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Preface

[Hilbert’s] style has not the terseness of many of our modern authors
in mathematics, which is based on the assumption that printer’s labor
and paper are costly but the reader’s effort and time are not.

H. Weyl [143]

The purpose of this book is to describe the classical problems in additive number
theory and to introduce the circle method and the sieve method, which are the
basic analytical and combinatorial tools used to attack these problems. This book
is intended for students who want to learn additive number theory, not for experts
who already know it. For this reason, proofs include many “unnecessary” and
“obvious” steps; this is by design.

The archetypical theorem in additive number theory is due to Lagrange: Every
nonnegative integer is the sum of four squares. In general, the set A of nonnegative
integers is called an additive basis of order h if every nonnegative integer can be
written as the sum of £ not necessarily distinct elements of A. Lagrange’s theorem
is the statement that the squares are a basis of order four. The set A is called a
basis of finite order if A is a basis of order h for some positive integer #. Additive
number theory is in large part the study of bases of finite order. The classical bases
are the squares, cubes, and higher powers; the polygonal numbers; and the prime
numbers. The classical questions associated with these bases are Waring’s problem
and the Goldbach conjecture.

Waring’s problem is to prove that, for every k > 2, the nonnegative kth powers
form a basis of finite order. We prove several results connected with Waring’s
problem, including Hilbert’s theorem that every nonnegative integer is the sum of
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a bounded number of kth powers, and the Hardy-Littlewood asymptotic formula
for the number of representations of an integer as the sum of s positive kth powers.

Goldbach conjectured that every even positive integer is the sum of at most
two prime numbers. We prove three of the most important results on the Gold-
bach conjecture: Shnirel’man’s theorem that the primes are a basis of finite order,
Vinogradov’s theorem that every sufficiently large odd number is the sum of three
primes, and Chen’s theorem that every sufficently large even integer is the sum of
a prime and a number that is a product of at most two primes.

Many unsolved problems remain. The Goldbach conjecture has not been proved.
There is no proof of the conjecture that every sufficiently large integer is the sum
of four nonnegative cubes, nor can we obtain a good upper bound for the least
number s of nonnegative kth powers such that every sufficiently large integer
is the sum of s kth powers. It is possible that neither the circle method nor the
sieve method is powerful enough to solve these problems and that completely
new mathematical ideas will be necessary, but certainly there will be no progress
without an understanding of the classical methods.

The prerequisites for this book are undergraduate courses in number theory and
real analysis. The appendix contains some theorems about arithmetic functions
that are not necessarily part of a first course in elementary number theory. In a
few places (for example, Linnik’s theorem on sums of seven cubes, Vinogradov’s
theorem on sums of three primes, and Chen’s theorem on sums of a prime and an
almost prime), we use results about the distribution of prime numbers in arithmetic
progressions. These results can be found in Davenport’s Multiplicative Number
Theory [19].

Additive number theory is a deep and beautiful part of mathematics, but for
too long it has been obscure and mysterious, the domain of a small number of
specialists, who have often been specialists only in their own small part of additive
number theory. This is the first of several books on additive number theory. I hope
that these books will demonstrate the richness and coherence of the subject and
that they will encourage renewed interest in the field.

I have taught additive number theory at Southern Illinois University at Carbon-
dale, Rutgers University—New Brunswick, and the City University of New York
Graduate Center, and I am grateful to the students and colleagues who participated
in my graduate courses and seminars. I also wish to thank Henryk Iwaniec, from
whom I learned the linear sieve and the proof of Chen’s theorem.

This work was supported in part by grants from the PSC-CUNY Research Award
Program and the National Security Agency Mathematical Sciences Program.

I would very much like to receive comments or corrections from readers of this
book. My e-mail addresses are nathansn@ alpha.lehman.cuny.edu and nathanson@
worldnet.att.net. A list of errata will be available on my homepage at http://www.
lehman.cuny.edu or http://math.lehman.cuny.edu/nathanson.

Melvyn B. Nathanson
Maplewood, New Jersey
May 1, 1996
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Notation and conventions

Theorems, lemmas, and corollaries are numbered consecutively in each chapter
and in the Appendix. For example, Lemma 2.1 is the first lemma in Chapter 2 and
Theorem A.2 is the second theorem in the Appendix.

The lowercase letter p denotes a prime number.

We adhere to the usual convention that the empty sum (the sum containing no
terms) is equal to zero and the empty product is equal to one.

Let f be any real or complex-valued function, and let g be a positive function.
The functions f and g can be functions of a real variable x or arithmetic functions
defined only on the positive integers. We write

f=0(
or
f<g
or
g>f

if there exists a constant ¢ > 0 such that

If ()] < cg(x)

for all x in the domain of f. The constant c is called the implied constant . We
write

f <<a,b,... g
if there exists a constant ¢ > 0 that depends on a, b, . .. such that

[fO)] < cg(x)
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for all x in the domain of f. We write

f=o0(g)
if

The function f is asymptotic to g, denoted
f~8

if

lim _f_(_x_) =1.

X-—>00 g(_x)
The real-valued function f is increasing on the interval I if f(x;) < f(x;) for all
X1, x2 € I with x; < x,. Similarly, the real-valued function f is decreasing on
the interval I if f(x) = f(x;) for all x1, x, € I with x; < x;. The function f is
monotonic on the interval 7 if it is either increasing on I or decreasing on J.

We use the following notation for exponential functions:

exp(x) =¢€*

and

e(x) = exp(2mix) = 2%,

The following notation is standard:

y/ the integers 0, 1, +2, ...

R the real numbers

R” n-dimensional Euclidean space

z the integer lattice in R"

C the complex numbers

|z the absolute value of the complex number z
Rz the real part of the complex number z

Sz the imaginary part of the complex number z
[x] the integer part of the real number x,

that is, the integer uniquely determined
by the inequality [x] < x < [x]+ 1.

{x} the fractional part of the real number x,
thatis, {x} =x — [x] € [0, 1).
ilxl the distance from the real number x

to the nearest integer, that is,
x|l = min{|x — n|: n € Z} = min ({x}, 1 — {x}) € [0, 1/2].

(a1,...,a,) the greatest common divisor of the integers a;, ..., a,
[ay,...,a,] the least common multiple of the integers a;, . .., a,
1 X| the cardinality of the set X

hA the h-fold sumset, consisting of all sums of 4 elements of A
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Waring’s problem



1

Sums of polygons

Imo propositionem pulcherrimam et maxime generalem nos primi de-
teximus: nempe omnem numerum vel esse triangulum vex ex duobus
aut tribus triangulis compositum: esse quadratum vel ex duobus aut
tribus aut quatuorquadratis compositum: esse pentagonum vel ex duo-
bus, tribus, quatuor aut quinque pentagonis compositum; et sic dein-
ceps in infinitum, in hexagonis, heptagonis polygonis quibuslibet,
enuntianda videlicet pro numero angulorum generali et mirabili pro-
postione. Ejus autem demonstrationem, quae ex multis variis et abstru-
sissimis numerorum mysteriis derivatur, hic apponere non licet. . . .!

P. Fermat [39, page 303]

'T have discovered a most beautiful theorem of the greatest generality: Every number
is a triangular number or the sum of two or three triangular numbers; every number is a
square or the sum of two, three, or four squares; every number is a pentagonal number or
the sum of two, three, four, or five pentagonal numbers; and so on for hexagonal numbers,
heptagonal numbers, and all other polygonal numbers. The precise statement of this very
beautiful and general theorem depends on the number of the angles. The theorem is based
on the most diverse and abstruse mysteries of numbers, but I am not able to include the
proof here. . ..



4 1. Sums of polygons
1.1 Polygonal numbers

Polygonal numbers are nonnegative integers constructed geometrically from the
regular polygons. The triangular numbers, or triangles, count the number of points
in the triangular array

The sequence of triangles is 0, 1, 3, 6, 10, 15, ....
Similarly, the square numbers count the number of points in the square array

The sequence of squares is 0, 1, 4,9, 16,25, ....
The pentagonal numbers count the number of points in the pentagonal array

The sequence of pentagonal numbers is 0, 1, 5, 12,22, 35, .. .. There is a similar
sequence of m-gonal numbers corresponding to every regular polygon with m
sides.

Algebraically, for every m > 1, the kth polygonal number of order m+2, denoted
Pm(k), is the sum of the first k terms of the arithmetic progression with initial value
1 and difference m, that is,

PnE)=1+m+1)+Cm+1)+---+((k—1m+1)

_ mk(k — 1) ok
2
This is a quadratic polynomial in k. The triangular numbers are the numbers
k(k+1)
pi1k) =

2 s
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the squares are the numbers
pa(k) = k2,

the pentagonal numbers are the numbers

k(3k—1)
p3k) = 7
and so on. This notation is awkward but traditional.

The epigraph to this chapter is one of the famous notes that Fermat wrote in
the margin of his copy of Diophantus’s Arithmetica. Fermat claims that, for every
m > 1, every nonnegative integer can be written as the sum of m + 2 polygonal
numbers of order m + 2. This was proved by Cauchy in 1813. The goal of this
chapter is to prove Cauchy’s polygonal number theorem. We shall also prove the
related result of Legendre that, for every m > 3, every sufficiently large integer is
the sum of five polygonal numbers of order m + 2.

1.2 Lagrange’s theorem

We first prove the polygonal number theorem for squares. This theorem of La-
grange is the most important result in additive number theory.

Theorem 1.1 (Lagrange) Every nonnegative integer is the sum of four squares.

Proof. It is easy to check the formal polynomial identity

2,2, .2, 2.2, 2, 2, 2 2,.2,.2,.2
Xy +x +x3+ X))y + Y, + Y3+ Y) =2+ 25+ 25+ 25, (1.1)
where
21 = X 1+X2y2+Xx3y3 +X4y4
22 = X1y2 — X2)1 — X3Ya+X4Y3 (1.2)
23 = X1Y3 —X3y1 +X2Y4 — X4)2

24 = X1Y4 — XaY1 — X2y3+X3)2

This implies that if two numbers are both sums of four squares, then their product
is also the sum of four squares. Every nonnegative integer is the product of primes,
so it suffices to prove that every prime number is the sum of four squares. Since
2 =12 + 12 + 0% + 02, we consider only odd primes p.

The set of squares

{@*|a=0,1,...,(p - 1)/2})

represents (p + 1)/2 distinct congruence classes modulo p. Similarly, the set of
integers
{-=b*—1|b=0,1,...,(p—1)/2}



6 1. Sums of polygons

represents (p + 1)/2 distinct congruence classes modulo p. Since there are only
p different congruence classes modulo p, by the pigeonhole principle there must
exist integers a and b such that 0 < a,b < (p — 1)/2 and

a*=-b>—1 (mod p),
that is,

a*+b*+1=0 (mod p).
Leta? +b?>+ 1 =np. Then

—1\2 2
pfnp=a2+b2+12+0252(£2—) +1<p7+1<p2,
and so
1<n<p.

Let m be the least positive integer such that mp is the sum of four squares. Then
there exist integers xj, x3, X3, x4 such that

mp = x7 +x% +x2 +x2

and
l<m<n<p.

We must show that m = 1.
Suppose not. Then 1 < m < p. Choose integers y; such that

yi =x; (mod m)
and
—m/2 <y, <m/2
fori =1,...,4. Then
Viey2+yl+yl=xt+xl+xi+xi=mp=0 (mod m)
and
mr =y +y;+y; +y;

for some nonnegative integer r. If r = 0, then y; = O for all i and each x,.2 is divisible
by m?. It follows that mp is divisible by m?, and so p is divisible by m. This is
impossible, since p is prime and 1 < m < p. Therefore, » > 1 and

mr = }’12 +y§ +y32 +y§ < 4(m/2)2 =m>.

Moreover, r = m if and only if m is even and y; = m/2 for all i. In this case,
x; =m/2 (mod m) for all i, and so x? = (m/2)?> (mod m?) and

mp=x2+x2+x3+x2=4m/2*=m*=0 (mod m?).



1.3 Quadratic forms 7

This implies that p is divisible by m, which is absurd. Therefore,
1<r<m.
Applying the polynomial identity (1.1), we obtain

2
mrp = (mp)(mr)
2 2 2 2 2 2 2 2
= (X7 +x5+x3 +x)O7 + ¥, +y3 +¥5)
=d+2+2+7,

where the z; are defined by equations (1.2). Since x; = y; (mod m), these
equations imply that z; = 0 (mod m) fori = 1,...,4. Let w; = z;/m. Then
wy, ..., Wy are integers and

rp = w? + wl + w? + w?,

which contradicts the minimality of m. Therefore, m = 1 and the prime p is the
sum of four squares. This completes the proof of Lagrange’s theorem.

A set of integers is called a basis of order h if every nonnegative integer can be
written as the sum of 4 not necessarily distinct elements of the set. A set of integers
is called a basis of finite order if the set is a basis of order 4 for some h. Lagrange’s
theorem states that the set of squares is a basis of order four. Since 7 cannot be
written as the sum of three squares, it follows that the squares do not form a basis
of order three. The central problem in additive number theory is to determine if a
given set of integers is a basis of finite order. Lagrange’s theorem gives the first
example of a natural and important set of integers that is a basis. In this sense, it
is the archetypical theorem in additive number theory. Everything in this book is a
generalization of Lagrange’s theorem. We shall prove that the polygonal numbers,
the cubes and higher powers, and the primes are all bases of finite order. These are
the classical bases in additive number theory.

1.3 Quadratic forms

Let A = (g; ;) be an m x n matrix with integer coefficients. In this chapter, we
shall only consider matrices with integer coefficients. Let A7 denote the transpose

of the matrix A, thatis, A7 = (afj) is the n x m matrix such that

afj = aj,,~
fori =1,...,nand j = 1,...,m. Then (AT)T = A for every m x n matrix A,
and (AB)” = BT AT for any pair of matrices A and B such that the number of
columns of A is equal to the number of rows of B.

Let M, (Z) be the ring of n x n matrices. A matrix A € M,(Z) is symmetric if
AT = A.If A is a symmetric matrix and U is any matrix in M, (Z), then UT AU is

also symmetric, since

wTAan) =UuTATWNHT =UT AU.
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Let SL,(Z) denote the group of n x n matrices of determinant 1. This group acts
on the ring M,,(Z) as follows: If A € M, (Z) and U € SL,(Z), we define

A-U=UTAU.
This is a group action, since
A-(UV)=UWTAWUV)=VTWUTAU)V =(UTAU)-V=(A-U)-V.
‘We say that two matrices A and B in M, (Z) are equivalent, denoted
A~ B,

if A and B lie in the same orbit of the group action, thatis,if B=A-U = UT AU
for some U € SL,(Z).1tis easy to check that this is an equivalence relation. Since
det(U) =1 forall U € SL,(Z), it follows that

det(A - U) = det(UT AU) = det(UT) det(A) det(U) = det(A)

for all A € M, (Z), and so the group action preserves determinants. Also, if A is
symmetric, then A - U is also symmetric. Thus, for any integer d, the group action
partitions the set of symmetric # x »n matrices of determinant 4 into equivalence
classes.

To every n x n symmetric matrix A = (a; ;) we associate the quadratic form Fy

defined by
FA(xl, PN ,x,,) = ZZaiij,‘xj.

i=1 j=1

This is a homogeneous function of degree two in the » variables x;, ..., x,. For
example, if I, is the n x n identity matrix, then the associated quadratic form is

Fp(x1,...,%n) =x12+x§+---+x3.
Let x denote the n x 1 matrix (or column vector)

X1

Xn
We can write the quadratic form in matrix notation as follows:
Fa(x1,...,x,) = xT Ax.

The discriminant of the quadratic form F, is the determinant of the matrix A. Let
A and B be n x n symmetric matrices, and let F, and Fp be their corresponding
quadratic forms. We say that these forms are equivalent, denoted

Fy ~ Fp,
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if the matrices are equivalent, thatis, if A ~ B. Equivalence of quadratic formsis an
equivalence relation, and equivalent quadratic forms have the same discriminant.
The quadratic form F, represents the integer N if there exist integers x, ..., X,
such that
FA(.X],...,X,,)=N.

If F4, ~ Fg, then A ~ B and there exists a matrix U € SL,(Z) such that
A=B-U=UTBU.It follows that

Fa(x)=xTAx =xTUTBUx = (Ux)T B(Ux) = Fg(Ux).

Thus, if the quadratic form F4 represents the integer N, then every form equivalent
to F4 also represents N. Since equivalence of quadratic forms is an equivalence
relation, it follows that any two quadratic forms in the same equivalence class
represent exactly the same set of integers. Lagrange’s theorem implies that, for
n > 4, any form equivalent to the form x? + - - - + x2 represents all nonnegative
integers.

The quadratic form F, is called positive-definite if Fa(xy, ..., x,) > 1 for all
(1, ..., %0) ¥ (0, ...,0). Every form equivalent to a positive-definite quadratic
form is positive-definite.

A quadratic form in two variables is called a binary quadratic form. A quadratic
form in three variables is called a ternary quadratic form. For binary and ternary
quadratic forms, we shall prove that there is only one equivalence class of positive-
definite forms of discriminant 1. We begin with binary forms.

_( 911 412
a2z a2

be a 2 x 2 symmetric matrix, and let

Lemma 1.1 Let

2 2
FA(xl, x2) =4ai,1X, + 2a1,2x,x2 + az2x,

be the associated quadratic form. The binary quadratic form F 4 is positive-definite
if and only if
a1 =1

and the discriminant d satisfies
2
d =det(A) = ai, 1622 —aj > 1.
Proof. If the form F, is positive-definite, then
Fy(1,0)=qa1 =1
and
Fa(— _ 2 _o 2 2
a(—a12,a1,1) = a1107 , — 2a1,1a7 , +ay 1G22

2
=a,1 (01,102,2 - am)
=a;d > 1,
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and so d > 1. Conversely, ifa;; > 1 andd > 1, then
a1,1Fa(x1, x2) = (a1,131 + a1 2x2)* +dx3 > 0,
and F4(x;, x2) = 0 if and only if (x;, x,) = (0, 0). This completes the proof.

Lemma 1.2 Every equivalence class of positive-definite binary quadratic forms
of discriminant d contains at least one form

2 2
Fa(xy, x2) = a1,1x7 + 2a1 2x1%2 + az,2%;

Jfor which

2
2la1z) <a1q < ;—/_5\/2

Proof. Let Fp(x1, x2) = by 1x2 + 2b; 231 %, + b2 2x2 be a positive-definite quad-
ratic form, where
by b2
B=( " "
( b2 b2
is the 2 x 2 symmetric matrix associated with F. Let a; ; be the smallest positive
integer represented by F. Then there exist integers ry, rp such that
F(ri,r2)=a.

If the positive integer & divides both r; and r,, then, by the homogeneity of the
form and the minimality of a, ;, we have

F(ri,r) a1

a1 2 F(ri/h,ra/h) = — W

< ai,i,
and so A = 1. Therefore, (r1, ;) = 1 and there exist integers s, and s, such that

1 =ris9 — sy =ri(sy +1rt) — ra(sy + )

for all integers ¢. Then

[ n sitnt
U= ( ry Sy +rat ) € SL(2)

forallt € Z. Let
A=UTBU

=( F(ri,r) ay,+ F(ri, r)t )

a;,z + F(ri,ro)t  F(s1 +rt, s, +rat)

_{ a1 412
a2 a2 )’
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where

!
ay 5 = b1,11181 + b1 2(r152 + 1251) + bp 21252
'
ajz2=4a;,+ at
a2 =F(s;+rit,sa+12t) > a;,

since (51 + rit, 52 + r2t) # (0,0) for all ¢t € Z, and a,,; is the smallest positive
number represented by the form F. Since {a) , + a1t : t € Z} is a congruence
class modulo a; ;, we can choose ¢ so that

’ aii
lai 2| = |al,2 +apt| < >

Then A ~ B, and the form Fp is equivalent to the form F4(xy, x;) = amxl2 +
2ay 2x1x7 + az,gxg, where
2]|ayz| < a1y < azn.
If d is the discriminant of the form, then
2
d=ay1027 — aj
and the inequality
2
1,

2 2 ars
aj <aj1a3z = d+a1_2 <d+ ———4

implies that
or, equivalently,

This completes the proof.

Theorem 1.2 Every positive-definite binary quadratic form of discriminant 1 is
equivalent to the form x12 + x%.

Proof. Let F be a positive-definite binary quadratic form of discriminant 1. By
Lemma 1.2, the form F is equivalent to a form a;,lxlz +2a; 2x1Xx2 +a2,2x22 for which

2
2a1z2] a1 £ —= < 2.

3

Since a;,; > 1, we must have a;; = 1. This implies that a;, = 0. Since the

discriminant is 1, we have
- 2 -1
a2 =ap1a22 —ay, = 1.

Thus, the form F is equivalent to x? + x2. This completes the proof.
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1.4 Ternary quadratic forms

We shall now prove an analogous result for positive-definite ternary quadratic
forms.

Lemma 1.3 Let
a,, a2 a3
A=| a2 a2 a3
a3 azs as3

be a 3 x 3 symmetric matrix, and let F4 be the corresponding ternary quadratic
form. Let d be the discriminant of F4. Then

2
a1 Fa(x, x2, x3) = (a1,1%1 + a1,2%2 + a13%3)° + G 4+(x2, Xx3), (1.3)

where G 4+ is the binary quadratic form corresponding to the matrix
2
aj1a22 —a ai1a2,3 —ai 243
A* = 1,2 2 (1.4)
a102,3 — 41,2413 a1,143,3 — 4y 3

and G 4+ has discriminant a,,1d. If F, is positive-definite, then G s+ is positive-
definite. Moreover, the form F 4 is positive-definite if and only if the following three
determinants are positive:

ay; =det(a;;) > 1,
d'=det( 201 92) 5
ajz azz2 ) T
and

d = det(4) > 1.

Proof. We obtain identities (1.3) and (1.4) as well as the discriminant of G 4+
by straightforward calculation.
If F, is positive-definite, then

Fs(1,0,0)=a;; > 1.

If Ga+(x2,x3) < O for some integers x;, x3, then Ga«(ajx2,a11x3) =

a%’IGA‘(xz, x3) < 0.Let x; = —(a1,2x2 +ay 3x3). Then
ay,1x1 +ay,2a1,1%2 + ay1,3a1,1x3 = 0,
and so

a1 Fa(x1, a1,1x2, a1,1x3)
2
= (a1,1%1 + a1,201,1X2 + 41,301,1%3)" + G a+(@1,1X2, a1,1%3)

G a+(ag 1x2, a1,1x3)

al |G s (x2, x3)
<0.
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Since F, is positive-definite, it follows that x; = x3 = 0, and so the binary form
G 4+ is also positive-definite. By Lemma 1.1, the leading coefficient of G 4 is
positive, that is,

d =ajap—al, > 1,

and also the discriminant of G 4 is positive, hence
d =det(A) > 1.

This proves that if F4 is positive-definite, then the integers a;,1, d’, and d are
positive.

Conversely, if these three numbers are positive, then Lemma 1.1 implies that
the binary form G 4. is positive-definite. If F4(x1, x2, x3) = 0, then it follows from
identity (1.3) that

Gas(x2,x3) =0

and
ap1x) +airx +a;3xz = 0.

The first equation implies that x, = x3 = 0, and the second equation implies that
x1 = 0. Therefore, the form F, is positive-definite.

Lemma 1.4 Let B = (b; ;) be a 3 x 3 symmetric matrix such that the ternary

quadratic form Fg is positive-definite. Let G g+ be the unique positive-definite
binary quadratic form such that

b1,1Fa(y1, y2, y3) = (b1.11 + b1.2y2 + b13y3)* + G (32, ¥3).
For any matrix V* = (v;fj) € SLy(Z), let
A* = (V)T B*y* 1.5)

and let G g+ be the positive-definite binary quadratic form corresponding to the
symmetric matrix A* and equivalent to the form G g«. For any integers r and s, let

1 r s
Vr,x = (v,;j) = 0 vl*,l v’{,z € SL3(Z) (16)

* *
0 v, vi,

and
As =VIBV, =(a)). 1.7)

Let Fy,, be the corresponding ternary quadratic form. Then a\ ; = by and
2
a1 Fa, (X1, X2, X3) = (a11X1 + a1,2%2 + a1 3%3)" + G 4+ (x2, X3),

where the matrix A* defined by (1.5) is independent of r and s.
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Proof. Since v;;; = 1 and v;; = v3; = 0, it follows from the matrix equa-
tion (1.7) that

"szlkbk,v,, szkxbk,v,, Zbl,v,,

k=1 i=1 k=1 i=1
andsoa;; = by ;. Let

X1 b2
x=1 x and Visx=y=] » 1},
X3 y3

SO

3

yi = Z v,-,jxj.
j=1
In particular,
¥2 =02, Lxy + v22X2 + V2,3%3 = U] 1 X2 + V] ,X3
¥3 = V3, 1x1 + v32X2 + U3 3X3 = U3 1 X2 + VU 5X3.
Let
X
y* = }’2 and x* = 2 .
Y3 X3
Then
V*x* = y*
It follows that
Gp-(y2, ¥3) = Gp-(V*x*) = G g+ (2, x3).
Moreover,
3 3
biay1 +bi2yr +b13y3 = Z b Z Vi, jXj
i=1 j=1
= Z (Zb’ iVi J) xj
j=1 i=1

=a;,1X1 +a;2x2 +ap 3xs.

Since

Fa,, (01, %2, %3) = x7 Ay sx = (V,s0)T B(Vi5x) = y" By = Fy(31, y2, y3),
it follows that
(@1,1%1 +a1,2%; +a13%3) + G ar, (%2, X3)
=ai 1 Fy, (x1, X2, x3)
= by 1 Fy, (x1, X2, X3)
=b11Fg(y1, y2, y3)
= (b1,171 +b12y2 + b13y3)* + G (32, y3)
= (a1,1%1 +a12%2 + a1,3%3)% + G 4 (x2, X3),
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and so
G a+(x2, x3) = G 4z (x2, X3)
for all integers r and s. This completes the proof.
Lemma 1.5 Let u) 1, uz,1, and us 1 be integers such that
(u1,1,u21,u31) =1

Then there exist six integers u; j fori = 1,2,3 and j = 2, 3 such that the matrix
U = (u;,;) € SL3(Z), that is, det(U) = 1.

Proof. Let (1,1, u2,1) = a. Choose integers u, » and u, , such that
Uiz — U112 =4
Since (a, u3,1) = (41,1, u2,1, 43,1) = 1, we can choose integers u3 3 and b such that
aus sz — bu3,1 =1.

ul,lb
U3z = »
a

u2,1b
Uz = s
a

Uzz = 0.
Then the matrix

U1 U112
U=@j)=] uz1 ua2
U3 | 0

)b
)

s TE

has integer coefficients and determinant 1. This completes the proof.
Lemma 1.6 Every equivalence class of positive-definite ternary quadratic forms

. .. . 3 .
of discriminant d contains at least one form _; j=1 Gi jXiXj for which

4
2max (Jaizl, la13l) < a1 < 5\3/‘_1

Proof. Let F be a positive-definite ternary quadratic form of determinant 4, and
let C be the corresponding 3 x 3 symmetric matrix. Let a; ; be the smallest positive
integer represented by F. Then there exist integers u1,1, #2,1, and u3 ; such that

F(up1,uz1,u31) =an.

If (u1.1,u21,u3,) = h, then the form F also represents a1,1/h2, and so, by the
minimality of @y 1, wehave (u; 1, U2 1, #3,1) = 1. By Lemma 1.5, there exist integers
u;jfori=1,2,3 and j = 2, 3 such that the matrix U = (u; ;) € SL3(Z). Let

B=U"CU = (b ).
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Then F is equivalent to the form Fp, and
bii=a,
is also the smallest integer represented by Fg. By Lemma 1.3,
a1,1Fg(x1, X2, x3) = (b1,1%1 + b1,2%2 + b1 3%3)* + G pe (%2, x3),

where G - (x2, x3) is a positive-definite binary quadratic form of determinanta, d.
By Lemma 1.2, the form G p«(x2, x3) is equivalent to a binary form

2 2
G a+(x2, X3) = a5 1 X5 + ] X2 X3 + a3 5 X3
such that

2
a‘l“_l < ﬁ\/aud.

Choose V* € SL,(Z) such that A* = (V*)TB*V*. Letr,s € Z,and let V,; €
SL3(Z) be the matrix defined by (1.6) in Lemma 1.4. Let

A=VIBV, =) (1.8)

Note that the integer in the upper left corner of the matrix is still a; ;, the smallest
positive integer represented by any form in the equivalence class of F, and that,
by Lemma 1.3,

2
ai; =aiia22 — ay,.
Finally, it follows from (1.8) that
aj2 =ay1r +b1 27 +bi3vs

and
* *
ay 3 =ay15 + b1 207 5 + b1 303 5.

Therefore, we can choose r such that

la12] < 2
2
and choose s such that any
lar3l < -
Since
a1 < F4(0,1,0) =ay 5,
we have

1112,1 <ai1az2
2 2
=4ay,1822 — a1'2 + ais
% 2
=d;+a3
a

2 it
< — d+ ——.
= ﬁ\/al,l 4
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This implies that

or, equivalently,

This completes the proof.

Theorem 1.3 Every positive-definite ternary quadratic form of discriminant 1 is
equivalent o the form x? + x3 + x32.

Proof. Let F be a positive-definite ternary quadratic form of discriminant 1. By
Lemma 1.6, the form F is equivalent to a form F = }_ a; jx;x; for which

4
0 < 2max (la1 2], la13]) < a1y < 3

This implies that a; , = a;,3 = 0. Since d # 0, it follows that a; ; % 0 and so
a1 = 1. Therefore,
1 0 0
A=| 0 ay azs |,
0 a3 a3

A* = az2 a3
a3 4as3

has determinant 1. By Theorem 1.2, there exists a matrix

* Uz U23
U*= ' ' € SLy(Z
( U3 U33 ) 2Z)

where the 2 x 2 matrix

such that (U*)T A*U* is the 2 x 2 identity matrix /,. Let

1 0 0
U=1 0 uyp uzs
0 uz3 uss3

Then UT AU is the 3 x 3 identity matrix /3. This completes the proof.

1.5 Sums of three squares

In this section, we determine the integers that can be written as the sum of three
squares. The proof uses the fact that a number is the sum of three squares if
and only if it can be represented by some positive-definite ternary quadratic form
of discriminant 1, together with two important theorems of elementary number
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theory: Gauss’s law of quadratic reciprocity and Dirichlet’s theorem on primes in
arithmetic progressions.

The statement that a is a quadratic residue modulo m means that there exist
integers x and y such that x> — @ = ym. If p is prime and (a, p) = 1, then the

Legendre symbol ( —;—) is defined by ( %) = 1 if a is a quadratic residue modulo p
and (%) = —1 if a is not a quadratic residue modulo p. By quadratic reciprocity,
if p and q are distinct odd primes, then (s) = (%) ifp=1 (mod 4org=1
(mod 4), and (g) - (%) ifp=g=3 (mod 4).Also, (-71) = 1 if and only
ifp=1 (mod 4), and (%) =lifandonlyif p=1or7 (mod 8).

Lemma 1.7 Let n > 2. If there exists a positive integer d’ such that —d’ is a

quadratic residue modulo d'n — 1, then n can be represented as the sum of three
squares.

Proof. If —d’ is a quadratic residue modulo d’n — 1, then there exist integers
ay 2 and ay ; such that

2 ’ ’
aj,+d =ay;1(d'n-1)=ay a2,

where
a2,2=d’n—122d’—121
and so
ay = 1.
Equivalently,

! 2
d = a1az2 — 01'2.

The symmetric matrix
a1 ayp 1
A=| a2 a2 O
1 0 n

has determinant
det(A) = (a; 1422 — afyz)n — a2 = d'n— a2 =1.

By Lemma 1.3, the quadratic form F, corresponding to the matrix A is positive.
Moreover, F, has discriminant 1 and represents 7, since F4(0,0,1) = n. By
Theorem 1.3, the form x? + x? + x? must also represent n. This completes the
proof.

Lemma 1.8 If n is a positive integer and n = 2 (mod 4), then n can be
represented as the sum of three squares.
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Proof. Since (4n, n — 1) = 1, it follows from Dirichlet’s theorem that the arith-
metic progression {4nj +n — 1 : j = 1,2, ...} contains infinitely many primes.
Choose j > 1 such that

p=4nj+n—1=Aj+n—-1
is prime. Letd’ = 4j + 1. Sincen =2 (mod 4), we have
p=dn—1=1 (mod 4).

By Lemma 1.7, it suffices to prove that —d’ is a quadratic residue modulo p. Let

d'=]]a"

qild’
where the g; are the distinct primes dividing d’. Then

p=dn—1=-1 (modg)

for all i, and
d = ]‘[ (=¥ =1 (mod 4).
gild’
g;=3 (mod 4)
Therefore,
[T o=t
g;d’
;=3 (mod 4)

By quadratic reciprocity we have

since p=1 (mod 4), and

(5)-G)(5)

- (4_)
ald \P
p\"
gild’ (ql)
)
qild’ i

This completes the proof.
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Lemma 1.9 Ifn is a positive integer such thatn = 1,3, or5 (mod 8), then n
can be represented as the sum of three squares.

Proof. Clearly, 1 is a sum of three nonnegative squares. Let n > 2. Let

3 ifn=1 (mod8)
c=1{ 1 ifn=3 (mod 8)
3 ifn=5 (mod 8).

Ifn=10r3 (mod 8), then

cn—1
2

=1 (mod 4).

Ifn=5 (mod 8), then

cn—1
2

=3 (mod 4).

In all three cases,

By Dirichlet’s theorem, there exists a prime number p of the form

cn—1

p=4nj+
for some positive integer j. Let
d =8j+c.
Then
2p=@8j+cn—1=dn—1.

By Lemma 1.7, it suffices to prove that —d" is a quadratic residue modulo 2p.
If —d' is a quadratic residue modulo p, then there exists an integer xo such that

(o+p)*+d =x3+d =0 (mod p).

Let x = x if xo is odd, and let x = xq + p if xg is even. Then x is odd and x2 + d’
is even. Since
x2+d' =0 (mod 2)

and
x*+d' =0 (mod p),

it follows that
x*+d' =0 (mod 2p).

Therefore, it suffices to prove that —d’ is a quadratic residue modulo p.
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Let

d = I—[q,-k"

gild’

be the factorization of the odd integer 4’ into a product of powers of distinct odd
primes g;. Since
2p=-1 (mod d’),

it follows that
2p=-1 (mod g;)

and
(p.g)=1

for every prime g; that divides d’'.
Ifn=1o0r3 (mod8),thenp=1 (mod 4)and

5)-G)E)
(

Ifn =5 (mod8),then p =3 (mod4)andd = 3 (mod 8). From the
factorization of d’, we obtain

d = 1_[ q ;(i 1_[ q :‘i
»

gild’ ;1
gi=1 (mod 4) g;=3 (mod 4)
= [ D" (moda
g Esqi I(‘:l:od 4
=—1 (mod 4)
and so
[T v=-1
g;ld’
g;=3 (mod 4)

It follows from quadratic reciprocity that
5)-G)E)
p p p
d/
(%)
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0% 1@
g;ld" p qild’ p
gi=1 (mod 4) g;=3 (mod 4)
ki
1.6 p 6 e
aild’ g g;1d’ qi gild’
=1 (mod 4) q,—3 (mod 4) g;=3 (mod 4)

I
Elam|
N
Q|
\/
e
N
Q|
~—=

I
) D
e
N S
D |
N——

Eand

In both cases,

= I oo [T oF

gild’ gild’
4;=3.5 (mod 8) 9i=37 (mod 8)

= J] o~
i
gi=5.7 (mod &
Therefore, —d’ is a quadratic residue modulo 2p = d’'n — 1 if
> k=0 (mod?2).
v

;=57 (mod 8)

This is what we shall prove. We have

' ki ki
a= I & I] & I] & II &
gild’ gild’ gild’ gild’
gj=1 (mod 8) 4,53 (mod 8) 9;=5 (mod 8) g;=7 (mod 8)
= [] 3 JI 3% J] 0% (mods)
g;1d’ qg;ld’ gild’
g;j=3 (mod 8) q,=5 (mod 8) g;=7 (mod 8)
= J] 3 [] D% (mods).
gild’ qild’
g;=35 (mod 8) q‘_57 (mod 8)

Ifn=1o0r5 (mod 8),thenc =3 and
d =8j+3=3 (mod 8).
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This implies that
Y k=1 (mod2)
q;1d’
g;=3.5 (mod 8)
and

Z k;=0 (mod 2).
q; ‘=‘5,gi !lﬁnod 8)

Ifn=3 (mod 8),thenc=1and
d=8j+1=1 (mod 8).

It follows that
Z k=0 (mod 2)

gild’
4;=3,5 (mod 8)
and
> k=0 (mod?2)
gitd’
g;=5,7 (mod 8)
This completes the proof.

Theorem 1.4 (Gauss) A positive integer N can be represented as the sum of three
squares if and only if N is not of the form

N =4°@8k +7).

Proof. Since
x*=0,1, or4 (mod 8)
for every integer x, it follows that a sum of three squares can never be congruent to
7 modulo 8. If the integer 4m is the sum of three squares, then there exist integers
X1, X2, X3 such that
4m =x12 + X3 +x§.

This is possible only if x1, x2, x3 are all even, and so

X1 2 X2 2 X3 2
n-(3)+(3)+(3)
Therefore, 4°m is the sum of three squares if and only if m is the sum of three

squares. This proves that no integer of the form 4%(8k +7) can be the sum of three
squares.

Every positive integer N can be written uniquely in the form N = 4°m, where
m=72 (mod4)orm=1,3,5 or7 (mod 8). By Lemma 1.8 and Lemma 1.9,
the positive integer N is the sum of three squares unless m = 7 (mod 8). This
completes the proof.

Theorem 1.5 If N is a positive integer such that N =3 (mod 8), then N is the
sum of three odd squares.
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Proof. Recall that x> = 0,1, or4 (mod 8) for every integer x. f N = 3
(mod 8) is a sum of three squares, then each of the squares must be congruent to
1 modulo 8, and so each of the squares must be odd. This completes the proof.

1.6 Thin sets of squares

If A is a finite set of nonnegative integers such that every integer from 0 to N can
be written as the sum of 4 elements of A, with repetitions allowed, then A is called
a basis of order h for N. A simple counting argument shows that if A is a basis of
order A for N, then A cannot be too small.

Theorem 1.6 Let h > 2. There exists a positive constant ¢ = c(h) such that, if A
is a basis of order h for N, then

|A| > cNV*",

Proof. Let |A| = k. If A is a basis of order h for N, then each of the integers
0,1,..., Nis asum of & elements of A, with repetitions allowed. The number of
combinations of & elements, with repetitions allowed, of a set of cardinality k is

the binomial coefficient (k”,'l_l). Therefore,

k+h—1\ kk+1)---(k+h—1) k"
N”S( h )' 7! =T

for some constant ¢’ > 0 and all k, and so
RIN\"
|A] =k > (—) =cNVh,
c

This completes the proof.
Since the squares form a basis of order 4, it follows that for every N > 0 the set
Qy of all squares up to N is a basis of order 4 for N. Moreover,

|Qn| =1+[N'?] > N2,

This is much larger than cN'/4, which is a lower bound for the thinnest possible
basis of order 4. It is natural to ask if for every N there exists a set Ay of squares
that is a basis of order 4 for N and satisfies

The answer is provided by the following theorem.

Theorem 1.7 (Choi-Erd6s—Nathanson) For every N > 2, there exists a set Ay
of squares such that Ay is a basis of order 4 for N and

4
|Ay] < { —= ) N logN.
log2



1.6 Thin sets of squares 25

Proof. The sets A; = A3 = {0,1} and A4 = As = {0, 1, 4} satisfy the
requirements of the theorem. Therefore, we can assume that N > 6.

We begin with a simple remark. By Theorem 1.4, if £ is a nonnegative integer
and £ = 1or2 (mod 4), then £ is the sum of three squares. Since the square of
an even integer is 0 (mod 4) and the square of an odd integeris 1 (mod 4), it
follows that if m % 0 (mod 4) and a is any positive integer such that a> < m,
then either m — a? is the sum of three squares or m — (a — 1)? is the sum of three
squares.

For N = 6, we let AS\I,) consist of the squares of all nonnegative integers up to
2N'/3, Then

1A <2N'3 + 1.

Let AE\Z,) consist of the squares of all integers of the form

[k1/2N1/3] or [kl/ZNl/S] _ 1,

where
4<k <N
Then
|AD| < 2N'? - 3)=2N"? 6.
Let © M 2
AR = AQ U AP,
Then

|AQI < 4N'/3.

Since A contains all the squares up to 4N %/3, it follows from Lagrange’s theorem
that every nonnegative integer up to 4N2/3 is the sum of four squares belonging to
©
AQ,
Let m be an integer such that

AN < m < N

and
m=0 (mod 4).

‘We shall prove that there exists an integer ap € AS\Z,) such that
0<m—a)<4N??

and m — a3 is the sum of three squares. Since

m 13
4 < ]—V-Z/_3 < N y
it follows that

_[m 1/3
4sk=[gE] = N



26 1. Sums of polygons

Let
a=[kV2N"?].

Thena? € A, (a — 1)> € AD,
a? <kN*3 <m < (k+1)N?3,
and

a>k\2NV3 1.

2orm — (a — 1)? is the sum

such that m — a is a sum of

It follows from our initial remark that either m — a
of three squares. Choose a3 € {(a — 1)*,a%} C A(,\z,)
three squares. Since 4 < 3N'/6 for N > 6, we have

0<m-—ad?

<m-—a}
<m-—-(a—1)7>

< (k+1)N?3 — (k/2NV3 ~2)?

< (k+ 1)N?3 — kN?3 4 4k1/2N1/3
= N2/3 +4k1/2N1/3

< N2 1+ 4NV?

< 4N?3,

andsom —ag is the sum of three squares belonging to AS\I,). Therefore,if0 <m < N

andm # 0 (mod 4), then m is the sum of four squares belonging to Agf,)).
Let

. logN
Av={@a?:0<i<—2" and aea®}.
log4

Then Ay is a set of squares and

lOgN © 210gN 1/3 4
Ay] < +1)|A = 4N = — NI .
IANT = (log4 )‘ vl < log 4 log2 log ¥

Letn € [0, N].Ifn £ 0 (mod 4), then n is the sum of four squares belonging
0 AD C Ay.Tfn =0 (mod 4), then n = 4'm, where m # 0 (mod 4) and
0 <i <logN/log4. Then
m=a?+ak+aj+al,
where a1, a2, az, a4 € A(O), and so
n=4m=2a)+Qa)+Q2a3)* + (2'as)’

is a sum of four squares belonging to Ay. This completes the proof.
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1.7 The polygonal number theorem

We begin by proving Gauss’s theorem that the triangles form a basis of order three.
Equivalently, as Gauss wrote in his journal on July 10, 1796,

ETPHKA! num = A+ A+ A.

Theorem 1.8 (Gauss) Every nonnegative integer is the sum of three triangles.

Proof. The triangular numbers are integers of the form k(k + 1)/2. Let N > 1.
By Theorem 1.5, the integer 8 N + 3 is the sum of three odd squares, and so there
exist nonnegative integers k;, k», k3 such that

8N +3 = (2k; + 1)? + (2ky + 1)? + (2k3 + 1)?
= Ak} + kg + K2 + kg + k2 + k3) + 3.

Therefore,

ky + 1
_ ki(ky +1) N ka(ka +1) . k3(k3+1).

N 2 2 2

This completes the proof.

Lagrange’s theorem (Theorem 1.1) is the polygonal number theorem for squares,
and Gauss’s theorem is the polygonal number theorem for triangles. We shall now
prove the theorem for polygonal numbers of order m + 2 for all m > 3. It is easy
to check the polygonal number theorem for small values of N/m. Recall that the
kth polygonal number of order m + 2 is

mk(k — 1)

Dim(k) = > +k.
The first six polygonal numbers are
Pn(0)=0
(1) =1
Pn(2)=m+2
Pm(3)=3m+3
Pm(4)=6m+ 4

Pu(5) = 10m +5.

If ki, ..., k; are positive integers, then, forr =0, 1,...,m + 2 — s, the numbers
of the form

Pm(k1) + pm(k2) + - - + pm(ks) + rpm(1) (1.9

are an interval of m + 3 — s consecutive integers, each of which is a sum of exactly
m + 2 polygonal numbers. Here is a short table of representations of integers as
sums of m + 2 polygonal numbers of order m + 2. The first column expresses the
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integer as a sum of polygonal numbers in the form (1.9), and the next two columns
give the smallest and largest integers that the expression represents.

rpm(1) 0 m+2
Pn(2) + rpp (1) m+2 2m+3
2pm(2) +rp,(1) 2m+4 3m+4
Pm(3) +rp,(1) 3m+3 4m+4
Pm(3) + pm(2) + rp, (1) 4dm+5 Sm+5
4pm(2) + rpm (1) dm+8 Sm+6
m(3)+2p(2)+rp,(1) Sm+7 6m+4
(@) +rp,(1) bm+4 Tm+5
Pm(4) + P (2) + rp,, (1) Tm+6 8m+6
2p.(3) + pn(2) Tm+8 8m+7

@) +2pn(Q)+rpn(1) 8m+8 9Im+7
Pn(4®) + pn(3) +rpp(1) Om+7 10m+7
Pm(5) +rpu(1) 10m+5 1lm+6
Pm(®)+ pm@)+rp,(1) 11lm+7 12m+7

This table gives explicit polygonal number representations for all integers up to
12m +7. It is not difficult to extend this computation. Pepin [95] and Dickson [23]
published tables of representations of N as a sum of m + 2 polygonal numbers
of order m +2 for all m > 3 and N < 120m. Therefore, it suffices to prove the
polygonal number theorem for N > 120m.

We need the following lemmas.

Lemma 1.10 Letm > 3 and N > 2m. Let L denote the length of the interval
1 [6N 2 /8N
I={=+,/—-3, =-+,/—-8]}.
2 m 3 m

L>4 ifN>108m

Then

and
L>¢m ift>3andN > 7¢*m>.

Proof. This is a straightforward computation. Let

x=N/m>2
and
1
Zo=€—g.
We see that :
L=«/8x—8—«/6x—3+€ >4
if and only if

/8x —8 > /6x =3+ 4,
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or, after squaring both sides and rearranging,
2x — €2 —5 > 2£p4/6x — 3.
Squaring and rearranging again, we obtain
4x (x — (7€5+5)) + (€5 + 5)* + 12¢% > 0.

This inequality certainly holds if
1\2
x z7eg+5=7(5— —) +5.

Therefore,

Since

1\2
7<4—8) +5=107.86...,

it follows that L > 4 if N > 108m. Since

1\2
7e2>7(e-—) +5
6
for £ > 3, it follows that L > £ if £ > 3 and N/m > 7¢2. Therefore, if £ > 3 and

N > 7€*m3, then L > £m. This completes the proof.

Lemma 1.11 Letm > 3 and N > 2m. Let a, b, and r be nonnegative integers
such that
O<r<m

and m
=5(a—b)+b+r. (1.10)

Consider the open interval

1 [6N 2 /8N
I=(§+ 7—'3, §+ —nT—g)

If

bel,
then

b* < 4q (1.1D
and

3a < b* +2b+4. 1.12)
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Proof. From equation (1.10), we have

=(-2)2(5)

By the quadratic formula,

b2—4a=b2—4(1—%)b—8(1v"r)<0
m

if
2?2 -
O§b<2(1——2~>+\/4(1——-) +8(N r).
m m m
If b € I, then
0<b<z+ ﬂ—8
3 m

~

<2(1———%-)+ S(N— )
m m
2
<2(l_z)+\/4(1_z) es(X20),
m m m
This proves (1.11).

Again by the quadratic formula,

b*+2b+4—3a=>b*—

if

If b € I, then

1 3 1 3\* (N-
>{z——]+,/[z——) +6 ") -a
2 m 2 m m
This proves inequality (1.12).
The following result is sometimes called Cauchy’s lemma.
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Lemma 1.12 Let a and b be odd positive integers such that
b® < 4a

and
3a < b2 +2b+4.

Then there exist nonnegative integers s, t, u, v such that
a=s*+12+u?+1? (1.13)

and
b=s+t+u+v. (1.14)

Proof. Since a and b are odd, it follows that 4a — b> = 3 (mod 8). By
Theorem 1.5, there exist odd positive integers x > y > z such that

4a — b =x*+y?+ 22

We can choose the sign of +zsothatb+x+y+z=0 (mod 4). Define integers
s, t, u, v as follows:

b+x+ytz
g=—""7""

4
t_b+x _b+x—y;z
) - 4
by _b-x+yFz
u=-————— =
2 4
btz b—x—y=+tz

These numbers satisfy equations (1.13) and (1.14) and
s>t>u>v.

We must show that v > 0. By Exercise 8, the maximum value of x + y + z subject
to the constraint x2 + y? + z2 = 4a — b? is 4/12a — 3b2. Also, the inequality
3a <b*+2b+4 implies that +/12a — 3b? < b + 4. Therefore,

xX+y+z<+v12a —3b% < b +4,

and so b
—X—y—2z
> — > —1.
v > ) >
Since v is an integer, we must have v > 0. This completes the proof.
The following result is a strong form of Cauchy’s polygonal number theorem.

Theorem 1.9 (Cauchy) Ifm > 4and N > 108m, then N can be written as the
sum of m + 1 polygonal numbers of order m + 2, at most four of which are different
from 0 or 1. If N > 324, then N can be written as the sum of five pentagonal
numbers, at least one of which is 0 or 1.
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Proof. By Lemma 1.10, the length of the interval

,=(1+ [N, 2, /8_~__8)
2 m 3 m

is greater than 4 since N > 108m, and so I contains four consecutive integers
and, consequently, two consecutive odd numbers b, and b,. If m > 4, the set of
numbers of the form b +r, where b € {b,, by} andr € {0, 1, ..., m — 3}, contains
a complete set of representatives of the congruence classes modulo m, and so we
can choose b € {by,bp} C ITandr € {0, 1, ..., m — 3} such that

N=b+r (mod m).

a=2(N——b_r)+b=<l—z>b+2(N_r) (1.15)
m m m

is an odd positive integer, and

Then

N=—';-(a—b)+b+r.
By Lemma 1.11, since b € I, we have
b? < 4a

and
3a < b* +2b + 4.

By Lemma 1.12, there exist nonnegative integers s, ¢, u, v such that
a=s2+2+u?+1?
and
b=s+t+u+v.

Therefore,
N-= %(a —b)+b+r

=%(sz—s+t2—t+u2—u+v2—-v)+(s+t+u+v)+r
= Pn(8) + pm(®) + pn(U) + pu(v) +1.

Since 0 < r < m — 3 and since 0 and 1 are polygonal numbers of order m + 2 for
every m, we obtain Cauchy’s theorem for m > 4, that is, for polygonal numbers of
order at least six. To obtain the result for pentagonal numbers, that is, for m = 3,
we consider numbers of the form b, + r and b, + r, where b, b, are consecutive
odd integers in the interval 7, and r =0 or 1.
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Theorem 1.10 (Legendre) Let m > 3 and N > 28m>. If m is odd, then N is the
sum of four polygonal numbers of order m + 2. If m is even, then N is the sum of
five polygonal numbers of order m + 2, at least one of which is 0 or 1.

Proof. By Lemma 1.10, the length of the interval I is greater than 2m, so I
contains m consecutive odd numbers. If m is odd, these form a complete set of
representatives of the congruence classes modulo m, so N = b (mod m) for
some odd integer b € I. Let r = 0 and define a by formula (1.15). Then

N=§m—w+a

and it follows from Lemma 1.11 and Lemma 1.12 that N is the sum of four
polygonal numbers of order m + 2.

If misevenand N is odd, then N = b (mod m) for some odd integer b € I
and N is the sum of four polygonal numbers of order m + 2. If m is even and N is
even,then N — 1 =50 (mod m) for some odd integer b € I and N is the sum of
five polygonal numbers of order m + 2, one of which is p,,(1) = 1. This completes
the proof.

A set of integers is called an asymptotic basis of order h if every sufficiently
large integer can be written as the sum of 4 not necessarily distinct elements of
the set. Legendre’s theorem shows that if m > 3 and m is odd, then the polygonal
numbers of order m + 2 form an asymptotic basis of order 4, and if m > 4 and m
is even, then the polygonal numbers of order m + 2 form an asymptotic basis of
order 5.

1.8 Notes

Polygonal numbers go back at least as far as Pythagoras. They are discussed at
length by Diophantus in his book Arithmetica and in a separate essay On polygonal
numbers. An excellent reference is Diophantus of Alexandria: A Study in the
History of Greek Algebra, by T. L. Heath [53]. Dickson’s History of the Theory of
Numbers [22, Vol. 11, Ch.1] provides a detailed history of polygonal numbers and
sums of squares.

There are many different proofs of Lagrange’s theorem that every nonnegative
integer is the sum of four squares. For a proof using the geometry of numbers, see
Nathanson [93]. There is a vast literature concerned with the number of representa-
tions of an integer as the sum of s squares. Extensive treatments of these matters can
be found in the monographs of Grosswald [43], Knopp [74], and Rademacher [98].
Liouville discovered an important and powerful elementary method that produces
many of the same results (see Dickson [22, Vol. II, Ch. 11] or Uspensky and
Heaslet [122]).

Legendre and Gauss determined the numbers that can be represented as the sum
of three squares. See Dickson [22, Vol. II] for historical references. In this chapter,
I followed the beautiful exposition of Landau [78]. There is also a nice proof by
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Weil [140] that every positive integer congruentto 3 (mod 8) is the sum of three
odd squares.

Cauchy [9] published the first proof of the polygonal number theorem. Legen-
dre’s theorem that the polygonal numbers of order m form an asymptotic basis of
order 4 or 5 appears in [80, Vol. 2, pp. 331-356]. In this chapter I gave a simple
proof of Nathanson [91, 92], which is based on Pepin [95].

Theorem 1.7 is due to Choi, Erdos, and Nathanson [13]. Using a probabilistic
result of Erdos and Nathanson [36], Zollner [152] has proved the existence of a
basis of order 4 for N consisting of « N!/#** squares. It is not known if the & can
be removed from this inequality. Nathanson [89], Spencer [118], Wirsing [145],
and Zollner [151] proved the existence of “thin” subsets of the squares that are
bases of order 4 for the set of all nonnegative integers.

1.9 Exercises

1. Let m > 2. Show that the polygonal numbers of order m + 2 can be written
in terms of the triangular numbers as follows:

Pm(k) =mp;(k) +k
forall k > 0.

2. (Nicomachus, 100 A.D.) Prove that the sum of two consecutive triangular
numbers is a square. Prove that the sum of the nth square and the (n — 1)-st
triangular number is the nth pentagonal number.

3. Let v(2) be the smallest number such that every integer N can be written in
the form
N=dhxld. - kxl,.
Prove that v(2) = 3. This is called the easier Waring’s problem for squares.
Hint: Use the identities

2x+1=(x+1)*—x2

and
x=(x+1)P*—-x2-1%

4. Prove that if m is the sum of two squares and # is the sum of two squares,
then mn is the sum of two squares. Hint: Use the polynomial identity

&2 + XD + y3) = (i1 + x2y2)” + (12 — x2y1).

5. (Nathanson [88]) Prove that there does not exist a polynomial identity of the
form
G +xr+xP+ Y2+ ¥ =B+ 5+ 25,
where z1, 22, z3 are polynomials in xy, x2, X3, y1, y2, ¥3 with integral coef-
ficients.



10.

11.

12.

1.9 Exercises

. Prove that Theorem 1.4 implies Lagrange’s theorem (Theorem 1.1).
. Prove that the set of triangular numbers is not a basis of order 2.

. Let 2 = {(x, y,2) € R®: x2 + y? + 72 = 1}. Prove that

(x+y+z:(x,y 2) € 8H=[=3,3]

Let

n

FA(JC], e ,x,,) = E a; jXiXj
i,j=1

and .
FB(xl, ...,xn) = Zbi,jxixj

i,j=1

be quadratic forms in n variables such that
FA(xla-"’xn)'—" FB(xl,..-,xn)

forall xi,...,x, € Z.Prove thata; ; = b; ; foralli.j=1,...,n.

35

Let A be an n x n symmetric matrix, and let F4 be the corresponding

quadratic form. Let

U=(uj)
and
B =UTAU = (b))
Prove that
bjj=Fa(uyj,uzj,...,un;)
forj=1,...,n.

For N > 1, letk = [Jﬁ] and
A={0,1,...,k—-1}U{k,2k,..., (k — 1)k}.
Show that A is a basis of order 2 for N such that

|A] <24/N +1.

Leth > 2,k > 2,and
h—1 )
A= | Jak cai=1,... k= 1}
i=0

Prove that A is a basis of order A for k" — 1 and

|A] < h(k— 1)+ 1.
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13. (Raikov [99], Stohr [119]) Let # > 2 and N > 2. Let A be the set
constructed in the preceding exercise with

k=[N'"]+1.
Prove that A is a basis of order 2 for N such that

|A| < RNV 4 1.
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Waring’s problem for cubes

Omnis integer numerus vel est cubus; vel e duobus, tribus, 4,5,6,7.8,
vel novem cubus compositus: est etiam quadratoquadratus; vel e duo-
bus, tribus &c. usque ad novemdecim compositus &sic deinceps.!

E. Waring [138]

2.1  Sums of cubes

In his book Meditationes Algebraicae, published in 1770, Edward Waring stated
without proof that every nonnegative integer is the sum of four squares, nine cubes,
19 fourth powers, and so on. Waring’s problem is to prove that, for every k > 2,
the set of nonnegative kth powers is a basis of finite order.

Waring’s problem for cubes is to prove that every nonnegative integer is the
sum of a bounded number of nonnegative cubes. The least such number is denoted
g(3). Wieferich and Kempner proved that g(3) = 9, and so the cubes are a basis
of order nine. This is clearly best possible, since there are integers, such as 23 and
239, that cannot be written as sums of eight cubes.

Immediately after Wieferich published his theorem, Landau observed that, in
fact, only finitely many positive integers actually require nine cubes, that is, every

IEvery positive integer is either a cube or the sum of 2,3,4,5,6,7.8, or 9 cubes; similarly,
every integer is either a fourth power, or the sum of 2, 3, ..., or 19 fourth powers; and so
on.
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sufficiently large integer is the sum of eight cubes. Indeed, 23 and 239 are the
only positive integers that cannot be written as sums of eight nonnegative cubes.
A set of integers is called an asymptotic basis of order h if every sufficiently large
integer can be written as the sum of exactly / elements of the set. Thus, Landau’s
theorem states that the cubes are an asymptotic basis of order eight. Later, Linnik
proved that only finitely many integers require eight cubes, so every sufficiently
large integer is the sum of seven cubes, that is, the cubes are an asymptotic basis of
order seven. On the other hand, an examination of congruences modulo 9 shows
that there are infinitely many positive integers that cannot be written as sums of
three cubes.

. Let G(3) denote the smallest integer A such that the cubes are an asymptotic
basis of order A, that is, such that every sufficiently large positive integer can be
written as the sum of ~# nonnegative cubes. Then

4<G3)=<T.

To determine the exact value of G(3) is a major unsolved problem of additive
number theory. It is known that almost all positive integers are sums of four cubes,
and it is possible that G(3) = 4.

The principal results of this chapter are the theorems of Wieferich-Kempner
and of Linnik. Because of the mystery surrounding sums of few cubes, we also
include a section about sums of two cubes. We shall prove that there are integers
with arbitrarily many representations as the sum of two nonnegative cubes, but
that almost all numbers that can be written in at least one way as the sum of two
nonnegative cubes have essentially only one such representation.

2.2 The Wieferich—-Kempner theorem

The proof that g(3) = 9 requires four lemmas.

Lemma 2.1 Let A and m be nonnegative integers such that m < A* and m can
be written as the sum of three squares. Then

6A(A% +m)
is a sum of six nonnegative cubes.
Proof. Let m;, m,, m3 be nonnegative integers such that
m=m?+m3+ml.

Then
0<m<J/m<A
fori=1,2,3, and

3
6A(A> +m) = 6A(A> +m} +mE+md) =Y ((A+m)’+(A—m)’).

i=1
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This completes the proof.

Lemma 2.2 Lett > 1. For every odd integer w, there is an odd integer b such
that
w=>b> (mod?2).

Proof. If » is odd and w = b> (mod 2'), then w is odd. Let b; and b, be odd
integers such that
b} =b3 (mod 2.

Then 2 divides
b3 — b3 = (by — b1)(b3 + byb; + b2).

Since b% +byby + b% is odd, it follows that 2 divides b, — b, that is,
by =b; (mod 2Y). |

This means that if b, and b, are odd integers such that
0<b <b <2,

then
b #£ b3 (mod 2",

and so every odd integer is congruent to a cube modulo 2'. This completes the
proof.

Lemma 2.3 If
r > 10648 = 223,

then there exists an integer d € [0, 22] and an integer m that is a sum of three
squares such that
r=d*+6m.

Proof. If the nonnegative integer m is not the sum of three squares, then there
exist nonnegative integers s and ¢ such that

m=4@8t+7),

and so

0 (mod96) ifs>2
72 (mod 96) ifs=1
42 (mod 96) ifs=0and¢? iseven
90 (mod 96) ifs =0 and? is odd.

6m =648t +7) =

It follows that if m is a positive integer and

6m=h (mod 96)
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for some
h e H=1{6,12, 18, 24, 30, 36, 48, 54, 60, 66, 78, 84},

then m is the sum of three squares. The following table lists, for various h € H
and

deD=1{0,1,2,3,4,5,6,7,8,9,10, 11, 13, 14, 15, 17, 18, 22},
the least nonnegative residue in the congruence class
d*>+h (mod 96).

The elements of H are listed in the top row, and the elements of D are listed in the
column on the left.

6 12 18 24 30 36 48 54 60 66 78 84
6 12 18 24 30 36 48 54 60 66 78 84
7 13 19 25 31 37 49 55 61 67 79 85
14 20 26 32 38 44 56 62 68 74 86 92
33 39 45 51 57 63 75 81 87 93 9 15
70 76 82 88 94 4 16 22 28 34 46 52
35 41 47 53 59 65 77 83 8 95 11 17
42 72 90

73 91 43

50 80 2

69 21 27

10|58 64 10

11y 5 23 71

13 1

14| 8

15 3

17 | 29

181 0

22 | 40

I ANV A WN—=O

Every congruence class modulo 96 appears in this table. Since 0 < d < 22 for
all d € D, it follows that if » > 223, then there exists an integer d € D such that
r — d? is nonnegative and r — d®* = h (mod 96) for some & € H. Therefore,
r — d> = 6m, where m is the sum of three squares. This completes the proof.

Lemma 24 If1 <N < 40,000, then
(i) N is a sum of nine nonnegative cubes;

(ii) if N %23 or 239, then N is a sum of eight nonnegative cubes;
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(iii) if N # 23 or 239 and if N is not one of the following fifteen numbers:

15 22 50 114 167
175 186 212 231 238
303 364 420 428 454

then N is a sum of seven nonnegative cubes;
(iv) if N > 8042, then N is a sum of six nonnegative cubes.

Proof. Let s(N) denote the least integer & such that N is the sum of # nonnegative
cubes. Von Sterneck computed s(N) for all N up to 40,000. The four statements in
the lemma are obtained by examining von Sterneck’s list of values of s(V). Using a
computer, one can quickly verify (and extend) von Sterneck’s list (see Exercise 8).

Theorem 2.1 (Wieferich—Kempner) Every nonnegative integer is the sum of nine
nonnegative cubes.

Proof. We shall first prove the theorem for integers
N > 819,

Let
n= [N1/3] .

Then
210 S n E 2'8k+1.

There exists an integer k > 3 such that

8.8% < N <g.8D,

Let
N;=N —i3
Fori=1,...,n we have
di=Ni_1—N; =i~ (@@ —-1P°=32-3i+1
3'82k+3

<32 <3N?P <
Choose i so that
Nig < 8- 83k < N;.
Then i > 1. Since k > 3, we have
N, =N —n?

<@m+1’-n*-1

=3n%+3n

< 6n?

< 3 . 82k+3

< 8.8%*,
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Therefore, i < n — 1. It follows that

N; < Ni-1 = (Ni—1 — Ni))+ (Ni — Nis1) + Ny
= d; +dis1 + Nin
< 3'82k+3+8'83k
< 11.8%,
Since N;_1 — N; = d; is odd, exactly one of the integers N; and N;_; is odd. Choose

ac{i—1,i}suchthat N, = N —a3isodd. By Lemma 2.2, there is an odd integer
b € [1, 8 — 1] such that

N-a*>=0b> (mod 8).

Then
7-8%=8.8%_8*%<N—-a®>-b<N,<11.8%

and

N —a® - b* =8,
where

7-8% <g <11.8%,
Let

r=q—6-8%,

Then

228 <80 <8% <r <5.8%
It follows from Lemma 2.3 that r can be written in the form
r=d?+6m,

where 0 < d < 22 and m is a sum of three squares. Let

A=8
Then
<7 5.8% 42
m< - < A
) 6
Let
c=2%d
Then

N=a*+b*+84
=a®+b> +86-8% +r)
=a’+b> +86- 8% +d°+6m)
=a’+b* +(2%d)® + 8%(6 - 8% + 6m)
=a’+b*+3 +6A(A% + m).
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By Lemma 2.1, 6A(A? + m) is a sum of six nonnegative cubes, so N is the sum of
nine nonnegative cubes.

Now let
40,000 < N < 80
Then
a = [(N - 10, 000)'/*] > 30,000'” > 31,
SO
d=(a+1°—a’=3a>+3a+1 < 4a* < 4N?3,
Therefore,

N—(a+1?®<10,000<N —a’>=N —(a+1)*+d < 10, 000 + 4N?/3.

If N —a?® < 40, 000, then N — a3 is a sum of six nonnegative cubes by Lemma 2.4.
If N — a® > 40, 000, then we choose the integer

b=[(N —a®-10,000)"?] > 31,
and obtain
N—a®—(®+1) <10,000 < N —a® — b* < 10,000 + 4(N — a*3,

If N —a® — b* < 40, 000, then N — a3 — b? is a sum of six nonnegative cubes by
Lemma 2.4. If N — a® — b3 > 40, 000, then we choose the integer

c=[(N —a®-b’—-10,000)""] > 31
and obtain

N—-a®-b—(+1)
< 10, 000
5N—a3—b3—c3

< 10, 000 + 4(N —ad- b3)2/3

2/3
< 10,000+ 4 (10,000 + 4 (10, 000 + 4N?2)*°)

2/3\ %3
< 10,000+ 4 (10, 000+4 (10, 000 + 4 (810)2/3) )
< 20, 000.

Thus, if 40,000 < N < 8!°, then there exist three nonnegative integers a, b, and
¢ such that
10,000 < N —a® — b* — 3 < 40, 000.

By Lemma 2.4, N — a3 — b® — ¢3 is the sum of six nonnegative cubes. This
completes the proof.
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2.3 Linnik’s theorem

Let G(3) denote the smallest integer s such that every sufficiently large integer is
the sum of s nonnegative cubes.

Theorem2.2 IfN =14 (mod 9), then N is not the sum of three integral cubes.
In particular,
G@3) =4

Proof. Since every integer, positive or negative, is congruent to 0, 1, or —1
modulo 9, it follows that every sum of three cubes belongs to one of the seven
congruence classes, 0, 1, +2, £3 (mod 9). Therefore, if N = +4 (mod 9),
then N cannot be the sum of three cubes, so G(3) > 4.

Lemma 2.5 Let n be a positive integer. If there exist distinct primes p, q, r such
that

p=g=r=-1 (mod6), 2.1
r <gq < 1.02r, (22)
%p3q18 <n < p3q'8, 2.3)
4n = p3r'’®  (mod ¢9), (2.4)
2n = p’q"®  (mod rf), 2.5)
n=3p (mod 6p), 2.6)

then n is the sum of six positive integral cubes.

Proof. It follows from (2.2) and (2.3) that

P3(4q18 +2r18) < 6p3q18
< 8n
< 8p3q18

< p3(49"8 +4(1.02r)'%)
< p3(4q18 + 8r18).
Thus,
p’(4g" +2r') < 8n < p’(4g"* + 8r%). @7

Congruences (2.6), (2.4), and (2.5) imply that
8n =2p°r'® = p’(4g"* +2r'*) + 18pg®r® (mod ¢,

8n = 4p°¢" = p*(4g" +2r'%) + 18pg®® (mod r%),
8n=0=p*(dq® +2r'®) + 18pg®® (mod p),

0
8n = p>(4g'% + 2r'®) + 18pg®r®  (mod pq®r®). 2.8)
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It follows from (2.1) and (2.6) that
n=3p=-3=3 (mod 6),

SO
8n =24 (mod 48). 2.9)

By (2.1), the primes p, g, r are odd; hence

pPP=g¢g*=r’=1 (mod 8)

and
PP (29" +r®) +9pg5r =2+ p+p=4p=4 (mod 8).

Therefore,
P24 +2r'8) +18pg®r® =8 (mod 16).

Similarly, since p=g=r =—1 (mod 3), we have
PP(4g"8 +2r'8) +18pgSr® =0 (mod 3)

SO
P2(4g"% +2r'8) + 18pqSrS = 24 (mod 48). (2.10)

Since (pqr, 48) = 1, we can combine (2.8), (2.9), and (2.10) to obtain
8n = p*(49'® +2r'%)+ 18pg®r® (mod 48pg°re).
Therefore, there exists an integer # such that
8n = p3(4q'® +2r'8) + 18 pgSr® + 48 pq°rou
= p*(4g"® +2r'®) + 6pq°rS(8u + 3).
It follows from (2.7) that
0 < 6pg°r®8u +3) < 6p°r'8,

so
0 <8u+3< p?qSri2.

By Theorem 1.5,
S8u+3 =x2+y2+z2,

where x, y, z are odd positive integers less than pg =39, that is,
max{q’x, ¢°y, ¢°z} < pr®. (2.11)
Therefore,
8n = p*(4q"% +2r'®) + 6pg®ro(x* + y* + 2%)
= (pg° + %)’ + (pg® = r’x)> + (pg® + r*yy’
Hpg® =’y + (0r® + ¢’ + (pr® - 42,
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Since each of the six integers p, g, r, x,y, z is odd, it follows that each of the
six cubes in the preceding expression is even. Moreover, each of these cubes is
positive, since, by (2.2) and (2.11),

0 <r’x < g% < prb < pq°,
0< r3y < q3y < pr6 < pqﬁ,

and
0 < g%z < pr®.

pa®+r°x\* (paS—rix\’ (pg®+riy\’
n={————) +| —— ) +| ———
2 2 2
3 3 3
pg®—r’y pré+q’s pré—q’
+ + +
2 2 2

is a sum of six positive cubes.

Therefore,

Theorem 2.3 (Linnik) Every sufficiently large integer is the sum of seven positive
cubes, that is,
G3) <1

Proof. Let k and £ be integers such that k > 1 and (k, £) = 1. We define the
Chebyshev function for the arithmetic progression £ modulo k by

P(x;k, £) = Z log p.

psx
p=¢t (mod k)

The Siegel-Walfisz theorem states that for any A > 0 and for all x > 1,

x x
P(x; k, £) = —f;(_k—i +0 ((logx)"‘) ) (2.12)

where (k) is the Euler ¢-function, and the implied constant depends only on A.
It follows that, for any § > O,

ox X
B((1+8)x; k, £) — B(x;k, £) = o O ((Iogx)"‘) '

Letk =6,£=—1,8 =1/50, and x = (50/51)(log N)2. For any integer N > 2,

> logp

(50/51)(10g ¥)2 < p=(log N)2
p=—1 (mod 6)

= 9((log N)% 6, —1) — 9((50/51)(log N); 6, —1)

_ (log Ny (log N)?
=02 9 ((1oglogN)A) '
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Since

> logp<) logp <logN,
o PIN
p=-1 (mod 6)

it follows that, for N sufficiently large, there must exist at least two prime numbers,
q and r, such that
g=r=-1 (mod 6),

(g, N)=(@N)=1,
and

50 51
S(log N <7 <g < (IogN)’ < s_or - 1.02r.

The multiplicative group of congruence classes relatively prime to ¢g° is cyclic of
order ¢(¢®) = g°(g — 1). Since ¢ = —1 (mod 6), it follows that (¢(q°%), 3) =1,
so every integer relatively prime to g% is a cubic residue modulo ¢°. Similarly,
every integer relatively prime to 7 is a cubic residue modulo r$. Since

(2Nr,q)=Q2Ngq,r)=1,
there exist integers u and v such that

u,q)=@,r)=1,
4N = u*r'®  (mod q6),

and
2N =v*q"®  (mod o).

The numbers 6, ¢, and r® are pairwise relatively prime. By the Chinese remainder
theorem, there exists an integer £ such that

£=u (mod g%,

£=v (mod rb,

£=—-1 (mod 6).

Then
4N = £*r'®  (mod ¢5)
and
2N = £3¢"®  (mod r®).
Let
k = 6°rS.
Then
(k, £) = (64°r®, ) = 1.
Let

x=N'"3gS,
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Since g < (log N)?, we have, for N sufficiently large,
1 1 1
logx = glogN —6logg > 3 logN —12loglog N > y log N

and
k= 6(16r6 < 6(log N* < 6(4logx)** « (logx)24.

By the Siegel-Walfisz theorem with A = 25 and § = 1/50,

B((51/50)x; k, £) — D(x; k, £) = 50;(,() *0 ((1ogxx)25)

> x +0 a
= 50k (log x)*

X X
sl -—=—
> (log x)* * ((logx)”)

> 0.

Therefore, if N is sufficiently large, there exists a prime p such that

51x
— =1.02
x<p<50 02x

and
p=4£ (mod 64%).

The primes p, q, r are distinct because (gr, £) = 1. Since p = —1 (mod 3),
every integer is a cubic residue modulo 6p, and there exists an integer s such that

s$3=N—-3p (mod 6p).
By the Chinese remainder theorem, there exists ¢ such that
t3=N-3p (mod 6p),

t=0 (mod q2r2),

and
1<t< 6pq2r2.
Let
n=N—t.

Then

dn=4N -4 =4N =07’ = p’r® (mod ¢°),

2n=2N -2 =2N =£3¢"® = p*¢"® (mod r),

n=N-t=3p (mod 6p).

Finally,

n=N—-1<N=x3q"% < pg



2.4 Sums of two cubes 49

and

n=N-17
> x3q18 _ 216p3q6r6
> (1.02)3p3¢'® — 216p3¢*?
3 3
Zp3q18 + (((1.02)—3 - Z) q° — 216) pqt?

3 5 18
>__
4Pq

for N sufficiently large. Thus, the integer n = N — ¢3 and the primes p, g, r satisfy
conditions (2.1)~(2.5) of Lemma 2.5, so N — 3 is a sum of six positive cubes.
Since ¢ is positive, we see that N is a sum of seven positive cubes. This proves
Linnik’s theorem.

2.4 Sums of two cubes

The subject of this book is additive bases. The generic theorem states that a certain
classical sequence of integers, such as the cubes, has the property that every non-
negative integer, or every sufficiently large integer, can be written as the sum of
a bounded number of terms of the sequence. In this section, we diverge from this
theme to study sums of two cubes. 2 This is important for several reasons. First, it
is part of the unsolved problem of determining G(3), the order of the set of cubes
as an asymptotic basis and, in particular, the conjecture that every sufficiently large
integer is the sum of four cubes. Second, the equation

N=x3+y? (2.13)

is an elliptic curve. If r3 (N) denotes the number of representations of the integer
N as the sum of two positive cubes, then r3 2(N) counts the number of integral
points with positive coordinates that lie on this curve. Counting the number of
integral points on a curve is a deep and difficult problem in arithmetic geometry,
and the study of sums of two cubes is an important special case.

If N =x3+y?and x # y, then N = y3 + x3 is another representation of N as a
sum of two cubes. We call two representations

N=x13+yf =xg+y§
essentially distinct if {xq, y1} # {x2, y2}. Note that N has two essentially distinct

representations if and only if 3 2(N) > 3.

This section can be omitted on the first reading.
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Here are some examples. The smallest number that has two essentially distinct
representations as the sum of two positive cubes is 1729. The representations are

1729 = 1° +123 = 9* + 10°.
These give four positive integral points on the curve
1729 = x3 + y3,

SO
r3,2(1729) =4,

The smallest number that has three essentially distinct representations as the sum
of two positive cubes is 87,539,319. The representations are

87539319 = 167> + 436°
=228 + 4233
=255% + 414%,

The cubes in these equations are not relatively prime, because
(228, 423) = (255, 414) = 3.

The smallest number that has three essentially distinct representations as the sum
of two relatively prime positive cubes is 15,170,835,645. The representations are

15, 170, 835, 645 = 2468° + 517°
= 2456° +709°
=2152% + 17333,

The smallest number that has four essentially distinct representations as the sum
of two positive cubes is 6,963,472,309,248. The representations are

6,963, 472, 309, 248 = 2421° + 19, 083>
= 5436> + 18, 948°
=10, 200° + 18, 0723
=13, 3223 + 16, 630°.

It is an unsolved problem to find an integer N that has four essentially distinct
representations as the sum of two positive cubes that are relatively prime.

In this section, we shall prove three theorems on sums of two cubes. The first is
Fermat’s result that there are integers with arbitrarily many representations as the
sum of two positive cubes, that is,

limsupr; 2(N) = oo.
N—>o00



2.4 Sums of two cubes 51

Next we shall prove a theorem of Erdds and Mahler. Let C»(n) be the number of
integers up to n that can be represented as the sum of two positive cubes. Since
the number of positive cubes up to 7 is n'/3, it follows that C,(n) is at most n%/3.
ErdGs and Mahler proved that this is the correct order of magnitude for C,(n), that
is,

Cm)= > 1>n*?

N=<n

r3 2Nzl

However, numbers with two or more essentially distinct representations as sums
of two cubes are rare. Erdos observed that the number C;(n) of integers up to n
that have at least two essentially distinct representations as the sum of two cubes
is 0(n?/?). More precisely, we shall prove a theorem of Hooley that states that

C;(n) & n(5/9)+£ .

This implies that almost every integer that can be written as the sum of two positive
cubes has an essentially unique representation in this form.

Theorem 2.4 (Fermat) For every k > 1, there exists an integer N and k pairwise
disjoint sets of positive integers {x;, y;} such that

N =x+y]
fori=1,..., k. Equivalently,

limsuprz 2(N) = oco.

N—oo
Proof. The functions s ,
x(x” +2y°)
fx,y)= —= 3
x3 —
and s s
y(@2x® +y°)
8x,y) = ———5—
xX- =y

satisfy the polynomial identity

FO, ) —glx, y)* =x3+ 3,

If ) s
u(u’ — 2v°)
F =l = —
(4, 0) = =53 = f(u, ~v)
and , s
vQ2u® — v°)
G( ) U) u3 + U3 = —g(u’ —U),
then

Fu,v)* + G(u, v)® = f(u, —v)* — g(u, —v)® =u® + (—v)* =u® = %
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Let

O<e<l.
4

Let x; and y; be positive rational numbers such that

0< N < e.
X1
We define
u= f(x1, y),
v =g(x17 )’1)

Then u and v are positive rational numbers such that

w—v=x}+y} >0

Moreover,

u xl(x13+2y13) X ( 1+2p° )
vooyn@x+y) 2 \1+0%/2)’
where p = y;/x; € (0, 1/4). Since
1+2p3 3p3
< =] 4 —_,
1+ 03/2 2+ p3 2

it follows that

U x 3x10°  3x (y1)3
<—-=—c< = (=

v 2y 4y, 4y1 \x
and )
LA >—>12
v 2y, 2¢
Next, we define
x2=F(u,v),
y2 =G(u, v).

I
Al W
/N
e
\—/

N

w

NE
N

(2.14)

Since u > 2v, it follows from the definition of the functions F(u, v) and G(u, v)

that x, and y, are positive rational numbers. Moreover,

3,323 232 43,43
X4y, =u —v =x;+Yy.

Leto = v/u. Then
O0<o<2<1/2
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by (2.14) and

Since

it follows that

vy, 2u\2-03) " 4u
Thus,
X2 X x ul| llu x 3¢ 3¢?
L < ||+ || < —+— < 2¢
2 4 y2» 2v| 2|v 2y 2 8
and so
X2 X1
> ——-2>—=—=26>—>0
Y2 4n 4. 8

This proves that if x; and y, are positive rational numbers such that

0<&<e<1/4,
X

then there exist positive rational numbers x; and y, such that

3,.3_.3,.3
Xy Y, =X1+Y1s

0< 22 < 8¢,
X2
and 4
X X
=21 < 8e.
Y2 N

If 8¢ < 1/4, then there exist positive rational numbers x3 and x4 such that

3,.3_.3,.3
X3 +y3 =%+,

53
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O<E<82£,

X3
and 4
X X
2 < 8%.
y3 »n

Similarly, if £k > 2 and

0<82% < l,

4
then there exist positive rational numbers x;, y1, X2, y2, .. ., Xk, Y such that
3,.3_.3,.3 3,.3
XEyp =Xty ==X+,
0<2 <8¢  fori=1,...,k,
Xi
and 4
X X; .
2 gl fori=1,...,k—1.
Yi+1 Yi

Let & = 87, We shall prove that the  sets {x;, y;} are pairwise disjoint. Since

j =
Yxij A7 xija

‘ < 471, g+l =g 320 g
Yi+j Yi+j-1

for j=1,...,k—1i,it follows that

R, i-1
Vxivj A7 Xij

4lx; X;
) i+ M <

Yi+t Yi =1 Yi+j Yi+j—1

£
<8¢ Z 32/-1
j=1
< 8132%%

forl <i<i+€<k.Ifx; =x; and y; = y;,, for some £ > 1, then

Xi+t _ Xi
Yire Yi
and ‘
Mgt _T | B _E)_giggeg
Yi Yi Yi+e Yi
It follows that
3 < 832¢ (i)
Xi
< 821—132[82
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which is absurd. Therefore, {x;, y1}, ..., {xx, Y} are k pairwise disjoint sets of
positive rational numbers. Let d be a common denominator for the 2k numbers x;,

wes Xk> Y1s+++» Yk and let N = (dx1)> + (dy1)>. Then {dx1,dy1}, ..., {dxi, dy)
are pairwise disjoint sets of positive integers, and

(dx1)’ +(dy1)’ = (dx2)’ + (dy2)’ = - - = (dx)’ + (@dn)’ = N,

that is, r3 2(N) > k. This proves Fermat’s theorem.
Next, we shall prove the Erdos—Mahler theorem. This requires four elementary
lemmas.

Lemma 2.6 Let a and b be positive integers such that
a<b.
Let r(a, b) denote the number of pairs (x, y) of integers such that
PH@a—xP =y +0b-y)> (2.15)
and

b
0<x<% and  0<y<z. (2.16)

Then
r(a,b) < 5a%3,

Proof. The function
fa) =x3+(a —x)* =3ax? — 3a*x +a°
is strictly decreasing for 0 < x < a/2.Letr = r(a,b) = 1. Let (x1,y1), ...,
(x,, y,) be the distinct solutions of equation (2.15) that satisfy inequalities (2.16),

and let
a
O<x1<---<x, < —.

2

Then

b b 3

i Jb 5)< FoO) = fa(x1) < fa (@) =a’,
and so

a<b<4a <2a. 2.17)
Fori=1,...,r — 1 we have
Joie1) = fa(xip1) < fa(xi) = fb(yi),

and so

O<y1<---<y,<§.
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Moreover, the point (x;, ¥;) is a solution of equation (2.15) if and only if (x;, ;)

lies on the hyperbola
a\? b\?
x—=} —b —=) =c,
a(x-3) (y 2) ¢
where , s
b’ —a
= 0.
c 7 >
Fori=1,...,r,let
a
ul_i_xl
and
b
U,'=E’—y,'.
Then

a
O<u, <---<u < —,
2

0<v,<---<v1<§,
and (u;, v;) is a point in the first quadrant of the uv-plane lies on the hyperbola
au* - =c.
Since the hyperbola is convex downwards in the first quadrant, it follows that

Vigl — U Vi — Vi
>

Uil — U; Ui — Ui
fori =2,...,r — 1, and so the r — 1 fractions

Visl — Vi Yisl — JYi
Uivlt — Ui Xigl — X

are distinct fori = 1, ...,r — 1. If r; is the number of points (x;, y;) such that
al/3
Xiyl — Xi > T,
then
a'*r;  a
< =,
2 2
and so
r < a?3.

Similarly, if r, is the number of points (x;, y;) such that

a3

Yis1 — Yi > ~—2—,
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then
al?r, b
3 <=-<a
by (2.17), and so
ry < 2a*3.

Let r3 be the number of points (x;, y;) such that

al/3
1 <Xy —x < -
and
al/3
1<ya—y= -
Since the fractions
Yi+l — Vi
Xi+l — X

are distinct, and the numerators and denominators are bounded by a'/3/2, we have

a3 L TE
n\—//) =—-:
2 4

Therefore,

2/3

a
r@b)<ri+r+r+l< 3a2/3+T+1 < 5a%3.

This completes the proof.
Lemma 2.7 Let x and y be positive integers, (x, y) = 1. If the prime p # 3 divides

x3+93

x+y’

then
p=1 (mod 3).

Proof. Let p & 3 be a prime such that

B +y
x+y

xt—xy+y’=

=0 (mod p).

If p divides y, then p also divides x, which is impossible because (x,y) = 1.
Therefore, (p, y) = 1. Since

Qx —y2+3y*=0 (mod p),
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it follows that —3 is a quadratic residue modulo p. Let (%) be the Legendre
symbol. By quadratic reciprocity, we have

-3
5)-6)-
P 3
ifandonlyif p=1 (mod 3). This completes the proof.
In the proof of the next lemma, we shall use some results from multiplicative
number theory. Let 7(x;3,2) denote the number of primes p < x such that

p = 2 (mod 3). By the prime number theorem for arithmetic progressions,
m(x;3,2) ~ x/(2log x). Moreover, there exists a constant A such that

1 1 1
Z —=—loglogx+A+ 0O (—)
e~ p 2 log x
P=2 (mod 3)
This implies that

1 1 1 1

— = =loglogx — = loglogx'®" 4+ 0 (——)
xm/.Z;psx p 2 2 log x
p=2 (mod 3)

1 11 1
=—log—+0(—.
2 %870 (logx)
Lemma 2.8 For any positive integer a, let h(a) denote the largest divisor ofa
consisting only of primes p =1 (mod 3), that is,

ray= ] »~ (2.18)

PKla
p=1 (mod 3)

Let H(x) denote the number of positive integers a up to x such that h(a) < a'/1°
and a is not divisible by 3. There exists a constant 8, € (0, 1) such that

H(x) > é1x
forallx > 2,

Proof. Let Hy(x) denote the number of positive integers a < x of the form
a = pb, where p = 2 (mod 3) is a prime such that p > x'%!! and b is an
integer not divisible by 3. An integer a has at most one representation of this form.
Moreover,

h@) =h@p) <b="2 <xV/1 < pl/10 < g1/10,
P
It follows that every number of the form pb is counted in H(x), and so

Hy(x) < H(x).
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Also, Hy(2) = H(2) = 1. Let g(x) denote the number of positive integers up to x
not divisible by 3. Then

) > 2x ]
x _—
8 3
and
x
Ho(x) = Y g(—)
©10/1 ¢ pey p
p=2 (mod 3)
2x )
> — -1
x.o,{:w <3p
p=2 (mod 3)
2 1
> = ——n(x;3,2)
3 K10/ pey
p=2 (mod 3)
2x (1 11 1 x
=—|zlog—=+0|{—))+0
3 (2 %70 (logx)) <Iogx)
11 x
= Llog— ++0 [ —
3°%70 T (logx)
> x.
This completes the proof.

Lemma 2.9 Let ¢(d) be the Euler ¢-function, and let 0 < § < 1. There exists a
constant ¢, = ¢1(8) > 0 such that, if n is a positive integer and t > 8n, and if

ag<---<a<n

are any t positive integers, then

t
> (@) > .

i=1

Proof. For any p > 7, we have

(320
£0F
o

2
k

:ZZ(%)

2
I
2
P
2
)
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2 4
<l-——4+
p plp-—-2)
1
<1l——.
P

Since the infinite product

converges, we have

where
O<cy< 1.

Since ¢(d) =d Hmd (1 - %) and n! > (n/e)", it follows that

Qw&=ﬁﬁﬂ@~1)

d=1 pld p
l__[ 1 [n/p}
= n! (1 — —)
p<n p
l_[ 1 n/p
(-
psn P
> nlcy

Choose c3 > 0 so that

Let

én <8n +1
=|— — < .
m 7153 m

Suppose that there exists a set D C [1, n] such that [D| = m + 1 and ¢(d) < c3n
for all d € D. Since ¢(d) < d < nforalld < n, we have

[Te@ = [Je@]]ew@
d=1 d=1 d=1

deD 4¢D
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which is impossible. It follows that there exist at most m integers in [1, n] with
¢(d;) < c3n. In particular, among the ¢ > dn integers g;, there must be at least

; -5 én - dn
- 2172
integers for which ¢(a;) > c3n, and so
d 3 )
> o@) > (—ﬁ) can = 2n? = oin?,
i=l 2 2
where ¢; = ¢36/2. This completes the proof.

Theorem 2.5 (ErdGs—Mahler) Let Ci(n) denote the number of integers not ex-
ceeding n that can be written as the sum of two positive, relatively prime integral
cubes. Then

Ch(n) > n*3.

hay= []. P

Prlla
p=1 (mod )

Proof. Let

and let

ay <---<a <n'’?

be the integers in [1, n1/3] not divisible by 3 such that
h(a;) < a)"°.
Then A(1) = h(2) = 1 and 50 a; = 2. By Lemma 2.8, we have
t= H(n’/3) > &n'/3.
Let x and y be positive integers such that
xX+y=a; forsomei=1,...,¢.

Then

x3+y3<(x+y)3=ai35n.
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Moreover, (x, y) = 1 if and only if (x, a;) = (¥, a;) = 1. Therefore, the number
of pairs x, y of positive integers such that x + y = a;,x < y,and (x,y) = 1 is
p(ai)/2.

Let r(m) denote the number of representations of m in the form

m=x>+y3,

where x and y are relatively prime positive integers such that (x,y) = 1 and
x +y = a; for some i. Then

n

1 t
R = Zr(m) =3 Z(o(al) > cen’?

m=1 i=2

by Lemma 2.9.
Let R; be the number of ordered quadruples (x, y, u, v) of positive integers such
that

By} =ud+rd,

agi=x+y<u+v=aj fori, j € [1,1],
x, ) =(u,v)=1,
x<y and u<uv.

Note that if x3 + y3 = 4> + 13, then x + y = u + v if and only if {x, y} = {u, v}

(Exercise 7). Then
Ry = Z (r(;n))

m=1

Let (x, y, u, v) be a quadruple counted in R,. Since

a X+ a;j uw+o?

M@y vy MG

and a; and q; are not divisible by 3, it follows from (2.18) that a;/h(a;) and
a;/ h(a;) are products of primes p =2 (mod 3). By Lemma 2.7,

3 +y? i w? + vl )
p: x+y ) Py )T

if p=2 (mod 3). Therefore,

a; a;

h(a;) hla))

Fix the integer a;. Since

0< (ﬁ) h(a;)=a; <n'3
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and
a; 220
h(a;) =~
it follows that
1/3
a.

4

Therefore, to each a; there correspond fewer than
nl/3
ai9/1o

different integers a;. By Lemma 2.6, the number of quadruples (x, y, u, v) such
that x + y = a; and u + v = a; is smaller than 3a?/ 3, Therefore, the number R, ; of

quadruples (x, y, u, v) such that x + y = q; satisfies

23 nl/3 3,13

i ~9/10 7730 °
ai/ i/

Ry; < 3a

and so

t
Ry = Z Ry ;

i=1
3 topl3
< Z 7/30

i=1 G;

1/3

<3n 7730
1<i<n!/3

< 3013 (n1/3y23/30

= 3,Q/3-0119)

Let C}(n) count the number of integers m up to n of the form m = x> + y3, where
x and y are relatively prime positive integers. Since

<1+ r
r

- 2
n

Ri=Y rim< Z 1+ Z (r(;")) < Cy(n) +Ry.

m=1 m=1 m=1
r(m)=1 rimy=1 r(m)=1

for all integers r, we have

Therefore,
C)(n) = Ry — Ry > n?3 — n@»=0/%0) 5, ;,2/3

This completes the proof.
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The Erdds-Mahler theorem states that many integers can be written as the sum
of two positive cubes. Hooley showed that very few numbers have two essen-
tially distinct representations in this form. To prove this, we need the following
result of Vaughan—Wooley [130, Lemma 3.5] from the elementary theory of binary
quadratic forms.

Lemma 2.10 Let ¢ > 0. For any nonzero integers D and N, the number of
solutions of the equation
X -DY*=N

with
max(|X|[, |Y]) < P
is
&« (DN P)?,

where the implied constant depends only on €.

Proof. See Hua [63, chapter 11] or Landau [78, part 4].
The following lemma on “completing the square” shows how to transform
certain quadratic equations in two variables into Pell’s equations.

Lemma 2.11 Let a, b, ¢ be integers such that a # 0 and D = b? — 4ac #0. Let
(x, ¥) be a solution of the equation

ax’+bxy+cy*+dx+ey+ f =0. (2.19)

Let
X =Dy —2ae+bd

and
Y =2ax + by +d.

Then (X, Y) is a solution of the equation
X? - DY*=N,
where
N = (4af — d*)D + ae — bd)*. (2.20)
Moreover, this map sending (x, y) to (X, Y) is one-to-one.
The number D = b? — 4ac is called the discriminant of equation (2.19).
Proof. Multiplying equation (2.19) by 4a, we obtain
4a%x? + dabxy + dacy? + 4adx + daey + daf
= (2ax + by)* — Dy* + 2d(2ax + by) + 2(2ae — bd)y + daf
= (2ax + by + d)* — Dy* + 2(2ae — bd)y + (4af — d*)
=Y? — Dy*+2Q2ae — bd)y + (4af — d?)
=0,
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where
Y =2ax + by +d.

Muitiplying by — D, we obtain

D?y? — 2(2ae — bd)Dy — DY? — (4af —d*)D

= (Dy — 2ae + bd)* — DY* — (4af — d*)D — (2ae — bd)?

= X2 — DY? — ((4af — d*)D + (2ae — bd)?)

=X?-DY?—N

= 0,

where
X =Dy —2ae+bd

and
N = (4af — d*)D + (2ae — bd)*.

The determinant of the affine map that sends (x, y) to (X, Y) is
. 2(2 ? | =—-2aD #0
since a # 0 and D # 0, and so the map (x, y) ~ (X, Y) is one-to-one. This
completes the proof.
Lemma2.12 Let P > 2,andleta,b,c,d, e, f be integers such that
max({lal, ..., |fI} < P2

Let D = b* — 4ac, and define the integer N by (2.20). Let W denote the number
of solutions of the equation

ax?+bxy+cy*+dx+ey+ f=0
with max(|x|, |y]) « P.Ifa, D, and N are nonzero, then
W L |P|*
for any & > 0, where the implied constant depends only on €.

Proof. By Lemma 2.11, to every solution (x, y) of the quadratic equation (2.19)
there corresponds a solution of the equation

X? - DY?=N,

where
D =b* — 4ac « P*

and
N = (4af — d¥)D + Qae — bd)* < P*.
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Moreover,
X = Dy —2ae+bd < P*y| < P°

and
Y =2ax+by+d < PX(|x|+|y]) € P*

if max(|x|, [y]) « P. It follows from Lemma 2.10 that
W < (DNP%)¥ « P'¢ « P°.
This completes the proof.

Theorem 2.6 (Hooley—Wooley) Let D(n) denote the number of integers not ex-
ceeding n that have at least two essentially distinct representations as the sum of
two nonnegative integral cubes. Then

D(n) <<£ n5/9+€ .

Proof. If N has at least two essentially distinct representations as the sum of
two nonnegative cubes, then there exist integers x1, x3, x3, x4 such that

3.3 _,3,.3_
Xj+x;=x3+x3=N

and
0<x3<x <x2<x4<DN'3

For any number P > 2, let S(P) denote the number of solutions of the equation

X +xd=x3+x} (2.21)
that satisfy
0<x3<x1<x3<x4<P. (2.22)
Then
D(n) < S(n'7?). (2.23)

If the integers x1, X3, x3, x4 satisfy (2.21) and (2.22), then x; + x, # x3 + x4 by
Exercise 7, and so
X1+ Xy =x3+X4+h,

where
1< |h| <2P.

Let T (P, k) denote the number of solutions of the simultaneous equations

3 3_.3 3
X +x; =x3+x;
and
X1+ X2 =2Xx3 +x4+h
with

O<x; <P fori=1,...,4
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Choose the integer £ so that
28 <2pP <2
Then
S(Py< Y, T(P.h)

1<|h|<2P

<Y > T®h

0<i <€ 2 <|h|<2*!

& Egrsliasxe [ Z T(P, h)]

2islh|<2i+l

& log P max [ > T(P,h)l.
H<|h|<2H

1<H<2P

Since x; is the smallest of the four integers x, X2, X3, X4, We have
2xs+h >x3+x4+h=x1+x>0.

For fixed A, we can use x1, ..., x4 to define four positive integers uy, uz, us, and
y as follows:

Uy =x)+x2

Uy =X1 — X3

Uz =XxX3 — X3

y=2x4+h,

where
1<u; <2P fori =1,2,3

and

l<y=<4pP
Moreover,

i tug+uz=2x1+x3—x3)=2(xs4+h)=y+h

and

h (3% +h?) = h (3(2x4 + h)? + h*)
= h(12x2 + 12x4h + 4h?)
= 4(3x2h + 3x4h? + 1)
= 4((xs + h)® — xI)
=4((x1 +x2 — x3)3 — x,3 — x% +x33)
= 12(x12x2 + xlxg — x§x3 +x2x§ — x12x3 +x1x§ — 2x1%2X3)
= 12(x1 + x2)(x1 — x3)(x2 — X3)

= 12u uyu;.
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Conversely, the numbers uy, 4y, u3, and y determine xy, . . . , x4 uniquely. It follows
that
T(P,h) <U(P,h),

where U(P, h) denotes the number of solutions of the equations
uy+ur+us=y+h 2.24)

and
12uquzus3 = h(3y? + h?) (2.25)

in positive integers u; < 2P and y < 4P.If u; = h for some i, say, u3z = h, then
uy+uy=hand

12uyu; = 3y2 +h?= 3u% +6uuy +3u§ +h2.

This implies that
3(ur — u2)* +h* =0,

which is impossible since £ # 0. Therefore, u; # h foralli = 1,2,3. Let
uy, Uz, Uz, h be a solution of equations (2.24) and (2.25) counted in U(P, h).
Let

(u3, h) = max{(u;, h):i =1,2,3},

where (a, b) denotes the greatest common divisor of a and b. We define

d3 = (u3, h),

h
d = [T )
2 (uz d3)
h
dy = ,—— ).
1 (ul d2d3)

d3 = max{d,, da, d3}

Then

and d,d,d; divides h. Let

_h
8= didvds’

and "

= — fori =1,2,3.

VY, d,' T
Then

2P )
(vi,g)=1 and 151),-57 fori=1,2,3. (2.26)

(1

It follows from (2.25) that

12010203 = g(3y* + h?),
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and so g divides 12, that is,

fg=12

for some integer f. Therefore, |h| = |gdida2d3| < 12d§ , and so

ds > |n|'2. (2.27)
Since u3 # h, it follows that

v3 # gd1ds. (2.28)
We can rewrite equation (2.25) in terms of the new variables v;, d;, f, g. Since

h = gd\dyd;
and

y= d]l)l +d2v2 +d3v3 - h,
we have
12u1uzus = fgdidydsvivavs = fhuyvous = h(3y* + h?),

and so

fuivavs = 3(d1vy + dava + davs — h)? + K2, (2.29)
If we fix the integers dy, d3, ds, f, g, vs, then equation (2.29) becomes a quadratic
equation in vy, vp:
3d}v? + (6d1dy — fus)vivz + 3djvE + 6dy(dsv3 — By,
+6dy(d3v3 — h)vy + 3(d3vs — h)2 + % = 0. (2.30)
The discriminant of this quadratic is
D = ((6d\dy — fu3)* — 36d%d>
= f2v? ~ 12d\d, fvs
= f2v} — did2 f*gvs
= f2u3(vs — di1dag)
#0
by (2.28). Similarly, the integer N defined by (2.20) is nonzero, because
N = (4-3d? (3(dsv3 — h)* + h?) — (6d:(d3vs — h))*) D
+ (2 . 3d12 . 6d2(d3 - v3h) - (6d1d2 - fv3) . 6d1 (d3 - U3h))2
= 12d?h*D + (6d, fv3(d3v3 — h))*
= 12d71? f2u3(v3 — didyg) + 364} fv3d3 (vs — dydag))?
= 12d}d3 f?v3(v3 — didzg) ((d1d28)* — 3d1dagus +3v3)
= 3d}d; f*v3(vs — didag) ((d1d28)* +3 (didag — 2v3)2)
#0.
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Let W(P, dy, d3, d3, f, g, v3) denote the number of solutions of equation (2.30) in
integers v, v, satisfying (2.26). Since the coefficients of this quadratic equation
are all « P2, it follows from Lemma 2.12 that

W(P,dy, d, ds, f, 8, v3) K P°.
Therefore,

S(P) < log P max E T(P,h)
1<H<
=T=" H<lh|<2H

< log P max > U,k
H<|h|<2H

<« log P max Z

ISHS2P y \R<2H fom12  sdyayay=h
d3zmax(d),dp)

Y W(P,di,dy,ds, f, g, v3)

1<v3<2P/d3
v3vgd)dy

<<logP max Z Z Z Z P

1<H<2P
H<|h|<2H fg=12 sdidyd3=h 1<v3<2P/d3
dyzmax(d).dy) v3¥gd|d

P1+s
& P? max

ISHS2P y Aoy forta sitiin 93
dy2max(d}.dy)

1
& P™% max e
VSHS2P | (R<2H  sdipayn @3
d3>max(d,dp)

Since the number of factorizations of 4 in the form & = gd d,ds is < |h|¢, and
since
d; > |h|'?

by (2.27), we have

N I a

H<|h|<2H gdidyd3=h H<h<2
dy>max(d),dp)

and so
S(P) << P1+2£ max H2/3+£ << P5/3+3E'
1<H<2P

Therefore, by (2.23), we have
D(n) < S(n‘/3) < n5/9+€.
This completes the proof.

Theorem 2.7 (Erdos) Almost all integers that can be represented as the sum of
two positive cubes have essentially only one such representation.
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Proof. This follows immediately from the remark that there are greater than cn?/>
integers that can be represented in at least one way as the sum of two nonnegative
cubes, but there are no more than ¢’'n*/**¢ = o(n?/3) integers that have two or more
essentially distinct representations as the sum of two cubes.

2.5 Notes

Wieferich’s proof [144] that g(3) = 9 appeared in Mathematische Annalen in 1909.
In the immediately following paper in the same issue of that journal, Landau [75]
proved that G(3) < 8. Dickson [24] showed that 23 and 239 are the only pos-
itive integers not representable as the sum of eight nonnegative cubes. An error
in Wieferich’s paper was corrected by Kempner [70]. Scholz [108] gives a nice
version of the Wieferich—-Kempner proof.

Linnik’s proof [81] of the theorem that G(3) < 7 is difficult. Watson [139]
subsequently discovered a different and much more elementary proof of this result,
and it is Watson’s proof that is given in this chapter. Dress [25] has a simple proof
that G(3) < 11.

Vaughan [126] obtained an asymptotic formula for r3 g(r), the number of repre-
sentations of an integer as the sum of eight cubes. It is an open problem to obtain
an asymptotic formula for the number of representations of an integer as the sum
of seven or fewer cubes.

It is possible that every sufficiently large integer is the sum of four nonnegative
cubes. Let E(x) denote the number of positive integers up to x that cannot be written
as the sum of four positive cubes. Davenport [17] proved that E4 3(x) <« x2%/30+¢,
and so almost all positive integers can be represented as the sum of four positive
cubes. Briidern [6] proved that

E4,3(.x) < x37/42+8 .

There are interesting identities that express a linear polynomial as the sum of
the cubes of four polynomials with integer coefficients. Such identities enable us
to represent the integers in particular congruence classes as sums of four inte-
gral cubes. See Mordell [85, 86], Demjanenko [20], and Revoy [101] for such
polynomial identities.

Theorem 2.5 was first proved by Erdos and Mahler [31, 35]. The beautiful
elementary proof given in this chapter is due to Erds [31]. Similarly, Theorem 2.6
was originally proved by Hooley [57, 58]. The elementary proof presented here is
due to Wooley [149]. For an elementary discussion of elliptic curves and sums of
two cubes, see Silverman [115] and Silverman and Tate [116, pages 147-151].

Waring stated in 1770 that g(2) = 4, g(3) =9, and g(4) = 19. The theorem that
every nonnegative integer is the sum of 19 fourth powers was finally proved in
1992 in joint work of Balasubramanian [2] and Deshouillers and Dress [21].
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2.6

2. Waring’s problem for cubes

Exercises

. Prove that

P+4+58=6
is the only solution in integers of the equation

(x—3)3+(x—2)3+(x~1)3=x3.

. Let s(N) be the smallest number such that N can be written as the sum of

s(N) positive cubes. Compute s(N)for N =1,..., 100.

. Prove that s(239) = 9, that is, 239 cannot be written as a sum of eight

nonnegative cubes.

. Show that none of the following numbers

15 22 50 114 167
175 186 212 231 238
303 364 420 428 454

can be written as a sum of seven nonnegative cubes.

. Show that none of the following numbers

79, 159, 239, 319, 399, 479, 559

can be written as a sum of 18 fourth powers.

. Let v(3) denote the smallest number such that every integer can be written

as the sum or difference of v(3) nonnegative integral cubes.

(a) Prove that
4 <v(3) <g3).

(b) Prove that
v(3) <S.

Hint: Use the polynomial identity
6x = (x+1)° +(x — 1)’ — 2x°
and the fact that x = (N — N3)/6 is an integer for every integer N.

It is an unsolved problem to determine whether v(3) = 4 or 5. This is called
the easier Waring’s problem for cubes.

. Letx, y, u, v be positive integers. Prove thatif x + y = v+ v and x3 + y3 =

3

u? + 03, then {x, y) = {u, v}.
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(Von Sterneck [136]) Using a computer, calculate s(n) for n up to 40,000.
Verify the results of Lemma 2.4.

(Mahler [82]) Prove that 1 has infinitely many different representations as
the sum of three cubes. Hint: Establish the polynomial identity

Ox*? + (3x —9x* + (1 —9x*)* = 1. @2.31)
Prove that
(9m4)3 + (3mn3 — 9m4)3 + (n4 — 9m3n)3 =n'2

Let r3 3(N) denote the number of representations of N as the sum of three
nonnegative cubes. Prove that if N = n!2 for some positive integer n, then

r3,3(N) > 9—1/3N1/12'

Note: This is Mahler’s counterexample to Hypothesis K of Hardy and Lit-
tlewood [49].

(Elkies and Kaplansky [27]) Verify the following polynomial identities:
8(x2 +y* — 2°) = (2x +2y)” + (2x — 2y)® — (22)°,

2+ 1= =3x2+x)? + (22 — x — 1)? — (x% — 2x)°,
22+ D =(2x> = 2x2 = x)? — 2x3 —4x? —x + 1) — 2x? = 2x — 1)?,
42x+ D)= +x+22+(x? —2x — 1)? — (22 +1)°.

Show that every integer NV, positive or negative, can be written uniquely in
the form
N =872"2m + 1),

where g > 0,r € {0, 1,2}, and m € Z. Prove that every integer N can be
written in the form
N=a%>+b*-¢?,

where a, b, ¢ are integers.
Let a be a positive rational number. Consider the equations
a=x>+y’+7

a=@x+y+z) =3y +2)z+x)x+Y)
8a = (u+v+w) — 24uvw.

Prove that if any one of these equations has a solution in positive rational
numbers, then each of the three equations does.
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12.

13.

2. Waring’s problem for cubes
Let a be a rational number. Let r be any rational number such that r 5 0 and

a
t=—— 41
72r3 7

For any rational number w, let

_( 2412 3

“\ere )w
_ 24¢
v—(0+lﬁ)w'

3
(u+v+w)3—24uvw=8a( w )
r(¢+1)

Let w = r(z + 1). Prove that there exist rational numbers x, y, z such that

Prove that

Uu=y+z
v=Z+Xx
w=x+y

and

a=x+y +75.
This proves that every rational number can be written as the sum of three
rational cubes.

Let a be a positive rational number. Show that it is possible to choose r in
Exercise 12 so that

a=x>+y*+73,
where x, y, z are positive rational numbers. This proves that every positive
rational number can be written as the sum of three positive rational cubes.
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The Hilbert—Waring theorem

Nous ne devons pas douter que ces considérations, qui permettent ainsi
d’obtenir des relations arithmétiques en les faisant sortir d’identités
ou figurent des intégrales définies, ne puissent un jour, quand on en
aura bien compris de sens, étre appliquées a des problémes bien plus
étendus que celui de Waring. !

H. Poincaré [96]

3.1 Polynomial identities and a conjecture of Hurwitz

Waring’s problem for exponent k is to prove that the set of nonnegative integers
is a basis of finite order, that is, to prove that every nonnegative integer can be
written as the sum of a bounded number of kth powers. We denote by g(k) the
smallest number s such that every nonnegative integer is the sum of exactly s kth
powers of nonnegative integers. Waring’s problem is to show that g(k) is finite;
Hilbert proved this in 1909. The goal of this chapter is to prove the Hilbert-Waring
theorem: the kth powers are a basis of finite order for every positive integer k.
We have already proved Waring’s problem for exponent two (the squares) and
exponent three (the cubes). Other cases of Waring’s problem can be deduced from

"We should not doubt that [Hilbert’s] method, which makes it possible to obtain arith-
metic relations from identities involving definite integrals, might one day, when it is better
understood, be applied to problems far more general than Waring’s.
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these results by means of polynomial identities. Here are three examples. We use
the notation

(riExt-Ex)= Z (x1 + €222+ - + gpxp).

Theorem 3.1 (Liouville)

(x12+x§+x32+x§)2=l Z (x,~+xj)4+% Z O — x;)*

1<i<j<4 1<i<j<4

is a polynomial identity, and every nonnegative integer is the sum of 53 fourth
powers, that is,

g(4) < 53.
Proof. We begin by observing that
(x £ x2)4 =(x1 + )cz)4 +(x; — x2)4 = fo + 12x12x§ + 2x§,

and so
4 4
DooEx)t= Y Gitxpte Y (n—xp
I<i<j<4 I<i<j<4 1<i<j<4

4 2.2, 5. 4
(2x} + 12x7x7 + 2x7)
I<i<j<4

4
62x,~4+12 Z xlzsz
i=1

1<i<j<4

=6(x12+x22+x§+x2)2.

This proves Liouville’s identity.
Let a be a nonnegative integer. By Lagrange’s theorem, a = x? + x2 + x2 + x2
is the sum of four squares, and so

2 2, .2, .2, 2)?2
6a” =6 (x{ + x5 +x3 +x3)

= > +xp)t+ > @ —xp)t

I<i<j<4 l<i<j<4

is the sum of 12 fourth powers. Every nonnegative integer n can be written in the
formn = 6g +r, where g > 0 and 0 < r < 5. By Lagrange’s theorem again, we
have g = a?+---+a2, and s0 6q = 6a? + - - - + 6a2 is the sum of 48 fourth powers.
Since r is the sum of 5 fourth powers, each of them either 0% or 1%, it follows that
n is the sum of 53 squares. This completes the proof.

The proofs of the following two results are similar.
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Theorem 3.2 (Fleck)

(7 +x7 +x3 +x§)3
1 ! 3
- Z (xi-‘-l:xj:l:xk)6+3—6 Z (x,-:i:xj)6+§ fo

1<i<j<k<4 I<i<j<4 1<i<4

is a polynomial identity, and every nonnegative integer is the sum of a bounded
number of sixth powers.

Theorem 3.3 (Hurwitz)
4
(x7 +x3 +x3 +x7)

1 1
=%(x1:txz:tx3:bx4)8+m Z (2x,~:txji:xk)8

I<i<j<k<<4

1 g 1
t e > (mxx)) o > @ex)®

I<i<j<4 1<i<4

is a polynomial identity, and every nonnegative integer is the sum of a bounded
number of eighth powers.

Suppose that

]

(24 + xZ)k = Z a; (biix? +biaxs +bi3x3 + b,"4xf)2k 3.1

i=1

for some positive integer M, integers b; ;, and positive rational numbers a; . Hurwitz
observed that this polynomial identity and Lagrange’s theorem immediately imply
that if Waring’s problem is true for exponent &, then it is also true for exponent 2k.
Hilbert subsequently proved the existence of polynomial identities of the form (3.1)
for all positive integers k, and he applied it to show that the set of nonnegative
integral kth powers is a basis of finite order for every exponent k. This was the first
proof of Waring’s problem. In the next section, we obtain Hilbert’s polynomial
identities.

3.2 Hermite polynomials and Hilbert’s identity

For n > 0, we define the Hermite polynomial H,(x) by

H,(x) = (—_2—1)" e~ j:n (e"‘z) .

The first five Hermite polynomials are

Ho(x) =1
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Hi(x)=x
1
Hy(x) =x% — >
Hy(x)=x> — %x

3
Hy(x) =x*—3x%+ T

Since

H!(x) = (_71) % (exz dd: ! (e—xz))
() e () -2(3) ()

d
dx"
= 2xH,(x) — 2Hp41(x),

the Hermite polynomials satisfy the recurrence relation

1
Hy1(x) = xHy(x) — EHé(x)- (3.2

It follows that H,(x) is a monic polynomial of degree n with rational coefficients
and that H,(x) is an even polynomial for n even and an odd polynomial for n odd.

Lemma 3.1 The Hermite polynomial H,(x) has n distinct real zeros.

Proof. This is by induction on n. The lemma is clearly true forn =0andn =1,
since H;(x) = x. Let n > 1, and assume that the lemma is true for n. Then H,(x)
has n distinct real zeros, and these zeros must be simple. Therefore, there exist
real numbers

Bn<--<Br<h
such that
H,(8;)=0
and
H,(B;))#0
for j =1,...,n. Since H,(x) is a monic polynomial of degree n, it follows that
lim H,(x) = o0,
X—=>00
and so
H,() > 0.

Since the n — 1 distinct real zeros of the derivative H,,(x) are intertwined with the
n zeros of H,(x), it follows that

(1YY H(B;) >0
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for j =1, ..., n. The recurrence relation (3.2) implies that
1 7 1 U
Hy,1(B;) = BiHu(B)) — '?:Hn(ﬂj) = —'Z-H,,(ﬂj),

and so

( 1) j+l1

(1 Hy(B)) = H,(8;) >0

for j =1,...,n. Therefore, for j =2, ..., n, H,,;(x) has a zero ,6; in each open
interval (ﬂj, Bj-1). Since lim,_, H,,+1(x) oo and H,,1(B1) < 0, it follows that

H,.1(x) has a zero 8§ > B;. If n is even, then H,.1(8,) > 0. Since n + 1 is odd,
H,.1(x) is a polynomial of odd degree, and so lim,—, o, H,+1(x) = —00. It follows
that H,,1(x) has a zero 8;,, < B,. Similarly, if n is odd, H,,1(8:) < 0 and the
even polynomial H,.(x) has a zero B;,; < B,. Thus, H,,1(x) has n + 1 distinct
real zeros. This completes the proof.

Lemma 3.2 Letn > 1 and f(x) be a polynomial of degree at most n — 1. Then
o 2
/ e Hy(x)f(x)dx =0
—00

Proof. This is by induction onn.) If n = 1, then H,(x) = x and f(x) is constant,
say, f(x) = ap, so

/00 e—"zH,,(x)f(x)dx =aqg /00 e xdx = 0.

o0 —00

Now assume that the lemma is true for n, and let f(x) be a polynomial of degree
at most n. Then f’(x) is a polynomial of degree at most n — 1. Integrating by parts,
we obtain

00 _ 1\l poo  gn+l
[wf“mﬂ@vuwx=(3$ .[ o () s
n+l1 oo da"
) e ()

(4) e Hy(x) f'(x)dx
0.

2

This completes the proof.

Lemma 3.3 Forn >0,

Ch =

2 s ifn is even
REAPLY I B ey )
[we rex [ 0 ifnis odd. (3-3)

-
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Proof. This is by induction on n. For n = 0, we have
oo
/ e dx = /1
-00

and so ¢y = 1. For n = 1, the function e*'xis odd, and so

o0 2
f e “xdx=0

00

and ¢; = 0. Now let n > 2, and assume that the lemma holds for n — 2. Integrating
by parts, we obtain

1 o0

= — e
VT Jw
n_l 1 o 2 2

= - -t n=24
() e

n-—1
= Cn—2.
2 2

If n is odd, then ¢, = 0 and so ¢, = 0. If n is even,

n—1
Cp = ) Cn-2

_(rn— 1 (n—-2)!
- ( 2 ) 252 ((n — 2)/2)!

Cn ' x"dx

n!
T2/
This completes the proof.
Lemma 3.4 Letn > 1,let By, ..., B, be n distinct real numbers, and let ¢, c1,
.., Cn—1 be the numbers defined by (3.3). The system of linear equations
n
D Bixj=c  fork=0,1,...,n—1 (34
j=1
has a unique solution p,, . .., py. If r(x) is a polynomial of degree at mostn — 1,
then
Z 1 ® o 0d
r(Bjpj = -——/ e r(x)dx.
jZ-I: ) «/7—1: oo
Proof. The existence and uniqueness of the solution py, ..., o, follows imme-

diately from the fact that the determinant of the system of linear equations

x + X2 +---+ X, = Co
ﬂlxl + ﬂ2x2 +o- ﬂnxn = 4]
Bixi + Bixy +---+  Blx, = o

n—1 n—1
1 *1 t ﬂ2 X2 +---

+

ﬂy’:-lxn = Cp-1
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is the Vandermonde determinant

1 | |
O B
B B B =TT (B -8)#0.
1<i<jzn
n—1 n—1 n—1
1 2 n
Let r(x) = Y¢ =) axx*. Then
n n n-—1
D rBe; =YD aBio;
=1 j=1 k=0
n—1 n
IO
k=0 j=1
n—1
= aiCr
k=0
1 n—1 o0
=— Zak/ e x*dx
T oo
1 /°° - (0)d
=— e r(x)dx.
NE
This completes the proof.
Lemma 3.5 Letn > 1, let B1, ..., Bn be the n distinct real roots of the Her-
mite polynomial H,(x), and let pi, ..., p, be the solution of the system of linear

equations (3.4). Let f(x) be a polynomial of degree at most 2n — 1. Then
fBjpj= —f e f(x)dx.
= jIPj 7)o

Proof. By the division algorithm for polynomials, there exist polynomials g(x)
and r(x) of degree at most n — 1 such that

f(x) = Hy(x)q(x) +r(x).

Since H,(B;) =0for j =1,...,n, we have

f(Bj)=H,(Bj)g(B;) +r(B;)=r(B)),

and so, by Lemma 3.4 and I.emma 3.2,

n

Y FBp; =Y rB)e;
j=1

i1
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1 x

2
=— e X r(x)dx
N
L " o Hy0og (o + foo = (0d
= e x)q(x)dx + — e r(x)dx
NEN ! VT J oo
_ L[ . d
= 7= e f(x)dx.
This completes the proof.
Lemma 3.6 Letn > 1, let By,..., B, be the n distinct real roots of the Hermite
polynomial H,(x), and let py, ..., p, be the solution of the linear system (3.4).
Then

pi >0 fori=1,...,n.

Proof. Since

H,x) = ]x - 8

1
it follows that, fori =1, ..., n,

Hn 2 n
A= (222 -T]e- 87

j=1
ifi

is a monic polynomial of degree 2n — 2 such that f;(x) > O for all x. Therefore,

ﬁﬁfma¥ﬁuwx>o

Since f;(B;) > 0 and f;(8;) = 0 for j # i, we have, by Lemma 3.5,

f(Bo: =Y filBp;

j=1
1 / " e fiod
= — e i(x)dx
NE '

> 0.
This completes the proof.
Lemma 3.7 Letn > 1, and let co, cy, ..., cn—1 be the rational numbers defined
by (3.3). There exist pairwise distinct rational numbers By, ..., By and positive

rational numbers pf, ..., p; such that

> o= fork=0,1..,n—1.

j=1
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Proof. By Lemma 3.4, for any set of n pairwise distinct real numbers gy, .. ., By,
the system of n linear equations in #» unknowns

Y Bixj=c  fork=0,1,...,n—1

has a unique solution (o1, ..., 0,). Let R be the open subset of R” consisting
of all points (B, ..., B,) such that B; # B; fori # j,andlet & : R — R" be
the function that sends (8, ..., Bn) to (01, - . . , P»). By Cramer’s rule for solving
linear equations, we can express each p; as a rational function of 81, ..., 8,, and
so the function

D(B1, .5 Bu) = (P15 -, Pn)

is continuous. Let R} be the open subset of R” consisting of all points (xy, .. ., x,)
such that x; > Ofori =1,...,n. By Lemma 3.6, if 81, ..., B, are the n zeros of
H,(x), then (81, ..., Bs) € R and

q)(ﬂl’---,ﬂn):(pl,---’pn)GRZ-

Since R” is an open subset of R”, it follows that ®~'(RY}) is an open neighborhood
of (B, ..., Bn) in R. Since the points with rational coordinates are dense in R, it
follows that this neighborhood contains a rational point (87, ..., ;). Let

0., ) = (B} ... B) € RL.

Since each number p; can be expressed as a rational function with rational co-
efficients of the rational numbers g7, ..., By, it follows that each of the positive
numbers p; is rational. This completes the proof.

Lemma 3.8 Letn > 1, let ¢cg,cq, ..., Cn-1 be the numbers defined by (3.3), let
Bi, ..., Bs be n distinct real numbers, and let p;, ..., p, be the solution of the
linear system (3.4). For every positive integer r and form=1,2,...,n —1,

2 2\m/2 m
Cm (xl +"'+xr) _Z an " Pj, ﬂ;.xl +- +.3j,xr)
Ji=1 Jr=
is a polynomial identity.

Proof. The proof is an exercise in algebraic manipulation and the multinomial
theorem. We have

Z ijl “Pj :thl +- +:Bjrx’)m

Ji=l Jr=1
n n
=D i ST B B
= e wréaen 1

120
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Mr

SCD IO DD S S (7 P A P

S e p!

M

-ml Y Z ZH (f-f‘Pf.-)

Hp+eetpr =m j_ ]r=1 i=1 IJ'I

120 =

r Mi
X;
1
=m! Y ]‘[(M §§ﬂ'p,>
b i

u1+ui+;0r'n, j=1

Hi
cllix‘

=m! !

1
Mty =m j=] l'l‘l .
120

By Lemma 3.3, ¢,, = 0 if m is odd. If m is odd and M1+ +u, =m, then u;
must be odd for some i, and so

Z ijl " Pj, ﬂhxl +- +,Bj,x,)m =0.

Jr=1 Jr=1

This proves the lemma for odd m. If m is even, then we need only consider parti-

tions of m into even parts 41; = 2v;. Inserting the expressions for the numbers c,
from (3.3), we obtain

n n
Z"'ijx"'pjr (ﬂjnx1+"'+,3j,x,)'"

Ji=1 Jr=1

2v;
| r C2v,-x,'v
=m. E I | yy——

2u)+- 420 =m i=1 (21),)!

v; >

Do p e s
VitV =m/2 jm 22\1,‘ V,’! (2])1)!
v >0

m! X
m .
2 Vitetp=m/2 ] vl!

v; =

r 2 Vi

Vit =m/2 jm]
V>

m/2)! |, o -
=Cp IZ/Z ol (=" (x,)
v; >0

=cm (xF+-- -xrz)m/z.

This proves the polynomial identity.
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Theorem 3.4 (Hilbert’s identity) For every k > 1 and r > 1 there exist an
integer M and positive rational numbers a; and integers b; ; fori =1, ..., M and
j=1,...,r such that

M
(xlz +.--+ xrz)" = Za,- (bi,1X1 +---+ b,;,x,)Zk . (35)

i=1
Proof. Choose n > 2k, and let 85, ..., By, o}, ..., o, be the rational numbers
constructed in Lemma 3.7. Then 87, ..., B are pairwise distinct and pf, ..., o}

are positive. We use these numbers in Lemma 3.8 with m = 2k and obtain the
polynomial identity

2 2k
cu (xi+-+x Z ijl -p; ﬂjlxl +- +ﬂ;x,) .
J1=1 Jr=

Let g be a common denominator of the n fractions B, ..., B;. Then g7} is an
integer for all j, and

2 oS SN PR P p ag x V
(xf+--+x7) —Z Z o (qﬁj1x1+ +qﬂjrx,)

gl g nd

is a polynomial identity of Hilbert type. This completes the proof.

Lemma 3.9 Letk > 1. If there exist positive rational numbers a,, ..., ay such
that every sufficiently large integer n can be written in the form

M

k
n= Za,-yi s (3.6)

i=1
where x1, ..., Xy are nonnegative integers, then Waring’s problem is true for
exponent k.

Proof. Choose ng such that every integer n > ng can be represented in the
form (3.6). Let g be the least common denominator of the fractions aj, ..., ay.
Then qa; € Zfori = 1,..., M, and gn is a sum of 21-1 qa; nonnegatlve kth
powers for every n > ny. Smce every integer N > gng can be written in the form
N =gn+r,wheren > ngand 0 < r < g — 1, it follows that N can be written as
the sum of Zf‘:l qa; + q — 1 nonnegative kth powers. Clearly, every nonnegative
integer N < gny can be written as the sum of a bounded number of kth powers,
and so Waring’s problem holds for k. This completes the proof

The following notation is due to Stridsberg: Let Z,=1 a; xl be a fixed diagonal
form of degree k with positive rational coefficients ay, . . ., ay. We write n = 3 (k)

if there exist nonnegative integers x1, ..., Xy such that

n= Z a;xk. )

i=1
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We let ) (k) denote any integer of the form (3.7). Then ) (k) + Y (k) = Y (k)
and ) "(2k) = > (k). Lemma 3.9 can be restated as follows: If n = ) (k) for every
sufficiently large nonnegative integer n, then Waring’s problem is true for exponent
k.

Theorem 3.5 If Waring’s problem holds for k, then Waring’s problem holds for
2k.

Proof. We use Hilbert’s identity (3.5) for k with r = 4;

k 2k
@f 4 xp) = Za: (bigxi +- - + b axs)

i=1

Let y be a nonnegative integer. By Lagrange’s theorem, there exist nonnegative
integers x1, x2, X3, x4 such that

y=xF+x3+x3+x32,
and so
M
k 2%
Y= a, (3.8)
i=1
where
zi=bixy+---+bisxs

is a nonnegative integer. This means that

Y =@k

for every nonnegative integer y. If Waring’s problem is true for &, then every
nonnegative integer is the sum of a bounded number of kth powers, and so every
nonnegative integer is the sum of a bounded number of numbers of the form Y _(2k).
By Lemma 3.9, Waring’s problem holds for exponent 2k. This completes the proof.

3.3 A proof by induction

‘We shall use Hilbert’s identity to obtain Waring’s problem for all exponents k > 2.
The proof is by induction on k. The starting point is Lagrange’s theorem that every
nonnegative integer is the sum of four squares. This is the case where k = 2. We
shall prove that if ¥ > 2 and Waring’s problem is true for every exponent less than
k, then it is also true for k.

Lemma 3.10 Letk > 2 and 0 < £ < k. There exist positive integers By 4, By ¢,
., By_1,¢ depending only on k and £ such that

-1
x2€Tk—lf + Z Bi,lxzi Tk—i = Z(2k)
i=0
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for all integers x and T satisfying
x? <T.
Proof. We begin with Hilbert’s identity for exponent k + £ with r = 5:

M,
2k+2¢
(x12 +-- +x§)k+€ = Zai (b,;lxl +oee +bi,5x5) ke ,
i=1
where the integers M, and b; ; and the positive rational numbers a; depend only
on k and £. Let U be a nonnegative integer. By Lagrange’s theorem, we can write

2 2 2 2
Us=x{+x;+x35+x]

for nonnegative integers xi, x3, X3, x4. Let x5 = x. We obtain the polynomial

identity

M,
@2+ UM =) gy (bix +) ™, (3.9)
i=1
where the numbers M, a;, and b; = b; 5 depend only on k and £, and the integers
¢i =b;1x1+---+b;sxsdepend on k, £, and U. Note that 2¢ < k + £ since £ < k.
Differentiating the polynomial on the left side of (3.9) 2£ times, we obtain (see
Exercise 6)

£ £
—5 ((xz + U)k+£) = ZAi,ex2i(x2 + U)k_i,
dx i=0

where the A; , are positive integers that depend only on k and £. Differentiating
the polynomial on the right side of (3.9) 2¢ times, we obtain

a* (- U426
-7 i (bix +c;)™"
T ;a bix +ci)

M,
= Z(Zk +1)(2k +2) - - - (2k + 20)b% a;(bix + ¢;)*
i=1

M,
= Z aj(bix +ci)*

i=1
M,
_ 1.2k
=2 av,
i=1
where y; = |b;x + ¢;| is 2 nonnegative integer and

al = (2k + )2k +2) - - - 2k + 20)b* a;

is a nonnegative rational number depending only on & and £. It follows that, if x
and U are integers and U > 0, then there exist nonnegative integers yi, ..., yy,

such that
I3 ) M,
Z A x i+ U = Za,{yizk.

i=0 i=1
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Let x and T be nonnegative integers such that x? < T. Since A, is a positive
integer, it follows that x? < A, ,T, and so

U=AgT —x*

is a nonnegative integer. With this choice of U, we have
e . . e . .
Y A @ U =Y A ex (A TH
i=0 i=0
l . . .
= Z Ai.ZAIé';lle Tk—x
i=0
e . . .
= Alzy—el-f-] Z Ai,lAg__(‘_’le Tk—l
i=0
e . .
= A’E;e+l Z Bi,€x2! Tk—l’
i=0
where By, =1 and

£—i-1
Bi,l = Ai,tAg'el

is a positive integer fori =0,...,£¢ — 1. Let

/ a;
a; = .
i AZM
Then
-1 ) . M
x¥rkt 4 Z Buxz' Tk = Z a,fy,-Zk = Z(Zk).
i=0 i=1
This completes the proof.

Theorem 3.6 (Hilbert—-Waring) The set of nonnegative kth powers is a basis of
finite order for every positive integer k.

Proof. This is by induction on k. The case k = 1 is clear, and the case k = 2
is Theorem 1.1 (Lagrange’s theorem). Let k£ > 3, and suppose that the set of £th
powers is a basis of finite order for every £ < k. By Theorem 3.5, the set of (2£)-th
powers is a basis of finite order for £ = 1, 2, ..., k — 1. Therefore, there exists an
integer r such that, for every nonnegative integer n and for £ = 1,...,k — 1, the
equation

n=x e
is solvable in nonnegative integers x; ¢, . .., X,¢. (For example, we could let r =
max{g(2¢):£=1,2,...,k—1}.)

Let T > 2. Choose integers Cy, . .., Cx—; such that

0<Cy<T forl=1,...,k—1.
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There exist nonnegative integers x;, for j =1,...,rand£=1,...,k — 1 such
that

x4 x = Cry (3.10)
Then

r

sz',e < E sz',lz <Cr<T

j=1
forj=1,...,r,¢=1,...,k—1,andi = 1,...,¢. By Lemma 3.10, there exist
positive integers B; ; depending only on k and £ such that

-1
AT LY By x B T =) (2K = ) (k). (3.11)
i=0

Summing (3.11) for j =1, ..., r and using (3.10), we obtain
£—1 r
Ci_e Tk_e + Z Bi,eTk—i ZXJZ’Z
i=0 j=t

£—1 r
= Ck—lTk—Z + Tk—f+l § Bi,KTe_l_, ijz"l[
i=0 j=1

k—t k—+1
=Cp—eT"" + DyynT

= (),

-1 r
e—1-i 2i
Dy—g1 = E B, T E Xy
i=0 =1

where

for€=1,...,k— 1. The integer Dy_¢.; is completely determined by &, £, T, and
Ci—¢ and is independent of C;_; fori # £. Let

B*=max{B;¢:£=1,...,k—landi=0,1,...,£ -1}
Then
0 < Ch—¢T* "t + Dy_g THH

£-1 r
= CreT*t 4+ ) BT ) &%
B il
i=0 j=1

-1
< B* (Tk-—l+1 +er + Z Tk—i+1)

i=1

£—1
= B* er + Tk—£+1 Z Tl)
( i=0

Tk+1
< B*|rT*+
T-1

< (r+2)B*T*,
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since T/(T —1)<2forT > 2. Let

Ci=D;=0.
Then
k—1 k
D (Cece T+ Dgua TH41) = 3 (Ce+ DT = Y (0)
£=1 £=1
and

k
0< ) (Ce+D)T < (k—1)(r +2)B*T* = E*T*,
=1
where the integer
E*=(k — 1)(r +2)B*
is determined by k and is independent of T'. If we choose
T > E*,
then ;
0< ) (Ce+D)T' < E*T* < T*,
=1

and so the expansion of ZL] (Ce + D;) T to base T is of the form

k
Z(C5+Dg)Tl =E\T+- -+ ExTF ' + E, T, (3.12)
£=1

where
O<E <T fori=1,...,k—1

and
0< E;, < E*.

In this way, every choice of a (k — 1)-tuple (Cj, ..., Ci_1) of integers in {0,
1, ..., T — 1} determines another (k — 1)-tuple (Eq, ..., Ex—1) of integers in
{0,1,..., T — 1}. We shall prove that this map of (k — 1)-tuples is bijective.

It suffices to prove it is surjective. Let (Ey,..., Ex_1) be a (k — 1)-tuple of
integers in {0, 1,..., T — 1}. There is a simple algorithm that generates inte-
gers C1, Cy, ..., Cro1 € {0, 1,..., T — 1} such that (3.12) is satisfied for some
nonnegative integer E; < E*. Let C; = Eq and I; = 0. Since D; = 0, we have

(C1+ D)T = E\T + L,T?.

The integer C; determines the integer D,. Choose C; € {0,1,..., T — 1} such
that
Cr+Dr+5L=E, (mod T)
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Then
C2+Dz+12=E2+I3T
for some integer /5, and

2 2
Z(Ce +D)T =Y E,T'+ LT’
e=1 e

The integer C, determines D3. Choose C3 € {0, 1, ..., T — 1} such that
C3+ D3+ I3 = E3 (mod T).

Then
C3+D3+I3=E3+I4T

for some integer /4, and

3 3
Y (Ce+ DT =) EcT*+ LT
£=1 £=1

Let2 < j < k — 1, and suppose that we have constructed integers I; and

Cl,...,Cj_l€{0,1,...,T——1}

such that
j=1 j-1 .
D (Ce+ DT = > E T+ LT
=1 =1
There exists a unique integer C; € {0, 1, ..., T — 1} such that
Cj+Dj+IjEEj (mod T).
Then

Cj+Dj+Ij=Ej+Ij+1T

for some integer I;,;, and
i j _
Y (Ce+ DTt =Y EeTt + LT/
£=1 =1

It follows by induction that this procedure generates a unique sequence of integers
C1,Cy,...,Cho1 €{0,1,..., T — 1} such that

k=1 k-1
Y (Ce+ DT =Y E,T* + LT .
{=1 £=1

Since Cy = 0 and C_; determines Dy, we have

k k-1 k
0< Z(Cg + DT = Z E, T+ Dy + I)TF = Z E, T < E*T*,
=1 =1 £=1



92 3. The Hilbert-Waring theorem

where Dy + I, = E;. Since

k-1
0< Y ET' <T,
£=1
it follows that
O<E,<E*

and
k-1

Z E;T¢+ E*T* < (1 + EXT* < 2E*T*. (3.13)
£=1

k k
Y ET =Y (Ce+ DOT =) (K.
£=1

£=1

Recall that

Since E* depends only on & and not on T, it follows that

(E* — EQT* =) (k)

and so
k=1

i E,T' + E*TF = Z(k) (3.14)

£=1

for every (k — 1)-tuple (Ey, ..., Ex—1) of integers E, € {0, 1, ..., T — 1}. Choose
the integer Tp > SE™ so that

AT +1)f <57  forall T > Tp.

We shall prove that if T > T and if (Fo, Fi, ..., Fx—1) is any k-tuple of integers
in{0,1,...,T — 1}, then

Fo+ FiT +---+ F T + 4E*T* = ) (k).

We use the following trick. Let Ej € {0, 1, ..., T —1}. Applying (3.13) with T + 1
in place of T, we obtain

E)(T +1)+ E*(T + 1)} < (T +1)*+ EX(T + 1)
<1 +E*T+ 1)
< 2EX(T + 1. (3.15)

Applying (3.14) with T + 1 in place of T, we obtain
E(T+1)+E*T + k= Z(k). (3.16)
Adding equations (3.14) and (3.16), we see that for every choice of k integers

E(/),El,...,Ek_lE{O,l,...,T—-]},
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we have

F*=(EiT +-- -+ Ex T+ EXTY) + (EY(T + 1) + EX(T + 1))
k—1
k
= (Eg+E*)+ (E\ + E{+kEDT + ) <Eg + (z) E) Tt +2E*T*

=2
=> ).

Moreover, it follows from (3.13) and (3.15) that
0 < F* <4E*T + 1)t < SE*T* < T*!
since 4T + 1)* < 5T* and T > T, > S5E*. Given any k integers
F,F,....,F,_.1€{0,1,...,T -1},
we can again apply our algorithm (see Exercise 7) to obtain integers Fj and
Ey, Ev,Eyy ... Ex1€{0,1,...,T — 1}
such that

Fo+ AT +---+ F T + F, T
=E\T+ - +E T+ E*XTF+ EJ(T + 1)+ E*(T + 1)

= (),
where F; is an integer that satisfies
0 < F, <5E*.
After the addition of (SE* — F)T* = _(k), we obtain
Fo+ FiT +---+ F T* '+ SE*T* =) (k)

for all T > Ty and for all choices of Fy, Fy, ..., Fy_1 € {0,1,...,T — 1}. This
proves thatn = > (k) if T > T, and

5E*T* <n < (SE* + 1)T*.
There exists an integer T; > Tp such that
SEXT +1)* < SE*+1)T*  forall T > Tj.
Thenn = Y (k) if T > T; and
5E*T* <n < SEXT +1). (3.17)

Since every integer n > S5E *le satisfies inequality (3.17) for some T > T;, we

have
n=Y (k) foralln>SE*T}.

It follows from Lemma 3.9 that Waring’s problem holds for exponent k. This
completes the proof of the Hilbert—Waring theorem.
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3.4 Notes

The polynomial identities in Theorems 3.1, 3.2, and 3.3 are due to Liouville [79,
pages 112-115], Fleck [40], and Hurwitz [65], respectively. Hurwitz’s observa-
tions [65] on polynomial identities appeared in 1908.

Hilbert [56] published his proof of Waring’s problem in 1909 in a paper ded-
icated to the memory of Minkowski. The original proof was quickly simplified
by several authors. The proof of Hilbert’s identity given in this book is due to
Hausdorff [52], and the inductive argument that allows us to go from exponent k
to exponent k + 1 is due to Stridsberg [120]. Oppenheim [94] contains an excellent
account of the Hausdorff—Stridsberg proof of Hilbert’s theorem. Schmidt [105]
introduced a convexity argument to prove Hilbert’s identity. This is the argument
that Ellison [28] uses in his excellent survey paper on Waring’s problem. Dress [25]
gives a different proof of the Hilbert—Waring theorem that involves a clever ap-
plication of the easier Waring’s problem to avoid induction on the exponent k.
Rieger [102] used Hilbert’s method to obtain explicit estimates for g(k).

3.5 Exercises

1. (Euler) Let [x] denote the integer part of x, and let
3\
(0]

gk) > 2" +q —2.

Prove that

Hint: Consider the number N = g2* — 1.

2. Verify the polynomial identity in Theorem 3.2, and obtain an explicit upper
bound for g(6).

3. Verify the polynomial identity in Theorem 3.3, and obtain an explicit upper
bound for g(8).

4. (Schur) Verify the polynomial identity

22, 680(x% + x2 + x2 + x2)°
=93 x)'°+180) "(xi £x))"0+ Y Qx; x; £x0)"
+9 Z(xl + xptx;+ .X4)10.

5. Show that every integer of the form 22, 680a? is the sum of 2316 nonnegative
integral 10th powers.
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6. Letk, £, and U be integers such that 0 < £ < k. Let
f(x) =@+ U

Show that there exist positive integers Ao, A1, ..., Ag depending only on k
and £ such that
d”f 2i e~
o ZAx {2+ U

7. Letk > 1,T > 2, and D;, E; be integers fori =0, 1, ...,k —1.Prove that
there exist unique integers Co, .. ., Cx—1 and I such that

0<C;<T fori=0,1,...,k—1

and
k—1

k-1
Z(Ce + DTt = Z E. Tt + I,T*.
£=0 =0

8. This is an exercise in notation: Prove that }_(2k) = Y_(k) but 3 (k) # Y _(2k).



4
Weyl’s inequality

The analytic method of Hardy and Littlewood (sometimes called the
‘circle method’) was developed for the treatment of additive problems
in the theory of numbers. These are problems which concern the rep-
resentation of a large number as a sum of numbers of some specified
type. The number of summands may be either fixed or unrestricted; in
the latter case we speak of partition problems. The most famous ad-
ditive problem is Waring’s Problem, where the specified numbers are
kth powers . ... The most important single tool for the investigation
of Waring’s Problem, and indeed many other problems in the analytic
theory of numbers, is Weyl’s inequality.

H. Davenport [18]

4.1 Tools

The purpose of this chapter is to develop some analytical tools that will be needed
to prove the Hardy-Littlewood asymptotic formula for Waring’s problem and other
results in additive number theory. The most important of these tools are two in-
equalities for exponential sums, Weyl’s inequality and Hua’s lemma. We shall also
introduce partial summation, infinite products, and Euler products.

‘We begin with the following simple result about approximating real numbers
by rationals with small denominators. Recall that [x] denotes the integer part of
the real number x and that {x} denotes the fractional part of x.
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Theorem 4.1 (Dirichlet) Let @ and Q be real numbers, Q > 1. There exist
integers a and q such that

1<g=<0, (aq)=1,

and

Proof. Let N = [Q]. Suppose that {ga} € [0, 1/(N + 1)) for some positive
integer g < N.If a = [qu], then

0<{ga}=qa—[gal=qa—a <

N+1’
and so
‘ al _ 1 - 1 - 1
a——— P — __—._
gl q(N+1) qQ ™ ¢*

Similarly, if {ga} € [N/(N + 1), 1) for some positive integer ¢ < N and if
a =[qa] + 1, then

<{ga}=gqa—a+1<1

N+17™
implies that
—al <
lqee = al < N+1
and so
I a 1 1 1

< — —_ <

a|=qw+D Q gq?
If

1 N
qo )E[N+l N+1)

forallg =1, ..., N, then each of the N real numbers {gc} lies in one of the N — 1

intervals . 1
i fori=1,...N—1.
N+1 N+1

By Dirichlet’s box principle, there exist integers i € [1, N—1]and gy, ¢2 € [1, N]
such that

I<qi<q@2=N

and
i i+1
{10}, {q20} € [N+1 N+1)
Let
g=q¢—q1€[l,N—1]
and

a = [qaa] — [q1a].
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Then

1 1
lga — a| = [(q2a — [q2a]) — (g1 — [q1a])| = [{g2t} — {q1x}] < NT1< o

This completes the proof.

4.2 Difference operators

The forward difference operator A, is the linear operator defined on functions f
by the formula

Ay(H)x) = f(x +d) — f(x).
For £ > 2, we define the iterated difference operator Ay, 4, ,.....4, by
Dgydyy,ndy = Bdy © Dy y,.dy = DBa, © Dy, 0+ 0 Ag,.

For example,

A a, (X)) = Ag, (A4, (f)) ()
= (A4 () (x +d2) — (A4, (f)) x)
=fx+dry+d) — f(x+dy) — f(x +d)+ f(x)

and
Apyara (FYx)=fx+ds+dy+dy) — f(x +ds +dy)

—f(x+ds+d) - f(x+dy+dy)
+f(x+d3) + f(x +d) + f(x +dy) — f(x).

We let A® be the iterated difference operator A;
Then

ywithd; =1fori=1,...,4.

,,,,,

APD(N)x) = fx+2) = 2f(x + 1) + f(x)

and

AP(f)(x) = f(x +3) = 3f(x +2) +3f(x + 1) — f(x).
Lemmad.l Letf > 1. Then
A@uxn=§:eJ%ﬂ(>fu+j>
j=0 J
Proof. This is by induction on £. If the lemma holds for £, then

AED(F)(x)
= A (A9(f)) (x)
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[
=A (Z(—l)f-f (2> fx+ j))
j=0 J
£ (e
=D (=1t ( .)A(f)(x +J)
j=0 J

J4 4
=Y e (Z.)f(x I (e) Fat i)
j=0 J j=0 J
£+1

W ¢ e,
= Z(—l)““f( . 1)f(x +)+ Y (=D ( ) Fe+)
j=1 ]~ j=0 J

£
= fr+L+1)+ ) (DI ((} f 1) + (f)) fx+ )+ (D" f).

j=1

This completes the proof.
We shall compute the polynomial obtained by applying an iterated difference
operator to the power function f(x) = x*.

Lemma 4.2 Letk > land1 < € < k. Let Ay, 4, be an iterated difference
operator. Then
k! , o
, i Je
a(x") = E —-——d; ---dj*x’ .1
I Jyrorrgrink il Je! 1 1 )

JZ0,j1 . je 2t

=d;---dypi_e(x),

.....

where py_(x) is a polynomial of degree k — £ and leading coefficient k(k —
-tk —£€+1).If dy, ..., d are integers, then pi_,(x) is a polynomial with
integer coefficients.

Proof. This is by induction on £. For £ = 1, we have

Ay (") = (x +dp)k — xF

k-1
= Z (k.)dlk—jxj
J

i
k! .
= gl
= E 3 ’dl x7.
Ji+i=k J:J1:
J20.jy =1

Let1 < ¢ < k — 1, and assume that formula (4.1) holds for £. Then

Adm.dz.--.,d; (xk)
= Adm (Adl,...,d| (xk))

K
* J1 Je m
= #_1—_-_1‘11 di’ Ag,,, (x™)
Jboee gy imk mijyl--- !
m20,jp g2
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k! ) ) m! o
. P R ¥ . Jesl ]
4 dj § : 1%

Jyteekjg tmek m!.Il! o .]l! Jes1+i=m J !.]Z-&'l!
m,jp,.jg 2 Jjz0.jg41 2!
k! Ji Je jjest L j
— R .o +
= § : d di'dy %

Jiaerigtmek  jppi+i=m .]']1' o JE!JZ+1!
mjpen ezl J20.jgs 2t
k! Ji Je jlest L j
+
e e
jrresigrisise LT JE e
J20,j1 e dga1 21

Since the multinomial coefficients k!/j!ji!--- j! are integers, it follows that if
dy, ..., d, are integers, then the polynomial pj_(x) has integer coefficients. This
completes the proof.

Lemma 4.3 Letk > 2. Then

dy+-+dy_
Adeynds &) =dy .. ik (x + —‘——ﬂ) )

2

Proof. This follows immediately from Lemma 4.2.

Lemma 4.4 Let £ > 1 and Ay, 4, ,,..4, be an iterated difference operator. Let
f(x) = ax* + - - - be a polynomial of degree k. Then
Doy () =dy -+ dy (ke = 1) -+ (k — £+ Dax* " +--)

.....

ifl<¢<kand
Adedey....ar()x) =0
if€ > k. In particular, if ¢ =k — 1 and dy - - - di—1 #0, then

Adgp ...y (f)x) =dy - driklax + B
is a polynomial of degree one.

Proof. Let f(x) = Zl;=1 o;x/, where = a. Since the difference operator A

is linear, it follows that

Jj=0

k! k—t
=d1"'de((k—_5)—!0{x +)

This completes the proof.
Lemmad4.5 Letl <{<k.If
~P Sd11-~-1devx < Pv

then

where the implied constant depends only on k.
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Proof. It follows from Lemma 4.2 that

k! : .
lAde ..... 4 (xk)i < Z ._'_._'__"Pll+~..+ﬂ+]
Jr#erjpti=k ]]1 e ]['
J20,jp e je 2]

K

v St el
Jileni20

€+ 1)kp*
< (k+1)P*
<« Pk,

IA

This completes the proof.

4.3 Easier Waring’s problem

Here is a simple application of difference operators.

Waring’s problem states that every nonnegative integer can be written as the
sum of a bounded number of nonnegative kth powers. We can ask the following
similar question: Is it true that every integer can be written as the sum or difference
of a bounded number of kth powers? If the answer is “yes,” then for every k there
exists a smallest integer v(k) such that the equation

n=dxftxl-.- £ xf(k) 4.2)

has a solution in integers for every integer n. This is called the easier Waring’s
problem, and it is, indeed, much easier to prove the existence of v(k) than to prove
the existence of g(k). It is still an unsolved problem, however, to determine the
exact value of v(k) for any k > 3.

Theorem 4.2 (Easier Waring’s problem) Let k > 2. Then v(k) exists, and
k!
v(k) < 21+ 7

Proof. Applying the (k — 1)-st forward difference operator to the polynomial
f(x) = x*, we obtain from Lemma 4.1 and Lemma 4.3 that

k-1
k—1
ARy =klx +m =) :<—1)"-‘"‘< ‘ )(x + 0,
£=0

where m = (k—1)!(£). In this way, every integer of the form k!x +m can be written
as the sum or difference of at most

()

£=0
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kth powers of integers. For any integer n, we can choose integers g and r such that
n—m=klq+r,

where

Since r is the sum or difference of exactly |r| kth powers 1¥, it follows that n can be
written as the sum of at most 2¥~! +k!/2 integers of the form £x*. This completes
the proof.

4.4 Fractional parts

Let [«] denote the integer part of the real number o and let {«} denote the fractional
part of . Then [¢] € Z, {«} € [0, 1), and
o = [a] +{a}.
The distance from the real number « to the nearest integer is denoted
]l =min(|n — @] : n € Z) = inf({a}, 1 — {}).

Then ||«| € [0, 1/2], and
a=n= |«
for some integer n. It follows that
|sinra| =sinm}e||

for all real numbers «. The triangle inequality

e + Bl < lleell + 11BII (4.3)

holds for all real numbers « and B (see Exercise 2).

The following two very simple lemmas are at the core of Weyl’s inequality for
exponential sums, and Weyl’s inequality, in turn, is at the core of our application
of the circle method to Waring’s problem. Recall that exp(t) = e’ and e(t) =
exp(2mit) = ™!,

Lemma 4.6 [f0 <o < 1/2, then
20 < sinwa < mwa.

Proof. Let s(@) = sinma — 2¢. Then s(0) = s(1/2) = 0. If s() = 0 for some
a € (0, 1/2), then s'(&) = 7 cos e — 2 would have at least two zeros in (0, 1/2),
which is impossible because s'(«) decreases monotonically from 7w — 2 to —2 in
this interval. Since s(1/4) = W2 - 1)/2 > 0, it follows that s(a) > O for all
a € (0, /2). This gives the lower bound. The proof of the upper bound is similar.
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Lemma 4.7 For every real number « and all integers Ni < N,

N,
Z e(an) < min(N, — Ny, [lee| ).

n=N|+1

Proof. Since |e(an)| = 1 for all integers n, we have

Nz Nz
Z e(an)| < Z 1=N,—Nj.
n=N+1 n=N+1

Ifa ¢ Z,then ||| > Oand e() # 1. Since the sum is also a geometric progression,
we have

Ny

Z e(an)

n=N+1

Ny—N;—-1

e@Ni+1) D e@)"

n=0
_ |elaN2 — Ny)) —1 ‘
e(a)—1

2
S —
le(e) — 1|
- 2
le(a/2) — e(—a/2)|
~ 2
" 2isinnal
_ 1
h | sin |
1
sin(r [|e 1)
1

S_

2l

This completes the proof.

Lemma 4.8 Let o be a real number, and let q and a be integers such that q > 1
and(a,q)=1.If

then

1
E —— K glogg.
1<r=gs2 lerll

Proof. The lemma holds for g = 1,

1
Jlarll ~

1<r<q/
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Therefore, we can assume that ¢ > 2. For each integer r, there exist integers
s(r) € [0, g/2] and m(r) such that
== (ﬂ — m(r)) .
q

s(r)
Since (a, g) = 1, it follows that s(r) = O if and only if »r = 0 (mod ¢), and so

S|
s(r)e[1,q/2)ifr € [1,q/2]. Let

q

q

0
79

o —

Qe
Q

where —1 < 6 < 1. Then

ar=—+—=—+-—,
9 9> q 24
where
IBI-‘—<I9I<1
It follows from (4.3) that
arl = |2+ &
arff = |— + —
9 24
I I
q 2q
_ s(r)
q
\ 2|
Z@_L
q 2q
1
> —.
2 2

Let1 <r; <r, <q/2. We shall show that s(r;) = s(r;) if and only if r| = r,. If

ary _ ary
q q
then
+ (—1 - m(rl)) -+ (ﬂ - m(’z))
q
and so

ary = +ar, (mod q).
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Since (a,g)=1land 1 <r; <r, < q/2, we have

ri==r; (mod q)

and so
ry=nr
It follows that
ar 1§r§g=£)-:l_r§g=—15s_<_2
q 2 q 2 q 2
Therefore,
1 1
= SO 1
I<r=<q/2 lloer | I<r<q/2 ¢ T 24

This completes the proof.

Lemma 4.9 Let o be a real number. If

where q > 1 and (a,q) = 1, then for any nonnegative real number V and
nonnegative integer h, we have

q 1 )
min|{V, ——  — } €« V+glogg.
; ( lec(rg + )] 77084

Proof. Let

where

Then

6h 6
a(hq+r)=ah+£+—+—;
9 9 49

ar [6h]+{6h} Or

q q q?
ar +[6h]+6(r)

q

=ah +

=ah+
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where
ér
-1 <é(r)={6h}+— <2.
q
Foreachr =1,..., g there is a unique integer r’ such that
+[6h]+4
(ahg +r)} = T LORIHE@
q
Let 1
O0<t<l1-—-.
q
If |
t<{athg+r)}=<t+-,
q
then
qt <ar —qr' +[0h]+8(r) < qt +1.
This implies that
ar —qr’ < qt —[6h]1+1—8(r) < qt — [Oh] +2
and

ar —qr' > qt — [0h] — 8(r) > qt — [Oh] — 2.
Thus, ar — gr’ lies in the half-open interval J of length 4, where
J =(qt — [6h]1—2,qt — [6h] +2].
This interval contains exactly four distinct integers. If 1 <ry <r, < g and
ar, — qry =ar, — qry,
then
ary =ar, (mod q).

Since (a, q) = 1, we have
ry=r, (mod q)

and so
ry =n.

It follows that for any ¢ € [0, (g — 1)/4q], there are at most four integers r € [1, q]
such that

{a(hg +r)} € [t, t +(1/q)].

We observe that
llethg + 1)l € [t, 2 +(1/9)]

if and only if either
{athg +r)} € [t, 8+ (1/9)]
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or
1 —{a(hg +r)} € [t, 1+ (1/q)].
The latter inclusion is equivalent to
{athg + )} e [, 1"+ (1/9)],

where ) )
0<t'=1—-—t<1-—-—.
q

It follows that for any ¢ € [0, (g — 1)/q], there are at most eight integers r € [1, q]
for which

la(hg + 1)l € [t, £+ (1/9)].
In particular, if we let J(s) = [s/q, (s + 1)/q] fors =0, 1, ..., then

la(hg + 1)l € J(s)

for at most eight r € [1, q].
We apply this fact to estimate the sum

. 1
2_ min (V’ la(ha +r)n)'

I=r=q

If le(hg +r)|| € J(0) = [0, 1/q], then we use the inequality

min (v, __1__) <v.
laChg + 7

If |a(hg + )|} € J(s) for some s > 1, then we use the inequality

1
min (V, ) < L < g.
le(hg + 1)l lathg +r)l| ~ s

Since ||a(hg +r)|| € J(s) for some s < q/2, it follows that

. 1 q
2 min (V’ na(hq+r)||) s8V+8 3, ¢

1<rsq 1<s<g/2 S
&L V+glogg.
This completes the proof.
Lemma 4.10 Let « be a real number. If
- <l
ql” q%

where ¢ > 1 and (a, q) = 1, then for any real number U > 1 and positive integer

n we have .
Z min (2, —) < (2 +U +q) log2qU.
2y \K Tkl q
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Proof. We can write k in the form

k=nhg +r,
where
1<r <gq
and U
O0<h<—.
q
Then

n 1
S = min (—, ——)
I;U k' okl

o . n 1
s ) me(hq+r’ua(hq+r>n>'

0<h<U/q 1=r=q

Ifh=0and 1 <r < q/2, then Lemma 4.8 gives
. (n 1 1
Z mm(—,—) < Z — K qlogg.
1<r=a)2 rler 1<r=gy2 lleerll
For the remaining terms, we have

1 2
< 9,
hg+r (h+1)q

since either 2 > 1 and

h+1
hq+r>hq2£———2€]—
orh=0,9/2 <r <gq,and
qg (h+l)g
h = = = .
q+r r>2 2

Therefore,

. n 1
S<qlogg+ ) ). m‘“((h+1)q’||a(hq+r)“)'

O<h<U/q 1<r=<q

Note that U
—+1<U+g <2max(g, U) <2qU.
q

Estimating the inner sum by Lemma 4.9 with V = n/(h + 1)q, we obtain

- n 1
S<qlogg+ Y Y mm((h+1)q’ ||a(hq+r)n)

O0<h<U/q 1sr<q

109
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n
K qlogg + Z ((h+l)q +qlogq)

0<h<U/q
n 1 U

L qlogg +— Z h—T+(—+1>qlogq
0<h<U/q + 9q

U
&K qlogg +g-log (— + 1) +Ulogg +qloggq
q
<« (f +U +q) log 2qU.
q

This completes the proof.

Lemma 4.11 Let «a be a real number. If

where g > 1 and (a, q) = 1, then for any real numbers U and n we have
. 1 Un
Z min{n, — ) € | ¢+ U +n+ — ) max{1, loggq}.
el llack | q

Proof. This is almost exactly the same as the proof of Lemma 4.10. We have

. 1
S = Z mm(n, m)

1<k<U

IA

1
>3 min ()
0<h<U/q 15r<q lla(hg + )|

qlogg+ Y. (n+ 3 1)

0<h<U/q l1<s<g/2 S

IA

<qlogg+ Y (n+qlogq)
0<h<U/q

U
L qglogg + (; + 1) (n+qlogq)
U
<<qlogq+Ulogq+n+—ﬁ
q

U
< (q +U+n+ —E) max{1, logg}.
q

This completes the proof.
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4.5 Weyl’s inequality and Hua’s lemma
In this section, we denote by [M, N] the interval of integers m such @ M<m<
N. For any real number ¢, the complex conjugate of e(t) = 2! is e(t) = e(—1).

Lemma 4.12 Let N1, N,, and N be integers such that Ny < Ny and 0 < N, —
Ny < N. Let f(n) be a real-valued arithmetic function, and let

Np
S(H)= ) e(f(n)).
n=N+1
Then
SO =" Sa(f),
ldi<N
where

Si(f)= ) e(du(f)n))

nel(d)

and 1(d) is an interval of consecutive integers contained in [N + 1, N;].
Proof. For any integer d, let
Id)=[N1+1—-d,N, —d]IN[N; +1, N3]
Squaring the absolute value of the exponential sum, we get

ISCHI? = S(HS()

N, N,
= Y e(fm) Y e(f@m)
m=N+1 n=N,+1
N, N>

DD e(fm)— f(n)

n=N;+1 m=N,+1

Ny Ny—n

Yo > e(fn+d)— f(n)
n=N;+1 d=Ni+1-n

N, Ny—n

oY eddHn)
n=N+1 d=N+1—n

Ny—N,—1

> eAu(H)n)

d=—(Na—N,—1) nel(d)

=Y > e(Ad(H)

|d|<N nel(d)

=Y S

|d|<N

This completes the proof.
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Lemma 4.13 Let Ni, N,, N, and £ be integers such that £ > 1, N; < N, and
0 < N; — N; < N. Let f(n) be a real-valued arithmetic function, and let

N,

S(Hy =Y e(f(n)
n=N,+1
Then ) )
ISCHF < @NP 1 D" o 3 Sua(F),
ldi|<N ldel<N
where
Steti ()= Y e(By.a(H))) (4.5)
nel(dg,...,d))

and I(dy, ..., dy) is an interval of consecutive integers contained in [N + 1, N,].

Proof. This is by induction on £. The case £ = 1 is Lemma 4.12. Now assume
that the result is true for £ > 1. Using the Cauchy—Schwarz inequality, we obtain

ISP = (1)’

2
< ((2N)2“f‘1 )RR W d.(f)')

|di|<N |det<N

2
- (2N)2“‘—”“2(Z Z |Sg,... d.(f)|>

ldi|<N |d¢|<N

ldi <N |del<N

where Sy,....4,(f) is an exponential sum of the form (4.5). By Lemma 4.12, for
each d, ..., ds, there is an interval

I(do1,dg, ...,d1) € 1(dg, ...,d1) S [N1+1, N;]

such that
2

e (Adl,.s..,dl (f)(”))

£

&

~~

<

N’

s
I

e (Adw,dz,.-..dl (f)(n))

ldenr| <N n€l(dey.dy,....dy)

= Z Sdm,dz ,,,,, dl(f),

|deni]<N

and so

ISCHP™ < @NPT =D N N N S (F)-

ldil<N  |del<N desr|<N

This completes the proof.
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Lemma 4.14 Letk > 1, K = 2!, ande > 0. Let f(x) = ax*+--- be a
polynomial of degree k with real coefficients. If

N

S(f)=) e(f(n),
-1

n

then
kINK-!

ISCHOIE < N7 NE4 3" min (N, ma| ™),

m=1

where the implied constant depends on k and ¢.

Proof. Applying Lemma 4.13 with £ = k — 1, we obtain
ISCHIE < @M D o Y (1S4 a (),

ldil<N lde1l<N

where
St (D= Y e(Bgya(HM)
nel(di—y,...,dy)
and I(dy_i, ..., d;) is an interval of integers contained in [1, N]. Since |e(¢)| = 1

for all real ¢, we have the upper bound

St Y le(Agra (@) | < N.

nel(di-1,....d1)

By Lemma 4.4, for any nonzero integers dj, ..., dx-1, the difference operator
A4, _,....4, applied to the polynomial f(x) of degree k produces the linear polyno-
mial

Agy..a (X)) =di—1---drklax + B =Ax + B,

where
A= dk—l . -dlk!(x

and g € R. Let I(dy—1, ...,d1) =[Ny + 1, N;]. By Lemma 4.7,

Strea D = | Y e(Bdrdnnas ()

nel(di_y,...,dv)
N, t

= Z e(An+p8)
n=N,+1
Ny

= Z e(An)

n=N;+1

< !
11

1
iy - - dikle|]”
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It follows that

1Sdcy..ats ()] < min(N, ||dy - - - derklee|| 7).
Therefore,

IS < @MY " o 3 184D

ldij<N ldk—1|<N

<@ YT Y min(V, ldi - ekl ™,

ldil<N  ldoi|<N

Since there are fewer than (k — 1)(2N)*~2 choices of dj, ..., ds_; such that
dy - - - dr-1 = 0, and each such choice contributes N to the sum, it follows that

ISCHIX < @k — DEN) 2N

+@NKE YT Y min(V, lldy - dioikle] Y
1<id)|<N 1<|dk—i|<N

< k@N)*!
+2INEENT ST min(N, d - - dioikle] 7Y
1<d;<N 1<di.y<N
N N
K NETNEER "3 min (N, |ld; -+ deikla]| 7Y,
d1=1 dk_|-1

where the implied constant depends only on k. Since
1 <d---di_ik! < kIN*!

and the divisor function t(m) satisfies t(m) <, m® for every ¢ > 0, it follows
that the number of representations of an integer m in the form d; - - - dy_1k! is
&« m? &« N&. Therefore,

N N
ISHIF < N1+ NS ™ min (N, [lde—y - - diklee|7Y)
d=1 dy_ =1
kIN*-!
K N¥=14 NE2 3" min (N, ima| "),
m=1

where the implied constant depends on k and e. This completes the proof.

Theorem 4.3 (Weyl’s inequality) Let f(x) = ax* +- - - be a polynomial of degree
k > 2 with real coefficients, and suppose that « has the rational approximation
a/q such that
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where q > 1 and (a,q) = 1. Let

N
S(f) =Y e(f(n).

n=1
Let K =2*'and & > 0. Then
S(f) « N1+£‘ (N—l +q—1 +N—kq)1/K ,
where the implied constant depends on k and ¢.

Proof. Since |S(f)| < N, the result is immediate if g > N*. Thus, we can
assume that
1 <g < N,

and so
logg < log N « N°.

By Lemma 4.14, we have

kIN*!
IS(HIK <« N1 N4 S min (N, [ma) ") .

m=1
By Lemma 4.11, we have

kIN*-!

Z min (N, [|me|™!) < (q +kINFTE N+ = k) max({1, log g}
m=1 Nk
< (q + N1y 7) logN
& N¥(gNF+ N1+ g7 ) Ne.
Therefore,

IS(f)lK & NK——] +NK+£ (qN—k +N—1 +q—l)
K N¥* (gN*+ N~ +g7").
This completes the proof.
Theorem 4.4 Let k > 2, and let a/q be a rational number with q > 1 and

(a,q) =1.Then
q

S(q’ a) = Ze(axk/q) & ql_l/K+£_
x=1
Proof. Apply Weyl’s inequality with f(x) = ax*/q and N = g. We obtain
S(g,a) K q”g(q_l +q_k+1)1/K & ql—l/K+s.

This completes the proof.
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Theorem 4.5 Letk > 2. There exists § > 0 with the following property: If N > 2
and a/q is a rational number such that (a, q) = 1 and

N2 < g < Nk-172,

then
N

Z e(ank/q) & N8,

n=1
Proof. Applying Weyl’s inequality with f(x) = ax*/q, we obtain
S(f) < N (N1 +q71 + N5q) V¥

N+ (N“l + N-12 +1\,—1/2)1/K
N1-1/2K+e

1A

Nl——a

IAIA

for any § < 1/2K. This completes the proof.

Theorem 4.6 (Hua’s lemma) For k > 2, let

N

T(x)= Z e(an®).

n=1
Then .
/ IT(@) do « N¥~H*,
0

Proof. We shall prove by induction on j that

1 ) o
/ IT(@)|* doo « N¥ 7+
0

for j=1,...,k. The case j = 1 is clear since

1 N N 1
f IT@Pda=) %" / e(a(m* — n*))da = N.
0 0

m=1 n=1

Let1 < j < k — 1, and assume that the result holds for j. Let f(x) = ax*. By
Lemma 4.2,

Ag;...a,(f)x) =ad;---dipr—j(x),
where p;_;(x) is a polynomial of degree k — j with integer coefficients. Applying
Lemma 4.13 with Ny =0, N; = N, and S(f) = T («), we obtain

IT@P <@V 3 Y e(Aga(NM)

|di|<N |d;|<N nel(d;,....dy)

- QN)Y i Z Z Z e(adj---dlpk_j(n)),

ldi[<N  |d;|<N nel(d;,....d)
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where I(d;, ..., d)) is an interval of consecutive integers contained in [1, N]. It
follows that _ .
IT@]” < N*771 ) r(d)e(ad), (4.6)
d

where r(d) is the number of factorizations of d in the form
d=d; - -dipi_j(n)

with |d;| < Nandn € I(d;,...,d;). Since d < NF* by Lemma 4.5, we have
r(d) < |d|f < N°

for d # 0. Since pi_j(x) is a polynomial of degree k — j > 1, there are at most
k — j integers x such that p;_; = 0, and so

r(0) K N/.
Similarly, since

IT@)? = T@)? ' T(-)¥"

k-1 N k-1
( e(—ax )) (Z e(ayk))
x=1 y=1

Yy e(a(’ix,.k-fyf))

xy=1 xj-1=1 y;=1 yj-1=1

= Z s(d)e(—ad),
d

where s(d) is the number of representations of 4 in the form

i=1 i=1

withl <x;,y; < Nfori=1,...,j—1.Then

Yo s@=ITOF =N

d

and, by the induction hypothesis,
1 . N .
s(0) = / IT(@)|* da « N¥~7*,
0
It follows from (4.6) that

1 ) 1 R )
/ IT@N*" da = f IT (@) 1T (@) de
0 0
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» 1
< N?i / D_r@e(@d) Y s(dye(—ad)de
0 d

d’

= N¥=71Y r(d)s(d)
d

= N¥7r0)s(0) + N¥ 7171 Y " r(d)s(d)
0
& NYI-1Ni NV =i+e  NP-i-1pe > sd)
a0
<« N2 =GtDe + N2f—j—1N£N2/
& N2“'—(j+1)+a'

This completes the proof.

4.6 Notes

The material in this chapter is well-known. For the original proofs of Weyl’s
inequality and Hua’s lemma, see Weyl [141] and Hua [62], respectively. Daven-
port [18],Schmidt [106], and Vaughan {125] are standard and excellent introduc-
tions to the circle method in additive number theory.

The easier Waring’s problem was introduced by Wright [150].

4.7 Exercises
1. Prove that
Il =1l = x|l = lIn+x]|

for all x € R and n € Z. Let (x) denote the fractional part of x. Graph
Fx)=@)+|x| for0 < x < 1.

2. Prove that
fle + Bl < llxll + Bl

foralle, B € R.

3. Let£ > 1, and let A, denote the iterated difference operator Aj1,..1-Prove

that
¢ (e
Al f)x) =Y (-1 ( .)f(x +J)-
j=0 J
4. Let Ay, ..q, be an iterated difference operator. Find a general formula to

express Ag,....q,(f)(x)
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5. Let £ > 2, let o be a permutation of {1,2,..., £}, and let Ay, 4 be an
iterated difference operator. Prove that

Ay, = A4, . .d-

(©»-++do(1)
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The Hardy-Littlewood asymptotic
formula

. using essentially the same techniques as Hardy and Littlewood’s
but in a different way and introducing certain additional considera-
tions, we shall derive the same result with incomparable brevity and
simplicity.

I. M. Vinogradov [131]

5.1 The circle method

For any positive integers k and s, let r, ;(N) denote the number of representations
of N as the sum of s positive kth powers, that is, the number of s-tuples (x,, ..., x;)
of positive integers such that

N=xf+ - +xk

Waring’s problem is to prove that every nonnegative integer is the sum of a bounded
number of kth powers. Since 1 = 1* is a kth power, this is equivalent to showing
that

res(N) >0

for some s and for all sufficiently large integers N. Hilbert gave the first proof of
Waring’s problem in 1909. Ten years later, Hardy and Littlewood succeeded in
finding a beautiful asymptotic formula for r ;(N). They proved that for s > so(k),



122 5. The Hardy-Littlewood asymptotic formula

there exists § = 3(s, k) > 0 such that
1\ -1
res(N) = S(N)T (1 + E) r (-]s;) NO/O-1 L o(NG/R-1-8)  (57)

where I"(x) is the Gamma function and G(N) is the “singular series,” an arith-
metic function that is uniformly bounded above and below by positive constants
depending only on k and s. We shall prove that the asymptotic formula (5.1) holds
for so(k) = 2 + 1.

Hardy and Littlewood used the “circle method” to obtain their result. The idea
at the heart of the circle method is simple. Let A be any set of nonnegative integers.
The generating function for A is

f@=) 2"

acA

We can consider f(z) either as a formal power series in z or as the Taylor series
of an analytic function that converges in the open unit disc [z] < 1. In both cases,

f@ =) rasNz,
N=0

where r4 ;(N) is the number of representations of N as the sum of s elements of
A, that is, the number of solutions of the equation

N=a +ay+---+a
with
a,az,---,qs € A.

By Cauchy’s theorem, we can recover r4 ;(N) by integration:

1 f@y
N)=—
rA,s( ) 27i lelmp ZN+1

dz

for any p € (0, 1).

This is the original form of the “circle method” introduced by Hardy, Littlewood,
and Ramanujan in 1918-20. They evaluated the integral by dividing the circle of
integration into two disjoint sets, the “major arcs” and the “minor arcs.” In the
classical applications to Waring’s problem, the integral over the minor arcs is
negligible, and the integral over the major arcs provides the main term in the
estimate for r4 ;(N).

Vinogradov greatly simplified and improved the circle method. He observed
that in order to study r4 (), it is possible to replace the power series f(z) with

the polynomial
p(@)= Z ot

a€A
asN
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Then
sN v
P = rilmyz",
m=0
where ',(41\,/:) (m) is the number of representations of m as the sum of s elements of A

not exceeding N. In particular, since the elements of A are nonnegative, we have

r{"(m) = ra(m) form < N and r§"(m) = 0 form > sN.If we let

2mi
z=e(a)=e mot,

then we obtain the trigonometric polynomial

F(a) = ple(@)) = ) _ e(ac)

aeA
a<N

and
sN

F(a)’ = Z rgt’s)(m)e(ma).

m=0

From the basic orthogonality relation for the functions e(na),

1 ifm=n

1
/0 e(moz)e(—na)da={ 0 ifmn,

we obtain

1
'“A,s(N)=/ F(a)’e(~Na)da.
0

In applications, of course, the hard part is to estimate the integral.

To apply the circle method to Waring’s problem, let k > 2 and A be the set of
positive kth powers. Let r; ;(N) denote the number of representations of N as the
sum of s positive kth powers. Let

P =[N'4].
Then
P
F(a) = Z e(aa) = Z e(ank)
aeA n=]
and

1
rk,:(N)=/ F(a)e(—aN)do.
0
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5.2 Waring’s problem for k = 1

For k = 1, there is an explicit formula for r; ;(N).
Theorem 5.1 Lets > 1. Then

N — 1) N&T

= (S-—-_l)' + 0 (Ns—Z)

rl,s(N)= (

s—1
for all positive integers N.
Proof. Let N > s. We observe that
N=a+---+a;
is a decomposition of N into s positive parts if and only if
N—-s=(ai~D+---+(a;—1)
is a decomposition of N into s nonnegative parts. Therefore,
rs(N) = Ry s(N — ),

where R; ;(N) denotes the number of representations of N as the sum of s non-
negative integers.

We shall give two proofs of the theorem. The first is combinatorial. We begin
by computing R; ;(N) for every nonnegative integer N.Let N =a; +--- +a; be
a partition into nonnegative integers. Imagine a row of N + s — 1 boxes. We color
the first a; boxes red, the next box blue, the next a; boxes red, the next box blue,
and so on. There will be exactly s — 1 blue boxes. Conversely, if we choose s — 1
of the N +s — 1 boxes and color them blue, and if we color the remaining N boxes
red, then we have a partition of NV into s nonnegative parts as follows. Let a; be the
number of red boxes before the first blue box, a, the number of red boxes between
the first and second blue boxes, and, in general, for j = 2,...,5 — 1, leta; be
the number of red boxes that are between the (j — 1)-st and jth blue boxes. Let
a, be the number of red boxes that come after the last blue box. This establishes a
one-to-one correspondence between the subsets of size s — 1 of the N +s — 1 boxes
and the representations of N as the sum of s nonnegative integers. Therefore, the
number of decompositions of N into s nonnegative parts is the binomial coefficient
(¥ 71). It follows that

s—1

N-1
rl,s(N) = RI,S(N —§)= ( )

s—1

This gives the first proof of the theorem.
There is also a simple analytic proof. The series

o 1
f(Z)=ZZN=T‘—
N=0 -z
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converges for |z| < 1, and

@ =) RN
N=0

We also have
7) =
f@) a2
B 1 ds! 1
S (s=Dldz 1 \1—¢
1 a! <°° N)
= 1 a1 z
(s — Ddz! g
X NN-=-1)--(N=5+2) y_sn
= Z z
N (s — 1)
- i ( N )zN—sH
N \s — 1
X /N+s—1
=Z d )ZN.
oo s—1
Therefore,
N+s—1
R s(N) = .
s—1

This completes the proof.

5.3 The Hardy-Littlewood decomposition

For k > 2 there is no easy way to compute—or even to estimate~ry ;(N) for large
N. It was a great achievement of Hardy and Littlewood to obtain an asymptotic
formula for 7y ;(N) for all k > 2 and s > so(k). In this chapter, we shall prove the
Hardy-Littlewood asymptotic formula for s > 2* + 1. For N > 2, let

P=[N"¥] (5.2)
and

P
F@)=)Y_ e(am"). (5.3)
m=1
The trigonometric polynomial F(«) is the generating function for representing N
as the sum of kth powers. The basis of the circle method is the simple formula

1
rk's(N)=f F(a)’'e(—Na)da. (5.4)
0
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We cannot compute this integral explicitly in terms of elementary functions. By
carefully estimating the integral, however, we shall derive the Hardy—Littlewood
asymptotic formula.

The first step is to decompose the unit interval [0, 1] into two disjoint sets, called
the major arcs M and the minor arcs m, and to evaluate the integral separately
over both sets. The major arcs will consist of all real numbers « € [0, 1] that can,
in a certain sense, be “well approximated” by rational numbers, and the minor arcs
consist of the numbers o € [0, 1] that cannot be well approximated. Although most
of the mass of the unit interval lies in the minor arcs, it will follow from Weyl’s
inequality and Hua’s lemma that the integral of f(a)’e(—Na) over the minor arcs
is negligible. The integral over the major arcs will factor into the product of two
terms: the “singular integral” J(N) and the “singular series” G(N). The singular
integral will be evaluated in terms of the Gamma function, and the singular series
will be estimated by elementary number theory.

The major and minor arcs are constructed as follows. Let N > 2. Then P =
[N'/*] > 2. Choose

0<v<1/5.
For

l<g<P’,

0<a<q,
and

(a’q)_ly
we let

. a 1
9:n(q7a)= ot€[0,1]_ a—g < Pk—v

and

q
m= |J U maq.a.

1<g<P¥ a=0
(a.q)=1

The interval 9(q, a) is called a major arc, and 9 is the set of all major arcs. We
see that

1
m(l, 0) = I:O, —ﬁ_—v] N

1
931(1,1)=[1—m,1],

a 1 a 1
Mg, a)= |~ — ——, =+ ——
@0 |55 g i

for ¢ > 2. The major arcs consist of all real numbers a € [0, 1] that are well
approximated by rationals in the sense that they are close, within distance Pk,
to a rational number with denominator no greater than P”.
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Ifa € M(g,a) NM(q’,a’)and a/q #a'/q’, then |aqg’ — a’q| > 1 and

1 1
<
P2u"qq/
a a
q9 ¢
a a
<la——|+ a——,
q q
2
<
_Pk-v’

which is impossible for P > 2 and k > 2. Therefore, the major arcs (g, a) are
pairwise disjoint.

The measure of the set M(1, 0) U IMN(1, 1) is 2P"*, and, for every ¢ > 2 and
(a, q) = 1, the measure of the major arc D(g, a) is 2P"~*. For every g > 2 there
are exactly ¢(g) positive integers a such that 1 < a < g and (¢, a) = 1. It follows
that the measure of the set 91 of major arcs is

2
Pk-v Z q

2
wEM = o= Y. e@) <

1=q<P® 1<q<P®
2 PY(P'+1) 2
= Pk-v 2 = pk-3v° (5'5)
which goes to zero as P goes to infinity.
The set
m=1[0,1]\IMN

is called the set of minor arcs. This set is a finite union of open intervals and
consists of all @ € [0, 1] that are not well approximated by rationals. The measure
of the set of minor arcs is

Even though the measure of the set m is large in the sense that it tends to 1 as P
tends to infinity, we shall prove in the next section that the integral over the minor
arcs contributes only a negligible amount to ry (V).

5.4 The minor arcs

We shall now show that the integral over the minor arcs is small.

Theorem 5.2 Letk > 2 and s > 2% + 1. There exists 8, > 0 such that
f F(aye(—Na)do = O (P*~*7%),
m

where the implied constant depends only on k and s.
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Proof. By Dirichlet’s theorem (Theorem 4.1) with Q = P¥V to every real
number « there corresponds a fraction a/g such that

1<g<P",  (a,q=1,

and
a 1 . 1 1
a—; Squ—v < min Pk"”’q* .
If o € m, then & M(1, 0) UM(1, 1), so
1
Pr— <a<]-— Prs

and1 <a<q—1.1fq < P”, then

a < 1
a —_—
q - Pk—u

implies that
a € Mg,a) S M=10,1]\ m,

which is absurd. Therefore,
P’ <gq < P*,

Let
K =21, (5.6

It follows from Weyl’s inequality (Theorem 4.3) with f(x) = ax* that
F@) < P (P 4 q7l 4+ pg)/¥
< PYe (P4 prv g pokphov) UK
<« PHE_V/K.

Applying Hua’s lemma (Theorem 4.6), we obtain

' / F(@)e(—na)da| = ‘ / F(a) % F(a)® e(~na)da
m m

< / IF@)P? |F@)? da
m

1
< max |F(a)"2 / IF@) da
acm 0

< (P1+s_v/10)5—2‘ p—kse
= Ps—k—B,

where .
—2
5,=1’(S—K~—)—(s—2’<+1)s>0

if ¢ > 0 is chosen sufficiently small. This completes the proof.
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5.5 The major arcs

We introduce the auxiliary functions
N1 1/k=1
v(B) = -m/"" e(Bm)
() m§=1 p B

and
q

S@.a)=Y_e(ar*/q).

r=1

We shall prove that if « lies in the major arc 9U(q, a), then F(«) is the product of
S(g, a)/q and v(e — a/q), plus a small error term. We begin by estimating these
functions.

Clearly, |S(g, a)| < q. By Weyl’s inequality (Theorem 4.4), we have

S(q, a) << ql—l/K+8

and P
RIS g VK, .7)
q
where the implied constant depends only on ¢.

Lemma 5.1 If|B| < 1/2, then
v(B) < min(P, |B|75).
Proof. The function .
Fx) = x4
is positive, continuous, and decreasing for x > 1. By Lemma A.2, it follows that

= l 1/k-1
)l < 3 m

m=1

N
5/ K WxVRlax + £(1)

1
< Nl/k

<L P.

If|B] < 1/N,then P < N'/* < |B|7"/* and v(B) « min(P, |B|~"/*).
Suppose that 1/N < |B| < 1/2. Then |B|™/* « P.Let M =[|B|™"]. Then

M<-<M+1<N.

™| -
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LetU(t) = st, e(Bm). By Lemma 4.7, we have U(t) <« ||8]I”' = |8]~". By
partial summation (Theorem A.4),

N N
Y om/*leBm) = F(NYUWN) — fFMUM) — f UQ)f ()t
m=M+1 k M
M/k-1
T
< |17V
< min(P, ||7'7%).
Therefore,
N
1 _
v(B) = ; L= ’e(ﬂm)+m§l o'/ le(Bm)
< min(P, |B|7/%).
This completes the proof.

Lemma 5.2 Let q and a be integers such that 1 < q < P',0 < a < q, and
(a,q)=1.Ifa € M(q, a), then

F(a) = (M) v (a - f’-) +0(P®).
q q

Proof. Let 8 =« —a/q. Then |8] < P"~* and

S(q,

Fla)— %v(ﬂ)
P

= Ze(am S(q a) Z m /& o(Bm)
m=1 m-l
P

_Z ( ) (ﬂ k) S(q a)z l/k ’e(ﬂm)
m=l 9 K"

- Z u(m)e(Bm),
m=1

where
_ | elam/q) — (S(g,@)/@)k~'m"/*=' i m is a kth power
M=\ —(S(g, a)/g) k™ m!/k! otherwise.

We shall estimate the last sum. Let y > 1. Since |S(q, a)| < g, we have

q
Y elam*/q) =) elart/q) Y 1

1<m<y r=1 lsm<y
m=r (mod q)
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- S(q, a) (Z + 0(1))
q

S(q,a))
= 0(g).
( p + 0(q)
Lett > 1. Since v(8) < P, we have
U= u(m)
1<m<t
= Z e(amt /q) — 5g.4) Z lml/k—l
1<m=tl/k q 1<m<t
=k (———S(q’ a)) +0(g) - (———-S(q’ a)) (% + O(1)
q q
= 0(q).

By partial summation,

N N
> u(m)e(pm) = e(BNYUN) — 27ip / e(BOU(t)dt
1

m=1

N
- 0(g) ~ 2miB /1 e(B1)O(g)d1

<K g +|BINg

L (1+[BIN)g

< (1+ P"~kpkypy
& sz.

This completes the proof.

Theorem 5.3 Let

q S 5
s, 0= 3 Z( (qq’“)) e(~Na/q)

1<g< a=l
=q=<Q et

and

Pv'k
J*(N) = f,,  v(BY e(=NB)dB.
Let M denote the set of major arcs. Then
/sm F(a)’e(-Na)da = G(N, P*)J*(N)+ O (Ps—k—az) ’

where &, = (1 — 5v)/k > 0.

131
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Proof. Let « € M(q, a) and
a

B=a——.
q

V=V(,q,a)= S(q’a)v(a - f) = Mu(ﬁ).
q q q

Since |S(g, a)| < q, we have |V| « |v(B)| <« P by Lemma 5.1. Let F = F(a).
Then |F| < P. Since F — V = O(P?") by Lemma 5.2, it follows that

FF—V = (F=V)(F'+F7V+...4 v

& P2vPs—1
= PJ—]-{-ZV.

Since u(M) K P3~* by (5.5), it follows that
/ IFS _ Vs| da << P3v—sz—]+2v = Ps—k—-Bz,
m
where 8, = 1 — 5v > 0. Therefore,
/ F(a)’e(—Na)da
m

= /9)'[ V(a, q, a)‘e(—Na)da +0 (Ps—k-sz)

q
= Z Z / V(CV, q, a)se(——Na)da +0 (Ps‘k‘52) .
Mg.a)

1<q<pv a®
(a,q)=1

For g > 2, we have

V(a, q,a) ’e(—Na)da
/mt(q,a)

a/q+P' K
- f V(a, g, a) e(—Na)da
a/g—P*

Pv—k
- f V(B +a/q,q.a) e(~N(B +a/q))dp

Pv-k

s@. s py-k
=( 4 “)) e(~Na/q) f v(B) e(~NB)B
q — Pk
_ (S(q,a)
q

S
) e(—Na/q)J*(N).
For g =1 we have V(a, 1,0) = v(¢) and V (e, 1, 1) = v(a — 1). Therefore,

V(a, q,a)’e(—Na)da + / V(a,q,a) e(—Na)da
/ﬂﬁ(l,u) M, 1)
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prk 1
= f v(a)Ye(—Na)da +f v(ia — 1)'e(—Na)da
0 1

—pv—k
0

Pv-k
- [ werecnpaps [ were-npas
= J*(N).

Therefore,

f F(a)'e(—Na)da
m

zq: <S(q,a)
l=qsP? (alvz;)l-l q

) e(—Na/q)J*(N) + O (P*~*7%)

= S(N, P)J*(N)+ 0 (P+7%).

This completes the proof.

5.6 The singular integral

Next we consider the integral
1/2
J(N) = / v(B) e(—BN)dp.
-1/2
This is called the singular integral for Waring’s problem.
Theorem 5.4 There exists 83 > O such that

J(N) € P+

and
J*(N) = J(N)+ O (P**7%).

Proof. By Lemma 5.1,

172
J(N) < f min(P, |B1"/*)'dp
0

1/N 1/2
- f min(P, |8 4ydB+ [ min(P, 181"/ dB
0 1/N

1/N 172
= f Pidp + / p—'*dp
0 1

/N
<< Ps—k

133

(5.8)



134 5. The Hardy-Littlewood asymptotic formula

and

J(N) = J*(N) = f v(B) e(~NB)dp

Pr-k<|pl<1/2

12
< f (B dB
Pv—k
1/2
< g='kdp
vak
& P(k—V)(S/k—l)

s—k—8
= P 3 N

where 83 = v(s/k — 1) > 0. This completes the proof.

Lemma 5.3 Let o and B be real numbers such that0 < B < 1 anda > B. Then

Ni MBI — myt = perp-t DOLB) (Ne1)
£ T'(a +B) ’

where the implied constant depends only on B.

Proof. The function
gx)=xPI(N — x)*~!

is positive and continuous on (0, N), integrable on [0, N], and

N N
[ s [ 5w -t
0 0

1
= NOH-ﬂ—]/ tﬂ_l(l _ t)a—ldt
0

= Na+ﬁ—lB(a’ ﬂ)
_ yarp1 F@TB)
Fa+B)’

where B(«, B) is the Beta function and I'(«) is the Gamma function.
Ifa > 1, then

o -1 a-1
76 =g (7 - =) <0

and so g(x) is decreasing on (0, N) and

N N-1 N-1
f gx)dx < ) g(x) < /0 g(x)dx.
1

m=1

Therefore,
N-1

X—: g(m)
m=1

N
0 <f gx)dx —
0



5.6 The singular integral 135

1
< / g(x)dx
0

1
=f YN — x)* " ldx

0

1
fN"‘"f xPVdx
0

Na—l
-5
If0<pB <a<1,then0 < o+ < 2and g(x) has a local minimum at
(1- BN
=———"—€[N/2,N).
c 2—a—f3€[/ )

Since g(x) is strictly decreasing for x € (0, c), it follows that

[c] c
> elm) < fo g(x)dx

m=1
and
[c] [c]
ez [ atdx+ (e

m=1

> /C g(x)dx
1

c Not—l
dx — .
>/0 g(x)dx B

Similarly, since g(x) is increasing for x € (c, N), it follows that

N-1 N
> sm< [ gwos
m=[c1+1 c
and
N-1 N-1
Y gmz [ g+ glel+D
m={c]+1 [c]+1
N-1
>f g(x)dx
N NE-1
>/ glx)dx — .
p o
Therefore,

N N-1 a—1 B-1 a-1
N N 2N
0< / gx)dx — E glm) < + < .
0 ~ p o B

This completes the proof.
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Theorem 5.5 Ifs > 2, then
1\ /s\"!
J(N)=T (1 + %) r (;) N*/F=1 4 0 (N6=Drk-1)

Proof. Let 12
J,(N) = / | UBre-NEp

for s > 1. We shall compute this integral by induction on s. Since

N
v(B) = Y o e(Bm),

m=]

it follows that

N N
V(B =k Y Y (g m)E e(my 4 -+ m)B)

m=1 ms=1

and so

N N 1/2
T(NY=k™ 32 Y (m ---ms)”"-l/ e((mi +---+m; — N)B)dp
-1/2

my=1 my=1

=k Z (ml “_ms)l/k—].

my+tmg=N
T<m;<N

In particular, for s = 2, we apply Lemma 5.3 with @ = 8 = 1/k and obtain

N-1
J2(N) - k—2 Z ml/k—l(N _ m)l/k—]

mm=1
(1/k)°T(1/k)?
T TR/
Il +1/k)?
" TTQ/h)

N2/k—1 + o(Nl/k—l)
N2/k—1 + O(Nl/k_l).

This proves the result in the case where s = 2.
If s > 2 and the theorem holds for s, then

1/2
Ji(N) = f B e-Npap

12
=/ , v(B)v(B) e(—NB)dp

1

12 N 4
- [ Y e epmnpre-Npap

1/2 =i k
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1
=
x| =

1/2
m!'/*! / , v(B) e(—(N — m)B)dp

1 1

3
It

1
- Z %ml/""ljs(zv —m)

m=1
FA+1/k 21 4, _
= _ N — s/k—1
T (s/k) ; e

N-14
+0 —mVk (N — m)(s——l)/k—l) )
k
=1

m

Applying Lemma 5.3 to the main term (with ¢ = s/k and B = 1/k) and the error
term (with @ = (s — 1)/k and 8 = 1/k), we obtain

N-1
1 ket srk-1 _ (U/RTA/RT(S/K) ) cenyre-t s/k—1
; o NN =yt = TG+ DB N +0 (N*/F1)

and
N-1 1
Z Eml/k—l(N _ m)(s—l)/k—l -0 (Ns/k—l).
m=1

This gives

_(/RTA/RT (/)T A+ 1/k) yykt s/k—1
Js+1(N)"' F((S+l)/k) F(S/k) N +0(N )

B (1 +1/k)°! (s+1)/k—=1 s/k=1
“FGenm VT o).

This completes the induction.

5.7 The singular series

In Theorem 5.3, we introduced the function

S, Q)= Y Ay,

1<g=<Q

q s _
w5 (242 ().

a=1
(a.q)=1

where

We define the singular series for Waring’s problem as the arithmetic function

S(N) =) Ang).

q=1
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Let

1
0<e < —.
sK

Since s > 2 + 1 =2K + 1, we have

1
—;E—l—sszl+E—se=1+64,

where 1
d4=— —s58>0.
K

By 5.7),

q 1
Ay(g) K m = q1+64’

59

and so the singular series Zq Ay(gq) converges absolutely and uniformly with
respect to N. In particular, there exists a constant ¢; = c,(k, s) such that

IG(N)| < 2 (5.10)
for all positive integers N. Moreover,

S(N)—6&(N, P*) = ) An(g)
q>Pv

1
<<Zm

q>PY
<< P—v64.

We shall show that G(N) is a positive real number for all N and that there exists
a positive constant ¢; depending only on k and s such that

O0<ci <6B\N) <

for all positive integers N. The proof is a nice exercise in elementary number
theory. We begin by showing that Ay(g) is a multiplicative function of g.

Lemma 5.4 Let(q,r)=1.Then
S(gr,ar + bg) = S(q, a)S(r, b).

Proof. Since (g,r) = 1, thesets {xr : 1 <x <gland{yq:1 <y <r}are
complete residue systems modulo g and r, respectively. Because every congruence
class modulo gr can be written uniquely in the form xr + yq, where 1 < x < ¢
and 1 <y <r, it follows that

qr k
S(gr,ar +bq) = Z e (M)

m=1 qr
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(ar + bg)(xr + yq)*
)

(

=i e ((W Xk: (i)(xr)‘(yq)"“‘)
(
(

(G + (yq)k))

a(xr)* b(yg)
) ()

(q a)S(r, b).
This completes the proof.
Lemma 5.5 If(q,r)=1, then
An(gr) = An(@)ANn(r),
that is, the function Ay (q) is multiplicative.

Proof. If ¢ and gr are relatively prime, then c is congruent modulo gr to a
number of the form ar + bq, where (a, q) = (b, r) = 1. It follows from Lemma 5.4

that
qr
Ay(gr) = (S(qr c)) (__ZIZ>

(c. qr)-l

9 S(qr ar +bq) (ar+bq)N
-3 3 (FER) ()

a=l b=1
(a.q)=1 (b.g)=l

£ B ()20

(@.g»1 (b.g)=1

£ () () £ ()

(a.q)=1 b.9)-1

= An(@AN(r).

This completes the proof.
For any positive integer g, we let My (g) denote the number of solutions of the
congruence

X+ +x¥ =N (mod q)

in integers x; such that1 <x; <gfori=1,...,q.
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Lemma 5.6 Lets > 2% + 1. For every prime p, the series

o0
xv(p) =1+ Ay(p" (5.11)
h=1
converges, and
o My
xv(p) = lim P (5.12)

Proof. The convergence of the series (5.11) follows immediately from inequal-
ity (5.9).If (a, q) = d, then

q 9 k
s(q,a>=ze( )=Z ((";‘/’;")
x= 1

1
q/d
—dY e ((aé‘/i‘)ix ) = dS(g/d, a/d).

[

x=1

Since
1 "e 1 ifm=0 (modq)
q 4 0 ifm#0 (modg),

it follows that for any integers x;, ..., x;

l 4 a(xf+---+xk - N) |1 ifxf+...+x¥*=N (modq)
€ g Tl 0 ifxf+.4xk £ N  (mod q)

a=1

and so

q q q k... k _
MN(q)=Z"'ZlZe(a(xl+ - N)>

iimz":e(a(xf+---q+xf—N))
22(F) 2o () ()

xs=1

I
Q= Q= Q= Q=
[
E A
~~
R
Q
~
[\
N
|
Q|8
2
N—

&

55)
3
IR

- LS73" asta/d.apdye (%"—)

q9 T =
lq (aaln-d
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&, (S(q/d,a/d)\° (—(a/d)N
,,X,quq( q/d )e( q/d )
(a,q)=d

_1
q
=g ) An(g/d).

dig

Therefore,

> " An(g/d) =g~ My(q)

dlq

for all ¢ > 1. In particular, for ¢ = p* we have
h .
1+ An(p') =) An(p"/d) = p"" =My (p")
j=1 dip*
and so
h .
= 1i J
xv(p) = Jim (1 +;A~(p ))
= lim p"=IMy(p").
h—o00
This completes the proof.

Lemma 5.7 Ifs > 2¢+1, then

SN =[x~ (p). (5.13)
p

Moreover, there exists a constant ca depending only on k and s such that
0<BN) <
for all N, and there exists a prime pg depending only on k and s such that

1/2 < [ xwp) <372 (.14
P>po

forallN > 1.

Proof. We proved that if s > 2 + 1, then
1
An(g) K W’

where , depends only on k and s, and so the series ) q An(q) converges absolutely.
Since the function Ay (g) is multiplicative, Theorem A.28 immediately implies the
convergence of the Euler product (5.13). In particular, xx(p) 0 for all N and
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p. Since xn(p) is nonnegative by (5.12), it follows that xy(p) is a positive real
number for all N and p, and so the singular series S(N) is positive. Again, by (5.9),

o0
0<BMN) <Y 5 =cr<00
gq=1
and
() =11 < Y 1ANGI < Y i <
h=1 h=1

Therefore, there exists a constant ¢ depending only on k and s such that

c
1- W < x(p) = 1+P1+84
for all N and p. Inequality (5.14) follows from the convergence of the infinite
products [ S £ cp~'7%). This completes the proof.

We want to show that G(N) is bounded away from O uniformly for all N. By
inequality (5.14), it suffices to show, for every prime p, that xy(p) is uniformly
bounded away from 0.

Let p be a prime, and let

k= p'ko,

where T > 0 and (p, ko) = 1. We define

[T+l ifp>2
1l t+2 ifp=2.

Lemma 5.8 Let m be an integer not divisible by p. If the congruence x* = m
(mod p?) is solvable, then the congruence y* = m (mod p") is solvable for

everyh > y.

Proof. There are two cases. In the first case, p isan odd prime.Forh > y = t+1,
we have

(k, p(p") = (kop, (p — 1)p" ™) = (ko, p — 1)p* = (k, p(p")).

The congruence classes modulo p” that are relatively prime to p form a cyclic
group of order p(p") = (p — 1)p"~1. Let g be a generator of this cyclic group,

that is, a primitive root modulo p”. Then g is also a primitive root modulo p”. Let
k=

x*=m (mod p”). Then (x, p) = 1, and we can choose integers r and u such
that
x=g" (mod ph)
and
— o h
m=g" (mod p").
Then

ku=r (mod ¢(p")),
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and so
r=0 (mod (k, (p"))

and
r=0 (mod (k, p(p"))).

Therefore, there exists an integer v such that
kv=r (mod p(p")).

Lety=g'.Theny* =m (mod p").

In the second case, p = 2 and so m and x are odd. If 7 = 0, then % is odd.
As y runs through the set of odd congruence classes modulo 2" so does y", and
the congruence y* = m (mod 2") is solvable for all # > 1.If r > 1, then k
isevenand m = x* = 1 (mod 4). Also, x* = (—x), and so we can assume
that x = 1 (mod 4). The congruence classes modulo 2" that are congruent to
1 modulo 4 form a cyclic subgroup of order 2”2, and 5 is a generator of this
subgroup. Choose integers r and u such that

m=5 (mod 2")

and
x =5 (mod 2").

Then x* =m (mod 27) is equivalent to
ku=r (mod?2’7?),

and so r is divisible by (k, 27) = 27 = (k, 2"2). It follows that there exists an
integer v such that
kv=r (mod 2"‘2).

Lety =5". Then y* =m (mod 2"). This completes the proof.

Lemma 5.9 Let p be prime. If there exist integers ay, . . ., a;, not all divisible by

P, such that

ai+---+a*=N (mod p"),

then )
xv(p) = m > 0.

Proof. Suppose thata; # 0 (mod p).Leth > y.Foreachi =2,...,s there
exist p"~7 pairwise incongruent integers x; such that

x; =a; (mod ph).
Since the congruence

xf=N-xf—...—x* (mod p")
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is solvable with x; = a@; # 0 (mod p), it follows from Lemma 5.8 that the
congruence
k k

x{‘EN—xz—---—xs (mod p").

This implies that
My(p") = 6D,

and so \
My(p") S 1

phG=D = 6D 0.

xn(p) = lim
h—>o00
This completes the proof.

Lemma 5.10 Ifs > 2k for k odd or s > 4k for k even, then

xn(p) = pr > 0.

Proof. By Lemma 5.9, it suffices to prove that the congruence

af+---+ak=N (mod p) (5.15)
is solvable in integers a; not all divisible by p. If N is not divisible by p and the
congruence is solvable, then at least one of the integers q; is prime to p. If N is
divisible by p, then it suffices to show that the congruence

af+...+d"_,+1* =N (mod p")

has a solution in integers. This is equivalent to solving the congruence

af+---+ak | =N-1 (mod p”).
In this case, (N — 1, p) = 1. Therefore, it suffices to prove that, for (N, p) = 1,
the congruence (5.15) is solvable in integers for s > 2k — 1 if p is odd and for
s > 4k — 1 if p is even.

Let p be an odd prime and g be a primitive root modulo p”. The order of g is
o(p”) =(p — )p?~! = (p — 1)p*. Let (m, p) = 1. The integer m is a kth power
residue modulo p? if and only if there exists an integer x such that

x*=m (mod p”).

Letm = g" (mod p"). Then m is a kth power residue if and only if there exists
an integer v such that x = g¥ (mod pY) and

kv=r (mod (p—1)p").
Since k = kop® with (kg, p) = 1, it follows that this congruence is solvable if and

only if
r=0 (mod (ko, p — 1)p),
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and so there are
@(p?) p—1

ko, p — Dp*  (ko,p— 1)

distinct kth power residues modulo p?. Let s(N) denote the smallest integer s
for which the congruence (5.15) is solvable, and let C(j) denote the set of all
congruence classes N modulo p? such that (N, p) = 1 and s(N) = j. In particular,
C(1) consists precisely of the kth power residues modulo p?. If (m, p) = 1 and
N’ = m*N, then s(N') = s(N). It follows that the sets C(j) are closed under
multiplication by kth power residues, and so, if C(j) is nonempty, then |C(j)| >
(p—1)/(ko, p—1). Let n be the largest integer such that the set C(n) is nonempty.
Let j < n and let N be the smallest integer such that (N, p) = 1 and s(N) > j.
Since p is an odd prime, it follows that N — i is prime to p fori = 1 or 2, and
s(N —i) < j.Since N=(N —1)+1¥and N = (N — 2) + 1* + 1¥, it follows that

J+1<s(N)<s(N—-i)+2=<j+2

and so s(N — i) = j or j — 1. This implies that no two consecutive sets C(j) are
nonempty for j = 1, ..., n, and so the number of nonempty sets C(j) is at least
(n + 1)/2. Since the sets C(j) are pairwise disjoint, it follows that

- n+l p-—1
p-Dp =g =Y lcH =P ="
pm P =ep Z = ko p - 1)

C(j)#

and so
n<2ky,p—1p*—1<2k—1.

Therefore, s(N) < 2k — 1 if p is an odd prime and N is prime to p.

Let p = 2. If k is odd, then every odd integer is a kth power residue modulo 27,
so s(N) = 1 for all odd integers N. If k is even, then &k = 27k, with r > 1, and
y=t+2 Wecanassumethat ]l < N <2V — 1. If

s=2V—1=4.2"—1<4k—1,

then congruence (5.15) can always be solved by choosinga; =1fori =1,..., N
anda; =0fori = N+1,...,s. Therefore, s(N) < 4k — 1 for all odd N. This
completes the proof.

Theorem 5.6 There exist positive constants ¢; = cy(k, s) and cy = cy(k, s) such
that

c1 < 6(N) < ;.
Moreover, for all sufficiently large integers N,

S(N, P')=B(N)+ O (P™%).
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Proof. The only part of the theorem that we have not yet proved is the lower
bound for G(N). However, we showed that there exists a prime py = pg(k, s) such
that

1/2< [ xv(p) <3/2

p>po
forall N > 1. Since
@) =p’'P >0

for all primes p and all N, it follows that
1 1
sM=[]xv@®@>=z]]xv® =[] p"?=c>o0.
14 2 P=po 2 P=po

This completes the proof.

5.8 Conclusion

We are now ready to prove the Hardy-Littlewood asymptotic formula.

Theorem 5.7 (Hardy-Littlewood) Letk > 2 ands > 2* + 1. Let ri ;(N) denote
the number of representations of N as the sum of s kth powers of positive integers.
There exists § = 8(k, s) > O such that

1\¢ -1
res(N) = G(N)T (1 + ;) r (%) NG/O=1 4 (NG/D=1-8)

where the implied constant depends only on k and s, and G(N) is an arithmetic
function such that
c1<6BN)<c

for all N, where c; and c;, are positive constants that depend only on k and s.

Proof. Let o = min(1, &, 8, 83, v84). By Theorems 5.2-5.6, we have

1
ris(N) = / F(a)'e(—aN)da
0

= /zm F(a)e(—aN)dao + f F(a)e(—aN)da
m
= G(N, P*)J*(N)+ O (P**7%) + 0 (P*~+%)
= (B(N) + O (P™%)) (J(N) + O (P*+5)) + 0 (P*+2)
+0 (P*7*7%)
=G(N)J(N)+ 0 (P*~*%)

1\° _ /s\-!
- 2 5 5/k=1 (s=1)/k=1
=G&(N)I (1+k> F(k) N +0(N )
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+0 (Ns/k—l—&)/k)

1\’ /s\!
= _ e s/k—1 s/k—1-8
S(N)r (1+k) r(k) N*1+ 0O (N ),

where é = 8o/ k. This completes the proof.

5.9 Notes

The circle method was invented by Hardy and Ramanujan [50] to obtain the asymp-
totic formula for the partition function p(N), which counts the number of unordered
representations of a positive integer N as the sum of any number of positive inte-
gers. The circle method was also applied to study the number of representations of
an integer as a sum of squares. See, for example, Hardy [45], and the particularly
important work of Kloosterman [71, 72, 73].

In a classic series of papers, “Some problems of ‘Partitio Numerorum’,” Hardy
and Littlewood [47, 48] applied the circle method to Waring’s problem. Vino-
gradov [131, 134, 135] subsequently simplified and strengthened their method.
This chapter gives the classical proof of the Hardy-Littlewood formula for s >
so(k) = 2% +1. There is a vast literature on applications of the circle method to War-
ing’s problem as well as to other problems in additive number theory. The books
of Davenport [18], Hua [64], Vaughan [125], and Vinogradov [135] are excellent
references.

There have been great technological improvements in the circle method in re-
cent years, particularly by the Anglo-Michigan school (for example, Vaughan and
Wooley [126, 127, 128, 129, 130, 147, 148]). In particular, Wooley [146] proved
that

G(k) < k(logk +loglogk + O(1)).

Another interesting recent result concerns the range of validity of the Hardy-
Littlewood asymptotic formula. Let G (k) denote the smallest integer so such that
the Hardy-Littlewood asymptotic formula (5.1) holds for all s > s¢. Ford [41]
proved that

G(k) < k2(logk +loglogk + O(1)).

For other recent developments in the circle method, see Heath-Brown [54, 55],
Hooley 59, 60, 61], and Schmidt [107].

5.10 Exercises

1. Show that for k = 1 the Hardy-Littlewood asymptotic formula is consistent
with Theorem 5.1.
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2. Let k = 2. Show that the number of positive integers not exceeding x that

can be written as the sum of k nonnegative kth powers is x/k!+ O (x*=1/k),
Show that
Gk = k+1.

Hint: If n < x is a sum of k kth powers, then

= gk k k
n=aj+a;+---+a,

where

1/k
0<aj<a;<-- <a<x'k

and the number of such expressions is given by a binomial coefficient.
Let f(x) be a polynomial of degree k > 2 with integral coefficients, and let

q

Sf(g,a)=Y_ e(af(r)/q).

r=1
Prove that if (g, r) = 1, then
S¢(gr,ar +bg) = Sf(q, a)S¢(r, b).
Let Ry (V) denote the number of representations of an integer N as the

sum of s nonnegative kth powers. State and prove an asymptotic formula
for Ry ;(N).
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The Goldbach conjecture
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Elementary estimates for primes

Brun’s method is perhaps our most powerful elementary tool in num-
ber theory.

P. Erd6s [34]

6.1 Euclid’s theorem

Before beginning to study sums of primes, we need some elementary results about
the distribution of prime numbers.
Let s = o + it be a complex number with real part o and imaginary part ¢. To
every sequence of complex numbers ay, as, . . . is associated the Dirichlet series
&Y a,

F(s) = —.

s
n=1

If the series F(s) converges absolutely for some complex number sy = oy + ito,
then F(s) converges absolutely for all complex numbers s = o + it with R(s) =
o > aggp = R(sp), since

lan| _ la|

= — < — =

n® — no

ap an

nS nxo

If we leta, = 1 for all n > 1, we obtain the Riemann zeta-function

;(s>=Zn—ls.

n=1
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This Dirichlet series converges absolutely for all s with R(s) > 1.
Theorem 6.1 Let f(n) be a multiplicative function. If the Dirichlet series

F)=) frf:’)

n=1

converges absolutely for all complex numbers s with R(s) > oy, then F(s) can be
represented as the infinite product

2
F(s)=ﬂ(1+f;f)+f(§)+~--).

p p

If f(n) is completely multiplicative, then

Fs) = 1—[( f(p))

This is called the Euler product for F(s).

Proof. If f(n) is multiplicative, then so is f(n)/n°.If f(n) is completely multi-
plicative, then so is f(n)/n®. The result follows immediately from Theorem A.28.

Because the Riemann zeta-function converges absolutely for R(s) > 1, it
follows from Theorem 6.1 that ¢ (s) has the Euler product

1 1\
=25 -T1(1- )

for all s with R(s) > 1, and so {(s) # O for R(s) > 1. From the Euler product, we
obtain the following analytic proof that there are infinitely many primes.

Theorem 6.2 (Euclid) There are infinitely many primes.

Proof. For 0 < x < 1 we have the Taylor series

n

—log(l —x) = Z -

n=1

Ifo > 0,then¢(1+0) > 1and

-1
log¢(l1+0)= logl—[ (1 - —%;)
p p

Poo 1
= ; ; npn(lm)

1
Zp: —; Z Z npn(lm) :

P n=2
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Since

1 1
0< Zznpn(lw) < Zz_n Z—— <%0 6.1)

P n=2 > w2 P pip—1

it follows that

log¢(1+0) =) pllw +0(1). (62)

p
Let0 < o < 1. Then

1 ®© 1 ® 1 1
l<—= dx <f(l+o0) <1+ —dx=—+1
o 1 xl+o 1 xl+o o

and so
1
0 <log— <log¢(1+o)
o
1 1
<log| —+1)=1log— +log(l+0)
o o
1 1
<log—+0 <log—+1.
o o
Therefore,

1
log¢(1+0)=log > + O(1). (6.3)
Combining (6.2) and (6.3), we obtain

1
og— = Z i+ o)

p

for 0 < o < 1. If there were only finitely many prime numbers, then the sum on
the right side of this equation remains bounded as o tends to 0, but the logarithm
on the left side of the equation goes to infinity as o tends to 0. This is impossible,
so there must be infinitely many primes.

6.2 Chebyshev’s theorem

The simplest prime-counting functions are

n(x)= Z 1,

p=x
B(x)= ) _logp,
p=x
and
Y(x)= ) logp.

p*=x
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?(x) and ¥ (x) are called the Chebyshev functions. Chebyschev proved that the
functions #(x) and ¥ (x) have order of magnitude x and that & (x) has order of
magnitude x/log x. Before proving this theorem, we need the following lemma
about the unimodality of the sequence of binomial coefficients.

Lemma 6.1 Letn > 1land1 <k <n. Then

n n\ ) nl
<k—1)<(k) ifand only ifk < 5,

(kﬁ 1) > (:) if and only ifk > %,

n _(n , e _ n+l
(k . 1) = (k) ifand only ifn is odd and k = =~

Proof. This follows immediately from observing the ratio

() k!(:ik)'! S k=Dn—k+1)! n—k+1

(1) = k!(n - k)! k

Lemma 6.2 Letn > land N = (zn") Then
N < 2¥ <2nN.

Proof. Since (ZZ’) is the middle, and hence the largest, binomial coefficient in
the expansion of (1 + 1)?", it follows that

N = (Zn"> < +1)" =22

£0--E0-

k=1

<2+(Qn-— 1)(2;’) <2n (2:)

= 2nN.

This completes the proof.
For any positive integer n, let v,(n) denote the highest power of p that divides
n. Thus, v,(n) = k if and only if p*||n. In this case, p* < n and so vp(n) <

logn/log p.

Lemma 6.3 For every positive integer n,

o o, llogn/logpl r
up(nz)=2[?]= > [;’;]' (6.4)

k=1 k=1



6.2 Chebyshev’s theorem 155

Proof. Since v,(mn) = v,(m)v,(n) for all positive integers m and n, we have

) =Y v,m) =) Y 1= 1=Z[.;—k].

m=1 m=1 pkim k=1 nm=! k=1
k=1 ptim

This proves the formula.
Theorem 6.3 (Chebyshev) There exist positive constants i and c; such that
c1x < ¥(x) < Y(x) < mw(x)logx < cox (6.5)

Jor all x = 2. Moreover,

1
timinf 2% < liminf £ — tim inf ZE108% S 1052
x—00 x X—>00 X X—>00 x
and o .
lim sup ﬁ = lim sup M = lim sup M < 4log2.
x—o00 X X—>00 X x—00 X

Proof. Let x > 2. If p* < x, then k < [log x/log p], and so

p=x pE<x pP=x log 4

< Zlogx =m(x)logx.

psx
Therefore,
9 1
timinf 2% < liminf £% < lim inf 25 18%
X—=>00 X X—00 x 00 X
and , |
lim sup 22 < lim sup v < lim sup M
X—>00 X X—00 X 00
Let
0<d8<1.
Then
B(x) = Z log p
X1t <p<x
z Z (1-8)logx
x!<psx

= (1-38)(r(x) — m(x'"%)logx

> (1 = 8)m(x)logx —x' % logx,
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and so
?(x) S (1 —-8)m(x)logx logx
x x x8
It follows that 5 )
imint 2% > (1 — 8 lim inf TF108%
X—>00 X xX—>00 X

This holds for all § > 0, and so

fiminf 2% > lim inf ZF) 18
xX—>00 X xX—>00 X
Similarly,
4 1
lim sup ﬁ > lim sup M.
xX—>00 X X—>00
Therefore,
Vs 1
timinf 2% = liminf Y% = fim inf T 108% (6.6)
X—=>00 X X—>00 X X—>00
and o L
tim sup > = lim sup Z&) — fim sup T 108X 6.7
X—>00 X xX—>00 X X—>00

Letn > 1, and let

v (Zn) 2m@n—1D@n—2) - (n+1)
“\n) n! )

Then N is an integer, since it is a binomial coefficient, and

2n o
— <N<2

by Lemma 6.2. If p is a prime number such that
n<p<2n,

then p divides the numerator but not the denominator of N. Therefore, N is
divisible by the product of all these primes, and so

l—[ p <N <2%.
n<p<2n

In particular, if > 1 and n = 27!, then

1_[ p<N<2%.
2r-l<p52r

It follows that, forany R > 1,

R R

np=n H p<n22' <22,

p52k r=1 2r-1 <p$2r r=1
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For any number x > 2, there is an integer R > 1 such that

2R-1 o x < 2k,

Then o
Hp§ I—[p<22+ < 2%,
p=x p<2R
and so
P(x) = Zlogp = log (H p) < (4log2)x.
p=x p=x
Thus,

4
lim sup —Q < 4log2.
xX—>00 X

To obtain the lower limit, we use Lemma 6.3 to express N explicitly as a power

of primes:
2n 2n)! @n)—2v,(n)
p<2n

2n n
vp(2n) — 20p(m) = Y ([—] -2 [—]) )
g g 1<k<log2n pk pk

=%—=logp

where

Since [2t] — 2[t] = 0 or 1 for all real numbers ¢, it follows that

log2n
v,(2n) — 2v,(n) < .
p(2n) p(n) < Tog p
By Lemma 6.2,
22 log2n
Z <N= l—[ prr@I=20,() < H poEr < l_[ 2n = (2n)*@"
2n p<2n p<2n p<2n

or, equivalently,
mw(2n)log2n < 2nlog?2 — log2n.

Letn = [x/2]. Then
2n <x <2n+2

and

m(x)logx = w(2n)log2n > 2nlog2 — log2n
> (x —2)log2 —logx =xlog2 —logx —2log2.

It follows that . ) 2 log?
w(x)logx > log2 — ogx +2log
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and so )
X—>00 X

Since ¥#(2) > 0, we have #(x) > c;x for some ¢; > 0 and all x > 2. This
completes the proof.

log2.

Theorem 6.4 Let p, denote the nth prime number. There exist positive constants
c3 and c4 such that
csnlogn < p, < canlogn

foralln > 2.

Proof. By Chebyshev’s inequality (6.5),

log pn log p,
and so
c{lnlogp,, <pn < cl"lnlogp,,.
Since
logn < log p,,
we have

Dn > cz_ln logn = csnlogn.
For n sufficiently large,
log px < logn +loglog p, +logc;’
< logn +2loglog p,
<logn +(1/2)log pa,

s0
log p, <2logn

and
Pn < cl_lnlogp,, < 2(:1_’nlogn.

Therefore, there exists a constant c4 such that p, < c4nlogn for all n > 2. This
completes the proof.

6.3 Mertens’s theorems

In this section, we derive some important results about the distribution of prime
numbers that were originally proved by Mertens.
Lemma 6.4 For any real number x > 1 we have

0=< Zlog(%) <x.

n<x
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Proof. Since the function A(t) = log(x/t) is decreasing on the interval [1, x], it
follows that

Z log(%) <logx+/ log( )dt

1<n=x

= xlogx —/ log tdt

1
=xlogx —(xlogx —x +1)
< Xx.

This completes the proof.
The function A(n), called von Mangoldt’s function, is defined by

A(n) logp if n = p™ is a prime power
- otherwise.

Then
Y= Y Alm).

l1<m<x
Theorem 6.5 (Mertens) For any real number x > 1, we have

% =logx + O(1).

n=<x

Proof. Let N = [x]. Then

0< Zlog— = Nlogx — Zlogn =xlogx —log N!+ O(logx) < x

n<x n=1

by Lemma 6.4, and so
log N! =xlogx + O(x).

It follows from Lemma 6.3 and Theorem 6.3 that

logN!= Y v,(N)logp

P=N

[log N/ log p] N
530 S LA
p<N k=1 p

e

X
-2 [ ees
HIE
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- ( + 0(1)) An)

n<x

=xy A( ), (Z A(n))

n<x n<x
An)

=x + 0 (¥ (x))
n

n<x

Z—+0()

n<x

Therefore,
Z Al O(x) = xlogx + O(x)
and
Al =logx + O(1).
n<x n
This completes the proof.

Theorem 6.6 (Mertens) For any real number x > 1, we have

1
3 22 _togx + 0.

p=x

Proof. Since

A(n) log p
0= 52,
n=<x P=<x
- o
o~

k=2

<Zlogpz

p=x k=2 P
lo
= ,,Z; p(pg—p 1)
<2 Z 108 14
p=x
<2 Z logn
ot

it follows from Theorem 6.5 that

Zlog” 3 Al )+O(1)=10gx+0(1).

p<x p n<x
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This completes the proof.

Theorem 6.7 There exists a constant by > 0 such that

1 1
Z—=loglogx+b1+0< )
log x

p=x

forx = 2.

Proof. We can write

>~ Y- S o,

p<x p<x p log nfx
where 1
ogp e _
u(n) = { > ifn p
0 otherwise
and
t
f®= Togt”

We define the functions U(¢) and g(t) by

gP

U@ =) un)= =logt +g(t).

n<t p<t

Then U(z) = 0 for t < 2 and g(t) = O(1) by Theorem 6.6. Therefore, the integral
52 g(t)/(t(logt)?)dt converges absolutely, and

/ ®© g(t)dt 1
=0—.
. t(logt)? log x
Since f(t) is continuous and U (¢) is increasing, we can express the sum ) px 1/p

as a Riemann-Stieltjes integral. Note that U(t) = 0 for t < 2. By partial summa-
tion, we obtain

Z — =Y um)fn)

p<x n<x

= —+f f®dU(@)
2 )

- FOUG) - f2 UOds ()

- L2t 20 [Cvwr o
logx 2

1 *logt
=1+0 +/ £—+—g(—t)dt
log x , t(logt)?
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o R {0) < g 1
- dt dt — dt+1
fz T +/2 1(log1)? /X o2 T 1% 0 \logx
o0
g(t) 1
= loglog x — log log 2 di+1+0 —
oglogx — loglog +/2 Hlog 17 +1+ (logx)

1
loglogx+b1+0( )
log x

where o ©
g(t
bi=1—-loglog2+ _—
! 0808 ]2 1(og 1)?
This completes the proof.
From the Taylor series for log(1 — x), we see that

(6.8)

-1
0<10g<1——%> _l=il_<iin= 1

p Gnpt SZpr pp-1)

It follows from the comparison test that the series

by=)_ <log (1 - %)_ ) ZZ (6.9)

) o ikt
converges.
Lemma 6.5 Let by and b, be the positive numbers defined by (6.8) and (6.9).

Then
b] + b2 =Yy,

where y is Euler’s constant.
Proof. Let 0 < 0 < 1. We define the function F (o) by

F(o)=log{(1+0)— Y ;i—

140
p

Bl )

= Z Z n(1+0) *

p n=2 np

By (6.1) and the Weierstrass M-test, the last series converges uniformly foro > 0
and so represents a continuous function for o > 0. Therefore,

lirré* F(o) = b,. (6.10)

We shall find alternative representations for the functions log (1 + o) and
Y, p~'7°. Since
2 2
g g
l-oc+—<e"<l—0+—
? 2e =€ 2
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for 0 < o < 1, it follows that

1-—

1_E< ¢ <1—g—

2 o 2e
and o o o
1+— <1+ < <1+ <1l+o.
2e 2e — o 1—e? -0
Therefore, .
0<logo+log(l—e°) <o,

and so

1
log = =log(l — )" + O(0).
g

By (6.3), we have

log¢(l1+0)=1log % + 0(0)
=log(1 —e°)' + 0(0)

o)
n=1

e—on

+ O(o).

By Theorem A.5,

L(x)=2%=logx+y+0(%)

n<x

for x > 1. Let f(x) = e~°*. By partial summation, we have

log{(l+0) =Y ™ 4 o)
n=1 n

= | f&dLx)+0(0)
0

__ /w L&x)df(x) + 0(0)

0

=0 foo e “*L(x)dx + O(0o).
0

By Theorem 6.7,

1 1
S(x) = Z ; =loglogx +b; + O <logx)

p=x

for x > 2. Let g(x) = x~°. Again, by partial summation we have

L 5(—”—)=fw ds =—f°°s d
Yo, swas - | st

163



164 6. Elementary estimates for primes

/°° S(x)dx
=0 —_
1

x1+o
[e,¢]
=0 / e 7" S(e")dx.
0

Since L
S*)=logx+b;1 + 0 (—)
x

and .
L(x)=logx+y+0< ),

x
it follows that
1 1
Lix)— S )=y —-b1+0|-)=y—-b+0 —
X x+1
for x > 1. We also have

L(x)—Se*)=y—b1+0 (L)

x+1

for 0 < x < 1. Therefore,

1

l1+o

F(o)=logz(l+0)— Y

p

=0 foo e °*(L(x) — S(e*))dx + O(o)
0

ot 1
=o/0 e °F (y -b1+0 (m)> dx + O(0o)

o0 o0 —de
=(y—b1)a/ e"”dx+0<o/ ¢ Jc)+0(a)
0 0

x+1

oo —O’Xd
=y—b1+0(a/ ¢ x)+0(0).
0 x+1

00 =Xy 1/o e %dx 00 =0 Iy
< +
/0 x+1 ,/0 x+1 _/1./0 X
Vo dx ® e Vdy
< e
0 x+1 1 y
1
= log <—+ 1) +0(1)
o

1
<<log(—+l),
ag

Since
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F(a)=y—b1+0<alog(%+l)).

By (6.10), we have
by = liné F(o)=y — b;.
o—>0*

it follows that

This completes the proof.
Theorem 6.8 (Mertens’s formula) For x > 2,
1\
I (1 - —) = ¢’ logx + O(1),
psx p
where y is Euler’s constant.

Proof. We begin with two observations. First,

>Y o <X

p>x k=2 p>x P(P - 1)

]
QS
Vo
= |-
SN—"

]
Q
—
o

0Q | =
®

v

Second, since exp(t) = 1 + O(¢) for ¢ in any bounded interval and O (1/logx) is
bounded for x > 2, it follows that

oo () +0(e)

Therefore,

p=x psx
I
= X
pex k=1 *P

=2 5 +ZZ

p<x p=<x k=2
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1 > 1
=logl +b1+0 by — —_
oglogx 1 (logx + 03 Z T

1
=loglogx+y + O (—) ,
log x
since by + by = y by Lemma 6.5, and so

1\
1_[ (1 — —) = ¢’ log x exp (0
p

p=x (
=e”logx(l+0( ))
logx

=¢"logx + O(1).

This is Mertens’s formula.
The following result will be used in Chapter 10 in the proof of Chen’s theorem.

Theorem 6.9 For any € > 0, there exists a number uy, = ui(¢) such that
1\ 1
I1 (1 ——) < (1+e) 8%
uSpez )/ logu
foranyu; <u < z.
Proof. Let y be Euler’s constant, and choose § > 0 such that

y+4
y —

<1l+e.

By Theorem 6.8, we have
1\ !
]_I (1 - —) ~ ylogx,
p<x p
and so there exists a number u; such that

-1
v - &logx < ] (1 - %) < (y +8)logx

p<x

for all x > u;. Therefore, if u; < u < z, we have

-1
[ (1-1)" - D)
- = —
usp<z p np<u (1 - %)
(y +6)logz
(v — 8 logu
1
< +e)—o—g—z—.
logu

This completes the proof.
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6.4 Brun’s method and twin primes

There is a structural similarity between the twin prime conjecture and the Goldbach
conjecture. The twin prime conjecture states that there exist infinitely many prime
numbers p such that p + 2 is also a prime number or, equivalently, there exist
infinitely many integers k such that k(k + 2) has exactly two prime factors. The
Goldbach conjecture states that every even integer n > 4 can be written as the sum
of two primes or, equivalently, there exists an integer k suchthat 1 < k <n — 1
and k(n — k) has exactly two prime factors. We begin the study of sieve methods
with a simple proof of the theorem that the twin primes are sparse in the sense that
the sum of the reciprocals of the twin primes converges. This contrasts with the
result (Theorem 6.7) that the sum of the reciprocals of all of the primes diverges
like loglog x.

Lemma 6.6 If{ > 1and0 <m < ¢, then

'"_ke__ml—l
;( 1)<k)—( 1)(m>.

Proof. This is by induction on m. It is easy to check that the equation is true for
m=0,1,2.1f 1 <m < £ and the equation holds for m — 1, then

() - S () +en ()
;( 1) (k)—g D)+ eo(

o (1))
o ()-(2)

-1
()
m
This completes the proof.
The following combinatorial inequality, a version of the principle of inclusion—
exclusion, is the simplest form of the Brun sieve.

Theorem 6.10 (The Brun sieve) Let X be a nonempty, finite set of N objects,
and let Py, ..., P, be r different properties that elements of the set X might have.
Let Ny denote the number of elements of X that have none of these properties.
For any subset I = (i1, ...,ix} of {1,2,...,7r}, let N(I) = N(iy, ..., iy) denote
the number of elements of X that have each of the properties P;, P,,, ..., P;,. Let
N(@) =|X| = N. If m is a nonnegative even integer, then

No <) (DX Y N(). (6.11)
k=0

1=k
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If m is a nonnegative odd integer, then

Ny > Z(—n" Z N(I). (6.12)
k=0

1=k

Proof. Inequalities (6.11) and (6.12) count the elements of X according to the
various properties that each element possesses. We shall calculate how much each
element of X contributes to the left and right sides of these inequalities.

Let x be an element of the set X, and suppose that x has exactly £ properties
P;. If £ = 0, then x is counted once in Ny and once in N (@), but is not counted
in N(I) if I is nonempty. If £ > 1, then x is not counted in Ny. By renumbering
the properties, we can assume that x has the properties P;, P,, ..., P,. Let I C
{1,2,...,¢,...,r}.Ifi € I for some i > £, then x is not counted in N(I). If
I1C{l1,2,...,¢},then x contributes 1 to N(I). Foreachk =0, 1, ..., ¢, there are
exactly (i) such subsets with |I| = k. If m > £, then the element x contributes

B ()

k=0

to the right sides of the inequalities. If m < £, then x contributes

i(—l)" (i)
k=0

to the right sides of inequalities (6.11) and (6.12). By Lemma 6.6, this contribution
is positive if £ is even and negative if £ is odd. This completes the proof.

Lemma 6.7 For x > 1 and for any congruence class a (mod m), the number
of positive integers not exceeding x that are congruent to a modulom is x/m + 6,
where |68] < 1.

Proof.If x/m = q € Z,thenthe set {1, ..., gm} contains exactly x/m elements
in every congruence class modulo m.

Suppose that x/m ¢ Z. Let [x] and {x} denote the integer and fractional parts
of x, respectively, and let [x] = gm +r, where 0 < r < m. Then

gm<x=qm+r+{x}<gm+(m-—-1)+0 < (g + m,

and so x
q<;<q+1. (6.13)

The positive integers up to x can be partitioned into g + 1 pairwise disjoint sets such
that g of these sets are complete systems of residues modulo /, and the remaining
set is a subset of a complete system of residues modulo m. It follows that there are
either g or g + 1 integers in the congruence classa (mod m). The lemma follows
from inequality (6.13).
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Lemma 6.8 Letx > 1,andlet p;, ..., pi, bedistinct odd primes. Let N(iy, . . .,
i) denote the number of positive integers n < x such that

nn+2)=0 (mod p; --- pi)- (6.14)

Then

2k x

NGy, ... i) = ———— +2%9,
pil ...pik

where |60] < 1.
Proof. If p is an odd prime and n(n +2) = 0 (mod p), then either
n=0 (mod p)

or
n=-2 (mod p).

Moreover, 0 % —2 (mod p) since p > 3. If the integer n satisfies the congru-
ence (6.14), then there exist unique integers uy, . .., u; € {0, —2}

n = u; (mod p;)
n = u; (mod py)
(6.15)
n = u; (mod pg).
By the Chinese remainder theorem, for each of the 2k choices of uy, .. ., ux there

exists a unique congruence class a (mod p; - - - px) such that # is a solution of
the system of congruences (6.15) if and only if

n=a (mod p1pz--- pi)-

By Lemma 6.7, this congruence has
o *r +6(a)
pip2- - Pk

solutions in positive integers not exceeding x, where |6(a)| < 1. Therefore,

2kx

NGy, ..., i) = ——— + 2%,
Pi. ...pik

where || < 1. This completes the proof.

Theorem 6.11 (Brun) Let my(x) denote the number of primes p not exceeding x
such that p + 2 is also prime. Then

x(log log x)?

ma(x) K (ogx)?
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Proof. Let 5 < y < x. Letr = mw(y) — 1 denote the number of odd primes
not exceeding y. We denote these primes by py, ..., p,. Let m3(y, x) denote the
number of primes p suchthaty < p < x and p +2is also prime.If y < n < x
and both n and n + 2 are prime numbers, thenn > p; fori =1,...,r, and

nn+2)#%0 (mod p;)

for all i. Let No(y, x) denote the number of positive integers n < x such that
n(n+2)%0 (mod p;)

foralli=1,...,r. Then

ma(x) <y +ma(y, x) <y + No(y, x).
We shall use the Brun sieve to find an upper bound for Ny(y, x).

Let X be the set of positive integers not exceeding x. For each odd prime
pi <y, welet P; be the property that n(n +2) is divisible by p;. For any subset I =
{i1, ..., iz} contained in {1, ..., r}, we let N(I) be the number of integers n € X
such that n(n + 2) is divisible by each of the primes p;,, ..., p;, or, equivalently,
such that n(n + 2) is divisible by p;, - - - p;,. By Lemma 6.8, we have

2kx

N(I)= NGy, ..., i) = ——— +2'6.

i C .p’k

Let m be an even integer such that 1 < m < r. By inequality (6.11), we have

No(y, x) < i(—l)" Y N

k=0 |1]=k

Y EI Y (ix— + 0(2"))
k-o pl] v e .

(il,...,ik}g{l,...,r) T
m k m
(=2) kfT k
<x e —1 02
e D e SUl v Licy
iryemirll,...r) Pl © k=0
r Ak
<x (=2)
=0 (ir,oir)fl, .o} Pir " Pix

=Y ¥ —(”—Z)k——+0<§m:(;)2k).

k=mt1 {iy,eoie) {1,y P77 Pk k=0

We shall estimate these three terms separately. By Theorem 6.8,

£ xSy

I

=0 {irsmic]C{l ) Pt """ Pt 2<p<y p
1\2
< X H (1 — —)
2<p=<y p
X
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Let s¢(xy,...,x,) be the elementary symmetric polynomial of degree k in r
variables. For any nonnegative real numbers xi, ..., x, we have

Sk(xn, ey X)) = D xex,

- k!
B (510x1, s 2
B k!
e\k
< (;) s1(x1, s X )
since (k/e)* < k!. Therefore,
- (-2)
x ———————
k=t {iysislC(l, ) Pt 77 Pik
r 2k
<x —
k=1 {iy,omig]il,r} Pit " P

r 2 2
=y (2)-(2
k=m#1 {iy, i}l or} NPl Piy

4 2 2
=xzj&(_““,_)
k=m+1 1 pr

I renk (2 2\*
=2 @ Gres)

where c is an absolute positive constant. If we choose the even integer m so that
m > 2cloglogy,
then

'\ [cloglogy\* 1 x
3 () = X g

k=m+1
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Since r is the number of odd primes less than or equal to y, it follows that 2r < y,

and we get the following estimate for the third term:
m r m
kZO: (k) 2 < ;(m)" L Q"< y™

Combining these three estimates, we obtain

_* iy T sy
(ogy)? = 27 Qogy? " 2n "V

where the implied constant is absolute, y is any real number satisfying

y' K

712()(.') Ly+

5sy<ux,
and m is any even integer such that
m > 2cloglogy.
Let ¢’ = max{2c, (log2)~'}, and let
logx i
= _— = x 3 loglogx
y=exp <3c’ loglogx) xe

and
m =2[c'loglog x].

(6.16)

(6.17)

(6.18)

The number y satisfies conditions (6.17) and (6.18) for x sufficiently large. We

estimate the three terms in (6.16) with these values of y and m. Since

log y = logx ’
3¢’ loglog x
we obtain the main term
x x(log log x)?
(logy)? (log x)?

Next, since ¢’ > (log2)~! and
m =2[c’ loglogx] > 2¢' loglogx — 2,

we obtain
X 4x 4x 4x

X < = < .
om 226/ loglog x (logx)Zc' log2 — (log x)2

Finally,

m

Yy < y2c' loglogx _ ex (20’ log IOgX Ing) - X2/3.

3c’loglog x
Combining these three estimates, we obtain

x(loglog x)?

m(x) K (ogx)?

This completes the proof.
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Theorem 6.12 (Brun) Let py, pa, ... be the sequence of prime numbers p such
that p + 2 is also prime. Then

> (5 5rvs)
dol=+
DPn Dn+2

n=1

1 1 11 1 1 11
slc+=)+|{z+z)+|=+=]+|—=+—=])+
(3 5) (5 7) (11 13) (17 19)

< Q0.

Proof. Theorem 6.11 implies that

X
ma(x) K W

for all x > 2. Therefore,

Pn < Dn
(log pn)*/? ~ (logn)*2

n=m(pn) K

forn > 2, and so
1 1

— K —.
P n(logn)*?
It follows that the series

Z.__

n=l Pn

> 1

X1 1
Z; PR R Dl

n=2

wlr—‘

converges. This completes the proof.

6.5 Notes

Dickson [22, vol. 1, pp. 421-424] contains a brief account of early results con-
cerning the Goldbach conjecture. Sinisalo [117] has verified the Goldbach con-
jecture by computer for all even integers up to 4 - 10'!. Wang’s book Goldbach
Conjecture [137] is an anthology of classic papers on this subject.

Brun [7] obtained the first significant result concerning the Goldbach conjecture
in 1920. By means of the combinatorial method known today as the Brun sieve, he
proved that every sufficiently large even integer can be written as the sum of two
integers, each of which is the product of at most nine primes. Brun also obtained
the first nontrivial results concerning the twin prime conjecture. In addition to
Theorem 6.11 and Theorem 6.12, he also proved that there are infinitely many
integers n such that both n and n + 2 are the products of at most 9 primes. The
application of the Brun sieve to the twin prime conjecture follows Landau [78].

By Theorem 6.12, the sum over the reciprocals of the twin primes converges.
The sum of this infinite series is called Brun’s constant; its value is estimated to be
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1.9021604 + 5 x 1077 (see Shanks-Wrench [112] and Brent [5]). It is a difficult
computational problem to determine Brun’s constant to high precision. In the
process of trying to improve the estimates for Brun’s constant, Nicely discovered
a defect in Intel’s Pentium computer chip (see [15]).

A popular game among computational number theorists is to find explicit ex-
amples of twin primes. On October 18, 1995, Harvey Dubner announced over the
Internet that p and p + 2 are prime numbers for

p=570,918,348 - 10 —1=22.3%.7.11-13.5281-10°'%° — 1,

The prime p has 5129 digits. This established a new record for the largest twin
prime.

For other elementary results about the distribution of prime numbers, see Ellison
and Ellison [29], Hardy and Wright [51], Ingham [66], and Tenenbaum [121].
Rosen [104] has generalized Mertens’s Theorem 6.8 to algebraic number fields.

6.6 Exercises

1. Let n be a positive integer. Prove that

logn =Y " A(d)

din
and
A(n) = — Z w(d)logd.

d|n

2. Let w(n) denote the number of distinct prime divisors of n. Let n > 2 and

r > 0. Prove that
Y wd=0s< ) u@.

din din
w(d)<2r+1 o(d)<2r

3. With the notation of Theorem 6.10, prove that
t
No =Y (-1} )" N(I).
k=0 7]=k
This formula is often called the inclusion—exclusion principle.
4. Use the inclusion—exclusion principle to prove that
1 u(d)
= 1——)= =
o =n](1-)-n 32
pln dln

where ¢(n) is the Euler g-function.
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. Let ®(x, y) denote the number of positive integers n < x that are not
divisible by any prime p < y. Prove that

1 x
o(x, y) =X 1_[ (1 —_ ;> +2n()’). < @ +2ﬂ(y).

pP=y

. Prove that

I1 (1—1) <«
r<p<x pP (Ing)r ’

Z (log z-)k =k!x + O ((logx)").

n<x

oo (o(et)) o)

. Prove that

. Prove that
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The Shnirel’man—Goldbach theorem

Das allgemeine Problem der additiven Zahlentheorie ist die Darstell-
barkeit aller natiirlichen Zahlen durch eine beschriankte Anzahl von
Summanden einer gegebenen Folge von natiirlichen Zahlen, z. B. der
Primzahlfolge oder der Folge der p-ten Potenzen.!

L. G. Shnirel’man [114]

7.1 The Goldbach conjecture

In a letter to Euler in 1742, Goldbach conjectured that every positive even integer
n > 2 is the sum of two primes. Euler replied that he believed the conjecture
but could not prove it. It is still unproven, but it has been confirmed by computer
calculations for even integers up to 4 - 101,

In 1930, Shnire]’man proved that every integer greater than one is the sum of
a bounded number of primes. This is a great theorem, the first significant result
on the Goldbach conjecture. Shnirel’man used purely combinatorial methods: the
Brun sieve and a theorem about the density of the sum of two sets of integers.
We shall prove Shnirel’man’s theorem in this chapter. Instead of the Brun sieve,
however, we shall use a sieve method due to Selberg, which is also<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>