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Preface 

This book consists of two parts, different in form but similar in spirit. 
The first, which comprises chapters 0 through 9, is a revised and somewhat 
enlarged version of the 1972 book Geometrie Differentielle. The second 
part, chapters 10 and 11, is an attempt to remedy the notorious absence in 
the original book of any treatment of surfaces in three-space, an omission 
all the more unforgivable in that surfaces are some of the most common 
geometrical objects, not only in mathematics but in many branches of 
physics. 

Geometrie Differentielle was based on a course I taught in Paris in 1969-
70 and again in 1970-71. In designing this course I was decisively influ
enced by a conversation with Serge Lang, and I let myself be guided by 
three general ideas. First, to avoid making the statement and proof of 
Stokes' formula the climax of the course and running out of time before 
any of its applications could be discussed. Second, to illustrate each new 
notion with non-trivial examples, as soon as possible after its introduc
tion. And finally, to familiarize geometry-oriented students with analysis 
and analysis-oriented students with geometry, at least in what concerns 
manifolds. 

To achieve all of this in a reasonable amount of time, I had to leave out 
a detailed review of differential calculus. The reader of this book should 
have a good calculus background, including multivariable calculus and some 
knowledge of forms in Rn (corresponding to pages 1-85 of [Spi65j, for 
example). A little integration theory also helps. For more details, see 
chapter 0, where all of the necessary notions and results from calculus, 
exterior algebra and integration theory have been collected for the reader's 
convenience. 
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I confess that, in choosing the contents and style of Geometrie Differen
tielle, I emphasized the esthetic side, trying to attract the reader with 
theorems that are natural and simple to state, instead of providing an 
exhaustive exposition of the fundamentals of differentiable manifolds. I 
also decided to include a larger number of global results, rather than giving 
detailed proofs of local results. 

More specifically, here are some of the contents of chapters 1 through 9: 
-We start with a somewhat detailed treatment of differential equations, 

not only because they are used in several parts of the book, but because 
they tend to be given less an less weight in the curriculum, at least in 
France. 

-Submanifolds of Rn, although sometimes included in calculus courses, 
are then presented in detail, to pave the way for abstract manifolds. 

-Next we define abstract (differentiable) manifolds; they are the basic 
stuff of differential geometry, and everything else in the book is built on 
them. 

-Five examples of manifolds are then given and resurface several times 
along the book, thus serving as unifying threads: spheres, real projec
tive spaces, tori, tubular neighborhoods of submanifolds of Rn, and one
dimensional manifolds, i.e., curves. Tubular neighborhoods and normal 
bundles, in particular, form a class of examples whose study is non-trivial 
and illustrates a number of more or less refined techniques (chapters 2, 6, 
7 and 9). 

-Several important topics, for example, Morse theory and the classifi
cation of compact surfaces, are discussed without proofs. These "cultural 
digressions" are meant to give the reader a more complete picture of dif
ferential geometry and how it relates with other subjects. 

-Two chapters are devoted to curves; this is, in my opinion, justified, 
because curves are the simplest of manifolds and the ones for which we 
have the most complete results. 

-The exercises consist of fairly concrete examples, except for a few that 
ask the reader to prove an easy result stated in the text. They range from 
very easy to very difficult. They are in large measure original, or at least 
have not appeared in French books. To tackle the more difficult exercises 
the reader can refer to [Spi79, vol. I] or [Die69]. 

* * * 
In deciding to add to the original book a treatment of surfaces, I faced a 

dilemma: if I were to maintain the leisurely style of the first nine chapters, I 
would have to limit myself to the basics or make the book far too long. This 
is especially true because one cannot talk about surfaces in depth without 
distinguishing between their intrinsic and extrinsic geometries. Once again 
the desire to give the reader a global view prevailed, and the solution I 
chose was to be much more terse and write only a kind of "travel guide," 
or extended cultural digression, omitting details and proofs. Given the 
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abundance of good works on surfaces (see the introduction to chapter 10) 
and the great number of references sprinkled throughout our material, I feel 
that the interested reader will have no-difficulty in filling in the picture. 

Chapter 10, then, covers the local theory of surfaces in R 3 , both intrinsic 
(the metric) and extrinsic (the embedding in space). The intrinsic geometry 
of surfaces, of course, is the simplest manifestation of riemannian geometry, 
but I have resisted the temptation to talk about riemannian geometry in 
higher dimension, even though the field has witnessed spectacular advances 
in recent years. 

Chapter 11 covers global properties of surfaces. In particular, we dis
cuss the Gauss-Bonnet formula, surfaces of constant or bounded curvature, 
closed geodesics and the cut locus (part I, intrinsic questions); minimal sur
faces, surfaces of constant mean curvature and Weingarten surfaces (part 
II, extrinsic questions). 

* * * 
The contents of this book can serve as a basis for several different courses: 

a one-year junior- or senior-level course, a one-semester honors course with 
emphasis on forms, a survey course on surfaces, or yet an elementary course 
emphasizing chapters 8 and 9 on curves, which can stand more or less on 
their own, together with section 7.6. 

The reader who wants to go beyond the contents of this book will find 
a number of references inside, especially in chapters 10 and 11, but here 
are $ome general ones: [Mil63] is elementary, but a pleasure to read, as is 
[Mil69], which covers not only Morse theory but many deep applications 
to differential geometry; [Die69], [SteM], [Hic65] and [Hu69] cover much of 
the same ground as as this book, with differences in emphasis; [War71] has 
a good treatment of Lie groups, which are only mentioned in this work; 
[Spi79], whose first volume largely overlaps with our chapters 1 to 9, goes 
on for four more and is especially lucid in offering different approaches 
to riemannian geometry and expounding its historical development; and 
[KN69] is the ultimate reference work. 

I would like to thank Serge Lang for help in planning the contents of chap
ters 0 to 9, the students and teaching assistants of the 1969-1970 and 1970-
1971 courses for their criticism, corrections and suggestions, F. Jabreuf for 
writing up sections 7.7 and 9.8, J. Lafontaine for writing up numerous ex
ercises and for the proof of the lemma in 9.5. For feedback on the two new 
chapters I'm indebted to thank D. Bacry, J.-P. Bourguignon, J. Lafontaine 
and J. Ferrand. 

Finally, I would like to thank Silvio Levy for his accurate and quick 
translation, and for pointing out several errors in the original. I would 
also like to thank Springer-Verlag for taking up the translation and the 
publication of this book. 

Marcel Berger 
I.H.E.S, 1987 
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CHAPTER 0 

Background 

This chapter contains fundamental results from exterior al
gebra, differential calculus and integration theory that will be 
used in the sequel. The statements of these results have been 
collected here so that the reader won't have to hunt for them 
in other books. Proofs are generally omitted; the reader is 
referred to [Car71], [Dix68] or [Gui69]. 



2 O. Background 

0.0. Notation and Recap 

0.0.1. Notation 

0.0.2. Let X be a topological space. We denote by O(X) the set of open 
subsets of Xj by O",(X) the set of open subsets of X containing a point 
x E Xj and by 0 A (X) the set of open subsets of X containing a subset 
AcX. 

O.O.S. If X is a metric space, we let B(a, r) and B(a, r) be the open and 
closed balls of radius r and center a. When X = Rd we write Bd(O,I) 
instead of B(O, I}. 

0.0.4. If E and F are vector spaces over the same field, we let L(Ej F} be 
the vector space of continuous linear maps from E into F (if E and F have 
finite dimension every linear map is continuous). If F = R we write E* 
instead of L(Ej R}j this space is called the dual of E and its elements are 
continuous linear forms on E. 

0.0.5. If X and Yare topological spaces we let CO(Xj Y) be the set of 
continuous maps from X into Y. 

0.0.6. The algebra of continuous functions from X into R is denoted by 
CO(X). 

0.0.7. Recap 

0.0.8. If X is a compact topological space, CO(X), with the norm of uni
form convergence, is a complete topological space [ear71, 1.1.2, example 2]. 

0.0.9. A finite-dimensional vector or affine space over R has a canonical 
topology, given by a norm. All norms are equivalentj in particular, we can 
take any Euclidean norm [ear71, 1.1.6.2]. 

0.0.10. Example. If E and F are finite-dimensional vector spaces, so is 
L(Ej F): its dimension is equal to dim(E) . dim(F}. 

If E and Fare normed vector spaces, L(Ej F} has a canonical norm, 
defined by 

Ilfll = sup {lIf(x)1I : IIxll = I}. 

Then IIf 0 gil ~ IIfll·llgll [ear71, equation 1.1.5.1], and L(Ej F} is a Banach 
space if F is [ear71, theorem 1.1.4.2]. 



1. Exterior Algebra 3 

0.0.11. If E and F are isomorphic vector spaces, denote by Isom(E; F) 
the set of isomorphisms from E to F. Then 

0.0.12 if> : Isom(E; F) 3 I 1--+ 1-1 E Isom(F; E) 

is continuous for the norm defined in 0.0.10, as the reader should check 
[Car71, theorem 1.1.7.3J. 

O.O.lS. Lipschitz and contracting maps [Car71, 1.4.4.1J 

0.0.1I.L Definition. Let X and Y be metric spaces. A map I : X -+ Y is 
a k-Lipschitz map if there exists k E R such that 

d(J(x), I(Y)) ~ k d(x, y) 

for every x, y E X. 
A map I : X -+ Y is locally Lipschitz if for every x E X there exists 

V E O:.:(X) such that Ilv is Lipschitz. A map I : X -+ Y is contracting if 
it is k-Lipschitz with k < 1. 

0.0.11.2. Theorem. II X is a complete metric space and t : X -+ X is 
contracting, t has a unique fixed point, that is, there exists a unique z such 
that t(z) = z. In addition, z = limn_co tn(x) lor every x E X. 0 

0.1. Exterior Algebra 

Let E be a vector space and E* = L(E; R) its dual. 

0.1.1. We denote by Ar E* the vector space of alternating r-linear forms 
on E, that is, continuous maps a : Er -+ R linear in each variable and 
satisfying 

a( ... , Xi, ••• , Xj,"') = -a(, .. , Xj,"" Xi, ••• ) 

for every 1 $ i $ i ~ r. One has A1E* = E*; by convention, AOE* = R. 
If E is n-dimensional, Ar E* has dimension (;) if r $ n and dimension 0 if 
r > n [Dix68, 37.1.11J. 

Recall that, if h, .. . , Ir are linear forms on E, we define h/\ ... /\ Ir E 
ArE* by 

0.1.2 (h/\···/\ Ir)(X1, ... , xr) = L Eo-h(xo-(1)) ... Ir(xo-(r)), 
o-ES. 

where Sr is the symmetric group on r elements and Eo- = ±1 depending on 
whether (1' is an even or odd permutation. 
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0.1.3. Basis for Ar E*. Let {el,"" en} be a basis for E and {ei, ... , e~} 
the dual basis for E*. Let I = (ill"" ir) be an r-tuple such that 

The forms ei = <1 1\ ... 1\ ei., as I ranges over all such n-tuples, form a 
basis for Ar E* [Dix68 , 37.1.9]. 

0.1.4. Exterior product of alternating forms. Consider a E AV E* and 
[3 E A q E*. The exterior product a 1\ [3, an alternating (p + q)-linear form, 
is defined as follows: let A be the subset of Sv+q consisting of permutations 
a such that 

a(1) < a(2) < ... < a(p) and a(p + 1) < ... < a(p + q). 

Then 
0.1.5 
(a 1\ [3Hx!! ... , xv+q) = L e .. a(x .. (l),"" x .. (v))[3(x .. (v+1) , ... , x .. (v+q)) 

.. eA 

[Dix68 , 37.2.5-11]. The exterior product is associative. 

0.1.6. If a E Ar E*, we say that r is the degree of a, and write deg a = r. 
If a E Ar E* and [3 EA' E* we have 

0.1.7 

Thus the exterior product makes the vector space 

dimE 

AE* = ED ArE* 
r=O 

into an associative and anticommutative algebra. 

0.1.8. Pullbacks. For f E L(Ej F) we define r E L(Ar F*j Ar E*) by 

0.1.9 f* [3(Ul,"" ur ) = [3(J(ud, ... , f(u r )) 

for every [3 EAr E* and every Ul, ... , Ur E E. One immediately sees that 

0.1.10 f*(a 1\[3) = f*(a) 1\ f*([3). 

If f E L(Ej F) and g E L(Fj G) we have 

0.1.11 (g 0 1)* = f* 0 g*. 

0.1.12. For f E L(E;E) and [3E AnE*, where n is the (finite) dimension 
of E, we have 

0.1.12.1 f* [3 = (det f)[3· 
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In fact, An E* has dimension one, so r is multiplication by a constant. If 
(e1,"" en) is a basis for E and {3 is of form ei /\ ... /\ e~ (the associated ), 
we have 

(1* (3)(e1,"" en) = (3(t(e1)"'" f(e n )) = det f. 
Since f* {3 = k{3, the factor k must be equal to det f. 

O.l.lS. Orientation. If E has dimension n, the real vector space An E* 
has dimension one, so An E* \ 0 has two connected components. An orienta
tion for E is the choice of one of these two components. 

Alternatively, consider on An E* \ 0 the equivalence relation", given by 
"0: '" (3 if there exists a strictly positive number k such that 0: = k{3." The 
set O(E) = (AnE* \ 0)/ '" has two elements, and choosing an orientation 
for E is the same as choosing one of these elements. 

0.1.14. Definition. An n-form 0: E An E* \ 0 is called positive if it belongs 
to the element of 0 (E) chosen as the orientation. A basis {e1, ... , en} for 
E is called positive if for some (hence any) positive 0: E An E* \ 0 we have 
0:(e1, ... ,en ) > O. 

Let E and F be oriented n-dimensional vector spaces, and considp.r f E 

Isom(Ej F). We say that f preserves orientation if, for some (hence all) 
positive {3 E An E* \ 0, we have f* {3 positive. 

If E = F, saying that f preserves orientation is the same as saying that 
det f > OJ this follows from 0.1.12.1 and 0.1.13. 

0.1.15. Exterior algebra over a Euclidean space 

0.1.15.1. Let E be a Euclidean space, whose scalar product and norm we 
denote by (,1,) and 11·11, respectively. We know that the dual E* of E is 
canonically isomorphic to E via the map II : x t--> {y t--> (x I y)} E E* and 
its inverse ~ : E* --> E [Dix68, 35.4.6]. Thus the Euclidean structure of E 
gives rise to a canonical Euclidean structure on E*. The spaces AP E* also 
inherit canonical Euclidean structures [Bou74, 111.7, prop. 7]j in the cases 
that will be treated in this book, namely, p = 2 and p = d = dim E, that 
structure is explicitly defined as follows: 

0.1.15.2. p = 2. It suffices to define the norm of products 0: /\ {3, where 
0:, {3 E E*. Set 

110: /\ {311 2 = 110:1I211{3112 - (0: I (3)2. 
If {ei} is an orthonormal basis for E, the dual basis {ei} of E* is also 
orthonormal, and, if 

we have 
110: /\ {311 2 = '2)O:i{3j - O:j{3i)2. 

i<j 
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0.1.15.S. p = d. Let {ej} be an orthonormal basis for E; every a E Ad E* 
can be written as k ei 1\ .. ·I\e~. We define lIall = Ikl. We have to show that 
I kl does not depend on the chosen orthonormal basis; but this follows from 
0.1.12.1 ant the fact that the determinant of an orthogonal transformation 
is equal to ± 1. 

0.1.15.(. We deduce from the previous paragraph that an oriented Euclid
ean space E of dimension d has a canonical volume element ).. E E Ad E* , 
namely, the element of norm 1 belonging to the chosen connected compo
nent of AdE* \ O. 

0.1.15.5. Definition. The form )..E is called the canonical volume form of E. 

Notice that )..E is also defined by the condition that )..E(el, ... , ed) = 1 
for every positive orthonormal basis {eb ... , ed}. 

0.1.15.6. Lemma. If {ai}i=l, ... ,d is an arbitrary positive basis for E, we 
have 

Proof. Let {edi=l, ... ,d be an orthonormal positive basis for E, and let A 
be the matrix whose column vectors are the ai's in the basis {ei}' The 
definition of matrix multiplication shows that tAA, where tA denotes the 
transpose of A, is just the matrix of scalar products (ai I ail). Thus 

det(ai I ail) = det(tAA) = dettAdetA = (detA)2. 

But 

as we wished to prove. o 

0.1.15.'1. One can also define spaces APE, called the exterior powers of 
a vector space [Bou74, III.7.4j. In this book we will just need a skew
symmetric map A : E X E -+ R. We set, for x, y E E, 

x 1\ Y = x~ 1\ y~ E A 2 E* , 

and define A by A(x, y) = Ilx 1\ ylI, using 0.1.15.2. For example, IIx 1\ yll = 1 
if {x, y} is an orthonormal basis; in general, 

IIx 1\ Yl12 = IIxl1211Yl12 - (x I y)2 = 2:)XiYi - XiYi)2 
i<i 

in an arbitrary orthonormal basis. 

0.1.16. Now assume that E is Euclidean, oriented, and three-dimensional. 
Then )..E is the mixed product of three vectors, written just (x, y, z) = 
)..E{X, y, z). By lemma 0.1.23, )..E determines an isomorphism (j between 
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A 2 E* and Ej in the notation of 0.1.15.7 this gives rise to a map Ex E - E 
defined by 

0.1.1'1 

This map is called the cross product of two vectors x, y E E, and denoted 
by x x y. 

0.1.18. Contractions. Let E be a vector space and e an element of E. 
For every r ~ 1 we define a linear map cont(e) : Ar E* - Ar-l E*, called a 
contraction (bye), as follows: 

0.1.19 (cont(eHa)) (6, ... , er-d = a(e, 6,··., er-l) 

for every a EAr E* and 6, ... , er-l E E. It is easily checked that cont( e) 
is an antiderivation of AE* of degree -1, that is, for all a, /3 E AE* we 
have 

0.1.20 cont(eHa A f3) = (cont(eHa)) A f3 + (_I)deg a a A (cont(eH/3)). 

0.1.21. Use of coordinates. Let E have dimension d, and fix a basis 
{el,"" ed} for E. Take a E AdE* and an element e = 2::=1 xiei of E. 
We have 

(cont(eHa))(ell"" ei, ... , ed) = a (t xiei, el,"" ai, ... , ed) 
3=1 

d 

= 2)-I)i-lxia (ell ... ,ei, ... ,ed) 
i=l 

where ei means that ei is omitted. Since a E Ad E*, there exists a scalar a 
such that a = a(er A ... A ed), and we have 

0.1.22 cont (t eiei) (a) = t(-I)i-laxi er A ... A at A ... A ed' 
i=l i=l 

Since the forms er A··· Ae; A·· ·Aed (i = 1, ... , d) form a basis for Ad-l E* 
(cf. 0.1.3), we deduce that: 

0.1.23. Lemma. If a E AdE* is non-zero, the map e 1-+ cont(eHa) is an 
isomorphism between E and A d-l E*. 0 

0.1.24. Densities 

0.1.25. Definition. A density on a d-dimensional vector space E is a map 
6: Ed _ R such that 6 = lal for some a E AdE* \ O. 
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0.1.26. Example. If E = R d , the density 60 = IAEI = I det(·}1 is called the 
canonical density in Rd. More generally, every Euclidean space E admits 
a canonical density, denoted by IJE and defined by IJE = IAEI, where AE is 
the canonical volume form for an arbitrary orientation of E. By 0.1.15.6 
we have 

0.1.27 

for any basis {all ... , ad} of E. 

0.1.28. The set of densities on E will be denoted by Dens(E}. 

0.1.29. Elementary properties of densities 

0.1.29.1. If 6 and 6' are densities on E, there exists a constant k > 0 such 
that 6' = k6. 0 

0.1.29.2. If 6,6' are densities on E and k, k' are non-negative constants not 
both of which are zero, k6 + k'6' is a density on E. 0 

0.1.29.1. Let E and F be vector spaces of same dimension d. Let 6 E 

Dens(F} and 1 E Isom(E; F}. The map /*6 : Ed --+ R, defined by 

(f*6)(x1' ... ' Xd) = 6(1(x1, ... , Xd)) 

for every Xl, ... , Xd E E, is a density on E. 

Proof. If a E AdF* \ 0 is such that lal = 6, we have 

(J*6)(X1,. . .,Xd) = 6(1(X1, ... ,Xd}) 
la(l(xlI ... ,Xd))1 = 1(f*a)(xlI ... ,Xd)i, 

so that f* 6 is the density on E associated with f* a E Ad E* \ O. 0 

0.1.29.'. Let E, F and G be vector spaces of same dimension, 1 : E --+ F 
and g : F --+ G isomorphisms. If 6 is a density on G, we have 

(go 1)*(6} = (J*og*)(6). o 
From 0.1.12.1 we deduce that 

0.1.29.5. For 1 E Isom(E;E} and 6 E Dens(E} we have /*(6) = Idet(f}16. 
o 

0.1.29.0. For dim(E} = 1 densities are the same as norms. 

Proof. A density is a map from E into R such that 6 = lal for some 
non-zero a E A 1 E* = E*. Thus 

6(x} 2: 0 and 6(x} = 0 <=> X = 0 

(since a I: 0 implies that a is an isomorphism in dimension I); 
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o(>.x) = la(>.x) 1 = 1>'lIa(x) 1 = 1>'lo(x); 
o(x + y) = la(x + y)1 = la(x) + a(y)1 :5la(x)1 + la(y)1 = o(x) + o(y).D 

0.2. Differential Calculus 

0.2.1. Definition. Let E and F be Banach spaces and U c E open. A 
map I : U -+ F is called differentiable at x E U if there exists a linear map 
I'(x) E L(E; F) such that 

II/(x + h) - I(x) - I'(x)(h) II = 0(1111.11) 
(where the notation 0(1111.11) means that the left-hand side approaches zero 
faster than 1111.11.) IT I is differentiable at every x E U we say that I is 
differentiable in U. 

0.2.2. The map I'(x) is called the derivative of I at x. 

0.2.3. The map /' : U 1--+ L(E; F) is called the derivative of I. 

0.2.4. Remark. In the case of a function of a single real variable we 
recover the elementary notion of the derivative: L(R; F) is canonically 
isomorphic to F via the map e 1--+ e(l), and consider /'(x)(l) is the ordinary 
derivative. 

0.2.5. Definition. Let E and F be Banach spaces and U c E open. A 
map I : U -+ F is called continuously differentiable if it is differentiable 
and its derivative I' belongs to CO(U; L(E; Fl). 

We also say that I is (of class) C1 • We denote by C1 (U; F) the set of 
C1 maps on U, and we set C1(U) = C1(Uj R). 

0.2.6. Theorem. Let U be a convex open subset 01 a Banach space E, and 
I : U -+ F a differentiable map such that 111'(x)11 :5 k for every x E U. 
Then I is k-Lipschitz (0.0.13.1). 

Proof. See [Dix67, p. 351]. o 
0.2.7. Corollary. Any I E C1(U; F) is locally Lipschitz. 

Proof. U is locally convex and I', being continuous, is locally bounded. 0 

0.2.8. Operations on C1 maps 

0.2.8.1. Theorem. Let E, F and G be Banach spaces, U c E and V c F 
open sets and I E C1(Uj F) and 9 E C1 (Vj G) maps with I(U) c V. Then 
go I E C 1 (Uj G), and, for every x E U, we have 

(g 0 I)'(x) = g'(I(x)) 0 I'(x). 



10 o. Background 

Proof. See [Dix68, 47.3.1] or [Car71, theorem 1.2.2.1]. o 

0.2.8.2. II I and g are C 1 maps and A E R is a constant, 1+ g and Af are 
Cl maps. If multiplication makes sense in F, so is f g. 0 

For example, every polynomial function is C 1 • 

0.2.8.1. Any linear map f E L(Ej F) is cl, and satisfies f'(x) = f' for ev
ery x E E. If we denote by L(E, Fj G) the space of continuous bilinear 
maps from E x F into G, we have L(E, Fj G) c Cl(E x Fj G), and 
f'(x, y)(u, tI) = f(x, tI) + f(u, y) for every x, u E E and y, tI E F [Car71, 
theorem 1.2.4.3]. 0 

0.2.8.'. Let F1 , ••• , F n be Banach spaces and Pi the projection from Fl x 
F2 X ... X Fn into Fi . Then f E Cl(UjFl X ... X Fn) if and only if 
Pi 0 fECI (Uj Fi ) for every i. In addition we have (Pi 0 f)'(x) = Pi 0 (J'(x)) 
for every i [Car71, theorem 1.2.5.1]. 0 

0.2.8.5. Let E 1 , ••• , Em and F be Banach spaces. Consider an open set 
U E O(EI X ... x Em) and a map f : U -+ F. If 

({xd x ... x {xi-d X Ei x {xHd x ... x {xm }) n U 

is a section of U parallel to Ei, we identify the restriction of f to this section 
(where only the i-th variable varies) with a map defined on a subset of Ei. 
If the derivative of that restriction with respect to Xi exists, we denote it 
by af/axi (or f'e., or I!., or Dd). Thus 

and we have the following result: 

0.2.8.6. Proposition. The map f is C 1 if and only if a f /aXi exists and is 
continuous for all i. In addition, 

0.2.8.1 
, m af 

f (a)(h 1 , ••• , hm ) = L ax. (a) hi. 
i=1 • 

Proof. See [Car71, proposition 1.2.6.1]. o 

0.2.8.8. Particular case. Take E = Rm, F = Rn, U E O(E) and f E 
C 1 (Uj F) with components h, ... , fn, where each ft is a function of the m 
variables Xl, ... , x m . Denoting by aft/ax; the partial derivatives (in the 
usual sense) of the components of f, we define the jacobian matrix of f at 
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a to be the matrix 

~(a)) aXm 

. . 
afn (a) 
aXm 

The jacobian matrix is sometimes denoted by f'(a) by abuse of notation. 
In this particular case f E C 1 (UjF) if and only if afi/aX; E C°(UjR) 

for every i and j. 

0.2.8.9. Definition and notation. For f E C 1 (Uj E) and U E O(E) the 
jacobian of f, denoted by J(f), is the map 

J(f) : U ::l x t-+ det{f'(x)) E R. 

For E = Rm we have J(f)(a) = det{!'(a)) (cf. 0.2.8.8). 

0.2.9. Examples 

0.2.9.1. Definition. A curve in U E O(E) is a pair (I, </», where I c R 
is an interval and </> E Cl (I; U). The velocity of </> at tEl is the vector 
</>'(t) E E (cf. 0.2.4). 

Now take U E O(E) and f E C 1 (U; F). Given x E U and y E E, we 
can calculate f'(x)(y) by using the velocity of a curve. Choose a curve 
(I, </» in U such that 0 E I, </>(0) = x and </>'(0) = y. By 0.2.8.1 we have 
(f 0 </»'(0) = f'{</>(O)) 0 </>'(0) = f'(x)(y) , that is, f'(x)(y) is equal to the 
velocity of the curve (I, f 0 </» at O. 

More rigorously, we should have written (cf. 0.2.4) </>'(0)(1) = y and 

(f 0 </>)'(0)(1) = (!'(</>(O)) 0 </>'(0)) (1) = f'(x)(y). 

0.2.9.2. Proposition. Let E and F be isomorphic Banach spaces, and </> : 
Isom(E; F) -+ Isom(F; E) the map given by </>(f) = f-l. The map </> is of 
class C 1 and we have 

</>'(f)(u) = - rIo u 0 rl. 

Proof. We must first show that Isom(Ej F) E O{L(Ej F)). In finite di
mension this is obvious since Isom( E; F) = det -1 (R \ 0) and the map 
f t-+ det(f) is continuous for a fixed choice of bases. 

In infinite dimension we must show that for Uo E Isom(E; F) and u E 
L(Ej F) close enough to Uo we have u E Isom(E; F), which is equivalent to 
showing that U01 u E Isom(Ej E). 

If f E L(Ej E) satisfies Ilfll < 1, the map 1 - f is invertible (its inverse 
is 2:;:'=0 fn). Setting uo1 u = 1 - f we get f = U01uo - U01 u, whence 
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showing that u;;lu (hence u) is invertible for lIuo - ull < l/lIu;;lll [ear71, 
theorem I.7.3J. 

To show differentiability, one can use the explicit formula for the inverse 
of a matrix in finite dimension (cf. 0.2.8.2), or proceed as follows in arbitrary 
dimension: 

.p(l + u) - .p(l) + r 1 0 u 0 ,-I = (I + U)-1 - ,-I + rIo u 0 ,-I 

= (I + u)-I(1 + u)((1 + u)-1 - r 1 + rIo u 0 rl) 

whence 

= (I + u)-I(l- 1- u 0 r 1 + u 0 r 1 + u 0 r 1 0 u 0 rl) 
= (I + U)-I(U 0 rIo u 0 rl), 

11.p(l + u) - .p(l) + ,-Iou 0 rIll ~ 11(1 + u)-llll1 u Il 2 I1r I I1 2 

(cf. 0.0.10). But 11(1 + u)-IIII1,-111 2 is bounded for lIuli small enough, so 
we get 

o 

0.2.10. Higher differentiability class. If I is CIon an open set U c E 
and I' : U -+ L(E; F) is its derivative, it makes sense to ask whether f' is 
differentiable, since L(E; F) is a Banach space (0.0.10). 

0.2.11. Definition. If (I')'(x) E L(E; L(E; F)) exists for all x E U, we 
say that I is twice differentiable and set /,,(x) = (I')'(x). We say that I 
is (of c1ass)C2 if I" E CO{U; L(E; L(E; F))). 

0.2.12. Let E, F and G be Banach spaces. The space L(E, F; G) 01 con
tinuous bilinear maps Irom E X F into G is isomorphic to L(E; L(F; G)) 
[ear71, I.1.9J. 0 

This allows us to state the following result (see [Dix67, p. 356J, or [ear71, 
theorem I.5.1.1]): 

0.2.13. Theorem (Schwarz). II I : U -+ F is twice differentiable at a 
point a, the second derivative f"(a) E L(E, Ej F) is a symmetric bilinear 
map, that is, for every h, k E E we have 

U"(a)h)k = (f"(a)k)h. o 
0.2.11.1. Second derivative of a composition. The second derivative of a 
composition of maps hog is given by 

(h 0 g)"(z) = h"{g(z)) 0 (g'(z), g'(z») + h'(g(z») 0 g"(z). 

This follows from 0.2.8.1 and 0.2.8.3 [ear71, equation I.7.5.1J. 
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0.2.14. We define CP(Uj F) analogously, as the set of p-times differentiable 
maps, or maps of class CPo We also let 

00 

COO(Uj F) = n CP(Uj F) 
p=1 

be the set of maps of class Coo, or differentiable infinitely often. 

0.2.15. Properties of maps of class CPo This section generalizes 0.2.9. 

0.2.15.1. A composition of maps of class CP is of class CPo 

0.2.15.2. If I, g E CP(Uj F) and>' E R, the functions 1+ g, >.g and (when 
it makes sense) Ig are of class CPo Every polynomial map is Coo. 

0.2.15.1. The space L(ElI •.. , Enj F) of continuous n-linear functions is 
contained in C OO (E1 x ... x Enj F). 

0.2.15.4.. A map I : U -+ F1 X ... x F n is of class CP if and only if each 
component /;. = Pi 0 I is. 

0.2.15.5. A map I : U -+ F, where U E O(E1 X ... X En), is of class CP if 
and only if all its p-th order partial derivatives exist and are continuous. 

0.2.15.6. The map ~ : Isom(Ej F) -+ Isom(Fj E) defined by ~(",) = ",-1 is 
of class Coo . 

Throughout this book objects will be of class CP, for p ~ 1, but the 
value of p won't always be explicitly mentioned. 

0.2.16. Example: bump functions 

0.2.16.L Proposition. For every integer n and every real number 0 > 0 
there exist maps'" E Coo (Rnj R) which equal 1 in B(O, 1) and vanish in 
Rn \ B(O, 1 + 0). 

Proof. Consider the function ~ : R -+ R defined by 

¢(t) ~ { :" ((t - a)tb - t») if a < t < b, 

otherwise. 

It is well known (and the reader should check) that ~ E Coo (Rj R). Inte
grating ~ and normalizing we get a function 8 E Coo (R) defined by 

f~oo ~(s) ds 
8(t) - . - f~:: ~(s) ds' 

it is clear that 8(t) = 0 for t :5 a and 8(t) = 1 for t ~ b. Now take a = 1 
and b = (1 + 0)2j the function ",(t) = 1 - 8(t) is Coo, equal to zero for 
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t ~ (1 + 6V and equal to 1 for t ::; 1. Finally set ,p(x) = '1(lIxIl2 ). Since 
x 1-+ II X 112 is Coo, the function ,p satisfies the desired conditions. 

a h a h -1-8 -1 o 1+8 

Figure 0.2.16 
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0.2.11. Diffeomorphisms and the inverse function theorem. The 
proofs of the results quoted here can be found in [Dix68, §47.4 and 47.5j, 
except for 0.2.22, which is in [ear71, 1.4.2.1j. 

0.2.18. Definition. Let E and F be Banach spaces, U c E and V c F 
open sets. A map I : U - V is called a CP diffeomorphism (p ~ 1) if I is 
bijective and both I and 1-1 are of class CPo 

0.2.19. Proposition. II I : U - V is a CP diffeomorphism, we have 
f'(x) E Isom(Ej F) and (J'(x))-1 = (J-l)'(J(x)) lor every x E U. 

Proof. Just differentiate 1-1 0 I = IdE and 101-1 = IdF, to get 

(J-l)'(J(X)) 0 I'(x) = IdE and I'(x) 0 (J-l)'(J(x)) = IdF . 0 

0.2.20. Definition. A map I : U - V (of class CP for p ~ 1) is regular 
at x if f'(x) E Isom(Ej F). It is regular in U if it is regular for every x E U. 

0.2.21. Example. The map I: R* X R - R2 defined by 

l(p,fJ) = (pcosfJ,psinfJ) 

(polar coordinates) is regular. Its jacobian matrix 

I , ( fJ) = (C?S fJ - p sin fJ ) 
p, smfJ pcosfJ 

has determinant p i- o. The map I is not a diffeomorphism (since it is 
periodic in fJ), but its restriction to R* X jO, 211"[ is. 

More generally, diffeomorphisms are regular, and regular maps are locally 
diffeomorphisms: 

0.2.22. Inverse function theorem [ear71, 1.4.2.1j. Let U and V be open 
subsets 01 Banach spaces E and F, respectively, and I E CP(Uj V) a map 
regular at Xo E U. There exists an open neighborhood U' C U 01 Xo such 
that the restriction 01 I to U' is a CP diffeomorphism Irom U' onto I(U'). 

o 

0.2.22.1. Even if I is everywhere regular it need not be injective (example 
0.2.21). 

0.2.23. Definition. Let E and F be Banach spaces and U an open subset 
of E. A CP map I : U - F is called an immersion at x if f'(x) is injective, 
and a submersion if f'{x) is surjective. 

The two fundamental theorems below express the fact that submersions 
and immersions are locally, and up to diffeomorphisms of the domain or 
the range, equivalent to surjective or injective linear maps. In other words, 
the local behavior of the function is governed by its derivative. 
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0.2.24. Theorem [Dix68, 47.5.3]. Let U c R m be an open set and 1 : 
U -+ RR a map of class CP, and assume 1 is an immersion at x. There 
exist open sets V E 0,(",) (Rn) and U' E O",(U) and a CP diffeomorphism 
9 : V -+ g(V), where g(V) C Rn is open, such that I(U') c V and 
go Ilu' coincides with the restriction to U' 01 the canonical injection Rm ~ 
Rm X {o}n-m -+ Rn. 0 

0.2.25. Example. For m = 1 and n = 2 we have an arc of curve in R2: 

f 
U' 

/' "" 

Figure 0.2.25.1 

0.2.25.1. Remark. The local charac
ter of this statement, that is, the need 
to restrict the domain, can be clearly 
seen in the figure on the right: if there 
is a double point and U' is too big, 
the composition 9 0 1 cannot be one
to-one. 

R 

-~-t'----+---- R 

Figure 0.2.25.2 

g 
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0.2.26. Theorem [Dix68, 47.5.4]. Let U c R m be an open set and f : 
U -+ Rn a map of class CP, and assume f is a submersion at x. There 
exist an open set U' E O..,(U) and a CP diffeomorphism 9 : U' -+ g(U'), 
where g(U') eRn is open, such that flul = 11" 0 glul, where 11" : Rn -+ Rm 
is the canonical projection. 

IR 

g(U') 

g 

_f-___ --'-_____ IR 

~ IR 
o !(x)=7t(g(x» 

Figure 0.2.26 

Theorem 0.2.26 allows one to solve the equation f(z) = f(x) in U'. The 
solution is z E g-1{1I"-1(f(x)))j but 1I"-1{J(x)) is the intersection with 
g(U') of an (n- m)-dimensional affine subspace of Rn, and g-l {1r- 1 (f(x))) 
is the image of this subspace (intersect g(U')) under the diffeomorphism 
g-l. This is the so-called implicit function theorem [ear71 , 1.4.7.1]. 

0.3. Differential Forms 

The definitions and notations in this section will be slightly modified in 
chapter 5 (see 5.2.7). 

0.3.1. Definition. Let E be an n-dimensional vector space, where n is 
finite, and U an open subset of E. A CP differential form of degree r, 
or r-form, on U is a CP map a: : U -+ Ar E*. We denote by n;(U) = 
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CP(Uj Ar E*) the vector space of CP differential forms of degree r on Uj we 
also write £t(U) when the differentiability class is not specified. 

0.3.2. The vector space 

n 

n;(U) = EB n;(U) 
r=O 

is an associate, anticommutative algebra with the product defined by 

(a /\ ,8}(x) = a(x) /\ ,8(x) 

for every x E U. 

0.3.3. Remark. We have o.!!(U) = CP(U) = CP(Uj R), since AO E* = R. 

0.3.4. Example. Let U c E be an open set, where E is an n-dimensional 
vector space, and fix a basis {ell"" en} for E and the dual basis {ei, ... , 
e~} for E*. Take f E CP(U) and a point x = (Xl,"" x n ) E U. The map 

x f-+ !,(x) = t af e: 
i=l aXi 

from U into A 1 E* is of class CP-1, so it belongs to n!-dE). 

0.3.5. Expression in a basis. Consider a form a E n;(U). Since a(x) E 

Ar E* for x E U and the ei form a basis for Ar E* (0.1.3), there exist scalars 
ai1 ... i. (x) = a](x) such that 

a(x) = 

0.1.5.1. Let's define ei = <1 /\ ... /\ <. E ~ (R n) (by abuse of notation) 
as the constant map x f-+ ei1 /\ ... /\ ei •. Then we can write 

0.3.6 a = La]ei = L ai1 ... i. ei1 /\ ... /\ ei., 
] i1<···<i. 

and a E n;(U) if and only if a] E CP(U) for every I. 

0.3.7. Pullbacks 

0.1.1.1. Proposition. Let U c E and V c F be open sets, f E CP{Uj V) 
with p ~ 1 a map and ,8 E n;-1 (V) a form on V. The map f*,8 defined 
on U by 

(/* ,8)(x) = (J'(x))* (,8(J(x))) 

for x E U is an r-form of class p - 1. The map f* : .0.;-1 (V) --+ n;-1 (U) 
is linear. 
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Proof. One writes r fJ : U - Ar E* as the appropriate composition of 
maps [Car70, 1.2.8]; in particular, the map in 0.1.8 gives a map 

L(Ej F) 3 I 1-+ r E L(Ar F*j Ar E*) 

which is polynomial, hence COO • o 

0.S.1.2. Another proof consists in calculating in coordinatesj this gives a 
practical way to compute r fJ. 

Let {h, ... , 1m} be a basis of F. We have 

fJ(y) = EfJI(y)li 
I 

for every y E V, where fJI E CP-I(V). Thus, for z E U, we have 

(I'(z))* p(l(z)) = E(fJI 0 l)(z)(/'(z))* Ii· 
I 

If Ii = It 1 " ... " Ii: we have, for UI,"" Ur E E: 

(I'(z))(ltl " •.. " 1t.)(UI,"" Ur ) 

= (lt1 " ... " li:)(/'(z)(uI), ... , I'(z)(ur )) 

= ((lt1 0 I')(z) " ... " (1:.0 f')(z)) (UI' ••• , ur ). 

Each It,. 0 I : U - R satisfies 

(It,. 0 I)'(z) = 1t/c'(I'(z)), 

and, since It,. is linear and thus equal to its derivative, we get the formula 

0.S.8 (I'(z) r fJ(I)(z) = E (fJi1 ... i. 0 l)(z)(I:1 0 I)' " ... " (It. 0 I)'. 
i1 <···<i. 

0.S.9. We have r(Ot + fJ) = rOt + r fJ, 

r(Ot" fJ) = rOt" r fJ· 
Thus r is an algebra homomorphism. 

0.S.10. Remarks 

0.S.10.1. If fJ E ~-l (V) we have r (fJ) = fJ 0 I. 

0.S.10.2. If E = F and fJ(z) = b(z) ei " ... " e;', where n is the dimension 
of E, we have 

r fJ(y) = a(y) ei " ... " e;' 

for a = J(I)(bol), where J(I) is the jacobian of IE CP(Uj E) (cf. 0.2.8.9). 
This follows from 0.1.12.1. In other words, setting 

0.S.10.S Wo = e~ " ... " e;' 
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(cf. 0.3.5), we get 

0.1.10.£ 

O. Background 

f*(bwo) = (b 0 f)J(f)wo. 

If E, F and G are finite-dimensional vector spaces, U c E, V c F and 
W c G open sets and f : U -+ V and g : V -+ W maps of class CP, we 
have 

0.1.10.5 (g 01)* = f* 0 g*. 

0.3.11. Densities on an open set. Notice that, if E is a finite-dimen
sional vector space, Dens(E) is an open half-line; indeed, if we fix 80 E 

Dens(E), we have Dens(E) = R+80 , by 0.1.29.1. Thus the following defi
nition makes sense: 

0.1.11.1. Definition. A density of class CP on U E O(E) is a map 8 E 

CP(U; Dens(E)). The set of such densities will be denoted by ~(U). 

Once we've fixed 80 E Dens(E), giving a density 8 is the same as giving 
f E CP(U; R+) such that 8 = f80 ' For example, if U E O(Rd), we define 
(and still denote by 80 ) the canonical density 

U:3 x t--+ 80 (x) = 80 E Dens(Rd) 

(see 0.2.16). And every 8 E ~(U) will be of the form No, with f E 
CP(U;R+). 

Following 0.1.29.3, 0.3.7 and 0.3.1004, we define, for every f E CP(U; V) 
and 8 E ~-1 (V), where U c E and V c F are open, the pullback 

0.1.11.2 

provided that f is regular. If E = F = R d, we have the formula 

0.1.11.1 r (Mo) = (b 0 I) IJ(f) 180 • 

We also have 
(g 01)* = r 0 g*. 

0.3.12. Exterior differentiation 

0.1.12.0. Theorem. Let E be an n-dimensional real vector space and U c E 
an open set. There exists a unique operator d : U;(U) -+ U;!~ (U), for 
r = 0,1, ... ,n - 1, such that: 

(i) d is additive; 
(ii) d(a 1\ r;) = da 1\ r; + (_l)deg aa 1\ dr;; 
(iii) d(da) = 0; 
(iv) df = f' for every f E ~(U). 
This operation is called exterior differentiation, and da is called the exterior 
derivative of a. 
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Proof. We just have to calculate in coordinates as in 0.3.6. Any a E n;(U) 
can be written a = EI alej, with aI E CP(U). If d is additive and satisfies 
(ii) we must have 

da = LdaI 1\ ej + La1dej. 
I I 

N ow consider ej = e'l /\ .. ·/\e:', where I = (iI' ... , i r ). Since e'l denotes the 
i-th coordinate function on E in the basis {ell ... , en}, we get (e,J' = e'l 
(0.2.8.3), whence e'l = de'l' by (iv) and because the restriction of e'l to U 
belongs to n!!(U). Then de,! = 0 by (iii), and we're left with 

d(La .. ej ) = Lda .. /\ ej = La~ /\ ej, 
I I I 

0.1.12.1 

where a~ is defined as in 0.3.4. 
This takes care of uniqueness. One can check directly that 0.3.12.1 satis

fies (i), (ii) and (iv). As to (iii), it suffices to show that if f E n!!(U) (with 
p ~ 2) we have d(df) = o. But 

and this is zero because e, /\ e: = 0, ej /\ e, = -e, /\ ej, and, by Schwarz's 
theorem (0.2.13), 

8 2 f _ 8 2 f 
8x .. 8xj - 8xj8xi· 

o 

The operator d satisfies d 0 f* = f* 0 d, that is, the following diagram 
commutes: 

n;(U) L n;(V) 

d! . !d 
nr+l(u) LnrH(v) 
=p-l =p-l 

0.3.13 

The expression given here for the exterior derivative resorts to the canonical 
basis for A r E*. One can instead use the following intrinsic formula, which 
is taken as a definition in [Car70, 1.2.3.1J: 

0.3.14. Proposition. If a E !l;(U) and eo, ... , er are elements of E, we 
have, for any x E U: 

r 

da(x)(eo, ... , er) = ~)-I)"a'(x)(e .. )(eo, ... , e .. , ... , er), 
.. =0 

where a'(x) denotes the derivative of a: U -+ Ar E* and (eo, ... , e .. , ... , er) 
stands for (eo, ... , e"-I! e"H, er). 
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In fact, take 0: = LI O:Ie~; the map 0: : U -+ Ar E* has the O:I'S for 
coordinate functions, hence its derivative o:'(x) is the linear map E -+ Ar E* 
having for coordinate functions 

x f-+ o:~(x) = t ~O:I (x)e~. 
k=1 Xk 

Thus, for u E E, we have 

o:'(x)(u) = L o:~(x)(u)e~ = L (t ~:I (x)e~(u)) e~; 
I I k=1 k 

in particular, since o:'(x)(u) E Ar E*, we have 

On the other hand, consider do: (x)(eo, ... , er). By 0.3.12.1 we have 

do:(x)(eo, ... , er) = L o:Hx) /\ e~(eo, ... , er) 
I 

(e~ /\ <1 /\ ... /\ <r)(eo, ... , er) = L eo-e~(eo-(O)) ... eir(eo-(r)). 
o-E 5r + 1 

Grouping together terms with same a(O) = i, we get 

r 

(e~ /\ e~)(eo, ... , er) = L e~(ei) 
i=O 

Since a(O) = i, the permutation a maps {1, ... ,T} onto {O, ... ,i - 1, 
i + 1, ... , T}. Consider the map T E Sr+l defined by 

{ 
i if j = 0, 

r(j) = JJ: - 1 if 1 :::; j :::; i, 
if i + 1 :::; j :::; T. 

We have (a 0 r- 1 Hi) = a(O) = i, so that a 0 r- 1 = a-I leaves i fixed and 
permutes the other indexes. Furthermore 

e:1 (eo-(I)) ..• eir(eo-(r)) = ei1 (eo-/(O)) ... <r(eo-/(r), 

where a'(i) does not appear on the right-hand side. 
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Since eO'OT-1 = eO" = eO'eT-1 and eT-1 = (_l)i (there being i transposi
tions), we get 

L eO'<J eO'(l)) ... <r (eO'(r)) = (_l)i L eO', <1 (eO',(O)) ... <r (eO"(r)), 

and 
r 

(e~ /\ ej)(eo, ... , er) = L(-l)ie~(ei)ej(eO' ... ' ei' ... ' er), 
i=O 

whence the equality 

da(x)(eo, ... , er) = t(-l)i (L (t ::~ e~(ed )ei(eo, ... , ei' ... ' er)) 
>=0 I k=l 

r 

= L(-l)ia'(x)(ei)(eo, ... , ei' ... ' er). 
i=O 

0.S.15. Continuous families of differential forms 

O.S.15.1. Definition. A continuous, one-parameter family of r-forms of class 
CP on U E O(E) is a continuous map a : J xU --+ Ar E*, where J c R is a 
(not necessarily open) interval, satisfying the following conditions: for every 
t E J, the map x 1-+ a(t, x) is in CP(Uj Ar E*)j and the p-the derivative of 
x 1-+ a(t, x) is continuous on J xU. 

This implies that the restriction at = al{t}xu, for every t E J, belongs 
to n;(U). 
O.S.15.2. Example. The definition is satisfied if a E CP(J X Uj Ar E*). 

Now let a be a continuous, one-parameter family of r-forms of class CP 
on U, defined for some interval J c R. Let a and b be in J, and a < b. 
Since, for every x E U, the restriction aIIX{x} is continuous, we can define 

O.S.15.S lb a(t, u) dt 

as the ordinary integral of a function of one real variable with values in a 
finite-dimensional vector space (0.4.7j here the range is Ar E*). Thus we 
can consider the map 

O.S.15.4 U 1-+ lb a(t, u) dt 

from U into Ar E*j this map is denoted by f: at dt. 

O.S.15.5. Proposition. The map f: at dt taking u E U into f: a(t, u) dt 
belongs to n;(U). 

Proof. This follows by differentianting under the integral sign (see 0.4.8). 
o 
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0.1.15.6. Lemma. Let a be a continuous, one-parameter family of r-forms 
of class C 1 , where r is less than the dimension of E. For every a, b E J we 
have 

This equality makes sense because, since at E D.~ (U), the exterior deriva

tive d(at) E m+l(U) is defined. Similarly, by 0.3.15.5, the map f: at dt is 

in m(U), so dU: dt) is also defined and belongs to m+l(U). 

Proof. Let eo, ... , er be elements of E. By 0.3.14, we have 

D= (d(lb adt) )(x)(eo, ... ,er) 

= tJ-1)i(jb a(t,x)dt) (ei)(eO, ... ,ei, ... ,er), 
i=O a x 

where U: a(t, x) dt)~ is the derivative of 

X f--+ lb a(t, x) dt 

with respect to x. By 0.4.8 and 0.4.7, we obtain 

D = ~(_1)i (lb ~: (t, X)(ei) dt) (eo, ... , ei, ... , er) 

= ~(_1)i (lb ~: (t, X)(ei)(eO,"" ei,"" er) dt) 

= lb (~(_1)i~: (t, X)(ei)(eO,"" ei, ... , er)) dtj 

applying 0.3.14 and again 0.4.7, we get 

concluding the proof. o 
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0.4. Integration 

A systematic reference for the whole of this section in [Gui69]. 
The theory that we'll need for manifolds is that of Radon measures. This 

theory works for locally compact topological spaces X which are countable 
unions of compact spaces. Some texts also require X to be metriz able , 
in order for a certain lemma [Gui69, p. 37] to be truej but this lemma is 
automatically true for manifolds (cf. 3.3.11.1). 

We denote by K(X) the space of functions I E CO(X} having compact 
support. A (Radon) measure on X is a positive linear form p. on K(X) 
[Gui69, 1.12.3]. The domain of definition of this form can be extended to 
a space Ll (X) ::> K (X), called the space of functions on X integrable for 
p.. This space will be denoted by 

0.4.1 

For I E c~nt(X) we write 

0.4.2 p.(J) = Ix Ip.· 

0.'.1.1. On R n there is a canonical measure, called the Lebesgue measure 
p.o [Gui69, example on p. 10]. For I E K(Rn) the integral p.o(J) coin
cides with the ordinary (Riemann) integral. The Lebesgue measure is also 
defined for U E O(Rn). 

0.'.1.2. If p. is a measure on X and a E CO (Xj R+), we can define a measure 
ap. by (ap.)(J) = p.(a/}. If I E C~r;.t(X) we have al E C;:t(X} [Gui69, 
1.11.1], and 

0.4.4. Sets of measure zero. If p. is a measure on X, one has the notion 
of a subset of X of measure zero [Gui69, p. 10]. For the Lebesgue measure, 
one can take the following criterion as a definition: 

0.'.'.0. Definition. A set in Rn has Bero Lebesgue measure if it can be 
covered by a countable family of cubes whose volumes add up to less than 
e, for e arbitrarily small. 

0.'.'.1. Proposition [Gui69, p. 11]. A countable union 01 sets 01 measure 
zero has measure zero as well. 0 

0.'.'.2. Proposition. The set Rm = Rm X {o} eRn, lor m < n, has 
Lebesgue measure zero in Rn. In particular, Un Rm has measure zero lor 
any U E O(Rn). 0 



26 O. Background 

0.'.'.1. Proposition. Let a be a positive function on X and JL a measure on 
X. If A has JL-measure zero, it has aJL-measure zero. 

Proof. Write X as a countable union of compacts and apply 0.4.4.1 and 
[Gui69, definition on p. 10J, together with the fact that continuous functions 
are bounded on compact sets. 0 

0.'.'.'. A property is said to hold JL-almost everywhere (or just almost 
everywhere) if it holds for all but a set of measure zero of points. We'll 
also talk about functions defined almost everywhere. 

0.'.'.5. Proposition. Let U E O(Rn) and f E Cl(U; Rn). If A c U has 
Lebesgue measure zero, so does f(A). 

Proof. By 0.4.4.1 we can assume that A is contained in U' C U, where U' 
is compact and U' is convex. Let k be an upper bound for 111'11 in U'. By 
0.2.6, f is k-Lipschitz; in particular, the image under f of a cube of volume 
a in R n will be contained in a cube of volume kna, which proves the result 
by 0.4.4.0. 0 

0.'.'.6. In particular, if U E O(Rn), f E Cl(U; Rn) and n > m, the image 
f(U) has Lebesgue measure zero in Rn. It suffices to consider the map 
i: UxRn-m -+ Rn defined by i(x, y) = f(x), since Ux{O} c RmxRn-m 
has measure zero. 

0.4.5. If X and Yare spaces with measures JL and v, respectively, we define 
on X x Y a canonical product measure JL ® v [Gui69, 1.7J. For instance, 
if JLn is the Lebesgue measure on Rn, we have JLm+n = JLm ® JLn [Gui69, 
example on page 19J. Product measures satisfy Fubini's theorem: 

0.'.5.1. Fubini's theorem. If f E C~~v(Xx Y) we have, for v-almost every 
yEY, 

{x 1-+ f(x, v)} E c~nt(X). 

Moreover, the function defined v-almost everywhere by y 1-+ Ix f(x, y)JL is 
in C:t(y), and we have 

o 

0.4.6. Change of variable formula. Consider U, V E O(RR) and a 
diffeomorphism f : U -+ V (0.2.18) Let J(J) be as in 0.2.8.9, and let JLo be 
the Lebesgue measure on Rn. If a E c~t(V), we have 

(a 0 nIJ(J)1 E c~~t(U), 

and i (a 0 n IJ(J) 111-0 = Iv f JLo· 

Proof. See [Gui69, p. 33]. o 
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0.4.7. Vector-valued integrals. All of the above holds without change 
for functions with values in a finite-dimensional vector space E. Let J1. be 
a measure on the domain X, and E* the dual of E. We define c~nt(Xj E) 
to be the space of I : X -+ E such that 

0.4,.7.1 eo I E c~nt(X) for every e E E*. 

If I E c~nt(Xj E) we define Ix I J1. E E by 

0.4,.7.2 e (Ix I J1.) = Ix (e 0 J) J1. 

for all e E E*. 

0.4,.7.S. If {ei}i=l, ... ,n is a basis for E and I = (ft, ... , In) in that basis, 
we have 

0.4.8. Differentiation under the integral sign 

0.4,.8.0. Theorem. Consider open sets U E O(Rn) and A E O(R"), and a 
map U x A -+ E into a finite-dimensional normed vector space E. Let J1. 
be the Lebesgue measure on Rn, and assume that I satisfies the lollowing 
conditions: 

(i) 
(ii) 

(iii) 

lor any A E A, the map x 1-+ I(x, A) belongs to c~nt(Uj E)j 
lor any x E U, the map A 1-+ I(x, A) is differentiable and its derivative, 
denoted by !{, is continuous on U x Aj 
there exists h E c~nt(U) such that 

lor every A. 

Then: 

(a) the map x 1-+ M(x, A) belongs to c~nt(Uj L(R"j E)); 
(b) the map A 1-+ F(>.) = Iu I(x, >')J1. is differentiablej 
(c) differentiation under the integral sign is allowed: 

aF ! al a>. = u a>. (x, A)J1.. 

Proof. This follows from [Gui69, p. 26J by applying 0.2.8.6 and 0.2.8.7. 0 

0.4,.8.1. Remark. Conditions (i) and (iii) are satisfied if, for instance, the 
support of x 1-+ I(x, >.) is contained in a compact subset of U independent 
of A. 
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0.'.8.2. Theorem 0.4.8.0 gives rise, by recurrence, to similar results in class 
CP. There is also a result in class Co. 

0.5. Exercises 

0.5.1. Let E be a d-dimensional oriented Euclidean vector space. Show 
that, for every p (0 $ p $ d), there exists a map 

*: APE* -+ Ad-PE* 

characterized by the condition that 

(*a)(xp+l' ... ' Xd) = a(xl, ... , xp) 

for any positive orthonormal basis {e .. h=l, ... ,d and any a E AP E*. Calcu
late * 0 * as a function of d and p. 

0.5.2. Let E be a Euclidean vector space and (. J .) the canonical scalar 
product on E*. Show that, for every p (0 $ p $ d), the formula 

lI a l /\ ... /\ a p II2 = (det((a .. 1 ai)))2 

defines a Euclidean structure on APE*, where det{(a .. 1 ail) indicates the 
determinant of the matrix whose elements are the (a .. J ail. 

0.5.3. Liouville's theorem. The purpose of this exercise is to character
ize the differentiable maps of Rn (n ~ 3) that are conformal, that is, whose 
derivative is, at every point, an angle-preserving linear map. 

0.5.S.1. Definitions. A linear map A : Rn -+ Rn is called a similarity if 
JJAxJJ = kJJxll for some real number k 1= 0 and all x ERn; it is easy to 
see that A is a similarity if and only if A preserves angles. A differentiable 
map! : U -+ R n , where U is an open subset of R n , is conformal if f'(x) 
is a similarity for every x E U. It is an inversion if there exists a point 
c ERn \ U and a real number a 1= 0 such that 

a 
!(x) = c + IIx _ cJJ2 . (x - c) 

for x E U; c and a are called the pole and power, respectively, of the 
inversion [Ber87, section 10.8]. Finally, ! is a hyperplane reflection if there 
exists a hyperplane H c R n such that !(x) = 2p{x) - x, where p{x) is the 
unique point in H whose distance to x is minimal. 

0.5.S.2. Now assume that n ~ 3 and that! : U -+ Rn is of class C3 at 
least. Show that! is a similiarity composed with one of: (a) a translation; 
(b) a hyperplane reflection; (c) an inversion. Work in the following way (for 



5. Exercises 29 

details see [Ber87, 9.5.4]): show first that the function u(x) = 111'(x)II-1 

satisfies 

( au )2 
~ ax. =2pu 
• 

for some constant p (the first two formulas say that Hess u = pll . 11 2 , 

cf. 4.2.2, and the last that IIVull 2 = 2pu). Deduce from this that, if u is 
not a constant, it is of the form 

u = !!.. "(x· - a·)2 2 ~. ., 

• 
where the a. are constants. If u is a constant, show that we're in case (a) 
or (b)j otherwise show that we're in case (c). 



CHAPTER 1 

Differential Equations 

Apart from their intrinsic interest and their relevance to me
chanics and physics, differential equations are also studied as 
an essential tool in differential geometry (see 7.2.3 and 8.6.13, 
for example). We start by defining the notion of a differential 
equation and that of a solution, and by reformulating these 
concepts in terms of vector fields and integral curves. In 1.2.6 
we prove the local existence and uniqueness of integral curves. 
We also discuss the problem of extending an integral curve into 
a maximal one (section 1.3). 

We continue by studying the behavior of solutions as a func
tion of the initial condition or of parameters appearing in the 
equation (1.2.7 and 1.4.7). This is carried out in two steps: first 
we discuss vector fields, that is, differential equations x, = I(x) 
independent of time (section 1.2). Then we use a technical 
trick to generalize to the case of equations x, = I(x, t) (section 
1.4). 

In section 1.6 we discuss linear equations, which enjoy the 
important property that their solutions exist over the whole 
interval of definition of the equation. We also state without 
proof some results which, although not used in the sequel, are 
so fundamental that we feel we should include them, for the 
sake of readers with no background in differential equations. 
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1.1. Generalities 

Let E be a real Banach space and 4> a map from an open subset of R into 
E. If 4> is differentiable, its derivative 4>'(t) at t is a linear map from R 
into E, and thus of the form ). 1-+ ). V for some vector VeE (namely 
V = 4>'(t)(1), 1 E R). In this chapter we will identify the derivative 4>'(t) 
with the corresponding vector V, that is, we will consider 4>'(E) as an 
element of E, and the map 4>' as having values in E instead of L(Rj E) 
(cf.0.2.4). 

1.1.1. Definition. Let U C R X E be open and f : U -+ E a continuous 
map. A solution of the first-order differential equation 

dx 
dt = f(x, t) 

is any map 4> : I -+ E, where Ie R is an interval, such that 4> is of class 
Cl and for every tEl we have (t,4>(t)) E U and 4>'(t) = f(t,4>(t)). 

In fact it is enough to assume that 4> is continuous, for then 4>', being a 
composition of continuous maps, will also be continuous. 

In the case that E = El X ... X En is a product of real Banach spaces, 
U is an open subset of R X El X ... X En and f is a continuous map 
from U into E, with components" : U -+ E i , a solution of the equation 
dx/dt = f(t, x) is an n-tuple of continuous maps 4>i : 1-+ E i , where Ie R 
is an interval, such that for every tEl we have (t, 4>I(t) , ••• , 4>n(t)) E U 
and 

4>Ht) = "(t, 4>i(t), ..• , 4>n(t)). 

Thus we have a system of n first-order equations in n unknowns, often 
written 

for 15 i 5 n. 

1.1.2. Higher-order differential equations. Let E be a Banach space, 
U C R X En an open set and f : U -+ E a continuous map. An n-th order 
differential equation is an equation of the form 

A solution of such an equation is a map 4> : 1-+ E, where I C R is an 
interval, such that for every tEl we have (t, 4>(t), ... , 4>(n-l) (t)) E U and 

4>(n)(t) = f(t,4>(t), ... ,4>(n-l)(t)). 

Here again we have identified derivatives with vectors in E. 
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1.1.S. Proposition. Every n-th order differential equation can be reduced 
to a first-order equation. 

Proof. Let ~:: = f (t, x, ~;, ... , ~:~~~) be an n-th order differential 

equation, and set 

dx 
dt = Xl, 

dX1 d2x 
'dt = X2 = dt2 

dX n -2 dn - 1x 
~ = Xn-1 = dtn- 1 ' 

Solving the given differential equation is the same as determining 0 1 maps 
¢, ¢1, ... , ¢n-1 from an interval Ie R into E such that 

¢'(t) = ¢t{t) 
¢~ (t) = ¢2(t) 

¢~_2(t) = ¢n-1(t) 
¢~-1 (t) = f(t, ¢(t), ¢t{t), ... , ¢n-dt)). 

Calling F : U -+ En the map with coordinate functions 

fn-1(t,X1,""Xn) = Xn-1 
fn(t, Xl,"" Xn) = f(t, Xl, ... , Xn) 

and setting X(t) = (Xl,"" Xn), we have reduced the problem to solving 
the first-order differential equation 

dX dt = F{t,X(t)). o 

Thus, from the theoretical point-of-view, only first-order equations need 
concern us. 
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1.2. Equations with Constant Coefficients. 
Existence of Local Solutions 

Here we discuss differential equations of the form dx/dt = !(x), where! is 
a continuous map from an open subset U c E into E. 

1.2.1. Definition. Let U c E be open. A vector field on U is a map 
!: U --+ E. 

In practice we represent vectors in a vector field as arrows from each 
point x to the point x + !(x). This makes geometric sense, especially in 
view of the notion of flows (see figure 1.2.2). 

It \ \ 
/ \ 

/ '" --/"'----- ----- ----"'/--
"" / 
\ ~ 
\ \ / U(X 

Figure 1.2.1 

From now on we assume E is finite-dimensional. 

If the vector field ! is continuous, we can associate to it the differential 
equation x' = !(x). 

1.2.2. Definition. A CP integral curve of a vector field! is a CP curve 
(J, a) in U (0.2.9.1) such that 0 E J and a'(t) = !(a(t)) for every t E J. 
An integral curve a is said to have initial condition Xo if a(O) = Xo. 

1.%.%.1. Remark. We require that 0 E J just for convenience in the state
ment of initial conditions, but this requirement is not essential. It's possible 
to work with arbitrary J and talk about an initial condition a(t) = Xo for 
t E J and Xo E U. 
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Figure 1.2.2 

1.2.3. Definition. Let f be a vector field on U. A local flow of f at Xo 
consists of a neighborhood U' c U of Xo, an open interval J containing 0 
and a map a : J X U' -+ U such that, for every x E U', the restriction of 
a to J X {x} is an integral curve with initial condition x. 

1.2.4. Example. Let E = R2 and let U be the open triangle determined 
by the points 0(0,0), A(8,0) and B(4,4). Consider the constant map 
f: x 1-+ el taking every x E U into el = (0,1). 

The differential equation dxj dt = el can easily be integrated; the integral 
curve initial condition Xo is given by x = tel + xo, but the values of t must 
be such that the vector te 1 + Xo is in U. Thus the integral curve with initial 
condition Xo = (4,2) is the map a : 1-2, 2[ -+ U given by a(t) = tel +xo. If 
the initial condition is Xl = (2, 1), the interval of definition of the integral 
curve is 1-1,5[. It is clear that for any point in U it is possible to find an 
integral curve having that point as initial condition. 

Figure 1.2.4 
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Consider again the point Xo = (4,2). Finding a local flow at Xo is 
the same as finding a neighborhood U' of Xo such that, for any y E U', 
the integral curve with initial condition y is defined on some interval J 
independent of y. 

For example, if we take u' to be the open ball of radius 1 centered at 
xo, there exists a number b > 0 such that every integral curve with initial 
condition in B(xo, 1) is defined at least on I-b, b[ = J. On the other hand 
the ball U' = B(xo, V2) is no good, since it contains points arbitrarily 
close to the frontier of U, points whose integral curves are only defined on 
intervals of the form 1- e, td or I - t2, e[, for e arbitrarily smalL 

1.2.5. Remark. Clearly the existence of a local flow at Xo defined on an 
interval J does not prevent integral curves through points x E U' from 
being defined on intervals bigger than J. We thus have a problem of ex
tensibility: see 1.6.1. 

1.2.6. Theorem (existence and uniqueness oflocal flows). Let I be a 
k-Lipschitz vector field on U, with k > o. Let Xo be a point in U, let a > 0 
be a number such that B(xo,2a) c U, and set 1= sup",EB(",o,2a)/l/(x)/I. 
For every b < inf( I' k) there exists a unique local flow 0: at Xo defined on 
I-b, b[ x B(xo, a) and continuous on the same set. 

If k = 0 the theorem is still valid (for b < a/I), but trivial. Indeed, 
k-Lipschitz means (cf. 0.0.13.1) that for every x, x' E U we have 

Ill(x) - l(x')/1 ~ k/lx - x'/I; 

if k > 0, we get I(x) = constant = v. We're back to example 1.2.4: 
integral curves in B(xo, a) are given by t 1-+ tv + xo, for any t such that 
/lttl + Xo - xo/l < a, that is, It I < a//iti/i. But here /lti/l = I. 
Proof. We're looking for a map o:(t, x) such that o:W, x) = I(o:(t, x)) and 
0:(0, x) = x. This is equivalent to having 

1.2.0.1 o:(t, x) = lot I(o:(u, x)) du + x. 

We're thus led to considering the map 8", that associates to 0: the function 
8", (0:) given by 

1.2.0.2 S",(o:)(t) = x + lot I{o:(u)) duo 

Solutions of 1.2.6.1 are fixed points of 8"" that is, maps 0: such that 8",(0:) = 
0:. Thus 8",(0:) must have values in U, since so does 0:. Consider x E 

B(xo, a) and the space M", of continuous functions 0: : [-b, bl --+ B(xo, 2a) 
such that 0:(0) = x. We will show that b can be chosen in such a way 
that S'" maps M", into M",; thus 8",(0:), for 0: in M"" will have image in 
B(xo, 2a), hence in U. 
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Give .M x the norm of uniform convergence (this is why we're working in 
a compact interval [-b, bj-cf. 0.0.8). Since Sx(a) is continuous on [-b, bj, 
there remains to show that IISx(a)(t) - xoll ~ 2a. We have 

IISx(a)(t) - xoll ~ Ilx - xoll + lifot 
J(a(u)) dull < a + lfotIIJ(a(u))11 dul· 

Now u E [-b,bj implies a(u) E B(xo,2a), whence IIJ(a(u))11 ~ l, so that 
II SX (a)( t) - Xo II < a + bl. If we choose b such that 

1.2.6.S b < ~ 
- l' 

we will indeed have IISx(a)(t) - xoll ::; 2a, that is, Sx(a) E .Mx. (If l = 0, 
there is no condition on b.) 

Let us try to make Sx contracting. To do this we must find an upper 
bound for 

IISx(a) - Sx(.8) II = sup II r J(a(u)) - J(,8(u)) dull 
Itl:5b 10 

~ sup I rIIJ(a(u)) - J(,8(u)) II dul· 
Itl:5b 10 

By assumption, J is a k-Lipschitz field, with k > 0, so we have 

IISx(a) - Sx(,8) II ~ sup I r klla(u) - ,8(u) II dul· 
Itl:5b 10 

Since Ila(u) - ,8(u) II ~ sup Ila(u) - ,8(u) II = Iia - ,811, we have 
lui :5b 

IISx(a) - Sx(,8) II ~ sup I r klla - ,811 dul- kblla - ,811· 
Itl:5b 10 

Then Sx will be contracting, and we will be able to apply theorem 0.0.13.2, 
if b satisfies 

1.2.6.4. kb < 1. 

Finally, considering conditions 1.2.6.3 and 1.2.6.4, we conclude that, for 
b < inf (T' i-), there corresponds to each x E B(x, a) a contracting map 
Sx : .Mx ---+ .Mx, and .Mx is a complete metric space, since [-b, bj is compact 
and E is complete (0.0.8). Thus we can associate to each x the fixed point 
of Sx; this gives a map ax : [-b, bj---+ B(xo, 2a) such that ax(O) = x and 

dax(t) = J(ax(t)) 
dt 

in j- b, b[. We finally define a map a : j-b, b[ X B(xo, a) ---+ B(xo, 2a) C U 
by setting a(t, x) = ax(t). The restriction of a to j-b, b[ x {x} is the desired 
integral curve ax. This gives a local flow at Xo. 
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We still have to check that this flow is continuous. For fixed x the map 
o:{t, x) is continuous with respect to t, but we have to study its continuity 
with respect to t and x simultaneously. 

Take x, y E B{xo, a) and t, s E [-b, bl' We will show that if (t, x) is close 
to (s, y) the number 1100(t, x) - o:(s, y) I can be made arbitrarily small. We 
have 

IIo:(t,x) - o:{s,y)II ~ IIo:(t,x) - o:(s,x)II + IIo:(s,x) - o:(s,y)II· 

Now IIo:~{t,x)II = IIf(o:{t,x))II ~ l implies 

IIo:(t,x) -o:(s,x)II ~ Ilt-sl 

(theorem 0.2.6). As for the other term, we have 

IIo:{s, x) - o:(s, y) II = Ilx + 104 f{o:{u, x)) du - Y -104 f{o:(u, y)) dull 

~ IIx - YII + 1104 IIf(o:(U, x)) - f{o:(u,y))11 dul· 

Set 1I00",-o:yll = sup IIo:{u,x)-o:(u,y)IIj since fisk-Lipschitz and 1111 ~ b, 
lul9 

we get 

IIo:(s, x) - o:{s, y)II ~ IIx - yll + kbllo:", - o:yll· 

But this is true for every s E ]-b, b[j thus 

110:", = o:yll ~ Ilx - YII + kb II 0:", - o:yll, 
(1- kb)lIo:", = o:yll ~ Ilx - yll· 

Since kb < 1, we get 110:", - o:yll ~ Ilx - yll/{1- kb). 
This completes the proof of continuity: for any x, y E B(xo, a) and 

s, t E ]-b, b[ we have 

1 
IIo:(t, x) - o:{s, y) II ~ lit - sl + 1- kb Ilx - YII· o 

1.2.1. Theorem. Any vector field f of class CP admits a unique local 
flow, of class CP, at each point of its domain. 

Proof. Class CP implies differentiable and locally Lipschitz. Apply theorem 
1.2.6 for the existence of a continuous local flow at every point. We will 
not prove that this flow is of class CP: see [Lan69, chapter VI, §4]. 0 
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1.3. Global Uniqueness and Global Flows 

Theorems 1.2.6 and 1.2.7 guarantee the existence of integral curves with 
given initial condition, under certain circumstances. It makes sense to 
ask whether two integral curves with same initial condition coincide where 
both are defined, and whether they can be extended to larger intervals of 
definition. Uniqueness is assured by the next proposition; for extensibility, 
see 1.6.1. 

1.S.1. Proposition. Let f be a CP (or k-Lipschitz) vector field defined 
on an open set U c E. Two integral curves al : J I -+ E and a2 : J2 -+ E 
(where J I and J2 are intervals containing 0) with same initial condition 
coincide on J I n J2 • 

This can be interpreted as saying that integral curves do not fork (see 
3.5.5). 

Proof. Let Q = {t E J I n J2 : adt) = a2(t)}. We have Q C J I n J2 and 
Q 1= 0 (since 0 E Q). We also have Q closed, since 

Q = (al - a2)-1(0) n (JI n J2 ). 

Thus, if we show that Q is open in J I n J2 , it will follow by connectedness 
that Q = J I n J2 • 

Take b E Q, and consider the maps f31 and f32 given by f3.(t) = a.(t + b) 
(i = 1,2). We have 

f3Ht) = a~(t + b) = f(a.(t + b)) = f(f3.(t)), 

so f31 and f32 are integral curves for t in the intervals J I - band J2 - b, 
respectively. Now f31(0) = adb) = a2(b) = f32(0) = Xo; by local uniqueness 
(theorem 1.2.6), this implies that, on an open interval Jk containing 0, the 
integral curves f31 and f32 coincide. Then al and a2 coincide on J k + b, 
which is an open interval around b. Since this open interval is in Q, we 
have shown that Q is open. 0 

1.1.1.1. Now suppose that the set of integral curves with initial condition 
x is {( ak, Jk)} kEK' where Jk is the domain of definition of ak and K is a 
set of indices. Set J(x) = UkEK Jk (an open interval), and define a(t), for 
t E J(x), to be equal to ak(t) for any k such that t E Jk. This is well-defined 
by 1.3.1, and J(x) is the largest open interval on which the integral curve 
with initial condition x is defined. The integral curve (J (x), a) is denoted 
by ax and called the maximal integral curve with initial condition x. 

The following problem then arises: for Xo E U, consider the maximal 
integral curve x I-> a(t, xo) with initial condition xo, and a time tl E J(xo). 
Since Xl = a(tl' xo) E U, there exists an integral curve f3 with initial 
condition Xl, defined on a maximal interval J(xd. What is the relation 
between a and f3, and between J(xo) and J(xd? 
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For instance, returning to example 1.2.4 with Xo = (3,2), we have an 
integral curve o(t, xo) = Xo + tell with t E J(xo) = 1-1,3[. Put tl = 
2 E J(xo) and Xl = 0(2, xo) = (5,2). The integral curve with initial 
condition Xl is given by ,8(r) = Xl + rell with r = 1-3,1[. Moreover, 
,8(r) = Xo + 2el + reI = Xo + (2 + r)el. We see that J(xd is obtained by 
translating J(xo) by -tl (that is, by -2), and that ,8(r) = o(r+tlo xo) for 
r E J(xd. This situation is general: 

1.3.2. Theorem. Let I be a vector field 01 class OP on an open set U c E, 
and take Xo E U and tl E J(xo). The integral curve ,8 with initial condition 
Xl = O(tlo xo) has maximal interval 01 definition J(xd = J(xo) - tlo and, 
lor every t E J(xo) - tl, we have ,8(t) = o(t + tl , xo). 

Proof. Consider the function ,8 given by ,8(t) = o(t + tl, xo), which is 
defined on J(xo) - tl. We have 

,8'(t) = o'(t + tlo xo) = I(o(t + tlo xo)) = 1(,8(t)) 

and ,8(0) = o(tl , xo) = Xl, so ,8 is an integral curve with initial condition 
Xl defined on J(xo) - tl. This is the maximal interval of definition for ,8, 
otherwise the integral curve with initial condition Xo would have a larger 
interval of definition than J(xo). 0 

1.3.3. Definition. Let I be a vector field of class OP. We set I)(J) = 
{(t,x) E R xU: t E J(x)}. The map 0: I)(J) -+ U given by o(t,x) = 
O:Jl(t), where 0:Jl is the integral curve of I with initial condition X, is called 
the global 80w of I, and I) (I) is called its domain of definition. 

We can write 
1)(1) = U (J(x) x {x})j 

:JlEU 
we necessarily have {o} x U c 1)(1), but in general there is no open interval 
J 0:) 0 such that J x U c 1)(1) (see example 1.2.4, but also theorem 1.3.6). 

A nice way of formulating the relation ,8(t) = o(t + tlo xo) of theorem 
1.3.2 is as follows: for every (t, x) E 1)(1), set 

1.3.4 Gtx = o(t, x). 

We can say that G t is a "local" map from U into itself. (If {t} x U c 1)(1) 
the map G t is really defined on the whole of U.) With this notation the 
following equation is true, whenever it makes sense: 

1.3.5 Gt(GhXo) = (Gt 0 Gt1)xo = GtH1XO, 

because of 1.3.2. If R xU c 1)(1), formula 1.3.5 becomes Gt 0 Ga = GHa 

for every t, 8 E R, and it expresses the fact that t ...... Gt is a homomorphism 
from the additive group R into the group of homeomorphisms of U. We say 
that the Gt (t E R) form a one-parameter group. In general, for arbitrary 
1)(1), the Gt form a semigroup of local homeomorphisms of U. 
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Intuitively speaking, 1.3.5 says that walking along a for tl seconds, then 
for t seconds, is the same as walking along a for t + tl seconds. 

1.S.6. Theorem. If f is a CP vector field defined on an open set U, then 
(i) 1'(1) is open in R x U, and 
(ii) a E CP(D(I)j U). 
Proof. We will show that every point (to, zo) E 1'(1) has a neighborhood 
contained in 1'(1) on which the flow a is of class CPo Since f is of class CP, 
so are the local flows (1.2.7), so we just have to demonstrate the existence 
of a neighborhood of (to, zo) contained in 1'(1) and admitting a local flow. 
The existence of a local flow at Zo implies that we can find such a neigh
borhood for points (0, zo) E 1'(1). Thus the problem is to pass to points 
(to, zo) E 1'(1), with to E J(zo) arbitrary. 

We will say that s E R satisfies property P if there exists an interval 
J c R containing s and an open set U' c U containing Zo such that 
J x U' c 1'(1) and alJxu' is of class CPo Let Q:;:o be the set of t E J(zo) 
such that every s E [0, t] satisfies property P. We will show that Q:;:o 
and J(zo) have the same supremum. An analogous reasoning will show 
that J(zo) and P:;:o = {t E J(zo) : every s E [t,O] satisfies p} have the 
same infimum, and consequently that J(zo) = Q:;:o U P:;:o' since Q:;:o and 
P:;:o are closed in J(zo). This will imply the theorem, since then every 
(to, zo) E 1'(1) has a neighborhood contained in 1'(1) on which a is of 
class CPo 

Let b be the supremum of Q:;:o. We can assume that b < +00, otherwise 
there is nothing to show (since Q:;:o C J(zo)). Assume by contradiction that 
b < sup(J(zo))j we want to find t ~ b satisfying property P. Thus we're 
looking for an interval J ::> b and an open set U' ::> Zo such that J x U' c 
1'(1) and alJxu' is of class CPo Every tl < b satisfies property Pj thus we 
should try to consider an integral curve with initial condition z~ = a(b, zo), 
and match it with an integral curve through ZOo Now b < sup(J(zo)) 
implies b E J(zo)j thus there exists an open set U" C U containing Zo, an 
interval K = I-a, a[ and a map {3 : K xU" -+ U that is a local flow at z~. 

We will match this flow with a flow whose interval contains 0, by starting 
from tl < b, so that tl E Q:;:o' For that it is necessary that the solution a 
defined at tl take values in U", the domain of {3. But a(t, zo) is defined 
on J(zo), in particular at t = b, and is continuous therej since U" is a 
neighborhood of z~ = a(b, zo), there exists" such that b - " < tl < b 
implies Zl = a(tl' zo) E U". 

Since the purpose of the matching is to extend the interval of definition 
of a to an interval containing tl + K, so as to go beyond b, we must take 
tl such that tl + a > b, that is, tl > b - a. So take tl such that 

sup((b - a), (b -,,)) < t1 < b. 

Since tl E Q:;:o, there exists an interval J 1 ::> tl and an open set U' C U 
containing Zo such that J1 x U' c 1'(1) and alJl xu' is of class CPo 
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Since a(tl' xo) = Xl is in the open set U" and x 1-+ a(tl' x) is continuous, 
we can restrict JI and U' and suppose that a ( {ttl xU') cU". Take 
t E tl + K and x E U'. Since tl E JI , we have a(tl' x) E U", and there 
exists an integral curve with initial condition a(tb x) defined on K by 
{3(1', a(tI' x)) for every l' E K. 

] [ ] 
h 

[ I I 

0 I-a I, t,+a -a a , 
/3(T,a(t"x)) 

a(t"x) U" 

(lx 

(l~o 

o(jt,lxU') 

Figure 1.3.6 

Thus for every t E tl + K, that is t - tl E K, the map t 1-+ {3(t - tb 
a(tl' x)) defines an integral curve which goes through a(tbx) at time t I ; 
by local uniqueness, this says that a is defined for t E tl + K and x E U'. 

We have found an interval II = tl + K containing b (since tl > b - a) 
and an open set U' C U containing Xo and such that, for every tEll 
and x E U', the flow a(t, x) exists (since II x U' c DU)). Furthermore, 
alhxul coincides with the local flow {3, so it is of class CPo We conclude 
that b satisfies property P, as do all points in lb, tl + a[. This contradicts 
the definition of b if b < sup{J(xo)), as we wished to show. 0 

1.4. Time- and Parameter-Dependent Vector Fields 

We consider from now on differential equations of the form x' = f(t, x). 
We rephrase section 1.1: 

1.4.1. Definition. Let U C E be open. A time-dependent vector field on 
U is a map f : J x U ~ E, where J C R is an open interval containing O. 

An integral curve of f with initial condition Xo is a function a : K ~ U, 
defined on an open interval K C R containing 0, and such that a(O) = x 
and a'(t) = f(t,a(t)) for every t E K. 
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To show the existence of integral curves we will reduce to the case of a 
time-independent vector field, by considering a vector field defined on an 
open set of R x E. 

Starting from f : J x U -+ E, we define a map 7 : J x U -+ R x E as 
follows: 

1.4.2 7(t, x) = (1, f(t, x)). 

Then 7 is a vector field on the open subset J X U of R X E. Furthermore, 7 
has the same differentiability class as f. If we assume f to be of class CP, 
the new vector field 7 will have unique local Hows of class CP everywhere, 
by theorem 1.2.7. 

Take (s, x) E J X U, and let a be the integral curve of 7 with initial 
condition (s, x), that is, a map a : 7(s, x) -+ J X U (where 7(s, x) is an 
interval), whose components we call al and a2: 

a(tj (s, x)) = (adtj (s, x)), a2(tj (s, x))). 

By definition of integral curve we have a(Oj (s, xl) = (s, x) and 

Thus al and a2 satisfy al (OJ (s, x)) = s, a2( OJ (s, x)) = x, 

and 

Since al has values in the interval J c R, we have 

1.4.3 

We then have 
da2 ( ) (_ ) ""dt tj (s, x) = f t + s, a2(t;(s, x)) . 

The solutions of da/dt = I(t, a) can thus be obtained for s = OJ they are 
the functions f3 defined by 

1.4.4 f3(t, x) = a2(tj (0, xl). 

This shows the existence and uniqueness of integral curves: 

1.4.5. Theorem. A CP vector field f : J X U -+ E, where J c R is an 
interval and U c E is open, has unique local flows 01 class CPo 0 

Now consider another Banach space F, and an open set V c F. We can 
define a vector field on an open subset U c E dependent on a parameter 
A E F as a map 1 from V x U (or from J x V x U if f is also time
dependent) into E. For each A E V we consider the differential equation 
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dx/dt = !(A,X), and we would like to know how the local flows depend on 
A. More generally, we could consider an equation of the form 

dx 
dt = !(t, A, x). 

We reduce again to the situation of section 1.2 by defining a vector field 
on F X E (or on R X F X E). We define 7: V X U -+ F X E by setting 

1.4.6 /(A, x) = (0, !(A, x)). 

IT ! is of class CP, we have defined a new CP field on V X Uj by 1.2.7, 7 
admits a local flow 0, with components 01 and 02, corresponding to an 
initial condition ( A, x). 

This new vector field satisfies 01 (OJ (A, x)) = A, 02(Oj (>..,x)) = x, 

001 ( ) Tt tj (A, x) = 0 and 

It follows that 01(t;(A,X)) = A, and consequently that 

d02 ( ) (- ) Tt tj (A, x) =! A, Cl!2(tj (A, x)) . 

Thus the map I' defined by 1'( t, x) = 02 (tj (A, x)) satisfies 

dl' 
dt (t, x) = !(Aj I'(t, x)), 

that is, I' is an integral curve with initial condition x. 

1.4.1. Theorem. Let V c F and U c E be open sets. Any! E CP(V X 

Uj U) admits a unique local flow I' E CP(J X V X Uj U). 0 

In particular, this shows that local flows vary CP-differentiably with the 
parameter. 

1.5. Time-Dependent Vector Fields: Uniqueness 
And Global Flow 

1.5.1. Let! E CP(J X Uj E) be a time-dependent vector field. By theorem 
1.4.5, proposition 1.3.1 holds for! without change. Thus we can still define 
for x E U a maximal interval J(x) c J on which is defined the maximal 
integral curve (J(x), Cl!o:) of! with initial condition x. We also set 

D(f) = {(t, x) E J xU: t E J(x)} 

and Cl! : D(f) -+ U with Cl!(t; x) = Cl!o:(t). Theorem 1.3.6 is still valid. 
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1.5.2. On the other hand, theorem 1.3.2 and formula 1.3.5 no longer hold. 
This is because, if t 1-+ a(t) is an integral curve, the maps t 1-+ a(t, 8), for 
fixed 8, no longer have to be integral curves. To fix 1.3.5, we notice that if 
a'(u) = f( u, a(u)) and we put ,8(t) = a(t + 8), we have 

,8'(t) = a'(t + 8) = f(t + 8, a(t + 8)) = f(t + 8, ,8(t)); 

in other words, ,8 is a solution for the new differential equation 

dg 
dt = g(t, x), 

where g(t, x) = f(t + 8, x). Or again: ,8 is an integral curve of the vector 
field 

(t,x) 1-+ g(t, x) = f(t+ 8,X). 

1.5.3. Notation. We denote by G: the local map analogous to Gt (defined 
in 1.3.4) but relative to the vector field (t, x) 1-+ f(t + 8, x). In particular, 
G~ = Gt . 

Then we have, whenever all operations involved are defined: 

1.5.4 G r - G r +. G r t+. - to •. 

In particular, GH • = G: 0 G •. 
To show this, suppose that, for x E U, we have r + 8 + t E J(x); and 

let a = a", be the maximal integral curve for f with initial condition 
x. By 1.5.2 and uniqueness, the map u 1-+ a(r + u) is the integral curve 
for (u, y) 1-+ f(u + r, y) having initial condition Xl = a(r); thus, if we put 
X2 = a(r+8), we have X2 = G~Xl by definition. Similarly, if X3 = a(r+8+t) 
we get X3 = G~+tXl; but on the other hand X3 = G~+' X2, as we wished to 
prove. 

1.6. Cultural Digression 

This chapter gives only a partial and somewhat biased treatment of dif
ferential equations, but it wouldn't be complete without brief mention of 
some important topics, even if they won't be necessary in later chapters. 
We omit proofs, except for theorem 1.6.6. 

1.6.0. Comparison tests. If dx/dt = f(t, x) is a differential equation 
admitting a Lipschitz constant for f and an upper bound for II fll, one can 
estimate an upper bound for a given solution of the equation, compare 
two solutions, or, better yet, compare two approximate solutions [Car71, 
equation 11.1.5.3J. A particular case of this occurs in lemma 1.6.7 below. 
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1.6.1. Extending a solution. It can be shown that there are only two 
obstructions to extending a solution of a differential equation to the whole 
of R. Either the integral curve reaches the frontier of U (figure 1.2.4), or 
the solution is unbounded. A classical example of the latter situation is 
the equation x' = -x2 , whose solution with initial condition x is 

x 
tl-+ --

tx+ l' 

so that J(z) = )-l/z, +oo[ for z > o. For a precise result, see [Die69, 
vol. I, 10.5.5) or [Lan68, p. 382, tho 5) (the proof uses 1.6.0). The proof of 
1.6.6 gives a particular case of extensions. 

1.6.2. Derivatives. When one shows that solutions are differentiable, 
whether with respect to initial conditions or to parameters (1.2.7 and 1.4.7), 
one proves at the same time a formula expressing the derivative as a solu
tion of a new differential equation, which has the advantage of being linear 
(cf. 1.6.4). See [Lan69, p. 135), [Die69, vol. I, 10.7.3.1 and 10.8.4.1), or 
[Car71 , II.3.4 and II.3.6). 

1.6.S. Linear equations with constant coefficients. An equation of 
the form z(n) + aIZ(n-l) + ... + an-IZ' + anz = 0, with all ... , an E 
R, can be explicitly solved. The solutions form a vector space having 
a basis whose elements are linear combinations of functions of the form 
x ki eAi "', where the k. E N and the .Ai are the roots of the algebraic equation 
en + alen - l + ... + an-Ie + an = o. See [Car71, II.2.9). 

1.6.4. Linear differential equations. A differential equation dz/dt = 
f(t, x) is called linear if it is of the form 

dz 
1.6.5 dt = A(t)z + b(t), 

where A E OO(Jji(EjE)) and b E O°(JjE), and J c R is an interval. 
Thus U = E. The important result about linear equations is the following: 

1.6.6. Theorem. For an equation of the form 1.6.5, we have [)(f) = JxEj 
in other words, J(z) = J for every z E E. 

1.6.'1. Lemma. Consider wE OO([to, b[ j R+) and assume there exist con
stants C and K such thatg(t) ::; C+K It: g(u) dufor every t E [to, b[. Then 
g(t) ::; Cek(t-to) for every tj in particular, g is bounded on [to, b[. 

Proof. Fix b' < b for the time being, and let B be an upper bound for 
g in [to, b']. From the hypothesis of the lemma we deduce, by applying 
induction and integrating from to to t, that 

g(t) ::; 0 (1 + K(t 1~ to) + ... + Kn-;!t~ 1t)~)n-l) + BKn(:!- to)n 
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for every t E [to, b'l and every positive integer n. As n grows we get 
g(t) $ CeK(t-to) for every t E lbo, b/l. Since this takes place for every 
b' < b, the lemma is proved. 0 

1.6.8. Lemma. Assume [a, bl c J. Any solution a of 1.6.5 defined on 
la, b[ is bounded on la, b[. 

Proof. Fix to E la, b[. By 1.6.5, we have 

whence 

1.6.9 

a(t) - a(to) = r (A(u)a(u) + b(u)) du, 
ito 

lIa(t) - a(to) II $ k 11)a(u)II dul + hit - tol, 

where k and h are upper bounds for IIAII and IIbll, respectively, over [a, bl. 
Now apply lemma 1.6.7. 0 

Proof of 1.6.6. Take x E E and to E J, and let J(x) be the maximal interval 
of definition for the solution a of 1.6.5 such that a(to) = x (cf. 1.2.2.1). 
Say J(x) = ltb t2[j we must show that t1 ¢. J and t2 ¢. J. Let's work with 
t2' 

Let k and h be upper bounds for IIAII and IIbll on [to, t21, and j an upper 
bound for Iiall on [to, t21 (lemma 1.6.8). Formula 1.6.9 implies that 

IIa(t) - a(s)II $ (kj + h)lt - sl 
for every s, t E [to, t21. This shows that the a(t) satisfy Cauchy's cri
terion, and, since E is complete, implies that there exists Xl E E such 
that Xl = limt _ t2 a(t). By local existence we can find a solution (3 
of 1.6.5 defined on an open interval L :> t2 and satisfying (3(t2) = Xl. 

But we have a(t) = ftto f(u, a(u)) du for every u < t2, so, by continuity, 

a(t2) = ft:2 J(u,a(u)) duo Thus a is a solution for 1.6.5 on [to, t21, which 
by uniqueness coincides with {3 on L n [to, t21. This means that 1.6.5 has a 
solution on [to, t21 U L, obtained by combining a and (3. This contradicts 
the definition of t2 = sup(J(x)). 0 

Theorem 1.6.6 is but the first stepping-stone in the theory of linear equa
tions. For more, see [Car71, 11.2.2 to 11.2.91. 



CHAPTER 2 

Differentiable Manifolds 

This chapter forms the backbone of this book, and it is the 
one with the greatest number of exercises. We first define 
and give examples of submanifolds of R n (section 2.1), the 
right concrete objects for the study of differential geometry. 
Next we define parametrizations of submanifolds; coordinate 
changes from one parametrization to another are the essen
tial ingredients in the definition of abstract manifolds (section 
2.2), which are the right objects for the study of abstract (and 
sometimes even concrete) differential geometry. 

We next study mathematical objects associated with man
ifolds: morphisms, tangent spaces, tangent bundle, subman
ifolds, immersions, submersions, embeddings. Both as illus
trations and for future need, we discuss in detail two general 
examples: covering spaces (section 2.4) and the normal bundle 
of a submanifold of a Euclidean space (section 2.7). Another 
simple result is also proved: the diffeomorphism group of a 
connected manifold is transitive (2.3.7). 

We also give more particular examples (2.1.6.2 and 2.4.12): 
spheres, real projective spaces and tori. They will be "test 
objects" later on, when we introduce de Rham groups (sections 
5.7 and 5.8) and volume (6.5.5). 
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2.1. Submanifolds of Rn 

For d :5 n the canonical inclusion Rd C R" is defined as the map i : 
(X1o"" Xd) 1-+ (Xl,"" Xd, 0, ... ,0). Similarly, the canonical isomorphism 
is R" = Rd X R"-d. 

2.1.1. Definition. Let V be a subset of R". We say that V is a d
dimensional CP submanifold of R" if, for every X E V, there exists an open 
neighborhood U c R" of X and a map f : U - R" such that f(U) C R" is 
open, f is a CP diffeomorphism onto its image and J(un V) = f(U) n R". 
The codimension of V is n - d. 

n-d 
IR 

f 

Figure 2.1.1 

2.1.2. Theorem. Let V be a subset of R". The following properties are 
equivalent: 
(i) V is ad-dimensional CP submanifold ofR". 
(ii) For every X E V there exists an open neighborhood U C R" of X and 

CP functions Ii : U - R (i = 1, ... , n - d) such that the linear lorms 
IHx) are linearly independent and 

"-d 
V n U = n f,:-l(O). 

i=l 

(iii) For every X E V there exists an open neighborhood U C R" of x and 
a submersion I: U - R"-d such that Un V = f-1(0). 

(iv) For every x E V there exists an open neighborhood U C R" 01 x = 
(6, ... , en), an open neighborhood U' of x = (6, ... , ed) in Rd and 
CP functions h,: : U' - R (i = 1, ... , n - d) such that, possibly after a 
permutation of coordinates, the intersection V n U is the graph of the 
map (h1 , ... ,h"-d) : U' - R"-d (under the canonical isomorphism 
Rd X R"-d = R"). 
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(v) For every x E V there ezists an open neighborhood U C R n 0/ x, an 
open neighborhood () C Rd % and a map g: () - Rn such that g'(O) 
is injective, g(O) = x, and 9 is a CP homeomorphism between () and 
V n U (with the topology induced from Rn). 

2.1.3. Remarks. Equivalence between (ii) and (iii) is easy: clearly (iii) 
implies (ii), and if (ii) holds the map / : U - Rn-d with components Ii 
is a submersion at x, and remains a submersion on a neighborhood of x, 
since the determinant is a continuous map. By restricting U if necessary 
we obtain (ii). 

Submanifolds are a generalization of the notion of plane curves (case 
n = 2 and d = 1), thought of as graphs (iv) or as images of functions 
(v). Space curves, considered as intersections of two surfaces, also fit this 
picture (ii) and (iii) with n = 3 and d = 1). 

o 
] . /( 

curves as images of 
immersions (v) 

curves as graphs (iv) 

Figure 2.1.3.1 

• g 

Figure 2.1.3.2 

Z.I.I.l. In (ii) we think of a submanifold as an intersection of hypersur
faces defined by local equations (cr. 2.1.6.5), in (iii) as the zero-set of a 
submersion, in (iv) as a graph, and in (v) as the image of an immersion 
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(because if g'(O) is injective, so is g'(x) for x close enough to zero). All of 
these are local descriptions. 

2.1.4. Proof. We already know that (ii) {:} (iii); we now show that (iii) 
=? (i) =? (v) =? (iv) =? (ii). 

(iii) =? (i). This is just theorem 0.2.26. 
(i) =? (v). Apply definition 2.1.1, using a translation, if necessary, to 

make I(x) = O. Take 0 = I(U n V) and g = 1-1 0 i, where i : Rd -+ Rn 
is the canonical inclusion. By the definition of induced topology, g is a 
homeomorphism. 

(v) =? (iv). After permuting indices if necessary, we can assume that 
g'(O)(Rd) n Rn-d = 0, where Rn = Rd X Rn-d. Let p : Rn -+ Rd be 
the projection onto the first factor. From g' (0) (Rd) n Rn-d = 0 we deduce 
that (p 0 g)'(O)(Rd) = Rd; in other words, po g is regular at O. By theorem 
0.2.22 there exists 0' E 0 0 (0) such that po g is a diffeormorphism between 
0' and U' = p(g(O')) E O(Rd). Thus (iv) is satisfied if we take this U' 
and h1 , ••• , hn - d equal to the n - d last coordinate functions of the map 
h = go (p 0 g)-1 E CP(U', Rn). In fact, h(U') = g(O') by assumption, so, 
by the definition of induced topology, there exists UtI E Ou(Rn) such that 
g(O') = h(U') = UtI n V. Thus UtI n V is the graph of (h lJ ••• , hn - d ) = h, 
as we wished to show. 

IRn -d 

n' 
1 r-.~( 

pog 

Figure 2.1.4 

(iv) =? (ii). Just set 

h(xlJ ... , Xn) = h.(xlJ ... , Xd) - XHd 

for i = 1, ... , n - d. 

p 

o 

2.1.5. Remark. In (v) the condition that g be a homeomorphism and an 
injection at 0 is essential. For example, if 0 = Rand g(t) = (t2 , t3 ) E R2, 
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IR g 

o 

Figure 2.1.5.1 

the map 9 is Coo and a homeomorphism from R onto g(R), but g(R) 
is not a submanifold of R2, since definition 2.1.1 is not satisfied at x E 
(0,0) E R2 (see exercise 2.8.1); this is because g'(O) = O. If we take {} = R 
and 9 E COO(R; R2) as in figure 2.1.5.1, where the arrows indicate that 
limt-++oo g(t) = limt_-oo g(t) = g(O), definition 2.1.1 is not satisfied at 
x = g(O) since, for every open set V C R2 containing g(O), the inverse 
image g-1 (V) contains not only an interval around 0 but also two intervals 
of the form J-oo, bl and Je, +001 (see exercise 2.8.1). See also exercise 2.8.4 
for another very important counterexample. 

)))){ ].,., ... ,.,;.{ 
o 

}, .. ,rc ,hss 

Figure 2.1.5.2 

2.1.6. Examples of submanifolds of Rn 

2.1.6.1. Proposition. Let V be ad-dimensional CP submanifold ofRn and 
W an e-dimensional CP submanifold of Rm. Then V x W is a (d + e)
dimensional CP submanifold of Rn+m. 

Proof. Theorem 2.1.2(ii), applied to x E V and yEW, gives n+ m- (d+e) 
functions Ii defined on an open neighborhood U = UI X U2 C Rn+m of 
(x, y) and satisfying (ii) for V X W. See also exercise 2.8.3. 0 

2.1.6.2. The sphere. The sphere Sd = {x E Rd+1 : IIxli = I} is a compact, 
d-dimensional, Coo submanifold of Rd+1. (We call S1 a circle; SO is equal 
to two points.) 

To see this, write 

Sd = {x = (6, ... , ed+d : e~ + ... + e~+1 - 1 = oJ. 
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Thus Sd is the zero-set of the map 1(6,··., Ed+d = E~ + ... + E~+l - 1, 
which is Coo j furthermore, since 

1 has non-zero derivative whenever x = (6, ... , Ed+l) is on Sd. Now apply 
2.1.2(ii). 

Without using coordinates we can also write 1 = II . 112 - 1, and the 
derivative at x is /'(x) = 2(x I .) (cf. 0.1.15.1), which is only zero when 
x=Q 0 

2.1.8.1. The torus, first redpe (see also 2.4.12.1). Let d ~ 1 be an integer 
and Sl(d- 1/ 2) C R2 the circle of center 0 and radius d- 1/ 2. Set 

Td = (Sl(d- 1/ 2))d = ~1(d-I/2) x ... x SI(d- 1/ 2), C R 2x·· .xR2 = R2d . .. 
d times 

By 2.1.6.1 and 2.1.6.2, Td is a d-dimensional Coo submanifold of R 2d j we 
call it a d-torus. We can also say, in the language of 2. 1.2 (ii) , that Td is 
defined by the equations 

.. -, 

Notice that Td is compact and that Td C S2d-l. 

2.1.8.'. The orthogonal group O(n), defined as the set of invertible n X n 
square matrices A such that tA = A-I [Dix68, 35.11.1], is a Coo subman
ifold of C Rn2 of dimension n(n - 1)/2. To see this, show that the map 
A t--+ tAA from Rn2 into the set of symmetric matrices, which can be iden
tified with Rn(n+l)/2, is surjective (exercise 2.8.10); then apply 2.1.2(iii). 

2.1.8.5. Definition. A CP hypersurface in RMI is a codimension-one (that 
is, d-dimensional) CP submanifold of Rd+l. 

Theorem 2.1.2(ii) shows that a hypersur
face divides R d+l locally into two regions, 
namely, 1-1(R'+') and l-l(R~), where 1 = 
II is a function satisfying 2.1.2(ii). In general 
it is not possible to distinguish between the 
two regions, but see section 6.4. One prob
lem of the type "passing from local to global" 
consists in knowing whether a compact hyper
surface separates Rd+l into two parts: see 9.2 
and 3.5.2. Figure 2.1.6.5 

2.1.6.6. Codimension-zero submanifolds are the same as open sets in Rd. 

2.1.6.7. Zero-dimensional submanifolds are sets of isolated points in Rd. 
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2.1.6.8. Veronese's surface. The image of the two-sphere S2 = {(x, y, z) : 
x 2 + y2 + z2 = I} under the map 

2.1.6.9 I: (x, y, z) 1-+ (x2, y2, z2, V2yz, V2zx, V2xy) 

is a two-dimensional submanifold of R 6 , called Veronese's surface (exercise 
2.8.5). See also 2.4.12.2 and 2.6.13.2. 

2.1.6.10. See exercises 2.8.1, 2.8.3, 2.8.4 and 2.8.5 for other examples or 
counterexamples of submanifolds. 

2.1.6.11. One-dimensional submanifolds, or curves, will be studied in detail 
in chapters 8 and 9, especially the cases d = 1, n = 2 (section 8.5 and the 
whole of chapter 9) and d = 1, n = 3 (section 8.6). Chapters 10 and 11 
are devoted to the case d = 2, n = 3 (surfaces in R3). 

2.1.7'. Coordinate changes. Theorem 2.1.9 below is the essential link 
between submanifolds and abstract manifolds. 

2.1.8. Definition. A coordinate system on ad-dimensional CP subman
ifold V of Rn is a pair (£1, g) consisting of an open set £1 E O(Rd) and 
an immersion g E CP(nj RR) such that g(n) is open inV and g induces a 
homeomorphism between £1 and g(n). 

2.1.9. Theorem. Let V be ad-dimensional CP submanilold 01 Rn and 
U1, U2 open subsets o/RR containing a point x E V. /1(£11 , gd and (£12 , g2) 
are coordinate systems on V such that g1(nd = V n U1 and g2(n2) = 
V n U2, respectively, the coordinate change g2"1 0 gl belongs to Cp(nl n 
g11(U2)j R d }. 

We can express this by saying that gl and g2 are CP-compatible. 

Proof. By definition 2.1.1 there exist an open neighborhood S of x in RR 
and a diffeormorphism I: S -+ 1(8) such that I(SnV) = I(S)nRd• Since 
gl (£11 ) = V n Ul and S is open, we can find a smaller open neighborhood 
W l C £1 1 of gil (x) such that gt{Wd c V n 8, and consequently that 
(J 0 gd(Wd C Rd. Similarly, there exists a subneighborhood W2 c £12 of 
g2"l(x) such that (J 0 g2)(W2) C Rd. On Wl n (g2"l 0 gl)(W2) we have 

g2"l 0 gl = g2"l 0 r 1 0 I 0 gl = (J 0 g2) -1 0 (J 0 gd, 

and f 0 gl and (J 0 g2)-l are of class CP (the latter by 0.2.22, since f 0 g2 is 
bijective and (J og2)' = I' 0 g~ is an isomorphism). This shows that g;1 ogl 
is CP on a neighborhood of gll(x)j by making x range over gt{0dng2(n2) 
we conclude that g2"1 0 gl is of class CP where defined. 0 

For concrete examples of coordinate changes, see exercises 2.8.2 and 2.8.7. 
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2.2. Abstract Manifolds 

2.2.1. Definition. Let X be a set and p ~ 1 an integer. Ad-dimensional 
atlas of class CP on X is a set of pairs {(U., <P.)} 'EI satisfying the following 
axioms: 

(AT1) Each U. is a subset of X and the U. cover X. 
(AT2) Each <P. is a bijection from U. into an open subset <P.(U.) of Rn, 

and <P.(U. n Uj) eRn is open for every i and j. 
(AT3) For every pair (i, j) the map <Pj 0 <Pi 1 : <P.(U. n Uj ) --+ <Pj(U' n Uj ) 

is a CP diffeomorphism. 

2.2.2. Remarks. In condition (AT3) it should be noticed that <pi 1 is 
defined on <P. (U.) , but <pjo<Pi 1 will only be defined at x E <P.(Ui) if <Pi 1 (x) E 
Uj , that is, if x E <Pi(Uj). Thus the domain of <Pj 0 <Pi 1 is <Pi(Ui n U,.), and 
its range is <Pj(Ui n Uj ). 

One can replace Rn in the definition by a (perhaps infinite-dimensional) 
Banach space E. This generalizes the notion of a manifold, but it also 
complicates it, since linear maps between Banach spaces are not necessarily 
continuous. See [Lan69, p. 421]. 

2.2.3. Definition. The pairs (Ui' <Pi) are called the charts of the atlas 
{(Ui' <Pi)}. A chart at or around x E X is one whose domain contains x, 
and a chart centered at x is one mapping x to the origin in Rd. The local 
coordinates associated with a chart (Ui , <Pi) are the functions <Pi,k : Ui --+ R 
(1::; k ::; d) such that <Pi(X) = (<pi,dx), ... , <Pi,d(X)). 

2.2.4. Definition. Let {(Ui , <Pi)} iEI be an atlas on X, let U be a subset of 
X and <P : U --+ Rd a bijection onto an open subset of Rd. The pair (U, <p) 
is said to be a chart compatible with the atals {(Ui' <Pi)} iEI if the union 
{(U, <p)} U {(Ui' <Pi)} iEI is still an atlas. Two atlases (of same dimension 
and differentiability class) are compatible if their union is still an atlas. 

In order for (U, <p) to be compatible with an atlas {(Ui, <Pi)} iEI it is 
necessary that each <p(U n Ui) and <Pi(U n Ui ) be an open subset of Rd and 
that the maps <P 0 <pi l and <p- 1 0 <Pi be of class CP on their domains of 
definition. 

Compatibility is an equivalence relation. Thus we arrive at the definition 
of a manifold: 

2.2.5. Definition. A CP differentiable structure (p ~ 1) on a set X is an 
equivalence class of d-dirnensional atlases of class CP on X. Ad-dimensional 
manifold of class CP is a set X endowed with a CP differentiable structure. 
A chart on X is any chart belonging to any atlas in the differentiable 
structure of X. 
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One a1so says that X is a differentiable manifold, as opposed to topo
logical, or 0°, manifolds, which shall not concern us. 

In practice one defines a manifold X by means of a single atlas, whose 
equivalence class then determines the differentiable structure. 

We will now define on a manifold X a canonical topology,one that only 
depends on the differentiable structure. We could also have started from 
a topological space X and required that the domains Ui of the charts be 
open in X and that the maps ¢>i : Ui --. ¢>i(Ui) be homeomorphisms. 

2.2.6. Theorem. Let X be a d-dimensional manifold of class Op. The set 
of unions of domains of charts of X forms a topology on X. This topology 
is called canonical. 

Proof. Let 0 be the set thus defined; we have to show that 0 satisfies the 
two axioms for a topology: 

(01) every union of elements of 0 is an element of 0; and 
(02) every finite intersection of elements of 0 is an element of O. 

Clearly (01) is satisfied, since a set is in 0 if and only if it is a union of 
domains of charts. To show (02), we just have to consider the intersection 
of two elements of O. Let them be A = UiEJ Ui and B = UkEK Uk; then 

AnB= U (Ui n Uk)' 
(j,k)EJxK 

We have to show that each intersection Ui n Uk can be taken as the domain 
of a chart compatible with the differentiable structure of X. Let (U,., ¢>i) be 
a chart in the differentiable structure of X, and set t/J = ¢>ilujnu,,; we claim 
that (Ui n Uk, t/J) is the desired chart. Clearly t/J(Ui n Uk) = ¢>i(Ui n Uk) 
is open in Rd. If (U, ¢» is any chart in the differentiable structure of X, 
the composition ¢> 0 ¢>i 1 is a OP diffeomorphism between ¢>i(U n Ui) and 
¢>(U n Ui ), so 

¢> 0 t/J-1 = ¢> 0 ¢>i 1 14>j(Ujnu"nu) 

is a OP diffeomorphism between t/J{U n (Ui n Uk)) and ¢>(U n (Ui n Uk)). 
Similarly, t/J 0 ¢>-1 is a OP diffeomorphism between ¢>{U n (Ui n Uk)) and 
t/J{U n (Ui n Uk))' This proves compatibility. 0 

Sometimes it is desirable to characterize the open sets in the canonical 
topology of X in terms of a single atlas. 

2.2.7. Theorem. Let {(Vi, ¢>i)}iEI be an atlas on a d-dimensional mani
fold X. A subset U of X is open if and only if ¢>i (U n Vi) c Rd is open for 
every chart (Vi, ¢>i). 

Proof. We first show that the set U of subsets of X satisfying the condition 
of the statement is a topology; then we show that this topology is the same 
as the one given by the set 0 in 2.2.6. 
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Let (U"')"'EA be a family of elements of U, and consider U = U"'EA U"'. 
Let (Vi, <Pi) be a chart in the atlas. Since Un Vi = U"'EA (U", n Vi) and <Pi 
is a bijection onto its image, we have 

<Pi(U n Vi) = <Pi ( U (U", n Vi)) = U <Pi(U", n Vi). 
"'EA "'EA 

Thus <Pi(U n Vi) is a union of open sets in R d , showing that U E U. A 
similar reasoning shows that a finite intersection of elements of U is also in 
U. It follows that U is a topology. 

To prove that U c 0, pick U E U. Since the Vi cover X, we have 
U = UiEI(U n Vi); if we show that each Un Vi is the domain of a chart 
compatible with (Vi, <Pi)iEI it will follow that U E O. 

The desired chart is (Wi, "'i), where Wi = Un Vi and "'i = <Pilunv;. First 
we must show that for any j the domain of the coordinate change <Pi 0 ",;1 
is open. We have 

"'i(Wi n Vi) = "'i(U n Vi n Vi) = <Pi(U n Vi n v,.) = <Pi(U n Vi) n <Pi (Vi n Vi), 

since <Pi is bijective. But <Pi(UnVi ) is open because U E U, and <Pi(VinVi) 
is open by (AT2) applied to (Vi, <Pi) and (Vi' <Pi), so we're done. Next we 
must show that <Pi 0 ",;1 is a CP diffeomorphism onto its image; but this 
is clear because <Pi 0 ",;1 is the restriction of <Pi 0 <p;1 to an open set. The 
proof that ",;1 0 <Pi is a CP diffeomorphism is similar. 

There remains to prove that 0 cU. This is certainly true if U is the 
topology associated with the maximal atlas on X, that is, the atlas contain
ing all the charts in the differentiable structure of X. Indeed, any U E 0 
can be written as a union UiE1 Ui of domains of charts on X. If (Uk, <Pk) 
is any other chart on X, we have 

because <Pk is bijective. By (AT2) this means that <Pk(U n Uk) is a union 
of open subsets of R d , so U E U by the definition of U. 

The proof of 2.2.7 will be completed if we show the following lemma: 

2.2.8. Lemma. Let (Vi, <Pi)iEI and (Wi' "'i)iEJ be two atlases on a man
ifold X. A subset U c X is open in the topology U defined by (Vi, <Pi)iEI if 
and only if it is open in the topology U' defined by (W,., "'i)iO. 

Proof. Take U E U and let (Wi' "'i) be a chart in the second atlas. We 
must show that "'i(U n Wi) is open in R d , in other words, that it is a 
neighborhood of each of its points. Take y E "'i(U n Wi) and x such that 
y = ",,(x). Since X is covered by the Vi, there is io such that x E Vio' 
Then y E "',(Un Vio nWi ). But the chart (Un Vio' <Pio lunv;o) is compatible 
with the first atlas (by the proof of U cOin 2.2.7), and in particular 
"',(U n Vio n Wi) is open in Rd and contained in "',(U n W,). 0 
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Theorem 2.2.7 provides another way of defining the topology of a mani
fold. 

2.2.9. Theorem. For every chart (U, 4» on a manifold X, considered with 
its canonical topology, the map 4> : U -+ 4>(U) is a homeomorphism. 

Proof. We know that 4> is a bijection. To prove 4> is continuous, we take 
an open set VcR d and show that (4) -1 (V), 1/;), where 1/; = 4> 14>-1 (V), 

is a chart on X, and consequently that 4>-1 (V) is open in the canonical 
topology. 

Set 1/; = 4>1.p-l(V), and let (Vi, 4>.) be any chart on X. Since 4> : 1/;-1 (V) -+ 

V n 4>(U) is a bijection, we have 

V n 4>(U) n 4>(U.) = V n 4>(U n U.), 

and 4>.01/;-1 is the restriction of 4>. 04>-1 to an open set. It follows that 
4>.01/;-1 is a CP diffeomorphism between V n 4>(U n U.) = 1/;(4)-1(V) n U.) 
and 4>.(4)-1 (V) n U.). 

The map 1/;04>;1 is defined on 4>.(u.n4>-1(V)), and equals the restriction 
of 4> 0 4>;1 to 

Thus the image of 1/;04>;1 is 4>(U. n U) n V, which is open in Rd by (AT2). 
By (AT3) it follows that 4>.(U. n r1(V)) is open in Rd and that 1/; 0 4>;1 
is a CP diffeomorphism. 

There remains to show that 4>-1 : 4>(U) -+ U is continuous, that is, that 
for every open set 8 c X the image 4>(8) is open. Since 4> is only defined 
on U we actually have 4>(8) = 4>(8 n U), and, if (U., 4>;).EI is an atlas for 
X, we have 8 n U = 8 nUn U.EI U •. Thus 

4>(8 n U) = 4> (U(8 nUn U;)) = U 4>(8 nUn U;), 
'EI 'EI 

since 4> is bijective. But 8 is open in X, and (U n U., 4>lunui) is a chart 
compatible with the atlas, so it follows from 2.2.7 that 4>(8 nUn U.) is 
open in R d , and so is 4>(8 n U). 0 

2.2.10. Examples of manifolds. To begin with, R n is canonically a man
ifold. It has an atlas with a single chart, (R n, IdR " ). Whenever we discuss 
Rn we will be implicitly considering it with this differentiable structure. 

2.2.10.1. Theorem. Any submanifold of R n has a canonical differentiable 
structure, and its canonical topology as a manifold coincides with the topol
ogy induced from R n. 

Proof. Let V be ad-dimensional submanifold of Rn of class CPo By 
theorem 2.1.2(v) there exists for every x E V an open neighborhood U of 
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x in RR, an open set £l", C Rd and a CP immersion g", : £l", -+ RR that is 
a homeomorphism between £l", and V n U (cf. 2.1.3.1). 

Consider the sets U'" = g",(£l",) C V and the maps g;;1 : U'" -+ £l",. The 
pairs (U"" g;;1)", form an atlas: 

(AT1) UxEV U'" = Vj 
(AT2) g;;1(U",) = £l", is open in Rd, and g;;1(U",nuy) is also open because 

g;;1 is a homeomorphism, by 2.1.2(v), and U'" n Uy = g",(£l",) n 
g,,(£l y) C RR is open; 

(AT3) follows from theorem 2.1.9. 0 

We shall see below (3.1.5) that every abstract manifold is in some sense 
equivalent to a submanifold of RR. 

2.2.10.2. Proposition. An open subset U of a manifold X, with the topology 
induced from the canonical topology of X, is canonically a manifold. 

Proof. Let X be a d-dimensional manifold and {(Ui' .pi)} iEI an atlas of X. 
The pairs (U n Ui, .pi lunu; )iEI form an atlas on U C X: 

(AT1) the Un Ui cover U because the Ui cover Xj 
(AT2) setting tPi = .pilunu;, we have tPi(U n Ui) = .pi(U n Ui) E O(Rd) by 

2.2.7, and tPi(U n Ui n Uj ) E O(Rd) because Un Uj is open in X; 
(AT3) finally, tPj 0 tP;1 is the restriction of.pj 0 .p;1 to .pi(U n Ui n Uj); it 

is thus a CP diffeomorphism between .pi(U n Ui n Uj ) and .pj(U n 
Ui n Uj ). 0 

2.2.10.1. Proposition. Let X and Y be CP manifolds of dimension d and 
e and having atlases (Ui , .pi)iEI and (V,', tPj)jEJ. respectively. The atlas 
(Ui X Vj,.pi X tPj)(i,j)EIXJ, where 

.pi X tPj: (x,y) 1-+ (.p.(x),tPj(Y)) E Rd X R e = R d+e , 

makes X X Y into a (d + e)-dimensional CP manifold. 

Proof. This is immediate. o 

Notice that if X is of class CP and Y is of class cq, the product X x Y 
is of class cinf(p,q). Check also that compatible atlases on X and Y give 
compatible atlases on X X Y, that is, the differentiable structure obtained 
for X x Y depends only on the differentiable structures of X and Y. We 
can thus say that X X Y is the product manifold of X and Y. 

2.2.10.4.. A non-Hausdorff manifold. Consider in R2 the sets E1 = {(x, 0) : 
x E R} and E2 = {(x, 1) : x E R}. Let'" be the equivalence relation on 
F = E1 U E2 defined by 

{
(X,O) '" (y,O) {:} x = y, 
(x, 1) '" (y, 1) {:} x = y, 
(x,O) '" (y, 1) {:} x = Y < O. 
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{ 

{ 
Figure 2.2.10.4 

The classes of the quotient set X = F / ,..., are represented by elements (x, 0) 
for x < 0 and by elements (x,O) and (x, 1) for x ~ 0, as shown in figure 
2.2.10.4. 

We now provide X with the manifold structure given by the following 
two charts: 

U1 ={(x,0):xER}, (P1((x,O))=x 
and 

U2 = {(x, 0) : x < O} U {(y, 1) : y ~ O}, .p2((X,0)) = x, .p2((Y, 1)) = y. 

Axioms (ATl) and (AT2) are clearly satisfied (notice that .pl(UI n U2) = 
.p2(U1 n U2) = {x E R: x < o}). Let's check (AT3): .pI o.p"2 1 is the map 
x 1-+ (x, 0) 1-+ X from .p2(U1 n U2) = ]-00, O[ onto .pI (U1 n U2) = ]-00,0[, 
and this is trivially Coo. Thus X has been given a Coo structure. 

The topology of X, however, is not Hausdorff. The points (0,1) and 
(0,0) are distinct but have no disjoint neighborhoods: if U c X is an open 
set containing (O,O), the image .pdU n UI) is open in R and contains 0, 
so j-a, a[ C .pdU n Ud for some a > 0, and U contains a set of the form 
{( x, 0) : -a < x < O}. Similarly, an open neighborhood V of (0, 1) in X 
must contain a set of the form {(x, 0) : - f3 < x < O}, and consequently 
cannot be disjoint from U. 

Later on we will disallow this kind of example. 

2.2.10.5. Proposition. If X is a manifold and E is an arbitrary set, X X E 
can be given a manifold structure. 

Proof. Let (Ui' .pi)iEI be an atlas on Xj then {(Ui X {e}, ,pi,e)} iEI,eEE' 
where ¢i,e{U, e) = .pi{U), is an atlas on X X E. Indeed, intersections of the 
form Ui X {e} n Uj X {F} are empty for e ¥= I, and for e = I they equal 
(Ui n Ui) X {e}, which trivially implies axioms (AT2) and (AT3). 0 

If E is uncountable, X X E is an unreasonable manifold, because it is 
too bigj this will be made more precise in 3.1.3. Even if E is countable, 
one may object that X X E is not connected. But here is an example to 
show that connected manifolds, too, can be unreasonable: 

2.2.10.6. The long line. Let 0 be an uncountable well-ordered set such that 
every initial segment Hz = {y EO: y < x} is countable (such sets existj 
for more details see [Spi79, vol. I, A.l to A.12]). Let w be the least element 
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of 0, and set 
X=Ox [0,1[\ {(w,O)}; 

one can say that X is a collection of intervals indexed by 0, the first 
being ]0,1[ and the others [0,1[. Order X lexicographically, and give it 
the associated topology. It can be shown that X becomes in this way a 
connected one-dimensional COO manifold. 

See exercise 3.6.4 for an unreasonable two-dimensional manifold that's 
easier to construct. In 3.1.6 we will disallow such manifolds, but right now 
it is enough to agree that from now on 

2.2.10. '1 I every manifold will be assumed Hausdorff. I 
Of course Hausdorff here refers to the canonical topology. Here are some 
more properties of the topology of a manifold: 

2.2.11. Theorem. Manifolds are locally compact topological spaces. 

Proof. We must show that every point x E X has a compact neighborhood. 
Take x E X and let (U, tP) be a chart at x. By 2.2.9, tP : U - tP(U) is a 
homeomorphism, and tP(U) is a neighborhood of tP(x) in R d , hence locally 
compact. Take a compact neighborhood K of Rd such that tP(x) EKe 
tP(U); since tP- 1 is continuous and X is Hausdorff, tP- 1 (K) is a compact 
neighborhood of x. 0 

2.2.12. Theorem. Manifolds are locally connected topological spaces. 

Proof. The proof is analogous: tP(U), being a neighborhood of tP(x) in Rd, 
contains a conneted neighborhood C of tP(x), so tP- 1 (C) is a connected 
neighborhood of X containing x. And we can choose tP- 1 (C) contained in 
any fixed open neighborhood of x by restricting the domain of the chart. 0 

2.2.13. Theorem. A manifold is connected if and only if it is path
connected. connected equiv to path-connected 

Proof. Path-connectedness implies connectedness for any topological space. 
To show the converse, assume X is connected, pick x E X and let Q be the 
set of V E X that can be joined to x by a path in X. We must prove that 
Q = X, and this we achieve by showing that Q is non-empty, open and 
closed. Non-emptiness is obvious since x E Q. 

Openness: take V E Q and let (U, tP) be a chart at V. Since tP(U) is open in 
R d , there exists e> ° such that B(tP(V), e) C tP(U). Take Z E B(tP(V), e). 
There exists a continuous map "( : [0, I] - Rd such that "((0) = tP(V), 
"((1) = z and "(([0,1]) C B(tP(V), e) (take,,( affine linear, for example). The 
map 

tP- 1 0 "( : [0,1]- tP- 1 (B(tPb), e)) 
is a path joining V and tP- 1 (z). Since we can join x and V, we can equally 
well join x and tP- 1 (z), for any z E B(tP(V), e). Since tP: U - tP(U) is a 
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homeomorphism, 4>-l(B(4>(y),e)) is an open neighborhood ofy contained 
in Q, showing that Q is open. 

Closedness: take y E Q and let (U,4» be a chart at y. Since 4>(y) E 4>(U) 
and 4>(U) is ope~, there exists e > 0 such that B(4)(Y), e) C 4>(U), and 
4>-1(B(4>(y),e)) c U. But Y E Q, and 4>-1 (B(4>(y), e)) is an open set 
containing y, so there is a point z E Q n 4>-1 (B(4>(y), e)). Since 4>(z) E 
B(4)(y), e) c 4>(U), there is a path in Rd joining 4>(y) and 4>(z), thus also a 
path in X joining y and z. But z E Q, so there is a path in X joining z and 
z, hence also one joining z and y, and y E Q. This shows that Q = Q. 0 

2.2.14. Important examples of manifolds are the curves, classified in sec
tion 3.4, and the compact surfaces (see 4.2.25). 

2.3. Differentiable Maps 

2.3.1. Definition. Let X and Y be manifolds, of dimension d and e and 
class C q and cr, respectively. Let p ~ inf(q, r). We say that a continuous 
map f : X -+ Y is of class CP, or C P differentiable, or a CP morphism, if, 
for every chart (U, 4» at z E X and every chart (V, tP) at f (z) E Y, the 
map tP 0 f 04>-1 : 4>(U n f-1(V)) -+ Re is of class CPo We will denote by 
CP( Xi Y) the set of CP differentiable maps from X into Y. 

We sometimes say that f is differentiable, without stating the class. 

f • 

IRe 

Figure 2.3.1 
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One needs to go through charts to be able to talk about differentiability. 
Specifically, the domain of definition of,p 0 1 0 q,-l should be open for the 
definition to make sense. Let's check this (figure 2.3.1): for,p 0 1 0 q,-l(y) 
to be defined, y E q,(U) must be such that I(q,-l(y)) is in the domain 
V of,p, or equivalently that q,-l(y) E l-l(V). Since q, : U -+ q,(U) is a 
bijection, this means y E q,(U n l-l(V)). 

Now we've assumed that 1 is continuous, and V is open in Y. Thus 
Un/-l(V) is open in X, and, since q, is a homeomorphism, q,(unrl(V)) 
is open in Rd. Hence we can talk about ,p 0 10 q,-l being differentiable. 

This definition, involving as it does all possible charts at x and I(x), is 
not always convenient to use. The next theorem helps: 

2.3.2. Theorem. Let X and Y be manifolds 01 dimension d and e, respec
tively, and class ~ p. Let 1 : X -+ Y be a continuous map. The lollowing 
conditions are equivalent: 

(i) 1 is CP differentiablej 
(ii) for every x E X, every chart (U, q,) at x and every chart (V,,p) at I(x) 

such that I(U) c V, the composition ,p 0 1 0 q,-l : q,(U) -+ Re is 01 
class CP j 

(iii) for every x E X, there exists a chart (U, q,) at x and a chart (V,,p) at 
I(x) such that I(U) c V and ,p 010 q,-l c CP(q,(U)j Re). 

Proof. (i) => (ii) is immediate from the definition; just notice that I(U) c V 
implies Un l-l(V) = U. 

(ii) => (iii). Let (V,,p) be a chart at I(x). Since 1 is continuous, l-l(V) 
is open in X and contains Xj by the definition of canonical topology (2.2.6) 
there exists a chart (U, q,) at x such that U c l-l(V), whence I(U) c V. 
If (ii) is true it follows that ,p 0 10 q,-l is of class CP from q,(U) into Re. 

(iii) => (i). Let (S, a) be a chart at x E X and (T, (1) one at I(x) E Y. We 
must show that the map (1o f 0 a-l, from the open subset a(S n f-l(T)) 
of Rd into Re, is of class CPo It is enough to show that it is CP on a 
neighborhood of each point of its domain. 

Take U E a(sn rl(T)) and x, = a-l(u) E S. Property (iii), applied to 
x', gives a chart (U, q,) at x, and a chart (V,,p) at I(x/) such that I(U) c V 
and that ,p 010 q,-l is of class CP on q,(U). Now we can write 

{1 0 f 0 a-I = ({1 0 ,p -1) 0 (,p 0 for 1) 0 (q, 0 a-I), 

with the understanding that this only makes sense if each step in the com
position is defined. If we can prove that each step is defined and CP on a 
neighborhood of the image of u by the previous steps, we will have shown 
that (1o 1 0 a- l is CP on a neighborhood of u, and we'll be done. 

The coordinate change q, 0 a-I: a(S n U) -+ q,(S n U) is of class CP, 
and its domain contains u = a(x/). Next, ,p 0 f 0 q,-1 is of class CP on 
q,(U), and its domain contains q,(X/), the image of u under q, 0 a-t, by the 
very choice of U, so ,p 0 f 0 q,-l is of class CP on a neighborhood of q,(X/). 
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Finally, {3ot/J-1 is a CP diffeomorphism between t/J(TnV) and {3(TnV). Its 
domain t/J(T n V) contains the image t/J(I(x')) of u under the composition 
so far, since f(x') E V by our choice of V and x' E f-1(T) as the image of 
u E a(S n f- 1 (T)) under a-1. Thus {3 0 t/J-1 is CP on a neighborhood of 
t/J(I(x')), concluding the proof that {3o f 0 a-1 is CP on a neighborhood 
ofu. 

2.3.3. Examples of differentiable maps 

2.1.1.1. Proposition. Let X and Y be manifolds. The canonical projections 
p: X X Y -+ X and q : X X Y -+ Yare differentiable. 

Proof. We prove the result for p. By 2.3.2(iii), it suffices to show that, 
for every (x, y) E X X Y, there exists a chart (U X V, t/> X t/J) at (x, y) and 
a chart (W,6) at x E X such that p(U X V) c Wand 60 po (t/> 0 t/J)-1 : 
(t/> X t/J)(U x V) -+ Rd (where d is the dimension of X) is of class Coo. 

Let (U X V, t/> X t/J) be a product of charts, as in 2.2.10.3, at the point 
(x,y). For (W,6) we take the chart (U,t/» at x. We have p(U X V) = U, 
and the map t/> 0 p 0 (t/> X t/J)-1 is defined on (t/> X t/J)(U X V) by 

(s,t) f-+ (t/>-1(s),t/J-1(t)).!. r1(s).! s, 
.... .... " 

EUXV 

which is of class Coo . o 

2.1.1.2. Proposition. Let X, Y and Z be manifolds. If f E CP(Xj Y) and 
g E CP(YjZ) we have go f E CP(XjZ). 

Proof. Take x E X, Y = f(x) and z = g(l(x)). By assumption and 
2.3.2(iii) applied to g, there exists a chart (V, t/J) at y E Y and a chart 
(W,6) at z E Z such that g(V) C Wand 60 go t/J-1 E CP( t/J(V); 6(W)). 
By assumption and 2.3.1 applied to f, we have t/J 0 f 0 t/>-1 E CP( t/>(U n 
f-1(V))j t/J(V)) for any chart (U,t/» at x. Thus 2.3.2(iii) is satisfied for 
go f and the charts (U n f- 1 (V), t/l) and (W,6), by 0.2.15.1 applied to 

6 0 (g 0 /) 0 t/> -1 = (6 0 g 0 t/J -1) 0 (t/J 0 f 0 t/> -1). 0 

2.1.1.1. Proposition. Let X, Y, Z be cr manifolds and p, q the canonical 
projections from X X Y onto X, Y, respectively. A map f : Z -+ X X Y 
is of class cr if and only if the coordinate functions p 0 f : Z -+ X and 
q 0 f : Z -+ Yare. 

Proof. If f is of class cr it follows from 2.3.3.1 and 2.3.3.2 that the com
positions p 0 f and p 0 g are also of class cr. 

Conversely, assume p 0 f and q 0 f to be of class cr. Take z E Z, and 
consider fez) = (x, y) = (p(J(z)), q(J(z))). We know that there exists 
a chart (W1,6I) at z and a chart (U, t/» at x = (p 0 f)(z) such that (p 0 

f)(WI) c U and t/> 0 (p 0 /) 0 6~1 : 61 (WI) -+ R d , where d is the dimension 
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of X, is of class cr. Similarly, there exists a chart (W2' O2) at z and a chart 
(V,,p) at y = (q 0 I)(z) such that (q 0 I)(W2) c V and 

,p 0 (q 0 f) 0021 E Cr(02(W2)j R e ), 

where e is the dimension of Y. 
Take W = WI n W2 and 0 = 011w, and consider the chart (W,O) at z 

and the chart (U x V,tP x,p) at (x,y) = ((po I)(z),(qo I)(z)) E X x Y. 
We have 

I(W) c (p 0 I)(W) x (q 0 I)(W) c U x V. 

To show that the map 

(tP x ,p) 0 I 0 0- 1 = (tP 0 polo 0- 1) X (,p 0 q 0 I 0 0- 1) : 0 (W) -+ R d+e 

is of class CP we must show that its components into Rd and Re are. But 

tP 0 polo 0- 1 = tP 0 (p 0 f) 00110 (01 00- 1), 

and 0100- 1 is a coordinate change, hence cr -differentiablej ,po (po f) 0011 
is Cr by assumption. The proof that ,p 0 q 0 100-1 is Cr is similar. 0 

2.1.1.'. Proposition. Let Y be a manifold and V a submanifold ofRn. If a 
map I : Rn -+ Y is of class CP (where Rn is considered with its canonical 
n-dimensional coo manifold structure), the restriction Ilv : V -+ Y is of 
class CPo 

Proof. Take x E V and I(x) = y E Y. By definition of the manifold 
structure on Rn, all pairs (U, Idu), where U c Rn is open and Idu : U -+ U 
is the identity map, are charts on Rn. Since I is of class CP, there exists 
an open set U1 C Rn containing x and a chart (w, tP) at y E Y such that 
I(Ut} c Wand tP 0 I : U1 -+ R~ is of class CP, where r is the dimension 
ofY. 

Since V is a submanifold of Rn, there exist by 2.1.2(v) an open neigh
borhood U2 of x in Rn, an open set ° C Rd (where d is the dimension of 
V) and an immersive CP diffeomorphism 9 : ° -+ V n U2 • Furthermore, 
by example 2.2.10.1, the pair (g(O), g-l) is a chart at x E V. The set 
U = U1 n U2 is open in Rn, contains x and satisfies I(U) C W. Consider 
0 1 = g-l(V n U) and gl = g101: the pair (gt{0d, gil) is a chart at x 
because gl : 0 1 -+ V n U is a homeomorphism of class CPo We also have 

I(gdod) = I(V n U) c I(U) c w, 
and tP 0 f 0 (g1 1)-1 = tP 0 f 0 gl is defined on 0 1 because gl(Od C V n U 
and the domain of tP 0 I is U. Finally, this composition is of class CP, since 
gl and tP 0 I are. This shows that Ilv E CP(VjY). 0 

2.1.1.5. Proposition. Let X be a manifold and W a submanifold 01 Rn. If 
IE CP(Xj Rn) maps X into W we have IE CP(Xj W). 
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Proof. Left to the reader; after detailing several such proofs in this and the 
previous section, to drill in the technique, we will only outline them from 
now on, or leave them as exercises. 0 

2.3.4. Theorem. Let X be a CP manifold. The set CP(X; R), where 
R is considered as a manifold (2.2.10) is an R-algebra under the natural 
operations 1+ g, >"1 and I g. 

Proof. Let iI and h be CP maps from X into R, and >"1' >"2 real numbers. 
Take x E X. There exists a chart (U, tP) at x such that iI otP- l and hotP- l 

are of class CP on tP(U) (apply 2.3.1 to the chart (R,IdR ) on R). The map 

(>"liI + >"212) 0 ljJ-l = >"diI 0 tP- l) + >"2(12 0 tP- 1) 

is of class CP on IjJ(U), which shows that >"liI + >"212 is of class CP by 
theorem 2.3.2. The proof for iIh is analogous. 0 

2.3.5. Definition. Let X and Y be manifolds. We say that I : X -+ Y is 
a CP diffeomorphism if I is bijective, I E CP(X; Y) and 1-1 E CP(Y; X). 
We denote by Diff(X; Y) the set of diffeomorphisms from X into Y, and 
by Diff(X) the set of diffeomorphisms from X into itself. We also write 
DiffP(X; Y) and DiffP(X). 

2.3.6. Remarks 

2.S.6.1. It follows from example 2.3.3.2 that Diff(X) is a group under com
position of maps. 

2.S.6.2. If (U, tP) is a chart on X, the map tP is a diffeomorphism onto the 
open set tP(U) c Rn with its canonical manifold structure (2.2.10.2). 

2.3.7'. Theorem. Let X be a connected manifold. The group Diff( X) acts 
transitively on X. 

This means that for any two points x, y E X there exists a diffeomor
phism IE Diff(X) such that I(x) = y. 

Proof. We first study the case X = R, then X = Rd. For arbitrary X we 
assume at first that x and y are close, so we can use a chart to reduce to 
the case of Rd. 

2.S.7.1. First step. We construct a diffeomorphism of R that takes 0 to a 
nearby point but leaves everything outside a neighborhood of 0 fixed. Let 
tP(x) : R -+ [0,1] be a COO bump function (0.2.16) such that tP(x) = 1 on 
[-1,1] and tP(x) = 0 if Ixl ~ 2. Consider the function g(x) = etP(x) + x, 
where e is a constant to be determined. We have g'(x) = etP'(x) + 1. Now 
tP' is bounded because it has compact support; thus there exists eo such 
that eolltP'll < 1. If we take e < eo, we have g'(x) > 0 for every O. Thus 
g(x) is Coo and strictly monotonic; by the inverse function theorem it is a 
Coo diffeomorphism. Clearly g(O) = e and g(x) = x for Ixl ~ 2. 
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2.S.1.2. Second step. We now define a map h : Rd --+ Rd as follows: 

where tP and I:: are as above. The map h is Coo because tP is; and h is the 
identity outside B(0,2) X B(O, y2) c R X Rd-l = Rd. Furthermore h is 
injective (why?) and regular, since its jacobian matrix is upper triangular 
with all diagonal entries but the first equal to 1, so the determinant is 
8hl/8xl = 1 + I::tP'(xdtP(x~ + ... + x~), which is non-zero by the choice 
of I:: and because tP(x~ + ... + x~) :$ 1. Finally, h(O, ... , 0) = (1::,0, ... ,0). 
By composing h with rotations of Rd (which are Coo diffeomorphisms), we 
can take ° to any point x E Rd such that IIxll :$ 1::. We can also compose 
with a homothety to shrink B(O, 2) x B(O, vTz) into B(O, 1). 

Thus there exists I:: > ° such that, for every y E B(O,I::), we can find 
hE Diff(Rd) such that h(O) = y and that h is the identity outside B(O, 1). 

2.S.1.S. Third step. Now we consider an arbitrary manifold X. Let (V, tPd 
be a chart at x E X. Since tPl (V) is open in Rd, there exists a diffeomor
phism tf; : Rd --+ Rd (a composition of rotations and homotheties) such 
that B( 0, 1) c tf; (tPdV)). Set tP = tf; 0 tPl j the pair (V, tP) is then a chart at 
x E X (compatibility is obvious, since tf; is COO). We can also assume that 
tP(x) = 0. 

Since B(O, 1) c tP(V) and tP : V --+ tP(V) is a diffeomorphism, the set 
U = tP-1(B(0,1::)) is open in X and contains x = r1(0). Now for every 
y E U there exists h E Diff(Rd) such that h(O) = tP(y). Define f : X --+ X 
by 

f= {tP-10hOtP 
Id 

on tP-1(B(0, 1)), 
elsewhere. 

Clearly f is a bijection, being defined by two bijections on complementary 
subsets of X. It is also of class Cf', since it equals the identity on X \ 
tP- 1(B(0,1)) and tP- 1 0 h 0 tP on V (notice that the two maps coincide 
where they overlap), and these two sets form an open cover for X. (Why 
is X \ tP- 1 (B(O, 1)) open? Because, as in the proof of 2.2.11, tP- 1 (B(O, 1)) 
is the continuous image of a compact set into a Hausdorff space.) Finally, 
we have f(x) = y. 

What we have shown is that every x E X has an open neighborhood U 
such that, for any y E U, there exists f E Diff(X) taking x to y. 

2.S.1.4. Fourth step. Let x E X be arbitrary, and call Q the set of points 
of X which are the images of x under some diffeomorphism. Since x E Q, 
we must show that Q is open and closed in X. We prove openness using 
step 3: if f(x) = y for f E Diff(X) and U E Gy(X) is such that every 
z E U is the image of y under some diffeomorphism h, we have z = h(y) = 
h{t(x)) = (h 0 f)(x) with h 0 f E Diff(X) , hence U C Q. Closedness is 
proved in the same way (compare the proof of 2.2.13). D 
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2.4. Covering Maps and Quotients 

Here we give the definition and properties of covering maps, and an explicit 
way to construct them (2.4.5 and 2.4.9). 

2.4.1. Definition. Let X and Y be manifolds of class C·. A map p : X -+ 

Y is said to be a covering map if it satisfies the following properties: 

(i) p is surjective and differentiable of dass C·; 
(ii) for every y E Y there exists an open subset V c Y containing y such 

that p-1(V) is of the form 

p-1(V) = U U., 
'EI 

where the U. c X are pairwise disjoint open sets and plU. : U. -+ V is 
a diffeomorphism for each i. 

~' u,.x, 
I I 
I I I 
I I I 

x~ 
I I I 
I I I 
I I I 

~I~I u~ 
I I 
I I I 
I I 

pJ 

I 
I I 

I I 

~~ 
Figure 2.4.1 

I 

I 
I I I I 

ct,,~,v y 

2.4.2. Remark. The set I may depend on y; but see 2.4.4. 

x 

Jp 

2.4.3. Example. The map p : t 1-+ (cos 2'11't, sin 2'11't) from R into the cirde 
8 1 is a covering map. 

By 2.1.6.2 and 2.2.10.2 we know that 8 1 and R are both one-dimensional 
manifolds of dass Coo. Now t 1-+ (cos 2'11't, sin 2'11't) is Coo as a map R -+ R 2; 
by 2.3.3.5, it is also Coo as a map R -+ 8 1 • Let (xo, Yo) E 8 1 be a point, 
and to a real number such that p(to) = (xo, Yo). Take a E ]0, H. The set 
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v = p(]to - a, to + a[) is open in V and contains (xo, Yo); its inverse image 
IS 

p-l(V) = U ]to-a+k,to+a+k[. 
kEZ 

Finally, the restriction of p to ]to - a + k, to + a + k[ is a diffeomorphism 
onto V. 

~" '.' E ". )",. 
IR 

t -1 
o {I 

t~(cos2"t.sln2rrt) 

Figure 2.4.3 

2.4.4. Theorem. Let X and Y be manifolds, and p : X -+ Y a covering 
map. The cardinality of p-l(y) is locally constant. If Y is connected, the 
cardinality ofp-l(y) is constant, and called the multiplicity of the covering. 
If the multiplicity k of p is finite, we say that p (or X) is a k-fold covering. 

Proof. Take y E Y. There exists an open neighborhood V C Y of y such 
that p-l(V) = UiE1 Ui is a partition of p-l(V) satisfying the conditions of 
the definition. In particular, for every i E I, there exists a unique Xi E Ui 
such that p(Xi) = y. Since p-l(y) C p-l(V), it follows that p-l(y) and I 
have the same cardinality. For any other z E V the inverse image p-l(z) 
also has the same cardinality as I; this says that the cardinality of p-l (z) 
is locally constant. 

Suppose in addition that X is connected. The technique used to prove 
2.2.13 shows that two arbitrary points X, y E X can be joined by a finite 
chain of open sets (U.)i=l ..... k such that X E UlJ Y E Uk, Ui n Ui+l =1= 0 
for every i = 1, ... , k - 1, and #p-l(z) is constant on Ui for every i. This 
shows that #p-l(X) = #p-l(y). 0 

2.4.5. Definition. Let X be a manifold and G a subgroup of Diff(X). 
We say that G acts properly discontinuously without fixed points if the 
following to conditions are satisfied: 
(i) For every x, y E X such that y is not in the orbit G(x) of X there 

exist neighborhoods U :3 x and V :3 Y such that, for every 9 E G, the 
intersection g( U) n V is empty. 

(ii) For every x E X there exists an open neighborhood U C X of x 
such that, for every 9 E G distinct from the identity, the intersection 
g(U) n U is empty. 

We recall that the orbit G(x) of a point x E X under the action of G is 
the set {g(x) : 9 E G}. 
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2.4.6. Remarks. Condition (i) can be stated in the following equivalent 
way: 

(i/) For every x, y E X such that y is not in the orbit G(x) of x there exist 
neighborhoods U 3 x and V 3 Y such that, for every g, h E G, the 
intersection g(U) n h(V) is empty. 

Indeed, g(U) n h(V) = 0 if and only if (h- 1 0 g)(U) n (V) = 0, and 9 and 
h arbitrary in G means h-1 0 9 arbitrary in G. 

Condition (ii) explains the phrase "without fixed points": if x were a 
fixed point, that is, if there were 9 E G distinct from the identity such that 
g(x) = x, we would have x E g(U) n U for every neighborhood U of x. This 
condition also expresses the fact that elements of G are not "close" to one 
another; hence the word "discontinuous". 

2.4.7. Examples 

2.'.'1.1. Take X = R n (cf. 2.2.10) and G ~ zn consisting of translations of 
the form x f-+ g,.(x) = X + k, where 

k E zn = {(kll ... ,kn ): ki E Z for all i}. 
We have G c Diffoo (Rn). Let's show that G acts properly discontinuously 
without fixed points. 

Take first x and y such that y ¢. G(x). We have inf {d(y, z) : z E G(x)} = 
e> 0, since there are only a finite number of points of G(x) in any compact 
subset of Rn. The sets U = B(x, e/2) and V = B(y, e/2) clearly satisfy 
(i). As for (ii), take U = B(x, ~) for any fixed x ERn. 

Figure 2.4.7.1 

2.'.'1.2. Consider Sd, a submanifold of Rd+!, and take for G the subgroup 
of Diff(Sd) formed by the two maps Ids" and - Ids" : x f-+ -x (the 
antipodal map). We claim that G acts properly discontinuously without 
fixed points. Just take U = B(x, e/2) and V = B(y, e/2), where x oF ±y 
and e = inf{d(x,y),d(x,-y)}, to satisfy (i), and U = B(x,v'2) to satisfy 
(ii). (Here we work with the metric induced from Rd+!; if we want to use 
the intrinsic metric of the sphere instead-where distances are measured 
along arcs of great circle-we can replace 0 by 1r/2.) 



70 2. Differentiable Manifolds 

Figure 2.4.7.2 

2.4.8. Proposition. Let X be a manifold and G a subgroup of Diff(X). 
The relation", on X defined by "x '" y if and only if there exists g E G 
such that g(x) = y" is an equivalence relation. 

Proof. This is obvious. o 

We can consider the quotient X/ "', also denoted by X/G, and the 
canonical surjection p: X -+ X/G. 

2.4.9. Theorem. Let X be ad-dimensional CP manifold and G a subgroup 
of Diff(X) acting properly discontinuously without fixed points. There ex
ists on X/G a unique d-dimensional CP manifold structure such that the 
canonical map p : X -+ X/G is a covering map. 

Proof. Take y E Y = X/G, and let x be a representative of the class y. 
Since G acts properly discontinuously without fixed points, there exists an 
open neighborhood U c X of x such that g(U) n U = 0 for every g E G. 
We can assume by shrinking U that U is the domain of a chart (U, 4». 
Set V = p(U), and consider p-l(V) = {z EX: p(z) E V}. A point z 
belongs to p-l(V) if and only if there exists u E U such that p(z) = p(u), 
if and only if z '" u, if and only if there exists u E U and g E G such that 
z = g(u). Thus 

p-l(V) = U g(U). 
gEG 

The choice of U guarantees that the g(U) are pairwise disjoint. Thus we 
can define t/J : V -+ Rd as follows: for v E V = p(U) there exists a 
unique representative u of v in U, which we write (by abuse of notation) 
u = p-l(V). Then we set t/J = 4> 0 p-l. 

We assert that the pairs (V, t/J) thus defined form a d-dimensional atlas 
of class CP on X/G = Y. We check the axioms: 

(ATl) Since y E Y was arbitrary, the domains V cover X/G. 
(AT2) The map p-l (in the sense above) is a bijection from V onto U, and 

4> is a bijection from U onto 4>(U). Thus t/J is a bijection from V onto 
4>(U), which is open in Rn. Consider two charts (V, t/J) and (V', t/J') 
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(AT3) 

on X/G, deriving from charts (U, 4» and (U', 4>') on X. If v E VnV', 
take x E U such that p(x) = v and x' E U' such that p(x') = v'. 
Since p(x) = p(x') there exists g E G such that g(x') = Xj thus 
(g(U' ), 4>' 0 g-l) is still a chart on X, since g E Diff(x). Finally, 

(4) 0 p-l)(V n V') = 4>(U n p-l(V n V')) = 4> (U n ( U h(U I )) ) 

hEG 

is open in Rd because Un (UhEG h(U')) is open in X, each h E G 
being continuous. 
Here's where we use the auxiliary chart (g(U'), 4>' 0 g-l). Class CP 
being a local property, it is enough to show that ,p' 0 ,p-l is CP in 
a neighborhood of ,p(y) = 4>(x). On the open set 4>(U n g(U')) we 
have 

,p' 0 ,p-l = (4)' 0 g-l 0 p-l) 0 (4) 0 p-l)-l = (4)' 0 g-l) 0 r 1, 

which is of class CP by (AT3) applied to X. 

qJ -

v 

Figure 2.4.9 

All that remains to show is that X/G is Hausdorff (cf. 2.2.10.7), and that 
p is a covering map. Let y and y' be points of X/G belonging to p-l(y) and 
p-l(y')' respectively. Again because the action is properly discontinuous 
without fixed points, there exist open neighborhoods U and U' of x and 
x', respectively, such that g(U) n U' = 0 for every g E G. We can in 
fact assume that U and U' are domains of charts. Then V = p( U) and 
V' = p(U') are domains of charts in X/G, hence open in X/G (2.2.6), and 
they contain y and y' respectively. They are also disjoint: z E V n V' would 
imply p-l (V n V') f 0, that is, p-l (V) n p-l (V') f 0, or again 

(U g(U)) n (U g'(U')) f 0, 
gEG g'EG 
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and there would exist g, g' E G such that g(U) n g'(U') t= 0 and (g,-1 0 

g)(U) n U' t= 0, contradicting the choice of U and U'. 
Now to check that p is a covering map. If V = p( U) is the domain of 

a chart on X/G, we have p-1(V) = UgEG g(U), where the g(U) are open 
in X because G c Diff(X). Thus p-1(V) is open and p is continuous. If 
x E X and (U,4» is a chart at x, let (V,.p) be the associated chart at p(x) = 
y E X/G. We have p(U) c V, and .p 0 po 4>-1 = 4> 0 p-1 0 P 04>-1 = Id<l>(u) 
is of class CP from 4>(U) into Rd. Thus p is CP differentiable, by 2.3.2. 
Finally, if V is the domain of a chart associated with (U, 4», we have 

p-1(V) = U g(U), 
gEG 

where the g(U) are diffeomorphic to V and form a partition of p-1(V). 0 

2.4.10. Corollary. II X is a compact manilold, so is X/G. 

Proof. The canonical map p: X -+ X/G is continuous and surjective, and 
X/G is Hausdorff. 0 

2.4.11. The following criterion holds (exercise 2.8.12): let X and Y be 
differentiable manifolds of class CP, and G c Diff(X) a group acting on 
X properly discontinuously without fixed points. We consider X/G with 
its canonical manifold structure, and let p : X -+ X/G be the canonical 
projection. Then a map I : X/G -+ Y is of class CP if and only if lop: 
X -+ Y is. 

2.4.12. Examples. 

2.'.12.1. The torus, second recipe (cf. 2.1.6.3). By 2.4.7.1 and 2.4.9 the 
set Y = Rn /zn is a COO manifold, covered by Rn. As a manifold, Y is 
the product of n copies of R/Z (2.2.10.3). Now the reader can guess that 
R/Z, the set of reals modulo 1, is diffeomorphic to the circle 8 1 j this will 
be rigorously proved in 2.6.13.1. Thus Y = Rn/zn is diffeomorphic to 
(81 )n, or to the torus Tn = (81 (n- 1/ 2)r introduced in 2.1.6.3. Taking 
the quotient Y = Rn /zn is another way to obtain the manifold Tn. 

o 

Figure 2.4.12.1 
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2.4.12.2. Real projective spaces, first recipe (d. 2.6.13.3). By 2.4.7.2 and 
2.4.9 the set pd(R) = Sd/G = Sd/ ± Idsd is a Coo manifold, called d
dimensional real projective space. Since Sd is compact, so is pd(R). This 
definition of projective space coincides with the one given in projective 
geometry, namely the quotient of Rd+l \ 0 by the equivalence relation 
"x ~ y if and only if there exists k E R such that y = kx". Indeed, every 
x E Rd+l \ 0 gives rise to x/llxll E Sd, so the quotient set of Rd+l \ 0 by ~ 
concides with the quotient of Sd by ~ISd; but for x, y E Sd the condition 
x ~ y is equivalent to y = ±y. 

The map introduced in 2.1.6.9 factors: 

S2 P .P2(R) 

2.4.12.1 ~ ~ 
R6 

since f(-x,-y,-z) = f(x,y,z). This yields a map f : P2(R) -+ R6 
which, as the reader should verify, is injective. -

2.4.12.4. The Klein bottle. Consider the manifold T2 = R 2 /Z2, and denote 
by x the class of x E R modulo Z. The map g : T2 -+ T2 defined by 

g(x,y) = (x + ~, -iT) 
is a diffeomorphism of T2 satisfying g2 = IdT 2. We show that the group 
{IdT 2, g} acts properly discontinuously without fixed points. 

First take u such that g(u) :f. u. Since T2 is a Hausdorff space we can 
find disjoint open neighborhoods Ul and Vl of u and g(u), respectively. 
Since g is a diffeomorphism, there exists an open set U 3 u contained in 
Ul and such that g(U) C VI; thus g(U) n U C VI n Ul = 0, showing that 
G has no fixed poin ts. 

Now take U,tI E T2 with tI ¢:. G(u) = {u,g(u)}. There exist disjoint 
open neighborhoods Ul of u and Vl of tI, and disjoint open neighborhoods 
U2 of g(u) and V2 of tI. Let O2 be an open neighborhood of u such that 
g(02) C U2, and set U = UI n O2, V = Vl n V2. Then Un V C Ul n VI = 0 
and 

g(U) n V C g(02) n V2 C U2 n V2 = 0, 
and G is properly discontinuous. 

The quotient K = T2/G is called the Klein bottle. We see that K is 
a compact manifold (2.4.10). Let's try to represent K, starting from R2. 
Passing from R2 to T2 = R 2/Z2 is achieved by identifying pairs of points 
(x,y) and (x + k,y + 1), with (k,l) E Z2. We can represent T2 by the 
square ABCD, including the sides DA and AB, but not BC or CD (figure 
2.4.12.4). Or, if we include all sides, we can identify DA with CB and AB 
with DC. 

Now identify pairs of points of the form (x, y) and (x + ~,-y); this 
corresponds to throwing away the rectangle SCBR (not including the side 
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RS), then gluing AR and DS together to get a cylinder, and finally gluing 
DA and RS together (the two circles on the boundary of the cylinder), 
with orientation reversed. Like this: 

Figure 2.4.12.5 

2.5. Tangent Spaces 

Before introducing tangent spaces to abstract manifolds, we study the case 
of submanifolds of RB. 

2.5.1. Definition. Let V be a submanifold ofRB. A vector z E RB is said 
to be tangent to V at x if there exists a C1 curve a: I -> V (where I c R 
is an interval containing 0, cf. 0.2.9.1) such that a(O) = x and a'(O) = z. 
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2.5.2. Remarks. Strictly speaking, a'(O) is a linear map from R into RR, 
but we have identified it with the vector a'(O) . 1 E RR (cf. 0.2.4). 

The condition 0 E I just lightens the notation somewhat, but we could 
allow the curve to be defined on an interval I containing some to such that 
a(to) = x and a'(to) = z. 

2.5.3. Theorem. Let V be a sub manifold of RR and x E V a point. The 
set of tangent vectors to V at x is a vector subspace of RR, which we call 
the tangent space to V at x, and denote by T", V. 

We will need two lemmas for the proof: 

2.5.4. Lemma. Let E and F be finite-dimensional vector spaces, U c E 
an open set, f : U -+ F a C 1 map, V a submanifold of E contained in 
U and W a submanifold of F such that f(V) C W. Take x E V and set 
Y = f(x). If z is a tangent vector to V at x, the image J'(x)(z) is a tangent 
vector to W at y = f(x). 

Proof. There exists a curve a : I -+ V such that a(O) = x and a'(O) = z. 
The function "t = f 0 a : I -+ W is also C 1 and satisfies "t(0) = f(x) = y 
and 

"t'(0) = f'{a(O)){a'(O)) = J'(x)(z). o 

2.5.5. Lemma. Let V be a submanifold of a real vector space E and U an 
open subset of E. A vector in E is tangent to V' = V n U at x if and only 
if it is tangent to V at x. 

Proof. Assume first z E T", V'j there exists a curve a : I -+ V' such that 
a(O) = x and a'(O) = z. But a is also a curve in V, so z E T",V. For the 
converse, take Z E T",V and let a : I -+ V be a curve such that a(O) = x 
and a'(O) = z. Since U is open and a is a continuous map taking 0 inside 
V' = V n U, there exists a neighborhood J of 0 contained in I and such 
that a(J) C U. Thus a(J) C V n U = V', and the restriction {3 = alJ is a 
curve in V' of class C1 satisfying {3(0) = x and {3'(0) = z. 0 

Proof of 2.5.3. Let V be ad-dimensional submanifold of RR and x E V 
a point. By definition 2.1.1 there exists an open neighborhood U of x in 
E = RR and a CP diffeomorphism f : U -+ f(U) such that f(U n V) = 
f(U) nRd. By 2.5.5 we have z E T",V if and only if z E T",(UnV)j by 2.5.4 
this is equivalent to J'(x)(z) being tangent to f(UnV) = f(U)nRd at f(x), 
and again to J'(x)(z) E Tf(",)Rd since f(U) is open. Now Tf(",)Rd = Rd 
because any U E Rd is the derivative of a curve in R d, say a(t) = f(x) +tUj 

thus z E T",V if and only if J'(x)(z) E Rd. Since J'(x) is bijective we see 

that T",V = U'(x))-1(Rd ) is a subspace of E. 0 
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2.5.6. Remark. The proof of 2.5.3 shows that the dimension of the tan
gent space to a submanifold of Rn is the same as the dimension of the 
manifold. 

The various characterizations of submanifolds of R n (theorem 2.1.2) lead 
to equivalent characterizations of tangent spaces. In particular we have the 
following result: 

2.5.1. Theorem. Let V be ad-dimensional CP submanifold ofRn. 
(i) Take x E V and let U 3 x be an open subset ofRn on which are defined 

real-valued functions (hh$i$n-d of class CP such that 

n-d 
VnU= nfi-1(0) 

i=l 

and that the vectors I:(x), for 1::; i::; n - d, are linearly independent. 
The tangent space to V at x is given by 

n-d 
T.,V = n (ji(x)r1(0). 

i=l 

(ii) Take x E V and let U 3 x and (1 3 0 be open subsets of Rn and 
Rd, respectively, and g : (1 --+ V n U a CP homeomorphism such that 
x = g(O) and g'(O) is injective. Then T.,(V) = g'(O)(Rd). 

2.5.'1.1. Example. If V has codimension one, that is, if it is locally given 

by a single equation I, we have T.,V = (j'(x)r 1 (0). For instance, take 
V = Sd C Rd+l and I = II . 112 - 1. Then I'(x) = 2(x I .) (0.2.8.3), and 
T.,Sd is the hyperplane orthogonal to x. 

2.5.'1.2. Proof. (i) Define F: U --+ Rn-d as F = (h, ... , In-d). We have 
V n U = F-l(O) and F is a submersion at x, so 

n-d 
F'(X)-l(O) = n (ji(X))-l(O) 

i=l 

is a vector space of dimension n - (n - d) = d. If we can show that T., V is 
contained in (F'(x)-l )(0) it will follow that the two spaces are identical. 

Take z E T.,V, and let a : 1 --+ V be a curve such that a(O) = x and 
a'(O) = z. After shrinking 1 if necessary, we can assume that a(1) c U. 
The map F 0 a = "'( is a curve in Rn-d satisfying "'((1) = F(a(1)) c 
F(U n V) = {O}; in particular, "'('(0) = O. But 

",('(0) = F'(a(O))(a'(O)) = F'(x)(z), 

which concludes the proof. 
(ii) By 2.1.6.6 an open set (1 C Rd is ad-dimensional submanifold of Rd, 

so the tangent space to (1 at any point is Rd. Since 9 : (1 --+ V n U is a CP 
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homeomorphism, it follows from 2.5.4 and 2.5.5 that 

g'(O)(Rd ) c Tg(o) (V n U) = Tg(o) V. 

77 

But g'(O) is injective, so g'(O)(Rd ) and Tg(o) V = T", V have the same di
mension. Thus they are equal, and we're done. 0 

Now let z E T",V be a tangent vector to a submanifold VeRA, and 
consider two compatible coordinate systems (2.1.8) 9 and h on V satisfying 
g(O) = h(O) = x. By the theorem, T", V = g'(O)(Rd ) = h'(O)(Rd ), so we 
can find u, v E Rd such that g'(O)(u) = Z = h'(O)(v). This means that 

v = ((h'(O))-l 0 g'(O))(u) = (h- 1 0 g)'(O)(u)j 

in other words, the two triples (flg , g, u) and (flh, h, v) determine the same 
tangent vector if and only if v = (h- 1 0 g)'(O)(u). 

This points the way in generalizing the idea of tangent spaces to abstract 
manifolds: we just have to substitute charts for coordinate systems. 

2.5.8. Proposition. Let X be a d-dimensional manifold of class C1> and 
x E X a point. Consider all triples of the form (U, I/J, u), where (U, I/J) is a 
chart at x and u is a vector in Rd. The relation - defined by "(U, I/J, u) -
(V,,p,v) if and only if(,p 0 l/J-l)'(I/J(X))(u) = tJ" is an equivalence relation. 

Proof. Since I/J 0 I/J-l is the identity on I/J(U), its derivative is everywhere 
the identity, and (I/J 0 I/J -1)' (I/J (X))( u) = Uj this shows - is reflexive. 

For symmetry, notice that 

((,p 0 l/J-l)'(I/J(X)))-l = (I/J 0 ,p-l)'((,p 0 l/J-l)(I/J(X))) = (I/J o,p-l),(,p(X)), 

that is, (,p 0 l/J-l)'(I/J(x))(u) = v implies u = (I/J 0 ,p-l)'(,p(x))(v). 
Finally, assume that (U,I/J,u) - (V,,p,v) and (V,,p,v) - (W,O,w), and 

consider the composition 00 I/J-l: 

(00 1/J-1)'(I/J(x))(u) = ((00 ,p-l) 0 (,p 0 l/J-l))'(I/J(x))(u) 
= (((00 ,p-l)'(,p 0 l/J-l(l/J(x)))) 0 (,p 0 l/J-l)')(I/J(x)){u) 
= (0 0 ,p-l)'(,p(x))(v) = w, 

which shows that (U, I/J, u) - (W,O, w) and that - is transitive. 0 

2.5.9. Definition. Let X be a manifold and x E X a point. A tangent 
vector to X at x is a --equivalence class of triples (U, I/J, u). The set of 
tangent vectors to X at x will be denoted by T",X. 

2.5.10. Rem.ark. A chart (U, I/J) at x determines an associated isomor
phism 0", : T",X -+ R d, which takes z E T",X to the unique vector u E Rd 

such that (U, I/J, u) E z. Bijectivity follows because the vector u E Rd in 
(U, I/J, u) is arbitrary. 



78 2. Differentiable Manifolds 

2.5.11. Theorem. Let X be a d-dimensional abstract manifold of class 
CPo The tangent space TxX to X at x has a canonical d-dimensional vector 
space structure. 

Proof. Fix a chart (U, <p) at x E X, and consider the associated bijection 
Ox : TxX -+ Rd. The vector space structure on TxX is defined by pulling 
back the one on Rd. More precisely, 

).z + )..'z' = 0;1 ()"Ox{z) + )..'Ox{z')). 

This structure does not depend on the choice of (U, <p). Indeed, if YJx : 
TxX -+ Rd is the bijection associated with another chart (V,,p), definitions 
2.5.8 and 2.5.10 show that 

2.5.11.1 

which is linear. o 

2.5.12. Proposition. Let X be a sub manifold of Rn and x E X a point. 
The tangent space Ex to the submanifold X at x (definition 2.5.1) is canon
ically isomorphic to the tangent space to the abstract manifold X at x (def
inition 2.5.9). 

Proof. This should be true by the very way we arrived at the notion 
of tangent vectors for abstract manifolds, but let's check nonetheless. Let 
(O, g) be a coordinate system of X such that g{O) = Xj the map g'{O) : Rd -+ 

Ex is an isomorphism. But (U,<p) = (g{O),g-l) is a chart on X centered 
at x, so we can consider the associated isomorphism Ox : TxX -+ Rd. Our 
canonical isomorphism will be 

2.5.12.1 g'{O) 0 Ox: TxX -+ Ex. 

This does not depend on (O, g): if (O', h) is another coordinate system such 
that h'{O) = x, formula 2.5.11.1 says that YJx 0 0;;1 = (h-1 0 g)'{O), whence 
g'{O) 0 Ox = h'{O) 0 YJx, as we wished to prove. 0 

2.5.12.2. In particular, consider U E O{Rd ) with its canonical manifold 
structure given by the chart (U, i), where i : U -+ Rd is the inclusion. In 
the submanifold sense we have T.,U = R d , so we deduce from 2.5.10 the 
existence of a canonical isomorphism 

2.5.12.S 

associated with x and the chart (U, i). Notice that 2.5.12.3 does not contra
dict 2.5.12.1, since the natural coordinate system g of U such that g{O) = x 
is just the translation g : z ~ z + x, so that g'{O) = IdRd. 

2.5.12.(. Sometimes it is useful not to identify TxU with Rdj one should 
rather visualize TxU as the space (x, R d ) of bound vectors [Ber87, 2.1.3] 
based at x E R d , and 0., as the projection (x, z) ~ Z. 
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Figure 2.5.12.4 

2.5.13. The tangent map. Now consider two manifolds X and Y, and 
a CP map I : X ----> Y. We want to define a linear map Txl from the 
tangent space TxX into the tangent space T!(x) Y in the following fashion: 
using 2.3.2(iii), take Z E TxX and charts (U,4» and (V,,p) at x and I(x), 
respectively, such that I(U) c V and ,p 0 104>-1 is of class CPo Let 
(}x : TxX ----> Rd and "!(x) : T!(x) Y ----> Re be the isomorphisms associated 
with (U,4» and (V,,p) (2.5.10). Set 

2.5.U.l Txl = "f(~) 0 (,p 0 1 0 4>-1)'(4)(X)) 0 (}x, 

so that the diagram on the right commutes: 
! T,./ 

U • V Tx X ---.:.---. T!(x) Y 

~ ! ! w Os! ! '1!(s) 

4>(U) wo!or~ ,p(V) Rd (WQ!O~-l)I(~(X)~ Re 
2.5.U.2 

This definition will be consistent if it depends only on x, not on (U,4» 
and (V, ,pl. To check that, let (U1,4>d and (V1,,pd be new charts, with 
associated maps ex and ~!(x). By formula 2.5.11.1 we can write (omitting 
the points where the derivatives are taken) 

~J(;) 0 (,p1 0 I 0 4>11)' 0 ex 

= ~J(;) 0 ((,p1 0 ,p-1) 0 (,p 0 10 r1) 0 (4) 0 4>1 1))' 0 ex 

= (~J(;) 0 (,p1 0 ,p-1)') 0 (,p 0 10 r1)' 0 ((4> 0 4>11)' 0 ex) 

= "f(~) 0 (,p 0 I 0 r1)' 0 (}x, 

as we wished to show. 

2.5.14. Definition. Let X and Y be manifolds and I : X ----> Y a CP map. 
The tangent map to I at a point x E X is the map Txl : TxX ----> T!(x)Y 
defined by 2.5.13.1. 

2.5.15. Theorem. Let X and Y be manilolds and I : X ----> Y a CP map. 
The tangent map Txl : TxX ----> T!(x) Y is linear. II Z is another manifold 
and g : Y ----> Z is a CP differentiable map, we have 
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Proof. This follows directly from 2.5.13.1 and from the linearity of Ox, I'//(x) 

(2.5.11) and (t/J 0 f 0 4>-l)'(4)(x)). 0 

2.5.16. Example. Let X be a manifold and U E O(X) an open submani
fold of X (2.2.10.2). For every x E U, the tangent spaces TxU and TxX are 
canonically isomorphic and will henceforth be identified. The isomorphism 
is given by Txi, where i: U -+ X is the inclusion. 

2.5.17. Curves and velocity 

2.5.11.1. Definition. A curve of class CP in a manifold X (of class cq, 
q 2:: p) is a pair (I, 0:) consisting of an open interval I C R, taken with its 
canonical manifold structure, and a map 0: E CP(Ij X). 

2.5.11.2. Definition. For I E O(R) and tEl, we denote by It E Ttl the 
tangent vector to I at t defined by Ot(1t) = 1, where 1 E Rand Ot is as in 
2.5.12.2. The map t f-+ It is called the canonical vector field on I (cf. 3.5.1). 

2.5.11.S. Definition. Let (I, 0:) be a curve in a manifold X. The velocity of 
0: at tEl, denoted by o:'(t), is the tangent vector to X at o:(t) given by 

o:'(t) = (Tt o:)(l t ). 

Notice that this definition does not coincide, for X = U E O(Rn), with 
the one introduced in 0.2.9.1 for E = Rn. But they coincide modulo the 
canonical isomorphism Ox. In the present setting the property established 
in 0.2.9.1 can be reformulated as follows: 

2.5.11.(. Proposition. For f E CP(Xj Y) and (1,0:) a curve in X, we have 

(Ta(t)f) (o:'(t)) = U oo:)'(t)j 

in particular, we can calculate Txf using velocities. 

Proof. We have, by 2.5.17.3 and 2.5.15: 

U 0 o:)'(t) = (TtU 0 O:))(lt) = (Ta(t)f 0 Tt o:)(lt ) 

= (Ta(t)!) ((TtO:)(lt )) = (Ta(t)!) (o:'(t)). 0 

1r 1.- (} 

I ~ I .. I ... 
0 1 s 

X 
y 

~ f J 

fo~ y 

Figure 2.5.17 
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2.5.18. Proposition. Let X and Y be CP manilolds and p : X X Y -+ X 
and q : X X Y -+ Y the canonical projections. For every (x, y) E X X Y, 
the map 

T(""y)p X T(""y)q: T(""y) (X X Y) -+ T",X X TyY 

is an isomorphism. 

This will allow us to identify T(""y) (X X Y) with T",X X TyY. 

Proof. By 2.3.6.2 and 2.5.16 we can assume that X = Rd and Y = Re. 
Then the maps 2.5.12.3, here denoted by 9(""y), 9", and 9y , make the fol
lowing diagram commute: 

T(""y)(Rd X Re)~T",Rd 
2.5.18.1 9( .. ,~) ! ! 9 .. 

RdxRe ~ Rd. 

Thus T("',II)p x T(""y)q is, up to bijections, equal to p X q, which is an 
isomorphism. 0 

Here is the counterpart of 0.2.19 and 0.2.22 for manifolds. 

2.5.19. Proposition. II I : X -+ Y is a diffeomorphism, T",I : T",X -+ 

T, (",) Y is an isomorphism. 

Proof. Since I is a diffeormorphism, 1-1 exists and 1-10 1= Idx. Now 
T", (Idx ) is the identity on T",X, because if z is a tangent vector representing 
the triple (U, </>, u), the image T",(Idx }(z) is the tangent vector represented 
by the triple 

(U, </>, (</> 0 Idx o</>-1),(</>(x))(u)) = (u, </>, u). 

On the other hand, 2.5.15 gives 

(T",I- 1 0 f) = (T, (",)r 1) 0 (T",f) = T",(Idx ) = IdTsx . 

It follows that T",I is an isomorphism between T",X and T, (",) Y, and that 
(T",f)-1 = T, (",)r 1. 0 

2.5.20. Proposition. Let I : X -+ Y be a differentiable map 01 class CP 
such that T",I E Isom(T",Xj T, (",) Y). There exists an open neighborhood 
U C X 01 x such that I(U) is open in Y and I is a diffeomorphism Irom 
U into I(U). 

Proof. We first express T",I in terms of charts, reducing to the case of 
open sets in Rn, where we can apply the inverse function theorem (0.2.22). 
Using the fact that I is of class CP and 2.3.2(iii) we take charts (U, </» and 
(V,,p) at x and I(x), respectively, such that I(U) c v. We also take the 
isomorphisms 9", : T",X -+ Rd and 9, (",) : T, (",) -+ Re (where d and e are 
the dimensions of X and Y). 
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By 2.5.13.1 and our assumptions we have 

(,p 0 10 q,-l)'(q,(x)) = ()f(x) 0 Txl 0 ();;l E Isom(Rdj Re), 

so ,p 0 I 0 q,-l is regular at q,(x). By 0.2.22 there exists 0 E O",(x) (q,(U)) 
such that ,p 0 I 0 q,-l is a diffeomorphism between 0 and ,p(j(q,-l(O))). 

Since q, and ,p are diffeormorphisms (see 2.3.6.2), the composition I = 
,p-l 0 (,p 0 I 0 q,-l) 0 q, is also one. 0 

2.5.21. Remark. Covering maps are local diffeomorphisms everywhere, 
by definition 2.4.1, but the converse is false. For example, take p: X -+ Y, 
where X =]0,311"[, Y = 8 1 and p(t) = (cost, sin t). This can't be a covering 
map because 8 1 is connected but the conclusion of 2.4.4 is not satisfied: 
we have p-l(p(311"/2)) = {311"/2} but p-l (p(11"/2)) = {11"/2, 511"/2}. 

2.5.22. Canonical isomorphisms. The canonical isomorphism ()x be
tween TxU and Rd defined in 2.5.12.3 for U E O(Rd) can be generalized 
to any open submanifold U of a finite-dimensional real vector space E. By 
2.5.16, we can assume U = E. Let IE L(Ej R d ) be arbitraryj for x E E, 
we define 

2.5.22.1 

by setting ()x = 1-10 '7x, where '7x is the isomorphism associated in 2.5.10 
with the chart I : E -+ Rd of E. This ()x is independent of I: if 9 E 

L(Ej R d ) is another linear map, with associated isomorphism ~'" : T",E -+ 

Rd, we have (g 0 1-1), = go 1-1 because go 1-1 is linear (0.2.8.3), and 
1-10 '7", = g-1 0 ~'" by 2.5.11.1. 

This allows us to introduce the following notion, which lies halfway be
tween tangent maps and derivatives: 

2.5.23. Definition. Let X be a manifold, E a finite-dimensional vector 
space and IE CP(Xj E). The differential of I at E, denoted by dl(x), is 
the map ()f(x) 0 Txl : T",X -+ E, where ()f(x) : Tf(",)E -+ E is the map 
defined in 2.5.22.1. 

2.5.2S.1 

Tsf 
T",X-Tf(",)E 

~(~!OI(S) 
F 

We leave it to the reader to check that if U E O(E) and I E CP(Uj F), 
where E and F are finite-dimensional vector spaces, the diagram below 
commutes: 
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2.5.21.1. Iff E CP(X; E) and 9 E CP(Y; X) we have d(fog)(y) = df(g(y))o 
T"g, as a trivial consequence of 2.5.15. 

2.5.24. Tangent bundles. Let X be a manifold, and consider the disjoint 
union T X = U.,EX T.,X of the tangent spaces to X at all of its points. 

2.5.25. Theorem. If X is a d-dimensional manifold of class CP, the set 
T X has canonical manifold structure of class Cp-1 and dimension 2d. We 
call T X the tangent bundle of X. 

Proof. To define an atlas we consider the projection 11" : T X -+ X given by 
1I"(z) = x if Z E T.,X. Let (U,~) be a chart on X. To any Z E 1I"-1(U) C TX 
we associate the point 

(~(1I"(Z)),O ... (z)(Z)) E R2d = Rd X R d, 

where O ... (z) : T ... (z) -+ Rd is the isomorphism associated with (U,~) at 1I"(z) 
(2.5.10); this makes sense because Z E T ... (z) X and 1I"(z) E U. We thus have 
a map 

2.5.25.1 

We claim that, as (U,~) ranges over all charts on X, the pairs {(1I"-1(U),r.,,)} 
forms an atlas on T X, and makes it into a (Hausdorff) manifold of class 
Cp-1. 

(AT1) Since 11" : TX -+ X is surjective and X is covered by the U, so is 
TX covered by the 1I"-1(U). 

(AT2) Each r." is injective because 0 ... (-) and ~ are. The image of r." is 
r.,,( 11"-1 (U)), which is open in R2d. If (11"-1 (U), r.,,) and (11"-1 (V), r",) 
are charts on T X, we have 

r.,,(1I"-1(U) n 1I"-1(V)) = r.,,(1I"-1(U n V)), 

which is open in R2d because ~(U n V) is open in Rd. 
(AT3) Again for two charts (1I"-1(U),r.,,) and (1I"-1(V),r",) on TX, we 

must show that r", or;1 is of class Cp-1 from r.,,(1I"-1(U) n1l"-1(V)) 
into r",(1I"-1(U) n1l"-1(V)), that is, from ~(UnV) X Rd into ,p(Un 
V) X Rd. If f7 is the isomorphism associated with (V,,p) we have 

r '" 0 r;; 1 = (,p 0 ~ -1, f7 0 0- 1 ) = (,p 0 r 1 , (,p 0 ~ -1)'), 

by 2.5.11.1, and this is a Cp-1 map because ,p 0 ~ is a CP map. 

So much for the differentiable structure. We next show that TX is 
Hausdorff. The following observation will be useful: if W is open in R d , 

~(U) X W is open in ~(U) X Rd and r;1(~(U) X W) is open in TX, since, 
by 2.2.9, 1"." is a homeomorphism from 11"-1 (U) onto its image ~(U) X Rd. 
This said, take distinct points Z1, Z2 E T X. 
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If Zl E Txt X and Z2 E Tx. X with Xl t- X2, there exist disjoint open sets 
Ul and U2 containing Xl and X2, because X is Hausdorff. Since Ul and 
U2 are domains of charts, lI'-l(Ud and 11'-1 (U2) are open in TX, and they 
separate Zl and Z2. 

If lI'(zd = 1I'(Z2) = X, take a chart (U,4» at X E X. The vector Zl is 
represented by a triple (U, 4>, ud and Z2 by (U, 4>, U2), and Ul t- U2 because 
Zl t- Z2' We can find disjoint open neighborhoods WI and W2 of Ul and 
U2 in R d , and the inverse images Ti l (4)(U) X Wd and Ti l (4)(U) X W2) 
are disjoint open neighborhoods of Zl and Z2 in TX, by the observation 
above. D 

We now associate to a differentiable map f : X --+ Y a map TX --+ TY. 

2.5.26. Theorem. If f: X --+ Y is of class CP, the map Tf: TX --+ TY 
defined by TfIT%X = Txf for every X is of class Cp-l. 

Proof. We use 2.3.2{iii), after having shown that for every Z E TX 
there exist charts (1I'-1(U), T.p) at Z and (1I'-1(V), T",) at Tf(z) such that 
Tf(lI'-l(U)) C lI'-l(V) and that T", 0 Tf 0 Til, defined on the open set 

T.p(lI'-l(U)), is of class Cp-l (notice that the same letter is being used to 
denote two different maps 11' : TX --+ X and 11' : TY --+ Y). We also must 
show that T f is continuous. 

Take Z E TX and set X = lI'(z), so that Z E TxX. By definition, 
(Tf)(z) = (Txf)(z) is in Tf(xlY' Since f is of class CP, there exist 
charts (U,4» at X and (V,,p) at y = f(x) such that f(U) C V and 
,p 0 f 0 4> -1 E CP (4) (U), R e), where e is the dimension of Y. The desired 
charts at z E T X and (T f)(z) E TY will be (11'-1 (U), T.p) and (1I'-1(V), T",), 
respectively. 

We have Tf(lI'-l(U)) C 11'-1 (V) because any to E lI'-l(U) is tangent to 
X at a point Xo in U, so (Tf)(to) = (Txof)(to) is tangent to Y at f(xo). 
But f(xo) E V because f(U) C V, so (Tf)(to) E lI'-l(V). 

Formulas 2.5.13.1 and 2.5.25.1 imply that 

2.5.20.1 

This shows that T", 0 T f 0 Til is of class Cp-l, since ,p 0 f 0 4> -1 is of class 

CPo It also shows that Tf is continuous, because T", 0 Tf 0 Til is and T.p 
and T", are homeomorphisms (2.2.9). D 

2.5.27. Proposition. Let X, Y and Z be manifolds of class CP at least, 
and f : X --+ Y, g : Y --+ Z differentiable maps of class CPo Then T(go f) = 
Tgo Tf. 

Proof. This is just a restatement of 2.5.15. D 
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2.5.28. Velocity map. Let Ie R be an interval and e : t 1--+ 1t the map 
from I into TI defined in 2.5.17.2. We have e E COO (I; TI). Indeed, in the 
canonical charts for I and T I (the latter being deduced from the former), 
e has the expression t 1--+ (t, 1); now use 2.3.1. 

It follows that, if (I, 0:) is a curve on a manifold X (2.5.17), we can define 
the velocity map 0:' : 1-+ TX of 0: by 0:' = To: 0 e, and 0:' E CP-l(I; TX) 
by 2.5.26. 

2.5.29. The derivative. Let E be a finite-dimensional vector space, X 
a manifold and f : X -+ E a differentiable map. We associate to fits 
derivative df : T X -+ E, defined as the collection of the df( x) for x E X 
(cf. 2.5.23.1). The following diagram commutes: 

TX ..!:!...TE 

~ !o 
E, 

where B is also defined as the collection of the By for y E E. 
If g E CP(X; Y) we have d(J 0 g) = df 0 Tg (2.5.23.3). 

2.6. Submanifolds, Immersions, Submersions and 
Embeddings 

We now extend the notion of sub manifolds, introduced in 2.1, from RB to 
abstract manifolds. The reader in encouraged to draw himself the figures 
essential to his understanding, as we did in 2.1. 

2.6.1. Definition. Let X be a d-dimensional manifold and Y a subset of 
X. We say that Y is an e-dimensional submanifold of X if for every y E Y 
there exists a chart (U,4» of X at y such that 4>(U n Y) = 4>(U) n Re. 

Here we have identified R e with R e c Rd via the canonical inclusion 

2.0.1.1. Remark. Definition 2.6.1 can be reformulated as follows: a subset 
Y c X is a submanifold if the inclusion of Y in X is everywhere locally 
diffeomorphic to the inclusion of Re in Rd. 

2.6.2. Theorem. Let X be a manifold of class CP and Y a submanifold 
of X. For (U,4» ranging over all charts satisfying the condition in 2.6.1, 
the pairs (U n Y, 4>luny) form a CP atlas for Y. In particular, Y has a 
canonical manifold structure of class CPo 
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Proof. Axiom (AT1) is trivial. To show (AT2), let (U, ifJ) and (V, tP) be 
charts satisfying the condition: we have 

ifJ((U n Y) n (V n Y)) = ifJ(U n V) n R e • 

As to (AT3) , we have 

(tPlunvny) 0 (ifJlunvny)-l = (tP 0 ifJ-1)1<f>(unV)nRe, 

which is clearly of class CP if tP 0 ifJ -ll<f>(Unv) is. o 

The next lemma shows that every chart on Y is locally of the type 
required by 2.6.1: 

2.6.3. Lemma. Let X be a manifold, Y c X a sub manifold and (W, '1) 
a chart of Y at y. There exists a chart (U, ifJ) of X at y such that the 
intersection Un Y is open in W, its image ifJ(U n Y) equals ifJ(U) n R e, and 
the restrictions ifJlunY and '1luny coincide. 

Proof. By definitions 2.2.5 and 2.6.1, there exists a chart (V, tP) of X at y 
such that tP(VnY) = tP(V) nRe and that '1 o tP- 1 : tP(VnW) -+ '1(VnW) 
is a diffeomorphism, where tP(V n W) and '1(V n W) are open in Re c Rd. 
By the definition of the product topology on R d = Rex R d- e, there exist 
Z E Oo(Rd-e) and 8 E O",(y) (tP(V n W») such that 

8 x Z E O",(y) (tP(V»). 

We extend '1 0 tP-1lsx {o} into a diffeomorphism a between 8 x Z and an 
open set in Rd by setting 

a(s, z) = (('10 tP-1)(s, 0), z). 

The desired chart (U, ifJ) is then (tP-1 (8 x Z), a 0 tP). o 

Figure 2.6.3 
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2.0.4. Proposition. If X is a manifold and Y is a submanifold of X, the 
topology ofY as a manifold coincides with the topology induced from X. 

Proof. Applying the definition in 2.2.6 to Y, we see that any open set in the 
manifold topology of Y is a union of domains of charts of Y, or, by lemma 
2.6.3, a union of subsets of Y each of which is the intersection of Y with an 
open subset of X. Thus such a set is open in the topology induced from X. 
Conversely, if U is open in the induced topology, we have U = W n Y by 
2.2.6, where W is a union of domains of charts of X. But for every chart 
(S, r) of X such that S n Y i- 0, there exists a chart (V, 4», with V c S, of 
the type required in 2.6.1 (apply definition 2.6.1 to yES n Y and restrict 
(V, 4» to (VnS,4>ls) if necessary). 0 

2.0.5. Proposition. Let X be a manifold, Y a submanifold of X and Z 
a submanifold of the manifold Y (2.6.2). Then Z is a submanifold of X. 

Proof. Let d, e and f be the dimensions of X, Y and Z, respectively, 
and consider the canonical inclusions RI C R e c Rd. Definition 2.6.1 
shows that, for any point z E Z, there exists a chart (W, '7) of Y at z 
such that '7(W n Z) = '7(W) n RI eRe. Apply lemma 2.6.3 to z E Y 
and the chart (W, '7) of the submanifold Y c X. After restricting W, if 
necessary, we can assume that there exists a chart (U,4» of X at z such 
that 4>(U n Y) = 4>(U) n Re and W = Un Y. But then 

4>(U n Z) = '7(U n Z) = '7(W n Z) = '7(W) n RI = 4>(U) n R/. 0 

2.0.0. Proposition (cf. 2.3.3.4). closure of diff maps under restriction 
Let X and Y be manifolds, f E CP(Xj Y) a differentiable map and Z a 
submanifold of X. We have flz E CP(Zj Y). 

Proof. Apply 2.6.1.1 (cf. exercise 2.8.19). o 

2.0.7. Proposition (cf. 2.3.3.5). ditto ofrange Let X and Z be manifolds, 
Y a submanifold of X and f : Z -+ X an arbitrary map taking Z inside 
Y. Let fy be f considered as a map from Z into Y. Then f E CP(Zj X) 
is equivalent to fy E CP(Zj Y). 

Proof. By 2.6.1.1, we can reduce to the case where E, F and G are vector 
spaces, Z E O(E), X = F X G, Y = F x {o} c F x G and f: Z -+ F x G 
is of the form (IF,O). By 0.2.8.4, (IF, 0) is of class CP if and only if f is. 
The reader is encouraged to fill in the details (exercise 2.8.19). 0 

2.0.8. Proposition. inclusion is differentiable The inclusion i : Y -+ X of 
a submanifold Y into a manifold X is differentiable, and the tangent map 
T"i: T"Y -+ T"X is injective for every y E Y. 

Thus we can identify T"Y with a vector subspace of T"X, and write 
T"Y C T"X. 
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Proof. By 2.6.1.1 we can assume that we're dealing with i : E -> Ex F of 
the form i(y) = (y, 0), in which case the statement is trivial 0 

We now extend to manifolds the notions introduced in 0.2.17, 0.2.20 and 
0.2.23, as well as the subsequent results: 

2.6.9. Definition. Let X and Y be manifolds and I : X -> Y a dif
ferentiable map. We say that I is an immersion at x if TzI is injective, 
and a submersion if TzI is surjective. We say that I is regular at x if 
TzI E Isom(TzX; T/(z) Y). The map I is called an immersion, a submersion 
or regular if the relevant property holds at every x E X. Finally, I is an 
embedding of X in Y if I is an injective immersion and a homeomorphism 
onto its image I(X). 

The results below generalize theorem 2.1.2. 

2.6.10. Proposition. Let Y be a submanifold of a manifold X. The 
canonical injection i : Y -> X is an embedding of Y in X; in particular, it 
is an immersion. Conversely, if Z and X are manifolds and I : Z -> X is 
a differentiable map that is an immersion at x E Z, there exists U E Oz(Z) 
such that Ilu is an embedding ofU in X. In additon, f(U) is a submanifold 
of X and I is a diffeomorphism between U and I(U). 

Proof. Since each of these properties is invariant under diffeomorphisms, 
we can use charts to reduce to the case Y E O(E) and X = F, where 
E and F are finite-dimensional vector spaces. We then apply theorem 
0.2.24, which further reduces the picture locally to the canonical injection 
E -> Ex {O} c Ex F. In this case Ex {o} is indeed a submanifold of 
Ex F, and E -> Ex {O} is an embedding, and even a diffeomorphism onto 
its image. 0 

2.6.11. Corollary. If I : Z -> X is an embedding, I(Z) is a sub manifold 
of X and f is a diffeomorphism between Z and I(Z). 

Proof. By 2.6.10, I is everywhere a local diffeomorphism; thus f- 1 : 

I(Z) -> Z, which exists and is continuous by assumption, is also every
where locally differentiable. By 2.3.2(iii), 1- 1 is differentiable. 0 

Watch out: in general, an injective immersion is not an embedding 
(cf. 2.1.5). But non-compactness is the only obstruction: 

2.6.12. Theorem. An injective immersion I : Z -> X from a compact 
manifold Z into a manifold X is an embedding; in particular, its image is 
a submanifold of X. 

Proof. It is a fact from point-set topology that a bijective continuous map 
from a compact space into a Hausdorff topological space is a homeomor-
~~. 0 
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2.6.13. Examples 

2.8.11.1. The manifold R/Z (2.4.12.1) is diffeomorphic to the circle 8 1 . 

Indeed, 7: R:3 t 1-+ (COS1l"t, sin1l"t) E R2 defines a map f on the quotient 
R/Z, since I(t + k) = I(t) for all k E Z: 

R P -R/Z 

2.8.11.2 ~ ~ 
R2 

The quotient map I is injective and its image is 8 1 ; also, f E COO (R/Z; R2) 
by 2.4.11. Since R/Z is compact, being the image under p of the compact 
interval [0,11, all that is left to show before we can apply 2.6.12 is that I 
is an immersion. It is enough to check that 7 is an immersion, because p 
is regular; but this is obvious, since 7'( t) = (-11" sin 1I"t, 11" cos 1I"t) f. o. 
2.8.11.1. The projedive plane, seeond redpe. The map I in 2.4.12.3 is an 
embedding of P2(R) into R6. -

We know that P2(R) is compact (2.4.12.2) and I is injective; the result 
will follow from 2.6.12 if we can show that I, or, equivalently, I (since p : 

8 2 - P2(R) is regular) is an immersion. N~w 8 2 C R3 is a submanifold, 
and I is the restriction of 

I: R3:3 (x,y,z) 1-+ (x2,y2,z2,V2yz,V2zx,V2xy) E R6 

to 8 2 • Thus it suffices to show that T(""y,z)/, restricted to T(""y,z)82 , is 
injective; by definition 2.5.13.1, this amounts to checking that I'(x, y, z) is 
injective. 

The jacobian matrix of I at (x, y, z) is (0.2.8.8) 

2x 0 0 
o 2y 0 
o 0 2z 
o V2z V2y 

V2z 0 V2x 
V2y V2x 0 

which has rank three if (x, y, z) f. o. Thus f'(x, y, z) is injective, and a 
fortiori injective when restricted to T(""y,z)82. 

2.8.11.'- In chapters 8 and 9 we will study in detail immersions and em
beddings in Rn of the real line R and of the circle 8 1 , which are the 
one-dimensional manifolds: see sections 8.1 and 9.1. 

2.6.14. Proposition. Let X and Y be manifolds and I : X - Y a sub
mersion at x E X. There exists U E O",(X) such that f-1(1(x)) n U is 
a submanifold of X. Conversely, let Y be a submanifold of X and y E Y 
a point; there exists U E O",X and a submersion I : U _ Rd-e (where 
d = dim X and e = dim Y) such that Y n U = rl(O). 
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Proof. Apply theorem 0.2.26. D 

Another way to phrase 2.6.14, paralleling 2.1.2(ii), is the following: 

2.6.15. Proposition. Let X be a d-dimensional manifold of class CP and 
x E X a point. Consider k functions Ji of class cq (1 ~ q ~ p), defined on 
a neighborhood U of x, taking x to 0 and such that the derivatives dJi(x) 
(i = 1, ... , k) are linearly independent (as linear forms on TxX, cf. 2.5.23). 
There exists a subneighborhood V of x in U such that 

k 

V n n f.-l(O) 
.=0 

is a (d - k) -dime nsional submanifold of X, where X is considered as a 
manifold of class cq • 

Proof. It suffices to consider the differentiable map 

F: U 3 x f-+ Udx), ... , fk{X)) E Rk, 

which is a submersion at x because the dJi{x) (i = 1, ... , k) are linearly 
independent. Proposition 2.6.14 then shows that F-l(F{x)) = F-l{O) is 
a submanifold of some open set V E Ox(U). D 

For a more complete statement, see exercise 2.8.20. The converse of 
2.6.15 follows immediately from definition 2.6.1 by transferring to U the 
d - e coordinate functions Xe+l, ... ,Xd : Rd ----> R. 

2.7. Normal Bundles and Tubular Neighborhoods 

Let X be an abstract manifold, E a Euclidean space and f : X ----> E 
an immersion; we assume throughout this section that the differentiability 
class of X and f is at least two. For x E X we will form the subspace 

2.7.1 

where ..1. denotes the orthogonal complement in Euclidean space, and (J is 
as in 2.5.22.1: 

2.7.2. Definition. The set 

NxX = {z E E: (z I u) = 0 for any u E (Jf(x) (Txf(T",X))} 

is called the normal space to (X, J) at x (or, if f is understood, the normal 
space to X at x, or the normal space to f (X) at f (x)). 

Notice that dim N",X = dim E - dimX. 
More generally, we introduce the following notation for subsets of the 

product X x E: 
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2.'1.3. Notation. We set 

NX = {(x,v) E Xx E: v E N",X}, 
NeX= {(x,v) E NX: IIvll < e}, 
Nex= {(x,V)ENX: IIvll $e}, 

NU· X = {(x,v) E NX: IIvll = e}, 
NUX = {(x, v) E NX: IIvll = 1} = NUl X. 
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2.'1.4. Definition. The set N X is called the normal fiber bundle of (X, I), 
and NUX the normal unitary fiber bundle of (X, I). 

We also introduce a canonical map can: N X --+ E as follows: 

2.'1.5 can(x, v) = /(x) + v. 

2.'1.6. Definition. The set Tube X = can(Ne X) is called the tubular 
neighborhood of radius e around (X, I). 

f .. 

Figure 2.7.6.1 

Here's the reason for this term. Assume, for simplicity, that X is a 
submanifold of E, that is, / is the canonical injection from X into E. We 
can draw (T",X).1. as the set of bound vectors (2.5.12.4) based at x and 
orthogonal to T",X, so can (x, v) = x + v is the tip of such a vector and 
Tube X is the set of tips of all normal vectors at x with norm less than e, 
for x E X. If X is a curve in R 3 , what we get is a tube of radius e around 
Xj if X is a curve in R3, we get a strip of width 2e. Watch out: it is 
not true that Tube X is the set of points of E whose distance to X is less 
than ej see exercise 2.8.29. Notice that Ne X is the closure and Nue X the 
frontier of Ne X. 

2.'1.'1. Theorem. Let X be a d-dimensional abstract manifold of class CP 
and E an n-dimensional Euclidean space. If f : X --+ E is an immersion 
of class CP, the sets N X, N e X and NUX are manifolds of class Cp-l and 
dimension n, nand n - 1, respective/yo 
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TUB 'X 
TUB'X 

Figure 2.7.6.2 

Proof. Since E is a Coo manifold, X X E is a manifold (2.2.10.3). We will 
show that N X, N~ X and NUX are submanifolds of X X E by writing 
them as zero sets of equations and using 2.6.15. 

Consider N X first. Take (x, v) E NX, and let (U,.p) be a chart of X at 
x. We have (y, w) E (U X E) n N X if and only if y E U and w E NyX. We 
want to make the latter condition explicit. 

Introduce the isomorphism By associated with (U,.p) and y (2.5.10), and 
the isomorphism Bf(y) from 2.5.22.1. For z E TyX and u = Bx(z) E Rd we 
have, by definition 2.5.13.1: 

Thus the subspace Bf(y) ((Tyf)(TyX)) of E is spanned by the d vectors 
(f 0 .p-1)'(.p(y)) (ei), where {eb,..,ed} is the canonical basis of Rd. It 
follows that wE NyX if and only if for all i = 1, ... , d we have 

2.'1.8 

Consider the maps hi : U X E -+ R (i = 1, ... , d) given by 

2.'1.9 

We have 
d 

(U X E) nNX= n h;l(O), 
i=l 

and if we can show that the maps hi are of class Cp-l and that the dhi (x, v) 
are linearly independent, it will follow by theorem 2.6.15 that N X is a 
submanifold of X x E of class Cp-1 and dimension n + d - d = n. Since 
the map (a, (3) f-> (a I (3) from Ex E into R is of class Coo and the map 
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y ....... (f 0 ¢>-1) (¢>(y)) (e,) from U into E is of class Cp - 1 , the h, are indeed 
of class Cp-l. 

Left to study are the maps dh,(x, v) = (Jh,(""tJ) 0 T(""tJ)h, : T(""tJ)(X X 

E) -+ R, where (Jh,(""tJ) : Th,(""y)R -+ R is the canonical isomorphism 
associated at h, (x, v) with the chart (R, IdR) of R (2.5.32.2). But N",X is 
a submanifold of U X E (since it is a vector subspace of E and {x} X E 
is a sub manifold of X X E), and for (x, v) E N",X the space TtJE is a 
subspace of T(""tJ) (Xx E) (2.5.18); thus, if we can show that the derivatives 
dh,(x, v) (i = 1, ... , d), restricted to TtJE, are linearly independent, they 
will necessarily be linearly independent as maps on T(""tJ) (X x E). By 
applying 2.5.23.3 to the inclusion {x} x E c X x E we get 

and the h,IE are linear forms (- I (f 0 ¢>-I)'(¢>(x))(e,)) associated with 
the fixed vectors (f 0 ¢>-I)'(¢>(x))(e.) (i = 1, ... , d); thus the differentials 
of these linear forms are, up to the isomorphism (Jp, equal to themselves 
(0.2.8.3), and consequently linearly independent. This completes the proof 
that N X is a submanifold. 

It also takes care of N£ X, which is open in N X, being of the form 
{(x,v) E NX: Ilvll::; eo}: just apply 2.2.10.2. 

Finally, NUX = {(x, v) E N X: Ilvll = 1} is also a submanifold of N X, 
being defined by one equation f(x, v) = 0, where f : NX -+ R is given by 
f(x, v) = IIvl12 - 1; we just have to show that df(x, v) f:. ° for every point 
(x, v) E NUX. The technique is the same one we used in the last step of 
the proof that N X is a manifold: the restriction of f to {x} x E is the 
quadratic form IIvl12 - 1, whose derivative at v (up to (JtJ) is just the linear 
form 2{v I .), which is certainly non-zero if Ilvll = 1. This completes the 
proof of theorem 2.7.7. 0 

We now want to show that in certain good cases the map defined in 2.7.5 
is an embedding of Nil X in E. We will need the following result: 

2.1.10. Theorem. For every x E X the map can is regular at (x, 0). 

Proof. This map is defined by can{x, v) = f(x) + v. It is enough to show 
that the tangent map T(""o) (can) : T(""o)NX -+ Tf(",)E is surjective, since 
can(x,O) = f{x) and the spaces N X and E have the same dimension. The 
subspace T",!(T",X) of Tf(x)E has as a complementary subspace the image 

of ((Jf("') (T",f{T",X))).l. under (Jf(~), By abuse of notation we shall denote 

this complementary subspace by (Txf(T",X)).l., so that Tf(",)E admits the 
direct sum decomposition 
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To prove that T(""o) is surjective we just have to show that for every vector 
U E T",/(T",X) there exists z E T(""o)NX such that (T(""o)(can))(z) = u, 

and similarly for every v E (T",/(T",X)).l.. 
First observe that if '1 is a curve in NX such that 'Y'(t) = z, with z E 

T(""o)NX, we have (T(""o)(can))(z) = (can0'Y)'(t) by 2.5.17.4. So take 
u E T",/(T",X) and wE T",X such that T",/(w) = (u). Let a be a curve of 
class CP in X such that a(O) = x and a'(O) = w. If we set 'Y(t) = (a(t), 0), 
where 0 E E, we will have a curve of class CP in N X such that 

(can 0'1)'(0) = T",/(a'(O)) = T",/(w) = u, 

and thus a vector z = '1'(0) E T'T(o)NX = T(""o)NX such that 

T(""o) can(z) = (can 0'1)'(0) = u. 

Similarly, consider v E (T",/(T",X)).l., and define a curve in N X by 
'Y(t) = (x,tv). Then (cano"[)(t) = can(x, tv) = /(x) + tv, so (cano,,[)'(O) = 
v and the vector z = "['(I) E T'T(o)NX = T(""o)NX satisfies 

(cano"[)'(O) = T(""o) can(z) = v. o 

2.7.11. Remarks. In general, can is not regular everywhere. For instance, 
take X = 8 1 C R2j for every x E 8 1 we have x E N",8 1 , so can(x, -x) = 0 
(we say that 0 is a focal point of 8 1 ). 

Furthermore, it is generally not possible to find e > 0 such that the 
restriction of can to N· X --+ E is an embedding, although theorem 2.7.10 
implies that can is a local embedding around each point (x,O) (2.5.20). 
Figure 2.7.11 shows why: as X tapers off to infinity, points on both sides 

Figure 2.7.11 

get closer and closer, and e must get smaller and smaller. But if X is 
compact this kind of thing cannot happen: 
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2.1.12. Theorem. Let X be a compact manifold, E a Euclidean vector 
space, f : X --+ E an embedding of class CPo There exists e> 0 such that 
the restriction can: Ntl X --+ Tube X is a diffeomorphism. 

Proof. The map can is regular, and by 2.5.20 a local diffeormorphism, 
at every point of the form (x,O) for x E X. Thus there exists an open 
neighborhood W", C N X of (x,O) such that canlw .. is a diffeomorphism 
onto its image. Since N X is a submanifold of X x E, we can find a number 
e", > 0 and an open neighborhood U", C X of x such that 

Now X is compact and covered by the U"" so there exists a finite number 
of points Xl, ••• , xn such that X = U"'l U ... U U",,,. Set e = inf1~i~n e"'i; 
clearly can: Ntl X --+ Tub· X is a local diffeomorphism, because any (x, tI) E 

Ntl X satisfies 

for some i. 
There remains to show that there exists e such that canlNc x is injective. 

Assume there is no such e and take, for each n 2: 1, two distinct points 
Pn, qn E N 1/n X such that can(Pn) = can(qn). The sequences (Pi) and (qi) 
are contained in a compact set (for example, X x B(O, 1)), so we can take 
subsequences converging to P and q, respectively. Since Pn E N1/n X, we 
can write Pn = (xn! un) with lIunll < 1fn, so in the limit we must have 
P = (x, 0) and q = (y,O). Also, by continuity, 

can(p) = lim can(Pn) = lim can(qn) = can(q), 
n--+ 00 n-+ 00 

that is, f(x) = f(y). Since f is injective by assumption, we have x = 
y. But the restriction of can to a neighborhood of (x,O) = P = q is a 
diffeomorphism; and for n big enough the points Pn and qn must lie in such 
a neighborhood. Thus the assumption can(Pn) = can(qn) implies Pn = qn, 
which is absurd. 

Thus we have found e > 0 such that canlNcx is injective and regular. 
From this we deduce that canlNc' x' for any e' < e, is an embedding. 
We use the same technique as in the proof of theorem 2.6.12, by noticing 
that Ne' X C N e X is compact (since it is closed in the compact subset 
X X B(O, e) of X x Rn), and thus that (canINc'x)-l is continuous; m 
particular, (caniNe' x) -1 is continuous. 0 

2.1.13. Examples. We will meet the case d = 1, n = 3 (tubes) in 10.2.3.2 
and the case d = 2, n = 3 (parallel surfaces) in 10.2.3.11 and 10.6.8. 
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2.8. Exercises 

2.8.1. Which of the sets below are submanifolds of R n? Of what differen
tiability class? 

{(x, y, z) E R3 : x 3 + y3 + z3 - 3xyz = 1}; 

{(x, y, z) E R3 : x2 + y2 + z2 = 1 and x2 + y2 - X = O}; 

{(t,t2):tER_}U{(t,_t2):tER+}; 

{(x, y) E R2 : x = 0 or y = O}; 

{ ( t2 , t3 ) : t E R}; 

{(x, y) E R2: y = Ixl}; 

{ (cos t, cos ~ + sin ~) : t E ] 0, 41r + 3; [} . 

2.8.2. Check the compatibility of the various parametrizations of 8 2 of 
the type 

(x, y) 1---+ (x, y, viI - x2 - y2). 

2.8.S. Prove in several ways, using the conditions in 2.1.2, that if VeRn 
and We Rm are submanifolds, so is V X W c Rn x Rm = Rn+m. 

2.8.4. Show that the set 

{(cos(V2 t)(2 + cos t), sin(V2 t)(2 + cos t), sin t) E R3 : t E R} 

is not a submanifold of R3. Show that this set is dense in the torus 

{( cos t(2 + cos s), sin t(2 + cos s), sin t) E R3 : s, t E R}. 

2.8.5. Veronese's surfaces and generalizations 
(a) Using the map F: R6 \ 0 ~ R6 defined by 

F(Xl,"" X6) = (2XIX2 - x~, 2X2X3 - x~, 2X3Xl - x~, 

X4X5 - V2 X3X6, X5X6 - V2 XIX4, X6X4 - V2 X2X5), 

show that 

{(x2,y2,z2,V2yz,V2zx,V2xy) E R6: x,y,zE R} 

is a submanifold of R 6 . 

(b) Deduce that 

{(x2, y2, z2, V2 yz, V2 zx, V2xy) E R6 : x2 + y2 + z2 = 1} 

is a su bmanifold of R 6 . 
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(c) Show that, for every n, the set 

{( ... ,x~, ... , ... , V2XiXj, ... ,) E R n(n+1)/2: x~ + ... + x; = I} 
-..-' .. ' 

n n(n-I)/2 

is a submanifold of Rn+n(n-I)/2 = Rn(n+I)/2. 

(d) Same question for 

{( ... , IZiI2, ... , ... , V2 Re(ziZj), ... , ... , V2 Im(zozj), ... ERn' : 
'-v-" .. " .. ' 

n n(n-I)/2 n(n-I)/2 

IZI12 + ... + IZnl2 = I} 
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where Izl, Re(z) and Im(z) denote the absolute value, real part and 
imaginary part, respectively, of a complex number z. 

(e) Same as (d), substituting quaternions for complex numbers. 

2.8.6. Prove 2.2.10.3 in detail. 

2.8.7. Stereographic projections. Let iN be the inversion (0.5.3.1) with 
pole N = (0, ... ,0,1) taking Sd \ N onto the plane {Xd+1 = o} C RMI, 
and is the corresponding inversion with pole S = (0, ... ,0,-1). Write 
formulas for iN and is, and show that together these two maps form a 
COO atlas on Sd, compatible with the usual submanifold structure of the 
sphere. 

o 

Figure 2.8.7 

2.8.8. Grassmannians 
(a) Show that the set V""d of k-tuples of linearly independent vectors in 

Rn is an open subset of (Rd)"'. 
(b) Let G""d be the quotient of V""d by the equivalence relation obtained 

by identifying k-tuples of vectors that span the same subspace of Rd. 
Thus, G""d can be understood as the set of k-dimensional vector sub
spaces of Rd. Show that G"',d, with its quotient structure, is a com
pact space. (To prove Hausdorffness, show that for every pair (X, Y) 
of points of G""d there exists a continuous real-valued function p such 
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that p( X) 1= p(Y). For compactness, consider the subspace Vk,d of Vk,d 
consisting of orthonormal sets in k vectors, where Rd is taken with its 
canonical Euclidean structure. Show that Vk,d is compact, and con

struct a continuous map Vk,d - Gk,d') The spaces Gk,d are called 
grassmanianns. 

(c) Let X be an element of Gk,d and Ux the set of Y E Gk,d such that 
Y n X-L = {o}. Define a map Tx : Ux - L(XjX-L) as follows: 
For Y E Ux and x E X, let Tx(Y)x be the X-L-component of the 
unique vector z E Y whose X-component is x. Show that Tx is a 
homeomorphism. (Hint: let (xih:$i:$k be an orthornormal basis for 
X, and let yi (Y) be the unique vector in Y whose X-component is xi. 
We have yi(y) = xi + TX(Y)xij show that each map Y _ yi(y) is 
continuous. ) 

(d) Show that (Ux , TX)XEGk,d is a Coo atlas on Gk,d, and that the topol
ogy determined on G k,d by this atlas is the same as the quotient topol
ogy inherited from Vk,d' 

2.8.9. Let H be a hyperquadricin Rd, with equation 

d 

L aiixixi + L bixi = 1, 
l:$i:$i:$d i=l 

where the symmetric matrix (aii) is invertible (such a hyperquadric is called 
central). Show that H, which is a (d - l)-dimensional Coo submanifold of 
R d , is Coo diffeomorphic to Sk x R d- k - 1 , where (k, d-k) is the signature of 
the quadratic form associated with (aii) (this means that in appropriately 
chosen coordinates Y1, ... ,Yd of R d the quadratic form has the expression 
E7=1 y; - E:=k+1 Y;j cf. 4.2.8). 

2.8.10. In this exercise and the next E denotes a d-dimensional Euclidean 
space, End(E) the set of linear maps from E into itself, GL(E) c End(E) 
the set of invertible linear maps, SL(E) c GL(E) the set of linear maps 
of determinant one, and O( E) the set of linear maps u such that tuu = 1. 
Show that GL(E), SL(E) and O(E) are Coo submanifolds of End(E), and 
calculate their dimension. 

2.8.11. Show that, for u E End(E), the series E::'=o u: converges in the 
n. 

canonical norm (0.0.10). Its sum is denoted by expu. 

(a) Show that det(expu) = eTr(u), and that exp(u + tI) = expuexptl if u 
and tI commute. 

(b) Show that u f--> exp(u) is a Coo map from End(E) into GL(E). 
(c) Using the inverse function theorem, show that there exists an open 

neighborhood V of 0 in End(E), an open neighborhood V' of 0 in the 
vector space {u E End(E) : Tr( u) = o} and an open neighborhood 
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V" of 0 in the vector space {u E End(E) : ~ + u = o} such that 
explv, explv 1 and explv" are parametrizations of V, V' and V" onto 
neighborhoods of the identity in GL(E), SL(E) and O(E), respectively. 
This is another way to prove the dimensions in 2.8.10. 

(d) Let S(E) be the subspace of End(E) consisting of symmetric linear 
maps and S+(E) the subspace consisting of symmetric linear maps 
whose associated quadratic form is positive definite. Show that S+ (E) 
is open in S(E), and that the map u 1-+ u 2 is a COO diffeomorphism 
from S+(E) into itself. Then construct a COO diffeomorphism between 
GL(E) and S+ (E) x O(E). 

2.8.12. Let G be a group of diffeomorphisms of X acting properly discon
tinuously without fixed points, with associated projection p : X -+ X/G, 
and let Y be a manifold. Show that f E CP(X/G; Y) if and only if 
fop E CP(X;Y): 

X 

p! ~ 
X/G,Y 

2.8.13. Identify R2 with C. Is the map Z 1-+ z3 of C into itself a covering 
map? 

2.8.14. Take X = R2 \ 0 and let G be the order two group generated by 
Z 1-+ -z. Show that G acts properly discontinuously without fixed points, 
and that the quotient X/G is diffeomorphic to X. 

2.8.15. Consider the sphere S2d-1 C R2d = Cd, and let qll ••• , qd be 
integers. Let G be the group generated by the map g : Cd -+ Cd defined 
by 

( ) ( 2.,.i!Ql 2.,.i!Qd, ) Z1, ••• ,Zd 1-+ e Z1, ••• , e Zd • 

Can the process of theorem 2.4.9 be used to give S2d-1/G a differentiable 
structure? 

2.8.16. Blow-ups. Let U be an open neighborhood of 0 in Rd. In the 
manifold U x pd-1(R), let U' be the subset of points (z, z) such that, for 
some set (ZII ... , Zd) of homogeneous coordinates for z, we have ZjZk - ZkZj 

for every pair of indices (j, k) (this condition clearly does not depend on 
the choice of homogeneous coordinates). 

(a) Show that U' is a closed d-dimensionalsubmanifold of U x Pd-1(R). 
We say that U' is the manifold obtained from U by blowing up at the 
origin. 

(b) Let 7ru be the restriction to U' of the projection U x pd-1(R) -+ U. 
Show that 7ru1(O) is a submanifold of U' diffeomorphic to Pd-1(R), 
and that the restriction of 7ru to U' \ 7ru1(O) is a diffeomorphism be
tween this set and U \ o. 
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2.8.11. (You should read this exercise now, but probably won't be able to 
solve it until after reading 4.2.13 and 5.2.9 below.) IT X is a Coo manifold, 
we denote by COO (X) the R-algebra of Coo real-valued functions on X, and 
by V(X) the R-vector space of Coo vector fields on X (that is, Coo maps 
e: X -+ TX such that poe = Idx; see 3.5.1). A derivation on Coo X is an 
R-linear map D: COO(X) -+ COO(X) such that D(Jg) = D(J)g+ID(g) 
for any I, g E Coo (X). The set of derivations on Coo (X) is denoted by 
der( Coo (X)). 

2.8.1'1.1. Take e E V(X) and I E COO (X), and define dl(e) = e(J) E 
COO(X) by 

(dl(e)) (x) = dl(x}{e(x)) 
for every x E X. Show that I 1-+ e(f) belongs to der(COO(X)). We will 
show that, conversely, every DE der(COO(X)) comes from some e E V(X). 
(a) Take U E O(Rd) and let Xl!"" Xd be the canonical coordinates in Rd. 

Given a vector field 

w here a, E Coo (U), calculate e (J) . 
(b) IT D E der(COO(X)) and I is constant on X we have DI = o. 
(c) Let D E der(COO(X)) be a derivation, U E O(X) an open set and 

I, g E COO(X) functions such that Ilu = glu. Show that Dllu = 
Dglu. 

(d) If U E O(Rd) is an open set and Xl,"" xd the canonical coordinates 
on R d, show that, for every D E der(COO(U)), IE COO(U) and u E U 
we have 

al 
(DI}(u) = ~)Dx,}(u) ax' (u). 

. . • 
Deduce that given D there exists e E V(U) such that D I = e(J) for 
any IE coo(U). 

(e) Let X be an arbitrary manifold and D E der(COO(X)). Show that 
there exists e E V(X) such that DI = e(J) for every I E COO (X). 

2.8.1'1.2. The bracket or two vedor fields 
(a) Let X be a manifold and e, '1 E V(X). Show that the map 

11-+ e('1(J)) - '1 (e(J)) 

belongs to der(COO(X)). We will denote by Ie, '1] the vector field asso
ciated to this map by 2.8.17.1, and call it the bracket of e and '1. 

(b) For e, '1, S- E V(X), show that [e, ['1, S-]) + k, Ie, '1]) + ['1, k, e]) = o. 
(c) Let U E O(R) and 

a 
'1 = Lb'ax" . . • 
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with ai, bi E COO(U), be vector fields in U. Compute the functions Ci 

such that 

(d) Let Y be a submanifold of X and e,,, E V(X) vector fields such that 
e(y) and ,,(y) lie in TyY for every y E Y. Show that Ie, ,,](y) E TyY for 
every y E Y. See 3.5.15 for the converse (the Frobenius integrabitity 
theorem. 

2.8.18. Let X c Y and X' c Y' be submanifolds. Show that X X X' c 
Y X Y' is also one. 

2.8.19. Give detailed proofs for 2.6.6 and 2.6.7. 

2.8.20. Let X be a d-dimensional manifold of class CP and z E X a point. 
If ft, ... , fk E CP(U), where U is open in X, are functions whose derivatives 
at z are linearly independent, show that there exists a chart for X at z 
whose first k coordinates are the 10. 

2.8.21. In the space of real 2 X 2 matrices, consider the open set n con
sisting of the invertible matrices, and the set G of those of determinant 1. 
Prove that G is a Coo submanifold of n, and that the maps M 1-+ M-1 
from G into itself and (M, N) 1-+ M N from G2 into G are differentiable. 

2.8.22. The helicoid. Show that the set V = {( t cosz, t sin z, z) : t, z E 
R} is a submanifold of R3. Let p: R2 3 (z,y,z) 1-+ (z,y) E R2 be the 
canonical projection. Is plv a submersion? 

2.8.23. Show that there exists no cr embedding of 8 1 in R, for r ~ o. Is 
there a C1 immersion of 8 1 in R? 

2.8.24. Let X be a d-dimensional connected manifold and Y a closed sub
manifold of codimension ~ 2. Show that X \ Y is connected. 

2.8.25. Show that the formula 

h(u, v) = (2 Re(uv) , 2 Im(uu) , lul 2 - IvI2), 

where u, vEe satisfy lul 2 +lvl2 = 1, defines a Coo map h: 8 3 -+ 8 2, called 
the HopE fibration. Show that every z E 8 2 has an open neighborhood U 
such that there exists a diffeomorphism 4> : U X 8 1 -+ h-1(U) satisfying 
h(4)(y, z)) = y for all y E U and z E 8 1 • In particular, h is a submersion. 
(Hint: use the stereographic projection, 2.8.7.) 

Using quaternions, find a map h: 8 7 -+ 8 4 having similar properties. 
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2.8.26. Define an equivalence relation on C d - 1 \ 0 by "x ~ y if and only 
if there exists .A E C· such that x = .Ay". The quotient of C d-1 \ 0 by this 
relation is called the d-dimensional complex projective space, and denoted 
by pd(C); the canonical projection is denoted by p : Cd+! \ 0 -+ Pd(C). 
A set of homogeneous coordinates for a point X E Pd(C) is a (d+ 1)-tuple 
x E C d+1 such that p(x) EX. 

(a) Show that there exists a c= atlas, defined by means of homogeneous 
coordinates, that makes pd(C) into a 2d-dimensional manifold; the 
projection p is a submersion for this structure. 

(b) Same question for pd(H), where we have substituted the quaternions 
H for C. 

2.8.27. Same notation as in 2.8.26. 

(a) Let 7r be the restriction of p: CM1 \ 0 -+ pd(C) to 

8 d+1 = {(UI,".' ud+d : L'!:; JUiJ2 = 1}. 
Show that, for every X E pd(C), there exists a neighborhood U of X 
and a diffeomorphism if> : U x 8 1 -+ 7r- 1 (U) such that 7r(if>(y, z)) = y 
for any y E U and z E 8. 

(b) State and prove an analogous property for Pd(H). 

2.8.28. Do parts (b), (c) and (d) of exercise 2.8.5 by using 2.8.16 and the 
technique introduced in 2.6.13.2. 

2.8.29. Let Xc E be a submanifold of a Euclidean space E and set 

B(X, e) = {y E E : d(y, X) < e}, 

where d(y,X) = inf{JJy - xII : x E X}. Show that Tub· Xc B(X,e) for 
all e. Show that the two are generally not equal. Can you find conditions 
for equality to hold? 

2.8.30. Let p: Rn+l \ 0 -+ pn(R) be the canonical projection (2.4.12.2). 
Show that the n + 1 maps 

Ci: R n :3 (Xb""Xn) I--> p(Xl, ... ,Xi,1,xi+1,""Xn) E pn(R), 

for i = O, ... ,n, define an atlas {(ci(Rn),ci- 1)} for pn(R) (cf. exercise 
2.8.26 for the complex case). 



CHAPTER 3 

Partitions of Unity, Densities and Curves 

In this chapter we develop analytic tools that will be funda
mental to our study of manifolds. Partitions of unity (section 
3.2) are the most important of these tools, but to prove their 
existence (3.2.4) we need to impose some restrictions on our 
manifolds (3.1.6); we provide some motivation for this step in 
section 3.1. 

Using partitions of unity, we define densities and prove their 
existence (3.3.8). From that we derive a class of measures on 
a given manifold, called Lebesgue measures (3.3.11). No one 
Lebesgue measure on a manifold is canonical, but the notion 
of sets of measure zero is (3.3.13). 

As an application of densities, we prove that every connected 
manifold of dimension one is a line or a circle (3.4.1). 

The last tool we introduce is vector fields on manifolds. The 
compact case is particularly interesting (3.5.13); a typical ap
plication of it will be the proof of Moser's theorem (7.2.3). 
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3.1. Embeddings of Compact Manifolds 

3.1.1. Theorem. Let X be a compact, d-dimensional abstract manifold. 
For some integer n there exists an embedding of X in Rn. 

Thus every compact manifold is homeomorphic to a submanifold of some 
Rn. 

Proof. By 2.6.12 it is enough to discover an integer n and a map F : X--+ 
Rn that is at the same time an injection and an immersion. We will need 
the following lemma: 

3.1.2. Lemma. Let x E X be a point. There exist open neighborhoods 
W.., C V.., C X of x and a CP-differentiable function f : X --+ R such that 
f = 0 on X\ V.." f = 1 on W.., and 0 < f(z) < 1 for z E V.., \ W..,. In other 
words, f is a bump function around x. 

Proof. Just use charts to reduce to the case of Rd, where such functions 
are known to exist. More exactly, take a function g : Rd --+ R of class 
Coo such that g = 1 on B(O,I), g = 0 on Rd \ B(O, 2) and 0 < g(t) < 1 
for t E B(0,2) \ B(O, 1); such a function exists by 0.2.16. Let (U, cP) be 
a chart at x E X and>' a positive number such that B(0,3) C >'cP(U). 
Set ,p(x) = >'cP(x) for x E U. The pair (U,,p) is a chart compatible with 
the atlas of X and satisfying B(0,3) C ,p(U). Since,p : U --+ ,p(U) is a 
homeomorphism, the sets V.., = ,p -1 (B( 0, 2)) and W.., = ,p -1 (B( 0, I)} are 
open. Clearly x E W.., C V..,. 

We define I : X --+ R by I = g 0 ,p on U and I = ° on X \ U. Already 
we have 0 ~ I ~ 1. Since W.., C U we have I(Y) = g(,p(y)) = 1 for yEW..,. 
Moreover, if y E X \ V.." either y ¢ U or y E U with ,p(y) ¢ B(O, 2); either 
way I(y) = o. This also shows that 0 < I(Y) < 1 for z E V.., \ W..,. 

Finally, I is of class Coo on X \ V.., (being identically zero), and of class 
CP on U (being the composition of g and ,p). The sets U and X \ V.., form 
an open cover for X (X \ V.., is open because X is Hausdorff--cf. the proof 
of 2.2.11), implying that I is everywhere of class CPo 0 

Now consider for each x E X the open sets W.., and V.., given by the 
lemma. The W.., cover X, so by compactness we can choose a finite number 
of points Xl, • •• ,Xn such that X = U;=l W..,,,. 

Let Ii be the bump function associated by the lemma with the point Xi, 
and (Ui, cPi) the corresponding chart. We construct F : X --+ R n (d+1) by 
setting 

F(x) = (l1(x), ... , In(x), 11 (X)cP1(X), ... , In(x)cPn(X)). 

First we make sure that F is well-defined: although the cPi are only defined 
on Ui, the products "cPi are defined on the whole of X because SUPP(Ji) C 
Ui (the proof is identical to that of 3.1.2). Then we must check that F is 
an injective immersion of class CP. 
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Clearly F is injective: if F(x) = F(y) and io is such that x E W"'iO' we 
have lio(x) = 1 = fio(Y), whence Y E W"'io because of the way we defined 
fio. Thus x and yare in Uio ' and, since ¢>io is injective, the equality 
lio (X)¢>io (x) = lio(Y)¢>io(Y) forces x = y. 

There remains to show that F is an immersion, that is, T",F is injective 
for any x. We can write TF = (Tft, ... , Tfn, T(ft¢>IJ, .. ·, T(fn¢>n)), and 
T",F will be injective if any of the T",(fk¢>k) are. Choose i such that x E 

W"'i; on W"'i we have Ii¢>i = ¢>i, and T",¢>i is injective because ¢>i is a 
diffeomorphism. This implies that T",(f.¢>.) is injective, as desired. 0 

The question arises whether any abstract manifold can be embedded in 
some R n. The answer is no. To give a counterexample, we introduce the 
following notion: 

S.1.S. Definition. A topological space T is said to be separable if its 
topology has a countable base (this means that there exists a countable 
set 8 of open subsets of T such that every open subset of T is a union of 
elements of 8). 

S.1.4. Examples 

1.1.(.1. Rd is separable, for we can take 8 = {B(x,r) : x E Qd,r E Q}, 
where Q is the set of rational numbers. 

1.1.(.2. A subspace of a separable topological space is separable. 

1.1.(.1. Proposition. Every submanifold of Rn is separable. 

Proof. This follows from the previous two statements and the fact that the 
canonical topology on a submanifold is the induced topology from Rn. 0 

Thus a non-separable manifold cannot be embedded in Rn, since sepa
rability is preserved under diffeomorphisms. This answers our question in 
the negative, because there exist non-separable manifolds: for example the 
manifold introduced in 2.2.10.5. It may be argued that this example is not 
connected; but the long half-line (2.2.10.6) is not separable, either, nor is 
Priifer's surface (exercise 3.6.4). 

Non-separability is the sole obstruction to embedding in Rn: 

S.1.5. Theorem. Any separable abstract manifold X can be embedded in 
some Rn. 

The proof, due to Whitney, is more difficult than in the compact case; 
we refer the reader to [Ste64, p. 63]. One of the building blocks in the proof 
is the existence of partitions of unity on a separable manifold; this result 
we will demonstrate, since it will be useful many times in the future. 

3.1.6 From now on all manifolds 
will be assumed Hausdorff and separable. 
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3.1.1. The tangent bundle. Having said that, we must verify that if X 
is a manifold according to this convention its tangent bundle T X (2.5.24) 
also is. This is true because X, and consequently TX, are countable unions 
of domains of charts, and we have the following result: 

S.1.1.1. Proposition. criterion for separability A manifold that is a count
able union of domains of charts is separable. 

Proof. In fact, R n is separable, and a countable union of countable sets is 
countable. 0 

S.1.1.2. Similarly, it must be checked that if X is a separable manifold 
and G acts properly discontinuously without fixed points on X (2.4.9) the 
manifold X/G is separable. We leave this to the reader. 

3.2. Partitions of Unity 

3.2.1. Definition. Let T be a topological space. An open cover U = {U; : 
i E I} for T is said to be locally finite if, for every x E T, there exists a 
neighborhood U of x in T such that Un U; = 0 except for a finite number 
of indices i. 

If U = {U; : i E I} and l' = {Vi: j E J} are two open covers, we say 
that U is subordinate to l' if, for every i E I, there exists j E J such that 
U; C Vi' 

3.2.2. Definition. Let X be a manifold of class CPo A partition of unity 
on X is a family {(U;, tP;) : i E I}, where the U; C X are open and the tP; 
are CP maps from X into R, satisfying the following conditions: 

(PUl) tP;(x) ~ 0 for every x E X and every i E Ij 
(PU2) the support of tP; is contained in U;j 

(PU3) U = {U; : i E I} is a locally finite cover of Xj 
(PU4) L;E! tP;(x) = 1 for every x E X. 

3.2.3. Remark. The sum in (PU4) makes sense because for any given x 
only finitely many of the tP;(x) are non-zero: by (PU3) we can find an open 
neighborhood of U intersecting only finitely many of the U;, and by (PU2) 
only the associated tPi are non-zero at X. 

3.2.4. Theorem. Let X be a (separable and Hausdorff) manifold. For 
every open cover U of X there exists a partition of unity subordinate to U. 
existence of ... subordinate to a partition 

Notice that we do not assume that U is locally finite. 

Proof. There are several steps. 
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3.2.5. Lemma. A (separable) manifold X has a countable base B = {Un: 
n E N} whose elements are relatively compact (that is, their closure Un in 
X is compact). 

Proof. By definition X has a countable base {Wn : n E K}. Take x EX 
and let (V,.p) be a chart at x. Since .p(V) is open in Rd and Rd is locally 
compact, there exists a compact neighborhood L of .p(x) contained in .p(V). 
The map .p is a homeomorphism from V onto its image, so U = .p-l(L) is 
open in X, and its closure U = .p-1(L) is compact. If we set tP = .plu the 
pair (U, tP) is a chart at x with relatively compact domain. 

Let K' be the set of n E K such that W n is contained in relatively 
compact domains of charts, and set B' = {Wn : n E K'}. For n E K' we 
have W n C U compact. Clearly B' is countablej we will show that it is a 
base for the topology of X. 

Let SeX be openj we want to write S as a union of sets WnJ for n E K'. 
For xES there exists a chart (U, tP) of X at x such that U is compact. 
But for any V C U the closure V is still compact, so, by restricting U if 
necessary, we can assume that we have a chart (V., tP) at x whose domain 
is relatively compact and contained in S. 

Since Uz is open in X and {Wn : n E K} is a base for X there exists 
Kz C K such that Uz = Un .. EK .. Wn ... For such values of n z we have 
W n .. C Uz relatively compact, so n z E K', showing that Uz is a union of 
elements of B'. Since S is the union of the Uz for all xES, we have written 
S as a union of elements of B', and shown that B' is a base. 0 

3.2.6. Lemma. Let X be a (separable) manifold. There emts a sequence 
{A", : kEN} of compact subsets of X such that X = U"'EN A"" with 
A", c ..4"'+1 for every k. exhaustion by compact subsets 

Proof. By the previous lemma X has a 
countable cover {Un} consisting of rela
tively compact open subsets. Set A1 = 
U 1. For x E A1 take n z such that Un .. 
contains Xj the Un .. cover A1 as x ranges 
over A 1 , but in fact finitely many of them 
are enough, since A1 is compact. In par
ticular, we have A1 C U1 <"'<h U'" for __ 1 

some h 1 , and this union is relatively com
pact, so we set A2 = U1<"'<h U"'. (If __ 1 

h1 = 1, which can happen if U 1 = Ull 

we add 1 to hll so our sequence won't be 
stationary.) Continuing in this fashion we 
obtain the desired sequence. 0 Figure 3.2.6 
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3.2.1. Lemma. For every open cover U of X there exists an atlas {(Vk' </>k): 
k E K} of X such that the open cover 'V = {Vk : k E K} is subordinate to 
U, locally finite, and satisfies the conditions <Pk (Vk) = B(O, 3) and 

U <p;;I(B(O, 1)) = X. 
kEK 

Proof. Take x E X and let W E U be an element of the cover containing 
x. Let (V, "') be a chart at x such that V c Wand B(O, 3) c "'(V) (use 
a homothety if necessary). The pair (U,<p), where U = ",-I(B(O, 3)) and 
<p = "'Iu, is a chart at x such that <P(U) = B(0,3) and U C W. 

Now consider the sequence {Ak : k E 
K} found in the previous lemma. For 
each k, the set Ak+l \ ... h is compact (be
ing closed in Ak+I), and Ak+2 \ Ak-l 
is open. For every x E Ak+ 1 \ Ak we 
can find a chart (V., <p",) at x such that 
<p",(V",) = B(O, 3) and that V", is contained 
in some element of U and in Ak+2 \ Ak-I. 
Since x E <p;l(B(O, 1)), we can cover the 

compact set Ak+l \ Ak with a finite num
ber of such open sets <p;l(B(O, 1)). 

Figure 3.2.7 

If we now consider all of the differences Ak+l \Ak, plus the single compact 
set Al (all these sets together cover X), and put together all the V", obtained 
by the process above, we get a countable family which we denote by 'V = 
{Vr : r EN}. We claim that the corresponding charts (Vr' <Pr) form an 
atlas satisfying the conditions of the lemma. 

In fact, we have already seen that the V", cover X, and the (Vr' <Pr) are 
charts of X, so 'V is an atlas. We have required that each Vr be contained 
in an element of U, so the atlas is subordinate to U. Finally, we must 
show that 'V is locally finite. Assume, without loss of generality, that the 
sequence {A k : k E K} is strictly increasing, and take x E X. Choose k 
such that x E W = Ak+1 \Ak' If WnVr is not empty, Vr must be contained 
in one of the sets Ah+ 3 \ Ah, Ah+ 2 \ Ah-l, Ah+ 1 \ Ah-2, since those are the 
only sets of the form Ah+2 \Ah-l that intersect Ak+l \Ak' By construction, 
each of these three difference sets contains only a finite number of the Vr ; 

this shows that W only intersects a finite number of sets Vr • 0 

We can now conclude the proof of theorem 3.2.4. Let f be a bump 
function on R d, that is, a function f : Rd -+ [0,1] of class Coo such that 
f(x) = 1 for x E B(O, 1) and f(x) = ° for x ¢. B(O, 2). Let (Vk' <Pk) be one 
of the charts constructed in the proof of lemma 3.2.7. For each k, define 
(h : X -+ R as Ok = 0 on X \ Vk and Ok = f 0 <Pk on Vk. Clearly Ok is 
of class CP, because it is a composition of CP maps on Vk and it vanishes 
identically on the open set X \ <p;; I (B( 0, 2)) containing the complement of 
Vk. Only a finite number of Ok are non-zero at any x E X, since x E Vk for 
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only a finite number of indices k. In addition, at least one ()k is non-zero 
at any x E X, since the sets 4>;;1 (B(O, 1)) cover X. 

Thus the function ()(x) = L:k ()k(X) is well-defined, of class CP and 

. I . . d . . f 't b tt' ./. ()k strict y posItIve, an we get our partition 0 um y y se mg '/'k = 0-
for each k. Namely, each ,pk is of class CP, takes values in [0,1], and is 
contained in some element U E U because SUpp()k = SUpp,pk (here we have 
used lemma 3.2.7). In addition, the covering {Vk : kEN} is locally finite, 
and we have L:k ,pk(X) = 1. 0 

3.3. Densities 

3.3.1. Let X be a CP manifold. We denote by Dens(X) the disjoint 
union of the sets Dens(T",X), for x E X (0.1.24), and we call this set 
the density bundle of X. The projection p : Dens(X) --+ X is defined by 
p(Dens(T",X)) = {x}. A density on X is a map 5 : X --+ Dens(X) such 
that po 5 = Idx , or equivalently, 5(x) E Dens(T",X) for every x E X. We 
denote by A(X) the set of densities on X. 

3.3.2. If X and Yare manifolds, f : X --+ Y is of class CP and regular, 
and 5 E A(Y) is a density, we can define the pullbackf* 5 E A(X) of 5 (see 
0.1.29.3 and 0.3.11). We have (g 01)* = f* 0 g*. 

3.3.3. If X = U E O(E), where E is a vector space, the definition above 
does not coincide with 0.3.11.1. (That's why we used the notation A in 
0.3.11.1.) The definitions coincide, however, if we identify T",U with E by 
means of ()", (2.5.22.1). 

3.3.4. If X is a manifold, (U,4» is a chart on X and 5 E A(X), we obtain 
by 3.3.2 and 3.3.3 a density (q,-1)*5 E A (4)(U)). 

3.3.5. Definition. Let X be a CP manifold. A density 5 E A(X) is said 
to be of class cq (0 ~ q ~ p - 1) if (4)-1 )*5 E ~(4)(U)) for every chart on 
X. 

3.3.6. In practice it suffices to check that (4)-1)*5 E ~(4)(U)) for the 
charts in a single atlas of X. Indeed, if (U, 4» and (V,,p) are two charts and 
V :J U, the property (,p-1)*5 E ~(,p(V)) implies (4)-1)*5 E ~(4)(u)). 
This follows from formula 0.3.11.3 applied to ,p 04>-1, because, by 3.3.2, 

(q,-1)*5 = (,p 0 4>-1)*((,p-1)*5); 

if (,p-1)*5 = bOo with b of class cq (q ~ p - 1) we have 

( 4> - 1)* 5 = (b 0 I) I J (f) I 50 E ~ ( 4> (U) ) 
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(recall that the jacobian of a map of class C P is of class C p - 1 ). 

3.3.7. Example. If f : X -+ Y is a regular differentiable map and 5 E 

Llq(Y) we have 1*5 E Llq(X) (3.3.2 and 3.3.8). In particular, this is the 
case if p : X -+ Y is a covering map (2.4.1). 

3.3.8. Theorem. Let X be a manifold of class CP (p ~ 1). There exist 
densities of class Cq on X for every 0 S q S p-1j the set of such densities 
is denoted by Llq(X). If 5,5' E Llq(X) are densities on X, there exists g E 
Cq(X; R+) such that 5' = g5; conversely, if 5 E Llq(X) and g E Cq(X; R+) 
we have g5 E Llq(X). 

Proof. By theorem 3.2.4 we can find a partition of unity {(Uk, tPk, ,pk)} kEK 
such that each Uk is the domain of a chart (Uk, tPk) on X. Define 5 E Ll(X) 
by 

3.3.9 5 = L ,pk tP; 50 , 
k 

where 50 is as in 0.3.11 and the identification of 3.3.3 is in effect. We have 
5 E Ll(X) by 0.1.29.2 and because Ek,pk = 1 implies that for every x EX 
there exists k E K such that ,pk(X) > O. There remains to show that 
5 E Llp - 1 (X). Apply 3.3.6 to the atlas {(Uk, tPk)} to obtain, for any h: 

k k 

k 

= (L(,pkOtPhl)IJ(tPkOtPh"1)1)50' 
k 

The function that multiplies 50 is of class C p - 1 . 

The second part of the theorem is local in nature. Let (U, tP) be a chart, 
and consider the densities (tP- 1 )*5' and (tP- 1 )*5. Writing 5' = g5 with 
g: X -+ R+ (0.1.29.1), we have 

(r 1 )*5' = a'50 = (go rl)a50 

on tP(U). By assumption, a,a' E Cq(tP(U);R+), so a' = (gotP-1)a implies 
gor 1 E (tP(U); R+), whence glu E Cq(tP(U); R+). The converse is trivial. 

o 

3.3.10. Remark. One consequence of 3.3.8 is that densities are not unique, 
indeed far from it. Abstract manifolds do not have a canonical density. But 
we will see in section 6.6 that submanifolds of Euclidean spaces do. 

The next result is fundamental: 
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3.3.11. Theorem. Let X be a manilold 01 class CPo A densitllc E Ao(X) 
canonically determines a measure on X, denoted by dc (or simply c). 

Proof. We work in several steps: 

1.1.11.1. By the remarks at the beginning of section 0.4, it is enough to 
associate to C a positive linear form I-' on K(X), since X is locally compact 
by 2.2.11 and a countable union of compact sets by 3.1.6 and 3.2.6. (Strictly 
speaking, the result we're using, as proved in [Gui69], depends on X being 
metrizable, but this need not concern us for two reasons: first, [Gui69] only 
uses metrizability in showing the existence of partitions of unity, and we 
already have done that; and every manifold is metrizable anyway, either by 
3.1.5 or by the argument in exercise 3.6.3. We will not use the metrizability 
of manifolds in this book.) 

1.1.11.2. First define I-' on the set of I E K(X) such that supp leU, 
where U is the domain of some chart (U, 4». H (4)-I)*C = aco, where Co is 
the canonical density on R d , set 

1.1.11.1 I-'(f) = r (f 0 4>-1)aco, 
J",(U) 

which makes sence since (f 0 4>-1)a lies in K(4)(U)) and is continuous 
(definition 3.3.5). To see that I-'(f) depends only on I and not on the chart 
(U,4», take another chart (V,,p) such that suppl c v. H (,p-1)*C = bCo, 
we obtain 

r (f 0 4>-1)acO = r (f 0 ,p-l)bCo 
J",(U) J",(V) 

by applying 0.4.6 and formula 0.3.11.3 to the diffeomorphism ,p 0 4>-1 
4>(U) - ,p(V). 

1.1.11.4. To extend I-' to K (X), take a partition of unity {(Ui, 4>i, ,pi)} iEI 

associated with the charts (Ui, 4>i), as in the proof of 3.3.8, and set 

1.1.11.5 I-'(f) = L I-'(,pd), 
iEI 

which makes sense because supp I, being compact, intersects only finitely 
many domains of charts (3.2.2). 

We have to show that 3.3.11.5 does not depend on {(Ui, 4>i, ,pi)} iEI' so 
let {(Vi, '7;, S";)} ;EJ be another partition. As we have seen, only a finite 
number of functions ,pi! and S";I are non-zerOj since Li,pi = L' S"; = 1 
and I-' is additive, we have ' 

~I-'(,pd) = ~ I-'(,pi (~S";f) ) = ~ I-'(~ ,piS";/) = ~ 1-'(,piS";f) · · , ., '" 
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and 

~Il(s"jl) = LIl(S"j(L t/Jd)) = ~Il(~ t/Ji s"j 1 ) = ~Il(t/Jis"jj). 
3 3 • 3' ',3 

(This calculation is classical in integration theory: see [Gui69, proposition 
1.15]). 

That Il is positive follows from 3.3.11.3, 3.3.11.5 and the fact that the 
Lebesgue measure is positive; linearity is trivial. 0 

3.3.12. Definition. A Lebesgue measure on a manifold X is a measure 
deduced from a continuous density (one of class CO) by theorem 3.3.11. 

If d5' and d5' are Lebesgue measures on X, we can find, by 3.3.8, a 
function g E CO(X; R+) such that d5' = g d5. Then 0.4.4.3 implies that 
a set A has d5-measure zero if and only if it has d5'-measure zero. Hence 
the definition: 

3.3.13. Definition. A subset A of a manifold X is said to have measure 
zero if it has measure zero for some Lebesgue measure on X. 

3.3.14. Notation. Let X be a manifold and 5 E ~o(X) a density. We 
denote by c~nt(X) the space of d5-integrable functions X -+ R (0.4.1). 
The integral of a function 1 E c~nt will be denoted by one of the following: 

3.3.15 1l(J) = Ix 15 = Ix 1 d5. 

3.3.16. Proposition. Let X and Y be manifolds, 1 E Diff(X; Y) a differ
entiable map and e a continuous density on Y. Let 5 = r e be the (contin
uous) pullback 01 e (3.3.7). For any bE c!nt(y) we have b olE c~nt(X) 
and 

Proof. This follows from 3.3.3 and the proof of 3.3 .. 11. o 

In the language of measure theory [Gui69, 6.2.2] this means that the 
measure associated to e is the image under 1 of the measure associated to 
5= reo 
3.3.17. Examples 

J.J.1'1.1. If 1 E Diff(Xj Y) and A has measure zero in X, the image I(A) 
has measure zero in Y. 
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1.I.n.2. If Y c X is a submanifold of codimension grater than zero, Y has 
measure zero in X. To see this, cover Y with a countable family of charts 
(U,.p) such that .p(U n Y) = .p(U) n Re (definition 2.6.1), where Re c Rd 
and d = dimX, e = dimY. By 0.4.4.3, .p(U) n Re has measure zero in 
.p(U) for some measure aDd, hence for Dd itself; we finish off with 0.4.4.1 
and 3.3.17.1. 

1.I.n.l. Proposition. Let X and Y be manilolds 01 the same dimension, 
and I E Cl(X; Y). II A has measure zero in X, the image I(A) has 
measure zero in Y. 

Proof. By 0.4.4.1 we can use charts to reduce to the case X = U E O(Rn), 
Y = Rn, and the Lebesgue measure. We then apply 0.4.4.5. 0 

1.I.n.". Corollary. II dim X < dimY and I E C 1 (X;Y) the image J(X) 
has measure zero in Y. 

Proof. Extend I to 7 : X X Rd-e by 7(x, y) = I(x), where d = dim Y 
and e = dimX. Now use the fact that X has measure zero in X X Rd-e 
(3.3.17.2). 0 

1.I.n.i. See exercise 3.6.1 for the behavior of Lebesgue measures under 
covering maps. 

1.I.n.6. Sard's theorem (4.3.1), a fundamental tool in differential geom
etry, asserts that certain subsets associated with differentiable maps have 
measure zero. 

3.3.18. Product densities. Let E and F be d- and e-dimensional vector 
spaces, where d and e are finite. For D E Dens(E) and e E Dens(F) there 
exist, by 0.1.25, a E AdE* and P E AeF* such that D = lal and e = IPI. 
We have 

p*a 1\ q*P E Ad+e(E x F)* \ O. 

1.1.18.1. Definition. The density D ® e = Ip* a 1\ p* Pion E x F is called the 
product of D and e. 

This does not depend on a and P because a and P are determined up to 
a factor ±1. 

1.1.18.2. Examples. If Dd and De are the canonical densities on Rd and Re, 
respectively (0.1.26), we have 

Dd ® De = Dd+e, 

the canonical density on Rd+e = Rd X Re. If D = aDd and e = aDe we have 
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1.1.18.1. Lemma. If E, E', F, F' are finite-dimensional vector spaces, f E 
Isom(E; E') and gEl som(F; F') are isomorphisms and 6' and E' are den
sities in E' and F', respectively, we have 

(/ X g)*(6' ® E') = /*6' ® g*E'. 

Proof. Use definition 0.1.25 and the following fact, easily derived from the 
definitions of exterior product and pullback: if 01.' E AE'*, /3' E AF'* and 
p, q denote the canonical projections from both E' x F' and Ex F, we have 

(/ X g)* (p* 01.' " q* /3') = p* (/* 01.') " q* (g* /3'). o 
Let X and Y be manifolds and 6 E .6.0 (X) , E E .6.o(Y) densities. For 
every (x, y) E X X Y we use the identification in 2.5.18 to write 6(x) ® 
E(Y) E Dens{T(."y)(X X Y)). With this we can define the product density 
6 ® E E .6.(X X Y): 

1.1.18.4. 6 ® E: X X Y 3 (x,y) 1--+ 6(x) ® E(Y) E Dens{T(."y)(X X Y)). 

1.1.18.5. Proposition. The map 6®E is a continuous density on Xx Y, and 
the measure on X X Y associated with 6 ® E is the product of the measures 
on X and Y associated with 6 and E, respectively (0.4.5). 

Proof. By 3.3.6 it's enough to check continuity with respect to one partic
ular atlas; and, sure enough, we choose the atlas from definition 2.2.10.3. 
By 2.5.18,3.3.18.2 and 3.3.18.3, with the product chart (U X V,4> X ,p), we 
have 

1.1.18.6 

where (4)-1)*6 = a6d and (,p-1)*E = Me. Since a and b are continuous, so 
is abo 

Now we have to study the measure on X X Y associated with 6 ® E. By 
the construction in theorem 3.3.11, it is enough to do so within domains of 
charts (U X V, 4> x ,p). In this case the measure on 4>(U) x ,p(V) C Rd X Re = 
Rd+e associated with {(4) x ,p)-1 r (6 ®E) is exactly the one associated with 
aMd+e (formula 3.3.18.6). 

There remains to check that the measure associated with ab6d+e is the 
product of the measures associated with a6d and Me. This follows from 
the fact that 6d+e is the product 6d ® 6e (0.4.5) and from Fubini's theorem 
(0.4.5.1): 

f f(x, y){a(x)b(y)6d+e) = f (J(x, y)a(x)b(y})6d+e 
J",(U)x.p(V) J",(U)x.p(V) 

= f ( f f(x, y)a(x)b(Y)5d ) 5e 
J.p(V) J",(U) 

=f b(y)(f f(x,y){a(x)6d ))6e. 
J.p(V) J",(U) 
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o 

S.S.18.'1. Corollary. Let X and Y be manifolds with densities 6 and e, re
spectively, and f E C~~.(X X Y) an integrable map. For e-almost every 
y E Y the map {x 1-+ f (x, y)} is 6 -integrable. In addition, the function 
y 1-+ Ix f(x, y)6 (defined e-almost everywhere) is e-integrable, and 

Ixxy f(x, y)6 ® e = i (Ix f(x, y)6 )e. 

Proof. This is Fubini's theorem (0.4.5.1). 

3.4. Classification of Connected One-Dimensional 
Manifolds 

o 

In this section we show that there are only two homeomorphism types of 
one-dimensional manifolds. For a classification of compact two-dimensional 
manifolds, see 4.2.25. 

3.4.1. Theorem. Every connected one-dimensional manifold is diffeomor
phic to R or to 8 1 • 

3.4.2. Convention. In this section a curve will mean a connected one
dimensional manifold of class C 1 • (Later on, in chapters 8 and 9, we will 
use the word curve in a more precise way.) Densities will always be assumed 
continuous. 

Proof. The main idea is this: for one-dimensional submanifolds of Rn, 
we have a particular parametrization, based on the natural notion of arc
length. In the case of abstract manifolds, we must define the arclength to 
begin with, which is the same as choosing a norm on T",X. Since T",X has 
dimension one, norms and densities are the same (by 0.1.29.6). 

3.4.3. Definition. Let X be a curve and 6 a density on X. A parametriza
tion by arclength for X (with respect to 6) is a map a : I -+ X, where 
I c R is an interval, such that a is a diffeomorphism onto its image and 
6(a(t))((Tta)(lt)) = 1 for every t E I. 

This makes sense because 6(a(t)) is in fact a norm on Ta(t)X and 
(Tta)(lt) lies in Ta(t)X. 

3.4.4. Lemma. Let X be a curve, 6 a density on X and (I, a) a para
metrization of X. Then X has a parametrization by arclength (J,13) with 
respect to 6. 
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It follows from this lemma that every curve has parametrizations by 
arclength, since every curve admits densities (theorem 3.3.8) and paramet
rizations (inverses of charts, for instance). 

Proof. This is analogous to parametrizing a curve in R3 (in the elementary 
sense) by its arclength. Let (/,0:) be a parametrization and Ot : TtR -+ R, 
for tEl, the canonical isomorphism (2.5.12.3). The given density 0 on X 
can be pulled back to a density 0:* 0 on I, given by 

o:*o(t) = (Tto: oO;-1)*0(0:(t)), 

and by 0.1.29.1 we can write 0: * 0 = goo, where 00 is the canonical density 
on R (0.1.26) and the scalar function g : 1 -+ R+ is continuous (3.3.5). 
Let to be a fixed point in I, and define a map "1 : 1 -+ R by 

')"(t) = r g(s) ds. 
ltD 

We see that')" is defined and differentiable on I, and its derivative is ')"'(t) = 
g(t) > 0 by the fundamental theorem of calculus; it follows that')" is a 
bijection between 1 and an interval J c R. Let {3 : J -+ X be given by 
(3( s) = 0: 0 ,)"-1; we want to show that {3 is a parametrization by arclength, 
which is the same as showing that {3*0 = 00. But we have 

(3*0 = (')"-1)*0:*0 = (')"-1)*(goO)' 

and this equals (l/g)· goo = 00 by 0.3.11.3 and because J(')"-1) = (')"-1)' = 
(,)"')-1 = l/g. 

This also shows that T.{3 is non-zero, and so establishes an isomorphism 
between T.R and Tp(.)X, the two spaces being one-dimensional. Thus {3 
is regular and a local diffeomorphism by 2.5.20; restricting J if necessary 
we obtain a parametrization by arclength. 0 

3.4.5. Lemma. Let (I, 0:) and (J, (3) be parametrizations of X by arclength 
(with respect to the same density 0). Assume that 0:(/) n (3(J) =f. 0. Then 
either 0:(/) n (3(J) is connected, and there exists a third parametrization 
by arclength (K, "1) such that ')"(K) = 0:(/) U (3(J); or 0:(1) n (3(J) has two 
connected components, and X is diffeomorphic to S1. 

Proof. The map 0:- 1 0 (3 is defined at s E J if and only if x = (3(s) E 

(3(J) n 0:(/); in this case set t = (0:- 1 0 (3)(s). The map that associates 
to x E (3(J) n 0:(/) the pair (s, t), where s E J and tEl are the unique 
scalars such that (3( s) = x and 0: (t) = x, is continuous, since 0: and {3 are 
homeomorphisms. Thus the set r = {(s,t) : o:(t) = (3(s) = x for some 
x E (3(J) n 0:(1)} has as many connected components as (3(J) n 0:(/). 

Notice that r is the graph of the maps f-+ t = (0: -1 0 (3)( s), which satisfies 
1(0:-1 o{3)'(s)1 = 1, since (1,0:) and (J, (3) are parametrizations by arclength 
(formula 0.3.11.3). Thus r is made up of segments of slope ±1, and these 
segments cannot have endpoints in J x I, because r is closed (being the 
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set of pairs (8, t) such that ,8(8) - a(t) = 0) and open (its projection on I 
being a-I (a (I) n ,8(J)), which is open in 1). In addition, for a given value 
of 8 there exists at most one value of t such that ,8(8) = a(t), since a and 
,8 are bijections; thus there can be at most one segment starting or ending 
on each side of J x I. In particular, there can't be segments of slope +1 
and -1 at the same time: 

s 

J 
( excluded) (excluded) 

The only possible cases are: 

case (1) 

Figure 3.4.5.1 

1 

1 
__ 1 _________ -1--

_-..! _________ L_ 
1 I 
I I 

case (2) 

Figure 3.4.5.2 

This already shows that r, and consequently a(I) n ,8(J), have either 
one or two connected components. 

1.4.5.1. First case. After translating I and J and perhaps switching the sign 
of t, we can assume that I = lb, a[ and J = 10, c[ (possibly with b = -00, 
a = +00 or c = +00), and that r is a single segment of slope + 1 joining 
(0,0) and (a, a). 

(O,c) 

1 
[/1 (a,al 

( h,O) (0,0) (a,O) 

Figure 3.4.5.3 

(In the figure we have assumed a ~ Cj the reader should analyze the 
case a > c.) We must find a parametrization by arclength (K,-y) such that 
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,(K) = a(I) U P(J). Take K = Ib, c[, and define, by 

{ 
a(t) for t E Ib, 01, 

,(t) = a(t) = P(t) for t E 10, at, 
P(t) for t E [a, cr. 

Clearly ,(K) = a(I) U f3(J), and, is a diffeomorphism onto its image 
because it is that when restricted to Ib, a[ and to 10, cr. The last condition 
in the definition of a parametrization by arclength is also satisfied, since 
(Tt ,)(lt ) is equal to either (Tt a)(lt ) or (Tt P)(l t ). 

l.j.5.2. Second case. Since r consists of two segments, we can assume that 
it looks like this: 

d' 

c' Fj=L----------j---h' --r--------------
I 
I 

a' 
a h C d 

Figure 3.4.5.4 

This can only happen if I = la, d[ and J = la', d'[ are bounded; if d' = 
+00, for example, there would be a horizontal line intersecting the two 
segments. After a translation we can assume a' = c, whence b' = d. Thus 

a < b 5 c < d = b' 5 c' < d'. 

We define a map h : la, d'[ --> X as follows: 

h(t) = {a(t) for tEla, dr, 
f3( t) for t E Ie, d'[. 

By construction, a and P coincide on Ie, d[ and, more importantly, we have 
h(t + c' - a) = h(t) for tEla, b[. Thus we can extend h to R by requiring 
it to be periodic of period e' - a. By section 2.4 and by construction, h 
factors: 

R 

p!~ 
R/(e'-a)Z~X 

By 2.6.13.1, we know that Y = R/(c' - a)Z is diffeomorphic to 8 1 • By 
construction, h is regular and injective; since Y is scompact, theorem 2.6.12 
implies that Y is diffeomorphic to its image h(Y) in X. But h is surjective, 
since h(Y) = a(I) U P(J) is both open and closed (being the continuous 
image of a compact set) and X is connected. This shows that X and 
Y ~ 8 1 are diffeomorphic. 0 



5. Vector Fields and Differential Equations on Manifolds 119 

We can now conclude the proof of theorem 3.4.1. Assume that X is not 
diffeomorphic to 8 1 . It is clear that any linearly ordered set of parametri
zations by arclength, under the partial order (I, a) $ (J, P) if a(I) C P(J), 
admits an upper bound. By Zorn's lemma, we can take a maximal element 
(L, e) in the set of parametrizations by arclength; then e1fLis obviously 
open in X, and also closed. Otherwise we could find x E e(L) \ e(L), and 
a parametrization by arclength (J,P) around x (3.4.4). By the previous 
lemma, we could combine (L, e) and (J, P) into a single parametrization 
(K, '1) such that '1(K) = e(L) U P(J) 3 x, contradicting maximality. Since 
e(L) is both open and closed in X and X is connected, we have e(L) = X. 
Since e is a diffeomorphism, we conclude that R is diffeomorphic to an 
open interval in R, hence to R. 0 

3.4.6. Corollary. If X is a curve and 0 is a density on X, one of the 
following situations obtains: 

(i) X is diffeomorphic to R, and has a global parametrization by arclength; 
(ii) X is diffeomorphic to 8 1 , and has a periodic parametrization by arc-

length (that is, there exists a map f : R -+ X and a scalar T E Ri
such that f(t+T) = f(t), the restriction of f to [O,T[ is injective, and 
o{J'(t)) for all t). 

If we require f(O) = x, such a parametrization is unique up to a sign flip 
t 1-+ -to 0 

3.5. Vector Fields and Differential Equations on 
Manifolds 

In this section the differentiability class is at least 2. 

We will now transport to manifolds the notions, introduced in chapter 1, 
of vector fields and differential equations. The local theorems remain true 
because manifolds are locally diffeomorphic to open sets in Rn and dif
feomorphisms preserve integral curves (2.5.17.4). The new facts here are 
global uniqueness (3.5.4) and the results for compact manifolds (3.5.9 and 
3.5.13). 

3.5.1. Definition. Let X be a manifold of class CP. A vector field on X 
is a Cp-1 map e: X -+ TX such that e(x) E TzX for every x E X. 

If 11" denotes the map taking z E T X to the point 1I"(z) = x E X such 
that z E TzX, a vector field is characterized by 11"0 e = Idx . The canonical 
vector field on R (2.5.17.2) is an example of a vector field. 

Let (U, </I) be a chart on X. If u is a point in the open set </I(U) C Rd, we 
have e(</I-1(u)) E TX, hence (T4>-1(u)</I)(e(</I-1(u))) E TuRd. To obtain a 
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vector field in the sense of 1.2.1, consider the map f : q,(U) -+ Rd defined 
by 

f(u) = (9u 0 T</>-1(U)q,) (e(q,-l (u))) , 

where 9u : TuRd -+ Rd is the isomorphism introduced in 2.5.12.3. By 
2.5.26, the map f is of class C p - 1 . 

We have the following commutative diagram: 

TX::) TU ...::!. T(q,(U)) ~ Rd 

elln ",-1 In JId 
U • • q,(U) _ Rd. 

</> ! 

3.5.2. Remark. Vector fields on an open subset W of Rd considered as 
a manifold (definition 3.5.1) or as a subset of Rd (definition 1.2.1) are 
distinct objects. In the first case they are maps in CP(W; TW) (such that 
11" 0 e = Idw ), in the second maps in CP(W; Rd). But since we can identify 
T(noe)(w) with Rd via 9n(e(w)), we will not distinguish between the two 
notions. 

We can now adapt the study carried out in chapter 1. 

3.5.3. Definition. An integral curve of a vector field e on X is a curve 
(I, a) on X, where I c R is an interval and a : I -+ X is such that 
a'(t) = e(a(t)) for every t E I (for the definition of a'(t) see 2.5.17). The 
initial condition of (I, a) is a(O). 

We leave to the reader the definition of a local flow and the statement 
of the theorem of local existence and uniqueness of local flows (cf. 1.2.6). 

3.5.4. Theorem (global uniqueness). Let (J1 , ad and (J2, a2) be in
tegral curves of a vector field on X, and assume that al(O) = a2(0). Then 

Proof. As in the proof of 1.3.1, one shows that 

Q = {t E J 1 n J2 : adt) = a2(t)} 

is open in J 1 n J2 • It is also closed because 

where l:l. is the diagonal of X x X, a closed subset since we assume X to 
be Hausdorff (2.2.10.7). 0 

3.5.5. Remark. This theorem would be false if X were not Hausdorff. 
For example, we can consider on the manifold X from example 2.2.10.4 the 
canonical vector field e arising from the vector field t 1--+ It on R (2.5.17.2). 
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Figure 3.5.5 

Then € has two integral curves a1> a2 which coincide for t < 0 but "fork" 
at t = 0 (figure 3.5.5). 

For x E X we can define the maximal interval J(x) and the maximal 
integral curve (J(x), ax) with initial value x, as in 1.3.1.1. 

3.5.6. Definition. Let € be a vector field on X, and set D(€) = {(t,x) E 
R x X : t E J(x)}. The global flow of e is the pair (D(€),a), where 
a: D(€) --+ X is the map defined by a(t, x) = ax(t) = Gtx. 

The notation Gtx is introduced in analogy with 1.3.4 and 1.3.5. 

3.5.7. Theorem. If € is a vector field of class C p - 1 on X the set D(€) is 
open in R x X, and a E CP-1(D(€)jX). 

Proof. The same as that of 1.3.6. D 

As before, whenever the maps involved are defined, we have 

3.5.8 

The one new result here has to do with compact manifolds: 

3.5.9. Theorem. If € is a vector field on a compact manifold X, we have 
D(€) = R x X, and Gt E Diff(X) for every t E R. Furthermore, the map 
t t--+ Gt is a group homomorphism from the additive group R into Diff(X). 

Proof. Take x E X. By the existence of local flows we can find an open 
neighborhood U x of x and an interval Ix containing 0 such that, for every 
z E Ux, there exists an integral curve a : Ix --+ X with initial condition z. 
Thus Ix x Ux c D(€). By compactness, a finite number of neighborhoods 
Ux; (1 ~ i ~ n) suffice to cover X. If e > 0 is such that ]-e, e[ C Ix; for 
all i, the integral curve with initial condition x E X is defined for every 
It I < e, that is, ]-e, e[ C J(x) for every x EX. 

Now consider the integral curve aa%(t) with initial condition ax(t). This 
curve is defined for It I < e, and satisfies aa%(t)(t) = ax(t+ t). This means 
that the integral curve with initial condition a is actually defined for every 
t such that It I < 2e, that is, ]-2e,2e[ C J(x) for every x E X. Repeating 
the argument we get ]-2n e,2n e[ C J(x) for every x E X and n E Rj this 
implies J(x) = Rand D(€) = R x X. 
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This also shows that formula 3.5.8 holds for every t E R. Applying it to 
case tl = -t we get 

(Gt 0 G-t}(xo) = Go(xo). 
But by definition 3.5.3, Go(x) = 0:(0, x) = x. Thus 

Gt 0 G- t = G-t 0 Gt = Go = Id"" 

so that G t E Diff(t) and the map t 1--+ Gt is a group homomorphism. 0 

3.5.10. Remark. Theorem 3.5.9 says that a vector field e on a compact 
manifold X gives rise to a one-parameter group of diffeomorphisms of X. 
If X is arbitrary, the flow 0: is just a semigroup of local diffeomorphisms 
(cf. the discussion following 1.3.5). 

In order to generalize section 1.4, we have to define time-dependent vec
tor fields: 

3.5.11. Definition. Let X be a manifold of class CPo A time-dependent 
vector field, or differential equation, of class cq on X (where 1 $ q $ p-1) 
is a map e E CP(Ix Xj TX) such that ?roe = p, where I c R is an interval 
containing ° and p : I x X --+ X is the canonical projection. 

A solution or integral curve of e is a pair (1,0:) such that o:'(t) = 
e(t,o:(t)) for every t E I. 

All the notions from section 1.4 have counterparts here: the local exis
tence and uniqueness of integral curves, local flows, the global uniqueness 
of integral curves (cf. 3.5.4), the maximal interval of definition J(x) of an 
integral curve with initial condition x, the global flow 0: and its domain 
D(e) = {(t,x) E R x X: t E J(x)}. 

Let 0: be the global flow. For every (t, x) E D(e), set Gtx = o:(t, x). The 
vector field '1 defined by '1(h, y) = e(s + h, y), where 8 E R is fixed, also 
has a global flow {3, and we set G;x = (3(t, z) for (3 E D('1). In particular, 
G t = G~. With this notation we have, whenever the maps involved are 
defined: 

3.5.12 Gr Gr+. Gr t+. = to •. 

3.5.13. Theorem. If X is compact and e is a time-dependent vector field 
defined on I x X we have D(e) = I x X. In addition, Gt E Diff(X) for 
every t E I. 

Proof. If D(e) = I x X, the map Gt is defined for every t E I. Since 
Gt = G~, it follows from 3.5.12 that G!"t 0 G~ = Gg = Idx and G~ 0 Gf_t = 
G~ = Idx , so that G~ is a diffeomorphism with inverse G!"t. 

To prove the first assertion, we assume by contradiction that the max
imal interval J(x) for some x E X is smaller than I. This implies either 
sup(J(x)) E I or inf(J(x)) E Ij we can assume without loss of general
ity that we're in the first case. Set b = sup(J(x)), and take a sequence 
{tn}nEN of points in [0, b[ converging to b. 
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By compactness, the sequence {a( tn, x)} 
accumulates at some point y E X, so we can 
assume by taking a subsequence that limn-+eo 
a(tn' x) = y. At the point (b, y) E I X X 
there exists a local flow {3 of the vector field 
71 : (s, z) f-+ e(s + b, z), and this local flow is 
defined on ]-e, e[ X U, where U is an open 
neighborhood of x in U. Figure 3.5.13 
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Since limn-+eo tn = band limn-+eo a(tn' x) = y, we can take n large 
enough to have Ib - tnl < e and a(tn' x) E U. But 

(3(b - tn, a(tn' x)) = a(tn + b - tn, x) = a(b, x), 

showing that b E J(x) and consequently that ]tn' tn + e[ c J(x), which 
contradicts the assumption b = sup(J(x)). 0 

S.5.U.l. Note. This gives another proof for the first part of theorem 3.5.9. 

3.5.14. Conversely, we can reconstruct vector fields from one-parameter 
families of diffeomorphisms. In fact, let HE CP(I X X; X), where Ie R 
is an interval containing 0, be a map such that each section H t : x f-+ 

Ht(x) = H(t, x) is a diffeomorphism, and Ho = Id",. A time-dependent 
vector field e on X is obtained by setting e( t, x) = (3'(t) E T",X, where (3 
is the curve s f-+ H(s, (Ht )-l(x)). By construction, the global flow of e is 
a(t,x) = Htx, for (t,x) E D(e) = I X X. 

The reader should verify that e E CP-l(I X X; TX) and that e is time
independent if HH. = H t 0 H. (exercise 3.6.2). 

3.5.15. Cultural digression: the bracket of two vector fields and 
the FrobeniuB integrability theorem 

S.5.15.1. In this presentation we omit proofs, which the reader can find in 
[Die69, vol. I, 10.9.4J; [War71, p. 42J; [Ste64, p. 130J; [Spi79, vol. I, p. 6-19 
and 7-21J, and [Ch068, p. 192J. For simplicity, we assume all objects to be 
ceo. Manifolds are not necessarily compact. 

S.5.15.2. Let e and 71 be vector fields on a manifold X, and denote their 
respective flows by Gt and H.. Is it true, at least locally, that G t 0 H. = 
H. 0 Gt for r, s E R? In general the answer is no, there is no reason why 
the two flows should commute. It all depends on the bracket Ie, 71], defined 
in exercise 2.8.17.2. In order to see why, fix x E X and consider the curve 
originating at x and defined by 

t f-+ c(t) = (H_ t 0 G-t 0 Ht 0 Gt){x) 

(this is defined for t small enough). 
The curve c measures how far e and 71 are from commuting. We have 

t2 
c(t) = x + "2([e, 71](X)) + O(t3), 
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-t 

Figure 3.5.15.2 

or, in other terms, 

c'(t) = 0 and c'(Jt)(O) = [e,l1](X). 

In particular, a necessary condition for the flows to commute is that 
fe, 11] = 0 everywhere. This condition is also sufficient: if fe, 11] is the zero 
vector field, we have Gt 0 H. = H. 0 Gt for all s, t E R locally, and even 
globally if X is compact (theorem 3.5.9). 

1.5.15.1. Now let's take up the converse of exercise 2.8.17.2{d), which said 
that if Y is a submanifold of X and e,l1 are vector fields on X such that 
e{y), l1{Y) E TyY for all y E Y, the bracket [e,l1](Y) also belongs to TyY 
for all y. First we have to think of a converse: let e and 11 be vector fields 
on X and assume that e{x) and l1{X) are linearly independent in T",X for 
every x E X. Denote by P{x) the vector subspace of T",X spanned by 
e{x) and l1{X). Is there a submanifold Y of X such that TyY = P{y) for 
every y E Y? Is there such a submanifold going through every point of X? 
We have seen that a necessary condition is that [e,l1](X) E P{x) for every 
xEX. 

This kind of question lies in the realm of partial differential equations 
(in two variables), whereas the integration of vector fields has to do with 
ordinary differential equations. The most general answer is provided by 
the Frobenius integrability theorem: 

1.5.15.'. Theorem (Frobenius). Let X be a n-dimensional manifold and 
d :s::: n an integer. Let ei (i = 1, ... , d) be vector fields on X such that, 
for every x E X, the vectors 6 (x), ... , ed{X) are linearly independent, and 
denote by P{x) the subspace of T",X spanned by them. A necessary and 
sufficient condition for the existence, for every x E X, of ad-dimensional 
submanifold Y '3 x of X such that TyY = V(y) for all y E Y is that 

for every x E X and every i, j = 1, ... , d. In addition, for a fixed x E X, 
such a submanifold is locally unique. 0 
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S.5.15.5. This theorem is of great importance in differential geometry. We 
do not use it directly in this book, but it will appear in disguise in 10.2.2.7 
and 10.4.9.5. Namely, when is a two-parameter family of lines in R3 the 
family of normals to a surface? Exactly when the field of planes in R3 
orthogonal to the lines in the family satisfies the conditions in Frobenius' 
theorem. And if this is the case, we can actually find a whole one-parameter 
family of parallel surfaces whose family of normals is the original two
parameter family of lines. 

Figure 3.5.15.5 

Frobenius' theorem is a key ingredient in the proof of the important 
theorem 10.7.3. It is also used in the proof of Darboux's theorem on two
forms (cf. chapter 5): if a closed two-form W has rank r (that is wr = 
w 1\ .. . 1\ w "I 0 and wr+l = 0), it is locally of the form 

w = dXI 1\ dX2 + dX3 1\ dX4 + ... + dX2r-1 1\ dX2r 

for appropriately chosen coordinates Xl> ••• , Xn (see [Ste64], p. 140). 
In addition, Frobenius' theorem plays a fundamental role in the theory 

of Lie groups and Lie algebras (see [War71], for example). In riemannian 
geometry, it shows up in the study of symmetric spaces, of totally geodesic 
submanifolds and of holonomy groups: see [KN69] and [Bes86, chapter 10], 
for example. 

S.5.15.6. We conclude with the dual version of Frobenius' theorem-an 
equivalent result, but couched in the language of differential forms (chap
ter 5). For each x E X, define a d-dimensional subspace P(x) of TxX as the 
intersection of the kernel of the n - d differential one-forms WI, ••• ,Wn-d, 

which we assume everywhere linearly independent. In symbols, 

n-d 

P(x) = n (wdx))-I(O). 
i=1 

The statement that parallels 3.5.15.4 is that a local submanifold tangent 
to P(x) exists for every x E X if and only if each exterior derivative dWi(X) 

is a linear combination of exterior products Wi(X) I\Wi(X). The equivalence 
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between the two statements is easy, and the reader should prove it. The 
proof of Frobenius' theorem itself is much harder. 

3.6. Exercises 

3.6.1. Let p: X --+ Y be a covering map, e E L\o(Y) and 5 = p*e (3.3.7). 
Assume X and Yare compact. Show that p-l(y) is finite for every y E Y, 
and that, for every continuous function I : X --+ R, we have 

/, 15 = j ( L f(x))e. 
X yEY .,Ep-l(y) 

In particular, if Y is connected, p is a k-fold cover (2.4.4) and 9 is continuous 
on X, we have 

Ix (g 0 p)5 = k i ge. 
3.6.2. Prove the statements at the end of 3.5.14. 

3.6.3. We will show, without using 3.1.5, that every manifold is metrizable. 

(a) If E is a vector space, denote by B(E) the set of symmetric bilinear 
forms on E. For I E L(E; F), define r : B(F) --+ B(E) by 

(J*a)(x, y) = a{J(x), I(Y)). 

A riemannian structure on a manifold X is a map 9 : X --+ B(T X) 
such that g(x) E B(T.,X) is positive definite for every x E X and that, 
for any chart (U, q,) on X, the map 

U 3 u 1-+ ((Ou 0 T<I>(u))(q,-l))*(g(q,(u))) E B(Rn) 

is differentiable. Show that every manifold (satisfying 3.1.6) admits a 
riemannian structure. Fix a riemannian structure 9 for X, and assume 
that X is connected. 

(b) If (la, bj, I) is a curve on X, the length of I is defined by leng(J) = J: v'g(f'(t) , I'(t)) dt. The distance between two points x, Y E X is the 
scalar 

d(x, y) = inf {leng(J) : I is a curve such that I(a) = x and I(b) = y}. 

Show that d(x, y) = d(y, x) and that d(x, z) :5 d(x, y) +d(y, z) for every 
X,y,z EX. 

(c) Show that d(x, y) = 0 implies x = y. This shows that the function 
d : X X X --+ R is a metric, called the intrinsic metric associated with 
the riemannian manifold X. (Hint: show first that if d(x, y) = 0 there 
exists a chart (U, q,) at x such that y E U. Then show that, if 9 is 
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a riemannian structure on an open subset U of R n and K c U is 
compact, there exists k > a such that g(x, x) ~ kllxll 2 for every x E K, 
where II ·11 denotes the standard norm in Rn.) 

3.6.4. Priifer's surface. Let E = R3, and denote by R~ the plane z = a, 
with its usual topology. Consider E as the disjoint union of the R~, and 
give it the corresponding topology (so that a subset of E is open if and 
only if its intersection with each R~ is open). Denoting points of R~ by 
(x, Y)a, form the equivalence relation 

(x, Y)a "'" (x', y')b <=} (x, Y)a = (x', y'}b or (y = y' > a and xy+a = x'y+b). 

Set P = E/ ""', and let p: E ~ P be the canonical map. 

(a) Show that P is Hausdorff, locally compact (the redundancy is inten
tional, for pedagogical reasons), and that for every a E R the restric
tion of p to R; is a homeomorphism onto its image. 

(b) If X = p((x, y)a), set la(X) = (x, y). Show that (p(R;), la)aER is a 
Coo atlas, and that the topology underlying the differential structure 
thus obtained is identical with the quotient topology. 

(c) Show that the set {p((a, ala) : a E R} is discrete in P. Deduce that P 
is not separable. P is called the Priifer surface. 

3.6.5. Let G be a Lie group, that is, a Coo manifold with a group structure 
such that the maps (x, y) 1-+ xy and x 1-+ x-I are COO. We denote left 
translations x 1-+ ax by La, and the identity element bye E G. 
(a) Let oe ¥= a be a density on Te(G). For a E G, set oa = (TaLa-1)*oe. 

Show that this defines a density on G. 
(b) Let do be the measure associated with the density in (a). Show that, 

for every continuous function 1 : G ~ R with compact support and 
every a E G we have 

fa I(x) do = fa I(ax} do. 

We say that do is a left Haar measure on G. 
(c) Write down do for G = GL(2jR) = Isom(R2jR2). 



CHAPTER 4 

Critical Points 

After defining critical points and regular values of a differ
entiable map f : X --+ Y between manifolds, we study two 
particular cases: Y = R and dim X = dim Y. 

In the case of real-valued functions f : X --+ R we define non
degenerate critical points and the index of f at such a point 
(4.2.11). We show that around a non-degenerate critical point 
f looks, up to diffeomorphism, like a non-degenerate quad
ratic form (4.2.12). This result has important consequences: 
for example, it governs the behavior of a surface in R 3 with 
respect to its tangent plane at a non-degenerate point (4.2.20). 
Another consequence is Morse theory, which is not within 
the scope of this book but nonetheless deserves a digression 
(4.2.24) for the reader's information and for future reference 
(section 7.5). 

The case dim X = dim Y is the setting for Sard's theorem, 
which asserts that almost all points of Yare regular values of 
f : X --+ Y (4.3.1). The existence of regular values is used 
many times in this book (7.3.1, 7.5.4, 9.2.8). 
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4.1. Definitions and Examples 

4.1.1. Definition. Let X and Y be manifolds and 1 : X - Y a differen
tiable map. A point x E X is said to be regular if 1 is a submersion at x, 
and critical otherwise. 

A point y E Y is called a regular value if every x E 1-1 (y) is regular, and 
a critical value otherwise. In particular, y is a regular value if y ¢ I(X). 

In this chapter we will discuss the following two particular cases: 

4.1.2. If Y = Rand 1 E OP(X), a point x is critical if and only if Tzi 
is not surjective. By definition 2.5.23 and since the range space is one
dimensional, this is the same as saying that 

x is critical {:} dl (x) = o. 

4.1.3. If dimX = dim Y, a point x E X is regular if and only if Tzi E 
Isom(TzX; T1(z) Y); in other words (cf. definition 2.6.9), 

x is regular {:} 1 is regular at x. 

4.1.4. Examples 

4..1.4..1. Let E be a Euclidean space, with inner product (·1 .), and u =F 0 
a vector in E. Let VeE be a submanifold, and 1 : V - R the map 
I: x 1-+ (u I x). If NzV denotes the normal subspace to V at x under the 
embedding V - E (2.7.2), we have 

4..1.4..2 x is critical {:} u E Nz V. 

To prove this, apply 4.1.2. The derivative dl(x) is just the linear form 
dl(x) = (u 18z(-)) on TzX, by 0.2.8.3 and 2.5.23.2, and because 1 can be 
considered as the restriction of (u I·) to the su bmanifold V. Thus (u 18 z ( . ) ) 
vanishes on TzX if and only if u E (8z (TzX)).L = NzX. 

If u points straight up, (u I·) is the height and 4.1.4.2 says that the height 
function is critical at x if the tangent space is horizontal. 

(r'(u) 
x 

T,.,V 

Figure 4.1.4.2 
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4..1.4..1. Particular case. Take the sphere sn c Rn+1. If {e1,"" en+I} is 
the canonical basis of Rn+1, the map x 1-+ (x I ei) has as critical points 
(0, ... ,0, ±1, 0, ... ,0), where only the i-th coordinate is non-zero. 

4..1.4..4.. If X is the torus V = Sl(l/V2) x Sl(l/V2) (2.1.6.3), embedded in 
R3 as shown in figure 4.1.4.2, the map x 1-+ (x I e3) has four critical points. 

4.1.5. Proposition. Let X and Y be manifolds of same dimension and 
f : X -+ Y a differentiable map. Assume that X is compact and that y E Y 
is a regular value of f. There exists a neighborhood V of y such that the 
restriction of f to f- 1(V), considered as a map from f-1(V) into V, is a 
covenng map. 

We shall see in 4.3.6 that any f has lots of regular values. 

Proof. Let y E Y be a regular value; then every x E f- 1 (y) is a regular 
point, that is, Txf E Isom(TxX; TyY) (4.1.3). By 2.5.20 there exists an 
open neighborhood Ux of x such that flu .. is a diffeomorphism between Ux 

and f(Ux ). It follows that f-1(y) is discrete, for if there were a sequence 
(xn ) of points of f-1(y) accumulating at x we would have Xn E Ux for n 
large enough, and flu .. wouldn't be injective. 

I 

I 

u" 
1 

U" 
2 

I 
I 
I 

~f(U;') 

~f(U;') 
Figure 4.1.5.1 

Thus f- 1 (y) is a finite set, being discrete in a compact set. Let Xl, ••• , Xn 

be its points. Each Xi is contained in an open set Ux; restricted to which 
f is a diffeomorphism onto its image. But as they stand the U x; do not 
satisfy definition 2.4.1; we have to modify them. 
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First we shrink them into pairwise disjoint sets 
U:, (still containing Xi), which is possible because 
X is Hausdorff and there are only a finite num
ber of Xi. But the images f{Un may not co
incide. So we set V' = n~l f(U:') and U: = 
U:, n rl(V'). Since flu! is bijective, U: is open 
and f(Un = V'; the r~st~iction of f to U: is still 
a diffeomorphism onto its image. The only con
dition for a covering map that's left to check is 
that f-l(V/) = U7=1 U:. For now we just have 
U7=1 U: C f-l(V ' ), since U: c rl(V') for all i. 
What else can be in the inverse image of V'? 

Assume that V'is compact; we can get this by 
restricting V, since Y is locally compact (2.2.11). 
The set 

Z = rl(V') \ U7=1(Un. 
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is closed in X, hence compact. Thus f(Z) is compact, hence closed in 
V', and, since y ¢. f(Z), we can take a neighborhood V of y such that 
V nf(Z) = 0. Setting Ui = f-l(V) nUt, we finally get f-l(V) = U7=1 Ui , 

and the restriction of f to f-l(V) is a covering map. 0 

4.1.6. Corollary. The cardinality of f-l(y) is constant in a neighborhood 
of a regular value. 

Proof. Use 2.4.4. o 
4.1.'1. Proposition 4.1.5 does not hold around critical points, or when X 
is not compact. Figure 4.1.7 shows counterexamples to corollary 4.1.6: 
around Yl and Y2 the cardinality of f-l(y) changes. 

4.1.8. See exercises 4.4.3 to 4.4.6 for explicit calculations of critical points. 

, . . ~[ 
I 1 
I I 

) .. • ~f ~f 
1 
I 
I 
I 
1 1 

I I I 

Y, Y2 Y, 
] . [ 

Y2 

Figure 4.1.7 
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4.2. Non-Degenerate Critical Points 

Let X be a d-dimensional manifold and f : X -+ R a function of class CP, 
with p ;::: 2. For x E X, the derivative df(x) is a linear function on T",X 
(2.5.23), and so can be seen as an element of (T",X) * , the dual of T",X. 

If (U, ¢» is a chart at x E X, the composition f 0 ¢>-1 is a CP map from 
¢> (U) into R, and as such it has a second derivative (f 0 ¢> -1)" which is 
a symmetric bilinear form on Rd (0.2.13). Let e : T",X -+ Rd be the iso
morphism associated with (U, ¢» (2.5.10), and define a symmetric bilinear 
form on T",X by 

4.2.1 B = (f 0 ¢>-I)"{¢>(x)) 0 (e, e), 

that is, B(u, v) = (f 0 r 1 )"{¢>(x)) 0 (e(u), e(v)) for every u, v E T",X. In 
principle B might depend on (U, ¢», but in fact it doesn't: 

4.2.2. Proposition and definition. Let X be a d-dimensional manifold 
of class CP, with p ;::: 2. If x E X is a critical point of f E CP(X), the 
symmetric bilinear form on T",X defined by 4.2.1 does not depend on the 
choice of ¢>. We denote it by Hess", f, and call it the hessian of f at x. 

4.2.3. Proof. Let (U, ¢» and (V, tjI) be charts around x, and e : T",X -+ Rd 
and 11 : T",X -+ Rd the corresponding isomorphisms (2.5.10). If df(x) = 0, 
the equality 

(f 0 ¢>-I)"(¢>(x)) 0 (e,e) = (f 0 tjI-l)"{tjI(X)) 0 (11,11) 

follows directly from 2.5.11.1 and 0.2.13.2 applied to z = ¢>(x), h = f 0 tjI-l 
and 9 = tjI 0 ¢> - 1. 0 

4.2.4. Let (I, a) be a curve on X such that a'(O) = u E T",X and x is a 
critical point of f. We have 

d2 (f 0 a) 
(Hess",f)(u, u) = dt2 (0), 

where the expression in the right-hand side is just the ordinary second 
derivative of f 0 a : 1-+ R. See exercise 4.4.2. This provides another way 
to show 4.2.2 (without using formula 0.2.13.2). 

4.2.5. Example. If X is the torus in figure 4.1.4.2 and f is the height 
function, Hess"'l f is positive definite and Hess",. f is negative definite, while 
Hess",. f and Hess"'3 f take both positive and negative values. 

4.2.6. Recap on symmetric bilinear forms. Let E be a finite-dimen
sional vector space over R, and denote by Bilsym(E) the vector space of 
symmetric bilinear forms on E. The following statements can be found in 
[Dix68, pp. 35-37]: 
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Let>. E Bilsym(E). Two vectors x, y E E are called orthogonal with 
respect to >. if >'(x, y) = O. It is possible to find a basis B = {el"'" en} 
for E whose elements are pairwise orthogonal with respect to >.j for such a 
basis the matrix As of >. is diagonal: 

The number of strictly positive diagonal entries is independent of the choice 
of the diagonalizing basis B, and similarly for strictly negative and zero 
entries. 

4.2.7. Definition. We say that>. is non-degenerate if all the k. are non
zero. 

4.2.8. Definition. The index of >. is defined as the number of strictly 
negative entries k i . 

4.2.9. Examples 

4..2.9.1. Consider again the torus in figure 4.1.4.2. The index is zero at Xl> 

two at X4, and one at X2 and X3. This is related to the behavior of I with 
respect to its tangent plane: see 4.2.20. 

4..2.9.2. The form >'(Xl,"" Xd) = -x~ - .,. - x; + x;+I + ... + x~ on Rd 
is non-degenerate and has index i. 

4.2.10. See exercises 4.4.3 to 4.4.6 for explicit calculations of indices. 

4.2.11. Definition. Let I : X -+ R be of class CPo A critical point x of 
I is said to be non-degenerate if Hess.,1 is non-degenerate. The index of 
x is by definition the index of Hess.,/j we denote it by ind.,l. 

4.2.12. Theorem. Let X be a CP manilold, p ~ 3, and I E CP(X) a 
lunction having a non-degenerate critical point x 01 index i. There exists 
a chart (U, ¢I) centered at x such that, in the associated coordinate system 
(2.2.3), I has the lorm 

(f 0 ¢I- l )(Xl,"" Xd) = -x~ - x~ - ... - x; + x;+I + ... + x~. 
We prove the theorem for d = 2. For arbitrary d the argument is analo

gous and does not present any additional difficulty. We need two lemmas. 

4.2.13. Lemma (Morse). Let U C R2 be open and star-shaped at (0,0), 
and I E CP(Uj R) a function such that f(O,O) = O. There exist g, h E 
Cp-l (Uj R) such that f = xg + yh, where x and yare the coordinate 
functions. 
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Proof. By definition of star-shaped, (t:c, ty) E U for any t E [0,1] and 
(:c, y) E U, that is, the segment joining (0,0) to any point (:c, y) E U lies 
entirely in U. Thus the function t t-+ I(t:c, ty) is defined on [0,1], and 
satisfies 

101 
:t (I(t:c, ty)) dt = I(:c, y) - 1(0,0) = I(:c, y). 

By the chain rule, 

d 81 81 
dt (J(t:c, ty)) = :c 8:c (t:c, ty) + y 8y (t:c, ty), 

so if we set 

r181 
g= 10 8:c(t:c,ty)dt, 

r 81 
h = 10 8y (t:c, ty) dt 

we get 

r181 r 181 
I(:c, y) = :c 10 8:c (t:c, ty) dt + y 10 8y (t:c, ty) dt = :cg + yh. 

Since I is of class CP, its partial derivatives, and consequently g and h, are 
of class Cp-l, which proves the lemma. 0 

4.2.14. Remark. We have 

r 181 81 
g(O, 0) = 10 8:c (0, 0) dt = 8:c (0, 0) and 

81 
h(O, 0) = 8y (0, 0). 

4.2.15. Lemma. Let U C R2 be open and start-shaped at (0,0), and 
I : (e,'7) t-+ f(e,'7) a CP real-valued lunction on U. 111(0,0) = ° and 
1'(0,0) = 0, there exist lunctions 1.£, v, w E Cp-2(Uj R) such that 

I = :c2 1.£ + 2:cyv + y2w. 

Proof. We have 1'(0,0) = 0, that is, 81/8:c(0,0) = 81/8y(0,0) = 0. 
By 4.2.13, there exist g, h E Cp-l (Uj R) such that I = :cg + yh. But 
g(O, 0) = 81/8:c(0, 0) by 4.2.14, so g(O, 0) = 0, and since g E Cp-l(UjR), 
an application of 4.2.13 to g gives 1.£, VI E CP-2(Uj R) such that g = :C1.£ + 
YVI. Similarly, we can find V2, w E Cp-2(U, R) such that h = :CV2 + yw. 
Setting V = (VI + v2)/2, we get 

1= :cg + yh = :c2 1.£ + :CY(VI + V2) + y2w = :c2 1.£ + 2:cyv + y2w. 0 

4.2.16. Remark. This formula is similar to a Taylor series expansion, but 
has no higher-order terms. 

Proof of theorem 4.2.12. The idea is to imitate the diagonalization of a 
quadratic form: 

a:c2 + 2b:cy + cy2 = a (:c2 + 2 ~:cy + ~y2) = a ( :c + ~y ) 2 + (c _ b:) y2j 
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but here the coefficients are functions, so we need to take some precautions. 
By composing f with a chart centered at x, we reduce to the case of 

f E CP(U), where U E O(R2) can be assumed star-shaped at 0. By 
assumption, f(O) = ° and ° is a critical point for f. By lemma 4.2.15, 
there exist u, v, wE CP-2(U) such that f = ux2 + 2vxy + wy2. 

We now set 

a2 f 
s = -a (0,0), xy 

so that Hessof = (::). Since Hess",f is non-degenerate, rt - s2 =F ° is 
non-zero. We can also assume that r is non-zero; otherwise, either t is 
non-zero and we interchange x and y, or s is non-zero (with r = t = 0), 
and we change to new coordinates x' = (x + y)/2, y' = (x - y)/2. 

Assume r > 0, for example. There exists an open set U', contained in U 
and star-shaped at 0, such that u(x, y) > ° for x, y E U'. On U' we have 

4.2.11 f = u (x + ~y r + y2 ( W - :) • 

Assuming first that rt - s2 > 0, we can take a smaller open set U", star
shaped at ° and such that w - v2 /u > ° on U". Thus we can write 
f = e + 1]2, where 

and .~ 
1] = yv w - -;;-. 

The functions e and 1] are of class Cp-2 because the radicals do not vanish. 
There remains to show that the map 

F: U"3 (x,y) 1-+ (€(x,y),1](x,y)) E R2 

defines a chart at (0,0). By 2.5.20 it is enough to show that F is regular at 
(0,0). Direct calculation shows that the jacobian of F at (0,0) (0.2.8.8) is 

v(O,O) ) 

w(O, 0) _ v 2 (0, 0) , 
u(O,O) 

whose determinant is vrt - s2 =F 0. 
If rt - s2 < 0, we write f = e _1]2, with 

and .~ 
1] = yv ~ - w. o 

4.2.18. Corollary. Non-degenerate critical points of f E CP(X) are \SO

lated in the set of critical points. 
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Proof. By theorem 4.2.12, f is locally of the form 

f 0 '" -1 = - X2 - X22 - ... - X~ + X2 + ... + X2d 'I' 1 ..+ 1 . 

Thus (fo¢>-1)'(X1, ... ,Xd) = 2(-Xl! ... ,-Xi,Xi+1, ... ,Xd), whose only 
zero is (Xl! ..• , Xd) = o. 0 

If x is degenerate, there is no reason why it should be isolated. Think of 
(x,y) t-+ x2, or, better yet, (x,y) t-+ O! 

4.2.19. Example. If X is compact and f E CP(X) only has non-degen
erate critical points, there are only finitely many of them. 

4.2.20. Application. Now we study the position of a surface S (that is, 
a two-dimensional submanifold of R3) with respect to its tangent plane. 

By theorem 2.1.2(iv) S can be written locally as the graph of a function 
z = f(x, y). Let A be the point (a, b, f(a, b)) E S. The tangent plane TAS 
has equation 

af af 
(x - a) ax (a, b) + (y - b) ay (a, b) + (z - f(a, b))( -1) = 0 

by 2.5.7.1; thus the height p(x, y) of the point of TzS with first two coor
dinates x and y is 

af af 
(x - a) ax (a, b) + (y - b) ay (a, b) + f(a, b). 

We are interested in the sign of 

af af 
h(x, y) = f(x, y) - f(a, b) - (x - a) ax (a, b) - (y - b) ay (a, b). 

xOy 

I • (a.h) 

I 

I 

I 
I • (x.y) 

Figure 4.2.20.1 
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Assume that 

a2f a 2f ( af )2 
rt - 8 2 = ax2 (a, b) ay2 (a, b) - axay (a, b) =I OJ 

since hand f have the same second derivatives and 

ah ah 
h(a, b) = ax (a, b) = ay (a, b) = 0, 

it follows from 4.2.12 that there exists an open set U C R2 containing (a, b) 
and local coordinates e(x,y) and '7(x,y) such that hlu = ±e ± '7 2 • 

If the index of x is 0, we have hlu = e + '7 2 ; S lies above the tangent 
plane, and only touches it at A. 

If the index is 2, we have hlu = -e - '7 2 ; S lies below the tangent 
plane, and only touches it at A. 

If the index is 1, we have hlu = e - '7 2 , for example. The surface S 
intersects its tangent plane along the curves e = '7 and e = -'7. It lies 
strictly above that plane in two of the regions bounded by these curves, 
and strictly below in the other two. 

index 0 index 1 index 2 

Figure 4.2.20.2 

In the case of index 1, the tangents to the intersection curves at A have 
slopes (in TAS) given by the roots J.L of the equation J.L2 r - 2J.L8 + tj these 
roots are distinct. 

Figure 4.2.20.3 
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4.2.21. Remark. In order to write S locally as a graph, we've had to 
choose one particular basis for R 3 , and assume that rt - 8 2 -:f 0 in these 
coordinates. It can be showll (exercise 4.4.9) that the condition rt- 8 2 -:f 0 
at a point A E S does not depend on the basis chosen, only on A and 
S. If this condition is satisfied we say that A is a non-degenerate point of 
S. It can also be shown (exercise 4.4.9) that the sign of rt - 8 2 -:f 0 does 
not depend on the basis; by the discussion above the nature of S n TAS is 
determined if A is a non-degenerate point of S. We say that S has positive 
or negative (total) curvature at A according to whether rt - 8 2 is positive 
or negative. See also 6.9.7 and section 10.5. 

4.2.22. Remark. On the other hand, if A is degenerate, nothing can be 
said about S n TAS. The graphs of the following functions R2 -> RaIl 
show different behaviors with respect to the xv-plane: 

x 

It (x, V} = x2 , 

12(x, V) = x2V2, 

/3(x, V} = x(x2 - 3V2} (monkey saddle), 

f4(x,y}=ex p (- 21 2)sin 21 2' 
X +y x +V 

z 

Figure 4.2.22 
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4.2.23. Remark. For rt - s2 > 0, Taylor's formula yields the results in 
4.2.20 in an elementary way. 

4.2.24. Cultural digression: Morse theory. Morse theory, whose start
ing point is theorem 4.2.12, has numerous geometric applications: for ex
ample, it can be used to proved the existence of certain geometrical objects. 
Here we present only some fundamental results; for proofs and applications, 
see [Mil63]. 

'.2.24.1. Theorem (see [Mil63, p. 37], and also exercise 4.4.10). Let X 
be a compact CP manifold. Every function f E CP(X) can be uniformly 
approximated by functions 9 E CP(X) h.aving only non-degenerate critical 
points; in fact, we can require th.at 9 approximate not only f but all of its 
"derivatives" (so to speak) up to order p. 0 

'.2.24.2. DeBnition (see [Gre67, §23]). Every compact d-dimensional man
ifold X can be canonically assigned certain finite-dimensional real vector 
spaces HA:(X) (k = 0,1, ... , d), called the real cohomology groups of X. 
The dimension of HA:(X) is called the k-th Betti number of X, and denoted 
by bA:(X), The alternating sum 

d 

X(X) = 2)-1)A:bA:(X) 
10=0 

is called the Euler characteristic of X. 

The correspondence X -+ HA:(X) is functorial: if f : X -+ Y is contin
uous, there exist group homomorphisms r : HA:(y) -+ HA:(X) such that 
(J 0 g)* = g* 0 rand (Idx)* = IdHA:(x) for every X, k, f E CO(X; Y) 
and 9 E CO(Z; Y). Functioriality implies that homeomorphic manifolds 
have isomorphic cohomology groups, hence same Betti numbers and Euler 
characteristics. In particular this is true for diffeomorphic manifolds. In 
5.4.10 we will discuss de Rham groups, which are vector spaces isomorphic 
to the HA:. 

'.2.2'.1. Examples (see also sections 5.6 to 5.8) 

X = Sd (sphere): all the bA: are zero except bo = bd = 1, so X = 1 + (-l)d. 
X = pd(R) (real projective space): all the bA: are zero except bo = 1 and 

bd = 0 if d is even, 1 if odd. 
X = Td (torus): bA: = (t) for every k, so e = (1- l)d = O. 
X = K (Klein bottle): bo = b1 = 1, b2 = 0, k = O. 
X = Tg (surface with 9 holes, figure 4.2.24.3.1): bo = b2 = 1, b1 = 2g, 

X = 2(1- g). 
X = Ug , where Ug denotes the connected sum of 9 copies of the projective 

plane: 
Ug = Ug - 1 #P2(R) = P2(R)# ... #P2(R) . , , 

k copies 
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Figure 4.2.24.3.2 

Figure 4.2.24.3.1 
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I 
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,~------------------------------~/ v+ W 
(The connected sum of two manifolds of the same dimension is the op
eration shown in figure 4.2.24.3.2; it is denoted by the operator #.) 
Notice that U2 is the Klein bottle K and U3 = U2#U1 = TI #U1 • By 
induction one can show that U2n+1 = Tn#U1 and U2n+2 = Tn#K. All 
the Ug are non-orientable, and their invariants are bo = 1, bl = 9 - 1, 
b2 = 0 and X = 2 - g. 

~~--------____ ~ ~ __________ -J/ 
V 

g copies 

Figure 4.2.24.3.3 

4..2.24..4.. The fundamental theorem of Morse theory. Let X be a compact 
manifold and fECI (X) a function having only non-degenerate critical 
points. Denote by Ck(J) the number of critical points of f of index k (this 
number is finite by 4.2.19). For every k we have Ck(J) ~ bk(J) and 

d 

X(X) = I)-I)dck (J). D 
k=O 
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The importance of this theorem is that it links the bk(X), which are 
invariants of the manifold, with the Ck(X), which are invariants associated 
with an arbitrary (non-degenerate) function on the manifold. For a proof, 
see [Mil63, theorem 1.3.5 and §1.5]. 

4.2.25. Cultural digression: Classification of compaet surfaces. A 
surface is a connected, two-dimensional manifold. From examples 4.2.24.3 
it is clear that the classification of surfaces is more difficult than that of 
curves (one-dimensional manifolds), carried out in section 3.4. A modern 
treatment of the problem, based on Morse theory, can be found in [Gra71]. 
For a classical, "cut-and-paste" treatment, see [Mas77]. The fundamental 
result is the following: 

4..2.25.L Theorem. EtJery orientable compact surface is diffeomorphic to 
some T g • EtJery non-orientable compact surface is diffeomorphic to some 
~. 0 

Notice that this implies that the orient able double cover (5.3.27) of Ug 

is Tg • 

4.2.26. Cultural digression: Other manifolds. The classification of 
non-compact surfaces is in some sense unachievable, for various reasons: 
one can remove from a compact surface an arbitrary compact set (pos
sible an unwieldy one, like a Cantor set); also, there exist surfaces with 
unbounded topology (figure 4.2.26). There exist also surfaces that are 
"non-orientable at infinity": take an infinite connected sum of projective 
planes, for instance. See [Mas77, pp. 47-51]. 

surface with infinitely many holes 

Figure 4.2.26 

How about higher dimensions? Even in the compact case, the problem 
is open. We mention a few milestones. First, every finitely generated 
group can be realized as the fundamental group of a compact manifold of 
dimension 4 (see [Mas77, p. 143], for example). Since the classification of 
such groups is logically undecidable, so is the classification of four- (and 
higher-) dimensional manifolds. 
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For simply connected manifolds, a general result, using homotopy types 
and tangent bundles, reduces the classification of simply connected compact 
manifolds of dimension ~ 5 to an algebraic problem. In dimensions three 
and four, the problem is still open; see, for example, [Thu82J and [Thu88J 
(dimension 3) and [Don83J (dimension 4). 

4.3. Sard's Theorem 

Let X and Y be C k manifolds, k ~ 1, of dimension nand m, respectively. 
Sard's theorem asserts that, if I E Cr(X; Y) with r ~ sup(n - m + 1,1), 
the image of the set A of critical points of I has measure zero in Y (3.3.12). 
Here we deal with the case n = m, the only one we shall need. The case 
n < m is just 3.3.17.3; the proof for n > m is much more difficult. See 
[Die69, vol. III, 16.23J for a general proof. 

Notice that we're saying that I has few images of critical points, that 
is, lots of regular values. Critical points can be very numerous-think of a 
constant map. 

4.S.1. Theorem (Sard). Let X and Y be manifolds 01 same dimension 
d, and I E C 1 (X; Y). The set of critical values 01 I has measure zero in 
Y. 

Proof. Since X and Y have countable atlases (3.1.6 and 3.2.6), we can 
consider just the case X = U E O(Rd) and IE C1(U; Rd), by 0.4.4.1 and 
3.3.17.3. 

4.S.2. Lemma. Let U C Rd be open and I E C 1 (U; R d). For every 
compact set K c U there exists). : R+ -+ R+ such that limt_O ).(t) = 0 
and 

Ilf(x) - I(y) - /,(y)(x - y)1I $ ).(lIx - yll)lIx - yll 

lor all x, y E K. 

Proof. We have 

II/(x) - I(y) - /,(y)(x - y)1I 

= Ilfo1 :t (I(y + t(x - y))) - /,(y)(x - y) dtll 

= Ilfo1 (I'(y + t(x - y»)(x - y) - f'(y)(x - y» dtll 

$ fo111 (/'(y + t(x - y)) - I'(y»)(x - y) II dt. 
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For t E [0, lJ and (x, y) E K2, the norm 11f'(y+t(x-y)) - I'(y) II is bounded 
because K is compact; in particular, we can set 

>.(r) = sup{II/'(y + t(x - y)) - I'(y) II : (x, y) E K2, t E [0, lJ, Ilx - yll = r}. 

Then 
11/(x) - I(y) - f'(y)(x - y)11 ::; >'(lIx - yll)ilx - YII 

by definition, and limt-+o >.(t) = 0 by the uniform continuity of f' on com
pact sets. 0 

4.3.3. We continue the proof of 4.3.1. Since U c Rd is a countable union 
of compact cubes (3.1.4.1), we can assume by 0.4.4.1 that U contains the 
cube [O,lJd = K and prove that the image of the set A c K of critical 
points in K has measure zero. We will use the covering criterion 0.4.4.0. 

Set M = sup{IIf'(x)1I : x E K}; by 0.2.6 we have 11/(x) - l{a)11 ::; 
Mllx - all for every x E K and a E A, so 

I{x) E B(t{a), Mllx - all). 

Let a be a critical point of I; for every z E R d , the image /,(a)(z) belongs 
to f'{a)(Rd), which is a proper subspace of Rd. Fix an affine hyperplane 
H containing I{a) + f'{a)(Rd). We have 

d(t{x), H) ::; 11/{x) - Uta) + f'{a)(x - a)) II ::; >'(llx - all)llx - all, 

the first inequality because I{a) + f'{x - a) E H, and the second by lemma 
4.3.2. 

If x E K is within distance '1 of a, this gives d(t(x),H) ::; >.('1)'1, and, 
since II J(x) - I{a) II ::; M'1, we conclude that I(x) is in the intersection of 
the ball of radius M'1 centered at I (a) with the slab of thickness 2>' ('1) '7 
around H. This intersection is contained in a box of height 2>'{ '1)'7 and 
base a cube of edge 2M '1, so 

f 

Figure 4.3.5 
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Now subdivide the cube K = [0, lId into nd cubes of side lin. If such a 
little cube contains a critical point a, it must lie in the ball B(a, ...(dIn), so 
its image will have volume no greater than 

by 4.3.4. There are at most nd cubes containing critical points, so we have 
covered I(A) with cubes whose volumes add up to no more than 

4.3.5 nd2dMd- 1 :d (Vd)dA ( ~) = 2dM d- 1 (Vd)dA ( ~) . 
As n increases, this expression approaches zero (lemma 4.3.2), which shows 
that I(A) has measure zero. 0 

4.3.6. Corollary. The set 01 regular values 01 a differentiable map 1 : 
X -+ Y, with dim X = dim Y, is dense in Y. In particular, 1 has regular 
values. 0 

4.3. '1. Corollary. Let 1 : X -+ Y, with dim X = dim Y, be a differentiable 
map, and A the set of its critical points. If 5 is a density on Y and 
h E c~nt(y) we have 

r M = r M. 
}Y }Y\I(A) 

o 

4.4. Exercises 

4.4.1. Let V be a submanifold of Rd and p E Rd a point not in V. Let 
Ip : V -+ R be the function given by Ip(z) = liz - p1i 2 • Characterize the 
critical points of Ip by means of T",(V). 

4.4.2. Let X be a manifold, 1 : X -+ R a Coo function having a critical 
point a, and a a curve on X such that a(O) = a. Show that 

Hessa (a'(O)l, a'(0)1) = (J 0 a)"(O). 

4.4.3. Let p : Sd -+ pd(R) be the canonical map, and 1 : Pd(R) -+ R the 
function such that 

d+1 

I{p(z)} = Liz;' 
0=1 

Find the critical points of I, show they are non-degenerate, and calculate 
their indices. 
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4.4.4. Let 9 : T2 -+ T2 be the map defined by (z, y) 1-+ (z + ~,y) and G 
the group {IdT " , g}. Let p : T2 -+ K = T2 fG be the canonical projection 
into the Klein bottle, and h : K -+ R the function defined by 

h(p(z, y)) = cos 21rzsin 21rY. 

Find the critical points of I, show they are non-degenerate, and calculate 
their indices. 

4.4.5. Same setting as 4.4.3, but the function now is Et~: aiz~. Discuss 
degeneracy and index as a function of the ai. 

4.4.6. (a) Same question as 4.4.5, but for the Pd(C) (2.8.26) and the 

function Et~: ailzil2 • 

(b) Same question for pd(H) and the same function. 
(c) Find X(pd(C)) and X(pd(H)) using 4.2.24.4. 

(d) Same question as 4.4.3, for the sphere Sd and the function Et~: izr 

4.4.7. Prove the result in 4.2.18, for rt - 8 2 > 0, using only Taylor series. 

4.4.S. Determine SnTAS for the examples in 4.2.22. Give other examples 
showing that S n TAS can be a very complicated set. 

4.4.9. Let S c R S be a surface and A E S a point. Consider two bases 
for R S such that S is locally (around A) the graph of a function 1 in the 
first basis, and the graph of 9 in the second. Let the expression of A be 
(a, b, I(a, b)) in the first basis and (u, v, I( u, v)) in the second. 

Show that if 

is non-zero, so is 

82g 82g ( 8 2g )2 
8z2 (u, v) 8y2 (u, v) - 8z8y (u, v) , 

and that these two numbers have the same sign. 

4.4.10. Let 1 E COO(RdjR) be such that 1'(0) = o. By adding to 1 an 
appropriate quadratic form, show that we can approximate 1 by a function 
9 having a non-degenerate critical point at g, where the approximation is 
in the sense of uniform convergence of all derivatives up to order k (where 
k > 0 is fixed) on a compact whose interior contains o. 



CHAPTER 5 

Differen tial Forms 

This is a fundamental chapter, coming right after chapter 2 
in importance. Differential forms are the most commonly en
countered mathematical objects when one deals with mani
folds: they occur naturally in geometry, physics, mechanics ... 

After defining differential forms, we introduce exterior differ
entiation and pullbacks, and study their properties and their 
expression in local coordinates. 

Next we make a systematic study of orient ability, based on 
volume forms (section 5.3). 

Section 5.4 introduces de Rham groups, which are vector 
spaces functiorially associated with manifolds, and having to 
do with the spaces of differential forms on them. De Rham 
groups are important in geometry and in other fields as well: 
in physics, for example, they are connected with integrable 
vector fields. We calculate the groups of star-shaped plane 
sets, of spheres, real projective spaces and tori. 

In the course of the chapter (5.3.32) we define the important 
notion of a manifold-with-boundary, which is the setting for 
Stokes'theorem. 
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5.1. The Bundle ArT· X 

5.1.1. We wish to extend to manifolds the notions introduced in section 
0.3. Let X be an n-dimensional 0 9 manifold, where q ~ 2. For x E X, let 

T; X = L(TsXj R) = (TsX)* 

be the dual of TsX. For every 0 ~ r ~ n, let 

5.1.2 ArT* X = U Ar(T;X) 
sEX 

be the disjoint union of the spaces Ar(T;X), and let p : ArT* X -+ X be 
the map taking a E Ar(T;X) to x = p(a). We will make ArT* X into a 
manifold, as we did with T X in 2.5.24. 

5.1.3. Let (U,4» be a chart on X and, for every x E U, consider the 
canonically associated isomorphism fJs : Ts -+ Rn (2.5.10). Define a map 

5.1.4 

where (fJ;(~))* is the pull-back of fJ;(~) in the sense of 0.1.8. 

5.1.5. Theorem. Let X be an n-dimensional 0 9 manifold, where q ~ 2, 
and 0 ~ r ~ n an integer. The pairs (p-1(U),T<I»' for (U,4» ranging over 
all possible charts on X, form a 0 9 - 1 atlas on ArT* X. This atlas makes 
ArT* X into a separable, Hausdorff, 0 9 - 1 manifold of dimension n + (;). 
Proof. Analogous to 2.5.25j we just have to add separability, as in 3.1.7, 
and check that the charts are compatible. Let (U,4» and (V, tP) be charts 
on X, and fJ, ~ the associated isomorphisms (2.5.10). The corresponding 
charts on ArT* X are T<I> = ((4> 0 p), (fJ;(\)*) and To/! = ((tP 0 p), (~;(\)*). 
By 0.3.10.5 and 2.5.11.1 we get 

To/! 0 T;l = (tP 0 4>-1, (~;(\)* 0 ((fJ;(~))*)-l) = (tP 04>-1, (fJp(o) 0 ~;(\)*) 
= (tP 0 4>-1, ((4> 0 tP- 1 ), 0 tP 0 4>-1)*). 

But tP 0 4>-1 and (4) 0 tP- 1 )' are of class 0 9 - 1 by assumption, and f 1-+ r 
is of class 0 00 by 0.3.7.1. 0 

5.1.6. Remark. What we just did was to use the functor E 1-+ Ar E* 
from the category of vector spaces into itself to construct the fiber bundle 
A rT* X from the tangent bundle T X. This works for any functor on vector 
spaceSj in this way we get bundles ®rTX, ®rT* X, End(TX), and so on. 
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5.2. Differential Forms on a Manifold 

5.2.1. Definition. Let X be an n-dimensional Cq' manifold and q, r inte
gers such that 0 ~ q ~ q'-1 and 0 ~ r ~ n. A cq differential form of degree 
r, or r-form, on X is a map wE Cq(X; ArT"' X) such that pow = Idx . The 
space of r-forms of class C q on X will be denoted by n;(X). 

5.2.2. Criterion. Let w : X --+ ArT"' X be a map satisfying po a = Idx . 
How does one know if w is an r-form? Apply 2.3.2: w E Cq(X; ArT* X) if 
and only if r.p 0 w 0 ¢ -1 is of class Cq for every chart (U, ¢) on X (or, better 
yet, for every chart in a fixed atlas on X). From 5.1.4 and the identity 
p 0 ¢ = Idx it follows that 
5.:1.2.1 
r.powo¢-1 = (¢opowor1, (fr1)*(wo¢-1)) = (Id.p(U) , (fr1)*(wo¢-1)). 

This pair is of class C q if and only if the second element is, since Id.p( U) is 
Coo; notice that (O-1)",(w 0 ¢-1) : ¢(U) --+ Ar(RR)* is an r-form on ¢(U). 
If (U, ¢) is a chart on X and w : X --+ ArT* X satisfies pow = Idx , set 

5.2.2.2 

5.2.2.S. Proposition. A map w : T --+ ArT* X satisfying pow = Idx is an 
r-form if and only if [t]w E n;;(¢(U)) for all of the charts in some atlas 
on X. 0 

5.2.3. Sum and wedge product. For w, u E n;(X), we define w + u by 
(w + u)(z) = w(z) + u(z) for every z EX. We define kw and w" r in the 
same way, for k E Rand r E n:(X). We have to check that w + u and kw 
are r-forms and that w "r is an (r + s )-form; but this follows directly from 
the formulas in 0.1.9 and 0.1.10: 

[t](w + u) = [t]w + [t]u, 

[t](kw) = k ([t]w) , 

[t](w" r) = [t]w" [t]r. 

5.2.S.1. Proposition. n;(X) is a real vector space. The direct sum 

R 

nq(X) = E9 O;(X) 
r=O 

is an associative, anticommutative, graded algebra. o 

5.2.4. Pullbacks. Let X and Y be manifolds, f : X --+ Y a map of class 
Cq' and wE n;(Y) (q ~ q' -1) an r-form on X. Define f*w : X --+ ArT* X 
by 

5.2.4.1 j*w = (TI)*(w 0 I), 
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that is, (f*w)(x) = (T:z:f)* (w(f(x))). This map is called the pullback of w 
by f. 

5.2.(.2. Proposition. We have f*w E O;(X), and f* : Oq(Y) --+ Oq(X) is 
an algebra homomorphism. 

Proof. Take charts (U, <jJ) and (V,,p) on X and Y, respectively, as in 
2.3.2(iii). Proposition 5.2.4.2 follows from 5.2.3.1 and the formula 

5.2.(.S 

where (,p 0 J 0 <jJ-1)* denotes the pullback in the sense of 0.3.7, and 

!tJw E n;; ( ,p (V)). 

Formula 5.2.4.3 is a consequence of 0.3.10.5, 0.3.7 and 2.5.13.1, where (} 
and" are associated with (U, <jJ) and (V, ,p), respectively: 

[t](f*w) = (e- 1)* ((Tf)*(w 0 J) 0 r1) 

= (((}-1)* 0 (Tf)*)(w 0 J 0 r1) 

= (TJ 0 e-1)*(w 0 (f 0 <jJ-1)) 

= (,,-1 0 (,p 0 J 0 r1)')* (w 0 (f 0 r1)) 

= ((,p 0 J 0 <jJ-1)')* ((,,-1 )*(w 0 (f 0 <jJ-1))) 

= ((,p 0 J 0 r 1)')*((,,-1)*((w 0 ,p-1)(,p 0 J 0 <jJ-1))) 

= (,p 0 J 0 <jJ-1)*((,,-1)*(w 0 ,p-1)) 

= (,p 0 J 0 <jJ-1)* (!tJw) . 

That f* is an algebra homomorphism is evident. Also, we deduce from 
0.1.11 that 

5.2.(.( (g 0 J)* = j* 0 g* 

for J E aq' (Xi Y) and 9 E aq' (Yi Z). o 

5.2.5. Restrictions. Let X be a manifold, w E O~(X) a form and Y a 
submanifold of X. Denote the inclusion map by i : Y --+ X. 

5.2.5.1. Definition. The map i*w = wly is called the restriction of w to Y. 

A common example is Y = U E O(X). 

5.2.5.2. We will often prove that a form is zero by a dimension argument. 
This means that, if Y c X is an m-dimensional submanifold of X and w 

is an r-form on X, with r > m, the restriction wly, being still an r-form, 
must be zero. (Recall that Ar E* = 0 if r > dimE.) 
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5.2.6. The derivative of a function. Let X be a C q manifold and f E 
Cq(X) a function. In 2.5.29 we defined the derivative df : T X -+ R, from 
which we can now get a map X ::3 x f-+ df(x) E T; X. This map is still 
called the derivative of f, and denoted by 

5.2.6.1 

5.2.6.2. Proposition. We have df E O~_l (X). 

Proof. By construction, po df = Idx. The result will follow from 5.2.2.3 
and the next two lemmas. 0 

5.2.6.S. Lemma. If f E Cq(y) and G E Cq(Xj Y) we have d(f 0 G) 
G*(df). 

Proof. By 2.5.29, d(f 0 G) = df 0 TGj since df is linear, G*(df) = df 0 TG 
by definition 0.1.8. 0 

5.2.6.'. Lemma. If U is open in a finite-dimensional vector space E and 
f E Cq(U), we have df = O~_l(U), 

Proof. For the chart (U, 4» = (U, Idu ) we have, by 2.5.32.2 and 5.2.2.2: 

5.2.6.5 [t]( df) = f'. o 
5.2.6.6. In particular, df = a if and only if f is locally constant. 

5.2.7. Open subsets of vector spaces. The reader may have noticed 
that the notion of a differential form introduced in 5.2.1, applied to an open 
subset of a vector space E considered as a manifold, does not coincide with 
the one introduced in 0.3.1. This is the reason why the 0 are underlined 
in section 0.3. But O(U) and !l(U), for U E O(E), are identical up to the 
canonical isomorphisms 8 : T",E -+ E, for every x E U. 

From now on we'll generally work with the new notion, even for U E 

O(E). Formula 0.3.6 will look nicer now, because of the following lemma: 

5.2.1.1. Lemma. Let U be an open subset of an n-dimensional vector space 
E, {eih=l, ... ,n a basis for E and Xi : U -+ R (i = 1, ... ,n) the associated 
coordinate functions. Every W E O~(U) can be written in a unique way as 

5.2.1.2 w=LwIdxI= L Wil ... i,dxill\···l\dxi" 
I il<···<i, 

where WI E Cq(U) for every I, and dXi is the derivative of Xi for every 
1 :S i :S n. 

Proof. By the proof of 5.2.6.4, the correspondence between 0HU) and 
ill (U) is given by [t], where 4> = Idu . By 0.3.6, [t]w can be written as 
a sum EIoIej. Setting w = EI 01 d"']l with dXI = dXil 1\ ... 1\ dXi" 
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and taking into account that </J = Idu and that [t] preserves the algebra 
structure (5.2.3), we conclude from 5.2.6.5 that 

[t]( L ai1 ... i r dXi1 /\ ... /\ dXi r) 
i1 <···<ir 

L ai1 ... ir [t](dXi1) /\ ... /\ [t](dXir) 

Since Xi is a linear form, (Xi)' = e: (see the proof of 0.3.12), whence 

concluding the proof. o 

5.2.'1.1. In particular, for E = Rn, we will make implicit use of 5.2.7.2 with 
{ei}.=l, ... ,n equal to the canonical basis. 

5.2.8. Local expression in coordinates. Let X be an n-dimensional 
CP manifold, (U, </J) a chart on X and {Y.}i=l, ... ,n the corresponding local 
coordinates on U, that is, the functions Yi = Xi 0 </J (2.2.3). 

5.2.8.1. Proposition. Every form wE fY(X), after being suitably restricted 
(cf. 5.2.5.1), can be written in a unique way as 

5.2.8.2 wlu = L w¥ dYI = L WK ... irdYi 1 /\ ... /\ dYi r· 
I i1< .. ·<ir 

Given q ~ p - 1, an r-form w is of class cq if and only if each w¥ is a 
function of class C q on U, for U ranging over the domains of charts of 
some atlas on X. 

Proof. This follows from 5.2.2.3, 5.2.7.2, 5.2.4.2 and 5.2.6.3, applied to 
(</J-1)*w E W(</J(U)). 0 

Let f : X -+ Y be differentiable, and let's calculate the expression in 
coordinates (5.2.8.2) of the pullback f*w of a form w E W(X). If the 
expression of w in the local coordinates {Yi}.=l, ... ,n corresponding to a 
chart (U, </J) on Y is 

wlu = wf! . dy· /\ ... /\ dy· 
Il ... l r 'I Ir' 

we have 

5.2.8.1 (j*W)I,-l(U) = L (WK ... i r 0 f) d(Yi1 0 f) /\ ... /\ d(Yi r 0 f)· 
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This is the counterpart of 0.3.8, which we now declare outdated: from now 
on we stick to 5.2.8.3, even for vector spaces. 

5.2.8.4.. Example. Let f : R2 be defined by f (t) = (cos t, sin t) and {3 = 
xdy-y dx E n~(R2). The pullback is r {3 = costd(sint) - sin td(cos t) = 
dt. 

5.2.9. The exterior derivative 

5.2.9.1. Proposition. Let X be ad-dimensional c q manifold and p an in
teger such that 1 ~ P ~ q - 1. There exists a unique operator d sending 
n;(X) into n;~l (X) for all 0 ~ r ~ n - 1 and satisfying the following 
conditions: 

(i) The restriction of d to n;(X) is linear; 
(ii) d( a /\ .8) = da /\ .8 + (_I)deg aa /\ d{3, 
(iii) dod = 0; 
(iv) for f E CP(X) = n~(x), df is the derivative in the sense of 5.2.6. 

This operation is called exterior differentiation, and da is called the 
(exterior) derivative of a. 

Proof. Notice first that if U E O(X) and alu = 0, any operation d satisfy
ing the four conditions gives (da)lu = o. In fact, for every x E U we can 
find by 3.1.2 a function f with support in U and equal to 1 on a neigh
borhood of Xj thus fa = 0, whence dUal = o. But dUo.) = df 0. + fda; 
since df(x) = 0 (recall that f is locally constant) and f(x) = 1, we get 
da(x) = 0, as asserted. 

To show that d is unique, let x E X and W E n;(X) be given, as well as 
a chart (U,4» at x. By 5.2.8.2, wlu can be uniquely written in the form 

Let f be a function supported in U and equal to 1 in a neighborhood of x. 
The form 

w= f w· . d(fx· ) /\ ... /\ d(fx· ) '1 ... 1 ,. '1 'r 

clearly belongs to n;(X). By construction, w- w is zero on a neighborhood 
of x, so (dw)(x) = (dw)(x) = 0 by the first paragraph. In addition, the four 
conditions on d show that 

dw = L d(fwil ... ir) /\ dUXil) /\ ... /\ d(fXir)· 
"1<"'<;,. 

At x this boils down to 

(dw)(x) = (dw)(x) = L (dWil ... ir /\ dXil /\ ... /\ dXir)(X), 
il <···<i,. 
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which only depends on w, proving the uniqueness of d. In addition, this 
shows that if d exists on X and on the open submanifold U c X, we have 

(dw)lu = d(wlu). 

Uniqueness and the preceding formula show that it is enough to define d 
on the domain of any chart (U,4». Now by 5.2.6.5 the algebra homomor
phism f4;l defined on 5.2.2.2 translates an operator d, acting on r-forms 
on U a~ satisfying conditions (i)-(iv) of the proposition, into an operator 
[t] 0 d 0 ~-1, acting on r-forms (old definition) on 4>(U), and satisfying 
condition'Sli)-(iv) of theorem 0.3.12. Since 0.3.12 guarantees the existence 
of such an operator, we conclude the existence of d as well. 

There remains to see that dw is of class C p - 1 if w is of class CPo This 
follows from 5.2.2.3,0.3.12 and the fact that (leaving U out of the notation) 

[t](dw) = d ([t]w) . o 

5.2.9.2. Proposition. If X and Yare manifolds and f : X -+ Y a mor
phism, we have 

5.2.9.S do r = rod, 
that is, the following diagram commutes: 

5.2.9.4, 

Proof. This follows from 5.2.9.1, 5.2.4.3 and 0.3.13. o 

5.2.9.5. Example. If Y is a submanifold of X and w E Ol(X), the restric
tions 5.2.5 satisfy 

5.2.9.6 d(wlY) = (dw)ly· 

5.2.9.1. Local expression. If (U' 4» is a chart on X and wE Ol(X), it follows 
from conditions (i)-(iv) that 

5.2.9.8 d( L WI dXI) = L dWI J\ dXI. 
I I 

5.2.10. Continuous families of differential forms. We now extend 
0.3.15 to the case of manifolds. 

5.2.10.1. Definition. Let X be a manifold of class cq andp an integer such 
tha 0 :::; p :::; q-l. A continuous, one-parameter family ofCP forms of degree 
r on X is a pair (I, a), where I c R is an interval and a : I X X -+ ArT* X 
satisfies the following conditions: 



154 5. Differential Fonns 

(i) po 0: : I X X -+ X is the canonical projectionj 
(ii) for every chart (U,4» on X, the map 00: : I x 4>(U) -+ Ar(Rn)* 

(5.2.2.2) satisfies definition 0.3.15.1. 

5.2.10.2. Of course it's enough to check (ii) for the charts in one atlas. 

5.2.10.S. If I is open and 0: E CP(I X Xj T* X), condition (ii) is automati
cally satisfied. 

5.2.10.'. If I = [a, b], we define f: O:t dt by 

(lb O:tdt)(x) = lb o:(t,X)dtE ArT;X, 

in the sense of 0.4.7. It follows from 0.3.15.5 and 5.2.10.1(ii) that f: O:t dt E 
l1;(X). 

5.2.10.5. Proposition. If 0: is a continuous family of differential forms of 
class C 1 we have 

Proof. This follows from 0.3.15.6 by taking charts (d. the proof of 5.2.9.1). 
o 

5.2.10.6. Lemma. Let X and Y be CP manifolds, and F : [0,1] X X -+ 

Y a map. Denote by Ft the map X 3 x 1-+ F(t, x) E Y, and by TF : 
[0,1] X T X --+ TY the map such that TFI{t}XTX = T(FtJ. Assume that 
Ft E CP(XjY) for every tE [0,1], and that TF E CO([O, 1] X TXjTY). 

Then, for every 13 E 11;_1 (Y), the pair ([0,1], t 1-+ Ft 13) is a continuous 
family of Cp-1 differential forms on X. 

Proof. Continuity being a local property, we start by fixing (to, x) E [0,1] X 

X and finding a chart (U, 4» at x, a chart (V,,p) at f(x) and an e > Osuch 
that Ft(U) C V for every t E [to - e, to + e]. This is possible because 
T F, and consequently F, are continuous, so F-1(V) is open in [0,1] X X 
and, by the definition of the product topology, we can find e such that 
[to - e, to + e] X U C f-1(V). 

Now transfer F[to-.,toH)XU and f3lv to open sets U' E O(RTn) and 
V' E O(Rn) by means of the charts (U,4» and (V, ,p), respectively. By 
5.2.4.3, we'll be done if we prove the lemma for the particular case of 
open submanifolds of Rm and Rn, a map G : [0,1] X U' -+ V', a form 
-y -+ !1;-1 (V'), and a family t 1-+ G:-y in the sense of 0.3.7. 

By 2.5.26.1, the map TG is just the pair (G t , G~). By condition (ii) we 
have 

G~ E CO([O, 1] X U'j L(Rmj R n )), 

which shows that t 1-+ G:-y is a continuous family of Cp-1 forms (0.3.15.1), 
since G;f3= (G~)*(f3oGtl (apply 0.3.7.1). 
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5.3. Volume Forms and Orientation 

5.3.1. Our purpose is to define orientation on abstract manifolds. As in 
0.1.13, we want to orient each T",X, for x EX, but in such a way that the 
choice is continuous. The definition in 0.1.13 indicates that we should use 
differential forms. 

5.3.2. Definition. Let X be ad-dimensional OP manifold, with p ~ 1. A 
volume form on X is a nowhere vanishing d-form w E og{X) on X. 

5.8.3. We have w{x) E AdT;X \ {O}, so w{x) determines an orientation 
for T",X, and the map x 1-+ w{x) is continuous. We can associate to w{x) 
an element of o (T",X) , but for now we cannot talk about the continuity of 
the map thus defined. This will be possible when we give 

u ({x} X O{T",X)) = O{X) 
",ex 

a differentiable structure (5.3.28). For now we work using volume forms 
only. 

5.3.4. Definition. Two volume forms wand w' are called equivalent if 
w'{x) = f{x)w{x), with f{x) > 0 for every x EX. 

This is the same as saying that w{x) and w'{x) induce the same orienta
tion on T",X (0.1.13). 

5.3.5. Definition. An orientation for X is an equivalence class of volume 
forms; the choice of such an equivalence class makes X oriented. A manifold 
X is called orientable if it can be oriented, and non-orientable otherwise. 

5.8.6. There exist non-orientable manifolds, for example, the Mobius strip 
(the reader should try to show this fact heuristically, and perhaps also 
rigorously). For proofs of non-orient ability, see 5.3.18 and exercises 5.9.10 
and 5.9.11. 

Figure 5.3.6 

5.3. '1. Theorem. Let X be an orientable manifold. If X has Ie connected 
components, there are 2'" pouible orientations for X. 
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Proof. Let wand w' be orientations (orientations exist by assumption). 
We have w(x) = f{x)w'(x) for every x, where f is continuous because 
w, w' E og{X) (use 5.2.2.3). Thus the map 

x I--> sgn(t{x)) 

from X into the set {-1, + 1} (with the discrete topology) is continuous, 
and consequently constant on each connected component. Since there are 
k choices of sign, the total number of orientations is 2k. 0 

5.S.S. Examples of orientable manifolds 

5.S.8.1. Rd is canonically oriented by the choice of the (constant) volume 
form 

Wo = dXl 1\ ... 1\ dXd. 

5.S.8.2. If X be an orient able manifold, every open submanifold U of X 
is orientable. In fact, the restriction of a nowhere vanishing volume form 
wE og{X) to U is nowhere vanishing and lies in og{U) (5.2.5.1). 

5.S.8.S. If X and Yare manifolds and p : X -+ Y a covering map, the 
pullback p*w of a volume form w on Y is a volume form on X. For 5.2.4 
gives 

(p*w){x) = (Txp)*{w(p(x)))j 

since p is regular we conclude that Txp E Isom(TxXj Tp(x) Y), so (p*w)(x) t= 
o. 

In particular, an orientation on Y gives rise to a canonically associated 
orientation on X. 

5.S.8.(. A product manifold X X Y is orientable if and only if the factors 
X and Yare (see exercise 5.9.8). 

For other examples one can use the next lemma, which will be necessary 
for other purposes as well: 

5.S.9. Lemma. forms invariant under group of diffeos define form on quo
tient Let X be a manifold of class C q and G c Diff(X) a group of CP 
diffeomorphisms acting properly discontinuously without fixed points on X. 
If a E O~(X) is invariant under G, that is, if g*(a) = a for every 9 E G, 
there exists a unique f3 E O~(X/G) such that p*f3 = a, where p: X -+ X/G 
is the canonical map. 

The condition that a is invariant under G is also necessary: if p* f3 = a, 
it follows from 5.2.4.4 and the identity po 9 = P that 

(g* 0 p*)f3 = g* a = (p 0 g)* f3 = p* f3 = a. 

Proof. Take y E Y = X/G and x E p-l(y), and set 

5.S.9.1 f3(y) = ((Txp)-l)* a(x). 
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This makes sense because p is regular (2.4.9), so Txp E Isom(TxX; TyY) 
and (Txp)-l E Isom(TyY; TxX). We must show that ,B(y) does not depend 
on the choice of x. Choose another x' E p-l(y), and take g E G such that 
g(x) = x'. Since p(x) = (po g)(x), we have 

Tx(p 0 g) = Txp = Tg(x)p 0 Txg, 

so Tg(x)p = Txp 0 (Txg)-l and (Tg(x)p)-l = Txg 0 (Txp)-l, since Txg is an 
isomorphism. Since x' = g(x), we can write 

((TXlp)-l)* O(X') = ((Tg(x)p)-l)*(o(g(x))) 

= (Txg 0 (Txp)-l)* (o(g(x))) 

= ((Txp)-l r (g*(o)(x)) = ((Txp)-l r o(x), 

since 0 is invariant under G. This shows that ,B(y) is well-defined. 
We have 0 = p*,B by construction. There remains to check that ,B is of 

class CP if 0 is. This is done by applying 5.2.2.3 to charts on X/G of the 
form t/J = if> 0 p-l (cf. 2.4.9). 0 

5.S.10. Examples (of forms on quotient) 

5.1.10.1. The torus Td = Rd/Zd (cf. 2.4.12.1). By 2.4.7.1 Zd (as a group of 
translations of Rd) acts properly discontinuously without fixed points. The 
forms dXi defined in 5.2.7 are in O~ (Rd) for every i = 1, ... , d, and they 
are clearly invariant under Zd. Thus there exist on the torus d canonical 
one-forms, denoted by Wi (i = 1, ... , d), such that p* (Wi) = dXi. 

By 5.3.9 every form 0 E O;(Td) can be written in the form 0 = 2:1 0IWlJ 

where I = (ilJ"" i r ), WI = Wi. /\ ... /\ Wi. and 01 E CP(Td ). 

Notice, however, that there are no functions Yi : Td -+ R such that 
dYi = Wi (exercice 5.9.13). 

5.1.10.2. If 0 is a volume form on X, invariant under a group G that acts 
properly discontinuously without fixed points, there exists a unique volume 
form,B on X/G such that p*(,B) = o. This follows immediately from 5.3.9: 
since o(x) =I 0 and Txp is an isomorphism, we have ,B(y) =I 0 by 5.3.9.1. 

In particular, if X is orientable and admits an orientation invariant under 
G, the quotient X/G is orient able. This is the case of the torus Td, which 
is canonically oriented by W = WI /\ ... /\ Wd, in the notation of 5.3.10.1. 

5.S.11. Contractions. We will use contractions (0.1.18) to orient spheres 
and some projective spaces. Let e be a vector field on a manifold X (3.5.1); 
if X is of class CP, the class of e can be up to Cp-l. 

5.S.12. Definition and proposition. For every 0 E O~_dX), define the 
contraction of 0 bye as the form cont(e)o such that 

(cont(e)o)(x) = cont(e(x))(o(x)) 
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for every x E X. Then cont(e) maps 0;_1 (X) into o;=i (X). In addition 

cont( e)( a /\ f3) = (cont( e)a) /\ f3 + (_I)deg aa /\ (cont( e)f3) 

for every a, f3 E 0;_1 (X). 

Proof. The last assertion follows from 0.1.20. There remains to show that 
coIit( e)a is of class Cp-1. Using charts we reduce to the case X = U E 

O(Rn), a E !l;-dU) and e E Cp-1(Uj Rn). Then formula 0.1.19 shows 
that the map 

is bilinear, and we conclude by applying 0.2.8.3, 0.2.15.1 and the usual 
techniques of differential calculus. D 

5.S.1S. Here's an explicit way to calculate cont(e)a in the case r = d = 
dimX. Denote by {xd the local coordinates on U (5.2.8), and by 

aa :U--+TX 
Xi 

the vector fields on U such that 

{a~J i=1, ... ,d 

is the basis of TxX dual to the basis {dx.(x)}.=1, ... ,d of T;X, for every 
x E U. Each a/ax. is of class Cp-1 because its pullback by ¢-1 is the 
constant vector field e. E Rd on ¢(U). Similarly, if e is of class Cp-1, we 
have 

5.S.14 

where the e are Cp-1 vector fields on U. 
Now write alu = a dX1 /\ ... /\ dXd, using 5.2.8.2. By 0.1.22 and 5.2.7 we 

find 

5.S.15 

If a is a volume form we have a(x) :f- 0 for every x E U, and formula 
5.3.15 shows that: 

5.S.16. Corollary. A Cp-1 volume form a on X determines an isomor
phism between o:=i and the space of Cp-1 vector fields on X. D 
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5.3.1'1. Examples (of contractions) 

5.S.17.1. Let X be ad-dimensional CP submanifold of Rd+l, contained in 
an open subset U c Rd+l. Let e E Cp-1(Uj TU) be a vector field on U (in 
the sense of 3.5.1) such that e(x) ¢ TxX for every x E X. (Such a vector 
field may not existj it doesn't exist on a neighborhood U of a Mobius strip, 
for instance.) 

If Wo is the canonical volume form on R d+ 1, we have cont (e) Wo E n:_1(U). We claim that cont(e)wolx is a volume form on X. Clearly 
cont( e)wo Ix is continuous on X, since it is continuous on U. To show that 
it does not vanish on X, take x E X and a basis (e1,"" ed) of TxX. Then 
(e(x), 6, ... , ed) is a basis for TxRd+1, and we have 

(cont(e)wo)(e1, ... ,ed) = wo(e(X),e1, ... ,ed) # 0 

because Wo is a volume form. 
In section 6.4 we shall see that by taking e(x) to be a unit vector normal 

to X we can define a canonical volume form on oriented submanifolds of 
Rd+1. 

5.S.17.2. The sphere Sd c Rd+1. Take U = Rd+1 and let e be the vector 
field x 1--+ 0-1(x) E T Rd+l where 0 . T R d+1 -+ Rd+l is the canonical x :J:' :z::. x 

isomorphism defined in 2.5.12.3. By 5.3.17.1, u = cont(e)wlsd defines a 
canonical orientation for Sd. 

The explicit expression for u is easily calculated using 5.3.15: 

d+l 
~ ·1 ......... 

= .LJ(-1)'- x.dx./\···/\dx./\···/\ dXd+1 . 
• =1 

For Sl the expression is 

u(x, V) = x dV - V dx. 

u(x, V, z) = x dV /\ dz + V dz /\ dx + z dx /\ dV. 

5.S.17.S. Remark. The canonical form u is invariant under the action of 
SO(d + 1), the group of rotations of Rd+1, on Sd. This is clear because 
both e and Wo are invariant under rotations (if f is a rotation, we have 
f*(wo) = (det f)wo = Wo by 0.1.12). 

5.S.17.4,. Every curve is orientable. By 3.4.1, any curve is diffeomorphic 
to R or S\ and both of these are orientable (by 5.3.8.1 and 5.3.10.2, and 
using 2.6.13.1). 

We now use lemma 5.3.9 to pass from spheres to projective spaces. We 
have the following result: 
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5.3.1S. Theorem. The projective space pd(R) is orientable if and only if 
d is odd. 

Proof. Set s = - IdRHl Is" and consider the subgroup G = {Ids'" s} of 
Diff(Sd). The action of G on Sd is properly discontinuous without fixed 
points, and the quotient Sd IG is Pd(R) (2.4.12.2). In addition, 

s*a = s*(cont(';)wo) = cont(';os)(s*wo) = cont(s)(s*wo) 

= cont(s)(dets)wo = cont(s)(-l)d+l wo 

= (_l)d+l a. 

Thus a is invariant under G if d is odd; it follows from 5.3.9 that pd(R) is 
orientable. 

Now let d be even, and assume that pd(R) is orientable. Let () be a 
volume form on pd(R); the canonical map p: Sd -+ pd(R) gives a volume 
from 17 = p*(()) on Sd (5.3.8.3), which we can write as 17 = fa, where a 
is the canonical form on Sd and f : Sd -+ R* is continuous. On the one 
hand we have S*17 = s*(p*()) = (p 0 s)*() = p*() = 17 because po s = p, and 
on the other s*a = (-1)d+ 1 a = -a by the equation above; this implies 
f 0 s = - f, which is a contradiction because Sd is connected and f i= 0 
everywhere. 

5.3.19. The Klein bottle (2.4.12.4) is non-orient able: exercise 5.9.10. 

So far our only instrument to find out whether a manifold is orient able 
has been the definition, 5.3.5. We will now state a criterion involving charts. 

5.3.20. Definition. Let X and Y be d-dimensional manifolds, oriented 
by the volume forms a and {3, respectively. A diffeomorphism f : X -+ Y 
is said to preserve orientation if, for every x E X, we can write f* (3( x) = 
>.(x)a(x) with >.(x) > 0 (notice that we already know that >.(x) i= 0). 

For example, - IdRHl Is" : Sd -+ Sd preserves orientation if and only if 
d is odd. 

5.3.21. Proposition. Let X, Y, Z be oriented manifolds and f : X -+ Y, 
g : Y -+ Z orientation-preserving diffeomorphisms. The composition go f 
is orientation-preserving. 

Proof. This follows from the identity (g 0 1)* = f* 0 g* (5.2.4.4). 0 

5.3.22. Definition. Let X be an oriented manifold. A chart (U, 4» is said 
to be positively oriented if 4> E Diff(U; 4>(U)) preserves orientation (that is, 
the induced orientations on U and 4>(U), cf. 5.3.8.2 and 5.3.8.1). 
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5.3.23. Remark. Let (U, <p) and (V, tP) be positively oriented charts on 
an oriented manifold X. The coordinate change 

tP 0 <p- 1 E Diff(<p(U n V); tP(U n V)) 

preserves the canonical orientation of Rd. By 0.3.10.4 we have, for any 
u E <p(U n V): 

5.1.21.1 

Now let X be an oriented manifold and {(Ui, <Pi)} iEI an atlas on X such 
that each Ui is connected. Let s : Rd --+ Rd be the diffeomorphism defined 
by 

Replace each chart (Ui , <P.) that is not positively oriented by the chart 
(U, so <p), which is. This gives a new atlas on X, consisting solely of 
positively oriented charts. By 5.3.23 the coordinate changes <Pi 0 <Pi 1 now 

preserve the canonical orientation of Rd. Thus a necessary condition for a 
manifold to be orientable is that it have an atlas for which all coordinate 
changes preserve orientation. This condition is also sufficient: 

5.3.24. Theorem. A manifold X is orientable if and only if it has an 
atlas all of whose coordinate changes preserve orientation. 

Proof. Let {(Ui,<Pi)}iEI be such an atlas and {(Ui, <Pi, tPi)}iEI an associ
ated partition of unity. Let Wo be the canonical volume form on Rd. We 
claim that 

w = L tPi<piwo 
iEI 

defines an orientation on X. Since each <Pi and tPi is continuous, so is w, 
and there remains to show that w(x) =1= o. 

Take x E X, and choose io such that tPio (x) :I O. For i =1= io we have 

tPi<piwo(x) = tPi(X)(<pi 0 <pZ/ 0 <pio)*(WO)(x) 

= tPi(x)<pio ((<Pi 0 <pi;;1)*(WO)) (x). 

w(x) = (tPiO(X) + ~ tP.(X)J(<Pi 0 <pi;;1) 0 <pio(X) ) <pio(w)(x) . 
• ;t.o 

The factor in parentheses is a finite sum of non-negative terms, because 
J(<p. 0 <pi;;1) > 0 by 5.3.23.1, and one of the terms is strictly positive; thus 
w(x) =1= O. 0 
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5.3.25. Remark. Rigorously speaking, we should have written 

and, more importantly, established an analogue of 0.3.1004 for the new 
definition of differential forms (section 5.2). This concern is left to the 
reader. 

We now give yet another characterization for orientable manifolds. If X 
is a manifold, set 

5.3.26 x = O(X) = U {x} x O(T",X) 
xEX 

(disjoint union). Let p : X -+ X be the map that takes a E O(TxX) into 
p(a) = x. 

5.3.21. Theorem. Let X be a manifold of class CPo The set O(X) = X 
has a canonical CP manifold structure such that X is orientable and p : 
X -+ X is a double (i.e., two-fold) covering. 

Proof. We construct an atlas as follows. If (U, </» is a chart on X, let (iT, J) 
be defined by 

iT = {(x, a(x)) : x E U, a(x) E 0 (T",X) , (Tx</»*wo E a(x)} 

and J = </> 0 p. Here Wo is the canonical volume form and (Tx</»*wo E a(x) 
means that the orientation induced on TxX by (Tx</»*wo is exactly a(x). 

Let's check that the pairs (iT, J) form an atlas. The union of the iT is X: 
for w = (x, e) E X, take a chart (U,</» of X with U connected and x E U. 
If (T",</»*wo E e we have wE (iT, J)j otherwise w E (iT, ¢), where t/J = so</> 
is constructed as in the last paragraph of 5.3.23. 

Next, J(U) = </>(p(iT)) = </>(U) is open in Rd. Also, J : iT -+ </>(U) 
is bijective: it is surjective by construction and, if WI = (xl,6), W2 = 
(X2' 6) E iT are such that J(wd = J(W2), we get </>(p(wd) = </>(p(W2)), 
hence p(wd = p(W2) because </> is bijective, and again Xl = X2' Finally, 
since (T",</»*wo is in both 6 and 6, the two equivalence classes are iden
tical. 

There remains to show that if (iT, J) and (V, ¢) are charts on X, the 
map ¢ 0 J-l is a CP diffeomorphism between J(iT n V) and ¢(iT n O')j 
in particular, this requires checking that J(iT n V) is open in Rd. Take 
wE iT n V, and x = p(w). If Wo is the canonical volume form of </>(U n V), 
we see that (Tx</»*wo and (Txt/J)*wo lie in the same element of O(TxX), so 
J(t/J 0 </>-1) (</>(x)) > O. 

By continuity, there exists an open neighborhood W of x in U n V such 
that J (t/J 0 </> -1) 0 </> is positive throughout W. Since p-l (W) n iT c iT nO', 



3. Volume Forma and Orientation 163 

we have 

and, since ~ = 4> 0 p, we obtain 

4>(W) n 4>(U) c ~(fj n tT). 
But W is open in X, so 4>(W n U) is open in Rd. Thus, for every element 
~(w) E ~(fj n tT), there exists an open set 4>(W n U) such that 

~(w) E 4>(W n U) c ~(fj n tT), 

which shows that ~(fj n tT) is open in Rd. 
Finally, we can write 

;p 0 ~-1 = (1/1 0 p) 0 (4) 0 p)-t, 

whence 
N N_1 -1 

1/1 04> 14i(ii'nv) = 1/1 0 4> 1<I>(unv) , 

which shows that the coordinate change is of class CP, as desired. 

I I I P 
I I I 
Cu r~ ! ~op 
I I I 

t>t~ ~ :8 
iii 1 SO/ CU' ~v p ~~op 

Figure 5.3.27 

Before checking that X is separable and Hausdorff, let's show that X is 
orientable and a covering of X. Since 

J(;P 0 ~-1) = J(1/1 0 4>-1) > 0 

by the preceding calculation, 5.3.24 guarantees that X is oriented. Now 
consider th! map p : X -+!. If x E X and (U,4» is a chart at x, we !ave 
p-1(U) = U U U', where U is the chart associated with (U,4» and U' is 
the chart associated with (U, s 0 4», where s is as in the last paragraph of 
5.3.23. Also, fj and fj' are diffeomorphic to U by construction, and they 
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are disjoint because their elements have different orientations. This shows 
that p is a double cover. 

To show that X is a Hausdorff manifold, take w =I- w'. If p(w) =I- p(w'), 
we can take disjoint domains of charts U and U' on X, containing p(w) and 
p(w'), respectivelYj thus w E U, w' E U' and Un U' = 0. If p(w) = p(w'J, 
we have already seen that wand w' have disjoint neighborhoods, say U, 
the domain of the chart associated with some chart (U,4» on X, and U', 
the domain of the chart associated with (U, s 0 4». 

Finally, X is separable because X is and p : X -+ X is a double cover 
(3.1.7.1). [J 

5.3.28. Corollary. Giving X an orientation is equivalent to choosing a 
map f E GO(Xj X) such that po f = Idx. 

Proof. Let w be a volume form on X. For every x E X, set f(x) = (x, a(x)), 
where a(x) is the orientation on T",X determined by w(x). We have po f = 
Idx and f : X -+ Xj there remains to show that f is continuous. Let (U, 4» 
be a chart on X, positively oriented with respect to the orientation of X 
determined by w, and (U,~) the associated chart on X (see the proof of 
5.3.27). Theorem 2.3.2(iii) says that f is continuous if ~ 0 f 04>-1 is. But 
certainly 

is continuous! 
Conversely, take f E GO(Xj X) such that po f = Idx . We will show that 

X is orientable by using theorem 5.3.24. Let x E X and f(x) = (x, a(x)) E 

X. Then a(x) is an orientation on T",X, so we can find a chart (U,4» at 
x E X such that T",4> preserves orientation (that is, takes the orientation 
a(x) of T",X into the canonical orientation of T<I>(",) Rd). Let (U,~) be the 
associated chart on X. Since f is continuous, f-1(U) oU is open in X and 
contains x. Thus the set of pairs of the form 

(U n rl(U), 4> IUnJ- 1 (u)) 

is an atlas of X with the following property: if (U n rl(U), 4>l un /-l(U)) 

and (vnf-1(V), ,plvn/-1(V)) are two such charts and x E UnVnrl(U)n 
f- 1 (V), we have 

by 5.3.23, since T",4> and T",,p preserve orientation. Thus all coordinate 
changes in this atlas are orientation-preserving, and X is oriented. [J 

5.3.29. Theorem. A connected manifold X is non-orientable if and only 
if X is connected. 

Proof. We will use the following lemma, whose easy proof is left as an 
exercise (5.9.14): 
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5.3.30. Lemma. Let p : X -. X be a covering map and X' a non-empty 
connected component of X. The restriction pix' : X' -. p(X/) is a covering 
map. In addition, if X is connected, so is p(X/). 0 

We want to show that X is orientable if and only if X is disconnected. 
Assume first that X is disconnected, and let X' be a connected component 
of X. By the lemma, p : X' -. p(X/) is still a covering map, and p(X/), 
being a non-empty connected component of X, must be the whole of X. 
The multiplicity of the cover X' -. X is constant by theorem 2.4.4, non-zero 
because X' is non-empty, and < 2 because X' =I- X; thus pix' is actually 
a diffeomorphism, and we see that X is orient able by applying 5.3.28 with 
f = (plx,)-l. 

Conversely, let X be orientable. By 5.3.28 and its proof the map f : 
X -. X given by f(x) = (x, a(x)) is continuous, so f(X) is connected. 
But we cannot have f(X) = X, since p is a double cover; this shows that 
X has a non-trivial connected component, and so is disconnected. 0 

5.3.31. Remarks 

5.I.U.I. The antipodal map. There exists on X a canonical involution s, 
which associates to z = (x, a(x)) the pair s(z) = (x, ,8 (x)) , where ,8(x) 
is the orientation opposite to a(x). The map s is an orientation-reversing 
diffeomorphism (exercise 5.9.14). 

5.I.U.2. Let 0 be a density on a manifold X. There exists on X a canonical 
volume form a, defined by lal = p*o (exercise 5.9.14). 

5.3.32. Manilolds-with-boundary 

5.3.33. Definition. Let X be a d-dimensional manifold. A submanifold
with-boundary D of X is a closed subset D c X such that, for every xED, 
either 

(i) there exists an open subset U of X such that x E U cD, or 
(ii) X has a chart (U, rP) at x, with components rP(y) = ('1dY) , ... , '1d(Y)) , 

such that 
Un D = {y: Y E U and '1dY) $ O}. 

In the first case there is a chart (U, rP) at x with U c D. In the second 
case, we will use the shorter notation 

U n D = {(Xl", . , Xd) E U : xl $ O}, 
where Xl = '1l(X), ... , Xd = '1d(X) are the local coordinates. 

5.3.34. Consequences 

(i) In the first case, xED; here D is the interior of D, an open subset of 
X, of dimension d = dimX. 
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(ii) In the second case, x is in the frontier of D in X, since charts are hom
eomorphisms and points of the form (0, X2," ., Xd) lie on the frontier 
of Un D. We call this frontier the boundary of D, and denote it by 
aD. 

Finally, since D is closed, we see that the first case corresponds to charts 
associated with x E h, and the second case with those associated with 
xEaD. 

.. 

Figure 5.3.34 

5.3.35. Theorem. boundary of submanifold-with-boundary is a subman 
If D is a submanifold-with-boundary of a d-dimensional manifold X, the 
boundary aD is a (d - l)-dimensional submanifold of X. 

Proof. We will use the characterization of submanifolds stated in 2.6.15. 
For every x E aD there exists a chart (U, q,) centered at x and such that 
Un D = {y : Yl 50}, where Yl denotes the first component of q,(y), for 
Y E U. By 5.3.34 we have aDnU = Yll(O). Now the function Yl on U has 
nowhere vanishing derivative, being the composition of a diffeormorphism 
q, and the projection onto the first coordinate (5.2.6.3). Thus the conditions 
in 2.6.15 are satisfied. 0 

5.3.36. Theorem. boundary has canon orienta if X is orienta If X is an 
oriented manifold and D is a submanifold-with-boundary of X, the boundary 
aD has a canonical orientation. 

Proof. By 5.3.24 it is enough to start from a positively oriented atlas 
on X and construct an atlas on aD whose coordinate changes preserve 
orientation. We let this atlas be {(U n aD, q,lnD)}, where the (U, q,) are 
positively oriented charts satisfying 5.3.33(ii). That these charts form an 
atlas follows from 5.3.35; we have to show that the coordinate changes have 
positive determinant. 

Set t/J 0 q,-l : (Xl! ... , Xd) f--+ (h, ... , fd). Since 

q,(U n V n aD) C {oJ x R d - l and t/J(U n V n aD) C {OJ x R d-\ 

x, 
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we conclude that, for every point (0, X2, ., ., Xd) E 4>(U n V) the image 
1/J 0 4>-1 is also of the form (0,12, ... , Id)' Thus h (0, X2, ... , Xd) = 0, which 
implies ah/ax. = ° for i = 2, ... ,d. 

We conclude that, for V1 = 4>(U) n ({o} X R d - 1), 

ah ° 
aX1 
a12 

aid 
aX1 

° 
(0, ... ,0) 

= aa h (O, ... ,o)J((1/Jo4>-l)lvl)' 
Xl 

e2 

e, 

Figure 5.3.36 

But J(1/J 0 4>-1)lv1 is strictly positive by our choice of an atlas on X, 
and ah/axt{0, ... , 0) is non-negative because h(Xb"" Xd) is negative 
for Xl :5 ° and zero for Xl = 0. This shows that J (( 1/J 0 4>-1) IvJ > 0, and 
this jacobian is equal to 

showing that the coordinate changes of our atlas are orientation-preserving. 
D 

5.S.S7. EX8nlpies 

5.S.17.1. The closed ball B(O, 1) is a submanifold-with-boundary of Rd+1 

and its boundary is Sd. The canonical orientation that Sd has as the 
boundary of B(O, 1) coincides with the orientation it was given in 5.3.17.2 
(exercise 5.9.14). 

5.S.17 .2. Recall the notions of normal and unitary normal bundles intro
duced in section 2.7. We have NUX = a(N1X) and NUeX = a(NeX) 
(exercise 5.9.14). 
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5.4. De Rham Groups 

For simplicity we assume, from here till the end of the chapter, that all 
manifolds are Coo. We set 

5.4.1 W(X) = 0;;" (X). 

5.4.2. Definition. An r-from a is said to be closed if da = 0, and exact 
if there exists an (r - l)-form f3 such that df3 = a, where d is the exterior 
derivative (5.2.9.1). We denote the sets of closed and exact r-forms by 
Fr(X) and Br(X), respectively. 

This definition can be written 

5.4.3 

Since d2 = 0, it follows that Br(x) is a vector subspace of Fr(x). 

5.4.4. Definition. Let X be an n-dimensional (COO) manifold. For r = 
0, ... ,n we defined the r-th de Rham group of X to be the quotient 

5.4.5. Definition. Two closed forms a, f3 E Fr(x) are said to be homol
ogous if their difference is exact, that is, if they have the same image in 
the quotient Rr(X). 

5.4.6. Proposition. For every r, Rr is a contravariant functor from the 
category of Coo manifolds into the category of real vector spaces. This 
means that every morphism f E Coo (Xj Y) gives rise to an associated 
linear map j* : Rr(y) --+ Rr(x), in such a way that (g 0 1)* = j* 0 g* and 
(Idx )* = IdR,(x). 

Proof. Take a E Fr(y), which is equivalent to da = 0. By 5.2.9.3 we 
have do j* = j* 0 d, so d(j*a) = ° implies j*a E Fr(x). Similarly, if 
f3 E Br(y), there exists -y such that f3 = d-y, so j* f3 = j* (d-y) = d(j*-y) and 
j* f3 E Br(x). This shows that, if al and a2 are homologous closed forms 
on Y, the forms j*al and j*a2 are also homologous. In other words, j* 
is defined on the quotient Fr(y)/ Br(y) = Rr(y). 

It is clear that j* : Rr(y) --+ Rr(x) is linear and that the relations 
(g 01)* = j* 0 g* and (Idx)* = IdR,(x) hold (5.2.4.4). 0 

5.4.1. Corollary. If f : X --+ Y is a diffeomorphism, j* Rr(y)--+ 
Rr(x) is an isomorphism. 0 

This gives a necessary condition for two manifolds to be diffeomorphic, 
but this condition is by no means sufficient. For instance, we will see that 
S2d+1 and p2d+I(R) have the same de Rham groups for every r, but the 
two manifolds are not diffeomorphic. 
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5.4.8. Remark. It is not true that if I is injective r is surjective, as 
is the case when 1* denotes the transpose of a linear map. Similarly, I 
surjective does not imply r injective. See exercises 5.9.16 and 5.9.19. 

5.4.9. Examples 

5.(.9.1. Proposition. II X is a manilold with k connected components, 
RO(X) ~ Rk. 

Proof. FO(X) is the set of closed O-forms on X, or, by 5.2.9.1(iv), of 
functions 0 : X -+ R such that do = O. Such functions are constant on 
each connected component, so FO(X) ~ Rk by 5.2.6.6. 

On the other hand, BO(X) = to}, so 

RO(X) = FO(X)/{O} ~ FO(X) ~ Rk. 

5.(.9.2. Proposition. The group R1 (81 ) is canonically isomorphic to R. 

Proof. 8 1 is diffeomorphic to R/Z by 2.6.13.1j we must calculate R1 (R/Z). 
Let p : R -+ R/Z be the canonical projection. By lemma 5.3.9, applied 
to X = Rand G = Z acting on R by translations, we see that if 0 E 

0 1 (R/Z) = F1 (R/Z) the pullback p* 0 E 0 1 (R) is periodic of period 1, so 
p*o = I(t) dt, where I E Coo (Rj R) has period 1. 

We construct a map 0: F1(R/Z) -+ R by setting 

0(0) = i1 I(t) dt. 

If 0 E B1(R/Z), we have 0 = dg, whence p*o = p*(dg) = d(goh) = h'tdt, 
where gop = hand h has period 1. But 

i1 h'(t) dt = h(1) - h(O) = O. 

Conversely, if f01 I(t) dt = 0, there exists a function h such that I = h' and 
h has period 1: to wit, the function 

h(t) = it I(s) ds, 

since h(1) = h(O) = f0
1 I(t) dt = O. In terms of R/Z (using lemma 5.3.9 to 

carry out the transfer), this shows exactly that B1(R/Z) = 0- 1 (0), that 
is, the image of 0 is isomorphic to F1(R/Z)/B1(R/Z) = R1(R/Z). 

There remains to show that 0 is surjective. Since f3 = dt E F1(R) has 
period 1, we see again by lemma 5.3.9 that there exists 0 E F1(R/Z) such 
that p* 0 = f3 and 

0(0) = i1 dt = 1 =1= o. o 
A completely different proof of 5.4.9.2 will be given in section 5.8, and yet 
another in 7.2.1. 
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Recall that we mentioned in 4.2.24.2 the real cohomology groups Hr(x) 
(r = 0,1, ... , dim X) of a compact manifold X. We have the following 
result, which relates the Hr(x) with the Rr(x): 

5.4.10. Theorem (de Rham). Let X be a compact manifold. For every 
r ~ dim X we have Rr(x) ~ Hr(X). This isomorphism is functorial. 

Proof. See [ST67, chapter 6], [Hu69, chapter 4] or [War71, p. 206]. D 

5.4.11. Corollary. If X is a compact manifold, dimRr(X) = br(X), the 
r-the Betti number of X (4.2.24.2). In particular, dimRr(X) < 00. D 

In the remainder of this chapter we will determine the de Rham groups 
of spheres, projective spaces and tori. Before laying out our plan of study, 
let's indicate in what way the notion of de Rham groups is connected with 
a classical problem in the differential calculus. 

If U is an open subset of R2, the vector space B1(U) = {df : f E 
Coo (U)} is called the set of total differentials on U. Let 0 E 0 1 (U) be 
given by 

o(x, 'I) = a(x, 'I) dx + b(x, 'I) dy. 

We want to find a necessary and sufficient condition for 0 to be a total 
differential, that is, for there to be a function f such that 

Bf 
a(x, 'I) = Bx and 

Bf 
b(x,y) = By' 

Since :x
2
Jy = ~2Jx (which is another way of saying that d2f = 0), a 

d ·· . h Ba Bb h . h necessary con lhon 18 t at By = Bx' t at 18, t at 

( Ba Bb) 
do = - By + Bx dx A dy = 0, 

or again that 0 E F1(U) be a closed form. 
In general, this condition is not sufficient. For example, take R2 \ {O} 

and 
x 'I 

0= dy - dx. 
x 2 + '12 x2 + '12 

Bf x 
By = x 2 + '12 ' 
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whence f(x, y) = arctan(yfx) + h(x) and 

af -y , -y 
ax = x2 + y2 + h (x) = x2 + y2' 

so that h'(x) = ° and h(x) = constant. But there is no way to define 
arctan(yfx) on U = R2 \ {a}: such a function would increase by 211" every 
time we go around the origin once. Thus Q is not an exact differential, and 
Bl(U) =f Fl(U), that is, Rl(U) =f {a}. (For a more rigorous proof, see 
5.6.4.) 

On the other hand, if U = ]0,1[2, for example, the function f works, 
and we have Rl(U) = {a}. More generally, we will show that if U is a 
star-shaped set in R d , all the de Rham groups Rr(u) are trivial for r > ° 
(5.6.1). This will be done by using the notion of the Lie derivative (section 
5.5). 

5.4.12. More about de Rham groups. Here is a guide to our further 
study of de Rham groups: 

(1) The fundamentalformula Le = docont(e) +cont(e) od (theorem 5.5.8); 
(2) Poincare's lemma (5.6.1); 
(3) Calculation of Rr(8d) and Rr(pd(R)) (section 5.7); 
(4) Calculation of Rr(Td) (section 5.8); 
(5) The isomorphism Rd(X) ~ R, for X an orientable, compact, con

nected, d-dimensional manifold (7.2.1). 

5.4.13. Remarks. Poincare's lemma says that locally all de Rham groups 
(except the O-th) are trivial. This no longer holds globally; thus (3), (4) 
and (5) above are reached by a process of globalization. 

The de Rham groups of the sphere are calculated by considering it as 
a union of two open sets diffeomorphic to Rd (and thus having trivial de 
Rham groups), and glued along a sphere of dimension one less. One then 
uses recurrence, starting with Rl(8 1 ) ~ R (5.4.9.2). The de Rham groups 
of real projective spaces can then be computed because the sphere is a 
double cover of projective space. 

The groups of the torus are found by a completely different, algebraic 
method: averaging a form Q E Fr(Td) under the transitive action of Rd 
on Td = R d f Zd. This leads to forms that are invariant under R d, hence 
constant. 

Fact (5) above is the fundamental result in degree theory, the topic of 
chapter 7. 

From (3) and (4) it follows, by corollary 5.4.7, that 8 d and Td are not dif
feomorphic. This result could be obtained more simply via the fundamental 
groups: 8 d is simply connected and Td isn't. But de Rham groups differ
entiate between 8 4 and 8 2 x 8 2 , for example, whereas fundamental groups 
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don't. To see this, apply the formula 

5.4.14 Rr(x X Y) ~ E RP(X) ® Rq(y), 
p+q=r 

which holds for compact manifolds (for a proof involving the essentially 
equivalent cohomology groups Hr(x X Y), see [Gre67, p. 198]). Then (3) 
gives R2(82 X 8 2 ) ~ R2, while R2(84 ) is trivial. 

Actually we will give in 6.3.3 another proof for the fact that 8 2 X 8 2 and 
8 4 are not diffeomorphic, as an application of Stokes' theorem. Although 
purely negative, this result is certainly not trivial: the skeptical reader is 
welcome to try his hand at it. 

5.5. Lie Derivatives 

5.5.1. Let X be a manifold (of class COO) and 1 an open interval in R, 
considered as a COO manifold. Let F E Coo (I X Xj X) and a E or (X) 
(recall the convention in 5.4.1). We associate to F the maps Ft : X -+ X 
defined by 

5.5.2 Ft(x) = F(t, x)j 

since Ft E COO (Xj X), we have Fta E or(x), whence a map t f-+ Fta from 
1 into or(x). 

5.5.S. Lemma. For every point x E X, the map t f-+ (Fta)(x) belongs to 
coo(/j Ar(TzX)*). Moreover, if we set 

a(Fta) a ((Fta)(x)) 
DFa = : x f-+ , 

at at 

we have (DFa)(t) E or(X) for every tEl. 

Proof. We just emulate the proof of lemma 5.2.10.6. With the same no
tation, but substituting 1 for [0,1], we get G~ E COO (I X utj L(Rmj Rn)). 
This means that t f-+ G;-y is differentiable, proving 5.5.3. 0 

This actually shows that t f-+ G;-y is continuously differentiable. Thus 
we can apply 5.2.10.5 to the family t f-+ (DFa)(t); since differentiation and 
integration are inverse to each other, we have proved the following fact: 

o 

5.5.5. Assume, in addition, that for every tEl we have Ft E Diff(X), and 
that Fo = Idx . The picture then is the same as in 3.5.14, and we obtain a 
COO vector field e on X. 
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If e does not depend on time, that is, if F is a one-parameter group 
of diffeomorphisms, e determines F, so DFa only depends on a and e. 
More generally, we will show that (DFa)(O) only depends on a and e(O). 
Intuitively, this follows from the fact that e(t, x) is the "first derivative of F 
at t", and from the assumption Fo = Idx . For the proof, we will establish 
an explicit formula (theorem 5.5.8), where DFa is expressed in terms of e 
and exterior derivatives only. 

5.5.6. Definition. Let 0 = EB or be a graded algebra. A derivation u of 
degree k is a sequence of linear maps U r : or -> or+k, for every r such that 
or+k exists, such that, for every a E or and fJ E 0", we have 

An antiderivation of degree k is a similar sequence such that 

U r+ " (a /\ fJ) = U r (a) /\ fJ + (-1) r a /\ U" (fJ). 

5.5. '1. Examples 

5.5.1.1. If X is a manifold, exterior differentiation d is an antiderivation of 
degree 1 of the graded algebra o*(X), according to 5.2.9.1(ii). 

5.5.1.2. Formula 5.3.12 shows that for every COO vector field e on X, 
contraction by e is an antiderivation of degree -1 of o*(x). 

5.5.1.S. Let U and v be antiderivations of degree 1 and -1, respectively. 
Then uov+vou is a derivation of degree 0 (this is immediate). In particular, 
if e is a Coo vector field on a Coo manifold X, the operator 

Le = do cont(e) + cont(e) 0 d 

is a derivation of degree O. 

5.5.1.(. Consider again a map F E COO (I x Xj X) such that Ft E Diff(X) 
for every t, and Fo = Idx . Recall the map DF(tO) : O*(X) -> O*(X), 
defined in 5.5.3 by 

We have 

DF(a A PH'o) ~ (a(F:~~ A p» L," ~ (a(F:(a)a; F;(P» L. 
by 5.2.4.2. Since the exterior product is bilinear, and we're differentiating 
with respect to t, we obtain, by 0.2.8.3 and 0.2.15.1: 

DF (a A PH'o) ~ (a(F~) a)) t," A F,: (P) +F,: (a) A ( a(F~:p» L,. ' 
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or finally 

DF( a 1\ f3) (to) = D F (a) (to) 1\ Ft: (f3) + Fto (a) 1\ D F(f3) (to). 

In particular, since F(O) = Idx, we get Fo = Ido*(x), so that 

5.5.1.5 

which shows that DF(O) is a derivation of degree O. 

5.5.S. Theorem. We have 

DF(O) = do cont(e(O)) + cont(e(O)) 0 d = Le(o)' 

5.5.9. Definition. The form Le(o)a defined in 5.5.8 is called the Lie 
derivative of a with respect to the vector field e(O). 

Proof of 5.5.8. The proof is analogous to the one used in 5.2.9.1 to show 
the existence of d. The idea is that the algebra 0'" (X) is generated (as 
an algebra) by OO(X) = Coo (X), and that Bl(X) = d(OO(X)). Examples 
5.5.7.2 and 5.5.7.5 show that DF(O) and Le(o) = docont(e(O))+cont(e(O))o 
d are derivations of degree 0 on O"'(X); if they coincide on OO(X) and on 
d(OO(X)), they will coincide on O"'(X). So this is what we must show first: 

5.5.9.1. Lemma. The derivations DF(O) and Le(o) coincide on OO(X) and 
on d(OO(X)). 

Proof. This amounts to saying that DFU)(O) = Le(o)U) and DF(df)(O) = 
Le(o)(df) for every f E COO (X). We first show that DF(O) and Le(o) 
commute with d, which makes equality for df a consequence of equality for 

f· 
We have seen (lemma 5.5.4) that d(DFa) = DF(da), that is, do DF = 

DF 0 d. As for Le(o), notice that, since d2 = 0, we have 

Le(o) 0 d = (d 0 cont(e(O)) + cont(e(O)) 0 d) = do cont(e(O)) 0 d, 

and do Le(o) expands to the same result. 
Now we show that Le(o) and DF(O) coincide on COO (X). Take f E 

Coo(X) and x E X. We have 

DFU)(O)(X) = (B(Ft f)(X)) 
Bt t=o 

by 5.5.3. Since f is a function, Ft f = f 0 Ft. If f3 denotes the curve 
t 1-+ Ft(x) = F(t, x) in X, we have 

DFU)(O)(X) = :t (J 0 Ft(x))(O) = BUB: f3) (0) = df(f3(O))(f3'(O)). 

Now f3(0) = x because Fo = Idx , and f3'(O) = e(O) by the definition of e 
(3.5.14). Thus DFU)(O)(X) = df(x)(e(O)). On the other hand, 

(Le(Olf)(x) = (d 0 cont e(O) + (conte(O)) 0 d)(j)(x). 
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Since I is a zero-form, we have cont(e(O)) I = 0, and 

(Le(o)/)(x) = (cont e(O) 0 d) (I)(x) = dl(x)(e(O)) 

175 

by the definition of contraction. This completes the proof of the lemma. 0 

Now we must show that 

for every a and every x EX. Fix x and choose a chart (U,q,) at x, as well 
as functions I, 9 E OO(X) such that 1= 1 on a neighborhood of x, both I 
and 9 are supported in U and 9 = 1 on supp I. Notice first that 

(DF(la)) (O)(x) = (DFa)(O)(x) and (Le(o) (la))(O)(x) = (Le(o)a)(O)(x); 

this is because DF(O) and Le(o) are derivations, (DF)(O)(X) = 0 (since I 
is constant in a neighborhood of x) and (Le(o)/)(x) = 0 (since Le(o)1 = 
cont(e(O))(dJ) and dl vanishes in an neiborhood of x). Thus it is enough 
to prove our equality for (3 = la. 

The advantage of this is that (3 can be written in the form 

(3lu = L (3;1 ... ;, dX;1 " ... " dx;" 
;1 <···<i, 

with supp (3;1 ... ;, C supp I (5.2.8.1). Unfortunately the functions x; are 
not defined on Xj but the gXi are, and, since d(gx;) = x; dg + 9 dx; and 

supp(dg) n supp (3;1 ... ;, C supp(dg) n supp 1= 0, 
we get 

(3 = L (3i1 ... ;, d(gx;J " ... " d(gx;r)' 
;1 <···<i r 

which proves the theorem. o 

Now we can calculate (DFa)(t) for every t. We introduce the maps }I'f. 
as in 3.5.12, and the family h 1--+ Ft+ha = Ft(F:·a). Since Ft, again for 
fixed t, commutes with differentiation with respect to h, we get 

(DFa)(t) = Ft (DF~a)(O)) = Ft(Le(t)a), 

by 5.5.9 and the definition of e(t). Whence the formula 

5.5.10 (DFa)(t) = Ft (d(cont(e(t))a) + cont(e(t))(da)). 

5.5.11. Theorem. Let F E COO(I x Xj X), where I C R is an open 
interval, be a one-parameter family 01 diffeomorphisms. If a E Fr(x) and 
la, bj C I, the pullbacks F;'a and F;a are homologous. In other words, 
Fa and Fb induce the same homomorphisms Rr(x) -+ Rr(x) on de Rham 
groups (5.4.6). 
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Proof. We have 

1i1* _ F* = jb a(Fta) d 
.l:b a aa a t. 

a t 

But 

a(F*a) 
att = (DFa)(t) = Ft(d(cont(e(t))a) + cont(e(t))(da)) 

by 5.5.10. Now da = 0 because a E Fr(x), and since d commutes with 
Ft, we have 

F;a - F:a = ib d(Ft(cont(e(t))a)) dt. 

An application of 5.2.10.5 gives 

5.5.12 

which shows that F;a - F:a E Br(X), that is, F;a and F:a are homolo
gous. 0 

5.6. Star-shaped Sets and Poincare's Lemma 

5.6.1. Poincare's lemma. If U is a star-sh.aped open subset of a finite
dimensional vector space E, we h.ave Rr(u) = 0 for every r > O. 

Proof. Let U be star-shaped at 0, that is, tx E U for every x E U and 
t E [0,1]. We consider the Coo family of diffeomorphisms F defined by 
F(t, x) 1-+ tx for every t E [0,1]. If a E Fr(U), 5.5.11 shows that F;a and 
F;'a are homologous for any a, bE ]0, 1[. 

u 

Figure 5.6.1 
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If we could show that this is still true for a = 0 and b = 1, we'd have 
proved that a is homologous to zero: for F;a = a because F1 = Idu , and 
Fa a = 0 because 

(Faa)(x)(6, ... , er) = a(O)(O· ell ... , o· er) = 0 

for every r > o. But we can't just extend to a = 0 and b = 1 for two reasons: 
Fo is not a diffeomorphism, and there is no e > 0 such that tx E U for all 
tEll,l+e[ andxEU. 

What we'll do is simply show that formula 5.5.12 still holds as a -+ 0 
and b -+ 1, by explicitly computing the right-hand side. First we must find 
e(t). Apply definition 3.5.14: the curve f3 going through x is 

t+s 
x f-+ -t-X, 

1 
so that e(t) = -x. Also (T.,(Ft))(e) = te for every e, so 

t 

Ft(cont(e(t))a)(x)(6, ... , er) = a(tx) (}x, t6,· .. , ter) 

= tr- 1a(tx)(x, 6,···, er) 

(notice that this is the form that comes out of the blue in [Car70, 1.2.13.2]). 
Thus, if r > 0, we have 

(Fba - F;a)(x)(6, ... , er) = d(ib tr- 1a(tx)(x, 6,···, er) dt) 

for every closed form a, every x, 6, ... , er and every [a, bl c 10,1[. The 
left-hand side approaches a as a -+ 0 and b -+ 1, and the right-hand side 
approaches 

d (i1 tr- 1a(tx)(x, 6, ... , er) dt)' 

This shows that a is homologous to o. o 

5.6.2. Remark. Even if a has compact support in U, the construction 
above for a form f3 such that a = df3 does not necessarily yield a form 
with compact support. In fact, we will see in 7.1.2 that such a form f3 
with compact support may not exist; we will find necessary and sufficient 
conditions for its existence in the case deg a = dim E. 

In section 5.7 we will need the following generalization of Poincare's 
lemma: 

5.6.3. Theorem. If U is a star-shaped open set in Rd and X is an arbi
trary manifold, we have Rr(u x X) !:::! Rr(x) for all r. 

Proof. We could just combine 5.4.14, 5.4.9.1 and 5.6.1, but we will instead 
give a proof that does not involve 5.4.14. For r = 0, just apply 5.4.9.1. 
So let r > 0, and assume that U is star-shaped at o. Let p : U X X -+ U 
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and q : U X X -+ X be the canonical projections and i the zero section, 
that is, i : X 3 x I--> (x,O) E U x X. As in the proof of 5.6.1, introduce 
G : [0,1] X U X X -+ U X X, by setting G(t, u, x) = (tu, x). The same 
argument used there shows that, for every closed form a on U X X, the forms 
a = Gia and Goa are homologous. But Go is just (u, x) I--> (0, x), that is, 
i 0 q. Saying that every closed form a is homologous to (i 0 q)* a is the same 
as saying that the induced homomorphism (ioq)* : W(Ux X) -+ Rr(ux X) 
is the identity. But (i 0 q)* = q* 0 i*, where q* : Rr(X) -+ Rr(U X X) and 
i* : Rr(u X X) -+ Rr(x), so q* 0 i* = Idw(uxx). On the other hand, 
i*oq* = Idw(x) because qoi = Idxj this shows that Rr(x) and Rr(ux X) 
are isomorphic. 0 

5.6.4. Corollary. We have 

Rl{R2 \ {O}) ~ Rl(R~ X SI) ~ Rl(SI) ~ Z. 

Proof. Using polar coordinates one shows that R2 \ {O} and R~ X SI are 
diffeomorphic (see 6.5.8 for details). One concludes by applying 5.6.3, 5.4.7 
and 5.4.9.2. 0 

5.7. De Rham Groups of Spheres and Projective 
Spaces 

5.1.1. Theorem. The de Rham groups Rr(sd) of the sphere are zero, 
except for RO(Sd) and Rd(Sd), which are isomorphic to R. 

Proof. Example 5.4.9.1 shows that RO(Sd) ~ R because Sd is connected. 
Example 5.4.9.2 shows that Rl (SI) ~ R. 

The idea of the proof is the following: let Nand S be the north and 
south poles of Sd. The stereographic projections iN and is, from the north 
and south poles, respectively, are diffeomorphisms between R d and their 
images (exercise 2.8.7): 

{ iN E Diff{Rdj U = Sd \ N), 
5.1.1.1 is E Diff{Rdj V = Sd \ S). 

Since Rd is star-shaped, its de Rham groups are trivial (5.6.1). From 
5.4.7 we get: 

5.1.1.2. Proposition. The de Rham groups of U and V, open subsets of Sd, 
are trivial. 0 

We next consider the open set Un V c Sd. Take (Yl, ... , Yd, u) E Un V j 
then u E ]-1,1[. Set Y = (Yl,"" Yd)j we have Y/IIYII E Sd-l, and the map 

5.1.1.S Un V 3 (y, u) I--> (u, II~II) E ]-1, 1[ X Sd-l 
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is a diffeomorphism between Un V and ]-1,1[ X Sd-1. Since ]-1, 1[ X 

Sd-1 has same de Rham groups as Sd-1 (theorem 5.6.3), we can work by 
induction on d, distinguishing between the cases 0 < r < d and r = d (since 
RO(Sd) is already known). 

5.'1'.1.4. First case: 0 < r < d (this implies d > 1). Consider first the 
case r = 1, d > 1. Take a E F1(Sd). By Poincare's lemma (5.6.1) 
and corollary 5.4.7, the restrictions alu and alv are exact, so there exist 
functions f E 000(U) and 9 E 0 00 (V) such that alu = df and alv = dg. 

On the open set U n V, these functions satisfy 

d((j - g)lunv) = (df - dg)lunv = (a - a)lunv = 0, 

so f - 9 is constant on Un V (which is connected, being diffeomorphic to 
]-1, 1[ X Sd-1 when d > 2). Thus we can match f and 9 by adding to 9 
the constant k that gives the difference f - 9 on U n V j that is, we can set 
1 = f on U and i = 9 + k on V. Clearly i is 0 00 on Sd, and its derivative 
is aj this shows that a is exact, and consequently that R1 (Sd) = 0 for 
d> 1. 

Now assume known that Rk(Sd) is zero for 1 :::; k :::; r - 1 < d, and 
consider Rr(sd) with r > 1 (which implies d> 2). 

IT a E Fr(sd), proposition 5.7.1.2 guarantees the existence of forms 
P E or- 1 (U) and 1 E or-1 (V) such that alu = dP and alv = d1. Thus 
d((P -1)lunv) = 0, whence 

(P -1)lunv E F r - 1(U n V). 

Since Rr-1(UnV) ~ Rr-1(]-I,I[ X Sd-1) by 5.7.1.3, an application of 
5.6.3 gives Rr-1(U n V) ~ Rr-1(sd-1). By the induction assumption, 
Rr-1(sd-1) = 0, and we conclude that (P -1)lunv is exact: there exists 
W E or-2 (U n V) such that (P - 1) lunv = dw. 

We now have information on the three open sets U, V and Un V. To 
match this information, we use a partition of unity subordinated to the 
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cover {U, V} of Sd. More precisely, pick a bump function I around sand 
supported in U (3.1.2), and form g = 1 - I. Clearly {(U, I), (V, g)} is a 
partition of unity subordinated to {U, V}, and I (resp. g) is equal to 1 on 
a neighborhood of S (resp. N). Now consider 

5.7.1.5 /i = 113 + g"f - dl /\ w. 

We have 113 E or-1(U) and g"f E or-1(V). In addition, dl and dg are 
supported in Un V, because I and g are constant on neighborhoods of s 
and nj thus dl/\ w makes sense, and belongs to nr-l(U n V). So in fact /i 
is an (r - l)-form on the whole of Sd, and we can write 

Now dl = -dg because 1+ g = 1, so 

d/i = dl/\ (13 - "f - dw) + I df3 + g d"f. 

On the other hand, (13 - "f)lunv = dw and df3 = o:lu, d"f = o:lv. Since I 
has support in U and g has support in V, we finally get 

d/i = (t + g)o: = 0:, 

which proves that 0: is exact, completing the induction step. 

5.7.1.6. Second case: Rd(Sd). We have seen (5.4.9.2) that Rl(Sl) ~ R. 
Suppose that Rd-l (Sd-l) ~ R and consider Rd(Sd). Taking 0: E Fd(Sd), 
we can find as in 5.7.1.4 two forms 13 E nd - 1 (U) and "f E nd - 1 (V) such 
that o:lu = df3 and o:lv = d"f, or again d((f3 - "f)lunv) = o. 

Now we have assumed that Rd-l (Sd-l) ~ R. Since Rd-l (U n V) ~ 
Rd-l(Sd-l) by 5.7.1.3 and 5.6.3, and Rd-1(U n V) is a one-dimensional 
vector space, there exists Wo E nd - 1 (U n V) such that 

13 - "f = kwo + do, 

where k E Rand 0 E nd - 2 (U n V). Using the same I and g as in 5.7.1.4, 
set 

5.7.1.7 

this makes sense because I and 13 are supported in U, g and "f in V and dl 
and 0 in Un V. Also /i E nd-1(Sd), and we have 

d/i = I df3 + g d"f + dl /\ 13 + dg /\ "f - dl /\ do 
= (t + g)o: + dl/\ (13 - "f - (13 - "f - kwo)) 
=o:+kdl/\wo. 

Thus 0: and k dl /\ Wo are homologous for every O:j this means that the class 
of dl /\ Wo generates Rd(Sd), which must have dimension at most 1. Since 
Sd is oriented, 6.3.2 implies that the dimension in 1. D 
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5.7.2. Corollary. The de Rham groups Rr{pd(R)) are zero, except for 
RO{pd(R)) and R2d+1{p2d+1(R)), which are isomorphic to R. 

Proof. Let s be the antipodal map on Sd, that sends (Xb"" xd+d to 
(-Xl,.'" -Xd+1)' Let p : Sd -+ pd(R) = Sd/{Idsd, s} be the double 
cover of pd(R) by Sd (2.4.11.2). Take a E Fr(pd)j the pullback f3 = p*a 
is in Fr(sd) by the proof of 5.4.6, and s*f3 = f3 because s*f3 = s* 0 p*a = 
(po s)*a = p*a. 

For r = 0 we have RO{pd(R)) ~ R by 5.4.9.1. 
For 0 < r < d we have Rr(sd) = 0, so for any f3 E Fr(sd) there exists 

'"1 E or-l(Sd) such that f3 = d'"1. Since s* 0 d = do s* (5.2.13), we get 
d(s*'"1) = s* 0 d'"1 = s* f3 = f3, and 

f3 = d ('"1+2s*'"1). 

Define 0 E or-l(Sd) by 0 = h + s*'"1)/2. Clearly d is invariant under the 
action of G = {Idsd, s}, so lemma 5.3.9 gives a unique e E n r - l (pd(R)) 
such that p*e = O. Then f3 = p*a = do becomes p*a = p*(de) (again 
because p* 0 d = do p*), and this implies a = de because Txp is an isomor
phism. This shows that a E r{pd(R)) is exact, so W{Pd(R)) = 0 for 
every 0 < r < d. 

There remains the case r = d. We have f3 = p*a E Rd(Sd) ~ Rj 
denoting by a the canonical volume form on Sd, we can find k E Rand 
'"1 E n d- l (Sd) such that f3 = ka + d'"1. Now s* f3 = f3 and s*a = (_l)d+l a, 
so f3 = (-l)d+ l ka+ d(s*'"1) , and 

f3 = k 1 + (-1) d+1 a + do, 
2 

where 0 = h+ s*'"1)/2 is invariant under the action of {Idsd, s}. 
If d is even, we have f3 = do, and there exists e E n d- l (pd(R)) such 

that a = de, which shows that Rd{pd(R)) = O. 
If d is odd, f3 = ka + do with s* 0 = OJ but also 

s*a = (_l)d+l a = a. 

Thus an application of 5.3.9 gives e E nd-l{pd(R)) and wE nd{pd(R)) 
such that a = kw + de, whence dimRd{pd(R)) ~ 1. By theorem 5.3.18, 
Pd(R) is orientable for odd d, so dim Rd{ pd(R)) = 1 by 6.3.2. 0 
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5.8. De Rham Groups of Tori 

5.S.1. Theorem. For every d and r, the de Rham groups of the torus are 

given by W(Td) ~ R(~), 

Here's an idea of the proof. Given a: E Fr(Td), we define the average Q 

of a: under the group of translations of Td. This average is invariant under 
translations and so must have constant coefficients. Invariant r-forms form 
a vector subspace Invr of Fr(x), which is isomorphic to Ar(Rd)* and 
consequently has dimension (:). Since a: and Q are homologous, Invr and 
Br(Td) span r(Td). Finally we show that Invr nBr(Td) = {O}, so Invr 

is isomorphic to r(Td)j Br(Td) = Rr(Td). 

Proof. Consider the Coo one-parameter group of diffeomorphisms of Rd of 
the form G t : (Xl' ... , Xd) 1--+ (Xl + t, X2, ••• , Xd)' By passing to the quotient 
we obtain a one-parameter group of diffeomorphisms of T d , which we still 
denote by Gt . For every t, s E R we have 

5.S.2 and 

N ow take a: E Fr (Td). Since G E Coo (R X Td j Td) we are in the situation 
of section 5.5, and we can introduce the average of a: under the action of 
Gt : 

5.S.3 p.I(a:) = 101 
G;a: d(J. 

This average satisfies p.da:) E Fr(Td) by 5.2.10.5 and is Gt-invariant for 
every t, that is, 

5.S.4 

This is because G; is linear and commutes with the integral sign, so we get 
by 5.8.2: 

G;(p.da:)) =G;(lo
l G~a:d(J) = 101 G;(G~a:)d(J= 101 

G;+lJa:d(J 

j t+l (I 
= t G;a:d(J = 10 G~a:d(J = p.da:)· 

5.S.5. Next we show that p.I(a:) and a: are homologous. By formula 5.5.12, 
we have 

G;a: - G~a: = G;a: - a: = d(Io
OO 

G;(cont(e)a:) dt) = df3t. 

Since the f3t also form a Coo family, it follows from 5.2.10.5 that 

p.da:) = 101 
G;a:dt= Iol(a:+df3tldt=a:+ 101 df3tdt=a:+d(lol f3tdt), 
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proving our claim. 
Now consider the Coo one-parameter group of diffeomorphisms H t : 

(Xl' X2,"" Xd) 1-+ (Xli X2 + t, ... , Xd) on Rd. By the same process used 
above we obtain a one-parameter group of diffeomorphisms Ht of Td and 
an average 

5.8.6 p.2(a) = il H; a dt 

such that H; (p.2(a)) = p.2(a) for every t and p.2(a) is homologous to a. 

5.8.'1. In particular, p.2(p.t{a)) is homologous to a because p.t{a) is. We 
claim that 1'2 (1'1 (a)) is invariant under both the H; and the a;. 

Invariance under H; is proved as in 5.8.4. For a;, notice that 

because the a; are linear. But it is clear from the definitions that the H. 
and the at commute, so a; 0 H: = H: 0 a;, and, by 5.8.4 and 5.8.6, 

We continue in this way, introducing the diffeomorphisms of Td derived 
from the translations (Xl,"" Xi, ... , Xd) 1-+ (Xl,"" Xi+t, ... , Xd), and the 
corresponding averages p.o(a). Then we consider 

5.8.8 

It follows as in 5.8.7 that 0 is homologous to a and invariant under all 
translations. Now recall the notation a = L:I aIwI introduced in 5.3.10.1. 
Since the forms WI are invariant under the action of a;, H;, etc., we 
conclude that the functions 01 such that 

0= LOIWI 
I 

are invariant under translation, that is, they are constants kI E R. 
The forms L:I kIWI, for kI E R, form a real vector space Invr having 

{WI: I = (ill"" ir)} as a basis. Thus Invr is isomorphic to Ar(Rd)*, and 
its dimension is (~. Also, Invr c Fr(Td), because dWI = 0 by example 
5.3.10.1. 

Saying that an arbitrary a E Fr(Td) is homologous to 0 E Invr is saying 
that Br(Td) and Invr together span Fr(Td). There remains to show that 
Br(Td) n Invr = 0. Assume a = df3 with f3 E nr-l(Td) and a E Invr. 
The averaging operator - makes sense whether or not f3 is closed, and it 
commutes with d by 5.2.10.5; thus 0 = df3 = dfj. But fj E Invr - l , so 
fj E Fr-l(Td) as shown above. This implies dfj = 0 and 0= a = O. 0 
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5.S.9. Remark. The same idea can be used to compute de Rham groups 
of several other manifolds operated on by compact Lie groups G. One 
needs to know the Haar measure d5 of G (see exercise 3.6.5), and use it to 
average forms a E F"(X): 

a= r g*ad5. JgEG 

As above, a is homologous to a and invariant under the action of G. 
For X = Sd and G = SO(d+ 1), for example, it is easily checked that the 

only non-zero forms a E O,.(Sd) invariant under G are constant functions 
(r = 0) or multiples of the canonical volume form (r = d). This gives 
another proof for 5.7.1, avoiding the reference to chapter 6. 

5.9. Exercises 

5.9.1. Let e be a one-form on S2. Assume that e is invariant under rota
tion, that is, s* e = e for any s E SO(3). Prove that e = o. 

5.9.2. What are the d-forms w on Sd such that s*w = w for every s E 
SO(d + 1j R)? (Hint: treat the case d = 3 first). 

5.9.3. What are the (d - 1)-forms on Rd such that sOw = w for every 
s E SL(d)? (Hint: treat the case d = 3 first. Recall that SL(d) = {f E 

Isom(Rdj R d) : det f = 1}.} 

5.9.4. Let X be a d-dimensional manifold. Denote by s : AdT* X --+ 

A dT* X the map that takes a into -a, and by N the zero section of A dT* X, 
that is, the set {o E A dT; X: x EX}. 

(a) Show that N is a closed submanifold of AdT* X. 
(b) Show that the group G = {IdAdT* x, s} acts properly discontinuously 

without fixed points on A dT* X \ N. 
(c) Denote by p : (A dT* X \ N) / G --+ X the map obtained from the canon

ical projection A dT* X --+ X by restricting and passing to the quotient. 
Show that a density on X determines a map 5: X --+ (AdT* X\ N)/G 
such that po 5 = Idx, and conversely. 

5.9.5. Consider pn(R), the n-dimensional projective space, with its 
canonical COO structure, and let 1T' : Rn+l --+ pn(R) be the canonical 
projection. Let a be a p-form (p ~ n) on Rn+l \ O. 

5.9.5.1. Show that a necessary and sufficient condition for the existence of 
a form f3 on pn(R) such that 1T'* f3 = a is that a can be written in the form 

a(x) = a' . (x)",' . (x) to···." 10""" , 
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where '7iooo.i p (x) stands for the differential form 
p 

~(-1)jx' dx· /\ ... /\ ([;:'. /\ ... /\ dx· L..J Ii '0 '1 'p' 
j=O 
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and each aiooo.i p is a function on Rn+1 \ 0, homogeneous of degree (-p- 1). 
(Hint: use charts, cf. exercise 2.8.30. To show sufficiency, do 5.9.5.2(c) 
first. ) 

5.9.5.2. Determine all forms ° having the property above, in the following 
cases: 

(a) n arbitrary and p = 0; 
(b) n = 1 and p = 1; 
(c) n=2andp=1; 
(d) n arbitrary and p = n. 

5.9.5.1. Show that if n is even every n-form on pn(R) vanishes at one point 
at least. Show that if n is odd there exist nowhere vanishing n-forms on 
pn(R). 

5.9.5.4.. Assume that p = 2q - 1, with 2q ~ n. Show that the 2q-form on 
Rn+l \ 0 given by 

where r2 = x~ + ... + x~ and Cioiloo.ip E R, can be written in the form 
01 = 71'* I'll where PI is a form on pn(R). 

5.9.5.5. Assume that n ~ 3. Let (aij)o~i,j~n be a skew-symmetric matrix 
whose entries are COO functions on R n +1 \ 0, homogeneous of degree -2. 
Show that the differential form on Rn+l \ 0 given by 

~ ( ~ aaml ~ aamj aaPI ) °2= L aijakl+2LaijXm-a-+ L xmxP - a- a 
i,j,k,I=O m=O xk m,p=O Xi xk 

X dXi /\ dXj /\ dXk /\ dXI 

can be written in the form 02 = 71'*1'2, where 1'2 is a form on pn(R). 
Express 1'2 in terms of the usual charts on pn(R) (exercise 2.8.30). 

5.9.5.0. Still n ~ 3. Let 03 be the form 

03(X) = r- 4 dxo /\ dXl 1\ dX2 1\ dX3 

on Rn+l \ o. Is there a form PIon pn(R) such that 71'* PI = 03? 

5.9.6. Let s be the antipodal map on S2. Show that the map (x, y) 1--+ 

(s(x), s(y)) from S2 x S2 into itself generates a group G of order two 
that acts properly discontinuously without fixed points. Show that the 
quotient manifold (S2 x S2)/G is orientable. Is the product P2(R) x P2(R) 
orientable? 
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5.9.7. Let 1 : Rd --+ R be a Coo submersion. Show that the manifold 
1-1(0) is orientable. 

5.9.8. Show that the product of two Coo manifolds is orient able if and 
only if each of the factors is. 

5.9.9. Show that the tangent bundle T X of any manifold X is orientable. 

5.9.10. Show that the Klein bottle is non-orientable. 

5.9.11. The Mobius strip 

(a) Show that the image of [0,411'] x [0, H in R3 under the map 

( B, r) ~ (cos B (1 + r cos ~) , sin B (1 + r cos ~) ,r sin ~ ) 
is a submanifold of R3. 

(b) Show that this manifold is not orient able. 

5.9.12. Let X and Y be manifolds and D c X a submanifold-with
boundary of X. Show that D x Y c X X Y is a submanifold-with-boundary 
of X X Y and that a(D X Y) = aD X Y. If E c Y is a submanifold-with
boundary of Y, is D X E c X X Y a submanifold-with-boundary of Y? 
(Write down the frontier a(D X E) anyway.) 

5.9.13. Show that there exists no function 1 on the torus Td satisfying 
dl = WI, where Wi is defined in 5.3.10.1. 

5.9.14. Prove in detail the results in 5.3.30,5.3.31.1,5.3.31.2,5.3.37.1 and 
5.3.37.2. 

5.9.15. Show that the direct sum R*(X) = 2::=0 Rk(X) of the de Rham 
groups of a d-dimensional manifold X has a canonical algebra structure. 

5.9.16. Let Y be a submanifold of a manifold X, and i : Y --+ X the 
canonical injection. Assume that there exists a Coo map r : X --+ Y such 
that r\y = Id \y. Show that i* : Rk(X) --+ Rk(y) is surjective for every k. 
Can there be such an r for the canonical inclusion Sd-l c Sd? 

5.9.17. Identify R4 with C 2 by (x, y, z, t) = (u. = x + iy, v = z + it), and 
let G be the group generated by 

( (2i7r) (2i7r) ) (u.,v) ~ exp ~ u. ,exp ~ v , 

for a fixed integer n > 0. Show that the action of G on S3 C R4 is properly 
discontinuous without fixed points. Set Y = S3/G; is Y orientable? Find 
Y for n = 1 and n = 2? Calculate Rk(y) for k = 0,1,2,3 and arbitrary n. 
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5.9.18. Compute the de Rham groups of the Klein bottle. 

5.9.19. Find counterexamples to illustrate 5.4.8. 
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CHAPTER 6 

Integration of Differential Forms 

We have seen that manifolds do not have a canonical mea
sure, but it can be shown (6.1.3) that there is a canonical way 
of integrating a d-form over an oriented d-dimensional mani
fold. This is a fundamental fact. It provides the framework 
for Stokes' theorem, an essential tool that relates submani
folds-with-boundary with their boundaries. 

The power of Stokes' theorem is illustrated by several ap
plications, for example: a sphere cannot be diffeomorphic to 
a product of manifolds (6.3.3); an automorphism of the disk 
must have at least one fixed point (6.3.5). 

N ext we define the volume of a submanifold of Euclidean 
space (section 6.5 and definition 6.6.3), thus generalizing the 
usual idea of arclength and surface area. We find explicit for
mulas for the volume of spheres and balls in any dimension 
(6.5.7). As an application to physics, we prove Archimedes's 
theorem (6.5.15). In addition, we use Stokes' formula in a 
proof of the isoperimetric inequality in arbitrary dimension. 

The last three sections are devoted to the volume of tubu
lar neighborhoods of manifolds embedded in Euclidean space 
(cf. chapter 2). This calculation is long and involved, and 
yields a formula (6.9.9) that expresses this volume in terms 
of integrals over the manifold of certain invariants, called the 
Weyl curvatures. In the case of curves the formula has only 
one term, and we get an explicit value for the volume. 
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6.1. Integrating Forms of Maximal Degree 

Let X be an oriented, d-dimensional manifold. If w E og(X) is a volume 
form (5.3.3) compatible with the orientation of X, there is a Lebesgue 
measure on X canonically associated to w, arising from the density Iwl 
(cf. 3.3.5 and 3.3.11). This Lebesgue measure is still denoted by Iwl. 

Now let a be a d-form. Since w(x) is non-zero for every x, there exists 
f: X -+ R such that a = fw (cf. the proof of 3.3.8). 

We want to say that a is integrable over X, and write a E 0fnt(X), if f 
lies in the space q~f(X) of functions on X integrable with respect to Iwl: 

6.1.1 

In that case we want to write 

6.1.2 

All of this will only make sense if it is independent of the volume form w. If 
w' E og(X) is another volume form, also compatible with the orientation, 
we have w' = hw, with h E CO(Xj R+) (5.3.4). In particular, Iw'l = hlwl, 
and 0.4.3.2 says exactly that 6.1.1 and 6.1.2 do not depend on the choice 
of w. 

6.1.3. Theorem and definition. Let X be an oriented, d-dimensional 
manifold. The 'Vector space 0fnt(X) is well-defined by equations 6.1.1 and 
6.1.2, and the map 

a 1-+ Ix a. 

is a real linear functional on this 'Vector space. The scalar f X a is called 
the integral of a o'Ver X. 0 

6.1.4. Examples 

6.1.'.1. If a E og(X) has compact support, the function f such that 
a = fw is continuous with compact support, hence integrable. Thus 
a E Ofnt(X). 

6.1.'.2. In particular, if X = Rd, the support of a E Og(Rd) is compact 
and w = dXl /\ ... /\ dXd (5.3.8.1), we have 

where a = fw and 60 is the Lebesgue measure on Rd. 

6.1.'.S. Let the orientation of X be determined by the choice of a volume 
form w. The form -w determines the opposite orientation, and we denote 
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by -X the same manifold with that orientation. Then a E nfnt(X) if and 
only if a E nfnt(-X), and 

ix a = - Ix a. 
In fact, if IE C!:,tlwl is such that a = Iw, we have a = (- I)(-w), whence 

! a= { (-!)I-wl=- ( Ilwl. 
-x ix ix 

6.1.(.(. Proposition. II X and Yare oriented manifolds and I : X --+ Y 
is an orientation-preserving diffeomorphism, r; E nfnt(Y) implies f* r; E 
nfnt(X), and 

Proof. Let w' be a volume form on Y compatible with the orientation 
of Y, and g : Y --+ R the function such that r; = gw'. Set w = f* w'. 
Since I preserves orientation, w is a volume form on X compatible with 
the orientation of X, and the associated densities satisfy 

f*lw'l= Iwl· 
We also have f* r; = J*(gw') = (g 0 I)(f*w') = (g 0 !)w. By definition, 

and 

now the proposition follows from 3.3.16. D 

6.1.(.5. Proposition. If X and Yare oriented manifolds and I : X --+ Y 
is an orientation-reversing diffeomorphism, r; E nfnt(Y) implies f* r; E 

nfnt(X), and 

Proof. This follows from 6.1.4.3 and 6.1.4.4. D 

6.1.(.6. Let X be an oriented manifold and (U., ¢i., 'I/J.) a partition of unity 
subordinate to positively oriented charts (U., ¢i.). Let a E ng(X) have 
compact support. We can write a = E. 'I/J.a, where only a finite number 
of 'l/Jia is non-zero because a has compact support. We have a E nfnt(X) 
by 6.1.4.1, and, by linearity, 

Now 'I/J.a is a form with compact support on the domain U. of the chart 
(U., ¢ii), and <P. : U. --+ ¢ii(U.) is a diffeomorphism. Since the chart is 
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positively oriented, 6.1.4.4 and 6.1.4.9 imply that 

r ,pia = 1 ,pia = r (.p;l)*(,pia) = r (.p;l)*(,pia). 
ix U; i",;(u;) iRd. 

Thus r 0.= L r (.p;l)*(,pia). 
ix i iRd. 

Notice that if we knew nothing about densities this formula could serve as 
a starting point to define f x a. 

6.1.4.1. Proposition. Let X and Y be oriented manifolds, of dimension d 
and e, respectively. Give X X Y its canonical orientation (5.3.8.4), and 
let p : X X Y ----> X and q : X X Y ----> Y be the canonical projections. If 
a E 0fnt(X), {3 E Oint(X) and p*a 1\ q* {3 E ot~e(x X Y), we have 

Proof. Let wand w' be volume forms on X and Y, respectively, and f and 
9 functions such that a = fw and {3 = gw'. We have 

p*a = (J 0 p)p*w, q* {3 = (g 0 q)q*w' 

and 
p*a 1\ q* {3 = (J 0 p)(g 0 q)p*w 1\ q*w'. 

Applying the results from 3.3.18 to the densities Iwl and Iw'l, we conclude 
that 

Ip*w 1\ q*w'l = Iwl ® Iw'l, 

the product measure of Iwl and Iw'l. 
By assumption, p*w 1\ q*w' is compatible with the orientation of X X Y. 

From 3.3.18.7 we get 

r p*al\q*{3= r (Jop)(goq)lp*wl\q*w'l 
i xxY i xxY 

= r (J 0 p)(g 0 q)lwl ® Iw'l 
i xxY 

= r f ( r (g 0 q) dlw'l) dwl 
ix i{x}xY 

= Ix fw [9W' = Ix a [{3. 0 

6.1.4.8. Proposition. Let X and Y be d-dimensional manifolds and p : X ----> 

Yak-fold covering. Assume Y is oriented and give X the orientation 
induced by p (5.3.8.3). If a E O~t(Y) we have p*a E O~t(X) and 

Ix p* a = k [ a. 
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Proof. Since continuous functions with compact support are dense in ct~i, 

we can restrict ourselves to the case that a E og(y) has compact support. 
Consider on Y a partition of unity (Ui , ¢i' ,pi) such that each (Ui , ¢d is a 
chart on Y and each inverse image p-l(Ui) is a union of pairwise disjoint 
open sets uf such that p: uf -+ Ui is a diffeomorphism (cf. 2.4.1, 2.4.4 and 
3.2.4). By construction, the restriction of p to uf preserves orientation. 

By 6.1.4.6, 

Since each p : uf -+ Ui is an orientation-preserving diffeomorphism, we 
have 

by 6.1.4.4, so that 

On the other hand, 

whence 

since ,pi 0 P is actually supported in p-l(Ui). The integral and the sum 
commute because the sum is locally finite and a has compact support, so 

k /y a = /xp*a 
because E,pi = 1 implies E ,pi 0 P = 1. o 

6.1.'.9. Proposition. Let X be an oriented manifold and U c X an open 
submanifold with the induced orientation. If a E 0fnt(X) we have alu E 

Ofnt(U) and 

i(a lu ) = Ix xua, 

where Xu is the characteristic function of U. 

Proof. If w is a volume form on X and a = fw, we have f E Cli~i(X)' Since 
Xu is measurable and bounded, Xu f is also integrable with respect to Iwl, 
hence also with respect to Iwllu [Gui69, p. 15 and 5J. The proposition 
follows from the equation alu = (xu f)(wlu). 0 
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6.1.'.10. Notation. Let X be an oriented manifold and D c X a compact 
set. If a E og(X), we have XDa E 0fnt(X), where XD is the characteristic 
function of D. We set 

6.1.'.11. Proposition (continuity of the integral). If t 1-+ a(t) is a con
tinuous family (5.2.10) of continuous d-forms on a compact, oriented, d
dimensional manifold X, the map t 1-+ Ix a(t) is continuous. 

Proof. Let (U" (p., tP,) be a partition of unity of X, used in applying defi
nition 5.2.10. By the last formula in 6.1.4.6 we have 

! a(t) = L r tP,a(t) = L r 4>;h(tP,a(t)), 
x , iu; , i",;(u;) 

and it is enough to show that each term is continuous. This follows from 
5.2.10.1 and 6.1.4.2. 0 

The formulas in 6.1.4.6 are interesting from the theoretical point of view, 
but for practical calculations it is preferable to use the following result: 

6.1.5. Theorem. Let X be a compact, oriented, d-dimensional manifold, 
and a a continuous d-form on X. Assume there exists a finite family 
{(U., Vi, T,)} of triples, consisting of open sets U, C Rd, compact sets Vi C 

U, and CP maps T, : U, --+ X such that the following conditions are satisfied: 
(a) U T,(Vi) = Xj 
(b) for each i, the difference Vi \ V. has measure zero, T,(V.) is open in X 

and T,lv; is an orientation-preserving diffeomorphism onto its imagej 

(c) if i and i are distinct, T,(V.) n Ti(Vi ) = 0. 
Then 

Figure 6.1.5 
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This is a long statement, but it expresses a simple result: one can com
pute the integral piecemeal, the pieces being open sets (generally domains 
of charts) that cover the whole manifold up to a set of measure zero. 

Proof. Since Vi \ Vi has measure zero in Rd and Ti is of class CP, the image 
Ti(Vi \ Vi) also has measure zero by 3.3.17.3. Thus Ui Ti(V. \ Vi) has measure 
zero and 

Ix ex = Ix\U; r;{V;\V;} ex = Iu; r;{V;}\U; r;{V;\V;} ex. 

But Vi is compact and Ti is continuous, so the image of the frontier is the 
frontier of the image: 

Thus we can remove the frontiers: 

Since the Ti (Vi) are disjoint, we have 

{ = L { . ex = L ~ Ttex. 
J x i Jr;(V;j i iv; -0 

6.1.6. Example: the latitude-longitude chart on the sphere (other 
examples of this nature can be found in physics books). Here X = 8 2 , 

and we apply 6.1.5 to the single triple (U, V, T), where U = R2, V = 
[-7r,7r] X [-7r/2,7r/2] and 

T: (.p,/J) 1--+ (cos.pcos/J,sin.pcos/J,sin/J). 

Greenwich 7 

e 

T -
-T 

Figure 6.1.6 

international date 
line = r(V \ V) 

v 
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We have r E COO (R2j 8 2) by 2.6.7 and V\ V has measure zerOj also, rlv 
is a diffeomorphism onto its image. (If 4> represents longitude with respect 
to the Greenwich meridian, r(V \ V) is the international date line, where 
the date changes if you move one inch.) If we consider 8 2 with its canonical 
orientation, r preserves orientation (5.3.20): the canonical volume form of 
8 2 is 

u = x dy 1\ dz + y dz 1\ dx + z dx 1\ dy 

(5.3.17.2), so t*u = cos9d4> 1\ d9 by 5.2.8.3, and cos9 is positive for 9 E 
1-'11/2, '11"/2[. 

By 6.1.5 we have, for every continuous function f on 8 2: 

r fu = fir flr/2 f(cos 4> cos9, sin 4> cos9, sin 9) . cos 9 ·ld4> 1\ d91, 
182 -Ir -Ir/2 

the Lebesgue measure on R2 being given by 00 = Id4> 1\ d91. 
For example, setting f = 1 we obtain the surface area of 8 2, which is 

f8 2 u = 4'11". See also 6.5.7. 

6.2. Stokes' Theorem 

6.2.1. Theorem. Let X be an oriented, d-dimensional manifold, w E 
nt-1 (X) a form on X and D a compact submanifold-with-boundary of X. 
If i : aD - X denotes the canonical injection, we have 

Iv dw= faD i*w. 

In particular, fD dw = 0 if aD = 0. 

Recall the definition of fD dw from 6.1.4.10, and that aD has a canonical 
orientation (5.3.36). In the notation of 5.2.5.1 Stokes' theorem can also be 
written 

ID dw = faD i*w. 

Stokes' theorem generalizes the classical formula f: /,(t) dt = f(b)- f(a): 
with D = [a, bl we get aD = {a} U {b}, where point a gets a minus sign 
and point b a plus sign. 

Proof. We do this in several steps. 

6.J.l.l. First step. We have 

Iv dw = Ix XDdw. 

Let {(Ui, 4>i, 9i)} be a partition of unity associated with charts (Ui, 4>i) 
which are positively oriented and (if they intersect D) of one of the two 
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types described in 5.3.34. The orientation of aD is such that the charts 
(Ui n aD, <foilaD) are positively oriented (5.3.36). 

Since D is compact, D n Ui =1= 0 for only finitely many indices i. Thus 

Ix XD dw = Ix XD d (Li ,piW ) , 

and the sum is finite. Since the operator d, integration over D, the restric
tion i* and integration over aD are all additive, it's enough to prove the 
theorem for w E ot-1 (X) with compact support contained in U, where 
(U, ¢) is a chart of one of the types in 5.3.34. 

6.2.1.2. Second step. Assume that w has compact support contained in U. 
Since ¢ : U -> ¢(U) is a diffeomorphism onto an open subset of R d, we can 
apply 6.1.4.4 to get 

! dw= r XDdw=l XDdw= r (r 1)*(XD dw) 
D Jx u Jq,(U) 

= r (XD 0 r1)(<fo- 1)*(dw). 
Jq,(U) 

Notice that XDO¢-l = X¢(D), that (¢-l)*(dw) is supported in U and that 
d commutes with (¢-1)*. Thus we can write 

and similarly 

Now <fo(aD) is contained in {a} X R d- 1 (5.3.33), so that 

r wlaD = r ((<fo- 1)*w)l{o}XRd-l' 
JaD J{O}XRd-l 

Setting a = (¢ -1) * w, we see that it is enough to prove the theorem for 
X = R d, a E Og(Rd) with compact support, and either D = Rd or D = 
]-00, o[ X Rd-1. In the first case aD = 0, in the second aD = {a} X R d- 1. 

6.2.1.S. Third step. Assume that D = Rd and aD = 0; we must show that 
f Rd da = O. Write 

d 

a = L ai dXi 1\ ... 1\ d? 1\ ... 1\ dXd 
i=l 

(5.2.7.2). Since a has compact support, we can find a closed cube Q such 
that suppa c Q; set Q = Q1 X Qd-1, where Q1 = [a,b] c Rand Qd-1 is 
a cube in R d- 1. 
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We have 

Q,xjx, ..... xA 

+-----~ ........ ~~ffl-''--.... (b, x, ..... X d) 

a b x, 

Figure 6.2.1.3 

On the other hand, 

1 ~al = al (b, X2, ... , Xd) - al (a, X2,' .. , Xd) = 0 
QIX{("'2""''''d)} Xl 

because the support of a does not intersect aQj thus 

r aaallwol = r aaal Iwol = o. 
iRd Xl i Q Xl 

197 

A similar argument shows that JQ ~Iwol is zero for every i, as we wished 
to prove. 

6.2.1.4,. Fourth step. Now assume that D = ]-oo,O[ X R d- l and aD = 
{O} x Rd-l. Again we consider a cube Q' such that suppa c Q', and we 
set 

Q = Q' n (R_ x R d- l ) = [a,O] X Qd-l' 

Expressing a as before, we will show that J Q ~ Iwo I = 0 for i = 2, ... , d. 
Indeed, if Qd-l = [a2' b2] x ... X [ad, bd], we find, as above: 

l bi aa· 
-a ~ (Xl!"" Xi-l! t, Xi+l!"" Xd) dt = ai(xl,"" Xi-l! bi, Xi+l,.··, Xd) 

ai XI 
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(X" ... ,xi _1,bi '\+1'''·' Xd ) 

\ 

l 

x, x, 

Figure 6.2.1.4 

But (Xl"", Xi-1, bi , Xi+1,"" Xd) and (Xl,···, Xi-1, ai, Xi+1,"" Xd) lie 
on 8Q' for every 

(Xl, ... , Xi, ... , Xd) E [a, 0] X [a2, b2] x ... x [a-;,b,:] X .. , x [ad, bd]; 

this implies 

showing that fQ ~Iwol = 0. 

For f" ~Iwol the calculation is different, because in general a non-zero 
term is left over: 

£1 ClO ~:~ IdX1 1) Idx2 1\ .. . 1\ dXdl 

= r (a1(0, X2, ... , Xd) - a1(a, X2, ... , Xd)) Idx2,"" dXdl· 
1Ql 

We still have a1(a, X2, ... , Xd) = 0, so that 

1. XDda= r adO,x2, ... ,Xd)ldx21\···l\ dxdl· 
Rd 1{O}XQd_l 

d ~ 

Since a = Li=1 ai dX1 1\ ... 1\ dx; 1\ ... 1\ dXd and dX11aD = 0, we have 

alaD = a1 (0, X2, ... , Xd) dX2 1\ ... 1\ dXd, 
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whence 

r XD da = r alaD = r alaD' 
lRd. l{O}XQd._l lRd.-l 

concluding the proof. o 

6.2.2. Remarks. One can define abstract manifolds-with-boundary and 
differential forms on them, and prove an appropriate version of Stokes' the
orem; see [Lan69, pages 437 and iiI. One can also prove a similar theorem 
about densities. Finally, there is a version of Stokes' theorem for "submani
folds-with-boundary" whose frontier is less regular than a codimension-one 
submanifold; see [Lan69, p. 459]. 

A theory parallel to the one developed above is built on the notions 
of chains on manifolds, their boundaries and integrals over them; Stokes' 
theorem can be translated into this language as well. See [Spi79, vol. I, 
chapter 8]. 

6.3. First Applications of Stokes' Theorem 

6.3.1. Proposition. Let X be a compact, oriented, d-dimensional mani
fold. For every form w E ot-1 (X) we have 

iw=o. 
Proof. X is submanifold-with-boundary of itself, with empty boundary. 0 

6.3.2. Corollary. If X is a compact, oriented, d-dimensional manifold, 
Rd(X) has dimension at least one. 

Proof. Let w be a volume form; since Ix w > 0, we cannot have w = da. 0 

6.3.3. Corollary. Let p and q be integers ~ 1. The sphere Sp+q cannot 
be homeomorphic to X x Y, where X and Yare orientable manifolds of 
dimension p and q, respectively. 

Proof. Since p ~ 1 and q ~ 1, we know that the de Rham group RP(Sp+q) 
is zero (5.7.1). If Sp+q were homeomorphic to X x Y, we'd have RP(X X 

Y) = 0 (5.4.7). We will show that this leads to a contradiction. Let 
p: X X Y -+ X be the canonical projection, and w a volume form on X. 
For fixed y E Y, the map p : X X {y} -+ X is an orientation-preserving 
diffeomorphism (assuming we have oriented X X Y accordingly). Thus 

0< r w = r p*wlxx{y}. 
lx lxx{y} 

But w is a form of maximal degree on X, so dw = 0 and 

d(p*w) = p*(dw) = 0, 
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and the hypothesis that RP(X X Y) = 0 would imply the existence of 
a E Op-1 (X X Y) such that p*w = da. This would entail 

{ p*wlxx{y} = { dalxx{y} = ( d(alxx{y}) = 0 
lxx{y} lxx{y} lxx{y} 

by proposition 6.3.1. o 

6.3.4. Proposition. Let D be a compact, non-empty, C 1 submanifold
with-boundary ofRd and V C Rd an open neighborhood of D. If I is a C1 
map Irom V into aD, the restriction IlaD cannot be the identity. 

Proof. Write I = (It, ... , Id), let i: aD -+ Rd be the canonical injection 
and Xl! .•. , Xd : Rd -+ R the canonical projections. Consider the integrals 

and 

If I were such that IlaD = IdaD , these two integrals would be the same. 
By Stokes' theorem we'd have 

Iv dX1 /\ ... /\ dXd = Iv dh /\ ... /\ did. 

The integrand on the right-hand side is identically zero, because for any 
m E V the d forms dh(m) = f*(dxi)(m) live in the (d - I)-dimensional 
space Ti(m)(aD), and so must be linearly dependent. But the left-hand 
side is the volume of D, hence strictly positive: contradiction. 0 

Intuitively, this says that a membrane cannot retract into its boundary 
without being punctured somewhere. 

6.3.5. Corollary (the Brouwer fixed point theorem). Let U be an 
open neighborhood of B(O, 1) in Rd. Any map g E C 1 (Uj R d) taking B(O, 1) 
inside itself has a fixed point in B(O,I), that is, there exists X E B(O,I) 
such that g(x) = x. 

Figure 6.3.5 
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Proof. By contradiction: assume that g(x) '! x for every x E B(O, 1). We 
can define a new map I on B(O, 1) by the following rule: I(x) is the unique 
point where the half-line originating at g(x) and containing x intersects Sd. 
More explicitly, I(x) = x + tu, where 

x - g(x) 
u= Ilx-g(x)II' t = -(x 1 u) + Vl- IIxl12 + (x 1 u)2. 

It is easy to see that I is actually defined and CIon a neighborhood of 
B(O, 1), and by construction its image is contained in 8B(0, 1) = Sd. This 
contradicts the proposition. 0 

6.S.6. Remark. Brouwer's theorem still holds for gECO(B(O, 1); B(O, 1)): 
see exercise 6.10.4. 

6.S.1. Proposition. Let D = B(O, 1) c R2. If e is a C l vector field on 
R2 such that, lor every x E SI = 8D, we have e(x) = AX with A E R:, 
there exists y E D such that e(y) = 0. 

Actually, e just has to be defined on an open neighborhood of B(O, 1). 
The existence of A < ° such that e(x) = AX means that all around SI the 
field is radial, pointing inward. 

Figure 6.3.7 

Proof. By contradiction. If e(x) '! ° for all x E B(O, 1), we can define 

e(x) 
rJ(x) = ~ 

on an open neighborhood U of B(O, 1). We have rJ E C l (U; SI). Let u be 
the canonical form on SI (5.3.17.2). Since rJ*u is a one-form on Rd, we 
can apply Stokes' theorem to R2 to get 

r (rJ*U)laD = ! d(rJ*ulaD) =! rJ*(dulaD)' 
laD D D 
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But du is a two-form and aD has d~ension one, so dulaD = 0 (cf. 5.2.5.2). 
On the other hand, the restriction of" to 8 1 = aD is the map x t-+ -x, 
so ,,181 is an orientation-preserving diffeomorphism. By 6.1.4.4 we get the 
contradiction 

r ,,*u= r u>O. J 8 1 J 8 1 

o 

Intuitively, this says that the integral curves of e (1.2.2) must converge 
to a point in D. Actually, this is not quite true; there may be periodic 
integral curves going around the fixed point, and the other integral curves 
will either spiral into a periodic curve or converge to the fixed point. What 
we can say is that the integral curves define a strict retraction of D into 
itself and that they must stop somewhere. 

6.S.S. Proposition. Let D = B(O, 1) C R2 and let E be the submani
fold-with-boundary obtained by removing from D a certain number q > 1 of 
pairwise disjoint open disks D i . If e is a C 1 vector field on R2 normal to 
aE and pointing inward, there exists y E D such that e(y) = o. 

Saying that e is normal to aE and points inward means that for every 
x E 8 1 = aD there exists >.(x) E R: such that e(x) = >.(x)x, and for 
every i = 1, ... , q and x E aDi there exists >'(x) E R+ such that e(x) = 
>.(x)(x - Xi), where Xi is the center of Di. 

Proof. We work as in the proof of 6.3.7 and get 

Figure 6.3.8 
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We can partition aE as 8 1 U Uf=1 aD., so that 

Since the map" : aD, -+ 8 1 is an orientation-reversing diffeomorphism, 
we have faD; "*CT = - fSl CT, while on the other hand fs; "*CT = fSl CT > O. 
Thus we obtain 0 = (1 - q) fSl CT, which is absurd if q =f 1. 0 

6.S.9. Remarks. For q = 1 the result is false (figure 6.3.8). 
In 6.3.7 and 6.3.8 it is enough to require that e E OO(D; R2) and e E 

OO(E; R2), respectively (exercise 6.10.4). It is also enough that e point 
inward (without being normal): see 7.4.19. 

6.4. Canonical Volume Forms 

Recall from 0.1.15.5 that an oriented Euclidean space F has a canonical 
volume form AF. If V is an oriented submanifold of E, its tangent space 
T", V at x E V admits a canonical volume form AT .. v, because T", V inherits 
from E a Euclidean structure and an orientation. Notice that here we are 
implicitly identifying T",V c E and T",V, the tangent space to the abstract 
manifold V, by means of fJ", (2.5.22.1 and 2.5.12). 

6.4.1. Proposition. Let E be a Euclidean vector.( or affine) space and 
V an oriented OP submanifold of E. There is a canonical volume form 
w E n~_1(V) on V, defined by w(x) = AT .. V for all x E V. 

Proof. To show that w is of class Op-1, consider positively oriented pa
rametrizations of V, that is, pairs (U, g) with U open in R" and g E 

Diff(U; g(U)). If{e1, ... , e,,} is the canonical basis of R", formula 5.2.4.1 
gives, for every u E U: 

(g*w)(u)(e1"'" e,,) = w(g(u)) ((Tug)(ed, ... , (Tug)(e,,)). 

Since U and g(U) are open subsets of vector spaces, each (Tug)(e.) is 
equal to ag/ax" up to isomorphisms identifying the tangent spaces with 
the ambient vector spaces. Thus we have, by 0.1.15.6: 

( ag I a g ) 
det ax. ax; . 

Now g is of class OP because V is, so 

IU.l.l g*w = det (::. I ::,.) dX1/\ ... /\ dx" E n~_dU). 
It immediately follows that w E n~_1 (V). o 
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6.4.2. Examples 

6.(.2.1. If V E O(Rd), we get w = Wo = (dXI /\ ... /\ dXd)lv. 

6.(.2.2. Let V = {(x,y,f(x,y)) : (x,y) E A} C R 3 , oriented so that 
the parametrization g : (x, y) 1-+ (x, y, f(x, y)) preserves orientation. If 
p = aI/ax and q = af/ay, we have 

ag 
ax = (1,0, p) and 

ag 
ay = (0,1, q), 

so the determinant of (a g I 
ax. 

ag ) . I -- IS equa to 
ax; 

1

1 + p2 
pq 

pq I = 1 + p2 + q2. 
1 + q2 

Thus, for this parametrization g and for the canonical volume form w on 
V, we have 

6.(.2.S g*w = VI + p2 + q2 dx /\ dy. 

For example, the integral of a function C(x, y, z) on V with respect to 
the measure associated with the density Iw I is given by 

i C(x, y, f(x, y))V1 + p2 + q2 dx dy. 

It makes sense to ask whether the canonical volume form just defined, 
applied to V = Sd C R d+ l , coincides with the canonical volume form on 
the sphere introduced in 5.3.17.2. The answer is provided by the following, 
more general, result (cf. figure 6.4.3): 

6.4.3. Proposition and definition. Let V be an oriented, codimension
one, C P submanifold of a Euclidean vector space E. The canonical normal 
vector field to V is the unique vector field II E CP-I(V;E) defined by the 
following conditions: 

(i) II(X) E Ox {{TxV).L ) for all x E V; 
(ii) 111I(x) II = 1; 
(iii) if {el' ... ,ed} is a positively oriented basis for Tx V, then {II(X), 0 x( ed, 

... , Ox(ed)} is a positively oriented basis for E. 

6.4.4. Remark. If DeE is a submanifold-with-boundary of an oriented 
space E and V = aD, we call II the pointing outward normal vector field 
(figure 6.4.3 and exercise 6.10.7). 

Proof. Conditions (i) and (iii) determine II(X) up to a positive scalar, so (ii) 
takes care of uniqueness. There remains to show that II is of class Cp-l. 
If w is the canonical volume form on E and (j the canonical volume form 
on V, we will show that 

6.4.5 (j = cont(lI)w. 
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v(x) 

J 
o 

Figure 604.3 

If this is true, v is C p - 1 by corollary 5.3.16, since u is C p - 1 and w is coo. 
In order to establish 6.4.5 it is enough to show that u and cont(v)w give 

the same result on one basis of T", V, since they are both volume forms on 
V (5.3.17.1). Let {e2, ... ,ed} be a positively oriented orthonormal basis 
for T",V. We have u(e2,"" ed) = 1 by 0.1.15.1 and 

(cont(v)w)(e2"'" ed) = W(O;l(v(x)), e2,"" ed), 

where {O;l(v(x)), e2, ... , ed} is a positively oriented orthonormal basis for 
O;l(E). Thus 

as we wished to prove. o 

6.4.6. Example. In 5.3.17.2 we took u = f(v)wo on the sphere Sdj this 
is then the canonical form introduced in 6.4.3. 

6.4. T. Computation of v 

6.'.1.1. If (U, g) is a positively oriented parametrization of a hypersurface 
V in a d-dimensional Euclidean space E, we have 

v= 

Here 1\ denotes the exterior product in AE and II . II the associated norm 
(0.1.15.1). In dimension three 1\ is just the cross product x. 

In particular, let 9 : (x, y) 1-+ (x, y, I(x, y)) be a parametrization for a 
surface V in R 3 , oriented so that 9 preserves orientation. Setting p = 
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a flax and q = a flay, we obtain 

( 
-p -q l) 

v = Vl + p2 + q2' Vl + p2 + q2' Vl + p2 + q2 . 

6.(.1.2. Lemma. Let S be an oriented surface in R 3 , with canonical volume 
form a and canonical normal vector field v = (VI' V2, V3). Denoting by 
x, y, z the coordinate functions on R 3 , we can write 

vIals = dy /\ dzls; v2als = dz /\ dxls; v3als = dx /\ dyls. 

Figure 6.4.7.2 

Proof. Let (el' e2, e3) be the canonical basis of R3 and Wo the canonical 
volume form. By 6.4.5 we have a = cont(v)(wo). In addition, VI = (e21 V), 
so that 

( VI V - e I I V) = Vl" V" 2 - (e 1 I V) = 0, 

that is, VIV - el is tangent to S. But vIa = cont(vIv)WO and dy /\ dz = 
cont(et}wo, so 

vIa - dy /\ dzl s = cont(vlv - et}wols. 

Thus for any two vectors a, bETS we have 

(vIa - dy /\ dz)ls(a, b) = WO(VIV - el, a, b) = 0 

because all three vectors on the right-hand side lie in the two-dimensional 
space TS. 0 

6.(.1.S. Remark. The relation vIals = dy/\dzls is exactly the infinitesimal 
version of the formula that says that the orthogonal projection of a plane 
onto another multiplies areas by cos a, where a is the angle between the 
planes. 
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6.5. Volume of a Submanifold of Euclidean Space 

6.5.1. Definition. Let E be a finite-dimensional Euclidean space, V an 
oriented, d-dimensional submanifold and (1 its canonical volume form. The 
volume of V (or area if d = 2, or length if d = 1) is the (possibly infinite) 
integral Iv (1, which we denote by vol(V) (or area(V), or leng(V)). 

This makes sense, because the integral is Iv 1(11 and the function 1 is 
positive. 

6.5.2. Remarks. If V is an open submanifold of E, vol(V) is finite if V 
is relatively compact. The converse doesn't hold. 

leng(V) = 00 

area(V) < 00 

Figure 6.5.2 

If dim V < dim E we can have V relative compact and vol(V) 00. 

Example: E = R2 and V asymptotically approaching a circle. 

6.5.3. The case of curves. An elementary definition for the length of a 
curve (]a, b[, 0) is the upper bound of the lengths of inscribed polygonal 
curves. It can be shown [Dix68, chapter 53] that this number is equal to 

On the other hand, if 0 is a diffeomorphism onto its image V, the length 
introduced in 6.5.1 is r (1= r 0*(1, 

J v Jja,b( 

where (1 is the canonical volume form on V. But 0*(1 = 1101(t)11 by 6.4.1.1, 
so the two notions coincide. 

In fact, the elementary notion can be applied also to arcs of curve, which 
are defined on closed intervals [a, b]. (It no longer makes sense to talk about 
o being a diffeomorphism.) It is clear that the length of such an arc is the 
same as the length of the curve obtained by omitting the endpoints. 
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6.5.4. Caution. For d ~ 2 the comments above no longer hold. Already 
for d = 2, the area of V is not the upper bound of the areas of polyhedra 
inscribed in V. For a counterxample, consider the Chinese lantern in the 
figure: given a fixed cylinder, we can inscribe in it polyhedra with arbi
trarily large area. (The reader should work out the details: the trick is to 
increase the ratio between the number of layers and the number of sides of 
the polygons.) 

Figure 6.5.4 

6.5.5. Volwne of balls and spheres. It is easy to show (6.10.17) that 
vol(Bd(O, r)) = rd vol(Bd(O,l)) and vol(Sd(r)) = r d- 1 vol(Sd(l)) (see 
0.0.3 for notation). We also have the following result, which will follow 
from 6.9.13 or 6.5.9, but can be proved already using Stokes' theorem: 

6.5.6. Lemma. vol(Bd+dO, 1)) = -d 1 vol(Sd). 
+1 

Proof. Let 

(5.3.17.2) and Wo = dXl 1\ ... 1\ dXd+l be the canonical volume forms on 
R d+1 and Sd, respectively. By Stokes' theorem, we have 

vol(Sd) = (d + 1) r Wo = (d + 1) vol(Bd+dO, 1)). 0 J Bd+l(O,l) 

6.5.7. Theorem. 

2d+1 d 
vol( S2d) = 1r 

1 x 3 x ... x (2d - 1) 
and 

6.5.S. Lemma. 
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Proof. We introduce spherical coordinates, that is, the map f : R+ X Sd 1-+ 

Rd+l \ 0 defined by f(t,x) = tx. This map is an orientation preserving 
diffeomorphism (immediate). We claim that it also satisfies 

6.5.9 

where Wo and u denote the canonical volume forms on Rd+l and Sd, respec
tively. (Actually dt/\u stands for p*(dt) /\q*(u), where'p: R+ X Sd -+ R+ 
and q : R+ X Sd -+ Sd are the canonical projections.) 

To prove 6.5.9, embed Sd in Rd+1 and consider the submanifold 

R+ x Sd C R+ X R d+1 C R X Rd+1. 

Thus f is the restriction to R+ X Sd of the map j E Cco (R X R d+1 ; R d+1) 

given by j(t, x) = tx. Since these are all vector spaces, we can work with 
formula 5.2.8.3. For a change, let's use coordinates (t, Xl! ... , xd+d E 
R X Rd+1. We have 

Wo = dXl /\ ,., /\ dXd+l 

and j(t, xl, ... , Xd+d = (tXl,"" tXd+d. By 5.2.8.3 and 5.3.17.2, 

J*wo = d(txd /\" '/\ d(txd+d 

= (Xl dt+ tdxd /\" '/\ (Xd+1 dt+ tdXd+d 
= td+l dXl /\ .. '/\ dXd+l 

+ tddt /\ (2;:(-I)'Xi dXl/\" '/\;;:;'/\" '/\ dXd+1) 
• 

But wols<l = 0 by a dimension argument (5.2.5.2), which proves 6.5.9. For 
a proof without the use of coordinates, see 6.10.26. 

Now consider the function g : Y -+ e- llyll ' on Rd+1 \ 0, which is Cco. We 
have (g 0 f)(t, x) = e- t ' ; applying 6.1.4.4 and Fubini's theorem (0.4.5.1), 
we get 

r e-11yll'wo= r e-t'tddt/\u 
JRH1\O JR~XSd 

= (foCO e- t ' td dt) (l<l u) = vol(Sd) foco e- t ' dt. 

On the other hand, {o} has measure zero in R d+ 1, so 

r e-llyll' Wo = r e-(y~+,,·+y~+tl dYl /\ ' , , /\ dYd+1 
JR<l+l\O JR<l+l 

= g (i:CO e-Y? dYi ) = 2d+l (foCO e-t' dt) d+1 
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Setting Id = 1000 e- tl t d dt for every integer d ;::: 0, we get 

which proves lemma 6.5.8. 

Proof of 6.5.7. We start by calculating 10 and II' We have 

1 

2 

o 

On the other hand, the length of the circle is leng(Sl) = (210)2/11 = 21r 
(exercise), so 10 = .,fir/2. 

For d arbitrary, we use recurrence. Integrating by parts, 

This gives 

1 3 2d - 3 2d - 1 
I 2d= _. _ ... --_. ---10 

2 2 2 2 
and 

or again 

and 

.,fir I 2d = 1 x 3 x ... x (2d - 1) x --
2d +1 

d! 
I 2d+1 = 2' o 

The values of Id are classic and often expressed in terms of the gamma 
function; thus the volumes of balls and spheres, too, can be expressed in 
terms of the gamma function. 

6.5.10. Proposition. Let V and W be oriented submanifolds of finite
dimensional Euclidean spaces E and F, respectively. We have 

vol(V x W) = vol(V) x vol(W). 

Proof. In the notation of 6.4.1, the canonical volume form on V x W is 
defined by w(v,w) = ).T(v,w)(VxW) for every v E V and w E W. But 
T(v,w) (V X W) is canonically isomorphic to Tv(V) x Tw(W), and 

).T(v,w)(VxW) = ).T.(V) 1\ ).Tw(W) 

(cf. 2.5.18 and 3.3.18). The result now follows from Fubini's theorem 
(0.4.5.1). 0 
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6.5.11. Example. The torus Td = (81 (Jet) ) d C R2d (2.1.6.3) has vol-

ume (Y.rr. 
This is the volume of one particular embedded torus. Let's look now at 

the abstract torus Td = Rd /Zd. The canonical volume form Wo on Rd is 
invariant under Zd (5.3.10.2) and defines a canonical volume form won Td. 
Let's define the volume of Td as IT" w. I claim that 

r w = 1. 
JT " 

In fact, let p : Rd -+ Rd/Zd be the canonical covering map. If Q = 
10,I[d is the open unit cube, p : Q -+ p(Q) is an orientation-preserving 
diffeomorphism. Then p·w = wlQ by 5.3.10.2, and 

1 = /Qwo = £ Wo = £ p·w = i(Q) w 

by 6.1.4.4. Since p(Q) = Td and Q\ Q has measure zero, we get 

£(Q) w = £(Cil w = L" w = vol(Td
). 

6.5.12. Centers of mass. Let D be a compact submanifold-with-boundary 
of an oriented, Euclidean, finite-dimensional vector space E. Let Wo be the 
canonical volume form on E, and denote by Iwol the associated density as 
well as the measure derived from it. If XD is the characteristic function of 
D and f : E -+ F is a continuous function into a finite-dimensional vector 
space F, we have XDf E q~!I(E) in the sense of 0.4.7. So we set 

6.5.13 In fwo = LXDflwol. 

In particular, I D IdE Wo makes sense because IdE : E -+ E is continuous. 

6.5.14. Proposition and de.ftnition. Let D be a compact submanifold
with-boundary of an affine space E. Fix an origin, an orientation and a 
Euclidean structure for E, and let Wo be the canonical volume form of the 
Euclidean vector space thus obtained. The point of E defined by 

(D) ID IdE Wo 
cent = J 

DWO 

does not depend on any of the choices above; we call it the center of mass 
ofD. 

Proof. If we change the Euclidean structure of the orientation of E, the 
canonical volume form becomes w~ = kwo, where k is a constant, and 
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cent(D) doesn't change. If we move the origin of the vector space to Zo E E, 
thus obtaining a new vector space E' , we have IdE = IdE' +zo, so 

ID IdE Wo = In IdE' Wo + Zo ID Wo, 

whence 
fD IdE Wo fD IdE: Wo 
~-.---- = + ZoO 

IDwo IDwo ' 
this says that, in the affine space, the vectors 

fD IdE Wo fD IdE' Wo I 
E E and E E 

JDwo JDwo 
correspond to the same point. o 

Figure 6.5.14 

See 6.10.13 and 6.10.25 for examples. 

6.5.U.l. Remark. This generalizes the notion of the barycenter, or average, 
of a finite number of points. More generally, if we have a density function 
A E CO(D), the mass of D will be fD AWo and its center of mass will be the 
point 

6.5.15. Theorem (Archimedes). Let D be a compact submanifold-with
boundary ofR3, v the normal unitary vector field pointing out of D (6.4.4), 
G = cent(D) the center of mass of D and z : m 1-+ (m I (3) the height 
function (where {el,e2,e3} is the canonical basis ofR3). Ifu denotes the 
canonical area form on the boundary S = aD of D (5.3.36 and 6.4.1) and 
x denotes the cross product in R3 (0.1.17), we have 

Is zvu = vol(D)e3 (i) 

and, for any mE R 3 , 

r (m;) x zu)u = vol(D)(~G x (3)' 
lnEs 

(ii) 
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Figure 6.5.16 

6.5.16. Physical interpretation. We consider D as a solid immersed in 
a liquid of density one whose surface coincides with the ele2-plane. At 
each point xES there is an element of force zvu acting on D, where u 
is the element of area, v is the direction of the force and perpendicular to 
S, and z is the pressure, equal to density times depth and pointing toward 
the interior of D (assuming z < 0). Then 6.1.15 says that: 

(i) the resultant force F acting on D is vertical, pointing up, and its 
intensity is equal to the volume of Dj 

(ii) the resultant tors or is equivalent to the sole force F, applied at G. 

Proof of 6.5.15. (i) Denoting the coordinate functions by x, y, z we have, 
by 6.4.7.2: 

Is zvu = (Is z dy A dz, Is z dz A dx, Is z dx A dY). 

An application of Stokes' theorem gives 

Is zvu = (Iv 0, Iv 0, Iv dz A dx A dY) = (0,0, vol(D)). 

(ii) Set m = (a, b, e), n = (x, y, z) and v = (Vl, V2, V3)' We have 

m;t x zv = z((y - b)V3 - (z - e)v2, (z - e)vl - (x - a)v3' 

(x - a)vl - (y - b)V2), 
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whence 

Is (mrt X zv)u = (Is z((y - b) dx 1\ dy - (z - c) dz 1\ dx), 

Is z((z - c) dx 1\ dz - (x - a) dx 1\ dy), 

Is z((x - a) dz 1\ dx - (y - b) dy 1\ dZ)). 

By Stokes' theorem, 

Is (mrt X zv)u = (L (y - b) dx 1\ dy 1\ dz, - L (x - a) dx 1\ dy 1\ dz, 0). 

Setting G = (Gil G2 , G3 ), we get 

Is (mrt X zv)u = ((G2 - b) vol(D), (G1 - a) vol(D), 0). 

On the other hand, 

~G X (vol(D)e3) = (G1 - a, G2 - b, G3 - c) X (0,0, vol(D)) 

= ((G2 - b) vol(D), -(G1 - a) vol(D), 0). 0 

6.6. Canonical Density on a Submanifold of 
Euclidean Space 

Here we consider a possibly non-oriented sub manifold V and want to define 
vol(V). Thanks to 0.1.26 (and using the #J. introduced there) we have the 
following result: 

6.6.1. Proposition. A CP submanifold V of a Euclidean vector space E 
has a canonical density 5, of class C p - 1 , given by 

X 1-+ 5(x) = #J.T",v. 

Proof. This is like the proof of 6.4.1; we're setting 5(x) = Iw(x)l, where 
w(x) is defined as in 6.4.1 by orienting T:J:V (and thus V, locally) either 
wa~ 0 

6.6.2. Proposition. If g is any parametrization of V, we have 

g*5 = 

Proof. This is formula 0.1.27. o 
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6.6.S. Definition. Let V be a submanifold of a Euclidean space E. The 
volume of V, denoted by vol(V) , is the (possibly infinite) integral Iv 5. (If 
d = 1 or 2, we talk about length or area, respectively.) 

6.6.4. Remark. If V is oriented, we're back to definition 6.5.1. 

6.6.5. For examples, both general and explicit, see exercises 6.10.9,6.10.11, 
and 6.10.14 to 6.10.21. 

6.6.6. Remark. As in 6.5.2, if V is relatively compact and has the same 
dimension as E, the volume of V is finite. But if dim V < dim E this is no 
longer true in general. Similarly, vol(V) < 00 and dim(V) = dim(E) do 
not imply that V is relatively compact. 

6.6.1. Now let X be an abstract manifold and 5 a density on X. The 
volume (or area, or length) of X, denoted by vol(X,o), is the (possibly 
infinite) integral Ix 5. This is the same as the total mass of the measure 
associated with 5. 

6.6.S. Proposition. Let X be a compact manifold and 5 a density on X. 
Assume that a group G acts on X properly discontinuously without fixed 
points, and that 5 is invariant under G. There exists a unique density §. 
on X/G such that p*§.. = 5, where p : X -+ X/G is the canonical covering 
map. In addition, if G is finite we have 

vol(X,5) = #G· vol(X/G;~. 

Proof. The existence of ° follows form the proof of lemma 5.3.9. The 
formula is proved like 6.1.4.8. 0 

6.6.9. The isoperimetric inequality 

6.6.9.1. Theorem. Let CeRn be a compact set whose frontier H = ac is 
a codimension-one COO submanifold ofRn, and denote by B = Bd(O, 1) the 
unit ball in Rn. The volumes of C and ac satisfy the following inequality: 

(vol(H)) d (vol(Sd-l)) d 

(vol(C))d-l ~ (vol(B))d 1 . 

In addition, equality holds if and only if C is itself a ball. 

6.6.9.2. Remarks. Notice that this quotient is invariant under homothety. 
In the case d = 2 this inequality is easy, and we include a very simple 

proof of it in section 9.3. The case d ~ 3 is much more subtle, and wasn't 
solved until long after the plane case (see [Ber87, section 12.11J for details). 
The proof given here is recent, and due to Gromov; it is the only known 
proof based on Stokes' theorem. 
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f 

Figure 6.6.9.1 

Proof. Let {ei}.:=l, ... ,d be the canonical basis for Rd. We can assume, 
without loss of generality, that vol( C) is the volume of the unit ball B of 
X. The fundamental idea is to define a map I : C --+ B as follows: 

For mE C, we let HI(m) = x;l(xI(m)) be the hyperplane parallel to 
Xl = 0 and containing m, and let III (m) be the hyperplane in the same 
direction that partitions B into two subsets with the same volumes as the 
subsets of C on each side of HI(m). In other words, 1I1(m) = x;l(al)' 
where al is defined by the condition 

vol( C n x;l([xl(m), co[)) = vol(B n x;l([ab co[)). 

We next define two (d - 2)-dimensional affine subs paces H2(m) and 
1I2(m) , parallel to the intersection Xl = X2 = 0, by an analogous con
struction, with C n Hl(m) instead of C and B n .III(m) instead of B. We 
continue in this fashion until we obtain lines Hd-I(m), .IId- l (m) and fi
nally points Hd(m) = {m} and bd(m) = {I(m)}; this is the definition of 

I(m). By construction, the jacobian JI(m) = (!!:(m)) is of the form 

cr o 
where entries below the diagonal are zero and entries above the diagonal 
don't matter to us. (The differentiability of I is problematic on the "inner 
folds" of the boundary, cf. proof of unicity below, but we shall ignore these 
problems.) 

By construction and Fubini's theorem we easily verify that I preserves 
volume, that is, 

d 

II ~.:(m) = 1. 
.=1 
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Now consider I as a vector field on Cj its norm satisfies 11/(m)11 :::; 1 since 
I(m) belongs to the unit ball B. We apply Stokes' theorem to I, C and 
H = ac, as follows: we compute IH(I(h) I v(h»dh = IH (Ed.v.) dh, 
where dh is the canonical measure on the submanifold H of X and v is 
the unit normal vector to H point outward. Lemma 6.4.7.2 extends to any 
dimension, yielding 

. 1 -v. dhlH = (-w- dXl""'" dx. " ... " dXd. 

Then Stokes' theorem gives 

where dm is the Lebesgue measure on X (and C). The scalar E :!~ is 
• • 

called the divergence of the vector field I on R d, and denoted by div I. 
We have 

d ar d 

div I(m) = E ax~ (m) = E ..\.(m) ~ d, 
.=1' .=1 

the last relation coming from the classical inequality between the arithmetic 
and geometric means and the fact that nt=l = 1. Since 11/11 :::; 1, we always 
have I (f I v) I :::; 1. We finally get 

vol(B) = vol(C) = fa dm:::; d fa div I dm = d IH (I(h), v(h» dh 

:::; d IH dh = dvol(H). 

We conclude that vol(H) ~ dvol(B) = vol(Sd-l), by 6.5.6. This is what 
we wished to show. 

Suppose Irom now on that equality holds. This means, first, that for 
every point m E C the entries ..\.(m) are equal and have the value 1. 
Next, (f I v) = 1 at every point of the boundary H of C. This precludes 
figures like 6.6.9.2, since the points of the thickened part of the frontier 
(the "inner folds") have their image in the interior of B. In particular, all 
lines Hd-1(m) intersect H in only two points. 

Since aa Ii = 1, the map I, after a translation of C if necessary, takes the x. 
form 

I(X1> ... , Xd) = (Xl, X2 + a(xd, X3 + b(XlJ X2), .. . ). 

Using the fact that (flv) = 1 on H, we get I = v. Now consider the section 
K n C of C by an affine plane K in the direction X3 = X4 = ... = Xd = o. 
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Figure 6.6.9.2 

The relation above for H and the condition f = v show that 

2XI 2(X2 + a(xI))(1 + a'(xd) 
Xl X2 + a(xd 

so that a' (Xl) = O. After translating to eliminate a, we see that the restric
tion of f to C n K is the identity, so that the section K n C is identical with 
the disc K n B. But the choice of orthonormal coordinates is arbitrary, so 
every section of C by an affine plane is a disc of radius ~ 1. 

Since f is surjective, there exists at least one such disc D of radius 1. 
Take two diametrically opposed points ml and m2 on D, and consider an 
arbitrary affine plane containing ml and m2. Since PnC is a disc of radius 
$ 1, it must be a disc of radius Ion which ml and m2 are diametrically 
opposed. By varying P we conclude that C must be the ball of radius 1 
centered at the midpoint of ml and m2. 0 

P(1 C 

D 

Figure 6.6.9.3 
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6.7. Volume of Tubes I 

Let X be ad-dimensional submanifold of an n-dimensional Euclidean affine 
space E. To simplify matters, we assume till the end of the chapter that 
X is Coo. We denote by i : X - E the canonical injection. 

We recall the definitions and notation from section 2.7, applied to the 
case f = i. For x E X, set 

6.1.1 

where the orthogonal complement is taken with respect to the Euclidean 
structure of E, and 

6.1.2 NX= {(x,tI) :XEX,tlEN",X}. 

N X is an n-dimensional, Coo submanifold of X X E (2.7.7). Set also 

6.1.3 N! X = {ti E N ",X : II till < e}, 
6.1.4 N- X = {(x, tI): x E X,tI E N;(X)} = {ti E NX: IItlll < e}. 
Let can: N X - E be the canonical map (x, tI) 1-+ X + tI, introduced in 
2.7.5, and set 

6.1.5 

We know from 2.7.12 that if X is compact there exists e > 0 such that 
can IN<X is a diffeomorphism onto Tub- X. 

Introduce also 

6.1.6 NU",X= {(x,tI) E NXjlltill = I}, NUX= U NU",X. 
",ex 

Recall that NUX is called the unitary normal fibre bundle (2.7.4) and is 
a Coo submanifold of NX (2.7.7). 

Let p : N X - X be the canonical projection 

6.'1.1 p : N X "3 (x, tI) 1-+ X E X. 

We finally set 

6.1.8 

The equality is due to the fact that N",X = p-l(x) eN X is a submanifold 
of N X, which in turn follows from the result, to be demonstrated in 6.7.12, 
that p is a submersion. 

Since X is a submanifold of a Euclidean space E, we can consider the 
canonical density C on X (6.6.1). 

6.1.9. Lemma. There exists on the normal bundle N X a Coo canonical 
density A, characterized by the condition that, for any orthonormal basis 
{"'d+1, .•• , "'n} of Tv (N",X) and any ).1I ... ,).d E T(""v)N X, we have 

A().l, ... , ).d, "'d+II···, "'n) = c(T(""v)p().I), ... , T(""v)P().d)). 



220 6. Integration of Differential Forms 
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I 

X I r:x • 
Ox 

Figure 6.7.7 

6.7.10. Caution. In general, l::!. is not the canonical density on NX as a 
submanifold of E X E. 

Proof. We first must show that the definition of l::!. makes sense alge
braically, then that l::!. is Coo. To simplify the notation somewhat, we will 
often ignore the isomorphisms (), () -1, etc. 

To see that l::!. is well-defined, let (x, v) E N X be a fixed point. Since 
Tv(NxX) is a subspace of T(x,v)NX, we have an associated orthogonal 
projection q : T(x,v)NX -+ Tv (NxX). Choose arbitrary orientations for 
TxX and NxX (hence also for Tv(N",X)). Next choose volume forms a 
and f3 compatible with these orientations: for a take the canonical volume 
form on TxX (the one that assigns the value 1 to any positively oriented or
thonormal basis) and for f3 the form corresponding to the canonical density 
Ii on X (6.6.1). 

Set l::!.(x, v) = Ip* f3/\ q*al· We have 

(p* f3 /\ q* a)(A1' ... , Ad, '1d+1, ... , '1n) = p* f3( A1, ... , Ad)q* a( '1M1, ... , '1n) 

because '1. E Tv(NxX) = (T(x,v)p-l)(O) (cf. 0.1.2), so that 

Now the basis {'1Ml,"" '1n} of T,,(NxX) is orthonormal, so 

and, since f3 corresponds to the density Ii, we get 
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This formula characterizes ll. because, as we shall soon see, P is a sub
mersion, so there are exists a basis {Al, ... , Ad, '"Id+l' ... ' '"In) of T(""fJ)NX 
such that {T(""fJ) p(AI), ... , T(""fJ)p(Ad)} is a basis for T",X. 

We now have to show that ll. is Coo. By 3.3.5 and 3.3.6, it is enough to 
prove that (4)-l)*ll. is Coo for all charts 4> in one given atlas on NX. We 
consider parametrizations of the following type: 

Let (U, h) be a parametrization of X at x (2.1.2), that is, U E Oo(Rd ), 

h E Diff(Uj h(U)) and h(O) = x. The vectors ah/au.(O) (1 ~ i ~ d) are 
linearly independent, so we can choose a basis for E of the form 

{ ah ah } 
aUl (0), ... , aUd (0), ed+l, ... , en 

(actually we have ah/au.(O) E T",X, but we're identifying these vectors 
with their images in E under 0). 

Shrinking U if necessary, we can assume that 

{ ah ah } 
aUl (u), ... , aUd(u),ed+1 , ••• ,en 

is still a basis for E for every U E U, thanks to the continuity of par
tial derivatives. Next we apply Gram-Schmidt to this basis, getting an 
orthonormal basis 

for every U E U. This basis varies Coo with u, because Gram-Schmidt only 
involves Coo operationsj in addition, its first d elements 6(u), ... , ed(U) 
form a basis for O(Th(u)X) (since they are linear combinations of the 
ah/ai(u)) , so the last d elements vdu), ... , Vd(U) form an orthonormal 

basis for (O(Th(U)X)).l. = Nh(u)X. 
Now to define the parametrization. Since N X has dimension n, we 

consider the open set U X Rn-d eRn and define H E Coo (U X Rn-d j N X) 
by 

6.1.11 H(U,td+l, ... ,tn) = (h(U), t tiVi(U)). 
i=d+l 

In the sequel we will write t = (td+l, ... , tn). We have h(u) = x E X and, 
by the discussion above, E7=d+l tiVi(U) E Nh(u)x. Thus H(u, t) EN X. 
Since E7=d+l tiVi(U) ranges over Nh(u)x when t ranges over R n - d, we 
have 

uEU 

Let us set, as in 6.7.3, 

N(h(U)) = {(x, tI) : x E h(U), tI E N",X}. 
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d=1, n=3 

dh 
C1u, 

Figure 6.7.11 
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d=2,n=3 

Then H(U X Rn-d) = N(h(U)), an open subset of NX. In addition H is 
injective (because h is, as well as the map t 1--+ L:7=d+1 tjllj(u) for fixed 
u), so in fact HE coo(U X Rn-djN(h(U))) is a bijection. There remains 
to show that it is an immersion. For that, since N(h(U)) eN Xc Ex E, 
we can consider H as a map from U X Rn-d into Ex E, and calculate the 
rank of its jacobian H'. 

First, h : U X X c E is a map with values in Ej call its coordinate 
functions h l , ... , hn' Similarly, since IIj(U) E Nh(u)X C E, we call its 

coordinates lI}k)(u) (k = 1, ... ,n). Then 

H(u,t) = (hdu), ... ,hn(u), t tjll}l)(u), ... , t tjllt)(u)) 
j=d+l j=d+l 

(considered as a point in E X E), where we have written u = (Ul"'" Ud) 

and t = (td+1,"" tn). The jacobian is then 

ahl ahl 
aUl aUd 

o o 

ahn ahn 
aUl aUd 

o o 
n all}l) (u) n all}l) (u) 
L tj a L tj a 

j=d+l 
Ul 

j=d+l 
Ud 

n 811(n)(u) n 811(n)(u) L t· 3 L t· 3 
3 au j=d+l J aUd j=d+l 1 

(n) ( ) 
IId+ l U 
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where the first n columns are the derivatives with respect to U1, ... , Ud and 
the last n - d columns are the derivatives with respect to td+!, ... , tn. 

This matrix can be more simply written as 

( 
ah ah 

H' = aU~1I . aU~1I . 
E· tj--' E· tj--' IId+1 

, aU1 ' aUd 

o :.) . 
In addition we set (h') = (::1 ... ::J and (II) = (lid+! ... lin). 

Now (h') has rank d because h is a parametrization of X, and (II) has 
rank n - d because {II/t+du), ... , IIn(U)} is a basis for Nh(u)X. Thus H' 
has maximal rank n, and we have shown that H is a Coo parametrization 
ofNX. 

6.7.12. Remark. From this we see that p : N X - X is a submersion, as 
follows: h-1 0 p 0 H takes (u, t) into u, so it has rank d = dimX. On the 
other hand, Hand h are regular, so rankp ~ rank(h- 1 0 po H) = d. Since 
p has values in X, which is d-dimensional, we conclude that p has maximal 
rank. 

To conclude the proof of lemma 6.7.9, we still have to show that, for the 
charts inverse to the parametrizations defined in 6.7.11, condition 3.3.5 is 
satisfied. Let {e1, ... , ed} and Ud+!, ... , In} be the canonical bases of Rd 
and Rn-d, respectively, and 61 = Idu1 A ... A dUd I and ~1 = Idu1 A ... A 

dUd A dtd+! A ... A dtnl the canonical densities on Rd and Rn. 
There exist scalars z(u) and Z(u, t) such that 

6.7.13 H· ~ = Z(u, t)~l and 

To prove condition 3.3.5, we must show that Z( u, t) is Coo. We will show 
that 

6.7.14 ( ah ah) Z(u, t) = z(u) = 6 aU1 (u), ... , aUd (u) 

(here the ah/auj(u) are regarded as elements of Th(u)X, and 6 is the 
canonical density on the submanifold X of the Euclidean space E). In 
fact, notice that 

(H· ~)(h(u), t)(e1, ... , ed, Id+!, ... , In) 
= ~(h(u), t)(T(u,t)H(e1), ... T(u,t)H(ed), T(u,t)H(jd+d, ... T(u,t)H(jn)). 

In view of the form of H', we have 

T(u,t)H(jj) = O(h(u),t) (lIj) = 'rIj E Tt/(Nh(u) X) 

for j = d+ 1, ... , n, and {'rid+! , ... , 'rIn} is an orthonormal basis for the space 
T,,(Nh(u)x) by the choice of the IIj(u). It follows from the construction of 
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A that 

(H* A)(h(u), t)(ell"" ed, fd+I,"" fn) 
= o(Tu(p 0 H)(ed, ... , Tu(p 0 H)(ed)) 

( ah ah) 
= 0 aUI (1.£), ... , au}U) , 

again because of the form of H'. 
Now h is a Coo parametrization, so 

( ah ah) Z(u, t) = 0 aUI (1.£), ... , aUd (1.£) 

is Coo because 0 is a Coo density on X (6.6.1). This completes the proof 
of lemma 6.7.9. 0 

6.7.15. Lemma. Denote by F:z the canonical density on the subspace NzX 
of the Euclidean space E, and identify NzX with {x} X NzX. If f E 
C,tt(N X) we have 

flNsX E C!~t(NzX) 

for 0 -almost every x E X, and the function 

x ~ f flNsXF:z 
NsX 

is o-integrable. In addition we have 

6.7.16 fNX fA = £(fNsxfez)o. 

Proof. Using partitions of unity we can reduce to the case of f E C,tt(N X) 
with support in H(U), where (U, H) is a parametrization of the type in
troduced in 6.7.11. In this case 3.3.16 gives, in view of the fact that H is 
a diffeomorphism between H(U) and U X Rn-d: 

r fA = r fA = r (JoH)H*A = r (JoH)Z(u,t)AI' 
lNx lH(u) luxR"-d luxR"-d 

where Al is the canonical density on Rn (d. 6.7.13). 
By 6.7.13 and 6.7.14 we have, keeping the same notation: 

whence 

Z(u, t)AI = z(u) Idul /\ ... /\ dUd /\ dtd+1 /\ ... /\ dtnl 

= z(u)olldtd+1 /\ ... /\ dtnl, 

! fA= r (JoH)h*o(ell ... ,ed) Idtd+l/\ oo·/\dtnl 
NX luxR"-d 

= r ( r (J 0 H) Idtd+1 00. /\ ... dtnl)h*O 
lu l{u}xR"-d 
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by Fubini's theorem (0.4.5.1); here 

u 1-+ { (J 0 H) Idtd+1 t\ ... t\ dtnl 
l{u}xR"-d 

is defined ahnost everywhere, and is (h*8)-integrable. 
Given u E U, the restriction HI{u}XR"-d sends {u} x Rn-d onto {x} x 

NxX, where x = h(u), and transforms ex into dtd+1 t\ ... t\ dtn . Thus 

{ (J 0 H)ldtd+1 ... t\ ... dtnl = { (J 0 H)(HI{u}XR"-d)*ex 
l{u}xR"-d l{u}xR"-d 

= { lex, 
l{x}xNsX 

which proves the existence of this integral for almost every x. It also proves 
that the function 

Xl-+ { lex 
l{x}xNsX 

is (h*8)-integrable. We thus get 

! Ill. = { ( { leh(u))h*8. 
NX lu l{h(u)}xNh.(")x 

Since (U, h) is a parametrization of X and I is supported in H(U), the 
function 

is supported in U, and the previous equality can also be written 

o 

6.1.11. The unitary normal bundle. NUX also has a canonical density 
W. In fact, NUxX (6.7.6) is the unit sphere in Euclidean space for every 
x E X, and as such it has a canonical density Tx. Then W is characterized 
by the condition 

W(.Ab' .. , .Ad, liMb' .. , lin) = 8 (T(x,tJ) p(.At}, ... , T(x,tJ) p(.Ad)) Tx (lId+1 , ... , lin) 

for any tJ E NUxX, any .A1, ... ,.Ad E T(x,tJ)N X and any lId+b ... , lin E 
TtJ(NUxX). We can write this condition more compactly as 

6.1.18 W=p*8t\T. 

The reader can demonstrate the following lemma, along the same lines as 
6.7.15: 

6.1.19. Lemma. For every lunction IE C¥'t(NU X) we have 

{IW={({ ITx) 8. 0 
lNux lx l{x}xNusX 
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6.7'.20. Remark. Formulas 6.7.16 and 6.7.19 are particular cases of a 
general formula for integrals on a submersion. For the orientable case, see 
[Die69, vol. III, 16.24.8.1]. 

6.7'.21. Orientation 

6.7'.22. Lemma. If E is oriented, NX has a canonical orientation. 

Proof. Orient the vector spaces TxX and NxX as in 6.7.10.1, but subject 
to the condition that the induced orientation on E = IJx(TxX) EEl NxX is 
the given orientation. Define a local volume form 

6.7'.23 E = p* P 1\ q* Of. 

on NX. If we replace p by -p, we also have to replace Of. by -Of., so that 
the orientation on E remains unchanged; thus the definition of E does not 
change. 0 

The form E is called the canonical volume form on N X, for the given 
orientation of E. 

6.7'.24. Corollary. N X is orientable (whether or not E is). o 

6.7'.25. Remarks 

6.7.25.1. If we switch the orientation of E, the canonical form E changes 
sign. 

6.7.25.2. A parametrization H of NX is positively oriented if 

{ 8h 8h } 
8UI (u), ... 8Ud(u),Vd+l, ... ,Vn 

is a positively oriented basis for E. (Here 8h/8uj(u) is considered as an 
element of E, via IJh(u))' 

6.7'.26. Orientability of NUX. Since NUX is the boundary of the sub
manifold-with-boundary NI X and N X is oriented, NUX is oriented by 
5.3.36. Let ® be the canonical volume form on NUX associated with this 
orientation. If we denote by ~ the vector field pointing out of NUX (6.4.4), 
defined by 

6. '1.2'1 

we have, by 6.4.5: 

6.'1.28 ® = cont(~)E. 
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6.8. Volume of Tubes II 

We know by 2.7.12 that if X is compact the map can : N-X -+ Tub- X 
defined by can(z. v) = z+ v is a diffeomorphism for small enough e. In this 
case Tub- X is relatively compact in the Euclidean space E; which means 
that its volume with respect to the canonical density Ao on E is finite. We 
now want to compute 

6.8.1 vol(Tub- X) = { Ao = { can* Ao. 
lTub.x IN.x 

Denote by A the canonical density on the normal bundle (6.7.9). We must 
write down the function G E Coo (N X) such that 

6.8.2 can* Ao = GA. 

Consider a parametrization (H. U x Rn-d) of the form introduced in 6.7.11. 
Denoting again by Al the canonical measure on Rn. we see that there exists 
a function S E COO(U x Rn-d) such that 

6.8.3 (canoH)*Ao = SAl. 

Thus we have 

SAl = H*(can* Ao) = H*(GA) = (G 0 H)(H* A). 

If Z denotes the function such that H*A = ZAl (cf. 6.7.13). we conclude 
that 

6.8.4. 
S 

GoH= Z' 

Here we know Z (6.7.14) and must compute S. If {ell"" ed. Id+lI.'" In} 
is the canonical basis on Rn we have Adel •...• ed. IdH."" In) = 1. so 

S(u. t) = ((canoH(u. t))* Ao}(el •...• ed. IMl •...• In) 

for every u E U and tERn-d. But then we get from 6.7.11 and the 
definition of can: 

n 

(canoH)(u. t) = h(u) + L tivi(u). 
i=d+l 

A calculation analogous to that of 6.7.14. involving the jacobian H'. gives: 

S(u. t) = (canoH(u. t))* Ao(el •...• ed. IdH •...• In) 

_ ( ah ~ av; ah ~ av; ) 
- Ao au + L..J t; au •...• au + L..J t; au • Vd+l •...• Vd . 

1 ;=d+l 1 d ;=d+l d 

(Since {VdH •...• Vn} is an orthonormal basis for N:eX = (I) (Th(u) X).l ). 
we are actually identifying each v,. E E with its image in the tangent space 
under the isomorphism I).) If we denote by 

6.8.5 
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the orthogonal projection from E = o (T.,X) 6:l N.,X onto o (T.,X) , it follows 
from the definition of I::J.. (6.7.9) that 
6.S.6 

( ah n (avo)T ah n (avo)T) S(u, t) = 0 au (u)+ L ti au' , ... , au (u)+ L ti au' . 
1 i=d+l 1 d i=d+l d 

6.S.1. Remark. As we pointed out in 6.7.10, some of these equalities 
involve identifying vectors in E, in its tangent space, and in the tangent 
spaces to N X and to X. For instance, in 6.8.6 the vectors 

ah + t ti (avi) 
aUk j=d+l aUk 

are actually in Th( u) X, so they should be written 

ah ~ -1 ( (aVj))T au + ~ tiO Oi(.,) au 
k j=d+l k 

in the notation of 6.7.1. You can see why we allow ourselves some abuse 
in notation! 

Putting together the calculations above, we get the following result: 

6.S.S. Proposition. If h, Hand Vj (d + 1 ~ j ~ n) are as in the proof 
of lemma 6.7.9 and (u, t) is a point in U X Rn-d, with x = h(u) and 
v = Ei=d+1 tjVj(u), we have 
6.S.9 

( ah n (avo)T ah n (avo)T) o aUI (u)+oL tj au: , ... , aUd(u)+oL tj au: 
G( ) = 3=d+l ,=d+l 

x, v ( ah ah) o aUI (u), ... , au}u) . 
o 

6.S.10. Remark. In particular, for t = 0 and v = 0 we get G(x, 0) = 1. 
We have proved theorem 2.7.10 again: for every x E X, T(."o)(can) has 
maximal rank. 

6.S.11. Corollary. There exist functions Wi E Coo (N X) (i = 0, ... , d + 
1), with Wo = 1, such that 

and, for every x E X, the map v 1-+ Wi(x,v) is a homogeneous polynomial 
of degree i on the vector space N.,X. 
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For an intrinsic definition of homogeneous polynomials on vector spaces, 
see [Car71, p. 80]. A naive definition is that Wi(x,v) has degree i in the 
coordinates of v expressed in any basis. 

Proof. Let p be a local canonical volume from on Xj thus 6 = IPI. Ex
panding the numerator of 6.8.9 and ordering the terms according to their 
degree in the ti' and using the fact that P is a d-linear form, we get 
6.8.12 

( ah n (av.)T ah n (av.)T) 
P au (u) + E ti au' , ... , au (u) + E ti au' d 

, ;=dH (a: a: );=dH d ~ L W" 

P aUl(u)""'au}u) i=O 

where Wi denotes the sum of terms of degree i with respect to the ti' We 
evidently have Wo = 1 and 

G=ltWil, 
0=0 

and the Wi are homogeneous polynomials with respect to the coordinates 
ti ofv E N:£X. 0 

So far the Wi may depend on the parametrization, or even on p. Clearly 
they don't change if we replace P by -p. There remains to see that they 
don't depend on the parametrization, only on (x, v) EN X. 

We know (6.8.2) that G(x, v) depends only on (x, v). We also have 
G(x, v) > 0 for Ilvll small, because G(x, 0) = 1 and G is continuousj in this 
case the homogeneous components of the polynomial 

d 

G(x, v) = E Wi(x, v) 
i=O 

are determined by the polynomial [Car71, p. 85, corollary 6.3.2]. But then 
the components are determined for every v, and they only depend on (x, v). 
Finally, 6.8.12 shows that they are Coo functions. (To learn how the Wi 
are deduced from G, see the proof of theorem 6.3.1 in [Car71].) 

To wrap up the preliminaries to the calculation of the volume of Tube (X), 
we will present a fancy interpretation for the last term Wd of G. The idea 
is to introduce the unit sphere S(E) = {z E E : IIzll = 1} and the Gauss 
map "1 E Coo (NU Xj S (E)) defined by 

6.8.1S "1(x, v) = v. 

If E is oriented, the sphere S(E) has a canonical orientation as the 
boundary of BE(O, 1). Thus there is a canonical volume form 

6.8.14 E = cont(v)Oo 
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y ." o 

S(E) 

Figure 6.8.13 

on S(E), where 110 is the canonical volume form on E (for the given ori
entation) and v is the outward pointing unit vector field v(z) = O;l(z) 
(6.4.5). We have the following result: 

6.S.15. Lemma. If ® is the canonical volume form on NUX (defined in 
6.7.28), we have ,*(E) = Wd®, for either choice of orientation for E. 

Proof. Consider one point (x,tI) E NUX, with x = h(u). Since IIO(tI)11 = 1, 
we can assume that the basis {Vd+1(U), ... , vn(u)} of N:z;X was chosen so 
that tI = Vd+1(U). If H is as in 6.7.11 we have (x, tI) = H(u, t) with 
t= (1,0, ... ,0). 

N,X 

Figure 6.8.15 

We assume also that H is positively oriented with respect to the given 
orientation of E, that is, that 
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is a positively oriented basis for E. Let aah (u) (i = 1, ... , d) and IIj(u} u. 
(j = d + 2, ... , n) denote also the vectors in T(:t.v) (NU X) corresponding 
to the elements of the basis above. We know that 

{::. (u) }. U {lIj(u}} j=d+2 ..... n 
.=1 ..... d 

is a basis for T(z.v)(NUX). Its orientation with respect to ® is (-I}d, 
because by 6.7.28 we're contracting with e;1(v) = IId+1(U} (notice the 
abuse in notation), and to drag this vector to the first slot takes d sign 
flips. Thus we have 

• (ah ah ) b E)(x, v} aU1 (u}, ... , aUd (u), IId+2(U}, ... , IIn(U) 

= Eh(x, v)) ((T(z.v)1) (::1 (U)) , ... , (T(:t.v) "I} (::d (U)) , 

(T(z.v)'Y}(lId+1(U))"", (T(z.v)1}(lIn(U))). 

But NUX, being a submanifold of N X, is also a submanifold of E X E, 
and so is S(E). Thus we can compute T(z.v)1 using usual derivatives. 

In the notation of 6.7.11, and taking into account the various identifica
tions between tangent spaces, we get 

6.8.16 

and 

(T(z.v)1) (lIj(u)} = (T(z.v)1)(u, t}{H'{/j)} = b 0 H}'{/j}. 

Since 'Y(x, v} = v, we can write 

n 

b 0 H)(w, s} = 2: s.1·lIj(w} , 
j=d+1 

where (w,s) E U X Rn-d, the domain of H. Using the formula for H' 
(6.7.11) to calculate boH}'(u, t}, and bearing in mind that t = (1,0, ... , O), 
we get 

, alld+1 b 0 H} (u, t)(e.) = au. (u) 

for i = 1, ... , d and b 0 H}'(u, t)(fj} = IIj(u} for j = d + 2, ... , n. 
Now, since 'Y(x,v} = v, we get 

( .)( ) () (alld+1 alld+1 ) "I E X, v = E V ~(u}, ... , aUd (U},lId+2(U}, ... ,lIn(U) , 
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or again, since E = cont{vd+du))no by 6.8.14 and Vd+du) = v: 

* ( aVd+1 aVd+1 ) (-y E)(x, v) = no Vd+1(U), a;:;;-(u),,,,, aUd (u), ... , Vd+2(U), vn(u) 

d ( aVd+1 aVd+1 ( ) =(-1) no a;:;;-(u),,,,, aUd (U),Vd+1(U),Vn U) . 

Let f3 be an arbitrary local volume form on £I (T",X). Since E = £I (T",X) Ea 
N",X and {Vi( u)} d+1:5i:5n is an orthonormal basis for N",X, it follows from 
the definition of the canonical volume form on a Euclidean space (0.1.15.5) 
that 

(6.8.15) (-y*E)(x, v) (::1 (u), ... , ::d (u), Vd+2( u), ... , Vn ( u)) 

= (-l)df3 ( (a;~:l (u)) T , ... , (a;~:l (u)) T) , 
where .T : E -+ £l(T",X) was defined in 6.8.5. 

On the other hand, if we set dx,v) = £l;l(V) = Vd+1(U) we have 
(d. 6.7.27 and 6.7.28): 

( ah ah ) 
~(x,v) aU1 (u), ... , aUd(u),Vd+2(U), ... ,vn(u) 

= (cont(s-)E)(x,v) (::1 (u), ... , ::d(u),Vd+2(U), ... ,vn(u)) 

= (-l)dE (:~ (u), ... , ::}U),Vd+1(U), ... ,vn(u)) 

d (ah ah) = (-1) f3 aU1 (u), ... , au}u) . 

Comparing this with 6.8.17 we get 

6.8.18 

Since we have taken t = (1,0, ... ,0) in 6.8.12, we get 

f3 ((~(U))T , ... , (~(U))T) 
Wd(x,v) = ( ah ah) 

f3 aU1 (u), ... , aUd (u) 

6.8.19 

which proves the lemma. o 
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6.9. Volume of Tubes III 

We propose to calculate the volume of Tub~ X when e is small enough that 
the canonical map is an embedding (2.7.12). With the notations introduced 
in sections 6.7 and 6.8, 

vol(Tub~ X) = r can .. ..6.o = r G..6. 1N•x 1N•x 
or, by 6.7.15, 

Since we're assuming that can : N~ X -+ Tub~ X is a diffeomorphism, G 
is non-zero on N X. In addition, on each N; X we have 

d 

G(z,O) = 1 = EW,(z,O), 
,=0 

since only the term Wo(z, 0) is non-zero. Thus Et=o w, is strictly positive 
on the connected set N;Xj by 6.8.11 we have 

d 

6.9.1 G(z,tI) = EW,(z,tI) 
,=0 

on N~X, the sum being positive. 
This leads to 

so we now just have to find fN • X W,(z, tI)e:a:. To do this we use the same 

procedure as in 6.5.9, treating sN:a:X as Rn-d. Let f : R~ X NU",X -+ 

N:a:X \ 0 be the diffeomorphism defined by (r,tI) 1-+ rtl. If ":a: denotes the 
canonical density on NU",X (which is the unit sphere in a Euclidean space 
E-d. 6.7.17), we have 

6.9.2 

whence 

6.9.S 

But W,(z, f(r, til) = W,(z, rtl) = r'W,(z, tI) because W, is homogeneous of 
degree i. Thus 

r W,(z, tI)e:a: = ,. r n- d-1+, dr r W,(z, tI)":a:, 
1N;x 10 1Nus x 
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or again 

6.9.4 f en-d+i f 
W,.(x, tI)e", = d w,.(x, tI)T",. 

N:X n- +1 NU,.X 

6.9.5. Remark. If i is odd we have 

f W,.(x, tI)T", = o. 
NU,.X 

In fact, 

f W,.(x, tI)T", f W,.(x, -tl)T", = (-1)" f W,.(x, tI)T", 
N~X N~X N~X 

by the definition of W,. and because T", is invariant under isometries. 
For even i, we introduce the following definition: 

6.9.6. Definition. Let X be ad-dimensional sUbmaniford]of an n-dimen

sional Euclidean vector space E. For every i = 0,1, ... 'l~ we define the 

function K 2,. E COO (X) by 

K 2,.(x) = f W,.(x, tI)T",. 
NU,.X 

This function is called the 2i-th Weyl curvature of (E, X). 

6.9.7. Relationship with 4.2.21. Let S be a surface (a two-dimensional 
submanifold of R 3 ). In the notation of 4.2.21, we have (exercise 6.10.22): 

{ 
rt - 8 2 t= 0 at m E S <=> K2(m) t= OJ 
rt - 8 2 > 0 at mE S <=> K2(m) > OJ 
rt - 8 2 < 0 at mE S <=> K2(m) < O. 

In fact we can say much more: K2(m) is the Gaussian curvature of S 
at m (see section 10.5). This is an immediate consequence of 6.9.15 and 
10.6.2.2. The important thing about this curvature is that it only depends 
on the intrinsic, or riemannian, metric on S (cf. 10.3.1), and not on the 
particular embedding of S in R3 (cf. 10.5.3.2 and 10.6.2.1). Thus, for a 
tiny open piece of surface S we have 

vol(Tube S) = 2earea(S) + 4: r K2(m) dmj e is 
this volume only depends on the area of S and the integral of K2 on S, 
and both quantities depend only on the intrinsic metric and not on the 
embedding. We will see even better results in 6.9.16, 7.5.5 and 11.7.1. 
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6.9.B. Important cultural digression. Just as we have seen that, for 
d = 2 and n = 3, the Weyl curvature K2 depends only on the riemannian 
metric on X and not on the embedding, so it was proved by Hermann 
Weyl in the remarkable paper [Wey39] that, for any positive integers d, n 
and i :5 d/2 and any d-dimensional submanifold of Rn, the function K 2• 

depends only on the riemannian metric on X. More precisely, K2• is a 
universal i-th degree polynomial in R, the curvature tensor of X. When d 
is even, Kd is the integrand of a formula that generalizes the Gauss-Bonnet 
formula (11.7.1) to all even-dimensional riemannian manifolds. This for
mula, known as the Allendoerfer-Weyl-Fenchel-Gauss-Bonnet-Chern for
mula (cf. 7.5.7) was first proved by using Weyl's result, and then intrinsi
cally by Chern. 

See [CMS84] for more information on the K 2., and [Kow80] for the vol
ume of tubes. 

6.9.9. Theorem. Let X be ad-dimensional submanifold of an n-dimen
sional Euclidean vector space E. The volume of Tub- X is a polynomial in 
E, 

where 

[d/2) 
vol(Tub· X) = L a2.en-d+2., 

.=0 

a2. = ; . r K 2.5. n - + 2, lx 
In particular, ao = voIBn-d(O, 1) . vol(x). 

Proof. We have 

d 1 ( n-d+' 1 ) vol(Tub· X) = L e d. W.(x, v)r:e 5, 
.=0 x n - + t NU.,X 

which, together with 6.9.5 and 6.9.6, proves the first formula. For the 
second, we have 

ao = ~d r K o(x)5. n- lx 
But Ko(x) = INu.,x Wo(x, v)r:e = INu.,x T:e by 6.8.11 (notice that we have 
Wo(x, v) = 1). NU:eX is the unit sphere in N:eXj thus 

Ko(x) 
n _ d = vol(Bn_d(O, 1)) 

and ao = vol(Bn_d(O,I)) Ix 5 (cf. 6.5.6.1). Since En- d vol(Bn_d(O,I)) = 
vol(Bn_d(O, e)), we get 

ao = vol(X) vol(Bn-d(O, e)). 0 
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6.9.10. Corollary. If X is a one-dimensional submanifold of a Euclidean 
space E we have 

vol(Tub- X) = vol(Bn_dO, e)) leng(X). 

Proof. The only integer::; [~] is zero. o 

6.9.11. Examples 

x 

R R 

d=1,n=2 

Figure 6.9.11 

6.9.11.1. In R2 the only interesting case is d = 1, that is, X is a curve. 
Then corollary 6.9.10 says that 

area(Tub- X) = 2e leng(X). 

6.9.11.2. Volume of the solid torus. If X is a circle in R 3 , Tub- X is called 
a solid torus of revolution. If R is the radius of the circle, corollary 6.9.10 
gives (see also 6.10.15): 

6.9.12. Corollary. If X is an (n - l)-dimensional submanifold of an n
dimensional Euclidean space E we have 

1 d 
vol(X) = 2' de vol(Tub- X)(O). 

Proof. The first term in 6.9.9 is aoe and the others have degree greater 
than two in e. Thus 

d 
de vol(Tub- X)(O) = ao = vol(X) vol(BI(O, 1)). 

But vol(BI(O, 1)) = 2. o 
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6.9.13. Example. Another proof for 6.5.6: 

vol(Sd) = ~~(vol(Bd+dO, 1 + e)) - vol(Bd+1(O, 1 + e)))(O) 
2 de 

= ~vol(Bd+dO, 1)) dd ((1 + e)d+1 - (1- e)d+1) (0) 
2 e 

= (d + 1) vol(Bd+t{O, 1)). 

6.9.14. Remark. For X = Sd all the a2i are non-zero: 

vol(Tube Sd) = vol(Bd+1(O, 1 + e)) - vol(Bd+1(O, 1 + e)) 

= Bd+1(O, 1)((1 + e)d+l - (1- e)d+1) 

[d/2j (d + 1) 2i 
= 2Bd+l (0,1) ?= 2i e. 

1=0 

Thus, in general, all the terms in 6.9.9 are non-zero. 

We now give an interpretation for ad when d is even. 
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6.9.15. Proposition. If E is oriented, E denotes the canonical volume 
form on the unit sphere S(E) and '"1 : NUX -+ S(E) the Gauss map, we 
have 

ad = !. r KdO = !. r '"1*E = !. r WdW, 
n lx n lNux n lNux 

where the orientation of NUX is chosen according to that of X. 

Proof. We know by 6.7.19 that 

INUX WdW = Ix (INUsx Wdr",) = Ix KdO = nad· 

Since W = I®I, 6.8.15 gives 

r WdW = r Wd® = r '"1*E. 
lNux lNux lNux o 

6.9.16. Corollary. If X is a two-dimensional submanifold of an n-dimen
sional Euclidean space E, we have 

vol(Tube X) = en-2 vol(Bn_2 (0, 1)) area(X) + en! -(E. 0 
n NUX 

We shall see in the next chapter that fNUX '"1*E is equal to vol(sn-l) 
times an integer, and that this integer is exactly x(X), the Euler char
acteristic of X. This provides a complete solution to the problem of the 
volume of tubes in the case of surfaces (dim X = 2). It is surprising that 
vol(Tub. X) depends only on e, area(X) and x(X), and not on the embed
ding. See also 11.7.1. 
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6.10. Exercises 

6.10.1. Let D be a compact submanifold-with-boundary of R2 and f : 
R2 -. R a 0 2 function which vanishes on aD. Prove the formula 

6.10.2. The Hopf fibration and the Hopf invariant. 

6.10.2.1. Let b : R4 -. R3 be the map 

(x, y,z,t) ~ (p = 2(xz+ yt),q = 2(-xt + yz), r = _x2 - y2 + 212 + t2) 

and a the restriction of b to 8 3 C R 4 • Let 

JJ = (p dq 1\ dr + q dr 1\ dp + r dp 1\ dq) Is~ 

be the canonical volume form on 8 2 C R3. 

(a) Does a E 0 00 (8 3 ; 8 2 )? 
(b) Compute>. = a*JJ. (Answer: 4(dxl\dy+dzl\dt)ls3. The otherwise 

cumbersome calculation can be shortened by a judicious use of the 
formulas 

(x2 + y2 + 212 + t2) IS3 = 1 

(xdx + ydy + zdz + tdt)ls3 = 0.) 
(c) Show that>. = 2de, where e = (-ydx+xdy-tdz+zdt)ls3. Compute 

.A 1\ e and IS3 .A 1\ e. 
6.10.2.2. Now let f : 8 3 -. 8 2 be an arbitrary 0 00 map, {3 E (12(82) a 
two-form on 8 3 , and 0: = f* {3. 

(a) Show that there exists e E (11(83 ) such that de = 0:. 

(b) For a fixed I, we consider all forms {3 E (12(82) such that Is~ {3 = 1 
and all forms e E (11(83 ) such that de = 0:. Show that lSI 0: 1\ e does 
not depend on (3 or on e, only on I. We denote this integral by 1(1), 
and call it the HopE invariant of I. 

(c) What is 1(1) equal to when f is not surjective? 
(d) Compute 1(a) for a as in 6.10.2.1. 

In fact 1 is always an integer [Gre67, p. 151]. 

6.10.S. Prove 6.3.7 by showing that if e(x) =F 0 for every x E B(O, 1) we 
can find a map I contradicting 6.3.5. 

6.10.4. Prove 6.3.5, 6.3.7 and 6.3.8 assuming just continuity, not differ
entiability. (Hint: Use Weierstrass's theorem to approximate continuous 
functions on compact sets by polynomials.) 
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6.10.5. Let X and Y be compact manifolds. Construct a natural map 

F: L RP(X) ® Rq(y) -+ Rr(x x Y), 
p+q=r 

where ® denotes the tensor product. Prove that I is injective. 

6.10.6. Let D be the set of complex numbers z such that 1m z > 0, consid-
. az+b 

ered as an open subset of R2. Let G be the set of homographles z 1-+ --d-' 
ez+ 

where a, b, e, d are real numbers satisfying ad - be =I- o. 
(a) Show that I(D) = D for every lEG. 
(b) Show that if w is a two-form on D satisfying /*w = w for every lEG, 

. . al dx A dy ( hi'. . ) w 18 proportIon to 2 were, as usua, we re setting z = x+ty . 
y 

(c) Let A be a compact submanifold-with-boundary of D such that aA is 
the union of three arcs of circle AB, BC and CA with centers on the 
line y = o. Prove that 

1 dx A dy (A B C) -~2~=11"- + + , 
6 Y 

where A, Band C are the angles of the "triangle" ABC. 

6.10. 'I. Let D be a submanifold-with-boundary of an oriented Euclidean 
vector space, and v(x) the unit normal vector point out at x E aD. Prove 
that there exists e > 0 such that x + tv (x) E /) for every t E j-e, 0[. 

6.10.8. Let n be the north pole of the sphere 8 2 C R 3 , and 8 : 8 2 \ {n} -+ 

R2 the corresponding stereographic projection. Find 8(X, y, z) explicitly. 
If Wo = dx A dy is the canonical volume form on R2 and 0' the canonical 
volume form on 8 2 , find 8'"WO as a function of 0'. 

6.10.9. Compute the volume of 8el using the map 

[ 71" 11"] n-l [ . 1 n 1 n+1 n+1 -2' 2 x -1I",1I"j. (0 , ... ,0 ) 1-+ (~, ••• ,~ ) E R , 

where 
~1 = sinOt, 

~2 = cos 01 sin 02 , 

~n = cos 01 cos 02 . .. cos on-1 sinOn, 

~n+1 = cos 01 cos 02 ... cosOn- 1 cosOn . 

6.10.10. Prove 6.5.4 in detail 
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6.10.11. Calculate the length and area of the hypocycloids and epicycloids 
studied in 8.7.17. 

6.10.12. Consider the two surfaces 

EP = {(x, y,x2 + y2) : x,y E R}, 
H P = {(x, y, x2 - y2) : x, y E R}, 

called elliptic and hyperbolic paraboloids, respectively. Let D be a compact 
submanifold-with-boundary of the plane. Show that, if p: R S -+ R2 is the 
projection onto the xy-plane, we have 

vol(EP n p-l(b)) = vol(HP n p-l(b)). 

Compute this volume explicitly when D = B(O, 1). 

6.10.1S. Find the center of mass of the circular 
sector 

{(rcosO,rsinO): 0:5 r:5 R,-T:5 0:5 T} 

as a function of R E R+ and T E 10,11"[. 

6.10.14. The paradox of the funnel. Given a x 
real number a, consider the set D = {(x,y,z) E 
R S : z < 0,x2 + y2 :5 (_z)2o<}. Compute vol(D) 
and area(aD). Prove that if a E [-1, -![ we 
have vol(D) < 00 and area(D) = 00. This means 
that to paint aD one should need an infinite 
amount of paint, but to fill D (and a fortiori 

z 

paint aD) a finite amount is enough! Figure 6.10.14 

y 

6.10.1S. First Guldin theorem. Let H+ = {(t, z) E R2 : t> O}, let 
8 1 C R2 be the unit circle and set 

f: H+ X 8 1 :3 ((t, z), u) t-+ (tu,z) E R2 x R= R S 

( cylindrical coordinates). 
(a) Show that f is a diffeomorphism between H+ x 8 1 and RS \ Z, where 

Z is the z-axis x- 1 (0) n y-l(O). 
(b) Let wo, 0" and r be the canonical volume forms on R3, 8 1 and R2, 

respectively (where r = dt/\dz is restricted to H+). Prove that f*w = 
-t(r/\O"). 

(c) Let D be a compact submanifold-with-boundary of H+, and consider 
the associated solid of revolution f(D x 8 1) C RS. Prove that 

vol{J(D x 8 1)) = 211"0 area(D), 

where 0 is the distance from the center of mass of D to the t-axis. Use 
this to find the volume of a torus of revolution and the center of mass 
of a half-disc. 
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6.10.16. Second Guldin theorem 

(a) Let C be a compact, one-dimensional sub manifold of a Euclidean affine 
space, and 0 its canonical density. As in 6.5.14, show that 

Ia IdE 0 

fa o 
defines a point in the affine space E, which we call the center of mass 
ofC. 

(b) With the same notation as 6.10.15, let C C H+ be a compact, one
dimensional submanifold of H+. Show that I(C X Sl) is a two
dimensional submanifold of R3 and that 

area(J(C X Sl» = 211"0 leng(C), 

where 0 is the distance from the center of mass of C to the t-axis. As 
applications, find the area of a torus of revolution and the position of 
the center of mass of a semicircle. 

6.10.1'1. Let X be a compact, d-dimensional submanifold of Rn and I : 
Rn -+ Rn a homothety of ratio ,\. Show that 

vol(J (X» = ,\ d vole X). 

6.10.18. Let V and W be submanifolds of Euclidean spaces E and F, 
respectively. Show that 

vol(V X W) = vol(V) X vol(W). 

6.10.19. Calculate the volume of Pd(R) for the density derived from the 
canonical density on Sd by proposition 6.6.8. 

6.10.20. Compute the area of the Mobius strip (5.9.11). 

6.10.21. Compute the area of the image of S2 under the map 

(x, y, z) 1-+ (x2, y2, z2,,f2 yz,,f2 zx,,f2 xy). 

6.10.22. Prove 6.9.7. 

6.10.23. Compute vol(a(Tub· X») = can(NU· X) for e small enough. 

6.10.24. Compute 

1 al a"+l 
Xl ••• X d+1 (1, 

SIt 

where (1 is the canonical measure on Sd C Rd+l, the x, are the standard 
coordinate functions on R d+1 (restricted to Sd) and the ai are positive 
integers. IT you're familiar with the r-function, find this integral for ai 

real 
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6.10.25. Determine the center of mass of the half-ball 

{ (Xl,' •• , Xn) E R n : Xn ~ 0, L~l X~ $ 1}. 

What can you say about the last coordinate of the center of mass when n 
tends to infinity? 

6.10.26. Prove 6.5.9 without using coordinates. 

6.10.21. Calculate the volume of a spherical zone, that is, the portion of 
a sphere in R3 comprised between two parallel planes. In particular, the 
lateral area of a spherical zone only depends on its thickness. 

6.10.28. Calculate the volume of the solid bounded by two cylinders of 
revolution of same radius whose axes intersect at an angle Q. Calculate 
the volume of the solid bounded by three cylinders of revolution of same 
radius and mutually orthogonal axes. 

6.10.29. Calculate the volume of the solid bounded between a paraboloid 
of revolution and a plane not parallel to its axis. 

6.10.S0. Calculate the volume and lateral area of a cylindrical wedge (fig
ure 6.10.30). 

:\~--
- - - *'-1. .......... ......-

Figure 6.10.30 

6.10.S1. Calculate the volume of Viviani's window, the set of points of 
R3 defined by 

{ (x, y, z) I x2 + y2 + z2 $ 1 and x2 + y2 $ x}. 

6.10.S2. Formula of the three levels. Let K be a compact set in a 
three-dimensional Euclidean space, and assume that, for a $ z $ b, the 
area S(z) of the section KnH(z) of K by a plane with a fixed z-coordinate 
is a polynomial in z, of degree three or less. Show that the volume of z 
between H(a) and H(b) is given by the formula of the three levels: 

b~a(s(a)+4S(a;b) +S(b)). 
This gives another prooffor the volume of a spherical zone (6.10.27). Apply 
also to truncated cones. Show that the condition of the statement is always 
satisfied when K is bounded on the sides by a ruled surface (in particular, 
if K is a polytope). 
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r 
Figure 6.10.32 

6.10.SS. Find the area of the ellipsoid of revolution with equation 

z2 y2 z2 
a2 + a 2 + c2 = 1. 

6.10.S4. Compute the area of the open sets bounded by the curves defined 
in exercise 8.7.17. 



CHAPTER 7 

Degree Theory 

Using a local lemma, we show that the d-th de Rham group 
of an oriented, compact, connected d-dimensional manifold is 
canonically isomorphic to R (7.2.1). From this fundamental 
fact we deduce Moser's theorem, which says that two volume 
forms whose integral is the same are conjugate under a diffeo
morphism. 

But the most important consequence of the isomorphism 
Rd(X) ~ R is that it allows us to associate to any differen
tiable map f : X -+ Y between oriented, compact, connected 
manifolds of the same dimension a real number, called the de
gree of f, defined as the ratio between the integrals of certain 
differential forms (7.3.1(i)). The fecundity of this concept lies 
in that it can be reached in a completely different, geometric 
way: by counting, with appropriate signs, the number of in
verse images of a regular value of f (7.3.1(ii)). In particular 
the degree is an integer; it is also invariant under continuous 
deformations (7.4.3). 

From this we deduce a number of consequences bearing on 
vector fields on the sphere (7.4.6), the linking number of two 
curves (7.4.7), and the local behavior of vector fields near an 
isolated singularity (7.4.15). We also get a formula about vec
tor fields on the unit ball pointing inward at the boundary 
(7.4.18). 

The end of the chapter is devoted to the calculation of the 
last term in the formula giving the volume of a tube, in the 
even-dimensional case. This term turns out to be, on the one 
hand, a fixed scalar times the degree of the normal Gauss map 
of the submanifold, and, on the other hand, a fixed scalar 
times the Euler characteristic of the manifold (7.5.4). The 
equality between these two quantities is exactly the Gauss
Bonnet formula. All of this implies that the volume of a tube 
around a surface can be explicitly calculated (7.5.5). 
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Our first goal is to prove theorem 7.2.1: if X is an oriented, compact, 
connected d-manifold, the de Rham group Rd(X) is canonically isomorphic 
to R. We then give applications of this result. 

In this chapter everything is of class Coo. 

7.1. Preliminary Lemmas 

1.1.1. Lemma. Let Q = ]O,l[d be the open unit cube in Rd. If f3 E 
Od(Rd) is a d-form such that supp f3 c Qd and fQd f3 = 0, there exists 
'Y E Od-1 (Rd) such that sUPP'Y C Qd and f3 = dry. 

1.1.2. Remarks 

'1.1.2.1. Poincare's lemma (5.6.1) applies to Qd because df3 = ° (recall that 
f3 is a d-form on R d ). Thus it is clear that there exists 'Y E Od-1 (Rd) such 
that f3 = dry, but we don't know yet that sUPP'Y C Qd. 

'1.1.2.2. In fact this inclusion isn't true if fQd f3 is non-zero. Indeed, by 
Stokes' theorem (6.2.1 and remark in 6.2.2), we have 

[ _ 'Y = ~ dry = ~ {3 = [ {3, iaQd iQd iQd iQd 
the last equality arising from supp {3 C Q d. By if sUPP'Y c BQ d' the first 
integral is zero. 

o c d 

Figure 7.1.2 

1.1.3. Proof of 1.1.1. We use induction on d. Let us first establish the 
case d = 1. If {3 E 0 1 (R) has support in ]0, 1[, we can write f3 in the 
form (3 = f(t) dt, with f E Coo (]O, 1[; R). We are also assuming that 
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fQl P = f; I(t) dt = O. Finding "( E (lO(R) = COO(R) such that d"( = P is 
the same as finding a function 9 such that I(t) dt = g'(t) dt. 

The answer is 

1.1.4 g(t) = it I(s) dXj 

9 is defined for all t because 1 is continuous, and clearly g'(t) = I(t). There 
remains to show that 9 has support in 10,1[. The support of 1 is a closed 
subset of 10, 1[, that is, supp 1 = [c, dl with 0 < c ::; d < 1. Thus g(t) = 0 
for t ::; c. But we also have g(t) = 0 for t ~ d: 

g(t) = lot I(s) ds = Iod 
I(s) ds = 101 

I(s) ds = 0. 

In order to take the induction step we will strengthen the induction 
assumption as follows: 

1.1.5. (Hd ) II P E (ld(Rd) satisfies suppP C Qd and fQ4 P = 0, there 
exists "( E (ld-l(Rd) such that supp"( C Qd and P = d"(. In addition, il P 
depends on a parameter>' E A, where>. is a finite-dimensional vector space 
and (x, >.) 1--+ P(x, >.) is Coo on Rd X A, we can make "( depend on >. in such 
a way that (x, >.) 1--+ ,,((x, >.) is Coo. 

Clearly (Hd is true, because if (t, >.) 1--+ P(t, >.) = I(t, >.) dt is Coo on 
R X A, the function 

g(t, >.) = it I(s, >.) ds 

is Coo on R X A and we can differentiate under the integral sign (0.4.8). 
To show that (Hd-d implies (Hd), we write Qd = Qd-l X 10,1[ C Rd 

and define the maps 

1.1.6 p: Qd -+ Qd-l : (Xli.'" Xd-l, Xd) 1--+ (Xl, ... , Xd-dj 

1.1.1 it: Qd-l -+ Qd-l X {t} : (Xl, ... , xd-d 1--+ (Xli"" Xd-ll t); 
1.1.8 :It: Qd-l X {t} -+ Qd (inclusion). 

Q Xltl 
d-1 

o~--------------~ 

Figure 7.1.8.1 

~;/ ___ Qd_-1_7 
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The idea of the proof is to decrease the dimension by dividing f3 by 
dXd, restricting it to Qd-1 X {t} and transferring it to Qd-ll this for each 
t E [O,IJ. In the process we introduce one additional parameter: A is 
replaced by R X A. The form we obtain on Qd-l does not have zero 
integral, but we subtract its average and call the difference 'lrt. Then we 
apply (Hd) to 'lrt to get forms "1t such that 'lrt = d"1t, and we pull back the 
"1t to Qd-l X {t}. The form obtained by combining all the pull-backs, after 
a slight correction, will be our "1. 

The calculation below is done in coordinates for simplicitYj we are in fact 
omitting a great number of occurrences of p*, i; and 1~* . 

First fix a reference form U E n d- 1(Rd- l ) such that supp(u) c Qd-l 
and I,Q u = 1. Now assume that f3 E nd(Rd) is a form satisfying the "-1 
conditions in 7.1.5, and write 

f3(X, A) = I(x, A) dXl /\ ... /\ dXd, 

with 1 E coo(Qd X AjR). 
Write x = (Xl, ... , Xd-1' t), and consider, for each t E JO,I[, the form 

'lrt E nd-l(Rd- l ) given by 

'lrt(X1,"" xd-d = l(x1, ... , Xd-ll tj A) dXl/\ ... /\ dXd-1 - g(tj A)U, 

where 

g(tj A) = 1 f(XlI"" Xd-1' tj A) dX1 /\ ... /\ dXd-l. 
Q"-l 

Since I,Q U = 1 by assumption, we have rQ 'lrt = O. By construction, ~1 J'~l 
'lrt E n d- 1 (Rd-l) varies Coo with t and A. In addition, 

supp 'lrt C (p(supp I) n Qd-1 X {t}) u supp U c Q d-ll 

so, by an application of (Hd-d with R X A in lieu of A, there exists "1t E 
n d- 2 (Rd- 1 ) such that d"1t = 'lrt and "1t is supported in Qd-l. 

Now we construct a form "1', dependent on A, as follows: 

"1'(X1I"" Xd-l, tj A) = p*bt) /\ dXd' 

If "1t(Xl,"" Xd-lj A) = E Ut(Xl,"" Xd-lj A) dXl /\ ... /\;;' /\ ... /\ dXd-l, 
we have 

"1;(X1I"" Xd-1, tj A) = E Ut(X1I ... , Xd-1; A) dX1 /\ ... /\ [;./\ ... /\ dXd 

(for notational simplicity, we denote the derivative of the i-th coordinate 
function by dx., both on R d and on R d+1 ). Formally we can write 

db') = d(p* btl /\dXd) = d(p*bt)) /\dXd = p* (dbt)) /\dXd = P*('lrt) /\dXd' 

Bearing in mind the identifications we've made, 

P*('lrt) /\ dXd = l(x1, ... , Xd-ll tj A) dX1/\ ... /\ dXd - g(tj A) U /\ dXd, 
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that is, 

If we now show that the term g(tj .\)0-(X1'" ., Xd-dl\dXd is exact, we will 
have formally shown that {j is exact, that is, that there is '1 E nd- 1 (Rd) 
such that {j = d'Y. To do this, set 

Since 0- is a (d - I)-form on Rd-1, it is closed, and we have 

de(xlI ... ,Xd-lI t j'\) = (_I)d-1g(t,.\) dXd 1\ 0-

= g(tj .\)0-(X1"'" xd-d 1\ dXd, 

where g(t,.\) dXd is the derivative of t ~ f~ g(s) ds. 
But this result is as yet merely formal, in the sense that we still have 

to show that '1 = '1' + e is Coo, that it has support in Qd-1 and that 
it varies Coo with'\. The first and last properties can be easily checked 
using (Hd-d and going over the preceding calculation: the only non-trivial 
operation we've performed is integration of functions, and for that we have 
theorem 0.4.8, which allows differentiation under the integral sign. 

]O,1[ 

Figure 7.1.8.2 

To see that '1 has support in Q d, notice first that each 'Yt has support in 
Qd-1, so '1' has support in Qd-1 X R. But {j has support in Qd, so there 
exist e, '1 > 0, with e < 1 - '1, such that f(x1,"" Xd-1, t) = 0 for any 
Xl,"" Xd-1 E Rand t f/:. Ie, 1- '1]. For such t, also, 'Yt = 0, which shows 
that sUPP'Y' C Qd. 

As for e, we will show that the map t ~ f~ g(Sj.\) ds is zero for t f/:. 
[e,1 - '1]j this is where the condition fQ4 {j = 0 will come in. By Fubini's 
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theorem and the construction of g we have, for t ~ 1 - '1: 

t g(Sj >.) ds = t ( r f(x1, ... , Xd-1, tj >.) dX1 t\ ... t\ dXd-1) dt 10 10 lQ4-1 

Then 

= r1 
( r f(x1, ... , Xd-1, tj >.) dX1 t\ ... t\ dXd-1) dt 10 lQd._l 

= r f(x1, ... , Xdj >.) dX1 t\ ... t\ dXd lQd. 
= r (3 = o. lQd. 

supp€ c supp(t 1-+ lot g(Sj>.) dS) X Qd-1 C fe, 1- '1] X Qd-1 c Qd, 

which concludes the proof of the lemma. o 

1.1.9. Lemma. If X is a compact, connected, d-dimensional manifold, 
the de Rham group Rd(X) has dimension at most one. 

Proof, Let {(Ui , <Pi, ,pi)} be a partition of unity on X, satisfying the con
dition that each <Pi (Ui) = Q dj this can always be achieved by modifying <Pi 
if necessary. Since X is compact, we can also assume that the partition of 
unity is finite, that is, X = U7=1 Ui. 

Fix ad-form ao with support in U1 and such that 

1.1.10 r (fl"l)*ao = 1. lRd. 
We are going to show that, for every a E Od(X), there exists a scalar k 
and a form J1. E Od-1 (X) such that a = kao + dJ1.. Then a is homologous 
to kao, and it follows that dim(Rd(X)) ~ 1. 

Since a = 2:7=1,pia and the property we are trying to establish is ad
ditive, we can restrict ourselves to the case suppa CUi, for i fixed. Take 
mE U1 and n E Ui . Since X is connected, there exists, E CO([O, 1]j X) 
such that ,(0) = m and ,(1) = n (2.2.13). The image ,([0,1]) is covered 
by some of the Uj , say Ujl = Ub Uh , ... , Uj" = Uij we assume moreover 
that Uj,,+l nUn =1= 0 for r = 1, ... ,k - 1. 

Now choose forms ajr E Od(X), with suppajr C Ujr n Ujr+1 and 

r (<p~l)*air_l = 1 lRd. 
for r = 1, ... ,k - 1. Also set aio = ao. 

On Uir we have two forms air_l and air such that (<p~l)*air_l and 
(<p~l)*ajr have support in Qd. The integral 

Cr = ! (<p~l)*air' 
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U '3 

supp aj 
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'1 
supp a o 
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Figure 7.1.9 
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suppai 
k-1 

is a real number, and the form ajr - c,.ajr_l satisfies supp(<J»i.l)*(ajr -
c,.ajr_.) c Qd and 

J (<J»i.l)*(ajr - c,.ajr_.) C Qd' 

By 7.1.1 there exists f3,. E Od-l(Rd) with support in C Qd and satisfying 

(<J»;:l)*(ajr - c,.ajr_.) = df3,.. 

We now set fJ,. = <J»j.(f3,.), which is possible because <J».(U.) = Qd and 
supp f3,. C Q d. On X we have 

Thus we have shown the existence of forms fJ1 , ..• , fJ1c and of scalars ClI ... , 
Ck such that 

In particular, 

ajl - ClaO = dfJ1, 

ah - C2a jl = dfJ2, 

aj"_l - C1c-la j"_2 = dfJk- 1, 

(a) - Ckaj"_l = dfJk. 

a - (Cl ... ck)ao = d(fJk +CkfJ1c-l + ... + CkCk-l ... c,fJ'-l + ... + Ck ... C2fJl), 

which shows that a and (Cl ... ck)ao are homologous. o 
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7.2. Calculation of Rd(X) 

1.2.1. Theorem. Let X be a compact, connected, d-dimensional mani
fold. The de Rham group Rd(X) is canonically isomorphic to R if X is 
orientable, and trivial otherwise. 

Proof. We know by 7.1.9 that Rd(X) has dimension at most one. If Fd(X) 
denotes the set of closed d-forms (5.4.3), we have Fd(X) = Od(X) because 
X has dimension d. 

If X is oriented, we can consider by map 

I: Fd(X) 3 a 1-+ Ix a E R, 

defined because X is compact (6.1.3). But if a = d{3, Stokes' theorem 
implies that 

( a = ( d{3 = ( (3 = 0 
lx lx lax 

because X has empty boundary. Thus I factors through Bd(X) to give 
another map I: Fd(X)j Bd(X) = Rd(X) --+ R, which is canonically asso
ciated to X (with a fixed orientation) and a vector space homomorphism. 
This map is surjective: if w is a volume form on X (which exists because 
X is orientable), we have Ix w > 0, so l(w) > 0, where w is the class of w 
in Rd(X). Since Rd(X) has dimension at most one, I is also injective, and 
consequently an isomorphism. 

If X is non-orientable, we consider the canonical double cover p : X --+ X 
(5.3.27). We know by 5.3.29 that X is connected because X is connected 
and non-orientable. Now take w E Od(X). On X we have the antipodal 
map s : X --+ X, which satisfies po s = p and hence p*(w) = s*(p*w). By 
5.3.31.1 and 6.1.4.5 we can write 

which implies Ix p*w = o. 
Since X is orientable, there exists by 7.2.2 a (d - I)-form>. such that 

p*w = d>.. Then 
>. + s* >. 

J.L= 2 

is again a (d-l)-form on X, this time invariant under s* (since sos = Id). 
From p* w = d>' we get 

s*(p*w) = s*(d>') = d(s* >.) = (p 0 s)*w = p*w = d>', 

so 

p*w = d(>. + s* >.) = dJ.L 
2 . 
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By lemma 5.3.9 there exists!!:. E Od-1 such that p*!!:. = p,. Then p*w = 
dp, = d(p* p,) = p*(dp,) and, since p is regular, w = dp,. Since w = Od(X) 
was arbitr;;:-ry, we ha;e proved that Rd(X) = O. - 0 

1.2.2. Corollary. If X is an orientable, compact, connected d-dimensional 
manifold, we have 

Proof. If I is as above, we have {a E Od(X) : Ix a = O} = 1-1(0), and 
this coincides with Bd(X) because 7 is an isomorphism. 0 

1.2.3. Theorem (Moser). Let X be an oriented, compact, connected d
dimensional manifold. Ifa and fl are volume forms on X such that Ix a = 
Ix fl, there exists f E Diff(X) such that fl = ra. 

This amounts to saying that the only invariant of volume forms under 
diffeomorphisms is their volume. 

Proof. Let a and fl be volume forms. For every t E [0,1], set at = 
(1 - t)a + tfl, still a volume form. Since Ix(fl - a) = 0 there exists 
"I E Od-1(X) such that d"l = fl - a (7.2.2). By 5.3.16, there exists for 
every t a vector field e(t), defined by cont(e(t))at = -"I; this field is Coo 
in t. 

Let F be the global flow of e(t); F is defined on [0,1] because X is 
compact (cf. 3.5.6 to 3.5.14). Working as if calculating the derivative of a 
linear map, we can write 

aFtat(t) = aF.*at(t) +F* ((aa.) (t)) = aF:at(t) +Ft(fl-a). 
at as t as as 

But 5.5.10 says that, for every closed form w, 

aF*at * ( ) ----ts-(t) + Ft d(cont e(t)(w)) , 

so that 

a~*tat = Ft(fl - a) + Ft(d(-"I)) = 0, 

given that fl - a = d"l. Thus Ft at does not depend on t, and is equal to 
Faa = a. In particular, F; fl = a, and fl = ra for f = (FI}-l. 0 
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7.3. The Degree of a Map 

1.3.1. Fundamental theorem. Let X and Y be oriented, compact, con
nected manifolds of same dimension d, and f E Coo (Xj Y) a map. There 
exists an integer, called the degree of' and denoted by deg(f), such that: 
(i) if w E (ld(y) we have 

Ix /*w = deg(f) [Wj 

(ii) if y is a regular value for, we have 

deg(f) = L sgn(J",(f)). 
"'Ej-l (v) 

In particular, if ,-1 (y) = 0 the degree is zero. 

For the definition of sgn(J",(f)), see 7.3.2.2. 

1.3.2. Remark. If y is a regular value, , is a local covering and ,-l(y) is 
finite (4.1.5 and 4.1.6). Thus the sum in (ii) is well-defined. 

Proof. Let /* : Rd(y) - Rd(X) be the homomorphism associated to 'E COO(Xj Y) (cf. 5.4.6). Because ofthe assumptions on X and Y, 7.2.1 
gives canonical isomorphisms between their de Rham groups and Rj thus 
we can define /* : R - R in such a way that the following diagram 
commutes: 

Rd(X) LRd(y) 

1.1.2.1 Ix! !IY 
R - R. 

7* 
Since f* is linear, it must be of the form t t-+ kt for some k E R. But 
according to 7.3.2.1, if Til E Rd(y) and W E (ld(y) represents w, we have 

Ix /*w = deg(f) [W. 
That deg(f) is an integer will follow from the proof of (ii). By Sard's the

orem (4.3.6) f has regular values y. Applying 4.1.5 we can find V E 0v(Y) 
such that, if f-l(y) = {Xl, ... , xn}, the inverse image ,-l(V) is a disjoint 
union of open sets Ui EO",; (X), restricted to which, is a diffeomor
phism. We can assume V to be connected. Choose W E (ld(y) such that 
suppw c V and fy W =1= o. We have supp(f*w) c ,-l(V), so that 

/, /*w=tl j*w. 
x i=l U; 
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C::~:"PPW 
Figure 7.3.2 

Now flu; is a diffeormorphism between Ui and a connected set V, so it 
either preserves or reverses orientation (the orientations of Ui and V being 
the ones induced from X and Y). This choice can be translated in terms 
of T.,J, so it only depends on Xi. Set 

1.1.2.2 s n(J.,(f)) = {+1 ~ T.,f preserves ~rient~tion, 
g -1 if T.,f reverses orIentatIOn. 

Thus, by 6.1.4.4 and 6.1.4.5, we get 

r /*w = sgn(J.,;(f)) r w, 
}~ }y 

I, /*w = ( L sgn(J.,;(f))) 1 w = Ie 1 w, 
X .,er1(y) Y Y 

whence deg(f) = Ie = E.,eJ-1(y) sgn(J.,;(f)) is an integer. 
If f-l(y) = 0, there exists V E Oy(Y) such that f-l(V) = 0j if w has 

support in V and fy w '# 0 we get 

Ix /*w = Ix 0 = 0, 

and again here deg(f) = 0 = E.,eJ-1(y) sgn(J.,(f)). 0 

7.S.S. Corollary. Let X and Y be oriented, compact, connected manifolds 
0/ same dimension d, and f E Coo (Xj Y) a map. If y and z are regular 
values the cardinals of f- 1 (y) and /-1 (z) are congruent modulo 2. 
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Proof. By 7.3.1(ii) we have deg 1== #(J-l(y)) (mod2), and similarly for 
~ 0 

1.S.4. Proposition. Let X, Y and Z be oriented, compact, connected 
manilolds 01 same dimension d, and I E Coo (X; Y), g E COO(y; Z) maps. 
We have deg(g 0 f) = deg g x deg I. 
Proof. See exercise 7.8.2. o 
1.S.5. Examples 

1.1.5.1. If I is not surjective, deg I = O. 

1.1.5.2. The degree of the identity map Idx is one. 

1.1.5.1. Let X be the circle, Y the curve in figure 7.3.5 and I : X ..... Y 
the radial projection. The points Yl, Y3, Y5 E Yare regular values, and 
l-l(Yl), 1-1(Y3) and 1-1(Y5) have 1, 3 and 5 elements, respectively. 

Figure 7.3.5 

'.1.5.'. Let X = Y = 8 d • The degree of the antipodal map s = - Ids" 
is (-1) d+1 • Indeed, if w is the canonical volume form on 8 d , we have 
sdw = (-1)d+1 w (cf. the proof of 5.3.18), so that 

r s"'w = (_1)d+1 r w. 
1s" 1s" 

1.1.5.5. Let X = Y = 8 1 C R2, and identify R2 with C. The degree of 
I : 8 1 :3 z 1-+ ZB E 8 1 is n. 

1.S.6. Remarks 

1.1.6.1. If we switch the orientation of both X and Y the degree does not 
change. 

1.1.6.2. If X is differentiable and I E Diff(X), the degree is +1 if I pre
serves orientation and -1 if it reverses it. 
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1.S.1. Definition and example. Let E be an oriented, two-dimensional 
Euclidean space, a E COO(81 j E) a curve and a E E a point not in the 
image of a. The winding number of a with respect to a is the degree of 
the map J.l. defined by 

a(t) - a 
J.l.(t) = Ila(t) - all' 

See 7.6.7 for further discussion. 

1.S.S. Remark. By 3.4.1 this applies to all compact one-dimensional sub
manifolds of the plane. 

7.4. Invariance under Homotopy. Applications 

1.4.1. Definition. Let X and Y be manifolds. Two maps f, g E COO(Xj Y) 
are said to be homotopic if there exists a homotopy between f and g, that 
is, a map F: [0,1] x X -+ Y such that: 

(i) For every t E [0,1] the map Ft : x 1-+ F(t, x) is in Coo (Xj Y)j 
(ii) The map TF : [0,1] x TX -+ TY defined by (TF)(t,x) = T~Ft is 

continuousj 
(iii) Fo = f and Fo = g. 

1.4.2. Remark. Conditions (i) and (ii) are certainly satisfied if F can be 
extended to some FE Coo (]-e, 1 + e[ x Xj Y) for some e> O. 

1.4.S. Theorem. Let X and Y be oriented, compact, connected manifolds 
of same dimension. If f, g E Coo (Xj Y) are homotopic we have deg f = 
deg g. (In fact, if F is a homotopy between f and g the degree of Ft does 
not depend on t.) 

Proof. Take w E (1d(y) such that Iy w t O. By 7.3.1(i) we have 

IxFt w 
degFt = I 

XW 

for every t, and this number is an integer. If we can show that the map 
t 1-+ Ix Ftw is continuous, the same will be true for t 1-+ deg(Ft ), implying 
that deg(Ft ) is constant. But this follows from 5.2.10.6 and 6.1.4.11. 0 

1.4.4. Corollary. If X is an oriented, compact, connected manifold, any 
map f E Coo (X) homotopic to the identity Idx is surjective. 

Proof. Apply 7.3.5.1, 7.3.5.2 and 7.4.3. o 

1.4.5. First application: vector fields on spheres 
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1.4.6. Theorem. There exists a nowhere vanishing vector field e on the 
sphere 8 d if and only if d is odd. 

Proof. First we show the existence of such a vector field for odd d. This is 
done by identifying R2d with R2 X ... X R2 = ex··· X c = Cd and by 
setting 

e(Zl, ••• ,Zd) = 0(-1 )(izlo ... ,izd). %t,···,.:z:d 

Here (Zlo"" Zd) E 8 2d- 1 C R2d = Cd. It is clear that e i= 0 everywhere. 
Now we study the case that d is even. Assume that e is a nowhere 

vanishing vector field on 8 d , and consider the field" given by 

e(x) 
,,(x) = rrerxm 

for every x E 8 d • Next, define F E Coo (R X 8 d ; 8 d ) by 

F(t, x) = (cos 1rt)x + (sin 1rt)O",(,,(x)). 

Since IIxll = II" (x) II = 1 and (x I O",(,,(x))) = 0, we do have IIF(t,x)11 = 
1 for very t E [0,1] and x E 8 d • The conditions in 7.4.1 are satisfied 
(by 7.4.2), so the maps Fa = Ids.t and F1 = - Ids" are homotopic. By 
7.4.3, their degrees should be equal; but this is impossible for d even, since 
deg(Ids.t) = 1 and deg(- Ids,,) = (_1)d+1 by 7.3.5.4. 0 

s' 
L =" 

/ "\. 
I \ 

I 

\ / 
"- / 

"' ./ 

Figure 7.4.6 

For instance, every vector field on 8 2 must vanish somewhere. More 
concretely, it is impossible to comb a hairy sphere without leaving a cowlick. 
There exist vector fields on 8 2 vanishing at one point only (figure 7.4.6, 
left). 

1.4.1. Second application: linking number of two curves 

1.4.8. Definition. From here through 7.4.14 we will understand by a curve 
in R S a Coo embedding 1 of 8 1 in R S • A pair of curves {t, g} will consist 
of two curves 1 and 9 such that 1(81 ) n g(8 1 ) = 0. 
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A homotopy between pairs or curves {f, g} and {f', g'l will consist of two 
homotopies F and G (in the sense of 7.4.1), where F is a homotopy between 
f and f' and G a homotopy between g and g', subject to the condition that 
{Ft, Gt } is a pair of curves for every t E 10,11. Such a homotopy between 
pairs of curves will be denoted by {F, G}. 

7.4.9. Definition. Let {f, g} be a pair of curves. The linking number of 
{f, g}, denoted by link(f, g), is the degree of the map J.' E 0 00 (81 X 8 1 i 8 2 ) 

defined by 
f{t) - f{s) 

J.'{t, s) = Ilf{t) - f{s) II' 

'1.4.10. We will denote by {fo, go} the pair of curves in R3 consisting of 
the circles 

fo = {{x,y,z): z= 0 and {x-2)2 +y2 -1 = OJ, 

go = {(x, y, z) : z = 0 and (x + 2) 2 + y2 - 1 = O}. 

Y 

Figure 7.4.10 

x 

7.4.11. Definition. A pair of curves {f, g} is unlinked if it is homotopic 
to the pair {fo, go} defined in 7.4.10. It is linked otherwise. 

'1.4.12. Theorem. If {f, g} and {fl, g/} are homotopic pairs of curves, we 
have 

link(f, g) = link(f', g'l. 

If link(f, g) ":f:: 0 the pair {f, g} is linked. 

Proof. Let {f, g} and {f', g'l be homotopic pairs of curves, and {F, G} a 
homotopy between them. For fixed t, we associate to the pair {Ft, Gt } the 
map J.'t : 8 1 X 8 1 -+ 8 2 defined by 
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The map p.: [0,1] X 8 1 X 8 1 -+ 8 2 defined by p.(t, x, y) = JLt(z, y) satisfies 
the conditions in 7.4.1. Thus p. is a homotopy, and deg(p.t) is a constant 
by 7.4.3. In particular, link (I, g) = deg(p.o) = deg(p.d = link(l', g'). 

For the second part, we show that if I and g are unlinked their linking 
number is zero. Unlinkedness means that {I, g} is homotopic to {to, go}, so 
the two linking numbers are the same. But the linking number of {to, go} 
is zero: since 10 and go are contained in the zy-plane, the image of p. 
(cf. 7.4.9) also lies in the zy-plane, and in particular cannot be the whole 
of 8 2 • By 7.3.5.1 this implies deg(p.) = O. 0 

7'.4.13. Example. Consider the circles in figure 7.4.13: I and g lie in 
mutually perpendicular planes and their centers are on the line common to 
those planes. We have (I, g) = ±1, and in particular I and g are linked. 

z 

x 

Figure 7.4.13 

To calculate link(l, g), place the axes so that the centers lie on the z
axis and I and g are contained in the xy- and zz-planes, respectively. Now 
consider the map p. : 8 1 X 8 1 -+ 8 2 from 7.4.9. If el = (1,0,0) E 8 2 and 
(a, b) E p.-l(el), the vector I(a) - g(b) is parallel to the positive z-axis, 
so I(a) and g(b) must be placed as shown in the figure. Thus p.-l(eI) 
consists of one point. But el is a regular value, because T(a,b) (81 X 8 1 ) ~ 
Ta81 X Tb81 and, since f'(a) and g'(b) are perpendicular, 

(T(a,b)P.)(T(a,b) (81 x 8 1 )) = T,..(a,b)8 2 • 

It follows from 7.3.1(ii) that deg(p.) = ±1. o 

7' .4.14. Warning. The converse of the second statement in 7.4.12 is false. 
For example, in figure 7.4.14 both pairs of curves have linking number zero, 
but the pair on the right is linked (exercise 7.8.5). 

For a sleight-of-hand involving linking numbers, see 7.8.11 and [Hil]. 

7' .4.1S. Third application: index of singularities. Let U be open 
in Rd and e E Coo (Uj R d) a vector field on U (in the elementary sense, 
cf. 1.2.1). A point p. E U is a singularity if e(m) = o. It is an isolated 
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Figure 7.4.14 

singularity if, in addition, e(x) =1= 0 for every x =1= m in a neighborhood V 
of min U. We will denote by S(m, E) the sphere of center m and radius E 
in Rd. 

7.4.16. Proposition and definition. Let m be an isolated singularity of 
e, and V E Om(U) a neighborhood such that e(x) =1= 0 for x E V distinct 
from m. The degree of the map f. : Sd-l -> Sd-l, defined for all E > 0 
such that S(m, E) C V by the formula 

e(m+ EX) 
x f-+ IIe(m + EX) II ' 

does not depend on E. This number is called the index of e at m, and 
denoted by indm e. 
Proof. Let E and f'J be such that S ( m, E) and S (m, f'J) are contained in 
V, define F : [0,1] x Sd-l -> Sd-l by F(t, x) = f(1-t).+t" (x). Since 
e E C""(UjRd) and e does not vanish on V \ {m}, there exists a > 0 
such that, for every t E ]-a, 1 + aI, the denominator of ft does not vanish 
for any x. By 7.4.2 the map F(t, x) is a homotopy between Fo = f. and 
Fl = f", and 7.4.3 wraps up the proof. 0 

7.4.17. Examples 

1.'.1'1.1. The origin is an isolated singularity of e = IdR ", of index one. 

1.'.1'1.%. By 7.3.5.4, the index of the origin in e = - IdR" is (_I)d. 

1.'.11.1. Let e(x,y) = (-y, x) in R2. The index of the origin is one. 

1.'.11.'. Let e(x,y) = (x2_y2,2xy) in R2. The index of the origin is two. 

Figure 7.4.17 
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We are now in a position to generalize 6.3.7 in three ways: the dimension 
can be arbitrary, the field e can have singularities and it does not have to 
be normal at the boundary. 

1.4.18. Theorem. Let e E Coo (Rd; R d) be a vector field having only iso
lated singularities in B(O, 1). Assume, moreover, that e points inward at 
the boundary, that is, (x I e(x)) < ° for x E Sd-1. Then there are only 
finitely many singularities Xl> •• " Xn in B(O, 1), and 

l:1 ind"'l e = (_I)d. 

Proof. Since e points inward, it has no singularities on Sd-1. This means 
the singularities are isolated points in the compact set B(O, 1), and conse
quently finite in number. For the same reason there is an open neighbor
hood U of B(O, 1) in Rd such that e does not vanish on U \ {Xl>"" x n }. 

We can also find pairwise disjoint closed balls Di = B(Xi' ei) (i = 1, ... , n) 
such that e does not vanish on B(Xi' ei) \ {Xi}. 

We will now apply Stokes' theorem to the submanifold-with-boundary 
n 

D = B(O, 1) \ U fh 
i=1 

But first notice that the map f : x ...... II e((x) II E Sd-1 is defined and Coo e x) 
on U \ {Xli ... , x n }, which is a neighborhood of D. Thus, denoting by a 
the canonical volume form on Sd-t, we have, by Stokes' formula (6.3.8): 

For each i we have Is( . 0) j*a = ind", e (7.4.16), whence x"e, I 

r ra = i)nd",; e. 
lSd-l 

i=1 

To calculate the integral on the left-hand side, set 

F( ) _ (1 - t)e(x) - tx 
t,x -11(I-t)e(x)-txll. 

Then there exists a > ° such that F is Coo on ]-a, 1 + a[ X Sd-1: indeed, 
(x I e(x)) < ° implies that, for all x E Sd-1, the denominator of F is 
non-zero for t in an open interval containing [0,1] (see figure 7.4.18, right). 

By 7.4.2 this means that F is a homotopy between Fo = flsd-l and 
F1 = - Idsd-l. But then 7.3.5.4 and 7.4.3 give 

r j*a= r (-Id)*a=(-I)d. 0 1 Sd-l 1 Sd-l 
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Figure 7.4.18 

1.4.19. Corollary. If a vector field e E Coo (Rd; Rd) points inward along 
Sd-l, it has at least one singularity in B(O, 1). 0 

See also section 7.7 for a discussion on arbitrary manifolds. 

7.5. Volume of Tubes and the Gauss-Bonnet 
Formula 

Let E be an n-dimensional Euclidean space and X a compact, connected, 
d-dimensional submanifold of E. Denote by S(E) the unit sphere in E, by 
NUX the unitary normal bundle of X (6.7.6) and by,: NUX -+ S(E) 
the Gauss map defined by ,(x, v) = v (6.8.13). If we orient E, the sphere 
S(E), being the boundary of BE(O, 1), gets a canonical orientation, as does 
NUX (6.7.22 and 6.7.26). It then makes sense to consider the degree of 
, : NUX -+ S(E). This does not depend on the orientation chosen for E. 

The formulas in 6.9.15 take the following aspect: 

r KdC = r WdW = r ,*E = degb) 1 E = voIS(E) . deg,. 
lx lNux lNux S(E) 

To calculate degb) we use the following trick: To each (x, v) E NUX, 
associate the function f(:z;,tJ) E COO (X) defined by 

1.5.1 f(:z;,tJ) : y -+ (v I y). 

We have seen in 4.1.4.2 that 11 E X is a critical point of f(:z;,tJ) if and only 
if v E NyX. Thus x is a critical point of f(:z;,tJ) , for every v. 

The main tools in the sequel will be Morse theory (4.2.11 and 4.2.24) 
and the following lemma: 
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7.5.2. Lemma. Let (x, tI) E NUX. The critical point x of f(z,v) is non
degenerate if and only if the Gauss map 'Y : NUX -+ S(E) is regular at 
(x, tI). If, in addition, d is even, we have 

sgn(J(z,v)'Y) = (_1)inds J(s,.). 

S(E) 
x ~X 

- S(E) 
p 

Figure 7.5.2 

This result is easy to visualize when X is a plane curve. In figure 7.5.2, 
f(z,v) is the height function (coordinate parallel to tI), and x is a critical 
point for it. The critical point is non-degenerate if the curvature of X 
there is non-zero (see 8.2.2.15, for example), in which case 'Y is regular at 
(x, tI). Conversely, if x is an inflection point, for instance, the image of 'Y 
in S(E) has a stationary point, that is, 'Y is no longer regular. The reader 
can verify the formula for sgn(J(z,v)'Y)' Section 8.5 makes this discussion 
of plane curves more rigorous. 

Proof. Take (x, tI) E NUX, and a parametrization (U, h) of X at x. Let 
(U X Rn-d, H) be a parametrization of NUX at (x, tI) of the kind defined 
in 6.7.11 and satisfying the following conditions (where the notation is 
borrowed from 6.7.11): 

(i) h(u) = Xi 

(ii) {:~ (u), ... , ::d (u)} is an orthonormal basis for TzX, positively 

oriented for some local volume form Pi 
(iii) IId+1(U) = tli 
(iv) the matrix 

( 8 2 (J(z,v) 0 h) (U)) (1 ~ i,j ~ d) 
8Ui8ui 

is diagonal. This can be achieved by applying the reduction of quad
ratic forms in the orthogonal group [Dix68, 36.9.4J. 
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By definition 4.2.11, f(~,tJ) is non-degenerate at (x, v) if and only if 

d a2 

II au~ (f(~,tJ) 0 h)(u) =1= o. 
,.=1 • 

But f(~,fJ) 0 h(u) = (vi h(u)). By the construction of H, we have 

(vd+dw) I ::,. (w)) = 0 

for all w E U and i = 1, ... ,d. Differentiating with respect to Uj (the j-th 
coordinate in Rd :::> U) and evaluating at u, we obtain 

0= (a;::1(u) I ::,.(u)) + (Vd+1(U) I a:,.:huj(u)). 

If·T denotes the orthogonal projection from E onto IJ(T~X) (cf. 6.8.5), this 
becomes 

(( aVd+1)T I ah ) (I a2h ) 0= aUj (u) aUj (u) + v au,.aUj (u) . 

But differentiating (v I w) with respect to wand evaluating at U we get 

Substituting above, 

(( aVd+l)T I ah) a2 
aUj (u) aUj (u) = - au,.aUj (f(~,fJ) 0 h)(u). 

By assumptions (ti) and (iv), we can decompose (a;::1 ) T (u), obtaining 

( aVd+1)T a2 ah 
1.5.3 -a-. (u)=-a 2(f(~,fJ)oh)(u)a---:-(u), 

u. u,. U. 

Thus the local form f3 of condition (ii) satisfies 

f3 ( (8;::1 ) T (u), ... , (8;::1) T (U)) = (_I)d g 82(f~:i 0 h) (u), 

again because we're working with an orthonormal, oriented basis. Since 
'1*(E) = Wd® (cf. 6.8.15) and, by 6.8.19, 

(( 8Vd+l)T ( 8Vd+l)T) Wd(s, v) = f3 ~ (u), ... , 8 U d (u), 

we conclude that (x, v) is a non-degenerate critical point of f(~,tJ) if and 
only if '1 is regular at (x, v). 
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If, in addition, d is even, the factor (_l)d disappears, and we obtain 

( ) rrd a2(1("",) 0 h) . d J 
sgn(J(",."j'Y) = sgn Wd(x, v) = sgn a~~ (tt) = (_l)m .. ( .... ). 

i=1 • o 

'1.5.4. Theorem. Let X be a compact, d-dimensional submanilold 01 an 
n-dimensional Euclidean space E. II d is efJen, the degree 01 the Gauss map 
'Y is equal to X(X), the Euler characteristic 01 X, and the Gauss-Bonnet 
formula holds: 

Ix Kd 5 = X(X) vol(sn-l). 

Proof. By Sard's theorem (4.3.6), the map 'Y : NUX -+ S(E) has regular 
values; for such a regular value v E S(E) the inverse image 'Y-l(v) = 

U7= 1 { (Xi, v)} is finite. 
Denote by I" : X -+ R the map y 1-+ (vly). We have I" E COO (X), and y 

is a critical point of I" if and only if v E N"X, if and only if 'Y(Y, v) = v, if 
and only if y is one of the Xi. Thus {XII ... , x"'} is the set of critical points 
of I". Since v is a regular value for 'Y, it follows form 7.5.2 that each Xi is 
a non-degenerate critical point of I". Applying Morse's theorem (4.2.24.4) 
we get 

d 

X(X) = L(-l)hCh(l,,), 
h=O 

where Ch(l,,) is the number of critical points of I" with index h. Thus 

h'~d/2 h'~d/2 

X(X) = L C2h, (I,,) - L C2h,,+t(/,,) 
h'=O h"=O 

= #{Xi : ind"" I" is even} - #{Xi : ind"" I" is odd}. 

Since d is even, we again get from lemma 7.5.2 

x(X) = #{Xi : sgn(J'1(xi' v)) = +l} - #{Xi : sgn(J'1(xi' v)) = -I}. 

But this is exactly the degree of 'Y, by 7.3.1(ii). 
The equality Ix Kd5 = x(X) vol(sn-l) follows from the formulas we 

recalled at the beginning of this section, since vol( S (E)) = vol( sn-l ). 0 

'1.5.5. Corollary. Let X be a compact, d-dimensional submanilold 01 an 
n-dimensional Euclidean space E, and assume d efJen. The last term in 
the lormula lor vol(Tub· X) (6.9.9) is 

en 
- vol(sn-l)X(X). 
n 
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In particular, if X is a surface (i.e., d = 2), we have 

vol(Tub6 X) = en- 2 vol(Bn_2 (0, 1)) area(X) + en vol(sn-l)X(X), 
n 

so this volume only depends on n, e, area(X) and X(X), and not on the 
embedding of X in E. 0 

7.5.6. Examples 

1.5.6.1. Take X = S2 C R3. We have X(S2) = 2 (recall the calculation of 
de Rham groups in 5.7.1), so 

We get the same number by calculating the volume of the spherical shell 
Tub6 X = B3 (0, 1 + e) - B3 (0, 1 - e): 

1.1i.6.2. Let E be Euclidean of arbitrary dimension n, and X = T2. By 
5.8.1 we have X(X) = 0, so vol(Tub6 X) = vol(Bn_2 (0, e)) area(X). 

1.1i.6.S. We admit without proof that the Euler characteristic of a torus 
with g holes (4.2.24.3) is 2(1- g). If we embed such a surface X is R3 we 
get 

811"e3 
vol(Tube X) = 2earea(X) - -3-(1 - g). 

Notice that this number is less than the product 2earea(X). 

7.5.7. Remark. The Gauss-Bonnet formula holds also for (abstract) rie
mannian manifolds, for a suitably defined integrand. The right integrand 
turns out to be a kind of curvature, a function of x that depends only on 
the riemannian structure. (When X is embedded in n-dimensional Euclid
ean space, the curvature equals Kd,/ vol(sn-l).) This formula is important 
because it affords an invariant Ix Kd,O that does not depend on a particular 
embedding of X. For a proof, see [KN69, vol. II, p. 318]. 
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7.6. Self-Maps of the Circle 

In algebraic topology one studies the degree of continuous maps between 
oriented, compact, connected, topological manifolds. In the particular case 
of differentiable objects, this theory coincides with the one developed above 
[Gre67, p. 125J. We will only pursue this topic in the case d = I, because 
we will need some of the results in the next chapter (9.1.11 and 9.4). 

Compact, one-dimensional manifolds are homeomorphic to 8 1 (see 3.4.1 
for the Cl case). Thus we can restrict 'ourselves to maps from 8 1 into 
itself. In this case the study is elementary because we have the covering 
map p : R -+ 8 1 (2.4.3) and the cohomology (de Rham groups) can be 
replaced by Z acting on R. 

In fact we take the covering map p to be 

1.6.1 p: R3 t 1-+ (cost,sint) E 8 1 C R2. 

If 0" is the canonical length form on 8 1 , we have p*O" = dt, the canonical 
length form on R (cf. 5.3.17.2 and 5.2.8.4). 

1.6.2. Lemma. Let I = [a, bJ c R, 1 E CO ([a, bJj 8 1) and U E p-l(J(a)). 
There exists a unique 7 E CO(I; R) such that p 07= 1 and 7(a) = u. We 
say that 7 is a lifting 011. 

R y! 
la, bJ -..!-81 

Proof. This is a particular case of the following result (itself a very partic
ular case of the theorem on the lifting of homotopies-see IGre67, p. 18]): 

1.6.3. Lemma. For FE CO ([0, 1J X la, bJ; 8 1) and U E p-l (F(O, a)), there 
exists a unique F E CO(IO,lJx [a, bJ; R) such that poF = F and F(O, a) = u. 

Proof. We take care of uniqueness first. If F and F' satisfy the desired 
conditions, we have 

F' - FE CO([O, 1J X [a, bJj R) 

and po F' = po F, so for every t E 10, 1J and every s E la, bJ the difference 
(F' - F)(t, s) is an integral multiple of 2'11". Since F' - F is continuous 
and has values in a discrete topological space, it is locally constant, and 
constant because [0, 1J X [a, bJ is connected. Thus 

(-' I;;\ -, I;;\ F - FJ(t, s) = (F - FJ(O, a) = u - u = o. 

To show existence, notice that F, being continuous on a compact set, 
is uniformly continuous. Thus there exists IE > 0 such that, for every 
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(O,b) (1, b) 

p 

~ ~ 
~ ~ ~ 

(O,a) (1,a) 

I I 

I I I 

cr;<;:D 
/2 

Figure 7.6.3 

x, Y E [0,1] X [a, b] satisfying Ilx - yll $ e, the distance between F(x) and 
F(y) in the metric induced from R2 is no more than V2, or a quarter-circle. 

We now divide up [0,1] X [a, b] into rectangles of diameter less than e. 
The restriction of F to each little rectangle can be lifted to a map onto 
R, because its image is smaller than a quarter-circle in 8 1 (2.4.3). We 
order the rectangles so that each intersects the previous one, then lift F 
one rectangle at a time, choosing the lifting on each rectangle to agree with 
the lifting on the previous one at one common point. By the uniqueness 
part above, the two partialliftings agree all along the common boundary. 
The continuity of F follows locally, by expressing F as a composition of F 
with the local inverse of a covering map. 0 

Now let f E CO(8 1 ; 8 1 ) be an arbitrary continuous map. Consider the 
first 8 1 as R/ LZ, with L > 0, and identify f E CO(8 1 ; 8 1 ) with a map 
f E CO(R; 8 1 ), periodic of period L. Take t E R, u E p-l{J(t)) and 
use 7.6.2 to define / associated with the restriction of f to It, t + L] (thus 
7(t) = u). Since 

p(/(t + L)) = f(t + L) = f(t) = p(/(t)) , 

we have l(t + L) - 7(t) E 211"Z. Then: 

1.6.4. Theorem and definition. In the notation above, the integer k 
such that l(t+ L) -l(t) = 2k?r is independent oft E Rand u E p-l{J(t)). 
This number is called the degree of f E CO(81 ; 8 1 ) and denoted by deg(f). 
If f E COO (8 1 ; 8 1 ) this definition coincides with the one in section 7.3. 

Proof. First we show that k does not depend on u. Let u' E p-l(J(t)). 
The map /' defined by 

/,(s) = 7(s) + u' - u 
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is a lifting of I such that I'(t) = I(t) + u' - u = u + u' - u = u', and by 
uniqueness is the only such lifting. Since I' - I is a constant, we have 

I'(t + L) - 7(t + L) = I'(t) - I(t), 

whence 
I'(t + L) - I'(t) = 7(t + L) - I(t). 

Next, k does not depend on t. For I is a lifting of the restriction of I to 
It, t+L]. If we apply lemma 7.6.2 to the restriction of I to [t+L, t+2L], with 
u = 7( t + L), we can extend I into a continuous lifting of the restriction 
of I to It, t + 2L]. Continuing in this way we get a lifting IE CO(R; R) 
of I E CO(R; 8 1 ). Then s t-+ 7(s + L) - /(s) is constant, because it has 
values in 21rZ. 

Finally we show that this definition is compatible with section 7.3. Take 
IE COO(8 1 ;81 ), identify it with I : R -> 8 1 periodic of period L, and 
construct the lifting I: R -> R as in the previous paragraph: 

RLR 

7.6.Ll pI! ~ !, 
Since I = pol we get 

R/LZ = 8 1 _81 = R/21rZ. , 
I"'u = (po 7)*u = !*(p*u) = !*(dt) 

by 5.2.8.4. But 2.5.23.2 and 2.5.17.3 give 

!*(dt)(lt) = dt(T7)(lt}} = ~~, 
the right-hand side expressing the usual derivative of I : R -> R. Still 
identifying I : 8 1 -> 8 1 with I : R -> 8 1 we have 

1 1t+L 1HL dl 
I*u = I*u = -d dt = 7(t + L) - I(t) = 21rdeg(J). 

SI t t t 

This number is also deg(J) lSI u in the sense of section 7.3. o 

7.6.5. Theorem (invariance under homotopy). II F : [0,1] X 8 1 -> 8 1 

is continuous, the degree of the sections F. : x t-+ F(s, x) does not depend 
on s. In particular, deg Fo = deg Fl. 

Proof. Consider F as an element of CO ([ 0, 1] x R; 8 1), periodic of period 
L with respect to the second variable. By lemma 7.6.3 we can lift F to a 
map F on [0,1] x [O,L]. Then 

21rdegF. = F.(L) - F.(O) = F(s,L) - F(s, 0) E 21rZ. 

The map s t-+ F(s, L) - F(s, 0) is continuous and has values in a discrete 
space. By connectedness it is constant. 0 
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'1.6.6. Proposition. For any f,g E CO(SljSl) we have deg(g 0 I) = 
deg(g) deg(f). 

Proof. See exercise 7.8.19. o 

'1.6.'1. Example. Let '1 be a loop in R2, that is, '1 E CO([a, bJ; R2) satisfies 
'1(a) = '1(b). We can think of '1 as an element of CO(R; R2) periodic of 
period b - a, hence also an element of CO(Sl; R2). 

Now take x E R2 not in the image of "I, and consider the map 

- 1 '1(t)-x 1 

'1: S 3tf-+lh(t)_xIl ES . 

'1.6.8. Definition. The degree of ;:y is called the winding number of x 
around '1. 

The winding number plays a fundamental role in the theory of functions 
of one complex variable. It also figures prominently in the proof of Jordan's 
theorem (9.1.11 and 9.2). 

'1.6.9. The converse of theorem 7.6.5 is true (exercise 7.8.20). The two 
together are equivalent to saying that the fundamental group of 7rt{Sl) is 
isomorphic to Z [Gre67, p. 13J. 

7.7. Index of Vector Fields on Abstract Manifolds 

'1.'1.0 I In this section all objects are Coo. I 
'1.'1.1. Definition. Let X and Y be manifolds. A homotopy F : [O,lJ X 

X -+ Y is called an isotopy if Ft is a diffeormorphism for every t E [O,lJ. 
In this case we say that the diffeomorphisms Fo and Fl are isotopic. 

Isotopy is an equivalence relation. 

'1. '1.2. Push-forwards. Let X, Y be manifolds and f : X -+ Y a diffeo
morphism. If ~ is a vector field on X, the push-forward of ~ is the vector 
field f .. ~ on Y defined by 

f*e=Tfo~orl. 

TX :!..!-TY 
'1.'1.2.1 ~!v !.e lv 

X-Y !-1 
If f E Diff(X; Y) and g E Diff(Y; Z) we have (g 0 1)* = g .. 0 f ... 



1. Index of Vector Fields on Abstract Manifolds 271 

A point X E X is called a singularity of a vector field e if e(x) = o. A 
singularity x is said to be isolated if e(y) =F 0 for every y E U \ {x}, where 
U is a neighborhood of x in X. 

1.1.3. Lemma (invariance of the index under diffeomorphisms). 
Let U and U' be open subsets 0/ Rn and / : U -+ U' a diffeomorphism. 
1/ e is a vector field on U having an isolated singularity at Xo E U and 
'1 = /.e is its push-/orward, /(xo) is an isolated zero 0/'1 and 

ind",o e = indJ(",o) '1. 

Thanks to this lemma the following definition makes sense: 

1.1.4. Definition. Let X be a manifold and e a vector field on X having 
an isolated singularity at Xo. The index of e at xo, denoted by ind",o e, is 
the integer ind</>(",o) (4).e), where (U,4» is a chart at Xo· 

Indeed, for another chart (V,,p) at Xo we have ,po4>-l E Diff(4)(U)j ,p(V», 
and the lemma implies that ind.p(",o) (,p.e) = ind</>(",o) (4).e)· 

In order to prove 7.7.3 we will need an auxiliary result: 

1.1.5. Lemma. 1/ U c R is open and star-shaped at the orlgm, and 
/ E Diff(Uj f(U» takes the origin into itsel/, / is isotopic to the identity. 

Proof. Define F: [0, I] X U -+ R n by 

{ f(tx)ft for t E 10, I], 
F(t, x) = /'(O}(z) for t = O. 

Each FtJ for t E [0, I], is clearly a diffeomorphism. We have to check 
that the conditions in 7.4.1 are satisfiedj but this follows from writing 
f = E,. z,.g,. as in 4.2.13, the g,. being vector-valued functions this time. 

Thus / is isotopic to 1'(0) E L(Rnj Rn) and 1'(0) preserves orienta
tion. Now the linear group Isom+(Rnj Rn) of orientation-preserving iso
morphisms of Rn is connected (see exercise 7.8.22, for example), hence 
path-connected because it is a submanifold of Rn' (cf. 2.2.13). A path in 
Isom+(RnjRn) gives an isotopy between 1'(0) and Idu . 0 

Proof of lemma 7.7.3. Take first the case that / preserves orientation. We 
can assume that Zo = 0 and 1(0) = 0, and also that U is star-shaped (by 
restriction). By 7.7.5 there is an isotopy F between / and Idu, that is, a 
family Ft E Diff(Uj Ft(U») (t E [0,1]). Referring to 7.4.16, we can find, 
by uniform continuity and by the compactness of [0, 1J and of spheres, a 
positive number e such that '1t = (Ft).e does not vanish on B(O, e) \ 0 for 
any t E [0, 1J. Now it suffices to apply definition 7.4.16 and the invariance of 
the degree under homotopy to see that indo 1/t is constant, and in particular 

indo I.e = indo '10 = indo 1/1 = indo e· 
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If f reverses orientation, we reduce to the previous case by replacing e 
by P .. e and f by f 0 p-1, where p is an arbitrary hyperplane reflection in 
Rn. Since indo(p .. e) = indo e and f .. e = (f 0 p-1 ) .. (p .. e), we're done. 0 

1.1.6. Cultural digression. Now that we know how to define the index 
of vector fields on arbitrary manifolds, we can ask whether there exists 
an analog of theorem 7.4.18 for manifolds. There is, in fact, the following 
result, which we will not prove: 

1.1.6.1. Theorem. If X is a compact manifold and e a vector field on X 
having only isolated singularities Xl! .•. ,Xn , then 

n 

Linde; e = x(X), 
.. =1 

where X(X) denotes the Euler characteristic of X. 

This theorem still holds for manifolds-with-boundary, as long as the vec
tor field points outward all along the boundary. We have already seen two 
particular cases of this theorem: 

(i) 7.4.18. This is the case X = B(O, 1), so X(X) = 1 by 4.2.22.2 and 5.6.3. 
The factor (-I)d comes from our having assumed that e points inward: 
to apply 7.7.6.1 we have to flip signs, which multiplies the indices by 
(-I)d. 

(ii) 7.4.5. This is the case X = Sd, so X(X) = 1 + (-I)d by 4.2.22.2 and 
5.7.1. 

The proof of 7.7.6.1, as presented in [MiI69, p. 32-41], should pose no 
difficulty to the reader. Essential use is made of tubular neighborhoods 
(section 2.7). 

1.1.1. An application of1.1.5. Here is an application that will be useful 
in section 9.8, and which allows the quick determination of the index in 
certain cases: 

1.1.8. Proposition. Let e be a vector field on U E O(Rn) and Xo an 
isolated singularity of e. If e'(xo) E Isom(Rnj R n), we have 

if J",o (e) > 0, 
if J"'o(e) < O. 

Here e is seen as a map U -> Rn and J denotes the usual jacobian 
(0.2.8.9). 

Proof. Just notice that, by 0.2.22, e is a diffeomorphism on a neighborhood 
of O. Thus there exists an isotopy F between e and Idu if e preserves 
orientation, that is, if J",o e > O. Each Ft can be considered as a vector 
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Figure 7.8.6 

field having an isolated singularity at xo, and by the invariance of the 
degree under homotopy we get 

ind",o e = ind",o Fo = ind",o Fl = ind",o Idu = 1. 

If e reverses orientation, we reduce the the previous case by considering 
eo l/J, where l/J is a hyperplane reflection. 0 

7.8. Exercises 

All objects are Coo and all manifolds oriented, unless we say otherwise. 

7.8.1. Let X be an oriented, compact, d-dimensional manifold (not neces
sarily connected). Calculate Rd(X). 

7.8.2. Prove 7.3.4 in two ways. 

7.8.S. Let X be a compact manifold, Y a compact, connected manifold of 
the same dimension, and ! : X -+ Y a map that preserves orientation at 
all regular points. Prove that if ! is not surjective it has no regular points. 

7.8.4. Let! and 9 be maps from X into Sd such that 11!(x) - g(x) II < 2 
for every x E X, where" . " denotes the Euclidean norm in Rd+!. Prove 
that ! and 9 are homotopic. 

Prove that if dim X < d every map X -+ Sd is homotopic to a constant 
map. 

7.8.S. Compute the linking number of the two pairs of curves in figure 
7.4.14. 

7.8.6. Compute the linking number of the pair shown in figure 7.8.6, where 
the coil winds around the circle n times. 
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1.8.1. Generalize 7.4.18 to the case where we have spherical holes in B( 0, 1) 
and the field points into the manifold along the holes. 

1.8.8. Let / : Sd -+ Sd be a map such that deg(J) -:f:. (_I)d+1. Show that 
/ leaves at least one point fixed. 

1.8.9. Prove that every map Sd -+ Td has degree zero. Prove that if X 
is a compact, connected, d-dimensional manifold such that Rk(X) = ° for 
some ° < k < d, every map X -+ Td has degree zero. 

1.8.10. Let S2 be the sphere with equation xr+x~+x~ = 1 in R3. Denote 
by s+ and s- the stereographic projections onto the xlx2-plane centered 
at (0,0,1) and (0,0, -1), respectively, and set z = Xl + iX2' To every 
polynomial P: C -+ C, associate a map P: S2 -+ S2 defined by 

{ P(x) = (s+)-l{P(S+(x))) 
P(O, 0,1) = (0,0,1). 

(a) Show that P is Coo. 
(b) Show that P has degree n if P(z) = zn. 

if X -:f:. (0, 0, 1), 

(c) If Q is a polynomial of degree n, Q is homotopic to the map P con
sidered in (b). Deduce a proof of the fundamental theorem of algebra 
(every polynomial over C has a root). 

1.8.11. Let M be the Mobius band, the image of the following map from 
[0,411"J X [0,3/4J into R3: 

( 0, r) 1-+ (cos 0 + r cos 0 cos ~, sin 0 + r sin 0 cos ~, r sin ~) . 
222 

Find the linking number between the two curves r = t and r = t. 
Make a drawing (this is more instructive than the traditional cut-and-paste 
construction-cf. [341, p. 294-297). 

1.8.12. Let / : Sd -+ Sd be differentiable. Show that in the each of the 
following cases / takes at least one pair of diametrically opposite points 
into diametrically opposite points: 
(a) d is even and deg(J) -:f:. OJ 
(b) deg(J) is odd. 

1.8.13. Let / and 9 be a pair of curves. Assume there exists an open 
neighborhood U C R2 of B(O, 1) and an embedding F : U -+ R3 such 
that Fisl = / and F{B(O, 1)) n g(Sl) is a finite set {Xl, ... , xn }. Assume 
moreover that 
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for each Xi. Define sgn(xi) to be +1 if the union of a positively oriented 
basis for T.,;F(B(O, 1)) with a positively oriented basis for T.,; (g(8 1 )) gives 
a positively oriented basis for RS, and -1 otherwise. 

Prove that link(f, g) = Ei sgn{xi). (Hint: consider pairwise disjoint 
little disks Ci around each F-1(Xi) C B(O, 1), and apply Stokes' theorem 
to the submanifold-with-boundary 

(B(O,I) \l)Ci) x 8 1 C U X 8 1 • 

• 
Then show that for 9 arbitrary and 1 a tiny circle around a point of g(81 ) 

the linking number of 1 and 9 is ±1, where the sign is to be determined.) 

7.8.14. The traveler in equilibrium. Consider in R S a uniform grav
itational field. A truck moves in the xy-plane, and its position is a Coo 
function of time. Attached to the floor of the truck is one end of a bar AB 
of uniform density. Prove that for some initial position of the bar, its free 
end B remains above the floor at all times. 

7.8.15. Ampere's theorem. Let 1 and 9 be a pair of curves in the sense 
of 7.4.7, except that here 1 and 9 are periodic maps from R into RS, of 
period 211'. 
(a) Express link(f, g) in terms of the coordinates of 1 and 9 and their 

derivatives. 
(b) Assume that 1 is an electric circuit traversed by an electric current 

of uniform intensity i. The magnetic field created by this circuit at a 
point p is 

i rtf J(t) - p S x I'(t) dt. 
10 II/(t) - pll 

Calculate the "circulation" of the magnetic field along g, thus proving 
Ampere's theorem. 

(c) Assume that g(lo, 211']) is the oriented boundary of a surface that does 
not intersect 1([0,211']). Prove that link(f, g) = o. 

7.8.16. Let E and F be Euclidean spaces, an identify E with Ex to} C 

E X F. Show that if X is a submanifold of E, the value of K: for X 
considered as a submanifold of Ex F is proportional to the value of K: for 
X considered as a submanifold of E, and that the proportionality constant 
does not depend on X. 

7.8.17. Calculate vol{Tub· X) for e small enough for Veronese's surface 
(6.10.21). 

7.8.18. Find vol(a{Tub· X)) when dim X = 2 (see 6.10.23). 
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1.8.19. Prove that deg(go J) = deg(g) deg(f) for I,g E 0°(81 ;81 ). 

1.8.20. Prove that maps I,g E 0°(81 ;81 ) having the same degree are 
homotopic. 

1.8.21. Let U be a neighborhood of the origin in Rn and I E 0 00 (U) such 
that 1'(0) = O. Prove that if the origin is a non-degenerate critical point 

of I, it is an isolated singularity of the vector field j: x 1-+ (J'(x))I, where 
" is the canonical isomorphism between (Rn). and Rn. Find a formula 
relating indo f and indo f. 

1.8.22. Prove that Isom+(Rn j Rn) is connected. 

1.8.23. Let X be a compact, connected manifold and 5,5' densities on 
X such that Ix 5 = Ix 5', Is there a diffeomorphism I of X such that 
1*5' = 5? 



CHAPTER 8 

Curves: The Local Theory 

In this chapter we study arcs, that is, immersions of open 
intervals of R into finite-dimensional affine or vector spaces 
(8.1.1). We define points of an arc and several important ob
jects associated with them: the tangent, the osculating plane 
and the concavity (section 8.2). 

If the ambient space is Euclidean we can also define arclength 
(section 8.3) and curvature (section 8.4). In the case of an 
oriented plane the curvature can be given a sign. No other 
invariants are then necessary: plane arcs are characterized, 
up to a rigid motion, by their curvature as a function of the 
arclength (8.5.7). 

For arcs in three-dimensional Euclidean space we define an
other invariant, the torsion. Arcs in three-space are character
ized, up to a rigid motion, by their curvature and torsion as 
functions of the arclength (8.5.7). 

In fact we have to distinguish (8.1.4) between parametrized 
arcs (immersions of an open interval into space) and geometric 
arcs (equivalence classes of such immersions). All the preced
ing notions have to be introduced twice, but for brevity's sake 
we have sometimes left one or the other variant to the reader. 
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8.0. Introduction 

For various reasons-kinematics, for example-it is desirable to extend the 
idea of a curve to include mathematical objects more general than one
dimensional submanifolds of Rn. 

In this chapter E will be a finite-dimensional vector space, and A an 
affine space, with underlying vector space A. We are going to define a 
curve, or parametrized are, as a CP immersion of an open interval I c R 
in E. If f E CP(Ij E), with p ~ 1, is an immersion, we know by 0.2.24 that 
for every tEl there exists J E Ot(I) such that f(J) is a one-dimensional 
submanifold of E. Thus we allow double or multiple points (figure 8.0), 
but we do not consider as curves maps that are not immersions, even if 
Coo, because their study cannot be either simple or systematic, and in 
particular their singularities cannot be classified. 

Figure 8.0 

8.0.1. Examples of non-curves 

8.D.Ll { 
(0, e1/ t ) 

f(t) = (0,0) 
(e- 1 / t ,0) 

if t < 0, 
if t = 0, 
if t > O. 

This is a Coo function from R into R2 which is not an immersion at t = O. 
Its image is the show on the left in figure 8.0.1. 

y y 

(0,0) x x 

Figure 8.0.1 
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On the right we have the image of I E Coo (R; R2) defined by 

{ 
(e-l/t, e- 1/ t sine1 / t ) ~ t > 0, 

I(t) = (0,0) if t = 0, 
(e1 / t , e1 / t sin e- 1/ t ) if t > o. 

8.0.1.2 

This image is bounded between the lines y = ±x, and it has infinitely many 
"tangents" at (0,0). Thus it is not an immersion at t = o. 

8.0.2. Remarks 

8.0.2.1. The theory of CO curves is even more complicated: think of the 
Peano curve, for example. (This kind of thing doesn't occur for p ~ 1: by 
0.4.4.5 the image of I E CP(I; E) has measure zero if dimE ~ 2.) With 
the restriction that I E CO([a, bJ; E) be a homeomorphism onto its image 
it is possible to develop a fairly rich, if lenghty, theory [BM70J. 

8.0.2.2. Singularities of maps that are not necessarily immersions can still 
be classified in the following cases: class CW (that is, real analytic), generic 
maps in class CP, and algebraic curves. 

8.0.2.1. Some authors call a parametrized arc any pair (I, f), with I c R 
an interval and I E CP(I; E) (p ~ 1). In this terminology a point t is called 
regular if I is an immersion at t. But for us a parametrized arc will be 
regular everywhere (8.1.1). 

8.1. Definitions 

8.1.1. Definition. A parametrued arc of class CP in a finite-dimensional 
vector space E is a pair (I, f), where I c R is an open interval and I : 
1- E is a CP immersion (that is, !,(t) :f= 0 for all t). 

8.1.2. Remarks 

8.1.2.1. That (I, I) is an immersion implies that every tEl has a neighbor
hood J such that I(J) is a one-dimensional submanifold of E and IIJ is a 
diffeomorphism onto its image. But in general 1(1) is not an submanifold, 
even if I is injective (cf. 2.1.5). 

Figure 8.1.2 
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8.1.2.2. Even if f(I) is a submanifold of E, it may not be parametrized 
by f in the sense of 2.1.8, because f is generally not injective: take the 
circle defined by (R,f), where f(t) = (cos t, sin t), for instance. But if f is 
injective and f{I) is a submanifold, f is a global parametrization for /(I); 
this follows from 0.2.24. 

8.1.S. Example. If E and F are vector spaces, ~ : E -+ F is an iso
morphism and (I, f) is a parametrized arc in E, the pair (I, ~ 0 f) is a 
parametrized arc in F, called the image of (I, f) under ~. 

8.1.4. Definition. Two parametrized CP arcs (I, f) and (J,g) in E are 
said to be equivalent if there exists (J E Diff(I; J) such that f = go (J. A 
CP geometric arc in E is an equivalence class of parametrized arcs. 

It's clear that this is an equivalence relation. If C is a geometric arc and 
(I, f) E C, we will generally say that (I, f) is a parametrization of C. 

I (J ~J 

8.1.'.1 ~ /. 
E 

8.1.5. Remarks 

8.1.5.1. Different geometric arcs can have the same image. (Of course dif
ferent parametrizations of the same geometric arc always have the same im
age.) For example, take I = R, J = J-1I", 311" [ and f(t) = g(t) = (cost,sint). 
Clearly f(I) = g(J) = 8 1 , but (I, f) and (J, g) cannot be equivalent: the 
inverse images of (1,0), for examples, have different cardinality. In the 
language of 8.1.8, all points of (I, f) have infinite multiplicity, whereas the 
points of (J, g) have multiplicity one or two. 

Here are some more examples of different geometric arcs having the same 
image: 

1 

(§) 
Figure 8.1.5 
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8.1.6. Example. IT E and F are vector spaces, ~ : E -+ F is an iso
morphism and 0 is a geometric arc in E, the image of 0 under ~ is the 
geometric arc represented by (I, ~ 0 /), where (I, f) is a parametrization 
ofO. 

8.1.'1. Definition. A point in a geometric arc 0 is an equivalence class 
of triples (I, I, t), where (I, I) E 0 and tEl, for the relation "(I, I, t) ,.., 
(J, g, s) if and only if there exists () E Diff(I; J) such that I = go () and 
s = ()(t)." IT m is a point in 0, represented by (1, I, t), its image, denoted 
by @), is the point I(t) E E. The set of such images is called the image of 
O. 

8.1.1.1 

t -s=()(t) 

~ / 
I(t) = g(s) 

Sometimes the same point pEE is the image of several points m E 0; 
but if (I, f) and (J, g) are equivalent, we have rl(p) = ()(g-l(p)), so the 
sets I-l(p) and g-l(p) have the same cardinality. Thus: 

8.1.8. Definition. The multiplicity of a point M E 0 is the number of 
points in 1-1 (@»). A point is said to be simple (multiple, double, triple) 
if its multiplicity is 1 (> 1, 2, 3). 

8.1.8.1. A geometric arc can have multiple points even if its image is a 
submanifold (8.1.5.1). 

8.1.8.2. The multiplicity can be infinite (8.1.5.1), but not uncountable, 
because, by 8.1.1.1, 1- 1 (@») is a discrete set. 

8.1.8.1. A simple point is determined by its image. But a multiple point 
of 0 is best thought of as a branch of 0 going through its image. 

m, 
Figure 8.1.8 

We have introduced arcs (or curves) to generalize the notion of a one
dimensional submanifold; now let's pin down the relationship between the 
two. 

8.1.9. Proposition. Every connected one-dimensional submanilold 01 a 
vector space E h.as a canonically associated geometric arc. 
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Proof. Let d ~ 1 be the dimension of E and V a connected, one-dimensional 
CP submanifold of E (with p ~ 1). We know by 3.4.1 that V is diffeomor
phic to R or to 8 1 . According to the proof of that result, more can be said 
in each case: 

If V is diffeomorphic to R, there exists by 3.4.6 a global parametrization 
of V by arclength, that is, a pair (I, f) with / E Diff(I; V). Two such 
parametrizations by arclength are equivalent in the sense of 8.1.4: if g E 
Diff(Jj V), we have g-1 0 / E Diff(I; J). Thus the two parametrizations 
define the same geometric arc, which we canonically associate to V. 

If, on the other hand, V is diffeomorphic to 8 1 , it has a periodic pa
rametrization by arclength / : R -+ V (cf. 3.4.6). Let (R, f) and (R, g) 
be two such parametrizations. Since / : R -+ V is periodic, we have a 
commutative diagram 

R 

8.1.9.1 Yo !1 

R/LZ~V, 
where L is the period. But p : R -+ R/ LZ is a covering map, so section 
7.6 applies to show that every map from an interval into R/ LZ can be 
lifted, and uniquely so if we prescribe the image of one point. Transferring 
by 0 we conclude the existence and uniqueness of liftings for the covering 
/: R-+ V. 

In particular we can lift g : R -+ V to 9 : R -+ R: 

R 
8.1.9.2 Y !1 

R-V' g , 

we choose 9 satisfying g(t) = 0, where t is a point such that g(t) = /(0). 
Similarly, we can lift / by g to get 7: R -+ V 

R 
8.1.9.S Y !g 

R-V 
I 

with 7(0) = t. Now go 7: R -+ R satisfies /0 (go 7) = go 7 = /, that is, 
the diagram 

R 
8.1.9.' gr !1 

R-V 
I 

commutes. In addition, (g 07)(0) = g(t) = O. Since IdR also satsifies 
/0 IdR = / and IdR(O) = 0, it follows from the uniqueness of liftings, 
applied to 8.1. 9.4, that go 7 = IdR. One similarly shows that 70 9 = IdR; 
in particular, g: R -+ R is a diffeomorphism. This means that / and g are 
equivalent parametrizations (recall that /0 9 = g), and hence define the 
same geometric arc, which we canonically associate with V. 0 
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8.1.10. Orientation. If 0 : 1-+ J is a diffeomorphism 0' has constant sign 
because O'(t) i: 0 for all t and I is connected. Let Diff+(Ii J) be the set of 
increasing diffeomorphisms (those for which O'(t) > 0), and Diff- (Ii J) be 
the set of decreasing diffeomorphisms. 

8.1.11. Definition. Two parametrized arcs (1,1) and (J,g) are said to 
be strictly equivalent if there exists 0 E Diff+ (Ii J) such that f = go O. An 
oriented geometric arc is a strict equivalence class of parametrized arcs. 

Thus a geometric arc gives rise to exactly two oriented geometric arcs. 
A parametrized arc gives rise to one oriented geometric arc, to which it 
belongs. 

If V is a connected, oriented, one-dimensional submanifold of E, the 
correspondence given by proposition 8.1.9 agrees with the orientation, if 
we take orientation-preserving parametrizations. 

8.2. Affine Invariants: Tangent, Osculating Plan, 
Concavity 

In this section everything is of class C1 at least. 

8.2.1. The tangent 

8.Z.Ll. Definition. Let (I, I) be a parametrized arc in a vector space E (or 
an affine space A). The tangent to (I, I) at a point t E I is the vector line 
Rf'(t) in E (or the affine line f(t) + Rf'(t) in A). 

8.Z.I.Z. Remarks. We have identified f'(t) E L(Ri E) with the vector f'(t)· 
1. Since f is an immersion, f'(t) is non-zero. 

8.Z.I.I. Example. If ~ : E -+ F is an isomorphism and (I, I) is an arc in 
E, the tangent to (I, ~ 0 I) at t is the image under ~ of the tangent to 
(I, I) at t. 

This notion of tangency can be extended to geometric arcs because it 
is preserved under equivalence. Indeed, let C be a geometric arc and m a 
point in C. If (I, I, t) and (J, g, s) represent m, there exists 0 E Diff(Ii J) 
such that I = goO and s = O(t) (definition 8.1.7). Then f'(t) = (goO)'(t) = 
g'(O(t))(O'(t)) = O'(t)g'(s), where O'(t) =I- 0 because 0 is a diffeomorphism. 
This shows that Rf'(t) = Rg'(s). 

8.Z.I.(. Definition. Let C be a geometric arc in a vector space E (or an 
affine space A) and m a point in C, represented by the triple (I, I, t). The 
vector line R/'(t) (or the affine line I(t) + Rf'(t)) depends only on C and 
m. It is called the tangent to C at m, and denoted by tangm C. 
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8.2.1.5. If C is a geometric arc in E and <I> : E -+ F is an isomorphism, we 
have 

tang<I>(m) (<I> 0 C) = <I>tangmG. 

Thus the tangent is twice deserving of being called an invariant: it does 
not depend on the parametrization, and it is preserved by isomorphisms 
(and by affine maps, in the case of the affine definition). 

8.2.1.6. Orientation. If C is an oriented geometric arc (8.1.11) and m E Cis 
represented by two triples (I, I, t) and (J, g, s), with () E Diff(Ij J) such that 
1 = go() and ()(t) = s, we have ()'(t) > 0, so the line Rf'(t) = Rg'(s) inherits 
the same orientation from f'(t) and from g'(s). Thus the orientation of 
tangm C, where C is an oriented geometric arc, does not depend on the 
parametrization. 

It is common and convenient to use arrows to indicate the orientation of 
an arc and its tangent: 

Figure 8.2.1.6 

8.2.1. '1. Relationship with the geometric definition. Let E be a vector space. 
The set of vector lines in E can be identified with the projective space P( E), 
the quotient of E\ 0 by the equivalence relation "x "" y if and only if y = kx 
for some x E R*." We consider P(E) with its quotient topology and denote 
the canonical projection by p : E\ 0 -+ P(E). (See 2.4.12.2 for the relation 
of P(E) with the unit sphere, in the case that E is Euclidean.) Let (I, f) 
be a parametrized arc and t E Ij by 8.1.1.1, I(s) =I I(t) for s close enough 
but distinct from t. 

8.2.1.8.Theorem. Thelimitlim.-+tp(J(s)-/(t)) inP(E) exists and equals 
p{R/'(t)). 

Proof. As already observed, the map 

() : s f-> I(s) - I(t) 
s - t 

is defined for s close enough but distinct from t, and it has a limit as s 
approaches t because 1 is of class C I . This limit is f'(t), which proves the 
theorem by the properties of the quotient topology. 0 

8.2.1.9. For a similar property involving geometric arcs, see exercise 8.7.1. 

In the rest of this section everything is of class C 2 at least. 
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8.2.2. The osculating plane 

8.2.2.1. Definition. A parametrized arc (I, f) is said to be biregular at t if 
f'(t) and f"(t) are linearly independent (the derivatives being taken in the 
ordinary sense). 

8.2.2.2. Definition. Let (I, f) be a parametrized arc in a vector space E (or 
an affine space A). The osculating plane to (I, f) at a biregular point t is 
the vector plane Rf'(t)+Rf"(t) (or the affine plane l(t)+R/'(t)+Rf"(t)). 

8.2.2.1. Examples. If (I, f) is a plane arc, that is, if 1(1) is contained in 
some vector plane VeE, the osculating plane at every biregular point is 
V. The converse is trivial. 

8.2.2.'. Proposition. If ~ : E -+ F is an isometry, ~ preserves biregularity 
and osculating planes. 0 

Consider a point m in a geometric arc C, and let (I, f) and (J, g) be two 
parametrizations of C, with 9 E Diff(I; J) of class C2 such that 1= go 9. 
If m is represented by the triples (I, I, t) and (J, g, s), we have 

8.2.2.5 

8.2.2.6 

I'(t) = 9'(t)g'(s), 

f"(t) = 9"(t)g'(s) + 9'2(t)g"(s). 

Since 9 is a diffeomorphism, 9'(t) i= 0, and (I, f) is biregular at t if (J, g) 
is biregular at s. In addition, Rg'(s) + Rg"(s) = R/'(t) + Rf"(t). This 
justifies the following definition: 

8.2.2.1. Definition. Let m be a point of a geometric arc C, represented by 
the triple (I, I, t). We say that C is biregular at m if the parametric arc 
(I, J) is biregular at t. The osculating plane of Cat m, denoted by oSCm C, 
is the osculating plane of (I, J) at t. 

See 8.0.2.3 for the origin of the word "biregular." 

8.2.2.8. Example. If ~ E Isom(E; F) we have OSC4>(m)(~o C) = ~(oscm C). 
An analogous result holds for geometric arcs in affine spaces. 

8.2.2.9. Geometric definition. If we can give the set of vector planes in E a 
canonical topology, we can interpret the osculating plane to a parametric 
arc (I, J) at t, for t biregular, as the limit of the plane Rf'(t) + R(J(s) -
I(t)) as s i= t approaches t. This is very easy if dimE = 3 (exercise 8.7.3). 

8.2.2.10. The concavity. Formula 8.2.2.6 and the fact that 9,2(t) ~ 0 show 
that the half-planes R/'(t) + R+f"(t) and Rg'(s) + ~g"(s) coincide; 
whence the following definition: 

8.2.2.1L Definition. Let m be a biregular point in a geometric arc C, rep
resented by a triple (I, I, t). The concavity of C at m is the half-plane 
Rf'(t) + R+I"(t), which we denote by conCm C. (In affine spaces we set 
conCm C = I(t) + Rf'(t) + R+f"(t).) 
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oscul C 
m 

Figure 8.2.2.11 

8.2.2.12. If cP E Isom(E; F) we have conc<t>(m) (cp 0 C) = CP(concm C). 

In the case of plane curves, the concavity is especially relevant: 

8.2.2.1S. Definition. Consider a plane curve, expressed in polar coordinates, 
and a point on the curve distinct from the origin. We say that at this point 
the curve is turning towards the origin if the origin belongs to the open 
affine half-plane of concavity. 

Figure 8.2.2.13 

Here is the calculation that determines whether or not a curve t 1-+ p(t)eit 
is turning towards the origin. The origin will be in the concavity if the bases 
{- I(t), f'(t)} and {t"(t) , f'(t)} have the same orientation, that is, if the 
determinants wo( - f, fl) and Wo (f", 1') have the same sign, where Wo is t'he 
canonical area form on R2 (example 6.4.2). The derivatives are 

I' = p' eit + pie it , 

fIt = (P" - p)eit + 2p'ieit . 

Since Wo (eit , ieit ) = 0, we get 

wo(-f,l') = _p2, 

wo(f",I') = _(p2 + 2p'2 - pp"), 

whence the following criterion: 

8.2.2.14,. Proposition. At a biregular point distinct from the origin, a curve 
t 1-+ p(t)eit is turning toward the origin if p2 + 2pl2 - pp" > O. 0 
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8.2.2.15. Proposition (local convexity). A plane geometric arc is locally con
tained in its concavity at any biregular point. More precisely, ifC is a geo
metric arc in an affine plane, (1, J) E C and m 3 (1, f, t) is biregular with 
open half-plane of concavity H, there exists an open neighborhood J c 1 of 
t such that f(s) E H for every s E J \ {t}. 

Figure 8.2.2.15 

Proof. By assumption, u = f'(t) and v = r'(t) form a basis for A, the 
vectorialization of A. Applying Taylor's formula to f at t, we get 

h2 
f(t + h) = f(t) + hu + TV + 0(h2 ), 

that is, 
h2 

f(t + h) - f(t) = h(l + o(h))u + T(l + o(l))v. 

This means the v-coordinate of f(t + h) - f(t) is positive for h =I 0 suffi
ciently small. 0 

8.2.2.16. Remarks. The biregularity condition is essential, as shown by 
figure 8.2.2.16.1. 

Figure 8.2.2.16.1 Figure 8.2.2.16.2 

Figure 8.2.2.16.2 shows that, in general, 8.2.2.15 cannot be globally 
true. Finding conditions for the global validity of 8.2.2.15 is a typical 
globalization problem. It will be solved in section 9.6, where we will show 
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Figure 8.2.2.16.3 

among other things that if C is closed, simple and everywhere biregular, it 
lies in concm C for every C (figure 8.2.2.16.3). 

8.3. Arclength 

From now on we assume that E (or A) is a Euclidean vector (or affine) 
space. Dealing with a richer structure, we can develop a correspondingly 
richer theory, and find more invariants. 

Let C be a C1 geometric arc in E. If (I, f) E C is an embedding, the 
image V = f(I) has a canonical density 5 (6.6.1), and (I, f) is a paramet
rization of V by arclength (3.4.3) if 5{J(t))(Tt/(lt)) = 1, or, equivalently, 
if 11f'(t) II = I, since we have identified f'(t) with Tt/(lt ). This leads to 
the following generalization: 

8.3.1. Definition. A parametrization by arclength for a geometric arc 
C in a Euclidean space E is any parametrization (I, f) E C such that 
IIf'(t)II = 1 for every t E I. 

8.3.2. Proposition. Every geometric arc admits parametrizations by arc
length. If (I, f) is a parametrization by arclength, any other such is of the 
form t t-+ f(t + a) or t t-+ J(-t + a), where a is an arbitrary real number. 

Proof. For existence, we proceed as in the proof of lemma 3.4.4. Take 
(J, g) E C and s E J. If (I, f) is to be a parametrization by arclength, 
where f = go). and), : I -+ J is a diffeomorphism, we must have 

II f'(t) II = II f'().(t)) II I).'(t) I = 1. 

Thus we fix a E J and set 

8(t) = lt llg'(s)1I ds; 

8 is invertible because 8'(t) = IIg'(t)1I > O. The desired parametrization by 
arclength (I, f) is then given by I = 8 (J) and f = 9 0 8 -1. To see this, 
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notice that>. = (J-l : 1-+ J is clearly a diffeomorphism and that 

111'(8)11 = 11g'(>.(8)) II = 11g'(t)II (J'~t) = II::~:~II = 1, 

where t = >.(8). 
Uniqueness: let (I, J) and (J, g) be parametrizations by arclength and 

>. : I -+ J a diffeomorphism such that I = go>.. Then 

11/'(t)11 = 1 = 11g'(>'(t))III>"(t)1 = 1>"(t)l, 

whence >"(t) = ±1. Since >" is continuous on the connected open set I, its 
sign is constant, and we get >.(t) = ±t + a. 0 

8.S.S. Remark. Requiring that I(to) = m, for a fixed point m of C, 
restricts the choice of a parametrization by arclength to two possibilities. 

8.S.4. Invariance under isometries. If cp E Isom(E; F) and (I, J) is a 
parametrization of C by arclength, (I, cp 0 J) is a parametrization of cp 0 C 
by arclength. 

8.S.5. Justification for the word "arclength" (cf. 6.5.3). If (J, g) is 
an arbitrary parametrized arc and [a, b] c J, the length of g between a and 
b is defined as 
8.S.6 

{
_I } 

sup ?=llg(tHd - g(ti) II : n E N,a = to < tl < ... < tn-l < tn = b . 
0=0 

It can be shown [Dix68, chapter 53] that this number is equal to 

This shows that if (I, J) is a parametrization by arclength and if a, b E I, 
the length of (I, J) from a to b is I(b) - I(a). 

8.S.1. Definition. The length of a parametrized arc (I, I) from a to b, 
where a, bE I, is the integral f:11 f'(t) II dt. 

8.S.8. It can be shown directly (without appeal to 8.3.6) that if C is a 
geometric arc parametrized by (I, J) E C, the integral 

ill/'(t)11 dt 

does not depend on the parametrization. In any case, we can use 8.3.6 to 
introduce the following definition: 
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8.3.9. Definition. Let m and n be points in a geometric arc C, represented 
by the triples (I, I, a) and (J, g, b), respectively. The length of the arc mn 
of C is the integral 

8.3.10. If <P E Isom(Ej F) is an isometry and m, n are points in an arc C, 
the length of the arc <P(m)cI>(n) of cI> 0 C is equal to the length of the arc 
mn of C. 

8.3.11. Definition. Let C be an oriented geometric arc in a Euclidean 
space E. The unit tangent vector to C at a point m, represented by the 
triple (I, I, t), is the vector 

8.3.12. Remarks 

f'(t) 
r(m) = II I'(t) II' 

8.S.12.I. If (I, f) is a parametrization by arclength, r(m) = f'(t). 

8.S.12.2. Switching the orientation of C multiplies r( m) by -1. 

8.S.12.S. The unit tangent vector is invariant under isometries. 

8.4. Curvature 

Let m be a point in a geometric arc C. Let I and 9 be parametrizations by 
arclength for C, with I = go {}, and m a point represented by the triples 
(I, I, t) and (J, g, 5). By 8.3.2 we have (}I(t) = ±1, so f"(t) = gll(S). 

8.4.1. Definition. Let m be a point in a geometric arc C, represented by 
(I, I, t). If (I, f) is a parametrization by arclength, the quantity 1If"(t)ll, 
which depends only on C and m, is called the curvature of C at m, and 
denoted by KmC. 

8.4.2. Remarks. 

8.40.2.1. For an explanation of the 
word "curvature," see note follow
ing formula 8.5.6. 

8.40.2.2. We need not give a name 
to the invariant I"(t), because it is 
completely determined by the ones 
introduced above. Indeed, f'(t) is Figure 8.4.2 
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a unit vector, so f'(t) and f"(t) are orthogonal for all t, and f"(t) lies in 
concm C (or else it is zero). Since 1I1"(t) II is the curvature, I"(t) is known. 
But see section 8.5 for the case of oriented curves. 

The next two results are immediate: 

8.4.3. Proposition. A geometric arc C is biregular at m il and only il 
KmC =f. O. 0 

8.4.4. Proposition. II if) E Isom(E; F) is an isometry and C is a geomet
ric arc in E, we have K~(m)(if)o C) = KmC. 0 

8.4.5. The kinematic point of view. Let (J, g) be a parametrized arc 
in a Euclidean space E, and C the geometric arc determined by it. We 
associate to each point m = g(s) the positive real number 

8.4.6 v(s) = 11g'(s)II 
and call it the scalar velocity, or speed of motion, at m. If C is oriented 
(not necessarily by (J, g)) we let the (algebraic) velocity at m be the vector 

8.4. 'T g'(s) = v(s)r(g(s)), 

where r(g(s)) is the unit tangent vector to C at m (8.3.11). 
Thus, if (I, J) is a parametrization by arclength and g = I 0 0 with 

o E Diff(J;I), we have g'(s) = v(s)f'(t) = f'(t)O'(s), where s = O(t). This 
shows that v = 0'. 

8.4.8. Definition. The curvature of a parametrized arc (J, g) at s E J is 
the curvature of the associated geometric arc at the point m represented 
by (J,g,s). This number is denoted by 

8.4.9 

8.4.10. Calculation of the curvature. It is often too complicated, or 
even impossible, to find an explicit parametrization by arclength in order 
to compute the curvature. Here we develop a formula (8.4.13.1) for the 
curvature as a function of an arbitrary parametrization. 

Let (I, J) be a parametrization by arclength of a geometric arc C, as
sociated with the given parametrized arc (J, g), and let 0 E Diff(J; I) be 
such that g = 100. At a point m = g(s) = I(t), the vector gll(S) is the 
acceleration of the motion given by (J, g). Setting O(s) = t, we get from 
8.2.2.6: 

gll(S) = O'2(s)f"(t) + O"(s)I'(t). 

If m is biregular, we set 

8.4.11 f"(t) = KmC v(m), 
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thus defining the principal normal 
vector v(m) (since KmO =F OJ if the 
point is not biregular v(m) is not de
fined). This vector has length one, 
by definition of KmO, and is normal 
to the curve (cf. 8.4.2.1). 

Setting v = 0', we can write the 
acceleration g"(8) as a sum of intrin
sic components, in the sense that r 
and v only depend on the geometric 
arc and its orientation: 

8. Curves: The Local Theory 

Figure 8.4.11 

8.4.12 g"(8) = (v2 KmO)v(m) + v'r(m). 

To compute KmO we just have to combine 8.4.12 with 

8.4.13 g'(8) = vr(m) 

and take the cross product (0.1.15.7), obtaining 

8.4.11.1 

8.4.14. Examples 

II g'(8) X g"(8) II 
IIg'(8) 11 3 

8.4.14.0. Pradieal interpretation. The normal component v2 KmO of the 
acceleration represents the centripetal force, that is, the force that must be 
applied to a unit mass, moving with velocity v, to ensure that its motion 
will follow curve O. For a train in motion, for example, this force should 
not change abruptly, lest the train be derailed or the tracks deformed. So 
what we want is that K be continuous, or equivalently, that 0 be of class 
0 2 • 

Whence the following problem in the design of railroads or highways: 
how to connect two straight line segments Dl and D2 by means of a curve 
0, in such a way that the curvature of 0 is continuous (and thus zero at 
ml and m2). It is also desirable that the maximum of KmO along 0 be as 
small as possible. Finding such a curve is not trivial: circles and parabolas, 
for example, are excluded because their curvature is non-zero everywhere. 
Many families of suitable curves have been proposed, and the literature on 
the subject is immense. See [Ali84, p. 2941, for example. 

8.4.14.1. In an affine Euclidean plane E, a circle of radius r and center a can 
be parametrized by g(t) = a + reit . Then g'(t) = ireit and g"(t) = _reit , 

which gives 
IIg'(t) x g"(t) II = II-r2(ieit x eit ) II = r2, 

and KmO = r2/r3 = r- l for all m. Thus a circle of radius r has constant 
curvature 11r. 
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8.4..U..2. The eurvature in polar eo ordinates. Consider a parametric arc in 
R2 defined by g(t) = p(t)eit (d. 8.2.2.14). We have 

g'(t) = p'(t)eit + p(t)ieit , 

g"(t) = (P"(t) - p(t))eit + 2p'(t)ieit , 

whence 
Ilgl X g"ll = Ip2 + 2P'2 - pp"l. 

But v = Ilg'lI = Y p2 + p,2, so 

8.4..U..1 
Ip2 + 2p,2 - pp"l 

K C = !!......,.....:-..!.----,-,~..!. 
(p2 + p'2)3/2 

For instance, the parametrized arc p(t) = 1 + 2 cos t gives 

K C _ 3(3 + 2 cost) 
g{t) - (5 + 4 cos t)3/2' 

Figure 8.4.14.3 

Setting x = - cos t, we can write 

5 
9 

3(3 - 2x) 
K(x) = (5 _ 4x)3/2' 

aK 12(2 - x) 
ax = (5 _ 4x)5/2 > O. 

Thus, for x E [-l,lJ, that is, (J E [O,7rJ, the curvature grows strictly mono
tonically from ~ to 3, taking the values 5Ts for (J = 7r /2 and Ja for 
(J = 27r /3. This curve is an example of a Pascallima~on. 
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8.j.lj.4. The circular helix. The parametrized arc in R 3 given by g : t 1-+ 

(cos t, sin t, kt) satisfies Kg(t) = (1 + k2)-1 for all t. 

8.4.15. Definition. The radius of curvature of C at a biregular point 

m is RmC = K:C' The center of curvature of C at m is the point 

m + RmC J,/(m) (8.4.11). The osculating circle to C at m is the circle of 
radius RmC centered at this point. 

Figure 8.4.15 

See exercise 8.7.4 for the geometric significance of the osculating circle. 

8.4.16. For a metric definition of the curvature, see exercise 8.7.13. 

8.5. Signed Curvature of a Plane Curve 

In this section C denotes an oriented geometric arc in an oriented Euclidean 
plane E. (In any event we can orient E and C in order to apply the theory 
below; this turns out to be useful sometimes.) 

8.5.1. In an oriented Euclidean plane E we have the notion of a rotation 
by 'If /2: it is the linear map i : E -+ E such that {x, ix} is a positively 
oriented orthonormal basis for any unit vector x E E. If we choose an 
isomorphism between E and C this rotation coincides with multiplication 
by i; but such an isomorphism is not canonical, whereas i : E -+ E is. 

A point m of an oriented geometric arc C has an associated unit tangent 
vector r(m) (8.3.11), given by r(m) = f'(t) if (I, f) is a parametrization by 
arclength of C (with a compatible orientation) and m = f(t). We can then 
form the vector ir(m), normal to C at m. In general, ir(m) doesn't have 
to equal the vector J,/(m) introduced in 8.4.11; it can also equal -J,/(m). 

Now consider the real number kmC such that f"(t) = kmCir(m). Since 
f"(t) does not depend on the parametrization by arclength (I, /), we can 
introduce the following concept: 



5. Signed Curvature of a Plane Curve 295 

8.5.2. Definition. Let (I, f) be a parametrization by arclength of a geo
metric arc C, and m = f(t) a point in C. The signed curvature of Cat m 

is the real number kmC such that f"(t) = kmCiT(m). 

Notice that here, contrary to 8.4.10, the normal vector iT exists whether 
or not m is biregularj that's because we're dealing with a plane curve. 

8.5.S. Local form. Figure 8.5.3 shows the sign of the curvature in the 
various possible cases. (The plane is oriented in the usual way, and the 
curve according to the arrows.) 

k>O k<O 

Figure 8.5.3 

8.5.4. Elementary properties 

8.5.4..1. Obviously KmC = IkmCI. 

k<O k>O 

8.5.4..2. If ~ is an affine rigid motion of E (that is, an orientation-preserving 
isometry), we have 

k~(m)(~oC) = kmC, 

where ~ 0 C is oriented by ~ and C. 

8.5.4..1. If we switch the orientation of E or the orientation of C, the signed 
curvature is multiplied by -l. 

8.5.4..4.. At a biregular point, the concavity (8.2.2.11) is the half-plane lying 
to the left or to the right of tangm C, depending on whether k > 0 or k < o. 
(Here tangm C is oriented by the orientation of C.) 

We now propose to show (8.5.7) that, up to a rigid motion, there exists a 
unique geometric arc whose signed curvature is a specified function of the 
arclength (counting from some origin). We start by establishing a formula 
(8.5.6) that will be useful now and later. Let (I, f) be a parametrization 
by arclength of an arc C. The map f' : 1-+ E has values in the unit circle 

S (E) = {x E E : II x II = 1} 

of E, and f'(t) = T(t), the unit tangent vector. Let S(E) have the canonical 
orientation inherited from E, and call a the length form on S(E). Then 

8.5.5 
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In fact, we have (r*a)(lt) = a{r(t))((Ttr)(lt)), by the definition of r*. If 
Wo is the canonical area form on E, it follows from the calculation in 6.4.5 
that a(t) = cont{r(t))wo, hence: 

(r* a)(lt) = (cont( r( t))wo)( (;I-I (r'(t))) 
= w{r(t), r'(t)) = w{!'(t), !,,(t)) 
= w{r(t),kmCir(t)) = kmC, 

since wo(r, ir) = 1 by the definition of i. 
Now fix an arbitrary origin x on the circle 8(E), and consider the cover

ing map p : R -+ 8(E) (in essence identical to the map R -+ 8 1 ), defined 
by 

8.5.5.1 p : R ::3 t 1-+ cos t x + sin t ix. 

As in section 7.6, we have p*a = dt and, if T : I -+ R is a lifting of 

r : I -+ 8 (E), we get r* a = ~: dt, just as in the last part of the proof of 

7.6.4. 

R 

Y!p 
I~8(E) 

8.5.5.2 

C . * dTd . h b . omparmg r a = dt tWIt 8.5.5, we 0 tam 

8.5.6 

Intuitively speaking, the curvature indicates how fast the tangent turns 
as we move along the curve. The faster the tangent turns, the greater the 
curvature (figure 8.5.6). 

Figure 8.5.6 

8.5.7. Theorem. Let Ie R containing the origin, c : 1-+ R a continuous 
function, and a, b elements of E with IIbll = 1. There exists a unique 
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geometric arc C in E having a parametrization by arclength (I, f) such 
that f(O) = a, 1'(0) = band k!(t)C = c(t) for every tEl. In other words, 
a plane curve is determined, up to a rigid motion, by its signed curvature, 
and, conversely, the signed curvature can be any predetermined function of 
arclength. 

Proof. If (I, f) is such a parametrization, we'll have I' = T E C 1 (I; S(E)), 

and a lifting l' E C1 (I; R) of T will satisfy :- = c, by 8.5.6. Working 

backwards, we can define l' by 

1'(t) = 1'(0) + it c(u) du = b + it c(u) du, 

according to the requisite conditions. Then we set r = pOT = 1', and 
integrate to obtain f: 

f(t) = a + lot p(1'(u)) duo o 

See 8.7.7 for explicit examples. 

8.5.8. Remark. The analog of 8.5.7 with k replaced by K is false, because 
of non-biregular points. The two curves in figure 8.5.8, for example, have 
the same unsigned curvature as a function of arclength, but they cannot 
be taken into one another by a rigid motion. 

Figure 8.5.8 

8.6. Torsion of Three-Dimensional Curves 

In this section C will be an oriented geometric arc in an oriented three
dimensional Euclidean space E. We will show that, if C is of class C3 
and biregular, it is characterized by two functions of the arclength: the 
curvature and the torsion. 

Let (I, f) be a parametrization by arclength of C, and m = f(t) a point 
of C. We associate to m the unit tangent vector r(m) = f'(t), and r is of 
class Cp-l if f is of class Cp. 
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If m is biregular, we can also consider the principal normal vector v(m) 
(8.4.11). If C is everywhere biregular, we have 

f"(t) 
v (t) - rr'--:--:-rr - Ilr(t)/I' 

so that v is of class Cp-2. 

In the remainder of this chapter all arcs will be assumed biregular. 

Since E is oriented, we can associate to each point m the vector ,8(m) 
(and also ,8(t), where f(t) = m) such that {r(m),v(m),,8(m)} is a posi
tively oriented orthonormal basis for E. This condition can also be written 
(cf. 0.1.16): 

8.6.1 ,8(m) = r(m) X v(m). 

Then ,8 is of class Cp-2. 

8.6.2. Definition. The vectors v(m) and ,8(m) are called the principal 
normal and binormal vectors, respectively. 

We saw in 8.4.11 that, if f(t) = m, 

8.6.3 r'(t) = KmG v(m), 

with K E GP-2(I; R). Now assume that G is of class G3 at least. Then we 

can differentiate the relations 11,8(t)11 2 = 1 and (,8'(t) I r(t)) = 0 to obtain 

(,8(t) I ,8'(t)) = 0, 

(,8'(t) I r(t)) = (-,8(t) I r'(t)) = (-,8(t) I KmG v(t)) 
= -KmG (,8(t) Iv(t)) = O. 

Thus ,8'(t) is a multiple of v(t), and we let TmG be the real number such 
that 

8.6.4 ,8'(t) = TmG v(m). 

The function t I-t T(t) = Tf(t) (G) is of class GP-3. 

8.6.5. Definition. The real number T mG defined by 8.6.4 is called the 
torsion of C at m. 

Differentiating the relations IIv2 11 = 1, (v 1 r) = (v 1 ,8) = 0, we get 

(v' 1 v) = 0, 

Thus 

8.6.6 

(v' 1 r) = (v 1 r') = -K, 

(v' 1,8) = -(v 1,8') = -T. 

v'(t) = -KmG r(m) - TmG ,8(m). 
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Formulas 8.6.3, 8.6.4 and 8.6.6 are called the Frenet formulas, and the 
basis (T(m),v(m),,8(m)) the Frenet frame. Matrix lovers will delight in 
this one: 

T (0 v K 
,8 ° 

v' 
-K 

° -T 

,8' 

n 
8.6. 'I. Remark. If K is zero, the torsion cannot be defined. Consider, for 
example, the following parametrized arc: 

{ 
(t, e- 1/ t , 0) 

f(t) = (0,0,0) 
(t, 0, e1/ t ) 

if t > 0, 
if t = 0. 
if t < 0, 

All points are biregular and have zero 
torsion, except for t = 0. Trying to ex
tend the torsion to t = ° by continuity 
is no good, because zero torsion every
where is a characteristic of plane curves 
(8.6.12.1 and 8.6.15), and our the curve 
lies half in the xy-plane and half in the 
xz-plane. 

8.6.8. Elementary properties 

y 

Figure 8.6.7 

8.8.8.1. If we change the orientation of E or the orientation of C, the 
torsion is multiplied by -1. 

8.6.8.2. If ~ is a rigid motion, T~(m) (~o C) = TmC. 

We now derive a formula for the torsion starting from an arbitrary pa
rametrization, as we did for the curvature in 8.4.13.1. 

8.6.9. Definition. Let (U, g) be a parametrized arc in an oriented, three
dimensional Euclidean space E, and C the associated geometric arc. The 
torsion of (U, g) at g( 8) (or at 8) is the real number Tg( 8) C. 

8.6.10. To calculate the torsion, consider first a parametrization of C by 
arclength, say (I, I). With the notations above, and the abbreviations K 
and T for the curvature and torsion of C, we can write the Frenet formulas 
as follows: 

8.8.10.1 

I'(t) = T(t), 

f"(t) = T'(t) = K'(t)C v(t) = K(t)v(t), 

IIII(t) = K'v + Kv' = K'v - KT,8 - K 2T. 

It follows that the mixed product (f', I", 1111) (cf. 0.1.16) is equal to _K2T. 
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In the case of an arbitrary parametrization (J, g), we take () E Diff(J; J) 
such that g = f 0 (), and write 

g'(t) = ()'f', 
g"(t) = ()" /' + ()/2 f", 
glll(t) = ()III f' + 2()"()' f" + ()'3 fill. 

The mixed product (gl, g", gill) now equals 

(9', g", gill) = ()16(f', f", fill) = _K2T()'6 = _K2Tv6. 

Since 119' X g"ll = 1I()13/, X 1"11 = Kv3, we get 

8.6.10.2 T = - (gl, g", gill). 
IIgl X g"112 

8.6.11. Examples 

8.6.11.1. The circular helix (cf. 8.4.14.4). Here g(t) = (acost,asint,bt), 
so that 

b 
T = - 2 b2 ' a + 

8.6.11.2. If C is a plane curve, f3 is fixed and T = O. 

8.6.11.1. For each n, consider the parametrized arc Pn in R3 with equation 

Pn(t) = ((~ + cost) cos': - ~,sint, (~+ cost) sin':). 
sm.,.- n sm.,.- sm.,.- n 

We claim that for n big enough the torsion of Pn is everywhere non-zero. 

z 

x 

Figure 8.6.11.3 
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Since Pn is periodic of period 21rn, and adding 211" to t is equivalent to 

rotating the image by 211" around the line z = x = ~ = 0, we can 
n sln --n 

restrict ourselves to the interval [0,211"]. It is easy to see that limn--+oo Pn is 
the curve P(t) = (cos t, sin t, t/211") , that this limit is uniform on [0,211"], and 
that all the derivatives of Pn converge uniformly to those of P on [0,211"]. 
Thus the torsion of Pn converges to the torsion of P, which is given by 

211" 2 (8.6.11.1); this shows that T < 0 for large enough n. 
1 + 411" 

Pn is a toroidal coil, the torus having radii ~ and 1. As n tends to 
sm~ 

n 
infinity, Pn becomes a cylindrical coil, or circular helix. 

8.6.12. Geometric meaning of the torsion 

8.6.12.1. Since ,8( t) is perpendicular to the osculating plane, ,8' indicates 
how fast the osculating plane oSCm C turns around the tangent as we move 
along the curve. Thus the torsion says how far C is from being a plane 
curve. In particular, if C is a plane curve, the osculating plane is fixed, so 
,8' = 0 and T = O. Conversely, if T is identically zero, we have ,8'(t) = 0 by 
8.6.4, and ,8(t) = .,.(t) X v{t) is constant, so .,.(t) is perpendicular to the fixed 
vector ,8(t). But f'(t) = .,.(t) is perpendicular to ,8(t), so ,8(t) = constant 
implies (J(t) I ,8(t)) = constant, and C is a plane curve. 

8.6.12.2. Local position of a curve with respect to the Frenet frame. For
mulas 8.6.10.1 imply that the Taylor series of C, up to order three, is 

(t t)2 
f(t) - f(to) = (t - to).,. + -2 0 Kv 

(t t)3 + -6 0 (_K2.,. + K'v - KT,8) + o(t - to)3, 

where (.,., v,,8) is the Frenet frame of C at rno = f(to). Separating the 
components, we get 

f(t) - f(to) = (t - to) (1- K2 (t -6to ) 2 + o(t - to)2) .,. 

(t - to)2 ( t - to ) + 2 K+K'-3-+ o(t-to) v 

(t t)3 + -6 0 (-KT,8 + o(t - to)3),8. 

Figure 8.6.12.3 show the projections of the curve looks on the three co
ordinate planes of the Frenet frame: 

In particular, we see that if T =1= 0, the curve crosses its osculating plane. 
The sign of the torsion is apparent from the projection on the .,.,8-plane; for 
the helix in 8.6.11.1, it is negative (figure 8.6.12.4). 
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117 v 

Figure 8.6.12.3 

(3 points into the 
plane of the paper 

Figure 8.6.12.4 

f3 

f3 T<O 

8.6.1S. Fundamental theorem. Let Ie R be an interval, c E C1(/; R:t.) 
and d E CO(/; R) functions and u, v, w elements of E with IIvll = IIwll = 
1. There exists a unique oriented geometric arc C in E, of class C3 and 
necessarily biregular, having a parametrization by arclength (I, J) such that 
f(O) = u, 1'(0) = v, 

1"(0) 
Ilf"(O)II =w, and 

KJ(tlC = c(t) } 

TJ(tlC = d(t) 
for all tEl. 

Proof. Uniqueness will follow from the proof of existence below, but it can 
also be shown by a neat elementary argument that deserves to be included. 
Assume (I, J) and (I,!J are two parametrizations by arclength satisfying 
the conditions of the theorem, and let {1', 1/, .8} and {z:, !6 .8} be their Frenet 
frames. Form the C1 function -

0: = (1' I cl + (1/ I !d + (.81 f!); 
by formulas 8.6.3, 8.6.4 and 8.6.6, its derivative is identically zero: 

T 

T 
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+ (v I-KmCr - TmC P) + (TmCv I f!) + (P I TmC~) = o. 
Thus o:(t) = 0:(0) = 3. But if a and f!. are unit vectors we have (a I ru :5 
IIallllf!.II = 1, with equality if and only if a =!!i thus o:(t) = 3 implies r(t) = 
dt), v(t) = ~(t) and P(t) = P(t), and, in particular, f'(t) = r = !. = [(t). 
Together with /(0) = [(0), this shows that f = L. 

Now for the proof of existence. Consider on E the differential equation 

(X', Y',Z') = (cY,-cX - dZ,dY), 

subject to the initial condition (X(O), Y(O), Z(O)) = (v, w, v X w). Since c 
and d are continuous and this system is linear, theorem 1.6.6 says that a 
C1 solution exists, and is unique, on the whole of I. Let it be (X, Y, Z). 

We claim that (X, Y, Z) is a positively oriented orthonormal basis, for 
every tEl. For the map 0 = (010 O2 , 03 , 04, Os, Oa) : 1-+ R a defined by 

O(t) = (IIXII2 , IIYII 2 , IIZII 2 , (X I Y), (X I Z), (Y I Z)) 

satisfies a certain continuous, first-order differential equation: for instance, 
O~ is equal to 2c(Y I X) = 2C04, and so on. Since the constant map '1(t) = 
(1,1,1,0,0,0) clearly satisfies that same equation, we must have O(t) = 
(1,1,1,0,0,0) by 1.3.1. 

Now set t(t) = u + f~ X(s) ds. We have f'(t) = X(t) and II X(t) II = 1. 
Thus f(t) is a parametrization by arclength and, since X, = cY with c and 
Y of class C1, f is of class C 3 • Clearly X(t) = r(t) is the tangent to the 
arc C defined by that parametrizationj in addition, c(t) is the curvature of 
C because r'(t) = X'(t) = c(t)Y(t) with IIY(t)11 = 1. Now we've assumed 
c(t) > 0, so C is everywhere biregularj thus Y is the principal normal 
vector, Z = X X Y is the binormal and Z'(t) = d(t)X(t), so d(t) is the 
torsion. 0 

8.6.14. Theorem 8.6.13 says that, up to rigid motions, there exists a 
unique curve having predetermined curvature and torsion, as functions of 
the arclength. 

8.6.15. Caution. Biregularity is an essential hypothesis. Otherwise, not 
only does the torsion not exist (8.6.7), but even if we could extend it by 
continuity the uniqueness conclusion would fail. Consider the curves in 
8.5.8, for example, which have same K and same T = o. 

8.6.16. Example. The only arcs with constant, non-zero curvature and 
torsion are the circular helices (8.6.11.1). This is a consequence of the 
uniqueness part of theorem 8.6.13, and of the fact that, for any K and 
T, we can find a helix with curvature K and torsion T, namely, t 1-+ 

(a cos t, a sin t, btl with 

K T 
b= - K2+T2. a = K2+T2' 
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8.6.17. The keen reader may have sniffed out the following generalization 
of theorems 8.5.7 and 8.6.13: arcs in n-dimensional Euclidean space are 
characterized, up to rigid motions, by a system of n - 1 invariants. See 
[Spi79, vol. II, chapter 1]. 

8.7. Exercises 

8.7.1. Given a geometric arc C and a point m E C, define the sentence 
Un approaches m along C". Show that limn-+m p(@ - §) = tangm C (see 
8.2.1.8). 

8.7.2. What are the parametrized arcs having no biregular points? 

8.7.3. Let (1, J) be a parametrized arc in E, and tEl a point such that 
(1, J) is biregular at t. 
(a) Let E be three-dimensional and Euclidean. Give the set P of planes 

(two-dimensional vector subspaces) in E the topology obtained by iden
tifying P with the real projective plane, via the map that takes a plane 
to its normal direction. Show that, as 8 approaches t, the plane spanned 
by the vectors f'(t) and f(8) - f(t) approaches the osculating plane to 
(1, t) at t. (First you have to show that, for 8 close enough to t, the 
vectors f'(t) and f(8) - f(t) are linearly independent.) 

(b) Prove the same result in arbitrary dimension, this time giving P the 
topology defined in 2.8.8 (which coincides with the one in part (a) in 
dimension three). 

8.7.4. The osculating circle 

(a) Let m be a biregular point in a geometric arc C. Show that, as n 
approaches m along C (see 8.7.1), the circle containing n and tangent 
to C at m approaches the osculating circle to C at m. (Define a suitable 
topology on the set of circles in the plane; or, if you can't, just study 
the limit of the center of the circle as n approaches m.) 

(b) Show that the osculating circle to C at m can also be obtained as the 
limit of the circles going through three distinct points on C that tend 
toward m. 

(c) Assume that the curvature of C (for some parametrization by arc
length) is a strictly increasing of the parameter. Show that the points 
whose parameter is greater than (resp. less than) the parameter at m 
lie strictly inside (resp. outside) the osculating circle at m. 

(d) Let S be a circle of radius r and center 0 in E, and consider the map 
i: E\ {O} -- E\ {O} that takes a point x E E\ {O} to the point i(x) 
on the half-line Ox such that Ild(O,i(x))11 = l/d(O,x) (such a map 
is called an inversion, cf. [Ber87, section 10.8]). Show that osculating 
circles are preserved by i. 
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8. '1.5. Let E be an oriented Euclidean plane, 0 an oriented geometric arc 
of class 0 2 , and (I, f) a parametrization of 0 by arclength. 

(a) When is it possible to find a scalar function a such that 9 = I + all 

defines a geometric arc D whose tangent at g(t) is normal to 0 at I(t), 
for all t E I? Show that D does not depend on the orientation of 0 or 
of E. We call D the evolute of O. 

(b) Conversely, given D, find the curves 0 of which D is the evolute. Study 
the case that D is a circle or a logarithmic spiral (8.7.16). 

(c) Let 0' a subarc of 0 not containing vertices (9.7.1). What is the 
relative position of two osculating circles to O'? 

8.'1.6. State and prove an analog to theorem 8.5.7 concerning the unsigned 
curvature KmO, assuming that KmO does not vanish. 

8.'1.'1. With the notation of theorem 8.5.7, find the curves which satisfy: 

(a) c2(s) + s2 = 1; 
(b) c(s) = l/s; 
(c) c(s) = ks. 

8.'1.8. Let (I, f) and (I, g) be parametrizations by arclength for geometric 
arcs 0 and D, respectively, and assume that KJ(t) 0 ::; Kg(t)D for all t E I. 
Show that, if t, t' E I are close enough, we have 

d(J(t), I'(t)) ~ d(g(t), g(t')). 

8.'1.9. Define an osculating sphere to an arc in R3, and determine that 
sphere. 

8.'1.10. Helices. Let 0 be an oriented, biregular arc in R3. Prove that 
the four conditions below are equivalent: 

(i) 
(ii) 
(iii) 
(iv) 

the tangent makes a constant angle with a fixed direction; 
the principal normal is parallel to a fixed plane; 
the binormal makes a constant angle with a fixed direction; 
T and K are proportional. 

Show that under these conditions 0 has a parametrization of the form 

t 1-+ I(T) + (t - to)a, 

where I is a plane curve parametrized by arclength and a is a vector 
perpendicular to the plane of that curve. 

An arc satisfying the conditions above is called a helix. 

8.'1.11. We say that two 0 00 , p-dimensional submanifolds M and N of Rd 
have a contact of order k or more at x if there exist parametrizations (U, f) 
and (U, g) of M and N, respectively, such that 0 E U, 1(0) = g(O) = x and 
I(n) (0) = in) (0) for n = 1, ... , k. We say that M and N have a contact of 
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order k if they have a contact of order k or more but do not have a contact 
of order k + 1 or more. We say that a p-dimensional submanifold M and 
a q-dimensional submanifold N, with q :S p, have a contact of order k at 
x if there exists a q-dimensional submanifold N' of N having a contact of 
order k with M at x. (The reader should check that these definitions do 
not depend on the parametrizations.) 

(a) Show that these notions are invariant under diffeomorphisms. Define 
the order of contact between two geometric arcs, and between a geo
metric arc and a submanifold. 

(b) Show that a plane curve and its osculating circle at a biregular point 
have a contact of order three or more, and of order four or more if and 
only if k' = 0 at the contact point. Show that a curve in R3 and its 
osculating plane at a biregular point have a contact of order three or 
more, and of order four or more if and only if T = 0 at the contact 
point. 

(c) Let C be a plane curve in R3 and i an inversion (8.7.4(d)) whose pole 
does not lie on C. Using part (b), show that if m is a point of C where 
k' = 0, the torsion of i(C) at i(m) is zero. Prove the same result by 
direct calculation (using Taylor series, for example). 

8. '7 .12. Show that if a curve in R 3 , with nowhere vanishing curvature K 
and torsion T, is to be contained in a sphere of radius r, we must have 

where the derivative is taken with respect to arclength. The converse is 
also true, but difficult; see [Won72]. 

8. '7 .13. Menger curvature. Let f -> C be a curve of class C2 III a 
Euclidean space. Let x, y, z be distinct points of f, and set 

K( ) V(xy+yz+zx)(xy+yz-zx)(xy-yz+zx)(xy-yz+zx) 
X,y,z = , 

xy·yz·zx 

where xy, for example, denotes the Euclidean distance from x to y. Show 
that, as y and z approach x along the curve, K(x, y, z) tends towards the 
curvature of fat x. Find examples of curves of class CI for which K(x, y, z) 
does not have a limit, or becomes infinite, as y and z approach x. 

8.'7.14. Draw the curve whose polar equation (8.4.14.2) is p(t) = -log(1-
sin t). Do the bottle and the pebble have the same curvature radius at their 
contact point? 

8. '7 .15. Find the curvature radius at the origin of the curve with equation 

x I5 + y13 + x3y4 + x 2 _ y2 + X + 199y = O. 
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8.7.16. Logarithmic spirals. What are the plane curves whose tangent 
makes a constant angle with the line joining the foot of the tangent to 
a fixed point? What are the plane curves whose radius of curvature is 
proportional to arclength? Write the polar equation of such curves, called 
logarithmic spirals [Ber87, 9.6.9J. 

Can a logarithmic spiral coincide with its evolute (8.7.5)? 

8.7.17. Hypocycloids and epicycloids 

8.'1.1'1.1. Definition. A hypocycloid (resp. epicycloid) is the set C of points 
of the Euclidean plane occupied by a given point on a circle r' that rolls 
without sliding inside (resp. outside) a fixed circle r of commensurable ra
dius (figure 8.7.17.1). Study the shape of C according to the ratio between 
the radii. How many cusps does C have? 

r 

r 

Figure 8.7.17.1 

8.'1.1'1.2. Equivalent definitions. Let E be the unit circle of R2 = C, and 
let r 01= 0 be rational. Show that the envelope of the lines D(O) joining the 
points eiO and eirO , for 0 E R, is a hypo- or epicycloid. Discuss what kind 
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m 

Figure 8.7.17.3(b) 

it is and how many cusps it has, according to the value of r. Are all hypo
and epicycloids obtained in this way? 

8.1.17.1. Examples 

(a) What does the figure look like when r' has half the radius of rand 
rolls inside r? (It is called Lahire's cogwheel.) 

(b) If r' and r have the same radius and r' rolls outside r, one obtains a 
Pascallima!;on, called a cardioid. Let a and D be a point and a line 
in the plane, with a ¢. Dj show that the envelope of the family of lines 
e defined by m E e and De = 3(m-;'-D), for m E D, is a cardioid, 
whose center is, by definition, the point a. 

(c) Show that the caustic of a plane spheric mirror (that is, the envelope 
of the light rays refiected from a beam parallel to the axis) is a piece 
of a two-cusped epicycloid (called a nephroid) . 

... -_ ... 

Figure 8.7.17 .3( c) 
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(d) Show that horizontal projections of spherical helices with a vertical 
axis (that is, curves on the sphere whose tangent makes a constant 
angle a with the axis) are epicycloids for appropriate values of a. 

E 

D 

Figure 8.7.17.3(d) Figure 8.7.17.3(e) 

(e) Show that the envelope of a segment of fixed length whose endpoints 
describe two orthogonal lines is a four-cusped hypocycloid (called an 
astroid). 

8.7.11.4.. Properties. Show that the evolute (8.7.5) of a hypo- or epicycloid 
is similar to the original curve. Show that the arclength s (computed 
from an appropriated starting point) and the curvature K of a hypo- or 
epicycloid satisfy a relation of the form 

as2 + bK- 2 = c, 

for a, b, c constant. Conversely, what are the curves satisfying such a rela
tion? Find the total length of a hypo- or epicycloid. 

8.7.11.5. For more information on hypo- and epicycloids, see [Lem67]. See 
also [Zwi63], a very agreeable text on plane curves an their links with 
mechanics, optics and electricity; in particular, see chapter XXI, where the 
connection between epicycloids and cogwheel design is discussed. Finally, 
[LA 74, pp. 413-435] gives an analytic presentation of the various cycloids, 
including a derivation of the shape of the carter of the Wankel engine. 

B.7.1B. The lemniscate 

(a) Prove that the locus of the points whose distance to two fixed points 
m and n of the plane has a constant product is a curve whose polar 
equation is p2 = 2a2 cos 2t, where the origin is the midpoint of the 
segment mn and a is the half the distance between m and n. This 
curve is called Bernoulli's lemniscate. 

(b) Prove the properties indicated in figure 8.7.18, about the direction of 
the tangent and the center of curvature. Study possible converses. 
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y 
---- center of curvature at x 

x 

Figure 8.7.18 

8.7.19. The curvature radius of the ellipse. Let the normal at m to 
2 2 

the ellipse :2 + ~2 -1 = 0 intersect the x-axis at n. If d is the distance 

between m and n, show that the curvature radius of the ellipse at m is 
given by 

a2 d3 

R=b4' 
For applications, see 10.6.6.6.2 and 11.18. 

8.7.20. Center of curvature of a catenary. Catenaries are the shapes 
taken by chains hanging between two fixed points. Their equation, up to 
translation, is y = a cosh( x/a). Show that the center of curvature of a 
catenary has the property shown in figure 8.7.20. Study a converse. For 
an application, see 10.6.6.6.3. 

x 
center of 

y 

y 

n mn = mp 
o 

Figure 8.7.20 Figure 8.7.21 
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8. '1.21. Plane curves in Euler form. Define a curve C as the envelope 
of the lines 

D(t) = {(z,y) E R2: costz+sinty = h(t)}, 

where h : R/21rZ - R+. Show that the curvature of C at the point where 
C touches D(t) is given by h(t) + h"(t). 

8.'1.22. Schur's comparison theorem. Let (I, f) and (I, g) be paramet
rizations by arclength for geometric arcs C and D in R2 and R S , respec
tively. Assume that k/(t) > 0 and K/(t)C $ Kg(t)D for all t E I. Show 
that, if t, t' E I are close enough, we have 

d(J(t), !(t'l) ~ d{g(t), g(t'l), 

the inequality being strict unless D is the image of C under a plane isom
etry. Give a physical interpretation for this result. 

Deduce that, among all closed curves with curvature not exceeding 1/ R, 
the shortest is the circle of radius R. 

8.'1.23. Bertrand curves. A curve C in R S is called a Bertrand curve if 
it is possible to find another curve D with the following property: for each 
parameter value the principal normals to the two curves coincide (i.e. are 
the same line in RS). Show that C is a Bertrand curve if and only if its 
curvature K and torsion T satisfy a linear relation aK + bT = 1, where a 
and b are constants. Show that if C has two distinct such Bertrand partners 
Dl and D 2 , it has infinitely many, and is necessarily a circular helix. Show 
that if m and n are points on C and D, respectively, parametrized by 
the same number, and p and q are the corresponding centers of curvature, 
the cross-ratio (pm/pn)/(qm/qn) is a constant. (Here pm, for instance, 
is the signed distance from p to m along the common normal; cf. IBer87, 
chapter 6J.) 

Figure 8.7.23 



CHAPTER 9 

Plane Curves: The Global Theory 

In this chapter we will study immersions of the circle in the 
plane, called closed curves, and embeddings of the circle in the 
plane, called simple closed curves. Naturally, the interesting 
objects are equivalence classes of such immersions or embed
dings. 

The study of simple closed curves starts with Jordan's theo
rem (9.2.1), which states that the complement of such a curve 
has two connected components, one of which, called its in
terior, is compact. Then comes the isoperimetric inequality, 
which relates the area of such a curve with the area of its in
terior (9.3.1). Later we have the theorem of the four vertices 
(9.7.4) and a global convexity property (9.6.2). 

For arbitrary closed curves we introduce the turning number 
(section 9.4), which says by how much the tangent vector to a 
curve turns when we follow it once. The theorem of Whitney
Grauenstein (9.4.8) asserts that two curves having the same 
turning number are homotopic. The turning tangent theorem 
(9.5.1) says that the turning number of a simple closed curve 
is ±1. We conclude with a formula (9.8.1) that relates the 
number of inflection points, the number of double points and 
the number of double tangents of a closed curve. 
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The differentiability class p is assumed to be at least one, but is other
wise unspecified. Some of the results can be established in class Co, but 
this complicates the proofs a lot. 

9.1. Definitions 

Recall that every compact, connected, one-dimensional manifold is diffeo
morphic to the circle (3.4.1). 

9.1.1. Definition. A simple closed curve C in a finite-dimensional vector 
space E is a compact, connected, one-dimensional submanifold of E. We 
say that C is oriented if it is oriented as a manifold. 

9.1.2. Since C is diffeomorphic to S1, there is an equivalent formulation: 
a simple closed curve in E is an equivalence class of embeddings (S1, f) of 
S1 into E under the equivalence relation "(S1, f) ,... (S1, g) if and only if 
g-1 0 f E Diff(S1)." 

9.1.3. By proposition 8.1.9 (second case) we have yet a third definition: a 
simple closed curve in E is a geometric arc C in E having a representative 
(R, f) that is periodic of period L, for some L> 0, and injective on 10, LI. 

This leads to the following, more general, definition: 

9.1.4. Definition. A CP closed curve CinE is an equivalence class of CP 
immersions of S1 into E under the equivalence relation "(S1, f) ,... (S1, g) 
if and only if there exists e E DiffP(S1) such that f = go e." 

9.1.5. Definition. An oriented closed curve CinE is an equivalence class 
of immersions of S1 into E under the equivalence relation "(S1, f) ,... (S1, g) 
if and only if there exists e E Diff(S1) such that f = go e." 

9.1.6. Remark. By just repeating the proof of 8.1.9 (second case) one 
comes up with an equivalent definition: 

9.1. T. A closed curve in E is a geometric arc C in E having a representative 
(R, f) that is periodic of period L, for some L > o. 

As expected, a simple closed curve canonically determines a closed curve. 

9.1.S. Examples 

9.1.S.1. Notice that the image f(R) = V does not determine a unique 
closed curve, because the curve can be drawn several times-the number L 
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in 9.1. 7 is not necessarily the shortest period. For example, take the closed 
curves in : S1 --> R2 given by in : t 1--+ (cos n7rt, sin n7rt) , for N E Z*. 
They all have the same image fn(S1) = S1 C R2, but they are distinct for 
distinct values of Inl (and, as oriented closed curves, for distinct values of 
n as well). See also 9.4.5.1. 

9.1.8.2. Figure 8.1.5 also shows pairs of distinct curves with the same im
age. 

9.1.8.S. Figure 9.1.8.3 shows the curve f : S1 --> R2 given by (cos t, sin t) 1--+ 

(cos t, sin 2t), a particular case of a Lissajous figure: 

f 

Figure 9.1.8.3 

9.1.8.4,. Let D be a compact submanifold-with-boundary of the Euclidean 
plane E. The boundary aD of D is made up of a finite number of simple 
closed curves of E, by 3.4.1, 5.3.35. If E is oriented, the components of aD 
are canonically oriented by 5.3.36. 

Notice that, even if D is connected, aD may not be (figure 9.1.8.4). In 
fact, if D is connected, a D is connected if and only if D is simply connected. 
This follows from the uniformization theorem, for example [Car63, p. 188]. 

Figure 9.1.8.4 
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9.1.9. Definition. A point in a closed curve CinE is an equivalence class 
of triples (81, I, m), under the relation "(81, I, m) ,..., (81, g, n) if and only 
if there exists 0 E Diff(81,81) such that I = goO and n = O(m)." The 
point I(m) = g(n) E E is called the image of the corresponding point of 
C, and denoted by @. The multiplicity of a point m in C is the number 
of elements of any of the sets r1(J(m)), for (81, f) E C. 

In example 9.1.8.1, the multiplicity of an arbitrary x E 81 is Inl; this 
shows again that curves with different Inl are distinct. 

9.1.10. We will now generalize the notion of index introduced in 7.3.7 and 
7.6.8. Let C be an oriented closed curve in an oriented Euclidean plane E, 
and call 8(E) the unit circle in E, which is canonically oriented (beginning 
of section 7.5). For mE E, define a map 1m : 81 -+ 8(E) by 

I(s) - m 
Im(s) = 11/(s) - mil· 

The degree of this map depends only on C, because if (81, f) ,..., (81, g), 
the orientation-preserving diffeomorphism 0 such that I = goO gives 1m = 
gm 0 0, whence deg 1m = deg gm 0 deg 0 = deg 1m by 7.3.4 and 7.3.6.2. 

9.1.11. Definition. The degree of the map above is called the index of m 
with respect to C, and denoted by indm C. 

The index does not depend on the choice of a Euclidean structure (see 
exercise 9.9.1). 

9.1.12. Proposition. The map m 1-+ indm C is constant on each con
nected component of the complement E \ C of C. 

Proof. Take m, nEE \ C and (81, I) E C, and consider the maps 

I(s) - m 
1m: S 1-+ 11/(s) _ mil and 

I(s) - n 
In: S 1-+ 11/(s) _ nil· 

If m and n lie on the same component ofE\C, we use 2.2.13 to connect the 
two with a path "/ : [0,1] -+ E \ C (figure 9.1.12). This gives a homotopy 
F: [0,1] X 81 -+ 8(E) between 1m and In, as follows: 

I(s) - ,,/(t) 
F(t, s) = 11/(s) _ ,,/(t)ll· 

But by 7.6.5, homotopic maps have the same degree. o 

9.1.13. Proposition. Any closed curve C in Euclidean space admits pe
riodic parametrizations by arclength. 

Proof. Apply 8.3.2 and 8.1.9. o 
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Figure 9.1.12 

All such parametrizations have the same period, which we denote by 
leng(C). 

9.1.14. Example. The curve fn in 9.1.8.1 has period 21rlnl. 

9.1.15. Remark. More generally, it is possible to integrate along C: Let 
(R, f) be a parametrization by arclength of C, periodic of period L, and 
associate to every function g : C -+ R the function g: [0, L]-+ R such that 

g(t) = g(m) for m = f(t) E C. The integral of g is foL g(t) dt. This gives a 
measure on C. 

9.2. Jordan's Theorem 

9.2.1. Theorem. Let C be a simple closed curfJe of class C 2 in an affine 
plane E. The complement E \ C has exactly two components, exactly one 
of which is bounded. We denote the bounded component by Cint and the 
other by Cext . The closures Cint and C ext are submanifolds-with-boundary 
of E and C is the boundary of each of them. We hafJe the following two 
criteria: 

(i) Cint is compact and C ext isn't; 
(ii) ind", C = ±1 if x E Cint and ind", C = 0 if x E Cext . 

9.2.2. Definition. We call Cint the interior of C and Cext its exterior. 
Points in Cint and Cext are said to be inside and outside C, respectively. 
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9.2.3. Remarks 

9.2.S.1. Jordan's theorem is true in class CO [Die69, vol. I, chapter 9, 
app.4.2]. 

9.2.S.2. As shown by figure 9.2.3, this result is not obvious, even intuitively, 
if the curve is complicated: for example, is x inside or outside C? 

Figure 9.2.3 

9.2.S.S. What submanifolds-with-boundary of E are obtained in this way? 
Exactly those that are simply connected (cf. 9.1.8.4). 

9.2.4. Proof of Jordan's theorem. We orient C and E, and give E a 
Euclidean structure. 

9.2.5. Lemma. Let m be a point on a simple closed curve C and u, v f. m 
points on the normal to C at m, one on each side of m, and close enough 
to m. Then linduC - indvCI = 1. If u is the point to the left of m, C being 
oriented, then induC - indvC = 1. 

Proof. Using theorem 2.1.2(iv), draw a rectangle R around m so that C is 
a graph within R. If u an v are in R (this is the meaning of "close enough" 
in the statement), they are not in the image of C. Now deform C by the 
homotopy shown in figure 9.2.5.1; the result is a parametrized arc D of 
class CO only, but indD is still defined (9.1.11). And, by 7.6.5, we have 
indu C = indu D and indv C = indv D. Similarly, the index doesn't change 
if u and v move along the normal without crossing C (9.1.12). 

Figure 9.2.5.1 
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N ow fix a and b on the straight part of D, and set u and v at a distance 
e from m. For p ED \ [a, b], the angle between pit and pt) approaches zero 
uniformly as e decreases; this is immediate, because the distance pu, say, 
is bounded below by inf(bm, am). 

u 

-f h 
v 

D-[a,h] 

Figure 9.2.5.2 

Choose a parametrization h of D, with period L > 1 and such that 
h(O) = a and h(l) = b, and define the maps I, g : Z/ LZ --+ S(E) by 

h(t)-u h(t)-v 
I: t f-+ Ilh(t) _ ull and g: t f-+ Ilh(t) _ vii' 

By definition, indu D = deg f and indv D = deg g. Also, if 7 is a lifting of 
f to R (d. 8.5.5.1 and 8.5.5.2), the degree of f is the integer k such that 
7(t + L) - 7(t) = 2k1r, for any t (7.6.4), and similarly for g. 

Now take e small enough that the angle between pit and pt) is less than 
some fixed '1 < 11", for every p E D \ [a, b]. If 7 and 9 are chosen so that 
17(1) - g(l)1 < TI, we will have l7(t) - g(t)1 < TI for all t, since 7 and 9 
are continuous and the projection R --+ S(E) is injective on any interval of 
length 11". In particular, I7(L) - g(L) I < '1. 

u 

a 

v 

b 

Figure 9.2.5.3 

--> 

ab 
lIabll 

Fix as the origin on S (E) the direction ab. For e small, we can take 
7(0) close to -11" and g(O) close to 11". The behavior of 7 and 9 on [0,1] is 
then given by figure 9.2.5.4; in particular, we see that 7(1) and g(l) are 
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-7l' 0 7l' 

• f f • f t • f t 
1(0) /(1) g(1) g (0) g(L) 1(L) 

Figure 9.2.5.4 

close to zero, so 17(1) - g(1) 1 < '1. By the previous paragraph, this implies 

I7(L) - g(L) 1 < '1. 
N ow the difference ind ... C - ind" C is given by 

(7(L) -7(0)) - (g(L) - g(O)) = (7(L) - g(L)) - (7(0) - g(O)) , 

so it must be close to g(O) - 7(0), which is close to 211'. Since the index is 
an integer multiple of 211', we must have ind ... C - ind" C = 211', proving the 
formula. 

The formula in the oriented case also follows from this construction. 0 

Now for the proof of Jordan's theorem proper. By theorem 2.7.12, we 
can choose e > 0 such that the map can: Nec -+ Tube C (section 2.7) is 
an embedding. But NeC\ C x {O} has exactly two connected components 
8 1 and 8 2: indeed, NxC has a canonical orientation (6.7.22), so the posi
tive components of NxC for x ranging over C agree, and their union is a 
component of NeC\ C x {O}. Since canlN<c is a diffeomorphism and takes 
C X {O} into C, we see that Tube C \ C has two components: can(8t} = T1 
and can(82) = T2 • 

Let 0 10 "" Ok, ... be the components of E \ C. Clearly T1 and T2 
are contained in components of E \ Cj but they cannot be in the same 
component because the indices of C with respect to points in T1 and T2 
are different, by lemma 9.2.5. Thus we can assume T1 C 0 1 and T2 C02. 

Since C is closed, each 0. is closed, 
and its frontier is contained in Cj the 
frontier is also non-empty (otherwise 
0. = E), so we can take x E C such 
that every neighborhood of x inter
sects 0.. But Tube(C) = T1 U C U 
T2 is a neighborhood of x, intersect
ing only 0 1 and 02j thus E \ C has 
no other connected components. This 
also shows that C is the frontier of 
both 0 1 and O2. 

c 

Figure 9.2.5.5 

We now show that 0 1 and O2 have the properties stated in 9.2.1. First, 
0 1 and IT2 are submanifolds-with-boundary, because if f is a local equation 
for C, we locally have IT1 = r 1(]-oo,0j) and IT2 = f-1([0,+oo[). Next, 
one of the components, which we call Cext , is unbounded, because IT1 U02 = 
E. But C is contained in some ball B(O, a), by compactnessj since E \ 

IR .. 
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B(O, a) is connected, the other component Cint has to be entirely contained 
in B(O, a), which means it's bounded and relatively compact. Finally, to 
show property (ii), notice that we can contract C to a constant curve via a 
homotopy that fixes E\B(O, a). For any m 1:. B(O, a), this gives a homotopy 
between fm and a constant map (cf. 9.1.10 and 9.1.11); by 7.4.1, this says 
that indm C = 0. By 9.1.12, the same is true for mE Cext . Finally, 9.2.5 
gives indm C = ±1 for mE Cint . 0 

9.2.6. Corollary. A simple closed curve in an oriented affine plane has a 
canonical orientation, for which ind", C = 1 for all x E Cint . 

In other words: when walking forward along C, the interior of C lies to 
the left. 

Proof. The orientation is chosen so that C = aCint is canonically oriented 
as the boundary of a submanifold-with-boundary (theorem 5.3.36). With 
the notation of lemma 9.2.5, this gives u E Cint and tJ E Cext • Since 
tJ E Cext implies ind" C = 0, we get indu C = 1 by lemma 9.2.5. 0 

We now give a practical criterion to determine whether x E Cint or 
x E Cext . For another criterion, see the end of the proof of 9.5.1. 

9.2.1. Lemma. Let C be a one-dimensional submanifold of an affine plane 
A, with underlying vector space Ej both C and A are oriented. Take x E 
A \ C, and consider the map f : C --+ S(E) defined by 

......... xn 
f(n) = Ilwll' 

A point m E C is a critical point of f if and only if the line xm is tangent 
to C at m. 

x 

Figure 9.2.7 

Proof. Writing f = F 0 i, where i : C --+ A is the inclusion and F : A --+ E 
is given by the same formula as f, we see that x E C is a critical point of 
f if T",C is taken into zero by the derivative of F. This derivative is given 
by 

F'(m)(z) = 11m ~ xii 
(m-xlz)(m-x) 

11m - x11 3 / 2 
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for z E E and mEA, and it is easy to see that it vanishes if and only 
if m - x and z are proportional. Thus F'(m)(T",C) = 0 is equivalent to 
m- x E TmC = tangmC. 0 

By a corollary of Sard's theorem (4.3.6), the map f has regular values; 
let u E S(E) be one. The half-line D", with origin x and direction u is 
nowhere tangent to C, by lemma 9.2.7, and intersects C in a finite number 
of points, by the proof of 4.1.5. Thus, by criterion (ii) in theorem 9.2.1, 
saying that x E Cint is the same as saying that ind", C = ±1, which implies 
that D", intersects C an odd number of times. 

9.2.8. Practical criterion. Let C be a simple closed curve in an affine 
plane A, and z a point not in C. There exist half-lines originating at z 
that are nowhere tangent to C. Such a half-line intersects C in k points, 
where k is finite, and 

z E Cint {::> k is odd, 
z E Cext {::> k is even. 

Figure 9.2.8 

.(CnDx )=8, X€C cxt 

• (C n Dy )=9, y€ C int 

9.2.9. Remark. Corollary 4.3.5 to Sard's theorem says in fact that "al
most all" half-lines are non-tangent. Such half-lines are said to be transver
sal to C. See [AR67] for the important notion of transversality. 
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9.2.10. Remark. See the proof of 9.5.1 for another characterization of 
Cint· 

9.3. The Isoperimetric Inequality 

In this section E is a Euclidean plane and C a simple closed curve in E, of 
class CPo Associated with C are its length and the area of Cint, which is 
finite because Cint is compact (6.5.2). 

9.S.1. Theorem. Every simple closed curve C 01 class CP in a Euclidean 
plane E satisfies the inequality 

leng2 (C) ~ 411" area( Cint). 

Furthermore, equality holds il and only il C is a circle. 

9.S.2. Lemma (Wirtinger's inequality). Let 1 E Cl(R) be periodic 01 
period 211", and such that f~7r I(t) dt = o. Then 

l27r 1'2(t) dt ~ l27r 12(t) dt, 

and equality holds il and only il I( t) = a cos t + b sin t, with a, b E R. 

Proof. (See [Rud74, p. 94-971 for the necessary background.) The restric
tion IlIo,27r1, being continuous, belongs to L2([0, 211"]), the Hilbert space of 
square-integrable functions on [0,211"1, and hence can be approximated in 
the L2 norm by its Fourier series 

00 

a2
0 + L (an cos nt + bn sin nt). 

n=l 

Since we've assumed f~7r I(t) dt = 0, we have ao = 0, and Parseval's theo-
rem gives 

11/112 = La: + b: = 127r 12 dt. 
n~l 0 

The Fourier series of I' is given by 
00 00 

L an cos nt + f3n sin nt = L n(bn cos nt - an sin nt)j 
n=l n=l 

this can be seen by performing the integration of an = f~7r I' (t) cos nt dt 
and f3n = f~7r I'(t) sin nt dt by parts. Applying Parseval again, we get 

r 7r 111'112 = in 1'2 dt = L n2(a: + b:) ~ 11/112, 
o n~l 
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with equality if and only if a; + b; = 0 for all n > 1. o 
9.S.S. Proof of the isoperimetric inequality. We can assume, by ap
plying a homothety, that 0 has length 211". Let h = (I,g) be a para
metrization by arclength (9.1.13), and set the coordinate axes so that the 
:.r:-axis goes through the center of mass of Oint, which is compact (6.5.14 
and 9.2.1(i)); this is the same as saying that f;'II' f(t) dt = O. Since h is a 
parametrization by arclength, we have 

102'11' (1'2 + g'2) dt = 102'11' dt = 211" = leng(O). 

On the other hand, Stokes' theorem gives 

area(qnt) = r d:.r:Ady= '-- d:.r:Ady= r :.r:dy= r2'11'fg'dt, 
JOint JOint Jo Jo 

because d(:.r: dy) = d:.r: A dy. Subtracting, we get 

2(11" - area(Oint)) = 102'11'(1'2 + g,2 - 2fg') dt 

= 102'11' (1'2 - f2) dt + 102'11'(1 - g')2 dt. 

The first integral is non-negative by lemma 9.3.2, and so is the second. 
Thus 2 area(Oint) ;::: 211" and, since leng(O) = 211", we finally get 

leng2(0) ;::: 211"' 2area(Oint). 

For equality to hold it is necessary that f;'II' (1'2 - P) dt = 0 and f;'II' (I -
g')2 dt = O. The first condition gives f(t) = a cos t + b sin t, by lemma 
9.3.2; the second gives g'(t) = f(t) almost everywhere, and, by continuity, 
g(t) = a sin t - b cos t + c. Thus (I, g) is the parametrization of a circle. 0 

9.S.4. Remarks. 

9.1.4..1. The isoperimetric inequality is valid in class 0 1 and even 0 0 

[Fed69, p. 2781. 

9.1.4..2. Jordan's theorem has a counterpart in higher dimension: a com
pact, connected, codimension-one submanifold V of Rn is the boundary of 
a compact submanifold-with-boundary Vint. and in particular orientable 
[Gre67, p. 811. 

9.S.5. Thus we can define vol(V) and vol(Vint) (cf. 6.5.1), and there is a 
version of the isoperimetric inequality relating the two quantities (6.6.9). 
This is harder to prove than the plane version. 
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9.4. The Turning Number 

In this section everything is assumed of class Cl. Let C be an oriented 
closed curve in an oriented Euclidean plane E, represented by an immersion 
(81 , f) E C (9.1.4). The unit tangent map TJ : 8 1 -> 8(E), defined by 

9.4.1 
f'(t) 

T f (t) = ~II f-'--' ( t7-rr) II 

is continuous, and its degree does not depend on the choice of f: if (8 1 , f) ,...., 
(8t,g) with f = goO, where 0 E Diff(8 1 ) preserves orientation, TJ = TgOO. 
Hence the following definition makes sense: 

9.4.2. Definition. The turning number of C, denoted by turn(C), is the 
degree of the map Tf in 9.4.1. 

9.4.3. Intuitively, the turning number tells how many times the (oriented) 
tangent turns around, as we go along the curve once. 

9.4.4. Remarks 

9.4..4..1. This definition does not depend on the choice of a Euclidean struc
ture. 

9.4..4..2. If the orientation of C or of E is switched, turn ( C) changes sign. 

9.4.5. Examples 

9.4..5.1. If Cn is the curve defined in 9.1.8.1, we have turn(Cn ) = n. 

9.4..5.2. The closed curves in figure 9.4.5.2 have turning number 2 and n+ 1, 
respectively (if the plane is oriented canonically). 

n loops 

---- ........... ~----

Figure 9.4.5.2 

9.4..5.S. The closed curve in 9.1.8.3 (figure 9.4.5.3) has turning number zero, 
because T is not surjective (7.3.5.1); it misses the shaded part of the circle. 
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c S(E) .---. 

T 

Figure 9.4.5.3 

9.4.6. Definition. Two closed curves C and DinE, of class C1, are said 
to be homotopic if there exists a homotopy FE CO([O, 11 X 8 1 -+ E) such 
that, Fo = C, F1 = D and Ft : x 1-+ F(t, x) is a C1 immersion for all 
t E [0,11. 

In other words, we want each Ft to be a closed curve. 

9.4.1. Proposition. Two homotopic closed curves in an oriented Euclid
ean plane E have the same turning number. 

Proof. Homotopic maps have the same degree (7.6.5). o 

9.'.1.1. If we hadn't required each Ft to be an immersion, the proposition 
would be false. For instance, in figure 9.4.7, the turning number is 1 for 
Fo and ° for F1, by 9.4.5.1 and 9.4.5.3. 

000000 
F, • F, , 

Figure 9.4.7 

F, 

9.'.1.2. It follows that a circle cannot be turned inside out by a continuous 
sequence of immersions, since the turning number would change from 1 to 
-1. The situation is different for a sphere in RS: see 11.11.1. 

9.4.8. Theorem (Whitney-Grauenstein). Two closed curves C and D 
having the same turning number are homotopic. 

Before proving the theorem we indicate some of its consequences. 

9.4.9. Corollary. Every closed curve in E is homotopic to one of the 
following: 
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(i) 8(E) il turn( 0) = 1; 
(ii) 8(E), with orientation reversed, i/turn(O) = -1; 
(iii) On (cl. 9.1.8.1) or the curve in figure 9.4.5.2, il Iturn(O) I > 1; 
(iv) the curve in figure 9.4.5.3, il turn(O) = O. 0 

Another, very nice consequence, involves the total curvature. Let 0 be a 
closed curve and I E 0 1 (R; E) a parametrization of 0 by arclength, with 
period L = leng(O) (cf. 9.1.13). Assume 0 and E are oriented. 

9.4.10. Definition. The total (signed) curvature of 0 is the integral 
foL k(J(t)) dt, where k(J(t)) is the signed curvature of 0 at I(t) (8.5.2). 

By 9.1.13, this integral is independent of the parametrization. 

9.4.11. Corollary. The total curvature 010 is equal to 211" turn(O). In 
particular, it is a homotopy invariant. 

Proof. By 8.5.6 and 7.6.4 we have 

l L (L dT 
o k(J(t))dt= 10 dtdt=r(L)-r(O) = 211"degr=211"turn(0). o 

9.4.12. Examples. Here is the total curvature of some curves: 

211: -211: o o 2 (n+1)11: 

Figure 9.4.12 

9.4.13. Proof of theorem 9.4.8. Let I, 9 E 0 1 (R; E) be parametriza
tions by arclength of 0 and D, respectively. We may assume that I and 9 
are periodic of period 211", that is, 0 and D have length 211"; otherwise we 
can replace 0, for example, by the curve C defined by 

- 211" (Lt) I : t f--+ L I 211" ' 

which is easily seen to be parametrized by arclength, homotopic to 0 and 
of length 211". We may also assume 1(0) = g(O) = o. 

By assumption, I' and g', considered as maps from 8 1 into 8(E), have 
the same degree (9.4.2). Define a homotopy HE 0 0 ([0, IJxR;81 ) between 
I' and g' such that each H>. is periodic of period 211": fix a covering map 
p : R -+ 8(E) (cf. 8.5.5.1), take liftings 7' and 9' of I' and g', and average 
them as follows: 

9.4.14 H>.(s) = (1- ).)7'(8) + ).9'(s). 
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Then set H = po H. 
Now define a family of parametrized arcs, for A E [0,1], by 

9.4.15 i t t 12 ". F>.(t) = H(A,S)ds- - H(A,S)ds=F(A,t)j 
o 211" 0 

we will show that F is a homotopy between C and D. Clearly F>. E 

Cl(Rj E), and F>. is periodic of period 211" because H>. is: 

12". It+2,,. 12".+t 
F>.(t+211") = H(A,S)ds+ H(A,S)ds- H(A,S)ds 

o 2". 0 

= r H(A, s) ds - ~ r'" H(A, s) ds = F>.(t). 10 211" 10 
We also have 

it t 12". Fo(t) = H(O, s) ds - - H(O, s) ds 
o 211" 0 

i t t 12". = f'(s) ds - - f'(s) ds 
o 211" 0 

t 
= f(t) - f(O) - -(J(211") - f(O)) = f(t), 

211" 

and Fl(t) = g(t) follows analogously. 
There remains to show that F>. is an immersion for every A (9.4.6), that 

is, that 

9.4.16 1 12 ". F~ (t) = H(t, A) - - H(A, s) ds f: 0 
211" 0 

for all t and A. By construction, IIH(t,A)11 = 1, so 

But, as the reader should check, equality can only take place if H(A, t) is a 
positive multiple of a fixed vector xo, for every tj and this, in turn, implies 
that H(A, t) is constant. We now prove that this cannot be the case. 

If H>. is cons tan t, so is H>.. But it follows from 9.4.14 and the definition 
ofthe turning number that H >.(211")-H >.(0) = (I-A) turn(C)+A turn(D) = 
turn( C), so this cannot happen if turn( C) f: O. Now assume turn( C) = OJ 
then 7' is periodic, so it has a minimum, say at toj similarly g' has a 
minimum at tl' Reparametrize C and D so that to = tl = O. Then 
H>. = (1 - A) 7' + Ag' cannot be constant unless 7' and g' are. But 7' 
cannot be a constant: if f'(a) = a for all t, then f(t) = f(O) + at is not 
periodic. 0 
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Figure 9.4.18.2 

9.4.17. Remarks. 

9.'.1'1.1. Theorem 9.5.1 below gives the value of turn( C) for a simple closed 
curve. 

9.'.1'1.2. Theorem 9.4.8 can be considered as a classification theorem: the 
equivalence classes for the homotopy equivalence relation are in one-to-one 
correspondence with Z. There exists a similar, but much more difficult, 
result for biregular curves in three-space (see section 8.6), due to Feldman 
[Fel68J; this time we get only two classes, represented by the curves in figure 
9.4.18.2. 

S(E) 

Figure 9.5.2.1 

9.5. The Turning Tangent Theorem 

9.5.1. Theorem. The turning number of any simple closed curve is ±1. 
If the curve is oriented by Jordan's theorem (9.2.6) its turning number is 1. 

9.5.2. Corollary. The total curvature (9.4.11) of a simple closed curve 
oriented by Jordan's theorem is 21r. 0 

Proof. The idea of the proof is neat (figure 9.5.2.1). It consists in construct
ing a homotopy between the unit tangent map on the left, whose degree 
is turn(C), and the "sweep map" on the right, which is clearly of degree 
one: if you stand on the curve and turn so as to keep facing a moving point 
as it goes around the curve one, you will have turned 180°; repeating the 
process facing away from the point makes a full turn. The formalization, 
however, is quite long and technical. 
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As in 9.4.13, we can assume that C has length 271". Let 1 be a paramet
rization of C by arclength (9.1.13), periodic of period 271" and compatible 
with the orientation given by corollary 9.2.6. 

Choose mo E C such that C lies entirely on one side of tangmo C. Any 
point of C minimizing the function (e I')' where e E E is a fixed vector, will 
do; such points exist since C is compact. We can assume that mo = 1(0); 
in addition, we choose 1'(0) = r(mo) as the origin for S(E). 

Figure 9.5.2.2 Figure 9.5.2.3 

Let T be the triangle {(s, t) E R2 : 0 ~ s ~ t ~ 271"} (figure 9.5.2.3), and 
define G: T -+ S(E) by 

9.5.3 G(s t) = 11/(t) - l(s)11 if s ¥= t and (s,t) ¥= (0,271"), { 
I(t) - I(s) 

, - 1'(0) if (s, t) = (0,271"), 
I'(s) otherwise. 

Here is where we use the fact that C is a simple closed curve, because 
then I(s) ¥= I( t) for s - t 1= 271"Z. Notice that the composition of G with 
the diagonal map t f-+ (t, t) is the unit tangent map 1'. Now we deform 
the diagonal into two sides of T (figure 9.5.2.4), by means of a continuous 
one-parameter family of curves H : [0, I] x [0,271"] -+ T. More specifically, 
we require that Ho(u) = H(O,u) = (u,u) for all u E [0,271"] and 

{ (0,2u) 
Hdu) = H(l,u) = (2(u-7I"),271") 

We show below that G is continuous, so 
F = Go H : [0, I] x [0,271"] -+ S(E) is con
tinuous. In fact F can be seen as a family 
of closed curves, since F>.(271") = F>.(O) for 
all),. At one end of the family is Fo, which, 
as already remarked, is just 1'; at the other 
end is the map from figure 9.5.2.1, whose 
degree we will show to be one. By 7.6.5 
this means that turn(C) = deg Fo = 1. 

for u E [0,71"], 
for u E [71",271"]. 

Figure 9.5.2.4 
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By definition, 

F1 (0) = 1'(0), 
1(2u) 

Fl (u) = II 1(2u) II for all u E ]0,11"[, 

Ft{1I") = - 1'(0), 
- 1{2(u - 11")) 

Fl(U) = 11-/(2(u-1I"))1I for all UE]1I",211"[, 

F1 (211") = 1'(0). 
By our choice of mo, C lies entirely to the left of tangmo C. Consider 

the covering map p : R -+ S(E) such that p(O) = /,(0) (cf. 8.5.5.1), and 
lift Fl to a map Fl : R -+ R such that FdO) = o. 

For all u E [0,11"], we have F1 (u) to the left of tangmo C, which implies 
o ~ Ft{u) ~ 11" and Fd1l") = 11" because Ft{1I") = -/'(0). Similarly, for 
all u E [11",211"] we have Fdu) to the right of tangmo Cj this implies 11" ~ 
Fl(U) ~ 211" and Ft{211") = 211", since Fl(211") is again /'(0). By definition, 
deg(Fd = (Fd211") - FdO))/211" = 1. 

We still must check that the orientation of C is the one given by Jordan's 
theoremj this amounts to showing that, at mo, the interior of C lies to the 
left of tang mo C. But this is obvious, because the open half-plane to the 
right of tangmo C is an unbounded connected set, not intersecting C, so it 
must be contained in the exterior of C (9.2.1(i)). 

This completes the proof, modulo lemma 9.5.4. 0 

9.5.4. Lemma. The map G : T -+ S(E) defined in 9.5.3 is continuous. 
Proof. Since 1 is continuous and I(s) 1= I(t) for s - t ¢. 211"Z, it is clear 
that G is continuous at (s, t) for s 1= t and (s, t) 1= (0,211"). In studying the 
behavior of G along the diagonal and at (0,211"), we apply the technique 
used in Morse reduction (4.2.13). Since 1 is C1 we can write 

( ) ( ) {1 d{J(t + >.(s - t))) 
1 s = 1 t + 10 d>' d>'j 

setting tP(s, t) = f; (s - t) /' {t + >.( s - t)) d>', this becomes 

I(s) - I(t) = (s - t)tP(s, t), 
with tP E CO(Tj E), because 1 is Cl and we're integrating over a compact 
set (0.4.8.2). Away from (0,211") and the diagonal we have 

G(s t) _ (t - s)tP(t, s) _ tP(t, s) 
, - Ii( t - s) tP (t, s) II - II tP (t, s) II ' 

since s ~ t. For a point on the diagonal, say (so, 80), we can write 

tP(80, so) = 11 1'(80 + >'(80 - 80)) d>' = I'(so); 
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in particular, ~(so, so) is non-zero because 111'11 = 1. Thus we have 

lim G(s t) = lim ~(t,s) = ~(so,so) = I'(so), 
(.,t)-+(.o,.o) , (.,t)-+(.o,.o) 11~(t,s)11 11~(so,so)11 

which proves continuity at (so, so). Finally, around (0,211') we set 211'-t = t', 
whence 

, f(211' - t') - f(s) f(-t') - f(s) 
G(s, t) = G(s, 211' - t ) = II f(211' _ t') - f(s) II = II f( -t') - f(s) II 

(-t' - s)~( -t', s) ~(-t', s) 

= II (-t' - s)~(-t', s)11 = -II~(-t', s)11 
since t' + s is positive. Thus 

r G( t) - r ( ~(-t',s)) - _ ~(O,O) - -f'(O) 
(.,t)-+un,27r) s, - (~ -II~( -t', s) II - II~(O, Olll - , 

since ~(O, 0) =I- O. This shows that G is continuous everywhere. 0 

9.6. Global Convexity 

In this paragraph the differentiability class is at least C 2 • 

9.6.1. Definition. The total unsigned curvature of a curve C is the inte-
gral 

iL 
KJ(t)C dt, 

where ([0, LJ, f) is a parametrization of C by arclength and KJ(t)C is the 
curvature of C at f(t) (8.4.1). This integral will be denoted by fa K. 

9.6.2. Theorem. Let C be a simple closed curve in a Euclidean plane E. 
The following properties are equivalent: 
(i) the signed curvature of C (Jor some choice of orientations) has con

stant sign; 
(ii) fa K = 211'; 
(iii) C is globally convex, that is, for every mE C the curve lies entirely 

to one side of its tangent tangm C; 
(iv) C is the boundary of a convex submanifold-with-boundary of E. 

9.6.2.1. Note. In the case of surfaces in R3 there is a much stronger theo
rem: the conclusion is true even if the surface is a priori only assumed to 
be immersed. See 9.6.5.3 and 11.13. 
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9.6.3. Definition. A simple closed curve C in E satisfying the properties 
in theorem 9.6.2 is called convex. 

Proof. (i)#(ii). If kmC is the signed curvature of Cat m, we have IkmCI = 
KmC (8.5.4.1). Thus 

by 9.5.2. If k does not have constant sign, the inequality is strict because 
k is continuous. 

(i)*(iii). By contradiction: assume that k has constant sign but there 
exists m E C such that C has points on both sides of tangm C. By compact
ness, choose points p and q on opposite sides of tangm C whose distance to 
tangm C is maximal (cf. the beginning of the proof of 9.5.1); then tangp C, 
tangm C and tangq C are parallel (figure 9.6.3.2). 

tang p C P TI' 

7". '""" 
.. 

'1 ............ . / Tm .. 
tang mC m 

.. '-. . /' 
Tq q tang qC 

Figure 9.6.3.2 

Since IITm(C)11 = Ih(C)11 = IITq(C)11 = 1, two of these vectors are 
equal, say Tm(C) = Tp(C). Let 1 be a parametrization of C by arclength, 
periodic of period L, and let s, t be such that I(s) = m and I(t) = p, with 
s, t E [0, L[. If 1" : R -+ R is a lifting of the unit tangent map T : R -+ S(E), 
f 1 h 'h' 1 h . . k dT ormu a 8.5.6 says t at, WIt appropnate y c osen onentatIOns, = dt' 
Since k has constant, say positive, sign, 1" is non-decreasing. In addition 
T(L) = 211", if 1" is chosen so that 1"(0) = 0, because turn(C) = 1 by 9.5.1. 

T (s) ~ T (t ) t-----,._--~____1r_ 

o 

Figure 9.6.3.3 
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Since p : R -+ S(E) is injective on [O,211'[ and 1'([0, LD = [0,211'] by the 
above, the equality r(s) = r(t) implies r(s) = r(t). But r(s) = r(t) and l' 
non-decreasing imply l' constant on [s, t]; thus r is constant on [s, t], and 
f(t) = f(s) + (t - s)f'(s), contradicting p ¥= tangm C. 

(iii)=>(iv). This is a general theorem on convexity: a compact subset 
of the plane having a support hyperplane at each point of its frontier is 
convex. But in our case we can give a more elementary proof. 

Take m E C and let H m be the closed hyperplane determined by tangm C 
and containing C. We claim that D = Cint C Hm. By contradiction: let 
y E !J \ H m' The half-line ll. originating at y and containing m is not 
entirely in D because D is compact; since y E !J there exists a point 
z E Fr(ll.n D) c ll.n Fr D = ll. nC such that y lies between m and z. Thus 
C is not entirely contained in Hm. 

x 

Figure 9.6.3,4 Figure 9.6.3.5 

This is true for arbitrary mE C, so D c nmEG Hm. We claim that, in 
fact, 

9.6.4 D= n Hm; 
mEG 

this implies that D is convex, being an intersection of convex sets. 
By contradiction: take x E nmEG Hm \ D. By compactness, choose a 

point m E C minimizing the function 

C 3 n t-+ d2 (s,n) = lin - xll 2 E R. 

The tangent tangm C is orthogonal to the line ll. containing x and m, 
because the derivative of II '11 2 (z) is 2(zl')' 

By assumption, C is in H m , and in particular b contains points y strictly 
between x and m. But, as before, we see that there would exist 

z E Fr(ll. n D) c ll. n Fr D = ll. n C, 

where z is between x and y, because x ¢. D. But such a z would be closer 
to x than to m, that is, d(x, z) < d(x, m), contradicting the definition of 
m. 
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(iv)=>(i). At a point m of 0, oriented by Jordan's theorem, the sub
manifold-with-boundary D lies to the left of tangm 0; since D is convex, 
o is also to the left of tangm O. But then kmO 2: 0, for if kmO < 0, the 
local study made in 8.2.2.15 shows that 0 has some points to the right of 
~~~ 0 

9.6.5. Remarks 

9.6.5.1. If 0 is a closed curve in a Euclidean space E of arbitrary finite 
dimension, we can still define Ie K, the total scalar curvature. It can be 
shown that Ie K 2: 211" and if equality holds 0 is plane and convex. This is 
in fact a very particular case of a general result valid for any compact man
ifold X immersed in E, with Ie K replaced by Ix IKdlS (in the notation 
of 6.9.6 and 6.9.15). See [Kui70]. 

9.6.5.2. One also shows that if dim = 3 and 0 is knotted then Ie K > 411"; 
see [Kui70]. 

9.6.5.a. As already remarked in 8.2.2.16, a (non-simple) plane closed curve 
can have strictly positive curvature everywhere and still not be globally 
convex. But this phenomenon only happens in two dimensions. If X is 
a compact co dimension-one manifold, immersed in a Euclidean space of 
dimension 2: 3, and if Kd 2: 0 (6.9.6), then X is necessarily embedded, and 
is the boundary of a convex submanifold-with-boundary: see 11.13. 

9.6.5.'. For some results about Ie T, the integral of the torsion of a closed 
curve in three-space, see exercise 9.9.6 and [Poh68]. 

9.7. The Four-Vertex Theorem 

Here the differentiability class is at least 0 3 • 

Let 0 be a closed curve in a Euclidean space E of arbitrary dimension, 
and f a parametrization of 0 by arclength. The curvature function K : t -+ 

K(t) = K'(t)O being continuous and periodical, it has a maximum and a 
minimum; at these points K' = O. The condition K' = 0 at a given point 
does not depend on the choice of a parametrization by arclength (d. 8.3.2); 
so the following definition makes sense: 

9.'1.1. Definition. A vertex of a geometric arc is a point where K' = 0 
(expressed in terms of a parametrization by arclength). 

9.'1.2. Remark. In fact, m = g(t) is a vertex if the function K : t 1-+ 

Kg(t) 0 satisfies K'(t) = 0, even if 9 is not a parametrization by arclength; 
indeed, 0 is locally a submanifold V of E, and the curvature is a function 
on V; saying that m is a vertex is the same as saying that m is a critical 
point of K. 
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9.1.3. Examples 

9.1.S.1. The closed curve in figure 8.4.14.3 has exactly two vertices; for we 
have seen that, between 0 and 11", its curvature is strictly increasing, and 
on the other hand K'(O) = K'(1I") = O. 

9.1.S.2. The ellipse f: tl-+ (acost,bcost) has curvature 

ab 
KJ(t) = 2 / ' (a2 sin t + b2 cos2 t)3 2 

by formula 8.4.13.1. It follows that K' = 0 if and only if t = k1l" /2. Thus 
the ellipse has exactly four vertices (in the curvature sense), which are the 
same as the vertices (in the quadric sense). This is one justification for the 
name "vertex". 

y 

x 

Figure 9.7.3.2 

The introduction to section 9.7 shows that a closed curve has at least 
two vertices; example 9.7.3.1 shows it can have more. 

9.1.4. Theorem (of the four vertices). A convex simple closed curve 
in Euclidean plane has at least four vertices. 

9.1.5. Remark. The convexity hypothesis is not necessary, but the proof 
is much more difficult in the general case [BF58]. For another proof, due 
to Osserman, see exercise 9.9.7. 

9.1.6. Proof. We know that C has at least two vertices. Suppose by 
contradiction that C has only two or three, say ml, m2 and m3' 

By assumption the derivative k' of the curvature can only change sign 
at one of the mi, so we can assume that it is positive from ml to m2 and 
negative from m2 to m3 and from m3 to mI. Take the line ml m2 for the 
x-axis, and let {el' e2} be the associated orthonormal basis. 
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Figure 9.7.6 

Let f be a parametrization of C by arclength, periodic of period L, where 
L is the length of C, and let k be the signed curvature function of C. (We 
orient E and C if necessary.) Introduce the vector-valued function 

9.'1.'1 t 1-+ k'(t)f(t) 

and the vector-valued integral 

9.'1.8 foL k'(t)f(t) dt 

which can be integrated by parts: 

foL k'(t)J(t) dt = [k(t)f(t)]~ - foL k(t)f'(t) dt = - foL k(t)f'(t) dt, 

since f and k are periodic. Since f is a parametrization by arclength, 
f'(t) = r(t) is the unit tangent vector, so 

-k(t)r(t) = (ir)', 

where i denotes a rotation by 1r/2 (definition 8.5.2). 
Thus 

foL k'(t)f(t) dt = foL (ir)' dt = i(r(L) - r(O)) = o. 

In particular, the second coordinate is zero, that is, 

(foL k'(t)f(t) dt I 1:2) = foL k'(f I 1:2) dt = O. 

On the other hand, by convexity, the part of the curve between ml and 
m2 is below the z-axis, and there k' > 0, so k'(f 11:2) < 0 from ml to m2. 
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Similarly (J I e2) > 0 and k' < 0 from m2 to ms and from ms to ml, which 
again implies k'(J I e2} < O. Thus we must have 

foL k'(J I e2} dt < 0, 

contradiction. o 

9.1.9. Corollary. Let C be a curve in 8 2 C R S that is the image under 
stereographic projection of a simple closed curve D of class CS. Then C 
has at least four points where the torsion is zero. 

Proof. One can show that stereographic projection takes a vertex of D into 
a point of C with zero torsion (see 9.7.1O.1). 0 

9.1.10. Remarks 

9.'1.10.L An informal argument to prove 9.7.9 is the following: saying that 
m is a vertex of D is the same as saying that the osculating circle to D at 
m has a contact of order ~ 4 with D. By stereographic projection this still 
gives a circle having contact of order ~ 4, which implies that the image 
point m' is a vertex of D and has zero torsion, since the torsion has to 
be zero at a point where the curve has contact of order four or more with 
a plane. This reasoning can be made rigorous if a theory of contact is 
developed; see 8.7.11 or [LeI63]. 

9.'1.10.2. The theorem of the four vertices for a non-convex plane curve is 
proved exactly by demonstrating that a simple closed curve on the sphere 
8 2 has at least four points where the torsion vanishes. 

9.'1.10.1. Example 8.6.11.3 shows that a simple closed curve in RS can has 
constantly non-zero torsion; see also exercise 9.9.5. But it can be shown 
that simple close curves in RS satisfying certain simple conditions have at 
least two points where the torsion vanishes. See also exercise 9.9.6. 

9.'1.10.4. The theorem of the four vertices gives a necessary condition on a 
function c E CO(81 ; R+} for there to exist a simple closed curve C and a 
parametrization (81, f) E C such that kJ(m)C = c(m}. This condition is 
also sufficient, but the converse is more difficult [Glu71]. Notice that the 
situation here is not the same as in the statement of theorem 8.5.7, where 
the curvature was a function of the arclength, in which case the curve is 
predetermined and generally does not close up. In fact, the proof in [Glu71] 
consists in modifying c by a diffeomorphism of 8 1 in such a way that 8.5.7 
gives a curve that closes up. 

9.'1.10.5. An analogous notion to that of a vertex for a plane curve is that 
of an umbilic for a surface in R3. See 11.7.4. 
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9.8. The Fabricius-Bjerre-Halpern Formula 

9.S.1. Theorem. Let C be a closed curve in an affine plane E, satisfying 
certain regularity conditions to be made precise later. Call 
N+ the set of double tangents to C at two points, having the same principal 

normal vector; 
N- the set of double tangents to C at two points, having opposite principal 

normal vectors; 
D the set of double points of C; 
I the set of inflection points of C. 

These four sets are finite and their cardinalities satisfy the following 
relation: 

Here are some examples: 
D I 

o o 0 o o 

o o 

o o 2 

4 2 2 

Figure 9.8.1 
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9.S.Lt. One can ask whether there are other necessary conditions that 
#N+, #N-, #D and #1 must satisfy. Such is not the case, as has been 
recently shown by Ozawa [Oza84). He also found results on the number of 
planes thrice tangent to a compact curve in R3 [Oza85). 

9.8.2. Elaboration. For simplicity, assume that C is Coo and that it's 
drawn in R 2. Let L be the length of C and I E Coo (Rj R 2) a parametriza
tion of C by arclength, periodic of period L. To simplify the notation, let 
the signed curvature (8.5.2), the affine tangent (8.2.1.1) and the principal 
normal vector (8.4.11) at I(a) be denoted by k(a), T. and n(a), respectively. 

9.8.3. A pair {t, a} is called a double tangent if I(t) :F I(a) and T. = Tt • A 
double tangent is called regular if k(a)k(t) :F o. We denote by N+ and N
the sets ofregular double tangents such that n(a) = n(t) and n(a) = -n(t), 
respectively. 

9.8.4. A pair {t, a} is called a double point if a ¢ t + LZ and I( t) = I(a). 
A double point is called regular if T. :F Tt • The set of regular double points 
is denoted by D. 

9.8.5. A point {a} is called an inBection point if k(a) = O. An inflection 
point is called regular if k' (a) f:. O. The set of regular inflection points is 
denoted by 1. 

9.8.6. The regularity conditions inissing from the statement of theorem 
9.8.1 are the following: all double tangents, all double points and all inflec
tion points are to be regular. From now on we assume these conditions to 
be fulfilled. 

Proof. The key to the proof is the introduction of the vector field W : 
R x R -+ R2 defined by 
9.8.7 
W(t,a) = (u(t,a),v(t,a)) = ((1(1'(t),/(t) - l(a)),(1(1'(a),/(a) - I(t))), 

where (1 denotes the canonical volume form (given in R2 by the determinant 
of two vectors). 

9.8.8. Study of the zeros of W. If I(a) = I(t), we certainly have 
W(t,a) = O. Otherwise W(t,a) = 0 implies that I'(t) and /,(a) are both 
proportional to I(t) - I(a), that is, {t,a} is a double tangent. The regu
larity conditions imply that W' (t, a) f:. 0 at any zero, so all the zeros are 
isolated and we can apply 7.7.8 to compute their indices. 

At a double point, the jacobian of W is 

J W = 1 (1(1"(t), I(t) - I(a)) (1(1'(t), - I'(a)) 1- ((1(/'(a) 1'(t)))2 
t,. (1(/,(a), - I'(t)) (1(1"(a), I(a) - I(t)) - , , 
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which is positive. Thus double points have index one. 
At a double tangent, the jacobian is 

Jt,.W = Ik(t)llk(s)lo-{n(t), I(t) - f(s)}o-{n(s), I(s) - I(t)}. 

It is positive if n(t) = -n(s), that is, if {t, s} E N-, and negative if 
{t,s} E N+. 

In short, all the zeros of Ware isolated, their set is the union N+ uN-uD 
and their indices are 

+ 1 for points in N- or D, 

-1 for points in N+ . 

Since W is doubly periodic and [0, Lj X [0, Lj is compact, there are only 
finitely many zeros, and we have shown that N+, N- and D are finite sets. 

9.S.9. The idea now is, roughly speaking, to apply to W a theorem similar 
to 7.4.18, with the ball replaced by a parallelogram. One difficulty is that 
a parallelogram has corners, which we must smooth out in order to apply 
Stokes' theorem (cf. 6.2.2). Also, W will no longer be pointing inward 
at the boundary; in fact, the integral over the boundary is related to the 
number #1 of inflection points. 

9.S.10. From now on we fix e > 0 so small that, on every interval It, t+ ej, 
the map I is injective, has at most one inflection point, and the angle of 
I' changes by less than 11"/2. Such a number exists by the compactness of 
[0, Lj and our assumptions: I is an immersion, [[f'11 = 1 and the inflection 
points are isolated (9.8.5). 

Under these conditions, W(t, s) "1= 0 if t - e < s < t + e. This is obvious 
for points in D; for those in N+ and N- it follows from an argument 
similar to the proof of 9.8.13.1. We then choose to E [0, Lj such that the 
boundary of the parallelogram 

B = {( t, s) : to < t < to + L, t + e ~ s ~ t + L - e} 

does not intersect W-l(O); this is possible because there are only finitely 
many values of to to avoid (figure 9.8.10). 

Since every double point or double tangent has exactly two representa
tives in B (namely, {t, s} and {s, t + L} if t < s), we can write 

2: ind., W = 2(#N- + #D - #N+) . 
.,Ew-l(o)nB 

9.S.11. We now approximate B by sets Bf/ ('1 > 0) with differentiable 
boundary. For instance, we can replace the corners of B by arcs of circle 
of radius '1; the resulting sets are submanifolds-with-boundary of R2, with 
C 1 boundary (figure 9.8.11). 



8. The Fabricius-Bjerre-Halpern Formula 341 

3L.-------------------~ 

2L.---------~~~----~ 

L~~~~~~~------~ 
L-E 

2L 

Figure 9.S.10 

(to+L'!o+2L-fl 

Figure 9.S.11 

We now mimic the proof of 7.4.18. First we normalize W into a vector 

field ";11' which exists away from W-l(O), and take 1/ small enough that 

B" nW-l(O) = BnW-l(O). Then we draw little disjoint circles B, around 
the points of W-l(O), and set B~ = B" \ Ui Bi. As in 7.4.18, we get 

0= r, d(Z*u) = r , Z*u = r Z*u - E r . Z*u. 
J B~ J OB~ J OB~ i JOB, 

The last term equals 211" times the sum of the indices of points in B" n 
W- 1 (0) = B n W- 1 (0), which, according to 9.8.10, is equal to 

2(#N- + #D - #N+). 

The term fOB Z*u is continuous in 1/, so we can take the limit to get 
~ 
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9.8.12. With 0:, p", ti as in figure 9.8.10, we have 

r Z*C1= r~ Z*C1+!li Z*C1+ ["' Z*C1- r Z*C1. 
lOB lex 7 l~ lex 

By periodicity, the last two terms cancel out. The first can be written in 
terms of g : 8 1 -+ 8 1 , the quotient modulo L of the map 

W(t,t+e) 
tl-+ IIW(t,t+elll; 

we get f: Z* C1 = 211" deg g. Similarly, g Z· C1 = -211" deg h where h comes 
from the map 

W(t, t + L - e) 
t 1-+ IIW(t, t + L - e)ll· 

But it's easy to see that 

W(t, t + L - e) = W(t, t - e) = rW(t - e, t), 

where r : R2 -+ R2 switches the coordinates; so h(t) = rg(t - e), and 
deg h = deg r deg g = - deg g. Putting it all together we get 

r z .. C1 = 411" deg g. 
lOB 

9.8.13. To find the degree of g, we will look at the quadrant of R2 that 
contains g(t), and consequently W(t, t + e). Denote the four quadrants by 
~1I ~2' ~3 and ~4' in their conventional order. 

9.8.U.L Lemma. We have: 
(i) g(t) E ~3 if k(u) > 0 for all u E It, t + e[; 
(ii) g(t) E ~1 if k(u) < 0 for all u E It, t + e[; 
(iii) g(t) ¢ ~4 if there exists t E It, t + e[ such that k(u) > 0 for all u E It, t'[ 

and k(u) < 0 for all u E It', t+ e[; 
(iv) g(t) ¢ ~2 if there exists t E It, t + e[ such that k( u) < 0 for all u E It, t'[ 
and k(u) > 0 for all u E It', t + e[. 

/,(t+f) 

1'(1 ) 

(i) (;i) 

!'(t) 

(i i i) 

Figure 9.8.13.1 

!'(th) 

(i v) 
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Proof. The proof is analogous in the four cases; we prove the third. By 
contradiction, assume that g(t) E .6.4 ; this implies u(l'(t), I(t)- I(t+e)) > 
O. Consider the maximum of the function z 1-+ (z I e), where z is a non-zero 
vector perpendicular to f(t + e) - 1ft); let 8 be the first point in Jt, t + e[ 
where this maximum is reached. Then (1(8) I e) > 0 and 1'(8) is parallel 
to I(t + e) - 1ft). Since the direction of I' does not change by more than 
1r/2 within It, t + eJ (9.8.10), we see that 1'(8) is a positive multiple of 
I(t+ e) - 1ft); this implies 8 > t' by the definition of t' in condition (iii). A 
similar argument involving u(l'(t + e), f(t+ e) - 1ft)) < 0 gives an 8' such 
that (1(8') I e) < 0 and 8' < t'; but 8 < 8' by construction, contradiction. 

o 

9.8.14. We have already seen (cf. 9.8.5) that inflection points are finite in 
number, and by construction (9.8.10) no two of them are less than e apart. 
We now cut up the interval [to, to + LJ into subintervals [ti, ti+1J whose 
endpoints are inflection points. By the regularity assumption, if k > 0 
on [ti, ti+1J we have k < 0 on [ti+lI 4+2J. By choosing a different to, if 
necessary, we can assume that k < 0 on [to, t1J. 

k>O k>o 

c 

/ 
1(13 ) 

~ 
~ 

W(I, t+£) 

Figure 9.8.13.2 

g(t2) g(t, ) g(to) 

• i • • t • • ! • 
-27t _ 37t -7t 7t 0 7t 

2 -2" 2 

11.2 y 11., 

According to the lemma, W(t, t + e)htO,tl) is a path that starts in .6.1 

and ends in .6.3 without ever getting into .6.2 • This means that, if 9 : 
[to, to + LJ -+ R is a lifting of 9 : [to, to + LJ -+ 8 1 with g(to) E [0,1r/2J, 
we will have g(t1) E [-1r, -1r/2J. By the same token, g(t2) E [-21r, -31r/2J, 
and so forth. More exactly, if to + L = ti, that is, if there are i inflection 
points, we will have 

~ 
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But g(ti) = g(to + L) = g(tI) + 211"deggj thus we conclude that degg = 
-i/2 = -#1/2, which completes the proof of theorem 9.8.1. 0 

9.9. Exercises 

9.9.1. Prove that definition 9.1.11 does not depend on the choice of a 
Euclidean structure. 

9.9.2. Compute the turning number of the four curves in figure 8.1.5. 

9.9.S. Let C be an oriented, convex, simple closed curve of class C2 in 
R2 = C, and assume the curvature of C never vanishes. 

(a) Show that C can be written in Euler form (see 8.7.21). 
(b) Compute the curvature (8.7.21), the length and the area of C as a 

function of p and its derivatives. 
(c) Let C ' be another curve satisfying the same properties, and assume 

that, for any pair of points m E C, m ' E C' , there exists a rigid motion 

! such that !(m') = m, !(tangm, C' ) = tangm C and !(C') c C. 
Prove that 

leng(C) leng(C') ~ 211" (area(Cint) area(Ctnt)). 

(d) Deduce from (c) that the radius R of the smallest circle r containing 
C in its interior and the radius r of the largest circle 'Y contained in 
the interior of C satisfy Bonnesen's inequality 

(leng(C))2 - 411"area(C) 2: 1I"2(R2 - r2). 

(The enterprising reader can show that r is unique, but 'Y is notj 
cr. [Ber87, 11.5.8].) Notice that the left-hand side is the expression 
occurring in the isoperimetric inequality. 

9.9.4. Determine the Frenet frame, the curvature and the torsion of the 
curve defined by 

( cost t vI3) 
t 1-+ -:--/2' 2 cos -2' -:--/2 . SlDt smt 

9.9.5. Consider the torus of revolution 

T = {(x, y, z) : (x2 + y2 + z2 + a2 _ r2)2 _ 4a2(x2 + y2) = O}, 

obtained by rotating the circle of equations (x - a)2 + z2 - r2 = 0 = y 
around the z-axis. Set r = a sin (). 
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(a) Find the curves on T that make a constant angle V will all parallels of 
latitude of T (that is, the curves having z and x 2 + y2 fixed). (Hint: 
using polar coordinates, find their projections on the xy-plane.) Prove 
that for V = 8 the curves thus obtained are circles, whose projection 
on the xy-plane are ellipses with a focus at the origin. More generally, 
if ~~~ ~ is an integer, one obtains simple closed curves. 

(b) Deduce that there are curves on the torus with nowhere vanishing 
torsion. 

9.9.6. 
(a) Let f be a parametrization by arclength of an oriented geometric arc 

C in RS. Under what conditions are there real-valued functions 8 and 
a such that the map 

t ...... f(t) + (cos8(t)v+ sin8(t),8)a(t) 

defines a geometric arc whose tangent at g(t) is normal to C at f(t)? 
(b) Assume now that C is a closed spherical curve of length L. Use part 

(a) to show that 

iL Tdt= o. 

9.9.1. More curves in Euler form. 
(a) Consider two plane curves in Euler form (8.7.21), defined by functions 

hand k. Assume that they turn toward the origin (8.2.2.13), and 
that they are tangent at t = 0, for example; thus h(O) = k(O) and 
h'(O) = k'(O). Show that if, for every t, the curvature of C at the point 
with parameter t is greater than or equal to the curvature of D at the 
point with parameter t, then C is contained in the interior of D. 

(b) Let C be a compact convex plane curve, biregular and of class C2. Let 
A (resp. a) be a point on C where the curvature is maximal (resp. min
imal). Show that the osculating circle,., at a can roll all around C, 
always staying inside Cint. and the C can roll all around the osculating 
circle r at A. 

(c) Osserman [Oss85] gives a very simple and natural prooffor the theorem 
of the four vertices. Let C be a simple closed curve, assumed convex 
for simplicity. Let R be the radius of the smallest circle r containing C 
in its interior, and m, n consecutive contact points of C with r. Show 
that there exists a point p on C, between m and n, where the curvature 
is greater than 1/ R, as long as C and r do not coincide. Deduce that 
if r is tangent to C at n points, C has at least 2n vertices. Notice that 
generically n ~ 3; thus the generic simple closed curve has six vertices 
at least. 



CHAPTER 10 

A Brief Guide to the Local Theory of 
Surfaces in R 3 

The local study of curves in R2, in sections 4 and 5 of chap
ter 9, was simple: theorem 8.5.7 shows that a single invariant, 
the curvature (expressed as a function of the arclength), is 
enough to characterize such a curve. The fundamental reason 
for this simplicity, and one that remains true no matter what 
the dimension of the ambient space, is that the intrinsic ge
ometry of curves is trivial; the metric given by the length of 
paths on a curve is always the same as the metric on some 
interval of R. And the "shape", or "position," of a curve in 
R2 is specified by a mere scalar function, the curvature. 

When it comes to surfaces in R 3 , however, things are quite 
different. For one thing, the intrinsic geometry of surfaces 
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is already a subject in itself, since, in general, the Euclidean 
geometry of subsets of R 2 can no longer describe the surface. 
For example, a sphere can never be isometric, even locally, to a 
plane open set. The study of the intrinsic geometry of surfaces 
constitutes riemannian geometry in two dimensions. 

Another complication is that a scalar function is not suffi
cient to characterize the way a surface sits in space; we need 
a quadratic form, called the second fundamental form. (The 
first fundamental form is the riemannian structure, or intrinsic 
geometry.) 

Our brief guide will consist of four parts. In the first we 
define the two fundamental forms and give numerous exam
ples, all of them important from one or several points of view. 
Next we study all the phenomena associated exclusively with 
the first fundamental form, and then with the second. Finally 
the relationship between the two forms, which are not inde
pendent, is discussed. 

Our subject is vast: already in 1896 Darboux published a 
two-thousand-page treatise, which was not exhaustive even 
then. So we had to make choices, according to personal taste. 
We hope the result will please the average reader, without 
apalling the specialists. 

Bibliography: After [Dar72], which contains the old stuff-
not all of which has been rephrased or generalized in contem
porary language-the only work that contains most of the 
results mentioned here is [Spi79]. Do Carmo [Car76] cov
ers the foundations thoroughly and well. Klingenberg [Kli78] 
packs a lot in a remarkably thin volume. The reader may 
find [Str61] interesting in that its scope is complementary to 
ours. Most of the global results we discuss can be found in 
[Hop83], which often covers them even more quickly. We men
tion [Car76], [Ste64], [ST67], [KN69], [Lel63], [Hic65], [WaI78], 
[Kli78], [Th079] and [LS82] as general references on differen
tial geometry that have good chapters on surfaces; [VaI84] is 
old-fashioned but relevant. 

In order not to encumber the reading, we omit references to 
classical definitions and results which are found in all textbooks 
and can be looked up in their indexes. 
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10.1. Definitions 

10.1.1. In this chapter we study surfaces in R 3 , that is, two-dimensional 
submanifolds ofR3 (considered as a Euclidean space). By the fundamental 
theorem 2.1.2, we can restrict ourselves to the following definitions: 

10.1.2. Definition. A (global) surface in R3 is a two-dimensional sub
manifold of R3. A (local) surface in R3 is a surface V that can be defined 
by a single chart. 

We recall from 2.2.3 what this condition means: there exists an open set 
U C R2 and an immersion 9 E Coo (Uj R 3 ) such that 9 is a homeomorphism 
between U and its image V = g(U). 

In the sequel we will not distinguish between local and global surfaces 
unless it is essential to do so. Some results won't hold unless we restrict 
the surface to an appropriately chosen open setj we leave this task to the 
reader. (Even in the presence of a guide one is not prevented from looking 
around.) 

10.1.S. Corollary (cf. 2.2). If~,,p : V --. R2 are complete charts on a 
local surface, the images ~(V) and ,p(V) are open subsets ofR2 diffeomor
phic under ~ 0 ,p-l. 0 

For pedagogical and even conceptual reasons (see examples 10.2.1.4, 
10.2.2.5, 10.2.3.8 and 10.2.4, among others), it is well to introduce here 
the global objects that will occupy us in chapter 11: 

10.1.4. Definition. An immersed (global) surface in R3 is a two-dimen
sional abstract manifold X, together with an immersion f E Coo (Xj R 3). 

Contrary to the case of curves in chapter 9, which was simple because 
there exist only two one-dimensional abstract manifolds (R and the circle, 
but even the latter can be camouflaged by the use of periodic functions on 
R), the situation here is more complex, because there exist many abstract 
surfaces (4.2.25). 

10.2. Examples 

Theorem 2.1.2 yields a local equivalence which shows that three natural 
classes of examples of local surfaces can be formulated: graphs, implicit 
equations and parametric representations. We follow this outline in this 
section. 
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10.2.1. Graphs. Every open set U C R2 and every 1 E Coo (Uj R) gives 
a surface in R3 via its graph 

{(x, y, I(x, y)) : (x, y) E U}. 
We will simply write z = 1 or z = I(x, y). 

10.2.1.1. The sphere (cf. 2.1.6.2). We can take U to be the open disc 
x 2 + y2 < 1 and 1 = v'1- x 2 - y2. But we need six such patches to cover 
the whole of 8 2 c R3. 

z 

Figure 10.2.1.1 

10.2.1.2. Quadrics. The two quadrics that can be written as graphs are the 
2 2 2 2 

elliptic paraboloid z = :2 + ~2 and the hyperbolic paraboloid z = :2 - ~2' 
We could also consider the improper quadric z = ax2 • In each case U is 
the whole of R2. 

Figure 10.2.1.2 

From Rouche and Comberousse, TraiU de Geometrie, 
Paris, Gauthier-Villars, p. 486 and 492 

10.2.1.1. Surfaces of translation (particular case; see also 10.2.3.1). Con
sider the graph of z = I(x, y) = A(x)+B(y). This is a surface of translation 
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x z = A(x) + B(y) 

Figure 10.2.1.3.1 

in two ways: with respect to x and with respect to y (figure 10.2.1.3.1). 
See also example 10.2.3.1 below. 

Such a surface can also be written in the form 

A(x) + B(y) 
z= 2 ' 

that is, as the locus of the midpoint of a segment whose endpoints describe 
two fixed curves: 

z 

y 

x 
1 

z = 2 (A(2 x) + B(2y» 

Figure 10.2.1.3.2 
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If A and B are defined on the whole of R the surface is defined on R2. 
On the other hand, Scberk's surface z = log cos x - log cos y is only defined 
on the shaded region in figure 1O.2.1.3.3(b). To see this just write z as the 
logarithm of a quotient. 

Any sudace of the form 

z = b log( v' p2 + a 2 + v' p2 - b2 ) + a arctan (bY p2 + a 2
) + a() + c, 

av' p2 - b2 

where (p, ()) are polar coordinates on R2 and a, b, c E R, is also called 
a Scherk sudace. These are the only helicoids that are minimal sudaces 
(10.6.9.2); see [Dar72, vol. I, p. 328], for a proof. For a study of minimal 
surfaces of translation, see [Dar72, vol. I, p. 406]. 

Figure 10.2.1.3.3 

From M. P. do Carmo, Differential Geometry 0/ Curves and Sur/aces, 
Prentice-Hall, p. 209 
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10.2.1.'. Plucker's conoid. This surface is defined by 2 xy 2 j here U is 
x +y 

R2 minus the origin. See also 10.2.2.4. Plucker's conoid is a ruled surface. 
It has the property that the projections of any point p E R3 onto the rules 
form a plane curve; this property characterizes Plucker's conoid among all 
ruled surfaces. In addition, this plane curve is a conic, and its projection 
onto the xy-plane is a circle. An alternative formulation of this property 
involves one-parameter families of rigid motions under which all points on 
a fixed rigid curve describe plane curves. For more information, see !Dar72, 
vol. I, p. 99J. 

x 

Figure 10.2.1.4 

10.2.2. Implicitly defined surfaces 

10.2.2.1. Cylinders. If a surface V = F- 1 (0) satisfies an equation involving 
only two coordinates we call it a cylinder. If F(x, y) = 0, for instance, we 
say that the cylinder is parallel to the z-axis. Examples are the improper 
quadrics (elliptic and hyperbolic cylinders) defined by 

x2 y2 
-±--1=0 
a 2 :z;2 

Figure 10.2.2.1 
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lO.Z.Z.Z. Planes. Their general equation is a:z: + by + ez = d. 

lO.Z.Z.S. Proper quadrics. Apart from the paraboloids in 10.2.1.2, these 
are as follows: 

:z:2 y2 z2 
- + - + - -1 = 0 (ellipsoid), 
a2 b2 e2 
:z:2 y2 z2 
- + - - - - 1 = 0 (one-sheet hyperboloid), 
a2 b2 e2 
:z:2 y2 z2 
- - - - - -1 = 0 (two-sheet hyperboloid). 
a2 b2 e2 

Figure 10.2.2.3.1 

From Rouche and Comberousse, ibid., p. 483, 490 and 493. 

It so happens that, even if we're interested in only one such quadric, it 
is important to consider the one-parameter family of confocal quadrics 

:z:2 y2 z2 
--, + b----;- + --, - 1 = 0, a-A -A e-A 

where a > b > e are fixed and A can be in any of the intervals] - 00, e[, 
Ie, b[ and ]b, a[. Within each interval the type of quadric remains the same. 
Generically, a point in R S belongs to exactly three quadrics in this family, 
one of each type; the corresponding parameter values Po E ]b, at, Pl E Ie, b[ 
and P2 E ]-00, e[ can be found by clearing denominators in the .equa
tion above and observing that the resulting numerator is a degree-three 
polynomial in A. In other words, if f(A) = (a - A)(b - A)(e - A) and 
4>(A) = (A - Po)(A - pI)(A - P2), we have the identity 

:z:2 y2 z2 4>(A) 
--+ --+ -- - 1 = --. a-A b-A e-A f(A) 
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Figure 10.2.2.3.2 

From Hilbert and Cohn-Vossen, Geometry and the Imagination, Chelsea, p. 23 

This immediately leads to the important parametrization of each octant 
of R3 by (po, PlI P2)j to find x, say, we multiply the equation above by a- >. 
and take the limit as >. approaches a. The result is 

4>{a) 4>{b) 4>{e) 
(a - b){a - e)' (b - a){b - e)' (e-a){e-b) 

In particular, if P2 = 0 we get the parametrization of an ellipsoid by elliptic 
coordinates: 

(u,u) ~ ( ala - u){a - u) 
(a-b){a-e) , 

b(b - u)(b - u) 
(b-a){b-e) , 

e{e - u){e - u) 
(e-a){e-b) 

An important consequence of these formulas is that this family of quad
rics is triply orthogonal, that is, the tangent planes (section 2.5) to the 
three quadrics that meet at a point are pairwise orthogonal. This fact is 
most obviously stated by writing the element of length 

10.2.2.(. Algebraic surfaces. If F is a polynomial, the surface defined by 
F{x, y, z) = 0 is said to be algebraic. If F is homogeneous, the surface is 
a cone with vertex at the origin. To be exact, we may have to remove the 
points where the derivative dF vanishes, since we're only guaranteed to get 
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a surface where F is a submersion (theorem 2.1.2). But dF may be zero 
for an immersed surface: think of x2 - y2 = 0, for example. 

The Pliicker conoid is an algebraic surface, since it can be written in 
the form z( x2 + y2) - xy = OJ but then we have to add the z-axis to the 
previously described graph. We get an immersed surface, except at the 
points (0,0, ±1). 

10.2.2.5. Enneper's surface. This surface, defined by 

( y~2 ___ X_2 + _2z_2 + ~)3 = 6 (y2 - x2 _ !. (X2 + y2 + !z2) + ~)2, 
2z 9 3 4z 4 9 9 

has a way of cropping up unexpectedly, in seemingly unrelated contexts: see 
10.2.3.6, 10.2.3.13 and 11.16.7. By direct calculation or by looking at the 
parametric representation in 10.2.3.6 one can easily check that Enneper's 
surface is immersed everywhere. 

~-If---Y 

Figure 10.2.2.5 

From do Carmo, ibid., p. 205 

10.2.2.0. eyelids and Dupin eyelids. eyelids are things of the form 

x 2 y2 Z2 (r2 _ R2)2 (r2 _ R2)2 
--+--+--+ - -0 al - >. a2 - >. as - >. 4R2(a4 - >.) 4R2(as - >.) - , 
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where at. ... , as, R are arbitrary, .A is a parameter, and r2 = x2 + y2 + z2. 

As .A changes, these surfaces form a triply orthogonal system (cf. 10.2.2.3). 
When at least two of al, a2, a3 are equal, we say that the surface is a Dupin 
eyelid. These surfaces too are loci of apparently unrelated properties: see 
10.6.8.2(4), 11.21, [Ber87, 20.7], and [Dar17, chapter 6]. Figure 10.2.2.6 
shows the appearance of some Dupin cyelids. 

Figure 10.2.2.6 
From HUbert and Cohn~V088en, ibid.,.pp. 218-219 
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10.%.%.1. Wave surfaces. Consider two fixed lines in a Euclidean plane and 
a moving line, say a ruler, with two points marked on it. As the ruler 
moves subject to the condition that each of the marked points remains on 
one of the fixed lines, all the other points on the ruler describe ellipses. 

Figure 10.2.2.7.1 

Now consider the analogous problem in space: given three fixed planes, 
pairwise orthogonal for simplicity, and a moving line with three points 
marked, move the line around so that each of the marked points always lies 
on the same plane. As the line takes all possible positions, every point in 
it describes an ellipsoid (or possibly an ellipse); this a mechanical way to 
generate an ellipsoid. 

There exists a one-parameter family of wave surfaces having this two
parameter family of lines as its set of normals (3.5.15.5). Wave surfaces 
were first studied by Fresnel, who used them to describe the wavefronts of a 
punctual light source in a birefringent medium. They can be obtained from 
the corresponding ellipsoid by means of a geometric construction called 
"apsidalj" see [SaI74, p. 424J, [Dar72, vol. IV, notes VII and VIIIJ, and 
[RdC22, p. 496J. 

One particular wave surface has equation 

x 2 y2 z2 
-=---=- + + - 1 = 0, 
r2 - a2 r2 - b2 r2 - c2 

where r2 = x 2 + y2 + z2. It has four cone points (singularities) and four 
tangent planes which touch it along whole circles. For details, see [Dar72, 
vol. IV, note VIIIJ. See figure 10.2.2.7.2. 

10.2.2.8. Surfaces defined by (x/a)m + (y/b)n + (z/c)p = 1 are called 
tetrahedral. One can also consider surfaces of the form xmynz p = 1. All of 
these are algebraic if the exponents are commensurable. Notice that, de
pending on whether or not m, nand p are positive, integers, or rationals, 
some parts of F-1(0) must be eliminated. 

10.2.2.9. Surfaces of revolution. If I(x, z) denotes a curve in the xz-plane, 
the surface of revolution obtained by rotating this curve around the z-axis 
will have equation F(x, y, z) = Ih; x 2 + y2, z) = O. If 1-1 (0) doesn't have 
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Figure 10.2.2.7.2 

From Rouch6 a.nd ComberOU88&, ibid., p. 501 and 503 

singularities, F- 1 (0) will be non-singular except possibly on the z-axis. 
Quadrics (10.2.2.3) for which at least two of the numbers a, b, c are equal 
are surfaces of revolution. 

The catenoid is the surface of revolution defined by cosh z = v' x2 + y2j 

its name derives from the catenary (8.7.20). In example (3) of 10.6.6.6 we 
show that the catenoid is the only minimal surface of revolution. 

z 

z 

IIII=-y 
center of curvature 

Figure 10.2.2.9 

From do Carmo, ibid., p. 222 
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10.2.2.10. The helicoid. This surface, defined by the equation tan!. = !, 
a z 

is obtained by moving a line perpendicular to the z-axis along the axis, 
rotating it as it moves (screw motion). The amount by which the line 
advances as it goes around the axis once is called the pitcb of the helicoid; 
it equals 2,ra. 

Figure 10.2.2.10 

From Spivak, A ComprehensifJe Introduction to Differential Geometrll, 
Publish or Perish, voL 3, p. 248 

10.2.2.11. The surface defined by eO: + eY + eZ = 1 is a surface of translation 
in two ways; see 10.2.3.1. 

10.2.2.12. Parallel surfaces. IT the gradient of F has constant norm, say 

any two surfaces of the form F(z, y, z) = k, for different but nearby values 
of k, are parallel. This means that each point of one lies at a constant 
distance form the other. For a converse, see 3.5.15.5. 

Figure 10.2.2.12 
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10.2.3. Parametrically defined surfaces 

10.2.1.1. Surfaces of translation. We generalize 10.2.1.3 by considering two 
arbitrary curves F, Gin R 3 , defined on the same interval I, and forming 
the map (u,v) 1-+ F(u) + G(v) from I X I into R3. Its image is a surface 
of translation in two ways. Can it be a surface of translation in more 
than two ways? Sophus Lie gave a complete answer to this question; the 
general solution starts from a plane algebraic curve of degree four and 
four arbitrary points on it, and involves the corresponding abelian integrals 
[Dar72, vol. I, p. 159]. A very particular case is when this curve degenerates 
into two conics. Then the result always is, up to translation, the surface 
e<C + eY + eZ = 1 mentioned in 10.2.2.11. Indeed, for arbitrary real numbers 
a, b, c, we can represent this surface by a very different-looking immersion: 

( (u - a)(v - a) (u - b)(v - b) (u - c)(v - c)) 
(u, v) 1-+ log (a _ b)(a _ c) , log (b _ c)(b _ a)' log (c - a)(c - b) . 

10.2.1.2. General note. In each of our examples, we give a formula, but we 
do not check, at least not systematically, whether the formula really gives 
an immersion. 

10.2.1.1. Spheres. Besides the parametrization (x, y) 1-+ ±y1 - x2 - y2 
mentioned in 10.2.1.1, we have the latitude-longitude chart (6.1.6): 

(.p,0) 1-+ (cos.psinO, sin.psinO, cosO); 

the Mercator projection, obtained by letting u = log tan(O /2} and v = .p: 

(u, v) 1-+ (sech u cos v, sech u sin v, tanh v); 

and the stereographic projection from the north pole (see 2.8.7, 5.7 and 
[Ber87, 18.1.4]): 

10.2.1.'. Ellipsoids. See 10.2.2.3 for a very useful parametrization of ellip
soids. 

10.2.1.5. Surfaces of revolution. If a curve in the xz-plane has parametric 
equation v 1-+ (J (v), g( v}), the surface of revolution obtained by rotating 
it around the z-axis (cf. 10.2.2.9) is 

(u,v) 1-+ {cosuf(v}, sinuf(v}, g(v)). 

For the catenoid we have x = cos u cosh v, y = sin u cosh v, z = v. 
The pseudosphere or Beltrami's surface, which was probably first dis

covered by Minding, is the surface of revolution generated by the tractrix 
v 1-+ (sech v, v - tanh v). The tractrix is an envelope of the catenary; it 
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Figure 10.2.3.5 

Left diagram taken from do Carmo, ibid., p. 169 

can also be characterized by the property of its tangent indicated in figure 
10.2.3.5. 

For other important surfaces of revolution, see 10.5.3.10, 10.6.9.6 and 
11.10.2. 

10.2.1.6. Weierstrass's formula for minimalsurfaees. Let U 30 be an open 
set in R2 = C and f(Z) = f(x + iy) an arbitrary holomorphic function on 
U. Define an immersion into R3 by setting 

x(u, v) = Re low (1- Z2)f(Z) dZ, 

y(u, v) = Re low i(1 + Z2)f(Z) dZ, 

z(u, v) = Re low 2Zf(Z) dZ, 

where the integral is taken along any path connecting the origin to w = 
u+iv E C: see [Rud74]. (In general, this only makes sense locally; globally 
we get a "multi-valued function." For a definition without integrals, see 
[Dar72, vol. I, p. 340].) The surface thus obtained is minimal (10.6.9.2) 
and, conversely, any minimal surface can be locally written in this form 
(away from umbilics): see [Nit75, p. 144] or [Oss69, p. 64]. 

The simplest case of this construction, f(Z) = 1, gives Enneper's surface 
(10.2.2.5) in the following representation: 

( u3 2 v3 2 2 2) (u, v) 1-+ U - "3 + uv , v - "3 + vu , u - v . 
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Its symmetries are evident in this form: consider the maps (u, v) 1-+ (-u, v), 
(u,v) 1-+ (u,-v) and (u,v) 1-+ (v,-u). 

If we replace! by eia ! we get a one-parameterfamily of minimalsurfaces, 
all isometric. In the particular case ! = 1/ Z2, this family includes the 
catenoid and the helicoid of pitch 211' (see 10.4.1.7 and 11.16.5). 

Figure 10.2.3.6 

From Spivak, ibid., p. 248 and 249 

10.2.1.'1. Ruled surfaces. A surface S is ruled if it is the union of a one
parameter family of straight lines, called its rulings. Roughly, we can write 

10.2.1.8 (u, v) 1-+ !(u,v) = m(u) + ve(u), 
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m 

Figure 10.2.3.8.1 

where m is a curve in R3 and the vector e describes a curve on the unit 
sphere 8 2 • 

In addition to the elementary cylinders and cones, we have encoun
tered the following examples of ruled surfaces: the helicoid (10.2.2.10), 
the hyperbolic paraboloid (10.2.1.2), the one-sheet hyperboloid (10.2.2.3) 
and Plucker's conoid (10.2.1.4). 

Two parametrizations have special interest: the first consists in taking for 
m a curve orthogonal to the rulings, that is, (m' I e) = O. The second, more 
subtle and unique, is given by the condition (m' I e') = o. Its geometric 
interpretation is the following: two non-parallel lines in R3 determine a 
unique common perpendicular, a distance and an angle. Taking the limit 
as two rulings approach one another, we get, for each interval in which 
e'(u) =1= 0 (this is a reasonable restriction, since e'(u) = 0 for every u gives 
just a cylinder), a unique point on each ruling. These points form a curve, 
called the line of striction. The reader should determine the line of striction 
for the examples of ruled surfaces above. 

Assume from now on that (m' I e') = 0 in 10.2.3.8, and also that u is 
the arclength of e, that is, IWII = 1. A parametrization satisfying these 
conditions is called standard. The limit .A of the ratio between the angle and 
the distance between rulings that approach one another is the parameter 
of distribution of 8j it is given by the mixed product .A = (m', e', e). 

The tangent plane to 8 is found by calculating the normal: 

:~ X :~ = m' X e + ve' X e = >.e' + ve' x e. 
This formula shows, among other things, that the cross-ratio (see [Ber87, 
chapter 6]) of the tangent planes at four points on the same ruling is equal 
to the cross-ratio of the four points. 

A last example of a ruled surface: the Mobius strip (cf. 5.9.11): 

( u, v) 1-+ ((2 - v sin i) sin u, (2 - v sin i) cos u, cos i) . 
We remark that this equation cannot describe the surface that one obtains 
by carefully gluing the ends of a strip of paper after a half-twist: the paper 
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construction yields, by rigidity, a surface locally isometric to the Euclidean 
plane, and the surface above does not have this property. See [Wun62J and 
[Ha177J for a discussion of the physical feasibility of a Mobius strip from 
a paper strip (the ratio between length and width must be large enough), 
and equations describing the result. See also 7.8.11 and [HilJ, p. 294-297 
for applications to magic and degree theory. 

t 

Figure 10.2.3.8.2 

10.2.1.9. Developable surCaees. According to the formula above, the tan
gent plane is fixed along a ruling if and only if .A = 0, that is, e' is parallel 
to m'. A surface satisfying this condition is called developablej see 10.4.1.8 
for an explanation of the name. By construction, a developable surface 
can be obtained as the union of the tangents to a given curvej also as the 
envelope of the set of osculating planes to a curve (10.2.3.12). 

This curve is a singular locus for the developable surface, and coincides 
with its line of strictionj we also call it its cuspidal edge. Where its torsion 
is not zero, one can describe things by saying that two sheets of the surface 
meet tangentially along the cuspidal edge. 

Figure 10.2.3.9 

From W. Klingenberg, A Course in Differential Geometr!l, Springer, p. 57 

10.2.1.10. Moulding surCaees. A natural generalization of ruled surfaces 
consists in taking a curve C in space and applying to it a one-parameter 
family of rigid motions. The simplest case of this procedure, leading to the 
so-called molding surfaces, is when C is a plane curve and the tangents to 
the trajectories of fixed points on C are everywhere perpendicular to the 
plane P containing Cj kinematically, this means that P must roll on its 
envelope without sliding. Applying Frenet's formulas (section 8.6) we see 
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that this condition is equivalent to saying that, in the plane P where C sits, 
C remains fixed with respect to the curve in P having the same curvature 
(as a function of arclength, cf. 8.5.7) as the curve in R3 which is the line 
of striction of the envelope of P. 

Figure 10.2.3.10 

An easily visualizable particular case is when C reduces to a point, that 
is, the envelope of P is a cone (or a cylinder, if the point is at infinity). 
If P rotates around a fixed line, we obtain a surface of revolution; thus 
surfaces of revolution are also particular cases of molding surfaces. So are 
boundaries of tubes (10.2.3.12). For more information, see [Dar72, vol. I, 
p. 143 fr.] and [Va184, p. 244]. 

10.2.S.11. Parallel surfaces. The parametric representation of a surface par
allel to (u, v) 1-+ f(u, v) (10.2.2.12) is given by 

af af -xau av 
(u, v) 1-+ f(u, v) + k~-:----:::-"7TT' 

10.2.S.12. Envelopes of one-parameter families of surfaces. The practical 
procedure for finding the envelope of a one-parameter families of surfaces, 
one which gives a regular result in the generic case, consists in writing the 
family in the form F(x, y, z,.>.) = 0 and in eliminating the parameter .>. 
between the two equations F(x, y, z,.>.) = 0 and ~(x, y, z,.>.) = o. If we 
manage to carry out the calculations explicitly, we get something of the 
form G(x, y, z) = O. For a family of planes we get a developable surface 
(10.2.3.9). 

The case of a family of spheres is particularly interesting. While each 
plane was tangent to its envelope along a line (intersection of infinitely 
close planes), here each sphere is tangent to the envelope along a circle. 
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Such surfaces will be characterized in 10.6.8.2.3 by their curvature lines. 
Notice that the envelope of spheres going through a common point is the 
image under inversion (0.5.3.1) of a developable surface. 

Two cases are worth mention. First, if the radius of the sphere is constant 
(and small enough), the envelope is the boundary of a tube, as defined in 
section 2.7 (see figure 2.7.6.2). 

Second, when is a surface the envelope of two distinct families of spheres? 
Notice that the spheres in one family must be tangent to those in the 
other, and since three spheres determine a one-parameter family of spheres 
tangent to the three, we see that each family consists of spheres tangent 
to the spheres in the other. It immediately follows that the locus of the 
centers (which consists of two parts, one for each family), is made up of 
two focal conics, that is, geometric limits of quadrics in a confocal family 
(10.2.2.3) as ). approaches b or c: 

x2 y2 
--+---l=O=z 
a-c b-c ' 

x 2 z2 
-- - -- - 1 = ° = y. a-b b-c 

(Two focal conics are contained in mutually perpendicular planes, and the 
foci of each are vertices of the other. One must also include the special 
cases of two parabolas, the focus of one being the vertex of the other, and 
of a circle and its axis.) The surfaces thus obtained are exactly the Dupin 
eyelids introduced in 10.2.2.6. The case of a circle and its axis gives a torus 
of revolution. 

Figure 10.2.3.12 

lO.2.1.1S. Envelopes of two-parameter families. We only discuss the case 
of planes. In R2 a one-parameter family of lines is best expressed-at 
least for some calculations-in Euler form, that is, by giving the distance 
of the line to the origin as a function of its direction (see exercise 9.9.3 
and [Ber87, 11.8.12.3 and 12.12.11). Calculations are simple because this 
description amounts to a real-valued function on the circle, and a circle 
can be parametrized as a line: for instance, if the distance from the origin 
is p(O), the curvature of the envelope is p + p" (see figure 11.19 or [Ber87, 
figure 12.12.141). 
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For a two-parameter family of planes in R 3 the corresponding description 
amounts to a function p : 8 2 -+ R; as we have seen that there is no really 
simple parametrization for 8 2 , calculations are more involved. An analogue 
for the formula K = p + pIt will be studied in 11.19.1. 

Wave surfaces (10.2.2.7) can be easily expressed as envelopes of a two
parameter family of planes; just take p to be 

(a + k)u2 + (b + k)v2 + (c + k)w2 

p= 2 ' 

where u2 + v2 + w2 = 1 and k is a constant. In cartesian coordinates we 
have :z; = (p - a)u, y = (p - b)v and z = (p - c)w. 

The reader can verify that Enneper's surface (10.2.2.5) can be expressed 
as an envelope in a simple way: take two arbitrary point describing parabo
las focal to one another (figure 10.2.3.12). The envelope of the planes 
equidistant to these two points is Enneper's surface. 

10.2.1.14,. String construction for ellipsoids. An ellipsoid can be mechani
cally generated as follows: a piece of string is kept taut so that it is always 
supported by two focal conics, as indicated in figure 10.2.3.14. The end
point of the string, which depends on two parameters, describes an ellipsoid 
belonging to the family of homofocal quadrics (10.2.2.3) arising from the 
two focal conics. For a proof, see [Sa174, p. 450] or [Co068, p. 198]. 

Figure 10.2.3.14 

From Hilbert and Cohn-Vossen, ibid., p. 20 

10.2.4. Globally immersed surfaces. We present only some figures; 
most often, their equations are too complicated. See [Abr86]. Figures 
10.2.4.1 and 10.2.4.2 both represent immersions of the torus T2, the second 
being the standard one. Figure 10.2.4.3 is the well-known Boy's surface, an 
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immersion of the projective plane P2(R); we know that P2(R} cannot be 
embedded in R3. Explicit formulas for Boy's surface, involving low-degree 
polynomials, can be found in [Ape86]. 

Figure 10.2.4.1 Figure 10.2.4.2 

From U. Pinkall, Regular Homotopy Cla88es 0/ Immersed Sur/aces, Bonn, p. 5 

Figure 10.2.4.3 

From U. Pinkall, ibid., p. 10 
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10.3. The Two Fundamental Forms 

10.S.1. The first fundamental form. Let V be a (local or global) surface 
in R3. What can the inhabitants of V learn about the geometry of their 
world, if they're allowed to move around on it and measure lengths, but 
not to step out into R 31 

First let's see how to think of the geometry of V independently of R 3 • For 
each point 11 E V consider the tangent space Tv V (2.5.3), with its Euclidean 
structure inherited from R3. The collection of these Euclidean structures gv 
on the tangent bundle TV = Uv Tv V (2.5.24) forms a riemannian structure 
on V (exercise 3.6.3), that is, the map 11 1-+ gv is Coo. Generalizing the 
language of differential forms introduced in section 5.2, we say that 11 1-+ gv 
is a symmetric bilinear form on V; it is also positive definite. This is the 
so-called first fundamental form, which we denote by 9 or ds 2 • 

Let's state these definitions in a more precise form: 

10.S.2. Definitions. Consider an arbitrary abstract differentiable mani
fold X. To each tangent space TIIlX we can associate the tensor product 
(ep Till) EB (e q T; X) whose elements are the tensors of type (p, q) at x. The 
union of these vector spaces for all x forms a vector bundle over X, denoted 
by T(p,q). A tensor of type (p, q) on X is a Coo section of this bundle. A 
q-form, as defined in section 5.2, is in this nomenclature a skew-symmetric 
tensor of type (0, q). A riemannian structure on X is a tensor of type (0,2) 
that is symmetric and everywhere positive definite. A vector field on X is 
a tensor of type (1,0). A field of endomorphisms on X is a tensor of type 
(1,1), since End(TIIlX) and TIIlX X T; X are canonically identified for all 
x. All tensors of type (0, q), including q-forms and riemannian structures, 
are contravariant: given a differentiable map f : X -+ Y and a tensor w of 
type (0, q) on Y, we have a pullback /*w on X given by formula 5.2.4. On 
the other hand, if p > 0, a tensor of type (p, q) cannot be pulled back any 
more than a vector field can (except under a diffeomorphism). 

An immersed submanifold of Rn inherits a natural riemannian structure, 
called its first fundamental form. 

Two abstract riemannian manifolds (X, g) and (Y, h) are called isometric 
if there exists a diffeomorphism f : X -+ Y such that /* h = g. 

10.S.S. The second fundamental form. This notion applies to local, 
global and immersed surfaces. For simplicity, let's consider the case V C 

R3. We also assume that V is oriented (locally this is always the case) 
and we denote by '" the canonical normal to V (see 6.4.3). Thus we have a 
differentiable map'" : V -+ 8 2 , called the Gauss map. Since, by construc
tion, TvV = T.,(v)8 2 , the tangent map Tv'" is a linear map from TvV into 
itself, called the Weingarten endomorphism. This map is self-adjoint with 
respect to the first fundamental form g, and thus comes from a symmetric 
bilinear form on Tv V, called the second fundamental form, and denoted by 
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Do not confuse this with the third fundamental form, which is by definition 
the pullback under v of the first fundamental form on 8 2 • We will not 
discuss it any further, since it is a linear combination of 9 and II. 

Figure 10.3.3 

The second fundamental form gives the shape of V in R 3 • In order 
to determine it geometrically, we can cut V with planes parallel to Ttl V, 
rescale the intersection curves, and take their limit as the plane approaches 
Ttl V. If II has rank two, we obtain a limiting curve, the conic defined by 
II(x, x) = ±lj this is called the Dupin indicatrix. All of this results from 
4.2.20j see also 10.6.4. 

There is another, important geometric method for determining the sec
ond fundamental form, based on the notion of parallel surfaces (10.2.2.12). 
Let V = F- 1 (0) be the surface being considered and Vk the surface parallel 
to V at signed distance k (for a fixed orientation-the second fundamen
tal form changes sign when we switch the orientation of V). Then figure 
10.2.2.12 gives a diffeomorphism rPk : V -+ Vk, at least for k small. If gk 
denotes the first fundamental form of Vk , it can be shown that the second 
fundamental form of V is given by the derivative 

10.S.S.1 II = d( rPk(9k)) (0) 
dk ' 

where the notation rPk(gk) is borrowed from the end of 10.3.2. See 10.6.6.7 
for a local version of this infinitesimal result. 
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lOA. What the First Fundamental Form Is Good 
For 

10.4.1. The first fundamental form in coordinates 

10.(.1.1. Assume that V is locally the image of an immersion (u, v) 1-+ 

I(u, v), defined on an open set U C R2. The pullback f*g is a riemannian 
structure on U, which can be written down in coordinates; we say that g 
has been expressed in coordinates (u, v). The standard notation is 

f*(ds 2) = Edu2 + 2F dudv + G dv2, 

where du2, du dv and dv2 are tensor products of the one-forms du. and dv. 
The functions E, F and G are given by 

F= (a l I al ), 
aU. av 

These three functions completely determine the riemannian structure, 
but they are not determined by it. In fact (cf. 10.1.3 and 10.3.2) we can 
apply a diffeomorphic change of coordinates (u, v) 1-+ (u.', v') to obtain an 
isometric structure, which is in some sense the same. The new coefficients 
E', F' and G' of du.,2, du'dv' and dv,2 are found by plugging in 

aU. , aU. , av , av , 
~=-a ~+-a~' ~=-~+-~ 

u.' v' aU.' av' 
into the standard notation above. In the language of quadratic forms 
[Ber87, 13.1.3.81, the matrix I = (~~) becomes I' = (~:~:) = tJ I J, 
where J is the jacobian 

(
au av) 
au' au' 
au av . 
- -
av' av' 

Naturally, one tries to find coordinates in which the expressions for E, 
F and G are as simple as possible. This task is facilitated by a knowledge 
of the (intrinsic or extrinsic) geometry of V. 

10.(.1.2. Graphs. Using the classical notation p = :~, q = :~ for the 

graph of a function 1 : R2 -+ R, we get 

ds2 = (1 + p2)dx2 + 2pq dx dy + (1 + q2)dy2. 

10.(.I.S. The sphere (cf. 10.2.3.3). For the latitude-longitude chart we have 

ds 2 = dfP + cos2 B du.2; 

for the Mercator projection, 

ds2 = sech2 u(du.2 + dv2); 
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and for the stereographic projection, 

2 4 (2 2) 
ds = (x2 + y2 + 4)2 dx + dy 

(see 11.2.2 for a similar formula in the case of negative curvature). 

10.4,.1.4,. Surraces or revolution. If "';x2 + y2 = J(z) we have ds 2 = (1 + 
J'2)dz2 + J2 dv2. We can obtain an expression in geodesic coordinates 
(10.4.2) by introducing the latitude u, defined as the arclength along a 
meridian: we have du = VI + JI2 dz, and 

ds2 = du2 + J2(z(u))dv2. 

The further substitution du = J2{z(u))dw gives an expression in conformal 
coordinates (10.4.2): 

ds 2 = ,p(w){dw2 + dv2). 

For the catenoid we have ds 2 = cosh2 v(dv2 + du2), or, with u = sinh V, 

ds2 = du2 + (1 + ( 2)dv2. 

For Beltrami's surface: 

10.4,.1.5. Enneper's surrace. We find ds2 = (l+u2+v2)2(du2+dv2), which 
is also in conformal coordinates (10.4.2). 

10.4,.1.6. Ellipsoids. If (u, v) are elliptic coordinates (10.2.2.3) we get 

ds2=~( udu2 _ vdv2 ) 
4 (a-u)(b-u)(c-u) (a-v)(b-v){c-v) . 

Defining a and f3 by the integrals 

da = y'Udu , 
"';(a - u)(b - u)(c - u) 

df3= Fvdv , 
"';(a - v)(b - v)(c - v) 

we can write 
u-v 

ds2 = --(da2 + d(32). 
4 

10.4,.1.7. Ruled surraces. We start with an example, the helicoid of pitch 
211" (10.2.2.10), whose equation is tanz = y/x. Using the parametrization 
(8,r) f--+ (rcos8,rsin8,8), we get 

ds2 = dr2 + (1 + r2)d82. 

To our great surprise, we verify that this helicoid and the catenoid (10.4.1.4) 
are isometric, at least locally. But they do not have the same shape in space: 
no isometry of R 3 maps one into the other. From this phenomenon arises 
the need, first understood clearly by Gauss, to distinguish between the 
two fundamental forms, between the intrinsic and extrinsic geometries of a 
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surface. There are numerous examples of intrinsic isometries: see 10.4.1.8 
(developable surfaces) and especially 10.2.3.6, 10.5.3.10 and section 11.14. 

For an arbitrary ruled surface, expressed in such a way that (m' I e) = 0, 
we get 

ds2 = dv2 + (v2 II e'1I2 + 2v(m' Ie') + IIm'1I2)du2. 
If, on the other hand, we work with the standard parametrization (10.2.3.7), 
we get 

ds2 = dv2 + 2(m' I e) dudv + (v2 + IIm'1I2)du2. 
10.'.1.8. Developable surraces. Consider the developable S of a curve C E 
R 3 , that is, the union of the tangents to C (10.2.3.9). We can use the 
previous formula with IIm'lI = 1, e = m' and IIe'li = p(u), where p(u) is 
the curvature of C as a function of arclength, to obtain 

ds2 = dv2 + 2 du dv + (1 + v2 p2)du2 = (dv + du)2 + v2 p2 du2, 

which already shows that developable surfaces coming from curves with 
same curvature function are isometric. 

However, we can get much more if we change coordinates. As we roll 
the osculating plane P to C around its envelope S without sliding, let 
the new coordinates (a,,8) of a point m(u) + vm'(u) E S be its cartesian 
coordinates with respect to an orthonormal affine frame rigidly attached 
to P. By construction, these are the same as the coordinates of 

r( u) + vr'( u) 

with respect to the chosen frame, where r : R --+ R2 is tlte equation of 
the curve in P that has the same curvature p(u) as C does (recall the 
discussion in 10.2.3.10 and the existence and uniqueness theorem 8.5.7). 
This says exactly that da2 + d,82 = (dv + du)2 + v2 p2 du2, so we finally get 

ds2 = da2 + d,82. 

The striking thing about this equation is that it shows that the surface 
is isometric (at least locally, of course) to the Euclidean plane. In the 
degenerate case of cones and cylinders, when C is just a fixed point (at 
infinity in the case of cylinders), it is trivial to write down an explicit 
isometry. The burning question then is: does this local isometry property 
characterize developable surfaces? Turn to 10.6.6.2 and section 11.12 for 
the answer. 

10.4.2. The various kinds of coordinates. Here are the classical names 
for some of the special cases we have met. A set of coordinates is called 
orthogonal if F = 0, that is, 

ds 2 = E(u, v)du2 + G(u, v)dv2 • 

If, in addition, E = G = C(u, v), the coordinates are called conformal, 
because the angle between two directions on the surface is then equal to 
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their angle on the Euclidean uv-plane. This is desirable in plotting charts, 
especially for marine navigation, because it makes straight lines on the 
chart correspond to lines of constant heading. In cartography one also uses 
area-preserving coordinates, for which EG = 1 and F = O. See [Ber87, 
18.1.7 and 18.1.8], and the references therein. 

A surface is in geodesic polar coordinates (cf. 10.5.1) if it is in the form 
ds 2 = du2 + J2(u, v)dv2, that is, if E = 1 and F = O. We talk about 
Liouville coordinates if 

ds2 = (A(u) + B(v))(C(u)du2 + D(v)dv2); 

the ellipsoid above (10.4.1.6) is an example of this type. Finally, we call 
Chebyshev coordinates those in which E = G = 1: they occur when we 
try to "dress" a surface with a fabric that can be deformed by a shearing 
motion, without changing the length of the threads. 

Orthogonal coordinates can always be found; this is trivial. Conformal 
coordinates also always exist, but this is much harder to prove, especially 
when the functions involved are not real analytic; see, for example, the 
addendum to [Spi79, vol. IV]. Geodesic coordinates always exist (10.4.8). 
Liouville coordinates, on the other hand, only exist for a special class of 
surfaces, whose characterization can be found in [Dar72, vol. III, p. 16]. 

10.4.3. The metric of a local surface. The notions that we will intro
duce in the remainder of this section make sense for abstract riemannian 
manifolds of any dimension, and the definitions stay the same, but the 
two-dimensional case is by far the simplest. This not only in details, like 
the simple description of parallel transport (10.4.8.3), but from the very 
root of thing: in two dimensions, the fundamental invariant of surfaces 
is a scalar function, the Gaussian curvature K (section 10.5), whereas in 
higher dimension it is the curvature tensor, which is a quadrilinear form, a 
very complicated animal, not yet fully understood. Going from riemannian 
geometry in two dimensions to three or more is a huge leap, in terms of 
both technical complexity and essential depth. 

So we're going to stick to surfaces V in R 3 , but consider them insofar as 
possible as abstract riemannian manifolds. Let ([a, b], f) be a curve on V. 
Its length is 

leng(J) = [b ll f'(t) II dt; 

this number only depends on the first fundamental form. The distance be
tween two points v, w E V is the infimum of the length of curves connecting 
them: 

d(v, w) = inf {leng f : f is a curve in V with f(a) = v and f(b) = w}. 

This defines the intrinsic metric of V. Unless V is a subset of a plane, this 
does not coincide with the metric induced from R 3 , though of course we 
have the trivial inequality dR 3 (v, w) ~ d(v, w) = dv(v, w). It is clear that d 
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is a metric, if V c R3; the case of an abstract two-dimensional riemannian 
manifold will be proved in 10.4.B. 

10.4.4. Some natural questions. As with any metric space, we may 
want to: 

(i) calculate d( v, w) explicitly; 
(ii) determine when there exists a curve of length d(v,w) joining v and 

w (such curves are called shortest paths, or segments if there is no 
danger of confusion); 

(iii) find out what the shortest paths look like; 
(iv) find out when there is a unique shortest path joining v and w. 

Needless to say, these problems do not have an explicit solution in most 
cases, even those that appear simple at first sight. See 1004.9.5, for ex
ample, for the case of ellipsoids. On the other hand, that are some very 
pretty and general qualitative results: for example, any two sufficiently 
closed points are connected by a unique segment (just as in Euclidean 
space). Segments are subsets of curves called geodesics, which will be de
fined in 10.4.5; in fact, it is by calculating the geodesics that one determines 
the segments. Geodesics, in turn, are found by considerations of parallel 
transport (10.4.6), a notion that has numerous applications and a strong 
heuristic interest. 

In our study we will seem to wander away from V, but we will show that 
the notions of geodesics and parallel transport only depend on the first 
fundamental form of V, that is, on the abstract riemannian structure. For 
this reason they are automatically invariant under isometries. We remark 
here that the isometries of a riemannian manifold V (10.3.2) coincide with 
those of the metric space (V, d), where d is the intrinsic metric; this is not 
entirely obvious [PaI57]. 

10.4.5. Geodesics. Consider the problem of finding a curve C = ([a, b], f) 
on V that has shortest length among all curves with same endpoints. The 
calculus of variations shows that a necessary condition (which is also suf
ficient if we just want the length to have zero derivative, instead of being 
minimal) is that the acceleration of C be everywhere perpendicular to V, 
that is, f"(t) E (Tf(t)).L for every t E [a,b]. Since this implies that 11f'(t)11 
is constant, we may as well take this constant to be one. 

This observation seems to go against our philosophy, in that it makes use 
of the external shape of V. In other words, we have wandered away from 
V into the ambient space, something we had agreed was forbidden. But, 
in fact, this criterion for geodesics only depends of the first fundamental 
form. This will be shown by introducing covariant derivatives-in some 
sense a generalization of the notion of geodesics-but should not come as 
a surprise in any case, since the original problem, minimizing the length of 
a path joining two points, only depends on the intrinsic metric, that is, on 
the first fundamental form. 
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There are several ways to obtain geodesics geometrically. For example, 
one can take two wheels of same size, connected by an axle, and roll them 
around V. In the limit, as the distance between the wheels tends to zero, 
the path they follow will be a geodesic. This operation is intrinsic, for it 
amounts to saying that the wheels follow paths of same length and constant 
distance to one another. Another idea is to stretch an elastic band between 
two points, making sure that it remains on V. (In R 3 we can guarantee 
this by laying out the elastic band on the appropriate side of V, as long as 
the endpoints are close enough.) 

10.4.6. Parallel transport. Let C = ([a, b], f) be a curve on V. We 
say that a vector field Z along C, such that Z(t) is everywhere tangent 
to V, is parallel if its derivative is everywhere perpendicular to V, that 
is, Z'(t) E (TJ(t)).L for every t E [a, b]. The fundamental result is the 
following: 

10.'.6.1. Theorem. Given a curve C on V and a vector z E TJ(a) V, there 
exists a unique parallel vector field Z along C satisfying Z(a) = z. In 
addition, Z only depends on the first fundamental form. 0 

We say that the vectors Z(t) are obtained from z by parallel transport. 
Parallel transport preserves inner products (that is, the first fundamental 
form). 

Geodesics are then just self-parallel curves: their velocity vector field is 
parallel. 

10.4.7. Covariant derivative and geodesic curvature. Parallel trans
port is not yet the most fundamental notion; behind it we find the idea of 
covariant derivative. Let Z be a vector field along C. We know how to 
differentiate Z along C, but the result is generally outside V, so it's not 
good enough. The right derivative on V turns out to be the orthogonal 
projection of Z'(t) on TJ(t) (V); it is called the covariant derivative of Z 
along C and denoted by D J' Z. The geodesic curvature of a curve in V (or 
in an arbitrary riemannian manifold) is defined as liD!, I'll; this number 
replaces the curvature defined in chapter 8. 

The covariant derivative depends only on the first fundamental form. 
This is to be expected: by projecting Z' onto the tangent space to V we're 
doing all we can to remain in V. But the real, deep reason is that, given any 
riemannian manifold (X, g), we can associate to each pair of vector fields 
(e, '7) on X a new vector field, called the covariant derivative of '7 with 
respect to e and denoted by De'7, characterized by the following conditions: 
De preserves the scalar product 9 for every e, and De'7 - D"e = fe, '7] for 
every e and '7 (see 2.8.17 and 3.5.15 for the definition of the brackets). 
This second condition is the counterpart for riemannian manifolds of the 
commutativity of partial derivatives in R n (cf. section 4.2). 
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A direct proof of the invariance of covariant derivatives, but one that 
doesn't show what's actually going on, can be given by starting from the 
initial definition and showing that only E, F and G are involved. Existence 
and uniqueness derive from the existence and uniqueness of solutions of 
differential equations (1.4.5). 

In order to write the covariant derivative in coordinates, one introduces 
certain coefficients called Christoffel symbols. These numbers can be cal
culated using just the first order derivatives of E, F and G. 

Here is a formula for the geodesic curvature of a curve t 1-+ (u(t),v(t)) 
on a riemannian surface. As you can see, it is not simple, and we omit the 
proof, which can be found in [Lel63, p. 194] or [Str61, p. 131]. Assuming 
that the coordinates on V are orthogonal, that is, F = 0, we have 

10.'.'1.1 1 (d4> 1 (aG I aE ,)) 
VEu/2 + GV'2 dt + 2vEG au v - a;;u , 

where 4> is defined by tan 4> = Ii ~: . 
If the surface is in geodesic coordinates, that is, ds 2 = du2 + J2( U, V )dv2, 

and v is given as a function of u, we have 

~~ - 1 + ~2v12 ddu (J(u, v(u))v' ), 

and 10.4.7.1 simplifies to 

1 (aJ( I 2 13) aJ 12 ") 10.'.'1.2 (1 + J2v'2)3/2 au 2v + J v + av v + Jv . 

10.4.8. Geodesics revisited; locally shortest paths. The equations 
above show that D J' f' = 0, the equation characterizing a geodesic, is a 
second-order differential equation (not linear, but quadratic). This implies 
the following result: 

10.'.8.1. Theorem. Given v E V there exists e > 0 such that, for every 
unit vector e E Tv V, there exists a geodesic of V with initial speed e and 
defined at least on the interval ]-e, e[. As e runs over the set of unit 
vectors in Tv V, the associated geodesics "te make up exactly the open ball 
B(v,e) = {x E V: d(x, v) < e}. Furthermore, for e' < e the restriction of 
"te to [0, e/] is the shortest path on V joining its endpoints. 0 

This shows that the topology of S as a surface coincides with its topology 
as a metric space. 

10.'.8.2. Note. In general a geodesic cannot be extended to all of Rj think 
of the unit ball in R2, for example. Moreover, if a geodesic is extended 
too far it can cease to be the shortest path between two pointsj see section 
11.1. 
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10.4,.8.1. Note. In dimension two only, knowing the geodesics is equivalent 
to knowing the covariant derivative and parallel transport. Indeed, along a 
geodesic "'I a vector is defined by its length and its angle with "'I', the angle 
being oriented by continuity. Thus we have for each point of "'I an orthonor
mal basis whose first vector if "'I', and a vector field whose components in 
this basis are constant is parallel. Similarly, the covariant derivative of a 
vector field is given by the ordinary derivative of the components of the 
field in this basis. 

v 

n 
y' +-2 

locally 

Figure 10.4.8 

10.4.9. The geodesics of a few surfaces. 

z 

10.4..9.1. Spheres. Great circles are geodesics on a sphere, because their 
acceleration points toward the center. Since there are enough great circle 
to go through all points and in all directions, the uniqueness part of 10.4.8.1 
says that there are no other geodesics. Hence all the questions in 10.4.4 
can be completely answered: the distance between v and w is the real 
number d(v, w) E [0,11"] defined by cos(d(v, w)) = (v I w), and two points 
v, w E 8 2 are connected by a unique shortest path, unless they happen to 
be antipodal points, i.e., w = -v. 

10.4,.9.2. Cylinders, cones and developable surfaces. If a surface is isometric 
to the Euclidean plane, its geodesics are just straight lines in the appropri
ate coordinate system (they are generally not straight in R3). The study 
of shortest paths requires a bit more care, however, because of global non
uniqueness: think of a cylinder or cone or revolution, for example. 
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cone point with vertex angle> 211" 

Figure 10.4.9.2 
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10.(.9.1. Surfaces of revolution. If we write ds 2 = du2 + J2(u)dv2, where 
J is the distance to the z-axis (10.4.1.4), the quantity 

is a first integral, that is, it remains constant along a geodesic (this is 
known as Clairault's relation). The reason is simple: the acceleration of 
a geodesic is normal to the surface, which here means that it intersects 
the z-axis, or that its projection on the xy-plane always goes through the 
origin. And it is well known in mechanics (Kepler's second law) that if a 
point moves under a central force its radius vector sweeps equal areas in 
equal time intervals. 

It follows that the geodesics of a surface of revolution can be found by 
solving one integral. Even if the integration cannot be carried out explicitly, 
we're much better off than in the case of an arbitrary surface, since a degree
two second order differential equation is generally intractable. 

It is easy to describe the geodesics qualitatively: they consist of all merid
ians, all equators (parallels of latitude where the meridians are parallel to 
the axis) and other curves whose distance to the axis can never fall below 
a certain threshold (determined by their initial point and direction) and 
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z 

Figure 10.4.9.3 

which, as a consequence, may weave back and forth between two parallels 
of latitude of same radius. 

Surprisingly enough, there exist surfaces of revolution whose geodesics 
are all closed and which are not spheres (section 11.10). One of the tools 
in their study is Clairault's formula. 

10.4.9.4. Surfaces in geodesic polar coordinates. If a surface is in the form 
ds2 = du2 + J2(u, v)dv2, it follows from 10.4.7.2 that its geodesics (u, v(u)) 
satisfy 

aJ aJ 2-(v' + J2 v'3) + _V,2 + Jv" = o. au av 
10.4.9.5. Ellipsoids. An ellipsoid's geodesics can be completely determined, 
modulo the solution of one integral, thanks to the Liouville-type elliptic 
coordinates (10.4.1.6), which satisfy a counterpart of sorts for Clairault's 
relation (10.4.9.3): 

y(a -u)(b - u)(e - u), y(a -v)(b - v)(e - v) '-0 
k u ± k v - , -u -v 

where k is a constant. This gives the following qualitative behavior for the 
geodesics: each one-sheet hyperboloid H from the family of confocal quad
rics defined in 10.2.2.3 has an associated one-parameter family of geodesics, 
all of which oscillate between the two curves where H intersects the ellip
soid E. These curves, as we shall see in 10.6.8.3, are curvature lines of E. 
Geometrically they are characterized by the fact that their tangents are 
tangent to H as well as to E. The two-parameter family of lines formed 
by these tangents as H varies satisfies the condition for the existence of 
surfaces having these lines as normals (3.5.15.5); see [Dar72, vol. II, p. 3101 
for an explicit calculation. 
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Figure 10.4.9.5 

From H. Knorrer, Geodesics on the Ellipsoid, IntJentiones Math., Springer 

When H degenerates into the focal hyperbola 

x 2 z2 

a_b-b_c- 1 =0=y 

(cf. 10.2.3.12) the intersection H n E reduces to the four umbilical points 
(10.6.4) of E. Every geodesic going through one of these points also goes 
through the opposite one. 

More about the geodesics of ellipsoids can be found in the reference above 
and in [Dar72, vol. III, p. 14]; [Car76, p. 263-264]; [Kli82, p. 302 and ii]; 
[Kno80]; and [SaI74, p. 447 and neighboring pages]. 

10.4,.9.6. Geodesic: maps. A map between riemannian surfaces that takes 
geodesics to geodesics does not have to be an isometry, not even up to a 
scale factor. For example, take the central projection from a sphere into 
any plane and use 10.4.9.1. However, only riemannian structures that can 
be put in Liouville form (10.4.2) admits such geodesic maps: see [Dar72, 
vol. III, p. 51]. Beltrami showed that every riemannian manifold that can 
be geodesically mapped to the Euclidean plane is a sphere or a hyperbolic 
plane: see [Car76, p. 296] or [Spi79, vol. IV, p. 26]. 

This problem belongs to a theory called projective differential geometry: 
see [LeI82], [Ven79], [Car37b] and [Eis49, p. 131]. 
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10.5. Gaussian Curvature 

10.5.1. NOrIllal and geodesic coordinates. A (local) surface is written 
in normal coordinates if all geodesics going through the origin of the co
ordinate plane are straight lines in that plane, parametrized by arclength. 
In normal coordinates the expansion of ds 2 at the origin is 

10.5.1.1 

where K is a real number, depending only on the metric and on the point 
taken as the origin. Its value is easily found if we know the expression of 
ds 2 in geodesic polar coordinates (10.4.2): comparing ds2 = dr2 + J2(r,B) 
with 10.5.1.1 and taking a limit we get 

10.5.1.2 
1 8 2 J 

K = - J(O, 0) 8r2 (0,0). 

We call K the Gaussian curvature (or total curvature, cf. 10.6.2) of the 
surface at the point in question. The Gaussian curvature is clearly invariant 
under riemannian isometriesj in particular, a surface with K =1= 0 can never 
be isometric to the Euclidean plane, it being clear that the latter has zero 
curvature. 

In fact, formula 10.5.1.1 says that the Gaussian curvature in some sense 
measures how far a surface is from being Euclidean. The inhabitants of V 
can calculate K at a point tI by drawing circles of small radius e around 
tI (they know by experience what the shortest paths are) and measuring 
their circumference. The radius and length of a circle are related by the 
formula 

10.5.1.S 

This is called Puiseux's formula. The reader can prove a similar formula 
due to Diquet relating the area of the disc B(tI, e) and its radius. 

10.5.2. Surfaces of constant curvature. Figure 10.5.2 shows that the 
curvature of the sphere 8 2 is everywhere equal to 1j more generally, the 
curvature of a sphere of radius R is R- 2 : 

Riemannian surfaces of constant curvature will play an important role 
in the sequel. We have already seen surfaces of zero and positive constant 
curvature. For surfaces of negative curvature, one uses formula 10.5.3.3 
below to get 

d 2 - d 2 sinh2 (V-f{r) d" 2 
s-r+ .r-f7 u. 

v-K 
Compare this with ds 2 = dr2 + r2 dB 2 for the Euclidean plane and ds 2 = 
dr2 + sin2 r dB 2 for the unit sphere. 
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v 

'-------4-- sin e 

Figure 10.5.2 

Formula 10.5.3.3 also shows that manifolds of same constant curvature 
are locally isometric. For a global statement, see 11.2.1. For embeddings 
in R 3 , see 10.5.3.10 and section 11.15. 

10.5.S. Formulary for K. Let (u, v) f-+ I(u, v) be an immersed surface. 
A simple expression of K in coordinates involves, in addition to the coeffi
cients E, F and G of the first fundamental form (1004.1.1), the coefficients 
of the second fundamental form (10.6.6), traditionally denoted by L, 2M 
and N and given by 

L = Uuu I n) 
VEG - p' 

M _ UutJ In) 
- VEG- p' 

N _ UtJtJ In) 
- VEG- p' 

where the subscripts denote partial differentiation and n = lu X ItJ is the 
(non-unit) normal to the surface. In this notation we have 

10.5.:.1 
LN-M2 

K = EG- F2' 

This will be proved in 10.6.6. 

10.5.:.2. Gauss's formula. Formula 10.5.3.1 hides the fundamental fact, 
apparent from definition 10.5.1.1, that K only depends on the first funda
ment form of V. In proving his "Theorema egregium," Gauss accomplished 
a computational tour de force in expressing K explicitly as a function of 
E, F and G. His formula reads 

1

4FutJ - 2EtJtJ - 2Guu Eu 2Fu - EtJl I 0 EtJ Gul 
4K(EG - F2)2 = 2FtJ - Gu E F - EtJ E F . 

G tJ F G Gu F G 
For a relatively short proof, see [Str61, p. 112]. 

10.5.:.:. Geodesic coordinates. If the surface is in the form ds2 = du2 + 
J2(u,v)dv2, we get from 10.5.1.2 or 10.5.3.2 that 

182 J 
K = -J 8u2· 
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This is related with the notion of Jacobi fields (11.5.1). 

10.5.1.4,. Graphs. For a graph (x, y, f(x, y)), if p and q are as in 10.4.1.2 
and r, 8 and t as in 4.2.20, we have 

rt- 8 2 
K - -;---=-----="'= - (1 + p2 + q2)2· 

10.5.1.5. Enneper's surface. We have 

K-- 4 
- (1 + u 2 + V 2 )2· 

10.5.1.6. Ruled surfaces. If). is the parameter of distribution (10.2.3.7) we 
have 

).2 

K = - ().2 + v2)2· 

Hence the Gaussian curvature of a ruled surface is always strictly negative, 
unless). = 0, in which case it is zero along the corresponding generating 
line. In particular K is identically zero for a developable surface; this, 
together with 10.5.2, gives another proof for 10.4.1.8. 

x 2 y2 z2 
10.5.1.'1. Ellipsoids. For the ellipsoid 2"+ b2 + 2"-1 = 0 we find the very 

a e 
4 

nice formula K = /b2 2' where p denotes the distance from the origin to 
a e 

the tangent plane at the point (x, y, z). 

10.5.1.8. Implicitly defined surfaces. Let V be the zero-set of F : R3 -+ R, 
and define a, b, c by the identity 

I F" -).1 F' I 2 tF' 0 = a + b)' + c). , 

where F' is the vector of partial derivatives of F, F" its matrix of second 
derivatives and I the identity matrix. In this notation we have 

K= ale 
F:+F;+F; 

10.5.1.9. Surfaces of revolution. If V is given by d8 2 = du2 + J2(u)dv2, 
formula 10.5.3.3 shows that K is independent of v: it is a function of the 
latitude only. This is to be expected, since K is invariant under isometries 
and revolutions are isometries of R 3 , hence also of V. 

Furthermore, one can find all surfaces of revolution whose curvature is a 
given function of the latitude u just by integrating 10.5.3.3; once J is known 
one obtains the z-coordinate as a function of u by solving the equation 

an easy consequence of 10.4.1.4. 
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10.5.S.10. We do this for constant K. The case K = 0 is trivial: J is linear 
in u, and consequently in z. We simply get cones and cylinders. 

If K = 1, the solution of 10.5.3.3 is J = a cos u, and integrating 10.5.3.10 
we get the following parametric equation for the meridians: 

u 1-+ (r = acosu, z = fou V1- a2 sin2 tdt) . 
This gives three kinds of surfaces, depending on whether a is less than, 
greater than, or equal to zero; the latter case represents the sphere. 

z z z 

a < 1 a > 1 
x x x 

Figure 10.5.3.10.1 

For K = -1, we also get three kinds of surface (figure 10.5.3.10.2), 
corresponding to three qualitatively distinct solutions for 10.5.3.3: J = eU , 

J = a cosh u and J = a sinh u. The equations for the meridians are: 

(Beltrami's surface, see 10.2.3.5), 

U 1-+ (a cosh u, fo U VI - a sinh2 t dt) , 
u 1-+ (aSinhU, fou V1- a cosh2 tdt) . 

10.5.4. To what extent does K determine the metric? In 10.4.1.7 
we saw two different surfaces with the same intrinsic metric. In fact we 
know from 10.2.3.6 that there exist non-trivial one-parameter families of 
isometric surfaces. So we have to get accustomed to the idea that the first 
fundamental form does not at all determine the shape of a surface in R3. 
But we may suspect that K determines the metric of a riemannian surface, 
based on the fact that this is true if K is constant, and on the observation 
that K is a measure of non-Euclideanness, so to speak. 

However, this is not the case either. To get counterexamples it is enough 
to take a metric with variable curvature and apply to a it a diffeomorphism 
that preserves the lines where the curvature is constant, the level curves of 
K. The result, as a rule, is not isometric to the original surface. The reader 
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z z 

x 

Figure 10.5.3.10.2 

may consult [Car84] for a characterization of two-dimensional riemannian 
metrics by the curvature and the invariants derived therefrom. 

10.5.5. Gaussian curvature and parallel transport 

10.5.5.1. The key to the spectacular result we're about to discover is the 
fact that, in geodesic polar coordinates ds2 = dr2 + J2(r, fJ)dfJ 2, the partial 

derivative ~~ (r, fJ) represents the geodesic curvature of the metric circle of 

radius r centered at the origin. See also 11.3.3. 

10.5.5.2. Here we need to introduce the canonical measure dm of a rieman
nian manifold. In dimension two dm is equal to J EG - F2 du du, where 
the coefficients of the first fundamental form are expressed in any set of 
coordinates. In our case, then, we can write dm = J dr dfJ. 

10.5.5.~. Let D be a submanifold-with-boundary given, in our coordinates, 
by a positive function r(fJ) defined on [0,211-j. We calculate the integral over 
D of the Gaussian curvature K: 

.If = ~ Kdm= ~ KJdrdfJ. 

Using formula 10.5.3.3, the integral over r is trivial: 

/, 82J r (8J 8J) .If = - D 8r2 drdfJ = 10 a;(r(fJ)) - a;(0) dfJ. 

Performing this calculation carefully (using 10.4.7.2, for instance), we get 
the following result: 

10.5.5.4. Theorem (Gauss-Bonnet formula.) Let D be a submanifold-with
boundary as above, except that we allow the boundary C = 8D to be 
only piecewise differentiable. Letting p be the signed geodesic curvature 

x 
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of C (positive if C curves inward), ds the element of length along C and 
f31, ... , f3n the exterior angles of C at its corners, we have 

JI =! K dm = 211" - t f3i - f p ds. 
D ~1 G 

o 

A formal proof requires working in the unit tangent bundle UV, the 
three-dimensional manifold consisting of unit tangent vectors to V, and 
showing that the inverse image under the projection UV -+ V of the exte
rior two-form K dm, for a fixed orientation of V, is the exterior derivative 
of a one-form on UV that represents the geodesic curvature. The Gauss
Bonnet formula is then a consequence of Stokes' theorem. See [Ste64, 
p. 284J or the end of [Spi79, vol. IIIJ. 

v 

Figure 10.5.5.4 

10.5.5.5. ApplieatioDs. The most spectacular case is when D is a geodesic 
triangle T, still contained within one geodesic coordinate patch. If the 
interior angles of T are A, Band C, the Gauss-Bonnet formula gives 

Iv Kdm= A+B+C-1I". 

On 8 2 , for example, we recover Girard'8 formula: area( T) = 0: + f3 + 1 - 11" 
[Ber87, 18.3.8.4J. On the Euclidean plane, we get that the sum of the 
angles of a triangle is 11". On Beltrami's surface, where K = -1, we have 
area(T) = 11" - 0: - f3 - 1; for a proof in this particular case, see 6.10.6. See 
also 11.2.2. 

10.5.5.6. Geodesy. Formula 10.5.5.4 is fundamental in geodesy, the science 
of determining and mapping the shape of the earth. Let T be a geodesic 
triangle on a surface, with angles A, B, C, vertices m, n, p and sides of 
length a, b, c. Let A*, B*, C* be the angles of the Euclidean triangle having 
sides a, b, c. The problem is to approximate the differences A - A*, B - B* 
and C - C*. Legendre knew that, on a sphere of curvature K, 

10.5.5.7 A A* area(T) K (2 b2 2) - = 3 . +0 a + +c, 
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and similarly for B-B* and C-C*. In fact this formula holds as written for 
any surface, as long as K is measured at a point within the triangle. This 
means that, up to the second order, geodesic corrections cannot give or use 
any information on the variation of the curvature of the earth. Gauss, by 
means of very clever calculations, pushed the formula to the third order: 

A A* (T) 2K(m) + K{n) + K(p) (3 b3 3) - = area 12 + 0 a + + c . 

p 

n 

Figure 10.5.5.7 

Very few books on the geometry of surfaces supply this formula. A proof 
for it can be found, together with other formulas including even higher 
order terms, in [Dar72, vol. III, p. 168-176). A very thorough exposition of 
mathematical geodesy, involving elliptic functions, which give the geodesics 
of ellipsoids of revolution, is to be found in [HaI88). Reference [Dom79) con
tains good historical remarks, and [CMS84) gives an application of formula 
10.5.5.7 to modern geometry, as well as generalizations. 

10.6. What the Second Fundamental Form Is Good 
For 

The second fundamental form allows a quantitative study of the shape of 
V in the neighborhood of a point, extending the qualitative study in 4.2.20. 
It measures how far V is from being a plane: If II is identically zero, V is 
a plane, and vice versa. It is also used in calculating the curvature (in the 
sense of chapter 8) of curves in V. 

Whenever surfaces are considered for practical applications, the second 
fundamental form is of paramount importance: in optics, it determines the 
caustics (see 10.6.8, [Ben86], [BW75], [Car37a], [Syn37] and [Mac49]) and 
the image one sees when one looks into the surface [Ben86]; in hydrostatics, 
it provides the notion of a metacenter [Cha53, vol. 2, chapter XIX], crucial 
to the design of ship hulls; in mechanics, it's used in the design of large 
smokestacks. 

We recall that II switches sign when we change the orientation of V. 
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10.6.1. Curvature of curves on V. Let I be a curve drawn on V and 
parametrized by arclength. By the definition of II we see that if the angle 
between the normal I" to I and the normal n to V is (), the curvature 
K(I) = II 1"11 is given by 

10.6.1.1 K (I) = IIU', 1') cos (). 

In particular, the curvature of a geodesic is II(I', I'). Notice that the 
geodesic curvature of I is n(l', /') sin (). 

Readers with a geometric bent may prefer to express things in terms 
of the center of curvature of I (8.4.15), which becomes the orthogonal 
projection on the osculating plane to I of the center of curvature of the 
geodesic of V tangent to I at the point in question. Yet another way to 
say this is that the component of I" in the direction of n only depends on 
the direction of /'; this component is called the normal curvature vector 
of I. 

Figure 10.6.1 

10.6.2. Total and mean curvatures. Principal directions. Since the 
first fundamental form is positive definite we can diagonalize n with respect 
to it (see !Ber87, 13.5J, for example). The eigenvalues of the diagonalized 
form are those of the Weingarten endomorphism (10.3.3); they are called 
the principal curvatures of V at the point, and are generally denoted by 
kl and k2 • The eigenspaces are called the principal directions. One can 
also introduce the principal curvature radii Rl = kll and R2 = k2"l. 
The determinant klk2 of II is called the total curvature, and the average 
H = ~(kl + k2 ) (one-half the trace) is the mean curvature. Notice that 
the total curvature does not depend on the orientation, whereas the mean 
curvature does. 

10.6.2.1. Theorema egregium. Gauss's stunning discovery was that the to
tal curvature equals the curvature defined in 10.5.1! In our notation, 

This means, in particular, that the two fundamental forms are not inde
pendent; we will discuss this point further in section 10.7. Using the Gauss 
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map (10.3.3) we can rewrite 10.6.2.1 as follows: 

10.8.2.2 v·w = Kdm, 

where w denotes the oriented canonical measure on 8 2 and dm the oriented 
measure on V (10.5.5.2), both being considered as volume forms. Thus the 
Gauss map preserves or reverses orientation depending on whether K is 
positive or negative. 

If we recall 10.5.3.2 we see that K = klk2 remains invariant when V is 
deformed in R3, maintaining its intrinsic metric. Intuitively this can be 
justified by considering the case of polyhedra, as shown in figure 10.6.2 (for 
more details, see [Sto69, p. 141]) and the fact that the area of a polygon in 
8 2 can be expressed solely in terms of the sum of its vertex angles, without 
using the side lengths (this follows from Girard's formula 10.5.5.6; see also 
[Ber87, 18.3.8.5]). 

Figure 10.6.2.2 

10.6.3. Application to the volume of tubes. Using 6.9.15 and 10.6.2.2, 
it is easy to see that what we called K2 in 6.9.7 is exactly the total curva
ture K of the surface in R3. Thus formula 6.9.16 gives, if V is relatively 
compact, an exact value for the volume of the region Tub. V between two 
surfaces parallel to V at distance e (10.2.2.12): 

See also 11.20.2. 

vol(Tub. V) = 2e vol(V) + :n2 r K d. 
3 iv 

10.6.4. The osculating paraboloid. One might try to extend the notion 
of the osculating circle (8.4.15 and 8.7.4) to surfaces in R3. However, one 
cannot define an osculating sphere, because the radius of curvature of a 
geodesic that turns around a point v E V changes if Rl ¥= R 2 • What can 
be defined is an osculating paraboloid; this may have been guessed from 
the qualitative study in 4.2.20. (In the plane we can define an osculating 
parabola, but circles are metrically more natural.) 

Take orthonormal coordinates x, y, z in R3 coinciding, respectively, with 
the principal directions and the normal to V at v. Then the paraboloid 
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z = k1 x2 + k2y2 will have with V a contact of order three, by the very 
definition of II. This will be an elliptic paraboloid if K(tI) > 0 and a 
hyperbolic paraboloid if K(tI) < 0 (see 10.2.1.2 and 4.2.20 for figures). If 
K(tI) = 0 and either k. is non-zero it will be a parabolic cylinder. If both 
k. are zero, that is, if II( tI) = 0, the tangent plane to V at tI has a contact 
of third order with V. We know from 4.2.22 that in this case we cannot 
say anything about the local behavior of the surface. 

Let's give names to these cases: 

10.6.'.1. Definition. Let tI be a point on a surface V. We say that tI is 
umbilical if kl = k2 (possibly zero)j elliptic if K(tI) > OJ hyperbolic if 
K(tI) < OJ parabolic if K(tI) = 0 but II does not vanishj and planar if 
II(tI) = O. An asymptotic direction at V is one in which II vanishes. 

10.6.'.2. Remarks. The principal directions are well-determined and or
thogonal, unless tI is an umbilic. Asymptotic directions exist if and only 
if K ::; OJ at a parabolic point there is only one (counted twice), at a 
hyperbolic point two. At a planar point all directions are asymptotic. 

It is to be suspected that integral curves of principal directions (called 
curvature lines of V) and those of asymptotic directions play an important 
role in the extrinsic geometry of V. See 10.6.8, for example. It is easy to 
see that a surface all of whose points are umbilics is a subset of a sphere. 

Notice that the preceding discussion, contrary to the one in 4.2.20, is 
quantitativej but on the other hand it doesn't say anything about the 
intersection of V with Tv V . 

10.6.5. Formulary for the second fundamental form. If (u, tI) 1-+ 

f(u, tI) is an arbitrary immersion, the second fundamental form is tradi
tionally written 

II = L du2 + 2M du dtl + N dtl2 • 

By definition 10.6.2, the principal curvatures kl and k2 are the maximum 
and minimum values of the quotient 

L du2 + 2M du dtl + N dtl2 L + 2M,\ + N,\ 2 

E du2 + 2F dudtl + G dtl2 - E + 2F,\ + G,\2 ' 

where ,\ = dtl/du. A bit of straightforward algebra shows that these ex
tremal values must satisfy 

(Ek. - L) + (Fk. - M)'\ = (Fk. - M) + (Gk. - N)>' = 0 

which in turn implies 

I Ek. - L 
Fk.-M 

Fko -MI_ 
Gk. -N - O. 

From this second-degree equation we get 

(i = 1,2), 

H = kl + k2 = !. EN - 2FM + GL 
2 2 EG - F2 ' 
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10.6.6. Some explicit calculations 

10.6.6.1. Graphs. In the notation of 10.5.3.4 we have 

II = r dx2 + 28 dx dy + t dy2 , K = rt - 8 2 , 

~h + p2 + q2 1 + p2 + q2 

H = ~ t(1 + p2) - 2pq8 + r(1 + q2) 
2 (1 + p2 + q2)3/2 

10.6.6.2. Developable surfaces. Let's show that if K is identically zero V is 
locally a developable surface. In the graph notation, K = 0 implies rt-82 = 
0, which says that the one-forms dp = r dx + 8 dy and dq = 8 dx + t dy are 
linearly dependent at each point. Where dp and dq are not both zero this 
implies the existence of an exact, nowhere vanishing one-form dh such that 
dp, dq and d(z - px - qy) = -x dp - y dq are all multiples of dh. It follows 
that we can express p, q and z - px - qy as functions of h : R2 -+ R: 

p = po h, q = qo h, z - px - qy = w 0 h. 

Since xp' + yq' + w = 0, this says exactly that V is the envelope of the 
one-parameter family of planes z = p(h)x + q(h)y + w. 

For a more complete discussion, see section 11.12 and especially [Spi79, 
vol. V, p. 349 ifl. 
10.6.6.1. Enneper's surface. We have 

1 
II = 2(du2 - dv2), Rl = -R2 = _(u2 + v2 + 1)2, 

2 
H=O. 

Thus Enneper's surface has zero mean curvature: we say it is a minimal 
surface (10.6.9.2). The reader should check that the helicoid of pitch 211" 
and the surfaces in 10.2.3.6 are also minimal. 

10.6.6.4. Implicit surfaces. If V is of the form F-l(O), we first calculate K 
and H to get kl and k2 • In the notation of 10.5.3.8 we have 

H = _ ----;==b/=c== 
2. I F2 + F2 + F2 V '" II % 

If we want to determine the principal directions, we can take the bisectors of 
the asymptotic directions, which are the vectors v simultaneously satisfying 
F'(v) = F"(v, v) = 0, where F' E L(R3 j R) and F" E Bilsym(R3) are the 
first and second derivative forms of F [Spi79, vol. V, p. 204-2051. 

10.6.6.5. Ruled surfaces. In the standard parametrization (10.2.3.7) we find 

II= 1 ((),(m"le')+v(m"+ve",e',e))du2 +2),dudv). 
J),2 + v2 

This, together with 10.6.5, implies 10.5.3.6. It can also be used to show 
that the only ruled minimal surface is the helicoid of pitch 211". 
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10.0.0.0. Surfaees of revolution. We could use 10.4.1.4 and 10.6.6 to com
pute the curvatures of a surface of revolution, but let's instead work geo
metrically. First, by symmetry reasons, the principal directions are given 
by the tangents to meridians and parallels. Formula 10.6.1.1 shows then 
that one of the curvature radii is Rl = r/ sinll, where r is the distance to 
the axis and II is the angle between the normal and the axis. Since meridi
ans are geodesics, the second curvature radius coincides with the radius of 
curvature of the meridian at the point, considered as a plane curve (8.4.15). 

z z 
parallel ~_-+ __ _ 

Figure 10.6.6.6.1 Figure 10.6.6.6.2 

Here are some examples: 

(1) The torus generated by the circle of radius b and centered at the point 
(a, 0) E R2 (see figure 10.6.6.6.2): 

K = sinll 
b(a + b sinll), 

H = a+ 2bsinll 
2b(a + bsinll)' 

(2) The ellipsoid of revolution. Exercise 8.7.19 shows that kVk2 is a con
stant, a pretty result that places ellipsoids of revolution among the 
so-called Weingarten surfaces (section 11.18). 

(3) The catenoid is a minimal surface because of the property of the center 
of curvature of the catenary that can be seen on figure 10.6.6.6.3 (see 
8.7.20). Since this property characterizes the catenary among plane 
curves, we see that the catenoid is the only minimal surface of revolu
tion. 

(4) Beltrami's surface has Gaussian curvature identically equal to -1; this 
comes from a geometric property of the tractrix (figure 10.6.6.6.4). 

10.0.0.1. Parallel surfaces. The radii of curvature of a surface parallel to 
V at distance k are Rl - k and R2 - k, where Rl and R2 are the radii of 
curvature of V. See 10.6.9.5 for an application. See also 10.3.3. 
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Figure 10.6.6.6.3 

Figure 10.6.6.6.4 

10.6.6.8. Arbitrary ellipsoids. If (u, v) are elliptic coordinates (see end of 
10.2.2.3), one shows that 

3 
_R2_~ 

1 - abc' 

3 
_R2 = uv 

2 abc 

(for this and other formulas see [Dar72 , vol. II, p. 392]). In particular, 
along each line of curvature the ratio Rf / R2 is constant. This generalizes 
(2) in 10.6.6.6. For the converse property, see [Dar72, vol. II, p. 415]. 

10.6.1. Geodesic torsion. As in section 8.6, we consider a biregular curve 
C, this time drawn on a given surface V. There are two natural orthonor
mal frames at a point in C: The Frenet frame, and the frame whose first 
two vectors are the tangent to C and the normal to V. If we call the corre
sponding normals I/O and !.IV, respectively, the difference between the two 
bases is given just by the angle () between I/O and !.IV. This angle is sure to 
be something interesting, as is its derivative d() / dt, where t is the arclength 
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along C. The right invariant turns out to be the function 

dfJ 
Tg = T - dt' 

395 

called the geodesic torsion of Cj here, of course, T is the torsion of C 
considered as a curve in R3. Two important points: the geodesic torsion 
of C on V depends only on the tangent to C, and not, as the curvature in 
general does, on the normal to C. In fact, we have the formula 

Tg = (kl - k 2 ) sin 4> cos 4>, 

where 4> is the angle that the tangent to C makes with the principal di
rection associated with k 2 • As a consequence, curves of constant geodesic 
torsion coincide with lines of curvature. 

Figure 10.6.7 

10.G.'1.L Note. IT one wants to go a bit further in the study of surfaces, 
things can soon get pretty hairy. For instance, one may want to know the 
(ordinary) curvature and torsion of the asymptotic curves on a surface V, 
which arise naturally as the curves whose osculating plane is always tangent 
to V (this follows from 10.6.1.1). For the torsion the formula is simple: 

T = V-klk2 = V-K. 
But the curvature is given by the following formula: 

where the partial derivatives are taken with respect to arclength along the 
lines of curvature. See IDar72, vol. II, p. 415], and compare with 10.6.6.8. 

10.6.S. Lines of curvature, parallel surfaces and caustics. Figure 
10.6.8 is very important, both in theory and in practice. It translates the 
following essential result: 

10.6.8.1. Theorem. A curve C in V is a line of curvature (10.6.4.2) if and 
only if the normals to V along C form a developable surface. 0 
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Figure 10.6.8 

We recall that this condition is equivalent to saying that the normals 
form a surface that is locally a plane, a cylinder, a cone or the set of 
tangents to some curve in R 3 , which is the line of striction. 

Figure 10.6.8 depicts the situation away from umbilics (10.6.4.1). In 
the neighborhood of an umbilic too many things can happen, and it is 
impossible to draw a general picture; but see [SG82j for a discussion of the 
generic case. 

Here we just assume we're in a region free of umbilics, and that the 
normals to each curve form a tangent developable or a cone. Then the 
lines of curvature fall into two mutually orthogonal one-parameter familes 
11 and 12 , and the line of striction of the developables in each family 
describes a surfaces C., for i = 1,2, called a caustic or focal surface for V. 
The reason for the name is that if V is a wavefront, its normals are light 
rays, and the light rays would burn anyone rash enough to get near either 
caustic. Astigmatism occurs when the focal surface of the cornea does not 
degenerate into a single point. In the study of ship hulls, focal surfaces are 
the loci of the metacenters. 
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The following observations are trivial: parallel surfaces have the same 
caustics; the contact points of a normal with C1 and C2 are at distance 
Rl and R2 , respectively, from the foot of the norma~ whence 10.6.6.7, 
of which 10.3.3.1 is an infinitesimal version. All these results are part of 
the following important general philosophy for riemannian manifolds in 
general, and even for a fairly general class of metric spaces: the various 
curvatures of an object can be obtained by looking at its parallel objects 
(those at constant distance). 

10.6.8.2. Examples. 
(1) Moulding surfaces. The moving curve C (10.2.3.10) is a line of cur

vature and also a geodesic. Conversely, a surface having a family of 
geodesics which are also lines of curvature is necessarily a molding 
surface. 

(2) Surfaces of translation. Not surprisingly, both caustics of a surface of 
translation are cylinders. 

(3) The envelope of a one-parameter family of spheres (d. 10.2.3.12). It 
is easy to see (figure 10.6.8.2) that, since each sphere is tangent to 
the surface along a circle, such a circle is a line of curvature, and the 
associated developable is a cone. Thus one caustic degenerates into a 
curve. Conversely, if one caustic is a curve, the surface is an envelope of 
spheres. Another equivalent condition is that the radius of curvature of 
each line of curvature is a constant. Recall the two important particular 
cases of envelopes of spheres: surfaces of revolution and boundaries of 
tubes. 

Figure 10.6.8.2.3 

(4) Dupin cyclids come up again: by (3) and 10.2.3.12, a surface is a Dupin 
eyelid if and only both of its caustics are curves. 

10.6.8.1. Additional properties. Each line of striction (or cuspidal edge, d. 
10.2.3.9) is a geodesics of the caustic it lies on. This is just because the 
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normal to a caustic and the tangent to the associated line of curvature are 
parallel. 

If V and Ware surfaces that intersect along a line of curvature of V, say 
C, a necessary and sufficient condition for C to be a line of curvature of W 
is that the angle between V and W remain constant along C. 

In particular, if three one-parameter families of curves form a triply 
orthogonal system, their pairwise intersections are lines of curvature for 
each of the surfaces. We have seen examples of triply orthogonal systems 
in 10.2.2.6 (cyclids) and in 10.2.2.3 (quadrics). The ellipsoid's lines of 
curvature are especially interesting: in addition to being connected with 
the geodesics, as mentioned in 10.4.9.5, they are "bifocal conics" with the 
umbilics as foci. This means that each line of curvature is the locus of 
points whose intrinsic distances to two non-antipodal umbilics add up to 
a constant. The difference of the distances is also constant, because, as 
we have mentioned, every geodesic starting from one umbilic reaches its 
antipodal, and this implies by 11.3.2 that the length of all these geodesics 
is the same. For a proof of all this, see [SaI74, p. 431 ff). 

ellipsoid £ 

Figure 10.6.8.3 

Curvature lines are preserved under inversion (8.7.4). This can be see as 
follows: inversions preserve angles [Ber87, 10.8.5), hence triply orthogonal 
systems; by the previous paragraph, this reduces the problem to showing 
that every surface can be included in a triply orthogonal system. This is 
guaranteed by the existence of parallel surfaces and figure 10.6.8. 

Similarly, asymptotic lines are preserved under projective transforma
tions [Ber87, chapter 4). This comes from the fact that the definiting 
property of an asymptotic curve (10.6.4.2) is a contact of order three. 

10.ft.8.'. More advanc:ed formulas. The reader will find in [Dar72, vol. III, 
p. 340-341), a table with just about every formula for the calculation of 
the various elements of the caustics. For example, here's a neat formula 
for the total curvature of the caustic C1 : 

28Rl/8u 
KCl = -(Rl - R2) 8R2/8u' 

where u and v are the coordinates associated with the curvature lines. 
As an application of this formula, we get the following necessary and 

sufficient condition for the existence of a universal relation between Rl and 
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R2 (cf. section 11.18 and example (2) in 10.6.6.6): 

KC1Kc 1 = (Rl - R2)4. 

The reader who is fond of delicate theorems should read [Dar72, vol. IV, 
p. 407]. This reference contains, among others, the following result: if all 
the lines of curvature in one family are plane curves and one of them is a 
circle, all of them are circles. 

10.6.9. Significance of the mean curvature. For each point tI on an 
oriented surface V, measure along the normal 11 to V at tI a distance f(tI). 
The points thus determined form a new surface, which we denote by VI; for 
instance, if f is constant, VI is parallel to V. Assume that V is relatively 
compact so the integrals will be finite. Then 

10.6.9.1 d(are:~VtI)) (0) = 2 Iv f(tI)H(tI) dtl, 

where H is the mean curvature. This can be seen as follows: the element 
of area on VtJ is the square root ot the determinant of its first fundamental 
form. The derivative of a determinant involves the trace of the derivative 
of the form. Here this derivative equals II by 10.3.3.1, and Tr(II) = 2H by 
definition. 

Figure 10.6.9 

This again illustrates the philosophy introduced in 10.6.8.1, because for 
parallel surfaces the derivative of the area is measured by Iv H dtl. 

Now fix a closed curve C in R3 and let's look for a surface V with 
boundary C and having the smallest possible area (that is, a minimal 
surface). A classical reasoning from the calculus of variations, applied 
to 10.6.9.1, shows the following result: 

10.6.9.2. Theorem. The mean curvature of a minimal surface is identically 
zero. 0 

We have already encountered several examples of minimal surfaces. In 
graph notation the equation of a minimal surface is 

(1 + q2)r - 2pqs + (1 + p2)t = O. 
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10.6.9.S. A geometric interpretation of the condition H = constant is that 
the coordinates associated with the lines of curvature of V are conformal. 
More simply, the Gauss map is conformal. This result will be fundamental 
in 11.16.6. 

An interesting physical interpretation of the mean curvature is given by 
soap bubbles. Because of surface tension, the equilibrium position taken by 
a soap film is a surface whose mean curvature is the difference between the 
pressures on either side. In particular, a soap film with a given boundary 
will take the shape of a minimal surface with that boundary. 

10.6.9.~. We will continue in 11.19.3 and 11.19.4 the study, initiated in 
10.2.3.13, of surfaces whose total or mean curvature is prescribed as a 
function of the direction of the normal. 

10.6.9.5. Remark. Here is an immediate consequence of 10.6.6.7: if V is 
a surface of constant total curvature, there exist at least two surfaces of 
constant mean curvature parallel to V. Conversely, a surface of constant 
mean curvature has at least one parallel surface of constant total curvature. 
For applications, see [Ser69]. 

10.6.9.6. Surfaces of revolution with constant mean curvature. By 10.6.6.6 
we see that finding all surfaces of revolution whose mean curvature is a 
given function of the latitude amounts to finding all plane curves whose 
radius of curvature satisfies a certain condition. 

The problem can be solved using calculus, but Delaunay has found a 
stunning geometric construction for all surfaces of revolution with con
stant mean curvature (see [EeI87] and [Ste]): Roll a conic along a straight 
line, without slippage. The curve described by a focus of the conic is the 
meridian of a surface of constant mean curvature (if the line is the axis of 
revolution). 

Here are the special cases: an ellipse degenerated into a segment gives a 
sphere; a circle gives a cylinder; a parabola gives a catenoid. 

circle 

cylinder catenoid 

Figure 10.6.9.6 

10.6.9.'1. The mean curvature and solids of equal area. Here's a geometric 
interpretation for constant mean curvature: if 0 C R3 is a compact sub
manifold-with-boundary bounded by some ao = S, the volume of 0 will be 

z 
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largest, for a given area of S, exactly when S has constant mean curvature. 
This follows by applying the calculus of variations to formula 10.6.9.1. For 
more information, see section 11.20. 

10.7. Links Between the two Fundamental Forms 

We mentioned in 10.6.2.1 one relation between the two fundamental forms: 
the total curvature equals the determinant klk2 of the second fundamental 
form. Another relation is the Codazzi-Mainardi equation (or equations, if 
they are written out in coordinates). This equation involves the covariant 
derivative D, introduced in 10.4.7. If W is the Weingarten endomorphism 
(10.3.3) and e,,, are arbitrary vector fields on V, it reads 

10.1.1 

To write the equation in coordinates one must resort to Christoffel sym
bols, the coefficients of D in coordinates (10.4.7). In any case we know 
that D is determined by the first fundamental form. 

10.1.2. Special case: parametrization by lines of curvature. If 
(u, v) are the parameters associated with the lines of curvature, the ex
pression of the Codazzi-Mainardi equation in coordinates is very simple: 

aL = HaE, 
av av 

aN = HaG. 
au au 

Here is a counterpart for theorem 8.6.13, on the existence and uniqueness 
of curves in R3 with curvature and torsion given as functions of arclength: 

10.1.3. Theorem. Let U C R2 be open. If g = ds 2 and II are differen
tiable quadratic forms on U, the first being positive definite, and if 10.6.2.1 
and 10.7.1 are satisfied, there exists an immersed surface in R 3 , unique up 
to a rigid motion, having g and II for fundamental forms. 

Proof (outline). The idea is to work as in 8.6.13, looking for a moving 
frame that has nice properties like the Frenet frame. The only source of 
difficulties is that here, instead of an ordinary differential equation, we get 
a partial differential equation, with derivatives with respect to the coordi
nates u and v of U. Thus the problem is apparently more difficult. But the 
system is over-determined, and its integration is not difficult if the Frobe
nius compatibility conditions (3.5.15.4) are satisfied. And in our case these 
conditions amount exactly to 10.6.2.1 and 10.7.11 For details, see [Car76, 
p. 311]; [Spi79, vol. IV, p. 61]; [KN69, vol. II, p. 47] and [St069, p. 146]. 0 

We hadn't talked about the Codazzi-Mainardi equations before because 
they do not playa role in the statement of the results discussed so far, and, 
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by and large, not even in their proofs. By contrast, they playa fundamental 
role in several global results, which are the object of the next chapter. 

10.8. A Word about Hypersurfaces in Rn+1 

The reader may be surprised that, after having talked about curves in 
R2 and surfaces in R 3 , we stop. The reason for this is that the theory 
of surfaces in R3 is much richer than that of hypersurfaces in Rn+l, for 
n ~ 2. Here's why: 

We can still define the two fundamental forms, the first one being g = ds 2 • 

By diagonalizing the second fundamental form with respect to the first we 
again define principal curvatures k1 , ... , kn ; naturally, there exist general
izations of the formulas above that relate the two fundamental forms. In 
particular, Gauss's theorem (10.6.2.1) can be generalized to say that, for 
every i and j, the product kikj is equal to the sectional curvature O'ij of 
the plane spanned by the two principal directions associated with i and 
j, a quantity that only depends on the first fundamental form (see [Spi79, 
vol IV, p. 61J or [KN69, vol. II, p. 23]). 

This is such a strong relation that it implies that, in general, the second 
fundamental form is determined by the first. For, if kikj = k~k~. for all 
pairs i < j, and if ki ¥- 0 for at least three values of i, it follows that 
k~ = k. for every i or k~ = -k. for every i. This change in sign corresponds 
to switching the surface's orientation. 

Thus the common phenomenon of surfaces that are intrinsically isometric 
but are not equivalent under rigid motions of R3 has no counterpart here, 
except if the shape of the manifold in space is very degenerate: the rank 
of the second fundamental form must be everywhere less than three. The 
interested reader can consult [Spi79, vol. III, chapter 12J. 

For surfaces, on the other hand, problems involving the relationship 
between the two fundamental forms were the staple of many nineteenth
century geometers. We discuss a few of them in chapter 11; the reader can 
take a look at [Dar72J, [Spi79, vol III, chapter 12J, and [Eis62J. 

The discussion above applies only to the local theory. The global geom
etry of hypersurfaces in R n +1 is rich in any dimension. For lack of space, 
we can only refer the reader to [Spi79, vol. III, chapter 12J, [BZ86J, [Lei80J 
and [Oli84J. 



CHAPTER 11 

A Brief Guide to the Global Theory of 
Surfaces 

Our aim is to understand complete, compact surfaces from 
the global point of view, posing problems and obtaining results 
parallel to the ones discussed in chapter 9. As we have seen 
in chapter 10, such problems fall naturally into two categories: 
the ones dealing with abstract riemannian manifolds (X, g) and 
the ones dealing with surfaces embedded or immersed in R 3 • 

Thus the chapter is divided into two parts. In the first we 
study surfaces (X, g), per haps defined by an embedding into 
R 3 , for their intrinsic properties. After discussing the problem 
of globally shortest paths, we tackle the following question: 
what can one say about the intrinsic geometry of (X, g) when 
given information about its natural invariant, the Gaussian 
curvature? The answer is given by a comparison theorem, 
which works in both directions: if K ~ k (resp. K ~ k) the 
geometry of (X, g) is bounded above (resp. below) by the geom
etry of a simply connected manifold with constant curvature 
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k. Ultimately, it is the existence of this one-parameter family 
of universal objects that makes this result so satisfying. 

The relationship between curvature and topology is discussed 
next, based on the Gauss-Bonnet formula. After that we 
extend to submanifolds-with-boundary of an arbitrary (X, g) 
the isoperimetric inequality proved in chapter 9 for the plane, 
with the consequent introduction of the isoperimetric profile 
of X. We also study isosystolic inequalities, which are in a 
sense isoperimetric inequalities for compact manifolds without 
boundary; the role of the boundary is played by the shortest 
closed geodesic of the surface. 

By way of transition we study the problem, still almost en
tirely open, of realizing a surface (X, g) by an immersion or 
embedding into R3. 

The second part starts with problems having to do with the 
Gaussian curvature K. Then come problems concerning the 
mean curvature H, which is also a natural invariant, since, 
together with K, it completely determines the second funda
mental form. When H is identically zero we have the famous 
minimal surfaces; when H is a constant we also have inter
esting and strong results. We conclude with the isoperimetric 
inequality for submanifolds-with-boundary of R3 and their re
finement, due to Minkowski. 

In all these questions we have striven for completeness, in the 
sense of talking about all the important problems and results, 
and giving references when the subject is not discussed in the 
majority of classical books on surfaces. 

We mention two important topics that are absent from our 
short guide: first, analysis on abstract riemannian surfaces, 
including the Laplace-Beltrami operator, the heat and wave 
equations, and vibrations. Two excelent references for this 
subject are [Ber85] and [Cha84]. Then, complex structures on 
surfaces: every oriented riemannian surface can be made into a 
Riemann surface, that is, a one-dimensional complex manifold. 
This result of paramount importance is the starting point for a 
huge field of studies, still very active; see [WoI85] and [Gun62], 
for instance. 
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I PART I: INTRINSIC SURFACES I 

11.1. Shortest Paths 

11.1.1. We saw in 10.4.8 that two sufficiently close points in (X, g) can 
be connected by a unique shortest path. Is this true globally? Evidently 
not in generalj both uniqueness and existence fail. For instance, take the 
standard sphere and remove a point from it (or a bigger chunk, if you're 
hungry). Then two points on opposite sides of the hole and close enough 
to it will not be connected by a segment. On the other hand, antipodal 
points are connected by infinitely many segments. 

removed point 

infinitely many shortest paths from x to -x 

Figure 11.1.1.1 

Now the punctured sphere is not a complete metric space, and certain 
geodesics cannot be extended to the whole real line. These two remarks are 
linked by the very important Hopf-Rinow theorem, which essentially says 
that the only thing that can prevent a geodesic from being extended indef
initely is a hole in the surface. To state this theorem, we must introduce 
some notation. 

For any x E X, define the exponential map at x, denoted by exp"" as the 
map that takes" E T",X into the point "1'1/11'111 (11,,11) reached by walking a 
distance 11,,11 along the geodesic "1'1/11'111 (10.4.8.1). In general, exp", is not 
defined on the whole of T",Xj its maximal domain is a star-shaped subset of 
T",X whose frontier corresponds to points to which geodesics can no longer 
be extended (figure 11.1.1.2). 

11.1.2. Theorem (Hopf-Rinow). The following three conditions are 
equivalent for a riemannian manifold (X, g): 
(i) for some x, the domain of exp", X is the whole tangent space, that is, 

every geodesic emanating from x is defined on the whole reallinej 
(ii) for every x, the domain of exp", X is the whole tangent spacej 
(iii) (X, g) is a complete metric space. 
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Figure 11.1.1.2 

These conditions imply that any pair of points in X can be joined by at 
least one segment. 0 

11.1.3. Notes. The last condition does not imply the other three, as you 
can see by taking an open disc in the Euclidean plane. 

A surface that is a closed subset of S c R3 is obviously complete, but 
the converse is not true: take a cylinder over a spiral that wraps around a 
limit circle without ever touching it. 

(X, g) 

Figure 11.1.3 

From now on all riemannian manifolds, including surfaces in R 3 , 

will be assumed complete unless we explicitly say otherwise. 
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11.1.4. The diameter. The diameter of a metric space (X, g), denoted 
by diam(g), is the supremum of the distance between any two points in X. 
The Hopf-Rinow theorem implies that diam(g) is finite if and only if X 
is compact (recall from 10.4.8.1 that the topology of X as a manifold X 
coincides the metric space topology arising from g). 

11.2. Surfaces of Constant Curvature 

We saw in 10.5.2 that spheres of radius R have constant Gaussian curvature 
equal to 1/ R2; that the Euclidean plane has zero curvature; and that R2, 
with the metric given in polar coordinates by 

d 2 _ d 2 sinh2 Ffi-d1l2 
s - r + -k 11 , 

where k < 0 is arbitrary, has constant curvature k. For each real number k, 
then, we have found one riemannian surface of constant curvature k, which 
we denote by S~. This notation is fully justified by the following result: 

11.2.1. Theorem. Every simply connected riemannian surface of constant 
curvature k is isometric to S~. 

Proof. Locally this comes from 10.5.3.3 (cf. 10.5.2); globally it is a conse
quence of simple connectedness (watch out for the case of spheres, which 
require two charts). 0 

11.2.2. There are two other useful models for S~ when k < o. The first is 
the Poincare model, given by the metric 

4 
ds2 = 2 (dx2 + dy2) 

(1 + HX2 + y2)) 

on the open disc x 2 + y2 < -~. The other has appeared in disguise in 
exercise 6.10.6: If k = -1 it is defined by ds2 = y-2(dx2 + dy2) on the 
half-plane y> 0, and is called the upper-hall-plane model. 

The unique simply connected riemannian surface of curvature -1 is 
called the hyperbolic plane. 

11.2.3. Now let (X, g) be an arbitrary riemannian manifold (of any dimen
sion} and p : X -+ X a covering space. Following 10.3.2, we can consider 
on X the induced riemannian metric p. g, which we denote by g. We call 
(X, g) -+ (X, g) a riemannian covering space. 

11.2.4. It follows from 11.2.1 and the existence of universal covers that 
every surface (X, g) of constant curvature k is the quotient of S~ by a 
group of isometries, acting properly discontinuously without fixed points. 
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For k > 0, the classification of surfaces (4.2.25) implies that there are 
only two manifolds of constant curvature: S~ itself and its quotient by the 
antipodal map, namely the real projective plane P2(R) (2.4.12.2). The 
projective plane inherits from S~ a canonical geometry, called elliptic; in 
this geometry geodesics are all closed (cf. 11.10) and satisfy the incidence 
axioms for lines. For more information, see [Ber87, chapter 19], [LeI85] and 
[Gre80]. 

If k = 0, the possible quotients of properly discontinuous actions without 
fixed points are cylinders, Mobius strips, tori and Klein bottles (2.4.12). 
The first two are compact and the last two non-compact. Two tori are 
isometric if and only if the lattices they come from can be mapped into 
one another by a plane isometry; after normalization, we see there is a 
two-parameter family of flat tori. Parameters in the space of riemannian 
structures are traditionally known as moduli, so the moduli space for the 
torus is two-dimensional, and is in fact obtained from the shaded region 
shown in figure 11.2.4 by identifying boundary points that give the same 
riemannian structure. The bottom left corner of the shaded region cor
responds to the square lattice Z2, and the bottom right corner to the 
hexagonal lattice. For more details, see [BGM71], [Cha84]. 

x 

- 1 0 1/2 

Figure 11.2.4.1 

Z.I+Z.x 
------1' , , , , , , , , , , , , , , 

A Klein bottle is the quotient of a torus by an involution, and the exis
tence of such an involution requires that the torus come from a rectangular 
lattice; thus, after normalization, we get only a one-parameter family of 
Klein bottles, the modulus being the width of the rectangle, for example. 
Cylinders and Mobius strips, too, have only one modulus. 

width 

Figure 11.2.4.2 
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11.2.5. The case k < 0 is much more complex. First, any compact surface 
of genus g ~ 2 admits a metric of constant negative curvature: to see this, 
one can easily construct a regular polygon in the hyperbolic plane S~ whose 
vertex angles all equal 27r/4g [Ber87, 19.8.20], then glue its edges in the 
right pattern to obtain the surface. The complementary problem, that of 
studying the set of riemannian structures on such a surface, is much harder, 
and still an active research area; one important result is that the space of 
moduli has dimension 6g - 6 if the surface is orient able and 3g - 3 if not. 
For this huge subject, see [Wo185], [Thu79] and [BBL73] (non-orientable 
case). 

The area of a compact surface of constant curvature k ¥- 0, on the other 
hand, is very easily given by the Gauss-Bonnet formula (cf. 11.7.1); it 
equals area(X) = 27rk- 2 Ix(X) I. 

The geometry of surfaces of constant curvature is extremely rich. In 
addition to the references mentioned above, the reader can consult [Wol72], 
[Spi79, vol. IV], and [Thu88]. 

11.3. The Two Variation Formulas 

Consider a geodesic ,,/, parametrized by arclength (we assume this about 
all geodesics, unless we say otherwise), and a one-parameter family 

11.3.1 C: [a, b] X ]-'7, '7[ -+ X 

of curves C a = Cl!a,b]x{a} such that Co = "/. We want to estimate the 
lengths leng(Ca ) = l(a). The first two derivatives of l are easily calculated: 

11.3.2. Theorem. (first variation form.ula). If 8t denotes the transverse 
curve a -+ C(t, a), we have 

d(~~» (0) = (8~(0) I ,,/'(b» - (s~(O) I "/'(a». o 

a 

a b 

Figure 11.3.2.1 
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For example, this variation is zero if the endpoints are fixed (d. 1004.5). 
Another consequence is that if, is a geodesic from m to nand 8 is a geodesic 
from n to p, the strict triangle inequality d(m, p) < d(m, n) + d(n, p) holds, 
unless ,'(n) = 8'(n). 

p 

Figure 11.3.2.2 

To express the second derivative, suppose, for simplicity, that all the 
transverse curves St are orthogonal to, at O. Orient X along ,. Then the 
transverse vector s~(O) is of the form 

s~(O) = y(t) (,'(t) + i) , 
where y is a scalar function (d. 10.4.8.3) and the expression in parentheses 
represents the vector " after a rotation of 11"/2. 

11.3.3. Theorem (second variation formula). If K is the total curva
tu.re and p is the geodesic cu.rvature, we have 

This formula, of which 11.5.5 is an integral version (via 11.5.3), is the 
most important tool in riemannian geometry at this time. We will use it 
many times in the sequel (d. 11.6.2). 

11.4. Shortest Paths and the Injectivity Radius 

11.4.1. The cut locus. If e is a unit tangent vector and ,e its geodesic, 
we know from 10.4.8.1 that d(,(O), ,(t)) = t for t small enough. This 
certainly can't be true if t gets too large: think of the diameter of a compact 
manifold! It makes sense to look at the (possibly infinite) infimum of the 
values of t for which d(,(O), ,(t)) < t; this is called the cut value of e, and 
denoted by cutval( e). 

11.4..1.1. Theorem. If t = cutval( e)' at least one of the two conditions must 
hold: 
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(i) there exists another segment 6 from 'Y(O) to 'Y(t), distinct from 'YIO,tli 
or 

(ii) the exponential map exp'l(O) : T'l(o) X -+ X has rank < 2 at teo 

In addition, ifexp'l(o) has rank < 2 at '1, we have cutval('1/I1'1I1) :511'111. 0 

1l.(.I.Z. Definition. When exp'l(O) has rank < 2 as in the theorem, we say 
that the points m = 'Y(O) and n = 'Y(t) are conjugate along the geodesic 
'Ye. The cut locus cutloc{m) ofm E (X, g) is the set of points of the form 
eXPrn (cutval( e)e). 

y n = y ¢ (Cut val (¢)) 

m 

Figure 11.4.1.2 

11.4.2. Examples of cut loci. We remarked in 10.4.9 that geodesics are 
hard to calculate explicitlYi the cut locus can only be harder. The part 
coming from conjugate points is sometimes easier, and may help in the 
search. 

In the sphere Sr the cut locus of any point is its antipodal point. In 
elliptic space, cutloc{m) is the projective line m* dual to m. 

P2(R) 0 
m. . 

Cutloc (m) m 

Cutloc (m) 

Figure 11.4.2.1 

In a flat torus, the cut locus is the image under the exponential map 
of the boundary of the fundamental domain, or Voronoi diagram, of the 
underlying lattice [Ber87, 1.9.12]. 

cut locus 
in T2 

order 3 

order 2 

order 2 
order 3 

Figure 11.4.2.2 

··'Voronoi 
: domain 

cut locus 
in R2 
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In a torus of revolution, the cut locus of a point m on the outer equator 
is formed by the inner equator, the opposite meridian and an arc of the 
outer equator, whose endpoints are conjugate to m. 

numbers indicate how many segments join m to each point of its cut locus 

m 

Figure 11.4.2.3 

For an ellipsoid, the analysis in 10.4.9.5 allows one to show that the cut 
locus of an umbilic is the opposite umbilic, whereas the cut locus of any 
other point is an interval [Man81]. 

11.4.3. General results on the cut locus. The study of the cut locus 
was first undertaken by Poincare, and other people to have obtained re
sults include Myers, Warner, Gluck-Singer, Buchner and C. T. C. Wall 
Presently we know the following (see [Buc78] and [WaI79]): 

11.'.1.1. The cut locus of m is the closure of the set of points that can be 
connected to m by at least two distinct segments. 

11.'.1.2. If (X, g) is real analytic, the cut locus of every point is a suban
alytic set. In particular, in dimension two the cut locus is a graph. The 
number of segments joining a point to m is its order in the graph, and a 
point has order one when it's conjugate to m. 

11.'.1.1. In general the cut locus can be wild. There exist riemannian met
rics on 8 2 for which the cut locus of almost all points is non-triangulable. 

11~'.1.'. However, for generic metrics (we won't define this notion, but the 
idea is that almost all me tries are generic) the cut locus of every point is 
triangulable and has no points of order higher than three. 

Cutloc (m) 

Cutloc (m) Cutloc (m) 

m 

order 1 order 2 order 4 

Figure 11.4.3 
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11.4.4. Injectivity radius. The injectivity radius of (X, g) at m is defined 
by 

inj(m) = inj(X, m) = inf {cutval(e) : e E UmX}, 

where UmX is the unit tangent bundle at m. This number is always positive 
because the cut value is a continuous function on U M. The injectivity 
radius of (X, g) is then 

inj(X, g) = inj(X) = inf {inj(m) : mE X}; 

this number can be zero in general (figure 11.4.4) but is positive if X is 
compact. 

----_~ 00 

lnj (m) ~ 0 

Figure 11.4.4 

One reason why the injectivity radius is important is that every disc 
B(m, r) with r :5 inj(m) is diffeomorphic to R2. Similarly, for every mE X, 
the complement X\ cutloc(m) is diffeomorphic to R2. 

The injectivity radius also controls the area of (X, g). The isoembolic 
inequality says that 

area(X, g) ~ ~ inj2(g), 
11" 

and equality only holds for S~, with k > o. In fact, we can say even more 
ICro84] if we know the area (or, in higher dimension, the volume) of the 
star-shaped set E(x) determined on the tangent plane TmX at a point x 
by the cut value function UmX -+ ]0,00]: there exists a universal constant 
c(n), where n is the dimension of X, such that 

voI2(X, g) ~ c(n) r vol(E(x))dx. 
JmEX 
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11.5. Manifolds with Curvature Bounded Below 

We now consider surfaces (X, g) whose Gaussian curvature is ;:::: k, where 
k is a fixed real number. Here it is convenient to introduce a notion that 
was hiding behind geodesic coordinates (10.5.3.3): 

11.5.1. Definition. A Jacobi field on a geodesic "'f of a surface is a scalar 
function f on"'f such that f" + (K 0 "'f)f = 0, where the derivative is taken 
with respect to arclength. 

Co = y 

Figure 11.5.1 

Every Jacobi field f on "'f gives rise to a one-parameter family C of 
geodesics Ca , such that Co = "'f and f is the magnitude of the partial 
derivative of C with respect to a at Co: 

~~ (t, 0) = f(t) ("'f'(t) + i) . 
By 1.2.6 and 1.3.1 there exists a unique Jacobi field f on "'f for any choice 

of f(O) and 1'(0). These quantities represent the velocity and geodesic 
curvature p of the transverse curve So of the family C at t = 0 (see 11.3 for 
notation). More precisely, we have 

s~(O) = f(O) ("'f'(0) + i) and 
f'(O) 

P = f(O)' 

11.5.2. Notation. In S~ the equation of a Jacobi field reduces to f" + 
kf = O. Denote by hk the solution of that equation such that hk(O) = 0 
and h~(O) = 1, that is, 

if k > 0, 

if k = 0, 
if k < O. 
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Also, denote by to the first zero of hk distinct from zero, namely 7r/..ff if 
k > 0 and +00 otherwise. 

11.5.3. Fundamental lemma. If (X, g) satisfies K ~ k, every Jacobi 
field such that f(O) = 0 and 1'(0) = 1 satisfies f(t) :::; hk(t) untill has a 
zero. In particular, if k > 0, there always exists t E ]O,7r/Vk] such that 
f(t) = o. 0 

The conclusion may be false beyond to (figure 11.5.3). This lemma 
follows from classical Sturm-Liouville theory, and has numerous conse
quences. 

sin y/kt/y/k 

~t' 
Figure 11.5.3 

11.5.4. The case k > O. For example, together with theorem 11.4.1.1 
it shows that cutval(e) :::; 7r/..ff for every e. In particular, diam(g) :::; 
7r/..ff for every (X, g) with K ~ k, and 11.1.4 implies that X is compact. 
(Notice that we're talking about the intrinsic diameter, even if the surface is 
embedded in R3.) By the Gauss-Bonnet formula below (11.7), this means 
that X can only be 82 or P2(R). Finally, notice that 7r/..ff is exactly the 
diameter of S~. 

The problem of surfaces (X, g) with K > 0 but not necessarily compact is 
more subtle. Cohn-Vossen [GM69] managed to show that all such surfaces 
are homeomorphic to R2. 

11.5.5. Trigonometry. We denote by T* a triangle on S~ having one 
angle ex and adjacent sides band c, and let a* = F(b, c, ex) be the length of 
the opposite side. We have [Ber87, chapters 18 and 19]: 

a2 = b2 + c2 - 2bccosex 
cos a = cos b cos c - sin b sin c cos ex 
cosh a = cosh b cosh c - sinh b sinh c cos ex 

for k = 0 (Euclidean plane), 
for k = 1 (sphere), 
for k = -1 (hyperbolic plane). 

Now let T be a triangle on a surface (X, g) having angle ex and sides b, c 
as above. If the opposite side, of length a, can be realized as a segment that 
does not intersect the cut locus of the vertex of angle ex, we can integrate 
11.5.3 to get the inequality a :::; Fk(b, c, ex) if K ~ k. A. D. Alexandrov 
extended this and proved that a :::; Fk(b, c, ex) for every triangle on such a 
manifold. 
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11.5.6. Areas. Integrating 11.5.3 immediately gives the inequality 

areax(B(m, r)) ~ areas~ (B(r)). 

One can prove much more [GroB1, p. 65]. 

11.6. Manifolds with Curvature Bounded Above 

The technique of Sturm-Liouville can be applied in the other direction: 

11.6.1. Lemma. If (X, g) satisfies K ~ k, every Jacobi field such that 
f(O) = 0 and 1'(0) = 1 satisfies f(t) ~ hk(t) for t ~ to· In particular, f 
has no zeros before to, and no zeros at all if k ~ O. 0 

f(t) 

~. 
sin VIt/VI 

Figure 11.6.1 

11.6.2. Consequences. For every disc of radius r ~ to and r ~ inj(m) 
we have 

areax(B(m, r)) ~ areas~ (B(r)). 

Similarly, every sufficiently small triangle satisfies a ~ Fk(b, c, a). Alexan
drov's result does not hold in general (figure 11.6.2), but it does hold if 
X is simply connected and k ~ 0; in this case we have a ~ Fk(b, c, a) for 
every triangle. 

c b 

n 

Figure 11.6.2 

In particular, the celebrated Hadamard's theorem holds: in any manifold 
of non-positive curvature two arbitrary points are connected by a segment, 
which is unique if the manifold is simply connected (if not, there is a unique 
geodesic joining the two points for each homotopy class). This implies that 
a simply connected surface with K ~ 0 is diffeomorphic to R2. 
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11.6.S. Poles. A point in a riemannian surface is called a pole if its in
jectivity radius is infinite. A manifold having a pole is diffeomorphic to 
R2. The previous paragraph says that all points of a simply connected 
manifold of non-negative curvature are poles. But the vertex of an elliptic 
paraboloid is also a pole, although K > o. The poles of quadrics in R3 
have been studied in [Man81], which contains delicate results. 

11.7. The Gauss-Bonnet and Hopf Formulas 

Let's triangulate a compact riemannian surface (X, g) and apply formula 
10.5.5.4 to each triangle. By definition, the Euler characteristic of X is 
x(X) = V - E + F, where V, E and F stand for the number of vertices, 
edges and faces, respectively. We immediately obtain the formula 

11.1.1 Ix K(m)dm = 21rX(X). 

This is an all-important formula in the study of surfaces. It was extended 
to the non-compact case by Cohn-Vossen, after suitable modifications in 
the definitions [CG85]. For sharper results, having to do, for example, 
with the parts of X where K is positive and those where K is negative, see 
[BZ86]. 

11.1.2. Sticking to the compact case, we remark that 11.7.1 gives right 
away a matching of possible topological types with conditions on the cur
vature of a riemannian surface. If K > 0, we recover 11.5.4: X can only be 
8 2 or P2(R). If K < 0 we see that X must have at least one handle if it's 
oriented, two if not: this according to the list of surfaces in 4.2.25. If we 
allow K ~ 0 or K :5 0, the possibilities remain the same, with the addition 
of manifolds of curvature identically zero; these, according to 11.2.4, are 
flat tori and Hat Klein bottles. Finally, notice that if K is negative and 
constant, the last paragraph in 11.2.5 gives area(X) = 41rK- 2 (g-1), where 
g is the genus; thus the area increases with topological complexity, which 
is intuitive enough. But see also 11.9. 

11.1.S. Application: minimal area of a surface. It is natural to study 
metrics g on X with bounded geometry, that is, those whose curvature sat
isfies -1 :5 K :5 1. (We can also say that we control g by its acceleration.) 
The minimal area of a surface X, compact or not, is 

minvol(X) = inf{area(X,g): (X,g) is complete and -1:5 Kg:5 I}. 

Clearly the minimal area of a compact surface is 21rlx(X) I, by 11.7.1. If 
X(X) 1= 0 the minimal area is non-zero and is achieved by every metric of 
constant curvature ±1, as the case may be; if X(X) = 0 (torus and Klein 
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bottle) the infimum is not reached, but is the limit of flat metrics. We can 
say that the torus and the Klein bottle have lower-dimensional geometric 
limits, namely a circle or a point. 

The non-compact case requires a much more delicate analysis. The an
swer can be found in [BP86]: the minimal area is zero, except for the plane 
R2, in which case it is 211'(1 + V2). This value is attained by only one man
ifold: a closed ball of radius Arcsin2- 3/ 2 in S~, sewn along its boundary 
to a piece of Beltrami surface whose boundary circle has matching length 
and geodesic curvature. This is a riemannian manifold of class 0 1 only; 
the curvature jumps from + 1 to -1 as we cross the seam. 

Beltrami's surface 

Figure 11.7.3 

In higher dimension, the question of minimal volumes is far from being 
solved [Gro82]. 

11.7.4. Hopf's formula. We mentioned in 7.7.6.1 that 

for every vector field e on a compact surface. This formula was not proved 
there; here it follows easily from 10.5.5.4 and its proof. We deduce a double 
formula: 

11.1.4..1 ~ K(m)dm = 211'X(X) = L ind"'i e· 
x i 

An immediate corollary is that a surface immersed in R 3 and home
omorphic to 8 2 or P2(R) has at least one umbilic (10.6.4). Here's the 
reasoning for 8 2 : if it didn't, the principal directions would be well-defined 
and distinct at every point, and we could take a vector field on 8 2 with
out singularities. The sum in 11.7.4.1 would be vacuous, and we'd have 
X(X) = 0, contradiction. For P2(R), take the oriented double cover. 

In the case of the torus there may be no umbilics; take a torus or revo
lution, for example. 

It is an old and open question [Tit73] whether a sphere embedded in R3 
has at least two umbilical points. 
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11.8. The Isoperimetric Inequality on Surfaces 

Is there on (X, g) a generalization of the classical isoperimetric inequality 
(section 9.3)? That is, given a submanifold-with-boundary 0 of X, with 
boundary C, is there an inequality tying leng(C) to area(O)? 

11.8.1. The standard sphere. E. Schmidt found the complete answer 
for the round sphere: among all submanifolds-with-boundary of S~ with a 
given area, closed balls (that is, spherical caps) are exactly the ones whose 
boundary has minimal length. His proof uses a method different from the 
one in 9.3; it consists in generalizing the idea of Steiner symmetrization 
[Ber87] to the sphere, which is possible because S2 possesses symmetries 
(isometries) through every great circle. 

Figure 11.8.1 

11.8.2. The general case. It is futile to hope for an inequality in full 
generality. For example, 11.8.1 clearly extends for every sphere S~ (k ~ 0), 
but the constant involved depends on k. In addition, the dumbbells in 
figure 11.8.2 show that not only the curvature but also the diameter must 
appear in any isoperimetric inequality. 

Figure 11.8.2 

The best we can get is the following: 

11.8.2.1. Theorem. There exists a scalar function U of three variables such 
that, if (X, g) is an arbitrary compact riemannian surface with curvature 
~ k and {) is a submanifold-with-boundary of X with boundary C, we have 

leng(C) ~ U(area({)), diam(g), k). o 
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This inequality is optimal. If k > 0 the limiting objects that optimize 
it are spheres, with spherical caps as submanifolds. If k :::; 0 the limit
ing objects are singular; they're obtained by gluing together two plane or 
hyperbolic discs. 

The idea of the proof is to take a submanifold with a given area and the 
shortest possible boundary. This implies that the boundary is a "general
ized circle," that is, a curve with constant geodesic curvature. Then one 
calculates the area of {1 based on this boundary, all of this controlled by a 
trivial generalization of 11.5.3. See [Ber85] and [BZ86]. 

11.8.3. The isoperimetric profile. To illustrate the difficulty of the 
isoperimetric problem when k :::; 0, we introduce the isoperimetric profile 
of a compact manifold (X, g), which is the function that associates to a 
real number a E [0, area(X)] the infimum of the lengths of boundaries 
of submanifolds-with-boundary of (X, g) of area a. Figure 11.8.3 shows 
the isoperimetric profiles of the sphere, of the projective plane and of a fiat 
torus. Here's what happens for a fiat torus: if a is small, the best submani
folds-with-boundary are discs, but as a increases we get to a point where 
a strip is better (notice that the boundary of a strip consists of geodesics, 
hence of curves of constant geodesic curvature): 

PI PI PI 

2 7l r--~Oo;;;::----j [I] 
o 471 7l 0 

s· P'(R) square torus square torus 

Figure 11.8.3 

For more inequalities on the surfaces, see [Oss78]. 

11.9. Closed Geodesics and Isosystolic Inequalities 

Take a surface in R3 with topology, and stretch an elastic band around 
some part of it. Letting go of the band you'll see that it shrinks to either a 
point or a closed geodesic on the surface; this follows from a general result: 

11.9.0. Theorem. Every free homotopy class of (X, g) contains a curve 
of minimal length, which is a closed geodesic. 0 
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By definition the systole of a non-simply connected riemannian manifold 
(X, g) is the infimum of the lengths of curves on X not homotopic to zero. 
This length, which we denote by sys(X), is realized by a closed geodesic. 
We will only consider the compact case, otherwise there is no hope, as 
shown by figure 11.9.0. 

true pinching 

Figure 11. 9.0 

What the figure suggests is that, for a given value of sys(g), the area of 
the manifold cannot be too small. In addition, the more holes there are, the 
larger the area should bej the area increases with topological complexity. 
Here's what we know at present IGro83] about these isosystolic inequalities 
for surfaces (the higher-dimensional case is much harder): 

11.9.1. Loewner's inequality. If X is the torus T2, we have area(g) ~ 
1Ij sys2(g) for every gj equality obtains if and only if (X, g) is a flat torus 
coming from a hexagonal lattice (11.2.4). 

11.9.2. Pu's inequality. If X is the projective plane P2(R), we have 
area(g) ~ : sys2(g) for every g, and equality holds if and only if 9 is the 
elliptic metric (11.2.4). 

11.9.S. Gromov's inequality. For every surface X with 'Y holes and 
every metric 9 on X, we have area (g) ~ ch) sys2(g), where c is a positive 
function of'Y that goes to infinity with 'Y. 

11.9.4. Bavard's inequality. For the Klein bottle Bavard recently got 
IBav86] the best possible inequality: area(g) ~ 2'f sys2(g). He also proved 
that equality is only attained for a surface with singularities, obtain by 
gluing together two Mobius strips, each a quotient under the antipodal 
map of the spherical zone of 8 2 contained between the parallels of latitude 
7r/4 and -7r/4. 

11.9.5. Croke's inequality. Even if X is simply connected, that is, home
omorphic to 8 2, we have an "intrinsic" isoperimetric inequality, not involv
ing submanifolds-with-boundary. It says that 

area(g) > L 2 /961 
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for every g, where L is the length of the shortest non-trivial periodic 
geodesic of g. (Periodic geodesics exist on any surface, even if simply 
connected; see [Kli82].) The constant 9~1 is not the best possible; it is 

conjectured that the best constant is lif, and that it is achieved by the 
singular surface consisting of two equilateral triangles glued along their 
boundaries in the obvious way. See [Cro]. 

Figure 11.9.5 

11.9.6. Note. For all these results the basic reference is [Gr083]. The case 
of dimension 2: 3 is considerably harder. 

11.10. Surfaces All of Whose Geodesics Are Closed 

On the canonical sphere 8 2 all geodesics are closed, and they all have the 
same (shortest) period 2'11". In addition, 8 2 is antipodal, in the sense that 
the cut locus of every point is again a point. A manifold (X, g) possessing 
the first property is said to be PI, and one possessing the second is said to 
be SPl. 

There is no obvious reason why the fact that all geodesics are closed 
should imply that they have the same period; in fact, this is not the case in 
arbitrary dimension [Bes78, p. 185]. But Gromoll and Grove have recently 
shown [GG81] that for surfaces the first condition implies the second. 

11.10.1. Possible surfaces. Besides 8 2 , we have seen only one example 
of a PI metric: the elliptic metric on P2(R). Let's show that the sphere 
and the projective plane are the only surfaces that admit a PI metric. By 
continuity, the homotopy class of all geodesics on X is a positive multiple 
ofthe same element of '11"1 (X), which we call hI. By 11.9.0 this implies that 
every element of'll"t{X) is ofthe form kh]; but by looking at geodesics with 
same initial point and opposite directions we get h] = -hI. Thus '11"1 (X) 
is either trivial or equal to Z2. Since X is compact (by the previous para
graph, for example), the only candidates from the list of surfaces (4.2.25) 
are the sphere and the projective plane. 

Notice that SP1 structures on 8 2 and PI structures on P 2 (R) are in 
one-to-one correspondence given by the canonical double cover. 
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11.10.2. A double surprise. The first surprise is that there exist on 8 2 

many Pi riemannian metrics. R. Michel has shown that the Pi metrics of 
revolution are those of the form 

ds 2 = (1 + h cos r)dr2 + sin2 r d8 2 , 

where h is any odd function from ]-1, 1[ into itself. 
But the space of Pi metrics on 8 2 is much bigger than that: Guillemin 

showed that its tangent space at the point corresponding to the canonical 
metric is isomorphic to the set of odd functions on 8 2 , that is, functions 
such that !( -x) = - !(x). Nothing else is known about this set, not even 
whether it is connected. 

The second surprise is that the situation is radically different for P2(R): 
Green has shown that a Pi riemmanian structure on P2(R) must be the 
elliptic metric (with arbitrary curvature, of course). 

The basic reference for this section is [Bes78]. 

11.11. Transition: Embedding and Immersion 
Problems 

11.11.1. Topological problems. For completeness, we mention two non
metric results. The first is that the projective plane P2(R) cannot be 
embedded in R 3 , since it is non-orientable [Gre67]. But, as we have see in 
10.2.4, it can be immersed in R3. 

The second is a surprise: by a continuous sequence of immersions we 
can deform the standard embedding of 8 2 into its opposite, turning the 
sphere inside out. This eversion has been described by Phillips in [Phi66] 
and, more simply and in more detail, by Morin and Petit in [MP78] and 
[MP80]. 

11.11.2. A metric problem. Let (X, g) be a riemannian surface, as
sumed compact for simplicity. Can (X, g) be isometrically embedded or 
immersed in R3? Certainly not in general; every immersed surface has at 
least one point where the curvature is strictly positive. To see this, en
close the surface in a large enough sphere, then shrink the sphere until it is 
tangent to the surface; at the tangency point K must be no less than the 
curvature of the sphere. 

Apart from this, little is known about this very natural problem. The 
reason is our relative ignorance about an even more elementary question: 
Given a riemannian surface (X, g) and a point m E X, is there an open 
neighborhood U ofm in X such that (U, glu) can be isometrically embedded 
in R3? 

Presently we know that the answer is yes if K(m) > 0 or K(m) < 0 (this 
implies it is always yes if 9 is real analytic). Also, a positive answer has 
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Figure 11.11.2 

recently been given in the case dK(m) :f:. 0, that is, when the derivative of 
K is non-zero at m. 

See [GR70] and [Gro86] for more details on these problems. 

11.11.3. The case of positive curvature. In one particular case the 
embedding problem has been completely solved: 

11.11.S.1. Theorem. If 9 is a riemannian metric on 8 2 whose curvature is 
everywhere positive, the riemannian manifold (82 , g) can be isometrically 
embedded in R3. Such an embedding is unique up to an isometry ofR3. 0 

This result is due to the accumulated efforts of H. Weyl, Alexandrov, 
Nirenberg and Pogorelov. See 11.14.1 for the uniqueness part. 

For the case of everywhere negative curvature, see section 11.15. 
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I PART II: SURFACES IN R31 

11.12. Surfaces of Zero Curvature 

This is a typical example where global and local are in conDict, and global 
wins. We saw in 10.6.6.2 that every surface with K = 0 is locally devel
opable, but globally such a surface doesn't even have to be ruled: we can 
make up wild surfaces by gluing pieces of cone or cylinder to a plane in 
COO fashion (figure 11.12.0). 

Figure 11.12.0 

What's happening here is that the rank of the second fundamental form 
jumps between zero and one (it is never two when K = 0). But notice that 
this surface cannot be made complete: in fact, if a complete developable 
surface is not a cylinder it must develop somewhere a line of striction 
(10.2.3.7). This reasoning was made watertight by Hartman and Nirenberg: 

11.12.1. Theorem. The only complete surface S C R3 with zero curlla-
ture is the cylinder. o 

The proof is subtle; the fact that it was only carried out in 1959 illustrates 
well the difference in rigor between nineteenth-century geometers and those 
of our days. Notice that this result only came sixty years after Liebmann's 
(see the beginning of 11.14), which seems harder. 

11.13. Surfaces of Non-Negative Curvature 

What can one say about a compact surface X of curvature K ~ 0 and 
immersed in R3? By 11.7.1 X can only be the sphere, the projective plane, 
the torus or the Klein bottle. But in the last two cases the curvature must 
be zero everywhere, which is ruled out by 11.11.2. The case K > 0 was 
solved by Hadamard as early as 1898: 
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11.1S.1. Theorem. If X is compact, immersed in R3 and has positive 
curvature everywhere, then X is in fact embedded in R3 and is the boundary 
of a strictly convex set (see [Ber87, chapter 11], if necessary). 

Proof. This proof is too nice and simple to omit altogether. We do the 
orientable case, X homeomorphic to 8 2 • Since the curvature never van
ishes, the Gauss map /.I : X -+ 8 2 (10.3.3) has maximal rank, namely two, 
everywhere. By 4.1.5 /.I must be a covering map, hence a homeomorphism 
because 8 2 is simply connected. This easily implies that the image of X in 
R3 lies all on one side of its tangent planes, which implies the conclusion 
by [Ber87, 11.5.5]. The non-orientable case is easy, and we leave it to the 
reader. 0 

Notice that this argument works in any dimension, except one, since the 
circle is not simply connected. Thus there is no analog for 11.13.1 in the 
plane; compare our study of the global convexity of curves (9.6). 

11.lS.2. Generalization. One can try to extend Hadamard's theorem in 
two ways: by admitting non-compact surfaces, or surfaces with K ~ o. 
Doing both at once doesn't work: think of a cylinder over a figure eight. 
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Thanks to the combined efforts of Chern-Lashof, Stoker and do Carmo
Lima, we have the best possible generalization of 11.13.1: the conclusion 
of 11.13.1 remains valid if X is compact and K ~ 0, or if X is arbitrary 
and K ~ 0 with K(m) > 0 for at least one point mE X [Car76, p. 387]. 
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11.14. Uniqueness and Rigidity Results 

We encountered in 10.2.3.6 and 10.5.3.9 local surfaces that are isometric 
but cannot be taken into one another by a Euclidean motion. In fact, there 
are numerous such local examples, since the system of partial differential 
equations that governs them is greatly underdetermined [Spi79, vol. III, 
chapter 121. (Nevertheless, the general question of when a metric admits 
local deformations is still open.) 

Now one can ask whether this kind ofthing happens globally, particularly 
for compact surfaces. Historically, the first case to consider was the round 
sphere 8 2 : Liebmann was the first to show, in 1899, that every surface in 
R3 isometric to 8 2 is a sphere of radius one. This is a particular case of a 
very beautiful result of Cohn-Vossen and Herglotz: 

11.14.1. Theorem. Two isometric surfaces of strictly positive curvature 
in R3 can be taken to one another by a Euclidean motion. 

Notice that this would be trivial in dimension higher than two (see 10.8). 

Proof. Theorem 11.4.1 follows easily from Herglotz's formula (11.19.1.6), 
which, in turn, makes essential use of the Codazzi-Mainardi equation 
(10.7.1). 0 

The surfaces of revolution 8 and 8' generated by the two meridians in 
figure 11.14.1 show that the condition K > 0 in 11.4.1 is essentiaL But 
no examples are known of isometric surfaces that are compact and real 
analytic [Spi79, vol. III, chapter 121. 

Figure 11.14.1 

11.14.2. Deformations and rigidity. One can also ask whether a surface 
can be continuously deformed without changing the metric, as in 10.2.3.6. 
A weaker condition is flexibility: a surface is flexible if it can be continu
ously deformed in such a way that the derivative of the metric with respect 
to the parameter of the deformation vanishes at the original surface. Even 
for surfaces homeomorphic to 8 2 (but non-convex, of course) the problem 
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has not been entirely solved. For all these questions and partial results, see 
the very complete reference [Pog73] and [Spi79, vol. III]. 

However surprising this may seem, certain surfaces cannot be deformed 
isometrically, even locally. A famous example, due to Efimov, is 

(x, y, x9 + Ax7 y2 + y9), 

where A is transcendental. See [Jac82, p. 389], and also [Che85]. 
It is interesting to compare this problem with the analogous problem for 

polyhedra in R3. A polyhedron is said to be flexible if it can be continu
ously deformed in such as way that only the dihedral angles between the 
faces change. As early as 1813 Cauchy had demonstrated the analog of 
11.14.1 for polyhedra: two isometric convex polyhedra can be taken to one 
another by an isometry of ambient space. For non-convex polyhedra the 
question remained open until 1978, when Connelly found a flexible polyhe
dron (see [Ber87, 12.8.4.2] and the references therein). But it is not known 
whether flexible polyhedra necessarily have constant volume. 

Another reason to study polyhedra is that there are numerous results 
of Alexandrov and Pogorelov which use approximating polyhedra in the 
study of convex surfaces (see [Ber87, section 12.9] and [Pog73]). 

11.14.3. Punctured surfaces. Consider 8 2 without its north and south 
poles. Starting from the wedges in the middle of figure 10.5.3.10 Pogorelov 
managed to construct an infinite number of immersions of this non-complete 
manifold in R 3 , all isometric (that is, having curvature one). The same can 
be done with the n-punctured sphere, where n ~ 2. But Green and Wu re
cently showed that these immersions can never be embeddings. Intuitively 
one can see that the immersions must resemble the wedges in 10.5.3.10 but 
covered several times. See [GW72]. 

11.15. Surfaces of Negative Curvature 

A curious reader may have asked himself why we defined the hyperbolic 
plane abstractly (11.2) instead of as a nice submanifold of R3. We have 
seen surfaces of constant negative curvature, like Beltrami's surface and all 
the others at the end of 10.5.3.10, but they only represent a portion of the 
hyperbolic plane; they are not complete, and if you try to go too far you 
hit a singularity. This is a pity, but it explains why hyperbolic geometry 
had to wait until 1854 to be founded by Riemann, who introduces formula 
11.2.2. It is also inevitable, due to the following result: 

11.15.1. Theorem (Hilbert, 1901). No embedded or immersed surface in 
R3 can have constant negative curvature. 0 

This theorem was extended to the case of variable curvature by Efimov: 
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11.15.2. Theorem. No immersed surface in R3 can have curvature K :5 
k, where k < 0 is fixed. 0 

The proof uses the completeness assumption to show that, starting from 
a point and going far enough, one necessarily hits a singularity, and that 
this happens in all directions, as exemplified by Beltrami's surface. For 
more details, see [Klo72]. 0 

11.16. Minimal Surfaces 

We now get back to minimal surfaces (10.6.9.2), this time from the global 
point of view. One of the reasons to study local minimal surfaces is 
Plateau's problem: to find the surface of least area whose boundary is 
a given space curve. We will skip over this topic entirely; the interested 
reader can refer to the excellent and up-to-date survey [Mee81]. 

Here we just ask what are the surfaces in R3 whose mean curvature H 
is everywhere zero. Are there many of them? What is their geometry 
like? We will mention the more striking results about these problems; see 
[Mee81] for more. 

First recall the examples of minimal surfaces we have already encoun
tered: planes; Scherk's surface (10.2.1.3); the catenoid (example (3) in 
10.6.6.6), the only minimal surface of revolution; the helicoid of pitch 27r 
(10.6.6.5), the only ruled minimal surface; Enneper's surface (10.6.6.3), 
which is an immersion only; and the Weierstrass-type surfaces in 10.2.3.6, 
which are fairly general. 

11.16.1. Geometry. Every minimal surface has non-positive total curva
ture, because H = ~(kl + k2) = 0 implies K = klk2 :5 O. Thus the results 
in 11.6 apply. 

11.16.2. Compactness. There are no compact minimal surfaces: this 
follows from 11.16.1 and the reasoning in 11.11.2. 

11.16.3. Theorem (Bernstein). A minimal surface that is the graph of 
a function defined on the whole ofR2 must be a plane. 0 

This is in fact a result on the solutions of the partial differential equation 

from 10.6.9. Compare with Scherk's surface. 
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11.16.4. On the other hand, there exist triply periodic minimal surfaces, 
that is, surfaces invariant under the group Z3 of translations of R3. In fact 
there is a six-parameter family of them. See [MeeB1, section 17], where 
Riemann surfaces, hyperelliptic curves and abelian integrals intervene. 

11.16.5. Surfaces with given kinds of symmetry. Minimal surfaces 
can be topologically as complicated as desired. One simple example [JMB3] 
consists in taking 

and g(Z) = zn-l 

in the generalized Weierstrass formulas 11.16.6, where n is an arbitrary 
integer and Z ranges over S2 = C u {oo} minus the n-th roots of units. For 
n = 2 we get the catenoid (10.2.3.6, but the parametrization has changed) 
and for n = 3 the figure below: 

Figure 11.16.5 

11.16.6. Generalized Weierstrass formulas. Formulas 10.2.3.6 can be 
generalized to generate all minimal surfaces. The starting point for the gen
eralization is the idea of Riemann surfaces, that is, one-dimensional com
plex manifolds. Any orientable surface X can be given a complex manifold 
structure by covering it with conformal coordinate patches (10.4.2) and 
defining multiplication by i within each patch to be rotation by 1r/2, which 
is well-defined by metric and orientation together. If X is a minimal surface 
immersed in R 3 , the Gauss map v : X -10 S2 is conformal (10.6.9); with 
reference to the complex structure this says that v is meromorphic, that is, 
complex analytic as a map into the Riemann sphere S2 = C U {oo} which 
its canonical complex structure (see [ForB1] for background). 
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One can work the other way around and start with an abstract Riemann 
surface X, a meromorphic function II : X -+ 8 2 , and a meromorphic one
form J dZ on X. Then the integrals 

x(u,tJ) = Re/.w (1-112(Z))J(Z)dZ, 
Wo 

y(u, tJ) = Re /.W i(l + 112(Z))J(Z)dZ, 
Wo 

z(u, tJ) = Re i: 211(Z)J(Z)dZ 

from a fixed point Wo to w = (u, tJ) E X, define an immersion of X in R3 
whose image is a minimal surface; and, conversely, every immersed minimal 
surface is obtained in this way. 

This general formulation has numerous consequences. Here are a few: 

11.16.7. Total curvature. For an immersed (or embedded) minimal sur
face X we consider the integral 

totcurv(X) = Ix K(II)dll. 

This integral is always defined (and possibly equal to -(0) because K is 
non-positive (11.16.1); by 10.6.2.2 it equals the area of the image II(X) of 
the Gauss map, taking multiplicities into account (cf. 7.4.3). 

The following fundamental results are due to Osserman. The integral 
totcurv(X) is either infinite, or a positive integer multiple of -411". The 
value -411" is only achieved for two surfaces: the catenoid and Enneper's 
surface. Moreover, II(X) covers the whole of 8 2 with the exception of at 
most six points (this is due to Xavier). If totcurv(X) is finite at most three 
points may be omitted. For more information, see [Mee81]. 

11.17. Surfaces of Constant Mean Curvature, or 
Soap Bubbles 

We saw in 10.6.9 two motivations for the study of the surfaces of constant 
mean curvature. One was physical; the other was the proof of the isoperi
metric inequality. Let's now consider problems of existence and uniqueness 
of global surfaces of constant mean curvature. We treat only the compact 
case; for non-compact examples see 10.6.9.6. 

11.17.1. The sphere. The most obvious examples of surfaces of con
stant mean curvature are round spheres. Are there any others? Liebmann 
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showed, as early as 1899 (cf. 11.14), that the answer is no if K > 0 ev
erywhere. His proof is clinched by generously using the Codazzi-Mainardi 
equations (10.7) to show that all points are umbilics; this implies, even 
locally, that the surface is a round sphere (end of 10.6.4.2). This method 
was generalized by Hilbert and is a particular case of the one employed in 
the next section. 

11.17.2. The theorems of Alexandrov and Hopf. What if one elim
inates the condition K > 0 and allows all topological types? In 1955 
Alexandrov showed tht every compact surface of constant mean curvature 
embedded in R3 is a round sphere. The proof is very difficult; it is a mix
ture of analysis and geometry, and concludes by showing that the surface 
has symmetries in all plane directions. See the excellent reference [Hop83] 
and [Spi79, voL IV, chapter 9, addendum]. 

Soon after that, in 1956, H. Hopf demonstrated in [Hop83] that every 
immersion of 8 2 with constant mean curvature is a round sphere. This 
proof is also very difficult; it uses the fact that 8 2 , as a Riemann surface, 
does not admit non-trivial quadratic differentials. 

11.17.3. Wente immersions. What was still unknown, and remained so 
until 1984, was whether or not there existed immersions of compact surfaces 
with non-positive genus and constant mean curvature. Wente answered 
this question in the affirmative by constructing immersions of the torus T2 
with constant mean curvature. The general appearance of his immersions 
is shown in figure 10.2.4. For details, see [Wen85] or [Abr86]. 

11.17.4. Willmore's conjecture. We mention it here for its simplicity: 
consider, on a compact surface 8, the integral Is H2(v)dv. This integral is 
invariant not only under homotheties but also under inversions, that is, it 
is invariant under the conformal group of R3 [Ber87, chapters 10 and 18]. 
When does it have a minimum? If 8 is the sphere 8 2 the answer is simple, 
by 11.7.4 and because H2 ~ K: the minimum occurs if and only if 8 is a 
round sphere. 

On the other hand, if 8 is the torus T2, we are at sea. Willmore conjec
tured in 1965 that the integral is never less than 211"2 (the value it takes on 
a square torus). This conjecture remains open; a partial answer is given 
in [LY82]. Also, L. Simon recently showed that the minimum is indeed 
achieved for some compact Coo surface in R3. 

11.17.5. Manifolds-with-boundary and Rellich's conjecture. By 
analogy with Plateau's problem (introduction to 11.16) we can ask what 
are the surfaces of given constant mean curvature having for boundary 
a fixed curve in space. We won't say much about this problem, but we 
mention that uniqueness is not to be expected here. For instance, if the 
curve is a circle in R 3 , the sphere of given curvature containing this circle 
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is divided by the circle in two parts that are generally unequalj this gives 
two distinct solutions, a small and a large bubble. There have long been 
results on the existence of at least one solution, but Rellich's conjecture 
was that there existed at least two. This conjecture was recently solved by 
Brezis and Coronj see [BC84j. 

sphere 

----------
circle 

small bubble 

Figure 11.17.5 

11.18. Weingarten Surfaces 

We have see many examples of surfaces whose principal curvatures kl and 
k2 seem to be intimately related: minimal surfaces (kl = -k2), surfaces 
with constant mean curvature (kl + k2 = constant), surfaces all of whose 
points are umbilics (kl = k 2 ), ellipsoids of revolution (kVk2 j see example 
(2) in 10.6.6.6), boundaries of tubes (k1 = constantj see 2.7.6.2, 10.2.3.12 
and 10.6.8.2.3). In all these cases kl and k2 satisfy a universal relation. 

11.18.1. Definition. A Weingarten surface is a surface S for which there 
exists a Coo function U of two variables such that U(kt{tI),k2 (tI)) = 0 for 
every tiES. 

From 10.6.6.6 it follows that every surface of revolution is a Weingarten 
surface. But there are many Weingarten surfaces that are not of revolution, 
like boundaries of tubes, for instance. Using the preceding examples and a 
bit of cutting and pasting, one can construct Coo Weingarten surfaces with 
arbitrarily complicated topology. First, one can take an arbitrary knot and 
the associated tube. One can also form Weingarten surfaces of any genus if 
one knows how to attach a handle to a sphere preserving Weingartenness, 
so to speak. Figure 11.18.1 shows a way of doing this: glue a piece of round 
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round sphere 

Figure 11.18.1 

sphere, bounded by a circle, to a piece of Delaunay surface (10.6.9.6), then 
glue the latter to a tube, then glue the other end of the tube to the sphere 
in the same way. 

Here's the only known global result on general Weingarten surfaces: 

11.18.2. Theorem. Let S be a Weingarten surface with positive curva
ture, and assume S is not the round sphere. Then no point of S can be at 
the same time a maximum for kl and a minimum for k2 • 0 

The proof make systematic use of the Codazzi-Mainardi equations, In 

the form 10.7.2. 

11.1S.2.1. Corollary. A Weingarten surface with K > 0 and kl = f(k2 ), 

where j is a decreasing junction, must be a round sphere. 0 

The results in 11.14 and 11.17.1 are particular cases of this. 

11.18.S. If K is not assumed positive, we have virtually no global infor
mation: for instance, what are the real analytic Weingarten surfaces? As 
to local information, we saw a neat formula in 10.6.8.4. 

One far out example: in [Dar72, vol. III, p. 322], one has reason to 
consider the family of surfaces that satisfy the equation 
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11.19. Envelopes of Families of Planes 

We saw in 10.2.3.13 how to define a surface 8 c R3 as the envelope of a 
two-parameter family of planes. Here we work only with strictly convex 
surfaces, and we assume the origin is in the interior of 8. The support 
function p of 8 assigns to x E 8 the distance from the origin to T",8j we 
can consider it also as a function on the unit sphere 8 2 , via the Gauss 
map, which is a bijection because 8 is strictly convex. In 10.2.3.13 we 
stated formulas that give the contact point v(e) of the tangent plane p(e) 
to 8 as a function of p : 8 2 -+ R+. Similarly, the total curvature K and 
mean curvature H will be interchangeably considered as functions on 8 or 
on 8 2• 

Figure 11.19 

Euler's problem was to find a plane curve when its curvature as a function 
of the tangent is given (10.2.3.13). Here there are two natural problems, 
one for K (Minkowski) and one for H (Christoffel). 

We start with some necessary formulas. 

11.19.1. Formulary. The mean curvature is easy to compute. Extend 
p : 8 2 -+ R into a homogeneous function of degree one defined on the 
whole of R3: p(te) = tp(e). Then 

11.19.1.1 ( a 2p a2p a2p ) 
2H(v(e)) = ax2 + ay2 + az2 (e), 

that is, H is proportional to the Laplacian !:!..p of p. 
For K(v(e)) we have the following formula (where the indices denote 

derivatives) : 

(K(v(e)))-l = (p",,,,Pyy - P;y) + (pyyPU - p;z) + (Pup",,,, - p;",). 
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Using Stokes' formula and the Codazzi-Mainardi equations we obtain: 

area(8) = !. p(tI)H(tI)dtl (Minkowski), 
tiES 

11.19.1.2 

11.19.1.1 M = Is H(tI)dtl = Is p(tI)K(tI)dtl (Minkowski), 

11.19.1.' r K(tI(€))-l € d€ = 0 i S2 

(where d€ is the canonical measure and both sides represent vectors), and 

11.19.1.5 

(ditto). Finally, we have the following difficult formula, due to Herglotz 
and involving two surfaces 8 and 8' in R3, isometric under some map 
</J : 8 --+ 8': 

11.19.1.6 2 r H(tI)dtl - 2 f. H'(</J(tI))dtl = r k(8; 8')(tI)dtl, is • is 
where k is a function of the second fundamental forms of 8 and 8', namely 

(here the first fundamental form can be expressed in any set of coordinates; 
the definition is invariant). 

11.19.2. Applications. The reader can easily deduce by combining both 
of Minkowski's formulas that round spheres are the only ones that have K 
or H constant (cf. 11.14 and 11.17.1). 

Herglotz's formula proves rigidity in 11.14.1; in fact, II and II', at cor
responding points, have same determinant, since this determinant is the 
Gauss curvature and the surfaces are isometric. Since we're in dimension 
two, this implies an inequality on the traces via </J, that is, k(8; 8') ~ O. 
The rest is easy. 

11.19.3. Minkowski's problem. The problem is to find a surface 8 such 
that the function € 1-+ K(tI(€)) on 8 2 is given (compare with 11.11.3). 
Uniqueness was shown by Minkowski, using generalizations of the formulas 
above. 

Existence is a very difficult problem. Notice that 11.19.1.4 gives three 
necessary numerical conditions. Lewy and Nirenberg have shown that the 
problem is always solvable if these three conditions are satisfied; the proof 
is analytical. See [Spi79, vol. III, chapter 111 for references and proofs of 
the formulas above. See also the recent reference [Oli841. 
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11.19.4. Christoffel's problem. Here we're looking for 8 such that the 
function e 1-+ H( v(e)) on 8 2 is given. The simplicity of 11.9.1.1 would make 
one think that the problem is simple, at least simpler than Minkowski's. 

However, this is not the case. One can draw a parallel with the case of 
plane curves, where condition 9.5.2 on the curvature, which corresponds to 
our three conditions 11.9.1.5, is not sufficient to guarantee existence; for 
instance, the theorem of the four vertices 9.7.4 gives examples of curvature 
functions on 8 1 that don't work. In higher dimension, the answer is even 
more complicated; after several partial solutions Firey managed, in 1968, 
to give necessary and sufficient conditions (in addition to 11.9.1.5) for the 
function H to come from a surface. These conditions are too complicated 
even to state here; we refer the reader to [Fir68]. 

Finally, we mention that the condition of strict positivity of the curvature 
(or the condition of strict convexity) is essential in both problems, as shown 
by the counterexample in figure 11.19.4: 

the cylinder (K = 0) can be 
lengthened at will 

Figure 11.19.4 

11.20. Isoperimetric Inequalities for Surfaces 

Consider a compact surface 8 that is the boundary of a submanifold-with
boundary {1 E R 3 . Can one generalize the isoperimetric inequality 9.3 to 
this situation? The answer is yes, it can be done in any dimension. This is 
a classical result; see 6.6.9, [Ber87, section 12.11], or [BZ86]. 

11.20.1. Minkowski inequalities. Let V be the volume of {1 and A the 
area of 8. We know that 
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and equality only holds for round spheres. Minkowski sharpened this in
equality by introducing a third character, the integral of the mean curva
ture, which we called M in 11.19.1.3. He demonstrated the double inequal
ity 

A4 
9V2 ~ M2 ~ 411"A. 

As could be expected, each inequality only turns into an equality if S is a 
round sphere. For the proof, and generalizations in higher dimension, see 
[BZ86], [WaI78] and [Lei80]. 

11.20.2. Volume of tubular half-neighborhoods. Let S be a relatively 
compact surface in RS; we showed in 10.6.3 that the volume of the slab 
between two surfaces parallel to S and distant e from it is 

vol(Tub. S) = 2evol(S) + :es r K(v)dv. 
3 1s 

And what is the volume between S and one of these parallel surfaces? It 
is equal to 

evol(S) + e2 M + !.es r K(v)dv, 
3 1s 

which agrees with the formula above when we add the two volumes, since 
the sign of M depends on the side of S on which we're considering the 
parallel surface (cf. 10.3.3). 

This formula is not hard to demonstrate using 10.6.6.7 and 10.6.9.1. It 
exists in all generality and the invariants generalizing the integrals of H 
and K are very important ones, and called Lipschitz-Killing curvatures 
[CMS84]. We've encountered the odd-indexed ones in 6.9. 

11.21. A Pot-pourri of Characteristic Properties 

We group here the results above concerning spheres and Dupin cyclids, and 
we add some new ones. 

11.21.1. Theorem (local characterization of spheres). Every local 
surface 
(i) all of whose points are umbilics; 
(ii) or, having at least one caustic reduced to a point; 
(iii) or, invariant under a three-parameter local group of isometries of R S 

is necessarily a piece of round sphere. 

Proof. Part (i) was discussed in 10.6.4.2. About part (ii) we just observe 
that the second caustic is also a point, coinciding with the first (the center 
of the sphere). Part (iii) is easy to check. 0 
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In a similar vein, it can be shown that pieces of cylinders of revolution are 
the only surfaces invariant under a two-parameter local group of isometries 
of R 3 • Invariant under one-parameter groups of isometries are all helicoidal 
surfaces, and in particular surfaces of revolution. 

All this discussion has to do with extrinsic isometries. How about sur
faces admitting intrinsic isometries, that is, maps from the surface into itself 
that preserve the first fundamental form g = ds2 ? It is immediate that if 
a two-parameter group of such maps exists, the surface is locally homoge
neous, and in particular its Gaussian curvature K is constant. We already 
know what such surfaces are, and in fact they admit a three-parameter 
local group of isometries. Thus we only have three cases: three, one and 
zero parameters, the latter being that of a generic surface. We now exam
ine the case of one-parameter groups. By analyzing invariant curves and 
using the first variation formula (11.3.2) one can see that their orthogonal 
trajectories are necessarily geodesics, taken into one another by the group 
in question. Thus their expression in geodesic coordinates is 

ds2 = dr2 + J2(r)d82, 

where J does not depend on 8. The technique of 10.5.3.10 allows to show 
immediately that such a metric can always be locally realized by a surface 
of revolution. 

11.21.2. Theorem (global characterization of spheres). Let V C R3 

be a compact surface. If anyone of the conditions below is satisfied, V is 
a round sphere: 
( i) 
(ii) 

(iii) 
(iv) 
(v) 

(vi) 

(vii) 

(viii) 

(ix) 
(x) 
(xi) 

all plane sections of V are circles; 
for all directions e E p2(R) the cylinder parallel to e and circum
scribed around V touches V along a circle (figure 11.21.2); 
all points in V have an antipodal point (combine 11.10 and 11.14); 
V has the least surface area among surfaces of equal volume; 
V minimizes the integral of the mean curvature, among surfaces of 
equal area; 
V maximizes the integral of the mean curvature, among surfaces of 
equal area and volume; 
V is homeomorphic to 8 2 and minimizes the integral of the square of 
the mean curvature (cf. 11.17.4); 
the curvature of V is ~ k everywhere and the intrinsic diameter of 
V is ~ 1r/Yk (cf. 11.5.4); 
V has the least extrinsic diameter among surfaces of equal volume; 
the total curvature of V is a constant (more generally, see 11.18.2); 
V is embedded and its mean curvature is a constant. 

Proof. All of these results have been mentioned before, except for (i) and 
(viii), which we leave to reader; (ii), which we discuss below; and (ix), a 
result of Bieberbach that is proved (in one direction only) in [Ber87, 9.13.8]. 
For more details on all the results see [Bla56]. 0 
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Figure 11.21.2 Figure 11.21.3.3 

11.21.S. Global properties of spheres (non-characteristic) 

1I.2l.S.1. A weaker version of l1.21.2(ii) is that all circumscribed cylinders 
touch a sphere along a plane curve; this property characterizes quadrics 
[Bla56j. 

1I.2l.S.2. All geodesics of a sphere are periodic. We saw in 11.10 that 
there are other surfaces with the same property. 

1I.21.S.S. The sphere has constant width. The width of V in a given 
direction is the distance between the two planes parallel to that direction 
that are tangent to V and as far apart as possible. Constant width means 
that one can move a sphere between two parallel planes in space with two 
degrees of freedom. This is actually a very weak condition; in the language 
of the support function p in 11.19, we're just saying that p(e) + p(-e) IS 

constant. For a recent discussion of this property, see [CG83j. 

1I.2l.S.~. The sphere also has constant girth, that is, the perimeter of 
the circumscribed cylinder is constant for every direction. Constant girth 
means that one can move the surface inside a paper cylinder (possibly 
deforming it without stretching) with two degrees of freedom. This is also 
a very weak condition, and turns out to be equivalent to constant width 
[Bla56j. 

11.21.S.5. The sphere also has a shadow of constant area. This, too, is a 
weak property. It is important to know that it is connected with important 
formulas of Cauchy about convex bodies; see [BZ86j, [Lei80j, [Die69, 16.24, 
problem 4j, or yet [Ber87, 12.10.2j. A related result is that, for a surface 
whose shadow has constant area, the sum K(m) + K(m') for points m, m' 
having parallel tangent planes is a constant. See [Bla56, p. 153j. 
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m' 

m 

/S/~ 
the girth is the length of this curve 

Figure 11.21.3.4 

area of the shadow 
Figure 11.21.3.5 

11.21.4. Theorem (characterization of Dupin eyelids). 

441 

(i) If V is a Dupin cyclid, its expression in pentaspheric coordinates 
[Ber87, 20.7] is that of a quadric (this property is shared by other 
surfaces; see 10.2.2.6). 

In addition, any of the conditions below is equivalent to V being a Dupin 
cyclid: 
(ii) V is obtained by inversion from a cylinder of revolution, or a cone of 

revolution, or a torus of revolution. 
(iii) Both caustics of V degenerate into curves (this is a local property). 
(iv) If V is homeomorphic to a torus, any round sphere in R3 cuts V into 
at most two connected components. 

Proof. Part (iv) is a very delicate result of Banchoff. For its proof, and the 
generalization of results such as (iii) to Dupin eyelids in higher dimension, 
see [Bla29], [Pin85] and references therein, [Kui84], [Heb81] and [Ban70]. 

o 
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Gtx ....................... 3.5.6 
'Y(J) .................... 6.10.2.2 
GL(E) .................... 2.8.10 

H ........................ 10.6.2 
Hk(X) ................. 4.2.24.2 
hk ....................... 11.5.2 

D.f ..................... 0.2.8.5 
[) (J) ................ 1.3.3, 1.5.1 
df(x) ..................... 2.5.23 
df(e) ................... 2.8.17.1 
[)(e) ...................... 3.5.6 
df ......................... 5.2.6 
DFa ...................... 5.5.3 

i .......................... 8.5.1 
indm e .................... 7.4.16 
Invr ••••••••••••••••• 5.8.1, 5.8.8 
Isom(E; F) ................ 0.0.11 

J(J) .................... 0.2.8.9 
J(x) ............... 1.3.1.1, 1.5.1 

D"Z ..................... 10.4.7 K ...................... 2.4.12.4 
d(v, w) ................... 10.4.3 K(X) ....................... 0.4 
DeTJ ...................... 10.4.7 k1 , k2 ..................... 10.6.2 
dm ..................... 10.5.5.2 KmC ...................... 8.4.1 
dega ...................... 0.1.6 
deg(J) ..................... 7.3.1 
A,,(U) .................. 0.3.11.1 
.6.(X) ...................... 3.3.1 

Ll(X) ...................... 0.4 
L(E; F) .................... 0.0.4 
L(E, F; G) ............... 0.2.8.3 
L2([0,211"]) ....••.....•.•... 9.3.2 

.6.q (X) ..................... 3.3.8 Le ...................... 5.5.7.3 
Dens(E) .................. 0.1.28 AE ..............•...... 0.1.15.4 
Dens(X) ................... 3.3.1 AOE*,ArE* ................ 0.1.1 
der(COO(X)) .............. 2.8.17 AE* ....................... 0.1.7 

Diff+ (I; J), Diff- (I; J) ..... 8.1.10 
DiffP(X), DiffP(X; Y) ........ 2.3.5 
Diff(X), Diff(X; Y) .......... 2.3.5 

ArT* X .................... 5.1.2 
leng(J) ............. 3.6.3, 10.4.3 
link(J, g) .........•......... 7.4.9 

div f .................... 6.6.9.2 Il-E ...............•...•... 0.1.26 



Index of Symbols and Notations 455 

Nx, N C X, NC X, NzX ........ 2.7.2 (1 •••••••••••••••••••••• 5.3.17.2 
1/ ••••••••••••••••••••••••• 6.4.3 SL(E) .................... 2.8.10 
NU·X,NUX .............. 2.7.2 SPI ...................... 11.10 

O(X), Oz(X), OA(X) ........ 0.0.2 
o(I/hl/) ..................... 0.2.1 

sys(X) .................... 11.9.0 

t ......................... 4.2.16 
O(n) .................... 2.1.6.4 tA ...................... 0.1.15.6 
O(E) ..................... 2.8.10 
fl;(U),(Y(U) ............... 0.3.1 
n;(U) ..................... 0.3.2 
{l~(X) ..................... 5.2.1 
{lq(X) ................... 5.2.3.1 
Wi •••••••••••••••••••••• 5.3.10.1 
W(X) ...................... 5.4 
o (E) ..................... 0.1.13 

pd(R) .................. 2.4.12.2 

Td ...................... 2.1.6.3 
T(p,q) ..••••.•••••.•••.••• 10.3.2 
Tzf ...................... 2.5.14 
TX ...................... 2.5.24 
Tf ....................... 2.5.26 
TzV ....................... 2.5.3 
TzX ....................... 2.5.9 
T;X ...................... 5.1.1 
to ........................ 11.5.2 

pd(C) .................... 2.8.26 
P(x) ................... 3.5.15.3 

tangm C ................. 8.2.1.4 
(}z ••••••••••••••••• 2.5.10, 2.5.22 

PI ....................... 11.10 totcurv( X) ............... 11.16.7 

r .............. ........... 4.2.16 Tubc X .................... 2.7.6 

Rr(x) ..................... 5.4.4 
Vk,d ••••••••••••••••••••••• 2.8.8 

s ......................... 4.2.16 V(X) ..................... 2.8.17 
Sr ............. ............ 0.1.2 VJ ••.••••••..••••.••••••• 10.6.9 
S~ ........................ 11.2 vol(V) ..................... 6.6.3 
Sd ...................... 2.1.6.2 vol(X,5) ................... 6.6.7 
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Numbers refer to the lowest-level subdivision yet started: for example, 4 
is the introduction to chapter 4, before the beginning of section 4.1. Italics 
indicate a definition, or the statement of a result. Entries in brackets can 
be looked up in the Bibliography, where they are accompanied by a list of 
citations. 

abelian integral, 10.2.3.1 
Abraham, R., IAR67] 
Abresch, U., IAbr86] 
abstract manifold, 2.2 
acceleration, 8.4.10 
action of group, .fl.4.8-10, 5.3.9-10 
Alexandrov, 11.5.5, 11.6.2, 11.11.3.1, 

11.14.2, 11.17.2 
algebra structure 2.3.4, 5.2.3.1, 5.2.4.2 
algebraic curve, 10.2.3.1 

- surface, 10 . .fl • .fl.4 
- topology, see de Rham groups, 

homotopy 
Alias, J., IAli84] 
Allendoerfer-Weyl-Fenchel

Gauss-Bonnet-Chern 
theorem, 6.9.8 

almost everywhere, 0.4.4.4 
alternating form, Bee also exterior 

algebra 
- -, degree of, 0.1.6 
- -, positive, 0.1.14 
- -, pullback of, 0.1.8 

- -s, space of, 0.1.15.1-3, 0.5.2 
Ampere's theorem, 7.8.15 
angle, right, 8.5.1 
annulus, 5.6.4 
antiderivation, 0.1.19, 5.5.6, 5.5.7.1-5 
antipodal manifold, 11.10 

- map on orientable double cover, 
5.3.31.1 

- - on R2, 2.8.14 
- - on the sphere, .fl.4.7 . .fl 
- points, 10.4.9.1,11.1.1, 11.21.2(c) 

Apery, F., IApe86] 
apsidal surface, 10.2.2.7 
arc, 6.5.3 

-, biregular, 8 . .fl . .fl.1, 8 . .fl . .fl.7, 8.4.3 
-, geometric, 8.1.4-7 
-, orientation of, 8.1.10, 8.2.1.6 
-, parametrized, 8.1.1, 8.4.8 

Archimedes's theorem, 6, 6.5.15 
arclength, see also parametrization by 

arclength, 8.3.5 
area of a surface, 6.5.1, 6.6.3, 6.6.7, 

11.5.6 
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area continued: 
- of a plane curve, 9.9.1 
- of surface of constant curvature, 

11.2.5 
- of ball, 11.5.6, 11.6.2 

area-preserving coordinates, 10 . ../..! 
Arnaudies, J.-M., [LA74] 
around z, chart, !.!.9 
astigmatism, 10.6.8.1 
astroid, 8.7.17.9 
asymptotic direction, 10.6 . ../..1 
at z, chart, !.!.9 
atlas, !.!.1 

- and canonical topology, 2.2.8 
-es, compatible, !.! . ../. 
-, maximal, !.!.7 
- on sphere, 2.8.7 
- on projective space, 2.8.30 

Bacry, D., preface 
ball, 0.0.3, 5.3.37.1 

-, volume of, 6.5.5 
-, area of, 11.5.6, 11.6.2 

Banach space, 0.0.10, 0.2.1, 0.2.5-6, 
0.2.8.1, 0.2.8.4-5, 0.2.9.2, 0.2.10, 
0.2.12, 0.2.18, 0.2.22-23, 1.1, 
1.1.1-2, 1.4.5, 2.2.2 

Banchoff, T., 11.21.4, [Ban70] 
Barner, M., [BF58] 
base, countable, 3.1.3, 3.2.5 
basis, positive, 0.1.1../. 
Bavard, C., [BP86], [Bav86] 

-'s inequality, 11.9.4 
behavior, 8ee local behavior 
Beltrami, 10.4.9.6; 8ee also 

Laplace-Beltrami 
Beltrami's surface, 10.!.9.5, 10.4.1.4, 

10.5.5.5, 10.6.6.6, 11.7.3, 11.15, 
11.15.2 

Bennequin, D., [Ben86] 
Berard, P., [Ber86] 
Berard-Bergery, L., [BBL73] 
Berger, M., [BGM71], [Ber87] 
Bernoulli's lemniscate, 8.7.18 
Bernstein's theorem, 11.16.3 
Bertrand curve, 8.7.!9 
Besse, A., [Bes78], [Bes86] 
Betti number, ../..!.!../..!, 5.4.11 
Bieberbach, 11.21.2 
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binormal, 8.6.! 
birefringent medium, 10.2.2.7 
biregular are, 8.!.!.1, 8.!.!.7, 8.4.3 
Bjerre, 8ee Fabricius-Bjerre-Halpern 
Blaschke, W., [Bla29], [BIa56] 
blow-up, !.8.16 
Blumenthal, L., [BM70] 
Bonnesen's inequality, 9.9.3 
Born, M., [BW75] 
bound vector, 2.7.6 
boundary of form, 6.!.! 

- of manifold-with-boundary, 
5.9.9../.-37 

- of normal and bundle, 5.3.37.2 
- of tube, 10.2.3.10-12 

bounded curvature, 11.5-6 
- geometry, 11.7.9 
- topology, 4.2.26 

Bourbaki, N., [Bou74] 
Bourguignon, J.-P., preface, [BBL73] 
Boy's surface, 10.2.4 
bracket of two vector fields, !.8.17.!; 

3.5.15.2 
branch, 8.1.8.9 
Brezis, H., 11.17.5, [BC84] 
Brouwer, 6.3.5-6 
bubbles, 11.17 
Buchner, M, 11.4.3, [Buc78] 
bump function, 0.2.16, 2.3.7.1, 3.1.2, 

3.2.7, 5.5.9.1, 5.7.1.4 
bundle, density, 9.9.1 

-, normal, !.7 . ../.-10, 5.3.37.2, 6.7 
-, tangent, !.5.!5, 3.1.7, 4.2.26, 

5.9.9 
-, unitary normal, !.7 . ../., 5.3.37.2, 

6.7.17,7.5 
Burago, Yu., [BZ86] 

calculus, 0.2, 5.4.11 
-, fundamental theorem of, 3.4.4 

canonical density, 0.1.!6, 0.9.11.1, 
3.3.18.2, 6.6.1, 6.7.9, 6.7.12 

- differentiable structure on R", 
2.2.10 

- involution of orientable double 
cover, 5.3.31.1 

- isomorphism, 2.5.12.3, 2.5.22 
- manifold structure of a 

submanifold, 2.6.2 
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canonical continued: 
- map on normal bundle, B. 7. 5, 

2.7.10 
- measure, 10.5.5.B 
- norm on L(E; F), 0.0.10 
- normal vector field, 6 .... 9 
- orientation of R n , 5.3.8.1 
- - of sphere, 5.3.37.1 
- projection, 2.3.3.1, 3.3.1 
- topology, 0.0.9, B.B.6-7 
- vector field, B.5.17.B, 3.5.1 
- volume form, 0.1.15.5 
- - - on orientable double cover, 

5.3.31.2 
- - - on R n and submanifolds 

thereof, 5.3.17.1, 6.4.1 
- - - on torus, 5.3.10.1, 6.5.11 
- - - on sphere, 5.3.17.2, 6.4.6 

Cantor set, 4.2.26 
Caratheodory, C., [Car37a] 
cardioid, 8.7.17.9 
Carmo, M. do, 11.13.2, [Car76] 
Cartan, E., [Car37b], [Car84] 
Cartan, H., [Car63], [Car70], [Car71] 
category theory, 5.1.6, 5.4.6 
catenary, 8.7.20, 10.2.2.9, 10.2.3.5 
catenoid, 10.B.B.9, 10.2.3.5-6, 10.6.6.6, 

10.6.9.6 
Cauchy, 11.14.2, 11.21.3.5 
caustic, 8.7.17.3, 10.6, 10.6.8.1 
celestial mechanics, 10.4.9.3 
center of curvature, 8 .... 15, 8.7.20, 

10.2.2.9 
- of hypo- or epicycloid, 8.7.17.9 
- of mass, 6.5.1 .. , 6.5.15, 6.10.16, 

6.10.25 
centered at z, chart, B.B.9 
chain, 6.!.B 

- rule, 2.5.15, 2.5.23.3, 2.5.27, 
2.5.29, 4.2.13 

Chakerian, G., [CG83] 
change of variable formula, 0.4.6 
chart, B.B.9, B.B.5, 2.2.9, 2.3.6.2, 2.8.20 

-, complete, 10.1.2 
-, latitude-longitude, 6.1.6, 10.2.3.3, 

10.4.1.3 
- on S2, 6.1.6, 10.2.3.3 
-, positively oriented, 5.9.!! 

Chavel, I., [Cha84] 

Chazy, J., [Cha53] 
Chebyshev coordinates, 10 .... B 
Cheeger, J., [CG85], [CMS84] 
Chern, S.-S., 6.9.8, [Che85] 
Chinese lantern, 6.5.4 
Choquet-Bruhat, Y., [Ch068] 
Christoffel symbols, 10 .... 7, 10.7.1 

-'s problem, 11.19.4 

Index 

circle, B.1.6.B, 2.4.3, 2.4.12.1, 2.6.13.1, 
2.8.23, 5.3.17.4 

-, de Rham group of, 5.4.9.2 
-, topological, 3.4.1,7.6 

Clairault's relation, 10 .... 9.9, 10.4.9.5 
class, Bee differentiability class 
classification of higher-dimensional 

manifolds, 4.2.26 
- of one-dimensional manifolds, 

3.4.1 
- of simply connected compact 

manifolds, 4.2.26 
- of surfaces, 4.2.25-26 

closed curve, 9.1 ... 
- form, 3.5.15.5, 5 .... B, 5.4.11 

Codazzi-Mainardi equation, 10.7, 
10.7.2, 10.7.3, 11.14.1, 11.17.1, 
11.18.2, 11.19.1.1 

codimension, B.1.1, 3.3.17.2 
cogwheel design, 8.7.17.5 

-, Lahire's, 8.7.17.9 
Cohn-Vossen, S., 11.5.4, 11.7.1, 

11.14.1, [HC52] 
cohomology groups, 4.2.24.2, 5.4.9 

- ring, 5.9.15 
Comberousse, C. de, [RdC22] 
commutativity of flows, 3.5.15.2 
compact Lie group, 5.8.9 

-, locally, 2.2.11 
- manifold, 3.5.9 
-, relatively, 9.!.5 
- subsets, exhaustion by, 3.2.6 
- support, 5.6.2, 7.1.1-10 

comparison tests, 1.6.0 
- theorem, Schur's, 8.7.22 

compatible atlases, B.B." 
- coordinate system, B.1.9, 2.5.7.2 

complement of submanifold, 2.8.24 
-, orthogonal, B.7.1 

complete chart, 10.1.2 
- metric space, 0.0.13.2, 11.1.1 
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complete continued: 
- surface, 11.1.3 

complex integration, 10.2.3.6 
- numbers, 2.8.5(d), 2.8.13, 

2.8.25-27, 4.4.6(a), 5.9.17, 
10.2.3.6 

- projective space, .e.8 . .eB-27(a), 
4.4.6(a) 

components of acceleration, 8.4.12 
composition of maps, 0.2.13.1, 2.3.3.2, 

5.3.21; see also chain rule 
concavity, 8 . .e . .e.11 
cone, 10 . .e . .e.-l, 10.2.3.8, 10.2.3.10, 

10.4.9.2, 11.12 
confocal quadrics, 10 . .e . .e.9 
conformal coordinates, 10.-l . .e 

- map, 0.5.9.1 
conic, 10.2.1.4 

-, focal, 10 . .e.9.1.e, 10.2.3.14 
conjecture, Rellich's, 11.17.5 

-, Willmore's, 11.17.4 
conjugate points, 11.-l.1 . .e 
connectedness, 2.2.13 

- of the complement of a 
submanifold, 2.8.24 

- of the orientable double cover, 
5.3.31.2 

conoid, Pliicker's, 10.2.1.4, 10.2.2.4, 
10.2.3.8 

constant curvature, 10.4.9.6, 10.5.2, 
10.5.3.10, 11.2 

- mean curvature, 10.6.9.6, 11.17 
contact, 8.7.11, 9.7.10.1 
continuity of integral, 0.-l.8 . .e, 6.1.4.11, 

9.5.4 
continuous function, 0.0.6 

- linear map, 0.0.4 
- map, 0.0.5 

continuously differentiable map, 0 . .e.5 
contracting map, 0.0.19.1 
contraction, 0.1.18, 5.9.1.e, 5.5.7.2 
contravariant functor, 5.-l.B 
convention on Hausdorff, 2.2.10.7 
convex curve, 9.B.9 

-, globally, 9.B . .e 
- polyhedron, 11.14.2 
- submanifold-with-boundary, 9.6.2 
- surface, 11.19 

Coolidge, J., [Coo68] 
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coordinate change, .e.1.9 
- system, .e.1.8-9, 2.5.7.2, 10.4.2 

coordinates, area-preserving, 10.-l . .e 
-, Chebyshev, 10.-l . .e 
-, conformal, 10.-l . .e 
-, cylindrical, B.10.15 
-, elliptic, 10 • .e . .e.9 
-, geodesic, 10.-l . .e, 10.4.9.4, 10.5.1, 

10.5.3.3 
-, homogeneous, .e.8 • .eB 
-, Liouville, 10.-l . .e, 10.4.9.5-6 
-, local, .e . .e.9 
-, normal, 10.5.1 
-, orthogonal, 10.-l . .e, 10.4.7 
-, polar, 0.2.21, 8.2.2.13, 8.4.14.2, 

10.2.1.3; see also geodesic 
coordinates 

-, spherical, 6.5.8 
Coron, J.-M., 11.17.5, [BC84] 
countable base, 3.1.3, 3.2.5 
covariant derivative, 10.-l.7, 10.7 
covering map, .e.-l.1, 3.3.7,3.6.1, 4.1.5 

- space, see covering map 
criterion for differentiability, 0.2.8.6, 

5.2.2.3 
- for orientability, 5.3.24, 5.3.27 

critical point, -l.1.1, 4.2.8-12 
- -, characterization of, 4.4.1 

critical value, -l.1.1, 4.3.1 
Croke, C., [Cro84], [Cro] 

-'s inequality, 11.9.5 
cross product, 0.1.17 
cross-ratio, 8.7 . .e9, 10.2.3.8 
cultural digression, 1.6, 3.5.15, 

4.2.24-26, 6.9.8, 7.7.6 
curvature bounded above, 11.6 

- - below, 11.5 
-, center of, 8.-l.15, 8.7.20, 10.2.2.9 
-, Gaussian, 6.9.7, 10.4.3, 10.5, 

10.5.1 . .e, 10.5.2-5, 10.5.3.6, 
10.5.5, 10.6.2.2, 11, 11.2, 11.5, 
11.19.2, 11.21.1 

-, geodesic, 10.-l.7, 10.6.1, 11.3.3 
-, line of, 10.2.3.12, 10.B.-l . .e, 10.7.2 
-s, Lipschitz-Killing, 11 . .e0 . .e 
-, mean, 10.B . .e, 10.6.9 
-, Menger, 8.7.13 
-, negative, 11.15 
-, non-negative, 11.13 



460 

curvature continued: 
-, normal, 10.6.1.1 
- of circle, 8.4.14.1 
- of curve, 8.-1.1, 8.4.14.2 
- of parametrized arc, 8.-1.8 
-, positive, 11.5.4, 11.11.3; see also 

non-negative curvature 
-, principal, 10.6.1l 
-, radius of, 8.-1.15, 8.7.19 
-, sectional, 10.8 
-, signed, 8.5.1l 
- tensor, 10.4.3 
-, total, 9.-1.10, 9.6.1, 10.5.1, 

10.6.1l, 11.16.7; see also Gaussian 
curvature 

-s, Weyl, 6.9.6 
-, zero, 11.12 

curve, 0.1l.9.1, 0.2.25, 2.1.3, 1l.5.17.1, 
9.-I.1l, 4.4.2, 5.3.17.4, 7.-1.8 

-, algebraic, 10.2.3.1 
- and Frenet frame, 8.6.12.2 
-, arc of, 6.5.9 
-, area of, 9.9.1 
-, Bertrand, 8.7.1l9 
-, closed, 9.1.-1 
-, convex, 9.6.9 
-, integral, 1.1l.1l, 1.-1.1, 9.5.9, 9.5.11 
-, length of, 9.6.9, 6.5.3 
-s, linked, 7.-1.11 
-, local behavior of, 8.5.3 
- on surface, 10.6.1 
- on sphere, 9.9.6 
-s, pair of, 7.-1.8 
-, Peano, 8.0.2.1 

cuspidal edge, see line of striction 
cut locus, 11.-1.1-3 
cut value, 11.-1.1 
cyclid, 10.1l.1l.6 
cylinder, 5.6.4, 10.1l.1l.1, 10.2.3.8, 

10.2.3.10, 11.12 
-, elliptic, 10.2.2.1 
-, hyperbolic, 10.2.2.1 
-, parabolic, 10.2.1.2 

cylindrical coordinates, 6.10.15 
- wedge, 6.10.90 

Darboux, G., 10, [Darl7], [Dar72] 
-'s theorem, 3.5.15.5 

Index 

de Rham group, 2, -I.Il.Il-l.Il, 5, 5.-1.-1, 
5.4.7, 5.4.9.1-2, 5.4.10-13, 5.5.11, 
5.6.3-4, 5.7-8, 5.9.15-18, 6.3.3, 7, 
7.1.9, 7.2.1, 7.3.2, 7.5.6.1, 7.6 

- -'s theorem, 5.4.10 
deformation of surface, 11.14.2 
degree of form, 0.1.6, 0.9.1, 5.1l.1 

- of Gauss map, 7, 7.5, 7.5.2, 7.5.4 
- of map, 5.4.13, 7.9.1, 7.6.-1, 

10.2.3.8 
- of tangent map, 9.4.1 

Delaunay, 10.6.9.6, 11.18.1 
density, 0.1.1l5, 0.1.29, 9.9.1-8, 

9.-I.1l-4, 3.6.5, 5.9.4, 6.5.1-1.1 
- bundle, 9.9.1 
-, canonical, 0.1.1l6, 0.9.11.1, 

3.3.18.2, 6.6.1, 6.7.9, 6.7.12 
-, integral with respect to, 3.3.14 
-, measure associated with, 3.3.11 
-, product, 9.9.18.1-5 
-, pullback of, 0.3.11.1, 9.9.1l, 3.3.16 

derivation, 1l.8.17, 5.5.6 
derivative, 0.1l.9, 1l.5.1l9, 5.1l.6 

- at a point, 0.1l.1l 
-, elementary notion of, 0.2.4 
-, partial, 0.2.8.8, 0.2.15.5 
-, second, 0.1l.11-13, 4.2, 4.2.4 
- of solution of differential equation, 

1.6.2 
-s, uniform convergence of, 4.4.10 

determinant form, 0.1.12.1 
developable surface, 10.1l.9.9, 

10.2.3.12, 10.4.1.8, 10.4.9.2, 
10.6.6.2 

diagonalization, 4.2.16-17 
diameter, 11.1.-1 
Dieudonne, J., [Die69] 
diffeomorphism, 0.1l.18 
differentiability class, 0.2.5, 0.2.11, 

0.2.14, 2.1.1, 2.2.1, 2.2.5, 2.3.1, 
3.3.5, 5.2.1 

- criterion, 0.2.8.6, 5.2.2.3 
differentiable manifold, 1l.1l.5 

- map, 0.1l.1 
- - on manifold, 1l.9.1-3 
- structure, 1l.1l.5 

differential, 1l.5.1l9, 5.1l.6 
- calculus, 0.2, 5.4.11 
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differential continued: 
- equation, 1.1.1, 9.5.11, 3.5.15.3; 

see also vector field 
- -s, comparison tests for, 1.6.0 
- -, linear, 1.6.9--1 
- -, order of, 1.1.1-1! 
- -s, system of, 1.1.1 
- form, 0.9.1, 3.5.15.6, 5.1!.1, 5.2.7 
- -, boundary of, 6.1!.1! 
- -, closed, 3.5.15.5, 5.-I.1!, 5.4.11 
- -, degree of, 0.9.1 
- -, exact, 5.-I.1! 
- -s, family of, 0.9.15.1-3, 

5. 1!.1 o. 1-4 
- - in coordinates, 0.3.5, 5.2.8 
- -, integrable, 6.1 
- -, invariant, 5.3.10.2, 5.9.1-3 
- -, pullback of, 0.9.7, 5.1!.-I.1 
- -, rank of, 9.5.15.5 
- -, restriction of, 5.1!.5.1 

differentiation under integral sign, 
0.-1.8, 7.1.5, 5.2.10.5 

digression, Bee cultural digression 
dimension argument, 5.2.5.2 

- of manifold, 1!.1!.5 
- of submanifold of RR, 1!.1.1 
- of tangent space to submanifold, 

2.5.6 
Diquet's formula, 10.5.1.3 
direction, asymptotic, 10.6.-1.1 

-, principal, 10.6.1!, 10.8 
distance, 9.6.9, 10.-1.9; see also length 
distribution, parameter of, 10.1!.9.8 
divergence, 6.6.9.1! 
Dixmier, J., [Dix67], [Dix68] 
Dombrowski, P., [Dom79] 
Donaldson, S., [Don83] 
double cover, Bee orientable double 

cover 
- point, 8.1.8, 9.8.-I 
- tangent, 9.8.9 

dual of a vector space, 0.0.-1 
Dupin cyclid, 10.1!.1!.6, 10.2.3.12, 

10.6.8.2, 11.21.4 
- indicatrix, 10.9.9 

Eells, J., [Ee187] 
Efimov, 11.14.2, 11.15.1 
Eisenhart, L., [Eis49], [Eis62] 

elastic band, 10.4.5; see also string 
electricity, 8.7.17.5 
ellipse, 8.7.19, 10.2.2.7 
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ellipsoid, 10.2.2.3, 10.2.3.4, 10.4.1.6, 
10.4.9.5, 10.5.3.7, 10.5.5.7, 
10.6.6.6, 10.6.6.8, 10.6.8.3, 
11.4.2.3, 11.8 

-, mechanical generation of, 
10.2.2.7, 10.2.3.14 

elliptic coordinates, 10.1!.1!.9 
- cylinder, 10.2.2.1 
- geometry, 11.1!.-I 
- paraboloid, 6.10.11!, 10.2.1.2 
- point, 10.6.-1.1 
- space, 11.1!.-I 

embedding, 1!.6.9-12, 3.1, 9.6.5.3, 
11.11 

Enneper's surface, 10.2.2.5, 10.2.3.6, 
10.2.3.13, 10.4.1.5, 10.5.3.5, 
10.6.6.3 

envelope, 10.2.3.5, 10.2.3.12-13, 
10.6.8.2(3), 11.19 

epicycloid, 8.7.17.1-5 
equation, Codazzi-Mainardi, 10.7, 

10.7.2, 10.7.3, 11.14.1, 11.17.1, 
11.18.2, 11.19.1.1 

-, differential, 1.1.1-1!, 1.6.1-2, 
9.5.11, 3.5.15.3; see also vector 
field 

-, Euler, see Euler form 
-, local, 2.1.3.1, 2.6.15 

equilibrium, 7.8.14 
equivalent parametrized arcs, 8.1.-1 

- - -, strictly, 8.1.11 
- volume forms, 5.9.-1 

Euclidean norm, 0.0.9 
Euclidean structure on space of 

alternating forms, 0.1.15.1-3, 
0.5.2 

Euler characteristic, -I.1!.1!-I.1!-4, 
4.4.6(c), 6.9.16,7,7.5.4,7.5.6.3, 
7.7.6.1,11.7 

- equation, see Euler form 
- form, 8.7.21, 9.9.3, 9.9.7, 

10.2.3.13, 11.19 
eversion, 11.11.1 
evolute, 8.7.5, 8.7.16, 8.7.17.4 
exact form, 5.-I.1! 
exhaustion by compact subsets, 3.2.6 
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exponential map, 11.1.1 
exterior, 9.!.! 

- algebra, 0.1, 0.3.2; see allJO 
exterior derivative 

- - on Euclidean spaces, 0.1.15 
- - on manifolds, 5.2 
- product, 0.1.4 
- power, 0.1.15.7 
- derivative, 0.9.1!.0, 5.!.9.1, 5.4.2, 

5.5.7.1 
- -, in coordinates, 5.2.9.7 

Fabricius-Bjerre-Halpern, 9.B 
family of diffeomorphisms, see 

one-parameter group 
- of differential forms, 0.9.15.1-3, 

5.!.10.1-4 
- of maps, pullback under, 5.2.10.6 
- of normals to a surface, 3.5.15.5 
-, triply orthogonal, 10.!.!.9, 

10.2.2.6, 1O.6.B.3 
Federer, H., [Fed69] 
Feldman, E., 9.4.17.2, [FeI6B] 
Fenchel, 6.9.B 
Ferrand, J., preface; see also 

Lelong-Ferrand 
field, lJee vector field, Jacobi field 
Firey, W., 11.19.4, [Fir6B] 
first fundamental form, 10.9.1-2, 10.4, 

10.7-B, 11.19 
- - - in coordinates, 10.4.1 
- integral, 10.4.9.9 

fixed point, 0.0.13.2, 6.3.5 
flat map (b), 0.1.15.1 
flexible, 11.14.! 
Flohr, F., [BF5B] 
flow, lJee also one-parameter family of 

diffeomorphisms 
-s, commutativity of, 3.5.15.2 
- defined everywhere, 3.5.9 
-, domain of, 1.9.9, 1.3.6, 3.5.6 
-, global, 1.9.9, 9.5.6, 3.5.11 
-, local, 1.!.9, 9.5.9, 3.5.11 
-, uniqueness of, 1.3.1, 3.5.4,3.5.11 

focal conic, 10.!.9.1!, 10.2.3.14 
- point, !.7.11 
- surface, 10.6.8.1 

form, alternating, see alternating form 
- -, degree of, 5.!.1 

Index 

-, determinant, 0.1.12.1 
-, differential, see differential form 
-, Euler, B.7.21, 9.9.3, 9.9.7, 

10.2.3.13, 11.19 
-, first fundamental, 10.9.1-2, 10.4, 

10.7-B,I1.19 
-, linear, 0.0.4 
-, second fundamental, 10.9.9, 

10.6-B 
-, symmetric bilinear, 0.2.8.3, 3.6.3, 

4.2,4.2.6 
-, third fundamental, 10.9.9 
-, volume, 0.1.15.5, 5.9.!-17 

formula, change of variable, 0.4.6 
-, Diquet's, 10.5.1.3 
-s, Frenet, 8.6.6, 10.2.3.10 
-, Gauss's, 10.5.3.2 
-, Girard's, 10.5.5.5, 10.6.2.2 
-, Hopf's, 11.7.4 
- of the three levels, 6.10.32 
-, Puiseux's, 10.5.1.9 
-s, variation, 11.3.2, 11.3.3 
-, Weierstrass's, 10.2.3.6, 11.16.5-6 
formulary for second fundamental 

form, 10.6.5 
Forster, 0., [ForBl] 
four-vertex theorem, 9.7.4 
France, teaching in, preface 
Frenet formulas, 8.6.6, 10.2.3.10 

- frame, 8.6.6, B.6.10-13, 9.9.4, 
10.6.7, 10.7.3 

Fresnel, 10.2.2.7 
Frobenius' theorem, 2.B.17.2, 

3.5.15.3-6, 10.7.3 
Fubini's theorem, 0.4.5.1, 3.3.1B.6, 

9.9.18.7, 6.2.1.3, 6.5.9, 6.5.10, 
6.6.9.2, 6.7.16, 7.1.B 

function, see also map 
-, bump, 0.2.16, 2.3.7.1, 3.1.2,3.2.7, 

5.5.9.1, 5.7.1.4 
-, continuous, 0.0.6 
-, height, 4.1.4.2, 6.5.15 
-, holomorphic, 10.2.3.6 
-, integrable, 0.4, 3.3.14 
-, multi-valued, 10.2.3.6 
-, periodic, 9.1.7 
-, support, 11.19 
-, triply periodic, 11.16.4 

functor, 5.1.6, 5.4.6 



Index 

fundamental form, 3ee first, second, 
third 

- -s, links between the two, 10.7-S 
- group, 4.2.26, 5.4.13; see also 

simply connected 
- theorem of calculus, 3.4.4 

funnel, 6.10.14 

Gauduchon, P., [BGM71] 
Gauss, 10.4.1.7, 10.5.3.2, 10.5.5.7, 

10.6.2 
-'s formula, 10.5.3.2 
- map, 6.8.19, 6.9.15, 10.9.9, 

10.6.2.2, 10.6.9.3, 10.8, 11.13.1, 
11.16.6-7,11.19 

- -, degree of, 7,7.5,7.5.2,7.5.4 
-'s Theorema egregium, 10.5.9.!, 

10.6.2.1 
Gauss-Bonnet theorem, preface, 6.9.S, 

7, 7.5 ... , 7.5.7, 10.5.5.4-5, 11, 
11.2.5, 11.5.4, 11.7 

Gaussian curvature, 6.9.7, 10.4.3, 
10.5, 10.5.1.!, 10.5.2-5, 10.5.3.6, 
10.5.5, 10.6.2.2, 11, 11.2, 11.5, 
11.19.2, 11.21.1 

generic metrics, 10.6.S.1, 11.4.3.4 
geodesic, 10.4.5, 10.4.S-9 

-, closed, 11.9-10 
- coordinates, 10 .... !, 10.4.9.4, 

10.5.1, 10.5.3.3 
- curvature, 10 .... 7, 10.6.1, 11.3.3 
- map, 10 .... 9.6 
- torsion, 10.6.7 

geodesy, 10.5.5.6 
geometric are, 8.1 ... 

- -, oriented, 8.1.11 
Geometrie DifferentieUe, preface 
Girard's formula, 10.5.5.5, 10.6.2.2 
girth, 11.!1.9." 
global flow, 1.9.9, 9.5.6, 3.5.11 

- surface, 10.1.! 
- uniqueness of flow, 1.3.1, 3.5.4, 

3.5.11 
globalization, 2.1.6.5, 8.2.2.16 
globally convex, 9.6.! 
Gluck, H., [Glu71] 
Gluck-Singer, 11.4.3 
graded algebra, 5.5.6, 5.9.15 
gradient, 10.2.2.12 

Gram-Schmidt process, 6.7.10 
Gramain, A., [Gra71] 
graph, 2.1.2, 2.1.3.1, 4.4.9, 10.2.1, 

10.4.1.2, 10.5.3.4, 10.6.6.1 
grassmannian, !.8.8 
Grauenstein, 3ee Whitney-

Grauenstein 
Green, 11.10.2, 11.14.3 
Greenberg, M, [Gre67], [GreSO] 
Greene, R., [GW72] 
Greenwich meridian, 6.1.6 
Groemer, H., [CGS3] 
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Gromoll, D., 11.10, [GGS1], [GM69] 
Gromov, M., 6.6.9.2, [CGS5], [GR70], 

[GroS1], [Gro82], [GroS3], [Gro86] 
-'s inequality, 11.9.3 

group action, ! .... 8-10, 5.3.9-10 
-, cohomology, 4.2.24.2, 5.4.9 
-, de Rham, 2, ... !.! ... !, 5, 5 ...... , 

5.4.7, 5.4.9.1-2,5.4.10-13, 5.5.11, 
5.6.3-4, 5.7-S, 5.9.15-1S, 6.3.3,7, 
7.1.9, 7.2.1, 7.3.2, 7.5.6.1, 7.6 

-, fundamental, 4.2.26, 5.4.13; 3ee 

also simply connected 
-, holonomy, 3.5.15.5 
-, Lie, preface, 3.5.15.5, 9.6.5, 5.S.9 
-, linear, 2.S.10-11, 3.6.5 
-, one-parameter, 1.9.5, 3.5.10, 

5.5.7.4 
-, orthogonal, 2.1.6.4, 2.S.10-11, 

5.S.9 
Grove, K., 11.10, [GGS1] 
Guichardet, A., [Gui69] 
Guillemin, 11.10.2 
Guldin theorems, 6.10.15-16 
Gunning, R., [Gun62] 
Gutierrez, C., [SGS2] 

Haar measure, 9.6.5, 5.8.9 
Hadamard's theorem, 11.6.!, 

11.13.1-2 
Halpern, W., [Ha177]; see also 

Fabricius-Bjerre-Halpern 
Halphen, G.-H., [Ha18S] 
Hartman, 11.12 
Hausdorff, 2.2.10.4, 2.2.10.7, 2.2.11, 

2.3.7.3, 2.4.9-10, 2.4.12.4, 
2.5.25.1, 2.6.12, 2.8.S, 3.1.2, 3.2.4, 
3.5.4-5, 3.6.4, 4.1.5, 5.1.5, 5.3.27 
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Hebda, J., [Heb81] 
height function, 4.1.4.2, 6.5.15 
helicoid, 2.8.22, 10./U.9, 10.2.2.10, 

10.2.3.6, 10.2.3.8 
helix, 8.7.10 

-, circular, B.~.l~.~, 8.6.11.1, 8.6.16 
-, spherical, 8.7.17.9 

Herglotz, 11.14.1, 11.19.1.6, 11.19.2 
Hermann, 6.9.8 
Hessian, 0.5.3.2, ~.f.f, 4.2.16, 4.4.2 
Hicks, N., [Hic65] 
Hilbert, D., 9.3.2, 11.15.1,11.17.1, 

[HC52] 
Hilliard, J., [Hil] 
holomorphic function, 10.2.3.6 
holonomy groups, 3.5.15.5 
homogeneou8 coordinate8, f.8.f6 
homologous, S.~.S, 5.5.11 
homotopy, 4.2.26, 7.~.1, 7.~.8, 9.~.6 
Hopf, H., [Hop83] 

- fibration, £.8.fS 
-'s formula, 11.7.4 
- invariant, 6.10.f.f 
-'s theorem, 11.17.2 

Hopf-Rinow, theorem of, 11.1.1-4 
horizontal tangent space, 4.1.4.2 
Hu, S.-T., [Hu69] 
hydrosta tics, 10.6 
hyperbolic cylinder, 10.2.2.1 

- paraboloid, 6.10.1f, 10.2.1.2, 
10.2.3.8 

- plane, 11.f.f, 11.4.3 
- point, 10.6.~.1 

hyperboloid, 10.2.2.3, 10.2.3.8 
hyperplane reflection, 0.S.9.1 
hyperquadric, f.B.9 
hypersurface, f.l.6.S, 2.5.7.1, 2.6.15, 

10.8 
hypocycloid, B.7.17.1-5 

LH.E.S, preface 
image of geometric are, 8.1.6 

- of parametrized are, 8.1.9 
- of point, 8.1.7, 9.1.9 

immersed surface, 10.1.~, 10.2.4 
immersion, 0.£.f9, 2.1.3.1, f.6.9-12, 

2.7,11.11,11.17.3 
implicit function theorem, 0.f.£6 

Index 

- characterization of 8ubmanifolds, 
2.1.2 

implicitly defined surface, 10.2.2, 
10.5.3.8, 10.6.6.4 

index of critical point, ~.f.8, ~.£.11 
- of point, 7.6.8, 9.1.11 
- of singularity, 7.~.16, 7.7.4 

indicatrix of Dupin, 10.9.9 
inequality, Bavard's, 11.9.4 

-, Bonnesen'8, 9.9.3 
-, Croke'8, 11.9.5 
-, Gromov's, 11.9.3 
-, isoembolic, 11.~.~ 
-, isoperimetric, 6.6.9, 9.3, 10.6.9.7, 

11.8, 11.20 
-, isosystolic, 11.9.0 
-, Loewner's, 11.9.1 
-, Pu's, 11.9.2 
-, strict triangle, 10.3.2 
-, Wirtinger's, 9.3.2 

infinite-dimensional manifold, 2.2.2 
inflection point, 9.8.S 
initial condition, 1.f.f, 9.S.9 
injectivity radius, 11.~.~ 
inner product, 0.1.15.1 
inside, 9.f.f 
integrable form, 6.1 

- function, O.~, 3.3.14 
- vector field, 5 

integral, 0.4.2, 3.3.14-16, 6.1.9, 6.£.f 
-, abelian, 10.2.3.1 
-, continuity of, 0.~.8.£, 6.1.4.11, 

9.5.4 
- curve, 1.f.f, 1.~.1, 9.S.9, 9.S.11 
-, first 1 O.~. 9.9 

integration, 0.4, 3.3.11.5, 10.2.3.6 
- of a family of differen tial forms, 

0.3.15.3, 5.2.10.4 
interior, 9.f.f 
intrinsic components of acceleration, 

8.4.12 
- metric, 9.6.9, 10.~.9 

invariance of degree under homotopy, 
7.4.3, 7.6.5 

- - index under diffeomorphism, 
7.7.3 

invariant forms, 5.9.1-3 
inverse function theorem, 0.2.22, 

2.3.7.1, 2.5.20, 2.8.11 
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inverse continued: 
- image, ,ee al,o pullback 
- - of point, 5.9.7 

inversion, 0.5.9.1, 8.7.4, 10.2.3.12 
isoembolic inequality, 11..1.4 
isolated singularity, 7.4.15, 7.7.1l.1 
isometry, 6.9.5, 8.3.4, 8.3.12.3, 10, 

10.2.3.6-8, 10.3.2, 10.4.1.1, 
10.4.1.7-8, 10.4.4, 10.4.9.2, 
10.5.1.2, 10.5.2 10.5.3.9, 10.5.4, 
10.8, 11.11.2-3, 11.14, 11.19.1.5, 
11.19.2, 11.2.1, 11.2.4, 11.8.1, 
11.21.1 

isomorphism TpX '" R d , 2.5.10, 
2.5.12.3 

isoperimetric inequality, 6.6.9, 9.3, 
10.6.9.7, 11.8, 11.20 

- profile, 11.8.9 
isosystolic inequality, 11.9.0 
isotopy, 7.7.1 

Jaba!uf, F., preface 
Jacobi field, 10.5.3.3, 11.5.1-3, 11.6.1 
jacobian (determinant), 0.1l.8.9, 

0.3.10.2, 3.3.6, 4.1l.17, 5.3.36, 
6.6.9.2, 6.7.11, 6.8.4, 7.7.8, 9.8.8, 
10.4.1.1 

- matrix, 0.1l.8.8, 0.2.21, 2.3.7.2, 
2.6.13.3 

Jacobowitz, H., [Jac82] 
Jordan's theorem, 7.6.8, 9, 9.2, 9.3.4.2, 

9.5.1-3, 9.6.4 
Jorge, L., [JM83] 

Kepler's laws, 10.4.9.3 
k-fold cover, 1l.4.4 
Killing, ,ee Lipschitz-Killing 
kinematics, 8.4.5, 8.4.10 
Klein bottle, 1l.4.11l.4, 4.2.24.3, 4.4.4, 

5.3.19, 5.9.10, 5.9.18, 11.2.4, 
11.7.2-3, 11.9.4, 11.13 

Klingenberg, W., [Kli78], [Kli82] 
Klotz-Milnor, T., [Klo72] 
Knorrer, H., [Kno80] 
Kobayashi, S., [KN69] 
Kowalski, 0., [Kow80] 
Kuiper, N., [Kui70], [Kui84] 

Lafontaine, J., preface, [BBL73] 
Lahire's cogwheel, 8.7.17.9 
Lang, S., preface, [Lan68], [Lan69] 
lantern, Chinese, 6.5.4 
Lapla.ce-Beltrami operator, 11 
Lashof, 11.13.2 
la.titude, 10.4.1.4 

-, parallels of, 9.9.5 
latitude-longitude chart, 6.1.6, 

10.2.3.3, 10.4.1.3 
la.ttice, 2.4.7.1 
la.ws, Kepler's, 10.4.9.3 
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Lebesgue measure, 0.4.9.1, 0.4.4-6, 
0.4.8.0, 3, 3.3.11.5, 9.9.11l-13, 
3.3.17.3-5, 6.1, 6.1.4.2,6.1.6, 
6.6.9.2 

Legendre, 10.5.5.6 
Lehman, D., [LS82] 
Leichtweiss, K., [Lei80] 
Lelong-Ferra.nd, J., [LA74], [LeI63], 

[LeI82], [LeI85]; ,ee al,o Ferrand 
Lemaire, J., [Lem67] 
lemma, Poincare, 5.4.12-13, 5.6.1-2, 

5.7.1.4,7.1.2.1 
-, Zorn's, 3.4.5.2 

lemniscate, 8.7.18 
length, 9.6.9, 6.5.1-3, 6.6.9, 6.6.7, 

8.9.7, 8.9.9, 9.3.1, 10.4.9 
Levy, S., preface 
Lewy,11.19.3 
Li, P., [LY82] 
Lie, Sophus, 10.2.3.1 

- algebra, 3.5.15.5 
- derivative, 5.4.11, 5.5.9 
- group, preface, 3.5.15.5, 9.6.5, 

5.8.9 
Liebmann, 11.12.1, 11.14, 11.17.1 
lifting, 7.6.1l 
Lima, ,ee Carmo-Lima 
limac;on of Pasca~ 8.4.14.9, 8.7.17.3 
line, long 2.2.10.6 

- of curvature, 10.6.4, 10.6.8.1-3 
- of striction, 10.1l.9.8-9, 10.6.8.3 

linear differential equation, 1.6.9-4 
- form, 0.0.4 
- group, 2.8.10-11, 3.6.5 
- map, 0.0.4 

linked curves, 7.4.11 
linking number, 7.4.9 
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links between the two fundamental 
forms, 10.7-8 

Liouville, see also Sturm-Liouville 
- coordinates, 10.4.!, 10.4.9.5-6 
-'s theorem, 0.5.3 

Lipschitz map, 0.0.19.1, 0.2.6, 0.4.4.5 
- vector field, 1.2.6, 1.2.7, 1.3.1, 

1.6.0 
Lipschitz-Killing curvatures, 11.!0.! 
Lissajous figure, 9.1.B.9 
local behavior of a curve, 8.5.3 

- - - a map, 0.2.23-26 
- - - a surface, 4.2.20 

local connectedness, 2.2.12 
- coordinates, !.!.9 
- equations, 2.1.3.1, 2.6.15 
- flow, 1.!.9, 9.5.9, 3.5.11 
- -, continuity of, 1.2.6 
- -, differentiability of, 1.2.7 
- -, existence and uniqueness of, 

1.2.6, 1.4.5, 1.4.7,3.5.3,3.5.11 
local surface, 10.1.! 
locally compact, 2.2.11 

- constant, 2.4.4 
- convex, 8.2.2.15 
- finite, 9.!.1 
- Lipschitz map, 0.0.19.1,0.2.7 

Loewner's inequality, 11.9.1 
logarithmic spiral, B.7.16 
long line, 2.2.10.6 
loop, 7.6.7 

Mach, E., [Mac49] 
magic tricks, 7.4.14, 7.8.11, 10.2.3.8 
Mainardi, see Codazzi-Mainardi 
Mangoldt, H. von, [Man81] 
manifold, Bee alBO curve, surface, 

riemannian manifold 
-, abstract, 2.2 
-, antipodal, 11.10 
-, classification of, 4.2.26 
-, compact, 3.5.9 
-, differentiable, !.!.5 
-, dimension of, !.!.5 
-, infinite-dimensional, 2.2.2 
-, non-Hausdorff, 2.2.10.4, 3.5.5 
-, one-dimensional, 3.4.1, 10.1.4; Bee 

also curve 
-, orientation of, 5.9.5 

Index 

-s, product of, !.lUO.9-5, 2.3.3.1-3 
2.8.18, 5.6.3 

- structure, 2.6.2 
-, topological, !.!.5 
-, two-dimensional, Bee surface 
-, unreasonable, !.!.10.5 

manifold-with-boundary, 5.9.99-37, 
10.5.5.4 11.17.5; Bee alBO 
submanifold-with-boundary 

-, boundary of, 5.9.94-37 
manifolds-with-boundary, product of, 

5.9.12 
map, Bee alBO function, isomorphism, 

isometry 
-, antipodal, !.4.7.!, 2.8.14, 5.3.31.1 
-, canonical, 2.5.12.3, 2.5.22, !.7.5, 

2.7.10 
-, conformal, 0.5.9.1 
-, contracting, 0.0.19.1 
-, covering, !.4.1, 3.3.7, 3.6.1, 4.1.5 
-, degree of, 5.4.13, 7.9.1, 7.6.4, 

10.2.3.8 
-, differentiable, 0.!.1, !.9.1 
-, exponential, 11.1.1 
-, flat (b), 0.1.15.1 
-, Gauss, Bee Gauss map 
-, geodesic, 10.4.9.6 
-, linear, 0.0.4 
-, Lipschitz, 0.0.19.1, 0.2.6, 0.4.4.5 
-, local behavior of, 0.2.23-26 
-, regular, O.!.!O, !.6.9, 2.7.10, 3.3.7 
-, restriction of, 2.3.3.4, 2.6.6-7 
-, section of, O.!.B.5 
-, sharp (U), 0.1.15.1 
-, symmetric bilinear, Bee 

symmetric bilinear form 
-, tangent, !.5.14-20 
-, unit tangent, 9.4 

Massey, W., [Mas77] 
maximal atlas, !.!.7 

- integral curve, 1.9.1.1, 1.5.1, 3.5.5 
Mazet, E., [BGM71] 
mean curvature, 10.6.!, 10.6.9 
measure associated with a density, 

3.3.11 
-, canonical, 10.5.5.! 
-, Haar, 9.6.5, 5.8.9 
-, Lebesgue, 0.4.9.1, 0.4.4-6, 

0.4.8.0, 3, 3.3.11.5, 9.9.12-13, 
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measure continued: 
3.3.17.3-5,6.1,6.1.4.2,6.1.6, 
6.6.9.2 

- of image, 3.3.17.1-4 
-, product, 0 . ./.5, 3.3.18.5 
-, Radon, 0 . ./ 
- zero, 0 . ./ . ./.0, 9.9.19, 3.3.17.2, 

3.3.17.6 
mechanics, 8.7.17.5, 10.6; see also 

kinematics, center of mass 
-, celestial, 10.4.9.3 

Meeks, W., [JM83], [Mee81] 
Menger, K., [BM70] 

- curvature, 8.7.13 
Mercator projection, 10.2.3.3, 10.4.1.3 
metacenter, 10.6, 10.6.8.1 
metric space, 0.0.3 

- -, complete, 0.0.13.2, 11.1.1 
metrizability, 0.4, 3.3.11.1, 3.6.3 
Meyer, W., [GM69] 
Michel, 11.10.2 
Milnor, J., [MiI63], [MiI69] 
Minding, 10.2.3.5 
minimal area, 11. 7.9 

- surface, 10.2.1.3, 10.2.3.6, 
10.6.6.9, 10.6.9.1, 11.16 

- - of revolution, 10.2.2.9 
- - of translation, 10.2.1.3 

Minkowski, 11.19.1.2-3 
-'s problem, 11.19.3 
- inequalities, 11, 11.20.1 

mirror, see caustic 
mixed problems, 10.8 

- product, 0.1.16, 10.2.3.8 
Mobius strip, 5.3.6, 5.3.17.1, 5.9.11, 

6.10.20,7.8.11,10.2.3.8,11.2.4, 
11.9.4 

models for the hyperbolic plane, 
l1.fU!, 11.4.3 

moduli, 11.! . ./ 
molding surface, 10.!.9.10, 10.6.8.2 
monkey saddle, 4.2.22 
Morin, B., [MP78], [MP80] 
morphism, !.9.1; see also differentiable 

map 
Morse reduction, 4.2.13, 9.5.4 

- theory, preface, 4, ./.!.2./-25, 
7.5.1, 7.5.4 

Moser's theorem, 3, 7, 7.2.3 

Miiller, W., [CMS84] 
multiple point, 8.1.8, 9.1.9 
multiplicity, ! . ./ . ./, 8.1.8, 9.1.9 
multi-valued function, 10.2.3.6 
Myers, 11.4.3 

naval architecture, 10.6 
negative curvature, 11.15 
nephroid, 8.7.17.9 
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Nirenberg, 11.11.3.1, 11.12, 11.19.3 
Nitsche, J., [Nit75] 
Nomizu, K., [KN69] 
non-degenerate critical point, ./.!.7, 

./.!.11, 4.2.18, ./.!.!1, 4.4.10 
non-Hausdorff manifold, 2.2.10.4, 3.5.5 
non-negative curvature, 11.13 
non-orientable, 5.9.5 

- at infinity, 4.2.26 
non-separable space, 3.6.4 
norm, 0.0.9-10, 0.1.29.6, 0.4.8.0 

- of uniform convergence, 1.2.6.2 
normal bundle, !.7 . ./, 6.7 

- coordinates, 10.5.1 
- curvature, 10.6.1.1 
-s, family of, 3.5.15.5 
- space, !.7.! 

normed vector space, 0.0.10, 0.4.8.0 
number, Betti, ./.2.!./.!, 5.4.11 

-, linking, 7 . ./.9 
-, turning, 9 . ./.! 
-, winding, 7.9.7, 7.6.8 

Oliker, V., [Oli84] 
one-dimensional manifolds, 3.4.1, 

10.1.4; see also curve 
O'Neill, B., [ONe66] 
one-parameter group of 

diffeomorphisms, 3.5.10, 5.5.7.4 
- - of homeomorphisms, 1.9.5 

optics, 8.7.17.5, 10.2.2.7, 10.6, 10.6.8.1 
orbit, 2 . ./.5 
order of differential equation, 1.1.1-! 
orient ability, 5.9.5, 6.7.26 

- criterion, 5.3.24, 5.3.27 
orientable, 5.9.5 

- double cover, 5.3.27-29 
orientation of are, 8.1.10,8.2.1.6 

- of boundary, 5.3.36 
- of manifold, 5.9.5 



468 

orientation continued: 
- of product, 5.3.8.4, 5.9.8 
- of simple closed curve, 9.2.6 
- of sphere, 5.3.17.2, 5.3.37.1 
- of submanifold, 5.3.8.2 
- of surface, 10.3.3 
- of tangent bundle, 5.9.9 
- of torus, 5.3.10.1 
- of vector space, 0.1.19, 5.3.8.1 

orientation-preserving, 0.1.L{., 5.9.£0 
orientation-reversing, 0.1.14, 5.9.£0 
oriented closed curve, 9.1.5 

- simple closed curve, 9.1.1 
orthogonal complement, £.7.1 

- coordinates, 10.4.£, 10.4.7 
- group, 2.1.6.4, 2.8.10-11, 5.8.9 
- subspace, see normal subspace 
- vectors, 4.£.6 

osculating circle, 8.4.15, 8.7.4 
- paraboloid, 10.6.4 
- plane, 8.£.£.£, 8.£.£.7-9, 10.2.3.9 
- sphere, 8.7.9 

Osserman, R., 9.7.5, 9.9.7, 11.16.7, 
[Oss69], [Oss78], [Oss85] 

outside, 9.£.£ 
Ozawa, T., 9.8.1.1, [Oza84], [Oza85] 

PI, 11.10 
Paiais, R., [PaI57] 
Pansu, P., [BP86] 
paper strip, 10.2.3.8 
parabola, 10.6.9.6 
parabolic cylinder, 10.2.1.2 

- point, 10.6.4.1 
paradox of the funnel, 6.10.14 
parallel, 10.4.6 

- of latitude, 9.9.5 
- surface, 10.2.2.12,10.2.3.11, 

10.6.6.7, 10.6.8, 10.6.9.1 
- transport, 10.4.6.1, 10.5.5 

parameter of distribution, 10.£.9.8 
parameter-dependent vector field, 

1.4.6-7 
parametrically defined surface, 10.2.3 
parametrization, 8.1.4 

- by arclength, 9.4.9, 8.9.1 
- - -, existence of, 3.4.6 
- - -, invariance under isometries, 

8.3.4 

- of ruled surface, standard, 
10.~.9.8 

parametrized arc, 8.1.1 
Paris, preface 
Parseval's theorem, 9.3.2 

Index 

partial derivative, 0.2.8.8, 0.2.15.5 
partition of unity, 9.~.~, 3.2.4, 5.3.24, 

5.7.1.4 
Pascallimac;on, 8.4.14.9, 8.7.17.3 
path-connectedness, 2.2.13 
Peano curve, 8.0.2.1 
period, 8.1.9, 9.1.7, 9.1.8.1 
periodic function, 9.1.7 
Petit, J.-P., [MP78], [MP80] 
Phillips, A., [Phi66] 
physics, 5, 6.5.16; see also mechanics, 

kinematics, optics 
Pinkall, D., [Pin85] 
pitch, 10.~.~.10 
planar point, 10.6.4.1 
plane arc, 8.£.£.9 

- curve, see curve 
plane, equation of, 10.2.2.2 
Plateau's problem, 11.16, 11.17.5 
Plucker's conoid, 10.2.1.4, 10.2.2.4, 

10.2.3.8 
Pogorelov, A., 11.11.3.1, 11.14.2-3, 

[Pog73] 
Pohl, W., [Poh68] 
Poincare lemma, 5.4.12-13, 5.6.1-2, 

5.7.1.4,7.1.2.1 
- -, generalization of, 5.6.3 
- model, 11.~.2, 11.4.3 

point, antipodal, 10.4.9.1,11.1.1, 
11.21.2( c) 

-, conjugate, 11.4.1.2 
-, critical, 4.1.1, 4.2.7-12, 4.2.21, 

4.4.10 
-, double, 8.1.8, 9.8.4 
-, elliptic, 10.6.4.1 
-, fixed point, 0.0.13.2, 6.3.5 
-, focal, £.7.11 
-, hyperbolic, 10.6.4.1 
-, image of, 8.1.7, 9.1.9 
-, index of, 7.6.8, 9.1.11 
-, index of critical, 4.£.8, 4.£.11 
-, inflection, 9.8.5 
-, inverse image of, 5.9.7 
-, multiple, 8.1.8, 9.1.9 
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point continued: 
- of geometric arc, 8.1. 7 
- on curve, 9.1.9 
-, parabolic, 10.6.-1.1 
-, planar, 10.6.-1.1 
-, regular, -1.1.1 
-, regular double, 9.8.-1 
-, regular inflection, 9.8.5 
-, simple, 8.1.8 
-, triple, 8.1.8 

pointing inward, 6.9.7, 7.4.18 
- outward, 6.-1.-1 

polar coordinates, 0.2.21, 8.2.2.13, 
8.4.14.2, 10.2.1.3; see also 
geodesic coordinates 

pole, 0.5.9.1, 11.6.9 
polygonal approximation, 8.3.6 
polyhedron, 11.14.2 
polynomial, 0.2.8.2, 10.2.2.4 
positive basis, 0.1.1-1 

- form, 0.1.1-1 
- curvature, 11.5.4, 11.11.3; see a/so 

non-negative curvature 
power of an inversion, 0.5.9.1 
principal curvature, 10.6.~ 

- direction, 10.6.~, 10.8 
- normal, 8.-1.11, 8.6.~ 

problem, Christoffel's, 11.19.4 
-, Minkowski's, 11.19.3 
-, Plateau's, 11.16, 11.17.5 

product density, 9.9.18.1-5 
- measure, 0.-1.5, 3.3.18.5 
- of manifolds, lUUO.9-5, 2.3.3.1-3 

2.8.18, 5.6.3 
- topology, 5.~.10.6 

projective differential geometry, 
10.-1.9.6 

- plane, 2.6.13.3, 10.2.4; 8ee also 
projective space 

- -s, product of, 5.9.6 
- space, £.-I.l£.~, 2.6.13.3, 2.8.16, 

4.2.24.3, 4.4.3, 4.4.5, 4.4.6( d), 
5.3.18, 5.4.12-13, 5.7.2, 5.9.5; Set 

a/so projective plane 
- -, complex, £.8.£6-27, 4.4.6(a) 
- -, quaternionic, £.8.£6-27, 

4.4.6(b) 
properly discontinuously without fixed 

points, ~.-I.5, 2.8.12, 3.1.7.2, 

5.9.17,6.6.8, 11.2.4; see also 
torus, projective space 
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Priifer's surface, 3.1.4.3, 9.6.-1 
pseudosphere, see Beltrami's surface 
Pu's inequality, 11.9.2 
Puiseux's formula, 10.5.1.9 
pullback of alternating form, 0.1.8 

- of density, 0.3.11.1, 9.9.£, 3.3.16 
- of differential form, 5.£.-1.1 
- - - under a family of maps, 

5.2.10.6 
- - - under covering map, 5.3.8.3 
- of riemannian structure, 10.9.£ 

punctured surface, 11.14.3 
push-forward, 7.7.£ 

quadric, 2.8.9, 10.2.1.2; see al80 
ellipsoid, etc. 

-, central, ~.8.9 
-s, confocal, 10.£.£.9 
-, homofocal, 10.2.3.14 
-, proper, 10.2.2.3 

quaternionic projective space, 
£.8.£6-27, 4.4.6(b) 

quaternions, 2.8.5( e), 2.8.25 
quotient by an action, £.-1.8-10, 

5.3.9-10 

Radon measure, 0.-1 
rank of a form, 9.5.15.5 
recipes for torus, 2.1.6.3, 2.4.12.1 
reflection, 0.5.9.1 
refraction, 10.2.2.7 
regular double point, 9.8.-1 

- - tangent, 9.8.9 
- inflection point, 9.8.5 
- map, 0.£.£0, £.6.9, 2.7.10, 3.3.7 
- point, -1.1.1 
- value, -1.1.1 
- -s, abundance of, 4.1.5, 4.3.6; Set 

a/so Sard's theorem 
relation, Clairault's, 10.-1.9.9, 10.4.9.5 
relatively compact, 3.2.5 
Rellich's conjecture, 11.17.5 
restriction of form, 5.£.5.1 

- of map, 2.3.3.4, 2.6.6-7 
Riemann, 11.15; see a/so riemannian 

- integral, 0.4.3.1 
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Riemann continued: 
- surface, 11, 11.16.4, 11.16.6, 

11.17.2 
riemannian covering space, 11.!.S 

- geometry, 3.5.15.5, 10, 10.4.3, 
11.3.3 

- manifold, 3.6.3, 6.9.8, 7.5.7, 
10.3.2, 10.4.3-4, 10.4.7, 10.6.8.1, 
11, 11.1.3, 11.2.3, 11.7.3, 
11.11.3.1 

- metric, 6.9.7,6.9.8, 10.5.4, 11.2.3, 
11.11.3.1; Bee alBo riemannian 
manifold, riemannian surface 

- structure, S.6.S, 10, 10.S.1-2, 
10.4.1.1, 10.4.4, 11.2.4-5 

- surface, 10.4.7, 10.4.9.6, 10.5.4, 
11, 11.2.1-2, 11.6.3, 11.7, 11.7.2, 
11.8.2.1, 11.11.2 

right angle, 8.5.1 
rigid motion, B. 5 . ./. !, 10.2.1.4, 

10.2.3.10 
rigidity, 11.14.2 
Rinow, Bee Hopf-Rinow 
Robbin, J., [AR67] 
Rokhlin, V., [GR70] 
rotation by 7f /2, 8.5.1 
Rouche, E., [RdC22] 
Rudin, W., [Rud74] 
ruled surface, 10.2.1.4, 10.!.S.7, 

10.2.3.10, 10.4.1.7, 10.5.3.6, 
10.6.6.5 

- -, standard parametrization of, 
10.!.S.B 

ruling, 10.!.S.7 

Sacre, C., [LS82] 
Salmon, G., [Sa174] 
Sard's theorem, 3.3.17.6, 4, 4.3, ./.S.l, 

7.3.2.1,7.5.4, 9.2.7, 9.2.9 
scalar product, 0.1.15.1 
Scherk's surface, 10.!.1.S, 11.16, 

11.16.3 
Schmidt, 11.8.1 
Schrader, R., [CMS84] 
Schur's comparison theorem, 8.7.22 
Schwarz's theorem, 0.2.13, 0.3.12.1 
screw motion, 10.!.!.10 
second derivative, 0.!.11-13, 4.2, 4.2.4 

- fundamental form, 10.S.S, 10.6-8 

- - -, formulary for, 10.6.5 
section of map, 0.!.B.5 
sectional curvature, 10.8 
segment, 10 . ./ . ./ 

Index 

semigroup of local homeomorphisms, 
1.S.5, 3.5.10 

separability, S.1.S-5, 3.1.7.1 
Serrin, J., [Ser69] 
shadow, 11.21.3.5 
sharp map (U), 0.1.15.1 
ship hulls, 10.6 
shortest paths, 10 . ./ . ./, 10.4.8, 11.1.1, 

11.4 
- period, 9.1.8.1 

signature, !.B.9 
signed curvature, B.S.! 
similarity, O.S.S.l 
Simon, L., 11.17.4 
simple closed curve, 9.1.1 

- - -, orientation of, 9.2.6 
- point, B.l.B 

simply connected, 4.2.26, 11.2.1; /Jell 

also fundamental group 
Singer, I., [ST67] 
singularity, 7 . ./.15, 7.7.!.1 
slab, 11.20.2; see alBo tube 
smokestacks, 10.6 
soap bubbles, 11.17 
solid torus, 6.9.11.2 
solution of a differential equation, 

1.1.1-!, 1.6.1; Bee also integral 
curve 

Sotomayor, J., [SG82] 
SPl, 11.10 
space, see alBO Banach space, vector 

space, projective space 
-, covering, Bee covering map 
-, elliptic, 11.! . ./ 
-, metric, 0.0.3, 0.0.13.2, 11.1.1 
-, normal, !.7.! 
-, symmetric, 3.5.15.5 
-, tangent, Bee tangent space 
-, topological, 0.0.2; Bee also 

Hausdorff 
- -, non-separable, 3.6.4 

speed, B . ./.6; Bee alBo velocity 
sphere, !.1.6.!, 2.8.2, 4.1.4.3, 

4.2.24.3,4.4.3, 4.4.6(d), 5.3.17.2, 
5.4.12-13, 5.9.17, 10.2.1.1, 
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sphere continued: 
10.2.3.3, 10.4.1.3, 10.4.9.1, 11.8.1, 
11.11.1, 11.21.1-3 

-, canonical orientation of, 5.3.11.2, 
5.3.31.1 

-, eversion of, 11.11.1 
-8, product of, 5.9.6; see also torus 
-, volume of, 6.5.5 

spheric mirror, 8.1.11.3 
spherical coordinates, 6.5.B 

- zone, 6.10.B7 
Spivak, M., [Spi19] 
Springer-Verlag, preface 
standard parametrization of ruled 

surface, 10.B.9.B 
star-shaped, 4.2.13, 5.4.11, 5.6.1 
Steiner, 11.8.1 
stereographic projection, 2.8.7, 2.8.25, 

5.7.1, 6.10.8, 7.8.10, 9.7.9, 
10.2.3.3, 10.4.1.3 

Sterling, I., [Ste] 
Sternberg, S., [Ste64] 
Stoker, J., 11.13.2, [St069] 
Stokes' theorem, preface, 5, 5.4.14, 

6, 6.2, 6.B.1-2, 6.3, 6.3.4, 6.3.7, 
6.5.5-6, 6.5.16, 6.6.9.2, 1.1.2.2, 
1.2.1, 1.4.18, 7.8.13, 9.3.3, 9.8.9, 
10.5.5.4, 11.19.1.1 

strict triangle inequality, 10.3.2 
striction, line of, 10.B.9.B-9, 10.6.8.3 
strictly equivalent parametrized arcs, 

B.1.11 
string, 10.2.3.14; see also elastic band 
Struik, D., [Str61] 
Sturm-Liouville theory, 11.5.3, 11.6 
submanifold, 2.1.3.1, B.6.1-14 

-s, counterexamples of, 2.1.5, 2.8.4 
submersion, 0.B.B9, 2.1.3.1, B.6.9, 

2.6.14, 5.9.1 
subordinate, 9.B.1 
support, compact, 5.6.2, 7.1.1-10 

- function, 11.19 
surface, 4.B.B5, 10, 11 

-, algebraic, 10.B.B.4 
-, apsidal, 10.2.2.1 
-, area of, 6.5.1, 6.6.9, 6.6.7, 11.5.6 
-, Beltrami's, 10.B.9.5, 10.4.1.4, 

10.5.5.5, 10.6.6.6, 11.7.3, 11.15, 
11.15.2 
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-, Boy's, 10.2.4 
-8, classification of, 4.2.25-26 
-, complete, 11.1.3 
-, convex, 11.19 
-, deformation of, 11.14.2 
-, developable, 10.B.9.9, 10.2.3.12, 

10.4.1.8, 10.4.9.2, 10.6.6.2 
-, Enneper's, 10.2.2.5, 10.2.3.6, 

10.2.3.13, 10.4.1.5, 10.5.3.5, 
10.6.6.3 

-, focal, 10.6.B.1 
-, global, 10.1.B 
-, immersed, 10.1.4, 10.2.4 
-, implicitly defined, 10.2.2, 

10.5.3.8, 10.6.6.4 
-, local, 10.1.B 
-, local behavior of, 4.2.20 
-, minimal, 10.2.1.3, 10.2.3.6, 

10.6.6.9, 10.6.9.1, 11.16 
-, molding, 10.B.9.10, 10.6.8.2 
-, normals to a, 3.5.15.5 
- of constant curvature, see 

constant curvature 
- of translation, 10.2.1.3, 10.2.3.1 
- of minimal area, 10.6.9.2, 10.6.9.1; 

Bee also minimal surface 
- of revolution, 6.10.4, 10.2.2.9, 

10.2.3.5, 10.2.3.10, 10.2.3.12, 
10.4.1.4, 10.4.9.3, 10.5.3.9, 
10.6.6.6, 10.6.9.6 

-, orientation of, 10.3.3 
-8, parallel, 10.2.2.12, 10.2.3.11, 

10.6.6.7, 10.6.8, 10.6.9.1 
-, parametrically defined, 10.2.3 
-, Priifer's, 3.1.4.3, 9.6.4 
-, punctured, 11.14.3 
-, IDemann, 11, 11.16.4, 11.16.6, 

11.11.2 
-, riemannian, 10.4.1, 10.4.9.6, 

10.5.4, 11, 11.2.1-2, 11.6.3, 11.1, 
11.7.2, 11.8.2.1, 11.11.2 

-, ruled, 10.2.1.4, 10.B.9.7, 
10.2.3.10, 10.4.1.7, 10.5.3.6, 
10.6.6.5 

- Scherk's, 10.B.1.9, 11.16, 11.16.3 
- tetrahedral, 10.B.B.B 
- Veron ese's, B.1.6.B-9, 2.8.5, 1.8.11 
- wave, 10.2.3.13, 10.B.B.7 

symbol, Christoffel, 10.4.7, 10.1.1 
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symmetric bilinear form, 0.2.8.3, 3.6.3, 
4.2,4.2.6 

- bilinear map, see symmetric 
bilinear form 

- spaces, 3.5.15.5 
symmetry, minimal surfaces with, 

11.16.5 
Synge, J., [Syn37] 
system, coordinate, £.1.8-9, 2.5.7.2, 

10.4.2 
- of differential equations, 1.1.1 

systole, 11.9.0 

tangent bundle, £.5.£5,3.1.7,4.2.26 
tangent map, £.5.1../.-20 

- -, degree of, 9.4.1 
- plane, 4.2.20 
- space, £.5.9, £.5.9, 2.5.12 
- -, characterization of, 2.5.7 
- - of product, 2.5.18 
- to curve, 8.£.1.1, 8.£.1.../. 
- vector, £.5.1, £.5.9 

Taylor series, 4.2.16, 4.2.23, 4.4.7, 
8.2.2.15, 8.6.12.2, 8.7.11 

tensor, 10.9.£, 10.4.3 
tetrahedral surface, 10.£.£.8 
theorem, of Allendoerfer-Weyl-

Fenchel-Gauss-Bonnet-Chern, 
6.9.8 

-, Ampere's, 7.8.15 
-, Archimedes's, 6, 6.5.15 
-, Bernstein's, 11.16.3 
-, Darboux's, 3.5.15.5 
-, de Rham's, 5.4.10 
-, four-vertex, 9.7.4 
-, Frobenius', 2.8.17.2, 3.5.15.3-6, 

10.7.3 
-, Fubini's, 0 . ../..5.1, 3.3.18.6, 

9.9.18.7,6.2.1.3, 6.5.9, 6.5.10, 
6.6.9.2,6.7.16,7.1.8 

-, Gauss-Bonnet, preface, 6.9.8, 7, 
7.5 . ../., 7.5.7, 10.5.5.4-5, 11, 11.2.5, 
11.5.4,11.7 

-s, Guldin, 6.10.15-16 
- Hadamard's, 11.6.£, 11.13.1-2 
-, Hopf's, 11.17.2 
- of Hopf-Rinow, 11.1.1-4 
-, implicit function, 0.£.£6 

Index 

-, inverse function, 0.2.22, 2.3.7.1, 
2.5.20, 2.8.11 

-, Jordan's, 7.6.8, 9, 9.2, 9.3.4.2, 
9.5.1-3, 9.6.4 

-, Liouville's, 0.5.3 
-, Moser's, 3, 7, 7.2.3 
-, Parseval's, 9.3.2 
-, Sard's, 3.3.17.6, 4, 4.3, ../..9.1, 

7.3.2.1,7.5.4, 9.2.7, 9.2.9 
-, Schur's comparison, 8.7.22 
-, Schwarz's, 0.2.13, 0.3.12.1 
-, Stokes', preface, 5, 5.4.14, 6, 

6.2, 6.£.1-2, 6.3, 6.3.4, 6.3.7, 
6.5.5-6, 6.5.16, 6.6.9.2, 7.1.2.2, 
7.2.1, 7.4.18,7.8.13, 9.3.3, 9.8.9, 
10.5.5.4, 11.19.1.1 

-, turning tangent, 9.5 
-, Weierstrass's, 6.10.4 
-, Whitney-Grauenstein, 9, 9.4.8 

Theorema egregium, 10.5.9.£, 10.6.2.1 
third fundamental form, 10.9.9 
Thorpe, J., [ST67], [Tho79] 
three levels, formula of, 6.10.32 
Thurston, W., [Thu79], [Thu82], 

[Thu88] 
Titus, C., [Tit73] 
topological manifolds, £.£.5 

- space, 0.0.2; see also Hausdorff 
- -, non-separable, 3.6.4 

topology, algebraic, see fundamental 
group, homotopy 

-, bounded, 4.2.26 
-, canonical, 0.0.9, £.£.6-8 
-, product, 5.£.10.6 

toroidal coil, 8.6.11.9 
torsion, 8.6.5-9, 8.6.12, 9.7.9, 10.2.3.9 

-, geodesic, 10.6.7 
torus, £.1.6.9, 2.4.12.4, 2.8.4, 4.1.4.4, 

4.2.5, 4.2.9.1, 4.2.24.3, 4.4.4, 
5.3.10.1, 5.4.12-13, 5.9.13, 
10.2.3.12, 10.2.4 

-, solid, 6.9.11.2 
total curvature of curve, see total 

signed curvature 
- - of surface, 10.5.1, 10.6.£, 

11.16.7; see also Gaussian 
curvature 

- differential, 5 . ../..11 
- signed curvature, 9 • ../..10 
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total continued: 
- unsigned curvature, 9.6.1 

totally geodesic submanifolds, 3.5.15.5 
tractrix, 10.£.9.5 
transversality, 9.£.9 
traveler, 7.8.14 
trigonometry, 11.5.5, 11.6.2 
triple point, 8.1.8 
triply orthogonal family, 10.!!.£.9, 

10.2.2.6, 10.6.8.3 
- periodic function, 11.16.4 

tube, £.7.6, 2.8.29 
-, boundary of, 10.2.3.10-12 
-, volume of, 6.7-9, 7.5, 10.6.3 

tubular neighborhood, see tube 
turning number, 9.4.£ 

- tangent theorem, 9.5 
- the sphere inside out, 11.11.1 
- towards the origin, 8.£.£.19 

twice differentiable map, 0.£.11 

umbilic, 9.7.10.5, 10.2.3.6, 10.4.9.5, 
10.6.4.1, 10.6.8.1, 10.6.8.3, 11.4.2, 
11.7.4, 11.21.1 

Umlaufsatz, 9.5 
unbounded, see bounded 
unit tangent map, 9.4 

- - vector, 8.9.11 
unitary normal bundle, £.7.4, 5.3.37.2, 

6.7.17, 7.5 
unlinked, see linked 
unreasonable manifold, £.£.10.5 
upper-hali-plane model, 11.£.£ 

Valiron, G., [VaI84] 
variation formulas, 11.3.2, 11.3.3 
vector, bound, 2.7.6 

- bundle, see bundle 
- field, 1.£.1, 9.5.1 
- - associated with family of 

diffeomorphisms, 3.5.14, 5.5.5 
- -s, bracket of, £.8.17.£, 3.5.15.2 
- -, canonical, £.5.17.£, 3.5.1 
- -, canonical normal, 6.4.9 
- -, integrable, 5 
- -, Lipschitz, 1.2.6, 1.2.7, 1.3.1, 

1.6.0 
- - on sphere, 7.4.5 
- - on compact manifold, 3.5.9 
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- -, parameter-dependent, 1.4.6-7 
- -, time-dependent, 1.4.1-5, 1.5.1, 

9.5.11 
- space, 0.0.4 
- -, dual of, 0.0.4 
- - isomorphism, 0.0.11 
- -, norm ed, 0.0.10, 0.4.8.0 
- -, orientation of, 0.1.19, 5.3.8.1 
-, tangent, £.5.1, £.5.9 
-, unit tangent, 8.9.11 

vector-valued integral, 0.4.7 
velocity, 0.£.9.1, £.5.17.9, £.5.£8, 8.4.6 

-, scalar, 8.4.6 
Venzi, P., [Ven79] 
Veronese's surface, £.1.6.8-9, 2.8.5, 

7.8.17 
vertex, 9.7.1,9.7.4,9.7.9 
Viviani's window, 6.10.91 
volume, 2, 6.5.1, 6.6.9, 6.6.7 

- form, 5.9.£, 5.3.17 
- - invariant under a group, 5.3.10.2 

Voronoi diagram, 11.4.2 

Wall, C., 11.4.3, [WaI79] 
Walter, R., [WaI78] 
Wankel engine, 8.7.17.5 
Warner, F., 11.4.3, [War71] 
wave surface, 10.2.3.13, 10.£.£.7 
wedge, cylindrical, 6.10.90 

- product, 5.2.3 
Weierstrass's theorem, 6.10.4 

-'s formula, 10.2.3.6, 11.16.5-6 
Weingarten endomorphism, 10.9.9, 

10.6.2, 10.7 
- surface, preface, 10.6.6.6, 

11.18.1-3 
well-ordered set, 2.2.10.6 
Wente, H., [Wen85] 

- immersion, 11.17.3 
Weyl, H., 6, 6.9.8, 11.11.3.1, [Wey39] 

- curvatures, 6.9.6 
Whitney, 3.1.5 
Whitney-Grauenstein theorem, 9, 

9.4.8 
width, 11.£1.9.9 
Willmore's conjecture, 11.17.4 
winding number, 7.9.7, 7.6.8 
window, Viviani's, 6.10.91 
Wirtinger's inequality, 9.3.2 
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without fixed points, Bee properly 
discontinuous 

Wolf, E., [BW75] 
Wolf, J., [WoI72] 
Wolpert, S., [WoI85] 
Wong, Y.-C., [Won72] 
Wu, H., 11.14.3, [GW72] 
Wunderlich, W., [Wun62] 

Xavier, 11.16.7 

Zalgaller, V., [BZ86] 
zero curvature, 11.12 

- section, 5.9.i. 
- torsion, 9.7.9 

Zorn's lemma, 3.4.5.2 
Zwikker, C., [Zwi63] 
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