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Preface 

This book presents some of the basic topological ideas used in studying 
differentiable manifolds and maps. Mathematical prerequisites have been 
kept to a minimum; the standard course in analysis and general topology is 
adequate preparation. An appendix briefly summarizes some of the back
ground material. 

In order to emphasize the geometrical and intuitive aspects of differen
tial topology, I have avoided the use of algebraic topology, except in a few 
isolated places that can easily be skipped. For the same reason I make no 
use of differential forms or tensors. 

In my view, advanced algebraic techniques like homology theory are 
better understood after one has seen several examples of how the raw 
material of geometry and analysis is distilled down to numerical invariants, 
such as those developed in this book: the degree of a map, the Euler number 
of a vector bundle, the genus of a surface, the cobordism class of a manifold, 
and so forth. With these as motivating examples, the use of homology and 
homotopy theory in topology should seem quite natural. 

There are hundreds of exercises, ranging in difficulty from the routine to 
the unsolved. While these provide examples and further developments of 
the theory, they are only rarely relied on in the proofs of theorems. 

VB 
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Introduction 

Any problem which is non-linear in character, which involves more than one 
coordinate system or more than one variable, or where structure is initially 
defined in the large, is likely to require considerations of topology and group 
theory for its solution. In the solution of such problems classical analysis will 
frequently appear as an instrument in the small, integrated over the whole prob
lem with the aid of topology or group theory. 

--M. Morse, Calculus of Variations 
in the Large, 1934 

La possibilite d'utiliser Ie modele differential est, ames yeux, la justification 
ultime de I'emploi des modeles quantitifs dans les sciences. 

-R. Thorn, Stabilite Structure lie 
et Morphogenese, 1972 

In many branches of mathematics one finds spaces that can be described 
locally by n-tuples of teal numbers. Such objects are called manifolds: a 
manifold is a topological space which is locally homeomorphic to Euclidean 
n-space [W. We can think of a manifold as being made of pieces of [Rn glued 
together by homeomorphisms. If these homeomorphisms are chosen to be 
differentiable, we obtain a differentiable manifold. This book is concerned 
mainly with differentiable manifolds. 

The Development of Differentiable Topology 

The concept of manifold emerged gradually from the geometry and func
tion theory of the nineteenth century. Differential geometers studied curves 
and surfaces in "ordinary space"; they were mainly interested in local con
cepts such as curvature. Function theorists took a more global point of view; 
they realized that invariants of a function F of several real or complex vari
ables could be obtained from topological invariants of the sets F-1(c); for 
"most" values of c, these are manifolds. 

Riemann broke new ground with the construction of what we call 
Riemann surfaces. These were perhaps the first abstract manifolds; that is, 
they were not defined as subsets of Euclidean space. 

Riemann surfaces furnish a good example of how manifolds can be used 
to investigate global questions. The idea of a convergent power series (in one 
complex variable) is not difficult. This simple local concept becomes a com
plex global one, however, when the process of analytic continuation is 
introduced. The collection of all possible analytic continuations of a con
vergent power series has a global nature which is quite elusive. The global 
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aspect suddenly becomes clear as soon as Riemann surfaces are introduced: 
the continuations fit together to form a (single valued) function on a surface. 
The surface expresses the global nature of the analytic continuation process. 
The problem has become geometrized. 

Riemann introduced the global invariant of the connectivity of a surface: 
this meant maximal number of curves whose union does not disconnect the 
surface, plus one. It was known and "proved" in the 1860's that compact 
corientable surfaces were classified topologically by their connectivity. 
Strangely enough, no one in the nineteenth century saw the necessity for 
proving the subtle and difficult theorem that the connectivity of a compact 
surface is actually finite. 

Poincare began the topological analysis of 3-dimensional manifolds. In 
a series of papers on "Analysis Situs," remarkable for their originality and 
power, he invented many of the basic tools of algebraic topology. He also 
bequeathed to us the most important unsolved problem in differential 
topology, known as Poincare's conjecture: is every simply connected compact 
3-manifold, without boundary, homeomorphic to the 3-sphere? 

It is interesting to note that Poincare used purely differentiable methods 
at the beginning of his series of papers, but by the end he relied heavily on 
combinatorial techniques. For the next thirty years topologists concentrated 
almost exclusively on combinatorial and algebraic methods. 

Although Herman Weyl had defined abstract differentiable manifolds in 
1912 in his book on Riemann surfaces, it was not until Whitney's papers of 
1936 and later that the concept of differentiable manifold was firmly estab
lished as an important mathematical object, having its own problems and 
methods. 

Since Whitney's papers appeared, differential topology has undergone a 
rapid development. Many fruitful connections with algebraic and piece
wise linear topology were found; good progress was made on such questions 
as embedding, immersions, and classification by homotopy equivalence or 
diffeomorphism. Poincare's conjecture is still unsolved, however. In recent 
years techniques and results from differential topology have become im
portant in many other fields. 

The Nature of Differential Topology 

In today's mathematical sciences manifolds are found in many different 
fields. In algebra they occur as Lie groups; in relativity as space-time; in 
economics as indifference surfaces; in mechanics as phase-spaces and energy 
surfaces. Wherever dynamical processes are studied, (hydrodynamics, popu
lation genetics, electrical circuits, etc.) manifolds are used for the "state
space," the setting for a model of the process by a differential equation or 
a mapping. 

In most of these examples the historical development follows the local
to-global pattern. Lie groups, for example, were originally "local groups" 
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having a single parametrization as a neighborhood of the origin in [Rn. Only 
later did global questions arise, such as the classification of compact groups. 
In each case the global nature of the subject became geometrized (at least 
partially) by the introduction of manifolds. In mechanics, for example, the 
differences in the possible long-term behavior oftwo physical systems become 
clear if it is known that one energy surface is a sphere and the other is a 
torus. 

When manifolds occur "naturally" in a branch of mathematics, there is 
always present some extra structure: a Riemannian metric, a binary opera
tion, a dynamical system, a conformal structure, etc. It is often this structure 
which is the main object of interest; the manifold is merely the setting. But 
the differential topologist studies the manifold itself; the extra structures 
are used only as tools. 

The extra structure often presents fascinating local questions. In a 
Riemannian manifold, for instance, the curvature may vary from point to 
point. But in differential topology there are no local questions. (More precisely, 
they belong to calculus.) A manifold looks exactly the same at all points 
because it is locally Euclidean. In fact, a manifold (connected, without bound
ary) is homogeneous in a more exact sense: its diffeomorphism group acts 
transitively. 

The questions which differential topology tries to answer are global; they 
involve the whole manifold. Some typical questions are: Can a given mani
fold be embedded in another one? If two manifolds are homeomorphic, are 
they necessarily diffeomorphic? Which manifolds are boundaries of compact 
manifolds? Do the topological invariants of a manifold have any special 
properties? Does every manifold admit a non-trivial action of some cyclic 
group? 

Each of these questions is, of course, a shorthand request for a theory. 
The embedding question, for example, really means: define and compute 
diffeomorphism invariants that enable us to decide whether M embeds in 
N, and in how many essentially distinct ways. 

If we know how to construct all possible manifolds and how to tell from 
"computable" invariants when two are diffeomorphic, we would be a long 
way toward answering any given question about manifolds. Unfortunately, 
such a classification theorem seems unattainable at present, except for very 
special classes of manifolds (such as surfaces). Therefore we must resort to 
more direct attacks on specific questions, devising different theories for 
different questions. Some of these theories, or parts of them, are presented 
in this book. 

The Contents of This Book 

The first difficulty that confronts us in analyzing manifolds is their 
homogeneity. A manifold has no distinguished "parts"; every point looks 
like every other point. How can we break it down into simpler objects? 
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The solution is to artificially impose on a manifold a nonhomogeneous 
structure of some kind which can be analyzed. The major task then is to 
derive intrinsic properties of the original manifold from properties of the 
artificial structure. 

This procedure is common in many parts of mathematics. In studying 
vector spaces, for example, one imposes coordinates by means of a basis; 
the cardinality of the basis is then proved to depend only on the vector space. 
In algebraic topology one defines the homology groups of a polyhedron 
in terms of a particular triangulation, and then proves the groups to be 
independent of the triangulation. 

Manifolds are, in fact, often studied by means of triangulations. A more 
natural kind of decomposition, however, consists of the level sets f-l(y) of 
a smooth map f: M ~ IR, having the simplest kinds of critical points (where 
Df vanish). This method of analysis goes back to Poincare and even to 
Mobius (1866); it received extensive development by Marston Morse and 
today is called Morse theory. Chapter 6 is devoted to the elementary aspects 
of Morse theory. In Chapter 9 Morse theory is used to classify compact 
surfaces. 

A basic idea in differential topology is that of general position or trans
versality; this is studied in Chapter 3. Two submanifolds A, B of a manifold 
N are in general position if at every point of A n B the tangent spaces of 
A and B span that of N. If A and B are not in general position, arbitrarily 
small perturbations of one of them will put them in general position. If they 
are in general position, they remain in it under all sufficiently small per
turbations; and A n B is then a submanifold of the "right" dimension. A 
map f: M ~ N is transverse to A if the graph of f and M x A are in general 
position in M x N. This makes f -l(A) a submanifold of M, and the topology 
of f-l(A) reflects many properties off. In this wayan important connection 
between manifolds and maps is established. 

Transversality is a great unifying idea in differential topology; many 
results, including most of those in this book, are ultimately based on trans
versality in one form or another. 

The theory of degrees of maps, developed in Chapter 5, is based on 
transversality in the following way. Let f: M ~ N be a map between compact 
oriented manifolds of the same dimension, without boundary. Suppose f is 
transverse to a point YEN; such a point is called a regular value of f. The 
degree off is the "algebraic" number of points in f -l(y), that is, the number 
of such points where f preserves orientation minus the number where f 
reverses orientation. It turns out that this degree is independent of y and, 
in fact, depends only on the homotopy class of f. If N = sn then the degree 
is the only homotopy invariant. In this way we develop a bit of classical 
algebraic topology: the set of homotopy classes [M,sn] is naturally iso
morphic to the group of integers. 

The theory of fibre bundles, especially vector bundles, is one of the 


