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PREFACE 

The present volume completes the series of texts on algebra 
which the author began more than ten years ago. The account 
of field theory and Galois theory which we give here is based on 
the notions and results of general algebra which appear in our first 
volume and on the more elementary parts of the second volume, 
dealing with linear algebra. The level of the present work is 
roughly the same as that of Volume II. 

In preparing this book we have had a number of objectives in 
mind. First and foremost has been that of presenting the basic 
field theory which is essential for an understanding of modern 
algebraic number theory, ring theory, and algebraic geometry. 
The parts of the book concerned with this aspect of the subject 
are Chapters I, IV, and V dealing respectively with finite dimen
sional field extensions and Galois theory, general structure theory 
of fields, and valuation theory. Also the results of Chapter IlIon 
abelian extensions, although of a somewhat specialized nature, 
are of interest in number theory. A second objective of our ac
count has been to indicate the links between the present theory of 
fields and the classical problems which led to its development. 
This purpose has been carried out in Chapter II, which gives 
Galois' theory of solvability of equations by radicals, and in 
Chapter VI, which gives Artin's application of the theory of real 
closed fields to the solution of Hilbert's problem on positive defi
nite rational functions. Finally, we have wanted to present the 
parts of field theory which are of importance to analysis. Partic
ularly noteworthy here is the Tarski-Seidenberg decision method 
for polynomial equations and inequalities in real closed fields 
which we treat in Chapter VI. 

As in the case of our other two volumes, the exercises form an 
important part of the text. Also we are willing to admit that 
quite a few of these are intentionally quite difficult. 
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Again, it is a pleasure for me to acknowledge my great indebted
ness to my friends, Professors Paul Cohn and George Seligman, 
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volume. I am indebted also to Professors Cohn and James Reid 
and to my wife for help with the proof reading. Finally, I wish to 
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Introduction 

In this book we shall assume that the reader is familiar with 
the general notions of algebra and the results on fields which 
appear in Vol. I, and with the more elementary parts of Vol. II. 
In particular, we presuppose a knowledge of the characteristic of 
a field, prime field, construction of the field of fractions of a com
mutative integral domain, construction of simple algebraic and 
transcendental extensions of a field. These ideas appear in 
Chaps. II and III of Vol. 1. We shall need also the elementary 
factorization theory of Chap. IV. From Vol. II we require the 
basic notions of vector space over a field, dimensionality, linear 
transformation, linear function, compositions of linear trans
formations, bilinear form. On the other hand, the deeper results 
on canonical forms of linear transformations and bilinear forms 
will not be needed. 

In this Introduction we shall re-do some things we have done 
before. Our motivation for this is twofold. In the first place, 
it will be useful for the applications that we shall make to sharpen 
some of the earlier results. In the second place, it will be con
venient to list for easy reference some of the results that will be 
used frequently in the sequel. The topics that we shall treat 
here are: extension of homomorphisms (cf. Vol. I, Chap. III), 
algebras (Vol. II, Chap. VII), and tensor products * of vector 
spaces and algebras (Vol. II, Chap. VII). The notion of extension 
of homomorphism is one of the main tools in the theory of fields. 
The concept of an algebra arises naturally when one studies a 
field relative to a selected subfield as base field. The concept of 
tensor product is of lesser importance in field theory and it per-

* In Vol. II this notion was called the Kronecker product. Current usage favors the 
term tensor product, so we shall adopt this in the present volume. Also we shall use the 
currently standard notation ® for the X of Vol. II. 
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2 INTRODUCTION 

haps could be avoided altogether. However, this notion has 
attained enormous importance throughout algebra and algebraic 
topology in recent years. For this broader reason it is a good 
idea for the student to become adept in handling tensor products, 
and we shall use these freely when it seems appropriate. 

1. Extension of homomorphisms. Throughout this book we 
shall adopt the convention that the rings we consider all have 
identity elements 1 ¢ O. The term subring will therefore mean 
subring in the old sense (as in Vol. I) containing 1, and by a 
homomorphism of a ring ~ into a ring 58 we shall understand a 
homomorphism in the old sense sending the 1 of ~ in to the 1 of 58. 

Now let 0 be a su bring of a field P and let <I> be the su bfield of P 
generated by o. We recall that the elements of <I> can be ex
pressed as simple fractions a{3-1 of elements a, {3 e 0 ({3 ¢ 0). 
Hence <I> is the subring of P generated by 0 and the inverses of 
the elements of the set 0* of non-zero elements of o. The set 0* 
contains 1 and is closed under the multiplication of o. It is some
times useful to generalize this situation in the following way: We 
are given a subring 0 of P and a subset M of 0* containing 1 and 
closed under multiplication. We shall refer to such a subset as a 
sub-semigroup of the multiplicative group of the field. We are 
interested in the subring OM generated by 0 and the inverses of 
the elements of M. For example, we could take P to be the field 
Ro of rational numbers and M= {2 k lk=0,1,2,···}. Then 
OM is the subring of rational numbers whose denominators are 
powers of 2. In the general case, 

OM = {a{3-11 a e 0, {3 eM} ; 

for, if we denote the set on the right-hand side of this equation by 
0', then clearly 0' C OM and 0' contains 0 = {a = a1-1 }. Also 
0' contains every {3-1 = 1{3-1 for {3 eM. One checks directly 
that 0' is a subring of P. Then it follows that 0' = OM. 

Now suppose p' is a second field and we have a homomorphism 
s of 0 into p' such that {38 ¢ 0 for every {3 eM. Our first homo
morphism extension theorem concerns this situation. This is the 
following result. 

I. Let 0 be a subring (with 1) of afield P, M a subset of non-zero 
elements of 0 containing 1 and closed under multiplication, OM the 


