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Preface 

[Hilbert's] style has not the terseness of many of our modem authors 
in mathematics, which is based on the assumption that printer's labor 
and paper are costly but the reader's effort and time are not. 

H. Weyl [143] 

The purpose of this book is to describe the classical problems in additive number 
theory and to introduce the circle method and the sieve method, which are the 
basic analytical and combinatorial tools used to attack these problems. This book 
is intended for students who want to lelţIll additive number theory, not for experts 
who already know it. For this reason, proofs include many "unnecessary" and 
"obvious" steps; this is by design. 

The archetypical theorem in additive number theory is due to Lagrange: Every 
nonnegative integer is the sum of four squares. In general, the set A of nonnegative 
integers is called an additive basis of order h if every nonnegative integer can be 
written as the sum of h not necessarily distinct elements of A. Lagrange 's theorem 
is the statement that the squares are a basis of order four. The set A is called a 
basis offinite order if A is a basis of order h for some positive integer h. Additive 
number theory is in large part the study of bases of finite order. The classical bases 
are the squares, cubes, and higher powers; the polygonal numbers; and the prime 
numbers. The classical questions associated with these bases are Waring's problem 
and the Goldbach conjecture. 

Waring's problem is to prove that, for every k 2: 2, the nonnegative kth powers 
form a basis of finite order. We prove several results connected with Waring's 
problem, including Hilbert's theorem that every nonnegative integer is the sum of 
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a bounded number of kth powers, and the Hardy-Littlewood asymptotic formula 
for the number of representations of an integer as the sum of s positive kth powers. 

Goldbach conjectured that every even positive integer is the sum of at most 
two prime numbers. We prove three of the most important results on the Gold­
bach conjecture: Shnirel 'man 's theorem that the primes are a basis of finite order, 
Vmogradov's theorem that every sufficiently large odd number is the sum of three 
primes, and Chen's theorem that every sufficently large even integer is the sum of 
a prime and a number that is a product of at most two primes. 

Many unsolved problems remain. The Goldbach conjecture has not been proved. 
There is no proof of the conjecture that every sufficiently large integer is the sum 
of four nonnegative cubes, nor can we obtain a good upper bound for the least 
number s of nonnegative kth powers such that every sufficiently large integer 
is the sum of s kth powers. It is possible that neither the circle method nor the 
sieve method is powerful enough to solve these problems and that completely 
new mathematical ideas will be necessary, but certainly there will be no progress 
without an understanding of the classical methods. 

The prerequisites for this book are undergraduate courses in number theory and 
real analysis. The appendix contains some theorems about arithmetic functions 
that are not necessarily part of a first course in elementary number theory. In a 
few places (for example, Linnik's theorem on sums of seven cubes, Vinogradov's 
theorem on sums of three primes, and Chen 's theorem on sums of a prime and an 
almost prime), we use results about the distribution of prime numbers in arithmetic 
progressions. These results can be found in Davenport's Multiplicative Number 
Theory [19]. 

Additive number theory is a deep and beautiful part of mathematics, but for 
too long it has been obscure and mysterious, the domain of a small number of 
specialists, who have often been specialists only in their own small part of additive 
number theory. This is the first of several books on additive number theory. I hope 
that these books will demonstrate the richness and coherence of the subject and 
that they will encourage renewed interest in the field. 

I have taught additive number theory at Southem Illinois University at Carbon­
dale, Rutgers University-New Brunswick, and the City University of New York 
Graduate Center, and I am grateful to the students and colleagues who participated 
in my graduate courses and seminars. I also wish to thank Henryk Iwaniec, from 
whom I leamed the linear sieve and the proof of Chen 's theorem. 

This work was supported in part by grants from the PSC-CUNY Research Award 
Program and the National Security Agency Mathematical Sciences Program. 

I would very much like to receive comments or corrections from readers of this 
book. My e-mail addresses are nathansn@alpha.lehman.cuny.edu and nathanson@ 
worldnet.att.net. A list of errata will be available on my homepage at http://www. 
lehman.cuny.edu or http://math.lehman.cuny.edu/nathanson. 

Melvyn B. Nathanson 
Maplewood, New Jersey 

May 1,1996 
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Notation and conventions 

Theorems, lemmas, and corollaries are numbered consecutively in each chapter 
and in the Appendix. For example, Lemma 2.1 is the first lemma in Chapter 2 and 
Theorem A.2 is the second theorem in the Appendix. 

The lowercase letter p denotes a prime number. 
We adhere to the usual convention that the empty sum (the sum containing no 

terms) is equal to zero and the empty product is equal to one. 
Let ! be any real or complex-valued function, and let g be a positive function. 

The functions ! and g can be functions of a real variable x or arithmetic functions 
defined onIy on the positive integers. We write 

! = O(g) 

or 
!«g 

or 
g»! 

if there exists a constant c > O such that 

!!(x)! =:: cg(x) 

for alI x in the domain of !. The constant c is called the implied constant . We 
write 

! «a,b, ... g 

if there exists a constant c > O that depends on a, b, ... such that 

!!(x)! =:: cg(x) 
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for alI x in the domain of f. We write 

if 

f = o(g) 

Iim f(x) = O. 
x-+oo g(x) 

The function f is asymptotic to g, denoted 

if 
Iim f(x) ... 1. 

x-+oo g(x) 

The real-valued function f is increasing on the interval 1 if f(xl) ~ f(X2) for alI 
XI, X2 E 1 with XI < X2. Similarly, the real-valued function f is decreasing on 
the interval 1 if f(xl) 2: f(X2) for alI XI, X2 E 1 with XI < X2. The function f is 
monotonie on the interval 1 if it is either increasing on 1 or decreasing on 1. 

We use the following notation for exponential functions: 

exp(x) - eX 

and 
e(x) - exp(2rrix) .. e21rix • 

The following notation is standard: 
Z the integers 0, ±1, ±2, ... 
R the real numbers 
Rn 

zn 
C 
Izl 
fflz 
~z 
[x] 

{X} 

IIxli 

(al, ... , an) 
[alo . .. ,an] 
IXI 
hA 

n-dimensional Euclidean space 
the integer Iattice in Rn 

the complex numbers 
the absolute value of the complex number z 
the real part of the complex number z 
the imaginary part of the complex number z 
the integer part of the real number x, 
that is, the integer uniquely determined 
by the inequality [x] ~ X < [x] + 1. 
the fractional part of the real number x, 
that is, {x} = x - [x] E [0,1). 
the distance from the real number x 
to the nearest integer, that is, 
IIxli = min{lx - ni: nE Z} = min ({x}, 1 - {x}) E [0,1/2]. 
the greatest common divisor of the integers al, ... , an 
the Ieast common multiple of the integers al, ... , an 
the cardinality of the set X 
the h-fold sumset, consisting of alI sums of h elements of A 
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Waring's problem 



1 
Sums of polygons 

Imo propositionem pu1cherrimam et maxime generaIem nos primi de­
teximus: nempe omnem numerum vei esse triangulum vex ex duobus 
aut tribus triangulis compositum: esse quadratum veI ex duobus aut 
tribus aut quatuorquadratis compositum: esse pentagonum veI ex duo­
bus, tribus, quatuor aut quinque pentagonis compositum; et sic dein­
ceps in infinitum, in hexagonis, heptagonis poIygonis quibuslibet, 
enuntianda videlicet pro numero angulorum generali et mirabili pro­
postione. Ejus autem demonstrationem, quae ex multis variis et abstru­
sissimis numerorum mysteriis derivatur, bie apponere non licet. ... 1 

P. Fermat [39, page 303] 

II bave discovered a most beautifui theorem of the greatest generaIity: Every number 
is a triangular number or the sum of two or three triangular numbers; every number is a 
square or the sum of two, three, or four squares; every number is a pentagonal number or 
the sum of two, three, four, or five pentagonal numbers; and so on for hexagonai numbers, 
heptagonal numbers, and alI other polygonal numbers. The precise statement of this very 
beautifui and general theorem depends on the number of the angIes. The theorem is based 
on the most diverse and abstruse mysteries of numbers, but I am not able to include the 
proofhere .... 
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1.1 Polygonal numbers 

Polygonal numbers are nonnegative integers constructed geometrically from the 
regular polygons. The triangular numbers, or triangles, count the number of points 
in the triangular array 

The sequence oftriangles is 0,1,3,6,10,15, .... 
Similarly, the square numbers count the number of points in the square array 

The sequence of squares is 0,1,4,9,16,25, .... 
The pentagonal numbers count the number of points in the pentagonal array 

The sequence ofpentagonal numbers is 0,1,5,12,22,35, .... There is a similar 
sequence of m-gonal numbers corresponding to every regular polygon with m 
sides. 

Algebraically, for every m 2: 1, the kth polygonal number of order m+ 2, denoted 
Pm (k), is the sum of the first k terms of the arithmetic progression with initial value 
1 and difference m, that is, 

Pm(k) = 1 + (m + 1) + (2m + 1) + ... + «k - l)m + 1) 
mk(k - 1) 

= +k. 
2 

This is a quadratic polynomial in k. The triangular numbers are the numbers 

k(k + 1) 
pJ(k) = 2 ' 
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the squares are the numbers 

the pentagonal numbers are the numbers 

k) k(3k - 1) 
P3(" 2 ' 

and so ono This notation is awkward but traditional. 
The epigraph to this chapter is one of the famous notes that Fermat wrote in 

the margin of his copy of Diophantus 's Arithmetica. Fermat claims that, for every 
m ~ 1, every nonnegative integer can be written as the sum of m + 2 polygonal 
numbers of order m + 2. This was proved by Cauchy in 1813. The goal of this 
chapter is to prove Cauchy's polygonal number theorem. We shall also prove the 
related result of Legendre that, for every m ~ 3, every sufficient1y large integer is 
the sum of five polygonal numbers of order m + 2. 

1.2 Lagrange 's theorem 

We first prove the polygonal number theorem for squares. This theorem of La­
grange is the most important result in additive number theory. 

Theorem 1.1 (Lagrange) Every nonnegative integer is the sum offour squares. 

Proof. It is easy to check the formal polynomial identity 

(x~ + xi + xi + xl)(y~ + yi + yi + yl) .. zr + z~ + z~ + z~, (1.1) 

where 
ZI = XIYI +X2Y2 +X3Y3 +X4Y4 } 

Z2 ... XIY2 - X2YI - X3Y4 + X4Y3 

Z3 - XI Y3 - X3YI + X2Y4 - X4Y2 

Z4 .. XIY4 - X4YI - X2Y3 + X3Y2 

(1.2) 

This implies that if two numbers are both sums of four squares, then their product 
is also the sum of four squares. Every nonnegative integer is the product of primes, 
so it suffices to prove that every prime number is the sum of four squares. Since 
2 ... 12 + 12 + ()2 + ()2, we consider only odd primes p. 

The set of squares 

{a2 la .. 0, 1, ... , (p - 1)/2} 

represents (p + 1)/2 distinct congruence classes modulo p. Similarly, the set of 
integers 

{_b2 - 1 I b = 0,1, ... , (p - 1)/2} 
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represents (p + 1)/2 distinct congruence classes modulo p. Since there are only 
p different congruence classes modulo p, by the pigeonhole principle there must 
exist integers a and b such that O :5 a, b :5 (p - 1)/2 and 

a2 == _b2 - 1 (mod p), 

that is, 
a2 + b2 + 1 == O (mod p). 

Let a2 + b2 + 1 = np. Then 

(
p _ 1)2 p2 

P :5 np = a2 + b2 + 12 + 02 :5 2 -2- + 1 < 2" + 1 < p2, 

andso 
1 :5 n < p. 

Let m be the Ieast positive integer such that mp is the sum of four squares. Then 
there exist integers XJ, X2, X3, X4 such that 

and 
1 :5 m :5 n < p. 

We must show that m = 1. 
Suppose not. Then 1 < m < p. Choose integers Yi such that 

Yi == Xi (mod m) 

and 
-m/2 < Yi :5 m/2 

for i = 1, ... , 4. Then 

(mod m) 

and 
2 2 2 2 

mr = YI + Y2 + Y3 + Y4 

for some nonnegative integer r. If r = O, then Yi = O for alI i and each xl is divisible 
by m2. It follows that mp is divisible by m2, and so p is divisible by m. This is 
impossible, since p is prime and 1 < m < p. Therefore, r 2: 1 and 

mr = Y; + yi + yi + Y~ :5 4(m/2i = m2. 

Moreover, r = m if and onIy if m is even and Yi = m /2 for alI i. In this case, 
Xi == m /2 (mod m) for alI i, and so xl == (m /2)2 (mod m2) and 

mp = x; + xi + xi + x~ == 4(m/2)2 = m2 == O (mod m2). 
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This implies that p is divisible by m, which is absurd. Therefore, 

1::::: r < m. 

Applying the polynomial identity (1.1), we obtain 

m2rp = (mp)(mr) 
( 2 2 2 2)( 2 2 2 2) 

= XI +x2 +x3 +x4 YI + Y2 + Y3 + Y4 
222 2 

= ZI + Z2 + Z3 + Z4' 

where the Zi are defined by equations (1.2). Since Xi == Yi (mod m), these 
equations imply that Zi == O (mod m) for i = 1, ... ,4. Let Wi = z;/m. Then 
WI, •.. , W4 are integers and 

which contradicts the minimality of m. Therefore, m = 1 and the prime p is the 
sum of four SqUares. This completes the proof of Lagrange's theorem. 

A set of integers is caUed a basis of order h if every nonnegative integer can be 
written as the sum of h not necessarily distinct elements of the set. A set of integers 
is called a basis offinite order ifthe set is a basis of order h for some h. Lagrange's 
theorem states that the set of SqUares is a basis of order four. Since 7 cannot be 
written as the sum of three squares, it follows that the squares do not form a basis 
of order three. The central problem in additive number theory is to determine if a 
given set of integers is a basis of finite order. Lagrange's theorem gives the first 
example of a natural and important set of integers that is a basis. In this sense, it 
is the archetypical theorem in additive number theory. Everything in this book is a 
generalization of Lagrange's theorem. We shaU prove that the polygonal numbers, 
the cubes and higher powers, and the primes are aU bases of finite order. These are 
the classical bases in additive number theory. 

1.3 Quadratic forms 

Let A = (ai,j) be an m x n matrix with integer coefficients. In this chapter, we 
shall only consider matrices with integer coefficients. Let A T denote the transpose 

of the matrix A, that is, AT = (aL) is the n x m matrix such that 

T 
ai,j = aj,i 

for i = 1, ... , n and j = 1, ... , m. Then (A Tl = A for every m x n matrix A, 
and (ABl = BT AT for any pair of matrices A and B such that the number of 
columns of A is equal to the number of rows of B. 

Let Mn(Z) be the ring of n x n matrices. A matrix A E Mn(Z) is symmetric if 
AT = A.1f A is a symmetric matrix and U is any matrix in Mn(Z), then UT AU is 
also symmetric, since 
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Let S Ln (Z) denote the group of n x n matrices of determinant 1. This group acts 
on the ring Mn(Z) as foHows: If A E Mn(Z) and U E SLn(Z), we define 

A· U = U T AU. 

This is a group action, since 

A· (UV) = (UV)T A(UV) = VT(UT AU)V = (UT AU)· V = (A· U)· V. 

We say that two matrices A and B in Mn(Z) are equivalent, denoted 

A '" B, 

if A and B lie in the same orbit of the group action, that is, if B = A . U = U T AU 
for some U E S Ln (Z). It is easy to check that this is an equivalence relation. Since 
det(U) = 1 for aH U E SLn(Z), it foHows that 

det(A . U) = det(UT AU) = det(UT) det(A) det(U) = det(A) 

for aH A E Mn(Z), and so the group action preserves determinants. Also, if A is 
symmetric, then A . U is also symmetric. Thus, for any integer d, the group action 
partitions the set of symmetric n x n matrices of determinant d into equivalence 
classes. 

To every n x n symmetric matrix A = (a;,j) we associate the quadraticform FA 
defined by 

n n 

FA(x!. ... ,xn )= LLa;,jXiXj. 
;=1 j-1 

This is a homogeneous function of degree two in the n variables x], ... ,Xn • For 
example, if In is the n x n identity matrix, then the associated quadratic form is 

Let X denote the n x 1 matrix (or column vector) 

We can write the quadratic form in matrix notation as follows: 

The discriminant of the quadratic form FA is the determinant of the matrix A. Let 
A and B be n x n symmetric matrices, and let FA and F B be their corresponding 
quadratic forms. We say that these forms are equivalent, denoted 
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if the matrices are equivalent, that is, if A '" B. Equivalence of quadratic forms is an 
equivalence relation, and equivalent quadratic forms have the same discriminant. 

The quadratic form FA represents the integer N if there exist integers Xl, ••• , Xn 

such that 
FA (Xl , ••• , Xn ) = N. 

If FA '" F8, then A '" B and there exists a matrix U E SLn(Z) such that 
A = B . U = U T BU.1t follows that 

FA(x) = x T Ax = XTUT BUx = (Ux)T B(Ux) = F8(Ux). 

Thus, if the quadratic form FA represents the integer N, then every form equivalent 
to FA also represents N. Since equivalence of quadratic forms is an equivalence 
relation, it follows that any two quadratic forms in the same equivalence class 
represent exactly the same set of integers. Lagrange's theorem implies that, for 
n ~ 4, any form equivalent to the form x; + ... + x~ represents alI nonnegative 
integers. 

The quadratic form FA is calledpositive-dejinite if FA (Xl , ••• , Xn ) ~ 1 for alI 
(Xl, ••• ,Xn ) -1 (O, ... , O). Every form equivalent to a positive-definite quadratic 
form is positive-definite. 

A quadratic form in two variables is called a binary quadratic form. A quadratic 
form in three variables is called a ternary quadratic form. For binary and temary 
quadratic forms, we shall prove that there is only one equivalence class of positive­
definite forms of discriminant 1. We begin with binary forms. 

Lemma 1.1 Let 
A = (al,l a l,2) 

al,2 a2,2 

be a 2 x 2 symmetric matrix, and let 

FA (Xl, X2) = aU X; + 2a1 ,2XI X2 + a2,2xi 

be the associated quadratic form. The binary quadratic form FA is positive-dejinite 
if and only if 

and the discriminant d satisjies 

d -= det(A) = al,la2,2 - a;'2 ~ 1. 

Proof. If the form FA is positive-definite, then 

FA(I, O) = aU ~ I 

and 

FA(-al,2, al,l) = aua;,2 - 2a1,la;,2 +a;,la2,2 

= aU (au a2,2 - a;'2) 

=al,ld ~ 1, 
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and so d ~ 1. ConverseIy, if at,t ~ 1 and d ~ 1, then 

and FA (Xt, X2) = O if and onIy if (Xt, X2) = (O, O). This eompletes the proof. 

Lemma 1.2 Every equivalence class of positive-definite binary quadratic forms 
of discriminant d contains at least one form 

forwhich 
2 

21at,21 ~ at,t ~ .fj..Jd. 

Proof. Let FB(Xt, X2) = bt,tX~ + 2bt,2XtX2 + b2,2X; be a positive-definite quad­
ratie form, where 

B = (bt,t bt,2) 
bt,2 b2,2 

is the 2 x 2 symmetrie matrix associated with F. Let at,t be the smaliest positive 
integer represented by F. Then there exist integers rt , r2 sueh that 

If the positive integer h divides both rt and r2, then, by the homogeneity of the 
form and the minimality of at,t. we have 

and so h = 1. Therefore, (rt, r2) = 1 and there exist integers St and S2 sueh that 

for alI integers t. Then 

for alI t E Z. Let 
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where 

a;,2 = bl,lrlsl + bl,2(rls2 + r2s j} + b2,2r2s2 

al,2 = a;,2 + al,lt 

a2,2 = F(sl + rIt, S2 + r2t) ~ al,l 

since (SI + rIt, S2 + r2t) =1 (O, O) for alI t E Z, and al,l is the smallest positive 
number represented by the form F. Since {a;,2 + al,lt : t E Z} is a congruence 
class modulo al,l, we can choose t so that 

I aII 
lal,21 = lal ,2 +al,ltl ::s 2' 

Then A '" B, and the form FB is equivalent to the form FA(XI,X2) = al,lxl + 
2al,2xlx2 + a2,2xi, where 

21al,21 ::s al,l ::s a2,2· 

If d is the discriminant of the form, then 

and the inequality 

implies that 
3a2 
_1_,1 <d 

4 -
or, equivalently, 

This completes the proof. 

Theorem 1.2 Every positive-definite binary quadratic form of discriminant 1 is 
equivalent to the form xl + xi, 

Proof. Let F be a positive-definite binary quadratic form of discriminant 1. By 
Lemma 1.2, the form F is equivalentto a form a 1,1 x? + 2al,2xI X2 +a2,2xi for which 

Since al,l ~ 1, we must have al,l 
discriminant is 1, we have 

1. This implies that al,2 = O. Since the 

a2,2 = al,Ia2,2 - a?,2 = 1. 

Thus, the form F is equivalent to x? + xi. This completes the proof. 
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1.4 Temary quadratic forms 

We shall now prove an analogous result for positive-definite temary quadratic 
forms. 

Lemma 1.3 Let 

A = (:::~ :~:~ :~:~) 
al,3 a2,3 a3,3 

be a 3 x 3 symmetric matrix, and let FA be the corresponding ternary quadratic 
form. Let d be the discriminant of FA. Then 

al,l FA (XI, X2, X3) = (al,lxI + a1,2x2 + al,3X3)2 + G A*(X2, X3), (1.3) 

where G A* is the binary quadratic form corresponding to the matrix 

(l.4) 

and GA* has discriminant al,ld. lf FA is positive-dejinite, then GA* is positive­
definite. Moreover, theform FA is positive-definite ifand only ifthefollowing three 
determinants are positive: 

and 

al,l = det(al,l) ~ 1, 

d' = det (al,l a l'2) ~ 1, 
al,2 a2,2 

d = det(A) ~ 1. 

Proof. We obtain identities (1.3) and (1.4) as well as the discriminant of G A* 
by straightforward calculation. 

If FA is positive-definite, then 

If G A*(X2, X3) ~ O for some integers X2, X3, then G A*(a l,I X2 , al,lX3) 
ar,l G A*(X2, X3) ~ O. Let XI = -(a1,2X2 + al,3X3). Then 

andso 

al.l FA(xl, al,lx2, al,lx3) 

= (al.lxl + al,2al,lx2 + al,3al.lX3)2 + G A*(al,lx2, al,lX3) 

= GA*(al.l x2, al,lx3) 

= ar,I GA*(X2,X3) 

~O. 
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Since FA is positive-definite, it follows that X2 = X3 = 0, and so the binary fonn 
G A* is also positive-definite. By Lemma 1.1, the leading coefficient of G A* is 
positive, that is, 

and also the discriminant of G A* is positive, hence 

d = det(A) ~ 1. 

This proves that if FA is positive-definite, then the integers a 1,1 , d', and d are 
positive. 

Conversely, if these three numbers are positive, then Lemma 1.1 implies that 
the binary fonn G A* is positive-definite. Ii FA (Xl, X2, X3) = 0, then it follows from 
identity (1.3) that 

and 

The first equation imp1ies that X2 = X3 = 0, and the second equation implies that 
XI = O. Therefore, the fonn FA is positive-definite. 

Lemma 1.4 Let B = (bi,j) be a 3 x 3 symmetric matrix such that the ternary 
quadratic form F B is positive-dejinite. Let G B* be the unique positive-dejinite 
binary quadratic form such that 

For any matrix V* = (v~j) E SL2(Z), let 

A* = (v*l B*V* (1.5) 

and let G A* be the positive-dejinite binary quadratic form corresponding to the 
symmetric matrix A * and equivalent to the form G B*. For any integers r and s, let 

and 

r 

vr,1 
v~,1 

Let FA", be the corresponding ternary quadraticform, Then aU = bl,1 and 

where the matrix A * dejined by (1.5) is independent of r and s, 

(1.6) 

(1.7) 
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Proof. Since VI,I = 1 and V2,1 = V3,1 = 0, it follows from the matrix equa­
tion (1.7) that 

3 3 333 

al' = ""VT b k ·v· . = ""Vk Ibk ·v·· = "b l ·v·· ,} ~~ I,k ,1 I,} ~~ , ,1 I,} ~ ,II,} 

k~1 i-I k-I i-I i=1 

and so al,1 = bl,l. Let 

so 

In particular, 

Let 

Then 

It follows that 

Moreover, 

Since 

and ( 
YI 

Vr,sx = Y = Y2 

Y3 

3 

Yi = L Vi,jXj' 
j-I 

Y2 = v2, lxl + V2,2X2 + V2,3 X3 = vr,I X2 + Vr,2X3 

Y3 = v3, lxl + V3,2X2 + V3,3X3 = V;,IX2 + V;,2X3. 

and 

V*X* = y*. 

3 3 

bl,lYI + b l ,2Y2 + b l ,3Y3 = L bl,i L Vi,jXj 
i-I j-I 

= ~ (~bl 'V' .)x. ~ ~ ,II,) } 

j-I i=1 

= al, IXI + a1,2X2 + a1,3X3. 

FA",(XI, X2, X3) = x T Ar,sx = (Vr,sxl B(Vr,sx) = y T By = FB(YI, Y2, Y3), 

it follows that 

(al,lXl + al,2x 2 + a1,3X3)2 + G A~" (X2, X3) 

= al,l FA,,,(Xl, X2, X3) 

= bl,1 FA", (Xl, X2, X3) 

= bl,lFB(YI, Y2, Y3) 

= (bI,lYI + b1,2Y2 + b1,3Y3i + G B*(Y2, Y3) 

= (al,lxI + al,2X2 + a1,3x3i + G A*(X2, X3), 
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andso 

for alI integers r and s. This completes the proof. 

Lemma 1.5 Let UI,I, U2,t. and U3,1 be integers such that 

(ul,l, U2,1, U3,1) = 1. 

Then there exist six integers Ui,j for i = 1, 2, 3 and j = 2, 3 such that the matrix 
U = (Ui,j) E SL3(Z), that is, det(U) = 1. 

Proof. Let (Ul,I, U2,1) = a. Choose integers ul,2 and U2,2 such that 

Since (a, U3,1) = (Ul,t. U2,1, U3,1) = 1, we can choose integers U3,3 and b such that 

aU3,3 - bU3,1 = 1. 

Let 

Then the matrix 

Ul,l b 
Ul,3=--, 

a 
U21 b 

U23 = -'-, , a 
U3,2 = O. 

~ U~'I ~ b ) 
~b 

a 
U3,3 

has integer coefficients and determinant 1. This completes the proof. 

Lemma 1.6 Every equivalence class of positive-dejinite ternary quadratic forms 
of discriminant d contains at least one form 'Li,j-l ai,jXiX j for which 

2max (la1.2l,lal,31) :::: al,1 :::: ~~. 
Proof. Let F be a positive-definite temary quadratic form of determinant d, and 

let C be the corresponding 3 x 3 symmetric matrix. Let al, 1 be the smallest positive 
integerrepresented by F. Then there exist integers Ul,I, U2,I, and U3,I such that 

F(UI,I, U2,t. U3,1) = al,l' 

If (Ul,l, U2,1, U3,1) = h, then the form F also represents al,l/ h2, and so, by the 
minimalityofal,I, wehave(ul,I, U2,I, U3,1) = 1. ByLemma 1.5, thereexistintegers 
Ui,j for i = 1,2,3 and j = 2, 3 such that the matrix U = (Ui,j) E SL3(Z). Let 

B = UT CU = (bi,j)' 
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Then F is equivalent to the form F B, and 

is also the smallest integer represented by FB• By Lemma 1.3, 

al,l FB(Xt, X2, X3) = (bt,lXt + bt,2X2 + bt;3X3)2 + G B*(X2, X3), 

where G B* (X2, X3) is a positive-definite binary quadratic form of determinant al,l d. 
By Lemma 1.2, the form G B* (X2, X3) is equivalent to a binary form 

such that 

G( ) *2 * *2 
A* X2, X3 = a l ,tX2 + at,2X2X3 + a2,2x3 

* 2 r:--; 
at,t ~ ,J3yat,td. 

Choose V* E SL2(Z) such that A* = (V*)T B*V*. Let r, S E Z, and let Vr,s E 

SL3(Z) be the matrix defined by (1.6) in Lemma 1.4. Let 

(1.8) 

Note that the integer in the upper left corner ofthe matrix is still at,l, the smallest 
positive integer represented by any form in the equivalence class of F, and that, 
by Lemma 1.3, 

* 2 at,t == al,la2,2 - a t ,2' 

Finally, it follows from (1.8) that 

and 
al,3 = al,ls + b t ,2V;,2 + bt,3Vi,2' 

Therefore, we can choose r such that 

and choose S such that 

Since 

we have 



This implies that 

or, equivalently, 
4 3r-. 

au :s 3vd. 
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This completes the proof. 

Theorem 1.3 Every positive-dejinite ternary quadratic form of discriminant 1 is 
equivalent ta the form x? + xi + x~. 

Proof. Let F be a positive-definite temary quadratic form of discriminant 1. By 
Lemma 1.6, the form F is equivalent to a form FA = L ai,jXiX j for which 

This implies that aJ,2 = al,3 = O. Since d =1 O, it follows that au =1 O and so 
au = 1. Therefore, 

where the 2 x 2 matrix 

( 10 
A = O a2,2 

O a2,3 

A* = (a2,2 a2,3) 
a2,3 a3,3 

has determinant 1. By Theorem 1.2, there exists a matrix 

U* = ( U2,2 
UZ,3 

U2,3 ) E SL2(Z) 
U3,3 

such that (u*f A*U* is the 2 x 2 identity matrix Iz. Let 

( 10 O) 
U = O U2,Z U2,3 . 

O UZ,3 U3,3 

Then U T AU is the 3 x 3 identity matrix h This completes the proof. 

1.5 Sums of three squares 

In this section, we determine the integers that can be written as the sum of three 
squares. The proof uses the fact that a number is the sum of three squares if 
and only if it can be represented by some positive-definite temary quadratic form 
of discriminant 1, together with two important theorems of elementary number 
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theory: Gauss's law of quadratic reciprocity and Dirichlet's theorem on primes in 
arithmetic progressions. 

The statement that a is a quadratic residue modulo m means that there exist 
integers x and y such that x 2 - a = ym. If p is prime and (a, p) = 1, then the 

Legendre symbol (~ ) is defined by (~) = 1 if a is a quadratic residue modulo p 

and (~ ) = -1 if a is not a quadratic residue modulo p. By quadratic reciprocity, 

if p and q are distinct odd primes, then (*) = (~) if p == 1 (mod 4) or q == 1 

(mod 4), and (*) = - (~) if p == q == 3 (mod 4). AIso, ( -;,') = 1 if and only 

if p == 1 (mod 4), and (%) = 1 if and only if p == 1 or 7 (mod 8). 

Lemma 1.7 Let n 2: 2. II there exists a positive integer d' such that -d' is a 
quadratic residue modulo d'n - 1, then n can be represented as the sum olthree 
squares. 

Proof. If -d' is a quadratic residue modulo d'n - 1, then there exist integers 
a1,2 and al,l such that 

where 
a2,2 = d' n - 1 2: 2d' - 1 2: 1 

and so 

Equivalently, 

The symmetric matrix 

has determinant 

By Lemma 1.3, the quadratic form FA corresponding to the matrix A is positive. 
Moreover, FA has discriminant 1 and represents n, since FA (O, 0,1) = n. By 
Theorem 1.3, the form x? + xi + xj must also represent n. This completes the 
proof. 

Lemma 1.8 II n Îs a positive integer and n _ 2 (mod 4), then n can be 
represented as the sum 01 three squares. 
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Proof. Since (4n, n - 1) = 1, it follows from Dirichlet's theorem that the arith­
metic progression {4nj + n - 1 : j = 1,2, ... } contains infinitely many primes. 
Choose j 2: 1 such that 

p = 4nj +n - 1 = (4j + l)n - 1 

is prime. Let d' = 4j + 1. Since n == 2 (mod 4), we have 

p = d' n - 1 == 1 (mod 4). 

By Lemma 1.7, it suffices to prove that -d' is a quadratic residue modulo p. Let 

d' = n q;;, 
q;Jd' 

where the q; are the distinct primes dividing d'. Then 

p=d'n-l==-1 (modq;) 

for all i, and 
d' == n (-1/; == 1 (mod 4). 

Therefore, 

qjld' 
qiE3 (mod 4) 

n (_I)k; = 1. 
qj Id' 

qj=3 (mod 4) 

By quadratic reciprocity we have 

(~1)=1 
since p == 1 (mod 4), and 

This completes the proof. 

( -:') = ( ~1 ) (~) 

= (~) 
-n (q;)k; 

q;Jd' P 

= n (p)k; 
q;Jd' q; 

(_l)k; =n -
q,Jd' q; n (-1/; 

qjld' 
qj=3 (mod 4) 

=1. 
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Lemma 1.9 lin is a positive integer such that n == 1,3, or 5 (mod 8), then n 
can be represented as the sum olthree squares. 

Proof. Clearly, 1 is a sum of three nonnegative squares. Let n ~ 2. Let 

c ~ I 3 ifn == 1 (mod 8) 
1 ifn == 3 (mod 8) 
3 ifn == 5 (mod 8). 

Ifn == 1 or 3 (mod 8), then 

If n == 5 (mod 8), then 

In all three cases, 

cn - 1 -- == 1 (mod 4). 
2 

cn -1 
-2- == 3 (mod 4). 

(4n, cn ; 1) = 1. 

By Dirichlet's theorem, there exists a prime number p of the form 

cn -1 
p=4nj+--

2 

for some positive integer j. Let 

d' = 8j +c. 

Then 
2p = (8j + c)n - 1 = d'n - 1. 

By Lemma 1.7, it suffices to prove that -d' is a quadratic residue modulo 2p. 
If -d' is a quadratic residue modulo p, then there exists an integer Xo such that 

(xo + pi +d' == x~ +d' == O (mod p). 

Let x = Xo if Xo is odd, and let x = Xo + p if Xo is even. Then x is odd and x 2 + d' 
is even. Since 

x 2 +d' == O (mod 2) 

and 
x2 +d' == O (mod p), 

it follows that 
x2 +d' == O (mod 2p). 

Therefore, it suffices to prove that -d' is a quadratic residue modulo p. 
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Let 
d'=Ol; 

q;ld' 

be the factorization of the odd integer d' into a product of powers of distinct odd 
primes qi. Since 

2p == -1 (mod d'), 

it follows that 

and 

for every prime qi that divides d'. 
If n == 1 or 3 (mod 8), then p == 1 (mod 4) and 

If n == 5 (mod 8), then p _ 3 (mod 4) and d' == 3 (mod 8). From the 
factorization of d', we obtain 

d' n q:; n k· 
= qi' 

q;ld' qjld' 
qjEI (mod 4) Qjc3 (mod 4) 

n (_I)k; (mod 4) 

andso 

qjld' 
q;sd (m<XI4) 

== -1 (mod 4) 

o (-1/; =-1. 
qjld' 

qj=3 (mod 4) 

It follows from quadratic reciprocity that 
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fl (~Yi fl (~Yi 
qjld' qjld' qii51 (mod 4) qi=3 (mod 4) 

fl (:Y/ n (:Yi fl (_l)ki 
qjld' ,jid' ,jid' qi"'l (mod 4) qi,,3 (mod 4) qj_3 (mod 4) 

fl (:Yj fl (:Yj 
qjld' qjld' 

q/_I (mod 4) QiSi3 (mod 4) 

( p)kj 

-= fl -
q;ld' qi 

In both cases, 

(-d') (p)kj 
P == D q; 

fl (_l)ki • 

'jid' 
qj lI!!!S.7 (mod 8) 

Therefore, -d' is a quadratic residue modulo 2p == d'n - 1 if 

L k; == O (mod 2). 
qjld' qj aS.7 (mod 8) 

This is what we shall prove. We have 

d' ... fl k· qi' fl k· qi' n q:j fl 
q[id' ,jid' fjld' qjld' 

k· q;' 

qj~1 (mod 8) qi!!l3 (mod 8) qj_5 (mod 8) qj"'7 (mod 8) 

fl 3ki fl (_3)kj 

,jid' qjld' qj;sJ (",od 8) qj aS (mod 8) 

fl (-Iii 
qjld' 

qi-7 (mod 8) 

fl (-Iii (mod 8). 
qjld' qjld' qj ,.J,5 (mod 8) qi .. 5.7 (mod 8) 

If n == 1 or 5 (mod 8), then c == 3 and 

d' == 8j + 3 == 3 (mod 8). 

(mod 8) 
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This implies that 
L ki == 1 (mod 2) 
qjld' 

qj ::=3,5 (mod 8) 

and 
L ki == O (mod 2). 
qj Id' 

qj :55,7 (mod 8) 

If n == 3 (mod 8), then c = 1 and 

It foHows that 

and 

This completes the proof. 

d' = 8j + 1 == 1 (mod 8). 

L ki == O (mod 2) 
qjld' 

Qi=3,5 (mod 8) 

L k i == O (mod 2). 
q;ld' 

qj ;;;;:5.7 (mod 8) 

Theorem 1.4 (Gauss) A positive integer N can be represented as the sum ofthree 
squares if and only if N is not of the form 

Proof. Since 
X2 == 0,1, or4 (mod 8) 

for every integer x, it foHows that a sum of three squares can never be congruent to 
7 modulo 8. If the integer 4m is the sum of three squares, then there exist integers 
xl, X2, X3 such that 

4 22 2 
m =X\ +X2 +X3' 

This is possible only if Xl, X2, X3 are aH even, and so 

m=(~)2 +(~)2 +(;)2. 
Therefore, 4am is the sum of three squares if and only if m is the sum of three 
squares. This proves that no integer of the form 4a (8k + 7) can be the sum of three 
squares. 

Every positive integer N can be written uniquely in the form N = 4a m, where 
m == 2 (mod 4) or m == 1,3,5, or 7 (mod 8). By Lemma 1.8 and Lemma 1.9, 
the positive integer N is the sum of three squares unless m == 7 (mod 8). This 
completes the proof. 

Theorem 1.5 lf N is a positive integer such that N == 3 (mod 8), then N is the 
sum ofthree odd squares. 
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Proof. Recall that x2 == O, 1, or 4 (mod 8) for every integer x. If N == 3 
(mod 8) is a sum of three squares, then each of the squares must be congruent to 
1 modulo 8, and so each of the squares must be odd. This completes the proof. 

1.6 Thin sets of squares 

If A is a finite set of nonnegative integers such that every integer from O to N can 
be written as the sum of h elements of A, with repetitions allowed, then A is called 
a basis of order h for N. A simple counting argument shows that if A is a basis of 
order h for N, then A cannot be too small. 

Theorem 1.6 Let h ~ 2. There exists a positive constant c = c(h) such that, if A 
is a basis of order h for N, then 

lAI> cN1/ h • 

Proof. Let lAI'" k. If A is a basis of order h for N, then each of the integers 
O, 1, ... , N is a sum of h elements of A, with repetitions allowed. The number of 
combinations of h elements, with repetitions allowed, of a set of cardinality k is 
the binomial coefficient e+~-I). Therefore, 

N+1< = <-( k+h -1) k(k+ l) .. ·(k+h -1) c'kh 

- h h! - h! 

for some constant c' > O and alI k, and so 

(
h IN)I/h 

IAI=k> 7 =cN1/ h• 

This completes the proof. 
Since the squares form a basis of order 4, it follows that for every N ~ O the set 

QN of alI squares up to N is a basis of order 4 for N. Moreover, 

IQNI = 1 + [N 1/ 2 ] > N 1/ 2 • 

This is much larger than cN1/4, which is a lower bound for the thinnest possible 
basis of order 4. It is natural to ask if for every N there exists a set AN of squares 
that is a basis of order 4 for N and satisfies 

. AN 
IIm -1/2 =0. 

N-+oo N 

The answer is provided by the following theorem. 

Theorem 1.7 (Choi-Erd6s-Nathanson) For every N ~ 2, there exists a set AN 
of squares such that AN is a basis of order 4 for N and 

IANI ~ (~) N1/ 3 10gN. 
log 2 
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Proof. The sets A2 = A3 = {O, 1} and A4 = As = {O, 1, 4} satisfy the 
requirements of the theorem. Therefore, we can assume that N ::: 6. 

We begin with a simple remark. By Theorem 1.4, if i is a nonnegative integer 
and i == 1 or 2 (mod 4), then i is the sum of three squares. Since the square of 
an even integer is O (mod 4) and the square of an odd integer is 1 (mod 4), it 
folIows that if m .". O (mod 4) and a is any positive integer such that a2 ::: m, 
then either m - a2 is the sum of three squares or m - (a - 1)2 is the sum of three 
squares. 

For N ::: 6, we 1et A~) consist of the squares of alI nonnegative integers up to 
2N1/ 3• Then 

IA~)I ::: 2N1/ 3 + 1. 

Let A~) consist of the squares of alI integers of the form 

where 

Then 

Let 

Then 
IA~)I < 4N1/ 3 • 

Since A~) contains alI the squares up to 4N2/ 3 , it follows from Lagrange 's theorem 
that every nonnegative integer up to 4N2/ 3 is the sum of four squares be10nging to 
A (O) 

N' 
Let m be an integer such that 

4N2/ 3 < m ::: N 

and 
m.". O (mod 4). 

We shall prove that there exists an integer ao E A~) such that 

O ::: m - a5 ::: 4N2/3 

and m - a5 is the sum of three squares. Since 

m 
4< -- < N 1/ 3 

N2/3 - , 

it folIows that 



26 1. Sums of polygons 

Let 

Then a2 E A~), (a - li E A~), 

a2 ::s kN2/ 3 ::s m < (k + 1)N2/ 3 , 

and 
a > k 1/ 2 N 1/ 3 - 1. 

It follows from our initial remark that either m - a 2 or m - (a - 1)2 is the sum 
of three squares. Choose a5 E {(a - li, a2 } ~ A~) such that m - a5 is a sum of 
three squares. Since 4 < 3N1/ 6 for N ::: 6, we have 

o ::s m - a2 

< m-a2 - o 
::s m - (a - 1)2 

< (k + 1)N2/ 3 - (k 1/ 2N 1/ 3 _ 2)2 

< (k + 1)N2/ 3 _ kN2/ 3 + 4k 1/ 2N 1/ 3 

= N 2/ 3 + 4k1/ 2N 1/ 3 

::s N 2/ 3 + 4N1/ 2 

< 4N2/ 3 , 

and so m -ag is the sum ofthree squares belonging to A~). Therefore, ifO ::: m ::: N 

and m =1= O (mod 4), then m is the sum of four squares belonging to A~). 
Let 

{ 
. 2 10gN 

AN = (2'a) : O::s i::s log4 

Then AN is a set of squares and 

Let n E [O, N]. If n =1= O (mod 4), then n is the sum of four squares belonging 
to A~) ~ AN. If n == O (mod 4), then n = 4i m, where m =1= O (mod 4) and 
O ::s i ::s log N / log 4. Then 

is a sum of four squares belonging to AN. This completes the proof. 
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1.7 The polygonal number theorem 

We begin by proving Gauss 's theorem that the triangles form a basis of order three. 
Equivalently, as Gauss wrote in his joumal on July 10, 1796, 

ETPHKAl num = L~ + ~ +~. 

Theorem 1.8 (Gauss) Every nonnegative integer is the sum ofthree triangles. 

Proof. The triangular numbers are integers of the form k(k + 1)/2. Let N :::: 1. 
By Theorem 1.5, the integer 8N + 3 is the sum of three odd squares, and so there 
exist nonnegative integers k1, k2 , k3 such that 

Therefore, 

8N + 3 = (2k1 + 1)2 + (2k2 + 1)2 + (2k3 + 1)2 

= 4(kî + k1 + k~ + k2 + k~ + k3) + 3. 

This completes the proof. 
Lagrange 's theorem (Theorem 1.1) is the polygonal number theorem for squares, 

and Gauss's theorem is the polygonal number theorem for triangles. We shall now 
prove the theorem for polygonal numbers of order m + 2 for all m :::: 3. It is easy 
to check the polygonal number theorem for small values of N / m. Recall that the 
kth polygonal number of order m + 2 is 

mk(k - 1) 
Prn(k) = 2 + k. 

The first six polygonal numbers are 

Prn(O) = ° 
Prn(1) = 1 

Prn(2) = m + 2 

Prn(3) = 3m + 3 

Prn(4) = 6m + 4 

Prn(5) = lOm + 5. 

If k1, .•• , ks are positive integers, then, for r = 0, 1, ... , m + 2 - s, the numbers 
ofthe form 

(1.9) 

are an interval of m + 3 - s consecutive integers, each of which is a sum of exactly 
m + 2 polygonal numbers. Here is a short table of representations of integers as 
sums of m + 2 polygonal numbers of order m + 2. The first column expresses the 
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integer as asum ofpolygonal numbers in the form (1.9), and the next two columns 
give the smallest and largest integers that the expression represents. 

rpm(1) O m+2 
Pm(2) + rpm(1) m+2 2m+3 
2Pm(2) + rpm(1) 2m+4 3m+4 
Pm(3) + rpm(1) 3m+3 4m+4 
Pm(3) + Pm(2) + rpm(1) 4m+5 5m+5 
4Pm(2) + rpm(1) 4m+8 5m+6 
Pm(3) + 2pm(2) + rpm(1) 5m+7 6m+4 
Pm(4) + rpm(1) 6m+4 7m+5 
Pm(4) + Pm(2) + rpm(1) 7m+6 8m+6 
2pm(3) + Pm(2) 7m+8 8m+7 
Pm(4) + 2pm(2) + rpm(1) 8m+8 9m+7 
Pm(4) + Pm(3) + rpm(1) 9m+7 lOm+7 
Pm(5) + rpm(1) lOm+5 llm+6 
Pm(5) + Pm(2) + rpm(1) llm+7 12m +7 

This table gives explicit polygonal number representations for all integers up to 
12m + 7. It is not difficult to extend this computation. Pepin [95] and Dickson [23] 
published tables of representations of N as a sum of m + 2 polygonal numbers 
of order m + 2 for alI m ~ 3 and N ::s 120m. Therefore, it suffices to prove the 
polygonal number theorem for N > 120m. 

We need the following lemmas. 

Lemma 1.10 Let m ~ 3 and N ~ 2m. Let L denote the length ofthe interval 

Then 
L > 4 if N ~ 108m 

and 
L > lm ifl ~ 3andN ~ 7l2m 3• 

Proof. This is a straightforward computation. Let 

and 

We see that 

if and only if 

x = N/m ~ 2 

1 
lo=l--6· 

.J8x - 8 > J6x - 3 +lo, 
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or, after squaring both sides and rearranging, 

2x - e~ - 5 > 2loJ6x - 3. 

Squaring and rearranging again, we obtain 

4x (x - (7e~ + 5») + (i~ + 5)2 + 12i6 > o. 

This inequality certainly holds if 

x ~ 716 + 5 = 7 (i - ~ r + 5. 

Therefore, 

L > i if N ( 1)2 m ~ 7 i - 6 + 5. 

Since 

7 (4 - ~ r + 5 = 107.86 ... , 

it follows that L > 4 if N ~ 108m. Since 

7 e2 > 7 (i _ ~) 2 
+ 5 

for i ~ 3, it follows that L > i if i ~ 3 and N / m ~ 7 i 2 • Therefore, if i ~ 3 and 
N ~ 7l2m3 , then L > im. This completes the proof. 

Lemma 1.11 Let m ~ 3 and N ~ 2m. Let a, b, and r be nonnegative integers 
such that 

and 

Consider the open interval 

II 

then 

and 

m 
N=-(a-b)+b+r. 

2 

bEl, 

3a < b2 + 2b + 4. 

(1.10) 

(1.11) 

(1.12) 
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Proof. From equation (1.10), we have 

By the quadratic formula, 

2 2 ( 2) (N - r) b -4a=b -4 l- m b-8 -;;;- <O 

if 

Ifbel,then 

This proves (1.11). 
Again by the quadratic formula, 

b2 + 2b + 4 - 3a = b2 - (1 - !) b - (6 (N ,:- r) - 4) > O 
if 

If bel, then 

This proves inequality (1.12). 
The following result is sometimes called Cauchy' s lemma. 
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Lemma 1.12 Let a and b be odd positive integers such that 

b2 < 4a 

and 
3a < b2 + 2b + 4. 

Then there exist nonnegative integers s, t, u, v such that 

a = S2 + t 2 + u2 + v2 

and 
b = s +t +u + V. 

(1.13) 

(1.14) 

Proof. Since a and b are odd, it follows that 4a - b2 == 3 (mod 8). By 
Theorem 1.5, there exist odd positive integers x ~ Y ~ z such that 

4a - b2 = x 2 + y2 + Z2. 

We can choose the sign of ±z so that b + x + y ± z == O (mod 4). Define integers 
s, t, u, v as follows: 

b+x+y±z 
s = ----:---

4 
b+x b+x-Y=fz 

t=---s=-----
2 4 

b+y b-x+Y=fz 
u .. -- - s = -----=.---.:...-

2 4 
b±z b-x-y±z 

v ... ---s=---.:....--
2 4 

These numbers satisfy equations (1.13) and (1.14) and 

s ~ t ~ u ~ v. 

We must show that v ~ O. By Exercise 8, the maximum value of x + y + z subject 
to the constraint x 2 + y2 + Z2 .. 4a - b2 is .J12a - 3b2. AIso, the inequality 
3a < b2 + 2b + 4 implies that .J12a - 3b2 < b + 4. Therefore, 

x + y + z ::: J 12a - 3b2 < b + 4, 

andso 
b-x-y-z 

v ~ 4 > -1. 

Since v is an integer, we must have v ~ O. This completes the proof. 
The following result is a strong form of Cauchy's polygonal number theorem. 

Theorem 1.9 (Cauchy) Ifm ~ 4 and N ~ I08m, then N can be written as the 
sum of m + 1 polygonal numbers of order m + 2, at most four of which are different 
from O or 1. If N ~ 324, then N can be written as the sum of five pentagonal 
numbers, at least one ofwhich is O or 1. 
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Proof. By Lemma 1.10, the length ofthe interval 

( 
1 f6ii---:. 

l -= 2. + V -;;;- - 3, 

is greater than 4 since N ~ 108m, and so l contains four consecutive integers 
and, consequently, two consecutive odd numbers bt and~. If m ~ 4, the set of 
numbers oftheformb+r, whereb E {b1, b2} andr E {O, 1, ... , m - 3}, contains 
a complete set of representatives of the congruence classes modulo m, and so we 
can choose b E {bJ,~} 5; l and r E {O, 1, ... , m - 3} such that 

N == b+r (mod m). 

Then 

a=2(N-~-r)+b=(I_ ~)b+2(N~r) 
is an odd positive integer, and 

m 
N = "2(a - b)+b+r. 

By Lemma 1.11, since bEl, we have 

b2 < 4a 

and 

By Lemma 1.12, there exist nonnegative integers 8, t, u, v such that 

and 
b -= s + t + U + V. 

Therefore, 

m 
N", "2(a - b)+b+r 

'" ~ (s2 - 8 + t2 - t + u2 - u + v2 - v) + (s + t + u + v) + r 

'" Pm(s) + Pm(t) + Pm(u) + Pm(v) + r. 

(1.15) 

Since O ::: r ::: m - 3 and since O and 1 are polygonal numbers of order m + 2 for 
every m, we obtain Cauchy's theorem for m ~ 4, that is, for polygonal numbers of 
order at least six. To obtain the result for pentagonal numbers, that is, for m = 3, 
we consider numbers of the form bl + r and b2 + r, where b1, b2 are consecutive 
odd integers in the intervall, and r '" O or 1. 
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Theorem 1.10 (Legendre) Let m ::: 3 and N ::: 28m3.lfm is odd, then N is the 
sum of four polygonal numbers of order m + 2. If m is even, then N is the sum of 
five polygonal numbers of order m + 2, at least one of which is o or 1. 

Proof. By Lemma 1.10, the length of the interval I is greater than 2m, so I 
contains m consecutive odd numbers. If m is odd, these form a complete set of 
representatives of the congruence classes modulo m, so N == b (mod m) for 
some odd integer bEI. Let r = O and detine a by formula (1.15). Then 

m 
N = 2:(a - b) + b, 

and it follows from Lemma 1.11 and Lemma 1.12 that N is the sum of four 
polygonal numbers of order m + 2. 

If m is even and N is odd, then N == b (mod m) for some odd integer bEI 
and N is the sum of four polygonal numbers of order m + 2. If m is even and N is 
even, then N - 1 == b (mod m) for some odd integer bEI and N is the sum of 
five polygonal numbers oforder m +2, one ofwhich is Pm(1) = 1. This completes 
the proof. 

A set of integers is called an asymptotic basis of order h if every sufficient1y 
large integer can be written as the sum of h not necessarily distinct elements of 
the set. Legendre 's theorem shows that if m ::: 3 and m is odd, then the polygonal 
numbers of order m + 2 form an asymptotic basis of order 4, and if m ::: 4 and m 
is even, then the polygonal numbers of order m + 2 form an asymptotic basis of 
order 5. 

1.8 Notes 

Polygonal numbers go back at least as far as Pythagoras. They are discussed at 
length by Diophantus in his bookArithmetica and in a separate essay On polygonal 
numbers. An excellent reference is Diophantus of Alexandria: A Study in the 
History ofGreekAlgebra, by T. L. Heath [53]. Dickson's History ofthe Theory of 
Numbers [22, VoI. II, Ch.l] provides a detailed history ofpolygonal numbers and 
sums of squares. 

There are many different proofs of Lagrange 's theorem that every nonnegative 
integer is the sum of four squares. For a proof using the geometry of numbers, see 
N athanson [93]. There is a vast literature concemed with the number of representa­
tions of an integer as the sum of s squares. Extensive treatments of these matters can 
be found in the monographs of Grosswald [43], Knopp [74], and Rademacher [98]. 
Liouville discovered an important and powerful elementary method that produces 
many of the same results (see Dickson [22, VoI. II, Ch. 11] or Uspensky and 
Heaslet [122]). 

Legendre and Gauss determined the numbers that can be represented as the sum 
of three squares. See Dickson [22, VoI. II] for historical references. In this chapter, 
I followed the beautiful exposition of Landau [78]. There is also a nice proof by 
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Weil [140] that every positive integer congruent to 3 (mod 8) is the sum of three 
odd squares. 

Cauchy [9] published the first proof of the polygonal number theorem. Legen­
dre's theorem that the polygonal numbers of order m form an asymptotic basis of 
order 4 or 5 appears in [80, VoI. 2, pp. 331-356]. In this chapter 1 gave a simple 
proof of Nathanson [91, 92], which is based on Pepin [95]. 

Theorem 1.7 is due to Choi, Erd6s, and Nathanson [13]. Using a probabilistic 
result of Erd6s and Nathanson [36], Zollner [152] has proved the existence of a 
basis of order 4 for N consisting of « N I /4+E squares.1t is not known if the e can 
be removed from this inequality. N athanson [89], Spencer [118], Wirsing [145], 
and ZOllner [151] proved the existence of "thin" subsets of the squares that are 
bases of order 4 for the set of alI nonnegative integers. 

1.9 Exercises 

1. Let m ::: 2. Show that the polygonal numbers of order m + 2 can be written 
in terms of the triangular numbers as follows: 

Pm(k) = mpl (k) + k 

for alI k ::: O. 

2. (Nicomachus, 100 A.D.) Prove that the sum of two consecutive triangular 
numbers is a square. Prove that the sum of the nth square and the (n - 1 )-st 
triangular number is the nth pentagonal number. 

3. Let u(2) be the smaliest number such that every integer N can be written in 
the form 

N = ±x~ ± ... ±X~(2). 
Prove that u(2) = 3. This is calied the easier Waring's problemfor squares. 
Hint: Use the identities 

2x + 1 = (x + 1)2 - x2 

and 

4. Prove that if m is the sum of two squares and n is the sum of two squares, 
then mn is the sum of two squares. Hint: Use the poIynomial identity 

(xf + x2)(yf + yi) = (XIYI + X2Y2)2 + (XI Y2 - x2yt}2. 

5. (Nathanson [88]) Prove that there does not exist a poIynomial identity ofthe 
form 

(xf + X2 + x;)(Yf + yi + Y;) = z~ + z~ + z~, 
where ZI, Z2, Z3 are polynomials in XI, X2, X3, YI, Y2, Y3 with integral coef­
ficients. 
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6. Prove that Theorem 1.4 implies Lagrange's theorem (Theorem 1.1). 

7. Prove that the set of triangu1ar numbers is not a basis of order 2. 

8. Let S2 = {(x, y, z) E R3 : x 2 + y2 + Z2 = 1}. Prove that 

9. Let 

and 

{x + y +z: (x, y, z) E S2} = [-.v3, .v3]. 

n 

FA (Xl , ••• , x n ) = L ai,jXiXj 

i,j-l 

n 

FB(XI, ••• , Xn ) = L bi,jXiXj 

i,j=l 

be quadratic forms in n variab1es such that 

for alI Xl, •.• ,Xn E Z. Prove that ai,j = bi.j for alI i.j = 1, ... , n. 

10. Let A be an n x n symmetric matrix, and 1et FA be the corresponding 
quadratic form. Let 

U = (Ui,j) 

and 

Prove that 

for j = 1, ... , n. 

11. For N 2: 1, let k = [JN"] and 

A = {O, 1, ... , k - 1} U {k, 2k, ... , (k - l)k}. 

Show that A is a basis of order 2 for N such that 

lAI::: 2../N + 1. 

12. Let h 2: 2, k 2: 2, and 

h-l 

A = {O} U U{aiki : ai = 1, ... , k - 1}. 
i-O 

Prove that A is a basis of order h for kh - 1 and 

lAI::: h(k - 1) + 1. 
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13. (Raikov [99], Stohr [119]) Let h ~ 2 and N > 2h • Let A be the set 
constructed in the preceding exercise with 

Prove that A is a basis of order h for N such that 

lAI ~ hN l / h + 1. 



2 
Waring's problem for cubes 

Omnis integer numeros veI est cubus; veI e duobus, tribus, 4,5,6,7,8, 
veI novem cubus compositus: est etiam quadratoquadratus; veI e duo­
bus, tribus &c. usque ad novemdecim compositus &sic deinceps.1 

E. Waring [138] 

2.1 Sums of cubes 

In his book Meditationes Algebraicae, published in 1770, Edward Waring stated 
without proof that every nonnegative integer is the sum of four squares, nine cubes, 
19 fourth powers, and so ono Waring's probIem is to prove that, for every k ~ 2, 
the set of nonnegative kth powers is a basis of finite order. 

Waring's probIem for cubes is to prove that every nonnegative integer is the 
sum of a bounded number of nonnegative cubes. The Ieast such number is denoted 
g(3). Wieferich and Kempner proved that g(3) = 9, and so the cubes are a basis 
of order nine. This is clearIy best possibIe, since there are integers, such as 23 and 
239, that cannot be written as sums of eight cubes. 

ImmediateIy after Wieferich published his theorem, Landau observed that, in 
fact, only finitely many positive integers actually require nine cubes, that is, every 

1 Every positive integer is either a cube or the sum of 2,3,4,5,6,7,8, or 9 cubes; similarly, 
every integer 1s either a fourth power, or the sum of 2, 3, ... , or 19 fourth powers; and so 
ono 
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sufficiently large integer is the sum of eight cubes. Indeed, 23 and 239 are the 
only positive integers that cannot be written as sums of eight nonnegative cubes. 
A set of integers is called an asymptotic basis of order h if every sufficiently large 
integer can be written as the sum of exactly h elements of the set. Thus, Landau 's 
theorem states that the cubes are an asymptotic basis of order eight. Later, Linnik 
proved that only finitely many integers require eight cubes, so every sufficiently 
large integer is the sum of seven cubes, that is, the cubes are an asymptotic basis of 
order seven. On the other hand, an examination of congruences modulo 9 shows 
that there are infinitely many positive integers that cannot be written as sums of 
three cubes . 
• Let G(3) denote the smallest integer h such that the cubes are an asymptotic 

basis of order h, that is, such that every sufficiently large positive integer can be 
written as the sum of h nonnegative cubes. Then 

4 ~ G(3) ~ 7. 

To determine the exact value of G(3) is a major unsolved problem of additive 
number theory. It is known that almost alI positive integers are sums of four cubes, 
and it is possible that G(3) == 4. 

The principal results of this chapter are the theorems of Wieferich-Kempner 
and of Linnik. Because of the mystery surrounding sums of few cubes, we also 
include a section about sums of two cubes. We shall prove that there are integers 
with arbitrarily many representations as the sum of two nonnegative cubes, but 
that almost alI numbers that can be written in at least one way as the sum of two 
nonnegative cubes have essentially only one such representation. 

2.2 The Wieferich-Kempner theorem 

The proof that g(3) = 9 requires four lemmas. 

Lemma 2.1 Let A and m be nonnegative integers such that m ~ AZ and m can 
be written as the sum of three squares. Then 

6A(Az +m) 

is a sum of six nonnegative cubes. 

Proof. Let mi, mz, m3 be nonnegative integers such that 

Z Z Z m = mi +mz +m3. 

Then 

for i = 1,2,3, and 

3 

6A(AZ +m) = 6A(AZ +mr +m~ +m~) = L (A +mi)3 + (A - mi)3). 
i-I 
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This completes the proof. 

Lemma 2.2 Let t ~ 1. For every odd integer w, there is an odd integer b such 
that 

w == b3 (mod 2t ). 

Proof. If b is odd and w == b3 (mod 2t ), then w is odd. Let b1 and b2 be odd 
integers such that 

Then 2t divides 
b~ - bi = (b2 - bl)(b~ + b2bl + br)· 

Since b~ + b2bl + br is odd, it follows that 2t divides b2 - b1, that is, 

This means that if b1 and b2 are odd integers such that 

then 
bi ;;j= b~ (mod 2t ), 

and so every odd integer is congruent to a cube modulo 2t • This completes the 
proof. 

Lemma2.3 lf 

then there exists an integer d E [O, 22] and an integer m that is a sum of three 
squares such that 

r = d 3 +6m. 

Proof. If the nonnegative integer m is not the sum of three squares, then there 
exist nonnegative integers s and t such that 

andso 

m = 4S(8t + 7), 

6m = 6 . 4s (8t + 7) == { ~~ 
90 

(mod 96) 
(mod 96) 
(mod 96) 
(mod 96) 

It follows that if m is a positive integer and 

6m == h (mod 96) 

if s ~ 2 
if s = 1 
if s = O and t is even 
if s = O and t is odd. 
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forsome 

h E 'H. = {6, 12, 18,24,30,36,48,54,60,66,78, 84}, 

then m is the sum of three squares. The following table lists, for various h E 'H. 
and 

dE 'D = {O, 1,2,3,4,5,6,7,8,9,10,11,13,14,15,17,18, 22}, 

the least nonnegative residue in the congruence class 

d3 + h (mod 96). 

The elements of'H. are listed in the top row, and the elements of'D are listed in the 
column on the left. 

6 12 18 24 30 36 48 54 60 66 78 84 
O 6 12 18 24 30 36 48 54 60 66 78 84 
1 7 13 19 25 31 37 49 55 61 67 79 85 
2 14 20 26 32 38 44 56 62 68 74 86 92 
3 33 39 45 51 57 63 75 81 87 93 9 15 
4 70 76 82 88 94 4 16 22 28 34 46 52 
5 35 41 47 53 59 65 77 83 89 95 11 17 
6 42 72 90 
7 73 91 43 
8 50 80 2 
9 69 21 27 

10 58 64 10 
11 5 23 71 
13 1 
14 8 
15 3 
17 29 
18 O 
22 40 

Every congruence class modulo 96 appears in this table. Since O :::: d :::: 22 for 
alI d E 'D, it follows that if r ~ 223, then there exists an integer d E 'D such that 
r - d 3 is nonnegative and r - d 3 == h (mod 96) for some h E 'H.. Therefore, 
r - d3 = 6m, where m is the sum of three squares. This completes the proof. 

Lemma 2.4 lf 1 :::: N :::: 40, 000, then 

(i) N is asum ofnine nonnegative cubes; 

(ii) if N =123 or 239, then N is a sum of eight nonnegative cubes; 
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(iii) if N =123 or 239 and if N is nof one of fhe following fifteen numbers: 

15 22 50 114 167 
175 186 212 231 238 
303 364 420 428 454 

then N is a sum of seven nonnegative cubes; 

(iv) if N > 8042, then N is a sum of six nonnegative cubes. 

Proof. Let s(N) denote the least integer h such that N is the sum of h nonnegative 
cubes. Von Stemeck computed s(N) for alI N up to 40,000. The four statements in 
the lemma are obtained by examining von Stemeck's list ofvalues of s(N). Using a 
computer, one can quickly verify (and extend) von Stemeck's list (see Exercise 8). 

Theorem 2.1 (Wieferich-Kempner) Every nonnegative integer is the sum of nine 
nonnegative cubes. 

Proof. We shall first prove the theorem for integers 

N> 810 • 

Let 

Then 
210 ::: n::: 2· 8k+ l • 

There exists an integer k :::: 3 such that 

8·83k < N ::: 8. 83(k+I). 

Let 

For i = 1, ... , n we have 

Choose i so that 

di = Ni- I - Ni = i 3 - (i - 1)3 = 3i2 - 3i + 1 

3· 82k+3 
< 3i2 < 3N2/ 3 < ---- - 2 

M+I < 8· 83k ::: Ni. 

Then i :::: l. Since k :::: 3, we have 

Nn = N - n 3 

::: (n + 1)3 - n3 - 1 

= 3n2 + 3n 

< 6n2 

::: 3 . 82k+3 

~ 8 . 83k • 
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Therefore, i ::::: n - 1. It follows that 

Ni < Ni-t =z (Ni-I - Ni) + (Ni - Ni+l ) + Ni+1 

= di + di+1 + Ni+1 
< 3 . 821+3 + 8 . 83k 

::::: 11 . 83k • 

Since Ni- I - Ni = di is odd, exactly one ofthe integers Ni and Ni-I is odd. Choose 
a E {i - 1, i} such that Na ... N - a3 is odd. By Lemma 2.2, there is an odd integer 
b E [1, 8k - 1] such that 

Then 
7 . 83k = 8 . 83k - 83k < N - a3 - b3 < Na < 11 . 83k 

and 

where 
7 . 821 < q < 11 . 821 • 

Let 

Then 
223 < 86 ::::: 821 < r < 5 . 82k . 

It follows from Lemma 2.3 that r can be written in the form 

r _d3 +6m, 

where O ::::: d ::::: 22 and m is a sum of three squares. Let 

A =8k • 

Then 

Let 

Then 

r 5.821 2 
m <-<--<A - 6 6 . 

N = a3 + b3 + 8k q 

= a3 + b3 + 8k(6· 821 + r) 
= a3 +b3 + 8k(6. 821 +d3 +6m) 

= a3 + b3 + (2kd)3 + 8k(6. 82k + 6m) 

-= a3 + b3 +c3 +6A(A2 +m). 
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By Lemma 2.1, 6A(A2 +m) is asum ofsix nonnegative cubes, so N is the sum of 
nine nonnegative cubes. 

Now let 
40,000 < N ::: 810• 

Then 
a = [(N - 10,000)1/3] > 30,0001/3 > 31, 

so 

Therefore, 

N - (a + li < 10,000 ::: N - a3 = N - (a + li + d < 10,000 + 4N2/3. 

If N - a3 ::: 40, 000, then N - a3 is a sum of six nonnegative cubes by Lemma 2.4. 
If N - a3 > 40, 000, then we choose the integer 

b = [(N - a 3 - 10,000)1/3] > 31, 

and obtain 

N - a3 - (b + li < 10,000 ::: N - a3 - b3 < 10,000 + 4(N _ a3)2/3. 

If N - a3 - b3 ::: 40, 000, then N - a3 - b3 is a sum of six nonnegative cubes by 
Lemma 2.4. If N - a 3 - b3 > 40, 000, then we choose the integer 

and obtain 

N - a3 - b3 - (e + 1)3 

< 10,000 
::: N - a3 - b3 _ e3 

< 10,000+ 4 (N - a3 _ b3)2/3 

< 10,000+ 4 (10,000 + 4 (10,000 + 4N2/3)2/3) 2/3 

( ( ~)~ ::: 10,000 + 4 10,000 + 4 10,000 + 4 (810)2/3) 

< 20,000. 

Thus, if 40,000 < N < 81°, then there exist three nonnegative integers a, b, and 
e such that 

10,000 < N - a3 - b3 - e3 ::: 40,000. 

By Lemma 2.4, N - a3 - b3 - e3 is the sum of six nonnegative cubes. This 
completes the proof. 
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2.3 Linnik's theorem 

Let G(3) denote the smallest integer s such that every sufficient1y large integer is 
the sum of s nonnegative cubes. 

Theorem2.2 liN == ±4 (mod 9),thenNisnotthesumoithreeintegralcubes. 
In particular, 

G(3) ~ 4. 

Proof. Since every integer, positive or negative, is congruent to O, 1, or -1 
modulo 9, it follows that every sum of three cubes belongs to one of the seven 
congruence classes, O, ±1, ±2, ±3 (mod 9). Therefore, if N == ±4 (mod 9), 
then N cannot be the sum of three cubes, so G(3) ~ 4. 

Lemma 2.5 Let n be a positive integer. li there exist distinct primes p, q, r such 
that 

p == q == r == -1 (mod 6), 

r < q < 1.02r, 

~p3q18 < n < p3q 18, 

4n == p3r l8 (mod q6), 

2n == p3q l8 (mod r6), 

n == 3p (mod 6p), 

then n is the sum of six positive integral cubes. 

Proof. It follows from (2.2) and (2.3) that 

Thus, 

p3(4q18 + 2r18) < 6p 3q l8 

< 8n 

< 8p 3q l8 

< p3(4q18 + 4(1.02r)18) 

< p3(4q18 + 8rI8). 

p3(4q18+2r I8 ) < 8n < p3(4q18+8r I8). 

Congruences (2.6), (2.4), and (2.5) imply that 

so 

8n == 2p 3r l8 == p\4q18 + 2r18) + 18pq6r 6 (mod q6), 

8n == 4p 3q l8 == p3(4q18 + 2r18) + 18pq6r 6 (mod r 6), 

8n == O == p3(4q18 + 2r 18 ) + 18pq6r 6 (mod p), 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
(2.6) 

(2.7) 
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It follows from (2.1) and (2.6) that 

n == 3p == -3 == 3 (mod 6), 

so 
8n == 24 (mod 48). 

By (2.1), the primes p, q, rare odd; hence 

p2 == q2 == r2 == 1 (mod 8) 

and 
p3 (2q18 + r 18 ) + 9pq6r6 == (2 + l)p + p == 4p == 4 (mod 8). 

Therefore, 
p3(4q18 + 2r18 ) + 18pq6r6 == 8 (mod 16). 

Similarly, since p == q == r == -1 (mod 3), we have 

p3(4q18 + 2r18 ) + 18pq6r6 == O (mod 3) 

so 

(2.9) 

p3(4q18 + 2r 18 ) + 18pq6r6 == 24 (mod 48). (2.10) 

Since (pqr, 48) = 1, we can combine (2.8), (2.9), and (2.10) to obtain 

8n == p3(4q18 + 2r 18) + 18pq6r6 (mod 48pq6r6). 

Therefore, there exists an integer u such that 

8n = p3(4q18 + 2r18 ) + 18pq6r6 + 48pq6r6u 
= p3(4q18 + 2r 18 ) + 6pq6r6(8u + 3). 

It follows from (2.7) that 

0< 6pq6r6(8u + 3) < 6p3r l8, 

so 

By Theorem 1.5, 
8u + 3 = x2 + y2 + Z2, 

where x, y, z are odd positive integers less than pq-3r6, that is, 

Therefore, 

max{q3x , q3y , q3Z} < pr6. 

8n = p3(4q18 + 2r18 ) + 6pq6r6(x2 + l + Z2) 

= (pq6 + r3x)3 + (pq6 _ r3x)3 + (pq6 + r3y)3 

+(pq6 _ r3y)3 + (pr6 + q3d + (pr6 _ q3Z)3. 

(2.11) 
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Since each of the six integers p, q, r, x, y, Z is odd, it follows that each of the 
six cubes in the preceding expres sion is even. Moreover, each of these cubes is 
positive, since, by (2.2) and (2.11), 

and 

Therefore, 

o < r3 x < q3 x < pr6 < pq6, 

O < r3y < q3y < pr6 < pq6, 

n = ( pq6;r3xy + ( pq6 ;r3xy + ( pq6;r3yy 
+( pq6;r3yy + (pr6 ;q3zY +(pr6 ;q3zy 

is a sum of six positive cubes. 

Theorem 2.3 (Linnik) Every sufficiently large integer is the sum of seven positive 
cubes, that is, 

G(3) :s 7. 

Proof. Let k and l be integers such that k ~ 1 and (k,l) = 1. We define the 
Chebyshev function for the arithmetic progression l modulo k by 

l1(x;k,l)= L logp. 
p"S,x 

p3il (mod k) 

The Siegel-Walfisz theorem states that for any A > O and for alI x > 1, 

l1(x; k, l) = (ţ}~k) + O ((lO:X)A ) , (2.12) 

where (ţ}(k) is the Euler (ţ}-function, and the implied constant depends only on A. 
It follows that, for any 8 > O, 

11«1 + 8)x; k, l) - l1(x; k, l) = :(:) + O ((lO:X)A ) . 
Let k = 6, l = -1,8 = 1/50, and x = (50/51)(log N)2. For any integer N > 2, 

I: logp 
(50{51)(108 N)2 <p:;(log N)2 

p .. -I (mod 6) 

= t?((logN)2;6, -1) - t?«50/51)(logN)2;6, -1) 

= (log N)2 + O ( (log N)2 ). 
102 (log log N)A 
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Since 
L logp::; Llogp ::;logN, 

p .. -tI7mod 6) piN 

it follows that, for N sufficiently large, there must exist at least two prime numbers, 
q and r, such that 

and 

q == r == -1 (mod 6), 

(q, N) = (r, N) = 1, 

50 SIr 
51 (log Ni < r < q < (log N)2 < 50 = 1.02r. 

The multiplicative group of congruence classes relatively prime to q6 is cyclic of 
order (ţJ(q6) = q5(q - 1). Since q == -1 (mod 6), it follows that «(ţJ(q6), 3) = 1, 
so every integer relatively prime to q6 is a cubic residue modulo q6. Similarly, 
every integer relatively prime to r6 is a cubic residue modulo r6• Since 

(2Nr, q) = (2Nq, r) = 1, 

there exist integers u and v such that 

(u, q) = (v, r) = 1, 

and 
2N == v3 q 18 (mod r 6). 

The numbers 6, q6, and r6 are pairwise relatively prime. By the Chinese remainder 
theorem, there exists an integer l such that 

Then 

and 

Let 

Then 

Let 

l == u (mod q6), 

l == v (mod r6), 

l == -1 (mod 6). 



48 2. Waring's problem for cubes 

Since q < (log N?, we have, for N sufficiently large, 

1 1 1 
logx = 3logN - 6logq > 3logN -12loglogN > 4logN 

and 
k = 6q 6r6 < 6(log N)24 < 6( 4log x )24 « (log x )24. 

By the Siegel-Walfisz theorem with A = 25 and 8 = 1/50, 

O«51/50)x; k, e) - O(x; k, e) = -Ox + O ( x 25) 
5 cp(k) (log x) 

2: 5~k + O ((lOgXX )25 ) 

» (lOgXX )24 + O ((lo;x )25 ) 

> O. 

Therefore, if N is sufficiently large, there exists a prime p such that 

51x 
x < p < 50 = 1.02x 

and 
p == e (mod 6q 6r6). 

The primes p, q, rare distinctbecause (qr, e) = 1. Since p == -1 (mod 3), 
every integer is a cubic residue modulo 6p, and there exists an integer s such that 

S3 == N - 3p (mod 6p). 

By the Chinese remainder theorem, there exists t such that 

and 

Let 

Then 

Finally, 

t 3 == N - 3p (mod 6p), 

t == O (mod q2r2), 

n = N - t 3• 

4n = 4N - 4t3 == 4N == e3r 3 == p3r l8 (mod q6), 

2n = 2N - 2t3 == 2N == e3q l8 == p3q l8 (mod r 6), 

n = N - t 3 == 3p (mod 6p). 
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and 

n = N - t 3 

~ x 3q 18 _ 216p3q6r6 

> (1.02)-3 p3q 18 _ 216p3q 12 

= ~p3q18 + (((1.02)-3 _~) q6 _ 216) p3q 12 

3 > _p3q 18 
4 

for N sufficient1y large. Thus, the integer n = N - t 3 and the primes p, q, r satisfy 
conditions (2.1)-(2.5) of Lemma 2.5, so N - t 3 is a sum of six positive cubes. 
Since t is positive, we see that N is a sum of seven positive cubes. This proves 
Linnik's theorem. 

2.4 Sums of two cubes 

The subject of this book is additive bases. The generic theorem states that a certain 
classical sequence of integers, such as the cubes, has the property that every non­
negative integer, or every sufficient1y large integer, can be written as the sum of 
a bounded number of terms of the sequence. In this section, we diverge from this 
theme to study sums of two cubes. 2 This is important for several reasons. First, it 
is part of the unsolved problem of determining G(3), the order of the set of cubes 
as an asymptotic basis and, in particular, the conjecture that every sufficient1y large 
integer is the sum of four cubes. Second, the equation 

(2.13) 

is an elliptic curve. If r3,2(N) denotes the number of representations of the integer 
N as the sum of two positive cubes, then r3,2(N) counts the number of integral 
points with positive coordinates that lie on this curve. Counting the number of 
integral points on a curve is a deep and difficult problem in arithmetic geometry, 
and the study of sums of two cubes is an important special case. 

If N = x 3 + y3 and x i y, then N = i + x 3 is another representation of N as a 
sum of two cubes. We call two representations 

essentially distinct if {Xl, Yl} i {X2, Y2}' Note that N has two essentially distinct 
representations if and only if r3,2(N) ~ 3. 

2This section can be omitted on the first reading. 
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Here are some examples. The smallest number that has two essentially distinct 
representations as the sum of two positive cubes is 1729. The representations are 

These give four positive integral points on the curve 

1729 =x3 + l, 
so 

The smallest number that has three essentially distinct representations as the sum 
of two positive cubes is 87,539,319. The representations are 

87539319 = 1673 + 4363 

= 2283 + 4233 

= 2553 + 4143 . 

The cubes in these equations are not relatively prime, because 

(228,423) = (255, 414) = 3. 

The smallest number that has three essentially distinct representations as the sum 
of two relatively prime positive cubes is 15,170,835,645. The representations are 

15,170,835,645 = 24683 + 5173 

= 24563 + 7093 

= 21523 + 17333 • 

The smallest number that has four essentially distinct representations as the sum 
of two positive cubes is 6,963,472,309,248. The representations are 

6,963,472,309,248 = 2421 3 + 19,0833 

= 54363 + 18,9483 

= 10,2003 + 18,0723 

= 13, 3223 + 16, 6303. 

It is an unsolved problem to find an integer N that has four essentially distinct 
representations as the sum of two positive cubes that are relatively prime. 

In this section, we shall prove three theorems on sums of two cubes. The first is 
Fermat's result that there are integers with arbitrarily many representations as the 
sum of two positive cubes, that is, 

limsupr3.2(N) = 00. 
N~oo 
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Next we shall prove a theorem of Erdas and Mahler. Let C2(n) be the number of 
integers up to n that can be represented as the sum of two positive cubes. Since 
the number of positive cubes up to n is n l / 3, it follows that C2(n) is at most n2/3. 
Erdas and Mahler proved that this is the correct order of magnitude for C2(n), that 
is, 

C2(n) = LI» n2/ 3 • 
N<n 

r3,2(N)::,1 

However, numbers with two or more essentially distinct representations as sums 
of two cubes are rare. Erdas observed that the number q(n) of integers up to n 
that have at least two essentially distinct representations as the sum of two cubes 
is 0(n2/ 3). More precisely, we shall prove a theorem of Hooley that states that 

C;(n) « n(5/9)+8. 

This impIies that almost every integer that can be written as the sum of two positive 
cubes has an essentially unique representation in this form. 

Theorem 2.4 (Fermat) For every k ::: 1, there exists an integer N and k pairwise 
disjoint sets of positive integers {Xi, Yi} such that 

N 3 3 =Xi +Yi 

for i = 1, ... , k. Equivalently, 

Iim sup r3.2 (N) = 00. 
N-+oo 

Proof. The functions 
X(X 3 +2y3) 

f(x, y) = 3 3 
X -y 

and 
y(2x3 + y3) 

g(x,y)== 3 3 
X - Y 

satisfy the polynomial identity 

If 
u(u3 - 2v3) 

F(u, v) = 3 3 == f(u, -v) 
u +v 

and 
v(2u3 - v3) 

G(u, v) = 3 3 = -g(u, -v), 
u +v 

then 

F(u, v)3 + G(u, V)3 == f(u, _v)3 - g(u, _v)3 == u3 + (-vi == u3 - v3 • 
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Let 
1 

0< e < '4. 

Let Xl and Yl be positive rational numbers such that 

Wedefine 

Yl 0<- < e. 
Xl 

u ... f(Xl, Yl), 

V = g(Xl, Yl). 

Then u and v are positive rational numbers such that 

Moreover, 
u Xl (xi +2Yi) Xl (1 +2p3) 
-;; = YI (2xi + Yi) = 2Yl 1 + p3/2 ' 

where p = yt!XI E (O, 1/4). Since 

it follows that 

and 

Next, we define 

1 + 2p3 3p3 3p3 
1 < =1+-- < 1+-, 

1 + p3/2 2 + p3 2 

U Xl 1 
- > - > - >2. 
v 2Yl 2e 

X2'" F(u, v), 

Y2'" G(u, v). 

(2.14) 

Since u > 2v, it follows from the definition of the functions F(u, v) and G(u, v) 
that X2 and Y2 are positive rational numbers. Moreover, 

Let a ... viu. Then 
O < a < 2e < 1/2 



by (2.14) and 

Since 

it follows that 

Thus, 

andso 

X2 u(u3 - 2v3 ) 

Y2 v(2u3 - v3) 

=;v Cl~:~:) 
u ( 3a3

) 
= 2v 1 - 2 _ a3 

a 1 
O<---<a<-

2 - a 3 2' 
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U X2 3v ( a ) 3v 3e 
0< 2v - Y2 = 2u 2 - a 3 :::: 4u < 2' 

X2 Xl 1 1 
- > - - 2e > - - 2e > - > O. 
Y2 4Yl 4e 8e 

This proves that if Xl and Yl are positive rational numbers such that 

Yl 
0< - < e < 1/4, 

Xl 

then there exist positive rational numbers X2 and Y2 such that 

and 

3 3 3 3 
X2 + Y2 = Xl + Yl' 

Y2 0<- < 8e, 
X2 

I :2 -~: I < 8e. 

If 8e < 1/4, then there exist positive rational numbers X3 and X4 such that 

3 3 3 3 
X 3 + Y3 = X2 + Y2' 
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Y3 2 0< - < 8 e, 
X3 

and 

Similarly, if k :::: 2 and 
1 

0< 8k- 2e < -
4' 

then there exist positive rational numbers XI, YI, X2, Y2, ••• , Xk> Yk such that 

3 3 3 3 3 3 
XI + YI = X2 + Y2 = ... = Xk + Yk' 

O Yi 8i - 1 <-< e for i = 1, ... ,k, 
Xi 

and 

1

4Xi+1 Xi I 8i ---- < e 
Yi+1 Yi 

for i = 1, ... , k - 1. 

Let e = 8-k • We shall prove that the k sets {Xi, Yi} are pairwise disjoint. Since 

I ~ Xi+j ~-I Xi+j-I I 4 j - 1 8i +j - 1 - 8i 32j - 1 -- - <. e-· e 
Yi+j Yi+j-I 

for j = 1, ... , k - i, it follows that 

f fi· ·-1 1 

1
4 Xi+f _ Xi 1 :s L 4' Xi+j _ 4' Xi+j-I 

Yi+i Yi j=1 Yi+j Yi+j-I 

f 

:s 8i e L 32j - 1 

j=1 

< 8i 32f e 

for 1 :s i < i + e :s k. If Xi = Xi+f and Yi = Yi+f for some e :::: 1, then 

Yi+f Yi 

and 
3Xi , Xi 1 4f Xi+' Xi I i f - :s (4 - 1)- = -- - - < 8 32 e. 
Yi Yi Yi+' Yi 

It follows that 

3 < 8i 32'e (~;) 
< 82i - 132'e2 

< 82ke2 

= 1, 
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which is absurd. Therefore, {Xl, Yd, ... , {Xk, Yd are k pairwise disjoint sets of 
positive rational numbers. Let d be a common denominator for the 2k numbers Xl, 

... , Xk, Y}, ... , Yk. and let N = (dXI)3 + (dYI)3. Then {dXI, dYd, ... , {dxk, dYk} 
are pairwise disjoint sets of positive integers, and 

that is, r3,2(N) ::: k. This proves Fermat's theorem. 
Next, we shall prove the Erdos-Mahler theorem. This requires four elementary 

lemmas. 

Lemma 2.6 Let a and b be positive integers such that 

a < b. 

Let rea, b) denote the number ofpairs (x, y) ofintegers such that 

and 

Then 

Proof. The function 

and 
b 

0< Y < -. 
2 

r(a,b) < Sa2/ 3 . 

(2.15) 

(2.16) 

is strictly decreasing for O ~ x ~ a/2. Let r = r(a, b) 2: 1. Let (XI, YI), ... , 

(xr, Yr) be the distinct solutions of equation (2.15) that satisfy inequalities (2.16), 
and let 

Then 

andso 

a 
O < Xl < '" < Xr < 2' 

a < b < 41/ 3a < 2a. 

For i = 1, ... , r - 1 we have 

and so 
b 

O < YI < ... < Yr < 2' 

(2.17) 
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Moreover. the point (Xi. Yi) is a solution of equation (2.15) if and only if (Xi. Yi) 

!ies on the hyperbola 

where 

Fori = 1 •...• r.let 

and 

Then 

a 
U· = - - X· 

1 2 1 

b 
Vi = 2 - Yi· 

a 
O < Ur < ... < Ul < 2' 

b 
O < Vr < ... < VI < 2' 

and (Ui. Vi) is a point in the first quadrant of the uv-plane !ies on the hyperbola 

Since the hyperbola is convex downwards in the first quadrant. it follows that 

Vi - Vi-l 
> 

for i = 2 •...• r - 1. and so the r - 1 fractions 

Vi+l - Vi Yi+l - Yi 

Ui+l - Ui Xi+l - Xi 

are distinct for i = 1 •...• r - 1. If rl is the number of points (Xi. Yi) such that 

then 

andso 

a1/ 3 
x· l-X' >-

1+ 1 2' 

Similarly. if r2 is the number of points (Xi. Yi) such that 

a 1/ 3 

Yi+l-Yi > 2' 
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then 
a 1/ 3r2 b 
-- < - <a 

2 2 

by (2.17), and so 

Let r3 be the number of points (Xi, Yi) such that 

and 

Since the fractions 

a 1/ 3 
1 <X· 1 -X· <-

- l+ 1- 2 

a 1/ 3 
1 < y. 1 - y. < -. 

- 1+ 1 - 2 

Yi+1 - Yi 

Xi+1 -Xi 

are distinct, and the numerators and denominators are bounded by a 1/3 /2, we have 

(
a 1/3)2 

r3 < --- 2 

Therefore, 

This completes the proof. 

Lemma 2.7 Let X and y be positive integers, (x, y) = 1. II the prime p =13 divides 

then 
p == 1 (mod 3). 

Proof. Let p =13 be a prime such that 

x3 + y3 
x 2 - xy + i = -- == O (mod p). 

x+y 

If p divides y, then p also divides x, which is impossible because (x, y) = 1. 
Therefore, (p, y) = 1. Since 

(2x - y)2 + 3y2 == O (mod p), 
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it follows that -3 is a quadratic residue modulo p. Let (~) be the Legendre 

symbol. By quadratic reciprocity, we have 

(~3)=(~)=1 
if and only if p == 1 (mod 3). This completes the proof. 

In the proof of the next lemma, we shall use some results from multiplicative 
number theory. Let Jl'(x; 3,2) denote the number of primes p ::: x such that 
p == 2 (mod 3). By the prime number theorem for arithmetic progressions, 
Jl'(x; 3, 2) ,...., x j(2log x). Moreover, there exists a constant A such tnat 

L ..!..=~IOgIOgX+A+O(_l_). 
P9 p 2 logx 

p=2 (mod 3) 

This implies that 

xlOJll <P'5.x 
p;s2 (mod 3) 

- = -loglogx - -loglogx + O --1 1 1 10/11 (1) 
p 2 2 logx 

= ~ log ~ + O (_1_) . 
2 10 log x 

Lemma 2.8 For any positive integer a, let h(a) denote the largest divisor of a 
consisting only ofprimes p == 1 (mod 3), that is, 

h(a) = n pk. (2.18) 
pklla 

pEI (mod 3) 

Let H(x) denote the number ofpositive integers a up to x such that h(a) < a l / IO 

and a is not divisible by 3. There exists a constant OI E (O, 1) such that 

H(x) > 0IX 

for ali x ~ 2. 

Proof. Let Ho(x) denote the number of positive integers a ::: x of the form 
a = pb, where p == 2 (mod 3) is a prime such that p > x 10/11, and b is an 
integer not divisible by 3. An integer a has at most one representation of this form. 
Moreover, 

a 
h(a) = h(b) ::: b = - < Xl/Il < pl/IO ::: a l / lo • 

p 

It follows that every number ofthe form pb is counted in H(x), and so 

Ho(x) ::: H(x). 
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Also. Ho(2) = H(2) = 1. Let g(x) denote the number ofpositive integers up to x 
not divisible by 3. Then 

and 

2x 
g(x) > --1 

3 

Ho(x) = L g (~) 
,IO/II<p$< P 
p .. 2 (mod 3) 

> L (2x -1) 
xIO/11<p!Sx 3p 
p .. 2 (mod 3) 

2x 1 ::: 3 L - - 1l'(x; 3. 2) 
,10/11 <P!!' P 
p .. 2 (mod 3) 

2x (~IOg!..!. + 0(_1 )) + O (_X ) 
3 2 10 log x log x 

X 11 ( X ) -log-++O --
3 10 logx 

»x. 
This completes the proof. 

Lemma 2.9 Let rp(d) be the Euler rp-function, and let O < 8 < 1. There exists a 
constant CI = CI (8) > O such that, ifn is a positive integer and t ::: 8n, and if 

al < ... < at ~ n 

are any t positive integers, then 

t 

Lrp(a;) > cln2 • 

;-1 

Proof. For any p ::: 7. we have 
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Since the infinite product 

converges, we have 

2 4 
<1--+--­

p p(p - 2) 
1 

< 1--. 
p 

n (1- 22 ) 
p~7 P 

n (1 - 2.)n/p 
= n (1 - 2.)n/p n (1 _ 2.)n/p 

p P p<7 P p~7 P 

> n (1 - 2.)n/p n (1 _ 22 )n 
p<7 P p~7 P 

= c~, 

where 
O<C2<1. 

Since qJ(d) = d np1d (1 - t) and n! > (n/e)n, it follows that 

( 
l)[n/Pl 

= n!n 1--
p~n P 

( 1 )n/p 
~n!n 1--

p~n P 
~ n!c~ 

> (c:r· 
Choose C3 > O so that 

Let 

m = [ 0;] ~ 0; < m + 1. 
Suppose that there exists a set V ~ [1, n] such that IVI = m + 1 and qJ(d) ~ C3n 

for alI dE V. Since qJ(d) ~ d ~ n for alI d ~ n, we have 

n n n n qJ(d) = n qJ(d) n qJ(d) 
d-l d-J d-J 

deV dj1) 



2.4 Sums oftwo cubes 61 

n n 

::: DC3n Dn 
d-I d-I 
deP d~ 

::: (C3 n )m+l nn-m-l 

= c~+lnn 

8n/2 n < C3 n 

< (c:nr ' 

which is impossible. It follows that there exist at most m integers in [1, n] with 
ţp(di ) ::: C3n. In particular, among the t ::: ~n integers ai, there must be at least 

t -m > ~n - - >-[ ~n] ~n 
- 2 - 2 

integers for which ţp(ai) > C3n, and so 

where CI = c3~/2. This completes the proof. 

Theorem 2.5 (Erdos-Mahler) Let q(n) denote the number ofintegers not ex­
ceeding n that can be written as the sum oftwo positive, relatively prime integral 
cubes. Then 

Proof. Let 

and let 

h(a) = n 1 pk 
piRa 

p.1 (mod:l) 

al < ... < al ::: n l / 3 

be the integers in [1, n l / 3] not divisible by 3 such that 

1/10 h(ai) <ai . 

Then h(l) = h(2) = 1 and so al = 2. By Lemma 2.8, we have 

t = H(n l / 3 ) > ~lnl/3. 

Let x and y be positive integers such that 

x +y =ai for some i = 1, ... , t. 

Then 
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Moreover, (x, y) = 1 if and only if (x, ai) = (y, ai) = 1. Therefore, the number 
of pairs x, y of positive integers such that x + y = ai, x < y, and (x, y) = 1 is 
cp(ai}/2. 

Let r(m} denote the number of representations of m in the form 

where x and y are relatively prime positive integers such that (x, y) = 1 and 
x + y = ai for some i. Then 

by Lemma 2.9. 
Let R2 be the number of ordered quadruples (x, y, u, v) of positive integers such 

that 

ai = x + y < u + v = a j fori,j E [l,t], 

(x, y) = (u, v) = 1, 

x < y and u < v. 

Note that if x 3 + y3 = u3 + v3, then x + y = u + v if and only if {x, y} = tu, v} 
(Exercise 7). Then 

~ (r(m}) R2= ~ 2 . 
m-l 

Let (x, y, u, v) be a quadruple counted in R2 • Since 

ai x 3 + y3 a j u3 + v3 
h(ai} h(ai} x + y = h(aj} h(aj} ~ 

and ai and aj are not divisible by 3, it follows from (2.18) that a;j h(ai} and 
ai / h(a j} are products of primes p == 2 (mod 3). By Lemma 2.7, 

( x3 + y3 ) ( u3 + V3) p,-- = p,-- =1 
x+y u+v 

if p == 2 (mod 3). Therefore, 

Fix the integer ai. Since 

~=~ 
h(ai} h(aj} 
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and 
ai 9/10 -->a· 

h(ai) 1 ' 

it follows that 

Therefore, to each ai there correspond fewer than 

n1/3 

9/10 
ai 

different integers aj' By Lemma 2.6, the number of quadruples (x, y, u, v) such 

that x + y = ai and u + v = a j is smaller than 3a;/3. Therefore, the number R2,i of 
quadruples (x, y, u, v) such that x + y = ai satisfies 

andso 

2/3 n 1/3 3n 1/3 
R2,i < 3ai 9/10 = 7/30' 

ai ai 

t n1/ 3 

< 3 L 7/30 
i-l ai 

< 3n 1/3 '"' _1_ 
- ~ '7/30 

l::;i::;n 1/3 1 

:::: 3n 1/3(n 1/3)23/30 

= 3n (2/3)-(7/90) • 

Let C~(n) count the number of integers m up to n of the form m = x 3 + y3, where 
x and y are relatively prime positive integers. Since 

for alI integers r, we have 

n n n (r(m») 
Rl = ~ r(m)::: ~ 1 + ~ 2 ::: C~(n) + R2. 

r(m)~1 r(m):!:l r(m)2:,1 

Therefore, 
C'(n) > R - R > n2/3 _ n(2/3)-(7/90) "n2/3 

2 - 1 2_ // • 

This completes the proof. 
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The Erdos-Mahler theorem states that many integers can be written as the sum 
of two positive cubes. Hooley showed that very few numbers have two essen­
tially distinct representations in this form. To prove this, we need the following 
result of Vaughan-Wooley [130, Lemma 3.5] from the elementary theory ofbinary 
quadratic forms. 

Lemma 2.10 Let e > O. For any nonzero integers D and N, the number of 
solutions of the equation 

with 
max(IXI, IYD « p 

is 
« (DNPt, 

where the implied constant depends only on e. 

Proof. See Hua [63, chapter 11] or Landau [78, part 4]. 
The following lemma on "completing the square" shows how to transform 

certain quadratic equations in two variables into Pell 's equations. 

Lemma 2.11 Let a, b, c be integers such that a =1 O and D = b2 - 4ac =1 O. Let 
(x, y) be a solution of the equation 

ax2 + bxy + cy2 + dx + ey + f = o. 

Let 
x = Dy - 2ae + bd 

and 
Y = 2ax +by+d. 

Then (X, Y) is a solution ofthe equation 

x2 _ Dy2 = N, 

where 
N = (4af - d2)D + (2ae - bdi. 

Moreover, this map sending (x, y) to (X, Y) is one-to-one. 

The number D = b2 - 4ac is called the discriminant of equation (2.19). 
Proof. Multiplying equation (2.19) by 4a, we obtain 

4a2x 2 + 4abxy + 4acy2 + 4adx + 4aey + 4af 

= (2ax + by)2 - Dy2 + 2d(2ax + by) + 2(2ae - bd)y + 4af 

= (2ax + by + d)2 - Dl + 2(2ae - bd)y + (4af - d2) 

= y2 _ Dy2 + 2(2ae - bd)y + (4af - d2) 

=0, 

(2.19) 

(2.20) 
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where 
Y = 2ax + by + d. 

Multiplying by - D, we obtain 

where 

and 

D2y2 _ 2(2ae - bd)Dy - Dy2 - (4af - d2)D 

= (Dy - 2ae + bd)2 - Dy2 - (4af - d2)D - (2ae - bd)2 

= X2 - Dy2 - ( 4af - d2)D + (2ae - bdi) 

= X2 - Dy2 - N 

=0, 

x = Dy - 2ae + bd 

N = (4af - d2)D + (2ae - bd)2. 

The determinant of the affine map that sends (x, y) to (X, Y) is 

I OD 1=-2aDfO 
2a b 

since a f O and D f O, and so the map (x, y) H- (X, Y) is one-to-one. This 
completes the proof. 

Lemma 2.12 Let P ::: 2, and let a, b, c, d, e, f be integers such that 

max{lal, ... , If\} « p 2. 

Let D = b2 - 4ac, and define the integer N by (2.20). Let W denote the number 
of solutions of the equation 

ax2 + bxy + cy2 + dx + ey + f = O 

with max(lxl, Iyl)« P. [fa, D, and N are nonzero, then 

for any e > O, where the implied constant depends only on e. 

Proof. By Lemma 2.11, to every solution (x, y) of the quadratic equation (2.19) 
there corresponds a solution of the equation 

where 
D = b2 - 4ac « p 4 

and 
N = (4af - d2)D + (2ae - bd)2 « p 8 • 



66 2. Waring's problem for cubes 

Moreover, 
x = Dy - 2ae + bd « p 4 1YI « p5 

and 
Y = 2ax + by + d « p2(lxl + Iyl) « p3 

if max.(lx 1, Iy 1) « P. It follows from Lemma 2.10 that 

W « (DN p5)e « p17e « pe. 

This completes the proof. 

Theorem 2.6 (Hooley-Wooley) Let D(n) denote the number ofintegers not ex­
ceeding n that have at least two essentially distinct representations as the sum of 
two nonnegative integral cubes. Then 

D(n) «e n5/ 9+e . 

Proof. If N has at least two essentially distinct representations as the sum of 
two nonnegative cubes, then there exist integers Xl, X2, X3, X4 such that 

and 
O.::: X3 < Xl .::: X2 .::: X4 .::: N I / 3• 

For any number P ::: 2, let S(P) denote the number of solutions of the equation 

(2.21) 

that satisfy 
(2.22) 

Then 
(2.23) 

If the integers Xl, X2, X3, X4 satisfy (2.21) and (2.22), then Xl + X2 =1 X3 + X4 by 
Exercise 7, and so 

where 
1.::: Ihl < 2P. 

Let T (P, h) denote the number of solutions of the simultaneous equations 

and 

with 
o ,:::Xj'::: P for i = 1, ... , 4. 
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Choose the integer l so that 

Then 

S(P) ~ L T(P, h) 
1:o;lhl<2P 

< L L T(P,h) 

«l ~~ (. L T(P, h)} 
- - 2':o;lhl<2<+1 

«log P max ( L T(P, h)} . 
I:o;H:o;2P H:o;lhl<2H 

Since X3 is the smallest ofthe four integers XI, X2, X3, X4, we have 

For fixed h, we can use XI, ... , X4 to define four positive integers UI, U2, U3, and 
y as follows: 

where 

and 

Moreover, 

and 

UI =XI +X2 

U2 =XI - X3 

U3 = X2 - X3 

Y = 2X4+ h , 

for i = 1,2,3 

1 ~ y ~ 4P. 

h (31 + h 2) = h (3(2x4 + h)2 + h 2) 

= h(12x~ + 12x4h + 4h2) 

= 4(3x~h + 3X4h2 + h 3) 

= 4«X4 + h)3 - x~) 

= 4«xl + X2 - X3)3 - xi - xi + xj) 

12( 2 2 2 2 2 2 2 ) = XI X2 + XIX2 - X2X3 + X2X3 - xI X3 + XIX3 - XIX2X3 

= 12(xl + X2)(XI - X3)(X2 - X3) 

= 12ul u2U3· 



68 2. Waring's problem for cubes 

ConverseIy, thenumbersul, U2, U3, andy determine Xl , ... , X4 uniqueIy.ltfollows 
that 

T(P, h) ::: U(P, h), 

where U (P, h) denotes the number of solutions of the equations 

(2.24) 

and 
(2.25) 

in positive integers Ui ::: 2P and y ::: 4P. If Ui = h for some i, say, U3 = h, then 
Ul +U2 = h and 

This implies that 
3(Ul - u2i + h2 = O, 

which is impossible since h =1 O. Therefore, Ui =1 h for alI i == 1,2,3. Let 
Ul, U2, U3, h be a solution of equations (2.24) and (2.25) counted in U(P, h). 
Let 

(U3, h) = max{(ui, h) : i = 1,2, 3}, 

where (a, b) denotes the greatest common divisor of a and b. We define 

Then 

and dl d2d3 divides h. Let 

and 

Then 

(Vi, g) = 1 and 

It follows from (2.25) that 

d3 = (U3, h), 

d2 = (U2' :J, 
dl = (Ulo d:dJ. 

for i = 1,2,3. 

2P 
1 < V· <-

- 1 - di 
for i == 1,2,3. (2.26) 
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and so g divides 12, that is, 
fg = 12 

for some integer f. Therefore, Ihl = Igd1d2d31 ::: 12dj, and so 

d3» Ihl l / 3• (2.27) 

Since U3 =1 h, it follows that 
(2.28) 

We can rewrite equation (2.25) in terms of the new variables Vi, di , f, g. Since 

and 

wehave 

andso 
fVI V2V3 = 3(dl VI + d2V2 + d3V3 - h)2 + h2. (2.29) 

If we fix the integers d 1, d2, d3, f, g, V3, then equation (2.29) becomes a quadratic 
equation in VI, V2: 

3drv~ + (6d1d2 - fV3)VI V2 + 34vi + 6dl (d3V3 - h)VI 
+6d2(d3V3 - h)V2 + 3(d3V3 - h)2 + h2 = O. (2.30) 

The discriminant of this quadratic is 

D = «6d1d2 - fV3)2 - 36drd1 

= f2V~ - 12d1dzfv3 
= f2v~ - d1dzf2gv3 

= f2v3(V3 - d1d2g) 

=10 

by (2.28). Similarly, the integer N defined by (2.20) is nonzero, because 

N = (4. 3dr (3(d3V3 - h)2 + h2) - (6dl (d3V3 - h»2) D 

+ (2. 3dr . 6d2(d3 - V3h) - (6dld2 - fV3)' 6d1(d3 - V3h»)2 

= 12drh2 D + (6dl f V3(d3V3 - h»2 

= 12drh2 f2V3(V3 - d1d2g) + 36dr f2v~d;(V3 - d1d2g»2 

= 12drd; f 2V3(V3 - dld2g) (d1d2g)2 - 3dld2gv3 + 3vD 

= 3drd;f2v3(V3 - d1d2g) (d1d2g)2 + 3 (d1d2g - 2V3) 2) 

=10. 
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Let W(P, dl , d2, d3, f, g, V3) denote the numberofsolutions ofequation (2.30) in 
integers VI, V2 satisfying (2.26). Since the coefficients of this quadratic equation 
are alI « p2, it follows from Lemma 2.12 that 

Therefore, 

S(P) « log P max L T(P, h) 
I~H~2P H~lhl<2H 

« log P max L U(P, h) 
I~H~2P H~lhl<2H 

«logP max L L L 
I~H~2P H~lhl<2H fg-12 gdld2d3-h 

d3"max(dl ,~) 

L W(P, dJ. d2, d3, f, g, V3) 
J'5.v3~2Pld3 

VJ .... dld2 

Since the number of factorizations of h in the form h = gdl d2d3 is « Ih 18 , and 
since 

andso 
S(P) «pl+28 max H2/3+8 « p 5/3+38 . 

I~H~2P 

Therefore, by (2.23), we have 

D(n)::: S(n ,/3)« n5/9+s. 

This completes the proof. 

Theorem 2.7 (Erdos) Almost all integers that can be represented as the sum of 
two positive cubes have essentially only one such representation. 
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Proof. This follows immediately from the remark that there are gre ater than cn2/ 3 

integers that can be represented in at least one way as the sum of two nonnegative 
cubes, but there are no more than c' n5/ 9+E = o(n2/ 3 ) integers that have two or more 
essentially distinct representations as the sum of two cubes. 

2.5 Notes 

Wieferich 's proof [144] that g(3) = 9 appeared in Mathematische Annalen in 1909. 
In the immediately following paper in the same issue ofthatjournal, Landau [75] 
proved that G(3) ::: 8. Dickson [24] showed that 23 and 239 are the only pos­
itive integers not representable as the sum of eight nonnegative cubes. An error 
in Wieferich's paper was corrected by Kempner [70]. Scholz [108] gives a nice 
version of the Wieferich-Kempner proof. 

Linnik's proof [81] of the theorem that G(3) ::: 7 is difficult. Watson [139] 
subsequently discovered a different and much more elementary proof of this result, 
and it is Watson 's proof that is given in this chapter. Dress [25] has a simple proof 
that G(3) ::: 11. 

Vaughan [126] obtained an asymptotic formula for r3.S(n), the number of repre­
sentations of an integer as the sum of eight cubes. It is an open problem to obtain 
an asymptotic formula for the number of representations of an integer as the sum 
of seven or fewer cubes. 

It is possible that every sufficiently large integer is the sum of four nonnegative 
cubes. Let E(x) denote the number of positive integers up to x that cannot be written 
as the sum of four positive cubes. Davenport [17] proved that E4,3(X) « x29/30+E, 

and so almost alI positive integers can be represented as the sum of four positive 
cubes. Briidem [6] proved that 

There are interesting identities that express a linear polynomial as the sum of 
the cubes of four polynomials with integer coefficients. Such identities enable us 
to represent the integers in particular congruence classes as sums of four inte­
gral cubes. See Mordell [85, 86], Demjanenko [20], and Revoy [101] for such 
polynomial identities. 

Theorem 2.5 was first proved by Erdos and Mahler [31, 35]. The beautiful 
elementary proof given in this chapter is due to Erdos [31]. Similarly, Theorem 2.6 
was originally proved by Hooley [57, 58]. The elementary proofpresented here is 
due to Wooley [149]. For an elementary discussion of elliptic curves and sums of 
two cubes, see Silverman [115] and Silverman and Tate [116, pages 147-151]. 

Waring stated in 1770 that g(2) = 4, g(3) = 9, and g( 4) = 19. The theorem that 
every nonnegative integer is the sum of 19 fourth powers was finally proved in 
1992 in joint work of Balasubramanian [2] and Deshouillers and Dress [21]. 
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2.6 Exercises 

1. Prove that 

is the only solution in integers of the equation 

2. Let s(N) be the smallest number such that N can be written as the sum of 
s(N) positive cubes. Compute s(N) for N = 1, ... ,100. 

3. Prove that s(239) = 9, that is, 239 cannot be written as a sum of eight 
nonnegative cubes. 

4. Show that none of the following numbers 

15 22 50 114 167 
175 186 212 231 238 
303 364 420 428 454 

can be written as a sum of seven nonnegative cubes. 

5. Show that none of the following numbers 

79,159,239,319,399,479,559 

can be written as a sum of 18 fourth powers. 

6. Let v(3) denote the smallest number such that every integer can be written 
as the sum or difference of v(3) nonnegative integral cubes. 

(a) Prove that 
4 ~ v(3) ~ g(3). 

(b) Prove that 
v(3) ~ 5. 

Hint: Use the polynomial identity 

6x = (x + 1)3 + (x - 1)3 - 2x3 

and the fact that x = (N - N 3)J6 is an integer for every integer N. 

It is an unsolved problem to determine whether v(3) = 4 or 5. This is called 
the easier Waring's problemfor cubes. 

7. Let x, y, u, v be positive integers. Prove that if x + y = v + v and x 3 + y3 = 
u3 + v3 , then {x, y} = fu, v}. 
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8. (Von Stemeck [136]) Using a computer, calculate s(n) for n up to 40,000. 
Verify the results of Lemma 2.4. 

9. (Mahler [82]) Prove that 1 has infinitely many different representations as 
the sum of three cubes. Hint: Establish the polynomial identity 

(2.31) 

Prove that 

Let r3,3(N) denote the number of representations of N as the sum of three 
nonnegative cubes. Prove that if N = n12 for some positive integer n, then 

r (N) > 9-1/ 3 N 1/12 . 3,3 _ 

Note: This is Mahler's counterexample to Hypothesis K of Hardy and Lit­
tlewood [49]. 

10. (Elkies and Kaplansky [27]) Verify the following polynomial identities: 

8(x2 + l- Z3) = (2x + 2y)2 + (2x - 2y)2 - (2d, 

2x + 1 = (x 3 - 3x2 + xi + (x2 - x - 1)2 - (x2 - 2xi, 

2(2x + 1) = (2x 3 - 2x2 - X)2 - (2x 3 - 4x2 - x + 1)2 - (2x2 - 2x _ 1)3, 

4(2x + 1) = (x 3 + x + 2)2 + (x2 - 2x - 1)2 - (x2 + li. 

Show that every integer N, positive or negative, can be written uniquely in 
theform 

N = 8q2r (2m + 1), 

where q ::: O, r E {O, 1, 2}, and m E Z. Prove that every integer N can be 
written in the form 

where a, b, c are integers. 

11. Let a be a positive rational number. Consider the equations 

a =x3 + l +Z3 

a = (x + y + Z)3 - 3(y + z)(z + x)(x + y) 

8a = (u + v + wi - 24uvw. 

Prove that if any one of these equations has a solution in positive rational 
numbers, then each of the three equations does. 



74 2. Waring's problem for cubes 

12. Let a be a rational number. Let r be any rational number such that r -10 and 

a 
t=--'-1 72r3 T • 

For any rational number w, let 

and 

Prove that 

u = ( 24t2 
_ 1) w 

(t + 1)3 

( 24t ) 
v = (t + 1)3 w. 

(u + v + w)3 _ 24uvw = 8a (_W __ )3 
r(t + 1) 

Let w = r(t + 1). Prove that there exist rational numbers x, y, z such that 

and 

u =y+z 

v=z+x 

w==x+y 

a =x3 + l +Z3. 

This proves that every rational number can be written as the sum of three 
rational cubes. 

13. Let a be a positive rational number. Show that it is possible to choose rin 
Exercise 12 so that 

a = x3 + y3 + Z3, 

where x, y, z are positive rational numbers. This proves that every positive 
rational number can be written as the sum of three positive rational cubes. 



3 
The Hilbert-Waring theorem 

Nous ne devons pas douter que ces considerations, qui permettent ainsi 
d'obtenir des relations arithmetiques en les faisant sortir d'identires 
ou figurent des integrales definies, ne puissent un jour, quand on en 
aura bien compris de sens, etre appliquees a des problemes bien plus 
etendus que celui de Waring. 1 

H. Poincare [96] 

3.1 Polynomial identities and a conjecture of Hurwitz 

Waring's problem for exponent k is to prove that the set of nonnegative integers 
is a basis of finite order, that is, to prove that every nonnegative integer can be 
written as the sum of a bounded number of kth powers. We denote by g(k) the 
smallest number s such that every nonnegative integer is the sum of exact1y s kth 
powers of nonnegative integers. Waring's problem is to show that g(k) is finite; 
Hilbert proved this in 1909. The goal of this chapter is to prove the Hilbert-Waring 
theorem: the kth powers are a basis of finite order for every positive integer k. 

We have already proved Waring's problem for exponent two (the squares) and 
exponent three (the cubes). Other cases ofWaring's problem can be deduced from 

IWe should not doubt that [Hilbert's] method, which makes it possible 10 obtain arith­
metic relations from identities involving definite integrals, might one day, when it is better 
understood, be applied to problems far more general than Waring's. 
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these results by means of polynomial identities. Here are three examples. We use 
the notation 

(Xl ± X2 ± ... ± Xh)k = L (Xl + 82X2 + ... + 8hXh)k. 
82, ... ,8h~±1 

Theorem 3.1 (Liouville) 

is a polynomial identity, and every nonnegative integer is the sum of 53 fourth 
powers, that is, 

g(4) ~ 53. 

Proof. We begin by observing that 

andso 

L (Xi ± Xj)4 = L (Xi + Xj)4 + L (Xi - Xj)4 
1::;i<j::;4 l::;i<j::;4 1::;i<j::;4 

" (2x 4 + 12x2x2 + 2X4) ~ I I J J 
l::;i<j::;4 

4 

= 6 L xi + 12 L xfxJ 
i-1 l::;i<j::;4 

6 ( 2 2 2 2)2 = Xl +X2 +X3 +X4 . 

This proves Liouville's identity. 
Let a be a nonnegative integer. By Lagrange's theorem, a = xf + xi + x~ + x~ 

is the sum of four squares, and so 

6a2 = 6 (xf +xi +x~ +X~)2 
= L (Xi+ Xj)4+ L (Xi- Xj)4 

is the sum of 12 fourth powers. Every nonnegative integer n can be written in the 
form n = 6q + r, where q :::: O and O ~ r ~ 5. By Lagrange's theorem again, we 
have q = af + ... +a~, and so 6q = 6af + ... + 6a~ is the sum of 48 fourth powers. 
Since r is the sum of 5 fourth powers, each of them either 04 or 14, it follows that 
n is the sum of 53 squares. This completes the proof. 

The proofs of the following two results are similar. 
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Theorem 3.2 (Fleck) 

~ 6 1 ~ 6 3~ 6 ~ (Xi ±Xj ±Xk) + - ~ (Xi ±Xj) + - ~ Xi 
60 I . . k 4 30 I . . 4 5 I . 4 ~l<}< ::: "'5:.1<j"'5:. :51::: 

is a polynomial identity, and every nonnegative integer is the sum of a bounded 
number of sixth powers. 

Theorem 3.3 (Hurwitz) 

is a polynomial identity, and every nonnegative integer is the sum of a bounded 
number of eighth powers. 

Suppose that 

(3.1) 

for some positive integer M, integers bi . j , and positive rational numbers ai' Hurwitz 
observed that this polynomial identity and Lagrange's theorem immediately imply 
that ifWaring's problem is true for exponent k, then it is also true for exponent 2k. 
Hilbert subsequently proved the existence of polynomial identities of the form (3.1) 
for alI positive integers k, and he applied it to show that the set of nonnegative 
integral kth powers is a basis of finite order for every exponent k. This was the first 
proof of Waring's problem. In the next section, we obtain Hilbert's polynomial 
identities. 

3.2 Hermite polynomials and Hilbert's identity 

For n :::: O, we define the Hermite polynomial Hn(x) by 

The first five Hermite polynomials are 

Ho(x) = 1 
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Since 

the Hermite polynomials satisfy the recurrence relation 

(3.2) 

It follows that Hn(x) is a monic polynomial of degree n with rational coefficients 
and that Hn (x) is an even polynomial for n even and an odd polynomial for n odd. 

Lemma 3.1 The Hermite polynomial Hn(x) has n distinct real zeros. 

Proof. This is by induction on n. The lemma is clearly true for n = O and n = 1, 
since Hl(X) = x. Let n ::: 1, and assume that the lemma is true for n. Then Hn(x) 
has n distinct real zeros, and these zeros must be simple. Therefore, there exist 
real numbers 

such that 

and 
H~(f3j) 7'0 

for j = 1, ... , n. Since Hn(x) is a monic polynomial of degree n, it follows that 

Iim Hn(x) = 00, 
x-+oo 

andso 
H~(f31) > O. 

Since the n - 1 distinct real zeros of the derivative H~ (x) are intertwined with the 
n zeros of Hn{x), it follows that 
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for j = 1, ... , n. The recurrence relation (3.2) implies that 

andso 
. (-I)j+' I 

(-I)J Hn+, (fJj) = 2 Hn(fJj) > O 

for j = 1, ... , n. Therefore, for j = 2, ... , n, Hn+, (x) has a zero fJj in each open 
interval (fJj, fJj-'). Since limx ..... oo Hn+, (x) = 00 and Hn+, (fJ,) < O, it follows that 
Hn+, (x) has a zero fJ; > fJ,. If n is even, then Hn+1 (fJn) > O. Since n + 1 is odd, 
Hn+1 (x) is a polynomial ofodddegree, and so limx ..... - oo Hn+l(x) = -oo.ltfollows 
that Hn+I(X) has a zero fJ:+, < fJn. Similarly, if n is odd, Hn+,(fJn) < O and the 
even polynomial Hn+,(x) has a zero fJ:+1 < fJn. Thus, Hn+l(x) has n + 1 distinct 
real zeros. This completes the proof. 

Lemma 3.2 Let n ::: 1 and f(x) be a polynomial of degree at most n - 1. Then 

Proof. This is by induction on n.) If n = 1, then Hn (x) = x and f (x ) is constant, 
say, f(x) = ao, so 

Now as sume that the lemma is true for n, and let f(x) be a polynomial of degree 
at most n. Then f' (x) is a polynomial of degree at most n - 1. Integrating by parts, 
we obtain 

This completes the proof. 

Lemma 3.3 For n ::: O, 

1 100 
x2 n { Cn = ,.fii -00 e- x dx = 

n! 
2" (n/2)! 

O 
ifn is even 
ifn is odd. 

(3.3) 
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Proof. This is by induction on n. For n os O, we have 

/
00 e-x2 dx == ..(ii 

-00 
and so Co .. 1. For n .. 1, the function e-x2 x is odd, and so i: e-x2 xdx == O 

and CI == O. Now let n ~ 2, and assume that the lemma holds for n - 2. Integrating 
by parts, we obtain 

1 /00 2 Cn == - e-x xndx 
.fii -00 

( n - 1) 1 /00 _x2 n-2d ---- ex x 
2 .fii-oo 

== (n ; 1) Cn-2. 

If n is odd, then Cn-2 == O and so Cn == O. If n is even, 

Cn ... (n ; 1 ) Cn-2 

( n - 1) (n - 2)! 
.. -2- 2n- 2 «n - 2)/2)! 

n! 
2n (n/2)!· 

This comp1etes the proof. 

Lemma 3.4 Let n ~ 1, let Pb ... , Pn be n distinct real numbers, and let co, Cit 

... , Cn-I be the numbers defined by (3.3). The system oflinear equations 
n 

LP;Xj == Ck 

j-I 

fork==0,1, ... ,n-1 (3.4) 

has a unique solution PI, ... , Pn./f r(x) is a polynomial of degree at most n - 1, 
then 

Proof. The existence and uniqueness of the solution PI, ... , Pn follows imme­
diately from the fact that the determinant of the system of linear equations 

XI + X2 + ... + Xn Co 
PIXI + P2X2 + ... + Pnxn CI 

pfxI + piX2 + ... + p;xn C2 

pn- I 
I XI + pn- I 

2 X2 + ... + pn- I n Xn Cn-I 
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is the Vandermonde determinant 

1 1 1 
f31 f32 f3n 
f3~ f3i f3; n (f3 j - f3j) f O. 

I~i<j~n 

f3~-1 f3~-1 f3:- 1 

This completes the proof. 

Lemma 3.5 Let n ~ 1, let f31, ... , f3n be the n distinct real roots of the Her-
mite polynomial Hn(x), and let Pt. ... , Pn be the solution ofthe system oflinear 
equations (3.4). Let f(x) be a polynomial of degree at most 2n - 1. Then 

Proof. By the division algorithm for polynomials, there exist polynomials q(x) 
and r(x) of degree at most n - 1 such that 

f(x) = Hn(x)q(x) + r(x). 

Since Hn(f3j) = O for j = 1, ... , n, we have 

and so, by Lemma 3.4 and Lemma 3.2, 

n n L f(f3j)pj = L r(f3j)pj 
j-I j-I 
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1 100 
2 = r.;; e-x r(x)dx 

vIT -00 

1 100 
2 1 100 

2 = r.;; e-x Hn(x)q(x)dx + r.;; e-x r(x)dx 
V IT -00 V IT -00 

1 100 
2 = r.;; e-x f(x)dx. 

v IT -00 

This completes the proof. 

Lemma 3.6 Let n ::: 1, let fJl , ... , fJn be the n distinct real roots of the H ermite 
polynomial Hn(x), and let Pl, ... , Pn be the solution ofthe linear system (3.4). 
Then 

Proof. Since 

Pi > O fori=1, ... ,n. 

n 

Hn(x) = n(x - fJj), 
j=l 

it follows that, for i = 1, ... , n, 

( Hn(x»)2 nn 2 J;(x) = -- = (x - fJj) 
x - fJi j_1 

j-/i 

is a monic polynomial of degree 2n - 2 such that J; (x) ::: O for alI x. Therefore, 

1 100 
_x2 r.;; e J;(x)dx > O. 

v IT -00 

Since J;(fJi) > O and /;(fJj) = O for j =1 i, we have, by Lemma 3.5, 

n 

J;(fJi)Pi = L J;(fJj)Pj 
j=l 

1 100 
x2 = r.;; e- J;(x)dx 

v IT -00 

> O. 

This completes the proof. 

Lemma 3.7 Let n ::: 1, and let co, CI, ... , Cn-l be the rational numbers defined 
by (3.3). There exist pairwise distinct rational numbers fJt, ... , fJ; and positive 
rational numbers pt, ... , P; such that 

n 

L(fJj)k pj = Ck for k = 0,1, ... , n - 1. 
j-l 
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Proof. By Lemma 3.4, for any set of n pairwise distinct real numbers.BI, ... , .Bn, 
the system of n linear equations in n unknowns 

n 

L.B;Xj = Ck for k = O, 1, ... , n - 1 
j=1 

has a unique solution (PI, ... , Pn). Let R be the open subset of Rn consisting 
of alI points (.BI, ... , .Bn) such that.Bi =1 .B j for i =1 j, and let <I> : R -+ Rn be 
the function that sends (.BI, ... , .Bn) to (PI, ... , Pn). By Cramer's rule for solving 
linear equations, we can express each P j as a rational function of .BI, ... , .Bn, and 
so the function 

is continuous. Let R: be the open sub set ofRn consisting of alI points (XI, ... , xn ) 

such that Xi > O for i = 1, ... , n. By Lemma 3.6, if .BI, ... , .Bn are the n zeros of 
Hn (x), then (.Bi> ... , .Bn) E R and 

Since R: is an open subset of Rn , it folIows that <I> -1 (R:) is an open neighborhood 
of (.BI, ... , .Bn) in R. Since the points with rational coordinates are dense in R, it 
folIows that this neighborhood contains a rational point (.Br, ... , .B:). Let 

Since each number p7 can be expressed as a rational function with rational co­
efficients of the rational numbers .Br, ... , .B:, it folIows that each of the positive 
numbers p7 is rational. This completes the proof. 

Lemma 3.8 Let n 2: 1, let Co, CI, ..• , Cn-I be the numbers defined by (3.3), let 
.BI, ... ,.Bn be n distinct real numbers, and let PI, ... , Pn be the solution of the 
linear system (3.4). For every positive integer r andfor m = 1,2, ... , n - 1, 

n n 

Cm (xf + ... + x;f/2 . = L ... L Pj, ... Pj, (.Bj,XI + ... + .Bj,Xr f 
j,-I j,=1 

is a polynomial identity. 

Proof. The proof is an exercise in algebraic manipulation and the multinomial 
theorem. We have 

n n 

L··· LPj,··· Pj, (.Bj,XI + ... + .Bj,Xrf 
j,=1 j,=1 

n n m! 
=L···LPj,···Pj, L , ,(.Bj,xd"···(.Bj,xrY" 

j,=l jr=1 ~,+·.-+~,-m Jl.-I· ... Jl.-r· 
J.Li~O 
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By Lemma 3.3, Cm = O if m is odd. If m is odd and /.LI + ... + /.Lr = m, then /.Li 
must be odd for some i, and so 

n n 

" ... "p . ... p' (fi.. XI + ... + fI.. X )m = O ~ ~ jl j, fJ}J fJj, r • 
jl=1 j,=1 

This proves the lemma for odd m.1f m is even, then we need only consider parti­
tions of m into even parts /.Li = 2Vi. Inserting the expressions for the numbers Cn 

from (3.3), we obtain 

r (2 ')' 2Vj " n V" xi =m! ~ ----
"1+ ... w,-m/2 i=1 22vj Vi! (2Vi)! 

11;2:0 

=Cm 
" (m/2)! (2)VI (2)V, 
~ XI .•• X 

VI' ... V , r 
VI +"'+l!r-m/2 • r· 

Vi 2:0 

( 2 2)m/2 
= Cm XI + .. 'Xr • 

This proves the polynomial identity. 
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Theorem 3.4 (Hilbert's identity) For every k ::: 1 and r ::: 1 there exist an 
integer M and positive rational numbers ai and integers bi.j for i = 1, ... , M and 
j = 1, ... , r such that 

(3.5) 

Proof. Choose n > 2k, and 1et tJi, ... , tJ:, pi, ... , P: be the rational numbers 
constructed in Lemma 3.7. Then tJi, ... ,tJ: are pairwise distinct and pj, ... , P: 
are positive. We use these numbers in Lemma 3.8 with m = 2k and obtain the 
polynomial identity 

n n 

( 2 2)k L L * * (tJ* tJ* )2k C2k XI+···+X = ... p .... p. ,XI+···+·X . 
, II j, II l, ' 

jl=1 j,=1 

Let q be a common denominator of the n fractions tJi, ... , tJ:. Then qtJj is an 
integer for alI j, and 

n n * * 
( 2 2)k L L Pjl •.• Pj, ( tJ* * )2k XI + ... + x = . . . q . Xl + ... + qtJ· X, 

, . . c2kq2k II j, 
)1=1 j,=1 

is a polynomial identity of Hilbert type. This completes the proof. 

Lemma 3.9 Let k ::: 1. lf there exist positive rational numbers al, ... , aM such 
that every sufficiently large integer n can be written in the form 

M 

n = LaiY;, (3.6) 
i=1 

where XI, ... , XM are nonnegative integers, then Waring's problem is true for 
exponent k. 

Proof. Choose no such that every integer n ::: no can be represented in the 
form (3.6). Let q be the least common denominator of the fractions al, ... , aM. 
Then qai E Z for i = 1, ... , M, and qn is a sum of I::::I qai nonnegative kth 
powers for every n ::: no. Since every integer N ::: qno can be written in the form 
N = qn + r, where n ::: no and O .:::: r .:::: q - 1, it follows that N can be written as 
the sum of I:~I qai + q - 1 nonnegative kth powers. Clearly, every nonnegative 
integer N < qno can be written as the sum of a bounded number of kth powers, 
and so Waring's problem holds for k. This completes the proof. 

The following notation is due to Stridsberg: Let I:~I aix; be a fixed diagonal 
form of degree k with positive rational coefficients al, ... , aM. We write n = I:(k) 
if there exist nonnegative integers XI, ... ,XM such that 

M 

n = Laix;. 
i=1 

(3.7) 
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We Iet ~)k) denote any integer of the fonn (3.7). Then ~)k) + ~)k) = ~)k) 
and ~)2k) = L:(k). Lemma 3.9 can be restated as follows: If n = L:(k) for every 
sufficiently Iarge nonnegative integer n, then Waring 's probIem is true for exponent 
k. 

Theorem 3.S IfWaring' s problem holds for k, then Waring' s problem holds for 
2k. 

Proof. We use Hilbert's identity (3.5) for k with r = 4: 

Let y be a nonnegative integer. By Lagrange's theorem, there exist nonnegative 
integers XI, X2, X3, X4 such that 

andso 
M 

k "" 2k Y = ~aizi ' 
i-I 

where 
Zi = bi,IXI + ... + b i ,4X4 

is a nonnegative integer. This means that 

(3.8) 

for every nonnegative integer y. If Waring's probIem is true for k, then every 
nonnegative integer is the sum of a bounded number of kth powers, and so every 
nonnegative integer is the sum of a bounded number of numbers ofthe fonn L:(2k). 
By Lemma 3.9, Waring's probIem hoIds for exponent 2k. This completes the proof. 

3.3 A proof by induction 

We shall use Hilbert's identity to obtain Waring's problem for alI exponents k ~ 2. 
The proof is by induction on k. The starting point is Lagrange 's theorem that every 
nonnegative integer is the sum of four squares. This is the case where k = 2. We 
shall prove that if k > 2 and Waring's probIem is true for every exponent Iess than 
k, then it is also true for k. 

Lemma 3.10 Let k ~ 2 and O ::s .e ::s k. There exist positive integers BO,l' B!,l, 
•.. , Bt-I,/. depending only on k and.e such that 

l-I 

xUTk- 1 + L Bi,tX2iTk-i = L(2k) 
i-O 
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for ali integers x and T satisfying 

Proof. We begin with Hilbert's identity for exponent k + 1.. with r = 5: 

where the integers Mi and bi,j and the positive rational numbers ai depend only 
on k and 1... Let U be a nonnegative integer. By Lagrange's theorem, we can write 

U 2 2 2 2 =X1 +X2 +X3 +x4 

for nonnegative integers XI,X2,X3,X4. Let X5 = x. We obtain the polynomial 
identity 

M t 

(x2 + ul+i = Lai (bix + Ci i k+U , (3.9) 
i-I 

where the numbers Mi, ai, and bi = bi,5 depend only on k and 1.., and the integers 
Ci = bi,IXI + ... + bi,4X4 depend on k, 1.., and U. Note that U ::: k + 1.. since 1.. ::: k. 
Differentiating the polynomial on the Ieft side of (3.9) U times, we obtain (see 
Exercise 6) 

dU i.. 

d u (x2 + U)k+i) = L Ai,iX2i (x2 + ui-' , 
x i~ 

where the Ai,i are positive integers that depend only on k and 1... Differentiating 
the polynomial on the right side of (3.9) 21.. times, we obtain 

~:i (ţai (bix +Ci)2k+U) 

Mt 

= L(2k + 1)(2k + 2)· .. (2k + U)b;lai(bix + Ci)2k 
i-I 
Mt 

= La;(bix +Ci)2k 
i-I 
Mt 

= La;y;k, 
i-I 

where Yi = Ibix + Ci I is a nonnegative integer and 

a; = (2k + I )(2k + 2) ... (2k + U)b'f ai 

is a nonnegative rational number depending only on k and i.. It follows that, if x 
and U are integers and U 2: 0, then there exist nonnegative integers YI, ... , YMt 

such that 
l Mt 

L Aux2i (x2 + U)k-i = La; yl" . 
i=O i=1 
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Let x and T be nonnegative integers such that x2 :::: T. Since Au is a positive 
integer, it follows that X2 :::: Au T, and so 

is a nonnegative integer. With this choice of U, we have 

l l 

'\' A. X2i(X2 + U)k-i = '\' A. X 2i (A T)k-i 
~ Il ~ I,l t,t 
i~ i~ 

l 
- '\' k A k-i X2i T k- i 
- ~ I,l t,t 

i~ 

i 
- A k- t+1 '\' k Al-i-lx2iTk-i 
- l,l ~ I,i t,l 

i-O 

l 
= Ak- t+1 '\' B. x 2i T k- i 

l,l ~ I,l , 
i-O 

where Bu = 1 and 
B A A i-i-I 

i,i = i,l t,l 

is a positive integer for i = 0, ... , l - 1. Let 

I a; 
a·=---

I Ak - l +l ' 
l,l 

Then 
t-I M, 

X2i T k- t + L Be,ex2iTk-i = La;yr = ~)2k). 
i-O ~I 

This completes the proof. 

Theorem 3.6 (Hilbert-Waring) The set of nonnegative kth powers is a hasis of 
finite order for every positive integer k. 

Proof. This is by induction on k. The case k = 1 is clear, and the case k = 2 
is Theorem 1.1 (Lagrange's theorem). Let k :::: 3, and suppose that the set of lth 
powers is a basis of finite order for every l < k. By Theorem 3.5, the set of (21)-th 
powers is a basis of finite order for l = 1, 2, ... , k - 1. Therefore, there exists an 
integer r such that, for every nonnegative integer n and for l = 1, ... , k - 1, the 
equation 

Zi Zi n =x1 + ... +xr 

is solvable in nonnegative integers XI,l, ••• , Xr,i' (For example, we could let r = 
max{g(21) : l = 1,2, ... ,k - l}.) 

Let T :::: 2. Chobse integers CI, .. , , Ck-l such that 

° :::: Ce < T for l = 1, ... , k - 1. 



3.3 A proof by induction 89 

There exist nonnegative integers Xj.f for j = 1, ... , r and l = 1, ... , k - 1 such 
that 

2f 2f C xI + ... + xr = k-f· (3.10) 

Then 
r 

2 "2" 
X j .f ::s ~X/f ::s Ck-f < T 

j=1 

for j = 1, ... , r, l = 1, ... , k - 1, and i = 1, ... , l. By Lemma 3.10, there exist 
positive integers Bi,f depending only on k and l such that 

f-I 

xffTk- f + L Bi,fX;:f Tk- i = L(2k) = L(k). (3.11) 
i=O 

Summing (3.11) for j = 1, ... ,r and using (3.10), we obtain 

f-I r 

C T k-f + "B T k- i " X 2i k-f ~ i,f ~ j,f 
i-O j=1 

f-I r 

= Ck_f Tk- f + Tk- f+1 L Bi,fTf-I-i LX;:f 
i=O j-I 

= Ck-f T k- f + Dk-f+1 Tk- f+1 

= L(k), 

where 
f-I r 

D "B T f - I - i " 2i k-f+1 = ~ i,f ~ X j,f 
i=O j=1 

for l = 1, ... , k - 1. The integer Dk- i + 1 is completely determined by k, l, T, and 
Ck- i and is independent of Ck-i for i =Il. Let 

Then 

B* = max{Bi,i : e = 1, ... , k - 1 and i = 0,1, ... , e - 1}. 

O ::s Ck_iTk-i + Dk_i+ITk-i+1 
i-I r 

C Tk-i "B T k- i " 2i = k-i + ~ i,i ~Xj,i 
i-O j=1 

< B* (Tk- i+1 + rTk + ~ Tk- i+l ) 

.=1 

= B* (rTk + T k- i+1 ~ Ti) 
.=0 

< B* (rTk + Tk+1 
) 

T-l 
::s (r + 2)B*Tk , 
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since T /(T - 1) :::: 2 for T :::: 2. Let 

Then 

and 

k-I k 

L (Ck_eTk- e + D k- e+1 T k- e+l ) = L (Ce + De) Te = L(k) 
eml e-I 

k 

O:::: L (Ce + De) Te < (k - 1)(r + 2)B*Tk = E*Tk, 
e=1 

where the integer 
E* = (k - 1)(r + 2)B* 

is determined by k and is independent of T. If we choose 

T:::: E*, 

then 
k 

0< '" (C + D ) Te < E*Tk < T k+1 _ ~ ee, 
e~1 

and so the expansion of EL (Ce + De) Te to base T is ofthe form 

k L (Ce + De) Te = EIT + ... + Ek_ITk- 1 + EkTk, (3.12) 
e~1 

where 
O :::: Ei < T for i = 1, ... , k - 1 

and 

In this way, every choice of a (k - l)-tuple (CI, ... , Ck-I) of integers in {O, 
1, ... , T - l} determines another (k - l)-tuple (EI,"" E k- I ) of integers in 
{O, 1, ... , T - l}. We shall prove that this map of (k - l)-tuples is bijective. 

It suffices to prove it is surjective. Let (EI, ... , E k- I ) be a (k - 1)-tuple of 
integers in {O, 1, ... , T - l}. There is a simple algorithm that generates inte­
gers CI. C2, ••• , Ck- I E {O, 1, ... , T - l} such that (3.12) is satisfied for some 
nonnegative integer Ek < E*. Let CI = EI and h = O. Since DI = O, we have 

The integer CI determines the integer D2• Choose C2 E {O, 1, ... , T - l} such 
that 
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Then 
C2 + D2 + Iz = E2 + h T 

for some integer h and 

2 2 

L(Ce + De)Te = L Ee Te + hT3 • 

eal eal 

The integer C2 determines D3. Choose C3 E {O, 1, ... , T - 1} such that 

C3 + D3 + h == E3 (mod T). 

Then 

for some integer 14, and 

3 3 

L(Ce + De)Te = L Ee Te + I4T 4• 
eal eal 

Let 2 ~ j ~ k - 1, and suppose that we have constructed integers Ij and 

CI, ... , C j - l E {O, 1, ... , T - 1} 

such that 
j-l j-l 
~ e ~ e . L..)Ce+De)T = ~EeT +IjTJ. 
eal eal 

There exists a unique integer C j E {O, 1, ... , T - 1} such that 

Cj+Dj+Ij==Ej (modT). 

Then 

for some integer I j +l , and 

It follows by induction that this procedure generates a unique sequence of integers 
CI, C2 , ••• , Ck - l E {O, 1, ... , T - 1} such that 

k-l k-l 
L(Ce+De)T f = LEeTe+hTk . 
e-l eal 

Since Ck = ° and Ck-l determines Db we have 

k k-l k ° ~ L(Ce + De)Te = L Ee Te + (Dk + h)Tk = L Ee Te < E*Tk, 
eal (=1 eal 
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where Dk + h = Ek. Since 

it follows that 

and 

Recall that 

k-I 

k-I 
O:::: LEeTe < Tk, 

e=1 

L Ei T { + E*Tk < (1 + E*)Tk :::: 2E*T k • 
(el 

k k 

L Ee Ti = L(ee + Di)T{ = L(k). 
i=1 i=1 

Since E* depends only on k and not on T, it follows that 

andso 
k-1 

L Ee Te + E*Tk = L(k) 
e=1 

(3.13) 

(3.14) 

forevery (k -I)-tuple (EI,.'" Ek - I ) ofintegers Ee E {O, 1, ... , T -I}. Choose 
the integer To > 5 E* so that 

for aU T 2: To. 

We shall prove that if T 2: To and if (Fo, FI, ... , Fk-d is any k-tuple of integers 
in {O, 1, ... , T - I}, then 

Fo + FI T + ... + Fk-I Tk- I + 4E*Tk = L(k). 

We use the following trick. Let Eb E {O, 1, ... , T - I}. Applying (3.13) with T + 1 
in place of T, we obtain 

Eb(T + 1) + E*(T + I)k < (T + Il + E*(T + li 

:::: (1 + E*)(T + li 
:::: 2E*(T + l)k. (3.15) 

Applying (3.14) with T + 1 in place of T, we obtain 

Eb(T + 1) + E*(T + l)k = L(k). (3.16) 

Adding equations (3.14) and (3.16), we see that for every choice of k integers 

E~, EI, ... , Ek-I E {O, 1, ... , T - I}, 
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wehave 

F* = (EIT + ... + Ek_ITk- 1 + E*Tk ) + (E~(T + 1) + E*(T + l)k) 

= (E~ + E*)+ (EI +E~ +kE*)T + ~ (El + G)E*) Ti +2E*Tk 

= L(k). 

Moreover, it follows from (3.13) and (3.15) that 

O ~ F* < 4E*(T + l)k ~ SE*Tk < Tk+l 

since 4(T + li ~ STk and T ::: To > SE*. Given any k integers 

Fo, FI, ... , Fk-l E {O, 1, ... , T - 1}, 

we can again appIy our algorithm (see Exercise 7) to obtain integers Fk and 

E~, EI, E2, ... , Ek-I E {O, 1, ... , T - 1} 

such that 

Fo + FIT + ... + Fk_ITk- 1 + FkTk 

= EIT + ... + Ek_ITk- 1 + E*Tk + E~(T + 1) + E*(T + li 

= L(k), 

where Fk is an integer that satisfies 

O ~ Fk < SE*. 

After the addition of (SE* - Fk)Tk = ~)k), we obtain 

Fo + FI T + ... + F k- I T k- I + SE*Tk = L(k) 

for alI T ::: To and for alI choices of Fo, FI, ... , Fk- I E {O, 1, ... , T - 1}. This 
proves that n = ~)k) if T ::: To and 

SE*Tk ~ n < (SE* + l)Tk. 

There exists an integer TI ::: To such that 

SE*(T + l)k < (SE* + l)Tk 

Then n = :E(k) if T ::: TI and 

for alI T ::: TI. 

SE*Tk ~ n < SE*(T + l)k. (3.17) 

Since every integer n ::: SE*Tt satisfies inequality (3.17) for some T ::: Tit we 
have 

n = L(k) for all n ::: SE*Tlk • 

It follows from Lemma 3.9 that Waring's probIem hoIds for exponent k. This 
completes the proof of the Hilbert-Waring theorem. 
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3.4 Notes 

The polynomial identities in Theorems 3.1, 3.2, and 3.3 are due to Liouville [79, 
pages 112-115], Pleck [40], and Hurwitz [65], respectively. Hurwitz's observa­
tions [65] on polynomial identities appeared in 1908. 

Hilbert [56] published his proof of Waring's problem in 1909 in a paper ded­
icated to the memory of Minkowski. The original proof was quickly simplified 
by several authors. The proof of Hilbert's identity given in this book is due to 
Hausdorff [52], and the inductive argument that allows us to go from exponent k 
to exponent k + 1 is due to Stridsberg [120]. Oppenheim [94] contains an excellent 
account of the Hausdorff-Stridsberg proof of Hilbert's theorem. Schmidt [105] 
introduced a convexity argument to prove Hilbert's identity. This is the argument 
that Ellison [28] uses in his excellent survey paper on Waring's problem. Dress [25] 
gives a different proof of the Hilbert-Waring theorem that involves a clever ap­
plication of the easier Waring's problem to avoid induction on the exponent k. 
Rieger [102] used Hilbert's method to obtain explicit estimates for g(k). 

3.5 Exercises 

1. (Euler) Let [x] denote the integer part of x, and let 

Prove that 
g(k) ::: 2k + q - 2. 

Hint: Consider the number N = q2k - 1. 

2. Verify the polynomial identity in Theorem 3.2, and obtain an explicit upper 
bound for g(6). 

3. Verify the polynomial identity in Theorem 3.3, and obtain an explicit upper 
bound for g(8). 

4. (Schur) Verify the polynomial identity 

22 680(x2 + x 2 + x 2 + x 2)5 , I 2 3 4 

= 9 L(2x;) 10 + 180 L(x; ± Xj)1O + L(2x; ± Xj ± xdo 

+9 L(xl ± X2 ± X3 ± X4)IO. 

5. Show that every integer of the form 22, 680a5 is the sum of2316 nonnegative 
integrallOth powers. 
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6. Let k, l, and U be integers such that O ~ l ~ k. Let 

Show that there exist positive integers Ao, AI, ... , Af depending only on k 
and l such that 

7. Let k :::: 1, T :::: 2, and Di, Ei be integers for i = 0,1, ... , k -1. Prove that 
there exist unique integers Co, ... , Ck- I and h such that 

O ~ C < T for i = 0,1, ... , k - 1 

and 
k-I k-l 

L(Cf + De)Tf = L EeTf + hTk • 

e-o f=O 

8. Thisisanexerciseinnotation:ProvethatL(2k) = L(k) but L(k) fL(2k). 



4 
Weyl's inequality 

The analytic method of Hardy and Littlewood (sometimes called the 
'circle method') was developed for the treatment of additive problems 
in the theory of numbers. These are problems which concern the rep­
resentation of a large number as a sum of numbers of some specified 
type. The number of summands may be either fixed or unrestricted; in 
the latter case we speak: of partition problems. The most famous ad­
ditive problem is Waring's Problem, where the specified numbers are 
kth powers .... The most important single tool for the investigation 
ofWaring's Problem, and indeed many otherproblems in the analytic 
theory ofnumbers, is Weyl's inequality. 

H. Davenport [18] 

4.1 Tools 

The purpose of this chapter is to develop some analytical tools that will be needed 
to prove the Hardy-Littlewood asymptotic formula for Waring's problem and other 
results in additive number theory. The most important of these tools are two in­
equalities for exponential sums, Weyl's inequality and Hua's lemma. We shall also 
introduce partial summation, infinite products, and Euler products. 

We begin with the following simple result about approximating real numbers 
by rationals with small denominators. Recall that [x] denotes the integer part of 
the real number x and that {x} denotes the fractional part of x. 
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Theorem 4.1 (Dirichlet) Let a and Q be real numbers, Q > 1. There exist 
integers a and q such that 

1 ~ q ~ Q, (a,q)=I, 

and 

Proof. Let N = [Q]. Suppose that {qa} E [O, lj(N + 1» for some positive 
integer q ~ N. If a = [qaJ, then 

1 
O ~ {qa} = qa - [qa] = qa - a < N + l' 

andso 

l
ai 1 1 1 

a - q < q(N + 1) < q Q ~ q2· 

Similarly, if {qa} E [N j(N + 1), 1) for some positive integer q < N and if 
a = [qa] + 1, then 

implies that 

andso 

If 

N 
N + 1 ~ {qa} = qa - a + 1 < 1 

1 
Iqa - al ~ N + 1 

l ai 1 1 1 
a - q ~ q(N + 1) < q Q ~ q2· 

(qa) E [N ~ l' N: 1) 
for alI q = 1, ... , N, then each of the N real numbers {q a} Iies in one of the N - 1 
intervals 

[N ~ 1 ' ~ ++ \ ) for i = 1, ... N - 1. 

By Dirichlet's box principle, there exist integers i E [1, N -1] and q!, q2 E [1, N] 
such that 

and 

Let 
q = q2 - q! E [1, N - 1] 

and 



4.2 Difference operators 99 

Then 

This completes the proof. 

4.2 Difference operators 

The forward difference operator !l.d is the linear operator defined on functions f 
by the formula 

!l.d(f)(X) = f(x + d) - f(x). 

For l ::: 2, we define the iterated difference operator !l.dt.dt_, ..... d, by 

For example, 

and 

!l.d2.d, (f)(x) = !l.d2 (!l.d, (f)) (x) 

= (!l.d, (f») (x + d2) - (!l.d, (f») (x) 

= f(x + d2 + d l ) - f(x + d2) - f(x + d l ) + f(x) 

!l.d3.d2.d, (f)(x) = f(x + d3 + d2 + d l ) - f(x + d3 + d2) 

- f(x +d3 +dl ) - f(x +d2 +dl ) 

+ f(x + d3 ) + f(x + d2 ) + f(x + dl ) - f(x). 

We let !l.{l) be the iterated difference operator !l.1 ..... 1 with d; = 1 for i = 1, ... , l. 
Then 

!l. (2)(f)(x) = f(x + 2) - 2f(x + 1) + f(x) 

and 
!l.(3)(f)(X) = f(x + 3) - 3f(x + 2) + 3f(x + 1) - f(x). 

Lemma 4.1 Let l ::: 1. Then 

!l.{l)(f)(X) = t(-l)l-j (~)f(X + j). 
j=O J 

Proof. This is by induction on l. Ifthe lemma holds for l, then 

!l. (l+I)(f)(X) 

= !l. (!l. (l}(f)) (x) 
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f '(l) f '(l) = L(-I/-J . f(x + j + 1) + L(-I)f+I-J . f(x + j) 
j=O J j=O J 

f+1 , ( l ) f , (l) = L(-I/+I- J . _ f(x + j) + L(-I)f+I-J . f(x + j) 
'_1 J 1 '=O J J- J-

= f(x +l + 1) + t(-I)f+l-j (C: 1) + C)) f(x + j) + (_I)f+1 f(x). 

This completes the proof. 
We shall compute the polynomial obtained by applying an iterated difference 

operator to the power function f(x) = x k. 

Lemma 4.2 Let k ~ 1 and 1 :s l :s k. Let fl de ..... d , be an iterated difference 
operator. Then 

(4.1) 

= dl .. ·dePk-e(X), 

where Pk-eCX) is a polynomial of degree k - l and leading coefficient k(k -
1)··· (k - l + 1). lf dl, ... , d[ are integers, then Pk-f(X) is a polynomial with 
integer coefficients. 

Proof. This is by induction on l. For l = 1, we have 

fld l (xk) = (x + dl)k - x k 

k-I (k) = L . dlk-jx j 
j=O J 

k' , 
= '" -·-dJ1x j . 
~ ·,·,1 
iJ+j-k J ·JI· 

/~.O,h::1 

Let 1 :s l :s k - 1, and assume that formula (4.1) holds for l. Then 



h+"·+il.+m-lc it+l+j-m 
m,ii .... ,it?:1 j~O.jl.+I?:1 

i)+"'+h+Jl+l+j-k 
}?:O.h ,···.}l.Jl+l:=:;1 
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Since the multinomial coefficients k!/j !jt! ... je! are integers. it follows that if 
dt • .•.• d1 are integers. then the polynomial Pk-l(X) has integer coefficients. This 
completes the proof. 

Lemma 4.3 Let k 2:: 2. Then 

k _ , ( dt + ... + dk- t ) 
ddH •...• dt(X ) - dt ... dk-tk. x + 2 . 

Proof. This follows immediately from Lemma 4.2. 

Lemma 4.4 Let l 2:: 1 and ddt.dt_t •...• dt be an iterated difference operator. Let 
f(x) = cxxk + ... be a polynomial ofdegree k. Then 

ddt ..... dt (f)(x) = dt ... d1 (k(k - 1)·· . (k -l + l)cxxk- 1 + ... ) 

ifl ~ l ~ k and 
ddt.dt_t ..... d t (f)(x) = O 

if l > k. ln particular, if l = k - 1 and dt ... dk- 1 f O, then 

ddk_ Io •••• dt (f)(x) = d1 ... dk-1k!cxx + fJ 

is a polynomial of degree one. 

Proof. Let f(x) = L~-l CXjX j • where CXk = cx. Since the difference operator d 
is linear. it follows that 

This completes the proof. 

Lemma 4.5 Let 1 ~ l ~ k. lf 

-p ~ d1 •...• d1.x ~ p. 

then 
ddt ..... dt (xk) « pk. 

where the implied constant depends only on k. 
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Proof. It follows from Lemma 4.2 that 

This completes the proof, 

= (l + l)k pk 

:::: (k + l)k pk 

« pk. 

4.3 Easier Waring's problem 

Here is a simple application of difference operators. 
Waring's problem states that every nonnegative integer can be written as the 

sum of a bounded number of nonnegative kth powers. We can ask the following 
similar question: Is it true that every integer can be written as the sum or difference 
of a bounded number of kth powers? If the answer is "yes," then for every k there 
exists a smallest integer v(k) such that the equation 

n = ±xf ± x~ ... ± X~(k) (4.2) 

has a solution in integers for every integer n. This is called the easier Waring' s 
problem, and it is, indeed, much easier to prove the existence of v(k) than to prove 
the existence of g(k). It is still an unsolved problem, however, to determine the 
exact value of v(k) for any k ::: 3. 

Theorem 4.2 (Easier Waring's problem) Let k ::: 2. Then v(k) exists, and 

k! 
v(k) :::: 2k- 1 + 2' 

Proof. Applying the (k - 1)-st forward difference operator to the polynomial 
f (x) = x k , we obtain from Lemma 4.1 and Lemma 4.3 that 

!!. (k-l\Xk) = k!x + m = I:( -ll- l - i (k - l)(X + l)k, 
i=O l 

where m = (k -1)!(;). In this way, every integerofthe formk!x+m can be written 
as the sum or difference of at most 

I: (k - 1) = 2k- 1 

i=O l 
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kth powers of integers. For any integer n, we can choose integers q and r such that 

n -m =k!q +r, 

where 
k! k! 

-- < r <-. 
2 - 2 

Since r is the sum or difference of exactly Ir I kth powers 1 k, it foIlows that n can be 
written as the sum of at most 2k- 1 + k! /2 integers of the form ±xk • This completes 
theproof. 

4.4 Fractional parts 

Let [a] denote the integer part of the real number a and let {a} denote the fractional 
part of a. Then [a] E Z, {a} E [0, 1), and 

a = [a] + {a}. 

The distance from the real number a to the nearest integer is denoted 

lIali = min(ln - al: nE Z) = inf({a}, 1 - {a}). 

Then lIali E [0,1/2], and 
a =n ± lIali 

for some integer n. It follows that 

for alI real numbers a. The triangle inequality 

lIa + Il II :::: lIali + II Il II (4.3) 

holds for alI real numbers a and Il (see Exercise 2). 
The following two very simple Iemmas are at the core of Weyl 's inequality for 

exponential sums, and Weyl's inequality, in turn, is at the core of our application 
of the circle method to Waring's problem. Recall that exp(t) = el and e(t) = 

exp(21fit) = e21rit • 

Lemma4.6 Il0 < a < 1/2, then 

2a < sin 1fa < 1fa. 

Proof. Let s(a) = sin1fa - 2a. Then s(O) = s(1/2) = O. If s(a) = ° for some 
a E (O, 1/2), then s'(a)"1f COS1fa - 2 would have at least two zeros in (0,1/2), 
which is impossible because s'(a) decreases monotonically from 1f - 2 to -2 in 
this interval. Since s(1/4) = (-/2 - 1)/2 > 0, it follows that s(a) > ° for alI 
a E (O, 1f /2). This gives the lower bound. The proof of the upper bound is similar. 
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Lemma 4.7 For every real number Ci and ali integers NI < N2 , 

N2 L e(Cin)« min(N2 - NI. llCill- I ). 

n-NJ+l 

Proof. Since le(Cin)1 = 1 for alI integers n, we have 

!fCi fj Z, then II Ci II > o and e(Ci) =11. Since the sumis also ageometricprogression, 
we have 

I t e(Cin) I = le(Ci(NI + 1» N2 f-1 e(Cit I 
n=NJ+1 n-O 

= I e(Ci(N2 - NI» - 11 
e(Ci) - 1 

2 
<----
-le(Ci)-ll 

2 
le(Ci/2) - e( -Ci/2) I 

2 

12i Sin1rCiI 
1 

I Sin1rCiI 
1 

sin(1r II Ci II) 
1 

:5 2 II Ci II . 

This completes the proof. 

Lemma 4.8 Let Ci be a real number, and let q and a be integers such that q ::: 1 
and (a, q) = 1. II 

ICi - ~I < ~ q - q2' 

then 
1 L - «qlogq. 

l~r~qI2 II Cir II 

Proof. The lemma holds for q = 1, 

1 L -=0. 
I~r~q 12 II Cir II 
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Therefore, we can assume that q ::: 2. For each integer r, there exist integers 
s(r) E [O, q /2] and m(r) such that 

s~) = II a; II =±(; -m(r»). 

Since (a, q) = 1, it follows that s(r) = O if and only if r == O (mod q), and so 
s(r) E [1, q/2] ifr E [1, q/2]. Let 

a e 
a--=-

q q2' 

where -1 :::: e :::: 1. Then 

ar er ar e' 
ar=-+- = -+-

q q2 q 2q' 

where 

1
2er 

1 
le'l = q :::: Iei:::: 1. 

It follows from (4.3) that 

lIarli = II; +~II 
= Ilm(r) ± s~) + ~ II 
= IIS~) ± ~~ II 
::: II S~) II-II ~~ II 

s(r) 1 
>---

q 2q 
1 

::: 2q· 

Let 1 :::: rl :::: r2 :::: q /2. We shall show that s(rl) = s(r2) if and only if rl = r2. If 

II a;1 II = II a;211 ' 

then 

andso 
arI == ±ar2 (mod q). 



106 4. Weyl's inequality 

Since (a, q) = 1 and 1 ::s rl ::s r2 ::s q /2, we have 

rl == ±r2 (mod q) 

andso 

It follows that 

{ II ; II : 1 ::s r ::s ~ } = { s;) : 1 ::s r ::s ~ } = {~ : 1 ::s s ::s ~ } . 
Therefore, 

1 1 L -II -II < L s(r) I 
l~sr:::,q/2 ar l:::,r:::,q/2 Il - 2q 

1 L -s-I 
l:::,s:::,q/2 fi - 2ii 

= 2q L _1_ 
1:::,s:::,q/2 2s - 1 

1 
::s2q L -

1:::,s:::,q/2 S 

«q logq. 

This completes the proof. 

Lemma 4.9 Let a be a real number.lf 

la - ~I < ~ q - q2' 

where q ::: 1 and (a, q) = 1, then for any nonnegative real number V and 
nonnegative integer h, we have 

Proof. Let 

where 

Then 

tmin(v, lIa(h:+r)II)« V+qlogq. 

a () 
a=-+-, 

q q2 

- 1 ::s () ::s 1. 

ar ()h ()r 
a(hq + r) = ah + - + - + -

q q q2 

= ah + ar + [()h] + {()h} + ()r 
q q q2 

= ah + ar + [()h] + c5(r) 
q , 
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()r 
-1 ::: c5(r) = {()h} + - < 2. 

q 

For each r = 1, ... , q there is a unique integer r' such that 

Let 

If 

then 

This implies that 

ar + [()h] + c5(r) , 
{a(hq + r)} = - r . 

q 

1 
0< t < 1--. - - q 

1 
t ::: {a(hq + r)} ::: t +-, 

q 

qt ::: ar - qr' + [()h] + c5(r) ::: qt + 1. 

ar - qr' ::: qt - [()h] + 1 - c5(r) ::: qt - [()h] + 2 

and 
ar - qr' ~ qt - [()h] - c5(r) > qt - [()h] - 2. 

Thus, ar - qr' lies in the half-open interval J of length 4, where 

J = (qt - [()h] - 2, qt - [()h] + 2]. 

This interval contains exactIy four distinct integers. If 1 ::: r, ::: r2 ::: q and 

then 
ar, == ar2 (mod q). 

Since (a, q) = 1, we have 
r, == r2 (mod q) 

andso 

It follows that for any t E [O, (q - 1)/q], there are at most four integers r E [1, q] 
such that 

{a(hq + r)} E [t, t + (l/q)]. 

We observe that 
lIa(hq + r)1I E [t, t + (l/q)] 

if and only if either 
{a(hq + r)} E [t, t + (l/q)] 
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or 
1 - (a(hq + r)} E [t, t + (l/q)]. 

The latter inclusion is equivalent to 

(a(hq + r)} E [t', t' + (l/q)], 

where 
,1 1 

O<t=I---t<I--
- q - q 

It follows that for any t E [O, (q - 1)/ q], there are at most eight integers r E [1, q] 
forwhich 

lIa(hq + r)1I E [t, t + (l/q)]. 

In particular, ifwe let J(s) = [s/q, (s + 1)/q] for s = 0,1, ... , then 

lIa(hq + r)1I E J(s) 

for at most eight r E [1, q]. 
We apply this fact to estimate the sum 

'" . ( 1) ~ mm V, . 
l~r~q lIa(hq + r)1I 

If lIa(hq + r)1I E J(O) = [0, l/q], then we use the inequality 

mm V, < V. . ( 1) 
lIa(hq +r)1I -

If lIa(hq + r)1I E J(s) for some s ~ 1, then we use the inequality 

mm V, < <-. . ( 1) 1 q 
lIa(hq + r)1I - lIa(hq + r)1I - s 

Since lIa(hq + r)1I E J(s) for some s < q/2, it follows that 

L min (V, h 1 ) ~ 8V +8 L 'i 
l~r~q lIa( q + r)1I 1~s<q/2 S 

« V +qlogq. 

This completes the proof. 

Lemma 4.10 Let a be a real number. lf 

la - ~I < ~ q - q2' 

where q ~ 1 and (a, q) = 1, thenfor any real number U ~ 1 and positive integer 
n we have 
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Proof. We can write k in the fonn 

where 

and 

Then 

k = hq +r, 

U 
0< h <-. - q 

'" . (n 1) S= ~ mm -,--
l!,:k!,:U k lIakll 

< L L min (_n, 1 ) . 
- O!,:h<U /q l!':r!':q hq + r lIa(hq + r)1I 

If h = O and 1 ~ r ~ q /2, then Lemma 4.8 gives 

'" . (n 1) '" 1 ~ mm -, -- < ~ --« q logq. 
1!':r!':q/2 r lIarli - 1!':r!':q/2 lIarli 

For the remaining tenns, we have 

1 2 
--<---
hq+r (h+l)q' 

since either h ~ 1 and 
(h + l)q 

hq +r > hq ~ 2 

or h == O, q /2 < r ~ q, and 

q (h + l)q 
hq + r = r > 2 = --2---'-· 

Therefore, 

S « q log q + L L min ( n, 1 ) . (4.4) 
O!,:h<U /q l!':r!':q (h + l)q lIa(hq + r)1I 

Note that 
U 
- + 1 ~ U +q ~ 2max(q, U) ~ 2qU. 
q 

Estimating the ioner sum by Lemma 4.9 with V ... n/(h + l)q, we obtain 

'" '" . (n 1) S«qlogq+ ~ ~ mm ,----
O!,:h<U/q l!':r!':q (h + l)q lIa(hq + r)1I 
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« q log q + L (h : 1 + q log q) 
O:Sh<U/q )q 

« q log q + ~ L _1_ + (U + 1) q log q 
q O:Sh<U/q h + 1 q 

« q log q + ~ log (~ + 1) + U log q + q log q 

« (~+ U +q) log2qU. 

This completes the proof. 

Lemrna 4.11 Let a be a real number. lf 

la-~I < ~ q - q2' 

where q ::: 1 and (a, q) = 1, thenfor any real numbers U and n we have 

L min(n, "lk')« (q+u+n+ un)max{1,IOgq}. 
l:sk:sU a , q 

Proof. This is almost exactly the same as the proof of Lemma 4.10. We have 

S = L mm n,--. ( 1) 
l:sk:sU lIakll 

< L L min (n, 1 ) 
- O:Sh<U/q l:sr:sq lIa(hq + r)1I 

~ qlogq+ L (n+ L ~) 
O:sh < U/q l:ss<q/2 s 

« q log q + L (n + q log q) 
O:sh<U /q 

« q log q + (~ + 1) (n + q log q) 

Un « q log q + U log q + n + -
q 

« (q + U + n + ~ n ) max {1, log q}. 

This completes the proof. 
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4.5 Weyl's inequality and Hua's lemma 

In this section, we denote by [M, N] the interval of integers m such that M :s m :s 
N. For any real number t, the complex conjugate of e(t) = e21fit is e(t) = e( -t). 

Lemma 4.12 Let NI, N2, and N be integers such that NI < N2 and O :s N2 -
NI :s N. Let f(n) be a real-valued arithmeticJunction, and let 

N2 

S(f) = L e(f(n». 
n-N)+I 

Then 
IS(f)12 = L Sd(f), 

Idl<N 

where 
Sd(f) = L e(6.d(f)(n» 

ne/(d) 

and I(d) is an interval of consecutive integers contained in [NI + 1, N2]. 

Proof. For any integer d, let 

I(d) = [NI + 1 - d, N2 - d] n [NI + 1, N2]. 

Squaring the absolute value of the exponential sum, we get 

IS(f)12 = S(f)S(f) 
N2 N2 

= L e(f(m» L e(f(n» 

N2 N2 

= L L e(f(m) - f(n» 

N2-n 

L e(f(n + d) - f(n» 

N2-n 

L e(6.d(f)(n» 

N2-N)-1 

L L e(6.d(f)(n» 
d=-(N2-N)-I) ne/(d) 

= L L e(6.d(f)(n» 
Idl<N ne/(d) 

= L Sd(f)· 
Idl<N 

This completes the proof. 
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Lemma 4.13 Let NI, N 2, N, and l be integers such that l ~ 1, NI < N2, and 

O:::: N 2 - NI :::: N. Let f(n) be a real-valued arithmeticJunction, and let 

N2 

Sef) = L e(f(n». 
n=N1+I 

Then 

IS(f)12e :::: (2N)2e-e-1 L .. , L Sde ..... dl (f), 
Idd<N Idel<N 

where 

(4.5) 

and l(de, ... , d l ) is an interval of consecutive integers contained in [NI + 1, N 2]. 

Proof. This is by induction on l. The case l = 1 is Lemma 4.12. Now as sume 
that the result is true for l ~ 1. Using the Cauchy-Schwarz inequality, we obtain 

IS(f)1 2'+1 = (IS(f)12'r 
:::: ((2N)2'-e-1 L ... L ISde .... ,dl(f)1)2 

Idd<N Idtl<N 

= (2N)2'+'-U-2 ( L ... L ISd" .... dl(f)1)2 
Idd<N Id,I<N 

:::: (2N)2e+I-U-2(2N)f L ... L ISd" .... dl(f)12, 
Idll<N Idel<N 

where Sd, .... ,dl (f) is an exponential sum of the form (4.5). By Lemma 4.12, for 
each d l , ••. , de, there is an interval 

such that 

andso 

ISd" ... ,dl(f)12 = L e (~d".''''dl(f)(n»)12 
nel(dl, .... d,) 

= L L e (~d'+I,d" ... ,dl(f)(n») 
Id'+II<N nel(de+l,d" ... ,dl ) 

= L Sd,+I,de, ... ,dl (f), 
Idl+II<N 

IS(f)1 21 +1 :::: (2N)21+' -(e+I)-1 L ... L L Sde+l,de, ... ,dl(f)· 

Idd<N Idel<N Id,+d<N 

This completes the proof. 
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Lemma 4.14 Let k ~ 1, K = 2k- l , and E: > O. Let f(x) = axk + ... be a 
polynomial of degree k with real coefficients. lf 

N 

Sef) = L e(f(n», 
n=1 

then 
k!N'-1 

IS(f)I K « N K- I + N K- k+€ L min (N, IImall-I ), 

m=1 

where the implied constant depends on k and E:. 

Proof. Applying Lemma 4.13 with.e = k - 1, we obtain 

IS(f)I K ~ (2N)K-k L ... L ISd,_I, ... ,dl(f)I, 
Id,I<N Id,_d<N 

where 

and l(dk - I , ••• , d l ) is an interval ofintegers contained in [1, N]. Since le(t)1 = 1 
for alI real t, we have the upper bound 

By Lemma 4.4, for any nonzero integers dJ, ... , dk- 1, the difference operator 
fld,_" .. "d, applied to the polynomial f(x) of degree k produces the linear polyno­
mial 

where 
'A = dk - I ••• dlk!a 

and fJ E R. Let l(dk _ I , ... , dd = [NI + 1, N2]. By Lemma 4.7, 

ISdHo .. ,.d,(f)1 = I L e (fldHod'_2.""d,(f)(n»)1 
nEI(d,_", .. ,d,) 

I f e('An + fJ)1 
n=N,+1 

N2 

L e('An) 
n-N,+I 

1 
«w 

1 
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It follows that 

Therefore, 

IS(f)I K ~ (2N)K-k L ... L ISdk-l ..... dl(f)1 
Idd<N Idk-d<N 

~ (2N)K-k L ... L min(N, IIdl ·· ·dk_1k!all-I ). 
Idll<N Idk-II<N 

Since there are fewer than (k - 1)(2N/-2 choices of d l , •.• ,dk- I such that 
dl ... dk- I = 0, and each such choice contributes N to the sum, it follows that 

IS(f)I K ~ (2N)K-k(k - 1)(2Nl-2N 

+(2N)K-k L ... L min(N, IIdl ·· ·dk_1k!all- l ) 

1::::ldd<N 1::::ldk_d<N 

~ k(2N)K-I 

+2k- 1N K- k L ... L min(N, IIdl ·· .dk_1k!all- l ) 

I::::dl <N l::::dk_1 <N 

N N 

«NK- 1 + N K- k L··· L min (N, IIdl ... dk-1k!all- I ) , 
dl-I dk-I-I 

where the implied constant depends only on k. Since 

and the divisor function r(m) satisfies r(m) «B mB for every e > 0, it follows 
that the number of representations of an integer m in the form d j ••• dk_1k! is 
« mB « N B • Therefore, 

N N 

IS(f)IK « N K- 1 + N K- k L··· L min (N, IIdk - 1 ... d1k!all- l ) 

dl-I dk-I- I 

k!Nk- 1 

«NK- 1 + N K- k+B L min (N, IImall- I ), 

m-I 

where the implied constant depends on k and e. This completes the proof. 

Theorem 4.3 (Weyl's inequality) Let f(x) = axk + ... be a polynomial ofdegree 
k :::: 2 with real coefficients, and suppose that a has the rational approximation 
a/q such that 

la - ~I < ~ q - q2' 
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where q ~ 1 and (a, q) = 1. Let 

N 

S(f) = L e(f(n». 
n-l 

Let K = 2k- 1 and e > O. Then 

S(f) « N 1+8 (N- 1 + q-l + N-kq)l/K , 

where the implied constant depends on k and e. 

Proof. Since IS(f)1 :::: N, the result is immediate if q ~ N k • Thus, we can 
assume that 

andso 
log q « log N « N 8 • 

By Lemma 4.14, we have 

k!Nk-1 

IS(f)I K «NK- 1 + N K- k+8 L min (N,lImall- 1). 

m-l 

By Lemma 4.11, we have 

Therefore, 

IS(f)I K «NK- 1 +NK+8 (qN-k +N-1 +q-l) 

« N K+8 (q N-k + N-1 + q-l) . 

This completes the proof. 

Theorem 4.4 Let k ~ 2, and let a/q be a rational number with q > 1 and 
(a, q) = 1. Then 

q 

S(q, a) = Le(axk/q) «ql-l/K+8. 
x-l 

Proof. Apply Weyl's inequality with f(x) = axk /q and N = q. We obtain 

S(q, a)« ql+8(q-1 +q-k+l)l/K «ql-I/K+8. 

This completes the proof. 
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Theorem 4.5 Let k ~ 2. There exists 8 > O with the following property: lf N ~ 2 
and a/q is a rational number such that (a, q) = 1 and 

N I / 2 ::: q::: N k- I / 2 , 

then 
N 

L e(ank /q) « N H . 
n-I 

Proof. Applying Weyl's inequality with f(x) = axk /q, we obtain 

S(f)« NI+e (N- I +q-I +N-kq)I/K 

::: N I+8 (N- I + N-I/2 + N-I/2)I/K 

::: NI-I/2K+8 

::: N I - 8 

for any 8 < 1/2K. This completes the proof. 

Theorem 4.6 (Hua's lemma) For k ~ 2, let 

N 

T(a) = L e(ank). 
n=1 

Then 11 I T(a)1 2k da « N 2k - k+8. 

Proof. We shall prove by induction on j that 

11 IT(a)12j da «N2j -j+8 

for j = 1, ... , k. The case j = 1 is clear since 

I N N t 
[ IT(a)12 da = L L 10 e(a(mk - nk))da = N. 

10 m-I n=1 O 

Let 1 ::: j ::: k - 1, and assume that the re suIt holds for j. Let f (x) = axk. By 
Lemma4.2, 

I1dj ..... d, (f)(x) = adj ••. dIPk-j(X), 

where Pk- j (x) is a polynomial of degree k - j with integer coefficients. Applying 
Lemma 4.13 with NI = O, N2 = N, and S(f) = T(a), we obtain 

IT(a)12j ::: (2N)2 j - j -1 L ... L L e(l1dj ..... d,(f)(n)) 
Idil<N Idjl<N nE/(dj ..... d,l 

= (2N)2Lj-1 L ... L L e (adj ... dl Pk-j (n)) , 
Id,I<N Idj!<N nE/(dj ..... d,l 
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where I(dj , ••• , dl ) is an interval of consecutive integers contained in [1, N]. It 
follows that 

IT(a)1 2j ::; N 2j -j-1 L r(d)e(ad), 
d 

where r(d) is the number of factorizations of din the form 

d = dj ... dlPk- j(n) 

(4.6) 

with Idil ::; N and nE I(dj , ••. , dd. Since d « Nk by Lemma 4.5, we have 

r(d) « Idl E « NE 

for d =1 o. Since Pk-j(X) is a polynomial of degree k - j ::: 1, there are at most 
k - j integers x such that Pk- j = O, and so 

r(O) «Nj. 

Similarly, since 

= L s(d)e( -ad), 
d 

where s(d) is the number of representations of d in the form 

j-I j-I 

d= Lyf- LX;, 
i-I i-I 

with 1 ::; Xi, Yi ::; N for i = 1, ... , j - 1. Then 

LS(d) = IT(0)12j = N 2j 

d 

and, by the induction hypothesis, 

s(O) = li IT(a)1 2j da« N 2j -j+E. 

It follows from (4.6) that 

li IT(a)1 2j+1 da = li IT(a)1 2j IT(a)1 2j da 
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~ N 2j -j-1 t Lr(d')e(ad') LS(d)e(-ad)da 
10 d' d 

= N 2j -j-1 Lr(d)s(d) 
d 

= N 2j -j-I r(0)s(0) + N 2j -j-1 L r(d)s(d) 
d,.o 

« N 2j -j-1 Nj N 2j -j+e + N 2j -j-1 Ne L s(d) 
d;'O 

« N 2j+I -(j+l)+e + N 2j -j-1 Ne N 2j 

« N 2j+I -(j+l)+e. 

This completes the proof. 

4.6 Notes 

The material in this chapter is welI-known. For the original proofs of Weyl's 
inequality and Hua's lemma, see Weyl [141] and Hua [62], respectively. Daven­
port [18],Schmidt [106], and Vaughan [125] are standard and excellent introduc­
tions to the circle method in additive number theory. 

The easier Waring's problem was introduced by Wright [150]. 

4.7 Exercises 

1. Prove that 
IIxli = II-xII = IIn+xll 

for ali x E R and n E Z. Let (x) denote the fractional part of x. Graph 
f(x) = (x) + IIxli for O ~ x ~ 1. 

2. Prove that 

lIa + 1311 ~ lIali + 111311 

for alI a, 13 E R. 

3. LeU::: 1, and let /),.e denote the iterated difference operator /),.1,1" .. ,1, Prove 
that 

e '('-) /),.e(f)(x) = L(_l)f-J • f(x + j). 
j=O ] 

4. Let /),.dt, .. .,d, be an iterated difference operator. Find a general formula to 
express /),.dt, ... ,d, (f)(x). 
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5. Let i ~ 2, let a be a permutation of {l, 2, ... , i}, and let fj.de, ... ,d l be an 
iterated difference operator. Prove that 



5 
The Hardy-Littlewood asymptotic 
formula 

... using essentially the same techniques as Hardy and Littlewood's 
but in a different way and introducing certain additional considera­
tions, we shall derive the same result with incomparable brevity and 
simplicity. 

1. M. Vmogradov [131] 

5.1 The circ1e method 

For any positive integers k and s, let rk,s(N) denote the number ofrepresentations 
of Nas the sum of s positive kth powers, that is, the number of s-tuples (Xl, ... , xs ) 

of positive integers such that 

N k k =x l +, .. +xs ' 

Waring 's problem is to prove that every nonnegative integer is the sum of a bounded 
number of kth powers. Since l = 1 k is a kth power, this is equivalent to showing 
that 

for some s and for alI sufficiently large integers N. Hilbert gave the first proof of 
Waring's problem in 1909. Ten years later, Hardy and Littlewood succeeded in 
finding a beautiful asymptotic formula for rk,s(N). They proved that for s ~ so(k), 
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there exists ~ = ~(s, k) > O such that 

( l)S (S)-l Tk,s(N) = 6(N)f 1 + k r k N(s/k)-l + O(N(s/k)-1-8), (5.1) 

where r(x) is the Gamma function and 6(N) is the "singular series," an arith­
metic function that is uniformly bounded above and below by positive constants 
depending only on k and s. We shall prove that the asymptotic formula (5.1) holds 
for so(k) = 2k + 1. 

Hardy and Littlewood used the "circle method" to obtain their result. The idea 
at the heart of the circle method is simple. Let A be any set of nonnegative integers. 
The generating function for A is 

f(z) = Lza • 
aeA 

We can consider f(z) either as a formal power series in zor as the Taylor series 
of an analytic function that converges in the open unit disc Iz I < 1. In both cases, 

00 

f(zY = L T A,s(N)ZN, 
N-O 

where T A,s(N) is the number of representations of N as the sum of s elements of 
A, that is, the number of solutions of the equation 

with 

By Cauchy's theorem, we can recover TA,s(N) by integration: 

1 1 f(z)S 
TA,s(N) = -2' "N+ldz 

In Izl-p z 

for any p E (O, 1). 
This is the original form of the "circle method" introduced by Hardy, Littlewood, 

and Ramanujan in 1918-20. They evaluated the integral by dividing the circle of 
integration into two disjoint sets, the "major arcs" and the "minor arcs." In the 
classical applications to Waring's problem, the integral over the minor arcs is 
negligible, and the integral over the major arcs provides the main term in the 
estimate for TA,s(N). 

Vmogradov greatly simplified and improved the circle method. He observed 
that in order to study TA,s(N), it is possible to replace the power series f(z) with 
the polynomial 

p(z) = Lza • 
aeA 
a'S,N 
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Then 
sN 

p(Z)s = Lri~;(m)zm, 
m-o 

where riN;(m) is the numberofrepresentations ofm as the sum of s elements of A 
not exceeding N. In particular, since the elements of A are nonnegative, we have 
ri~;(m) = rA,s(m) for m ~ N and ri~;(m) = O for m > sN. Ifwe let 

z = e(a) = e21ria , 

then we obtain the trigonometric polynomial 

and 

F(a) = p(e(a» = L e(aa) 

sN 

aEA 
a'!!:.N 

F(a)' = Lri~;(m)e(ma). 
m-o 

From the basic orthogonality relation for the functions e(na), 

we obtain 

ţI {1 ifm =n 
10 e(ma)e( -na)da = O if m =1 n, 

rA,s(N) = 11 F(a)'e(-Na)da. 

In applications, of course, the hard part is to estimate the integral. 
To apply the circle method to Waring's problem, let k ~ 2 and A be the set of 

positive kth powers. Let rk,s(N) denote the number ofrepresentations of Nas the 
sum of s positive kth powers. Let 

Then 
p 

F(a) = L e(aa) = L e(ank) 
aeA n-l 
a'5,N 

and 

rk,s(N) = 11 F(a)'e(-aN)da. 
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5.2 Waring's problem for k = 1 

For k = 1, there is an explicit formula for rl,s(N). 

Theorem 5.1 Let s ::: 1. Then 

( N -1) N s- I 

rl.s(N) = s _ 1 = (s _ 1)! + O (NS
-

2) 

for ali positive integers N. 

Proof. Let N ::: s. We observe that 

N =al +"'+as 

is a decomposition of N into s positive parts if and ooly if 

N - s = (al - 1) + ... + (as - 1) 

is a decomposition of N into s nonnegative parts. Therefore, 

where RI.s{N) denotes the number of representations of N as the sum of s non­
negative integers. 

We shall give two proofs of the theorem. The first is combinatorial. We begin 
by computing RI.S<N) for every nonnegative integer N. Let N = al + ... + as be 
a partition ioto nonnegative integers. Imagine a row of N + s - 1 boxes. We color 
the first al boxes red, the next box blue, the next a2 boxes red, the next box blue, 
and so ono There will be exactly s - 1 blue boxes. Conversely, if we choose s - 1 
of the N + s - 1 boxes and color them blue, and if we color the remaining N boxes 
red, then we have a partition of N into s nonnegative parts as follows. Letal be the 
number of red boxes before the first blue box, a2 the number of red boxes between 
the first and second blue boxes, and, in general, for j = 2, ... , s - 1, let a j be 
the number of red boxes that are between the (j - 1)-st and jth blue boxes. Let 
as be the number of red boxes that come after the last blue box. This establishes a 
one-to-one correspondence between the subsets of size s - 1 of the N + s - 1 boxes 
and the representations of N as the sum of s nonnegative integers. Therefore, the 
number of decompositions of N into s nonnegative parts is the bioomial coefficient 
(N+s-I). It follows that 

s-I 

(N-l) rl.s(N) = RI,S<N - s) = s _ 1 . 

This gives the first proof of the theorem. 
There is also a simple analytic proof. The series 

00 1 
f(z) = LzN =-

N..IJ 1- z 
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converges for Izl < 1, and 

00 
f(z)' = L RI,s(N)ZN. 

N-<l 

We also have 

s 1 
f(z) = (1 _ z)S 

1 d s - I ( 1 ) 
= (s - 1)1 dzs- I 1 - z 

1 ds- I (00 ) 
= (s - 1)! dzs- I ~ ZN 

= t, N(N - 1)· .. (N - s + 2) ZN-s+I 

N-s-I (s - 1)! 

t, (s ~ l)zN-s+I 
N-s-I 

Therefore, 

(N +s -1) RI,s(N) = . 
s-1 

This completes the proof. 

5.3 The Hardy-Littlewood decomposition 

For k ?: 2 there is no easy way to compute-or even to estimate-rk,s(N) for large 
N. It was agreat achievement of Hardy and Littlewood to obtain an asymptotic 
formula for rk,s(N) for alI k ?: 2 and s ?: so(k). In this chapter, we shall prove the 
Hardy-Littlewood asymptotic formula for s ?: 2k + 1. For N ?: 2k , let 

P = [N I/ k] (5.2) 

and 
p 

F(a) = L e(amk). (5.3) 
m-I 

The trigonometric polynomial F(a) is the generating function for representing N 
as the sum of kth powers. The basis of the circle method is the simple formula 

rk,s(N) = II F(a)Se(-Na)da. (5.4) 
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We cannot compute this integral explicitly in terms of elementary functions. By 
carefully estimating the integral, however, we shall derive the Hardy-Littlewood 
asymptotic formula. 

The fust step is to decompose the unit interval [0, 1] into two disjoint sets, called 
the major arcs VJl and the minor arcs m, and to evaluate the integral separately 
over both sets. The major arcs will consist of alI real numbers a E [0, 1] that can, 
in a certain sense, be "well approximated" by rational numbers, and the minor arcs 
consist of the numbers a E [0, 1] that cannot be well approximated. Although most 
of the mass of the unit intervallies in the minor arcs, it will follow from Weyl 's 
inequality and Hua's lemma that the integral of f(aYe( -Na) overthe minor arcs 
is negligible. The integral over the major arcs will factor into the product of two 
terms: the "singular integral" J(N) and the "singular series" 6(N). The singular 
integral will be evaluated in terms of the Gamma function, and the singular series 
will be estimated by elementary number theory. 

The major and minor arcs are constructed as follows. Let N ~ 2k • Then P = 

[N 1/ k ] ~ 2. Choose 

For 

and 

we let 

and 

0< v < 1/5. 

1 ~ q ~ pv, 
° ~ a ~ q, 

(a,q)=l, 

VJl(q, a) = {a E [0, 1] : la - ~I ~ p;-v} 
q 

VJl = U U VJl(q, a). 
l~q~P' (.~~I 

The interval VJl(q, a) is called a major arc, and VJl is the set of alI major arcs. We 
see that 

and 

VJl(1, O) = [0, p;-v] , 

VJl(l,l)=[l- p;-v,lJ. 

VJl(q, a) = [~ __ 1_, ~ + _1_] 
q pk-v q pk-v 

for q ~ 2. The major arcs consist of alI real numbers a E [0,1] that are well 
approximated by rationals in the sense that they are c1ose, within distance pV-k, 
to a rational number with denominator no greater than p v • 
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If a E !Dt(q, a) n !Dt(q', a') and a/q 'i a' /q', then laq' - a'ql ~ 1 and 

1 1 
-<­
p2v - qq' 

~ I~ -::1 
~ la - ~ I + la - :: I 

2 
<-­- pk-v' 

which is impossible for P ~ 2 and k ~ 2. Therefore, the major ares !Dt(q, a) are 
pairwise disjoint. 

The measure of the set !Dt(I, O) U !Dt(I, 1) is 2pv-k, and, for every q ~ 2 and 
(a, q) = 1, the measure ofthe major arc !Dt(q, a) is 2pv-k. Forevery q ~ 2 there 
are exaetly rp(q) positive integers a sueh that 1 ~ a ~ q and (q, a) = 1. It follows 
that the measure of the set !Dt of major ares is 

2 2 
JL(!Dt) = pk-v L rp(q) ~ pk-v L q 

l~q~PV l~q~PV 

2 PV(PV + 1) 2 
<-- <--- pk-v 2 - pk-3v' (5.5) 

whieh goes to zero as P goes to infinity. 
The set 

m = [O, 1] \ !Dt 

is ealled the set of minor arcs. This set is a finite union of open intervals and 
eonsists of alI a E [O, 1] that are not well approximated by rationals. The measure 
of the set of minor ares is 

2 
JL(m) = 1 - JL(!Dt) > 1 - --o pk-3v 

Even though the measure of the set m is large in the sense that it tends to 1 as P 
tends to infinity, we shall prove in the next seetion that the integral over the minor 
ares eontributes only a negligible amount to rk,s(N). 

5.4 The minor arcs 

We shall now show that the integral over the minor ares is small. 

Tbeorem 5.2 Let k ~ 2 and s ~ 2k + 1. There exists 81 > O such that 

Im F(a)'e(-Na)da = O (pS-k-1l 1) , 

where the implied constant depends only on k and s. 
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Proof. By Dirichlet's theorem (Theorem 4.1) with Q = pk-v, to every real 
number a there corresponds a fraction a / q such that 

(a,q)=I, 

and 

l aii. (1 1) a-- <--<mm ---. 
q - q pk-v - pk-v' q2 

If a E m, then a fţ 9J1( 1, O) U 9J1(1, 1), so 

1 1 
--<a<I--­pk-v pk-v 

and 1 ~ a ~ q - 1. If q ~ P v, then 

la-~I <_1 q - pk-v 

implies that 
a E 9J1(q, a) S; 9J1 = [0, 1] \ m, 

which is absurd. Therefore, 

pv <q ~ pk-v. 

Let 
K = 2k - l • (5.6) 

It follows from Weyl's inequality (Theorem 4.3) with f(x) = axk that 

F(a)« pl+e (p-I +q-I + p-kqflK 

« pl+e (p-I + p-v + p-k pk-V)IIK 

« pl+e-vIK. 

Applying Hua's lemma (Theorem 4.6), we obtain 

where 

Iim F(a)Se(-na)dal = Iim F(a)'-2k F(a)2ke(-na)da l 

~ Im IF(a)I S -
2k IF(a)1 2k da 

~ max !F(a)l s - 2k r' IF(a)1 2k da 
aEm 10 

« (pl+e-v1Kl)'-2k p2k-k+e 

= ps-k-8 1 , 

v(s - 2k ) k 
OI = - (s - 2 + 1)8 > O 

K 
if 8 > O is chosen sufficiently small. This completes the proof. 
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5.5 The major arcs 

We introduce the auxiliary functions 

N 1 
v(f3) = L "kml/k-I e(f3 m ) 

m=1 

and 
q 

S(q, a) = L e(ark Iq)· 
r=1 

We shall prove that if a lies in the major arc 9J1(q, a), then F(a) is the product of 
S(q, a)lq and v(a - alq), plus a small error term. We begin by estimating these 
functions. 

Clearly, IS(q, a)1 ::: q. By Weyl's inequality (Theorem 4.4), we have 

and 

S(q, a) «ql-I/K+E 

S(q, a) «q_l/ K+E, 
q 

where the implied constant depends only on e. 

Lemma 5.1 Iflf3l::: 1/2, then 

v(f3) « min(P, 1f31- I / k ). 

Proof. The function 
1 

f(x) = _X l / k - I 

k 

(5.7) 

is positive, continuous, and decreasing for x 2: 1. By Lemma A.2, it folIows that 

::: iN k- 1X 1/ k- 1dx + f(l) 

< N 1/ k 

« P. 

If 1f31 ::: liN, then P ::: N I / k ::: 1f31- I/ k and v(f3)« min(P, 1f31- I/ k). 

Suppose that liN < 1f31 ::: 1/2. Then 1f31-1/ k « P. Let M = [1f31-1]. Then 

1 
M < - < M+ 1 < N. -f3 -
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Let U(t) = Lm<t e(f3m). By Lemma 4.7, we have U(t) « 1If311-1 = 1f31-1• By 
partial summation (Theorem A.4), 

t ~ml/k-Ie(f3m) = f(N)U(N) - f(M)U(M) _ (N U(t)!,(t)dt 
m-M+I JM 

M1/ k- 1 

« -1f31-
::s 1f31-1/ k 

« min(P,If3I-I /k). 

Therefore, 

M 1 N 1 
v(f3) = L "kml/k-I e(f3m) + L "kml /k-I e(f3m) 

m-I m-M+I 

« min(P, 1f31-I/ k). 

This completes the proof. 

Lemma 5.2 Let q and a be integers such that 1 ::s q ::s p v, O ::s a ::s q, and 
(a, q) = 1. Ifa E !m(q, a), then 

F(a) = (S(~ a») v (a _ ~) + O(P2v ). 

Proof. Let f3 = a - a/q. Then 1f31 ::s p V- k and 

F(a) _ S(q, a) v(f3) 
q 

P S(q a) N 1 
== L e(amk) - --' - L "k ml/k-I e(f3m) 

m-I q m-I 

f- (amk) k S(q, a) ~ 1 I/k 1 
== L..J e - e(f3m) - -- L..J"km - e(f3m) 

m-I q q m-I 
N 

... L u(m)e(f3m), 
m-l 

where 

{ 
e(am/q) - (S(q,a)/q)k-1m1/ k - 1 

u(m) == _ (S(q, a)/q)k-1m1/k- 1 
if m is a kth power 
otherwise. 

We shall estimate the last sum. Let Y 2: 1. Since IS(q, a)\ ::s q, we have 

r-I J:$m~y 
m5!r (mod q) 
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= S(q, a) (~+ 0(1)) 
( S(q, a») 

= Y -q- + O(q). 

Let t ~ 1. Since v(tJ) « P, we have 

U(t) = L u(m) 

'" ( kj) S(q,a) '" 1 1/k-1 = ~ e am q - -- ~ -m 
l::;m::;tl/k q l::;m::;t k 

= t1/k (S(~ a») + O(q) _ (S(~ a») (t 1/ k + 0(1» 
= O(q). 

By partial summation, 

t u(m)e(tJm) = e(tJN)U(N) - 21ritJ (N e(tJt)U(t)dt 
m-1 II 

= O(q) - 21ritJ iN e(tJt)O(q)dt 

«q + ItJlNq 

« (1 + ItJIN)q 
« (1 + pv-k pk)pv 

« p2v. 

This completes the proof. 

Theorem 5.3 Let 

q (S(q, a»)S 
6(N, Q) = L L -- e(-Najq) 

l::;q::;Q .-1 q 
(a,q)-I 

and 
p,-k 

J*(N) = [P'-k v(tJYe(-NtJ)dtJ. 

Let 9Jt denote the set o/major arcs. Then 

where 152 = (1 - 5v)j k > O. 
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Proof. Let a E 9J1(q, a) and 

Let 

a 
fJ =a --. 

q 

S(q, a) ( a) S(q, a) 
V=V(a,q,a)=--v a-- =--v(fJ). 

q q q 

Since IS(q, a)1 :::: q, we have IVI « Iv(fJ)1 « P by Lemma 5.1. Let F = F(a). 
Then IFI :::: P. Since F - V = O(p2v) by Lemma 5.2, it follows that 

r - V S = (F - V) (Fs-1 + r-2v + ... + V S - 1) 

« p2u p s- 1 

= ps-1+2u. 

Since ţ.t(9J1) « p 3v- k by (5.5), it follows that 

19J1 1 FS - v s I da « p3v-k ps-1+2v = ps-k-82 , 

where 82 = 1 - 5v > O. Therefore, 

19J1 F(a)Se(-Na)da 

= 19J1 Vea, q, a)'e(-Na)da + O (ps-k-82 ) 

= L t [ vea, q, a)'e(-Na)da + O (ps-k-82 ). 

l<q<P" 0-0 19J1(q.a) 
- - (a,q)-l 

For q :::: 2, we have 

[ Vea, q, a)'e(-Na)da 
19J1(q,a) 

l a/q+p'-k 
= vea, q, a)'e(-Na)da 

ajq_P'-k 
p,-k 

= [P'-k V(fJ +ajq, q, a)Se(-N(fJ +ajq»dfJ 

(
S( »)5 jPV-k 

= ~ e(-Najq) v(fJ)Se(-NfJ)dfJ 
q _p,-k 

= (s(:a»)' e(-Najq)J*(N). 

For q = 1 we have Vea, 1, O) = vea) and vea, 1, 1) = vea - 1). Therefore, 

[ vea, q, a)"e(-Na)da + [ vea, q, a)Se(-Na)da 
19J1(1,0) 19J1(1,I) 
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P'-' l 

= { v(a)Se(-Na)da +1 vea - l)Se(-Na)da 10 \-P'-' 

P'-' o 
= 10 v(f3)Se(-Nf3)df3 + {P'_' v(f3)Se(-Nf3)df3 

= J*(N). 

Therefore, 

ff)Jl F(a)'e(-Na)da 

= L t (s(q,a))S e(-Najq)J*(N) + O (p'-k-82 ) 

\~q~P' a-I q 
(a,q)-l 

= 6(N, P")J*(N) + O (pS- k- 82). 

This completes the proof. 

5.6 The singular integral 

Next we consider the integral 

11/2 
J(N) = v(f3)Se(-f3N)df3. 

-\/2 
(5.8) 

This is called the singular integral for Waring's problem. 

Theorem 5.4 There exists 83 > O such that 

J(N) « p s - k 

and 

Proof. By Lemma 5.1, 

t l2 
J(N) «10 min(P,If3I- llkYdf3 

= tiN min(P, 1f31-llk)'df3 + 11/2 min(P, 1f31-llk)Sdf3 
10 liN 

l 11N 11/2 
= P'df3 + r slkdf3 

o liN 

« p s- k 
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and 

J(N) - J*(N) = { v(fJ)'e(-N~)d~ 
} pv-k~IPI~I/2 
t/2 

« } pv-k I v(~W d~ 

t/2 

« }pV-k ~-s/kd~ 
« p(k-v)(s/k-I) 

= PS-k-~3, 

where ('lJ = v(s / k - 1) > o. This completes the proof. 

Lemma 5.3 Let a and ~ be real numbers such that O < ~ < 1 and a ::: ~. Then 

I: mP-I(N - m)a-I = Na+P-I r(a)r(~) + O (Na- I ) , 
m-I r(a +~) 

where the implied constant depends only on ~. 

Proof. The function 
g(x) = xP-I(N - x)a-I 

is positive and continuous on (O, N), integrable on [O, N], and 

l N g(x)dx = l N xP-I(N - x)a-Idx 

= Na+P-I II tP-I(1 - t)a-Idt 

= Na+P-I B(a, ~) 

= Na+P-I r(a)r(~) , 
r(a +~) 

where B(a, ~) is the Beta function and r(a) is the Gamma function. 
If a ::: 1, then 

f'(x) = g(x) (~ - 1 _ a-I) < O 
x N-x 

and so g(x) is decreasing on (O, N) and 

f N N-I l N - 1 

g(x)dx < L g(x) < g(x)dx. 
1 m-I o 

Therefore, 

(N N-I 

O <}o g(x)dx - L g(m) 
o m-I 
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< II g(x)dx 

= II xP-I(N - x)a-Idx 

:::: N a- I II xP-Idx 

N a- I 

fJ 
1f0 < fJ :::: a < 1, then O < a + fJ < 2 and g(x) has a local minimum at 

c = (1- fJ)N E [Nj2, N). 
2-a-fJ 

Since g(x) is strictly decreasing for x E (O, c), it follows that 

[c) re 
Lg(m) < 10 g(x)dx 
m~1 o 

and 

[c) I[C) 
Lg(m):::: g(x)dx+g([c]) 
m-I 1 

> lC g(x)dx 

> re g(x)dx _ N a- I . 
10 fJ 

Similarly, since g(x) is increasing for x E (c, N), it follows that 

I: g(m) < iN g(x)dx 
m-[c)+1 C 

and 

I: g(m):::: rN- I 
g(x)dx + g([c] + 1) 

m-[c)+1 l[c)+1 

> iN
-

I 
g(x)dx 

i N NP-I 
> g(x)dx - --o 

c a 
Therefore, 

l N N-I N a- I NP-I 2Na-1 
0< g(x)dx - Lg(m) < -- + --:::: --o 

o m-I fJ a fJ 
This completes the proof. 
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Theorem 5.5 Ii s ~ 2, then 

J(N) = r (1 + ~r r GrI N s/k- I + o (N(S-I)/k-I). 

Proof. Let 11/2 
Js (N) = v(tJ)S e( - N tJ)dtJ 

-1/2 

for s ~ 1. We shall compute this integral by induction on s. Since 

N 1 
v(tJ) ... L "kml/k-le(tJm), 

m-I 

it follows that 

N N 
v(tJY = k-s L .. , L(ml ... ms)l/k-le«ml + ... + ms)tJ) 

ml-I m,-I 

andso 

N N 11/2 
Js(N) = k-S L ... L(ml" .ms)l/k-1 e«ml + ... + ms - N)tJ)dtJ 

ml-I m,-I -1/2 

= k-s L (mI" . ms)l/k-l. 

ml+···+ms-N 
l::$m;::$N 

In particular, for s == 2, we apply Lemma 5.3 with a. = tJ = II k and obtain 

N-I 

Jz(N) = r 2 L ml/k-I(N - m)l/k-1 

m-I 

... (II k)2r(11 k)2 N2/k-1 + O(NI/k- I ) 
r(2Ik) 

... nI + II k)2 N2/k-1 + O(NI/k- I ). 
r(2Ik) 

This proves the result in the case where s = 2. 
If s ~ 2 and the theorem holds for s, then 

11/2 

Js+1 (N) = v(tJy+le( -NtJ)dtJ 
-1/2 

11/2 

= v(tJ)v(tJYe( - N tJ)dtJ 
-1/2 

11/2 N 1 
= L -ml/k-le(tJm)v(tJ)Se(-NtJ)dtJ 

-1/2 m-I k 
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N 1 11/ 2 
= L _m l / k- I v(f3)Se(-(N - m)f3)df3 

m-I k -1/2 

N 1 
= L i ml / k- I Js(N - m) 

m-I 

= r (1 + 1/ k)S I: ~ml/k-I(N _ my/k-I 

r (s/k) m-I k 

Applying Lemma 5.3 to the main term (with (X = s / k and f3 = 1/ k) and the error 
term (with (X = (s - 1)/ k and f3 = 1/ k), we obtain 

I: ~ml/k-I (N _ m)s/k-I = (1/ k)r(l/ k)r(s / k) N(s+I)/k-1 + O (Ns/ k- I ) 

m-I k r«s + 1)/ k) 

and 
N-1 l L iml/k-I(N - m)(s-I)/k-l = O (Ns/k- I ). 

m-I 

This gives 

J (N) = (l/k)f(I/k)f(s/k) r (1 + l/kY N(s+I)/k-1 + O (Ns/k-I) 
s+1 r«s + 1)/ k) r (s / k) 

= r (1 + 1/ k)s+1 N(s+I)/k-1 + O (Ns/k- I ). 
r«s + 1)/ k) 

This completes the induction. 

5.7 The singular series 

In Theorem 5.3, we introduced the function 

6(N, Q) = L AN(q), 
l~q~Q 

where 

AN(q) = t (S(q, a))S e (-Na). 
~I q q 

(a,q)-I 

We define the singular series for Waring's problem as the arithmetic function 

00 

6(N) = L AN(q). 
q-l 
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Let 
1 

0< e <-. 
sK 

Since S 2: 2k + 1 = 2K + 1, we have 

where 

By (5.7), 

S 1 
- - 1 - Se > 1 + - - Se = 1 + 84 K - K ' 

1 
84 = - - Se> O. 

K 

(5.9) 

and so the singular series L q AN(q) converges absolutely and uniformly with 
respect to N. In particular, there exists a constant C2 = c2(k, s) such that 

16(N)1 < C2 (5.10) 

for all positive integers N. Moreover, 

We shall show that 6(N) is a positive real number for alI N and that there exists 
a positive constant CI depending only on k and S such that 

o < CI < 6(N) < C2 

for all positive integers N. The proof is a nice exercise in elementary number 
theory. We begin by showing that AN(q) is a multiplicative function of q. 

Lemma 5.4 Let (q, r) = 1. Then 

S(qr, ar + bq) = S(q, a)S(r, b). 

Proof. Since (q,r) = 1, the sets {xr: 1 ::s x ::s q} and {yq : 1 ::s y::S r} are 
complete residue systems modulo q and r, respectively. Because every congruence 
class modulo qr can be written uniquely in the form xr + yq, where 1 ::s x :s q 
and 1 ::s y ::s r, it follows that 

f-- (ar + bq)mk ) S(qr, ar + bq) = ~ e r 
m=1 q 
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= tte(ar+bq)(;r+yq)k) 
x-l y-l q 

~~ (((ar+bq»)~(k) ) = ~~e r ~ e (xd(yq)k-e 
x-l y-l q e=o 

= tte(a(xr)k)e(b(~q)k) 
x-l y-l q 

q (axk) r (byk ) =Le - Le -
x-l q y=l r 

= S(q, a)S(r, b). 

This completes the proof. 

Lemma 5.5 lf(q, r) = 1, then 

AN(qr) = AN(q)AN(r), 

that is, thefunction AN(q) is multiplicative. 

Proof. If c and qr are relatively prime, then c is congruent modulo qr to a 
numberofthe formar +bq, where (a, q) = (b,r) = 1. Itfollows fromLemma5.4 
that 

~ (s(qr, C»)S ( CN) AN(qr) = ~ e --
c-I qr qr 

(c.qr)-I 

= t t (s(qr,a~+bq»)S e(_(ar+:q)N) 
0-1 b-I q q 

(a,q)-I (b,q)-I 

= t t (S(q, a»)S (s(r, b»)S e (_ aN) e (_ bN) 
0-1 bol q r q r 

(a,q)-I (b,q)-I 

= t (S(q, a»)S e (_ aN) t (s(r, b»)S e (_ bN) 
0-1 q q bol r r 

(a,q)-I (b,q)-1 

This completes the proof. 
For any positive integer q, we let M N (q) denote the number of solutions of the 

congruence 
xf + ... + x: == N (mod q) 

in integers Xi such that 1 ::: Xi ::: q for i = 1, ... , q. 
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Lemma 5.6 Let s 2: 2k + 1. For every prime p, the series 

converges, and 

00 

XN(P) = 1 + L AN(ph) 
h-I 

(5.11) 

(5.12) 

Proof. The convergence ofthe series (5.11) follows immediately from inequal­
ity (5.9). If(a, q) = d, then 

q (ax k ) q (a/d)X k ) S(q, a) = Le - = Le d 
x=1 q x-I q/ 

q/d (a/d)Xk ) 
=dLe d =dS(q/d,a/d). 

x=1 q/ 

Since 

it follows that for any integers XI, .•• , X s 

!. ~ e (a(x~ + ... + x; - N») = {oI if x~ + ... + x; == N (mod q) 
q f.t q if x~ + ... + x: i= N (mod q) 

andso 

1 q (-aN) = - LS(q,a)Se -
q a=1 q 

1 q ( aN) = - L L S(q,a)'e =-
q d~ a~ q 

(a,q)-d 

=!. L t dSS(q/d,a/d)'e(-(a/~)N) 
q dlq a-I q/ 

(a,q)-d 
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Therefore, 

= ~ L t qS (S(q/d, a/d»)S e (-(a/d)N) 
q dlq a-I q/d q/d 

(a.q)-d 

= qs-l L AN(q /d). 
dlq 

L AN(q/d) = ql-s MN(q) 
dlq 

for alI q ~ 1. In particular, for q = ph we have 

h 

1 + LAN(pi) = LAN(ph/d) = ph(l-s)MN(ph) 
i-l dlph 

andso 

XN(P) = Iim (1 + t AN(pi») 
h-+oo i-l 

= Iim ph(l-s) MN(ph). 
h-+oo 

This completes the proof. 

Lemma 5.7 lfs ~ 2k + 1, then 

6(N) = n XN(P)· 
p 

Moreover, there exists a constant C2 depending only on k and s such that 

0< 6(N) < C2 

for ali N, and there exists a prime po depending only on k and s such that 

1/2:5 n XN(P) :5 3/2 
p>Po 

for ali N ~ 1. 

Proof. We proved that if s ~ 2k + 1, then 

(5.13) 

(5.14) 

where 84 depends only on k and s, and so the series L q AN (q) converges absolutely. 
Since the function AN(q) is multipIicative, TheoremA.28 immediately impIies the 
convergence of the Euler product (5.13). In particular, XN(P) i O for alI N and 
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p. Since XN(P) is nonnegative by (5.12), it foUows that XN(P) is a positive real 
number for aU N and p, and so the singular series 6(N) is positive. Again, by (5.9), 

and 

00 1 
O < 6(N) :::; ~ -- = C2 < 00 

~ ql+84 
q-I 

00 00 1 1 
IXN(p) - 11:::; L IAN(ph)1 «L h(l+84l« 1+84 ' 

h-I h=1 P P 

Therefore, there exists a constant c depending only on k and s such that 

c c 
1 - -- < X (p) < 1 + --pl+84 - n - pl+84 

for aU N and p. Inequality (5.14) folIows from the convergence of the infinite 
products fIpCl ± Cp-I-84 ). This completes the proof. 

We want to show that 6(N) is bounded away from O uniformly for alI N. By 
inequality (5.14), it suffices to show, for every prime p, that XN(P) is uniformly 
bounded away from O. 

Let p be a prime, and let 
k = p'ko, 

where < ::: O and (p, ko) = 1. We define 

{ < + 1 
y = <+2 

if p > 2 
if p = 2. 

Lemma 5.8 Let m be an integer not divisible by p. lf the congruence x k == m 
(mod pY) is solvable, then the congruence yk == m (mod ph) is solvable for 
every h ::: y. 

Proof. There are two cases. In the first case, p is an odd prime. For h ::: y = < + 1 , 
wehave 

(k, q;(ph)) = (kop', (p - l)ph-l) = (ko, p - l)p' = (k, q;(pY)). 

The congruence classes modulo ph that are relatively prime to p form a cyclic 
group of order q;(ph) = (p - l)ph-l. Let g be a generator of this cyclic group, 
that is, a primitive root modulo ph. Then g is also a primitive root modulo pY. Let 
x k == m (mod pY). Then (x, p) = 1, and we can choose integers r and u such 
that 

and 

Then 
ku == r (mod q;(pY)), 
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and so 
r == O (mod (k, cp(pY))) 

and 
r == O (mod (k, cp(ph))). 

Therefore, there exists an integer v such that 

kv == r (mod cp(ph)). 

Let y = gV. Then l == m (mod ph). 
In the second case, p = 2 and so m and x are odd. If r = O, then k is odd. 

As y runs through the set of odd congruence classes modulo 2h , so does l, and 
the congruence l == m (mod 2h ) is solvable for all h ~ 1. If r ~ 1, then k 
is even and m == x k == 1 (mod 4). AIso, x k = (-x/, and so we can as sume 
that x == 1 (mod 4). The congruence classes modulo 2h that are congruent to 
1 modulo 4 form a cyclic subgroup of order 2h - 2 , and 5 is a generator of this 
subgroup. Choose integers r and u such that 

and 
x == 5u (mod 2h ). 

Then x k == m (mod 2Y ) is equivalent to 

and so r is divisible by (k, 2') = 2' = (k, 2h - 2 ). It follows that there exists an 
integer v such that 

kv == r (mod 2h- 2). 

Let y = 5v . Then l == m (mod 2h ). This completes the proof. 

Lemma 5.9 Let p be prime. II there exist integers al, ... , as, not ali divisible by 
p, such that 

then 

a~ + ... + a; == N (mod pY), 

1 
XN(P)~ ~ > O. p -

Proof. Suppose that al "!- O (mod p). Let h > y. For each i = 2, ... , s there 
exist ph-Y pairwise incongruent integers Xi such that 

Since the congruence 

x~ == N -x~ - ... -x; (mod pY) 
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is solvable with Xl = al ;ţ. O (mod p), it follows from Lemma 5.8 that the 
congruence 

k _ N k k ( d h) Xl = - X 2 - ••• - X s mo p . 

This implies that 

andso 

This completes the proof. 

Lemma 5.10 lf s ::: 2k for k odd or s ::: 4k for k even, then 

XN(P) ::: pY(l-s) > o. 

Proof. By Lemma 5.9, it suffices to prove that the congruence 

a~ + ... + a; == N (mod pY) (5.15) 

is solvable in integers ai not all divisible by p. If N is not divisible by p and the 
congruence is solvable, then at least one of the integers ai is prime to p. If N is 
divisible by p, then it suffices to show that the congruence 

has a solution in integers. This is equivalent to solving the congruence 

a~ + ... +a;_l == N - 1 (mod pY). 

In this case, (N - 1, p) = 1. Therefore, it suffices to prove that, for (N, p) = 1, 
the congruence (5.15) is solvable in integers for s ::: 2k - 1 if P is odd and for 
s ::: 4k - 1 if P is even. 

Let p be an odd prime and g be a primitive root modulo pY. The order of g is 
cp(pY) = (p - 1)p y-1 = (p - 1)pT. Let (m, p) = 1. The integer m is a kth power 
residue modulo pY if and only if there exists an integer X such that 

Let m == gr (mod pY). Then m is a kth power residue if and only if there exists 
an integer v such that X == gV (mod pY) and 

kv == r (mod (p - l)pT). 

Since k = kOpT with (ko, p) = 1, it follows that this congruence is solvable if and 
only if 

r == O (mod (ko, p - l)pT), 
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and so there are 
rp(pY) P - 1 

(ko, p - l)pr (ko, p - 1) 

distinct kth power residues modulo pY. Let s(N) denote the smallest integer s 
for which the congruence (5.15) is solvable, and let C(j) denote the set of alI 
congruence classes N modulo pY such that (N, p) = 1 and s(N) = j. In particular, 
C(I) consists precisely of the kth power residues modulo pY. If (m, p) = 1 and 
N' = mk N, then s(N') = s(N). It follows that the sets C(j) are closed under 
multiplication by kth power residues, and so, if C(j) is nonempty, then IC(j)1 :::: 
(p -1)/(ko, p -1). Letn be the largest integer such that the set C(n) is nonempty. 
Let j < n and let N be the smallest integer such that (N, p) = 1 and s(N) > j. 
Since p is an odd prime, it follows that N - i is prime to p for i = 1 or 2, and 
s(N - i) ~ j. Since N = (N - 1) + l k and N = (N - 2) + l k + l k , itfollows that 

j + 1 ~ s(N) ~ s(N - i) + 2 ~ j + 2 

and so s(N - i) = j or j - 1. This implies that no two consecutive sets C(j) are 
nonempty for j = 1, ... , n, and so the number of nonempty sets C(j) is at least 
(n + 1)/2. Since the sets C(j) are pairwise disjoint, it follows that 

~ n+l p-l 
(p - l)pr = rp(pY) = ~ IC(j)1 :::: - , 

j-l 2 (ko, P - 1) 
C(j),4! 

andso 

n ~ 2(ko, p - l)pr - 1 ~ 2k - 1. 

Therefore, s(N) ~ 2k - 1 if p is an odd prime and N is prime to p. 
Let p = 2. If k is odd, then every odd integer is a kth power residue modulo 2Y , 

so s(N) = 1 for alI odd integers N. If k is even, then k = 2rko with t" :::: 1, and 
y = t" + 2. We can assume that 1 ~ N ~ 2Y - 1. If 

s = 2Y - 1 = 4 . 2r - 1 ~ 4k - 1, 

then congruence (5.15) can always be solved by choosing ai = 1 for i = 1, ... , N 
and ai = O for i = N + 1, ... , s. Therefore, s(N) ~ 4k - 1 for alI odd N. This 
completes the proof. 

Theorem 5.6 There exist positive constants CI = CI (k, s) and C2 = c2(k, s) such 
that 

Moreover,for ali sufficiently large integers N, 
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Proof. The only part of the theorem that we have not yet proved is the Iower 
bound for 6(N). However, we showed that there exists a prime po = Po(k, s) such 
that 

1/2 ~ TI XN(P) ~ 3/2 
P>fJQ 

for alI N ~ 1. Since 
XN(P) ~ py(l-s) > O 

for alI primes P and alI N, it follows that 

1 1 
6(N) = TI XN(P) > "2 TI XN(P) ~ "2 TI py(l-s) = CI > O. 

P P~Po P~fJQ 

This completes the proof. 

5.8 Conclusion 

We are now ready to prove the Hardy-Littlewood asymptotic formula. 

Theorem 5.7 (Hardy-Littlewood) Let k ~ 2 and s ~ 2k + 1. Let rk,s(N) denote 
the number of representations of Nas the sum of s kthpowers of positive integers. 
There exists 8 = 8(k, s) > O such that 

( I)S (S)-I rk,s(N) = 6(N)f 1 + k r k N(s/k)-I + 0(N(s/k)-1-8), 

where the implied constant depends only on k and s, and 6(N) is an arithmetic 
Junction such that 

CI < 6(N) < C2 

for all N, where CI and C2 are positive constants that depend only on k and s. 

Proof. Let 80 = min(l, 81, 152, 153, vc54). By Theorems 5.2-5.6, we have 

rk,s(N) = 11 F(a)Se(-aN)da 

= Jrot F(a)'e(-aN)da + Jm F(a)'e(-aN)da 

= 6(N, r)J*(N) + O (ps-k-82 ) + O (ps-k-81) 

= (6(N) + O (p-v84 )) (J(N) + O (pS-k-83 )) + O (ps-k-82 ) 

+0 (ps-k-8 1 ) 

= 6(N)J(N) + O (ps-k-8o) 

( I)S (S)-I = 6(N)f 1 + k r k N s/ k- I + O (N(S-I)/k-I) 
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+0 (NS/k-I-8o/k) 

( l)S (S)-I = 6(N)f 1 + k r k N s/ k- I + O (Ns/ k- I - 8) , 

where 8 = 80/ k. This completes the proof. 

5.9 Notes 

The circle method was invented by Hardy and Ramanujan [50] to obtain the asymp­
totic formula for the partition function p( N), which counts the number of unordered 
representations of a positive integer N as the sum of any number of positive inte­
gers. The circle method was also applied to study the number of representations of 
an integer as a sum of squares. See, for example, Hardy [45], and the particularly 
important work of Kloosterman [71,72,73]. 

In a classic series of papers, "Some problems of 'Partitio Numerorum' ," Hardy 
and Littlewood [47, 48] applied the circle method to Waring's problem. Vmo­
gradov [131, 134, 135] subsequently simplified and strengthened their method. 
This chapter gives the classical proof of the Hardy-Littlewood formula for S ~ 

so(k) = 2k + 1. There is a vast literature on applications ofthe circle method to War­
ing's problem as well as to other problems in additive number theory. The books 
of Davenport [18], Hua [64], Vaughan [125], and Vinogradov [135] are excellent 
references. 

There have been great technological improvements in the circle method in re­
cent years, particularly by the Anglo-Michigan school (for example, Vaughan and 
Wooley [126, 127, 128, 129, 130, 147, 148]). In particular, Wooley [146] proved 
that 

G(k) < k(log k + log log k + 0(1». 

Another interesting recent result concems the range of validity of the Hardy­
Littlewood asymptotic formula. Let G(k) denote the smallest integer So such that 
the Hardy-Littlewood asymptotic formula (5.1) holds for all s ~ So. Ford [41] 
proved that 

G(k) S k2(logk + loglogk + 0(1». 

For other recent developments in the circle method, see Heath-Brown [54,55], 
Hooley [59, 60, 61], and Schmidt [107]. 

5.10 Exercises 

1. Show that for k = 1 the Hardy-Littlewood asymptotic formula is consistent 
with Theorem 5.1. 
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2. Let k ::: 2. Show that the number of positive integers not exceeding x that 
can be written as the sumof k nonnegativekth powers isx/ k!+O (X(k-l)/k). 
Show that 

G(k) ::: k + 1. 

Hint: If n ::: x is a sum of k kth powers, then 

where 

and the number of such expressions is given by a binomial coefficient. 

3. Let f(x) be a polynomial of degree k ::: 2 with integral coefficients, and let 

q 

Sf(q,a) = Le(af(r)/q). 
r-l 

Prove that if (q, r) = 1, then 

4. Let Rk.s(N) denote the number of representations of an integer N as the 
sum of s nonnegative kth powers. State and prove an asymptotic formula 
for Rk.s(N). 
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The Goldbach conjecture 
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Elementary estimates for primes 

Brun's method is perhaps OUT most powerful elementary tool in num­
bertheory. 

P. Erdas [34] 

6.1 Euclid's theorem 

Before beginning to study sums of primes, we need some elementary results about 
the distribution of prime numbers. 

Let s = (1 + it be a complex number with real part (1 and imaginary part t. To 
every sequence of complex numbers al, a2, ... is associated the Dirichlet series 

00 a 
F(s) = " -.!:. L- nS 

n-l 

If the series F(s) converges absolutely for some complex number So = (10 + ito, 
then F(s) converges absolutely for alI complex numbers s = (1 + it with fft(s) = 

(1 ~ (10 = fft(so), since 

If we let an = 1 for alI n ~ 1, we obtain the Riemann zeta-function 

00 1 
s(s) = L-' 

n-l nS 
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This Dirichlet series converges absolutely for all s with 9l(s) > 1. 

Theorem 6.1 Let f(n) be a multiplicativefunction. Ifthe Dirichlet series 

F(s) ... f: f(n) 
n-l nS 

converges absolutely for aU complex numbers s with 9l(s) > uo, then F(s) can be 
represented as the injinite product 

F(s) == n (1 + f(p) + f(p2) + ... ) . 
pS p2s 

P 

If f(n} is completely multiplicative, then 

F(s) = n (1- f~~})-1 
P 

This is called the Euler productfor F(s). 

Proof. If f(n} is multiplicative, then so is f(n)/n s • If f(n) is completely multi­
plicative, then so is f(n)/n s • The result follows immediately from Theorem A,28. 

Because the Riemann zeta-function converges absolutely for 9l(s) > 1, it 
follows from Theorem 6.1 that I;(s) has the Euler product 

I;(s) == f: :s -n (1 _ ~)-I 
n-I P p 

for all s with 9l(s) > 1, and so I;(s) i O for 9l(s) > 1. From the Euler product, we 
obtain the following analytic proof that there are infinitely many primes. 

Theorem 6.2 (Euclid) There are injinitely many primes. 

Proof. For O < x < 1 we have the Taylor series 

00 x n 

-log(l-x) - L-' 
n-I n 

If u > 0, then 1;(1 + u} > 1 and 

( 1 )-1 
log 1;(1 + u) == log n 1 - pl+a 

P 

= - ~ log (1 - p:+a ) 

00 1 
... L L npn(1+a) 

P n-l 

1 00 1 
... L pl+a + L L npn(I+a)' 

P P n-2 
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Since 00 1 00 1 1 
0< LL npn(l+a) < LL pn = L p(p -1) < 00, (6.1) 

p n=2 p n=2 p 

it follows that 
1 

log nI + a) = " -1- + 0(1). ~ p +a 
p 

Let O < a < 1. Then 

1 /,00 1 /,00 1 1 1 < - = --dx < ţ(l + a) < 1 + --dx = - + 1 
a 1 x l+a 1 xl+a a 

and so 

Therefore, 

1 
O < log - < log ţ(1 + a) 

a 

< log (~ + 1) = log ~ + 10g(1 + a) 

1 1 
< log - + a < log - + 1. 

a a 

1 
log ţ(l + a) = log - + 0(1). 

a 
Combining (6.2) and (6.3), we obtain 

1 1 
log- =" - + 0(1) a ~ pl+a 

p 

(6.2) 

(6.3) 

for O < a < 1. If there were only finitely many prime numbers, then the sum on 
the right side of this equation remains bounded as a tends to O, but the logarithm 
on the left side of the equation goes to infinity as a tends to O. This is impossible, 
so there must be infinitely many primes. 

6.2 Chebyshev's theorem 

The simplest prime-counting functions are 

Jr(x) = L 1, 
p=Sx 

tJ(x) = Llogp, 
p9 

and 
1{I(x) = L log p. 

pk=sx 
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"(x) and 1jI(x) are called the Chebyshev Junctions. Chebyschev proved that the 
functions "(x) and 1jI(x) have order of magnitude x and that 1Z"(x) has order of 
magnitude x / log x. Before proving this theorem, we need the following lemma 
about the unimodality of the sequence of binomial coefficients. 

Lemma 6.1 Let n ~ 1 and 1 :::; k :::; n. Then 

(k: 1) < G) ifand only ifk < n;!, 

(k: 1) > G) ifand only ifk > n;!, 

(k: 1) = G) ifand only ifn is odd and k = n;!. 
Proof. This follows immediately from observing the ratio 

( nk ) n! mn=m 
Gc:!) = (k-l)!(Lk+l)! 

(k - 1)!(n - k + 1)! 

k!(n - k)! 

Lemma 6.2 Let n ~ 1 and N = e). Then 

N < 2211 :::; 2nN. 

n -k+ 1 

k 

Proof. Since e) is the middle, and hence the largest, binomial coefficient in 
the expansion of (1 + 1)211, it follows that 

N = e:) < (1 + 1)211 = 2211 

= t (n) = 1 + ~ (n) + 1 
k.o k k-! k 

:::; 2+(2n -1)e:) :::; 2nenn) 

= 2nN. 

This completes the proof. 
For any positive integer n, let vp(n) denote the highest power of p that divides 

n. Thus, vp(n) = k if and only if pklln. In this case, pk :::; n and so vp(n) :::; 
logn/logp. 

Lemma 6.3 For every positive integer n, 

(Xl [n] [logn/logp) [ n ] 
vp(n!) = L k = L k' 

k-l P k-l P 
(6.4) 
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Proof. Since vp(mn) = vp(m)vp(n) for aH positive integers m and n, we have 

This proves the formula. 

Theorem 6.3 (Chebyshev) There exist positive constants CI and C2 such that 

CIX ::::: !?(x)::::: 1{I(x)::::: 7r(x) log x ::::: C2X 

for ali x 2: 2. Moreover, 

. . !?(x) . . 1{I(x) . . 7r(x) log x 
hmmf -- = hmmf -- = hmmf 2: log2 

x ..... OO x x ..... 00 X x ..... 00 X 

and 
. !?(x). 1{I(x). 7r(x) log x 

hmsup -- = hmsup -- = hmsup ::::: 410g2. 
x ..... 00 x x ..... 00 X x ..... 00 X 

Proof. Let x 2: 2. If pk ::::: x, then k ::::: [log x /log p], and so 

Therefore, 

and 

Let 

Then 

!?(x) = I)og p ::::: 1{I(x) = L log p = L [::gX ] log p 
p-:;x pk-:;x p-:;x g p 

::::: L log x = 7r (x) log x. 
p-:;x 

liminf U(x) < liminf 1{I(x) < liminf 7r(x)logx 
x ..... oo x - x ..... OO X - x ..... OO X 

. !?(x). 1{I(x). 7r(x)logx 
hmsup--::::: hmsup--::::: hmsup . 

x"'" 00 x x ..... 00 X x"'" 00 X 

0<0<1. 

!?(x) 2: L log p 

> L (1 - o)logx 

= (1 - o) (7r(x) - 7r(x l - 8») logx 

2: (1 - o)7r(x) log x - x l - 8 Iogx, 

(6.5) 
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andso 
U(x) (1 - 8)7r(x) log x log x 
--> ---

x - x x~ , 

It follows that 
1, 'f U(x) (1 ~)l' 'f 7r(x) log x lmm -- > - u lmm , 
x~oo X - x~oo X 

This holds for all 8 > 0, and so 

1, 'f U(x) l' 'f 7r(x) log x lmm -- > lmm . 
x->oo X - x~oo X 

Similarly, 
, U(x) , 7r(x) logx 

hm sup -- 2:: hm sup , 
x~oo X x->oo X 

Therefore, 

1, 'f U(x) l' 'f 1fr(x) l' 'f 7r(x) log x lmm -- = lmm -- = lmm (6,6) 
x~oo X x~oo X x~oo X 

and 
, U(x) , 1fr(x) , 7r(x) log x 

hm sup -- = hm sup -- = hm sup . (6.7) 
x--+oo x x~oo X x--+oo X 

Let n 2:: 1, and 1et 

N = (2n) = _2n_(2_n_-_l)_e2_n.....,-_2)_'_. ·_en_+_1) 
n n! . 

Then N is an integer, since it is a binomial coefficient, and 

22n 
- < N < 22n 
2n -

by Lemma 6,2. If p is a prime number such that 

n < p :s 2n, 

then p divides the numerator but not the denominator of N, Therefore, N is 
divisible by the product of alI these primes, and so 

TI p:s N < 22n , 

n<p=:,2n 

In particular, if r 2:: 1 and n = 2'-1, then 

TI p:s N < 22'. 

2'-1 <p=:,2' 

It follows that, for any R 2:: 1, 
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For any number x ::: 2, there is an integer R ::: 1 such that 

Then n p:::: n p < 22R+
1 < 24x , 

p~x p~2R 

andso 

~(x) = ~logp = log (U p) < (4log2)x. 

Thus, 
. ~(x) 
hmsup-- :::: 4log2. 
x~oo x 

To obtain the lower limit, we use Lemma 6.3 to express N explicitly as a power 
ofprimes: 

( 2n) (2n)! n v (2n)-2v (n) N= =--= pP P 
12 ' n n. p~2n 

where 

vp (2n) - 2vp (n) = L ([2~] -2 [ nk ]). 

l<k<~ p p 
- -Iogp 

Since [2t] - 2[t] = O or 1 for alI real numbers t, it follows that 

log2n 
vp (2n) - 2vp(n) :::: -1--. 

ogp 

By Lemma 6.2, 

or, equivalently, 
rr(2n)log2n < 2nlog2 -log2n. 

Let n = [x /2]. Then 
2n::::x<2n+2 

and 

rr (x) log x ::: rr (2n) log 2n > 2n log 2 - log 2n 

> (x - 2) log 2 -logx = x log 2 -logx - 21og2. 

It follows that 
rr (x) log x 1 2 log x + 2 log 2 
---'---'~- > og - --='"-----'=--

x x 
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and so 
1l'(x) log x 

Iim inf 2: log 2. 
X-HXl x 

Since tJ(2) > O, we have tJ(x) 2: CIX for some CI > O and all x > 2. This 
completes the proof. 

Theorem 6.4 Let Pn denote the nth prime number. There exist positive constants 
C3 and C4 such that 

for ali n 2: 2. 

Proof. By Chebyshev's inequality (6.5), 

and so 

Since 
log n ::: log Pn, 

we have 

For n sufficiently large, 

so 

and 

log Pn ::: logn + log log Pn + log cII 
::: log n + 2 log log Pn 

::: log n + (1/2) log Pn. 

log Pn ::: 2 log n 

-1 1 2 -1 1 Pn::: CI n ogPn::: CI n ogn. 

Therefore, there exists a constant C4 such that Pn ::: C4n log n for all n 2: 2. This 
completes the proof. 

6.3 Mertens 's theorems 

In this section, we derive some important results about the distribution of prime 
numbers that were originally proved by Mertens. 

Lemma 6.4 For any real number x 2: 1 we have 
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Proof. Since the fuoctioo h(t) = log(xjt) is decreasing 00 the interval [1, x], it 
follows that 

lt,;X log (~) < log x + iX 
log (~) dt 

= xlogx - iX 
logtdt 

= x log x - (x log x - x + 1) 

<x. 

This completes the proof. 
The fuoctioo A(n), called von Mangoldt'sjunction, is defioed by 

Theo 

A(n) = { ~Ogp if n = pm is a prime power 
otherwise. 

'I/F(x) = L A(m). 
l:5m:5x 

Theorem 6.5 (Mertens) For any real number x ::: 1, we have 

" A(n) ~ -- = logx + 0(1). 
n:5x n 

Proof. Let N = [x]. Then 

X N 
O :::: L log;;, = N log x - L log n = x log x - log N! + o (log x) < x 

n:5x n-l 

by Lemma 6.4, and so 
log N! = x log x + O(x). 

It follows from Lemma 6.3 and Theorem 6.3 that 

10gN! = L vp(N) log p 
p:5N 
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'" A(n) =x ~--+O(x). 
n::;x n 

Therefore, 
'" A(n) x ~ -- + O(x) == x log x + O(x) 
n::;x n 

and 
'" A(n) ~ -- = log x + 0(1). 
n::;x n 

This completes the proof. 

Theorem 6.6 (Mertens) For any real number x ~ 1, we have 

proor. Since 

L logp ... logx + 0(1). 
p::;x p 

00 1 
~LlogpLk 

P::;X k-2 P 

~ L logp 
p::;x p(p - 1) 

< 2 '" logp 
- ~ 2 

p::;x p 

Loo logn 
<2 --- n2 

n-I 

== 0(1), 

it follows from Theorem 6.5 that 

'" logp '" A(n) ~-- = ~- + 0(1) =logx+ 0(1). 
p::;x P n::;x n 
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This completes the proof. 

Theorem 6.7 There exists a constant b1 > O such that 

L ~ = loglogx + b1 + 0(_1_) 
P9 P log x 

for x 2: 2. 

Proof. We can write 

where 

and 

'" 1 '" log p 1 '" ~ - = ~--l - = ~u(n)f(n), 
p~x p P9 P og P n9 

{ 
logp if n = p 

u(n) = P 
O otherwise 

1 
J(t) = -. 

logt 

We detine the functions U(t) and get) by 

'" ",logp U(t) = ~u(n)= ~-- = logt+g(t). 
n9 P9 p 

Then U(t) = O for t < 2 and get) = 0(1) by Theorem 6.6. Therefore, the integral 
1200 g(t)/(t(log t)2)dt converges absolutely, and 

100 g(t)dt (1) 
x t(logt)2 = O logx . 

Since J(t) is continuous and U(t) is increasing, we can express the sum L p 9 lip 
as a Riemann-Stieltjes integral. Note that U(t) = O for t < 2. By partial summa­
tion, we obtain 

1 L - = L u(n)J(n) 
p9 p n~x 

1 l x = - + J(t)dU(t) 
2 2 

= f(x)U(x) -lx 
U(t)dJ(t) 

= logx + g(x) _ r U(t)J'(t)dt 
logx 12 

= 1 + O -- + dt ( 1 ) l x log t + get) 
log x 2 t(logt)2 



162 6. Elementary estimates for primes 

= --dt + dt - dt + 1 + O --1x 1 100 g(t) 100 g(t) ( 1 ) 
2 tlogt 2 t(logt)2 x t(logt)2 logx 

100 g(t) ( 1 ) 
= log log x -loglog2 + 2dt + 1 + O --

2 t(log t) log x 

= log log x +b l + 0(_1_), 
logx 

where 100 g(t) 
b l = 1 - log log 2 + 2 dt. 

2 t(log t) 
(6.8) 

This completes the proof. 
From the Taylor series for 10g(1 - x), we see that 

( 1)-1 1 00 1 00 1 1 
O < log 1 - - - - = L - < L - = . 

P P n=2 np" n=2 pn p(p - 1) 

It follows from the comparison test that the series 

( ( 1 )-1 1) 00 1 
b2 = L log 1 - - - - = L L -k 

P P P P k=2 kp 
(6.9) 

converges. 

Lemma 6.5 Let b l and b2 be the positive numbers defined by (6.8) and (6.9). 
Then 

where y is Euler' s constant. 

Proof. Let O < a < 1. We de fine the function F(a) by 

1 
F(a) = log ţ(l + a) - '" -1-~ P +<1 

P 

= '" (IOg(l- _1 )-1 __ 1 ) 
~ pl+<1 pl+C1 

P 

00 1 

= L L np n(I+C1)· 
p ,,=2 

By (6.1) and the Weierstrass M-test, the last series converges uniformly for a ~ O 
and so represents a continuous function for a ~ O. Therefore, 

Iim F(a) = b2• 
0'-+0+ 

(6.10) 

We shall find alternative representations for the functions log ţ (1 + a) and 
L p p-I-<1. Since 

0'2 0'2 
1 - a + - < e-<1 < 1 - a + -

2e 2 
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for O < a < 1, it follows that 

and 

Therefore, 

and so 

a 1 - e-a a 
1--< <1--

2 a 2e 

a a a a 
1 + - < 1 + -- < < 1 + -- < 1 + a. 

2e 2e - a 1 - e-a 2 - a 

0< loga + log (1 - e-ar1 < a, 

1 
log - = log(l - e-a)-l + O(a). 

a 
By (6.3), we have 

By Theorem A.5, 

1 
log ţ(1 + a) = log - + O(a) 

a 
= 10g(1 - e-a)-l + O(a) 

00 -an 

= L _e - + O(a). 
n-l n 

L(x) = L ~ = log x + y + O (~) 
n:=:x n X 

for x ~ 1. Let f(x) = e-ax . By partial summation, we have 

By Theorem 6.7, 

00 f(n) 
10gţ(1 +a) = L - + O(a) 

n=! n 

= 100 
f(x)dL(x) + O(a) 

= -100 
L(x)df(x) + O(a) 

= a 100 
e-ax L(x)dx + O(a). 

Sex) = L ~ = loglogx + b1 + O (_1_) 
p::;x p log x 

for x ~ 2. Let g(x) = x-a. Again, by partial summation we have 

1 g(p) /,00 /,00 L J+;- = L - = g(x)dS(x) = - S(x)dg(x) 
p p p P 1 1 



164 6. Elementary estimates for primes 

Since 

and 

L(x) = log x + y + O (~), 
it follows that 

L(x) - S(eX
) = y - bt + O (~) = y - bt + O (x: 1) 

for x ~ 1. We also have 

L(x) - S(eX ) = y - bt + 0(_1_) 
x+l 

for O :::: x :::: 1. Therefore, 

Since 
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it follows that 

By (6.10), we have 
b2= Iim F(a)=y-b l • 

(1-+-0+ 

This completes the proof. 

Theorem 6.8 (Mertens 's formula) For x :::: 2, 

( 1 )-1 n 1 - - = eY log x + 0(1), 
p::;x p 

where y is Euler' s constant. 

Proof. We begin with two observations. First, 

00 1 1 

L L k"k < L p(p - 1) 
p>x k-2 p p>x 

1 
< L n(n -1) 

n>x 

= ",(_1 _~) 
~ n-1 n n>x 

= O (~) 

= O Co~x)' 
Second, since exp(t) = 1 + O(t) for tin any bounded interval and O (1flogx) is 
bounded for x :::: 2, it follows that 

exp (O (_1 )) = 1 + O (_1 ). 
log x log x 

Therefore, 

( 1)-1 (1)-1 
log n 1 - - = L log 1 - -

p::;x p p::;x p 

00 1 

=LLk"k 
p::;x k-I P 

1 00 1 =L-+LLk"k 
p::;x P p::;x k-2 P 
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( 1 ) 00 1 
= log log x + b, + O -- + b2 - L L -k 

log x p>x k-2 kp 

= log log x + y + 0(_1_), 
log x 

since b, + b2 = Y by Lemma 6.5, and so 

n (1 - .!.)-' ... eY log x exp (O (_1 )) 
pSx p log x 

= eYIogx (1 + O Co~x)) 
... eY logx + 0(1). 

This is Mertens 's fonnula. 
The following result will be used in Chapter 10 in the proof of Chen 's theorem. 

Theorem 6.9 For any e > O, there exists a number u, = u, (e) such that 

n ( 1 )-' logz 1 - - < (1 + e)--
uSp<z p logu 

forany u, :5 u < z. 

Proof. Let y be Euler's constant, and choose 8 > O such that 

y+8 
-- < l+e. 
y -8 

By Theorem 6.8, we have 

( 1)-' n 1 - - ~ Y log x, 
p<x p 

and so there exists a number u, such that 

( 1 )-' (y - 8) log x < n 1 - - < (y +8)logx 
p<x p 

for alI x ~ u,. Therefore, if u, :5 u < Z, we have 

( 1)-' n 1--
uSp<z p 

This completes the proof. 

np<z (1- iri 
np<u (1- iri 
(y +8)logz 

<-----
(y - 8) log u 

logz 
< (1 +e)--. 

logu 
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6.4 Brun's method and twin primes 

There is a structural similarity between the twin prime conjecture and the Goldbach 
conjecture. The twin prime conjecture states that there exist infinitely many prime 
numbers p such that p + 2 is also a prime number or, equivalently, there exist 
infinitely many integers k such that k(k + 2) has exactly two prime factors. The 
Goldbach conjecture states that every even integer n 2: 4 can be written as the sum 
of two primes or, equivalently, there exists an integer k such that 1 < k < n - 1 
and k(n - k) has exactly two prime factors. We begin the study of sieve methods 
with a simple proof of the theorem that the twin primes are sparse in the sense that 
the sum of the reciprocals of the twin primes converges. This contrasts with the 
result (Theorem 6.7) that the sum of the reciprocals of alI of the primes diverges 
lik:e log log x. 

Lemma 6.6 If l 2: 1 and ° S m S l, then 

~ k(l) m(l-1) fo(-1) k = (-1) m . 

Proof. This is by induction on m.1t is easy to check that the equation is true for 
m = 0,1,2. If 1 S m Si and the equation holds for m - 1, then 

This completes the proof. 
The following combinatorial inequality, a version of the principle of inc1usion­

exc1usion, is the simplest form of the Brun sieve. 

Theorem 6.10 (The Brun sieve) Let X be a nonempty, finite set of N objects, 
and let PI , ..• , Pr be r different properties that elements of the set X might have. 
Let No denote the number of elements of X that have none of these properties. 
For any subset 1 = {il,"" h} of {1, 2, ... , r}, let N(/) = NUl, ... , h) denote 
the number of elements of X that have each ofthe properties Pi" Pi2 , ••• , Ph . Let 
N(0) = IXI = N. Ifm is a nonnegative even integer, then 

m No S L( _1)k L N(/). (6.11) 
k=O Ill=k 
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Ifm is a nonnegative odd integer, then 

m 

No ~ L(-li L N(l). (6.12) 
k.o 1/1~k 

Proof. Inequalities (6.11) and (6.12) count the elements of X according to the 
various properties that each element possesses. We shall calculate how much each 
element of X contributes to the left and right sides of these inequalities. 

Let x be an element of the set X, and suppose that x has exactly l properties 
P;. If l = O, then x is counted once in No and once in N(0), but is not counted 
in N(l) if lis nonempty. If l ~ 1, then x is not counted in No. By renumbering 
the properties, we can as sume that x has the properties P l , P2 , ••• , Pl. Let I ~ 
{1, 2, ... ,l, ... , r}. If iEI for some i > l, then x is not counted in N(l). If 
I ~ {1, 2, ... , lI, then x contributes 1 to N (l). For each k = O, 1, ... , l, there are 
exactly a) such subsets with III = k. Ifm ~ l, then the element x contributes 

t(-I)k(l) = O 
k.o k 

to the right sides of the inequalities. If m < l, then x contributes 

t(-li(l) 
k.o k 

to the right sides of inequalities (6.11) and (6.12). By Lemma 6.6, this contribution 
is positive if l is even and negative if l is odd. This completes the proof. 

Lemma 6.7 For x ~ 1 andfor any congruence class a (mod m), the number 
of positive integers not exceeding x that are congruent to a modulo m is x / m + 9, 
where 19 I < 1. 

Proof. If x / m = q E Z, then the set {1, ... , qm} contains exactly x / m elements 
in every congruence class modulo m. 

Suppose that x/m f/. Z. Let [xl and {x} denote the integer and fractional parts 
of x, respectively, and let [xl = qm + r, where O ~ r < m. Then 

andso 

qm < x = qm + r + {x} ~ qm + (m - 1) + 9 < (q + l)m, 

x 
q<-<q+l. 

m 
(6.13) 

The positive integers up to x can be partitioned into q + 1 pairwise disjoint sets such 
that q of these sets are complete systems of residues modulo m, and the remaining 
set is a subset of a complete system of residues modulo m.1t follows that there are 
either q or q + 1 integers in the congruence class a (mod m). The lemma follows 
from inequality (6.13). 
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Lemma 6.8 Let x ::: 1, and let Pi" ... , Pik be distinct odd primes. Let NUl, ... , 
ik) denote the number ojpositive integers n :::: x such that 

n(n + 2) == O (mod Pi, ... Pi,). (6.14) 

Then 

where Iei < 1. 

Proof. If P is an odd prime and n(n + 2) == O (mod p), then either 

n == O (mod p) 

or 
n == -2 (mod p). 

Moreover, O 1= -2 (mod p) since p ::: 3. If the integer n satisfies the congru­
ence (6.14), then there exist unique integers UI, ... , Uk E {O, -2} 

n - UI (mod p,) } 
n - U2 (mod P2) 

(6.15) 

n - Uk (mod Pk). 

By the Chinese remainder theorem, for each of the 2k choices of U 1, •.. , Uk there 
exists a unique congruence class a (mod PI ... Pk) such that n is a solution of 
the system of congruences (6.15) if and only if 

n == a (mod PIP2··· Pk). 

By Lemma 6.7, this congruence has 

x 
----+e(a) 
PIP2··· Pk 

solutions in positive integers not exceeding x, where le(a)1 < 1. Therefore, 

2kx 
N(i l , ••• , h) = --- + 2ke, 

where Iei < 1. This completes the proof. 

Theorem 6.11 (Brun) Let 1l"2(X) denote the number ojprimes P not exceeding x 
such that P + 2 is alsa prime. Then 
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Proof. Let 5 ::: y < x. Let r = 7f (y) - 1 denote the number of odd primes 
not exceeding y. We denote these primes by Pl, ... , p,. Let 7f2(Y, x) denote the 
number of primes P such that y < P ::: x and P + 2 is also prime. If y < n ::: x 
and both n and n + 2 are prime numbers, then n > Pi for i = 1, ... , r, and 

n(n + 2);j:. O (mod Pi) 

for alI i. Let No(y, x) denote the number of positive integers n ::: x such that 

n(n + 2);j:. O (mod Pi) 

for alli = 1, ... , r. Then 

7f2(X) ::: y + 7f2(y, x) ::: y + No(y, x). 

We shall use the Brun sieve to find an upper bound for No(y, x). 
Let X be the set of positive integers not exceeding x. For each odd prime 

Pi ::: y, we let Pi be the property that n(n + 2) is divisible by Pi. For any subset 1 = 

{il,"" id contained in {l, ... , r}, we let N(/) be the number ofintegers n E X 
such that n(n + 2) is divisible by each of the primes Pi l , ••• , Pik or, equivalently, 
such that n(n + 2) is divisible by Pi l ••• Ph' By Lemma 6.8, we have 

Let m be an even integer such that 1 ::: m ::: r. By inequality (6.11), we have 
m 

No(y,x)::: L(-I)k L N(/) 
k-o JIJ-k 

We shall estimate these three terms separately. By Theorem 6.8, 

, (-2ix 
XL L p' ... p' 

k-o {il •...• id~{1 •...• ,} II Ik 

= x n (1-~) 
2<p~y P 

< x n (1 _ .!.)2 
2<p~y P 

X 

« (logy)2' 
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Let Sk(XI, ••• , Xr ) be the elementary symmetric polynomial of degree k in r 
variables. For any nonnegative real numbers Xl, ••• , Xr we have 

Sk(XI, ••. , Xr ) = LXi, .•• Xik 
{i, •...• h}!:;{l •...• r} 

(Xl + ... +Xr)k 
<-----,-,---

k! 
(SI (Xl, ••• , xr)i 

k! 

< (~)k SI(XI, ••• , Xr)k 

since (k/ei < k!. Therefore. 

I r (_2)k I 
XL L p' ... p' 

k-m+l {i, •...• it}!:;{l •...• r} 1, It 

r 2k 

::: X L L p' ... p' 
k-m+l Ii, ..... id!:;{l •...• r) " It 

r (2) (2) :::xL L -. "'-. 
k-m+l {i, •...• it}!:;{l •...• r} P" P't 

r (2 2) =X L Sk -, ••• ,-
k-m+l Pl Pr 

where c is an absolute positive constant. If we choose the even integer m so that 

m > 2cloglogy, 

then 

Lr (CIOgIOgy)k L:r 1 X 
X <x - <-. 

m - 2k 2m 
k-m+l k-m+l 
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Since r is the number of odd primes less than or equal to y, it follows that 2r ::: y, 
and we get the following estimate for the third term: 

t (r)2k < t(2r)k « (2r)m ::: ym. 
k.o k k.o 

Combining these three estimates, we obtain 

x x m X X m 
1l'2(X) « y + (log y)2 + 2m + y «(log y)2 + 2m + y , (6.16) 

where the implied constant is absolute, y is any real number satisfying 

5 ::: y < x, (6.17) 

and m is any even integer such that 

m > 2cloglogy. (6.18) 

Let c' = max{2c, (log 2)-1 ), and let 

( IOgX) 1 Y = exp = x 32 108 108 x 

3c'loglogx 

and 
m = 2[c'loglogx]. 

The number y satisfies conditions (6.17) and (6.18) for x sufficiently large. We 
estimate the three terms in (6.16) with these values of y and m. Since 

1 log x 
ogy= 

3c' log log x ' 

we obtain the main term 

X x(loglogx)2 
----~«--~~~-
(log y)2 (log x)2 

Next, since c' 2: (log 2)-1 and 

m = 2[c'loglogx] > 2c'loglogx - 2, 

we obtain 
x 4x 4x 4x 
-- < = < ----~ 2m 22c'loglogx (logX)2c'log2 - (logX)2· 

Finally, 
m 2c' log log x (2C' log log x log x ) 2/3 

Y < Y =exp =X • 
- 3c' log log x 

Combining these three estimates, we obtain 

x(log log x )2 
1l'2(X) « (log X)2 

This completes the proof. 
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Theorem 6.12 (Brun) Let Pl, P2, ... be the sequence o/prime numbers P such 
that P + 2 is also prime. Then 

00 ( 1 1) L -+-
n-l Pn Pn + 2 

= (~+~) + (~ + ~) + (~ + ~) + (~ + ~) + ... 
3 5 5 7 11 13 17 19 

< 00. 

Proof. Theorem 6.11 implies that 

for alI x 2: 2. Therefore, 

for n 2: 2, and so 
1 1 - « ----;;-= 

Pn n (log n )3/2 . 

It follows that the series 

00 1 1 00 1 1 00 1 
'"' - < - + '"' -« - + '"'--""""'" f.:I Pn - 3 ~ Pn 3 ~ n (logn))3/2 

converges. This completes the proof. 

6.5 Notes 

Dickson [22, voI. 1, pp. 421-424] contains a brief account of early results con­
ceming the Goldbach conjecture. Sinisalo [117] has verified the Goldbach con­
jecture by computer for alI even integers up to 4· 1011 • Wang's book Goldbach 
Conjecture [137] is an anthology of classic papers on this subject. 

Brun [7] obtained the first significant result conceming the Goldbach conjecture 
in 1920. By means of the combinatorial method known today as the Brun sieve, he 
proved that every sufficiently large even integer can be written as the sum of two 
integers, each of which is the product of at most nine primes. Brun also obtained 
the first nontrivial results conceming the twin prime conjecture. In addition to 
Theorem 6.11 and Theorem 6.12, he also proved that there are infinitely many 
integers n such that both n and n + 2 are the products of at most 9 primes. The 
application of the Brun sieve to the twin prime conjecture follows Landau [78]. 

By Theorem 6.12, the sum over the reciprocals of the twin primes converges. 
The sum of this infinite series is called Brun' s constant; its value is estimated to be 
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1.9021604 ± 5 X 10-7 (see Shanks-Wrench [112] and Brent [5]). It is a difficult 
computational problem to determine Brun's constant to high precision. In the 
process of trying to improve the estimates for Brun's constant, Nicely discovered 
a defect in Intel's Pentium computer chip (see [15]). 

A popular game among computational number theorists is to find explicit ex­
amples of twin primes. On October 18, 1995, Harvey Dubner announced over the 
Internet that p and p + 2 are prime numbers for 

p = 570,918,348· 105120 - 1 = 22 .33 ·7· 11 . 13 . 5281 . 105120 - 1. 

The prime p has 5129 digits. This established a new record for the largest twin 
prime. 

For other elementary results about the distribution of prime numbers, see Ellison 
and Ellison [29], Hardy and Wright [51], Ingham [66], and Tenenbaum [121]. 
Rosen [104] has generalized Mertens's Theorem 6.8 to algebraic number fields. 

6.6 Exercises 

1. Let n be a positive integer. Prove that 

logn = LA(d) 
din 

and 
A(n) = - LJL(d)logd. 

din 

2. Let w(n) denote the number of distinct prime divisors of n. Let n :::: 2 and 
r :::: O. Prove that 

L JL(d)::s O::s L JL(d). 
din 

w(d),:52r+1 
din 

w(d):5:2r 

3. With the notation of Theorem 6.10, prove that 

I 

No = ~) _1)k L N(l). 
k=O III=k 

This formula is of ten called the inc/usion-exc/usion principle. 

4. Use the inclusion--exclusion principle to prove that 

where qJ(n) is the Euler qJ-function. 
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5. Let <f>(x, y) denote the number of positive integers n :s x that are not 
divisible by any prime p :s y. Prove that 

<f>(x, y) = x n (1 - .!.) + 2Jr (Y). « _x_ + 2Jr (Y). 

p:Sy P logy 

6. Prove that 

n ( r) 1 1-- «---r. 
r<p9 p (log x) 

7. Prove that 

L (lOg ~)k = k!x + O ((logX)k). 
n:::;:x 

8. Prove that 

exp (O (_1 )) = 1 + O (_1 ). 
log x log x 



7 
The Shnirel'man-Goldbach theorem 

Das allgemeine Problem der additiven Zahlentheorie ist die Darstell­
barkeit aHer natiirlichen Zahlen durch eine beschrănkte Anzahl von 
Summanden einer gegebenen Folge von natiirlichen Zahlen, z. B. der 
Primzahlfolge oder der Folge der p-ten Potenzen.1 

L. G. Shnirel'man [114] 

7.1 The Goldbach conjecture 

In a letter to Euler in 1742, Goldbach conjectured that every positive even integer 
n > 2 is the sum of two primes. Euler replied that he believed the conjecture 
but could not prove it. It is stiH unproven, but it has been confirmed by computer 
ca1culations for even integers up to 4· 1011. 

In 1930, Shnirel'man proved that every integer greater than one is the sum of 
a bounded number of primes. This is agreat theorem, the first significant result 
on the Goldbach conjecture. Shnirel'man used purely combinatorial methods: the 
Brun sieve and a theorem about the density of the sum of two sets of integers. 
We shall prove Shnirel'man's theorem in this chapter. Instead of the Brun sieve, 
however, we shall use a sieve method due to Selberg, which is also completely 

lThe general problem in additive number theory is the representation of the natural 
numbers as the sum of a bounded number of terms from a given sequence of natural numbers, 
e.g. the sequence of prime numbers or the sequence of p-th powers. 
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elementary but more elegant and in many cases more powerful than Brun 's original 
sieve argument. 

7.2 The Selberg sieve 

Lemma 7.1 (Cauchy-Schwarz inequality) Let aJ, ... , an, b1, ••• , bn be real 
numbers. Then 

lfaj ,,/Oforsome j, then 

ifand only ifthere is a real number t such that bi = tai for ali i = 1, ... , n. 

Proof. Since 

wehave 

Moreover, 

if and only if 

O:s L (aibj - ajbi)2 
l~i<j~n 

= L (a1bJ - 2aiajbibj +aJb1) 
1~Î<j~n 

n n n 
= L a1 LbJ - (L aibi)2, 

i-I j-l i-I 

( t aibi )2:s (ta1) (t b1) .. 
• -1 .-1 .-1 

( t,aibi)2 = (t,a1) (t,b1) .-1 .-1 .-1 

for alI i "/ j. In this case, if a j "/ ° for some j, let t = b j / a j. Then 

bi = (:~) ai = tai 

for i = 1, ... , n. This completes the proof. 
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Lemma 7.2 Let al, ... , all be positive real numbers and b l , ••• , bll be any real 
numbers. The minimum value of the quadratic form 

subject to the linear constraint 

is 

m = L bi , ( 
n 2)-1 

i=1 al 

and this value is attained if and only if 

for ali i = 1, ... , n. 

mbi 
Yi=­

ai 

(7.1) 

Proof. Let YI, ... , Yn be real numbers that satisfy (7.1). By the Cauchy­
Schwartz inequality, we have 

and so 

Moreover, 
n 

Laiyf=m 
i=1 

if and only if there exists a real number t such that, for alI i = 1, ... , n, 

or, equivalent1y, 

tbi 
,.jiiiYi = --

~ 

tbi 
Yi=-· 

ai 
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This implies that 

andso 

and 

n n b~ t 
1 = L biYi = t L --.!.. = -, 

i-I i-I ai m 

t =m 

mbi 
Yi=-· 

ai 

Conversely, if Yi = mb;/ai for alI i, then L:7-1 biYi = 1 and Q(YIo ... , Yn) = m. 
This completes the proof. 

Theorem 7.1 (Seiberg sieve) Let A be a finite sequence ofintegers, and let lAI 
denote the number of terms of the sequence. Let P be a set of primes. For any real 
number z ~ 2, let 

The "sieving function" 

P(z) = np. 
p<z 
pe'P 

S(A, p, z) 

denotes the number of terms of the sequence A that are not divisible by any prime 
p E P such that p < z. For every square-free positive integer d, let IAd I denote 
the number of terms of the sequence A that are divisible by d. Let g(k) be a 
multiplicative function such that 

0< g(p) < 1 for ali pE p, 

and let gl (m) be a completely multiplicative function such that gl (p) = g(p) for 
ali pE P. Define the "remainder term" r(d) and thefunction G(z) by 

and 

Then 

r(d) = IAdl - g(d)IAI 

G(z) = L gl(m). 
m<z 

pjm .... pe'P 

S(A, p, z) :::.: ~1;) + L 3Ct>(d)lr(d)l, 
d<z2 
dIP(z) 

where w(d) is the number of distinct prime divisors of d. 

Proof. Since g is a multiplicative function, we have, by Theorem A.7, 

for alI positive integers d l and d2• 

(7.2) 
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Let z ~ 2. For every divisor d of P(z), we shali choose a real number )"(d) 
subject onIy to the conditions that 

Ă(1) = 1 

and 
)"(d) = O for alI d ~ z. 

Since 

( L )"(d»)2 ~ O 
dl(a,P(z» 

for alI nonnegative integers a and 

( )

2 

L Ă(d) = 1 
dl(a,P(z» 

if (a, P(z» = 1, 

it follows that 

S(A, P,z) = L 1 

where 

aeA 
(a.p(z»)-1 

::: L ( L )"(d») 
2 

aeA dl(a,P(z» 

= L L L Ă(d,)Ă(d2) 
aeA d,la d21a 

dIiP(z) d2IP(z) 

L Ă(d})Ă(d2)IA[dlod211 
d"d2IP(z) 

L Ă(d})Ă(d2) (g([d} , d2])IAI + r([d, , d2])) 
d"d2IP(z) 

= lAI L g([d" d2])Ă(d,»)"(d2) + L Ă(d,)Ă(d2)r([d" d2D 
d"d2IP(z) d lod2IP(z) 

1 
= lAI d~Z g«d" d2» g(d,)Ă(d,)g(d2)Ă(d2) 

d,.d2I P(Z) 

+ L )"(d,»)"(d2)r([d" d2D 
dl,d2<Z 

d,.d2I P(z) 

=IAIQ+R, 
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and 
R = L Â(d) )Â(d2)r([d) , d2]). 

dl ,d2 <z 
d, ,d2I P(zJ 

Let D be the set of aH positive divisors of P(z) that are strictly less than z, that 
is, 

D = {kIP(z) : 1 S k < z}. 

Then D is a divisor-closed set of square-free integers.1f k E D, then O < g(k) S 1 
since O < g(p) < 1 for alI primes p E P. For k E D, we define the function f(k) 
by 

f(k) = L ţL(d) = _1_ L ţL(d)g(d) = _1_ IT (1 - g(p». (7.3) 
dlk g(k/d) g(k) dlk g(k) plk 

Then f(k) > O and f(k)k2) = f(k)f(k2) if k), k2 E D and (k), k2) = 1. By 
M6bius inversion (Theorem A.19), we have 

Then 

where 

1 
-= Lf(d). 
g(k) dlk 

= L f(k) L g(d)Â(d)g(d2)Â(d2) 
kEV d, ,d2e1J 

kld, ,kld2 

= L f(k) (L g(d)Â(d») 2 
kEV de1J 

kld 

= L f(k)y'f, 
kEV 

Yk = L g(d)Â(d). 
de1J 
kld 

Thus, Q is a quadratic form in the variables Yk. 

(7.4) 

The set D is finite and divisor-closed. By M6bius inversion (Theorem A.22), 
we have 

g(d)Â(d) = L ţL (~) Yk = ţL(d) L ţL(k)Yk· 
ke1J d ke1J 

(7.5) 

dlk dlk 
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In particular, for d = 1 we obtain 

We detine 
1 

F(z) = L f(k)· 
ke'D 

By Lemma 7.2, the minimum value of the quadratic form 

Q = Lf(k)yf 
ke'D 

subject to the linear constraint (7.6) is 

( L lL(ki)-1 _ (L _1 )-1 1 
ke'D f(k) ke'D f(k) = F(z)' 

and this minimum is attained when 

lL(k) 
Yk = F(z)f(k)· 

We insert these values of Yk into (7.5) to compute J..(d) as follows: 

where 

lL(d) " J..(d) = (d) ~ lL(k)Yk 
g ke'l> 

dlk 

lL(d) " 
= -- ~ JL(dl)Ydi 

g(d) d/« 
dlIP(z) 

= lL(d) L lL(dl) ( lL(dl) ) 
g(d) !<zld F(z)f(dl) 

dlIP(z) 

lL(d) 1 
= f(d)g(d)F(z) ~ f(l) 

lL(d)Fd(Z) 

f(d)g(d)F(z) , 

dl!P(z) 

1 
Fd(Z) = L f(l)· 

l<zld 
dlIP(z) 

(7.6) 

In the preceding calculation, we used the fact that if dl divides P(z), then d and l 
are relatively prime since P(z) is square-free. We shall use this fact again to prove 
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that IĂ(d)1 ~ 1. Let d be any positive divisor of P(z). Then 

1 
F(z) = ~ f(k) 

by (7.4), and so 

1 =LL-
lld keV f(k) 

(k,d)-l 

1 =LL-
lld lm<z f(lm) 

ImIP(z) 
(lm,d)-t 

1 1 =L-L-
lld f(l) m<z/l f(m) 

lmIP(z) 
(m,d/I)-) 

1 1 =L-L-
lld f(l) m<z/l f(m) 

mIP(z) 
(m,d)-l 

1 1 =L-L-
lld f(l) m<z/l f(m) 

dmIP(z) 

1 1 
2: ~ f(l) ; f(m) 

dmIP(Z) 

1 
= Fd(Z) ~ f(l) 

= Fd(Z) L f(d/l) 
f(d) lld 

Fd(Z) 
f(d)g(d) 

I Ă(d)1 = Fd(z) < 1 
f(d)g(d)F(z) - . 

By Exercise 1, for any square-free integer d there are exact1y 3w(d) ordered pairs of 
positive integers dl , d2 such that [dl , d2] = d.1f dl , d2 < z, then d = [dl , d2] < Z2. 
If dl and d2 divide P(z), then d = [dl , d2] is a square-free number that also divides 
P(z). Therefore, 

IRI = L Ă(dl )Ă(d2)r([dJ, d2]) 
d) ,d2<Z 

d),d2IP(,) 

~ L Ir([dl , d2D1 
dl,d2<Z. 

d) ,d2IP(,) 



andso 

::: L 3"'(d)lr(d)l, 
d<7.2 
d!P(z) 
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To obtain the upper bound (7.2) for the sieving function S(A, p, z), it is enough 
to prove that F(z) ~ G(z). Let gl (k) be a compIeteIy muItiplicative function such 
that 

By (7.3), 

gl(P) = g(p) for alI primes p E P. 

1 
F(z) = L f(k) 

keD 

= Lg(k) 0(1- g(p»-t 
keD plk 

= Lgl(k) 0(1- gt(p»-t 
keD plk 

00 

- Lgl(k) OLgt(pr 
keD plk r..() 

00 

= Lgl(k) OLgt(pr) 
keD plk r..() 

00 

= Lgt(k) L gt(l) 
keD 1-\ 

p!t*p!k 

00 

= L L gt(kl) 
keD tol 

p!t .. p!k 

00 

- L L gl(m) 
keD moi 

k!m 
p!(m/k)*p!k 

= ~gl(m) ( tr 1) 
p!(m/kF>p!k 

~ f; gl(m) ( ~ 1) 
plm~pE'P kjm 

p!m/k*p!k 
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~ L gt(m) 
m« 

plm .... pe'P 

= G(Z), 

since, in the Iast inner sum, we can always choose k to be the "square-free kemeI" 
of m, that is, the product of the distinct primes dividing m. This completes the 
proof of the theorem. 

7.3 Applications of the sieve 

In this section, we shall obtain an upper bound for the number of representations 
of an even integer as the sum of two primes. We also derive an upper bound for the 
number of representations of an even integer N as the difference of two primes, 
that is, an upper bound for the number of primes p ~ x such that p + N is also 
prime. 

Theorem 7.2 Let N be an even integer, and let reN) denote the number of 
representations of Nas the sum oftwo primes. Then 

reN) «(1 NN)2 TI (1 + .!.) , 
og piN P 

where the implied constant is absolute. 

Proof. The representation function reN) counts the number of primes p ~ N 
such that N - p is also prime. Let 

an = n(N - n). 

Then 
A = {an}:_t 

is a finite sequence of integers with lAI = N terms. Let P be the set of alI prime 
numbers. Let 

2 < z <...IN. 
The sieving function S(A, p, z) denotes the number of terms of the sequence A 
that are divisible by no prime p < z. If 

...IN < n < N - ...IN, 
and if an == O (mod p) for some prime p < z, then either n or N - n is composite. 
This implies that 

reN) ~ 2...IN + S(A, p, z). (7.7) 

We shall use the Selberg sieve to obtain an upper bound for S(A, p, z). We continue 
to use the notation of Theorem 7.1. 
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Let g(m) be the compIeteIy multiplicative function defined by 

{ 21p 
g(p) = lip 

if p does not divide N 
if p divides N. 

Then gl (m) = g(m) for alI m. Since N is even. 2 divides N and 

0< g(p) < 1 

for alI primes p. Also. 

an = n(N - n) == O (mod p) 

if and onIy if 
n == O (mod p) or n == N (mod p). 

(7.8) 

If p does not divide N. then N ;f= O (mod p) and these two congruences are 
distinct. If p divides N. then N == O (mod p) and these two congruences are the 
same. Let 

d = PI ... Pkql ... qi 

be a square-free integer, where the primes Pi divide N and the primes qj do not 
divide N. Then 

2i 
g(d) = d. 

Since an == O (mod d) if and only if an == O (mod p) for every prime p dividing 
d, it follows from the Chinese remainder theorem that there are exactly 2i pairwise 
distinct congruence classes modulo d such that an == O (mod d) if and only if n 
beIongs to one of these 2i classes. Therefore. 

IAdl = IAlg(d) + r(d). 

where 
(7.9) 

By the Selberg sieve, 

S(A. P. z) ~ ~1~) + t; 3w(d)lr(d)l. 

dIP(,) 

where 
G(z) = Lg(m) 

m<z 

and w(d) is the number of distinct prime divisors of d. Let 
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where the primes Pi divide N and the primes qj do not divide N. Then 

k (1 )'i i (2 )Sj 2sl+··+s, 
g(m)=n ~ n ~ =-

i-I p, j_1 q, m 

Let dN(m) denote the number of positive divisors of m that are relatively prime to 
N. Then 

Therefore, 

andso 

Since 

it follows that 

Let 

and 

dN(m) 
gem) 2: --, 

m 

'" '" dN(m) G(z) = L-g(m) 2: L- --o 
m<z m<z m 

( 
1 )-1 00 1 n 1-- = L -, 

piN P t-I t 
p!t=*pIN 

( 
1 )-1 d ( ) 00 n 1 - - G(z) 2: L Nmm L 

piN P m<z t-I t 

m<z 

00 1 

plt=>plN 

00 

L 
w-I 
mlw 

pl(w!m)=>pIN 

1 

w 

=L- L dN(m) 
w=1 W m<z 

mlw 
pl(w!m)=>pIN 

1 L 2:L- dN(m). 
w<z W mlw 

pl(w!m)=>pIN 

k i n Uin Vj 
W = Pi qj 

i=1 j=1 

k i n ,. n Sj 
m = P;' qj' 

i=1 j=1 
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where the primes p; divide N and the primes qj do not divide N. Since m divides 
w, it follows that O ~ r; ~ U; for alI i, O ~ Sj ~ Vj for alI j, and 

k l 
W n u/-rj n Vj-Sj - = p. q.. m J J 

;-1 j-1 

Since every prime divisor of w/m divides N, it follows that no prime qj divides 
w / m, and so S j "" v j for alI j. Therefore, 

and 

k l n r· n Vj m = p;' qj 
;-1 j-1 

l 

dN(m) == n(Vj + 1). 
j-1 

For each integer w, the number of such divisors m is 

l 

n(u; + 1). 
;-1 

It follows that for every positive integer w < Z, we have 

m l m L dN(m)'" L n(Vj + 1) ... n(u; + 1) n(Vj + 1) = d(w), 
mlw mlw j-1 ;-1 j-1 

pl(wlm~pIN pl(wlm~pIN 

where the divisor function d(w) counts the number of alI positive divisors of w. 
Let 

From Theorem A.13 we obtain 

( 1 )-1 d(w) n 1- - G(z) ~ L - »(logzi» (logN)2. 
piN p w<z W 

Equivalently, 

lAI N (1 )-1 -« 1-­
G(z) (log N)2 g P 

N ( 1 )-1 ( 1) 
= (log N)2 n 1 - p2 n 1 + -p 

pIN pIN 

« 1 +-N (1) 
(IogN)2 g P 
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since the infinite product n~2 (1 - p-2) converges. 
To find an upper bound for the remainder, we use (7.9) to obtain 

Since 

and 

it follows that 

R = L 3"'(d)lr(d)1 ::::: L 3"'(d)2",(d) ::::: L 6"'(d). 
kJ kJ de~ 
dIP(,) dIP(,) 

2w(d) ::::: d 

R ::::: L z2log6/log2 < Z2+2Iog6/log2 < Z7.2 = N 9/ 1O 

dez2 

since z = N I / 8• Then 

S(A, 'P, z) «(1 NN)2 n (1 + .!..) + N9/ 10 «(1 NN)2 n (1 + .!..) , 
og pIN P og pIN P 

andso 

r(N) ::::: 2..fii + S(A, 'P, z) «(1 N 2 n (1 +.!..) . 
ogN) pIN P 

This completes the proof. 

Theorem 7.3 Let N be a positive even integer, and let JrN(X) denote the number 
of primes p up to x such that p + N is also prime. Then 

where the implied constant is absolute. 

Proof. The proof is similar to the proof of Theorem 7.2. It starts as follows. Let 

A={an :1:::::n:::::x} 

be the finite sequence of integers 

an = n(n +N). 

Then lAI = [x]. Let'P be the set of alI prime numbers. For any z satisfying 

2 < z:::::.;x, 

we let S(A, 'P, z) denote the number ofterms ofthe sequence A that are divisible 
by no prime p < z. If 
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and an == O (mod p) for some prime p < z, then either n or n + N is composite. 
This implies that 

7rN(X) :::: .JX + S(A, P, z). 

We again use the Selberg sieve to obtain an upper bound for S(A, P, z). Let 

be a square-free integer, where the primes Pi divide N and the primes qj do not 
divide N. Let IAd I denote the number of terms of the sequence A that are divisible 
by d. For every square-free integer d, 

lAI 
IAdl = g(d) +r(d), 

where g(d) is the completely multiplicative function defined by (7.8), and 

Ir(d)1 :::: 2i :::: 2w(d). 

Then 

where 

S(A, P, z) :::: ~1~ + L 3w(d)lr(d)l, 
) d<z2 

d!P<zl 

1 
G(z) = L (m)' 

m<z g 

The proof continues exactly as above. 
In the case where N = 2, we obtain the following improvement of Brun's 

Theorem 6.11. 

Theorem 7.4 Let 7r2(X) denote the number oftwin primes up to x. Then 

7.4 Shnirel'man density 

Let A be a set of integers. For any real number x, let A(x) denote the number of 
positive elements of A not exceeding x, that is, 

A(x) = L 1. 
aeA 

The function A(x) is called the countingfunction ofthe set A. For x > O we have 

O ~ A(x) ~ [x] ~ x 
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andso 
0< A(x) < 1. 

- x -

The Shnirel'man density of the set A, denoted a(A), is defined by 

a(A) = inf A(n) 
n-I.2.3.... n 

Clearly, 
O:::: a(A) :::: I 

for every set A ofintegers. If a(A) = a, then 

A(n) ::: an 

for alI n = 1,2,3, .... If 1 ~ A, then A(I) = O and so a(A) = O. 
If A contains everypositiveinteger, then A(n) = n for alI n ::: 1 andso a(A) = 1. 

If m r:ţ. A for some m ::: 1, then A(m) :::: m - 1 and 

A(m) 1 
a(A) :::: -- :::: 1 - - < 1. 

m m 

Thus, a(A) = 1 if and only if A contains every positive integer. 
If A and B are sets of integers, the sumset A + B is the set consisting of alI 

integers of the form a + b, where a E A and b E B. If Al, ... , Ah are h sets of 
integers, then 

denotes the set of alI integers of the form al + a2 + ... + ah, where ai E Ai for 
i ... 1,2, ... , h. If Ai = A for i = 1,2, ... , h, we let 

hA =A+···+A. 
'-,..-' 

h times 

The set A is called a basis of order h if hA contains every nonnegative integer, that 
is, if every nonnegative integer can be represented as the sum of h not necessarily 
distinct elements of A. The set A is called a basis offinite order if A is a basis of 
order h for some h ::: 1. 

Shnirel'man density is an important additive measure of the size of a set of 
integers. In particular, the set A is a basis of order h if and only if a(hA) = 1, and 
the set A is a basis of finite order if and only if a(hA) = 1 for some h ::: 1. 

Shnirel 'man made the simple but extraordinarily powerful discovery that if A 
is a set of integers that contains O and has positive Shnirel'man density, then A is 
a basis of finite order. 

Lemma 7.3 Let A and B be sets of integers such that O E A, O E B. If n ::: O and 
A(n) + B(n) ::: n, then nEA + B. 
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Proof. If nEA, then n = n + O E A + B. Similarly, if n E B, then n = 0+ n E 

A+B. 
Suppose that n f/ A U B. Detine sets A' and B' by 

A' = {n - a : a E A, 1 ::: a ::: n - 1} 

and 
B' = {b : b E B, 1 ::: b ::: n - 1}. 

Then IA'I = A(n) since n f/ A, and IB'I = B(n) since n f/ B. Moreover, 

A' U B' 5; [1, n - 1]. 

Since 
IA'I + IB'I = A(n) + B(n) ::: n, 

it follows that 
A'n B' 10. 

Therefore, n-a = b for some a E A and b E B, and so n = a + bEA + B. 

Lemma 7.4 Let A and B be sets of integers such that O E A and O E B. lf 
a(A) + a(B) ::: 1, then nEA + B for every nonnegative integer n. 

Proof. Let a(A) = Il and a(B) = f3. If n ::: O, then 

A(n) + B(n) ::: (Il + (3)n ::: n, 

and Lemma 7.3 implies that nEA + B. 

Lemma 7.5 Let A be a set ofintegers such that O E A and a(A) ::: 1/2. Then A 
is a basis of order 2. 

Proof. This follows immediately from Lemma 7.4 with A = B. 

Theorem 7.5 (Shnirel 'man) Let A and B be sets of integers such that O E A and 
O E B. Let a(A) = Il and a(B) = f3. Then 

a(A + B) ::: Il + f3 - 1lf3. (7.10) 

Proof. Let n ::: 1. Let ao = O and let 

be the k = A(n) positive elements of A that do not exceed n. Since O E B, it 
follows that ai = ai + O E A + B for i = 1, ... , k. For i = O, ... , k - 1, let 

be the ri = B(ai+l - ai - 1) positive elements of B less than ai+l - ai. Then 
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and 

for j .. 1, ... , ri. Let 

1 ~ bl < ... < brk ~ n - ak 

be the rk >= B(n - ak) positive elements of B not exceeding n - ak. Then 

ak < ak + bl < ... < ak + brk ~ n 

and 
ak+bj E A+B 

for j - 1, ... , rk. It follows that 

andso 

Therefore, 

k-I 

(A + B)(n) 2: A(n) + L B(ai+1 - ai - 1) + B(n - ak) 
i-O 

k-l 

2: A(n) + f3 L(ai+l - ai - 1) + f3(n - ak) 
i-O 

k-l 

-= A(n) + f3 L(ai+l - ai) + f3(n - ak) - f3k 
i-O 

... A(n) + f3n - f3k 

= A(n) + f3n - f3A(n) 

= (1 - f3)A(n) + f3n 

2: (1 - f3)an + f3n 

= (a + f3 - af3)n 

(A + B)(n) 2: a + f3 - af3. 
n 

. (A + B)(n) 
a(A + B) mf 2: a + f3 - af3. 

n-l.2.... n 
This completes the proof. 

Inequality (7.10) can be expressed as follows: 

1 - a(A + B) ~ (1 - a(A»(1 - a(B». (7.11) 

The following theorem generalizes this inequality to the sum of any finite number 
of sets of integers. 

Theorem 7.6 Let h 2: 1, and let AI. ... , Ah be sets ofintegers such that O E Ai 
for i == 1, .... h. Then 

h 

1 - a(AI + ... + Ah) ~ 0(1- a(Ai ». 
i-I 
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Proof. This is by induction on h. Let aCAd = a; for i = 1, ... , h. For h = 1, 
there is nothing to prove, and for h = 2 it is inequality (7.11). 

Let h ~ 3, and as sume that the theorem holds for h - 1. Let A" ... , Ah be h 
sets of integers such that O E A; for aU i. Let B = A2 + ... + Ah. It foUows from 
the induction hypothesis that 

and so 

h 

1 - a(B) = 1 - a(A2 + ... + Ah) ~ TI(1 - a(A;», 
;=2 

1 - a(A, + ... + Ah) = 1 - a(A, + B) 

~ (1 - a(A,»(1 - a(B» 
h 

~ (1 - a(A,» TI(1 - a(A;» 
;=2 

h 

= TI(1 - a(A;». 
;=, 

This completes the proof. 

Theorem 7.7 (Shnirel'man) Let A be a set of integers such that O E A and 
a(A) > O. Then A is a basis offinite order. 

Proof. Let a(A) = a > O. Then O ~ 1 - a < 1, and so 

O ~ (1 - a)! ~ 1/2 

for some integer i ~ 1. By Theorem 7.6, 

1 - a(iA) ~ (1 - a(A)l = (1 - a)! ~ 1/2, 

and so 
a(iA) ~ 1/2. 

Let h = 2i. It foUows from Lemma 7.5 that the set iA is a basis of order 2, and so 
A is a basis of order li = h. This completes the proof. 

7.5 The Shnirel'man-Goldbach theorem 

We shall apply Shnirel'man's criterion for a set of integers to be a basis of finite 
order to prove that every integer greater than one is a sum of a bounded number of 
primes. We begin by proving that the set consisting of O, 1, and the numbers that 
can be represented as the sum of two primes has positive Shnirel'man density. To 
do this, we need estimates for the average number of representations of an integer 
as the sum of two primes. 
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Lemma 7.6 Let r(N) denote the number ofrepresentations ofthe integer Nas 
the sum of two primes. Then 

x 2 

L r(N) »(1 )2 . 
N~x ogx 

Proof. If p and q are primes such that p, q ::::: x /2, then p + q ::::: x. Therefore, 

(x/2i x2 t; r(N) ::: rr(x/2)2 » (log(X/2))2 » (logx)2 

by Chebyshev's theorem (Theorem 6.3). 

Lemma 7.7 Let r(N) denote the number ofrepresentations of Nas the sum of 
two primes. Then 

x3 
Lr(N)2« 4' 
N~x (log x) 

Proof. By Theorem 7.2, if N is even, then 

N (1) N 1 r(N) « 2 n 1 + - < 2 L -. 
(log N) piN P - (log N) diN d 

This inequality also holds for odd integers, since an odd integer N can be written 
as the sum of two primes if and only if N - 2 is prime, in which case r(N) = 2. 

In the following calculation, we use the fact that 

Then 
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This completes the proof. 

Theorem 7.8 The set 

A = {O, l} U {p + q : p, q primes} 

has positive Shnirel'man density. 

Proof. Let reN) denote the number of representations of N as the sum oftwo 
primes. By the Cauchy-Schwarz inequality, we have 

(h ,( N) r =" ~ 1 h ,(N)' =" A(x) t; ,(N)' 
r(N)?;.1 

By Lemma 7.6 and Lemma 7.7, 

A(x) 

x 
x 4 

1 (logx)4 »--­
x~ 

(logx)4 

»1. 

This means that there exists a number CI > O such that A(x) :::: CIX for aH x :::: Xo. 

Since 1 belongs to the set A, it foUows that there exists a number C2 > O such that 
A(x) :::: C2X for 1 ~ x ~ Xo. Therefore, A(x) :::: min(cl, C2)X for aU x :::: 1, and so 
the Shnirel'man density of A is positive. This completes the proof. 

Theorem 7.9 (Goldbach-Shnirel'man) Every integer greater than one is the sum 
of a bounded number of primes. 

Proof. We have shown that the set 

A = {O, 1} U {p +q: p, q primes} 
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has positive Shnirel'man density. By Theorem 7.7, there exists an integer h such 
that every nonnegative integer is the sum of exactly h elements of A. Let N ::: 2. 
Then N - 2 ::: 0, so for some integers k and e with k + e :::: h there exist e pairs 
of primes Pi, qi such that 

N - 2 = 1 + ... + 1 +(Pl + ql) + ... + (Pe + qe). --...-.--
k 

Let k = 2m + r, where r = ° or 1. If r = 0, then 

Ifr = 1, then 

N = 2 + ... + 2 +(pl + ql) + ... + (Pe + qe)· --...-.--
m+1 

N = 2+··· +2+3 + (PI +ql)+··· + (Pe +qe). --...-.--
m 

In both cases, N is a sum of 

2e +m + 1 :::: 3h 

primes. This completes the proof. 

Theorem 7.10 Let Q be a set of primes that contains a positive proportion of the 
primes, that is, 

Q(x) > e7r(X) 

for some e > ° and aU sufficiently large x. Then every sufficiently large integer is 
the sum of a bounded number of primes belonging to Q. 

Proof. We shall first show that the set 

A(Q) = {O, 1} U {p + q : p, q E Q} 

has positive Shnirel'man density. Let r(N) denote the number of representations 
of N as the sum of two primes, and let r Q (N) denote the number of representations 
of N as the sum of two primes belonging to Q. Then 

By Lemma 7.7, 

It follows exactly as in the proof of Theorem 7.8 that the set A(Q) has positive 
Shnirel'man density. Therefore, A(Q) is a basis of finite order.1t follows that there 
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exists a number h I such that every nonnegative integer is the sum of h I elements 
ofQU{O,l}. 

Choose two primes PI, P2 E Q. By Exercise 3, there exists an integer no = 

nO(PI, P2) such that every integer n ::: no can be written in the form 

where il (n) and i 2 (n) are nonnegative integers. Let 

h2 = max{il (n) + i 2(n) : n = no, ... , no + hd, 

and let 
h =h l +h2. 

If N ::: no, then N - no can be written as the sum of at most h I elements of Q U {1 }, 
that is, 

N - no = 1 + ... + 1 +p,. + ... p. 
'-.-' I '1' 

k 

where 

Then 
no +k = il(n)pI +i2(n)P2, 

where il (n) + i2(n) ~ h2, and so 

N = no + k + Pil + ... Pit 

= il(n)PI + i2(n)P2 + Pi l + ... Pit 

is a sum of 
i +il(n) +i2(n) ~ hl +h2 = h 

primes belonging to the set Q. This completes the proof. 

7.6 Romanov's theorem 

Let a be an integer, a ::: 2. We investigate how many numbers N up to x can be 
written in the form 

(7.12) 

where P is a prime and k is a positive integer. Let r(N) be the number of repre­
sentations of N in this form. Since the number of positive powers of a up to x is 
« log x and the number of primes up to x is 1f (x) « x / log x, it follows that 

L r(N) = I{p +ak ~ x II «logx (_x_) = x. 
N9 log x 
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Let 
A = {p + ak : p prime and k ~ 1}, 

and let A(x) be the counting function of the set A. In this section, we shall prove 
a remarkable theorem of Romanov that the lower asymptotic density of the set A 
is positive, that is, there exists a constant c > O such that 

A(x) ~ cx 

for alI sufficiently large x. This means that a positive proportion of the natural 
numbers can be represented in the form (7.12). 

Lemma 7.8 Let a be an integer, a ~ 2. For every integer d ~ 1 such that 
(a, d) = 1, let e(d) denote the exponent of a modulo d, that is, the smallest integer 
such that 

Then the series 

converges. 

ae(d) == 1 (mod d). 

00 

L 
d-I 

(a,d)-I 
ţ.t2(d)_1 

1 

de(d) 

Proof. If (a, d) = 1 and e(d) = k, then 

ak == 1 (mod d), 

and so d divides ak - 1. Since ak - 1 has only finitely many divisors, it follows 
that there are only finitely many numbers d such that e(d) = k. For x ~ 2, let 

D = D(x) = n (a k - 1), 
k::9 

and let n = w(D) be the number of distinct prime divisors of D. Let 

E(x) = L L ~ 
k<x e(dJ-' 

- (a.d)-l 
,,2(dJ-1 

The number d appears in this double sum at most once, and if d appears, then d 
divides ak - 1 for some k ~ x, so d divides D.1t follows that 

E(x) ~ L ~ = n (1 + ~) ~ fI (1 + ~) , 
dlD plD P ;=1 p, 

,,2(d)_1 

where PI, P2, ... , Pn are the first n prime numbers. Since 

2n = 2lJJ(D) ~ D = n (a k - 1) < n ak ~ ax (x+l)j2 < ax2 , 

k::sx k::sx 
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n < (IOga) x2 «x2. 
log 2 

By Chebyshev (Theorem 6.4), 

log Pn « log n « log x, 

and so, by Mertens's formula (Theorem 6.8), 

By partial summation, 

and so the series 

E(x)« n (1 + ~ ) 
p::Sp" P 

( 1 )-1 «n 1--
p::Sp" P 

« 10gPn 

« logx. 

= E(x) + r E(t) dt 
x II t 2 

log x l x logt «--+ --dt 
x 1 t2 

« 1, 

converges. This completes the proof. 

Lemma 7.9 Let a be an integer, a ::: 2, and let reN) denote the number of 
solutions of the equation 

N = p+ak , 

where P is a prime and k is a positive integer. Then 

Lr(N)2« x. 
N::sx 

Proof. Since r(N)2 is equal to the number of quadruples (PI, P2, k l , k2) such 
that 
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it follows that LN<x r(Ni is equal to the number of quadruples (Plo P2, k l , k2) 
such that -

Pl + akl = P2 + ak2 :::: x. 

This does not exceed the number of solutions of the equation 

with Plo P2 :::: x and kl , k2 :::: logxjloga. 
Choose positive integers kl =1 k2, and let 

Then h is a nonzero, even integer. The number of solutions of the equation 

with PI, P2 :::: x is at most the number of primes PI :::: x such that PI + h is also 
prime. By Theorem 7.3, this is 

1l'h(X) « (1 x )2 n (1 + .!..) . 
ogx plh P 

and 

n 1+- = n 1+- n 1+-( 1) (1) (1) 
plh P plakl P pl(ak2-kl_l) P 

= n 1+- n 1+-( 1) (1) 
pla P pl(ak2-kl_l) P 

« n 1+-, ( 1) 
pl(ak2- kl _l) P 

where the implied constant depends on a. Similarly, if kl > k2, then 

h = _ak2 (akl - k2 - 1) 

and 

n (1 + .!..) « n (1 + .!..) = n (1 + .!..) . 
plh P pl(akl-k2_1) P pl(alk2-kll_l) P 

Finally, if k2 = k l , the number of solutions of the equation 
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with Pl , P2 ::::: x and 1 ::::: k2 ::::: log x / log a is 

7l"(x) log x 
---=- «x. 

log a 

It follows that 

« x + log x L Il 1 + -( 1) 
l::::k::::~ pl(ak-l) P 

To estimate the last term, we observe that 

if and only if 

if and only if 

Then 

ak == 1 (mod d) 

e(d)lk. 

'"' logx < x+logx ~ 
- 2 de(d) log a 

~ (d)-l 
(a,d)-I 

1 «x + (logx)2 L --
~2(d)_1 de(d) 
(a,d)-I 

«x 

since the infinite series converges by Lemma 7.8. 
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Lemma 7.10 Let a be an integer, a 2: 2, and let r(N) denote the number of 
solutions of the equation 

N = p+ak , 

where p is a prime and k is a positive integer. Then 

L r(N)>> x. 
N::;x 

Proof. If p :s x /2 and ak :s x /2, then p + ak :s x, so 

L r(N) » Jl"(x /2) log(x /2) » x. 
N-:sx 

This completes the proof. 

Theorem 7.11 (Romanov) Let a be an integer, a 2: 2. Let 

A = {p +ak : p prime and k 2: I}, 

and let A(x) be the counting junction of the set A. There exists a constant c > O 
such that 

A(x) > cx 

for ali sufficiently large x. 

Proof. We use the Cauchy-Schwarz inequality. By Lemma 7.10 and Lemma 7.9, 
there exist positive numbers CI and C2 such that, for x sufficiently large, 

and so 

(c,xl' " (1;r(Nl)' 
:s A(x) L r(N)2 :s C2xA(X) 

N::;x 

A(x) 2: cx. 

7.7 Covering congruences 

Choosing a = 2 in Romanov's theorem, we see that a positive proportion of the 
natural numbers can be written in the form p + 2k • The only even numbers of this 
form are 2 + 2k , and they constitute a very sparse subset of the even integers, a 
subset of density zero, so almost ali of the integers of the form p + 2k are odd. 
We shall prove that there exists an infinite arithmetic progression of odd natural 
numbers, none of which can be written in the form p + 2k • To do this, we introduce 
the concept of covering congruences for the integers. 
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Let 
1 < mI < m2 < ... < me 

be a strictly increasing finite sequence of integers, and let al, ... , ae be any in­
tegers. Then the l congruence classes ai (mod mi) form a system of covering 
congruences if, for every integer k, there exists at least one i such that 

(7.13) 

This means that the congruence classes ai (mod mi) cover the integers in the 
sense that 

e 
Z =- U{k E Z: k = ai (mod mi)}. 

It is an essential part of the definition of covering congruences that the moduli 
mi are pairwise distinct integers greater than one. Here is a simple example of a 
system of covering congruences. 

Lemma 7.11 The six congruences 

O (mod 2) 

O (mod 3) 

1 (mod 4) 

3 (mod 8) 

7 (mod 12) 

23 (mod 24) 

form a set of covering congruences. 

Proof. First, we show that each of the 24 integers O, 1, ... , 23 satisfies at least 
one of these six congruences. Every even integer k satisfies k == O (mod 2). For 
odd integers, we have 

1 = 1 (mod 4) 

3=0 (mod 3) 

5=1 (mod 4) 

7=7 (mod 12) 

9=0 (mod 3) 

11 = 3 (mod 8) 

13 = 1 (mod 4) 

15 = O (mod 3) 

17 = 1 (mod 4) 

19 = 7 (mod 12) 

21 = O (mod 3) 

23 = 23 (mod 24). 
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For every integer k, there is a unique integer r E {O, 1, ... , 23} such that 

k == r (mod 24). 

Choose i so that 
r == ai (mod mi), 

where ai (mod mi) is one of our six congruences. Each of the six moduli 2, 3, 
4, 6, 12, and 24 divides 24, so mi divides 24 and 

k == r (mod mi)' 

Therefore, 
k == ai (mod mi)' 

This completes the proof. 

Theorem 7.12 (Erdos) There exists an infinite arithmetic progression of odd 
positive integers, none of which is of the form p + 2k • 

Proof. We shall use the system of covering congruences ai (mod mi) con­
structed in Lemma 7.11. For each of the six moduli mi in this system, we choose 
distinct primes Pi such that 

2m, == 1 (mod Pi), 

as follows: 

22 == 1 (mod 3) 

23 == 1 (mod 7) 

24 == 1 (mod 5) 

28 == 1 (mod 17) 

212 == 1 (mod 13) 

224 == 1 (mod 241). 

Let 
t = max{Pi} = 241 

and 
m = 2t . 3 ·7 . 5 . 17 . 13 ·241. 

By the Chinese remainder theorem, there exists a unique congruence class r 
(mod m) such that r == 1 (mod 2t ) and r == 2a, (mod Pi) for i = 1, ... ,6. 
This means that 

r == 1 (mod 2t ) 

r == 2° (mod 3) 

r == 2° (mod 7) 



7.7 Covering congruences 207 

r =21 (mod 5) 

r = 23 (mod 17) 

r = 27 (mod 13) 

r = 223 (mod 241), 

where the exponents in the powers of 2 are the least nonnegative residues ai in 
the six congruence classes in the system of covering congruences. Since r is odd 
and the modulus m is even, it follows that every integer in the congruence class r 
(mod m) is odd. 

Let N be an integer in the congruence class r (mod m) such that 

Let k be a positive integer such that 2k < N. There is a congruence class ai 

(mod mi) in the system of covering congruences such that 

so k = ai + miUi for some integer Ui. Since 

wehave 

Since 
N = r (mod Pi) 

and 

it follows that 
N = r = 2a, = 2k (mod Pi), 

and so 
N = 2k + PiV 

for some positive integer v. If k ::: e, then 

for i = 1, ... , 6, and so v > 1. If k > e, then 

and so 
Pi V = N - 2k = 1 + 2i w > 2i > e ~ Pi 

and v > 1. In both cases, N - 2k is composite. This completes the proof. 
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7.8 Notes 

Shnirel'man's fundamental paper was published first in Russian [113] and then 
expanded and published in German [114]. By Shnirel'man's constantwe mean the 
smallest number h such that every integer greater than one is the sum of at most 
h primes. Using the Brun sieve, Shnirel'man proved that this constant is finite. 
The best estimate for Shnirel'man's constant is due to Ramare [100], who has 
proved that every even integer is the sum of at most six primes. It folIows that 
Shnirel'man's constant is at most seven. The Goldbach conjecture implies that 
Shirel 'man 's constant is three. 

In this chapter, I use the Selberg sieve instead of the Brun sieve to prove the 
Goldbach-Shnirel'man theorem. See Hua [63] for a nice account ofthis approach. 
Landau [76,77] gives Shnirel'man's original method. Theorem 7.10, the general­
ization of the Goldbach-Shnirel'man theorem to dense subsets of the primes, is 
due to Nathanson [90]. 

Selberg introduced his sieve in a beautiful short paper [109]. I use Selberg's 
original proof of the sieve inequality (7.2). See Selberg's Collected Papers[l1O, 
111] for his papers on sieve theory. Prachar [97] contains a nice exposition of the 
Selberg sieve, with many applications. The standard references on sieve methods 
are the monographs of Halberstam and Richert [44] and Motohashi [87]. 

Romanov's theorem appears in the paper [103]. Romanov also proved that, for 
a fixed exponent k, the set of integers of the form p + nk has positive density. 
The proof of Theorem 7.8 of Romanov's theorem was simplified by Erdos and 
Tunin [30] and Erdos [33]. 

Erdos [32] invented covering congruences and used them to construct the infinite 
arithmetic progres sion of odd positive integers not of the form p + 2k , as described 
in Theorem 7.12. Crocker [16] proved that there exists an infinite set of odd positive 
integers that cannot be represented as the sum of a prime and two positive powers 
of 2. Crocker's set is sparse. It is an open problem to determine if there exists an 
infinite arithmetic progression of odd positive integers not of the form p + 2kl + 2k2 • 

There are many unsolved problems conceming covering congruences. It is not 
known, for example, whether there exists a system of covering congruences alI of 
whose moduli are odd. Nor is it known whether, for any number M, there exists 
a system of covering congruences alI of whose moduli are greater than M. The 
best result is due to Choi [12], who proved that there exists a system of covering 
congruences with smallest modulus 20. 

7.9 Exercises 

1. Prove that for any square-free integer d there are exactly 3",(d) pairs of 
positive integers d" d2 such that [d" d2 ] = d. 
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2. Let w(n) denote the number of distinct prime divisors of n. Let n ~ 2 and 
r ~ O. Prove that 

L ţL(d) SOS L ţL(d). 
din 

w(d):S;2r+! 
din 

w(d):::2r 

3. Let al and a2 be relatively prime positive integers. Prove that there exists an 
integer no = no(aJ, a2) such that every integer n ~ no can be written in the 
form 

n = fl(n)al +f2(n)a2 

for some nonnegative integers fI (n), f2(n). 

4. Construct a system of covering congruences whose moduli are 2, 3, 4, 6, 
and 12. 

5. Let us caH an integer n exceptional if n - 2k is prime for aH positive integers 
k < logn/log2. Find aH exceptional numbers up to 105. Erdos [32] has 
written that "it seems likely that 105 is the largest exceptional integer." 

6. Let {ai (mod mi) : i = 1, ... , k} be a system of covering congruences. 
Prove that 

k 1 
L-~l. 
i=l mi 



8 
Sums of three primes 

The method which I discovered in 1937 for estimating sums over 
primes permits, in the fust instance, the evaluation of an estimate for 
the simplest of such sums, Le. a sum of the type: 

This estimate in combination with the previously known theorems 
conceming the distribution of primes in arithmetic progressions ... 
paved the way for establishing unconditionally the asymptotic for­
mula of Hardy and Littlewood in the Goldbach temary representation 
problem. 

1. M. Vinogradov [135, page 365] 

8.1 Vinogradov's theorem 

Vinogradov proved that every sufficiently large odd integer is the sum of three 
primes. In addition, he obtained an asymptotic formula for the number of rep­
resentations of an odd integer as the sum of three prime numbers. Vinogradov's 
theorem is one of the great results in additive prime number theory. The princi­
pal ingredients of the proof are the cirde method and an estimate of a certain 
exponential sum over prime numbers. 
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The counting function for the number of representations of an odd integer N as 
the sum of three primes is 

reN) = L 1. 
PI+P2+P3-N 

The following is Vinogradov's asymptotic formula for reN). 

Theorem 8.1 (Vinogradov) There exists an arithmeticJunction 6(N) and positive 
constants CI and C2 such that 

CI < 6(N) < C2 

for ali sufficiently large odd integers N, and 

reN) = 6(N) N 2 
3 (1 + O (IOglogN)) . 

2(log N) log N 

The arithmetic function 6(N) is called the singular series for the temary 
Goldbach problem. 

8.2 The singular series 

We begin by studying the arithmetic function 

6(N) = f: /-L(q)Cq~N), 
q-l ((J(q) 

(8.1) 

where 
q 

cq(N) = L e(aN /q) 
a-I 

(q,a)-I 

is Ramanujan' s sum (A.2). The function 6(N) is called the singular series for the 
temary Goldbach problem. 

Theorem 8.2 The singular series 6(N) converges absolutely and uniformly in 
N and has the Euler product 

6(N) = 1 + 1-( 1) ( 1) 1) (p - 1 )3 g p2 - 3 p + 3 . 

There exist positive constants CI and C2 such that 

CI < 6(N) < C2 

for ali positive integers N. Moreover,for any 8 > 0, 

6(N, Q) = L /-L(q)Cq~N) = 6(N) + O (Q-(l-e)), (8.2) 
q~Q ({J(q) 

where the implied constant depends only on 8. 
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Proof. Clearly, cq(N) « rp(q). By Theorem A.16, 

rp(q) > ql-s 

for e > O and aU sufficiently large integers q, and so 

~(q)Cq(N) 1 1 ----"---'-.,-- « -- « --. 
rp(q)3 rp(q)2 q2-s 

Thus, the singular series converges absolutely and uniformly in N. Moreover, 

1 1 1 
6(N) - 6(N, Q)« L -( )2 «L 2-s« Ql-s· 

q>Q rp q q>Q q 

By Theorem A.24, cq(N) is a multiplicative function of q and 

(N) _ { p - 1 if p divides N 
cp - -1 if p does not divide N. 

Since the arithmetic function 
~(q)Cq(N) 

rp(q )3 

is multiplicative in q and ~(pj) = O for j ::: 2, it foUows from Theorem A.28 that 
the singular series has the Euler product 

and so there exist positive constants CI and C2 such that 

CI < 6(N) < C2 

for aU positive integers N. This completes the proof. 

8.3 Decomposition into major and minor arcs 

As in the proof of the Hardy-Littlewood asymptotic formula for Waring 's problem, 
we decompose the unit interval [O, 1] into two disjoint sets: the major arcs!)J1 and 
the minor arcs m. 
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Let B > ° and 
Q = (log N)B. (8.3) 

For 

1 S q S Q, 

and 
(a,q)=l, 

the major arc 9J1(q, a) is the interval consisting of alI real numbers a E [0, 1] such 
that 

If a E 9J1(q, a) n 9J1(q', a') and a/q =1 a' /q', then laq' - a' q I ::: 1 and 

_1_ < _1_ < laq' - a' q I = I ~ _ a' I 
Q2 - qq' - qq' q q' 

< I~ _ al + la - a'l < 2Q - q q' - N' 

or, equivalently, 
N S 2Q3 = 2(log N)3B. 

This is impossible for N sufficiently large. Therefore, the major arcs 9J1(q, a) are 
pairwise disjoint for large N. The set of major arcs is 

Q q 

9J1 = U U 9J1(q, a) ~ [0,1] 

and the set of minor arcs is 

q-l .-0 
(a,q)-I 

m = [0, 1]\ 9J1. 

We consider a weighted sum over the representations of N as a sum of three 
primes: 

R(N) = L log Pl log P2 10g P3· 
PI+P2+P3=N 

Vinogradov obtained an asymptotic formula for R(N), from which Theorem 8.1 
will follow by an elementary argument. We can use the circle method to express 
the representation function R(N) as the integral of a trigonometric polynomial 
over the major and minor arcs. Let 

F(a) = L(logp)e(pa). (8.4) 
p~N 
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This exponential sum over primes is the generating function for R(N), and 

R(N) = L logpIlogP210gP3 = il F(cx)3e(-Ncx)dcx 
P,+P2+P3=N o 

= Jsm F(cx)3e(-Ncx)dcx + Jm F(cx)3e(-Ncx)dcx. 

The main term in Vinogradov 's theorem will come from the integral over the major 
arcs, and the integral over the minor arcs will be negligible. 

8.4 The integral over the major arcs 

Just as in the Hardy-Littlewood asymptotic formula, the integral over the major 
arcs in Vinogradov's theorem is (except for a small error term) the product ofthe 
singular series 6(N) and an integral J(N). In this case, the integral J(N) is very 
easy to evaluate. 

Lemma 8.1 Let 
N 

u(fJ) = L e(mfJ)· 
m-I 

Then 

j lP N2 
J(N) = u(fJ)3e(-NfJ)dfJ = - + O(N). 

-1/2 2 

Proof. By Theorem 5.1, the number of representations of N as the sum ofthree 
positive integers is 

11/2 

J(N) = u(fJ)3e(-NfJ)dfJ 
-1/2 

11/2 N N N 

= -1/2 E]; E e«ml + m2 + m3 - N)fJ)dfJ 

N2 
= - +O(N). 

2 

This completes the proof. 
In the next lemma we shall apply the Siegel-Walfisz theorem on the distri­

bution of prime numbers in arithmetic progressions. A proof can be found in 
Davenport [19]. 
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Theorem 8.3 (Siegel-Walfisz) lf q ~ 1 and (q, a) = 1, then, for any C > O, 

U(x;q, a) = " x (x) L...J log p = - + O 
p~x q;(q) (logx)C 

p"" (mod q) 

for aU x ~ 2, where the implied constant depends only on C. 

Lemma 8.2 Let 
Fx<a) = L(log p)e(pa). 

p:5,x 

Let B and C be positive real numbers. lf 1 :s q :s Q = (log N)B and (q, a) = 1, 
then 

JL(q) (QN) 
Fx(a/q) = q;(q) x + O (log N)C 

for 1 :s x :s N, where the implied constant depends only on B and C. 

Proof. Let p == r (mod q). Then p divides q if and only if (r, q) > 1, and so 

q 

L L (logp)e(pa/q) = L(logp)e(pa/q)« Llogp:s 10gq. 
(/q~~1 parP;~q) ~T: plq 

Therefore, 

Fx (~) = t L (logp)e (pa) 
q r-l p~x q 

p'" (mod q) 

= t ~ (logp)e C;) + O(logq) 
(r,,)-I p_r (mod q) 

= te(r;) ~ (logp)+O(logQ) 
(r.q)-I pilir (mod q) 

q (ra) = Le - U(x;q,r)+O(logQ) 
r-I q 

(r,q)-l 

(r,q)-l 

= ~(~; x + O (IO~:)C ) + O(log Q) 

_ JL(q) x + O ( QN ) 
- U(q) (log N)C ' 

since, by Theorem A.24, cq(a) = JL(a) if (q, a) = 1. 



8.4 The integral over the major arcs 217 

Lemma 8.3 Let B and C be positive real numbers with C > 2B. II a E !JJ1(q, a) 
and tJ = a - a/q, then 

F(a) = f.L(q) u (tJ) + O ( Q 2N ) 
cp(q) (log N)C 

and 

F(a)3 = f.L(q) u (tJ)3 + O ( Q2N 3 ) 
cp(q)3 (log N)C ' 

where the implied constants depend only on B and C. 

Proof. If a E !JJ1(q, a), then a = a/q + tJ, where ItJl S Q/N. Let 

Ă(m) = { log p if m = ~ is prime 
O otherwIse. 

If 1 S x S N, then 

f.L(q) " f.L(q) ~ F(a) - -u (tJ) = L, log pe(pa) - - L, e (mtJ) 
cp(q) p~N cp(q) m=1 

~ f.L(q) ~ 
= L, Ă(m )e(ma) - - L, e (mtJ) 

m-I cp(q) m=1 

~ (ma ) ~ f.L(q) = L, Ă(m)e - + mtJ - L, --e (mtJ) 
m=1 q m=1 cp(q) 

N ( (ma) f.L(q») = L Ă(m)e - - - e(mtJ)· 
m=1 q cp(q) 

By Lemma 8.2, we have 

"( (ma) f.L(q») A(x) = L, Ă(m)e - --
I~m~x q cp(q) 

" (ma) f.L(q) (1) = L, Ă(m)e - - -x + O -
l~m9 q cp(q) cp(q) 

= Fx (~) - f.L(q) x + O (1) 
q cp(q) 

= O ((lo;~)C ). 

By partial summation, we obtain 

f.L(q) . iN 
F(a) - q;(q) u (tJ) = A(N)e(N tJ) - 21TltJ I A(x )e(xtJ)dx 

«IA(N)I + ItJINmax{A(x): 1 S x S N} 

Q2N 
« (log N)c· 
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Clearly, lu(,8)1 ~ N. Since C > 2B, we have 

Q2N N 
(log N)C (log N)C -2B < N, 

and the estimate for F(a)3 follows immediately. This completes the proof. 

Theorem 8.4 For any positive numbers B, C, and e with C > 2B, the integral 
over the major arcs is 

where the implied constants depend only on B, C, and e. 

Proof. We note that the length of the major arc 9J1(q, a) is Q / N if q = 1 and 
2Q/ N if q ::: 2. By Lemma 8.3, 

k ( 3 f.L(q) ( a)3) F(a) - --u a - - e(-Na)da 
9J1 ~(q)3 q 

" ~ k ( 3 f.L(q) ( a)3) = ~ ~ F(a) - --3u a - - e(-Na)da 
q~Q a-o 9J1(q,a) ~(q) q 

(a,q)-I 

q Q3N 2 

« ~ ~ (log N)C 
(a,q)-I 

Q5N 2 
<----=-

(logN)C 

N2 

~ ------=---=-=­(log N)C-5B' 

If a = a/q +,8 E 9J1(q, a), then 1,81 ~ Q/ N and 

" ~ JL(q) ~ (a)3 ~ ~ -- u a-- e(-Na)da 
q~Q a-o ~(q)3 9J1(q,a) q 

(a.q)-l 

q JL(q) l a/q+Q/N ( a)3 
= L L - u a - - e(-Na)da 
q~Q a-I ~(q)3 a/q-Q/N q 

(a,q)-I 

JL(q) q jQ/N 
= L -3 L e(-Na/q) U(,8)3e(-N,8)d,8 
q~Q ~(q) a-I -Q/N 

(a,q)-I 
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= L lJ-(q)Cq(~N) l Q
/
N u(fJ)3e(-NfJ)dfJ 

q~Q (ţJ(q) -Q/N 

= 6(N, Q)I Q
/
N u(fJ)3e(-NfJ)dfJ. 

-Q/N 

By Lemma 4.7, if IfJl S 1/2, then 

and 

Similarly, 

u(fJ) « IfJ 1-1 

11/2 u(fJ)3e(-NfJ)dfJ« 11/2IU(fJ)13dfJ 
Q/N Q/N 

11/2 
« fJ- 3dfJ 

Q/N 

N2 

< Q2' 

By Lemma 8.1, 

l Q/ N 11/2 
u(fJ)3e(-NfJ)dfJ = u(fJ)3e(-NfJ)dfJ + O(N2Q-2) 

-Q/N -1/2 

N2 (N2
) = -+O(N)+O -

2 Q2 

= N2 + O (N2
). 

2 Q2 

By Theorem 8.2, 

6(N, Q) = 6(N) + O (Q~-e ) . 

Therefore, 

frot F(a)3 e(-Na)da 

= 6(N, Q) i:: u(fJ)3e(-NfJ)dfJ + O ((log:;C-58) 
= 6(N)~2 + O (;:e) + O ((log:;C-58) 
= 6(N) N 2 + O ( N 2 

) + O ( N 2 ) . 
2 (log N)(I-e)8 (log N)C-58 

This completes the proof. 
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8.5 An exponential sum over primes 

To estimate the integral over the minor arcs, we shall apply Vinogradov's estimate 
for the exponential sum F(a). The proof is based on a combinatorial identity of 
Vaughan. 

Theorem 8.5 (Vinogradov) lf 

la - ~I < ~ q - q2' 

where a and q are integers such that 1 ::: q ::: N and (a, q) = 1, then 

The proof is divided into a series of lemmas. The first is an identity involving 
arithmetic functions of two variables and truncated sums of the M6bius function. 

Lemma 8.4 (Vaughan's identity) For u 2: 1, let 

Mu(k) = L f.L(d). 
dlk 

Let <1>(k, i) be an arithmeticJunction oftwo variables. Then 

L <1>(l, i) + L L Mu(k)<1>(k, i) = L L L f.L(d)<1>(dm, i). 
u<e~N u<k~N u<e~!f: d~u u<f~~ m~i'a 

Proof. We shall evaluate the sum 

N 

S = L L Mu(k)<I>(k, i) 
k-l u<e~!f: 

in two different ways. Since 

it follows that 

Therefore, 

Lf.L(d) = { ~ 
din 

ifn = 1 
otherwise, 

M(k)={ 1 ifk=l 
u O if 1 < k ::: u. 

S = L <1>(1, i) + L L Mu (k)<1>(k, i). 
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On the other hand, interchanging summations and letting k = dm, we obtain 

N 

S = L L LJ-L(d)cf>(k, l) 
k=I u<ls!f :~: 

N 

= L L L J-L(d)cf>(k, l) 
dsu ~i1 u<lS!f 

= L L .E J-L(d)cf>(dm, l) 
dsu ms~ u<lsfm 

= L L L J-L(d)cf>(dm, l). 
dsu u<lS~ ms1!i 

Lemma 8.5 Let A(l) be the von Mangoldtfunction. For every real number a, 

where 
SI = L L L J-L(d)A(l)e(adlm), 

dSN2/S lS~ ms1!i 

S2 = L L L J-L(d)A(l)e(adlm), 
dSN2/S lSN2/S ms1!i 

and 

Proof. We apply Vaughan's identity with 

u = N 2/ 5 

and 
cf>(k, l) = A(l)e(akl). 

The first term in Vaughan's identity is 

.E cf>(1, l) = .E A(l)e(al) 

N 

= L A(l)e(ai) - .E A(l)e(al) 
l-I (SN2/S 

= .E (log p)e(al) + O (N2/ 5 Iog N) 
pksN 

= .E (log p)e(ap) + .E (log p)e(apk) + O (N2/5 Iog N) 
PSN pk~N 

k;::2 
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since 

= F(a) + O (j; log p) + O (N2/ 5 Iog N) 
k~2 

= F(a) + O (L [lOg N] log p) + O (N2/ 5 Iog N) 
p2::;N logp 

= F(a) + O (rr(N I / 2) log N) + O (N2/ 5 Iog N) 
= F(a) + O (N I / 2) , 

by Chebyshev (Theorem 6.3). 
The second term in Vaughan 's identity is simply 

L L MN2/5(k)A(i)e(aki) = S3. 
N2/5<k::;N N2/5<l::;!ţ 

The third term in Vaughan's identity is 

L L L f.L(d)A(i)e(adim) 

= L L L f.L(d)A(i)e(adim) 
d::;N2/5l::;!f m::;f.J 

- L L L f.L(d)A(i)e(adim) 

This completes the proof. 
In the next three lemmas, we find upper bounds for the sums SI, S2, and S3. 

Lemma8.6 II 

la - ~I < -.!... q - q2' 

where 1 ~ q ~ N and (a, q) = 1, then 

Proof. Let u = N 2/ 5• Since Lllr A(i) = log r, we have 

SI = L L L f.L(d)A(i)e(adim) 
d::;u l::;~ 1fI::;f.J 
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= L L J.L(d)A(l)e(cxdlm) 
d~u fm~N/d 

= L L J.L(d)e(cxdr) L A(l) 
d9 r~N/d fir 

= LJ.L(d) L e(cxdr)logr 
d~u r~N/d 

«f; Ir];;d e(CXdr)logrl· 

We compute the inner sum by writing the logarithm as an integral and interchanging 
summations: 

L e(cxdr) log r = L e(cxdr) r dx 
r~N /d r~N /d II x 

[N/dJ r 1 s d 
= L e(cxdr) L x 

r=2 s-2 s-I X 

[N /dJ [N /dJ
1

S d 
= L L e(cxdr)...!.. 

s=2 r=s s-I X 

= L L e(cxdr) -. 
[N /dJ1S ([N /dJ ) dx 

s=2 s-I r=s X 

By Lemma 4.7, the geometric progres sion inside the integral sign is bounded above 
by 

[N/dJ {N} 
L e(cxdr) «min -,lIcxdll-1 , 
r=s d 

and 80 

L e(cxdr)logr« min (N ,IICXd ll - l) 10gN. 
r~N/d d 

By Lemma 4.10, we have 

f;miD (~ ,IICXdll-l) « (; + N 2/ 5 +q) 10gN. 

Therefore, 

SI «Lmin (N ,IICXdll-l) 10gN 
d~u d 

« (: + N 2/5 + q) (log N)2. 

This completes the proof. 
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Lemma8.7 II 

la - ~I < ~ q - q2' 

where 1 ~ q ~ N and (a, q) = 1, then 

I S21 « (~ + N 4/5 + q) (log N)2. 

Proof. If d ~ N 2/5 and i ~ N 2/5, then di ~ N 4/5. Making the substitution 
k = di, we obtain 

S2 = L L L J.L(d)A(i)e(adim) 
d~N2/5l~N2/5 m~-J; 

L ( L e(akm)) ( L J.L(d)A(i)). 
k<N4/5 m<N / k k-dl 

- - d,t.~N2/5 

Since 

L J.L(d)A(i)« L A(i) ~ L A(i) = log k « log N, 

d.l~~~/5 d.lk;/v~/5 llk 

it follows again from Lemma 4.10 that 

S2 « log N L L e(akm) 

« L min (N, lIak ll -') log N 
k~N4/5 k 

« (~ + N 4/5 + q) (log N)2. 

This completes the proof. 

Lemma8.8 II 

la- ~I < ~ q - q2' 

where 1 ~ q ~ N and (a, q) = 1, then 

IS31 « (q~2 + N 4/5 + N'/2q'/2) (log N)4. 

Proof. Let u = N 2/ 5 and 

[ IOgN] h= -- +1. 
5log2 
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Then N 1/ 5 < 2h :::: 2N1/ 5 and h «logN. If i :::: h, then iu :::: 2N3/ 5 « N. If 
N 2/ 5 < l :::: N / k, then 

and so 

L Mu(k)A(l)e(cxkl) 

h 

=L L Mu(k) L A(l)e(cxkl) 
i-12i - 1u<k-S2i u u<€-SN/k 

h 

= L S3,i, 
i=1 

where 
S3,i = L Mu(k) L A(l)e(cxkl). 

u<€-SN / k 

By the Cauchy-Schwarz inequality, 

IS3,;I' ~ ,;-,~S," IM"(k)I', ,;"~S,;" I"<~I' A(l)e(akl{ (8.5) 

We shall estimate these sums separately. 
To estimate the first sum in (8.5), we observe that 

IMu(k)1 = L JL(d) :::: LI:::: d(k), 
dlk dlk 
d~u d$.u 

where d(k) is the divisor function. It follows from Theorem A.14 that 

«iu (logiu)3 

« i u (log N)3 . 

Next, we estimate the second sum in (8.5). We have 

';-'~9;" I"<~I' A(l)e(akl{ 

L L L A(f)A(m)e(cxk(f - m)) 

A(l)A(m) L e(cxk(f - m)), 

u<l< /\, u<m< 2i~'u kE/(€,m) 
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where 1 (i, m) is the interval of consecutive integers k such that 

2'- u < k < min 2' u - - . . 1 (. N N) 
- , i' m 

Clearly, 

andso 

ke/(l,m) 

Since O::: A(i), A(m) ::: logN for alI integers i, m E [1, N], we have 

._,~~." I"<~/k A(l),(akl>j' 

«L L A(i)A(m)min (2i - 1u, lIa(i - m)II-1) 

u<l<N /(21- 1 u) u<m<N /(21- lu) 

« (log Ni 
u<l<N /(21- l u) u<m<N /(21-1 u) 

Let j = i - m with u < i, m < N /(2i - 1U). Then UI < N /2i - 1U, and the number 
ofrepresentations of an integer j in this formis atmost N /2 i - 1u. By Lemma 4.10, 
wehave 

._,~"." L~/k A(l),(akl{ 

«(lOgN)22i~u L. min(i-1u,lIajll-1) 
l:::;i:::;N/2,-l u 

«(logN)2 2i~U L. min (~, lIajll-l) 
l:::;i:::;N/2,-I U J 

N (N N ) 3 «-'-1- - + -2' 1 +q (logN). 2'- u q ,- u 

Inserting this into inequality (8.5), we obtain 

Therefore, 

IS3,;12 « (i u(log N)3) 2i~U (: + 2i~U + q) (log N)3 

« N2(log N)6 (~ -t ~ + .!) . 
q u N 

3 (1 1 q1/2) 
IS3,;I «N(logN) q1/2 + N1/5 + N1/2 . 
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Since h « log N, we have 

S3 = t S3,i « (log N)4 (q~2 + N 4/5 + ql/2 N I / 2) . 

This completes the proof. 
Finally, we obtain Vinogradov's estimate for the exponential sum F(a) by in­

serting our estimates for the sums SI, S2, and S3 into Lemma 8.5. This completes 
the proof of Theorem 8.5. 

8.6 Proof of the asymptotic formula 

We can now estimate the integral over the minor arcs. 

Theorem 8.6 For any B > 0, we have 

1 N2 
F(a)3e(-aN)da « (B/2) 5' 

m (logN) -

where the implied constant depends only on B. 

Proof. Let a E m = [0, 1] \ !Dt. By Dirichlet's theorem (Theorem 4.1), for 
any real number a there exists a fraction ajq E [0,1] with 1 ~ q ~ N jQ and 
(a, q) = 1 such that 

la - ~ I < JL < min (Q ~). 
q - qN - N' q2 

If q ~ Q, then a E !Dt(q, a) ~ !Dt, which is false. Therefore, 

N 
Q < q ~ Q' 

By Theorem 8.5, 

F(a) « (~+ N 4/5 + N I / 2ql/2) (log N)4 
ql/2 

« ( N + N 4/5 + N I / 2 ( N ) 1/2) (log N)4 
(log N)B/2 (log N)B 

N 
« (log N)<B/2)-4' 

Since iJ(N) = Lp~N log p « N by Theorem 6.3, we have 

t IF(a)1 2da = L(logp)2 ~ logN L logp« NlogN, 
la p~N p~N 



228 8. Sums of three primes 

andso 

« (log N)(B/2)-5' 

This completes the proof. 

Theorem 8.7 (Vinogradov) Let 6(N) be the singular series for the ternary 
Goldbach problem. For aU suffciently large odd integers N andfor every A > O, 

R(N) = 6(N) ~2 + O ((lO;:)A ) , 
where the implied constant depends only on A. 

Proof. It follows from Theorem 8.4 and Theorem 8.6 that, for any positive 
numbers B, C, and e with C > 2B, 

R(N) = 11 F(a)3e(-Na)da 

= f!JJt F(a)3e(-Na)da + fm F(a)3e(-Na)da 

= 6(N) ~2 + O (lOg :):I-e)B ) 
+0 ( N 2 

) + O ( N 2 
) , (log N)C-5B (log N)(Bf2)-5 

where the implied constants depend only on B, C, and e. For any A > O, let 
B = 2A + 10 and C = A + 5B. Let e = 1/2. Then 

min«l - e)B, C - 5B, (B/2) - 5) = A, 

andso 

R(N) = 6(N) ~2 + O ((lO;:)A ) . 
This completes the proof. 

We can now derive Vinogradov's asymptotic formula for r(N). 
Proof of Theorem 8.1. We get an upper bound for R(N) as follows: 

R(N) = L log PI log P2 log P3 
PI+P2+P3-N 

:::: (logN)3 L 1 
PI+P2+P3-N 

= (log N)3r(N). 
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For O < 8 < 1/2, let r8 (N) denote the number of representations of N in the form 
N = Pl + P2 + P3 such that Pi ~ N I- 8 for some i. Then 

r8(N) ~ 3 L 1 
PI +P2+P3-N 

PISNI-o 

«,,~. C1-" 1) 
" ,,~. C~/) 
~ rr(N I - 8)rr(N) 

N 2 - 8 

« (logN)2· 

We can now get a lower bound for R(N): 

Therefore, 

R(N) :::: L log Pl log P2 10g P3 
PI +P2+P3-N 

PI,P2,P3>Nl-lJ 

:::: (1 - 8)\log N)3 L 
PI +P2+P3-N 

PI.P2,P3>Nl-o 

:::: (1 - 8)\log N)\r(N) - r8(N» 

( 
N2-8 ) » (1 - 8)3 (log N)3 reN) - 2. 

(logN) 

(log N)3 r (N) ~ (l - 8)-3 R(N) + (log N)N2- 8. 

If O < 8 < 1/2, then 1/2 < 1 - 8 < 1 and 

1 - (l - 8)3 
0< (l - 8)-3 - 1 = < 8 (1 - (l - 8)3) < 248. 

(1 - 8)3 -

By Theorem 8.7, R(N) « N 2 and so 

O ~ (log N)3 r (N) - R(N) ~ ((1 - 8)-3 - 1) R(N) + (log N)N2- 8 

« 8R(N) + (log N)N2- 8 

« 8N2 + (log N)N2- 8 

This inequality holds for aU8 E (O, 1/2), and the implied constant does not depend 
on 8. Let 

8 = _2 _lo-,-g _lo.:....g N_ 
logN 
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Then 
l' logN 21og1ogN logN loglogN 
() + -- = + « --=--==---

N8 log N (log N)2 log N 

andso 
N 21og1ogN 

O :::: (log N)3r (N) - R(N) « . 
logN 

Let A ~ 1. By Theorem 8.7, 

(log N)3r (N) = R(N) + O (N210g log N) 
logN 

= 6(N)N2 + O ( N 2 ) + O (N2 log log N) 
2 (log N)A log N 

= 6(N)N2 (1 + O (IOgIOgN)). 
2 logN 

Dividing by (log N)3, we obtain 

r(N) = 6(N)2(l~~)3 (1 + O CO~:~N)). 
This completes the proof. 

8.7 Notes 

For Vinogradov's original papers, see [132, 133]. Vaughan [124] greatly simplified 
Vmogradov's estimate for the exponential sum F(a) (Theorem 8.5), and it is 
Vaughan 's proof that is given in this book. There are many good expositions of 
Vinogradov's theorem. See, forexample, the books ofDavenport [19], Ellison [29], 
Estermann [38], Hua [64],Vaughan [125], and Vinogradov [135]. 

Vmogradov's theorem implies that almost alI positive even integers can be writ­
ten as the sum oftwo primes. This was observed independently by Chudakov [14], 
van der Corput [123], and Estermann [37]. Let E denote the set of even integers 
greater than two that cannot be written as the sum of two primes. The set E is called 
the exceptional set for the Goldbach conjecture. Let E(x) denote the number of 
integers in E not exceeding x. The theorem of Chudakov, van der Corput, and 
Estermann states that E(x) «A x/(logX)A for every A > O. Montgomery and 
Vaughan [84] proved that there exists 8 < 1 such that E(x) « x 8. Of course, if 
the Goldbach conjecture is true, then E(x) = O for alI x. 

8.8 Exercise 

1. Let h ~ 3. Find an asymptotic formula for the number of representations of 
a positive integer N == h (mod 2) as a sum of h prime numbers. 



9 
The linear sieve 

We often apply, consciously or not, some kind of sieve procedure 
whenever the subject of investigation is not directly recognizable. We 
begin by making a long list of suspects, and then we sort it out gradu­
ally by excluding obvious cases with respect to available information. 
The process of exclusion itself may yield new data which inftuences 
our decision about what to exclude or include in the next ron. When no 
clue is provided to drive us further, the process terminates and we are 
left with objects which can be examined by other means to determine 
their exact identity. These universal ideas were formalized in the con­
text of arithmetic back in the second century B.C. by Eratosthenes, 
and are stiU used today. 

H. Iwaniec [68] 

9.1 A general sieve 

In the next chapter, we shall prove Chen 's theorem that every sufficiently large 
even integer can be written as the sum of a prime and a number that is the product 
of at most two primes. The proof will require more sophisticated sieve estimates 
than those obtained from the Selberg sieve in Chapter 7. 

We begin by generalizing our concept of a sieve. Let A = {a(n)}:'1 be an 
arithmetic function such that 

a(n) ::: O for alI n (9.1) 
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and 
00 

lAI = L a(n) < 00. (9.2) 
n-l 

Let P be a set of prime numbers and let z be a real number, z ~ 2. The set P is 
called the sieving range, and the number zis called the sieving level. Let 

The sieving function is 

P(z) = np. 
pe'P 
p<z 

S(A, P, z) = L a(n). 
(n, P(z»-l 

The goal of sieve theory is to obtain "good" upper and lower bounds for this 
function. 

For example,let A be the characteristic function of a finite set of positive integers, 
that is, a(n) = 1 if n is in the set and a(n) = O if n is not in the set. Then lAI is 
the cardinality of the set. The sieving function S(A, P, z) counts the number of 
integers in the set that are not divisible by any prime p E P, p < z. This special 
case is exactly the sieving function for which we obtained, in Chapter 7, an upper 
bound by means of the Selberg sieve. 

Using the fundamental property of the Măbius function, that 

" {1 ifm=1 (1*IL)(m)=~IL(d)= O ifm>I, 
dlm 

where 1 denotes the arithmetic function such that l(n) = 1 for alI n ~ 1, we obtain 
Legendre' s formula 

S(A, P, z) = L a(n) 
(n,P(z»-l 

= L a(n) L lL(d) 
n dl(n, P(z» 

= L lL(d) La(n) 
dIP(z) din 

= L lL(d)I Adl, 
dIP(z) 

where the series 

converges because of (9.1) and (9.2). 
We shall as sume that, for every n ~ 1, we have a multiplicative function gn(d) 

such that 
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for every prime P E P. Then 

o ::s gn(d) ::s 1 

for every integer d that is the product of distinct primes p E P. For such integers 
d, the series 

converges, and we can define the remainder r(d) by 

IAd I = L a(n )gn (d) + r(d). 
n 

Inserting this into Legendre's formula, we obtain 

S(A, p, z) = L ţL(d)IAdl 
dIP(z) 

L ţL(d) (L a(n)gn(d) + r(d)) 
dIP(z) n 

= L a(n) L ţL(d)gn(d) + L ţL(d)r(d) 
n dIP(z) dIP(z) 

= L a(n) n (1 - gn(P)) + L ţL(d)r(d) 
n pIP(z) dIP(z) 

= La(n)Vn(Z) + R(z), 
n 

where 
Vn(z) = n (1 - gn(P)) 

pIP(z) 

and 
R(z) = L ţL(d)r(d). 

dIP(z) 

If p(z) has a large number of divisors, the remainder term R(z) in Legendre's 
formula may be too large to give useful estimates for S(A, P, z). For example, let 
A be the characteristic function of the set of alI positive integers not exceeding x, 
and let P be the set of alI prime numbers. Let 

for alI n. Then 

1 
gn(d) = d 

Vn(z) = n (1 -~) 
p<z P 

for alI n 2: 1. Moreover. for alI d 2: 1, 

lAI [x] [X] 
O:::: Ir(d)1 = d -IAdl = d - d < 1, 
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andso 
IR(z)l:S L Ir(d)1 :s2Jr (z). 

dIP(z) 

It follows from Legendre's formula that the number of integers up to x divisible 
by no prime less than z is 

S(A, P, z) = [xl n (1 - ~) + O (2Jr (Z») . 
p<z p 

By Mertens's formula (Theorem 6.8), 

n (1 - ~) = ~ (1 + O (_1 )), 
p<z p logz logz 

(9.3) 

and so the remainder term will be larger than the main term unless z is very small 
compared to x. 

The sieve idea is to reduce the size of the error term by replacing the Mobius 
function with carefully constructed arithmetic functions Â +(d) and Â -(d) such that 

(9.4) 

and, for every m 2: 2, 

(1 * Â +)(m) = L Â +(d) 2: O (9.5) 
dlm 

and 
(1 * Â -)(m) = L Â -(d) :s O, (9.6) 

dlm 

Let Â +(d) and Â -(d) be arithmetic functions that satisfy (9.4), (9.5), and (9.6). If 
D is a positive number such that Â +(d) = O for alI d 2: D, then the arithmetic 
function Â +(d) is called an upper bound sieve with support level D . Similarly, if 
D is a positive number such that Â -(d) = O for all d 2: D, then the arithmetic 
function Â -(d) is called a lower bound sieve with support level D. 

IfP is a set ofprimes such that Â +(d) = O whenever dis divisible by a prime not 
in P, then Â +(d) is called an upper bound sieve with sieving range P. Similarly, 
if Â -(d) = O whenever dis divisible by a prime not in p, then Â -(d) is called a 
lower bound sieve with sieving range P. 

The following result is the basic sieve inequality. 

Theorem 9.1 Let Â +(d) be an upper bound sieve with sieving range P and support 
level D, and let Â -(d) be a lower bound sieve with sieving range P and support 
level D. Then 

00 00 

L a(n)Gn(z, Â -) + R- :s S(A, p, z) :s L a(n)Gn(z, Â +) + R+, 
n=1 n=1 
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where 

and 

Gn(Z, ;,.±) = L ;"±(d)gn(d) 
dIP(z) 

R± = L;" ±(d)r(d). 
d!P(z) 
d<D 

Proof. Since the arithmetic function ;,. +(d) is supported on the finite set of 
integers 1 :s d < D, it follows that the series 

La(n) L ;"+(d) 
n dl(n. P(z» 

converges. By conditions (9.4) and (9.5), the inner sum is 1 if (n, P(z» = 1 and 
nonnegative for alI n. Therefore, 

S(A, P, z) = L a(n) 
(n.p(z»-I 

:s La(n) L ;"+(d) 
n dl(n. P(z» 

= L ;"+(d) La(n) 
dl P(z) din 

= L ;"+(d)IAdl 
dl P(z) 

= L ;,. +(d) (L a(n)gn(d) + r(d») 
dIP(z) n 

= L ;,. +(d) L a(n)gn(d) + L ;,. +(d)r(d) 
dl P(z) n dl P(z) 

= La(n) L ;"+(d)gn(d) + L ;"+(d)r(d) 
n dIP(z) dJ~~) 

= La(n)Gn(z,;"+)+R+. 
n 

The proof of the lower bound is similar. 
The following result shows how to extend the sieving range of upper and lower 

bound sieves by any finite set of primes. 

Lemma 9.1 Let ;"~(d) be upper and lower bound sieves with sieving range P I 

and support level D. Let Q be a finite set of primes disjoint from P I , and let Q be 
the product of ali primes in Q. Every positive integer d can be written uniquely in 
theform 

d = dldz, 

where d l is relatively prime to Q and dz is a product of primes in Q. Define 

(9.7) 
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Then thefunction A +(d) (resp. A -(d») is an upper bound sieve (resp. lower bound 
sieve) with sieving range 

and support level DQ. 
Let g be a multiplicative function, and let 

and 

Then 

G(z, A ±) = L A ±(d)g(d) 
dIP(z) 

G(z, A~) = L A~(dl)g(dl). 
ddP1(z) 

G(z, A±) = G(z, A~) TI (1 - g(q». 
qIQ(z) 

Proof. Clearly, A +(1) = A -(1) = 1. Every positive integer m factors uniquely 
into a product m = mlm2, where mI is relatively prime to Q and m2 is a product 
of primes in Q. We have 

since 

I>+(d) = L L A+(dld2) 
dlm ddml d21m2 

= L A!(dl ) L JL(d2) ~ O 
d1lml d21 m2 

ifm2 = 1 
if m2 ::: 2. 

Similarly, if m = mI m2 > 1, then 

LA -(d) = L A,(dl ) L JL(d2 ) ::s O 
dlm ddml d21m2 

since either m2 > 1 and 

or m2 = 1, which implies that mI > 1, and so 

L AI (dd ::s O. 
d1lml 

Thus, the arithmetic functions A ±(d) satisfy conditions (9.4), (9.5), and (9.6). 
Since A ±(d) = O if d is divisible by some prime not in P, it follows that the 

functions A ± have sieving range P. 
Let d = d1d2, where d l is relatively prime to Q and d2 is a product of primes 

in Q. If d = dld2 ~ DQ, then either d l ~ D and A~(dl) = O, or d2 > Q, which 
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implies that d2 is divisible by the square of some prime q E Q, and so ll(d2) = O. 
In both cases, A ±(d) = O. Therefore, the functions A ±(d) = O have support level 
DQ. 

Finally, since P(z) = P1 (z) Q(z), 

G(z, A ±) = L A ±(d)g(d) 
dIP(z) 

= L L A ±(dl d2)g(dl d2) 
dJlP,(z)d2IQ(z) 

= L L At(dl )g(ddll(d2 )g(d2 ) 

dJlP,(z)d2IQ(z) 

= L At(dl)g(dl ) L ll(d2)g(d2) 

dJlP,(z) d2IQ(z) 

= G(z, At) n (1 - g(q». 
qIQ(z) 

This completes the proof. 
Combining Theorem 9.1 and Lemma 9.1, we obtain the following re suit, which 

is an important refinement of the basic sieve inequality. 

Theorem 9.2 Let At(d) be upper and lower bound sieves with sieving range P 1 

and support level D. Let IAt(d)1 S 1 for al! d :::: 1. Let Q be a finite set ofprimes 
disjoint from P1, and let Q be the product of the primes in Q. Let P = P1 U Q. 
For each n :::: 1, let gn(d) be a multiplicative function such that 

Let 

Then 

and 

where 

for al! pE P. 

Gn(z, At) = L At(d)gn(d). 
dIP,(z) 

00 

S(A, P, z) s L a(n)Gn(z, Ar) n (1 - gn(q» + R(DQ, P, z) 
n-I qIQ(z) 

00 

S(A, P, z) :::: L a(n)Gn(z, AI) n (1 - gn(q» - R(DQ, P. z), 
n-I qIQ(z) 

R(DQ, P, z) = L Ir(d)l· 
dIP(l) 
d<DQ 
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It of ten happens in applications that the arithmetic functions gn(d) satisfy one­
sided inequalities of the fonn 

n (1- gn(p»-l :::: K (IIOgz)K, 
pe'P og U 

uSp<z 

where K > 1 and K > O are constants that are independent of n, and the inequality 
hoIds for alI n and 1 < u < z. In this case we say the sieve has dimension K. The 
case K = 1 is called the linear sieve. The goal of this chapter is to obtain upper 
and Iower bounds for the linear sieve that were first proved by Jurkat and Richert 
(Theorem 9.7). This is the onIy sieve inequality that is needed for Chen's theorem. 

9.2 Construction of a combinatorial sieve 

In a combinatorial sieve, we reduce the size of the error tenn in Legendre 's fonnula 
by repIacing the M6bius function with its truncation to a finite set of positive 
integers. This idea goes back to Viggo Brun [7]. We construct these truncated 
functions in the following theorem. 

Theorem 9.3 Let f3 > 1 and D > O be real numbers. Let V+ be the set consisting 
of 1 and all square-free numbers 

d = P1P2··· Pk 

such that 
Pk < ... < P2 < Pl < D 

and 

( D )1//3 
Pm < 

P1P2··· Pm 

for all odd integers m. Let v- be the set consisting ofl and all square-free numbers 

d = P1P2··· Pk 

such that 
Pk < ... < P2 < Pl < D 

and 

( D )1//3 
Pm < 

P1P2··· Pm 

for all even integers m. Then the sets V+ and v- are finite sets of square-free 
positive integers d < D. LetP be a setofprimes, and let P(D) denote the product 
ofall ofthe primes in P thatare less than D. Define the arithmeticJunctions A +(d) 
and A -(d) asfollows: 

A +(d) = {/L(d) if d E r:+ and dl P(D) 
O otherwlse 



9.2 Construction of a combinatorial sieve 239 

and 
).. -(d) = {JL(d) ifd E r:- and dIP(D) 

O otherwlse. 

Then ).. +(d) and ).. - (d) are upper and lower bound sieves with sieving range P and 
support level D. 

Proof. The condition 

( D )1/fJ 
Pm < 

PIP2'" Pm 

is equivalent to 
PIP2'" Pm_Ip~+fJ < D. 

Let d = PI ... Pk E V+. If k is odd, then 

d I+{J 
= Pl'" Pk-IPk < Pl'" Pk-IPk < D. 

If k is even, then k - 1 is odd. Since Pk < Pk-I and f3 > 1, we have 

d 2 l+fJ D = Pl'" Pk-IPk < PI ... Pk-I < Pl'" Pk-I < . 

Therefore, 1 ~ d < D for alI d E V+. 
SimiIarIy, if d = PI ... Pk E V- and k ~ 2, then 1 ~ d < D. For k = 1, we 

have d = PI < D, that is, V- contains alI primes strictIy Iess than D. Therefore, 
1 ~ d < D for alI d E V-. 

The arithmetic functions).. +(d) and)" -(d) are truncations ofthe Mobius function 
JL(d) to certain subsets ofthe sets V+ and V-, respectiveIy. Since both sets contain 
1, we have 

Let m ~ 2. We must prove that 

I:>-(d) ~ O ~ L)"+(d). (9.8) 
dlm dlm 

Since the functions).. ±(d) are supported on divisors of P(D), we may assume that 
m divides P(D). Let w(m) denote the number of distinct prime divisors of m. The 
proof is by induction on k = w(m). If k = 1, then m = P < D for some prime 
P E p, and so m E V-. We have 

and 

L).. -(d) = JL(I) + JL(p) = O 
dlm 

L)"+(d) = JL(l)+)..+(p) ~ 1- 1 = O. 
dlm 

This proves the Iemma in the case k = 1. 
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Now let k ~ 1, and assume that inequalities (908) hold for aH positive integers 
m with k distinct prime divisOTSo If w(m) = k + 1, then we can write m in the form 

where 

qk < qk-I < o o 0< ql < qo < D, 

qo, ql, o o o , qk are prime numbers in p, and qo is the greatest prime divisor of mo 
Let 

m 
mI = - =qloooqko 

qo 

Since mI is a divisor of P(z) with k prime factors, it foHows from the induction 
hypothesis that 

LA -(d) ::: O ::: LA +(d)o 
dlml dlml 

Every divisor of m is of the form d or qod, where d is a divisor of mlo Therefore, 

Similarly, 

LA+(d) == LA+(d) + LA+(qod) 
dlm dlml dlml 

~ LA+(qod) 
dlml 

= L JL(qod) 
dlml 

qOdev+ 

= - L JL(d)o 
dlml 

qOde1)+ 

LA-(d) ::: - L JL(d)o 
dlm dlml 

qOdeV-

If d is a divisor of mI, then 
d = PI 00 o Pj, 

where PJ. o o o , P j are primes in P such that 

Pj < o o o < PI ::: ql < qo < Do 

Let DI = D / qo > O, and let Vj and VI be the sets of integers constructed from fJ 
and Dlo LeUj(d) and AI(d) be the Mobius function truncated to the sets vt and 
VI' respectivelyo Then qod E V+ if and only if 

(
D)I/fJ 

qo < -
qo 
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and 

( D )1/fJ ( DI )1/fJ 
Pm < = 

qoPI ... Pm PI ... Pm 

for alI even integers m. If 

then qod rJ V+ and so 

since the sum is empty. If 

(D)I/fJ 
qo::: - , 

qo 

L J.t(d) = O 
dlm) 

qOdeV+ 

qo < (~Y/fJ, 
then qod E V+ if and onIy if d E VI ,and 

L J.t(d) = L J.t(d) = L AI(d) ~ O 
dlm) dlm) dlm) 

qOdev+" deVi 

by the induction hypothesis. Therefore, 

LA +(d) ::: o. 
dlm 

SimilarIy, qod E v- if and onIy if d E vt, and so 

L J.t(d) = L J.t(d) = L At(d) ::: o. 
dlm) dlm) dlm) 

qOdeV- dezrţ 

This proves that A +(d) and A -(d) are upper and lower bound sieves with sieving 
range 'P and support Ievel D. 

Lemma 9.2 Let'P be a set of primes, and let g(d) be a multiplicative function 
such that 

O ~ g(p) < 1 for ali pE 'P. 

Let 
V(z) = n(1 -g(p» = L J.t(d)g(d). 

pe'P pIP(z) 
p<z 

Then V (z) is a decreasing function of z, 

0< V(z) ~ 1 

for ali z, and 
L g(p)V(p) = V(w) - V(z) (9.9) 
pe'P 

w::5p<z 

for ali 1 ~ w < z. 
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Proof. It follows immediately from the definition that V (z) is decreasing and 
V(z) E (O, 1] for all z. 

The proof of the combinatorial identity (9.9) is by induction on the number k of 
primes P E P that lie in the interval [w, z). If k = O, then V(w) = V(z) and 

L g(p)V(p) = O. 
pe'P 

w;Sp<:: 

If k ::: 1, let Pl be the largest prime in the interval. Then 

L g(p)V(p) = L g(p)V(p) + g(Pl)V(Pl) 
pe'P 

W;SP<l 

= V(w) - V(Pl) + g(Pl)V(Pl) 

= V(w) - (1 - g(Pd)V(Pl) 

= V(w) - V(z). 

Lemma 9.3 Let P be a set ofprimes. For {3 > 1 and 2 ~ z ~ D, let 

( 
D )1/fJ 

Ym = Ym({3, D, Pl, ... , Pm) = 
Pl"'Pm 

Let )"±(d) be the upper and lower bound sieves constructed in Theorem 9.3, and 
let 

Let 

Then 

and 

Moreover, 

for all n ::: 1, and 

If 

then 

G(z, ).. ±) = L ).. ±(d)g(d). 
dIP(z) 

PI·····Pn E1' 
)'n:5Pn<"'<PI <z 

Pm<JmVm<II,m;;;;'II (mod 2) 

00 

G(z,)..+)=V(z)+ L Tn(D,z) 
n_1 

mii) (mod 2) 

00 

G(z, ).. -) = V(z) - L Tn(D, z). 
n_1 

niiiO (mod 2) 

G(z, ).. -) ~ V(z) ~ G(z, ).. +). 

10gD 
{3<--=s 

- logz ' 

forn ~ s - {3. 

(9.10) 

(9.11) 
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Proof. It follows from the construction of the sets V± and the sieves A ± (d) that 

G(z, A +) = L J.L(d)gn(d) 

and 

dIP(z) 
dEV+ 

L (-l)kgn(PI··· pd 
Pk <"'<PI <Z,Pi e'P 

Pm <ym 'r'm;:;;o1 (mod 2) 

G(z, A -) = L J.L(d)gn(d) 
dIP(z) 
deV-

L (_l)k gn (PI···Pk). 
Pk <"'<Pl <Z'Pi e'P 

Pm <Ym Vm=:O (mod 2) 

We expand the function V(z) to obtain a partition of G(z, A +) as asum ofnonneg­
ative functions: 

V(z) = L J.L(d)g(d) 
dl P(Z) 

L (_l)kg(PI··· pd 
Pk <"'<Pj <z 

pjE'P 

L (_l)kg(PI ... Pk) 
Pk<"'<PI <Z,Pi EP 

pm <YmVm;;;;:I (moo 2) 

+ 
Pk <"'<PI <z,Pi e'P 

3m:1 (mod 2):Ym ~Pm 

= G(Z, A+)+ 

= G(Z, A+) 

Pk <"'<PI <z,pjE'P 
3msl (mod 2):Ym ~Pm 

n-l Pk <"'<p\ <Z,Pi e'P 
IIEI (mod 2) Pm<YmVm<lI,mEI (mod 2) 

)'ns'PIl 

+ t [yn~p~PJ<z(-ltg(PI ... pn) Pk<.~I<Pn(-ll_ng(Pk ... pn+l)l 
IIE I (mod 2) Pi eP Pi e'P 

pm <Ym Vm<1I, 
mEI (mod 2) 

11-1 YIIs.Pn <"'<PI <Z,PjE'P 
IIEI (mod 2) Pm<YmVm<lI, 

mal (mod 2) 

00 

= G(z, A +) - L Tn(D, z), 
n-l 

1151 (mod 2) 
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where 

Therefore, 

Similarly, 

If 

then 

}'nSp" <"'<PI <Z,Pi e1' 
Pm<YmVm<lI,m511 (mod 2) 

00 

G(z, A +) = V(z) + L Tn(D, z) 2: V(z). 
11-1 

IIEI (mod 2) 

00 

G(z, A -) = V(z) - L Tn(D, z) ~ V(z) . 
• -1 

",=0 (mod 2) 

Yn ~ Pn < ... < PI < z, 

D ~ Pl··· PnP~ < zn+f3 • 

(9.12) 

Let D = zs. Since Tn(D, z) is asum over integers PI ... Pn that satisfy inequal­
ity (9.12), it follows that Tn(D, z) = O unless s < n + {J. This completes the 
proof. 

9.3 Approximations 

For the rest of this chapter, we shall consider only the case 

{J=2 

in the construction of the sets V± and the upper and lower bound sieves A ±(d). 
Then 

Ym=( D )1/2, 
Pl··· Pm 

and the functions Tn(D, z) satisfy the following recursion relation. 

Lemrna 9.4 Let z 2: 2 and D be real numbers such that 

s = log D > {1 if n is odd, 
log z - 2 ifn is even. 

Then 

Let n 2: 2. lin is even, or ifn is odd and s 2: 3, then 

Tn(D, z) = L g(p)Tn- 1 (D, p) . 
pe'P P 
p<::. 

(9.13) 

(9.14) 
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lfn is odd and 1 S s S 3, then 

Tn(D, z) = L g(p)Tn- 1 (D, p) . 
pEP P 

p<DI/3 

Proof. Since YI = (D/PI)I/2, it follows from Lemma 9.2 that 

If n is even, then 

Tn(D, z) = 

TI(D, z) = L g(pdV(PI) 
PI e'P 

)'1~Pl <z 

L g(PI)V(PI) 
PI e'P 

DI/3::;PI <z 

= V(D I/3 ) - V(z). 

PII <"'<PI <Z,Pi e'P 

PI···PIlP~?:.D 
PI ",pmp~1 <D 

Vm<n,m='/I (mod 2) 

PI e'P p" <"'<PI ,Pi e'P 
PI <z P2",pnp~?:.D/PI 

P2"'Pm p;'" <D/PI V2::;m <Il , 

m-I=II-1 (mod 2) 

Let n be odd, n ::: 3. If PI < YI = (D/ PI)I/2 and PI < z = D'/s, then 

iflSsS3 
ifs:::3 

(9.15) 

and the argument proceeds exact1y as in the case of even integers n. This completes 
the proof. 

We shall now construct a sequence of continuous functions fn (s) that will be 
used later to approximate the discrete functions Tn(D, z). For s 2: 1, Iet RIl(s) be 
the open convex region of Euclidean space consisting of alI points (t" ... , tn) E R n 
such that 

and 

1 
0< tn < ... < ti < -, 

s 

ti + ... + tn + 2tn > 1, 

ti + ... + tm + 2tm < 1 if m < n and m == n (mod 2). (9.16) 
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For n 2: 1 and s 2: 1, we define the function fn (s) by the multiple integral 

sfn(s) = f ... ( dtl·· ·dtn . 
J'Rn{S) (tI· .. tn )tn 

(9.17) 

The function fn(s) is nonnegative, continuous, and decreasing, since 'R,n(S2) 5; 

'R,n(SI) for SI ~ S2. If fn(s) > O, then 'R,n(S) is nonempty, so 'R,n(S) contains a 
point (tI. ... , tn). This point satisfies 

andso 

It follows that 

n+2 
1 < tI + ... + tn + 2tn ~ (n + 2)tl < --, 

s 

1 1 
-- <tI <-. 
n+2 s 

for s 2: n + 2. 

(9.18) 

(9.19) 

Itiseasytocompute fl(S) andh(s). Wehave fl(S) = O for s 2: 3. For 1 ~ s ~ 3, 
wehave 

'R,1(S)" (1/3, l/s) 

andso 

i liS dtl 
Sfl(S)'" 2 = 3 - S. 

1/3 tI 
(9.20) 

Similarly, h(s) = O for S 2: 4. For 2 ~ S ~ 4, we have 

'R,2(S) = {(tI, t2) : ~ < tI < ~ and 1 - tI < t2 < tI} 
4 s 3 

andso 

i liS it' dt2 dtl sh(s) = 2-
1/4 {1-t,)/3 t2 tI 

t lS (3 1) dtl 
= Jl /4 1 - tI - ~ 1;-

= t ls (_3 _ + ~ _ ~) dtl 
Jl /4 1 - tI tI tf 

= S - 310g(s - 1) + 3 log 3 - 4. 

The functions fn(s) satisfy the following recursion relation. 

Lemma 9.5 Let n 2: 2.lfn is even and s 2: 2, or ifn is odd and s 2: 3, then 

sfn(s) = 100 
fn-l (t - l)dt. 

ljn is odd and 1 ~ s ~ 3, then 

sfn(s) = 3fn(3) = 100 
fn-l(t - l)dt. 

(9.21) 

(9.22) 
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Proof. If n is even and S ::: 2, or if n is odd and S ::: 3, then, from (9.18), we 
have 

In the inner integral, we make the change of variables 

ti = (1 - tl)Ui_1 

for i = 2, ... , n. Let 
1 - ti 1 

SI = -- = --1. 
ti ti 

Since ti < 1 I s, it follows that SI > 1 if n is even and S ::: 2, and SI > 2 if n is odd 
and S ::: 3. We obtain 

f 0«n<"'<12<11 
'2+"'+'n+2'1/:> I-tl 
'2+"'+fm+2Im <1-1) 

VI <m<n,nJ=1I (mod 2) 

dt2'" dtn 
(t2 ... tn)tn 

= f O<Un_1 <"'<UI <1,/(I-l t) 
"1 + ... +u ll _l +21/"_1 >1 
"I +···+um_t+2um_1 <1 

VI<m<n,m-I=/I-1 (mod 2) 

= 1 ~ t f 0<u,,_I<···<u1<1/'1 
1 "1 +"'+11,,_1 +2u,,_1 >1 

Ut+",+um_I+2um_1 <1 
VI<m<tI,m-!=II-! (mod 2) 

dUI ... dUn_1 

(UI •.. Un-I)Un-1 

1 r dUl ... dUn-l 
= 1 - ti 1n,,_I(SI) (UI ... Un-I)Un-1 

SI 
= -1 -fn-I(SI) 

- ti 

= 2. fn-I (2. - 1) . 
ti ti 

Setting t = lltJ, we obtain 

11/S 1 ( 1 ) dtl sfn(s) = - fn-I - - 1 -
I/(n+2) ti ti ti 

= -1s 
fn-I (t - l)dt 

n+2 

[
n+2 

= s fn-I(t - l)dt 

= [00 fn-I(t _ l)dt, 
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since fn-I (t - 1) = O for t - 1 2: (n - 1) + 2 by (9.19). 
Let n 2: 3 be an odd integer. If (tI, ... , tn) E Rn(s), then tI < l/s. AIso, it 

follows from inequality (9.16) with m = 1 that tI < 1/3, and so tI < 1/ max(s, 3). 
Therefore, if 1 :::: s :::: 3, then 

and 

This completes the proof. 
We construct the function h(s) for s 2: 1 as follows: 

It is easy to check (Exercise 8) that 

h(s - 1) < 4h(s) 

For s 2: 2, let 

for1::::s::::2 
for 2 :::: s :::: 3 
for s 2: 3. 

for s 2: 2. 

H(s) = [00 h(t _ l)dt. 

(9.23) 

Both h(s) and H(s) are continuous, positive, and decreasing functions on their 
domains. Let 

We can express a in terms of the exponential integral 

Ei(x) = IX e't-Idt 
-00 

since 100 e-'t-Idt = -Ei(-3) = 0.013048 .... 

We can obtain this number with technology, such as Maple, or without technology, 
either by estimating the integral directly or by looking it up in old books, such as 
Dwight's Mathematical Tables[26, page 107]. We find that 

a =0.96068 .... (9.24) 
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Lemma9.6 
H(s) ::: ash(s) for s ::: 2 

and 
H(3) ::: ash(s) for 1 ::: s ::: 3. 

Proof. If s ::: 3, then h(s - 1) ::: e I - s and 

100 esh(s) 
H(s)::: s eI-tdt = eI- s = -3- < ash(s). 

For 2 ::: s ::: 3, let 

Wehave 

and so 

Then 

Ho(s) = ash(s) - H(s). 

s - 1 = 1 + (s - 2) ::: es- 2, 

H~(s) = ah(s) + ash'(s) - H'(s) 

= a(1 - s)e-S + h(s - 1) 

::: (1 - a)e-2 

> O, 

and so Ho(s) is increasing for 2::: s ::: 3. Since 

Ho(2) = O 

by the definition of a, it follows that 

H(3) ::: H(s) ::: ash(s) for 2 ::: s ::: 3. 

Let 1 ::: s ::: 2. Since a < 1, it follows that h(2) > H(2)j2 and 

(9.25) 

(9.26) 

H(2) 
H(3) = H(2) - e-2 = H(2) - h(2) < -2- = ah(2) ::: ash(2) = ash(s). 

This completes the proof. 

Lemma 9.7 lfn is odd and s ::: 1, or ifn is '~ven and s ::: 2, then 

Proof. This is by induction on n. For n = 1, we shall show that 



250 9. The linear sieve 

For 1 :::: s :::: 3, we have sft (s) = 3 - s by (9.20). If 1 :::: s :::: 2, then h(s) = e-2 

and 

sft(s) = 3- s :::: 2 = 2e2h(s) :::: 2e2sh(s). 

If2 :::: s :::: 3, then h(s) = e-s and 

If s :::: 3, then ft(s) = O and 

This proves the case n = 1. 
Now let n :::: 2, and assume that the lemma holds for n - 1. By (9.21) and (9.25), 

if n is even and s :::: 2, or if n is odd and s :::: 3, then 

sfn(s) = [00 fn-t(t - l)dt 

:::: 2e2an-2 [00 h(t _ l)dt 

= 2e2a n- 2 H(s) 

:::: 2e2a n- 2ash(s) 

:::: 2e2a n- t sh(s). 

By (9.22) and (9.26), if n is odd and 1 ::::: s ::::: 3, then 

sfn(s) = loo fn-t(t - l)dt 

This completes the proof. 

:::: 2e2a n- 2 loo h(t - l)dt 

:::: 2e2a n - 2 H(3) 

:::: 2e2a n- 2ash(s) 

:::: 2e2a n- tsh(s). 

Theorem 9.4 For s :::: 1, thefunction 

00 
F(s) = 1 + L fn(s) 

11-1 
m .. :l (mod 2) 

is continuous and differentiable, and 

F(s) = 1 + O (e-S ) • 

(9.27) 
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For s ::::: 2, the Junction 

00 

f(s) = 1 - L fn(s) (9.28) 
"-2 

"..o (mod 2) 

is continuous and differentiable, and 

f(s) = 1 + O (e-S ) • 

Proof. By Lemma 9.7, 

for s ::::: (3 + ( _1)n) /2. Therefore, 

00 

L fn(s) « e-s • 

n-l 

The theorem follows immediately from this inequality. 

9.4 The Jurkat-Richert theorem 

From now on, we shall consider only arithmetic functions g(d) that satisfy the 
linear sieve inequality (9.29). 

Lemma 9.8 Let z :::: 2 and 1 < w < z. Let'P be a set ofprimes, and let g(d) be 
a multiplicative function such that 

o ~ g(p) < 1 for ali pE 'P 

and n (1 - g(p»-l ~ K logz 
pe'P log u 

for some K > 1 and ali u such that 1 < u < z. Let 

V(z) = n (1 - g(p», 
pe'P 
p<, 

and let <1> be a continuous, increasingJunction on the interval [w, z]. Then 

(9.29) 

L g(p)V(p)<I>(p) ~ (K -1)V(z)<I>(z) - KV(Z)l z <I>(u)d (IOgz). 
~ w ~u 

w::5;p<<: 
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Proof. The step function 

Seu) = L g(p)V(p) 
pe'" 

is nonnegative and decreasing. By Lemma 9.2 and inequality (9.29), 

Seu) = V(u) - V(z) 

Let 

= (V(U) _ 1) V(z) 
V(z) 

= (n (1 - g(p»-l - 1) V(z) 
pe'" 

u'!:p<z 

( logz ) :::: K-- - 1 V(z). 
logu 

w :::: Pk < Pk-l < ... < Pl < z 

be alI the primes in P that lie in the interval [w, z). Then S(Pk) = S(w), S(Pl) = 

g(Pl)V(Pl), and Seu) = O for Pl < u :::: z. By partial summation and integration 
by parts of the Riemann-Stieltjes integral, 

k 

L g(p) V (p )ct>(p) = L g(Pi) V (Pdct>(Pi) 
pe'" i=l 

k 

= L(S(Pi) - S(Pi-l»ct>(Pi) + S(Pl)ct>(Pl) 
i=2 

k k-l 

= L S(Pi )ct>{Pi) - L S{Pi )ct>{Pi+d 
i-l 

k-l 

= S{pk)ct>(pk) + L S{Pi)(ct>{Pi) - ct>(Pi+l» 

= S{w)ct>{w) + S{Pk) (ct>{Pk) - ct>(w» 
k-l 

+ L S(Pi) (ct>(Pi) - ct>(Pi+l» 
i-l 

(PI 
= S(w)ct>(w) + Jw S(u)dct>(u) 

= S(w)ct>(w) + iZ S(u)dct>(u) 

= S(z)ct>(z) - iZ ct>(u)dS(u) 

I z (IOgZ) :::: (K - l)V(z)ct>(z) - KV(z) ct>(u)d - . 
w logu 
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This completes the proof. 

Theorem 9.5 Let z ::: 2, anii let D be a real number such that D ::: z for n odd 
anii D ::: Z2 for n even, that is, 

S=--> 
log D {1 if n is odd 
logz - 2 ifn is even. 

Let P be a set of primes, and let g(d) be a multiplicative function such that 

O:::: g(p) < 1 for ali pE P 

anii 

TI (l-g(p»-':::: K logZ 
pe'P logu 

usp<: 

for ali u such that 1 < u < z, where the constant K satisfies 

1 
1 < K < 1 + 200' 

Then 

Proof. We detine the number 

'l' = Ol + 5(K - 1) + lle-8 

and the functions 

for n ::: 1. Note that 

99 
Ol < 'l' < 0.9607 + 0.0250 + 0.0037 = 0.9894 < 100' 

We shall prove that 

This immediately implies (9.30) since h(s) :::: e-s for alI s ::: 1. 

(9.31) 

(9.32) 

The proof of (9.32) is by induction on n. Let n = 1. By Lemma 9.3 with f3 = 2, 
we have T,(D, z) = O for s > 3. Since theright side ofinequality (9.32) is positive, 
it follows that the inequality holds for s > 3. If 1 :::: s :::: 3, then f,(s) = (3/s) - 1 
and 

T](D, z) = V(D'/3) - V(z) 
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by (9.13). It follows that 

TI(D, z) 

V(z) 

V(D I / 3) 
----1 

V(z) n (1 - g(p»-I - 1 
DI/3~p<l 

logz 
< 3K---l 
- logD 

3K 
= --1 

S 

= (~ - 1) + ~(K - 1) 
:::: ft(s)+3(K -1) 

< fl(s) +ht(s) 

since h(s) ~ e-3 and!' > lle-8 , hence 

ht(s) = (K - l)utOh(s) > (K - l)lle- t > 3(K - 1). 

This proves the lemma for n = 1. 
Let n ~ 2, and as sume that the lemma holds for n - 1. For n even and s ~ 2, 

or for n odd and s ~ 3, we define the function 

<l>(u) = fn-t (lOg D _ 1) + hn- t (lOg D - 1) 
log u logu 

for 1 < u :::: w. The function <l>(u) is continuous, positive, and increasing. 
Moreover, 

<l>(z) = fn-t (s - 1) + h n - t (s - 1). 

It follows from the recursion formula (9.14), the induction hypothesis for n - 1, 
and Lemma 9.8 that 

Tn(D, z) = L:g(p)Tn- t (D, p) 
PEr> p 

'" ((log D) (lOg D )) < f.:;g(p)V(P) fn-I logp - 1 +hn- t logp-l 

p<z 

= L:g(p)V(p)<l>(p) 
pEr> 
p<z 

i l (IOgz) = (K - I)V(z)<l>(z) - KV(z) <l>(u)d-
t logu 

= (K -1)V(z)(fn-t(S -1)+hn_t (s -1) 

_ KV(z) r <l>(u)d (lOg D) 
s li logu 
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= (K - 1)V(z) (fn-l (S - 1) + hn- l (S - 1» 

KV(z) 100 
+-- (fn-l(t -l)+hn-l{t -l»dt, 

S s 

where the last equation comes from substituting t = log D / log u in the integral. 
By (9.21), we have 

K 100 
- !n-l(t - l)dt = K!n(s). 
S s 

Similarly, from the definition of H(s) and (9.25), we have 

[00 het _ l)dt = H(s) ::: ash(s) 

and so 

K 100 - hn-l(t - l)dt ::: aKhn_l(s). 
s s 

Since h(s - 1) < 4h(s) for s 2: 2, we have 

and 

(K - l)hn- l(s - 1) < 4(K - l)hn_l(s) 

(K - l)!n-l(S - 1) ::: (K - 1)2e2an- 2h(s - 1) 

< 8e2(K - l)an - 2h(s) 

= 8e-s c;:r- l a-I(K - 1)e lO • n- l h(s) 

< ge-8hn _ l (s) 

since O < a < • and a-l < 9/8. Therefore, 

Tn(D, z) ( 8) 
~_....:.. < K!n(s) + aK + 4(K - 1) + ge- hn-l(s). 

V(z) 

By Lemma 9.7 and definition (9.31), we have 

and so 

Since 

we have 

(K - l)!n(s) ::: (K - 1)2e2a n- lh(s) < 2e-8hn_ l(s), 

aK = K - (1 - a)K < K - (1 - a) = (K - 1) + a, 

_Tn_(_D_, z_) < !n(s) + (a + 5(K - 1) + lle-8) hn- l (s) 
V(z) 

= !n(s) + .hn-l(s) 

= !n(s) + hn(s). 
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Let n ~ 3 be odd, and let 1 ::: s ::: 3. If z = D 1/ 3, then log D / log z = 3. By the 
recursion formula (9.15) and the same argument used above, we obtain 

Tn(D, z) = L g(p)Tn- 1 (D, p) 
PE1' P 

p<DI/3 

< L g(p)V(p)<f>(p) 
pE1' 

p<DI/3 

< Un(3) + hn(3»V(z) 

::: Un(s) + hn(s»V(z) 

since the functions fn(s) and h(s) are decreasing. This completes the proof. 

Theorem 9.6 Let z, D, s, 'P, g(d), and K = 1 + e satisfy the hypotheses of 
Theorem 9.5. Let 

Then 

and 

G(z, ). ±) = L ). ±(d)g(d). 
dIP(z) 

G(z,). +) < V(z) (F(s) + ee I4- S ) 

G(z, ). -) > V(z) (t(s) - eeI4- s ) , 

where F(s) and f(s) are the continuous functions defined by (9.27) and (9.28). 

Proof. We note that the sum of the following geometric series satisfies 

( 99 )n 
100 < 51 < e4 • 

.. -o 

00 

L 
"..o (mod 2) 

By (9.10) and Theorem 9.5, 

00 

G(z,).+) = V(z) + L Tn(D,z) 
IJ-l 

mei (mod 2) 

< V(z) (1+ J~./,(')+eelo--, J~., c:r) 
< V(z) (F(s) + ee I4- S ) • 

Similarly, by (9.11) and Theorem 9.5, 

00 

G(z, ). -) = V(z) - L Tn(D, z) 
.. -1 

1J:5iO (mod 2) 
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> V(Z) (f(S) - ee 14- s ) • 

This completes the proof. 

Theorem 9.7 (Jurkat-Richert) Let A = {a(n)}:l be an arithmeticfunction such 
that 

a(n) ~ O forall n 

and 
()() 

lAI = La(n) < 00. 

n=l 
Let P be a set of prime numbers and, for z ~ 2, let 

Let 

P(z) = np. 
PEP 
p<z 

()() 

S(A, P, z) = L a(n). 
11-1 

(II,P(z»-1 

For every n ~ 1, let gn(d) be a multiplicativefunction such that 

for ali pE P. 

Define r(d) by 
()() ()() 

IAdl = L a(n) = L a(n)gn(d) + r(d). 
,,-1 n=l 
din 

(9.33) 

Let Q be a finite subset ofP, and let Q be the product of the primes in Q. Suppose 
that,for some e satisfying O < e < 1/200, the inequality 

n (1 - gn(p))-l < (l + e) log z 
pEP\Q logu 
u-:Sp<z 

(9.34) 

holds for ali n and 1 < u < z. Then for any D ~ z there is the upper bound 

S(A, P, z) < (F(s) + ee 14- s )X + R, (9.35) 

and for any D ~ Z2 there is the lower bound 

S(A, P, z) > (f(s) - ee14- s )X - R, (9.36) 

where 
logD 

S=--, 
logz 
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f(s) and F(s) are the continuousJunctions deftned by (9.27) and (9.28), 

00 

X = La(n) n (1 - gn(P», 

and the remainder term is 

n-l pIP(z) 

R = L Ir(d)l· 
dIP(z) 
d<DQ 

(9.37) 

lf there is a multiplicative Junction g(d) such that gn (d) = g(d) for ali n, then 

X = V(z)IAI, (9.38) 

where 
V(Z) = n (1 - g(p». 

pIP(z) 

Proof. Let Pl = P \ Q. By Theorem 9.3, there exist upper and lower bound 
sieves A ±(d) with sieving range Pl and support Ievel D, and with IA ±(d)1 ::: 1 for 
alI d ~ 1. We detine 

Gn(Z, A ±) = L At(d)gn(d) 
PIPI (z) 

and 
Vn(Z) = n (1 - gn(P»· 

pIPI(z) 

Since Pl and Q are disjoint sets of primes, we have 

n (1 - gn(P» = Vn(z) n (1 - gn(q». 
pIP(z) qIQ(z) 

By Theorem 9.6, 

and 
Gn(Z, A -) > Vn(z) (F(s) - ee14- s ). 

It follows from Theorem 9.2 that 

00 

S(A, p, z) ::: La(n)Gn(z, Ar) n (1 - gn(q» + R 
n-l qIQ(z) 

00 

< (F(s) + ee14- s ) L a(n)Vn(Z) n (1 - gn(q» + R 
n-l qIQ(z) 

00 

= (F(s) + ee14- s ) L a(n) TI (1 - gn(P» + R 
n-l pIP(z) 

= (F(s) + ee14- s )X + R. 

The lower bound is obtained similarly. This completes the proof. 
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9.5 Differential-difference equations 

In this section, we shall compute initial values for the functions 

and 

We shall prove that 

and 

00 

F(s) = 1 + L fn(s) for s :::: 1 
0-) 

11=) (mod 2) 

00 

f(s) = 1 - L fn(s) for s :::: 2. 
0-2 

osO (mod 2) 

2eY 
F(s) = -

s 
for 1 ~ s ~ 3 

2eY log(s - 1) 
f(s) = ---=---

s 
for 2 ~ s ~ 4, 

where y is Euler's constant. We define f(s) = O for 1 ~ s ~ 2. 

Lemma9.9 
sF(s) = 3F(3) 

for 1 ~ s ~ 3. 

Proof. Let 1 ~ s ~ 3. By Lemma 9.5, 

for alI odd n :::: 3. 

Since 

by (9.20), it follows that 

00 

sF(s) = s +Sf1(S) + L sfn(s) 
11-3 

n!lil (mod 2) 

00 

=3+ L 3fn(3) 
0-3 

11=1 (mod 2) 

= 3F(3), 

which completes the proof. 
Define the constants A and B by 

A = sF(s) for 1 ~ s ~ 3 

and 
B = 2f(2). 
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Lemma 9.10 Thefunctions F(s) and f(s) are solutions ofthe system ofdiffer­
ential-difference equations 

(sF(s))' = f(s - 1) 

(sf(s))' = F(s - 1) 

fors > 3 

fors > 2. 

Proof. Let n ~ 2. By Lemma 9.5, for n odd and s ~ 3, or for n even and s ~ 2, 
wehave 

sfn(s) = 100 
fn-I (t - l)dt 

andso 

(sfn(s))' = -fn-I(S - 1). 

For s > 3, we have sfl(s) = O and so 

(sF(s))' = (s + t Sfn(S)) , 

";31 (mod 2) 

Similarly, for s > 2 we have 

= (s + t Sfn(S)) , 

n:el (mod 2) 

00 

= 1 - L fn-I (s - 1) 
1'-3 

,,~I (mod 2) 

00 

= 1 - L fn(s - 1) 
11-2 

11550 (mod 2) 

= f(s - 1). 

(sf(s))' = (s - ~ Sfn(S)) ' 

1'50 (mod 2) 

00 

= 1 + L fn-I (s - 1) 
11-2 

,,=o (mod 2) 

00 

= 1 + L fn(s - 1) 
"-1 

"=1 (mod 2) 

= F(s -1). 

This completes the proof. 



9.5 Differential-difference equations 261 

Lemma 9.11 For s ~ 2, let 

P(s) = F(s) + f(s) 

and 
Q(s) = F(s) - f(s). 

For s > 3, thefunctions P(s) and Q(s) are the unique solutions ofthe dijJerential­
dijJerence equations 

sP'(s) = -P(s) + P(s - 1) 

and 
sQ'(s) = -Q(s) - Q(s - 1) 

that satisfy the initial conditions 

sP(s) = A + B + Alog(s -1) 

and 
sQ(s) = A - B - A log(s - 1) 

for 2 :::: s :::: 3. Moreover, 

and 

Proof. Since 

it follows that 

or, equivalently, that 

P(s) = 2 + O(e-S ) 

sF(s)=A 

A 
F(s) =­

s 

A 
F(s -1)=-­

s-1 

for 1 :::: s :::: 3, 

for 1 :::: s :::: 3 

for 2 :::: s :::: 4. 

Since (sf(s»' = F(s - 1) for s > 2, it follows that 

l s A 
sf(s) = 2f(2) + --dt = B + A log(s - 1) 

2 t - 1 

for 2 :::: s :::: 4. Since 

sF(s)=A for 1 ::: s ::: 3, 

it follows that 
sP(s) = A + B + A log(s - 1) 

and 
sQ(s) = A - B - Alog(s -1) 

(9.39) 

(9.40) 

(9.41) 

(9.42) 
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for 2 ~ s ~ 3. For s > 3, we have 

(s P(s»' = (s F(s»' + (sj(s»' = j(s - 1) + F(s - 1) = P(s - 1), 

and so 
sP'(s) = -P(s) + P(s -1). 

Similarly, 

(sQ(s»' = (sF(s»' - (sj(s»' = j(s - 1) - F(s - 1) = -Q(s - 1) 

andso 
sQ'(s) = -Q(s) - Q(s - 1). 

By Theorem 9.4, we have F(s) = 1 + O(e-S ) and j(s) = 1 + O(e-S ), and so 
P(s) = 2 + O(e- S ) and Q(s) = O(e-S ). This completes the proof. 

The differential-difference equations (9.39) and (9.40) are of the form 

sR'(s) = -aR(s) - bR(s - 1). (9.43) 

Associated with this equation is the adjoint equation 

(sr(s»' = ar(s) + br(s + 1). (9.44) 

To every solution R(s) of equation (9.43) and every solution r(s) of equation (9.44), 
we associate the function 

(R(s), r(s)} = sR(s)r(s) - b 1~1 R(x)r(x + l)dx 

for s :::: 3. Differentiating with respect to s, we obtain 

d 
ds (R(s), r(s)} 

= R(s)r(s) + s R'(s)r(s) + s R(s)r'(s) - bR(s)r(s + 1) + bR(s - l)r(s) 

= (sR'(s) + bR(s - 1»r(s) + (r(s) + sr'(s) - br(s + 1»R(s) 

= -aR(s)r(s) + aR(s)r(s) 

=0. 

Therefore, (R(s), r(s)} is constant for s :::: 3. 
The equation adjoint to (9.40) is 

(sq(s»' = q(s) + q(s + 1) 

or, equivalently, 
sq'(s) = q(s + 1). 

This has the solution 
q(s) = s - 1. 
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Clearly, 
q(s) '" s 

as s tends to infinity, and 
q(l) = O. 

Since Q(s) = O(e-S ), it follows that 

and 

1~1 Q(x)q(x + l)dx = 0(1). 

Therefore, 
Iim (Q(s), q(s») = O. 

s ..... OO 

Since (Q(s), q(s») is constant for s ~ 3, it follows that 

(Q(s), q(s») = ° 
for s ~ 3. This impIies that B = 0, since (xQ(x»' = -(x - 1)-1 by (9.42), and 

° = (Q(3), q(3») 

= 3Q(3)q(3) -13 
Q(x)q(x + l)dx 

= 3Q(3)q(3) -13 
xQ(x)q'(x)dx 

= 3Q(3)q(3) - [xQ(x)q(x)]~:~ + 13
(X Q(X»'q(X)dX 

13 q(x) 
= 2Q(2)q(2) - A --dx 

2 x - 1 
= (A - B) - A 

=B. 

Similarly, the equation adjoint to (9.39) is 

(sp(s»' = p(s) - p(s + 1) 

or, equivalent1y, 
sp'(s) = - p(s + 1). (9.45) 

For s > 0, we introduce the function 

p(s) = 100 
exp(-sx - I(x»dx, (9.46) 
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where 

Since 
1 -1 -e 

0<---<1 
t 

for t > O, 

we have 
0< I(x) < x for x> O, 

and so 
exp( -(s + l)x) < exp (-sx - I(x» < exp (-sx). 

Therefore, the integral converges for alI s > O, and 

1 100 100 
1 -- = exp(-(s + l)x)dx < p(s) < exp (-sx) dx =-. 

s+l o o s 

It folIows that 
sp(s) '" 1 

as s tends to infinity. Using integration by parts and the observation that 

xI'(x) = 1 - e-x , 

we obtain 

sp'(s) = -100 
sxexp(-sx - I(x»dx 

= 100 
(:x exp(-sx») x exp(-I(x»dx 

= [xexp(-sx - I(x»]:'o -100 
exp(-sx) (~xeXP(-I(X») dx 

= -100 exp(-sx)(I-xI'(x»exp(-I(x»dx 

= -100 
exp(-sx) exp(-x) exp(-I(x»dx 

= -100 
exp(-(s + l)x - I(x»dx 

=-p(s+I). 

This proves that p(s) is a solution to the adjoint equation (9.45) for alI s > O. 
We shall prove that 

p(1) = eY • 

We need the folIowing integral representation for Euler's constant: 

y = 1\1 - e-l)t-1dt - foo e-1t-1dt (9.47) 
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(see Exercise 16 and Gradshteyn and Ryzhik [42, page 956]). Then 

I(x) = l x 
(1 - e-t)t-1dt 

= 11(1 -e-t)t-1dt + fX (1 - e-t)t-1dt 

= 11(1-e-t)t- ldt- fX e-tt-ldt+Iogx 

= 11(1 - e-t)t-Idt - foo e-tt-1dt + 100 e-tt-1dt + log x 

= y + 100 e-trldt + logx. 

It follows that 

-sp'(s) = 100 sxexp(-sx - I(x))dx 

= e-Y 100 s exp ( -sx -100 e-tr 1dt) dx 

= e-Y 100 
exp (-u -1: e-t r 1dt) du. 

For u > 0, we have 

andso 

p(1) = Iim p(s + 1) 
S-..()+ 

= - Iim sp'(s) 
s ..... o+ 

= e-Y Iim+ {OO exp (-u _ (OO e-tt- 1dt) du 
s-..o 10 luls 

= e-Y {OO Iim+ exp (-u _ (OO e-tt- 1dt) du 
10 s-..o lUls 

=e-Y 100 exp(-u)du 

= e-Y • 

Since P(s) = 2 + O(e-S ) and sp(s) '" 1, it follows that 

Iim (P(s), p(s) = Iim (sP(S)P(S) + t P(x)p(x + l)dX) = 2. 
s-+oo s-+oo ls-I 
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Since (P(s), p(s)) is constant for s :=: 3, it follows that 

(P(s), p(s)) = 2 

for all s :=: 3. Letting B = O in (9.41), we have 

and 

sP(s) = A + A log(s - 1) 

, A 
(sP(s)) =-­

s -1 

for 2 :s s :s 3. Therefore, 2P(2) = A and 

2 = (P(3), p(3)) 

= 3P(3)p(3) + 13 
P(x)p(x + l)dx 

= 3P(3)p(3) -13 
xP(x)p'(x)dx 

= 3P(3)p(3) - [x P(x)p(x)]~:~ + 13 
(x P(x))' p(x)dx 

13 p(x) 
= 2P(2)p(2) + A --dx 

2 x-l 

13 p(x) 
= Ap(2) + A --dx 

2 x-l 

= Ap(2) - A 13 
p'(x - l)dx 

= Ap(2) - Ap(2) + Ap(l) 

= Ae-Y • 

This proves that 
A = 2eY • 

We can now determine the initial values of F(s) and f(s). 

Theorem9.8 
2eY 

F(s) = -
s 

for 1 :s s :s 3 

and 
2eY log(s - 1) 

f(s)=----
s 

where y is Eu/er' s constant. 

for 2 :s s :s 4, 

Proof. Let 2 :s s :s 3, and let A = 2eY and B = O in (9.41) and (9.42). Then 

s P(s) = 2eY + 2eY log(s - 1) 
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and 
sQ(s) = 2eY - 2eY log(s - 1). 

Therefore, 
sP(s)+sQ(s) y 

sF(s) = 2 =2e. 

By Lemma 9.9, s F (s) is constant for 1 :'S s :'S 3 and so 

sF(s) = 2eY for 1 :'S s :'S 3. 

By Lemma 9.10, we have (sf(s»' = F(s - 1) for s > 2 and so 

ls ls 2eY 
sf(s) = 2f(2) + F(t - l)dt = --dt = 2eY log(s - 1) 

2 2 t - 1 

for 2 :'S s :'S 4. This completes the proof. 

9.6 Notes 

The material in this chapter is based on unpublished lecture notes of Henryk 
Iwaniec[68]. See Jurkat and Richert [69] for the original proof of Theorem 9.7. 
Standard references on sieve methods are the monographs of Halberstam and 
Richert [44] and Motohashi [87]. 

9.7 Exercises 

1. Let P be the product ofthe primes up to.jX. Prove Legendre's formula 

2. Let P be the product ofthe primes up to.jX. Prove Sylvester's formula 

3. Let AI = {al (n)} and A2 = {a2(n)} be arithmetic functions such thatal (n) :'S 
a2(n) for alI n ~ 1. Prove that 
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4. Let Ae = {ae(n)} be a nonnegative arithmetic function for.e = 1, ... ,k, and 
let A = {a(n)} be the arithmetic function defined by a(n) = al (n)+· . ·+ak(n) 
for alI n. Prove that 

k 

S(A, p, z) = L S(Ae, p, z). 
e-I 

5. Let 2 ~ w < z. Prove Buchstab's identity: 

S(A, P, z) = S(A, p, w) - L SCAp, p, p). 
w~p<z 

In particular, 
S(A, P, z) = lAI - L SCAp, P, p). 

p<z 

6. By iterating the Buchstab identity, prove that, for ZI ~ Z, 

S(A, p, z) ~ lAI - L IApI 1+ L IApIP21 
PI<ZI P2<PI<ZI 

L S(ApIP2P3' P, P3). 
P3<P2<PI <z 

7. Let P be a set ofprimes, and leU ±(d) be upper and lowerbound sieves with 
sieving range P and support level D. Let PI be a subset of P. We define 
functions A~(d) by Atcd) = A ±(d) if dis divisible only by primes in Pt. and 
A~(d) = O otherwise. Prove that A~(d) are upper and lower bound sieves 
with sieving range PI and support level D. 

8. Let h(s) be the function defined by 9.23. Prove that 

h(s - 1) < 4h(s) for s ~ 2. 

9. U se the recurrence relation 

sf2(s) = [00 ft(t - l)dt 

to prove that 
sf2(s) = s - 310g(s - 1)+ 310g3 - 4 

for 2 ~ s ~ 4. 

10. Prove that 
9x 9 

f(x);= x log -- ~ log-
9x -1 8 

for x ~ 1. Hint: Show that the function f(x) is decreasing for x ~ 1. 
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11. Let Q(s) be a continuous function on the interval [1, 2]. Prove that there ex­
ists a unique continuous function Q(s) defined for alI s :::: 1 that satisfies this 
initial condition and that is a solution of the differential-difference equation 

sQ'(s) = -Q(s) - Q(s - 1) 

for alI s > 2. Hint: For 2 < s ~ 3, we must have 

sQ(s) = -1s 
Q(x -1)dx +2Q(2). 

Similarly, for 3 < s ~ 4, we must have 

sQ(s) = -ls 
Q(x - l)dx + 3Q(3). 

The proof proceeds by induction. 

12. Let Q(s) be the function defined in Lemma 9.11. Prove that 

s(s - I)Q(s) = i S 
xQ(x)dx 

s-I 

for alI s :::: 3. Prove that 

0< sQ(s) « s-s. 

13. Let PI and P2 be disjoint sets of prime numbers, and let fI and h be 
arithmetic functions such that fI (d) =1 O only if d is a product of primes 
belonging to P I and h(d) =1 O only if dis a product ofprimes belonging to 
P2. Let f = fI * h. Prove that 

1 * f = (1 * fl)(1 * h). 

14. Let ĂT(d) and Ă~(d) be upper bound sieves with support levels DI and D2, 
respectively, and with disjoint sieving ranges PI and P2. Let Ă + + (d) be the 
convolution of ĂT(d) and Ă~(d), that is, 

Ă +(d) = ĂT * Ă~(d) = L ĂT(dl )Ă;(d2). 
d-d,d2 

Prove that Ă + is an upper bound sieve with support level D = DI D2 and 
sieving range P I U P2. 

15. Let Ăr(d) and Ă~(d) be upper bound sieves with support levels DI and D2, 
respectively, and with disjoint sieving ranges PI and P2, and let Ă1(d) and 
A:;(d) be lower bound sieves with support levels DI and D2, respectively, 
and with disjoint sieving ranges P I and P2. Prove that 

A -(d) = Al * A;(d) - Ar * A;(d) + Ar * A:;(d) 

Prove that A - is a lower bound sieve with support level D = DI D2 and 
sieving range P I U P2• 
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16. In the theory of the Gamma function, it is proved that 

-y = r'(1) = 100 e-X logxdx. 

From this formula, use integration by parts to obtain (9.47): 

y = 11 (1- e-t)t-Idt -100 e-tt-Idt. 
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Chen's theorem 

Is it even true that every even n is the sum of 2 primes? To show this 
seems to transcend our present mathematical powers .... The prime 
numbers remain very elusive fellows. 

H. Weyl [142] 

10.1 Primes and almost primes 

In this chapter, we shall prove one of the most famous results in additive prime 
number theory: Chen's theorem that every sufficiently large even integer can be 
written as the sum of an odd prime and a number that is either prime or the product 
of two primes. An integer that is the product of at most r not necessarily distinct 
prime numbers is called an almost prime of order r, denoted Pn and so Chen's 
theorem can be written in the form 

N=P+P2 

for every sufficiently large even integer N. We shall prove not only that every large 
even integer N has at least one representation as the sum of a prime and an almost 
prime of order two but that there are, in fact, many such representations. 

Theorem 10.1 (Chen) Let r(N) denote the number of representations of N in the 
form 

N = p+n, 
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where P is an odd prime and n is the product of at most two primes. Then 

where 

2N 
r(N) » 6(N) (log N)2 , 

n( 1 )n p - 1 6(N) = 1- --
(p -1)2 P - 2· p>2 piN 

p>2 

(10.1) 

(10.2) 

The number 6(N) is called the singular series for the Goldbach conjecture. 
The proof has two ingredients. The first is the Jurkat-Richert theorem (Theo­

rem 9.7), which gives upper and lower bounds for the linear sieve. The second 
is the Bombieri-Vmogradov theorem, which describes the average distribution of 
prime numbers in arithmetic progressions. Throughout this chapter, p and q denote 
prime numbers. 

10.2 Weights 

Let N be an even integer, N ::: 48 • We begin by assigning a weight w(n) to every 
positive integer n. Let 

(10.3) 

and 
(10.4) 

Then z ::: 4. We define 

1. (10.5) 

Clearly, 
w(n) :s 1 

for alI n, and w(n) = 1 if and only if n is divisible by no prime in the interval [z, y). 
Let P be the set of prime numbers that do not divide N. Then 2 ţf. P since N is 

even. Let 
P(z) = np. 

Let n be a positive integer such that 

pe'P 
p<z 

n < N and (n, N) = (n, P(z» = 1. 

Then n is divisible only by primes p ::: z that do not divide N. If n = PI P2 ... 
PrPr+I ... Pr+$' where 

z :s PI :s ... :s Pr < Y :s Pr+I :s ... :s Pr+so 



10.2 Weights 273 

then 
N s/3 = yS :s Pr+l ... Pr+s :s n < N 

and so s = O, 1, or 2. Suppose that w(n) > O. Since 

it follows that r = O or 1. If r = 1 and s = 2, then n = P1P2P3, where z :s Pl < 
y :s P2 :s P3, and so w(n) = O. Therefore, if w(n) > O, then either r = O and 
s = O, 1, or 2, or r = 1 and s = O or 1. In all of these cases, r + s :s 2. Therefore, 
if (n, N) = (n, P(z» = 1 and w(n) > O, then either n = 1 or n is an integer of the 
form Pl or Pl P2, where Pl and P2 are primes :::: z that do not divide N. 

Consider the set 

A = {N - P : P :s N, P E Pl. (10.6) 

Then A is a finite set of positive integers, and lAI = TC(N) - w(N), where w(N) 
denotes the number of distinct prime divisors of N. If n = N - P E A and 
if (n, N) > 1, then P divides N and so P fi. P, which is absurd. Therefore, 
(n, N) = 1 for alI nEA. We obtain a Iower bound for r(N) as follows. 

r(N) :::: L 1 
N-p+fl 

nefI,PI.PI P2:PI.P2:!z) 

> L 1 
neA 

nefl,PI,PI P2:PI·P2~z) 

L 1 
neA 

(n.P(,»-1 
nell.PI·PI P2:p)'P22:d 

> L w(n) 
neA 

(II,P(.l:))-l 
nefl,p)·pt P2:Pl.P2~z) 

> L w(n) 
"EA 

(1I,P(z»-1 

= ( ~ 1) -~ ( ~ ,~k) 
(n. P(,»-I (n. P(,»-I qk lin 

-~ (~ PI~~I 1)' 
(n,p(z»-t Z!::PI <)':;:P2:::P3 
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We shall express these three sums as sieving functions. If we let A = {a(n)}:l 
be the characteristic function of the finite set A, then the fust sum becomes simply 

L 1 = L a(n) = S(A, p, z). 
"EA 

(n,P(,IJ-1 
(n,P(z)-1 

We divide the second sum into two pieces: 

The first piece can be expres sed as a sieving function as follows: For every prime 
q,Iet Aq = {aq(n)}:'l be the arithmetic function defined by 

a (n)={ 1 ifnE-:4andqln 
q O otherwlse. 

Since (n, N) = 1 for alI nEA, we have q E P if aq(n) = 1, and 

L L 1 = L L aq(n) 
(n,~~:'J-1 z~~,;" z~q<y (n,P(z»-1 

= L S(Aq , P, z). 
z~q<y 

It is easy to estimate the second piece. Since z = N 1/ 8 ::: 4 and 

wehave 

ook-l 1 
L -qk = (q - 1)2' 
k=2 

00 

L L (k - 1) = L L L (k - 1) 
"eA z!:q<y Z<q<y k-2 neA 

(n.P(zlJ-1 ,klln - (n.P(z»-1 
W ~~ 

00 

< L LL(k-l) 
z~q<y k-2 ;k'I~ 

" ~k-l <N ~ ~--k-
z~q<y k-2 q 

1 
= N L (q -1)2 

z~q< 

N 
<-­

z-2 
2N 

<­
z 

= 2N7/ 8• 
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For the third sum, we let B be the set of alI positive integers of the form 

N - PIP2P3, 

where the primes PI, P2, P3 satisfy the conditions 

z :::: PI < Y :::: P2 :::: P3 

PIP2P3 < N 

(PIP2P3, N) = 1. 

Let B = {b(n)}~1 be the characteristic function of the finite set B. An element 
of B is a prime P if and only if P < N and N - P = PI P2P3 E A, where 
Z :::: PI < Y :::: P2 :::: P3· Therefore, 

neA Pl P2P3-n 
(n,P(z»-1 z:SPI <YSP2'S.P3 

1 = L 
PI P2P3 eA 

Z:SPI <YSP2:5P3 

pEB 

p?:,y 

peB 
P<Y 

::::Y+ L 1 
neB 

(n,P(y»-1 

peB 
p~y 

= Y + L ben) 
(n,P(y»-1 

= N I / 3 + S(B, P, y). 

We now have a lower bound for reN) in terms of sieving functions. 

Theorem 10.2 

1 1 
reN) > S(A, P, z) -"2 L S(Aq , p, z) - "2S(B, P, y) - 2N7/ 8 - N I / 3 • 

z~q<y 

We shall obtain a lower bound for S(A, p, z) and upper bounds for L q S(Aq , p, 
z) and S(B, P, y). 

10.3 Prolegomena to sleving 

In applying the linear sieve to estimate the three sieving functions, we choose the 
multiplicative function 

1 
g(d) = gn(d) = -

rp(d) 
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for aH n ~ 1. Since N is even, we have 2 rf. P and 

1 
O < g(p) = -- < 1 

p-l 
for aH pE p, 

so the functions g(d) satisfy (9.33). To establish inequaIity (9.34), we appIy 
Theorem 6.9, which says that there exists a number U1 (s) such that 

n ( 1 )-1 Iogz 
1-- <(1+s/3)-

u~p<z p Iogu 

for any U1 (s) :::: u < z. AIso, there exists U2(S) such that 

---= 1+ <1+-n (p - 1)2 n ( 1) s 
P:?'U2(E) p(p - 2) P:?'U2(E) p(p - 2) 3 

since the infinite product converges. Therefore, for 

we have 

( 1 )-1 n (1 - g(p))-1 = n 1 - ----=-1 
u~p<z u~p<z p 

= n (p_l)2 n (1- 2.)-1 
u~p<z p(p - 2) u~p<z p 

< (1 + S/3)2 logz 
logu 

Iogz 
< (1 +s)--. 

logu 

Let Q(s) be the setofallprimes p < uo(s), andlet Q = pnQ(s). This gives (9.34). 
Let Q(s) be the product of the primes in Q(s), and let Q be the product of the 
primes in Q. Then Q(s) depends onIy on s, not on N, and so 

Q:::: Q(s) < 10gN (10.7) 

for alI sufficient1y large integers N. 

Theorem 10.3 Let N be an even positive integer, and let 

V(z) = n (1 - g(p)) = n (1 __ 1_) 
pIP(z) p<z p - 1 

(p,N)-1 

(10.8) 

Then 

V(z) = 6(N) e-Y (1 + O (_1_)) , 
logz 10gN 
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where 

n( 1 )n p - 1 C5(N) = 1- --
(p -1)2 P - 2· p>2 pIN 

p>2 

Proof. Let 

W(z) = n (1 - ~ 1) . 
2<p<z p 

Then 

V(z) ( 1 )-1 -=n 1--
W(z) 2<p<z P - 1 

pIN 

= n (1 -~)-1 n (1 -~) 
p>2 P 1 p~z p 1 
pIN piN 

= n pP = ~ n (1 - p ~ 1) . 
p>2 p?:.z. 
pIN piN 

Since 1 - x > e-2x for O < x < (log 2)/2 and 1 - x < e-x for alI x, we have 

Thus, 

n (1 - ~) > n exp (--ţ-) 
p~z pl p~z pl 
pIN pIN 

= eXP(-2L:-1 ) 
p~zp-l 
piN 

> exp (-2W(N») 
- z-1 

> exp (-SI;gN) 

_ (-SIogN) 
- exp N1/8 

SlogN 
> 1- N1/8 . 

V(z) =n p - 1 (1+0(lOgN)). 
W(z) p>2 P - 2 N1/8 

pIN 

To estimate W(z), we see that 

( 1 )-1 ( 1) ( 1 )-1 W(z) n 1 - - = n 1- ---=-i n 1 --
p<z p 2<p<z p p<z p 
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= 2 n p(p - 2) 
2<p<z (p - 1)2 

=2 n (1_~1 ) 
2<p<z (p - 1)2 

= 2 TI (1 - (p ~ 1)2 ) D ( 1 + p(p 1_ 2») . 

Since 1 + x < eX < 1 + 2x for O < x < log 2, it follows that 

D ( 1 + p(p 1_ 2») < exp (~ p(p 1_ 2) ) 

< exp (~ n(n ~ 2) ) 

~ exp (2(Z ~ 2») 
~ exp (~) 

2 
< 1 +-. 

Z 

By Mertens's formula (Theorem 6.8), we obtain 

W(z) = 2 n (1 - ~ 2) (1 + O (~)) n (1 - .!.) 
p>2 (p 1) z p<z p 

=2 1- 1+0 - - 1+0 -( 1) ( (1)) e-Y 
( (1)) D (p - 1)2 z logz logz 

=2 1- - 1+0 --( 1) e-Y 
( (1)) TI (p - 1)2 logz logN' 

Therefore, 

V(z) 
V(z) = W(z) W(z) 

p - 1 ( 1) e-- Y 
( (1)) - -- 1- - 1+0 ---il p - 2 TI (p - 1)2 logz logN 

piN 

= 6(N)~ (1 + O (_1 )). 
logz logN 
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10.4 A lower bound for S(A, P, z) 

Theorem 10.4 

S(A, p, z) > + O(s) --o ( eY log 3 ) NV(z) 

2 10gN 

Proof. We shall apply the linear sieve and results about the distribution of prime 
numbers in arithmetic progressions to obtain a lower bound for the sieving function 
S(A, p, z). We use the prime number theorem in the form 

Then 

rr(N) = ~ (1 + O (_1 )). 
10gN 10gN 

IAI= L 1 
p<N 

(p,N)-I 

= rr(N) - w(N) 

= rr(N) + O (log N) 

= ~ (1+0 (_1_)) 
10gN 10gN· 

In the Jurkat-Richert theorem, the main term in the lower bound (9.36) is f(s)X, 
where 

x = V(z)IAI = V(z)~ (1 + O (_1_)) 
logN 10gN 

and V(z) is defined by (10.8). 
The remainder term in the Jurkat-Richert theorem is 

where 

We want to obtain 

R = L Ir(d)l, 
d<QD 
dIP(,) 

lAI 
r(d) = IAdl- La(n)g(d) = IAdl--. 

n qJ(d) 

N 
R« (logN)3 

(10.9) 

with D = D(N) as large as possible. We want D large because the function f(s) 
in the lower bound of the Jurkat-Richert theorem is an increasing function of 
s = log D / log z for 2 :::: s :::: 4. We have 

00 

IAdl = La(n) 
n_1 
din 
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00 

LI 
N-peÂ 

N-p"'O (mod d) 

LI 
pe'P 
p'S,N 

p .. N (mod d) 

L 1+ O(w(N» 
p'S,N 

p .. N (mod d) 

= rr(N; d, N) + O (log N), 

where the term w(N) appears when we include the primes that divide N. Therefore, 

where 

lAI 
r(d) ... IAdl - -

((J(d) 
rr(N) 

... rr(N;d, N) - -- + O(logN) 
((J(d) 

= lJ(N; d, N) + O (log N), 

rr(x) 
lJ(x;d, a) = rr(x;d, a) - -

({J(d) 

for x ~ 2, d ~ 1, and (d, a) = 1. There are two important results that provide 
estimates for lJ(x; d, a). The Siegel-Walfisz theorem states that 

x 
lJ(x;d, a)« (logX)A 

for any positive number A, where the implied constant depends only on A. This 
result is useful if the modulus d is not too large, say, d « (log x)A . The Bombieri­
Vmogradov theorem tells us about the average distribution of primes in congruence 
classes over a large set of moduli. It states that, for every A > 0, there exists a 
positive number B(A) such that 

for 

L max IlJ(x;d,a)l« x A 
d<D(A) (d,a)-l (log x) 

X 1/ 2 

D(A) = (logX)B(A) ' 

where the implied constant depends only on A. 
We shall apply the Bombieri-Vinogradov theorem with x = a = N and A = 3. 

Let 
D(3) N 1/ 2 

D = -- = -=--___ -:-::-::::--=-
log N (log N)B(3)+1 . 
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Then D ~ Z2 = N 1/4 • Since Q ::: Q(8) < log N for N ~ N(8), we have 

N 1/ 2 

Q D < (log N)B(3) = D(3) 

and 
N 1/ 2 N 

Q D log N < (log N)B(3)-1 « (log N)3 

for N sufficient1y large. Therefore, 

R = L Ir(d)1 
d<QD 
dIP(,) 

::: L Ir(d)1 
d<QD 
(d,N)-1 

::: L 1!5(N;d, N)I + QDlogN 
d<QD 
(d,N)-1 

N 
« L 1!5(N; d, N)I + (l N)3 

d<D(3) og 
(d,N)-1 

N 
« (logN)3' 

Now we apply the Jurkat-Richert theorem (Theorem 9.7) with z = N 1/ 8 and N 
sufficient1y large. We have 

s = log D = 4 _ 8(B(3) - 1»log log N E [3,4] 
logz logN 

andso 

f 2eY log(s - 1) eY log 3 O (IOgIOgN) eY log 3 
(s) ... = + = + 0(8). 

s 2 logN 2 

Therefore, 

S(A, P, z) > (f(s) - ee14- s )X - R 

> (f(s) - eell)V(z)-1 N (1 + 0(_1_)) + O ( N 3) 
og N log N (log N) 

> (eY log 3 + 0(8») NV(z). 
2 logN 

10.5 An upper bound for S(Aq , P, z) 

Theorem 10.5 

" (eY log 6 ) NV(z) 
~ S(Aq , p, z) < 2 + 0(8) -1--' 
~q ~N 
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Proof. We shall apply the Jurkat-Richert theorem again to get an upper bound 
for S(Aq , p, z), where q is a prime number such that z ::: q < y. If n = N - P E A 
and q divides both n and N, then q = p, which is impossible since the prime p 
does not divide N. Therefore, I Aq I = O if q divides N, so we can as sume that 
(q, N) = 1. 

Again we choose g(d) = gn(d) = l/rp(d) for all n, so inequalities (9.33) 
and (9.34) are satisfied. The error term rq(d) is defined by 

Let d divide P(z). Since d is a product of primes strict1y less than z, it follows that 
(q, d) = 1 for every prime number q ::: z, and so 

Then 

IAql 
rq(d) = IAqdl - rp(d) 

lAI lAI IAql 
== IA dl- --+----

q rp(qd) rp(qd) rp(d) 

r(q) 
== r(qd) - rp(d) , 

where r(qd) and r(q) are error terms of the form (10.9). Let 

and 

D(4) N 1/ 2 
D = -- = ---::-:-':':""""7 

log N (log N)B(4)+1 

D 
Dq=-. 

q 

Then Dq ::: D/z ::: z. The remainder term for S(Aq, p, z) is 

1 
Rq = L Irq(d)l::: L Ir(qd)1 +r(q) L (d)· 

d<QDq d<QDq d<QDq rp 
dIP(,) dIP(,) dlPW 

From Theorem 9.7, we have the upper bound 

where 
10gDq 

S =--
q logz 
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We do not estimate the main tem and the remainder tem for individual primes q. 
Instead, summing over Z ~ q < y, we obtain 

where 

L S(Aq, P,z) < L (F(Sq) + ee l4) IAq!V(z)+R', 
z~q<}' z!:q<y 
(q.N)-1 (q,N)-I 

R' == L Rq 
zSq<,. 
(q,N)-I 

1 
~ L L Ir(qd)l+ L r(q) L -

'9/<Y d<QD/q ,,;q<)' d<QD/q rp(d) 
(q,N)-1 dIP(,) (q,N)-I dIP(,) 

1 
~ L Ir(d')1 + L Ir(q)1 L -

d'<QD ,,,q<y d<NI/2 rp(d) 
(d',N)-I (q,N)-I 

and QD < D(4). Applying the Bombieri-Vinogradov theorem as in the previous 
section, we obtain 

L Ir(d')1 ~ L 1c5(N;d', N)I + L O(logN) 
d'<QD d'<DQ dl<DQ 
(d',N)-I (d',N)-1 (d'.N)-1 

N 
« (logN)4' 

Since y = N I / 3 < D ~ QD for sufficiently large N, we also have 

By Theorem A,17, 

andso 

N 
,~ Ir(q)1 « (log N)4' 
(q,N)-1 

1 L (d)« logN 
d<N rp 

, N 
R « (logN)3 

Next, we estimate the main tem. We have 

log Djq 8Iog(N I / 2 jq) 8(B(4) + 1) log log N 
Sq == 

logz logN 10gN 

Since N I / 8 = z ~ q < y = N I / 3, it follows that 

4 8Iog(N I / 2 jq) 
- < < 3 
3 logN -, 

(10.10) 
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and so 1 ~ Sq ~ 3. By Theorem 9.8, F(s) = 2eY js for 1 ~ S ~ 3. Therefore, 

andso 

AIso, 

Fs)=-= +0 ( 2eY eY 10gN (IOgIOgN) 
q Sq 410g(N1/2 jq) log N 

14 eY 10gN 
F(sq)+ee = 410g(N1/2jq) +O(e). 

IAql = rr(N;q, N) + O(log N) 
rr(N) 

= -- +8(N;q, N) + O(logN) 
cp(q) 

= CP(q)~OgN (1+0CO;N))+8(N;q,N). 

Therefore, 

L (F(sq) + ee l4)IAq I 
Z!;q<J 
(q,N)-1 

L (_e_Ylo...:....,..g N_ + O (e») N (1 + O (_1 )) 
z:S.q<y 410g(N1/2jq) cp(q) log N 10gN 
(q,N)-I 

+ L (F(sq) + eeI4 )8(N; q, N) 
z::;q<)' 
(q,N)-1 

= eYN L 1 
4 ,~q<y cp(q)log(N1/2jq) 

(q,N)-1 

( N ) 1 +0 -- L 1/2 10gN '~q<J cp(q)log(N jq) 
(q,N)-1 

( eN )" 1 ( " ) +0 -- ~ -+0 ~ 8(N;q,N) . 
log N ,~q<)' cp(q) ,~q<)' 

(q,N)-I (q,N)-I 

(10.11) 

It is not difficult to evaluate these terms. By the Bombieri-Vinogradov theorem 
again, we have 

L 8(N;q, N) = O ((1 NN)3)' 
,~q<y og 
(q,N)-1 

By Theorem 6.7, we have 

L-1 
,~q<y cp(q) 
(q,N)-1 

L-1-
,~q<J q - 1 

qE'P 



1 «L -
z'S;q<J q 
qeP 
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= loglogy -loglogz + 0(_1_) 
logz 

= log(8j3) + O (_1_) 
logz 

= 0(1). 

Using this estimate and inequality (10.10), we have 

~ L 1 = N L logN 
logN z~q<y cp(q)log(N1/2jq) (logN)2 z~q<y cp(q)log(N1/2jq) 

(q.N)-1 (q.N)-1 

N 1 
« L-(log N)2 z~q<y cp(q) 

(q.N)-I 

N 
« (logN)2· 

Therefore, 

"" 14 eY N "" 1 ( sN ) ~ (F(sq)+se )IAql = - ~ 1/2 + O -- . 
,~q<y 4 z~q<y cp(q) log(N j q) log N 
(q.N)-1 (q.NI-1 

We note that 

and 

Let 

and 

6N 1 
= logN Z~y q2 

N «-­
zlogN 

N7/ 8 
=--

logN 

S(t) = L ~ = loglogt + B + 0(_1_) 
q<t q logt 

1 
J(t) = log(N1/2 jt)· 
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The functions S(t) and j(t) are increasing. We shall estimate the sum 

by using integration by parts twice in Riemann-Stieltjes integrals. We have 

L I jY dS(t) jY --:-:::-- = = j(t)dS(t) 
z~q<y q log(NI/2/q ) z log(NI/2/t) z 

= j(y)S(y) - j(z)S(z) -lY S(t)dj(t) 

= j(y)(loglogy + B) - j(z)(log log z + B) 

-lY(lOgIOgt+B)dj(t) 

+0 (j(y)) + O (jY dj(t)) 
logz z logt 

= jY j(t)dloglogt + O ( 1 2)' 
z (logN) 

We compute the integral explicitly by making the change of variable t = NU. Then 

Therefore, 

and so 

lY j(t)dloglogt = lY tIOgtlo~~NI/2/t) 
1 t /3 da 

= log N JI /8 a«1/2) - a) 

210g6 
=--

10gN 

" (eY log 6 ) N ~ (F(sq) + eel4)IAq 1= + O(e) --
,,,q<y 2 log N 
(q,N)-I 

" (eY log 6 ) NV(z) 
~ S(Aq , P, z) < 2 + O(e) 10 N' 

z~q<y g 

10.6 An upper bound for S(B, P, y) 

Theorem 10.6 

( ceY ) NV(z) (e- I N ) 
S(B,P,y)< 2'+O(e) 10gN +0 (logN)3 . 
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Proof. Recall that 

B = {N - PIP2P3 : z S PI < Y S P2 S P3, PIP2P3 < N, (PIP2P3, N) = 1}. 

Before estimating the sieving function S(B, P, y), we shall drop the requirement 
that (PI, N) = 1 and relax the condition that PI P2P3 < N so that the numbers 
PI and P2P3 range over intervals independent of each other. This will produce 
a "bilinear form" in PI and P2P3. We shalllet the prime PI vary over pairwise 
disjoint intervals 

l S PI < (1 + s)l, 

where l is a number of the form 

l = z(1 + si 

such that z S l < y. Then 

log(y / z) log N 
O <k < «--. 

- 10g(1 +s) s 

Let 

B(f) = {N - PIP2P3 : z S PI < Y S P2 S P3, 

l S PI < (1 + s)l, "P2P3 < N, (P2P3, N) = 1} 

and 

Then 

(10.12) 

(10.13) 

B ~ 8 ~ {N - PIP2P3 : z S Pl < Y S P2 S P3, P1P2P3 < (1 +s)N}. (10.14) 

Let b(n), b(i)(n), and b(n) be the characteristic functions of the sets B, B(i), and 
8, respectively. Since the sets B(i) are pairwise disjoint, we have 

and 
- _ " (i) S(B, P, y) S S(B, p, y) - ~ S(B ,p, y). 

i 

We shall estimate the sieving function S(B(i), p, y) by using Theorem 9.7 with 
the functions 

1 
g(d) = gn(d) = -

rp(d) 

for alI n ~ 1, and with support level 

N 1/ 2 
D=--....,. 

(logN)A· 
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Then 

PI P2P3sN (mod d) 
Z:$PI <Y!5P2s'P3.lS.PI <(I+e)l 

lP2P3 <N.(P2P3.N }-1 

1, 

and the error tenn r~l) is defined by 

IB(l)1 
IB(l)1 == __ + (l) 

d rp(d) rd • 

In the next section, we shall prove that 

R(l) == L Ir~l)1 « N 4' 
d<O (logN) 

(10.15) 

dIP(y) 

With this estimate for the remainder, Theorem 9.7 gives the upper bound 

where 
10gD 3 (IOgIOgN) 1] s=--=-+O E[ ,3 
logy 2 10gN 

and so, by Theorem 9.8, 

4eY (IOgIOgN) F(s)=-+O . 
3 10gN 

It follows from (10.3) that 

V(y) logz ( (1)) 3 (1) 
V (z) = log y 1 + O log N = 8' + O log N . 

This gives 

S(B(l), p, y) 

< (~y + O (8») (~+ O CO;N)) IB(l)W(Z) + O ((lO;N)4) 
< (e; + 0(8») IB(l)W(z) + O ((lO;N)4)' 

Summing over the sets I3(l), we obtain 

since the number of sets I3(l) is 0(8-1 log N) by (10.12). 
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Next, we estimate Il1\. By the prime number theorem, 

( 1 + e)N) (1 + 2e)N 
7r PIP2 < PIP2 Iog(N/PIP2) 

for N ~ N(e). If PI ~ P2 ~ P3, and PIP2P3 < (1 + e)N, then PiPi < (1 + e)N 
and 

(1 + e)N 
P3 < 

It follows from (10.14) that 

IBI~ L 
Z~Pl <),,~P2~P3 

PI P2P3 «I+e)N 

~ '9~92 7r ((1;;~N) 
Pl P~<(1+E)N 

To estimate the inner sum, we introduce the functions 

and 

1 
h(t)=----

10g(N /Plt) 

(N /U)'/2 1 
H(u) = 1 dloglogt. 

y 10g(N lut) 

The function h(t) is positive and increasing for 0< t < NI/pl. Since y = N I/3, 
we have (N /y)I/2 = y and so H(y) = O. Since z = N I/8, we have, with the change 
of variable t = N" , 

N7/16 1 

H(z) = i'/3 log(N7/8/t)dloglogt 

1 17/16 da 
= log N 1/3 (7/8) - a 

= O CO;N). 
Recall that 

S(t) = L 2. = loglogt + B + 0(_1_) . 
p<t P logt 

Applying integration by parts to the inner sum, we obtain 

1 

Y:SP2«(~N/PI)I/2 P2 10g(N /PIP2) 
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~ h(P2) 
L P2 

Y:SP2 <((1 +o)N 1 p, )'/2 

1«1+0)NIP,)'/2 

= h(t)dS(t) 
Y 

1«1+0)NIP,)'/2 (h«(1 + e)N /P1)1 /2») 
= h(t)d log logt + O 

Y ~y 

l (N 1 p, )'/2 1 
= dloglogt 

Y log(N/P1t) 

j«I+0)NIP,)'/2 1 ( 1 ) 
+ d log log t + O 

(N 1 p, )'/2 log(N / P1 t) (log N)2 

= H(P1) + O ((logIN)2 ) . 

The error term is obtained as follows. First, 

h«(l + e)N / P1 )1/2) 
logy 

2 

log C1+~)P') log y 

2 
< --.,-----

log ((I~)y ) log y 

2 

log (N2/3 ) log Nl/3 
(1+0) 

1 
« (logN)2· 

Second, with the change ofvariable t = (N /p1)1 /2s , 

j «I+o)N 1 p, )'/2 1 
----d log log t 

(NI p,)'/2 log(N / P1 t) 

j«(1+0)NIP,)'/2 1 
= dt 

(Nlp,)'/2 tlogtlog(N/P1 t ) 

/
(1+0)'/2 ds 

= 1 slog(N/p1)1/2s)log(N/p1)1/2r 1) 

/
(1+0)'/2 ds 

= 1 s(log (N / P1 )1/2) + log s )(log (N / P1 )1/2) - log s) 

/
(1+0)'/2 ds 

= 1 S ((log(N/P1)1/2)2 - (lOgs?) 
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1 1(1+8)'/2 ds « -
{log N)2 1 S 

= O ({lOglN)2 ) . 

It follows that the outer sum is 

L H(PI) + O ( L 1 ) = L H(PI) + O ( 1 ) , 
z=:;p, <y PI z=:;p, <y PI {log N)2 z=:;p, <y PI (log N)2 

where the error term comes from the fact that 

1 L - = loglogy -loglogz + O((logZ)-I) 
z=:;p, <y PI 

= log(8j3) + O((logN)-I) 

= 0(1). 

We calculate the main term, as usual, by integration by parts: 

L H(PI) = l Y H(u)dS(u) 
z=:;p, <y PI z 

= l Y H(u)d log log u + O (max(H(Z), H(Y))) 
z logy 

=lY 
H(U)dIOgIOgU+O( 1 2)' 

z (log N) 

To evaluate the integral, we make the change of variables t = N a and u = N fJ . 
This gives 

Y N'/3 (N /U)'/2 1 1 H(u)dloglogu = { ( dloglogtdloglogu 
z 1 N'/8 1 N'/3 log(N jut) 

1 t/3 {(1-fJ)/2 dadfJ 

= log N 11/8 11/3 afJ(l - a - fJ) 

1 11/ 3 log(2 - 3fJ) 
= -- dfJ 

log N 1/8 fJ(l - fJ) 
c 

=--, 
logN 

where 11/3 log(2 - 3fJ) 
c = fJ dfJ = 0.363 .... 

1/8 fJ(1 - ) 

Therefore, 

IBI < +0 - (1 + O(s))cN (N) 
log N (log N)2 
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and 

( eY ) - ( 8-1 N ) S(B, p, y) < 2 + 0(8) IBIV(z) + O (log N)3 

( ceY ) NV(z) (8-1 N ) < -+0(8) --+0 . 
2 log N (log N)3 

10.7 A bilinear form inequality 

We must still prove inequality 00.15) for the remainder R(l). This will be a 
consequence of the following theorem. 

Theorem 10.7 Let a(n) be an arithmeticjunction such that la(n)1 :s: 1 for aU n. 
Let A be a positive number, let X > (log Y)2A, and let 

Then 

D* = (Xy)lj2 

(log y)A 

1 L max L L a(n) - - L L a(n) 
d<D* (a,d)-I n<X Z9<Y (ţJ(d) n<X Z~p<Y 

npsa (mod d) (Ilp,d)-I 

XY(logXYf 
« (log y)A ' (10.16) 

where the implied constant depends only on A. 

Proof. Let (a, d) = 1. By the orthogonality property of Dirichlet characters X 
(mod d), we have 

" -(a) (n ) = {(ţJ(d) if np ~ a (mod d) 
L X X P O otherwIse. 

x (mod d) 

This gives 

L L a(n) = L L a(n) L x(a)x(np) 
n<X Z9<Y n<X Z~p<y (ţJ(d) x (mod d) 

liPEa (mod d) 

1 
= m(d) L x(a) L a(n)x(n) L X(p)· 

T X (mod d) n<X Z~p<y 

The contribution of the principal character Xo (mod d) to this sum is 

l -L L a(n). 
(ţJ(d) n<X Z~p<Y 

(lIp,d)-1 
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It follows that the left side of (10.16) is bounded above by 

1 I II I L - L L a(n)x(n) L X(p) . 
d<D' rp(d) x (modd) n<X Z:sp<Y 

x"xo 

Every character X (mod d) factors uniquely into the product of a primitive char­
acter (mod r) and the principal character (mod s), where rs = d. Therefore, 
the sum can be written in the form 

" 1 ,,* " " ~ --~ X (mod') ~ a(n)x(n) ~ X(p) 
rs<D* cp(rs) xixo n<X Zsp<Y 

(II,s)-1 (p,s)-I 

1 1 * 
~ L - L - L L a(n)x(n) 

s<D' rp(s) r<D' rp(r) X (mod,) u<X 
X"XO (1/,$)-1 

L X(p) , 
ZSp<y 
(p,s)-I 

(10.17) 

where L * denotes the sum over primitive characters (mod r). To obtain the last 
inequality, we used the fact that the Euler rp-function satisfies rp(rs) 2: rp(r)rp(s). 
We can estimate the character sum Lp<Y X(p) by means of the Siegel-Walfisz 
theorem. We have 

LX(p) ~ L x(a) L 1 
p<Y a (mod r) p<Y 

p=a (mod r) 

L X (a):rr (Y; r, a) 
a (mod r) 

a ~d r) x(a) (:~~; + O ((lO;y)B )) 
rY 

« (log Y)B 

since 

L x(a) = O 
a (mod r) 

for every nonprincipal character x. Since also 

" rZ rY 
~z X (p) « (log Z)B « (log y)B ' 
p< 

it follows by subtraction that 

" rY ~ X(p)« (lo y)B· 
Z..:;p<Y g 
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If we add the condition (p, s) = 1, we remove at most w(s) « logs « log D* 
terms from the character sum and so 

" rY L...J X(p)« (l y)B + log D*. 
zsp<Y og 
(p,,)-1 

Since la(n)1 ::::: 1, we also have 

L a(n)x(n) ::::: X. 
n<X 

(n,s)-I 

Let Do be "small." The inner sum in (10.17), restricted to r < Do, is 

L _1_ L *. (modr) L a(n)x(n) 
r<O. qJ(r) "'0 n<X 

(n,s)-I 

« r~o ;~) CIO;~)B + log D*) 

Do3XY log D* 
« (logy)B 

L X(p) 
zs.P<Y 
(p,,)-I 

(10.18) 

The rest of the inner sum in (10.17) ranges over Do ::::: r < D*. We partition this 
interval into pairwise disjoint subintervals of the form Dj ::::: r < 2Dj, where 
Dj .. 2k Do and O ::::: k « log D*. This produces partial sums of the form 

L _1_ L*' (modr) 

0*<r<20. cp(r) x"'xo 
1- 1 

Dâ:sr<o· 

L a(n)x(n) 
n<X 
(n.s~1 

L X(p) 
Z:SP<Y 
(p,,)-I 

::::: _1 L L*' (modr) ((_r )1/2 L a(n)x(n») 
Dj D.<r<2D. ''''0 qJ(r) n<X 

D~~r<D~ (n,s)-I 

X _r_ L X(p) . (( )
1/2 ) 

qJ(r) ~:.:;r 

By Cauchy's inequality, this sum is bounded above by 

~ ( L _r L*' (modr) L a(n)x(n) 2)1/2 
DI 0.<r<20. qJ(r) "'0 n<X 

I I {n,s)-I 

X ( L _r L*' (modr) L X(p) 2)1/2 
0.<r<20. qJ(r) ''''0 zsp<Y 

1 - 1 (p,,)-1 
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The large sieve inequality [19, page 160) states that 

for every arithmetic function a(n). Applying this inequality to each ofthe factors 
in the product, and using the condition that la(n)1 ::: 1, we obtain 

L _1_ L*x (mod,) L a(n)x(n) L X(p) 
D*<r<2D* cp(r) x"ho n<X Z<p<Y 

J- I -
DO:sr<D* (n.s)-l (p,s)-) 

« ~* (Dr2 + X)X)I/2 (Dr2 + y)y)I/2 
I 

= (( D~2 + X + Y + ~~) Xy Y/2 
« (D~ + X 1/2 + yl/2 + (X~~1/2) (Xy)I/2 

« (D* + X I/ 2 + yl/2 + (X~t2) (Xy)I/2. 

Multiplying this by the number of partial sums, which is O(log D*), and adding 
(10.18), we obtain the following upper bound for the left side of (10.16): 

1 I II I L d L L a(n)x(n) L X(p) 
d<DO qJ( ) X (moddJ n<X z~p<y 

''''0 

1 D*3 Xy log D* « L - _o,,-:-:--=-,;;--
s<DO qJ(s) (log y)B 

L X(p) 
z~p<y 

(p.s}-I 

1 ( (XY)I/2) + L - D* + X 1/2 + yl/2 + * (Xy)I/2Iog D* 
s<DO qJ(s) Do 

D*3 XY(log D*)2 
< ° (log y)B 

( (XY)I/2) 
+ D*+X1/2+yl/2+ Do (XY)I/2(logD*)2. 

Note that we picked up a factor log D* from the estimate (Theorem A.17) 

1 L (s)« log D*. 
s<DO qJ 
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Choose B = 4A and D~ = (log y)A . Since X > (log y)2A and Y » (log y)2A, it 
follows that the left side of (10.16) is 

XY(logD*)2 (D* 1 1 1 ) * 2 
« (log y)A + (Xy)I/2 + XI/2 + yl/2 + D~ XY(log D ) 

( 1 1 1) 2 « XI/2 + yl/2 + (log y)A XY(log XY) 

XY(10gxy)2 

« (logy)A 

This completes the proof. 
We can now derive the upper bound (10.15) for the remainder term 

R(i) = L Ir~i)l, 
d<D 

dIP(y) 

where Z :::: l < y. From the definition (10.13) of the sets Bi , we obtain the 
individual error terms 

rei) = IB(i)l- _1_ IB(i)1 
d d (ţJ(d) 

l!SPI <Y~P2S.P3 
t':sPI<(I+E)f 

IP2P3 <N,(P2P3,N)-I 
PI P2P3",N (mod d) 

1 
1-­

(ţJ(d) 
zS.PI <Y!SP2!SP3 

t:SPI<(l+E)l 
IP2P3 <N,(P2P3,N)-1 

1. 

We delete some numbers from the second sum by adding the condition that 
(PI P2P3, d) = 1. This is equivalent to (PI, d) = 1, since the condition (P2P3, d) = 

1 already follows from the fact that d divides P(y). This additional condition 
decreases the second term by at most 

1 "1 (1 +e)N " 1 (1 +e)Nw(d) (Nlogd 
-- ~ < ~ -< «. 
(ţJ(d) PIP2P3«I+e)N (ţJ(d) pdd,PI2!z PI - z(ţJ(d) z(ţJ(d) 

Plld.Pf~:.z 

Leta(n) be the characteristic function ofthe set ofnumbers ofthe form n = P2P3, 

where y :::: P2 :::: P3 and (P2P3, N) = 1. Then we can wrlte the error term in the 
form 

where 

r~e) = L L a(n) - - L L a(n) + O , 1 (NIOgd) 

n<X z,,;p<y (ţJ(d) n<X Z,,;p<y z(ţJ(d) 
"P=O (mod d) (lIp.d)-1 

X=Njl 

Y = min(y, (1 + e)l) 

Z = max(z,l) 

a=N. 
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Since l < y, we have 

Similarly, 

D* = (Xy)1/2 
(log y)A 

N 1/ 2 min(yjl (1 + 8)1/2 
> ' 

(logy)A 

N 1/ 2 
>--­

(logN)A 

= D. 

D* < (XY)1/2 ::::: (Ny)1/2 < N. 

By Theorem 10.7, 

R(l) = L Ir5e) I 
d<D 

dIP()') 

< L Ir5l ) I 
d<D* 
dIP()') 

1 
a(n) - -.- L L a(n) 

cp(d) n<X Z~p<Y 
(np,d)-I 

d<D· n<X ZS,p<Y 
dIP(y) "P=O (mod d) 

" (NIOgd) +L.... 0 ---
d<D. zcp(d) 
dIP()') 

XY(log XY)2 N log D*" 1 « + L....--
(log Y)A Z d<D. cp(d) 

N « + N 7/ 8(log D*)2 
(logN)A-2 

N « + N 7/ 8(log)2 
(logN)4 

N 
« (logN)4 

if we choose A = 6. This completes the proof. 

10.8 Conclusion 

We can now prove Theorem 10.1. 
Proof. It follows from the formula for V (z) in Theorem 10.3 that 

NV(z) = 6(N) 8e-Y N (1 + O (_1_)) . 
log N (log N)2 log N 
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Theorem 10.2 gives a lower bound for r(N) in terms of three sieving functions. 
Using the estimates for these sieving functions in Theorems 10.4, 10.5, and 10.6, 
we obtain 

1 1 
r(N) > S(A, P, z) -"2 L S(A q , P, z) - "2S(B, p, y) - 2N7/ 8 - N I/3 

z:5q<y 

Since 

eY NV(z) 
> (2 log 3 -log6 - c - O(e» ---

4logN 

+0 e _ 2N7 / 8 _ NI/3 ( -IN) 
(log N)3 

> (2Iog3-log6-c-0(e»6(N) 2N 2 (1+0(_1_)) 
(logN) logN 

+0 e _ 2N7 / 8 _ N1/3. ( -IN) 
(logN)3 

2 log 3 - log 6 - c = 0.042 ... > O, 

we can choose e such that O < e < 1/200 and 

2log3 -log6 - c - O(e) > O. 

For this fixed value of e, we have 

Then 

( e-IN) (N) 
O (log N)3 = O (log N)3 . 

2N 
r(N) » 6(N) (log N)2 

This completes the proof of Chen 's theorem. 

10.9 Notes 

Chen [10, 11] announced his theorem in 1966 but did not publish the proof until 
1973, apparently because of difficulties arising from the Cultural Revolution in 
China. An account of Chen's original proof appears in Halberstam and Richert's 
Sieve Methods [44]. The proof in this chapteris based on unpublished notes and lec­
tures of Henryk Iwaniec [67]. The argument uses standard results from multiplica­
tive number theory (Dirichlet characters, the large sieve, and the Siegel-Walfisz 
and Bombieri-Vinogradov theorems), alI of which can be found in Davenport [19]. 
Other good references for these results are the monographs of Montgomery [83] 
and Bombieri [3]. For bilinear form inequalities, see Bombieri, Friedlander, and 
Iwaniec [4]. 



Part III 

Appendix 



Arithmetic functions 

A.l The ring of arithmetic functions 

An arithmetic Junction is a complex-valued function whose domain is the set of 
all positive integers. Let f and g be arithmetic functions. The sum f + g is the 
arithmetic function defined by 

(f + g)(n) = f(n) + gen). 

Addition of arithmetic functions is c1early associative and commutative, and every 
arithmetic function f has an inverse - f defined by (- f)(n) = - f(n). 

The Dirichlet convolution of the arithmetic functions f and g is defined by 

(f * g)(n) = L f(d)g(njd). 
din 

It is easy to see that Dirichlet convolution is commutative, that is, f * g = g * f, 
and distributes over addition in the following way: 

The following theorem shows that Dirichlet convolution is also associative. 

Theorem A.l lf f, g, and h are arithmeticJunctions, then 

f * (g * h) = (f * g) * h. 
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Proof. For any n ~ 1, 

«(f * g) * h)(n) = L(f * g)(d)h (~) 
din d 

= L (f * g)(d)h(m) 
dm-n 

= L L f(k)g(l)h(m) 
dm=nki-d 

= L f(k)g(l)h(m) 
kim-n 

= L f(k) L g(l)h(m) 
kln im-nlk 

= L f(k) L g(l)h (;l) 
kln il(nlk) 

= Lf(k)(g*h)(~) 
k~ k 

= (f * (g * h»(n). 

This completes the proof. 
We define the arithmetic function lS(n) by 

8(n) = { ~ ifn=l, 
ifn ~ 2. 

Then for any arithmetic function f we have 

(f * 1S)(n) = L f(d)1S (~) = f(n), 
din d 

and so the set of complex-valued arithmetic functions forms a commutative ring 
with identity element lS(n). This ring is an integral domain (Exercise 3). 

The product f . g of the arithmetic functions f and g is defined by 

(f . g)(n) = f(n)g(n). 

Let L be the arithmetic function L(n) = log n. Multiplication by L is a derivation 
on the ring of arithmetic functions, that is, 

L . (f * g) = (L . f) * g + f * (L . g) 

(Exercise 11). 
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A.2 Sums and integrals 

In number theory, we of ten need to establish asymptotic formulas or at least good 
estimates for sums of the form 

Mf(X) = Lf(n), 
n:5x 

where f(n) is an arithmetic function. It is sometimes possible to estimate these 
"mean values" by integrals. 

Theorem A.2 Let a and b be integers with a < b, and let f(t) be a monotonie 
Junetion on the interval [a, b]. Then 

b lb min(f(a), f(b» ~ L f(k) - f(t)dt ~ max(f(a), f(b». 
k-a a 

Proof. If f(t) is increasing on [a, b], then 

[k+l 
f(k) ~ A f(t)dt 

for k = a, a + 1, ... , b - 1, and 

f(k)::: [k f(t)dt 
Jk-l 

for k = a + 1, ... , b.1t follows that 

b b-l [b L f(k) = L f(k) + f(b) ~ la f(t)dt + f(b) 
k=a k-a a 

and b b-l lb L f(k) = L f(k) + f(a) ::: f(t)dt + f(a). 
k-a k-a+l a 

Thus, 

b lb f(a) ~ L f(k) - f(t)dt ~ f(b). 
k-a a 

Similarly, if f(t) is decreasing, then 

b lb 
f(b) ~ L f(k) - f(t)dt ~ f(a). 

k-a a 

This completes the proof. 
From this result, we get a useful estimate for n!. 
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Theorem A.3 For any positive integer n, we have 

e (~r ~ n! ~ en (~r . 
Proof. Since the function f(t) = logt is increasing on the interval [1, n], it 

follows from Theorem A.2 that 

n in logn! = I)ogn ~ logtdt + logn = n logn - n + 1 + logn 
k=! ! 

and 

logn!:::: inlOgtdt=nlOgn-n+1. 

The result follows from exponentiating these two inequalities. 
Partial summation is another simple and powerful tool for computing sums in 

analysis and number theory. 

Theorem A.4 (Partial summation) Let u(n) and f(n) be arithmetic Junctions. 
Define the sum Junction 

U(t) = L u(n). 

Let a and b be nonnegative integers with a < b. Then 

b b-! 

L u(n)f(n) = U(b)f(b) - U(a)f(a + 1) - L U(n)(f(n + 1) - f(n». 
n-a+! n=a+! 

Let x and y be real numbers such that O ~ y < x. If f(t) is a Junction with a 
continuous derivative on the interval [y, x], then 

L u(n)f(n) = U(x)J(x) - U(y)J(y) -IX U(t)J'(t)dt. 
y<n~x y 

In particular, if f(t) has a continuous derivative on [1, x], then 

~ u(n)f(n) = U(x)f(x) - f.x U(t)f'(t)dt. 

Proof. This is a straightforward calculation. 

b 

L u(n)f(n) 
n-a+! 

b 

= L (U(n) - U(n - 1)f(n) 
n=a+! 

b b-! 

= L U(n)f(n) - L U(n)f(n + 1) 
n=a+l n=a 

b-! 

= U(b)f(b) - U(a)f(a + 1) - L U(n)(f(n + 1) - f(n». 
n=a+! 
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If the function f(t) is continuously differentiable on [y, x], then 

l n+1 

f(n + 1) - f(n) = n f'(t)dt 

and 

U(n) (f(n + 1) - f(n)) = l n
+

1 
U(t)f'(t)dt. 

Let a = [y] and b = [x]. Then 

L u(n)f(n) 
y<n:ox 

b 

= L u(n)f(n) 
n=a+l 

b-l 

= U(b)f(b) - U(a)f(a + 1) - L U(n)(f(n + 1) - f(n)) 
n-a+l 

b-l ln+1 
= U(x)f(b) - U(y)f(a + 1) - n~l n U(t)f'(t)dt 

= U(x)f(x) - U(y)f(y) - U(x)(f(x) - f(b)) - U(y)(f(a + 1) - f(y)) 

_ rb U(t)f'(t)dt 
Ja+! 

= U(x)f(x) - U(y)f(y) - i X 
U(t)f'(t)dt. 

If f(t) is continuously differentiable on [1, x], then 

L u(n)f(n) = u(l)f(l) + L u(n)f(n) 
n:5x 1 <n:::::x 

= u(l)f(l) + U(x)f(x) - U(l)f(l) -iX 
U(t)f'(t)dt 

= U(x)f(x) -iX 
U(t)f'(t)dt. 

This completes the proof. 
Here is an application of partial summation. RecaB that every real number x can 

be written in the form 
x=[x]+{x}, 

where [x] is the integer part of x and {x} is the fractional part of x. 

Theorem A.S Let i OO {t} 
Y = 1 - -dt. 

1 t 2 
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Then O < y < 1 and 

L ~ = log x + y + O (~) . 
n~x X 

The real number y is called Euler's constant. 

Proof. Since O::: {t} < 1 for alI t, we have 

O < -dt < -dt = 1 100 {t} 100 1 
1 t 2 1 t2 ' 

and so Euler's constant y is a welI-defined real number in the interval (O, 1). 
We apply partial summation with u(n) = 1 for alI n and f(t) = l/t. Then 

U(t) = [t] = t - {t} 

and 

1 L - = L u(n)f(n) 
n~x n n~x 

= [x] +1x [t]dt 
x 1 t 2 

= 1 - - + -dt - -dt {x} 1x 1 1x {t} 
x 1 t 1 t2 

foo {t} 100 {t} {x} 
=logx+l- -dt+ -dt--

1 t 2 x t 2 x 

= logx + y + O (~) . 

This completes the proof. 
As another application of partial summation, we obtain the Euler sum formula. 

Theorem A.6 (Euler sum formula) Let f(t) be a Junction with a continuous 
derivative on [y, x]. Then 

L f(n) = IX f(t)dt + R, 
y<n~x y 

where 

R = iX {t}f'(t)dt+ {y}f(y) - {x}f(x) = iX ()(t)f'(t)dt +()(y)f(y) - ()(x)f(x), 

where 
1 

()(t) = {t} - 2' 
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Proof. We apply partial summation with a(n) = 1 for all n. Then A(t) = [t] = 
t - {t} and 

L f(n) 

= [x]f(x) - [y]f(y) - i X 
[t]f'(t)dt 

= [x]f(x) - [y]f(y) - iX 
tf'(t)dt + iX 

{t}f'(t)dt 

= [x]f(x) - [y]f(y) - (xf(X) - yf(y) - iX 
f(t)dt) + iX 

{tlJ'(t)dt 

= iX 
f(t)dt + iX 

{t}J'(t)dt + {y}f(y) - {x}f(x). 

This completes the proof. 
There is a simple expres sion for partial summation in terms ofRiemann-Stieltjes 

integrals. If f and g are bounded functions on [y, x] and if 1; fdg exists, then 

1; gdf also exists and 

iX 
fdg + iX 

gdf = f(x)g(x) - f(y)g(y)· 

This lovely reciprocity law is called integration by parts. (See Apostol [1, chapter 
9].) Let u(n) be a nonnegative arithmetic function, and let 

U(t) = L u(n). 
n9 

If fis continuous on [y, xl, then 

L u(n)f(n) = r f(t)dU(t) = U(x)f(x) - U(y)f(y) - r U(t)df(t). 
y<n:::;x ly ly 

If f has a continuous derivative on [y, x), then 

iX 
U(t)df(t) = iX 

U(t)f'(t)dt, 

and we recover the formula for partial summation. Similarly, if we let 

U(t) = Lu(n) 
n<t 

and if f is continuous on [y, x], then 

y~X u(n)f(n) = U(x)f(x) - U(y)f(y) - i X 
U(t)df(t). (A.l) 
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A.3 Multiplicative functions 

An arithmetic function f(n) is multiplicative if 

f(mn) = f(m)f(n) 

whenever m and n are reIativeIy prime positive integers. Since f(1) = f(1 . 1) = 
f(1)2, we have f(l) = 1 or O. If f(l) = 0, then f(n) = f(n . 1) = f(n)f(1) = ° 
for alI n ::: 1. Therefore, if the multiplicative function f is not identically zero, 
then f(l) = 1. 

If f and g are multiplicative functions, then the DirichIet convolution f * g is 
muItipIicative (Exercise 2). An arithmetic function f(n) is completely multiplica­
tive if f(mn) = f(m)f(n) for all positive integers m and n. 

Theorem A.7 Let f be a multiplicativefunction. Then 

ferm, n])f«m, n)) = f(m)f(n). 

Proof. Let PI, ... , Pr be the prime numbers that divide m or n. Then 

and 
r 

n = Ilp7i , 

ial 

where rl, ... , rr. SI, ... , Sr are nonnegative integers. Moreover, 

and 

Since 

r [ ] Il max(ri,Si) 
m,n = Pi 

i-I 

r ( ) Il min(ri,si) 
m,n = Pi . 

i-I 

{max(ri, Si), mineri, Si)} = {ri, s;} 

and since f is muItipIicative, it follows that 

r r 
ferm, n])f«m, n)) = Il f(prax(ri,si)) Il f(prin(ri,Si)) 

i-I i~1 

r r 

= Il f(p? Il f(p:i) 
i-I i=1 

= f(m)f(n). 

This completes the proof. 
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The Mobiusfunction Jl(n) is defined by 

Jl(n) = I ~ 
(-1)' 

if n = 1, 
if n is divisible by the square of a prime, 
if n is the product of r distinct primes. 

Thus, Jl(n) =1 O if and only if n is square-free, and 

Jl(n) = (_l)w(n) 

for square-free integers n, where w(n) is the number of distinct prime divisors of 
n.1t is easy to check that the arithmetic function Jl(n) is multiplicative. 

Theorem A.8 Let f be a muZtiplicativefunction with f(l) = 1. Then 

LJl(d)f(d) = Il(1- f(p))· 
d~ p~ 

Proof. This is certainly true for n = 1. For n > 1, let n* be the product of the 
distinct primes dividing n. Since Jl(d) = O if d is not square-free, it follows that 

LJl(d)f(d) = LJl(d)f(d) = Il(1- f(p))· 
din din' pin 

This completes the proof. 

Theorem A.9 Let f(n) be a muZtiplicativefunction. lf 

Iim f(pk) = O 
pk--+ OO 

as pk runs through the sequence of aU prime powers, then 

Iim f(n) = O. 
n--+oo 

Proof. There exist only finitely many prime powers pk such that If(pk)1 ::: 1. 
Let 

A = Il If(pk)l. 
If(pk)I~! 

Then A ::: 1. Let O < e < A. There exist only finitely many prime powers pk such 
that If(pk)1 ::: eiA. It follows that there are only finitely many integers n such 
that 

If(pk)1 ::: el A 

for every prime power pk that exactly divides n. Therefore, if n is sufficiently 
large, then n is divisible by at least one prime power pk such that If(pk)1 < el A, 
and so n can be written in the form 

r r+s r+s+t 

Il k· Il p,k., Il k, n = Pi' Pi' 
i-! i=r+! i=r+s+! 
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where p" ... , Pr+s+t are pairwise distinct prime numbers such that 

1 ::: I f (p~; I for i = 1, ... , r, 

eiA ::: I f (p~; I < 1 for i = r + 1, ... , r + s, 

If(p~;1 <eiA fori=r+s+l, ... ,r+s+t, 

and 
t ?:. 1. 

Therefore, 

r r+s r+s+t 

If(n)1 = n If(p~;)1 n If(p~;)1 n If(p~;)1 < A(eIA)t ::: e. 
i-r+' i-r+s+l 

This completes the proof. 

AA The divisor function 

The divisor function d (n) counts the number of positive divisors of n. For example, 
d(n) = 1 if and only if n = 1, and d(n) = 2 if and only if n is prime. 

Theorem A.I0 Let 
k, k, m = p, ... Pr 

be a positive integer, where p" ... , Pr are distinct primes and k" ... , kr are 
nonnegative integers. Then 

d(m) = (k, + 1)· .. (kr + l)n. 

Ifm and n are any positive integers, then 

d(mn) ::: d(m)d(n). 

If(m, n) = 1, then 
d(mn) = d(m)d(n), 

that is, the divisor function is multiplicative. 

Proof. Every divisor d of m can be written uniquely in the form 

d = pb ... pj, 
, r ' 

where 

o ::: ji ::: ki 
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for i = 1, ... , r. Since there are ki + 1 choices of ji for each i = 1, ... , r, it follows 
that 

n 

d(m) = TI(k i + 1). 
i-I 

Let n be a positive integer, and let 

f, f, n = PI ... Pr ' 

where li> ... ,lr are nonnegative integers. Then 

r 

d(n) = TI(li + 1). 
i-I 

Since 
r 

TI k·+f· mn= Pi", 
i-I 

and since 

for alI nonnegative numbers ki and li, it follows that 

r r 

d(mn) = TI(ki + li + 1) ~ TI(ki + 1)(li + 1) = d(m)d(n). 
i-I i-I 

If (m, n) = 1, then ki = O or li = O for each i = 1, ... , r. In this case, 

ki + li + 1 = (ki + l)(li + 1) 

and 
r r r 

d(mn) = TI(ki +li + 1) = TI(ki + 1) TI(li + 1) = d(m)d(n). 
i-I 

This completes the proof. 

Tbeorem A.ll 

for every e > o. 

Proof. Letf(n) = d(n)/n". We shall provethat f(n) .;. 0(1). Sincethe arithmetic 
functions d(n) and nE are multiplicative, it follows that f(n) is multiplicative, and 
so, by Theorem A.9, it suffices to prove that 
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Since (k + l)j2ke / 2 is bounded for k 2: 1, we have 

This completes the proof. 

Theorem A.12 

D(x) = L d(n) = x log x + (2y - l)x + O(.[X). 
n~x 

Proof. We can interpret the divisor function d(n) and the sum function D(x) 
geometrically. In the u v-plane, 

d(n) = L 1 = L 1 
din n=uv 

counts the number oflattice points (u, V) on the rectangularhyperbola uv = n that 
lie in the quadrant u > O, V > O. Then D(x) counts the number of lattice points in 
this quadrant that lie on or under the hyperbola u V = x, that is, the number of points 
(u, v) with positive integral coordinates such that 1 ::: u ::: x and 1 ::: v ::: xju. 
These lattice points can be divided into three pairwise disjoint c1asses: 

1 ::: u :::.[X and 1::: v ::: .[X, 

or 
1 ::: u :::.[X and .[X < v ::: xju, 

or 
.[X < u ::: x and 1::: v ::: xju. 

The last c1ass consists of the lattice points (u, v) such that 

1 ::: v :::.[X and .[X < u ::: xjv. 

It follows from Theorem A.S that 
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= [~t +2 L ([~] - [~J) 
l::su::s.JX 

=2 L [~]_[~]2 
l::Su::s.JX 

=2 L (~_{~})_(~_{~})2 
l::su::S.JX 

=2x L ~ -2 L {~} -x+O(~) 
l::Su::S.JX l::su::S.JX 

= 2x (IOg~ + y + 0(,);)) - x + O(~) 
= x logx + (2y - I)x + O(~). 

This completes the proof. 

Theorem A.13 
d(n) I 

L - = _(logX)2 + O(logx). 
n::sx n 2 

Proof. It follows from Theorem A.12 that 

D(x) = Ld(n)=xlogx+O(x). 
n::;x 

By partial summation, we obtain 

L d(n) = D(x) + jX D(t) dt 
n::Sx n x 1 t2 

= + ili 
x logx + O(x) IX tlogt + O(t) 

x 1 t2 

j x logt (jX I ) 
= logx + 0(1) + 1 -t-dt + O 1 ţdt 

I 
= 2: (log x)2 + O(logx). 

This completes the proof. 

Theorem A.14 
L d(nl «x (logx)3 . 
n::;x 

Proof. Since d(ab) :::: d(a)d(b) for aH positive integers a and b, we have 

n::;x n~x n=ab 
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L d(ab) 
ab~x 

:::: L d(a)d(b) 
ab~x 

= L d(a) L d(b) 
a~x b~x/a 

"d(a) (" d(a») :::: x log x ~ -- + O x ~ --
a~x a a~x a 

« x(logx)3. 

This completes the proof. 

A.5 The Euler <p-function 

Let n :::: 1. We denote by qJ(n) the number of positive integers a :::: n such that 
(a, n) = 1. If a == b (mod n), then (a, n) = (b, n), and so qJ(n) also counts the 
number of congruence classes modulo n that are relatively prime to n. This is 
exactly the order of the multiplicative group of units in the ring ZI nZ. 

Theorem A.15 The arithmeticjunction qJ(n) is multiplicative, and 

qJ(n) = n n (1 - .!.) . 
pin p 

Proof. Let (m, n) = 1, and let qJ(m) = r and qJ(n) = s. Let al, ... , ar and 
bl, ... , bs be complete sets of representatives of the congruence classes relatively 
prime to m and n, respectively. We shall prove that the rs numbers ain + bjm 
for i = 1, ... ,r and j = 1, ... , s form a complete set of representatives of the 
congruence classes relatively prime to mn. If 

then 

andso 

Since (m, n) = 1, we have 
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This implies that j = l. Similarly, we obtain i = k. Thus, the rs integers ain +bjm 
represent distinct congruence classes modulomn. If(ain+bjm, mn) > 1 for some 
i and j, then some prime p divides mn and ai n +b j m. Since (m, n) ... 1, the prime p 
divides exact1y one ofm andn. If p divides m, then p divides ain, and so p divides 
ai. This contradicts the fact that (ai. m) = 1. Therefore, (ain + bjm, mn) ... 1 for 
all i and j. 

We shall show that every congruence class relatively prime to mn is of this 
form. We note that (m, n) ... 1 implies that the r integers ain form a complete set of 
representatives of the congruence classes relatively prime to m, and the s integers 
bjm form a complete set of representatives of the congruence classes relatively 
prime to n. Let (c, mn) = 1. Then (c, m) = 1, and so 

for some i. Since 
(c, n) ... (c - ain, n) = 1, 

it follows that 

for some j. Therefore, 

and 

hence 

Thus, 
rp(mn) = rs ... rp(m)rp(n). 

This proves that rp is multiplicative. If p is prime and k 2: 1, the only integers not 
prime to pk are multiples of p, and so 

rp(pk) ... pk _ pk-l = pk (1- J;). 
Therefore, 

This completes the proof. 

Theorem A.16 Let e > O. Then 

n1- e < rp(n) < n 

for ali sufficiently large n. 
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Proof.1t is dear that qJ(n) < n for all n > 1. We shall prove that 

. n l - e 
hm -- =0. 
n~oo qJ(n) 

Since p/(p - 1) ::: 2 for every prime number p, we have 

Therefore, 
pm(l-e) 

Iim --- =0. 
pm~oo qJ(pm) 

Since the arithmetic function n I-e / qJ(n) is multipIicative, the re suit follows from 
Theorem A.9. 

Theorem A.17 
1 2:- «logx. 

n:9 qJ(n) 

Proof. Let d* denote the square-free part of d, that is, 

Then 

and so 

1 1 ( 1 )-1 1 00 1 -=-0 1-- =-2:-, 
qJ(n) n pin p n d-I d 

1 1 00 1 2:-=2:-2:-
n<x qJ(n) n<x n d-I d 

- - d*Jn 

00 1 1 
= 2:-2:-

d=1 d "9 n 
d"'llI 

d"'ln 

00 1 1 
=2:- 2:-

d-I d m:9/d. d*m 

00 1 
« 2:- 10g x . 

d-I dd* 

The integers of the form dd* are precisely the integers that are square-full in the 
sense that if p divides d, then p2 divides d for every prime p. We have 
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= 1) ( 1 + ;2 (1 _ ]; ) -1) 
= n (1 + p(pl_l») 

P 

= 0(1). 

This completes the proof. 

A.6 The M6bius function 

The fundamental property of the Mobius function is the following. 

Theorem A.18 

Lţt(d)" 8(n) = { ~ 
din 

ifn == 1, 
ifn ::: 2. 

Proof. This is clearly true for n ... 1. If n ::: 2, then 

k n r· n == p/, 
i-I 

where k ::: 1, PI, ... , Pk are distinct prime numbers, and Ti ::: 1 for i - 1, ... , k. 
Let L' denote asum over square-free integers. Then 

This completes the proof. 

L ţt(d) - L' ţt(d) 
din din 

L ţt(d) 
dlp,···pk 

L (_I)"'(d) 

dlp,···pk 

== t (k)(_l)i 
i-O l 

=0. 

We define the arithmetic function 

l(n) == 1 

for alI n. Then Theorem A.18 can be rewritten in the form 

ţt * 1 = 8. 
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A nonempty set V of positive integers is called divisor-closed if whenever n E V 
and d divides n, then d E V. For exampIe, the set N of alI positive integers and the 
set of positive integers Iess than a fixed number z are examples of divisor-closed 
sets. The set of alI divisors of a fixed positive integer is divisor-closed. If f and 
g are functions defined on a divisor-closed set V, then their DirichIet convolution 
f * g is also defined on V. 

Theorem A.19 Let V be a divisor-closed set, and let f(n) be aJunction defined 
for ali n E V. If g is the Junction defined on V by 

g(n) = L, f(d), 
din 

then 

foralln E V. 
Conversely, let g be a Junction defined on V. If f is the Junction defined on V 

by 

then 
g(n) = L, f(d) 

din 

for ali nE V. 

Proof. If nE V and din, then dE V, since V is divisor-closed. Let 

for nE V. Then 

andso 

SimiIarIy, if 

g(n) = L, f(d) 
din 

g = f * 1, 

L, JL (~) g(d) = (g * JL)(n) 
din d 

= «f * 1) * JL)(n) 

= (f * (1 * JL»(n) 

= (f * 8)(n) 

= f(n). 

f(n) = L, JL (~) g(d) = (g * JL)(n), 
din 



then 

This completes the proof. 
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L f(d) = (f * l)(n) 
din 

= «g * JL) * l)(n) 

= (g * (JL * l»(n) 

= (g * o)(n) 

= g(n). 

Theorem A.20 Let f and g be arithmetic Junctions. Then 

g(n) = L f(d) 
din 

if and only if 

f(n) = L JL (~) g(d). 
din d 

Proof. This follows immediately from Theorem A.19 with the divisor-closed 
set 1) equal to the set N of all positive integers. 

Theorem A.2I Let f (x) and g(x) be Junctions defined for aU real numbers x ~ 1. 
Then 

g(x) = L f(xjd) 
d::;x 

if and only if 
f(x) = L JL(d)g(xjd). 

d::;x 

Proof. Let f be a function defined for all x ~ 1. If 

g(x) = L f(xjd), 
d::;x 

then 

LJL(d)g(xjd) = LJL(d) L f(xjdd') 
d::;x 

= L JL(d)f(xjdd') 

= L f(xjm) L JL(d) 
m::;x dlm 

= f(x). 

The proof in the opposite direction is similar. 
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Theorem A.22 Let V be a .finite divisor-closed set, and let f and g be functions 
de.fined on V. lf 

for ali n E V, then 

for ali n E V. Conversely, if 

for ali n E V, then 

for ali n E V. 

g(n) ... Lf(d) 
der> 
nld 

f(n) ... L IL (~) g(d) 
der> n 
nld 

f(n) == L IL (~) g(d) 
der> n 
nld 

g(n) ... Lf(d) 
der> 
nld 

Proof. This is a straightforward computation: 

nld nld dlk 

... L IL (h) L f(k) 
nhe'D ker> 

nhl.t 

= L IL (h) L f(nhl) 
nhe'D nhte'D 

- L f(nr) L IL (h) 
nre'D her> 

hl' 

... L f(nr) L IL (h) 
nre'D hlr 

== f(n). 

The proof in the opposite direction is similar. 

A.7 Ramanujan sums 

Let q and n be integers with q :::: 1. The exponential sum 

cq(n) == t e (an) 
a-I q 

(a.q)-I 

(A.2) 
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is called the Ramanujan sum. These sums pIay an important role in the proof of 
Vinogradov's theorem (Chapter 8). 

Theorem A.23 The Ramanujan sum cq (n) is a multiplicative function of q, that 
is, if(q, q') = 1, then 

Proof. Since every congruence class reIativeIy prime to qq' can be written 
uniqueIy in the formaq' +a'q with 1 ~ a ~ q, 1 ~ a' ~ q', and (a, q) = (a', q') = 
1, it follows that if (q, q') = 1, then 

cq(n)cq,(n) ... ţ e ( a;) t e ( a~~) 
(o,q>-l (a',q')-I 

q q' (aq' +a'q)n) 
=L Le , 

a-I a'-I qq 
(a,q)-I (a',q')-l 

qq' (alin) 
""Le-

a"-I qq' 
(a".qq'>-~ 

Theorem A.24 The Ramanujan sum can be expressed in the form 

cq(n) ... L JL (~) d. 
dl(q,n) 

In particular, if(q, n) = 1, then 

Proof. Since 

it follows that 

cq(n) = JL(q). 

q (kn) cq(n)- Le -
k-I q 

(k,q)-l 

q (kn) 
= Le - L JL(d) 

k-I q dl(k,q) 

q (kn) .. LJL(d) Le -
dlq k-I q 

dlk 
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q/d (l ) 
= LJJ-(d) Le /: 

dlq l-l q 

= L JJ-(d)fq/d(n) 
dlq 

= L JJ-(q /d)fd(n) 
dlq 

= LJJ-(q/d)d 
dl. 
din 

= L JJ-(q/d)d. 
dl(n,q) 

If (q, n) = 1, then cq(n) = JJ-(q). 

Theorem A.25 The Ramanujan sum can be expressed in the form 

C (n) = JJ-(q/(q, n»(ţJ(q). 
q (ţJ(q/(q,n» 

Proof. We define 
q' "" q/(q, n). 

If the prime p divides q but not q', then pl(q, n). It follows from Theorem A.15 
that 

Then 

(ţJ(q) = q np1q (1- lip) 

(ţJ(q') q' flp1q,(l - lip) 

= (q, n) n(1 -lip) 
pl. 
p!oi' 

= (q, n) n (1 - lip)· 
p[(q,n) 

p!oi' 

cq(n) = L JJ- (~) d 
dl(q,n) 

= L JJ- (-q- (q, n») d 
dl(q,n) (q, n) d 

= L JJ-(q'c)d 
cd-(q,n) 

= L JJ- (q') JJ-(c)d 
cd-(q,n) 
(l,c)-) 

" (') JJ-(c) d = ~ JJ- q -c 
cd-(q.lf) C 
(q',c)-I 
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'"' f.L(c) ... f.L (q') (q, n) L -
cl(q,n) C 

(q',(')-I 

= f.L (q') (q, n) TI (1 - .!.) 
pl(q, .. ) P 

f.L(q')rp(q) 

rp(q') 

ploj' 

This completes the proof. 

A.8 Infinite products 

This is a brief introduction to infinite products and Euler products. 
Let al, a2, ... , an, ... be a sequence of complex numbers. The nth partial 

product of this sequence is the number 

n 

Pn = al" ·an = n ak· 
k-I 

If as n tends to infinity, the sequence of nth partial products converges to a Iimit a 
different from zero, then we say that the infinite product 0:1 ak converges and 

00 n 

TI ak'" Iim Pn'" Iim nak == a. 
n-+oo n-+oo k-I k-I 

We say that the infinite product diverges if either the Iimit of the sequence of partial 
products does not exist or the Iimit exists but is equal to Zt:ro. In the latter case, we 
say that the infinite product diverges to zero. 

Let 
ak=l+ak. 

If the infinite product 0:1 (1 + at) converges, then ak -1-1 for all k. Moreover, 

andso 

Iim (1 +ak) = Iim ~ ... 1, 
k ..... oo k ..... oo Pk-I 

Iim ak = O. 
k ..... oo 

Theorem A.26 Let ak ~ O for ali k ~ 1. The infinite product 0:1(1 + ak) 
conl'erges if and only if the infinite series L:I ak converges. 

Proof. Let Sn ... LZ-I ak be the nth partial sum and let Pn = OZ_I(1 + ak) 
be the nth partial product. Since an ~ O, the sequences {sn} and {Pn} are both 
monotonically increasing, and Pn ~ 1 for alI n. Since 

1 +x ~ eX 
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for alI real numbers x, we have 

andso 

This inequality implies that the sequence {Pn} converges if and onIy if the sequence 
{sn} converges. This completes the proof. 

We say that the infinite product 0:1 (1 +an) co.nverges absolutely ifthe infinite 
product 

converges. 

Theorem A.27 Ifthe infinite product 0:1 (1 + an) converges absolutely, then it 
converges. 

Proof. Let 

and let 
n 

Pn = D<l + lakl). 
k-l 

If the infinite product converges absolutely, then the sequence of partial products 
{Pn} converges and so the series 

converges. Since 

o ::: IPn - Pn-tI 

= lanPn-ll 
n-l 

== an D(1+ak) 
k-l 
n-l 

::: lan I D(1 + lakl) 

= lanlPn-l 

= Pn - Pn-l, 
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it follows that 
00 

L IPn - Pn-tI 
n-2 

converges, and so 

converges. Thus, the sequence of partial products {Pn} converges to some finite 
limit. 

We must prove that this limit is not zero. Since the infinite product n:1 (1 + 
ak) converges absolutely, it follows from Theorem A.26 that the series L:I lakl 
converges, and so the numbers ak converge to zero. Therefore, for alI sufficient1y 
large integers k, 

and 

It follows that the series 

fl- ak I k-I 1 +ak 

converges, and so the infinite product 

n l __ k 00 ( a) 
k-I 1 + ak 

converges absolutely. This implies that the sequence of nth partial products 

fI (1 -~) = fI _1_ = 1 = ~ 
k-I 1 +ak k-I 1 +ak nZ_I(1 +ad Pn 

converges to a finite limit, and so the limit of the sequence {Pn} is nonzero. 
Therefore, the infinite product n:1 (1 + ak) converges. 

An Euler product is an infinite product over the prime numbers. We denote sums 
and products over the primes by L p and np ' respectively. 

Theorem A.28 Let f(n) be a multiplicativefunction that is not identically zero. 
lf the series 

00 

Lf(n) 
n-I 

converges absolutely, then 

f f(n) = n (1 + f(p) + f(p2) + ... ) .. n (1 + f f(pk)). 
n-I p p k-I 
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lf f(n) is completely multiplicative, then 

00 

L f(n) = 0(1 - f(p»-l. 
n-l p 

Proof. If L:l f(n) converges absolutely, then the series 

converges absolutely for every prime p. Also, the series 

00 

:s L L If(pk)1 
p k-l 
00 

< L If(n)1 
n-l 

converges, and so the infinite product 

converges absolutely. By Theorem A.27, this infinite product converges. 
Let e > 0, and choose an integer No such that 

L If(n)1 < e. 
n>No 

For every positive integer n, let P(n) denote the greatest prime factor of n. Then 
LP(n):::N denotes the sum over the integers all of whose prime factors are less 
than or equal to N, and LP(n»N denotes the sum over the integers that have 
at least one prime factor strictly greater than N. Since the series L~ f(pk) 
converges absolutely for every prime number p, any finite number of these series 
can be multiplied together term by term. Let N ::: No. It follows from the unique 
factorization of integers as products of primes that 

andso 

00 

L f(n) - L f(n) 
n=l P(n):::N 
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= I L f(n)1 
P(n»N 

::: L If(n)1 
P(n»N 

::: L If(n)1 

::: L If(n)1 
n>No 

< 8. 

Therefore, 

If f(n) is compIeteIy multiplicative, then f(pk) -= f(p)k for alI primes p and alI 
nonnegative integers k. Since f(pk) tends to zero as k tends to infinity, it follows 
that If(p)1 < 1. Summing the geometric progression, we obtain 

andso 

fI (1 + f: f(pk») = fI(1 - f(p»-l. 
p ~1 P 

This completes the proof. 

A.9 Notes 

AlI of the material in this chapter is basic elementary number theory. Compre­
hensive standard references are the books of Hardy and Wright[51] and Hua [63]. 
Cashwell and Everett [8] proved that the ring of arithmetic functions is a unique fac­
torization domain. Hardy's book Ramanujan [46] contains a chapter on Ramanu­
jan 's function cq (n) and its connection to the probIem of representing numbers as 
sums of squares. 

A.I0 Exercises 

1. Prove that L J.L(k)d(n/ k) = 1 
kln 

for alI n :::: 1. 
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2. Prove that if f and g are multiplicative functions, then the Dirichlet convo­
lution f * g is multiplicative. 

3. Let f and g be arithmetic functions. Prove that if f * g .. O, then either 
f - O or g - o. Thus, the ring of arithmetic functions is an integral domain. 

4. An arithmetic function f(n) is additive if f(mn) - f(m) + f(n) for alI 
positive integers m and n such that (m, n) ... 1. An arithmetic function f (n) 
is completely additive if f(mn) .. f(m) + f(n) for alI positive integers m 
and n. Let n - p~1 ... p~t. We define the arithmetic functions w(n) and gen) 
as follows. The arithmetic function w(n) counts the number of distinct prime 
factors of n: 

w(n) -k. 

The arithmetic function g(n) counts the number of prime factofS of n with 
muitiplicities: 

gen) - TI + ... + Tk· 

Prove that w(n) is additive but not compieteIy additive. Prove that g(n) is 
compieteIy additive. 

5. Let n ... p~1 ... p~t. Liouville's function A(n) is defined by 

A(n) _ (_I)Sl(n) _ (_I)',+···+rt • 

Prove that A(n) is compieteIy additive. 

6. Let f(n) be an arithmetic function. There exists a unique completely multi­
plicative function fi (n) such that fi (p) == f (p) for alI primes p. Show that 
J.l.I(n) - A(n). 

7. Show that the functions J.l.(n), rp(n), and eTJ.. (n) are not completely multiplica­
tive. 

8. Prove that 
d(n) ~ 2Sl(n) ~ n 

for every positive integer n. Prove that if n is square-free, then 

d(n) = 2w(n) ... 2Sl(n). 

9. Prove that 

n!!x 

Hint: AppIy the Cauchy-Schwarz inequality to Ln:sx d(n). 

10. Let f be an arithmetic function. Prove that f is invertible in the ring of 
arithmetic functions if and onIy if f (1) = 1. 
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11. Let f and g be arithmetic functions. Define the function L by 

L(n) = logn. 

Prove that pointwise multiplication by L(n) is a derivation on the ring of 
arithmetic functions, that is, 

L . (f * g) = (L . f) * g + f * (L . g). 

12. Let f and g be arithmetic functions with Dirichlet generating functions F (s) 
and G(s), respectively. Prove that F'(s) is the generating function for L . f 
and that (F(s)G(s))' is the generating function for L . (f * g). 

13. Prove that 

Use Mobius inversion to deduce Theorem A.24 from this identity. 

14. Let 

a(n) = Ld. 
din 

Prove that 

n < a(n) ::: n log n + O(n). 

Rint: a(n) = Ldln n/d. 

15. Let J.L(n) be the Mobius function. Prove that 

f: J.L~~) = n (1 -~) 
n-I P P 

for aH s > 1. 

16. Prove that the Dirichlet convolution of arithmetic functions is associative, 
that is, if f(n), g(n), and h(n) are arithmetic functions, then 

(f * g) * h = f * (g * h). 

17. Let L(n) = logn for aH n ?: 1. For any arithmetic function f, define Lf 
by Lf(n) = L(n)f(n). Prove that Lis a derivation on the ring of arithmetic 
functions, that is, 

L(f * g) = (Lf) * g + f * (Lg). 
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18. Let f, g, and h be arithmetic functions. Prove that 

gen) = L f(d)h(n/d) 
din 

if and only if 
f(n) = L ţL(d)g(n/d)h(d). 

din 

19. Compute 

20. Show that the infinite product 

00 ( (_I)k-l) Il 1 + -=---=---
k-2 k 

converges, but not absolutely. 

21. Let O ::: bn < 1 for aU n. Prove that i(E:1 bn converges, then n:1 (1- bn ) 

converges. 

22. Let O ::: bn < 1 for alI n. Prove that if L::I bn diverges, then n:1 (1 - bn ) 

diverges to zero. 



Bibliography 

[1] T. M. Apostol. Mathematical Analysis. Addison-Wesley, Reading, Mass., 1957. 

[2] R. Balasubramanian. On Waring's problem: g(4) :s 20. Hardy-Ramanujan J., 8:1-
40,1985. 

[3] E. Bombieri. Le grand crible dans la tMorie analytique des nombres. Number 18 in 
Asterisque. Societe Mathematique de Franee, Paris, 1974. 

[4] E. Bombieri, J. B. Friedlander, and H. Iwaniee. Primes in arithmetie progressions to 
large moduli. Acta Math., 156:203-251, 1986. 

[5] R. P. Brent. Irregularities in the distribution of primes and twin primes. Math. 
Comput., 29:43-56,1975. 

[6] J. Briidem. On Waring's problem for eubes. Math. Proc. Cambridge Philos. Soc., 
109:229-256, 1991. 

[7] V. Brun. Le erible d 'Eratosthene et le theoreme de Goldbaeh. Skrifter utgit av Viden­
skapsselskapet i Kristiania, 1. Matematisk-Naturvidenskabelig Klasse, 1 (3): 1-36, 
1920. 

[8] E. D. Cashwell and C. J. Everett. The ring of number-theoretie funetions. Pacific J. 
Math., 9:975-985, 1959. 

[9] A. L. Cauehy. Demonstration du theoreme general de fermat sur les nombres poly­
gones. Mem. Sci. Math. Phys. Inst. France, 14(1):177-220, 1813-1815. Oeuvres(2), 
voI. 6, 32~353. 

[10] J. Chen. On the representation of a large even integer as the sum of a prime and the 
produet of at most two primes. Kexue Tongbao, 17:385-386, 1966. 



332 Bibliography 

[11] J. Chen. On the representation of a larger even integer as the sum of a prime and the 
product of at most two primes. Sci. Sinica, 16: 157-176, 1973. 

[12] S. L. G. ChoL Covering the set of integers by congruence classes of distinct moduli. 
Math. Comput., 25:885-895, 1971. 

[13] S. L. G. Choi, P. Erdos, and M. B. Nathanson. Lagrange's theorem with N I/3 squares. 
Proc. Am. Math. Soc., 79:203-205,1980. 

[14] N. G. Chudakov. On the density of the set of even integers which are not representable 
as a sum of two odd primes.lzv. Akad. Nauk SSSR, 2:25-40, 1938. 

[15] B. Cipra. How number theory got the best of the pentium chip. Science, 267:175, 
1995. 

[16] R. Crocker. On the sum of a prime and two powers of two. Pacific J. Math., 36: 103-
107, 1971. 

[17] H. Davenport. On Waring's problem for cubes. Acta Math., 71:123-143,1939. 

[18] H. Davenport. Analytic Methods for Diophantine Equations and Diophantine 
Inequalities. Ann Arbor Publishers, Ann Arbor, 1962. 

[19] H. Davenport. Multiplicative Number Theory. Springer-Verlag, New York, 2nd 
edition, 1980. 

[20] V. A. Dem'yanenko. On sums of four cubes. Izv. Vyssh. Uchebn. Zaved. Mat., 
54(5):64-69, 1966. 

[21] J.-M. Deshouillers and F. Dress. Sums of 19 biquadrates: On the representation of 
large integers. Annali Scuola Normale Super. Pisa, 19: 113-153, 1992. 

[22] L. E. Dickson. History ofthe Theory ofNumbers. Carnegie Institute of Washington, 
Washington, 1919; reprinted by Chelsea Publishing Company in 1971. 

[23] L. E. Dickson. AlI positive integers are sums of values of a quadratic function of x. 
Bull. Am. Math. Soc., 33:713-720, 1927. 

[24] L. E. Dickson. AlI integers except 23 and 239 are sums of eight cubes. Bull. Am. 
Math. Soc., 45:588-591, 1939. 

[25] F. Dress. Theorie additive des nombres, probleme de waring et theoreme de Hilbert. 
Enseign. Math., 18:175-190,301-302,1972. 

[26] H. B. Dwight. Mathematical Tables. Dover Publications, New York, 3rd edition, 
1961. 

[27] N. Elkies and 1. Kaplansky. Problem 10426. Am. Math. Monthly, 102:70, 1995. 

[28] W. J. Ellison. Waring's problem. Am. Math. Monthly, 78: 10-36, 1971. 

[29] W. J. Ellison and F. Ellison. Prime Numbers. John Wiley & Sons, New York, 1985. 

[30] P. Erdos and P. Turan. Ein zahlentheoretischer Satz. Izv. Inst. Math. Mech. Tomsk 
State Univ., 1:101-103, 1935. 



Bibliography 333 

[31] P. Erdos. On the integers of the form x k + l. J. London Math. Soc., 14:250-254, 
1939. 

[32] P. Erdos. On integers of the form 2k + p and some related problems. Summa Brasil. 
Math., 2:113-123,1950. 

[33] P. Erdos. On some problems of Bellman and a theorem of Romanoff. J. Chinese 
Math. Soc. (N.S.), 1:409-421, 1951. 

[34] P. Erdos. Some recent advances and current problems in number theory. In Lectures 
on Modern Mathematics, volume 3, pages 196-244. Wiley, New York, 1965. 

[35] P. Erdos and K. Mahler. On the number of integers which can be represented by a 
binary form. J. London Math. Soc., 13:134-139, 1938. 

[36] P. Erdos and M. B. Nathanson. Lagrange 's theorem and thin subsequences of squares. 
In J. Gani and V. K. Rohatgi, editors, Contributions to Probability, pages 3-9. 
Academic Press, New York, 1981. 

[37] T. Estermann. On Goldbach's problem: Proof that almost alI positive integers are 
sums oftwo primes. Proc. London Math. Soc., 44:307-314,1938. 

[38] T. Estermann.lntroduction to Modern Prime Number Theory. Campridge University 
Press, Cambridge, England, 1952. 

[39] P. Fermat. Oeuvres. Gauthier-Villars et Fils, Paris, 1891. 

[40] A. Fleck. Uber die Darstellung ganzer Zahlen als Summen von sechsten Potenzen 
ganzer Zahlen. Mat. Annalen, 64:561,1907. 

[41] K. B. Ford. New estimates for mean values of Weyl sums. lnt. Math. Res. Not., 
(3):155-171,1995. 

[42] 1. S. Gradshteyn and 1. M. R yzhik. Table of lntegrals, Series, and Products. Academic 
Press, San Diego, 5th edition, 1994. 

[43] E. Grosswald. Representations of lntegers as Sums of Squares. Springer-Verlag, New 
York,1985. 

[44] H. Halberstam and H.-E. Richert. Sieve Methods. Academic Press, London, 1974. 

[45] G. H. Hardy. On the representation of an integer as the sum of any number of squares, 
and in particular of five. Trans. Am. Math. Soc., 21:255-284, 1920. 

[46] G. H. Hardy. Ramanujan: Twelve Lectures on Subjects Suggested by his Life and 
Work. Chelsea Publishing Company, New York, 1959. 

[47] G. H. Hardy and 1. E. Littlewood. A new solution ofWaring's problem. Q. J. Math., 
48:272-293, 1919. 

[48] G. H. Hardy and J. E. Littlewood. Some problems of "Partitio Numerorum". A new 
solution of Waring's problem. Gottingen Nach., pages 33-54, 1920. 



334 Bibliography 

[49] G. H. Hardy and 1. E. Littlewood. Some problems of "Partitio Numerorum": VI. 
Further researches in Waring's problem. Mat. Z., 23:1-37,1925. 

[50] G. H. Hardy and S. Ramanujan. Asymptotic formulae in combinatory analysis. Proc. 
LondonMath. Soc., 17:75-115,1918. 

[51] G. H. Hardy and E. M. Wright. An lntroduction to the Theory ofNumbers. Oxford 
University Press, Oxford, 5th edition, 1979. 

[52] F. Hausdorff. Zur Hilbertschen LOsung des Waringschen Problems. Mat. Annalen, 
67:301-305, 1909. 

[53] T. L. Heath. Diophantus of Alexandria: A Study in the History of Greek Algebra. 
Dover Publications, New York, 1964. 

[54] D.R. Heath-Brown. Cubic forms in ten variables. Proc. London Math. Soc., 47:225-
257,1983. 

[55] D.R. Heath-Brown. Weyl's inequality, Hua's inequality, and Waring's problem. J. 
London Math. Soc., 38:216-230, 1988. 

[56] D. Hilbert. Beweis fiir die Darstellbarkeit der ganzen zahlen durch eine feste Anzahl 
n ler Potenzen (Waringsches Problem). Mat. Annalen, 67:281-300,1909. 

[57] C. Hooley. On the representation of a number as asum oftwo cubes. Mat. Z., 82:259-
266,1963. 

[58] C. Hooley. On the numbers that are representable as the sum of two cubes. J. reine 
angew. Math., 314:146-173,1980. 

[59] C. Hooley. On nonary cubic forms. J. reine angew. Math., 386:32-98, 1988. 

[60] C. Hooley. On nonary cubic forms. J. reine angew. Math., 415:95-165, 1991. 

[61] C. Hooley. On nonary cubic forms. J. reine angew. Math., 456:53-63,1994. 

[62] H. L. Hua. On Waring's problem. Q. J. Math., 9:199-202,1938. 

[63] H. L. Hua.lntroduction to Number Theory. Springer-Verlag, Berlin, 1982. 

[64] L. K. Hua. Additive Theory of Prime Numbers, volume 13 of Translations of 
Mathematical Monographs. American Mathematical Society, Providence, R.I., 1965. 

[65] A. Hurwitz. Uber die Darstellung der ganzen Zahlen als Summen von nlen Potenzen 
ganzer Zahlen. Mat. Annalen, 65:424-427,1908. 

[66] A. E. Ingham. The Distribution of Prime Numbers. Number 30 in Cambridge Tracts 
in Mathematics and Mathematical Physics. Cambridge University Press, Cambridge, 
1932. Reprinted in 1992. 

[67] H. Iwaniec. Introduction to the prime number theory. Unpublished lecture notes, 
1994. 

[68] H. Iwaniec. Sieve methods. Unpublished lecture notes, 1996. 



Bibliography 335 

[69J W. B. Jurkat and H.-E. Richert. An improvement of Selberg's sieve method. 1. Acta 
Arith., 11:207-216, 1965. 

[70J A. Kempner. Bemerkungen zum Waringschen Problem. Mat. Annalen, 72:387-399, 
1912. 

[71 J H. D. Kloosterman. On the representation of numbers in the form ax2 +by2 +cz2 +dt2 . 
Acta Math., 49:407-464, 1925. 

[72J H. D. Kloosterman. On the representation of numbers in the form ax2 +by2 +cz2 +dt2 . 
Proc. London Math. Soc., 25:143-173,1925. 

[73J H. D. Kloosterman. Over het uitdrukken van geheele positieve getallen in den vorm 
ax2 + by2 + cz2 +dt2. Verslag Amsterdam, 34:1011-1015,1925. 

[74J M. 1. Knopp. Modular Functions in Analytic Number Theory. Markham Publishing 
Co., Chicago, 1970; reprinted by Chelsea in 1994. 

[75J E. Landau. Uber eine Anwendung der Primzahltheorie auf das Waringsche Problem 
in der elementaren Zahlentheorie. Mat. Annalen, 66: 102-106, 1909. 

[76J E. Landau. Die Goldbachsche Vermutung und der Schnirelmannsche Satz. Gottinger 
Nachrichten, Math. Phys. Klasse, pages 255-276,1930. 

[77J E. Landau. Uber einige neuere Fortschritte der additiven Zahlentheorie. Cambridge 
University Press, Cambridge, 1937. 

[78J E. Landau. Elementary Number Theory. Chelsea Publishing Company, New York, 
1966. 

[79J V. A. Lebesgue. Exercices d' Analyse Numi' erique. Paris, 1859. 

[80J A.-M. Legendre. Theorie des Nombres. Firmin-Didot, Paris, 3rd edition, 1830. 

[81J Yu. V. Linnik. On the representation oflarge numbers as sums of seven cubes. Mat. 
SbornikNS, 12:218-224, 1943. 

[82J K. Mahler. Note on hypothesis K of Hardy and Littlewood. J. London Math. Soc., 
11:136-138,1936. 

[83J H. L. Montgomery. Topics in Multiplicative Number Theory. Number 227 in Lecture 
Notes in Mathematics. Springer-Verlag, Berlin, 1971. 

[84J H. L. Montgomery and R. C. Vaughan. The exceptional set in Goldbach's problem. 
Acta Arith., 27:353-370, 1975. 

[85J L. J. Mordell. On the four integer cubes problem. J. London Math. Soc., Il :208-218, 
1936. 

[86J L. J. Mordell. Diophantine Equations. Academic Press, London, 1969. 

[87J Y. Motohashi. Sieve Methods and Prime Number Theory. Tata Institute for 
Fundamental Research, Bombay, India, 1983. 



336 Bibliography 

[88] M. B. Nathanson. Products ofsums ofpowers. Math. Mag., 48:112-113,1975. 

[89] M. B. Nathanson. Waring's problem for sets of density zero. In M. 1. Knopp, editor, 
Analytic Number Theory, volume 899 of Lecture Notes in Mathematics, pages 301-
310, Berlin, 1981. Springer-Verlag. 

[90] M. B. Nathanson. A generalization ofthe Goldbach-Shnirel 'man theorem. Am. Math. 
Monthly, 94:768-771, 1987. 

[91] M. B. Nathanson. A short proof ofCauchy's polygonal number theorem. Proc. Am. 
Math. Soc., 99:22-24, 1987. 

[92] M. B. Nathanson. Sums of polygonal numbers. In A.C. Adolphson, J. B. Con­
rey, A. Ghosh, and R. 1. Yager, editors, Analytic Number Theory and Diophantine 
Problems, volume 70 of Progress in Mathematics, pages 305-316, Boston, 1987. 
Birkhăuser. 

[93] M. B. Nathanson. Additive Number Theory: Inverse Problems and the Geometry of 
Sumsets, volume 165 of Graduate Texts in Mathematics. Springer-Verlag, New York, 
1996. 

[94] A. Oppenheim. Hilbert's proof ofWaring's problem. Messenger Math., 58: 153-158, 
1928. 

[95] T. Pepin. Demonstration du theoreme de Fermat sur les nombres polygones. Atti 
Accad. Pont. Nuovi Lincei, 46:119-131,1892-93. 

[96] H. Poincare. Rapport sur le prix Bolyai. Acta Math., 35: 1-28, 1912. 

[97] K. Prachar. Primzahlverteilung. Springer-Verlag, Berlin, 1957. 

[98] H. Rademacher. Topics in Analytic Number Theory. Springer-Verlag, New York, 
1973. 

[99] D. Raikov. Uber die Basen dernatiirlichen Zahlentreihe. Mat. Sbomik N. S. 2,44:595-
597,1937. 

[100] O. Ramare. On §nirel'man's constant. Preprint, 1995. 

[101] P. Revoy. Sur les sommes de quatre cubes. Enseignement Math., 29:209-220, 1983. 

[102] G. J. Rieger. Zur Hilbertschen Losung des Waringschen Problems: Abschatzung von 
g(n). Archiv Math., 4:275-281,1953. 

[103] N. Romanov. Ober einige Satze der additiven Zahlentheorie. Mat. Annalen, 109:668-
678,1934. 

[104] M. Rosen. A generalization of Mertens' theorem. Preprint, 1995. 

[105] E. Schmidt. Zum Hilbertschen Beweise des Waringschen Theorems. Mat. Annalen, 
74:271-274, 1913. 

[106] W. M. Schmidt. Analytische Methodenfiir Diophantische Gleichungen. Birkhauser 
Verlag, Basel, 1984. 



Bibliography 337 

[107] W. M. Schmidt. The density of integer points on homogeneous varieties. Acta Math., 
154:243-296,1985. 

[108] B. Scholz. Bemerkung zu einemBeweis von Wieferich.Jahrber. Deutsch. Math. Ver., 
58:45-48, 1955. 

[109] A. Selberg. On an elementary method in the theory of primes. Norske Vid. Selsk. 
Forh., Trondheim, 19(18):64-67, 1947. 

[110] A. Selberg. Collected Papers, Volume 1. Springer-Verlag, Berlin, 1989. 

[111] A. Selberg. Collected Papers, Volume II. Springer-Verlag, Berlin, 1991. 

[112] D. Shanks and Jr. J. W. Wrench. Brun's constant. Math. Comp., 28:293-299, 1183, 
1974. 

[113] L. G. Shnirel'man. On the additive properties of integers. Izv. Donskovo Politekh. 
Inst. Novocherkasske, 14:3-27, 1930. 

[114] L. G. Shnirel'man. Uber additive Eigenschaften von Zahlen. Mat. Annalen, 107:649-
690,1933. 

[115] J. H. Silverman. Taxicabs and sums oftwo cubes. Am. Math. Monthly, 100:331-340, 
1993. 

[116] J. H. Silverman and J. Tate. Rational Points on Elliptic Curves. Springer-Verlag, New 
York,1992. 

[117] M. K. Sinisalo. Checking the Goldbach conjecture up to 4 . 1011. Math. Comput., 
61:931-934,1993. 

[118] J. Spencer. Four squares with few squares. Preprint, 1990. 

[119] A. Stăhr. Eine Basis h-Ordnung fiir die Menge aHer natiirlichen Zah1en. Mat. Z., 
42:739-743, 1937. 

[120] E. Stridsberg. Sur la demonstration de M. Hilbert du theoreme de Waring. Mat. 
Annalen, 72:145-152,1912. 

[121] G. Tenenbaum. Introduction to Analytic and Probabilistic Number Theory. 
Cambridge University Press, Cambridge, 1995. 

[122] J. V. Uspensky and M. A. Heaslet. Elementary Number Theory. McGraw-Hill, New 
York,1939. 

[123] J. G. van der Corput. Sur l'hypothese de Goldbach pour presque tous les nombres 
pair. Acta Arith., 2:266-290, 1937. 

[124] R. C. Vaughan. Sommes trigonometriques sur les nombres premiers. C. R. Acad. Sci. 
Paris, Ser. A, 285:981-983,1977. 

[125] R. C. Vaughan. The Hardy-Littlewood Method. Cambridge University Press, 
Cambridge, 1981. 



338 Bibliography 

[126] R. C. Vaughan. On Waring's problem for cubes. J. reine angew. M ath., 365: 122-170, 
1986. 

[127] R. C. Vaughan. A new iterative method in Waring's problem. Acta Math., 162: 1-71, 
1989. 

[128] R. C. Vaughan. The use in additive number theory of numbers without large prime 
factors. Philos. Trans. Royal Soc. London A, 345:363-376, 1993. 

[129] R. C. Vaughan and T. D. Wooley. On Waring's problem: some refinements. Proc. 
London Math. Soc., 63:35-68, 1991. 

[130] R. C. Vaughan and T. D. Wooley. Further improvements in Waring's problem. Acta 
Math., 174:147-240, 1995. 

[131] I. M. Vinogradov. On Waring's theorem. Izv. Akad. Nauk SSSR, Otd. Fiz.-Mat. Nauk, 
(4):393-400, 1928. English translation in Selected Works, pages 101-106, Springer­
Verlag, Berlin, 1985. 

[132] I. M. Vinogradov. Representation of an odd number as the sum of three primes. 
Doklady Akad. Nauk SSSR, 15(6-7):291-294, 1937. English translation in Selected 
Works, pages 129-132, Springer-Verlag, Berlin, 1985. 

[133] I. M. Vinogradov. Some theorems conceming the theory of primes. Mat. Sbornik, 
2(44):179-195,1937. 

[134] I. M. Vinogradov. The Method of Trigonometric Sums in the Theory ofNumbers, 
volume 23. Trud. Mat. Inst. Steklov, Moscow, 1947. English translation published 
by Interscience, New York, 1954. 

[135] 1. M. Vinogradov. The Method of Trigonometric Sums in Number Theory. Nauka, 
Moscow, 1980. English translation in Selected Works, pages 181-295, Springer­
Verlag, Berlin, 1985. 

[136] R. D. von Stemeck. Sitzungsber. Akad. Wiss. Wien (Math.), 112, IIa:1627-1666, 
1903. 

[137] Y. Wang. Goldbach Conjecture. World Scientific, Singapore, 1984. 

[138] E. Waring. Meditationes Algebraicae. Cambridge University Press, Cambridge, 
1770. 

[139] G. L. Watson. A proof ofthe seven cube theorem. J. London Math. Soc., 26: 153-156, 
1951. 

[140] A. Weil. Sur les sommes de trois et quatre carres. Enseign. Math., 20:215-222,1974. 

[141] H. Weyl. Uberdie Gleichverteilung von Zahlen mod Eins. Mat. Annalen, 77:313-352, 
1913. 

[142] H. Weyl. A half-century of mathematics. Am. Math. Monthly, 58:523-553, 
1942. Reprinted in Gesammelte Abhandlungen, volume IV, pages 46~94, 
Springer-Verlag, Berlin, 1968. 



Bibliography 339 

[143] H. Weyl. David Hilbert and his mathematical work. Bull. Am. Math. Soc., 50:612-
654, 1944. Reprinted in Gesammelte Abhandlungen, volume IV, pages 130--172, 
Springer-Verlag, Berlin, 1968. 

[144] A. Wieferich. Beweis des Satzes, daB sich eine jede ganze Zahl als Summe von 
hochstens neun positiven Kuben darstellen lă13t. Mat. Annalen, 66:95-101, 1909. 

[145] E. Wirsing. Thin subbases. Analysis, 6:285-308, 1986. 

[146] T. D. Wooley. Large improvements in Waring's problem.Ann. Math., 135:131-164, 
1992. 

[147] T. D. Wooley. On Vinogradov's mean value theorem. Mathematika, 39:379-399, 
1992. 

[148] T. D. Wooley. Breaking classical convexity in Waring's problem: Sums of cubes and 
quasi-diagonal behavior.lnventiones Math., 122:421-451, 1995. 

[149] T. D. Wooley. Sums oftwo cubes.lnt. Math. Res. Not., (4):181-185,1995. 

[150] E. M. Wright. An easier Waring's problem. J. London Math. Soc., 9:267-272, 1934. 

[151] J. ZOllner. Der Vier-Quadrate-Satz und ein Problem von Erdos und Nathanson. PhD 
thesis, Johannes Gutenberg-Universitiit, Mainz, 1984. 

[152] J. Zollner. Uber eine Vermutung von Choi, Erdos, und Nathanson. Acta Arith., 
45:211-213, 1985. 



Index 

Additive basis, 7 
additive function, 328 
adjoint equation, 262 
almost prime, 271 
asymptotic basis, 33 

Hasis, 7 
basis of finite order, 192 
binary quadratic form, 9 
Brun's constant, 173 
Brun's theorem, 173 

Cauchy's lemma, 30 
Cauchy's theorem, 31 
Chebyshev functions, 154 
Chen's theorem, 271 
Choi-Erdos-Nathanson theorem, 24 
circIe method, 121 
cIassical bases, 7 
completely multiplicative function, 308 
counting function, 191 
covering congruences, 204 

Difference operator, 99 

Dirichlet convolution, 301 
Dirichlet series, 151 
discriminant of a form, 8 
divisor-cIosed set, 318 

Easier Waring's problem, 72, 102 
equivalent matrices, 8 
equivalent quadratic forms, 8 
Erdos-Mahler theorem, 61 
Euler products, 325 
Euler sum formula, 306 
Euler's constant, 306 
exceptional set, 230 

Goldbach conjecture, 177 
Goldbach-Shnirel'man theorem, 197 

Hardy-Littlewood asymptotic formula, 
146 

Hermite polynomial, 77 
Hilbert-Waring theorem, 88 
Hooley-Wooley theorem, 66 
Hua's lemma, 116 



342 Index 

Implied constant, xiii 
inclusion-exclusion principle, 174 
infinite product, 323 

Jurkat-Richert theorem, 257 

Lagrange's theorem, 5 
large sieve inequality, 295 
Legendre's formula, 232 
linear sieve, 238 
Linnik's theorem, 46 
lower bound sieve, 234 

Major arcs, 126,213 
minor arcs, 127,213 
multiplicative function, 308 

Partial summation, 304 
polygonal number theorem, 31 
polygonal numbers, 4 
positive-definite form, 9 

Quadratic form, 8 

Ramanujan sum, 321 
Ramanujan's sum, 212 
Ramare's theorem, 208 

Riemann zeta-function, 151 

Selberg sieve, 180 
seven cube theorem, 46 
Shnirel'man density, 192 
Shnirel'man's addition theorem, 193 
Shnirel'man's constant, 208 
Siegel-Walfisz theorem, 46, 216 
sieve dimension, 238 
sieving function, 232 
sieving level, 232 
sieving range, 232, 234 
singular series, 137 
sumset, 192 
support level, 234 
symmetric matrix, 7 

Temary quadratic form, 9 

Upper bound sieve, 234 

Vinogradov's theorem, 212 

Waring's problem, 37 
well approximated, 126 
Weyl's inequality, 114 
Wieferich-Kempner theorem, 41 



Graduate Texts in Mathematics 

continuedfrom page ii 

66 WATERHOUSE. Introduction to Affine Group 
Schemes. 

67 SERRE. Local Fields. 
68 WEIDMANN. Linear Operators in Hilbert Spaces. 
69 LANG. Cyclotomic Fields II. 
70 MASSEY. Singular Homology Theory. 
71 FARKAsIKRA. Riemann Surfaces. 2nd ed. 
72 STll.LWELL. Classical Topology and 

Combinatorial Group Theory. 2nd ed. 
73 HUNGERFORD. Algebra. 
74 DAVENPORT. Multiplicative Number Theory. 

2nded. 
75 HOCHSCHll.D. Basic Theory of Algebraic Groups 

and Lie Algebras. 
76 IrrAKA. Algebraic Geometry. 
77 HECKE. Lectures on the Theory of Algebraic 

Numbers. 
78 BURRIslSANKAPPANAV AR. A Course in Universal 

Algebra. 
79 WALTERS. An Introduction to Ergodic Theory. 
80 ROBINSON. A Course in the Theory of Groups. 

2nded. 
81 FORSTER. Lectures on Riemann Surfaces. 
82 Borrrru. Differential Forms in Algebraic 

Topology. 
83 WASHINGTON. Introduction ta Cyclotamic 

Fields. 
84 IRELAND/ROSEN. A Classical Introduction ta 

Modem Number Theory. 2nd ed. 
85 EDWARDS. Fourier Series. VoI. II. 2nd ed. 
86 VAN LINT. Introduction to Coding Theory. 2nd 

ed. 
87 BROWN. Cohomology of Groups. 
88 PIERCE. Associative Algebras. 
89 LANG. Introduction to Algebraic and Abelian 

Functions. 2nd ed. 
90 BR0NDSTED. An Introduction to Convex 

Polytopes. 
91 BEARDON. On the Geometry of Discrete Groups. 
92 DIESTEL. Sequences and Series in Banach 

Spaces. 
93 DUBROVIN/FOMENKo/NOVIKOV. Modem 

Geometry-Methods and Applications. Part 
1.2nded. 

94 WARNER. Foundations of Differentiable 
Manifolds and Lie Groups. 

95 SHIRYAEV. Probability. 2nd ed. 

96 CONWA Y. A Course in Functional Analysis. 2nd 
ed. 

97 KoBLITZ. Introduction to Elliptic Curves and 
Modular Forms. 2nd ed. 

98 BROcKERfl'oM DIECK. Representations of 
Compact Lie Groups. 

99 GROVE!BENsON. Finite Reflection Groups. 2nd 
ed. 

100 BERGICHRISTENSEN/RESSEL. Harmonic Analysis 
on Semigroups: Theory of Positive Definite and 
Related Functions. 

101 EDWARDS. Galois Theory. 
102 VARADARAJAN. Lie Groups, Lie Algebras and 

Their Representations. 
103 LANG. Complex Analysis. 3rd ed. 
104 DUBROVIN/FOMENKO!NOVIKOV. Modem 

Geometry-Methods and Applications. Part 
II. 

105 UNG. SL2(R). 
106 SILVERMAN. The Arithmetic of Elliptic Curves. 
107 OLVER. Applications of Lie Groups ta 

Differential Equations. 2nd ed. 
108 RANGE. Holomorphic Functions and Integral 

Representations in Several Complex Variables. 
109 LEIITO. Univalent Functions and Teichmiiller 

Spaces. 
110 LANG. Algebraic Number Theory. 
111 HUSEMOLLER. Elliptic Curves. 
112 LANG. Elliptic Functions. 
113 KARA'IZAslSHREVE. Brownian Motion and 

Stochastic Calculus. 2nd ed. 
114 KoBLITZ. A Course in Number Theory and 

Cryptography. 2nd ed. 
115 BERGERlGOSTIAux. Differential Geometry: 

Manifolds, Curves, and Surfaces. 
116 KELLEy/SRINIVASAN. Measure and Integral. VoI. 

1. 
117 SERRE. Algebraic Groups and Class Fields. 
118 PEDERSEN. Analysis Now. 
119 ROTMAN. An Introduction to Algebraic 

Topology. 
120 ZIEMER. Weakly Differentiable Functions: 

Sobolev Spaces and Functions of Bounded 
Variation. 

121 LANG. Cyclotomic Fields I and II. Combined 
2nded. 

122 REMMERT. Theory of Complex Functions. 
Readings in Mathematics 



123 EBBINGHAUs/HERMES ET AL. Numbers. 
Readings in Mathematics 

124 DUBROVIN/FOMENKO/NovIKOV. Modem 

Geometry-Methods and Applications. Part 
III. 

125 BERENSTEIN/GAY. Complex Variables: An 
Introduction. 

126 BOREL. Linear Algebraic Groups. 
127 MASSEY. A Basic Course in Algebraic Topology. 
128 RAucH. Partial Differential Equations. 
129 FULTON/HARRIS. Representation Theory: A 

First Course. 
Readings in Mathematics 

130 DODSON/POSTON. Tensor Geometry. 
131 LAM. A First Course in Noncommutative Rings. 
132 BEARDON. Iteration of Rational Functions. 
133 HARRIS. Aigebraic Geometry: A First Course. 
134 ROMAN. Coding and Information Theory. 
135 ROMAN. Advanced Linear Algebra. 
136 ADKINS/WEINTRAUB. Algebra: An Approach via 

Module Theory. 
137 AXLERlBOURDONIRAMEY. Harmonic Function 

Theory. 
138 COHEN. A Course in Computational Aigebraic 

Number Theory. 
139 BREDON. Topology and Geometry. 
140 AUBIN. Optima and Equilibria. An Introduction 

to Nonlinear Analysis. 
141 BECKERlWEISPFENNINGIKREDEL. Grobner Bases. 

A Computational Approach to Commutative 
Algebra. 

142 LANG. Real and Functional Analysis. 3rd ed. 
143 DOOB. Measure Theory. 
144 DENNIS/FARB. Noncommutative Algebra. 
145 VICK. Homology Theory. An Introduction to 

Aigebraic Topology. 2nd ed. 

146 BRIDGES. Computability: A Mathematical 
Sketchbook. 

147 ROSENBERG. Aigebraic K -Theory and Its 
Applications. 

148 ROTMAN. An Introduction to the Theory of 
Groups. 4th ed. 

149 RATCLIFFE. Foundations of Hyperbolic 
Manifolds. 

150 EISENBUD. Commutative Algebra with a View 
Toward Aigebraic Geometry. 

151 SILVERMAN. Advanced Topics in the Arithmetic 
of Elliptic Curves. 

152 ZIEGLER. Lectures on Polytopes. 
153 FULTON. Aigebraic Topology: A First Course. 
154 BROWN/PEARCY. An Introduction to Analysis. 
155 KASSEL. Quantum Groups. 
156 KECHRIS. Classical Descriptive Set Theory. 
157 MALLIAVIN. Integration and Probability. 
158 ROMAN. Field Theory. 
159 CONWAY. Functions of One Complex Variable 

II. 
160 LANG. Differential and Riemannian Manifolds. 
161 BORWEIN/ERD,L YI. Polynomials and Polynomial 

Inequalities. 
162 ALPERINIBELL. Groups and Representations. 
163 DIXON/MORTIMER. Permutation Groups. 
164 NATHANSON. Additive Number Theory: The 

Classical Bases. 
165 NATHANSON. Additive Number Theory: Inverse 

Problems and the Geometry of Sumsets. 
166 SHARPE. Differential Geometry: Cartan's 

Generalization of Klein 's Erlangen Programme. 
167 MORANDI. Field and Galois Theory. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>

    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>


    /SKY <>

    /SUO <>
    /SVE <>
    /TUR <>

    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




