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PREFACE 

The present volume is the first of three that will be published 
under the general title Lectures in Abstract Algebra. These vol­
umes are based on lectures which the author has given during 
the past ten years at the University of North Carolina, at The 
Johns Hopkins University, and at Yale "University. The general 
plan of the work IS as follows: The present first volume gives an 
introduction to abstract algebra and gives an account of most of 
the important algebraIc concepts. In a treatment of this type 
it is impossible to give a comprehensive account of the topics 
which are introduced. Nevertheless we have tried to go beyond 
the foundations and elementary properties of the algebraic sys­
tems. This has necessitated a certain amount of selection and 
omission. We feel that even at the present stage a deeper under­
standing of a few topics is to be preferred to a superficial under­
standing of many. 

The second and third volumes of this work will be more special­
ized in nature and will attempt to give comprehensive accounts 
of the topics which they treat. Volume II will bear the title 
Linear Algebra and will deal with the theorv of vectQ!_JlP.-a.ces..... 
Volume III, The Theory of Fields and Galois Theory, will be con­
cerned with the algebraic structure offieras and with valuations 
of fields. 

All three volumes have been planned as texts for courses. A 
great many exercises of varying degrees of difficulty have been 
included. Some of these perhaps rate stars, but we have felt 
that the disadvantages of the system of starring difficult exercises 
outweigh its advantages. A few sections have been starred 
(notation: *1) to indicate that these can be omitted without 
jeopardizing the understanding of subsequent material. 

vii 
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We are indebted to a great many friends for helpful criticisms 
and encouragement during the course of preparation of this vol­
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men. 

New Haven, Conn. 
January 22, I95I 

N. J. 



SECTION 

CONTENTS 

INTRODUCTION: CONCEPTS FROM SET THEORY 

THE SYSTEM OF NATURAL NUMBERS 

1. Operations on sets . . . 
2. Product sets, mappings . 
3. Equivalence relations 
4. The natural numbers. . 
5. The system of integers . 
6. The division process in I 

CHAPTER I: SEMI-GROUPS AND GROUPS 

PAGB 

2 
3 
4 
7 

10 
12 

1. Definition and examples of semi-groups. 15 
2. Non-associative binary compositions 18 
3. Generalized associative law. Powers 20 
4. Commutativity . . . . . . . . 21 
5. Identities and inverses . . . . . 22 
6. Definition and examples of groups 23 
7. Subgroups . . . . . 24 
8. Isomorphism . . . . . . . . . 26 
9. Transformation groups . . . . . 27 

10. Realization of a group as a transformation group 28 
11. Cyclic groups. Order of an element . 30 
12. Elementary properties of permutations 34 
13. Coset decompositions of a group. . . 37 
14. Invariant subgroups and factor groups 40 
15. Homomorphism of groups ..... 41 
16. The fundamental theorem of homomorphism for groups 43 
17. Endomorphisms, automorphisms, center of a group. 45 
18. Conjugate classes . . . .. ........ 47 

ix 



x CONTENTS 

CHAPTER II: RINGS, INTEGRAL DOMAINS AND FIELDS 
SECTION PAGE 

1. Definition and examples . . . . . . . 49 
2. Types of rings. . . . . . . . . . . . 53 
3. Quasi-regularity. The circle composition 55 
4. Matrix rings .. . . . . . . . . . . 56 
5. Quaternions. . . . . . . . . . . . . 60 
6. Subrings generated by a set of elements. Center 63 
7. Ideals, difference rings . . . . . . . . . . . . 64 
8. Ideals and difference rings for the ring of integers 66 
9. Homomorphism of rings . . . . . . . . . . . 68 

10. Anti-isomorphism . . . . . . . . . . . . . . 71 
11. Structure of the additive group of a ring. The charateristic 

of a ring . . . . . . . . . . . . . . . . . . . 74 
12. Algebra of subgroups of the additive group of a ring. One-

sided ideals . . . . . . . . . . . . . . . . . 75 
13. The ring of endomorphisms of a commutative group 78 
14. The multiplications of a ring . . . . . . . . . . 82 

CHAPTER III: EXTENSIONS OF RINGS AND FIELDS 

1. Imbedding of a ring in a ring with an identity. . . 
2. Field of fractions of a commutative integral domain 
3. Uniqueness of the field of fractions . 
4. Polynomial rings ..... 
5. Structure of polynomial rings 
6. Properties of the ring 2l[x] 
7. Simple extensions of a field . 
8. Structure of any field 
9. The number of roots of a polynomial in a field 

10. Polynomials in several elements 
11. Symmetric polynomials . 
12. Rings of functions . . . . . . 

CHAPTER IV: ELEMENTARY FACTORIZATION THEORY 

1. Factors, associates, irreducible elements 
2. Gaussian semi-groups 
3. Greatest common divisors 
4. Principal ideal domains. . 

84 
87 
91 
92 
96 
97 

100 
103 
104 
105 
107 
110 

114 
l1S 
118 
121 



CONTENTS 

SECTION 

5. Euclidean domains. . . . . . . . . . . 
6. Polynomial extensions of Gaussian domains 

CHAPTER v: GROUPS WITH OPERATORS 

xi 

PAGE 

122 
124 

1. Definition and examples of groups with operators . . .. 128 
2. M-subgroups, M-factor groups and M-homomorphisms .. 130 
3. The fundamental theorem of homomorphism for M-groups 132 
4. The correspondence between M-subgroups determined by a 

homomorphism . . . . . . . . . . 133 
5. The isomorphism theorems for M-groups . . . 135 
6. Schreier's theorem . . . . . . . . . . . . . 137 
7. Simple groups and the Jordan-Holder theorem 139 
8. The chain conditions. . . . 142 
9. Direct products . . . . . . 144 

10. Direct products of subgroups 145 
11. Projections . . . . . . . . 149 
12. Decomposition into indecomposable groups 152 
13. The Krull-Schmidt theorem 154 
14. Infinite direct products . . . . . . . . . 159 

CHAPTER VI: MODULES AND IDEALS 

1. Defini tions 
2. Fundamental concepts ... 
3. Generators. Unitary modules 
4. The chain conditions . . . . 
5. The Hilbert basis theorem 
6. Noetherian rings. Prime and primary ideals 
7. Representation of an ideal as intersection of primary ideals 
8. Uniqueness theorems ... 
9. Integral dependence . . . 

10. Integers of quadratic fields 

CHAPTER VII: LATTICES 

1. Partially ordered sets 
2. Lattices ..... . 
3. Modular lattices . . . 
4. Schreier's theorem. The chain conditions. 

162 
164 
166 
168 
170 
172 
175 
177 
181 
184 

187 
189 
193 
197 



Xll CONTENTS 

SECTION PAGE 

5. Decomposition theory for lattices with ascending chain con-
dition . . . . . . . . . . 201 

6. Independence . . . . . . . . 202 
7. Complemented modular lattices 205 
8. Boolean algebras 207 

Index 213 



Introduction 

CONCEPTS FROM SET THEORY 
THE SYSTEM OF NATURAL NUMBERS 

The purpose of this volume is to give an introduction to the 
basic algebraic systems: group~, ring~, fields, groups with opera­
tors) modules, and lattices. The study of these systems encom­
passes a major portion of classical algebra. Thus, in a sense our 
subject matter is old. However, the axiomatic development 
which we have adopted here is comparatively new. Abeginner 
may find our account at times uncomfortably abstract since we 
do not tie ourselves down to the study of ~ne particular system 
(e.g., the system of real numbers). Supplementary study of the 
exercises and examples should help to overcome this difficulty. At 
any rate, it will be obvious that much time is saved and a clearer 
insight is eventually achieved by the present method. 

The basic ingredients of the systems that we shall study are 
sets and mappings of these sets. Notions from set theory will 
occur constant1y in our discussion. Hence, it will be useful to 
consider briefly in the first part of this Introduction some of these 
ideas before embarking on the study of the algebraic systems. We 
shall not attempt to be completely rigorous in our sketchy account 
of the elements of set theory. The reader should consult the 
standard texts for systematic and detailed accounts of this sub­
ject. Of these we single out Bourbaki's TMorie des Ensembles as 
particularly appropriate for our purposes. 

The second part of this Introduction sketches a treatment of 
the system P of natural numbers as an abstract mathematical 
system. The starting point here is a set and a mapping in the 

1 



2 INTRODUCTION 

set (the successor mapping) that is assumed to satisfy Peano's 
axioms. By means of this, one can introduce addition, multiplica­
tion, and the relation of order in P. We shall also define the 
system I of integers as a certain extension of the system P of 
natural numbers. Finally, we shall derive one or two arithmetic 
facts concerning I that are indispensable in elementary group 
theory. Full accounts of the foundations of the system of natural 
numbers are available in Landau's Grundlagen der Analysis and in 
Graves' Theory of Functions of Real Variables. 

1. Operations on sets. We begin our discussion with a brief 
survey of the fundamental concepts of the theory of sets. 

Let S be an arbitrary set (or collection) of elements a, b, c, .. '. 
The nature of the elements is immaterial to us. We indicate the 
fact that an element a is in S by writing a e S or S 3 a. If A 
and B are two subsets of S, then we say that A is contained in 
B or B contains A (notation: A c B or B ::J A) if every a in A 
iS~lalso in B. The statement A = B thus means that A ::J Band 
B ::J A. Also we write A ::J B if A ::J B but B ~ A. In this 
case A is said to contain B properly, or B is a proper subset of A. 

If A and B are any two subsets of S, the collection of elements 
c such that c e A and c e B is called the' intersection A n B of 
A and B. More generally we can define the intersection of any 
finite number of sets, and still more generally, if {A} denotes any 
collection of subsets of S, then we define the intersection nA 
as the set of elements c such that c e A for every A in {A}. If the 
collection {A} is finite, so that its members can be denoted' as 

n 

At, A 2, "', An, then the intersection can be written as n Ai or 
1 

as Al n A 2 n··· n An. 
Similar remarks apply to logical sums of subsets of S. The 

logical sum or union of the collection {A} of subsets A is the set 
of elements u such that u e A for at least one A in {A}. We 

n 

denote this set as UA or, if the collection is finite, as U Ai or 
1 

Al U A2 U··· U An. 
The collection of all subsets of the given set S will be denoted 

as peS). In order to avoid considering exceptional cases it is 
necessary to count the whole set S and the vacuous set as mem-
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bers of peS). One may regard the latter as a zero element that 
is adjoined to the collection of "real" subsets. We use the nota­
tion 50 for the vacuous set. The convenience of introducing this 
set is illustrated in the use of the equation A n B = 50 to indi­
cate that A and B are non-overlapping, that is, they have no 
elements in common. If S is a finite set of n elements, then 
peS) consists of 50, n sets containing single elements, "', 

( n) n(n - 1) ... (n - i + 1) '" 
. = . sets contammg t elements, and 
t 1·2 ... t 

so on. Hence the total number of elements in peS) is 

2. Product sets, mappings. If Sand T are arbitrary sets, we 
define the product set S X T to be the collection of pairs (s,t), 
sin S, tin T. The two sets Sand T need not be distinct. In the 
product S X T the elements (s,t) and (s',t') are regarded as equal 
if and only if s = s' and t = t'. Thus if 8 consists of the m 
elements S1) S2, "', Sm and T consists of the n elements t1) t2, 
.. " tn, then 8 X T consists of the mn elements (Si,t,). More 
generally, if S1) 82, "', Sr are any sets, then rrSi or SI X S2 X 
... X Sr is defined to be the collection of r-tuples (S1) S2, "', Sr) 
where the ith component Si is in the set Si. 

A (single-valued) mapping a of a set S into a set T is a corre­
spondence that associates with each s E S a single element t e T. 
It is customary In elementary mathematics to write the image 
in T of s as a(s). We shall find it more convenient to denote this 
element as sa or sa. With the mapping a we can associate the 
subset of S X T consisting of the points (s,sa). We shall call 
this set the graph of a. Its characteristic properties are: 

1. If s is any element of 8, then there is an element of the form 
(s,t) in the graph. 

2. If (sh) and (sh) are in the graph, then tl = t2' 

A mapping a is said to be a mapping of S onto T if every t e T 
occurs as an image of some s e S. In any case we shall denote the 
image set (= set of image elements) of S under a as Sa or sa. 
A mapping a of S into T is said to be 1-1 if Sta = S2a holds only 
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if SI = S2, that is, distinct points of 8 have distinct images. Sup­
pose now that a is a 1-1 mapping of 8 onto T. Then if t is any 
element in T, there exists a unique element s in 8 such that 
sa = t. Hence if we associate with t this element s we obtain 
a mapping of T into 8. We shall call this mapping the 
inverse mapping a-I of a. It is immediate that a-I is 1-1 of T 
onto 8. 

It is natural to regard two mappings a and {3 of 8 into T as 
equal if and only if Sa = s{3 for all s in 8. This means that 
a = {3 if and only if these mappings have the same graph. 

Let a be a mapping of 8 into T and let {3 be a mapping of T 
into a third set U. The mapping that sends the element s of 8 
into the element (sa){3 of U is called the resultant or product of 
a and {3. We denote this mapping as a{3, so that by definition 
seam = (sa){3. 

Mappings of a set into itself will be called transformations of 
the set. Among these are included the identity mapping or trans­
formation that leaves every element of 8 fixed. We denote this 
mapping as 1 (or Is if this is necessary). If a is any transforma­
tion of 8, it is clear that a1 = a = 1a. 

If a is a 1-1 mapping of 8 onto T and a-I is its inverse, then 
aa-l = Is and a-Ia = lr. The following useful converse of this 
remark is also easy to verify: If a is a mapping of 8 into T, and 
{3 is a mapping of T into 8 such that a{3 = Is and {3a = IT, then 
a and {3 are 1-1, onto mappings and {3 = a-I. 

The concept of a product set permits us to define the notion 
of a function of two or more variables. Thus a function of two 
variables in 8 with values in T is a mapping of 8 X 8 into T. 
More generally we can consider mappings of 8 1 X 8 2 into T. Of 
particular interest for us will be the mappings of 8 X 8 into 8. 
We shall call such mappings binary compositions in the set 8. 

3. Equivalence relations. We say that a relation R is defined in 
a set 8 if, for any ordered pair of elements (a,b), a,b in 8, we can 
determine whether or not a is in the given relation to b. More 
precisely, a relation can be defined as a mapping of the set 8 X 8 
into a set consisting of two elements. We can take these to be 
the words "yes" and "no." Then if (a,b) -+ yes (that is, is 
mapped into "yes"), we say that a is in the given relation to b. 
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In this case we write aRb. If (a,b) -4 no, then we say that a 
is not in the given relation to b and we write a ~ b. 

A relation '" (in place of R) is called an equivalence relation 
if it satisfies the following conditions: 

1. a '" a (reflexive property). 
2. a '" b implies b '" a (symmetric property). 
3. a'" band b '" c imply that a '" c (transitive property). 

An example of an equivalence relation is obtained by letting 
S be the collection of points in the plane and by defining a '" b 
if a and b lie on the same horizontal line. If a e S, it is clear that 
the collection a of elements b '" a is the horizontal line through 
the point a. The collection of these lines gives a decomposition 
of the set S into non-overlapping subsets. We shall now show 
that this phenomenon is typical of equivalence relations. 

Let S be any set and let'" be any equivalence relation in S. 
If a e S, let a denote the subset of S of elements b such that 
b '" a. By 1, a e a and by 2 and 3, if b1 and b2 e a, then b1 '" b2• 

Hence a is a collection of equivalent elements. Moreover, a is a 
maximal collection of this type; for, if c is any element equivalent 
to some b in a, then c ea. We call a the equivalence class deter­
mined by (or containing) the element a. If be a, then b C a; 
hence by the maximality of b, b = a. This implies the important 
conclusion that any two equivalence classes are either identical 
or they have a vacuous intersection. Hence, the collection of 
distinct equivalence classes gives a decomposition of the set S 
in to non-intersecting sets. 

Conversely, suppose that a given set S is decomposed in any 
way into sets A, B, ... no two of which overlap. Then we can 
define an equivalence relation in S by specifying that a '" b if 
the sets A, B containing a and b respectively are identical. It 
is clear that this relation has the required properties. Also, 
obviously, 'the equivalence classes determined by this relation 
are just the given sets A, B, .. '. 

The collection S of equivalence classes defined by an equivalence 
relation in S is called the quotient set of S relative to the given 
relation. It should be emphasized that S is not a subset of S 
but rather a subset of the collection peS) of subsets of S. 
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There is an intimate connection between equivalence relations 
and mappings. In the first place, if S is a set and S is its quotient 
set relative to an equivalence relation, then we have a natural 
mapping v of S onto S. This is defined by the rule that the 
element a of S is sent into the equivalence class a determined by a. 
Evidently this mapping is a mapping onto S. 

On the other hand, suppose that we are given any mapping a 
of the set S onto a second set T. Then we can use a to define 
an equivalence relation. Our rule here is that a t"'V b if aa = ba. 
Clearly this satisfies the axioms 1, 2 and 3. If a' is an element 
of T and a is an element of S such that aa = a', then the equiva­
lence class a is just the set of elements of S that are mapped into 
a'. We call this set the inverse image of a' and we denote it as 
a-lea'). 

Suppose now that I"V is any equivalence relation in S with 
quotient set S. Let a be a mapping of S onto T which has the 
property that the inverse images a-lea') are logical sums of sets 
belonging to S. This is equivalent to saying that any set belong­
ing to S is contained in some inverse image a-lea'). Hence it 
means simply that, if a and b are any two elements of S such that 
a '" b, then aa = ba. It is therefore clear that the rule a ~ aa 
defines a mapping of S onto T. We denote this mapping as a 
and call it the mapping of S induced by the given mapping a. 
The defining equation aa = aa shows that the original mapping 
is the resultant of the natural mapping a ~ a and the mapping 
a, that is, a = va. 

This type of factorization of mappings will play an important 
role in the sequel. It is particularly useful when the set of inverse 
images a-lea') coincides with S; for, in this case, the mapping a 
is 1-1. Thus if aa = ba, then aa = ba and a '" b. Hence a = b. 
Thus we obtain here a factorization a = va where a is 1-1 onto T 
and v is the natural mapping. 

As an illustration of our discussion we consider the perpen­
dicular projection '1rz of the plane S onto the x-axis T. Here a 
point a is sent into the foot of the perpendicular joining it to the 
x-axis. If a' is a point on the x-axis, '1rz -I (a') is the set of points 
on the vertical line through a'. The set of inverse images is the 
collection of these vertical lines, and the induced mapping 1rz 
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sends a vertical line into its intersection with the x-axis. Clearly 
this mapping is 1-1, and 'll"z = virz where v is the natural mapping 
of a point into the vertical line containing it. 

4. The natural numbers. The system of natural numbers 1,2, 
3, ... is fundamental in algebra in two respects. In the first 
place, it serves as a starting point for constructing examples of 
more elaborate systems. Thus we shall use this system to con­
struct the system of integers, the system of rational numbers, 
of residue classes modulo an integer, etc. In the second place, 
in studying algebraic systems, functions or mappings of the set 
of natural numbers play an important role. For example, in a 
system in which an associative multiplication is defined, the 
powers an of a fixed a determine a function or mapping n --+ an 
of the set of natural numbers. 

We shall begin with the following assumptions (essentially 
Peano's axioms) concerning the set P of natural numbers. 

1. P is not vacuous. 
2. There exists a 1-1 mapping a --+ a+ of P into itself. J~:: is 

the immediate successor of a.) 
3. The set of images under the successor mapping is a proper 

subset of P. 
4. Any subset of P that contains an element that is not a 

successor and that contains the successor of every element in the 
set coincides with P. This is called the axiom oj induction. 

All the properties that we shall state concerning P are conse­
quences of these axioms. By 3 and 4 any two elements of P 
that are not successors are equal. As usual, we denote the unique 
non-successor as 1. Also we set 1 + = 2, 2 + = 3, etc. 

Property 4 is the basis of proofs by the first principle of induc­
tion. This can be stated as follows: Suppose that for each 
natural number n there is associated a statement E(n). Suppose 
that E(l) is true and that E(r+) is true whenever E(r) is true. 
Then E(n) is true for all n. This follows directly from 4. Thus 
let S be the set of natural numbers s for which E(s) is true. 
This set contains I and it contains r+ for every reS. Hence 
S = P and this means that E(n) is true for all n in P. 
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EXERCISE 

1. Prove that n+ ¢ n for every n. 

Addition of natural numbers is defined to be a binary composi­
tion in P such that the value x + y for the pair x,'V satisfies 

(a) 

(b) 

1 + y = y+ 

x++y=(x+y)+. 

I t can be shown that such a function exists and is unique. More­
over, one has the following basic properties: 

Al x + (y + z) = (x + y) + z (associative law) 

A2 x + y = y + x (commutative law) 

A3 x + z = y + z implies that x = y (cancellation law). 

The proofs of these results and the ones on multiplication and 
order that follow will be omitted. These can be found in the 
above-men tioned texts. 

Multiplication in P is a binary composition satisfying 

ly = Y (a) 

(b) x+y = xy + y. 

Such a composition exists, is unique, and has the usual properties: 

Ml x(yz) = (xy)z 

M2 xy =yx 

M3 xz = yz implies that x = y. 

Also we have the following fundamental rule connecting addition 
and multiplication 

D x(y + z) = xy + xz (distributive law). 

The third fundamen tal concept in the system P is that of 
order. This can be defined in terms of addition by stating that 
a is greater than b (a > b or b < a) if the equation a = b + x 
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has a solution for x in P. The following are the basic properties 
of this relation: 

01 x > y excludes x ~ y (asymmetry} 

02 x > y and y > z imply x > z (transitivity) 

03 For any ordered pair (x,y) one and only one of the follow­
ing holds: x > y, x = y, x < y (trichotomy). (Note that this 
implies 01. We include both of these since one is often inter­
ested in systems in which 01 and 02 hold but not 03.) 

04 In any non-vacuous set of natural numbers there is a 
least number, that is, a number / of the set such that / ~ s for 
all s in the set. 

Proof of 04. Let S be the given set and M the set of natural 
numbers m that satisfy m ~ s for every s e S. 1 is in M. If s 
is a particular element in S, then s+ > s and hence s+ ¢ M. 
Hence M ~ P. By the principle of induction there exists a 
natural number / such that Ie M but /+ ¢ M. Then / is the re­
quired number; for / ::;;; s for every s and IE S since otherwise 
/ < s for every s in S. Then /+ ~ s contradicting /+ ¢ M. 

The property 04 is called the well-ordering property of P. It 
is the basis of the following second principle of induction. Sup­
pose that for each n e P we have a statement E(n). Suppose that 
it is known that E(r) is true for a particular r if E(s) is true for 
all s < r. (This implies that it is known that E(l) is true.) 
Then E(n) is true for all n. To prove this let F be the set of 
elements r such that E(r) is not true. If F is not vacuous, let t 
be its least element. Then E(/) is not true but E(s) is true for all 
s < I. This contradicts our assumption. Hence F is vacuous and 
E(n) is true for all n. 

The main relations between order and addition, and order and 
multiplication are given in the following statements: 

OA a > b implies and is implied by a + e > b + e. 

OM a > b implies and is implied by ae > be. 
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EXERCISE 

1. Prove that if a > 6 and c > d, then a + c > b + d and ac > Dd. 

5. The system of integers. Instead of following the usual pro­
cedure of adding to the system P a 0 element and the negatives 
we shall obtain the extended system in a way that seems more 
natural and intuitive. We shall construct a new system I of 
integers that contains a subsystem which is essentially the same 
as the set of natural numbers. 

We consider first the set P X P of ordered pairs of natural 
numbers (a,b). In this set we introduce the relation (a,b) '" (c,d) 
if a + d = b + c. It is easy to verify that this is an equivalence 
relation. What we have in mind, of course, in making this 
definition is that the equivalence class (;;b) determined by (a,b) 
is to play the role of the difference of a and b. If we represent the 
pair (a,b) in the usual way as the point with abscissa a and ordi-
nate b, then (a,b) is the set of points with natural number coordi­
nates on the line of slope 1 through (a,b). We call the equivalence 

• 

• 

• 

• 

classes (a,b) integers and we denote their totality as I. As a 
preliminary to defining addition we note that, if (a,b) '" (a',b') 
and (c,d) '" (c',d'), then (a + c, b + d) '" (a' + c', b' + d'); for 
the hypotheses are that a + b' = a' + band c + d' = c' + d. 
Hence a + c + b' + d' = a' + c' + b + d, which means that 
(a + c, b + d) '" (a' + c', b' + d'). It follows that the integer 
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(a + e, b + d) is a function of (a,b) and (e,d). We define this 
integer to be the sum of the integers (a,b) and (e,d): 

(a,b) + (e,d) = (a + e, b + d). 

I t is easy to verify that the rules AI, A2, A3 hold. Also we note 
that (a,a) ""'" (b,b) and if we set 0 = (a,a), then 

A4 o + x = x for every x in 1. 

Finally every integer has a negative: If x = (a,b), then we denote 
(b';a) as -x and we have 

AS x + (-x) = o. 
We note next that, if (a,b) ""'" (a',b') and (e,d) ""'" (e',d'), then 

a + b' = a' + b, e + d' = e' + d. Hence 

e(a + b') + dCa' + b) + a'(e + d') + b'(e' + d) 

= e(a' + b) + d(a + b') + a'(e' + d) + b'(e + d') 
so that 

ae + b'e + a'd + bd + a'e + a'd' + b'e' + b'd 

= a'e +be + ad + b'd + a'e' + a'd + b'e + b'd'. 

The cancellation law gives 

ae + bd + a'd' + b'e' = be + ad + a'e' + b'd'. 

This shows that (ae + bd, ad + be) ""'" (a'e' + b'd', a'd' + b'e'). 
Hence, if we define 

(a,b)(e,d) = (ae + bd, ad + be), 

we obtain a single-valued function. It can be verified that this' 
product function is associative and commutative and distributive 
with respect to addition. The cancellation law holds if the factor 
z to be cancelled is not O. 

We regard the integer (a,b) > (e,d) if a + d > b + e. This 
relation is well defined. One can verify easily that 01, 02, 03 
and OA hold. The property OM has to be modified to state that 

OM' If z > 0, then x > y if and only if xz > yz. 
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EXERCISE 

1. Show that, if;c >], then -;c < -yo 

We consider now the set P' of positive integers. By definition 
this set is the subset of I of elements x > O. If x = (a,b), x > 0 
is equivalent to the requirement that a > b. Hence x = (b + u,b) 
and it is immediate that (b + u,b) I""-' (c + u,c). Now let u be 
any natural number (element of P) and define u' to be the posi­
tive integer (b + u,b). Our remarks show that the mapping 
u -+ u' is a single-valued mapping of Ponto P'. Moreover, if 
(b + u,b) I""-' (c + v,c), then b + u + c = b + c + v so that u = v. 
Hence u -+ u' is 1-1. We leave it to the reader to verify the 
following properties of our correspondence: 

(u + v)' = u' + v' 

(uv)' = u'v' 

u > v is equivalent to u' > v'. 

Thus, we obtain the same result if (1) we add two natural numbers 
and then take the positive integer corresponding to the result, 
or (2) we add the positive integers corresponding to the natural 
numbers. A similar statement holds for multiplication. Because 
of this situation we can discard the original system of natural 
numbers and use in its place the system of positive integers. 
Also we can appropriate the notations originally used for P for 
the system of positive integers. Hence, from now on we denote 
the latter as P and we denote its numbers as 1, 2, 3, .... The 
remaining numbers of I are then 0, -1, -2, .. '. 

EXERCISES 

1. Prove that any non-vacuous set S of integers that is bounded below 
(above), in the sense that there exists an integer 0 (B) such that o:S; s (B ~ s) 
for every s in S, has a least (greatest) element. 

2. If ;c ~ 0, we set l;c I = ;c and, if ;c < 0, we set I x I = -;c. Prove the 
rules I ;c] I = I ;c II] I, I ;c + ] I :s; I ;c I + I] I· 

6. The division process in I. We shall obtain some of the ele­
mentary arithmetic properties of I in the course of our discussion 
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of groups and integral domains. The starting point in the study 
of the arithmetic of I is the following familiar result. 

Theorem. Ij a is any integer and b =;t. 0, then there exist integers 
q, r, 0 ~ r < I b I, such that a = bq + r. 

Proof. Consider the multiples xl b I of I b I that are ~ a. The 
collection M of these multiples is not vacuous since -I a II b I ~ 
-I a I ~ a. Hence, the set M has a greatest member hi b I. 
Then hi b I ~ a so that a = hi b I + r where r 2:: O. On the other 
hand (h + 1)1 b I = hi b I + I b I > hi b I. Hence (h + 1)1 b I > a 
and hi b I + I b I > hi b I + r. Thus, r < I b I. We now set 
q = h if b > 0 and q = - h if b < o. Then hi b I = qb and 
a = qb + r as required. 

EXERCISE 

1. Prove that q and r are unique. 

We shall say that the integer b is ajaetor or divisor of the integer 
a if there exists ace I such that a = be. Also a is called a 
multiple of b and we denote this relation by b I a. Clearly this is a 
transitive relation. If b I a and a I b, we have a = be and b = ad. 
Hence, a = ade. If a =;t. 0, the cancellation law implies that 
de = 1. Hence, I d II e I = 1 and d = ± 1, e = ± 1. This shows 
that if b I a and a I b and a =;t. 0, then a = ±b. 

An integer d is called a greatest common divisor (g.c.d.) of a and 
b if (1) d I a and d I band (2) if e is any common factor of a and b, 
then e I d. The existence of a g.c.d. for any pair a,b with a =;t. 0 
is easily proved by using the division process given in the above 
theorem. For this purpose we consider the totality D of integers 
of the form ax + by. This set includes positive integers. Hence, 
there is a least positive integer d = at + bs in the set. Now 
a = dq + r where 0 ::; r < d. Also r = a - dq = a(1 - qt) + 
b( -qs) e D. Since d is the least positive integer in D, r = o. 
Hence, d I a. Similarly d I b. Next let e I a and e I b. Then e I at 
and e I bs. Hence, e I (at + bs). Thus e I d. 

If d' is a second greatest common divisor of a and b, (2) implies 
that did' and d' I d. Hence d' = ±d. We have seen that we 
can always take d to be 2::0. This particular greatest common 
divisor will be denoted as (a,b). 
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The existence of greatest common divisors serves as a basis 
for the proof of the fundamental theorem of arithmetic that any 
positive integer can be written in one and only one way as a 
product of positive primes. By a prime p we mean an integer 
that is divisible only by p, -p, 1, -1. We shall obtain this 
result later (Chapter IV) in our study of arithmetic properties of 
integral domains. Also one can prove easily either by using the 
fundamental theorem or by using simple properties of greatest 
common divisors that the integer 

m = ab/(a,b) 

is a least common multiple of a and b. By this we mean that m 
is a multiple of a and b and any common multiple of a and b is 
a multiple of m. 



Chapter I 

SEMI-GROUPS AND GROUPS 

The theory of groups is one of the oldest and richest branches 
of abstract algebra. Groups of transformations play an important 
role in geometry, and finite groups are fundamental in Galois' 
discoveries in the theory of equations. These two fields provided 
the original impetus to the development of the theory of groups. 

A more general conce.pt than that of a group is that of a semi­
group. Though this notion appears to be useful in many connec­
tions, the theory of semi-groups is comp_aratively new and it 
certainly cannot be regarded as having reached a definitive stage. 
In this chapter we shall begin with this more general concept, 
but we treat it only briefly. Our aims in considering semi-groups 
are to provide an introduction to the theory of groups and to 
obtain some elementary results that will be useful in the study 
of rings. The main part of our discussion deals with groups. 
The principal concepts that we consider here are those of iso­
morphism, homomorphism, subgroup, invariant subgroup, factor 
group, and transformation group. 

1. Definition and examples of semi-groups. We have defined 
a binary composition in a set ~ to be a mapping of the product set 
~ X ~ into the set~. The image in ~ of the pair (a,b) in 
~ X ~ is usually called the product or the sum of a and b. Ac­
cordingly, this result is denoted as a· b == ab or as a + b. Occa­
sionally other notations such as a·b, a X b, [a,b] are employed. 
In this book we shall be concerned almost exclusively with com­
positions that are associative in the sense that 

(1) (ab)c = a(bc) 

15 
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holds for all a,b,c in @S. This concept is the essential ingredient 
in the algebraic system that we now define. 

Definition 1. A semi-group is a system consisting if a set @S 
and an associative binary composition in @S. 

In describing a particular semi-group one has to specify the 
composition as well as the set @S in which it acts. Thus the same 
set may be the set part of many different semi-groups. Neverthe­
less for the sake of brevity we shall often call the set @S "the semi­
group @S." The precise terminology should, of course, be "the 
set @S of the semi-group," but in most instances there will be little 
likelihood of confusion in using the abbreviated phrase. 

Exam'bles. (1) The set P of positive integers and the comp~ition of ordin_ary 
addition in P. (2) P and ordinary multiplication. (3) P and the composition 
(a,b) --+ a • b == a + ,,+ abo It can be verified that this is associative. (4) 
The set I of integers, addition as composition. (5) I and multiplication. (6) 
The set peS) of subsets of a set, the join composition (A,B) --+ A U B. (7) 
peS) and the intersection composition. 

An important type of semi-group is obtained from the totality 
~ of transformations (single-valued mappings) of a given set S. 
We introduce in ~ the mapping (a,m ~ a/3 where, as usual, 
a/3 denotes the resultant of the transformations a and /3. It is 
necessary to verify the associative law. More generally, we con­
sider four sets S, T, U and V. Let a be a mapping of S into T, /3 a 
mapping of T into U and 'Y a mapping of U into V. The mappings 
(a/3h and a(/3'Y) are defined. We now show that they are equal. 
Thus let x be any element of S. Then by definition x«a/3h) = 
(x(a{3)h = «xa)/3h and x(a(/3'Y» = (xa)(/3'Y) = «xa)/3h. Hence 
x«a/3h) = x(a(/3'Y» for all x, and this is what is meant by saying 
that (a/3h = a(/3'Y). In particular we see that the associative 
law holds for the resultant of transformations of one set S. 

As a special case of this type of semi-group let S be a finite 
set comprising n elements. We can take these to be the integers 
1, 2, .. " n. The mapping a may be denoted by the symbol 

(2) ( 1 2 3 n ) 
1a 2a 3a na 

in which the image ka of k is written below the element k. Clearly 
the number of mappings of S into itself is the number of distinct 
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ways of writing the second line in (2). Since we have n choices 
for each of the places in the second line, the order or number of 
elements in 1: is nfl,. 

A semi-group is said to be finite if it contains only a finite 
number of elements. In investigating such a semi-group it is 
useful to tabulate the products a{3 in a multiplication table for @). 

If ah a2, .. " am are the elements of @) such a table has the form 

Here we write the product aiaj in the intersection of the row 
containing ai with the column containing aj. For example let 1: 
be the semi-group of transformations of a set of two elements. The 
elemen ts of 1: are 

A multiplication table for 1: is 

E a 

E E a 

a a E 
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2. Non-associative binary compositions. We consider for a 
moment an arbitrary (not necessarily associative) binary com­
position (a,b) -+ ab in a set~. Such a mapping defines two 
ternary compositions, that is, mappings of ~ X ~ X ~ into ~. 
These are the mappings (a,b,c) -+ (ab)c and (a,b,c) -+ a (be). 
More generally we can define inductively a number of n-ary 
compositions in~. Suppose that these have already been built 
up out of the binary composition to the stage of m-ary composi­
tions for every m < n. It is understood here that for m = 1 the 
identity mapping a -+ a is taken. Now let m be any positive 
integer < n and let 

(al, a2, "', am) -+ u(al, a2, "', am) 

be definite m-ary and (n - m)-ary compositions determined by 
the original binary one. Then we take the mapping 

(al, a2, "', an) -+ u(ax, a2, "', am)V(am+b am+2, "', an) 

as one of our n-ary compositions. All the mappings obtained in 
this way by varying m;u and v are the n-ary compositions asso­
ciated with (a,b) -+ abo The results of applying these mappings 
to (ah a2, "', an) will be called (complex) products of ab a2, ... , 
an (taken in this order). 

For example, the possible products of aX, a2, as, a4 are 

«ala2)aS)a4, (al (a2aS) )a4' (ala2)(aSa4), al (a2(aSa4», al «a2aS)a4)' 

One can easily construct a set with a binary composition for 
which the indicated n-ary compositions are all distinct. For 
this purpose let S be a set with distinct elements ah a2, as, ..• 
and let ~* be the set of symbols that can be obtained as follows: 
Select any finite set of elements a, b, "', s in a definite order in 
the set S. If this set has either one or two elements then we in­
clude it in ~*. If it has more than two elements then we partition 
it into two ordered subsets a, b, .. " k and I, "', s and we inclose 
the subsets thus obtained that contain more than one element in 
parentheses. This gives (a, b, "', k)(/, "', s). We then repeat 
these rules on the two subsets and continue until the process 
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terminates. If u and v represent any two symbols in ®*, then 
we define 

r
ut; if both u and u are in S 
u(v) if u e S and v has more than one term 

uv = 
(u)v if v e Sand u has more than one term 
(u)(v) if both u and v have more than one term. 

It is clear that this gives a binary composition in @5*. Moreover 
the n-ary compositions that we defined before are all different in 
@5* since they give different results for the elements ah a2, ... , 
an. If N(n) denotes the number of these compositions, then our 
definition gives the recursion formula 

(3) N(n) = N(n - I)N(I) + N(n - 2)N(2) + ... 
+ N(I)N(n - I). 

Also N(I) = 1. It is also clear that for any binary composition 
in any set, N(n) is an upper bound for the number of distinct 
induced n-ary compositions. 

It is easy to solve the recursion formula (3) and obtain an 
explicit formula for N(n). For this purpose we introduce the 
"generating function" defined by the power series 

Then 
y = N(I)x + N(2)x2 + ... + N(n)xn + .... 

y2 = N(I)N(I)x2 + [N(2)N(I) + N(I)N(2)]x3 + ... 
= N(2)x2 + N(3)x3 + .. '. 

Since N(I) = 1, this gives 

y2 _ Y + x = O. 
Hence 

1 - (1 - 4x)~ 00 1·3 ... (2n - 3) 
y = = E ' 2n - 1xn 

2 1 1·2 ... n 
and 

(4) 
1·3 ... (2n - 3) 

Ntn) = 2n-l.* 
1·2 .. · n 

• Th· b' . d lH() (2n - 2)! IS can e wntten more con(,ls y as lY' n -= 1( _ 1)1 • 
n. n . 
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EXERCISES 

1. In the set I of integers define the binary composition f(x,y) = x + y2. 
Work out all of the induced 4-ary compositions. 

2. For a given binary composition define a simple product of n a's inductively 
as either alU where u is a simple product of a2, ... , an or va" where v is a simple 
product of al, ... , an-I. Show that any product of ~2r elements can be re­
garded as a simple product of r elements (that are themselves products). 

3. Generalized associative law. Powers. We shall now show 
that if our binary composition is associative then all the possible 
products of at, a2, .. " an taken in this order are equal. We first 

m 

define a particular product II ai by the formulas 
1 

1 

II ai = at, 
1 

and we prove the 
"m ,,+m 

Lemma. II ai II a,,+i = II ak. 
l' 1, 1 

Proof. By definition this holds if m = 1. Assume it true for 
m = rand cO!lsider the case m = r + 1. Here 

"r+l "(( r ) ) If ai If a"+i = If ai If a"+i an +r+1 

= (IJ ak) a,,+r+l 

,,+r+1 
= II aj:. 

1 

Consider now any product associated with (al) a2 ,' • " an)' By 
definition it is a product Uf) where U is a product associated with 
(at, a2, "', am), I < m < n, and f) is a product associated with 

m 

(am+h .. ') an). By induction we can assume that u = II ai and 
i=1 

ft-m n 

U = II am+i' Hence Uf) = II ak. Thus all products determined 
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by (ah a2, .. " an) are equal. From now on we shall denote this 
uniquely determined product as ala2 ... an omitting all paren~ 
theses. 

If all the ai = a, we denote ala2 ... an by an and call this 
element the nth power of a. Our remarks show that 

(5) 

If the notation + is used for the composition in ~, then we write 

al + a2 + ... + an in place of ala2 ... an, 

na in place of an. 

The rules (5) for powers now become the following rules for 
multiples na: 

(5') na + ma = (n + m)a, m(na) = (mn)a. 

4. Commutativity. If a and 0 are elements of a semi-group it 
may happen that ao ;: oa. For example, in the semi-group whose 
multiplication table is given in § 1 we have ot{j = {j whereas 
(jot = 'Y. If ao = oa in ~, then the elements a and 0 are said to 
commute and if this holds for any pair a,o in ~ then ~ is called 
commutative. It is immediate by induction on n that if aio = oat, 
i = 1, 2, ... , n, then 

al ... ano = oal ... an. 

Suppose next that for the elements at, a2, ... , an we have the 
commutativity aiaj = ajai for all i, j and consider any product 
al,a2' ... an' where 1', 2', ... , n' is some permutation of the num­
bers 1, 2, ... , n. Suppose that an occurs in the hth place in this 
product. Then ah' = an. Hence 

Using induction, we may assume that 

al ,· •• a(h-I),a(h+ 1)" •• an' = al a2· .. an-I' 

Hence al'a2' ... an' = ala2 ... an. 
The powers of a single element commute since (5) holds. Also 

it is clear from our discussion that if ao = oa, then 

(6) (ab)n = anon. 



22 SEMI-GROUPS AND GROUPS 

In the additive notation this reads 

(6') n(a + b) = na + nb. 

5. Identities and inverses. An element e of a semi-group @) is 
called a left identity (unit, unity) if ea = a for every a in €i. 
Similarly j is a right identity if aj = a for every a. 

Examples. (1) The semi-group of positive integers relative to multiplica­
tion has the two-sided (= left and right) identity 1. (2) The semi-group of 
positive integers relative to addition has no identity. (3) Let €i be any set 
and define in €i, ab = b. Then €i is a semi-group and any element of €i is a 
left identity. On the other hand, if €i possesses more than one element, then 
it has no right identities. 

The last example shows that a semi-group can have several 
left (right) identities but no right (left) identities. However, 
if €i possesses a left identity e and a right identity j, then neces­
sarily e = j; for ef = j since e is a left identity and ef = e since 
j is a right identity. This shows that, if we have a left identity 
and a right identity, then we cannot have more than one of 
either type. In particular, if a two-sided identity exists, then it 
IS umque. 

From now on we refer to a two-sided identity simply as an (the) 
identity and we shall usually denote this element as 1. An element 
a of €i will be called right regular if there exists an a' in €i such 
that aa' = 1. The element a' is called a right inverse of a. Left 
regularity and left inverses are defined in a similar manner. If a 
is both left regular and right regular, then we shall say that it is 
a unit (regular). In this case we have an a' such that aa' = 1 
and an a" such that a" a = 1. Then 

a' = (a"a)a' = a"(aa') = a". 

Thus a' = a" and this element is called an inverse of a. Our 
argument shows that it is unique. We shall denote this element as 
a-I. Since aa-l = 1 = a-la, it is clear that a-I is regular and 
that a is its inverse. This is the rule: (a-l)-l = a. We note also 
that, if a and b are units, then so is ab since (ab)(b-1a-l) = 1 
= (b-1a-1)(ab). Thus we have (ab)-l = b-1a-l. 
If the operation in €i is denoted as +, we denote the identity 

as O. The inverse of a if it exists is written as -a. Thus we 
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have - (-a) = a and - (a + b) = -b + (-a). Also we shall 
write a - b for a + (-b). 

6. Definition and examples of groups. 

Definition 2. A group is a semi-K1"oup that has an identity and 
in which every element is a unit. 

Thus a group is a system consisting of a set ® and binary com-
position in ® such that the following conditions hold: 

1. (ab)c = a(bc). 

2. There exists an element 1 in ® such that al = a = la. 
3. For each a in ® there is an element a-I in ® such that 

aa-l = I = a-lao 
As in the case of semi-groups we shall often use the term 

"group ®" for the set part of the group. The following is a list 
of examples of groups all of which should be familiar to the reader. 

Examples. (1) R+, the totality of real numbers, addition as composition. 
Here the number ° is the identity and the inverse of a is the usual -a. (2) 
C+, the set of complex numbers, addition as composition. (3) R*, the set of 
non-zero real numbers, multiplication as the composition. Here the real num­
ber 1 is the identity and the inverse of a is the usual reciprocal a-I. (4) Q, 
the set of positive real numbers, ordinary multiplication. (5) C*, the set of 
non-zero complex numbers, multiplication. (6) U, the set of complex numbers 
ei9 of absolute value 1, multiplication. (7) Un, the n complex nth roots of 1, 
multiplication. (8) The totality of rotations about a point 0 in the plane, com­
position the resultant. If 0 is taken to be the origin, the rotation through an 
angle 8 can be represented analytically as the mapping (x,y) --+ (x',y') where 

x' = x cos 8 - y sin 8, y' = x sin 8 + y cos 8. 

If 8 = 0, we get the identity transformation and this acts as the identity in the 
set of rotations. The inverse of the rotation through the angle 8 is the rotation 
through the angle -8. (9) The totality of rotations about a point 0 in space, 
resultant composition. (10) The set of vectors in the plane, vector addition 
as composition. Analytically a vector may be represented as a pair of real 
numbers (a,b). These are respectively the x- and the y-coordinates of the 
vector. If v = (a,b) and v' = (a',b'), the usual vector addition gives v + v' = 
(a + a', b + b'). The ° vector ° = (0,0) acts as the identity and the inverse 
of v is -v = (-a,-b). 

EXERCISE 

1. Let ® be the totality of pairs of real numbers (a,b) for which a ~ 0. Take 
the composition in ® that is defined by the formula 

(a,b)(e,d) = (ae, be + d). 

Verify that this is a group. 
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It is clear from our discussion of semi-groups that the identity 
element is unique in @. Also the inverse of a is uniquely deter­
mined. If a and b are any two elements of a group @ then the 
linear equation ax = b has the solution a-1b in @. This is the 
only solution since ax = ax' implies that a-I (ax) = a-I (ax'). 
Hence x = x'. This last remark shows that the left cancellation 
law holds. Similarly the equation ya = b has a unique solution in 
@ and the right cancellation law holds. The solvability of ax = b 
and ya = b in @ is a characteristic property of a group (see ex. 3 
below). 

EXERCISES 

1. An dement e of a semi-group is said to be idempotent if e2 = e. Show that 
the only idempotent dement in a group is e = 1. 

2. Prove that a semi-group having the following properties is a group: 
(a) @ has a right identity lr. 
(b) Every element a of@ has a right inverse rdative to lr.· 
3. Prove that if@ is a semi-group in which the equations ax = 0 andya = b 

are solvable for any a and 0, then @ is a group. 
4. Prove that a finite semi-group in which the cancellation laws hold is a 

group. 

7. Subgroups. A subset @5' of a semi-gtoup is said to be closed 
if ab e @S' for every a and b in @S'. It is clear that the associative 
law holds in @S'. Hence the pair @S'" consisting of @S' and the in­
duced mapping (a,b) -+ ab, a,b in @S', form a semi-group. We call 
such a semi-group a sub-semi-group of the given semi-group. It 
may happen that @S' is a group relative to the composition in @S. 
In this case we say that @S' is a subgroup of @S. 

Examples. (1) The set of positive integers is (strictly speaking, determines) 
a sub-semi-group of the group 1+ of integers rdative to addition. The set of 
even integers is a subgroup of 1+. More generally the totality of multiples 
Icm of a fixed integer m is a subgroup. (2) The set consisting of the numbers 
land -1 is a subgroup of the semi-group of integers rdative to multiplication. 

We shall show now that, if@S is any semi-group with an identity, 
then the subset @ of units of @S determines a subgroup. Let a and 
b be units; then we have seen that b-1a-1 is an inverse for abo 
Hence ab e @. Since 1·1 = 1, 1 e @ and this element acts as an 

• The systems obtained by replacing the word "right" by "left" in (b) need not be 
groups. Their structure has been obtained by A. H. Clifford in Annals of Mill"., Vol. 34, 
pp. 865-871. 
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identity in ®. Finally, if a e ®, then a-I e ® sihce aa-l = 1 = 
a-lao Thus every element of ® has an inverse in ®. We shall 
call ® the group oj units of~. The example (2) given above is 
the group of units in the semi-group of integers under multiplica­
tion. We shall see in the sequel that many important examples 
of groups are obtained as groups of units of semi-groups. 

We begin next with an arbitrary group ® and we shall determine 
the conditions that a subset ~ of ® determines a subgroup of ®. 
First we know that ~ must be closed. Next ~ has an identity 1'. 
Since (1')2 = 1', it is clear (ex. 1, p. 24) that l' = 1, the identity 
of ®. Finally, if a e~, then there exists an element a' in ~ 
such that aa' = 1 = a'a. Then a' is an inverse of a and since 
there is only one inverse, a' = a-t. This shows that the follow­
ing conditions are necessary in order that a subset ~ of a group ® 
determines a subgroup of ®: 

1. a,b e ~ implies that ab e ~ (closure). 
2. 1 e~. 
3. a e ~ implies that a-I e ~. 

These conditions are also sufficient conditions on a subset ~ that 
~" be a subgroup of ®,'; for it is clear that they imply axioms 
2 and 3 for a group. Moreover, the associativity condition 
certainly holds in ~ since it holds in ®. 

It should be noted that the group @ itself can be regarded as a 
subgroup of ®. If.p is a subgroup and .p is a proper subset of ®, 
then we say that oS) is a proper subgroup oj@. We remark also that 
the subset of @ consisting of the element 1 only is a subgroup. 
This is evident from the definition or from the foregoing condi­
tions. We shall denote this subgroup as the subgroup 1 of @ 

(or 0 in the additive notation). 

EXERCISES 

1. Verify that the subset of pairs of the form (l,b) forms a subgroup of the 
group given in ex. 1, p. 23. 

2. Show that a non-vacuous subset iI of a group (f) is a subgroup if and only if 
ab-1 Ei) for any a and b in iI. 

3. Prove that any finite sub-semi-group of a group is a subgroup (cf. ex. 4, 
p.24). 
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4. Prove that, if A is any collection of subgroups.p of®, then the intersection n ~ is a subgroup. 
A 

5. Prove that, if a is any element of a group ®, then the set ~(a) of elements 
that commute with a is a subgroup of®. 

8. Isomorphism. We shall consider first a well-known example 
of this fundamental concept. Let R+ be the group of real num­
bers relative to addition and let Q be the group of positive real 
numbers relative to multiplication. We consider the mapping 
x ~ r of R+ into Q. This mapping is 1-1 of R+ onto Q and its 
inverse is the mapping z -+ log z. Also we have the funda­
mental property: 

Thus we arrive at the same result if (a) we first perform the 
group composition on two numbers in R+ and then take the image 
in Q, or (b) we first take images in Q and then perform the group 
composition on these images. From the abstract point of view 
the groups R+ and Q are essentially indistinguishable; for we are 
not interested in the nature of the elements of our groups but 
only in their compositions and these are essentially the same in 
the two examples. The precise relation between R+ and Q can 
be stated by saying that these two groups are isomorphic in the 
sense of the following 

Definition 3. Two groups ® and ®' are said to be isomorphic 
if there exists a 1-1 mapping x -+ x' of ® onto ®' such that (xy)' = 
x'y'. 

A mapping satisfying the condition of this definition is called 
an isomorphism of ® onto ®'. If ® and ®' are isomorphic, there 
may exist many isomorphisms between them. For example, if a 
is any positive number ;;c1, then the mapping x -+ tr is an 
isomorphism of R+ onto Q. Isomorphic groups are often said 
to be abstractly equivalent. If ® is isomorphic to ®', we write 
® :: ®'. It is clear that the isomorphism relation between 
groups is an equivalence; for the identity mapping is an iso­
morphism of ® onto itself and, if a -+ a' is an isomorphism of 
® onto®', then a' -+ a, the inverse mapping, is an isomorphism 
of ®' onto ®. Finally, if a -+ a' is an isomorphism of ® onto ®' 
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and a' ~ a" is an isomorphism of @' onto @", then a ~ a" is 
an isomorphism of @ onto @". 

EXERCISES 

1. Prove that, if x - x' is an isomorphism, then 1', the image of 1, is the 
identity of the second group. Prove also that (a-1)' = (a' ) -1. 

2. Is the mapping 8 - CiS an isomorphism of R+ onto the multiplicative 
group of complex numbers of absolute value I? 

9. Transformation groups. Let S be an arbitrary set and let 
Z(S) be the semi-group of transformations of S into itself. We 
know that Z has an identity, namely, the identity mapping x ~ x. 
We consider now the subgroup @(S) of units of Z(S). We shall 
show that @(S) is just the set of 1-1 mappings of S onto itself; 
for we have seen that, if a is 1-1 of S onto S, then the inverse 
mapping a-I has the property aa-l = 1 = a-lao On the other 
hand, let a be any element of Z( S) for which there exists an inverse 
{3 such that a{3 = 1 = {3a. Then any x = (xfJ)a e Sa so that a 
maps S onto itself. Also, if xa = ya, then (xa)fJ = (ya){3 and 
x = y. Henceais 1-1. We shall call @(S) the group of 1-1 trans­
formations or permutations of the set S. 

More generally, we define a transformation group (in S) to be 
any subgroup of a group @(S). If we recall the conditions that a 
subset $) be a subgroup, we see that a set $) of 1-1 transformations 
of a set S onto itself determines a transformation group if the 
following hold: 

1. If a, fJ e $), then the resultant afJ e $). 
2. The identity mapping x ~ x is in $). 
3. If a e $), the inverse mapping a-I is in $). 

We consider now the special case in which S is the set of n 
numbers 1, 2, ... , n. The group @(S) of permutations of S is 
called the symmetric group of degree n. It is usually denoted 
as Sn. We shall represent an element a e Sn by a symbol of 

the form (1 2 ) 

1a 2a :a 

and we can use this representation to calculate the order (number 
of elements) of the group Sn. Clearly the element la is arbitrary. 
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Hence we can choose the number in the first position in n different 
ways. Since no repetitions are allowed in the second row of our 
symbol, we have n - 1 choices for the second position, n - 2 
for the third, etc. Hence in all we have n! symbols and conse­
quently n! elements in Sn. 

EXERCISES 

1. Calculate GYP, pa and a-I if 

( 1 2 3 4 5) (1 2 3 4 5) 
a= 2 3 1 5 4 ' P= 1 3 4 5 2 . 

2. Write down the elements of S3 and work out a multiplication table for this 
group. 

3. Verify that the transformations 

(1 2 3) (1 2 3) 
123' 231' 

form a transformation group. 
4. Which of the examples given in § 6 are transformation groups? 
5. Verify that the set of transformations of the line given by the rule 

x ~ ax + 0, 0 ¢ 0 form a transformation group. Show that this group is 
isomorphic to the one given in ex. 1, p. 23. 

6. Verify that the totality of transformations of the plane defined by 
(x,y) ~ (x + 0, 0) constitute a group relative to resultant composition. Is 
this a transformation group? 

10. Realization of a group as a transformation group. His­
torically the theory of groups dealt at first only with transforma­
tion groups. The concept of an abstract group was introduced 
later for the purpose of deriving in the simplest and most direct 
manner those properties of transformation groups that concern 
the resultant composition only and do not refer to the set S in 
which the transformations act. It is natural to ask whether or 
not the abstract concept is completely appropriate in the sense 
that the class of systems covered by it is just the class of trans­
formation groups. This question is answered affirmatively in 
the following fundamental theorem due to Cayley: 

Theorem 1. Any group is isomorphic to a transformation group. 

Proof. The transformation group that we shall define will act 
in the set ® of the given group. With each element a of the group 
® we associate the mapping 
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x ~ xa 

of the set @ into itself. We denote this mapping as ar and call 
it the right multiplication determined by a. Since the right can­
cellation law holds, ar is 1-1. Since any b can be written in the 
form (ba-1)a = (ba-1)ar, ar is a mapping onto @. Hence ar is in 
the group of 1-1 transformations of the set @. We wish to show 
now that the totality @r = far} is a transformation group in @. 

Consider first the product arbr. This sends x into (xa)b. By the 
associative law (xa)b = x(ab). Thus arbr has the same effect as 
(ab).. Hence 

(7) arbr = (ab)r 

IS In @r. We note next that 1 = 1r is in @r. Finally by (7) 
ar(a-1)r = 1. = (a-1)rar. Hence ar -1 = (a-1)r is in @r. Thus 
@r is a transformation group. We consider now the correspond­
ence a ~ a. of the group @ onto the group @r. If a ~ b, then 
1ar = a ~ b = 1br. Hence ar ~ br. Thus a ~ ar is 1-1. Since 
(7) holds, the mapping a ~ ar is an isomorphism. This com­
pletes the proof. 

We shall refer to the isomorphism a ~ ar as the (right) 
regular realization of @ as a transformation group. It should be 
observed that if @ is a finite group of order n, then @r is a sub­
group of the symmetric group Sn. Hence we have the 

Corollary. Any finite group of order n is isomorphic to a sub­
group of Sn. 

Examples. (1) R+, the group of real numbers and addition. If a e R+, 
ar is the translation x -+ x' = x + a. (2) R*, the group of real numbers F- 0 
under multiplication. Here ar is the dilation x -+ x' = ax. (3) The group of 
pairs of real numbers (a,b), a F- 0, where (a,b)(e,d) = (ac, be + d). Here (e,d}r 
maps (x,y) into (x',y') where 

x' = ex, y' = ey + d. 

There is a second realization of @ as a transformation group 
that one obtains by using left multiplications. We define the 
left multiplication az as the mapping x ~ ax of @ into itself. 
As in the case of right multiplication it is easy to see that az 
is 1-1 of @ onto itself. Also the set @z of the az is a transforma-
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tion group. The proof of this is the same as for <M, with the 
modification that 

(8) 

This follows from 

xa,b, = b(ax) = (ba)x = x(ba)z. 

The mapping a -+ az is 1-1 of <M onto <Mz but in general this is 
not an isomorphism. In order to obtain an isomorphism we must 
replace this mapping by the mapping a -+ a,-I = {a-I)z; for 
then we have 

(ab),-l = (b,al)-l = a,-1bz- l• 

We shall call the isomorphism a -+ a,-l the left regular realiza­
tion of <M. 

The associative law in <M gives the rule a,b, = b,az for all a,b 
in <M since xa,b, = (ax)b and xb,az = a(xb). Hence any trans­
formation belonging to the set ®, commutes with any transforma­
tion belonging to <M,. The converse holds also, namely, if {J is 
any transformation in ® that commutes with all the a, (a,), then 
fJ is a right (left) multiplication; for we have 

xfJ = {x1)fJ = (1XI)fJ = (1fJ)XI = x(1{J) = xb 

for b = 1fJ. Hence fJ = b,. 

EXERCISE 

1. Obtain the regular realizations of Sa. 

11. Cyclic groups. Order of an element. Let M be any non­
vacuous subset of a group <M and let {~} be the collection of 
subgroups of ® that contain the set M. The collection {~} con­
tains ®; hence it is not vacuous. Its intersection n~ is a sub­
group of ® (ex. 4, p. 26). We denote this subgroup as [M] and 
shall call it the subgroup of ® generated by the set M. The set [M] 
has the following properties: (1) [M] is a subgroup of ®. (2) 
[M] ::> M. (3) If ~ is any subgroup of ® containing M, then 
.p :::> [M]. Also it is clear that these properties characterize [M]. 
Thus let R be a subset of ® satisfying (1), (2) and (3) (for M). 
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Then since .R' is a subgroup containing M, .R' :::> [M]. By sym­
metry [M] :::>.R'. Hence.R' = [M]. 

We can use this characterization to obtain explicitly the ele­
ments of [M]. We assert that these are just the finite products 
ala2 ... a" (n arbitrary) where ai e M or ai is the inverse of an 
element of M. Let.R' denote the collection of these products. 
Then it is immediate that .R' is a subgroup of ® containing M. 
On the other hand, if .\) is a subgroup of ® containing M, .\) 
contains every a eM and every a-I with a in M. Hence.\) 
contains~. Thus ~ satisfies (1), (2) and (3) and therefore 
~ = [M]. 

We consider now the special case in which M = {a} is a set 
consisting of a single element a. Here we write [a] for [M], and 
we call this subgroup the (cyclic) group generated by a. A group 
.8 is called a cyclic group if there exists an a e.8 such that.8 = [a]. 
The element a is then called a generator of.8. The remark above 
shows that [a] consists of the elements a", n > 0, 1 and (a-I)", 
n > O. We shall now define aO = 1 and a-" = (a-I)" if n > O. 
In this sense [a] consists of the integral powers of the element a. 

A consideration of cases can be used to extend the basic laws 
of exponents (5) to all integral powers. For example, suppose 
n > I m I and m < O. Then a"am = a"a-Iml = a"(a-I)lml = 
a,,-Iml = a"-tm. We leave it to the reader to verify the other 
cases. We remark that by the laws of exponents, or directly, 
[a] is a commutative group. The following are some familiar 
examples of cyclic groups. 

Examples. (1) Let 1+ be the group of integers relative to addition. It is 
clear by the axiom of induction that a set of positive integers that contains 1 
and that is closed under addition contains all the positive integers. From this 
it follows that 1+ = [I]. It is clear also that 1+ = [-1] and that 1 ¢ [Ie] if 
Ie ¢ 1, -1. Hence 1 and -1 are the only generators of I. 

(2) Let Un be the group of complex nth roots of 1. Then Un consists of the 
2kr, 

complex numbers en, Ie = 0, 1,2, ... , n - 1. Using the standard geometric 
representation of complex numbers, we see that these numbers are represented 
as the vertices of the regular n-gon inscribed in the unit circle that has (1,0) 

2ri 

as one of its vertices. If we set ea = p, we see that the elements of U .. are 
1, p, p2, ' •. , p .. -l. Hence Un is a cyclic group of order n. 

Let.8 be a cyclic group with generator a and consider the map­
ping n ..... a" of 1+ onto.8. This correspondence has the property 
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Hence, if our mapping is 1-1, then it is an isomorphism of 1+ onto 
.8. 

Suppose next that the mapping is not 1-1. Then am = an for 
m ~ n. We may assume n > m. Then an-m = ana-m = ama-m 
= 1. Hence there exist positive integers p such that aP = 1. Let 
r be the smallest positive integer having this property. Then we 
assert that the elements 1, a, ... , ar - 1 are distinct and that every 
element of.B is in this set; for if aTe = al for k ~ I and k, I in the 
range 0, 1, "', r - 1, then aP = 1 for 0 < p < r contrary to 
the choice of r. Next let an be any element of .B. Write n = 
qr + s, 0 ~ s < r. Then an = aqr+B ::x aqras = (ar)qaB = aB• 

This proves our assertion. Thus.B is a finite group of order r. 
We now see that if.B is infinite the mapping n ~ an is neces­

sarily 1-1. Hence any infinite cyclic group is isomorphic to 1+ 
and consequently any two infinite cyclic groups are isomorphic. 
We shall show next that any two cyclic groups of the same finite 
order are isomorphic. Let.B = [a] and 5ID = [b] be of order r. 
We have seen that the order r of [a] (or of [bD is the smallest 
positive integer such that ar = 1 (or = 1). We shall now show 
that, if h is any integer such that ah = 1, then r I h. Thus sup­
pose h = rq + s, 0 ~ s < r. Then ah = 1 gives as = aS l q = 
a8 (a r)q = as+rq = ah = 1. Hence s = 0 by the minimality of r. 
Now suppose that an = am. Then an-m = 1 and so n - m = rq. 
Hence 1 = brq = bn-m and bn = bm. We can now map an ~ bn 

and be sure that this correspondence is single-valued. By sym­
metry bn = bm implies that an = am. Hence our mapping is 1-1. 
Clearly anam = an+m ~ bn+m = bnbm• Hence an ~ bn is an 
isomorphism. This completes the proof of the following 

Theorem 2. Any two cyclic groups oj the same order are iso­
morphic. 

The concept of a cyclic group gives us a first classification of 
the elements of an arbitrary group eM. If a is any element of eM, 
then we say that a is of infinite order or of finite order r, according 
as faJ is infinite or is a finite group of order r. In the first case 
we know that an ~ 1 if n is any integer ~O, and if the second 
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alternative holds, then ar = 1. Also we know that r is the least 
positive integer such that ar = 1. 

Cyclic groups are the simplest kinds of groups. It is therefore 
not surprising that most questions concerning groups are readily 
answered for this type. Thus, for example, it is generally a very 
difficult task to determine all the subgroups of a given group. 
We shall now see that this can be done very simply for cyclic 
groups. 

Let 5ID be a subgroup of the cyclic group 8 = [a]. Assume first 
that 5ID;;e 1. Then there exist positive integers m such that 
am e 5ID; for there exist integers m ;;e 0 such that am e 5ID, and 
if am e 5ID, then so does (am) -1 = a-m. Now let s be the smallest 
positive integer such that a8 e 5ID. We propose to show that 
5ID = [a'l and that the correspondence 5ID -+ s is 1-1. To prove 
these results let c = am be any element in 5ID and write m = sq + u 
where 0 :::; u < s. Then aU = am(a8 ) -q e 5ID. Hence, by the 
minimality of s, u = O. Thus c = am = (aB)q and 5ID = [aB]. Also 
the 1-1 ness is clear since, if 5ID -+ sand 5ID' -+ s, then 5ID = 
[a'l = 5ID'. 

If 8 is an infinite cyclic group, then our mapping 5ID -+ S is a 
mapping onto the set of positive integers; for if we take any 
positive integer s, then [a 8 ] -+ s since the smallest positive integer 
p such that aP e laB] is s itself. 

Suppose next that.8 is finite of order r. Then we shall show 
that the mapping 5ID -+ S is a mapping onto the set of positive 
integers < r which are divisors of r. Since 1 = ar e 5ID, the argu­
ment used before shows that r is a multiple of s, that is, sir. 
On the other hand, let s be any divisor of r and write r = sl. 
Then (aB)t = 1, but (a 8 )!' ;;e 1 if 0 < I' < I. Hence, I is the order 
of laB]. Now if s' is the smallest positive integer such that a8

' e [a'], 
then also r = s'l since [aB'] = laB]. It follows that s = s'. Hence 
[aB] -+ s. 

We have therefore proved the following 

Theorem 3. Let 8 be a cyclic group with generator a and let 5ID be 
any subgroup r!' 1 of 8. Then if s is the smallesl positive integer 
such that aB e 5ID, 5ID = [a'l. If 8 is infinite, then the correspondence 
5ID -+ s is a 1-1 mapping of the set of subgroups ;;e 1 onto the set of 
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positive integers. If.B is finite of order r, then our mapping is 1-1 
of the set of subgroups ~ 1 onto the set of positive divisors of r that 
are less than r. 

If .B is infinite we can extend our correspondence to include the 
subgroup 1 consisting of 1 alone by mapping 1· ~ o. In the 
finite case we map 1 ~ r, so that in all cases we have 5ill = [aa]. 
We note also that in the finite case if 5ill ~ s, then the order of 
5ill is r/s = t. Hence, we obtain another 1-1 correspondence here 
by associating with 5ill the order of this subgroup. We state this 
result as 

Theorem 4. Let.B be cyclic of order r «00). Then the order of 
any subgroup of .B is a divisor of r and, if t is any positive divisor 
of r, .B possesses one and only one subgroup of order t. 

It is customary to denote the number of positive divisors of an 
integer r by d(r). Thus.B possesses d(r) subgroups. 

EXERCISES 

1. List the subgroups of the cyclic group of order 12. 
2. Let.8 = [aJ be of order r < 00. Show that the order of am is [m,rllm = 

r/(m,r). 
3. Show that a cyclic group of order r possesses exactly cf>(r) generators where 

cf>(r) (the Euler cf>-function) denotes the number of positive numbers <r that are 
prime to r in the sense (r,h) = 1. 

4. Show that the subgroup .p of order I (r = SI) of a cyclic group of order r 
can be characterized in either of the following ways: (1) .p is the set of sth 
powers of the elements of® or (2).p is the set of elements h such that hI = 1. 

12. Elementary properties of permutations. A permutation 
'Y which permutes cyclically a set of elements i 1, i 2, ••• ) ir in the 
sense that 

(9) i1'Y = i2, i2'Y = ia) ... ) ir- 1'Y = ir) ir'Y = i1 

and leaves fixed the other numbers in {I, 2, ... , n} is called a 
cycle. If 'Y is of this form, we denote it as (i1i2 ... ir). It is clear 
that we can just as well write 

'Y = (i2ia ... iri1) = (ia i4 ••• iri1i2) = .... 

Two cycles 'Y and 'Y' are said to be disjoint if their symbols con­
tain no common letters. In this case it is clear that the numbers 
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which are moved by one of these transformations are left fixed 
by the other. Hence if i is any number and i'Y ~ i, then i'Y''Y = i"( 
and since iy ~ i'Y also, i'Y'Y' = i'Y. Similarly if i'Y' ~ i then 
i"{'Y' = i'Y''Y and if i"{ = ; and ;"1' = ; then i'Y'Y' = i'Y''Y. Thus 
"1"1' = "1'''1, that is, any two disjoint cycles commute. . 

Any permutation a can be written as a product of disjoint 
cycles. For example, if 

then 

( 1 2 3 4 5 6 7 8) 
a= 3 6 5 4 8 2 7 1 ' 

la = 3, 3a = 5, Sa = 8, 8a = 1; 2a = 6, 6a = 2; 

4a = 4; 7a = 7; 

from which it follows that 

a = (1 3 5 8)(2 6)(4)(7). 

In general, for any a we can begin with any number in 1,2, . ", n, 
say i h and form i 1a = ;2, ;2a = i3, "', until we reach a number 
that occurs previously in this list. The first such repetition occurs 
when ir+1 = ira = i1; for ik = i1cl'-1 and if ik = i" I> k, then 
i1cl'-1 = i1al - 1 and i1al - k = i1• Thus the numbers i1> i2, "', ir 
are permuted cyclically by a. If r < n we can find a j1 not in 
this set. If jla.k = i1a.Q, then jl = i1a.Q- k is in the original set 
contrary to assumption. Hence we obtain a new set Uhj2, "', 
j,} that is cyclically permuted by a and that has no element in 
common with the original set. If we continue in this way we 
finally exhaust the set {I, 2, .. ') n}. Also it is clear by comparing 
effects on any number that 

(10) a = (i1 i2 ••• ir)(j1h ... j.) ... (11 /2 ••• lu) 

where these cycles are disjoint. 
A cycle (i) is the identity mapping. Such cycles can be dropped 

in (10) and we may therefore suppose that r, s, "') u > 1 in 
(to). The factorization thus obtained is unique since we can 
deduce from it the fact that 

ir_1a = ir) ira = i1; "'; ha = 12) 

IU_1a = lu, lua = 11 

., 
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and that all the other numbers are fixed. If a has the factoriza­
tion (10) into disjoint cycles, then we shall associate with a the 
integer 

(11) N(a) = (r - 1) + (s - 1) + ... + (u - 1). 

A cycle of the form (ab) is called a transposition. It is easy to 
verify that 

(12) 

Hence according to (10), a is a product of N(a) transpositions. 
We shall now show that if N(a) is even (odd) then any jactorization 
oj a as a product oj transpositions contains an even (odd) number oj 
jactors. For this purpose we require the following formulas 

(aclC2 ... Chbdl ... dk) (ab) = (acl ... Ch) (bdl ... dk) 

(acl ... ch)(bdl ... dk)(ab) = (acl ... chbd1 ••• dk). 

According to these, if a and b occur in the same cycle in a, then 
N(a(ab» = N(a) - 1 and, if a and b occur in different cycles 
in a, then N(a(ab» = N(a) + 1. In any case 

(13) N(a(ab» = N(a) ± 1. 

Now suppose that a is a product of m transpositions, say a = 
(ab)(cd) ... (pq). Since (ab) -1 = (ab), this implies that 

a(pq) ... (cd) (ab) = 1. 

Since N(t) = 0, iteration of (13) gives 

r---m---., ° = N(a) ± 1 ± 1, ± ... ± 1. 

Hence N(a) is a sum of m terms = 1 or -1. It follows that 
N(a) is even if and only if m is even. This proves our assertion. 

We shall call a even or odd according as the factorizations of a 
as a product of transpositions contain even or odd numbers of 
factors. If a is a product of m transpositions and fJ is a product 
of q transpositions, then afJ is a product of m + q transpositions 
and a-I is a product of m transpositions. Hence if a is even and 
fJ is even, then afJ is even; if a is even (odd) and fJ is odd (even), 
then afJ is odd and, if both a and fJ are odd, then afJ is even. 
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If a is even, then so is a-I. Among other things, these rules show 
that the set An of even permutations is a subgroup of Sn. This 
subgroup is called the alternating group. 

EXERCISES 

1. Express the elements of S. as (1) products of disjoint cycles, (2) products 
of transpositions. Determine the elements of £14• 

2. Show that, if n ~ 3, then any element of An is a product of three-cycles 
(abc). 

13. Coset decompositions of a group. Suppose first that @ 

is an arbitrary transformation group acting in a set S. Then @ 

defines an equivalence relation in S by the rule that x == y(mod @) 
(read: x is congruent to y modulo ®) if y = Xa for some a in @. 

That this relation is reflexive, symmetric and transitive is immedi­
ate from the definition of a transformation group. It may happen 
that any two elements of S are equivalent in this sense. In this 
case @ is said to be transitive in S. In general we obtain a decom­
position of S into non-overlapping equivalence classes that we 
shall call the transitivity sets of S relative to @. 

As an instance of this type of decomposition let S = {l,2, "', 
nl and let ® = [a] where a is in Sn. If a = (ili2 ... iT) ... 
(M2 ... lu) is the factorization of a into disjoint cycles, then it is 
clear that fih i2, "', iTI, "', {/h 12, "', luI are transitivity sets 
of raj. The remaining transitivity sets contain single elements. 
The number N(a) considered in the preceding section can now be 
defined as ~(r - 1) where r denotes the number of elements in a 
transitivity set and the sum is taken over these sets. This remark 
shows again that NCa) is unique and in general it makes somewhat 
more transparent the discussion of the preceding section. 

We suppose now that @ is any group and that ~ is a subgroup 
of @. Let ~/ be the set of right multiplications in ® determined 
by the elements of~. This means that ~/ is the set of mappings 
x ~ xh, x in @, h fixed in~. Since ~ is a subgroup of @, ~r' is 
a subgroup of @r; hence ~r' is a transformation group acting in 
the set @. We consider now the transitivity sets determined by 
~,'. We write x == y (mod ~) in place of x == y (mod ~,'). 
By definition this means that there exists an h in ~ such that 
y = xh, or, equivalently, that x-1y e$). The transitivity set of 
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elements that are congruent (equivalent) to x is called the right 
coset oj x relative to .p. 

We shall now introduce a convenient notation for the right 
cosets. In general, if A and B are subsets of a group ®, then we 
write AB for the collection of products ab, a in A, b in B. We 
note that (£1B)C is the collection of products (ab)e, a in A, b 
in B, e in C. Since (ab)e = a (be) , any such product is in A(BC). 
Hence (£1B)C C ACBC). Similarly the reverse inequality holds 
so that (AB)C = A(BC). The set consisting of a single element x 
will be denoted as x. Now it is clear that the right coset of x 
relative to .p is the set of elements xh, h in.p. Hence this coset 
is the set x.p. We know, of course, that ® = U x.p and that either 
x.p = y.p or x.p n y.p = 0. 

Examples. (1) Let 1+ be the group of integers relative to addition and let 
[m] denote the subgroup of multiples of the integer m > O. Here x == y (mod 
[m]) has the same meaning as x == y (mod m) of elementary number theory, 
namely, x - y is a multiple of m. If x is any integer we can write x = qm + r 
where 0 ~ r < m. Then x == r (mod m). Thus any integer is congruent to 
one of the numbers 0, 1, 2, "', m - 1. Also it is clear that no two of these 
numbers are congruent. Hence there are m cosets of I relative to [m]: 

o = {o, ±m, ±2m, ... } 

1 = {I, 1 ± m, 1 ± 2m, ... } 

(m - 1) = {m - 1, (m - 1) ± m, (m - 1) ± 2m, ... }. 

(2) ® = R+, the additive group of real nUqlbers; .p = 1+, the subgroup of 
integers. Here two real numbers are in the same coset relative to 1+ if and only 
if their difference is an integer. A coset is therefore a collection of points that 
are similarly placed in the unit intervals with integer endpoints. 

(3) ® = Sn,.p = An. If {3 is even, {3 e An and conversely. If fJ is odd every 
member of the coset {3An is odd. Moreover, this coset contains all the odd 
permutations; for, if'Y is odd, then {3-Ly is even and'Y e {3An. Thus we have two 
cosets: the coset An of even permutations and the coset of odd permutations. 

Any two right cosets have the same cardinal number, that is, 
there is a 1-1 correspondence mapping one onto the other. Thus 
let x.p and y.p be arbitrary right cosets and consider the left 
multiplication (yx-1)z = xz-1yz. We know that this mapping 
is 1-1 of ® onto itself, and it is clear that, if xh e x.p, then 
(xh)(yx-1)z = yx-1xh = yh ey4). Hence (yx-1)z induces a 1-1 
mapping of x4) onto y.p. Since 4) = 1.p is itself a right coset, we 
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see that all the right cosets have the same cardinal number as .p. 
We can duplicate the foregoing discussion using left cosets, in 

place of right cosets. The starting point here is the transforma­
tion group S)z' = {hz}, h in S). We define the left congruence 
relation relative to the subgroup .p as the congruence relation 
determined by the transformation group S)z'. Thus we set 
x ==zy (mod S» for x = y (mod .pz'). This means simply that 
there exists an element h e ~ such that y = hx, or, equivalently, 
that yx-1 e.p. The equivalence class determined by x is the set 
~x which we shall call the left coset of x relative to ~. 

One can see by examples (exercise 1 below) that the decomposi­
tion of a group into right cosets relative to a subgroup ~ need 
not coincide with the decomposition into left cosets relative to 
S). However, there is a simple relation between these two decom­
positions, namely, the set of inverses of the elements in any right 
coset xS) constitute a left coset. For (xh) -1 = h-1x-1 e ~X-l 
and, as h ranges over ~, h-1x-1 ranges over .px-1• Thus the 
left coset ~X-l is uniquely determined by x~, that is, it does not 
depend on the element x selected in x~. It is also immediate 
that the correspondence xS) ~ S)x-1 is 1-1 of the collection of 
right cosets onto the collection of left cosets. Hence the collec­
tions {S)x} and {xS)} have the same cardinal number. We call 
this number the index of S) in ®. 

Suppose now that ® is a finite group and that the order of ® 
IS n. Let S) be a subgroup of order m and write 

where aiS) n ajS) = fZf if i r6- j. Thus r is the index of .p in ®. 
We have seen that each aiS) contains m elements. Hence ® con­
tains mr elements so that n = mr. This proves the following 
fundamen tal 

Theorem 5 (Lagrange). The order of a subgroup oj afinite group 
is a factor of the order of the group. 

Our result shows that the order of An is n!j2; for we have 
seen that the index of An in Sn is 2. A second important applica­
tion of Lagrange's theorem is the 
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Corollary. lf @ is a finite group oj order n, then x1& = 1 1m' 
every x e@. 

Proof. Let m be the order of [x]. Then x'" = 1 and n = mr. 
Hence xn = 1. 

EXERCISES 

1. Determine the coset decompositions of the subgroup~ = {I, (12)} in S3. 
2. Let V be the group of vectors in the plane, vector addition as composition. 

Show that the vectors that issue from the origin 0 and have end points on a 
fixed line through 0 form a subgroup. What are the cosets relative to this 
subgroup? 

3. Let.\)1 and ~2 be two subgroups of@. Show that any coset relative to 
.\)1 n .\)2 is the intersection of a coset relative to.\)1 with a coset relative to .\)2. 
Use this result to prove Poincar/'s theorem that, if.\)1 and.\)z have finite index in 
@, then so has.\)1 n .\)2. 

4. Does the rule x.\) -+ .\)X define a (single-valued) mapping? 

14. Invariant subgroups and factor groups. We wish to deter­
mine now the condition on a subgroup ~ in order that we be 
able to multiply any two congruences modulo .\), that is, that we 
be able to conclude from any two congruences x == x' (mod.\)) and 
y == y' (mod .\)) that xy == x'y' (mod .\)). Another way of putting 
this condition is that, if x' e x.p and y' ey,p, then x'y' e xy4'l. 
In terms of set multiplication this means that 

(14) (x.\) (y.\) C xy,p 

holds for all x andy in @. It is clear that this condition is equiva­
lent to ~y.\) C y.\) for all y. Also .\)y.\) c y.\) implies that 
.\)y c y.\). On the other hand, if.\) has this latter property, then 

since ,p2 =.\). It is clear also that the condition .\)y c Y-P is 
equivalent to y-l.\)y C .\), and we use this form of the condition 
in the following 

Definition 4. A subgroup ~ is called invariant (normal, self­
conjugate, distinguished) if y-l.\)y C .\)1or every yin @. 

Our remarks show that.\) is invariant if and only if (x.\)(y.\) c 
xy.\) holds for every x, y in @. In terms of elements the test for 
invariance of a subgroup.i) is that, if he.\1 andy is arbitrary, then 
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y-1hy e 4'. Since 4'Y C Y4' for ally, 4'y-1 C y-14' and multiplica­
tion by y on the right and on the left gives y~ C 4'y. Hence 
~y = y.p. Thus if 4' is invariant, then the right coset deter­
mined by any element coincides with the left coset determined 
by this element. Hence there is only one coset decomposition for 
an invariant subgroup. 

If ~ is invariant, then (x~)(y~) = x~y~ = xy~~ = xy4'. 
Hence the set of cosets of 4' is closed relative to set multiplication. 
We now show that the collection @/~ of cosets and this composi­
tion is a group. The associative law holds for this composition 
since multiplication of sets is associative. The coset ~ acts as 
the identity since ~(x,p) = x~ and (x~)~ = x~. Also x~ has 
the inverse X-1~ since (X~)(X-1~) = ~ = (X-1~)(X~). This 
proves our assertion. The group consisting of the set of cosets 
and the cotr'position that we have defined is called the factor 
(quotient) group @/~ of @ relative to the invariant subgroup ~. 
Clearly the order of @/~ is the index of ~ in ®. 

Examples. (1) f, the group of integers relative to addition; [mJ, the sub­
group of multiples of the integer m > 1. [mJ is invariant since it is clear that 
any subgroup of a commutative group is invariant. The factor group fj[m) is 
cyclic with 1 = 1 + [m) as generator. (2) A" is an invariant subgroup of Sn. 
For if 01 is even {3-1a{3 is even for any {3. The factor group S"j An has order 2. 

EXERCISES 

1. Prove that any subgroup of index 2 is invariant. 
2. Show that ~ = {I, (1 2)} is not invariant in Sa. 
3. Show that the subgroup of transformations of the form x -+ x +" is 

invariant in the group of transformations x -+ ax + 0, a ~ O. 

15. Homomorphism of groups. The concepts of isomorphism 
and of isomorphic groups become considerably more fruitful 
when they are generalized in the manner that we shall now indi­
cate. The generalizations that we wish to define are obtained by 
dropping the requirement of 1-1 ness in our previous definitions. 
Thus we have the following fundamental 

Definition 5. A mapping 11 of a group ® into a group @' is called 
II homomorphism if (xy)'1 =. (Xl1)(Y'1). If 11 is a homomorphism 
of ~ onto ®', then ~' is called a homomorphic image of ®. 
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An important instance of a homomorphism is obtained by taking 
a factor group @/S) of @ relative to an invariant subgroup S) 
of @. By definition (xS»)(yS») = (xy)S) in @/S). Hence if we 
map the element x of @ into its coset xS), then we obtain a homo­
morphism of @ onto @/S). Thus any factor group of @ is a 
homomorphic image of @. 

It should be noted that the definition that we have given does 
not require that 1/ be a mapping onto @. If 1/ is 1-1, then we call 
it an isomorphism of @ into @'. Previously we have dealt exclu­
sively with isomorphisms onto and with isomorphic groups. We 
consider now some concrete examples of homomorphisms. 

Examples. (1) Let @ = R+, the additive group of real numbers, and let 
@' = U, the multiplicative group of complex numbers of absolute value 1. 
The mapping () ~ eiS is a homomorphism of@ onto@' since e~{fh+1iJ) = e~fhefl1J 
and every element of@' has the form eil• This mapping is not an isomorphism 
and, in fact, it is easy to see that these groups are not isomorphic (exercise 3 
below). 

(2) Let @ = 17 the group of plane vectors (a,{J) with the usual composition 
(a,{J) + (a',{3') = (a + a', (J + (J'). The mapping (a,{J) ~ a is a homo­
morphism of 17 onto R+. 

(3) Let @ be the symmetric group 8n and map the permutation T e 8n on 
the number 1 or on the number -1 according as T is even or odd. In any case 
denote the image as X(T). Then X(TT') = X(T)X(T'). Hence T ~ X(T) is a homo­
morphism of 8ft onto the multiplicative group of numbers 1, -1. 

(4) Consider the additive group of integers 1+ and any group @. Let a be 
a definite element of@. Then the mapping n ~ aft, n in 1+, satisfies am+n = 
amaft• Hence it is a homomorphism of 1+ into @. 

We derive next some of the elementary properties of homo­
morphisms. We note first the following 

Theorem 6. The image @77 oj a homomorphism of @ into @' is a 
subgroup of@'. 

Proof. Since (X77) (Y77) = (xy h, @1/ is closed under the com­
position in @'. Also (177)(11/) = 177 so that 11/ is the identity l' 
of @'. Finally (X77)(X-11/) = 177 = 1', and this means that 
(X77) -1 = X-11/ is in @77' 

We consider next the totality R of elements k of @ such that 
k77 = 1'. This is the inverse image set 77-1(1') of the identity 
element l' of ®'. Since I" = 1', R 3 1. Hence if R ¢ 1, then" 
is not 1-1. On the other hand, we shall show now that, if R = 1, 
then 77 is an isomorphism. Thus assume that a'l} = 01/. Then 
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(a-1b)r] = a-1"1b"l = (a"l) -1 (b"l) = 1'. Hence a-1b = 1 and II = b. 
We prove next 

Theorem 7. If "I is a homomorphism of ® into ®', the inverse 
image ~ = "1-1(1') of the identity of ®' is an invariant subgroup 
of®· 

Proof. We know that 1 e~. If kh k2 e~, then (k1k2)"1 = 
(k1"1)(k2"1) = 1'1' = 1'. Hence k1k2 e~. Also if k e~, then 
k-1"1 = (k"l)-l = 1'-1 = l' and k-1 e~. This proves that ~ 
is a subgroup. Finally if a is arbitrary in ® and k e~, then 
(a-1ka)r] = (a-1"1)(k"l)(a"l) = (a"l)-11'(a"l) = 1'sothata-1kae~. 
Hence ~ is invariant. 

The group ~ = "I-I (1') is called the kernel of the homomorphism 
"I. 

EXERCISES 

1. Determine the kernels of the homomorphisms in the foregoing examples. 
2. Prove the following extension of Theorem 6: Let ® be a group and let ®' 

be any set in which a composition a'b' is defined. Suppose that 1/ is a mapping 
of® into®' such that (xY)1/ = (X1/)(Y1/). Then the image@1/ is a group relative 
to the composition defined in @'. 

3. Prove that the groups R+ and U of example 1 are not isomorphic. 
4. Let @ be the transformation group of mappings x --+ ax + b where a and b 

are real numbers and a ,.e o. Show that the correspondence that associates 
with the indicated transformation the real number a is a homomorphism of@ 
onto R*. What is the kernel? 

5. Show that if k is an integer then the mapping ei8 --+ e"i8 is a homomorphism 
of U onto itself. Determine the kernel. 

16. The fundamental theorem of homomorphism for groups. 
We have seen that the mapping x ~ x = x~ is a homomorphism 
of the group @ onto its factor group ® = @/~ relative to the 
invariant subgroup~. We shall call this homomorphism the 
natural homomorphism of @ onto ® and in the sequel we denote 
it by the letter P. The kernel of P, that is, the set of elements 
a such that ap = a~ = ~ is obviously the given invariant sub­
group ~. 

We note next that, if 1/ is a homomorphism of @ into ®' and p 

is a homomorphism of ®' into ®", then "IP is a homomorphism of 
® into ®". This is immediate from the definition. In particular 
we see that, if JI is the natural homomorphism of@ onto @ = ®/~ 
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and ij is a homomorphism of ® into another group @', then the 
resultant lIij is a homomorphism of @ into @'. The kernel of this 
homomorphism evidently contains .p. 

Conversely let fJ be a homomorphism of @ into a second group 
@' and let .p be an invariant subgroup of @ contained in the kernel 
Sf = fJ-1(1'). Let a and b be two elements in the same coset 
relative to,p. Then b = ah, h in ,p, and bfJ = (afJ) (hfJ) = (afJ) l' 
= afJ. This shows that the rule a,p -+ afJ defines a single-valued 
mapping of ® = @/,p into @'. We denote this mapping as ij 

and we prove that it is a homomorphism. This follows from 

We shall call ij the induced homomorphism of ® into @'. Evi­
dently allij = (a.p)ij = afJ so that the given homomorphism per­
mits the factorization fJ = lIij. 

We note next that, if (a.p)ij = 1', then afJ = l' and a e Sf. 
Also the converse holds. Hence we see that the kernel of ij is 
the totality Sf/S:> of cosets of the form kS), k in Sf. As a consequence 
we see that ij is 1-1 if and only if Sf =.p. This completes the 
proof of the important 

Theorem 8. Let fJ be a homomorphism of @ into @' and let 
,p be an invariant subgroup of @ contained in Sf = fJ -1 (1 '). Then 
the rule as) -+ afJ is a homomorphism ij of ® = @/S) into @' and 
fJ = lIij where II is the natural homomorphism of @ onto ®. The 
mapping 11 is an isomorphism if and only if Sf = S). 

Suppose now that we particularize our considerations to the 
case in which fJ is a homomorphism of @ onto @'. If Sf is the 
kernel, then we see that the induced mapping ij of ® = @/Sf 
onto @' is an isomorphism. Hence ® ~ @'. This, together with 
the result noted in the first paragraph, proves the 

Fundamental theorem of homomorphism for groups. Any 
factor group of @ is a homomorphic image of @ and conversely if 
@' is a homomorphic image of @ then @' is isomorphic to a factor 
group of@. 

As an illustration of the power of this theorem we use it to 
derive again a part of the theory of cyclic groups. Let @ = [aJ 
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be cyclic with generator a. Then we know that the mapping 
n ..... an is a homomorphism of 1+ onto~. Hence @::: 1+/~ 
where -i), the kernel, is a subgroup of 1+. Now we use our deter­
mination of the subgroups of 1+. According to this we have 
either -i> = 0 or -i> = [m] where m > O. In the former case the 
mapping n ..... an is an isomorphism, and @::: 1+. Otherwise 
we see that @::: I+/[m], a group of order m. It is immediate 
from these remarks that any two cyclic groups of the same order 
are isomorphic. 

EXERCISES 

1. Prove that R+/[211"] ::: U where R+ and U are as in example 1 of p. 42 and 
[211"] is. the cyclic group generated by 2 .... 

2. Let [x] be a cyclic group of order s, and [y] a cyclic group of order I. Show 
that there is a homomorphism TI of [x] into [y], such that XTI = l', if and only 
if sic is a multiple of I. If sit = ml, show that" is an isomorphism if and only 
if (s,m) = 1. 

17. Endomorphisms, automorphisms, center of a group. A 
homomorphism of a group into itself is called an endomorphism; 
an isomorphism of a group onto itself is called an automorphism. 
The resultant of endomorphisms is an endomorphism. Hence the 
set @ of endomorphisms of a group @ is a sub-semi-group of the 
semi-group of single-valued mappings in the set @. Evidently 
the identity mapping is an endomorphism; hence the semi-group 
~ has an identity. 

Consider next the set i of automorphisms of the group @. 
We assert that i is the group of units of @. For if a is a unit 
in @, a-I exists and hence a is 1-1 of@ onto itself. On the other 
hand, if a is an automorphism, its inverse a-I is also an auto­
morphism; for 

(xy)a-I = ((xa-1a)(ya-1a»a-1 = (((xa-l)(ya-1»a)a-1 

= (xa-I)(ya-I). 

Hence a has an inverse in @. This proves also that I is a group 
of transformations in @. We shall call this group the group of 
automorphisms of ®. 

If a is a fixed element the mapping 

(15) 
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is an automorphism of ®, since 

a-l(xy)a = (a-Ixa)(a-Iya) 

and, as is easy to verify, Ca is 1-1 of ® onto itself. As a 
matter of fact, the 1-1 ness is clear if we note that 

(16) 

where, as usual, ar and az are respectively the right and the left 
multiplications determined by a. The automorphism Ca is 
called the inner automorphism determined by the element a. 

We shall now show that the set 3 of inner automorphisms forms 
an invariant subgroup of the group of automorphisms~. Let 
Cal and Ca2 be inner automorphisms. Then 

xCalCal = a2 -lal-Ixala2 = (ala2) -lx(ala2) = xCalal 

so that 

(17) 

This equation shows that the correspondence a ~ Ca is a homo­
morphism of ® into its group of automorphisms. It follows 
(Theorem 6) that the image set 3 is a subgroup of~. Now let 
a be any automorphism and consider the product a-Ieaa. 
Since 

(18) 

xa-ICaa = (a-l(xa-1)a)a = (a-1a)x(aa) 

= (aa) -lx(aa) 

= xCaa, 

a-ICaa = Caa 

IS mner. This proves the invariance of 3. The factor group 
~/3 is called the group of outer automorphisms of the group ®. 

We return to the homomorphism a ~ Ca of ® onto 3. The 
kernel ~ of this mapping is the set of elements c such that Cc = 1. 
Thus c e ~ if and only if c-Ixc = x for all x or equivalently, 

(19) ex = xc 

for all x. We shall call ~ the center of the group ®. By Theorem 7 
or directly we see that ~ is an invariant subgroup. Also by the 
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fundamental theorem of homomorphism 3<:::: @/f5.. We sum­
marize our results in the following 

Theorem 9. The set 3< of inner automorphisms is an invariant 
subgroup of the group of automorphisms and 3 ~ @/f5. where f5. is 
the center of the group. 

EXERCISES 

1. Prove that the mapping a -+ a-I is an automorphism if and only if@ is 
commutative. 

2. Show that, if Ie is an integer and @ is commutative, then a -+ ak is an 
endomorphism. 

3. Determine the group of automorphisms of any cyclic group. 
4. Determine the group of automorphisms of the symmetric group Sa. 
5. The transformation group generated by the group of automorphisms and 

the group of right multiplications is called the h%morph ~ of the group @. 
Show that (1) ~ contains all the left multiplications, (2) any element of ~ 
can be written in one and only one way as a product aar of an automorphism 
a and a right multiplication ar, (3) if @ is finite, then the order of ~ is the product 
of the order of @ by the order of ~. 

18. Conjugate classes. The elements x and y of @ are said 
to be conjugate if they are equivalent relative to the congruence 
relation determined by the transformation group 3. This means 
that there exists an a in @ such that a-1xa = y. The transitivity 
sets determined by the group 3 are called the conjugate classes 
of the group @. The conjugate class determined by the element c 
consists of a single element if and only if c is in the center of the 
group. 

As an illustration of these ideas we shall determine the con­
jugate classes of the symmetric group Sn' We remark first that 
if a is the permutation 

(~a ~a :a) 

and fJ is arbitrary, then fJ-1afJ sends IfJ into lafJ so that fJ-1afJ 
can be represented by the symbol 

nfJ ). 
nafJ 

It follows that if 
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(20) a = (i1i2 ... ir)(jd2 ... j.) ... (/1/2 ... lu) 

then 

(21) fr1afj = (ilfji2fj ... irfj) ... (/1fj/2fj ... lufj). 

We may suppose that r ~ s ;?: ..• ;?: u and that all the numbers 
are displayed in (20). Then r + s + ... + u = n. In this way 
we associate with a a set of positive integers r, s, "', u such that 

(22) r ;?: S ;?: ••• ;?: u, r + S + ... + u = n. 

Equation (21) shows that a and 01.' are conjugates in Sn if and 
only if the associated sets r, s, "', u are the same for these 
two permutations. A system of integers satisfying (22) is called 
a partition of n. Hence we have a 1-1 correspondence between 
the conjugate classes in Sn and the partitions of n. The number 
of conjugate classes coincides with the number pen) of distinct 
partitions of n. The function pen) is an important arithmetic 
function. I ts first few values are 

p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7, p(6) = 11. 

Also it is clear from (21) that, if r > 1 and n > 2, then fJ can 
be chosen so that fJ-10l.fJ ¢ 01.. Hence, if a ¢ 1, then there exists 
a fJ such that fJa ¢ afJ. This shows that the center of Sn, n > 2, 
is the identity. 

EXERCISES 

1. Prove that, if @ is a finite permutation group, then the number of elements 
in any transitivity set determined by @ is a factor of the order of the group. 
(Hint: If; is any number in the set S = 11,2, ... , n}, the set of transformations 
a e@ that leave; fixed is a subgroup~. Show that the elements in the transi­
tivity set containing; can be put into 1-1 correspondence with the left cosets of 
.p. Hence prove that the number of elements in the transitivity set is the index 
of.p in@.) 

2. Prove that the number of elements in any conjugate class of a finite group 
@ is a factor of the order of @. 

3. Prove that the center of a group of prime power order contains more than 
one element. 



Chapter II 

RINGS, INTEGRAL DOMAINS AND FIELDS 

In this chapter we begin the study of a second important type 
of algebraic system called a ring. As we shall see, rings are sets 
with two suitably restricted binary compositions. Unlike the 
theory of groups which had essentially one source, namely, the 
study of sets of 1-1 transformations relative to resultant com­
position, the theory of rings has been fused out of a number of 
special theories. For this reason it will appear to be somewhat 
less unified than the theory of groups. In the present chapter 
we introduce the basic concepts of integral domain~ division ring, 
field, ideal, difference ring, isomorphism) homomorphism and 
anti-isomorphism. Also we introduce some important special 
instances of rings such as matrix rings and quaternions. Finally 
we prove the analogue for rings of Cayley's theorem on groups. 

1. Definition and examples. 

Definition 1. A ring is a system consisting of a set 21 and two 
binary compositions in ~ called addition and multiplication such 
that 

1. ~ together with addition (+) is a commutative group. 
2. ~ together with multiplication (.) is a semi-group. 
3. The distributive laws 

D 

hold. 

a(b + c) == ab + QC 

(b + c)a = ba + ca 

49 
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Thus the assumptions included under land 2 are that a + " 
and ab e ~ and satisfy the following conditions: 

Al (a + b) + c = a + (b + c). 

A2 a + " = " + a. 

A3 There is an element 0 such that a + 0 = a = 0 + a. 

A4 For each a there is a negative -a such that a + (-a) = 0 
= -a + a. 

M (ab)c = a{bc). 

The system ~,+ will be called the additive group and the system 
~" will be called the multiplicative semi-group of the ring. 

Examples. (1) The set I of integers with the ordinary addition and multipli­
cation operations. We have noted in the Introduction that this is a ring. 

(2) The set Ro of rational numbers with the usual addition and multiplication. 
A rigorous definition of this ring will be given in the next chapter. 

(3) The set R of real numbers with the usual addition and multiplication. 
(4) The set I[-V2l of real numbers of the form m + nV2 where m and n 

are integers, addition and multiplication as usual. Clearly the sum and differ-
ence of two numbers in I[-V2l belong to this set. Also 

(m + nV2 )(m' + n'V2) = (mm' + 2nn') + (mn' + nm')V7 

so that I[-y'2l is closed under multiplication. It follows easily that this system 
is a ring (see the discussion of subrings in § 5). 

(5) The set Ro[ V2l of real numbers of the form a + bV2 where a and b 
are rational numbers, addition and multiplication as usual. 

(6) The set C of complex numbers with the usual addition and multiplication. 
(7) The set I[ V-l] of complex numbers of the form m + nV-l, m and n 

integers with ordinary addition and multiplication. This example is similar to 
(4). 

(8) The set r of real valued continuous functions on the interval [0,1] where 
U + g) (x) = J(x) + g(x) and (fg)(x) = J(x)g(x). 

(9) The set consisting of the two elements 0, 1 with the following addition 
and multiplication tables: 

+ 
I 0 1 

o 0 1 
1 1 0 

1
0 1 

o 0 0 
1 0 1 
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EXERCISES 

1. Let A be the set of all real valued functions on (-00, 00). Show that A 
is a group with the ordinary addition and that A is a semi-group relative to 
f· g(x) = f(g(x)). Is A a ring relative to these two compositions? 

2. Show that the three elements 0 .. I} 2 constitute a ring if addition and 
multiplication are defined by the following tables 

+ 
012 

o 0 1 2 
1 2 0 

2 2 0 

012 
o 0 0 0 

o 2 
2 0 2 1 

A number of elementary properties of rings are consequences 
of the fact that a ring is a group relative to addition and a semi­
group relative to multiplication. For example, we have - (0 + b) 
= -0 - b = -0 + (-b) and, if no is defined for the integer 
n as before, then the rules for multiples 

n(o + b) = no + nb 

(n + m)o = no + mo 

(nm)o = n(mo) 

hold. Also the generalized associative laws hold for addition and 
for multiplication, and the generalized commutative law holds for 
addition. There are also a number of other simple results that 
follow from the distributive laws. In the first place, induction on 
m and n gives the generalization 

or 

We note next that 
00=0=00 
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for all a; for we have aO = a(O + 0) = aO + aO. Addition of 
-aO gives aO = O. Similarly Oa = O. We have the equation 

0= Ob = (a + (-a»b = ab + (-a)b, 

which shows that 
(-a)b = -abo 

Similarly a( -b) = -ab and consequently 

( -a)( -b) = -a( -b) = - (-ab) = abo 

EXERCISES 

1. Prove that a(6 - t) = a6 - at. 
2. Prove that for any integer n, n(a6) = (na)6 = a(n6). 
3. Let ~ be a system which satisfies all the conditions for a ring except com­

mutativity of addition. Prove that, if ~ contains an element t that can be 
lefl cancelled in the sense that ca = c6 implies a = 6, then ~ is a ring. 

If a and b commute in the sense that ab = ba, then the powers 
of a commute with the powers of b and we can prove by induction 
the important binomial theorem: 

(1) (a + b)ft = aft + (~) an-1b + (;) an- 2!J2 + ... + bft, 

where (;) is an integer and is given by the formula 

(2) (;) = i !(n ~ i)!' 
This is evident if n = 1. Assume now that 

(3) (a + b)r = 'i: (r) a"br - II• 

"-0 Ie 
We use here the convention that O! = 1 so that (3) agrees with 
(1) for n = r. Now multiply both sides of (3) by a + b. Then 
we obtain 

(a + bY+! = t (r) a"+!br - II + t (r) a"br - II+!. 
11-0 Ie "-0 Ie 

The term allbr+1 -", Ie r!' 0, r + 1, in the right-hand side of this 
equation has the coefficient 
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(~) + (k ~ 1) = k!(rr~ k)! + (k - 1)!(;~ Ie + I)! 
r!(r - k + 1) + rlk =-------

k!(r - Ie + I)! 
(r + I)! (r + 1) 

= k!(r - k + I)! = Ie • 

Hence (1) holds for n = r + 1 and this completes the proof. 
2. Types of rings. We obtain various types of rings by impos­

ing conditions on the multiplicative semi-group. Thus a ring! 
is said to be commutative if its multiplicative semi-group is com­
mutative. The ring ~ is said to have an identity if its multiplica­
tive semi-group has an identity. If such an element exists, it is 
unique. All of the examples listed above are commutative and 
have identities. An example of a ring without an identity is the 
set of even integers. Examples of non-commutative rings will 
be given in §§ 4-5. If the identity 1 = 0, any a = al = aO = 0 
so that ~ has only one element. In other words, if ! ¢ 0, then 
1 ¢ O. 

A ring is called an integral domain (domain of integrity) if the 
set !* of non-zero elements determines a sub-semi-group of the 
multiplicative semi-group. This, of course, means simply that, 
if a ¢ 0 and b ¢ 0 in ~, then ab ¢ O. All of the foregoing exam­
ples except (8) are of this type. On the other hand, in (8) we 
can take the two elements 

f(x) = {O for 10 S: s ! 
x - 2" for 2" < x S 1 

g(x) = {-x + ! for 0 S x S !. 
o for! < x S 1 

Then f ¢ 0 (the constant function 0) and g ¢ 0 but fg = O. 
Hence the ring of continuous functions on [0,1] is not an integral 
domain. 

If a is an element of a ring ~ for which there exists a b ¢ 0 
such that ab = 0 (ba = 0), then a is called a left (right) zero­
divisor in!. Clearly the element 0 is a left and right zero-divisor 
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if ~ contains more than one element. If a ~ 0 isa left zero­
divisor and ab = 0 for b ~ 0, then b is a right zero-divisor ~ O. 
It is therefore clear from the definitions that a ring is an integral 
domain if and only if it possesses no zero-divisors ~ O. 

We note also that a ring is an integral domain if and only if 
the restricted cancellation laws of multiplication hold, that is, 
ab = ac, a ~ 0 imply b = c and ba = ca, a ~ 0 imply b = c. 
Thus assume that ~ is an integral domain and let a, b, c be elements 
such that ab = ac, a ~ O. Then a(b - c) = O. Hence b - c = 0 
and b = c. Similarly we can prove the right cancellation law. 
On the other hand, let ~ be any ring for which the left cancellation 
law holds. Let ab = 0, a ~ O. Then ab = aO and b = O. 
Hence ~ is an integral domain. 

A ring is called a division ring (quasi-field, skew field, sfield) 
if it contains more than one element and the set ~*of non-zero 
elements forms a subgroup of the multiplicative semi-group. 
Thus if ~ is a division ring, ~* contains an identity element 1. 
Since 10 = 0 = 01, 1 is an identity for the whole ring. Hence a 
division ring possesses an identity. Also if a ~ 0, then there exists 
an element a-I in ~ such that aa-l = 1 = a-lao Examples (2), 
(3), (5), (6) and (9) are division rings in which multiplication is 
commutative. Division rings that have this property are called 
fields. We shall give an example of a non-commutative division 
ring in § 5. 

It is clear from the definitions that any division ring is an 
integral domain. On the other hand, the converse does not hold 
since the ring I of integers is an integral domain but not a division 
ring. If a ~ 0 in a division ring ~, then the equation ax = b 
has the solution x = a-1b in~. By the restricted cancellation 
law this is the only solution of the equation. Similarly ya = b 
has one and only one solution, namely,y = ba-1• 

Now let ~ be any ring with an identity 1 ~ O. Our discussion 
of semi-groups shows that the totality U of units of the multiplica­
tive semi-group of ~ is a subgroup of this semi-group. This 
means that the product of units is a unit, 1 is a unit and the inverse 
of a unit is a unit. We shall call U the group of units of the ring~. 
For example, the group of units of I consists of the numbers 1 
and -1. It is immediate that a ring ~ is a division ring if and 
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only if (1) ~ coritains an identity ~ 0 and (2) the group of units 
of ~ is the set ~* of non-zero elements. 

EXERCISES 

1. Prove that, if a is a unit in a ring with an identity, then so is -a. Show 
that (-a)-1 = -a-I. 

2. Show that the example given in ex. 2, p. 51, is a field. 
3. Prove that any finite integral domain is a division ring. 
4. Prove that, if an integral domain ~ has an idempotent element e ¢ 0 

(e2 = e), then e is an identity for~. 
5. An element z of a ring is called nilpotent if z" = O. Show that the only 

nilpotent element of an integral domain is z = O. 
6. Show that, if a ring has only one left identity lz, then lz is an identity 

(two-sided). 
7. Let u be an element of a ring with an identity that has a right inverse. 

Prove that the following conditions on u are equivalent: (1) u has more than 
one right inverse, (2) u is not a unit, (3) u is a left zero-divisor. 

8. (Kaplansky.) Prove that, if an element of a ring with an identity has 
more than one right inverse, then it has infinitely many. 

*3. Quasi-regularity. The circle composition. As we shall 
see, the groups of units of rings with identities give us interesting 
examples of groups. It is therefore noteworthy that the concept 
of the group of units has an analogue also for arbitrary rings that 
need not have identities. In order to obtain this, we assume first 
that ~ has an identity. If a is an element of ~ that has a right 
inverse b, then we may write a = 1 - z and b = 1 - wand obtain 

1 = ab = (1 - z)(1 - w) = 1 - z - w + zw. 

Hence the condition on z and w is that 

z + w - zw = O. 

Since this condition does not involve the identity, we can use it 
for an arbitrary ring. Thus we say that the element z of ~ is 
right (left) quasi-regular if there exists an element w in ~ such that 
z + w - zw = 0 (z + w - wz = 0). The element w is called a 
right (left) quasi-inverse of z. 

A still better insight into the concept of quasi-regularity is ob­
tained by the following considerations. Let ~ be an arbitrary ring 
and define a binary composition in ~ by the formula 

a • b = a + b - abo 
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We call this composition the circle composition in !I. One verifies 
directly that it is associative; hence, !I,. is a semi-group. Also 
clearly a ·0 = a = 0 • a; hence, 0 acts as identity in !,.. It is 
now clear that the set of elements 0. that are quasi-regular (= left 
and right quasi-regular) is just the set of units of I,·. Hence 
0.,. is a group. 

The group 0,· is the analogue for an arbitrary ring of the 
group of units U of a ring with an identity. In fact, if! has an 
identity, then U and 0. are isomorphic; for it is easy to see that 
the mapping z --+ 1 - z is an isomorphism of 0. onto U. 

EXERCISES 

1. Show that, if e is idempotent, then t • t = t. Hence prove that, if t is 
right quasi-regular, then t = O. 

2. Show that any nilpotent element belongs to C. 
3. (Kaplansky.) Establish the following characterization of a division ring: 

A ring in which every element with one exception has a right quasi-inverse. 

4. Matrix rings. Let 9l be an arbitrary ring. We shall now 
define the ring 9ln of n X n matrices with elements in 9l. The 
elements of 9ln are arrays or matrices 

all au 
aln 1 

(4) (a) = 
a2l a22 a2ft 

a~J ani a,,2 

of n rows and columns with elements (coefficients, coordinates) ai; 
in the base ring 9l. The element ai; in the intersection of the 
ith row and jth column of (a) will be referred to as the (i,j) 
element of (a). Two matrices (a) and (0) are regarded as equal 
if and only if ai; = Oi; for every i,j, and the set 9l" is the complete 
set of matrices with elements in 9l. 

We define addition of matrices by the formula 

[

011 012 

+ b2l b22 

"ftl "n2 
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all + "11 au + "12 aln + "In 

a21 + "21 a22 + "22 a2n + "2n 
= 

anI + "n1 
\ 

an2 + "n2 ann + "nnJ 

Thus to obtain the sum we add the element~ aij and "ij in the 
same position. It is easy to verify that 9ln and this addition com­
position form a commutative group. The 0 matrix is the matrix 
all of whose elements are 0 and the negative of (a) has -aij in the 
(i,j)-position, that is, in the intersection of the ith row and the 
jth column. Multiplication of matrices is defined by 

au au aln bu b12 bIn 

a21 a22 a2n b21 b22 b2n 

anI an2 ann "n1 bn2 bnn 

~a1kbk1 ~alkbk2 2;alk"kn 

~a2kbkl ~a2kbk2 ~a2kbkn 
= 

~ankbk1 ~ankbk2 ~ankbkn 

The product (p) = (a)(b) therefore has the element 

Pij = ailbl; + ai2b2i + ... + ainbni 

in the (i,j)-position. For example, in the ring la, 1 the ring of 
integers we have 

r~ - ~ -~] [~ ~:] = [-~ 
2 5 -2 -1 -6 2 12 

-25 
11 

43 

Multiplication of matrices is associative. Thus consider the 
product (a) [(b) (c)]. The multiplication rule shows that the ele­
ment in the (i,ll-Position of this matrix is :E aik(bkICli). Simi-

k,1 

larly, the element in the (i,j)-position of [(a) (b)](c) is :E (aikbkz)cZj. 
k,1 

Because of the associative law of multiplication in 9l, these ele-
ments are equal. Hence (a)[(b)(c)] = [(a)(")](c). The distributive 
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laws hold; for the (i,j)-element of (a) [(b) + (c)] is :E aik(bkj + Cki) 
k 

and the (i,j) element of (a) (b) + (a) (c) is :E aikbki + :E aikCki' 
k k 

These elements are equal by the distributive law in 9l. Similarly 
we can verify the other distributive law. 

Hence 9ln is a ring. Even if 9l is commutative, 9ln will not 
be commutative if n > 1 (cf. ex. 3 below). Also 9ln contains zero­
divisors ~ 0 if n > 1. 

EXERCISES 

1. Calculate 

2. Give examples to show that 12 is not commutative and that it has zero­
divisors ~ o. 

3. Prove that, if 9l ~ 0 and n > 1, then 9l .. has zero-divisors ~ 0 and that, if 
9l contains dements a, "such that a" ~ 0, then 9ln, n > 1, is not commutative. 

If 9l has an identity 1, then it is clear that the element 

1 o 
1 

(5) 1 = 

o 1 

is the identity in the ring 9ln• We assume now that 9l iscommuta­
tive and we propose to determine the multiplicative group of units 
of 9ln• For this purpose we make use of the determinant of a 
matrix. We assume that the reader is acquainted with the ele­
mentary theory of determinants of any order. The usual treat­
ments in textbooks on elementary algebra or geometry are valid 
for determinants of matrices with elements in any commutative 
rmg. 

We recall here the definition of the determinant of a matrix. 
If (a) is as in (4) its determinant det (a) is 

(6) l:: :!: aUl~1 ••• an ... 
p 
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where the summation is taken over all permutations (i1) ;2, , 
in) of (1, 2, .. " n) and the sign + or - is taken according as the 
permutation is even or odd. The cofactor of the element aij in 
(4) is (-l)Hj times the determinant of order n - 1 that is 
obtained by striking out the ith row and jth column of (a). It 
is well known that the sum of the products of the elements of 
any row (column) by their cofactors has the value det (a). Thus 
if Aij is the cofactor of aij) then 

ai1Ai1 + ai2Ai2 + ... + ainA,n = det (a) 
(7) 

aliAli + a2iA2i + ... + aniAni = det (a). 

Also it is known that the sum of the products of the elements of 
any row (column) by the co factors of the elements of another 
row (column) is 0: 

ai1Aj1 + ai2Aj2 + ... + ainAin = 0, i ~ j 

a1iA1j + a2iA 2j + ... + an,Ani = 0, i ~ j. 
(8) 

These relations lead us to define the adjoint of the matrix (a) 
to be the matrix whose (i,j) element aij = Aji. Using this defini­
tion it is immediate that the rules (7) and (8) are equivalent to 
the matrix equations 

det (a) 0 
det (a) 

(9) (a)adj(a) = = [adj(a)](a). 

o det (a) 

It follows that if ~ = det (a) is a unit in 91, then the matrix (0), 
Oii = aii~ -1 satisfies 

(10) (a)(o) = 1 = (o)(a). 

We have therefore proved the sufficiency part of the following 

Theorem 1. If 91 is a commutative ring with an identity, a 
matrix (a) e 91n is a unit if and only if its determinant is a unit in 91. 

To prove the necessity we require the fundamental multiplica­
tion rule 
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(11) det (a)(b) = det (a) det (b). 

If (a)(b) = 1, then this gives det (a) det (b) = 1. Hence det (a) 
is a unit. 

A noteworthy special case of this theorem is the 

Corollary. If m = ~ is a field, a matrix (a) e ~n is a unit if 
and only if its determinant is different from zero. 

EXERCISES 

1. Find the adjoint of the matrix 

2 •. Show that the matrix 

[ 
1 4 1] o 1-1 

-3 -6 -8 

is a unit in 13, I the ring of integers. Find the inverse. 
3. Prove that, if m is a commutative ring with an identity, then (a)(6) = 1 

for (a), (0) in mn implies that (o)(a) = 1. 

5. Quaternions. We consider the set Q of matrices in C2, C 
the field of complex numbers, that have the form 

[ a oJ _ [ ao + a1v=! a2 + aav=!] (12) ,,_ = , a. real. 
- a -a2 + aav=! ao - a1v=t 

We wish to show that Q determines a subgroup of the additive 
group of C2 and that Q is closed under multiplication. The first 
of these assertions is easy to verify. Since 

[ a oJ [ e til [ae - oJ ad + bC] 
-b a -J cJ = -be - aJ ac - bd ' 

the product has the form 
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where u = ac - bJ, v = ad + b~. Hence it belongs to Q. Since 
the associative laws, the commutative law of addition and the 
distributive laws carryover from C2 to the subset Q, it is clear 
that the system Q,+,. is a ring. Thus Q,+,. is an instance of a 
subring of the ring C2,+,· in the sense of the following 

Definition 2. If ~ is a subset of a ring ~ that is closed under 
the compositions of the ring and ~, +,. (induced compositions) is a 
ring, then ~,+,. is called a subring of ~,+, ... 

As in the special case considered here it is clear that a subset ~ 
determines a subring if ~, + is a group and ~ is closed under 
multiplication. Also we recall that the first of these conditions 
is satisfied if either (1) ~ is closed under +, contains 0 and the 
negative of any element in ~ or (2) ~ is closed under subtraction. 

We shall now show that Q is a division ring. We note first that 

a2 + aav=t] 

ao - a 1v=t 
= ao2 + a12 + a22 + aa2 ~ 0 

if the matrix is ~ o. Hence this matrix has an inverse. We 
determine it by the method of the preceding section, and we find 
that it is the matrix 

[
(ao - al-vCl)~-1 

(a2 - aa-vCl)~-1 

-(a2 + aav -1 )~-ll 
(ao + a 1-vCl )~-1 

where ~ = ao2 + a1 2 + a22 + aa2. Thus the inverse IS In Q. 
We have therefore shown that any non-zero element of Q has an 
inverse in Q. Hence Q is a division ring. We call Q the ring of 
(Hamilton's) quaternions and we call the elements of Q quaternions. 

The ring Q contains the subring R' of matrices of the form 

(13) a' = [~ ~]. 
It is easy to see that these matrices commute with every matrix 
in C2 and hence with every quaternion. Also we note that the 
matrices 
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(14) z = [~ 0] . = [ 0 1] k = [0 V-l] ,) . 10' 
-V-l - V-l 0 

are quaternions. One verifies that 

Hence if ao' + al'i + a2} + as'k = {jo' + {jl'i + fJ2} + fJs'k, then 

[ 
ao + alV-l a2 + asV-l] 

-a2 + asV-l ao - alV-l 

[ fJo + fJ l vC1 
= -fJ2 + fJsvC1 

fJ2 + fJs V-lj 
fJo - fJlvC1 

and ai = (ji and a/ = (j/. This shows that the representation of 
a quaternion in the form ao' + al'i + a2) + as'k IS unique. 
Since 

(15) (a + fJ)' = a' + {j', (a(j)' = a'fJ', 

the product 

(ao' + al'i + a2) + as'k)(fJo' + fJI'i + fJ2} + fJs'k) 

is determined by the addition and the multiplication in 9l and 
by the multiplication table 

(16) 
i 2 = p = P = -1', 

ij = -ji = k, jk = -kj = i, ki = -ik = j. 

Incidentally these show that Q is not commutative. We remark 
finally that we can simplify our notation somewhat by replacing 
a' by a and more generally ao' + al'i + a2} + as'k by ao + ali 
+ a~ + ask. We adopt this change in the following exercises. 
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EXERCISES 

1. Calculate (-1 + 2i - 3j + k)C2 - i + 3j - 2k). 
2. Define the trace TCa) of a = ao + ali + a2j + aak to be the number 2ao 

and the norm NCa) = ~ = 0:02 + a12 + a22 + aa2• Verify that a satisfies the 
quadratic equation x2 - TCa)x + NCa) = O. 

3. Prove that NCab) = N(a)N(b). 
4. Show that the set Qo of quaternions ao + ali + a2j + aak with rational 

coefficients a, is a division suOring of Q, that is, a subring that is a division ring. 
S. Verify that the set J of quaternions ao + ad + a2j + aak in which the 

at are either all integers or all halves of odd integers is a subring of Q. Is J a 
division subring? 

6. Subrings generated by a set of elements. Center. It is 
clear from the definition of a subring that, if a number of subsets 
of a ring determine subrings, then their intersection has this 
property too. We express this somewhat more briefly by saying 
that the intersection of any collection of subrings of a ring is a 
subring. If S is any subset of the ring ~, the intersection of the 
subrings containing S is called the subring generated by S. We 
denote this ring by [[S]]. Evidently [[S]] is characterized by the 
following properties: (1) [[S]] is a subring; (2) [[S]] ~ S; (3) if 
58 is any subring containing S, then 58 ~ [[S]]. It is easy to 
indicate the form of the elements of [[S]], namely, they are the ele­
ments ~ ± SlS2 ••• Sr, that is, the sums of finite products of ele­
ments Si in S and negatives of such products; for the collection 
of such sums is a subring and it is clear that it has the properties 
(2) and (3) of [[S]]. 

If S is a set of elements, the totality C(S) of elements c that 
commute with every S e S is a subring. Evidently if S1 ~ S2, then 
C(S1) C C(S2) and C(C(S)) ~S. These two relations have the 
interesting consequence that 

C(C(C(S))) = C(S); 

for replacing S by C(S) in C(C(S)) ~ S gives C(C(C(S))) ~ C(S). 
On the other hand, if we "operate" with C on both sides of this 
same relation we obtain C(C(C(S))) C C(S). 

If we refer to the form of the elements of [[S]], we see that an 
element c that commutes with every element of S commutes also 
with every element of [[S]]. Hence C(S) = C([[S]]). 
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The subring ~ = C(I) is called the center of the ring. If 1 
contains an identity 1, evidently 1 e~. 

EXERCISES 

1. Determine the center of the ring of quaternions. 
2. Let the a, in 

(a) = 

o a" 

be distinct rational numbers. Show that C(a) in the matrix ring Ro", Ro the 
field of rational numbers, is the set of diagonal matrices, that is, the set of matrices 
that have the same form as (a). 

3. Show that the center of Ro" is the set of scalar matrices 

a 0 
a 

o a 

[ 4 ~]. 4. Find C(S) in II for S the set of matrices of the form 0 • 

7. Ideals, difterence rings. Let ~ be a subgroup of the addi­
tive group of I. Since addition is commutative, ~ is an invariant 
subgroup and 

(17) (a + ~) + (c + ~) = (a + c) + ~ 
where addition is the addition defined for subsets. (We recall 
that U + 17 is the totality of elements u + v, u in U and v in 17.) 
The set I == I/~ of cosets is a commutative group relative to 
this composition. We now raise the following question: What is 
the condition on ~ in order that a = a' (mod ~) and c == c' 
(mod ~) implies ac == a'c' (mod ~) for all a, a', c, c'? If a and c 
are chosen, then a' = a + "1 and c' = c + "2 where "1 and "2 
are in~. Also it is clear that any choice of "1 and "2 gives an 
a' == a (mod ~) and a c' == c (mod ~). Hence our requirement is 
equivalent to 

(a + "1)(C + "2) == a& + U2 + "1& + "1"2 = ac (mod ~) 
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for all a and c in ~ and all 01) 02 in sa. Thus 

(18) 

for all a and c in ~ and all 01) 02 in sa. Taking 01 = 0 this gives 

(L) ao e sa for all a in ~ and all 0 in sa 
and taking 02 = 0 this gives 

(R) oa e sa for all a in ~ and all 0 in sa. 
Conversely if (L) and (R) hold, then a02, 01C and 0102 e sa pro­
vided that 01 and 02 are in sa. Hence (18) holds. This leads us 
to the important definition 

Definition 3. A suoset sa of a ring ~ is called an ideal if sa,+ 
is a suogroup of the additive group of ~ and sa has the closure prop­
erties (L) and (R). 

Since a subset sa determines a subgroup if and only if the dif­
ference of every pair of its elements is contained in the set, we 
see that sa is an ideal if and only if (1) Ob 02 in sa imply that 
01 - 02 e sa., (2) 0 in sa implies that ao and oa e sa for all a in ~. 
Evidently an ideal is closed under multiplication. Hence an 
ideal determines a subring of ~. 

If sa is an ideal in ~, then our discussion shows that, if a == a' 
(mod sa) and c = c' (mod sa), then ac = a'c' (mod sa). In other 
words, the product of any element in the coset a + sa by any 
element in the coset c + sa is an element in the coset ac + sa. 
We can therefore define a (single-valued) multiplication composi­
tion for cosets by the formula 

(19) (a + sa)(c + sa) = ac + sa. 
It should be noted that this multiplication does not coincide with 
the multiplication of sets defined in the multiplicative semi-group. 
However, since we shall have no occasion to use the latter, no 
confusion will result from the notation in (19). We assert now 
that ~/sa, the addition (17) and the multiplication (19) constitute 
a ring. Since the rules for addition are clear we need only verify 
the ,associative and distributive laws. This is done in 
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[(a + 58)(e + 58)](d + 58) = (ae + 58)(d + 58) = (ae)d + 58 

(a + 58)[(e + 58)(d + 58)] = (a + 58) (cd + 58) = aCed) + 58 

and 
(a + 58)[(e + 58) + (d + 58)] = (a + 58)(e + d + 58) 

= a(e + d) + 58 

(a + 58)(e + 58) + (a + 58)(d + 58) = (ae + 58) + (ad + 58) 

= (ae + ad) + 58 

and a similar calculation for the other distributive law. We call 
~/58 with the composition that we have defined the difference 
(quotient, residue class) ring oj ~ relative to the ideal 58. 

Some of the elementary properties of a ring carryover to any 
difference ring. Thus if ~ is commutative then ~/58 is commuta­
tive. This is clear from the definition. Similarly if ~ has an 
identity 1, then 1 = 1 + 58 is an identity in ~/58. On the other 
hand, we shall see in the next section that ~ can be an integral 
domain and have difference rings that are not integral domains. 

EXERCISES 

1. Prove that, if n is any integer, then the set n~ of elements of the form na 
is an ideal. 

2. Prove that the set of elements m such that na = 0 is an ideal in any ring~. 

8. Ideals and difference rings for the ring of integers. If m 
is any integer, the set (m) * of multiples of m is an ideal in the ring 
I of integers; for we know that (m) is a subgroup of the additive 
group and it is clear that a multiple of a multiple of m is a multi­
ple of m. Also since the sets (m) are the only subgroups of I 
these are also the only ideals in the ring 1. Since (m) = (-m), 
we need consider only the cases m = 0 and m > O. If m = 0, 
(m) = 0; hence I/(m) = I. Assume now that m > o. Then we 
know that I/(m) has the m elements 

o = 0 = (m), 1 = 1 + (m), .", (m - 1) = m - 1 + (m). 

The element 1 = 1 + (m) is the identity ofI/(m). 

• Our group notation for this set is [ml. 
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Suppose first that m is composite, say, m = mlm2 where the 
mi are > 1. Then mi is not divisible by m and mi ~ O. On the 
other hand mlm2 = mlm2 = m = O. This shows that J/(m) is 
not an integral domain. 

Assume next that m = p is irreducible (or prime) in the sense 
that p cannot be written as a product of integers greater than 1. 
In this case we can prove that J/(P) is a field. We know that 
I/(p) has an identity. Next let a ~ O. Then a is not divisible by 
p. Hence if d = (a,p), d ~ p. Since p is prime, this leaves only 
the alternative d = 1. Hence there exist integers band q such 
that ab + pq = 1. It follows that ab = ab = 1. Hence ii has 
the inverse b in I/(P). Our result gives us the interesting con­
clusion that for any prime p there exists a field containing p 
elements. 

We now drop the hypothesis that m is a prime, and we wish 
to determine the units in I/(m). Let M denote the set of units 
and let a e M. Then there exists a b such that ab = 1. Hence 
ab = 1 + mq and ab - mq = 1. This implies that (a,m) = 1. 
Conversely, if (a,m) = 1, then there exist b,q such that ab - mq 
= 1. Then ab = 1. This shows that in the list 0, i, 2, "', 
(m - 1) the units are the cosets a with (a,m) = 1 and it proves 
the following 

Theorem 2. The order oj the group M oj units oj I/(m) is the 
number oj positive integers that are less than m and are relatively 
prime to m «a,m) = 1). 

This number is denoted asc/>(m) and the function of m thus 
determined is called Euler c/>-Junction (totient). 

We know that, if @ is a finit~ group of order n, then an = 1 
for every a e @. Applying this to M we see that, if (a,m) = 1, 
then (a)4>(m) = I. The latter equation is equivalent to a4>(m) == 
1 (mod m). Hence we have proved the following 

Theorem 3 (Euler-Fermat). Ij a is an integer prime to the 
positive integer m, then a4>(m) = 1 (mod m). 

If m = p, then J/(P) is a field of p elements. The group of 
units in this case contains p - 1 elements. Hence we have the 
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Corollary. If P is a prime and a ~ 0 (mod p), then aJl - 1 == 1 
(mod p). 

this result can also be stated in a slightly different form, 
namely, that aP = a (mod p). This holds for all a since it is 
trivial if a is divisible by p. On the other hand, if aP ~ a (mod p) 
and a ~ 0 (mod p), then aP - 1 = 1 (mod p). Hence the two state­
ments are equivalent. 

EXERCISE 

1. Prove that, if D is a finite division ring containing q elements, then aq = a 
for every a e D. 

9. Homomorphism of rings 

Definition 4. A mapping 11 of a ring ~ into a ring ~' is called a 
homomorphism if 

(a + b)11 = a11 + b11, (ab)11 = (a11) (b11). 

Thus a homomorphism of a ring is a homomorphism of its addi­
tive group that "preserves" multiplication. If TI is 1-1, it is called 
an isomorphism and two rings are said to be isomorphic (~ '" ~') 
if there exists an isomorphism of ~ onto ~'. As for groups it is 
immediate that the resultant of two homomorphisms is a homo­
morphism. Also if TI is an isomorphism of ~ onto ~', then the 
inverse mapping 11-1 is an isomorphism of ~' onto~. It follows 
that the isomorphism relation is an equivalence relation in the 
class of rings. An isomorphism of a ring onto itself is called an 
automorphism. These concepts are illustrated in the following 

EXERCISES 

1. Show that the correspondence ex + flV-1 -+ [ ex fl]. . _ fl ex IS an Isomor-

phism of the field C of complex numbers into R2• 

2. Show that the correspondence a = ex + flv::t -+ Ii = ex - flV -1 is an 
automorphism in C. 

3. Show that the correspondence [~ ~] -+ ex is a homomorphism of the 

ring of diagonal matrices into the ring coefficient m. 
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4. Show that the correspondence 

[ ~ al a2 

~l ao + ali + a2j + ask --+ 
-al ao -as a2 
-a2 aa ao -al 
-aa -a2 al ao 

is an isomorphism of Q into R4• 

The theory of ring homomorphisms parallels that of group 
homomorphisms and in part is deducible from the latter theory. 
We begin our discussion by noting the following basic result. 

Theorem 4. Ij 11 is a homomorphism oj 2f into 2f', the image set 
2f11 is a subring oj 2f'. 

Proof. Since 11 is a homomorphism of the additive group of 
2f, 2f11 is a subgroup of the additive group of 2f'. Since (a11) (b11) = 
(ab)7] , mil is closed under multiplication; hence it is a slt1bring. 

If the ring 2f has an identity 1, then it is immediate that l' = 111 
is an identity for 2f11. Also if u is a unit with v as inverse, then 
u' = U11 is a unit in 2f11 with v' = V11 as its inverse. Of course, it 
may happen that 111 = 0, but in this case 2f11 = 0. In particular, 
if 2f is a division ring, then either 2f11 = ° or 2(11 is also a division 
ring; for, if2f11 ~ 0, then this ring contains more than one element, 
and every non-zero elemen t is a unit. 

As for groups we call the inverse image 11-1(0) the kernel of the 
homomorphism TJ. The homomorphism TJ is an isomorphism 
if and only if its kernel is O. 

Theorem 5. The kernel oj a homomorphism oj a ring 2f is an 
ideal in 2f. 

Proof. Let ~ = 11-1(0). We know that ~ is a subgroup of the 
additive group of 2f. Now let b e ~ and let a be arbitrary in 2f. 
Then (abh = (a11)(bTJ) = (a11)O = O. Hence ab e~. Similarly 
ba e ~ and this completes the proof. 

Next let 58 be any ideal in the ring and let ~ denote the differ­
ence ring 2f/58. We know that the natural mapping v is a homo­
morphism of the additive group of 2f onto the additive group of~. 
Moreover, 

(ala2)v = a1a2 + 58 = (a1 + 58)(a2 + 58) = (alv)(a2v). 

Hence v is a homomorphism of the ring 2f onto the ring ~. 
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Now suppose that 11 is a homomorphism of the ring! into the 
ring !' with kernel sr. Let 58 be an ideal of! contained in R. 
Then we know that the rule a + m ~ al1 defines a homomorphism 
17 of the additive group of ~ = !/m into the additive group of 
!'. Since 

[(at + m)(a2 + m)]17 = (ata2 + m)17 = (ata2)11 = (at'7)(a2'1) 

= [(at + 58)17][(a2 + 58)17], 

17 is a ring homomorphism. Evidently 11 = V17. We recall that 
17 is 1-1 if and only if 58 =~. Thus if we take 58 = R, we obtain 
·a factorization of 11 as V17 where v is the natural homomorphism 
of ~ onto ~ = !/~ and 17 is the induced isomorphism of ~ into 
~'. We state these results as the following important 

Theorem 6. Let 11 be a homomorphism of the ring ~ into the 
ring ~' with kernel ~ and let 58 be an ideal of ~ contained in ~. 
Then the correspondence 17: a + 58 ~ al1 is a homomorphism oJ 
~ = !/58 into !' and 11 = V17 where v is the natural homomorphism 
of ~ onto m = ~/IJ3. The induced homomorphism 7j is an isomor­
phism if and only if 58 = ~. 

If~' = !11 and 58 = ~, then 17 is an isomorphism of I onto ~/. 
This, together with an earlier result, gives the 

Fundamental theorem of homomorphism of rings. The differ­
ence ring !/58 of ! relative to any ideal 58 is a homomorphic image 
of!. Conversely, any homomorphic image of! is isomorphic to a 
dilference ring, in fact, to the difference ring of! relative to the kernel 
of the homomorphism. 

A ring ! is called simple if the only ideals in ! are ~ and o. 
(These are certainly ideals in any ring.) If ~ has this property, 
then it is clear from the fundamental theorem that a homomorphic 
image of! is either 0 or isomorphic to ~. 

As a second application of our results we determine next the 
structure of any ring ~ that has an identity e and that is generated 
bye. We consider the ring of integers I and the mapping n ~ ne 
of I into~. Since 
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(n + m)e = ne + me 

(nm)e = (nm)e2 = (ne)(me), 

our correspondence is a homomorphism. The image set leis a 
subring of ~ including Ie = e. Hence Ie = ~ and 2l is a homo­
morphic image of I. It follows that 2l:::: I/(m) where m ~O. 
Thus either 2l is infinite and isomorphic to the ring of integers or 
~ has a finite number m of elements and 2l is isomorphic to the 
finite ring I/(m). 

EXERCISES 

1. Let m = rs e I. Show that (r)/(m) is an ideal in I/(m) and prove that 

[I/(m)]/[(r)/(m)] :::: I/(r). 

2. Determine the ideals and hence the homomorphic images of the subring 

of 12 of matrices of the form [~ ~]. 
3. Prove that, if a ~ a is a homomorphisgt ofm into~, then the mapping 

(ai;) -+ (ai;) is a homomorphism of m" into m". 
4. Let 7J be a homomorphism of a ring 2l into itself. Show that the elements 

of 2l that are fixed relative to 7J in the sense that a7J = a form a subring of 2l. 
H21 is a division ring and 2l7J ;06 0, then the set of fixed elements constitutes a 
division subring. 

S. Prove that the only homomorphisms of I into itself are the identity mapping 
and the mapping that sends every element into 0. Prove the same result for 
the field of rational numbers. 

6. Let ~ be a set and let 71 be a 1-1 mapping of ~ onto a ring~. Prove that 
the compositions a + b == (a71 + h77)71-1, ab == «a71)(b71))71-1 turn ~ into a ring 
isomorphic to~. Use this to prove that any ring is also a ring relative to the 
compositions a (B b = a + b - 1, a • b = a + b - ab. 

10. Anti-isomorphism. If a is the quaternion ao + ali + a2j 
+ ask, we call the quaternion 

ii = ao - ad - a2j - ask 

the conjugate of a. If we refer to § 5 we can see that the inverse 
a-l of a ~ 0 can be expressed in terms of the conjugate by means 
of the formula a-I = iiN(a) -1 = N(a) -Iii. We consider now the 
properties of the correspondence a ~ ii. Evidently this mapping 
is 1-1 of Q onto itself. Also it is clear that . 

(20) 

and we can verify that 
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aD = (aofJo - t%lfJl - t%2fJ2 - t%afJa) 

- (aofJl + t%lfJO + t%2fJS - t%afJ2)i 

- (aofJ2 + t%2fJO + t%SfJl - t%lfJa)j 

- (aofJa + t%afJo + t%lfJ2 - t%2fJl)k 
and 

Da = (fJoao - fJlt%l - fJ2t%2 - fJat%s) 

Hence 

(21) 

+ (-fJOt%l - fJlao + fJ2t%a - fJat%2)i 

+ (-fJOt%2 - P2ao + fJat%l - fJlt%a)j 

+ (-fJot%a - fJat%o + fJlt%2 - fJ2t%1)k. 

ab = Da. 
A mapping of a ring I onto a ring! that is 1-1 and that satisfies 
(20) and (21) is called an anti-isomorphism. If! is commutative, 
then we can write aD for Da in (21) and we see that in this case 
a ~ a is also an isomorphism of ~ onto!. Conversely any 
isomorphism between commutative rings can be regarded as an 
anti-isomorphism. In particular we see that the identity mapping 
is an anti-isomorphism of ~ onto itself if ~ is commutative. 
On the other hand, the quaternion example shows that there 
also exist non-commutative rings that have the symmetry prop­
erty of being anti-isomorphic with themselves. We now give 
another important example of this type, namely, the matrix ring 
91 .. , where 91 is any commutative ring. 

For this purpose we define the transposed matrix (a)' of the 
matrix (a) to be the matrix that has aii in its (i,j) position. This 
means that (a)' is obtained from (a) by reflecting the elements in 
the main diagonal. For example, if 

[1 2 -3] 
(a) = 2 -1 4, 

5 -1 6 
then 

. [1 2 5] 
(a)' == 2 -1 -1· 

-3 4 6 
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In general if (a) == (aii), (b) == (bii), then (a) + (b) = (aii + Oii), 
and [(a) + (b)]' has the element aji + PH in its (i,j)-position. 
Hence [(a) + (b)]' = (a)' + (b)'. Also the (i,j)-element of the 
product (P) = (a) (b) is Pii == L: a'J:bJ:i so that the (i,j)-element of 

k 

(P)' is Pii = };aikbki' On the other hand the (i,j)-element of 
(b)'(a)' is };bkiaik. Since we have assumed that m is commutative, 
this shows that ' 

[(a)(b)]' = (b)'(a)'. 

Thus (a) -+ Ca)', which is evidently 1-1, is an anti-isomorphism 
of mn onto itself. 

We can construct for any given ring ~,+" an anti-isomorphic 
ring. For this purpose we use the set! and the given addition, 
but we introduce a new multiplication X defined by 

a X b == ba. 

This gives a ring since 

and 

(a X b) X c = (ba) X c == c(ba) 

a X (b X c) = (b X c)a = (cb)a 

a X (b + c) = (b + c)a = ba + ca = a X b + a X c 

(b + c) X a = a(b + c) = ab + ac =: b X a + c X a. 

Also it is immediate that the identity mapping is an anti-iso­
morphism of ~,+" onto ~,+,X. 

EXERCISES 

1. Show that the set of matrices of the form 

[~ ~] 11,6 in 1 

is a subring of 12 that has a left identity but no right identity. Hence prove 
that this ring is not anti-isomorphic to itself. 

2. Define anti-isomorphism for semi-groups. Prove that any group is anti­
isomorphic with itself. 

3. An anti-isomorphism of a ring onto itself is usually called an IInti-aulo­
morphism. Prove that the set of automorphisms and anti-automorphisms of a 
ring forms a transformation group. Show that the automorphism. form an 
invariant subgroup of index 1 or 2 in this group. 
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4.· Show that, if a -+ a is an anti-isomorphism of ~ onto ~, then the mapping 
(a) -+ (a)', where the (i,j) element of (a)' is aji, is an anti-isomorphism of~ .. 
onto~,.. 

5. Define anti-homomorphism. State and prove the "fundamental theorem" 
for anti-homomorphisms. 

6. (Hua) Let S be a mapping of a ring ~ into a ring 5B such that (a + 6)8 = 
aB + ~ and for each pair a,6 either (46)8 = aS6s or (a6)8 = "saB. Prove that 
S is either a homomorphism or an anti-homomorphism. 

11. Structure of the additive group of a ring. The character­
istic of a ring. If ~,+ is any commutative group, we can define 
a multiplication ab = 0 for all a,b and thus obtain a ring. It is 
clear that this composition is associative and distributive with 
respect to addition. A ring of this type is called a zero-ring. 
The existence of such rings shows that there is nothing that we 
can say in general about the structure of the additive group of a 
ring. However, as we proceed to show, simple restrictions im­
posed on the multiplicative semi-group of a ring will impose 
strong restrictions on the additive group. 

For example, suppose that ~ has an identity 1 and suppose 1 
has finite order m in ~,+. Then if a is any element of i 

ma = m(la) = (ml)a = Oa = O. 

Hence every element has finite order a divisor of m. 
If there exists a maximum m (>0) for the orders of the ele­

ments of i,+, then the number m is called the characteristic of i. 
If no such maximum exists, we say that ~ has characteristic 0 
(or infinity). * Thus we see that, if ~ has an identity 1, its char­
acteristic is m > 0 or 0 according as 1 has order m or infinite 
order in ~, +. 

We can generalize this result. Thus suppose that dis an element 
of i that has finite order m and that d is not a left zero-divisor. 
If a is any element of~, 

o = (md)a = d(ma). 

Hence ma = o. Thus again the characteristic of i is m. A similar 
result holds, of course, for elements that are not right zero­
divisors. 

'" The terminology "characteristic infinity" is the more natural one from the present 
point of view. However, from another point of view (cf. pp. 103) "characteristic zero" 
is also natural. At any rate the latter seems to be the one that is most commonly used 
and we shall adopt it here. 
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In particular we see that, if ~ is an integral domain, then either 
the characteristic is ° or the characteristic is m > 0, and every 
non-zero element has order m. We shall now show that in the 
latter case m is a prime; for let m = mlm2 where the mi > 1. 
If a r!: 0, 

ma2 = mlm2a2 = (mla)(m2a). 

Since mla ¢. ° and m2a ¢. 0, this is a contradiction. We have 
therefore proved the following 

Theorem 7. If ~ is an integral domain of characteristic 0, 
then all of the non-zero elements of ~ have infinite order. If ~ 
has characteristic m > 0, then m is a prime and all of the non-zero 
elements of ~ have order m. 

EXERCISE 

1. Show that Theorem 7 holds for simple rings (instead of integral domains). 

12. Algebra of subgroups of the additive group of a ring. One­
sided ideals. We investigate in this section some important com­
positions that can be defined in the collection of subgroups of 
the additive group of a ring. Two of these, intersection and the 
group generated by a collection of subgroups, have been discussed 
for arbitrary groups. In the present situation the group that we 
start with is commutative; hence all subgroups are invariant. 
Hence, if A and B are subgroups, the subgroup [A U Bl generated 
by A and B coincides with the set A + B of sums a + b, a in A, 
b in B. More generally, if {Aa} is a collection of subgroups of 
the additive group, then the group [ U Aal generated by the A .. 
is the set of finite sums 

aal+ aa2+"'+ aak' aa,cAaj ; 

for it can be verified that. the totality of these sums, which we 
denote now as };Aa , is a subgroup of the additive group. Also 
};A .. contains all the Aa and is contained in any subgroup that 
has this property. Hence };Aa has the properties that are char­
acteristic for [ U Aal. 

We shall now introduce the third important composition on 
subgroups of the additive group. If A and B are subgroups, we 
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define the product .1B to be the subgroup generated by all of the 
products aD, a in A, 0 in B. It should be noted that this definition 
is different from the definition of multiplication for cosets. How­
ever, since the cosets ~ B of a subgroup B are not subgroups, no 
real difficulty will result from the double use of the multiplication 
notation. We now note that .1B coincides with the set P of 
finite sums 

aiD 1 + a2D2 + ... + aiDi 

with a; in A and 0; in B. It is clear that P contains aU the 
products aD and that P is contained in any subgroup that con­
tains all of these products. Also it is clear that P is closed under 
Ilddition and that P contains O. Finally, - (alDl + ... + a"D,,) 
= (-a)Dl + ... + (-ak)Dk e P. Hence P is a subgroup. These 
properties of P, of course, imply that P = AB. 

We can easily establish the associative law (.1B)C = .1(BC); 
for either of these subgroups is the totality of finite sums of the 
form l;a;D;c;, a, e .1,0, e B, C; e C. Also we have the distributive 
laws A(B + C) = AB + AC and (B + C)A = BA + CA. We 
prove the first of these by noting that A(B + C) is the subgroup 
generated by all products a(" + c), a e A, " e B, c e e. 

Since a(D + c) = aD + ac e AB + AC, A(B + C) c AB + AC. 
On the other hand aD = a(D + 0) is in A(B + C). Hence AB C 

.d(B + C). Similarly AC c A(B + C). But then AB + Ae c 
A(B + e). Hence A(B + C) = AB + AC. Evidently this same 
argument applies to the other distributive law. 

The powers of a subgroup are defined inductively l>y .11 = A, 
Ale = (Ak- 1)A. It is immediate that Ak is the set of finite sums 
of products of the form ala2 ... ak with the a; in A. A subgroup 
A of the additive group determines a subring if and only if A is 
closed under multiplicatIon. The condition for this can be ex­
pressed ~n terms of our multiplication as .12 CA. The condi­
tions that a subgroup m be an ideal are that 

(L) 

(R) 

An important role is played in the theory of rings by subgroups 
that satisfy just one of the above conditions. If 58 is a subgroup 
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such that (L) holds, then m is called a left ideal in ~ and, if (R) 
holds, then m is a right ideal. 

Example. LedRn be the matrix ring defined by the ring 9{ and consider the 
subsetm of9{n of matrices of the form 

r 

all a12 alk 0 0 

a21 a22 a2k 0 0 

l ani a n2 ank 0 0 

where the ai; are arbitrary. Then m is a left ideal. Similarly the totality of 
matrices in which the last n-k rows consist of O's is a right ideal in 9{n. It can 
be shown that neither of these is a (two-sided) ideal. 

In any ring ~ the totality ~b of left multiples xb, x in ~, is a 
left ideal. If ~ contains an identity, then ~b contains b and then 
~b can be characterized as the smallest left ideal that contains 
b; for it is evident that 91b is contained in every left ideal that 
contains b. If ~ does not have an identity, it is necessary to 
take the set of elements of the form nb + xb, n an integer, x 
arbitrary in ~, to obtain the smallest left ideal containing b. 
In any case we shall call the smallest left ideal containing an 
element b a principal left ideal. We denote this ideal as (b)l so 
that (b), = "JIb if"JI has an identity and (b), is the set {nb + xb} 
for arbitrary~. In a similar manner we define the right ideal 
b~ of right multiples of b and the principal right ideal (b)r' 
We always have (b)r ::> b~ and (b)r = b~ if ~ has an identity. 

The concept of a one-sided ideal can be used to give a new char­
acterization of division rings: 

Theorem 8. A ring ~ with an identity 1 ;;z!: 0 is a division ring 
if and only if it has no proper left (right )ideals. 

Proof. Suppose first that ~ is a division ring. Then, if m is a 
left ideal in ~ ~ 0, m contains an element b ~ O. Then I = 
b-1b em and every x = xl is in m. Hence m =~. Thus if m 

is any left ideal, either m = 0 or m =~. Conversely let ~ be a 
ring with an identity I ~ 0 that has no proper left ideals. If 
b is an element ;;z!: 0 in ~, ~b contains Ib ~ O. Hence ~b = ~. 
This implies that there is a c (;;z!: 0) such that cb = 1. Hence 
every element ~ 0 has a left inverse ~ 0 and this implies that the 
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non-zero elements of ~ form a group under multiplication (cf. 
ex. 2, p. 24). Hence ~ is a division ring. 

Of course, this result implies that any division ring is simple. 
It follows that the only homomorphic images of a division ring 
are 0 and the ring itself. 

It can be verified that the compositions of intersection, sum 
and product applied to left (right) ideals give left (right) ideals. 
Other results of this type can be established. For example, the 
product m~ is a left ideal if m is any left ideal and ~ is a subgroup. 
Also m~ is a (two-sided) ideal if m is a left ideal and ~ is a right 
ideal. 

EXERCISES 

1. Prove that a ring ~ which possesses no proper left ideals is either a division 
ring or a zero ring. 

2. If ~ is any ring, ~2, ~3, ••• are ideals. What are these ideals for the sub­
ring of Is consisting of the matrices of the form 

[
0 a OJ o 0 c ? 
000 

13. The ring of endomorphisms of a commutative group. Let 
® be an arbitrary commutative group. We use the additive nota­
tion in ®: + for the composition, 0 for the identity, -a for the 
inverse and ma for the power or multiple of a. We consider now 
the set ~ of endomorphisms of ®. These are the mappings 11 of ® 
into itself such that 

(22) 

We know that, if 11, pe~, then l1P e ~ and the associative law 
holds for the resultant composition. We know also that the 
identity mapping belongs to~. These results hold even if ® is 
not commutative. However, a great deal more can be proved in 
the commutative case, namely, we can show that the set ~ can be 
used to define a ring. 

We introduce an addition composition in ~ by defining 11 + P 
by 

(23) a(7J + p) = all + ap. 
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This mapping is an endomorphism since 

(a + 0)(1] + p) = (a + 0)1] + (a + o)p 

= a1] + b1] + ap + bp 

= a1] + ap + b1] + bp 

= a(1] + p) + b(1] + p). 

79 

It is easy to verify that ~,+ constitute a commutative group. 
We have a(1J + (p + X)) = a1J + a(p + X) = a1] + ap + aX and 
a«1] + p) + X) = a(1] + p) + aX = a1] + ap + aX; hence 1J + 
(p + X) = (1] + p) + X. Similarly 1] + p = p + 1]. We now de­
fine the 0 mapping to be the one which sends every a into O. It 
is clear that this is an endomorphism and that 1] + 0 = 1] for 
all 1]. Finally, if 1] e~, we define -1] to be the mapping a ~ 
- (a1]). This mapping may be regarded as the resultant of 
a ~ a1] and the automorphism a ~ -a. Hence -1] e~. Evi­
dently 1] + (-1]) = O. 

We shall now show that ~,+" is a ring where the product· 
is the resultant. Since we know that ~,+ is a commutative group 
and since we know that· is associative, we have to prove only the 
distributive laws. Now we have . 

a('f/(p + X)) = (a'f/)(p + X) = (a7])p + (a7])X = a(1Jp) + a(1JX) 

= a(1Jp + 1JX), 

so that 1J(p + X) = 1JP + 1JX and 

a«p + X}1J) = (a(p + X))1J = (ap + aX)1J = (ap)1J + (aX)1] 

= a(p1J) + a(X1J) = a(p1] + X1J). 

Hence (p + X)1] = P1J + X1]. This completes the proof of the 
following fundamental 

Theorem 9. Let ® be an arbitrary commutative group (written 
additively) and let ~ be the totality of endomorphisms of ®. Then 
~ is closed relative to the addition composition defined by a(1J + p) 
= a1J + ap and relative to the resultant composition., and the system 
~,+" is a ring. 
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We call ~ the ring oj endomorphisms of ®. More generally we 
shall be interested in considering subrings of rings~. Such a 
subring will be called a ring of endomorphisms and we shall see 
in the next section that these rings play the same role in ring 
theory that transformation groups play in group theory. Before 
we discuss this, however, we consider some examples. 

Examples. (1) ® an infinite cyclic group. Thus we can take ® to be the 
additive group 1+ of integers. If 17 e ~ and 117 = u in 1+, then n17 = nu since 17 
is an endomorphism. Now this remark shows that 17 is completely determined 
by its effect on the generator 1 of 1+. We shall therefore associate the integer u 
(effect of 17 on 1) with the endomorphism 17. Suppose now that p is a second 
endomorphism and that Ip = II. Then we associate II with p. Also 1 (17 + p) = 
117 + Ip = u + II and (117)P = up = UII. Hence in our correspondence, 17 + p -
U + II and 17P - UII. Also our correspondence is 1-1; for, if U = II then 
117 = Ip and since an endomorphism is determined by its effect on 1, 17 = p. 
Thus we have an isomorphism of ~ into the ring of integers I. We remark 
finally that our isomorphism is one onto I. Thus if U is any integer, then the 
mapping n - nu is an endomorphism, since 

(n + m)u = nu + mu 

is a basic property of multiples. Clearly this endomorphism sends 1 into u. 
Thus we have proved that Ci is isomorphic to I. 

(2) As a generalization of (1) we consider next the group @ of all integral 
vectors (m1, m" •.. , mn), m. in I. The composition here is vector addition. 
Hence if we introduce the vectors 

i 
(24) e.= (0, ···,0,1,0, ···,0), i= 1,2, ···,n, 
then we can write 

(25) 

Thus any integral vector is in the group generated by the ei. Also it is clear 
that a vector can be written in only one way as ~miei; for if ~miei = ~ml ei, 
then by (25) 

(mlJ m2, ... , mn) = (ml', m2', ... , mn') 

and m. = ml for all i. 
Now let 17 be an endomorphism in @. We are going to show that 17 is com­

pletely determined by its effect on the e.; for if the images e • ." = J. are known, 
then the image 

(~m.ei)17 = ~(mie.)17 = ~m.(e • .,,) = ~md. 
is known. It follows that, if 17 and p are two endomorphisms and e • ." = e;p 
for; = 1, 2, ... , n, then a17 = ap for all a. Hence 17 = p. 

Suppose next that 

(26) 
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where the aij are integers. It is clear that these integers are uniquely deter­
mined by 'I. Hence the matrix 

is determined by 'I. We shall call this matrix 1M matrix of 'I, and we shall 
investigate the correspondence 'I -+ (a.,) of Q: into the ring I" of n X n matrices 
with elements in I. 

We note first that our correspondence is I-I; for if 'I -+ (a,,) and P -+ (ao;), 
then ei'l = e;p and hence 'I = p. Next let p be any endomorphism and let 
p -+ (Oi;). Then 'iP = L oi;e,. Hence 

; 

ei('I + p) = e,." + e;p = L aiiei + L Dvel 
i I 

= ~(ai; + Di;)I,. 

Thus 'I + P -+ (aii) + (O'i)' Finally 

ei('Ip) = (e,.,,)p = (L aiili ) P = L (aii")p = L ai,(eiP) = La"",,,,,, = L Ci"',. 
, i j ',k " 

where Ci/, = L ailO;I<. This shows that the matrix of'lP is (a)(o). We have 
; 

therefore proved that 'I -+ (a) is an isomorphism of Q: into I ... 
We shan show finally that our mapping is onto I... Thus let (a) be 

any matrix in I .. and letJ. = L ai,';' We define a mapping of@ into itself 
; 

by stipulating that 2:m.ei -+ 2:mdi. Then if ~mlei is a second element of@, 
2:m.ei + ~ml e. = 2:(mi + m;')e. and this element is mapped into 

~(mi + ml)Ji == 2:md. + ~mlft. 
Hence 2:miei -+ ~mdi is an endomorphism 'I. Since I,." = Ji = 2:a.,e" the 
matrix of 'I is the given matrix (a). Thus we h~ve established an isomorphism 
ofQ: onto I ... 

We can use the result which we have just derived to determine the group 
of automorphisms of @. It is clear that if @ is any commutative group, then 
the group of automorphisms ~ of @ coincides with the group of units in the ring 
Q:. Also it is evident that if we have an isomorphism of one ring onto a second 
one, then the group of units of the first is mapped onto the group of units of the 
second. It follows that we can determine the group of automorphisms of 
the group @ of integral vectors by determining the group of units of the matrix 
ring I... Now we know that a matrix (a) e I .. is a unit ill I .. if and only if det (a) 
= ±l. This result in combination with the above discussion shows that the 
automorphisms of@ have the form 2:m,'Ii -+ 2:miJi whereJ, - ~fliJlj and det 
(a) = ±I. 
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EXERCISES 

1. Determine the ring of endomorphisms and the group of automorphisms 
of a cyclic group of order n. 

2. Let@ be an arbitrary group and let ID1 be the complete set of mappings of 
@ into itself. If TJ, P eID1, define TJP to be the resultant and TJ + P by g(TJ + p) = 
(KTJ)(gp). Investigate the set ID1 relative to these two compositions. 

14. The multiplications of a ring. We suppose now that ~ is 
any ring. If a is a fixed element of~, we define the right multiplica­
tion ar to be the mapping x ~ xa of~ into itself. This mapping is 
an endomorphism of the additive group ~,+ of ~ since 

(27) (x + y)ar = (x + y)a = xa + ya = xar + yar. 

Next we note that 

x(a + b)r = x(a + b) = xa + xb = xar + xbr = x(ar + br) 

and 
x(ab)r = x(ab) = (xa)b = (xar)br = x(arbr). 

Hence we have the relations 

(a + b)r = ar + br 
(28) 

(ab)r = arbr. 

These show that the correspondence a ~ ar is a homomorphism 
of the ring ~ in to the ring ~ of endomorphisms of ~,+. I t follows, 
of course, that the set ~r of the right multiplications is a subring 
of~. We shall call this the ting of right multiplications of the 
ring ~. 

The kernel of the homomorphism a ~ ar is the ideal .Br of 
elements z such that xz = 0 for all x. We call this ideal the 
right annihilator of the ring~. If.Br = 0, we know that a ~ ar 

is an isomorphism. In particular we note that in the important 
case in which~ has an identitY,.Br = 0; for, if 1z = 0, then z = O. 
As a consequence we have proved the following fundamental 

Theorem 10. Any ring with an identity is isomorphic to a ring 
of endomorphisms. * 

• We shall prove in the ·Ilext chapter (p. 84) that this result is also valid for rings 
without identities. 
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A similar discussion applies to the left multiplications az defined 
by xaz = ax. These mappings are endomorphisms and we have 
the rules 

(29) (a + 0), = az + 01, (ao)z = ozaz. 

It follows that a ~ az is an anti-homomorphism (cf. ex. 5, 
p. 74) of ~ into~. Hence the image set, that is, the set ~z 
of left multiplications, is a subring of~. The kernel of the anti­
homomorphism a ~ az is the ideal .8z of left annihilators of the 
ring~. If ~ has an identity, .8z = 0 and a ~ az is an anti­
isomorphism. 

We consider finally an important relation between left and 
right multiplications for rings with an identity. This is stated in 

Theorem 11. If ~ is a ring with an identity, then any mapping 
in ~, + that commutes with all the left (right) multiplications is a right 
(left) multiplication. 

The proof of this theorem is identical with that of the corre­
sponding group result given on p. 30. 



Chapter III 

EXTENSIONS OF RINGS AND FIELDS 

A given ring may fail to have certain properties that are neces­
sary for solving a particular problem. However, it may be possible 
to construct a larger ring that has the required properties. Thus, 
for example, there exist equations of the form ax = b, a =F- 0 that 
have no solutions in the domain of integers. The field of rational 
numbers is constructed for the purpose of insuring the solvability 
of equations of this type. The method used to construct this 
extension can be generalized so as to apply to any commutative 
integral domain. This type of extension is one of those that we 
consider in this chapter. Among others we define also rings of 
polynomials, field extensions and rings of functions. We derive 
some of the properties of these extensions and, in particular, we 
determine the algebraic structure of any field. 

1. Imbedding of a ring in a ring with an identity. In the pre­
ceding chapter we have proved that any ring with an identity is 
isomorphic to a ring of endomorphisms. We shallnow show that 
any ring I is isomorphic to a subring I' of a ring sa that has an 
identity. Since sa is isomorphic to a ring of endomorphisms, it 
will follow that I' and hence I is isomorphic to a ring of endO­
morphisms. 

In general we shall say that a ring I is imbedded in a ring S8 
if S8 contains a subring I' isomorphic to I. The ring S8 is called 
an extension of I. 

In order to construct an extension of I that has an identity we 
let S8 be the product set I X I of pairs (m,a) where m is an integer 
and a is in the given rin& I. Two pairs (m,a) and (n,b) are re­

M 
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garded as equal if and only if m = n and a = b. We define an 
addition composition in 58 by 

(1) (m,a) + (n,b) = (m + n, a + b). 

It is easy to see that 58, + is a commutative group. The 0 element 
is (0,0) and - (m,a) = (-m, -a). We define multiplication in 
58 by 

(2) (m,a)(n,b) = (mn, na + mb + ab) 

where on f:he right-hand side na and mb denote respectively the 
nth multiple of a and the mth multiple of b. Now 

«m,a)(n,b»(q,e) = «mn)q, q(na) + q(mb) + q(ab) 

+ (mn)e + (na)e + (mb)e + (ab)e) 
and 

(m,a)«n,b)(q,e» = (m(nq), m(ne) + m(qb) + m(be) 

+ a(nq) + aCne) + a(qb) + a(be». 

Hence the properties of multiples, the commutative law of addi­
tion and the associative laws in ~ and in I yield the associative 
law of multiplication in 58. Also 

(m,a)[(n,b) + (q,e)] 

and 

= (m,a)(n + q, b + e) 

= (m(n + q), m(b + e) + (n + q)a + a(b + e» 

= (mn + mq, mb + me + 11(1. + qa + ab + ae) 

(m,a)(n,b) + (m,a)(q,e) 

= (mn, mb + na + ab) + (mq, me + qa + ae) 

= (mn + mq, mb + na + ab + me + qa + ae). 

Hence one of the distributive laws holds. In a similar manner 
we can verify the other distributive law. Hence the system that 
we have constructed is a ring. 

Using (2) we see that the element 1 = (1,0) acts as the identity 
in sa. We consider next the subset ~' of sa of elements of the 
form (O,a). Since 
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(O,a) + (O,b) = (O,a + b), ° = (0,0), 

-(O,a) = (O,-a) and (O,a)(O,b) = (O,ab), 

~' is a subring of~. Also it is clear that, if we set a' = (O,a), 
then the correspondence a ~ a' is an isomorphism of ~ onto ~'. 
Thus ~ is imbedded in~, a ring with an identity. This proves the 
following 

Theorem 1. Any ring can be imbedded in a ring with an identity. 

We note also that the ring of integers is imbedded in the ring 
~ since the mapplIlg m ~ (m,O) is an isomorphism of I onto a 
subring l' of~. We now simplify \..Iur notation by writing m for 
(m,O) and a for (O,a), I for l' and ~ for ~'. Using these notations, 
we have the relations 

~ = I +~, I n ~ = 0. 

Also it is clear that ~ is an ideal in ~. 
Remarks. In certain situations the extension ~ is not the 

best extension of ~ to a ring with an identity element. In the 
first place, if ~ has an identity e to begin with, then the element 
z = 1 - e has the property za = ° = az for all a in~. Hence in 
this case it is not worthwhile to introduce the ring~. Next, we 
note that the characteristic of ~ may be different from that of~. 
This will be the case if the characteristic of ~ is m ~ 0; for 
~ ::) I and hence ~ has characteristic 0. However, it is easy to 
modify the construction to obtain an extension with an identity 
that has the same characteristic as~. This is indicated in exercise 
1 below. Another objection to the construction that we have 
given is that, if ~ is an integral domain, ~ may not be an integral 
domain. For instance, if ~ is the ring of even integers, then the 
element (2,-2) of ~ has the property (2,-2)(0,2m) = 0. This 
difficulty can be overcome, too, and we can prove that any 
integral domain can be imbedded in an integral domain with an 
identity. Exercises 2-4 are designed to establish this result. 

EXERCISES 

1. Let ~ be a ring for which there exists a positive integer m such that ma = 0 
for all a. Let ~ denote the set of pairs (n,a) where n = n + (m) is in the ring 
I/{m). Define equality as in the ring ~, addition by (n,a) + (q,b) = (n + q, 
" + b) and multiplication by 
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(n,a)(q,b) = (nq, nb + qa + ab) 

Show that multiplication is single-valued and that ~ is a ring with an identity 
which is an extension of 2( and that me = 0 for all e e~. 

2. Let 2( be an integral domain that contains elements a and b ~ 0 such 
that ab + mb = 0 for some integer m. Prove that ea + me = 0 = ae + me 
for all e in 2(. 

3. Let 2( be an integral domain and let58 be the ring constructed in the text. 
Show that the totality 8 of elements z in58 such that za = 0 for all a in 2( is an 
ideal and that5818 is an integral domain with an identity. 

4. Prove that the set ~ of cosets of the form a + 8, a in 2(, is a subring of 
5818 isomorphic to 2(. Hence 2( is imbedded in 5818. 

2. Field of fractions of a commutative integral domain. We 
shall now show that any commutative integral domain can be 
imbedded in a field. The construction which we shall give-well 
known for the ring of integers-can best be understood by study­
ing the relation between a subring of a field and the subfield 
generated by the subring. 

Hence let is be a field and let 2( be a subring ~ 0 of is. We say 
that 2( is a subfield of is if the system 2(, +,' is a field. It is 
immediate that a subset 2( of a field is determines a subfield if 
and only if (1) 2(,+ is a subgroup of the additive group. (2) 
2( contains elements ~ 0, and if 2(* denotes the totality of these 
elements, then 2(*" is a subgroup of the multiplicative group of 
non-zero elements of~. If we recall the conditions that a subset 
of a group determines a subgroup, we see that 2( determines a 
subfield if and only if 

1'. If a, be 2(, then a + be 2(. ° e 2(. If a e 2(, then -a e 2(. 

2'. 1 e 2(. If a and b are non-zero elements of 2(, then ab and 
a-I e 2(. 

It is clear from l' and 2' that the intersection of any collec­
tion of subfields of a field is again a subfield. If S is any subset 
of ~, then the intersection of all subfields of ~ that contain S is 
called the smallest subfield of is containing S or the subfield of ~ 
generated by S. We now make the important observation that, 
if S = 2( is a subring ~ ° of ~, then the subfield ® generated by 
2( coincides with the set {ab -I} of elements of the form ab -1, 
a and b in 2(. First, it is clear that ® :J {ab- I }. Also we have 
the following equations: 
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ab-1 + ed-1 = adb-1d-1 + ebb-1d-1 = (ad + eb)(btf)-I 

o = Ob-1 

-ab-I = (-a)b-1 

(ab-1)(ed-1) = aeb-1d-1 = (ae)(btf)-I 

1 = aa-1 (a ¢ 0) 

(ab-1) -1 = a-1b (a ¢ 0), 

and these show that the set {ab-1 } determines a subfield. Since 
any a in! has the form 

a = (ab)b-1, 

! C {ab-1}. Hence the set {ab-1} is a subfield of \'j containing 
!. Since @ :J {ab-1 } this implies that @ = {ab-I}. 

If \'j = @, then we shall say that ij is a minimal field contain­
ing!. In this case we see that every element of ij has the form 
ab-1, a and b in !. 

Suppose now that! is any commutative integral domain ¢ o. 
We wish to extend 1 to a field. The foregoing remarks indicate 
that the elements of a minimal field extension of 1 are to be 
obtained from the pairs (a,b), b ¢ 0 and a in I. We have in mind 
that (a,b) is to play the role of ab-1• Hence we adopt the follow­
ing procedure. 

Let}8 be the totality of pairs (a,b), b ¢ 0 and a in I. We intro­
duce a relation '" in }8 by defining (a,b) '" (e,d) if ad = be. 
Then (a,b) '" (a,b) since ab = ba and, if (a,b) '" (e,d), ad = be so 
that eb = da and (e,tf) '" (a,b). Finally if (a,b) '" (e,d) and 
(e,d) '" (e,f), then ad = be and if = de. Hence adf = bif = Ode. 
Since d ¢ 0 and 1 is commutative, d may be cancelled to give 
af = be. Hence (a,b) '" (e,f). We have therefore proved that 
the relation '" is an equivalence relation in}8. We shall call 
the equivalence class determined by (a,b) thefraetion alb. Thus 
we have the rule 

alb = eld if and only if ad = ·bc. 

We shall now'introduce addition and multiplication composi­
tions in the set ij of fractions. We note first that, if alb and eld 
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are any two fractions, then bd ~ 0 and we can form the fraction 
(ad + be)/bd. Moreover, if alb = a'/b' and e/d = e'/d', then 

(3) (ad + be)/bd = (a'd' + b'e')/b'd'. 

Thus, by assumption, ab' = ba' and cd' = de'. Hence 

ab'dd' = ba'dd' and cd' bb' = dc' bb' 
so that 

ab'dd' + cd' bb' = ba'dd' + dc' bb' 
or 

(ad + bc)b'd' = (a'd' + b'e')bd, 

and this is equivalent to (3). It is now clear that the addition 
composition defined by 

(4) alb + e/d = (ad + be)/bd 

is a single-valued composition in lY. In a similar manner we 
see that, if alb and e/d are fractions, then ac/bd is a fraction. 
If alb = a'/b' and c/d = e'/d', then ac/bd = a'e'/b'd'. Hence 

(5) (a/b)(c/d) = ac/bd 

defines a single-valued multiplication. 
It can also be verified directly that lY with the compositions 

(4) and (5) is a commutative ring. We leave this verifica­
tion to the reader. It will be observed that O/b = Old is the 0 
of lY and that the negative of a/b is (-a)/b = a/( -b). The ring 
~ has an identity; for b/b = d/d for any b ~ 0 and d ~ 0 and 
(a/b)(b/b) = ab/b2 = a/b. Hence b/b = 1. If alb ~ 0 then 
a ~ O. Hence b/a is a fraction. Since (a/b)(b/a) = ab/ba = 1, 
b/a = (a/b)-t. This shows that every element ~ 0 in lY is a 
unit. Hence lY is a field. 

We now associate with the element a of ~ the fraction ab/b 
where b is any element ~ 0 in~. This correspondence is single­
valued since ab/b = ad/d for any d ~ O. We denote ab/b by ii. 
Then 

a + a' = (a + a')b/b = (a + a')Ir/b2 = (air + a'Ir)/1r 

= ab/b + a'b/b 

= ii+ d 
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and 
aa' = aa'blb = aa'!J2lb2 = (ablb)(a'blb) 

= aa', 
so that a --+ a is a homomorphism. Also we can verify directly 
that this mapping is 1-1. Hence the set ~ of elements a deter­
mines a subring of ~ isomorphic to~. We have therefore proved 
the following fundamental imbedding theorem. 

Theorem 2. Any commutative integral domain (~O) can be 
imbedded in a field. 

We shall now note that ~ is a minimal field containing the 
image ~ of~. This is clear since any alb of ~ can be written 
in the form alb = (ablb)(bj!J2) = (ablb)(!J2lb)-1 = ab-l. 

If ~ = I the ring of integers, then the fractions are called 
rational numbers. We denote the field of rational numbers by 
~ in the sequel. 

EXERCISES 

1. Show that, if ~ is a field, then ~ =~. 
2. Prove that any commutative semi-group that satisfies the cancellation law 

can be imbedded in a group. 

GENERALIZATIONS. (1) The method that we have just used 
can be extended to prove that any commutative ring ~ that con­
tains a non-vacuous set S of elements that are not zero-divisors 
can be imbedded in a ring with an identity in which the elements 
of S are units. 

We note first that, if SlS2 is a zero-divisor, then either Sl or 
s~ is a zero-divisor. Hence the sub-semigroup V of the multiplica­
tive semi-group of ~ generated by the given set S contains no zero­
divisors. We consider now the set ~ X V of pairs (a,v) a in ~, 
v in V, and we introduce the relation (a,v) '" (a',v') if av' = a'v. 
This is an equivalence relation since V contains no zero-divisors. 
Let ~s = ~v be the set of equivalence classes alv determined by 
this relation. Addition and multiplication are defined as before. 
We obtain in this way a ring that contains a subring ~ '" ~. 
The elements of ~ are the classes a = aviv. The ring ~s is com­
mutative and has the identity vlv. If s e S, the corresponding 
element s = solv is a unit in ~s; its inverse is vlsv. 
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(2) There is an important class of non-commutative integral 
domains that can be imbedded in division rings. These are the 
domains that have the common multiple property, that is, any 
pair of non-zero elements a,b in the domain has a common right 
(left) multiple m = ab' = ba' ~ 0 (m = 'ba = ab). The imbed­
ding problem for integral domains of this type was first solved by 
O. Ore. The construction is similar to the one we have used in 
the commutative case. We refer the reader to Ore's paper for 
the details. * 

We note finally that it has been proved by A. Malcev that there 
exist non-commutative integral domains that cannot be imbedded 
in division rings. t 

3. Uniqueness of the field of fractions. Let ~ be a commuta­
tive integral domain and let ~ be its field of fractions. We shall 
now identify ~ with the subring 2( of elements a = ab/b. Thus we 
shall write ~ for 2(, a for a. Then we know that the subfield of 
~ generated by ~ is ~ itself. We shall now prove that any two 
fields that bear this relation to ~ are isomorphic. More precisely, 
we have the following 

Theorem 3. Let ~i, i = 1, 2 be a subring ~O oj the field ~i 
and suppose that ~i is the smallest subfield oj ~i containing ~i. 
Then if q is an isomorphism oj ~l onto ~2' q can be extended in one 
and only one way to an isomorphism of iYl onto iY2' 

By an extension of a mapping of a set to a mapping of a larger 
set we mean a mapping of the larger set that has the same effect 
as the original mapping on the elements of the given subset. 
Then we have to find an isomorphism ~ of ~l onto ~2 such that 
al'l: = alfr for all al e ~l. We shall now verify that the mapping 

(6) 

bl ~ 0 in ~l has the required properties. In the first place, since 
~l is minimal for ~h any element of ~l has the form albl -1. 

Hence (6) is defined for the whole of ~1. We note next that (6) 

* o. Ore, Linear equations in nOli-commutative fields, Annals of Mathematics, Vol. 32 
(1931), pp. 463-477. 

t A. Malcev, On the immersion of an algebraic ring into afield, Mathematische Annalen, 
Vol. 113 (1937), 686-691. 



92 EXTENSIONS OF RINGS AND FIELDS 

is single-valued; for suppose that alol-l = cldl - l• Then aldl = 
ClOl and allTd{ = ClITOllT• Hence allT(ollT)-l = cllT(dllT)-l as re­
quired. In a similar manner we see that, if a lIT (0 {) -1 = c{(dl lT) -1, 

then albl -1 = cldl -1; hence the mapping is 1-1. If a202 -1 is any 
element of ~2 we can find an a1 such that alIT = a2 and a 01 such 
that b{ = b2• Then a202 -1 = a1IT(01IT) -1 is an image. Hence 
our mapping is a mapping of ~1 onto ~2' Finally we note that 

a1b1-l + C1dl -1 

and 

= (aldl + C101)(01d1) -1 4 (a1d1 + Cl!Jl)IT«Oldl)IT)-l 

= (a1ITdl IT + C{OlIT)(ol ITd{)-l 

= a1IT(01IT) -1 + c1IT(d1IT)-1 

(alOl -1)(c1d1 -1) = aICl (01d1) -1 4 (a1C1)IT«01d1)IT)-1 

= (alIT C1IT) (b l IT dl lT)-l 

= (a1IT(b1IT) -1) (c1IT(dllT) -1). 

Hence we have an isomorphism of ~l onto ~2' This isomorphism 
is an extension of q since it maps al = (a101)bl -1 into 

(a1bl)lT(b t lT) -1 = allTb11T(bllT) -1 = alIT. 

Suppose now that ~ is any isomorphism of ~l onto ~2 that 
coincides with q in ~h. Then (a1b1- 1)E = alE(b1- 1? = alE(b1E)-1 
= allT(b11T)-1. Hence ~ is the mapping (6). This shows that the 
extension of q to an isomorphism of ~l onto ~2 is uniquely deter­
mined. The theorem is therefore completely proved. 

4. Polynomial rings. One is often interested in studying a ring 
58 relative to a specified subring~. As we shall see, this idea is 
particularly fruitful in the theory of fields. A natural problem 
in this connection is the determination of the structure of a sub­
ring ~[u] generated by ~ and one additional element u e 58. To 
simplify this problem we shall assume that (1) 58 has an identity 
1, (2) 1 is in ~, (3) ua = au for all a in~. Evidently any element 
of the form 

(7) 
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where the ai e ~ is in ~[u]. We shall call an element of this form 
a polynomial in u with coefficients ai in !. 

If bo + blU + b2u2 + ... + bmum is a second polynomial in u 
and n ~ m, then 

(8) (ao + alU + a2U2 + ... + a"un) 

+ (bo + blU + b2u2 + ... + bmum) 

= (ao + bo) + (al + bl)u + ... 
+ (am + bm)um + am+lum+1 + ... + a"un• 

" 
Also 0 is a polynomial and the negative of L: aiui is the polynomial 

o 
~(-ai)Ui. Finally, since (aiui)(bjuj) = aibjui+j, 

(9) (ao + alU + a2u2 + ... + a"un)(bo + blu + ... + bmuftl ) 

= Po + PlU + ... + P,,+mun+m 
where 

i 

(10) Pi = L: ajbi _ j == L: ajb". 
i=O i+k=i 

Hence the totality of polynomials is a subring of 58. Clearly 
this subring includes ! and, since ! contains 1, u = 1u is a 
polynomial. It follows that the ring ![u] generated by ~ and 
by u is just the set of polynomials in u with coefficients in ~. 

A particularly simple situation is obtained when the element 
u is transcendental relative to!. By this we mean that a poly­
nomial relation 

do + dlu + d2u2 + ... + dmum = 0, 

di in ~ can hold only if all the di = O. In this case the two 
n m 

polynomials L: aiu' and L: biui are equal only if the correspond-
o 0 

ing coefficients ai and bi are equal for all i; for if n ~ m and 
~ aiu' = ~biuj, then 

(ao - bo) + (al - bl)u + ... + (am - bm)uftl + am+lu",+l + ... 
+ anun = O. 

Hence ai = b;, j = 1, 2, ... , m and am+l = ... = an = O. 
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If u is not transcendental, we say that u is an algebraic element 
relative to the subring~. In order to determine the structure 
of polynomial rings it is important to have available rings of the 
form 2l[x] where x is transcendental. In a polynomial extension 
by a transcendental element the polynomial (7) determines a 
unique sequence (ao, a1, ... ) with the property that ai = 0 for 
sufficiently large i. Hence it is natural to adopt the following 
procedure for constructing 2l[x]. 

Let 2l be a given ring with an identity and let 58 be the totality 
of infinite sequences 

(ao, a1, a2, ... ) 

that have only a finite number of non-zero terms ai. Elements 
of m are regarded as equal if and only if ai = OJ for all i. Addi­
tion in 58 is defined by 

(11) (ao, a1, a2, ... ) + (0o, 01, 02, ... ) 

= (ao + 0o, al + Oh a2 + 02, .•• ). 

The result given in the right-hand side is a member of m since the 
terms in the sequence are all 0 from a certain point on. It is 
immediate that m is a commutative group relative to this addition. 
The ° = (0, 0, ... ) and - (ao, ah ••• ) = (-ao, -ah ... ). We 
define multiplication in m by 

(12) (ao, ah a2, ... ) (0o, 01, 02, ... ) = (Po, Ph P2, ... ) 

where Pi is given by (10). If ai = 0 for i > n and OJ = 0 for 
j > m, then Pk = ° for k > m + n. Hence (12) gives an element 
ofm. 

If a = (ao, ah ... ), 0 = (0o, 01, ... ) and c = (co, Ch •.. ), 

then the term with subscript i in (ao)c is 

Similarly the corresponding term of a(oc) is 

L: aj( L: OkCZ) = L: ajOkcZ. 
m+j=i k+l=m j+k+Z=i 

Hence (ao)c = a(oc). Similarly we can verify the distributive 
laws. Hence the system m, +,' is a ring. 
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The subset ~' of elements 

a' = (a, 0, 0, ... ) 

is a subring of m isomorphic under the correspondence a ~ a' 
with~. Thus ~ is imbedded in m. The element l' = (1,0, ... ) 
of ~' acts as an identity in m. Now let x denote the element 
(0, 1,0,0, ... ). Then 

k+l 
Xk = (0, 0, .. " 0, 1, 0, ... ) 

and 
k+l 

a'xk = (0 ° '" ° a ° ... ) = xka'. " "" 
Hence x commutes with every a' e~' and the general element 
(ao, ah .. " an, 0, 0, ... ) can be written as 

(13) 

Thus m = ~'[x]. If (13) is 0, then (ao, ah ... ) = 0. Hence 
all the a. and therefore all the a/ = 0. This shows that x is 
transcendental relative to ~'. 

I t will now be well to replace the ring ~ by the isomorphic 
ring ~' and to denote the latter by~. We shall also write a for 
the element a'. Then m = ~[x] and x is transcendental relative 
to ~ as we required. 

EXERCISES 

1. Let m* be the complete set of sequences (ao, ai, a2, ... ) with ai e~. Define 
equality, addition and multiplication as for the ring m. Prove that m* is a ring. 
This ring is called the ring of formal power series over ~ and will be denoted as 
~ < x > in the sequel. 

2. Let S be any semi-group and let ~ be any ring. Denote by m the set of 
functions a(s) defined on S and having values in ~ such that a(s) = 0 for all but 
a finite number of s. Define addition and multiplication in m by 

(a + h)(s) = a(s) + h(s) 

(ab)(s) = L a(/)b(u). 
tu-. 

Show that m is a ring. We shall call m a semi-group ring. 
3. Show that the semi-group ring determined by the semi-group of non­

negative iategers with addition as composition is the ring ~[xl constructed above. 
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5. Structure of polynomial rings. Let ~h[x] be a polynomial 
ring in an element x that is transcendental over the base ring 2(1 

and let 2(2[U] be an arbitrary polynomial ring such that 2f2 is a 
homomorphic image of 2(1' As before, we assume that our rings 
contain identities and that the elements x, u commute with the 
displayed coefficient rings. Let fT be a definite homomorphism 
of 2fl onto 2f2• Then we shall show that this homomorphism can 
be extended in one and only one way to a homomorphism of 
2f l [x] onto 2(2[U] mapping x into u. 

Since x is transcendental, an element of 2(l[X] can be written in 
one and only one way in the form 

ao + alX + ... + anxn, ai in ~l' 

We now denote this element asf(x) and we define 

fV(u) = aov + alvu + ... + anvun, al in 2f2• 

It is clear that the rule f(x) ~ f"(u) defines a single-valued 
mapping of 2f l[x] onto 2(2[U]. If g(x) = !tbixi, then f(x) + g(x) 
= !t(a; + bi)Xi and this element is mapped into 

Also 

2;(ai + b.)vUi = 2;(al + bl)ui 

= 2;alu' + 2;blu'. 

f(x)g(x) = aobo + (aOb l + albo)x + (aob2 + albl + a2bO)x2 + ... 
~ (aoboY + (aObl + albo)Vu 

+ (aOb2 + albl + a2boYu2 + ... 
= aovbov + (aoVblV + atboV)u 

+ (aoVb2V + alvblv + a2VboV)u2 + ... 
= (!talu') (!tblu'). 

Hence our mapping is a homomorphism. Clearly, if a e 2(1) 

then a ~ aV in the new mapping. Moreover x ~ u. Hence the 
mapping meets all of the requirements that we imposed. 

Now let ~ be any homomorphism of 2(l[X] onto 2(2[U] that maps 
x into u and that coincides with (T on ~h. Then (~aixi):Z: = ~alu' 
= ~alui. Hence ~ coincides with the mapping that we have 
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defined. This proves the uniqueness of the extension. We there­
fore have the following important homomorphism theorem. 

Theorem 4. Let ~h[x] be a ring of polynomials in a trans­
cendental element x and let ~2[U] be a ring of polynomials in an 
arbitrary u. Suppose that (1 is a homomorphism oj ~l onto ~2. 
Then (1 can be extended in one and only one way to a homomorphism 
~ of ~1[X] onto ~2[U] mapping x into u. 

If ~ = ~l = ~2 and (1 is the identity mapping, then this 
theorem shows that ~[u] for arbitrary u is a homomorphic image 
of ~[x], x transcendental. Hence by the fundamental theorem of 
homomorphism ~[u] ~~[x]/~, where ~, the kernel of the homo­
morphism, is an ideal in ~[x]. Since the homomorphism ~ is the 
identity mapping in ~ it is clear that ~ n ~ = O. Assume now 
that u, too, is transcendental. Then iff(x)J; = O,j(u) = 0; hence 
f(x) = o. This shows that ~ = o. Hence ~ is an isomorphism. 
We therefore have the following 

Theorem 5. lf x and yare transcendental over ~, then ~[x] and 
~[y] are isomorphic. Any ring of the form ~[u] is isomorphic to a 
difference ring ~[x]/ ~ where x is transcendental and ~ is an ideal 
in ~[x] such that ~ n ~ = O. 

6. Properties of the ring ~[x]. From now on x will denote a 
transcendental element over~. If f(x) is a non-zero polynomial 
in ~[x], we can writef(x) = tlo + alX + ... + anxn with an ;= o. 
We call an the leading coefficient of f(x) and we call n the degree 
off(x). Iff(x) = 0, we say that its degree is -00, and we adopt 
the usual conventions that -00 - 00 = -00, -00 + n = -00. 

If an is not a left zero-divisor in ! and g(x) = bo + blX + ... 
+ bmXm with bm ;= 0, then 

f(x)g(x) = tlobo + (aobl + albo)x + ... + anbmXn+m. 

Since anUm ;= O,f(x)g(x) ~ 0 and this polynomial has the degree 
m + n. A similar result holds for g(x)f(x) if an is not a right 
zero-divisor. In particular we see that if ~ is an integral domain 
then ![x] is an integral domain. Moreover, in this case we have 
the formula 

(14) degf(x)g(x) = degf(x) + deg g(x) 
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for all f and g. This has been proved above for the case f 'F- 0 
and g 'F- 0, and it follows if either f = 0 or g = 0 by the conven­
tions on -00. We note also the following useful result concerning 
the degree: 

(15) deg (f(x) + g(x)] ~ max (degf(x), deg g(x». 

The degree relation (14) enables us to determine the units in 
~[x]; for if f(x)g(x) = 1, the deg f(x) + deg g(x) = o. Hence 
deg f(x) = 0 = deg g(x). Thus f(x) = a e ~ and g(x) = 0 e ~. 
This proves that, if ~ is an integral domain, then the only units· in 
~[x] are the elements of ~ that are units in~. For example, if I 
is the ring of integers, the only units in I[x] are the integers ± 1 
and, if is is a field, then the units of i5[x] are the non-zero elements 
of is. 

We consider again the case of an arbitrary ~ and we wish to 
establish a division process in ~[x]. Let g(x) = 00 + OIX + ... 
+ o.,,;em be any non-zero polynomial whose leading coefficient Om 
is a unit. Suppose thatf(x) is arbitrary. Then we shall show that 
there exist polynomials ql(X) and rl(x) such that deg rl(x) < 
deg g(x) and 

(16) f(x) = ql(X)g(X) + rl(x). 

If deg f(x) < deg g(x), we write f(x) = q(x)·O + f(x) to obtain 
the required representation. Assume now thatf(x) = ao + alX + 
... + anx" has degree n ~ m. Also, using induction, we may 
assume that the result holds for polynomialsf of degree <no Let 

f(x) - anOm -IX,,-mg(X) = !t(x). 

Then the terms a"x" of maximum degree in f(x) and in 
anom -IX .. -mg(X) cancel off so that degfl (x) < degf(x). Hence we 
may suppose that there exists a q*(x) and a rl(x) of degree less 
than m such that 

Then 
fleX) = q*(x)g(x) + rl(x). 

f(x) = a"bm -lX,,-mg(X) + q*(x)g(x) + rl(X) 

= ql(X)g(X) + rl(x) 

where ql(X) = a .. bm -IX .. -m + q*(x) and deg rl(x) < deg g(x). 
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The "right-hand quotient" ql (x) and the "right-hand re­
mainder" rl(x) are unique; for suppose that 

f(x) = q2(X)g(X) + r2(x), deg r2(x) < deg g(x). 

Then 
[ql(X) - q2(X)]g(x) = r2(x) - rl(x). 

The degree of the right-hand side is < m, while the degree of the 
left-hand side is either -00 or ?m. Hence the common value 
must be -00 so that r2(x) - rl(x) = 0 and ql(X) - q2(X) = O. 

In a similar manner we can prove the existence and uniqueness 
of the "left-hand quotient" q2(X) and "left-hand remainder" 
r2(x) of degree < deg g(x) such that 

f(x) = g(X)Q2(X) + r2(x). 

We consider now the special case in which g(x) = x - c, c in 
~. In order to obtain a formula for the remainder on division by 
(x - c) we make use of the following identities: 

(17) x" - c" = (x"-l + Cx"-2 + c2xk- 3 + ... + Ck-I)(X - c) 

= (x - C)(x"-l + CXk- 2 + ... + c"-l), 

k = 0, 1, 2, .... Here it is understood that, if k = 0, then the 
factor };Cix"-i-l = O. We multiply (17) on the left by ak and 
sum on k. This gives 

f(x) - /R(e) = ql(X)(X - e) 

where ql(X) = };ak(xk- l + exk- 2 + ... + c"-l) and 

(18) 

Hence f(x) = ql(X)(X - e) + fRee) and fRee) is the right-hand 
remainder. Similarly, by using the second form of (17) we can 
prove that the left-hand remainder on division by x - cis 

(19) fLee) = ao + cal + c2a2 + ... + cnan• 

An immediate consequence of these results is 

The factor theorem. The polynomial (x - e) is a right (left) 
factor of f(x) if and only if e is a right- (left-) hand root in the sense 
that fRee) = 0 (fL(e) = 0). 
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If ! is commutative, we can, of course, drop the modifiers 
"left" and "right" in the foregoing discussion. If! = ~ is a 
field, the division process can be applied to any pair of poly­
nomials f(x), g(x) ~ O. This fact can be used to prove the im­
portant 

Theorem 6. Every ideal in ~[x], ~ a field, is a principal ideal. 

Proof. Let ~ be an ideal in mx]. If ~ = 0, the ideal consisting 
of 0 alone, then 5B = (0), the principal ideal generated by O. 
Assume therefore that 5B ~ O. Let g(x) be a non-zero poly­
nomial of least degree in 5B. Iff(x) is any element of 5B, we write 
f(x) = g(x)q(x) + rex), where deg rex) < deg g(x). Then rex) = 

f(x) - g(x)q(x) e 5B, and, since its degree is less than that of 
g(x), rex) = O. Hence f(x) = g(x)q(x) is in the principal ideal 
(g(x)). Thus 5B c (g(x)). But g(x) e 5B so that we also have 
(g(x)) c 5B. Hence 5B = (g(x)). 

This theorem enables us to state for fields the following sharper 
form of Theorem 5. 

Corollary 1. If ~ is a field, any polynomial ring ~[u] rv 

is'[x]!(g(x)) where either g(x) = 0 or g(x) is a polynomial of posi­
tive degree. 

The possibility that g(x) is a non-zero polynomial of 0 degree 
is excluded since it implies that (g(x» = is'[x]. 

EXERCISES 

1. IfJ(x) = ao + alx + ... + a,.x", defineJ'(x) = al + 2a2X +, , ,+ na"x,,-l' 
Prove the usual rules: 

(f + g)' = J' + g', (ef)' = ef', c in ~ 

(jg)' = Jg' + J'g, 

2. Prove Leibniz's theorem 

(jg)(k) = ~ G) J(i)g(Ic-i) 

whereJW = j<i-I)', j<0) = J. 

7. Simple extensions of a field. The methods that we have 
developed in this chapter can be used to construct field extensions 
of any given field is'. As we shall see, any such extension can be 
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obtained by making a succession of simple extensions of two types 
that we proceed to describe. 

Simple transcendental extension. For the given field \5 we con­
struct first the polynomial ring \5[x], x transcendental. We know 
that \5[x] is an integral domain but not a field. However, we can 
imbed \5[x] in its field of fractions. We denote the latter as \5(x) 
and we call its elements rational expressions (Junctions) in x over 
the base field \5. These elements have the formj(x)/g(x) where 
j(x) and g(x) are polynomials and g(x) ~ O. The usual rules of 
reckoning hold. 

Simple algebraic extensions. This method of extending a field 
was used first by Cauchy in defining the field C of complex num­
bers as an extension of the field R of real numbers. In Cauchy's 
case one forms the difference ring C = R[xJl(x2 + 1) where 
(x2 + 1) is the principal ideal of multiples of x2 + 1. It can 
be shown that C is a field extension of R that contains a root 
of the equation x2 + 1 = O. Cauchy's method was generalized 
by Kronecker to apply to any field \5 and any polynomialj(x) e 
\5[x] which is irreducible (prime) in this domain. By saying that 
j(x) is irreducible, we mean that j(x) cannot be factored as a 
product of two polynomials of positive degree. We assume also 
that deg j(x) > O. 

As in the special case that we have indicated we form the dif­
ference ring Q: = u:[x]/(J(x» where, as usual, (J(x» denotes the 
principal ideal generated by j(x). The ring Q: has the identity 
r = 1 + (J(x» and r ~ 0 sincej(x) is of positive degree. Con­
sider now any coset g(x) = g(x) + (J(x» ~ O. Let 5S be the 
totality of polynomials of the form u(x)g(x) + v(x)j(x) where 
u(x) and vex) are arbitrary in U:[x]. It is apparent that 5S is an 
ideal in U:[x]. Hence 5S = (d(x». Sincej(x) = Og(x) + Ij(x) e 5S, 
j(x) = d(X)jl(X). Hence either d(x) is a non-zero element of u: 
or d(x) is a multiple (by an element of \5) of j(x). On the other 
hand, g(x) e 5S so that g(x) = d(X)gl(X). Hence if d(x) is a 
multiple ofj(x), then g(x) is a multiple ofj(x) and this contradicts 
the assumption that g(x) .:;e o. Hence we see that d(x) = d 
is a non-zero element of \5. Since de 5S, this element has the form 
u(x)g(x) + v(x)j(x). If we multiply by d-t, we obtain poly­
nomials a(x), b(x) such that 
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(20) a(x)f(x) + b(x)g(x) = 1. 

The relation (20) gives a(x)f(x] + b(x)g(x) = 1: Sincef(x) = 0, 
we conclude that b(x)g(x) = 1. Thus any non-zero element of 
~ has an inverse. Since ~ is commutative, this means that ~ 
is a field. 

We note next that ~ is an extension of~. Thus consider the 
natural homomorphism g(x) --+ g(x) of ~[x] onto~. This map­
ping induces a homomorphism of ~ onto a subring ~ of~. The 
image set ~ is the totality of cosets a = a + (J(x)), a in \j; hence 
it includes I ~ o. On the other hand, ~ is a field. Hence a 
homomorphic image of it is either 0 or it is isomorphic to ~. 
It follows that ~ "'~. In this way ~ is imbedded in~. As usual 
we shall identify ~ with ~ and write a for the coset a. 

We show finally that ~ = mx] and x is an algebraic element 
satisfying the equationf(x) = O. First, if g(x) is any polynomial, 
then g(x) = g(x) is a polynomial in x with coefficients in~. As a 
matter of fact it is easy to see that any element of ~ can be ex­
pressed as a polynomial in x of degree < deg f(x); for we can 
write g(x) = f(x)q(x) + rex) where deg rex) < deg f(x). Hence 
g(x) = rex) = rex). Since 0 = f(x) = f(x), x is a root of the 
equationf(x) = O. 

The construction of the difference ring ~ = mx]/(J(x)) can 
also be carried out for reducible polynomials f(x). If f(x) = 
h(x)b(x) where degfi(x) > 0, thenfi(x) rf= 0 in ~ buth(x)b(x) = 
f(x) = O. Thus in this case we obtain a ring with zero-divisors 
~O. It is clear at any rate that ~ is commutative and that ~ 
has an identity. 

EXERCISES 

1. Let ~ = Ro[xl/(xB + 3x - 2). Express the following elements of ~ as 
polynomials of degree <3 in x: 

(a) 

(b) 

(2x2 + X - 3)(3x2 - 4x + 1) 

2. Show that, iff(x) has a square factor (f(x) = [h(x)l%(x), degfl{x) > 0), 
then ~ = mxl/(f(x» contains non-zero nilpotent elements. 
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8. Structure of any field. In analyzing the structure of any 
field IY we examine first the smallest subfield '.J3 of IY. We shall 
call this field the prime field of IY. We know that the intersection 
of any number of subfields of IY is a subfield. Hence the prime 
field can be defined to be the intersection of all subfields of IY. 

We know that '.J3 contains 1; hence '.J3 contains the subring [[1]] 
generated by 1. Now we know that a ring generated by 1 is 
isomorphic to either 1 or to 1/(m), m > O. (§9 Chapter II). If 
the second alternative holds here, then m = p is a prime; for 
otherwise 1/(m) has zero-divisors ~ 0 and consequently [[1]] 
has zero-divisors ~ O. But this is clearly impossible in a field. 
Hence we have the following two possibilities: 

I 

II 

[[1]] ~ 1 

[[1]] ,....., 1/(P), P a prime. 

If I holds, [[1]] is an integral domain but not a field. Hence 
in order to obtain the prime field we must take the totality of 
elements of the form (m1)(n1)-1 where m, n e 1 and n ~ O. Thus 
it is clear that '.J3 is isomorphic to the field of rational numbers. 
If II holds, [[1]] is a field since 1/ (p) is a field. It is clear that 
in case I IY has characteristic 0 while in II IY has characteristic p. 

We suppose next that lYo is any subfield of IY and we proceed 
to determine the structure of the subfield B'o(8) generated by B'o 
and an additional element 0 of IY (possibly in lYo). We consider 
first the subring lYo[O] generated by lYo and O. We have seen 
(p. 100) that lYo[O] ,....., lYo[x]/(f(x» where either I(x) = 0 or I(x) 
is of positive degree. The ideal (f(x» is the kernel of the homo­
morphism g(x) ~ g(O). Now if lex) is reducible, then G! = 
lYo[x]/(f(x» is not an integral domain; hence this possibility is 
excluded. Thus we have the following two possibilities: 

I 

II 

lYo[O] ,....., B'o[x] 

lYo[O] ~ lYo[x]/(f(x», lex) irreducible. 

h I, 0 is transcendental and lYo(O) is isomorphic to the field lYo(x) 
of rational expressions in x. In II,j(O) = 0 so that 0 is algebraic. 
Also in this case lYo[O] is a field since lYo[x]/(f(x» is a field. Hence 
lYo(O) = lYo[O]. In either case we see that lYo(O) is essentially a 
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simple extension of ijo of the types considered in the preceding 
section. 

We now know the nature of the prime field of any field and 
the nature of any subfield ijo(O). We shall now show that any 
field can ~e built up from its prime field by a succession of simple 
extensions (algebraic or transcendental). A proof of this result 
for a given field requires that the field be well ordered. * However, 
the algebraic idea underlying the argument can be fully revealed 
in considering the countable case. Hence we assume that ij is 
countable (finite or denumerably infinite) and we suppose that 
Ob O2, 03, ... is an enumeration of the elements of ij. Set ijo = ~, 
iji = iji-1(Oi)' Then ij = Uiji and each iji is obtained from 
iji-1 by a simple transcendental or simple algebraic extension. 

9. The number of roots of a polynomial in a field. Iff(x) is a 
polynomial with coefficients in a field and C1 is a root off(x) = 0, 
thenf(x) = (x - C1)J1(X). Suppose now that Cb C2, "', Cm are 
distinct roots of f(x) = O. Then substitution of C2 in f(x) = 
(x - C1)J1(X) (that is, applying the homomorphism g(x) ~ g(C2)) 

gtves 0 = f(C2) = (C2 - C1)J1(C2)' 

Since C2 ~ Ct,!t(C2) = O. Hence!t(x) = (x - c2)h(x) andf(x) = 
(x - C1)(X - c2)h(x). Continuing in this way, we can prove that 
f(x) = (x - C1)(X - C2) ... (x - Cm)Jm(x). Evidently this im­
plies that the degree n of f(x) ~ m. This proves the following 

Theorem 7. If ij is a field and f(x) is a polynomial of degree 
n ~ 0 with coefficients in ij, then f(x) has at most n distinct roots 
in 'ij. 

EXERCISES 

1. If an i*! 0 (mod p), then the congruence ao + alX + ... + anx" == 0 
(mod p) has at most n incongruent solutions in 1. 

2. Prove that, if 'ij is a finite field containing q elements ai, then h(x) = 
xq - x = (x - al)(x - a2) ... (x - aq) in'ij[xl. 

3. Prove that, if p is a prime integer, then (p - I)! == -1 (mod p). This is 
known as Wilson's theorem. 

4. Show that the polynomial x3 - x has 6 roots in 1/(6). 
5. Show that the polynomial x2 + 1 has an infinite number of roots in. the ring 

Q of real quaternions. 

• For a discussion of well ordering, consult van der Waerden's Moderne A/geln-a, vol. 
1, 1st ed., chapter 8. 
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10. Polynomials in several elements. Again let 58 be a ring 
with an identity and let 2£ be any subring containing 1. Suppose 
that Ut, U2, "', Ur are elements of 58 that commute with each 
other and that commute with every a e 2£. Let 2£[Uh U2, .. " ur] 
denote the subring generated by 2£ and by the Ui and write 
~[UI][U2] ••• fUr] for (((2£[Ul])[U2]) •.. ) [ur]. We assert that 

(21) 2£[ut, U2, "', ur] = 2£[UI][U2] ••• fUr]. 

This is clear for r = 1. Hence we assume it for s - 1 and we 
consider 2£[Uh U2, "', us]. This ring contains 2£[Uh "', US-I] 
and the element us. Hence it contains 2£[Uh "', U,_I][U,], 
On the other hand, 2£[Uh .. " U._I][Us] is a subring that contains 
Uh U2, .. " u,. Hence it contains 2£[Uh "', u,]. Thus we have 

~[Uh .. " us] = 2£[Uh "', u,-d[u s] 

by the induction assumption. 
By (21), or directly, we can see that 2£[Uh U2, "', ur] is the 

totality of polynomials 

in the u's with coefficients aili2" .i, in 2£. As a generalization of the 
notion of transcendental element we now define the elements 
Uh U2, "', Ur to be algebraically independent over 2£ if the only 
relation of the form 

(22) 

di1i2 ... i. in 2£, that holds for the u's is that in which all the d's 
are O. Since the u's commute, it is clear that this condition does 
not depend on the order of the elements Ut, U2, •. " ur• Moreover, 
it is clear that, according to the definition, UI is algebraically 
independent over 2£ if and only if it is transcendental. We now 
prove the following more general result. 

Lemma. The elements Uh U2, "', Ur are algebraically inde­
pendent over 2£ if and only if each u", k = 1, 2, "', r, is trans­
cendental over ~[Uh Ua, "', U"_l]' 
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Proof. Suppose that each Uk, k = 1,2, .. " r, is transcendental 
over ~[Uh Ul:-l] and assume that (22) holds. Write this 
relation as 

(23) Do + Dlur + D2ur2 + ... + Dmu/" = 0 

h D ~d 'I 'I "'-1 Th h D - 0 were i = .l.i '1'2" .... _liUl U2 ... Ur-l. en eac i -

and, using induction, we can assume that this implies d'lis" .... _li = 0 
for all ih i2, •••• Hence the Ui are algebraically independent. 
Conversely, suppose that Uh U2, "., Ur form an algebraically 
independent set, and assume that we have a relation of the form 
~DiUl/ = 0 where the Di e ~[Uh U2, "', Ul:-l]. We can write 
D ~d il '2 'k-l db' ~d il il , = .l.i ii's' "'k_liUl U2 ... Uk-l an 0 taln .l.i '1" "1o_1,Ul U2 
••• Uk_lik-1U,,' = o. Then d'l's""Io_li = 0 for all ih i2, "', i and 
D, = 0 for all i. Hence Uk is transcendental over ~[Uh U2, ... , 
Uk-l]. 

This lemma enables us to construct inductively for any given 
ring ~ with an identity a ring 58 = ~[Xh X2, "', xr ] where the 
Xi are algebraically independent over ~; for we can construct suc­
cessively the rings ~[xtl, ~[Xl][X2]' ... in which each Xl: is trans­
cendental over ~[Xl] ... [Xk-l] = ~[Xh "', Xk-l]. Then it is 
clear that ~[Xl] ... [xr] = ~[Xh "', xr] is a ring of the required 
type. 

If the Xi are algebraically independent over ~ and the Yi, 
i = 1, 2, ' .. , r are algebraically independent over ~, then 
~[Xh X2, .", xr] is isomorphic to ~[Yh Y2, .", Yr]. This is an 
immediate consequence of the following theorem. 

Theorem 8. Let ~i, i = 1, 2, be a ring with an identity and let 
~i[Xli' X2i, "', Xri] be a ring of polynomials in the algebraically 
independent elements Xii. Then any homomorphism (isomorphism) 
of ~1 onto ~2 can be extended in one and only one way to a homo­
morphism (isomorphism) of ~l[Xll' X2l, .'., Xrl] onto ~2[X12' X22, 
... , xd mapping Xil into xi2for j = 1, 2, .. " r. 

The case r = 1 of this theorem has been proved in the preced­
ing section. The extension to arbitrary r is immediate by induc­
tion. The details of the argument will be left to the reader. 

The same inductive procedure also yields the following two 
results: (1) If ~ is an integral domain, then so is ~[Xh X2, .. " xr). 
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(2) If ~ is an integral domain, then the only units of ~[~h X2, 

· . " x r] are the elements of ~ that are units in ~. 

EXERCISE 

1. Show that a ring ~[XI, X2, "', xrl, Xi algebraically independent, can also 
be obtained as a semi-group ring over ~ of the semi-group S of r-tuples (;1, ;2, 
· . " i.) of non-negative integers ii where the composition is 

(h,i2, ···,i.)Ul,j2, "',j.) = (h+jl,i2+j2, ···,i.+j.). 

*11. Symmetric polynomials. Suppose that the elements Xi of 
~[Xh X2, "', x.] are algebraically independent. Clearly if Xl', 

X2', "', X r' is any permutation of Xl, X2, "', X r, then ~[Xh X2, 

· . " x.] = ~[XI" X2', "', xr,]. Hence we can conclude from the 
preceding theorem that the mapping 

is an automorphism of ~[Xh X2, "', xr]. Thus the permutation 

0': (Xl X2 Xr) of the x's can be extended in one and only 
Xl' X2' X; 

one way to an automorphism 0'* of ~[Xh X2, •• " xr] that acts as 
the identity in ~. 

Now if A and Bare automorphisms of a ring, then the resultant 
AB is also an automorphism. In particular, if 0'* and T* are the 
automorphisms determined by the elements 0', 7 of Sr, then cr*7* 
is an automorphism of ~[Xh X2, •• " xr]. Now the automorphisms 
O'*T* and (crT)* effect the same permutation crT on the Xi and effect 
the identity mapping in the coefficient ring~. From this it 
follows that O'*T* = (O'T)*. Hence the set ~ of the automorphisms 
cr* is a transformation group isomorphic to the symmetric group Sr. 

A polynomial ](Xh X2, "', xr) is said to be symmetric in the 
x's if ]0'* =] for all 0'* e~. The totality of these polynomials 
constitute a subring ~ of ~[Xh X2, "', xr]. Evidently ~ :::> ~. 
Also the coefficients of the polynomial 

F(x) = (x - Xl)(X - X2) ••• (x - xr) 

are symmetric; for we can extend the automorphism 0'* of &[Xh X2, 

· • " xr] to an automorphism 0'** of &[Xh "', X.; xl so that xO'** 
= x. The extension cr** permutes the factors of F(x) and there-
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fore it maps F(x) into itself. It follows that the coefficients of 
F(x) are left unchanged by 0'** and consequently by 0'*. Since 
this holds for all 0', the coefficients of F(x) are syt.tmetric. We 
can calculate these coefficients and see that 

F(x) = xr - P1X,-1 + P2X,-2 - ... + (-lYp, 

where 

(25) 

pr = X1X2 ••• xr • 

We shall call the Pi elementary symmetric polynomials, and we 
shall prove that <5 = ![Ph P2, "', Prj and that the Pi are alge­
braically independent over !. 

The equation <5 = ![Ph P2, "', Prj means, of course, that 
every symmetric polynomial can be expressed as a polynomial in 
the elementary symmetric functions Pi. It suffices to prove this 
for homogeneous polynomials. By a homogeneous polynomial we 
mean one in which all of the terms aXlklx2ks .•. x,'" have the 
same total degree k = kl + k2 +. 0 0 + kr• Any polynomial can 
be expressed in one and only one way as a sum of homogeneous 
polynomia1s of different degrees. Since the automorphisms 0'* 
preserve degree, it is clear that, if /(x!) X2, "', xr) is symmetric, 
then so are its homogeneous parts. 

We suppose now that/ex!) X2, 000, xr) is a homogeneous sym­
metric polynomial of degree, say m. We shall introduce the 
lexicographic ordering for the monomials of degree m, that is, 
we say that aXl klX2ks 0 • 0 xr'" is higher than OXlhX2'1 ••• x,~ if 
kl = 11) k2 = 12, 0 0 0, k. = I. but k.+1 > 1'+1 (s ~ 0). Thus, for 
example, X12X2X3 > X1X23 > X1X22X3' Now let ax/11x,/1 000 xr '" 

be the highest term in j. Then since / contains all the terms 
that can be obtained from aXl klX2 ka 0 0 0 x,'" by permuting the 
x's, it is clear that kl ~ k2 ~ ka ~ 0 0 0 ~ kr in the highest term 
off· 

We consider now the highest term of the homogeneous sym­
metric polynomial Pld1p/ol 

000 Prdr• Using the definitions (25) 
we can see that this term is 

dl +ds+ .. 0 +dr dl+ .. 0 +dr dr 
Xl XI 000 X, • 
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Hence the highest term of ap/CI-Te'P2TeI-Tea ••• PrTc.r is the same as 
that of 1 and hence the highest term of the homogeneous sym­
metric polynomial 11 = 1 - ap1Tct - lctp2lct - 1ca ••• Prier is less than 
that of 1. We can repeat our process with 11' Since there are 
only a finite number of highest terms that are lower than a given 
one, a finite number of applications of this process yields a repre­
sentation of 1 as a polynomial in the Pi. 

We shall show now that the elementary symmetric polynomials 
are algebraically independent. If any of the coefficients in 
our relation are ~ 0, we consider the set of exponents (dh d2, 

.. " dr) for which adl ... d,. ~ 0. Introduce 

Then the highest term in the lexicographic ordering in 
dl d2 d, • Tel Te2 Te, If (d' d' adl ... d,.P1 P2 ... Pr IS adl .•• d,.X1 X2 ... Xr . 1, 2,···, 

d/) is a second set of exponents such that adl".' d,.' ~ 0, then 
dl' dz' d,.' h . h· h Tel' Tel' 

adl' .•. d,.'P1 P2 ... Pr as as ItS Ig est term adl' .'. d,.,X1 X2 ..• 
xrler' where k/ = d/ + di+1' + ... + dr', i = 1,2, .. " r. Clearly 
if ki = k/ then di = d/ for all i. Thus distinct terms in the p's 
have distinct highest terms in the x's. If we choose the term 

dl dl d,. h Tel Tel Ier' h· h h adl ... d,P1 P2 ... Pr so t at Xl X2 ... Xr IS Ig er t an any 
Te' Te' k'·· I h h Te Te Ier other Xl I X2 I ••• Xr .. , 1t IS C ear t at t e term Xl IX2 2 ••• Xr 

occurs only once in the relation for the p's. This gives a non­
trivial relation for the x's and contradicts the algebraic inde­
pendence of the latter elements. This proves the second part of 
the following 

Theorem 9. Every symmetric polynomial is expressible as a 
polynomial in the elementary symmetric polynomials Pi defined in 
(25). The elementary symmetric polynomials Ph P2, ... , pr are 
algebraically independent over~. Every Xi is algebraic over ~[Ph 
P2, '.', PrJ. 

The last statement of the theorem is clear since 
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EXERCISES 

1. Express '.E XbCj2Xk (n ~ 5) in terms of the elementary symmetric 
f.J.k.~ 

functions. 
2. Let fl = II (xo - Xj). Show that if ." is a transposition then fl." * = 

f<J 
-fl. Use this to prove that if T is a permutation that has a decomposition as a 
product of an even (odd) number of transpositions then any factorization of T 

as a product of transpositions contains an even (odd) number of terms. 
3. Show thatfl2 is symmetric. Expressfl2 for r = 3 in terms of the elementary 

symmetric functions. 
4. Show that the symmetric polynomials Sk = ~xl' satisfy Newton's identities. 

Sk - PISk-l + P2Sk-2 - ••• + (-I)k-lpk_lSl + (-I)kkpk = 0, k = 1,2, ... , n. 

12. Rings of functions. Let S be an arbitrary non-vacuous set 
and let ~ be an arbitrary ring. Consider the totality (~,S) of 
functions with domain S and with range contained in~. Thus 
the elements f of (~,S) are the mappings s -4 f(s) of S into ~. 
(Note that the effect off on s is denoted here in the conventional 
manner as f(s) rather than as sf as is usual in these Lectures.) 
As usual f = g means that f(s) = g(s) for all s e S. Now we 
define addition and multiplication in (~,S) in the customary 
way by 

(26) (f + g)(s) = f(s) + g(s) 

(fg)(s) = f(s)g(s). 

It can be easily verified that (~,S) with these compositions is a 
ring; for the associativity of addition and multiplication, the 
commutativity of addition and the distributive laws follow im­
mediately from the corresponding laws in~. For example, we 
have 

«(f + g)h)(s) = (f(s) + g(s))h(s) = f(s)h(s) + g(s)h(s) 

= (fh + gh)(s). 

Hence (f + g)h = fh + gh. The function 0 such that O(s) = 0 
for all s acts as the iden ti ty under addition and - f is the function 
such that (-f)(s) = -f(s) for all s. 

If a is any element of ~, we define the constant function a by 
the requirement that a(s) = a for all s. These functions con-
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stitute a subring of (~,S) isomorphic to~. We denote this sub­
ring by ~ also. If ~ has an identity, then the associated constant 
function acts as the identity in the whole ring (~,S). 

For the sake of simplicity we shall now assume that ~ is a 
commutative ring with an identity. We consider the ring of 
functions ~ = (~,~). In addition to the constant functions a 
particularly important function is the identity function s --+ s. 
We use the customary notation s for this function as for the 
variable s in~. Since ~ is commutative, this function commutes 
with the constant functions. We call the elements of the ring 
~[s] generated by the constant functions and by the identity func­
tion polynomial functions in one variable. If f(x) = ao + alX + 
... + anxn is an element of ~[x] where x is transcendental, then 

l(s) is the function that maps s into the element ao + als + ... 
+ ansn of~, and ~[s] is the totality of these functions. 

The function s need not be transcendental over~. Thus if 
~ is a finite ring with elements ah a2, .. " aq, then the polynomial 

while the function 

This is clear since the element h(s) = 0 for all s e~. If ~ is a 
finite field, then we know that hex) = xq - x (ex. 2, p. 104). 

On the other hand, we shall now show that, if ~ = ~ is an 
infinite field, then the identity function is transcendental. This 
is an immediate consequence of Theorem 7 (§ 9); for, if f(x) is a 
polynomial ¢ 0 in ~[x], thenf(s) = 0 for only a finite number of 
elements of~. Hence there exist elements c e ~ such thatf(c) ¢ O. 
This means that the functionf(s) ¢ 0 and that s is transcendental. 

The definition of polynomial functions in several variables is an 
immediate generalization of the foregoing. Here we begin with 
the set S = ~(r) of r-tuples (Sh S2, •• " Sr), Si in ~ and we consider 
the ring of functions ~(r) = (~,~(r». In this ring we select the 
particular functions s i defined by 

(29) 
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Then we define polynomial functions in r variables to be elements 
of the ring ~[Sh S2, "', Sr] generated by the constant functions 
and by the r functions Si. Clearly the Si commute and commute 
with the constant functions. 

If f(xh X2, "', xr) e ~[Xl, X2, "', xr] where the Xi are alge­
braically independent, then it is clear what is meant by the func­
tionf(sl, S2, .. " sr)' This function is a polynomial function and 
every polynomial function is obtained in this way. 

If ~ is a finite ring of q elements aj, then 

h(si) = (Si - al)(si - a2) ... (Si - aq) = o. 
Thus the functions Sl, S2, .. " Sr are algebraic relative to the sub­
ring of constant functions. In contrast to this result we shall 
prove that, if ~ is an infinite field, then the functions Si are alge­
braically independent. This result is equivalent to the following 

Theorem 10. If ~ is an infinite field and f(xl, X2, .. " xr) is a 
polynomial ~ 0 in the polynomial domain mXl, X2, "', xr], Xi 
algebraically independent, then there exist elements Cl, C2, "', Cr, 
in ~ such that f(cl, C2, "', cr) ~ O. 

Proof. The case r = 1 has been proved above. Hence we 
assume that the theorem holds for r - 1 x's. We write 

f(xl, X2, "', xr) = Bo + B1xr + B2Xr2 + ... + Bnxrn 

where Bi e mXh X2, "', Xr-l]' Also we can suppose that Bn == 
Bn(XI, X2, .. " Xr-l) ~ O. Then by the induction assumption we 
know that there exist elements Ci in ~ such that Bn(CI, C2, 
Cr-l) ~ O. Thus 

f(ch C2, .. " Cr-I, Xr) = BO(CI, C2, "', Cr-l) 

+ B1(CI, C2, "', Cr-l)Xr + ... 
+ Bn(CI, C2, "', Cr_l)Xrn ~ O. 

Hence we can choose a value Xr = Cr such that f(ch C2, "', Cr) 
~ o. 

EXERCISES 

1. Prove the following extension of the foregoing theorem: If j(Xl, X2, •.. , xr) 
is a polynomial with coefficients in an infinite field \J such thatj(cl, C2, ••• , cr ) = 0 
for all (Cl, C2, .•• , cr) for which a second polynomial g(Xl, X2, "', xr) ~ 0 has 
values g(Cl, C2, "', cr ) F: 0, thenj(xl, X2, ... , x r ) = o. 
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2. Let ~ be a finite field containing q elements. Prove that, ifJ(x1, X2, .. " xT) 

is a non-zero polynomial of degree <q in each Xi, then there exist Ci in ~ such 
thatJ(c1, C2, "', cr) ¢ 0. 

In the remainder of these exercises ~ is as in 2. 

3. Prove that every function in r variables (element ofiYCr» is a polynomial 
function. (Hint: enumerate the set of functions and the set of polynomial 
functions. ) 

4. Show that any polynomial in mXl, X2, "', xrl can be written in the form 
r 

L gi(X1, X2, "', Xr)(Xiq - Xi) + gO(X1, X2, "', xr) where go is of degree <q in 
i-1 
each Xi. 

5. Prove that, if m(x1, X2, "', xr) is a polynomial such that the function 
m(sl, S2, "', Sr) = 0, then m(x1, X2, "', xr) can be written in the form 
2:gi(Xl, X2, "', Xr)(Xi q - Xi). 

6. Let J(Xl, X2, "', xr) be a polynomial such that J(O, 0, "', 0) = ° and 
J(C1, C2, "', cr) ¢ ° for all (Cl, C2, "', cr) ¢ (0, 0, "', 0). Prove that, if 
F(X1, X2, .. " xr) = 1 - J(X1, X2, "', xr)q-l, then 

F( . . . ) _ {I if (C1, C2, .. " cr) = (0, 0, "', 0) 
Cl, C2, ,Cr - ° otherwise • 

7. Show that the F of 6 determines the same function as 

Fo = (1 - X1Q- 1) (1 - X2 q - 1) ... (1 - xrQ-1). 

Hence prove that deg F"?. r(q - 1) (deg F = total degree of F). 
8. (Artin-Chevalley.) Let J(X1, X2, "', xr) be a polynomial of degree 

n < r and suppose that J(O, 0, "', 0) = 0. Show that there exists a (Cl, C2, 
.. " Cr) ¢ (0,0, .. ,,0) such thatJ(ch C2, "', cr) = O. 



Chapter IJ7 

ELEMENTARY FACTORIZATION THEORY 

In this chapter we consider the problem of decomposing ele­
ments of a given commutative integral domain as products of 
irreducible elements. In a number of important integral domains 
such factorizations exist for all the non-units, and in a certain 
sense uniqueness of factorization holds. In these instances we 
can determine all of the factors of a given element and hence we 
can give simple conditions for the solvability of equations of 
the form ax = b. Since the factorization theory that we shall 
consider is a purely multiplicative theory that concerns the semi­
group of non-zero elements of a commutative integral domain, 
we shall find it clearer to begin our discussion with the factoriza­
tion theory of semi-groups. 

1. Factors, associates, irreducible elements. Let ~ be an 
arbitrary commutative semi-group that has an identity 1 and that 
satisfies the cancellation law. If U denotes the set of units of ~, 
then we know that U is a subgroup of ~. 

If a and b are elements of ~, we say that b is ajactor or divisor 
of a if there exists an element c in ~ such that a = be. If b is a 
factor of a, we write b I a. It is immediate that this relation is 
transitive and reflexive. An element u is a unit if and only if 
u 11. The units are the trivial factors since they are factors of 
every element of~. If a I band b I a, then we shall say that these 
elements are associates. The conditions for this relation are that 
b = au, a = bv. Hence b = au = bvu. By the cancellation law 
vu = 1. Thus a and b differ by unit factors. The converse is 
immediate also and it is clear that the relation of associateness 

114 
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is an equivalence. If a and b are associates, then we write a '" b. 
If b I a and b is neither a unit nor an associate of a, then we say 

that b is a proper factor of a. In this case a = bc and c is neither 
a unit nor an associate. Hence c, too, is a proper factor of a. 
If u is a unit and u = vw, then it is immediate that v and ware 
units. Thus the units of ~ do not have proper factors. 

An element a is said to be irreducible if a is not a unit and a 
has no proper factors in el. 

2. Gaussian semi-groups. If an element a of a commutative 
semi-group el has a factorization a = P112 ... P8 where the Pi 
are irreducible, then a also has the factorization a = P1'P2' ... ps' 
where Pi' = UiPi and the Ui are units such that U1U2 ... u. = 1. 
It is clear that the Pi' are irreducible. Hence if el has units ~ 1 
and s > 1, then we can always alter a factorization in the way 
indicated to obtain other factorizations of the given element. 
The new factorizations will be regarded as essentially the same 
as the original one, and we shall say that a factorization a = 
P1P2 ... P8 of a into irreducible elements is essentially unique 
if for any other factorization a = P1'P2' ... p/, Pi' irreducible, 
we have t = s and Pi' rv Pi for a suitable arrangement of the pl. 
We use this concept to formulate the following 

Definition 1. A semi-group el is called Gaussian if (1) el is 
commutative, has an identity and satisfies the cancellation law, and 
(2) every non-unit of el has an essentially unique factorization into 
irreducible elements. An integral domain is Gaussian if its semi­
group of non-zero elements is Gaussian. 

Our main purpose in this chapter is to show that a number of 
important types of integral domains are Gaussian. That this is 
not a universal property can be seen by considering the following 

Example. Let ~ = I[V=S], the set of complex numbers of the form 
a + oV=S where a and 0 are integers. It is easy to see that ~ is a subring 
of the field of complex numbers. Hence ~ is a commutative integral domain. 
Also ~ has the identity 1 = 1 + OV=S. 

The investigation of the arithmetic of ~ is greatly facilitated by the introduc-
tion of the norm of elements of this domain. If r = a + oV=S, we define the 
norm N(r) = rT = a2 + 502• This function is multiplicative: N(rs) = N(r)N(s) 
and its values are positive integers for the non-zero elements of~. 
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We use the norm first to determine the units of~. If rs = 1, then N(r)N(s) = 
N(l) = 1. Hence N(r) = a2 + 5b2 = 1. Hence a = ±1 and b = O. Thus 
r = ±1. 

It follows that the only associates of an element in ~ are the element and its 
negative. 

We consider now the two factorizations 

9 = 3·3 = (2 + vC5)(2 - vC5). 

Each of the factors, 3 and 2 ± V -5, is irreducible. For suppose that 3 = rs. 
Then 9 = N(3) = N(r)N(s). Hence N(r) = 1, 3, or 9. But if N(r) = 3, 
a2 + 5b2 = 3, and this is impossible for integers a and b. Hence either N(r) = 1 
or N(r) = 9 and N(s) = 1. In the first case r is a unit and in the second s is a 
unit. In a similar manner we see that 2 ± vC5 is irreducible. Hence the 
displayed factorizations are essentially distinct factorizations into irreducible 
elements and ~ is not Gaussian. 

In any Gaussian semi-group @3 one can determine to within 
unit factors all the factors of a given non-unit element a, provided 
that a factorization of a into irreducible elements is known; for 
if a = PIP2 ... P8 where the Pi are irreducible, and if a = be 
where b = Pl'P2' ... pt', e = Pl"P2" ... Puff and the Pi' and 
Pk" are irreducible, then 

a = PIP2 ... p. = pt'p/ ... P/Pl"P2" ... Pu". 

Hence by the uniqueness property p/ '" Pi; where ii ¢ ik if 
j ¢ k. Hence b '" Pi lPi 2 ••• Pi,. Thus any factor of a is an 
associate of one of the 28 products obtained in this way. If we 
call the number s of irreducible factors of a the length of this 
element, we see also that any proper factor of a has a smaller 
length than a. Hence it is clear that any Gaussian semi-group 
satisfies the following condition: 

A. @3 contains no infinite sequences at, a2, ... with the prop­
erty that each ai+l is a proper factor of ai. 

We shall now show that this condition and a second condition 
that involves the concept of a prime element are sufficient that a 
commutative semi-group with identity and cancellation law be 
Gaussian. An element P of @3 is called a prime if for any product 
ab that is divisible by P it is true that either a or b is divisible by 
p. Our second condition now reads as follows: 

B. Every irreducible element of @3 is prime. 



ELEMENTARY FACTORIZATION THEORY 117 

Condition A guarantees the existence of a factorization into 
irreducible elements for any non-unit in~. Let a be a non-unit. 
We shall show first that a has an irreducible factor. If a is ir­
reducible, there is nothing to prove. Otherwise let a = albl 
where al is a proper factor. Either at is irreducible or al = a2b2 
where a2 is a proper factor of al' We continue this process and 
obtain a sequence a, at, a2, ... where each ai is a proper factor of 
ai-t. After a finite number of steps this process breaks off by 
A. If an is the last term, an is irreducible and an I a. 

We now set an = PI and we write a = PIa'. If a' is a unit, a 
is irreducible. Otherwise we have a' = P2a" where P2 is irreduci­
ble. Continuing in this way, we obtain the sequence a, a', a", ... 
each a proper factor of the preceding and each a(i-l) = Pia(i), Pi 
irreducible. This breaks off with an irreducible element a(a-l) 

= Pa. Then 

a = PIa' = PIP2a" = ... = PIP2 ... P. 

where the Pi are irreducible. 
We shall show next that condition B insures umqueness of 

factorization into irreducible elements; for let 

(1) 

be two factorizations of an element into irreducible elements. 
We suppose also that any element that has a factorization as a 
product of s - 1 irreducible elements has essentially only one such 
factorization. Now the element PI in (1) is irreducible; hence, 
by B, it is prime. A simple inductive argument shows that, if a 
product of more than two factors is divisible by Ph then so is one 
of its factors. This implies that one of the p/ is divisible by Pl' 
By rearranging the P' if necessary, we may suppose that Pt' is 
divisible by Pl. Since PI and PI' are irreducible, this means that 
PI' ,...., PI so that PI' = PIUh UI a unit. We substitute this in the 
second factorization in (1) and cancel PI to obtain 

P2Pa ... Pa = UIP2'Pa' ... Pc' 
Set 

UP2' = P2", Pa' = Pa", "', Pc' = pt. 
Then 
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where the p/' are irreducible. By the induction assumption we 
have s - 1 = t - 1 and for a suitable ordering of the Pi", 
p/' '" P.. Hence s = t and p/ '" p/' '" p. for i == 2, ... , s. 

EXERCISES 

1. Show that I[v'=5] satisfies A. 
2. Let I be the set of expressions al:f"l + atJ!'" + ... + ar where the ai 

are arbitrary dements in a fidd ij and the ai are non-negative rational numbers. 
Define addition in the obvious way and multiplication by means of x«xP = 
x« +/1. Show that I is a commutative integral domain with an identity. Show 
that the dement x ofl is not a unit but that this dement does not have a fac­
torization into irreducible dements. 

3. Show that condition B holds in any Gaussian semi-group. 

3. Greatest common divisors. Let a be an element of a Gauss­
ian semi-group e. By combining the associated irreducible fac­
tors in a factorization of a, we obtain a factorization 

(2) '1 .. a = UPl ... pr 

in which no two of the irreducible elements Ph ... , Pr are asso­
ciates, the ei are positive integers, and U is a unit. It is clear now 
that the factors of a have the form u'p/1p/' ... pr" where u' 
is a unit and the el are integers such that 0 S el S ei. 

lt is also easy to see that, if a and 0 are any two non-units, 
then we can express them in terms of the same non-associate 
primes, that is, we can write 

a = UPl'IP2" ... p:', 0 = op/lpil ••• pI' 

where U and v are units and the e, and!i are ~O. Consider now 
the element 

a = PlI1P2'1 ... pl', gi = min (ei,!i). 

Clearly a I a and a I D. Moreover, if c I a and c I 0, then c = 
Wp/'lp2"1 ... p,"', w a unit and ki S ei,!i. Hence ki S g, and cia. 
This means that the element d is a greatest common divisor of a 
and 0 in the sense of the following 

Definition 2. An element a is a greatest common divisor 
(g.c.d.) of the elements a, 0 of IS if a I a and a 10 ana any element c 
suck tkat c I a ana c lois a aivisor of a. 
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If d is a g.c.d. of a and b, then so is ud, u a unit. On the other 
hand if d' is any g.c.d. of a and b, then did' and d' I d so that 
d rv d'. Thus the g.c.d. is determined to within a unit multi­
plier. We shall find it convenient to denote any determination of 
the g.c.d. of a and b by (a,b). 

We shall now show that the existence of a greatest common 
divisor for all pairs of elements in an arbitrary semi-group ~ 
implies that ~ satisfies condition B. Thus we suppose that ~ 
is any commutative semi-group with identity and cancellation 
law such that 

C. Every pair of elements a, b in ~ has a g.c.d. in ~. 

We wish to show that every irreducible element in ~ is prime. 
For this purpose we require a number of simple lemmas. 

Lemma 1. Ij C holds in ®, then any finite number oj elements 
oj ~ have a g.c.d. 

Let a,b,c e ® and set r = (a,(b,c». Then r I a and r I (b,c) so 
that rib and ric. Also if s I a,b,c then s I a and s I (b,c) so that 
s I (a,(b,c». This shows that r = (a,(b,c» is a g.c.d. of a,b and c. 
A similar argument holds for more than three factors. Also it is 
clear that ((a,b),c) is a g.c.d. of a,b and c. This proves 

Lemma 2. (a,(b,c» "" ((a,b),c). 

We prove next 

Lemma 3. c(a,b) '" (ca, cb). 

Proof. Write d = (a,b) and e = (ca,cb). Then cd I ca and 
cd I cb. Hence cd I e. On the other hand, ca = ex and cb = ey 
and if e = cdu, then 

ca = cdux, cb = cduy. 

Hence a = dux and b = duy. Thus du I a and du I b. Hence 
du I d and u is a unit. This proves the assertion that c(a,b) '" 
(ca,cb). 

Lemma 4. Ij (a,b) "" 1 and (a,c) '" 1 then (a,bc) '" 1. 
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Proof. If (a,b) ,...., 1, then (ac,bc),...., c. Hence 1,...., (a,c) ,...., 
(a,{ac,bc)) ,...., «a,ac),bc) ,...., (a,bc). 

Now suppose that p is irreducible and that a and b are elements 
of @S such that pi abo Since p is irreducible and (p,a) is a divisor 
of p, either (p,a),...., p or (p,a) '" 1. Similarly (P,b) '" P or 
(P,b) ,...., 1. Now (p,a),...., 1 and (P,b),...., 1 would contradict 
(p,ab) '" p by Lemma 4. Hence either (p,a) ,...., p or (P,b) ,...., p. 
Thus either p I a or pi b. This proves B. The result of the pre­
ceding section now yields the following 

Theorem 1. If @S is a commutative semi-group with identity 
and cancellation law and @; satisfies A and C, then @; is Gaussian. 

We have seen in the Introduction that the semi-group of posi­
tive integers and the domain of integers have the greatest com­
mon divisor property C. Also it is clear by consideration of 
absolute values that A holds in these systems. Hence we see 
that they are Gaussian. 

EXERCISES 

1. An element m is called a least common multiple (I.c.m.) of the elements II 
and b if a I m and b I m and if n is any element such that a I nand bin, then 
min. Prove that any two elements of a Gaussian semi-group have a \.c.m. 

2. Prove that if @; is Gaussian and [a,b1 denotes a \.c.m. of a and b, then 
(o,b)[o,b],...., ob. Prove also that [o,(b,c)],...., ([a,b],[o,c]). 

3. Prove that, if p is a prime positive integer, then the binomial coefficient 

(~) = "(pp~ ")" 1 ~ i S P - 1, is divisible by p. Hence prove that in any , ,. , . 
commutative ring of characteristic p 

(3) (a + b)P = aP + bp 

holds for every a and b. 
4. Define the Mobius Junction p.(n) of positive integers by the following rules: 

(a) p.(1) = 1, (b) p.(n) = 0 if n has a square factor, (c) p.(n) = (-1)', s the length 
of n if n is square-free. Prove that p.(n) is multiplicative in the sense that 
p.(nln2) = p.(nl)p.(n2) if (nl,n2) = 1. Also prove that 

~ {I if n = 1 
dT'n p.(d) = 0 if n > 1 • 

S. Prove the Mobius inversion formula: If J(n) is a function of positive 
integers with values in a ring and 
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g(n) = L: J(d), 
dl .. 

then 

J(n) = d"f .. II- G) g(d). 

6. Prove that, if rf>(n) is the Euler rf>-function, then 

(Cf. ex. 3, p. 34.) 

4. Principal ideal domains. Let 2! be a commutative integral 
domain with an identity. We have defined the principal ideal 
(b) to be the smallest ideal in 2! containing the element b. Since 
2! has an identity, (b) coincides with the totality of multiples bx 
of the element b. Now b I a means that a = bc e (b) and this is 
equivalent to the requirement that (a) C (b). Also we note that, 
if (a) = (b), then b I a and a I b so that a '" b. The converse is 
clear too. Hence we see that b is a proper factor of a if and only 
if (a) c (b). The divisor chain condition A for an integral domain 
2! can now be stated as the following chain condition on ideals: 

A'. 2! contains no infinite properly ascending chain of ideals 
(al) c (a2) c (a3) c· . '. 

We shall consider now integral domains 2! (commutative and 
with 1) that have the property that the only ideals in 2! are the 
principal ideals. A domain of this type is called a principal ideal 
domain. The result that we wish to establish in this section is 
that every principal ideal domain is Gaussian. 

We first prove A'. Let (al) C (a2) C (a3) c· .. be an infinite 
ascending chain of ideals in 2!. Let SS = U (ai) be the logical sum 
of the sets (ai)' Then we assert that SS is an ideal in 2!. Thus let 
bl> b2 e SS, say bl e (ak), b2 e (al)' We can suppose that k ~ I. 
Then bl> b2 e (al). Hence bl - b2 and blx for any x are in (al). 
Hence bl - b2, blx e SS. This implies that SS is an ideal. Now by 
assumption SS =. (d) where de SS. Since de SS, d e (an) for some 
integer n. Hence SS = (d) = (an). Consequently, if m ~ n, 
then (am) ::> (an) = SS ::> (am) and (am) = (an). This proves 
that 2! contains no properly ascending infinite sequences of ideals. 
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Next let a and b be any two elements of ~ and let (a,b) now 
denote the ideal (a) + (b) generated by a and b. This ideal is 
the totality of elements ax + by where x and yare in~. Now 
(a,b) = (d). Since (d)::> (a) and (d)::> (b), d I a and d I b. 
On the other hand, if e I a and e I b, then (e) ::> (a) and (e) ::> (b). 
Hence (e) ::> (d) and e I d. This proves that d is a g.c.d. of a and 
b. Hence C holds and consequently we have the following 

Theorem 2. Every principal ideal domain is Gaussian. 

We have seen that, if ~ is a field, then ~[x], x transcendental, 
is a principal ideal domain (Chapter III, § 6). Hence mx] is 
Gaussian. 

EXERCISES 

1. Prove that an element p of a commutative integral domain ~ is a prime if 
and only if ~/(p) is an integral domain. 

2. Prove that, if p is a prime in a principal ideal domain, then ~/ (P) is a field. 
3. Let ~ be a principal ideal domain and ledS be any commutative integral 

domain containing~. Show that, if the elements a, b in ~ have the g.c.d. 
d e~, then d is a g.c.d. of a and b in m. 

4. Let ~ be a finite field containing q elements and let N(r,q) denote the num­
ber of irreducible polynomials of degree r in mxl. Determine N(2,q) and 
N(3,q). 

5. Prove that, if~ is a commutative integral domain with an identity that is 
not a field, then ~[xl is not a principal ideal domain. 

5. Euclidean domains. In the ring of in tegers I the function 
o(a) = I a I satisfies the conditions: 

1. o(a) is a non-negative integer, o(a) = 0 if and only if a = O. 
2. o(ab) = o(a)o(b). 
3. If b ~ 0 and a is arbitrary, then there exist elements q and 

r such that a = bq + r where oCr) < o(b). 

A similar function can be defined in any polynomial domain ~[x], 
~ a field and x transcendental. Here we take o(a(x» = 2deg a(:I:>. 

Then 1 and 2 are immediate and 3 is equivalent to the existence 
of the division process considered before. The rings I and ~[x] are 
examples of Euclidean domains defined in the following 

Definition 3. A commutative integral domain ~ with an identity 
is a Euclidean domain if there exists a function o(a) defined in ~ 
and satisfying 1, 2, and 3 above. 
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We shall give now another example of a Euclidean domain, 
namely, I[V -1 ], the totality of complex numbers of the form 
m + nV -1 where m and n are integers. Numbers of this type 
are called Gaussian integers. If a = m + nV -1, we set o(a) = 
I a 12 = m2 + n2• Then 1 and 2 are clear. Now let a and b F- 0 
be in I[-v=T]. The complex number ab-1 = p. + JlV -1 where 
p. and p are rational numbers. Now we can find integers u and v 
such that I u - p.1 :$;!, I v - pl:$;!. Set E = P. - u, ." = 
p - v, so that I E I :$; ! and I ." I :$;!. Then 

a = b[(u + E) + (v + .,,)V -1 ] 

= bq +r 

where q = u + vv=t is in nv=t] and r = beE + ."v=t). 
Since r = a - bq, r is in I[v=t]. Moreover, 

oCr) = I r 12 = I b 12(E2 + .,,2) :$; I b 12(1 + 1) = !o(b). 

Thus oCr) < o(b). 
The main result about Euclidean domains is the following 

Theorem 3. Every Euclidean domain is a principal ideal 
domain. 

Proof. Let sa be any ideal in the Euclidean domain~. If 
sa = 0, then sa = (0). Now let sa F- o. Then sa contains ele­
ments for which 0 > 0 and since the o's are non-negative integers 
there exists abe sa such that 0 < o(b) :$; o(e) for every e F- 0 in 
sa. If e is any element of sa, we can write e = bq + r where 
oCr) < o(b). But r = e - bq e sa since sa is an ideal. Since o(b) 
is the least positive 0 for the non zero elements of sa and oCr) < 
o(b), we conclude that r = o. Thus e = bq e (b). Hencesa = (b) 
and this completes the proof. 

Since every principal ideal domain is Gaussian, we have the 

Corollary. Every Euclidean domain is Gaussian.* 

• Additional results on Euclidean domains are given in § 10 of Chapter VI. 
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EXERCISES 

1. Prove that /['V'2 J, the set of real numbers of the form m + nV2, m 
and n integers, is Euclidean. 

2. Let 2l be the totality of complex numbers m + nv1=3 where m and n 
are either both integers or both halves of odd integers. Show that 2l is a ring 
relative to the usual addition and multiplication. Prove that 2l is Euclidean. 

3. Prove that an element a of a Euclidean domain is a unit if and only if 
8(a) = 1. 

4. Let 2l be a Euclidean domain whose function satisfies the condition: 
8(a + b) ~ max(o(a), o(b)). Show that 2l is either a field or a polynomial 
domain mxJ over a field ~. 

6. Polynomial extensions of Gaussian domains. In this sec­
tion we prove the important theorem that, if 2l is Gaussian and x 
is transcendental, then 2l[x] is Gaussian. 

Let j(x) = ao + alX + ... + anxn ~ 0 be in 2l[x] and let d 
be the g.c.d. of the non-zero coefficients ai. We write ai = da/ 
and hencej(x) = dft(x) where 

ft(x) = ao' + al'x + ... + an'xf/,. 

Evidently the g.c.d. of the non-zero a/ is 1 (or a unit), A poly­
nomial having this property is called primitive. Suppose now 
that j(x) = ef2(X) is any factorization of j(x) as a product of a 
constant e (= element of 2l) and a primitive polynomial. Then e 
is a common factor of the coefficients of j(x) so that e I d, say 
d = ek. Thenj2(x) = kjl(X) and, since/2(x) is primitive, k is a 
unit. Thus any non-zero polynomial can be written in essentially 
only one way as a product of a constant and a primitive poly­
nomial. 

In studying 2l[x] we find it convenient to introduce the poly­
nomial ring ~[x] where ~ is the field of fractions of 2l. We now 
prove the following 

Lemma 1. Ij jl(X) and/2(x) are primitive in 2l[x] and are asso­
ciates in mx], then ft (x) and j2(X) are associates in 2l[x]. 

Proof. Since the units of mx] are the non-zero elements of 
ty, we havejl(x) = ex/2(x), ex ~ 0 in ty. Write ex = d2dl -r, di in 
2l. Then ddl(X) = dd2(X). This gives two representations of a 
polynomial in 2l[x] as a product of a constant and a primitive 
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polynomial. It follows that dl and d2 differ by a unit in ~ and 
thatjl(x) andj2(x) differ by a unit in ~[x]. 

The key result needed to prove that ~[x] is Gaussian is the 
following 

Lemma 2 (Gauss). The product oj primitive polynomials is 
primitive. 

Proof. Letj(x) = ao + alX + ... + anxn and g(x) = bo + b1x 
+ ... + bmxm be primitive and suppose thatj(x)g(x) = Co + CIX + 
... + Cn+mxm +n is not primitive. Then there exists an irreducible 
element p e ~ such that pi Ci for all i. Sincej(x) is primitive, p 
is not a factor of all the ai and we suppose that an' is the last ai 
not divisible by p. Similarly let bm, be the last bi not divisible by p. 
We now consider the coefficient 

Cm'+n' = aobm'+n' + a1bm'+n'-1 + ... + an'_lbm'+l + an,bm, 

+ an'+lbm'-l + ... + an'+m,bo• 

Since all the bi before the term an,bm, are divisible by p and since 
all the aj after this term are divisible by p and since Cm'+n' is 
divisible by p, p I an,bm,. But p is not a divisor of an' or of bm, 

and this contradicts the fact that p is irreducible and hence prime 
(cf. ex. 3, p. 118). 

A consequence of Gauss' lemma is 

Lemma 3. Ij j(x) is an irreducible polynomial oj degree> 0 
in ~[x],j(x) is irreducible in jJ[x]. 

Proof. Sincef(x) is irreducible, it is primitive. Now letf(x) 
be any primitive polynomial in ~[x] and suppose that, in jJ[x], 
((x) = ~1(X)~2(X) where deg ~i(X) > O. Now if ~(x) is any poly­
nomial r= 0 in jJ[x], let the coefficients of ~(x) be (Xj = ajbj- 1, 

a;, bj in~. Then we can set 

(Xj = (ajbo ... bj-1bi+1 .. , bn)(bobt .•• bn)-I 

and this gives us a way of writing the (Xj with the same denomi­
nator b = bobt •.• bn• Thus ~(x) = b-Ig(x) where g(x) e 2I[x]. 
Also we can write g(x) = ch(x) where C e 2I and hex) is primitive. 
Then ~(x) = b-1ch(x). We apply these considerations to the 
~i(X) and obtain ~i(X) = bi -lcalzi(X). Then 
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and 
blbd(x) = ClC2hl (x)h2(x). 

Since the hi(x) are primitive, hl (x)h2(x) is prImItIve. Hence 
f(x) '" hl(x)h2(x) and we can suppose that f(x) = -hl (x)h2(x). 
Since deg hi(x) = deg cfJi(X) > 0, this is a proper factorization of 
f(x) in ~[x]. It follows therefore that, if f(x) is irreducible in 
~[x], then it remains irreducible in l5[x]. 

We can now prove the main result. 

Theorem 4. If ~ is Gaussian, then so is ~[x], x transcendental 
over ~. 

Proof. Let f(x) be ~ ° and ~ a unit. Then f(x) = dfl(X) 
wherefl(x) is primitive and d is a constant. If!t(x) is not a unit 
and is reducible, !t (x) = fll (X)/12(X). Evidently the fli(X) have 
positive degree. Hence deg fli(X) < deg !t(x). Continuing in 
this way we arrive at a factorization offl(x) as 

fleX) = ql(X)q2(X) ... qh(X) 

where the qi(X) are irreducible and of positive degree. Also we 
can factor d = PlP2 ... p. where the Pi are irreducible in ~ and 
hence in ~[x]. This gives a factorization of f(x) into irreducible 
factors in ~[x]. Now suppose that 

(4) f(x) = PlP2 ... P.ql(X)q2(X) ... qh(X) 

= Pl'P2' ... P/ql'(X)q2'(X) ... q,/(x) 

are two factorizations off(x) into irreducible factors and suppose 
that the notation has been chosen so that deg qi(X) > 0, deg 
q/(x) > 0, Pi, p/ e ~. Then the qi(X) and q/(x) are primitive. 
Hence ql(X)q2(X) ... qh(X) and Ql'(X)q2'(X) .. 'qk'(X) are primi­
tive. It follows that these two products are associates, and, by 
changing one of the terms by a unit, we can suppose that IIqi(X) = 
IIq/(x). Then also IIPi = IIp;'. By Lemma 3 the qi(X) and q/(x) 
are irreducible in ij[x]. Since ij[x] is Gaussian, the q/(x) can be 
arranged so that q/(x) is an associate of qi(X) in l5[x]. But then 
Lemma 1 shows that these polynomials are also associates in 
~[x]. Finally, since ~ is Gaussian, the primes Pi and p/ in the 
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factorizations IIPi = IIp/ can be paired off into associate pairs. 
Hence the two factorizations in (4) are essentially the same. 

An immediate corollary of this theorem is that, if 2l: is Gaussian 
and the Xi are algebraically independent, then 2l:[Xb X2, ••• , xr ] 

is Gaussian. For example, if \J is any field, then \J[Xb X2, "', xr] 

is Gaussian. Also J[Xb X2, "', xr] is Gaussian. The rings 
\J[Xb X2, "', xr ] with r > 1 and J[Xb X2, "', xr ] with r ~ 1 are 
not principal ideal rings. Hence the class of Gaussian domains is 
more extensive than the class of principal ideal domains. 

EXERCISES 

1. Prove that, ifj(x) in I[xj has leading coefficient 1 and has a rational root, 
then this root is an integer. 

2. Prove the following irreducibility criterion due to Eisenstein: If j(x) = 
ao + al x + ... + anxn e I[ x] is primitive and there exists a prime p in I such that 
p lao, p I ai' .. " p I an-l but p X an (p is not a factor of an) and p2 X ao thenf(x) 
is irreducible in I[ x] and hence in Ro[ x], Ro the field of rational numbers. 

3. Show that if p is a prime then the polynomial obtained by replacing x 
by x + 1 in xp - 1 + xp - 2 + ... + 1 = (xP - 1)/(x - 1) is irreducible in Ro[xj. 
Hence prove that the cyclotomic polynomial xp - 1 + xp - 2 + ... + 1 is irreducible 
in Ro[x). 



Chapter 17 

GROUPS WITH OPERATORS 

In this chapter we resume our study of the theory of groups. 
The results that we obtain concern the correspondence betwee~ 
the subgroups of a group and those of a homomorphic image, 
normal series and composition series, the Schreier theorem, direct 
products and the Krull-Schmidt theorem. The range of applica­
tion of these results is enormously extended by introducing the 
new concept of a group with operators. This concept, which was 
first considered by Krull and by Emmy Noether, enables one to 
study a group relative to an arbitrary set of endomorph isms. 
In this way, one achieves a uniform derivation of a number of 
classical results that were formerly derived separately. Also 
applications to the theory of rings are obtained by considering the 
additive group relative to the sets of multiplications as operator 
domains. 

1. Definition and examples of groups with operators 

Definition 1. A group with operators is a system consisting of a 
group ®, a set M and a function defined in the product set ® X M 
and having values in ® such that, if am denotes the element in ® 
determined by the element a of ® and the element m of M, then 

(1) (ab)m = (am)(bm) 

holds for any a,b in ®. 

If m is fixed and x varies over ®, then x -. xm is a mapping of 
® into itself. We denote this mapping as iii and we note that 
the assumption (1) states that iii is an endomorphism in ®. Thus 

128 
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every element me M determines an endomorphism iii and we have 
a mapping m ~ iii of M into the set ~ of endomorphisms of ®. 
It is not required that this mapping be 1-1, that is, we may have 
iii = n though m and n are distinct in M. These remarks lead 
to an alternative definition of the concept of a group with· oper­
ators, namely, the following 

Definition 1'. A group with operators is a syslem consisling 
of a group ®, a scI M and a mapping m ~ iii of M inlo Ihe scI of 
endomorphisms of ®. 

We have seen that if ®,M and the mapping (a,m) ~ am is a 
group with operators in the sense of definition 1, then x ~ xm is 
an endomorphism m in ®. Also we have the correspondence 
m ~ m. Hence we have a system satisfying definition I'. 
On the other hand, if we have a system of the latter type, then 
we can define the mapping (a,m) ~ am = am, and we see that 
(1) holds. Hence we obtain a group with operators in the original 
sense. Finally, it is clear that, if we begin with a system satisfy­
ing 1 (I') and we apply successively the two procedures for chang­
ing to a system of the other type, then we return to the original 
system. Hence the two definitions are equivalent. 

The second formulation is well suited for constructing examples 
of groups with operators. For this purpose we can select any set 
M of endomorphisms of a group ® and we can let our mapping 
m ~ iii be the identity. Important sets of endomorphisms that 
can be used in this way are (1) 3, the set of inner automorphisms, 
(2) ~, the complete set of automorphisms, (3) ~, the set of endo­
morphisms. 

An example that is conveniently defined by means of the first 
formulation is the following: ®, the group of vectors in three­
dimensional space; M, the set of real numbers; the product func­
tion vI for v in ® and I in M, as the usual product of a vector by a 
number. Thus, if v = (x,y,z), then 

vI = (IX ,Iy ,Iz) . 
The well-known rule 

(v + v')1 = vI + v'l 

is our requirement (1) in additive dress. 
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The theory of groups with operators also has important applica­
tions to the theory of rings. These applications result in con­
sidering certain groups with operators defined in the additive 
group of a ring. There are three such groups with operators. 
In all three, the group ® is the additive group ~,+, M is a set 
of endomorphisms of ~,+ and the mapping of M is the identity. 
In the first case we take M = ~r, the set of right multiplications. 
Next we set M = ~z, the set of left multiplications, and finally 
we set M = ~r U ~,. Accordingly we say that ~ acts on the 
right, on the left, or on both sides in its additive group. 

We shall usually use the phrase "® is a group with operator 
set M" or "® is an M-group" in referring to a group with oper­
ators. 

We can derive some elementary properties of the product am 
by using the fact that in is an endomorphism. Thus it is clear 
that 1m = 1, that a-1m = (am) -1 and, more generally, a1cm = 
(am)1c for any integer k. 

2. M-subgroups, M-factor groups and M-homomorphisms. 
The concept of a group with operators is formulated to focus atten­
tion on the collection of subgroups that are sent into themselves by 
a particular set of endomorphisms; for in studying an M-group 
it is natural to restrict one's attention to these subgroups of ®. 
A subgroup -i> is said to be an M-subgroup if hm e -i> for every 
h e -i> and every m e M. 

It is interesting to see what are the M-subgroups in the exam­
ples given in the preceding section. In (1) M = 3 and -i> is an 
M-subgroup if and only if g-1-i>g C -i> for every g e ®. Thus 
the M-subgroups are just the invariant subgroups of ®. In (2) 
M = ~ and an M-subgroup -i> is, in particular, invariant. More­
over, -i> is mapped into itself by every automorphism of ®. Sub­
groups having this property are called characteristic subgroups. 
In (3) M = ~, and here -i> is an M-subgroup if and only if -i> 
is mapped into itself by every endomorphism of ®. Subgroups 
with this property are said to bejully invariant. In the example 
of the vector group, a subgroup -i> is an M-subgroup if it is closed 
under scalar multiplication. Such subgroups are called subspaces. 

We consider also the groups with operators determined by 
a ring. If ~ acts on the right (M = ~r), then a subset 58 is an 



GROUPS WITH OPERATORS 131 

M-subgroup if and only if it is a subgroup of the additive group 
1,+ and it is closed under right multiplication by arbitrary ele­
ments of I. Thus the M-subgroups in this case are the right ideals 
of the ring. Similarly, if I acts on the left, then the M-subgroups 
are the left ideals. Finally, if ~ acts on both sides, then the 
M-subgroups are the two-sided ideals. 

I t is immediate that, if { .\)} is a collection of M-subgroups of ®, 
then the intersection n.\) of all these groups is an M-subgroup. 
Also the group ~ = [U.\)] generated by these subgroups is an 
M-subgroup; for the elements of this group are finite products 
h = hlh2 ... hn, hi e.\)i e {.\)}. Hence hm = (hlm)(h2m) ... (hnm) 
e ~ since him e .\)i. 

If .\) is an M-subgroup of an M-group ®, we can regard.\) as an 
M-group too. Here we take the product hm, he.\), m e M to be 
the product as defined in the M-group ®. Then it is clear that 
(1) holds. We shall now show that, if .\) is invariant, then there 
is also a natural way of regarding the factor group @ = ®/.\) as 
an M-group. This is done by defining 

(2) (g.\)m = (gm).\) 

for every g e ® and every m e M. I t is necessary to show that 
the product thus defined is single-valued and that (1) holds. 
Now let g.\) = g'.\). Then g' = gh, h in .\) and g'm = (gm)(hm) 
where hm e.\'l. Hence (gm).\'l = (g'm).\'l and this proves the first 
assertion. To prove the second we note that 

«gl4»(g2.\))m = (glg24»m = «glg2)m).\) = (glm)(g2m).\) 

= «(glm).\)«(g2m).\)~ 

We shall refer to the group with operators thus defined as the 
M-Jactor group ®/.\). 

In comparing groups with operators we shall restrict our atten­
tion to groups that have the same set of operators M. The basic 
concept that we consider is that of homomorphism. A mapping 
11 of the M-group ® into the M-group ®' is called a homomorphism 
(M-homomorphism) if 11 is a group homomorphism and 

(3) (am)l1 = (al1)m 
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holds for all a e @ and all m eM. We have the usual special cases 
of homomorphism: isomorphism if 1] is 1-1, endomorphism if 
@' = @, automorphism if @' = @ and 1] is 1-1 of @ onto itself. 
If there exists an isomorphism of @ onto @', then these M-groups 
are said to be isomorphic ("-'). 

If 1] is an M-endomorphism of @, the condition (3) is equivalent 
to m1] = 1]m. Thus the M-endomorphisms are just the endo­
morphisms that commute with the endomorphisms m. 

Now let 1] be an M-homomorphism of @ into @' and let a1] 
be any element of the image set @1]. If m eM, (a1])m = (am)1] 
e @1]. Since @1] is a subgroup, this shows that @1] is an M-sub­
group of @'. We consider next the kernel sr of 1]. We know 
that sr is an invariant subgroup of @. Also if k e sr and m e M, 
then (km)1] = (k1])m = l'm = 1'. Hence km e sr and sr is an 
M-su bgroup of @. This proves 

Theorem 1. If 1] is a homomorphism of the M-group @ into 
the M-group @', then the image @1] is an M-subgroup of @' and 
the kernel of the homomorphism is an invariant M-subgroup of @. 

EXERCISES 

1. Show that any characteristic (fully invariant) subgroup sr of a ch:;.r­
acteristic (fully invariant) subgroup ~ of @ is characteristic (fully invariant) 
in@. 

2. Prove that any subgroup of a cyclic group is fully invariant. 
3. Show that the subgroup@(l)generated by all the commutators [s,tj == sts-1r\ 

s,t in @, is a fully invariant subgroup. @(l) is called the (first) commutator group 
of@. Prove that @/@(l) is commutative and that if ~ is any invariant subgroup 
such that @/~ is commutative then ~:::J @(l). 

4. Let 2l be a ring with an identity, and regard ~{ as an M-group with M = 2lr. 
What are the M-endomorphisms of 2l? Answer the same question for M = 
2lr U 2lz. 

3. The fundamental theorem of homomorphism for M-groups. 
I t is clear that the resultant of M-homomorphisms is an M-homo­
morphism. Moreover, if ~ is an invariant M-subgroup of the 
M-group @, then the natural mapping JI of @ onto the M-group 
@ = @/ ~ is an M-homomorphism; for by definition (g~)m = 
(gm)~ and, since gJl = g~, this means that gJlm = gmJl. 

Next let 1] be an M-homomorphism of @ in to @' and let ~ be 
an invariant M-subgroup of @ contained in the kernel sr of 1]. 
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Then as in the case of ordinary groups (cf. p. 44) the correspond­
ence gS) ~ gTJ is single-valued and it defines a homomorphism 7] 

of the M-group ® = ®/ S) into ®'. The only new fact that has 
to be established is that 7] behaves properly relative to the ele­
ments in M, that is, that ((gS))m)17 = ((gS))17)m. This follows 
from 

((gS))m)17 = ((gm)S))7] = (gm)T) = (gTJ)m = ((gS))17)m. 

As usual we have the factorization TJ = v17 where v is the natural 
mapping of ® onto ®. Also 17 is 1-1 if and only if Sf = S). This 
leads immediately to 

The fundamental theorem of homomorphism for M-groups. 
Any factor group of ® relative to an invariant M-subgroup is a 
homomorphic image of Gl. Conversely if ®' is an M-group which is 
a homomorphic image of the M-group ®, then ®' is isomorphic to 
a factor group of @ relative to an invariant M-subgroup. 

4. The correspondence between M-subgroups determined by a 
homomorphism. Thus far we have considered only extensions to 
M-groups of results obtained previously for ordinary groups. We 
shall begin now to derive some new results. It should be noted 
that these will apply also to ordinary groups, since the theory of 
these groups is the special case of the theory of M-groups ob­
tained by taking M to be a vacuous set. Then M-subgroups 
become ordinary subgroups, M-homomorphisms, ordinary homo­
morphisms, etc. 

Let TJ be an M-homomorphism of ® onto ®' and let Sf be the 
kernel. If S) is an M-subgroup of ®, TJ maps S) homomorphic ally 
onto the M-subgroup S)TJ of ®'. On the other hand, if S)' is any 
M-subgroup of ®', then the inverse image S) = TJ-1(S)') is an 
M-subgroup of ®; for, if hI, h2 e S), then (h1h2 -1)T) = (h1 TJ) (h2TJ)-1 
e S)' so that h1h2 -1 e S). Also if he S) and me M, then (hm)T) = 
(hTJ)m e S)'. Hence hm e S). 

Evidently S) = TJ-1(S)') contains Sf = TJ-1(1') and S)TJ = S)'. 
Thus we see that we can obtain every M-subgroup of ®' by apply­
ing TJ to an M-subgroup of ® that contains Sf. Now let S) be any 
M-subgroup of ® that contains Sf and let S)1 = TJ-1(S)TJ). Clearly 
S)1 ~ S). On the other hand, if h1 e S)h then h1 TJ = hTJ for some 



134 GROUPS WITH OPERATORS 

h in~. Hence hI = hk, k in~. Since ~ ~ ~, this implies that 
hI e~. Hence 17-I(~17) = ~. 

We can now easily prove the following 

Theorem 2. Let 17 be an M-homomorphism of ® onto ®' with 
kernel ~ and let {~} be the collection of M-subgroups of ® that 
contain~. Then the mapping ~ ~ ~17 is 1-1 of {~} onto the 
collection of M-subgroups of ®'. The subgroup ~ is invariant in 
® if and only if its image ~' = ~17 is invariant in ®'. 

Proof. We have seen that ~ ~ ~17 is a mapping of {~} onto 
the set of M-subgroups of ®'. Also if ~I and ~2 e {~} and 
~117 = ~217, then ~I = 17-I(~I17) = 17-1(~217) = ~2' Hence, our 
mapping is 1-1. It is easy to verify that ~ is invariant in ® if 
and only if ~' = ~17 is invariant in ®'. 

An important special case of this theorem is obtained by con­
sidering the natural homomorphism v of ® onto an M-factor 
group ®/~, ~ an invariant M-subgroup. In this case, we see that 
any M-subgroup of ® = ®/~ is obtained by applying v to an M­
subgroup ~ of ® that contains~. The image ~v is the set of 
cosets h~, he ,p; hence it is just the factor group ~/~. We can 
therefore state the following 

Corollary. Let ® be an M-group and ~ an invariant M-subgroup. 
Then any M-subgroup of the M-Jactor group ®/~ has the form 
~/~ where ~ is an M-subgroup of ® containing~. Distinct ,p's 
give rise in this way to distinct M-subgroups oj ®/~, and ~ is 
invariant in ® if and only if ,p/~ is invariant in ®/~. 

Analogous results can be proved for rings. These can either be 
proved directly, or they can be obtained as special cases of the 
group theorems. We shall employ the second method here. Let 
17 be a homomorphism of the ring ~ onto the ring ~' and let ~ 
be the kernel of 17. Then we can consider ~,+ as a group with 
the operator set M = ~r U ~z. Moreover, we can also consider 
~',+ as an M-group; for we can define 

(4) 
x'ar == x'(aTJ)r = x'(aTJ) 

x'az == x'(a17)z = (aTJ)x', 

and it is clear that the basic requirement (1) is fulfilled. When 
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this definition is used, 7] becomes an M-homomorphism of !,+ 
onto !',+, since 

(X7])ar = (x7])(a7]) = (xa)7] = (xar)7] 

(x7])az = (a7])(x7]) = (ax)7} = (xaz)7}. 

Finally we need to observe that the M-subgroups of!',+ are just 
the (two-sided) ideals of the ring !'; for, if 58' is an M-subgroup, 
then b'(a7]) and (a7])b' e 58' for every b' in 58'. Since the set {a7]} = 

!', 58' is an ideal. The converse is clear, too. Now Theorem 2 
establishes a 1-1 correspondence between the set {58} of ideals 
of ! that contain sr and the complete set of ideals in !'. In 
particular, we have a 1-1 correspondence between the set of 
ideals {58}, 58 ::> sr, and the ideals of the difference ring !/ sr. 
Any ideal of !/sr has the form 58/sr, 58 an ideal of! containing sr. 
Distinct 58's give rise to distinct ideals 58/sr. 

EXERCISES 

1. Determine the ideals of I/(m), m > O. 
2. Give a direct derivation of the correspondence between ideals of a ring 

and those of a homomorphic image. 

5. The isomorphism theorems for M-groups. In this section 
we shall prove three important theorems on the isomorphism of 
M-groups. The first of these can be regarded as a supplement to 
the theorem establishing the correspondence between the sub­
groups of a group and of a homomorphic image. As before, let 7] 

be a homomorphism of the M-group ® onto the M-group ®' and 
let R be the kernel. Let ~ be an invariant M-subgroup of ® that 
contains the kernel sr and let ~' = ~7]. Then, if 11' is the natural 
homomorphism of ®' onto ®'/~', 7]11' is a homomorphism of ® 
onto ®' / ~'. If K7]lI' = ~', K7] e ~' and conversely. Hence the 
kernel of 7]11' is the group~. By the fundamental theorem the 
mapping 7].,,' defined by K~ -+ K7]lI' = (g7])~' is an M-isomorphism 
of ®/ ~ onto ®' / ~'. This proves the 

First isomorphism theorem. Let 7] be a homomorphism of the 
M-group ® onto the M-group ®' with kernel R and let ~ be an 
invariant M-subgroup of ® that contains sr. Then.\)7] = -i)' is 
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invariant in @' and the M-Jactor groups @/.p and @'/.p' are iso~ 
morphic under the correspondence g.p -) (g1J).p'. 

As a special case of this theorem we take @' to be the M-factor 
group @/St, and 1J = " the natural homomorphism. If.p is 
an invariant M-subgroup of @ containing St, then .p1J is the factor 
group .p/St of cosets hSt, h in.p. Hence we have the 

Corollary. If Rand .p are invariant M-subgroups of @ and 
.p ::J St, then @/.p and (@/R)/(.p/R) are isomorphic. 

Assume next that @l and @2 are M-subgroups of @ and that 
@2 is invariant. The M-subgroup generated by @l and @2 is the 
product set @1@2 = @2@1' It is clear that the correspondence 
gl -) gl@2, gl in @h is a homomorphism of the M-subgroup @l 
into @1@2/@2' Any coset in @1@2 has the form glg2@2 = gl@2, 
gi e @i. Hence our homomorphism is a mapping onto @1@2/@2' 
If gl@2 = @2, then gl e @2 and so gl e @l n @2' This shows that 
the kernel of the homomorphism gl -) gl@2 is @l n @2' We 
therefore have the following 

Second isomorphism. theorem. If @1 and @2 are M-subgroups 
of a group and @2 is invariant, then (1) @l n @2 is invariant in @h 
and (2) the M-Jactor groups @1@2/@2 and @t/(@l n @2) are 
isomorphic under the correspondence gl@2 -) gl(@l n @2)' 

We shall establish next a somewhat more complicated iso­
morphism theorem which will be used in the next section to prove 
an important refinement theorem due to Schreier. 

Third isomorphism theorem (Zassenhaus). Let @/ and @i, 
i = 1,2, be M-subgroups oj @ such that @/ is invariant in @i. 
Then (@l n @2')@1' is invariant in (@l n @2)@1', (@l' n @2)@2' is 
invariant in (@l n @2)@2' and the corresponding factor groups are 
M-isomorphic. 

Proof. Consider the subgroup (@l n @2')@1' of (@l n @2)@1" 
First we show directly that it is invariant: Let x e @l n @2; 
y e @1 n @2'; z,t e @1" Then x-1yx e @1 n @2' and x-1zx e @1' 
whence 

(5) 
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Also t-Iyt = rI(yty-I)y, and since yty-I e ®I', we have t-Iyt e 
®l'(®l n ®2') = (®l n ®2')®l'. Hence 

(6) rI(®I n ®2')®l't = t-1(®I n ®2')tt-1®I't C (®I n ®2')®I'. 

It is clear from (5) and (6) that (®1 n ®/)®/ is invariant in 
(®I n ®2)®1" By the second isomorphism theorem, it follows 
that (®I n ®2')®I' n (®I n ®2) is invariant in ®1 n ®2 and 

(7) (®I n ®2)/(®1 n ®2')®1' n (®I n ®2) 

~ (®I n ®2)(®I n ®2')®1' /(®1 n ®2')®I' 

= (®l n ®2)®/ /(®1 n ®2')®l'. 
On the other hand, 

(8) (®1 n ®2')®1' n (®I n ®2) = (®I n ®2')®I' n ®2 

and any element of (®1 n ®/)®1' has the form yz, y e ®1 n ®2', 
z e ®1'. If yz e ®2 then z = y-l(yZ) e ®2 so that z e ®2 n ®1'. 
Hence yz e (®1 n ®2') (®1' n ®2) and (®1 n ®2')®1' n ®2 C 

(®1 n ®2')(®1' n ®2)' The reverse inequality is clear. Hence 
(®I n ®2')®/ n ®2 = (®1 n ®2')(®1' n ®2)' Consequently (7) 
can be re-wri tten as 

(9) (®1 n ®2)/(®1 n ®2')(®1' n ®2) 

~ (@1 n @2)@1'/(@1 n @2')@1" 
By symmetry we have also 

(10) (®1 n ®2)/(®1 n ®2')(®I' n @2) 

'" (@1 n ®2)@2'/(@2 n ®1')®2" 

Our result now follows from (9) and (10). 

EXERCISES 

1. Show that the third isomorphism theorem implies the second. 
2. Let ®t, ®1' be M-subgroups such that ®t' is invariant in ®t and let S) 

be any M-subgroup of ®. Prove that .pt' = @t' n .p is invariant in .pt = 
®1 n .p and that .pt/.pl' is isomorphic to a subgroup of ®t/®t'. 

3. State the ring analogues of the first and second isomorphism theorems. 

6. Schreier's theorem. We shall consider now a type of fac­
torization of a group into factor groups. Let 
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(11) 

be a sequence of M-subgroups of the M-group ® such that each 
®i+1 is invariant in ®i. We call such a sequence a normal series 
for ®. The factor groups 

(12) ®d®2' ®2/®a, .. " ®./®.+1 = ®. 

are the factors of the normal series. As an example we let ® be 
the finite cyclic group of order n. Then the subgroup ®i is deter­
mined by its order ni and ni+1 I ni. The ratio qi = ni/ni+1 is 
the order of ®i/®i+1' Since n = n1 = q1n2, n2 = q2na, "', 
n = q1q2 ... q8' Conversely, if n = q1q2 ... q. is a factorization 
of n, then the cyclic group ® has a subgroup ®i of order ni = 

qiqi+1 ... q.. Hence ® = ®1 :::> ®2 :::> ••• :::> ®a+l = 1, and the 
order of ®i/®i+l is qi. 

The two normal series 

(13) 
® = ®1 :::> ®2 :::> ••• :::> ®a+l = 1 

® = .\)1 :::> .\)2 :::> ••• :::> .\)1+1 = 1 

are said to be equivalent if it is possible to set up a 1-1 corre­
spondence between the factors of the two series such that the 
paired factors are isomorphic. We say that one normal series 
is a refinement of a second if its terms include all of the groups that 
occur in the second series. We can now state the following 
fundamental theorem. 

Schreier's refinement theorem. Any two normal series Jor an 
M-group have equivalent refinements. 

Proof. Let the two series be given by (13). We set 

®ik = (®i n .\)k)®i+h k = 1,2, "', t + 1 
(14) 

Then 

® = ®ll :::> ®12 :::> ••• :::> ®I,t+1 

= ®21 :::> ®22 :::> ••• :::> ®2,t+l ... :::> ®.,t+l = 1, 
(15) 

@ = .\)11 :::> .\)12 :::> ••• :::> .\)1,.+1 

= .\)21 :::> .\)22 :::> ••• :::> .\)2,.+1 ••. :::> .\)',.+1 = 1. 
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Now we can apply the third isomorphism theorem to the groups 
®i, .\)k, ®i+h .\)k+l to conclude that ®i,k+1 = (®i n .\)k+l)®i+l 
is invariant in ®ik = (®i n ,pk)®i+l, that ,pk,i+l = (®i+l n 
.\)k).\)k+l is invariant in .\)ki = (®i n ,pk),pk+l and that ®ik/®i,k+l 
'" ,pki/ ,pk,i+l' Hence the two series in (15) are normal and 
equivalent. Since these series are refinements of the series given 
in (13), this proves the theorem. 

EXERCISES 

1. Show that, if ® = ®1:J ®2:J·· .:J ®.+l = 1 is a normal series for ® 
and ,p is any M-subgroup, then ,p = (,p n ®l) ~ (,p n ®2) :J ... :J (,p n 
®.+l) = 1 is a normal series for,p. Show that the factors of the second series 
are isomorphic to subgroups of the factors of the first series. 

2. An ordinary group is called solvable if it has a normal series whose factors 
are commutative groups. Prove that any subgroup and any factor group of a 
solvable group is solvable. 

3. Define the higher derived groups of ® inductively by ®(s") = (®(i-l»)(l) 
(cf. ex. 3, p. 132). Prove that ® is solvable if and only if ®(.) = 1 for some 
integer s. 

4. Prove that any finite group of prime power order is solvable (cf. ex. 3, 
p.48). 

7. Simple groups and the Jordan-Holder theorem. The sub­
groups ® and 1 are invariant M-subgroups in any M-group ®. 
If ® ;e 1 and these are the only invariant M-subgroups, then ® 
is called M-simple. For example, any cyclic group of prime order 
is simple. Another important class of simple groups is furnished 
by the following 

Theorem 3. The alternating group An is simple if n ~ 5. 

Proof. We have seen (ex. 2, p. 37) that An is generated by 
its three-cycles (i j k). We note next that, if an invariant sub­
group ,p of An contains one three-cycle, then it contains every 
three-cycle; hence, it coincides with An. For let (1 23) e .\) and 
let (i j k) be any three-cycle. Then we can extend the mapping 
1 -+ i, 2 -+ j, 3 -+ k to a permutation 

= (1 2 3 4 5 ... ) 
'Y •. k I t J m ... 

of 1, 2, "', n. If 'Y is odd, we can multiply it on the right by 
(1m) to obtain an even permutation. Hence, we may suppose that 
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-yeAn. Since -y-1(1 23)-y = (i j k) e 4) this proves our assertion, 
We shall now show that, if 4) ~ 1, then 4) contains a three-cycle. 
Let a be a permutation belonging to 4) that is ~ 1 and that leaves 
fixed as many elements as any other permutation ~ 1 in 4). 
If a is not a three-cycle, either a contains a cycle of length ~3 
and moves more than three elements or a is a product of at least 
two disjoint transpositions. Accordingly we may assume that 
either 

(16) a = (123 ... )( 

or 

(17) a = (1 2) (3 4) ... , 

In the first case a moves at least two other numbers, say 4,5, 
since a is not one of the odd permutations (1 23 k). Now let 
{3 = (3 4 5) and form a1 = {3-1 a {3. If a is as in (16) 

a1 = (1 24 ... )( ) ... 

and if a is as in (17) 

al = (12)(45) ... , 

Now it is clear that, if a number i > 5 is left fixed by a, then 
it is also left fixed by al and hence it is left fixed by ala -1 , More­
over 1ala-l = 1 if a is as in (16) and 1ala-1 = 1 and 2ala-l = 2 
if a is as in (17). Thus ala-l leaves invariant more elements 
than a. Since a1a-1 ~ 1, this contradicts our choice of a. 

Hence a is a three-cycle, and the theorem is proved. * 
We shall say that the invariant M-subgroup 4) of ® is maximal 

in ® if ® :::) 4) and there exists no invariant M-subgroup ~ such 
that ® :::) ~ :::) 4). It is clear from our correspondence between 
subgroups of a group and those of a factor group that 4) is maximal 
in ® if and only if ®/4) is M-simple. 

We now define a composition series for a group ® to be a normal 
senes 

(18) 

• This proof is essentially the saqle as the one given in van der Waerden's Modern, 
Algebra. 
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with the property that each ®i+l is maximal in ®i. Thus a com­
position series is a normal series whose factors are simple groups 
~ 1. An M-group ® need not have a composition series. For 
example, if M is vacuous and ® is an infinite commutative group, 
then ® does not have a composition series. To see this we note 
first that a simple commutative group has no subgroups other 
than 1 and the whole group. Therefore, such a group is neces­
sarily a finite cyclic group of prime order. Hence, if (18) is a 
composition series for an ordinary commutative group, then the 
factor groups ®d®i+l are cyclic of prime order. Now if a group 
® contains a subgroup .p of finite order m and finite index r, 
then ® is of finite order mr. It follows easily from this that a 
group that has a composition series whose factors are finite groups 
is itself finite. In particular, we see that, if ® is an ordinary com­
mutative group with a composition series, then ® is finite. 

If an M-group does have a composition series, then the com­
position factors (= factors of the composition series) are uniquely 
determined by the group. This is the content of the 

Jordan-Holder theorem. Any two composition series for an 
M-group are equivalent. 

Proof. By Schreier's theorem the composition series have 
equivalent refinements. On the other hand, it is clear from the 
definition of a composition series that a refinement of such a series 
has the same factors ~ 1 as the given series. Now in the 1-1 
correspondence between the factors of the refinements the factors 
= 1 are paired. Hence, the factors ~ 1 are also paired. Since 
these are the composition factors of the given composition series, 
we see that the two composition series are equivalent. 

EXERCISES 

1. Apply the Jordan-Holder theorem for finite cyclic groups to prove the 
uniqueness of factorization of a positive integer into positive primes. 

2. Show that, if ® has a composition series, then any normal series for ® in 
which the terms are properly decreasing can be refined to a composition series. 

3. Show that, if ® has a composition series, then any invariant subgroup of 
® and any factor group of ® has a composition series. Show also that the 
composition factors of these series are M-isomorphic to composition factors of ®. 
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8. The chain conditions. We shall now state two conditions 
that together are sufficient that an M-group ® possess a composi­
tion series. 

I. Descending chain condition. If ®l ::> ®2 ::> ®a ::>. .• is a 
sequence of M-subgroups such that ®l is invariant in ® and each 
®i+l is invariant in the preceding, then there exists a positive 
integer N such that ®N = ®N+I = .... 

II. Ascending chain condition. If -P is any term of a normal 
series and -PI C -P2 C -Pa C· ~. is an increasing sequence of 
M-subgroups all of which are invariant in -p, then there exists an 
integer N such that -PN = -PN+I = .... 

We remark that, if ® is commutative, then any subgroup is 
invariant and any subgroup is a term of a normal series. Hence 
in this case I and II can be formulated more simply as follows. 

III. If ®l ::> ®2 ::> ®a ::> •.. is a descending sequence of M-sub­
groups, then there exists a positive integer N such that ®N = 
®N+I = .... 

IV. If -PI C -P2 C -Pa C· .. is an ascending sequence of 
M-subgroups, then there exists a positive integer N such that 
-PN = S)N+I = .... 

As a matter of fact these conditions can be used also for a non­
commutative group if it is known that M = {in} includes all 
the inner automorphisms of ®; for in this case, too, any M-sub­
group is invariant. We shall now prove the following 

Theorem 4. A necessary and sufficient condition that an 
M-group ® have a composition series is that ® satisfies the two chain 
conditions. 

Sufficiency. We shall show first that if -P ~ 1 is a term of a 
normal series, then -P contains a maximal invariant M-subgroup. 
Thus, either S)l = 1 is maximal invariant or there exists a proper 
invariant M-subgroup -P2 of -P such that -PI C S)2. In the latter 
case if S)2 is not a maximal invariant M-subgroup of -p, then there 
is a proper invariant M-subgroup S)a of -P that properly contains 
.\)2. This process breaks off after a finite number of steps, since 
otherwise it yields an infinite properly ascending sequence of in­
variant M-subgroups of S) contrary to II. Hence, our assertion is 
proved. In particular we see that ® = ®l contains a maximal 
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invariant M-subgroup ®2' Also ®2 contains a maximal invariant 
M-subgroup ®3, etc. This gives the properly descending sequence 
® = ®I :::I ®2 :::I ®3 :::I' •. in which each ®i+1 is maximal in­
variant in the preceding. By I there exists a finite number s + 1 
such that ®S+I = 1. 

Necessity. Let ® have a composition series ® = ®I :::I ®2 :::I' •• 

:::I ®s+1 = 1 and let .pI :::I .p2 :::I' •• be a properly descending 
sequence of M-groups such that .pI is invariant in ® and .pi+1 
is invariant in .pi for i ;::: 1. Then we assert that the number of 
.pi does not exceed s + 1; for, if it does, then ® :::I .pI :::I .p2 :::I' •• 

:::I .p'+2 ~ 1 is a normal series. By Schreier's theorem there is a 
refinement of this series that is equivalent to a refinement of the 
composltlon series. If we drop duplicates, we obtain a refine­
ment of the .p-series that is a composition series. But the number 
of terms exceeds s + 1 and this contradicts the Jordan-Holder 
theorem. Hence I is proved. A similar argument yields II. 

Evidently if ® is a finite group, then ® satisfies the chain condi­
tions for any set of operators M. Hence we have composition 
series for a finite group for any M. A composition series obtained 
for M vacuous will be called an ordinary composition series. Such 
a series has the form ® = ®I :::I ®2 :::I .•. :::I ®8+I = 1 where 
®i+1 is an invariant subgroup of ®i and ®d®i+1 is a simple 
group. The Jordan-HOlder theorem proves the invariance of the 
set of simple groups @i/@i+1 determined by @. If M = 3 the 
set of inner automorphisms, then the M-subgroups are invariant. 
A composition series in this case has the property that each ®i 
is invariant in ® and that there exists no invariant subgroup ®' of 
® such that ®i :::I ®' ::::> ®i+I' Such composition series are called 
chief series. Similarly we define a characteristic series as a com­
position series relative to the complete set of automorphisms, and 
ajully invariant series as a composition series relative to the com­
plete set of endomorphisms. The Jordan-HOlder theorem is, of 
course, applicable to these series, too. 

EXERCISES 

1. Obtain composition series for 83 and 84• 

2. Prove that a finite group is solvable if and only if its composition factors 
are cyclic groups of prime orders. 
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3. Show that an infinite cyclic group (M = 50) satisfies the ascending chain 
condition but not the descending chain condition. 

4. Let U(p) be the multiplicative group of pic complex roots of unity for p 
a fixed prime and k = 0, 1, 2, 3, ...• Show that every proper subgroup of 
U(p) is finite cyclic. Hence show that U(p) satisfies the descending chain con­
dition but not the ascending chain condition. 

9. Direct products. We shall consider in this section a simple 
construction of an M-group out of n given M-groups @h @2, .•. , 

@n. We take @ to be the product set @l X @2 X· .. X @n of 
elements 

and we introduce a composition in @ by the formula 

(19) (ah a2, ... , an)(bh b2, ... , bn) = (albh a2b2, ... , anbn). 

If a = (ai), b = (bi) and c = (Ci), then 

(ab)c = «aibi)ci) = (ai(bici)) = a(bc). 

Also it is immediate that the element 

1 = (1 1 ... 1) " , 
15 an identity element in @, and, if we set a' = (a.-I), then 
aa' = 1 = a'a. Hence, @ with our composition IS a group. 
Next we define for m eM 

(20) (ah a2, ... , an)m = (aIm, a2m, ... , anm). 

Then 

(ab)m = «aibi»m = «aibi)m) = «aim)(bim) = (am)(bm). 

Hence our definitions give an M-group. We shall call this 
M-group the direct product of the ®i and we use the notation 
® = ®l X @2 X ... X @n. 

It is clear that, if each @i is finite of order 11i, then @ is finite 
of order n = IIni. Also @ is commutative if and only if each ®i 
is commutative. If the additive notation is used in the groups 
®i, it is natural to write 

(19') (ab a2, ... , an) + (bb b2, ... , bn) 

= (al + bh a2 + b2, •••• an + bn) 
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in place of (19) and to call ® the direct sum of the ®i. In this case 
we write ® = ®l E9 ®2 E9'" E9 ®n. 

The example given in § 1 of the three-dimensional real vector 
group is precisely the direct sum ® E9 ® E9 ® where ® is the addi­
tive group of real numbers relative to the operator set of real 
numbers and the operation is ordinary multiplication. This is 
clear from the definitions. The generalization to the n-dimen­
sional vector group is immediate. Another important example 
of a direct sum is the group ® E9 ® E9." E9 ® where ® is the 
additive group of integers and M = JO. The elements of this 
group are the integral vectors (or "lattice points") with addition 
the usual vector addition (19'). 

We now make two simple remarks about the direct product for 
arbitrary groups. First, the direct product is independent of the 
order of the factors. By this we mean that, if 1', 2', ... , n' is a 
permutation of 1, 2, "', n, then ®l' X ®2' X' .. X ®n' is 
M-isomorphic to ®l X ®2 X' .. X ®n. In fact it is immediate 
that the correspondence (ah a2, ... , an) -+ (al', a2', ... , an') 
is an M-isomorphism. Next we note that, if nl < n2 < ... < nr = 
n, then 

(®l X' .. X ®nl) X (®nl+l X' .. X ®nl) X' .. 

X (®n,_l+l X ... X ®n,) 

is M-isomorphic to ®1 X ®2 X ... X ®n. Here the mapping 

(ab a2, ... , an) -+ «ah ... , an.), (anIH,"', anI)' 

(a",_l +b "', an,)) 

is an isomorphism. In particular, it follows that (®1 X ®2) X ®3 
and ®1 X (®2 X ®3) are equivalent since each is equivalent to 
®1 X ®2 X ®3. Thus, in this sense direct multiplication of 
gtoups is associative as well as commutative. 

10. Direct products of subgroups. We shall now determine 
conditions that a given M-group be isomorphic to a direct product. 
For this purpose we examine further the direct product ® = 

®1 X ®2 X' .. X ®n. Let ®/ be the subset of ® of elements of 
the form a/ = (1, 1, "', 1, ai, 1, "', 1), ai in the ith position. 
It is clear that ®/ is an M-subgroup of ® isomorphic to ®; under 
the correspondence 
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ai -+ (1, ... , 1, ai, 1, ... , 1). 
Moreover, 

(Cl-1,C2-:-1, ···,cn- 1)(I, ... , l,ai, 1, ... , 1)(chc2, ···,cn) 

= (1, ... , 1, Ci -laici, 1, ... , 1). 

Hence ®/ is invariant in ®. We note next that an arbitrary ele-
( ) f lU· d " ". IU' ment ah a2, ... , an 0 \21 IS a pro uct al a2 .. ·an ,ai In \2Ii. 

Hence 

(21) 

In other words, the smallest subgroup of ® containing all the ®/ 
is ® itself. Finally, we observe that 

(22) ®/ n ®1'®2' ... ®i-l'®i+l' ... ®n' = 1, i = 1, 2, .. ·n, 

since any element in ®1'®2' ... ®i-l'®i+l' ... ®n' has the form 
(ah a2, ... , ai-h 1, ai+h ... , an) and any element of ®/ has the 
form (1, ... , 1, ai, 1, ... , 1); hence the equality 

(ah a2, ... , ai-1> 1, ai+h ... , an) = (1, ···,1, ai, 1, ... ,1) 

implies that each ai = 1. Thus, any element common to ®/ and 
®1' ... ®i-l'®i+l' ... ®n' has all of its components ai = 1 and 
this proves (22). We have therefore established the necessity 
part of the following 

Theorem 5. A. necessary and sufficient condition that an 
M-group ® be isomorphic to a direct product ®1 X ®2 X ... X ®n is 
that ® contain invariant M-subgroups ®/ isomorphic to ®i such 
that (21) and (22) hold. 

It remains to prove that the condition is sufficient. Hence 
we suppose that our M-group ® contains the invariant M-sub­
groups ®/ isomorphic to ®i and satisfying (21) and (22). By (21) 
any element of ® has the form a/a2' ... an', a/ in ®/. Let i ~ j 
and consider the product a/a/(a/)-l(a/)-l. Since a/(a/)(a/)-1 e 
®/, a/a/(a/)-I(a/)-1 is in ®/. Since a/(a/)-I(a/)-l e ®/, 
a/a/(a/)-l(a/)-1 e ®/. Now by (22) ®/ n ®/ = 1. Hence 

a/a/(al)-l(a/)-l = 1 and alai = a/ale 
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This shows that any element of one of the groups ®/ commutes 
with any element of a different ®/. This implies that, if a/ e ®/ 
and b/ e ®/, then 

(23) (aI' a2' ... an') (b/ b2' ... bn') = (aI' bl') (a2' b2') '" (an' bn'). 

We now consider the direct product ®l X ®2 X' .. X ®n. Let 
ai ~ a/ be an isomorphism of ®i onto ®/. Then we shall show 
that the mapping 

(24) 

is an isomorphism of ®l X ®2 X ... X ®n onto ®. Since 

(a!) a2, .. " an) (b!) b2, "', bn) = (alb!) a2b2, ... ,anbn) ~ 

(alb l)' (a2b2)' ... (anbn)' 

= (aI' bl') (a2' b2') ... (an' bn') 

= (al'a2' ... an')(bl'b2' ... b.,,') 

by (23), the mapping (24) is a homomorphism. Since (ab a2, 
"', an)m = (aIm, a2m, "', anm) ~ (al'm)(a2'm) .. , (an'm) = 
(aI' a2' ... an')m, the mapping is an M-mapping. The mapping is 
a mapping onto ® since any element of ® has the form al'a2' ... 
an', a/ in ®/. Finally, we prove that the mapping is an is­
morphism by showing that the kernel is the identity. Thus let 
aI' a2' ... an' = 1. Then 

(a/)-l = al'a2' ... ai-l'ai+l' ... an', 

and by (22) a/ = 1. Hence, each ai = 1 and this proves our 
assertion. 

Because of this result we shall say that an M-group ® is a 
direct product of the invariant M-subgroups ®b ®2, "', ®n if 
the ®i satisfy 

(25) ® = ®1®2 ... ®n, ®i n (®l ... ®i-l®i+l ... ®n) = 1. 

Strictly speaking, of course, we can assert only that ® is iso­
morphic to the direct product ®l X ®2 X' .. X ®n. For the 
sake of simplicity we do not emphasize this distinction and we 
write @ = @l X @2 X ... X @". 



148 GROUPS WITH OPERATORS 

As an illustration of the criterion given in Theorem 5 we prove 
now the following 

Theorem 6. If® is ajinite cyclic group of order n = Pl"lp2e2 ••• 

p.e., Pi prime, Pi ~ Pi if i ¢ j, then ® is a direct product of cyclic 
groups of orders p/', i = 1, 2, .. " s. 

Proof. Let ®i be the subgroup of order p/' and set ®' = 
®1®2 ... ®.. This subgroup has order n' divisible by p/' since 
®' :::> ®i. Hence n' is divisible by n = Pl'IP2'z ••• ps". It fol­
lows that n' = n and that ®' = ®. Next let ~i be the subgroup 
of ® of order ni = nip/i. Let 8; = ~i n ®i. Then 8i is a 
subgroup of ® whose order is a divisor of ni and of p/i. Since 
(ni, p/i) = 1, this implies that 8i = 1, that is, ~i n ®i = 1. 
Since the order of ~i is divisible by Pi\ j ~ i, ~i :::> ®i' Hence 
~i :::> ®1 ... ®i-l®i+1 ... ®.. Hence ®1 ... ®i-l®i+1 ... ®. n 
®i = 1 for i = 1, 2, "', s and the conditions of Theorem 5 are 
fulfilled. 

The conditions (21) and (22) of Theorem 5 concern relations 
among the subgroups ®i. It is often easier to verify the element 
conditions given in the following 

Theorem 7. If ® contains M-subgroups ®i, i = 1, 2, "', n, 
such that (1) aiai = aiai for any ai e ®i and any aj e ®;, i ¢ j, 
and (2) every element of ® can be written in one and only one way 
as a product ala2 ... an, ai in ®i, then ® = ®I X ®2 X ... X ®n. 

Proof. We note first that each ®i is invariant in ®; for, if 
gi e ®i and a = ala2 ... an, aj e ®;, then 

-I -I -1 -1 -I /U a gia = an ... a2 al giala2'" an = ai gia; e 'eli 

by (1). Since by (2), a can represent any element of ®, ®i is 
invariant in ®. Also by (2) ® = ®1®2 ... ®n. Any element of 
®I ... ®i-l®i+1 ... ®n has the form ala2 ... ai_Iai+1 .. ~ an, 
ai in ®j. If this element is also in ®i, then we have 

Hence 
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Since there is only one way of writing an element as a product 
ala2 ••• an, ai in @;, this gives ai = 1. Hence @i n @l " • 

@i-l@i+l ... @n = 1. The theorem now follows from our first 
criterion. 

We remark also that the conditions (21) and (22) imply the 
conditions (1) and (2) of the present theorem. This was estab­
lished in the proof of Theorem 5. 

The following important results on direct products of subgroups 
can now be easily derived: 

A. If @ = @l X @2 X ... X @n, then @ = ~l X ~2 X ... X ~r 
where ~l = @1@2 ... @nl' ~2 = @nl+l@nl+2 '" @ns, "', ~r = 

@nr-I+l@nr-l+2 . • . @n,· Also 

~l = @l X @2 X ... X @nl' 

(26) 

~r = @nr_l+l X @nr-l+2 X' .. X @nr' 

B. If @ = ~l X ~2 X ... X ~r and (26) holds, then @ = 

@l X @2 X ... X @n' 

We omit the proofs. We note also the following result. 
C. If @ = @l X @2, then @2 '" @/@l' This follows directly 

from the second isomorphism theorem; for @l is invariant in @. 

Hence, @/®l = @1@2/@1 ~ ®2/@1 n ®2 = @2/1 '" @2' 

EXERCISES 

1. Prove Theorem 6 by showing directly that, if b is an element of order 
n = Plel/2e2 ••• p.e., then b = b1b2 • •• b. where bj has order Pie,. 

2. Prove that, if @ is cyclic of order n = st, (s,t) = 1, then @ = .\> X se 
where.\> is of order sand se is of order t. 

3. Prove that, if@ is a finite commutative group of order n = Pl"lp2"2 .•. P'·'. 
Pi distinct primes, then @ = @l X @2 X' .. X @. where @i is a subgroup all of 
whose elements have order a power of Pi. 

11. Projections. Let @ = @l X @2 X ... X @n where the @i 

are subgroups, and let ''li, i = 1, 2, .. " n, be a homomorphism of 
@i into another M-group ®. Assume, moreover, that, if Xi e @i, 

Xi e @i and i rf= j, then (Xi'YJi)(XiTli) = (XiTli)(XiTli)' Now we can 
write any X e @ as XIX2 ••• Xn) Xi in @i' and we can define a 
mapping Tl of @ into ® by 
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(27) (X1X2 •.• xn)1'/ = (X11'/1)(X21'/2) ..• (xn1'/n). 

We can verify directly that 1'/ is an M-homomorphism of ® into~. 
This method of putting together M-homomorphisms of the ®i 

is particularly important if ®, too,· is a direct product. Thus 
let ~ = ®1 X ®2 X ... X @n and let 1'/i be a homomorphism of 
®i into ~i' Then Xi1'/i e @i and Xj1'/j e @j; hence, if i ~ j, (Xi1'/i) (Xj1'/j) 

= (Xj1'/j)(X,1'/i). It follows that the mapping given by (27) is an 
M-homomorphism of ® into @. 

We apply this remark first to define certain endomorphisms 
that can be associated with a direct decomposition of ® as 
®1 X ®2 X' .. X ®n. We define Ei to be the endomorphism of 
® that is obtained by putting together in the manner indicated the 
endomorphisms 

Then by (27) 

(28) 

If Xi is any element of ®i, the decomposition of Xi as a product 
of elements of the ®i reads Xi = I ••. IXil .•• 1. Hence, it is 
clear from (28) that XiEi = Xi and XiEj = I if i ~ j. If X is any 
element of ®, then XEi = Xi e ®i. Hence, (XEi)Ei = XEi and (XEi)Ej 

= 1. Thus, if we denote the endomorphism X ~ 1 by 0, then 
we have proved that 

(29) 

We note next that the mappings Ei are normal in the sense that 
they commute with all the inner automorphisms of ®; for, if 
X = X1X2 ..• Xn where Xi e ®i and a is any other element of ®, 
then 

a-1xa = (a-1x1a)(a-1x2a) ... (a-1xna) 

and a-1xia e ®i. Hence 

(a-1xa)Ei = a-1xia = a-1(xEi)a 

and this proves our assertion. Now we shall call an M-endomor­
phism E a projection if E is normal and idempotent (; = E). 

A pair of projections E,E' will be called orthogonal if EE' = 0 = e' E. 
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Using these terms, we can say that the Ei determined by the de­
composition @ = @1 X @2 X' .. X @n are orthogonal projections. 

There is another important relation connecting the Ei. This 
involves a second important composition of mappings in a group. 
If 1]1 and 1]2 are two mappings of the group @ into itself, then we 
define the sum 1]1 + 1]2 by 

(30) 

We have considered this composition before in the case of endo­
morphisms of a commutative group (§ 12, Chapter II). We have 
seen that it, together with the product as resultant, turns the 
set of endomorphisms of a commutative group into a ring. In 
the non-commutative case the sum of two endomorphisms need 
not be an endomorphism. 

It is immediate from (30) that the sum composition for arbi­
trary mappings of @ into itself is associative but not necessarily 
commutative. The endomorphism 0 (x -+ 1) acts as an identity 
for addition since 

X(1J + 0) = (X1])(xO) = (x1])1 = Xfl 

x(O + 71) = (xO) (X1]) = 1 (X1]) = X1]. 

Also, if we define -1] by x( -1J) = (X1]) -1, then 

x( -." + .,,) = (X.,,)-l(X.,,) = 1 

x(1] + (-1]» = (X1])(X1])-l = 1. 

Hence -1] + 1J = 0 = 1] + (-1]). This proves that the set of 
mappings of @ together with the addition composition is a group. 

Multiplication of mappings is right distributive relative to 
addition: 

(31) 

since 

XP(1]l + 1]2) = «XP)1]1)(XP)1]2), 

X(P1]l + P1]2) = (X(P"'1»)(X(P1]2) = «XP)1]l)«XP) 1]2)' 

The other distributive law does not hold in general. However, it 
is valid if P is an endomorphism, since 
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X«'11 + '12)P) = «X'11)(X'12))P = «X'11)P)«X'12)P) 

= (X('11P»(X('12P» = X('11P + '12P), 

We return now to our investigation of the projections Ei deter­
mined by the direct decomposition @ = @l X @2 X ... X @n. If 
x is any element of @, x = XIX2 ... Xn , Xi in @i. Hence x = 
(XEl) (XE2) •. , (XEn) so that by the definitions of addition and of 1, 

(32) El + E2 + ... + En = 1. 

The properties (29) and (32) are characteristic of the projec­
tions determined by a direct decomposition. Thus suppose that 
Ex, E2, "', En are normal M-endomorphisms satisfying (29) and 
(32). Then @i = @Ei is an M-subgroup and @i is invariant, since 

a-l(xEi)a = (a-lxa)Ei 

is in @i. Since x = x 1 = X(EI + E2 + ... + En) = (XEl)(XE2) •.. 

(XEn), @ = @1@2 ... @n. We note next that since @i = @Ei, Ei 

is the identity mapping in @i. Also if j ~ i, then Ei maps @j into 
1. Hence if Z e @. n @1@2 ... @i-l@i+l ... @n, ZEi = Z and 
ZEj = 1. Hence 

@i n @1@2 ... @i-l@i+l ... @n = 1, 

and @ = @l X @2 X ... X @n. Since x = (XEl)(XE2) ... (XEn), 

XE. in @i, the projections determined by this decomposition are 
the given mappings Ej. This closes the circle in our considerations. 

EXERCISES 

1. Show that if" is a normal endomorphism, then 71 has the form a71 = &(o,,,)a 
where &(a,71) is an element that commutes with every element Of@71 and &(aIJ,71) = 
&(a,71)[a&(b,71)a-1]. 

2. Prove that, if the center ~ = 1 or if the commutator group@(l) = @ (defini­
tion in ex. 3, p. 132), then the identity mapping is the only normal auto­
morphism of @. 

3. Let Ex, E2, .. " E" be the projections of a direct decomposition. Show that, 
if ;1, ;2, .. " ;r are distinct, then Ell + Ell + ... + Etr is an endomorphism. Show 
also that E. + Ej = Ej + Ei. 

12. Decomposition into indecomposable groups. An M-group 
@ is said to be decomposable if @ = @l X @2 where each @. is 
a proper subgroup. Then also @i ~ 1. Hence the projec-
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tion Ei, i = 1,2, is ~ 1, ~ 0. Thus, if ® is decomposable, then 
there exist projections of @ that are ~ 1,0. Conversely, this 
condition is sufficient for ® to be decomposable; for let El be a 
projection ~ 1,0. Put @l = @El and let @2 be the kernel of the 
endomorphism El. Then ®l and @2 are M-subgroups and, because 
of the normality of Eh both of these subgroups are invariant. If 
x is any element of ®, z = x( - El + 1) = (XEl) -IX is in @2, since 

((XEl) -1 X) El = ((XEl) -1 El)(XEl) = (XE12) -1 (XEl) = 1. 

Hence, x = (XEl)Z E ®1@2' Also, if Xl is any element of @h then 
Xl = XEl for a suitable X in ®. Hence Xl = XEl = XE12 = Xl El' 

Hence ®l n ®2 = 1. Thus ® = ®l X @2' Since El ~ 1,0, 
@l ~ @ and @2 ~ @ and @ is decomposable. We can therefore 
state the following 

Theorem 8. A necessary and sufficient condition that an 
M-group be decomposable is that there exist projections of @ that 
are ~ 1, ~ 0. 

We show next that any group ® ~ 1 satisfying the descending 
chain condition for invariant M-subgroups permits a decomposi­
tion into indecomposable M-groups. The assumption we are 
making is 

I'. If@l :::> @2 :::> ®3 :::> ••• is a decreasing sequence of invariant 
M-subgroups of @, then there exists an integer N such that 
@N = @N+l = .... 

We use this condition to show first that @ has an indecomposable 
direct factor; for either @ is indecomposable or @ = @l X @2, 

where ®l ~ @, ~ 1. If @l is indecomposable, we have the de­
sired factor. Otherwise, @l = @1l X @12 where @1l "e @l, 1. 
Then @ :::> @l :::> @11 and either @11 is indecomposable or @1l = 

@1l1 X @1l2 with ®l1l "e @ll, 1. This gives the larger chain 
® :::> ®l :::> ®11 :::> @l1l' All of the groups thus obtained are 
invariant M-subgroups of @. Hence I' guarantees that this proc­
ess leads in a finite number of steps to an indecomposable direct 
factor. 

Now let @1 denote an indecomposable direct factor of @ and 
write @ = ®1 X ®1'. If ®l' "e 1, we can factor ®l' = @2 X ®2' 
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where @2 is indecomposable. Then @ = @1 X @2 X @2' and 
@2' is invariant in @. Next either @2' = 1 or @/ = @3 X @3' 

where @3 is indecomposable. As before @3' is invariant in @. 

This process leads to a properly descending chain of invariant 
M-subgroups @ ::::> @1' ::::> @2' ::::> @3' ::::> •••• By a second applica­
tion of l' we conclude that ®n' = 1 for some integer n. Hence 
® = ®1 X ®2 X ... X ®n where the ®i are indecomposable. This 
proves 

Theorem 9. Any M-group '¢ 1 that satisfies the descending 
chain condition jor invariant M-subgroups can be expressed as a 
direct product oj a finite number oj indecomposable groups '¢ 1. 

13. The Krull-Schmidt theorem. In this section we shall 
prove a uniqueness theorem for direct decompositions into in­
decomposable groups. In order to establish this result we require 
in addition to the descending chain condition I' the following 
ascending chain condition: 

II'. If ®l C ®2 C ®a c· .. is an ascending sequence of in­
variant M-subgroups, there exists an N such that ®N = ®N +1 

We consider first some important consequences of the chain 
conditions. We prove first the following 

Theorem 10. Let ® be an M-group that satisfies the descending 
and the ascending chain conditions jor invariant M-subgroups. Then 
if 11 is a normal M-endomorphism, 11 is an automorphism if either 
(1) 11 is 1-1 or (2) ®11 = ®. 

Proof. Assume that 11 is 1-1. Then if ®l1 r - 1 = ®l1 r for some 
r = 1, 2, "', any y e ®l1r - 2 has the property that Yl1 = Xl1 r = 
(xl1 r - 1h for a suitable element x. Hence y = Xl1 r - 1 e ®l1 r - 1• 

Thus also ®l1r - 2 = ®l1r - 1• If we repeat the argument and con­
tinue in this way, we obtain finally ® = ®11. We therefore 
see that, if ® ::::> ®11, then ® ::::> ®TJ ::::> ®TJ2 ::::>. •• is an infinite 
properly descending chain. Since 11 is a normal M-endomorphism, 
all the terms of this chain are invariant M-subgroups. We there­
fore have a contradiction to I'. Hence if TJ is 1-1, ® = ®TJ and 
so TJ is an automorphism. Assume next that ® = ®11' Let 
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BI: denote the kernel of the endomorphism r/, k = 0, I, 2, , 
1/0 == 1. Since we have adopted the convention that 1/0 = I, 
Bo = 1. Also it is clear that Bk-l C Bk. Suppose now that 
Br-l = Br and let z e Br-l. We can write Z = Y1/. Then 1 = 
Z1/r-l = (Y1/)1/r-l = Y1/r. Hence Y1/r-l = I, and z = Y1/ is sent 
into 1 by 1/r-2. Thus z e Br-2' This shows that Br-2 = Br-l 

and continuing in this way we see that all the Bk = 1. Hence, 
either Bl = 1 or 1 = Bo C Bl C B2 c· .. is an infinite properly 
ascending chain of invariant M-subgroups. This contradicts II'. 
Hence we see that, if ®1/ = ®, then Bl = 1 and 1/ is 1-1. 

If 1/ is any endomorphism of a group, we call the totality of 
elements z such that Z1/8 = 1 for some integer s, the radical of 1/. 
Thus the radical m is the set-theoretic sum of the kernels 8i of 
the homomorphisms 1/i• We use this concept to state the following 
theorem which is the crucial step in the proof of the uniqueness 
theorem. 

Theorem 11 (Fitting's lemma). Let ® be an M-group that 
satisfies the chain conditions for invariant M-subgroups and let 7j 
be a normal M-endomorphism of ®. Then ® = m X ~ where m 
is the radical of 7j and ~ satisfies the condition ~7j = ~. 

Proof. We have the descending chain of invariant M-sub­
groups ® :::J ®7j :::J ®7j2 :::J .• '. Hence there is an integer r such 
that (~h{ = @1/r+1. Then @1/r = @17 r +1 = @17r+2 = .. '. Let 
~ denote this invariant M-subgroup. Next consider the ascending 
chain Bo C 81 C 82 c· .. where 8i is the kernel of 1/'. Then 
there is an integer s such that 8. = 88+1' It follows directly that 
.8.+1 = .88+2 = . . . . Hence 8. is the radical m of 1/. Let t be 
the larger of the two integers, r,s. If x is any element in ®, 
X1/ t = Y1/2t for a suitable y. Hence x = [x(Y7jt) -1](Y1/t ) and 
[x(Y1/ t) -1]7jt = (X7jt)(y7j2t) -1 = 1. Thus, if we set z = X(Y7jt) -1, 

then Z7jt = 1 and Z e m. Sincey7jt e ~ we have the decomposition 
® = m~. Now let w em n ~. Then w = U17 t and 1 = W7]t = U7]2t. 

Hence, u e m and U7jt = 1. Thus w = 1. Hence ® = m X ~. 
Since m = .8., it is clear that Z7j· = 1 for every Z e m. This 

means that 7j is a nilpotent endomorphism in m. If ® is inde­
composable, either ® = m or ® =~. In the first case 7j is nil-
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potent and in the second case "7 is onto so that by Theorem 1 0 "7 is 
an automorphism. This proves 

Corollary 1. If @ is an indecomposable M-group that satisfies 
the chain conditions jor invariant M-subgroups, then any normal 
M-endomorphism oj @ is either nilpotent or an automorphism. 

This corollary enables us to prove a very interesting closure 
property for the normal nilpotent endomorphisms of an inde­
composable group, namely, 

Corollary 2. Let @ be as in Corollary 1 and let 111 and 112 be 
normal nilpotent M-endomorphisms, then, if 111 + 112 is an endo­
morphism, 111 + 112 is nilpotent. 

Proof. According to Corollary 1, if 11 = 111 + 112 is not nil­
potent, then it is an automorphism. Let 11-1 be its inverse. 
Evidently this mapping is a normal M-endomorphism and we have 
l1lrJ-l + rJ2rJ-1 = 1, or Al + A2 = 1 where Ai = rJirJ-l • Since rJi 

is not an automorphism, its kernel is ~ 1. Hence this holds for 
Ai, too. Hence Ai is nilpotent. We note next that Al = Al (AI + A2) 
= A12 + AlA2 and Al = (AI + A2)Al = A12 + A2Al. Hence AlA2 = 

A2Al and consequently for any positive integer m 

(33) (AI + A2)'" 

= AIm + (7) Alm- lA2 + (;) Alm- 2Ai + ... + A2m. 

Now let AIr = 0, A28 = 0 and take m = r + s - 1 in this rela­
tion. This gives the contradiction 1 = o. 

EXERCISE 

1. Let @ satisfy I' and II' and let TJ be a normal endomorphism. Let r be 
the first integer such that @1]r = @TJ·+1 and let s be the first integer such that 
.8. = 3.+1, 3i the kernel of TJi. Prove that r = s. 

We can now prove the main theorem. 

The Krull-Schmidt theorem. Let @ be an M-group that satisfies 
the chain conditions for invariant M-subgroups and let 

(34) @ = @l X @2 X' .. X @., 

(35) @ = .pI X .p2 X' .. X .p, 
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be two direct decompositions of ® into indecomposable groups. 
Then s = t and for a suitable ordering of the -i'i we have -i'i ~ ®i and 

k = 1, 2, "', s. 

Proof. Suppose that we have already obtained a pairing of 
-i'h -i'2, "', -i',.-1 respectively with ®h ®2, "', ®r-l in such a 
way that ®i ~ -i'i, i = 1, 2, "', r - 1, and (36) holds for k ~ 
r - 1. (At the start we have r = 1.) Consider the intermediate 
decomposi tion 

(37) ® = -i'1 X -i'2 X ... X -i'r-l X ®,. X ... X ®,. 

Let Ab A2, •.• , A, be the projections determined by this decomposi­
tion and let 71b 712, "', 71t be the projections determined by 

(35). Evidently we have A,. = (* 71i) A,. = * 71iA,.. For any x 

in ®, X71i e -i'i; hence if j ~ r - 1 we have by (37), X71i = X71iAi 
and X71iAr = X71iAiAr = 1. Thus 71iA,. = 0, and we have the 
relation 

(38) 

t 

We operate now in ®r. Here Ar = 1 so that 1 = L TljAr. Also 
r 

any partial sum 1;Tli,A,. = (1;Tli,)Ar induces a normal M-endo­
morphism in ®,.. Since ®r is indecomposable it follows from 
Corollary 2 that there exists a u, r ~ u ~ t such that 71 ... A,. defines 
an automorphism of ®,.. We can renumber the -i'i, i = r, r + 1, 
.. " so that -i' ... becomes -i',.. We proceed to show that ®,.""'" -i',. 
and that (36) holds for k = r. 

Since 71,.A,. is an automorphism in ®,., its kernel is 1. Hence 
Z71,. = 1 for z in ®,. implies that z = 1. Thus Tlr maps ®,. isO­
morphically into S)r' Let~,. = ®,.TI,. and let U,. be the subs~t 
of S),. of elements u such that UA,. = 1. Since A,. is an isomorphism 
of ~,. = ®,.TI,., ~,. n u,. = 1. Also if y is any element of -i',., then 
yA,. e ®,. so that yA,. = V71,.A,. for a suitable v in ®,.. We can write 
Y = (Y(V71") -1)(V71,.) and note that Y(V71,.) -1 e U,. and V71,. e ~,.. 
Hence -i',. = Ur~,. = U,. X ~,.. Since -i'r is indecomposable and 
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i>r :;t. 1, ~r = i>r = ®rTJr. Thus TJr is an isomorphism of ®r onto 
~r' Also Ar is an isomorphism of ~r = ®rTJr onto ®r. 

Now Ar maps every element of ~l X··· X ~r-l X ®r+l X··· 
X ®& onto 1. Hence, since Ar induces an isomorphism of ~r, 

~r n (~l ... ~r-l®r+l .. , ®a) = 1. 

Hence 

(39) ®' = ~l ••• ~r®r+l ••• ®& 

= ~l X ... X ~r X ®r+l X' .. X ®8' 

If x = XIX2 •.• X a, Xi e ~i for i =:; r - 1, Xi e ®i for j ~ r, then 
the mapping 

8: XIX2'" Xa --+ Xl ••• Xr-I(XrTJr)Xr+1 ••. Xa 

is a normal M-endomorphism of ®. Evidently 8 is an isomorphism 
of ® onto ®'. It follows from Theorem 10 that ®' = ®. Hence 
(36) holds also for k = r. This completes the proof. 

The foregoing inductive argument shows that if the ~j are 
suitably ordered then the normal endomorphism 7Jj defines an 
isomorphism of (f;j onto ~j' It follows that the mapping I-' 

defined by 
XI-' = (XIX2 ••• xs)I-' = (Xl7Jl)(X27J2)' •• (xs7Js), 

Xi e ®i, is a normal M-automorphism. Evidently ®i/ .. £ = ~i' 
Hence we can state the first part of the uniqueness theorem also 
in the following way: 

If (34) and (35) are two decompositions of an M-group with 
chain conditions into indecomposable factors, then s = t and for a 
suitable ordering of the ~i' there exists a normal automorphism JL 

such that ®iJL = ~i' 

EXERCISES 

In the following exercises it is assumed that both chain conditions hold for 
invariant M-subgroups. 

1. Prove that if the center of ® = 1 or if ® = ®(l), then ® has only one de­
composition into indecomposable groups. 

2. Let ~1, ~2, ""~' and 1/1, 1/2, ... , 1/. be the projections determined by two 
direct decompositions of ® into indecomposable groups. Show that, if the 
order of the 1/'S is suitably chosen, then there exists a normal automorphism p. 
such that 1/i = P. -l~iP., ; = 1, 2, ... , s. 
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14. Infinite direct products. We shall consider now some ways 
of generalizing to an arbitrary number of groups the construction 
of the direct product of a finite number of groups. In dealing 
with an arbitrary set of groups we shall find it convenient to 
suppose that the groups are labelled with subscripts a taken from 
a certain set]. Also the same group can be counted many 
times, that is, we do not require that @" ¥= @{3 if a ¥=~. Thus 
we have a set] = {a}, a collection of subgroups {@} and a 
single-valued mapping a ~ @" of] onto {@}. 

~ 

We define first the product set II @" of the @". The elements 
aeJ 

of this set are the "vectors" ( ... g" ... ) with the property that 
the element in the "a-place" is in the set @". More precisely, 
the elements of fi are the single-valued mappings a ~ g" of ] 
that have the property that for each a in ] the image element g" 
is in the associated group @". Accordingly, if g denotes an element 
of fi, then we can also use the usual functional notation g(a) 
for the image element g". 

lf ] is the set {I, 2, 3, ... } of posi ti ve integers, then ft is the set 
of sequences (gl) g2, ... ) with the property that gi = g(i) e @i 

for all i. We remark also that, if] is arbitrary and all the @" = @, 

then fi is the complete set of mappings of ] into @. Following 
our notation for rings (p. 110) we could also denote this set as 
(@,j). 

We now make use of the fact that the @" are groups in introduc­
ing component-wise multiplication in fi. Thus, if g and h e fi, 
then we define gh by the equation 

(40) (gh)(a) = g(a)h(a). 

Since (gh)(a) e @", gh e ft. It is immediate that fi and this 
multiplication form a group. The identity element 1 of ft is the 
function such that l(a) = 1 for all a and g-l(a) = g(a)-l. If 
all the @" are M-groups, then we can also regard fi as an M-group. 
For this purpose we define gm by 

(41) (gm)(a) = g(a)m. 



160 GROUPS WITH OPERATORS 

It is immediate that this satisfies the basic condition (1). We 
call the M-group thus obtained the complete direct product of the 
M-groups ®a. 

Now let .p be any subgroup of the M-group ft, and consider 
the mapping of .p into ®a defined by h -+ h(a). Evidently by 
(40) and (41) this mapping is a homomorphism of .p into ®a. 
The image .pa is an M-subgroup of ®a. Now we shall say that .p 
is a subdirect product of the ®a if .pa = ®a for all a, that is, if the 
homomorphism h -+ h(a) is an onto mapping for every a e]. 
It is clear that .p is in any case a subdirect product of the image 
groups .pa. 

Of particular interest is a certain subdirect product that we now 
define. We consider the totality, which we denote as II ®a, 

at.J 

of elements g eft that have the property: 

g(a) = 1 for all but a finite number of a. 

If g(a) = 1 for a ~ ah a2, "', am and h(a) = 1 for a ~ fJh fJ2, 
.. " fJn, then (gh) (a) = 1 for a ~ ah .. " am; fJh .. " fJn' Hence 
II is closed under multiplication. Also it is clear that 1 e II and 
that if g e II then g-l e II. Hence II is a subgroup of ji 

For any 'Y e] we define ®/ to be the subset of elements such 
that g(a) = 1 if a =F- 'Y. Then it is evident that ®/ is a subgroup 
of II and that the mapping h -+ h('Y) is an isomorphism of ®/ 
onto ®'Y' This implies, of course, that for each 'Y e] the mapping 
h -+ h('Y) is a homomorphism of II onto ®'Y' Hence II is a sub­
direct product of the ®a' We shall call this particular subdirect 
product the direct product of the ®a' If J is a finite set (and in this 
case only), II = ft. 

As in the finite case we can give a characterization of II in 
terms of the groups ®.,'. Thus it is easy to see that the ®/ are 
invariant M-subgroups of II and that 

1. II ®a = [U®a'], 
aeJ 

2. ®/ n [U ®a'] = 1. 
a.pfJ 

Here as usual [U ®a'] denotes the subgroup generated by the 
groups ®a'. Conversely, if ® is any M-group that contains in-
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variant M-subgroups ®",' satisfying 1 and 2, then ® is isomorphic 
to the direct product of the ®a'. In this case, too, we shall say 
simply that ® is the direct product of its subgroups and accordingly 
we write ® = ll®a'. 

EXERCISES 

1. Let ® be a commutative group without elements of infinite order. For 
each prime p let ®p be the subset of elements of order a power of p. Show that 
®p is a subgroup of ® and that ® = II ®p. 

p 

2. Show that, if the group ® considered in 1 is the additive group of a ring, 
then the ®p are ideals. Hence the ring ® is the direct sum L e ®p * and 

®p®q = 0 if P ¢ q. p 
3. Let ® be an M-group and let I ~a} be a collection of invariant M-subgroups 

of ® such that n ~a = 1. Show that ® is isomorphic to a subdirect product 
of the groups ®a = ®/~a. 

* This is the additive terminology and notation that correspond to the direct product II. 



Chapter J7! 

MODULES AND IDEALS 

The concept of a module that we consider in this chapter is a 
composite notion based on the concepts of a ring and of a group 
with operators. Modules are of fundamental importance in the 
study of homomorphisms of abstract rings into rings of endO­
morphisms of commutative groups (so-called representation 
theory). This was first recognized by Emmy Noether. Previ­
ously the concept of a module had made its appearance in the 
theory of algebraic numbers. 

In the first part of this chapter we introduce the basic module 
concepts. We investigate further the chain conditions on modules 
and the related Hilbert basis condition both in the general case 
and in the special case of ideals. The second part of the chapter 
is devoted to the derivation of the fundamental decomposition 
theorems for ideals in Noetherian rings (commutative rings with 
ascending chain condition). Finally we take up the notion of 
integral dependence. A special case of this is the concept of 
algebraic dependence considered in Chapter III. The results that 
we give here are therefore applicable also in the theory of fields. 

1. Definitions 

Definition 1. A left module is a commutative group IDl (com­
position addition) with an operator set! that is a ring such that in 
addition to the basic operator condition 

1,. a(x + y) = ax + ay, a e !, x,ye m 
we have also 
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2,. 

and 

3,. 
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(a + o)x = ax + ox 

(ab)x = a(bx). 

163 

In the present context we employ the notation a, for the endo­
morphism x -+ ax in the commutative group ffil. The conditions 
2, and 3z are equivalent to the following conditions on these 
endomorphisms: 

2,'. 

3,'. 

(a + o)z = a, + 0, 

(ab)z = b,az. 

Hence we see that the basic mapping a -+ az is an anti-homo­
morphism of ~ into the ring of endomorphisms of ffil. Conversely, 
if ffil is a commutative group with a ring ~ as a set of operators 
and if the mapping a -+ az is an anti-homomorphism, then ffil 
is a left ~-module. 

We have seen that the condition 1 implies that 

(1) aO = 0, a( -x) = -ax. 

Also since a -+ al is an anti-homomOlphism, 01 = 0 and (-a), = 
-al. Hence 

(2) Ox = 0, (-a)x = -ax. 

The concept of a right module is defined in a similar fashion. 
Here we have a commutative group with operator set ~ that is a 
ring, and we assume that the mapping of a e ~ into the associated 
endomorphism of ffil is a ring homomorphism. It is convenient 
to denote the endomorphism associated with a by ar. Also we 
denote the product of a in ~ and x in ffil by xa, so that xar = xa. 
Then our assumptions on this product can he exprersed in the 
following way: 

(x + y)a = xa + ya 

x(a + b) = xa + xb 

x(ab) = (xa)b. 

If ~ is a commutative ring, any homomorphism of ~ is also an 
anti-homomorphism and conversely. Hence, any left module for 
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such a ring can be regarded as a right module and conversely. 
This is not the case for arbitrary rings. However, if! is arbi­
trary, and !' is a ring anti-isomorphic to ~, then any left (right) 
!-module can be regarded as a right (left) ~'-module. For this 
purpose we may set xa' = ax (a'x = xa) where a -+ a' is an anti­
isomorphism of~ onto ~'. Then it is clear that the correspondence 
a' -+ az (a' -+ ar) is a homomorphism (anti-homomorphism) of 
~' as required. 

We have seen that the additive group of a ring can be used in a 
natural way as the group part of three groups with operators. 
In the first of these we take the product of a in the ring ~ by x 
in the additive group m = ~,+ to be the ring product ax. 
Evidently 2z and 3z hold. Hence this group with operators is a 
left module. From now on we shall refer to this module as the 
left module of the ring~. Similarly we obtain the right module 
of the ring ~ by taking m = ~,+ and defining xa for x in m 
and a in ~ to be the ring product. 

2. FundameIital concepts. From now on we deal exclusively 
with left modules and we refer to these simply as "modules" or 
"~-modules." It is evident that what we say about these can 
also be said about right modules. 

Let m be an ~-module and let m be an ~-subgroup of m. By 
this we mean of course that m is a subgroup of m and that m is 
closed under multiplication by elements of~. Now it is clear 
that the product ay, a e ~,y em satisfies 2z and 3z. Hence m is 
a module. We call such a module a submodule of m. 

If m is a submodule of m, then we know that the factor group 
m/m can be turned into an ~-group by defining 

a(x + m) = ax + m. 

Here again it is immediate that this composition defines a module. 
We call this module the difference module of m relative to m. 
We shall have occasion in the sequel to deal simultaneously with 
difference rings and with difference modules. It will therefore 
be convenient to adopt the following notational convention: 
difference rings will be denoted as before by ~/S8, difference 
modules will be denoted hereafter as m - m. 
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The concepts of homomorphism, isomorphism, endomorphism and 
automorphism for ~-modules are special cases of these concepts 
for groups with operators. Hence the results that we derived for 
these notions carryover without alteration to the module case. 
For example, we know that the image 9R7] of a module under a 
homomorphism 7] is a submodule. Also the kernel st of this 
mapping is a sub module of 9R and we have the "fundamental 
theorem" that 9R7] '" 9R - st. We know also that the submodules 
of the left module of the ring ~ are just the left ideals 3. 

An important application of these ideas is the definition of the 
order ideal of an element of a module 9R. Let x be 'any element 
of 9R and consider the mapping a ----; ax of ~ into 9R. Evidently 
this is a group homomorphism. Moreover, since 

(3) ba ----; (ba)x = b(ax), 

it is an ~-homomorphism. We can therefore draw the following 
conclusions: The set ~x of image elements ax is a submodule of 
9R and the kernel 3% of the mapping is a left ideal (submodule) 
of the ring~. By definition 3% is the set of elements e of ~ such 
that ex = O. We call this ideal the order of the element x. By 
the fundamental theorem ~x '" ~ - 3%. 

We consider next the kernel B of the ring anti-homomorphism 
a ----; az of ~ into the ring of endomorphisms of 9R. The set B is 
evidently the intersection n 3'% of all the order ideals of the ele­
ments of 9R. The subring ~l of image elements az is anti-isomor­
phic to ~/B. We shall call B the annihilator of the module 9R, 
and we find it convenient to denote this ideal as 0: 9R. 

More generally if SRI and SR2 are two submodules of 9R, then 
we denote the set of elements e of ~ such that 

(4) 

by SRI :SR2• It is immediate that SRI:SR2 is a (two-sided) ideal in~. 
We refer to this ideal as the quotient of SRI by SR2• As we shall see 
later, the study of quotient ideals is of great importance in the 
ideal theory of commutative rings. 

If58 is a subring of the ring~, then it is clear that any ~-module 
can also be regarded as a 58-module. Assume next that 9R is an 
~-module and that U is an ideal in ~ that is contained in 0: 9R. 
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We shall now show that we can regard m also as an ~/U-module. 
Thus let at and a2 be any two elements of ~ that belong to the same 
coset mod U. Then a2 = at + u, u in U. Hence for any x in 
m we have a2X = atX + ux = atx. It follows from this that 
the product defined by 

(5) (a + U)x = ax 

is single-valued from ~/U X minto m. It can be verified directly 
that this composition satisfies 11, 2/ and 3/. Hence we obtain 
in this way an ~/U-module. 

EXERCISES 

1. If 3 is a left ideal of~, let 3m denote the set of finite sums };b,x" bs in 
3, x, in m. Show that 3m is a submodule ofm. 

2. If.3 is a right ideal of~, the totality of elements y em such that by = 0 
for all b e.3 is a submodule. 

3. Let ~ be a ring with an identity 1. Show that any ~-module permits a 
decomposition m = 1m EB 91 where 1m is the submodule of elements lx, and 
91 is the submodule of elements annihilated by every a e ~. 

4. What are the following quotients in the ring of integers: (6): (3), (6): (IS), 
(3): (9)? 

5. Prove the following rules for quotients: (a) 911:912 = ~ if WI::> W2, (b) 
<911 n W2 n .. ·n Wk):W = %:W n W2 :W n··· n Wk:W, (C)W1:W2 = W1:(W1 

+W2). 

6. Show that, if 911 S; 912, then 911 :912 = 0:(912 - 911), 

7. Prove that, if ~ is a ring with an identity, then 3:~ is the largest two­
sided ideal of ~ contained in the left ideal 3. 

3. Generators. Unitary modules. If X is a subset of a 
module m, then the set (X) of elements of the form 

(6) mtXl + m2X2 + ... + mrXr + alXl + a2X2 + ... + arXr 

where the mi are integers, the ai are in ~ and the Xi are in X, is 
a submodule of m. Evidently (X) ::> X and (X) is contained in 
every submodule of m that contains X. Hence we call (X) the 
submodule generated by X. If (X) = m, we say that X is a set of 
generators for m. If there exists a finite set of generators for m, 
then we call m a finitely generated module and, if there exists a 
single generator, then m is a cyclic module. 

The formula (6) that gives the dependence of an element on a 
set of generators is somewhat complicated in that it involves 
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coefficients mi that are integers as well as ai that are in the ring 
2!. A simpler formula can be given in the special case of modules 
that are unitary in the sense that 2!9.n = 9.n. By this equation we 
mean that every element of 9.n can be written in the form ~aiYi, 
ai e 2!, Yi e 9.n. We shall now prove the following 

Theorem 1. If X is a set of generators for a unitary module ID'l, 
then every element of 9.n can be written in the form 

(7) 

where the ai e 2! and the Xi e X. 

Proof. Let x be any element of 9.n and write x = ~aiYi for 
suitable ai in 2!, Yi in 9.n. Then there exist elements Xj in X such 
that 

Yi = ~mijXj + ~aijxj, mij e I, aii e 2!. 

Then x = ~aiYi = ~mijaiXj + ~aiaijXj = ~bjxj where 

bj = L mijai + L aiaij. 
i i 

In particular, we see that, if 9.n is cyclic and unitary, then 9.n 

contains an element x such that every element of 9.n is a multiple 
ax of x. In particular, x has the form ex for a suitable e in 2!. 
If 9.n is unitary and 2! has an identity 1, then 1 acts as identity 
operator for im; for, if x = 1:aiYi, then Ix = 1 (1:aiYi) = 1:(lai)Yi 
= ~aiYi = x. Conversely, it is clear that, if 1 acts as identity 
operator, then any x has the form Ix so that 9.n is unitary. Thus, 
if Vl has an identity, then the condition that 9.n be unitary is equivalent 
to the condition that 11 is the identity mapping in 9.n. 

A unitary module for which the basic ring Vl is a division ring 
is called a vector space. The detailed study of vector spaces con­
stitutes the subject matter of Volume II of these Lectures. 

EXERCISES 

1. Call a left ideal 3< regular if there exists an element e such that xc == x 
mod 3< holds for all x in Vl. Prove that, if9.n is II unitary cyclic module, then 
9.n ,....., 2! - .3 where 3< is a suitable regular left ideal. 

2. Prove that, if.3 is regular, then .3::) .3:Vl. 
3. Let 9.n be a simple Vl-module. Prove that either Vl9.n = 0 in which case 

ID'l is finite and has a prime number of elements, or 9.n is a unitary cyclic module 
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with any non-zero element as generator. Show that conversely either of these 
conditions insures that m is simple. (Note that the first part of this exercise 
is a generalization of ex. 1, p. 78.) 

4. The chain conditions. The chain conditions that were 
introduced for groups with operators play an important role in 
various aspects of module and ideal theory. As we shall see (next 
section) the ideals in a polynomial ring over a field satisfy the 
ascending chain condition and this fact alone suffices for the 
derivation of the basic ideal decomposition theorems for such a 
ring. On the other hand, the study of rings that satisfy the de­
scending chain condition for ideals forms an important part of 
the so-called structure theory of rings. 

In this section and the next we shall derive some of the simpler 
implications of the chain conditions. We note first that, since 
any module is a commutative group, the chain conditions for 
modules can be stated in the following way: 

Descending chain condition. If 911 ::J 912 ::J ••• is a decreasing 
sequence of sub modules, then there exists an integer N such that 
mN = mN+l = .... 

Ascending chain condition. If 911 C 912 C· .. is an increasing 
sequence of submodules, then there exists an integer N such that 
mN = mN+l = .... 

It is easy to see (using the axiom of choice) that the descend­
ing chain condition is equivalent to the 

Minimum condition. In any non-vacuous collection {m} of 
sub modules, there exists a minimal submodule, that is, a sub­
module that does not contain properly any submodule of the 
collection. 

To establish this equivalence we assume first the descending 
chain condition. Let {m} be a non-vacuous collection of sub­
modules. Select 911 in the collection. Either 911 is minimal or 
there is an 912 in {m} such that 912 c 911' Either 912 is minimal 
or there is an 913 in {m} such that 913 c 912, This process l~ads 
in a finite number of steps to a minimal submodule; for otherwise, 
by the axiom of choice, we obtain an infinite chain 911 :::> 912 :::> 
m3 :::> ••• contrary to assumption. Conversely, suppose that the 
minimum condition holds, and let 911 ::J 912 ::J ••. be an infinite 
decreasing sequence of submodules. Let mN be a minimal element 
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in the collection 191i}. Then we certainly have 91N = 91N+l 

In a similar manner we can show that the ascending chain con­
dition is equivalent to the 

Maximum condition. Any non-vacuous collection of sub­
modules contains a maximum submodule (one not contained 
properly in any other module of the collection). 

The maximum condition implies the following useful principle 
of induction: Let P be a property of submodules of a module 
such that p(m) holds if p(m') holds for every 91' ~ 91. Then 
P(91) is true for all 91. As in the case of the second principle of 
induction for natural numbers (p. 9), the proof follows directly 
from the consideration of the collection of submodules 91 such 
that P(91) is false. 

The next result that we shall derive is very useful in the theory 
of ideals. We state it as the following 

Theorem 2. A module 9JC satisfies the ascending chain condition 
for submodules if and only if every submodule of 9JC is finitely 
generated. 

Proof. We assume first that the ascending chain condition 
holds and we let 91 be any submodule of 9JC. If 91 = 0, then 91 
is generated by 0. If 91 :;t. 0, let Ul be any non-zero element of 
91 and let (Ul) denote the submodule generated by Ul. If (Ul) C 

91, let U2 em, t(Ul)' Then the submodule (UbU2) generated by 
UbU2 properly contains (Ul)' If (UI,U2) C 91, we can find a U3 

in 91 such that (UI,U2,U3) ~ (UbU2)' After a finite number of 
selections we obtain (UI, U2, ... , Un) = 91, since otherwise we 
obtain an infinite properly ascending chain of submodules (Ul) C 
(UbU2) C (UbU2,U3) c, . '. 

We assume next that any submodule is finitely generated and 
we let 911 C 912 C 913 c· .. be an arbitrary ascending chain 
of submodules. The proof that 91N = 91N+l = ... for some N is 
similar to the proof of the ascending chain condition for principal 
ideal domains (p. 121). As in the special case we note first that 
the logical sum '13 = U 91i is a submodule. Hence '13 = (UI, U2, 

.. " ur ) for suitable Ui in '13. Now Ui e 91h; for some hi. If N = 
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max (hI, h2' ... , hr), then every u. e SRN. Hence '.j3 C SRN and 
this evidently implies that SRN = SRN+l = .... 

5. The Hilbert basis theorem. We suppose now that 9Jl is 
a finitely generated unitary module. We shall prove that, if the 
ring ~ satisfies the ascending (descending) chain condition for left 
ideals, then the same condition holds for 9Jl. 

Let XI, X2, ... , Xr be a fixed set of generators for 9Jl. Then if 
SR is any submodule of 9Jl, we define the subset 3; (SR) of ~,j = 1, 
2, ... , r, to be the totality of elements b for which there exists 
an element 

b:'<i + bj+lXj+l + ... + brxr 

in SR. It is immediate that 3;(SR) is a left ideal. Moreover, we 
evidently have 3i(SR) C 3;('.j3) for allj if SR is contained in the sub­
module '.j3. We note next the following 

Lemma 1. If SR C '.j3 and 3;(SR) = 3;('.j3) for allj, then SR = '.j3. 

Proof. Let y = blXl + b2X2 + ... + brxr be any element of 
'.j3. Then bl e 31('.j3) = 31(SR). Hence, there is an element y' in 
SR of the form b1X1 + b2'X2 + ... + br'xr• Then y - y' = C2X2 + 
CaXa + ... + CrXr where Ci = bi - b/ and y - y' e~. Hence 
C2 e 32(~) = 32(SR). Now there is an element y" in SR of the 
form C2X2 + ca'xa + ... + cr'xr. Theny - y' - y" = daxa + ... 
+ drxr. Continuing in this way, we obtain y', y", ... , y(r) in 91 
such that y - y' - ... - y(r) = O. Hence y = y' + y" + ... 
+ y(T) e 91. 

Now let 911 C 912 C· .. be an increasing chain of submodules 
of 9Jl. Then we can associate with this chain the r chains of left 
ideals 

3j(SR l ) C 3;(SR2) c ... , j = 1, 2, ... , r. 

If the ascending chain condition holds in ~, we can find for each 
j an integer N; such that 

3j(SRNj) = 3j(SRNj+l) = .. ', j = 1, 2, ... , r. 

Hence, if N = max (Nt, N2, ... , N r), then 3;(SRN) = 3;(91N+1) 
= . .. holds for all j. By Lemma 1 this implies that 91N = 
91N+l = . . .. We have therefore proved the "ascending chain" 
part of the following 
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Theorem 3. Ij ~ is a ring that satisfies the ascending (descend­
ing) chain condition jor left ideals, then any finitely generated unitary 
'fl-module ffi1 satisfies the ascending (descending) chain condition jor 
submodules. 

The proof of this result for descending chains is similar to the 
above. 

We wish to show next that, if'fl is a ring with an identity that 
satisfies the ascending chain condition or, equivalently, if every 
left ideal in 'fl is finitely generated, then the same condition holds 
for the polynomial ring 'fl[x] in a transcendental element x. 
The proof of this result is quite similar to the foregoing. 

With each left ideal 91 of 'fl[x] and eachj = 0, 1,2, ... we asso­
ciate the set S;(W) of elements b e 'fl such that there exists an 
element 

bXi + bi_1xi -1 + ... + bo 

in W. Then it is clear that Si(W) is a left ideal in 'fl. Also if 
bxi + bi _ 1xi - 1 + ... + bo e 91, then so does 

bXi+1 + bi _1xi + ... + boX = x(bxi + bi _1xi - 1 + ... + bo). 

Hence 
So(W) C Sl (91) C S2(W) c· . '. 

Consequently the set SeW) = U Si(W) is a left ideal. We shall 
now use these remarks in proving the important 

Hilbert basis theorem. Let 'fl be a ring with an identity that 
has the property that every left ideal in 'f1 is finitely generated. 
Then the ring 'fl[x] oj polynomials in a transcendental element x also 
has this property. 

Proof. Let 91 be an ideal and define the ideals Si(W) and SeW) 
as above. Then there is an integer N such that SN(W) = SN+1(W) 
= ... = SeW). Let bii, j = 0, 1,2, .. " Nj i = 1, 2, "', mi be 
elements of'fl such that 

Si(W) = (bih bi2, .. " bimi) 

and letjii(x) be polynomials in 91 such that 

) b ' 'I d '2 jii(X = iiX1 + ciix1- + iiX1 - + .... 
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Then we shall show that 9l = (JOh "',jomo;ju, "',jlml; "'; 

••• jN,1nN)' Thus letg = crxr + Cr_lXr- l + ... e 9l. If r ~ N, Cr = 
arlbrl + ar2br2 + ... + arm,brm, for suitable ari in~. Hence 
g - };ar;Jri(x) is a polynomial in 9l of degree <r. If r > N, 
Cr = arlbNl + ar2bN2 + ... + armNbNmlf' ari in ~; hence g­
};arixr-NjNi(X) is a polynomial in 9l of degree <r. We can 
therefore reach our conclusion by using induction on the degree 
of g. 

Hilbert's theorem has an immediate extension to polynomials 
in several elements. The result is the following 

Corollary 1. Let ~ be a ring with an identity such that every 
left ideal in ~ is finitely generated. Then every left ideal in ~[Xh X2, 

... , x r ] has a finite set oj generators. 

An important special case of this result is the 

Corollary 2. Ij ~ is a division ring or if ~ is a principal ideal 
domain, then every left (right) ideal oj ~[Xh X2, .•. , xr] has a finite 
set oj generators. 

EXERCISES 

1. Prove that, insofar as the ascending chain condition is concerned, the as­
sumption that IDe is unitary is superfluous in Theorem 3. 

2. Prove that, if ~ has an identity and every left ideal of ~ is finitely gen­
erated, then every left ideal in the ring ~(x> of power series in x (defined in 
ex. 1, p. 95) is finitely generated. 

3. Let tv be a finite field of q elements and let.8 he the ideal in mXl, X2, ••• , 

XrJ of polynomials m(xl, "', xr) such that m(St, "', Sr) = 0 for all Si in tv. 
Determine a finite set of generators for .8. 

6. Noetherian rings. Prime and primary ideals. In the next 
few sections we shall develop the basic results of the theory of 
ideals in commutative rings with ascending chain condition. 
We have seen that this class of rings includes the polynomial 
rings tv[Xh X2, ••. , xr] where tv is a field. The theory of polynomial 
ideals is fundamental in algebraic geometry. The abstract 
development of this theory on the basis only of the ascending 
chain condition and commutativity was initiated by Emmy 
Noether. For this reason one calls a ring that satisfies these two 
conditions a Noetherian ring. 

We assume first only that ~ is commutative. In the case of 
principal ideal domains we have seen that an element d is a divisor 
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of an element h if and only if the ideal (d) ;;2 (h). For this reason 
if ~ and m are ideals in any commutative ring, then we say that ~ 
is a divisor of m and m is a multiple of ~ if 1) :::) m. Similarly we 
are motivated by the principal ideal case in calling ml + m2 

the greatest common divisor of ml and m2 and ml n m2 the least 
common multiple of ml and m2 ; for in a principal ideal domain 
(h l ) + (b2 ) = (d) where d is a g.c.d. for bl and b2 and (bd n (b2) 

= (m) where m is a l.c.m. for bl and b2• We generalize next the 
notion of a prime in the following important 

Definition 2. An ideal m of a commutative ring ~ is prime if 
ab == 0 (mod m) implies that either a = 0 (mod m) or b == 0 (mod m). 

It is clear that this is equivalent to the condition that ~/m 
is an integral domain. Also evidently ~ is an integral domain if 
and only if 0 is a prime ideal. The element p is a prime in the 
sense of the definition given in Chapter IV if and only if (P) is a 
prime ideal. Thus, for example, (x - y) is a prime ideal in 
IJ[x,y]. An example of a prime ideal that is not principal is the 
ideal (x,y) = (x) + (y) in IJ[x,y]. Here IJ[x,y]/(x,y) '" IJ. 

Any maximal ideal m in a ring with an identity is a prime; for, 
in this case, ~/m is a field and hence also an integral domain. If ~ 
does not have an identity and m is maximal, either ~/58 is a field 
or (~/58)2 = O. In the first case 58 is prime while in the second 
we have ~2 em. 

Suppose next that 58 is any ideal in the commutative ring ~, 
and let ~ = ~(58) be the totality of elements z for which there 
exists a positive integer r (possibly depending on z) such that 
ZT = 0 (mod 58). Evidently ~ can also be defined as the set of 
elements z such that the coset z = z + 58 is nilpotent in ~/m. We 
now show that ~ is an ideal. First if zr == 0 (mod 58) and a is 
any element of ~, then (azY = arzr = 0 (mod 58). Next let Zl 

and Z2 e ~ and let z/' == 0 (mod 58), i = 1,2. Set r = rl + r2 - 1. 
Then 

(Zl - Z2Y = 'l:,mijZl izi, i + j = r, mij e I. 

In each term we have either i ~ rl or j ~ r2' Hence mijZl izi = 0 
(mod m). Thus (Zl - Z2Y = 0 (mod m) and Zl - Z2 e~. This 
proves our assertion. The ideal ~ = ~(m) is called the (nil) 
radical of 58. Evidently ~ is a divisor of sa. 
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Examples. (1) Let a = p{lp2"Z ... p," be a factorization of the integer a 
into a product of prime powers p/; where Pi ~ Pi if ; ~ j. Then the radical 
of (a) is (PIP2 ... PT); for if b = kpIP2 ... PT and c = max (CI, C2, ... , cT), 
then b" == 0 (mod (a)). On the other hand, if a power of c is divisible by a, 
then c itself is divisible by PI P2 ... PT' (2) Consider the ideal (x2,y3) in 
mx,y]. Evidently the radical contains x andy. On the other hand, iff(x,y), == 
o (mod (X2,y8)), then the constant term of f(x,y) is O. Hencef(x,y) == 0 (mod 
(x,y)). Thus the radical of (X2,y3) is (x,y). 

The radical of an ideal in a Noetherian ring is nilpotent modulo 
this ideal. By this we mean that there exists an integer N such 
that ~N = 0 (mod 58). In order to prove this we choose a finite 
set of generators Z1) Z2, •• " Zm for ~, so that ~ = (Z1) Z2, •• " zm). 

Let ri be an integer such that z{; == 0 (mod 58) and set N = rl + 
r2 + ... + rm - (m - 1). Consider the product of any N ele­
ments of~. Since any element of ~ has the form ~aizi + ~miZi, 
ai e ~, mi e I, such a product has the form 

~A 01 02 .... + ~M 01 .... "" i1 ....... Z1 Z2 ••• Zm "" i1 ....... Z1 ••• Zm 

where the A's are in ~, the M's are integers and il + i2 + ... + 1m 
= N. Now it is easy to see that for each term we must have 
i; ~ r; for some j. It follows that this term is in 58. Hence any 
product of N elements of ~ is in sa and this implies that ~N == 0, 
(mod sa). 

We consider next the generalization of the notion of prime­
power element in a principal ideal domain. There are several 
possibilities for such a generalization, but the "right" one for 
the purposes of the decomposition theory is the one given in the 
following important 

Definition 3. An ideal 58 in a commutative ring is a primary 
ideal if every zero divisor modulo 58 is in the radical, that is, if 
ab = 0 (mod 58) and b ;i!! 0 (mod 58) implies that a = 0 (mod ~). 

It is a simple consequence of this definition that the radical 
of a primary ideal is a prime ideal. For let ab be in the radical 
~ and suppose a ~ 0 (mod ~). Then a'b' = (ab)' = 0 (mod 58) 
for some positive integer r. On the other hand, aT ;i!! 0 (mod 58). 
Hence by definition b' = 0 (mod ~) and this means that b'· = 
(b')8 = 0 (mod 58) for some s. Hence, b is in~. The radical of a 
primary ideal is called its associated prime ideal. 
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It is easy to see that (q) is primary in the ring of integers if 
and only if q = pe, p a prime (ex. 1 below). We leave it to the 
reader to verify also that the ideal (x2,y3) is primary in mx,y]. 
On the other hand, we note that the ideal (x2,xy) is not primary in 
~[x,y] even though its radical (x) is prime. For x ¢ 0 (mod 
(x2,xy) andy ¢ 0 (mod (x)) but xy = 0 (mod (x2,xy). 

EXERCISES 

1. Show that (q), q ¢ 0, 1, is primary in I if and only if q = pO, P a prime. 
2. Prove that, if'S is a prime ideal and ([1 and ([2 are ideals such that ([1([2 == 0 

(mod 513), then either ([1 == 0 (mod 513) or ([2 == 0 (mod 513). 
3. Prove that m(5131 n 5132) = m(5131) n m(5132). 
4. Prove that in a Noetherian ring 513{ C 5132 holds if and only if m(5131) 

c m(5132). 

7. Representation of an ideal as intersection of primary ideals. 
The fundamental factorization theorem in the ring of integers 
can be stated in terms of ideals as follows: Every ideal (a) can 
be written in one and only one way as a product of prime ideals. 
This does not hold for arbitrary Noetherian rings. A somewhat 
weaker statement is that every ideal in I is an intersection (least 
common multiple) of primary ideals; for if a = Pl'lP2<2 ••• p/' 
where the Pi are distinct primes, then clearly 

We shall show in this section that this type of decomposition is 
valid in any Noetherian ring. The question of uniqueness will be 
taken up in § 8. 

Assume now that 2( is any Noetherian ring. We shall show 
first that an ideal that is not primary is reducible in the sense 
that it can be expressed as an intersection of proper divisors. 
Thus suppose that 513 is not primary and let d be an element which 
is a zero-divisor modulo 513 but which does not belong to m(513). 
Let a be an element such that ad == 0 (mod 513) and a ¢ 0 (mod 513). 
Then a e 513: (d), ¢ 513. Hence 513: (d) ::::> 513. Also since d ¢ m(513), 
(dk ) + 513 ::::> 513 for k = 1, 2, 3, ...• Consider now the ascending 
chain 

(8) sa: (d) c sa: (cP) c sa: (J3) c···. 
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Let r be a positive integer such that 

(9) 

Then we have the relation 

(10) 

for if u e 5S + (dr+1), u = b + mdr +1 + cdr+1 where b e 5S, mel, 
c e~. Hence, if u e 5S: (dr ), then 

udr = bdr + mtPr +1 + cd2r+1 = 0 (mod 5S). 

This gives (md + cd)tPr = 0 (mod 5S) so that md + cd is in 
58 : (d2r ). But then, by (9), (md+ cd)dr = 0 (mod 58). Hence 
mdr+1 + cdr+! = 0 (mod 5S). Thus u e 5S. This proves (10). 
Since both ideals in (10) properly contain 5S, 5S is reducible. Evi­
dently the result that we have proved can also be stated in the 
following form: 

Theorem 4. Every irreducible ideal in a Noetherian ring is 
primary. 

We shall prove next that every ideal in a Noetherian ring is a 
finite intersection of irreducible ideals. To prove this we use the 
principle of induction formulated in § 4, that is, we show that 
for a given ideal 5S the result holds, provided that it holds for 
all 5S1 :::> 5S. Now either 5S is irreducible, in which case we are 
through, or 5S = 5S1 n 5S2 where 5Si :::> 5S for i = 1, 2. Then 
5S1 and 5S2 can be represented as intersections of finite numbers 
of irreducible ideals. Hence 5S, too, is such an intersection. In 
view of Theorem 4 this result implies the fundamental decomposi­
tion theorem: 

Theorem 5. Every ideal in a Noetherian ring is a finite inter­
section oj primary ideals. 

EXERCISES 

1. Express (x2,xy) as a finite intersection of primary ideals. 
2. Show that the ideal (x2,xy,y2) is primary and reducible in mx,y). 
3. (Fitting.) LetW1 be an ~l-module (~arbitrary) that satisfies the ascending 

chain condition. Suppose that there exists an 2l-endomorphism (J of W1 that 
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is not nilpotent and that is not an isomorphism offfiC. Prove that there exists 
two submodules ffiC. ¢ 0 in ffiC such that ffiC1 n ffiC2 = o. 

4. (Fitting.) Let ffiC be an ~-module satisfying the ascending chain condition. 
Suppose that the intersection of any two non-zero modules of mc is ¢ O. Prove 
that the set of nilpotent ~-endomorphisms of mc is an ideal m in the ring ~ 
of ~-endomorphisms. Prove that if a in ~ is a left-zero divisor, then a em. 

8. Uniqueness theorems. We shall say that the ideal 5S is an 
irredundant intersection Df ideals ,ob ,02, ... , ,or if 5S = ,01 n 
,02 n··· n ,or and 

,01 n··· n ,0;-1 n ,oi+l n··· n .or :::> 5S 

for i = 1,2, ... , r. It is evident that, if we have any representa­
tion of 5S as a finite intersection of ideals, we can omit enough 
terms to obtain an irredundant intersection. In particular, we 
see that every ideal in a Noetherian ring is an irredundant inter­
section of primary ideals. We observe next that it is sometimes 
possible to combine primary ideals to obtain primary ideals, for 
we have the following 

Lemma 1. If ,01 and ,02 are primary ideals that have the same 
radical 'l3, then ,01 n ,02 is primary. 

Proof. We know that m(,ol n ,02) = m(,ol) n m(,02). Hence 
m(,ol n ,02) = 'l3. Now let a be a zero-divisor modulo ,01 n ,02. 
Then we have a b ~ 0 (mod ,01 n ,02) such that ab == 0 (mod 
0 1 n O 2). Since h ~ 0 (mod ,01 n ,02) we can suppose that 
b ~ 0 (mod ,01). Then ab == 0 (mod ,01), gives a = 0 (mod 
m(OI)). Hence a e 'l3. 

We can use this result to combine primary factors that have the 
same associated primes. In this way we obtain a representation 
of 5S as irredundant intersection of primary ideals: 

(11) 

such that the associated prime ideals 'l3h 'l32, ... , 'l3r are distinct. 
Even after these normalizations have been made we cannot assert 
that the ,oi are unique. For example, in fJ[x,y] we have the 
distinct decompositions 

(x2,xy) (x) n (x2,xy, y2) 

(x) n (x2,y + ax), a e fJ. 
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We note, however, that the associated prime ideals of these two 
decompositions, namely, (x) and (x,y) are the same and this 
unicity carries over in general. This is the content of the 

First uniqueness theorem. Let 58 = 0.1 n 0.2 n··· n o.r = 

0.1' n 0.2' n··· n 0./ be two irredundant intersections into pri­
mary ideals whose associated primes are distinct. Then r = sand 
the sets oj primes oj the two decompositions are identical. 

Before proceeding to the proof we shall derive a couple of simple 
lemmas. 

Lemma 2. Let 0. be a primary ideal and let ~' be a prime 
ideal containing 0.. Then~'~ ~ = m(o.). 

Proof. If z = 0 (mod ~), zr = 0 (mod 0.) for some integer r. 
Hence zr = 0 (mod ~'). Since~' is prime, z = 0 (mod ~'). 

Lemma 3. Let 0. be primary, ~ its associated prime and let ~ 
be any ideal not contained in ~; then 0.: ~ = 0.. 

Proof. An element u in o.:~ satisfies the condition that 
uc = 0 (mod 0.) for all c e~. If we choose c ~ 0 (mod ~), then 
this implies that u = 0 (mod 0.). Hence o.:~ c 0.. The con­
verse 0 co.: ~ is clear. 

We can now give the 
Proof of the uniqueness theorem. Let ~i = m(Oi), ~/ = 

m(o/). There exist ideals in the set ~h ~2' ' .. , ~r, ~1" ~2" 
.. " ~s' that are not contained properly in any of the ideals of 
this collection. We may suppose that ~1 has this property. We 
prove first that ~1 is also in the set ~1" ~2" ' •• , ~/. If not, 
then ~1 ~ ~/ for i = 1, 2, "', s. Hence, by Lemma 2, 0.1 1:. 
~/. By Lemma 3, 0./:0.1 = 0./. Hence 

58:0.1 = (0.1' n 0.2' n··· n 0./):01 

= 0.1':0.1 n 0.2':0.1 n··· n 0,':01 

= 0.1' n 0.2' n··· n 0.,' = 58. 

Similarly, o.j: 0.1 = OJ if j > 1. Hence 

58 = 58: 0 1 = (01 n O2 n·· . nOr): 0 1 = O2 n 0 3 n· .. n Or 
and this contradicts the assumption that the first decomposition 
is irredundant. 
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We now suppose that 1131 = 1l31'. The ideal ,01 n ,01' is pri­
mary with 1131 as associated prime. Hence, by the argument that 
we have just used, OJ: (01 n 0 1') = OJ for j > 1 and 0/: (01 
n 0 1') = ,0/ for i > 1. Hence 

513: (01 nO') = 02 n Oa n··· n 0., 

= 02' n Qa' n··· n 0.,' 

and these are two irredundant decompositions of 513: (01 n 0.2) 

satisfying the conditions of the theorem. We can use induction 
to conclude that the sets of prime ideals 1l32, ll3a, ... , Il3r coincides 
with the set 1l32', ll3a', ... , 1l3s'. This concludes the proof. 

We shall call the prime ideals Il3h 1l32, ... , Il3r whose uniqueness 
has just been established the associated primes of the ideal m. 
If 513 = ,01" n ,02" n··· n Ot" is any irredundant decomposi­
tion of 513 into primary ideals, we can obtain a decomposition of 
the type considered in the theorem by combining components 
that have the same associated primes. Hence the distinct asso­
ciated primes of the primary ideals 0 1", 0.2", ••• , ,ot" are the 
associated primes of m. 

It is an immediate corollary of the uniqueness theorem that 
513 is primary if and only if it has only one associated prime. In 
other words, an ideal that is an irredundant intersection of pri­
mary ideals that do not all have the same associated prime is 
not primary. 

Before proceeding to the discussion of the next uniqueness 
theorem we prove the following important 

Theorem 6. Ij 58 and ~ are ideals in a Noetherian ring, m:~ = 
513 if and only if ~ is not contained in any oj the associated primes 
ojm. 

Proof. Let 513 = 0 1 n 02 n··· n Or be an irredundant de­
composition of 513 into primary ideals. Let ll3i = m(Oi) and as­
sume that ~ cJ. ll3i. Then by Lemma 3, ,oi: ~ = ,oi. Hence 

m:~ = (,01 n 02 n··· n Or):~ 

= 01:~ n 02:~ n··· n Or:~ 

= 0 1 n 02 n··· n Or = 58. 
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On the other hand, suppose that (£ C \.Pi for some i, say, (£ C \.Pl. 
Then there exists an integer m such that (£m COl. Hence 

(£m(02 n··· nOr) C (£m n O2 n··· n Or C .$B. 

Now let n be the smallest integer such that 

(12) 

Since.$B = 0 1 n··· n Dr is irredundant, n ~ 1. It follows that 
(£n-1(0.2 n··· nOr) 1;. .$B. * On the other hand, by (12) 
(£n-1(02 n··· nOr) C .\8:(£ .. Hence .\8:(£ :::> .\8. 

Suppose now that we also have a decomposition of (£ as an 
irredundant intersection 0 1' n 0./ n··· n 0.' with associated 
primes \.PI', \.P/, .. " \.Po'. Then if (£ C \.Ph 0.1'0.2' .. , o.s' C \.Pl. 
Hence one of the 0/ and consequently one of the $/ is contained 
in \.Pl. Conversely, it is clear that, if \.P/ C \.Ph then (£ C \.P/ 
C \.Pl. Using this remark, we can reformulate the criterion that 
we have just derived as follows: 

Theorem 6'. Ij.\8 and (£ are ideals in a Noetherian ring, then 
.\8: (£ = .\8 if and only if no associated prime oj (£ is contained in 
any oj the associated primes oj .\8. 

We shall now use this criterion to derive the second uniqueness 
theorem. This concerns the isolated components of an ideal .\8. 
If.\8 is represented as an irredundant intersection 0.1 n O 2 n··· 
n Or where the Oi are primary and have distinct primes 

\.Ph \.P2, "', \.Pr, then a particular 0 is called an isolated primary 
component of .\8 if the prime associated with 0. contains no other 
associated prime of.\8. More generally we call Oi, n Oi2 n··· 
n 0 ... an isolated component of .\8 if no \.Pi; associated with the 
displayed primary ideals contains any of the associated primes 
that are not in this set. We can now state the 

Second uniqueness theorem. Let.\8 = 0 1 n O2 n·· . n Or = 
0 1' n 0.2' n··· n Dr' be two decompositions oj.\8 that satisfy the 
conditions oj the first uniqueness theorem. Let (£ = o.i, n Oi2 n··· 
n Oik be an isolated component in the first decomposition and let 

(£' be the isolated component oj the second decomposition that has 
the same set oj associated primes as (£. Then (£ = (£'. 

• We use the convention that (£0(02 n ... nOr) = 0.2 n ... nOr. 
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Proof. Write m = ~ n ID = ~' n 1)' where 1) and ID' are 
respectively the intersections of the ,oi and the ,0/ that do not 
contain ~ and ~'. Then the associated primes of 1) n ID' are 
contained in none of the associated primes of~. Hence~: (1) n 
1)') =~. Similarly, ~': (ID n 1)') = ~'. Hence 

m: (ID n ID') = (~: (ID n 1)')) n (1): (1) n 1)')) = ~ 

and 

m: (ID n ID') (~': (~ n 1)')) n (ID': (ID n ID')) = ~'. 

Thus ~ = ~'. 
Note: Another uniqueness theorem, namely, the uniqueness of 

the number of irreducible components of an ideal will be proved 
in § 5 of the next chapter. 

EXERCISES 

1. Prove that, if all the associated prime ideals of m are maximal, then there is 
only one decomposition of m as an irredundant intersection of primary ideals 
with distinct associated primes. 

2. Prove that the radical of an ideal in a Noetherian ring is the intersection 
of the associated prime ideals. 

3. Prove that the radical is a prime ideal if and only if the given ideal has 
only one isolated primary component. 

4. If 5.8 is an ideal, we define the w-th power of m, mw, to be n mi, i = 1,2, 
t 

3, .... Let 5S be an ideal in a Noetherian ring and write 5Sw5S = ,01 n ,02 
n ... n ,on an irredundant intersection of primary ideals. Prove that ,oj::> mw 

for j = 1,2, "', n. Hence show that mw5S = 5Sw• 

9. Integral dependence. The notion that we shall consider next 
is a generalization of the classical concept of an algebraic integer. 
A complex number is called an algebraic integer if it is a root of a 
polynomial with integer coefficients and leading coefficient 1. 
Now let ~ be any commutative ring with an identity and let 
g be a subring of ~ containing 1. Then we shall say that an ele­
ment a £ ~ is integrally dependent on g or is a g-integer if a satisfies 
an equationj(x) = 0 wherej(x) £ g[x] and has leading coefficient 
1. If we write/ex) = xn - y1xn- 1 - ... - Yn-l) Yt in 9, then we 
have 

(13) 
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It follows from this that all the powers of a are expressible as linear 
combinations of 1, a, ... , an - l using coefficients in g. 

Now we regard ~ as a g-module in the obvious way: the group 
of the module is ~,+, and multiplication by elements of g is ring 
multiplication. Then the result that we have observed is that if 
a is a g-integer and (13) holds, then all the powers of a are con­
tained in the finitely generated g-module (1, a, "', an-I). The 
converse is clear; for, if an e (1, a, "', an-I), then we have a rela­
tion of the form (13). 

In the remainder of this section we shall assume that g is 
Noetherian and we shall investigate the totality of g-integral 
elements. The main tool in our considerations will be the fol­
lowing module criterion 

Theorem 7. If g is Noetherian, an element a e ~ is a g-integer 
if and only if there exists a finitely generated submodule of ~ that 
contains all the powers of a. 

Proof. We have just seen that this condition is necessary. 
Now let m be a finitely generated g-module containing all the 
powers of a. Since g is Noetherian, m satisfies the ascending chain 
condition for submodules. Hence, there exists an integer n such 
that in the ascending chain 

(1) C (1,a) C (1,a,a2) c··· 

we have (1, a, "', an-I) = (1, a, "', an). This implies that 
an e (1, a, "', an-I) so that we have a relation of the form (13). 

We use this criterion to prove first the following 

Theorem 8. The totality @ of elements of ~ that are g-integral 
is a subring of ~ containing g. 

Proof. Any element 'Y of g satisfies an equation x - 'Y = O. 
Hence, it belongs to ®. Next let a and b e ® and let (Ul, U2, •• " u.) 
and (VI, V2, "', Vt) be g-modules of ~ that contain all the powers 
of a and of b respectively. The product of any element of (Ui) 
by any element of (v;) is in the submodule 

Hence, any monomial of the form akb l e~. It follows that all 



MODULES AND IDEALS 183 

the powers of a ± b and of ab are in~. Hence, a + band ab e @ 
and @ is a subring of~. 

We shall say that 9 is integrally closed in ~ if @ = g, that is, 
if every element of ~ that is integrally dependent on 9 belongs 
to g. We prove next 

Theorem 9. The ring @ of g-integral elements is integrally 
closed in ~. 

Proof. Let a be a @-integer and let 

an = go + gla + ... + gn_Ian-1 

where the gi e @. We can use this relation to show that every 
power of a is expressible as a linear combination of the powers 1, 
a, "', an - l using coefficients that are sums of monomials in the 
g's. A simple extension of the argument used to prove the preced­
ing theorem shows that there exists a finitely generated g-sub­
module (WI) W2, "', WI) of ~ that contains all the monomials in 
the g's. Then it is clear that every power of a is contained in 

Hence a e @ as we wished to show. 
If ~ = is is a field and 9 = iSo is a subfield, then an element of 

is is iSo-integral if and only if it is algebraic over iSo (§ 7, p. 100). 
Hence, Theorem 8 states in this case that the set @ of elements 
of tJ that are algebraic over iSo is a subring of is containing iSo. 
Also we know that, if a is algebraic, then tJo[a] is a subfield. 
Hence, if a ¢ 0, a-I e tJo[a] C @. Hence, @ is a field. If we 
take into account also Theorem 9, we can state the following 
important theorem on fields. 

Theorem 10. Let is be a field and iSo a subfield. Then the set @ 
of elements of is that are algebraic over iSo forms a subfield oj is 
containing iSo. Any element of is that is algebraic over @ belongs to @. 

Now let is be any field, let 9 be any subring of is containing 1 
and let iSo denote the subfield of is generated by g. If an element 
a e is is g-integral, it is certainly algebraic over iSo. Hence, its 
minimum polynomial }L(x) has coefficients in iSo and leading coeffi­
cient 1. We shall now show that, if 9 is Gaussian, }L(x) e g[x]. 
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To see this, letf(x) be some polynomial with leading coefficient 1 
and other coefficients in g such thatf(a) = O. Then J.L(x) If(x). 
Now one of the irreducible factors off(x) in g[x] is an associate of 
J.L(x) in iMx]. If we call this factor J.L*(x), then J.L*(x) = ~J.L(x), ~ 
in ~o. Since the leading coefficient of f(x) is 1 and J.L*(x) If(x), 
we can suppose that the leading coefficient of J.L*(x) is 1. Then 
the relation J.L*(x) = ~J.L(x) gives ~ = 1 so that J.L(x) = J.L*(x) e g[x]. 
This proves the following 

Theorem 11. Let g be a Gaussian subring of a jield ~ and let 
~o be the subjield of ~ generated by g. Then an element a e ~ is 
integrally dependent on g if and only if it is algebraic over ~o and 
its minimum polynomial over ~o has coefficients in g. 

This criterion is particularly useful if every element of ~ is 
algebraic over ~o; for in this case it asserts that an element of ~ 
is g-integral if and only ifits minimum polynomial is in g[x]. We 
note also that, since the elements of ~o are algebraic over ~o 
and have minimum polynomials of the form x - 'Y, the only 
elements of ~o that are integral over g are those in g. Then g 
is integrally closed in ~o. An integral domain is said to be inte­
grally closed if it is integrally closed in its field of fractions. The 
result that we have obtained can therefore be stated as the 
following 

Corollary. Any Gaussian integral domain is integrally closed. 

10. Integers of quadratic fields. The theory of algebraic num­
bers is concerned with the arithmetic properties of fields of the 
form Ro(O) where Ro is the field of rational numbers and 0 is an 
algebraic element. The primary object of study in this theory 
is the ring ® of elements of Ro(O) that are I-integers (or simply 
integers of Ro(O». In this section we give a brief introduction to 
the theory of algebraic numbers by determining the ring of inte­
gers of quadratic extensions Ro(O). 

Let m be an (ordinary) integer that has no square factors. 
Then the polynomial x2 - m is irreducible in I[x]. Since I is 
Gaussian, it follows that x2 - m is irreducible in Rolx]. Hence, 
we can construct an extension field Ro(O) where fP = m. Such a 
field is called a quadratic extension of the field of rational numbers. 
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Any element of ~(8) can be written in one and only one way 
in the form u = a + ~8 where a and ~ e ~. If u = a + ~8, 
we define the conjugate (in ~(8» of u to be the element u = 

a - ~8 of this field. I t is easy to verify that the mapping u ~ u 
is an automorphism of ~(8). Also it is clear that, if u is not in 
~, then u ~ u. We set 

T(u) = u + u = 2a, N(u) = uu = at- - (J2m, 

and note that T(u) and N(u) are in~. Hence, the polynomial 

j(x,u) = (x - u)(x - ii) = x2 - T(u)x + N(u) 

has rational coefficients. Evidently u is a root ofj(x,u). Hence, 
every element of ~(8) is algebraic over ~. 

If u e~, u is integrally dependent on I if and only if it belongs 
to I. If u ¢~, then the minimum polynomial of u relative to 
~ is of degree > 1. Hence, it is the polynomialj(x,u). Then u 
is an integer of ~(8) if and only if the coefficients T(u) and N(u) 
are integers. Thus we have the conditions 

(14) 2a e I, at- - {J2m e 1. 

The first of these conditions implies that either a e I or that 
a is half of an odd integer, say, a = (2n + 1)/2. If a e I the 
second condition gives ~2m e 1. Since m has no square factors, 
this implies that fJ e 1; for otherwise fJ = 0102 -1 where 01 and 
U2 e I and U2 is divisible by a prime p that does not divide Ot. 
Then 

Ot2m = ({J2m)o22 55 0 (mod p2). 

Since p X Ob this implies that p21 m contrary to our assumption. 
Suppose next that a = (2n + 1)/2, n in 1. In this case the 

condition that N = at- - {J2m e 1 gives 

{J2m = a2 - N = (4n2 + 4n - 4N + 1)/4. 
Hence 

(15) {J2m = (4r + 1)/4, r e 1. 

Now write {J :::0: UtU2 -1 where Ut and U2 are integers such that 
(UhU2) = 1 and multiply (15) by 4U22. This gives 

4b t llm = (4r + l)b22• 
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Since m is square-free and (bt,l)2) = 1, this relation implies that 
b22 = 4 and b2 = ±2. Thus b1 is odd and {j is half of an odd 
integer. 

Now write {j = (2q + 1)/2 as well as 0: = (2n + 1)/2. Since 

N = ~ - {j2m = [4n2 + 4n + 1 - (4q2 + 4q + l)m]/4 

is an integer, we have the congruence 

4n2 + 4n + 1 - (4q2 + 4q + l)m == 0 (mod 4). 

This reduces to 1 - m = 0 (mod 4) and m == 1 (mod 4). Thus 
we see that, unless m is of the form 4k + 1, the integers of Ro(8), 
82 = m, are necessarily of the form 0: + {j8 where 0: and {j are 
ordinary integers. If m = 1 (mod 4), then we also have the 
possibility that an integer has the form 0: + {j8 where 0: and {j 
are both halves of odd integers. 

Conversely, if 0: and {j e I, then (13) holds and 0: + {j8 is a 
quadratic integer. Also, if m = 1 (mod 4) and 0: and {j are 
halves of odd integers, then 0: + {j8 is a quadratic integer. Our 
conclusions can be summarized as follows: 

Theorem 12. If m is a squarefree integer E 2 or 3 (mod 4), then 
the ring @ of integers of Ro(8) is the set of numbers of the form 
0: + {j8 where 0: and {j e 1. If m = 1 (mod 4), @ is the set of num­
bers of the form 0: + {j8 where 0: and (j are either both in I or both 
halves of odd integers. 

EXERCISES 

1. Show that if m = -3, @ is Euclidean. 
2. Prove that there are just five negative values of m, namely, m = -1, 

-2, -3, -7, -11 such that @ is Euclidean relative to the function 8(£1) = 
I N(a) 1.* 

• See for example Hardy and Wright, The Theory oj NumIJers, Oxford, 1938, p. 213. The 
positive values of m for which this holds have been determined only recently. They are 
m = 2, 3, 5,6,7, 11, 13, 17, 19,21,29,33,37,41,57,73,97. See H. Chatland, On the 
Euclidean algorithm in quadratic num"er fields, Bull. Amer. Math. Soc., Vol. 55 (1949), 
pp. 948-953. The question of the existence of a Euclidean division process that does not 
necessarily make use of the function 6(a) = I N(a) I is discussed by T. Motzkin, in a 
paper, The Euclidean algorithm, Bull. Amer. Math. Soc., Vol. 55 (1949), pp. 1142-1146. 



Chapter f7!! 

LATTICES 

In a number of important considerations in the theory of 
groups and of rings one is concerned primarily with certain dis~ 
tinguished subsets (invariant subgroups, ideals) of these systems 
rather than with the elements themselves. This is particularly 
true of the Jordan-HOlder-Schreier theory. Here the arguments 
concern the system of M-subgroups and the compositions in this 
system of intersection and group generated. Similarly, parts of 
the theory of rings are concerned with the systems of ideals (left, 
right, two-sided) of a ring and the compositions of intersection 
and sum in these systems. One is therefore led to the definition 
of an abstract system-called a lattice-that includes these two 
as instances. The concept of a lattice was first defined by Dede­
kind, but it attracted very little attention until quite recently 
(around 1930). Besides the applications to algebra many applica­
tions to the foundations of geometry and to other fields have 
been discovered. It should be noted also that prior to Dedekind's 
work a special class of lattices, Boolean algebras, had been intro­
duced by Boole. 

In this chapter we shall give a brief treatment of the parts of 
the theory of lattices that are applicable to group theory and ring 
theory. The arguments that we shall use will often be repetitions 
of those that we have encountered before. In such cases full 
details will be omitted. 

1. Partially ordered sets 

Definition 1. A partially ordered set is a system conslstzng 
of a set S and a relation ~ ("greater than or equals" or "contains") 
satisfying the following postulates: 

187 
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PI a ~ band b ~ a hold if and only if a = b. 

P2 If a ~ band b ~ c, then a ~ c. 

If a and b are any elements of S we may have a ~ b or not; 
in the latter case we write a i?- b. Also if a ~ b and a ¢. b, then 
we write a > b, and we agree to use b ~ a and b < a as alterna­
tives for a ~ b and a > b. 

Examples. (1) The set I of integers, the set P of positive integers and the 
set R of real numbers are partially ordered sets relative to the usual ~ relation. 
(2) The set P of positive integers, the relation ~ defined by the rule that 
a ~ 0 if a I D. It is clear that PI and P2 are satisfied. (3) The set I.l3 of sub­
sets of an arbitrary set S with A ~ B defined to mean that B is a subset of A. 
(4) The set ~ of subgroups of a group ® with .pI ~ .\)2 defined as in (3). 

In anyone of the examples, (2), (3), or (4), there exist elements 
a and b that are not comparable in the sense that neither a ~ b 
nor b ~ a holds. If every pair of elements of a partially ordered 
set S is comparable (a ~ b or b ~ a), then S is said to be linearly 
ordered or is a chain. All of the examples in (1) are of this type. 

In a finite partially ordered set the relation> can be expressed 
in terms of the relation of covering. We say that at is a cover 
of a2 if al > a2 and no u exists such that al > u > a2' It is 
clear that, if a > b in a finite partially ordered set, then we can 
find a chain 

in which each ai covers ai+l' Conversely the existence of such 
a chain implies that a > b. This remark enables us to represent 
any finite partially ordered set by a diagram. One obtains such 
a diagram by representing the elements of S by small circles 
(or dots) and placing the circle for al above that for a2 and con­
necting by a line if al is a cover of a2. Then a > b if and only 
if there is a descending broken line connecting a to b. Some 
examples of such diagrams are the following: 
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Evidently the notion of a diagram of a partially ordered set 
gives us another means to construct examples of such sets. 

EXERCISES 

1. Show that the partially ordered set of subgroups of a cyclic group of prime 
power order is a chain. 

2. Let S be the set of all functions which are continuous over the interval 
o ~ x ~ 1. Define! ~ g if and only ifJ(x) ~ g(x) for all x in the closed interval. 
Show that the relation ~ is a partial ordering of S. 

3. Obtain diagrams for the following partially ordered sets: the set of subsets 
of a set of three elements, the set of subgroups of the cyclic group of order 6, 
the set of subgroups of S3. 

2. Lattices. An element u of a partially ordered set S is said 
to be an upper bound for the subset A of S if u ~ a for every 
a eA. The element u is a least upper bound (l.u.b.) if u is an 
upper bound and u ~ v for any upper bound v of A. It is im­
mediate that if a least upper bound exists then it is unique. 
Similar definitions and remarks apply to lower bounds. These 
notions are fundamental in the following 

Definition 2. A lattice (structure) is a partially ordered set in 
which any two elements have a least upper bound and a greatest 
lower bound (g.l.b.). 

We denote the l.u.b. of a and b by a U b ("a cup b" or "a union 
b") and the g.l.b. by a n b (cea cap b" or cea intersect b"). If 
a,b,c are any three elements of a lattice L, then (a U b) U c ~ 
a,b,c. Moreover, if v is any element such that v ~ a,b,c then 
v ~ (a U b), c. Hence v ~ (a U b) U c. Thus (a U b) U c is a 
l.u.b. for a,b and c. A simple inductive argument shows that 
any finite subset of L has a l.u.b. Similarly any finite subset has 
a g.l.b. If the set consist5 of ah a2, "', an, then we denote these 
elements by 

al U a2 U··· U an and al n a2 n··· n an 

respecti vel y . 
A lattice L is said to be complete if any (finite or infinite) subset 

A. = faa} has a l.u.b. Uaa and a g.l.b. naa • 

The examples (1)-(4) of partially ordered sets listed in § 1 are 
lattices. In the example (3) of subsets of a set, A U B and A n B 
have the usual significance of set-theoretic sum and set intersec-
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tion. In the partially ordered set of subgroups of a group @, 

~1 U .\)2 is the group [.\)1).\)2] generated bY.\)1 and .\)2 while 
.\)1 n .\)2 is the usual intersection. All of the diagrams given in 
§ 1 except the last one represent lattices. The lattice of subsets 
of any set, and the lattice of subgroups of any group are complete. 
The lattice of rational numbers (the usual ;:::) is not complete. 

I t is worth while to list the basic algebraic properties of the 
binary compositions U and n in a lattice. In doing so we shall 
be led to a second and somewhat more algebraic definition of a 
lattice. 

We note first that the l.u.b. and the g.l.b. are symmetric func­
tions of their arguments, that is, a U b = b U a and a n b = 

b n a. Also we have seen that (a U b) U c is the l.u.b. of a,b,c. 
Since the l.u.b. is unique, 

(a U b) U c = (b U c) U a = a U (b U c). 

Similarly 
(a n b) n c = a n (b n c). 

It is clear that 
a U a = a, a n a = a. 

Since a U b ;::: a, (a U b) n a = a. Similarly (a n b) U a = a. 
Conversely suppose that L is any set in which there are defined 

two binary compositions U and n satisfying 

Ll a U b = b U a, a n b = b n a. 

L2 (a U b) U c = a U (b U c), (a n b) n c = a n (b n c). 

La a U a = a, a n a = a. 

(a U b) n a = a, (a n b) U a = a. 

We shall show that L is a lattice relative to a suitable definition of 
;::: and that U and n are the l.u.b. and the g.l.b. in this lattice. 

Before proceeding to the proof we remark that we have made 
precisely the same assumptions on the two compositions U and 
n. Hence, we have the important principle of duality that states 
that, if S is a statement which can be deduced from our axioms, 
then the dual statement S' obtained by interchanging U and n 
in S can also be deduced. 
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We note next that, if a and b belong to a system satisfying 
L l-L4, then the conditions a U b = a and a n b = b are equiv­
alent; for, if a U b = a holds, then a n b = (a U b) n b = b 
and dually a n b = b implies a U b = a. We shall now define 
a relation ~ in L by specifying that a ~ b means that either 
a U b = a or a n b = b. Evidently in dualizing a statement 
a ~ b has to be replaced by b ~ a. 

We shall now show that the basic rules P C P2 for partially 
ordered sets hold for the relation that we have introduced. Sup­
pose that a ~ band b ~ a. Then a U b = a and b U a = o. 
Hence by the commutative law a = b. Also by La a U a = a 
so that a ~ a. This proves Pl' Next assume that a ~ band 
b ~ c. Then a U b = a and b U c = b. Hence, 

a U c = (a U b) U c = a U (b U c) = a U b = a 

and a ~ c. Hence P2 holds. 
Since (a U b) n a = a,a U b ~ a. Similarlya U b ~ b. Now 

let c be any element such that c ~ a and c ~ b. Then a U c = c 
and b U c = c. Hence 

(a U b) U c = a U (b U c) = a U c = c 

and c ~ a U b. This shows that a U b is a l.u.b. of a and b. 
By duality a n b is a g.l.b. of a and b. This concludes the proof 
that a system satisfying L l-L4 is a lattice. 

A subset M of a lattice L is called a sublattice if it is closed rela­
tive to the compositions U and n. It is evident that a sublattice 
is a lattice relative to the induced compositions. On the other 
hand, a subset of a lattice may be a lattice relative to the partial 
ordering ~ defined in L without being a sublattice. For exam­
ple, let ® be a group, let ~ be the lattice of subsets of ®, and ~ 
be the lattice of subgroups of ®. Then it is clear that ~ C ~, 
and that -i)l ~ -i)2 has the same significance in these two sets. 
On the other hand, if -i)l and -i)2 are subgroups, then -i)l U ~2 as 
defined in ~ is the set sum of these groups. In general, this is 
not a subgroup; hence, it differs from the -i)l U -i)2 defined in ~ 
as the smallest subgroup of ® containing -i)l and -i)2' 

If a is a fixed element of a lattice L, then the subset of elements 
x such that x ~ a (x ~ a) is evidently a sublattice. If a ~ 0, the 



192 LATTICES 

subset of elements x such that a ~ x ~ b is a sublattice. We call 
such a sublattice a (closed) interval (quotient) and we denote it as 
J[a,b]. * 

The definition of a lattice by means of the postulates LcL4 
leads also to the useful definition of homomorphism. A mapping 
a -+ a' of a lattice L into a lattice L' is called a homomorphism 
if (a U b)' = a' U b' and (a n b)' = a' n b'. If such a mapping 
is 1-1, it is an isomorphism. A useful criterion for isomorphism 
is the following 

Theorem 1. A 1-1 mapping a -+ a' of a lattice L onto a lattice 
L' is an isomorphism if and only if a ~ b in L implies and is 
implied by a' ~ b' in L'. 

Proof. A mapping a -+ a' of a lattice L into a lattice L' 
is called order preserving if a ~ b implies that a' ~ b'. If a -+ a' 
is an isomorphism and a ~ b, then a U b = a. Hence a' U b' 
= a' and a' ~ b'. Thus a -+ a' is order preserving. Evidently 
the inverse mapping a' -+ a is also order preserving. Conversely, 
suppose that a -+ a' is a 1-1 mapping of L onto L' which is order 
preserving and whose inverse is also order preserving. Let 
d = a U b. Then d ~ a,b so that d' ~ a',b'. Now let e' be 
any element of L' such that e' ~ a',b' and let e be the element of 
L whose image is e'. Then e ~ a,b. Hence e ~ d and e' ~ d'. 
This shows that d' = a' U b'. Similarly (a n b)' = a' n b'. 

An element 1 of a partially ordered set is called an all element 
(unit, identity) if 1 ~ a for every a in the set. Dually, an element 
o is called a zero element if 0 ~ a for every a. Evidently, if these 
elements exist, they are unique. 

EXERCISES 

1. Show that the set of invariant subgroups and the set of M-subgroups (for 
any operator set M) are sublattices of the lattice of subgroups of any group. 

2. Let S be the partially ordered set of ex. 2, p.189. Define! U g and! n g 
suitably and prove that S forms a lattice with respect to these compositions and 
the given partial ordering. Is S a complete lattice? 

3. Show that any complete lattice has a zero and an all element. 
4. Prove that a partially ordered set with an all element in which every 

non-vacuous set has a g.l.b. is a complete lattice. 

• This notation is more convenient for the algebraic applications than the usual one 
in which the smaller endpoint is displayed first. 
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3. Modular lattices. One of the compositions of a lattice, 
say U, can be regarded as the analogue of addition in a ring, 
while the other can be taken to be the analogue of multiplication. 
It is therefore natural to investigate lattices that are distributive 
in the sense that 

(1) a n (b U c) = (a n b) U (a n c) 

holds. Important examples of such lattices do exist. For in.,.. 
stance, the lattice of all subsets of a set relative to the usual set 
theoretic sum and intersection is distributive. This is indicated 
in the figure 

and is readily proved in general. Another example of a distribu­
tive lattice is the lattice of positive integers in which a ~ b means 
that a I b. Here a U b is the g.c.d. (a,b) and a n b is the l.c.m. 
[a,b] of a and b. Then (1) reads 

[a,(b,c)] = ([a,b],[a,cD. 

The proof of this follows easily from the properties of (a,b) and 
[a,b] (ex. 2, p. 120). 

It is clear that in any lattice a n (b U c) ~ a n b and a n 
(b U c) ~ a n c. Hence 

a n (b U c) ~ (a n b) U (a n c) 

always holds. In order to establish distributivity it therefore 
suffices to prove the reverse inequality 

a n (b U c) ~ (a n b) U (a n c). 

We remark also that the condition (1) is equivalent to the dual 
condition: 
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(1') a U (b n c) = (a U b) n (a U c). 

For if (1) holds, then 

(a U b) n (a U c) = «a U b) n a) U «a U b) n c) 

= a U «a U b) n c) 

= a U «a n c) U (b n c» 

= (a U (a n c» U (b n c) 

= a U (b n c). 

Dually (1') implies (1). Thus the assumption of (1) is equivalent 
to the assumption of (1) and (1'). Hence, it is clear that the 
principle of duality holds also for distributive lattices. 

The most important lattices that occur in algebra (e.g., the 
lattices of ideals of rings) are not distributive. However, a num­
ber of these do satisfy a weaker form of (1) that reads as follows: 

L5 If a ;::: b, then a n (b U c) = b U (a n c). 

Since b = a n b the right-hand side can be replaced by (a n b) U 
(a n c). Thus our assumption amounts to the distributive law 
for triples a,b,c such that a ;::: b. We now state the following 
important 

Definition 3. A lattice is called modular (Dedekind) if it 
satisfies the condition L5• 

The importance of these lattices for the applications to other 
branches of algebra stems from the following 

Theorem 2. The lattice oj invariant subgroups of any group is 
modular. 

Proof. Let ® be the given group and let 4>h-P2,-Pa be invariant 
subgroups such that -PI ;::: -P2 (-PI ::> -P2). Consider the inter­
section ~I n (-P2 U -Pa) where -P2 U ~a now denotes the l.u.b. 
of -P2 and -Pa in the lattice of subgroups. Thus -P2 U -Pa is the 
subgroup generated by ~2 and -Pa. Since the -Pi are invariant, we 
know that ~2 U -Pa = -P2-Pa = -Pa-P2. Hence, if a e -PI n 
(~2 U ~a), a = hI e -PI and a = h2ha where h2 e -P2 and ha e ~a. 
From hI = h2ha we obtain h2 -ihi = ka• Since -PI ;::: -P2 the 
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left-hand side of this equation represents an element of ~1' 
Hence h3 e S)1 and so h3 e S)1 n ~3' We have therefore proved 
the essential inequality 

~1 n (~2 U S)3) ~ S)2 U (S)1 n S)3). 

Previously we had noted that the reverse inequality is a general 
lattice theoretic property. Hence 

~1 n (~2 U S)3) = ~2 U (S)1 n ~3), 
and the theorem is proved. 

It is clear that any sublattice of a modular lattice is modular. 
Hence the lattice of invariant M-subgroups of any M-group is 
modular. Hence, also the lattice of submodules of any module 
and the lattices of ideals (left, right, two-sided) of any ring are 
modular. On the other hand, the lattice of all subgroups of a 
group is generally not modular. This fact makes it somewhat 
unnatural to try to subsume all of group theory under the theory 
of lattices. * 

We note that the principle of duality holds in modular lattices; 
for the dual ofL5 reads: if a ~ b, then a U (b n c) = b n (a U c), 
and this clearly means the same thing as L5• An alternative useful 
definition of a modular lattice can be extracted from the following 

Theorem 3. A lattice L is modular if and only if a ~ band 
a U c = b U c, a n c = b n c for any c imply that a = b. 

Proof. Let L be modular and let a, b, c be elements of L 
such that a ~ b and a U c = b U c, a n c = b n c. Then 

a=an~u~=an~U~=bU~n~ 

= b U (b n c) = b. 

Conversely suppose that L is any lattice that satisfies the condi­
tion of the theorem. Let a ~ b. Then we know that a n 
(b U c) ~ b U (a n c). Also 

(a n (b U c)) n c = a n ((b U c) n c) = a n c 

and 

a n c = (a n c) n c ~ (b U (a n c)) n c ~ a n c 

• See the remarks on the Jordan-HOlder theorem on p. 200. 
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so that 
(0 U (a n c» n c = a n c. 

By duality we have 

Hence, 

and L is modular. 

(a n (0 U c» u c = 0 U c 

(0 U (a n c» U c = 0 U c. 

a n (b U c) = b U (a n c) 

We establish next an analogue for modular lattices of the second 
isomorphism theorem for groups, namely, 

Theorem 4. If a and b are any two elements of a modular lattice, 
then the intervals Ira U 0, a] and I[b, a n b] are isomorphic. 

Proof. Let x be in the interval I[a U b, a], so that a U 0 ~ 
x ~ a. Then b ~ x n b ~ a n b and x n b is in the interval I[b, 
a n b]. Similarly, if y is in l[b, a no], then y U a is in I[a U b, a]. 
We therefore have a mapping x ~ x n b of l[a U b, a] into 
l[b, a n b] and a mapping y ~ y U a of 1[0, a n 0] into l[a U 0, a]. 
We shall now show that these are inverses of each other so that 
either one defines a 1-1 correspondence of one of the intervals 
onto the other. Let x e l[a U 0, a]. Then since x ;::: a, 

(x n 0) U a = x n (a U 0). 

Since x ~ a U 0, this gives (x .. 0) U a = x. Dually we can 
prove that if y e 1[0, a U 0], then (y U a) n b = y. This proves 
our assertion. Since our mappings are evidently order preserving 
they are lattice isomorphisms. 

This theorem leads us to introduce a notion of equivalence for 
intervals that is stronger than isomorphism. First we define l[u,v] 
and I[w,t] to be transposes (similar) if there exists elements a,o 
in L such that one of the pairs can be represented as I[a U b, a] 
while the other has the form 1[0, a n b]. The intervals l[u,v] 
and I[w,t] are called projective if 'there exists a finite sequence 
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beginning with I[u,v] and ending with I[w,t] such that consecutive 
pairs are transposes. It is immediate that the relation that we 
have defined is an equivalence. Also by Theorem 4 projective 
intervals are isomorphic. 

We observe now that in the lattice of invariant M-subgroups 
of any M-group ® projectivity of a pair of intervals 1[ ~,~], 1[9)1,91] 
implies M-isomorphism of the factor groups ~/~) 9)1/91. It 
suffices to consider a pair of transposed intervals, say, 1[~1 U ~2) 
~l] and 1[~2' ~l n ~2]' For these, the isomorphism of (~l U 
~2) / ~l and ~2/ (~l n ~2) follows directly from the second iso­
morphism theorem for groups. This remark will enable us to 
translate some of the lattice theoretic results to results on group 
isomorphisms. 

EXERCISES 

1. Show that, if a lattice is not distributive, then it has a sublattice of order 5 
whose diagram is either the first or the second on p. 188. Show also that a 
non-modular lattice contains a sublattice whose diagram is the first on p. 188. 

2. Show that the lattice of subgroups of .d4 is not modular. 
3. Prove that, if ® is a group that is generated by two elements a and b 

such that aP'" = 1, IJPr = 1, b-1ab = an where npr == 1 (mod pm), then any two 
subgroups of ® commute. Use this to show that the lattice of subgroups of ® 
is modular. 

4. Show that if a covers a n b in a modular lattice L then a U b covers b. 
A lattice that has this property is called semi-modular. Verify that the lattice 
whose diagram is 

is semi-modular but not modular. 

4. Schreier's theorem. The chain conditions. Let a and b be 
two elements of a modular lattice satisfying a ~ b. We consider 
now the finite descending chains 

(2) a = al ~ a2 ~ aa ~ ... ~ an+l = b 

connecting a and b. One such chain is called a refinement of a 
second if its terms include all the terms of the other chain. Two 
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chains are said to be equivalent if it is possible to set up a 1-1 
correspondence between the intervals I[ai,ai+l] of the two chains 
such that corresponding intervals are projective. We use these 
terms in formulating the analogue of Schreier's theorem on groups 
as follows: 

Theorem 5. Any two finite descending chains connecting the 
elements a,b (a ~ b) of a modular lattice have equivalent refinements. * 

For the proof we require the analogue of Zassenhaus' lemma 
(third isomorphism theorem). This is the following 

Lemma. Let ah aI" a2, a2' be elements of a modular lattice 
such that al ~ aI" a2 ~ a2'. Then the following three intervals 

I[(al n a2) U aI" (al n a2') U al'], I[al n a2, (aI' n a2) 

U (al n a2')], I[(al n a2) U a2', (at' n a2) U a/] 

are projective. 

Proof. Since the second interval is symmetric in the subscripts 
1 and 2 and since the third is obtained from the first by inter­
changing 1 and 2, it suffices to prove that the first and second are 
projective. Now set 

a = al n a2, b = (al n a2') U al'. 
Then 

a U b = (al n a2) U (al n a2') U aI' = (al n a2) U aI' 

and 
a n b = (al n a2) n «al n a2') U al') 

= (al n a2') U «al n a2) nat') 

= (al n a/) U (at' n a2). 

This shows that the first interval has the form I[a U b, b] while 
the second has the form I[a, a n b]. Hence, these intervals are 
projective. 

Now let 

(3) 

(4) 

a = al ~ a2 ~ ... ~ a.+l = b 

a = bl ~ b2 ~ ... ~ bt+l = b 

• This form of the theorem is due tC!l Ore. 
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be two descending chains connecting a and b. As in the group 
case we introduce the elements 

Then 

ail, = (ai n b,,) U ai+h k = 1, 2, .. " t + 1 

bid = (ai n bk) U bk+h i = 1, 2, .. " s + 1. 

(5) a = all ~ a12 ~ ... ~ al,t+l = a2l ~ a22 ~ ... ~ a2,t+l 

~ ... ~ ... ~ a.,t+l = b 

(6) a = bll ~ bl2 ~ ... ~ bl,.+l = b2l ~ b22 ~ ... ~ b2 •• +1 

~ ... ~ ... ~ bt •• +l = b 

are refinements of (3) and (4) respectively. By the lemma 
I[aik, ai,k+l] and I[b"i, bk,i+l] are projective. We can therefore use 
the correspondence I[aik, ai,k+l] ~ I[bki, bk,i+l] to prove Theorem 
5. 

The refinement theorem which we have just proved can be used 
to derive the Jordan-Holder theorem for modular lattices. First, 
we define a composition chain connecting a, b, a > b to be a finite 
sequence 

a = al > a2 > aa > ... > an+! = b 

in which each ai is a cover of ai+l' As in the group case we can 
establish directly the following Jordan-Holder theorem: 

Theorem 6. If a = al > a2 > ... > an+l = b and a = at' > 
a2' > ... > am+t' = b are two composition chains connecting a 
and b in a modular lattice L, then n = m and there is a 1-1 corre­
spondence between the intervals I[ai,ai+l], I[a/,ai+l'] such that corre­
sponding intervals are projective. 

We assume for simplicity now that L contains 0 and 1, and 
we take a = 1, b = 0 in the foregoing discussion. Then if there 
exists a composition chain connecting 1 and 0, L is said to be of 
finite length. The number of intervals in this chain, which is 
uniquely determined by L, is called the length (dimension) of L. 

As in the group case (p. 142) we can prove easily that a modular 
lattice with 0 and 1 is of finite length if and only if the following 
two chain conditions hold: 
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Descending chain condition. There exists no infinite properly 
descending chain, al > a2 > as > ... in L. 

Ascending chain condition. There exists no infinite properly 
ascending chain al < a2 < as < . .. in L. 

Assume now that L is modular with 0, 1 and that L has finite 
length. If a is an element of L, the sublattice La, of elements 
x ~ a satisfies the same conditions that we have imposed on L. 
Evidently a is the all element of La,. We call the length of La, 
also the rank (dimensionality) lea) of a. If a ~ b, then it is clear 
that 

lea) = l(b) + length J[a,b]. 

Hence for any a and b in L we have 

lea U b) = lea) + length J[a U b, a], 

l(b) = lea n b) + length /[b, a n b]. 

Since J[a U b, a] and J[b, a n b] are isomorphic, they have equal 
lengths. Hence 

lea U b) - lea) = l(b) - lea n b), 
or 

(7) lea U b) = lea) + l(b) - lea n b). 

This formula is called the fundamental dimensionality relation for 
modular lattices. 

The results of this section yield again Schreier's theorem and 
the Jordan-Holder theorem for invariant M-subgroups of any 
M-group ®. Isomorphism of the factor groups determined by the 
intervals of the chains is assured by the projectivity of these 
intervals. For example, we can easily derive the Jordan-Holder 
theorems. for chief series and for characteristic series from the 
lattice results. On the other hand, the lattice theorems that we 
have given do not apply to ordinary composition series, since the 
lattice of all subgroups of a group need not be modular. Some­
what more complicated concepts are required to yield the theory 
of ordinary composition series. * 

• See G. Birkhoff, Lmtiu Theory, revised edition (1949), pp. 87-89, and the references 
given on p. 89. 
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EXERCISE 

1. A subset A of a lattice L is called an ideal if (1) a,h e A implies an" e A, 
and (2) a e A and x e L imply a U x e A. A is a principal ideal (a) if A con­
sists of all x e L such that x ~ a for fixed a e L. 

Prove that L satisfies the descending chain condition if and only if every 
ideal of L is principal. 

Dualize the definition of ideal and the result stated above. (The dual of an 
ideal is called a dual ideal.) 

5. Decomposition theory for lattices with ascending chain con· 
dition. We consider next the lattice abstraction of a part of the 
theory of ideals in Noetherian rings. We assume that L is a 
modular lattice that satisfies the ascending chain condition. As 
in the special case of ideals we say that an element a e L is (inter­
section or meet) reducible if a = al n a2 where the ai > a. It is 
easy to prove (for example, by using the analogue of the principle 
of divisor induction) that any element of L can be represented as a 
g.l.b. of a finite number of irreducible elements. 

The theory of primary ideals does not carryover to lattices. 
Here it appears to be necessary to deal exclusively with the con­
cept of irreducibility, and all that we can establish in the way of 
uniqueness is the comparatively weak result that the number of 
terms in any two irredundant representations as g.l.b. ot lrreduci­
ble elements is unique. As before, we say that the representation 
a = ql n q2 n··· n qm is irredu12dant if ql n··· n qi-l n qi+l n 
... n qm > a for i = 1, 2, ... , m. 

Suppose now that we have any two representations (not neces­
sarily irredundant) of a as 

(8) a = ql n q2 n··· n qm = rl n r2 n·· . n r ... 

where the qi and the rj are irreducible. We propose to show that 
any qi can be replaced by a suitable ri', so that we also have 

a = ql n··· n qi-l n ri' n qi+l n··· n qm' 

It suffices to take i = 1. We introduce the notation 

r/ = rj n q2 n··· n qm, j = 1, 2, ... , n 

and note that a = rt' n r2' n··· n r ... ' and r/ ~ q2 n qa n··· 
n qm. Now, the intervals 
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and 

(10) 

are isomorphic. It follows that, since ql is irreducible in (10), 
a is irreducible in (9). But the decomposition a = rl' n r2' n··· 
n r,/ is valid in (9). Hence a = ri,' for a suitable i. This proves 
the following 

Theorem 7. If a = ql n q2 n··· n qm = rl n r2 n··· n rn are 
two representations of an element of a modular lattice as g.l.b of 
irreducible elements, then for each qi there exists an ri' such that 
a = ql n··· n qi-l n ri' n qi+l n··· n qm' 

A simple corollary of this result is the uniqueness theorem: 

Theorem 8. The number of terms in any two irredundant 
representations of an element as g.l.b. of irreducible elements is the 
same. 

Proof. Applying Theorem 7 we can write 

(11) a = rl' n q2 n··· n qm = rl' n r2' n qa ... n q. 

= ... = rl' n r2' n··· n rm,. * 
Since the decomposition a = rl n r2 n··· n rn is irredundant, all 
the ri appear in the last line of (11). Hence m ~ n. By sym­
metry m = n. 

6. Independence. Suppose that L is a modular lattice with 
o and 1. We call a finite set ah a2, "', an of L (join) inde­
pendent if 

(12) ai n (al U··· U ai-l U ai+l U··· U an) = 0 

for i = 1,2, "', n. We have encountered this notion before in 
the theory of direct products of groups. In this section we shall 
indicate (mainly in the exercises) how a portion of the theory of 
direct products can be carried over to lattices. The main result 
that we shall derive in the text is the following 

• Note that 2', 3', .• , have a slightly different significance here than in Theorem 7. 
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Theorem 9. If the elements at, a2, 
then 

an are independent, 

(13) (al U··· U ar U ar+l U··· U a.) 

n (al U··· U ar U a.+l U··· U at) = al U··· U ar. 

Proof. We prove first that 

(14) (al U··· U a.) n (a.+l U··· U an) = O. 

This is true by assumption if s = 1. Assume now that we have 
it for s - 1. Then 

(al U··· U as) n (a.+l U··· U an) ~ (al U··· U as) 

n (a, U a.+l U··· U an) = «al U··· U a._I) n (as U· .. U an)) 

by modularity and (14) for s - 1. It follows that 

(al U··· U a.) n (a.+l U··· U an) 

U a. = a" 

= (al U"', U a.) n (a.+l U··· U an) n a. = 0, 

since a. n (a.+l U··· U an) = O. This establishes (14) for all 
s. We can now apply the modularity assumption to the left­
hand side of (13) to obtain the right-hand side. 

A number of useful corollaries can be drawn from (13). Some 
of these are contained in the following 

EXERCISES 

1. Show that if at, a2, ... , an is an independent set then any subset is inde­
pendent. Show also that the elements 

bl = al U ... U aTU b2 = aT, + 1 U ... U aTt, 

b" = arlo_I+! U '" U arlo 

where rl < r2 < ... < r" = n are independent. 
2. Let at, a2, .•. , an be a set of independent elements such that al U a2 U 

... U an = 1. Define 

b. = al U ... U ai-l U aHl U ... U all' 
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Prove the dual relations: 

O. U (01 n ... n 0.-1 no.+! n··· no .. ) = 1 
01 n 02 n ... n Ofl = 0 

IIi = 01 n ... n Oi-l n Oi+! n ... n Ofl' 

3. Prove that, if the elements al, a2, ... , afl are independent and (al U ... 
U an) n an+l = 0, then the elements al, a2, "', an+l are independent. Prove 
that the set al, a2, ... , an is independent if and only if (al U ... U aj) n ai+l = 
0, for ; = 1, 2, ... , n - 1. 

4. Show that, if L satisfies the chain conditions, then the elements al, a2, 
... , an are independent if and only if 

I(al U a2 U ... U an) = I(al) + l(a2) + ... + I(a,.). 

An element a is (join) decomposable if a = al U a2 where the 
ai are independent and ~ a. If L satisfies the descending chain 
condition, then the argument used in the group case (p. 154) 
shows that any element of L can be represented as l.u.b. of a finite 
number of independent indecomposable elements. 

If a = b U c = bUd where b n c = ° = b n d, then the in­
tervals 1[a,b] and 1[c,0] and the intervals 1[a,b] and 1[d,0] are trans­
poses. Hence 1[c,0] and 1[d,0] are projective. We therefore say 
that the elements c and d are directly projective if b exists in L 
such that 

b U c = bUd, b n c = b n d = 0. 

This concept is used in the lattice form of the Krull-Schmidt 
theorem. We state this result without proof as follows: 

Theorem. Let L be a modular lattice with ° and 1 that satisfies 
both chain conditions. Suppose that 

a = al U a2 U··· U am = bi U b2 U··· U b,. 

where the ai are independent and indecomposable and the bi are 
independent and indecomposable. Then m = n and the ai and bi 
can be put in 1-1 correspondence in such a way that corresponding 
elements are directly projective. 

This theorem is due to Kurosch and to Ore. * I t is immediate 
that it implies the Krull-Schmidt theorem for groups except for 
the statement concerning the intermediate decompositions. 

• See Birkhofl"s iAltiu Theory, rev. cd., p. 94. 
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7. Compiemented modular lattices 

Definition 4. A lattice L with 0 and 1 is said to oe comple­
mented if for every a in L there exists an a' such that a U a' = 1, 
a n a' = O. 

Also if a is any element of a lattice L with 0 and 1, an element 
a' such that a U a' = 1, a n a' = 0 is called a complement of a. 
Thus our definition states that a lattice is complemented if and 
only if every a e L has a complement. If 0 ~ a, an element 01 
(~a) such that b U b1 = a and b n b1 = 0 is called a complement 
of b relative to a. 

The lattice of subsets of a set is complemented. The comple­
ment of a subset A is the usual set theoretic complement, that is, 
the set A' of elements a' ¢ A. If all the elements of a finite com­
mutative group have finite prime orders, then the lattice of sub­
groups of the group is complemented. This will follow from a 
criterion that we shall establish presently. 

Let L be a complemented modular lattice and let a and b be 
any two elements of L such that b ~ a. Then there exists an 
element b' such that bUb' = 1, b n b' = O. Hence by modularity 

a = a n (b U b') = b U (a n b') = b U b1 

where b1 = a n b'. Since b n b1 = b nan b' = 0, it is clear 
that hI is a complement of h relative to a. Thus we see that, if 
L is modular and complemented, then relative complements exist 
for any b ~ any a in L. Another way of putting this is that for 
every a in L the sublattice La of elements ~a is complemented. 

The concept of a point plays an important role in the theory of 
complemented lattices. An element P of a lattice with 0 is called 
a point if P is a cover of O. If L satisfies the descending chain 
condition, L contains points; for we can choose an al > 0 and, 
if al is not a cover of 0, then there exists an a2 such that al > 
a2 > O. If a2 is not a point, there exists an a3 such that al > 
a2 > a3 > O. By the descending chain condition this process 
terminates in a finite number of steps, and it leads to a point in L. 

Assume now that L is complemented and that both chain condi­
tions hold. Let PI be a point in L and let PI' be a complement of 
Pl. If PI' ~ 0, we can use the descending chain condition on LPl, 
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to obtain a point P2 :::; PI'. Since PI n P2 = 0, (PI U P2) > Pl. 
Also PI U P2 has a complement which, if ~ 0, contains a point 
P3. Then (PI U P2) n P3 = 0 and PI U P2 U P3 > PI U P2' 
Continuing in this way we obtain a sequence of points Ph P2, 
P3, ... such that 

PI < PI U P2 < PI U P2 U P3 < .. '. 
By the ascending chain condition this breaks off after, say, 
n( < (0) steps. When this occurs, we know that PI U P2 U··· U pn 
has 0 as a complement. This means that 1 = PI U P2 U··· U Pn. 
Thus 1 is a l.u.b. of a finite number of points. Also we have 
chosen the Pi so that 

(PI U P2 u··· U Pi) n PHI = 0, i = 1, 2, "', n - 1. 

Hence, if L is modular, then the Pi are independent (ex. 3, p. 204). 
Conversely, suppose that L is any modular lattice with 0 and 1 

that has the property that 1 is a l.u.b. of a finite number of points. 
We shall show that L satisfies the chain conditions and that L is 
complemented. Let 1 = PI U P2 U··· U pn where the Pi are 
points. We may suppose that the notation is chosen so that 
Ph P2, "', pm is a maximal independent subset of the set Ph 
.. " Pn. Then we assert that 1 = PI U P2 U··· U Pm; for other­
wise there is an i > m such that Pi 1: PI U P2 U··· Up •• 
This implies that 

h = Pi n (PI U··· U Pm) < Pi; 

hence, h = O. But then Pb "', Pm, Pi is an independent set 
contrary to the maximality of m. We therefore have 1 = PI U 
P2 U··· U Pm. Since the Ph j :::; m, are independent, 

(PI U P2 U··· U Pi) n P1+1 = 0, j = 1, 2, "', m - 1. 

Hence the intervals 1fp1 U P2 U··· U P1+h PI U P2 U··· U Pi] 
and 1fp1+1> 0] are transposes, and consequently PI U P2 U ... U 
P1+1 is a cover of PI U P2 U··· U Pi' It follows now that 

1 = (PI U··· U Pm) > (PI U··· U Pm-I) > ... > PI > 0 

is a composition chain for L. The existence of such a chain im­
plies the two chain condi tions. 
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We prove next that L is complemented. Let 1 = PI U P2 U 
... U Pta where the Pi are points. If a is any element of Land 
a ~ 1, we can choose a Pit i a. Then a n Pi1 = 0 and al = 
a U Pit> a. If al ~ I, we can find a Pis such that al n Pis = O. 
This process leads to a subset Pil' Pis' "', Pi, of the Pi such that 

a n Pil = 0, 

.. " (a U Pil U··· U Pir-t) n Pi, = 0, 

a U Pil U··· U Pi, = 1. 

The first set of equations shows that the set a, Pit) "', Pi, is 
independent. Hence a n (Pil U··· U Pi,) = 0 so that by the 
last equation above, Pil U··· U Pi, is a complement of a. 

We summarize our main results in the following 

Theorem 10. If L is a complemented modular lattice that 
satisfies both chain conditions, then the element 1 of L is a l.u.b. 
of independent points. Conversely, if L is a modular lattice with 
o and 1 ,mch that 1 is a l.u.b. of a finite number of points, then L 
is complemented and satisfies both chain conditions. 

A cyclic subgroup of prime order is a point in the lattice ~ 
of subgroups of a group ®. Hence if ® is finite and commutative 
and every element of ® is of prime order, then ~ satisfies the chain 
conditions, is modular and 1 in ~ is a l.u.b. of points. We there­
fore have the proof of the statement made above that 2 is com­
plemented. 

EXERCISE 

1. Show that for a complemented modular lattice either one of the chain 
conditions implies the other. 

8. Boolean algebras 

Definition 5. A Boolean algebra is a lattice with 0 and 1 that is 
distributive and complemented. 

The most important example of a Boolean algebra is the lattice 
of subsets of any set S. More generally any field of subsets of S, 
that is, any collection of subsets which is closed under U and n 
and which contains 1 (= S) and 0 (= 5ZJ) and the complement of 
any set in the collection, is a Boolean algebra. 



208 LATTICES 

The following theorem gives the most important elementary 
properties of complements in any Boolean algebra. 

Theorem 11. The complement a' of any element a of a Boolean 
algebra B is uniquely determined. The mapping a ~ a' is 1-1 
of B onto itself; it is of period two (a" = a); and it satisfies the 
conditions 

(15) (a U b)' = a' n b', (a n b)' = a' U b'. 

Proof. Let a be any element of B and let a' and al be elements 
such that a U a' = 1, anal = O. Then 

al = al n 1 = al n (a U a') = (al n a) U (al n a') 

= al n a'. 

Hence, if, in addition, a U al = 1, a n a' = 0, then a' = a' n al' 
Hence, a' = al' This proves the uniqueness of the complement. 
It is now clear that a is the complement of a'; hence, a" = 
(a')' = a. This proves that the mapping a ~ a' is of period two. 
Consequently it is 1-1 of B onto itself. Now let a ~ b. Then 
a n b' ~ b n b' = 0 so that 

0' = 0' n 1 = 0' n (a U a') = (b' n a) U (b' n a') 

= b' n a'. 
Hence b' ~ a'. Since a ~ a' is 1-1 of B onto itself and is order­
inverting the argument used to prove Theorem 1 shows that (15) 
holds. 

Historically, Boolean algebras were the first lattices to be 
studied. They were introduced by Boole in order to formalize 
the calculus of propositions. For a long time it was supposed 
that the type of algebra represented by these systems was of an 
essentially different character from that involved in the familiar 
number systems. This is not the case, however. On the con­
trary, as we shall see, the theory of Boolean algebras is equivalent 
to the theory of a special class of rings. The proof of this fact 
is based on the result that any Boolean algebra can be considered 
as a ring relative to suitably defined compositions. 

In order to make a ring out of a Boolean algebra B we introduce 
the new composition 
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a + b = (a n b') U (a' n b) 

which is called the symmetric difference of a and b. It is immediate 
that (a n b') U (a' n b) = (a U b) n (a n b)'. Thus in the 
special case of subsets of a set S the symmetric difference U + V 
is just the totality of elements that belong to U and to V but 
not to both sets. We shall now show that B is a ring relative to 
+ as addition and n as multiplication. From now on we use 
the customary ring notation ab for a n b. 

Evidently + is commutative. To prove associativity we note 
first that 

(a + b), = (a n b) U (a' n b'). 
Hence, 

(a + b) + e = {( (a n b') U (a' n b» n c'} 

U {«a n b) U (a' n b'» n c} 

= (a n b' n c') U (a' n b n c') 

U (a n b n c) U (a' n b' n c). 

This is symmetric in a,b and c so that in particular, (a + b) + e 
= (c + b) + a. Commutativity therefore implies the associative 
law. Evidently, 

a + 0 = (a n 1) U (a' n 0) = a 
and 

a + a = (a n a') U (a' n a) = O. 

Hence B is a commutative group relative to +. 
We know, of course, that· (= n) is associative. It therefore 

remains to check the distributive law. This law follows from 

(a + b)c = «a n b') U (a' n b» n c 

= (a n b' n e) U (a' n b n e), 

ae + be = «a n c) n (b n e)') U «a n e)' n (b n c» 

= «a n e) n (b' U e'» U «a' U c') n (b n e» 

= (a n c n b') U (a' n b n c). 

Hence B,+,· is a ring. 
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We note also the following properties of B,+,·. The ring 
is commutative, it has an identity and all of its elements are 
idempotent. All of these are familiar properties of the composi­
tion n of any lattice with 1. Also we have seen that every ele­
ment of B is of order =::;2 in its additive group. These statements 
about a ring are, however, not independent; for, as we now note, 
a2 = a for every a in a ring implies 2a = 0 and ab = ba for every 
a,b. To prove this we note that 

a + b + ab + ba = a2 + b2 + ab + ba = (a + b)2 = a + b. 

Hence 

(16) ab + ba = O. 

If we set a = b in (16) and use the idempotency of a, we obtain 
2a = 0; hence, a = -a. Then by (16) ab = ba. Thus, the 
essential facts about B,+,. are that it has an identity and that 
all of its elements are idempotent. We therefore introduce the 
following 

Definition 6. A ring is called Boolean if all of its elements are 
idempotent. 

We shall show next that any Boolean ring 58 with an identity 
defines a Boolean algebra. In order to reverse the process just 
applied ·we now define a U b = a + b - ab and a n b = abo 
We have seen in Chapter II (p. 56) that U (the circle composition) 
is associative. The other rules in L 1-L4 are immediate from our 
assumptions and the commutativity of 58 noted above. Hence 58, 
U, n is a lattice. This lattice is distributive since 

(a U b) n c = (a + b - ab)c = ac + be - abc 

= ac + be - acbc = (a n c) U (b n c). 

Also it is immediate that 1 and 0 are, respectively, the all element 
and zero element of the lattice and that a' = 1 - a acts as the 
complement of a. Hence, ~ is a Boolean algebra. 

Finally, we note that the two processes that we have applied 
are inverses of each other. Thus suppose that we begin with a 
Boolean algebra B, U, n. Then we obtain the ring B,+,. where 
a + b = (a n b') U (a' n b), ab = a n b. An application of 
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the second process to B,+, . gives the compositions a (j 0 == 
a + D - aD and anD = ao == a n o. Now 1 - a = 1 + a = 
(1 n a') U (1' n a) = a'. Hence 

a (j 0 = a + 0 - ao = 1 - (1 - a)(l - 0) = (a' no')' 
= a U o. 

Thus the compositions 0', 'n coincide with the original U, n. 
On the other hand, suppose that we start with a Boolean ring with 
1 and we define a U 0 = a + 0 - ao, a n 0 = ao and a E9 b = 
(a no') U (a' no), a 0 0 = a n 0 = ao, then a' = 1 - a and 

a E9 0 = (a n (1 - 0» U «1 - a) n 0) 

= a(l - 0) U (1 - a)o 

= (a - ao) U (0 - ao) 

= a - ao + 0 - ao - (a - ao) (0 - ao) 

= a - ao + 0 - ao - ao + ao + ao - ab 

= a + O. 

Hence E9 coincides with +, 0 with·. This completes the proof 
of the following theorem which is due to Stone 

Theorem 12. The jollowing two types oj aostract systems are 
equivalent: Boolean algebra, Boolean ring with identity. 

EXERCISES 

1. Show that any Boolean algebra defines a ring relative to the two composi­
tions a EB 6 = (a U 6') n (a' U 6), a 0 6 = a U 6. Show that a EB 6 = 1 + (I 
+ 6, a 0 6 = a + 6 + a6 where + and . are as defined in the text. 

2. Show that, if e and I are idempotent elements of a ring and if = Ie, the 
if and e + 1- if are idempotent. Prove that the idempotent elements that 
belong to the center of any ring with an identity form a Boolean algebra relative 
to the compositions e U I = e + I - if, e n I = el. 

3. Prove that any ring for which there exists a prime p such that P(l = 0, 
(lP = (I for every a in the ring is commutative. 
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projective, 196 
transpose, 196 

Inverse, 22 
Irreducible element, 115 
Irreducible element of a lattice, 201 
Irreducible polynomial, 101 
Irreducible (prime) integer, 67 
Irredundan t in tersection: 

of elements of a lattice, 201 
of ideals, 177 

Isomorphism: 
of groups, 26 
of lattices, 192 
of modules, 165 
of rings, 68 

Isolated components (of an ideal), 
180 

Isomorphism theorems for groups 
with operators, 135 

Jordan-Holder theorem, 141 
for lattices, 199 

BJull-Schnrldttheorem, 156 
Kurosch-Ore theorem, 204 

Lagrange's theorem, 39 
Lattice, 189 

complemented,205 
complete, 189 
composition series in, 199 
distributive, 193 
modular, 194 

Lattice (Cont.) 
principle of duality in, 190 
semi-modular, 197 

Least common multiple, 14, 120 
of ideals, 173 

Leibniz's theorem, 100 
Length of element of a Gaussian 

semi-group, 116 
Length of element of a lattice, 

199 
Linearly ordered set (chain), 188 

Mapping, 3 
graph of, 3 
induced by an equivalence rela-

tion, 6 
inverse, 4 
inverse image of, 6 
order preserving, 192 
resultant of, 4 

Matrix, 56 
adjoint, 59 
cofactor of, 59 
determinant 0(,58 
diagonal, 64 
ring, 56 
scalar, 64 
transposed, 72 

Maximum condition, 169; see a/so 
Chain conditions 

Minimum condition, 169; see a/so 
Chain conditions 

Mobiu$ function, 120 
Module, 162, 163 

annihilator, 165 
cyclic, 166 
difference, 165 
generators of, 166 
modules of a ring, 164 
quotient, 165 
unitary, 167 

Newton's identities, 110 
Nilpotent element, 55 
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Order of an element of a group, 
32 

Order of an element of a module, 
165 

Order of semi-group, 17 

Partially ordered set, 187 
Peano's axioms, 7 
Permutations, 27 

decomposition into cycles, 34 
even and odd, 36 

Poincare's theorem, 40 
Point (in a lattice), 205 
Polynomials, 93, 97 

cyclotomic, 127 
homogeneous, 108 
in several elements, 105 
irreducible, 101 
polynomial functions, 111 
primitive, 124 
symmetric, 107 

Power series, 95 
Powers, 21 
Prime element, 14, 116 
Projection, 150 

primitive, 158 

Quadratic extensions of rational 
field, 184 

Quasi-regular, 55 
Quaternions, 60 

norm of, 63 
trace of, 63 

Quotient group, see Factor group 
Quotient.in a lattice, 192 
Quotient of submodules, 165 

Radical of ideal, 173, 175 
Realization of a group, 28, 30 
Relation, 4 

asymmetry of, 9 
reflexivity of, 5 
symmetry of, 5 
transitivity of, 5 

Ring, 49 
additive group of, 50 
Boolean, 210 
commutative, 53 
extension of, 84 
group of units of, 54 
identity of, 53 
multiplications of, 82 
multiplicative semi-group of, 50 
Noetherian, 172 
of formal power series, 95 
of polynomials, 92 
right annihilator of, 82 
simple, 70 

Schreier's refinement theorem, 138 
for lattices, 198 

Semi-group, 15 
Gaussian, 115 
group of units of, 25 
multiplication table of, 17 
ring, 95 

Series: 
characteristic, 143 
chief, 143 
composition, 140, 143, 199 
fully invariant, 130 
normal, 138 

Sets, 2 
intersection of, 2 
logical sum of, 2 
product set, 3 
quotient set, 5 

Stone's theorem, 211 
Subdirect product (of groups), 

160 
Subfield, 87 
Subgroup, 24 

characteristic, 130 
cosets of, 37 
fully invariant, 130 
generated by a subset, 30 
index of, 39 
invariant (normal), 40 
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Subgroup (Cont.) 
left cosets of, 39 
products of subgroups, 76 

Sublattice, 191 
Submodule, 164 
Subring,61 

division, 63 
generated by a subset, 63 

Symmetric difference, 209 
Symmetric group, 27 

Transcendental element, 93 
Transcendental extension of a field, 

101 
Transformation group, 27 

transitive, 37 
Transformations, 4 

Transitivity set, 37 
Transpositions, 36 

Uniqueness of factorization in semi­
groups, 117 

Uniqueness theorems for represen­
tation of ideals as intersections 
of primary ideals, 177 

Unit element, see Identity element 

Vector space, 167 

Wen~rdering (of natural num­
bers),9 

Wilson's theorem, 104 

Zero divisor, 53 
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