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Preface

Elementary number theory is concerned with the arithmetic properties of
the ring of integers, Z, and its field of fractions, the rational numbers, Q.
Early on in the development of the subject it was noticed that Z has many
properties in common with A = F[T7], the ring of polynomials over a finite
field. Both rings are principal ideal domains, both have the property that
the residue class ring of any non-zero ideal is finite, both rings have infinitely
many prime elements, and both rings have finitely many units. Thus, one
is led to suspect that many results which hold for Z have analogues of
the ring A. This is indeed the case. The first four chapters of this book
are devoted to illustrating this by presenting, for example, analogues of
the little theorems of Fermat and Euler, Wilson’s theorem, quadratic (and
higher) reciprocity, the prime number theorem, and Dirichlet’s theorem on
primes in an arithmetic progression. All these results have been known for
a long time, but it is hard to locate any exposition of them outside of the
original papers.

Algebraic number theory arises from elementary number theory by con-
sidering finite algebraic extensions K of Q, which are called algebraic num-
ber fields, and investigating properties of the ring of algebraic integers
Ok C K, defined as the integral closure of Z in K. Similarly, we can con-
sider k = IF(T'), the quotient field of A and finite algebraic extensions L of
k. Fields of this type are called algebraic function fields. More precisely, an
algebraic function fields with a finite constant field is called a global func-
tion field. A global function field is the true analogue of algebraic number
fleld and much of this book will be concerned with investigating proper-
ties of global function fields. In Chapters 5 and 6, we will discuss function
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fields over arbitrary constant fields and review (sometimes in detail) the
basic theory up to and including the fundamental theorem of Riemann-
Roch and its corollaries. This will serve as the basis for many of the later
developments.

It is important to point out that the theory of algebraic function fields
is but another guise for the theory of algebraic curves. The point of view
of this book will be very arithmetic. At every turn the emphasis will be
on the analogy of algebaic function fields with algebraic number fields.
Curves will be mentioned only in passing. However, the algebraic-geometric
point of view is very powerful and we will freely borrow theorems about
algebraic curves (and their Jacobian varieties) which, up to now, have no
purely arithmetic proof. In some cases we will not give the proof, but will
be content to state the result accurately and to draw from it the needed
arithmetic consequences.

This book is aimed primarily at graduate students who have had a good
introductory course in abstract algebra covering, in addition to Galois the-
ory, commutative algebra as presented, for example, in the classic text of
Atiyah and MacDonald. In the interest of presenting some advanced re-
sults in a relatively elementary text, we do not aspire to prove everything.
However, we do prove most of the results that we present and hope to in-
spire the reader to search out the proofs of those important results whose
proof we omit. In addition to graduate students, we hope that this material
will be of interest to many others who know some algebraic number the-
ory and/or algebraic geometry and are curious about what number theory
in function field is all about. Although the presentation is not primarily
directed toward people with an interest in algebraic coding theory, much
of what is discussed can serve as useful background for those wishing to
pursue the arithmetic side of this topic.

Now for a brief tour through the later chapters of the book.

Chapter 7 covers the background leading up to the statement and proof
of the Riemann-Hurwitz theorem. As an application we discuss and prove
the analogue of the ABC conjecture in the function field context. This
important result has many consequences and we present a few applications
to diophantine problems over function fields.

Chapter 8 gives the theory of constant field extensions, mostly under the
assumption that the constant field is perfect. This is basic material which
will be put to use repeatedly in later chapters.

Chapter 9 is primarily devoted to the theory of finite Galois extensions
and the theory of Artin and Hecke L-functions. Two versions of the very
important T'chebatorov density theorem are presented: one using Dirichlet
density and the other using natural density. Toward the end of the chapter
there is a sketch of global class field theory which enables one, in the abelian
case, to identify Artin L-series with Hecke L-series.

Chapter 10 is devoted to the proof of a theorem of Bilharz (a studentof
Hasse) which is the function field version of Artin’s famous conjecture on
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primitive roots. This material, interesting in itself, illustrates the use of
many of the results developed in the preceding chapters.

Chapter 11 discusses the behavior of the class group under constant field
extensions. It is this circle of ideas which led Iwasawa, to develop “Iwasawa
theory,” one of the most powerful tools of modern number theory.

Chapters 12 and 13 provide an introduction to the theory of Drinfeld
modules. Chapter 12 presents the theory of the Carlitz module, which was
developed by L. Carlitz in the 1930s. Drinfeld’s papers, published in the
1970s, contain a vast generalization of Carlitz’s work. Drinfeld’s work was
directed toward a proof of the Langlands’ conjectures in function fields.
Another consequence of the theory, worked out separately by Drinfeld and
Hayes, is an explicit class field theory for global function fields. These chap-
ters present the basic definitions and concepts, as well as the beginnings of
the general theory.

Chapter 14 presents preliminary material on S-units, S-class groups, and
the corresponding L-functions. This leads up to the statement and proof of
a special case of the Brumer-Stark conjecture in the function field context.
This is the content of Chapter 15. The Brumer-Stark conjecture in function
fields is now known in full generality. There are two proofs — one due to
Tate and Deligne, another due to Hayes. It is the author’s hope that anyone
who has read Chapters 14 and 15 will be inspired to go on to master one
or both of the proofs of the general result.

Chapter 16 presents function field analogues of the famous class number
formulas of Kummer for cyclotomic number fields together with variations
on this theme. Once again, most of this material has been generalized
considerably and the material in this chapter, which has its own interest,
can also serve as the background for further study.

Finally, in Chapter 17 we discuss average value theorems in global fields.
The material presented here generalizes work of Carlitz over the ring A =
F[T]. A novel feature is a function field analogue of the Wiener-Ikehara
Tauberian theorem. The beginning of the chapter discusses average values
of elementary number-theoretic functions. The last part of the chapter deals
with average values for class numbers of hyperelliptic function fields.

In the effort to keep this book reasonably short, many topics which could
have been included were left out. For example, chapters had been contem-
plated on automorphisms and the inverse Galois problem, the number of
rational points with applications to algebraic coding theory, and the theory
of character sums. Thought had been given to a more extensive discussion
of Drinfeld modules and the subject of explicit class field theory in global
fields. Also omitted is any discussion of the fascinating subject of transcen-
dental numbers in the function field context (for an excellent survey see J.
Yu [1]). Clearly, number theory in function fields is a vast subject. It is of
interest for its own sake and because it has so often served as a stimulous to
research in algebraic number theory and arithmetic geometry. We hope this
book will arouse in the reader a desire to learn more and explore further.
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1

Polynomials over Finite Fields

In all that follows [F will denote a finite field with ¢ elements. The model for
such a field is Z/pZ, where p is a prime number. This field has p elements.
In general the number of elements in a finite field is a power of a prime,
q = p’. Of course, p is the characteristic of IF.

Let A = F[T], the polynomial ring over F. A has many properties in
common with the ring of integers Z. Both are principal ideal domains, both
have a finite unit group, and both have the property that every residue class
ring modulo a non-zero ideal has finitely many elements. We will verify all
this shortly. The result is that many of the number theoretic questions we
ask about Z have their analogues for A. We will explore these in some
detail.

Every element in A has the form f(T) = agT™ + T + -+ + .
If ap # 0 we say that f has degree n, notationally deg(f) = n. In this
case we set sgn(f) = ag and call this element of F* the sign of f. Note
the following very important properties of these functions. If f and g are
non-zero polynomials we have

deg(fg) = deg(f) + deg(g) and sgn(fg) = sgn(f)sgn(g).

deg(f + g) < max(deg(f), deg(g)).

In the second line, equality holds if deg(f) # deg(g).

If sgn(f) = 1 we say that f is a monic polynomial. Monic polynomials
play the role of positive integers. It is sometimes useful to define the sign of
the zero polynomial to be 0 and its degree to be —co. The above properties
of degree then remain true without restriction.
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Proposition 1.1. Let f,g € A with g # 0. Then there exist elements
q,7 € A such that f = qg + 7 and 7 is either 0 or deg(r) < deg(g).
Moreover, q and 7 are uniquely determined by these conditions.

Proof. Let n = deg(f), m = deg(g), a = sgn(f), B = sgn(g). We give
the proof by induction on n = deg(f). If n < m, set ¢ =0 and r = f. If
n > m, we note that f; = f — o8~ T" ™g has smaller degree than f. By
induction, there exist q1,71 € A such that f; = q1g+r; with r; being either
0 or with degree less than deg(g). In this case, set ¢ = a3~ 1T""™ 4 ¢q; and
r = r1 and we are done.

If f =qg+7r = ¢'g+7r', then g divides r—7’ and by degree considerations
we see 7 = 71’. In this case, qg = q'g so ¢ = ¢’ and the uniqueness is
established.

This proposition shows that A is a Euclidean domain and thus a principal
ideal domain and a unique factorization domain. It also allows a quick proof
of the finiteness of the residue class rings.

Proposition 1.2. Suppose g € A and g # 0. Then A/gA is a finite ring
with q4°8(9) elements.

Proof. Let m = deg(g). By Proposition 1.1 one easily verifies that {r €
A | deg(r) < m } is a complete set of representatives for A/gA. Such
elements look like

r=ogT™ '+ a;T" %2+ - +am_; with o; € F.

Since the a; vary independently through F there are ¢™ such polynomials
and the result follows.

Definition. Let g € A. If g # 0, set |g| = ¢4°&(9). If g = 0, set |g| = 0.

|g| is a measure of the size of g. Note that if n is an ordinary integer, then
its usual absolute value, |n|, is the number of elements in Z/nZ. Similarly,
lg| is the number of elements in A/gA. It is immediate that |fg| = |f] |g]
and |f + g| < max(|f|,|g|) with equality holding if |f| # |g|-

It is a simple matter to determine the group of units in A, A*. If ¢
is a unit, then there is an f such that fg = 1. Thus, 0 = deg(l) =
deg(f) + deg(g) and so deg(f) = deg(g) = 0. The only units are the non-
zero constants and each such constant is a unit.

Proposition 1.3. The group of units in A is F*. In particular, it is a finite
cyclic group with q — 1 elements.

Proof. The only thing left to prove is the cyclicity of F*. This follows from
the very general fact that a finite subgroup of the multiplicative group of
a field is cyclic.

In what follows we will see that the number g — 1 often occurs where the
number 2 occurs in ordinary number theory. This stems from the fact that
the order of Z* is 2.
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By definition, a non-constant polynomial f € A is irreducible if it cannot
be written as a product of two polynomials, each of positive degree. Since
every ideal in A is principal, we see that a polynomial is irreducible if and
only if it is prime (for the definitions of divisibility, prime, irreducible, etc.,
see Ireland and Rosen [1]). These words will be used interchangeably. Every
non-zero polynomial can be written uniquely as a non-zero constant times
a monic polynomial. Thus, every ideal in A has a unique monic generator.
This should be compared with the statement that evey non-zero ideal in Z
has a unique positive generator. Finally, the unique factorization property
in A can be sharpened to the following statement. Every f € A, f # 0, can
be written uniquely in the form

f=aPa P .. P

where o € * , each P, is a monic irreducible, P; # P; for i # j, and each
e; is a non-negative integer.

The letter P will often be used for a monic irreducible polynomial in A.
We use P instead of p since the latter letter is reserved for the characteristic
of IF. This is a bit awkward, but it is compensated for by being less likely
to lead to confusion.

The next order of business will be to investigate the structure of the
rings A/fA and the unit groups (A/fA)*. A valuable tool is the Chinese
Remainder Theorem.

Proposition 1.4. Let mi,mg,..., m; be elements of A which are pairwise

relatively prime. Let m = mimsy...m; and ¢; be the natural homomor-
phism from A/mA to A/m;A. Then, the map ¢ : A/mA — A/m1A @
A/moA® - ® A/mA given by

¢(a) = (¢1 (a)a ¢2(a)7 reey ¢t(a))

1S @ ring isomorphism.

Proof. This is a standard result which holds in any principal ideal domain
(properly formulated it holds in much greater generality).

Corollary. The same map ¢ restricted to the units of A, A*, gives rise to
a group isomorphism

(A/mA)* = (A/m1A)* x (A/maA)* x - x (A/meA)*.

Proof. This is a standard exercise. See Ireland and Rosen [1], Proposition
3.4.1.

Now, let f € A be non-zero and not a unit and suppose that f =
aP{' Py? .. Pf* is its prime decomposition. From the above considerations
we have

(A/fA)* ~ (A/PSA)* x (AJPZAY* x - x (A/ P2 A)*.
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This isomorphism reduces our task to that of determining the structure
of the groups (A/P¢A)* where P is an irreducible polynomial and e is a
positive integer. When e = 1 the situation is very similar to that is Z.

Proposition 1.5. Let P € A be an irreducible polynomial. Then, (A/PA)*
is a cyclic group with |P| — 1 elements.

Proof. Since A is a principal ideal domain, PA is a maximal ideal and so
A/PA is a field. A finite subgroup of the multiplicative group of a field is
cyclic. Thus (A/PA)* is cyclic. That the order of this group is |P| —1 is
immediate.

We now consider the situation when e > 1. Here we encounter something
which is quite different in A from the situation in Z. If p is an odd prime
number in Z then it is a standard result that (Z/p°Z)* is cyclic for all
positive integers e. If p = 2 and e > 3 then (Z/2°Z)* is the direct product
of a cyclic group of order 2 and a cyclic group of order 2¢~2. The situation
is very different in A.

Proposition 1.6. Let P € A be an irreducible polynomial and e a positive
integer. The order of (A/P¢A)* is |P|*~Y(|P| — 1). Let (A/P¢A)M) be the
kernel of the natural map from (A/P¢A)* to (A/PA)*. It is a p-group of
order |P|¢~1. As e tends to infinity, the minimal number of generators of
(A/PcA)Y tends to infinity.

Proof. The ring A/P¢A has only one maximal ideal PA/P®A which has
|P|¢~! elements. Thus, (A/P°A)* = A/P°*A—~PA/P¢Ahas |P|°—|P|*~! =
[P|¢=1(|P| — 1) number of elements. Since (4/P¢A)* - (A/PA)* is onto,
and the latter group has |P| — 1 elements the assertion about the size of
(A/P¢A)D follows. It remains to prove the assertion about the minimal
number of generators.

It is instructive to first consider the case e = 2. Every element in
(A/P24)Y) can be represented by a polynomial of the form a = 1 + bP.
Since we are working in characteristic p we have a? = 1+ 0PPP = 1
(mod P?). So, we have a group of order |P| with exponent p. If ¢ = p/ it
follows that (A/P?A)™*) is a direct sum of fdeg(P) number of copies of
Z/pZ. This is a cyclic group only under the very restrictive conditions that
g = p and deg(P) = 1.

To deal with the general case, suppose that s is the smallest integer such
that p* > e. Since (1 +bP)?" = 14 (bP)?" = 1 (mod P¢) we have that
raising to the p*-power annihilates G = (4/P°A)). Let d be the minimal
number of generators of this group. It follows that there is an onto map
from (Z/p°Z)¢ onto G. Thus, p?* > pfdee(P)(e=1) and so

4> Jdes(P)e-1)

Since s is the smallest integer bigger than or equal to log,(e) it is clear that
d — 00 as e — 00.
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It is possible to do a much closer analysis of the structure of these groups,
but it is not necessary to do so now. The fact that these groups get very
complicated does cause problems in the more advanced parts of the theory.

We have developed more than enough material to enable us to give in-
teresting analogues of the Euler ¢-function and the little theorems of Euler
and Fermat.

To begin with, let f € A be a non-zero polynomial. Define ®(f) to
be the number of elements in the group (A/fA)*. We can give another
characterization of this number which makes the relation to the Euler ¢-
function even more evident. We have seen that {r € A | deg(r) < deg(f)}
is a set of representatives for A/fA. Such an r represents a unit in A/fA if
and only if it is relatively prime to f. Thus ®(f) is the number of non-zero
polynomials of degree less than deg(f) and relatively prime to f.

Proposition 1.7.
1
o(f) = IfI[Ja - |—P_|)'
P|f
Proof. Let f = aP{*P;? ... P{* be the prime decomposition of f. By the
corollary to Propositions 1.4 and by Proposition 1.6, we see that

t

o(f) =T e =[[0RI - 1P

i=1 i=1

el—l)
¥

from which the result follows immediately.

The similarity of the formula in this proposition to the classical formula
for ¢(n) is striking.

Proposition 1.8. If f € A, f # 0, and a € A is relatively prime to [, i.e.,
(a,f) =1, then
a®¥) =1 (mod f).

Proof. The group (A4/fA)* has ®(f) elements. The coset of @ modulo f, &,
lies in this group. Thus, @) =1 and this is equivalent to the congruence
in the proposition.

Corollary. Let P € A be irreducible and a € A be a polynomial not divisible
by P. Then,
"t =1 (mod P).

Proof. Since P is irreducible, it is relatively prime to a if and only if it
does not divide a. The corollary follows from the proposition and the fact
that for an irreducible P, ®(P) = |P| — 1 (Proposition 1.5).

It is clear that Proposition 1.8 and its corollary are direct analogues of
Euler’s little theorem and Fermat’s little theorem. They play the same very
important role in this context as they do in elementary number theory. By
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way of illustration we proceed to the analogue of Wilson’s theorem. Recall
that this states that (p — 1)! = —1 (mod p) where p is a prime number.

Proposition 1.9. Let P € A be irreducible of degree d. Suppose X is an
indeterminate. Then,

xPt_1= J[ (X-f) (modP).

0<deg(f)<d

Proof. Recall that {f € A | deg(f) < d} is a set of representatives for the
cosets of A/PA. If we throw out f = 0 we get a set of representatives for
(A/PA)*. We find

xPr-i= T x-5,

0<deg(f)<d

where the bars denote cosets modulo P. This follows from the corollary to
Proposition 1.8 since both sides of the equation are monic polynomials in
X with the same set of roots in the field A/PA. Since there are |P| — 1
roots and the difference of the two sides has degree less than |P| — 1, the
difference of the two sides must be 0. The congruence in the Proposition is
equivalent to this assertion.

Corollary 1. Let d divide |P| — 1. The congruence X¢ = 1 (mod P)
has ezactly d solutions. Equivalently, the equation X¢ = 1 has exactly d
solutions in (A/PA)*.

Proof. We prove the second assertion. Since d | |P| — 1 it follows that
X4 —1 divides X!PI=1 — 1. By the proposition, the latter polynomial splits
as a product of distinct linear factors. Thus so does the former polynomial.
This establishes the result.

Corollary 2. With the same notation,

H f=-1 (mod P).

0<deg(f)<deg P

Proof. Just set X = 0 in the proposition. If the characteristic of IF is odd
|P| — 1 is even and the result follows. If the characteristic is 2 then the
result also follows since in characteristic 2 we have —1 = 1.

The above corollary is the polynomial version of Wilson’s theorem. It’s
interesting to note that the left-hand side of the congruence only depends
on the degree of P and not on P itself.

As a final topic in this chapter we give some of the theory of d-th power
residues. This will be of importance in Chapter 3 when we discuss quadratic
reciprocity and more general reciprocity laws for A.
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If f € Ais of positive degree and a € A is relatively prime to f, we say
that a is a d-th power residue modulo f if the equation z¢ = a (mod f) is
solvable in A. Equivalently, a is a d-th power in (A4/fA)*.

Suppose f = aP{*P;*... P{* is the prime decomposition of f. Then it
is easy to check that a is a d-th power residue modulo f if and only if a
is a d-th power residue modulo P;* for all i between 1 and ¢. This reduces
the problem to the case where the modulus is a prime power.

Proposition 1.10. Let P be irreducible and a € A not divisible by P.
Assume d divides |P| — 1. The congruence X¢ = a (mod P*®) is solvable if
and only if

o™ =1 (mod P).

There are q’—(dI—DD d-th power residues modulo P¢.

Proof. Assume to begin with that e = 1.

If b = a (mod P), then a“7 = b/PI=1 = 1 (mod P) by the corollary
to Proposition 1.8. This shows the condition is necessary. To show it is
sufficient recall that by Corollary 1 to Proposition 1.9 all the d-th roots of
unity are in the field A/PA. Consider the homomorphism from (A/PA)*
to itself given by raising to the d-th power. It’s kernel has order d and its

image is the d-th powers. Thus, there are precisely Jﬂd_—l d-th powers in

(A/PA)*. We have seen that they all satisfy XFE —1=0. Thus, they
are precisely the roots of this equation. This proves all assertions in the
case e = 1.

To deal with the remaining cases, we employ a little group theory. The
natural map (i.e., reduction modulo P) is a homomorphism from (4/P¢A)*
onto (A/PA)* and the kernel is a p-group as follows from Proposition
1.6. Since the order of (A/PA)* is |P| — 1 which is prime to p it follows
that (A/P°A)* is the direct product of a p-group and a copy of (A/PA)*.
Since (d,p) = 1, raising to the d-th power in an abelian p-group is an
automorphism. Thus, ¢ € A is a d-th power modulo P° if and only if it
is a d-th power modulo P. The latter has been shown to hold if and only
if o 5 =1 (mod P). Now consider the homomorphism from (A/P®A)*
to itself given by raising to the d-th power. It easily follows from what has
been said that the kernel has d elements and the image is the subgroup of
d-th powers. It follows that the latter group has order q)—(dpﬂ. This concludes
the proof.

Exercises
1. If m € A = T[T}, and deg(m) > 0, show that ¢ — 1 | ®(m).

2. If ¢ = p is a prime number and P € A is an irreducible, show
(F[T]/P?A)* is cyclic if and only if deg P = 1.
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. Suppose m € A is monic and that m = myma is a factorization into

two monics which are relatively prime and of positive degree. Show
(A/mA)* is not cyclic except possibly in the case ¢ = 2 and m; and
my have relatively prime degrees.

. Assume g # 2. Determine all m for which (A/mA)* is cyclic (see the

proof of Proposition 1.6).

. Suppose d | ¢ — 1. Show 2% = —1 (mod P) is solvable if and only if

(—1)*T des P =1,

. Show [[,cp. @ = —1.

. Let P € A be a monic irreducible. Show

Il f=+1 (mod P),
deg f<d
f monic

where d = deg P. Determine the sign on the right-hand side of this
congruence.

. For an integer m > 1 define [m] = 79" — T. Show that [m] is the

product of all monic irreducible polynomials P(T') such that deg P(T")
divides m.

. Working in the polynomial ring Fluo,us,...,u,], define D(ug,us,

ooy up) = det ]ugJ[, where i,7 = 0,1,...,n. This is called the Moore
determinant. Show

n
D(uo,ul,...,un) = H H H(uz—i—ci_lui_l +'-'+Couo) .
i=0c¢,_1€F  co€F

Hint: Show each factor on the right divides the determinant and then
count degrees.

Define Fj = [[/Zg(T% —T9") = [[!Z3[j — i]7". Show that
D(L,T,T%....T") =[] E .
=0

Hint: Use the fact that D(1,T,72,...,T") can be viewed as a
Vandermonde determinant.

Show that F; is the product of all monic polynomials in A of degee
7.

Define L; = f=1(T‘1i —T) = [[?_,[i]. Use Exercise 8 to prove that
L; is the least common multiple of all monics of degree j.
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Show DOLT, T Ta-1
1,7,7=,..., 7 u
1 w+h)=Fg57 ey

deg f<d

Deduce from Exercise 13 that

d
- _1)d—3 Fo g
I w+pH=> (-1 Fngj—ju .

deg f<d 7=0

Show that the product of all the non-zero polynomials of degree less
than d is equal to (—1)¢F,/Lg .

Prove that

/ (Y . d : Ld 7
v J] <1 - ?) ‘Z(‘l)JFijj_j v

deg f<d =0

In the product the term corresponding to f = 0 is omitted.
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Primes, Arithmetic Functions,
and the Zeta Function

In this chapter we will discuss properties of primes and prime decomposition
in the ring A = F[T]. Much of this discussion will be facilitated by the use
of the zeta function associated to A. This zeta function is an analogue of
the classical zeta function which was first introduced by L. Euler and whose
study was immeasurably enriched by the contributions of B. Riemann. In
the case of polynomial rings the zeta function is a much simpler object and
its use rapidly leads to a sharp version of the prime number theorem for
polynomials without the need for any complicated analytic investigations.
Later we will see that this situation is a bit deceptive. When we investigate
arithmetic in more general function fields than F(T'), the corresponding
zeta function will turn out to be a much more subtle invariant.

Definition. The zeta function of A, denoted {4(s), is defined by the infinite

series 1
“o= 2

feA
f monic

There are exactly ¢ monic polynomials of degree d in A, so one has

o=t i e L
deg(f)<d T 1

and consequently
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for all complex numbers s with (s) > 1. In the classical case of the Rie-
mann zeta function, ¢(s) = > o7, n™%, it is easy to show the defining
series converges for (s) > 1, but it is more difficult to provide an analytic
continuation. Riemann showed that it can be analytically continued to a
meromorphic function on the whole complex plane with the only pole be-
ing a simple pole of residue 1 at s = 1. Moreover, if I'(s) is the classical
gamma function and £(s) = 7~ 2'($){(s), Riemann showed the functional
equation £(1 — s) = £€(s). What can be said about {4(s)?

By Equation 1 above, we see clearly that {4(s), which is initially defined
for R(s) > 1, can be continued to a meromorphic function on the whole
complex plane with a simple pole at s = 1. A simple computation shows
that the residue at s = 1 is Bﬁ' Now define £4(s) = ¢ *(1—q~%)"1Ca(s).
It is easy to check that £4(1—s) = £4(s) so that a functional equation holds
in this situation as well. As opposed to case of the classical zeta-function,
the proofs are very easy for (4(s). Later we will consider generalizations of
¢a(s) in the context of function fields over finite fields. Similar statements
will hold, but the proofs will be more difficult and will be based on the
Riemann-Roch theorem for algebraic curves.

Euler noted that the unique decomposition of integers into products of
primes leads to the following identity for the Riemann zeta-function:

p prime
p>0

This is valid for R(s) > 1. The exact same reasoning (which we won’t
repeat here) leads to the following identity:

1
Gs)= ] «a- W)_l- )
P irreducible
P monic

This is also valid for all R(s) > 1.

One can immediately put Equation 2 to use. Suppose there were only
finitely many irreducible polynomials in A. The right-hand side of the equa-
tion would then be defined at s = 1 and even have a non-zero value there.
On the other hand, the left hand side has a pole at s = 1. This shows there
are infinitely many irreducibles in A. One doesn’t need the zeta-function
to show this. Euclid’s proof that there are infinitely many prime integers
works equally well in polynomial rings. Suppose S is a finite set of irre-
ducibles. Multiply the elements of S together and add one. The result is
a polynomial of positive degree not divisible by any element of S. Thus,
S cannot contain all irreducible polynomials. It follows, once more, that
there are infinitely many irreducibles.

Let x be a real number and 7(x) be the number of positive prime numbers
less than or equal to x. The classical prime number theorem states that
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7(z) is asymptotic to z/log(z). Let d be a positive integer and z = q¢. We
will show that the number of monic irreducibles P such that |P| = z is
asymptotic to z/log,(z) which is clearly in the spirit of the classical result.

Define a4 to be the number of monic irreducibles of degree d. Then, from
Equation 2 we find

Cals) = [J (1 =g %)
d=1

If we recall that {4(s) = 1/(1 — ¢'~*) and substitute u = ¢~° (note that
lu| < 1if and only if R(s) > 1) we obtain the identity

1 ad g
= (1—'11,) ad.
1—qu it

Taking the logarithmic derivative of both sides and multiplying the result
by w yields

Finally, expand both sides into power series using the geometric series and
compare coefficients of u”. The result is the beautiful formula,

Zdad =q".

din

Proposition 2.1.

This formula is often attributed to Richard Dedekind. It is interesting to
note that it appears, with essentially the above proof, in a manuscript of
C.F. Gauss (unpublished in his lifetime), “Die Lehre von den Resten.” See
Gauss [1], pages 608-611.

Corollary

an == 3 uld)a? (3)

dln

Proof. This formula follows by applying the Mdbius inversion formula to
the formula given in the proposition.

The formula in the above proposition can also be proven by means of
the algebraic theory of finite fields. In fact, most books on abstract alge-
bra contain the formula and the purely algebraic proof. The zeta-function
approach has the advantage that the same method can be used to prove
many other things as we shall see in this and later chapters.

The next task is to write a,, in a way which makes it easy to see how big
it is. In Equation 3 the highest power of ¢ that occurs is ¢ and the next
highest power that may occur is g% (this occurs if and only if 2|n. All the
other terms have the form +¢™ where m < %. The total number of terms is
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2djn [1(d)], which is easily seen to be 2t, where ¢ is the number of distinct
prime divisors of n. Let pi,pa,...,p: be the distinct primes dividing n.
Then, 2 < pips...p; < n. Thus, we have the following estimate:

n
n 7

q
Op — —
n

-
n

w3

< +q3.

Using the standard big O notation, we have proved the following theorem.

Theorem 2.2. (The prime number theorem for polynomials) Let a,, denote
the number of monic irreducible polynomials in A = F[T] of degree n. Then,

an:—q———i—O(ﬂ).
n n

Note that if we set £ = ¢™ the right-hand side of this equation is
z/log,(z) + O(v/z/log,(x)) which looks like the conjectured precise form
of the classical prime number theorem. This is still not proven. It depends
on the truth of the Riemann hypothesis (which will be discussed later).

We now show how to use the zeta function for other counting problems.
What is the number of square-free monics of degree n? Let this number be
b,. Consider the product

[T+ ) - lfl )

As usual, the product is over all monic irreducibles P and the sum is over
all monics f. We will maintain this convention unless otherwise stated.
The function 6(f) is 1 when f is square-free, and O otherwise. This is
an easy consequence of unique factorization in A and the definition of
square-free. Making the substitution u = ¢~* once again, the right-hand
side of Equation 4 becomes Y -  b,u". Consider the identity 1 + w =
(1 —w?)/(1 — w). If we substitute w = |P|~° and then take the product
over all monic irreducibles P, we see that the left-hand side of Equation 4
is equal to C4(s)/¢a(28) = (1 — ¢*=2%)/(1 — ¢*~*). Putting everything in
terms of u leads to the identity

1 —qu anu

Finally, expand the left-hand side in a geometric series and compare the
coeficients of u™ on both sides. We have proven—

Proposition 2.3. Let b, be the number of square-free monics in A of
degree n. Then by = q and forn > 1, b, = ¢™(1 — ¢71).

It is amusing to compare this result with what is known to be true in
Z. If B, is the number of positive square-free integers less than or equal
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to n, then lim, oo By /n = 6/72. In less precise language, the probability
that a positive integer is square-free is 6/72. The probablity that a monic
polynomial of degree n is square-free is b,/¢", and this equals (1 — ¢™1)
for n > 1. Thus the probabilty that a monic polynomial in A is square-
free is (1 — ¢~ 1). Now, 6/72 = 1/¢(2), so it is interesting to note that
(1 —q71) = 1/¢4(2). This is, of course, no accident and one can give good
heuristic reasons why this should occur. The interested reader may want
to find these reasons and to investigate the probablity that a polynomial
be cube-free, fourth-power-free, etc.

Our next goal is to introduce analogues of some well-known number-
theoretic functions and to discuss their properties. We have already in-
troduced ®(f). Let u(f) be 0 if f is not square-free, and (—1)* if f is a
constant times a product of ¢ distinct monic irreducibles. This is the poly-
nomial version of the Mébius function. Let d(f) be the number of monic
divisors of f and o(f) = 3_ ¢ [g] where the sum is over all monic divisors
of f.

These functions, like their classical counterparts, have the property of
being multiplicative. More precisely, a complex valued function A on A—{0}
is called multiplicative if A(fg) = A(f)A(g) whenever f and ¢ are relatively
prime. We assume A is 1 on F*. Let

f=oaP{'P*. . P
be the prime decomposition of f. If A is multiplicative,
M) = MPIIMP?) - AP,

Thus, a multiplicative function is completely determined by its values on
prime powers. Using multiplicativity, one can derive the following formulas
for these functions.

Proposition 2.4. Let the prime decomposition of [ be given as above.
Then,

o(f) = [A[Ja-1P™,

Plf
aif) = (el+-1}-)1(62+1)”.(it1+1). "
Plentl — 1 | Pyleetl 1 Plesrt 1
= BT RET LRy
[P —1 [Pl — 1 [Pl -1

Proof. The formula for ®(n) has already been given in Proposition 1.7.
If P is a monic irreducible, the only monic divisors of P¢ are 1, P,
P2,...,P¢ so d(P¢) =e+1 and the second formula follows.
By the above paragraph, o(P®) = 1 + |P| + |P]?2 + ...|P]® =
(IP|e*t — 1/(]P| — 1), and the formula for o(f) also follows.

As a final topic in this chapter we shall introduce the notion of the
average values in the context of polynomials. Suppose h(z) is a complex-
valued function on N, the set of positive integers. Suppose the following
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limit exists
1 n
im — h(n) = a.
nh_{n nkg_l (n)=a

We then define a to be the average value of the function h. For example,
suppose h(n) = 1 if n is square-free and 0 otherwise. Then, as noted above,
the average value of h is known to be 6/72. The sum Y_;_, h(k) sometimes
grows too fast for the average value to exist. Often though, one can show
the growth is dominated by a simple function of n. An example of this is
the Euler ¢-function. One can show

> (k) = —n? +O(nlog(n)).

k=1

For this and other results of a similar nature, see Chapter VIII of the classic
book by G.H. Hardy and E.M. Wright, Hardy and Wright [1]. Another good
reference for this material is Chapter 3 of Apostol [1].

In the ring A the analogue of the positive integers is the set of monic
polynomials. Let h(z) be a function on the set of monic polynomials. For
n > 0 we define )

Aven(h) = — > ().

f monic

deg(f)=n
This is clearly the average value of h on the set of monic polynomials of
degree n. We define the average value of h to be lim,,_,o, Ave,(h) provided
this limit exists. This is the natural way in which average values arise in
the context of polynomials. It is an exercise to show that if the average
value exists in the sense just given, then it is also equal to the following
limit:

. 1

f monic
deg(f)<n
As we pointed out above, this limit does not always exist. However, even
when it doesn’t exist, one can speak of the average rate of growth of h(f).
Define H(n) to equal the sum of A(f) over all monic polynomials of degree
n. As we will see, the function H(n) sometimes behaves in a quite regular
manner even though the values h(f) vary erratically.
Instead of approaching these problems directly we use the method of
Carlitz which uses Dirichlet series. Given a function h as above, we define
the associated Dirichlet series to be

Ds)= 3 h(f) ZH(H)‘ (5)

|f|s = qns

fmonic n=0

In what follows, we will work in a formal manner with these series. If one
wants to worry about convergence, it is useful to remark that if |h(f)| =
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O(|f|), then Dp(s) converges for ®(s) > 1 + (3. The proof just uses the
comparison test and the fact that (4(s) converges for R(s) > 1.

The right-hand side of 5 is simply Y oo, H(n)u™, so the Dirichlet series
in s becomes a power series in u whose coefficients are the averages H(n).
To see how this is useful, recall the function d(f) which is the number of
monic divisors of f. Let D(n) be the sum of d(f) over all monics of degree
n (hopefully, this notation will not cause too much confusion). Then,

Proposition 2.5. D4(s) = Ca(s)? = (1 — qu)™2 . Consequently, D(n) =
(n+1)q™.

Proof. . )
o= (Cp) () =
S5 Y- D - o
e f

This proves the first assertion. To prove the second assertion, notice
xO
Dy(s) = Z D(n)u™ = (1 —qu)™?.
n=0

It is easily seen that (1 — qu)™2 = Yoo ((n + 1)¢"u™. Thus, the second
assertion follows by comparing the coefficients of 4™ on both sides of this
identity.

A few remarks are in order. Notice that Ave,(d) = n + 1 so the average
value of d(f) in the way we have defined it doesn’t exist. On average, the
number of divisors of f grows with the degree. If we set x = ¢™ then our
result reads D(n) = zlog,(z) + = which resembles closely the analogous
result for the integers >°;_; d(k) = zlog(z) + (2v — 1)z + O(v/x) (here
v = .577216 is Euler’s constant). This formula is due to Dirichlet. It is
a famous problem in elementary number theory to find the best possible
error term. In the polynomial case, there is no error term! This is because
of the very simple nature of the zeta function {4(s). Similar sums in the
general function field context lead to more difficult problems. We shall have
more to say in this direction in Chapter 17.

It is an interesting fact that many multiplicative functions have corre-
sponding Dirichlet series which can be simply expressed in terms of the
zeta function. We have just seen this for d(f). More generallly, let A(f) be
multiplicative. The multiplicativity of h(f) leads to the identity

Di(s) = H(i T%?) .

P k=0
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As an example, consider the function u(f). Since 3"ro, I—P_IE‘Z =1-|P|~*,

we find D, (s) = {a(s)~'. The same method would enable us to determine
the Dirichlet series for ®(f) and o(f). However, we will follow a slightly
different path to this goal.

Let A and p be two complex valued functions on the monic polynomials.
We define their Dirichlet product by the following formula (all polynomials
involved are assumed to be monic)

A p)(f ZAh)p
hg f

This definition is exactly similar to the corresponding notion in elemen-
tary number theory. As is the case there, the Dirichlet product is closely
related to multiplication of Dirichlet series.

Proposition 2.6.
Di(s)Dy(s) = Disp(s) -
Proof. The calculation is just like that of Proposition 2.5.

Da(s)D,(s) = (Zh: Ali(z?))( &(_gl) _

gl

Z( Z A(h )Ifls Dap(s) -

h9=f
We now proceed to calculate the average value of ®(f). We have seen that

= A JJa 1Pt

PIf

Define A(f) = |f|. A moment’s reflection shows that the right hand side of
the above equation can be rewritten as 3 - u(9)f/g] = (u*A)(f). Thus,
by Proposition 2.6 we find

D (s) = Dpur(s) = Dy(s)Da(s) = Ca(s) " ¢als = 1) . (6)
Proposition 2.7.
Yo e(f)=¢"1-q").

deg f=n
f monic

Proof. Let A(n) be the left-hand side of the above equation. Then, with
the usual transformation u = ¢—* , Equation 6 becomes

l—qu
ZA(n =T u
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Now, expand (1 — ¢?u)~! into a power series using the geometric series,
multiply out, and equate the coefficients of u™ on both sides. One finds
A(n) = ¢®™ — ¢®>"~1. The result follows.

Finally, we want to do a similar analysis for the function o(f). Let 1{f)
denote the function which is identically equal to 1 on all monics f. For any
complex valued function A on monics, we see immediately that (1xA)(f) =

2g1r A(9). In particular, if A(f) = |f], then (1 x A)(f) = o(f). Thus,

Dq(8) = D1ux(s) = D1(s)Da(s) = Ca(s)¢a(s — 1) . (7)

Proposition 2.8.

n—1

S o(f)=gn 12

— g1
deg(f)=n 1-q

f monic

Proof. Define S(n) to be the sum on the left hand side of the above
equation. Then, making the substitution u = ¢~*° in Equation 7 we find

Z S(nyu™ = (1 — qu) (1 — ¢?u)7t .

Expanding the two terms on the right using the geometric series, multiply-
ing out, and collecting terms, we deduce

S(n)= > d** .

k+l=n
The result follows after applying a little algebra.

The method of obtaining average value results via the zeta function has
now been amply demonstrated. The reader who wants to pursue this fur-
ther can consult the original article of Carlitz [1]. Alternatively, it is an
interesting exercise to look at Chapter VII of Hardy and Wright [1] or
Chapter 3 of Apostol [1] , formulate the results given there for Z in the
context of the polynomial ring A = F[T], and prove them by the methods
developed above.

In Chapter 17, we will return to the subject of average value results, but
in the broader context of global function fields.

Exercises

1. Let f € A be a polynomial of degree at least m > 1. For each N >
m show that the number of polynomials of degree N divisible by
f divided by the number of polynomials of degree N is just |f|~1.
Thus, it makes sense to say that the probability that an arbitrary
polynomial is divisible by f is | f|~1.
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Let P, P,,..., P, € A be distinct monic irreducibles. Give a proba-
bilistic argument that the probability that a polynomial not be divis-
ible by any P2 for 1 =1,2,...,t is give by [['o; (1 — |Pi|~2).

Based on Exercise 2, give a heuristic argument to show that the prob-
ability that a polynomial in A is square-free is given by (a(2)7L.

. Generalize Exercise 3 to give a heuristic argument to show that the

probability that a polynomial in A be k-th power free is given by
Calk)~h

. Show Y~ |m|~! diverges, where the sum is over all monic polynomials

m € A.

. Use the fact that every monic m can be written uniquely in the form

m = mom% where my and m; are monic and mg is square-free to
show Y |mo|~! diverges where the sum is over all square-free monics
mo.

. Use Exercise 6 to show

II a+Pr) > as d—oo.

P irreducible
deg P<d

Use the obvious inequality 1+z < e and Exercise 7 to show Y |P|~!
diverges where the sum is over all monic irreducibles P € A.

Use Theorem 2.2 to give another proof that 5 |P|~! diverges.

Suppose there were only finitely many monic irreducibles in A . De-
note them by {P1, Py,..., P,}.Let m = P, P, ... P, be their product.
Show ®(m) =1 and derive a contradiction.

Suppose h is a complex valued function on monics in A and that the
limit as n tends to infinity of Ave,(h) is equal to a. Show

. —1 _
nh_}rr;o(1+q+---+q") g hMf)=a.
f monic
deg f<n

Let p(m) be the Mobius function on monic polynomials which we
introduced in the text. Consider the sum 3 .. ,._,, #(m) over monic
polynomials of degree m. Show the value of this sum is 1 if n =0, —q
ifn=1and 0if n > 1.

For each integer k > 1 define ox(m) = 3, |f]*. Calculate Ave, (o).
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Define A(m) to be log|P| if m = P?, a prime power, and zero other-
wise. Show

Y A(f) =log|m] .

flm

Show that
Da(s) = —Ca(s)/Ca(s).
Use this to evaluate .. non A(m).

Recall that d(m) is the number of monic divisors of m. Show

d(m)®  (a(s)*
Z Imls — Ca(2s)

m monic

Use this to evaluate ), .., d(m)?.
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The Reciprocity Law

Gauss called the quadratic reciprocity law “the golden theorem.” He was
the first to give a valid proof of this theorem. In fact, he found nine differ-
ent proofs. After this he worked on biquadratic reciprocity, obtaining the
correct statement, but not finding a proof. The first to do so were Eisen-
stein and Jacobi. The history of the general reciprocity law is long and
complicated involving the creation of a good portion of algebraic number
theory and class field theory. By contrast, it is possible to formulate and
prove a very general reciprocity law for A = F[T] without introducing much
machinery. Dedekind proved an analogue of the quadratic reciprocity law
for A in the last century. Carlitz thought he was the first to prove the gen-
eral reciprocity law for F[T]. However O. Ore pointed out to him that F.K.
Schmidt had already published the result, albeit in a somewhat obscure
place (Erlanger Sitzungsberichte, Vol. 58-59, 1928). See Carlitz [2] for this
remark and also for a number of references in which Carlitz gives different
proofs the reciprocity law. We will present a particularly simple and elegant
proof due to Carlitz. The only tools necessary will be a few results from
the theory of finite fields.

Let P € A be an irreducible polynomial and d a divisor of ¢ — 1 (recall
that g is the cardinality of F). If a € A and P does not divide a, then, by
Proposition 1.10, we know z¢ = a (mod P) is solvable if and only if

1P|—-1

a 4 =1 (mod P).

The left-hand side of this congruence is, in any case, an element of order
dividing d in (A/PA)*. Since F* — (A/PA)* is one to one, there is a
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unique @ € F* such that

a 7 =a (modP).

Definition. If P does not divide a, let (a/P),4 be the unique element of F*
such that Pl a
a i = <ﬁ)d (mod P).

If Pla define (a/P)q = 0. The symbol (a/P)g4 is called the d-th power
residue symbol.

When d = 2, this symbol is just like the Legendre symbol of elementary
number theory. The situation is a bit more flexible in A since A* = F* is
cyclic of order ¢ — 1, whereas Z* is just {£1}. Notice that the value of the
residue symbol is in the finite field F and not in the complex numbers.

Proposition 3.1. The d-th power residue symbol has the following prop-
erties:

1) (%)d (%)d ifa=b (mod P).

2 (#),= (8).(3),

3) (%)d =1 iff 2¥ = a (mod P) is solvable.

I}

4) Let ¢ € F* be an element of order dividing d. There ezists an a € A
h that (%) =¢.
such tha (P) J ¢

Proof. The first assertion follows immediately from the definition. The sec-
ond follows from the definition and the fact that if two constants are congru-
ent modulo P then they are equal. The third assertion follows from the def-
inition and Proposition 1.10. Finally, note that the map from (A/PA)* —
F* given by a — (a/P)4 is a homomorphism whose kernel is the d-th pow-
ers in (A/PA)* by part 3. Since (A/PA)* is a cyclic group of order |P|~1,
the order of the kernel is (|P| — 1)/d. Consequently, the image has order d
and part 4 follows from this.

It is an easy matter to evaluate the residue symbol on a constant.

Proposition 3.2. Let a € F. Then,

(§), -
d

Proof. Let § = deg(P). Then,

|P|-1 ¢°—
d - 4

6—1)(1“1'

1
=(l+q+-+g y
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The result now follows from the definition and the fact that for all « € F
we have a? = a.

Notice that if d|deg(P) every constant is automatically a d’th power
residue modulo P.
We are now in a position to state the reciprocity law.

Theorem 3.3. (The d-th power reciprocity law) Let P and Q be monic
irreducible polynomials of degrees 6 and v respectively. Then,

(3).= 0= (5),

Proof. Let’s define (a/P) = (a/P)4—1. Then (a/P)q = (a/P)q“d__l. The
theorem would follow in full generality if we could show

(3) =" (3)

since the general result would follow by raising both sides to the (¢ — 1)/d
power.

Let o be a root of P and 8 a root of Q. Let F’ be a finite field which
contains F, «, and 3. Using the theory of finite fields we find

P(T)=(T—a)(T-0of) - (T—a? ') and
QT) = (T —B)(T ~p7)--(T~ 7). (1)
We now take congruences in the ring A’ = F/[T]. Note that if f(T') € A’
we have f(T) = f(o) (mod (T' — «)). Also note that if g(T) € A then
g(T)? = g(T?) which follows readily from the fact that the coefficients of
g(T) are in F. From this remark, and the definition, we compute that (Q/P)
is congruent to

"= QT

Q(a)Q(e9) - Q") (mod (T — a)).

By symmetry this congruence holds modulo (T'—a?') for all i and it follows
that it holds modulo P. Combining this result with Equation 1 yields the
following congruence:

i

Q(T) a+-+a’"

d—-1v~1

( ) HH —$7) (mod P).

1=0 5=0
Both sides of this congruence are in F’ so they must be equal. Thus,

§—1v—1 v—16—1 p

(%) =TI -5 = 0= [T [16" - o) = (-1 (5).

=0 5=0 F=0 1=0
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This concludes the proof.

This beautiful proof is due to Carlitz. It is contained in a set of lecture
notes for a course on polynomials over finite fields which he gave at Duke
in the 1950s. We will outline another proof, also due to Carlitz, in the
exercises to Chapter 12.

As in the classical theory, it is convenient to extend the definition of the
d-th power reciprocity symbol to the case where the prime P is replaced
with an arbitrary non-zero element b € A.

Definition. Let b € A, b # 0, and b = Q7' Qf?...QJ* be the prime
decomposition of b. If a € A, define

a ° a £
9 CTI(&)” (@)
), 11(2):

Notice that this definition ignores S = sgn(b) and so the symbol only
depends on the principal ideal bA generated by b. The basic properties
of this extended symbol are easily derived from those of the d-th power
residue symbol.

Proposition 3.4. The symbol (a/b)y has the following properties.

1)  Ifa; =as (mod b) then (ay/b)q = (az/b)qg.

2)  (a1a2/b)q = (a1/b)a(az/b)a-

3)  (a/bibz)a = (a/b1)a(a/bz)a.

4)  (a/b)g # 0 iff (a,b) =1 (a is relatively prime to b).

5) Ifz? =a (mod b) is solvable, then (a/b)q = 1, provided that (a,b) = 1.

Proof. Properties 1 —4 follow from the definition and the properties of the
symbol (a/P)g.

To show property 5, suppose ¢ = a (mod b). Then, by properties 1 and
2, (a/b)a = (c*/b)a = (¢/b)§ = 1.

The converse of assertion 5 in Proposition 3.4 is not true in general. For
example, suppose Q is a monic irreducible not dividing a@ and b = Q¢. Then,
by property 3 above we have (a/b)y = (a/Q%)4 = (a/Q)% = 1. However,
not every element of (A/bA)* = (A/Q%A)* is a d-th power. In fact, the
group of d-th powers has index d as we saw in Proposition 1.10.

The same example shows that property 4 of Proposition 3.1 doesn’t hold
for the generalized symbol. As a mapping from (A/Q%A)* — F* the symbol
(a/Q%)q only takes on the value 1 and no other element of order divi-
ding d.

It is useful to have a form of the reciprocity law which works for arbitrary
(i.e., not necessarily monic or irreducible) elements of A. For f € A, f # 0,
define sgn,(f) to be the leading coefficient of f raised to the 15—1 power.
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Theorem 3.5. (The general reciprocity law). Let a,b € A be relatively
prime, non-zero elements. Then,

a by—1 =1 o _ a
(&) (2)7" = ()3t oo s, (s 5)~ 4.
Proof. When a and b are monic irreducibles this reduces to Theorem 3.3. In
general, the proof proceeds by appealing to Proposition 3.2, Theorem 3.3,
the definitions, and the fact that the degree of a product of two polynomials
is equal to the sum of their degrees. We omit the details.

The reciprocity law can be thought of as a pretty formula, but its im-
portance lies in the fact that it relates two natural questions in an intrinsic
way. Given a polynomial m of positive degree, what are the d-th powers
modulo m? Since (A/mA)* is finite, one can answer this question in prin-
ciple by just writing down the elements of (A/mA)*, raising them to the
d-th power, and making a list of the results. The answer will be a list of
cosets or residue classes modulo m. In practice this may be hard because
of the amount of calculation involved. One can appeal to the structure of
(A/mA)* to find shortcuts. Parenthetically, it is an interesting question to
determine the number of d-th powers modulo m. Recall that we are as-
suming d|(g — 1). Under this assumption, the answer is ®(m)/ dM™) | where
A(m) is the number of distinct monic prime divisors of m. This follows from
Proposition 1.10 and the Chinese Remainder Theorem.

Now, let’s turn things around somewhat. Given m, find all primes P such
that m is a d-th power modulo P. It turns out that there are infinitely many
such primes, so that it is not possible to answer the question by making a
list. One has to characterize the primes with this property in some natural
way. This is what the reciprocity law allows us to do.

For simplicity, we will assume that m is monic. It is no loss of gener-
ality to assume that all the primes we deal with are monic as well. Let

{ay,a2,...,a;} be coset representatives for the classes in (A/mA)* which
have the property (a/m)q = 1. If there is a b € A such that (b/m)q = —1
let {by,bs,...,b} be coset representatives for all classes with this property.

Proposition 3.6. With the above assumptions we have

1) Ifdeg(m) is even, (g —1)/d is even, or p = char(F) =2, m is a d-th
power modulo P iff P = a; (mod m) for somei=1,2,...,t.

2)  If deg(m) is odd, (¢ —1)/d is odd, and p = char(F) is odd, then m
is a d-th power modulo P iff either deg(P) is even and P = a, (mod m)
for some i = 1,2,...,t or deg(P) is odd and P = b; (mod m) for some
i=1,2,... .t

Proof. By Theorem 3.5, we have

P

(3), - oo (Z),
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If any of the conditions in Part 1 hold, we have (m/P)q = (P/m)q and this
gives the result by Part 3 of Proposition 3.1 and the fact that (P/m)q only
depends on the residue class of P modulo m.

If the conditions of Part 2 hold, then (m/P)q = (—1)%°8(")(P/m)y. Thus,
if deg(P) is even, (m/P)y = 1 iff P = a; (mod m) for some i, and if deg(P)
is odd, (m/P)q =1 iff P = b; (mod m) for some i. That there is a b € A
with (b/m)q = —1 under the conditions of Part 2 follows from the fact that

-1

(F), - o

A number of interesting number-theoretic questions are of the following
form: if a certain property holds modulo all but finitely many primes, does
it hold in A? One such property is that of being a d-th power. In this case
the question has a positive answer. The key to the proof, as we shall see,
is the reciprocity law.

Theorem 3.7. Let m € A be a polynomial of positive degree. Let d be an
integer dividing q — 1. If ¢ = m (mod P) is solvable for all but finitely
many primes P, then m = m for some m, € A.

Proof. Let m = pQ7* Q5% ... Q¢ be the prime decomposition of m. We
begin by showing that if some e; is not divisible by d, then there are in-
finitely many primes L such that (m/L)q # 1. This will contradict the
hypothesis and we can conclude that the hypothesis implies m = um/¢ for
some m, € A.

We may as well assume that e; is not divisible by d. Let {L1, La. ..., Ly}
be a set of primes not dividing m such that (m/L;)s # 1 for j = 1,2,...,s.
For any a € A we have

¢
a a \ &

(2),-T15)" 0
By Part 4 of Proposition 3.1, there exists an element ¢ € A such that
(¢/Q1)q = Ca, & primitive dth root of 1. By the Chinese Remainder Theo-
rem, we can find an a € A such that a = ¢ (mod Q1) and a =1 (mod Q;)
for i > 2, and a =1 (mod L;) for all j. Once such an a is chosen we can
add to it any A-multiple of Q1Q>...Q:;L1Ly... L, and it will satisfy the
same congruences as a. Thus we may assume, by choosing a suitable such
multiple of large degree, that a is monic and of degree divisible by 2d. As-
suming that a has these properties, we substitute it into Equation 3 and

derive
a

(—n_l)d =G AL

By the reciprocity law,



3. The Reciprocity Law 29

It follows that there must be a prime Lja such that (m/L)g # 1. Since
a =1 (mod Lj) for every j we must have L # L; for all j. This shows
there must be infinitely many primes L such that (m/L)y; # 1 if e; is not
divisible by d. The same assertion holds for each e;.

We have shown that under the hypothesis of the theorem m = um!¢,
where p € F*. It remains to show that u must be a d-th power. Consider

(2),= (5) = e, @

By Theorem 2.2, there are infinitely many irreducibles of degree relatively
prime to d. In fact, there are irreducibles of every degree. Thus there is
an irreducible P of degree prime to d and such that (m/P)y = 1. It then
follows from equation number (4) that u*T 96% = 1 and so, T =1
This shows that u is a d-th power, u = pg, in F. Set m, = u,m, and we
have m = m¢, as asserted.

In the statement and proof of Theorem 3.7 we have been assuming that
d divides ¢ — 1. Is this necessary? The statement of the theorem is not true
for all d. For example, consider p = char(F). For every prime P and any
a € A we have that o is a p-th power modulo P. This follows from the fact
that raising to the p-th power is an automorphism of the finite field A/PA.
Thus, the theorem fails if d = p or indeed if d is a power of p. However,

Fact. The assertion of Theorem 3.7 remains true if p does not divide d.
In other words, if d is not divisible by p it is not necessary to assume that
dlg—1.

We will sketch a proof. We rely on Theorem 3.7 together with some
elementary facts about finite fields.

Since p does not divide d, ¢ and d are relatively prime. Thus, there is a
positive integer n such that ¢" =1 (mod d). Let F' be a field extension of
F of degree n. F™* has ¢"™ — 1 elements and so must contain a primitive d-th
root of unity. Set A’ = F'[T].

Now, suppose that m € A and that m is a d-th power for all but finitely
many primes P of A. If P’ is a prime of A’ it is easy to check that P'A'NA =
PA where P is a prime of A. It follows that m is a d-th power modulo all
but finitely many primes of A’. Invoking Theorem 3.7, we see that m = m'®
is a d-th power in A’. We need to show that m’ can be chosen to be in A.

Let P be a prime of A and consider it as an element of A’. It factors as
a product of primes in A’; P = P{P;.-. P! where the P/ are all distinct
( over a finite field, every irreducible polynomial has no repeated roots in
any algebraic extension ). For a prime P of A, let e be the highest power
to which P divides m. If P’ is a prime of A’ dividing P, then e is also the
highest power of P’ dividing m. Since m = m/?, unique factorization in A’
implies d|e. This being true for all primes P of A, it follows that m = umg
with m, € 4 and p € F. It remains to show that u is a d-th power in F*.
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By the hypothesis on m and the equation m = um¢ we see that u is
a d-th power for all but finitely many primes P. Let d' = (d,q — 1). u is
a d’-th power for all but finitely many primes P (since d’|d). Moreover,
d'|(¢ — 1). Using Theorem 3.7 once again, we see that u is a d’-th power.
Since F* is cyclic of order ¢ — 1 it is easy to see that F*¢ = e Thus, u
is a d-th power, and we are done.

Exercises

1.
2.
3.

Fill in the details of the proof of Proposition 3.4.
Fill in the details of the proof of Theorem 3.5.

Suppose d | ¢ — 1 and that m € A is a polynomial of positive de-
gree. Show that the number of d-th powers in (A/mA)* is given by
®(m)/d*™), where A\(m) is the number of distinct monic prime divi-
sors of m.

Let P € A be a prime and consider the congruence X? = —1
(mod P). Show this congruence is solvable except in the case where
g =3 (mod 4) and deg P is odd.

Suppose d’ | ¢—1 and o € F* is an element of order d’. Let P € A be
a prime of positive degree and suppose that d is a divisor of |P| — 1.
Show that X¢ = a (mod P) is solvable if and only if dd’ divides
|P| — 1. Show how Exercise 4 is a special case of this result.

Suppose that d is a positive integer and that ¢ = 1 (mod 4d). Let
P € A be a monic prime. Show that X¢ =T (mod P) if and only if
the constant term of P, i.e. P(0), is a d-th power in F.

Suppose d divides ¢ — 1 and that P € A is a prime. Show that the
number of solutions to X?¢ = a (mod P) is given by

SORIC RO

Let b € A and suppose b = SP;*Py*--- P/t is the prime decomposi-
tion of b. Here, § € F* and the P; are distinct monic primes. Con-
sider (a/b)q as a homomorphism from (A/bA)* to the cyclic group
< (q > generated by an element {; € F* of order d. Show that this
map is onto if and only if the greatest common divisor of the set
{e1,€2,...,e:} is relatively prime to d.

Suppose d | ¢g—1 and a, by, by € A. Show that (a/b1)q = (a/bs)q if the
following conditions hold: b; = b2 (mod a), degb; = degbs (mod d),
and sgng(b1) = sgny(bs).
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10. In this exercise we give an analogue of the classical Gauss criterion
for the Legendre symbol. Let P € A be a prime. Show that every non-
zero residue class modulo P has a unique representative of the form
um where p € F* and m is a monic polynomial of degree less than
deg P. Let M denote the set of monics of degree less than deg P.
Suppose @ € A with P { a. For each m € M write am = p,m’
(mod P) where pp, € F* and m’ € M. Show

In the exercises to Chapter 12, we will use this criterion to outline another
proof of the Reciprocity Law (also due to Carlitz).
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Dirichlet L-Series and Primes
in an Arithmetic Progression

Our principal goal in this chapter will be to prove the analogue of Dirichlet’s
famous theorem about primes in arithmetic progressions. This was first
proved by H. Kornblum in his PhD thesis written, just before the onset
of World War I, under the direction of Edmund Landau. After completing
the work on his thesis, but before writing it up, Kornblum enlisted in the
army. He died in the fighting on the Eastern Front. After the war, Landau
completed the sad duty of writing up and publishing his student’s results,
see Kornblum [1].

The proof of the theorem uses the theory of Dirichlet series. After giving
the definitions and proving the elementary properties of these series, we
outline the connection with primes in arithmetic progressions and isolate
the main difficulty which is the proof that L(1, x) # 0 for non-trivial char-
acters x. We then give a proof of this fact which differs from the Kornblum-
Landau approach. It is an adaptation to polynomial rings of a proof of the
corresponding number-theoretic fact due to de la Vallee Poussin. Finally,
to complete the chapter, we give a refinement of Dirichet’s theorem, which
shows that given an arithmetic progression {a--mz | a,m € A, (a,m) = 1},
then, for all sufficiently large integers N, there is a prime P of degree N
which lies in this arithmetic progression.

Before beginning we discuss the notion of the Dirichlet density of a set
of primes in A. This will give a quantitative measure of how big such a set
is. Let f(s) and g{s) be two complex valued functions of a real variable s
both defined on some open interval (1,b). We define f & g to mean that
f — g remains bounded as s -+ 1 inside (1,b).
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Proposition 4.1. We have

oz ¢a(s) ~log (7 ) =~ SiP

where the sum is over all irreducible monic polynomials P.

Proof. Since Ca(s) = (1 — ¢'7*)~! we see that lims—1(s — 1)Ca(s) =
1/log(q). Thus, log ¢4(s) —log(s ~ 1)~! is bounded as s — 1, which estab-
lishes the first relation. As for the second relation we see, using the Euler
product for {4(s)

log Ca(s Zlog (1-|P|7%) ZIPI ko /k = ZIPI‘“r > IPIT*/k.

P,k>2

Now, 3 ko [PI 75 /k < Fpsp [PI7%° = |P|72(1 = |P|=*)~1 < 2| P|7%.
Thus the last sum in the above equation is bounded by 2¢4(2). This shows
that log (a(s) ~ ) _p |P|™° which completes the proof.

Definition. Henceforth the word “prime” will denote a monic irreducible
in A. Let S be a set of primes in A. The Dirichlet density of S, 6(S) is
defined to be

provided that the limit exists. The limit is assumed to be taken over the
values of s lying in a real interval (1, b).

Several remarks are in order. First note that 0 < §(S) <1 and if § =
81U Sy, then §(S) = §(51) + 6(Sz) provided S; and Sy both have densities
and are disjoint. Thus, Dirichlet density is something like a probability
measure. One must not carry this too far, however. Dirichlet density is not
countably additive.

It is obvious that the Dirichlet density of a finite set is zero. Thus, if the
Dirichlet density of a set exists and is positive, we are assured that the set
is infinite. One of the two main results of this chapter asserts that if a and
m are relatively prime polynomials, then the Dirichlet density of the set
S ={Pe€ A| P prime, P =a (mod m)} exists and is equal to 1/®(m).
It is in this refined form that we prove Dirichlet’s famous theorem in the
context of the polynomial ring A.

The next step is to introduce the main tools necessary to the proof,
Dirichlet characters and Dirichlet L-series.

Let m be an element of A of positive degree. A Dirichlet character modulo
m is a function from A — C such that

(a) x(a+ bm) = x(a) for all a,b € A.
(b) x(a)x(b) = x(ab) for all a,b € A
(¢) x(a) # 0 if and only if (a,m) = 1.
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A Dirichlet character modulo m induces a homomorphism from
(A/mA)* — C* and conversely, given such a homomorphism there is a
uniquely corresponding Dirichlet character. The trivial Dirichlet character
Xo is defined by the property that x,(a) = 1 if (a,m) =1 and x,(a) =0 if
(a,m) # 1.

It can be shown that there are exactly ®(m) Dirichlet characters modulo
m which is the same cardinality as that of the group (4/mA)*. Let X,,, be
the set of Dirichlet characters modulo m. If x, ¥ € X,,, define their product,
x%, by the formula x¥(a) = x(a)¥(a). This makes X,, into a group. The
identity of this group is the trivial character x,. The inverse of a character
is given by x7(a) = x(a)~! if (a,m) = 1, and x"1(a) = 0 if (a,m) # 1.
It can be shown, but we will not do so here, that X,, is isomorphic to
(A/mA)*, which is a much better result than the bare statement that they
have the same number of elements. This is a special case of a general result
which asserts that a finite abelian group G is isomorphic to its character
group G, see Lang [4], Chapter 1, Section 9. o

Another definition is useful. If x € X,,, let ¥ be defined by %(a) = x(a)
= complex conjugate of x(a). Since the value of a character is either zero
or a root of unity, it is easy to see that ¥ = x~!. Moreover, we have the
following very important proposition, the orthogonality relations.

Proposition 4.2. Let x and ¥ be two Dirichlet characters modulo m and
a and b two elements of A relatively prime to m. Then

(1) o x(a)ib(a) = B(m)5(x, ).

(2) 225 x(a)x(b) = ®(m)é(a,b).
The first sum is over any set of representative for A/mA and the second

sum is over all Dirichlet characters modulo m. By definition, 6(x,v¥) = 0
if x # ¢ and 1 if x = 1. Similarly, 6(a,b) =0 ifa #b and I ifa =b.

The proofs of all these facts are standard. For the corresponding facts
over the integers, Z, the reader can consult, for example, Ireland-Rosen [1],
Chapter 16, Section 3. The relations given in the above proposition are
called the orthogonality relations.

Definition. Let x be a Dirichlet character modulo m. The Dirichlet L-
series corresponding to x is defined by

x(f)

L(s,x) = Tk

f monic

From the definition and by comparison with the zeta function (4(s)
one sees immediately that the series for L(s,x) converges absolutely for
R(s) > 1. Also, since characters are multiplicative we can deduce that the
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following product decomposition is valid in the same region.

L(s,x) = H<1 - T}(fl?>_1

P

An immediate consequence of this product decomposition is the fact
that the L-series corresponding to the trivial character is almost the same
as Ca(s). More precisely,

Lisxe) = [T (1 - ) )

Pim

This shows that L(s, x,) can be analytically continued to all of C and
has a simple pole at s = 1 since the same is true of {4(s). On the other
hand,

Proposition 4.3. Let x be a non-trivial Dirichlet character modulo m.
Then, L(s,x) is a polynomial in q=° of degree at most deg(m) — 1.

Proof. Define
Anx)= Y x(f)
deg(f)=n

f monic

It is clear from the definition of L(s, x) that

L(s,x) = Y _ A(n,x)q™™.
n=0

Thus, the result will follow if we can show that A(n,x) = 0 for all n >
deg(m).

Let’s assume that n > deg(m). If deg(f) = n, we can write f = hm +r,
where r is a polynomial of degree less than deg(m) or r = 0. Here, h is a
polynomial of degree n—deg(m) > 0, whose leading coefficient is sgn(m)~!
(since f is monic). Conversely, all monic polynomials of degree n > deg(m)
can be uniquely written in this fashion. Since x is periodic modulo m and
since h can be chosen in ¢*~9°8(™) ways, we have

Aln, x) = ¢" 9™ Y " x(r) =0,

by the first orthogonality relation (Proposition 4.2, part (1) ) since x #
Xo, and the sum is over all » with deg(r) < deg(m), which is a set of
representatives for A/mA.

Proposition 4.3 shows that if x is non-trivial, then L(s,x) which was
initially defined for ®(s) > 1 can be analytically continued to an entire
function on all of C. We have already seen that L(s, x,) can be analytically
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continued to all of C with a simple pole at s = 1. These facts are much
harder to establish when working over Z rather than A.

In the proof of Dirichlet’s theorem on primes in arithmetic progressions
the most difficult part is the proof that L(1, x) # 0 if x is non-trivial. This
turns out to be substantially easier in function fields because the L-series
are essentially polynomials. We begin with a lemma.

Lemma 4.4. Let x vary over all Dirichlet characters modulo m. Then, for
each prime P not dividing m, there exist positive integers fp and gp such
that fpgp = ®(m) and

[IZGx) = T[a-1pire)=or.

Ptm

Proof. For a fixed prime P not dividing m, the map x — x(P) is a
homomorphism from the group X,, — C*. The image must be a cyclic
group of order fp, say, generated by (y,. If gp is the order of the kernel,
clearly fpgp = ®(m).

With these preliminaries, we calculate for fixed P.

fp—1
[Ta-xP)ip=*) = H (L= Ch | PI7%)0P = (1 — | P|7TPe)em.

Now take the inverse of both sides, multiply over all P, and the lemma
follows.

Lemma 4.5. Suppose x is a complex Dirichlet character modulo m , i.e.
X # x. Then, L(1,x) #0.

Proof. The right-hand side of the equation in the statement of Lemma 4.4
is equal to a Dirichlet series with positive coefficients and constant term
1. Consequently, its value at real numbers s such that s > 1 is a real
number greater than 1. Suppose x is a complex Dirichlet character and
that L(1, x) = 0. Then, by complex conjugation we see L(1, x) = 0 as well.
In the product II, L(s, x) the term corresponding to the trivial character
has a simple pole at s = 1. All the other terms are regular there and two
of them have zeros. Thus, the product is zero at s = 1. This contradicts
the fact, established above, that for all s > 1 the value of the product is
greater than 1. Thus, L(1,x) # 0, as asserted.

The next step is to deal with real-valued characters. It is not hard to see
that these coincide with characters of order 2. The proof for such characters
will be a modification of a proof of the classical case due to de la Vallée
Poussin.

Assume now that x has order 2 and consider the function

L(s, xo)Lis, )

Gls) = L(2s,x0)
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This can be written as a product over all monic irreducibles not dividing
m. Let P be such a prime. Then x(P) = £1. The factor of the above series
corresponding to P is

(A -|P|=*) "1 = x(P)|PI7) "}
(1 —[P|72)~!

If x(P) = —1 this whole factor reduces to 1. If x(P) = 1 it simplifies to

(1+ iP’—s) _ = —ks
(1-[P|-2) _HQ;'P' '

It follows from these remarks that G(s) is a Dirichlet series with non-
negative coeflicients. This will shortly play a crucial role.

First, we look more carefully at L(s, x0)/L(2s,X0). As we have already
seen,

L(s,xo) = [[ (1~ 1PI=*)ca(s) = [T~ 1PI7) -y -

1-s
Plm Pim q

A short calculation shows

(S XO) —s 1"(]
Tose) ~ }1;[”<1+|P| -

From this identity and what we have already proven about G(s) we deduce
that
(1 —¢'7%)L(s,x) Z
(1 —q'7°) Inls ’
a Dirichlet series with non-negative coefficients.

It is now convenient to switch to a new variable, u = ¢~°. The above
equation becomes

(1 - qu?)L*(u, x)
1—qu ZA

where L*(u, x) is a polynomial in u by Proposition 4.3, and

Ad) = Y a(n)

n,deg(n)=d

is non-negative for all d > 0 and A(0) = 1. The Dirichlet series converges
for Re(s) > 1 which implies the power series in u converges for |u| < ¢~ 1.
Finally, notice that s = 1 corresponds to ¢! so what we are trying to prove
is that L*(g~ !, x) # 0. We now have developed everything we need to give
a quick proof of this.
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We argue by contradiction. Suppose L*(¢™ !, x) = 0. Then (1—qu) divides
L*(u, x) and the left-hand side of the above equation is a polynomial in u.
It follows that the right-hand side is a polynomial in « with non-negative
coefficients and constant term 1. It therefore cannot have a positive root.
However, the left-hand side vanishes when u = 1/,/g. This is a contradic-
tion, so L*(q™!,x) # 0 and thus, L(1, x) # 0. We have proven the following
key result.

Proposition 4.6. Let x be a non-trivial Dirichlet character modulo m.

Then, L(1,x) # 0.

From Proposition 4.6 and previous remarks we see that as s — 1 with s
real and greater than 1 we have

lim logL(s,x,) =00 and lim logL(s,x) exists, for x # Xo.
s—1 s—1

Here, and in what follows we take for log(z) the principal branch of the
logarithm.

Theorem 4.7. Let a,m € A be two relatively prime polynomials with m of
positive degree. Consider the set of primes, S = {P € A| P = a (mod m)}.
Then, 6(S) =1/®(m). In particular, S is an infinite set.

Proof. Using the product formula for L(s, x) and the same technique used
in the proof of Proposition 4.1, one finds

x(P)
~ |P)*

log L(s, x) = + R(s,x) ,

where the function R(s,x) is bounded as s tends to 1 from above. Multipy
both sides by ¥(a) and sum over all x. Using the orthogonality relation for
Dirichlet characters, Proposition 4.2, part (2), we obtain

S x@logLis,x) = (m) 3 #m(s),

P=a (mod m)

where R(s) is a function which remains bounded as s — 1.

Divide each summand on the left-hand side of the above equation by
Y p|P|7% and let s tend to 1 from above. By Proposition 4.1 and the
remarks preceding the theorem, the summand corresponding to the trivial
character tends to 1, while each summand corresponding to a non-trivial
character tends to zero. If we divide the right-hand side by 3, |P|™* and
let s tend to 1 from above, we get ®(m)d(S). The result follows.

Theorem 4.7 is the original form of Dirichlet’s theorem. It is possible,
with more work, to prove a much stronger form of the theorem. Suppose
a,m € A are relatively prime and that m has positive degree. Consider the
set of primes

Sn(a,m)={P &€ A| P=a(mod m), deg(P) = N}.
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We claim that for all large integers N this set is not empty. The following
theorem proves this and more.

Theorem 4.8-
7 IV (“’7 l) ( ) ?\r C 7\]— .

It will take us several steps to prove this result, but first, a remark. Let
Sy be the set of primes of degree N. We have seen (Theorem 2.2) that

N q 2
=—4+0 .
#SN = N + N
Putting this together with the statement of the theorem we find

 #Sylam) 1
N Sy el )

This is a natural density analogue to the Dirichlet density form of the
main theorem.

Proof of Theorem 4.8. The idea of the proof is to realize that the L-
series L(s, x) can be expressed as a product in two ways. One way, which we
have already considered, is as an Euler product. The other is as a product
over its complex zeros. This is made easier by rewriting, as we have done
before, everything in terms of the variable u = ¢~*. If x is not trivial, then
by Proposition 4.3, L(s, x) is a polynomial in ¢~* of degree at most M — 1
where M = deg(m). We have

M—1 M-1
L*(u,x) = Z H (1= ai(x)u) . 1)
k=0 i=1

The second expression for L*(s, x) comes from rewriting the Euler prod-
uct for L(s, x) in terms of u. We first regroup the terms in the Euler prod-
uct.

Lsx)=[[ a-x@)P) =] [I @-xPa )"

Ptm d=1 Pn
deg(P)=d

Now, make the substitution u = ¢~°. We obtain the expression

wx)=]T II @-xPu)H™*. (2)
d
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Our intention is to take the logarithmic derivative of both expressions,
write the results as power series in u and compare coefficients. Afterwards
we apply the orthogonality relations to isolate the primes congruent to a
modulo m. However, in addition to the algebra involved, we will have to
do a number of estimates. One of these estimates will involve invoking a
deep result of A. Weil. The others are more elementary.

We begin by writing down an identity which will be used repeatedly.
Namely,

) " okt 3
udu(og(l——au ‘Z;au (3)

Here o is a complex number. The sum converges for all u such that |u| <
la|=1. The proof of this identity is a simple exercise using the geometric
series.

For each character x modulo m define the numbers cy(x) by

ua——log(L* u, X) Z en (x)u
N=1

We claim that

N
2

en(Xo) = ¢V +O(1) and that cy(x) =O0(@T)if X #Xo . (4)

The easy case is when x = x,. Recall that

L(s,xo) = [T (1 = IPI7) ¢als) -

Plm

Thus,

1
1—qu’

L*(u,xo) = [] (1 —u®*s?)

Plm

It now follows immediately, using Equation 3 and the additivity of the
logarithmic derivative, that ey (xo) = ¢"¥ +O(1). For x # X0, by combining
Equation 1 with Equation 3 we find

M-1

en(x)=— Y ax(x)" .

k=1

It follows from the analogue of the Riemann hypothesis for function fields
over a finite field that each of the roots ay(x) has absolute value either 1
or 1/g. This is the deepest part of the proof and is due to A. Weil (see Weil
(1]). We will discuss it in some detail in the next chapter. In the Appendix
to this book we will present an “elementary” proof, due to E. Bombieri, of
this important result . Assuming it for now, we see immediately from the
last equation that ey (x) = O(¢™/?). Thus, we have verified both assertions
of (4) above.
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It should be remarked that one can prove much more easily, a weaker
result than the Riemann hypothesis which has the effect of replacing the
error term in the theorem with O(¢?") where 6 is some real number less
than 1. This still gives the corollary that the set Sy (a,m) is non-empty for
all large V. We will indicate how to prove this in the next chapter.

We now continue with the proof of the theorem. Consider the Euler
product expansion of L*(s, x) given by Equation 2. Take the logarithmic
derivative of both sides and multiply both sides of the resulting equation
by u. Again using Equation 3 we find

en(x)= > degP x(P)*.
k,P
kdeg P=N

In the sum on the right-hand side separate out the terms corresponding
to k = 1. The result is N3 ;.. p_y X(P). The rest of the terms can be

written as follows:
dood > x(p)yNe.

dIN  degP=d
d<N/2

The inner sum in absolute value is less than or equal to #{P € A| deg P =
d} = ¢%/d + O(q¥?/d) by Theorem 2.2. Thus the double sum is bounded
by

Lqtaq®t +q™2 L 01+ q+q 4 + g™ = 0(g¥) .
We have proven

en(X) =N > x(P)+0(¢7). (5)

deg P=N

Finally we compute the expression )7, %(a)en(x) in two ways. First we
use Equation 5 and then we use Equation 4.
From the orthogonality relations and Equation 5 we find

1 _ N
T(m) EX:X(G)CN(X) = N#Sn(a,m) +0(q?) .
Next, from Equation 4 we see
>_X(@)en () = ¢V +0(g7) .
X
So, we finally arrive at the main result:

#Sn(a,m) = ﬁ%\; +0 (iIi) .
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Exercises

1.

Let S = {Py, P,,...} be the set of monic primes in A. Let S; = {F;}
be the set consisting of P; alone. Then, S = Ug2,S;. Show that this
implies that Dirichlet density is not countably additive.

Let P(T) € A and define N(U? = P(T)) to be the number of pairs
(o, B) € F x I such that 32 = P(a). Show that

N@U?=P(T) = (1+P(a)T) .

a€ElF

Suppose g is odd and let P € A is a monic irreducible of degree two
and that x(a) = (a/P), for all a € A. Show that L4(s,x) =14=qg7°.
(Hint: Use the Reciprocity Law and Exercise 2).

. In general, suppose P € A is a monic irreducible of positive degree

and set x(a) = (a/P)2. Show that

Y. xl(a)=+(g—- NU?= P(T)) .

a monic
dega=1

With the same notation as in Exercise 4, consider the coefficient of g—*
in L(s, x). Use Exercise 4 and the Riemann Hypothesis for function

fields to prove

IN(U? = P(T)) — ¢ < (deg P~ 1)\/q .

. Let h{T) € A be a polynomial of degree m with a non-zero constant

term. Show that there are infinitely many primes in A whose first
m + 1 terms coincide with A(T). What is the Dirichlet density of this
collection of primes?

. Let {a1,00,...,a4} be the elements of F labeled in some order and

choose elements 3; € F* for 7 = 1,..., q , where repetition is allowed.
Prove that thee are infinitely many primes, P(T"), such that P(a;) =
Bifori=1,...,q. What is the Dirichlet density of this set of primes?
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Algebraic Function Fields
and Global Function Fields

So far we have been working with the polynomial ring A inside the ratio-
nal function field k£ = F(T). In this section we extend our considerations
to more general function fields of transcendence degree one over a general
constant field. This process is somewhat like passing from elementary num-
ber theory to algebraic number theory. The Riemann-Roch theorem is the
fundamental result needed to accomplish this generalization. We will give
a proof of this fundamental result in Chapter 6. In this chapter we give
the basic definitions, state the theorem, and derive a number of important
corollaries. After this is accomplished, attention will be shifted to function
fields over a finite constant field. Such fields are called global function fields.
The other class of global fields are algebraic number fields. All global fields
share a great number of common features. We introduce the zeta function
of a global function field and explore its properties. The Riemann hypoth-
esis for such zeta functions will be explained in some detail, and we will
derive several very important consequences, among others an analogue for
the prime number theorem for arbitrary global function fields. A proof of
the Riemann hypothesis will be given in the appendix. In this chapter we
will prove a weak version. This is enough to yield the analogue of the prime
number theorem , albeit with a poor error term. In later chapters we will
also explore L-functions associated to global function fields - both Hecke L-
functions (generalizations of Dirichlet L-functions) and Artin L-functions.

One final comment before we begin. Our treatment of this subject is
very arithmetic. The geometric underpinnings will not be much in evidence.
The whole subject can be dealt with under the aspect of curves over finite
fields. We have chosen the arithmetic approach because our guiding theme
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in this book will be the exploration of the rich analogies that exist between
algebraic number fields and global function fields.

To begin with it is not necessary to restrict the constant field F' to be
finite. In fact, in this first part of the chapter we make no restrictions on F'
whatsoever. A function field in one variable over F is a field K, containing
F and at least one element z, transcendental over F', such that K/F(z) is a
finite algebraic extension. Such a field is said to have transcendence degree
one over F. It is not hard to show that the algebraic closure of F' in K is
finite over F'. One way to see this is to note that if E is a subfield of K,
which is algebraic over F, then [E : F| = [E(z) : F(z)] < [K : F(z)]. So,
replacing F' with its algebraic closure in K, if necessary, we assume that
F is algebraically closed in K. In that case, F' is called the constant field
of K. Note the following simple consequence of this definition. If F' is the
constant field of K and y € K is not in F, then y is transcendental over
F. Tt is also true that K/F(y) is a finite extension. To see this, note that
y is algebraic over F'(x) which shows there is a non-zero polynomial in two
variables g(X,Y) € F[X,Y] such that g(z,y) = 0. Since y is transcendental
over F' we must have that ¢(X,Y) ¢ F[Y]. It follows that = is algebraic
over F'(y). Since K is finite over F(z,y) and F(z,y) is finite over F(y), it
follows that K is finite over F(y).

A prime in K is, by definition, a discrete valuation ring R with maximal
ideal P such that F' C R and the quotient field of R equal to K. As a
shorthand such a prime is often referred to as P, the maximal ideal of R.
The ord function associated with R is denoted ordp(x). The degree of P,
deg P, is defined to be the dimension of R/P over F' which can be shown to
be finite. We sketch the proof. Choose an element y € P which is not in F'.
By the deductions of the last paragraph, K/F(y) is finite . We claim that
[R/P: F| < [K : F(y)]. To see this let uj,uz,...,um € R be such that the
residue classes modulo P, %1, Us,...,dm, are linearly independent over F.
We claim that wy,ug,...,u,, are linearly independent over F(y). Suppose
not. Then we could find polynomials in vy, {fi(y), fo(¥),..., fm(y)}, such
that

fiur + foWue + - + frn(¥)tm =0 .

It is no loss of generality to assume that not all the polynomials f;(y) are di-
visible by y. Now, reducing this relation modulo P gives a non-trivial linear
relation for the elements @; over F, a contradiction. Thus, {u, ug,...,Un}
is a set linearly independent over F(y) and it follows that m < [K : F(y)]
which proves the assertion.

To illustrate these definitions, consider the case of the rational function
field F(x). Let A = F|z]. Every non-zero prime ideal in A is generated
by a unique monic irreducible P. The localization of A at P, Ap, is a
discrete valuation ring. We continue to use the letter P to denote the unique
maximal ideal of Ap. It is clear that P is a prime of F'(z) in the above sense.
This collection of primes can be shown to almost exhaust the set of primes
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of F(z). In fact, there is just one more. Consider the ring A’ = F[z7}]
and the prime ideal P’ generated by 27! in A’. The localization of A’ at
P’ is a discrete valuation ring which defines a prime of F(z) called the
prime at infinity. This is usually denoted by P, or, more simply, by “co”
alone. The corresponding ord-function, ord,, attaches the value — deg(f)
to any polynomial f € A and thus the value deg(g) —deg(f) to any rational
function f/g where f,g € A. The reader may wish to supply the proof that
the only primes of F(z) are the ones attached to the monic irreducibles,
called the finite primes, together with the prime at infinity. The degree of
any finite prime is equal to the degree of the monic irreducible to which it
corresponds, and the degree of the prime at infinity is 1.

Returning to the general case, the group of divisors of K, Dk, is by
definition the free abelian group generated by the primes. We write these
additively so that a typical divisor looks like D = 3, a(P)P. The coeffi-
cients, a(P), are uniquely determined by D and we will sometimes denote
them as ordp(D). The degree of such a divisor is defined as deg(D) =
> pa(P)deg P. This gives a homomorphism from Dk to Z whose kernel
is denoted by D%, the group of divisors of degree zero.

Let a € K*. The divisor of a, (a), is defined to be Y pordp(a)P. It is
not hard to see that (a) is actually a divisor, i.e., that ordp(a) is zero for
all but finitely many P. The idea of the proof will be included in the proof
of Proposition 5.1 (given below). The map a — (a) is a homomorphism
from K* to Dg. The image of this map is denoted by Px and is called the
group of principal divisors.

If P is a prime such that ordp(a) = m > 0, we say that P is a zero of a

of order m. If ordp(a) = ~n < 0 we say that P is a pole of a of order n.
Let
(@)o = Z ordp(a) P and (a)e = — Z ordp(a) P .
P P
ordp(a)>0 ordp(a)<0

The divisor (a), is called the divisor of zeros of a and the divisor (a)s is
called the divisor of poles of a. Note that (a) = (a), ~ (@) co.

Proposition 5.1. Leta € K*. Then, ordp(a) = 0 for all but finitely many
primes P. Secondly, (a) = 0, the zero divisor, if and only if a € F*, i.e., a
is a non-zero constant. Finally, deg(a), = deg(a)oo = [K : F(a)]. It follows
that deg(a) = 0, i.e., the degree of a principal divisor is zero.

Proof. (Sketch) If a € F*, it is easy to see from the definitions that (a) = 0.
So, suppose a € K* — F™*. Then, as we have seen, K is finite over F(a). Let
R be the integral closure of Fla] in K. R is a Dedekind domain (see Samuel
and Zariski 1], Chapter V, Theorem 19). Let Ra = PB{B5? - - - Ps° be the
prime decomposition of the principal ideal Ra in R. The localizations of R
at the prime ideals 93; are primes of the field K. If we denote by P; the
maximal ideals of these discrete valuation rings we find that ordp, (a) = e;.
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It is now not hard to show that the finite set {Py, Ps,..., P;} is the set
of zeros of a. Applying the same reasoning to a~! we see that the set of
poles of a are is also finite. This proves the first assertion. It also proves
the second assertion since if a is not in F* we see that the set of P such
that ordp(a) > 0 is not empty.

To show [K : F(a)] = deg(a), = deg(a)so Wwe can apply Theorem 7.6 of
this book if we assume that F' is a perfect field. For the general case, see
Deuring (1], Chevalley [1], or Stichtenoth [1].

For emphasis we point out that implicit in the above sketch is the fact
that every non-constant element of K has at least one zero and at least one
pole.

Two divisors, D; and D, are said to be linearly equivalent, Dy ~ Dg if
their difference is principal, i.e., D; — Dy = (a) for some a € K*. Define
Clg = Dk /P, the group of divisor classes. Since the degree of a principal
divisor is zero, the degree function gives rise to a homomorphism from Clg
to Z. The kernel of this map is denoted Cl%, the group of divisor classes
of degree zero.

We are almost ready to state the Riemann-Roch theorem. Just two more
definitions are needed. A divisor, D = ), a(P)P, is said to be an effective
divisor if for all P, a(P) > 0. We denote this by D > 0.

Definition. Let D be a divisor. Define L(D) = {z € K*|(z) + D >
0}uU{0}. It is easy to see that L(D) has the structure of a vector space over
F and it can be proved that it is finite dimensional over F' (see Exercises
17 and 18). The dimension of L(D) over F' is denoted by I(D). The number
(D) is sometimes referred to as the dimension of D.

Lemma 5.2. If A and B are linearly equivalent divisors, then L(A) and
L(B) are isomorphic. In particular, I(A) = I(B).

Proof. Suppose A = B + (h). Then a short calculation shows that z — xzh
is an isomorphism from L(A) with L(B).

Lemma 5.3. If deg(A) < 0 then [(A) = 0 unless A ~ 0 in which case
[(A)=1.

Proof. If deg(A) < 0 and z € L(A), then deg((z) + A) is both < 0 and
> 0 which is a contradiction. If deg(A) = 0 and L(A) is not empty, let
x € L(A). Then (z) + A > 0 and has degree zero, so it must be the zero
divisor. Thus, A ~ 0. Conversely, if A ~ 0, then {(4) = [(0) = 1 since
L(0) = F because z € L(0) implies z has no poles and so z € F.

Before stating the Riemann-Roch theorem it is worth pointing out that
Lemma 5.2 shows [(A) depends only on the class of A. Similarly, deg(A)
depends only on the class of A. Thus we could define /(A) and deg(A) and
state Riemann-Roch in terms of divisor classes. However, we prefer to state
it in terms of divisors which is more customary.
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Theorem 5.4. (Riemann-Roch) There is an integer g > 0 and a divisor
class C such that for C € C and A € Dg we have

I(A) = deg(A) — g +1+1(C — A).

The proof will be given in the next chapter. For other treatments see
Chevalley [1], Deuring [1], Eichler [1], Moreno [1], or Stichtenoth [1]. The
integer ¢ is uniquely determined by K, as we shall see, and is called the
genus of K. The genus of a function field is a key invariant. The divisor
class C is also uniquely determined and is called the canonical class. It is
related to differentials of K. In the next chapter we will define the notion
of a Weil differential. To each Weil differential will be associated a divisor.
It turns out that all such divisors are equivalent and that C, the canonical
class, is the equivalence class of divisors of Weil differentials.

We now give a series of corollaries to this important theorem.

Corollary 1. (Riemann’s inequality) For all divisors A, we have [(A) >
deg(A) —g+ 1.

Corollary 2. For C € C we have [(C) = g.

Proof. Set A =0 in the theorem.

Corollary 3. For C € C we have deg(C) = 2g — 2.
Proof. Set A = C in the theorem, and use Corollary 2.

Corollary 4. Ifdeg(A) > 29 —2, then [(A) = deg(A) —g+1 except in the
case deg(A) =29 —2 and A € C.

Proof. If deg(A) > 2g — 2, then deg(C — A) < 0. Now use Lemma, 5.3.

Corollary 5. Suppose that g' and C' have the same properties as those of
g and C stated in the theorem. Then, g = g’ and C ~ C'.

Proof. Find a divisor A whose degree is larger than max(2g—2,2¢' —2) (a
large positive multiple of a prime will do). By Corollary 4, [(A) = deg(A) —
g+1 =deg(A)—g'+1. Thus, g = ¢’. Now set A = C’ in the statement of the
theorem. Using Corollaries 2 and 3, applied to ', we see that [(C—C") = 1.
There is an = € K* such that (z) + C — C’ > 0. On the other hand,
(z) + C — C’ has degree zero by Corollary 3. Thus, it is the zero divisor,
and C ~ C'.

As an example of these results, consider the rational function field F(z).
Let (Roo, Po) be the prime which is, as we have seen, the localization of
the ring F'[1/z] at the prime ideal generated by 1/z. The corresponding ord
function is orde.(f) = — deg(f). By Corollary 4, for n large and positive
we must have I(nPs) = n — g + 1. On the other hand, one can prove that
f € L(nP,) if and only if f is a polynomial in T" of degree < n. Thus,
I(nPy) = n+ 1. It follows that g = 0. From this and Corollary 3 one sees
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that C has degree —2. It can be shown that Cl% = (1) so there is only one
class of degree —2 and we can choose any divisor of degree —2 for C'. A
conventional choice is C = —~2P,.

We can characterize the rational function field intrinsically as follows:
K/F is a rational function field if and only if there exists a prime P of K
degree 1 and the genus of K is 0. We have seen that rational function fields
have this property. Now, assume these conditions and consider [(P). Since
g = 0 we have [(D) =degD —g+1 =degD +1 for degD > 2g —2 =
—2. Thus, I(P) = 2 and we can find a non-constant function x such that
(z)+ P > 0. Since deg ( (z) + P) =1, it follows that (z) + P = @, a prime
of degree 1. Thus, (z) = Q — P and it follows that [K : F(z)] = 1. Thus,
K = F(x) as asserted.

In the same way one can investigate fields of genus 1. Assume K is a
function field of genus 1 and that there is a prime P of degree 1. Such a
field is called an elliptic function field. By the above results we have , for
any divisor D, {(D) = deg(D) if deg(D) > 2¢g — 2 = 0. Thus, {(nP) =
n for positive integers n. Taking n = 2 and n = 3 we see there exist
functions = and y with polar divisors 2P and 3P, respectively. It follows
that [K : F(z)] = 2 and [K : F(y)] = 3 so that K = F(z,y). We see that
y must satisfy a quadratic equation over F(z). One can prove much more.
If the characteristic of F' is different from 2 one can show that by a small
change of variables y can be chosen so that y? = f(z) where f(x) is a cubic
polynomial of degree 3 without repeated roots. See Silverman [3] for more
details.

For the rest of this section we assume that F = F is a finite field with
g elements. A function field in one variable over a finite constant field is
called a global function field. Our next goal is to define the zeta function
of a global function field K/ and to investigate its properties.

It was proven by F.K. Schmidt, Schmidt [1], that a function field over a
finite field always has divisors of degree 1. We will assume this, although
it is possible to give a proof without introducing any new concepts. Using
Schmidt’s theorem, we have an exact sequence

(0) = Cly — Clx - Z — (0).

We will prove shortly that the group Ci% is finite. Denote its order by
hg. The number hx is called the class number of the field K. This number
is an important invariant of K and has been the object of much study. The
above exact sequence shows that for any integer n there are exactly hg
classes of degree n.

Lemma 5.5. For any integer n > 0 the number of effective divisors of
degree n 1is finite.

Proof. (Sketch) Choose an « € K such that z is transcendental over F.
K /F(z) is finite. The primes of F(z) are in one to one correspondence with
the monic irreducible polynomials in Flz] with the one exception of the
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prime at infinity. Thus, there are only finitely many primes of F(z) of any
fixed degree. By standard theorems on extensions of primes (see Chapter
7) one sees that there are only finitely many primes of K of fixed degree. If
Y pa(P)P is an effective divisor of degree n then each prime that occurs
with positive coefficient must have degree < n. There are only finitely many
such primes. Moreover the coefficients must be < n, so there are at most
finitely many such effective divisors.

We define a,, to be the number of primes of degree n and b,, to be the num-
ber of effective divisors of degree n. Both these numbers are of considerable
interest.

Lemma 5.6. The number of divisor classes of degree zero, hy, is finite.

Proof. Let D be a divisor of degree 1. If A is any divisor of degree 0, then
deg(9D+ A) = g and so by Riemann’s inequality, [(¢D+A) > g—g+1 = 1.
Let f € L(gD + A). Then, B = (f)+ gD+ A >0and so A~ B —gD
where B is an effective divisor of degree g. It follows that the number of
divisor classes of degree zero is bounded above by the number of effective
divisors of degree g which is finite by Lemma 5.5. More precisely, what we
have shown is that hj < by.

We have now proved that the class number hx = |Cl%]| is finite. Later we
will give estimates for the size of hx derived from the Riemann hypothesis
for function fields (see Proposition 5.11).

Lemma 5.7. For any divisor A, the number of effective divisors in A is
g1

q—1

Proof. We begin by showing that A contains effective divisors if and only
if [(A) > 0.

Suppose B € A and is effective. There is an f € K* such that (f) +4 =
B >0,s0 f € L(A) and [(A) > 0. The converse is obtained by just running
this proof backwards.

Suppose {(A) > 0. The map from L(A) — {0} to effective divisors in A
given by f — (f)+ A is onto. Two functions f and f’ have the same image
ff (f) + A= (f)+Aiff (f) = (f") iff (f/f7') = 0. The last condition
happens iff f/f~' is in F* by Proposition 5.1. Since L(A) — {0} has ¢!(4) —~1
elements and the fibers of our map have g — 1 elements, the result follows.

Finally, if I(A) = 0, then ¢'(*) — 1 = 0 and the result holds in this case
as well.

For A € Dk define the norm of A, NA, to be ¢4°8(4), Note that NA is a
positive integer and that for any two divisors A and B we have N(A+B) =
NANB.

Definition. The zeta function of K, (x(s), is defined by
(k(s) =) NA™"

A>0
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Over the rational function field k¥ = F(T) we did not discuss the zeta
function of k but rather the zeta function associated to the ring A = F[T].
These are closely related. In fact, it is not hard to prove that {a(s) =
Ce(8)(1=q7%), 50 Ck(s) = (1—¢g*~*)~ (1 —¢~*)~!. Also in the general case
it is sometimes useful to associate zeta functions with appropriate subrings
of the field. However, for the purposes of the following discussion we will
concentrate on the zeta function of the field

The term NA™* in the definition of the zeta function is equal to ¢
where n is the degree of A. Thus the zeta function can be rewritten in the

form -
bn,
CK(S) = Z .

ns
n=1 q

—ns

Another key fact is that we have an Euler product for (x(s). Using the
multiplicativity of the norm and the fact that Dk is a free abelian group
on the set of primes we see, at least formally, that

¢x(s) =11 (1— Nlps)_l :

P

Recalling that a, is the number of primes of degree n, we observe that
this expression can be rewritten as follows:

) =1 (1 - 51—)_ -

n=1

We shall soon see that all these expressions converge absolutely for
R(s) > 1 and define analytic functions in this region.

Lemma 5.8. Let h = hy. For every integer n, there are h divisor classes
of degree n. Suppose n > 0 and that { A1, Aa, ..., An} are the divisor classes
of degree n. Then the number of effective divisors of degree n, b, is given

h gl(Az)_l
by Zi=1 -1

Proof. The first assertion follows directly from Lemma 5.6 and the remarks

preceding Lemma. 5.5. The second follows just as directly from Lemmas 5.6
and 5.7.

By Lemma 5.7 and Corollary 4 to Theorem 5.4, we see that if n > 2g—2,

then b, = hkﬂ%. It follows that b, = O(q"). From this fact, and the
expression (i (s) = Y oo o bng™™*, it follows that (k (s) converges absolutely
for all s with R(s) > 1.

In the same way we can prove the product expression for (x (s) converges
absolutely for R(s) > 1. To do this it suffices, by the theory of infinite
products, to show that Y >° | a,|¢~™*| converges in this region. This follows

immediately since a,, < b, = O(¢"™).
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The next thing to do is to investigate whether {x(s) can be analytically
continued to all of C and whether it satisfies a functional equation, etc.
The next theorem shows that the answer to both these questions is yes,
and that a lot more is true as well.

Theorem 5.9. Let K be a global function field in one variable with a finite
constant field F with g elements. Suppose that the genus of K is g. Then
there is a polynomial Ly (u) € Z[u] of degree 2g such that

Lk(a™?)
(I=g=*)(1—q'%)

This holds for all s such that R(s) > 1 and the right-hand side provides an
analytic continuation of (x(s) to all of C. {x(s) has simple poles at s = 0
and s = 1. One has Lig(0) = 1, L (0) = a1 — 1 — g, and Lg(1) = hk.
Finally, set £x(s) = ¢9=V5¢k (s). Then for all s one has Ex(l—s) =Ek(s)
(this relationship is referred to as the functional equation for (g (s)).

Ck(s) =

Proof. It is convenient to work with the variable v = ¢—°. Then

Cre(s) def Zg(u Z bru™

n—g+1

We noted earlier that for n > 2g — 2 we have b, = hy i—q——-— Sub-
stituting this into the above formula and summing the resulting geometric
series, yields

2g—2 qg 1
b K - 201, 1
Z nu” +q—~1<1~qu 1—u>u (1)

From this, simple algebraic manipulation shows

Ly (u)
(I—u)(1-qu

From Equation 2, we see the expression for {(s) given in the theorem is
correct. We will show that Lg (1) and Li(¢~?!) are both non-zero. Thus,
Ck(s) has a pole at 0 and 1. The fact that deg L (u) < 2g also follows
from this calculation. Substituting » = 0 yields Lx(0) = 1. Comparing the
coefficients of u on both sides yields by = L} (0) + 1 + ¢. It is easy to see
that b; = a; = the number of primes of K of degree one.

From Equation 1 above, we see that lim,_1(u — 1)Zk (u) = hi /(g — 1).
From Equation 2 we see

Zr(u) = with Ly (u) € Z[u). (2)

lim (u—1)Zg(u) = ~Lx() .

u—1 1—g¢q

Thus, Lg (1) = hg, as asserted.



54 Michael Rosen

As for the functional equation, recall that b, = 3 4o, iop (@@ —1)/
(g —1). Then,

> P i i 1
(@-DZx@) =3 | > ¢P-1]ur= 3 Durd—hp—
n=0 \deg A=n deg A>0

_ _ 1 ﬁ _
— Z ql(A)udegA — hy — + Z g+ Ay deg A
0<deg A<L2g—2 2g—2<deg A<oo

_ _ 2g—1
= Z g Ay deg A —hK—l— +hK9_{1Lg_
= 1—u 1—qu
0<deg A<2g-2
Multiplying both sides by u!~9 we have (¢—1)u'=9Zk (u) = R(u)+S(u)
where

ul—9 q9ufd

= U(A), deg A —g+1 _
R(u) Z q‘“Mu and S(u) hKl—u —l—hKl_qu.

0<deg A<2g—-2

A direct calculation shows that S(u) is invariant under v — ¢~ lu~l
R(u) is also invariant under this transformation. To see this, first note that

R(q——lu—l) — Z ql(A)+g—1—degAu- deg A+g—1 .

deg A<2g—2
From the Riemann-Roch Theorem, Theorem 5.4, and Corollary 3, we see
C—A)=deg(C—-A)—g+1+1(A)=g—1—degA+I(A).
Substituting this expression into the formula for R(g™!u™!) yields

S o Ty
deg A<2g—2

Since A — C — A is a permutation of the divisor classes of degree d with
0 <d < 2g-2it follows that R(g~u~!) = R(u) as asserted. We have now
completed the proof that u!=9Z (u) is invariant under the transformation

Since u'™9Zk (u) is invariant under u — ¢~ lu~!, it follows easily that
q79u" %Lk (u) = L (g tu™?). Letting u — oo we see that deg L (u) = 2g
and that the highest degree term is q9u29.

Finally, recalling that u = ¢~¢, we see that u!=9 = g9~V and the
transformation v — ¢~ lu™! is the same as the transformation s — 1 — s.
So passing from the u language to the s language we see we have shown
&k (8) is invariant under s — 1 — s, as asserted.
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The polynomial Lg(u) defined in the theorem carries a lot of informa-
tion. Since the coefficients are in Z we can factor this polynomial over the

complex numbers,
29

Li(w) =[] - mu)

i=1

It is worth pointing out that the relation Lx (g7 u™1) = ¢ 942 Lk (u)

implies that the set {m,ms,..., 734} is permuted by the transformation
m — g/m. This is easily seen to be equivalent to the functional equation for
Cr(8).

Since (i (s) has a convergent Euler product whose factors have no zeros in
the region Re(s) > 1, it follows that (x (s) has no zeros there. Consequently,
L (u) has no zeros in the region {u € C | |u} < ¢7}. For the inverse roots,
m;, the consequence is that |m;| < q. We will prove later, Proposition 5.13,
that |m;| < ¢ for all ¢ and this will have a number of important applications.
However, much more is true. The classical generalized Riemann hypothesis
states that the zeros of (x(s), the Dedekind zeta function of a number field
K, has all its non-trivial zeros on the line R(s) = 1/2. Riemann conjectured
this for {(s), the Riemann zeta function. Neither Riemann’s conjecture nor
its generalizations are known to be true. In fact, these are among the most
important unsolved problems in all of mathematics. However, the analogous
statement over global function fields was proved by A. Weil in the 1940s.

Theorem 5.10. (The Riemann Hypothesis for Function Fields) Let K be
a global function field whose constant field F has q elements. All the roots of
Cc(s) lie on the line R(s) = 1/2. Equivalently, the inverse roots of Ly (u)
all have absolute value ,/q.

Theorem 5.10 was first conjectured for hyper-elliptic function fields by
E. Artin in his thesis, Artin {1]. The important special case when g = 1 was
proven by H. Hasse. The first proof of the general result was published by
Weil in 1948. Weil gave two, rather difficult, proofs of this theorem. The first
used the geometry of algebraic surfaces and the theory of correspondences.
The second used the theory of abelian varieties. See Weil [1] and Weil
[2]. The whole project required revisions in the foundations of algebraic
geometry since he needed these theories to be valid over arbitrary fields not
just algebraically closed fields in characteristic zero. In the early seventies,
a more elementary proof appeared due, in a special case to Stepanov, and
in the general case to Bombieri [1]. We will give an exposition of Bombieri’s
proof in the appendix to this book.

Here are two simple but important consequences of the Riemann Hy-
pothesis.

Proposition 5.11. The number of prime divisors of degree 1 of K, aq,
satisfies the inequality |a; — ¢ — 1| < 2g,/g. Also, (\/§ —1)% < hg <

(Vg +1)%.
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Proof. By Theorem 5.9, L (0) = a1 —¢—1. From the above factorization of
Lk (u) we see —L(0) = my 7o+ - - +moq. The first assertion is immediate
from this and Theorem 5.10.

As for the second assertion, we have hg = Lg(1l) = Hfil(l — m;), by
Theorem 5.9. Now use Theorem 5.10 once again.

Here are several qualitative consequences of this proposition. If ¢ is big
compared to the genus, then there must exist primes of degree one. Indeed,
a1/q — 1 if we fix g and let ¢ grow. Secondly, if ¢ > 4 we must have
hx > 1. Also, if we fix g and let ¢ tend to infinity then hy /q? — 1 (here,
K is varying over global fields of fixed genus g with varying constant fields).
Moreover, if we fix ¢ > 4 and let g grow, then hx — oo.

We can now present a generalization of Proposition 2.3, which, as we
pointed out, is an analogue of the prime number theorem.

Theorem 5.12.
q" g%

Proof. Using the Euler product decomposition and Theorem 5.9, we see

W) = Hz?il(]'—’n—’iu) _ N _ yd)ad
2 = P g~ 110

Take the logarithmic derivative of both sides, multiply the result by u ,
and equate the coefficients of u™ on both sides. We find

2g
qN +1—Z7rfv :Zdad
i=1 d|N
Using the Mdbius inversion formula, yields
N 29 N
Nay =) u(d)g? +0+Y_ u(d) (Zm") :
d|N d|N i=1

Let e(N) be —1 if N is even and 0 if N is odd. Then, as we saw in the
proof of Proposition 2.3,

> u(d)g T =g~ —e(N)g¥ + O(Ng¥) .
dN

Similarly, using the Riemann hypothesis, we see

29
> u(d) (Zﬂ%) < 29q% +2gNg¥ .
=1

dIN
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Putting the last three equations together, we find
Nay = ¢" +0(¢7) .
The theorem follows upon dividing both sides by N.

Note that, in this proof, it was crucial to know the size of the zeros of the
zeta function. The proof of Proposition 2.3 was so easy because the zeta
function of A = F[T] has no zeros!

We wish to derive yet another expression for the zeta function. To this
end we consider once more the equation

Zr(w) = [J@—uh)™.

Take the logarithm of both sides and write the result as a power series
in u using the identity —log(l —u) = Y oo_, w™/m. The result is

oo

Nin
log Zg(u) = —u™,
) mz;l ~

where the numbers N,, are defined by Ny, = )y, dag . These numbers
have a very appealing geometric interpretation, which we shall explain in
more detail later. Roughly speaking, what is going on is that the function
field K/F is associated to a complete, non-singular curve X defined over
F. The number N,, is the number of rational points on X over the unique
field extension F,, of IF of degree m. In any case, using these numbers, the
zeta function can be given by

oo

Zr(u) = exp (Z %n—um> .

m=1

In the course of the proof of Theorem 5.12, we showed that
2g
Nm:qm+1-2ﬂ” .
i=1

This equality plays an important role in the proof of the Riemann hy-
pothesis for function fields. If we assume the Riemann hypothesis, another
consequence is

|Nm_qm"‘1| S2gq% .

We will interpret this inequality in Chapter 8 when we discuss constant
field extensions of function fields (see Proposition 8.18).
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We conclude this chapter by showing how to obtain a weaker result than
the Riemann hypothesis, which nevertheless is strong enough to give a proof
that

N
ay = #{P| deg(P) = N} ~ %= .

Before the statement and proof of the next proposition, we need to deal
with an important technical point. Since (x(s) is a rational function of
g~*, it is a periodic function of s with period 2mi/log(q). Since it has a
pole at s = 0 and at s = 1 it has infinitely many poles on both the line
R(s) = 0 and the line R(s) = 1. We will be concerned with the latter line.
From Theorem 5.9, we see that all the poles on this line are at the points
1 4+ 2wmi/ log(q) for m € Z.

Proposition 5.13. Let K be a global function field. The zeta function of
K, (k(s), does not vanish on the line R(s) = 1.

Proof. The proof of this proceeds, for the most part, exactly as in the case
where K is a number field. It is based on the trigonometric inequality

3+4cosf+cos20 >0 .

The proof of this inequality consists of nothing more than noticing that
the left hand side is 2(1 + cos 6)2.

Write s = o + it where o and ¢ are real. Assume that ¢ > 1. Then a
short calculation with the Euler product for {x(s) yields

R log(k(s) =Y m ' NP™™ cos(tlog NP™) .
Pm

Now, replace t with 0,¢,and 2t and use the above identity to derive
3Rlog k(o) + 4Rlog Ck (o + it) + Rlog k(o + 2it) >0 .

Exponentiating, we find

Sk ()P [k (@ + it)[* ¢ (0 +2it)] > 1.

This inequality holds for ¢ > 1 and all real t. Suppose t is such that
Cx (1 +14t) = 0. Of course, such a t cannot be zero. It follows that k(o +
it)/(c — 1) is bounded as ¢ — 1. We know that (¢ — 1){k (o) is bounded
as ¢ — 1 since by Theorem 5.9, (x(s) has a simple pole at s = 1. Finally,
Cx (o + 2it) is bounded as ¢ — 1 provided that ¢ is not an odd multiple
of m/log(q) (see the remarks preceeding the Proposition). Assume this for
now. Putting everything together shows that the left-hand side of the above
inequality tends to zero as ¢ — 1, which contradicts the fact that it is
always greater than or equal to 1.

Now suppose that ¢ is an odd multiple of 27/ log(g). In this case, g~ (1+%) =
~g~1. We must show that (x (1 + it) = Zk(—q~1) # 0. By the functional
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equation, Zx (—g™!) is related to Zx(—1), which in turn is not zero if and
only if Lg(—1) # 0. To show this we must, unfortunately, use a result from
a later chapter, namely, Theorem 8.15.

Let F5 be a quadratic extension of the constant field F. One can form
a new function field from K by extending the field of constants from F to
F,. Call this new field K5. Using Theorem 8.15 we can derive the following
relation between Ly, (u) and Lg (u).

LK2 (u2) = LK(U)LK(—U) .

Substitute u = 1 into this relationship and use Theorem 5.9 once again.
We find that hg, = hg L (—1) from which it is clear that Lg(—1) # 0.

Corollary. There is a real number § < 1 such that {x(s) does not vanish
in the region {s € C | Rs > 6}.

Proof. The zeta function is represented by a convergent Euler product in
the region {s € C | R(s) > 1} and so doesn’t vanish there. By the functional
equation (see Theorem 5.9) it doesn’t vanish in {s € C | R(s) < 0} either.
From the Proposition it doesn’t vanish on the boundary of these regions.

The key point that makes the function field case different from the num-
ber field case is that (x(s) is a function of ¢~° and so it is periodic with
period 273/ log q. Thus we may confine our search for zeros to the compact
region {s e C | 0 < R(s) <1, 0 < Y(s) < 2mi/logg}. The zero set of an
analytic function is discrete, so the number of zeros in this region is finite.
The corollary follows immediately.

The Riemann hypothesis for the function field case is that # can be taken
to be 1/2. It is worth pointing out that nothing as strong as the above
corollary is known to be true in the number field case. Zero free regions to
the left of the line R(s) = 1 are known to exist, but the boundary of these
regions approach the line as |3(s)| — oo.

Translating the above corollary into a result about Ly (u) = Hfi (1=
miu), we see that the assertion is that |m| < ¢® forall 1 < i < 2¢g. If we
use this estimate instead of the Riemann hypothesis and follow the steps
of the proof of Theorem 5.12, we arrive at the following result.

qN an
ay = #{P | deg(P) = N} = W+O<T> .

As promised, this is good enough to show ay ~ ¢ /N as N — oo, a
result which is much weaker than Theorem 5.12, but is still very interesting.

Exercises

1. Suppose K/F has genus zero. For a divisor D with deg D > —1 show
that {(D) =deg D + 1.



60

10.

Michael Rosen

Suppose K/F has genus zero and that C' is a divisor in the canonical
class. Show [(—C) = 3 and conclude that there is a prime P of degree
less than or equal to 2.

Suppose K/F has genus zero and that there is a prime P of degree
1. Show K = F(z) for some element z € K.

. Suppose K/F has genus zero and that P is a prime of degree 2.

By Exercise 1, [(P) = 3. Let {1,z,y} be a basis for L(P). Show
K = F(z,y). Show further that {1,z,y,z2 y% 2y} C L(2P) and
conclude that = and y satisfy a polynomial of degree 2 over F.

Suppose that K/F has genus 1. Show that [(D) = degD for all
divisors D with deg D > 1.

. Suppose K/F has genus 1 and that P is a prime of degree 1. By the

last exercise we know [(2P) = 2 and I(3P) = 3. Let {1,z} be a basis
of L(2P) and {1,z,y} be a basis of L(3P). Show that K = F(z,y).
Show also that x and y satisfy a cubic polynomial with coeflicients
in F of the form

Y2+a1XY+a3Y:X3 +a2X2+a4X+a6 .

Hint: Consider L(6P).

. Let K/F be of positive genus and suppose there is a prime P of

degree 1. Suppose further that L(2P) has dimension 2. Let {1, 2} be
a basis. If char F # 2, show that there is an element y € K such that
K = F(z,y) and such that z and y satisfy a polynomial equation
of the form Y? = f(X) where f(X) is a square-free polynomial of
degree at least three.

. Use the Riemann-Roch theorem to show that if B and D are divi-

sors such that B + D is in the canonical class, then |[(B) — I(D)| <
3| deg B) ~ deg(D)|.

. Suppose P is a prime of degree 1 of a function field K/F'. For every

positive integer n show {((n + 1)P) — {(nP) < 1.

Let K/F be a function field of genus g > 2, and P a prime of degree
1. For all integers k we have [(kP) < [((k + 1)P). If we restrict k to
the range 0 < k < 2g — 2 show there are exactly g values of k where
I(kP) = I((k + 1)P). These are called Weierstrass gaps. Assume F'
has characteristic zero. If all the gaps are less than or equal to g we
say P is a non-Weierstrass point, if not, we say P is a Weierstrass
point. It can be shown that there are only finitely many Weierstrass
points. In characteristic p there is a theory of Weierstrass points (due
to H. Schmid), but the definition is somewhat different.
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Suppose K/F has genus 1 and that Py is a prime of degree 1, also
called a rational point. Let E(F) denote the set of rational points.
If P,Q € E(F), show there is a unique element R € E(F') such that
P+ Q ~ R+ Py. (Recall that for two divisors A and B, A ~ B
means that A — B is a principal divisor). Denote R by P @ Q. Show
that (P, Q) — P & Q makes E(F) into an abelian group with Py as
the zero element.

With the same assumptions as Exercise 11, map E(F) — Cl% by
sending P to the class of P — P,,. Show that this map is an isomor-
phism of abelian groups.

Let K/F be a function field and o an automorphism of K, which
leaves F fixed. If (O, P) is a prime of K, show that (¢cO, 0 P) is also
a prime of K. Show, further, that for all @ € K, we have ord,p(a) =
ordp(c~!a).

(Continuation). The map P — o P on primes extends to an action of
o on divisors. If a € K*, show that o(a) = (ca).

(Continuation). If D is a divisor of K, show a — ¢a induces a linear
isomorphism from L(D) — L(oD). In particular, if ¢ fixes D, i.e.,
oD = D, then ¢ induces an automorphism of L(D).

(Continuation). Suppose P is a prime of degree 1 and that o P = P.
Then, o induces an automorphism of L((2¢ + 1)P). If this induced
map is the identity, show that ¢ is the identity automorphism. (Hint:
Find two elements z,y € K* fixed by o such that K = F(z,y)).

Let A be a divisor and P a prime divisor. Suppose g € L(A + P) —
L(A).If f € L(A+ P) show f/g € O,. Use this to prove [(A+ P) <
I(A) + deg(P).

Use Exercise 17 to show [(A) < deg(A) +1 if A is an effective divisor.
Show further that this inequality holds in general. Thus, {{A) is finite
for any divisor A.
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Weil Differentials
and the Canonical Class

In the last chapter we gave some definitions and then the statement of the
Riemann-Roch theorem for a function field K/F. In this chapter we will
provide a proof. In the statement of the theorem an integer, g, enters which
is called the genus of K. Also, a divisor class, C, makes an appearance,
the canonical class of K. We will provide another interpretation of these
concepts in terms of differentials. Thus, differentials give us the tools we
need for the proof and, as well, lead to a deeper understanding of the
theorem. In addition, the use of differentials will enable us to prove two
important results: the strong approximation theorem and the Riemann-
Hurwitz formula. The first of these will be proven in this chapter, the second
in Chapter 7, where we will also prove the ABC conjecture in function fields
and give some of its applications.

We will use a notion of differential which is due to A. Weil. It is somewhat
more abstract than the usual definition but has the advantage of requiring
no special assumptions about the constant field. Also, it leads to very short,
conceptual proofs of the two theorems mentioned in the last paragraph. We
will motivate the definition by first discussing some properties of differen-
tials on compact Riemann surfaces. If the reader is unfamiliar with this
theory, he or she can skip directly to the definition of Weil differential in
the purely algebraic setting.

Let X be a compact Riemann surface of genus g, M the field of mero-
morphic functions on X, and € the space of meromorphic differentials on
X. Fix a non-zero differential w € Q and a point z € X. Let ¢t be a lo-
cal uniformizing parameter at x. In some neighborhood around = we can
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express w in the following form:

W= i a;t* dt. (1)

i=—N

If f € M., the field of germs of meromorphic functions at z, then we
can integrate fw around a small circle about = to get 27i Res,(fw). If

f= Zf___M bjt?, then

Resz (fw) = Z aib;. (2

itj=—1

Let w, be defined to be the C-linear map f — Res,(fw) from M, to
C. We now look into the question of what restrictions are placed on the
collection of linear functionals {w, | « € X} by the fact that they arise
from a differential in the manner indicated.

We recall the definition of the order of w at a point z, ord,(w). Write
w locally in terms of a uniformizing parameter as in Equation 1. Then the
order of w at z is defined to be the smallest index i such that a; # 0. This
number is independent of the choice of uniformizing parameter. If a_y # 0,
then ord;(w) = —N. It is well known that ord,(w) = 0 for all but finitely
many points £ € X and thus we can associate to w £ 0 a divisor:

(w) = Z ord, (w) z.

zeX

This definition will be useful as we go along. For the moment we will show
how to characterize the number ord,(w) in a different way. Let O, C M,
be the ring of germs of holomorphic functions at z. Each element of O,
has a power series expansion in terms of a uniformizing paramenter ¢, at z
with all coefficients of negative index zero. O, is a discrete valuation ring.
Its unique maximal ideal P, is generated by t,. Every non-zero fractional
ideal of O, is a power P of P, where m can be any integer. With this
notation we show—

Lemma 6.1. Let w be a non-zero meromorphic differential, x € X, and
wy the linear functional on M, described above. There is an integer N such
that w, vanishes on PN but not on PN =1, This integer is characterized by

ord,(w) = —N.

Proof. Since we are fixing z in our considerations we set t, = t and
suppose w is expressed in terms of ¢ as in Equation 1. Assume a_ # 0 so
that ord;(w) = —N. From equation (2) it is then clear that w, vanishes on
PY. On the other hand, tV=! € PN=1 and w, (tN~1) = a_y # 0.

Corollary. w, is zero on O, but not on P;! for all but finitely many
zeX.
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Proof. This follows from the lemma and the fact that ordg(w) = 0 for all
but finitely many =z € X.

Lemma 6.1 shows that the linear functionals w, must satisfy certain van-
ishing properties. These are all local properties only involving the knowl-
edge of the behavior of w in the neighborhoods of points. In addition, there
is at least one global constraint.

Lemma 6.2. For every f € M we have

wa(f) =0.

z€X

Proof. Note that f € M implies f € M, for all z € X, so the terms in the
sum make sense. Also, f € O for all but finitely many = {on a compact
Riemann surface a meromorphic function has at most finitely many poles).
By the corollary to Lemma, 6.1, w,(f) = 0 for all but finitely many z € X.
Thus, the sum is finite.

Now, fw is also a meromorphic differential. It is a well-known theorem
that on a compact Riemann surface the sum of the residues of a meromor-
phic differential is zero. Thus,

Z we(f) = Z Res, (fw) = 0.

rzeX zeX

We now have all the background we need to set up the notion of a Weil
differential. Let A(X) be the subset of [], M, consisting of elements with
all but finitely many coordinates in Q.. It is clear that A(X) is a ring
with addition and multiplication defined coordinatewise. We will denote
the elements of A(X) by ¢ = (fz); i-e., the z-th component of ¢ is f; .
A(X) is a vector space over C in the obvious way, a¢ = a(fz) = (afz). If
w € Q, define @ : A(X) = C by

B(¢) = walfa)-

zeX

By the corollary to Lemma 6.1 and the definition of A(X), the sum on the
right-hand side of the above equation is finite.

Let’s map M into A(X) by sending f to (fs), where f, = f forallz € X.
Clearly, M is isomorphic to its image under this map and from now on we
identify M with its image. Lemma 6.2 can now be interpreted as asserting
that © vanishes in M.

Let D = ) n, z be any divisor on X. We associate to D a subset of
A(X), namely, A(D) = {(fz) € AX) | ords(fz) > —ns, Vo € X} (we
use the convention that ord,(0) = oo, which is greater than any integer).
Recall that a divisor D is said to be effective, D > 0, if all its coefficients
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are non-negative, and one divisor is bigger than another if their difference
is effective, i.e., D < C iff C — D > 0. One then checks easily that D < C
implies A(D) C A(C) and that |J A(D) = A(X).

With these definitions, the definition of &, Lemma 6.1, and Lemma 6.2
we can easily prove—

Lemma 6.3. The functional @ vanishes on both M and A((w)). Moreover,
if @ vanishes on A(D), then A(D) C A((w)).

It is possible to show, although we shall not do so here, that if X is a
linear functional on A(X) and A vanishes on both M and A(D) for some
divisor D, then there is a unique differential w € € such that & = \. For
the case when X is the Riemann sphere see Chevalley [1], pp. 29-30. This
being so, in the abstract case we shall, following Weil, define differentials
to be linear functionals on a certain space, the adele ring of the function
field, having properties analogous to those we have seen to be true for the
functionals @ on A(X).

For the remainder of this chapter, let K/F' be a function field with con-
stant field F'. We make no assumptions about F. Other notations will be
the same as those in Chapter 5, except that we now introduce the new
notation Sy for the set of prime divisors of K.

For P € Sk let |a|p = 27°747(@) for g # 0 and [0|p = 0 (2 is chosen
for convenience, any number greater than one will do). Define a metric on
K by pp(a,b) = |a — b|p. We denote by Op and Kp the completions of
the local ring Op and the field K with respect to this metric. We assume
that the reader is familiar with standard facts about completions. See, for
example, Lang [5], Chapter II . The adele ring of K is defined as

Ak = {(ap) € [[Kr | ap € Op for all but finitely many P € SK} :
P

The analogy between the adele ring Ax of the function field K and the
ring A(X) which we attached to a compact Riemann surface is clear.

We imbed K into Ag by taking z € K to (zp) where for all P, zp = z.
Since for any element z € K, either z = 0 or ordp(z) = 0 for all but finitely
many P, the image of z is indeed in Ag. K is isomorphic to its image and
we identify K with its image under this map.

If D =} pn(P)P is adivisor of K, define Ax (D) as the set of all (zp) €
Ak such that ordp(zp) > —n(P) for all P € Sp (notice the minus sign!).
Then, as in the Riemann surface case, it is easy to see that D < C implies
Ag(D) € Ag(C) and that |J Ax (D) = Ak. It is also useful to notice that
Ak(D)NAg(C) = Ag((D,C)) and Ak (C)+ Ak (D) = Ak([C, D]), where
(C,D) and [C, D] denote the infimum of C and D and the supremum of C
and D, respectively. More concretely,

ordp((C, D)) min(ordp(C),ordp(D)) and
ordp([C, D)) max(ordp(C), ordp(D)).

il
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A very important remark for our further considerations is that Agx(D)N
K = L(D), the vector space whose dimension over F, I(D), is the focus of
interest in the Riemann-Roch theorem. This equality follows directly from
the definitions of Ax (D), L(D), and the way K is imbedded in Ag (D).

We note that Ax and the subsets Ax (D) are all vector spaces over F
under the obvious operation; for o € F, a(zp) = (axp). With all these
definitions in place, we can now define a Weil differential.

Weil Differential. An F-linear map w from Ag to F is called a Weil
differential if it vanishes on K and on Ak (D) for some divisor D. We
denote the set of Weil differentials on K by Qx and the set of all Weil
differentials which vanish on Ag (D) by Qg (D).

A number of remarks are in order. To begin with, many authors define a
somewhat smaller ring than the adele ring, namely, the ring of repartitions,
and define Weil differentials using it. The advantage is that one avoids going
to the completion at all the primes P of K. While this is more elementary,
some of the proofs become more difficult. In particular, the proof of the
Riemann-Hurwitz formula is more transparant using the full ring of adeles
and this is the principal reason we have used adeles in the above definition.

It is usual to define a topology on Ax by declaring the subsets Ag (D)
to be the open neighborhoods of the identity (the adele, all of whose coor-
dinates are zero). We can then say that a Weil differential is a continuous
F-linear functional on Ag which vanishes on K. We will not, however,
make much use of topological considerations.

Ak is a vector space over K and all the sets Ag (D) are vector spaces
over F' as we have seen. (i also can be made into a vector space over K
by means of the following definition. Let £ € Ax and z € K. Define

(zw)(§) = w(=f).

It is clear that zw is an F-linear functional on Ax and that it vanishes
on K. It requires but a short calculation to see that w € Qg (D) implies
zw € Qg ((z) + D). Thus, zw is a Weil differential.

From now on we will refer to the elements of Qg simply as differen-
tials rather than Weil differentials. We will show (Proposition 6.7) that the
spaces Qg (D) are finite dimensional over F. Before doing that, we need
some important preliminary material. In particular, we need Riemann’s
inequality, the precursor to the Riemann-Roch theorem.

Lemma 6.4. Let D < C be divisors of K. Then,
dimp Ag(C)/Ax (D) = deg C — deg D.

Proof. If C = D the result is clear. Otherwise, C is obtained from D by
adding finitely many primes, so it suffices to show that

dimpg AK(D -+ P)/AK(D) =deg P
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for any prime P.

Let P = POp. Let n = ordpD. If £ = (ap) € Ag(D + P), then
ordp(ap) > —n—1 which is the same as ap € P~n=1 Now map Ar(D+P)
to P~"=1/P~™ by taking £ = (ap) to the coset of ap modulo P~™. This
is clearly an epimorphism and from the definitions the kernel is seen to be
Ak (D). Thus,

A (D + P)/Ag(D) = P=n=1/p=n & p=1=1/p=n 22 Op /P,
All these isomorphisms preserve F-vector space structure. Since
dimp Op/P = deg P,

the result follows.

Lemma 6.5. Let D < C be divisors of K. Then,

Ag(C)+ K
Ag(D)+ K
Proof. Recall that Ag(C)N K = L(C). Using the first and second laws of

isomorphism, the space on the left-hand side of the above equation is seen
to be isomorphic to

Ax(©) . Ax(C)/ Ax(D)
Ax(D)+ L(C) ~ (Ak(D)+L(C)) / Ak(D)’

Using the first law once again, we see that (Ax (D) + L(C)) / Ak (D) =
L(C)/L(D). Thus,
Ag(C)+ K
Ax(D)+ K

Using Lemma 6.4, the right-hand side is equal to (deg C — deg D)) —
(I(C) = UD)) = (deg C = I(C)) — (deg D — [(D)) as asserted.

Corollary. For a divisor D, define r(D) = deg D — (D). If D < C, then
r(D) < r(0).

Proof. This is an immediate consequence of the Lemma since the dimen-
sion of a vector space is a non-negative integer.

dimp = (deg C — I(C)) — (deg D — I(D)).

dimF :dimp AK(C)/AK(D) ——dlmFL(C)/L(D)

Since both deg D and !(D) only depend on the linear equivalence class
of D, the same is true of (D). We will use this remark in a moment.

Theorem 6.6. (Riemann’s Theorem) Let K/F be an algebraic function
field with field of constants F. There is a unique integer g > 0 with the
following two properties. For all divisors D, we have [(D) > deg D — g+ 1.
Also, there is a constant ¢ such that for all divisors D with degD > ¢
we have [(D) = deg D — g+ 1. (g will turn out to be the constant in the
Riemann-Roch theorem, i.c., the genus of K ).



6. Weil Differentials and the Canonical Class 69

Proof. Choose an element z € K* —F*. Then, K/F(x) is a finite extension
of degree n, say. Let B = (z)c be the divisor of poles of x. The primes P
which occur in the support of B are the only ones for which ordp(z) < 0.
By Proposition 5.1, deg B = [K : F(z)] = n.

Consider the integral closure, R, of Flz] in K. If p € R, the only poles of
p are among the poles of . Thus, p € L(mgB) for some positive integer my.
It is a standard fact that we can find a basis {p1,p2,...,pn} for K/F(z)
such that p; € R for 1 < i < n. Choose a positive integer mg such that
pi € L(moB) for all 1 < i < n. For any integer m > mo the elements z7p,
with 0 < j<m-—mgand 1 <i<nareallin L(mB) and are linearly
independent over F'. We conclude from this that

ImB)>2n(m—mo+1) .
It follows that for any m > my we have
r(mB) = degmB — I(mB) < mn —n(m—mo+1) =nmg —n .

This shows that r(mB), which is an increasing sequence by the Corollary
to Lemma 6.5, is bounded above and so must remain constant from some
point on. Call this maximum value g — 1. Since O < mB, —1 = r(0) <
r(mB) < g — 1. It follows that g > 0.

Let D be any divisor. Write —D = Dy + D5 where the support of Dy
is disjoint from the support of B and the support of Dy is a subset of
the support of B. Let P be in the support of D;. Then, F{z] C Op and
PN Flz] = (g(x)) where g(z) is a monic, irreducible polynomial. It follows
that for some positive integer h, (g(z)") + D; has no pole at P. Multiplying
together the polynomials of this type at each P in the support of D; and
we wind up with a polynomial f(z) with the property that (f(z)) + D
only has poles among those of x. The same is true of Dy and so, the same
is true of (f(z)) — D. It follows that there is a positive integer m such that

(f(z)) -D+mB>0.

By the corollary to Lemma 6.5, we deduce (D) < r((f(x)) + mB) =
r(mB). It follows that (D) < g —1 for all divisors D. From the definition
of r(D), this is equivalent to

(D) >degD —g+1,

which concludes the proof of Riemann’s inequality.

We now have to produce a constant ¢ such that {(D) = degD — g +1
whenever deg D > c. Let m; be a positive integer large enough so that
r(m1B) = g — 1. Define ¢ = min+g. If D is a divisor with deg D > ¢, then
by Riemann’s inequality we find

(D—mB)>deg(D—-m1B)—g+1>1.
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It follows that there is a y € K* such that (y) + D —m1B > O or miB <
D + (y). Once again invoking the corollary to Lemma 6.5, we find g ~ 1 =
r(m1B) < (D). We have already shown that for all divisors D, (D) <
g — 1. Thus, r(D) = g — 1, which is the same as (D) =deg D — g+ 1.

The constant ¢ can, in fact, be taken to be 2g — 1. This follows from the
full Riemann-Roch theorem, as we saw in the last chapter.

The Riemann-Roch theorem replaces the Riemann inequality with an
equation. The following proposition is an approximation to what we want.

Proposition 6.7. For any divisor D of K, the space Qg (D) is finite
dimensional over F' and

(D) =deg D — g+ 1+ dimp Qx (D).

Proof. In Lemma 6.5, we are going to fix D and let C vary over divisors
greater than or equal to D. By Riemann’s theorem {(C) > degC — g +1
or what is the same degC' — I(C) < g — 1. So, by Lemma 6.5

Ag(C)+ K

dim Ax(D T K

<g—1+1U(D)—degD.

The second part of Riemann’s theorem asserts that there is a constant ¢
such that equality holds for all divisors C with degC' > c. Let C, be any
divisor greater than or equal to D and with degree bigger than ¢. Then,

Ag(C)+ K

dimp 2K\ TR
A DY+ K

g—1+1(D)—degD

for all divisors C bigger than C,. It follows that Ax(C)+ K = Ax(Co)+ K
for all C > C,. However, it is easily seen that for any adele £ there is a
divisor C' > C, such that £ € Ag(C). Thus, Ax(C,) + K = Ag and we
have shown

Ak

To finish the proof one has only to notice that Qx (D) is the F-dual of
the vector space Ax /(A (D) + K).

Corollary 1. Let c be the constant in Riemann’s theorem. Then if D is a
divisor with deg D > ¢, we have Ax = Ax(D) + K.

Proof. We have just shown that dimp(Ax / Ax(D)+K) = I(D)—deg D+
g — 1, which is zero if deg D > ¢ by Riemann’s theorem. Thus Ax =
Ak (D) + K in this case.

Corollary 2. The genus of K, g, can be characterized as the dimension
over F' of the space Qi (0).
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Proof. The zero divisor, 0, has degree zero and dimension 1. From the
proposition we derive 1 = 0 — g + 1 + dimp Q. (0). This gives the result.

The interested reader can easily show that if on a compact Riemann
surface a meromorphic differential w is such that @ is zero on A(0), then w
has no poles and conversely. Thus the space Qg (0) is the analogue of the
space of holomorphic differentials and this appellation is sometimes used
even in the abstract case.

We have now given the promised characterization of the genus in terms
of differentials. The next task is to give an interpretation of the canonical
class. To do so we have to show how to assign a divisor to a non-zero
differential. Since we don’t have (yet) local expressions for a differential at
a point as in the classical case, we proceed by, in essence, using the result
of Lemma 6.3 as a definition. That is, if w € Q, we want to define (w)
as the largest divisor D such that w vanishes on Ax (D). First we need to
show there is such a divisor.

Lemma 6.8, Let w € Qg be a non-zero differential. Then, there is a
unique divisor D with the property that w vanishes on Ay (D) and if D' is
any divisor such that w vanishes on Ag(D'), then D' < D.

Proof. Let T = {D’ | w(Ak(D’)) = 0}. Since w is a differential, 7 is non-
empty. By Corollary 1 to Proposition 6.7, we see that deg D’ < ¢ for all
D' € T, since w # 0. Let D be a divisor of maximal degree in 7. We claim
that D has the desired properties. Clearly, w vanishes on Ag (D). Suppose w
vanishes on Ag (D’). Then w vanishes on Ax (D) + Ax(D') = Ax([D, D']);
ie., [D,D'] € T. Since deg [D,D'] > degD, it follows that the degrees
must be equal and so [D, D'] = D, which implies D' < D as required. The
uniqueness is clear.

We now define the divisor of a differential w to be the unique divisor D
with the properties stated in the Lemma. We use the notation (w) for the
divisor of w.

Lemma 6.9. Let w € Qi and x € K*. Then,
(zw) = (z) + (w).

Proof. Suppose w € Qg (D). If £ € Ak, then zw vanishes on £ if z¢ €
Ak (D), which is equivalent to ¢ € Ag((z) + D). Thus, w vanishes on
Ak (D) implies zw vanishes on Ag((z) + D). The converse also holds as
one can see by observing that w = z~!(zw). Thus, w vanishes on A (D) if
and only if zw vanishes on A ((z) + D) and the result follows easily from
this.

In the classical case of compact Riemann surfaces Q(X) is one dimen-
sional over the field of meromorphic functions on X. To see this, let w,w’ €
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Q(X) with w # 0. Suppose w = f(t)dt and w’ = g(t)d¢ in a neighborhood
U of a point € X. Here, f(t) and g(¢) are Laurent series in a uniformizing
parameter ¢ about x. Then hy () = g(t)/f(t) is a meromorphic function on
U which is well defined in that it is independent of the choice of uniformiz-
ing parameter. This follows easily by use of the chain rule. These functions
hy fit together to give a meromorphic function h on X and v’ = hw.

A similar proof cannot be given in the abstract case, but nevertheless an
analogous result is true. This will follow by the use of Riemann’s theorem
(once again) together with some elementary linear algebra.

Proposition 6.10. The space of Weil differentials, Q, is of dimension
one when considered as a vector space over K.

Proof. Let 0 # w € Qk and z € L((w) — D) where D is some divisor. We
claim that zw € Qg (D). By the proof of the previous Lemma, we know
that zw vanishes on Ag ((z) + (w)). Since z € L((w) — D) we have

(@) + (W) 2 =((w) = D) + (w) = D,

and so zw vanishes on Ag (D). This establishes the claim.

Now let w,w’ € Qg be non-zero differentials. By the previous paragraph
we see that L((w)—D)w and L((w’)—D)w’ are both F-subspaces of Qx (D).
If we could show that these subspaces have a non-zero intersection, the
proposition would follow immediately. The idea of the proof is to force this
to happen by a suitable choice of D.

Let P be any prime, and set D = —nP, where n is large and positive
(how large will be determined shortly). By Proposition 6.7,

dimp Q(—nP) =1(—nP)+ndegP+g—~1=ndegP + g — 1.

Recall L(—nP) = (0) since any element in it would have no pole but would
have a zero at P.
Using Riemann’s inequality we find

dimp L((w) + nP) > deg(w) +ndeg P — g + 1,
and similarly for w’. Thus,

dimp L((w) + nP)w + dimp L((w’) + nP)w’
> 2ndeg P + deg(w) + deg(w’) — 2g + 2.

It follows that for large enough n the sum of the dimensions of the two
subspaces L((w) + nP)w and L((w') + nP)w’ exceeds the dimension of
the ambient space Qi (—nP). By linear algebra, they must have a non-
zero intersection. Thus, there exist z,y € K* such that zw = yw’ and so,

W =y lw.

Corollary 1. Let 0 # w € Qg and let D be a divisor. Then there is an
F-linear isomorphism between L((w) — D) and Qg (D).
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Proof. In the proof of the proposition we showed that L((w) — D)w C
Qi (D). So it just remains to show that this inclusion is an equality. Let
W' € Qg (D). By the proposition, there is an element x € K such that
w’ = zw. Since w’ vanishes on Ax (D) we must have D < (w') = (z) + (w)
by Lemma 6.9. Thus, (z) > D — (w) = —((w) — D); i.e., z € L((w) — D).

Corollary 2. All the divisors of non-zero differentials fill out a single
divisor class. This class is called the canonical class of K.

Proof. If w,w’ € Qg are non-zero, there exists an z € K* such that
w’ = zw by the proposition. By Lemma 6.9 we have (w') = (z) + (w) so
that (w') and (w) are in the same class. Conversely, if D is in the class of
(w), D = (z) + (w) for some z € K*. Thus, D = (2w), the divisor of a
differential.

Proof of the Riemann-Roch Theorem. By Corollaries 1 and 2 to
Proposition 6.10 and Proposition 6.7, we find

UD) = deg D — g +1+1((w) - D).

This is the assertion of the Riemann-Roch theorem given in the last chapter,
Theorem 5.4. We see that the divisor C in the statement of that theorem
can be taken to be any divisor of a non-zero differential. We now have a
complete proof of the Riemann-Roch theorem!

Using Theorem 5.4 and its corollaries, we see that the constant ¢ in the
statement of Riemann’s theorem can be taken to be 2¢g — 1 and for any
differential w the degree of (w) is 2¢g — 2.

Finally, we want to decompose a differential into a sum of local pieces
analogous to the sum of the residues construction in the classical case. To
this end, let’s define a map ip : Kp - Ag. Ifzp € Kp let ip(zp) be the
adele with all components zero except the P-th component which is equal
to xp. Clearly, ip is an F' vector space isomorphism of Kp with its image.

Let w € Q. We define wp € Homp(Kp, F) by wp(zp) = w(ip(zp)).
This process associates a family of local functionals {wp | P € Sk} to a dif-
ferential. Knowing this family, we would like to reconstruct the differential
and its divisor.

The functionals wp are not arbitrary. They must vanish on some power
of the maximal ideal P C Op. Indeed, wp(zp) =0 if ip(zp) € Ag((w))
and this inclusion holds if ordp(zp) > —ordp(w). Thus, wp vanishes on
Pp-ordr(w) This shows the functionals wp are continuous in the P-adic
topology.

Proposition 6.11. Let w € Qg and £ = (zp) € Ag. Then, for all but
finitely many P we have wp(zp) =0 and

&) = Zcup(xp).
P
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Proof. Let S be the finite set of primes where either ordp(w) < 0 or
ordp(zp) < 0.If P ¢ S then zp € Op and so wp(xzp) = 0 by the remark
preceding the Proposition. Define a new adele £ whose P’th component is
zpif P¢ Sand 0if P € S. Then, ¢’ € Ax((w)) and £ = &'+ pcgir(zp).
Thus,

w(€) =w(€)+ > wlip(zp)) = > wp(zp) =Y _ wp(zp).
P

Pes PeSs

The next proposition provides the abstract analogue of Lemma 6.1. It
enables one to recover the divisor of w from properties of the local func-
tionals wp. This will be very useful in the proof of the Riemann-Hurwitz
formula.

Proposition 6.12. Let 0 # w € Q. Then, N = ordp(w) is determined
by the following two properties; wp vanishes on PN but does not vanish
on P~N-1,

Proof. We have already seen in the remarks preceding Proposition 6.10
that wp vanishes on P=°"47(“) It remains to show that w p doesn’t vanish
on P-ordr(@)-1 We know, from Lemma 6.8 and the definition, that w does
not vanish on Ag((w) + P). Let { € Ax((w) + P) be such that w(£) # 0.
As usual, write £ = (zg) with Q varying over all primes. By Proposition
6.11,
0#w(€) =wp(zp) + Y wolzg) =wp(zp).
Q#P

The last equality follows from the fact that ordg((w) + P) = ordg(w) for
Q#P. A

Since ¢ € Ak ((w)+ P), we must have zp € P~o4P(“)=1 This concludes
the proof.

Corollary. A differential w is completely determined by any local compo-
nent wp. That is, if w,w' € Qg and wp = wp then w = w'.

Proof. If wp = wp then (w — w’)p = 0. The proposition shows that if
w — w’ were a non-zero differential no local component could be the zero
map. Thus, w —w' =0; ie., w=w'"

We have now accomplished all the goals set out for this chapter except
the statement and proof of the strong approximation theorem. This im-
portant theorem, strictly speaking, has nothing to do with differentials.
However, its proof is an easy consequence of material developed earlier,
namely, Corollary 1 to Proposition 6.7.

Let’s first recall a version of the weak approximation theorem. Suppose
K is a field and 04,0,,...,0; a collection of subrings of K which are
discrete valuation rings with quotient field K. Let P; C O; be the maximal
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ideal of O;. Finally, suppose we are given a set of elements a; € K and a set
of positive integers n; with ¢ varying from 1 to ¢. The weak approximation
theorem asserts that there is an element a € K such that ordp, (a—a;) > n;
for i = 1,2,...,t. The proof, which is not hard, can be found in many
sources, e.g. see Lang [5]. The strong approximation theorem in function
fields is an assertion of similar type, but with much greater constraints on
the element a € K.

Theorem 6.13. Let K/F be a function field and S C Sk o finite set of
primes. For each P € S let an element ap € Kp and a positive integer np
be given. Finally, let’s specify a prime Q ¢ S. Then, there is an element
a € K such that ordp(a — ap) > np for all P € S and ordp(a) > 0 for all

Pgsu{Q}.

This theorem is called the strong approximation theorem. Before begin-
ning the proof, two remarks are in order. First, the added generality of
choosing the ap € Kp is very small, If we prove the theorem with the
ap € K, then the full theorem takes just a trivial extra step. The main
point is that in addition to the conditions at the primes in S we have added
the infinitely many conditions that the element a be integral at all primes
not in S with the one exception of Q.

Proof. Define an adele £ = (zp) by the conditions that xp = ap for P € §
and zp = 0 for P ¢ S. Next, define a divisor D = mQ — }_pc.gnp P.
Choose the integer m so large that the degree of D exceeds the constant
¢ in Riemann’s theorem. Then, by Corollary 1 to Proposition 6.7, we have
Ag = K + Ag (D). In particular, £ = a + 71 where a € K and n € Ax (D).
In other words, £ — a € Ax (D). Examining this relation, component by
component, shows that a has the desired properties.

Exercises

1. Let w be a meromorphic differential on a compact Riemann surface
X. Show that & is zero on A(O) if and only if w has no poles.

2. Let M be the field of meromorphic functions on a compact Riemann
surface X and ) the space of meromorphic differentials on X. Show
in detail that Q is a one-dimensional vector space over M.

3. Show directly (i.e., arguing only with differentials) that dim Qg (D) =
0ifdegD > 2g — 2.

4. Suppose that D is a divisor of degree zero, but that D is not principal.
Show dimp Qi (D) =g — 1.

5. If D is a divisor, and deg D < g — 1, show that dimp Qg (D) > 0.
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10.

11.

12.

13.

14.

15.

Michael Rosen

. Suppose that w € Qg (O) and has a zero P of degree 1 and that

ordpw > g. Show that P is a Weierstrass point (see Exercise 10 of
Chapter 5).

In this and the following two exercises, we assume that F' is alge-
braically closed. Let P be a prime. Assume the genus g is greater
than 0. Show 2k (P) is properly contained in Qg (O).

(Continuation) Suppose g > 1 and 0 < n < g. Show there exist primes
{Py, P,, ..., P,} with the property, dim Qg (P14 P+ - -+P,) = g—n.

(Continuation) Suppose g > 1. Show there are primes {Py, P, ..., Py}
such that Py + P, + - -+ + Py is not the polar divisor of any element
of K*.

Suppose w; and wy are two Weil differentials with the same divisor.
Show w; = awsy for some o € F™*.

Let o be an automorphism of K which leaves F' fixed. Let P be a
prime of K and oP the prime obtained by applying ¢ to P (see
Exercise 13 of Chapter 5). Show that o extends to an isomorphism
of K p with K}p. Show further that ¢ induces an automorphism of
Ak which is F-linear and maps K to itself.

(Continuation) If w is a Weil differential, define ow : Ax — Ak by
the equation ow(a) = w(c~ta) for all a € Ag. Show that ow is a
differential.

(Continuation) Let D be a divisor of K. If w € Qg (D) , show that
ow € Qg (oD).

(Continuation) From the last exercise we see that ¢ induces an au-
tomorphism of Qg (O). If F is algebraically closed and g > 1, show
there is a differential of the first kind w such that o(w) = (w).

(Continuation) Assume F is algebraically closed and that the genus
g of K is > 2. Show there is an integer k with 1 < k < 29 — 2 and
a prime P such that o* leaves P fixed. (This series of exercises was
inspired by the paper of Iwasawa and Tamagawa [1], where it was
proved that the automorphism group of a function field of genus 2 or
greater is finite. In characteristic zero this result is due to A. Hurwitz.
In charactersitic p the first proof was given by H. Schmid [1]).
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Extensions of Function Fields,

Riemann-Hurwitz, and the
ABC Theorem

Having developed all the basic material we will need about function fields
we now proceed to discuss extensions of function fields. This material can
be presented in a geometric fashion. Function fields correspond to algebraic
curves and finite extensions of function fields correspond to ramified covers
of curves. In this chapter, however, we will continue to use a more arithmetic
point of view which emphasizes the analogy of function fields with algebraic
number fields.

Let K/F be a function field with constant field F' and let L be a finite
algebraic extension of K. Let F be the algebraic closure of F in L. It is
then clear that L is a function field with E as its field of constants. Recall
that in this book, a “function field” over F refers to a field which is finitely
generated over F' and of transcendence degree one. If L = FK, we say that
L is a constant field extension of K. We will discuss such extensions in
detail in the next chapter. If F = F, we say that L is a geometric extension
of K. In the general case, we have a tower K C EK C L, where EK/K is
a constant field extension, and L/EK is a geometric extension.

Let p denote the characteristic of F. In the characteristic zero case, all
extensions are separable and this considerably simplifies the theory. Since
we will be especially interested in the case where the constant field F is
finite, we must also deal with the theory when p > 0 and thus with questions
of inseparability. Instead of working in complete generality we will often
compromise by assuming that F is perfect, i.e., that all algebraic extensions
of F' are separable. This holds if F' has characteristic zero or is algebraically
closed or is finite. These cover all the cases of interest in this book.
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This chapter falls naturally into three parts. In the first part we recall
some basic facts about extensions of discrete, rank one valuations and, also,
the theory of the different and its application to questions of ramification.
Here we will assume the reader is somewhat familiar with this material so
that the proofs will only be sketched. In the second part we will discuss
how differentials behave in extensions. This will lead to the proof of the
Riemann-Hurwitz theorem, one of the most important and useful theorems
in the subject. Finally, we will discuss the so-called ABC-conjecture of
Oesterlé-Masser and give a very simple proof in function fields using an
idea the author learned from W. Fulton. Several applications of this result
will be given, e.g., a proof of Fermat’s last theorem for polynomial rings.

Let L/K be a finite algebraic extension of fields. We will use the abbre-
viation “dvr” for a discrete valuation ring. Let Op be a dvr in K having
K as its quotient field. Denote its maximal ideal by P. Let Oy be a dvr
in L with maximal ideal . We say that Ogp lies above Op or that ‘B lies
above P if Op = K N Ogp and P = P N Op. The notation B|P for this
relation is often useful. There are two integers associated to this situation,
f = f(B/P), the relative degree, and e = ¢(/P), the ramification index.
To define f, note that Og /%P is a vector space over Op/P. The relative
degree is defined to be the dimension of this vector space. We shall see
shortly that it is finite. Next, POgp is a non-zero ideal of Og contained
in PB. Thus, POy = P for some integer e > 1. This integer is called the
ramification index. It is easy to see that e is characterized by the following
condition; for all a € K, ordg(a) = e ordp(a).

The ramification index and the relative degree behave transitively in
towers. More precisely, let K C L C M be a tower of function fields with
L/K and M/L finite, algebraic extensions. If 3 is a prime of M and p and
P are the primes lying below 98 in L and K respectively, then, e(B/P) =
e(B/ple(p/P) and f(B/P) = f(B/p)f(p/P). Both relations follow easily

from the definitions.

Proposition 7.1. With the above notations, ef < n = [L: K], the dimen-
sion of L over K.

Proof. Let II be a generator of P and choose wy,ws, . ..,w.n, such that their
reductions modulo 9 are linearly independent over Op/P. We will show
that the em elements w;IIY with 1 < i < m and 0 < j < e are linearly
independent over K. This is sufficient to establish the result.

Suppose

e—1 m

EE:ZE:aUuHIV'::O

j=0 =1

is a linear dependence relation over K. If the a;; € K are not all zero we
can assume they are all in Op and at least one of them is not in P (since



7. Extensions of Function Fields 79

K is the quotient field of Op and Op is a dvr). Consider the elements

m
Aj: E aijwi.
i=1

If some a;; ¢ P, then A; is a unit in Ogp since its reduction modulo P
is not zero. Otherwise, A; is divisible by 7, the generator of P, and so
ordgp(4;) > e. Thus, Ordfp(Z;;é A;TV) = j, for some j, < e. This is a
contradiction since E;;é AT = 0.

If we assume L/K is a finite and separable extension, then we can
construct all the P lying over P as follows. Let Op be as above, and
let R be the integral closure of Op in L. R is a Dedekind domain. Let
PR = p{'ps?...pg° be the prime decomposition of PR in R. The set
{p1,p2,...,pg} is the complete set of non-zero prime ideals of R. For
each 4, the localization R, is a discrete valuation ring with maximal ideal
B: = p;Ry,. Define Op, = R,,. Then {Og,,Op,,...,0p,} is the com-
plete set of dvrs in L lying above Op. Let f; and e; be the relative degree
and ramification index of 3; over P;. By standard properties of localiza-
tion, the exponents in the decomposition of PR are indeed the same as the
ramification indices defined earlier.

Proposition 7.2. Assume L/K is a finite, separable extension of fields.
Then, with the above notations, > 7_; €;fi =n = [L: K].

i=

Proof. Since L/K is separable, the trace from L to K, trr K, is a non-
trivial K-linear functional on L. Using this, one can prove that R is a free
module over Op of rank equal to n = [L : K] (see Samuel and Zariski [1]).
Thus, R/PR is a vector space over Op/P of dimension n.

Now, PR = p{'p5? ... pg° and so, by the Chinese Remainder Theorem,

R/PR=R/p;* ® R/py & @ R/pSe.

Again, by standard properties of localization, for each index i we have a
ring isomorphism
R/pi = O, [P
The latter ring is a vector space over Op /P, and we calculate its dimen-
ston using the filtration

POy, =P CP~H C--- TP C O,

Since B; is principal, the successive quotients are one dimensional over
Og, /B:. This ring is f; dimensional over Op/P (by definition). Thus, the
total dimension of Og, /PB5* over Op /P is e, f;.

Summing over i gives n = Y _, e;f; as asserted.

Having dealt with the separable case we now prove a simple fact about
the purely inseparable case.
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Lemma 7.3. Let L/K be a purely inseparable extension of degree p, the
characteristic of K. Assume K = LP (this strange assumption is often
correct in function fields). Suppose Op C K is a dvr with quotient field K.
Then there is one and only one dvr Op C L above Op. Moreover, e = p
and f=1s0oef=p=[L: K]

Proof. Let R={r € L |r?P € Op} and P={r € L | r? € P}. It is easy
to see that R is a ring, B is a prime ideal in R, and N Op = P. We will
show that R is a dvr.

Let 7 be a generator of P. Since LP = K, there is an element I € L with
I1P = 7. Clearly, IT € 8. We claim that every element ¢t € L is a power of
II times a unit in R. Once this is proved, it is almost immediate that II
generates ‘P and that R is a dvr.

Now, t? € K so that tP = um® where u is a unit in Op and s € Z. Thus,
(t/T1*)P = u which shows that t/II°* € R. Since (II*/t)? = u~! € Op it
follows that II*/t € R as well. Thus, ¢ is a power of II times a unit as
claimed.

If Oqp/ C L is any other dvr lying over Op, let t be one of its elements.
Then t?» € K N Ogp = Op so that t € R. We have shown Ogp: C R. Since,
as we shall show in a moment, dvrs are maximal subrings of their quotient
fields, we have R = Oq, which establishes uniqueness.

To prove the maximality property of dvrs, let O C K be a dvr with
quotient field K and uniformizing parameter 7. Let O’ be a subring of K
containing O. Suppose there is an element r € O’ with r ¢ O. Then, there is
a unit u € O such that r = un~" with n > 0. Then, 77! = v~ 172" 1r € O
and it follows that all powers of 7, both positive and negative, are in O'.
Since every element of K is equal to a unit of O times a power of 7, we
conclude that if O # O’, then O’ = K.

Finally, ordg(7) = p so e = p. By Proposition 7.1, ef < p, and it follows
that f = 1, as asserted.

A field F is called perfect if every algebraic extension is separable. This
is automatic in characteristic zero. In characteristic p > 0, it is well known
that F' is perfect if and only if F' = FP. We use this criterion in the next
proposition.

Proposition 7.4. Let F be a perfect field of positive characteristic p, and
K a function field with constant field F. Then, [K : KP] = p.

Proof. Let z be an element of K not in F. Then [K : F(z)] < co. Consider

F(z)P = FP(zP) = F(zP). It is clear that [F(z) : F(2P)] = p. For example,

one shows easily that {1, z,22,...,2P~1} is a field basis for F(z) over F'(aP).
Thus, the proposition follows from the equation

K : F(@?)] = [K : F@)|[F(a) : F(a")] = [K : K|[K” : F(&")],
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if we can show [K : F(z)] = [K? : F(zP)]. To show this, let {wy,wa,...,wm}
be a field basis for K over F(z). We claim that {w]w},... ,wE } is a field
basis for K? over F(zP). This is a straightforward calculation.

Corollary. Let K be a function field of characteristic p > 0 with perfect
constant field F. Let L be a purely inseparable extension of K of degree p.
Then, F is the constant field of L and LP = K.

Proof. Suppose a € L is a constant. By definition, it is algebraic over F'.
Since L/K is purely inseparable of degree p, af € K and is algebraic over
F. This implies o € F. Since F' = FP there is a 8 € F with o = 8P which
impliesa =g € F.

Applying the proposition to L we see [L : LP] = p. However, since L/K
is purely inseparable, LP C K. It follows that [K : L?] =1 and so K = L?.

Proposition 7.5. Let K be a function field with a perfect constant field F.
Let L be a finite extension of K, and M, the mazimal separable extension
of K in L. Then, the genus of M is equal to the genus of L. Also, for
each prime p of M there is a unique prime P in L lying above it. Finally,
e(/p) = (L : M] and f(B/p) = 1.

Proof. The constant field E of M is perfect since it is a finite extension of
F, which is perfect by assumption.
Since L/M is purely inseparable, there is a tower of fields

KQM:K()CK]C"'CKn—lCKn:La

where for each ¢ > 1, K,;/K;_1 is purely inseparable of degree p. By the
corollary to Proposition 7.4, and an obvious induction, we have K;_; = K7
for each 1 < ¢ < n. Raising to the p-th power is thus an isomorphism from
K; to K;_1, which shows that all these fields have the same genus. This
proves the first assertion.

The remaining part of the Proposition is proven by induction using the
corollary to Proposition 7.4, Lemma 7.3, and the fact that both the relative
degree and ramification index are multiplicative in towers.

We are now in a position to prove the theorem at which we have been
aiming.

Theorem 7.6. Let K be a function field with perfect constant field F'. Let
L be a finite extension of K of degree n. Suppose P is a prime of K and
{B1,PB2,..., By} the set of primes in L lying above P. Then, > 7_, e;fi=n
where, as usual, e; is the ramification indezx and f; the relative degree of

B, over P.

Proof. Let M be the maximal separable extension of K in L. Let p; be
the prime of M lying below 9B, and let e, and f/ be the ramification index
and relative degree of p; over P. By Proposition 7.5, B; is the unique
prime of L lying over p;. By Proposition 7.2, the theorem is true for M/K.
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Thus, >.7_,e;f/ = [M : K]. Invoking Proposition 7.5 once more we see

ef[L : M] = e; and f/ = f;. Substituting into the sum and noticing that
[L: K] =|[L: M][M : K] finishes the proof.

When L/K is a finite extension of function fields, the conclusion of Theo-
rem 7.6 holds without any assumption about the constant fields (see Cheval-
ley [1] or Stichtenoth [1]). The method uses results which are specific to
function fields, e.g., the degree of the zero divisor of a function and Rie-
mann’s inequality. We have chosen a different route, which seems more
natural, but at the expense of having to assume the constant field is per-
fect.

Recall the notation Dx and Dy for the divisor groups of K and L,
respectively. We introduce homomorphisms Ny x and i,k as follows:

1. Ny : Dy — D is defined by Np/x(B) = f(B/P)P for all primes
B € S;, and then extended by linearity. Here, P is the prime of K lying
below B, i.e., P=PNK . Np g is called the norm map on divisors.

2. iL/K . DK rd DL is defined by iL/K(P) = zgppe(m/P) m for all
P ¢ Sk and then extended by linearity. iy g is caﬁed the extension of
divisors map, or, sometimes, the conorm map.

A simple consequence of these definitions and Theorem 7.6 is that Ny, ko
ik is the map “multiplication by [L : K]” on Dg. Thus, ir/k is one to
one (which is obvious anyway) and the quotient group Dk /N k(Dy) is
annihilated by [L : K] (which is perhaps not so obvious).

It is important to determine how these maps interact with the degree
maps. Suppose that F' and F are the constant fields of K and L, respec-
tively. Recall that for a prime 9B of L, deg; () is the dimension of Og /B
over E. Similarly, for a prime P of K, degj (P) is the dimension of Op/P
over F. These degree maps are then extended by linearity to Dy and Dg.

Proposition 7.7. Let A € Dy, and A € Dg. Then

[L: K]

degy NL/K(Ql) =[E: Fldeg, A and degL(iL/K(A)) = [—E——F—]

degK A.

Proof. Both facts follow from the calculation
O/ : F| = [Og/%: E|[E: F| = [Og/% : Op/P|[0p/P: F),

which shows that [E: F|deg, B = f(P/P)degy P.

To show the first assertion, we see it is sufficient to do it when 2
B is a prime divisor. In that case, degy Ny, x(B) = degy f(B/P) P
f(B/P)degg P = [E : F|deg, .

To show the second assertion, it is again sufficient to consider the case
where A = P is a prime. Then,
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degpir(P) = Y e(P/P)deg, P
B P

= Y OM/P)B/P)dexc P
B|P

The result is now immediate from Theorem 7.6.

We also would like to investigate how these two maps behave on the
group of principal divisors. Recall that if a € K* its divisor is defined to
be (a)g = > pordp(a)P, where the sum is over all P € Sk. Similarly, one
defines the principal divisor (b);, for an element b € L*.

Proposition 7.8.
(3). If a € K*, then ip )k (a)k = (a) L.

(Zl) Ifb & L*, then NL/K (b)L = (NL/K(b))K

Proof. To prove the first assertion, one simply computes

in/k(a)k =iy Y ordp(a) P= ordp(a) Y e(B/P)P
P P PP

= > e(P/P)ordp(a) P = ordy(a) P = (a).
B Y

The proof of the second assertion is somewhat more difficult, but stan-
dard. It follows from general properties of Dedekind domains. A particularly
elegant proof is given in Serre [2]. A more conventional treatment is given
in Samuel and Zariski [1].

Corollary. The maps i x and Ny, /K induce homomorphisms on the class
groups Clg and Cly, (which we will designate by the same letters).

Proof. The proposition shows iy, maps Px — Py, and so induces a map
from Clg = Dk [Pk — Cl = Dy /Py. Similarly for Ny k.

The next topic to consider is that of ramification. Let L/K be a finite
extension of function fields, suppose B is a prime of L lying over a prime P
of K. We say that 9 is unramified over P if two conditions hold: e(g/P) =
1 and the extension of residue class fields is separable. If either condition
is not satisfied, we say P is ramified over 8. In a separable extension
of function fields, only finitely many primes are ramified. This important
result is a consequence of the theory of the different, which we will now
sketch without complete proofs. A detailed treatment can be found in the
above cited references, Serre [2] and Samuel and Zariski [1].
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We begin with considerations of some generality. Let L/K be a separable
extension of fields, A C K a discrete valuation ring with quotient field K,
and B the integral closure of A in L. One can show that B is a Dedekind
domain with only finitely many prime ideals. These are the prime ideals
which occur in the prime decomposition of PB, where P is the maximal
ideal of A. As an A module, B is a finitely generated free module over
A of rank equal to [L : K]. Also, the trace of any element of B lies in
A. Let {z1,22,...,2,} be an A basis for B and let 95,4 be the ideal in
A generated by det(try/x(ziz;)). This ideal is called the discriminant of
B/A. 1t is independent of the choice of a basis. Since L/K is separable, the
discriminant is not the zero ideal. Let

PB= []
('pllp

be the prime decomposition of PB and consider the A/P algebra
B/PB=B/PB{' @ B/P3 & & B/Pge.

A commutative algebra over a field ¥ is said to be separable if it is a direct
sum of separable field extensions of k. From general theory, B/PB is a
separable A/P algebra if and only if det(trg,4(Z:Z;)) # 0. Here the bar
refers to reduction modulo PB and we have set B = B/PB and A = A/P.
It follows easily that every prime in B is unramified over A if and only
if 9,4 = A, in other words, B is unramified over A if and only if the
discriminant is all of A.

Define Cp/q = {z € L | trp x(2b) € A,Vb € B}. This set is easily seen
to be a B submodule of L. In fact, it is the largest B submodule of L whose
trace is contained in A. We shall show it is a fractional B ideal. Notice that
B C Cpy4. Cpya is called the inverse different of B over A. By definition,
Dp/a = C‘E/l 4 C B is called the different of B over A.

Since, Cpya is a B-module, to show it is a fractional ideal it suffices
to produce a non-zero element d of L such that dCp/a C B. Set d =
det(tr g (z:z;)), the element we used in defining the discriminant. If ¢ €
Cp/a, then

n
c= E T r, € K.
i=1

Multiply both sides by z; and take the trace. We get

n
tI‘L/K(C'JIj) = Zm’ tI‘L/K(JZﬂIj).
i=1
It follows from Cramer’s rule that dr; € A for all 4, and so dCp 4 CB
as asserted. This argument tells us a bit more. Since Cp /4 C d=1B we
must have 05,4 B = dB C Dp,4; i.e., the discriminant is contained in the
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different. The connection between the different and discriminant is even
closer as we see from the following proposition.

Proposition 7.9. i) Let A be a dvr with mazimal ideal P, K its quotient
field, L a finite separable extension, and B the integral closure of A in L.
Then, some prime above P in B is ramified if and only if 9,4 C P.

i) Npyk®pja =0p/a. In words, the norm of the different is the discrim-
inant.

Proof. We have already given the proof of ) in the above discussion. For
the proof of part i¢) see Serre [2].

We will say that B/A is unramified if no prime of B is ramified over
A. From the above proposition, it follows that if Dp/4 = B, then B/A is
unramified. Much more is true, however. A prime 9 of B is ramified over
A if and only if B divides D g, 4. The easiest way to see this is to pass to
completions.

For each prime P C B lying over P consider the completion I:qg of L at
B. The closure of K in ﬁsp is isomorphic to Kp, the completion of K at
P. We also complete A at P and B at ‘B to obtain the rings A pC Bm. It
is not hard to show that qu is the integral closure of Ap in IAJSJJ. This local
situation has all the ingredients of the “semi-local” situation considered
above, so in exactly the same way we can define the local discriminant and
the local different, 0p,4(P) C Ap and Dp/a(P) C Bcp.

Lemma 7.10. We have DB/A(P) = OB/AAP and DB/A(‘B) = DB/AB‘E'
In other words, if vg/4 = P*, then vp/4(P) = Pt and if 6 is the exact
power of P dividing Dp, 4, then Dp 4 (P) = B,

For the proof of this result we refer the reader to Serre [2], Chapter 3.

Corollary 1. As in the Lemma, let § be the exact power of P dividing
Dp/a. Then § can be characterized as the largest integer m such that the

trace from ﬁm to IA(p of ‘,]AS_’” is contained in flp.

Proof. From the definition, if m has the property described in the corollary,
the local inverse different is B~ and so Dp/a(P) = P™. The result is
then immediate from the lemma.

Corollary 2. With the same notation as Corollary 1, § > e(B/P)—1 with
equality holding if and only if the characteristic of F' is either zero or does
not divide e('P/P).

Proof. (sketch) Neither e(3/P) nor & changes after passing to the com-
pletion (for ¢ this follows from the lemma). So, we can assume A and
B are complete. Again, nothing essential changes if we replace K by the
maximal unramified extension of K in L and A by its integral closure
in this extension. We can thus assume ‘B is totally ramified over P. Set
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e = e('P/P) = [L K]. Let m € ‘B be a uniformizing parameter, and
f(z) = 3¢5_, aiz® be the monic irreducible polynomial for 7 over K. f(z)
is an Eisenstein polynomial (see Serre [2], Chapter 3) and in particular,
a; € P for 0 < i < e. Under these circumstances, {1,,...,7* !} is a basis
for B over A and one can show that Dp,4 = (f'(m)). Now,

f(r) = er® ™ + (e — 1)fle—17fe—2 + - 4ag.

Every term in the sum except possibly the first is divisible by 7¢ and the
first is divisible by 7¢~!. The first assertion of Corollary 2 follows from this.
The first term of the sum is exactly divisible by m¢~! if and only if either
the characteristic of F is zero or does not divide e. This proves the second
assertion.

Let L/K be a finite extension of function fields, ¥ a prime of L and P
the prime lying below it in K. We say that 93 is tamely ramified over P if
it is ramified and either the characteristic of the residue class field Ogp /B
is zero or does not divide e(B/P). The second assertion of Corollary 2
can then be reworded to assert that for a tamely ramified prime B, the
exponent to which it divides the different is e(P/P) — 1.

Theorem 7.11. With the above notations and hypotheses, a prime B of
B is ramified over A if and only if P | Dpya.

Proof. (sketch) The definition of unramifiedness is in two parts; the ram-
ification index must be one, and the residue class field extension must be
separable. If one ignores the second condition one can refer to the above
Corollary 2 to Lemma 7.10 for a proof of the theorem. We proceed some-
what differently and handle both conditions at once.

By standard properties of localization and completion, a prime B of B
is ramified over P if and only if P is ramified over P. So we can work in
the local situation B‘p /Ap The advantage here is that BEB has only one
prime ideal, namely, ‘43 Thus, using what we know about discriminants, ‘B
is ramified over P if and only if 0p /a(P) # Ap. By Proposition 7.9, applied

to this situation, we see this is true if and only if D g, 4(*B) # ng. Finally,
by Lemma 7.10 this last condition holds if and only if Dp/4 is divisible

by B.

We have now developed enough theory to enable us to return to function
fields. We will define the different divisor and explore its properties. From
now on, we suppose L/K is a finite separable extension of function fields
with E the constant field of L and F' the constant field of K. It is easy to
see that E/F is also a finite, separable extension. For any prime P of K we
let Rp be the integral closure of Op in L. As we have seen, the primes of
L lying above P are in one to one correspondence with the non-zero prime
ideals p of Rp. If p is such an ideal let Og be the localization of Rp at p
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and, of course, the maximal ideal of Ogp is P = pOgqp. Note that the pair
Rp,Op is playing the role of the pair B, A in the above considerations.

For any prime 9 of L, let p = Rp NP and let §(P) be the exact power
of p dividing the different of Rp over Op. We define the different divisor
of L/K as follows:

Dk =Y 6(P) %P

BESL

Actually, we must prove that all but finitely many §{3) are zero before we
can be sure this definition makes sense. By our previous work, a prime 8
is unramified over P if and only if §(§8) = 0. Once we prove the finiteness
assertion, it will follow that only finitely many primes in L can be ramified
over K.

To prove the finiteness result, let {z1,zs,...,z,} be a basis of L over K.
Let S C Sk be the set of primes of K which lie below a pole of some z;.
Since there are only finitely many such poles, the set S is finite. For P ¢ S
we have z; € Rp for 1 < ¢ < n. This follows from the fact that Rp is the
intersection of the valuation rings containing it (Rp is a Dedekind ring and
has quotient field L). Let Cp be the inverse different of Rp over Op. Let
c € Cp and write c =Y., a;z; with a; € K. Then, for all 1 < j < n,

trr/k(cz;) = Z a;trr, i (T:x5).

i=1

Using Cramer’s rule, as we have previously, we find da; € Op for 1 <14 < n,
where d = det(trr;x (z;;)). Thus, dCp C Rp and so Rp C Cp Cd™'Rp.
Now, ordg(d) = 0 for all but finitely many 9 and, consequently, d is a unit
in Rp for all but finitely many P € Si. This implies Cp = Rp and so
Drp/op = Rp for all but finitely many P. The fact that 6(8) = 0 for all
but finitely many P is now clear.

We summarize our discussion of the different in the following theorem.

Theorem 7.12. Suppose L/K is a finite separable extension of function
fields. The different Dy, defined above is a divisor with the property that
a prime B of L is ramified over K if and only if it occurs in Dy i with
a non-zero coefficient. In particular, only finitely many primes of L are
ramified over K.

We note that separability is crucial for the last assertion of the theorem.
If F' is perfect and L/K is purely inseparable of degree p, then Lemma 7.3
shows that every prime of L is ramified over K.

Because it is often useful, we record an important property of differents.
The proof is not hard, but will be omitted. Suppose K C L C M is a tower
of function fields with M/K finite and separable. Then,

Datyx = Duyr, + iy (Drykc) -
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The next topic will be the behavior of differentials in field extensions.
Let w be a Weil differential of a function field K and suppose L is a finite
separable extension of K. We want to associate to w a differential w* of L.
After this is done the next task will be to relate the divisor of w* to the
divisor of w.

We begin by extending of the trace map from L to K to a trace map
from the adeles of L, A, to the adeles of K, Ax. The key to this is the
following important isomorphism

L®k RP g@ﬁm .
BIP

The map involved can be described quite easily. Identifying L as a subfield
of fnp and Kp as a subfield of I:‘B there is an obvious K-bilinear map
from L x Kp to ﬁsp, namely, (¢,a) = fa. Thus, for each P|P, there is a
map from L ®x Kp — ﬁm. Now pass to the direct sum. The fact that the
resulting homomorphism is an isomorphism is given in Serre [2], Chapter
3. Note that L is embedded diagonally into the right-hand side.

Both sides of the above isomorphism are Kp algebras and the isomor-
phism respects this structure. If {z1,zq,...,2,} is a basis for L/K, then
{z1®1L,22®1,...,2, ® 1} is a basis for the left-hand side over R'p. On
the other hand, choosing a basis for I)p over Kp for each PB|P and putting
these together gives a basis for the right-hand side. Using these bases en-
able one to prove the following result, which connects the global and local
traces and norms.

Proposition 7.13. Let Ty and Ny denote the trace and norm from ﬁ;p
to Kp, respectively. Then, for x € L we have

trp k(z) =Y Tp(x) and Npg(z) =[] Np(e).
BIP BIP

In words, this says that the global trace is the sum of the local traces
and the global norm is the product of the local norms. We will be primarily
concerned with the traces.

We now define the trace map from Ap to Ak. Let a = (osp) be an
element of A;,. We map it to the adele of K, whose P-th coordinate, ap,
is Yo p Tip(ayp). Since for all P, Tip : Ocp — Op we see that for all but

finitely many P, ap is in fact in Op. Thus, the image of our map is indeed
in Ag. We call this trace map try,x because it extends the trace map on
the level of fields. To see this, recall L is embedded diagonally into Af.
If A € Ap is the adele all of whose coordinates are equal to £, then, by
Proposition 7.13, try,,x(A) is the adele of K all of whose coordinates are
equal to try/x(¢). One also checks easily that try,x is an F-linear map
from Ay to Ag (recall that F is the constant field of K).
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Having extended the trace map, it is now relatively easy to define the
map from Qy — Qrp, which we need. Let w € Qg. Define w* to be the
compositum wotry, i, which is an F-linear homomorphism from Ay, to F'.
From now on we assume that F' is also the constant field of L, i.e., that L/ K
is a geometric extension. We claim that w* is, in fact, a Weil differential
of L. That it vanishes on L follows from what we have just proved; try, g
maps L to K and w vanishes on K by definition. It remains to prove that
w* vanishes on A (C) for some divisor C of L.

Since w € Qg there is a divisor C of K such that w vanishes on

Ak (C) = {(ap) € Ak | ordp(ap) > —ordpC, VP € Sk} .

Let o = (ap) € Ay, Fix a prime P of K and suppose {P1,Ps,..., By} are
the primes of L lying above P. We need to ascertain the conditions which

force
g

ordp() T, (asp,)) > —ordpC .
i=1

This will follow if for each ¢ individually ordp(Ty, (e, )) > —ordpC. Let
7 be a uniformizing parameter at P and for simplicity set m = ordpC. The
last condition is equivalent to the following: for each i, ord p (Top, (7™ cup,)) >
0. This will happen if 7™, is in the local inverse different at ;. From
the definition of the different and Corollary 1 to Lemma 7.10 this condition
is equivalent to

ordg, (" asp,) > —0(P;) or ordg, (ap,) = —6(B;) — e(P;/P)ordpC .

It is easy to check from the definitions that

> (8(P) + e(B/P)ordpC) P = Dy i + ik C.
B

To sum up, we have proven—

Proposition 7.14. Let L/K be a finite, separable, geometric extension of
function fields and w a non-zero differential of K. The w* = w otrr x 18 a
differential of L. In more detail, if w vanishes on Ak (C), w* is an F-linear
homomorphism from Ap — F which vanishes on L and on Ap(i kC +
Dr/x).

We would like to determine the divisor of w*. Recall, by definition, this
is the largest L-divisor B such that w* vanishes on Az (B). In light of the

previous proposition, a good guess would be ir,/x(w)x + D k. This is, in
fact, correct.

Theorem 7.15. With the hypotheses and notation of Proposition 7.14, we
have

(W)L = ir g (w)k + Dk
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Proof. We are going to use Proposition 6.12 of the last chapter, which
shows how to determine the divisor of a differential using properties of its
local components.

We begin by recalling the definition. Let u € Q1. For a prime P of L let
ip I;;p — Ay, be the map that takes an element v € ﬁq} to the adele all of
whose components are zero except the -th component which is . Then
pip = p O tp.

Now, wy = (wotry k) oip =wol(try g odp) = wo(ipoTy) = wpoTy.
The third equality follows directly from the definition of the trace map on
the adeles. In words, the local component of w* at ‘B is the local component
of w at P composed with the local trace map.

According to Proposition 6.11, ordg(w*) = N, where N is the integer N
such that wy, vanishes on B-N but not on P~N-1,

wy vanishes on BN if and only if wp vanishes on Tig (‘J%‘N ), which oc-
curs if and only if Ty (P~V) C P~™, where m = ord p(w). This is equivalent
to Tip (Pm‘,ﬁ_N) C ép, which in turn is true if and only if ;i;e(‘p/P)m—N C
§f3—5(‘43), by Lemma 7.10 and the definition of the different. We conclude
that wy vanishes on P~ if and only if N < e(P/P)ordp(w) 4 5(P). The
largest N with this property is clearly the right-hand side of this inequality.
The theorem follows.

It might be asked, what is the necessity of Proposition 7.14 since Theorem
7.15 is a more accurate result? The answer is we had to show w* is a
differential before we could decompose it into its local components and use
Proposition 6.11 to determine its divisor.

We are finally in a position to prove the Riemann-Hurwitz Theorem, one
of the main goals of this chapter.

Theorem 7.16. (Riemann-Hurwitz) Let L/K be a finite, separable, geo-
metric extension of function fields. Then,

291 —2=1[L: K|(29k —2) +degy, Dy k.

In particular,

29, — 22> [L: K)(2gk —2) + Y _(e(PB/P) — 1) deg;, B.
B

where the sum is over all primes B of L, which are ramified in L/K.
The inequality is an equality if and only if all ramified primes are tamely
ramified.

Proof. Let w be a non-zero differential of K. By the remarks following
Corollary 2 to Lemma 6.10, (w) g is in the canonical class of K. By Corollary
3 to Theorem 5.4, every divisor in the canonical class of K has degree
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29k — 2. Thus, degy(w)k = 2gx — 2. Similarly, degy (w*)r = 291 — 2.
From Theorem 7.15 we find

29 — 2 = degy (w")L = degy, ik (w)k +degy, Dp/k-

From Proposition 7.7 we see that degy i;/x(w)x = [L : K]degg(w)k =
[L : K](2gx — 2). We have used the assumption that L has the same
constant field as K. Substituting into the above equality yields the first
assertion of the theorem.

The second assertion is an immediate consequence of Corollary 2 to
Lemma 7.10, since degy, Dr/x = > gy 6(B) degy, B.

The Riemann-Hurwitz theorem has a very large number of consequences.
We will give some idea of how it is used by giving three corollaries.

Corollary 1. Suppose L/K is a finite, separable, geometric extension of
function fields. Then, gx < gr. (This need not be true for inseparable
extensions!)

Proof. Since the different is an effective divisor (all its coefficients are non-
negative) we see 295, — 2 > [L: K](2gx — 2) > 29k — 2. Thus gx < g1, as
asserted.

One can prove this result in another way. It follows immediately from
the theorem that w* is a holomorphic differential (no poles) if w is a holo-
morphic differential. One checks (using the fact that the trace map from
A to Ak is onto when L/K is separable) that the map w — w* is a one
to one F'-linear map from Qg (0) to £2,(0). Since these two vector spaces
have dimension g and gy, respectively, it follows that gx < gy

Corollary 2. (Luroth’s Theorem) Let L = F(z) be a rational function field
over F' and K a subfield properly containing F. Then, there is a u € K
such that K = F(u).

Proof. Since K properly contains F, it is easy to see that [L : K] < oo.
Let M be the maximal separable extension of K contained in L. If the
characteristic of F' is zero, then M = L. If the characteristic of F is p > 0,
then L/M is purely inseparable of degree p™ for some n > 0. It follows that
zP" € M. On the other hand, the polar divisor of = in L is a prime (the
prime at infinity) of degree 1 and so the polar divisor of zP" has degree p™.
Consequently, [L : F(z?")] = p" by Proposition 5.1. Thus, M = F(zP")
and M is a rational function field. This shows that we can assume to begin
with that L/K is separable. Since L has genus zero it follows by Corollary
1 that g = 0. Since L has a prime of degree 1, e.g., the zero or pole of z,
the prime lying below it in K must also have degree 1. It follows that K
is a rational function field (see the discussion after the proof of Corollary
5 to Theorem 5.4).



92 Michael Rosen

Corollary 3. Let L/K be a finite, separable, geometric extension of func-
tion fields. Assume g, = 1. Then, gx < 1 with equality holding if and only
if L/ K is unramified.

Proof. The inequality gx < 1 follows from Corollary 1. From gr, = 1 and
the theorem we deduce, 0 = [L : K|(29x — 2) +deg; Dy k. If g = 1 the
degree of the different is zero and so the different is the zero divisor (recall
that the different is an effective divisor). From Theorem 7.12 it follows
that L/K is unramified. By the same theorem, if L/K is unramified then
Dy x =0 and so 2gx — 2 = 0 or, what is the same, g = 1.

We will conclude this chapter with a beautiful application of the Riemann-
Hurwitz theorem to the proof of the ABC theorem in function fields. Let’s
begin by recalling the ABC conjecture of Masser and Oesterlé in the case
of the rational numbers Q. Suppose A,B,C € Z and that A+ B = C.
Suppose further that the three integers A, B, and C' are pairwise relatively
prime. The conjecture states that for each ¢ > 0 there is a constant M,
such that if A, B, and C satisfy the given conditions, we have

max (|A[,|Bl,[C]) < Me ( H p)'*e.
plABC

This elegant conjecture has many surprisingly powerful consequences. See
Lang [4], Chapter IV, Section 7, for a discussion and a number of references.
At present the conjecture is not proven and many people consider it to be
beyond the range of the available methods.

The ABC conjecture for Q can be easily generalized to number fields.
We omit this formulation here. Instead we reformulate the conjecture over
Q slightly. In this new formulation it becomes clear what the analogous
conjecture should be in the function field case.

Rewrite A+ B =C as A/C + B/C =1. Write u = A/C and v = B/C.
Then u,v € Q and v 4 v = 1. Let’s recall the definition of the height of
a rational number r. Write 7 = m/n where m,n € Z and (m,n) = L.
Then the height of 7, ht(r), is defined to be max(log|m|,log|n|). With
this notation we can recast the ABC conjecture as follows. Suppose € > 0
is given. Then there is a constant m, such that whenever u,v € Q* and
u+v =1, we have

max(ht(u), ht(v)) < me+ (1 +¢) Z log p.
p|ABC

Here, A and B represent the numerators of u and v and C their common
denominator.

Now, let’s return to the function field case. Let K be a function field
and F its field of constants. Suppose u,v € K* and u + v = 1. We need
a substitute for the notion of height. Let A be the zero divisor of u and
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C its polar divisor. A good measure of the size of a divisor is its degree,
so it is natural to define the height of u to be max(deg A,degC). This is
fine, but it can be stated more simply. We know (Proposition 5.1) that
deg A = deg C = [K : F(u)]. Instead of calling this number the height of
u, it is more conventional to call it the degree of u and use the notation
degu. One should be careful though, the degree of the divisor (u) is zero
(Proposition 5.1), whereas the degree of the element u is greater than or
equal to zero and is zero only when it is a constant.

For those with some algebraic geometry background, the degree of an
element has a nice geometric interpretation. The field K is the function
field of a smooth, complete curve T" defined over F. The element u can
be thought of as a rational map from T to the projective line P*/F. The
degree of u is the degree of this mapping. If F' is algebraically closed, all
fibers have degu elements with (possibly) finitely many exceptions.

Before stating the next theorem, we need two more definitions.

If D € Dk is a divisor, recall that Supp(D) is defined to be the set of
primes which occur in D with non-zero coefficient. This set is called the
support of D.

Secondly, suppose u € K* is not a constant. Let M be the maximal
separable extension of F'(u) inside of K. Then, the field degree, [M : F(u)},
is called the separable degree of v and is denoted by deg,u. Note that
deg, u < degw with equality holding if and only if K/F(u) is separable.

We can now state and prove(!) the ABC conjecture for function fields.

Theorem 7.17. Let K be a function field with a perfect constant field F'.
Suppose u,v € K* and u+ v = 1. Then,

deg,u =deg,v < 29 — 2+ Z degy P .
PcSupp(A+B+C)

Here, A and B are the zero divisors of u and v in K, respectively, and C is
their common polar divisor in K. (Note that no “¢” appears in the function
field version).

Proof. It is convenient to set kK = F(u). We first treat the case that K/k
is separable and do the general case later. Let n = degu = [K : k|. The
Riemann-Hurwitz theorem implies that

20k — 22> —2n+ > (e(P/P) —1)degy P, (1)

where the sum is over all primes of K and for any such prime P, ‘B denotes
the prime of &k lying below P. The point is that since F' is perfect a prime
is ramified if and only if its ramification index is greater than one. If its
ramification index is equal to one, it doesn’t contribute to the sum.

In the function field ¥ = F(u) we consider three primes Po, Pi1, and
Poo, Which are the zero divisors in k of u, 1 — v = v, and 1/u, respectively.

It is easy to see that A = ix/k(Po), B = ik/x(P1), and C = ix/k(Poo)-
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(Thinking of u as a mapping from the curve I" to P!, this says that A, B,
and C are the inverse images (as divisors) of 0, 1, and o). In the above
sum we are only going to consider primes in the support of either A, B,
or C. This will only strengthen the inequality. Consider the sum only over
the primes in the support of A. We have

Y. (e(P/PBo) —1)degy P =degg(ix/k Bo) — >, degg P.

PeSupp(A) PeSupp(A)

By Proposition 7.7, degy (ix/xBo) = [K : k]deg, Bo = n. So, the above
sum is simply 7 minus the sum of degy P over those P in the support
of A. The same considerations prove the analogous result for B and C.
So, adding the contributions from these three sums and substituting into
Equation 1 above, we find

29k —22n— ) deggP,
PeSupp(A+B+C)

and that concludes the proof in the case where K/k is separable.

Now suppose the characteristic p of F is positive and that K/k is insep-
arable. Let M be the maximal separable extension of k in K. Then K/M
is purely inseparable of degree p™ for some m. Working with the separable
extension M/k, we find

29 —2>[M : k] — Z degy, P,
P’€Supp(A’+B'+C")

where A" = ip/1(Po), B’ = ing/x(P1), and C’ = ipg4(Poo ). By Proposition
7.5, we see that for each prime P’ of M there is one and only one prime
P of K lying above P’ and that degy P = deg), P’. Since, by definition,
[M : k] = deg, u, the above inequality can be rewritten as

29p — 2> deg, u — > degy P .
PeSupp(A+B+C)

Invoking Proposition 7.5 once more, we see gps = gi. This completes the
proof.

To show the power of the ABC Theorem, we will give two applications.
The first will concern solutions to the Fermat equation XV + YN =1
in function fields and the second will be the statement and proof of the
S-unit Theorem, a powerful result with many applications to diophantine
problems.

Proposition 7.18. Let K be a function field with a perfect constant field
F. Consider the equation XN +YN = 1. We assume that N is not divisible
by the characteristic p of F. If g = 0 and N > 3, then there is no non-
constant solution to this equation in K. If gx > 1 and N > 6gx — 3, then
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there is no non-constant solution to this equation in K. (By a non-constant
solution we mean a pair (u,v) € K2 — F? such that ¥ +vV =1.)

Proof. Suppose that (u,v) € K? is a non-constant solution. Invoking the
ABC theorem we find

max(deg, v, deg, v") < 29 — 2 + Z degpe P, (2)
PeSupp(A+B+C)

where A is the zero divisor of u, B is the zero divisor of v, and C is their
common polar divisor. We’ll return to this equation in a moment.

Let M be the maximal separable extension of F'(u) in K. By considering
the tower of fields F(u”) C F(u) C M C K, and noting that F(u)/F(u)
is separable of degree N (it’s here we use the hypothesis (p, N) = 1), we
see that deg, u™ = N deg, u. Similarly, deg, vV = N deg, v.

Next, by comparing the zero divisor of w in M to the zero divisor of
u in K (as we have done in the proof of Theorem 7.17) we see that
> Pesupp(4) 968k P < deg,u. Applying the same reasoning to v yields
> Pesupp(n) de8x P < deg,v. Since C is the common polar divisor of u
and v we have a similar inequality involving C.

Putting all this together and substituting into Equation 2 yields

N ) deggP <2k —2+ > degy P,
PeSupp(A) PeSupp(A+B+C)

with similar equations involving B and C on the left-hand side. Adding all
three and rearranging terms gives

(N —3) > degp P < 6gx — 6 .
PeSupp(A+B+C)

If g =0 and N > 3, the left-hand side of this inequality is non-negative
and the right-hand side is —6. This is impossible and this contradiction
establishes the first assertion of the Proposition.

Assume now that gx > 1 and N > 6gz — 3. Then certainly N > 4 so
N —3 is positive. Dividing both sides of the inequality by N — 3 we see that
69 —6 / N —3 must be bigger than or equal to one. If 6g5c —6 / N -3 < 1
we get a contradiction. Since this inequality is equivalent to N > 6gx — 3
the proposition is proved.

Actually, one can get a somewhat better result by a different method.
Namely, suppose all the hypotheses of the proposition hold and that (u,v) €
K? is a non-constant solution. Let F(u, v) be the subfield of K generated by
u and v over F'. We will show in the next chapter that in characteristic zero
or when (p, N) = 1 the genus of F'(u,v) is equal to (N —1)(N —2)/2. When
the constant field is perfect the genus of a subfield is less than or equal to
the genus of the field. Thus, if a solution exists (N — 1){N —2)/2 < gg.
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Put the other way around, if g < (N — 1)(N — 2)/2, there are no non-
constant solutions. Although this is quite elegant, the solution using the
ABC Theorem is applicable in many situations where this method fails.

By the way, the hypothesis about the constant field being perfect is
superfluous. In the next chapter we will show that in this problem we could
have replaced F by its algebraic closure F. Since algebraically closed fields
are perfect the method applies and gives the result over F' and a posteriori
over F.

The final result of the chapter involves the notion of S-units. Let K be
a function field with constant field F' and suppose S = {P1, Ps,..., P}
is a finite set of primes of K. An element u € K* is called an S-unit if
Supp(u) C S, i.e., only primes in S enter into the principal divisor (u). The
S-units form a group denoted by Ug. The map u — (u) is a homomorphism
from the S-units into the free abelian group of divisors supported on S.
Every element in the kernel of this map has zero for its divisor. Thus,
the kernel consists precisely of the constants F*. The degree of a principal
divisor is zero. Thus the image of this map is a subgroup of the divisors
of degree zero supported on S. The latter group is free of rank ¢t — 1. We
have shown that Ug/F* is free of rank < t — 1 where t is the number of
elements in S. This tells us something about the multiplicative properties
of S-units. The next theorem is about an additive property of S-units.

Theorem 7.19. Let K be a function field with a perfect constant field F.
Let S be a finite set of primes of K. Then, there are only finitely many pairs
of separable, non-constant S-units (u,v) such that u+v =1. (u is said to
be separable if the field extension K/F(u) is separable). If the characteristic
of F' is zero, then every solution is separable. If characteristic of F isp > 0,
then the most general solution to X +Y = 1 in non-constant S-units is
(uP™ ,vP™) where (u,v) is a separable, non-constant solution in S-units and
m € Z,m > 0.

Proof. Assume to begin with that (u,v) is a non-constant, separable solu-
tion to X +Y =1 is S-units. By the ABC Theorem we have

degu < 29 — 2 + Z degy P,
PeSupp(A+B+C)

with the usual notations. Let M = ) p.gdegy P. Then, the right-hand
side is < 2gxg — 2 + M since the supports of A, B, and C are in S.
Let A = Y pcga(P) P with each a(P) > 0. Then, degu = degy A =
> pes @(P)degy P. This shows that for each P € S,

a(P)degy P < degy A <2gx —2-+ M,

and consequently that a(P) is bounded. Since A is a divisor with support
in a finite set of primes with bounded coeflicients, A must be one of only
finitely many divisors. Similarly for B and C. It follows that the number
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of possibilities for the principal divisor (u) is finite and similarly for (v).
For each of these possible principal divisors choose an S-unit u; and v;. We
suppose that 1 < i <l and 1 < j < k. Since any two non-zero elements
of K have the same divisor if and only if they differ by a constant, all
the non-constant, separable, S-unit solutions to X +Y =1 have the form
(auq, Buy) with a, 3 € F'. If there are more than Ik such solutions, then by
the pidgeon hole principal we can find a given pair of indices (%, j) and two
distinct pairs of constants (o, §), (&, #') such that

au; +PBu; =1 and o'u;+0'v;=1.

Subtracting these two equations, we find that u; is a constant times v;.
Substituting into the first equation shows that w; is a constant. This is a
contradiction, so we have shown there are only finitely many non-constant,
separable, S-unit solutions to X +Y = 1.

Now suppose u and v are non-constant S-units and u v == 1. If u is not
separable, let M be the maximal separable extension of F(u) in K. Then,
[K : M] = p™ for some positive integer m. By the corollary to Proposition
7.4 we see that 4 and v = 1 — u are p-th powers. Write u = u} and v =
with ui,v; € K. Note that, in fact, u;,v; € Ug. Since p is the characteristic
of K,1=u+v=u] +v} =1 = (ug +v1)P which implies u; +v; = L.
If uy is separable, we are done. If not, repeat the process and we find two
S-units ug and vy such that u; = ub, v; = v8, and ug + vo = 1. Note that
u = u’; and v = vgz. Thus, if uy is separable we are done. If not, continue
the process. This must end in finitely many steps since a non-constant in
K cannot be a p™ power for infinitely many m. This is easy to see. For
example, if u is not a constant, let P be a prime which is a zero of u. If u
is a p™ power then p™ divides ord p(u) which bounds m. The proof is now
complete.

Corollary. Suppose K is a function field over a finite field F. Suppose N
is greater than 3 and is relatively prime to the characteristic of F. Then,
XN + YN =1 has at most finitely many non-constant separable solutions
in K.

Proof. Suppose (u,v) € K? is a non-constant solution. In the course of
proving Proposition 7.18, we proved that

(N -3) Z degyp P <6gx —6,
Pe&Supp(A+B+C)

where A is the zero divisor of u, B is the zero divisor of v, and C is their
common polar divisor. Assuming N > 4, this shows that for any prime P
in the support of either u or v we must have degy P < (6gx —6) / N —3.
In a function field over a finite field there are at most finitely many primes
whose degree is below a fixed bound (in Chapter 5 we gave estimates for
the number of such primes). Let S be the set of all primes in K whose
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degree is less than or equal to (6gx — 6) / N — 3. Then every solution
to XY + YN =1in K is an S-unit. The corollary now follows from the
theorem.

Notice that the assumption that a solution be separable is essential since
if (u,v) is a solution, then (u?™,vP") is also a solution for all m > 1.

We have just given a taste of the possible applications of the ABC The-
orem in function fields. For more, see the paper by Silverman [2] and the
book by R.C. Mason [1].

The restriction on the constant field in the corollary to Theorem 7.19 is
not necessary. One could apply the classical theorem of de Franchis from
algebraic geometry, which states, in part, that if K/F is a function field
there are only finitely many subfields M such that FF C M, K is separable
over M, and the genus of M is greater than 1. In the notation of the
corollary, if (u,v) is a non-constant separable solution to XN + YN =1,
then F'(u,v) is a subfield, which satisfies these three properties (its genus is
(N—-1)(N—-2)/2 > 1since N > 3). Thus, we are reduced to worrying about
how many solutions (u,v) and (u/,v’) can exist with F(u,v) = F(u/,'). If
this happens, there is an automorphism of F(u,v), which takes u to «’ and
v to v'. A function field with genus greater than 2 has only finitely many
automorphisms (see Iwasawa and Tamagawa [1]). It follows that there are
only finitely many non-constant, separable solutions to X~ +YN =1 in
K.

The theorem of de Franchis is not easy to prove. The paper by E. Kani
[1] contains a proof of an effective version of the theorem. The bibliography
of that paper gives a number of relevant references to both the classical and
more modern treatments.

Exercises

1. Let K = F(z,y) be a function field where z and y satisfy an equation
of the form Y? = (X —a1)(X —ay) - - - (X —ap). We assume the a; are
distinct elements of F'. Let the divisor of  — a; in F(x) be denoted
by P; — P.,. For each i show that ik/F) P = 29B; where P; is a
prime of K of degree 1. Use this information to compute the genus
of K (don’t forget the role of the prime at infinity).

2. With the same notation as in Exercise 1, suppose that n > 5. Show
that each prime of K which is ramified over F(z) is a Weierstrass
point (see Exercise 10 of Chapter 5).

3. Let ! be a prime not equal to the characteristic of F and K = F(z,y) a
function field where = and y satisfy Y! = (X —a1)™ (X —ag)™* - - (X -
@) . We assume that the a; are all distinct and that for each i,
l'{n;. Compute the genus of K.
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Assume that F' contains a primitive N-th root of unity and that
N is not divisible by the characteristic of F. Consider a function
field K = F(z,y) where z and y satisfy an equation of the form
XN 4 YN =1, Compute the genus of K.

. Let K be a function field of genus 0 and L/K a finite geometric

extension. If L/K is unramified, show that L = K. (Assuming the
constant field is algebraically closed, this is the algebraic equivalent
of the statement that the projective line is simply connected).

. Let L/K be a finite, tamely ramified, geometric extension of the

rational function field. Let P be a prime of K of degree 1. Suppose
that L/K is unramified except possibly at primes lying above P.
Show that L = K.

. Let L/K be a finite, separable, geometric extension of function fields.

Set [L : K| = n. Suppose that degDr,x > 4(n — 1). Show that
gr+1>n(gr +1).

With the same notation and assumptions as Exercise 7, suppose P is
a prime of L of degree 1 and that 3 is totally ramified over K. Show
that 8 is a Welerstrass point.

Let L/K be a finite, separable, geometric extension of function fields
with five or more totally ramified primes all of degree 1. Show that
each of them is a Weierstrass point. (The results contained in Exer-
cises 7, 8, and 9 are due to J. Lewittes.)

Let S be a finite set of primes of the function field K. Let a,b € K*.
Show that the equation aX +bY = 1 has only finitely many solutions
in S-units.

Assume F is finite and let K/ be a function field, a,b € K*, and N >
5 an integer not divisible by the characteristic of F'. Show that the
equation X" 4 bYN =1 has only finitely many separable solutions
in K. If at least one of the two elements a and b is not a constant,

there are only finitely many solutions altogether. (Hint: Pass to the
extension field L = K( §/a, ¥/b).)
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Constant Field Extensions

In this chapter we investigate a very important class of extensions of func-
tion fields, namely, constant field extensions. Let K/F be a function field
with constant field F'. For every field extension E of F' we want to define
a function field K'F over F and investigate its properties. We shall confine
ourselves to the special case where E/F is algebraic, which is substantially
easier and which will suffice for most of the applications we have in mind.
However, the general case is both interesting and important. Expositions
of the general case can be found in Chevalley [1] and Deuring [1].

Let K be an algebraic closure of K and F' ¢ K the algebraic closure of F
in K. If E is any field intermediate between F' and F, we set KF equal to
the compositum of K and E inside K. By definition, K is finitely generated
and of transcendence degree 1 as a field extension of F', and it is clear from
this that KF is finitely generated and of transcendence degree 1 as a field
extension of E. Thus, K F is a function field over E. It is called the constant
field extension of K by E. It is not true, in general, that F is the constant
field of KE, but as we shall see shortly, this is often the case. The genus
of KFE is always less than or equal to the genus of K. It can be shown by
example that the genus can decrease. Once again, though, it is often the
case that the genus remains unchanged under constant field extension. The
magic hypothesis which tends to eliminate all “pathological” behavior is
that F' is a perfect fleld. We shall make that assumption throughout this
chapter, except when explicitly stated to the contrary. For emphasis —
unless otherwise stated we shall assume for the rest of this chapter that F
is a perfect field. As a consequence E/F will always be separable algebraic
and thus KE/K is also separable algebraic.
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The last topic we will consider in this chapter is the theory of constant
field extensions when the constant fields involved are finite. This will involve
interesting questions. Among other things we will consider how primes, the
zeta function, and the class number behave under constant field extension.
In a later chapter, Chapter 11, we will consider the behavior of the class
group and the class number of constant field extensions in greater detail.

Proposition 8.1. Assume [E : F] < co. Then, [KE : K| =[E : F]. Any
basis for E/F is also a basis for KE/K.

Proof. Suppose first that E/F is a finite, Galois extension. Then, by a stan-
dard theorem in Galois theory, KE/K is also Galois and Gal(KE/K) =
Gal(E/K N E). Since F is the constant fleld of K, EN K = F. It follows
that Gal(K E/K) and Gal(E/F') have the same number of elements, which
implies [KE : K] = [E : F].

Now suppose E/F is finite and separable. Let E; be the smallest ex-
tension of E in F' which is Galois over F. Then [E; : F] = [KE; : K] =
[KE; : KE|([KE : K| < [E, : E|[E : F| = [E; : F]. The inequality in
the middle comes about because, obviously, [KE; : KE] < [E; : E] and
[KE : K] < [E : F]. We conclude that both inequalities are in fact equali-
ties. This proves the first assertion.

Suppose {a1, a2, -+ ,a,} is a basis for E/F. It is easy to see that this set
also generates K F as a vector space over K. By the first part of the propo-
sition, it follows that the set is also linearly independent since otherwise
[KE:K]<n=[E:F].

We will need the following lemma in several of the following proofs.

Lemma 8.2. (a) Suppose L/K is a finite extension of fields and that K
contains o field F' which is algebraically closed in K. If B € L is algebraic
over F', then try, x(B) € F. (b) Suppose L/K is a finite extension of fields
and that O C K is a subring of K which is integrally closed in K. Ifbe L
is integral over O, then try,/k (b) € O.

Proof. This is fairly standard so we merely sketch the proofs.

For part (a) one considers the minimal polynomial for 8 over K and
shows that all its roots (in some extension field) are algebraic over F. Thus
the sum of the roots is algebraic over F' and in K, so the sum of the roots
is in F. The trace is an integer multiple of the sum of the roots, so it is in
F as well.

Part (b) is similar. One shows that all the roots of the minimal polyno-
mial for 8 over K are integral over O. This implies that the sum of the
roots is integral over O. The sum is also in K. Since O is integrally closed,
the sum of the roots is in O. The trace is an integral multiple of the sum
of the roots so it is also in O.

Proposition 8.3. E is the exact constant field of KE.



8. Constant Field Extensions 103

Proof. We have to show that any element of K E which is algebraic over
E is actually in F.

Assume first that [F : F] < oo, and that {a1, g, -+ ,an} is a basis for
E/F. Suppose 8 € KE is algebraic over E. By Proposition 1, we may write
B = > i, zia; where the z; € K. Multiply this relation by a; and take
the trace of both sides. We find

7
trxe/k(0G8) = trxp/xlojo) 7 1<j<n.

i=1
Since [ is algebraic over F and E is algebraic over F, it follows that §
is algebraic over F'. By Lemma 8.2, part (a), trxg/k(;3) € F. Thus, by
Cramer’s rule, we find each z; € F. (We have used det(trg g,k (c:i0y)) =
det(trg/p(cua;)) # 0, which is true because E/F' is separable). It follows
that =50 0, € E.

Now suppose that E/F is algebraic but not necessarily a finite extension.
Since 8 € KE we must have 8 € KE; for some FF C E; C E with
[Ey : F] < 00. By enlarging E, if necessary, we can suppose (3 is algebraic
over Ey. By the first part of the proof, 8 € FE;, which is contained in E.
The proof is complete.

Our next task is to show that constant field extensions of function fields
are unramified extensions. This will be an easy consequence of the next
lemma.

Lemma 8.4. Let E/F be a finite extension with {ay, a9, -+ ,0,} o basis
for E over F. Let P be a prime of K and Op the corresponding valuation
ring. Let Rp be the integral closure of Op in KE. Then {ay,ag,  + ,an}
is a free basis for Rp considered as an Op module.

Proof. Since FF C Op by definition, and each oy is algebraic over F, it
follows that each «; is integral over Op.

Suppose b € Rp. By Proposition 8.1, we can write b = ZLI x;c;, where
each z; € K. Multiply this relation by a; and take the trace of both sides.

One finds

n
trKE/K(a,-b) = ZtrKE/K(ajozi) z; 1<5<n.

i=1
The left-hand side of these equations are in Op by Lemma 8.2, part (b).
Again invoking Cramer’s rule and using the fact that the determinant of
the coefficient matrix is a non-zero element of I’ we conclude that each z; is
in Op. Thus, {a1, a9, -+ ,a,} spans Rp over Op. It is linearly independent
over Op (being a basis for KE over K) so it is a free basis for Rp over Op
as asserted.

Proposition 8.5. Suppose E/F is a finite extension. Then, KE/K is
unramified at all primes.
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Proof. Let P be a prime of K, Op its valuation ring, and Rp the integral
closure of Op in KE. By Lemma 8.4, any field basis {a1, a3, -+ ,an} for
E/F is a free basis for Rp considered as an Op module. The discriminant
ideal ?g, 0, is generated by det(trg g,k (cc;)), which is a non-zero ele-
ment of F. Thus, 0g,/0, = Rp. It follows by Proposition 7.9 of the last
chapter that K F/K is unramified at every prime above P. Since P was
arbitrary, the proof is complete.

It is possible to talk about infinite algebraic extensions being unrami-
fied. Once these definitions are given it can be shown that Proposition 8.5
remains valid even without the restriction that £/F be a finite extension.

Now that we know K E/K is unramified, we want to find out how the
degree and dimension of a divisor behaves in constant field extensions. For
notational convenience, set L = KE. Let A be a divisor of K. We want to
compare degy i x(A) with degy A. This will turn out to be fairly easy.
More difficult will be the comparison of I(iy,x(A)) with [(A). We begin
with two lemmas.

Lemma 8.6. Let {x1,z9, - ,z,} C K be linearly independent over F.
Then, considered as a subset of KE, it remains linearly independent
over E.

Proof. Suppose 3.7, Biz; = 0 with each 8; € E. Assuming E/F is a finite
extension, let {ev1, e, -+ , @, } be a basis for E/F. Then, 8; = Z?zl (e
with ¢;; € F'. Substituting and interchanging the order of summation yields

=1 \i=1

Using Proposition 8.1, once again, we find >_'"; ¢;;z; = 0 for each j with
1 < j < n. Since the z;’s are linearly independent over F' by assumption,
it follows that all the c¢;; are 0 which implies that all the g8; = 0.

If E/F is not finite, suppose Y .~ B;z; = 0 with each 3; € E. Let
Ey be the field obtained from F by adjoining the elements of the set
{B1,B2, -+ ,Bm}. E1 is a finite extension of F. Write L; = K E,. Working
in this field, and using the first part of the proof, we conclude that all the
Bi = 0.

Lemma 8.7. Let L/K be a finite extension of function fields and P a
prime of K. Suppose that {P1, B, -, Py}, the primes above P in L,
are all unramified over P. Let n € Z be a given integer. Finally, suppose
ordg, (b) > —n for all i with 1 < i < g. Then ordp(try k(b)) > —n.

Proof. Let m € K be a uniformizing parameter at P. Then, since each 3,
Is unramified over P we have 1 = ordp(m) = ordgp, (7) for 1 < i < n.
The inequalities ordg, (b) > —n are equivalent to ordg, (7"b) > 0. It
follows that 7"b is in the intersection of the valuation rings Og, where
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1 € i < n. This intersection is precisely Rp, the integral closure of Op
in L. Thus, 7™b is integral over Op and by Lemma 8.2, part (b), we have
try/k(7"b) € Op. It follows that ordp(n™try k(b)) > 0 and this is equiv-
alent to ordp(try k(b)) > —n as asserted.

We are now in a position to answer the questions raised earlier.

Proposition 8.8. Let E/F be o finite algebraic extension, K a function
field with constant field F', and L = KE. Let A be a divisor of K. Then,

(a) degyir/k(A) =degr A .

(b) lip/x(A) =1(A) .

Proof. By Proposition 8.3, F is the exact constant field of L = KE. By
Proposition 8.1, [L : K] = [E : F]. Part (a) now follows immediately from
Proposition 7.7.

To prove part (b), we recall that [(4,x (A)) is the dimension over E of the
vector space L(ir x(A)) = {ve L | (v)L + iy k(A) > 0}. By Proposition
7.8, i1 k() k = (x)r and it follows immediately that L(A) C L(i x (4)).
Let {z1,22. -+ ,z4} be a basis for L(A). This set is linearly independent
over F, so by Lemma 8.6, it is linearly independent over E. Consequently,

UA) <l(ig)x(A)) .

The reverse inequality will follow if we can show that {z,zs,- -, 24} gen-
erates L(ir/x(A)) over E, and this is what we will prove.
Let z € L(iy/x (A)) and let, as usual by now, {o, 2, -+ ,an} be a basis

for E over F. By Proposition 8.1, we can write z = Y .-, y;o; where y; € K
for 1 <4 < n. Multiply both sides by «; and take traces to arrive at

trr x(a;z) = ZtrL/K(ajai) Y, 1<3<n.
i=1

Suppose we can show that the trace of any element in L(i/x(A)) is in
L(A). Then the left-hand side of these equations are in L(A) and by
Cramer’s rule, each y; € L(A). It follows that each y; is in the F-linear
span of {z1, %3, -+ ,24} and so z is in the E-linear span of {z1,zs, -+ ,Z4}.

It remains to prove that v € L(iy x(A)) implies try, g (v) € L(A). The
main tool in doing this will be Lemma 8.7. We begin by recalling that
v € L(iy,x(A)) if and only if for every prime 95 of L the following inequality
holds:

ordm(v) > ~Ordq3(’iL/K(A)) .

Let P be the prime of K lying below 9. Since L/K is unramified by
Proposition 8.5, we have ordgp (i k(A)) = ordp(A). The condition for v
to belong to L(ir;x(A)) can be rephrased as follows. For all primes P of
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K let {P1,P2, -+, Py} be the set of primes of L lying above P. Then, for
each i with 1 < i < g we have

ordg, (v) > —ordp(4) .

By Lemma 8.7, this implies that ordp(trz x (v)) > —ordp(A) for all primes
P of K. These are exactly the <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>