu(x)l, which is clearly archimedean.
Notice that I . 10" = I . Ia-, so there are ri +r2 of this sort. For each nonzero
prime ideal p of RK we get an absolute value Ixlp := Np- ordp (x), which is
clearly nonarchimedean.
(b) Let K = k(T) with k algebraically closed (for simplicity) and T an
indeterminate. For each point a E A i = k we can similarly build a nonar
chimedean absolute value by the formula IFla := e-orda(F). There is an
other absolute value given by IFloc := edeg(F), but notice that if we intro
duce projective space and set pi = Ai U {oo}, then this "extra" absolute
value is simply IFloc := e- ordoo(F). More generally, if K is the function
field of a smooth projective curve Cover k, then each point a E C gives a
nonarchimedean absolute value IFla := e- orda(F).
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Two absolute values I . 11 and I . 12 are said to be equivalent if there
is a real number A such that I . 11 = I . I~. It is not hard to prove for
examples (a) and (b) above that every nontrivial absolute value on K is
equivalent to one of the listed absolute values (provided. in case (b) that
it is trivial on k). We denote by M K the set of (equivalence classes of)
absolute values on K.

Theorem A.9.2.1. (Product rule) Let K be a number field or a function
field of dimension one, and for each v E M K , let v(x) := log Ixlv • Then

L v(x) = 0 for all x E K*.
vEMK

(Some might call this the "sum rule," since it is really the logarithm of the
usual product rule.)

PROOF. For a number field this is the product formula (Theorem B.1.2),
and for a function field it follows from the fact that a principal divisor has
degree zero (see Section A.2). If the ground field is k = C, the function
field case can also be deduced from Cauchy's residue formula Ie dF/F = O.

o

For any (possibly singular and/or nonprojective) curve Co, it is pos
sible to use the valuations of k(Co) to reconstruct a smooth projective
curve that is birational to Co. (See Hartshorne [1, Chapter 1.6], especially
Theorem 6.9, for details). From this point of view, there is an important
difference between the number field case and the function field case. Every
curve has a natural smooth compactification, but there does not seem to be
a natural compactification of Spec(Z). From the point of view of valuation
theory, we should add to Spec(Z) a point 00 corresponding to the (unique)
archimedean absolute value of Q, just as Desargues added one point to the
affine line to form the projective line. (More generally, to Spec(RK) we
should add T1 + T2 points corresponding to the archimedean places of K.)
Unfortunately, such an object cannot be given the structure of a scheme.
Nevertheless, Aralcelov has suggested a construction that enables one to
translate some (but not all) theorems from the geometric case to the arith
metic case. For a brief introduction to these ideas, see Section B.IO and
the references given there.

A.9.3. Minimal Model of a Curve

Let V be a variety defined over a global field K, which we assume to be
either a number field or the function field of a smooth projective curve C
(over a field of constants k). We let S be the scheme Spec(RK ) in the
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number field case and the curve C in the function field case. The generic
point of S can be identified with Spec(K). We would like to find in some
sense the best possible model V -+ S and hope that it will reflect some
interesting arithmetic features of the variety V. For example, if T is the
set of points of S where V has bad reduction, we will certainly require that
V Xs ST -+ Sr be smooth (i.e., all fibers are smooth), where recall that
Sr = S" T. That this is possible is the content of Proposition A.9.1.6; but
it is not quite clear what to expect for the "bad" special fibers. A precise
formulation is known only for curves and abelian varieties. In this section
we describe the best models when V is a curve.
First of all, we would like the scheme V to be as smooth as possible; in

particular, it should be regular. The other condition we want comes from
the classical theory of minimal surfaces.

Definition. A projective model V -+ S of VIK is said to be a relatively
minimal model if it is regular and if every birational morphism from V to
another regular model V' is in fact an isomorphism. The model V is said to
be minimal if for any other regular model V' there is a birational morphism
V' -+ V.

In the geometric case, a classical result of Castelnuovo (see, for exam
ple, Hartshorne [1, Chapter V, Theorem 5.7]) states that a smooth (reg
ular) projective surface will be a relatively minimal model of its generic
fiber if and only if it contains no curves isomorphic to pi having self
intersection -1. The same result is true in the arithmetic case by the work
of Shafarevich [2]. The existence of a relatively minimal model for curves
(in the arithmetic case) is a difficult result due to Abhyankar (desingular
ization) and Shafarevich (minimality). If 9 ~ 1, there is even a minimal
model. The uniqueness of the minimal model is immediate from the defi
nition.

Theorem A.9.3.1. Let V be 8 curve ofgenus 9 ~ lover K. Then there
exists 8 unique (up to isomorphism) projective minimal model V -+ S ofV .

For example, if V -+ S has smooth fibers, it is automatically the
minimal model of its generic fiber. We thus see that a curve has good
reduction if and only if the special fiber of its minimal model is smooth.
If a curve has bad reduction, we can ask how bad the singularities of a
singular special fiber can be.

Definition. A curve V defined over a field K (number field or I-dimen
sional function field) has semistable reduction at p if the special fiber at p
of the minimal model of V is reduced and has only ordinary double points
as singularities.

Theorem A.9.3.2. Let V be a smooth projective curve defined over a
number field or function field K as above. There exists a finite extension
LjK such that V has semistable reduction at all places L.
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PROOF. See Artin-Winter [1]. o

One can even specify a field L with the property described in Theo
rem A.9.3.2. For example, if K is a number field, then one may choose L
to be the extension generated by torsion points of order 15 of the Jacobian
of V. If K is a function field, it is enough that the i-torsion points of the
Jacobian of V be rational for some prime i ~ 3 coprime to char(k).
For example, the projective elliptic curve y2 z = x3 + tz3 has bad

reduction at t = 0, but the special fiber has a singularity that is a cusp, so
it is not semistable. However, over the field k( ~), it is isomorphic to the
curve y2z = x 3 + z3, which has good reduction at t = O.

A second example is the curve y2z = x3+tx2z+t3z3,which again has a
cusp at t = O. Over the field k(vt), it is isomorphic to y2 z = X3+X2Z+tz3,
which has bad semistable reduction at t = O. These two examples illus
trate a general phenomenon. With a well-chosen base extension, unstable
(i.e., nonsemistable) reduction becomes either good or bad semistable. For
further examples, see Exercises A.9.1 to A.9.3.

A.9.4. Neron Model of an Abelian Variety

The construction of the Neron model of an abelian variety AIK follows a
different path from that used in constructing good models of curves. One
relaxes the properness condition and concentrates attention on the group
law. In full generality, we can even dispense with the group law and simply
work with morphisms, as in the following definition. We let K and S be
as in the previous section (K is a number field or I-dimensional function
field, and S is a smooth scheme with generic fiber Spec(K».

Definition. Let VI K be a variety. A scheme V - S is a Neron model of
VIK if it is smooth over S and if for every smooth scheme X - S with
generic fiber XIK and every morphism f : XIK - VIK it is possible to
extend f to a morphism of schemes X-V.

As usual, if a Neron model exists, it is unique up to unique isomor
phism. The existence of a Neron model when V is an abelian variety is
proven in a remarkable paper of Neron [1].

Theorem A.9.4.1. Let AIK be an abelian variety. Then there exists a
Neron model A - S ofAIK. Furthermore, A is a group scheme over S.

PROOF. See Neron [1] for the original proof. Simplifications and refor
mulations in more modern language are given in Bosch-Liitkebohmert
Raynaud [1] and Artin [1].

o
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The fact that the Neron model A is a group scheme is actually au
tomatic from the definitions, since the addition map A x A -+ A on the
generic fiber extends to a morphism A xRA -+ A. Notice that every point
P E A(K) (viewed as a morphism Spec(K) -+ A) extends to a morphism
(a section) from S to A, but that this need not be true for points in A(L)
for finite extensions LIK.

Example. An abelian scheme A -+ S (i.e., every fiber is an abelian vari
ety) is the Neron model of its generic fiber.

If A -+ S is the Neron model of an abelian variety AIK, then the
special fiber A p over PES will be an abelian variety if and only if it is
projective, which is also equivalent to A having good reduction at p.
In general, the connected component of the fiber Ap is denoted by Ag.

It is an extension of an abelian variety (defined over kp ) by a commutative
affine group. We recall that after a finite extension of the base field, any
commutative affine group is isomorphic to a product of additive groups and
multiplicative groups G~ x G:n. Just as in the case of curves, taking an
extension of the base field often leads to "simpler" bad special fibers; in
this case it allows us to get rid of the additive groups.

Definition. An abelian variety AIK has semistable reduction at p if the
connected component of the special fiber A p of the Neron model is an ex
tension of an abelian variety by a torus T. It has split semistable reduction
if the torus is isomorphic to T = G:n over the residue field kp .

Theorem A.9.4.2. Let A be an abelian variety defined over a number
field or function field K as above. Then there exists a finite extension LIK
such that A has (split) semistable reduction at all places ofL.

As in the case of curves, one can specify a field L. For number fields,
one may take L to be the field generated by the torsion points of order 15
on A. For function fields, it suffices that the f-torsion of A be rational for
some prime f 2': 3 and coprime to char(k) (see Deschamps [1]).

It is natural to compare the minimal model of a curve VIK with the
Neron model of its Jacobian variety Jac(V). For curves of genus 1, this is
fairly easy.

Example A.9.4.3. Let e -+ S be the minimal model of an elliptic curve
ElK (i.e., a curve of genus 1 equipped with a rational point Po E E(K».
Let U be the open subscheme of smooth points of e. This means that U is
obtained by discarding the multiple components and the singular points of
the special fibers. Then U -+ R is the Neron model of ElK. (See Artin [1]
or Silverman [2, Chapter IV].)

More concretely, suppose K = Q and let
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be a minimal Weierstrass equation of an elliptic curve E IQ. We can define
e to be the projective scheme associated to the graded ring Z[x, y, z]/(f)
(see Exercises A.9.7 and A.9.lD). The complement of the zero section
is the affine scheme Spec(Z[x,y]/(f(x,y, 1)). We refer to Silverman [1,
Chapter III] for the definition of the discriminant l:1 and the fact that the
special fiber Ep := e x lFp is smooth if and only if l:1 ~ 0 (mod p). If
l:1 == 0 (mod p), then Ep has exactly one singular point. In general, the
scheme e will not be a minimal model for ElK, because it will not be
regular. However, if ordp (l:1) = 0 or 1 for every prime, then e is regular,
hence a minimal model for ElK, and in this case the Neron model ofElK
is simply ewith the one singular point removed from each of its bad special
fibers. In general, the scheme obtained by removing the singular points
from the bad fibers is only the connected component of the Neron model.
For curves of higher genus, the relation between the minimal model

of the curve and the Neron model of its Jacobian is considerably more
complicated. We mention only a few properties, where VI K is a smooth
projective curve of genus 9 ~ 1, AIK is the Jacobian variety of V, V --+ S
is the minimal model of V, and A --+ S is the Neron model of A.

(1) The curve VI K has semistable reduction if and only if its Jacobian
AIK has semistable reduction. If VIK has good reduction, then AIK also
has good reduction, but the converse is not true in general.
(2) The connected component of A is isomorphic to Pico(V), the group of
invertible sheaves whose restriction is of degree zero on each component of
each fiber of V. If the special fiber of V has components Vi, ,Vr that are
birationally equivalent to the smooth projective curves V{, ,V:, then the
abelian part of the special fiber of the Neron model of A is lli Jac(Vt).
(3) The group of components of A can be easily computed from the inter
section matrix of the components of the fiber of V.

EXERCISES

A.9.l. Let ei be distinct algebraic integers in a number field k and let C be
the smooth hyperelliptic curve given by the affine equation y2 = P(x) =
ll(x - ei). Let S be the set of primes dividing 2~ = 2(lli<j(ei - ej»2.
Prove that C has good reduction outside S. (Do not forget to check the
points "at infinity.")

A.9.2. Show that the curve y2 = x 5
- 1 acquires good reduction over some

extension of Q. More precisely, show that it has good reduction over the
field K = Q(i, ~, Jl - exp(211"i/5». (Hint. Let u = ~ and set x =
u2X and y = 2Y + i. Show that the new equation has good reduction in
characteristic 2. Next let e:= exp(211"i/5) and a? = (1 - {)5, set v = y/o
and u = (x - 1)/(1 - e), and show that the new equation has the form
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v2 = TI(U - ei) for certain ei E Zl~]. Use the previous exercise to conclude
that the curve has good reduction.)

A.9.3. Determine the primes of good and bad reduction over Q for the curves
y2 = x 5 _ x and x 4 + y4 = 1. Do they acquire good reduction everywhere
over some number field?

A.9A. (a) Let X ...... Spec(Z) be a projective scheme with generic fiber X/Q.
Prove that X(Spec(Z)) ~ X(Q).
(b) Show that this need not be true for nonprojective schemes by comput
ing Gm(Spec(Z)) and Gm(Q) and showing that they are not equal.

A.9.5. Prove the following generalization of Exercise A.1.9. Let f: X --+ ~ be a
rational map of S-schemes. Prove that there exists a scheme W with two
morphisms PI : W ...... X and P2 : W ...... ~ such that Pl is a birational map
and f 0 PI = P2. As an application prove that if f : X ...... Y is a morphism
between two varieties defined over Q, then there exist projective models X
and ~ over Spec(Z) such that f extends to a morphism 1: X ...... ~.

A.9.6. (a) Show that there are three types of nonzero prime ideals in ZIX]:
(i) ideals pZ1X] generated by a prime number Pi (ii) ideals P(X)ZIX] gen
erated by a nonconstant irreducible polynomial P(X)j (iii) ideals (p, P(X))
generated by a prime number P and a nonconstant polynomial P(X) whose
leading coefficient is prime to P and that is irreducible when reduced mod
ulo p. (Hint. Begin by considering the intersection of the ideal with Z.)
(b) Which type(s) of ideals in (a) correspond to closed points of Ai :=
Spec(ZIXJ)? More precisely, prove that an ideal of type (i) corresponds
to the generic point of A~p' an ideal of type (ii) corresponds to a Galois
conjugacy class of algebraic numbers, and an ideal of type (iii) corresponds
to a Galois conjugacy class of points in JFp .
(c) Try to give a similar description of points in Ai := Spec(Z[X, YJ).

A.9.7. (Construction of Proj of a graded ring) Let R := $m~oRm be a graded
ring. That is, Ro is a ring, each Rm is an Ro-module, and Rm .Rn C Rm+n.
A special ideal in R is the ideal R+ := $m~lRm. We define Proj(R) to be
the topological space whose underlying set of points is

Proj(R) := {homogeneous ideals p such that R+ et. p}.

For each ideal :J c R we define a closed set

Z(:J) := {p E Proj(R) I :J c p}

in Proj(R), and these closed sets define the Zariski topology on Proj(R).
For each f E R+ we also define an open set U(f) := Proj(R) " Z«(f)).
Then the structure sheaf eJ = eJProj(R) on Proj(R) is characterized by its
values

eJ(U(f)) =R(f) = (elements of degree 0 in the local ring Rf).

(a) Prove that Proj(R) is a scheme covered by affine open subsets U(f).
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(b) Let X C pn be a projective variety, and let S(X) be its homogeneous
coordinate ring. Prove that Proj(S(X)) is isomorphic to the scheme asso
ciated to the variety X.
(c) Prove that Pz := Proj(Z!Xo, ... ,Xn ]) is a scheme over Spec(Z) with
generic fiber isomorphic (as varieties over Q) to pn /Q, and and special fiber
over a prime p isomorphic (as varieties over IFp) to pn /IFp'
(d) More generaUy, for a ring R, define projective n-space over R to be
P'R := Proj(R[Xo, . .. ,X n ]). Show that P'R can also be described as PzxzR.
IfR is integral with fraction field K, and if,., is the generic point of Spec(R),
show that the generic fiber of P'R -+ Spec(R) is Pi(.

A.9.8. Give a description of the points of lP'~ := Proj(Z[X,Y]) analogous to the
description of the points of A~ = Spec(Z!X]) given in Exercise A.9.6.

A.9.9. Let X/k be a variety. Prove that the set of tangent vectors on X is
naturally isomorphic to the set ofmorphisms Spec(k!X]/(X2» -+ X. What
do morphisms Spec(k!X]/(XTn )) to X represent?

A.9.lD. Let f(x, y) := y2 +alxy+a3y-x3-a2x2-a4x-a6 be a polynomial with
ai E Z and t::.. i- O. (For the definition of the discriminant t::.. we refer to
Silverman !1, Chapter III].) Let F(X, Y, Z) := zy2 + a1XYZ + a3YZ2
X 3 - a2ZX2 - a4Z2X - a6Z 3 be the corresponding homogeneous form.
Let X := Proj(Z!X, Y, ZJI(F» and U := Spec(Z!x, y]/(f)).
(a) Prove that (X, Y, Z) = (0,1,0) defines a section Spec(Z) -+ X, and
that the complement of the image of this section is U.
(b) Prove that the special fiber Xp above p E Spec(Z» is smooth if p does
not divide t::.., and that otherwise the fiber has exactly one singular point.
(c) Prove that X is regular except possibly at the singular points on its
special fibers.
(d) If ordp (t::..) = 1, prove that X is regular even at the singular point of Xp .

A.9.11. (a) Show that the elliptic curve E defined by

F(X, Y,Z) = Zy2 +YZ2 - X 3 + ZX2 = 0

has good reduction at all primes Pi- 11, and that the only singular point
in characteristic 11 is P = (8, 5, 1).
(b) Show that X := Proj(Z!X, Y, ZJI(F» is a regular scheme and that
X '- {P} is the Neron model of E over Z.
(c) Same questions with E' defined by

F(X,Y,Z) = Zy2 + YZ2 - X 3 + XZ2 = 0,

where this time the only "bad" pis 13.

A.9.12. Let K:= Q(.,;29) and £:= (5 + .,;29)/2.
(a) Prove that £ is a unit in RK = Z[£].
(b) Prove that the elliptic curve E defined by the affine equation

has good reduction everywhere.
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A.9.13. Let S be the multiplicative subset of the ring R generated by the prime
ideals Pl, ... ,P"" and let Rs be the corresponding ring of fractions. The
inclusion R C Rs induces an inclusion of Spec(Rs) into Spec(R). Prove
that Spec(Rs) =Spec(R) "{Pl, ... ,p",}.



PART B

Height Functions
It is the star to every wandering bark,
Whose worth's unknown, although his height be taken.
W. Shakespeare, Sonnet 116

One of the fundamental tools required for the study of rational and integral
points on an algebraic variety is a means of measuring the "size" of a point.
A good size function will have two important attributes. First, there should
be only a finite number of points of bounded size. Second, the size of a point
should reflect both the arithmetic nature of the point and the geometric
characteristics of the variety. The size functions that we will study in this
part are called height functions. Before starting the detailed development
of the theory of heights, we want to briefly amplify our description of the
two properties that a good height function will possess.

For concreteness, let k be a number field and let V j k be a smooth
projective variety defined over k, say with a fixed embedding V c pn. A
height function corresponding to this situation will be a function

h: V(k) ~ [0,00)

satisfying certain properties. The finiteness property we alluded to above
says that for any constant B, the set {P E V(k) Ih(P) :::; B} is finite. This
property lies at the heart of many of the fundamental finiteness theorems
in Diophantine geometry. It is used, for example, to prove that the group
of rational points on an abelian variety is finitely generated (Mordell-Wei!
theorem), that an affine curve of genus g ~ 1 has only finitely many integral
points (Siegel's theorem), and that a projective curve of genus g ~ 2 has
only finitely many rational points (Faltings' theorem). But height functions
are also useful when V(k) is not finite. In this case one can define the
counting function

N(V(k), B) = #{P E V(k) Ih(P) :::; B}.

Knowledge about the counting function gives arithmetic information about
the variety V. For example, before Faltings' proof of the Mordell conjec
ture, Mumford [1] had shown that if Vjk is a curve of genus g ~ 2, then
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N(V(k),B) :::; clogE. This is in marked contrast to curves of genus 1,
which have a counting function satisfying cl B r /2 :::; N(V(k), B) :::; C2Br/2
for a certain integer r 2: O. Vojta's proof of the Mordell conjecture is based
on an extension of Mumford's argument. As a warm-up for the proof of the
Mordell conjecture in Part D, we will give a proof of Mumford's theorem
in this part.
The second essential property of a height function is that it should re

flect the underlying geometry of the variety. More precisely, it should pro
vide a means for translating geometric information about the variety into
arithmetic information about the rational points on the variety. We will
begin by defining a height function for each projective embedding ofVj and
then, using the relationship between projective embeddings and divisors,
we will obtain an (equivalence class) of height functions for each divisor
class on V. Now the geometry of V, as reflected in the structure of its
divisor class group, will give corresponding information about the rational
points on V. This construction, due to Andre Weil, is called the Height
Machine. It associates to each divisor class c E Cl(V) a height function
he: V(k) -+ JR, well-defined up to a bounded function on V(k).
Ofparticular importance is the case that the variety V has some special

geometric structure. For example, suppose that V = A is an abelian variety.
Then we can add points in A, so the height functions on A should interact
in some way with the addition law. Indeed, we will prove that for an
appropriate choice of c E Cl(V), the corresponding height function satisfies
a parallelogram law,

for all P, Q E A(k).

Here the bounded function 0(1) depends on the variety A, but is inde
pendent of P and Q. It follows from the parallelogram law that, up to
a bounded function, the height he is a quadratic form on A(k). In par
ticular, he(mP) = m 2he(P) + 0(m2 ). These geometric properties of the
height function on an abelian variety play a crucial role in the proof of the
Mordell-Weil theorem.
Weil's height machine associates a height function he to each divi

sor class c E Cl(V), but he is determined only up to a bounded function
on V (k). Neron and Tate showed how the group law on an abelian variety
can be used to choose a particular height function he that has especially
nice properties. For example, the parallelogram law now holds without
that pesky 0(1),

for all P,Q E A(k).

The quadratic form he on A(k) and its associated bilinear pairing then give
A(k) I8lJR the structure of a finite-dimensional Euclidean vector space. The
group A(k)jA(k)tors sits as a lattice inside this space, and one can then talk
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about angles between points, the volume of a fundamental domain, and all
of the other quantities attached to lattices in Euclidean vector spaces. All
of these quantities will have a tremendous arithmetic significance because
the Euclidean metric in this space is defined using the height function, and
the height function itself measures the arithmetic complexity of a point.
We will develop the theory of canonical heights in sections BA and B.5.

B.l. Absolute Values

Before we can define a size or height function on the rational points of an
algebraic variety, we must first have a means of measuring the size of an
algebraic number. The traditional way to describe the size of an algebraic
number is through the use of absolute values. In this section we will review
the theory of absolute values on number fields.

Recall that an absolute value on a field k is a real-valued function

I . I: k --+ [0,00)

with the following three properties:

(1) Ixl = °if and only if x = O. (Nondegenerate)

(2) Ixyl = Ixl·lyl. (Multiplicative)

(3) Ix + yl :$ Ixl + Iyl· (Triangle inequality)

The absolute value is said to be nonarchimedean if it satisfies

(3/) Ix + yl :$ max{lxl, Iyl}. (Ultrametric inequality)

We begin with the simplest number field, the field of rational num
bers 10. There is an archimedean absolute value on 10 defined by

Ixl oo = max{x, -x}.

This is just the restriction to 10 of the usual absolute value on JR. Further,
for each prime number p there is a nonarchimedean (or p-adic) absolute
value defined as follows. For any nonzero rational number x E 10, let
ordp(x) be the unique integer such that x can be written in the form

with a, b E Z and p tab.

(If x = 0, we set ordp(x) = 00 by convention.) Then the p-adic absolute
value of x E 10 is the quantity

Ixlp = p- ord,,(x).

Intuitively, x is p-adically small if it is divisible by a large power of p. The
homomorphism

ordp :Q* --+ (0,00)

is called the p-adic valuation on Q.
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Notation. The set of standard absolute values on Q is the set MQ consist
ing of the archimedean absolute value I . 100 and the p-adic absolute values
I . Ip for every prime p.
The set of standard absolute values on a number field k is the set Mk

consisting of all absolute values on k whose restriction to Q is one of the
standard absolute values on Q. We write Ml: for the set of archimedean
absolute values in Mk' and similarly MZ denotes the set of nonarchimedean
absolute values on k.

To ease notation, we will frequently write the absolute value corre
sponding to v E Mk as I . Iv. We also define

v(x) = -log lxiv,

with the convention that v(O) = 00.
Let k' /k be an extension of number fields and let v E Mk' W E Mk' be

absolute values. We say that w divides v (or w lies over v) and write wlv
if the restriction of w to k is v. We say that v is p-adic if it lies over the
p-adic absolute value of Q.

The absolute values on Q satisfy the product rule

II Ixl v = 1
vEMQ

for all x E Q, x =1= O.

This is a simple reflection of the fact that Z has unique factorization. In
order to formulate and prove a corresponding result for number fields, we
will need to assign weights to the absolute values. For any absolute value
v E M k , we write kv for the completion of the field k with respect to v. For
example, let v E MQ. Then Qv = lR if v = 00 is the archimedean absolute
value on Q, and Qv = Qp if v is the p-adic absolute value. We recall the
well-known formula relating the local and global degrees of an extension.

Proposition B.l.l. (Degree formula) Let k'/k be an extension ofnum
ber fields, and let v E Mk be an absolute value on k. Then

L [k~: kv ] = [k' : k].
wEMk"wlv

PROOF. See any book on basic algebraic number theory, such as Lang [9, II,
Corollary 1 to Theorem 2] or Serre [1, I, Proposition 10 and II, ThCoreme 1].

o

Definition. Let v E Mk be an absolute value on a number field k. The
local degree of v is the number
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where Qv is the completion ofQ at the restriction of v to Q. The normalized
absolute value associated to v is

IIxllv= Ixl~v.

Proposition B.1.2. (Product formula) Let k be a number field and let
x E k*. Then

PROOF. First we check the product formula over Q. Write x = ±I1pep as
a product of primes. Then

II IIxliv= Ixloo II Ixlp = Ixloo IIp-ep = l.
vEMo p p

In order to prove the product formula in general, we use the following
decomposition formula. Let x E k, and let Vo E MQ be an absolute value
on Q. Then

II Ilxllv= INk/Q(x)lvo'
vEMk,vlvo

(See Lang [9, II, Corollary 2 to Theorem 2].) Using this formula, we com
pute

II IIxliv= II II IIxllv= II INk/Q(x)lvo = 1,
vEMk voEMo vEMk,V!VO voEMQ

where the last equality follows from the product formula over Q. 0

We next give an alternative description of the absolute values on a
number field k of degree n = [k : Q]. We begin with the archimedean
absolute values. It is a standard fact from field theory that k admits
exactly n distinct embeddings (1 : k '"--+ C. Each such embedding can be
used to define an absolute value on k according to the rule

Ixl u = lu(x)loo,

where Izloo is the usual absolute value on lR or C.
Recall that the embeddings (1 : k '"--+ C come in two flavors, the real

embeddings (i.e., (1(k) C 1R) and the complex embeddings (i.e., u(k) i. 1R).
The complex embeddings come in pairs that differ by complex conjugation.
The usual notation is that there are Tl real embeddings and T2 pairs of
complex embeddings, so n = Tl + 2T2. It is clear that conjugate complex
embeddings give the same absolute value on k, since 12100 = IzIc)C. One can
show that this is the only way in which two embeddings can give the same
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absolute value, and further that every archimedean absolute value arises in
this way.
Next let p be a prime ideal of k, say lying above the rational prime p.

Also let Rk be the ring of integers of k. There is a valuation ordp associated
to p defined by the rule that ordp(x) is the exponent of p in the factorization
of the fractional ideal XRk. In other words, the valuations associated to
the prime ideals of k are surjective homomorphisms

ordp : k* ----+ IE characterized by XRk = II pordp(x).
I'

We are, of course, using the fundamental fact that Rk is a Dedekind domain,
and thus that its fractional ideals have a unique factorization into a product
of prime ideals.

We can use these p-adic valuations to define p-adic absolute values
on k. Let ep = ordp(p) be the ramification index of p over Q. Then we
define

Ixlp = p-ordp(x)/ep.

Notice that the ep is needed to ensure that Iplp = p-l. Equivalently, we
can define

IIxlip = (Nk/QP)-ordp(x),

where Nk/QP is the norm of the ideal p. Of course, we always understand
that ordp(O) = 00. We will also sometimes write

vp(x) = -log Ixjp

when we are feeling in an additive, rather than a multiplicative, mood.
We summarize the above discussion in the following proposition.

Proposition B.1.3. Let k/Q be a number field of degree n = [k : Q].
(a) Let

and

be the real and complex embeddings of k, respectively. Then there is a
bijection

where Ixlu = 100(x)loo is the absolute value described above.
(b) Let p be a prime, and let pRk = p~l ... p~r be the factorization ofp in
the ring of integers of k. Then there is a bijection

{Pl,f'2, ... ,Pr}~ {p-adic absolute values on k},
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where Ixll' =p- ordp(x)/ep is the absolute value described above.

Notice that one consequence of Proposition B.1.3 is that a number
field k has one absolute value for each prime ideal, one absolute value for
each real embedding, and one absolute value for each pair of complex em
beddings. The nonarchimedean absolute values M2 are those correspond
ing to the prime ideals. The ring of integers of k can be characterized using
absolute values as

Rk = {x E k I Ixlv ~ 1 for all v E Mn.

More generally, if S c Mk is any set of absolute values containing the
archimedean absolute values MJ: , then the ring of S -integers ofk is defined
to be

Rs = {x E k I Ixlv ~ 1 for all v E Mk , V ~ S}.

Thus with this terminology, Rk is the ring of MJ:-integers of k.

B.2. Heights on Projective Space

There is a natural way to measure the size of a rational point P E F(Q).
Such a point can be written (almost uniquely) in the form

P = (XO,XI, ••• , xn) with xo, Xl, •• ·, X n E .z and gcd(XO,XI, ... , X n) = 1.

We define the height of P to be the quantity

H(P) = max{ixol, IxIi,.··, iXnl}.
It is clear that for any B, the set

{P E pn(Q) IH(P) ~ B}

is finite, since there are only finitely many integers X E .z satisfying Ixi ~ B.
This notion of height can be generalized to number fields in the fol

lowing way.

Definition. Let k be a number field, and let P = (xo, Xl,"" X n ) E pn(k)
be a point whose homogeneous coordinates are chosen in k. The height
of P (relative to k) is the quantity

Hk(P)= IT max{lIxollv,llxlllv,· .. ,llxnllv}.
vEMk

We also define

hk(P) = logHk(P) = L -nv min{v(xo), v(xd,·.·, v(xn )}.

VEMk

In order to distinguish between them, we call H k the multiplicative height
and hk the logarithmic height.
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The product formula ensures that the height Hk(P) is well-defined,
independent of the choice of homogeneous coordinates for P. We verify
this and describe the dependence on k in the following lemma.

Lemma B.2.l. Let k be a number field and let P E jpn(k) be a point.
(a) The height Hk(P) is independent of the choice of homogeneous coor
dinates for P.
(b) Hk(P) ~ 1 for all P E jpn(k).
(c) Let k' be a finite extension of k. Then

PROOF. (a) Write P = (xo, ... ,xn ). Any other choice of coordinates for P
has the form (cxo, ... , cxn ) with c E k*. Using the product formula (B.1.2),
we find that

II max{ II cxollv, ... ,IIcxn IIv }
vEMk

= (II IIC ll v) ( II max{lIxollv, ... ,IIXn llv})
vEMk vEMk

= II max{ Ilxo Ilv, ... , IIxn IIv}.
vEMk

(b) We can take homogeneous coordinates for P such that some coordinate
is equal to 1. Then it is clear from the definition that H k (P) ~ 1.
(c) For this part we use the degree formula to compute

Hk,(P)= II max{lIxollw,···,llxn llw}
wEMk,

= II II max{lIxollw, ... , Ilxnll w }

vEMk wEMk" wlv

= II II max{lxol~w, ... , IXnl~w}.

Now nw = [k:" : Qw] = [k:" : kv]nv, so we get

= II II max{lIxollv, ... ,lIxnllv}lk;":kv1

II { }[k':kj
= max IIxollv, ... , Ilxnll v from (B.1.1)

vEMk

= Hk(P)[k':kJ•

o
The transformation formula (B.2.1(c» allows us to define a height

function that is independent of the field.
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Definition. The absolute (multiplicative) height on pn is the function

H : pn(Q) ---+ [1,00), H(P) = Hk(P)1/ lk:Q1 ,

where k is any field with P E pn(k). The absolute (logarithmic) height
on pn is

Note that (B.2.1(c)) ensures that H(P) is well-defined independent of the
choice of the field k.
We also define the height of an element a E k to be the height of the

corresponding projective point (a, 1) E Pi(k). Thus

Hk(a) = II max{llallv, I},
vEMk

and similarly for hk(a), H(a), and h(a).

Proposition B.2.2. The action of the Galois group on pn(Q) leaves the
height invariant. In other words, let P E pn(Q) and let u E GQ. Then
H(u(P)) = H(P).

PROOF. Let k/Q be a number field with P E pn(k). The automorphism u
ofQ defines an isomorphism u : k ~ u(k), and it likewise identifies the
sets of absolute values on k and u(k). More precisely,

u : Mk ~ Mq(k)' V 1---+ u(v),

where for x E k and v E Mk, the absolute value u(v) E Mq(k) is defined
by lu(x)lq(v) = Ixlv. It is also clear that u induces an isomorphism on the
completions, kv ~ u(k)q(v), so nv = nq(v). This allows us to compute

wEMu(k) wEMu(k)

= II max{lu(xi)lq(v)rU(V) = II max{lxilvrv
vEMk vEMk

= II max{lIxillv} = Hk(P),
vEMk

We also have [k : Q] = [u(k) : Q], so taking [k :Q]th roots gives the desired
result. 0

Recall that the field of definition of a point P = (xo, ... , xn) E pn(Q)
is the field

Q(P) = Q(xo/xj,xIfxj, ... ,xn/Xj) for any j with Xj f:. O.

The following finiteness theorem is of fundamental importance for the ap
plication of height functions in Diophantine geometry.
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Theorem B.2.3. For any numbers B, D ~ 0, the set

{p E JPn(Q) IH(P) ::; B and [Q(P) : Q] ::; D}

is finite. In particular, for any fixed number field k, the set

is finite.

177

PROOF. Choose homogeneous coordinates for P = (xo, ... ,xn ) such that
some coordinate equals 1. Then for any absolute value v and any index i
we have

max{ IIxo IIv, ... , IlxnIIv} ~ max{ Ilxi Ilv, I}.
Multiplying over all v and taking an appropriate root, we see that

for all 0 ::; i ::; n.

Further, it is clear that Q(P) J Q(Xi)' Hence it suffices to prove that for
each 1 ::; d ::; D, the set

{x E QIH(x) ::; B and [Q(x) :Q] = d}

is finite.
Let x E Q have degree d and let k = Q(x). We write Xl," ., Xd for

the conjugates of x over Q, and we let

d d

Fx(T) = II(T-Xj) = ~)-lrsr(x)Td-r
j=l r=O

be the minimal polynomial of x over Q. For any absolute value v E M k ,

we can estimate the size of the symmetric polynomial sr(x) by

Isr(x)lv=1 L Xi1"'Xirl
l$il< ...<ir$d v

::; c(v,r,d) . max. IXil" ,xirlv (triangle inequality)
l$tl<",<zr$d

< c(v,r,d) max IXil~.
- l$i$d

Here c(v, r, d) = (~) ::; 2d if v is archimedean, and we can take c(v, r, d) = 1
if v is nonarchimedean.
It follows that

d

max{ Iso(x) lv' ... , /Sd(X) IJ ::; c(v, d) IImax{lxilv, I} d,

i=l



178 B. Height Functions

where c(v,d) = 2d if v is archimedean, and c(v,d) = 1 otherwise. Now
we multiply this inequality over all v E Mk and take the [k : Q]th root to
obtain the estimate

d

H(so(x), ... , Sd(X)) ~ 2d IIH(Xi)d.
i=l

But the xi's are conjugates, so (B.2.2) tells us that all of the H(Xi)'S are
equal. Hence

H(SO(X), ... ,Sd(X)) ~ 2dH(x)d
2

•

Now suppose that x is in the set

{x E QIH(x) ~ B and [Q(x): Q] = d}.

Then we have just proven that x is the root of a polynomial Fx(T) E Q[T]
whose coefficients So, ... , Sd satisfy H(so, ... ,Sd) ~ 2dBd

2
• But we saw

earlier that IP'd(Q) has only finitely many points of bounded height, so
there are only finitely many possibilities for the polynomial Fx(T), and
hence only finitely many possibilities for x. This completes the proof of
Theorem B.2.3. 0

An immediate corollary of the finiteness property in Theorem B.2.3
is the following important result due to Kronecker. We will later prove a
generalization, see (B.4.3(a)).

Corollary B.2.3.1. (Kronecker's theorem) Let k be a number field, and
let P = (xo, ... , xn) E IP'n(k). Fix any i with Xi f; O. Then H(P) = 1 if
and only if the ratio x j / Xi is a root of unity or zero for every 0 ~ j ~ n.

PROOF. Without loss of generality, we may divide the coordinates of P
by Xi and then reorder them, so we may assume that P = (1, Xl, X2,' .. ,xn ).

First suppose that every Xj is a root of unity. Then IXj Iv = 1 for every
absolute value on k, and hence H(P) = 1.

Next suppose that H(P) = 1. For each r = 1,2, ... , let pr =
(x(i, ... ,x~). It is clear from the definition of the height that H(Pr) =
H(pr, so H(pr) = 1 for every r 2:: 1. But pr E jpn(k), so Theorem B.2.3
tells us that the sequence P, p2, p 3, ... contains only finitely many distinct
points. Choose integers s > r 2:: 1 such that ps = pr. This implies that
xj = xj for each 1 ~ j ~ n (since we have dehomogenized with Xo = 1).
Therefore, each Xj is a root of unity or is zero. 0

The next two results give our first examples of the interplay between
geometry and arithmetic. The proof of Proposition B.2.4 is elementary,
while the proof of Theorem B.2.5 uses the Nullstellensatz and the triangle
inequality to translate the geometric assertion that a map is a morphism
into an arithmetic relationship between height functions.
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Proposition B.2.4. Let Sn,m be the Segre embedding described in Ex
ample A.l.2.6(b),

Let Hn, Hm, and HN be hyperplanes in jpn, pm, and pN, respectively.

(a) S~,m(HN) rv Hn x pm + pn X Hm E Div(pn X pm).

(b) h(Sn,m(X, y)) = h(x) + h(y) for all x E jpn(Q) and y E pm(Q).

(c) Let ~d : pn ~ pN be the d-uple embedding described in Exam
ple A.l.2.6(a). Then

PROOF. (a) Let (zo, ... , ZN) be homogeneous coordinates on pN, and fix
hyperplanes HN = {zo = O}, Hn = {xo = O}, and Hm = {yo = O}. Then

S~,mHN = S~,m{z E pN IZo = O}

= {(x,y) E pn x pm Ixoyo =O} = Hn X JP>m +JP>n X Hm.

(b) Let x E JP>n(k) and y E JP>m(k) for some number field k, and let z =
Sm,n(x, y). Then for any absolute value v E Mk we have

Now raise to the nv/[k : Q] power, multiply over all v E Mk , and take
logarithms to obtain the desired result.
(c) The d-uple embedding is defined by ~(x) = (Mo(x), ... , MN(X)), where
the Mi(x) are all monomials of degree d in n + 1 variables. It is clear
that IMi(x) Iv ~ maxi IXi I~, and since the particular monomials xg, ... ,x~
appear in the list, we find that

max /M'(x)1 - max Ix,/dO<'<N J v - O<i<n tv·_J_ __

Now raise to the nv/[k : Q] power, multiply over all v E Mk' and take
logarithms to finish the proof. 0

Theorem B.2.5. Let 4> : jpn ~ pm be a rational map of degree d defined
over Q, so 4> is given by an (n + I)-tuple 4> = (fo, ... ,1m) ofhomogeneous
polynomials of degree d. Let Z C JP>n be the subset of common zeros of
the Ii'S. Notice that 4> is defined on JP>n " Z.
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(a) We have

h{if>(P)) :$ dh(P) +0(1)

B. Height FUnctions

for all P E IF(Q) "Z.

(b) Let X be a dosed subvariety oflF with the property that X n Z = 0.
(Thus if> defines a morphism X -+ pm.) Then

h{if>(P)) = dh(P) + 0(1) for all P E X(Q).

We also record a special case that will be needed in the next section.

Corollary B.2.6. Let A : IF -+ pm be a linear map defined over Q. In
other words, A is given by m + 1 linear forms (Lo, . . , , L m ). Let Z c JPn
be the linear subspace where Lo, ... ,Lm simultaneously vanish, and let
X c IF be a closed subvariety with X n Z = 0. Then

h{A(P)) = h(P) + 0(1) for all P E X(Q).

Remark B.2.7. (i) The O(I)'s in Theorem B.2.5 depend on the map if>,
but are independent of the point P.
(ii) It is possible to give an explicit formula for the O(I)'s in terms of the
coefficients of if> and the equations defining X. More precisely, it is quite
easy to get an explicit upper bound h{if>(P)) :$ dh(P) +Cl(if» for (a) using
only the triangle inequality; see Exercise B.1. The corresponding lower
bound h(if>(P)) ~ dh(P) - C2(if» is more difficult, even in the case that
Z = 0. See, for example, the effective Nullstellensatz proven by Masser
and Wiistholz [1).
(2) It is not true in general that h{if>(P)) ~ dh(P) + 0(1) for all points
P E IF(Q) "Z. See Exercise B.2 for an example.

PROOF (of Theorem B.2.5 and Corollary B.2.6). Fix a field of definition k
for if>, so

if> = (fo,fI,· .. , 1m) with 10, ... ,lm E k[Xo, ... ,Xn]d.

(That is, the Ii's are homogeneous polynomials of degree d.) We write Ii
explicitly as

Ii(X) = L ai,exe ,
lel=d

where e = (eo, ... , en) is a multi-index, lei = eo + '" + en, and xe =
xgoXfl ... X~n. Notice that this sum has (n~d) terms, which is the number
of monomials of degree d in n + 1 variables.
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For any point P = (xo, ... ,xn ) with Xj E k and any absolute value v E

Mk' we will write IPlv = max{lxilv}. Similarly, for any polynomial f =
I:aeXe E k!X] we will let If Iv = max{lael}. We also set the convenient
notation

() { r if v is archimedean,
Cv r = 1 if v is nonarchimedean.

With this notation, the triangle inequality can be written uniformly as

Now consider any point P E JP'n (Q). Extending k if necessary, we may
assume that P E JP'n(k) and write P = (xo, ... ,xn) with Xi E k. Then for
any v E M k and any i we have

Now take the maximum over 0 :s i :s m, raise to the nv/!k: Q] power, and
multiply over all v E Mk. This gives

where we are writing H(¢) for the quantity

H(</» = II max{lfolv,"" Ifmlvrv/Ik:4~I.
vEMk

(That is, H(¢) is the height of the point (ai,e) whose coordinates are the
coefficients of all of the Ii's.) We have also made use of the identity

II cv(r)~ = II r~ = r[k:QJ,

vEMk vEM;;'

which follows from the degree formula (B.1.I). Taking logarithms gives

h(¢(P)) :s dh(P) + h(¢) + log (n: d),
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which completes the proof of (a).
(b) In order to get a complementary inequality, we need to use the fact
that we are choosing points P E X and that </J is a morphism on X. Let
Pl, ... ,Pr be homogeneous polynomials generating the ideal of X. Then
we know that Pl,"" Pr, 10, ... ,1m have no common zeros in pn. The
Nullstellensatz (Theorem A.1.1.2) tells us that the ideal they generate has
a radical equal to the ideal generated by XO,Xl , ... ,Xn . This means that
we can find polynomials 9ij, qij (which we may assume to be homogeneous)
and an exponent t ~ d such that

for 0 ~ j ~ n.

Notice that the 9ij'S are homogeneous of degree t - d, since the Ns are
homogeneous of degree d. Extending k if necessary, we may also assume
that the 9ij'S and qij'S have coefficients in k. Now let P = (xo, ... ,xn ) E
X(k). The assumption that P E X implies that Pi(P) = 0 for all i, so
when we evaluate the above formula at P we obtain

Hence

90j(P)/o(P) + ... + 9mj(P)/m(P) = x;, o~j ~ n.

Now raise to the nv/[k : Q] power and multiply over all v E Mk. This
yields

H(P)t ~ CH(P)t-dH(</J(P)) ,

where C is a certain constant depending on the Ii '5, the 9ij'S, and t, but
independent of P. In other words, c depends only on </J and X, so taking
logarithms gives the desired inequality

dh(P) ~ h(</J(P)) + 0(1).

This completes the proof of Theorem B.2.5. o
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Let V be a projective variety defined over Q. If V is embedded in some pn,
or more generally if we are given a morphism ¢ : V ~ pn, then we can
define a height function on V.

Definition. Let ¢ : V ~ pn be a morphism. The (absolute logarithmic)
height on V relative to ¢ is the function

h,p : V(Q) ~ [0,00), h,p(P) = h(¢(P)) ,

where h : pn(Q) _ [0,00) is the height function on projective space defined
in the previous section.

We have seen (B.2.5) that if ¢ : pn ~ pm is any morphism of degree d,
then h,p(P) = dh(P) + 0(1). The fact that ¢ has degree d is equivalent
to the assertion that ¢*H' '" dH, where H and H' are hyperplanes in pn
and pm, respectively. The following strengthening of (B.2.5) will be one of
the crucial ingredients in the construction of the height machine later in
this section.

Theorem B.3.l. Let V be a projective variety defined over Q, let ¢ :
V ~ pn and 1/J : V - pm be morpbisms, and let H and H' be hyperplanes
in pn and pm, respectively. Suppose that ¢*H and 1/J*H' are linearly
equivalent (i.e., ¢ and 1/J are associated to the same complete linear system).
Then

h,p(P) = ht/J(P) + 0(1) for all P E V(Q).

Here the 0(1) constant will depend on V, ¢, and 1/J, but it is independent
ofP.

PROOF. Let D E Div(V) be any positive divisor in the linear equivalence
class of ¢*H and 1/J*H'. The morphisms ¢ and 1/J are determined respec
tively by certain subspaces V and V' in the vector space L(D) and choices
of bases for V and V'. (See Section A.3.1.) In other words, if we choose a
basis ho, ... , hN for L(D), then there are linear combinations

N

Ii = L aijhj , 0::; i ::; n,
j=O

N

gi = Lbijhj, 0::; i:::; m,
j=l

such that ¢ and 1/J are given by

¢ = (fo, ... ,In) and 1/J = (gO, ... ,gm).
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Here the aij'S and bij's are constants.
Let>. = (ho, ... ,hN) : V - pN be the morphism corresponding to

the complete linear system determined by D. Let A be the linear map
A : IPN _ pn defined by the matrix (aij), and similarly let B : pN _ pm
be the linear map defined by (bij ). Then we have commutative diagrams

The vertical maps A and B are not morphisms on all of lPN, but the fact
that if> and 1/J are morphisms associated to the linear system L(D) implies
that A is defined at every point of the image >'(V(Q)), and similarly for B.
Hence we can apply Corollary B.2.6 to conclude that

h(A(Q)) = h(Q) + 0(1) and h(B(Q)) = h(Q) + 0(1)

for all Q E >'(V(Q)).

Writing Q = >.(P) with P E V(Q) and using the commutative diagrams
gives the desired result:

h(if>(P)) = h(A(>'(P)) = h(>.(P)) + 0(1)

= h(B(>'(P))) + 0(1) = h(1/J(P)) + 0(1).
o

We are now ready to give Weil's construction that associates a height
function to every divisor. This theorem may be viewed as a machine that
converts geometric statements described in terms of divisor class relations
into arithmetic statements described by relations between height functions.

Theorem B.3.2. (Weil's Height Machine) Let k be a number field. For
every smooth projective variety V / k there exists a map

hv : Div(V) --t {functions V(k) - lR}

with the following properties:
(a) (Normalization) Let H c pn be a hyperplane, and let h(P) be the
absolute logarithmic height on pn defined in Section B.2. Then

hpn,H(P) = h(P) + 0(1) for all P E IPn (k).

(b) (Functoriality) Let if> : V - W be a morphism and let D E Div(W).
Then

hV,</>°D(P) = hW,D(if>(P)) + 0(1) for all P E V(k).
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(c) (Additivity) Let D,E E Div(V). Then

hV.D+E(P) = hV.D(P) + hV.E(P) + 0(1) for all P E V(k).
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(d) (Linear Equivalence) Let D, E E Div(V) with D lineMlyequivalent
toE. Then

hV.D(P) = hV,E(P) + 0(1) for all P E V(k).

(e) (Positivity) Let D E Div(V) be an effective divisor, and let B be the
base locus of the line8l' system IDI. Then

hV,D(P) ~ 0(1) for all P E (V" B)(k).

(f) (Algebraic Equivalence) Let D, E E Div(V) with D ample and E alge
braicallyequivalent to O. Then

lim hv.E(P) = O.
PEV(k) hV.D{P)

hV.D(P)-OO

(See also Theorem B.5.9 for a stronger statement.)
(g) (Finiteness) Let D E Div(V) be ample. Then for every finite exten
sion k'/ k and every constant B, the set

{P E V(k') IhV.D(P) :5 B}

is finite.
(h) (Uniqueness) The height functions hV,D Me determined, up to 0(1),
by normalization (a), functoriality (b) just for embeddings if> : V "--+ pn,
and additivity (c).

Remarks B.3.2.1. (i) If the variety V is not smooth, Weil's Height Ma
chine (B.3.2) is still valid, provided that one works entirely with Cmier
divisors, rather than with Weil divisors. The proof of Theorem B.3.2 for
singular (projective) varieties goes through verbatim using the theory of
Cmier divisors as developed in Sections A.2 and A.3.
(ii) The "0(1)" constants that appear in the height machine (Theorem
B.3.2) depend on the varieties, divisors, and morphisms, but they are in
dependent of the points on the varieties. In principle, it is possible to
construct all of the hV.D'S explicitly and to give bounds for the O(l)'s in
terms of the coefficients of the defining equations of the V's, D's, and if>'s.
Thus the height machine is effective. However, it is often difficult in prac
tice to bound the O(I)'s. And even when bounds are calculated, the results
are generally quite large, because explicit bounds usually depend on some
explicit rendition of the Nullstellensatz, and this in tum requires the use
of generalized resultants or elimination theory.
(iii) We have described the height machine for varieties defined over num
ber fields. The same construction works more generally over any field with
a proper set of absolute values satisfying the product formula. For exam
ple, there is a theory of heights over function fields. See Lang [6] for the
general formulation.
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PROOF. We construct the height machine in pieces. First, for every divisor
D E Div(V) whose linear system has no base points, we choose a morphism
<PD : V - pn associated to D and define

hV,D(P) = h(<PD(P)) for all P E V(k).

(That is, <PD is a morphism such that <P'DH rv D for any hyperplane H
in pn.) Next, for every other divisor D E Div(V), we use (A.3.2.3) to
write D as a difference of divisors whose linear system has no base points,
say D = D1 - D2 (we could even require Db D2 to be very ample divisors),
and then we define

hV,D(P) = hV,D1 (P) - hV,D2 (P) for all P E V(k).

This gives us a height function hV,D for every divisor D on every variety V.
We begin by verifying that up to 0(1), the height function hV,D associ

ated to a base point free divisor D is independent of the morphism <PD. SO
let 'l/JD : V - pm be another morphism associated to D. This means that
<P'DH rv D rv 'l/J'DH', where H is a hyperplane in pn and H' is a hyperplane
in pm. Now Theorem B.3.1 tells us that

h(<PD(P)) = h('l/JD(P)) + 0(1) for all P E V(k).

Hence for base point free divisors, we can use any associated morphism to
compute the height.
We next check additivity property (c) for base point free divisors,

which we then use to show that the height hV,D is well-defined up to 0(1),
independent of the decomposition D = D 1 - D2.
Let then D and E be base point free divisors, and let <PD : V - pn

and <PE : V - pm be associated morphisms. Composing the product
<PD x <PE : V _lPn x pm with the Segre embedding Sn,m (A.1.2.6(b)) gives
a morphism

for all P E V(k).

The morphism <PD ® <PE is associated to the divisor D + E, that is,

(<PD ® <PE)*H rv D +E,

see (B.2.4(a)). We showed above that the height for a base point free
divisor can be computed using any associated morphism, so

hV,D+E(P) = h(<PD ® <PE)(P)) + 0(1)

Now we can use (B.2.4(b)) to obtain

hV,D+E(P) = h(<PD ® <PE)(P)) + 0(1)

= h(Sn,m(<PD(P), <PE(P))) + 0(1)

= h(<PD(P)) + h(<PE(P)) + 0(1) (from (B.2.4(b)))

= hV,D(P) + hV,E(P) + 0(1).
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This gives additivity for base point free divisors. Suppose now that we
have two decompositions

of a divisor D as the difference of base point divisors. Then D I + E2 =
D 2 + E I , and hence

hV,Dl + hV,E2 = hV,D1+E2 + 0(1)

= hV,D2+El + 0(1)

=hV,D2 + hV,E1 + 0(1),

which implies that hV,D1 - hV,D2 = hV,E1 - hV,E2 + 0(1).
It is now easy to check properties (a) and (b). Thus ifH is a hyperplane

in lPn, then the identity map lPn ...... lPn, P ~ P, is associated to H. This
gives (a). To verify (b), we write DE Div(W) as a difference of base point
free divisors, D = D I - D2, and let rPD1 and rPD2 be the corresponding
morphisms of W into projective space. Then rP*D I and rP* D 2 are base
point free, with associated morphisms rPD 1 0 rP and rPD2 0 rP, respectively.
Hence

hV,<t>'D = hV,<t>'D1 - hV,<t>'D2 + 0(1)

= h 0 rPD1 0 rP - h 0 rPD2 0 rP + 0(1)

= hW,D1 0 rP - hW,D2 0 rP + 0(1)

= hW,D 0 rP + 0(1).

Next we check the additivity property (c), which we already know for
base point free divisors. Now let D and E be arbitrary divisors, and write
them as differences D = D I - D2 and E = E I - E2 of base point free (or
even very ample) divisors. Then D I +E I and D 2 +E 2 are base point free,
so we can compute

hV,D+E = hV,D1+E1 - hV,D2+E2 + 0(1)

= hV,D1 + hV,E1 - hV,D2 - hV,E2 + 0(1)

= hV,D + hV,E + 0(1).

This completes the proof of additivity (c).
We also note at this point that the normalization property (a), the

functoriality property (b) for embeddings to projective space, and the ad
ditivity property (c) determine the height functions up to 0(1). The point
is that if D is very ample with associated embedding rPD : V ~ pn, then (a)
and (b) imply that hV,D = h 0 rPD +O(1). This determines the height func
tion for very ample divisors. But any divisor D can be written as the
difference D I - D2 of very ample divisors (A.3.2.3), so the additivity (c)
forces us to define hV,D = hV,D1-hV,D2 +0(1). This proves the uniqueness
property (h) of the height.
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Next suppose that D and E are linearly equivalent. Writing D =
D1 - D2 and E = E 1 - ~ as the difference of base point free divisors as
usual, we have D1+E2 f'V D2 +E1• This means that the morphisms tPD1+E2

and tPD2 +E1 are associated to the same linear system, so Theorem B.3.1
(or even Theorem B.2.5) tells us that

for all P E V(k).

Using this equality and additivity gives

Hence

hV,D = hV,Dl - hV,D2+ 0(1) = hV,E1 - hV,E2 + 0(1) = hV,E + 0(1),

which proves (d).
To prove positivity (e), we take D > 0 and write D = D1 - D2 as

a difference of base point free divisors as usual. Choose a basis fa,·.·, fn
for L(D2 ). Then the fact that D is positive implies that

D 1 + div(li) = D + D 2 + div(li) ~ 0,

so fa, ... , fn are also in L(D1). We extend this set to form a basis

fa, ... , fm fn+l,"" fm E L(D1).

These bases give us morphisms

and

associated to D 1 and D 2 • The functions fa, ... , fm are regular at all points
not in the support of Db so for any P E V with P ¢. supp(Dd we can
compute

hv,D(P) = hV,Dl (P) - hV,D2(P) + 0(1)

= h(¢D1 (P») - h(¢D2(P» + 0(1)

= h{Jo(P), . .. , fm(P» - h{Jo(P) , ... ,fn(P» + 0(1)

~ 0(1).

The last line follows directly from the definition of the height, since the
fact that m ~ n clearly implies
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This gives the desired estimate for points not in the support of D l .

Now choose very ample divisors Ho,HI, ... ,Hr on V with the property that
Hon ... n H r = 0 and Hi + D is very ample. For example, use (A.3.2.3)
to find a very ample divisor H such that D + H is also very ample, take
an embedding V ~ IF' corresponding to H, and take the Hi's to be the
pullbacks of the coordinate hyperplanes in IPr

. Now we apply our above
result to each of the decompositions D = (D + Hi) - Hi to deduce the
inequality hV,D ~ 0(1) for all points not in the support of D. Finally,
varying D in its linear system IDI, we obtain the positivity property (e) for
all points not lying in the base locus of IDI.

We will give a proof of the algebraic equivalence (f) using the fact
that if D is ample and E is algebraically equivalent to 0, then there is an
integer m > 0 such that mD +nE is base point free for all integers n. (See
Lang [6, Chapter 4, Lemma 3.2].) However, we will later (Theorem B.5.9)
prove a stronger result, using the theory of canonical heights and functorial
properties of the Picard and Albanese varieties.
The height associated to a base point free divisor is nonnegative by

construction (or by the positivity property (e) with empty base locus), so

hV,mD+nE(P) ~ 0(1)

Using additivity (c), we obtain

mhV,D(P) + nhV,E(P) ~ -c

for all P E V(k).

for all P E V(k),

where the constant -c will depend on D, E, m, and n, but is independent
of P. This holds for all integers n, so we can rewrite using positive and
negative values for n. Thus for any n ~ 1 we obtain

m c hVE(P) m c- + >' > - - - ----,----:--c-
n nhv,D(P) - hV,D(P) - n nhv,D(P)

for all P E V(k).

It is important to keep in mind that the constant c depends on n. We now
let hV,D(P) - 00. This destroys the c's and yields

m . hVE(P) .. hVE(P) m- > hmsup , > hmmf ' > --.
n - hV,D(P)-OO hV,D(P) - hV.D(P)-OO hv,D(P) - n

These inequalities hold for all n ~ 1, so letting n - 00, we obtain the
desired result,

I· hV,E(P) - 0
1m - .

hV,D(P)-OO hV,D(P)

This completes the proof of the algebraic equivalence property (f).
It remains to prove the finiteness property (g). Note that if we replace

the ample divisor D by a very ample multiple mD, then additivity (c)
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implies that hV,mD = mhV,D + 0(1); hence it suffices to prove (g) under
the assumption that D is very ample. Let ¢ : V <-t pn be an embedding
associated to D, so ¢*H = D. Then (a) and (b) imply that

hV,D 0 ¢ = hpn,,,,o D + 0(1) = hpn,H + 0(1) = h + 0(1),

so we are reduced to showing that r(k') bas finitely many points of
bounded height. This follows from (B.2.3), which completes the proof
of (g), and with it the proof of Theorem B.3.2. 0

Remark Bo3.3. We illustrate the use of the height machine by quickly re
proving a special case of Theorem B.2.5. Let ¢ : pn --+ pm be a morphism
of degree d, and let Hn and H m be hyperplanes in r and IP"', respectively.
The assumption that ¢ has degree d means that ¢* Hm rv dHn . For any
P E r(Q) we compute

h(¢(P») = hpm,Hm(¢(P») + 0(1)
= hpn,,,,oHm(P) + 0(1)
= hpn,dHn(P) + 0(1)
= dhpn,Hn(P) + 0(1)
= dh(P) + 0(1)

from B.3.2(a)
from B.3.2(b)
from B.3.2(d) (note ¢* Hm rv dHn )

from B.3.2(c)
from B.3.2(a) again.

As another illustration of the power of the height machine, we use
the divisor class relations from Section A.7.2 to derive some important
height formulas on abelian varieties. These formulas and the finiteness
result (B.3.2(g» will provide half of the necessary tools for applying the
descent theorem (C.0.3) to abelian varieties. More precisely, the weak
Mordell-Wei! theorem (C.0.2) says that the group A(k)/mA(k) is finite.
Then (B.3.2(g» and (B.3.4(a,b» will be used to deduce that the group A(k)
itself is finitely generated.

Corollary B.3.4. Let AIk be an abelian variety defined over a number
field, and let D E Div(A) be a divisor on A.
(a) Let m be an integer. Then for all P E A(k),

m2 +m m2 -m
hA,D(lmJP) = 2 hA,D(P) + 2 hA,D(-P) + 0(1).

In particular, if D has a symmetric divisor class (i.e., [-1]*D rv D), then

and if D has an antisymmetric divisor class (i.e., [-lJ*D rv -D), then

hA,D(lm]P) = mhA,D(P) + 0(1).

(Note that the O(l)'s depend on A, D, and m.)
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(b) IfD has a symmetric divisor class, then for all P, Q E A(k),

hA,D(P + Q) + hA,D(P - Q) = 2hA,D(P) + 2hA,D(Q) + 0(1).

(c) IfD has an antisymmetric divisor class, then
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hA,D(P + Q) = hA,D(P) + hA,D(Q) + 0(1) for all P, Q E A(k).

PROOF. (a) Mumford's formula (A.7.2.5) tells us that

2 + 2
[m]*D"" m m D + m -m[_l]*D
22'

Using this and standard properties of heights (B.3.2(b),(d),(c)), we obtain
a corresponding height relation

hA,D([m]P) = hA,[mjOD(P) + 0(1)

= hA,(1/2)(m2+m)D+(1/2)(m2-m)[-1joD(P) + 0(1)

m 2+m m 2 -m
= 2 hA,D(P) + 2 hA,[-1jo D(P) + 0(1)

m 2+m m 2 -m
= 2 hA,D(P) + 2 hA,D(-P) + 0(1).

This proves the first part of (a). The other two parts are consequences
of the relation hA,D 0 [-1] = ±hA,D + 0(1), where the sign is positive
(respectively negative) if the divisor class of D is symmetric (respectively
antisymmetric) .
(b) Consider the following four maps from A x A to A:

a, 8,11"1,11"2 : A x A --+ A,
{

a(P,Q)=P+Q

8(P,Q) = P - Q

1I"1(P, Q) = P

1r2(P, Q) = Q.

Proposition A.7.3.3 gives the divisor class relation

on A x A. We use this divisor relation and standard properties of height
functions (B.3.2) to compute

hA,uo D(P, Q) + hA,oo D(P, Q) = 2hA,7r~ D(P, Q) + 2hA,7r2D(P, Q)+O(l),

hA,D(a(P, Q)) + hA,D(8(P, Q)) = 2hA,D (11"1 (P, Q))

+ 2hA,D(1I"2(P,Q)) + 0(1),

hA,D(P + Q) + hA,n(P - Q) = 2hA,D(P) + 2hA,D(Q) + 0(1).
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(c) Let 0", 11"}, 11"2 be as above. Then Proposition A.7.3.2 gives the formula

Again we use (B.3.2) to translate this divisor relation into a height relation,

hA,u*D(P, Q) = hA,7rrD(P, Q) + hA,7r2D(P, Q) + 0(1),

hA,D(O"(P,Q)) = hA,D(1I"1(P,Q)) + hA,D(1I"2(P,Q) + 0(1),

hA,D(P +Q) = hA,D(P) + hA,D(Q) +0(1). 0

The following result will be used in Part D to study integer points
on curves. The first part of (B.3.5) is an immediate consequence of the
algebraic equivalence property of the height machine (B.3.2(f» and can
be strengthened by using Theorem B.5.9 below, but we will give a direct
proof, since algebraic equivalence on curves is much more elementary than
in the general case.

Proposition B.3.5. Let Clk be a smooth projective curve.
(a) Let D, E E Div(C) be divisors with deg(D) ~ 1. Then

lim hE(P) = degE.
PEC(k) hD(P) degD

hD(P)-OO

(b) Let I, 9 E k(C) be rational functions on C with I nonconstant. Then

lim h(g(P) degg
PEC(k) h(J(P) = degJ'

h(f(P»-oo

PROOF. Let d = deg(D) and e = deg(E). For every integer n, both positive
and negative, consider the divisor

An = n(eD - dE) + D.

Notice that deg(An ) = deg(D) ~ 1, so An is ample (AA.2A). The pos
itivity property of the height machine (B.3.2e) implies that hA (P) is
bounded below for all P E C(k). Or we can prove it directly as follows.
If A E Div(C) is any ample divisor, then mA is very ample for some m ~ 1,
say mA is associated to the map if> : C --+ IP'N. Then

1 1
hA(P) = -hmA(P) + 0(1) = -h(if>(P) + 0(1) ~ 0(1),

m m

since the height on IP'N (k) is nonnegative.
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We now know that hAn is bounded below on C(k), so using the addi
tivity of the height, we find that

0(1) :s hAn(P) = hn(eD-dE)+D(P) = n(ehD(P) - dhE(P)) + hD(P)
for all P E C(k).

Of course, we must not forget that the 0(1) may depend on D, E, and n,
so we will denote it by -K(D, E, n). Rearranging our inequality, we find
that

-K(D,E,n) (e hE(P)) 1
dhD(P) :s n d - hD(P) + d for all P E C(k).

This holds for positive and negative values of n, so taking both n and -n
with n ~ 1, we obtain the estimate

_-_K~(D,---:...-"E:-::,:-:-n-:..)_~ < ~ __hE_(_P_) < K(D,E,-n) +_1
ndhD(P) nd - d hD(P) - ndhD(P) nd

for all P E C(k).

Now consider what happens as hD(P) - 00. We find that

1 .. (e hE(P)) . (e hE(P)) 1-- < limmf - - -- < limsup - - -- <-.
nd - hv(P)-oo d hD(P) - hD(P)-OO d hD(P) - nd

These inequalities hold for all n ~ 1, so we can let n - 00 to obtain

lim ~ - hE(P) = O.
hD{P)-OO d hD(P)

This completes the proof of (a).
(b) This follows easily from (a). Write div(f) = D' - D and div(g) =
E' - E. Note that deg(f) = deg(D) and deg(g) = deg(E). Further, if we
consider f to be a map f : C - pI, then D = /*(00), so hD = ho f +0(1).
Similarly, hE = hog + 0(1). Now we use (a) to compute

lim h(g(P)) = lim hE(P) + 0(1) = degE degg
h(f(P))-oo h(J(P)) hD(P)-OO hD(P) + 0(1) degD = deg!'

o
Up to a bounded function, the height hV,D associated to a divisor D

depends only on the divisor class of D. It is sometimes convenient to
reformulate the height machine (B.3.2) purely in terms of divisor classes or
line bundles.
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Theorem B.3.6. Let V be a projective variety defined over a number
field k. There is a unique homomorphism

. {functions V(k) -+ lR}
hv : PlC(V) --+ {bounded functions V(k) -+ lR}

with the property that if£, E Pic(V) is very ample and </>J:, : V ~ nm is an
associated embedding, then

hv,J:, = h 0 </>J:, + 0(1).

The height functions hv,J:, have the following additional properties:
(a) (Functoriality) Let </> : V -+ W be a morphism ofsmooth varieties, and
let £, E Pic(W). Then

hv,</>*J:, = hw,J:, 0 ¢ + 0(1).

(b) (Positivity) Let B be the base locus of £, E Pic(V), and assume that
B =f:. V. Then

hv,J:, ~ 0(1) onV" B.

(c) (Algebraic Equivalence) Let £',M E Pic(V) with £, ample and M alge
braically equivalent to zero. Then

lim hv,'M(P) = o.
PEV(k) hv,r,(P)

hv,£. (P)-oo

(See Theorem B.5.9 for a stronger statement.)

PROOF. All of this is a restatement, in terms of line bundles, of the height
machine (B.3.2). Note that the linear equivalence and additivity proper
ties of (B.3.2) are included in the statement that the height mapping hv
is defined and is a homomorphism on Pic(V) and that we do not need a
smoothness hypotheses because Pic(V) is defined in terms of Cartier divi
sors.

o
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The height machine (B.3.2) associates to each divisor D E Div(V) a height
function hD : V(k) -+ JR. These height functions are well-defined and
satisfy various properties modulo 0(1). In some cases it is possible to
find a particular height function within its 0(1) equivalence class that has
particularly nice properties. This theory, which was developed by Neron
and Tate, will form the subject of this and the next section.

Theorem B.4.1. (Neron, Tate) Let Vjk be a smooth variety defined
over a number field, let D E Div(V), and let ¢ : V -+ V be a morphism.
Suppose that

¢*D '" aD

for some number a > 1. Then there is a unique function, called the canon
ical height on V relative to ¢ and D,

hV.<p,D : V(k) -- JR,

with the following two properties:
(i) hV,<p,D(P) = hV.D(P) +0(1) for all P E V(k).
(ii) hv,<p.D(¢(P)) = ahv.<p,D(P) for all P E V(k).

The canonical height depends only on the linear equivalence class ofD.
Further, it can be computed as the limit

where ¢n = ¢ 0 ¢ 0 ..• 0 ¢ is the n-fold iterate of ¢.

PROOF. Applying the height machine to the relation ¢*D '" aD, we find
that there is a constant C such that

!hV,D(¢(Q)) - ahV.D(Q) I~ C for all Q E V(k).

(N.B. C depends on V, D, ¢, and the choice of the height function hV,D.)
Now take any point P E V(k). We are going to prove that the sequence
a-nhv,D(¢n(p)) converges by verifying that it is Cauchy. We take n ~ m
and compute

la-nhv,D(¢n(p)) - a-mhV.D(¢m(p)) I

= I t a-i(hv,D(¢i(P)) -ahv.D(¢i-l(P)))1
i=m+l

(telescoping sum)
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n

< L a-ilhv,D(t/>i(P)) - ahV,D (t/>i-1 (P)) I
i=m+1

(triangle inequality)
n

< L a-iC (from above with Q = t/>i-1p)
i=m+1

(

-m -n)a -a
= C.

a-I

This last quantity goes to 0 as n > m ~ 00, which proves that the sequence
is Cauchy, hence converges. So we can define hV,4>,D(P) to be the limit

To verify property (i), we take m = 0 and let n ~ 00 in the inequality
proven above. This gives

A I CIhv,¢,D(P) - hV,D(P) :$ a-I'

which is an explicit form of the desired estimate. Property (ll) follows
directly from the definition of the canonical height as a limit, since once
we know that the limit exists we can compute

A 1
hV,¢,D(t/>(P)) = ,!~~ o:n hV,D(t/>n(t/>(p)))

= lim 0:+
1
hVD(t/>n+1(p))

n--+oo an '

= o:hV,¢,D(P).

Finally, in order to prove the uniqueness, suppose that h and h' are
two functions with properties (i) and (ll). Let 9 = h- h' be the difference.
Then (i) implies that 9 is bounded, say Ig(p)1 :$ C' for all P E V(k). On
the other hand, (ll) says that got/> = ag, and iterating this relation gives
go t/>n = ang for all n :2: 1. Hence

This proves that g(P) = 0 for all P, so h = h'. o

To understand the condition that t/>*D be linearly equivalent to aD,
we observe that 4> induces a Z-linear map t/>* : Pic(V) ~ Pic(V). Tensoring
with lR gives a linear transformation

t/>* : Pic(V) ® lR --+ Pic(V) ® lR
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of lR-vector spaces. In order to apply the averaging process of Theo
rem B.4.1 to construct a canonical height, we need a divisor class that
is an eigenvector for this linear transformation and that has an eigenvalue
strictly greater than 1. For example, any morphism ¢ : pn -+ pn of de
gree n has the property that ¢*H rv nH. Similarly, if D is a symmetric
divisor on an abelian variety A, then the multiplication map In] : A -+ A
satisfies [n]*D rv n2D. We will discuss these examples further below. For
an example of canonical heights defined on certain K3 surfaces, see Silver
man [6].

If the divisor D is ample, then the canonical height can be used to
prove various finiteness results. It is convenient to use some terminology
from the theory of dynamical systems.

Definition. Let S be a set, let ¢ : S -+ S be a function, and for each n ;::: 1
let ¢n : S -+ S denote the nth iterate of ¢. An element PES is called
periodic for ¢ if ¢n(p) = P for some n ;::: 1, and it is called preperiodic
for ¢ if ¢n(p) is periodic for some n ;::: 1. Equivalently, P is preperiodic if
its forward orbit

is finite.

Proposition B.4.2. Let ¢ : V -+ V be a morphism of a variety defined
over a number field k. Let D E Div(V) be an ample divisor such that
¢* D rv aD for some a > 1, and let hV,cf>,D be the associated canonical
height (B.4.1).
(a) Let P E V(k). Then hV,¢,D(P) ;::: 0, and

hV,¢,D(P) = 0~ P is preperiodic for ¢.

(b) (Northcott [3]) The set

{p E V(k) IPis preperiodic for ¢}

is finite.

PROOF. (a) The fact that D is ample means that we can choose a height
function hV,D with nonnegative values. It is then immediate from the
definition that hV,cf>,D is nonnegative.

Now let P E V(k). Replacing k by a finite extension, we may assume
that P E V(k) and that D and ¢ are defined over k. Suppose first that P
is preperiodic for ¢. Then the sequence (¢n P)n> 1 repeats, so the sequence
of heights (hV,D(¢np))n>l is bounded. It follo~s that a-nhv,D(¢np) -+ 0

as n -+ 00, so Theorem 8.4.1 says that hV,cf>,D(P) = o.
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Conversely, suppose that hV,</>,D(P) = O. Then for any n ~ 1 we have

Note further that all of the points ¢InP are in V (k). Thus there is a
constant B such that

ot(P) = {p, ¢J(P), ¢J2(p), ¢J3(p), ... } C {Q E V(k) IhV,D(Q) :$ B}.

But D is ample, so Theorem B.3.2(g) says that there are only finitely many
points in V(k) with bounded hV,D-height. Hence 0t(P) is finite, so P is
preperiodic for ¢J. 0

Remarks B.4.3. Two important cases to which we can apply Proposi
tion B.4.2 are projective spaces and abelian varieties.
(a) Let ¢J : IP'n -+ r be a morphism of degree d ~ 2. Then ¢J* H '" dH for
any hyperplane H E Div(r). It follows from (B.4.2b) that the set

{ P E IP'n (k) IP is preperiodic for ¢J}

is finite. This result, which is due to Northcott [3], can also be proven
directly using Theorem B.2.5.

As a special case, consider the map ¢J(xo, ... ,xn ) = (x~, ... ,x~J. It
is easy to see that the canonical height associated to ¢J is simply the usual
"noncanonical" height function on IP'n. Further, a point is preperiodic for ¢J
if and only if all of the (defined) ratios Xj/Xi are roots of unity or zero.
Thus this special case of (B.4.2a) is Kronecker's theorem (B.2.3.1).
(b) Let A be an abelian variety, let D E Div(A) be an ample symmetric
divisor, and let [n] : A -+ A be the multiplication-by-n map for some n ~ 2.
Then [n]* D '" n2D from (A.7.2.5), so we can apply (B.4.2) to conclude
that A(k) has only finitely many points that are preperiodic for [n]. But
PEA is preperiodic for [n] if and only if there are integers i > j such that
[ni]p = [nj]p, so we see that the [n]-preperiodic points are precisely the
torsion points. Hence A(khors is finite. This global proof of the finiteness
of A(khors may be compared with the local proof (see Theorem C.1.4 and
the remark following it). The local proof uses the fact that for all but
finitely many primes p, the prime-to-p torsion in A(k) injects when we
reduce modulo p, where p is the residue characteristic of p.
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Ear all P E A(k).

The construction of Neron and Tate (B.4.1) associates a canonical height
to any morphism ¢ : V -+ V with an eigendivisor ¢*D '" aD having
eigenvalue a > 1. An important example is the case of an abelian variety A,
a symmetric divisor D, and a multiplication-by-m map [m] : A -+ A,
since Corollary A.7.2.5 tells us that [m]* D '" m2D. It turns out that the
resulting canonical height is independent of the choice of m ~ 2 and has
many additional useful properties. In particular, it is a quadratic form
relative to the group law on A.
Similarly, ifwe choose an antisymmetric divisor D on A (Le., D satisfies

[-1]* D rv D), then (A.7.2.5) says that [m]* D rv mD, so again we get a
canonical height. Finally, for any D we can write 2D as the sum of a
symmetric divisor and an antisymmetric divisor, so using linearity we get
a canonical height for any D.
We begin this section by describing the canonical heights associated

to symmetric divisors. These are the heights that are most often used in
Diophantine applications. Then at the end of the section we will develop the
theory of canonical heights for arbitrary divisors and use it to describe the
height pairing on an abelian variety and its dual. We conclude the section
by applying the theory of canonical heights to deduce a strong form of
the algebraic equivalence property (Theorem B.3.2(f» for (not necessarily
abelian) varieties.

Theorem B.5.1. (Neron, Tate) Let A/k be an abelian variety defined
over a number field, and let D E Div(A) be a divisor whose divisor class is
symmetric (i.e., [-1]*D '" D). There is a height function

hA,D : A(k) -- JR,

called the canonical height on A relative to D, with the Eollowing proper
ties:
(a)

(b) For all integers m,

Ear all P E A(k).

(c) (Parallelogram Law)

Eor all P, Q E A(k).
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(d) The canonical height map hA,D : A(k) -lR is a quadratic form. The
associated pairing (', ')D : A(k) x A(k) -+ lR defined by

(P,Q)D = hA,D(P+ Q) - h;'D(P) - hA,D(Q)

is bilinear and satisfies (P, P) = hA,D(P).
(e) (Uniqueness) The canonical height hA,D depends only on the divisor
class of the divisor D. It is uniquely determined by (a) and (b) for anyone
integer m ~ 2.

PROOF. We take hA,D to be the canonical height on A with respect to the
doubling map [2] : A - A. Note that [2]*D rv 4D from (A.7.2.5), so we
can apply Theorem B.4.1 to obtain

hA,D(P) = 1~~ 4: hA,D([2
n
]P).

Theorem BA.1 tells us that hA,D = hA,D + 0(1) and hA,D 0 [2] = 4hA,D'
which gives (a) and also (b) for m = 2.
We could prove (b) by first proving (c) and then using induction, but

we will give a direct proof. Corollary B.3A(~ tells us that hA,D([m]Q) =
m2hA,D(Q)+0(1). This holds for all Q E A(k), where the 0(1) is bounded
independently ofQ. We replace Q by [2]n P, divide by 4n, and let n - 00.

The result is

Notice how the limiting process eliminates the 0(1). Also note the crucial
use made of the fact that the maps [m] and [2n ] commute with one another.
This completes the proof of (b).
For (c), use the relation

hA,D(P + Q) + hA,D(P - Q) = 2hA,D(P) + 2hA,D(Q) + 0(1)

from Corollary B.3A(b). Note that the 0(1) is bounded independently ofP
and Q. Thus we can replace P and Q by 2n P and 2n Q, divide by 4n , and
let n - 00. The 0(1) disappears, and we are left with the parallelogram
law (c).

It is a standard fact that a function on an abelian group that satisfies
the parallelogram law is a quadratic form. We will recall the proof be
low (B.5.2). This gives (d). Finally, the uniqueness statement (e) follows
from the uniqueness assertion in Theorem BA.1, since hA,D is a canonical
height relative to every map [m]. 0
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The following elementary result was used in proving Theorem B.5.!.

Lemma B.5.2. Let A be an abelian group, and let h : A - JR be a
function satisfying the parallelogram law,

h(P + Q) + h(P - Q) = 2h(P) + 2h(Q)

Then h is a quadratic form on A.

for all P, Q E A.

PROOF. Putting P = Q = 0 into the parallelogram law gives h(O) = 0,
and then putting P = °gives h(-Q) = h(Q), so h is an even function. It
remains to check that h is quadratic. We apply the parallelogram law four
times (and use the evenness of h) to obtain

h(P + Q +R) + h(P + R - Q) - 2h(P + R) - 2h(Q) = 0,

h(P - R + Q) + h(P + R - Q) - 2h(P) - 2h(R - Q) = 0,

h(P - R + Q) + h(P + R + Q) - 2h(P + Q) - 2h(R) = 0,
2h(R + Q) + 2h(R - Q) - 4h(R) - 4h(Q) = 0.

The alternating sum of these four equations is the desired result. 0

If D is an ample symmetric divisor on A, then Proposition BA.2 tells
us that hA,D(P) = 0 if and only if P is a torsion point. Thus hA,D is a
positive definite quadratic form on A(k)/(torsion). The next result says
that more is true.

Proposition B.5.3. Let AIk be an abelian variety defined over a number
field, and let D E Div(A) be an ample divisor with symmetric divisor
class.
(a) For all P E A(k), we have hA,D(P) ~ 0, with equality if and only ifP
is a point of finite order.
(b) The associated canonical height function extends JR-linearly to a posi
tive definite quadratic form

hA,D : A(k) I8lJR --+ JR.

In particular, if PI, ... ,Pr E A(k) I8lJR are linearly independent, then the
height regulator

is strictly greater than o.
Remark. As pointed out by Cassels, the fact that hA,D is a positive defi
nite quadratic form on A(k)/(torsion) does not, by itself, imply that hA,D is
positive definite on A(k)I8lJR. For example, consider the group A = Z+zy'2
as a subgroup of JR and the quadratic form on A defined by

q: A -JR,
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(That is, q (a + bv'2) = a2 + 2b2 + 2abv'2 .) It is clear that q is positive
definite on A, since v'2 is irrational. However, it is equally clear that q is
not positive definite on A I8lJR ~ JR E9 JR. For example, q (a + bv'2) = 0 for
(a, b) = (v'2, -1). A closer analysis shows that the problem occurs because
the set of values q(A) is not a discrete subset of JR; see Corollary B.5.4.1
below.

PROOF. (a) Let P E A(k). Proposition B.4.2(a) says that hA,D(P) ~ 0,
with equality if and only if Pis preperiodic for (say) the multiplication-by-2
map. It is clear that such preperiodic points are torsion points. Conversely,
if P is a point of order n, then using Euler's formula 2<!>(n) == 1 (mod n), we
see that [2<f>(n)]p = P, so P is preperiodic.
(b) Let P E A(k) I8lJR be a point with hA,D(P) = O. We can write P as a
linear combination

with ai E JR and Pi E A(k). Replacing k by a finite extension if necessary,
we may assume that each Pi is in A(k).
Let V = lRPl + JRP2 + ... + JRPr be the span of the Pi'S in A(k) I8lJR,

and let A be the image of ZP1 + ZP2 + ... + ZPr in V. Thus V is a finite
dimensional real vector space, A is a finitely generated subgroup of V, and
V = A I8lJR, so A is a lattice in V. Further, (B.5.1(d» tells us that the
canonical height hA,D induces a quadratic form on V.'We will denote this
quadratic form by q : V -t lR.
Our first observation is that q is positive definite on the lattice A. This

follows from (a), since the kernel ofA(k) -t A(k)I8lJR is precisely the torsion
subgroup of A(k). Thus hA,D induces a positive definite quadratic form on
the image of A(k) in A(k) I8lJR. In particular, it is positive definite on A.
We will next verify that for any constant B, the set

{-\ E A Iq(-\) ~ B}

is finite. To see this, let -\ be the image of some point Q E A(k). Then

q(-\) ~ B => hA,D(Q) ~ B => hA,D(Q) ~ B + C,

since hA,D and hA,D differ by a bounded amount. Now we use the assump
tion that D is ample to apply (B.3.2(g» and conclude that

{Q E A(k) IhA,D(Q) ~ B + C}

is finite.
We now know that q is a positive definite quadratic form on the lat

tice A and that there are only finitely many elements -\ E A with bounded
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q(A). The fact that q remains positive definite when extended to A 18> lR is
then a simple corollary ofMinkowski's theorem on lattice points in symmet
ric domains. For completeness, we give the proof of Minkowski's theorem,
followed by the application to quadratic forms, thereby completing the
proof of Theorem B.5.3. 0

Theorem B.5.4. (Minkowski) Let A be a lattice in lRr
, let F be a

fundamental domain for lRr
/ A, and let U C lRr be a symmetric convex set.

(That is, x E U implies -x E U, and x, y E U implies tx + (1 - t)y E U
for all 0 S t S 1.) Ifvol(U) > 2r vol(F), then UnA contains a nonzero
vector.

PROOF. Let W = !U = {!x Ix E U}. Suppose that

(W + A) n (W + J.t) = 0 for all A, J.t E A with A=I- J.t. (*)

Then
1
2r vol(U) = vol(W)

= vol (W n U (F + A))
AEA

= Lvol(Wn(F+A))
AEA

= Lvol(W-A)nF)
AEA

=VOI(U(W-A)nF) from (*),
AEA

S vol(F).

This contradicts the assumption that vol(U) > 2r vol(F), so we conclude
that (*) is false. Hence we can find distinct elements A, J.t E A and points
x, yEW such that x + A= y + J.t. Then the symmetry and convexity of U
allows us to compute

so UnA contains the nonzero vector A- J.t. 0

Corollary B.5.4.1. Let A be a free abelian group of finite rank. Let
q : A -+ lR be a quadratic form with the following two properties:
(i) For all AE A, q(A) ~ 0, with equality if and only ifA=O.
(ii) For all B, the set {A E A Iq(A) S B} is finite.

Then q extends to a positive definite quadratic from on A 18> JR.

PROOF. Let V = Al8llR, and by abuse of notation let q : V -+ lR also denote
the extension of q : A -+ lR to V. A standard result from linear algebra
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says that a real quadratic form on a real vector space can be diagonalized
with O's, l's, and -l's on the diagonal. In other words, we can choose an
isomorphism V ~ JRr such that if x = (Xl, ... , X r ) E V, then

()
2 2 2 2 2 2q X = Xl + X2 + ... + X s - Xs+l - X s+2 - ••• - X s+ t '

See, for example, Lang [2, Chapter 7, Sections 3,7] or van der Waerden [1,
Section 12.7]. The integers s and t are uniquely determined by q and satisfy
s + t ~ r = dim(V). Notice that q is positive definite on V if and only if
s =r.
Let

L = inf{q(>.) I>. E A, >. # O}.

The given properties (i) and (ii) of q ensure that L > O. Now for each pair
of positive numbers 8, e > 0 we consider the set

The set U(c5,e) is clearly convex and symmetric about the origin. Further,
the definition of L ensures that U(LI2,e) n A = {O} for all e > O. It
follows from Minkowski's theorem (B.5.4) that vol(U(L/2,e») is bounded
as e -+ 00.
On the other hand, it is clear from the definition of U (c5, e) that the

volume of U(L/2,e) is infinite if s + t < r, and that the volume grows
like et / 2 as e -+ 00 if s + t = r. Hence the boundedness of vol (U(LI2, e»)
implies that s = r, which completes the proof that q is positive definite
on V. 0

We have now developed in some detail the theory of canonical heights
associated to symmetric divisor classes on an abelian variety. There is an
analogous theory for antisymmetric divisor classes, that is, divisors that
satisfy [-1]*D '" -D. The associated canonical heights tum out to be
linear rather than quadratic.

Theorem B.5.5. Let AIk be an abelian variety defined over a number
field, and let D E Div(A) be a divisor whose divisor class is antisymmetric
(i.e., [-l]*D '" -D). There is a canonical height function

hA,D : A(k) -+ JR,

with the following properties:
(a) hA,D(P) = hA,D(P) + 0(1) for all P E A(k).

(b) hA,D(P + Q) = hA,D(P) + hA,D(Q) for all P, Q E A(k).
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Thus hA,D is a homomorphism from A(k) to JR. Further, the function hA,D
is uniquely determined by properties (a) and (b).

PROOF. The proof is almost the same as the proof of (B.5.1), so we merely
give a sketch. Corollary A.7.2.5 says that [m]* D rv mD, so (BA.1) says
that there is a canonical height hA,D with respect to (say) the map [2].
From (B.4.1), this height satisfies (a), and it can be computed as the limit

To prove (b), we use the relation

hA,D(P +Q) = hA,D(P) + hA,D(Q) + 0(1) for all P, Q E A(k)

from (B.3A(c)). Now replace P and Q by 2n p and 2n Q, divide by 2n , and
let n --+ 00 to obtain (b). Finally, suppose that hand h' both satisfy (a)
and (b). Then the difference h-h' is a bounded homomorphism A(k) --+ JR.
The image ofthis homomorphism is a bounded subgroup of JR. But JR has no
bounded subgroups other than {O}, so h = h'. This proves the uniqueness
and completes the proof of the theorem. 0

An arbitrary divisor can (almost) be written as the sum of a symmetric
and an antisymmetric divisor. So combining our Theorems B.5.1 and B.5.5,
we will be able to construct canonical heights for all divisors. In order to
state our result, it is helpful to recall the following definition.

Definition. Let A and B be abelian groups, and assume that B is uniquely
2-divisible. (That is, assume that the doubling map B --+ B, b t---+ 2b, is an
isomorphism. For example, JR is uniquely 2-divisible.) A quadratic function
on A with values in B is a function h : A --+ B satisfying

h(P+Q+R)-h(P+Q)-h(P+R)-h(Q+R)+h(P)+h(Q)+h(R)-h(O) = 0

for all P,Q,R E A.

Equivalently, h : A -t B is a quadratic function if the associated pairing

(', ')h : A x A ---+ B,
I P Q) = h(P + Q) - h(P) - h(Q) + h(O)
\, h 2 '

is bilinear. We note that a quadratic function can be written uniquely as
the sum of a quadratic form, a linear form, and a constant; see Exercise B.9.

Theorem B.5.6. Let AIk be an abelian variety defined over a number
field, and let D E Div(A) be a divisor on A.
(a) There is a unique quadratic function
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satisfying hA,D = hA,D + 0(1) and hA,D(O) = O. It is called the canonical
height on A relative to D.
(b) The canonical height hA,D depends only on the divisor class ofD.
(c) Let D, E E Div(A). Then hA,D+E = hA,D + hA,E'
(d) Let B/k be another abelian variety, and let ¢> : B ---t A be a morphism.
Then

(e) There is a unique quadratic form eJA,D : A(k) ---t JR and a unique linear
form lA,D : A(k) ---t JR such that

hA,D = eJA,D + lA,D'

More precisely,

lA
tlA,D = 2hA,D+[-WD and

Hence ifD represents a symmetric divisor class ([-1)*D rv D), then hA,D =
qA,D; and if D represents an antisymmetric divisor class ([-l)*D rv -D),
then hA,D = lA,D'

PROOF. Define divisors D+ = D+[-l)* D and D- = D-[-l)*D. It is clear
that D+ is symmetric and D- is antisymmetric. Applying Theorem B.5.l
to the divisor D+, we obtain a quadratic form hA,D+ on A(k); and applying
Theorem B.5.5 to the divisor D-, we obtain a linear form hA,D- on A(k).
Define

hA,D : A(k) ---t JR,

Then hA,D is certainly a quadratic function with hA,D(O) = 0, since it is a
sum of a linear form and a quadratic form. Further,

2hA D = hA D+ + hA D-

, = hA :D + + hA :D - + 0(1)
= hA,D+[-WD + hA,D-[-l]*D + 0(1)
= 2hA,D + 0(1)

definition of hA,D
from (B.5.l) and (B.5.5)
definition of D+ and D
additivity (B.3.2(c».

This shows that hA,D has the desired properties, which proves the existence
part of (a).
Now suppose that hAD is another function satisfying the properties,

in (a). Let I = hA,D - hA,D' Then I is a bounded quadratic function
I : A(k) ---t lR and satisfies 1(0) = O. In particular, the bilinear form

(', ')f : A(k) x A(k) ---t JR, (P,Q)f = I(P + Q) - f(?; - f(Q) + f(O),
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associated to 1 is bounded. But (nP,nQ)f = n2 (P,Q)f' so the bilinear
form is identically O. Thus I(P + Q) + 1(0) = I(P) + I(Q). But this
implies that l(nP) - 1(0) = n(J(P) - 1(0)), so the boundedness of 1
implies that I(P) = 1(0) for all P. Since 1(0) = 0, this proves that
kA,D = kA,D' which completes the proof of uniqueness.

(b) If D' rv D, then hA,D = hA,D' +0(1) from (B.3.2(d)). Thus kA,D' sat
isfies the conditions in (a) for the divisor D, so by the uniqueness assertion
in (a), we have kA,D' = kA,D.
(c) We have hA,D+E = hA,D + hA,E + 0(1) from (B.3.2(c)). Thus the
function kA,D + kA,E satisfies the conditions in (a) for the divisor D + E,
so by the uniqueness assertion in (a), we have kA,D + kA,E = kA,D+E.
(d) To ease notation, let 1 = kA,D 0 ¢ - kA,D(¢(O)). Using (B.3.2(b)) and
properties of canonical heights, we see that

1 = hA,D 0 ¢ + 0(1) = hA,I/>" D + 0(1).

Next, it is clear that 1(0) = O. Finally, every morphism between abelian
varieties is the composition of a homomorphism and a translation (A.7.1.2),
so the fact that kA,D is a quadratic function implies the same for I· Thus 1
has all of the properties to be kA,I/>"D, so by the uniqueness assertion in A,
it is equal to kA,I/>"D.
(e) In (a) we have already written kA,D as the sum of the quadratic form
~kA,D+ and the linear form ~kA,D-' This gives the existence. We will
leave the proof of uniqueness to the reader. (More generally, any quadratic
function has a unique decomposition as a sum of a quadratic form, a linear
form, and a constant; see Exercise B.9.) The final statements in (e) are
then clear, since if D is symmetric, then D+ rv 2D and D- rv 0, while if D
is antisymmetric, then D+ rv 0 and D- rv 2D. 0

Remark B.5.7. The first three parts of Theorem B.5.6 combine to say
that there is a homomorphism

Pic(A) ~ {quadratic functions 1 : A(k) ---+ JR}

that sends a divisor class c to the canonical height kA,c' Here kA,c is
defined to be hA,D for any divisor D in the divisor class c. It is well-defined
independent of the choice of D by (B.5.6(b)).

We recall from Proposition A.7.3.2 that on an abelian variety, the
group of antisymmetric divisor classes is equal to the group Pico(A) of
divisor classes that are algebraically equivalent to zero. Theorem B.5.6
implies that if c E Pico(A), then the corresponding canonical height kA,c
is a homomorphism A(k) ---+ JR. We also recall that Pico(A) is naturally
isomorphic to an abelian variety .ti, called the dual abelian variety of A,
and that there is a Poincare divisor class :P on A x .ti determined by certain
functorial properties. (See Section A.7.3, especially Theorem A.7.3.4). The
following theorem expands on these observations.
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Theorem B.5.8. Define a canonical height pairing by the formula

[ . , ']A : A(k) x Pic°(A) -+ JR,

(a) The canonical height pairing [', ']A is bilinear, and its kernel on either
side consists of the elements of finite order.
(b) Let A be the dual abelian variety to A, and let PEA x A be the
Poincare divisor class. Then with the natural identification of A and
Pico(A),

for all (P,c) E A x A.

PROOF. The pairing is well-defined from (B.5.6(a,b)). Divisor classes in
Pic°(A) are antisymmetric from (A.7.3.2), so (B.5.6(e)) implies that [P,C]A
is linear in P. Similarly, the linearity in C follows from (B.5.6(c)). This
proves that [. , ']A is a well-defined bilinear pairing.
For any Q E A, let tQ : A -+ A be the translation-by-Q map, tQ(P) =

P + Q. We also fix a symmetric ample divisor class eE Pic(A), and we
recall from Theorem A.7.3.1 that the map

is surjective.
Now fix a point P E A(k), and suppose that [P, C]A = 0 for all C E

Pic°(A). Then [P, tQe - e]A = 0 for all Q E A(k). Using the definition of
the pairing and standard properties of height functions, we find that

0= [p,tQe - e]A

= hA,tQ~-~(P) (definition of [. , ']A)

= hA,tQ~(P) - hA,~(P) (linearity (B.5.6(c)))

= hA,dtQ(P)) - hA,~(Q) - hA,~(P) (from (B.5.6(d)))

= hA,dP+ Q) - hA,~(Q) - hA,~(P) (definition oftQ).

This holds for all Q E A(k). In particular, we may take Q = P. Nowe
is symmetric by assumption, so (B.5.6(e)) says that hA,d2P) = 4hA,~(P).

We conclude that hA,dP) = O. Now the assumption that eis ample and
(B.5.3(a») imply that P is a torsion point.
Similarly, fix a divisor class C E Pico(A), and suppose that [P, C]A = 0

for all P E A(k). We know that C can be written in the form c = tQe - e
for some Q E A(k), and just as above we compute
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This time we set P = Q to get hA,~(Q) = 0, so Q is a torsion point. But
the map Q ~ tQ~ - ~ from A to Pic°(A) is a homomorphism (A.7.2.9), so
c = tQ~ - ~ has finite order in Pic°(A)o

(b) We identify the dual abelian variety A of A with Pic°(A), and for each
c E A, we define an inclusion

i c :A~A xA, P I--t (P, c).

By the definition of the dual abelian variety and its Poincare divisor class P
(see Section A.703), we have i~P = c. It follows from standard properties
of height functions, specifically (B.5.6(d)), that

[P,e]A = hA,c(P) = hA,i~P(P) = hAXA,P(ic(P)) - hAXA,P(ic(O))

= hAxA,P(P,c) - hAXA,P(O, c).

Now consider the inclusion £0 : A -+ A x A defined by £o(c) = (0, c)o
The definition of the Poincare divisor class implies that iiiP = 0, so

°= hA,i~P(C) = hAXA,P(io(c)) - hAXA,P(io(O))

= hAXA,P(O, C) - hAXA,p(O, 0) = hAxA,p(O,C).

Combining this with the formula for [P, C]A proven above gives the desired
result. 0

We now apply the theory of canonical height and functorial properties
of Picard and Albanese varieties to strengthen the algebraic equivalence
property of Weil's Height Machine (Theorem B.3.2(f)).

Theorem B.5.9. Let k be a number field and V/k a smooth projective
variety. Let D, E E Div(V) be divisors with D ample and E algebraically
equivalent to 0. Then there is a constant C > °such that

hV,E(P) ~ eJhv,D(P) + 1 for all P E V(k).

PROOF. Let A = Alb(V) be the Albanese variety of V, and let 1[' : V -+ A
be the universal map from V to A. We recall from Proposition A.7.3.6 that
there exists a divisor E 1 E Div(A), algebraically equivalent to°on A, such
that E = 1['*E 1•

Let D1 E Div(A) be any symmetric ample divisor on A. Since E 1

is algebraically equivalent to 0, Theorem A.7.3.1(c) tells us that there is
a point a E A(k) such that E 1 '" t;D1 - Db where t a : A -+ A is the
translation-by-a map.
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Now let P E V(k), and for notational convenience, let Q = 7I"(P). We
compute

hV,E(P) = hV,1r-El (P) + 0(1) since E = 71"*E 1

=hA,El (Q) + 0(1) by functoriality (B.3.2(b))

= hA,El (Q) + 0(1) by (B.5.5(a))

= hA,t~Dl (Q) - hA,Dl (Q) + 0(1) by (B.5.6(c))
= hA,Dl (ta(Q)) - hA,Dl (ta(O)) - hA,Dl (Q) + 0(1)

by (B.5.6(d)) applied to t a

= hA,Dl (Q + a) - hA,Dl (a) - hA,Dl (Q) + 0(1)
= 2(Q,a}Dl + 0(1) by definition (B.5.l(d»

~ 2VhA,Dl (Q)hA,Dl (a) + 0(1) by Cauchy-Schwarz.

Note that the last inequality follows by applying the Cauchy-Schwarz in
equality to the positive definite quadratic form hA,Dl and its associated
bilinear form ( " . )Dl .
Similarly, we have

hA,Dl (Q) = hA,Dl (7I"(P» + 0(1) by (B.5.l(a)) and Q = 7I"(P)

= hV,1r-Dl (P) + 0(1) by functoriality (B.3.2(b»

~ ChV,D(P) + 0(1) for some c > 0, since D is ample.
Substituting this estimate into the previous one and adjusting the constants
gives the desired result. 0

B.6. Counting Rational Points on Varieties

The coarsest measure of the set of rational points on an algebraic variety is
whether the set is finite or infinite. Finiteness theorems are generally proven
by showing that the set of rational points is a set of bounded height. When
there are infinitely many rational points, heights can be used to define a
counting function whose asymptotic behavior often encodes deep arithmetic
information.

Definition. Let Vjk be a projective variety defined over a number field k.
Fix a multiplicative height function Hv on V relative to some ample divi
sor D. The counting function of V(k) is

N(V(k), T) = #{P E V(k) IHv(P) ~ T}.
If we need to specify the divisor D or even the particular height func
tion Hv, we will use the notation N(V(k), D, T) or N(V(k),Hv, T). Sim
ilarly, ifU is an open subset ofV, we define a counting function N(U(k), T)
for U(k) by only counting points in U.
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Generally, the goal is to describe the behavior ofN(V(k), T) as T _ 00
in terms of geometric invariants of the variety V and arithmetic invariants
of the field k. This goal has been most fully realized in the case of curves,
as described in the following result.

Theorem B.6.1. Let k be a number field, let Clk be a smooth curve of
genus g, and assume that C(k) is not empty. Then there are constants a
and b, which depend on Clk and on the height used in the counting func
tion, such that

ifg = 0 (a,b > 0),
if g = 1 (a> 0, b 2: 0),
if g 2: 2.

PROOF. If g = 0, then C(k) ~ Pl(k). (Note we are assuming that C(k) =f:.
0.) Later in this section we will give a much more precise description of
the counting function on projective space; see (B.6.2) below. Similarly,
if g = 1, then C is an abelian variety, and we will describe the counting
function on abelian varieties below (B.6.3). Finally, the assertion for genus
g 2: 2 is that C(k) is finite. This is Faltings' theorem (originally Mordell's
conjecture), which we will prove in Part E. As a warm-up, in this section we
will prove a weaker result of Mumford saying that the counting function of
a curve of genus g 2: 2 satisfies N(C(k), T) « log 10gT; see (B.6.5). 0

Remark. The theorem is actually still valid for singular curves, since they
will have the same number of points as their normalization, up to 0(1).

It is possible to give a very precise description of the counting function
on projective space. For k = Q, this result is classical. The general case,
which is more complicated, is due to Schanue!.

Theorem B.6.2. (Schanuel [1]) Let k be a number field of degree d, let
n 2: 1 be an integer, and let N(JP1l(k), T) be the counting function on pn
relative to the usual multiplicative height Hk • (Note that this is the height
relative to k, not the absolute height.) Then there is a constant a(k, n) > 0
such that

n _ n+l {O(TIogT) ifk=Qandn=l,
N(P (k),T) - a(k,n)T + O(Tn+l-l/d) otherwise.

More precisely, the constant a(k, n) is equal to
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where
h = class number of k,
R = regulator of k,
w = number of roots of unity in k,
(k =zeta function of k,
Tl = number of real embeddings of k,
T2 = number of complex embeddings of k,

Dk = absolute value of the discriminant of k/Q.

PROOF. We will illustrate the proof by doing the case k = Q. See Schanuel
[1] or Lang [6, Chapter 3, Theorem 5.3] for the general case. We normalize
the homogeneous coordinates of points in P E IF(Q) by writing

P = (xo, ... ,xn) with Xo, ... ,Xn E Z and gcd(xo, ... , xn) = 1.

This determines the coordinates up to multiplication by ±1, so we will
need to divide our final count by 2. Note that with this normalization,
H(P) =max IXil.
For any vector x = (xo, ... ,xn ) E An+l(Z), let Ixl = max IXil and

gcd(x) = gcd(Xi)' For integers d ~ 1, we define two counting functions,

M(T) = #{x E An+l(Z) Ix ¥= 0 and Ixl $ T},

M*(T,d) = #{x E An+l(Z) I gcd(x) = d and Ixl ~ T}.

From our discussion above, we have N(pn(Q),T) = ~M*(T, 1).
We observe that if x = (xo, ... ,xn) is counted in M*(T,d), then x/d =

(xo/d, ... ,xn/d) will be counted in M*(T/d,I); and conversely, if x is
counted in M*(T/d, 1), then dx will be counted in M*(T,d). This gives
the useful relation M*(T, d) = M*(T/d, 1). We also note that every point x
counted in M(T) has gcd(x) ~ 1, so x is counted in exactly one M* (T, d).
Combining these two remarks gives

M(T) =LM*(T,d) =LM*(T/d, 1).
d~l d~l

Note that the sum is finite, since M*(T/d,l) = 0 if d > T. Applying
Mobius inversion, we find that

M*(T,I) = LJ.L(d)M(T/d).
d~l

(See Apostol [1] for information about the Mobius function J.L and Mobius
inversion.)
But the counting function M(T) is easy to compute,

M(T) = (#{x E Z Ilxl $ T} t+
1
-1 = (2[T] + It+l -1,
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where [T] denotes the greatest integer in T. Note that we subtract 1 because
the point (0,0, ... ,0) is not counted in M(T). In particular, M(T) = °for°~ T < 1. We compute

M*(T, 1) = LJ1.(d)M(T/d) (from above)
d~l

= L I-t(d) ((2[T/d] + It+l - 1)
l~d~T

= L J1.(d)(2T/d + O(I)t+l
l~d~T

= L J1.(d)((2T/d)n+l + O(T/d)n)
l~d~T

= (2T)n+l L J1.(d)d-n- 1

d~l

-(2T)n+l L J1.(d)d- n- 1 +O(Tn L d- n).
d>T l~d~T

The first sum is the main term, since L:d>l J1.(d)d-n- 1 is equal to 1/((n+l).
The second sum contributes to the error, since L:d>T d-n - 1 = O(T-n).
Finally, the third sum (in the big-O) also gives an error term, since

Tn '" d-n = {O(T
n

) if n ~ 2,
L...J O(TlogT) if n = 1.

l~d~T

Hence

N(pn(Q) T) = ~M*(T 1) = 2
n

T n+1 + O(Tn) (or O(TlogT)).
, 2 ' ((n+l)

This is exactly as stated in Theorem B.6.2, since for k = Q we have h = 1,
R = 1, W = 2, rl = 1, r2 = 0, and DQ = 1, so a(Q, n) = 2n /(Q(n + 1).

o

Next we will give Neron's description of the counting function of an
abelian variety. This result was one of the principal motivations for Neron's
construction of canonical height functions. As is often the case in mathe
matics, tools developed to answer one fundamental question frequently find
applications in many other contexts.

Theorem B.6.3. (Neron) Let k be a number field, let A/k be an abelian
variety, and let r C rankA(k) be a finitely generated group of rank r.
There is a constant a > 0, depending onA/k, r, and the height used in
the counting function, such that

N(r,T) = a(logTr/2 + O((logT)(r-l)/2).
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PROOF. Let HA,D be the height used in the counting function N(r, T), let
hA,D = log HA,D be the corresponding logarithmic height, and let hA,D be
the associated canonical height. (See Theorem B.5.6 for basic properties of
the canonical height.) We know that hA,D = hA,D +0(1), so it will suffice
to prove that

N(r, hA,D, T) = aTr/2 + 0(T(r-I)/2).

Let V = r @ JR., and let A be the image of r in V. It suffices to
count points in A, since the torsion subgroup of A(k), and thus of r, is
finite (B.4.3(b)). The canonical height can be written in the form hA,D =

q+ i, where q is a positive definite quadratic form On V and £ is a linear
form on V. (See (B.5.6(e)) for the decomposition and (B.5.3(b)) for the
positivity. Note that 2q is the canonical height on A relative to the ample
symmetric divisor D + [-1]" D.) Now, quadratic forms grow more rapidly
than linear forms, precisely, 1£1 = 0(ql/2), so

for all x E V.

It thus suffices to use q as our counting function, so we need to prove that

N(r,q,T) = aTr/2 + 0(T(r-I)/2).

We can now omit all reference to heights and abelian varieties, since
the desired result is a consequence of the following elementary counting
lemma.

Lemma B.6.4. Let V ~ JR.r be a real vector space, let q : V -+ JR. be a
positive definite quadratic form on V, and let A c V be a lattice. Then
there is a constant a = a(q, A) > 0 such that

#{AE A Iq(A) :5 T} = aTr/2 + 0(T(r-I)/2).

PROOF. This result is a special case of a general counting theorem for
lattice points in homogeneously expanding domains. We will be content to
prove the special case; see Lang [9, Chapter VI, Section 2] for the general
result.
Fix a fundamental domain F for A. For example, choose a basis

AI, ... , Ar for A and take

For any AE A, we let F>.. denote the translation of F by A. By definition,
V is equal to the disjoint union U>..EA F>...
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Hence

Let IIxll = Jq(x) denote the norm on V associated to q,and define
balls (really ellipsoids)

B(T) = {x E V Illxll ::; T}.

Let J.L be the usual measure on V = IRr . Also let D = SUPxEF IIxll. We
claim that

B(T - D) c U F>. C B(T + D).
>'0, II>'II~T

First, suppose that x E B(T - D). Since V is covered by the F>.'s, we
can find some ..\ E A such that x E F>.. This means there is ayE F such
that x = y + ..\, which allows us to compute

11..\11 = Ilx - yll ::; IIxll + lIyll ::; (T - D) + D = T.

(Note that we are using the fact that x E B(T - D) and that lIyll ::; D for
every y E F.) This proves that x E F>. for some ..\ E A satisfying 11..\11 ::; T,
which gives the left-hand inclusion.
Second, suppose that x E F>. for some..\ E A satisfying 11..\11 ::; T. Then

x = y + ..\ for some y E F, and hence

Ilxll = Ily + ..\11 ::; lIyll + 11..\11 ::; D + T.

This gives the right-hand inclusion, which completes the proof of our claim.
We now take the measure of both sides and use the fact that the F>. 's

are disjoint for distinct ..\ E A to get

J.L(B(T - D)) ::; I: J.L(F>.) ::; J.L(B(T + D)).
>'EA,II>.II$T

The measure J.L is homogeneous and translation invariant, so in particular
J.L(F>.) = J.L(F) and J.L(B(T)) = J.L(B)Tr (where we write B = B(l) for the
unit ball). This gives

J.L(B)(T - Dr ::; J.L(F)#{..\ E A 111..\11 ::; T} ::; J.L(B)(T +Dr·

#{A E A 111..\11 ::; T} = :~;~Tr + O(Tr- 1
).

Replacing 11..\11 with Jq(..\) and T with v7' then gives the desired result,
with the explicit value a(q,A) = J.L(B)/J.L(F). 0

The final result we will prove in this section is Mumford's estimate for
the counting function of a curve C of genus 9 ~ 2. Assuming C(k) i- 0, we
can embed C(k) into its Jacobian J(k). The Mordell-Wei! theorem (C.O.l)
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says that J(k) is finitely generated, so Theorem B.6.3 tells us that the
counting function of J(k) looks like

N(J(k),T) = a(1ogTr/2 +O((logT)(r-l)/2).

Since C(k) c J(k), we get an upper bound N(C(k),T)) « (logTt/2 •

Prior to Faltings' proof of Mordell's conjecture, Mumford had shown that
the points of C(k) are widely dispersed in J(k). More precisely, he proved
that N(C(k), T)) «loglogT. With the tools we have assembled, the proof
of Mumford's estimate is not difficult, so we present it here. Despite the
fact that Mumford's theorem has been superseded by Faltings' work, the
proof is well worth studying, because Vojta and Bombieri use Mumford's
ideas as the starting point in proving that C(k) is actually finite.

Theorem B.G.5. (Mumford [1]) Let Clk be a curve of genus 9 ~ 2
defined over a number field. Then there is a constant c, depending on CIk
and the height function used for counting, such that

N(C(k),T) ~ cloglogT for all T ~ ee.

PROOF. Fix a basepoint Po E C(k) and use it to embed C in its Jacobian
in the standard way,

j:C~J, P t---+ class((P) - (Po)).

Later we will take Po E C (k), but for the first part of the proof we do not
need to make this assumption. We also let e = j(C) + ... + j(C) be the
theta divisor on J, we let Ll C C x C be the diagonal, and we define the
usual maps

S12,Pl,P2: A x A~ A,

Pl, P2 : C x C ~ C, {

S12(X, y) = x + y,

Pl(X,y) = x,

P2(x,y) = y.

The theta divisor e is ample (A.8.2.3(b)), and the same is true of the
symmetric divisor e + [-1]*e. The bilinear pairing

( " . )a : J(k) x J(k) ~ JR,

( )
_ hJ,a(x + y) - hJ,a(x) - hJ,a(Y)

X,Ya- 2 '

depends only on the quadratic part of the canonical height (see B.5.6),
so (B.5.3) tells us that it induces a positive definite pairing on J(k) ® JR.
Recall the fundamental divisor relation
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from Theorem A.8.2.1. We use this relation and basic properties of the
height machine to compute for any P, Q E C(k),

2(j(P),j(Q» = hJ,s(j(P) + j(Q») - hJ,s(j(P») - hJ,s(j(Q»)

= hJ,s(j(P) + j(Q») - hJ,s(j(P») - hJ,s(j(Q») + 0(1)

= hJ,S(S12(j(P),j(Q»)

- hJ,S(Pl (j(P),j(Q))) - hJ,s(P2(j(P),j(Q») + 0(1)

= hJXJ,sr2S(j(P),j(Q»)

- hJxJ,prs(j(P),j(Q») - hJXJ,P2S(j(P),j(Q)) + 0(1)

= hexe,Cjxj)*CSr2S-prS-P2S)(P,Q) + 0(1)

= hexe,-A+prCPO)+P2CPO)(P, Q) + 0(1)

= -heXe,A(P,Q) + he,CPo) (Pl(P, Q))

+ he,(Po) (P2(P,Q») + 0(1)

=-heXe,A(P, Q) + he,cpo)(P) + he,(Po)(Q) + 0(1).

The divisor a is effective, so (B.3.2e) tells us that -heXe,A(P, Q) is
bounded (above), provided that P :F Q. We next need to relate he,Cpo)
back to the canonical height on J. To do this, we will use the divisor
relation

j*e + j*e- rv 2g(Po) + K

provided by Theorem A.8.2.1, where e- = [-l)*e and K E Divo(C) is a
certain divisor of degree O. Using this formula and the height machine, we
compute

2ghe,Cpo)(P) + he,It(P) = he,29CPo)+It(P) + 0(1)

= he,j*s+j*s- (P) + 0(1)

= hJ,s+s- (j(P») + 0(1)

= hJ,s+s- (j(P») + 0(1)

= 2(j(P),j(P»)s + 0(1).

Now, the divisor (Po) is an ample divisor on C, while K is a divisor
of degree O. It follows from (B.3.5) that the ratio he,It(P)/he,CPo)(P) goes
to 0, so for any c > 0 we have an estimate

Ihe,,,,(P) I ::; che,Cpo)(P) + 0(1) for all P E C(k).

Of course, the 0(1) now also depends on c. Substituting this in above, we
find that

2(j(P),j(P»)e = 2ghe,CPo)(P) + he,,,,(P) + 0(1)

~ (2g - c)he,Cpo)(P) + 0(1).
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We can rewrite this as

hc,(Po)(P) ~ 1 +e(j(P),j(P»a + 0(1)
g

B. Height Functions

for all P E C(k),

where we have replaced e by e/(2g-e) to make the formula neater. Finally,
using this in our formula for (j(P),j(Q)} given above, we obtain

2(j(P),j(Q)a = -hcxc,tJ.(P,Q) + hc,(po)(P) + hC,(Po)(Q) + 0(1)

$ -hcxc,tJ.(P,Q) + 1+e (j(P),j(P»a
g

+ 1+ e(j(Q),j(Q»a + 0(1).
g

This estimate, which says that the points in j(C) are "widely spaced" in J,
is of sufficient importance to state as an independent proposition. Such
an estimate is called a gap principle, because it says that there is a gap
between solutions.

Proposition B.6.6. (Gap principle) Let C/k be a curve ofgenus g ~ 1,
let Po E C(k) be a fixed basepoint, let l:1 E Div(C x C) be the diagonal, and
fix a height function hcxc,tJ.. Use Po to define an embedding j : C ~ J
ofC into its Jacobian, and let e E Div(J) be the theta divisor. Let

( . , ')a : J(k) x J(k) -- IR

be the canonical height pairing attached to e, and write

IIxlia = J(x, x)a

for the associated norm. Fix a constant e > O.
(a) There is a constant Cl, depending on the above data, such that

(j(P),j(Q)a ~ 1~e (lIj(P)II~ + IIj(Q)II~) - hcxc,tJ.(P, Q) + Cl
for all P, Q E C(k).

Ifwe restrict to points with P f Q, then the hcxc,tJ.(P, Q) term may be
omitted.
(b) There is a constant C2, depending on the above data, such that

Ili(p) - j(Q)II~ ~ (1- 1; c) (Ilj(P)II~ + Ilj(Q)II~) - C2

for all P, Q E C(k) with P # Q.
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PROOF. (a) Up to a change of notation, we have already proven the first
statement above. As for the second statement, we observe that a is an
effective divisor, so Theorem B.3.2{e) tells us that hCxc,a is bounded below
away from the base locus of the linear system lal. In particular, -hcxc,a
is bounded above for all points not lying on a. (We remark that since
a2 = 2 - 2g < 0, the linear system lal consists only of a, so the base
locus is exactly a. This explains why the hcxc,a{P, Q) term is necessary
if P = Q.) This completes the proof of (a).
(b) To prove this part, we just use (a) and the identity

(
X y) = IIxll~ + IIyll~ - IIx - yll~
, e 2 .

A little bit of algebra gives the desired result. o

Remark. (i) We amplify our earlier remarks on why Proposition B.6.6 is
called a "gap principle." Abstractly, we have a real vector space V with
a Euclidean norm II . II and a subset S c V. (In the situation of (B.6.6),
V = J{k) ® lR, II . II = II . lie, and S is the image of j(C{k» in V.) We
are given positive constants 0: and f3 such that

for all X, yES with X -:f y. Intuitively, this inequality means that if IIxll
or IIyll is large, then x and y cannot be too close to each other. Or thinking
about it another way, for each XES, there is a ball around x of radius
vio:IIxl12 - f3 that contains no other points of S. The larger the value of IIxll,
the larger the ball, so the points of S are forced further and further apart.
When this intuition is quantified, it shows that the counting function

{x E S Illxll S T}

grows very slowly as a function ofT. The details are given in Lemma B.6.7
below.
(ii) We observe that everything we have done is valid for 9 = 1. In
particular, the gap estimates in (B.6.6) hold for 9 = 1. However, when
9 = 1, these estimates are trivially true and give no additional information.
This is especially true of (B.6.6(b», which for 9 = 1 says that a nonnegative
number is larger than a nonpositive number!

We now have the following general setup. We have a set C{k) that we
are trying to count, and we have an embedding of C(k) into a group J(k)
on which we have a pairing (" .). We further know that the points in C(k)
satisfy a gap condition as described in Proposition B.6.6. We now prove
an abstract counting lemma that shows that sets satisfying such a gap
condition are sparsely distributed.
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Lemma B.6.T. Let V be a finite-dimensional real vector space, let II . II
be a Euclidean norm on V, let A be a lattice in V, and let SeA be a
subset of A. Suppose that there are constants a, b > 0 such that

Then there is a constant c > 0 such that

for all x,y E S with x:l y.

#{x E S IlIxll $ T} $ clog(T)

Notice that Lemma B.6.4 says that

for all T ~ 2.

#{x E A Illxll $ T} '" rIim(V).

Thus the gap condition on S leads to an exponential decrease in the number
of points.

PROOF. For any numbers u ~ v, we let

S(u, v) = {x E S Iu $ IIxll $ v}.

Further, for any x E V and any r ~ 0, we let Bx(r) be the ball of radius r
centered at x,

Bx(r) = {z E V Iliz - xll 2 < r}.

Suppose now that u ~ .Jb7O. and that x, y E S(u, v) are distinct points.
Then the gap condition implies that

In other words, the distance from x to y is at least uva, and hence

On the other hand, we clearly have

B x (~uva) c Bo (lIxll + ~uva) c Bo (v+ ~uva),

since IIxll $ v by our assumption that x E S(u, v). It follows that the large
ball Bo(v + ~uva) contains the disjoint union of the balls Bx (~uv'a) as x
ranges over S(u, v), so we obtain a volume inequality

Vol Bo(v + ~uv'a) ~ Vol ( U Bx (~uv'a) )
xES(u,v)

~ L Vol (Bx (~uva)).
xES(u,v)
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But for any z E V, the volume of a ball of radius r is

Vol(Bz(r») = rn Vol(Bo(l»),

221

where n = dimV. Substituting this and canceling the volume of the unit
ball gives

(v + ~Uv'a)n ~ #8(u, v) . (~Uv'a) ,
and hence

Remember that we have proved this estimate only under the assump
tion that u ~ ..fblO,. To ease notation, we will let a = ..fblO" and we will
apply the estimate for 8(u, v) with

and as i ranges over 0 S; i S; 10g(Tja).

This gives the bound

#8(a,T) =

<

L #8(aei
, aei+l)

O::=:;i::=:;log(T/a)

(
2e ) n ( T) ( 2e ) nL va + 1 S; 1 + log -;; va + 1

o::=:;i9og(T/a)

Further, the lattice A has only finitely many elements of bounded
norm, so #8(0, a) is clearly finite. Hence

#8(0, T) S; #8(0, a) + #8(a, T) S; c1log(T) + C2,

where the constants Cl, C2 are independent of T. We can even omit the C2
if we assume that T ~ 2 and take a larger Cl' This completes the proof of
Lemma B.6.7. 0

Mumford's Theorem B.6.5 is now an immediate consequence of the
gap principle (B.6.6) and the counting lemma (B.6.7).

PROOF (Mumford's theorem (B.6.5)). Our first observation is that we
can use any convenient height function in order to compute the counting
function N(C(k),T). To see this, let HD and HE be Wei! heights on C
with respect to ample divisors D and E, respectively. The assumption
that D and E are ample implies that they have positive degrees (A.4.2.4),
and then (B.3.5) tells us that

lim logHD(P)
PEC(k) logHE(P)

hD(P)-+OO

degD
degE'
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It follows that there are constants Cl, C2 > 0 such that

B. Height Functions

Hence if (B.6.5) is true for the counting function N (C (k), HD,T), then it
is also true for the counting function N(C(k),HE,T).

If C(k) is empty, there is nothing to prove. So we can assume that
there is at least one point Po E C(k), and we use Po to embed C in its
Jacobian, j : C <-+ J, as usual. We let (', ')e and II . lie be the canonical
height pairing and associated norm attached to the divisor 8 E Div(J). We
will compute N(C(k),T) using a height function associated to the divisor
!j*(8 + e-). More precisely, we will count

N(C(k),T) = #{P E C(k) Illj(P)II~ ~ 10gT}.

(Notice that we have to put in 10gT, since N(C(k),T) is computed using
a multiplicative height, while II . II~ is a logarithmic height.)
Let V = J(k) ~ JR, let A be the image of J(k) in V, and let S be

the image of C(k) in V. We know from the Mordell-Wei! theorem (C.O.I)
that V is a finite-dimensional vector space, and (B.5.3) tells us that the
norm II . lie on J(k) induces a Euclidean norm II . II on V. Further, the
gap principle (B.6.6b) says that

for all x,y E S with x:f=. y.

We are assuming that the genus 9 of C is at least 2, so taking e = !' we
find that

for all x, yES with x :f=. y.

Weare in exactly the situation to apply the counting lemma (B.6.7), which
gives the estimate

#{x E SllIxll ~ 10gT} ~ c410glogT for all T 2: 8.

Finally, we just need to observe that the kernel of the map J(k) -+

J(k) ® JR = V is exactly the torsion subgroup of J(k). In particular, this
map is finite-to-one, so the same is true of the map C(k) -+ S. Precisely,
we have

N(C(k),T) ~ #J(khors' #{x E SllIxli ~ 10gT}.

This estimate, combined with the earlier inequality, completes the proof of
Mumford's theorem (B.6.5). 0
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It is quite instructive to compare the orders of growth of the counting
function N(V(k), T) given by Theorems B.6.2, B.6.3, and B.6.5. At the
coarsest level, they say that N(V(k), T) grows polynomially for projective
space, logarithmically for abelian varieties, and at most like log log for
curves of genus at least 2. A slightly weaker way of stating these facts is
given by the following limits:

· 10glogN(1I1>n(k),T)
hm = 1,

T --->00 log logT

. 10glogN(A(k),T)
hm = 1,

T--->oo log log logT

. 10glogN(C(k),T)
hmsup < 1.

T--->oo 10glogloglogT -

(projective space)

(abelian variety with #A(k) = 00)

(curve of genus g(C) 2: 2)

The reason we have taken 10glogN(V(k),T) is that its order of growth
is independent of the choice of height function used for counting. (See
Exercise B.15.) Further, the use of log log has a smoothing effect. This
suggests that we consider the possible growth orders for the log log counting
function

log logN(V(k), T).

Projective spaces and abelian varieties give examples for which it grows like
log logT and log log logT, respectively. Notice that Mumford's theorem
gives only an upper bound for log logN (C (k), T), and in fact this upper
bound is not sharp, since Faltings' theorem says that N(C(k), T) is actually
bounded independently of T. All of this leads to the following questions.

Question B.6.8. What are the possible behaviors for the counting func
tion log log N(V(k), T)? For example, let Vjk be a projective variety, and
let U c V be a Zariski open subset. Is it true that the counting function
for U(k) must satisfy one of the following conditions?

· log log N(U(k), T)
hm = 1,

T--->oo log log T

· log log N(U(k), T)
hm = 1,

T--->oo log log log T

log logN(U(k), T) is bounded as T -t 00.

(polynomial growth)

(logarithmic growth)

(bounded growth)

Notice that if question (B.6.8) has an affirmative answer, then Mum
ford's theorem (B.6.5) would imply the finiteness of C(k). It is possible
to formulate similar questions for S-integer points on affine varieties. See
Silverman [4} for further details.
The behavior of log logN (V(k), T) is an extremely coarse measure of

the distribution of rational points on V(k). At the other extreme, Batyrev
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and Manin have formulated very precise conjectures for the order of growth
ofN(V(k), T) in certain cases. We give two examples here. See Section F.5
for a further discussion, and Batyrev and Manin [1] and Franke, Manin,
and Tschinkel [1] for additional information.

Conjecture B.6.9. (Batyrev-Manin [1]) Let V/ k be a smooth projective
variety, and let K v be a canonical divisor on V.
(a) Suppose that the anticanonical divisor -Kv is ample. Then there is
an integer t ~ 0 and a Zariski open subset U C V such that possibly after
replacing the field k by a finite extension, we have

N(U(k),H_Kv,T) rv cT(1ogT)t asT -+ 00.

(Here H-Kv is the height relative to the field k, not the absolute height.)
(b) Suppose that some nonzero multiple of K v is linearly equivalent to O.
Then for every c > 0 there is a nonempty Zariski open subset Uc C V such
that

N(Udk ), T) ::; Tc

B.7. Heights and Polynomials

for all sufficiently large T.

In this section we prove some elementary height estimates for polynomials
that will be used in Parts D and E. The reader may wish to skip this section
until it is needed.
The (affine) height of a polynomial is defined to be the height of its

coefficients taken as affine coordinates. Thus writing

f=

the (absolute affine) height of f is

Alternatively, if we define the Gauss nonn of a polynomial f with respect
to an absolute value v to be

then

Hk(f) = II max{l, Ifl~"}
vEMk

and
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1
h(f) = logH(f) = [k : Ql L nv logmax {I, IfIv} .

vEMk

For example,

h(6x2 + 3xy + 12y) = h([I, 6, 3,12]) = log(12).

More generally, if~ = {!I, ... , fr} is a collection of polynomials, then
we define the height of the collection to be

h(~) = max{h(!I), ... , h(fr)}.

Remark B.7.0. For some applications, it is more convenient to use the
(projective) height of a polynomial, which we define to be the height of its
coefficients taken as homogeneous coordinates. Thus

Hk(f) = II Ifl~v and h(f) = [k ~Q] L nv log Iflv.
vEMk vEMk

The projective height of the above example is

h(6x2 + 3xy + 12y) = h([6, 3,12]) = h([2, 1,4]) = log(4).
We will mostly be using affine polynomial heights, and we will specify when
this is not the case.

Proposition B.7.l. Let k be a number field and F E k[xQ, ... , x n ] a
homogeneous polynomial of degree d, say

F(x) = F(xQ, . .. ,xn ) =
i=(io, ... ,in )
io+···+in=d

and let x = (xQ,' .. , x n ) E kn+1 .

(a) Let v be an absolute value on k, extended in some way to k, and let
vv(F) = (n~d) ifv is archimedean and vv(F) = 1 otherwise. Then

IF(x)lv ~ vv(F)(max lailv) (max IXjlv)d.
• J

(b) h(F(x)) ~ dh(x) + h(F) +min{nlog(n+d), (n + d) log2}.

PROOF. (a) The desired estimate is immediate from the triangle inequality
applied to the sum F(x), once we observe that there are (n~d) terms in
the sum.
(b) Taking the logarithm of (a) and summing over all places of k gives (b).
We have also used the trivial estimate

(n : d) ~ min {(n + d) n , 2n +d } •

o
Next we give some elementary estimates for the heights of sums and

products of polynomials.
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Proposition B.7.2. Let ~ = {II, ... ,fr} be a collection of polynomials
in k[XI , ... ,Xm ], where k is a number field.
(a) Let degli be the total degree of Ii- Then

r

h(fth'" fr) $ L(h(li) + (degli +m) log 2)
i=l

$ r m~ {hUi) + (degli +m) log2}.
l~.~r

(This estimate will be slightly refined in Proposition B.7.4 below.)
(b)

r

hUI + h + ... + fr) $ L h(li) + logr.
i=l

(c) Suppose that ft, ... , fr E R[XI , ... , X m ] have coefficients in the ring
of integers R of k. Then

hUI + h + ... + fr) $ [k : Q]h(~ + logr.

(This estimate is useful when k is fixed and r is large.)

PROOF. Let Ii = LE aiEXE, where E = (EI , ... ,Em) runs over m-tuples
of nonnegative integers and X E = X~l ... X~m. We then have

and hence for any v E M k,

1ft· .. frlv = m:x I L aIel' .. arer I .
el+...+er=E v

Let N be an upper bound for the number of nonzero terms in the sums, and
as usual let N v = 1 for v nonarchimedean and N v = N for v archimedean.
We then have

1ft··· frlv $ max(Nv max lalel ... arerlv)
E el+.. ·+er=E

r

$ N v II ~ax{l, laie.lv }

i=l •

r

$ N v IImax {I, Iii Iv} .
i=l
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Raising to the nv/[k : Q] power and taking the product over all v then
gives

H(fl ... Ir) = II max { 1, 1ft ... Ir l~v![k:Ql}
vEMk

{

r }nv!lk:Q]

$ J~t Nv }]max {1, llilv}

r

$ NIl H(fi)'
i=l

(Recall that EVEMOO n v = [k : Q].) To find an admissible value for N, we
k

proceed as follows. We note that the number of r-tuples of nonnegative
integers with sum equal to E i is (E;t-l), so the number of terms we are
trying to estimate is smaller than

Hence we may choose

logN = log 2(t(deg Ii + m)) ,
which completes the proof of (a).
(b) Keeping the same notation for the coefficients of the Ii's, we have

ft + ... + Ir = L (ale + ... +are) X e.
e

Thus for any v E M k ,

1ft + ... + Irlv = max lale + ... + arelv '
e

Writing rv = 1 or rv = r for v nonarchimedean or archimedean as usual,
we get

r

max{1, 1ft + ... + Irlv} $ r vmax{1, laiel} $ r vIImax{1, laiel}.
t,e ei=l

Raising to the nv/[k :Q] power and taking the product over v then gives

r

H(ft + ... + Ir) $ r IIH(fi)'
i=l



228 B. Height Functions

(c) Since we are assuming that the Ii's have algebraic integer coefficients,
the same will be true of II + ... + Ir. This implies that for any nonar
chimedean v, we have

max{l, III + ... + Irlv} = max{l, IlIlv} = ... = max{l, I/rlv} = 1.

This implies that only the archimedean places contribute to the height of
II + ... + IT) so

Hk(1I + ... + Ir) = II max{l, III + ... + Irl:"}
vEMk'

~ II (r. m~{I,l/il:"})l<t<rvEMk' --

~ r[k:Qj m~ max {I, Iii In,,} [k:Ql
l:5t:5r vEMk' v

~ r[k:Q) max H (!_)[k:Q1 .
l:5i:5r k t

(We are using here the fact that #Mk ~ [k : Q).) Taking [k : Q)th roots
gives the desired result:

o

The next inequality will be used (among other places) in the proof of
Roth's theorem.

Proposition B.7.3. (Gelfand's inequality). This proposition uses pro
jective polynomial heights. Let d1 , ..• ,dr be integers, and let II, ... ,Ir E
Q[X1, ... ,Xml be polynomials whose product satisfies degx

i
(II ... Ir) ~ di

for each 1 ~ i ~ r. Then

r

'Lh(li) ~ h(II··· Ir) + d1 + ... + dm·
i=1

Remark 7.3.1. As a first approach, if we use projective space to parame
trize the set of polynomials of given degrees in m variables, then the map
that sends an r-tuple of polynomials (11, . .. , Ir) to their product II ... Ir
becomes a rational map

This map may be described as the composition of a Segre embedding with
a linear projection whose center is disjoint from the image of the Segre
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embedding. (The fact that the center and the image are disjoint is because
the product of nonzero polynomials is again nonzero.) Then the height
machine (B.3.2) immediately gives the estimate

h(h ... Ir) = h(fd + ... + h(fr) + 0(1).

So the content of Gelfand's inequality is to give an explicit bound for the
0(1) term. We also note that a converse inequality of the form H(f) ~

c(d1, ... ,dm) n;=l H(fi) can be easily established using only the triangle
inequality; cf. Proposition B.7.2.

PROOF. We start by recalling Gauss's lemma, which states in this context
that

Ih ... Irlv = Ihlv·· ·l/rlv for all nonarchimedean v.

The crux of the proof of Gelfand's inequality is the proof of an analogous
archimedean estimate,

r

II I/il ~ ed1+-··+dm III,
i=l

valid for all polynomials I, h,···, Ir EC[X1 , ... , X m]. Indeed, granting
(*) for a moment, we can compute

r r

II Hk(fi) =II II I/il~v
i=l i=l vEMk

~ II Ih··· Irl~v II en.,(d1+··+dm)lh··· Irl~"
VEM~ vEMk

~ e[k:iQI)(d1+···+dm)Hk(h ... Ir),

and then taking [k :Q]th roots gives Gelfand's inequality.
We will prove (*) by introducing a multiplicative norm and an £2_

norm on the space of polynomials and comparing them to the Gauss norm.
These norms, especially the Mahler measure, are interesting in their own
rights and have been much studied.

Definition. Let

and let e(t) = (exp(27ritd, ... ,exp(27ritm )). For any complex polynomial

I = :~:::>iX~l ...X~ EC[X1, ... ,Xm ],

i
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we define the Mahler measure 011 to be the quantity

M(J) = exp (1m 10gl/(e(t))ldt) ,

and the £2 -norm 01 1 to be the quantity

B. Height Functions

The inequality we are attempting to prove will follow from a series of
comparisons between various norms. We start with the "easy" estimates.

Lemma B.7.3.l. Let I,g E qXl, ... ,Xm ] be polynomials, and suppose
that degx. (J) ~ dj • Then

3

(i) £2(J) ~ [(d1 + 1)··· (dn + 1)]1/2 1/1 .
(ii) M(Jg) = M(J)M(g).
(iii) M(J) ~ £2(J).

PROOF. The first two formulas are straightforward. Indeed the number of
coefficients of 1 is bounded by (d1 +1)··· (dm + 1), and hence

Now (i) follows by taking square roots. Next, formula (ii) is immediate
using the linearity of integration and the relationship between log and expo
The third inequality deserves more explanation. We use Jensen's in

equality, which states that if U is a set of measure 1 and if ¢ is a convex
function, then

¢ (i ¢dJl) ~ i (¢ 0 ¢)dJl.

Applying this with U = 1m , dJl = dt, ¢ = exp, and ¢(t) = 2logl/(e(t)l,
we get

M(J)2 ~ r I/(e(t)Wdt = £2(J)2,JIm
and hence M (J) ~ £2 (J).

Next we observe that for a polynomial in one variable

we have the formula

d

M(J) = ladl IImax {I, lail} .
i=1

o
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In particular, if a is an algebraic number and if we take f to be the minimal
polynomial of a, then this formula says that the height Hk(a) of a is equal
to the Mahler measure M(J) of its minimal polynomial. We also observe
that using the multiplicativity of M(J), this equality is equivalent to the
well-known formula (Exercise B.19)

11 log la - e2i1rt ldt = 10gmax{l, jal}.

We now use the equality Hk(a) = M(J) to prove a key estimate for the
coefficients of a polynomial in terms of its Mahler measure.

Lemma B.7.3.2. For any polynomial f = E:=OaiXi E C[X],

More generally, let

f= L aj}, ... ,jmXfl ... xtnmEC[Xll""Xm]
O~j}~dl

O~j"';~dm

be a polynomial satisfying degxh f S dh. Then

PROOF. The proof is by induction on the number m of variables. For
m = 1 we factor f(X) = ad TI(X - ai)' Then

To assist in the induction, we set some notation. For any 1 S n S m,
we let

with the convention that hl,... ,km = akl, ... ,km in the case n = m. This
allows us to write

d l

f(X1 , ..• , X m ) = L hI (X2 , . •• , Xm)X~I,
kl=O

and more generally
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dn

Ik1, ... ,kn_l(Xn, ... ,Xm) = L Ikl, ... ,kn(Xn+1, ... ,Xm)X~n (*)n
kn=O

From (*h and the previous lemma in one variable, we deduce that for all
X2, ••• ,Xm E C,

Now we take the logarithm of both sides, evaluate at (X2, •• " xm ) =
(e27rit2, ... , e27ritm ), and integrate over 0 ~ t2, ... , t m ~ 1 to obtain

logM(ikJ = r loglikl(e27rit2, ... ,e27ritm)ldt2···dtm
Jlm-l

~ log (~~) +1m logl/(e27ritl, ... , e27ritm) Idtl ... dtm

~ log (~~) + logM(f).

This gives the inequality M(ikl) ~ (~~)M(f), and more generally, starting
from formula (*)n and using the same argument, we get

This gives the bound lak1,... ,kmI ~ (~:JM(ikl, ... ,km-J for the coefficients,
and now the claim follows by putting together these inequalities. 0

Let JL(f) denote the number of variables Xl, ... , Xm that genuinely
appear in I. Then using the trivial estimate

(~) ~ 2d
-

1
, valid for d ~ 1,

we obtain

We can now finish the proof of Gelfand's inequality (B.7.3). We let
doj = degx; Ii and dj = degx; I, so

r

dj = Ldij

i=l

and
r

JL(f) ~ L JL(fi).
i=l
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Then

r

Iftl·· '1/rl ~ II (2dil+- ..+dim-J.<(J;)M(fi»)
i=l

= 2d1 +-. ·+dm - E i J.<(J;) M (f)

~ 2d, +- ..+dm -J.<(J) ((d1 + 1)··· (dm + 1»1/21/1.

Now observe that

2d Jd + 1 ~ ed for d ~ 2 and for d = 0,
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while if di = 1, then the Xi variable contributes to J.L(f). This lets us
simplify the inequality to obtain

which completes the proof of Proposition B.7.3. o

The next result will be used in Part E, specifically in the proof of
Eisenstein's estimate in Section E.g.

Proposition B.1.4. Let k be a number field and v an absolute value
on k. We write deg I for the total degree of a polynomial I, and for any
integer N and absolute value v we set as usual

N = {INlv if v is archimedean,
v 1 if v is nonarchimedean.

Let I, ft,···, Ir E k[X1 , ... , X n]be polynomials.
(a)

IgliL ~ min{n(2degli)~, n 2~egfi} x g Ifilv'

Note that the bound for the ratio IIllilv/ Ilililv does not depend on ft,
but only on 12, ... ,Ir. This is often useful for induction arguments, where
one of the Ii '5 may have much larger degree than the others.

(b)

(c)
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(d) Let b = (b1 , ••. , bn ) E kn
, and write Ibl v = max Ibilv • Then

I/(b) Iv ::; min{ (2 deg f)~, 2~eg f} .I/lv .max{1, Iblv}deg f.

(e) Let b and Iblv be &S in (d), and define a shifted polynomial Ib(X) =
I(X + b) = I(X1 + b1,.··, X n + bn ). Then

Ilblv ::; 2~degfl/lv max{l, Iblv } degf .

PROOF. For a polynomial I E k[X1 , . •. ,Xn ], we write

dl d n

I(X) = LaeXe = L ... L aeX~l. ··X~n,
e el=O en=O

where e is the multi-index e = (e1,"" en) and dj = degx; I. We observe
that the number of nonzero monomials appearing in I satisfies

n

(# of nonzero ae's) ::; II(dj + 1)
j=l

n n

::; min{II 2d
;, II(2 deg f) }

j=l j=l

= min {2degf , (2degf)n}. (1)

Now write Ii, ... ,Ir as Ii = Le aiexe. Then

L1/i = L1 (~aiexe)
'" Xe(l)+- ..+e(r)L..J a1e(l) ... are(r)

e(l) , ... ,e(r)

= L( L a1e(l) ... are(r))XE.
E e(l)+...+e(r)=E

(2)

We fix a multi-index E = (E1 , ... , En) and look at the coefficient of X E

in (2):

L a1e(l) •.• are(r)
e(l)+···+e(r)=E

= L a1e(l) ... are(r) .
e~l)+ ...+e~)=En

(3)
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We want to estimate the number of nonzero terms in (3). Note that
since E is fixed, if we choose values for e(2), ... , e(r), then there is at
most one value of e(l) for which ale(l) ... are(r) is a term in (3). Hence
the number of nonzero terms in (3) is at most the number of ways to
choose e(2), ... , e(r) such that a2e(2), ... , are(r) are all nonzero. Applying (1)
to each of 12,···, fn we estimate

r r r

II (# of nonzero aie'S) ~ min{II2deg f;, II(2degfi)n}. (4)
i=2 i=2 i=2

To recapitulate, (4) gives an upper bound for the number of nonzero
terms in the inner sums L ale(l) ... are(r) appearing in (2). So if we let

r r

Nv = min{II 2e
eg
f;, II(2 degfi)~ },

i=2 i=2

then we have

r

III fi Iv = s~pl L: ale(l}" .. are(r) Iv
0=1 e(l)+".+e(r)=E

~ Nv sup lale(l) ... are(r) Iv
e(l) ,... ,e(r)

from (4) and the triangle inequality
r

= N v II sup laielv
i=l e

r

= N v II llilv.
i=l

(b) We retain the notation from the proof of (a). Thus

th = tL:aiexe = L:(taie)X
e
,

i=l i=l e e i=l

so
r r

lL:fil =sUplL:aiel ~supsuprvlaielv=rvsuPlhlv'
i=l v e i=l v e 0 0

(c) Again writing f(X) = LeaeXe, every coefficient of8f/8Xj has the
form mae for some positive integer m ~ deg f and some multi-index e.
Hence

I88x
f I ~ sup sup Imaelv = (degJ)vlflv.

J v e m~degf
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(d) Continuing with the same notation as above, we have

If(b)lv = ILaebeL
e
d1 d n

= IL ... L aeb~l ... b~nL
el=O en=O
n n

~II(dj+1)v·suplaelv·II L Ibjl~;
j=l e j=l O~e;~d;

n n

~ II(dj + 1)v ·Ifvl· IImax{1, Ibjlv }d;

j=l j=l
n

~ II(dj + 1)v ·Ifvl· max{1, Iblv}degf .
j=l

Combining this with the elementary estimate

n n n

II(dj + 1) ~ min{II 2~;, II(2degJ)} ~ min{2degf , (2deg J)n}
j=l j=l j=l

completes the proof of (d).
(e) Again we write f = EaeXe and compute

Ifb(X)lv = ILae(X + b)eL
e

Now, the number of terms in this last sum is at most

n n

II (dj + 1) ~ II 2d
; = 2d

;

j=l j=l
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and similarly we can estimate the binomial coefficients by
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(Of course, for nonarchimedean absolute values, the binomial coefficients
have absolute value less than or equal to 1.) Using these observations we
obtain the desired estimate

Ifb(X) Iv ::; 2~d max laelvmaxi 1, Ib1lv}d1 ••• maxi 1, Ibnlv}dn
e

::; 2~dlflv maxi 1, Iblv } deg f. 0

Remark B.7.5. One may easily convert the bounds of Proposition B.7.4
into bounds for heights. For example, (a) clearly implies (keeping the
notation from Proposition B.7.4)

and inequality (e) implies

B.8. Local Height Functions

In this section and the next we will discuss, mainly without proof, the
decomposition of height functions hD into sums of local heights AD,v, one
local height for each absolute value v of the field k. These decompositions
are often essential for understanding the finer structure of height functions,
but they will not be used in this book except at the very end (Part F), when
we discuss various further results and open problems.
Let D be a divisor on a (smooth) variety V defined over k. For nota

tional convenience, in this section we will write

VD = V " supp(D)

for the complement of the support of D. We would like to associate to each
place v E M k a function
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so that the sum
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is a Weil height function hD for all points in VD(k). Further, the local
height functions should be additive in D; and if D is a prime divisor (i.e., D
is a irreducible subvariety of V of codimension 1), then AD,v should be
geometric in the following intuitive sense:

[Intuition] AD,v(P) = -log(v-adic distance from P to D).

Thus as P gets v-adically close to D, the local height function becomes
(logarithmically) larger. For a fixed point P E V(k), we also want the
sum Lv AD,v(P) to exist without worrying about convergence problems,
so we will require that the local height AD,v(P) vanish for all but finitely
many v E M k •

To make all of this precise, we set some definitions. We define an
Mk-constant to be a map

'Y : Mk ----+ JR

with the property that 'Yv = 0 for all but finitely many v E M k • We say
that a real-valued function 4> on a subset Y of V(k) x M k is Mk-bounded
if there is an Mk constant 'Y such that

14>(p,v)1 ::; 'Yv for all (P,v) E Y.

In particular, if P E V(k) is fixed, then 4>(P, v) = 0 for all but finitely
many v E Mk. When comparing functions, we will write Ov(l) for an Mk
bounded function. Finally, we say that a subset Y of V(k) x Mk is affine
Mk-bounded if there is an affine open subset Vo C V with affine coordinates
Xl, ... , X n such that Y c Vo X M k and such that the function

is Mk-bounded on Y; and we say the set Y is Mk-bounded if it is a finite
union of affine Mk-bounded sets.
For a given divisor D, we can think of AD as giving a family of func

tions, one for each v E M k • Equivalently, AD is a function on the disjoint
union

AD: II VD(kv) ----+ JR,
vEMk

where AD,v is the restriction of AD to the set of v-adic points VD(kv). Notice
that there is a natural embedding of the set of ordered pairs

VD(k) x Mk

into the above disjoint union that takes an ordered pair (P, v) and identifies
it with the point P E V(kv ). We will make use of this identification without
further comment.
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Theorem B.8.I. (Local height machine) Let V/k be a smooth projective
variety. For each D E Div(V) it is possible to assign a function

AD: I1 VD(kv) -+ JR,
vEMk

called the local height function with respect to D, such that the following
properties hold:
(a) (Normalization) Let f E k(V)* be a rational function on V, and let
D = dive!) be the divisor of f. Then the difference

AD,v(P) - v(f(P))

is an Mk-bounded function on every Mk-bounded subset ofVD(k) x Mk.
(b) (Additivity) For all D 1 , D 2 E Div(V),

(c) (Functoriality) Let ¢ : V ---+ W be a morphism of smooth varieties.
Then

(d) (Positivity) Let D ~ 0 be an effective divisor. Then

(e) (Local/Global Property) Let DE Div(V), and let hD be a Weil height
attached to D. Then

hD(P) = ~ dvAD,v(P) + 0(1) for all P E VD(k),
vEMk

where dv = [kv : Qv)/[k : Q].

PROOF. Let D E Div(V). A candidate function for AD can be constructed
as follows. Choose effective divisors E 1 , ... ,En and F 1 , ... , Fm with the
following properties:

n

nSUppEi = 0,
i=l

m

n suppFj = 0,
j=l

and D + E i '" Fj for all i,j.

(It is always possible to find such divisors; see, for example, Lang [6, Chap
ter 10, Lemma 3.4].) Choose rational functions lij satisfying

div(fij) = Fj - Ei - D.
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Then a candidate for AD is the function
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Note that the poles of lij are on Ei and D, and the zeros are on F j and D,
so the fact that the Ei's (respectively the Fj's) have disjoint support means
that AD,v is well-defined off of the support ofD. Further, ifD is an effective
divisor, then we see that AD,v(P) tends to 00 as P approaches D in the
v-adic topology. This justifies our earlier intuitive description of the local
height.
The key point now is to verify that the choice of divisors E i , Fj and

functions lij affects only AD by an Mk-bounded function. We refer the
reader to Lang [6, Chapter 10] or Serre (3, Chapter 6.2] for the remainder
of the proof of Theorem B.B.1 and for many further properties of local
height functions. 0

Remark B.8.2. The normalization property (B.B.1(a)) is most often used
in the following way. Suppose that D 1 and D2 are linearly equivalent divi
sors. Then D 1 = D 2 +div(f) for some rational function I, and (B.B.1 (a,b))
implies that

Remark B.8.3. It is possible to choose the local height functions on V
consistently for field extensions. Thus for any finite extensions L / K / k and
any place v E M K , we have

[Lw : Kv]AD,w(P) +Ov(1)

for all P E VD(Kv ).

Indeed, the construction of AD,v as maxj mini log llijlv gives this property
immediately as soon as one knows that the construction is well-defined.

Example B.8.4. Let V = pn and let D be a hypersurface defined by a
homogeneous polynomial Q(xo, ... , x n ) of degree d. Then the function

I
xd IAD v(x) = log max •

, O:$;i:$;n Q(xo, ... , xn ) v

is a local height function associated to the divisor D.
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B.9. Canonical Local Heights on Abelian Varieties
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A Weil height function hD associated to a divisor D is determined only up
to a bounded function, and the important functoriality property hcf>* D =
hD 04>+ 0(1) holds only up to a bounded quantity. However, we have
seen in Sections BA and B.5 that in certain cases it is possible to pick out
particular Weil heights characterized by the property that functoriality
holds exactly for certain divisors D and maps r/J.
Similarly, the local height functions AD are determined only up to

Mk-bounded functions, but just as for the Weil heights, it is sometimes
possible to choose particular local height functions having particularly nice
transformation properties. Thus the following theorem is related to The
orem B.8.1 in the same way that the canonical height theorem (B.4.1) is
related to Weil's height machine (Theorem B.3.2).

Theorem 9.1. (Canonical local heights) Let V/k be a smooth variety
defined over a number field, let D E Div(V), and let r/J : V -+ V be a
morphism. Suppose that

4>*D = aD + div(J)

for some number a > 1 and some rational function f E k(V)*. Then there
exists a local height function

)..cf>,D: II VD(kv) -+ JR.
vEMk

and an Mk-constant i such that:
(i) )..cf>,D,v(P) = AD,v(P) + Ov(l) for all P E VD(kv)'
(ii) )..cf>,D,v(r/J(P») = a)..cf>,D,v(P) + v(J(P») +iv for all P E VD(kv).

Further, if we let hcf>,D be the canonical height function defined in Theo
rem B.4.1 and let dv be as in (B.B.I(e)), then there is a constant c such
that

hcf>,D(P) = L dv)..cf>,D,v(P) + c for all P E VD(k).
vEMk

PROOF. See Call-Silverman [1, Theorem 2.1]. 0

Remark 9.2. With appropriate definitions, it is possible to generalize
the theory of both global canonical heights (BA.1) and local canonical
heights (B.9.l) to include the extended divisor group Div(V) ® JR.. This is
useful because the condition 4>*D rv aD may be true only for divisors in
this extended group. See Silverman [6] for an example of a canonical height
on a K3 surface V that uses an extended divisor D and a map 4> :V -+ V
satisfying r/J*D rv (7+ 4V3)D.
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Just as in Section B.5, the general theory can be applied to the case
of abelian varieties and the multiplication by m maps, since we know that
[m]*D rv m 2D (respectively [m]*D rv mD) if D is symmetric (respectively
antisymmetric) .

Theorem 9.3. (Neron [2]) Let A/k be an abelian variety defined over a
number field. For each divisor DE Div{A) there is a local height function

-\D: II AD{kv) --t JR,
vEMk

called the canonical local height on A relative to D, satisfying the following
conditions, where 1'1, 1'2, ... denote Mk-constants:
(a) -\D,v = AD,v + Ov{l).

(b) -\D1+D2 ,v = -\D1,v + -\D2 ,v + 1'1 (v).
(c) If D = div(f), then -\D,v = v 0 f + 1'2 (v).
(d) If¢ : B -+ A is a homomorphism of abelian varieties, then -\<t>*D,v =

-\D,v 0 ¢ + 1'3{V).
(e) Let Q E A{k) and let TQ : A -+ A be the translation-by-Q map. Then

-\TQD,v = -\D,v 0 TQ + 1'4(v).

(f) Let hD be the global canonical height function on A relative to D
(B.5.6), and let dv be as in (B.B.l(e)). Then there is a constant c such that

hD{P) = L dV-\D,v{P) + c
vEMk

PROOF. See Lang [6, Chapter 11].

for all P E AD{k).

o

Remark 9.4. There are explicit formulas, due to Neron and Tate, for the
canonical local heights on elliptic curves. See, for example, Silverman [2,
Chapter VI].

Remark 9.5. Tate (unpublished) has given rapidly convergent series for
the canonical local heights on elliptic curves over certain fields. These
series have been generalized by Silverman [7] for elliptic curves and Call
Silverman [1] in general to give algorithms allowing the machine compu
tation of canonical local and global heights reasonably efficiently, provided
that the morphism ¢ is not too complicated.
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We pursue briefly in this section the analogies between number fields and
function fields. We first explain an explicit and geometric formulation of
height theory over function fields and explain why this can be useful for Dio
phantine problems. We next show that this geometric formulation can be
translated to the number field setting by (1) using schemes over Dedekind
domains to extend varieties over number fields and (2) using complex an
alytic constructions such as Hermitian metrics or Green functions. This
enables us to completely reformulate height theory (and proofs) in a more
synthetic or geometric fashion. In the pursuit of further analogies, we
are led to introduce special metrics, define extended divisors, etc., "it la
Arakelov." For additional material on Arakelov theory, see, for example,
Chinburg [1] or Lang [7].
We start with a smooth projective variety V defined over a function

field K = k(C), where C is a smooth projective curve over k. To simplify
our exposition, we will assume that k is algebraically closed. We can con
struct a projective variety V over k with a morphism 7r : V ---+ C such that
the generic fiber of 7r is isomorphic to V/ K. We further assume that V is
sufficiently smooth so that Weil divisors and Cartier divisors are the same.
(For example, in characteristic 0 we could appeal to Hironaka's theorem
on the resolution of singularities and assume that V is smooth.) A point
P E V (K) induces a rational map C ---+ V, and since C is smooth and V
is projective, P will extend to a section (i.e., to a morphism) P : C ---+ V.
Any divisor D = E nyY on V extends to a divisor D on V by taking the
Zariski closure of each component and keeping the same multiplicities, say
D := L: nyY. The divisor D is a Weil divisor, and hence is a Cartier
divisor by hypothesis. Now observe that P*(fJ) is well-defined as a divisor
class on the curve C, and even as a divisor if we add the hypothesis that
P f/. supp(D). We now define a function hv,v on V(K) by the formula

hv,v(P) = hv(P) := degP*(D) for P E V(K).

Remark B.IO.O. If P is a point defined over the algebraic closure of
K = k(C), say P E V(L) with L a finite extension of K, we can still define
its "height" as follows. Fix a smooth projective curve C' and a covering
f : C' ---+ C such that L = k(C') and such that the map f induces the
inclusion K C L. The point P corresponds to a morphism P : C' ---+ V as
above, and we can define

1 --
hv,v(P) = hv(P) := [L : K] deg P*(D).

One readily checks that this quantity is independent of the field L as long
as P E V (L). Generally, the extension of height functions from V (K)
to V(K) will be straightforward, so we will be content in this section to
restrict attention to points in V(K).
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We now prove that our notation is consistent and that hD defines a
Wei! height associated to the divisor D. We do this in several lemmas,
where K will always denote a function field k(C) as above.

Lemma B.lO.1. Let Q = (/0, ... , In) E pn(K), let Q be the associated
k-morphism Q : C -+ lPn, and let H be a hyperplane (divisor class) in pn.
Then

degQ*(H) = L max (-ordp(Ii»·
PECO::;.::;n

(Notice that the sum is nothing more than the height hK(Q) of the K
rational point in pn for the usual collection of valuations on the function
field K.)

PROOF. Changing coordinates if necessary, we may assume that Q(C) rt
Hi, where Hi is the hyperplane defined by Xi =O. Let Di := Q*(Hi). Then

and
ordp Di - ordp Dj = ordp Ii - ordp f;,

and hence

But since the Di's are effective and the intersection of their supports is
empty, we see that infi(ordp D i ) = O. Hence

- inf(ordp Ii) = ordp D j - ordp f;.
•

Now summing over P E C and using the fact that Lp ordp(f;) = 0 gives
the desired result. 0

Next we observe that if Y c V is an irreducible hypersurfa.ce on V,
then its image 1r(Y) is either equal to all ofC, or else it is equal to a single
point. We say that D is a vertical divisor if 1r maps all of the components
of D to points, and similarly we say that D is a horizontal divisor if 1r
maps all of its components surjectively onto C. Clearly, any divisor can be
written as the sum of a horizontal and a vertical divisor in a unique way.
We also note that vertical divisors are characterized by the property that
their restriction to the generic fiber of 1r is trivial.

Lemma B.10.2. Let F be a vertical divisor on V (with respect to 1r :
V -+ C). Then the map

hF : V(K) -+ Z, P f-+ deg.P*(F),

takes finitely many values. In particular, hF is a bounded function.

PROOF. The proof is immediate once we note that if F is an irreducible
component of a fiber of 1r, then deg .P*(F) = 1 if the section .P meets
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F, and degP*(F) = D otherwise. (We also observe that the extension
hF : VCR) -+ Q of hF to K described in (B.lO.D) is still a bounded function,
but it may take infinitely many values.) 0

We next use Lemma B.lO.2 to show that changing the model V modifies
the function hD by only a bounded amount (in fact, by a function that takes
finitely many values).

Lemma B.I0.3. Let 1r : V -+ C and 1r' : V' -+ C be two models for
VjK. Then the difference hD,V - hD,V' is bounded on V(K).

PROOF. We can find a third model V" that will dominate the other two,
and hence we can reduce to the case where there is a birational morphism
f: V -+ V' such that 1r = 1r'of. IfP E V(K) and P is the associated section
from C to V, then P' = foP is the section from C to V' corresponding
to P'. (To see this, note that they coincide on a dense subset of C, hence
are identical.) Now let D be a divisor on V, let D be the Zariski closure
of D in V, and let D' be the Zariski closure of D in V'. Then the divisor
F := r (D') - D is trivial when restricted to the generic fiber, so F is a
vertical divisor. Hence

hD,v - hD,v' = degP*(F)

is a bounded function by Lemma B.lO.2. o

We are now ready to show that the geometrically defined hD'S give
Weil heights for varieties defined over the function field K.

Theorem B.I0.4. For every variety VjK, fix a model1r : V -+ C, and
for every divisor D on V defined over K, define a function

hD,v = hD : V(K) ----+ Z,

as above. Then:
(a) hD+D' = hD + hD'·
(b) Let f E K(V)* and D = dive!). Then hD = 0(1).
(c) Let Vj K and W j K be varieties, let ¢ : V -+ W be a K -morphism, and
let D be a divisor on W defined over K. Then hD 0 ¢ = h"'*(D) + 0(1).
(d) Let D c 1pm be a hyperplane defined over K, and let h be the usual
Weil height on pn(K). Then hD = h + 0(1).
(e) H D is effective and P ~ suppeD), then hD(P) 2:: D.
In other words, the association D t--+ hD from divisors to functions satisfies
the axioms of a Weil height machine (cf. Theorem B.3.2).

PROOF. Property (a) is immediate by additivity of 1r* and deg. To prove
(b) we observe that f E K(V) will extend to a rational function f on V
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and that the restriction to the generic fiber of 7r of the two divisors div(J)
and (div(J)) are the same; hence their difference is a vertical divisor, say

F := div(J) - (div(J)).

It follows from (B.10.2) that the function

hdiv(J) (P) = degP* (div(J)) = degP* (div(J)) - degP* (F) = - degP* (F)

is bounded. To prove (c) we use the fact that we can choose models 7[ : V-.
C and 7[' : W -. C such that ¢ extends to a morphism ¢> from V to W (see
Exercises A.1.9 and A.9.5). Having done this; we see that ¢>*(D) - ¢*(D) is
trivial when restricted to the generic fiber of 7[; hence it is a vertical divisor
F. Again by (B.10.2) and additivity, we conclude that hv 0 ¢ - hcf>'Cv) is
bounded. Property (d) is just Lemma B.1O.1 above. Finally, the effectivity
of D implies that D, and hence P*(D), is also effective. Therefore P*(D)
has positive degree, which gives (e). 0

We now want to build an analogue of the above construction when
the function field is replaced by a number field. So we start with a number
field K and a smooth projective variety V/ K. We can construct a projective
scheme 7[: V -. Spec(RK) with generic fiber V/K, and the fact that V is
proper over Spec(RK) implies that any rational point P E V(K) gives a
section P : Spec(RK) -. V. Similarly, we can still define the closure of a
divisor D on V to be its Zariski closure D in V. IfV is sufficiently smooth
(e.g., if it is regular as an abstract scheme), then P*(D) will give a well
defined divisor class on Spec(RK), and indeed if the image of P does not
lie in the support of D, then we get a well-defined divisor

P*(D) = L nv[v].
VEM~

(Recall (B.1.3) that the set of nonarchimedean absolute values on K is nat
urally identified with the set of prime ideals in RK, hence our identification
of M~ with Spec(RK)' We will also write Pv E Spec(RK) for the prime
ideal attached to the valuation v E M~.)

The question now is how to define the degree of P*(D). As is clear
from the function field construction, this degree should depend only on the
divisor class of D, but the fact that Spec(RK) is not "complete" means
that intersection points may "move out to infinity." (To understand this
analogy, try to construct a good intersection theory in the function field
case for a family V -. A1 , and you will see the difficulty.)
The solution to this dilemma is to complete Spec(RK) by allowing divi

sors that are supported at every place ofK, not just at the nonarchimedean
places. This leads to the following definition.
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Definition. A compactified (or Arakelov) divisor on Spec(RK) is a formal
sum

E ·- ~ [I 'th {Z ifvEM~,.- L...J mv v WI m v E 1tll'f MOO
.II'- I V E K.vEMK

A principal compactified divisor is a divisor of the form

div(a):= L ordv(a)[v] + L -log lalv[v]
VEM7< vEM'j(

for some a E K*. The degree of a compactified divisor E = Lmv[v] is
defined to be

degE:= L mv 10gNpv - L mv[Kv :RI·
VEM7< vEM'j(

Observe that the product formula (Theorem B.1.2) says exactly that the
degree of a principal compactified divisor is zero.

The idea now is to complete the divisor P*(D) = LVEMO mv[v] by
K

adding to it a finite sum LVEMOO mv(D, P)[v] that takes account of the
K

places "at infinity." One approach is to use Green functions (also called
Neron functions in this context). For our purposes a Green function at
tached to a divisor D is simply a continuous function

G(D, .): VD(C) ~lR

with a logarithmic pole along D. (Recall that VD :=V" supp(D).) This
last condition means that if U is an open subset of V and if f = 0 is a local
equation for D on U, then the function

G(D, P) + log If(P)I,

defined a priori only on UD(C), extends to a continuous function on U(C).
A variant of this point of view is furnished by the notion of a line

bundle equipped with a norm or a metric. Note that a line bundle L
on Spec(RK) is simply a rank-one projective RK-module. We create a
metrized line bundle by adding metrics to the archimedean completions
of L as explained in the following definition.

Definition. A metrized line bundle on Spec(RK) is a rank-one projective
RK-module L together with a collection of (nontrivial) norms {I . Iv}vEM'j(
such that I . Iv is a norm on the K v vector space Lv := L ® K v that is
compatible with the norm on K v .

The Arakelov degree of a metrized line bundle (L, I . Iv) is defined by
picking any nonzero element £ELand setting

degAr(L, I . Iv) := log # (Lj£RK ) - L [Kv :R]Iog 1£lv.
vEM'j(

As usual, the product formula (B.1.2) tells us that the degree is independent
of the choice of £.
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Definition. Let V be a complex variety, and let p : L --+ V be a line
bundle over V. A metric on L is a collection of norms {I . Ix}, one for each
x E V(C), such that I . Ix is a norm on the C-vector space Lx and such
that the metrics vary continuously as x varies. This last statement means
that if U c V is an open subset of V and if

is a trivialization of Lover U, then the function

U x C ---+ JR, (x, c) 1---+ Icf>(x, c) lx'

is continuous on U x C.
Let s : V --+ L be a section to the line bundle L. We define the norm

of s at the point x E V to be Is(x)lx. Thus the norm of a section s is a
continuous map

lsi: V ---+ lR.

Now let V/ K be an algebraic variety defined over a number field K. To
each archimedean place v E MK we associate a complex variety, denoted
by Vv , by extending scalars to Kv ~ C.

Definition. Let K be a number field, let V/K be a smooth projective
variety, let L be a line bundle on V defined over K, and let P E V (K).
Choose a model V --+ Spec(RK) of V and an extension C of L to V. Also
choose metrics I . Iv on L, one for each v E M K. Then the pullback
P* (C, I . Iv) is a metrized line bundle on Spec(RK ), and the metrized height
(or degree) of P relative to these choices is

1 -
hV,.c,I·I" (P) := [K : Ql degAr P*(C, I . Iv).

A metrized height function (associated to L) is any function hL of the
form hv,q'l" for any model V --+ Spec(RK) for V, any extension C of L
to V, and any choice of metrics I . Iv on L.

To illustrate these abstract definitions, we will compute the metrized
height function associated to the line bundle 0(1) and the Fubini-Study
metric on IF.

Example B.lO.5. Let V = IPn and L = 0(1). We choose V = ~K

and C = Ov(l). Let aoXo + ... + anXn be a global section to L. The
Pubini-Study metric I . IFS on L is defined by the formula

1 1
2 I((aoXo + + anXn)2) I

(aoXo + ... + anXn}{P) FS := xg + + X~ (P) .
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Then the associated metrized height function is

hV,£.,I-IFS(P)= L dvlogo~t.tnIXi(P)lv
vEM~ --
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+.{;" ~d"log (~XM).
where as usual, dv = [Kv : Qv]j[K : Q]. We leave the verification of this
formula as an exercise for the reader.

Notice that the Fubini-Study height in (B.1O.5) differs by a bounded
amount from the usual Wei! height on pn. We will next show that in
general, the choice of model V and metrics I . Iv affects the metrized height
hv,q.1 by only a bounded amount. Following this, we will show that
metrized heights are Wei! heights, that is, they satisfy the properties of the
Wei! Height Machine (B.3.2).

Proposition B.IO.6. Let V, 1:-, I . Iv and V', 1:-', I . I~ be two extensions
with metrics of a variety V and a line bundle L on V as above. Then

hv,q_,JP) = hV'P,I-'~(P) +0(1) for P E V(K).

PROOF. We consider first the case that V = V'. Let e =I 0 be a section
to L. Since V(C) is compact, there exist constants Cll C2 > 0 such that
C1 :::; lelx/lel~ :::; C2 for all x E V(C). This shows that the archimedean
pieces of hv,q _I" and hVP,I.I~ differ by a bounded amount.
Next, since 1:-' ® I:- -1 is trivial on the generic fiber of V, there exists

a vertical divisor E such that 1:-' = I:- ® <9(E). The line bundle <9(E) is
trivial when restricted to the generic fiber; hence it may be equipped with
the trivial metric, and then the function

P.-- degAr P*(<9(E), I . Iv)
is bounded for P E V (K). This takes care of the nonarchimedean pieces,
which proves that hv,q _I" and hVP,I-I~ differ by a bounded amount.
Finally, we consider the effect of choosing different models V and V'.

We may suppose that there is a birational morphism f : V' ---+ V that is
the identity on the generic fiber. We then choose e := r 1:-, and we take
as a metric on 1:-' the pullback of the metric on 1:-. If P E V(K), then the
corresponding sections

P' : Spec(RK) ---+ V' and P: Spec(RK) ---+ V

are linked by P = foP'. Therefore, P*I:- = (f 0 P') *I:- = P'*e, so in this
case we get an equality hv,q -I,,(P) = hV'P,I_I~ (P). 0

Proposition B.I0.6 says that any two metrized height functions for L
differ by a bounded amount. We now show that metrized height functions
are Wei! heights.
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Theorem B.10.7. Let K be a number field and VjK a variety as
above.
(a) Let L and L' be line bundles on V, and choose metrized heights hL

and hL' for L and L', respectively. Then hL + hL' is a metrized height
function associated to L ~ L' .
(b) If L is the trivial bundle on V , then hL = 0 is a metrized height
function for L.
(c) Let 4> : V -+ W be a K -morphism between projective varieties, let L
be a line bundle on W, and let hL be a metrized height function for L.
Then hL 04> is a metrized height function for the line bundle 4>* L on V.
(d) The usual Weil height h on :IF(K) is a metrized height on :IF associated
to the line bundle 0(1).
(e) There is a metrized height hL for L such that hL(P) ~ 0 for all P not
in the base locus ofL.

Remark B.10.8. By abuse of notation, people sometimes write Theo
rem B.1O.7 as:
(a) hL®L' = hL + hL,·
(b) ho = o.
(c) hL 04>= h<f>*(L)·
(d) hO(l) = h.

(e) hL ~ 0 off of the base locus of L.

Combining Proposition B.1O.6 and Theorem B.1O.7, we see that each of
these formulas holds up to 0(1) for any choices of metrized heights. How
ever, in order to get equality, Theorem B.I0.7 says that the metrized heights
must be carefully chosen.

PROOF (of Theorem B.I0.7). (a) Fix a model for V, extensions £, and £,'
for L and L', and metrics on L and L', corresponding to the choice of
metrized heights hL and hL'. We take £,(j9£,' as our extension of L(j9L', and
we take IS(j9s'lv = Islv·ls'l~ as our family ofmetrics on L(j9L'. Letting hL®L'
be the associated metrized height, the equality hL®L' = hL + hL' is then
clear from the definition of metrized height.
(b) The trivial metric on the trivial line bundle gives the zero function.
(c) Fix a model W for W, and extension £, for L, and metrics I . Iv on L
corresponding to the selected metrized height hL . Choose a model V for V
such that 4> extends to a morphism (fi : V -+ W. (To do this, first choose
any V. Then 4> extends to a rational map, and we can blow up to resolve
the indeterminacy. See Hartshorne [1, 11.7.17.3}.) We take (fi*£' as a model
for 4>* L and the pullback metrics 14>*(s)lv = Islv as metrics on 4>*L, and
then the equality h<f>* L = hL 04> is clear.
(d) Fix generators Xo, ... , X n for the space of global sections of the line
bundle 0(1) on the scheme IP'z. That is, Xo, ... ,Xn are homogeneous
coordinates on IPZ, or equivalently, IPZ = Proj Z[Xo, ... ,Xn }. We define
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metrics on 0(1) by the condition that for each section s to 0(1) and each
point P E IF(K),

Is(P)lv = ID;in IU/Xi)(P) I .
O<t<n v

X,(P)#O

With this choice of metrics, it is not hard to verify that the metrized
height hl!Z,o(l),I'!v is the usual Wei! height on Ipm. For further details,
see Silverman [8, Proposition 7.2]. It is also instructive to compare with
the metrized height on 0(1) for a different choice of metrics as described
in (B.I0.5).
(e) Take any model V for V, any extension £.- of L, and any set of metrics
I . Iv on L. Let s be any nonzero section to L, and let s be its (unique)
extension to £.-. We can use the section P*s to P* £.- to compute

hV,L,I")P) = [K~ QJ log # (P*£.-/S(P)RK) - L dvlogls(P)lv.
VEMK'

The first term on the right-hand side is clearly nonnegative. To deal with
the sum over archimedean places, we define

IIslloo = sup Is(P)lv.
vEMK' , PEV(Kv )

Note that IIslloo is finite, because V(C) is compact and the various norms
are continuous. Further, we need only a finite number of sections to define
the base locus of L, so we have proven that there is a constant c (depending
on all of our choices) such that

hv,L,/ 'IJP) ~ -c for all P not in the base locus of L.

Hence if we replace the original metrics by the equivalent metrics Isl~ :=

e-clslv, we obtain a metrized height that is nonnegative off of the base
locus of L. 0

EXERCISES

B.l. Let ¢> : pn --> ]pm be a rational map of degree d defined over Q. Write
¢> = [¢>o, ... I ¢>m], where ¢>i E Q[Xo, ... I X n ] are homogeneous polynomials
of degree d. Let A be the N-tuple consisting of all of the coefficients of
all of the ¢>i'S, where we will consider A to be a point in pN (Q). Let
dome¢»~ C ]pn(Q) be the set on which ¢> is defined. Prove that

h(¢>(P)) :::; dh(P) + he¢»~ + log (n: d)

for all P in the domain of ¢>.
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B.2. Let r/J: p2 -+ jp'2 be the rational map r/J(X,Y,Z) = (X 2 ,y2 ,XZ). Notice
that r/J is defined except at the point (0,0,1).
(a) Let P E p2(Q) and choose homogeneous coordinates P = (x, y, z) with
x, y, z E Z and gcd(x, y, z) = 1. Prove that

h(r/J(P)) = logmax{lx21, ly21, Ixzl} -log(gcd(x,y2»).

(b) Use (a) to show that there is no value of c such that the inequality
h(r/J(P)) ;::: 2h(P) - c holds for all P.
(c) More generally, prove that the set

{
h(r/J(P») I P E jp'2(Q) and h(P) ::1= o}

h(P)

is dense in the interval [1,2].
B.3. Let V / k be a smooth variety defined over a number field. Let D, E E Div(V)

be divisors with D ample. Prove that there are constants CI, C2, depending
on D and E, such that

Ihv,E(P)1 ~ cIhv,D(P) + C2 for all P E V(k).

BA. For any algebraic point P E jp'n(Q) , let dp be the degree over Q of the
field Q(P) generated by the coordinates of P, and let D p be the absolute
discriminant of Q(P) over Q.
(a) Prove that

h(P) ;::: 2dp1_ 2 (d~ 10gDp -logdp) .

(b) Show that the inequality in (a) is essentially best possible by taking
P = [aI/P , 1] for an appropriate integer a and large prime number p.

B.5. Let V /k be a variety defined over a number field, let r/J,1/J : V -+ V be
morphisms, and let D E Div(V) be a divisor. Suppose that r/J* D '" aD
and 1/J*D '" {JD with a, {J > 1.
(a) If cP and 1/J commute, prove that the associated canonical heights hV,<f>,D
and hV,t/J,D are equal. That is, prove that

r/J o.,p = .,p 0 r/J~ hV,<f>,D(P) = hV,t/J,D(P) for all P E V(k).

(b) Give an example to show that if r/J and .,p do not commute, then the
associated canonical heights need not be equal. (Hint. Use (BA.2).)
(c) Let V = jp'I and D = (00). Prove that r/J o.,p = .,p 0 r/J if and only if
hV,<f>,D = hV,t/J,D. To what extent does this converse implication generalize
to other varieties?

B.6. Let a E Z be a nonzero square-free integer, and let r/J : jp'I -+ jp'I be the map
r/J(x,y) = (2xy,x2+ay2). Then r/J*(O, 1) = (0,1) + (1,0) '" 2(0,1), so there
is a canonical height associated to r/J and the divisor D = (0,1). Find an
explicit formula for this canonical height on jp'I(Q). (Hint. This is one of
the few rational maps on jp'I for which it is possible to find a simple closed
formula for the iterates r/Jn .)
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B.7. Let k be a number field and let Elk be an elliptic curve, say given by an
equation

E : y 2 Z = X 3 + AXZ2 + BZ3 with A, BE k, 4A3 + 27B2 "10.

Also, let x : E -> pi be the projection x : (X, y, Z) 1-+ (X, Z).
(a) For each integer m ~ 1, prove that there is a rational map cPm : pi -> pi
of degree m 2 such that the following diagram commutes:

E ~ E

(b) Let hE,(o) be the canonical height on E with respect to the divisor (0),
and let hP1,<Pm be the canonical height on 11'1 with respect to the map cPm
and any divisor (PO) on 11'1. Prove that

for all P E E(k).

B.8. (a) Let q : Rr
-> R be a quadratic form. Prove that there is a basis

{el' ... , e r } for Rr such that relative to this basis, q has the form

Prove that the integers s and t are uniquely determined by q. (This result
was used in the proof of Corollary B.5.4.1.)
(b) Let A be a lattice in Rr

, let F be a fundamental domain for R r lA,
and let U c R r be a symmetric convex set. Prove that #(U n A) ~
T r vol(U)1 vol(F). (This generalizes Proposition B.5.4.)

B.9. Let A and B be abelian groups with B uniquely 2-divisible, let h : A -> B
be a quadratic function, and let

( . , . )h : A x A~ B, (P, Qh = ~(h(P + Q) - h(P) - h(Q) + h(O)),

be the associated symmetric bilinear pairing.
(a) Prove that the map

q:A~B,
1

q(P) = '2 (h(P) + h(-P) - 2h(0)),

is a quadratic form on A and satisfies q(P) = (P, P)h.
(b) Prove that the map

l:A~B, l(P) = ~(h(P) -h(-P)),

is a linear form on A.
(c) Let q and l be as in (a) and (b), and let b = h(O). Prove that h =
q + l + b. Further, prove that this is the unique representation of h as the
sum of a quadratic form, a linear form, and a constant.
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B.I0. Let V be a real vector space of dimension r, let q : V -> IR be a positive
definite quadratic form on V, and let A C V be a lattice. Also, let oX be
the first minimum of q on A, that is, oX = min{q(x) Ix E A, xi- OJ. Prove
that

(Hint. Find a value of N such that the given set maps injectively into
AINA.)

B.11. Let VIk be a smooth variety of dimension at least 1 defined over a number
field k, and let D E Div(V). Prove that the following two statements are
equivalent:

(a) Ihv,v(P)1 is bounded for all P E V(k).

(b) D has finite order in Pic(V) (Le., there is an integer n ~ 1 such that
nD is linearly equivalent to 0).

B.12. Let Clk be a curve of genus 9 ~ 2, let KG be a canonical divisor on C,
and let I :C -> J = Jac(C) be the map defined by

I:C---+J, P f--+ CI((2g - 2)(P) - KG)'

(Note that deg KG = 2g - 2.)

(a) Prove that the map I is at most (2g - 2)2g
- to-l.

(b) Let e E Div(J) be the theta divisor, let ( " ')e be the canonical height
pairing attached to e, and let II . lie be the associated norm. Prove that
for all P, Q E C(k) with P i- Q,

II/(P) - I(Q)II~ ~ (1- ~) (II/(P)II~ + II/(Q)II~)·

(Hint. Use Exercise A.8.2(c).) Compare this with the gap principle (B.6.6).

B.13. This exercise gives an explicit version of Lemma B.6.7 that is often useful
for counting points on varieties. Let V be a real vector space ofdimension n,
let II . II be a Euclidean metric on V, and let A be a lattice in V. Let SeA
be a subset of A, and suppose that there are constants a, b > 0 such that

for all x,y E S with x i- y.

If T2 ~ T 1 ~ ~, prove that

(Hint. Use Exercise B.1O.)
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B.14. Let V be a finite-dimensional real vector space, let (., .) be a Euclidean
inner product on V, let II . II be the associated norm, and let A be a lattice
of rank r in V.
(a) Prove that there exists a basis tH, U2, .•• , U r for A and an absolute
constant Cl > 0 such that

r 2 r

III:aiUill 2:: c~I:a~lIuiIl2
i=l i=1

for all al, ... ,ar E R.

(b) The volume of a fundamental domain for A is equal to the square root
of the determinant det(A) = det((vi,Vj») . ., where VI, ... ,vr is any basis',J
for A. Prove that there is an absolute constant C2 > 0 such that the basis
in (a) also satisfies

y'det(A) ~ Ilull1·lIu211·· ·llurli ~ C;2 y'det(A).
(The left-hand inequality holds for any basis. It is called Hadamard's in
equality.)

A basis satisfying (a) or (b) is sometimes called quasi-orthogonal, since
the angles between the basis elements cannot be extremely small.

B.15. Let Vjk be a projective variety, let D and E be ample divisors on V,
and let Hv and HE be Weil height functions associated to D and E, re
spectively. Prove that the two counting functions N(V(k), Hv, T) and
N(V(k), HE, T) have roughly the same order of growth by proving that

lim loglogN(V(k),Hv,T) = l.
T_oo log logN(V(k), HE, T)

B.16. Verify Manin's conjecture (B.6.9(a» for the following varieties:
(a) Projective space V = JPn.
(b) An abelian variety V = A.

B.17. Let V be a smooth variety defined over a number field k, and let f E k(V)*
be a rational function on V. Write the divisor of f as div(J) = I:nvD,
where each D is an effective irreducible divisor. Prove that

V(J(x») = I: nVAv,v(x) + Ov(I).
v

This is a version of Weil's decomposition theorem.

B.18. Prove the formula for the height hX,.c,I.IFS associated to the Fubini-Study
metric described in Example B.I0.5. Show that this height differs by a
bounded amount from the usual height on JPn.

B.19. The purpose of this exercise is to compute the integral that appeared in
the proof of Proposition B.7.3, namely /(0) = J: logla - exp(211"it) Idt.
(a) Show that /(0) is well-defined for all a E ee, that it is continuous as a
function of a, and that 1(0) = /(101).
(b) Show that /(0) = /(0-1) + log 101 for all a E CC*.
(c) If 101> 1, integrate the function f(z) = log(z - a)jz around the unit
circle and apply the residue theorem (from complex analysis) to prove that
/(0) = log 101.
(d) Conclude that /(0) = logmax(l, 101).
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B.20. Let 01, ... ,Or be algebraic numbers. Prove the elementary height inequal
ities

r

i=1

and
r

i=1

B.2l. Proposition B.7.2 uses inhomogeneous heights for polynomials, while Gel
fand's inequality (B.7.3) uses homogeneous heights.
(a) Show that Proposition B.7.2(b) is false if we use homogeneous heights
for the polynomials. (Hint. Take a polynomial whose coefficients have a
common factor.)
(b) Show that Gelfand's inequality (B.7.3) is false if we use inhomogeneous
heights for the polynomials. (Hint. What happens to the inequality if ft
and h are replaced with oft and 0-1h?)

B.22. Let P = {Pji; 1 ::; i ::; n, 1 ::; j ::; r} be a collection of polynomials
in Q[X1, ... , X m ] and set h(P) equal, as usual, to the height of the point
whose coordinates are all of the coefficients of all of the Pij's.
(a) Prove that

h (tHi'" Pri) ::; rh(P) + logn.

(b) Assume that r = n, and let ~ = det(Pjih~i,j~r. Prove that

h (~) ::; r (h(P) + logr).

B.23. Let E be an effective divisor on a variety V, and let BE be its base
locus. The following two examples show that the restriction P ¢. BE in
Theorem B.3.2(e) is necessary to obtain the inequality hV.E(P) ~ 0(1).
(a) Let V C pn Xpn-1 be the blowup of lP'n at the point Po = (0, ... ,0,1)
described in Example A.l.2.6(f). Let p : V --> lP'n be the blowing-up map,
let q : V --> lP'n-1 be the other projection, let E be the exceptional divisor,
and let M = q*(hyperplane yo = 0). Show that

p*(hyperplane Xo = 0) = E +M,
and conclude that

hE = hop - h 0 q + 0(1).

In other words, prove that

hE(P) = h(xo, ... , xn ) - h(yo, . .. ,Yn-l) + 0(1)

for all points P = ((xo, ... ,Xn)(YO, ... ,Yn-I) E V(Q). Conclude directly
(i.e., without using Theorem B.3.2(e» that

hV,E(P) ~ 0(1) for all P ¢. E,

hV,E(P) = -h(yo, ... ,Yn-I) + 0(1) for all points PEE.

In particular, observe that hE(P) is not bounded below for PEE.
(b) Let C be a smooth curve of genus g, and let ~ be the diagonal of the
product V = C x C. If 9 = 0 or 9 = 1, prove that

hV.A(P,Q) ~ 0(1) for all (P,Q) E V(Q);

but if 9 ~ 2, prove that hV.A(P, P) is not bounded below.



PART C

Rational Points on Abelian Varieties
Progress has been much more
general than retrogression.
C.D~n,TheD~centoEAfan

Our principal goal here in Part C is to prove the Mordell-Weil theorem.

Theorem C.O.I. (Mordell-Weil) Let A be an abelian variety defined
over a number field k. Then the group A(k) oE k-rational points oE A is
finitely generated.

In the special case that the abelian variety is a cubic curve in the
projective plane, we may express the result in the pleasing form, "There
exists a finite set of rational points such that all rational points may be
obtained from them by the tangent and chord process" (as described in
(AAA)). This was Mordell's original formulation. Weil, in his thesis, ex
tended Mordell's theorem to arbitrary number fields and to abelian varieties
of higher dimension. More precisely, Well dealt with Jacobians of curves of
higher genus, since he had not yet developed the theory of abelian varieties.
Theorem C.O.! can be generalized to fields finitely generated over

their prime field (see Lang 16, Chapter 6, Theorem 1]). Using elemen
tary group theory and the structure of the kernel of multiplication by m
(Theorem A.7.2.7), we may rephrase Theorem C.O.! by saying that there
are points PI, ... ,Pr such that

The integer r is called the rank of the abelian variety AIk, and A(k) is the
Momell-Weil group of Alk. Note that the torsion subgroup A(khors is a
finite abelian group, so it can be written as

where mI, ... ,ms are integers satisfying milmi+l and s ~ 2dimA.
In this introduction we will use height theory and a descent argu

ment to show that the following "weak Mordell-Weil theorem" implies the
stronger version given above.



258 C. Rational Points on Abelian Varieties

Theorem C.O.2. ("Weak" Mordell-Weil) Let A be an abelian variety
defined over a number field k, let A(k) be the group of k-rational points
ofA, and let m ~ 2 be an integer. Then the group A(k)/mA(k) is finite.

PROOF (that Theorem C.O.2 implies Theorem C.O.I). We select a symmet
ric ample divisor on A and let hdenote the associated Neron-Tate height
on A(k) (see Chapter B.5). Recall that it is a nonnegative quadratic form
on A(k) with the property that for all C > 0, the set

{x E A(k) Ih(x) $ C}

is finite. The following lemma axiomatizes this situation and completes the
proof that (C.O.2) implies (C.O.I).

Lemma C.O.3. (Descent lemma) Let G be an abelian group equipped
with a quadratic form q: G -+ R such that for all C, the set

{x E Glq(x) $ C}

is finite. Assume further that for some integer m ~ 2, the group G/mG is
finite. Then G is finitely generated.
More precisely, let gl, ... , g8 be a set ofrepresentatives for G/mG, and

let Co := maxi q(gi)' Then G is generated by the finite set

{x E Glq(x) $ Co}.

PROOF (of the descent lemma). We begin by observing that for all x in
G, we have q(x) ~ 0, since otherwise we would have infinitely many points
with q(x) negative. To ease notation, we may therefore safely put

Ixl := Vq(x), and s = {x E Gllxl $ co}.

We will prove that the finite set S generates G.
Let Xo E G. If Xo E S, we are done. Otherwise, Ixol > co, so we

consider the image of Xo in G/mG and choose a coset representative gi
for xo. This means that Xo = gi + mXI for some Xl E G. We use the
triangle inequality to compute

mixII = Ixo - gil
$ Ixol + Igil
< 21xol

by the triangle inequality

since Igil $ CO < Ixol·

Since m ~ 2 by assumption, we find that IXII < Ixol.
If Xl E S, then Xo = 9i + mXI is in the subgroup generated by S,

and we are done. Otherwise we can write Xl = gj + mX2, and the same
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computation reveals that IX21 < IXll. Continuing in this fashion, we obtain
a sequence of elements XO,Xl,X2, •• · satisfying Ixol > IXll > IX21 > ...
and with the property that for each t, the initial element Xo is a linear
combination of Xt and 91, ... ,9s. Since G has only finitely many elements
of bounded size, eventually the sequence terminates with an element that
is in S, which completes the proof that Xo is a linear combination of the
elements of S. Therefore, S generates G. 0

Remark C.O.4. (a) The term "descent" comes from Fermat's famous de
scente infinie. Indeed, the arguments are very similar. For example, Fer
mat's proof that integral solutions to x2 - dy2 = 1 are generated by one
fundamental solution and his proof that the equation x4 + y4 = Z2 has no
nontrivial integral solutions can be rewritten along the lines of the proof
of (C.0.3). (See Knapp [1, Chapter IV] for details.) Roughly speaking, one
builds a "smaller" solution from a given solution, and repeating the process
eventually yields either a contradiction or a set of generating solutions.
(b) There is an obvious (but tedious) effective process to find all points
of bounded height on an abelian variety. Hence if we could effectively
find coset representatives for A(k)/mA(k), we would be able to effectively
compute generators of the group A(k). Unfortunately, no such a process is
known today. (We will comment on this further later in this chapter, see
especially the remarks in Section 4).
(c) The proof of the weak Mordell-Weil theorem will give an effective
bound for the order of A(k)/mA(k), and hence will yield an effective bound
for the rank of A(k) (see Theorem C.1.9).
(d) It is not necessary to have a refined theory of heights in order to deduce
the full Mordell-Weil theorem from the weak Mordell-Weil theorem. It
suffices to have some fairly crude height inequalities. See Exercise C.l for
details.
(e) It clearly suffices to prove Theorem C.O.l with the field k replaced by
any finite extension of k, since a subgroup of a finitely generated group is
again finitely generated. This reduction to a larger field is not as straight
forward for Theorem C.0.2, but we will give a proof below (Lemma C.1.1).

We conclude this introduction with an outline of the proof of the weak
Mordell-Weil theorem (C.0.2). Filling in the details of the proof will occupy
much of the rest of Part C.
Let L be the field obtained by adjoining to k the coordinates of the

point Q E A(k) satisfying mQ E A(k). Intuitively, these are the points
obtained by "dividing" the points in A(k) by m. Then a general argument
using Galois theory, which works over any field, shows that A(k)/mA(k) is
finite if and only if the field L is a finite extension of k.

If we assume, as we may, that all of the m-torsion points of A are k
rational, then L/k will be an abelian extension of k of exponent mj that is,
Gal(L/k) is abelian and every element of Gal(L/k) has order dividing m.
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We now use the arithmetic fact that an abelian extension of exponent m
is a finite extension if and only if it is unramified outside a finite set of
primes. This can be proven using Kummer theory or Hermite's theorem.
This reduces the proof to studying the ramified primes in the exten

sion Ljk. We will show that Ljk is unramified outside the places of bad
reduction of A and the places dividing m. This will follow from the crucial
fact that if A has good reduction at p, then reduction modulo p is injective
on torsion points of order prime to p, where p is the characteristic of p.
(See Theorem C.1.4, proven in Section C.2.)
Notice that this injectivity provides an effective and efficient way to

compute the torsion part of the Mordell-Well group. The infinite part
of A(k) is much more difficult to compute. In fact, no algorithm (guar
anteed to terminate) is known, although a reasonable one often works in
practice. In Section C.3 we review some background material and prove the
basic finiteness theorems of algebraic number theory. Section C.4 provides
further details on the descent argument. In that section we rephrase the
descent argument in terms of Galois cohomology and show explicitly how
the problem of making descent effective is tied into the failure of the Hasse
principle. Finally, in Section C.5 we give basic definitions and properties of
group cohomology. Also note that an explicit version of some of the com
putations in this chapter are given for the Jacobian of hyperelliptic curves
in the series of exercises C.18 and C.19.

C.l. The Weak Mordell-Wei! Theorem

Recall that the multiplication-by-m map [m] : A(k) --t A(k) is surjective
with finite kernel, denoted by Am, and that Am is isomorphic (as an ab
stract group) to (ZjmZ)2g • For each x E A(k), we select a point y E A(k)
satisfying [m](y) = x, and then for each a E Gal(kjk) we consider the
point

a(y) - y E Am.

Note that a(y) - y is in Am, since

[m](a(y) - y) = a([m]y) - [m]y = a(x) - x = O.

We begin by using this construction to show that it suffices to prove The
orem C.O.2 with k replaced by a finite extension.

Lemma C.l.l. For any finite extension k' j k, the kernel of the natural
map A(k)jmA(k) --t A(k')jmA(k') is finite.

PROOF. Replacing k' by its Galois closure over k only makes the statement
of the lemma stronger, so we may assume that k' jk is Galois with group
G. The kernel of the map A(k)jmA(k) --t A(k')jmA(k') is

B := (A(k) n mA(k'))jmA(k).
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For any element x (mod mA(k)) in B, we fix an element y E A(k') such
that [m)(y) = x, and then we define a map

Ix : G ----+ Am(k'), Ix(a) = yU - y.

The map Ix is not a homomorphism in general, but in any case it is a map
from G to Am considered as sets. We have thus defined a map

B ----+ SetMaps(G, Am), x..-- Ix.

Since G and Am are both finite sets, if we can show that this map is
injective, we will have shown that B is finite.

Suppose that Ix = 'x" and let y, y' be the points used to define lx, 'x"
Then

IAa) = a(y) - y = a(y') - y' = 'x'({T) for every a E G,

so a(y - y') = y - y' for every a E G. This implies that y - y' E A(k), so

x - x' = [m]y - [m]y' = [m)(y - y') E mA(k).

This means that x and x' represent the same element in B, which com
pletes the proof of Lemma C.l.l. (The ad hoc argument given here will
be rephrased in Section C.3 in terms of cohomology. In particular, the
map Ix : G --+ Am is a 1-cocycle, and it is well-defined as a cohomology
class.) []

For the rest of this section, we will make the following assumptions:

• Am is contained in A(k) .
• J.Lm (the m th roots of unity) are contained in k.

(Actually, the former assumption implies the latter using Weil's pairing; see
Exercise A.7.8.) With these assumptions, we make the following definition.

Definition. For each x E A(k) and each a E Gal(k/k), choose some y E
A(k) satisfying [m)(y) = x and define

t(a, x) := a(y) - y.

We verify below (under our assumption Am C A(k)) that the value oft(a, x)
depends only on x, and not on the choice of y. The resulting map

t :Gal(k/k) x A(k) ----+ Am

is called the Kummer pairing on A. Notice the analogy with the classical
Kummer pairing,

Gal(k/k) x k* ----+ J.Lm, (a, a) ..-- a(a)/a (where a = vJ(i).

The most important properties of the Kummer pairing t are given in
the following proposition.
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Proposition C.1.2. Assume Am C A(k).
(i) The function tea, x) = a(y)-y described above is well-defined and gives
a bilinear map t : Gal(kjk) x A(k) -+ Am.
(ii) Let L be the extension of k obtained by adjoining to k the coordi
nates of all points y E A(k) satisfying [m](y) E A(k). Then t induces a
nondegenerate pairing

t : Gal(Ljk) x A(k)jmA(k) ---> Am.

In particular, A(k)jmA(k) is finite if and only if L is a finite extension
ofk.

PROOF. We begin by checking that tea, x) does not depend on the choice
of y. So suppose that [m](y/) = [m](y) = x. Then y/ - Y E Am C A(k), so

(a(y) - y) - (a(y/) - y')a(y - y') - (y - y') = o.

Therefore, the value of tea, x) depends only on a and x, so t is well-defined.
The verification of bilinearity is similarly straightforward. We start

with the first variable:

t(aa/,x) = yaa' _ y = (ya _ y)a' + (ya' _ y)

= tea, x)a' + tea', x) = tea, x) + tea', x).

Note that the last equality is true because t(a,x) E Am C A(k), SO t(a,x)
is invariant by Galois.
Next we compute

t(a,x + x') = (y + y/)a - (y + y/) = (ya - y) + (y/a - y/) = tea, x) + tea, x').

This completes the proof of the bilinearity of t.
Since Am has exponent m, the left kernel certainly contains mACk).

Now suppose that x is in the left kernel. This means that a(y) = y for
all a E Gal(kjk), and hence that y E A(k) and x = [m](y) E mACk).
Therefore, the left kernel is exactly mACk).

Next we observe that an element a is in the right kernel if and only if
for every y E A(k) satisfying [m](y) E A(k) we have a(y) = y. From the
definition of L, this is equivalent to saying that a E Gal(kjL). Hence the
right kernel is Gal(kj L). Taking the quotient by the left and right kernels
gives a nondegenerate pairing as stated in the theorem. 0

We thus need to understand the ramification properties of field exten
sions of the form k(y)jk, where [m](y) = x E A(k). Under our assumption
that Am C A(k), the extension key) depends only on x and is independent
of the choice of y, so to simplify notation we will denote such an extension
by k(~x).
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Lemma C.1.3. Assume Am C A(k) and X E A(k). Then the extension
k(~x) is Galois over k, and its Galois group is canonically isomorphic to
a subgroup ofAm.

PROOF. Fix. a point y E A(k) with [m](y) = x. We have seen above that
the Galois conjugates of y differ by elements of Am, so the assumption
that Am C A(k) implies that all of the Galois conjugates of y are already
in key). Thus key) is Galois over k. Further, the map

Gal(k(y)jk) -+ Am, a t---t t(a, x) = u(y) - y,

is a group homomorphism (C.1.2(i)), and it is injective, since a is deter
mined by its action on y. Hence Gal(k(y)jk) is isomorphic to a subgroup
of Am. 0

Classical Kummer theory (see below) now tells us that k(~x) is ob
tained by adjoining to k some mth-roots of elements of k. Up to now, we
have not used any special properties of the field k, but to go further, we
must use the arithmetic nature of k. We will need the following key result,
whose proof occupies the next section.

Theorem C.1.4. Let A be an abelian variety defined over a number field
k, let v be a finite place of k at which A has good reduction, let k be the
residue field of v, and let p be the characteristic of k. Then for any m 2: 1
with p fm, the reduction map

is injective. In other words, the reduction modulo v map is injective on the
prime-to-p torsion subgroup ofA(k).

We observe that Theorem C.1.4 immediately implies that the torsion
part of A(k) is finite. Indeed, by choosing two places v and w of good
reduction and of different characteristics, we obtain an injection

A(khors <-+ Av(kv) x Aw(kw),

and the latter is clearly a finite group. This observation is often the easiest
way to determine the torsion subgroup; see Exercises C.3, C.5, and C.6 for
some explicit computations.

Proposition C.1.5. Let m 2: 1 be an integer, and let S be the (finite) set
of places of k at which A has bad reduction, together with the places that
divide m. Then for all rational points x E A(k), the extension k(~x)jk is
unramified outside S.
Hence the field L described in (C.l.2(ii)) is unramified outside S.

PROOF. Note that the crucial fact being proven in this proposition is that
the set of possibly ramified places S can be chosen independently of the
choice of the point x E A(k).
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We choose a point y E A(k) satisfying [m]y = x as usual, and to ease
notation, we let k' = k(y) = k(;k x). Let v be finite a place of k not in S,
and let w be any extension of v to k'. We consider the reduction modulo w
map

A(k') ---+ Aw(k:,,).
If u E Gal(k' jk) is in the decomposition group of w, we get by reduction
an automorphism if in the Galois group Gal(k:"jkv ) of the residue fields,
and u is in the inertia group for w if and only if if = 1
So suppose that u is in the inertia group for w. This means that if

acts trivially on k:." so if acts trivially on Aw(k:.,), and hence if(Y) = y.
But this implies that

t(u, y) = u(y) - y = if(Y) - Y= 6

directly from the definition of the pairing t. Now Theorem C.1.4 tells us
that the m-torsion of A(k') injects into the reduction A(k:.,), so the fact-----that the reduction t(u, y) is zero lets us conclude that

t(u, y) = O.

In other words, u(y) = y, so u acts trivially on k', so u = 1. This proves
that the inertia group of w is trivial, which is equivalent to the assertion
that k' jk is unramified at w. Since v was an arbitrary finite place not in S,
and w was an arbitrary place of k' lying over v, this completes the proof
that k' is unramified outside of S. 0

It is now possible to quickly finish the proof of Theorem C.O.2 by
using Proposition C.1.5 and the following fundamental result from algebraic
number theory.

Proposition C.l.6. (Hermite) Let k be a number field, let d be a postive
integer, and let S be a finite set of places of k. Then there are only a finite
number of extensions of k of degree less than d and unramified outside S.

PROOF. This classical result is usually proven in two steps. First one
shows that the discriminant of such an extension is bounded, and then
that there exist only a finite number of extensions of a given degree and
discriminant. See Theorem C.3.2 below, or Serre [4, Proposition 7.13]'
Samuel [1, Theoreme 3 Chapitre 4.3] or Lang [9, Theorem 5, VA]. 0

Remark C.l.6.l. We observe that it is possible to avoid the use of The
orem C.1.4 by appealing to the more elementary Chevalley-Weil theorem.
This theorem states that if f : X ---t Y is a finite unramified map, then
there is a finite set of places S such that for any rational point y E Y(k), the
field generated by f-:-l(y) is unramified outside of S. Hence the composi
tum of the fields k(f-l(y)) is finite over k. (See Exercise C.7 or Lang [6,
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Theorem 8.1].) However, we want to be more precise and to give a bound
for the degree of the compositum L that we are considering. To do that,
we will dig deeper into the structure of abelian extensions of exponent m.
We know by Kummer theory (see Lang [2, VIII.8, Theorems 13 and 14],
for example) that an abelian extension of k of exponent m corresponds to
a subgroup B of k* containing (k*)m. The correspondence is given by

and L 1--+ (L*)m n k*.

We need to analyze ramification in such extensions.

Lemma C.1.7. Assume that k contains a primitive mth_th root of unity.
Let a E k*, let K := k( yta), and let v be a place ofk not dividingm. Then
the extension K / k is unra.rnified at v if and only ifordv(a) == 0 (mod m).

PROOF. To ease notation, let w = yta. An easy calculation shows that
the discriminant of w (equivalently the discriminant of the order Rk[W])
is equal to mma m-l (see Exercise C.8), so the discriminant of K/k di
vides mma m-l. Since ordv(m) = 0 by assumption, this shows that if
ordv(a) = 0, then K/k is unramified at v. It remains to consider the case
that ordv(a) > O.

Suppose first that ordv(a) == 0 (mod m), say ordv(a) = mt. Let 7l" E k
be a uniformizer at v, Le., ordv(7l") = 1, and consider the element {3 =
a7l"-mt. Then K = k( ytQ) = k( v'i1) and ordv({3) = 0, so from our
discussion above we conclude that K is unramified at v.
It remains to deal with the case that ordv(a) t=. 0 (mod m). Let r =

ordv(a), and let p be the prime ideal of k corresponding to v. Then we can
write aRk = pr2( for some ideal 2( relatively prime to p. Suppose that the
ideal p splits in K as a product pRK = \p~l ... \P:' of prime ideals. Then

"'R - mrel mre.cv'.... K -""I ... ""8 :.u

for an ideal 2(' of RK relatively prime to all of the \Pi'S. The principal
ideal aRK is an mth power in K, since a = wm , so we conclude that mlrei
for all 1 ~ i ~ s. Since m f r by assumption, it follows that every ei 2:: 2,
and hence K / k is ramified over v. 0

Corollary C.I.S. Let k be a number field, m an integer, and S a finite
set of finite places of k. Assume that k contains a primitive mth-root of
unity, that S contains all places of k dividing m, and that the ring of S
integers Rk,S is a principal ideal domain. (This last condition can always
be achieved by enlarging S.) Let K be the maximal extension of k such
that K/k is abelian of exponent m and is unramified outside S.
(a) The field K is equal to k(Rk,s)l/m). That is, K is the field obtained
by adjoining to k all of the mth roots of all of the elements ofRks.,
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(b) The field K is a finite Galois extension of k with Galois group

Gal(Kjk) ~ (ZjmZ)l+r(S),

where r(S) is the rank ofRk,s. Further,

r(S) = rl + r2 - 1 + lSI,

where rl (respectively r2) is the number of real embeddings (respectively
pairs of conjugate complex embeddings) of k into C.

PROOF. (Compare with Lang [9, Theorem 1, Chapter XI.2]). Let

and let K be as in the statement of the theorem. From Lemma C.1.7 we
see that K' c K. On the other hand, again using Lemma C.1.7, we know
that K is a compositum of extensions of the form k( yta). We may further
assume that a is an algebraic integer and that ordv(a) = 0 (mod m) for all
places v rt. S, say ordv(a) = mrv for some integer rv'

For v rt. S, let Pv be the prime ideal of Rk,S corresponding to v, and
let {3 be a generator of the (automatically principal) ideal

It follows that the element a' := a{3-m is an S-integer and that ordv(a') =
ofor all v rt. S. In other words, a' E Rks, and hence k( yta) C K'. Since
the compositum of these fields is equal t~ K, we obtain the other inclusion
K c K', and so K = K'.
The above description of K = K' makes it clear that K is generated

by taking the mth roots of a set of generators of the group

and elementary Kummer theory tells us that Gal(Kjk) is isomorphic to
this quotient group. Finally, Dirichlet's unit theorem (see Theorem C.3.3
below) says that Rk,S is the product of a finite cyclic group and a free group
of rank r(S), so our assumption that k contains an mth root of unity implies
that the quotient Rk,sj(Rk,s)m is isomorphic to (ZjmZt(S)+l. This com
pletes the description of Gal(Kjk). We also note that the fact that Rk,S
becomes principal after enlarging S is an easy corollary of Theorem C.3.1
below. 0

We are now ready to prove our main result.
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Theorem C.1.9. Let A be an abelian variety ofdimension 9 defined over
a number field k, and fix an integer m 2: 2. Suppose that the m-torsion
points of A are k-rational. Let S be a finite set oE finite places oE k that
contains all places dividingm and all places ofbad reduction ofA. Assume
further that the ring oE S integers Rk,s is principal. Then

rankA(k) ~ 2grankR~,s= 2g(rl + r2 + lSI-I),

where rl and r2 are as in (C.l.B).

PROOF. Let r(S) = rank(R~ s). By combining the results of Proposi
tion C.1.2(ii), Proposition C.l:5, and Corollary C.1.8, we get an injection

A(k)/mA(k) <---+ Hom (Gal(L/k), Am)

~ Hom (Z/mZ)l+r(s), (Z/mZ)2g) .

We are going to compare the number of elements in these finite groups.
Clearly,

# Hom (Z/mZ)l+r(s), (Z/mZ)2g) = m 2g(l+r(S».

On the other hand, since Am C A(k) by assumption, and since #Am =
m 2g , we have

#A(k)/mA(k) = m2g+rankA(k).

This immediately gives the desired upper bound for rankA(k). 0

C.2. The Kernel of Reduction Modulo p

In this section we give a proof of Theorem C.1.4 using the theory of formal
groups. Other methods of proof are described in the exercises. Thus Exer
cise C.g uses Hensel's lemma to show that, at least if we assume that our
ring R is complete, the reduction map Am -+ Am is onto, and hence that
it is injective, because both finite groups have the same cardinality. Ex
ercise C.lO describes a scheme-theoretic proof, which is perhaps the most
natural, but it demands considerably more in the way of prerequisites.
Our strategy in this section is to develop the rudiments of the theory of

formal groups and to show that the kernel of reduction may be identified
with the points of some formal group. Since it is easy to check that a
(commutative) formal group has no prime-to-p torsion, this immediately
gives the desired injectivity.

It is illuminating to observe that the analogous statement for the mul
tiplicative group is both true and easy to verify. Thus let ~ and ~' be
distinct roots of unity in R* of order prime to p, and let rot be a maximal
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ideal of R with residue characteristic p. Then ~ and ~' remain distinct when
reduced modulo 001. A quick proof uses the fact that if TJ is a root of unity
of order n, then 1 - TJ is a unit except when n = pm, and even in the latter
case it is still a p-unit. Another proof proceeds by directly showing that
the only torsion in the kernel of reduction 1+ VJt is p-power torsion. (See
Proposition C.2.5 below). Similar elementary statements can be proven for
the group GL(n) (Exercise C.14).
The reader will notice a close analogy between the exact sequence

and the exact sequence

that defines AI(k) = AI(R).
We start now the construction of the formal group associated to an

abelian variety A (or in fact any algebraic group) defined over a field k.
Further motivation for this definition will be given later.
Let e be the identity element of the group A, and let i3e ,A denote the

completion of the local ring C>e,A of A at e with respect to its maximal
ideal Me,A. We fix local parameters Xl, ... ,Xg on A at e, which gives an
isomorphism

of the completed local ring with the ring of formal power series in 9 vari
ables. (See Exercise A.1.12 or Shafarevich [1,11.2.2, Theorem 5].) The
isomorphism is induced by the injection

which associates to each function its Taylor expansion at e with respect to
the parameters XI, ••. , xg •

Next we consider the product A x A, and for local parameters at the
point (e, e) E A x A we choose the functions YI, ... , Yg, Zl, •.. , Zg, where

Yi := Xi 0 PI and

Just as above, this choice furnishes us with an isomorphism

for the completed local ring of Ax A at the point (e, e).
Now consider the addition map

add: A x A ~ A
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giving the group law on A. It induces a map of local rings

add* : CJe,A ----+ CJ(e,e),AxA,

and hence via the above isomorphisms, a map

add* : k[Xl' ... ,xg] ----+ k[Yl' ... ,Yg, Zll ... ,Zg]

of formal power series rings. To ease notation, we let

Fi := add*(xi),

so the Fi's should "look like" the coordinates of the group law on A. The
following lemma makes this precise. (Note that in the interest of conserving
variable names, we have relabeled the variables in the Fi's.)

Lemma C.2.!. Let F1, ... ,Fg E [X1, ... ,Xg,Y1, ... ,Yg] be the formal
power series associated to the group law on an abelian variety for a fixed
choice of local parameters at the origin as described above. Then the g
tuple of formal power series F = (F1, ... ,Fg) defines a commutative formal
group (of dimension g). That is, it satisfies the following conditions:
(1) F(X, Y) = X + Y + (terms of degree 2: 2) [infinitesimal group]

(2) F(X, F(Y, Z)) = F(F(X, Y), Z) [associativity]

(3) F(X, Y) = F(Y,X) [commutativity]

(4) F(X,O) = X and F(O, Y) = Y [neutral element]

(5) There exists a unique g-tuple of formal series [inverse]
without constant term i(X) = (i1(X), ... , ig(X))
such that F(X,i(X)) = F(i(X),X) = O.

PROOF. Intuitively, all these properties are infinitesimal translations of the
properties of the addition law on A. For example, the differential of the
addition map is given by (X, Y) t-t X +Y, from which property (1) follows.
To obtain properties (2) and (3), we just use the formulas

add(add(x,y),z) = add(x, add(y, z)) and add(x,y) = add(y, x),

which say that A is an abelian group. Finally, it is relatively straightforward
to deduce properties (4) and (5) from properties (1), (2), and (3). 0

It is a rather simple matter to compute the formal groups of the ad
ditive group Ga and the multiplicative group iGm , and even of the general
linear group GL(n). Thus

FGa (X, Y) = X + Y and FG", (X, Y) = X + Y + XY.

The formal group of GL(n), which is not commutative when n 2: 2, is given
by the coordinate functions

n

Fij(X, Y) := Xij + Yij +L XihYhj.
h=l

By way of contrast, there is no such simple formula for the formal group
of an abelian variety, not even in dimension one (i.e., for an elliptic curve).
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Definition. A formal group is defined over the ring R if the coefficients of
its defining power series F all lie in the ring R.

Definition. Let F = (F1 , .•. , Fg ) and G = (G1, ... , Gh) be formal groups
defined over R. A homomorphism from F to G defined over R is an h-tuple
of formal series without constant terms I = (It, ... , /h) E R[Xll ... , X g ]

with the property that

G(f(X),/(Y)) = I(F(X, Y)).

The homomorphism I is an isomorphism over R if there exists a g-tuple
offormal series without constant terms f' = (fL··· ,/;) E R[Xll ... , Xh]
such that 1(f'(X)) = f'(f(X)) = X.

Notice that ifF and G are two formal groups defined over a ring R, and
if R is a subring of a larger ring k (e.g., k could be a field), then F and G
may be isomorphic over k, but nonisomorphic over R. The next lemma
describes a simple, but extremely important, way to determine whether a
map between formal groups is an isomorphism.

Lemma C.2.2. Let I = (It,···, I g ) E R[X1 , ••• , X g ] be a g-tuple of
formal series without constant terms, say

9

Ii = L lijXj + (terms of degree ~ 2).
j=l

Form the matrix (fij) whose entries are the coefficients of the linear terms
of the Ii'S. If det(fij) is a unit in R, then there exists a g-tuple of power
series f' = (f{, ... , I;) E R[Xll . .. , X g ] without constant terms such that

1(f'(X)) = 1'(f(X)) =x.

Conversely, ifdet(fij) is not a unit in R, then no such power series exists.
The inverse power series f' is often denoted by 1- 1 •

PROOF. Easy (see Exercise C.lI). o

Let I = (It,···, I g ) be as in the previous lemma and let F be a formal
group over R. Then it is trivial to verify that G := 1-1(F(f(X),f(Y)))
defines a formal group isomorphic over R to F. If A is an abelian variety
defined over a field k, then the various formal groups (depending on the
choice of local parameters) associated to A are all isomorphic over k, since
the determinant of the change-of-variable matrix is a unit in k.
A natural and important example of a homomorphism of commutative

formal groups is provided by "multiplication-by-m," which is described
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inductively for all integers m by the following formulas. (Note that i(X) is
the inverse power series described in Lemma C.2.I.)

[-l](X) = i(X),

[m](X) = F(X, [m -l](X)),
[O](X) = 0, [l](X) =X,

[m](X) = F(i(X), [m+ l](X)).

Lemma C.2.3. Let F be a commutative formal group defined over R,
let m be an integer, and let [m] be the array of formal power series as
defined above.
(a) The array of power series [m] gives an endomorphism of the formal
group F defined over R.
(b) The endomorphism [m] is an isomorphism over R if and only ifm is a
unit in R.

PROOF. The fact that [m] is an endomorphism follows from the associa
tivity of F and induction on m. It is also immediate by induction that
[m](X) = mX + "', so the matrix of linear coefficients for [m] is m times
the identity matrix. Since det(mI) = m g , it follows from Lemma C.2.2
that [m] has an inverse over R if and only if m is a unit in R. 0

The previous considerations were purely geometric. We now introduce
arithmetic by taking R to be a complete local valuation ring with maximal
ideal M, fraction field k = Frac(R), and residue field k = RIM.
Our first important observation is that if an abelian variety has good

reduction, then it is possible to select local parameters so that the associ
ated formal group has coefficients in R. This proof uses the property that
for an abelian variety A defined over a number field, good reduction at
some prime includes the condition that addition also has good reduction,
i.e., that the addition map on A reduces to a morphism

add :A x A ----t A.

Lemma C.2.4. Let R be a local ring as above, let Alk be an abelian
variety with good reduction at M, and let Alk denote the reduced abelian
variety. Let Xl, ••• ,xg be local parameters on A at e with the property
that their reductions Xl, ... ,Xg are local parameters on A at e. Let F be
the formal group of A with respect to the parameters Xl, . .• ,xg . Then
Fi E R(X1 , ... ,Xg , Yll ... , Yg ]; that is, the coefficients of the formal group
power series lie in the ring R.

PROOF. Applying the above construction to the local parametersXl,"" Xg

will yield power series Gi E k(xll ••• ,Xg , Yll ... , Yg ] giving the group law
on A, and these power series must equal the reduction modulo M of the
power series Fi • Hence the Fi's must have integral coefficients, i.e., coeffi
cients in R.

o
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In general, a formal group does not define an actual group. A useful
intuition is that a formal group is a group law without any group elements!
However, although a formal group is merely a template for a group, if
we substitute values for its variables and if we can attach a reasonable
meaning to the resulting infinite series, then all of the group axioms will
automatically be true.
For example, suppose that R is a complete local ring with maximal

ideal M as above, and suppose that F is a formal group over R. Then
the series Fi(X, Y) will converge in R for any choice of X, Y E Mg. (Note
that this means that X and Y are g-tuples of elements of M, not the gth

power of elements ofM.) In this way the formal group F defines a group
structure on Mg.

Definition. Let F be a formal group of dimension 9 defined over a com
plete local ring R with maximal ideal M. The group associated to F / R,
denoted by F(M), is the set of g-tuples Mg with the group law

X +F Y := F(X, Y).

Example C.2.4.1. The formal group associated to Ga is simply M with
its usual addition. The formal group associated to Gm is isomorphic to the
set 1+M with its usual multiplication.

Proposition C.2.5. Let R be a complete local ring with maximal ideal M
and residue characteristic p, and let F be a formal group over R. Then the
group F(M) has no prime-to-p torsion.

PROOF. Let m be an integer not divisible by p. Then m is a unit in R, so
Lemma C.2.3 tells us that the series [m](X) = mX+- .. has a formal inverse
[mt 1 = m- 1X + ... with coefficients in R. Both series are convergent
when applied to elements in Mg, and therefore multiplication by m is an
automorphism of the group F(M) (i.e., an isomorphism from F(M) to
itself). In particular, multiplication-by-m has trivial kernel, so F(M) has
no m-torsion. 0

Theorem C.2.6. Let R be a complete local ring with maximal idealM,
fraction field k, and residue field k. Let A/k be an abelian variety having
good reduction at M, and let

be the kernel of reduction. Further, let F be the formal group of A as
described in Lemma C.2.4, so in particular, F is defined over R. Then
there is an isomorphism



§C.3. Appendix: Finiteness Theorems in Algebraic Number Theory 273

PROOF. We show that there are injective maps

and

such that their composition is the identity, and such that the first map is
a homomorphism. These two facts then imply that both maps are isomor
phisms.
Choose local coordinates Xl, ... , x g for A at e as in Lemma C.2.4,

and let U be an open affine neighborhood of e on which the Xi'S give
coordinates. This means we can write the affine coordinate ring of U as
k[U] = k[XI, ... , xn ] with xg+1, ... ,Xn expressible as power series

We can make these choices so that the same formulas hold when we reduce
modulo M, that is,

In particular, the h's have coefficients in R.
Now the map given by the formula

(Xl, ... ,X g) 1----+ (Xl"", X g, !g+1(XI ,:", X g), ... ,!n(XI , ... , X g))

provides the first map F(M) --+ AI(k), and it is clear that this map is
injective. Further, it is clear from the definition of the formal group that
this map is a homomorphism.
Next consider the projection (XI, ... ,Xn ) ...... (XI,""Xg ) giving the

second map AI(k) --+ F(M). The fact that Xl,"" Xg are local parame
ters on U imply that this map is injective, which completes the proof of
Theorem C.2.6. 0

We conclude this section by observing that Proposition C.2.5 and The
orem C.2.6 provide us with the promised proof of Theorem C.1.4.

C.3. Appendix: Finiteness Theorems in Algebraic Number Theory

We give a short introduction to the geometry of numbers in order to prove
the following three basic finiteness results from algebraic number theory.

Theorem C.3.I. The group of ideal classes of a number field is finite.

Theorem C.3.2. (Hermite) The set ofnumber fields (viewed as subfields
ofC) with given discriminant is finite.

Theorem C.3.3. (Dirichlet unit theorem) Let k be a number field, let
TI and T2 be respectively the number of its real and complex archimedean
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places of k, and let 8 be a finite set of nonarchimedean places of k. Then
the group of 8-units

R'k,s := {x E k* Ilxlv = 1 for all finite v rf; 8}

is a finitely generated group of rank

rankR'k,s = r(8) = rl + r2 - 1+ #8.

Let us set some notation for the rest of this section.
nor nk the degree [k : Ql of a number field k.

rl, r2 the number of real, resp. complex, places of k.

al,"" a r, the distinct real embeddings k ~ JR.

a r, +ll'" ,arI +r2 , the distinct complex embeddings k ~ C.
UrI +1, ... ,UrI+r2

il or ilk the absolute value of the discriminant of k/Q.
We will also use the fact that, if aI, ... , an is a Z-basis of Rk, then

We begin by introducing the canonical embedding of k,

. k E'- II k ~ lll>rI X tr"
r

2a . ---+ 00'- v - lAo. \L.,

vEM;;"

We remind the reader that a discrete subgroup r of a real vector space E
of dimension n is isomorphic to zr for some integers r ::; n, and that r is
said to be a lattice if r = n. The volume of a lattice r is defined to be the
volume of any fundamental domain for r. If el, ... , en is a Z-basis for r,
then the volume of r is given by Idet(el"" ,en)l.

Lemma C.3.4. The image of the ring of integers a(Rk) inside E oo is a
lattice of volume 2- r2 ...rzs:k. The volume of the image a{I) of a nonzero
ideal I of Rk is 2-r2 ...rzs:kN(I).

PROOF. Let al,"" an be a basis of Rk • Making a change of variables
from z,z to Re(z), Im(z) introduces a factor 2, so remembering that we
have

ar,+j(ai) = Rear,+j(ai) + HImar,+j(ai),

we see that the volume of the cube generated by the a(ai) is



from our choice of t.

§C.3. Appendix: Finiteness Theorems in Algebraic Number Theory 275

The second claim is then clear, since O'(I) has index N(I) inside O'(Rk).
o

Corollary C.3.5. (Minkowski) There exists a constant C1 > 0 such that
every nonzero ideal I of Rk contains a nonzero element a E I with norm
satisfying

Further, the constant C1 can be chosen to be C1 = (4/rrt2 n!/nn.

PROOF. For any real number t ;::: 0, consider the symmetric convex set

By homogeneity, it is clear that et has volume eotn for some constant eo
independent of t, and a straightforward computation shows that eo =
2r1 (1r/2t2 In!. We choose t to satisfy

eotn = 2n . Volume(u(I)).

Then Minkowski's theorem (B.5.4) tells us that there exists a nonzero ele
ment a E I satisfying O'(a) E et • Using the arithmetic-geometric inequal
ity, we can bound the norm of 0: as follows:

rl T2

IN~(a)1 = ITIO'i(a)1 x ITIO'r1+i(a)1
2

i=l j=l

,; (H~ lu,(all +2~ lu.,+;(a11)r
tn

< - since 0'(0:) E et- nn
2n

= -- .Volume(O'(I))eo' nn

Now plugging in the value of eo from above and the volume of u(I) from
Lemma C.3.4 gives the desired result. 0

Lemma C.3.6. The set of ideals of a given norm is finite.

PROOF. Let m ;::: 1 be an integer. The quotient ring Rk/mRk is finite
(indeed, as an additive group it is isomorphic to (Z/mZ)n), so Rk/mRk
contains only a finite number of ideals. The ideals in R k containing the
ideal mRk correspond to the ideals of Rk/mRk, so there are only finitely
many ideals in Rk containing mRk. Finally, we observe that if N(I) = m,
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then mRk C I. Therefore, there are only finitely many ideals in Rk of a
given norm. 0

Lemma C.3.7. Every ideal class ofk contains an ideal ofnorm less than
cl.JKk, where Cl is as in (C.3.5).

PROOF. Let a be an ideal class, and let I' be an ideal of Rk in the inverse
ideal class a' = a-I. Corollary C.3.5 tells us that there exists a nonzero
element ei E I' satisfying IN~(a')1 $ cl.JKkN(I'). Then I := a'I'-l is an
ideal in the ideal class a, and we can bound its norm by

This shows that every ideal class contains an ideal of norm at most Cl.JK.
o

Notice that Theorem C.3.1 is now an immediate consequence of Lem
mas C.3.6 and C.3.7, since the lemmas imply that the finitely many ideals
of norm at most Cl.JK represent all of the ideal classes, and hence the ideal
class group is finite. We also remark that if the ideals It, ... ,h represent
the distinct ideal classes, and if S is the set of prime ideals dividing It ... h,
then the ring Rk,S will be principal.

Lemma C.3.8. There exists an absolute constant C2 such that every
number field k/Q satisfies

PROOF. From the previous proof we extract the estimate

Using T2 $ n/2 and nnIn! ~ (9/4)n-l, we obtain after some calculation
that ~ ~ ~(37r/4)n. Taking logarithms gives the desired result. 0

PROOF (of Hermite's theorem (C.3.2». Let k be a number field with given
discriminant ~k =~. Using the previous lemma (C.3.8), we may assume
that the degree n, and even its type (Til T2), is fixed. Minkowski's theo
rem (B.5.4) says that there is a T, depending only on Tl, T2, and ~, such
that there exists an element a E Rk satisfying:

(i) IUi(a)1 $ ~ for all 2 $ i $ Tl + T2;

.. {IUl(a)1 $ T if Tl > 0,
(11) IRe(ul(a»1 $ ~ and IIm(ul(a»1 $ T if Tl = O.



§C.3. Appendix: Finiteness Theorems in Algebraic Number Theory 277

We now show that k = Q(a). First we note that

1 ~ IN8(a)! ~ II lal1l ~ 1001(a)l·
vEM;:C

It follows that 0"1 (a) is different from all of the other conjugates O"i (a)
except (perhaps) from iTl (a) if T1 = 0 and 0"1 (a) is real. But in the latter
case,

1
IIm(0"1(a))/ ~ 10"1(a)I-1 Re(0"1 (a)) I~ 2'

so O"I(a) cannot be real. Hence 0"1 (a) =F O"i(a) for all i ~ 2.
Now suppose that O"i(a) = O"j(a) for some i,j. Then the map O"k =

O"lO";lO"j satisfies O"l(a) = O"k(a), so we have O"k = 0"1, and hence O"i = O"j.
This proves that the images O"i(a) for 1 ~ i ~ n are distinct, which implies
that [Q(a) :Q] ~ n, and hence that k = Q(a).

Now consider the coefficients of the minimal polynomial of a over
Z. These coefficients are symmetric functions in the O"i(a)'s, and thus
their size is bounded by a function of T1, T2, and Ll. (Remember that T
is chosen in terms of these three quantities.) Thus there are only finitely
many possibilities for the coefficients of the minimal polynomial of a, which
completes the proof that there are only finitely many fields with a given
discriminant. 0

We now introduce another lattice associated to a number field. Let 8
be a finite set of nonarchimedean places of k with s = #8. We set

T=8uMk
We define a map

and t = #T = Tl + T2 + s.

and we denote by <P the restriction of this map to Rk,s. (Recall that the
group of 8-units Ric s is the group of elements of k* such that lalv = 1
for all v f/:. T.) The' map <P is often called the regulatoT map (or the 8
regulatoT map if 8 is not empty). It is also sometimes called the logarithmic
embedding, although as the next result shows, <P actually gives only an
embedding of Rk,s/lLk (i.e., modulo torsion).

Lemma C.3.9. Let <P : Rk,S --+ ]Rt be the 8-regulator map described
above.
(a) The kernel of<P is lLk, the group of roots of unity in k*.
(b) The image of <P is a discrete subgroup contained in the hyperplane
LVETxv = O.

PROOF. An element a of Ric s is in the kernel of <P if and only if lalv = 1
for all places v E M k • By Kr~necker's theorem (B.2.3.1), this is equivalent
to saying that a is a root of unity, which proves (a).
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Next we observe that if <I>(o:) is confined to a bounded set, then the
height of 0: is bounded, and so Theorem B.2.3 tells us that 0: may take
on only finitely many values. This shows that the image <I>(Rk,s) is dis
crete. Finally, the product formula implies that every 0: E Rk,S' satis
fies EVET log 1I00llv = 0, which proves that <I>(Ric,s) lies in the hyperplane
EVETxv = O. 0

Notice that Lemma C.3.9 and the basic fact that a discrete subgroup
of lRn is free of rank at most n already tells us that

Ric,s = J.Lk x reS) with r(S) ~ r1 + r2 - 1+ s.
This inequality is actually all that we need for our applications, but for the
sake of completeness we will prove that r(S) = r1 +r2-1+s in the case that
S = 0. We leave the general case, which is proven similarly, as an exercise
for the reader. We also note that by definition, the regulator of the number
field k is the volume of the lattice <I>(Ric) in the (r1 + r2 - I)-dimensional
hyperplane in which it lies.
PROOF (of Dirichlet's unit theorem (C.3.3) when S = 0) Choose anyele
ment

U= (UV)VEMk' E E oo satisfying N(u):= II Iuvl nv = 1.
vEMk'

Then multiplication by U is a linear transformation of Eoo with determi
nant of absolute value one. It follows that the lattice uu(Rk ) has the
same volume as the lattice U(Rk), namely 2-r2 y'K (C.3.4). For any con
stants t1, ... , trl +r2 such that T := t1 ... trl t~,+1 ... t~,+r2 is large enough,
Minkowski's theorem (B.5.4) gives a nonzero element 0: E Rk such that
the element x = uu(o:) satisfies IXvl ~ tv for all v E MI:". We deduce
that IN6(0:)1 = N(x) ~ T. By Lemma C.3.6, there exists a fiI!..!!e--set
O:l, ... ,O:N E Rk such that all 0: E R k with IN6(0:)! ~ T may be writ
ten 0: = O:iC for some 1 ~ i ~ N and C E Ric. We may therefore write
x = UU(O:ic), or equivalently, U = xU(o:i1)u(C1). Taking the logarithms
of the absolute values, we obtain

log IUvl = log Ixvl -log 100ilv -log Iclv.

Note that every point in the hyperplane EVET XV = 0 in lRr,+r2 can be
represented by an element (log Iuv I) vEMk" while the elements

(log Ixvl -log 100ilv)VEMk'

lie in a bounded set. (It is clear that the lxvi's are bounded above, and their
product is bounded below, so they are also individually bounded below.)
This proves that the hyperplane is the union of translates of a bounded
set by elements of <I>(Ric). Therefore <I>(Rk) is a lattice (i.e., has maximal
rank). 0
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We return to the proof of the weak Mordell-Weil theorem and analyze it in a
more abstract setting, using Galois cohomology. For the relevant definitions
and properties of HI, cocycles, and coboundaries, see Section e.5 below.
Let G = Gk be the Galois group Gal(kjk), and let A be an abelian va

riety defined over k. For each x E A(k), choose a point y E A(k) satisfying
my = x and define as before the map

t(· ,y): G ---+ Am'

We do not assume, as we did in Section e.l, that G acts trivially on Am,
so the formula of Proposition e.l.l becomes

t(aa', y) = t(a', yt + t(lT, y).

In other words, the map IT f--+ t(a, y) is a cocycle G - Am.
Now suppose that we choose some other y' such that my' = x. Then

the point b := y' - y is in Am' and

t(lT, y') - t(a, y) = (y,eT _ y') _ (yeT _ y) = (y' _ y)eT _ (y' _ y) = beT - b.

Thus the difference t( . ,y') - t( . ,y') is a coboundary, so the cohomology
class of t( . , y) in HI (G, Am) depends only on x, independent of the choice
of y. In other words, we get a well-defined map 8 : A(k) - HI(G, Am).
The next proposition gives a slight generalization of this construction.

Proposition C.4.1. Let a : A - B be an isogeny of two abelian varieties
defined over k. Then the short exact sequence

0---+ ker(a)~ A(k)~ B(k) ---+ 0

induces a long exact sequence of cohomology groups

0---+ ker(a)(k)~ A(k)~ B(k)

~ HI(G,ker(a» ~ HI(G,A(k)) ~ HI(G,B(k».

The connecting homomorphism 8 is defined as follows: Let x E B(k), and
select y E A(k) such that a(y) = x. Then define 8(x) to be the cohomology
class associated to the cocycle

8(x) : G ---+ ker(a), 8(x)(a) = yeT _ y.

The above long exact sequence gives rise to the following fundamental
short exact sequence,

0---+ B(k)jaA(k)~ HI(G,ker(a» ---+ HI(G,A(k»)[a] ---+ 0,
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where Hl(G,A(k))[a] denotes the kernel of the map a: Hl(G,A(k)) ---+

Hl(G, B(k)).

PROOF. The existence of the long exact sequence comes from basic prop
erties of group cohomology, and the definition of 0 follows from the way
that the long exact sequence in group cohomology is constructed from a
short exact sequence ofG-modules. The reader who is unfamiliar with this
material should consult Section C.5 and, for further details, a book such
as of Hilton-Stammbach [1]. 0

It would be nice to use the injection 0 : B(k) / aA(k) '-+ H l (Gk, ker(a))
to prove directly the finiteness of B(k)/aA(k), but unfortunately the group
H l (Gk, ker(a)) may be infinite. For example, this is the case when k is a
number field. Thus we must somehow cut down the size of Hl(Gk, ker(a)).
One method to do this is via localization at primes.
Indeed, for each place v of k, let kv be the completion of k at v and let

Gv := Gal(kv/kv) be the absolute Galois group of kv. We may consider Gv
to be a subgroup ofGk, and hence we obtain restriction maps Hl(Gk' . ) ---+
Hl(Gv, . ). There is a local exact sequence analogous to the exact sequence
in Proposition C.3.1, and the global exact sequence maps to the local exact
sequence via restriction, yielding the following commutative diagram.

o ---+ B(k)/aA(k)

1
o ---+ B(kv)jaA(kv)

~ Hl(Gk,ker(a)) - Hl(Gk,A(k))[a] ---+ 0

1 1
~ Hl(Gv,ker(a)) - Hl(Gv, A(kv))[a] ---+ 0

Now observe that if x E B(k), then the restriction ov(x) will be in the
kernel of the right-hand map. Turning this observation around, we see
that each place v gives us some information about the image of 0 in
H 1(Gk, ker(a)). This remark motivates the definition of the following two
groups. We will see later that these groups also admit a very interesting
arithmetic/geometric interpretation.

Definition. Let a : A ---+ B be an isogeny of abelian varieties defined over
a number field k. The Selmer group of A with respect to a is the group

v

The Tate-Shafarevich group of A is the group

v

In both formulas, the product is taken over all places v of k.
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From the exact sequence of Proposition C.4.1 and these definitions,
we readily deduce the following important fundamental sequence:

0---. B(k)jo:A(k) ---. see(a) (Ajk) ---. III(Ajk)[o:] ---. O.

We claim that the Selmer group See(a)(Ajk) is finite, which will certainly
also imply the finiteness of B(k)jo:A(k) and III(Ajk)[o:]. We will prove the
finiteness of see(et) (Ajk) using a ramification argument very similar to the
one that we already used to prove the weak Mordell-Weil theorem.

Before proving the finiteness of the Selmer group, we give a geomet
ric interpretation of the groups See(et)(Ajk) and III(Ajk). An element
of H 1 (Gk ,A(k)) corresponds to a principal homogeneous space. (See the
next section for the definition, and especially Proposition C.5.3 for the cor
respondence between cohomology classes and homogeneous spaces.) The
cohomology class is trivial if and only if the corresponding homogeneous
space has a rational point. Thus we see that the homogeneous spaces corre
sponding to elements of the Selmer group See(et)(Ajk) possess kv-points for
every place v of k. Similarly, nontrivial elements of the Tate--Shafarevich
group llI(Ajk) correspond to homogeneous spaces that have kv rational
points for every place v, yet nevertheless have no k-rational points. It
is far from obvious that there can exist any such spaces for which the
Hasse principle fails. An example is given in Exercise C.I5. (See Silver
man [1, Chapter X, Proposition 6.5] for some additional examples.) The
existence of nontrivial elements of III(Ajk) accounts for the ineffectivity of
the Mordell-Weil theorem.
As we will now see, not only is the Selmer group See(et)(Ajk) finite,

but it is also effectively computable (at least in principle). This is true
because the question ofwhether a given variety has rational points for every
completion kv is computable in finite time by combining Hensel's lemma
(see Exercise C.g) with estimates for the number of points on varieties over
finite fields.
Thus the above exact sequence provides us with a finite collection

of principal homogeneous spaces, each of which has kv-rational points for
all places v, and the only task remaining is to determine which of these
homogeneous spaces have at least one k-rational point. Unfortunately,
no algorithm is known that is guaranteed to determine whether or not a
specific homogeneous space possesses a k-rational point. This is true even
for curves of genus 1. (See, for example, the discussion in Tate [2].)
Showing that the Selmer group is finite amounts to proving the weak

Mordell-Weil theorem and is done by using essentially the same ramifica
tion argument. First we must define what it means for a cohomology class
to be unramified.

Definition. Let v be a place of k, and let Iv C G k be an inertia for v.
A cohomology class c/> E H 1(Gk ,M) is unmmijied at v if its restriction to
H 1(Iv , M) is trivial. (Note that Iv is defined only up to conjugation, but
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the triviality or nontriviality of the restriction of ¢ is independent of the
choice of Iv.)

Notation. Let M be a Gk-module, and let S be a finite set of places
of k. We denote by H1(Gk,M) the subgroup of H1(Gk,M) consisting of
cohomology classes that are unramified at all places not in S.

Proposition C.4.2. (a) Let M be a finite Gk-module, and let S be a
finite set oE places oE k. Then the group H1(Gk, M) oE cohomology classes
unrarnified outside S is finite.
(b) Let a : A -+ B be an isogeny oE abelian varieties over k, let S be a
finite set oE places oE k containing:

(i) all archimedean places oE k;
(ii) all places oE bad reduction oE A and B (in Eact, one can show

that A and B have bad reduction at exactly the same places);
(iii) all places dividing deg(a).

Then the Selmer group Sei(ct) (AIk) is contained in H1(Gk, ker(a)). In
particular, the Selmer group iE finite.

PROOF. (a) The fact that Gk acts continuously on the finite set M means
that it contains an open subgroup that acts trivially. Hence there is a
finite Galois extension Klk such that GK acts trivially on M. Now the
inflation-restriction sequence

o --+ H1(GK/k,MGK/k) ~ H1(Gk,M) ~ H1(GK,M)

shows that it suffices to prove the result for K. Thus replacing k by K, we
are reduced to the case that Gk acts trivially on M.
Let m be an exponent for the group M, that is, every element of M

is killed by m. Then elements of

correspond to finite abelian extensions of k whose Galois group has expo
nent mj and elements of H1(Gk, M) correspond to finite abelian exten
sions of k of exponent m and unramified outside of S. Hence the finiteness
of H1(Gk' M) follows from the fact, proven above as Corollary C.1.8, that
the maximal abelian extension of exponent m and unramified outside S is
finite.
(b) Let ¢ E Sei(ct)(Alk) and let v be a finite place not in S. Choose a
point y E A(kv ) such that ¢(a) = a(y) - y for a E Gv . Now for a in the
inertia group Iv we compute the reduction modulo v:

a(y) - y = a(y) - ii = O.

But a(y) - y is a torsion point (it is in ker(a)), and by the conditions
on S, the place v is a finite place of good reduction not dividing deg(a),
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so Theorem C.1.4, proven in Section C.2, tells us that u(y) - y = O. This
proves that 4>(u) = 0 for all u E Iv, so 4> is unramified at v. 0

Notice that the bound for the rank of A(k) obtained in Theorem C.1.9
is actually a bound for the m-rank of H1(Gk, Am). Thus the present de
scent is a refinement of our earlier result. For further refinements of the de
scent, see for example Mazur [1]. The proof of the weak Mordell-Weil the
orem shows that for any integer n ~ 1, the n-torsion subgroup III(A/k)[n]
is finite. Conjecturally, a far stronger result holds.

Conjecture C.4.3. Let A/k be an abelian variety defined over a number
field. Then III(A/k) is finite.

This conjecture is known to be true only for certain special elliptic
curves and abelian varieties related to modular curves. Indeed, until the
mid-1980s, it was not known to be true for even a single example! The
first cases proven were for certain complex multiplication elliptic curves by
Rubin [1] and certain modular elliptic curves by Kolyvagin [1].

C.5. Appendix: Galois Cohomology and Homogeneous Spaces

In order to motivate the technical definition of the cohomology group H l ,

we discuss first, informally, the following problem:

Classification of Twists. Let Xo be an an algebra
geometric structure (an algebra, a variety, a quadratic
form, etc.) defined over a field k. Classify the set of
k-isomorphism classes of objects X defined over k with
the property that X is isomorphic to Xo over k. The
objects X are called twists 01Xo over k.

For example, if Xo/k is a curve, then the twists of Xo are curves
defined over k that are isomorphic to Xo over k. A specific example is
provided by the plane cubic curves

Xa,b,c : ax3+ by3 + cz3 = 0

for a, b, c E k*. These curves are all twists of one another, since the change
of variables [x,y,z] ~ [x/al/3,y/bl/3,z/cl/3] shows that they are all iso
morphic (over k) to Xl,l,l. However, it is a much more difficult question
to determine which of the Xa,b,c'S are isomorphic over k, even for k = Q.
Returning now to the general case, let X be a twist of Xo, and fix a

k-isomorphism 1 : X ~ Xo. Then for each u E G = Gal(k/k) we obtain
an automorphism of Xo via the composition

I-I r
Xo ~ X ~ Xo.
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Thus we obtain a map

</J : G~ Aut(Xo),

c. Rational Points on Abelian Varieties

The map ¢ is not a homomorphism. A simple calculation shows that it
satisfies the relation

The map is thus a sort of "twisted homomorphism," that is, a homomor
phism twisted by the action of G. Such a map is also called a l-cocycle
from G to Aut(Xo).
In most situations, the l-cocycle </J will have one other very important

property, namely there will exist a finite Galois extension K j k such that ¢
is trivial on the subgroup Gal(kjK). This is true because typical algebra
geometric objects and maps (such as varieties and rational maps between
them) are determined by a finite number of polynomials that have only
a finite number of coefficients. A l-cocycle with this property is said to
be continuous, because it is continuous with respect to the Krull topology
on G and the discrete topology on Aut(Xo).
We also want to know to what extent the map ¢ depends on the choice

of k-isomorphism I. Suppose that II :X ---. Xo is another k-isomorphism,
and define similarly ¢1 (£1) := f'{Ill. Then

Ud-1)<7¢(u) = Cfd-1)<7(rl-1)

= If1-1 = Cff I l 1)Ud-1) = ¢1(u)Ud-1).

So if we let a := Id-1 E Aut(Xo), then </J and ¢1 are related by the formula

for all £1 E G.

Thus a twist of Xo leads to a l-cocycle ¢ in the set

{¢ :G ---. Aut(Xo) I¢(UT) = ¢(ur</J(T)} ,

and the l-cocycle ¢ is well-defined up to the equivalence relation </J 'V </J1 if
there exists an a E Aut(Xo) such that a<7</J(u) = ¢l(u)a.
Let H denote the set of equivalence classes of (continuous) l-cocycles </J

as above. We have just seen that each twist of Xo gives rise to a well
defined element of H. Suppose now that X and X' are twists of Xo that
give the same element of H. This means that if we fix k-isomorphisms
I : X ---. Xo and /' : X' ---. Xo, then there is an element a E Aut(Xo)
satisfying a<7</J(u) = </J'(u)a, where ¢(u) = rl-1 and </J'(U) = /,<7/,-1.
Substituting and rearranging yields

for all £1 E G.
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In other words, the isomorphism f'-laf : X --+ X' is defined over k, so X
and X' are actually the same twist of Xo. This completely formal argument
shows that the map from the set of twists of Xo to the set H is injective.
In order to show that this map is bijective, we must show that ev

ery element of H corresponds to an actual twist of Xo. This cannot be
proven formally, and indeed it requires using additional structural proper
ties of Xo. The basic idea is to take a ¢J representing an element of H, use
it to construct an object X¢, and show that X¢ is defined over k and is
k-isomorphic to Xo.
We illustrate this idea for a quasi-projective variety Xo/k. Let ¢J : G --+

Aut(Xo) be a continuous l-cocycle representing an element of H. Choose
a finite Galois extension K/k such that ¢ is trivial on GK. This means
that ¢ factors through G K / k := Gal(K/k). We let GK / k act on Xo Xk K
by twisting the natural action via ¢. Then the quotient (Xo Xk K)/GK / k is
the desired object X¢, assuming of course that this quotient object exists in
the desired category. We will explain how to construct this quotient in the
case that Xo is affine; the general case then follows by a gluing argument.
So suppose that Xo/k is an affine variety, say Xo = SpecAo. Thus Ao

is a k-algebra, and we let A = Ao I8lk K be the K-algebra obtained by
extending scalars from k to K. Note that automorphisms of Xo defined
over K are in one-to-one correspondence with K-algebra automorphisms
of A. In particular, each automorphism ¢J(a) E Aut(Xo) corresponds to a
K-algebra automorphism ¢(a)* : A --+ A.
We define the ring A¢ to be equal to A as an abstract ring, but we

twist the action of GK / k on A¢ according to the following formula:

a E GK / k acts on 0: E A¢ via a· 0: := ¢J(a)*(o:U).

In this definition, a·o: denotes the action of a on 0: considered as an element
of A¢, while o:U denotes the action of a on 0: considered as an element of A.

Now let B := A~K/k be the subalgebra of A¢ fixed, via this action,
by every element of GK/k' One checks that B is an integral k-algebra,
and Hilbert's theorem (cf. Proposition 3.1, Section A.8) tells us that B
is finitely generated. Hence X¢ = Spec(B) is an affine k-variety. Since
B = An K(XO)GK / k and K I8l k(Xo) = K(Xo), we see that B I8lk K ~ A;
hence X¢ is indeed isomorphic to Xo over K. Finally, one checks from the
definition that the K-isomorphism X ~ Xo is associated to the l-cocycle ¢J.
We hope that the previous discussion has sufficiently motivated the

following definitions.

Definition. Let G be a (finite or topological) group acting on another (not
necessarily abelian) group A. Denote the action of G on A by (a, a) ~ aU.
The oth cohomology group ofG acting on A is the group
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of elements of A that are fixed by every element of G.
A map </> : G -+ A is called a 1-cocycle from G to A if it satisfies

</>(ar) = </>(at</>(r) for all a, rEG.

Two 1-cocycles </>, </>' are said to be cohomologous if there exists an a E A
such that

for all a E G.

This is an equivalence relation, and the set of cohomology classes of 1
cocycles is denoted by HI(G, A) and is called the 1st cohomology set of G
acting on A. If G is a topological group, for example the Galois group of
an infinite extension, we will add the requirement that the cocycles should
be continuous when A is given the discrete topology. For example, if A is
finite, this amounts to requiring that each 1-cocycle factor through a finite
quotient group of G. (Note that different cocycles may factor through
different finite quotients.)

Example C.S.I. We can rephrase what we proved earlier in this section
as follows: Let Xo be a quasi-projective variety defined over k. Then there
is a natural bijection between the k-twists of Xo and the cohomology set
HI (Gal(kjk), Aut(Xo)). (Recall that a k-twist of Xo is a k-isomorphism
class of varieties Xjk such that X is k-isomorphic to Xo.)

The cohomology set HI(G, A) is an example of a pointed set because
it has a distinguished element 0, i.e., the trivial cocycle. If the group A is
abelian, then it turns out that the group law on A induces a well-defined
group law on HI(G, A), so in this situation H1(G, A) becomes a cohomol
ogy group, rather than merely a pointed set.
More precisely, if A is abelian, and if </>, </>' : G -+ A are 1-cocycles, we

define their sum by

(</> + </>') (a) = </>(a) + </>' (a).

It is clear from the commutativity of A that </>+</>' is again a cocycle, so the
set of cocycles forms a group, often denoted by ZI(G, A). We next define
the group of coboundaries, denoted by B I (G, A), to be the set of maps of
the form

6: G ---+ A, 6(a) = aU - a,

where a is any element ofA. One easily checks that the sum of two cobound
aries is a coboundary and that every coboundary is a cocycle, so BI(G,A)
is a subgroup of ZI(G,A). The cohomology group H1(G,A) is then the
quotient group

The next proposition summarizes some of the basic properties of group
cohomology, at least for H O and HI.
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Proposition C.5.2. Let G be a group, and let A and A' be groups on
which G acts.
(1) (Functoriality) Let f : A --+ A' be a G-homomorphism, that is, a
homomorphism that commutes with the action of G. Then f induces a
natural map

[4>]~ [104>].

If A and A' are abelian, this map is a homomorphism.
Next let F : G' --+ G be a homomorphism. Then G' acts on A via F,

and this induces a natural map

[4>]~ [Fo<j>].

If A is abelian, this map is a homomorphism.
(2) (Inflation-restriction sequence) Let H be a subgroup of G. Then the
map Hl(G,A) --+ H 1(H,A) from (1) is called the restriction map. If
further H is a normal subgroup ofG, then G/H acts on A H. In this case,
the projection map 7r : G --+ G/ H and the inclusion A H <--+ A induce the
inflation map defined by the formula

[4>]~ [4> 0 7r].

The following sequence, called the inflation-restriction sequence, is exact:

o ~ H 1(G/H,AH) ~ Hl(G,A) ~ Hl(H, A).

(3) (Long exact sequence) Let

O~A~B~C~O

be a short exact sequence, where f and 9 are G-homomorphisms. Then
there is a canonical long exact sequence

o~ HO(G,A) ~ HO(G,B) ~ HO(G,C)

~ H 1(G,A) ~ H 1(G,B) ~ H 1(G,C),

where recall that HO(G,A) = AG, and similarly for Band C. The con
necting homomorphism 8 is defined as follows: Let c E HO (G, C). Choose
some b E B such that g(b) = c. Then for any (7 E G, we have

g(beT
- b) = g(b)C7 - g(b) = ceT

- C = 0 since c E CG.

Thus bC7 - b is in ker(g) = Image(f), and the injectivity of f means that
we obtain a well-defined element f-l(bC7 - b) EA. The map

G~A,
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is a cocycle representing the cohomology class of 8(c).
If A, B, and C are abelian, the long exact sequence gives rise to the

following useful short exact sequence:

We will not prove these basic facts about group cohomology. See, for
example, Atiyah-Wall [1], Serre [4, Chapitre VII, VIII], or Silverman [1,
Appendix B].

Example C.5.2.1. (Kummer sequence) Let Gk = Gal(klk) and let JLTn C
k* be the group of mth-roots of unity. The short exact sequence of Gk 

modules

induces the long exact sequence

°~ JLTn(k) ~ k* ~ k* ~ H1(Gk,JLTn) ~ H1(Gk,k*).

Hilbert's theorem 90 says that the last group H1(Gk' k*) is trivial. (See
Section A.2, Exercise 6, or Serre [1, Chapter 10, Proposition 2] for a proof of
Hilbert's theorem 90.) This means that 8 is an isomorphism, the Kummer
isomorphism

In particular, if JLTn C k*, then G acts trivially on JLTn' so k* Ik*Tn ~

Hom(G,JLTn)' Notice that the group Hom(G,JLTn) classifies abelian exten
sions of k of exponent m via the association f : G - JLTn goes to kker(f).
Further, the isomorphism 8 : k* Ik*Tn - Hom(G, JLTn) from above is given
by

8(a)(a) = aCTla, where a satisfies a Tn = a.

Hence if JLTn C k* and if K I k is an abelian extension of k of exponent m,
then there always exists an element a E k such that K = k ( y'a).

We now restrict our attention to the case of an abelian variety A
defined over k. The group of automorphisms Aut(A) of A, considered as
an abstract group with no further structure, is nonabelian. Within Aut(A)
we can identify two important subgroups:

(i) The subgroup of translations, which we identify with A(k).
(ii) The subgroup of automorphisms that fix the identity element 0,
which we denote by Aut(A,O).

It is not hard to show that Aut(A) is the semidirect product A(k) Xl

Aut(A,O) (d. Exercise A.4.15). We remark that the group Aut(A,O) al
ways contains at least the two elements [±1]. If A is an elliptic curve,
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then Aut(A, 0) is finite, but it may be infinite for higher-dimensional abelian
varieties.
The group H1(Gk , A(k)) appears naturally in the cohomological proof

of the Mordel1-Weil theorem, which suggests that we should look at the
twists of A corresponding to the elements in this subset ofHl(Gk , Aut(A)).
It turns out these twists have a simple geometric description as homoge
neous spaces.

Definition. Let A be an abelian variety defined over k. A principal ho
mogeneous space of AIk is a variety XIk together with a simple transitive
action of A on X also defined over k.

In other words, there is a k-morphism

p.:XxA-+X

with the following properties:

(i) p.(x,O) = x for all x EX.
(li) p.(x, a + b) = p.(p.(x, a), b) for all x E X and all a, bEA.
(iii) For all x E A, the map a 1--+ p.(x, a) is an isomorphism A -+ X (defined

over k(x)).
In particular, (iii) tells us that X is a twist of A, since it is isomorphic to A
over k. Further, it is clear that X is isomorphic to A over k if and only if
X(k) :f; 0. Thus if x E X(k), then the map in (iii) gives a k-isomorphism.
Conversely, if X is k-isomorphic to A, then this isomorphism maps the
point 0 E A(k) to a k-rational point of X.
Two homogeneous spaces (X,p.) and (X',p.') for Alk are isomorphic

(as homog(lneous spaces) if there is a k-isomorphism i : X -+ X' such that
the following diagram commutes:

XxA ~ X

liXl Ii
X'xA L x'

In other words, the isomorphism i : X -+ X' is required to commute with
the action of A on X and X'. Note that it is possible for a twist Xlk
of AIk to have several nonisomorphic structures as a homogeneous space
of A. (See, e.g., Silverman [1, Exercise 10.4].)
The fact that the action p. is principal allows us to define a "subtraction

map" v : X xX -+ A as follows: vex, y) is the unique point ofAlk satisfying

p.(y,v(x,y)) = x.

The existence and uniqueness of the point vex, y) follows from property (iii).
An alternative definition of v is to fix any point Xo EX, let (J : A -+ X be
the isomorphism p.(xo, . ) given by (iii), and then define vex, y) = (J-l(X) 
(J-l(y). We leave it to the reader to verify that v is a well-defined k
morphism.
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Proposition C.5.3. There is a natural bijection between (k-isomorphism
classes of) principal homogeneous spaces of A/k and H 1 (Gk ,A(k)). This
association is given as follows: Let X be a principal homogeneous space
ofA/k, choose any point x E X, and let v: X X X -+ A be the subtraction
map defined above. Then

[X] 1-----+ [er 1-+ v(er(x), x)].

PROOF. See Silverman [1, Theorem 3.6]' where the proof given for ellip
tic curves applies without change to abelian varieties. We also note that
choosing a different point in X merely changes the cocycle by a cobound
ary. Thus if x' EX, then the difference of the cocycles corresponding to x
and x' is the coboundary

v(er(x'),x') - v(er(x),x) = er(v(x',x)) - v(x',x).

o
Proposition C.5.3 tells us the somewhat surprising fact that the set of

principal homogeneous spaces of an abelian variety A has a natural group
structure. This group is called the Weil-Chatelet group of A/k and is
denoted byWC(A/k). The group law onWC(A/k) can be (and historically
was first) defined geometrically. This geometric construction is described
in Exercise C.17.

EXERCISES

C.l. Let G be an abelian group, let m ~ 2 an integer such that the quotient
G fmG is finite, and let Xl, ... ,Xs E G be a complete set of coset represen
tatives for G/mG. Suppose that there are constants A, B, C, D ~ 0 with
A> B (depending on G, m, and Xl, ... ,xs ) and a function h: G --+ IR with
the property that

h(mx) ~ A(h(x) - C) and h(x + Xi) :::; Bh(x) + D

for all X E G and 1 :::; i :::; s. Prove that the set

generates the group G.

C.2. Let A and B be abelian varieties defined over a number field k, let v be a
place of k at which A and B both have good reduction, and let Av and Bv

denote the reductions. Show that

Hom(A, B) ---+ Hom(Av , Bv )

is injective. (Hint. Use Theorem C.l.4 to show that if ep ::! 0, then ci> cannot
vanish on all torsion points.)
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C.3. Give a bound, or even better compute exactly, the quantity card(Ator(Q))
for the following elliptic curves A/Q:
(a) y2 = x 3

- 1.
(b) y2 = x 3 - 4x.
(c) y2 =x3 +4x.
(d) y2 + 17xy -12Oy = x 3

- 60x2
•

C.4. (Weil-style method of computing the cardinality of Jac(C)(IFp )) Let C be
a curve of genus 9 defined over IFp , and let J = Jac(C) be its Jacobian
variety. For each integer m ~ 1, let

and Nm(J) =cardJ(IFpm).

We know from Exercise A.B.ll that there exist algebraic integers ai such
that

Nm(C) = pm + 1 - (a;" + ... + a~) for all m ~ 1.

Furthermore, the polynomial P(T) := I1~~1(1 - aiT) has integer coeffi
cients and leading coefficient rfI, and it satisfies P(T) = rflT2

g P(l/pT).
Then

2g

N1(J) =cardJ(IFp) = P(l) = II(1-ai ).

i=l

Prove that the first 9 cardinalities N1(C), N2 (C), ... , N g (C) for C deter
mine the cardinality N1(J). In particular, prove that when 9 = 2,

Find a similar formula for 9 = 3. (Hint. Use Newton's formulas relating
elementary symmetric polynomials to sums of powers.)

C.5. Let A be the Jacobian of the curve y2 = x 5
- x. Compute the torsion

subgroup Ators(Q). (Hint. Use Exercise A.B.1 to determine the rational 2
torsion points in A(Q). Then use the previous exercise and reduce modulo 3
and modulo 5 to prove that Ators(Q) is generated by its 2-torsion and
possibly a single rational 3-torsion point. Finally, determine whether or
not there is such a 3-torsion point.)

C.6. Let p be an odd prime, let T and 8 be integers satisfying 0 < T, 8, T + 8 < p,
and let C be the smooth projective curve birational to yP = xr(x _1)8. In
this exercise you will prove that Jac(C)(Qhor is isomorphic to either 'Z./2p'Z.
or Z/pZ.
(a) Show that the quasi-affine curve defined by

is smooth, and hence that U is an open subset of C. Prove that the
complement C ....... U = {Po, H,Poo } consists of exactly three points, where
Po, PI, Poe are the points above (0,0), (1,0), and 00, respectively. Prove
that the genus 9 of C is equal to (p - 1)/2.
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(b) Show that
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div(x) = p(Po) - p(Poo ),

div(x - 1) = p(H) - p(Poo ),

div(y) = r(Po) + s(H) - (r + s)(Poo ).

(c) Suppose that p does not divide q - 1. Prove that card(C(lFq»= q + 1.
Use Exercise C.4 to deduce that if £ is a primitive root modulo p, then
card(Jac(C)(lFt») = £9 + 1.
(d) Prove that Jac(C)(Q)tor is isomorphic to either Z/2pZ or Z/pZ. (Hint.
Use Dirichlet's theorem on primes in arithmetic progressions, which says
that if gcd(a, b) = 1, then there are infinitely many primes of the form
an +b.)
(e) Prove that in fact Jac(C)(Qhor ~ Z/pZ except in the one case that
p = 7 and r3 == S3 == -(r + S)3 (mod 7). (This is more difficult. See
Gross-Rohrlich [1] for details).

C.7. In this exercise you will prove the ChevalIey-Weil theorem.

Chevalley-Weil Theorem. Let ¢ : X -+ Y be an unramified covering
of normal projective varieties defined over a number field k. Then there
exists a finite extension K/k such that ¢-l(Y(k») C X(K).

Before beginning, we make a definition. An Mk-constant is a map

with the properties (i) 'Y(v) > 0 for all v E Mk and (ii) 'Y(v) = 1 for all but
finitely many v E Mk. (Note that the Mk-constants defined in Section B.B
are the logarithms of these M k-constants.)
(a) Let U be an affine variety with coordinate ring k[U] = k[/I, ... ,1m].
For each place v of k, let

Uv = {x E U(k) Iv(li(x») ~ 0 for all 1 ~ i ~ m}.

Informally, we say that Uv is the set of v-integral points of U. (Of course,
Uv depends on the choice of the Ii's.) Let 9 E k[U]*. Prove that there are
Mk-constants 'Y1, 'Y2, depending on U, g, and /I; ... ,1m, such that

(b) Let U/ k and V/ k be affine varieties, and let ¢ : V -+ U be a mor
phism with the property that k[V] is a free k[U] module of rank n, and
further suppose that there exists a basis g1, ... , gn for k[V] / klU] whose
discriminant is a unit in k[U], Le.,

Prove that there exist Mk-constants 'Y3, 'Y4, depending on all of the above
data, such that
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(c) Now assume that U/k and V/k are normal affine varieties, and let
tjJ : V ---> U be an unramified covering. Let

U(Rk) := {x E U(k) IJi(X) E Rk for all 1 :5 i :5 m}

be the set of integral points of U. (Again, this set clearly depends on
the choice of coordinate functions /l, ... ,Jm on U.) Prove that there is a
constant Cl, depending on these data, such that

(Hint. Cover U with affine open subsets to which you can apply part (b).)
(d) Finally, suppose that U/k and V/k are normal projective varieties,
and again let tjJ : V ---> U be an unramified covering. Prove that there is a
constant C2, depending on k, U, V, and tjJ, such that

IDisc(k(tjJ-l(X»/k)I :5 C2 for all x E U(k).

(Hint. Cover U with affine open subsets to which you can apply part (c).)
(e) Under the hypotheses of (c), prove that there is a finite extension K/k
such that r1(U(Rk» C V(K). Similarly, under the hypotheses of (d),
prove that there is a finite extension K/k such that r1(U(k» C V(K).
(Hint. Use Hermite's theorem (C.3.2).)

C.B. Let k be a number field, and let K = k[.8J be a finite extension of k generated
by the algebraic integer .8. Let F(X) E Rk[XJ be the minimal polynomial
of p.
(a) Prove that the discriminant of the order Rk[.8) over Rk is equal to
±Nf(F' (.8».
(b) Prove that the only primes that can ramify in the extension K / k are
the primes dividing N f (F' (.8».
(c) Let a E k be an algebraic integer. Prove that the extension k( ~/k
is unramified except possibly at primes dividing mo.

C.9. Hensel's lemma and an application to torsion points.
Let k be a p-adic field, Le., the completion of a number field with respect
to a nonarchimedean place, let R be the ring of integers of k, and let 1r be
a uniformizer (a generator of the maximal ideal).
(a) Let P E R[X), and let Xo E R be an element satisfying

P(xo) == 0 (mod 1r) and p' (xo) 1= 0 (mod 1r).

Prove that there exists a unique x E R satisfying

P(x) = 0 and x == Xo (mod 1r).

This result is the classical version of Hensel's lemma. (Hint. Construct x
as the limit of a sequence Xo, Xl, X2, •• . satisfying

and X m == Xm-l (mod 1rm
).)
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(b) Generalize part (a) as follows. Let H, ... ,Pr E R[X1, ... ,Xs ] be a
collection of polynomials, and let Xo E R S be a point such that

and such that the matrix

( aPe )
ax'. (xo) (mod 11") .

J l$t:5r
l'Sj~s

has rank r. Prove that there exists a point x E R S satisfying

Pl(X) = ... = Pr(x) = 0 and x == Xo (mod 11").

(c) Let Y be a variety defined over k, and let Y be the reduction (mod 11").
Let P E Y(R/1I") be a nonsingular point of Y. Prove that there is a point
P E Y(k) whose reduction modulo 11" is equal to P. In particular, ifY(R/rr)
contains a nonsingular point, then Y(k) is nonempty.
(d) Let A be an abelian variety defined over k with good reduction at 11".
Let m be an integer not divisible by 11", and assume that all of the m
torsion of A is k-rational (i.e., Am C A(k)). Prove that the reduction map
Am ---> Am is onto and, using Theorem A.7.2.7, conclude that Am e=: Am.
(Note that Am denotes the m-torsion on A, not the reduction of the m
torsion of A.)
(e) Use the results of this exercise to give another proof of Theorem C.1.4.

C.IO. This exercise provides a scheme-theoretic proof of Theorem C.1.4. It
requires knowledge of some nontrivial scheme theory. Let m ~ 2, let A
be an abelian variety defined over a number field k, and let S be a finite
set of places of k containing all places of bad reduction of A and all places
dividing m.
(a) Show that there exists an abelian scheme A ---> Spec(Rs) with generic
fiber A/k. That is, A is a group scheme over Spec(Rs) such that the
fiber over every closed point of Spec(Rs) is an abelian variety, and such
that the fiber over the generic point is A/k. Prove further that there is
a Spec(Rs)-morphism [m] : A ---> A that induces multiplication-by-m on
every fiber.
(b) Let G be a subgroup of A[ml(k), and let v be a place of Rs. Prove
that the reduction map G ---> A v (kv ) is injective. (Hint. Use the fact that
if B is an abelian variety of dimension g, and if m is relatively prime to the
characteristic of the base field, then B[m] e=: (Z/mZ)29 .)

C.H. Inversion of formal power series.
This exercise sketches a proofof Lemma C.2.2. Let R denote a commutative
ring.
(a) Let F(T) = aT + ... E R[T] be a formal series with a E R*. Prove
then there exists a unique formal power series G(T) E R[T] satisfying

G(T) =a-IT + ... and F(G(T)) = G(F(T)) = T.
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(Hint. : Construct G as the limit of a sequence of polynomials Go, G I , ...

satisfying F(Gn(T» == T (mod Tn+!) and Gn+I(T) == Gn(T) (mod T n+!).
Notice the similarity to Hensel's lemma (Exercise C.9).)
(b) generalize (a) to the several-variables setting. Let F = (Fl , ... , Fm)
be an m-tuple of formal series in m variables, and write

Assume that the Jacobian determinant det(aij) is in R*. Prove that
there exists a unique m-tuple G = (G I , ... , Gm ) of formal series Gi E
R[TI , ... , Tm ] with no constant terms such that for all 1 ~ i,j ~ m,

and

C.12. For each of the following curves C/Q, let J = Jac(C) and find as accurate
a bound as you can for the Mordell-Wei! rank of J.
(a) Let C : y2 = x5

- x. Find bounds for rankJ(Q) and rankJ(Q(i».
(Hint. Use Theorem C.1.9 and show that rankJ(Q(i» = 2rankJ(Q).)
(b) Let C : y2 = x 6 -1, and let 1] = e21fi

/
3 be a primitive cube root of unity.

Find bounds for rankJ(Q) and rankJ(Q(1])). (Hint. Use Theorem C.1.9
and show that rankJ(Q(1])) = 2rankJ(Q).)
(c) Let C: y2 = x(x2

- l)(x2
- 4). Find a bound for rankJ(Q).

C.13. Let P(x) E Q[x] be a polynomial with simple roots, let p be a prime
number, and let K = Q(exp(21ri/p)). Let C be the smooth projective
curve birational to the affine curve yP = P(x), and let J = Jac(C). Prove
that rank(J(K» = (p-l)rankJ(Q).

C.14. Let p be a prime number, let n ~ 1 be an integer, and let

PP : GL(n,Z) ----+ GL(n,lFp )

be the reduction modulo p map. Prove that ker(pp) is trivial if p ~ 3, and
consists of the elements of order 2 in GL(n, Z) when p = 2.

C.15. Let C/Q be the smooth projective curve birational to the affine curve
2y 2 = x 4

- 17. This exercise sketches a proof that C(Q.,) :/= 0 for all
places v of Q, yet C(Q) = 0.
(a) Show that C has good reduction at all primes except 2 and 17, and
that C(lFp ) contains a nonsingular point for every prime p. Conclude that
C(Qp) :/= 0 for all primes p. (Hint. Use Weil's estimate (Exercise C.4) to
get points modulo p, and then Hensel's lemma (Exercise C.9) to lift them
to p-adic points.)
(b) Check that C(R) :/= 0.
(c) Show that the two points at infinity on C are not rational over Q.
(d) Suppose that C(Q) contained a point. Prove that there would then
exist coprime integers a, b, c satisfying a4

- 17b4 = 2c2
•

(e) Let a, b, c be as in (d). Prove that c is a square modulo 17. (Hint. For
odd p dividing c, use the fact that p is a square modulo 17 if and only if 17
is a square modulo p.) Conclude that 2 is a 4th power modulo 17. This
contradiction implies that C(Q) = 0.
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C.16. Let p be an odd prime, let r and 8 be integers satisfying 0 < r, s, r + S < p,
and let C = Cr,s be the smooth projective curve birational to vP = ur(1
uV that was studied in Exercise C.6. Recall that C has one point Qo lying
over (0,0) and one point Qoo at infinity. Also let F be the Fermat curve
F:xP+yP=1.

(a) Let <p be the map

<p: F --+ C,

Show that <p is a well-defined unramified Galois covering of degree p.

(b) Let ( = exp(2i1r/p), and define maps a(x,y) = «x,y) and l3(x,y) =
(x, (y). Note that a,13 E Aut(F). Let u ~ 1 be an integer satisfying ru ==
-8 (mod pl. Prove that a U j3 generates the Galois group ofthe covering <p.
(c) Suppose that r8' == r'8 (mod pl. Prove that Cr,s is isomorphic to Cr',s"
(Hint. Write (r', 8') = k(r, s) + p(i,j) and consider the map (u, v) f-+

(U,V
k u i (l-u)i.)

(d) Let D oo be the divisor at infinity on F (i.e., the sum of the p points on
xP+ yP = zP where z = 0). Prove that for any d ~ 1, the set of functions

is a basis of L(dDoo ).

(e) Let PI, ... , Pd E F, and let 'Y = a U j3 with d < u < p/d. Prove that a
divisor of the form

(

d p-l )

D = ~~(y~) -dDoo

cannot be principal unless all the Pi'S have one their coordinates equal to O.
(Hint. Suppose that D = div(f) with f = 2: a""nx""yn. Use the invariance
of D by 'Y to show that f 0 'Y = (k f for some k, and deduce that f is a
monomial in x,y.)

(f) Let TJ = e27ri / 6 be a primitive 6th root of unity. Let P = (TJ,ii) and
P = (ii, TJ), and verify that P, P E F.

(g) Let P, P be as in (f), and let Q = ¢>(P) and Q = ¢>(P) be their images
in C. Assume that either 3p/4 < s < p - 4 or 3 < 8 < p/4 - 1. Prove
that the divisor class of (Q) + (Q) - 2(Qoo) is a point of infinite order in
Jac(CI,.)(Q). (Hint. If it were a torsion point, Exercise C.6 would say that
the divisor class of 2(Q) + 2(Q) - 4(Qoo) must be a multiple of the class of
(Qo) - (Qoo). Show that this is not possible.)

(g) Assume that 2 < s < p - 2 and that s "I (p - 1)/2. Suppose fur
ther that Jac(C)(Qhor ;:< Z/pZ. (This is, in fact, true if p > 7.) Prove
that the divisor class of (Q) + (Q) - 2(Qoo) is a point of infinite order in
Jac(CI,.)(Q).
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C.17. Geometric Group Law on WC(A/k).
Let A be an abelian variety defined over a perfect field k, and let Yt/k
and Y2/k be two principal homogeneous spaces for A/k. Denote the action
of A on Yi by

Yi x A -----> Yi, (y,a) 1-+ Y + a.

We also recall that for any Yo E Yi(k), the map a 1-+ Yo + a is a k
isomorphism A ..::. Yi.
(a) Prove that there exists a homogeneous space Y3 /k for A/k and a k
morphism f :Y1 X Y2 ---+ Y3 satisfying

f(Yl + al,Y2 + a2) = f(YI,Y2) + al + a2

for all (Yl' Y2) E YI x Y2 and all al, a2 E A.

(b) Prove that Y3 is unique up to k-isomorphism of homogeneous spaces.
(c) Prove that Y3 represents the sum of Yl and Y2 as elements of the
cohomology group HI(Gk, A(k)) (see Proposition C.5.3). In other words,
the map ([Yd, [Y2]) ...... [Y3] on k-isomorphism classes of homogeneous spaces
coincides with the group law on HI(Gk,A(k)).

C.18. Let f(x) = n~~il (x - Qi) E k[x] be a polynomial with distinct roots, and
let C be the hyperelliptic curve birational to y 2 = f(x). Note that C has
a single point 00 at infinity. Let Pi = (Qi, 0) for 1 ~ i ~ 29 + 1, and let

W = {PI, P 2 , ... , P2g+l, oo}.

(The set W is the set of Weierstrass points of C.) Let

Div~(C) = {D = L ni(Qi) E Div(C) I deg(D) = 0 and Qi rt. w} .
In other words, Div~(C) is the set of divisors of degree 0 with support
disjoint from W. Finally, let J = Jac(C) , let L = k[T]/(J(T)), and let
A=L*/L*2.
(a) Define a map

cI> : Div~(C) -----> A,

Prove that if D, D' E Div~(C) are linearly equivalent, then cI>(D) = cI>(D').
(Hint. Use Weil's reciprocity law, Exercise AA.16.)
(b) Show that every divisor D E Div(C) ofdegree zero is linearly equivalent
to a divisor in Div~(C). Use this and (a) to show that cI> induces a well
defined homomorphism cI> : J(k) ---+ A.
(c) Prove that the kernel of cI> : J(k) ---+ A is equal to 2J(k).
(d) Prove that the image of cI> : J(k) ---+ A is contained in the kernel of the
norm map L * / L *2 ~ k* / k*2 .
(e) Assume now that k is a number field, and let S be a set of places con
taining the places over 2 and the places of bad reduction of J. Let A(2, S)
denote the subgroup of elements of A = L· / L·2 whose square roots gener
ate extensions of k that are unramified outside S. Prove that the image of
cI> : J(k) ---+ A is contained in A(2, S).
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C.19. Let C be a smooth projective model of the curve y2 = x(x - 2)(x 
3)(x - 4)(x - 5)(x - 7)(x -10). Use the previous exercise to show that the
points on Jac(C) corresponding to the divisor classes of (1,36) - (00) and
(6,24) - (00) are two independent points of infinite order. Conclude that
Jac(C)(Q) contains a subgroup isomorphic to (1./21.)6 X 1.2 . (In fact, one
can show that Jac(C)(Q) has rank exactly 2; see Schaefer [I].)



PART D

Diophantine Approximation and
Integral Points on Curves

He was a poet and hated the approximate.
R. M. RiIke, The Journal ofMy Other Self

The fundamental problem in the subject of Diophantine approximation is
the question of how closely an irrational number can be approximated by a
rational number. For example, if a E JR is any given real number, we may
ask how closely can one approximate a by a rational number p / q E Q?
The obvious answer is that the difference ICP/q) - al can be made as small
as desired by an appropriate choice of p/q. This is nothing more than the
assertion that Q is dense in JR. The problem is to show that if the difference
is small, then p and q must be large.

More precisely, let Q E JR be a given real number, and let e > 0 be a
given exponent. We ask whether or not the inequality

I !!.-al~~q qe

can have infinitely many solutions in rational numbers p/q E Q. For ex
ample, a theorem of Dirichlet says that the inequality

I!!.-al ~ ~q q2

always has infinitely many solutions, while a result of Liouville says that
if Q is an algebraic number of degree dover Q, and if e > d, then the
inequality

I!!. -al:5 ~q qe

has only finitely many solutions. We will prove these elementary results of
Dirichlet and Liouville in Section D.l.
In general, the approximation exponent of a real number a E JR is

defined to be the smallest number 7(a) with the property that for any
exponent e > r(a), the inequality

I !!.-al~~q qe
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has only finitely many solutions in rational numbers p/q E Q. Thus Dirich
let's theorem says that r(a) 2: 2 for every real number a, and Liouville's
theorem says that if a is an algebraic number of degree d, then r(a) $ d.
The exponent in Liouville's theorem for algebraic numbers of degree d

has been successively improved by a number of mathematicians, as indi
cated in the following brief table:

Liouville 1844 r(a) $ d
Thue 1909 r(a) $ !d+ 1
Siegel 1921 r(a) $ 2v'd

Gelfand, Dyson 1947 r(a) $ v'2d
Roth 1955 r(a) = 2

Thus Roth's result can be stated in the following way:

Roth's Theorem. For every algebraic number a and
every e > 0, the inequality

IE-al <_1q - q2+e:

has only finitely many rational solutions p/q E Q.

Equivalently, for every e > 0 there exists a constant C = C (a, e) > 0 such
that for all p/q E Q,

I
e- al > C(a,e).
q - q2+e:

Roth's theorem has been extended in various ways, such as allowing sev
eral (possibly nonarchimedean) absolute values and taking approximating
values from a number field K rather than from Q. Our main goal in
this chapter is to prove a general version of Roth's theorem. We will also
give two important Diophantine applications. We will show that the equa
tion u + v = 1 has only finitely many solutions in S-units of a number
field, and we will prove Siegel's theorem, which says that an affine piece of
a curve of genus at least one has only finitely many S-integer points.

D.l. Two Elementary Results on Diophantine Approximation

In this section we prove two elementary results that illustrate some of the
techniques used in the study ofDiophantine approximation. The first result
says that we can find rational numbers that are fairly close to a given real
number. It shows, in particular, that the exponent 2+e in Roth's theorem
is essentially best possible.
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Proposition D.l.l. (Dirichlet 1842) Let 0: E lR with 0: f/:. Q. Then there
are infinitely many rational numbers p/q E Q satisfying

I ~ -0:1 ~~.q q2

Remark D.l.l.l. The proof that we will give does not provide an efficient
method of constructing good approximations to a given real number. The
classical theory of continued fractions provides such a method (see Exer
cise D.18). A classical result of Hurwitz says that the 1/q2 in Dirichlet's
estimate (D.1.1) may be replaced by 1/.j5q2, and that this is best possible.
For further information, see Exercise D.3 and the references cited there.

PROOF (of Proposition D.1.1). For any integer Q 2: 1, consider the set of
real numbers

{qo: - [qo:] Iq = 0, 1, ... ,Q},

where [t] means the greatest integer in t. Since 0: is irrational, this set
consist of Q + 1 distinct numbers in the interval between 0 and 1. If we
divide the unit interval into Q line segments of equal length, the pigeon
hole principle tells us that one of the segments must contain two of the
numbers. In other words, the set contains two numbers whose distance
from one another is at most 1/Q, so we can find integers 0 ~ ql < q2 ~ Q
satisfying

1I(qlO: - [qlO:]) - (q20: - [q20:]) I~ Q'

A little algebra and the estimate 1 ~ q2 - ql ~ Q gives

Thus for each Q we obtain a rational approximation of 0: with the desired
property. Further, by increasing Q we can make the left-hand side as
close to 0 as we wish, which means that we obtain infinitely many distinct
rational approximations. 0

Dirichlet's theorem (Proposition D.1.1) tells us that we can always
approximate 0: by a rational number p/q to within 1/q2. The next result,
due to Liouville, gives an estimate in the other direction.

Proposition D.1.2. (Liouville 1844) Let 0: EQ be an algebraic number
of degree d = [Q(o:) : Q] 2: 2. Fix a constant c > O. Then there are only
finitely many rational numbers p/q E Q satisfying

I ~ -0:1 < _1.q - qd+E:
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PROOF. Although the proof of Liouville's result is very elementary, it does
include many of the important features that will reappear in the proof of
Roth's theorem. To emphasize the similarity, we have broken the proof
into several steps. The reader might compare Steps I, II, III, and IV with
the material in Sections 4, 5, 6, and 7 of this chapter.

Step I: Construction of a Polynomial
The first step is to construct a polynomial that vanishes at 0:. An obvious
choice is to take the minimal polynomial of 0: over Q. Thus we let P(x) E
Z[x] be a polynomial of degree d with P(o:) = O.

Step II: The Polynomial Must Vanish at pjq
Suppose that pjq closely approximates 0: and that q is large. We want to
show that P(pjq) = O.
First we use the fact that P(x) has degree d and has integer coefficients

to deduce that

p(!?) = N
q qd

for some integer NEZ.

Next we use Taylor's theorem and the triangle inequality to give an
upper bound for P(pjq). We expand P(x) around x = 0: as

d Id!P .
P(x) = I: if dxi (o:)(x - o:)t.

i=l

Note that there is no constant term, since P(o:) = 0, so if pjq satisfies the
inequality (*), then P(pj q) will be small. Explicitly, we get the estimate

Here B(o:) is a positive constant that depends only on 0:.
It follows that INI ~ B(o:)jqE:. But N is an integer, and there are no

integers strictly between 0 and 1. This proves:

If ~ satisfies (*) and q > B(o:)l/E:, then P (~) = O.

Step III: The Polynomial Does Not Vanish at pjq
In this third step we need to verify that P(pjq) is not zero, which will
contradict the conclusion of Step II. In our case, the nonvanishing of P(pj q)
is trivial, since P(x) is the minimal polynomial of 0: over Q, so P(x) is
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irreducible in Q[x] and thus certainly cannot have any rational roots. Do
not be misled by the simplicity of this step. The theorems of Thue-Siegel
Roth require the use of polynomials of more than one variable, and then
the nonvanishing step becomes the most difficult part of the proof.

Step IV: Completion of the Proof
We suppose that the inequality (*) has infinitely many solutions plq E
Q and derive a contradiction. Under this hypothesis, we can choose a
solution pdq1 whose denominator satisfies q1 > B(0:)1/e, where B(o:) is
the constant described in Step II. Next we let P(x) be the polynomial
constructed in Step 1. From Step II we see that P(pdqd = 0, while Step III
tells us that P(Pdqd =f: O. This contradiction tells us that (*) can have
only finitely many solutions. 0

Remark D.1.2.1. Liouville's estimate (D.1.2) says that an algebraic num
ber cannot be too closely approximated by rational numbers. Liouville used
this result to prove the existence of transcendental numbers. (See Exer
cise D.5.) However, the exponent d+£ is too large for most applications to
Diophantine equations. For example, in order to prove that the equation

xd - 2yd = m

has only finitely many solutions in integers x, y E Z, one needs Liouville's
estimate with an exponent of d - £. The improvements of Liouville's result
given by Thue, Siegel, and Roth thus have profound Diophantine conse
quences.

Remark D.l.2.2. As we have stated it, Liouville's result (D.1.2) gives an
exponent d + £. The same argument actually gives an effective constant
C(o:) > 0 such that

I
E- 0:1 ~ C(o:) for all E E Q.
q qd q

(See Exercise D.4.) We have elected to state Liouville's theorem with the
weaker exponent d + £ in order to emphasize its relationship to the other
results in this chapter.

Remark D.l.2.3. Dirichlet's estimate (D.1.I) says that every irrational
number 0: can be approximated by rationals to within IIq2. It is natural
to ask whether for algebraic numbers this is the best possible resuIt. Thus
if 0: is an irrational algebraic number, does there exist a constant c(o:) > 0
such that

IE - 0:1;::: c(o:) for all E E Q?
q ~ q

Liouville's result (D.1.2) (see also remark D.1.2.2 above) says that this is
true if 0: is quadratic, but if 0: is an algebraic number of degree strictly
greater than 2, then it is conjectured to be false. However, there is not
a single such number (e.g., -v2) for which it is known to be false. See
Exercise D.18 for further information.



304 D. Diophantine Approximation and Integral Points on Curves

D.2. Roth's Theorem

Roth's theorem, as stated in the introduction to this chapter, asserts that
every algebraic number a has approximation exponent 2. That is, for
any c > 0, there are only finitely many rational number piq satisfying

I!!.-al<_l.
q - q2+e

More generally, one might allow the approximating values to be taken from
a number field other than l(Jl, and one might replace the single archimedean
absolute value with several absolute values. This leads to the following
general formulation of Roth's theorem, which we will prove in this chapter.

Theorem D.2.1. (Roth's theorem) Let K be a number field, let S C MK
be a finite set ofabsolute values on K, and assume tbat each absolute value
in S bas been extended in some way to R. Let a E R and c > 0 be given.
Tben tbere are only finitely many (3 E K satisfying tbe inequality

The numerous details required for the proof of Roth's theorem will oc
cupy us for the next several sections. To assist the reader, we begin with a
brief overview of the proof, which proceeds by contradiction. For simplicity,
we will assume that S contains a single absolute value v. So we suppose that
there are infinitely many solutions (3 E K to the inequality (*). We choose
solutions (31, (32, ... ,(3= to (*) with the property that H K «(31) is large, and
each HK«(3i+1) is much larger than HK«(3i). Next we construct a polyno
mial P(X1, •.. ,Xm)with integer coefficients that vanishes to high order at
the point (a, a, ... ,a). Using the Taylor expansion of P around (a, ... ,a)
and the fact that the (3i'S are close to a, we see that IIp((31> ... ,(3m) Ilv is so
small that it must vanish, and the same is true of many of its derivatives.
In other words, P must vanish to fairly high order at «(31, ... , (3m)' Finally
we apply Roth's lemma, which says that P cannot vanish to high order
at «(31>" . ,(3m), to obtain the desired contradiction. Roth's lemma, which
is proven in Section D.6, is technically the most difficult part of the proof.
Before beginning the proof of Roth's theorem, we are going to make

two simplifications. The first is very elementary and says that it suffices
to prove Roth's theorem for algebraic integers. This will make some of our
later calculations easier.
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Reduction Lemma D.2.1.1. IE Roth's theorem (D.2.1) is true for all
algebraic integers, then it is true for all algebraic numbers.

PROOF. Let a be an algebraic number, and suppose that Roth's theorem is
false for a. This means that there are infinitely many /3 E K satisfying the
inequality (*). The set S has only finitely many subsets, so possibly after
replacing S by one of its subsets, we may assume that there are infinitely
many /3 E K such that

1!! 11/3 - allv ~ HK(/3)2+£'

Choose an integer D > 0 such that Da is an algebraic integer, and
let /3 E K be a solution to (*) with HK(/3) > HK(D)H6/£. It is clear from
the definition of the height that HK(D/3) ~ HK(D)HK(/3). Further,

II IIDliv ~ II max{IIDllv,I} = HK(D).
vES vES

Hence

II HK(D)
vES IID/3 - Dall v ~ HK(/3)2+£

HK(D) 1
= HK(/3)2+£/2 . HK(/3Y/2

< HK(D) . 1__-=
- (HK(D/3)/HK(D)) 2+£/2 (HK(D)l+6/£)"/2

1
HK(D/3)2+£/2 .

Thus D /3 is a close approximation to Da in the sense that the inequality (*)
is true when a, /3, c are replaced by Da, D/3, c/2. Hence the falsity ofRoth's
theorem for a implies its falsity for the algebraic integer Da. This proves
that if Roth's theorem is true for algebraic integers, then it is true for all
algebraic numbers. 0

The next theorem closely resembles Roth's theorem, but it replaces
the condition that the product n11/3 - allv be small with the condition
that each of the differences 11/3 - all v be small. This idea of reduction to
simultaneous approximation is due to Mahler [1], who was also the first
one to study Diophantine approximation for p-adic absolute values.

Theorem D.2.2. Let K be a number field, let S C MK be a finite set of
absolute values on K with each absolute value extended in some way to k.
Let a E k and c > 0 be given. Suppose that

~ : S -+ [0,1] is a function satisfying L~v = 1.
vES
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Then there are only finitely many {3 E K with the property that

It is fairly clear that Theorem D.2.1 implies Theorem D.2.2, but the
converse is a bit trickier.

Reduction Lemma D.2.2.1. Theorem D.2.1 is true if and only if The
orem D.2.2 is true.

PROOF. Suppose first that Theorem D.2.1 is true. Let e : 8 -+ [0,1]
be a function as described in Theorem D.2.2, and suppose that {3 E K
satisfies (**). Multiplying the estimate (**) over v E 8 and using Ev ev = 1
shows that {3 satisfies the inequality (*), so Theorem D.2.1 tells us that
there are only finitely many {3's.

Next suppose that Theorem D.2.2 is true, and suppose that there are
infinitely many numbers {3 E K satisfying (*). We will derive a contra
diction, which will prove the other implication. The idea is to construct
several functions eof the sort described in Theorem D.2.2 so that each {3
satisfies (**) for at least one of our fs.

Let 8 = #8. We consider the collection of maps

e: 8 -+ [0,1] of the form ev = :v with a v E Z, a v 2:: 0, and L': a v = 8.
vES

It is clear that there are only finitely many such maps. We will denote this
collection of maps by Z.

Now suppose that {3 E K satisfies (*). We want to show that {3 sat
isfies (**) for one of the maps in Z. For each v E 8, define a real number
Av ({3) 2:: 0 by the formula

min{ 1I{3 - all v , I} = HK({3)(;+~)'\vUj)'

Multiplying over v E 8 and comparing with (*), we see that EVES Av ({3) 2::
1, so

L':[2SAV ({3)] ~ L':(2SAv ({3) -1) = 28 L':Av ({3) - S~ S.
vES vES vES

This implies that we can find integers bv ({3) with the property that

and

Then the function e: 8 -+ [0,1] defined by ev = bv ({3)/s is in the set Z.
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We have now proven that if {3 E K satisfies (*), then {3 satisfies (**) for
at least one ofthe functions ~ in Z. But by assumption, for any given ~ there
are only finitely many {3's satisfying (**), and it is clear that Z contains
only finitely many functions. Therefore (*) has finitely many solutions.
This completes the proof that Theorem D.2.2 implies Theorem D.2.1.

o

D.3. Preliminary Results

In this section we will prove a number of preliminary results that will
be needed at various points during the proof of Roth's theorem. Other
than (D.3.6), none of these results is particularly difficult to prove, but
taken together they form a rather lengthy whole. So we urge the reader
to study only the definitions and statements of results for now, and then
proceed to the actual proof of Roth's theorem that begins in the next
section. To facilitate this procedure, we have collected the main results at
the beginning and relegated the proofs to the end of the section.

We will be working especially with polynomials having integer coef
ficients, since ultimately all proofs in Diophantine approximation, from
Liouville's elementary result to Roth's theorem, depend on the fact that
there are no integers strictly between 0 and 1. We will be concerned with
both the size of the coefficients and the partial derivatives of these polyno
mials, which prompts us to set the following notation.

Definition. Let P(Xl, ... , X m) E lR[X1, ... , X m] be a polynomial and
let (il, ... , im ) be an m-tuple of nonnegative integers. We define

IFI = maximum absolute value of coefficients of P,

The normalized partial derivative Oil ...i",P is designed to cancel, as
much as possible, the common factors that appear in the coefficients when
we differentiate. This is the content of part (a) of the following elementary
lemma, while part (b) gives a bound for the coefficients of the derivative.

Lemma D.3.1. Let P(X1 , ..• ,Xm) E Z[X1 , ... ,Xm] be a polynomial
with integer coefficients, and let = (i1 , ... , i m ) be anm-tuple ofnonnegative
integers.
(a) Oil ...imPEZ[Xl,.",Xm].
(b) If degx

h
(P) ::; Th for each 1 ::; h ::; m, then

18i1 ...imPI ::; 2r1+···+rm lFl·
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Remark D.3.l.!. Lemma D.3.1(b) gives one reason why we use Oil ...im
instead of the more natural operator Dil "'im = Oil+··+im/ aXil ... X;;..
Both operators map the polynomial ring Z[Xll ... ,Xm ] to itself. However,
if we use Dil ...im , then Lemma D.3.1(b) would be replaced by the weaker
estimate

IDi1 ...imPI ~ (rl!)(r2!)'" (rm !)lPl·
Now r! is approximately (rler by Sterling's formula. The reader may
check that the improvement from r! to 2r is vital in the estimates used in
the proof of Roth's theorem.
There are other reasons to prefer the aoperators. Taylor's formula is

simpler,

P(XI, ... ,Xm )

rl r m

= L ... L Oil ...imP(al"'" am)(XI - adil ... (Xm - am)im
•

il=l im=l

Leibniz's formula for the derivative of a product is also nicer,

il+···+i.=n

as is Cauchy's bound that now reads IOnP(a) I ~ Mr-n, where M =
max!z-al$;r IP(z)l· We also point out that (even in characteristic p) we
have

(X - ar divides P(X)~ oiP(a) = 0 for all i < r.
The only real advantage of the D operators is that they satisfy the relation
Dil ...imDil ...im = Dil+il ...im+im' while the composition of aoperators is
somewhat more complicated.

The key to proving Roth's theorem is estimating the order to which a
polynomial in many variables vanishes at certain points. It is thus impor
tant to have a means of measuring this order of vanishing. Of course, by
allowing the degree of a polynomial to be high, we can force it to vanish
to high order, so it makes sense to look at some sort of weighted order of
vanishing. This idea serves to motivate the following definition.

Definition. Let k be any field, let P(Xll ... , X m) E k[Xll ... , X m] be a
polynomial, let (all ... ,am) E km be a point, and let rl,"" rm be positive
integers. The index of P with respect to (al,"" am; rll ... , rm), denoted
by IndP, is the smallest value of

i l i2 im-+-+ ...+
rl r2 rm

such that
Oil ...imP(al,'" ,am) =F O.

(If P is the zero polynomial, we set the index equal to 00.)
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We make two observations. First, Ind P ;::: 0, with equality if and only
if P(al, ... , am) =j:. o. Second, for any nonzero polynomial of multidegree
less than or equal to (Tl' ... ' Tm ), we have Ind P ::; m, with equality if and
only if

P(Xl, ... ,Xm ) = c(Xl - ad r1 ••• (Xm- amrm.

Remark. There is no connection a priori between the weights Ti with
respect to which the index is computed and the degrees ofP, but in practice
the index is always applied to polynomials P with degx

i
P ::; Ti.

The following lemma gives some elementary properties satisfied by the
index. Notice that (b) and (c) say that the index is a discrete valuation
on the polynomial ring k[Xl , ... , Xm ], generalizing the usual "order of
vanishing" valuation on k[X].

Lemma 0.3.2. Let P, pI E k[Xl, ... , Xm ] be polynomials, and fix inte
gers Tl, ... , Tm and a point (al, ... ,am) E km. The index with respect to
(aI, ... ,am; Tl' ... , Tm) has the following properties:

(
il i m )(a) Ind(Oil ...imP) ;::: IndP - - + ... + - .
Tl T m

(b) Ind(P + PI) ;::: min{Ind P, Ind PI}.
(c) Ind(ppI

) = IndP+IndpI
.

The following important lemma is in essence nothing more than the
assertion that there are no integers strictly between 0 and 1. (To see why,
consider what it says for K = Q, S = MQ', and a E Q a rational number
with lal ::; 1.)
Lemma 0.3.3. (Liouville's inequality) Let K/Q be a number field,
let a E K* be a nonzero element of K, and let ScMK be any set of
absolute values on K. Then

If a is an algebraic integer of degree dover Q, then every element
in the ring Z[a] can be uniquely written as a Z-linear combination of the
basis elements 1, a, a 2 , ••• , ad-I. The next lemma tells us how large the
coefficients become when we write a power a1 as such a linear combination.

Lemma 0.3.4. Let a be an algebraic integer ofdegree dover Q, and let

be the minimal polynomial ofa over Q. Then for every t. ;::: 0 we can write

with integers
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satisfying

In order to create a polynomial P whose index is large at some point,
we will have to choose the coefficients of P such that many of its derivatives
are equal to 0 at that point. The next two lemmas, which are purely
combinatorial in nature, will help us determine the number of conditions
that the coefficients of P must satisfy. The first is very elementary; it
counts the number of monomials of degree T in m variables and has been
implicitly used in Parts A and B.

Lemma D.3.5. Let m ~ I and T ~ 0 be given integers. Then there are
exactly

m-tuples of integers (i l , ... , im ) satisfying the conditions

ih ~ 0 for all I :::; h ::; m, and i l + i2 + ... + im = T.

The next combinatorial lemma, which is somewhat more difficult to
prove, admits a probabilistic interpretation. Ifwe "randomly" choose an m
tuple (ill ... , im ) with 0 :::; ih :::; Th, then we would expect each ih/Th

to be approximately equal to ~, and so we would expect E ih/Th to be
approximately m/2. Lemma D.3.6 quantifies this intuition by saying that
the probability of a random m-tuple (i l , ... ,im ) satisfying

I m ih I
-2:-<--c:
m Th 2
h=l

is at most e-g2m
/

4 . For large values of m, this probability will be quite
small. This type of estimate is a version of Chebyshev's inequality in
probability theory. See Figure D.I for an illustration with m = 2. It
should also be pointed out that the average value ~ is quite important,
since it is this value that "explains" the 2 in Roth's theorem!

Lemma D.3.6. Let TI, ... , T m be positive integers and fix an 0 < c: < 1.
Then there are at most

m-tuples of integers (iI, ... , i m ) in the range

... )
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tbat satisfy tbe condition

il i m m- + ... + - < - - em,
T} T m - 2
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This concludes the description of the preliminary results needed for
the proof of Roth's theorem. The remainder of this section is devoted to
the proofs of these results.

PROOF (of Lemma D.3.1). The elementary but crucial observation is

! diXj = j(j - 1)··· (j - i + 1) xi-j = (j)Xi-j
i! dXi i! i'

where the combinatorial symbol

(.) "J J.
i = i!(j - i)!

is an integer. If j < i, we define ({) to be zero as usual.
Write the polynomial P as

rl rm.

P(X1, ••. , X m ) = L ... L Ph, .."j",Xi1
••• X/n"'.

il=O j",=O

Differentiating P, we obtain
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The combinatorial symbols are integers, so this proves part (a).
To prove (b), we use the binomial formula for (1 + 1)j to estimate

Hence taking the maximum over all m-tuples (j1, ... ,jm) of integers satis
fying

we find that

la· . PI - max Ip· . (j1) ... (jm) I·1····m - J1,.··,Jm i
1

i
m

< max Ip . . I· max 2il +. ·+jm = IPI . 2T1 +"'+Tm •
- Jl,···,Jm

This completes the proof of (b).

PROOF (of Lemma D.3.2). To ease notation, we will write

o

(a) Let Q = ai1 i-mP, Using the definition of the index, we can choose
an m-tuple (ill , jm) such that ail ... j", Q(a) =1= 0 and such that the index
of Qat (a1,"" am; Tll.··, Tm) is equal to jdT1 + ... + jm/Tm. Then

a· . Q(a)..J. 0 =} a· +. . +. P(a)..J. 0]l"']Tn r 1.1 ]1,···,t7Tl ]Tn -r

=} i 1+ j1 + ... + im+ jm > IndP
T1 Tm -

j1 jm i 1 im
=} IndQ = - + ... + - ~ Ind P - - + ... + -.

T1 Tm T1 Tm

(b) Choose an m-tuple (j1, ... ,jm) such that ail ... j", (P + pl)(a) =1= 0 and
the index of p+pl at (a1,"" am; T1,"" Tm) is equal tOjdT1+-' +jm/Tm.
Then either aj1 .. .j",P(a) =1= 0 or aj1 ...jmpl(a) =1= 0 (or both), which implies
that jdT1 + ... + jm/Tm is greater than or equal to at least one of Ind P
or Ind Pl. Hence

Ind(P + PI) = j1 + ... + jm ~ min{Ind P, Ind PI}.
T1 Tm

(c) Using the product rule, we can write

aj1 ,... ,j", (PPI) = L L Ci1, ... ,i:.Jai1 ...imP)(ai~ ...i:,.PI)
i1 +i~=il im +i:"=j",
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for certain positive integers Cil ,... ,i:'" (In fact, all of the C's are equal to 1;
see Exercise D.7 or the remarks on derivations.)
Choose an m-tuple (il,'" ,im) such that 8it ...jm (PP')(0:) =I- 0 and

such that

Ind(PPI) = il + ... + im at (0:1>"" O:mi rl,"" r m).
rl r m

Then there exist m-tuples (il,"" i m) and (i~, ... ,i~) with 8il ...im P(0:) =I
oand 8i~ ...i:"P'(0:) =I- O. Hence

m .

'"' ZhIndP $ L..J-
h=l rh

and
m .,

IndP' $ L ;~,
h=l h

and adding these inequalities gives IndP + IndP' $ Ind(PP').
To get the inequality in the other direction, we look at the set of m

tuples (i l , ... , i m ) satisfying

and
m •

IndP= L Zh.

h=l rh

We order these m-tuples lexicographically and choose the smallest one, call
it (i"1> .•. ,i"m). This means that if (i1> ... ,im) is another such m-tuple, then
there exists a k ~ 1 such that

We similarly choose an m-tuple (~, ... ,~) for P', and we set

(11, ... ,1m) = (i"l +~, ... ,i"m +~).

Then

8- - (PP')(o:) = C- -f a. - P(o:)· a" -f P'(o:) ....L 0)I···3m 'l,··,,'m 'l···l-fn 1. 1 ···1.tn r,

since all of the other terms will be zero. Therefore,

m _ m _ ~

Ind(PP') $ L Jh = L Zh + zh = IndP + IndP'.
h=l rh h=l rh

This is the other inequality, which completes the proof that Ind(PP') =
IndP+lndP'. 0

PROOF (of Lemma D.3.3). The product formula (B.1.2) says that

which implies that 1 = IT 1I~lIv'
vEMK
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(This is where we use the fact that a is nonzero.) Using this, we compute

Taking reciprocals gives the desired result. o

PROOF (of Lemma D.3.4). The proof is by induction on £. The assertion
is clearly true for 0 ~ £ ~ d - 1, since for £ in this range we can take all of
the a~i),s to be either 0 or 1.

Assume now that the lemma is true for ai . We compute

d

a i +1 = a· a i = a La~i)ad-i

i=l
d

= a~i)ad + L a~i)ad+l-i

i=2
d d

= a~i) L -aiad-i + La~i)ad+l-i using Q(a) = 0
i=l i=2

d

= L ( _a~i)ai + a~~l) a d- i ,
i=l

It follows that

(i)where we set ad+1 = O.

and so

la~l+l)1 $Ia~i)ail + la~~ll ~ max{la~i)l, la~~ll}' (Iail + 1)

~ (IQI + l)i . (IQI + 1) by the induction hypothesis

= (IQI + 1)l+1.
o

PROOF (of Lemma D.3.5). This can be proven by a straightforward in
duction, but we will give a more illuminating counting argument. For any
given m-tuple (iI, ... , im ), we replace each integer ih by ih dots, making
sure to leave all of the commas in place. For example, we would represent
the m-tuple (3,2,0,4,0,0,3,0) (with m = 8 and r = 12) as follows:

(... , .. , ,.... , , , ... ,).
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The key observation is that the total number of "dots" and "commas"
is r+m-l = 19. In other words, to form an m-tuple with il +...+im = T,

we should start with a row of r +m - 1 "commas" and change T of them
into dots. Each choice of r commas to change will give us a unique m-tuple
with the desired properties. Hence the total number of m-tuples is the
number of ways of choosing T elements from an ordered set of T +m - 1
objects. 0

PROOF (of Lemma D.3.6). Let J(m, e) be the set of m-tuples that we are
trying to count,

J(m, e) = {(ill'''' i m ) E zm : 0 ~ ih ~ Th for all 1 ~ h ~ m

Then

#J(m,e) = 1

and
m .
~Zh m }L..J- ~ --em.
h=l Th 2

(i1, ... ,im)EI(m,e)

~ [e (m i l im )]~ L..J exp - --em--- .. ·--
2 2 Tl Tm(iI, ... ,im)EI(m,e)

since et ;::: 1 for all t ;::: 0

rl r", [( . . )]~L"'Lexp ~ ;_em_~_... _Zm

il=O i",=O rl Tm

since includes extra positive terms

(
2 ) rl r", [(. . )]= exp - e 2
m L'" L exp ~ m _ ~ _ ... _ Zm

il=O i",=O 2 Tl Tm

= exp (-e2m) IT (t exp (~ (! - ~))) .
2 h=l i=O 2 2 rh

We use the inequality

et
~ 1+ t + t 2

, valid for all ItI~ 1,
to estimate one of the inner sums as

texp (~ (! - ~)) ~ t {I + ~ (! _~) + e
2 (! _~)2}

i=O 22 r i=O 22 r 42 T
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(Although it may look complicated, the main point of this calculation is to
get an upper bound of the form 1+C£2 with c < !. In particular, it would
not suffice to get a bound of the form 1+ c£.)
Substituting this estimate in above, we find that

using 1+ t $ et

o

D.4. Construction of the Auxiliary Polynom~al

In this section we are going to construct a polynomial P(X1 , ••• ,Xm ) with
reasonably small integer coefficients and the property that P vanishes to
high order at (0:,0:, ... ,0:). The way that we will build P is by solving a
system of linear equations with integer coefficients. Results that describe
integer solutions to systems of linear equations are often named after Siegel,
because he was the first to formalize this procedure.

Lemma D.4.1. (Siegel's lemma, first version) Let N > M be positive
integers, and let

o
be a system of linear equations with integer coefficients not all zero. Then
there is a solution (t ll . .. ,tN) to this system of equations with tll· .. , tN
integers, not all zero, and satisfying

Although the conclusion of this lemma looks a bit messy, it is really
saying something quite simple. The system of homogeneous linear equa
tions has more variables than equations, so we know it has nontrivial so
lutions. Since the coefficients are integers, there will be rational solutions;
and by clearing the denominators of the rational solutions, we can find
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integer solutions. So it is obvious that there are nonzero integer solutions.
The last part of the lemma then says that we can find some solution that
is not too largej precisely, we can find a solution whose size is bounded in
terms of the number of equations M, the number of variables N, and the
size of the coefficients aij' This, too, is not surprisingj so the real content of
the lemma is the precise form of the bound. We remark for future reference
that the bound has, up to a small negligible term, the shape

. . ( number of equations )
log(max Itil) ::; (log height of the equatIons)· ill . fl' .

menslOn 0 so utlOns

PROOF (of Siegel's lemma). For any vector t = (t l , . .. , tN) E ]RN, we let

be the largest of the absolute values of its coordinates. Similarly, we will
let A be the matrix

and will write IAI = max laij I.
l~i~M

l~j~N

So the statement of Siegel's lemma is that the equation At = 0 has a
solution t E ZN, t :f:. 0, satisfying

The idea of the proof is very simple. The number of integer vectors t in
ZN of norm less than B is roughly B N, while the norm of At is less than
NIAlltlj hence the image vectors vary (roughly) among at most (IAIB)M
values. When B N is larger than (IAIB)M, the pigeonhole principle will
provide two integer vectors tl :f:. t2 of norm less than B with Atl = At2 .

Then the difference t = t l - t 2 provides a solution to our linear system
having norm less than 2B. In order to get improved constants, we refine
the previous argument as follows.

For any real number a we set

a+ = max(a, 0) and a- = max(-a, 0),

so that a = a+ - a- and lal = a+ + a- . We also define linear forms
Lj(t) = E~l ajiti and set

N

Lj = Lat,
i=l

N

Lj = Laji,
i=l

and
N

Lj = Lj +Lj = L!ajil.
i=l
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M

IT(LjB+ 1) ~ ((B+ I)Nma:xlaijl)M ~ (B+ I)N.
j=l ~J

Assuming 0 ~ ti ~ B, we deduce that the jth coordinate Lj(t) of At lies
in the interval

-LjB ~ Lj(t) ~ LjBo

Taking B to be an integer, the number of integer vectors in the box
I1~l[-LjB, LjB] is equal to

M M

II(Lj B + LjB + 1) = II(LjB + 1),
j=l j=l

while the number of integer vectors t with 0 ~ ti ~ B is (B+ I)N oHence
if we choose B to satisfy

M

(B + I)N > II(LjB + 1),
j=l

then the pigeonhole principle provides us with distinct integer vectors t 1
and t 2 such that Lj(tt} = L j (t2 ) for all 1 ~ j ~ N. Then the vector
t = t 1 - t2 is an integer solution of our linear system satisfying ItI~ B.
To complete the proof of Siegel's lemma, it remains only to verify that

the value

[( )
M/(N-M)]

B := N IIJ:f laij I
satisfies condition (*). For this value of B we have

and hence

(B + I)N = (B + I)M (B + I)N-M > (B + I)M (N max laijl)M 0

Now we observe that

Lj ~ Nm?Xlaijl and 1 ~ N~a:xlaijl,
t tJ

and hence

o
We will now apply the same sort of pigeonhole principle argument to

solve linear equations with algebraic coefficients. If the coefficients lie in a
number field of degree d, and ifwe have M equations in N unknowns, then
choosing a basis for the number fields allows us to translate the problem
into dM equations with coefficients in Q. Thus the relevant linear algebra
condition is now dM < No The following proof is taken from a paper of
Anderson and Masser [1]; for a slightly sharper estimate, see Exercise Do9
and the references listed there.
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Lemma D.4.2. (Siegel's lemma, second form) Let k be a number field
witb d = [k : Q], let aij E k be elements not all zero, and let A :=
H (... , aij, ..•) be tbe beigbt of tbe vector formed by tbe aij 's. Assume
tbat dM < N. Tben tbere exists a nonzero vector x E ZN such tbat

N

~aijXi = ° for alII ~ j ~ M, and
i=l

We begin by computing how many algebraic numbers are contained in
various boxes.

Claim. Let k be a number field of degree d, fix an element O:v E k for
each v E Mk, and let c = {Cv}v be a multiplicative Mk-constant. Tbat is,
Cv 2: 1 for all v E Mk, and Cv = 1 for all but finitely many v E Mk (cl. tbe
additive Mk-constants defined in Section B.B.) Set C := Ilv Cv. Tben

PROOF (of Claim). Call 'j the set whose cardinality we are trying to bound.
Set

E = II kv = jRr1 X Cr2 ,
vEM;:O

and for 0: E k and c > 0, consider the box

B(o:, c) = {x EEl Ixv - Uv(O:) I < cCv for all v E MZO}.

We first observe that if 0:,13 E 'j and if we take c = ~C-l/d, then the
intersection B(o:, c) n B(f3, c) is empty. To verify this, suppose that x sits
in both boxes. If v is archimedean, then

and if v is nonarchimedean, then

If follows that Illo: - f3lv < (2c)dC = 1, and then the product formula tells
us that 0: = 13.
Now the disjointedness of the B(o:, c)'s for 0: E 'j implies that

Vol(U B(o:,c») =card('J)Vol(B(O,c» = card('J)cdVol(B(O, 1»).
aE':T
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Next, if x E B(o:,e) with 0: E 'J, then

These inequalities define a box with volume equal to (1 + e)d Vol(B(O, 1»;
hence

o
PROOF (of Lemma D.4.2). To ease notation, put 8 = dMj(N - q,M) and
X = [(NA)'l We apply the previous lemma with

if v is archimedean,
otherwise;

if v is archimedean,
otherwise.

We then compute the associated "constant"

v

We conclude that the linear form Lj(Xl,"" XN) takes at most (1+NXA)d
values, and hence that L takes at most (1+N XA)dM values. But X + 1 >
(NA)6, which implies that

The pigeonhole principle says that there are distinct N-tuples of integers
x' and x" satisfying L(x') = L(x"). Hence

L(x' - x") = 0 and lx' - x"I :5 X :5 (NA)6

as required. o

We are now ready to construct a polynomial P(Xl, ... ,X m ) that van
ishes to high order at (0:, .. . ,0:).

Proposition 0.4.3. Let 0: be an algebraic integer of degree dover (Q,
let e > 0 be a fixed constant, and let m be an integer satisfying

(4.2-i)

Let Tl, ... , T m be given positive integers. Then there exists a polynomial
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satisfying the following three conditions:
(i) P has degree at most rh in the variable Xh·
(ii) The index of P with respect to (a,a, ... ,ajrl"" ,rm ) satisfies

321

m
Ind(P) ~ 2"(1 - e).

(iii) The largest coeiIicient of P satisfies

(4.2-ii)

where B = B(a) depends only on a, (4.2-iii)

and we recall that IPI is the maximum of the absolute values of the coeiIi
cients of P.

Remark. Condition (4.2-i) essentially ensures that dM < N, or more
precisely, that dM/(N - dM) < 1. An admissible value for the constant
given by the proposition is B(a) = 4H(a) (see Remark D.4.4).

PROOF. We write the polynomial P 88

Tl rm

P(XI X) - ~ ... ~ p' . Xit ... Xjm, ... , m - L....t L....t 31,···,3m 1 m ,

it=0 jm=O

where the integers Pit, ... ,jm are still to be determined. Clearly, the number
of Pj1, ... ,jm coefficients is

For any m-tuple (ill"" im ) we have

r1 r
m

(. ) (.). . _ ... .. Jl '" Jm it-i; ... jm-imp t1 ...tm - L L P31,· .. ,3m· . Xl X m ·
j1=0 jm=O ~l ~m

Evaluating this identity at (0:, ... ,0:) and using Lemma D.3.4 to express
powers of a 88 linear combinations of 1, a, ... ,ad-I, we find that

P i1 ...im (a, .. . ,a)

r1 r
m

(. ) (.)= ~ ... ~ . . Jl . .. Jm 0:31-i1+··+jm-imL....t L....t P31>···,3m' .
it=0 jm=O ~1 ~m

rl rm ( . ) (.) d= ~ ... ~ . . Jl •.. Jm ~ a(j1+ ..+jm-il-···-im) d-k
L....t L....t P31,···,3m' . L....t k a
it=0 jm=O ~l ~m k=l

d { rl r
m
(.) (.) }_ '" ~ ~ Jl Jm (jl+··+jm-i1-· .. -im) d-k- L....t L....t •.• L....t . .•. . ak Pjl, ... ,jm a .

k=l it=O jm=O ~l ~m
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Hence Pi1 ...im (a, ... ,a) will equal 0 if each of the quantities in braces
equals O. In other words, we will have Pi1 ". im (a, ... ,a) = 0 if we choose
the Pit, ... ,im to satisfy the d linear equations

r1 r
m
(.) (.)" ... " J1 .,. Jm a(i1+·+im-il-···- im). . = 0

~ ~. . k P)l, ... ,)m ,
. . 't1 't m)1=0 ),.,.=0

1$k$d.

In order to satisfy condition (ii), we need Pi1 ...im (a, ... ,a) = 0 for
all m-tuples (i1 , ... ,im ) satisfying

i 1 i m m m c- + ... + - < -(1- c) = - - -m.
r1 rm - 2 2 2

According to (D.3.6), there are at most (r1 +1)··· (rm +1)e-E2m/ 4 such m
tuples. Hence we can find a P that satisfies (ii) by choosing the Pit, ... ,jm
to satisfy a system of M linear equations with integer coefficients, where

2 / 2 / 1M $ d· (r1 + 1) ... (rm + l)e-E m 4 = dNe- E m 4 $ "2 N .

Note that the last inequality follows from the choice ofm in equation (4.2-i).
We now have M linear equations for the N variables Pit, ... ,i,.,.' In or

der to apply Siegel's lemma, we need to estimate the size of the coefficients
of these equations. We recall from (D.3.4) that the quantities a~l) sat

isfy la~l)1 $ (IQI + 1/, where Q is the minimal polynomial for a over Q.
SO we can estimate the coefficients of our linear equations by

I(~~) ... (~:)a{1+ ..+j,.,.-i1- ...-iml $ 2il+"+im (IQI + l)it+ ..+jm

$ (21QI + 2r1+..+ r
,.,..

Now applying Siegel's lemma (D.4.1), we find that there is a polynomial P
satisfying (i) and (ii) whose coefficients Pil, ... ,jm are bounded by

( )

M/(N-M)
IFI $ N(2/QI + 2)r1+··+rm

$ N(2IQI + 2r l +...+rm since M $ ~N

$ 2r1 +"+rm (21QI +2r l +..+ rm

$ B(at l +··+rm ,

where we could take B(a) = 41QI + 4, for example. Hence P also satis
fies (iii), which completes the proof of Proposition D.4.3.

o
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degP(X) = r,

Remark D.4.4. We outline an alternative proof ofProposition DA.3 using
Lemma DA.2 instead of Lemma DA.1. Letting M denote the number of
equations with coefficients inQ(a) and N = (r1 +1) ... (rm +1) the number
of unknowns, we get dM/ (N - dM) ~ 1 and

Hence Lemma DA.2 gives us a nonzero polynomial with the required de
grees and coefficients bounded by

which yields an admissible value B(a) = 4H(a).

D.5. The Index Is Large

In the last section we constructed a polynomial with "small" coefficients
that vanishes to high order at (a, ... ,a). In this section we want to show
that if 131, ... ,13m are close to a, then the polynomial will still vanish to
high order at (131, . .. ,13m).
We illustrate the basic idea using polynomials of one variable with 13 =

p/q E Q. Thus suppose that P(X) E Z[X] satisfies

1
Ind(o<;r) P ~ 2"'

and suppose that p/q E Q satisfies Ip/q - al ~ q-(2+E). The Taylor series
expansion of P around a is

r

P(X) = L 8iP(a)(X - a)i = L 8iP(a)(X - a)i,
i=O i?r/2

since the assumption that Ind(o<;r) P ~ ~ means that 8iP(a) = 0 for all i <
r/2. Now substituting X = p/q yields

Using (D.3.1) and IPI ~ Br, we can estimate the derivatives by
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where the constant C1 (Q) depends only on Q. Hence

On the other hand, we know that the denominator of PcpIq) divides qT,
so if P does not vanish at plq, then trivially IP(Plq)I~ l/qT. Hence

which implies that q ::s (2Cd2/€. 'fuming this around, we can say that
if q is large, then P(Plq) = 0, so the index of P at (Plq; r) is strictly
positive. A similar argument, using 8j P in place of P, would show that
if q is sufficiently large, then 8j P(Plq) = 0, or equivalently that the index
of Pat (Plq; r) is fairly large.
The main result of this section generalizes this simple argument in a

number of ways, but the entire computation rests on two basic facts. First,
Taylor's formula and the triangle inequality imply that if P vanishes to a
high order at Q and if {3 is very close to Q, then P({3) (and any derivative
of not too large an order) must be small. Second, Liouville's inequality
(as recorded in Lemma D.3.3) implies that P({3), an algebraic number of
bounded height, cannot be too small unless it is zero. (Keep in mind that
this second fact is essentially nothing more than the observation that there
are no integers strictly between 0 and 1.)

Proposition D,S,!. Let 0 < 6 < 1 be a given constant, and let E: satisfy

6
0< E: < 22' (5.1-i)

Let Q be an algebraic integer of degree dover Q, let m be an integer
satisfying e€2

m /4 > 2d, let rl, ... , rm be given positive integers, and use
Proposition DA.3 to choose a polynomial P(X1 , ••• ,Xm ) E Z[X1, ... , Xm ]

satisfying properties (4.2-i), (4.2-ii), and (4.2-iii).
Let S c MK be a finite set ofabsolute values on K with each absolute

value extended in some way to K, and let

~ : S -+ [0, 1] be a function satisfying L ~v = l.
vES

Suppose that {31, ... ,13m E K have the property that

I
lI{3h - Qllv ::s HK({3h)(2+6)~" for all v E S and all I ::s h ::s m. (5.I-ii)
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Suppose further that

and that there is a constant C = C(o:, 6) such that

325

(5.I-iii)

(5.I-iv)

Then the index of P with respect to (f3l, ... ,13m; rl,·· 0' rm) satisfies

IndP ~ c:m.

Remark D.5.!.!. When we eventually get to the proof of Roth's theorem
in Section 7, the proof will proceed as follows. We will first assume that
there are infinitely many {3's that closely approximate 0:, that is, satisfying
the inequality (5.l-ii). Next we will choose a large m and good approxima
tions {31, ... ,13m such that each {3h has height much larger than its prede
cessor. It is only after choosing the {3h's that we will choose the ri's so as
to satisfy the estimate (5.l-iii). Finally, for this choice of m and rl, ... , rm ,

we will take the auxiliary polynomial described in Proposition DA.3 and
use it to prove Roth's theorem. The crucial observation here is that the ri's
are chosen in terms of the hypothetical {3h'S, so it is important at every step
of the proof to keep track of any dependence on the ri's.

As a first step toward the proof of Proposition Do5.1, we state a lemma
controlling the height of derivatives of a polynomial at algebraic values.
Note that this result and its proof are very similar to Theorem B.2.5(a).

Lemma D.5.2. Let P E Z[Xl, ... ,Xm ] with degx" (P) ::; rh, and let
{3 = (131, ... ,13m) be an m-tuple of algebraic numbers in a number field K.
Then for all m-tuples of nonnegative integers j = (jl' ... ,jm) we have

m

HK(OjP({3)) ::; 4(r1+··-+rm)[K:Q]HK(P) II HK({3ht" 0

h=l

PROOF. Let (jl, 0 •• ,jm) be any m-tuple. To simplify notation, we will let

Then Lemma D.3.1 tells us that Oi1 ...imT has integer coefficients that are
bounded by

la· . TI - la· . . . PI < 2r1 +.o-+rm IPI'1···lm - 1.1+Jl, ... ,''rn+J-rn - .
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We use the triangle inequality to find an upper bound for the height
of T(!3I, 0 0 0 ,!3m)o Thus for any archimedean absolute value v E M'}? we
have

IT(!3I, . 0 • ,!3m) Iv
:s (rl + 1) .. 0 (rm + 1)·, ,

'"number of terms

ITI.......,..,
max. coe£.

Similarly, if v E M~ is nonarchimedean, we can use the nonarchimedean
triangle inequality and the fact that T has integer coefficients to obtain the
stronger bound

As in the definition of the height, we raise these inequalities to the n v power
(where n v = [Kv : QvD and multiply them together for all v E M K . This
yields the announced estimate

H K (T(!3I, 0 •• ,!3m)) :s (4)(Tl+"+Tm)[K:Q]HK(P)HK(!3lf1
0 0 0 HK(!3mfm.

(Notice that since P has integer coefficients, HK(P) = IP/[K:Ql.) 0

We now give an explicit version of the principle that if a polynomial
vanishes to a high order at (a, 0 .. , a), and if !3I, ... ,!3m are all good ap
proximations to a, then the polynomial will be very small at (!3b' . 0 ,!3m)o

Lemma D.5.3. Let rb 0 0 • ,rm be given positive integers, and let P be
a polynomial in Z[XI,o.o ,Xm] such that degxh(P) :s rho Let () = IndP
denote tbe index ofP at (a, ... , a) with respect torI,' 00' rm. Let 0 < {j < 1
be a constant and choose 0 < ()o < () 0

Let S c MK be a finite set ofabsolute values on K with each absolute
value extended in some way to K, and let

~ : S ---t [0,1] be a function satisfying L ~v = 1.
vES

Suppose that !3I, ... ,!3m E K have the property that

1
II.8h - allv :s HK(.8h)(2+6)~v for all v E S and all 1 :s h :s m.

To ease notation, set D := min {HK(.8hYh}, and let j = (jb ... ,jm) be
m .

any m-tuple satisfying L Jh :s ()oo Then
h=l rh

II II8j P(.8I , ... ,.8m)llv :s (4H(a)) [K:IQ](Tl+"+Tm ) H K(P)D-(2+6)(O-Oo).
vES
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PROOF. Let i = (il"" ,im) be as in the statement, and let T = 8j P. We
will use the Taylor expansion of T around (a, . .. ,a) and will need bounds
for the size of the Taylor coefficients. Thus if v E MK is an absolute value
on K extended in some way to K(a), we can estimate 18il ...imT(a, ... ,a)lv
by noting that it is a sum of at most

terms, each of which has magnitude at most

This implies that

18i1 ...imT(a, ... ,a)lv ~ (4max{la lv, I}r1+"+Tm IPI·
Next we observe that T vanishes to fairly high order at (a, ... ,a).

More precisely, we use Lemma D.3.2(a) to compute

m .

"JhIndT = Ind8j1 ...jmP ~ IndP - L.J - ~ () - ()o.
h=l rh

So if we write the Taylor expansion of T about (a, ... , a), then many of
the initial terms will be zero. Thus

Tl r m

= L L 8i1 ...imT(a, ... ,a)(Xl - a)i1 ••• (Xm - a)im.
il=O im=O

!J..+..+ 1m.>8-80
rl rm-

Now put Xh = 13h and use the fact that 13h is close to a. This yields,
for each absolute value v E S,

IT(13l, ... ,13m)lv
Tl T m

~ L L 18i l ... i mT (a, ... ,a)lvl13l - al~l ... 113m - al~m
il=O im=O

~+-.+~~8-80

~ (rl + 1) .. · (rm + 1) .max 18il ...imT(a, ... ,a)lv
'l,···,lm

x. max l13l - al~l ... 113m - al~m
g-+"+~~8-80

~ (4r1+"+TmIPlv max 1 .
~+"'+~~8-80 (HK(13dil ... HK(13m)im)(2+6)~v
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We can estimate this last quantity as follows:

It follows from above that

Now raising to the nv power, multiplying over all v E S, and using the fact
that EVES nvev 2: EVES ev = 1, we arrive at the desired estimate

o
PROOF (of Proposition D.5.1). Let j = (jl, ... ,jm) be an m-tuple satisfy
ing E;:1 jh/rh ~ em. We want to show that ojP(131, ... ,13m) = O. From
Lemma D.5.3 we get

(4)(r1+---+rm}[K:Q]HK(P)
II lI ojP(13l, ... ,13m) IIv ~ D(8-8o)(2+c)
vES

(4B(a))(r1 +---+rm}[K:QJ
<.:..--;.......:....:...._---:---
- D(!f(1-e:)-e:m)(2+C)

(where we have used properties (4.3-ii) and (4.3-iii) for the last inequality).
On the other hand, from Lemma D.5.2 we obtain

m

HK(OjP(13l, ... ,13m) ~ 4(r1+---+rm}[K:Q]HK(P) II HK(13hth

h=l

~ (4B(o:)) (rl +---+rm}[K:QJD m (1+e:)

(where we used property (4.3-iii) and hypothesis (5.1-iii) for the last in
equality). Now Liouville's inequality (D.3.3) implies that either the deriva
tive ojP(131' ... ,13m) is zero, or else

II IIOjP(13l, ... ,13m)llv 2: HK(OJ P(131 , ... ,13m))-I.
vES

So it suffices to show that our hypotheses contradict the latter.
Assuming ojP(131' ... ,13m) =1= 0, Liouville's inequality thus yields

D m(1+6/2)(1-3e:)-(1+e:» ~ (4B(o:) )2(r1+.-+rm)[K:QJ.

Now, since we assumed 8 < 1 and e < 8/22, we get

(1 + 8/2)(1 - 3e) - (1 + e) < 8/2 - 11e/2 < 8/4,
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and hence

max {HKU~hrh} :::; DHe :::; (4B(0:»)8(r1+ ..+rm)[K:Q)(1+e)/6.
1~J~m

Selecting j such that rj = maxh=1 rh, we deduce that
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Choosing the constant C = C(Q,6) of hypothesis (5.1-iv) sufficiently large
(for example, C(o:, 6) = (4B(0:») (8/6)+4/11) suffices), we obtain the desired
contradiction, which concludes the proof of Proposition D.5.I. 0

D.6. The Index Is Small (Roth's Lemma)

In the last section we showed that the polynomial P, which vanishes to
high order at (0:, ... , 0:), also vanishes to fairly high order at (131, . .. ,13m)'
We now want to show that it is actually not possible for P to vanish to
high order at (131,' .. ,13m), which will give a contradiction to the existence
of infinitely many close approximations to Q.

For a polynomial of one variable, the idea is very simple. Suppose
that the polynomial P(X) E Z[X] has size bounded by IFI :::; Br, and
let I denote the index of P with respect to (pjq; r) for some rational num
ber pjq E Q. Then

OiP ( ~) = 0 for all i j r :::; I, by definition of the index,

==} (X _~) rI IP(X)

==} (qX - prI IP(X) Gauss's lemma

==} max{lpl, IqlrI
:::; IFI :::; Br since qrI divides the leading

coefficient of P, and prI divides the constant term of P

10gB
==} IndP = I:::; logH(pjq)

Hence IndP will be small if both H(pjq) and r are large. Notice that
one of the key steps is Gauss's lemma (see Lang [2, V, Corollary 6.2] or
Herstein [1, Theorem 3.10.1]), which asserts that if a polynomial with in
teger coefficients factors in Q[X], then it factors in Z[X]. We will use a
related, but more precise, result (Gelfand's inequality (B.7.3» in our proof
of Roth's lemma.
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Unfortunately, using a polynomial of one variable suffices to prove
only the elementary estimate of Liouville. And as soon as the polyno
mial contains more than one variable, the simple divisibility argument
given above no longer works. Thue [1) worked with a polynomial of the
form P(X, Y) = f(X) + g(X)Y. As preparation for the proof of Roth's
lemma, we will briefly sketch Thue's idea, which is to eliminate the vari
able Y and thereby reduce to the one-variable case.
Thus suppose that P(X, Y) = f(X) + g(X)Y has index I = IndP

with respect to ({3I ,(32j r, 1). This means that

for all i/r ~ I.

We now consider the Wronskian determinant, which is the polynomial in
one variable defined by

I
f(X) g(X) I

W(X) = det 8I1(X) 8
1
g(X) = f(X)81g(X) - g(X)8I1(X).

Differentiating the Wronskian determinant k times, one easily checks that

8k W = L (8d' 8j+lg - 8j +1f· 8i g).
i+j=k

On the other hand, we know from above that if i ~ r I and j +1 ~ r I, then

and

Eliminating 132 from these two equations gives

for all i ~ r I, j ~ r I - 1.

It follows that 8kW({3t} = 0 for all k ~ rI -1, which means that the index
ofW with respect to ({3I; r) satisfies

1
IndW > Ind P - -.- r

Now one can estimate the size of IWI and use the one-variable argument to
get an upper bound for IndW, thereby obtaining an upper bound for IndPj
this leads to an approximation exponent with value 1+ d/2.
The proof of the general case of Roth's lemma proceeds similarly

by induction on the number of variables. Thus starting with a polyno
mial P(X1, ... ,Xm ) in m variables, we take a determinant of derivatives
to form a new polynomial W(X1 , •.• , X m ) that factors as a product of



§D.6. The Index Is Small (Roth's Lemma) 331

the form V(Xl , ... ,Xm-l)U(Xm), Lemma D.3.2(c) tells us that IndW =
IndV + IndU, and then applying the inductive hypotheses to U and V
gives the desired bound. Needless to say, the estimates needed to make
this induction work are very delicate, and this brief summary has omitted
a number of crucial details, which we now begin to fill in.
Let fl (X), .. . , In(X) E K(X) be rational functions of a single vari

able. The classical Wronskian determinant of fl (X), . .. , In (X) is the func
tion

fl h In

dfl d/2 din

W(fl,··· ,In) = det dX dX dX

~-lfl ~-lh ~-lln

dXn-l dXn-l dXn-l

It is a standard theorem that the functions fl, ... ,In are linearly indepen
dent over K if and only if W(fl, ... , In) :f:. O. We will need a version of
the Wronskian determinant that applies to polynomials of more than one
variable.

Definition. The order 01 a differential operator

is the quantity order(Ll) = i l + ... + im .

Of course, for arithmetic applications it is often better to use operators
of the form

1 ai'+"+i""

i l !·· ·im !axt'·· .X~·
Now let <Pi,' .. , tPk E K(X) be rational functions over a field of character
istic O. A generalized Wronskian determinant of <Pi, ... , tPk is any determi
nant of the form

det((LlitPjhS;i.j$k),

where the differential operators Ll i satisfy order(Lli ) ~ i-I.

For example, if m = 1, then up to constants the only nontrivial gen
eralized Wronskian has Lli = d!--l jdXi- l , so will be equal to a constant
multiple of the classical Wronskian determinant. The following lemma gen
eralizes the older linear independence result.

Lemma D.6.1. Let <Pl, ... ,tPk E K(Xl, ... ,Xm) be rational functions
over a field of characteristic O. Then tPl,"" tPk are linearly indepen
dent over K if and only if there exists a nonzero generalized Wronskian
of tPl, ... ,<Pk.
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PROOF. We will prove that if ¢>1, ... , ¢>k are linearly independent, then
there exists a nonzero generalized Wronskian for them. This is the direction
that we will need for the proof of Roth's lemma. We leave the proof of the
converse as an exercise for the reader.
The proof is by induction on k, the number of functions. We suppose

that ¢>1, ... , ¢>k are linearly independent. For k = 1, the only generalized
Wronskian determinant is a constant multiple of 6.1¢>1 = ¢>l> since the
operator 6.1 has order zero. So for k = 1, Lemma 0.6.1 just says that ¢>1
is linearly independent over K if and only if ¢>1 f= o.

Assume now that we know that the lemma is true for any set of k - 1
functions, and suppose that ¢>1, ... , ¢>k are K -linearly independent. We
need to find a nonzero generalized Wronskian of ¢>l> ... , ¢>k. We observe
that if >. E K (X1, ... ,X m ) is a nonzero function, then any generalized
Wronskian det(6.i(>'¢>j)) of >'¢>1, ... , >"¢>k is a K(Xl> ... ,Xm)-linear com
bination of generalized Wronskians of ¢>1, ... , ¢>k. This is easily verified
using the product rule and the multilinearity of the determinant. So if
we can show that some generalized Wronskian of >"¢>l, , >"¢>k is nonzero,
then it will follow that some generalized Wronskian of ¢>1, , ¢>k is nonzero.
Taking>.. = 1/¢1, we have reduced to the case that ¢>l = 1.
Let

V = K¢>l +K¢>2 + ... +K¢>k C K(X1 , ... ,Xm )

be the K-linear span of ¢>l, ... , ¢>k. By assumption, we know that dimV =
k. In particular, ¢>2 ¢ K (i.e., ¢>2 is not a constant function, since ¢>1 = 1), so
after relabeling the variables, we may assume that the variable Xl appears
in ¢>2. In other words, we may assume that

8¢>2 ..t. 0
8X

1
r .

Define a K-vector subspace of V by

w = {¢> E V I::1 = o}, and let t = dimW.

We observe that ¢>l E W and ¢>2 ¢ W, so 1 ~ t ~ k - 1. Now choose a
basis 'l/Jl, ... ,'l/Jt for W, and extend it to a basis 'l/Jl, ... , 'l/Jk for V. By the
induction hypothesis, there are differential operators 6.i, ... ,6.; satisfying

and order(6.:) ~ i - 1.

Next we claim that the functions 8'I/Jt+d8Xl> 8'l/Jk/8Xl are K-
linearly independent. This is true because {'l/Jt+1, , 'l/Jk} is a K-basis
for the quotient space V/W, so

k 8'I/J. k2: c; 8X' = O:::::::} 2: C;'l/Ji EW :::::::} Ct+l = ... = Ck = o.
i=t+1 1 i=t+l
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So we can apply the induction hypothesis again to find differential opera
tors Ll;+l' ... ,Llksatisfying

det (Ll! a1/Jj ) i= 0
• aX} t+1~i,j9

and order(Ll;) ~ i - t - 1.

We want to fit these two determinants together, so we define differen
tial operators

{Lli if } ~ i ~ t,
Lli = Ll!!L- ift+} < i < k.• aXt - -

Note that order(Lli) ~ i - } for all 1 ~ i ~ k. Further, and this is crucial,
we have

This is true because 1/Jj E W for } ~ j ~ t. Hence we find that

-t-+ -k-t-+

o

T
t
1
T

k-t

1

= det(Lli1/Jjh9,j9' det (Lli:)
1 t+1~i,j~k

i= 0 from above.

This shows that 1/J1,"" 1/Jk have a nonzero generalized Wronskian. But
the functions ¢l. ... ,¢k and 1/J1,"" 1/Jk span the same K-vector space,
so 1/Jj = L.1. ajl.¢e for some invertible matrix (aje) with coefficients in K.
It follows that

and so det(Lli¢e) i= O. This concludes the proof of Lemma D.6.1. 0

We are now ready to begin the proof of Roth's lemma, which says that
the polynomial P(XI, ... , X m ) constructed earlier does not vanish to high
order at (PI, ... ,Pm). Although the proof is fairly lengthy, the essential
idea is to use Wronskians to eliminate a variable and then perform an
induction on the number of variables.
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Proposition 0.6.2. (Roth's lemma) Let m be a positive integer and
let P E Q[X1, ... , X m ] be a polynomial with algebraic coefficients and
degxh (P) :5 rho Let {3 = ({31, ... , (3m) be an m-tuple ofalgebraic numbers.
Fix a real number 0 < 'TJ such that

and

rh+l 2m - 1

-- :5 'TJ for all 1 :5 h :5 m - 1,
rh

(6.2-i)

(6.2-ii)

Then the index ofP with respect to ({31,"" (3m; rl,"" r m ) satisfies

IndP:5 2m'TJ.

Remark. In practice, TJ will be very small. (Indeed, if 'TJ ~ ~, then the
conclusion of the proposition is trivial, since we always have IndP :5 m.)
It follows from (6.2-i) that the degrees rl,r2, ... ,rm are very rapidly de
creasing, and then (6.2-ii) implies that the heights H({31), ... ,H({3m) are
very rapidly increasing. It is useful to keep these two properties in mind.

PROOF (of Roth's lemma). The proof is by induction on m, the number
of variables. To ease notation, for the remainder of this section we will let
K be a number field containing all the (3/s and the coefficients of P. We
also let

d=[K:Q].

We also recall that the height of a polynomial is defined to be the height
of its coefficients (B.7). So for example, if a polynomial F has coefficients
in Z, then HK(F) = Wid.
We begin with the case m = 1. To ease notation, we write {3 = (31

and r = rl. Let f. be the exact order of vanishing of P(X) at X = (3,
so P(X) = (X - (3)£Q(X) with Q(f3) # O. Note that the index of P
at ((3;r) is then IndP = f.lr. Using Gelfand's inequality (B.7.3), we find
that

which implies

IndP < 10gH(P) +r <
- r logH(f3) - TJ

using hypothesis (6.2-ii).

This completes the proof of Roth's lemma for polynomials of one variable.
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Remark. This is slightly better than the stated result. We get an up
per bound for the index equal to TI, instead of 2T1, and we needed only
rrr logH (,8) ~ logH (P) + r instead of ~ logH (P) + 2r. Later we will
make use of this observation to slightly sharpen our estimates when using
induction with m = 1.

We now assume that Roth's lemma is true for polynomials with strictly
fewer than m variables, and we prove it for a polynomial P(X1, ... , X m )

of m variables. We begin by writing P in the form

k

P(X1, ... ,Xm ) = L¢j(Xll ... ,Xm -d'l/lj(Xm ), (*)
j=1

where the ¢j's and 'I/Ij's are polynomials with coefficients in Q. There
are many such ways to decompose P, and among them, we choose one
for which k is smallest. That is, we choose a decomposition (*) with the
smallest number of summands. Since one possible decomposition (probably
not minimal) is to take '1/11 = 1, 'l/J2 = X m , 'l/J3 = X~, ... 'I/Ik = X~Tn, we see
that

k ::; r m + 1.

Claim D.6.2.1. The functions ¢1,"" ¢k appearing in the minimal de
composition (*) ofP (described above) are Q-linearly independent. Simi
larly, the functions 'l/J1, ... , 'I/Ik are Q-linearly independent.

PROOF (of Claim). Suppose that the ¢j's are linearly dependent, so there
is a nontrivial linear relation E Cj¢j = O. Relabeling if necessary, we may
assume that Ck ~ O. Then

k-1
~c·

¢k = - L., cJ ¢j,
j=1 k

contradicting the minimality of k. This proves that ¢1, ... ,¢k are linearly
independent, and the proof for 1/h, ... , 'l/Jk is the same. This concludes the
proof of the claim. 0

Define a polynomial U(Xm ) by
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This is the (classical) Wronskian determinant of 1/Jl,"" 1/Jk, so we know
from Lemma D.6.1 and the claim that U(Xm ) =1= O. Similarly, Lemma D.6.1
and the independence of <PI, ... ,cPk imply that we can find differential op
erators

1 a i1+··+iTn
t::.' = ----,.---.,. -----,----;--
• "1""" l'axil XiTn-l•. ·m-· 1'" m-l

with

order(t::.~) = i l + ... + i m - l ~ i-I ~ k - 1 ~ T m

such that the generalized Wronskian determinant satisfies

V(Xl , ... , Xm-d ~f det(A~cPjh:'5i,j~k=1= O.

We now define a polynomial W(Xl , , X m) and use the fact that the
differential operators t::.~ involve only Xl, ,Xm- l to compute

def (' ( 1 ai-I ) )W(Xl, ... ,Xm) = det t::.i ("-I)'--y=T P(Xl, ... ,Xm)
J . aXm l~i,j~k

( (
1 ai-I ) k )

= det A~ (. -I)! axj-l L cPr(Xl , ... ,Xm- l1/Jr(Xm)
J m r=l l<i '<k_ ,3_

(

k, 1 Bi-l1/Jr)
= det L AicPr . (j _ 1)1 axj-l

r=l m l~i,j~k

, ( 1 Bi-l1/Jr)
= det(t::.i<Prh~i,r~k . det (. _ 1)' j-l

J . aXm l~j,r~k

(matrix multiplication!)

= V(Xl , ... , Xm-l)U(Xm).

Thus the use of the Wronskian determinants allows us to create a poly
nomial W that is closely related to P and that factors into two polyno
mials each involving fewer variables than P. We also observe that W E
K[Xl , ... ,Xm ]. The remainder of the proof of Roth's lemma consists of
two basic steps.

Ii] Use induction, more precisely Roth's lemma in 1 and m - 1 variables,
to get an upper bound for the indices ofU and V, and use these values
to get an upper bound for the index ofW.

Iii] Relate the index ofW back to the index of P. More precisely, write a
lower bound for the index ofW in terms of the index of P.
We have already remarked that we may assume TJ ~ ~. We also note

that since U and V use disjoint sets of variables, it is clear from the defi
nition of height of a polynomial that

h(U) + h(V) = h(W).

10 order to apply Roth's lemma to U and V (with 1 or m - 1 variables,
respectively), we need estimates for their degrees and heights.
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Claim D.6.2.2. The following estimates are valid:
(a) degx", (U) :::; krm and degxj(V) :::; krj for all 1 :::; j :::; m-1.

(b) h(U) + h(V) = h(W) :::; k(h(P) + 2rl)'
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o

PROOF (of Claim). (a) Each determinant is of size k and the entries of V
(respectively U) have degree at most rj with respect to X j (respectively at
most r m with respect to X m ).

(b) The determinant is the sum of k! terms, each of which is a product of
k polynomials of degree at most r j with respect to X j and satisfying

Thus using (B.7.2), we obtain a bound

h(W) :::; k (h(P) + (rl + ... + r m ) log 2) + log(k!).
Now

(1 I 1m-I)' h ' 2",-1
Tl + ... + T m :::; Tl + 11 + ... + 11 WIt 11 = 11 .

Since 11 :::; ~ and m ~ 2, we have 11' :::; ~ and Tl + 0 •• + Tm :::; ~Tl' On the
other hand,

log(k!) 1
-k-:::; log(k):::; k-l:::; r m :::; 2T1'

and hence

h(W) :::; k ( h(P) + (~log 2 + ~) Tl) :::; k (h(P) + 2Tl) .

We note for future reference that the constant 2 (in front of Tl in the
last inequality of the claim) could be replaced by the smaller constant
Cl = ~ log 2+ ~ ~ 1.424.

We now use induction to bound the index of U, V, and W.

Claim D.6.2.3. If Roth's lemma is true for polynomials in m - 1 or
fewer variables, then

Inda... ,r_(U) <_ k...
2m

-
1
and Ind (V) < 2k(m 1)...2.!J... 0' ({31, ... ,{3m-l,rl,... ,r...-l) _ - 0"

and hence the index ofW with respect to ({31, ... ,(3m; Tl,' .. ,Tm) satisfies

IndW = Ind{3... ,r... (U) + Ind({31, ... ,{3m_l,rl, ... ,rm _l)(V)
:::; 2k(m - 1)112 + k112m

-
1

•
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PROOF (of Claim D.6.2.3). We want to apply Roth's lemma to V, a poly
nomial in m' = m - 1 variables, with rj = krj and 1]' = 1]2. We have
degxj (V) ~ rj from (D.6.2.2). We first check condition (6.2-i),

Next we check condition (6.2-ii),

djh({3j) = kdj h({3j) ~ k1]-2=-' (h(P) + 2mrl) = k1]'-2='-1 (h(P) + 2mrl).

Now we observe that the inequality h(U) ~ k(h(P) + 2rl) implies that
k(h(P) + 2mrl) ~ h(U) + 2m'krl, which completes the verification of
condition (6.2-ii). By induction we conclude that

We now want to apply Roth's lemma in one variable to U with 1]" = 1]2=-'
and r" = krm . We have degx= (U) ~ r~, from (D.6.2.2). Note that
condition (6.2-i) is empty when m = 1, so we only need to check condition
(6.2-ii), for which purpose we may use the improved version of Roth's
lemma in one variable. Thus

h(U) + r" ~ k(h(P) + cIrl) + krm ~ k(h(P) + 2rl)
~ 1]2=-' krmh({3m) = 1]"r"h({3m)

(where CI = t log 2+ ~ ~ 1.4242 and CI + 1]2=-' ~ CI + t ~ 2). We apply
Roth's lemma for a polynomial in one variable (which we already proved)
and conclude that

This completes the proof of the claim. o

The next step is to relate the index of W back to the index of P.
It is clear from the definition of W that if P vanishes to high order at a
point ({3I, ... , (3m), then the same will be true of every entry in the matrix
defining W, and so the same will be true for W itself. We need to quantify
this observation, as in the following result.

Claim D.6.2.4. With notation as above, we have

IndW ~ ~ min {IndP, (Indp)2} - k...!!!!:-.
2 rm-I
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PROOF (of Claim D.6.2.4). We begin by estimating the index of a typical
entry in the matrix for W with respect to (13l, ... ,13m; rl, ... , rm):

( (
1 Qi-l ))

Ind a~ (j _ I)! 8X/n-l P

= Ind8il, ... ,im_l,j- 1P

i l i m - l j - 1 fr ( )> Ind P - - - ... - -- - -- om lemma D.3.2 a
- rl rm-l r m

il + ... + i m - l j - 1
> Ind P - - -- since rl ;:::: r2;:::: ..• from (6.2-iii)
- rm-l r m

r m j-l
> Ind P - -- - --
- rm-l r m

since order(aD = i l + ... + im- l ::; i-I::; k - 1 ::; r m .

Now each entry in the lh column of the matrix defining W has the form
8il, ... ,im_l,i-1P, and W itself looks like

W = " (product of k polynomials, one from )
LJ each column of the matrix defining W .

k! terms

The previous calculation gives a lower bound for the index of each of the
entries in the matrix defining W. Hence the index of W with respect
to (131, ... ,13m; rl,···, r m) satisfies

{ (
product of k polynomials of the fOrm) }

IndW> min Ind . .
- k! terms in 8il, ... ,im_l,i-1P With J = 1,2, ... , k
sum for W

from Lemma D.3.2(b), which says

that Ind(L: Fi ) ;:::: min{IndFd
k

;:::: L. m~n Ind8il ,... ,im_loi-1 P from Lemma D.3.2(c), which
. tl,···,tm-l

J=l says that Ind(I1 Fi ) = L: Ind Fi

(N.B. It is crucial here to have a sum over j = 1, ... , k, rather than just
taking k times the minimum index of all entries in the matrix for W. We
will indicate below why this is so important.)
Substituting in the lower bound obtained above for Ind8il, ..• ,im_l,j-1P

in those cases where it is positive, we obtain

k { . 1 }r J-
IndW;:::: Lmax IndP-~ - --,0
j=lrm-1 r m

~ { j -1 } krm;:::: LJmax IndP- -r-' 0 - --.
j=l m rm-l
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Combining this with the upper bound for IndW given in Claim D.6.2.2
gives the fundamental inequality

~ { j -1 } krmL....Jmax Ind P - --,0 $ IndW + --.
. r m r m -l

J=1

It is clear that this inequality says that the index of P cannot be too
large. It suffices now to show that,

k ( '-1) kf; Ind P - J r
m

~ 2" min {Ind P, (lndP)2}.

We consider two cases.
k-l

Case 1. IndP>--- r m

In this case we obtain

t (IndP- j -1) = kIndP- (\-I)k ~ ~2 IndP,
. 1 ~ ~J=

where the last inequality follows from the assumption made in the case
under consideration, namely that Ind P ~ (k - 1)/ rm'

k-l
Case 2. Ind P < --

- r m

Let N = [rm IndP], so our assumption implies that N $ k - 1. Then our
fundamental inequality becomes

N+l ( . 1)L IndP- J r-
j=1 m

= (N + 1) IndP _ N(N + 1)
2rm

= (N + 1) (IndP - [rmIndP]) from definition of N
2rm

1
~ (N + 1) . 2" IndP

1
2: rm Ind P . 2" Ind P from definition of N

~ ~(Indp)2 if we have k :5 rm.

There remains the possibility that k = rm + 1. In this case the quantity
we wish to estimate is

N+l ( . 1) N(N + 1)
q(N):=f; Indp-Jr~ =(N+l)IndP- 2(k-l)'
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Notice that q(N) is a quadratic function of N. We now observe that

(k - 1) IndP - 1 ~ N ~ (k - 1) IndP,

while a straightforward computation gives

q((k _ 1) Ind P _ 1) = q((k _ 1) Ind P) = (k - 1)(Ind:)2 + Ind p.

341

Therefore, since Ind P ~ 1 (in the case we are considering), we find that

(
N» (k-1)(Indp)2+IndP > k(Indp)2

q - 2 - 2 '

which completes the proof of Case 2 and thus of Claim D.6.2.4. 0

We can now easily finish the proof of Roth's lemma using the up
per and lower bounds for IndW furnished respectively by Claims D.6.2.3
and D.6.2.4. Since IndP ~ m, we may use Claim D.6.2.4 to write

while Claim D.6.2.3 implies that

krm 2 2m - 1 krmIndW + -- ~ 2k(m - 1)1] + k1] + --
rm-l rm-l

~ k (2(m - 1)1]2 + 21]2m
-
1
) ~ k(21]2m ).

We deduce that (Ind P)2 ~ 41]2m 2, and hence Ind P ~ 2m1]. o

Remark. We note that in both Cases 1 and 2, it was essential to consider
the sum E(j-1)/rm = (k-1)k/2rm , rather than merely E k/rm = k2/rm .

The point is that no matter how the constants are adjusted, having an extra
factor of 2 would destroy the argument in at least one of the cases.

D.7. Completion of the Proof of Roth's Theorem

We have now assembled all of the pieces needed to complete the proof
of Roth's Theorem (D.2.1), or more precisely, to prove Theorem D.2.2,
which we showed was equivalent to Roth's theorem. For the convenience
of the reader, we restate the result we will be proving in this section as
Theorem D.7.1, although note that we have used 8 in place of c.
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Theorem D.7.1. (= Roth's theorem D.2.2) Let K be a number field,
let S C M K be a finite set ofabsolute values on K with each absolute value
extended in some way to K. Let Q E K and 6> 0 be given. Suppose that

~ : S -+ [0,1] is a function satisfying L ~v = 1.
vES

for all v E S.

Then there are only finitely many {3 E K with the property that

1
1I{3 - Qllv ~ HK({3)(2+C)ev (**)

PROOF. We assume that there are infinitely many solutions to (**) and
derive a contradiction. The basic strategy is as follows. We pick a large m
and take solutions (3l, ... ,13m to (**) satisfying certain conditions (namely
m is large, {3I has large height, {32 has height much larger than (31, etc.). We
use Proposition D.4.3 to produce a polynomial P(XI , ... , X m ) vanishing
to a high order at (Q, ... ,Q), we apply Proposition D.5.1 to show that the
index of the polynomial P at ({3I, ... , 13m; TI,·.·, Tm) is greater than mc:,
and we use Proposition D.6.2 (Roth's lemma) to show that the index is
(strictly) less than me:. This contradiction will show that (**) has only
finitely many solutions.
Since we will need to refer to the various conditions described in Propo

sitions D.4.2, D.5.1, and D.6.2, we list them here in somewhat abbreviated
form. The constant B(Q) is defined in Proposition D.4.3 and the constant
C(Q,6) in Proposition D.5.1:

(4.2-i)

(4.2-ii)

(4.2-iii)

(5.I-i)

(5.I-ii)

(5.I-iii)

(5.I-iv)

(6.2-i)

(6.2-ii)

ee
2
m/4 > 2(Q(Q) : Q].

m
Ind(P) :::: "2(1 - c:) with respect to (Q, ... , Q; TI,.'" T m ).

IFI ~ B(Qr1+···+r",.

6
0< c: < 22'

1
lI{3h - Qllv ~ HK({3h)(2+6)ev'

D:= min {H({3hrh}~ max {H((3hrh}~D1+e.
l::;h::;m l::;h::;m

H({3h) ~ C(Q,6) for 1 ~ h:$ m.

Th+l :$ WTh for 1 ~ h :$ m - 1.

log IFI + 2mTI ~ W log D.

Assume now that there are infinitely many solutions to the inequal
ity (**). Decreasing 6 only serves to make the theorem stronger, so we may
assume that 0 < <5 < 1. We are going to choose the quantities
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in the listed order as follows:

(1) Choose an c with 0 < c < 8/22. Then c satisfies (5.1-i); note also that
c < 1/22 < 1.

(2) Choose an integer m with e
g2m

/
4 > 2[Q(a): Q). Then (4.2-i) is true.

We define w = w(m,c) = (c/4)2m
-
1
, which implies 2w2-

m
+
1 = c/2 < c.

(3) Since by assumption (**) has infinitely many solutions in K, and
since K has only finitely many elements of bounded height, we can
find a solution (3I whose height satisfies

H({3d 2: C(a,8) and 10gH({3d 2: m(logB(a) + 2).
w

(4) We then choose successively f32, ... ,13m to be solutions to (**) satisfy
ing

HK({3h+I)W 2: HK({3h)2 for all 1 ~ h < m.
Notice that since w < 1, we will have HK({3h) 2: HK({3d. In fact,
the sequence of HK({3h)'S will be increasing, and hence (5.l-iv) will be
satisfied in view of the choice made in (3).

(5) Choose an integer rl satisfying HK({3dwr1 2: HK({3m)2.
(6) We want to choose r2, .. " rm in such a way that all of the HK({3hth 's
are approximately equal. So we define rl, ... , rm to be the integers

rh = rrI log HK({3I)l = rrI log H({3I)l.
10gHK({3h) 10gH({3h)

Here ftl denotes the ceiling of t, that is, the smallest integer that is
greater than or equal to t. In order to check conditions (5.l-iii), we
compute

rl log H K ({3d

~ rh logHK({3h) definition of rh and ftl 2: t
~ rIlogHK({3d + logHK({3h) definition of rh and ftl ~ t + 1
~ r l logHK({3d +10gHK({3m) since HK({3h)'S increase from (4)

~ (1 + c)r1logHK({3d from the choice of rl in (5).

Exponentiating gives (5.l-iii). Finally, we can verify property (6.2-i)
as follows:
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Hence Th+l ~ WTh, which verifies condition (6.2-i).
(7) Since m was chosen to verify (4.2-i), we can use Proposition 0.4.3
to produce a polynomial P(X1, ... ,Xm ) with degx

h
P ::::; Th satisfy

ing (4.2-ii) and (4.2-iii).
(8) We have verified above that our chosen quantities satisfy the four con
ditions (5.l-i), (5.l-ii), (5.l-iii), and (5.l-iv). Hence we can apply
Proposition 0.5.1 to conclude that

IndP 2: mE with respect to (/31, ... ,/3m; T1, ... ,Tm).

(9) We would like to apply Proposition 0.6.2 (Roth's lemma). We have
verified condition (6.2-i) with .,,2m

-
1

= W, so it remains to check con
dition (6.2-ii). We use the fact that

to compute

log /PI + 2mTl < (T1 + ... + Tm ) log B(o:) + 2mTl from (4.2-iii)
10gD 10gD

< m (log B(o:) + 2) since T1 > T2 > ...
- logH(/31)

~ W from the choice of /31 in (3).

This completes the verification of all of the conditions necessary to
apply Proposition 0.6.2 with." = w2 -

m
+

1 = c/4, so we conclude that

Ind P ~ 2m." = mE/2 with respect to (/3I, ... ,/3m; T1,' .. ,Tm).

We now observe that the lower and upper bounds for the index of P given
in (8) and (9) contradict each other. This completes the proof of The
orem 0.2.2 that (**) has only finitely many solutions. Then using the
reduction lemma (0.2.2.1), we conclude that Theorem D.2.1 (Roth's theo
rem) is also true.

o

Remark D.7.2. The proof of Roth's theorem is not effective. This means
that for a given 0:, it does not provide a method that is guaranteed to find
all /3 E K satisfying the inequality

Looking at the proof, it is easy to see why this happens. In order to arrive
at finiteness of solutions, we first assumed that there is a solution /31 whose
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height is very large. Note that we can specify how large it must be in terms
of quantities depending only on K, S, a, and 8. Then we assumed that
there is a second solution Ih whose height is much larger than that of /31,
namely HK(Ih) ~ HK(/3d2/ w • Note that we cannot determine how large
Ih needs to be until we find a /31- Similarly, the lower bound for the height
of f3a depends on the height of Ih, and so on. Therein lies the crux of the
problem. Suppose, for example, that there are actually no /3's satisfying
the inequality. In principle, that would be wonderful; but in practice, we
would never be able to rigorously demonstrate that there are none! This is
the reason that Roth's theorem is ineffective. And until some new method
of proof becomes available, it is likely to remain so.
Although Roth's theorem is ineffective, it is possible to give explicit

bounds for the number of solutions. The reason this can be done is that
the /3's satisfy a gap principle, which means that their heights grow very
rapidly. (See Exercises D.I2 and D.I3.) Intuitively, this lets one bound the
maximum number of solutions between the unknown /3r's without knowing
the values of the (possibly nonexistent) /3r's. The first result giving a
bound for the number of exceptions to Roth's theorem is due to Davenport
and Roth [1], and subsequent improvements have been made by Lewis and
Mahler [1], Mignotte [1], Bombieri and van der Poorten [1], Silverman [3],
and R. Gross [1]. The following is a typical result. We will not give the
proof, but see Exercises D.I4 and D.I5, as well as the cited references.

Theorem D.7.3. Let K, S, a, and 8 be as in the statement of Roth's
theorem. There are effective constants C1 and C2 , depending only on the
numbers [K(a) : Q] and 8, such that there are at most 4card(S)C2 numbers
/3 E K satisfying the simultaneous inequalities

D.8. Application: The Unit Equation U + V = 1

In this section we begin to reap the rewards for having taken the time to
prove Roth's theorem. As our first application, we will show that the two
variable S-unit equation has only finitely many solutions. Then we will
use this result to prove that a hyperelliptic curve has only finitely many S
integer points and that a rational function with at least three poles takes
on only finitely many S-integral values. In the next section we will use a
bit more machinery to extend this last result to algebraic curves of higher
genus.
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1

IVlw

Theorem D.8.!. (Siegel, Mahler) Let KIQ be a number field, let S C
M K be a finite set of absolute values on K that includes all the archime
dean absolute values, and let Rs be the ring of S-integers of K. Then
the S-unit equation

U+V=I

has only finitely many solutions in S-units U, V E R'S.

Remark D.8.!.!. The original proof of Theorem D.8.I, in the case that
the ring Rs is the ring of integers of K, is due to Siegel [1]. Subsequently
Mahler [1,2] gave the generalization to p-adic absolute values. Both Siegel
and Mahler used their results as an intermediate step in proving that there
are only finitely many integral points on certain curves. The importance
of the unit equation as an object of study was pointed out by Lang [1]'
who also generalized Siegel's and Mahler's finiteness theorems to finitely
generated fields.

Remark D.8.!.2. Using the fact that R'S is a finitely generated group,
we can see why the theorem "should" be true. We are looking at the
group variety Gm x Gm , and inside this group variety we are looking at
the intersection of the finitely generated group R'S x R'S and the proper
subvariety {U +V = I}. It is thus unlikely that there should be very many
points of the group lying on the subvariety. The theorem asserts that there
are only finitely many such points.

To help the reader understand the ideas underlying the proof of The
orem D.8.1, we now briefly sketch the argument. Suppose that there are
infinitely many solutions (U, V) E R'S to the S-unit equation U + V = 1.
We want to use Roth's theorem to derive a contradiction. How can we
relate the solutions (U, V) of the unit equation to Diophantine approxima
tion and Roth's theorem? The fact that U and V are S-units means that
there is some absolute value w E S for which IUlw and IVlw are large. We
then find that

is small, so UIV is a good approximation to 1. Of course, this naive
inequality does not contradict Roth's theorem. So we use the finite genera
tion of R'S to replace U and V by aXm and bym for some large integer m.
Then we show that XI Y is almost as close to v'-bI a as UIV is to 1, while
the height HK(XIY) is approximately HK(UIv)l/m. In other words, by
taking mth-roots, we make the height much smaller without affecting the
approximating distance too much. Taking m large enough will then con
tradict Roth's theorem.

PROOF (of Theorem D.8.1). Suppose that there are infinitely many solu
tions (U, V) E R'S to the 8-unit equation U + V = 1. We will derive a
contradiction. Let s = #8 be the number of absolute values in 8, and fix a
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"large" integer m. For example, m = 28+1 will suffice. The unit group R'S
is finitely generated, so the quotient group R'S/ R'Sm is finite. Fix a set of
coset representatives A for R'S/ R'Sm. Then every element in R'S can be
written uniquely as an element ofA multiplied by an mth power, so we can
define a map

{(U, V) E R'S x R'S IU + V = I} ---+ A x A.,
(U, V) 1----+ (a, b) with U/a, V/b E R'Sm.

By assumption, the set on the left is infinite, while A is finite. The
pigeonhole principle says that we can choose some a, b E A such that
there are infinitely many (U, V)'s that map to (a, b). Writing U/a = X m

and V /b = ym, this shows that there exists some a, b E A such that the
equation

aXm+bym = 1

has infinitely many solutions X, Y E Rs.We will derive a contradiction by
showing that X/Y is too good an approximation to \I-b/a.
The set S contains only finitely many absolute values, so applying the

pigeonhole principle again, we can find an absolute value w E S such that
the equation aXm + bym = 1 has infinitely many solutions (X, Y) with

IlYllw = maxi IlYllv Iv E S}

(i.e., the pigeons are the solutions (X, Y), the pigeonholes are the elements
of S, and we assign a pigeon (X, Y) to a pigeonhole by choosing the v in S
that maximizes IIYIIv).
To ease notation, we fix an mth-root 0 = \I-b/a. Then

where the product is over all mth-roots of unity. Clearly, if Y has large
absolute value, then at least one of the factors X/Y - (0 must be small.
We claim that only one of them can be very small.
To see this, let (, (' E IJ.m be distinct mth-roots of unity and use the

triangle inequality to compute

I~ -(Olw +I~ -('Olw 2: I('o-(olw 2:Cl.
Here the constant C l = Cl(K, S, m) can be chosen in terms ofK, S, and m,
independently of X and Y. (In principle, C l also depends on a and b. But a
and b are chosen from a set of coset representatives for RslR'Sm, so they
may be determined by S.) It follows that

~ = II IX - (01 2: (min IX _(01 ). (Cl)m-l,
laY Iw Y w (E/-,,,, Y w 2

C;E/-'",
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since all but one of the terms in the product must be greater than Cd2.
Hence

lIyll1~ ~ C2l~~~ II~ - ,aL'
where the constant C2 = C2(K,S,m) depends on K, S, and m.
We invoke the pigeonhole principle one more time, again with pi

geons (X, Y), but this time the pigeonholes are the mth-roots of unity.
We assign a pigeon (X, Y) to the pigeonhole , E fJ-m that minimizes
II(X/Y) - 'allw' Some pigeonhole, call it ~, will have infinitely many pi
geons. Hence there are infinitely many solutions X, Y E Rsto the equa
tion aXm + bym = 1 satisfying

This shows that X/Y is a good approximation to ~a. In order to apply
Roth's theorem, we must relate IlYllw to the height of X/Yo
The absolute value w was chosen to maximize IIYllv. Since we also

have IIYllv = 1 for all v ¢. S, it follows that

( )
1/8 ( )1/8IIYllw = ~:: IlYllv ~ II IlYllv = II IlYllv = HK(y)1/8.

vES vEMK

Further, using elementary properties of height functions, namely

H(x + y) S 2H(x)H(y) and H(xy) S H(x)H(y)

(see Exercise B.20), and the fact that (X, Y) is a solution ofaXm +bym =
1, we compute

Taking mth roots and using the fact that HK(Tm) = HK(T)m, we find
that there is a constant C3 = C3 (K, S, m) such that

Combining this with the bound for HK(Y) given above, we obtain
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We showed above that IjllYlI~ ;?: C2 11XjY - eall w , so using the esti
mate for 11Y11w, we get

with Cs = Cs(K,S,m) = IjC2C4'. Our assumption is that there are
infinitely many X, Y E Rssatisfying this inequality. We now recall that we
chose m = 28+1, so Roth's Theorem (0.2.1) tells us that this last inequality
has only finitely many solutions in K. This contradiction concludes the
proof of Theorem 0.8.1. 0

Theorem 0.8.1 says that the equation U + V = 1 has only finitely
many solutions U, V E Rs.The following quantitative version, whose proof
is beyond the scope of this book, gives a very strong upper bound for the
number of solutions. Notice that the bound depends only on the degree
of Kover Q and on the number of places in S. It is independent of A, B,
and the particular places in S.

Theorem D.8.2. (Evertse [1]) Let KjQ be a number field, let S C MK

be a finite set ofabsolute values on K that includes all archimedean absolute
values, and let Rs be the ring ofS-integers ofK. Then for any A, BE K*,
the S-unit equation

AU+BV= 1

has at most 3· 7[K:!Q)+2#S solutions in S-units U, V E Rs.
We will now give Siegel's proof that a hyperelliptic curve has only

finitely many integer points. Although this result will be superseded by
Theorem 0.9.1 in the next section, the proof by reduction to the S-unit
equation is instructive. Further, the effective solution of the S-unit equa
tion using linear forms in logarithms leads to effective bounds for the size
of integer points on hyperelliptic curves. The reader should note how the
proof uses the two fundamental finiteness theorems of algebraic number
theory, namely the finiteness of the ideal class group and the finite gener
ation of the unit group (whose proofs were given in Part C, Section 3).

Theorem D.8.3. (Siegel) Let KjQ be a number field, let S C MK be a
finite set ofabsolute values on K that includes all the archimedean absolute
values, and let Rs be the ring of S-integers of K. Let f(X) E K[X] be
a polynomial of degree at least 3 with distinct roots (in f<). Then the
equation

y 2 = f(X) has only finitely many solutions X, Y E Rs.

PROOF. Note that the statement of the theorem becomes stronger if we
replace K by a finite extension or replace S by a larger set of absolute
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values. So we begin by taking an extension of K over which f(X) factors
as

f(X) = a(X - ad(X - (2)'" (X - an) with aI, ... ,an E K.

By assumption, n ~ 3 and the ai's are all distinct.
Next we increase the size of S so that thp. following three conditions

are true.

(i) a E R'S and aI,·" ,an E Rs.
(ii) ai - aj E R'S for all i =I j.
(iii) Rs is a principal ideal domain.

Clearly, conditions (i) and (ii) only require us to add a finite number of
primes to S. The same is true of condition (iii), since in any case the ideal
class group of Rs is finite, and it suffices to add to S one prime ideal from
each ideal class. (If you do not want to use Dirichlet's theorem on primes
in arithmetic progressions, just take one ideal a from each ideal class and
add to S all of the prime ideals dividing aj see, for example, Lemma C.3.7.)
For later use, we will also define a field L / K by

L = K (VU IU E Rs).
It is vitally important to observe that L is a finite extension of K. This
is true because L is generated by the square roots of coset representatives
for R'S/ R'S2 , and we know that R'S /Rs2 is finite by Dirichlet's unit theorem.
We let T C M L be the set of places of L lying over S, and we write RT for
the ring of T-integers in L.
We now begin the proof of Theorem 0.8.3. Suppose that X, Y E Rs

is a solution to the equation y 2 = f(X). We observe that if p is a prime
ideal in Rs and if p divides X - ai, then for any j =I i we have

X - aj = (X - ad + (ai - aj) == ai - aj ¢ 0 (mod p).

(The fact that ai -aj ¢ 0 (mod p) follows from property (ii) above.) Hence
at most one of the X - ai's can be divisible by p.
On the other hand, the product of the X - ai's is equal to a- I y2,

and a is a unit, so the highest power of p dividing the product must have
even exponent. It follows that every prime dividing the ideal (X - ai)Rs
must divide it to an even power. Therefore, there are ideals ai C Rs such
that

(X - ai)Rs = a~ for aliI:::; i :::; n.

Property (iii) says that Rs is a principal ideal domain, so a; = ZiRs
for some Zi E Rs. Hence there are units UiE R'S such that X -ai = UiZ;,
To recapitulate, we have shown that
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It is now apparent why we defined the field L, because in L the unit Ui

becomes a square, say Ui = Vi2 • Thus we have

X - D:i = Vi2Z; = Wi
2 for some Wi E RT,

where we have set Wi = ViZi. Taking the difference of two of these equa
tions then gives

But condition (ii) says that D:j - D:i is a unit in Rs, so we conclude that
both Wi - Wj and Wi + Wj are units,

Wi - Wj ,Wi + Wj E RT for all i =f:. j.

We now use the fact that f(X) has degree at least three to write down
the identity

WI - W2 + W2 - W3 = 1.
WI - W3 W1 - W2

(This is sometimes called Siegel's identity.) Each of the terms on the left
hand side is a unit in RT' so Theorem 0.8.1 tells us that each can take on
only finitely many values. Similarly, the identity

WI + W2 + W3 + W2 = 1
W1 -W3 W3 -W1

and Theorem 0.8.1 tell us that each of the terms in this equation can take
on only finitely many values. It follows that there are only finitely many
possible values for the quantity

Therefore, there are only finitely many possible values for WI - W3, so
finitely many for

and so finitely many for D:l +Wf = X. Finally, for a given X, there are at
most two possible values for Y, which completes the proof that y 2 = f(X)
has only finitely many solutions X, Y E Rs. 0

Using a similar argument, we investigate when a function on ]pI can
assume infinitely many integral values. The reader should compare this
result with Theorem 0.9.1 in the next section, which deals with curves of
genus greater than zero.
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Theorem D.8.4. (Siegel) Let K/Q be a number field, let S C MK be a
finite set ofabsolute values on K that includes all the archimedean absolute
values, and let Rs be the ring of S-integers of K. Let G/K be a curve of
genus zero, and let ¢ E K(G) be a rational function on G with at least
three distinct poles (in G(K)). Then there are only finitely many rational
points T E G(K) satisfying ¢(T) E Rs.

PROOF. If G(K) = 0, there is nothing to prove. So we may take G = pI
and write ¢ = I(x, y)/g(x, y) using homogeneous polynomials I, 9 E K[x, y]
of the same degree with no common roots (in pI (K)). Taking a finite
extension of K and adding finitely many primes to S, we may assume that
the following conditions are true.

(i) I and 9 factor completely in K,

1= a(x-aly)d, ... (x-amy)d"" 9 = b(x-/hy)e 1
••• (x-{3nyyn.

(If ¢ has a zero or pole at [1,0], then one of lor 9 may also have
a yd factor.)

(ii) a,b E R'S and al,···,am,{3ll ... ,{3m E Rs.
(iii) ai - (3j E R'S for all 1 ::; i ::; m and 1 ::; j ::; n.
(iv) Rs is a principal ideal domain.
Now suppose that T E Pl(K) has the property that ep(T) E Rs. We

write T = [X, Y] with gcd(X,Y) = 1, which we can do because Rs is a
principal ideal domain. Note that for any i, j we have

and
(X - aiY) - (X - (3jY) = (ai - {3j)Y

-(3j(X - aiY ) + ai(X - (3jY) = (ai - {3j)x.

We know from (iii) that ai - (3j is a unit, and we have chosen X and Y to be
relatively prime. It follows that X - aiY and X - fJjY are relatively prime.
But I(X, Y) = n(X - aiy)d, and g(X, Y) = n(X - (3jy)ej , so I(X, Y)
and g(X, Y) are relatively prime in Rs.
On the other hand, we are assuming that ¢(T) = I(X, Y)/g(X, Y) is

in Rs, which means that g(X, Y) divides I(X, V). It follows that g(X, Y)
is a unit, g(X, Y) E R'S, and so each of the X - {3jY's is in R'S. We are
further assuming that 9 has at least three distinct roots, so we can consider
Siegel's identity

f32 - fJ3 . X - {31Y _ {33 - fJl . X - {32Y = 1.
f32 - {31 X - fJ3Y f32 - fJl X - {33Y

Both terms on the left-hand side are units, so Theorem D.S.l tells us that
they can assume only finitely many values. Finally, if we fix a value for
(X - fJIY)/(X - fJ3Y) = "(, we have (1 - "()X = (fJl - "({33)Y, so we get
only one point

T = [X, Y] = [fJl - "({33, 1 - ,,(].



§D.9. Application: Integer Points on Curves 353

(Note that this is a well-defined point, since (3i :j:. (33.) Hence there are
only finitely many T E JlPi(K) with tjJ(T) E Rs. 0

D.9. Application: Integer Points on Curves

In this section we will give Siegel's proof that an affine curve of genus at
least 1 has only finitely many integer points. We begin by setting the
following notation, which will be in effect throughout this section.

K/Q a number field.

Rs the ring of 8-integers in K for a finite set of places 8.

8 = #8, the number of places in 8.

C / K a smooth projective curve of genus 9 defined over K.

f a nonconstant function f E K (C).

Siegel's Theorem D.9.l. Assume that C has genus 9 ~ 1. Then the
set

{P E C(K) If(P) E Rs}

is finite.

Before beginning the proof of Siegel's theorem, we make two quasi
historical remarks.

Remark D.9.2.l. Our proof of Siegel's theorem (0.9.1) will use Roth's
theorem. In the 19208, when he proved his theorem, Siegel had available
only the weaker result that an algebraic number a of degree d has approx
imation exponent r(a) ~ 2v'd, so his original proof was somewhat more
complicated. Further, he considered only archimedean absolute values, so
his ring Rs was the ring of integers of K.

Remark D.9.2.2. Theorem 0.9.1 together with Theorem 0.8.4 can be
reformulated as follows. Let U be an affine curve of genus 9 with 8
points at infinity. In other words, if (; is the normalization of U and C a
smooth projective curve that is birational to U, then C has genus 9 and
s = card(C ...... U). Then Theorems 0.9.1 and 0.8.4 say that

29 - 2+8> 0 ==} U(Rk,S) is finite.

Notice that the quantity 2 - 29 - 8 can be viewed as the Euler-Poincare
characteristic X(U) of U. Thus the negativity of the very coarse geometric
invariant X(U) implies a deep arithmetic finiteness property of U.

If9 ~ 2, then Siegel's theorem is in some sense superseded by Faltings'
theorem (ne the Mordell conjecture), which asserts that the set C(K) itself
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is finite. In fact, Siegel's theorem for curves of genus 0 (with at least 3
points at infinity) or genus 1 (with at least 1 point at infinity) may also be
deduced from Faltings' theorem (see Exercise E.ll). However, the proof
of Siegel's theorem is an instructive lesson in the use of geometry to prove
arithmetic results, so it well warrants inclusion here.

A curve of genus 1 is an abelian variety of dimension 1, so Siegel's
theorem says that an affine piece of an abelian variety of dimension 1 has
only finitely many S-integral points. Lang conjectured that the same should
be true for abelian varieties of arbitrary dimension, and Faltings used an
adaptation of Vojta's method to prove Lang's conjecture. See Part F and
especially Section F.5.3 for further comments.

We begin our proof of Siegel's theorem (D.9.l) with a version of Roth's
theorem for curves.

Proposition D.9.3. With notation as described. at the beginning of this
section, we let e be the maximum order of the zeros of I, we fix a constant
c > 0, and we choose a function t E K(C) that is defined. and unramified. at
all zeros and poles of I. Then there exists a constant c = cU, t, C, c, S) > 0
such that

II min{ III(P)lIv, I} ~ C (2+E:)se
vES HK(t(P))

PROOF. Write the divisor of I as

for all P E C(K).

for some effective divisor E > O. Notice that QI, ... ,Qr are the distinct
zeros of I and that e = max{ei}'

Suppose that the proposition is false. This means that there is a
sequence of points PI, P2, ... E C (K) such that

We also observe that

so substituting this in and taking sth_roots gives

The height HK(t(Pi )) goes to infinity, since C(K) has only finitely
many points of bounded height. Hence we can find an absolute value w E S
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and a subsequence of the Pi's (which by abuse of notation we again denote
by PI, P2 , ••• ) such that

In particular, Ilf(Pi )1Iw - 0, so eventually each Pi must be close to one of
the zeros of f in the w-adic topology. Taking a subsequence of the Pi'S, we
may assume that

in the w-adic topology

for some fixed zero Qj of f.
The function t - t(Qj) is a uniformizer at Qj, and f vanishes to order ej

at Qj, so the function
(t - t(Qj))-e j f

has no zero or pole at Qj. This means that it is w-adically bounded in
a sufficiently small w-adic neighborhood of Qj. In particular, there are
constants CI, C2 > 0 such that

for all sufficiently large i.

It follows from above that

But e is the largest of the ej's, so we find that

This says that the rational numbers t(PI ), t(P2 ), ••. E K closely approxi
mate the algebraic number t(Qj) E K. In fact, they approximate so closely
that they contradict Roth's theorem (D.2.1). This contradiction completes
the proof of Proposition D.9.3. 0

The next step is to show that the exponent se(2 + e) in Proposi
tion D.9.3 can be replaced by any positive exponent, provided that we
assume that C has positive genus.

Proposition D.9.4. With notation as described at the beginning of this
section, choose a function t E K(C) that is defined and unramified at all
zeros and poles of f, and let p > 0 be a positive constant. Assume that C
has genus 9 ~ 1. Then there exists a constant c = cU, t, C, p, S) > 0 such
that

for all P E C(K).
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PROOF. We begin with a brief sketch of the ideas underlying the proof. We
know from (D.9.3) that the result is true for some exponent, specifically
p = e(f)s(2+e), where e(f) is the largest order of vanishing of f. The idea
of the proof is to find a covering </J : G' ~ G such that there are rational
points pi E G'(K) lifting the rational points P E G(K). Then

Ilf(</J(pl))llv = IIf(P)llv'

On the other hand, for an appropriate function t' E K(G' ) we will find that

If we apply (D.9.3) to G' , f 0 </J, and t' , we find that

II min{lIf 0 </J(PI)llv, I} ?: (' I )Ce(fO¢)8(2+E) for all pi E G'(K),
vES HK t (P)

so in terms of G we obtain

II mini Ilf(P)lIv, I} ?: (( r(fO:)8(2+E)/ deg(¢) for all pi E G'(K).
vES HK t P)

Now by taking the degree of </J very large, we can make the exponent as
small as we like, provided that the orders of the zeros of f 0 </J are not much
greater than the orders of the zeros of f. A priori, it might happen that </J
is totally ramified at some zero Q of f, in which case

ordQ' (f 0 </J) = (deg </J) ordQ (f) (where </J(Q') = Q).

This would vitiate the argument, so we have to prevent it from happening.
We will use the multiplication-by-m map on the Jacobian of G to find </J's
that are everywhere unramified, thereby ensuring that fo</J does not vanish
to higher order than f.
We are now ready to begin the proof of Proposition D.9.4. We will

suppose that the proposition is false and derive a contradiction. So we
suppose that there is a sequence of points Po, PI, P2 , ••. E G(K) such that

HK(t(Pi))P IImini IIf(Pi )lIv, I} $ C

vES

We fix an embedding

for all i = 0, 1,2, ....

j:G~J=Jac(G)

defined over K. For example, we could use j(P) = Cl(P - Po). Using
this embedding, we will treat G as a subvariety of J. We also fix a large
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integer m that will be specified later. (In fact, any integer m > 1+ 6ejp
will suffice.)
The weak Mordell-Weil theorem (C.O.2) says that the quotient group

J(K)jmJ(K) is finite, so replacing {Pili?1 with a subsequence, we may
assume that every Pi has the same image in J(K)jmJ(K), say

Pi =mP: +R for all i = 1, 2, ....

Here R E J (K) is some fixed rational point on J.
Consider the map

<P: J --+ J, X 1---+ mx + R.

Let G' be the curve G' = <p-I (G). Notice that the points P{, P~, . .. are
in G'(K). FUrther, the map <P is unramified, so its restriction to G' ,

¢: G' --+ G,

is also unramified. By construction, we have a commutative square

j'
G' '---+ J

where the vertical maps are unramified and j' is the natural inclusion of G'
in J. In particular, and this is the crucial attribute of this construction,
the fact that ¢ is unramified implies that

ordp'(f 0 ¢) = ord",(p,) (f) for all points P' E G'.

Hence e(f 0 ¢) = e(f), where as usual we are writing e( . ) for the highest
order of vanishing of a function.
Let D E Div(J) be a very ample symmetric divisor on J. Then j*D is

very ample on G, and j'*D is very ample on G', so we can choose functions
t E K(G) and t' E K(G') associated to j*D and j'* D, respectively. This
means that the map t : G -4 ]pI satisfies t* (00) rv j*D, and similarly for t',
so we obtain the height relations

h(t(P)) = hC,j"D(P) + 0(1) for all P E G(K),

h(t'(P')) = hC',jlOD(P') + 0(1) for all P' E G'(K).
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Next we do a height computation on J to compare hJ,Doj with hJ,Doj'.
For all P' E G'(K),

from (B.3.2b) again

from above.

2

= ~ hJ,D(j'(P')) + 0(m2)
2

= ~ hC,jfO D(P') + 0(m2)
2

= ~ h(t'(P')) + 0(m2)

h(t(q,(P'))) = hC,jOD(q,(P')) + 0(1) from above
= hJ,D(j(q,(P'))) + 0(1) functoriality (B.3.2b)

= hJ,D(j(q,(P'))) + 0(1) from (B.5.1a)

= hJ,D (c'P(j' (P'))) + 0(1) since j ° q, = c'P °j'
= hJ,D([m](j'(P')) +R) + 0(1) definition of c'P
1· .

~ 2hJ,D([m](j'(P'))) - hJ,D(R) + 0(1) see belowt

m 2 •
= ThJ,D(j'(P')) + 0(1) from (B.5.1b)

(the 0(1) depends on R)

from (B.5.1a) again

The inequality marked with a t is a special case of an elementary inequal
ity that says that for any positive definite quadratic form ~ and any real
number t > 0,

~(x + y) = (1 - t-2)~(X) - (t2 - 1)~(y) + ~(t-lx + ty)

~ (1 - C2)~(X) - (t2 -1)~(y).

We have merely used this estimate with t = J2 and ~ = hJ,D.
Exponentiating the above height inequality yields

for all P' E C'(K).

We have written the constant as "-m to emphasize that it depends on the
choice of m. So at some point we will have to fix a value for m that is
independent of the sequence of points P{, P~, ... E G'(K).
Combining all of the estimates derived above, we compute

c ~ HK(t(Pi)t II min{llf(Pi)lIv, I} by assumption
vES

= HK(t(¢(PD))P II min{lIf(q,(Pf))lIv, I} since Pi = ¢(Pf)
vES

~ "-mHK(t'(pf)t
m2

/
2 II min{lIf(q,(Pf))lIv, I} from above

vES
~ "-mHK(t'(Pf.) )pm2

/2 . c'HK(t'(Pf)) -(2+E)se(fo¢)

from (D.9.3) applied to G', f °¢, and t'.
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Now we use the crucial fact that ¢ is unramified, so e(f 0 ¢) = e(f) is
independent ofm. This means that we have the inequality

for all i = 1,2, ....

The constant e" depends on m, but it is independent of i. On the other
hand, the height H K (t' (PI)) goes to infinity as we let i - 00, so the
exponent cannot be positive. Hence

pm2/2 $ (2 + e)se(f).

This holds for every m 2: 1, and the right-hand side is independent of m,
since we can take c = 1, for example. Therefore, p $ O. This contradicts
our original choice of p > 0, which completes the proof of Proposition D.9.4.

o

With Proposition D.9.4 at our disposal, the proof of Siegel's Theo
rem D.9.1 is easy.

PROOF (of Siegel's theorem (D.9.1)). We assume that the set

{p E C(K) If(P) E Rs}

is infinite and derive a contradiction. Fix a function t E K(C) that is
defined and unramified at all zeros and poles of f, and let p = deg f /2 deg t.
(Actually, any p satisfying 0 < p < deg f / deg t will do.) Our first step is
to apply Proposition D.9.4 to the function 1/f. We find that there exists
a constant Cl > 0 such that

A small amount of algebra then gives

HK(t(P))P 2: Cl II max{lIf(P)lIv, I}
vES

for all P E C(K).

for all P E C(K).

Next we observe that if f(P) E Rs, then Ilf(P)llv $ 1 for all v f/. S,
so the height of f(P) is given by

HK(J(P))= II max{llf(P)lIv,l} = II max{lIf(P)lIv, I}.
vEMK vES

Combining this with the previous inequality gives

for all P E C(K) with f(P) E Rs.
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Now we take logarithms and divide by the degree [K : Q] to obtain an
estimate in terms of logarithmic heights,

ph(t(P)) 2: h(J(P)) - C2 for all P E C(K) with f(P) E Rs.

for all P E C(K) with f(P) E Rs.

Recall that we chose p to equal deg f /2 deg t, so dividing by h(t(P)) yields

deg f > h(J(P)) _ C2

2degt - h(t(P)) h(t(P))

Finally, we make use of (B.3.5), which says that

lim h(J(P))=degf.
PEC(K) h(t(P)) degt

h(t(P»-+oo

So if there were infinitely many points P E C(K) with f(P) E Rs, then
we could take a limit of such points with h(t(P)) --+ 00, in which case our
inequality becomes

degf degf
-->-
2degt - degt·

This contradiction shows that there are only finitely many points P E C(K)
with f(P) E Rs, which completes the proof of Siegel's theorem (D.9.I).

o

Remark D.9.5. The proof of Roth's theorem being ineffective, the proof
of Siegel's theorem that we have given is also ineffective. For many (but
not all) curves, Baker's theorem, which provides lower bounds for linear
forms of logarithms, can be used to make Siegel's theorem effective, as we
now briefly describe. For further details, see Baker [1] or Serre [3].
Building on the method pioneered by Baker, Feldman [1] has shown

that for all algebraic numbers a of degree d 2: 3, there exist two effectively
computable constants C = C(a) and c = c(a) > 0 such that for all rational
numbers p/q E Q,

la-EI >~.q - qd-c

Unfortunately, c is quite small.
Baker's theorem says the following. Let ai, ... ,am be algebraic num

bers. Then there is an effectively computable constant c = c(ai, ... ,am)
such that for all integers bi , ... , bm with maxi Ibil ::; B, either

or

Note that the elementary Liouville inequality gives only

la~l .. ·a~ -112: exp(-c'B),
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so Baker's theorem provides an exponential improvement.
Baker's result can be used to study the unit equation by choosing

a set of generators Q:1>"" Q:m for the unit group and writing all units
in the form Q:~1 ••• Q:~ • In this way Baker was able to prove effective
bounds for the solutions to the unit equation (D.8.I), and hence for any
Diophantine equation or problem that can be reduced to the solution of
the unit equation. This includes, for example, the problem of integral
solutions to the hyperelliptic equation y2 = f(X) (cf. Theorem D.8.3), to
so-called superelliptic equations of the form yn = f(X) (see Exercise D.6),
and to integral values of functions with at least three poles on curves of
genus 0 (cf. Theorem D.8.4). The method also leads to an effective bound
for the height of integral points on affine curves of genus 1, since these can
be reduced to integral solutions of hyperelliptic equations. However, the
method does not (at present) give an effective bound for integral points on
an affine curve of genus 2 or greater, even if the curve is hyperelliptic, since
integral points are not preserved by general birational transformations.

EXERCISES

D.l. (a) Prove that almost all real numbers (in the sense of measure theory)
have approximation exponent 2. That is, prove that for every c > 0, the
set

{ 0: E lR : I~ - 0:1 ::; q2~& has infinitely many solutions ~ E Q}
is a set of Lebesgue measure zero.
(b) More generally, let F : N -+ lR be any real-valued function on the
positive integers with the property that the series E >1 q/F(q) converges.
Prove that the set q-

{o: E lR : I~ -0:1 ::; F~q) has infinitely many solutions ~ E Q}
has measure zero.

Remark. Notice that Roth's theorem (D.2.1) says that the set in (a)
contains no algebraic numbers. Lang has conjectured that the same is true
for the set in (b). For example, this should be true for F(q) = q2(logq)l+&
for any c > 0; but it is still an open question, even for F(q) = q2(logq)c
with an arbitrarily large value of C.

D.2. (a) Prove that there are infinitely many rational numbers p/q E Q satisfying

1

!!._I+v'51 < _1_.
q 2 - v'5q2
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(b) For any constant K > v'5, prove that there are only finitely many
rational numbers pjq E Q satisfying

I
!!. - 1+v'51 < _1_.
q 2 - Kq2

(c) Ifa is areal quadratic root ofaX2 +bX+c = 0, set D:= b2 -4ac; prove
that for all K > v75, there are only finitely many rational numbers pjq E iQ
satisfying

I!!.-al s -I .q Kq2

D.3. Let a E lR with a ft iQ.
(a) Prove that there are infinitely many rational numbers pjq E Q satisfy
ing

1

!!.-al<_1.
q - v'5q2

(The previous exercise shows that v'5 cannot in general be replaced by any
larger constant.)

(b) Let {3 = (I + v'5)j2, and suppose that a cannot be written in the
form (a{3 + b)j(c{3 +d) with integers a, b, c, d satisfying ad - be = I. Prove
that there are infinitely many rational numbers pjq E Q satisfying

1

!!.-al<_1.
q - VSq2

D.4. Let a E Q be an algebraic number of degree d = [Q(a) : Q] ~ 2. Prove
that there is a constant c(a) > 0 such that

I
!!. - al ~ c(a)
q qd

for all rational numbers !!. E Q.
q

Find an explicit value for c(a) in terms of the height of a.

D.5. Use Liouville's theorem (D.1.2) or the previous exercise to prove that the
number

a= f I~n!
n=O

is transcendental over iQ. (Note that the exponent is n factorial.)
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D.6. Let K be a number field and let Rs C K be the ring of S-integers of K for
some finite set of places S.

(a) Let F(x, y) E K[x, y] be a homogeneous polynomial of degree d ~

3 with nonzero discriminant, and let c E K-. Without quoting Siegel's
theorem (D.8.4 and D.9.1), use Roth's theorem directly to prove that the
equation

F(x,y) =c
has only finitely many solutions x, y E Rs. (Show that x/y closely approx
imates a root of F(t, 1). An alternative method is to reduce the problem
to solving a certain collection of unit equations and apply Theorem D.8.I.)
Equations of this form were first treated by Thue [1] in 1909.
(b) Let f(x) E K[x] be a polynomial of degree at least 2 with distinct roots
(in K), and let n ~ 3 be an integer. Mimic the proof of Theorem D.8.3 to
prove that the equation yn = f(x) has only finitely many solutions x,y E

Rs.

D.7. (Leibniz's formula) Let p,p' E k[X1, ... ,Xm ] be polynomials with coef
ficients in some ring k, and let j1, ... , jm be an m-tuple of nonnegative
integers. Prove that

D.8. Prove the estimate

for all ItI ~ 1

used in the proof of Lemma D.3.6.

D.9. Siegel's Lemma (D.4.1) says that a system of linear equations with integer
coefficients has a solution of size at most (NIAI)M/(N-M). Prove that there

is a solution whose size is at most (VNIAI)M/(N-M). Can you improve this
bound further?

D.lO. (a) Let FE Z[X1, ... , X r ] and G E Z[Y1 , ••• , Ys ] be polynomials that use
different sets of variables. Prove that IFGI = IFI . IGI, where recall that
IFI is the maximum absolute value of the coefficients of F.
(b) More generally, let K be a number field with ring of integers RK, and
let FE RK[Xl, ... ,Xr ] and G E RK[Y1, ... ,Ys ]. Prove that HK(FG) =
HK(F)HK(G).
(c) Give an example to show that (a) need not be true if we merely assume
that F and G have coefficients in Q.

D.ll. Let tP1, ... , tPk E K(X) be rational functions over a field of characteristic O.
Suppose that there exists a nonzero generalized Wronskian of tP1, ... , tPk.
Prove that tPl, ... , tPk are linearly independent over K. (Note that this is
precisely the part of Lemma D.6.1 that we left for you to do. Do not just
quote Lemma D.6.I.)
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D.12. Let a E Q, let £ > 0, and let $(a,£) denote the set of solutions p/q E IQl
to the inequality .

le- a l<_I.q - q2+e

(a) If Pl/ql and P2/q2 are solutions in $(a,£) with q2 > ql, prove that

1 I+e
q2 ~ 2q1

An inequality of this sort is called a gap principle, because it says that
there are large gaps between solutions.
(b) Prove that for all H2 ~ HI> 21/e,

# { ~ E $(a, e) IHI < q < H2} :$ 10gI+e (lOgl~~~:HI) .

D.13. Let K/1Ql be a number fieldj let 8 C MK be a finite set of absolute values
on K, each extended in some way to Kj set card(8) = Sj let a E K; and
let £ > 0. Let e: 8 -+ [0,1] be a function satisfying EvEsev = 1, and
let $(K,8,a,£,e) be the set

{,8 E K 111,8 - all v :$ HK(,8)1(2+e){v for all v E 8} ,

whose finiteness is proven in Theorem D.2.2.
(a) Prove that if ,81,.B2 E S(K,8,a,£,e) satisfy HK(.B2) ~ HK(,8I), then

HK(,82) ~ 2-([K:QJ+s) HK(,8I)I+e.

This gap principle generalizes the previous exercise.
(b) Prove that for all constants H2 ~ HI > 2([K:Q]+s)/e,

#{,8 E $(K,8,a,£,e): HI :$ HK(,8):$ H2} :$logI+e COg2-(1~:~s)/eHJ·

D.14. Let K/1Ql be a number fieldj let 8 C MK be a finite set of absolute
values on K, each extended in some way to Kj let a E Kj and let £ > 0.
Let S(K, 8, a, £) be the set

S(K, 8, a,e) = {,8 E K I IImin{ll,8 - allv , I} :$ HK(~)2+e }
vES

considered in Theorem D.2.1, and for any function

e:8-+[0,1] satisfying Eev=l,
vES

let S(K, 8, a,£,{) be the set

S(K,8, a, e, {) = {,8 E K 111,8 - all v :$ HK(!3)\2+e){v for all v E 8 }

considered in Theorem D.2.2. Prove that

#S(K, 8,a,e) :$ 4#s s~p#$ (K,S,a, ~e,{) ,

where the supremum is over all { : 8 -+ [0,1] with EVES ev = 1. (Notice
that this provides a quantitative proof of the reduction lemma (D.2.2.1),
which says that Theorem D.2.2 implies Theorem D.2.1.)
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D.15. Let KIQ be a number field; let S C MK be a finite set of absolute
values on K, each extended in some way to K; let ° E K; and let E > O.
Let S(K,S,O,E) be the set

considered in Theorem D.2.1.
(a) Prove that there are constants Cl and C2 , depending only on [K (0) : 0.)
and E, such that

(b) Find explicit expressions for Cl and C2 in terms of [K(o) : 0.] and E.
D.16. Let Cio. be a smooth projective curve of genus 1, and suppose that C(o.)

is an infinite set. Fix a nonconstant function f E o.(C), and for each point
P E C(o.), write

f(P) = :: EO.

as a fraction in lowest terms. Prove that

lim log lapi = 1.
PEC(O), h(f(P»-oo log Ibpi

Notice that this says that the numerator and the denominator of f(P) have
approximately the same number of digits. It greatly strengthens Siegel's
theorem (D.9.1), which in this situation would merely say that there are
finitely many P E C(o.) with bp = 1 (i.e., with f(P) E Z).

D.17. Generalize the previous exercise as follows. Let CIK be a smooth projec
tive curve of genus 1 such that C(K) is an infinite set, and fix a nonconstant
function f E K(C). Also, let hc be a height function on C with respect
to some fixed ample divisor, and let S be a finite set of places of K. Prove
that

. 2:vES IIogllf(P) IlvI
hm =0.

PEC(K), hc(P)-oo hc(P)

D.IS. Continued fmctions. To ease notation, for ao E IR and al, ... ,an> 0 we
set

1
[ao,al, ... ,an ]:= ao.+ -------

1
al+----

a2+

To every real number x, we associate a sequence of integers an (with
aI, ... ,an > 0) and an auxiliary real sequence X n defined by

ao = [x), Xo = x and
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with the convention that the sequence terminates if X n is an integer (which
occurs only when x E Q). Further, define the nth convergent of x to be the
rational number

(a) Prove that x = [ao, ... ,an-l,xn].
(b) Verify the following useful recursion formulas:

Pn+l = an+lPn +Pn-l,

qn+l = an+lqn + qn-l,

qnPn-l - Pnqn-l = (_l)n,

qnPn-2 - Pnqn-2 = (_l)n-lan .

(c) Let x fI. Q be an irrational number. Show that the convergents Pn/qn
provide "good" approximations to x in the sense that

1 I Pn I 1-;------,. < x - - < ---
qn(qn + qn+d qn qnqn+l·

Prove that they provide the "best" approximations to x in the sense that

qn Ix - Pn I< min {q Ix - el}·qn p/qEO- q
q<qn

(d) (Lagrange) Show that the sequence an eventually becomes periodic if
and only if x is quadratic, Le., x is the root of an irreducible quadratic
polynomial x2 + Ax + BE Q[x].
(e) Show that the following are equivalent:

(i) The sequence an is bounded.
(ii) There exists a constant C = C(x) such that Ix - ~I ~ C/q2 for
all rational numbers p/q.

It is suspected that an is unbounded for all algebraic numbers of degree at
least 3, but this is not known for be true for even a single such number!



PART E

Rational Points on Curves
of Genus at Least 2

L 'arithmetique
Est une mecanique
Qui donne la colique
Aux catholiques,
Le mal au creur
Aux enfants de chreurs,
Et le mal au nez
Aux cures.
Comptine du Bourbonnais

Let KIQ be a number field and CIK a curve of genus 9 defined over K.
If 9 = 0, then we have seen in Part AA.3 that C ~ pl (over K), so the set
of K-rational points C(K) on C is either empty or equal to Pl(K). If9 = 1,
then C is an elliptic curve and has the structure of an abelian variety of
dimension 1. The Mordell-Weil theorem (C.O.l), proven for K = Q by
Mordell [1] in 1922 and in general by Weil [1] in 1928, says that if C(K)
is nonempty, then it is a finitely generated abelian group. In particular, if
g::; 1, then it frequently happens that C(K) is an infinite set, and this will
always be true for C(L) for some finite extension LIK. In stark contrast
stands the following result, conjectured by Mordell [1] in his 1922 paper
and first proven by Faltings [1] in 1983.

Theorem E.O.l. (Faltings [1]) Let K be a number field, and let CIK
be a curve ofgenus 9 ~ 2. Then C(K) is finite.

Faltings' [1] proof of Theorem E.O.l in 1983 used a variety of advanced
techniques from modern algebraic geometry, including tools such as mod
uli schemes and stacks, semistable abelian schemes, and p-divisible groups.
Vojta [2] then came up with an entirely new proof of Faltings' theorem using
ideas whose origins lie in the classical theory of Diophantine approximation.
However, in order to obtain the precise estimates needed for the delicate
arguments involved, he made use of Arakelov arithmetic intersection theory
and the deep and technical lliemann-Roch theorem for arithmetic three
folds proven by Gillet and Soule. Faltings [2] then simplified Vojta's proof
by eliminating the use of the Gillet-Soule theorem and proving a "product
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lemma" especially well suited to induction. This allowed Faltings to gener
alize Vojta's result to prove a conjecture of Lang concerning rational and
integral points on subvarieties of abelian varieties (see Part F for further
comments). However, Faltings' proof, which uses arithmetic intersection
theory and heights defined via differential geometric considerations, is far
from elementary.
Bombieri [1] has combined Faltings' generalization with Vojta's origi

nal proof and with other simplifications of his own to give a comparatively
elementary proof of the original Mordell conjecture. In addition to the
Mordell-Wei! theorem (C.O.I) for the Jacobian of C, the tools used in
Bombieri's proof fall broadly into the following three areas:

(i) Geometric Tools
The Riemann-Roch theorem for surfaces, or more precisely, for the
product C x C of a curve with itself. The theory of curves, Jacobians,
and theta divisors. Aside from the necessity of keeping track of fields of
definition, this material dates from the nineteenth century. Especially
useful is Riemann's theorem describing the intersection of a curve with
a translation of the theta divisor. This material is surveyed in Part A.

(ii) Height FUnctions
Wei! height functions associated to divisor classes. Canonical height
functions on abelian varieties and their associated quadratic forms.
The theory of height functions is, in essence, a tool for translat
ing geometric information, in the form of relations between divisor
classes, into arithmetic information about points. The theory of what
are now known as Wei! heights was developed during the 19408 and
50s (see, e.g., Wei! [4] or Northcott [1,2]), and canonical heights were
constructed by Neron [2] and Tate [unpublished] in the mid-I9608. We
should also mention Mumford's application [1] of canonical heights to
Mordell's conjecture in 1965, since several of Mumford's ideas playa
crucial role in Vojta's proof. We have covered this material in Part B.

(iii) Diophantine Approximation
The classical theory of Diophantine approximation asks how closely an
irrational quantity can be approximated by a rational quantity. Proofs
in this subject follow a basic pattern: (1) Construction of an auxiliary
function using Siegel's lemma. (2) An elementary upper bound, essen
tially obtained from the triangle inequality. (3) A nonvanishing result,
such as Dyson's lemma or Roth's lemma. (4) A lower bound, obtained,
via the product formula, from the fact that 1 is the smallest positive
integer. We have discussed the theory of Diophantine approximation
in Part D.

All four of the Diophantine approximation steps appear in the
proof of Mordell's conjecture, and anyone familiar with the proof of
Roth's theorem in Part D will have no trouble picking out each step
as we go along. However, one new feature to observe is that rather
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I· I

JjK
e

K
CjK

than studying approximations to a point, we instead look at points
that approximate a certain carefully chosen curve representing a par
ticular divisor class in ex C. We will use the Riemann-Roch theorem
on C x C to tell us that the particular divisor class actually contains
a curve (i.e., the divisor class is effective).

In some sense, all of the tools needed for the proof of Mordell's conjecture
were available by 1965, when Mumford's paper [1] appeared. In the re
mainder of this chapter we will present the proof of Mordell's conjecture
as given in Bombieri's paper [1]. The following material will be used in the
proof, and may thus be considered prerequisite for reading this part.

Part A, Sections 1-8.
Part B, Sections 1-5 and 7.
Part C, Sections 1-2.
Part D, Sections 1-7.

E.!. Vojta's Geometric Inequality and Faltings' Theorem

In this section we will describe an inequality due to Vojta and show how
it leads, via an elementary geometric argument, to a proof of Faltings'
theorem (E.O.l). Most ofthe remainder of this chapter will then be devoted
to proving Vojta's inequality.
We begin by setting a little notation, which will remain fixed through

out.

a number field.

a smooth projective curve of genus 9 ~ 2 defined over K.
We will assume that C(K) is nonempty, since otherwise Theo-
rem E.O.l is trivially true.
the Jacobian variety of C.

the theta divisor on J. Recall (see Corollary A.8.2.3) that e is
an ample divisor on J.

the norm on J(K) associated to the canonical height relative
to e. In other words, Ixl2 = hJ,e(x). We recall (Proposi-
tion B.5.3) that I . I extends to a positive definite quadratic
form on the vector space J(K) @JR.

( ., . ) the bilinear form on J (K) associated to the canonical height
relative to the divisor e. In other words,

1
(x, Y) = 2(Ix + yI 2 - Ixl2 _ IYI2 ).
The inner product ( . , . ) extends to a Euclidean inner product
on the vector space J(K) @lR.

We choose a rational point in C(K) and use it to fix an embedding
(defined over K)

C'-+ J.
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Having done this, we can talk about the norm Izi and inner product (z, w)
for points z, w E C(K). We are now ready for Vojta's inequality, whose
innocuous statement belies its far-reaching consequence.

Theorem E.!.!. Vojta's Inequality. (Vojta [1], Bombieri [1]) With
notation as above, there are constants 11:1 = II:(C) and 11:2 = 1I:2(g) such that
if z, W E C(K) are two points satisfying

3
then (z, w) :::; 4lzllwl.

Before using Vojta's inequality to prove Faltings' theorem in full gen
erality, let us look at a special (but still highly nontrivial) case. Suppose
that J(K) is generated by a single point Xo of infinite order, so J(K) =Zxo.
Then C(K) consists of those multiples nxo that happen to lie on C. To
prove that C(K) is finite, we must show that there are only finitely many n's
with nxo E C.
We give a proof by contradiction, so we suppose to the contrary that

infinitely many multiples of Xo lie on C. Replacing Xo by -Xo if necessary,
we may assume that infinitely many positive multiples of Xo lie on C. In
particular, we can find some multiple nlXO E C satisfying nl > II:dlxol.
(Here 11:1 is the constant in Vojta's inequality. Note that Ixo I> 0, since Xo
is a nontorsion point.) Similarly, we can find a multiple n2XO E C satisfying
n2 > 1I:2nl. This means that

so we can apply Vojta's inequality with z = nlXO and w = n2XO to conclude
that

3
(nl x O, n2x o) :::; 4!n1xolln2xol.

nln2(xo,XO) :::; ~nln2IxoI2.

But (xo,xo) = Ixol2 > 0 and nl,n2 2:: 1, so this is a contradiction, which
completes the proof in this special case that Vojta's inequality (E.!.I) im
plies Faltings' theorem (E.O.l).
The proof of the general case is similar; we need merely deal with the

fact that J (K) may have rank greater than 1. The key is to understand
geometrically what Vojta's inequality says about the image of the set C(K)
in the Euclidean vector space J (K) ® JR.

Proposition E.!.2. Let C/ K be a curve of genus at least 2 defined
over a number field K. Then Vojta's inequality (E.1.1) implies Faltings'
theorem (E.O.1) that C(K) is finite.

PROOF. First we observe that the kernel of the map J (K) --+ J (K) ® JR is
the torsion subgroup J(K)tors, which is finite (Theorem C.O.l). So in order
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to prove that C(K) is finite, it suffices to show that the image of C(K)
in J(K) ® lR is finite. By abuse of notation, we will identify C(K) with its
image.
The bilinear form (" .) makes J(K) ® lR into a finite-dimensional

Euclidean space, so for any two points x, y E J(K) ® lR we can define the
"angle" B(x, y) between x and y in the usual way,

(x,y)
cosB(x, y) = Ixllyl' 0::; e(x, y) ::; 7r.

For any point Xo and any angle 80, we consider the cone with interior
angle 2eo whose central axis is the ray from 0 through xo,

r xo ,90 = {x E J(K) ®IR le(x,xo) < eo}.

For example, if J(K) has. rank 2, then one of these cones would look like
the sector illustrated in Figure E.1.

A Cone r xo,90 in J(K) ® JR
Figure E.!

We are going to use Vojta's inequality to show that if Bo is small
enough, then every cone r xo,90 intersects C(K) in only finitely many points.
(For example, we will show this is true if eo = 1r/12.) To see this, suppose
that we have a cone satisfying
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3
(z,w) :s 4lzllwl,

or equivalently,

Since J(K), and a fortiori C(K), contains only finitely many points of
bounded norm, we can find a z E r xo ,90 n C(K) with Izi ~ K1, and then
we can find awE r xo,90 n C(K) with Iwl 2: K21z\. Here K1 and K2 are the
constants appearing in Vojta's inequality (E.!.1). Then Vojta's inequality
tells us that

3
cosO(z, w) :s 4'

This estimate captures the essence of Vojta's inequality; it says that the
angle between the points z and w cannot be too small. For example, it
implies that

()
-1 3 1ro z,w 2:cos 4> 6'

But by assumption, both z and w are in the cone r xo,90' so the angle
between them is less than 200 . We have thus shown that

implies
1r

200 > O(z,w) 2: 6'

This is equivalent to the statement that

r xo,7I"/12 n C(K) is finite for every Xo E J(K) ® JR.

In order to complete the proof that C(K) is finite, we now need merely
observe that it is possible to cover J(K) ® JR by finitely many cones of the
form r xo,7I"/12' If this is not immediately obvious, consider the intersection
of such cones with the unit sphere

8 = {x E J(K) ® lR Ilxl = 1} c J(K) ® JR.

Clearly,

8= U(rX,7I"/12n8),
xES

since x E r x ,7I"/12' Further, each set r x ,7I"/12 n 8 is an open subset of 8,
and we know that 8 is compact, from which it follows that 8 is covered
by finitely many of the r x,7I"/12 n 8's (see the comments at the end of this
chapter and Exercise E.1 for a more effective argunlent). Since the r's are
cones, we conclude that the same finite set of r's will cover J (K) ®lR. This
completes the proof that Vojta's inequality implies that C(K) is finite.

o

We now take up the formidable task of proving Vojta's inequality (E.!.1).
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One of the failings of the theory ofWei! heights is that they are defined only
up to 0(1), and the O(l)'s depend on the particular embeddings chosen
for each very ample divisor. Thus if DE Div(V) is a divisor and we want
to choose a particular height function hV,D, we need to make the following
choices:

[1] Choose very ample divisors D 1 and D 2 with D = D 1 - D 2 • Generally
one does this by choosing a divisor E such that E and D +E are both
very ample, and then taking D 1 = D + E and D2 = E.

[2] Choose embeddings if>! : V ~ pn and </>2 : V ~ pm corresponding
respectively to D 1 and D2.

[3] Set hV,D(P) = h{ifh(P») - h{et>2(P»).

We could, a priori, decide to make these choices for every divisor on
every variety, thereby fixing a particular height function hV,D for each
divisor D on each variety V. Then the Height Machine works, but as
already noted, it works only up to bounded functions. For example, if we
fix our heights and if 'I/J :W ~ V is a morphism, then the function

(hW,""D - hV,D 0 'I/J) :W(K) ----+ lR

is bounded, but the bound depends not only on 'I/J, but also on the partic
ular height functions we have chosen for D and 'I/J*D. In proving Vojta's
inequality (E.!.l) we will need to choose our height functions in a uniform
manner so as to be able to determine how the O(l)'s depend on certain
parameters.

Let us be a bit more precise. We will be using height functions on C x
C corresponding to Vojta divisors 0 = O(d1 ,d2,d) depending on three
integer parameters d1 , d2 , d. What we are going to do is write the height
function hcxc,o as a linear combination

where Cl, C2, C3 are fixed constants and hl> h2 , h3 are fixed height functions
corresponding to particular maps of C x C into projective space. The
crucial property to keep in mind is that the Ci'S and hi'S do not depend
on d1 , d2, d, so as we vary d1 , d2 , d, we have complete control over the
variation of the height hCXC,O(dlod2,d). The reason we need this property is
that at the final step in the proof of Vojta's inequality, we will choose d1, d2,
and d to depend on the heights of the two points z, wE C(K), so it will be
vital that all of the 0(1) and Ci constants floating around be independent
of d1 , d2, d.
With this motivation, we are now going to set some notation and fix

some embeddings and height functions. We start by fixing a divisor A E
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Div(C) of degree 1. In order to link up with (A.8.2.1), we will take A to
satisfy the condition

(2g - 2)A '" Xc, (5)

where Xc is the canonical divisor class on C. It is always possible to find
such an A, since the group J(t<) is divisible. Of course, A need not be
defined over the base field K, but it will be defined over a finite extension
ofK, and for the proof of Vojta's inequality we are always free to replace K
by a finite extension.
We use the divisor A to define an embedding

jA : C --+ J, x~ CI(x) - A).

We further let
eA = jA(C) + jA(C) + ... + jA(C), '...

g-l copies

be a theta divisor on J. (This is actually a translation of the theta divisors
considered in Section A.8.) The fact that we chose A to satisfy (5) implies
the following useful relations, which will simplify our later calculations.

Lemma E.2.1. With notation as above, we have:
(a) eAis a symmetric divisor, that is, eA: = eA.
(b) jA8A '" gAo
(c) Let S12,Pl,P2 : J x J ~ J be the summation and projection maps,
respectively, and let ~ E Div(C x C) be the diagonal divisor. Then

PROOF. All of these relations for 8 A follow easily from our choice of A
satisfying (5), since the corresponding relations for e were proven in Theo
rem A.8.2.1. Thus in the notation ofTheorem A.8.2.1, we fix a point Po E C
and use it to define an embedding j : C --+ J via j(P) = CI«P) - (Po)).
Notice that jA(X) = j(x) - j(A), and hence

8A = jA(C) + + jA(C)

= j(C) + + j(C) - (g - l)j(A) = e - j(g -l)A).

Using this, (5), and (A.8.2.1(i)), we complete the proof of (a) by computing

(8A)- = e- + j(g - l)A) '" 8 - j(Xc) + j(g - l)A)

'" e - j(g - l)A) = eA.
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Similarly, using (5) and (A.8.2.1(ii)), we find that

j A8A =jA (8-j(g-1)A))

= j* (8 - j(g - 2)A))

fV g(Po) - j(g - 2)A) + j(Xc)

fV g(Po) - (g - 2)(A - (Po») + (Xc - (2g - 2)(Po»)

=-(g-2)A+Xc
fV gAo
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This gives (b). Finally, (c) follows from a similar calculation using (5)
and (A.8.2.1(iii», a task that we leave to the reader. 0

In order to ease notation, we will often drop the j A and just treat C as
a subvariety of J. Further, the canonical height hJ on J will always refer
to the canonical height with respect to the divisor 8 A, and similarly for the
corresponding norm I . 12 = hJ,9 and inner product (., .). For example,
when we refer to the canonical height IIxII2 of a point x E C(K), we really
mean the canonical height hJ ,9A of the point jA(X),

We also use A to give various embeddings into projective space. We
choose an integer N such that the divisor N A is very ample, and fix an
embedding

<PNA : C --+ pn

corresponding to N A. (For example, Corollary A.4.2.4 implies that N =
2g + 1 is large enough.)
Remark.E.2.2. Since xo, ... , X n form a basis of the space of sections of
CJ(NA), it follows that <PNA(G) is not contained in any hyperplane of pn.
It will be convenient to choose the projective coordinates xo, ... , X n such
that the following properties are satisfied:
(i) The intersection of <PNA(C) with the codimension-2 subspaces Xi =

Xj = 0 is empty, and hence the projections (xo, ... ,xn ) t--t (Xi,Xj)
from <PNA(C) to pI all have degree N.

(ii) The projections (xo, ... ,xn ) t--t (Xi,Xj,Xe) from <PNA(C) to p2 are
birational, so that keG) = k(xj/xi,xefxi) and Xefxi is integral of
precise degree N over Xj/Xi.

In fact, "most" linear combinations of xo, ... ,Xn will satisfy these proper
ties (see Exercise E.lO).

Next we look at divisors on G X C. For example, we have the "slices"
A x C and C x A, and the diagonal A. Since A is ample on C, it is clear
that the divisor (A x C) + (G x A) is ample on C x C, so if we choose a
sufficiently large integer M, then the divisor

B = (M + l)(A x C) + (M + l)(C x A) - A E Div(C x C)
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will be very ample by (A.3.2.3) (see Exercise E.12). Having chosen 5, we
fix an embedding

¢B : C x C~ pm

corresponding to a basis for the linear system L(B). We will use homoge
neous coordinates [Yo, ... ,Ym] on pm, and by abuse of notation, we will also
write Yo, ... ,Ym for the corresponding sections of 19(B). [More properly, Yi
is a global section of 19lPm (1), and we should write ¢'BYi for the correspond
ing section of CJ(B).] Now we can fix a particular height function for the
divisor B by the formula

hCXC,B(Z,W) = h(¢B(Z,W)),

or equivalently in terms of coordinate functions,

hCxC,B = h([yo, ... ,Ym]).

Similarly, for any integer d 2: 1 we can use linearity to fix a height for the
divisor dB by setting

hCXC,dB = dhcxC,B.

One other comment, of a geometric nature, is needed. It is clear that
any monomial in Yo, ... ,Ym of degree d will be a global section of 19(dB).
What is also true is that if d is chosen sufficiently large (how large depends
on C and B), then the monomials of degree d in Yo, ... ,Ym generate the
space of global sections to CJ(dB). In fancy language, this is a consequence
of the fact that for sufficiently large d, the d-uple embedding of a smooth
(or even just normal) variety is projectively normal. For a proof, see The
orem A.3.2.5 or Mumford [4, Chapter 6, (6.10) Theorem, page 102], or
Hartshorne [1, Exercise 11.5.14]. The same arguments apply to a product
of projective varieties, for example to C x C '-+ pn X pn. When 01 and 02
are large enough the space of sections to 19 (01 (NA x C) + 02 (C x N A)) is
generated by monomials of bidegree (01,02) in [xo, . .. ,Xn ; Xo, . .. , X~].
We next use two copies of </>NA to create a product embedding,

We will use bihomogeneous coordinates [xo, ... ,Xn;xo, ... ,x~] on pn X pn.
Let 01 and 02 be (large) integers. If we compose ¢NA x ¢NA with the 01
uple embedding of the first pn and the 02-uple embedding of the second pn,
and then compose with the Segre embedding (Example A.1.2.6(b)), the
composition

is associated to the divisor



§E.2. Pinning Down Some Height Functions 377

So for all positive integers 61 and 62, we can fix a height function for the
divisor 61(NA x C) +62(C x NA) by setting

hCxC,61(NAXC)+62(CXNA)(Z,W) = 61hc,NA(Z) + 62 hc,NA(W)

= 61h(cPNA(Z» +61h(cPNA(W»).

In terms of coordinate functions, this becomes

We also want to observe that if 61 and 62 are sufficiently large, then
every global section of CJ (61 (NA x C)+62 (C x N A») is the pullback to C xC
via t/J of a bihomogeneous polynomial of bidegree (61,62 ) in the variables
xo, ... , Xn , Xo,"" x~. As above, this is a consequence of the fact that a
large d-uple embedding of a normal variety is projectively normal.
With these preliminaries out of the way, we are ready to define the

divisors and the height functions that will occupy most of our attention.
For any given integers d1 , d2, and d, we define

0= O(dl , d2, d) = (d1 - d)(A x C) + (d2 - d)(C x A) + df). E Div(C x C),

where A E Div(C) is the divisor of degree 1 fixed above and f). is the
diagonal divisor. We say that 0 is a Vojta divisor if d l , d2, and d are
positive integers satisfying the inequalities

(6)

(The first inequality will guarantee that O(d1 , ~,d) will be linearly equiv
alent to an effective divisor, whereas the second inequality will ensure that
the associated Neron-Tate quadratic form will not be positive definite.) We
will generally assume that (6) holds and that d l , d2 , and d are all divisible
by the integer N that we fixed earlier. We then set

and

where M is as specified above. Finally, we will assume that dlo d2 , and d
are chosen sufficiently large so that the global sections of CJ(dB) are gen
erated by monomials of degree d in Yo, ... ,Ym, and so that the global
sections of CJ(6 l (NA x C) + 62(C x NA») are generated by monomials of
bidegree (610 62 ) in XO, ... , X n , xo,"" x~.

The integers that we eventually choose will satisfy d1 > d> d2, so the
Vojta divisor itself is not positive, although we will see using Riemann
Roch that it is linearly equivalent to a positive divisor. In any case, we
want to choose a height function on C x C corresponding to O(d1 , d2, d) in
such a way that we can explicitly keep track of the dependence on dlo d2,
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and d. Using the height functions described above, this is easy. We just
write n as the difference

of very ample divisors. Then from above we see that we may take

Alternatively, in terms of coordinates, this is just

hCxC,O(d1 ,d2,d) =Olh([xo, ... , xn ]) + 02h([x~, ... ,x~]) - dh([yo, ... ,Yrn]).
(8)

From now on, whenever we talk about the height on C x C relative to
a Vojta divisor n(dl, d2, d), we will mean the particular height function
specified by either of the equivalent formulas (7) or (8).
We conclude this section with a short table of constants that will

appear frequently during the proof of Vojta's inequality. The reader is well
advised to refer to this table until he/she is thoroughly acquainted with
this notation.

"f,c,1I small positive constants

Cl, C2,··· constants that depend on C, A, and the choice of
various height functions

M an integer chosen large enough so that B is a very
ample divisor on C x C. This integer is fixed once
and for all at the start of the proof

N an integer chosen large enough so that NA is a very
ample divisor on C. This integer is fixed once and
for all at the start of the proof.

d l ,d2, d large integers, divisible by N, assumed to satisfy
g~ < dl d2 < g2~.

Eventually also assumed to satisfy the inequality
dl d2 - g~ 2:: "fdl d2,

as well as a certain condition depending on the rela-
tive size of the points z and w.

01,02 integers defined by

01 =
dl +sd

and 02 = d2 +sd
N N

Table E.!. Numbers appearing in the proof of Vojta's inequality
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In this section we will give Bombieri's discourse on the ideas underlying
the proof of Vojta's inequality (E.!.I). This lucid exposition is taken ver
batim from Bombieri [IJ, Section VI; we thank Professor Bombieri for his
permission to include it here.

As early as 1965, Mumford showed that the height hA on
C x C could be expressed, up to bounded quantities, in terms of
the Neron-Tate heights on the Jacobian ofC. It then follows that

hA(Z, w) = (quadratic form) + (linear form) +0(1)

by the quadratic nature of heights on abelian varieties. Since ~ is
an effective curve on C xC, the left-hand side of this equation is
bounded below by a constant. On the other hand, one sees directly
that the quadratic form in the right-hand side of this equation is
indefinite, if the genus 9 is at least 2. This puts strong restrictions
on the pair (z, w) because it means that z and w, considered as
points in the Mordell-Weil group of the Jacobian, can never by
nearly parallel with respect to the positive definite inner product
determined by the Neron pairing. A simple geometric argument
now shows that the heights of rational points on C, arranged in
increasing order, grow at least exponentially. This is in sharp con
trast with the quadratic growth one encounters on elliptic curves,
and shows that rational points on curves of genus 2 or more are
much harder to come by.
The diagonal ~ = 0(1,1,1) is a Vojta divisor except for

the fact that the inequalities (6) characterizing a Vojta divisor
are not satisfied. However, it is easy to see that Mumford's
method applies generally to any divisor that is a linear combi
nation of Ax C, C x A, and ~. Now the condition d1d2 < g2~
simply expresses the fact that the associated quadratic form is
indefinite, and again we get a useful result if we can show that
the height is bounded below. As in Mumford, it suffices to have
an effective (Le., positive) curve in the equivalence class of the
divisor, and now the other condition g~ < d1d2 for a Vojta divi
sor assures, by Riemann-Roch, that multiples of O(d1 , d2, d) have
effective representatives.
The advantage in this generalization of Mumford's result is

that now we have a two-parameter family of indefinite quadratic
forms at our disposal, instead of just one. Thus one is tempted,
given (z, w), to choose a quadratic form such that its value at (z, w)
is negative, which would yield a contradiction unless z and w have
bounded height.
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The new problem one faces here is the fact that the choice
of the quadratic form depends on the ratio of the heights of z
and w, and therefore we need not only that ho is bounded below,
but also that the lower bound has sufficiently good uniformity
with respect to the quadratic form. This is where arithmetic in
tersection theory and arithmetic lliemann-Roch have been used:
arithmetic lliemann-Roch for finding a good effective represen
tative for n defined by equations with "small" coefficients, and
arithmetic intersection theory for precise control of the unwieldy
bounded terms arising in the elementary theory of heights.
As Vojta's paper [1] clearly shows, this idea is overly simple

and there is one more big obstacle to overcome. The argument
used in obtaining a lower bound for ho fails if the effective rep
resentative for 0 goes through the point (z, w) we are studying.
By an appropriate use of derivations, one sees that this is not too
serious a difficulty unless the representative of the divisor 0 goes
through (z, w) with very high multiplicity. On the other hand,
this representative must be defined by equations with small coef
ficients and there is very little room for moving away from (z, w),
so one cannot exclude a priori that this divisor has very high
multiplicity at (z, w).
This situation is reminiscent of the familiar difficulty in Dio

phantine approximation and transcendence theory, namely the
nonvanishing at specific points of functions arising from auxiliary
constructions. In the classical case, various independent tech
niques have been devised for this purpose: Roth's lemma, which
is arithmetic in nature, the algebro-geometric Dyson's lemma, and
the zero estimates of Masser and Wiistholz.
Vojta, by proving a suitable generalization of Dyson's lemma,

shows that if d1d2 is sufficiently close to g~, then any effective
representative for O(dl,d2,d) does not vanish too much at (z,w),
thereby completing the proof.
Faltings proceeds in a different way, using a new geometric

tool, the product theorem. He is able to show that the difficulty
with high multiplicity can be eliminated, except perhaps for a set
of "bad" points (z,w) that is contained in a product subvariety
of C x C. It should be noted that Faltings' result applies not
only to C xC, but in fact to a product of an arbitrary number
of varieties, thus providing a tool for handling higher-dimensional
varieties by induction on the dimension.

The proof of Vojta's inequality (Theorem 2.1) thus consists of the
following steps.

Step I: An Upper Bound for ho (Section E.4)
We apply Mumford's method to express the height ho relative to a Vojta
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divisor n in terms ofthe canonical height bilinear form (., .) on the Jaco
bian J of C. This gives us a very explicit upper bound for the height.

Step II: A Lower Bound for hn(z, w) (Sections E.5, E.8, E.lO)
Given a positive divisor in the divisor class of n, we derive a lower bound
for the height hn (z, w) in terms of the "size" of an equation s = 0 defining
the positive divisor. To illustrate the general method, we first derive a
lower bound under the assumption that s(z, w) ¥- O. Later we deal with
the general case and find a lower bound that also depends on the order of
vanishing of sat (z, w).

The remaining steps in the proof involve obtaining estimates for the
various terms appearing in the lower bound in Step II. Eventually we want
to show that the lower bound can essentially be replaced by 0, but there is
a fair amount of rather technical work involved in dealing with the many
terms that appear.

Step III: A Small Section (Sections E.6, E.7)
We use Siegel's lemma to produce a section for CJ(n) given by a homoge
neous polynomial with reasonably small coefficients. In other words, we
find a "small" s to use in Step II.

Step IV: Estimating Derivatives (Section E.g)
In calculating the order of vanishing of s at (z, w), we are forced to diffe
rentiate s, so we prove an estimate (essentially due to Eisenstein) for the
denominators of the derivatives of algebraic functions.

Step V: A Nonvanishing Derivative (Section E.ll)
We use Roth's lemma (in fact, only the two-variable case is needed) to
show that the function s from Step II does not vanish to too high an order
at (z, w).

Combining the inequalities from Steps I-V, a little algebra will yield
Vojta's inequality (Section E.12).

E.4. An Upper Bound for hn(z,w)

In this section we begin the proof of Vojta's inequality. Using the forma
lism of the Height Machine, we will give an upper bound for the height
hcxc,n(z, w) of two points z, w E C(K). However, it is essential to keep
track of the dependence of the error terms on dl , d2 , d, so we will make use
of the formula (7) for hn in which that dependence is made explicit. The
underlying idea of the following proposition is due to Mumford [1].

Proposition E.4.1. There is a constant CI, depending on the choice of
various Weil height functions associated to the divisors A and B, such that
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for all positive integers d1 , d2 , d and all points z, wE C(K),

d1 12 d2 2
hCXCO(dl d2 d)(Z,W) ~ -Iz + -iwi - 2d(z,w) + cI(d l + d2 + d).

, " 9 9

N.B. The constant CI is independent ofdl , d2 , d.

PROOF. Let jA : C - J and PllP2, 812: J x J - J be the maps described
in (E.2.1), and recall the definition (7)

hCxC,O(dl,d2,d)(Z, w) = Ihhc,NA(PI(Z, w)) + 02hC,NA (P2(z, w))

- dhcxC,B(Z, w),

where

Applying the linearity and functoriality properties of the Height Ma
chine (B.3.2) to the height functions hC,NA and hCxC,B, we find that

hC,NA = Nhc,A + 0(1),

hCxC,B = Mhc,A 0 PI + Mhc,A 0 P2 + hCXC,-LHp~A+p~A + 0(1).

Here the 0(1) depends on the choice of particular Weil height functions, but
it is clearly independent of d1 , d2 , d. Substituting into the above formula
for hcxc,o gives (note that Oi = (~+ Md)jN)

hCXC,O(d1 ,d2,d)(Z, w) = dIhc,A(Z) + d2hc,A(W)

- dhcxc,-~+prA+p~A(Z, w) + O(di + d2 + d).

(9)

(Note that M is fixed, so it can be absorbed into the 0(1) constant.)
From (E.2.1(b)) we have i A8 A rv gA, which gives the height relation

hC,A(U) =~hJ,eA 0 iA(U) + 0(1)

1 ~

= -hJ eO iA(U) + 0(1)9 ,

1 2 
= -lui + 0(1) for all U E C(K).

9

Similarly, (E.2.1(c)) says that

(10)
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which translates via the Height Machine into
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hCXC,-A+PiA+p;A(Z, w)

= hCXC,(jA XjA)'(si2 SA -piSA-p;SA) (z, w) + 0(1)

= hJ,SA (SI2(jA(Z),iA(W))) - hJ,SA (PI (jA(z),iA(W»))

- hJ,SA (P2 (jA(Z), iA(W»)) + 0(1)

=hJ,e(jA(Z) + iA(W») - hJ,e(jA(Z») - hJ,S(jA(W») + 0(1)

= Iz + wI2- IzI2- Iwj2 + 0(1)

= 2(z, w) + 0(1). (11)

Substituting (10) and (11) into (9) gives the desired result,

dl 2 d2 2
hcxc O(dl d2 d)(Z, w) = -Izl + -iwi - 2d(z, w) + O(d l + d2 + d).

, " 9 9
o

Before proceeding with the more difficult task of giving a lower bound
for ho, we briefly make some observations that will help to explain the
significance of Proposition EA.l and how it is related to Vojta's inequality.
First, if we set d1 = d2 = d = 1, then 0 = 0(1,1,1) is just the diagonal
divisor d, so Proposition EA.l becomes

(
1 2 1 2

hcxcAz,w)~-lzl +-Iwi -2(z,w} +0(1)., 9 9

This should look familiar; it is a slightly strengthened version of Mumford's
gap principle (B.6.6(a». (The reason we got a slightly stronger inequality
than (B.6.6) is because we chose a particularly nice embedding of C in J.)
In particular, since the diagonal is a positive (albeit immovable) divisor, we
know from (B.3.2(c» that hCXC,A is bounded below for points not lying
on ~, which implies that

for all z, w E C(K), z 1:- w. (12)

Notice that if 9 = 1, then (12) is trivially true by the Cauchy-Schwarz
inequality. But if 9 > 1, then (12) gives a nontrivial geometric constraint
on the set C(K) sitting inside the Euclidean vector space J(K) I8l R. Wri
ting (z, w) = Izllwl cos (}(z, w) as in the proof of Proposition E.1.2, it is
easy to see what that constraint is roughly:

1 (IZI IW1)
cos(}(z,w) ~ 29 "j;f +~ .

Hence if Z and w have approximately the same length, the right-hand side
will be strictly less than 1, so (}(z, w) will be bounded away from O. In
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other words, Mumford's inequality (12) says that points in C(K) of ap
proximately the same length must subtend an angle that is bounded away
from 0, and that bound is independent of the lengths. Using the argument
we gave in (E.1.2) (or see Section B.6, especially Lemma B.6.7), it is a
simple matter to deduce from this that the number of points in C(K) of
norm less than H grows no faster than O(logH). Since the number of
points in J(K) of norm less than H grows like a polynomial in H, we have
reproven Mumford's theorem (B.6.5), which says that rational points on C
are very sparsely distributed in J.
Suppose we try to apply Mumford's argument to a general Vojta divi

sor n = n(d1 ,d2,d). In the first place, we need n to be effective, since
we want hn to be bounded below. As we will see later, the inequa
lity d1d2 > gJ2 and the Riemann-Roch theorem for surfaces will tell us
that n is effective. If we take a particular effective divisor V in CJ(n),
Proposition EA.l gives the inequality

d1 2 d2 2
-C2 :::; hcxc,v(z,w) :::; -izi + -Iwl - 2d(z,w) + 0(d1 + d2 + d),

9 9
valid for (z, w) f/: V.

(Of course, C2 depends on V, so it depends on d1 , d2, d, but let us ignore this
unpleasant fact for the moment.) A little algebra now gives the estimate

(13)

Taking d1 = d2 = d retrieves Mumford's inequality, but we want to do
better, so we try to make the right-hand side as small as possible, keeping
in mind the constraint dld2 > gJ2.
Assuming that Izi and Iwl are reasonably large (which is okay, since

C(K) has only finitely many points of bounded height), we might choose
the integers d 1 , d2, and d to satisfy

d~ Izllwl.

Then (13) becomes (approximately)

(z,w) < Izllwl +0 (~+ M).
- v'9 Izi Iwl

In particular, if Izi and Iwl are sufficiently large, then the error term is
small in comparison to the main term, and we obtain (for any c > 0)

(z,w):::; (l+c)lz~l.
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Finally, the assumption that g 2: 2 and an appropriate choice for e gives
the nontrivial bound

(z,w) $ (1 + e) IZ~I $ ~lzllwl,

which is exactly Vojta's inequality.
This "proof' was much too easy, so there must be a gap in our argu

ment. In fact, there are two of them, both arising from the fact that we
started by choosing an effective divisor V in the divisor class of O(d1 , ~, d).
Having chosen V, we then asserted that the height function hcxc,v is
bounded below. The first problem is that although this function is indeed
bounded below, the 0(1) in the bound certainly depends on fixing par
ticular local equations to define the divisor V. So we will need to choose
equations carefully with coefficients that are not too large. This is clearly
a situation where some variant of Siegel's lemma should be useful.
The second problem is more serious. We get a lower bound for hcxc,v

only for points (z, w) not lying on V. But as we have just seen, the partic
ular Vojta divisor O(d},~,d) that we choose depends on the points (z, w),
so it is at least conceivable that every effective divisor linearly equivalent
to our chosen O(d}, d2 , d) might contain (z, w). This problem is solved in
two steps. The first step is to allow (z, w) to lie on V and to find a lower
bound in terms of the multiplicity with which V goes through (z, w). The
second step, which is technically more difficult, is to apply some version of
Roth's lemma to show that this multiplicity is not too large; in fact, it is
so small that the correction term coming from the multiplicity contributes
only to the error term.

So now we have laid out the route leading to a lower bound for hn. In
the subsequent sections we will follow this road step by step to the desired
conclusion.

E.5. A Lower Bound for hn(z,w) for Nonvanishing Sections

At the end of the last section we talked about choosing an effective divisor
linearly equivalent to a Vojta divisor O. This is the same as choosing a
global section s to the line bundle 0(0), since if s E HO (C x C, 0(0)) is
such a section, then by definition the divisor div(s) is positive and linearly
equivalent to O. We are now going to describe these global sections more
explicitly.

Recall that the Vojta divisor 0 = O(d}, d2 , d) equals
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(14)

where 81,82 , d are assumed to be large. As discussed earlier, every global
section 81 to O(dB) is a homogeneous polynomial of degree d in the vari
ables Y = [Yo, ... ,Yrn]. Further, if 8 is a global section to 0(0), then 881 is
a global section to 0(81(NA x C)+82 (Cx N A)), so 881 is a bihomogeneous
polynomial of bidegree (81 , ( 2 ) in the variables

(x, x') = ([xo, ... ,xn ], [x~, ... ,x~]).

Applying this with 81 taken successively to be yg, Yf, ... ,y~, we find that
a global section 8 to 0(0) determines a collection of functions

8 = (Fi(X~XI)) I '
Yi CxC

where each Fi is bihomogeneous of bidegree (81, 82 ) and

Fi Fj- - on C x C, for all 0 ~ i,j ~ m. (15)yf yff
Conversely, given a set of bihomogeneous polynomials :J' = {Fi(x,X' )} of
bidegree (81 , ( 2 ) satisfying (15), the description (14) defines a global section
to 0(0).
Let 8 be a global section of 0(0). Then the height hn is bounded

below for all points (z, w) E C x C not lying on the positive divisor div(8);
or equivalently, it is bounded below at all points with 8(Z,W) =I O. Unfor
tunately, the general theory of Weil heights gives us only a lower bound
for hn that depends on 0, so the lower bound depends on d1, d2 , d, and
on the collection of polynomials :J' that describe 8. The next proposition
makes the lower bound explicit.

Proposition E.5.1. Let 8 be a global section to 0(0), and let:J' = {Fi }

be a collection of rational functions corresponding to 8 as above. Then for
all points (z, w) E C x C with 8(Z, w) =I- 0, we have

hCXC,n(dl,d2,d)(Z, w) :::: -h(:J') - nlog(81 + n)(82 + n)).

[For notational convenience, we are writing h(:J') = maxh(Fi ), where the
height of a polynomial is the height of its coeHicients.]

Remark. Unfortunately, Proposition E.5.1 is not strong enough to use for
the proof of Vojta's inequality, because we will not be able to guarantee the
existence of a section 8 that does not vanish at (z, w). So later we will need
to prove a stronger version in which we differentiate 8 until it eventually
does not vanish at (z,w). The reason we give a proof of (E.5.1) is that
it illustrates the general idea while keeping the technical complications to
a minimum. In the next section we will show that it is possible to find a
section 8 whose height h(:J') is fairly small, so combined with (E.5.1) we will
deduce Vojta's inequality, provided that that particular 8 satisfies s(z, w) =I
O. For the stronger version of Proposition E.5.1 for derivatives of sections,
see Propositions E.8.1 and E.lO.1.
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PROOF (of Proposition E.5.1). By abuse of notation, we will write
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x' = <PNA(W), Y = <PB(Z,W).

Then using the particular Wei! height we have associated to the Vojta
divisor n, we have

hcxc,n(z, w)

= 0Ih(X) + 02h(X') - dh(y)

= 01 Lm~log IXjlv + 02 Lm~log Ixj,jv - dLm~log IYilv
J J t

V V V

= - (01 L rnjn log IXj 1;1
v

I
y'!- I= _ maxmin 10 tL ' '" g 61 , 62

• J,J X· X,,v J J v

Next we want to use our assumption that s(z, w) # O. The standard
way to exploit the fact that an algebraic number is not zero is to use the
product formula, which after taking logarithms becomes

(16)
v

Although it has been "jazzed up" a bit, the product formula in this context
is nothing more that the fact that a nonzero integer must have absolute
value at least 1. Subtracting (16) from our formula for hn(z, w) gives

h () L . I IS(Z,W)Yflcxc,n z,w = - maxrru,n og 6 6
• J,J' X IX}

v J J v

Now we use the fact that s(z,w) = Fi(x,x')/Yf and that each Fi is biho
mogeneous of bidegree (01,02) to obtain

h () " . I IFi(x, x') Icxc,nz,w =-L..Jm~~~nog 66
• J,J' X IX,~

v J J v

= - Lm~~i¥log IFi (~, ~') I (17)
v • J,J Xj x j ' v

Remember that we are trying to find a lower bound for hn (z, w). For
each absolute value v we want to choose j and j' to make
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small. So for each v we define jv and j~ to be the indices satisfying

which implies that

and

and x'., I_3_ < 1
I -x·,
3u v

for all j,j'.

Then the triangle inequality gives

where vv(Fi ) equals 1 if v is nonarchimedean, and equals the largest possible
number of nonzero terms in Fi if v is archimedean. Since the number of
bihomogeneous monomials of bidegree (61l 62 ) in the variables xo, ... , xn ,

I I •
xo,··· 'Xn IS

we have

vv(Fi) ~ (61 + n)n(62 + n)n

vv(Fi) = 1

if v is archimedean,

if v is nonarchimedean.

Now take the maximum of (18) over all i and sum over all absolute
values v. Comparing with our lower bound (17) for hn(z,w), we find that

hCxc,n(z, w) 2: - L maxlog(vv(Fi ) max Icoefficients of Filv)
t

v

= - Lm~log Icoefficients of Fil v - L log! vv(Fi) Iv
t

v v archimedean

2: -h(:Y) - nlog((61 + n)(62 + n)).

This is exactly what we were aiming for, which completes the proof of
Proposition E.5.1. 0
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E.6. Constructing Sections of Small Height I:
Applying Rlemann-Roch

In this section and the following one we will construct a "small" global
section to CJ(O(dl,d2 ,d)). By small we mean that it will be given by
homogeneous polynomials whose coefficients are reasonably small. The
main difficulty arises from the fact that we need to do the construction
uniformly with respect to d1 , d2 , d.
Recall that we have fixed embeddings

and if>B : C x C -- p;:,
where we have used subscripts to indicate notation for the homogeneous
coordinates on the various projective spaces. Then a global section to the
sheaf CJ (O(d1 , d2 , d)) consists of a collection of bihomogeneous polynomials

of bidegree (61 ,62) with the property that

Fi(Xd,X') I = -'FJ<....:.(~x,;-X....:...')

Y YJ
d

i CxC CxC
for all 0 $ i, j $ m.

We also remind the reader that 61 , 62 are related to d1 , ~, d by the formulas

Since if>NA x if>NA is an embedding, the function field of C x C is given
by

(
Xl X2 Xn X~ X~ X~)

K(CxC)=K -'-""'-'1'1""'-' .
Xo Xo Xo Xo Xo Xo

(This is a slight abuse of notation, since we really mean the restriction of
the functions Xj/xo and xj/xh to C x C, and we have implicitly used the
fact that if>NA(C) is not contained in the hyperplane Xo = 0.) Now, ydyo
is a rational function on C xC, so we can write it as

Yi Pi(x,x')
Yo Qi(X, x')

for some bihomogeneous polynomials Pi, Qi E K[x, x']. Substituting above,
our task is as follows:

(i) Find bihomogeneous polynomials Fo, ... ,Fm E K[x, x'] with bide
gree (61 ,62 ) and satisfying the conditions

(PjQi)dFil = (PiQj)dFjl for all 0 $ i,j $ m. (19)
CxC CxC
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(ii) Estimate the heights ofthe Fi's explicitly in terms of dl, d2, d.

This looks like a job for some variant of Siegel's lemma, since we can
write the Fi's as bihomogeneous polynomials in (x, x') and treat the coeffi
cients as our unknowns. Then (19) puts a number of linear constraints on
those coefficients, and the general philosophy associated to Siegel's lemma
says that there should be a solution ~ = {Fi } of height

h(~ dim of space of all {Fi}'s h (coefficients of the) (20)
«: dim of space of solutions to (19) x linear constraints

Since the Pi's and Qi's are fixed, independent of db d2,d, the height of
(PjQi)d satisfies h((PjQi)d) «: d. So the linear constraints have coefficients
whose height is bounded (more or less) by O(d).
Notice that the space of all F(x, x')lcxc of bidegree (81, 82) is just the

space of global sections to the line bundle

We can use the Riemann-Roch theorem to estimate the dimension of this
space and the dimension of the space of solutions to (19), as described in
the next lemma.

Lemma E.6.1. For all d l and d2 larger than some constant depending
only on C, the following two estimates are true.

(a) f(Q(d l ,d2,d») 2: dI d2 - gd2 - (g -1)(dl + d2).

(b) f(81(NA x C) + 82(C x NA») = (N8I - g + 1)(N82 - g + 1).

PROOF. To ease notation, we shall write

Al =A x C

Thus the Vojta divisor is

and A2 = C x A.

We also observe that the canonical divisor of a product of varieties is ob
tained by taking the sum of the pullback of the canonical divisors on each
variety (see Exercise A.2.5(b) or Hartshorne [1], Exercise 11.8.3). In par
ticular,

Kcxc = (Kc x C) + (C x Kc).

We recall from (A.4.2.2) that Kc E Div(C) is a divisor of degree 2g-2, so in
terms of intersection computations, Kcxc behaves like (2g - 2)(AI + A2 ).
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In order to calculate 0 2 and 0 . Kcxc, we use the following inter
section table for the divisors All A2 , and~. This table is a summary of
Proposition A.4.6.4.

Al A2 ~

Al 0 1 1
A2 1 0 1
~ 1 1 2- 2g

Now it is simply a matter of multiplying everything out to compute

~(02 - O· Kcxc) = ~02 - ~(O. (2g - 2)(A l + A2))

= dl d2 - gd2 - (g - l)(d l + d2)·

Further, the arithmetic genus of C x C is

Pa(C X C) = g2 - 2g;

see Example A.4.6.3.1 and Exercise E.5.
We now apply the Riemann-Roch theorem (A.4.6.3) to the surface

C x C and the divisor 0 = O(dll d2 , d) to obtain

1
l(O) - s(O) + l(Kcxc - 0) = 20. (0 - Kcxc) + 1+Pa(C x C)

= d l d2 - gd2 - (g - l)(dl + d2) + (g - 1)2.

The integer s(O) is nonnegative (since it is equal to the dimension of
the cohomology group Hl(C x C,O(O))), so we will obtain something
slightly stronger than the desired estimate, provided that we can show
that l(Kcxc - 0) = O.
To do this, we observe that the divisor Al + A2 is ample on C x C,

and that
(Kcxc - 0) . (AI + A2) = (4g - 4) - (dl + d2)

is strictly negative, provided that d l and d2 are sufficiently large. Hence
Kcxc -0 cannot be linearly equivalent to an effective divisor, which shows
that l(Kcxc - 0) = O. This completes the proof of (a).
(b) We start with the intersection computation

1 ( 22(6l NAl+62NA2)· 6lNAl+62NA2-Kcxc) = N 6l62-N(g-1)(6l+62).

Applying the Riemann-Roch theorem (A.4.6.3) to the divisor 6l NAl +
62N A 2 , we obtain

l(6l NAl + 62NA2) - s(6l N Al + 62N A2) + l(Kcxc - 6l N Al - 62N A2)
1

= 2(6lNA l + 62NA2)· (6l NAl + 62NA2 - Kcxc)

+ 1+Pa(C x C)

= N 26l62 - N(g - 1)(61 + 62 ) + 1+ g2 - 9

=(N6l - 9 + 1)(N62 - 9 + 1).
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Further, we see that
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is negative for sufficiently large d l , d2, d, so just as in (a), we find that
£(Kcxc - 8I N Al - 82 N A 2 ) = O. It remains to deal with the pesky "su
perabundance" term s(81N Al + 82 N A 2 ). More precisely, we will have
completed the proof of (b) once we show that the superabundance is O.

The quickest way to show this is to invoke the powerful vanishing
theorem of Kodaira (Remark 4.6.3.2). (See Hartshorne [1], Remark III.7.15
for the general statement). Kodaira's vanishing theorem tells us that if D
is an ample divisor on a surface X, then s(Kx + D) = O. In the present
instance

Kcxc r<o.J (2g - 2)A1 + (2g - 2)A2 ;

hence

8I N Al + 82N A 2 = Kcxc + (81N + 2 - 2g)AI + (82 N + 2 - 2g)A2 •, ,
'"ample if 61 N>2g-2 and 62N>2g-2

This proves that if 81N and 82N are sufficiently large, then

for an ample divisor D, so Kodaira's theorem gives us the desired conclusion
s(8I NA I + 82 NA2 ) = O. 0

Remark E.6.2. Using a variant of the Enriques-Severi-Zariski lemma, it
is possible to show directly that the natural map

is surjective for sufficiently large 81 , 82 . It follows that

Using Lemma E.6.1 in the estimate (20), we find that there should be
a global section s to CJ(O(d l , d2 , d)) given by a system of polynomials ~
satisfying

h(~) « (d1 + Md)(d2 + Md) . d,
dI d2 - gd2

at least provided that d1 , d2 , d are chosen sufficiently large. In the next
section we will make this plausibility argument precise. The main difficulty
that arises is that of translating (19) into an explicit set of linear equations
while maintaining sufficient control over both the number of variables and
the coefficients of those equations.
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E.7. Constructing Sections of Small Height II:
Applying Siegel's Lemma

In this section we combine the Riemann-Roch calculations from the pre
vious section with some messy polynomial calculations and an application
of Siegel's lemma to produce a "small" global section to C) (O(dl , ~, d)) .

Proposition E.7.1. Let 'Y > 0 be given, and let dl, d2 , d be large integers
satisfying

dl d2 - gd2 ~ 'Ydl d2 •

Then there is a global section s to C) (O(dl , d2 , d)) given by a system of
bihomogeneous polynomials T = (Fo, ... ,Fm ) as described in Section E.5
such that

d l +d2
h(T) ::; CI + o(dl + d2).

'Y

Here CI depends on C/ K and the embeddings <PNA and <PB, but is inde
pendent of d l , d2, and d.

PROOF. We begin by choosing a suitable affine coordinate system with
which to work. Consider the projection map

11": C ~ pn __ pI,

X 1---+ [XQ, Xl]'

The embedding <PN A corresponds to choosing a basis for the linear sys
tem L(NA), so the map 11" : C -4 pI is a nonconstant rational map. (If it
were undefined or constant, then <PNA(C) would lie in a hyperplane, con
tradicting the linear independence of the functions used to define <PNA')
Further, since C is a smooth curve, 11" is automatically a morphism. It is
easy to compute the degree of 11":

deg 11" = deg 11"* (a point in PI)

= deg<pivA(a hyperplane in pn) = degNA = N.

The third equality is true because <pivA applied to any hyperplane in pn
gives a divisor linearly equivalent to N A.
Similarly, for each 2 ~ j ~ n we can project

1I"j : C ~ pn __ p2,

X 1---+ [XQ,XI,Xj]'

We use here the content of Remark E.2.2, which says that if the coordinates
(xQ, ... ,xn ) have been nicely chosen, then the image of 1I"j is a (possibly
singular) curve in p2 of degree

deg1l"j(C) = deg1r;(line in p2)

= deg <pivA(hyperplane in pn) = deg N A = N.
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Thus 7fj(C) is a curve of degree N in ]p2. If we restrict the projection

to 7fj (C), we get a map of degree N from 7fj (C) to ]pi, and then the following
diagram commutes.

C ~

'Tr '\. degN
]pI

1 :s j :s n.

It follows that the map 7fj : C - 7fj (C) has degree 1, so 7fj (C) is birational
to C. In particular, the function field of C equals

K(C) = K (XII ,Xj I) for any 2:S j :s n.
Xo c Xo c

This suggests that we define affine coordinates on C by letting

~j = Xj I '
Xo c

Then K[6, ... ,~n] is the affine coordinate ring of

The fact that 7fj(C) is an irreducible curve of degree N in 1P2 means
that it is the set of zeros of a homogeneous polynomial of degree N in the
variables xo, Xl, Xj' Without loss of generality, we may assume that this
polynomial has an xf term. (If not, we need merely go back and use a
slightly modified basis for L(NA) to define the embedding <PNA.) Dividing
the equation for 7fj(C) by cx~ gives a relation of the form

(21)

where aij E K[6] are polynomials satisfying

deg6 aij(~l) :s N - i.

It will be convenient later if the aij'S have coefficients in the ring of inte
gers R of K. We can ensure that this is true by again changing the em
bedding <PNA. To be precise, if the original <PNA was given by [xo, ... ,xn],
let the new <PNA be [xo,rxl>." ,rxnJ, where r E K* is chosen to clear the
denominators of all of the coefficients of all of the aij's. Then (21) becomes

degaij :s N - i. (22)
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We know that

It follows that

71"2 (G)
[1, 6(z), 6(z)]

degN--
and

In particular, 1'~2,~~, ... ,~:-1 form a basis for K(G) over K(~l)' Simi
larly, if we take two copies of this map,

G G
([1,6,6],[1,~~,~~)) m.2 m.2

X IrXJr-,

we find that
(23)

Further, the set of functions

(24)

is a basis for K(G x G) over K(6, ~D.
Next we use the embedding <PB : G x G -+ pm corresponding to

the divisor B and pull back the coordinate functions on pm. This gives
rational functions <P'B(yi!yo) on C x G, so (23) tells us that this function
is in K(6,6'~~'~2)' (We know that the image <PB(G x G) does not lie in
the hyperplane Yo = 0.) Thlis

for some polynomials Pi, Qi E K[6, ~2, ~~ '~2], and since we are allowed
to multiply numerator and denominator by a common element of K*, we
may clear denominators and assume that Pi,Qi E R[~1,6,~~,~2J. It is
important to observe that the Pi'S and Q/s are independent of d1 , d2 ,

and d.
Recall that we are looking for a collection of bihomogeneous polyno

mials {Fd satisfying the condition (19), since such a collection of poly
nomials corresponds to a global section to C) (O(d1 , d2 , d)) . Dehomogeni
zing (19), we can rewrite the necessary conditions in terms of our affine
coordinates ~ = (6,.·. ,~n) and €' = (~L ... ,~~) as follows: A global sec
tion to C>(O(dll d2 ,d)) corresponds to a collection of functions Fi(~,~/) E
K[~, €'J of degree at most 81 in ~ and at most 82 in ~/, satisfying the con
ditions

(PjQi)dFi = (PiQj)dFj for all 0 ~ i, j ~ m. (25)
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In order to find a "small" solution to the system of equations (25), we
will look at the following three vector spaces of functions:

VI = {F E K(C x C) IF E K[~,e] has degree at most Ih in~}
and degree at most 02 in e '

V2 = VI nK[ell 6, e~, ~~],

V3 = {(Fo, ... ,Fm) E VIm+! I(PjQi)dFi = (PiQj)d Fj

for aliOS i,j S m}.

Notice that if we rehomogenize ~ and e, then VI is nothing more
than the space of global sections to CJ (01 (NA x C) + 02 (C x N A)) , so from
Lemma E.6.1(b) we have

dim VI = (No l - 9 + 1)(N02 - 9 + 1).

Similarly, V2 contains the subspace of K (C x C) spanned by the monomials

and from (24) we see that these monomials are K-linearly independent
in K(C x C) and span V2. It is an easy matter to count the number of
such monomials, which yields

dim V2 = (NOI - ~N(N - 3)) (N02 - ~N(N - 3)) .

Notice in particular that V2 is almost as large as VI'
Finally, we observe that the elements in V3 are exactly the global

sections of CJ(n(dll d2,d)), so Lemma E.6.1 (a) gives

dim V3 ;::: d 1d2 - gd2 - (g - l)(d l + d2 )·

Remember that we are looking in VIm+! for a small element of V3. It
will be much easier to look for that element in V2

m +1 , rather than in Vl
m +1 ,

since we have an explicit basis for V2. To see that Vr+! is large enough,
we estimate

dim V3 n V2
m+1 ;::: dim V3 - (dimV l

m +1 - dim V2
m +1)

;::: {d1d2 - gd2 - (g - l)(d l + d2)}

- {(m + l)(No l - 9 + 1)(N02 - 9 + I)}
+ {(m + 1) (No l - ~N(N - 3)) (N02 - ~N(N - 3))}

;::: d l d2 - gd2 + O(dl + d2 )

;::: ,d1d2 +O(dl + d2). (26)
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It remains to find explicit linear constraints on the elements of l1:lm +1 that
guarantee that they lie in V3 .

Applying (22) with j = 2 to both copies ofC x C embedded in IPn x IPn

via 4JNA x 4JNA, we find that

and
N-l

~~N = L a2j(~D~~i.
i=O

(27)

Now we consider two elements JI., v E ~, where ~ is our fixed basis (24) for
K (C x C) over K (6, ~D. If we form the product Jl.v, then we can use (27)
repeatedly to express Jl.V as an R[~1> ~iJ-linearcombination of elements of~.
In other words, for all JI., v E ~ we have

Jl.v = L bJ.LvA(~l,~DA
AE'B

(28)

Next suppose that we are given a function

Using (27) and the fact that ~ is a basis, we can write such a P uniquely
as

P(6,6,~~,~~)= LPJ.L(6,~DJI.
J.LE'B

(29)

Similarly, any power pet of P can be written uniquely as

P(~l, 6,~~, ~~)d = L PJ.Ld(~1> ~DJI.
J.LE'B

(30)

The following lemma gives an estimate for the height of the PJ.Ld'S explicitly
in terms of d.

Lemma E.7.2. Let P be as in (29) and define PJ.Ld E R[~1> ~~] by (30).
Let b/-WA be the polynomials defined in (28).
(a) For all d ~ 1 and all JI. E ~,

PJ.L,d+l = L PAd· Pv . bAVj.L"
A,vE'B

(b) There is a constant C2, depending only on K, N, the a2j'S from (27),
and the bAV!, 's from (28), such that for all d ~ 1,

and
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N.B. The important point in this lemma is to keep track of the dependence
on d.

PROOF (a) pd+l = pd. P

= (2: PMdJL) (2: PVII) from (29) and (30)
J.LE'B vE'B

= L (PJ.LdPV 2: bJ.LVA)..) from (28)
J.L,vE'B AE'B

= L ( L PJ.LdPVbJ.LVA) ...
AE'B M,vE'B

Comparing this with
pd+l = L PA,d+l)..

AE'B

gives (a), since the elements of ~ are linearly independent over K(~b ~D.

(b) Applying (a) repeatedly, we see that PM,d+l can be expressed as a sum

PM,d+l = 2: L'" L PAdPV1PV2'" PVdbA1V1MbA2V2A1'" bAdVdAd_1'
A1 ,V1 E'B A2,V2E'B Ad,VdE'B

This shows immediately that

degpM,d+l S (d + 1) (maxdegpM) + d ( max deg bAVM) S C3d,
ME'B A,v,ME'B

which proves half of (b).
For the other half, we note that #~ = N 2, so we have expressed PM,d+l

as a sum of N 2d terms, each of which has the form

(product of (d + 1) of the p/s) x (product of d of the bMvA'S).

Applying Proposition B.7.2 then yields

h(Pm,d+l) S [K: Qllsuph( IT PM x II bMVA ) +logN2d

d+ 1 factors d factors

S [K: QlI((d+ 1) sup {h(PM) + degpM + 1}
ME'B

+ d L {h(bMVA ) + deg bMVA + 1}) + 2dlog N
M,V,AE'B

This completes the proof of Lemma E.7.2. o
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We return now to our fixed collection of polynomials

We apply Lemma E.7.2 with P = PiQj for each 0::; i,j ::; m, which allows
us to write

(l{Qj)d = I:Pij~dJL
~E13

(31)
We can choose one constant Cs to work for all of the PiQj'S; note that Cs
is independent of d.
Every element Fi in our space V2 can be written uniquely in the form

(32)

Now, an (m + I)-tuple (Fo, ... , Fm ) E V2
m

+1 will lie in V3 if and only if it
satisfies the conditions

for all 0 ::; i, j ::; m. (33)

Using (31) and (32) to expand (33), we find that (33) is equivalent to

0= (I: Pji~dJL) ( L Uikk'v~:~~k'v)
/LE13 vE13

k,k'~O

- (I: Pij/LdJL) ( I: Ujkk,v~:~~k'v)
/LE13 vE13

k,k'~O

I: (~:~~k' (Pji/LdUikk'v - Pij/LdUjkk'v) I: b/Lv)..A) from (28)
/L,vE13 )..E13
k,k'~O

= I:{ I: ~:~~k' b/Lv)..(Pji~dUikk'v- PijjJ.dUjkk'v) }A. (34)
)..E13 /L,vE13

k,k'~O

Keep in mind that our goal is to find Uikk'v coefficients such that (34) is
true for all 0::; i,j ::; m. So the Uikk'v'S are our variables, and (34) gives us
a system of linear constraints on these variables. FUrther, our calculation
of the dimension of V3 n V2m

+1 tells us that (33), and hence also (34), has
a solution space of dimension at least "{dI d2 + O(di + d2)'
Notice that the braced expression in the right-hand side of (34) is a

polynomial in ~I and ~~ only; it is free of 6 's and ~~ 's. Since the elements
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of'B are linearly independent over K(~l,~D, it follows that (34) is true for
all 0 :s i, j :s m if and only if

The fact that (34) and (35) are equivalent is important, because (26) tells us
that the space of solutions to (34) has dimension at least ,dl~+O(dl+d2),
so we deduce that

dim(space of solutions to (35)) ~ ,d1d2 + O(d1 + d2 ). (36)

On the other hand, the functions in (35) lie in the ring R[~l,~~] C
K(C x C), and 6 and ~~ are algebraically independent over K. In other
words, R[6, ~U is just a polynomial ring, so (35) will be true if and only
if the coefficient of each distinct monomial ~f~~ e' is equal to zero. So
it remains to rewrite (35) as a sum of monomials and set the coefficients
equal to zero, thereby obtaining the linear constraints that the Uikk'v 's must
satisfy if our system ~ = (Fo, ... ,Fm ) is to be a global section of <9(0).

We know that the bflV ),(6, ~D's and the Pijfld(~1>~D's are polynomials
whose degrees and heights satisfy

(The first two inequalities are clear, since the bflV),'s do not depend on d,
while the second two inequalities are Lemma E.7.2(b).) Hence if we let

then

Now our system of linear constraints becomes

L (Jkk'flV),jid(6,~Duikk'v - !kk'Jlv)'ijd(6,~Dujkk'v) = 0
fl,vE~

k,k'?O for all 0 :s i,j :s m and >. E 'B.

Setting the coefficient of each distinct monomial ~fe~e' equal to zero, we
see that the linear constraints on the Uikk' v 's have coefficients bounded
by elld. This estimate is what we have been aiming for.
In summary, we have shown the following:

(i) dim V3 n V2m+1 ~ ,d1d2 + O(d1 + d2 ).
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(ii) dimV2
m +1 :5 (m+ 1)N2(5t62 + O(dl + d2 + d).

This follows from Lemma E.5.1(b), since V2 is contained in Vi,
and Lemma E.5.1(b) gives such an upper bound for dimVI.

(iii) Elements of V3 n V2
m H are precisely those (m+ 1)-tuples of func

tions ~ = (Fo, •.. ,Fm ), where each Fi is given by (32) and the co
efficients Uikk'" in (32) are constrained to satisfy a system ofhomo
geneous linear equations whose coefficients have height bounded
by cud.

[Aside: Note that (i) and (ii) certainly lie much deeper than (iii), since
they depend on the Riemann-Roch theorem. The proof of (iii) was long,
but essentially nothing more than an elementary calculation.]
Applying Siegel's lemma (Proposition D.4.2), we find that there is an

element

satisfying

dim y,m+l
h(~ :5 Cl2 • 2 mH' h(coefficients of linear constraints)

dimV3 nV2

< Cl3 (m + 1)N
2
6162 + O(dl + d2 + d) . d.

- 'Ydld2 + O(dl + d2 )

Now using the definition 6i = (di+Md)fN and the assumption that dl ,d2 ,d
are large and satisfy d l d2 > g~, a little algebra yields the desired result,

d l +d2
h(~ :5 Cl4 + o(dl + d2 ).

'Y

This completes the proof of Proposition E.7.1.

E.8. Lower Bound for ho(z,w) at Admissible (ii,i2): Version I

o

Recall that in Section E.5 we proved a lower bound for ho(z, w) of the form

where ~ = {Fil is a collection of bihomogeneous polynomials describing
the global section s of 0(0). Further, we now know from Section E.7 that
there is such a section whose height is bounded by
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so we can refine the lower bound (37) to

This last lower bound, combined with the argument sketched at the end of
Section EA, suffices to prove Vojta's inequality. So what is still left to do?
The one remaining problem is that (37) was proven only under the

additional assumption that the section s does not vanish at (z,w), and un
fortunately in order to prove Vojta's inequality, we need to choose d1 , d2 , d
depending on z and w. How do we know that the corresponding section de
scribed in Proposition E.7.1 does not vanish at (z, w)? The answer is that
we do not, it is quite likely that in fact s(z, w) is equal to O. So taking our
cue from the classical Thue-Siegel-Roth proof, we start differentiating s
until we find some derivative that does not vanish at (z,w). We then redo
the entire argument to obtain an unconditional lower bound for hn(z, w).
The task we have before us divides naturally into three steps. In this

section we will assume that some derivative of s does not vanish at (z,w)
and derive a lower bound for hn (z, w) depending on the order of the deriva
tive and the values of the derivatives of certain algebraic functions. In the
next section we will give an estimate for those derivatives that depends in
a very explicit way on the order of the derivative and on z and w. All of
these estimates are elementary, although notationally they are somewhat
intricate. Then, in Section E.lO, we will show that it is not necessary to
differentiate s too many times in order to obtain a nonvanishing derivative.
In order to do this we will apply a two-variable version of Roth's lemma
that was essentially already used by Siegel.
We begin with some notation. We let ( and (' be uniformizers at

the points z and w, respectively. Then any rational function on C x C
that is regular at (z, w) can be thought of as a function of ( and (', so
we can compute its partial derivatives with respect to ( and ('. We define
differential operators

1 (8 )i
8: = if 8(' (38)

We will assume throughout that z and w satisfy

Xj(z) =1= 0 for all 0 $ j $ n,
xj,(w) =1= 0 for all 0 $ j' $ n,

Yo(z,w) =1= o.
(39)

In other words, we are discarding a finite number of points of C where it
intersects certain hyperplanes for the embeddings ¢N A. Remember that
by construction, C is not contained in any of these hyperplanes. The last
condition is clearly satisfied, perhaps after changing the order of the Yi'S.
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Let s be a global section of c) (O(dl , d2 , d)) corresponding to a collection
of polynomials {Fil as usual. We define a rational function f E K(G x G)
by

f- s _ (yo)d R (~ XI)
- xg1 x&62

Yod - Yi t xo' xc, .

Here we are writing x/xo for the (n + I)-tuple (1, xIfxo, . .. ,xn/xo), and
similarly for x'/x'o. We are interested in studying some (hopefully small)
derivative of f that does not vanish at (z, w). With this in mind, we make
the following definitions.

Definition. The index of the section s at the point (z, w) is

Ind(s) = min {~: + ~: IiI, i2 ~ 0 and aila:J(z, w) # o} .
A pair (ii ,i2) is called admissible for s if

ii i2Ind(s) = - + - and ai·a:.f(z,w) # O.
01 02 1 2

Thus the index of s measures the smallest derivative of s that does
not vanish at (z, w), and an admissible pair gives a particular derivative
realizing this minimum. We start with a simple application of Leibniz's
rule.

Lemma E.8.1. With notation as above, let (ii, i 2) be an admissible pair
for s. Let 9 be a rational function on G xG that is regular and nonvanishing
at (z, w). Then

PROOF. Leibniz's rule for the derivative of a product says that

(40)
u+v=ii u'+v'=i;

Note that the definition (38) of aand ()' includes factorials that take care
of the usual combinatorial quantities appearing in Leibniz's formula.
When we evaluate (40) at (z,w), then the fact that (ii,i2) is an ad

missible pair implies that every term in the sum vanishes except for the
term with (u,u') = (ii,i2). So (40) evaluated at (z,w) becomes

(ai~a:2(fg)) (z,w) = (ai~a:2f) (z,w)' g(z,w),

which is exactly the desired result. o

We are now ready to prove the main estimate of this section.
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Proposition E.8.2. Let s be a global section of C> (O(d1 , d2 , d)) given by
a collection of polynomials :.f = {Fi }, and let (ij, ii) be an admissible pair
for 8. Then

hcxc,n(z, w) ~ -h(T) - (ij + i; + 261 + 262 + 2n)

6

1

\() I- max max minlog aile Xl (z)L i1+,'+i61 =iiL O<l<n j X)'
v k=1 - - v

62 (' )- max max min 10 ai' ~ wL i' +..+i' =i* L O<l<n" g Ie Xl ()
v 1 62 2 k=1 - - ) )' v

PROOF. Recalling how we normalized the Weil height hn in Section E.2
(see (8)), we have

hcxc,n(z,w) = 61h(cPNA(Z)) + 62h(cPNA(W)) - dh(cPB(Z,W))

= 61LmrlogIXj(z)lv + 62 L~~IOglxj,(w)lv
v v

- dLm~logIYi(z,w)lv
•v

= -(61L~nloglxj(z)I~1 +62 Lny,nloglxj,(w)I~1
v v

+dLmrx log IYi(Z, w)lv)
v

= - ~max~nlog ( 6 yf 6 ) (Z,w)1
L..J • ).)' X ,1 X'" 2

V ) ) v

Note that (41) holds for any choice of projective coordinates

cPNA(Z) = [xo(z), ... ,xn(z)), cPNA(W) = [x~(w), ... ,x~(w)),

cPB(Z,W) = [Yo(z,w), ... ,Ym(Z,W)),

(41)

since the product formula will cancel out the effect of multiplying the co
ordinates by a nonzero scalar.
Next we want to use the fact that

Oi*~*!(Z,W)::Io.
1 2

We remind the reader that the standard way to exploit the fact that an
algebraic number is not zero is to use the product formula, which after
taking logarithms becomes

Llog IOiiO;;!(Z,w)!v = O.
v

(42)
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Subtracting (42) from our lower bound (41) gives

(
ydOi.O'.f)

hcxc,o(z,w) ~ - ~maxIDI.·.nlog t 6
1;2 (z,w)

L...J t],J' X.1X.~
V ) ) v
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(43)

It is more convenient to work with actual functions on C x C, rather
than homogeneous coordinates. Since we have assumed (39) that Z and w
do not lie on the coordinate hyperplanes, the product formula gives

~log ( /g 6 ) (z,w) = 0,
L...J x lX' 2

V 0 0 v

(44)

where xo(z), xo(w), and Yo(z,w) are the same homogeneous coordinates
being used in (43). Adding (44) to (43) gives

(
(yifYO)dOi·o;·f )

hcxc,o(z,w) ~ - Lmax~p.log (-/ )6 ( / / 2')6 (z,w) . (45)
t ),) x) Xo 1 x)., Xo 2

V V

We are going to use Lemma E.8.1 to rewrite the (v,i,j,j')th term of
this sum. If we take

9 = (Xj/xo)6 l (xj,/xO)62

in Lemma E.8.! and use the definition of f, we obtain

Substituting this into (45) gives the comparatively neat lower bound

hcxc,o(z,w) ~ - Lmax~p.log (OiiO:;Fi (:., ;')) (z,w) , (46)
v t ),) ) j' v

and it remains only to estimate the size of the partial derivatives.
In order to keep the notation at a manageable level, we will first prove

the following lemma.

Lemma E.8.3. Let eo, ... ,en E K(C) be rational functions that are
regular at z, and similarly let eo,'" ,e~ E K(C) be rational functions that
are regular at w. Let
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be a bihomogeneous polynomial of bidegree (61 ,62), Let ( and (' be uni
formizers at z and w, respectively, and let Oi and 0: be the differential
operators (38) defined above. Then for any absolute value v,

I(Oii O:;F(e,~/)) (z, w) Iv ~ 2~i+i;+261+262+2nIFlv

6,

X i1+'~~ =i* IT o~ffJ (Oik~i)(Z)lv
1 1 k=l --

62

X max IT max I(0'/ C~) (w)1 .
i~+"'+i62=i; k=l O~i~n zk"~ v

Here 2v = 2 if v is archimedean, and 2v = 1 otherwise; and IFlv is the
maximum of the absolute values of the coefficients ofF.

PROOF. The number of monomials appearing in F is at most

e1:n) e2: n) ~ 26,+02+2n.

So using the triangle inequality gives

I(OiiO:;F(e,e')) (z,w)L ~ 2~l+02+2n. IFlv

x max I(Oi* (ego .. .~~n)) (z)1
eO+ ...+en =6, 1 v

X max I(o:.(~~e~ ... ~~e~)) (w)/ .
~+ ...+~=~ 2 v

(47)
In order to estimate the last two expressions on the right-hand side

of (47), we look more generally at

for functions (h, ... ,(Jo E K(G) that are regular at z. Leibniz's rule gives

(48)

where again we note that the definition (38) of 0 means that Leibniz's rule
holds without the combinatorial symbols. The sum contains at most

(
1+ 6 - 1) < 21+0
6-1 -

terms, so evaluating (48) at z and using the triangle inequality gives

6

\(o1(lh ... (6))(Z) Iv ~ 2~+6 il+~~=1 ITI(OikOk)(Z) Iv' (49)
k=l
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Now apply (49) to the expressions on the right-hand side of (47). For
example, taking I = ii, 0 = 01, and 01.. ·06 = ~go ... ~~n gives

where each Ok equals one of ~o, ... ,~n. Thus

In a similar fashion we derive the upper bound

max I(a:.(~~e~ ... ~~e~») (w)1
e~+ .. +e:'=62 2 v

62 (50')
"+6 II I I:5 2~2 2 max max (ai' ~l)(W) .

i' +···+i' =i' O<l<n k v
1 62 2 k=l - -

Substituting (50) and (50') into (47) and doing a little algebra completes
the proof of Lemma E.8.3. 0

We now resume the proof of Proposition E.8.2. Recall that we have
derived the lower bound (46), which we repeat here for the convenience of
the reader:

hcxc,n(z,w) 2: - Lmaxr¢~log (Oi.O:.Fi (~, ~')) (z,w) . (46)
t ],] 1 2 XJ' X.,

v J v

We apply Lemma E.8.3 with F = Fi , ~l = xefXj, and ~l = xllxj" which
yields
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Finally, we substitute this into (46) to obtain

hcxc,n(z, w) ~ -(ii + i2+ 281 + 282 + 2n)log 2 - h(Y)

~ I() I- min max max log Oik Xl (z)L j il+··+i6 =i* L O<l<n X·v 1 1 k=1 - - J V

02 (')- ~min max ~ max log Oi' X,t (w)
LJ J" i' +..+i' =i* LJ O<l<n k X,

V 1 62 2 k=l - - J' v

which is slightly stronger than the desired result. This completes the proof
of Proposition E.8.2. 0

E.9. Eisenstein's Estimate for the Derivatives
of an Algebraic Function

In this section we will derive an upper bound for the quantities

and

appearing in Proposition E.8.2. Recall that the function xl/Xj is a rational
function on C via the embedding if>N A : C <-+ nm, and that Oi involves
differentiating with respect to a uniformizer ( at z E C. An alternative
way to treat this situation is to consider the finite map ( : C _ pI. This
means that K(C) is a finite extension of K(O, so any rational function ~

on C satisfies a polynomial equation p(~,O = 0 of degree at most the
degree of K(C) over K((). If further the partial derivative p~ does not
vanish at z, then the implicit function theorem says that we can write ~ as
an analytic function of ( in a neighborhood of z. Thus

~(() = L(Oi~(Z))(i,
i2:0

(51)

1 (0 )iwhere as usual we are writing Oi = if o(

Suppose now that we are working over the complex numbers. A basic
result from complex analysis says that (51) converges for all 1(1 < p, where
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Further, the radius of convergence P satisfies P > O. It follows that if we
replace P by a smaller PI > 0, we get

for all i ~ 0, (52)

where the constant c is thrown in to take care of the first few i's.
This is exactly the sort of estimate we need for Proposition E.8.2,

except that as usual we must keep track of the dependence on the various
quantities involved. The next proposition gives a proof of (52) with PI
given explicitly in terms of the polynomial p(e, ().

Proposition E.9.I. Let p(e, () E K[e, (1 be a polynomial of degree D,
and let a E K be a value such that p(a, 0) = 0 and such that the partial
derivative p~(a,O) is nonzero. Let e= e(z) be the algebraic function satis
fying p(e«(), () = 0 and e(O) = a. Then for each absolute value on K, the
Taylor coefficients of this algebraic function satisfy

Here we are writing

p~ = Op/ae, ,
Iplv = max Icoefficients ofplv,

(2D)v = {12Dlv if v is a;chimedean,
1 othel"W1se.

PROOF. We claim that for each i ~ 1 there is a polynomial qi(e, () such
that

(p )2i-1 Die 0
qi + ~ a(i = .

To see this, we begin by differentiating p(e, () = 0 to obtain

ae
p< +P~a( = O.

(53)

(54)

This gives (53) for i = 1 with ql = p<. Next suppose that we know (53)
for i. Then differentiating (53) yields

Now we use (53) (which is true for i by hypothesis) and (54) to elimi
nate aie/a(i and e< from (55). Note that this is all right in a neighborhood
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of ( = 0, since we have assumed that Pe(a, 0) :F O. Clearing denominators,
we find that

This proves by induction that (53) is valid for all i ~ 1, with the additional
information that the qi'S are given by the recursive formula

and

ql = P"

qi+l = -(qi)ep,Pe + (qikp~ + (2i - l)qi (-peeP, + pe,pe)·

We can easily use (56) to estimate the degrees of the qi'S. Thus

degql = degp, :::; degp - 1 = D - 1,

(56)

deg qi+l :::; max {deg((qi )epc:;pe) , deg ( qikpV ' deg(qiPeepd ' deg (qiPec:;pe) }

:::; deg qi + 2D - 3.

Applying this repeatedly gives

degqi :::; (2i - I)D - (3i - 2) :::; (2i - 1)(D - 1). (57)

In a similar fashion we can estimate the height of the qi'S using the ele
mentary height estimates proven in Section B.7. Thus applying (B.7.4(b))
to the four terms in the recursion (56) gives

Iqi+llv

:::; 4v max{!(qi)eP,pdv' l(qikp~lv' 1(2i - l)qiPeepc::!v' 1(2i - l)qiPec:;Pelvl·
(58)

(As usual, N v is an abbreviation for IN Iv if v is archimedean, and Nv = 1
if v is nonarchimedean.)
Now we estimate each of the four quantities on the right-hand side

of (58). First,

l(qi)ePc:;Pelv :::; (2degpc:;)~(2degpc:;)~I(qi)elvipc:;lvlpelv

:::; (2D - 2)~(degqi)vlqilvD~lplv

:::; (2D - 2)~(2i - l)v(D - l)vD~lqilvlpl~

:::; 2~D~ivlqilvlpl~·

from (B.7.4(a))

from (B.7.4(c))

from (57)

Similarly,
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Next,

1(2i - 1)qiP{{p<lv

::; (2i - 1)v(2degp{{)~(2degpd~lqilvlp{{lvlpdv

::; (2i - 1)v(2D - 4)~(2D - 2)~lqilvD~lpl~

::; 2~D~ivlqilvlpl~·

from (B.7.4(a»

from (B.7.4(c»

Finally, a similar calculation gives the same estimate for the fourth quantity
in (58),

1(2i - 1)qiP{(p{lv ::; 2~D~ivlqilvlpl~·

Using these last four inequalities, (58) becomes

Applying (59) repeatedly and using Iqllv = Ip{lv ::; Dvlplv gives

Iqilv ::; (2D)~(i-l) ((i - 1)!)vlpl~(i-l)lqllv

::; (2D)~i((i -1)!)v1pl~i-l.

(59)

(60)

We are finally ready to estimate the size of the partial derivatives of e-.
Evaluating (53) at ( = 0, we obtain

(61)

(Note that e(O) = a.) We can bound the numerator by calculating

Iqi(a,O)lv ::; (2degqi)~lqilvmax{1, lalv}de
gq

; from (B.7.4(d»

::; (2(2i -1)(D -1))~(2D)~i((i-1)!)vlpl~i-lmax{1, lalv}(2i-l)(D-l)

from (57) and (60)

::; 2~i+4 D~i+2iv(i!)vlpl~i-l max{1, lalv}2iD

::; (2D);li(i!)v Ipl~i-lmax{1, lal v}2iD. (62)

For the last line we have used the fact that i 2: 1 and trivial estimates such
as i ::; 2i - 1 . Substituting (62) into (61) gives

which completes the proof of Proposition E.9.I. 0
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Note that for almost all nonarchimedean places v we obtain the bound
IOi~(O)lv ::::; 1; in other words, Oi~(O) is v-integral. It is worth noting
that when we use (B.7.4(a» to estimate the four quantities in (58), it is
essential that the estimate III I; Iv ::::; Cv IlII; Iv hold for a constant Cv that is
independent of the first polynomial ft. If this had not been true, then (59)
would have looked like Iqi+llv « i~lpl~lqilv, and so our upper bound (60)
for Iqilv would have involved (i -1)!3. Since the i! in the definition of Oi is
able to cancel only one of these factorials, our final estimate (63) would have
been multiplied by (i!)~. This may not seem too terrible, since when we take
the logarithm of (63), the difference between having log(2D)l1i ~ i log D
and log i!2 ~ i log i is only an additional factor of log i. However, this would
change the bound in Proposition E.1O.1 (to be proven in the next section)
from

to

and the extra factor of log ii would eventually prevent us from proving
Vojta's inequality. This gives some indication of how delicately the various
estimates must fit together if the proof of Vojta's inequality is to succeed.

E.lO. Lower Bound for ho(z,w) at Admissible (ii,i2): Version II

In Section E.8 we proved a lower bound for ho(z, w) in terms of an ad
missible pair of indices (ii, i2). This lower bound depends on the partial
derivatives of certain algebraic functions on C. We are now going to use
Proposition E.9.1 to estimate those partial derivatives and prove the fol
lowing improved lower bound for ho(z, w).

Proposition E.I0.1. Let s be a global section ofc)(O(d1, d2 ,d)) given
by a collection of polynomials :T = {Fi }, and let (ii, ii) be an admissible
pair for s. There is a finite set of points Z C C(K) such that for all
points z, w E C(K) with z, w ¢ Z,

PROOF. Recall (see Section E.7) that the projection map

1r:C ~ lIP"
x
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is a finite morphism of degree N. It follows that for any indices R,j, the
rational function xl/Xj E K(C) is algebraic over K(xIfxo), and we would
like to estimate the degree of the corresponding algebraic relation.
To do this, we look at the composition of maps

C cPNA pn tPt; pI XpI Segre JP3 proj. p2--+ --+ --+ --+ ,
X t---+ ([Xi, Xj), [xo, xd),

([a, b), [c, d)) t---+ lac, bd, be, ad),
[x,y,z,w) t---+ [x, y, z).

Now start with a line in p2 and pull it back step by step to C. Assuming
that l =F j and that (l,j) =F (1,0), (0,1), the line in p2 pulls back to a
hyperplane in JP3, then to a pair of transversal lines in pI x pl. These, in
turn, pull back to two hyperplanes in pn, which finally gives a divisor of
degree 2N on C. In conclusion, the map

embeds C as a curve of degree 2N in p2, so there is a homogeneous poly
nomial Gij of degree 2N such that

on C.

Dividing this by (XjXO)2N gives a polynomial relation

(
Xi Xl)9tj -,- =0
Xj Xo

onC,

where 9ij is a polynomial of degree at most 2N with coefficients in K.
Taking a point z E C(k) as usual, we define shifted polynomials

pij(S,T) =9ij (S,T+ :~(Z)).

From (B.7.4(e)) we have

Since there are only finitely many choices for R,j, and since each 9ij has
degree at most 2N, we obtain

(64)
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where the constant C20 (v) satisfies C20 (v) ~ 1 for all v, and C20 (v) = 1 for
all but finitely many v. Constants of this sort are called (multiplicative)
MK-constants; see Section B.8 or Lang [6].
Now we apply Proposition 12.1 with

P = Pij,

~ = Xi,
Xj

Xi
a = ~(O) = -(z),

Xj

( = Xl _ Xl (z),
Xo Xo

D = degpij ::; 2N.

for all 0 ::; f ::; n.

Note that for all but finitely many points of z E C, the function ( will be
a uniformizer at z. Similarly, since the curve gij = 0 in 1P'2 is a (possibly
singular) model for C, there are only finitely many points of C at which
its partial derivative (gij)~ vanishes, where we are writing (gij)~ for the
partial derivative with respect to the first variable. So in the statement of
Proposition E.I0.1, we take Z to be the finite set of points

{

u E C(K) : Xl - Xl (u) is not a uniformizer at u, or}
Xo Xo

Z = (Xi Xl ) ,
(gij)~ -(u), -(u) = 0 for some f,j

Xj Xo

and we assume throughout that z, W rt Z. Using Proposition E.9.1, we
obtain the estimate

1(8<;) (z) I. ,; (4N):li. C(Pi;~i(~:0)1.)"'-' max { 1,I:; (zllJ4i,N

(65)
Next we take the minimum over 0 ::; j ::; n. Note that for any given

point z, there will be at least one index j such that

I:; (Z)lv ::; 1

So taking the minimum of (65) and using min{ajbj } ::; max{aj} min{bj }
gives

(66)

Next we observe that there are only finitely many polynomials Pij, so

(67)

Further, referring to the definition of Pij in terms of gij, we see that

(68)
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where as above we are writing (glj)~ for the partial derivative of glj with
respect to its first variable. Substituting (67) and (68) into (66) gives

. 1(0' Xl) ()I < (4N)llik ( C2l(V) ) 2ik-l
o~2n t

k Xj z v- v o~~n 1(9lj)~(i;(z),~(z))L .

(69)
It is time to look back at Proposition E.8.2, which gives the lower

bound

hcxc,n(z, w) ~ -h(~ -(ii+i;+28l +282+2n)-M(z, ii)-M' (w, i;). (70)

Here M(z, in is the "messy" expression

M(z,ii) = L. mB:X .• f: max ~nlogl(aikXl) (Z)!, (71)
v '1+"+'61 ='1 k=l O~l~n J Xj v

and M'(w,ii) is defined similarly. Since M(z,in and M'(w,ii) appear
with negative signs, we need to find upper bounds. Using (69), we see that

M(z, ii) ~ L i1+.~~=i~
v

max log [(4N)~lik ( C2l(V) ) 2i

k

-l]
O~l,j~n 1(9lj)~ (~(z), i;(z)) Iv

~ llik log(4N)v + (2ik - 1) lOgC2l(V)

+ (2ik - 1) L log+ 1(9lj)~ (Xl (z), Xl (z)) 1-1
O~l,j~n XJ Xo v

(73)
and bound each term separately. Here we are using the standard notation

log+ t = max{O,logt} for t E JR., t ~ O.

The first two terms in (73) are easy to estimate. Using the fact that
(4N)v = 1 for nonarchimedean v and C21(V) = 1 for all but finitely many v,
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Ih

L. max .• L l1ik log(4N)v = l1iilog4NSc22ii, (74)
v '1+"·+'01 ='1 k=l

61

L. mll:X .• ~)2ik -1)logc21(V) = (2ii -1)L logc21(V) S C23ii·(75)
v '1+"·+'01 ='1 k=l v

It remains to bound the third term in (73). We begin by computing

L. max .• t(2ik -1) L log+ 1(9lj)( (Xl (z), Xl (z)) ,-I
v '1+'·+'°1 ='1 k=l O$l,j$n Xj Xo v

= (2ii -1) L Llog+ I(glj)( (:l (z), :1 (z)) ,-I
O$l,j$n v J 0 v

= (2ii - 1) L h (9lj)( (:l (z), :1 (z)))
O$l,j$n J 0

from the definition of height and the

fact that h(o:-l) = h(o:) for 0: i- 0

S (2ii -1) L {deg(glj)()h ([:l (z), :1 (z), 1]) (76)
O$l,j$n ) 0

+ h(glj)d + 3 log(3 + deg(glj)()) }

from (B.7.1(b)).

Since there are only finitely many glj'S, and since they do not depend on
the point z or the index ii, we have, using the elementary degree and height
estimates for the derivative of a polynomial (Proposition B.7.4),

deg(glj)( S 2N-l S C24 and h(glj)() S h(glj)+logdegglj S C2S'
(77)

To estimate the other term in (76), we use the fact that for any
point [0:0,"" O:n] E JPn,

(This is the 2-uple embedding IF <-+ jp(n
2
+3n)/2, and we apply the height

estimate for d-uple embedding (B.2.4c).) So for any indices e,j such
that O!oO:j i- 0, we have
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Applying this to rPNA(Z) = [xo(z), ... ,xn(z)] gives

h([:;(Z),:~(Z),l]) ~2h([xo(z)" .. ,Xn(Z)]) =2h(rPNA(Z)). (78)

We need to relate this last quantity to the height Iz12. We already did
this in Section E.4, but we will briefly recall the details. The height IzI2
is defined by IzI2 = hJ,8A. (jA(Z)) , where eA is the 6-divisor on J and
iA :C -+ J is the embedding described in Section E.2. Lemma E.2.1(b)
says that we have the linear equivalence iAeA '" gA, so the Height Machine
says that for all U E C(k),

luI2 = hJ,8A (jA(U))

= hJ ,8A (jA(U)) + 0(1)

= hc ,iA8A(U) +0(1)

= ghC,A(U) + 0(1)
9

= Nhc,NA(U) + 0(1)

= ;h(rPNA(U)) + 0(1).

Taking U = Z and substituting into (78) gives

([
Xl Xl ]) 2N 2h -(z), -(z), 1 ~ -izi + C26.
Xi Xo 9

Now we substitute (77) and (79) into (76), which gives the estimate

(79)

(80)

We have now estimated each of the three inner logarithmic terms
in (72). More precisely, we substitute (73) into (72), break the result into
three sums, and estimate those three sums by using (74), (75), and (80).
This gives

M(z,iD~c3IiilzI2+c32ii. (81)

A similar calculation gives an analogous estimate for the other "messy"
expression M'(w, i2) appearing in the statement of Proposition E.8.2,

(82)
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Substituting (81) and (82) into (70) and combining some ofthe terms gives
the desired result, which completes the proof of Proposition E.lO.1. 0

Remark E.I0.2. A careful analysis of the proof of Proposition E.lO.1
shows that the constant Cl8 may be chosen to depend only on g. More
precisely, the computations (with slightly different notation) of de Diego
[1, Lemme 5.4] say that the value Cl8 = 12n2 N 2 / 9 is admissible.

E.n. A Nonvanishing Derivative of Small Order

Our aim in this section is to show that the small section s constructed in
Section E.7 has a small derivative that does not vanish at (z,w). In other
words, we will prove that s has a small admissible pair (ii, i2). We begin
with a nonvanishing result for ordinary polynomials.

Proposition E.n.I. (Two-variable Roth's lemma) Let P E Q[XI ,X2]
be a nonzero polynomial of degree at most Tl in Xl and at most T2 in X 2 ,

and let {31, f32 E Q. Suppose that 1 ~ w > 0 is a constant such that

and

Then there are indices i l , i 2 ~ 0 such that

and (83)

Remark. It is actually a misnomer to call Proposition E.11.1 "Roth's
lemma," since versions were known to Siegel, Gelfand, and Dyson. Roth's
contribution was to prove the appropriate generalization of (E.11.1) to
the case of polynomials in more than two variables. But just as "Siegel's
lemma" is now often used to refer to any result in which one estimates the
size of solutions to a system of linear equations, we will use "Roth's lemma"
as a generic description of any nonvanishing result of the sort described in
Proposition E.11.1.

PROOF (of Proposition E.I1.I). This is simply Roth's lemma (D.6.2) with
m = 2 (i.e., two variables) and w = "12 . This completes the proof of
Proposition E.11.1. 0

We now apply Roth's lemma to show that a small global section asso
ciated to a Vojta divisor admits a small admissible pair.
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Proposition E.ll.2. There is a constant C35 = C35(C, ¢NA, ¢B) such
that the following is true. Let 0 < e, 'Y < 1 be small constants, and suppose
that the integers d1 , d2, d and the points z, W E C(K) satisfy the following
conditions:

(84)and min{d2IwI2,d1 IzI 2} ~ c3~dl.
'Ye

Suppose further that d1d2- g~ ~ 'Yd1d2, and let s be a small global section
ofc)(O(d1 ,d2,d)) as described in Proposition E.7.1. Then there exists an
admissible pair (ii, i2) for s with

ii i2-- + - < 12Ne.
d1 d2 -

PROOF. We proved earlier (see equation (10) in Section E.4) that for any
point U E C(K), we have

1
he A(U) = _jul 2 + 0(1)., 9 (85)

Next we recall the affine coordinate functions ~i = (xi!xo)le defined
in Section E.7. We will write (~,e) for the analogous affine coordinates on
C x C. Then for any point U E C with xo(u) =I 0, we have

n

he,NA(U) = h(¢NA(U)) = h([1,6(u), ... ,~n(u)]) ~ Lh(~i(U)),
i=l

where the last inequality follows from the definition of height. In particular,
for the given point z E C, there is some index j such that

1 N
h(~j(z)) ~ ;;,he,NA(Z) = -;he,A(z) + 0(1).

Reordering the coordinates, we may assume that j = 1. We similarly
reorder the ~j 's to make ~~ (w) have largest height. Combining this with (85)
above gives the estimates

N
h(6(z)) ~ -lzl2 + 0(1)

ng
and h(~~(w)) ~ N Iwl2 + 0(1). (86)

ng

In order to apply Roth's lemma, we need to use the section s to con
struct a polynomial. Recall that s is given by the collection of functions
:.f = {Fi(x,x')fyf}. We consider the function field K(C x C) as a finite
extension of the field K (6, ~D and compute the norm
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Note that Q is independent of i. Further, the function Fi(f,,,~/)(ydYo)-d

is regular on the locus of C x C where xox~ =I- 0, so the function Q is a
regular function on A l X A I . In other words, Q is in the polynomial ring
K[~I,~U·
From the definition of Q and the fact that Fi has degree 151 in x and 152

in x', we see that

deg6(Q) ~ Ndl and deg~2(Q) ~ N~. (87)

Next, since Q is the product of N2 terms, we have the estimate

h(Q) ~ N 2 h('J) from (B.7.2)

~ N 2 (C36 d1~d2 +o(d1+d2)) from (E.7.1)

~ C37dd'Y since d1 2: d2 by assumption. (88)

We are going to apply Proposition E.11.1 with

P = Q, Tl = Ndll T2 = Nd2, (31 = 6(z), f32 = ~~(w), W = g2.

There are several things to be checked.
First, we have T2 ~ WTl, since this is just a restatement of the given

condition d2 ~ g2d1.
Second, we have

h(P) + 4Tl = h(Q) + 4Nd1 ~ c38dd'Y

from (88). On the other hand, we can estimate

WTlh((31) = g2Ndlh(~I(Z))

2: g2N d1 (~ Izl2+ 0(1)) from (86)

N 2d2: __1 (g2Jz 12 + 0(1))
ng

2: C39dd'Y from (84).

So if the constant in (84) is chosen sufficiently large, then the inequality

will be true; and a similar calculation again using (84) gives the corre
sponding inequality h(P) + 4Tl ~ WT2h(f32)
We are now in a position to apply Proposition E.11.1 to the polyno

mial Q, so we find indices iI, i2 satisfying

and
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Using the definition of rl, r2, and w, the first condition becomes
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As for the second condition, it certainly implies that (i l , i2 ) is an admissible
pair for 5, because when we use the product rule to differentiate Q, at least
one of the terms in the resulting sum must be nonzero. This completes the
proof of Proposition E.ll.2. 0

E.12. Completion of the Proof of Vojta's Inequality

We have now assembled all of the tools needed to prove Vojta's inequality
(Theorem E.l.l), which we restate here for the convenience of the reader.

Theorem E.12.1. (Vojta's inequality) There are two constants Kl =
K(C) and K2 = K2(g) such that if z, wE C(K) are two points satisfying

then

and (89)

(z,w) $ ~Izllwl.

PROOF. We assume first that the constant Kl is chosen sufficiently large
so that the finite set Z C C described in Proposition E.1O.1 contains no
points with Izi ~ Kl. Now suppose we are given two points z, w E C(K)
satisfying (89), where we will be specifying Kl and K2 more precisely below.
The reader is urged to verify at each stage that it is possible to choose Kl
and K2 independently of Izl and Iwl·
Next we choose a large real number D and two small positive real

numbers 1 > e,l/ > O. In particular, we will assume that D > Iw12 .

Eventually we will let D -+ 00, while we will choose values for c and l/ that
depend only on C. We now set d l , d2 , and d to have the values

and we consider the height of (z, w) relative to the Vojta divisor

Note that our choice of dl ,d2 ,d depends on the points z and w. The
reader thus finally sees why it was always necessary in our estimates to



422 E. Rational Points on Curves of Genus at Least 2

keep track of the dependence on db d2, and d. We are going to compare
upper and lower bounds for hn(z, w). These bounds depend on 11, and
since 11 depends on z and w via its dependence on db d2, d, we would end
up with nothing if we did not have firm control over how all estimates
depend on d1, d2, and d.

We begin with the lower bound provided by Proposition E.1O.l, which
says that

This is valid for all pairs (ii, ii) that are admissible for the global section s
to <9(11), where :r = {Fd is a set of polynomials corresponding to the
section s. Assuming ~1 2: 1, we have Izi 2: 1 and Iwl 2: 1, so adjusting the
constants accordingly and using the definition of 01 and 02, we obtain the
lower bound

Using our choice (90) for d1,~, d and choosing ~1 to satisfy ~1 > £-1/2,
we obtain

Substituting (92) into (91) gives the lower bound

Next we use Siegel's lemma (Proposition E.7.1) to find a "small" global
section s to <9(11). In order to apply Proposition E.7.1 we need to verify
that

(94)

for some positive constant 'Y that is independent of z and w. Using our
choice (90) of d 1 , d2, d, we estimate

d1d2 - gd2
= 1 _ gd

2

d1d2 d 1d2
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Hence as long as we fix a v > 0 and take D sufficiently large, the in
equality (94) will be true with (say) I = v/3g, and we can apply Proposi
tion E.7.1. This means that we can find a section s given by a system of
polynomials S" = {Fi } satisfying

dl +d2h(g:') ::; C47 + o(dl + d2 ).
I

Using I = v/3g and the estimates (92), we obtain

h(g:') ::; C48(dl + d2 ) ::; C4geD;

and substituting this into (93) gives us the lower bound

hn(z, w) ;:::: -cso(iilzI2 + iilwl2) - cSleD. (95)

Next we want to use Proposition E.l1.2 to choose a small admissible
pair (ii, i2). We need to verify the inequalities

(96)and min {d2IwI2,dllzI2} ;:::: CS~dl,e
required by Proposition E.l1.2. To check the first one, we use (90) to
compute

d2 Ny'g+vD/lw I2 21z12 2 2-< =--<-<e
dl - N(y'g+vD/lzI2-1) Iwl 2 -II:~ - ,

provided that we pick 11:2 ;:::: V2e- l . Next we observe that dllz 1
2 and d21wl2

have comparable orders of magnitude, since there are numbers 0 ::; TIl, Tl2 <
1 such that

Thus, as soon as D is large enough, we obtain the estimate

Finally, the inequality in (96) will be true if we require 11:1 to satisfy
II:~ ;:::: 2cs2/he2), since we are given that Izi ;:::: 11:1.

We have now verified the conditions (96) needed to apply Proposi
tion E.l1.2, so we conclude that there is an admissible pair (ii, i2) for s
satisfying
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In particular,
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ii :5 4N£dl and i; :5 4Ncd2 •

Substituting this into the lower bound (95) and absorbing the 4N into the
constant gives

(97)

Next we use (90) to estimate the quantities d1 lzl2 and d2 1w12 • Thus

2 Jg + vD 2 2 Jg + vD 2
d1lzl :5 N Izl2 Izl:5 C55D and d2 1wl :5 N Iwl2 Iwl:5 C56D.

Substituting these into (97), we finally obtain the desired lower bound

(98)

for any real number 0:,

We are going to compare this with the upper bound given by Propo
sition E.4.1, which says that

d1 2 d2 2
hn(z,w):5-lzl +-Iwl -2d(z,w)+C58(d1+d2+d). (99)

9 9

Using (92), we can replace the d1 + d2 + d by C59cD, and then combining
the lower bound (98) with the upper bound (99) gives the inequality

d1 2 d2 2-izi + -Iwl - 2d(z,w) ~ -C6ocD.
9 9

We next substitute the particular values (90) that we chose for d1,d2,d and
divide by N to obtain

~ [Jg + V 1~2 ] Izl2+ ~ [Jg + V 1~2 ] Iwl2- 2 [IZ~WI] (z,w) ~ -C61cD.

(100)
Note that (100) is true for all sufficiently large D. In particular, we

can divide (100) by D and let D go to infinity. Noting that

lim D
1

[o:D] = 0:
D--+oo

we obtain from (100) the inequality

A little bit of algebra then yields

(
Jg+v 1 )

(z, w) :5 9 + 2C61C Izllwl· (101)
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We are assuming that the genus satisfies 9 ~ 2, and so

1 1 3
-<-<-..;g - v'2 4

Hence if we choose v and c sufficiently small, then we will get

3(z, w) :S 4lzllwl,
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which is exactly Vojta's inequality. It is important to observe that we do not
need to let c -+ O. (This would force Kl, K2 -+ 00, and then the statement of
(E.12.1) would be vacuous.) The constant C61 appearing in (101) depends
only on C (and the fixed embeddings cPNA and cPB), so it is possible to
choose positive values for c and v that depend only on C, and that are
independent of z and w. This completes the proof of Vojta's inequality
(Theorem E.12.1), and in view of Proposition E.1.2, it also completes the
proof of Faltings' theorem (E.O.l). 0

Remark E.12.2. If the genus of C is large, then we can improve the con
stant appearing in Vojta's inequality. Thus fix any constant 1 > c >
O. Then the proof given above (see (101» shows that there are con
stants Kl> K2, depending only on C and c, such that if z, w E C(f<) are
two points satisfying Izi ~ Kl and Iwl ~ K21zl, then

(102)

Remark E.12.3. Vojta's inequality alone is sufficient to imply the finite
ness ofC(K). It is possible to give an effective upper bound for the number
of points in C(K) by combining Vojta's inequality with Mumford's gap
principle B.6.6(a). See Exercise E.9.

Remark E.12.4. A useful remark of Oesterle (unpublished) is that the
constant K2 in Vojta's inequality (E.12.1) may be chosen purely in terms
of the genus 9 of C (and on c, of course). In fact, de Diego [1] has shown
that K2 may even be chosen independent of9 (cf. remark E.IO.2). Although
this may seem to be a minor point, it is very useful for deriving uniform
upper bounds for the number of points in C(K).

We conclude Part E with some brief remarks concerning certain spe
cial cases of Faltings' theorem (Mordell's conjecture) that can be proven by
more elementary means. We are especially interested in cases for which one
can effectively determine C(K). Note that the proof of Faltings' theorem
in this section might be called "semieffective," since it gives two effective
constants Cl,eff and C2,eff, depending on C/K, with the property that the
height of points in C(K) is bounded by Cl,eff with at most C2,eff exceptions.
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This sort of statement is typical of results proven using Diophantine ap
proximation techniques. Balanced against this positive result is the fact
that at present, there is not a single curve C of genus 9 ~ 2 for which
C(K) can be effectively computed for all number fields K. Nevertheless,
in very special cases (Le., for special curves and special number fields) one
can effectively determine the set of rational points. We list some instances
where this can be done, proceeding from trivial to less trivial cases.
In the following remarks, C/ K is a curve of genus 9 ~ 2 defined over

a number field K as usual, and J is the Jacobian variety of C.

Remark E.12.5. If there exists a place v of K such that C(Kv) = 0, then
clearly C(K) = 0. See Exercise E.13 for an example.

Remark E.12.6. If J(K) is finite, that is, J(K) = J(Khofl then the set
C(K) can be effectively determined. Indeed, the torsion subgroup of J(K)
is always effectively computable and, after embedding C inside J, one can
compute C(K) as a subset of J(K). See Exercise E.14 for an example.
More generally, if there is a nontrivial quotient B of J such that B(K)

is finite, then one can look at the composition C <---+ J -+ B. The resulting
map C(K) -+ B(K) is finite-to-one, and hence C(K) is finite and can often
be determined. See Exercise E.14 for an example. Note that this is the
starting point of Mazur's proof (Mazur [1]) that modular curves X1(N) of
positive genus have no noncuspidal rational points.

Remark E.12.7. If J(K) has small rank, precisely, ifrank(J(K» ~ g-l,
Chabauty [1] already in 1941 gave a p-adic argument showing that C(K) is
finite. Although far from obvious, Coleman [2] has shown that Chabauty's
proof can be refined to give a very strong effective bound for the number
of points in C(K). We record some special cases of Coleman's results.

Theorem E.12.7.1. (Coleman [2]) (i) Let C/Q be a.curve of genus 2
with good reduction at 2 or 3, and assume that rank J(Q) = 1. Then
#C(Q) ~ 12. If in addition four of the Weierstrass points ofC are rational
and C has good reduction at 3, then #C(Q) ~ 6.
(ii) Let C/ K be a curve ofgenus 9 ~ 2, let p ~ 2g be a prime, let p be an
unramified prime ofK lying over p, and suppose that C has good reduction

at p. Ifrank J(K) < g, then #C(K) ~ Np + 2g ( .;Np + 1) - 1.

In some cases Coleman's estimates are sufficiently sharp to allow the com
plete determination of C(K). See Exercise E.15 for an example.

Remark E.12.8. Demjanenko [1] observed that if a curve C admits many
independent maps to a single elliptic curve, then C(K) is finite. Manin [5]
generalized this result and gave an important application to rational points
in towers of modular curves. We give the precise statement and sketch the
proof.
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Theorem E.12.8.1. (Demjanenko [1], Manin [5]) Let CIK be a curve
oE genus 9 ~ 2, let B IK be an abelian variety, and let f1, ... ,fr : C - B
be morphisms defined over K that are independent modulo constant mor
phisms. Assume further that rankB(K) < r. Then C(K) is finite. Fur
ther, it is possible to effectively bound the height of the points in C(K)
in terms oEC, B, and the morphisms ft, ... , fro (See Exercise E.16 Eor an
example.)

PROOF. (sketch) Let Mor(C,B) denote the group of morphisms from C
to B. Note that Mor(C, B) contains a subgroup isomorphic to B, namely
the group of constant maps. Now fix an ample symmetric divisor D on B.
A basic geometric fact says that the function

Mor(C,B)IB --. Z, f t---+ deg(f*D),

is a positive quadratic form on the group Mor(C, B)IB. We denote by
(., ., )deg the associated bilinear form on Mor(C, B)IB.
Next fix a divisor A of degree 1 on C. For any map f : C - B, the

divisor r D is algebraically equivalent to deg(f*D)A, so Theorem B.3.2
(or Theorem B.5.9) tells us that

_ lim hD(J(x)) = deg(f*D).
xEC(K), hA(X)-OO hA(X)

Applying this with Ii and Ii + h and taking appropriate linear combina
tions, we obtain

1· (fi(X), h(x»D - (f· f·)
_ 1m ( ) -., ] deg,

xEC(K), hA(X)-OO hA x

where (., ., )D is the canonical height pairing on B with respect to the
divisor D. Now taking the determinant over 1 S i,j S r yields

where the positivity follows from the positive definiteness of the pairing
( ., ., )deg and the assumption that the maps II, ... ,fr : C - B are inde
pendent.

It follows that det [((fi(X), h(x»D)l~i,j~r] is positive, provided that
hA(x) is sufficiently large. It follows from Proposition B.5.3 that the maps
ft(x), ... ,fr(x) are independent in B(K) @lR.. We can rephrase this in a
somewhat more illuminating way by saying that the set

{x E C(K) I ft (x), ... ,fr(x) are dependent in B(K) @lR.}
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is a set of bounded height. We also note that it is possible to compute
an effective upper bound Ceff, depending only on the choice of the height
functions hA and hD and the maps ft, ... ,Ir, such that every point x in
this set satisfies hA(X) ~ Ceff.
Now we restrict to rational points x E C(K), and we use the assump

tion that rankB(K) < r. It follows that hA(X) ~ Ceff, which completes the
proof that C(K) is an effectively determined finite set. 0

We remark that Silverman [11] has generalized the result (E.12.8.1)
of Demjanenko and Manin to the case of nonconstant families of abelian
varieties (see also Lang [6, Chapter 12]).

Theorem E.12.8.2. (Silverman [11]) Let CIK be a curve, let B -+ C
be a family of abelian varieties defined over K, and let B' be the constant
part of the family. (This means that almost every fiber is an abelian vari
ety, and that B'IK is the "largest" constant abelian variety that embeds
B' x C ~ B over C.) For each x E C(K), let

ax : Mor(C, B) ---+ Bx(K),

be the specialization map. Then

1---+ I(x),

{x E C(k) I ax: Mor(C,B)IB'(k) -+ Bx(K)IB~(K) is not injective}

is a set of bounded height. In particular, for all but finitely many x E C(k),
the specialization map ax is injective on Mork(C, B)IB'(k).

Remark E.12.9. These examples do not cover all special cases or special
methods for determining the rational points on curves. The most notable
case of determining C(K) via a highly indirect and difficult line of reasoning
is surely Wiles's proof (Wiles [1]) of Fermat's Last "Theorem."

EXERCISES

E.!. Let V be a Euclidean vector space with inner product (', .). For each
point Xo E V and each angle 90 , let r "'0,110 be the cone

r xo ,II0 = {x E V\9(x,xo) < 90 }.

Prove that there are points x 1, ... ,Xn such that

[

1 ] dim V
n < 2 + --:-;---:-:-::-::-:-
- sin(~ cos- 1 (90))

and
n

V = UrXi ,lIo'

i=1
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E.2. Let CI K be a smooth curve of genus 9 ~ 2 defined over a number field K,
and let JIK be the Jacobian of C.
(a) Use Vojta's inequality (E.I.l) to prove that there are constants Itl =
It1(C) and 1t2 = 1t2(C) such that for every extension field L IK ,

#{x E C(L) Ilxl ~ ltd ~ #J(L)tors· 1t2 .1QrankJ(L).

Note that Itl and 1t2 depend on C, but should be independent of the ex
tension field L.
(b) Use Mumford's gap principle (B.6.6) to show that the term #J(Lhors
in (a) may be deleted.

E.3. (Liouville's inequality) Let S be any set of absolute values on a number
field K.
(a) Prove that for all ex E K with a '10, one has the estimate

L log lalv ~ -h([a, 1]).
vES

(b) If K = Q and a = alb, then describe the set S that one should choose
such that the inequality in (a) is an equality.

EA. Let C be a curve of genus 9 ~ 2 and Xc a canonical divisor on C.
(a) Prove that there is a divisor A E Div(C) of degree 1 satisfying

(29 - 2)A '" Xc.

(b) If in addition C is defined over a field K and C(K) is not empty, prove
that one can choose A such that the divisor class of A is defined over a
field LIK with [L : K] ~ (29 - 2)29 , i.e., AU '" A for all (T E Gal(LIK). To
what extent can this upper bound for [L: K] be improved?

E.5. Let C1 and C2 be smooth projective curves of genera 91 and 92, respectively.
Recall that the arithmetic genus of a smooth projective surface S is defined
by the formula Pa(S) = h2 (S, Os) - h1 (S, C>s). Prove that the arithmetic
genus of the product C1 x C2 is

Pa(CI x C2) = (91 - 1)(92 - 1) - 1.

E.6. Prove that the polynomial ring K[6, 6] contains N~-~N(N-3)monomials
of the form

~te~ with 0 ~ j ~ N - 1 and 0 ~ i + j ~ ~.

E.7. Let p({,() = Epii(iei and e= ew be as in Proposition E.9.I. Leibniz's
formula says that

8lP = L L pii(8lo(i)(8l 1{)··· (8l,{).
i,j lo+..+l,=l

Using this formula, the triangle inequality, and induction, give another
proof of Proposition E.9.1 in the case that the absolute value v is nonar
chimedean. (One can similarly prove a version of Proposition E.9.l in the
case that v is archimedean, but the resulting estimate would be too weak
for our purposes.)
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E.8. (Gelfand's inequality) Let PI, ... ,Pn E Q[Xl , ... ,X m ] be polynomials in
m variables with deg Pi :s di. Then

n

i=l

E.g. Let CIK be a curve of genus 9 2: 2 defined over a number field K, and let
x,z E C(K).
(a) Mumford's gap principle says:

If x i= z and Cl:S Ixl :s Izj :s I1lxl then cos(x, z) :s A;

and Vojta's inequality says:

If C2:S Ixl and Klxl:S Izi then cos(x, z) :s A;

where Cl, C2, 11, K, A are constants depending only on CIK, independent of x
and z. Let C3 = max{cl, C2}' Combining Mumford's and Vojta's estimates,
prove that there is a constant N (A) depending only on Asuch that

(Hint. N(A) will be a bound for the number of cones necessary to cover
J(K) ® JR, where each cone r has the property that every x, y E r satisfies
cos(x,Y):S A.)
(b) Use (a), Exercise E.l, and Exercise B.I0 to give an upper bound for
#C(K).

E.1O. As in the text, let A be a divisor of degree 1 on the projective curve C,
let N be a sufficiently large integer so that N A is very ample, and identify C
withitsimage¢NA(C), Letxo, ... ,xn be a basis of sections oHl(NA). Let
U =GL(n+ 1) be the variety of invertible matrices, and for B = (bij ) E U,

't I ",n bwn e Xi = LJj=O ijXj.

(i) For B E U and distinct indices i i= j, let L~ denote the linear subspace
{x~ = xj =O}. Prove that the set

{B E U I C n L~ i= 0 for some i i= j}

is a proper Zariski subset of U.
(ii) Show that the set of B's such that k(C) i= k(xjlx~,x~/x~) is a proper
Zariski subset of U. (Hint. Use the primitive element theorem, which
says that if L IK is a finite separable extension and if L is generated by
Ctl, ... , Ctm, then L = K(CICtl + ... + emCtm) for all (Cl, ... , em) E Am(K)
lying outside a proper Zariski closed subset of Am. See, e.g., Lang [2, VII,
6, Theorem 14].)
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E.Il. It is clear that if C has genus g ~ 2, then Siegel's theorem (D.9.I) as
serting that C has finitely many integral points is superseded by Faltings'
theorem (E.O.I) saying that C has finitely many rational points. In this
exercise you will show that Faltings' theorem can also be used to deduce
finiteness of integral points on curves of genus 0 and 1 with an appropriate
number of points at infinity.

(i) Let C be a smooth projective curve of genus 1, and let U C C be an
affine subset of C with at least one point at infinity. Prove that there
exists a curve C' of genus g' ~ 2 and a covering f :C' -+ C such that f is
unramified over U.

(ii) Assuming that the curves and maps in (i) are defined over a number
field K, and letting S be a finite set of places ofK, apply the Chevalley-Wei!
theorem (Exercise C.7) to prove that there exists a finite extension L / K
such that U(RK,S) C f(C'(L)). Deduce that U(RK,s) is a finite set.
(iii) Repeat parts (i) and (ii) under the assumption that C has genus 0
and U has at least three points at infinity.

E.I2. Let C be a curve of genus g, and let A = (xo) be an effective divisor of
degree 1 on C. Find an explicit value of M such that the divisor

B ;= (M + 1)(A x C) + (M + I)(C x A) - .6

is very ample on C x C. (Hint. Show that pr8+pi8 +Sr28 is base-point
free on J x J, and that 3pr8+3pi8 is very ample on J x J. Deduce that
4pr8 + 4pi8 + Sr28 is very ample on J x J, and hence its pullback to
C x C is very ample. Finally, show that the pullback has the form B and
compute the value of M.)

E.13. Let a =1= 0 be an integer, let n ~ 2, and let C be the smooth plane curve
defined by X n + yn + aZn = O.

(i) If a > 0 and n is even, prove that C(Q) = 0.
(ii) Let p be an odd prime such that pia and pn f a, and suppose that
ord2(n) ~ ord2(p - 1), Le., the highest power of 2 dividing p - 1 also
divides n. Prove that C(Q) = 0.
(Hint. Show that C(lR) or C(Q,,) is empty.)

E.I4. Let C be the smooth projective curve with affine open subset U defined by
y2+ y = xS , let Po = (0,0), let H = (0, -1), and let Poo denote the point at
infinity. Consider the Jacobian variety J of C and the natural embedding
j ; C -+ J defined by mapping P to the divisor class of (P) - (Poo ).

(i) It turns out that rank J(Q) = O. (You may try to prove this yourself,
or see Fadeev [1].) Assuming this, prove that J(Q) ~ Z/5Z.

(ii) Prove that j(Pd = 4j(Po).

(iii) Prove that 2j(Po),3j(Po) ¢ j(C).

(iv) Conclude that C(Q) = {Po,P1,Poo }.

(v) Use this exercise to prove Fermat's Last Theorem for exponent
p = 5. (Hint. Use the fact that if AS + DS = B S with D =1= 0, then
(x,y) = (ABID2 ,AsIDS) E C(Q).)
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E.15. Let C be the hyperelliptic curve given by the affine equation

y2 = X (x - i) (x2 _1)(x2 -18x + 1).

Note that C has two point Poo and p:x, at infinity. It turns out that
the Jacobian variety of C satisfies rankJac(C)(Q) = 1. (You may try to
prove this yourself, or see Flynn [2].) Assuming this fact, use Coleman's
theorem (E.12.7.1) to prove that

C(Q) = {(O, 0), (1,0), (-1,0),U' 0) ,Poo , p~} .

E.16. Let ElK be an elliptic curve with rankE(K) = 1, and fix a Weierstrass
equation y2 = x 3 +ax+b = P(x) for ElK. Let C/ K be a smooth projective
model for the affine curve given by the equations

y2 _ P(x) = 0 and Z2 - P(x - d) = 0,

where we assume that d E K is chosen such that P(X) and P(X - d) have
no common roots (this will be true for all but finitely many d's).
(i) Prove that C has genus 4.
(ii) Prove that there are two independent morphisms from C to E.
(iii) Use the argument of Demjanenko (E.12.8.1) to conclude that if
rank E(K) = 1, then C(K) is finite.



PART F

Further Results and Open Problems
You can never plan the future by the past.
Edmund Burke, Letter to the National Assembly

We hope you have enjoyed our journey through the more or less tamed
part of the world of Diophantine geometry. We now wish to take you on a
last ride featuring some results whose proofs could not be included and a
large number of open problems on the frontiers of knowledge. We describe
conjectures and questions to serve as guideposts for future explorations into
the relationships between arithmetic and geometry.
A simplified description of arithmetic geometry shows that it has de

veloped along two paths, the Diophantine path and the modular path. The
former includes the use of heights and Diophantine approximation, while
the latter relates Diophantine problems to modular problems and relies
on group representation techniques. It seems futile to attempt to predict
which method will be most successful in the twenty-first century, the most
likely guess being that a blend of the two will prove to be fruitful.
The present book is based on Diophantine methods. The original proof

of Mordell's conjecture by Faltings (sketched below in Section FA.2) is a
mixture of Diophantine arguments and Galois representation theory. The
subsequent proof of Vojta (with simplifications by Bombieri) described in
Part E is purely Diophantine. In this context the introduction by Arakelov
of an arithmetic intersection theory, imitating classical geometric intersec
tion theory, has proven to be an invaluable insight, as advocated notably
by Szpiro.
In a parallel development, mathematicians have linked elementary

statements such as Fermat's last theorem and the abc conjecture to deep
problems in Galois or automorphic representation theory, leading to the
celebrated proof of the modularity conjecture and of Fermat's last theo
rem.
Our plan is to discuss first the generalization of Mordell's conjecture

to higher-dimensional subvarieties of abelian varieties (Section F.l) and
then to study the topology induced on these by the Neron-Tate norm
(Section F.2). These two sections contain reasonably complete results.
Next we consider conjectural upper and lower bounds for heights in various
situations, including the famous abc conjecture of Masser and Oesterle
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(Section F.3). In the next section (FA) we turn to the quest for effectivity,
or more precisely, we explain why current methods give ineffective results.
We also consider the question of quantitative results, that is, explicit upper
bounds for the number ofsolutions to Diophantine problems. Finally, in the
last section (F.5) we describe several far-reaching conjectures that describe
the arithmetic properties of a variety in terms of its geometry. Here there
are few general proven results, but many examples on which one can test
conjectures.
We offer here a word of apology to those whose work is not quoted,

due either to our arbitrary choices, our lack of competence, or a lack of
space. By no means does this last part pretend to be a complete survey.
For a discussion of many other results and conjectures, we refer the reader
to Lang's volume of the Russian Encyclopedia (Lang [8]).

F.l. Curves and Abelian Varieties

Faltings' theorem (originally the Mordell conjecture) says that if X/k is a
curve of genus at least 2 defined over a number field, then X(k) is finite.
There are several natural ways in which this statement may be generalized.
For example, we might ask for which classes of varieties Xjk is it true
that X(k) is finite. We will discuss this question later in Section F.4.2.
Alternatively, we can view a curve of genus at least 1 as a subvariety of its
Jacobian, so it is natural to study the Diophantine properties of higher
dimensional subvarieties of abelian varieties. Since the group of rational
points of an abelian variety may be infinite, it is clear that if X/k is a
subvariety of an abelian subvariety A/k, and if X contains an abelian sub
variety B/k of A (or even a k-rational translate B), then X(k) may be
infinite. Lang conjectured that this is the only possible case, namely that
X(k) is, up to a finite set, the union of the rational points on translates of
abelian subvarieties contained in X. Independently, Manin and Mumford
asked whether it were true that a curve inside its Jacobian contains only a
finite number of torsion points. Lang then proposed a very general conjec
ture (now a theorem) encompassing both questions on rational points and
torsion points. We discuss this in the next section and then explain some
applications to points of bounded degree on curves.

F.l.l. Rational Points on Subvarieties of Abelian Varieties

In order to state the main result of this section, we need one definition.

Definition. An abelian group r is said to have finite rank if it contains
a free finitely generated subgroup roC r such that for every x Er there
exists an integer n ;::: 1 such that nx E roo
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The following conjecture of Lang (see Lang [1,6,12]) contains and
generalizes both the Mordell and Manin-Mumford conjectures. It is now a
theorem.

Theorem F.l.l.l. (nee Lang's conjecture) Let A be an abelian variety
defined over C, let X be a closed subvariety ofA, and let r be a subgroup of
A(C) of finite rank. Then there exist a finite number ofpoints '1'1, • .. ,'Yr E
r and finite number of abelian subvarieties B 1, ... ,Br of A such that 'Yi +
B i C X for all 1 ~ i ~ r and

X(C) n r = U 'Yi + (Bi(C) n r).
l;S;i;S;r

In particular, if X does not contain any translate of a nontrivial abelian
subvariety of A, then X(C) n r is finite.

For example, let X be a curve of genus at least 2 defined over a number
field k, and (assuming X(k) i= 0) embed X into its Jacobian variety J. Tak
ing r = J(k), Theorem F.1.1.1 says that X(k) is finite, which is Faltings'
theorem. On the other hand, taking r = J(Chors, we find that X(C) con
tains only finitely many torsion points of J, which is the MaDin-Mumford
conjecture. Thus Theorem F .1.1.1 provides a tremendous generalization of
both Faltings' theorem and the Manin-Mumford conjecture.
Although the statement of (F.1.1.1) involves varieties and points de

fined over C, we can start by selecting a finitely generated subgroup r o c r
such that every element of r has a multiple in roo 1f'Y1, ... , 'Yr generate r o,
then it is clear that '1'1, ... ,'Yr and the varieties X and A are all defined over
a field K of finite type of Q. Further, the fact that every x E r satisfies
nx E Go for some n 2: 1 shows that every point in r is algebraic over K, so
is defined over k. A specialization argument then allows one to reduce to
the case that everything is defined over Q. Next, using Kummer-theoretic
arguments (see below for references), it is possible to reduce to the case
that r itself is finitely generated. This means that r is a subgroup of A(k)
for a number field k, so the problem is reduced to showing that X (k) is
contained in a finite union of sets of the form '1' + B(k), where B is an
abelian subvariety of A (possibly B = 0), '1' E A(k), and '1' + B c X.
We now give a sketch of the proof of this case. The original proof is due
to Faltings (Faltings [2, 3]); detailed surveys may be found in the volume
edited by Edixhoven and Evertse [1] and in the long paper of Vojta [4].
The proof follows the same pattern as the proof of Mordell's conjec

ture, albeit with many additional technical difficulties. As in Vojta's or
Bombieri's proof, one constructs a line bundle with parameters, finds an
upper bound for the canonical height of the rational points with respect
to the chosen line bundle, and constructs a small section of the chosen line
bundle in order to obtain a lower bound for the height.
In the proof of Mordell's conjecture we chose a linear combination of

piS, p;e, and P = si28 - pie - p;8
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(see Lemma E.2.1 for notation) and used its restriction to X x X. By
analogy, we select a symmetric ample line bundle £., on A with associated
NelOn-Tate height h,dx) = IIxll2 and consider linear combinations of the
following line bundles on Am (where just as in Roth's theorem, we will
need to use a sufficiently large value for m):

£"1 = Pi. £." ... ,£"m = p~£." and

We will restrict these line bundles to Xm, or more generally, we will choose
subvarieties Xi of X and restict attention to Xl x ... X Xm. It is conve
nient to work with "bundles" in PicQ (i.e., Pic tensored by Q). Ampleness
still makes sense in this context, but we may speak of sections only for
suitable powers of the "bundle." The line bundle that is used for the proof
of (F.l.l.l) has the form

m-1 m
£.,(-e:, s) = £.,( -e:, Sl,' .. ,sm) := L (SiPi - Si+1Pi+d* £., - e: L s~P: £.,

i=l i=l

for certain rational numbers Sl,"" Sm' Since the Si are only rational
numbers, SiPi - SjPj is not really a morphism, so (SiPi - SjPj)* £., is defined
by noting that if the Si'S are integers, then

(SiPi - Sjpjr£., = s~P:£" + s;P;£" - SiS/Yij .

The right-hand side is well-defined in Pic(Am)i&lQ even when Si E Q, which
gives meaning to the left-hand side.

Remark F.1.1.2.
(i) If X is a curve and m = 2, then we recover the line bundle used in
the proof of Mordell's conjecture: £.,(-e:, Sl, S2) = d1£"1 + d2£"2 - d3:P with
d1 = s~(1- e:), d2 = 8~(1 - e:) and d3 = 8182.
(ii) If X contains a nontrivial abelian subvariety of A, then £.,( -e:, s) is
never ample on xm (see Exercise F.l).

If m is large enough and e: small enough, if X is not a translate of an
abelian subvariety, and if d is an integer chosen large enough and divisible
by the denominators of the Si'S, then one can show (see Exercise F.2) that

m

hO(xm,£.,(_e:,s)~d) ~ c(e:,m)r dirnX II s~dirnX.

i=l

Next, using basic properties of the Neron-Tate height (Theorem B.5.6), we
can compute the height of a point x = (Xl, ... , x m ) with respect to the line
bundle £.,( -e:, s) as .

m-1 m
h.c.e-E,S)(X) = 2: s~lIxiIl2+s~+lllxi+1112-2sisi+1(xi,Xi+1}-e:2:s~lIxiIl2.

i=l i=l
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Hence if we fix any 7] > 0 small enough and if we assume that the Xi'S lie
inside a small cone of A(k) l8> JR, then we have

If we furthermore choose the Si'S to satisfy Si '" sll1xll1/lixill, then we get

hq-e,s)(Xl"" ,xm ) ~ -ms~lIxdI2(e - (n + 1)7]) ~ - ~e s~lIxdI2.

This gives the desired upper bound. In order to obtain a complemen
tary lower bound, one proceeds as in the proof of Faltings' theorem by
constructing a small section of L( -e, s)®d and trying to find a deriva
tive of that section that does not vanish at the given point. The higher
dimensional nonvanishing result needed was discovered by Faltings [2] (see
also Edixhoven-Evertse [1]). We give here an explicit refinement worked
out by Evertse [2].

Theorem F.1.1.3. (Product theorem, Faltings [2]) Let m ~ 2, let n =
(nl' ... ,nm ) and d = (d1, ••• , dm ) be m-tuples of positive integers, let
a 2: 0 and 0 < e ~ 1 be real numbers, and set M = nl + ... + nm • We
assume that these quantities satisfy

( )

Mdh mM--> --
dh+1 - e

Let lP' = lP'nl x ... X pnm. Let F be a multihomogeneous polynomial of
degree don lP', and let

Suppose that Zu and Zu+e have a common irreducible component Z.
Then there are subvarieties Zi C pni such that Z factors as the product
Z = ZI x··· X Zm.

Suppose further that F is defined over a field ko. Let

m

S = L:: codim Zi
i=1

and

Then the Zi 's are defined over a finite extension k1 / ko whose degree satisfies

[k1 : ko]degZl" ·degZm ~ (~Sr,

and the heights of the Zi 's satisfy

[k1 : ko]degZl" ·degZm (f dedizi h(Zi)) ~ Co (tdi + h(F)) .
•=1 g .=1
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(See Section F.2.2 below for the definition of the height h(Z) of a variety.
Intuitively, h(Z) measures the height of the coefficients of the defining
equations ofZ.)

The product theorem plays a role analogous to that played by Roth's
lemma in classical Diophantine approximation. Indeed, the product the
orem can be used to prove Roth's theorem (see Evertse [2]) and even
Schmidt's subspace theorem (F.5.3.4); see Faltings-Wiistholz [1]. The the
orem can also be used on a product of projective varieties Xl x ... X Xm

by using linear projections 7ri : Xi -+ JP>dirn Xi. This is similar to the argu
ment in Part E, where we applied Roth's lemma to the product C x C by
projecting it on pI x pl.
We will now suppose that we have points Xl, ... , X m with rapidly in

creasing heights:

and

Since dddHI = sUs~+l r-v IIxi+l1l2/llxiIl2, we can then apply the product
theorem to the small section a of .c(-c, s) using weights di = dsr The
conclusion is that there exist subvarieties Xi of X such that (Xl, ... , X m ) E
XI x· .. X Xm and such that F vanishes on XI X .•. X X m . Since the degrees
and heights of the Xi'S are controlled, we can use induction to finish the
proof of Theorem F .1.1.1. 0

We close this section with a short bibliography and some further com
ments. The fundamental ideas of this section stem from Vojta's seminal
paper (Vojta [1]), which provided a new proof of Mordell's conjecture.
Vojta's methods are much closer to classical Diophantine approximation
techniques than the methods of Faltings' original proof, although Vojta
made extensive use of Arakelov theory. Faltings [2,3] substantially simpli
fied Vojta's proof, as he puts it "avoiding all the difficult Arakelov theory,"
and moreover extended it to higher-dimensional varieties, the main new
tool being the product theorem. Earlier, Raynaud [1,2,3] had proven the
generalized Manin-Mumford conjecture, that is, Lang's conjecture with
r = Ator . A different proof of the Manin-Mumford conjecture for curves
was given by Coleman [1] using p-adic abelian integrals. Coleman [2] also
observed that in very special cases, his theory, combined with an old ar
gument of Chabauty, yields effective finiteness of rational points on curves
(see notes at the end of Part E). Another proof of the generalized Manin
Mumford conjecture was proposed by Hindry [1], following a suggestion of
Serge Lang for curves and relying on a difficult result of Serre on Galois
representations associated to torsion points on abelian varieties. The same
paper also contains the reduction of the general Lang conjecture (subgroup
of finite rank in A(C)) to the fundamental case treated by Faltings (where
r is the Mordell-Wei! group A(k), hence is finitely generated).
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Though in some sense the "arithmetic" case lies deeper, the function
field case is also of great interest, with extra difficulties in characteristic
p. In that case one is led to formulate a relative Lang conjecture, which
is also now a theorem. Manin [IJ was the first to prove Mordell's conjec
ture over function fields (in characteristic 0). Buium, in a series of papers
(Buium [1,2,3]), has given a new approach and generalized Manin's work to
higher-dimensional varieties. He also obtains bounds for the cardinality of
the intersection r nX that depends only on ranker) and on the degree of a
polarization on A and of X (with respect to this polarization). Abramovic
and Voloch [1J have given a proof of a version of Lang's conjecture in
characteristic p under additional assumptions. Hrushovski [1J has found a
model-theoretic proof that covers both characteristic 0 and characteristic p.
The proof starts, roughly speaking, like Buium's theory, but then makes
heavy use of classification results in model theory by Hrushovski himself
and Zilber (see Bouscaren [1] for a detailed surveyor Poizat's Bourbaki
talk, Poizat [ID. It came as a surprise to many number theorists that a
branch of mathematical logic could have such arithmetical applications.
Finally, the conjecture of Lang can also be formulated (and proved) for

subvarieties of semiabelian varieties, that is, extensions of abelian varieties
by tori. Hrushovski's methods work also for semiabelian varieties over
function fields of any characteristic. Vojta [2J has proven the analogue of
Faltings' theorem for semiabelian varieties over number fields by extending
his and Faltings' methods. The analogue of the reduction from subgroups of
finite rank to subgroups of finite type is due to McQuillan [1], extending the
methods of Hindry. The Manin-Mumford conjecture can even be extended
to subvarieties of any commutative algebraic group (Hindry [1]). We also
mention that the general case of subvarieties of G:" was treated earlier by
Laurent [IJ, with partial cases treated even earlier by Liardet [IJ.

F.1.2. Application to Points of Bounded Degree on Curves

Let X be a curve of genus 9 defined over a number field k. If 9 ~ 2 and if
K/k is any fixed finite extension of k, then we know that X(K) is finite.
In this section we consider what happens when the field K is allowed to
vary. More precisely, we ask:

When is X(d)(k):= U X(K) finite?
[K:kl~d

As the next result makes clear, the answer is closely connected to Lang's
conjecture (Theorem F.l.l.l).

Theorem F.l.2.1. Let X be a curve of genus 9 ~ 2, let d ~ 1 be
an integer, and let Wd(X) := X + ... + X C Jac(X). If X admits no
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morphisms X ---+)pl ofdegree less than or equal to d and ifWd(X) contains
no translates of abelian subvarieties of Jac(X), then the set

XCd)(k):= U X(K)
[K:kJ~d

is finite. In other words, X(k) contains only finitely many points defined
over fields of degree less than or equal to d.

Further, if either of the hypotheses is false, then there exists a finite
extension k' of k such that XCd) (k') is infinite.

PROOF. For simplicity we will assume that X (k) =f. 0 and leave the reader
to fill in the details otherwise. This allows us to construct an embedding
j : X ---+ Jac(X) defined over k.
A point of degree r ::; dover k on X corresponds to a k-irreducible ef

fective divisor of degree r, hence to a point in the r-fold symmetric product
SymT(X)(k). Fixing Po E X(k), we get an injection D r-+ D + (d - r)(Po)
from SymT(X)(k) into Symd(X)(k). In particular XCd)(k) is finite if and
only if Symd(X)(k) is finite.
Next consider the natural map

The Abel-Jacobi theorem tells us that the map «Pd is injective if and only
if there is no linear system of degree at most d and dimension al least 1
on X. Such a linear system corresponds to a map of degree at most d to )pl.
Thus under our hypotheses, Symd(X)(k) is finite if and only if Wd(X)(k)
is finite. Now Theorem F.l.l.l tells us that Wd(X)(k) is finite, provided
that Wd(X) contains no abelian subvarieties. This completes the proof of
the main part of the theorem. The final remarks are clear from the proof.

o

In view of Theorem F.1.2.1, we would like to know when a curve X is
likely to admit a morphism of degree at most d to )pl. From Section A.3, a
morphism of degree d to )pI corresponds to a linear system of dimension 1
and degree d. In the literature, such a linear system is called a g~. It
is customary to say that a curve is d-gonal if it admits a morphism of
degree d to )pl. Special cases include hyperelliptic curves (2-gonal) and
trigonal curves (3-gonal).

Theorem F .1.2.2. (Existence of morphisms to )PI) Let X be a curve of
genus g.
(i) Ifd ::::: g/2 + 1, then there exists a nonconstant morphism X ---+ )pI of

degree less than or equal to d.
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(ii) If d < g/2 + 1 and X is "general" (see below for the definition), then
there are no nonconstant morphisms X - ]pl of degree less than or equal
to d.

PROOF. (i) See Arbarelo-Clemens-Griffiths-Harris [1, Chapter 5, Exis
tence Theorem 1.1, page 206].
(ii) See Arbarelo-Clemens-Grifliths-Harris [1, Dimension Theorem 1.5,
page 214]. 0

The word "general" in the statement of (F.1.2.2ii) means the fol
lowing. Isomorphism classes of curves of genus 9 are parametrized by a
quasi-projective moduli variety Mg. Then there exist a countable number
Zl, Z2,." of proper Zariski closed subvarieties ofM g such that (F.1.2.2ii)
holds for all curves X whose isomorphism class [X] lies in M g " Un~lZn.

This is satisfactory from the viewpoint of algebraic geometry, since the com
plement of the countably many Zn's is a large set due to the uncountability
of C. However, it is much less satisfactory from an arithmetic viewpoint,
since it is conceivable (although unlikely) that the union of the Zn's could
contain Mg(Q). This possibility cannot be ruled out purely on the basis of
cardinality, sinceQ is countable.
Since it is known that the general Jacobian is a simple abelian variety,

we obtain the following.

Corollary F .1.2.3. Let X be a general curve ofgenus g, let d < g/2 +1,
and let k be any finitely generated field k over which X is defined. Then
X<d)(k).

deg(p) = e,
genus(Y) = h.

Y

f
/

It is harder to determine when Wd contains an abelian subvariety
of Jac(X), and this problem gives rise to some questions of geometric in
terest. To start, we observe that it is easy to construct curves whose associ
ated Wd'S contain abelian varieties. For example, if f : X - E is a map of
degree d from X to an elliptic curve, then r :E - Symd(X), and hence E
sits inside Wd. More generally, a morphism f : X - Y of degree d from X
to a curve Y of genus h ~ 1 induces a map r : Symh(y) _ Symdh(X),
and this gives a copy of Jac(Y) inside Whd(X), Thus Whd(X) contains an
abelian variety of dimension h.
Extending this idea further, suppose that there are covering maps

Z

X

Then we get maps

Symh(y) ~ Symeh(Z) ~ Symeh(X) ,

where f. CEni(Xi» = Eni(J(Xi»' The composition f. 0 p. induces a
finite map Jac(Y) - Weh(X), so Weh(X) contains an abelian variety of
dimension h.
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Examples. (1) We construct curves X of genus 9 ~ 3 that are bielliptic,
that is, are double covers of an elliptic curve E. It is clear that if X is such
a curve, then W2(X) will contain a copy of E. Let E and X be the curves

E: y2 = P(x) = x3 + ax + b, X: y4 = P(x) = x3 + ax + b.

The map (x, y) t-+ (x, y2) is clearly a double cover X -+ E, and it is easy
to check that X has genus 3.
(2) More generally, let Q(x) be a polynomial of degree m such that the
product P(x)Q(x) has no double roots, and let X be a smooth projective
curve birational to the curve in Aa given by the equations y2 = P(x) and
z2 = Q(x). Then (x, y, z) t-+ (x, y) exhibits X as a double cover ofE, and X
has genus m + 1. See Exercise F.3 for examples of curves of genus 9 whose
W2h contains an abelian subvariety of dimension h when 2h:S 9 - 2.
(3) For an example in the positive direction, consider the curves X = Xo(P)
that parametrize elliptic curves having a cyclic subgroup of order p. One
can show that if p > 61 and p f:. 71, 79,83,89, 101, or 131, then X(2)(k) is
finite for every number field k. Further, all of the excluded p's correspond
to curves that have genus less than 2 or are hyperelliptic or are bielliptic.
See Frey [4], Hindry [3], and Harris-Silverman [1] for details.

We next quote two general results.

Theorem F.1.2.4. Let X be a curve ofgenus g.
(i) (Debarre-Fahlaoui [1]) If d < 9 and if Wd(X) contains an abelian

variety A, then dim A :s d/2.
(ii) (Frey [3]) IfX is defined over a number field k and ifX<d)(k) is infinite,

then there exists a morphism f :X -+ WI defined over k of degree less than
or equal to 2d .

The examples given above show that (i) is sharp. The next result deals
with small values of d. (See also Harris-Silverman [1] and Hindry [3].)

Theorem F.1.2.5. (Abramovic-Harris [1]) Let X bea curveofgenusg.
(i) IfSym2 X contains an elliptic curve, then X is bielliptic; and further,
if 9 ~ 4, then X is not hyperelliptic.
(ii) IfW3 contains an elliptic curve E and 9 ~ 5, then there is a covering

f :X -+ E with deg(f) :s 3; and further, if9 ~ 8, then X is not trigonal.
(iii) If W 4 contains an elliptic curve E and 9 ~ 8, then either there is a

covering X -+ E of degree at most 4 or else there is a covering X -+ X' of
degree 2 with genus(X') = 2.
(iv) IfW 4 contains an abelian variety A of dimension 2 and 9 ~ 6, then

there is a covering X -+ X' of degree 2 with genus(X') = 2.

An interesting example is provided by the genus-3 curve y2 = x8 + 1,
which is both hyperelliptic and a double cover of the elliptic curve y2 =
x4 + 1. Another interesting example is the genus-7 curve y3 = x9 + 1, which
is both trigonal and a triple cover of the elliptic curve y3 = x3 + 1.
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Debarre and Fahlaoui [1] show that ifW2h contains an h-dimensional
abelian variety and if h < 9/3, then there is a covering X ---+ X' of degree 2
with genus(X') = h. They also prove that ifWd contains an h-dimensional
abelian variety with d < 9/6 (or d(d - 1)+2 < 29) and h > d/4, then there
is a covering X ---+ X' of degree 2 or 3 with genus(X') = h.

For (smooth) plane curves there is the following nice result.

Theorem F .1.2.6. (Debarre-Klassen [1]) Let X be a smooth plane curve
of degree d, and thus ofgenus 9 = (d - l)(d - 2)/2, defined over a number
field k.
(a) If d ~ 7, then XCd - 2) (k) is finite.
(b) If d = 4, 5, or 6, then XCd-2)(k) is finite if X does not admit a mor
phism X ---+ E of degree d - 2 to an elliptic curve E.

Notice that (F.1.2.6) is essentially optimal, since if Po E X(k) is any
rational point, then the lines defined over k and passing through Po will
intersect X at points of degree at most d - 1, hence will lead to infinitely
many points in X(d-l)(k).
The restriction to d ~ 7 in (F.1.2.6a) is also necessary, since the Fermat

sextic X given by the equation x 6 + y6 = Z6 is clearly a cover of degree 4 of
the elliptic curve u3 +v3 = w3 , and henceW4 (X) contains an elliptic curve.
Similarly, the Fermat quartic X given by the equation x4 + y4 = z4 is a
degree-two cover of the elliptic curve given (in affine form) by v4 +1 = u2 ,

and hence W2(X) contains an elliptic curve.

F .2. Discreteness of Algebraic Points

Once it is known (or conjectured) that certain sets of points of bounded
degree are finite, it is natural to consider Diophantine approximation ques
tions as the size of the set is allowed to grow. For example, it is known
that there are only finitely many points of bounded degree and canonical
height on an abelian variety, and further that the points of height 0 are
precisely the torsion points. So we might ask:

Does there exist a sequence of nontorsion points

PI, P2 ,··. E A(k) such that lim h(Pn ) = o?
n--oo

The answer to this question is clearly yes. We simply take any nontorsion
point PI E A(k), and then for each n ~ 1 we choose a point Pn E A(k)
satisfying [n]Pn = Pl. Then

A 1 A

h(Pn ) = 2h(PI) -----t o.
n n--oo

Bogomolov suggested that this should be essentially the only way to
get a positive answer to our question. In particular, he conjectured that
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if the Pn's are required to lie on a curve X of genus at least 2, or more
generally on a subvariety X of A that does not contain a translate of an
abelian subvariety, then there cannot exist a sequence of distinct points
in X(k) whose height tends to O. Notice that this strengthens Raynaud's
theorem [1,2,3] (Manin-Mumford conjecture), since it implies in particular
that X cannot contain infinitely many torsion points.
This sort of question is closely connected with the arithmetic complex

ity of the variety X. To make this idea precise, we need to define the height
of the variety X. We now discuss Bogomolov's conjecture, followed by a
brief introduction to the theory of heights of subvarieties and cycles.

F.2.1. Bogomolov's Conjecture

The following refinement of Raynaud's theorem (Manin-Mumford conjec
ture) was conjectured by Bogomolov [1] and proven by Ullmo.

Theorem F.2.1.1. (Ullmo [1]) Let X/Q be a curve ofgenus 9 ?: 2 sitting
in its Jacobian J, and let II . II = ..Jh[1 be the seminorm on J(Q) provided
by the Neron-Tate height relative to an ample symmetric divisor on J.
Then the topology on X(Q) induced by the seminorm II . II is discrete. In
other words, for every P E X (Q) there exists an c: > 0 such that the set

{Q E X(Q) I liP - QII < c:}

is Bnite.

Before Ullmo's proof of (F.2.1.1), special cases were known through
the work of Szpiro [4], Zhang [1], and Burnol [1]. A generalization to
subvarieties of higher dimension has also been proven. Before giving the
result, we need one definition. A torsion subvariety of an abelian variety A
is a subvariety of the form b+ B, where b is a torsion point of A, and B is
an abelian subvariety of A. For example, a torsion point is automatically
a torsion subvariety, and if A is simple (i.e., has no nontrivial abelian
subvarieties), then these are the only torsion subvarieties of A.

Theorem F.2.1.2. (Ullmo-Zhang, Zhang [2]) Let X/Q be a subvariety
of an abelian variety A/Q, let Z be the union of all torsion subvarieties
of X, and let U := X" Z. Let II . II =..Jh[1 be the seminorm on A(Q)
provided by the Neron-Tate height relative to an ample symmetric divisor
on A. Then II . II induces the discrete topology on U(Q). More precisely,
for all P E X(Q) there exists an c: > 0 such that the set

{Q E U(Q) I liP - QII < c:}

is Bnite.

We will not say anything about the proof of (F.2.1.2) except that it
relies heavily on Arakelovian methods and properties of equidistribution of
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points of small height proved by Szpiro-Ullmo-Zhang [1]. A second proof
was found by by David-Philippon [1], which is more elementary in the
sense that it does not use Arakelov theory.
The multiplicative analogue of (F.2.1.2), that is, the analogous result

for subvarieties of (Gm )8, is also known and was first proved by Zhang [3] as
an application of his arithmetical ampleness results. This analogue states
that if X is a subvariety of (Gm )8 and if U is the Zariski open subset
obtained by deleting torsion subvarieties from X, then the Wei! height in
duces a discrete topology on U(k). A more elementary proof was given by
Schmidt [3] and then extended by Bombieri-Zannier [1]. The case of abelian
varieties with complex multiplication was settled by Bombieri-Zannier [2]
using a similar method. Bilu [1] later provided a proof of the equidistribu
tion property of points of small heights, thus giving another approach to
the analogue of Bogomolov's conjecture.

It is tempting to try to merge Bogomolov and Lang conjectures into a
single result. This has been done by Poonen.

Theorem F.2.1.3. (Poonen [1]) Let A be an abelian variety defined over
a number field k, let r be a subgroup of finite rank in A(k), and for any
c > 0, define

r e := b+ z I 'Y E r, z E A(k), and h(z) ~ c}.
Let X be a closed subvariety of A that is not equal to the translate of an
abelian subvariety of A. Then there exists an c > 0 (depending on A, X,
and r) such that X(k) n r e is not Zariski dense in X.

Poonen also shows how to extend (F.2.1.3) to semiabelian varieties,
provided that the analogue of Bogomolov's conjecture and equidistribution
of small points is true. The latter has now been proven for a group variety
isogenous to the product of an abelian variety by a linear torus (Chambert
Loir [1]).

F.2.2. The Height of a Variety

The height of a point is a measure of its arithmetic complexity. A point
is simply a variety of dimension 0, so it is natural to look for a way to
measure the arithmetic complexity of higher-dimensional varieties. For
example, if X is a hypersurface of degree d in IF, then X is defined by a
single homogeneous equation

and F is uniquely determined by X up to multiplication by a nonzero
constant. It is then natural to define

h(X) = h(F) = h(a),
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where a is the point in projective space whose homogeneous coordinates
are the coefficients aio ... id of F.
This construction may be generalized from hypersurfaces to arbitrary

subvarieties of IPn by using Chow forms. Recall (see Shafarevich [1, Chap
ter 1.6.5] or Exercise A.1.17) that to each variety X of degree d and dimen
sion r in IPn there is associated a multihomogeneous form Fx of multidegree
(d, ... ,d) determined by the property that

F ( (0) (0). (1) (1).. (r) (r») - 0x ao , ... , an ,ao , ... , an , ... , ao , ... , an -

if and only if X has a nonempty intersection with each of the r + 1 hyper
planes

(i) (.)ao Xo+ ... + ar: X n = 0, o:S i :S r.

The form Fx is the Chow form (also called the Cayley form) of X. We
then define the height of X by

h(X) = h(Fx );

that is, h(X) is the height of the point whose projective coordinates are
the coefficients of its Chow form Fx . More generally, if X is a variety
and if D is a very ample divisor on X, we fix an associated embedding
rPD : X ~ IPn and define the height of a subvariety X C X relative to D
to be hD(X) := h(rPD(X)). Of course, the value of hD(X) depends on the
embedding, but only up to the usual O(degX).

An alternative to the use of Chow coordinates is the arithmetic inter
section theory developed by Arakelov-Gillet-Soule. A conceptual insight
provided by this approach is the analogy between the projective degree of
a variety and its height. Thus if XjQ is a variety of dimension r and if J:.,
an (ample) line bundle on X, the projective degree of X with respect to J:.,
is

deg.c X = dego(X . J:.,r).

Now choose a projective model f : X -+ Spec(Z) for X over Spec(Z) and
extend J:., to a line bundle on X. Further, choose archimedean metrics
for the fibers of J:., over the archimedean places, and denote the resulting
metrized line bundle by L. Then one can define an arithmetic intersection
X· .cr +1 , take its pushdown via f, and compute the Arakelov degree to
define (following Faltings [2] and Bost-Gillet-Soule [1])

We also note that this height is sometimes normalized by dividing it by
the projective degree deg.c X. We refer the reader to Bost-Gillet-Soule [1]
and Gubler [1] for further developments on arithmetic intersection theory
and heights, such as an arithmetic Bewut's theorem.
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We next introduce some additional ways of defining the height of a
curve or an abelian variety. We begin by formalizing the idea that the
collection of all curves of genus 9 fits into some sort of universal family, and
similarly for the collection of all (principally polarized) abelian varieties of
dimension g.

Definition. (Mumford) Let M be a collection of (isomorphism classes)
of algebraic varieties, possibly with some additional structure. For exam
ple, M might be the collection of all of smooth projective curves of genus g,
or M might be the collection of all principally polarized abelian varieties
with a fulilevel-N structure (see below).
(i) A coarse moduli space for M is a variety JV( such that if f : X -+ T is
a family of elements of M (i.e., each fiber Xt = f-l(t) is in M), then there
is a morphism ~ : T -+ JV( with the property that

~(s) = ~(t) if and only if Xs ~ Xt .

(ii) A fine moduli space for M is a variety JV( together with a universal
family 1r : U -+ JV( such that if f : X -+ T is a family of elements of M as
above, then there is a morphism ~ : T -+ M such that X is the pullback
of U via ~ and with the property that

~(s) = ~(t) if and only if U~(s) ~ U~(t).

It is rare for a fine moduli space to exist for a class of varieties without
the introduction of some additional structure. We illustrate this idea by
looking at principally polarized abelian varieties with fulllevel-N structure.
This means that we classify triples (A, A, c), where A is an abelian variety, A
is a principal polarization of A, and c is a fixed isomorphism

c: (Z/NZ)2g
-- A[N).

Two triples (A, A, c) and (A', N, c/) are isomorphic if there is an isomor
phism of abelian varieties a: A -+ A' such that a*(N) = Aand c/ = a 0 c.
Notice, for example, that every principally polarized abelian variety has a
nontrivial automorphism, namely [-1); but a principally polarized abelian
variety with fullievel-N structure has no nontrivial automorphisms (pro
vided that N ~ 3).
There are a number of ways to add structure to the set of curves of

genus g. One method that works well is to add level structure to the
Jacobian of the curve. A second method that is sometimes used is to
specify the Weierstrass points or higher-order Weierstrass points, although
this works well only in characteristic O.

It is a deep fact that a coarse moduli space exists for curves of genus 9
or principally polarized abelian varieties of dimension g. These moduli
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spaces are denoted by M g and A g , respectively. It is not hard to see that if
elements ofM admit nontrivial automorphisms, then M cannot have a fine
moduli space, hence the need to add additional structure. Thus there do
not exist fine moduli spaces for curves of genus 9 or for principally polarized
abelian varieties of dimension g, but there do exist fine moduli spaces for
these classes of varieties with full level-N structure (N 2:: 3). These fine
moduli spaces are denoted by Mg,N and Ag,N, respectively.
One can further show that Mg,N and Ag,N are quasi-projective, and

that they have natural compactifications Mg,N and Ag,N carrying natural
ample line bundles AM and AA, respectively. Thus another way to define
the height of a curve C or an abelian variety A is to set

and h(A) = h>'A ([AJ)

2 1 1 -lIadl = -(2) la t\ al·
7f 9 A(C

using the Wei! heights associated to the line bundles AM and AA. Here [C]
denotes the point ofMg,N corresponding to the isomorphism class of C and
some choice of level-N structure on C, and similarly for [A]. We refer the
reader to Mumford-Fogarty [1] for more precise statements, constructions,
and properties of moduli spaces.
Parshin found an intrinsic way to define the height of an abelian variety

over function fields, and this was extended to number fields by Faltings [1]
and used in his proof of Mordell's conjecture. Let A be an abelian variety
of dimension 9 defined over a number field k, let A -+ Spec(Rk) be the
Neron model of A, let E: Spec(Rk) -+ A be the zero section, and let f! =

f!~/ Spec(Rk) be the bundle of relative g-differential forms on the scheme A.
The line bundle (invertible sheaf) WA := E*(f!) on Spec(Rk) can be metrized
in a natural way as follows.
Note that when restricted to A(C), the bundle f! of g-forms is equipped

with the norm

The pullback of this norm via c induces the desired metric on f!A. We thus
have a metrized line bundle on Spec(Rk), and we can use the Arakelov
degree to define the Faltings height of A to be

Let k' be a finite extension of k. If k' jk is unramified or if Ajk is
semistable, then hFalt(Ajk') = hFalt(Ajk). In general, one always has the
inequality hFalt(Ajk') :::; hFalt(Ajk). These heights have a number of useful
properties, for example,

and
hFalt(A X Bjk) = hFa1t(Ajk) + hFalt(Bjk)

hFalt(Ajk) = hFalt(Ajk).
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(Here A denotes the dual of A.) There is also a nice formula describing
how the Faltings height changes under isogeny. This formula plays a crucial
role in Faltings' proof of the Mordell conjecture (see Section F.3.2 below).
Another important result is a comparison theorem between the Faltings
height and a suitably chosen Weil height h)..A on the moduli space A g of
abelian varieties. If A has everywhere semistable reduction, then

In particular, there are only a finite number of (principally polarized)
abelian varieties with bounded height.
Yet another way to define the canonical height of an abelian variety is

to use the canonical embedding defined by Mumford [7],

. ,/, A 1ll)m9 -1
t m = 'I'£.,®m: <.....+ lL •

This exhibits A as a subvariety of projective space, and one can then define
(for a fixed even m 2: 4)

Note that the right-hand side is the height (via Chow coordinates) of the
subvariety i m (A) of pm9 -1. This height can also be compared to the other
heights described abovej see, for example, Bost-David [1].

Example F.2.2.1. Let Elk be an elliptic curve defined over a number
field, let t::J.E / k be the minimal discriminant ideal of Elk, and let j(E) be
the j-invariant of E. (See Silverman [1] for basic definitions and formulas.)
Then the Faltings height of Elk satisfies

hFalt(E) »« max{h(j(E)), logN/k/QaE / k}.

In particular, if Elk is semistable, then

hFalt(E) = 112h(j(E)) + (logarithmic error term).

See Exercise F.5 and Silverman [9] for further information about the Falt
ings height of an elliptic curve.

Most of the above heights are intrinsically defined only up to bounded
or constant functions. For example, the height of a projective variety Xc
pn via Chow coordinates is defined only up to O(deg(X)). Thus the height
of a variety will depend on the choice of coordinates or models or metrics.
For abelian varieties, we know that the the group structure allows us

to pick out a particularly good height for points, the canonical height. In a
similar way, it is possible to define a theory of canonical heights for higher
dimensional subvarieties of abelian varieties. This is due to Philipponj see
also Zhang [1] for a construction in the framework of Arakelov theory.
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and

Lemma F .2.2.2. (Philippon [1]) Let D be an ample divisor on an abelian
variety A and let a be an endomorphism of A such that a* D rv q(a)D.
For any subvariety X of A, let Gx c A be the stabilizer of X. There is a
constant C = C(a, D) such that for all subvarieties X C A,

I
q(a)dim(X)+l I

hD(aX) - Iker(a) nGx,hD(X) :5 C(a,D) dega(X).

This lemma is formulated in Philippon [1] for a symmetric divisor and
a = [n] (since then [n]* rv n2D), but the proof goes through verbatim in
the more general case (see the remarks in David-Hindry [1]). It allows the
following definition.

Definition. (Canonical height of a subvariety of an abelian variety)
Let D be a symmetric divisor on an abelian variety A and let X be a
subvariety of A. The canonical height of X with respect to D is

~ . Iker[n] nGxl
hD(X) = ;.:.~ n 2(dim(X)+1) hD([n](X))

. deg(X)
= ;.:.~ n2 deg([n] (X)) hD([n](X)).

It is possible to define canonical heights with respect to any divisor, but
this is a bit more involved, see the remark at the end of this section.

Theorem F .2.2.3. (Properties of canonical heights of subvarieties of
abelian varieties)
The canonical height hD depends only on the divisor class ofDin Pic(A).
It further satisfies:
(i) hmD(X) = mdimX+lhD(X),
(ii) 1ft E A is a torsion point, then h(t + X) = h(X).
(iii) Suppose that a E End(A) and that a*(D) rv q(a)D. Then

~ q(a)dim(X)+l ~

hD(aX) = Ik G IhD(X)eran x

hD(a- 1X) = q(a)codim(X)-lhD(X).

(iv) hD(X) = 0 if and only if X is a torsion subvariety (i.e., ifand only if
X = a + B with a E Ator and B an abelian subvariety of A).

With the noteworthy exception of (iv), all of the properties in (F.2.2.3)
are rather formal once the construction of hD is achieved. Property (iv)
lies much deeper, being in fact equivalent to the generalized Bogomolov
conjecture stated in Section F.2 and proved by David-Philippon [1]. They
even prove a lower bound of the form h(X) 2: c (deg(X))-K- with c = c(A, k)
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and K, = K,(g). The case where A = En is a power of an elliptic curve was
settled earlier by Philippon [1, Part III].
No simple formula connects hD+DI(X) to hD(X) and hD1(X). In

stead, for subvarieties of dimension r, there is an (r + I)-multilinear map
that associates to each (r + I)-tuple (Do, ... ,Dr) of symmetric divisors a
canonical height h(Do, ... ,Dr)(X). This height is linear in each D i , and the
canonical height defined above is equal to

hD(X) = h(D,... ,D)(X),

It is even possible to extend this to the case that s of the Di's are symmetric
and r + 1 - s are antisymmetric. Then, by multilinearity, we obtain a map

h. P' (Af+1 {real-ValUed func~ions on the space Of}
• IC --- subvarieties X/Q c A of dimension r .

Finally, hD can be defined for any divisor class by setting hD = h(D,... ,D).
See Gubler [1] for an Arakelov-style construction and de Diego's thesis
(quoted in de Diego [1]) for a construction via Chow coordinates.

F .3. Height Bounds and Height Conjectures

A fruitful circle of ideas has been to try to link deep conjectures and re
sults of Diophantine geometry to "elementary" statements such as the abc
conjecture and Szpiro's conjecture. In this section we will discuss some of
these conjectures and brief:l.y indicate some of their consequences.

Definition. Let n:f: 0 be an integer. The radical of n is the product

rad(n) = IIp
pin

of the primes dividing n. More generally, if k is a number field and °: E Rk
an integer of k, then rad(o:), the radical of 0:, is the product over the prime
ideals dividing the ideal (0:).

The abc-Conjecture F.3.1. (Masser-Oesterle) For all c > 0 there ex
ists a constant GE > 0 such that ifa, b, c E Z are coprime integers satisfying
a + b+ c = 0, then

max{lal, Ibl, Icl} ~ GE(rad(abc»)I+E.

(See the survey by Oesterle [1) for a more complete discussion.)

This seemingly elementary conjecture has a tremendous number of
far-reaching consequences. For example, we will sketch below Elkies' proof
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that abc implies Faltings' theorem (Mordell's conjecture). Another inter
esting consequence is (asymptotic) Fermat's last theorem. For suppose
that xP+ yP + zP = 0 for nonzero coprime integers x, y, z. Without loss of
generality, we may assume that Ixl :5 Iyl :5 Izi. Then the abc conjecture
implies that

IzlP = max{lxPI, lyPI, IzPI}
:5 Cg(rad(xPypzp»)He: :5 Ce:lxyzIHe: :5 CglzI3(He:).

Since necessarily Izi ~ 2, we find that p - 3(1 + c) :5 log2(Cg), and hence
conclude that Fermat's equation has no nontrivial solutions if p is suffi
ciently large.
An earlier conjecture of Szpiro is closely related to the abc conjecture.

In order to state Szpiro's conjecture, we recall a few definitions from the
theory of elliptic curves. We will just give the definitions over Q, and we
refer the reader to Silverman [1, III §1, VII §§1-2, VIII §8] and Silver
man [2, IV §IO] for the generalization to number fields. An elliptic curve
over Q has a Weierstrass equation

with at, ... ,a6 E Z. The discriminant of this equation is a certain com
plicated polynomial in the ai'S (see Silverman [1, §3.1]), and a minimal
Weierstrass equation for E /Q is one for which the the absolute value of
this discriminant is minimized. The minimal discriminant AE is the dis
criminant of a minimal Weierstrass equation for E/Q. For primes pIAE'
the reduction E/Fp of the Weierstrass equation modulo p will be singular.
We say that E is semistable (or multiplicative) at p if the singularity is a
node, and we say that E is unstable (or additive) at p if the singularity is
a cusp. The conductor :t'E of E /Q is equal to

:t'E = II p6p (E),

plaE

h 8 E _ {I if E is semistable at p,
were p( ) - 2 if E is unstable at p and p ~ 5.

If E is unstable at p = 2 or 3, the definition of bp(E) is more complicated,
but in any case we always have b2(E) :5 8 and b3(E) :5 5.
For an elliptic curve E defined over a number field k, the minimal

discriminant A E / k and the conductor :t'E/k are integral ideals of k. The
upper bounds for the exponents bp(E) for primes p dividing 2 and 3 depend
on the extent to which 2 and 3 are ramified in k. See Silverman [1,2] cited
above for the relevant definitions, and Lockhart-Rosen-Silverman [1] and
Brumer-Kramer [1] for conductor bounds at small primes.
With these preliminaries, we can now state Szpiro's conjecture, and a

related conjecture of Frey.
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Conjecture F .3.2. Let k be a number field. For all c > 0, there is a
constant C = C(k,c) such that for all elliptic curves Elk:
(a) (Szpiro [3]) log ILlE/kl ~ (6 + c) log~E,k + C.
(b) (Frey [1,2]) hk(jE) ~ (6+c)log~E/k+C.

It is not hard to show that Szpiro's conjecture, Frey's conjecture, and
the abc conjecture are all more or less equivalent (up to some adjustment
of the constants). See Exercise F.4 for some specific equivalences. We also
recall that if E is semistable, then the Faltings height hFalt(E) is equal (up
to a logarithmic term) to 112h(jE), so the conjecture can be reformulated
using hFalt. Finally, if E is defined over Q and if we let C4 and C(j be the
usual integers associated to a minimal Weierstrass equation for E, then a
combined version of Conjecture F.3.2(a) and Conjecture F.3.2(b) can be
stated using a naive height,

Remark F.3.3. Szpiro has suggested a generalization of Conjecture F.3.2
to abelian varieties. The conductor of an abelian variety AIk of dimension 9
is an ideal of the form ~AIk = npOp, where the exponent 0'1' is nonzero
if and only if A has bad reduction at p. More precisely, it satisfies 0 ~
0'1' ~ 9 if A has good or semistable reduction at p, and 0'1' ~ 2g if P has
characteristic greater than 2g + 1. More complicated bounds are known
for primes of small characteristic. (See Brumer-Kramer [1] and Lockhart
Rosen-Silverman [1] for definitions and details.) The generalized Szpiro
conjecture then asserts that there are constants Cl and C2, depending only
on k and g, such that for all abelian varieties AIk of dimension g,

?

hFalt(Alk) ~ Cl logNk/Q (~A/k) + C2·

Notice that this gives a bound for hFalt(Alk) solely in terms of dim(A) and
the places of bad reduction. As we will see, an effective proof of this conjec
ture would provide an effective proof of Faltings' theorem (i.e., an effective
bound for the height of rational of C(k) on curves of genus(C) ~ 2).

Another conjecture of Lang, which seems at first glance to be unrelated
to the above conjectures, postulates a uniform lower bound for the canon
ical height of nontorsion points on elliptic curves. This was strengthened
and generalized to abelian varieties by Silverman.

Conjecture F .3.4. Fix a number field k.
(a) (Lang [5]) There is a constant c = c(k) > 0 such that for all elliptic
curves Elk and all nontorsion points P E E(k),
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(b) (Silverman [5]) Let 9 2: 1. There is a constant c = c(k, g) > 0 such that
for all abelian varieties Ajk ofdimension g, all ample divisors D E Divk (A),
and all points P E A(k) such that the set {nP In E Z} is Zariski dense
in A,

h{P) 2: ch{A).

(Note that the constant c will also depend on which notion ofheight is used
for h{A).)

Lang's conjecture (F.3.4) is known to be true for certain classes of
elliptic curves, for example those with integral j-invariant (Silverman [5]).
More generally, let

a{Ejk) = 10gNk/QAE / k

logNk/Q:7E/k

be the Szpiro ratio of E j k. Then Hindry and Silverman [1] have proven that
there is a constant c = c([k: Q],a{Ejk)) > 0 such that for all nontorsion
points P E E{k),

Thus, since Szpiro's conjecture (F.3.2{a)) implies that a{Ejk) is bounded,
we see that Szpiro's conjecture implies Lang's conjecture (F.3.4{a)). In
the higher-dimensional case, David [1] has proven a version of Conjec
ture F.3.4{b) for those abelian varieties Ajk whose height h{A) is bounded
by a multiple of a Siegel period. David's result applies to infinitely many
abelian varieties in each dimension.
An intriguing approach to the abc conjecture is through the theory

of modular curves. The modularity conjecture, proven by Wiles [1] for
semistable elliptic curves and ultimately extended to all elliptic curves E jQ
by Breuil-Conrad-Diamond-Taylor [1], says that every elliptic curve EIQ
admits a finite covering by a modular curve cI»E : Xo{N) ---7 E. Further,
the integer N is the conductor of E, and if TJE = dxj{2y + alx + a3) is
the invariant differential on a minimal Weierstrass equation for E IQ and
h{z) is the normalized weight-2 cusp form attached to E, then there is a
rational number CE E Q* such that

cI»:E{TJE) = cEh{z) dz.

The constant CE is not too significant; for example, if E is semistable and
has good reduction at 2, then ICEI = 1 (Abbes-Ullmo [1]).
Integrating TJE 1\ 1/E on B{e) and pulling back via cI»E gives a formula

involving the Peterson norm of the modular form f,

IIhl1 2
:= ~ r h{z) dz 1\ fE{z) dz.JXO(NE)
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After some computation one obtains the formula
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1
2Iogdeg(~E) = hFalt(E/Q) + log life II + log IcEI·

(See, e.g., Silverman [1, §3].) It is easy to prove that lifE II is bounded
below by an absolute constant, so an estimate for the degree of the modular
parametrization as in the following conjecture would suffice to prove a weak
version of the abc conjecture.

Conjecture F.3.5. (Modular parametrization conjecture) There is an
absolute constant d such that for all (modular) elliptic curves E/Q, there
is a finite covering ~E : Xo(N) ---+ E with N equal to the conductor of E
and deg(~E) ~ N d .

It appears that the best possible exponent in Conjecture F.3.5 is d > 2,
so in order to deduce the full abc conjecture (i.e., with the constant 1+ c),
one would need a lower bound for IlfEll of the form life II ~ NI/2-e. It
is not clear whether such an estimate is true, but Mestre and Oesterle
(unpublished) have shown that if N is square-free (i.e., E semistable), then
IlfE11 ~ N I

/
4
.

The Function Field Setting
Given the undoubted depth of the abc conjecture (F.3.1) and Szpiro's con
jecture (F.3.2) over number fields, it is surprising how it easy it is to prove
them over function fields. The statements and proofs have been discovered
and rediscovered by numerous mathematicians, and we will not try to un
sort the history here. For an elementary proof of Szpiro's conjecture over
function fields due to Kodaira, see, for example, Hindry-Silverman [1, The
orem 5.1]. Similarly, Lang's height lower bound conjecture (F.3.4) can be
proven unconditionally for function fields (Hindry-Silverman [1]), although
the proof is more difficult.
By way of contrast, Elkies [1] has shown that over number fields, the

abc conjecture implies Faltings' theorem (Mordell's conjecture). Elkies'
proof does not carry over to the function field setting, because he utilizes a
uniformization theorem of Belyi that does not have an appropriate function
field analogue. We will sketch Elkies' proof below (Section F.4.2).

We close this section with a very short geometric proof of the abc
conjecture for function fields shown to us by Bill Fulton. Before giving the
proof, we recall that the degree of a nonconstant rational function f on a
curve e is the degree of the associated finite map f :e ---+ pl. This is also
equal to the number of zeros of f, taken with multiplicity; more generally,
for any , E pI, deg(f) = EPEf-1(-y) ep(f). We also note that deg(f) is
equal to the height h(f) for the usual set of normalized valuations on the
function field of e, h(f) = deg(f) = EpEcmax{O,ordp(f)}.

Theorem F.3.6. (abc conjecture for function fields) Let k be an alge
braically closed field and let elk be a smooth projective curve ofgenus g.
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Let a, bE k(C) be nonconstant functions satisfyinga+b = 1, and let 8 c C
be a set of points that includes all zeros and poles ofa and b. Then

deg(a) ~ #8+ 2g - 2.

PROOF. Let d = deg(a) = h(a). We apply the Riemann-Hurwitz formula
(Theorem A.4.2.5) to the finite map a : C ---. pl. This yields

2g-2=d(O-2)+ L(ep(a)-l)
PEG

~ -2d+ L (ep(a) -1) + L (ep(a) -1)
PEa-i(O) PEa-i(l)

+ L (ep(a) - 1)
PEa-i(oo)

= -2d + (d - #a-l(O)) + (d - #a- l (l)) + (d - #a-l(oo))

= d - (#a-l(O) + #a-l (l) + #a-l(oo))
= d - #(a-l(O) Ua- l (l) Ua-l(oo)).

We now observe that a- l (l) = b-l(O), so

Hence
2g- 2 ~ d-#8,

which is the desired inequality.

F .4. The Search for Effectivity

o

Here is a brief list of the main results of Diophantine geometry that we
have proven in this book:

• Mordell-Weil Theorem
The group of rational points on an abelian variety is finitely generated.

• Roth's Theorem
There are only finitely many rational numbers 0: E K that approximate
a given irrational number f3 to within H K (o:)-2+E.

• Siegel's Theorem
A curve of genus at least 1 has only finitely many 8-integral points.
• Faltings'Theorem
A curve of genus at least 2 has only finitely many rational points.
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All of these statements are purely qualitative; that is, they merely
assert that certain sets (of generators, numbers, or points) are finite. A
major challenge is to make these theorems effective,(..) which means to give
an effective procedure for computing all of the elements in the finite set.
This generally means giving an effective upper bound for the heights of the
elements in the set, since one knows that there are only a finite number
of points of bounded height, and in principle it is then possible to list
all of them and check which ones are actually in the set. None of these
theorems has been proven effectively, although effective versions of Siegel's
theorem are known for many classes of curves (e.g., for all elliptic curves)
via techniques from transcendence theory and linear forms in logarithms.
We also mention the related question of proving quantitative results, which
means giving an explicit upper bound for the number of elements in the
finite set. Quantitative versions of all of the above theorems are known.

F.4.1. Effective Computation of the Mordell-Wei! Group A(k)

Let AIk be an abelian variety of dimension 9 over a number field k. The
Mordell-Weil group of Alk is a finitely generated group (C.O.I),

A(k) ~ A(khors $ zrankA(k).

As we have seen in Theorem C.1.9, there is an effective upper bound for
the rank in terms of k, g, and the places of bad reduction of A, but there is
no effective procedure known for computing the rank exactly or for finding
a set of generators for A(k).
The torsion subgroup of A(k) is much easier to deal with, and it is

easy to give an effective algorithm to compute it. For example, if E IQ is
an elliptic curve given by a Weierstrass equation

with integral coefficients, then the Lutz-Nagell theorem says that every
torsion point P = (x, y) E E(Q)tors has x, y E Z, and further, either y = 0
or else y2 divides 4A3 + 27B2 . (See, e.g., Silverman [1, VIII.7.2J.)

It is more difficult to give uniform bounds for the torsion subgroup, as
in the following result.

Theorem F .4.1.1. Let E be an elliptic curve defined. over a Dumber field
k. We write em for a cyclic group of order m.

(..) Also bear in mind that Matyasevic's negative solution to Hilbert's tenth
problem says that not all Diophantine problems can be solved effectively. See
Matyasevic [1] and Davis-Matyasevic-Putnam-Robinson [1].
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(i) (Mazur [lD Let k = Q. Then E(Qhors is isomorphic to Cm with
1 ~ m ~ 10 or m = 12, or to C2 X C2m with 1 ~ m ~ 4.
(ii) (Kamienny [1], see also Kenku-Momose [lD Suppose [k : Q] = 2.

Then E(Qhors is isomorphic to em with 1 :::; m :::; 16 or m = 18, or to
C2 X C2m with 1 :::; m:::; 6, or to one ofC3 x C3 , C4 X C4 , or C3 x C6 .

(iii) (Merel [lD In general, for every d ~ 1 there is a constant Cd such
that for every number field k/Q with [k : Q] :::; d and every elliptic curve
Elk, we have #E(khors :::; Cd' In particular, for each d, there are only a
finite number of possible group structures for E(k)tors'

The proofs of all parts of Theorem F.4.1.1 are modular. For inte
gers mlM, one studies the modular curve Xl (m, M) whose (noncuspidal)
points, denoted by YI (m, M), classify isomorphism classes of pairs (E, </»,
where E is an elliptic curve and </> is a map </> : Cm x CM '----+ E specifying a
subgroup of E oftype (m, M). The curve XI(m,M) is defined over Q(m).
When m = 1, it is customary to write XI(M) for X I(1,M)i this curve is
defined over Q.

An elliptic curve Elk with a pair of independent k-rational points
(P, Q) of orders m and M, respectively, corresponds to a point in the
set Y I (m, M)(k). Thus Theorem F .4.1.1 describes those m and M for
which YI(m, M)(k) = 0. Note that the exceptional values in Mazur's theo
rem (F.4.1.1(a)) correspond exactly to those XI(m,M)'s that are isomor
phic to]p1 over Q. All of the exceptions in Kamienny's theorem (F.4.1.1(b))
have a similar geometric interpretation. The curves X I(3,3) and X I(3,6)
are isomorphic to plover Q(3), the curve X I(4,4) is isomorphic to]p1 over
Q(i)j the curves XI(11), X I(14), X I (15) and XI (2, 10) are of genus 1 and
hence have infinitely many points over an infinity of quadratic fields; the
curves Xl (13), X I(16), and Xl (18) are of genus 2, hence hyperelliptic and
have infinitely many quadratic points.
A natural question raised by Theorem F.4.1.1 is whether an analogous

result might hold for abelian varieties of higher dimension. There is little
evidence today to suggest the correct answer, so we simply raise it as
a question. For some results, examples, and discussion, see Silverberg's
survey (Silverberg [lD and the papers of Flynn [1] and Leprevost [1,2].

Question F.4.1.2. Let g ~ 1 and let k be a number field. Does there
exist a constant Ck,g such that for all abelian varieties A/k of dimension g,
we have #A(k)tors ~ Ck,g? If this is true, is it further possible to choose
the constant depending only on g and the degree [k : Q]?

The rank of the Mordell-Weil group is much more mysterious and
much more difficult to compute. Indeed, no one has yet devised an effective
algorithm for computing the rank, or more generally for computing a set
of generators. We will describe an algorithm of Manin [4] whose validity
depends on a number of unproven conjectures of an analytic nature which
we now discuss.
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Recall that if we fix an ample symmetric divisor D on A, the canonical
height hD extends to a positive definite quadratic form on A(k) ® JR. (See
Theorem B.5.3.) The associated bilinear form (" ')D is used to define the
regulator

where PI," ',Pr is a basis for A(k)jA(khors. Thus the inner product
(" ')D gives A(k) ®JR ~ lRr the structure of a Euclidean space, the image
of A(k) in this lRr is a lattice, and Regv(Ajk) is the volume of a funda
mental domain for the lattice.

Remark F.4.1.3. Rather than choosing a particular divisor D, we can
define a canonical regulator of Ajk as follows. Let A be the dual abelian
variety to A, and choose a basis P{, ... ,P: for A(k). (Note that A and A
are isogenous, so they have the same rank.) Let P be a Poincare divisor on
A x A (see Section A.7.3), and let

(P, P'h = h1>(P, P') for (P,P') E A x A

be the canonical height on A x A with respect to P. Then the canonical
regulator of Ajk is

Since hD(P) = (P, ¢D(P)h, and since ¢D : A ~ A is an isogeny if D is
ample, it is easy to show that

RegD(Ajk) = [A(k) : ¢D(A(k))] Reg(Ajk).

In particular, ifD is a principal polarization, then RegD(Ajk) = Reg(Ajk).

As indicated above, we have a lattice A(k)jA(k)tors sitting inside a
Euclidean space A(k) ® lR ~ lRr with inner product (" . )D. It is intu
itively clear that we can bound the norm of some basis for the lattice if we
know both an upper bound for the lattice's covolume (Le., the volume of
a fundamental domain) and a lower bound for the smallest nonzero vector
in the lattice. The following result of Hermite makes this intuition precise.

Proposition F.4.1.4. (Hermite) Let V be a real vector space of dimen
sion r with Euclidean norm II . II, let LeV be a lattice, and let Vol(L)
be the volume of a fundamental domain for L. Then there exists a basis
UI, ... U r E L for L satisfying

(
4)r(r-I)/2

Vol(L) $ Il u III·llu 211·· '1lurll $ 3 Vol(L).



460 F. Further Results and Open Problems

Hence if the Ui'S are ordered in increasing length, then

(
4) r(r-l)/2(r-i+l) (VOl(L)) l/(r-i+1)

lI u ill:::; 3 ~ for 1 :::; i :::; r.

In particular, an upper bound for Vol(L) and a (nonzero) lower bound
for lIull for nonzero vectors U E L gives an upper bound for the length of a
basis of L.

PROOF. The left-hand inequality in (*) is easy; it merely says that the
volume of a parallelepiped is smaller than the product of its sides. For a
proof of the right-hand inequality, see Lang [6, Chapter 5, Corollary 7.8].

o

In order to apply Hermite's result (F.4.1.4) to the Mordell-Weillattice,
we need a lower bound for hD(P) and an upper bound for RegD(A/k). We
discussed lower bounds for hD(P) earlier; see (F.3.4). Here we will merely
add the observation that in principle, one can compute an effective lower
bound for hD(P) by checking all points of bounded Weil height hD(P) and
using an (effective) bound for the difference hD - h D.

Currently, there is no proven algorithm to compute an upper bound
for the regulator RegD(A/k), but a conjectural approach via zeta functions
and analytic techniques was initiated by Manin [4]. We will describe this
approach in some detail, but to avoid various technicalities we will treat
only the case that A is defined over Q.
Let A/Q be an abelian variety of dimension g. For each prime p,

choose a prime f. 1= p and define the Tate module of A to be the inverse
limit

Ti(A) = limA[r]
+-

relative to the maps A[f.n+l] ~ A[f.n]. Let Vl(A) = Tl(A) I8lzt Ql. Then
Ti(A) ~ 1'.:9 and Vl(A) ~ Q:9. Further, there is a natural action of the
Galois group Gal(Q/Q) on these sets, which we denote by

Pi : Gal(Q/Q) ----+ AutQf (Vl(A)) ~ GL(2g, Ql)'

The map Pl is the f.-adic representation attached to A/Q.
For any prime p over p, we let Dp and I p denote respectively the

decomposition and inertia groups of p. (Up to conjugation, Dp and Ip are
independent of the choice ofp; this ambiguity will not affect our discussion.)
Thus Dp = {u lu(p) = p}, and Ip is the kernel of the reduction map
Dp - Gal(lFp/lFp ). This reduction map is surjective, and we let Frobp
denote an element of Dp that maps to the Frobenius 0: 1-+ o:p. It is well
defined up to an element of I p (and up to conjugation).
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Let lti(A)Ip be the subspace of Vi(A) fixed by every element of I p •

Then the action of Frobp on lti(A)Ip is well-defined up to conjugation, so
its characteristic polynomial

is well-defined. The L-series of A/Q is the Dirichlet series given by the
product

(Xl

L(A/Q,s) = Lann-1 = IIQp(p-l)-l.
n=l p

We remark that if A has good reduction at p, then the action of I p on lti(A)
is trivial. Thus for all but finitely many primes p we have lti(A)Ip = lti(A)
and degQp(T) = 2g. This follows easily from the fact (C.1.4) that if A has
good reduction at p, then the reduction map A[t"] - A(lFp) is injective.
It is also known, but not at all obvious, that the polynomial Qp(T) is
independent of the choice of auxiliary prime f =f:. p.

If A has good reduction at p, then Weil's estimate says that Qp(T)
factors over C as Qp(T) = II(I-aiT) with lail =.;p. (For elliptic curves,
this was originally proven by Hasse.) This immediately implies that the
product defining L(A/Q, s) converges for Re(s) > ~. Conjecturally, much
more is true.

Conjecture F.4.1.5.
(i) The L-series L(A/Q,s) has an analytic continuation to all sEC.
(ii) There is an integer N, called the conductor of A and divisible by

exactly the primes of bad reduction ofA, such that if we set

then A satisfies the functional equation

A(A/Q,2 - s) = eA(AjQ, s) for some e = ±1.

The number e is called the sign of the functional equation.

Conjecture F.4.1.5 is known for abelian varieties with complex multi
plication (Shimura-Taniyama [1]) and for quotients of the Jacobian Jo(N)
ofXo(N) (Shiroura [1]). In particular, Wiles [1] shows that every semistable
elliptic curve E/Q is such a quotient; hence Conjecture F.4.1.5 is true for
such curves. In a series of works by a number of mathematicians, Wiles's
theorem was extended to ever larger collections of curves, culminating in
the work of Breuil, Conrad, Diamond, Taylor [1] showing that it is true
for every elliptic curve E /10, regardless of whether or not E has places of
additive reduction.

Assuming the validity of (F.4.1.5), we may ask for the behavior of
L(A/Q,s) near some special value of s, for example s = 1. The famous
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conjecture of Birch and Swinnerton-Dyer gives an answer. We first set some

notation. The real period of A is the integral nA = IJA(IR) 1JAI of a Neron
differential TJA (i.e., a differential normalized to have finite nonzero reduc
tion on every fiber of the Neron model of A). For each prime p, let AO(Qp)
denote the subgroup of A(Qp) that reduces to the identity component of
the Neron model of A, and let cp be the index of AO(Qp) in A(Qp). In par
ticular, cp = 1 for primes of good reduction, so Cp = 1 for all but finitely
many primes. As usual, A is the dual abelian variety, and III(A/Q) is the
Tate-Shafarevich group, which we assume to be finite (see Section C.4).

Conjecture FA.I.6. (Birch and Swinnerton-Dyer) Assume that the
L-series L(A/Q, 8) admits an analytic continuation to C.
(i) The order of vanishing of L(A/Q, 8) at 8 = 1 is

ordL(A/Q, 8) = rankA(Q).
5=1

(ii) Let r = rank A(Q). Then the leading coefficient of the Taylor expan
sion of L(A/Q, 8) around 8 = 1 is

L*(A 1) := lim L(A, s) = n (II )#III(A/Q) . Re~(A/Q).
, 5--+1 (8 - 1y A p Cp #A(Qhors' #A(Qhors

Birch and Swinnerton-Dyer originally formulated their conjecture for
elliptic curves over Q. It was then generalized by several people; the formu
lation given here comes essentially from Tate's Bourbaki seminar (Tate [3]).
We also note that (F.4.1.5(ii)) and (F.4.1.6(i)) imply that the sign of the
functional equation e is equal to (-1yank A(Q) , giving a comparatively easy
(conjectural) analytic way to decide the parity of the rank.

Remark F.4.1.7. The conjecture of Birch and Swinnerton-Dyer may be
viewed as an analogue of the classical formula for the residue of the Dede
kind zeta function (k(8) of a number field k/Q. Let Hk be the class group
of k, let Regk be the regulator of k, let Dk be the absolute value of the
discriminant of k, let T1 and T2 be respectively the number of real and pairs
of complex conjugate embeddings of k, and let 11k be the group of roots of
unity in k. Then

I, ( l)r () 2T1 (27fy2 #Hk' Regk
1m 8 - ,>k S = .

5--+1 v'15k #l1k
(See, e.g., Lang [9], Theorem 5, Section VIII.2.) Comparing this formula to
Conjecture F.4.1.6 suggests the following associations, although the reader
is warned that the analogy is not perfect:

Number Field t---+ Abelian Variety

Ric t---+ A(k)

11k = (Richors t---+ A(khors
Regk t---+ Reg(A/k)

H k t---+ III(A/k)
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Remark F.4.1.8. If one assumes the analytic continuation and functional
equation for the L-series of an elliptic curve (Le., for 9 = 1), then one
can prove that the series 'E~=l ann- s actually converges for Re(s) > ~,

and in particular in a neighborhood of s = 1. More generally, the series
converges for Re(s) > (lOg2 - 6g + 1)/2g(4g - 1). See Chandrasekharan
Narasimhan [1] and Murty [1].

As pointed out by Manin [4], Conjectures FA.lo5 and F.4.lo6 may be
combined with analytic estimates to deduce information about the regula
tor Reg(A/Q).

Theorem F.4.1.9. Let A/Q be an abelian variety of dimension g.
(i) Assume (FA.l.5) that L(A/Q, s) has an analytic continuation and

satisfies a functional equation, and further assume that its conductor N is
at least 4. Let r = ords=l L(A/Q,s). Then

IL*(A, 1)1 ~ 2T Nt (log N)29 .

(ii) Assume further that the Birch-Swinnerton-Dyer Conjecture (FA.l.6)
is true. Then

Reg(A/Q) ~ #III(A/Q) .Reg(A/Q)

~ 2TN 1/ 4 (log N)290A:1 . #A(Qhors . #A(Qhors.

All of the quantities on the right-hand side of this inequality can be ef
fectively bounded from above, thereby giving an effective upper bound for
Reg(A/Q), and hence via (FA.1A) for the height ofa basis ofA(Q) (subject
to the validity of Conjectures FA.l.5 and FA.l.6).

PROOF. The Hasse-Wei! estimate says that the local factors used to define
the L-series factor as Qp(T) = n(1 - aiT) with lai I =..;p. Writing
s = a + iT, this gives the upper bound

If a > ~, we can multiply over p to obtain

(
1)2g

IL(A/Q,s)1 ~ ( a - 2

We also note that (1 + e:) ~ 1 + 1/e: for all e: > O.
Let A(A/Q, s) = N s / 2 «21T)-Sr(S))g L(A/Q, s) be the normalized L

series as in (FA.lo5). Then the functional equation gives

IA (~ - c - iT) I= IA(~ + c + iT) I
~ (r (~ + e:) (21T)-!-') 9N~+~ (1 + 1/e:)2g .
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By the Phragmen-LindelOf principle, the same estimate is valid in the
vertical strip ~ - c ~ (T ~ ~ + c. Applying Cauchy's inequality (to the
circle with center at 1 and radius ~ + c with c = 2/ logN), we get after
some calculation

Remark FA.l.lO. The assumption in (F.4.1.9) that the conductor N
satisfies N ~ 4 is not needed. Fontaine [1] has proven that if A/Q is an
abelian variety of dimension g, then its conductor satisfies N > 109 • In
particular, for elliptic curves the smallest possible conductor is N = 11, a
fact first proven by Tate. There are three isomorphism classes of elliptic
curves of conductor 11, two ofwhich are the classical modular curves Xo(l1)
and X l (l1). All three are isogenous to one another. Note that if E has
conductor 11, then A = E9 has conductor 119, so the lower bound of 109

is reasonably sharp.

Remark FA.l.ll. The Faltings height H(A) := exp(hFalt(A)) is essen
tially a complex period (Exercise F.6), so it may be compared to the real
period nA . One finds that nA: l = H(A) JdetImT, where T is the point in
the Siegel upper half-plane determined by the period matrix of A. (See,
for example, the matrix lemma in Masser [1].) Hence

detImT ~ IIImTI1 9 « (logH(A))9 and nA: l « H(A)(logH(A))9/
2

•

These calculations and Conjecture F.3.4 lead us to expect that the small
est set of generators {Pl , ... , Pr } for the free part of the Mordell-Wei!
group A(Q) of a simple abelian variety will always satisfy

and further that both sides of this inequality are, in some cases, close to
the truth. The wide range of values provides, if not an explanation, at least
an illustration of the difficulty of computing the Mordell-Wei! group.

Remark F.4.l.12. As we have seen (FA.1.1), the torsion subgroup of an
elliptic curve is subject to a universal bound. In stark contrast, there is
the following folklore conjecture.

Conjecture F.4.l.13. There exist elliptic curves E/Q whose Mordell
Weil rank rank E(Q) is arbitrarily large. More generally, for any 9 ~ 1 there
exist geometrically simple abelian varieties A/Q with rank A(Q) arbitrarily
large.

As of this writing, the record for an elliptic curve is rank E(Q) ~ 23 (Martin
and McMillen, June 1997).
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It is not difficult to prove an effective unconditional upper bound of the
form rankE(Q) « logN, where N denotes the conductor of E. If E(Qhors
is not empty, the stronger bound

logN
rankE(Q) «I I Nog og

can be proven unconditionally in a similar manner. If E(Q)tors is empty,
Mestre [1] has shown that the stronger estimate is valid if one assumes
a number of standard conjectures, including (F.4.1.5), (F.4.1.6), and the
generalized Riemann hypothesis for L(EIQ, s).

F.4.2. Effective Computation of Rational Points on Curves

Let Clk be a curve of genus 9 ~ 2 defined over a number field k. Faltings'
theorem says that the set of rational points C(k) is finite. An effective
version of Faltings' theorem would provide an explicit upper bound B =
B(C, k) in terms of C and k such that

P E C(k) => h(P) ::; B.

At present, effective bounds of this sort are not known. In this section we
will briefly discuss the following approaches to giving an effective proof of
Faltings'theorem:

• The Naive Approach
A restatement of the problem in elementary terms.

• The Mordell-Weil Group Approach
Embed C in its Jacobian variety.

• The Arakelov Theory Approach
Use Arakelov intersection theory on an arithmetic surface.

• The Moduli Approach
Associate points in C(k) to points on a moduli space.

• The abc Approach
Use the abc conjecture and uniformization.

• The Small Point Approach
Use hypothetical small points in C(k).

The Naive Approach
An algebraic curve always has an affine plane model P(X,Y) = 0, with
at worst simple nodes as singularities. One then searches for a constant
B = B(P, k) such that any solution to P(x, y) = 0 with x, y E k satisfies
h(l,x,y) ::; B.
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The Mordell-Wei! Group Approach
The canonical height IIxll 2 := !he+e- (x) gives a Euclidean norm on
Jac(G)(k). We can also map G canonically to its Jacobian via the map

j : G -4 Jac(G), P I-t Cl((2g - 2)P - Kc).

One then looks for a bound B = B(G, k) such that any point P E G(k)
satisfies Ilj(P)1I :::; B.

This is essentially the method used in the Bombieri-Vojta proof de
scribed in Part E. However, rather than producing a bound B that works
for all points, the proof in Part E gives only a pair of effective bounds
N = N(G, k) and B = B(G, k) such that there are at most N points in G(k)
satisfying h(P) ~ B. The reason for this lack of effectivity is rooted in the
very nature of Diophantine approximation proofs, wherein one postulates
the existence of a few large solutions and uses them to bound the size of all
remaining solutions. This means that the proof provides no way of checking
whether there are any large solutions at all. Notice that a similar remark
applies to the proof of Roth's theorem in Part D.

The Arakelov Theory Approach
The curve Glk is associated to an arithmetic surface 7r : e - Spec(Rk)
that comes equipped with a dualizing sheaf weiRk. (This is essentially the
relative canonical sheaf of e over Rk.) Each point P E C(k) corresponds
to a section Up : Spec(Rk) - e of 7r. Let Ep = UP(Rk) denote the image,
and define the Arakelov height of P to be

One looks for a bound B such that hAr(P) :::; B for all P E G(k), where B
is given in terms of quantities such as the self-intersection We/R

k
• We/R

k

or hFa1t(Jac(G» or the set of places of bad reduction. A proof along these
lines would be aesthetically pleasing, due to the canonical nature of all of
the quantities involved.

The Moduli Approach
This is the method used by Faltings [1] (see also Szpiro [1,2,3]) in his
original proof of the Mordell conjecture. The idea is to associate to each
point P E G(k) another variety (in this case, a curve) Xp and then prove
that there are only finitely many such Xp's. The first step is the following
construction of Kodaira and Parshin.

Proposition F.4.2.1. (Kodaira-Parshin construction) Let Glk be a
curve of genus 9 ~ 2 defined over a number field. There exists a smooth
projective surface X with a fibration 7r : X - G whose fibers Xp =
7r- 1{P} are smooth curves ofgenus g'. The fibration has the following two
properties.
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(i) The function P 1---+ hFalt(Jac(Xp)) is a height function on C(Q) rela
tive to an ample divisor.
(ii) There exists a finite set of places S of k such that X p has good

reduction outside ofS for every point P E C(k).

The Kodaira-Parshin construction can be made effective in the sense
that the set S in (ii) can be explicitly described in terms of the places of
bad reduction of C, and the height in (i) satisfies

where Cl is an explicit rational number and C2 is effective (although difficult
to compute). Hence all that we need to make Faltings' theorem effective is
an effective bound for hFalt(Jac(Xp)), and from (ii) it suffices to bound the
height of abelian varieties of dimension g' having good reduction outside S.
The fact that this set is finite was conjectured by Shafarevich and proven
by Faltings [1].
Let A(g, k, S) denote the set of abelian varieties of dimension 9 defined

over k and having good reduction outside S. Faltings proves that A(g, k, S)
is finite in two steps:
(Fl) The set A(g, k, S) contains only a finite number ofisogeny classes.
(F2) Fix an abelian variety A/k. Then there are only finitelymany (iso

morphism classes of) abelian varieties defined over k and isogenous
toA.

The proofof (F2) by Faltings uses delicate arguments involving finite group
schemes and p-divisible groups. Faltings' proof has been refined by Ray
naud to make it effective (see Raynaud's paper in Szpiro [2]).
To each isogeny Q : A --+ B of degree d defined over k there is an ideal

OOl in Rk such that

1
h(B) = h(A) + 2logd -log IRk/oOlI and

where 0: : iJ --+ A denotes the dual isogeny. This gives the inequality

1
Ih(A) - h(B)j $ 2logd.

Masser-Wiistholz [2,3] have shown by a totally different method based on
transcendence theory techniques that if B is isogenous to A, then there
exists an isogeny of degree d $ Kh(A)A, where'" and Aare explicitly given
functions of 9 = dimA and [k : Q]. This provides an effective proof of (F2)
with additional uniformity.
Host [2] has given a simpler method of comparing the heights of abelian

varieties, thereby providing an easier proof of the finiteness of abelian va
rieties with bounded Faltings height. For example, if (A, L) is a princi
pally polarized abelian variety, Host describes a normalized Chow height
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hnorm(A, L) such that hnorm(A, L) ~ hFalt(A) + ~ log(27l"). (See also Bost
David [1]).
Thus to make Faltings' theorem effective, it suffices to give an effective

bound for the height of a representative abelian variety in each isogeny class
of abelian varieties with good reduction outside of S. In other words, give
an effective proof of (Fl). Unfortunately, no such proof is known today.
Faltings' proof of (Fl) is beautiful, but indirect. He first proves Tate's
conjecture that A and B are isogenous if and only if their Tate modules
Tt(A) and Tt(B) are isomorphic as Gal(kjk)-modules. He also proves that
the Tt(A) is semisimple. These results are obtained by an adaptation of
methods of Tate and Zarhin and rely on the proof of (F2).
The l-adic representation

attached to A has a number of remarkable properties, including:
(i) For each place v of k, the characteristic polynomial of PA,t(Frobv ) is
a polynomial with integer coefficients;

(ii) The roots of this characteristic polynomial (i.e., the eigenvalues of
PA,t(Frobv )) all have absolute value qy2 (WeB's theorem).

It follows that the trace of PA,t(Frobv ) can take on only finitely many values.
Faltings then completes the proof with a wonderful lemma saying that a
semisimple representation P : Gal(kjk) -+ GL(2g,Qt) that is unramified
outside S is determined by a finite number of trace values p(Frobv ). (See
Faltings [1, Satz 5] or Szpiro [2, Theoreme 1 on page 249].)
Thus the missing piece in making this proof of Faltings' theorem

effective is an effective bound B = B(g, k, S) with the property that
each isogeny class in A(g, k, S) contains an abelian variety Ajk satisfy
ing h(A) ~ B. Tate's conjecture, proven by Faltings [1], says that the
isogeny class of A is characterized by its L-series L(Ajk, s). Further, if A
has good reduction outside S, then the conductor of A is bounded by a
constant depending only on 9 and the primes in S, which (at least conjec
turally) provides further information about L(Ajk,s). It is thus tempting
to ask whether it might be possible to relate the height h(A) to the L-series
L(Ajk, s) (or some variant) and thereby bound the height in terms of the
conductor.

The abc Approach
The abc conjecture (F.3.1) is an elementary-sounding statement about
primes dividing coprime integers (a,b, c) satisfying a + b + c = O. Elkies [1]
has explained how the abc conjecture and a uniformization theorem of Be
lyi [1] can be used to give a short proof of the finiteness of C(k) for any
curve C j k of genus 9 2: 2. Further, an effective proof of the abc conjecture
would yield an effective proof of Faltings' theorem. We will sketch the proof
for k = Q, but the arguments are valid for any number field.
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We begin by translating the abc conjecture into a form more suitable
for our purposes. For any rational number x E Q ...... {O, I}, let

and set

No(x) = IIp,
ord,,(x»O

N 1(x) = IIp,
ord,,(x-1»O

Noo(x) = IIp,
ord,,(x)<O

and H(x) = H(I,x).

Then an alternative statement of the abc conjecture says that for every
c > 0 there exists aCe> 0 such that

for all x E Q ...... {O, I}.

(To see the equivalence, set x = -a/b.)
Next let C/Q be a curve of genus 9 2: 2. Belyi's theorem [1] (see

also Exercise A.4.7) says that there is a finite map I : C - Pi, say of
degree d, that is ramified only above the three points {O, 1, 00}. Letting
m := #(J-1{0, 1, oo}), the Riemann-Hurwitz formula (Theorem A.4.2.5)
gives

2g - 2 = d· (-2) + ~)ep(f) -1)

= -2d + (d - #1-1(0») + (d - #1-1(1» + (d - #1-1(00»)
=d-m.

Later we will choose c < (2g - 2) / d, which will guarantee that m/d < 1-c.
Now we study points outside 1-1{O, 1, 00}. Let

Do = (f)o =L ordQ(f)(Q)
ordQ(J»O

and D~ = L(Q).
ordQ(J»O

In other words, Do is the divisor of zeros of I taken with multiplicities,
and D~ is the same without multiplicities. In particular, d = deg(Do), and
we will write d~ = deg(D~). The divisor d~Do - dD~ has degree 0, so is
algebraically equivalent to 0 on C, and Do is ample, so Theorem B.5.9 and
a little algebra using the height machine (B.3.2) gives us the height relation

Let P E C(Q) with I(P) =1= 0,00. A prime p will occur in the numer
ator of the rational number I(P) if and only if it contributes to the height
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HDb(P), so we obtain an inequality No(f(P)) «HDb(P). Substituting
this into the above height relation gives the estimate

d'
10gNo(f(P)) ::; ; hDo(P) +O( y'hDo(P) )

= ~h(f(P)) +O(Jh(f(P))).

Repeating this argument using the divisors D1 = (f - 1)0 and Doc =
(1/1)0 = (f)oc and the multiplicity-free degrees d~ = #(f-l{l}) and
d~ = #(f-l{oo}) gives analogous inequalities

log N 1 (f(P)) ::; dh(f(P)) + 0 ( J h(f(P)) ),

log Noc(J(P)) ::; d; h(f(P)) +O(Jh(f(P)) ).

Adding the three inequalities and noting that d~ + d~ + d~ = m yields

10gN(f(P)) ::; ~h(f(P)) +O(Jh(f(P))).

On the other hand, the abc conjecture tells us that for any c > 0 there is a
constant Ce such that

10gN(f(P)) 2: (1- c)h(f(P)) - Ceo

Hence there is a constant c~, depending on Ce and the above big-O con
stant), such that

(1- c - ~) h(f(P)) ::; c~.

In particular, if we choose c < (2g - 2) / d, then m/d < 1 - c, and we obtain
a nontrivial upper bound for h(f (P)). Further, if the constant in the abc
conjecture could be made effective, then this proof would give an effective
bound for the height of points in C(Q).

The Small Point Approach
Another conjectural approach to an effective proof of Faltings' theorem,
more in the spirit of Arakelov geometry, was proposed by Szpiro [1,2,3).
It is based on the following conjecture that every curve has an algebraic
point of "small" height.

Conjecture F.4.2.2. (Szpiro's small points conjecture) Let g 2: 2, let k
be a number field, and let S be a finite set of places of k. There exists a
constant B(k, g, S) with the following property.
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Let C / k be a curve of genus 9 with good reduction outside of 8.
Then C contains an algebraic point P E C(k) whose Arakelov self-inter
section is bounded by

1 2 (
[k(P) : Q]Ep :5 B k,g,8).

Here E p denotes the horizontal divisor associated to P on a minimal model
for Cover SpecRk(p).

Szpiro observes that Conjecture FA.2.2 is true in the function field
case, where one may take B(k,g,8) = 29 - 2 + #8 + 1. The fact that
a statement such as (FA.2.2) implies a bound for the height of rational
points on curves follows from an analysis of the Kodaira-Parshin fibra
tion (FA.2.1) 1r : X -+ C, which yields an inequality

with absolute constants Cl and C2. For a further discussion on effectivity
and the relationship with bounds for w~/R and associated quantities, we
refer the reader to Szpiro's original papers [1,2,3], Parshin [1], and Moret
Bailly [1].

Finally, our discussion of effectivity for rational points on curves would
not be complete without the confession that even Siegel's theorem (D.9.1)
on integral points is not yet effective. More precisely, let C be a smooth
affine curve of genus g, let C be a smooth projective closure of C, and let
s = #(C ,C) be the number of points "at infinity" on C. Siegel's theorem
says that if 2g - 2 + s > 0, then the set of 8-integral points C(Rk,s)
is finite. This theorem is effective when 9 = 0 (and s ~ 3) and when
9 = 1 (and s ~ 1) thanks to Baker's theorem on lower bounds for linear
forms in logarithms. (See, e.g., Baker [1] or Serre [3].) There are many
other families of curves for which Siegel's theorem can be made effective by
similar techniques, including, for example, curves of the form ym = P(X)
and Thue curves F(X, Y) = a for a homogeneous form F. Nevertheless,
despite the fact that we know that there are only finitely many rational
points on curves of genus 9 ~ 2, there is still no general effective proof for
the finiteness of integral points.
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F .4.3. Quantitative Bounds for Rational Points

In the last two sections we discussed effective bounds for generators of the
Mordell-Weil group and for rational points on curves. A related, but easier,
problem is to give an explicit upper bound for the number of elements in
these finite sets, without necessarily bounding the height of their elements.
Estimates of this nature are called quantitative bounds.
For example, we have already given the following quantitative version

of the Mordell-Weil theorem (C.1.9):

rankA(k) ~ 2grankRk,s = 2g(rl + r2 + #S - 1).

In this estimate, it is assumed that A[m] C A(k) for some m ~ 2 and that
Rk,s is a principal ideal domain, but in general it is not hard to replace k
and S by an explicit extension k'Ik and an explicit expanded set S' having
these properties. In this way one obtains an upper bound for rankA(k)
solely in terms of g, k, and the primes of bad reduction of A.

Similarly, Roth's theorem, Siegel's theorem, and Faltings' theorem,
each of which asserts that a certain set S is finite, can be given quantitative
formulations of the following sort:

There are effective constants Cl and C2 such that
S = {x E S Ih(x) ~ cd u S' with #S' ~ C2.

The explicit form taken by the constants Cl and C2 is naturally of interest.
To illustrate this type of result, we quote a quantitative version of Faltings'
theorem due de Diego. The proof is an adaptation of that given in Part E.
We also note that since it is possible to include all curves of genus 9 into a
huge algebraic family, Theorem F.4.3.I in principle gives an explicit upper
bound for #C(k) for all curves C of genus 9 ~ 2.

Theorem F.4.3.1. (de Diego [1]) Let I: X -+ T be a family of smooth
curves X t := I-l{t} of genus 9 ~ 2. Fix a height function hT on the
base T, and for each t E T, let ht be the height function on X t associated
to the pullback of the canonical height on Jac(Xt ) with respect to e+e- .
Then there is an effectively computable constant c, depending on h and
I: X -+ T (but not on the number field k), such that for every t E T(k),

with an exceptional set £t satisfying #£t ~ 72+rankJac(Xt)(k).

In Theorem F.4.3.I, the size of the exceptional set is bounded in terms
of the rank of the Jacobian variety, but one might suspect that the excep
tional set is not actually necessary. This would lead to the following precise
(effective) form of Faltings' theorem.
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Conjecture F.4.3.2. In the situation of Theorem F.4.3.1, it is possible
to choose the constant c in such a way that the exceptional set et is empty.
In other words, there is a uniform upper bound ht(x) ~ chT (t) that holds
for all t E T(k) and all x E Xt(k).

In the opposite direction, one might ask for some sort of uniform bound
for the number of points of small height in Xt(k). One approach to doing
this is the following elementary remark (see Exercise B.1O). Let A/k be
an abelian variety, let h be the canonical height on A with respect to an
ample symmetric divisor, let T = rankA(k), and let hmin be the minimum
value of h(P) for nontorsion points P E A(k). Then

#{x EA(k) Ih(x) ~ B} ~ #A(khors' (1 + .jB/hmin r.
Thus one way to prove a good quantitative bound for a subset S ofA(k) is to
find an upper bound B for the heights of elements in S that is proportional
to the lower bound hmin of the heights of nontorsion points in A(k).
The following two conjectures illustrate ways in which one might hope

to uniformly bound the number of integral points on elliptic curves and the
number of rational points on curves of higher genus.

Conjecture F .4.3.3. Let k be a number field.
(i) (Lang [5]) There is a constant c = c(k) such that if E is a minimal
aBine model of an elliptic curve over Rk and S is a finite set ofplaces of k,
then

# E(R ) < cl+rankE(k)+#S.k,S _

(ii) (Mazur) There is a constant c = c(k,g) such that if C is a curve of
genus 9 ~ 2 defined over k, then

#C(k) ~ ~+rankJac(C)(k).

Silverman [3) has shown that Lang's conjecture (F.4.3.3) would be
a consequence of Merel's theorem (F.4.1.1(iii» and the conjectural lower
bound (F.3.4(a» for the canonical height of nontorsion points on elliptic
curves. In particular, (F.4.3.3) is known to be true for elliptic curves with
a bounded number of primes dividing j(E) (Silverman [3)), and more gen
erally for elliptic curves with bounded Szpiro ratio (Hindry-Silverman [1)).
Similarly, de Diego [1) shows that a universal bound for torsion on abelian
varieties and the conjectural height lower bound (F.3.4(b» would suf
fice to prove (F.4.3.3(ii». Over function fields, the elliptic curve bound
#E(Rk,S) ~ cl+rankE(k)+#S is known (Hindry-Silverman [1)); and again
over function fields, Buium [3] has proven a bound for the number of ratio
nal points C(k) on a curve of genus 9 ~ 2 in terms of 9 and rankJac(C)(k).
The last quantitative type of estimate we discuss is surprising in its

strength.
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Question F .4.3.4. Let k be a number field and let g ~ 2 be an integer.
Does there exist a bound B(k,g) such that for all curves Clk of genus g,
we have

#C(k) ::; B(k,g)?

(One might even ask whether B can be chosen solely in terms ofg and the
degree [k :QJ.)

Clearly, an affirmative answer to (FA.3A) would supersede conjec
ture (FAA.3(ii)), but is there any reason to suspect that such a strong
uniform bound shoUld be true? The answer is a conditional yes, ba.sed
on a fascinating conjecture of Bombieri and Lang. We will discuss the
Bombieri-Lang conjecture in more detail below (see Section F.5.2), but
briefly it asserts that the k-rational points on a variety of general type are
not Zariski dense. Although far from obvious, it can be shown that this
statement implies the uniform bound postulated in (FA.3A).

Theorem F.4.3.5. (Caporaso--Harris-Mazur [1]) Assume that the Bom
bieri-Lang conjecture (F.5.2.1) is true. Then there is a constant B(k,g)
such that for all curves CI k ofgenus g, we have #C(k) ::; B(k, g).

We feel obliged to point out that although many mathematicians feel
that (FA.3.5) is good evidence for the existence of the uniform bound
for #C(k), there are others who feel that (FA.3.5) is primarily evidence
for the falsity of the Bombieri-Lang conjecture! We also note that (F.4.3.5)
can be extended to points of bounded degree on curves of genus g ~ 2 and
to integral points on elliptic curves; see Abramovic [1,2J and Pacelli [1,2J.

F .5. Geometry Governs Arithmetic

Let Xlk be a projective variety defined over a number field, say for con
creteness defined as a subset of pn by a system of homogeneous polynomials

One of the ultimate goals of Diophantine geometry is to link the geometry
of X to its arithmetic. In other words, use algebro-geometric invariants of
the complex variety

to describe properties of the arithmetic set
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or more generally of X(k') for finite extensions of k.
There is a highly developed classification theory for algebraic varieties,

and it is tempting to use this geometric theory of classification as the
basis of a corresponding Diophantine classification. We will begin with an
overview of the geometric classification, especially the notion of Kodaira
dimension of a variety. We will then describe several ways in which the
geometry of a variety (conjecturally) governs its arithmetic, including a
number of beautiful conjectures due to Bombieri, Lang, Vojta, Manin,
Batyrev, and others.

Remark. In addition to the algebra-geometric classification of varieties,
Lang has suggested that various analytic and differential geometric prop
erties of a variety should influence its arithmetic. We will not have space
here to discuss Lang's fascinating conjectures, so we refer the reader to
Lang [13] for details.

F.5.1. Kodaira Dimension

Let X be a smooth projective variety. We consider the linear system IKx I
associated to a canonical divisor, and more generally the pluricanonical
linear systems ImKxl attached to multiples of Kx. Assuming that the
system is nonempty, we can look at the associated rational map

4>mKx : X + ]pN,

which is well-defined up to a linear change of coordinates of ]pN.

Definition. Let X be a smooth projective variety as above.
(i) The plurigenera of X are the numbers gm(X) defined by

gm = gm(X) = dimL(mKx ) = i(mKx) = hO(X,wx).

(ii) The Kodaim dimension of X, denoted by K(X), is the quantity

K(X) = maxdim4>mKx(X);
m2:1

that is, K(X) is the maximal dimension of the image of X under the pluri
canonical maps 4>mKx' If all of the 9m'S are zero, the Kodaira dimension
is set to K(X) = -1 by convention. (Some authors instead prefer to set
K(X) = -00 in this situation.)

The plurigenera 9m(X) and the Kodaira dimension K(X) are birational
invariants of X. This follows from Lemma A.1.4.7. It is clear that the
Kodaira dimension satisfies -1 ~ K(X) ~ dim(X).
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Examples 5.1.1.
(a) The canonical divisor on projective space is Kpn = -(n+l)H, where H
is a hyperplane. Hence 9m(lpn) = 0 for all m ~ 1, and It(pn) = -l.
(b) Let X be a curve of genus 9· (Notice that 9 = 9d

• If 9 = 0, then 9m(X) = 0 for all m ~ 1 and It(X) = -l.
• If 9 = 1, then 9m(X) = 1 for all m ~ 1 and It(X) = O.
• If 9 ~ 2, then 91(X) = 9, 9m(X) = (2m - 1)(9 - 1) for m ~ 2,
and hence It(X) = l.

(c) Let X be a smooth complete intersection of dimension n - T in pn, say
the intersection of T hypersurfaces of degrees dl, ... , dr. Then Kx = (-n
1+ d1 + ... + dr )H, where H is a hyperplane section (see Exercise A.2.7).
Hence

{

-I if n + 1 > d1 + + dr,
It(X) = 0 if n + 1 = d1 + + dr,

dim(X) if n + 1 < d1 + + dr.

(d) Let X be a subvariety of an abelian variety A, and let Gx c A be its
stabilizer. Then (Ueno [1, pages 120-121])

It(X) = dim(X) - dimGx .

(e) If K x = 0, or more generally if some multiple of Kx is zero, then
It(X) = O. This includes abelian varieties, K3 surfaces, Enriques surfaces,
and bielliptic surfaces.

The Kodaira dimension of various other varieties may be computed
using the next lemma.

Lemma F.5.1.2.
(i) Let f : X - Y be a dominant rational map. Then It(X) ~ It(Y).

(ii) It(X x Y) = {-I iflt(X).= -lor It(Y) = -1,
It(X) + It(Y) otherwISe.

(iii) Let f : X - Y be an unrarnified finite covering. Then It(X) = It(Y).

jp9m(X)X ~~x

PROOF. (i) The fact that f is dominant means that composition with f
induces an injective map r :L(mKy) ~ L(mKx), so we obtain a com
mutative diagram

1f 1~
Y ~~ 1P9m (y)

where 11" a linear projection. Thus 11" 0 cIlmKx = cIlmKy 0 f, from which we
deduce that dim cIlmKy (Y) ::; dim cIlmKx (X).
(ii) Let p : X x Y - X and q : X x Y - Y be the projections. The
canonical divisor of the product is Kx x y = p*K x + q*K y, so it is clear
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that if ImKxl = 0 or ImKyl = 0, then also ImKxxyl = 0. Otherwise, we
consider the associated maps, which fit into the commutative diagram

~"'KX X~"'Ky
X XY ----+ r x lP's

1~"'KXXY 1s
i

----+ rs+r+s

where S is the Segre embedding and i is a linear embedding. The formula
II:(X x Y) = II:(X) + II:(Y) is clear from this diagram.
(iii) See Iitaka [1, Chapter 10, Theorem 10.9]. 0

We now briefly discuss the cases II: = -1, II: 2: 0, and II: = dim(X).

Case A. II:(X) =-1

Note that II:(X) = -1 is equivalent to gm(X) = 0 for all m 2: 1. This will
certainly be the case ifX is birational to Y x lP'1. More generally, a dominant
rational map 4> : X' ---t X induces an injection 4>'" : L(mKx ) <-+ L(mKx'),
so gm(X) ::::; gm(X' ). In particular, if X is dominated by a variety X'
satisfying II:(X') = -1, then necessarily II:(X) = -1. This motivates the
following classical definition.

Definition. A variety X of dimension n is uniruled if there exists a variety
Y of dimension n - 1 and a dominant rational map f :Y x pI - -+ X.

Proposition F.5.1.3. If X is uniruled, then II:(X) = -1.

It is conjectured that the converse is true, that is, II:(X) = -1 is
equivalent to X being uniruled. This is known to be true if dim(X) ::::; 3.
See Kollar [1] and Debarre [1].
The following provides an important class of varieties with Kodaira

dimension -1.

Definition. A Fano variety is a smooth projective variety X whose anti
canonical divisor -Kx is ample.

Projective spaces, Grassmannians, and more generally flag varieties
are examples of Fano varieties, as are smooth complete intersections of
type (db' .. , dr ) in pn with n + 1 > dl + ... + dr. (A flag variety is the
quotient of a semisimple group by a parabolic subgroup.) It should be noted
that the property of being a Fano variety is not birationally invariant. For
example, if X is the blowup of lP'2 at r points, then X is a Fano variety if
and only if r ::::; 8 and the points are in sufficiently general position. (See
Manin [2] for a precise statement and proof.) Fano varieties are covered by
rational curves and are uniruled. In fact, one can say much more.
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Theorem F.5.1.4. (Morl [1]) Let X be a Fano variety. For every point
x E X there is a rational curve C such that x E C. Further, the curve C
may be chosen to satisfy deg C = -C.Kx ::; dim X + 1.

Case B. II:(X) 2: 0

Consideration of the rational maps ~mKx : X --+ JP9m(x)-1 allows one to
prove the following result that is fundamental for the classification theory
of algebraic varieties.

Theorem F.5.1.5. Let X be a variety with II:(X) 2: O. Then there exists
a smooth projective variety Y of dimension II:(X), a projective variety X'
birational to X, and a surjective morphism X' - Y whose generic fiber
has Kodaira dimension zero.

In Theorem F.5.1.5, it is not true in general that II:(Y) = II:(X), see,
for example, Exercise F.7.

Example F.5.1.6. If II:(X) = dim(X) - 1, then the fibers of the map
X' - Y in (F.5.1.5) are curves of Kodaira dimension 0, hence are elliptic
curves. In particular, if X is a surface with II:(X) = 1, then X is an elliptic
surface.

Case C. II:(X) = dim(X)

In some sense it is true that the Kodaira dimension of "most" varieties
takes on the maximal value II:(X) = dim(X). This prompts the following
definition.

Definition. A variety X is a variety of geneml type if II:(X) = dim(X).

Example F.5.1.7. A smooth hypersurface in JPn of degree d > n + 1 is
of general type, as is a subvariety of an abelian variety having a finite
stabilizer. The term "general type" is classical and not very illuminating.
It comes originally from the classification of surfaces:

Kodaira dimension Types

II:(X) =-1 rational or ruled

II:(X) = 0 abelian, bielliptic, K3, or Enriques

II:(X) = 1 elliptic

II:(X) = 2 general type ("the others")

Classification of Surfaces

The Kodaira-Parshin surfaces used by Faltings in his proof of the Mordell
conjecture are of general type (see Exercise F.8).
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The fundamental Diophantine condition conjecturally satisfied by varieties
of general type is the following.

Conjecture F.5.2.1. Let X be a variety of general type defined over a
number field k. Then X(k) is not Zariski dense in X.

We can make this conjecture even more precise by asserting that except
for finitely many points, the Zariski closure of X(k) in X stabilizes as k is
enlarged.

Conjecture F.5.2.2. (refined form) Let X be a variety of general type
defined over a number field k. Then there is a dense Zariski open subset U
of X such that for all number fields k' jk, the set U(k') is finite.

Bombieri posed Conjecture F.5.2.1 for surfaces of general type, and
Lang (independently) formulated the general conjecture in its refined form
(F.5.2.2). In fact, Lang even gave a conjectural description of the exce~
tional Zariski closed subset. Since we know that projective spaces and
abelian varieties may have dense sets of rational points, the exceptional
subset must include every image of such varieties. However, we can cover
pn with projective lines, and the projective line pI is the image of an elliptic
curve, so the following definition is reasonable.

Definition. Let X be a projective variety. The special subset Spx of X
is the Zariski closure of the union of all images of nontrivial rational maps
A ---t X, where A is an abelian variety.

This allows us to state the final form of the Bombieri-Lang conjecture.

Bombieri-Lang Conjecture F.5.2.3. (final form) Let X be a variety
defined over a number field k, and let U :=X" Spx. Then U(k') is finite
for every finite extension k'/k.

There are several other ways to formulate Conjecture F.5.2.3 and other
possible definitions for the special subset. For example, one may define Spx
to be the union of all subvarieties of X that are not of general type. It is
easy to see that if one takes this definition for Spx' then the original Con
jecture F.5.2.1 is actually equivalent to the final form (F.5.2.3), provided
that the union of subvarieties not of general type inside a variety of general
type is a proper closed subset.
There is one further feature noticed by Serge Lang that is worth men

tioning. He suggests that being of general type should be analogous to
being "pseudo-hyperbolic." More precisely, a variety X is said to be hy
perbolic if there are no nonconstant holomorphic maps C - X(C). Then
Lang conjectures that the following three conditions are equivalent:
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• X(k) is finite for every number field k.
• Every closed subvariety of X (including X itself) is of general type.
• X is hyperbolic.

He conjectures a similar equivalence on Zariski open subsets, in which case
he add the prefix "pseudo" to each condition. See Lang [13] for further
details.

Remark 5.2.4. (a) The simplest unknown case of Conjecture F.5.2.1 is
a smooth surface of degree 5 in p3. For example, let X C p3 be the
hypersurface given by the equation

5 555Xo +XI +X2 +X3 =0.

It has not been proven that X(Q) consists of a finite number of points
beyond those lying on lines and elliptic curves. Note that X does contain
several lines, for example Xo+ Xl = X2 + X3 = 0, so X(Q) is infinite.
(b) Let r = rank(Ol). If Ox := t{ 01 is ample, then the conjectures
predict that X (k) should be finite. Over function fields, this is known to
be true by the work of Noguchi [1]. Over number fields it is known only
under the additional hypothesis that 01 is generated by global sections,
in which case the proof reduces to Faltings' theorem on rational points on
subvarieties of abelian varieties. (See Moriwaki [1].)
(c) It is natural to ask the complementary question:

For which varieties XIk does there exist a finite exten
sion k' / k such that X (k') is Zariski dense in X?

This question is still largely unexplored, although it seems reasonable to
expect that X has this property if its anticanonical divisor is effective. One
might perhaps be bolder and conjecture the same for varieties of Kodaira
dimension O.
However, the answer to the question must depend on more than merely

the Kodaira dimension of X, as the following argument shows. Let X - C
be an elliptic surface over a base curve C of genus at least 2. Then the
set X (k') is never Zariski dense. On the other hand, if X _ ]pI is an
elliptic surface with an infinite group of sections over k', the set X(k') will
be Zariski dense. And in both cases, X may have Kodaira dimension 1.

From the previous sections, from (F.1.1.1) in particular, we see that
Conjecture F .5.2.3 holds for subvarieties of abelian varieties. Indeed, in
that case the special subset Spx is the union of translates of nontrivial
abelian subvarieties. Although this is essentially the only proved case, there
are other sorts of varieties that can reduced to this case. For example, a
Kodaira-Parshin surface S is a surface fibered over a curve S - C such
that genus(C) 2: 2 and such that the fibers are curves of genus 9' 2: 2.
Then S(k') is finite. Similarly, if the generic fiber is a curve of genus
9' 2: 2, then S(k') is not Zariski dense. (See Szpiro [2).)
The following proposition allows one to construct additional examples

from known examples.
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Proposition F .5.2.5. (i) Let X --+ Y be a dominant rational map be
tween varieties of general type. If Conjecture F.5.2.1 is true for Y, then it
is true for X (and similarly for Conjecture F.5.2.3).
(ii) Let X -+ Y be a finite unramiJied morphism. Then X is of general

type if and only ifY is of general type. Hence Conjecture F.5.2.1 (respec
tively F.5.2.3) is true for X if and only if it is true for Y.

PROOF. Statement (i) is trivial. The first statement of (ii) follows from
Lemma 4.1.1(iii) , and the second follows from the Cheval1ey-Weil theorem
(Exercise C.7). 0

Remark F .5.2.6. Conjecturally, if X admits a dominant rational map to
a variety of general type, then X (k) is never Zariski dense. The follow
ing example of Colliot-TheUme, Swinnerton-Dyer, and Skorobogatov [1]
(Corollary 3.2) shows that this condition is not necessary.
Let E be a curve of genus 1 with a fixed-point-free involution q : E -+

E. For example, E could be an elliptic curve and q translation by a 2
torsion point. Let C be a hyperelliptic curve with hyperelliptic involution
j : C -+ C. Let X be the surface

X := (E x C)/(q x j).

That is, X is the quotient ofExC by the identification (x, y) = (q(x),j(y)).
Then one can show that X has no dominant maps to a variety of general
type, yet for every number field k, the set X(k) is not Zariski dense in X.
Indeed, the latter property is clear, since (E x C)(k) is not Zariski dense by
Faltings' theorem (note that genus(C) ~ 2), so the same is true for X(k)
because the map E x C -+ X is an unramified finite cover.

One of the most surprising consequences of the Bombieri-Lang conjec
ture, already mentioned earlier (F.4.3.5) and restated here, is the following
uniformity property for rational points on elliptic curves:

There is a universal upper bound B = B(g, k) such that
for every curve C/k of genus 9 ~ 2, we have #C(k) ::; B.

The proof, due to Caporaso, Harris, and Mazur [1], is based on the following
lemma, which is interesting in its own right.

Lemma F .5.2.7. Let f : X -+ S be a family of curves of genus 9 ~ 2,
and let X~ := X x s X x ... x s X be the n-fold fibered product ofX over S.
Then for sufficiently large n, the variety X~ dominates a variety ofgeneral
type (i.e., there exists a variety W ofgeneral type and a dominant rational
map X~ --+ W).

PROOF (that Lemma F.5.2.7 implies uniform boundedness (FA.3.5)). We
apply the lemma to a "universal" family X -+ S containing all curves of
genus g. From the lemma, X~ dominates a variety of general type. Thus,
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assuming the Bombieri-Lang conjecture (F.2.1.1), XS-(k) is not Zariski
dense in XS-' Let U = Un be a nontrivial Zariski open subset of Xs- such
that U(k) = 0, define 1rj : X§+1 -+ X§ to be the projection that omits the
last factor, and set

and

For geometric reasons, we have # (1r;!1(x) n Zj) ~ dj -1 for a constant
dj - 1 independent of x. In particular, for all x E Un - 1(k), the curve 1r;21(x)
has at most dn - 1 points. Going down, we find that for s E Uo(k), the curve
X s has at most maxj{dj} points. Since dim(S ..... Uo) < dimS, we can repeat
the argument on the components of S ..... Uo, so we are done by downward
induction on the dimension of S. 0

Lemma F.5.2.7 and its application have been generalized by Abramovic
and Voloch [2] (see also Abramovic [1]). Abramovic proves in particular
that if f :X -+ S is a family of smooth varieties of general type, then for n
sufficiently large, the fibered product Xs- := X xs X x ... Xs X dominates
a variety of general type.

F.5.3. Vojta's Conjecture

Inspired by Nevanlinna theory and analogies between theorems on value
distributions of meromorphic functions and results of Diophantine approx
imation, Paul Vojta [3] formulated several far-reaching conjectures that
remain essentially untouched today. We begin with a brief overview of his
insights. Further details may be found in Vojta [3] and Lang [8].
Recall from Section B.8 that there are local height functions >'D,v such

that if D is a reduced effective divisor D, then intuitively

>'D,v(P) = -log(v-adic distance from P to D).

Further, the local heights are related to the global height hD via a sum
over places v of k,

for all P ¢. suppeD).
v

One of Vojta's insights is that >'D,v is the arithmetic analogue of the prox
imity function in Nevanlinna theory. Indeed, if s is a section of a line
bundle on a projective variety X, and if we let D = dives) and select a
metric I . Iv on the line bundle, then the function P f-+ -logls(p)lv is a
local height at v.
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Let S be a finite set of places of a number field k. The following
quantities are counterparts of classical quantities used to study values of
meromorphic functions in Nevanlinna theory:

ms(D, P) = L dvAD,v(P) = L -dv log Is(P)lv,
vES vES

Ns(D,P) = LdvAD,v(P) = L -dvlogls(P)lv.
v¢s v¢S

Notice that by definition

hD(P) = Ns(D, P) + ms(D, P).

The global height function hD ( • ) is the arithmetic analogue of the charac
teristic function from classical Nevanlinna theory, and similarly ms(D, .)
is the arithmetic analogue of the proximity function and Ns(D, . ) is the
arithmetic analogue of the counting function.

Definition. If Xjk is a projective variety, then the set of rational points
X(k) of X is a precisely defined set; but if R is a subring of k and U is
an affine open subset of X, then the set of integral points U(R) of U is
ambiguous, since it depends on choosing a particular collection of affine
coordinate functions Xl, ... , X n on U. Thus integrality is really a property
of a set of points P C X(k), rather than a property of individual points.
We say that P is a set of integral points of U if there exist affine coordi
nates Xl,.'" Xn on U such that Xi(P) E R for alII :s; i :s; n and all PEP.
Note that according to this definition, any finite set is automatically in
tegral, so generally one studies whether or not there exist infinite integral
sets.
We can use Vojta's ideas to formulate a more general notion of inte

grality. Thus let k be a number field, let R = Rs be the ring of S-integers
of k, and let D = X" U be the divisor at infinity. A subset P of U(k) will
be called S -integral if there is a constant c such that

ms(D, P) ;::: hD(P) - c for all PEP.

Intuitively, the inequalityms(D, P) ;::: hD (P) - c means that virtually all of
the v-adic closeness of P to D occurs for the places v in S. More generally,
we say that a subset P of U(k) is quasi-S-integral ifthere is are constants c
and c > 0 such that

ms(D, P) ;::: chD(P) - c for all PEP.

Example F.5.3.1. Let X = pI and DOt. = (a), where a E k is an algebraic
number. The (arithmetic) defect of a is the quantity

1:( ) I·· f ms{DOt.,a)u a = lmln .
aElPl(k), h(a)--+oo hD", (a)

Then one can show (Vojta [3]) that Roth's theorem is equivalent to the
inequality o(a) :s; 2, which is a perfect analogue of the defect relation of
Nevanlinna theory.
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Based on this example and further analogies with higher-dimensional
results in Nevanlinna theory, Vojta formulated the following conjecture:

Conjecture F .5.3.2. (Vojta) Let S be a finite set ofplaces of a number
field k. Let X/k be a smooth projective variety, let E be an ample divisor
on X, and let D be an effective reduced divisor on X having only normal
crossings. Then for every c > 0 there exists a proper closed subset Z =
Z(c, E, D, k, S) such that

for all P E (X ....... Z)(k).

Remark F .5.3.3.
(a) The set Z in Vojta's conjecture is called the exceptional subset. A
strengthened version of Vojta's conjecture says that there is a geometric ex
ceptional set Zgeom = Zgeom(c, E, D) such that for all extension fields k'/k
and finite sets of places S' of k',

is a finite set. In other words, aside from a finite number of exceptional
points, the exceptional set may be chosen independently of the field k and
the set of places S.
(b) If X is a variety of general type, then Vojta's conjecture with D = 0,
E = K x , and c = ~ says that hKx (P) :::; 0(1) for P E (X ....... Z)(k).
Since Kx is almost ample, this implies that X(k) is not Zariski dense
in X. Thus the Bombieri-Lang conjecture (F.5.2.1) is a special case of
Vojta's conjecture.
(c) Let X C ]p'n be a smooth projective variety with Kx = 0, for example
a K3 surface or an abelian variety, let U = X nAn be an affine subvariety
of X, and let D = X ....... U be the reduced divisor consisting of the "points
at infinity" on X. Notice that D is necessarily ample. Vojta's conjecture
(with E = D) says that ms(D, P) :::; chD(P) + Od1). It follows that
a quasi-S-integral subset of U(k) is contained in a proper Zariski closed
subset of X. In the case of abelian varieties, Faltings (2) has proven that
for an ample divisor D with normal crossings, we have ms(D,x) :::; ch(x)
outside a closed subset (hence everywhere by induction).
(d) Vojta's conjecture is known for curves. Thus for curves of genus 0
it is equivalent to Roth's theorem, and for curves of genus 9 2: 2 it is a
consequence of Faltings' theorem. As for curves of genus 1, it is equivalent
to the results (D.8.3) and (D.8.4) used to prove Siegel's theorem.
(e) We note that the requirement in Vojta's conjecture that D have only
normal crossings is necessary, since it is easy to produce counterexamples
if this condition is dropped.

One other case in which Vojta's conjecture is known is the deep gen
eralization of Roth's theorem proven by Wolfgang Schmidt in 1970.
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Subspace Theorem F .5.3.4. (Schmidt [2,4]) Let

be linear forms in general position, i.e., such that any subset of at most
min{m, n} of the forms are linearly independent. Then there exist finitely
many proper linear subspaces T1 , •.• ,Tr C en such that

r

{x E zn I Ixle ·IL1(x) .. ·Lm (x)1 ~ I} C UTi.
i=l

To see that Roth's theorem follows from (F.5.3.4), take m = n = 2,
L 1(x, y) = x - o:y, and L2 (x, y) = y.
Schmidt's subspace theorem has been generalized by Schlickewei [1] to

number fields and to include more than one absolute value. The appropriate
inequality for the general statement has the form

Llogml;lXIIILo( Xj )1 ~(n+1+e)h(x)
vES J i • XQ, .•. , X n v

for x E (lPn " T)(k),

where T is a union of linear subspaces of IF. If we now observe that Kpn
is -(n + 1) times a hyperplane, so hKpn = -(n + l)h + 0(1), then this
inequality may be written in the form

L AD,v(X) + hKpn (x) ~ f:h(x) + 0(1),
vES

which is precisely Vojta's inequality. Thus Schmidt's theorem is a special
(highly nontrivial) case of Vojta's conjecture, with the addition that the
exceptional set Z is specified as a collection of linear subspaces. Note
that the "general position" requirement in Schmidt's subspace theorem is
exactly the "normal crossings" condition in Vojta's conjecture.

Remark F.5.3.5. Let Q(xQ,' .. , xn ) be a homogeneous form of degree d
with d ~ n + 2, and let D be the divisor in X = lP'n defined by Q = O.
Assuming that D has only normal crossings, we see that Vojta's conjecture
predicts that for any integer b i= 0, the set

{x E zn+11 Q(x) = b}

lies in a proper Zariski closed subset oflF(Q). Note that ifQ = L 1L 2 •·• L d

is the product of d linear forms in general position, then this follows im
mediately from Schmidt's subspace theorem (F.5.3.4); but in general it is
still an open question. Indeed, it does not appear to be known whether the
integer solutions to the specific equation
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are Zariski dense in IP3(Q).
This example also clearly shows the necessity of the normal crossing

condition. Thus if we take

then it is easy to see that the S-integral solutions to Q(x) = 1 will be
Zariski dense in IP'n(k), provided that the unit group R'S is infinite. (Choose
Xo E R'S and Xl, ... , Xn-l E Rs arbitrarily and solve for x n .) See Exercise 9
or Vojta's original account (Vojta [3]) for further examples.

A convenient reformulation of certain cases of Vojta's conjecture uses
the following generalization of the notion of a variety of general type.

Definition. A quasi-projective variety U is of log geneml type if it can be
written U = X " D with X projective, D an effective divisor with normal
crossings, and Kx + D almost ample on X.

Conjecture F.5.3.6. (Lang-Vojta) Let U/k be a variety of log general
type. Then any set of S-integral points on U is contained in a proper
Zariski closed subset.

Conjecture F.5.3.6 is true for curves by Siegel's theorem, since Kx+D
is ample in exactly the following three situations: (i) 9 ;::: 2; (ii) 9 = 1 and
degD;::: 1; (iii) 9 = 0 and degD ;::: 3. More generally, (F.5.3.6) says that
there are finitely many integral points in an affine open subset of an abelian
variety, a result (as already mentioned) proven by Faltings [2].

Example F.5.3.7. Let Ag,N be the moduli space of principally polarized
abelian varieties of dimension 9 with level-N structure. For sufficiently
large values of N, the points in Ag,N(Rk,S) essentially correspond to iso
morphism classes of principally polarized abelian varieties of dimension 9
with level-N structure defined over k and having good reduction outside
of S. Faltings [1] has proven that this set is finite, a result originally conjec
tured by Shafarevich. This amounts to show,ing that the set of S-integral
points with respect to the divisor D is finite', 'where D is the divisor at in
finity D = Ag,N "Ag,N on a "nice" compactification of the moduli space.
Faltings' result is compatible with Conjecture F.5.3.6 in the sense that it
is known that Ag,N is of log general type for sufficiently large N. A similar
remark applies to the moduli space Mg,N of curves of genus 9 with level-N
structure.

Vojta also proposes a conjecture involving all algebraic points on a
variety, not only the points rational over a particular field. In order to state
the general conjecture, we introduce the absolute logarithmic discriminant

1 .
dk(P) = [k(P): Q] 10gIDISC(k(P)/Q)I,
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and we generalize the definitions ofms(D, P) and N s (D, P) to P E X (Q)
using the extension of local heights to algebraic points described in (B.8.3),

1
).v,v(P) = [k(P) : k] L [k(P)w : kv])'v,w(P).

wEMk(p), wlv

Conjecture F .5.3.8. (Vojta) Let S be a finite set of places of a number
field k. Let Xjk be a smooth projective variety, let E be an ample divisor
on X, and let D be an effective reduced divisor on X having only normal
crossings. Then for every e > 0 and r ~ 1 there exists a proper closed
subset Z = Z(e, r, E, D, k, S) such that

ms(D, P) + hKx (P) :s dk(P) + ehE(P) + Oe(l)

for all P E (X -..... Z)(k) satisfying [k(P) : k] :s r.
A fascinating aspect of Vojta's conjectures (F.5.3.2) and (F.5.3.8) is

that they seem to contain virtually all Diophantine statements that are
currently proven or conjectured, by which we mean statements asserting
that certain arithmetically defined sets are "small". For example, Vojta's
conjectures imply the abc conjecture (see Exercise F.ll). It should also
be emphasized that it was Vojta's philosophy of seeking analogies between
Nevanlinna theory and Diophantine approximation that led to his proof of
Mordell's conjecture (about eight years after Faltings' initial proof).

F .5.4. Varieties Whose Rational Points Are Dense

The previous sections have dealt principally with the question of when sets
of rational or integer points fail to be Zariski dense. In this final section
we will discuss the case that X (k) is Zariski dense in X and consider ways
to measure that density. For example, if E j k is an elliptic curve of infinite
rank, then E(k) is Zariski dense in E, but one feels that somehow it is "less
dense" than, say, ]pI (k) is in ]pl.
One way to measure the density is to fix a height H on X associated

to an ample divisor D and consider the behavior of the counting function

N(Xjk,D,B) = #{x E X(k) IH(x):s B} as B - 00.

Notational Convention. It turns out that the asymptotic formulas for
counting functions take a simpler form if one uses the height with respect
to a particular field, rather than using the normalized height. So for the
remainder of this section we will fix a number field k and use the notation
H=Hk·
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Example F.5.4.1. Schanuel's theorem (B.6.2) (Schanuel [1]) says that
there is a constant c = c(n, k) such that N(JPT" Ik, D, B) rv cBn+l, where D
is a hyperplane. Similarly, if AIk is an abelian variety with r = rank A(k),
then there is a constant c = c(A, k, D) such that

N(Alk,D,B) rv c(logBf/2

for any ample divisor D. This is Theorem B.6.3.

We begin with a geometric discussion about divisor classes. Recall
that a closed cone in a real vector space V is a subset e c V with the
property that x E e implies that tx E e for all real numbers t ;::: O. A cone
is said to be convex if x, y E e implies that x + y E e.
Definition. Let X be a variety and NS(X) its Neron-Severi group. The
effective cone ofX, denoted by NSeff(X), is the closed cone in NS(X) ®lR
generated by the classes of effective divisors. The ample cone ofX, denoted
by NS+(X), is the closed cone in NS(X) ® lR generated by the classes of
ample divisors.

Clearly, NS+(X) C NSeff(X). We also observe that the property
Pico(X) = 0 is equivalent to Alb(X) = 0 (Le., X admits no nonconstant
maps to abelian varieties), in which case Pic(X) = NS(X). This occurs,
for example, for all Fano varieties, and more generally for any variety that
is covered by rational curves.

Definition. Let D be an ample divisor on a normal projective variety X.
The Nevanlinna invariant of D is the number

o:(D) := inf{r E iQll Kx + rD E NSeff(X)},

For simplicity we will restrict attention to smooth varieties, but most
of what we say will apply to normal varieties. Further, we note that the
counting function on a singular variety is more or less equal to the counting
function on its normalization; see Exercise F.18.

Remark F.5.4.2.
(i) The invariant o:(D) is usually defined in Nevanlinna theory as the
number

inf {~ I q> 0 and pD + qKx is almost amPle} .

The two definitions coincide if D is ample.
If Kx is not in NSeff(X), then o:(D) is the real number such that

o:(D)[D] E -[Kx] +8NSeff(X), where 8 NSeff(X) denotes the boundary of
the effective cone NSeff(X), It is expected that o:(D) is always a rational
number. We also observe that the Nevanlinna invariant is implicitly present
in Vojta's conjecture.
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(ii) The Nevanlinna invariant has the following properties:
• Let 1 : X -+ Y be a finite map. Then ax(f* D) ~ ay(D), with
equality if 1 is unramified.

• If D ~ D', then a(D) ~ a(D').
• The Nevanlinna invariant is inverse linear: a(mD) = ~a(D).
• Additivity of the Nevanlinna invariant is more complicated. For
example, it is true that

1 1 1
a(D) + a(D') ~ a(D + D')'

and hence a(D + D') ~ max{a(D), a(D')}/2 (Exercise F.13).

Example F .5.4.3. We illustrate the preceding ideas by explicitly comput
ing the relevant quantities for the variety X that is the blowup X -+ ][»2 of
the projective plane at a point. Let L be the pullback to X of a generic
line in ][»2, and let E be the exceptional divisor (Le., the line on X that
replaces the blown-up point). Then one knows that Pic(X) = NS(X) is a
free group of rank 2 generated by Land E. Further, the canonical divisor
of X is given by Kx = -3L + E. A divisor D = aL - bE on X is ample if
and only if a > b > 0, while the (closed) effective cone is determined by the
condition a ~ max{O, b}. A short computation shows that the Nevanlinna
invariant of aL - bE is

a(aL - bE) = max {~, _2_},
a a-b

and that the divisor aL - bE is proportional to Kx if and only if a = 3b.
These results are illustrated in Figure F.l below. Now let U C X be the
complement of E. Then it is also not difficult to show (see Exercise F.14
for a more general result) that

N(U/k D B) = {CBO:(V) if D is not proportional to Kx,
" cBO:(V) log B if D is proportional to Kx.

Let X/k be a smooth projective variety as usual, and let U C X be an
open subset (possibly U = X itself). Rather than studying the asymptotic
behavior of the counting function N(U/k, D, B), we can use ideas from
analytic number theory by introducing the height zeta function

Z(U/k,D;s) = Zv(s) = L Hv(x)-s.
xEU(k)

Here we assume that D is ample and that the Weil height H v is chosen
to satisfy Hv(x) ~ 1 for all x. (Alternatively, we could discard a finite
number of points from the sum.) The goal is to describe the analytic
behavior of Zv (s) in terms of the geometric properties of X, U, and D.
The zeta function Zv(s) is a (generalized) Dirichlet series, so it is

convergent on some half-plane Re(s) > b. By convention, we set b = -00
if Zv(s) is convergent on all of C, which will occur if U(k) is finite. The
abscissa of convergence 01 Zv(s) is the infimum over all b such that Zv(s)
converges on Re(s) > b.
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a

effective
cone

The ample cone, effective cone, and polyhedron a(D) = 1 for D = aL - bE
Figure F.l

Remark F.5.4.4. Intuitively, the zeta function ZD(S) should have a pole
of order t at its abscissa of convergence {3 if and only if N (U/ k, D, B) '"
cBt3(logB)t-l. The following lemma makes this idea more precise.

Lemma F.5.4.5. Let S be a set, and let H : S --. [1,00) be a function
with the property that S has only finitely many elements with bounded H.
Define a counting function and a zeta function in the natural way,

N(S,H,B) = #{x E SIH(x)::; B} and Z(S,H;s) = LH(x)-S.
xES

Let a be the abscissa of convergence ofZ(S,H;s).
(i) If there is a c ~ 0 such that

N(S, H, B) rv cBa (1og B)t-l as B --. 00,

then
lim (s - a)tZ(S, H; s) = cr(t)a.

s-+a+

(ii) Assume that the function Z(S, H; s) extends to a holomorphic func
tion at all points on the line Re(s) = a, except for a pole at s = a. Then
(**) implies (*).

PROOF. See, for example, Tenenbaum [1, Theorems 2 and 15, Section 11.7].
o
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We observe that the abscissa of convergence of Z(S,H;s) is equal to
limsupB-1logN(S,H,B), provided that S is infinite; it is clearly equal
to -00 if S is finite.
There are few general results on the abscissa of convergence for the

height zeta function Z(U/k,D;s) of a variety. We will just quote the
following result.

Theorem F.5.4.6. Pila [1] Let X be a variety of dimension n and de
gree d in IPN . Then for any c > 0 there is a constant c = c(n, d, c) such
that

N(X/Q,B) $ cBn+~+f.

(Note that c depends only on the dimension and degree ofX.)

Although quite weak, Theorem F.5.4.6 is nontrivial if d > 1, since the
trivial estimate would be N(pn /Q, B) '" c'B n+!.

We are now ready to formulate a fundamental conjecture for varieties
with a dense set of rational points. This conjecture relates the geometri
cally defined Nevanlinna invariant to an arithmetically defined abscissa of
convergence.

Conjecture F .5.4.7. (Batyrev-Manin [1]) Let X be smooth projective
variety, and let D be an ample divisor on X. For any Zariski open sub
set of U, let f3(U/k, D) be the abscissa of convergence of the height zeta
function Z(U/k, D; s).
(i) For every c > 0 there exists a dense open subset U ofX such that

f3(U/k, D) $ a(D) + c.

(ii) Assume that Kx ¢c NSeff, and hence that a(D) > 0 for every ample
divisor D. Then for all sufliciently large number fields k' and all sufliciently
small dense open subsets U eX, we have

f3(U/k', D) = a(D).

The Nevanlinna invariant a(D) and the height abscissa f3(U/k, D)
obey many of the same formal rules; see Exercise F .13.

Conjecture F.5.4.7 gives the most precise information for Fano vari
eties, or more generally for varieties whose canonical divisor is not effective.
We will discuss these varieties further below. First we indicate briefly what
the conjecture says for other sorts of varieties.
For example, ifKx is almost ample, then there is an effective divisor E

such that D = Kx -E is ample, so a(D) = -1. It follows from (F.5.4.7(i))
that f3(U/k,D) < 0 on some open subset U of X, which means that U(k) is
finite. Hence the Batyrev-Manin conjecture (F.5.4.7) is equivalent to the
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Bombieri-Lang conjecture that rational points on varieties of general type
are not dense.

Another interesting class of examples are those for which the canon
ical class K x is trivial in NS(X) ® JR. Then a(D) = 0 for all ample D,
so (F.5.4.7(i)) says that for any c > 0 there is an open subset UE such that
N(UE/k, D, B) « BE. If X = A is an abelian variety, we know that this is
true in the more precise form

N(A/k,D,B) = c(logBr/2 + 0 ((10gB)(r-l)/2)

with r = rankA(k)j see Theorem B.6.3.
Now consider the case of a K3 surface or an Enriques surface X. Then

the only curves on X with at least BE points of height HD(X) ::; B are
rational curves C satisfying C . D ::; 2/c. Hence in this situation the
conjecture reduces to the following.

Conjecture F.5.4.8. (Batyrev-Manin) Let X/k be a K3 surface or an
Enriques surface. For any c > 0 and any ample divisor D on X, let ZE be
the (finite) union of rational curves C C X defined over k and satisfying
C.D::; 2/c. Let UE = X" ZE be the complement of ZE' Then

N(UE/k, D, B) «BE as B --+ 00.

Remarks F .5.4.9.
(a) There are no surfaces for which (F.5.4.8) is known to be true for all
number fields, but see Billard [1] for some partial results on K3 surfaces of
type (2,2,2) in ]pl x ]pl X pl. See also Silverman [6] for height estimates
on certain K3 surfaces in ]p2 x p2.
(b) Batyrev and Manin ventured a refinement of their conjecture, which in
the case of a Fano variety X (i.e., -Kx ample) says that there is an open
subset U C X such that

N(U/k, -Kx , B) "oJ cB(log ByankPic(X/k)-l.

Although this formula is correct in many cases, Batyrev and Tschinkel [1]
have given examples in which the exponent on the log B is incorrect. See
(F.5.4.1O(i)) for details.
(c) The Batyrev-Manin conjecture (F.5.4.7) gives a geometric interpreta
tion for the first pole of Z (U/ k, Dj s). We will briefly discuss below the
computation, in geometric terms, of the order of that pole.
(d) The necessity of taking an open subvariety in the Batyrev-Manin con
jecture (F.5.4.7) and of augmenting the field in (F.5.4.7(ii)) is obvious. For
a classical example, let X be a smooth cubic surface in jp3, so X is embed
ded by - K x. Then a( - K x) = 1, but X contains 27 lines, and if any of
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those lines is rational over k, then they will contain cB2 points of height
less than B. Thus it is certainly necessary to discard all of the k-rational
lines. Similarly, the example of a conic curve with no k-rational points
shows that it may be necessary to extend the ground field.
(e) Let X -+ Y be a finite unramified cover, and let D be an ample divisor
with Q(D) = O. Then it is not hard to show using the Chevalley-Weil
theorem (Exercise C.7) that the Batyrev-Manin conjecture (F.5.4.7) (for
all number fields) on X is equivalent to the conjecture on Y. See Morita
Sato [1). For example, this shows that (F.5.4.7) is true for bielliptic surfaces,
since they admit an unramified cover by an abelian surface. Similarly,
the conjecture for elliptic K3 surfaces is equivalent to the conjecture for
Enriques surfaces, since the former are unramified double covers of the
latter.
(f) For fibrations, there are a few partial results. Call [1) and Billard [2) give
estimates for elliptic surfaces, and Billard [3) proves the Batyrev-Manin
conjecture (F.5.4.7) for many (but not all) ample divisors on a rational
ruled surface.

A natural class of varieties on which to test the conjectures of this
section are Fano varieties. We refer the reader to Manin [2) and Manin
Tsfasman [1) for a geometric discussion of Fano varieties. Of particular
interest are Fano surfaces, also called Del Pezzo surfaces. These surfaces
fit into 10 families, namely jp2 blown up at r points in general position
with 0 ::; r ::; 8, plus the product jpl x jpl. Similarly, Fano 3-folds fit into
104 families, and in general Fano varieties of dimension n lie in a finite
number of families (see Debarre [1)). We now describe some examples for
which it is known that

N(Xjk,D,B)>>~B"'(logB)t-l.

Fano Examples F.5.4.1O.
(a) We start with an easy example that generalizes Schanuel's theorem.
Let

m

X = IIjpn;
i=l

and
m

D = LP;(diHi),
i=1

where Hi is a hyperplane in jpn; and Pi is the projection onto the i th factor
of X. Let t be the number of indices for which the quantity (ni + 1) j di is
maximized, and let Q be that maximal value of (ni + 1) j d i . Then one can
show (Exercise F.15) that

N(X, HD, B) rv cB"'(log B)t-I.

(b) An old result of Birch [1) deals with a smooth complete intersec
tion XjQ in pn defined by r homogeneous polynomials of degree d. If n
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is sufficiently large, specifically n > r(r + l)(d - 1)2d - 1 , then Birch proves
that N(X/Q,L,B) rv cBn+l-rd, where L is a hyperplane section. Since
K x = -(n + 1 - rd)L, we see that X is a Fano variety and that Birch's
result becomes N (X/Q, - K x, B) rv cB. Birch also shows that c =1= 0 if
and only if X(Qv) =1= 0 for all places v, thereby showing that X satisfies
the Hasse principle. The proof is via the circle method. Heath-Brown [1]
and Hooley [1,2,3] have refined the method to prove the same estimate for
smooth cubic hypersurfaces in pn for n 2: 8. In the same vein, we mention
the estimate N(U/Q,L,B) ~«: B 2 (1ogB)5 proven by Vaughan and Woo
ley [1] for an open subset of a certain singular cubic threefold in !Pi, and
work of Heath-Brown [2] on quadrics.
(c) Batyrev and Manin [1] show that if X is Fano and if (F.5.4.7(ii)) is
true for D = -Kx (Le., if 0:(-Kx ) = !Ju,d-Kx )), then (F.5.4.7(i))
is true for for all ample divisors on X. In the case that X is p2 blown
up at r S 3 rational points, so rankPic(X) = 1+ r, they prove the full
conjecture N(U, - Kx, B) rv cB(1og BY, where U is X with the exceptional
lines removed. For 1P'2 blown up at 4 points, Manin and Tschinkel [1] prove
the weaker estimate

B(1ogB)3« N(U, -Kx,B) «: B(10gB)6.

In particular, this implies that !Ju(D) = o:(D) for split Del pezzo sur
faces p2 blown up at r S 4 points.
(d) Manin [3] gives explicit estimates for N (U/ k, D, B) for an open subset
of pn blown up along a linear subspace pm (with m S n - 2), generalizing
the estimates (F.5.4.3) for p2 blown up at a point. See Exercise F.14.
(e) Franke, Manin, and Tschinkel [1] prove one of the most general known
results, namely that the Batyrev-Manin conjecture (F.5.4.7), in its refined
form (F.5.4.9(b)), is true for homogeneous spaces. Precisely, let G be a
semisimple algebraic group, let P be a parabolic subgroup of G, and let X
be the quotient variety X = P\G. Then X is a projective variety (in fact,
it is a Fano variety). Assuming that X(k) =1= 0, they prove the

N(X/k, -Kx, B) r-v cB(log ByankPic(X)-l.

Notice that there is no exceptional set. The essential ingredient in the
analytic proof is showing that for a suitable normalization of the height, the
zeta function Z(X/k, -Kx ;s) is closely related to an Eisenstein-Langlands
L-series.
(f) The result of Franke, Manin, and Tschinkel [1] covers in particular the
case of Grassmannian varieties, and more generally flag varieties. These
were treated independently by Thunder [1,2] using more elementary count
ing techniques. Thunder gives explicit formulas for the constant c and ex
plicit error estimates, both of which could in principle be derived via the
Eisenstein-Langlands L-series approach.
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(g) Batyrev and Tschinkel [2] prove the refined conjecture (F.5.4.9(b» for
toric varieties. These are smooth projective varieties X that contain an
open subset U isomorphic to a torus (Le., U ~ G:n over k) and with the
property that the group law U x U -+ U extends to a morphism U xX -+ X.
In other words, there is an algebraic group action of U on X. Note that
multiples of the anticanonical bundle - K x give embeddings only of U, not
necessarily embeddings of all of X. For example, (PI)8 is a toric variety,
as is p2 blown up at 3 points.
(h) In a paper with a strongly adelic flavor, Peyre [1] pushes these ideas
further. He also defines an explicit constant e(X, -Kx ) (depending on the
choice of height function H-Kx) and conjectures that

N(U, -Kx,B) rv e(X, -Kx)B(logB)t-l.

Peyre verifies the value of e(X, -Kx) for the examples in his paper, for
Birch's examples (b), and for Thunder's examples (f). However, it ap
pears that for toric varieties Peyre's constant e(X, -Kx ) requires an extra
factor that can be interpreted as the order of a Brauer group (see Batyrev
Tschinkel [2]).
(i) As mentioned earlier, Batyrev and Tschinkel [1] have shown that the
refined conjecture (F.5.4.9(b» is not true in general. Their counterexam
ple is a threefold X of bidegree (1,3) in pI X JP3. Ignoring some tech
nical difficulties, the underlying idea is quite simple. The anticanonical
divisor is -Kx = <9(1,1), and Pic(X) has rank 2, since it is isomorphic
to Pic(PI x JP3). Hence the refined Batyrev-Manin conjecture predicts
N(U,-Kx,B) rv cBlogB. But X is fibered by cubic surfaces X t with
t E pI, and the restriction of -Kx to X t is -Kxp so these cubic surfaces
are expected to have B(log Bt(t) points, and frequently one finds that
r(t) 2: 2. Thus N(U,-Kx,B) ~ cB(logB)2 for every open set U.

In all known examples, the geometrically defined Nevanlinna invari
ant Q(D) gives a geometric interpretation to the arithmetically defined
f3(U/k,D), which is the first pole of the height zeta function Z(U/k,Djs).
A geometric way of computing the order of that pole is still an open ques
tion. It is easy to see that f3(U/k,D) depends only on the linear equiva
lence class of D (see Exercise F .17). For Fano varieties, the Neron-Severi
and Picard groups are the same. In general it is tempting to try to re
late f3(U/ k, D) to the way in which D interacts geometrically with all of
the algebraic cycles on X. This question is thoroughly discussed in the
volume of Peyre [2], which contains several insights and new results.

Remark F.5.4.11. We conclude this section (and this volume) by briefly
describing a few additional ways in which mathematicians study the dis
tribution of rational points on varieties.
(a) Barry Mazur [2,3] has proposed studying the set of rational points by
comparing how it sits in X relative to the Zariski and the real topologies.
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For example, assuming that X(Q) is Zariski in X, Mazur asks whether the
real closure of X(Q) in X(JR) is always a semialgebraic set. (A semialgebmic
set is a subset of X(JR) defined by a finite number of polynomial equations
I(x) = 0 and a finite number of polynomial inequalities I(x) ? 0.) For
example, if X is an abelian variety, then the closure of X(Q) in X(JR)
will be a finite union of connected components of X(JR). However, Colliot
Thelene, Swinnerton-Dyer, and Skorobogatov [1, Example 5.2] have given
a negative answer to Mazur's question. They show that if X is a smooth
projective model of the surface

y2 _ x(4t4 + t 2 - 4) = z2 - (4t4 + e - 4)(x2 + 4x - 1),

then X(Q) is Zariski dense in X, X(JR) has two connected components C1

and C2, the set C1 nX(Q) is dense in Cll but the real closure of C2nX(Q)
is a union of curves and points in C2 •

(b) Suppose that X(k) is dense in X(kv ) for some completion kv of k.
For example, we might take k =Q and kv = JR. Then we can embed X (k)
in X(kv), choose a v-adic distance function dv : X(kv) -+ [0,00), and study
Diophantine approximation properties of X (k) within X (kv ). (For a defi
nition and properties of v-adic distance functions, see Silverman [10].) For
example, one may take a point P E X (kv ) and a (decreasing) function I
and ask whether the set

{Q E X(k) Idv(P,Q)::; I(H(Q))}

is finite or infinite. As a specific example, suppose that X/Q is a projective
variety of dimension n satisfying N(X/Q, D, B) « B a. Then it is not hard
to show (Exercise F.12) that there exists a point Q E X(JR) with the
property that

d(P, Q) »H(p)-a1n for all P E X(Q).

Thus Q cannot be closely approximated by rational points.
(c) As already discussed in Section B.6, a very coarse measure of the dis
tribution of rational points is given by the growth rate of the function

loglogN(X/k,D, B),

where D is any ample divisor. In all known examples, this quantity satisfies
one of the following three conditions:

{

'"oJ log log B as B -+ 00,
loglogN(X/k,D,B) '"oJ log log logB as B -+ 00,

is bounded as B -+ 00.
One might ask whether these are the only possible growth rates. In par
ticular, we leave the reader with the intriguing question of whether

N(X/k,D,B)« log log B implies that X(k) is finite?
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F .1. Let X be a subvariety of an abelian variety A, let L be an ample line
bundle on A, and define a line bundle L(-£, s) on X m as in the original
proof of Faltings' theorem (see also Remark F.1.1.2). Suppose that X
contains a translate of a nontrivial abelian subvariety b+ B eX. Prove
that £,(-£,s) is not ample on X m. (Hint. Show that £,(_£,S)-l is ample
on B(s) := {(b1, ... ,bm ) E B m ISibi - Si+1bi+1 = O}.)

F.2. Let X be a subvariety of an abelian variety A whose stabilizer is trivial (but
note that X may contain a translate of an abelian subvariety). Let L be an
ample line bundle on A, and let L (-£, s) be the line bundle on X m used in
the proof of Faltings' theorem (see Exercise F.1 and Remark F.1.1.2). In
this exercise you will use the generalized Riemann-Roch theorem to prove
that there is a constant c > 0 such that for all sufficiently large integers m
and all sufficiently small £ > 0,

m

hO (Xm,L(-£, S)~d) ~ cd"'dirnX II s~dirnX.
i=l

Let n be the dimension of X. For line bundles L 1 , • •• ,Ln on X, we
denote their intersection number by (L 1 ••• Ln ), and we denote the self
intersection of a line bundle L by (Ln

). As usual, we let hO(X,L) denote
the dimension of the space of sections of L. For example, if L is ample
and d is sufficiently large, then one knows that

(a) Let L be a line bundle on a variety Y, and letHeY be a hypersurface.
Prove that there is an exact sequence

0-> r(Y,L I8i c)(-H)) -> r(Y,£,) -> r(H,L 1H ),

and hence that hO(Y,L I8i c)(-H)) ~ h°(y,£,) - hO(H,L1H ).
(b) Fix 6 > o. Prove that £,(6, s) is ample, and hence that

(c) Let Pi : X m -> X be the i th projection, and let Hi be a smooth
hypersurface representing P;L. Prove that

( •L L(6 s)mn-1)
hO(Hi, L(6, S)~d) = ~n-1 Pi (~n ~ 1)! (1 + 0(1))

and that

hO(Xm,£,(_£,S)~d)~ hO(Xm,L(6,s)~d)

- d(6 + £)L s~ho(Hi,£,(6, s)~d).,
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(d) Show that if m is sufficiently large and if Si »Si+l, then the map

X m ~ A m - l
,

(Xl,"" X m ) ~ (SlXl - S2X2, ••• , Sm-1Xm-l - SmXm ),

is generically finite. Deduce that the sheaf M = (Pi£, I8l ... I8l P;"£,)I",(x m )

satisfies (£,(0, srn) = deg(o:) (Mmn ) > O.
(e) Again fix 6 > O. Prove that the self-intersection number (£,(6, s)mn)
is proportional to n::l s~dimX. Using the previous part, prove that it is
equal to c(6) Il::l s~dimX for some constant c(6) > O.
(f) Combining (e) and (c), show that if E: > 0 is sufficiently small (depend
ing on X and m), then the desired inequality (*) is true.

F.3. Let P(X) and Q(X) be polynomials of degree deg(P) = 291 + 1 and
deg(Q) = 292 + 1 + E: respectively, where c E {O, I}, and assume that
P(X)Q(X) has no double roots. Let 0 be the smooth projective curve
birational to the affine curve y2 - P(x) = z2 - Q(x) = O. Prove that 0 has
genus 2(91 + 92) + E:, and show that W291 (0) contains an abelian variety
of dimension 91. (Hint. Consider the map from 0 to the curve with affine
equation y2 = P(x).)

FA. (a) Let EjQ be an elliptic curve, let !:i.E and NE be respectively the minimal
discriminant and conductor of EjQ, and write 1728!:i.E = c~ - ~ as usual.
(See, e.g., Silverman [1, §III.1].) Apply the abc conjecture (F.3.1) to this
equality (suitably divided by a gcd) to prove that

max{I!:i.EI, Idl, I~I} ~ OeN~+e.

Deduce that the abc conjecture implies Szpiro's conjecture (F.3.2(a)) and
Frey's conjecture (F.3.2(b)).
(b) Let a, b, and c be coprime integers satisfying

a+b+c=O

Consider the elliptic curve

and 24 divides abc.

Ea,b,c : y2 = x(x - a)(x + b).

Prove that !:i.E".b,c = (2- 4abc)2 and j(Ea,b,c) = 28 (a2 + ab + b2)j(abc)2.
(c) Prove that Frey's conjecture (F.3.2(b)) implies that the abc conjec
ture (F.3.1) is true. (Hint. Apply Frey's conjecture to the curve Ea,b,c
in (b).)
(d) Consider the elliptic the curve

E:,b,c : y2 = x3
- 2(a - b)x2 + (a + b)2X .

Prove that E:,b,c has discriminant 28 abc4
. Verify that the map

E E'a,b,c ----+ a,b,c,

is an isogeny of degree 2. Use these facts to show that Szpiro's conjec
ture (F.3.2(a)) implies the abc conjecture with the weaker exponent ~ +E:.
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F.5. Let E/Q be an elliptic curve and let C4, C6, iE, and !:i.E be the usual quan
tities associated to a minimal Weierstrass equation (Silverman [1, §III.3]).
Fix a complex analytic isomorphism E(e) ~ C/(Z + TZ) with Im(T) > 0,
and let q = exp(2in) and !:i.(T) = (21r)-12qTI:"=1 (1 _ qn)24.
(a) Prove that the Faltings height of E/Q is given by the formula

1
hFalt(E) = 12 (log !:i.E -log 1!:i.(T) Im(T)61) .

(b) Prove that there are constants Co, C1 > 0 such that for all semistable
elliptic curves E /Q,

I112h(jE) - hFa1t(E)! ~ Co log(l + h(jE» + C1 •

(c) Let hnaive(E) = 1~ logmax(lc~l, I~J)· Prove that for all e > 0 there is
a constant Ce such that for all elliptic curves E /Q,

F.6. Let A/Q be an abelian variety of dimension g, and let A/Z be a Neron
model for A/Q. Prove (or take as known) that there exists a differential g
form 11 that generates n~/spec(Z). (The form 11 is called a Neron differential
for A/Q.) Prove that

(
r ) -1/2

exp(hFalt(A/Q» = (2~)9 JA(C) 1111\171

F.7. Let X be a smooth surface of bidegree (d,3) in pI X p2.
(a) If d = 1, show that X is a rational elliptic surface with /t(X) = -1.
(b) If d = 2, show that X is an elliptic K3 surface with /t(X) = o.
(c) If d ~ 3, show that X is an elliptic surface with /t(X) = 1. Further,
show that for all m ~ 1, its image iPmKx (X) under the pluricanonical map
is a rational curve C with /t(C) = -1 < /t(X).

F.8. Let X be a Kodaira-Parshin surface, that is, a surface fibered over a curve
of genus at least 2 such that all fibers have genus at least 2 Prove that
/t(X) = 2. (Hint. Eliminate all of the other possibilities, namely, show
that X is neither rational nor ruled, neither elliptic nor abelian, neither a
K3 surface nor an Enriques surface.)

F .9. Let X = p2, and let D 1 , D2, D3 be the divisors defined respectively by
x = 0, y = 0 and (x - y)z - (x + y)2 = O. Set D = D 1 + D 2 + D3.
Clearly, D is effective and reduced.
(a) Prove that D does not have normal crossings (at the point (0,0,1».
(b) For any unit e E Rio and any i, i E Z, let

Prove that P[,j is integral with respect to the divisor D. Conclude that
Vojta's conjecture (F.5.3.2), and more specifically (F.5.3.6), is false for D.
Thus the normal crossings requirement in Vojta's conjecture is needed.
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F.lD. (a) Let X be a smooth projective variety, and let D be an effective normal
crossings divisor. Use Vojta's conjecture (F.5.3.2) to prove that outside
of a proper Zariski closed subset, all S-integral points with respect to D
satisfy

hv(P) ::5 ehE(P) + h_Kx (P) + CEo

(b) Let X be a projective variety such that mKx = 0 for some m ~ l.
For example, X could be a K3 or an Enriques surface. Let D be an ample
effective divisor on X. Show that Vojta's conjecture (F.5.3.2) implies that
the set of S-integral points with respect to D is not Zariski dense in X.
(c) Repeat (b) when X is a cubic surface in p3 and D is the union of two
hyperplane sections.

F.1l. Prove that the generalized Vojta conjecture (F.5.3.8) implies the abc con
jecture (F.3.1). (Hint. If a + b+ c = 0, then the point (a l

/
N

, bl
/

N
, C
l
/
N
) is

an algebraic point on the Fermat curve X N +yN +ZN = O. Apply Vojta's
conjecture to this curve.)

F.12. Let X C ]pm be a smooth projective variety of dimension n defined over Q,
and assume that there is a constant a> 0 such that N(X(Q), H, B) « B a

•

In particular, X(Q) has a large number of rational points, so we can study
approximation of real points by rational points.
(a) Show that X(lR) has dimension n as a real differentiable manifold. Take
any natural distance function on ]pm(lR) and use it to induce a distance
function d(x, y) on X(lR). For any natural volume function on X(lR), prove
that the volume of a "ball"

'B(x,r) = {y E X(IR) Id(x,y) ::5 r}

satisfies Vol('B(x,r»~« rn.
(b) Construct a point x E X (lR) such that

d(x, y) ~ H(y)-a/n for all x E X(Q).

(Hint. This is trivial if X(Q) is not dense in X(lR). Otherwise, consider the
sets UH(II)::;B'B(y, cB- a

/
n

) and use the fact that an (infinite) intersection
of a decreasing sequence of compact sets is not empty.)

F.13. Let D, Dl , D2 be ample divisors on X, and let U be an open subset of
X. In this exercise we compare the formal properties of the Nevanllnna
invariant o(D) and the abscissa of convergence f3(U/k, D) of the height
zeta function Z(U/k,D;s). Since U/k is fixed, we will ease notation by
writing f3(D) for f3(U/k, D).
(a) Prove that a(mD) = o(D)/m and f3(mD) = f3(D)/m.
(b) If Dl ~ D2, prove that a(Dd ::5 a(D2). If further

un supp(D l - D2) = 0,
prove that f3(Dl) ::5 f3(D2). Is this true without the condition on U?
(c) Prove the inequalities

a(D
l
+ D2) ::5 max(a(D~),a(D2» I f3(D

l
+ D2) ::5 max(f3(D~),f3(D2».

Prove the slightly stronger estimate o(D1)-1 + a(D2)-1 ::5 a(D l + D2)-1.
(Hint. Use the characterization O(D)-lKx + D E 8NSeff(X),) Is this
stronger inequality also true for f3u?
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F.14. Let 0 ~ m ~ n - 2, and let Lo be the linear subspace of pn defined by the
equations X=+l = ... = Xn = 0, so Lo ~ p=. Let X be the blowup of pn
along Lo. Explicitly, X is the variety

X = {«(xo, ... ,xn ), (Y=+l, .. . ,Yn» E pn X pn-=-l I XiYj - XjYi =O},
where the equations are taken for all m + 1 ~ i, j ~ n. Let 7r : X -+ pn
be the natural projection, let L E Div(X) be the pullback of a hyperplane
by 7r, and let E = Lo x pn-=-l E Div(X) be the exceptional divisor of the
blowup.
(a) Show that 7r is an isomorphism from U =X" E to pn"Lo. Prove that
Pic(X) is a free group of rank 2, given explicitly by Pic(X) = Z[L] EEl Z[E].
Prove that Kx = -en + 1)L + (n - m - 1)E, and that a divisor class
D = aL - bE is ample if and only if a > b > o.
(b) Let a > b > o. Prove that

. {n+ 1 m+2}
o:(aL-bE)=mm -a-' a-b .

(c) Let P = ((xo, ... , x n ), (Y=+l, .. " Yn» E X(Q) with Xi, Yj E Z and
gcd(xo, ... ,xn) = gcd(Y=+l ... ,Yn) = 1. Prove that

HdP) = max IXil and H2L-E(P) = max IXil· max IYjl.
• • J

Deduce from this the formula HE(P) = maxi IXil/maxj IYjl. (N.B. Since
multiplicative Weil height functions are defined only up to constant multi
ples, what you are proving is that the given functions are particular Wei!
height functions for the specified divisors.)
(d) Prove that the distribution of the rational points on the exceptional
divisor E is given by

{

B(=+l)/(l1-b) if =+l > .!!.=..!!!:
l1-b b'

N(E/Q aL - bE B) »«: B(=+l)/(l1-b) log B if =+1 = n-=
, , a-b b'

B(n-=)/b if =+1 < .!!.=..!!!:.
l1-b b

(Hint. Show that the left-hand side is N((P= x pn-=-l )/Q,l'J(a - b, b), B)
and use Exercise F .15 below.)
(e) Let P = ((xo, ... , x n ), (Y=+l, ,Yn» E U(Q) be a point with integer
coordinates, and let d = gcd(x=+l, , x n ). Set

N = max IXil
O:5i:5=

and M = max IYjl = max IXjl/d.
=+ l:5j:5n =+ l:5j:5n

Prove that HaL-bE(P) = max(N, dM)"-b M b. Use this formula to prove
that

{

B(=+2)/(l1-b) if n-=-l < .!!.
n+1 11'

N(U/Q aL - bE B) »«: B(n+1)/a log B if n-=-l = .!!.
, , n+l a'

B(n+1)/l1 if n-=-l > .!!..
n+1 a

When is N(U/Q,aL - bE,B) greater than, less than, or comparable to
N(E/Q,aL - bE,B)?



502 F. Further Results and Open Problems

F.15. (a) Let 81, ... ,8m be sets, and let Hi: 8 i -+ [1,(0) be functions that can
be used for counting as in Lemma F.5.4.5. Suppose that

for each 1 ::; i ::; m. Define a function on the product by

H: 8 = 81 X .•. X 8m ------> [1, (0),

H(X1, ... ,Xm ) =H 1(X1)'" Hm(xm ).

Prove that the counting function for the product,

N(8, H, B) := #{x E 8 IH(x) ::; B},

satisfies

N(8, H, B) rv cBa(log B)b

with a = m~lJcai and b= -1 + 2)bi + 1).
i with ai=a

(b) Let X = pn1 X ..• x pnm, and let L be the line bundle C>(d1 , •. . , dm )

on X with d1 , ... , dm positive integers. Apply (a) to determine the asymp
totic behavior of N(X, L, B).

F.16. Let F1, ... , Fr E Z[Xo, ... ,Xn] be homogeneous polynomials, and define

X(Z) = {x E Zn+1 I H(x) = ... = Fr(x)},

M(B) = {x E X(Z) I maxlxil ::; B},

N(B) = {x E X(Z) I gcd(x) = 1 and maxlxil ::; B}.

Prove that

M(B) =L N(B/d)
dSB

and N(B) =L p,(d)M(B/d),
dSB

where p, is the Mobius function.

F.17. (a) Let 8 be a set, and let H, H' : 8 -+ R be two functions used for
counting as in Lemma F.5.4.5. Suppose that C 1H(x) ::; H'(x) ::; C2H(x)
for all x E 8. Prove that the corresponding counting functions satisfy

N(8,H,C1B)::; N(8,H',B)::; N(8,H,C2B).

(b) Let D and D' be linearly equivalent ample divisors on a variety X.
Use (a) to prove that

N(X/k, D, B) »« Ba(log B)b iff N(X/k, D', B) »« Ba(log B)b.

In particular, up to »«, the growth of the counting function N(X/k, D, B)
depends only the equivalence class of D and is independent of the choice
of a particular Wei! height H D for D.
(c) In a similar vein, prove that the abscissa of convergence of the height
zeta function Z(X/k, D, s) depends only on the class of D in NS(X), i.e.,
it depends only on the algebraic equivalence class of D.
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F.18. This exercise shows that one may restrict to normal varieties when studying
counting functions on varieties. Let X be a singular variety and let II :

X' -+ X be its normalization. Let £ be an ample line bundle on X, so
£' = 11*£ is ample on X'. Let Z be the locus of nonnormal points on X
and Z' = 1I-1(Z). Set U = X " Z and U' = X' "Z'. Prove that

#{y E U(k) I HJ:..(y) :5 B} = #{x' E U'(k) IH.dx) :5 B}.

F.19. Try to prove or disprove some of the conjectures described in this book.
(Unfortunately, the authors do not know how to solve this exercise!)
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spectrum of the ring R, 151
closed subset of Spec(R) attached to an ideal I, 151
open subset of Spec(R) attached to fER, 152
morphism of structure sheaves in a ringed space, 152
the scheme associated to the variety X, 153
the affine line over Z, 154
S-valued points of a scheme X, 155
fibered product of Y and Z over X, 156
the fiber of the scheme X over the point y E Y, 156
set of equivalence classes of absolute values on K, 160
the log absolute value log Ixl", 160
connected component of fiber of Neron model, 163
projective scheme attached to the graded ring R, 165
special ideal of a graded ring, 165
projective space over Z, 166
projective space over a ring R, 166
archimedean absolute value, 170
the p-adic order of a rational number, 170
p-adic absolute value, 170
the set of standard absolute values on Q, 171
the set of standard absolute values on k, 171
the set of archimedean absolute values on k, 171
the set of nonarchimedean absolute values on k, 171
completion of k at the absolute value v, 171
the local degree [k" : Q"1, 171
absolute value associated to an embedding in iC, 172
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List of Notation

valuation attached to the prime ideal p, 173
ramification index of a prime ideal, 173
p-adic absolute value associated to a prime ideal, 173
valuation -log Ixlp associated to a prime ideal, 173
height of a point in pn(Q), 174
relative height of a point in pn (k), 174
logarithmic height relative to k, 174
absolute multiplicative height, 176
absolute logarithmic height, 176
height relative to a morphism 4J, 183
height on the variety V relative to the divisor D, 184
canonical height on V relative to 4J and D, 195
the nth iterate of the map 4J, 197
forward orbit of the point P under the map 4J, 197
canonical height on an abelian variety A, 199
canonical height on A associated to a divisor D, 205
the quadratic part of the canonical height, 206
the linear part of the canonical height, 206
height counting function on a variety, 210
the height of a polynomial, 224
Gauss norm of a polynomial, 224
height of a collection of polynomials, 225
the unit interval [0,1],229
complex exponential (e21fitl, e21fit2, ... ,e21fitm), 229
the Mahler measure of the polynomial f, 230
the L2 norm of the polynomial f, 230
the complement of the support of the divisor D, 237
an Mk-bounded function, 238
local height at v with respect to the divisor D, 239
canonical local height for 4J and D, 241
canonical local height on an abelian variety, 242
Green function attached to the divisor D, 247
Arakelov degree of a metrized line bundle, 247
the Fubini-Study metric, 248
torsion subgroup of an abelian variety, 257
Kummer pairing Gal(kjk) x A(k) --> Am, 261
the rank of the group of S-units Rio,s, 266
the addition map on an abelian variety, 268
multiplication-by-m on a formal group, 271
the group associated to the formal group F, 272
kernel of reduction on the abelian variety A, 272
the group of S-units of the number field k, 274
number of real embeddings, 274
number of complex conjugate embeddings, 274
the absolute discriminant of a number field k, 274
the regulator map Rio,s --> R t

, 277
Selmer group of A with respect to the isogeny a, 280
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IlI(Ajk)
Iv
HHGk,M)
HO(G,A)
HO(G,A)
Zl(G,A)
B1(G,A)
Aut(A)
Aut(A,O)
WC(Ajk)
T(a)
IFI
Oil"'imP
IndP
W(!I, ... , In)
order
X(U)
9(x, y)
O(dl,d2 ,d)
Oi
Ind(s)
log+ t
.q-e, 8)
XCdl(k)
Wd(X)
9'd
h(X)
hv(X)
deg.c. X
degAr
h.dX)
Mg

Ag

Mg,N
Ag,N
Mg,N
Ag,N

AM
AA
h(C)
h(A)
hFa1t(Ajk)
i m
hTheta(A)
hv(X)
rad(n)
'.fE,k

AE/k

Tate-Shafarevich group of A, 280
the inertia group of the place v, 281
group of cohomology classes unramified outside S, 282
the Oth cohomology group of G acting on A, 285
the oth cohomology set of G acting on A, 286
group of l-cocycles, 286
group of 1-coboundaries, 286
automorphism group of an abelian variety, 288
automorphism group of abelian variety fixing 0, 288
Weil-CMtelet group of an abelian variety, 290
approximation exponent of the real number a,· 299
maximum absolute value of coefficients of P, 307
normalized partial derivative, 307
the index of P, 308
the classical Wronskian determinant, 330
order of a differential operator, 331
Euler-Poincare characteristic of an (affine) curve, 353
angle between points wrt the canonical height, 371
Vojta divisor, 377
differential operator (1ji!)(ojo()\ 402
the index of the section 8, 403
maximum of °and log t, 415
line bundle used in proof of Faltings theorem, 436
points of degree at most d on the variety X, 439
the image of X + ... + X in Jac(X), 439
linear system of degree d and dimension r, 440
height of projective variety X via Chow form, 446
height of X relative to D using Chow forms, 446
the projective degree of X with respect to £', 446
Arakelov degree, 446
the height of a variety X via its Arakelov degree, 446
moduli space of curves of genus 9, 447
moduli space of abelian varieties, 447
moduli space of curves of with level structure, 448
moduli space with level structure, 448
compactification of Mg,N, 448
compactification of Ag,N, 448
ample line bundle on Mg,N, 448
ample line bundle on A9,N, 448
height of curve via moduli space point, 448
height of abelian variety via moduli space point, 448
Faltings height of an abelian variety Ajk, 448
canonical embedding of an abelian variety, 449
height of abelian variety via canonical embedding, 449
canonical height of subvariety of abelian variety, 450
the radical of the integer n, 451
conductor of an elliptic curve, 452
minimal discriminant of an elliptic curve, 452
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S'A,k

u(E/k)
lflE

/E(z)
Reg(A/k)
Ti(A)
~(A)

Pi
L(A/Q, s)
hAr(P)
A(g,k,S)
PA,i
lflmKX

gm(X)
K(X)
SPX
ms(D,P)
Ns(D,P)
8(0:)
Zgeom(c, E, D)
dk(P)
N(X/k,D,B)
NSeff(X)
NS+(X)
o:(D)
8 NSeff(X)
Z(U/k,D;s)

List of Notation

conductor of the abelian variety A/k, 453
the Szpiro ratio of the elliptic curve E / k, 454
modular parametrization Xo(N) -+ E, 454
weight 2 cusp form attached to elliptic curve E, 454
the canonical regulator of A/k, 459
the Tate module of A, 460
the Tate module of A tensored with Q, 460
the f-adic representation of an abelian variety, 460
the L-series of the abelian variety A, 461
the Arakelov height of P, 466
abelian varieties with good reduction outside S, 467
the f-adic representation attached to A, 468
rational map for pluricanonical divisor mKx, 475
the mth plurigenus of variety X, 475
the Kodaira dimension of the variety X, 475
the special subset of the variety X, 479
arithmetic analogue of characteristic function, 483
arithmetic analogue of counting function, 483
the arithmetic defect of 0:, 483
geometric exceptional subset in Vojta conjecture, 484
absolute logarithmic discriminant of P, 486
counting function for k rational points on X, 487
cone of effective divisor classes, 488
cone of ample divisor classes, 488
Nevanlinna invariant of the divisor D, 488
the boundary of the effective cone, 488
height zeta function, 489
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abc conjecture, 451
implied by modular parametrization
conjecture, 455

implied by Vojta conjecture, 487, 500
implies Faltings theorem, 455, 468
implies Fermat's last theorem, 452
implies Mordell conjecture, 455, 468
implies Szpiro conjecture, 498
over function field, 456

Abel, N., 111
Abel-Jacobi theorem, 114, 440
Abelian function, 111
addition formula, 111

Abelian group
finitely generated, 258, 290
of finite rank, 434
parallelogram law, 201
quadratic form, 201, 203, 205, 253
quadratic function, 205
structure theorem for finite, 126
torsion, 126
2-divisible, 205

Abelian integral, 110
genus, 111
Abelian scheme, 163, 294, 367
of dimension 1, 163

Abelian surface, 478
Abelian variety, 29, 85, 91; See also El-

liptic curve, Jacobian variety
abelian subvariety, 121
addition map, 268
Albanese, 131, 209
ample divisor, 125, 127
ample divisor on simple, 109
ampleness criterion, 127
analogous to number field, 462
angle between points, 371
antisymmetric divisor and height, 191
Appell-Humbert theorem, 107
automorphism group is semi-direct
product, 288

base-point free divisor, 105
Batyrev-Manin conjecture, 255
Birch-Swinnerton-Dyer conjecture,
462

bound for rank, 267, 472
canonical embedding, 449
canonical height, 199, 204, 205, 258,
368, 459; See also Canonical height

canonical height of subvariety, 450
canonical height pairing, 208
canonical local height, 242
canonical regulator, 459
commutativity of group law, 120,132
comparison of height of, 449
complex multiplication, 92, 461
complex representation, 109

complex torus is, 91
conductor, 453, 461, 468
conductor ~ 109 , 464
connecting homomorphism, 279
constant part, 428
counting function, 216, 223, 224, 492
counting points of bounded height, 473
degree of an endomorphism, 109
degree of dual isogeny, 95
discrete topology induced by height,
444

divisor algebraically equivalent to 0,
207

dual, 107, 128, 130, 207
dual exists and is unique, 130
dual isogeny, 95
effective divisor, 127
effective Mordell-Weil theorem, 457,
463

endomorphism ring, 96, 134
even divisor class, 129
Faltings height, 448, 499
Faltings height compared to period,
464

family, 428
finite rank subgroup, 435
finitely many of bounded height, 449
finitely many with good reduction out-
side S, 467

formal group, 269
formal group isomorphic to kernel of
reduction, 272

full level N structure, 447
good reduction outside S, 486
group associated to formal group, 272
group of Riemann forms, 107
height counting function, 213
height bounded by conductor, 453
height of isogenous, 467
height of point in moduli space, 448
height via canonical embedding, 449
height regulator, 459
Hermitian form, 91
image is abelian variety, 94
independent morphisms to, 427, 432
infinite automorphism group, 107
injectivity of isogenies under reduction,
290

injectivity of reduction on torsion, 263,
272, 294

inside Wd, 441
integral points on, 353, 484, 486
intersection index on, 125
isogenous to a product of simple
abelian varieties, 96

isogenous to dual, 108
isogeny, 95, 134
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Abelian variety (continued)
isogeny class characterized by L-series,
468

kernel of multiplication, 125
kernel of reduction, 267
Kodaira dimension, 476
Kodaira dimension of subvariety, 476
Kummer pairing, 261, 279
Kummer sequence, 279
l-adic representation, 460, 468
Lefschetz embedding theorem, 105
level structure, 447
lower bound for canonical height, 454
L-series, 461
map from IPn is constant, 132
map from variety, 123
map induced by theta functions, 102
moduli space, 142, 447, 448, 486
Mordell-Weil group, 257
Mordell-Wei! theorem, 257, 456
morphism is composition, 119
morphism to a variety, 121
multiplication map, 94, 119, 124, 191,
260

multiplication map and height, 190
Mumford's formula, 124, 191
Neron differential, 462
Neron model, 162, 499; See alsoNeron
model

Neron-Severi group, 128
no prime to p torsion in formal group,
272

number of points modulo p, 291
odd divisor class, 129
over Z, 8
p-adic representation, 109
Picard variety is an, 131
Poincare divisor, lOS, 130,207, 208,
459

Poincare irreducibility theorem, 95,
144

polarization, 131
preperiodic point, 198
principal homogeneous space, 289
principal polarization, 131
principally polarized is own dual, 131
projection-summation map, 121
quotient by abelian subvariety, 144
rank,257
rank unbounded?, 464
rational map from projective space,
120

rational representation, 109
real period, 462
reduction of formal group, 271
Riemann form, 95
Riemann theta function, 98, 109
Riemann-Roch theorem, 104
Selmer group, See Selmer group
semistable, 163, 448
sign of functional equation, 461, 462

Index

simple, 96, 109, 134, 441
smoothness of, 119
special SUbset, 480
stabilizer of subvariety, 133
structure on Picard group, 130
subtorus is abelian variety, 94
subvariety, 434, 435
subvariety contains abelian variety, 497
subvariety of general type, 478
subvariety with trivial stabilizer, 497
symmetric divisor and height, 191
Szpiro conjecture, 453
tangent space, 125
Tate module, 460
Tate module of isogenous, 468
Tate-Shafarevich group, 462; See also
Tate-Shafarevich group

theorem of the cube,. 121
theorem of the square, 126
theta function, 97, 122
theta function represents divisor, 98
torsion subgroup, 125, 257
torsion subgroup is finite, 198
torsion subgroup is uniformly
bounded?,458

torsion subvariety, 444, 450
translation invariant divisor class, 128
translation map, 108, 119
very ample divisor, 105
Vojta conjecture, 484
Wei! estimate, 461, 463
Weil pairing, 133

Abramovic, D., 439, 474, 482
Abscissa of convergence, 489
equal to Nevanlinna invariant, 491
independent of divisor, 502
inverse linear, 500
Nevanlinna invariant and, 500
properties of, 500

Absolute Galois group, 43
Absolute height, 183
Absolute logarithmic discriminant, 486
Absolute value, 159, 170, 173
archimedean, 159, 170
attached to a point, 159
attached to a prime ideal, 159
characterizes ring of integers, 174
completion at, 171
complex, 172
degree formula, 171, 227
dividing, 171
equivalent, 160
from embedding in C, 172
local degree, 171
lying over, 171
Mk-bounded function, 238
Mk-constant, 238, 319, 414
nonarchimedean, 159, 170
of product of polynomials, 233
of sum of polynomials, 233
on a function field, 159
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Absolute value (continued)
on a number field, 159
p-adic, 170, 171, 173
product formula, 172
product rule, 160, 171
real, 172
set of (MK), 160
standard set of on k, 171
standard set of on Q, 171
triangle inequality, 159
trivial, 159
ultrametric, 159

Abstract differential form, 26
Addition formula,.
abelian function, 111
elliptic, 111
trigonometric, 111

Addition on an elliptic curve, 78
Additive formal group, 269, 272
Additive group, 29
Additive reduction, 452
Additivity of local height, 239
Adjunction formula, 84
Admissible pair, 403, 404, 412, 419, 423
Affine n-space, 9
is a functor, 9
is irreducible, 11
set of k-rational points, 9
Zariski topology, 11

Affine algebraic group, 29
Affine algebraic set, 9
defined over k, 9

Affine cone, 23
Affine coordinate ring, 11, 394
Affine curve
Euler-Poincare characteristic, 353
integer points on, 353

Affine function, 97
Affine height of a polynomial, 224
Affine hypersurface, 11
Affine line, points of A;, 165
Affine Mk-bounded, 238
Affine model, 68
Affine open subset, 14
Affine scheme, 152
fibered product, 156
morphism, 152, 153

Affine space
differential forms on, 26
dimension of, 22
function field of, 16
linear system of zero, 50

Affine variety, 11
affine coordinate ring of, 11
category of, 17
coordinate ring is UFD, 47
dimension of, 22
divisor class group zero, 47
finite morphism, 18
integer point counting function, 223
integral point, 292, 483
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morphism induces ring homomor-
phism, 17
product of, 11
sheaf of invertible functions, 59
sheaf of regular functions, 59
Albanese variety, 116, 131, 209
relation to Picard variety, 132

Algebra, finitely generated, 143
Algebraic curve, See Curve
Algebraic equivalence, 46, 207
height and, 185, 192, 194, 217, 427

Algebraic function
estimate for derivative, 408
Taylor series, 408

Algebraic geometry in characteristic p, 7
Algebraic group, 28
abelian variety, 91
affine, 29
commutative, 120, 132
differential forms bundle is trivial, 66
elliptic curve, 78
group of components, 28
identity component, 28
isogeny,95
Manin-Mumford conjecture, 439
maximal connected affine subgroup, 29
projective, 29
smoothness of, 28, 119
stabilizer of subvariety, 133
structure theorem, 29
tangent bundle, 61
tangent bundle is trivial, 66
tangent map, 28, 66
translation map, 28, 66

Algebraic group action, 495
Algebraic integer, power of, 309
Algebraic number
defect, 483
height bounded by discriminant, 252
in a box, 319

Algebraic point
discrete topology induced by height,

444
of bounded height, 254

Algebraic set
affine, 9
dimension of, 22
intersections of, 10
irreducible, 11
irreducible components of, 11
is union of varieties, 11
k-rational points of, 10
projective, 13
quasi-projective, 14
union of, 10
Zariski topology, 10

Algebraic surface, See Surface
Almost ample canonical divisor, 491
Alternating bilinear form, 103
Frobenius basis, 103
Pfaffian, 103
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Alternating form, invariants of, 103
Ample cone, 488
blowup of projective plane, 489
blowup of projective space, 501

Ample divisor, 52, 65, 102, 127
attached to nondegenerate Riemann
form, 102

criterion for, 52, 53
generate Picard group, 53, 186
height dominates, 252
Nakai-Moishezon criterion, 65
on a curve, 71, 375
on an abelian variety, 105, 125
on moduli space, 448
on simple abelian variety, 109

Ample linear system, criterion for, 52, 53
Analytic continuation of L-series, 461
Analytic group, isogeny of, 95
Angle, canonical height, 371
Antisymmetric divisor
and height, 191
canonical height with respect to, 204

Appell-Humbert theorem, 107
Approximation exponent, 299
equals 2 for almost all numbers, 361
history of, 300
is ~ 2, 301

Arakelov degree, 247, 446
used to define height of abelian variety,
448

Arakelov divisor, 247
degree, 247
principal, 247

Arakelov height, 466
Arakelov intersection theory, 367, 380
Arakelov, S.J., 160
Arakelov self-intersection, 471
Arakelov theory, 7, 243, 438, 445, 466
Arc length, 116
Archimedean absolute value, 159
from embedding in C, 172

Archimedean valuation, Gauss lemma,
229

Arithmetic case, 159
Arithmetic defect, 483
Arithmetic genus
of a curve, 84
of a product, 85, 391, 429
of projective plane, 85
of a surface, 85, 391

Arithmetic intersection, 446
Arithmetic intersection theory, 380
Arithmetic progression, primes in, 349
Arithmetic Riemann-Roch, 380
Arithmetic surface, 466
Arithmetic-geometric inequality, 275
Automorphism group
of abelian variety, 288
of a curve, 90
of a curve of genus ~ 2, 90
of an elliptic curve, 90, 107

Index

finite, 107
infinite, 107
semi-direct product, 288

Automorphism
extension of, 157
of projective space, 47
Automorphy factor, 97, 101, 122, 126
Auxiliary polynomial, 302, 316, 368
construction of, 320
index is large, 323, 324
index is small, 329
nonvanishing of, 302, 329, 333
vanishing of, 302, 323,324

Bad reduction, 158
Baker, A., 360, 471
Base locus, 64
height, 185, 256

Base point, 51
Base point free, 51
Base point free divisor, 53, 71
on an abelian variety, 105
pullback, 54

Basis, small for a lattice, 459
Batyrev, V., 224, 491, 494, 495
Batyrev-Manin conjecture, 224, 491, 492
abelian variety, 255
bielliptic surface, 493
counterexample to refined version, 495
elliptic K3 surface, 493
Enriques surface, 493
explicit leading coefficient, 495
Fano variety, 224, 492, 493
fibrations, 493
finite unramified cover, 493
flag variety, 494
Grassmannian variety, 494
homogeneous spaces, 494
projective space, 255
rational ruled surface, 493
toric variety, 495

Belyi uniformization theorem, 87, 468
Bezout theorem, 84
arithmetic, 446
Bicanonical divisor, 82
Bielliptic curve, 442
Bielliptic surface, 478
Batyrev-Manin conjecture, 493
Kodaira dimension, 476

Bilinear form,
alternating, 103
associated to quadratic function, 253
determinant, 103
Frobenius basis of alternating, 103
Pfaman of alternating, 103

Bilinear pairing, canonical height, 200
Billard, H., 492, 493
Binary form, integer value of, 362
Binomial formula, 312
Birational equivalence, 16, 18
Birational involution, 21,52,69
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Birational map, 16
Birational morphism
between curves, 69
blowup is a, 21

Birch, B., 493
Birch-Swinnerton-Dyer conjecture, 462
Blowup, 70
height on, 256
is a birational morphism, 21
of a node, 86
of a point, 20, 21
of an ordinary singularity, 86
of projective space, 256

Blowup of p2
ample cone, 489
counting function, 489
effective cone, 489
Nevanlinna invariant, 489

Blowup of pn
ample cone, 501
counting function, 494, 501
Nevanlinna invariant, 501

Bogomolov conjecture, 444
generalized, 444
Bogomolov, F., 443
Bombieri, E., 345, 368, 474
Bombieri-Lang conjecture, 474, 479, 484,

491
finite unramified morphism and, 481
over function fields, 480
rational map and, 481

Bost, J.-B., 467
Bounded height, 254
finitely many points of, 174, 177, 185
set of, 428

Box, number of algebraic numbers in,
319

Brauer group, 495
Breuil, C., 454, 461
Buium, A., 439
Bundle
line, 60
section, 61
tangent, 61, 66
trivial,61
vector, 60

Call, G., 493
Canonical class, 39
Hurwitz formula, 42
of a complete intersection, 47
of a hypersurface, 47
of a product of varieties, 47
of projective space, 39
on a curve, 374
on projective space, 47
under finite map, 42

Canonical divisor, 39, 84
almost ample, 491
ample anti-, 224, 477
anti- is effective, 480
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degree of, 71, 390
finite order, 224, 492, 500
not effective,· 491
of complete intersection, 476
of a curve, 68, 70, 73, 138, 254, 429
of a curve of genus ~ 2, 82
of a product, 390
of projective space, 39
pluri-, 475
trivial, 224, 492

Canonical embedding of a number field,
274

Canonical height, 195, 199, 204, 205, 258,
368

angle between points, 371
antisymmetric divisor, 204
bilinear pairing, 200, 216
cone, 371
elliptic curve, 253
for commuting morphism5, 252
induces discrete topology, 444
is quadratic form, 200
is sum of canonical local heights, 241,
242

linear, 204
linear form, 206
local,241
lower bound for, 453, 455, 473
of subvariety of abelian variety, 450
of torsion point is zero, 201
on A x..4, 208
on an abelian variety, 199, 204, 205
on a K3 surface, 197, 241
pairing, 200, 216
parallelogram law, 199
positive definite, 201, 369
quadratic form, 206
quadratic function, 205
regulator, 201, 459
symmetric divisor, 199
theta divisor, 254
zero implies preperiodic, 197
zero implies torsion, 201

Canonical local height, 241
explicit formula, 242
functorial properties, 241
isogeny property, 242
on abelian variety, 242
series for, 242
sums to global canonical height, 241,
242

translation property, 242
Canonical map on hyperelliptic curve, 89
Caporaso, L., 474, 481
Cartier divisor, 37
effective, 37
group of, 37
group of classes, 38
height and, 185
is global section of sheaf, 38, 65
line bundle associated to, 63



532

Cartier divisor (continued)
linear equivalence, 38
map to Weil divisor, 38
moving lemma, 40
positive, 37
principal, 38
pullbacl< by a morphism, 40
sheaf determined by, 60
support, 37

Castelnuovo criterion, 161
Category
affine varieties, 17
finite transcendence degree fields, 18
finitely generated k-a1gebras, 17
varieties and dominant maps, 18
Cauchy bound, 308
Cauchy inequality, 464
Cauchy residue formula, 160
Cauchy sequence, 195
Cauchy-Schwarz inequality, 210, 383
Cayley form, 446
Cellular decomposition of projective

space, 14
Center of a linear projection, 20, 229
Chabaut~ C., 426, 438
Characteristic p, 7
Characteristic function, 483
Chebyshev inequality, 310
Chevalley-Weil theorem, 264, 292, 431,

481, 493
Chord and tangent process, 257
Chow, W.L., 136
Chow form, 33, 446
Circle group, 107
Circle method, 494
Circle parametrized by sine, 110
Class group, 462
divisor, 35
finiteness of, 349

Classification of surfaces, 478
Classification of twists, 283
Clifford's theorem, 71
Closed cone, 488
Closed embedding, 30
Closed map, 17
CM, See Complex multiplication
Coarse moduli space, 447
Coboundary, 286
Cocycle, 284
cohomologous, 286
continuous, 286
group of, 286
unrarnified, 281
Coefficient bounded by Mahler measure,

231
Cohomologous cocycles, 286
Cohomology class, unrarnified, 281
Cohomology group, 286
continuous, 286
unrarnified outside S, 282
zeroth,285

Index

Cohomology set, 286
Cohomology sheaf, 38, 65
Cokernel sheaf, 66
Coleman, R., 426, 432, 438
Colliot-Thelene, J.-L., 481, 496
Commutative algebraic group, 120, 132
Commuting morphisms, height for, 252
Compactification of moduli space, 448
Compactified divisor, 247
degree, 247
principal, 247

Complete intersection
canonical class, 47, 476
counting function, 493
Fano,477
Kodaira dimension, 476

Complete linear system, 50, 55
Complete variety, 33
Completion of a number field, 171
Complex analysis, residue theorem, 255
Complex curve, See Riemann surface
Complex embedding, 172
Complex multiplication, 92, 283, 461
elliptic curve, 94

Complex representation, 109
Complex torus, 91, 93, 107
ample divisor, 102
analytic morphism, 93
degree of dual isogeny, 95
dual isogeny, 95
endomorphism ring, 94
group of Riemann forms, 107
image of holomorphic map, 94
is abelian variety, 91
isogeny,95
Jacobian, 113
kernel of a holomorphic map, 94
map induced by theta functions, 102
multiplication map, 94
nondegenerate Riemann form, 102
not an abelian variety, 107
of dimension 1,94,107
Riemann theta function, 98, 109
theta function, 97
theta function represents divisor, 98
very ample divisor, 102

Conductor, 498
bounds discriminant, 453
exponent of, 452, 453
of abelian variety, 453, 461, 468
of abelian variety bounds height, 453
of abelian variety over Q, 464
of elliptic curve, 452

Cone, 428, 488
affine, 23
canonical height, 371
convex, 488
tangent, 68

Conic, 73, 74
Connected component of fiber of Neron
model,163
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Connected fiber, 157
Connectedness principle, 157
Connecting homomorphism, 279, 287
Conrad, B., 454, 461
Constant, Mk-, 238, 292, 319, 414
Continued fraction, 301, 365
Lagrange theorem, 365
periodic, 365
quadratic number, 365
Continuous cocycle, 286
Continuous 1-cocycle, 284
Convergent to a real number, 365
Convex cone, 488
Convex function, 230
Coordinate ring
affine, 11
depends on embedding, 30
of a projective variety, 13

Coordinate, change of, 430
Cotangent space, 24
map induced by rational map, 25

Counting function, 168,483,487,490;
See also Height counting function

abelian variety, 224, 492
blowup of projective plane p2, 489
blowup of projective space pn, 494,
501

complete intersection, 493
cubic hypersurface, 494
cubic threefold, 494
curve, 216, 384
equivalent, 502
gap principle, 219, 220, 254
growth rate log log, 223, 255, 496
independent of height function, 502
integer point, 223
Jacobian variety, 216
normal variety, 503
product, 502
product of projective spaces, 493
projective space, 223
singular variety, 503
variety with trivial canonical divisor,
224,492

Cousin's theorem, 97
Covering
finite, 154
ramified at 3 points, 87
universal, 68

Cremona transformation, 21, 30, 52, 69
Cube, theorem of the, 121, 122
Cubic curve, 73, 76
inflection point, 88
tangent and chord process, 257

Cubic hypersurface, 494
Cubic surface, 30, 492, 500
contains genus 4 curve, 87
Curvature, 68
Curve, 23; See also Riemann surface
affine, 353
affine coordinate ring, 394
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affine model, 68
ample divisor, 53, 71, 375
ample divisor on product, 431
arithmetic genus of a product, 85
automorphism group, 90
base point free divisor, 53, 71
bielliptic, 442
birational morphism is isomorphism,
69

birational to plane curve, 69
birational to smooth curve, 70
blowup, 70, 86
bound for number of rational points,
429, 430

canonical class, 374
canonical divisor, 68, 70, 73, 138,254,
429

conic, 74
construction of Jacobian variety, 145
counting function, 216, 384
counting points of bounded height, 473
curvature, 68
degree of a canonical divisor, 71, 390
degree of divisor, 70
degree of map to Jacobian, 254
degree N, 89
d-gonal, 440
diagonal in product, 216
differential I-form on Jacobian, 148
discrete topology induced by height,
444

effective bound for integer points, 471
effective bound for rational points,
426, 427, 432

elliptic, See Elliptic curve
Faltings theorem, 456
family dominates general type variety,
481

finite cover, 154
finiteness of rational points, 367
gap principle, 218, 254, 383, 425
general, 441
genus, 67, 71,84
genus zero, 73
genus one, 73; See also Elliptic curve
genus one isomorphic to Jacobian, 115
genus g ~ 2, 81, 367
genus two is hyperelliptic, 83
genus three, 87
genus four, 87
genus of finite cover, 88
genus of plane, 72, 84
genus of singular, 74
gonality, 148
good reduction, 164,426
everywhere, 164, 165
outside S, 486

Hasse principle, 75
height, 192, 217
height counting function, 211
height of point in moduli space, 448
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Curve (continued)
height relative to diagonal, 256
hyperelliptic, 73, 81, 86, 148, 164, 431,
440, 481,498

image of Xd in Jacobian, 439
integer point, 349, 353, 364, 365
integer point on hyperelliptic, 349
Jacobian, See Jacobian variety
Jacobian embedding, 134
Kodaira dimension, 476
Lang integer point conjecture, 473
level structure, 447
map of low degree to !pI, 440
map to Jacobian, 254
minimal model, 161
minimal model of Jacobian, 164
model for, 68
moduli space, 83, 142, 441, 447, 486
morphism to abelian variety, 427, 432
Mumford theorem, 216, 384
Neron-Severi group, 131
normal iff smooth, 33
normalization, 70, 353
on a surface, 84
ordinary singularity, 68
over finite field, 150
over function field, 439
over Z, 8
plane, 443
plurigenera, 476
points of bounded degree om, 439
product of two, 84
product with itself, 86, 391
projective model, 68
pullback of Poincare divisor, 138, 216,
374

pullback of theta divisor, 138, 216,
374,417
quantitative bound, 473
ramification point, 154
rational, 75
rational map extends, 20, 69
rational point, 211, 431
rational points are widely spaced, 218,
383,425

relatively minimal model, 161
r-gonal, 148
Riemann hypothesis, 150
Riemann-Hurwitz formula, 72
Riemann-Roeh, 70, 135, 136, 138
Roth theorem on, 354, 355
semistable reduction, 161, 164
Siegel theorem, 456
small point conjecture, 470
smooth iff normal, 33
symmetric product, 135, 148
is a variety, 144
is smooth, 144

trichotomy of, 68
trigonal, 148,440

Index

uniform bound for number of rational
points, 425, 426, 432, 474, 481

universal cover, 68
very ample divisor, 53,71,375
Vojta conjecture, 484
Weierstrass point, 89, 90, 297, 426
Weil reciprocity law, 91
zeta function, 150

Curve of genus at least two
automorphism group, 90
canonical divisor, 82
Curve of genus one, 76j See also Elliptic

curve
cubic model, 76
discriminant, 77
effective bound for integer points, 360
with no rational points, 81

Curve of genus zero, 74
Cusp, 426, 452
Cusp form, 454

David, S., 454
Debarre, 0.,477
Decomposition group, 460
Decomposition theorem, 255
Dedekind domain, 173
dimension of Spec, 154

Dedekind zeta function, 462
De Diego, T., 425, 472, 473
Defect, 483
Defect relation, analogue of Roth theo-

rem, 483
Defined over k, See Field of definition
Deformation, 156
Degree
Arakelov, 247
canonical divisor, 71, 390
compactified divisor, 247
divisor on a curve, 70
dual isogeny, 95
endomorphism, 109
finite morphism, 19
formula, 171, 227
hypersurface, 36, 46
isogeny, 95, 109
map from curve to Jacobian, 254
map to !pI of low, 440
metrized, 248
multiplication on an abelian variety,
125

number field degree bounded by dis-
criminant, 276

points of bounded, 439
projective, 46
subvariety, 46
with respect to a divisor, 46
Degree formula, 171, 227
Del Pezzo surface, 493
split, 494

Demjanenko, V.A., 426, 432
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Derivative, 24
Eisenstein estimate, 408
height of, 234
Leibniz rule, 403, 406
product rule, 312, 331, 362
transformation of height, 325
valuation of, 234

Desargues, 12, 160
Descent lemma, 258, 290
Descente infinie, 259
Determinant
height of, 256
multi-linearity, 331
of a lattice, 255
of an alternating bilinear form, 103
Wronskian, See Wronskian determi-
nant

d-gonal curve, 440
Diagonal
divisor, 375
height with respect to, 256
on product of curves, 216
reduction to, 23
self-intersection, 86, 391

Diagonalization of quadratic form, 204,
253

Diamond, F., 454, 461
Differentiable manifold, 500
Differential equation
of elliptic function, 110
of sine, 110

Differential form, 26, 27
abstract, 26
affine space, 26
algebraic group, 66
divisor of, 39
hyperelliptic curve, 87
induced map on, 28
locally free sheaf of, 60
Neron, 462,499
projective space, 26
rational, 27
regular, 26, 27, 88
sheaf of, 58

Differential operator, 402
Leibniz rule, 403, 406
normalized,331
order of, 331
Wronskian determinant, 331

Dimension
affine space, 22
affine variety, 22
formal group, 269
hypersurface, 22
intersection, 23
Krull, 22, 154
. linear system, 49
projective space, 22
scheme, 154
space of differential forms, 27
subvariety, 22
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subvariety of strictly smaller, 23
variety,22
tangent space, 25

Dimension theorem, 137
Diophantine approximation, 299, 368
almost all numbers have approxima-
tion exponent two, 361

auxiliary polynomial, 302, 316, 320
continued fraction, 301, 365
Dirichlet theorem, 300, 301
exponent, 299
gap principle, 344, 363
Gelfand-Dyson theorem, 300
index at nearby point, 326
Jacobian variety used for, 356
Liouville theorem, 300, 301, 362
reduction to simultaneous, 305, 341
Roth lemma, 333
Roth theorem, 300, 305, 341
for curves, 354, 355

Siegel theorem, 300
Thue theorem, 300
Diophantine geometry
effective, 360, 457
qualitative, 457
quantitative, 457
Direct sum of sheaves, 58
Dirichlet theorem on Diophantine ap

proximation, 300, 301
Dirichlet theorem on primes in arith-
metic progression, 292, 349

Dirichlet unit theorem, 266, 274, 350
Discrete subgroup, 274
Discrete valuation ring, 35
Discriminant, 77, 292,462,499
absolute logarithmic, 486
bounded by conductor, 453
elliptic curve, 166, 452
finitely many number fields with fixed,
273

Kummer extension, 265
lower bound for height, 252
minimal, 452, 498, 499
of an order, 293
of number field bounds degree, 276
Distance function
v-adic, 496
real, 500

Division algebra, 96
Divisor
algebraic equivalence, 46
algebraically equivalent are ample, 65
algebraically equivalent to zero, 207,
209

ample, 52, 65, 71, 102, 127, 375
criterion, 52, 53
generate Picard group; 53, 186
on abelian variety, 105

antisymmetric, 204
height for, 191

Arakelov, 247
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Divisor (continued)
base point free, 51, 71
criterion, 53
on abelian variety, 105

bicanonical, 82
canonical, 39
height relative to, 195, 205

Cartier, 37
compactified,247
complete linear system of, 50
defined over k, 43
degree, 70
degree of a subvariety with respect to,
46

degree of compactified, 247
diagonal, 375
effective, 34, 37, 49, 127
height for, 185,217,219,256

evaluated by a rational function, 91
group of Weil, 34
height associated to, 184, 373
horizontal, 244
irreducible, 35
line bundle associated to, 63
linear equivalence class of, 35
linearly equivalent, 35, 38
are ample, 65

local ring, 35
moving lemma, 40
multiplicity, 34
Nakai-Moishezon criterion for ample-
ness, 65

Nevanlinna invariant, 488
normal crossings, 484, 485, 499
of a function, 35, 38
of a hypersurface, 38
on a surface, 84
Poincare, 108, 128
poles, 35
positive, 34, 37
principal, 35, 38
principal compactified, 247
pullback by a morphism, 40
pullback by multiplication map, 124,
191

represented by theta function, 98
self-intersection, 84
sheaf determined by, 60
slice, 375
space of rational functions with, 42, 49
support, 34, 37
symmetric height for, 191
theta, 254
translation invariant, 128
translation map, 126
valuation attached to, 35
vertical, 244
very ample, 52, 53, 65, 102
Vojta, 373, 377
Weil,34
zeros, 35

Index

Divisor class group, 35
exact sequence for, 37
map from Picard group, 38
product, 48
product of projective spaces, 36
projective space, 36

Divisor class
canonical, 39
even, 129
odd, 129
of finite order, 254
pullback by a morphism, 41

Divisor group,
exact sequence for, 37
extended, 241
map from Cartier to Weil, 38
of a Riemann surface, 114
Domain
homogeneously expanding, 214
of a rational map, 16
Dominant morphism, 30
Dominant rational map, 16
induces field homomorphism, 18
Kodaira dimension of image, 476

Double point, 161
Dual abelian variety, 107, 128, 130, 141,

207
canonical height pairing, 208
exists, 130
is unique, 130
isogenous to, 108
Poincare divisor, 108
polarization, 131

Dual isogeny, 95
degree of, 95
Dual projective space, 33
Dual sheaf, 66
Dual vector bundle, 62
tensor product, 66
transition function, 66

Duality, 70
Dualizing sheaf, 466
d-uple embedding, 19, 41, 52, 64, 376
height, 179
projectively normal, 376

Dynamical system, 197
Dyson lemma, 368, 380
Vojta generalization, 380

Effective cone, 488
blowup of projective plane, 489
canonical divisor not in, 491

Effective divisor, 34, 37, 49, 50, 127
height, 185, 217, 219, 256
represented by theta function, 98

Effectivity, 457
Faltings theorem, 427, 431, 432, 465
Mordell-Wei! theorem, 457, 463
Siegel theorem, 360, 457
unit equation, 360

Eisenstein estimate, 408
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Eisenstein-Langlands L-series, 494
Elimination theory, 17
Elldes, N., 468
Ellipse, arc length, 110, 116
Elliptic curve, 77, 110, 166, 481, 498,

499; See also Curve of genus 1
addition law, 78
additive, 452
automorphism group, 90, 107
canonical height, 253
canonical local height, 242
complex, 91, 94
complex multiplication, 94, 283
complex points, 499
conductor, 452
conductor ~ 11, 464
cusp form of weight 2, 454
defined over k, 77
discriminant, 166, 452
double cover, 442
everywhere good reduction, 166
Faltings height, 449, 499
Frey conjecture, 453
good reduction, 166
group law formulas, 79
high rank, 464
independent morphisms to, 432
inflection point, 88
integer point, 353, 431
invariant differential, 454
inverse on, 78
is a group, 78
isomorphic to Jacobian, 115
Lang height lower bound conjecture,
453,455,473

Lang integer point conjecture, 473
local height, 242
lower bound for canonical height, 453,
455,473

Lutz-Nagell theorem, 457
minimal model, 163
modular, 283
modular parametrization, 454, 455
Mordell-Wei! theorem, 367
multiplicative, 452
over Q is modular, 461
Picard group, 78
point at infinity, 77
points of order 3, 88
rank unbounded?, 464
rational points on, 81
regular, 166
regular differential from, 88
Riemann form, 92
Riemann-Roch theorem, 80
semistable reduction, 162, 452
special fiber, 166
symmetric product, 148
Szpiro conjecture, 453
Szpiro ratio, 454
tangent and chord process, 257
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torsion subgroup, 457
is uniformly bounded, 457

translation map, 90
unstable, 452
upper bound for rank, 465
Weierstrass equation, 77, 164,452
Weierstrass p function, 97
Weierstrass 0' function, 97
Weierstrass ( function, 97
weight of Weierstrass coefficients, 78

Elliptic function, 110
addition formula, 111

Elliptic integral, 110
arc length of ellipse, 116

Elliptic surface, 478, 499
K3,499
Kodaira dimension one, 478
rational, 499
Embedding
associated to very ample divisor, 373
closed,3O
d-uple, 19, 41, 52, 64, 179
Lemchetztheorem, 105

Endomorphism ring, 134
of abelian variety, 96
of complex torus, 94
unit group, 134

Endomorphism degree, 109
Enriques surface, 478
Batyrev-Manin conjecture, 492, 493
integral points, 500
Kodaira dimension, 476

Enriques-Severi-Zariski Theorem, 55, 64,
392

Enumerative geometry, 44
Equivalence,
algebraic, 46
birational, 16
quotient by relation, 146

Equivalent absolute values, 160
Euclidean vector space
cone, 428
counting function of lattice, 220, 254
gap principle, 219, 220, 254
Euler formula, 202
Euler-Poincare characteristic, 70
of an affine curve, 353

Even divisor class, 129
Evertse, J.-H., 349
Exceptional divisor, height with respect
to, 256

Exceptional set, 484
empty, 494
Expanding domain, 214
Expon~ntial map on a group variety, 107
ExtensIOn
of a morphism, 158
of scalars, 156

Fadeev, D., 431
Faltings, G., 367
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Faltings height of an abelian variety, 448
comparison with period, 464
comparison with Weil height, 449
Neron differential and, 499
of an elliptic curve, 449, 499

Faltings isogeny theorem, 468
Faltings product lemma, 368, 380, 437
Faltings theorem (Mordell conjecture),

168, 211, 367, 456, 480, 484
Arakelov theory approach, 466
effective, 427, 431, 432, 438, 465
implied by abe, 455, 468
implies Siegel theorem, 353, 431
integral points on abelian varieties,
484,486

Lang conjecture, 435
model-theoretic proof, 439
moduli approach, 466
Mordell-Weil approach, 466
naive approach, 465
on abelian varieties with good reduc-
tion outside S, 486

original proof, 466
over function field, 439
quantitative form, 472
semiabelian variety, 439
small point approach, 470
Vojta inequality implies, 370
Family
of abelian varieties, 428
of schemes, 156

Fano variety, 477, 493
Batyrev-Manin conjecture, 224, 492
complete intersection, 477, 493
flag, 477
Grassmannian, 477
has rational curve through every point,
478

homogeneous space, 494
Picard group equal to Neron-Severi
group, 488
projective space, 477
threefold, 493

Feldman, I., 360
Fermat curve, 296
Fermat descente inflnie, 259
Fermat quintic surface, 480
Fermat's last theorem, 428
for exponent p = 5, 431
implied by abe, 452
Fiber
connected, 157
generic, 156
irreducible, 157
multiple, 156
of a scheme morphism, 156
special, 157, 158
Fibered product, 155
exists, 156
extension of scalars, 156
of affine schemes, 156

Index

of family of curves, 481
of family of general type varieties, 482

Field
absolute Galois group, 43
absolute value, 159
non-algebraically clOlled, 43
skew, 134

Field homomorphism, induces dominant
rational map, 18

Field of definition
of an algebraic set, 9
of a divisor, 43
of a point, 12, 176
of a projective variety, 13
of Jacobian variety, 135
Fine moduli space, 447
Finite abelian group structure theorem,

126
Finite cover, 154
Finite field
curve over a, 150
Frobenius map, 31, 89
Finite group scheme, 467
Finite map, See Finite morphism
Finite morphism, 18
canonical class, 42
degree of, 19
has finite inverse image, 19
Hurwitz formula, 42
intersection index, 46
Kodaira dimension for unramified, 476
Nevanlinnainvariant,489
pullback of ample divisor, 54
ramification index, 41
ramified, 41
unramified,481

Finite rank abelian group, 434
Finite surjective morphism, 19
Finitely generated
abelian group, 258
algebra, 143
field, unit equation over, 345
group, 290
of rational points, 257
of S-units, 274
of units, 346, 349, 350

module, 18
Finiteness of rational points on curves of

genus 9 ~ 2, 367
First cohomology set, 286
First minimum, 254
Fixed component of a linear system, 51
Flag variety
Batyrev-Manin conjecture, 494
is Fano, 477

Flynn, E., 432
Fontaine, J.-M., 464
Form, See Differential form, 27
Formal group
abelian variety, 269
additive, 269, 272



Index

Formal group (continued)
axioms for, 269
defined over a ring, 270
dimension of, 269
general linear, 269
group associated to a, 272
homomorphism, 270
isomorphic to kernel of reduction, 272
isomorphism, 270
multiplication map, 271
is an isomorphism, 271

multiplicative, 269, 272
no prime to p torsion, 272
reduction, 271

Formal power series, criterion for inver-
sion, 270, 294

Forward orbit, 197
Fourier series, 104
Fraction field, 17
valuation on, 35
Fraction, continued, 301, 365
Franke, J., 494
Free sheaf, 59
locally, 59
rank of, 59

Frey conjecture, 453
equivalent to abc, 498
Frobenius basis, 103
Frobenius map, 31, 89, 460
trace of, 468
Fubini-Study metric, 248, 255
Full level N structure, 447
Fulton, W., 455
Function field, 16, 65, 439

abc conjecture, 456
absolute value, 159
analogous to number field, 159
height on, 185
isomorphism induces birational equiva-
lence,18
of An, 16
of IP", 16
of a hyperelliptic curve, 81
Szpiro conjecture, 455
transcendence degree of, 22
valuation on, 35
variety defined over, 243
Function
elliptic, 110
germ of a, 58
linearly independent iff Wronskian is
nonzero, 331, 363

Mk-bounded, 238
regular, 15

Functional equation
L-series, 461, 463
of a semicharacter, 107
of a theta function, 97, 99, 100, 102,

103
of zeta function of a curve, 150
sign of, 461, 462
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Functor
affine n-space is a, 9
Jacobian, 135, 147
of points, 155
Picard group is a, 40

Functoriality
of height, 184, 194
of local height, 239
Fundamental domain, 214
of a lattice, 255

Galois cohomology, 283; See also Group
cohomology

inflation-restriction sequence, 282
Kummer sequence, 288
restriction map, 280

Galois group, 43
action on jpn, 12
decomposition group, 460
Frobenius element, 460
inertia group, 281, 460

Galois invariance of height, 176
Galois theory, 7
Gap principle, 218, 219, 222, 254, 344,

363, 383, 425
counting function, 219, 220, 254
lattice, 220, 254
Mumford, 429, 430

Gauss lemma, 229, 329
archimedean analogue, 229
Gauss norm
of a polynomial, 224
of product of polynomials, 233
of sum of polynomials, 233

Gelfand inequality, 228, 256, 329, 334,
430

General curve, 441
General Jacobian is simple, 441
General linear group, 29, 47, 430
General linear group
kernel of reduction, 268, 295
projective, 90

General type, 478, 479, 481
family of dominates general type vari-
ety, 482

finite unramified morphism, 481
hypersurface, 478
Kodaira-Parshin fibration, 478
log, 486
surface of, 478
subvariety of abelian variety, 478

Generalized Wronskian determinant, 331
Generic fiber, 156
Generic point, 153
Genus, 67
arithmetic, 84, 85, 391, 429
curve on a surface, 84
curve, 71
finite covering of curves, 88
formula, 87, 456, 469; See also Rie-
mann-Hurwitz formula
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Genus (continued)
four, 87
geometric, 28
greater than one, 81
hyperelliptic curve, 82
is birational invariant, 71
of an integral, 111
one, 76
projective line, 71
Riemann surface, 67
Riemann-Hurwitz formula, 72
singular curve, 74
smooth plane curve, 72, 84
three, 87
zero, 71, 74

Geometric case, 159
Geometric genus, 28
Geometric point, 153
Geometric quotient, 146
exists for finite groups, 143
Geometry of numbers, 273
Geometry, enumerative, 44
Germ, 59
Global section, 59
admissible pair, 403, 404, 412, 419, 423
index, 403
small, 389, 393, 419, 422

Gonality, 148
Good reduction, 158
abelian variety with outside S, 467
curve with, 426
elliptic curve with, 166
everywhere, 166
elliptic curve with, 166
projective space, 158
Graded ring, 165
Grassmannian variety, 31, 48, 142
Batyrev-Manin conjecture, 494
is Fano, 477
Picard group, 48
Pliicker embedding, 32, 48

Green function, 247
Gross, R., 345
Grothendieck, A., 151, 153
Group
additive, 29
affine, 29
algebraic, 28, 66
action, 495

elliptic curve, 78
finite rank, 434
finitely generated, 258, 290
general linear, 29
multiplicative, 29
of cocycles, 286
of components, 28
of Jacobian variety, 164

of invertible sheaves, 60
Group cohomology, Sal also Galois coho

mology
connecting homomorphism, 287

Index

functoriality, 287
inflation map, 287
inflation-restriction sequence, 282, 287
long exact sequence, 287
restriction map, 280, 287

Group scheme
finite, 467
Neron model, 163
Group variety
addition map, 268
compactness implies abelian, 107
conjugation map, 107
exponential map, 107
projective is a torus, 107
unit equation in, 346

Hadamard's inequality, 255
Harris, J., 474, 481
Hasse 'principle, 75, 260
failure of, 281
for complete intersection, 494

Heath-Brown, D.R., 494
Height, 168, 368
absolute, 176, 183
additivity, 185
affine of a polynomial, 224
algebraically equivalent divisors, 185,
192, 194, 217, 427

ample divisor dominates, 252
analogous to characteristic function,
483
antisymmetric divisor, 191
Arakelov, 466
Arakelov degree defines a, 446
associated to divisor, 373
attached to a metrized line bundle, 248
bounded below by discriminant, 252
bounded iff D has finite order, 254
canonical, 258; Sal also Canonical
height
of subvariety of abelian variety, 450

canonical local, 241
on abelian variety, 242

Chow form defines a, 446
commuting morphisms, 252
converts geometry to arithmetic, 184
counting function, See Height counting
function

discreteness of points with respect to,
443

divisor algebraically equivalent to zero,
209

d-uple embedding, 179
effective divisor, 185, 217, 219, 256
extension field, 243
Faltings, 448, 499
finitely many abelian varieties of
bounded, 449

finitely many points of bounded, 174,
177,185

functoriality, 184, 194
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Height (continued)
Galois invariance, 176
geometric definition, 243, 245
global section of small, 389, 393, 419,
422

induces discrete topology, 444
linearly equivalent divisors, 185
local, 237, 239, 482, 487
logarithmic, 174, 176, 183
Mahler measure, 230
metrized, 248
is a Weil, 250
on projective space, 248, 255

multiplication on abelian variety, 190
multiplicative, 174, 176
normalization, 184
of abelian variety
bounded by conductor, 453
as Arakelov degree, 448
using canonical embedding, 449
using moduli space, 448

of collection of polynomials, 225
of curve using moduli space, 448
of derivative, 234
of determinant, 256
of isogenous abelian variety, 467
of point in moduli space, 448
of polynomial, 224, 225, 334
of prime ideal, 22
of product, 256
of polynomials, 226, 228, 233, 430

of shifted polynomial, 234
of sum, 256
of polynomials, 226, 233

of value of polynomial, 225, 234
of variety, 438, 445
via its Arakelov degree, 446
via its Chow form, 446

on pn(Q), 174
on blowup, 256
on curve, 192, 217
on variety over function field, 243, 245
over function field, 185
parallelogram law, 169
points of bounded on abelian variety,
473

positivity, 185, 194, 217, 219, 256
projective of a polynomial, 225
reflects geometry, 169
relative to k, 174
relative to a morphism, 183
root of unity, 178
Segre embedding and, 179
set of bounded, 428
sum of local heights, 239
symmetric divisor, 191
transformation properties
under derivative, 325
under linear map, 180
under morphism, 179, 190, 251
under rational map, 179, 251, 252
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uniqueness, 185
vertical divisor is bounded, 244
well-defined, 175

Height counting function
canonical height, 214
on abelian variety, 213
on curve, 211
on projective space, 211

Height machine of Weil, 169, 184, 245,
382

for line bundles, 194
on singular varieties, 185

Height regulator, 459
Height zeta function, 489, 491
abscissa of convergence, 489, 491, 500
abscissa of convergence independent of
divisor, 502

Hensel lemma, 281, 293
Hermite theorem, 459
Hermite theorem, 260, 264, 273, 276,

293,459
Hermitian form, 91,92; See also Rie
mann form

real bilinear alternating form, 92
Hilbert, D., 143
Hilbert basis theorem, 9, 143, 285
Hilbert tenth problem, 457
Hilbert Theorem 90, 33, 44, 47, 288
Hilbert Nullstellensatz, 10
Hindry, M., 438, 454, 455, 473
Hironaka theorem, 243
Homogeneous coordinate ring, 13, 30
Homogeneous coordinates, 12
Homogeneous height, 256
of a polynomial, 224

Homogeneous ideal, 13
Homogeneous localization, 17
Homogeneous polynomial, 13, 36
divisor of an, 39
integer value of, 362

Homogeneous space, 283
Batyrev-Manin conjecture, 494
geometric group law onWC(A/k), 297
nonzero example in III, 295
principal, 289
representing element of Selmer group,
281

representing element of Tate-Shafare
vich group, 281

Homogeneously expanding domain, 214
Homology, 116
of Riemann surface, 112

Homomorphism
of formal groups, 270
twisted, 284

Hooley, C., 494
Horizontal divisor, 244
Hrushovski, E., 439
Hurwitz formula, see Riemann-Hurwitz

formula
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Hurwitz theorem on Diophantine approx-
imation, 301, 365

Hyperbola, 14
Hyperbolic, 479
Hyperelliptic curve, 73, 81,86, 111, 148,

440, 481
affine model, 86
basis of regular differentials, 111
canonical map, 89
cover of, 498
differential from, 87
effective bound for integer points, 360
function field, 81
genus, 82
good reduction, 164
integer points on, 349
Jacobian, 147, 148, 149
of genus two, 83
point at infinity, 164
ramification points, 87
Weierstrass point, 90, 297

Hyperplane, 13
local height with respect to, 240
section, 49

Hypersurface
affine, 11
canonical class of, 47
cubic,494
degree of, 36, 46
dimension of, 22
divisor of a, 38
of general type, 478
projective, 13

Ideal,
contains element of bounded norm,
275

finitely many of fixed norm, 275
height, 22
homogeneous, 13
irrelevant, 13
prime, 11
radical of, 10
saturated, 13
volume of, 274

Ideal class group, 37
finiteness of, 273, 349
element contains ideal of bounded
norm, 276

Identity component, 28
Image sheaf, 66
Implicit function theorem, 408
Index, 308
at nearby point, 326
auxiliary polynomial has large, 323,
324

auxiliary polynomial has small, 329
elementary properties, 309
intersection, 45
is a valuation, 309
of section, 403

Index

of Wronskian determinant, 330
of zero polynomial, 308
ramification, 72

Ineffectivity of Roth theorem, 344
Inertia group, 281, 460
Infinite descent, 259
Infinitely near point, 74
Inflation map, 287
Inflation-restriction sequence, 282, 287
Inflection point, 77
Inhomogeneous height, 256
of a polynomial, 225

Injectivity of specialization map, 428
Integer point, 292, 483
binary form, 362
counting function, 223
effective bound for, 360, 471
Lang conjecture, 473
on]pI minus 3 points, 351
on curve, 353, 364, 365, 456
on curve of genus one, 353, 431
on curve of genus zero, 353, 431
on hyperelliptic curve, 349
on moduli space, 486
on variety of log general type, 486
on variety with mKx =0,500
Thue equation, 362

Integral closure, 155
Integral scheme, 153
Integral
abelian, 110
elliptic, 110
genus, 111
p-adic,438

Intersection
dimension of, 23
nonempty, 65
transversal, 45

Intersection index, 45, 65
finite morphism, 46
invariance under algebraic equivalence,
46

invariance under linear equivalence, 45
local,45
moving lemma, 45

Intersection number, See Intersection
index

Intersection theory
Arakelov, 367
arithmetic, 380
Bezout's theorem, 84

Invariant differential on elliptic curve,
454

Invariants of an alternating form, 103
Inversion of formal power series, 270, 294
Invertible functions, sheaf of, 58
Invertible sheaf, 59; See also Line bundle
determined by a divisor, 60
dual is inverse, 66
group of, 60
is isomorphic to Picard group, 60
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Irrational number, approximation by ra
tional number, See Diophantine ap
proximation

Irreducibility theorem, 95, 144
Irreducible algebraic set, 11
components of, 11
Irreducible divisor, 35
ramification index, 41

Irreducible fiber, 157
Irreducible scheme, 153
Irreducible topological space, 11
Irreducible affine n space, 11
Irrelevant ideal, 13
Isogeny, 95, 134
degree, 95, 109
degree of dual, 95
dual,95
functoriality of canonical local height,
242

height of abelian variety after, 467
kernel,95
reduction of, 290

Isomorphism
complex-analytic, 91
of formal groups, 270

Jacobian condition, for inversion of
power series, 270, 294

Jacobian criterion, 25
Jacobian variety, 113, 134, 356, 368; See

also Abelian variety, Albanese vari
ety

Abel-Jacobi theorem, 114
abelian variety inside Wd, 441
angle between points, 371
canonical map of curve to, 254
connected component, 164
construction of, 136, 145
counting function, 216
differential I-forms on curve, 148
discrete topology induced by height,
444

embedding of curve into, 114, 117
existence, 134
field of definition, 135
finite Mordell-Weil group, 426
general is simple, 441
good reduction, 164
group law on, 149
group of components, 164
image of X d in, 439
intrinsic formulation, 114
is a functor, 135, 147
is projective variety, 114
is self-dual, 141
minimal model, 164
Mordell-Weil group, 379
number of points modulo p, 291
of a hyperelliptic curve, 147-149
of curve of genus 1, 115
over C, 110
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poincare divisor, 138, 141, 216, 374
points of order two, 147
r-fold sum of curve in, 115
Riemann form, 114
semistable reduction, 164
tangent space, 117
theta divisor, 115, 135, 138, 216, 374,
417
determines curve, 115, 135

Torelli theorem, 135
W r subvariety, 134
Jensen inequality, 230
j-invariant, 499
bounded by conductor, 453

K3 surface, 478
Batyrev-Manin conjecture, 492, 493
canonical height, 197, 241
elliptic, 493, 499
integral points, 500
Kodaira dimension, 476
Vojta conjecture, 484

Kamienny, S., 458
Kernel,
of an isogeny, 95
of multiplication, 94, 125
of reduction, 267
sheaf,66
Kodaira dimension, 475
1'0 = -1, 477, 499
1'0=0,476,480,499
integral points on variety of, 500
Vojta conjecture, 484

1'0 = 1, 499
1'0 = 2, 499
1'0 = dim, 478
1'0 ~ 0, 478
abelian variety, 476
bielliptic surface, 476
Enriques surface, 476
is birational invariant, 475
K3 surface, 476
ofF,476
of a complete intersection, 476
of a curve, 476
of a product, 476
of subvariety of abelian variety, 476
of a surface, 478
unramified finite map, 476

Kodaira vanishing theorem, 85, 392
Kodaira variety of image of rational

map, 476
Kodaira, K., 455, 466
Kodaira-Parshin fibration, 466, 471, 480,

499
of general type, 478
Kollar, J., 477
Kolyvagin, V.A., 283
Kronecker's theorem, 178, 277
Krull dimension, 22, 154
Krull topology, 284
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Kummer extension
discriminant of, 265
ramification in, 265, 293
Kummer isomorphism, 288
Kummer pairing, 261, 279
properties of, 262
Kummer sequence, 288
for an abelian variety, 279

Kummer theory, 260, 265, 266, 435

l-adic representation, 460, 468
characteristic polynomial, 468
eigenvalues, 468

Lagrange theorem on continued frac
tions, 365

Lang, S., 133,345,473,474
Lang height lower bound conjecture, 453,

473
implied by Szpiro conjecture, 454
over function field, 455

Lang subvariety of abelian variety con-
jecture, 435

Lang hyperbolicity conjecture, 479
Lang integer point conjecture, 473
Lang-Vojta conjecture, 486
Lattice, 91,93, 274
alternating form, 103
counting points in, 214, 220, 254, 310
determinant, 255
first minimum, 254
fundamental domain, 203, 214, 253,
255

gap principle, 220, 254
Hadamard's inequality, 255
Hermitian form, 92
Minkowski theorem, 203, 253
quadratic form, 203, 253
quasi-orthogonal basis, 255
Riemann form, 92
small basis for, 459
volume of, 274
Laurent, M., 439
Lebesgue measure zero, 361
Lefschetz embedding theorem, 105
Lefschetz principle, 7, 122
Left translation, 28
Leibniz formula, 24, 308, 362, 403, 406,

429
Level structure, 447
Lewis, D.J., 345
Liardet, P., 439
Lie group, 91
compact, 93

Line, 73
Line bundle, 60; See also Invertible sheaf,

Vector bundle
admissible pair for section, 403, 404,
412, 419, 423
Cartier divisor of a, 63
dual, 62
height, 194

Index

hyperplane, 63
index of section, 403
metrized, 247, 248, 446
norm of section to metrized, 248
on projective space, 61
pullback, 62
section, 61
self-intersection, 497
tensor product, 62
transition function, 62

Line sheaf, See Invertible sheaf
Linear equations, Siegel lemma, 316, 319,

362
Linear equivalence, 35, 38
and height, 185
class, 35
intersection index invariant under, 45
pullback respects, 40

Linear form, canonical height, 206
Linear forms in logarithms, 360, 471
Linear group, 29
general, 430
Linear projection, 19, 52, 64, 229
with given center, 20

Linear series, See Linear system
Linear system, 42, 49
ampleness criterion, 52, 53
attached to a theta function, 102
base locus, 64
base point, 51
base point free, 51
complete, 50
dimension, 49
fixed component, 51
inducing a morphism, 51
infinite-dimensional, 50
is finite dimensional, 55
map induced by linear projection, 64
of a hyperplane, 50
pullback by morphism, 50
pullback by rational map, 50
rational map associated to, 51
very ample, 52

Linear variety, 13
Linearly independent if Wronskian is

nonzero, 331, 363
Liouville inequality, 309, 324, 328, 429
Liouville proof of existence of transcen-
dental numbers, 303, 362

Liouville theorem, 97, 101, 300, 301, 362
Local coordinates, 27
Local data, sheaf determined by, 57
Local degree, 171
Local height, 237, 482
additivity, 239
analogous to proximity function, 482
canonical, 241
canonical on abelian variety, 242
decomposition theorem, 255
explicit formula for canonical, 242
for extension field, 240
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Local height (continued)
functoriality, 239
intuitive definition, 238, 482
machine, 239
normalization, 239
of algebraic point, 487
on P", 240
positivity, 239
series for, 242
sums to global height, 239

Local intersection index, 45
Local parameter, 27

exists only at nonsingular point, 27
Local ring.
at a point, 15
completion of, 32
homomorphism induced by regular
map, 18

integrally closed, 33
local parameter, 27
of a divisor, 35
regular, 155
regular at smooth point, 25
valuation on, 35

Local-to-global principle, 75
Local/global property of heights, 239,
241,242

Localization, 17
Locally free sheaf, 59; See also Vector

bundle
of differential forms, 60
of rank 1, See Invertible sheaf
pullback,66
rank,59
vector bundle associated to, 62

Locally ringed space, 152; See also
Scheme

morphism, 152
Locally trivial vector bundle, 62
Log general type, 486
Logarithmic discriminant, 486
Logarithmic embedding, See Regulator
map

Logarithmic height, 174, 183
Loglog counting function, 223, 255, 496
Long exact sequence of group cohomol-
ogy,287

L-series
abelian variaty, 461
Birch-Swinnerton-Dyer conjecture,
462
Eisenstein-Langlands, 494
functional equation, 463
leading coefficient, 462
of abelian variety has analytic continu
ation,461
of abelian variety satisfies functional
equation, 461
order of vanishing, 462
sign of functional equation, 461, 462

£2 norm of a polynomial, 230
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Lutz-Nagell theorem, 457

Mahler, K., 305, 345
Mahler measure, 230
bounds coefficients, 231
of polynomial of one variable, 230
Manifold, 500
Manin, Y., 224, 426, 439, 463, 491, 494
Manin-Batyrev conjecture, 224, 491, 492
Manin-Mumford conjecture, 435, 438,

444
for commutative algebraic group, 439
Map
finite, See Finite morphism
ramified, 41
regular, 16

Masser, D., 451, 467
Masser-Qesterle conjecture, See abc con-
jecture

Masser-Wiistholz zero estimate, 380
Mathematical logic, 439
Maximum principle, 94, 107
Mazur, B., 426, 458,473, 474,481, 496
McQuillan, M., 439
Measure, translation invariant, 215
Merel, L., 458
Merel theorem, 473
Mestre, J.-F., 455, 465
Metric, Fubini-Study, 248, 255
Metrized degree, 248
Metrized height, 248
is a Well height, 250
on projective space, 248, 255
well-defined up to 0(1), 249

Metrized line bundle, 247, 248, 446
Arakelov degree, 247
height associated to, 248
norm of section, 248
on projective space, 248, 255
Mignotte, M., 345
Mild singularity, 68
Minimal discriminant, 452, 498, 499
Minimal model, 161
Castelnuovo criterion, 161
is unique, 161
of a curve, 161
of an elliptic curve, 163
Minimal polynomial, 309
Minkowski theorem, 203, 253, 275, 276,

278
Mk-bounded, 238
affine set, 238
function, 238
set, 238
Mk-constant, 238, 292, 319, 414
Model
extension of point, 158
minimal, 161
of a variety, 157
of projective space, 157
relative minimal, 161
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Model theory, 439
Modular curve, 458, 461, 464
quadratic points on, 442
rational points on, 426

Modular elliptic curve, 283
Modular form, 454
Modular Jacobian, 461
Modularity conjecture, 454, 455, 461
Module, finitely generated, 18
Moduli scheme, 367
Moduli space, 83, 142, 447
ample line bundle on, 448
coarse, 447
compactification of, 448
fine, 447
integral point, 486
of abelian varieties, 142
of curves, 142, 441
Mobius function, 502
Mobius inversion formula, 212
Monomial, number of, 310
Mordell conjecture, See Faltings theorem
Mordell, L.J., 257
Mordell-Wei! group, 257, 379
bound for rank, 267,472
canonical height cone, 371
finite, 426
rank unbounded?, 464
upper bound for rank, 465
Mordell-Wei! theorem, 168, 169, 190,
216,222,257,356,367,456

descent lemma, 258
effective, 457, 463
weak, 190, 258
Mori, S., 478
Morphism, 16
canonical height and, 195, 241
Cremona transformation, 21, 30, 52,69
dominant, 30
examples of, 19
extending rational map, 158, 165, 246
fiber, 156
finite, See Finite morphism
forward orbit of a point, 197
Frobenius, 31, 89
from curve to pI, 440
generic fiber, 156
height for commuting, 252
induced by linear system, 51
induced map on differential forms, 28
induces map on Picard group, 41
of affine schemes, 152, 153
of ringed spaces, 152
of schemes, 153
of schemes over S, 153
of tori, 93
of vector bundles, 61
periodic point, 197
preperiodic point, 197
presheaf, 57
pullback of a divisor, 40, 54

Index

pullback of a divisor class, 41
pullback of a linear system, 50
ramification index, 72
ramified, 41
sheaf,57
special fiber, 156
transformation of height, 179, 190, 251

Moving lemma, 40, 45
Multipicity of an ordinary singularity, 68
Multiple fiber, 156
Multiplication map, 260, 356
and height, 190
degree of, 125
effect on divisors, 124, 191
on an abelian variety, 94
on a complex torus, 94
on a formal group, 271

Multiplicative formal group, 269, 272
Multiplicative group, 29
points on, 165

Multiplicative height, 174
Multiplicative reduction, 452
Mumford, D., 211
Mumford formula, 124, 191
Mumford gap principle, 218, 383, 425,
429,430

Mumford theorem, 216, 384

N akai-Moishezon criterion, 65
Nakayama lemma, 27
Neron, A., 195, 199, 213, 242
Neron differential, 462, 499
Neron function, 247
Neron model, 162,499
abelian scheme, 163
connected component of fiber, 163
group of components, 164
is a group scheme, 163
is unique, 162
not invariant under base change, 163
of a variety, 162
of an abelian variety, 162
of dimension one, 163
of an elliptic curve, 163, 166
points on, 163
semistable reduction, 163
special fiber, 163

Neron-Severi group, 128
ample cone, 488
effective cone, 488
equal to Picard group, 488
is finitely generated, 131
of a curve, 131
of a variety, 131
Neron-Tate height, See Canonical height
Nevanlinna invariant, 488

Q(D) = 0,492
abscissa of convergence and, 500
blowup of projective plane, 489
blowup of projective space, 501
equal to abscissa of convergence, 491
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Nevanlinna invariant (continued)
finite map, 489
inverse linear, 489, 500
is rational?, 488
properties of, 489, 500
unramified map, 489
Nevanlinna theory, 482
characteristic function, 483
counting function, 483
defect relation, 483
proximity function, 482, 483
Node, 452
blowup of, 86
Noguchi, J., 480
Non-algebraically closed field, 43
Nonarchimedean absolute value, 159
Nonclosed point, 153
Noncuspidal point, 426
Nondegenerate Riemann form, 92
Nonsingular point, 25
Jacobian criterion, 25
local parameter, 27

Nonsingular variety, 25, 155
Nonvan~hingtheorem,302,329,333

Norm of section to metrized line bundle,
248

Normal crossings divisor, 484, 485, 499
Nevanlinna invariant, 488

Normal point, 33
Normal projectivity, 376
Normal variety, 19,33
complete linear system, 55
counting function, 503
image of r(Jpn, O(d), 64

Normalization, 33
of a curve, 70, 353
of a scheme, 155
of local height, 239

Normalized differential operator, 331
Normalized partial derivative, 307
bound for coefficients, 307
has integer coefficients, 307

Nul~tellensatz, 10, 182, 185
effective, 180
Number field
absolute value, 159, 170, 173
analogous to abelian variety, 462
analogous to function field, 159
canonical embedding, 274
class group, 462
complex embedding, 172
degree bounded by log discriminant,
276

degree formula, 171, 227
Dirichlet unit theorem, 274
discriminant, 462
embedding in C, 172
finitely many ideals of fixed norm, 275
finitely many with fixed discriminant,
273

height of an element, 176
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height relative to, 174
Hermite theorem, 273
ideal class contains ideal of bounded
norm, 276

ideal class group, 37
ideal class group ~ finite, 273, 349
ideal contains element of bounded
norm, 275

local degree, 171
maximal extension of exponent m un-
ramified outside S, 265

product formula, 172
rank of group of S-units, 266
real embedding, 172
regulator, 278, 462
regulator map, 277
ring of integers, 174
ring of S-integers, 174
unit group, 37

~ finitely generated, 274, 349, 350
unramified outside S, 264
volume of an ideal, 274
volume of ring of integers, 274
zeta function, 462

Odd divisor class, 129
Oesterle, J., 425, 451, 455
One cocycle, 284, 286
continuous, 284
Orbit, forward, 197
Ordp , 170
Ordy, 35
Order
discriminant of, 293
of a differential operator, 331
of vanishing, 308

Ordinary double point, 161
Ordinary singularity, 68
blowup, 70, 86
multiplicity of, 68

Pacelli, P., 474
p-adic absolute value, 171, 173
p-adic representation, 109
p-adic valuation, 170, 173
Pairing
canonical height, 200
Kummer, 261
Parabola, 14
Parabolic subgroup, 494
Parallelogram law, 169
implies quadratic form, 201

Parshin, A., 466
Partial derivative, normalized, 307
p-divisible group, 367, 467
Period matrix,
Jacobian variety, 113
of y2 = x6 - 1, 117
Period relations, 112, 117
Periodic continued fraction, 365
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Periodic function,
elliptic, 110
sine, 110

Periodic point, 197
finitely many, 197
has height zero, 197
on abelian variety, 198
on projective space, 198

Peterson norm, 454
Peyre, E., 495
Pfaffian, 103, 104
Philippon, P., 450
Phragm~n-Lindelofprinciple, 464
Picard functor is quadratic, 123
Picard group, 38; See also N~ron-Severi

group
connected component, 128
divisible part, 128
equal to N~ron-Severigroup, 488
even divisor class, 129
generated by ample divisors, 53, 186
generators for, 54
has structure as abelian variety, 130,
131

is contravariant functor, 40
isomorphic to group of invertible
sheaves, 60
map induced by d-uple embedding, 41
map induced by a morphism, 41
map induced by Segre embedding, 41
map to canonical height, 207
map to divisor class group, 38
odd divisor class, 129
of a curve, 134
of an elliptic curve, 78
of curve of genus 0, 134
of Grassmannian variety, 48
of product of projective spaces, 46
relation to Albanese variety, 132
translation invariant divisor class, 128
translation map, 126

Pigeonhole principle, 301, 317, 318, 320,
346

Pila, J., 491
Plane curve
every curve birational to, 69
genus, 72, 84
points of low degree, 443

Pluricanonical divisor, 475
Pluricanonical map, 499
Plurigenera, 475
are birational invariants, 475
of lPn, 476
of a curve, 476

Plucker embedding, 32, 48
Plucker relations, 32, 48
Plucker coordinates, 32, 48
Poincare, H., 98
Poincare divisor, 208
Poincare divisor, 108, 128, 130, 207, 459
is even, 130

Index

Jacobian variety, 141
pullback to curve, 138, 216, 374

Poincare irreducibility theorem, 95, 144
Point
absolute value attached to, 159
at infinity, 14, 77, 164
base, 51
blowup at a, 20
extension of, 158
field of definition, 12, 176
forward orbit, 197
functor of, 155
Galois conjugacy class of, 165
generic, 153
geometric, 153
infinitely near, 74
infinitesimal neighborhood, 58
local intersection at, 45
local parameter at, 27
local ring at, 15
map regular at, 16
metrized degree of, 248
metrized height of, 248
nonclosed, 153
nonsingular, 25
normal,33
periodic, 197
preperiodic, 197
ramification, 154
rational, 75
regular function at, 15
separation of, 52
singular, 25
smooth,25
stalk of a sheaf at, 58
Weierstrass, 89, 90
Weierstrass weight, 89

Point counting function, See Height
counting function

Pointed set, 286
Polarization, 131
principal, 131

Pole, divisor of, 35
Polynomial,
affine height, 224
auxiliary, 302, 316, 320
derivative of, 24
Gauss lemma, 229
Gauss norm, 224
height of, 224, 225, 334
collection of, 225
product of, 226, 228, 233, 430
sum of, 226, 233
value, 225, 234

homogeneous, 13, 36
homogeneous height, 256
index
at a point, 308
at nearby point, 326
is valuation on, 309

inhomogeneous height, 256
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Polynomial (continued)
£2 norm, 230
Mahler measure, 230
bounds coefficients, 231

nonvanishing lemma, 333
number of monomials, 310
projective height, 225
shifted, 234
sYmmetric, 177
valuation of derivative, 234
valuation of product, 229

Polynomial ring, index is valuation on,
309

Poonen, B., 445
Positive definite quadratic form, 92, 203,

253
Positive divisor, 34, 37
Positive Riemann fonn, 100
Positivity of local height, 239
Power series, radius of convergence, 408
Preperiodic point, 197
finitely many, 197
has height zero, 197
on abelian variety, 198
on projective space, 198

Presheaf, 57, 65
morphism, 57
of groups, 57
of modules, 57
of rings, 57
sheaf attached to, 66
Prime ideal, 11
absolute value attached to, 159
height, 22
in Z[X], 165
ramification index, 173

Primes in arithmetic progression, 292,
349

Primitive element theorem, 22, 430
Principal divisor, 35, 38
Arakelov, 247
compactified, 247
has degree zero, 247
in projective space, 36

Principal homogeneous space, 289
Principal polarization, 131
theta divisor gives, 141

Principally polarized abelian variety,
moduli space, 447, 448, 486

Probability theory, 310
Product
ample divisor on, 431
arithmetic genus, 391, 429
canonical class of, 47
canonical divisor on, 390
counting function, 502
derivative of, 403, 406
divisor class group of, 48
fiOOred, 155
geometric, 155
height on, 256
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Kodaira dimension of, 476
of affine varieties, 11
of curves, 256
of sheaves, 58
rigidity lemma, 119, 120, 121
Segre map on a, 19, 41, 65
tensor, 155
Product formula, 172,175,247,313,387,

404
Product lemma, 368
Product Rule, 160, 171, 312, 331, 362
Product theorem, 380, 437
Proj,165
structure sheaf, 165
Zariski topology, 165

Projection
linear, 19, 64
of projective varieties is closed map, 17
Projection-summation map, 121
Projective algebraic group, 29
Projective algebraic set, 13
Projective coordinates, 12
Projective curve, See Curve, Riemann

surface
Projective degree, 46, 65
of a variety, 446
Projective general linear group, 90
Projective height of a polynomial, 225
Projective hypersurface, 13
Projective line
automorphism group, 90
covering, 81
has genus zero, 71
integer points on, 351
map from elliptic curve, 253
Picard group, 134
ramified cover, 87
rational points on, 367
symmetric product, 148

Projective model, 68
Projective normality, 376
Projective plane
ample cone of blowup, 489
arithmetic genus, 85
Bezout's theorem, 84
counting function of blowup, 489
Cremona transformation, 21, 30, 52, 69
effective cone of blowup, 489
Nevanlinna invariant of blowup, 489
quartic curve, 87
Projective scheme, 157
points on, 165

Projective space, 12
absolute height on, 176
action of Galois group on, 12
ample cone of blowup, 501
automorphism, 47
Batyrev-Manin conjecture, 255
blowup, 256
blowup at a point, 20
canonical class, 39, 47
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Projective space (continued)
cellular decomposition, 14
change of coordinates, 430
counting function, 223
of blowup, 494, 501
of product, 502

covering byaffines, 14
curve of degree N in, 89
degree of a hypersurface, 36
degree of a subvariety, 46
differential forms on, 26
dimension of, 22
divisor class group, 36
dual,33
d-uple embedding of, 19, 41, 52, 64,
179

extension of automorphism, 157
field of definition of a point, 12
finitely many points of bounded
height, 174, 177

function field of, 16
fundamental line bundle, 61
has good reduction, 158
height counting function, 211
height over Q, 174
height relative to k, 174
homogeneous coordinates on, 12
hyperplane line bundle, 63
hypersurface of general type, 478
is Fano, 477
Kodaira dimension, 476
linear map and height, 180
linear projection on, 19
linear subvariety of, 13
linear system of a hyperplane, 50
local height on, 240
map to abelian variety is constant, 132
metrized line bundle, 248, 255
Nevanlinna invariant of blowup, 501
over Z, 166
over a ring, 166
Picard group of a product of, 46
plurigenera, 476
preperiodic point, 198
product, 493
rational map associated to a linear
system, 51

rational map is composition, 64
rational map to abelian variety is con-
stant, 120

rational points on, 12
relative height, 174
Schanuel theorem, 488
scheme model, 157
Segre embedding, 19, 41, 65
height, 179

standard affine open subset, 14
Zariski topology, 13

Projective variety, 13
albanese, 116
ample divisor, 52

Index

complete linear system, 55
coordinate ring, 13
covering by affines, 14
degree, 65
field of definition, 13
group is a torus, 107
homogeneous coordinate ring, 13
homology, 116
image is projective, 17
image of r(F, CJ(d», 64
Lx(d) complete, 55
linear projection, 52
linear system, 64
is finite dimensional, 55

map to abelian variety, 123
product of is projective, 19, 41
projection is closed map, 17
regular function is constant, 17
rigidity lemma, 119, 120, 121
seesaw principle, 123
sheaf of invertible functions, 59
sheaf of regular functions, 59
theorem of the cube, 122
very ample divisor, 52
Proper variety, 33
Properness, valuative criterion, 136
Proximity function, 482, 483
Pseudo-hyperbolic, 479
Pullback
of a divisor, 40
of a divisor class, 41
of ample divisor, 54
of basepoint free divisor, 54
of locally free sheaf, 66
of vector bundle, 62
respects linear equivalence, 40

Quadratic form, 203, 205, 253, 358
canonical height, 200, 206
counting lattice points, 214
diagaonal, 204, 253
first minimum in lattice, 254
parallelogram law, 201
positive definite, 203, 253

Quadratic function, 205, 253
canonical height, 205
Quadratic functor, 123
Quadratic number, continued fraction of,

365
Quadratic point on modular curve, 442
Quadratic transformation, See Cremona
transformation

Quadric surface contains genus four
curve, 87

Qualitative theorems, 457
Quantitative bound for rational points,

472
Quantitative theorems, 457
Quartic curve, 87
Quasi-orthogonal basis, 255, 459
Quasi-projective algebraic set, 14
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Quasi-projective variety, 14
Quasi-S-integral point, 483
Quintic surface, 480
Quotient sheaf, 65, 66
Quotient variety, abelian, 144
Quotient
by an equivalence relation, 146
exists for finite groups, 143
geometric, 142, 146

Radical, 10, 451
Radius of convergence, 408
Ramification
in a Kummer extension, 265, 293

Ramification index, 41, 72, 173
Ramification point, 154
Ramified map, 41
Rank
bound for Mordell-Weil group, 267,
472

finite, 434
of an abelian variety, 257
of elliptic curves unbounded?, 464
of group of S-units, 266
of a locally free sheaf, 59
of a vector bundle, 60
upper bound, 465

Rational curve, 75
geometric criterion, 75
Hasse principle, 75

Rational differential form, 27
Rational elliptic surface, 499
Rational function
decomposition theorem, 255
divisor of, 35, 38
integer values of, 351
linearly independent iff Wronskian is
nonzero, 331, 363

sheaf of, 58
value at a divisor, 91
Rational map, 16
associated to a linear system, 51
defined off of codim two set, 26
domain of, 16
dominant, 16, 18
examples of, 19
extends to morphism, 69, 165, 246
from elliptic curve, 253
induced cotangent map, 25
induced map on differential forms, 28
is a morphism on curves, 20
Kodaira dimension of image, 476
of projective space, 64
on a smooth variety, 26
pullback of linear system, 50
resolution of singularities of, 31, 246
to abelian variety extends, 120
to algebraic group extends, 120
transformation of height, 179, 251, 252
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Rational number, approximation to ir
rational number, See Diophantine
approximation

Rational point, 75
affine n-space, 9
approximation to v-adic point, 496
approximation to real point, 496, 500
bound for number on curve, 429, 430
counting function, 487
dense set of, 487
effective determination of, 426
gap principle, 218, 383, 425
height counting function, 210, 211
on curves of genus 9 ;::: 2, 367
on modular curve, 426
on subvariety of abelian variety, 434,

435
on variety with trivial canonical divi-
sor, 224, 492

projective space, 12
quantitative bound, 472, 473
real closure of, 496
uniform bound for number of, 425,
426,432

universal bound for, 474, 481
widely spaced, 218, 383, 425
Rational representation, 109
Rational ruled surface, Batyrev-Manin

conjecture, 493
Rational section, 61
Rational surface, 478
Raynaud, M., 467
Raynaud theorem, 435, 438, 444
Real closure of rational points, 496
Real embedding, 172
Real locus, 500
Real number
approximation by rational number, See
Diophantine approximation

continued fraction of, 365
Real period, 462
Real point, approximation by rational

point, 496, 500
Real topology, 496
Reciprocity law of Weil, 91, 297
Reduced scheme, 153
Reduction modulo p, 157
Reduction to simultaneous approxima

tion, 305, 341
Reduction to the diagonal, 23
Reduction
bad, 158
good, 158
Hensel's lemma, 294
injectivity of torsion, 263, 272, 294
kernel of, 267
of formal group, 271
of general linear group, 268, 295
of isogeny, 290
of root of unity, 267
Regular differential form, 26, 27, 88
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Regular function, 15
along a subvariety, 15
at a point, 15
on projective variety is constant, 17
ring of, 15
sheaf of, 58, 59
Regular local ring, 155
Regular map, 16
induces homomorphism of local rings,
18

Regular scheme, 155
Regularity
definition is local, 15
is open condition, 15

Regulator, 278, 462
canonical, 459
canonical height, 201
height on abelian variety, 459

Regulator map, 277
image is discrete subgroup, 277
kernel of, 277

Relative height, 174
Relatively minimal model, 161
Castelnuovo criterion, 161
Representation
complex, 109
t-adic, 460
p-adic, 109
rational, 109
semi-simple unramified outside S, 468
Residue formula, 160
Residue theorem, 255
Resolution of singularities, 31, 243, 246
Restriction map, 57, 280, 287
Riemann, B., 115
Riemann form, 92, 95
attached to a theta function, 100
group of, 107
nondegenerate, 92
if divisor is ample, 102

of Jacobian period lattice, 114
of theta divisor, 115
on a quotient, 100
positive, 100
semicharacter, 107
Riemann hypothesis, 465
for curve over finite field, 150

Riemann period relations, 112, 117
Riemann surface, 23
Abel-Jacobi theorem, 114
basis of regular differentials, 111, 112
divisor group, 114
genus, 67
homology, 112
hyperelliptic, 111
is projective, 114
Jacobian variety, 110, 113, 114, 117
path integral, 111
period relations, 112, 117
r-fold sum in Jacobian, 115
theta divisor, 115

Index

Riemann theorem, 368
Riemann theta function, 98, 109, 115
Riemann-Hurwitz formula, 72 82 87
456,469 ' , ,

Riemann-Roch theorem, 7, 70, 80, 83,
89, 135, 136, 138, 384, 389, 390
arithmetic, 380
for abelian varieties, 104
for surfaces, 85, 368, 391
for threefolds, 367
generalized, 85, 497
on curve of genus one, 76
on curve of genus zero, 74
Riemann-Roch-Hirzebruch theorem 85
Right translation, 28, 66 '
~gidity lemma, 119, 120, 121, 133
Ring,
graded,165
homogeneous localization of, 17
integral closure, 155
Krull dimension, 22
localization of, 17
of fractions, 17
of integers, 174
spectrum, 151
tensor product, 155

Ring of integers,
characterized by absolute values, 174
of S-integers, 174
volume of, 274

Ringed space, 152
locally, 152
morphism of, 152

Root of unity, 178
kernel of regulator map, 277
reduction of, 267
Roth lemma, 333, 343, 368, 380, 381,

385, 402
analogue of, 438
two variable, 418

Roth theorem, 300, 304, 305, 341, 348,
456, 466, 484

analogue of defect relation, 483
application to unit equation, 345
bound for number of solutions, 344,
345, 364

for curves, 354, 355
gap principle, 344, 363
higher dimensional version, 485
is ineffective, 344
quantitative form, 472
reduction to algebraic integers, 305
simultaneous approximation version,
305, 341

sketch of proof, 304
Rubin, K., 283
Ruled surface, 477, 478
Ruled surface, Batyrev-Manin conjec

ture, 493

Saturated ideal, 13
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Schanuel, S., 211
Schanueltheorem, 488,493
Scheme, 151, 153
abelian, 163, 294
affine, 152
affine line over Z, 154
affine plane over k, 154
associated to a variety, 153
bad reduction, 158
connected fiber, 157
dimension, 154
extension of point, 158
extension of scalars, 156
faIDily of, 156
fiber of morphism, 156
fibered product, 155
of affine, 156

finite cover, 154
finite group, 467
functor of points, 155
generic fiber, 156
generic point, 153
geometric point, 153
good reduction, 158
integral, 153
irreducible, 153
irreducible fiber, 157
model, 157
moduli, 367
morphism, 153
of affine, 152, 153

normalization, 155
of dual numbers, 166
one-pointed, 153
over S, 153
over Z, 153, 154
point with value in S, 155
points of A~, 165
points on projective, 165
product, 155
Proj,165
projective, 157
projective space, 166
rational map extends to morphism,
165,246

reduced, 153
reduction modulo p, 157
regular, 155
special fiber, 156
Spec(Z), 154
structure sheaf, 152
tw<rpointed, 153

Schlickewei, H., 485
Schmidt, W., 485
Schmidt subspace theorem, 438, 485
Section
admissible pair, 403, 404, 412, 419, 423
global, 59
hyperplane, 49
index of, 403
norm of to metrized line bundle, 248
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rational, 61
small, 389, 393, 419, 422
to a vector bundle, 61

Seesaw principle, 123, 129, 130, 133, 140
Segre embedding, 19,41,65,179,229,

376, 477
Self-intersection, 84
Arakelov,471
of line bundle, 497
of the diagonal, 86, 391

Selmer group, 279, 280
elements represented by homogeneous
spaces, 281

is finite, 281
Semi-algebraic set, 496
Semi-simple representation unraIDified

outside S, 468
Semiabelian variety, 439
Semicharacter, 107
Semistable elliptic curve, 452
Semistable reduction, 161, 163
abelian variety, 448
split, 163

Serre, J.-P., 63
Serre vanishing theorem, 85
Set, pointed, 286
Shafarevich conjecture, 467, 486
Sheaf,57
attached to a presheaf, 66
cohomology, 38, 65
cokernel, 66
determined by a divisor, 60
direct sum, 58
dual, 66
elements determined locally, 57
free, 59
germs at a point, 59
global section, 59
image, 66
isomorphism, 59
kernel, 66
line, See Invertible sheaf
local data can be patched, 57
locally free, 59, 62
morphism, 57
of Coo functions, 58
of 0 x-modules, 59
of continuous functions, 56, 58
of differential forms, 58
is locally free, 60

of groups, 57, 58
of invertible functions, 58
of modules, 57
of rational functions, 58
is not locally free, 60

of regular functions, 58, 59
of rings, 57, 58
on Spec(R), 152
pullback, 66
quotient, 65, 66
restriction map, 57
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Sheaf (continued)
stalk, 58
structure, 152
tensor product, 58
with dual is trivial, 66

Sheaf cohomology, 38, 65
Shifted polynomial, 234
Shimura, G., 92, 461
Siegel, C.L., 345, 349, 351
Siegel lemma, 316, 319, 322, 368, 381,
385,390,393,401,402,418,422

algebraic coefficients, 319
improved constant, 362
integer coefficients, 316, 362

Siegel theorem, 168,353,456,484,486
effective, 360, 457, 471
Faltings theorem implies, 353, 431
is ineffective, 360
quantitative form, 472
strengthened version, 364, 365

Siegel upper half-plane, 464
Siegel identity, 350, 352
Sigma function, 97
Silverman conjecture, 454
Silverman, J.H., 428, 454, 455, 473
Simple abelian variety, 96, 441
ample divisor, 109
endomorphism ring, 96, 134

Simple Jacobian, 441
Simple torus, 96
Simultaneous approximation, reduction

to, 305, 341
Sine function, 110
addition formula, 111

Singular curve, genus of, 74
Singular point, 25
Singular variety, height counting func

tion, 503
Singularity
blowup, 86
mild,68
ordinary, 68, 86
resolution of, 243

S-integral point, 483
on variety of log general type, 486

Skew field, 134
Skorobogatov, A., 481, 496
Slice divisor, 375
Small point conjecture, 470
Smooth curve
birational morphism is isomorphism,
69

every curve birational to, 70
genus of plane curve, 72, 84
rational map extends to morphism, 69
Smooth point, 25
Jacobian criterion, 25
local ring at is regular, 25
Smooth variety, 19, 25
is normal, 33
rational map on, 26

Index

Special fiber, 156, 157, 158
of an elliptic curve, 166
of Neron model, 163

Special subset, 479
of abelian variety, 480

Specialization map, 428
Spectrum
Arakelov divisor, 247
compactified divisor, 247
completion of, 247
dimension of Spec(Z), 154
metrized line bundle, 247
of Z, 154
of a ring, 151
structure sheaf, 152

Split semistable reduction, 163
Square, theorem of the, 126
Stabilizer
of subvariety of abelian variety, 133,
476, 497

Stack,367
Stalk,58
isomorphism, 59
of structure sheaf of Spec(R), 152

Sterling's formula, 308
Structure sheaf, 152
of Proj, 165
of Spec(Z), 154

Subspace theorem, 438,485
Subvariety
degree of, 46
dimension of, 22
dimension strictly smaller, 23
local ring along a, 15
of codimension one, 34

Sum
height of, 256
of sheaves, 58

S-unit equation, See Unit equation
S-unit group, rank of, 266
Superabundance, 85, 391, 392
Superelliptic curve
effective bound for integer points, 360,
362

Support of a divisor, 34, 37
Surface, 23
abelian,478
adjunction formula, 84
algebraic, 84
arithmetic, 466
arithmetic genus, 85, 391, 429
bielliptic, 478
canonical divisor, 84
classification of, 478
cubic, 30, 492, 500
Del Pezza, 493
divisor, 84
elliptic, 478, 499
Enriques, 478
general type, 478
K3, 478, 484, 499
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Surface (continued)
Kodaira dimension, 478

K. =-1, 499
K. = 0,499
K. = 1, 499
K. =2,499
one is elliptic, 478

Kodaira-Parshin fibration, 480, 499
of bidegree (d,3), 499
rational, 478, 499
Riemann, 23, 67
Riemann-Roch theorem, 85, 368, 384,
391
ruled,478
self-intersection of a divisor, 84
self-intersection of the diagonal, 86,
391

superabundance, 85, 391, 392
Surjective finite morphism, 19
Swinnerton-Dyer, P., 481, 496
Symmetric bilinear pairing, 253
Symmetric divisor
and height, 191
canonical height with respect to, 199
Symmetric polynomial, 177
Symmetric product
is a variety, 144
of a curve, 135
of a curve of genus two, 148
of an elliptic curve, 148
of projective line, 148

Szpiro, L., 470
Szpiro conjecture, 453
generalized, 453
implied by abc, 498
implies Lang height lower bound con
jecture, 454

implies weak abc, 498
over function field, 455

Szpiro ratio, 454
Szpiro small point conjecture, 470

Tangent and chord process, 257
Tangent bundle, 61, 66
algebraic group, 61

Tangent cone, 68
Tangent map, 25
on an algebraic group, 28, 66

Tangent space, 24,166
dimension of, 25
map induced by rational map, 25
of an abelian variety, 125
of Jacobian, 117

Tangent vector, separation of, 52
Taniyama, Y., 92, 461
Tate, J., 195, 199,242,462,464
Tate isogeny conjecture, 468
Tate module, 460
is semisimple, 468
of isogenous abelian varieties, 468
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Tate-Shafarevich group, 279, 280, 462
failure of Hasse principal, 281
elements represented by homogeneous
spaces, 281

is finite, 283
nontrivial example, 295

Taylor, R., 454, 461
Taylor series, 302, 308, 323, 326
of an algebraic function, 408
bound for coefficients, 409

Tensor product, 155
of sheaves, 58
of vector bundles, 62
with dual sheaf, 66
Theorem 90, Hilbert's, 288
Theorem of the cube, 121, 122, 133
Theorem of the square, 126, 133
Theta divisor, 115, 216, 254, 369, 374
associated Riemann form, 115
gives principal polarization, 141
intersection with curve, 368
is ample, 115
Jacobian, 135
pullback by [-1], 138, 216, 374
pullback to curve, 138,216,374,417
translation is symmetric, 148
Theta function, 97, 115, 122
affine function, 97
automorphy factor, 97, 101, 122, 126
characterizes curve, 115
depends on every variable, 105
Fourier series, 104
functional equation, 97, 99, 100, 102,
103

growth of, 100
linear system attached to, 102
map induced by space of, 102
represents every effective divisor, 98
Riemann, 98, 109
Riemann form is positive, 100
trivial, 99
Weierstrass (T function, 97
with same divisor, 98

Threefold, Riemann-Roch theorem on,
367

Thue, A., 329, 362
Thue equation, 362
Thunder, J., 494
Topological space
irreducible, 11
presheaf on, 57
ringed,152
sheaf of continuous functions on, 56

Torelli theorem, 115, 135
Toric variety, Batyrev-Manin conjecture,

495
Torsion point
Hensel's lemma, 293
injectivity of reduction, 263, 272, 294

Torsion subgroup, 125
of an abelian group, 126
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Torsion subgroup (continued)
of an abelian variety, 257

is finite, 198
Torsion
uniform bound for on abelian variety?,
458

uniform bound for on elliptic curve,
457

Torsion subvariety, 444
has height 0, 450

Torus, 91, 163; See also Complex torus
of dimension 1 is abelian variety, 92
simple, 96

Trace of Frobenius, 468
Transcendence degree, 22
Transcendence theory, 467
Transcendent&number, 303, 362
Transformation, quadratic, See Cremona

transformation
Transition function, 62
du& vector bundle, 66
Translation invariance of canoniC& local

height, 242
Translation invariant divisor class, 128
Translation invariant measure, 215
Translation map, 28, 66, 108, 126
Transvers& intersection, 45
Triangle inequ&ity, 159, 225, 229, 258,
302,324,325,347,368,388,406,
429

Triangle inequality, uniform, 181
Trichotomy of curves, 68
Trigon& curve, 148,440
Trivi& absolute v&ue, 159
Trivial bundle, 61
Trivial theta function, 99
Trivialization, local, 60
Tschinkel, Yo, 494, 495
Twist, 283
Twisted homomorphism, 284
Two-divisible group, 205

Veno, Ko, 476
UFD, 30, 37, 47
Ullmo, Eo, 444
Ultrametric absolute v&ue, 159
Unique factorization domain, See UFD
Uniruled variety, 477
has K. = -1, 477

Unit equation, 345
effective solution, 360
has finitely many solutions, 345
inside group variety, 346
number of solutions, 349
over finitely generated fields, 345
quantitative, 349
Unit group, 37
is finitely generated, 346, 349, 350
logarithmic embedding, 277
regulator map, 277
Unit theorem, 266, 274

Index

Universal cover, 68
Unramified map
Chevalley-Weil theorem, 264, 292,431
finite, 481
Kodaira dimension, 476
Nevanlinna invariant, 489

Unramified cohomology class, 281
Unstable elliptic curve, 452

v-adic distance function, 496
v-adic point, approximation by rational

point, 496
Valuation, See also Absolute v&ue
completion at, 171
decomposition theorem, 255
index is a, 309
of product of polynomi&s, 229, 233
of shifted polynomi&, 234
of sum of polynomials, 233
on loc& ring, 35
p-adic, 170, 173

V&uation theory, 159
Valuative criterion of properness, 136
Van der Poorten, A., 345
Vanishing theorem
of Kodaira, 85, 392
of Serre, 85

Vanishing, index of, 308
Variety
abelian, 29, 91; See alsoAbelian variety
affine, 9, 11
affine and projective is point, 29
algebraic points of bounded height,
254

Arakelov degree of, 446
bad reduction, 158
birational map, 16
birationally equiv&ent, 16, 18
blowup at a point, 21
canonical class of a product, 47
canonical divisor, 39
canonical height of, 450
canonic& height relative to a mor-
phism, 195
Cartier divisor, 37
Cayley form, 446
Chow form, 446
complete, 33
coordinate ring of, 11
cotangent space, 24
counting function, 168
covered by ration& curves, 488
deformation, 156
degree of a subvariety, 46
differenti& forms on, 26, 27
dimension of, 22
discreteness of algebraic points, 443
divisor class group, 35
dominant rational map, 16
Fano, 477
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Variety (continued)
finite morphism, 18
surjective, 19

finitely many points of bounded
height, 185

function field of, 16, 65
general type, 481
generic point, 153
geometric quotient, 142
good reduction, 158
group, 28, 66
height counting function, 210
height machine, 184
height of, 438, 445
via Arakelov degree, 446
via Chow form, 446

height relative to a morphism, 183
Hensel's lemma, 294
hyperbolic, 479
integral point, 292, 483
irreducible, 11
Kodaira dimension, 475
linear system on, 49
local coordinates, 27
local parameter, 27
local ring along a subvariety, 15
local ring at a point, 15
local ring at smooth point, 25
log general type, 486
map to abelian variety, 123
metrized line bundle, 248
minimal model, 161
moduli space, 447
morphism between, 16
Neron model, 162
nonsingular, 25, 155
normal, 19, 33
normalization of, 33
of dimension one, 23
of dimension two, 23
of general type, 478, 479
over Z, 151
over function field, 243
over non-algebraically closed field, 43
Picard,131
Picard group of, 38
plurigenera, 475
projective, 9, 13
projective degree, 446
projectively normal, 376
proper, 33
quasi-projective, 14
rational map, 16
on smooth, 26
to abelian variety, 120
to algebraic group, 120

rational"point counting function, 487
rational points are Zariski dense, 480
real closure of rational points, 496
real locus, 500
real topology, 496
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reduction modulo p, 157
regular function on, 15
relatively minimal model, 161
scheme associated to, 153
scheme model, 157
semi-algebraic set, 496
sheaf of C>x-modules, 59
sheaf of differential forms, 58
sheaf of invertible functions, 58
sheaf of rational functions, 58
sheaf of regular functions, 58, 59
smooth, 19, 25
special subset, 479
symmetric product is a variety, 144
tangent bundle, 61, 66
tangent map, 25
tangent space, 24, 166
twist, 283
uniruled,477
vector bundle, 60
Wei! divisor, 34
with almost ample canonical divisor,
491
with dense set of rational points, 487
with trivial canonical divisor, 224, 492
Zariski topology, 10

Vaughan, R.C., 494
Vector bundle, 60; See also Line bundle,

Locally free sheaf
dual,62
gluing locally trivial, 62
local trivialization, 60
locally free sheaf associated to, 62
morphism of, 61
of rank one, See Line bundle
pullback, 62
rank,60
section, 61
tensor product, 62
tensor with dual, 66
transition function, 62, 66
trivial, 61

Vector space
closed cone in, 488
cone in Euclidean, 428
counting function of lattice, 220, 254
discrete subgroup, 274
gap principle, 219

Vertical divisor, 244
Very ample divisor, 52, 65, 102,373
on a curve, 71, 375

Very ample linear system, 52
Vojta, P., 367, 439, 482
Vojta conjecture, 482, 484
exceptional subset, 484
for abelian variety, 484
for algebraic points, 487
for cubic surface, 500
for curves, 484
for K3 surface, 484, 500
for variety of general type, 484
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Vojta conjecture (continued)
for variety of Kodaira dimension tr. =
0, 484

for variety with mKx =0,500
implies abc, 487,500
normal crossings necessary, 484, 486,
499

Vojta divisor, 373, 377, 421
global section to, 385, 390, 392, 396

Vojtainequalit~369, 370, 421, 429, 430
applied with rank J(K) = 1, 370
implies Faltings theorem, 370
proof of, 421
steps in proof, 380
strengthening, 425
table of constants appearing in proof
of,378

Vojta generalization of Dyson lemma,
380

Voloch, J.F., 439, 482
Volume function, 500
Volume of a lattice, 274

Weak Mordell-Well theorem, 190,258,
356

outline of proof, 259
Weierstrass equation, 77, 164,452
regular differential form on, 88
weights of coefficients, 78

Index

Weierstrass p function, 97
Weierstrass point, 89, 90, 297, 426
hyperelliptic curve, 90

Weierstrass u function, 97
Weierstrass weight, 89
Weierstrass ( function, 97
Weight of Weierstrass coefficients, 78
Weil, A., 120, 135, 169
Ph.D. thesis, 257

Weil decomposition theorem, 255
Weil divisor, 34
group of, 34
map from Cartier divisor, 38

Weil height machine, 184, 245, 368, 382
ample divisor dominates, 252
metrized height is, 250

Weil pairing, 133, 261
Weil reciprocity law, 91, 297
Weil theorem, 468
Weil-Chatelet group, 290
geometric group law, 297

Widely spaced, 218, 383, 425
Wiles, A., 428, 454, 461
Wooley, T., 494
Wronskian determinant, 90, 329, 335
classical, 330
genera1ized, 331
index of, 330
nonzero iff functions independent, 331,
363
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