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PREFACE 

The present volume completes the series of texts on algebra 
which the author began more than ten years ago. The account 
of field theory and Galois theory which we give here is based on 
the notions and results of general algebra which appear in our first 
volume and on the more elementary parts of the second volume, 
dealing with linear algebra. The level of the present work is 
roughly the same as that of Volume II. 

In preparing this book we have had a number of objectives in 
mind. First and foremost has been that of presenting the basic 
field theory which is essential for an understanding of modern 
algebraic number theory, ring theory, and algebraic geometry. 
The parts of the book concerned with this aspect of the subject 
are Chapters I, IV, and V dealing respectively with finite dimen
sional field extensions and Galois theory, general structure theory 
of fields, and valuation theory. Also the results of Chapter IlIon 
abelian extensions, although of a somewhat specialized nature, 
are of interest in number theory. A second objective of our ac
count has been to indicate the links between the present theory of 
fields and the classical problems which led to its development. 
This purpose has been carried out in Chapter II, which gives 
Galois' theory of solvability of equations by radicals, and in 
Chapter VI, which gives Artin's application of the theory of real 
closed fields to the solution of Hilbert's problem on positive defi
nite rational functions. Finally, we have wanted to present the 
parts of field theory which are of importance to analysis. Partic
ularly noteworthy here is the Tarski-Seidenberg decision method 
for polynomial equations and inequalities in real closed fields 
which we treat in Chapter VI. 

As in the case of our other two volumes, the exercises form an 
important part of the text. Also we are willing to admit that 
quite a few of these are intentionally quite difficult. 
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Introduction 

In this book we shall assume that the reader is familiar with 
the general notions of algebra and the results on fields which 
appear in Vol. I, and with the more elementary parts of Vol. II. 
In particular, we presuppose a knowledge of the characteristic of 
a field, prime field, construction of the field of fractions of a com
mutative integral domain, construction of simple algebraic and 
transcendental extensions of a field. These ideas appear in 
Chaps. II and III of Vol. 1. We shall need also the elementary 
factorization theory of Chap. IV. From Vol. II we require the 
basic notions of vector space over a field, dimensionality, linear 
transformation, linear function, compositions of linear trans
formations, bilinear form. On the other hand, the deeper results 
on canonical forms of linear transformations and bilinear forms 
will not be needed. 

In this Introduction we shall re-do some things we have done 
before. Our motivation for this is twofold. In the first place, 
it will be useful for the applications that we shall make to sharpen 
some of the earlier results. In the second place, it will be con
venient to list for easy reference some of the results that will be 
used frequently in the sequel. The topics that we shall treat 
here are: extension of homomorphisms (cf. Vol. I, Chap. III), 
algebras (Vol. II, Chap. VII), and tensor products * of vector 
spaces and algebras (Vol. II, Chap. VII). The notion of extension 
of homomorphism is one of the main tools in the theory of fields. 
The concept of an algebra arises naturally when one studies a 
field relative to a selected subfield as base field. The concept of 
tensor product is of lesser importance in field theory and it per-

* In Vol. II this notion was called the Kronecker product. Current usage favors the 
term tensor product, so we shall adopt this in the present volume. Also we shall use the 
currently standard notation ® for the X of Vol. II. 
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2 INTRODUCTION 

haps could be avoided altogether. However, this notion has 
attained enormous importance throughout algebra and algebraic 
topology in recent years. For this broader reason it is a good 
idea for the student to become adept in handling tensor products, 
and we shall use these freely when it seems appropriate. 

1. Extension of homomorphisms. Throughout this book we 
shall adopt the convention that the rings we consider all have 
identity elements 1 ¢ O. The term subring will therefore mean 
subring in the old sense (as in Vol. I) containing 1, and by a 
homomorphism of a ring ~ into a ring 58 we shall understand a 
homomorphism in the old sense sending the 1 of ~ in to the 1 of 58. 

Now let 0 be a su bring of a field P and let <I> be the su bfield of P 
generated by o. We recall that the elements of <I> can be ex
pressed as simple fractions a{3-1 of elements a, {3 e 0 ({3 ¢ 0). 
Hence <I> is the subring of P generated by 0 and the inverses of 
the elements of the set 0* of non-zero elements of o. The set 0* 
contains 1 and is closed under the multiplication of o. It is some
times useful to generalize this situation in the following way: We 
are given a subring 0 of P and a subset M of 0* containing 1 and 
closed under multiplication. We shall refer to such a subset as a 
sub-semigroup of the multiplicative group of the field. We are 
interested in the subring OM generated by 0 and the inverses of 
the elements of M. For example, we could take P to be the field 
Ro of rational numbers and M= {2 k lk=0,1,2,···}. Then 
OM is the subring of rational numbers whose denominators are 
powers of 2. In the general case, 

OM = {a{3-11 a e 0, {3 eM} ; 

for, if we denote the set on the right-hand side of this equation by 
0', then clearly 0' C OM and 0' contains 0 = {a = a1-1 }. Also 
0' contains every {3-1 = 1{3-1 for {3 eM. One checks directly 
that 0' is a subring of P. Then it follows that 0' = OM. 

Now suppose p' is a second field and we have a homomorphism 
s of 0 into p' such that {38 ¢ 0 for every {3 eM. Our first homo
morphism extension theorem concerns this situation. This is the 
following result. 

I. Let 0 be a subring (with 1) of afield P, M a subset of non-zero 
elements of 0 containing 1 and closed under multiplication, OM the 
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subring of P generated by D and the inverses of the elements of M. 
Let s be a homomorphism of D into a field P' such that {38 ¢ 0 for 
every {3 e M. Then s has a unique extension to a homomorphism 
S of DM into P'. Moreover, S is an isomorphism if and only if s 
is an isomorphism. 

Proof. Let a1{31 -1 = a2{32 -1, ai e D, (3i e M. Then a1{32 = 
a2{31 and consequently a1 8{32 8 = a28{31 8 • This relation in P' gives 
a1 8 ({31 B)-1 = a2B({32B)-1. Hence the mapping 

S: a{3-1 ~ a B({3B) -1, a e D, {3 eM 

which is defined on the whole of DM = (a{3-1l is single-valued. 
One checks that S is a homomorphism (Vol. I, p. 92). If a e D, 

then ~ = (al -1)S = a8 l 8 = a", SO S is the same as s on D. Hence 
S is a homomorphism of DM which extends the given homomor
phism of D. Now let S' be any such extension. Then the relation 
{3{3-1 = 1 for {3 eM gives {3SI ({3-1 )SI = l, so ({3-1 )SI = ({3SI) -1. 
If a e D, then we have (a{3-1)SI = aSI ((3SI) -1 = a 8 ({3") -1 = 
(a{3-1)S. Hence S' = Sand S is unique. Clearly, if S is an iso
morphism, then its restriction s to D is an isomorphism. Now 
assume s is an isomorphism and let a{3-1 be in the kernel of the 
homomorphism S: 0 = (a{3 -1)S = a 8 ({38) -1. Then a 8 = 0, a = 0, 
and a{3-1 = O. This shows that the kernel of Sis 0; hence S is an 
isomorphism. 

We consider next an arbitrary commutative ring ~ and the 
polynomial ring ~[x], x an element which is transcendental rela
tive to ~ (Vol. I, p. 93). The elements of ~[x] have the form 
ao + a1X + a2x2 + ... + anxn where the ai e ~ and ao + a1X + 
... + anxn = 0 only if all the ai = O. We now have the follow
ing homomorphism theorem. 

II. Let ~ be a commutative ring, ~[x] the polynomial ring over ~ 
in a transcendental element x and let s be a homomorphism of ~ into 
a commutative ring 5S. If u is any element of 5S there exists a unique 
homomorphism S of ~[x] into 5S such that: as = a8 , a e ~, XS = u. 

The reader is referred to Vol. I, p. 97, for the proof. This result 
has an immediate extension to a polynomial ring ~[Xh X2, ... , xr] 

where the Xi are algebraically independent elements. We recall 
that the algebraic independence of the Xi means the following: 
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If (m!) m2, .. " mr) is an r-tuple of non-negative integers mi, then 
a relation L ami' . 'm,xrl ••• xrm, = 0, ami" 'm, e~, can hold 

mt 

only if every amI" ·m. = O. From now on we shall refer to ele
ments Xi which belong to a commutative ring and are algebraically 
independent relative to a subring ~ as indeterminates (relative to 
~). Then we have 

III. Let ~[Xb .. " xr] be a commutative polynomial ring in Xi 
which are indeterminates (relative to ~) and let s be a homomorphism 
of ~ into a commutative ring~. If Ub U2, .. " Ur are arbitrary 
elements of ~, then there exists a unique homomorphism S of ~[Xi] 
into ~ such that 1) as = a', a e ~; 2) xl = Ui, i = 1,2, .. " r. 

We now suppose we have a commutative ring ([, ~ a subring, 
s a homomorphism of ~ into another commutative ring~. Let 
tb t2, .. " tr be elements of ([ and let ~[tb t2, .. " tr] be the sub
ring of ([ generated by ~ and the ti. Under what conditions can 
s be extended to a homomorphism S of ~[ti] = ~[tb t2, .. " tr] 
into ~ so that tiS = Ui, 1 ~ i ~ r, where th<' Ui are prescribed 
elements of 58? The answer to this basic question is 

IV. Let ~ and ([ be commutative rings, ~ a subring of ([, s a 
homomorphism of ~ into 58. Let t1, •. " tr be elements of ([, Ut, "', 
Ur elements of 58. Then there exists a homomorphism S of ~[tb .. " 
t r] into 58 such that as = a', a e ~ and tiS = Ui, i = 1,2, .. " r, if 
and only if for every polynomial f(xb .. " x r ) e ~[Xi], Xi indeter
minates, such that f(tb .. " t r) = 0 we have .f(Ub .. " ur) = O. 
Here .f(x!) .. " xr) is obtained by applying s to the coefficients of 
f(x!) .. " Xr). If S exists, it is unique. 

Proof. The set ~ of polynomials f(xb .. " xr) such that 
f(t!)· . " t r ) = 0 is the kernel of the homomorphism h(xl) .. " xr) 
--+ h(tl) .. " tr) of ~[Xi] into ~[ti]' Hence we have the isomor
phism T:h(tl) .. " t r ) --+ hex!) .. " Xr ) + ~ of ~[ti] onto the dif
ference ring ~[Xi]/~. Next we consider the homomorphism h(xh 
.. " xr) --+ h'(ul) .. " ur) of ~[Xi] into 58 (cf. III). Assume that 
r(Ul, .. " ur) = 0 for every f e~. Then every f e ~ is mapped 
into 0 by the homomorphism hex!) .. " Xr) --+ h' (Ul) .. " Ur) so 
~ is contained in the kernel of this homomorphism. It follows 
(Vol. I, p. 70) that we have the homomorphism h(xh .. " x r ) + 
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~ ~ h8(ul) .. " ur) of ~[Xi1l~ into 58. Combining this with the 
isomorphism T we obtain the homomorphism 

(1) 

of ~[ti] into 58. This is the required extension of s. If S' is any 
extension of s to a homomorphism of ~[ti] into 58 such that aSI = 
a8 and tl' = Ui, then h(tl, ... ,tr)SI = h8(Ul, .. " ur); hence S' = 
Sand S is unique. Also, it is trivial that, if f(t l, .. " tr) = 0, 
then 0 = f(t l, .. " tr)S = P(Ul, .. " ur) if S is a homomorphism 
of ~[tl, .. " tr] satisfying our conditions. Hence it is clear that 
the condition stated in the theorem is necessary for the existence 
of the extension S. 

We have noted in the proof that the set ~ of polynomials 
f(xl, .. " xr) such that f(t l, .. " tr) = 0 is the kernel of a homo
morphism. Hence this is an ideal in the polynomial ring ~[Xh X2, 
.. " Xr]. Now let X = {g} be a set of generators of ~: X C ~ 
and every elementf e ~ has the form ~ai(xh .. " Xr)gi(Xh .. " xr) 
where the ai (Xl, •. " xr) e ~[Xl, X2, .. " xr] and the gi(Xl, .. " xr) 
eX. It is clear that, if g8(Ul, .. " ur) = 0 holds for every g e X, 
then also P(Ul, .. " ur) = 0 for every f e~. Hence we can obtain 
from IV the following result which is often easier to apply than 
IV itself: 

IV'. Let 58 and ~ be commutative rings, ~ a subring of~, and s 
a homomorphism of ~ into 58. Let X be a set of generators of the 
ideal ~ of polynomials f in ~[Xl, X2, .. " xr], Xi indeterminates, such 
that f(t l, t2, .. " tr) = O. Then there exists a homomorphism S oj 
~[tl, t2, .. " tr] into 58 such that as = a8, a e~, and t/ = Ui, 
1 ~ i ~ r, if and only if g8(Ul, .. " ur) = 0 for every g e X. If S 
exists, then it is unique. 

We now consider the important special case of IV' in which 
~ = <I> a field and r = 1. Then we know that <I>[x] is a principal 
ideal domain (Vol. I, p. 100). Hence theideaL~ = (J(x)), where 
(J(x)) denotes the ideal of polynomial multiples of the poly
nomialf(x) e~. It is clear that ~ ¢ (1) = <I>[x] since, otherwise, 
o = <I>[x1I~ ~<I>[t] ~ <I> which contradicts 1 ¢ O. Since (0:) 
= (1) if 0: is a non-zero element of <1>, it is clear that the possibili
ties for ~ are ~ = (0) or ~ = (J(x» where f(x) is a non-zero poly-



6 INTRODUCTION 

nomial in ~[x] of positive degree. In the first case we have ~[x] 
::: ~[t] and t is transcendental. Then II (or IV) is applicable and 
shows that s can be extended to a homomorphism S sending t 

into any u e 58. Now suppose that j(x) ¢ O. In this case we 
call the element t e ~ algebraic over ~ since we have a non-zero 
polynomialj(x) such thatj(t) = O. The ideal ~ is, by definition, 
the set of polynomials g(x) such that get) = O. The polynomial 
j(x) is a polynomial of least degree in ~ and every other poly
nomial contained in ~ = (j(x» has the form g(x)j(x). We can 
normalize j(x) by multiplying it by the inverse of its leading 
coefficient to obtain a polynomial with leading coefficient 1. If 
we letj(x) be this polynomial, then clearly j can be characterized 
by the properties that it is the polynomial of least degree belong
ing to ~[x] with leading coefficient 1 satisfyingj(t) = O. We shall 
call j(x) the minimum polynomial (over ~) of the algebraic element 
t e~. We can now state the following result which is a special 
case of IV' • 

V. Let 58 and ~ be commutative rings, ~ a subfield of~, t an ele
ment oj~ which is algebraic over~, and s an isomorphism oj~ into 58: 

~::::> ~[<] ::::> ~ 

S \1 ' 
58 

Then s can be extended to a homomorphism S oj ~[t] into 58 so that 
ts = u, if and only if F(u) = 0 jor the minimum polynomial j(x) 
of t over~. When the extension exists it is unique. 

Remarks. The condition one has to put on u to insure the 
existence of S can be stated also in the following way: u is alge
braic over the image ~. of ~ and its minimum polynomial over 
~. is a factor of F(x). The equation (1) giving the form of S 
now becomes 

(2) S:g(t) ~ g-(u). 

It is immediate from this that S is an isomorphism if and only if 
F(x) is the minimum polynomial of u. 
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2. Algebras. We recall the definition of an algebra ~ over a 
field ~ (Vol. II, p. 36 and p. 225): ~ is a vector space over ~ in 
which a product xy e ~ is defined for X,y in ~ such that 

(Xl + X2)y = XlY + X2Y, X(Yl + Y2) = XYl + XY2 

a(xy) = (ax)y = x(ay), a e~. 
(3) 

We shall be interested only in algebras which have identities 1 and 
which are associative; hence in this volume "algebra" will always 
mean just this. 

We shall usually encounter algebras in the following way: We 
are given a ring ~ and a subfield ~ of the center of~. Then 
we can consider ~ as a vector space over ~ by taking ax, a e~, 
x e ~, to be the ring product of a and x in~. Clearly this makes 
~ a vector space over~. Also (3) is clear since a is in the center. 
Hence we have an algebra ~/~ (~ over ~). * This procedure for 
defining an algebra will be used in studying a field P relative to a 
subfield~. Then we obtain the algebra P /~. 

Another algebra which is basic is the algebra ~~( IDl) of linear 
transformations of a vector space IDl over a field~. Here A + B, 
AB and aA for A, B e ~~( IDl) and a e ~ are defined by x(A + B) 
= xA + xB, x(AB) = (xA)B, x(aA) = a(xA) = (ax)A. The 
dimensionality [~~( IDl) :~] of ~~( IDl) over ~ is finite if and only 
if [IDl:~] is finite. If [IDl:~] = m, then [~~( IDl) :~] = m2 (Vol. II, 
p. 41). 

Evidently an algebra is a ring relative to the + of the vector 
space and the multiplication abo A subalgebra m of an algebra ~ 
over ~ is a subspace of ~ which is also a subring. An ideal of 
~/~ is a subspace which is an ideal of ~ as a ring. A homomorphism 
s of the algebra ~/~ into the algebra m/~ is a mapping of ~ into 
m which is ~-linear and a ring homomorphism. Isomorphisms 
and automorphisms are defined in a similar fashion. If ~ is an 
ideal in ~/~, then the factor space ~/~ is an algebra over ~ rela
tive to its vector space compositions and the multiplication 
(a + ~)(b + m = ab +~. We have the algebra homomorphism 
a ~ a + ~ of ~/~ onto ~/~ over~. If s is a homomorphism of 
!/~ into m/~, then the image ~8 is a subalgebra of m and the 

• We shall use the notation ~/m also for the difference ring of ~ relative to the ideal m· 
Which of these meanings is intended will always be clear from the context. 
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kernel ~ of s is an ideal in ~l. We have the isomorphism a + ~ ~ 
a8 of 2£/~ onto 2£8. The basic results on ring homomorphisms ex
tend to algebras and we shall use these without comment. 

We shall now record some elementary results on finite dimen
sional algebras which will be used frequently in the sequel. The 
first concerns a dimensionality relation for 2£/«1> and 2£/E, where 
E is a subfield of «1>. Evidently if E is a subfield of «1>, then we can 
restrict the multiplication ax, a e «1>, x e 2£ to a in E. This turns 
2£ into an algebra 2£ over E. Also since E is a subfield of «I> we 
can define the algebra «I>/E. We now have 

VI. Let 2£ be an algebra over«l>, E a subfield 01«1>. Suppose [2£:«1>] < 
00 and [«I>: E] < 00. Then 

(4) [2£: E] = [2£:«1>][«1>: E]. 

Proof. Let (Ui), 1 ~ i ~ n, be a basis for 2£/«1>, ('Yj), 1 ~ j ~ m, 

a basis for «I>/E. Then (4) will follow if we can show that ('YjUi) 
n 

is a basis for 2£/ E. First let a e 2£. Then a = L aiUi, ai e «1>, 
m 1 

and ai = L Eij'Yj where Eij e E. Then a ='l:,Eij'YjUi is a linear 
i=l 

combination of the elements 'YjUi with coefficients Eij in E. Now 
suppose 'l:,Eii'YiUi = 0 where the Eij e E. Then we have 'l:,aiui = 0 
for ai = L Eij'Yj in «1>. Since the Ui are «I>-independent, this gives 

j 

ai = 0, 1 ~ i ~ n. Then the formulas ai = 'l:,Eij'Yj and the E
independence of the 'Yj give Eij = 0 for all i, j. This proves that 
the elements 'YjUi are E-independent and so these form a basis 
for 2£/E. 

VII. Let ~ be a finite dimensional algebra over a field «1>. Then ~ 
is a division ring if and only if ~ is an integral domain. 

Proof. We know that division rings are integral domains (Vol. 
I, p. 54). Now suppose ~ is an integral domain and let a be any 
non-zero element of~. Consider the right multiplication aR: 
x ~ xa determined by a. This is a linear transformation in ~/<fI 
and, since ba = 0 in ~ implies b = 0, the null space of aR is O. 
It follows that aR is surjective (that is, maps ~ onto ~). Hence 
there exists an element a' such that a' a = a' aR = 1. Thus a 
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has a left inverse. A similar argument using the left multiplica
tion aL shows that a has a right inverse. Hence every non-zero 
element of ~ is a unit and ~ is a division ring. 

We consider next algebras ~ = 4>[t] which have a single genera
tor t (cf. § 1). We have the homomorphism g(x) --+ get) of 
4>[x], x an indeterminate, onto~. If ~ is the kernel, then ~ ::: 
4>[x]/~. Also we have seen in § 1 that ~ = (f(x)) where f(x) = 0 
or is a non-zero polynomial with leading coefficient 1. In the 
first case, t is transcendental and the homomorphism we indicated 
is an isomorphism. In the second case, t is algebraic andf(x) is 
its minimum polynomial. Then we have 

VIII. Let ~ = 4>[t] be an algebra over 4> generated by a single 
algebraic element t whose minimum polynomial is f(x). Then 

(5) [~:4>] = degf(x), 

the degree of f(x). 

Proof. Let n = degf(x). Then we assert that (1, t, .. " tn - 1) 

is a basis for ~/4>. Thus let a be any element of ~ = 4>[t]. This 
has the form get), g(x) in 4>[x]. By the division process in 4>[x] 
we can write g(x) = f(x)q(x) + rex) where deg rex) < degf(x). 
Then if we apply the homomorphism of 4>[x]/4> onto 4>[tll4> send
ing x into t, we obtain a = get) = Oq(t) + ret). Since deg rex) < 
n, this shows that a = ret) is a 4>-linear combination of 1, t, .. " 
tn - 1• Next we note that 1,t," ',tn - 1 are linearly independent 
over 4> since otherwise we would have a polynomial g(x) F- 0 of 
degree < n such that get) = O. This contradicts the hypothesis 
thatf(x) is the minimum polynomial. Hence (1, t, .. " tn - 1) is a 
basis and (5) holds. 

We recall that 4>[t] ::: 4>[xl/(f(x)),f(x) a polynomial of positive 
degree, is a field if and only if f(x) is irreducible (Vol. I, p. 101). 
Otherwise, 4>[t] is not an integral domain. It is useful to have a 
more complete analysis of the structure of 4>[/] in terms of the 
minimum polynomialf(x). We shall indicate the results in the 
following exercises. 

EXERCISES 

l. An algebra ~ is a direct sum of ideals ~; if ~ is a vector space direct sum of 
the subspaces ~;. Let ~ = «lilt], t algebraic with minimum polynomial f(x). 
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Suppose f(x) = /I(X)J2(X) ... fr(x) where (J.(x),]j(x)) = 1 if i ¢ j. Set q.(x) = 
f(x)/f.(x). Show that there exist polynomials a.(x) such that 

r 

.E a.(x)q.(x) = 1. 
1 

Set e. = a.(t)q.(t) and show that 

el + e2 + ... + er = 1, e.2 = e., e.ej = 0, i ¢ j. 

Show that ~ = ~el EEl ~e2 EEl·· . EEl ~er and that the ideal ~e. = {ae.1 a e~} 
considered as an algebra with identity e. has the form cp[te.] and is isomorphic to 
cp[xll(J.(x». 

2. Let ~ = cp[t], t algebraic with minimum polynomial f(x). Let f(x) = 
Pl(x)k1p2(X)'" ... Pr(x)kr, p,(x) irreducible, p,(x) ¢ pj(x), i ¢ j. Show that if z = 
Pl(t)P2(t) ... Pr(t), then the ideal 91 = ~z in ~ is nilpotent in the sense that there 
exists an integer k such that every product of k elements of 91 is O. Show that 
~ = ~/91 = cp[1], 1 = t + 91, and 1 is algebraic with minimum polynomial 
g(x) = Pl(X)P2(X) •.. Pr(X). Show that ~ = ~l EEl ~2 EEl· .• EEl ~r where ~. 
is an ideal which as an algebra is isomorphic to the field cp[x]/(P.(x)). 

3. Let ~/cp be an algebraic algebra in the sense that every element of ~ is 
algebraic. Prove that, if ~ is an integral domain, then ~ is a division ring. 

3. Tensor products of vector spaces. Let 9)1, 91 and 'l3 be 
vector spaces over the same field <1>. Then a bilinear mapping of 
9)1, 91 into 'l3 is a mapping of the product set 9)1 X 91 into 'l3 such 
that, if x X y denotes the image of the pair (x,y), x e 9)1, y e 91, 
then 

(Xl + X2) X y = Xl X Y + X2 X y, 

(6) X X (Yl + Y2) = X X Yl + X X Y2 

a(x Xy) = ax Xy = X X ay, ae<1>. 

It is clear that the product xy in any algebra ~ is bilinear from 
~, ~ to~. We shall say that a vector space 'l3 and a bilinear 
mapping ® of 9)1, 91 into 'l3 is a tensor product of 9)1 and 91 and 
we write 'l3 = 9)1 ® 91 if the pair (®, 'l3) is "universal" for bi
linear mappings in the sense that the following condition is ful
filled: 

If 'l3' is any vector space and X' is a bilinear mapping of 9)1, 91 
into 'l3', then there exists a unique linear mapping 7r of 'l3 into 'l3' 
such that (x ® y)7r = X X' y. 

This notion is a special case of the general concept of the tensor 
product of a right module 9)1 over a ring ~ and a left module 
91 over~. The special case we have defined for vector spaces is 
treated under slightly different but equivalent hypotheses in Vol. 
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II, Chap. VII. In particular, a proof of the existence of a tensor 
product of vector spaces and nearly all the basic properties we 
shall require were given in Vol. II. At this point we shall give 
another derivation of some of these basic results which is more in 
keeping with the spirit of the now standard treatment of the 
module case. 

We first give a construction of a tensor product. To do this one 
begins with a vector space ty having as basis the product set 
im X ~ of pairs (x,y), x e im, Y e~. Thus the elements of ty are 
the expressions ~1(XhYI) + ~2(X2'Y2) + ... + ~m(Xm,Ym) where 
~i e 4>, Xi e im, Yi e~, and the pairs (Xi, Yi) are distinct. If two 
elements are given we can introduce terms with 0 coefficients and 

m m 

thus suppose that the elements are E ~i(Xi'Yi) and E r/i(Xi,Yi)' 
1 1 

Then equality holds if and only if ~i = ''Ii, i = 1,2, .. " m. Addi-
m m m 

tion is defined by E ~i(Xi,Yi) + E r/i(xi,Yi) = E (~i + 7/i)(Xi,Yi) 
1 1 I 

and multiplication by a in 4> by a~~i(xi'Yi) = ~(a~i)(xi'Yi)' It 
is immediate that ty is a vector space over 4>. Since im X ~ is 
usually infinite, ty is usually an infinite dimensional spac~. Now 
let m be the subspace ofty spanned by all the vectors of the follow
ing forms: 

(7) 

(Xl + X2,y) - (XhY) - (X2,y) 

(X, YI + Y2) - (x, YI) - (x, Y2) 

(ax,y) - (x, ay) 

a(x,y) - (ax,y), 

X e im, Y e~, a e 4>. Let ~ be the factor space tyjm and set 
x ® Y = (x,y) + m, the coset of (x,y) in tyjm. Then we have: 

(Xl + X2) ® Y - Xl ® Y - X2 ® Y 

= (Xl + X2,y) - (XhY) - (X2,y) + m = m 
X ® (YI + Y2) - X ® Yl - X ® Y2 

= (X,YI + Y2) - (X,YI) - (X,Y2) + m = m 
a(x ®y) - ax ®y = a(x,y) - (ax,y) + m = m 
ax ® Y - X ® ay = (ax, y) - (X, ay) + m = m. 
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Hence x ® y is bilinear. Since the vectors (x, y) generate ~, the 
cosets x ® y generate ~ = ~/~. 

Now let X' be a bilinear mapping of m, W into the vector space 
~'. Since the vectors (x, y) form a basis for ~, there exists a 
linear mapping 7r' of ~ into~' such that (x, Y)7r' = X X' y. Let 
~ be the kernel of 7r'. Then ((Xl + X2, y) - (XhY) - (X2,y»7r' = 

(Xl + X2) X' y - Xl X' Y - X2 X' Y = 0; so (Xl + X2, y) 
- (X, y) - (X2' y) e~. Similarly, (X,Yl + Y2) - (X,Yl) - (X,Y2) 
d~, (ax,y) - a(x,y) e~, and (ax,y) - (x, ay) e~. This implies 
that ~ C ~ and, consequently, we have the linear mapping 7r 

of~ = ~/~ into~' such that (x ® y)7r == ((x,y) + ~)7r = X X' y. 
Since the space ~ = ~/~ is generated by the elements X ® y, 
it is clear that 7r is uniquely determined by the linearity property 
and (x ® y)7r = X X' y. We have therefore shown that (~, ®) is 
a tensor product of m and Wand accordingly we shall write ~ = 
m ® W (or m ®4> W, if it is necessary to indicate the base field 
cl». It is immediate from the definition that if (~h ® 1) and (~2' 
(2) are two tensor products, then we have a linear mapping of 
~l into ~2 such that x ® 1 Y ~ x ® 2 Y and we have a linear map
ping of~2 into ~l such that x ®2 y ~ X ®l y. Since the x ®i y 
generate~i, the products in both orders of the two linear mappings 
are identity mappings. It follows that both mappings are sur
jective (onto) linear isomorphisms. In this sense the tensor 
product is uniquely determined and so we may speak of the tensor 
product of m and W. 

Let {e a} and {f.s} be sets of genera tors for m and W res pec-
m 

tively. Then any x em has the form x = L ~iei where {ed 
1 n 

is a finite subset of {ea } and any yeW has the form y = L 11;(;' 
1 

{j;} C {f.s}. Hence, by the bilineari ty of ® we have x ® y = 
~~,"1J;ei ® li. Since the elements x ® y generate m ® w, we 
see that the products ea ® f.s generate m ® W. Now suppose 
that the tea} and {f.s} are independent as well as generators, that 
is, these form bases for their respective spaces. We assert that 
the set of products {e a ® j~} is a basis for m ® W. Since these 
are generators we just need to show that they are linearly in
dependent. For this purpose we form a vector space ~' with 
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basis gap in 1-1 correspondence with the product set (a, ~) of the 
index sets of a and of~. If x = ~~iei and y = ~r/jfh then we 
define x X' Y = ~~i'T]igij. It is easy to check that the product X' 
is bilinear, so we have the linear mapping 7r of Wl ® j)( into 'l3' 
sending x ® y ~ x X' y. In particular, ea ® h ~ ea X' h = 
gap. Since the gap are linearly independent, the same holds for 
the e a ® h and we have proved 

IX. Let {e a} and {h} be generators for Wl over ip and j)( over ip 
respectively. Then the set tea ® h} generates Wl ® j)(. More
over, if the {e a} and {h} are bases, then the same holds for {e a ® h }. 

The second property actually characterizes the tensor product 
among the bilinear mappings of Wl and j)(. More precisely, let 
X' be a bilinear mapping from Wl and j)( to a space'l3' and suppose 
there exists a basis (e a ) for Wl over ip and a basis (h) for j)( over 
ip such that (e a X' h) is a basis for'l3'. Then ('l3', X') is a ten
sor product. Thus we have the linear mapping of Wl ® j)( into 
'l3' sending e a ® h in to e a X' h. Since the e a X' h generate 
'l3', the mapping is surjective and, since the ea X' h are linearly 
independent, the mapping is 1-1. Thus we have a linear iso
morphism of Wl ® j)( onto'l3', mapping x ® y into x X' y. This 
implies that ('l3', X') is a tensor product. 

In the case of finite dimensional spaces we have the following 
simple criterion. 

X. Let X' be a bilinear mapping of the finite dimensional spaces 
Wl and j)( into 'l3' and suppose that 'l3' is generated by the products 
x X' y. Then the dimensionality ['l3' :ip] ::; [Wl :ip][j)( :ip] and equality 
holds if and only if ('l3', X') is a tensor product of Wl and j)(. 

Proof. Let (ei), (fj) be bases for Wl and j)( respectively. Then 
every x X' y is a linear combination of the elements ei X' fj and 
so every element of'l3' is a linear combination of these elements. 
This implies ['l3' :ip] ::; [Wl :ip][j)( :ip]. ('l3', X') is the tensor product 
if and only if the set (ei X' fj) is a basis. This is the case if and 
only if the equality holds in the dimensionality relation. 

We recall that, if A is a linear mapping of Wl into Wll and B 
is a linear mapping of j)( into j)(h then there exists a uniquely de
termined linear mapping A ® B of Wl ® j)( into Wll ® j)(1 such 
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that (x ® y)(A ® B) = xA ® yB (Vol. II, p. 211). We recall 
also that, if P is an extension field of the field 4> so that P is a vector 
space over 4> and m is any vector space over 4>, then P ®iI> m 
can be considered as a vector space over P by means of the 
product p(~Pi ® Xi) = ~PPi ® Xi, p, Pi e P, Xi em (Vol. II, p. 
221). We denote this vector space as mp and we refer to it as 
the space obtained from m by extending the base field to P. If 
A is a linear transformation in mover 4>, then 1 ® A (defined by 
(~Pi ® Xi) (1 ® A) = ~Pi ® XiA) is a linear transformation in 
Wlp over P which may be considered as the extension of A to Wlp • 

We shall use the same letter A to denote this extension. If (ca ) 

is a basis for Wl over 4>, then (1 ® ca ) is a basis for mp over P, so Wl 
over 4> and Wlp over P have the same dimensionality. IfWl is finite 
dimensional with basis (Ci), 1 ~ i ~ n, and A is the linear trans
formation with matrix (OI.ii) relative to this basis, then ciA = 
~OI.iiC; and (1 ® ci)A = ~OI.ii(1 ® Ci)' Hence the extension A has 
the same matrix relative to the basis (1 ® Ci)' 

We recall also that the tensor product is commutative in the 
sense that there exists a 1-1 linear transformation such that X ® 
Y --t y ® X of m ® 91 onto 91 ® m. Moreover, associativity 
holds in the sense that there is a linear isomorphism of (m ® 91) 
® @5onto m ® (9l ® @5) mapping (x ® y) ® z into X ® (y ® z). 
These results have been established in Vol. II, pp. 209-210. We 
shall indicate alternative proofs in some of the following exercises. 

EXERCISES 

1. Show that, if {h) is a set of generators for 91, then every dement of m ® 91 
has the form l:Xi ® fi, Ifi} a finite subset of {h) and Xi e m. Show that, if the 
{h) are linearly independent, then l:Xi ® fi = 0 if and only if every Xi = O. 

2. Show that, if ml is a subspace of m, then the subspace m l ® 91 generated 
by all vectors Xl ® y, Xl e ml, y e 91 is the tensor product of ml and 91 rdative 
to the ® defined in m ® 91. 

3. Let ~ be a subspace of m, ~ a subspace of 91. Show that (m/~) ® (91/~) 
and (m ® 91)/(~ ® 91 + m ® ~) are isomorphic under a linear mapping such 
that (x +~) ® (y +~) - X ® y + (~ ® 91 + m ® ~). 

4. Let ml, m 2, .. " mr and ~ be vector spaces over IJ? Define an r-linear 
mapping (Xl, •• " xr) - Xl X X2 X' .. X Xr e~, Xi e mi, by the properties: 

Xl X' .. X (xl + xl') X· .. X Xr = Xl X· .. X xl X· .. X Xr 

+ Xl X· .. X xl' X· .. X Xr 

0I.(X1 X· .. X xr) = Xl X· .. X OI.Xi X ... X Xr. 
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Show that there exists a 1.]3 and an r-linear mapping of ml, ... , mr into 1.]3 such 
that: if (Xl, ... , xr) - Xl X' X2 X'· .. X' Xr is an r-linear mapping of ml, .. " 
mr into 1.]3/, then there exists a unique linear mapping 7r of 1.]3 into 1.]3' such that 
(Xl ® ... ® Xr)7r = Xl X'· .. X' Xr. Denote this 1.]3 together with its product as 
the tensor product ml ® m2 ® ... ® mr. 

S. Show that m ® 91 ® 1.]3 is isomorphic to m ® (91 ® 1.]3) and (m ® 91) ® 1.]3 
by means of linear mappings such that X ® y ® z - X ® (y ® z) and 
(x ® y) ® z respectively. Generalize to r factors. 

6. Show that m ® 91 is isomorphic to 91 ® m under a linear mapping send
ing X ® y - y ® x. (Hint: Given 91 ® m, define X X' y = y ® x, X e m, 
y e 91. Show that this gives a bilinear mapping of m, 91 into 91 ® m and 
apply the defining property of m ® 91. Then reverse the roles of m and 91.) 

4. Tensor product of algebras. We recall that, if ~l and ~2 
are algebras over <1>, then the vector space ~ = ~l ® ~2 is an 
algebra relative to its vector space compositions and the multi
plication 

(8) ( ~ ali ® au) ( ~ blj ® b2i) = ~ alibli ® a2ib2;, 
" 1 ,&,3 

ali, blj e ~h a2i, b2i e ~2 (Vol. II, p. 225). The associativity of 
~l and ~2 implies associativity of ~l ® ~2 and 11 ® 12 is the 
identity 1 of ~ = ~l ® ~2 if Ii is the identity of ~i' Also ~ is 
commutative if the ~i are commutative. The basic property of 
the tensor product of algebras is the following homomorphism 
theorem. 

XI. Let ~i, i = 1,2, be algebras over <1>, Si a homomorphism oj 
~i into an algebra .58 such that i'l181a282 = a282a181, al e ~h a2 e ~2' 
Then there exists a homomorphism s oj ~ = ~l ® ~2 into .58 such 
that 

(9) 

Proof. The algebra product al X I a2 == a1 81a2 82 e.58 defines a 
bilinear mapping of ~h ~2 into.58. This is clear from the linearity 
of the Si and the properties of the multiplication composition in .58. 
Hence the definition implies that we have a linear mapping s of 
~l ® ~2 into .58 such that (al ® a2)8 = a1 8a28. Then s has the 
form (9). We have «al ® a2)(bl ® b2))8 = (albl ® a2b2)8 = 

(albl) 81(a2b2) 82 = a181b181a282b282 = a181a282b181b282 = «al ® a2)8 
(b l ® b2)8). This implies that s is an algebra homomorphism. 
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Suppose now that the following condition holds in m: 
(i) If (ea ) is a basis for ~1 over ~ and (h) is a basis for ~2 over 

~, then the set {ea' l jl2} is linearly independent. 
An equivalent condition for this which we shall sometimes find 

more convenient is 
(i') If (h) is a basis for ~2 over ~, then a relation a1'liI's + 

a2'lj28, + ... + am81jm8' = 0 for ai e ~1 andji e Up) implies that 
everyai = 0 (cf. ex. 1 of § 3). 

Now we have seen that, if (i) or (i') holds, then the mapping 
s given by (9) is an isomorphism of ~ = ~1 ® ~2 as vector space 
into m. Since this is an algebra homomorphism, clearly it is an 
algebra isomorphism. We remark that (i) cannot hold unless Sl 

and S2 are isomorphisms. 
The result we have obtained actually gives an internal charac

terization of ~1 ® ~2' For this we note that a1 ~ a1'1 = a1 ® 12 
and a2 ~ a2·2 = 11 ® a2 are homomorphisms of ~1 and ~2 re
spectively into ~1 ® ~2' since the linearity of the mappings we 
have indicated follows from the bilinearity of a1 ® a2, and the 
homomorphism for multiplication is clear from (9). The com
mutativity condition: a181a28S = a282a181 is clear, since a1'la28S = 
(a1 ® 12)(1 1 ® a2) = a1 ® a2 = (11 ® a2)(a1 ® 12) = a2·sa1'1. 
Finally, if (ea ) and (h) are bases for ~1 and ~2 respectively, then 
the set {ea81 jl'} = tea ® h} is linearly independent. It follows 
that (ea 81) is a basis for ~181 = {a1 ® 1} and (h8t ) is a basis for 
~28t. Also Sl and S2 are isomorphisms and we can identify ~l'l 
with ~h ~282 with ~2' Our results evidently lead to the following 
internal characterization of the tensor product of algebras: 

XII. Let ~ be an algebra, ~1 and ~2 subalgebras such that 

(i) a1a2 = a2ah ai e ~i' 
(ii) Ij (ea) is a basisjor ~1 and (h) is a basisjor ~2' then leah} 

is a linearly independent set. 
(iii) ~ is generated by ~1 and ~2' 

Then :2;ali ® a2i ~ :2;alia2i is an isomorphism oj ~l ® ~2 onto 2I. 

Because of this result and the situation we noted in 2Il ® ~2 
itself, we shall say that ~ is the tensor product oj its subalgebras ~1 
and ~2 if the above conditions (i)-(iii) are fulfilled. As we have 
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seen, the condition (ii) can be replaced by the equivalent condi
tion: 

(ii') Ij (h) is a basis jar ~2' then adl + a2j2 + ... + amj m = 0 
jar ai e ~h ji e (h) implies every ai = O. 

Of course, the roles of ~l and ~2 can be interchanged in this. 
We remark also that (ii) and (iii) can be combined in a single con
dition: Ij (ea) is a basis/or ~l and (h) is a basisjor ~2' then (eah) 
is a basis jor~. For finite dimensional algebras this is equivalent 
to the dimensionality condition: [~:<I>] = [~l:<I>][~2:<I>] (cf. X). 

EXERCISES 

1. Let ~ be an algebra over the field cI> and let ~[x] be the algebra of polynom
ials in an indeterminate x over~. Show that ~[x] is the tensor product of its 
subalgebra ~ (constants of ~[x]) and its sub algebra cI>[x] of polynomials in x with 
coefficients in cI>. Use this to prove that cI>[x, y], x, y indeterminates, is the tensor 
product of its sub algebras cI>[x] and cI>[y]. 

2. Let cI>(x,y) be the field of rational expressions in the indeterminates x,y, 
that is, the field of fractions of cI>[x,y]. Let ~ be the subset of fractions with 
denominators of the formj(x)g(y),j(x) e cI>[x], g(y) e cI>[y]. Show that ~ is a sub
algebra of cI>(x,y) which contains the sub algebras cI>(x), cI>(y) where these are the 
fields of fractions of cI>[x] and cI>[y] respectively. Show that ~ is the tensor prod
uct of these subalgebras and that ~ is not a field. 



Chapter I 

FINITE DIMENSIONAL EXTENSION FIELDS 

If 4> is a sub field of a field P, then we have seen that we can 
consider P as an algebra over 4>. In this chapter we shall be con
cerned primarily with the situation in which P is finite dimen
sional over the subfield 4>. We shall be concerned particularly 
with the general results of Galois theory that are of importance 
throughout algebra and especially in the theory of algebraic num
bers. We shall consider the notions of normality, separability, 
and pure inseparability for extension fields, Galois cohomology, 
regular representations, traces, and norms. Also the basic results 
on finite fields will be derived and the notion of composites of two 
extension fields will be considered. 

In most of our considerations, and indeed throughout this book, 
we shall usually be given a field 4> and we shall be concerned with 
extension fields P /4>. The ways of obtaining such extensions have 
already been indicated in Vol. I, pp. 100-104. At the beginning 
of this chapter we adopt a different point of view. Here we are 
given the top field P and we look down at its various subfields; 
moreover, we do not insist that these contain any particular sub
field (except, of course, the prime field). The treatment here will 
be abstract in the sense that no knowledge of the structure of an 
extension is required. In spite of this we can give a survey of the 
subfields which are of finite co-dimension in the given field P and 
those which are Galois in P. These surveys are given in two general 
"Galois correspondences." After these rather abstract considera
tions we shall go down to 4> and we shall apply the general results 
to the extension P /4> in terms of polynomial equations with co
efficients in P. 

18 
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1. Some vector spaces associated with mappings of fields. 
Let E and P be two fields, and let ~(E, P) denote the set of homo
morphisms of the additive group (E, +) of E into (P, +). The 
set ~(E, P) is a group relative to the composition A + B defined 
by E(A + B) = EA + EB for E in E. One checks that A + B e 
~(E, P) and that the group conditions hold. The 0 of ~(E, P) is 
the mapping 0 such that EO = 0, the 0 ofp, for all E in E, and -A 
is given by E(-A) = -J (cf. Vol. I, §2.l3 and Vol. II, §2.2). 
If .:l is a third field and A e ~(E, P) and B e ~(P, .:l), then the 
resultant AB defined by E(AB) = (EA)B is an element of ~(E, .:l). 
Both distributive laws hold for this composition. In combined 
form they say that, if AI) A2 e ~(E, P) and BI) B2 e ~(P, .:l), then 
(AI + A 2) (BI + B2) = AIBI + AIB2 + A2BI + A 2B2. Fi
nally, we note that the associative law of multiplication holds: 
If r is another field and A e ~(E, P), B e ~(P, .:l), C e ~(.:l, r), 
then (AB)C = A(BC) e ~(E, r). All of these assertions are 
readily verified and they are very similar to facts about composi
tion of linear mappings which we have considered in Vol. II, 
§ 2.2. We leave it to the reader to carry out the verifications. 

The results we have indicated imply that ~(E, E) is a ring 
under the compositions of addition and multiplication. This is 
just the ring of endomorphisms of the additive group (E, +) 
which has been considered in the general case in Vol. I, § 2.13. 
If peP, then the mapping PR: ~ ~ ~p( = p~) in P belongs to ~(P, P). 
Since AB e ~(E, P) for A in ~(E, P) and B in ~(P, P), we see that 
ApR e ~(E, P). This observation permits us to convert ~(E, P) 
into a right vector space over the field P. For this purpose we 
define Ap = ApR for A e ~(E, P) and peP. Then we have 

(A + B)p = (A + B)PR = ApR + BpR = Ap + Bp 

A(p + er) = A(p + er)R = A(PR + erR) 

= APR + AerR = Ap + Aer 

A(per) = A(per)R = A(PRerR) = (ApR)erR = (Ap)er 

Al = AIR = A, 

which shows that ~(E, P) is a right vector space over P. 
We note next that if ER denotes the mapping 71 ~ 71E in E, then 

ER e ~(E, E). Hence, if A e ~(E, P), then ERA e ~(E, P). We can 
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now consider ~(E, P) also as a left vector space over E by defining 
EA = ERA. It should be remarked that, if we do this, then there 
is an ambiguity in writing EA which can mean either the image of 
E under A or the endomorphism ERA. For this reason we shall 
avoid considering ~(E, P) as a left vector space over E and use 
instead the product ERA when this will be needed. 

All that we have just said applies also to fields over a given 
field~. Consider the fields E/~ and P /~. In this connection it is 
natural to consider the subset ~~(E, P) of ~(E, P) of linear trans
formations of E as vector space over ~ into P over~. If a e ~ 
and ~,P eP, then (a~)pR = (a~)p = a(~p) = a(~PR)' which implies 
that PR e ~~(P, P). If A e ~~(E, P), then Ap == ApR e ~~(E, P); so 
it is clear that ~~(E, P) is a subspace of the right vector space 
~(E, P) over P. If ~ is any right vector space over P, we denote its 
dimensionali ty over P as [~: P]R. Then we have the following im
portant result on [~~(E, P) :P]R' 

Theorem 1. Let E/~, P /~ be fields over ~ and let ~~(E, P) be the 
right vector space over P oj linear mappings oj E/~ into P /~. Then 
[E:~] is finite if and only if [~~(E, P) :P]R is finite and when both 
are finite then 

(1) [E:~] = [~~(E, P) :P]R' 

Proof. Let 1]1) 1]2, •• " 1]n be elements of E which are linearly 
independent over~. Then we may imbed this set in a basis {1]a} 

for E over ~ (Vol. II, p. 239). If we choose a correspondent Ta 

e P for each 1]a, then there exists a unique element A e ~~(E, P) 
such that 1]aA = T a for every 1]a' This implies that for each i = 
1, 2, .. " n, there exists a linear mapping Ei (not necessarily 
unique) such that 1]iEi = 1,1]j E i = 0 if j ¢ i. Then if Pi e P, 

n 

Hence L: EiPi = 0 implies every Pi = 0, which shows that, if 
1 

[E:~] is infinite, then for every. n there exist n right P-in
dependent elements of~~(E, P). Then [~~(E, P) :P]R ~ n for every 
n, so this dimensionality is infinite. Next suppose [E:~] = n < 
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00 and that the 71'S constitute a basis. Let A e ~<T>(E, P) and set 

71iA ;:; Pi. Then 71j ( * EiPi) = Pj = 71 jA. Thus A and ~EiPi 
have the same effect on the basis (71h 712, ... , 71n) for E/!JI. It 

n 

follows that A = E EiPi and, since the Ei are right independent 
1 

over P, these form a basis for ~<T>( E, P) over P. Hence [~<T>( E, P) :P]R 
= n = [E:!JI]. This completes the proof. 

We now drop !JI and consider again E and P arbitrary fields 
and ~(E, P) the group of homomorphisms of (E, +) into (P, +). 
We consider this as a right vector space over P as before. Let 
~ be a subspace of this space. Let E be a fixed element of E. 
Then E determines a mapping f. of ~ into P by the rule that 
f.(A) = EA e P. We have f.(A + B) = E(A + B) = EA + EB 
= f.(A) + f.(B) and, if peP, then f.(Ap) = E(Ap) = (EA)p = 
f.(A)p. Thus we see that f. is a P-linear mapping of the right 
vector space ~ over P into the one dimensional space P over P, 
that is, f. e ~*, the conjugate space of~. Of course, ~* is a left 
vector space overP. The process we have just indicated produces 
a collection· {f. I E e E} of linear functions. This collection is 
"total" in the sense that, if f.(A) = 0 for all E, then A = O. 
This is clear since the requirement is that EA = 0 for all E and this 
is just the definition of A = O. We can now prove the following 
useful 

Lemma. Let ~ be a subspace of ~(E, P) over P such that [~:P]R = 
n < 00. Then there exist elements Eh E2, ... , En e E and a right 
basis Eh E 2, ••• , En for ~ over P such that EiEj = Oij (Oij = 0 if 
i ¢ j, Ou = 1). 

Proof. We are given that [~:P]R = n < 00. This implies that 
the conjugate space ~* is n-dimensional. Let 5S* be the subspace 
of ~* spanned by the linear functions f., E e E. Since f(A) = 0 
for allfe 5S* implies that A = 0, it follows that 5S* = ~* (Vol. 
2, § 2.1 0). Hence we can find n linear functions f'1' f '2' .•. , f.,. 
which form a basis for ~*. Since ~ can be considered as the con
jugate space of ~*, we can find a basis Eh E2 , ••• , En for ~ over 
P such thatf • .(Ej) = Oij. Recalling the meaning off. we see that 
we have EiEj = Oij as required. 
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2. The Jacobson-Bourbaki correspondence. Let P be a field 
and let ~(P, P) be the ring of endomorphisms of the additive 
group (P, +). As before, we consider ~(P, P) as a right vector 
space over P. If <I> is a subfield, then ~~(P, P) the ring of linear 
transformations of P/<I> is a subring of ~(P, P) and a subspace of 
~(P, P) over P. Moreover, we have seen (Th. 1) that, if <I> is of 
finite co-dimension in P in the sense that [P:<I>] = n < 00, then 
[~~(P, P): P]R = n. These properties of ~<)(P, P) in no way refer 
to the subfield <1>. We shall now show that they are charac
teristic of the sets ~~(P, P). This is a consequence of the follow
mg 

Theorem 2 Uacobson-Bourbaki). Let P be a field and ~ a set 
of endomorphisms of (P, +) such that: 

(i) ~ is a subring of~(P, P) the ring of endomorphisms of (P, +) 
(containing the identity mapping, by our convention, Introd. 
p.2). 

(ii) ~ is a subspace of ~(P, P) as right vector space over P. 
(iii) [~: P]R = n < 00. 

Let <I> be the subset of P of elements a such that aRA = AaRfor all 
A e~. Then <I> is a subfield of P, [P:<I>] = n and ~ = ~~(P, P) the 
complete set of linear transformations of P /<1>. 

Proof (Hochschild). The verification that <I> is a subfield is 
immediate and will be omitted. Next we apply the lemma of § 1 
to obtain elements Ph P2, .. " Pn in P and a right basis (E h E 2, 
.. " En) for ~ over P such that PiEj = ~ij. Since PR(fR = (fRPR 
for any p, (f in P, it is clear that <I> is the set of a e P satisfying 
aREi = EiaR, i = 1,2, .. " n. Also it follows from PiEj = ~ij 

" that, if we express the element A of ~ as A = L Ei(fi, then 
1 

pjA = L (pjEi)(fi = (fj. Hence the representation of any A in 
i 

n " 
terms of the basis reads: A = L Ei(PiA) or A = L Ei(PiA)R. 

1 1 

We shall now use this formula to show that every E, maps Pinto 
<1>. For this purpose let (f be any element of P and consider the 
mapping Ej(fRE,.,j, k = 1,2, .. " n, which belongs to ~, since ~ is 
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a subring of the ring of endomorphisms. The formula we obtained 
can be applied for A = EjqREk to give 

EjqREk = L Ei(PiEjqREk)R 
i 

= E j (lqR Ek)R 

= Ej(qEk)R. 

This means that for arbitrary P in P we have 

pEjqREk· = pEj(qEk)R. 

In other words, «pEj)q)Ek = (pEj) (qEk). Then 

(q(pEj»Ek = (qEk) (pEj). 

If we think of q as the argument, this gives the operator identity 
(pEj)REk = Ek(pEj)R, which implies that pEj ell>, and this holds 
for all peP. We can now show that the Pi we started with form 
a basis for P /11>. Let q e P and consider the element ql = q -
L (qEj)pj in P. Since qEj e II> and aREk = EkaR for a in 11>, we 
j 

have ql Ek = qEk - ( ~ (qEj)pj) Ek = qEk - ( ~ pj(qEj)R) Ek 

= qEk - L (pjEk)(qEj)R = qEk - qEk = o. Since 1 e~, 1 = 
j 

TtEkAk for suitable Ak e P. Then ql Ek = 0 implies ql1 = 0 so 
ql = o. We therefore see that q = Tt(qEj)pj is all>-linear combina
tion of the Pj. If TtcxiPi = 0, CXi e 4>, then CXj = (TtcxiPi)Ej = o. 
Hence (Ph P2, .. " Pn) is a basis for P over II> and [P:II>] = n. 
Since aRA = AaR for every a e II> and A e~, every A e ~ is a 
linear transformation of P over 11>. Hence ~ C ~<J>(P, P). Since 
[~<J>(P, P): P]R = n by Theorem 1, and [~: P]R = n, we see that 
~ = ~<J>(P, P). 

Theorem 2 permits us to establish our first and most general 
"Galois correspondence" for a field P. This concerns two collec
tions of objects: the collection !T of subfields II> which are of 
finite co-dimension in P and the collection fJf of sets of endomor
phisms of (P, +) having the properties (i), (ii), (iii) of the theo
rem. To each II> e !T we associate R(II» = ~<I>(P, P). This is a 
subring of ~(P, P), a subspace of ~(P, P) over P and satisfies 
[~<J>(P, P): P]R < 00. Hence R(II» = ~<I>(P, P) e fJf. On the other 
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hand, if ~ e Pl, then we can associate the subfield F(~) = cP = 
{a I a e P, aRA = AaR, A e ~}. This is of finite co-dimension in 
P and so it belongs to §: By Theorem 2, we have R(F(~)) = ~. 
If cP e ff and ~ = R(cp) = ~if>(P, P), then [~: P]R = [P:CP] by 
Theorem 1 and [~: P]R = [P:F(~)] by Theorem 2. If a ecp, we 
certainly have aRA = AaR for A e~. Hence cP c F(~) by the 
definition of F. Since [P:CP] = [P:F(~)][F(~) :cp] (VI, Introd.) 
and [P:CP] = [P:F(~)], we have [F(~) :cp] = 1 and so cP = F(~) = 
F(R(cp». The two relations 

R(F(~» =~, ~ e Pl 

F(R(cp») = CP, cP e ff 

imply that the mappings Rand F are inverses and are 1-1 of ff 
onto Pl and Pl onto ff respectively. It should be noted that the 
definitions of Rand F show that these mappings are order revers
ing for the inclusion relation: CPI c CP2 for subfields implies R(CPI) 
:::) R(CP2) and ~I C ~2 for ~i e Pl implies F(~I) :::) F(~2). 

In § 4 we shall establish a Galois correspondence between finite 
groups of automorphisms of a field P and certain subfields of 
finite co-dimension in P. Later (§ 8, Chap. IV) we shall establish 
a similar correspondence between certain Lie algebras of deriva
tions in P and certain su bfields of P. Both of these correspond
ences will be derived from the general "Jacobson-Bourbaki cor
respondence" which we have just given. In addition to this we 
shall need some information on special generators for some of the 
rings ~ e Pl. For the automorphism theory the generators are 
automorphisms of P. The results we require for these will be 
derived in the next section. 

EXERCISES 

1. Let ~ be a set of endomorphisms of (p, +) satisfying conditions (i) and (ii) 
of Theorem 2. Show that ~ is an irreducible ring of endomorphisms (Vol. II, p. 
259). Apply the density theorem for such rings (Vol. II, p. 274) to show that, if 
PI, P2, ••• , Pm are 4>-independent elements (4) as in Th. 2) and CTI, CT2, ... , CTm are 
arbitrary in P, then there exists an A e ~ such that PiA = CTi, i = 1,2, ... , m. 
Use this result to give another proof of Theorem 2. 

2. Let P be an arbitrary extension field of the field 4>. Show that, if a e P satis
fies aRA = AaR for all A e ~if>(P, P), then a e 4>. 

3. Let (pI, P2, ••• , Pn) be a basis of P /4>, (AI, A 2, ••. , An) a right basis for 
~if>(p, P) over P. Show that the n X n matrix (PoAj) has an inverse in P n. 
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3. Dedekind independence theorem for isomorphisms of a field. 
Let s be an isomorphism of a field E into a field P. Then s is an 
isomorphism of the additive group (E, +) of E into (P, +) 
satisfying the multiplicative condition (E'7)8 = E8'78• We can 
write this in operator form as: 

(2) '7RS = S('78)R 

where '7R is the multiplication by '7 in E and ('78)R is the multiplica
tion by '78 in P. If both E and P are fields over eI>, then an iso
morphism of E/eI> into P /eI> is an algebra isomorphism of the first 
algebra into the second. Hence, in addition to the conditions: 
(E + TJ)8 = E" + TJ8, (E'7)8 = E"'78, 18 = 1, s is 1-1, we have (aE)8 = 
aE8 for a e eI>. The first and last of these are just the conditions 
that s e 2~(E, P). Hence if s is an isomorphism of E/eI> into P/eI>, 
then a8 = (a1)8 = a1 8 = a holds for every a e eI>. Conversely, 
this condition implies that (aE)8 = aE", E e E. Thus an isomor
phism of E/eI> into P leI> is just an isomorphism of E into P which 
is the identity mapping on eI>. 

We shall now derive two basic results on linear relations con
necting isomorphisms of E into P (no eI». 

Theorem 3 (Dedekind). Let E and P be fields and let Sh S2, ... , 
s .. be distinct isomorphisms ojE into P. Then the Si are right linearly 
independent over P: "I,SiPi = 0, Pi e P, implies every Pi = o. Here 
sp = SPR. 

Proof. If the assertion is false, then we have a shortest relation, 
which by suitable ordering reads: 

(3) SIPI + S2P2 + ... + SrPr = 0, 

where every Pi =;C O. Suppose r > 1. Since SI =;C S2 there exists 
'7 e E such that '781 =;C TJ82• Now multiply (3) on the left by TJR. 
If we take into account (2), this gives: SI'7 81PI + S2'7 82p2 + ... + 
Sr'78'Pr = o. Next we multiply (3) on the right by '781 and obtain 
SIPI'781 + S2P2TJ81 + ... + SrPrTJ81 = o. Subtraction of the two new 
relations gives 

S2P2('78J - TJ81) + sSPs(TJ8• - TJ81) + ... = O. 

Since P2('782 - TJ81) =;C 0, this is a non-trivial relation which is 
shorter than (3). Hence we are forced to conclude that r = 1, 
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that is, S1P1 = O. Since P1R -1 exists, this gives S1 = 0 contrary 
to the assumption that S1 is an isomorphism. 

We can combine Theorem 1 and Dedekind's theorem to obtain 
the following 

Corollary. Let E and P befields overil> such that [E:iI>] = n < 00. 

Then there exist at most n distinct isomorphisms of E/iI> into P /iI>. 

Proof. Let Sh S2, .. " Sr be distinct isomorphisms of E/iI> into 
P /iI>. Then these are elements of ~~(E, P) which are right P
independent. Since [~~(E, P): P]R = n, we must have r ~ n. 

In the next section we shall be concerned with right P-vector 
spaces spanned by a finite number of automorphisms of a field. 
More generally, let Sh S2, .. " Sn be distinct isomorphisms of E 
into P and let ~ be the set of endomorphisms of the form 

(4) S1P1 + S2P2 + ... + SnPn, Pi e P. 

Evidently, ~ is a subspace of the right P-vector space ~(E, P). 
Moreover, if E e E, then ERSi = Si(E8t)R, by (2), so 

This shows that ~ is closed under left multiplication by arbitrary 
ER, E e E. We shall require the following 

Theorem 4. Let E and P befields, Sh S2, .. " Sn isomorphisms of 
E into P, and let ~ be the right P-subspace of ~(E, P) of endomor
phisms ~SiPi, Pi e P. Let m be a P-subspace of ~ which is invariant 
under left multiplication by elements ER, E e E. Then.\B = SilP + 
Si2P + ... + SirP ( = { :;: SiJPiJ}) where {Siu Siu "', Sir} = .\B n 
{ShS2," ',Sn}' 

Proof. It is dear that t~ SijPiJ I Pij e p} C.\B. To prove the 

n 

opposite inclusion it suffices to show that, if L SiPi e .\B, then the 
1 

Si for which Pi ~ 0 are contained in.\B. Suppose this is not the 
case. Then we have an element SklPkl + S~k2 + ... + Sk.Pk. in 



FINITE DIMENSIONAL EXTENSION FIELDS 27 

5B in which every Pkt ~ 0 and Skt ¢ 5B. We can then argue as in 
the proof of Dedekind's theorem. We assume s minimal. If 
s > 1, we apply the process we used before to obtain a shorter 
element of the same type contained in 5B. Then SklPkl e 5B which 
implies that SkI e .5B contrary to assumption. 

EXERCISE 

1. Let E = if>(8) where 8 is algebraic over if> and (J(x)) is the kernel of the 
homomorphism g(x) ~ g(8) (Vol. I, p. 103). Then [E:if>J = degf. Use the ex
tension theorem V of Introduction to show that the number of isomorphisms of 
E/if> into P Iif> does not exceed degf. Extend this result to obtain an alternative 
proof of the Corollary to Theorem 3. 

4. Finite groups of automorphisms. Let G be a group of auto
morphisms of a field P and let if> be the subset of P of elements a 
such that a 8 = a for every s e G. We shall call if> the set of G
invariants of P. Since the invariants (or fixed elements) of an 
automorphism form a subfield, if> is a subfield of P. We denote 
if> = leG) (or lp(G) if it is necessary to indicate P) and we call a 
subfield which has this form, that is, which is the subfield of in
variants of a group of automorphisms, Galois in P. We shall 
also say that P is Galois over if> or P /if> is Galois. 

The process we have just indicated associates with groups of 
automorphisms G, subfields leG), and we have the mapping 
G ~ leG) of these groups into subfields of P. We now define 
a mapping in the opposite direction. If if> is any subfield of P, 
then we associate with if> the set .1(if» (or .1p(if») consisting of the 
automorphisms of P /if>, that is, the automorphisms s of P such 
that a 8 = a for all a e if>. Evidently, .1(if» is a subgroup of the 
group A of all the automorphisms of P. We call .1(if» the Galois 
group of P /if>. We have the subfield-group mapping if> ~ .1(if». 
The following properties of the mappings G ~ leG), if> ~ .1(if» 
are clear from the defini tions: 

(a) G1:J G2 => l(Gl ) C l(G2 ) (=> denotes "implies"). 

(m if>l:J if>2 => A(if>l) C A(if>2). 

h') J(.1(if»):J if>. 

(0) A(J(G)):J G. 
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These relations have the following consequences: 

1(/J(I(G))) = leG). 

/J(1(/J(iJ?))) = /J(iJ?). 

The proofs of these two are identical so we consider (E) only. 
Here we use ('Y) for iJ? = leG) and obtain 1(/J(I(G))) ::> leG). 
On the other hand, if we apply I to /J(I(G)) ::> G, we obtain leG) ::> 
1(/J(I(G))). Hence (E) holds. A consequence of (E) is that iJ? is 
Galois in P if and only if iJ? is the set of invariants of the Galois 
group of P 1iJ?, that is, iJ? = 1(/J(iJ?)). Clearly this condition is 
sufficient. On the other hand, if iJ? = leG) for some group of auto
morphisms G, then iJ? = leG) = 1(/J(1(G))) = 1(/J(iJ?)). 

We shall now study the Galois correspondences iJ? -+ /J(iJ?), 
G -+ leG) starting with finite groups of automorphisms. We 
denote the order of a group G by (G: 1) and, more generally, the 
index of a subgroup H in G by (G:H). We shall deduce all the 
results on the subfield-group correspondence from the J acobson
Bourbaki theorem (Th. 2) via the following 

Lemma. Let G be a jinite group of automorphisms in the jield P 

and let ~ = {* S iPi lSi e G, Pi e p}. Then ~ satisfies the hypoth

eses (i), (ii), (iii) of Theorem 2, [~: P]R = (G: 1), and the subjield 
iJ? given in Theorem 2 is the subjield of G-invariants. If 5B is a 
subring of ~ and a subspace of ~ over P, then 

5B = {~tiPi I ti e H, Pi e p} 
where H = {til is a subgroup of G. 

Proof. If peP and s is an automorphism, then (2) shows that 
PRS = S(p8)R' Hence (SiPi)(SiPi) = Si(PiRSi)PiR = SiSi(P/f)RPiR = 
SiSjP/fpj e ~ since SiSi e G. This implies that ~ is a subring of the 
ring of endomorphisms ~(P, P). Since 1 e G and G C ~, 1 e ~. 
It is clear that ~ is a subspace of ~(P, P) as right vector space 
over P. Since the Si are independent over P by Dedekind's 
theorem, [~: P]R = (G: 1) < 00. The subfield iJ? of Theorem 2 is 
the set of a e P such that aR/J = /JaR for all /J e~. Since aRPR = 
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PROI.R, peP, anyhow, the condition is equivalent to OI.RSi = SiOl.R, 

Si e G. Since OI.RSi = si(0I.8 ;)R, this is equivalent to si(0I.8;)R = SiOl.R, 

Si e G. Since Si -1 exists, this becomes (0I.8 ;)R = OI.R or 01.8 ; = 01. 

which shows that OI.RA = AOI.R, A e ~ is equivalent to: 01. is G
invariant. Now let 58 be a subring of ~ which is a P-subspace. 
Then 58 ~ 1P = {pRlp e P} and consequently 58 is invariant 
under left multiplication by the PRo Hence, by Theorem 4, 
58 = tIP + t2 P + ... + trP where H = {til = G n 58. Evidently 
H = G n 58 is closed under multiplication so this is a finite sub
semigroup of G. Hence H is a subgroup of G. 

The main result on finite groups of automorphisms of a field is 

Theorem 5. Let P be a jield and let d be the collection of jinite 
groups of automorphisms in P, .f the collection of subjields of P 
which are Galois and of jinite co-dimension in P. If <I> e.f, let 
A(<I» be the Galois group of P /<I> and, if G e d, let I(G) be the sub
jield of P of G-invariants. Then: (i) If <I> e ./, A(<I» e d, and if 
G e d, I(G) e.f. Moreover, I(A(<I») = <I> and A(I(G)) = G. 
(ii) If G e d, then (G: 1) = [P:I(G)]. (iii) If <I> e.f and E is a 
subjield of P containing<I>, then E e.f. (iv) In this situation H = 
A(E), which is a subgroup of G = A(<I», is invariant in G if and 
only if E is Galois over <I>. Then the Galois group AE(<I» of E/<I> is 
isomorphic to G / H. 

Proof. (i)-(ii). If G e d and ~ = {2;SiPilsi e G, Pi e p}, then 
[P:/(G)] = [~: P]R = (G: 1), by the lemma and Theorem 2. If 
we set <I> = I(G) and G' = A(<I» the Galois group of P /<I>, then 
the corollary to Dedekind's theorem shows that (G': 1) ::::; [P:<I>] = 
(G: 1). Since G c G' is evident, G' = G. Thus A(I(G)) = G. 
Next let <I> be Galois and of finite co-dimension in P. Then <I> = 
I(G) where G is the Galois group of P /<I>. This is finite by the 
corollary to Dedekind's theorem. Hence A(<I» e d and I(A(<I») 
= <I>. This completes the proof of (i) and (ii). (iii) Let <I> e .f 
and let ~ be the ring of endomorphisms defined by the Galois 
group G of P /<I>. By Theorem 2, ~ = ~~(P, P). Now let E be a 
subfield of P containing <I>. Then 58 = ~E(P, P) is a subring of ~ 
of the sort considered in the lemma. Hence 58 = tIP + ... + trP 
where H = {til is a subgroup of G. Since E = {EI ERB = BER, 
B e 58}, it follows that E is the subfield of H-invariants. This 
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proves (iii). (iv) If s e G, E' the image of E under s is another 
subfield of P containing ~ and it follows directly from the defini
tion that A(E') = s-lHs. Hence H is invariant in G if and only 
if E' = E for every s e G. We proceed to show that this holds 
if and only if E is Galois over ~ and then AE(~) rv GIH. Assume 
first that E' = E and let G' be the group of restrictions s' to E 
of the s e G. Then G' is a finite group of automorphisms in E 
and J(G') =~. Hence ~ is Galois in E and G' = AE(~) by (i) 
applied to E. The mapping s ~ s' is a homomorphism of G onto 
G'. The kernel is the set of s e G such that s' = 1 on E. This 
is H. Hence G'~ GIH. Next let E be Galois over~. Then we 
have [E:~] distinct automorphisms of E over ~ and these can be 
considered as isomorphisms of E/~ into P I~. On the other hand, 
by the corollary to Dedekind's theorem there are at most [E:~] 
isomorphisms of E/~ into P /~ so these must coincide with the 
automorphisms of E/~. If s e G, the restriction of s to E is an 
isomorphism of E/~ into P /~; hence this is an automorphism. 
This implies that E' = E for all s e G. 

Theorem 5 establishes, in particular, a bijection (1-1, onto 
mapping) between the collection of subfields E of P which con
tain a fixed subfield~, which is Galois and of finite co-dimension 
in P, and the collection of subgroups H of the Galois group G of 
P I~. This correspondence satisfies the properties in (iii) and 
(iv). We remark also that {H} is finite, which implies that the 
collection of fields beween P and ~ is finite. At this point there 
is one serious gap in our theory: We have given no conditions 
that P be finite dimensional Galois over~. The next three sec
tions will be devoted to filling this gap and to forging the link 
between the present "abstract" Galois theory and the theory of 
equations. 

EXERCISES 

1. Let C be the field of complex numbers and let P = C(~), a simple transcend
ental extension of C (Vol. I, p. 101). Let s be the automorphism of PIC such 
that~' = ~ where E is a primitive n-th root of 1 and let 1 be the automorphism of 
PIC such that ~t = ~-l. Show that s" = 1,12 = 1, sl = ts-l and that the group 
G of automorphisms generated by s, t is of order 2n. Show that the subfield of 
G-invariants is C(fl), fl = ~ .. + ~-". 

2. Determine the Galois group of ip(P) over ip where ip is the field of rational 
numbers and p4 = 2. 
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3. Let P be finite dimensional Galois over <P and suppose the Galois group G = 
G1 X G2, G. subgroups of G. Show that, if P, is the subfield corresponding to 
G" then Pd<p is Galois and P = P 1 ® P 2 (over <p). 

4. Let <P be a field of characteristic ¢ 2 and let P be an extension such that 
[P:<p] = 2. Show that P = <p(8) where 82 = a e <P. Use this to prove that Pis 
Galois over <P. 

5. Show that, if <P1 and <P2 are Galois' in P, then <P1 n <P2 is Galois in P. Let <P 
be a field of characteristic 0, P = <p(~), ~ transcendental. Let <P1 = <p(~2), 
<P2 = <p(H~ + 1». Show that [P:<Pl] = 2 = [P:<P2] but [P:<P1 n <P2] is infinite. 

6. Show that, if Ro is the field of rational numbers, then Ro( ~2) is not Galois 
over Ro. 

7. Let G be an arbitrary group of automorphisms in a field P and let ~ 
= {~SiP' J s, e G, Pi e P}. Show that ~ satisfies the hypotheses (i) and (ii) of 
Theorem 2. Show that <P = {aJaRA = AaR, A e~} is the subfield of G-in
variants. Use these results and ex. 1, § 2, to prove that, if E is a subfield of P 
containing <P such that [E :<p] < 00, then any isomorphism ofE/<p into P I<p can 
be extended to an automorphism of P I<p. 

8. (Kaplansky). P, <P, E, and G as in ex. 7. Prove that E is Galois in P. (In 
other words, if <P is Galois in P and E ::> <P satisfies [E :<p] < 00, then E is Galois 
in P.) (Hint: Set H = G n A(E). Let A be a finite dimensional subspace of 
P I<p containing E. Use ex. 1, § 2, to show that ~~(A, P) has a right P-basis of 
the form (.f 1, j 2, ... , j n), j i the restriction to A of Si e G. Use Theorem 4 to show 
that ~E(A,P) has a P-basis (11,12, ···,7r ), tieH. Use this and ex. 2, §2, to 
prove that E = J(H).) 

5. Splitting field of a polynomial. Let <I> be a given field and 
J(x) a non-zero polynomial contained in the polynomial ring 
<I>[x], x an indeterminate. We recall that an element P of <I> is called 
a root ofJ(x) or of the equationJ(x) = 0 ifJ(p) = o. We know 
that this is the case if and only ifJ(x) = (x - p)g(x) in <I>[x] (Vol. 
I, p. 99); and if deg j(x) = n, thenj(x) has at most n roots in <I> 
(Vol. I, p. 104). If Ph P2, ... , Pr are distinct roots, then 

J(x) = (x - Pl)(X - P2) ... (x - Pr)g(X). 

In Vol. I, pp. 101-102, we have given a construction for an ex
tension P /<1> in which a given irreducible polynomialj(x) e <I>[x] has 
a root. If we apply this to an irreducible factor of any non-zero 

J(x) e <I>[x], we obtain an extension P/<I> containing a root ofJ(x). 
We shall now establish the existence of a minimal field extension P 
in which a given polynomiaIJ(x), degJ(x) > 0, decomposes as a 
product of linear factors. Unless otherwise indicated we shall 
assume our polynomials have leading coefficients 1. Then we re
quire an extension P /<1> such that 

(5) J(x) = (x - Pl)(X - P2) ... (x - Pn) 
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in P[x]. If eI>(P1, P2, ... , Pn) denotes the subfield of P /eI> generated 
by the Pi, then evidently the factorization (5) is valid also in 
eI>(P1, P2, ... , Pn)[X]. Hence, if P /4» is to be minimal, then we 
must have P = eI>(P1, P2, ... , Pn). We recall also that the fac
torization (5) is unique in P[x] apart from factors in 4» (Vol. I, 
p. 100, p. 123). From this it follows that the set {Pi} is the com
plete set of roots off(x) in P and that, if ~/eI> is a subfield of eI>(Ph 
... , Pn)/eI> such that f(x) is a product of linear factors in ~[x], 
then ~ = 4»(Ph P2, ... , Pn). This leads us to give the following 

Definition 1. Let eI> be a jield and f(x) a polynomial of positive 
degree with coefficients in eI> (leading coefficient 1). Then an extension 
jield P /eI> is called a splitting field of f(x) if a factorization (5) holds 
in P[x] and P = eI>(Ph P2, ... , Pn). 

We shall now state two immediate results which will be used 
frequently. 

Lemma 1. (1) If P /eI> is a splitting jield of f(x) e eI>[x] and ~/eI> 
is a subjield of P /eI>, then P /~ is a splittingjield of f(x). (2) If P /~ 
is a splitting jield for f(x) e eI>[x] and ~ = eI>(O'1, ... , O'r) where f(O'j) 
= 0, then P /4» is a splittingjield of f(x). 

Proof. (1) This is an immediate consequence of the definition. 
(2) By assumption we have P = ~(P1, ... ,Pn) where (5) holds 
in P[x]. Also ~ = eI>(O'1, ... , O'r) and f(O'j) = 0. It follows that 
every O'j is one of the Pi; hence P = 4»(P1, P2, ... , Pn). 

We can now prove the following existence theorem. 

Theorem 6. Any polynomial f(x) e 4»[x] of positive degree has a 
splitting jield P /eI>. 

Proof. Let f(x) = fl(X)f2(X) ... hex) be the factorization of 
f(x) into irreducible factors (with leading coefficients 1). Evi
dently k ~ n = degf(x). We use induction on n - k. If n - k 
= 0, the fi(X) are all of degree 1 and this means that eI> itself is a 
splitting field. Now assume n - k > ° so that somefi, say fleX), 
is of degree > 1. Then there exists an extension field E/eI> such 
that E = 4»(p) and h(p) = 0. Then hex) = (x - p)fl*(X) in 
E[x] and so f(x) is a product of I > k irreducible factors in E[x]. 
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Then n - 1< n - k and the induction hypothesis permits us to 
conclude that there exists a splitting field PIE for f(x). Since E 
= iP(p), the lemma shows that PliP is a splitting field forf(x). 

We consider some examples of splitting fields. 

(1) f(x) = x2 + ax + (3. Iff is reducible in iP[x], then iP is a splitting field. 
Otherwise, we let P = iP[xllU(x)), which is a field sincef is irreducible. If we set 
PI = x + U(x)) where, as usual, U(x)) denotes the principal ideal generated by 
this polynomial, then J(PI) = 0 in P so f(x) = (x - PI)(X - P2) in P[x]. Thus 
P = iP[PI] = iP(PI) is a splitting field. Since f(x) is the minimum polynomial 
of Ph [P:iP] = 2, by VIII of the Introduction. 

(2) Letp be a prime and letf(x) = xp - 1 = (x - 1)(xp- 1 + xp - 2 + ... + 1), 
iP = Ro the field of rational numbers. Then P is a splitting field of f(x) if and 
only if it is a splitting field of g(x) = xp - I + xp- 2 + ... + 1. It is known that 
g(x) 'is irreducible (Vol. I, ex. 2, p. 127), so P = Ro[xll(g(x)) is a field over Ro and 
P = Ro[P] = Ro(P), P = x + (g(x)). We have pP = 1 and P ,c 1, which implies 
that P is of order p in the multiplicative group p* ofP. Hence, 1, P, p2, ... , pp-I 
are distinct and all of these are roots of xP - 1 = O. It follows that xP - 1 = 
p-I . 

II (x - p') and so P = Ro(P) is a splitting field . 
• -0 

(3) f(x) = (x2 - 2)(x2 - 3), iP = Ro. We first form E = Ro(P) where p2 = 2. 
We know that x2 - 2 is irreducible in Ro[x] (Euclid). In E we have x2 - 2 = 
(x - p)(x + p). However, x2 - 3 is irreducible in E[x]. Otherwise, there exists 
1/ e E such that 1/2 = 3. But 1/= a + {3p, a, {3 rational and 1/2 = (a2 + 2(32) + 
2a{3p; so, if this = 3, then a{3 = 0 and a2 + 2{32 = 3. If {3 = 0, we must have 
a 2 = 3 and, if a "= 0, we have (32 = 3/2. Both of these are impossible for ra
tional numbers. We now form P = E(1/) where 1/2 = 3. We have P = Ro(P,1/) 
and in P[x], (x2 - 2)(x2 - 3) = (x - p)(x + p)(x - 1/)(x + 1/), so P / Ro is a 
splitting field. Using VI and VIII of the Introduction, one sees that [P :iP] = 4. 

Before continuing with our discussion of splitting fields it will 
be well to fix some notations on field extensions and algebra exten
sions of a field iP which to some_ extent have already been used. 
If S is a subset of a field P liP, then we let iP[S] and iP(S) respec
tively denote the subalgebra and the subfield over iP generated by 
S. By definition, the first of these is the intersection of all sub
algebras of P liP containing S and the second is the intersection 
of all subfields of P liP containing S. It is clear that iP[S] is the 
subspace of P over iP spanned by 1 and all monomials 0'10'2' •• 0' m, 
O'i e S, and that iP(S) is the set of elements ex{3-t, ex, {3 in iP[S], 

(3 ¢ O. It follows directly from the definition that, if S1 and S2 

are subsets of P, then (iP(S1))(S2) = iP(S1 U S2) where the first 
of these is, of course, the subfield of P liP(S 1) generated by S 2' 

If p is an algebraic element of P liP, then we know that [iP[p] :iP] 
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= deg lex) where lex) is the minimum polynomial of P over 4> 
(lntrod. VIII). In fact, we have seen that, if deg lex) = n, then 
(1, p, p2, ... , pn-I) is a basis for P /4>. Since the dimensionality 
[4>[p] :4>] is finite, we know that 4>[p] is a field (lntrod. VII). 
Hence it is clear that 4>(p) = 4>[p]. We shall now generalize these 
results in proving the following key lemma on successive algebraic 
extensions. 

Lemma 2. Let P = 4>(Ph P2, ... , Pm) and assume that Pi is alge
braic over 4>(Ph P2, ... , Pi-I), i = 1,2, ... , m. Then [P:4>] < 00 

and P = 4>[Ph P2, ..• , Pm]. 

(We shall see later (p. 254) that, conversely, if P = 4>[Ph P2, 
••• , Pn] is a field then the Pi are algebraic over 4>.) 

Proof. We have seen that this holds for m = 1. Suppose m 
> 1 and assume the result holds for r < m. Then 4>(Ph ... , Pr) 
= 4>[Ph ... , Prj and this is finite dimensional over 4>. Since Pr+1 
is algebraic over 4>(Ph ... , Pr), we have 4>(Ph ... , Pr)(Pr+l) = 
4>(Ph ... ; Pr)[Pr+l] and the dimensionality of this extension over 
4>(Ph ... , Pr) is finite. It follows that 

(6) [<I>(Ph···, Pr+l) :<1>] = [<I>(Ph ... , Pr)(Pr+l) :<1>] 

= [4>(Ph ... , Pr) (Pr+l) :4>(Ph ... , Pr)][<I>(Ph ... , Pr) :4>] 

is finite. Also 4>(Ph ... , Pr+l) = 4>(Ph .. " Pr)[Pr+l] and 4>(Ph 
•.. , Pr) = 4>[Ph ... , Prj imply that every element of 4>(Ph ... , 
Pr+l) is a polynomial in the Pi, for 1 ~ i ~ r + 1. Hence 
4>(Ph ... , Pr+l) = 4>[Ph ... , Pr+I]' The lemma now follows by 
induction. 

This result is applicable in particular if the Pi are all algebraic 
over 4>. Since the roots Pi of lex) are algebraic over 4>, it is ap
parent that if P /4> is a splitting field of/ex) e 4>[x], then [P:4>] < 00. 

We shall now show that any two splitting fields of a polynomial 
are isomorphic over 4>. In order to carry out an inductive argu
ment (and for other reasons, too) it is useful to generalize the 
result as follows. Let 4> and ~ be fields which are isomorphic and 
let a ~ a be an isomorphism of 4> onto~. We know that this 
can be extended to a unique isomorphism lex) ~ jex) of 4>[x] 
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onto ~[x] so that x ~ x (lntrod. II). We wish to consider a 
splitting field over q, of a polynomial j(x) and a splitting field over 
~ of the corresponding polynomial J(x) in ~[x]. The following 
theorem will imply uniqueness of the splitting field and gives an 
important result on the number of isomorphisms of a splitting 
field. 

Theorem 7. Let a ~ ex be an isomorphism of a jield q, onto 
thejield ~ and letj(x) be a polynomial oj positive degree with leading 
coe.flicient 1, j(x) in q,[x], and let }(x) be the corresponding polynomial 
in ~[x]. Let P and P be splittingjields over q, and ~ oj j(x) and}(x) 
respectively. Then there exists an isomorphism oj Ponto P which 
coincides with the given isomorphism on q,. Moreover, if J(x) is a 
product oj distinct linear jactors in P[x], then the number oj extensions 
oj the given isomorphism on q, to an isomorphism oj Pinto P is 
[P: q,]. 

Proof. Both assertions will be proved by induction on [p:q,]. 
If [P:q,] = 1, P = q, and j(x) = II(x - Pi) in q,[x]. Applying 
the isomorphism hex) ~ hex) of q,[x] we obtain J(x) = II(x - Pi) 
and the Pi e~. It follows that these are the roots of J(x) = 0 in 
p so P = ~ and both results hold in this case. Now assume 
[P:q,] > 1. Then j(x) is not a product of linear factors in q,[x] 
and so it has an irreducible factor g(x) of degree r > 1. Then lex) 

r 

is a factor of J(x). Also we may assume that g(x) = II (x - Pi), 
1 

r n n 

lex) = II (x - Ui) wherej(x) = II (x - Pi) andJ(x) = II (x - Ui). 
1 1 1 

Since g(x) is irreducible, this is the minimum polynomial over 
q, of Ph and E = q,(Pl) is r-dimensional over q, (r = deg g > 1). 
The extension theorem V of the Introduction implies that the 
isomorphism a ~ ex can be extended to a unique isomorphism 
of E = q,[Pl] = q,(Pl) into P so that Pl ~ Ui, i = 1, ···,r. 
We observe next that the indicated isomorphisms of E into P 
are the only extensions of a ~ ex. Again by the extension 
theorem V, in any isomorphism of E extending the given iso
morphism, Pl is mapped into an element U such that l(u) = O. 

r 

Since lex) = II (x - Ui), it follows that U = Ui for some i, 
1 
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1 ~ i ~ r. Then the isomorphism coincides wi th one of those 
we indicated. Thus we see that a ~ a can be extended to an 
isomorphism of E = ~(Pl) into P and the number of such exten
sions is the number of distinct elements in {IT!) .. " ITr}. In 
particular, if J(x) is a product of distinct linear factors, then this 
is true also for lex) and the number is then r = deg lex) = [E:~]. 
We now replace the base field ~ by E and let E be its image under 
one of the chosen extensions of the isomorphism on ~ to an iso
morphism of E into P. We denote this extension by E ~ i. Then 
P /E is a splitting field of lex) and P /E is a splitting field of 
}(x). Moreover, [P: E] < [P:4>] since [E:~] = r > 1. Hence the 
induction hypothesis shows that E ~ i can be extended to an 
isomorphism of Ponto P and the number of such extensions is 
[P: E] if }(x) is a product of distinct linear factors in P[x]. If we 
take into account the first result on the extension of a ~ a to 
E ~ i, we see that there exists an extension of the isomorphism 
a ~ a to an isomorphism of Ponto P and, if J(x) splits into 
distinct linear factors, then we obtain [P: E][E:4>] = [P:4>] dis
tinct isomorphisms since we have [E :4>] extensions to E and each 
of these has [P: E] extensions to P. Thus we obtain [P:4>] = 

[P: E][E :4>] distinct extensions. It is clear that we have accounted 
for every extension in our enumeration (cf. also Cor. to Th. 3) 
and so the proof is complete. 

We now specialize the result we have just proved by taking 
~ = 4> and the identity mapping a ~ a in 4>. Then the conclusion 
is that, if P /4> and P /4> are two splitting fields of the same poly
nomial l(x) , then P /4> and P /4> are isomorphic. Moreover, the 
second part of the result is that, if lex) has distinct roots, then 
the number of automorphisms of P /4> is [P :4>]. In other words, 
(G:l) = [P:4>] for G the Galois group of P/4>. 

EXERCISES 

1. Construct a splitting field over the rationals for x5 - 2. Find the dimen
sionality. 

2. Let P lip be a splitting field of f(x) ~ 0 in ip[x] and let E be a sub field of 
P lip. Show that any isomorphism of E/ip into P lip can be extended to an 
automorphism ofP. 

3. Show that the dimensionality of a splitting field P lip of a polynomial f(x) 
of degree n cannot exceed n 1. 
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6. Multiple roots. Separable polynomials. Letf(x) be a poly
nomial of positive degree in eII[x) and let P jell be a splitting field. 
We now write 

(7) f(x) = (x - Pl)k1(X - P2)kt ... (x - Pr)kr, 

Pi e P, Pi ¢ Pi if i ¢ j, and we say that Pi is a root of multiplicity 
k.off(x) = 0. If ki = 1, then Pi is called a simple root; otherwise 
Pi is a multiple root. If we have a second splitting field P over ell, 

f' 

then f(x) = II (x - [J;)kJ in P where Pi ---+ [J; in an isomorphism 
1 . 

of P jell onto P jell. It is clear that the existence of multiple roots 
for f is independent of the particular choice of a splitting field. 
We shall now carryover a classical criterion for multiple roots 
which can be tested in eII[x) itself. For this we need the standard 
formal derivative (or derivation) in eII[x). Thus we define a linear 
mapping f ---+ l' in eII[x) by specifying that (Xi)' = ixi -l, i = 0, 
1,2, ... , XO = 1. Since (1, x, x2, ••• ) is a basis for eII[x) over ell, 
this defines a unique linear mapping f ---+ l' in eII[x) over ell. We 
call l' the (formal) derivative of f and we note the basic rule: 

(8) (jg)' = :f'g + fg'· 

Because of the linearity of the derivative, it suffices to check 
this for f = Xi, g = xi in the basis (Xi) for eII[x). Then fg = x Hi 

so that (jg)' = (i + j)xHi- 1, 1'g = ixHi - 1, fg' = jxHi -l, so 
(8) is valid. We can now prove 

Theorem 8. If f(x) e eII[x) and deg f > 0, then all the roots of f 
(in its splitting field) are simple if and only if (j,1') = 1 (that is, 
1 is the highest common factor of f and 1'). 

Proof. Let d(x) be the highest common factor (j, f') of f and 
f' in eII[x) (cf. Vol. I, p. 100, p. 122). Suppose f(x) has a multiple 
root in P[x), so f(x) = (x - p)kg(X), k > 1. If we take deriva
tives in P[x] , this gives f' = (x - p)kg' + k(x - p)k-lg which 
is divisible by x - P since k - 1 ~ 1. Thus (x - p) I f (i.e. x - P 
is a factor of 1) and (x - p)l!', so (x - p)ld. Henced(x) ¢ 1. 
Next, suppose all the roots of fare simple. Then we have f(x) = 

n 

II (x - Pi), Pi ¢ Ph i ¢ j. The usual extension of (8) to several 
1 
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factors gives 

n 

f'(x) = E (x - PI) ... (x - Pi-I)(X - PHI) ... (x - Pn). 
i=I 

It is clear from this that (x - Pi) ,.r f'(x) and this implies that 
(/, f') = 1. 

If f is irreducible in cI>[x], then (/, f') ~ 1 implies that flf'. 
By degree considerations this can happen only if f' = O. If the 
characteristic is 0, this evidently implies that f is an element of 
cI>. If the characteristic is p ~ 0 and f(x) = aoxn + aIxn - I + 
a2Xn-2 + ... + an, then f'(x) = naoxn-I + (n - 1)aIxn- 2 + 
(n - 2)a2Xn-3 + .. " so f'(x) = 0 implies that (n - i)ai = o. 
This implies thatai = 0 if the integer n - i is not divisible by p. 
Hence we see that f(x) = {3oxmp + (3IX(m-I)p + ... + 13m = g(xP) 
where g(x) = {3oxm + {3IXm- I + ... + 13m. This condition is also 
clearly sufficient that f' = 0 since (,0P)' = kpXkp - I = o. In the 
characteristic p ~ 0 case we shall see that the conditions: f ir
reducible of positive degree, f' = 0, can be fulfilled. This is a 
basic difference between fields of characteristic 0 and those of 
characteristic p ~ 0 and this is the root of a host of complications 
in the latter case. 

Let us now look more closely at fields of characteristic p ~ o. 
We recall that, if cI> is of this type, then we have 

(9) 

in cI> (Vol. I, ex. 3, p. 120). The second of these is clear and the 
first is a consequence of the binomial theorem and the fact that 

the binomial coefficient (~) = p!ji!(P - i)! is divisible by p for 

1 :::; i :::; P - 1 since this is an integer and p occurs in the nu
merator of the fraction but not in the denominator. We note 
also that, if aP = {3P, then (a - (3)P = aP - {3P = 0 so a = {3. 
Thus we see from this and (9) that the mapping a ~ aP is an 
isomorphism of cI> in to itself. The image cflP = {aP I a e cI>} is a 
subfield, the subfield of p-th powers. We can iterate the mapping 
a ~ aP and obtain the isomorphism a ~ aP', e = 1,2, ... of 
cI> onto the subfield cflP" of p8_th powers. 
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We prove next the following general result which will be useful 
later on. 

Lemma. If 4> is a field of characteristic p ~ 0, then xP - a is 
irreducible in 4>[x] unless a = ~P, ~ e 4>, in which case xP - a = 
(x - ~)p. 

Proof. Let p be a spli tting field for xP - a. If ~ is a root of 
xP - a = 0, then a = ~p. Hence xP - a = xP - ~P = (x - ~)P 
in P[x]. Now suppose xP - a = g(x)h(x) in 4>[x] where deg g = 
k and 1 ~ k ~ P - 1. Then in P[x] we must have g = (x _ ~)k 
= Xk - k~Xk-1 + .. '. This implies that k~ e 4>; hence ~ e 4>. 
Then xP - a = (x - mp holds in 4>[x]. 

We now consider the following example. We let Ip == Ij(p) 
the field of residues modulo p, and we let 4> = Ip(~), ~ transcen
den tal. Then we claim tha t ~ ¢ 4>P . Now, if 'Y e 4>, we can write 
'Y = aW~W -1 where aW and ~W are polynomials. Then 'YP = 
a(~P)~(~P) -1, since aW = ao + a1~ + . .. implies a(~)P = aoP + 
a1P~P + ... = ao + a1~P +. .. (by Fermat's theorem). Hence 
'YP = ~ implies that a(~P) = ~(~P)~ and this is impossible since 1, 
~, ... are Ip-independent. Thus we see that ~ ¢ 4>P and hence, by 
the lemma, xP - ~ is irreducible in 4>[x]. On the other hand, we 
have seen that xP - ~ has p equal roots in its splitting field. We 
note also that (xP - ~)' = 0. 

We shall now call a polynomial f (of positive degree) separable 
if it is a product of irreducible polynomials in 4>[x] all of which 
have only simple roots in a splitting field. Our discussion shows 
that, if 4> is of characteristic 0, then every f(x) e 4>[x] is separable, 
whereas for characteristic p ~ ° there exist inseparable poly
nomials. 

EXERCISES 

1. Prove the following extension of the lemma: xP' - a is irreducible unless 
a e il>p. 

2. Let il>o be a finite field of q elements and let P = il>o(~), ~ transcendental over 
il>o. Let G be the finite group of the automorphisms of P over il>o such that 
~ - ~ + a, a e il>o. Show that il> = J(G) = il>o(~q - ~). 

3. Let il> be a field of characteristic p :;C 0 and let ~1, ~2, ••• , ~" be indeter
minates over il>, P = il>(~1, ~2, .. " ~,,) the field of fractions of il>[~l, ~2, .• " ~,,]. 
Show that [P:il>(~lP, ~~, .. " ~"P)] = p". Show also that the Galois group of P 
over il>(~lP, ~~, .. " ~"P) is the identity. 



40 FINITE DIMENSIONAL EXTENSION FIELDS 

4. Let P = 4>(~1, ~2, ••• , ~,,) of characteristic p ¢ 0 and suppose that ~ • .p.; e 4> 
for i = 1,2, .. " n, c. a positive integer. Show that the Galois group ofP over 4> 
is the identity. 

5. Let 4> be a field of characteristic p ¢ O. A polynomial with coefficients in 4> 
is called a p-polynomial if it has the form xp'" + a1xP .. - l + a2XP"'-2 + ... + CLmX. 
Show that a polynomial (with leading coefficient 1) is a p-polynomial if and only 
if its roots form a subgroup of the additive group of the splitting field and all the 
roots have the same multiplicity p.. Show that the roots of the displayed p
polynomial are all simple if and only if am ¢ O. 

6. LetJ(x) be irreducible in 4>[xJ, 4> of characteristic p ¢ O. Show thatJ(x) can 
be written in the form g(xPj where g(x) is irreducible and has distinct roots. Use 
this to show that every root of J(x) has the same multiplicity p. (in a splitting 
field). 

7. Let 4> be a field of characteristic 0, J(x) a polynomial of positive degree con
tained in 4>[xJ. Show that if d(x) is the highest common factor ofJ(x) andJ'(x), 
then g(x) = J(x)d(x) -1 has simple roots which are the distinct roots of J(x). 

7. The "fundamental theorem" of Galois theory. We now take 
up again the abstract Galois theory of § 4 and we shall answer 
first the question which we raised at the end of § 4: that of charac
terizing finite dimensional Galois extensions. The result is the 
following 

Theorem 9. Afield P /«1> is finite dimensional Galois over «I> if and 
only P is' a splitting field over «I> oj a separable polynomial j(x) e 
«I>[x]. 

Proof. Let j(x) be separable and let j(x) = jl(X)el ••• jl(X)"1 
where the ji(X) are irreducible in «I>[x] and j. ¢ j; if i ¢ j. Then 
ji(X) has only simple roots. Moreover, sincej. andj; for i ¢ j 
are distinct irreducible polynomials, their highest common factor 
is 1. Hence 1 = a(x)j.(x) + b(x)jj(x) for a(x), b(x) in «I>[x], and 
this implies that ji and /; have no common roots in any extension 
field. It follows that g(x) = jl(X)j2(X) •.. jl(X) has no multiple 
roots, and it is clear that, if P /«1> is a splitting field of j, then it 
is a splitting field also for g. Now we know that any splitting 
field is finite dimensional and Theorem 6 implies that, if G is the 
Galois group of P /«1>, then (G: 1) = [P :«1>]. Let «1>' = I(G) the 
set of G-invariants. Then, by Theorem 5 (ii), (G: 1) = [P:«I>']. 
Since «1>' :::> «I> we have «I> = «1>', which shows that «I> is Galois in P 
or P is Galois over «1>. This proves the sufficiency of the condition. 
Next assume P is finite dimensional Galois over «I> and let G be 
the Galois group. We know that G is finite and we indicate it as 
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G = ISh S2, ... , Sn}. If peP, we shall call the images pSi under 
Si e G the conjugates of p in P leI>. We may assume that pSl, ... , 
p8r are distinct and that this set includes all the conjugates. Then 

r 

we assert that hex) = II (x - p8j) e eI>[x]. To see this let s e G 
i=1 

and let s be its extension to P[x] such that x8 = x. Then we have 
r 

hS(x) = II (x - p8jS). Since the elements p8lS, ... , p8,. are dis-
1 

tinct conjugates, this set is the complete set of conjugates and so 
h8(x) = hex), s e G. Hence hex) e eI>[x]. This shows that the 
minimum polynomial over eI> of any peP (this is actually hex)) is 
separable and splits as a product of linear factors in P[x]. Now 
let (Ph P2, ... , Pn) be a basis for P leI> and let ji(X) be the minimum 
polynomial of Pi over eI>. Then f(x) = IIji(x) is separable and 
clearly P is a splitting field over eI> of j. 

The main Galois correspondence (Th. 5) can now be applied to 
state the following result that is known classically as the 

Fundamental Theorem of Galois Theory. Let P be a splitting 
field over eI> oj a separable polynomial and let G be the Galois group of 
P leI>. With each subgroup H oj G we associate the subfield E oj P 
over eI> of H-invariants and with each subfield E over 4> we associate 
the subgroup H oj G oj elements t such that Et = E for all E in E. 
Then these two correspondences are inverses and are bijections of the 
set of subgroups of G and the set oj subfields oj P over eI>. The corre
spondences are order inverting relative to inclusion and 

(10) (H: 1) = [P: E], (G:H) = [E:eI>]. 

Moreover, H is invariant in G if and only if the corresponding field 
E is Galois over eI> and in this case the Galois group of EI4> is iso
morphic to thejactor group GIH. 

All of this can be read off directly from Theorem 5 and the 
remarks which follow it. The only part which has not been made 
explicit before is (10). Now it is clear from the definition that H 
is the Galois group of PIE. Hence (H:l) = [P:E]. Also (G:l) 
= [P:eI>], so (G:H) = (G: 1)/(H: 1) = [P:4>l/[P: E] = [E:4>]. We 
note also that (G:H) = [E:eI>] is the number oj distinct isomor-
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phisms of E/4> into P /4>. To see this we consider the restrictions 
s to E of the elements s e G. If J = t for s, t e G, then sri = i 
which means that st-I e H. Then the cosets Hs and Ht are 
identical. The converse follows by retracing the steps. Hence 
we see the collection {sis e G} contains (G:H) distinct isomor
phisms of E/4> into P/4>. We know also that there are no more 
than [E:4>] = (G:H) isomorphisms of E/4> into P/4> (Cor. to 
Th.3). Hence we have caught them all. Incidentally, we have 
shown also that every isomorphism of E/4> into P /4> is a restric
tion of an automorphism of P /4>. In other words, any such iso
morphism can be extended to an automorphism (cf. ex. 7, § 4). 

8. N onnal extensions. N onnal closures. A t the beginning of 
the last section we gave an abstract characterization of splitting 
fields of separable polynomials: these are just the finite dimen
sional Galois extensions. We shall now give two abstract charac
terizations of arbitrary splitting fields. 

Theorem 10. The following three conditions on a finite dimen
sional extension P /4> are equivalent: 

(1) P /4> is a splitting field of a polynomial f(x) e 4>[x]. 
(2) Any isomorphism s of P /4> into an extension field 1::./4> is an 

automorphism. 
(3) Every irreducible polynomial g(x) e 4>[x] which has a root in 

P is a product of linear factors in P[x]. 

Proof. (1) ~ (2) ("~" means "implies"): Let P = 4>(Ph P2, 
.. " Pn) where f(x) = II(x - Pi) in P[x] and f(x) e 4>[x]. Sup
pose I::. ::) P ::) 4> and let s be an isomorphism of P /4> into 1::./4>. 
Since f(pi) = 0, we have f(p/) = ° and, since {Pi} is the com
plete set of roots of f(x) in 1::., Pi" is one of the Pj. Hence s maps 
every generator Pi of P = 4>(Ph P2, .. " p,,) into P. Hence p. C 

P. Since s is 1-1 4>-linear and [P:4>] < 00, we have P' = P and 
s is an automorphism. (2) ~ (3): Assume every isomorphism 
of P /4> into any extension field 1::./4> is an automorphism. Let 
g(x) be irreducible in 4>[x] and have a root IT in P. Write P = 
4>(Ph P2, .. " Pm) and let fi(X) be the minimum polynomial of 

m 

Pi over 4>. Set f(x) = g(x) IT fi(X) and let I::./P be a splitting 
1 
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field over P ofj(x). Since Pi e P and j(x) e <I>[x], d is also a split
ting field over <I> of j(x) and it contains a splitting field over <I> of 
g(x). Hence it will follow that g(x) is a product of linear factors 
in P[x] if we can show that every root u' of g(x) contained in d 
is contained in P. To prove this we note that, since g(x) is ir
reducible in <I>[x] andg(u) = 0 = g(u'), there exists an isomorphism 
s of <I>(u)/<I> into <I>(u')/<I> such that US = u'. We now observe that 
we can consider d as a splitting field over <I>(u) and over <I>(u') of 
j(x) = P(x). Hence the main isomorphism theorem for split
ting fields (Th. 6) shows that s can be extended to an automor
phism s of d. Since as = a, a e <1>, s is a <I>-automorphism of d. 
Its restriction to P is an isomorphism of P/<I> into d/<I>. Hence, 
by hypothesis, this restriction is an automorphism of P /<1>. 
Since u e P, it follows that u8 = u' e P. This proves (3). (3) => 
(1). Write P = <I>(Ph P2, .. " Pm) and letji(x) be the minimum 
polynomial of Pi over <1>. If we assume (3), thenji(x) is a product 
of linear factors in P[x]. Hence P/<I> is a splitting field ofj(x) = 
IIji(x). This completes the proof. 

A finite dimensional extension P /<1> satisfying anyone (hence 
all) of the condi tions of Theorem 10 is called a normal extension. It 
is clear from the condition (1) that, if P is normal over <I> and E is 
a subfield of P /<1>, then P is normal over E. On the other hand, 
if p:::::> E :::::><1>, then it may well happen that PIE and E/<I> are 
normal and P /<1> is not (ex. 1 below). Let P = <1>( Uh .. " U m) be 
an arbitrary finite dimensional extension of <I> and let j(x) = 
IIji(x) where ji(X) is the minimum polynomial of Ui over <1>. Let 
diP be a splitting field of j(x) e <I>[x]. Then d/<I> is a splitting 
field of j(x); hence d/<I> is normal. Now let d' /<1> be any normal 
extension of P/<I>. Since d' contains Ui and ji(X) is irreducible in 
<1>, condition (2) of Theorem 8 shows that d'/<I> contains a splitting 
field of j(x). Hence we have an isomorphism of d/<I> into d' /<1>. 
This implies that no proper subfield of d containing P is normal 
over <1>. We now define a normal closure of P /<1> as a normal 
extension of <I> containing P and having the property that no 
proper subfield containing P is normal over <1>. Then we can say 
that d/<I> is a normal closure of P /<1> and the remark about d and 
d' shows that such an extension is determined up to <I>-isomor
phism by P /<1>. 
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EXERCISE 

1. Let P = Ro( 0), Ro the rationals, and let E = Ro( 0) C P. Show that 
PIE and EI Ro are normal but PI Ro is not normal. 

9. Structure of algebraic extensions. Separability. The struc
ture theory of fields will be taken up in detail in Chapter IV. 
However, at this point it is convenient to derive the basic theo
rems on algebraic extensions and more generally on the set of 
algebraic elements of any field P/cp. We have shown in Vol. I 
(p. 183) that, if P is a field over CP, then the subset A of elements 
of P which are algebraic over cP form a subfield over cP and every 
element of P which is algebraic over A is contained in A. The 
subfield A/cp is called the algebraic closure of cP in P and cP is called 
algebraically closed in P if cP = A. The field P jcP is algebraic if 
P = A, that is, every element of P is algebraic over CP. Thus the 
second part of the result we have quoted above is that, if A is the 
algebraic closure ofcp in P, then A is algebraically closed in P. We 
shall now indicate another proof of these results which is based 
on the Lemma 2 of § 5: If Pi is algebraic over CP(Pl, ... , Pi-l) then 
CP(Pl, P2, ... , Pn) Icp is finite dimensional. Now let A be the set 
of elements of P which are algebraic over cP and let p, (f eA. Then 
<I>(p, (f) is finite dimensional. Since <1>( T) /<1> is infinite dimensional 
for transcendental T, it follows that every element of cp(p, (f) is 
algebraic over CP. In particular, P ± (f, P(f, and p-l are algebraic 
if P ~ o. Since P and (f are arbitrary in P, this implies that A is 
a subfield of P. Also it is clear that A :::) CP. Now let P be an 
element of P which is algebraic over A and let f(x) = xn + 
alXn - l + ... + an be its minimum polynomial over A. Then the 
ai e A and so are algebraic over CP. Moreover, it is clear that P 

is algebraic over CP(al' a2, ... , an). It now follows that CP(al, ... , 
an, p) is finite dimensional over CP. Hence P is algebraic over cP 
and consequently A is algebraically closed in the field P. The 
result we prqved on the algebraic closure of A in P implies the 
following transitivity property: if B/ A is algebraic and Ajcp is 
algebraic, then B/cp is algebraic. To see this let r /cp be the sub
field of B/cp of elements which are algebraic over CP. Clearly r :::) 
A and we have seen that, if ~ e B is algebraic over r, then it belongs 
to r. On the other hand, if ~ is any element of B, then ~ is alge-
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braic over A, hence over r, so {3 e r. This shows that B = r is 
algebraic over q,. 

There are several other useful remarks on algebraic elements 
which are worth recording here for future reference. The first of 
these, which is implicit in what we have proved before, is that, 
if ~/q, is a sub algebra of a field P Iq" then every element of ~ is 
algebraic over q, if and only if every finite subset X of ~ is con
tained in a finite dimensional subalgebra Vq,. This implies that 
every ~ e ~ is algebraic over q, since it implies that q,[~] is 
finite dimensional. On the other hand, if every element of ~ is 
algebraic and X = {~h ~2' ... , ~r}, then the lemma we quoted 
shows that q,(~h .. " ~r)/q, is finite dimensional. We recall also 
that q,[~h .. " ~r] = q,(~h .. " ~r), which implies that, if every 
element of ~ is algebraic, then ~ is a subfield of P Iq,. We note 
also that, if E/q, is an algebraic subfield of P Iq, and Ll/q, is an 
arbitrary subfield, then the subalgebra ELl/q, generated by E and 
Ll is a subfield which is algebraic over Ll. To see this we observe 
that ELl is the set of elements of the form };EiOi, Ei e E, Oi e Ll. 
Hence, if X is a finite subset of ELl, then there exists a finite sub
set {Ei} such that every element of X is a Ll-linear combination of 
the Ei. Since E/q, is algebraic, we may imbed the set {Ei} in a 
finite dimensional subalgebra. If we express the Ei in terms of a 
basis {71j} for this subalgebra, then we see that every element of X 
has the form };Oj71;, OJ e Ll. Since 71j71k = };'Yjkl% 'Yjkl e q" it is clear 
that the set ~LlTJ; of d-linear combinations of the TJj is a subalgebra 
of PiLl. We have therefore proved that every finite subset of 
ELl is contained in a finite dimensional subalgebra over d. Hence 
every element of ELl is algebraic over Ll and ELl is a subfield. 

An algebraic element peP Iq, is called separable (algebraic) over 
q, if its minimum polynomial over q, is separable. It is clear that 
p is separable over q, if and only if there exists a polynomial f(x) 
eq,[x] with distinct roots such that f(p) = o. Also p is separable 
if and only if there exists a polynomial f(x) eq,[x] with (j, f') = 
1 such that f(p) = o. If q,' is an extension field of q" we shall 
again have (j,j') = 1 in q,'[x] (since (j',f) = af + bj', ex. 3, p. 
122 of Vol. I). It follows that, if q,'/q, is a subfield of P/q, and 
peP is separable over q" then p is separable over q,'. We have 
seen (§ 6) that every polynomial with coefficients in a field of 
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characteristic 0 is separable. Consequently, the results we shall 
now consider become trivial in the characteristic 0 case. 

An extension P /«p will be called separable (algebraic) if every 
element peP is separable over «P. Let A/«p be algebraic and let 
~ be the subset of A of elements which are separable over «P. We 
wish to show that ~ is a subfield containing «P and that every ele
ment of A which is separable over ~ is contained in~. For this 
we shall need the following 

Lemma 1. Let P ::::) E ::::) «P where E and «P are subfields of P and 
E/«p is .finite dimensional Galois. Then any element () e P which 
is separable algebraic over E is separable algebraic over «P. 

Proof. Let g(x) be the minimum polynomial of () over E. If 
s e G the Galois group of E/«p, then s has a unique extension to 
E[x] satisfying x8 = x. Let g81(X), g82(X),"', g8r (X) be the 

r 

distinct images of g(x) under s e G and let f(x) = II g8t (X). 
1 

Then jB(x) = f(x) for all s e G, which implies that f(x) e «p[x]. 
Since g(x) is irreducible in E[x] and (g, g') = 1, the same is true 
for every g8'. Hence every g8·(X) has distinct roots. We note also 
that, if i ~ j, then g8' and g8; are relatively prime, since other
wise (g8', g.;) = g.' (x) = g8;(X) because these are irreducible in 
E[x]. This contradicts g8. ~ g8; for i ~ j. Thus 1 = (gB', gS;) 
and consequently these have no common roots in a splitting field 
for f(x). It is now clear thatf(x) has distinct roots. Since f(() = 
o and f e «p[x], we see that () is separable over «P. 

Clearly if peE, then p is separable algebraic over E (with 
minimum polynomial x - p). Hence Lemma 1 shows that p is 
separable over «P. In other words, we have the 

Corollary. Any finite dimensional Galois extension is separable. 

We can now prove the main result on separability. 

Theorem 11. If A/«p is algebraic, then the set ~ of elements of A 
which are separable over «P is a subfield containing «P. Moreover, ~ 
contains every element of A which is separable algebraic over ~. 

Proof. Let p, 0' e ~ and let g(x) and hex) be the minimum poly
nomials over «P of p and 0' respectively. Then f(x) = g(x)h(x) is 
separable. If d is a splitting field over «p(p, 0') of f(x), then d is 



FINITE DIMENSIONAL EXTENSION FIELDS 47 

also a spli tting field over II> of j(x) (the normal closure of lI>(p, 0') /11». 
Hence Ll/II> is Galois, so by the corollary above, every element of 
Ll is separable over 11>. In particular, P ± 0', PO', P -1 (if P :;e 0) and 
every element of II> are separable over 11>. This proves that l; is a 
subfield containing 11>. Now let () be an element of A which is 
separable algebraic over l; and let xn + PIXn- 1 + ... + Pn, Pi e l;, 
be its minimum polynomial over l;. The subfield II>(Ph P2, ... , 
Pn; ()) is finite dimensional over 11>. Let Ll/II> be its normal closure. 
Let ji(X) be the minimum polynomial of Pi over 11>. Then Ll con-

n 

tains a splitting field E/II> of j(x) = II ji(X) and this is Galois 
1 

over II> since j(x) is separable. Evidently E :::> II>(Ph P2, ... , Pn). 
Also () is separable over II>(Ph P2, ... , Pn) since xn + PIXn- 1 + 
... + Pn is its minimum polynomial. Hence () is separable alge
braic over E. Then () is separable algebraic over II> by Lemma 1. 
This proves the second statement. 

If the only elements of an algebraic extension A/II> which are 
separable are the elements of 11>, then we say that A/II> is purely 
inseparable. Similarly, an algebraic element P is purely insepa
rable over II> if lI>(p) /11> is purely inseparable. It is clear from the 
definitions that, if P is at the same time separable and purely in
separable over 11>, then P ell>. Also, it should be remarked that 
an element can be inseparable (= not separable) without being 
purely inseparable (cf. ex. 3 below). If A/II> is algebraic and l; /11> 
is the maximal separable subfield of A/II> (that is, the subfield of 
all the separable elements), then the second half of Theorem 11 
states that A/l; is purely inseparable. This shows that every 
algebraic extension A/II> can be built up in two "pure" stages: 
first, a separable extension l;/If> and next a purely inseparable 
extension A/l;. The second part of Theorem 11 and the argu
ment we used before for algebraic extensions (p. 44) implies the 
transitivity: If A/II> is separable algebraic and B/A is separable 
algebraic, then B/II> is separable algebraic. We are going to prove 
a similar transitivity for purely inseparable extensions. Since 
everything is trivial for characteristic 0, we shall assume in the 
rest of this section that the characteristic is p ~ o. We shall 
need the following important criterion for separable and purely 
inseparable elements. 
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Lemma 2. Let cI> be of characteristic p rf 0. (i) Then an alge
braic element p of an extension field is separable over cI> if and only if 
cI>(p) = cI>(pP) = cI>(pp2) =.... (ii) If p is purely inseparable, then 
its minimum polynomial has the form xp" - a, a e cI>. On the other 
hand, if p satisfies an equation of the form xP' = a e cI>, e ;:::: 0, 
then p is purely inseparable over cI>. 

Proof. Let g(x) be the minimum polynomial of p over cI>. (i) 
Suppose first that p is not separable. Then g(x) = h(xP) and pP 
is a root of hex). Hence [cI>(pP) :cI>] ~ deg hex) < deg g(x) = 
[cI>(p) :cI>]. Consequently, cI>(pP) C cI>(p). Next suppose p is sepa
rable so that g(x) has distinct roots. Let hex) be the minimum 
polynomial of p over cI>(pP). Then hex) Ig(x), so hex) has distinct 
roots. Also p is a root of the polynomial xP - pP e cI>(pP) [x], so 
hex) Ixp - pP = (x - p)p. Since hex) has distinct roots, this im
plies that hex) = x - p. Hence p e cI>(pP) = cI>[pP] and p is a poly
nomial in pP with coefficients in cI>. Taking p-th powers shows 
that pP is a polynomial in pp2 with coefficients in cI>. Hence p e 
cI>(ppl). A repetition of the argument shows that cI>(p) = cI>(pP) = 
cI>(pp2) =.... This proves (i). (ii) Let p be purely inseparable 
over cI> and write g(x) = h(xP') where e is maximal for this. Then 
h'(x) rf 0 since, otherwise, hex) = k(xP) and g(x) = k(xP·+l) con
trary to the choice of e. We have h(pp") = 0, so pp' is a root of a 
separable polynomial. Since p was assumed purely inseparable, 
this implies that pp' = a e cI> and p is a root of xP' - a. Since g(x) 
= h(xP') is the minimum polynomial of p over cI>, it is clear that 
g(x) = xP' - a. Next assume that pp' = a e cI> for some non-
negative integer e. Let u e cI>(p) = cI>[p] so that u = ao + alP + 
... + ampm, ai e cI>. Then up" = aoP' + alP'pP" + ... + amP'(pp')m 
e cI>. If u is separable, then cI>(u) = cI>(uP'), by (i). Hence cI>(u) = 

cI> and u e cI>. Thus p is purely inseparable. 
The second part of this lemma shows that A/cI> is purely insepa

rable if and only if every element of A satisfies an equation of the 
form xP' = a e cI>. Since (xp')p l = xp'+I , this implies that if B/ A 
is purely inseparable and A/cI> is purely inseparable, then B/cI> 
is purely inseparable. Also it is clear from the second part of the 
lemma that if A is purely inseparable over cI>, then it is purely 
inseparable over any subfield E of P/cI>. 
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EXERCISES 

1. Let A/if? be algebraic. Verify that the set of elements 'YeA which are 
purely inseparable over if? form a subfield containing if? 

2. Let Ip be the field I/(p) and let P = Ip(~, TJ) where ~,TJ are indeterminates 
(cf. ex. 3, § 6). Let if? = Ip(~,TJP - TJ - ~). Show that [P:if?] = p2 and deter
mine the maximal separable subfield of P /if? 

3. (1. D. Reid). Let P be as in ex. 2 and let E = pm where t P2 = ~tP + ~1J. 
Show that [E: P] = p2 and E/P is inseparable. Show that E/P contains no purely 
inseparable element over P not contained in P. 

4. Let P /if? be algebraic and let P(~l, ~2, ••• , ~r) be the field of fractions of 
P[h, ~2, ••• , ~r], ~; indeterminates. Let A be the set of elements in P(~i) having 
the form Fg-l, where F e P[~h ... , ~r], g e if?[h, .•• , ~r]. Prove that A is a sub-
field of P(~l, ... , ~r)/if?(h, ... , ~r) which is algebraic. Prove that A = 
P(~h ... , ~r). Hence prove that every non-zero polynomial with coefficients in 
P has a non-zero multiple with coefficients in if? 

10. Degrees of separability and inseparability. Structure of 
normal extensions. We assume throughout this section that the 
characteristic is p ~ 0 and we consider finite dimensional exten
sions. For such an extension P /Cf> with maximal separable sub
field ~/Cf> we consider the dimension ali ties [~:Cf>] and [P:~], which 
we call the separability degree and inseparability degree respectively 
ofP/Cf>. Wewrite[~:Cf>] = [P:Cf>].,[P:~] = [P:Cf>]i' Then we have 

(11) [P :Cf>] = [P :Cf>].[P : Cf>] i. 

We shall now show that [P:Cf>]i = pi, which amounts to saying 
that the dimensionality of a purely inseparable extension is a 
power of the characteristic. If P = cf>, this is clear since [P: cf>] = 
1 = po. Otherwise, let peP, ¢ Cf>. Then Lemma 2 of § 9 shows 
that the minimum polynomial of p over Cf> has degree p., e > O. 
Then [Cf>(p):Cf>] = p. and [P:Cf>(p)] < [P:Cf>]. Since P is purely in
separable over Cf>(p) , we may assume (using induction on the 
dimensionality) that [P:Cf>(p)] = pg. Then [P:Cf>] = p.pg = pe+g. 

We now consider successive finite dimensional extensions: d/P 
is finite dimensional and P /Cf> is finite dimensional; hence d/Cf> is 
finite dimensional. We have seen that, if P/Cf> and d/P are sepa
rable (purely inseparable), then d/iI> is separable (purely insepa
rable). If P /iI> is separable and d/P is purely inseparable, then 
one sees easily that P /Cf> is the maximal separable subfield of d/iI>. 
Then [d:Cf>]. = [P:Cf>] and [d:Cf>]i = [d: Pl. We now consider the 
interesting combination: P/Cf> purely inseparable and d/P sepa-
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rable. We shall show that the maximal separable subfield of the 
result .1/eI> will have the same dimensionality as .1/P. A con
siderably sharper statement is the following 

Lemma. Let .1/P be separable, P /eI> purely inseparable. Then 
.1/eI> = P ®~ ~ where ~/eI> is the maximal separable su~field of 
.1/eI>. MoreofJer,[.1:Pj = [~:eI>j. 

Proof. It follows easily from XII, Introduction that the state
ment .1 = P ®~ ~ is equivalent to: there exists a eI>-basis for 
~ which is at the same time a P-basis for.1. This implies that 
[~:eI>j = [.1: Pj. We proceed to determine the required type of 
basis. First, let (5l) 52, "', 5n ) be a basis for .1/P and write 
5i 5j = L: Pijk8k, Pijk e P. If 5 is any element of .1 and g(x) = 

k 

h(xpe) is its minimum polynomial over eI> such that hex) is separ
able, then 8pe is separable over 11>. Hence also 8pe + f = (8 pe)pf is 
separable. It follows that we can choose e so that every 5iP' and 
every PijkP' is separable over eI>. Since P /eI> is purely inseparable, 
this implies that Olijk = Pijkpe e eI>. We have 5l'5/' = ~Pijkpe5kP'; 
hence, if we put 5iP' = Ui, then we have U; e ~ and UiUj = ~OlijkUk' 
Olijk e eI>. We claim that (Ul) U2, •. " un) is a basis for .1/P and 
for ~/eI>. We note first that the multiplication table for the Ui 

shows that L: eI>Ui is a eI>-subalgebra of ~/eI> and L: PUi is a p-
i i 

subalgebra of .1/P. Also the number of Ui is n; so to show that 
(Uh U2, •• " Un) is a P-basis for .1 it is enough to prove that every 
5 e.1 is a P-linear combination of the Ui. To prove that (Uh U2, 

•. " un) is a eI>-basis for ~ it will be enough to show that every 
U e ~ is a eI>-linear combination of the Ui since, if these are P
linearly independent, then they are certainlyeI>-linearly independ
ent. Now let 5 e.1. Then 5 is separable over P so 5 e P[5P·]. We 
have 5 = ~Pi5i' Pi e P, since (5l) .. " 5n ) is a P-basis. Then 5p• = 
~pr5r = ~prUi e--E PUi. Since 5 e P[5pe], this implies that 

i 

5 e L: PUi. Next let U e~. Then, as we have just shown, U = 
i 

~PiU i, Pi e P. If j is large enough, then PiP! e eI> and u PI = 
~p?1 U iPI e L: eI>u i. Since U is separable over eI>, U e eI>[up1] C L: eI>u i. 

i i 

This completes the proof. 
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We can now prove 

Theorem 12. If ~/P and P /<1> are finite dimensional, then 

Proof. It is enough to prove the first of these equations since 
the second will follow from it and (11). Assume first that ~/P is 
purely inseparable. Then any element of ~/<I> which is separable 
over <I> is separable over P and so belongs to P. Hence the maxi
mal separable subfield ~/<I> of ~/<I> is contained in P and so this is 
the maximal separable subfield of P /<1>. Hence [~:<I>]. = [P :<1>] •• 
On the other hand, since ~/P is purely inseparable, [~: Pl. = 1. 
Hence (12) holds in this case. Next assume ~/P is separable. 
Considering the maximal separable subfield ~/<I> of P /<1> as base 
field, we apply the lemma to the separable extension ~/ P and 
the purely inseparable extension P/~. This gives [~: P] = [~':~] 
where ~'/~ is the maximal separable subfield of ~/~. Since 
separability is transitive, it is clear that ~'/<I> is the maximal sep
arable subfield of ~/ <1>. Hence, by definition, [~: <1>]. = [~': <1>] 
and 

[~:<I>]. = [~' :<1>] = [~': ~][~ :<1>] 

= [~: P][~:<I>]. 

Clearly, [~:<I>] = [P:<I>]. and, since ~/P is separable, [~: P] = 
[~: Pl •. Substituting in the above equation gives (12) in this case. 
Finally, let ~/P be arbitrary. Let E/P be the maximal separable 
subfield of ~/P, so ~/E is purely inseparable. Then, on consider
ing E ::J P ::J <I> where E/P is separable, we see that [E:<I>l. = 
[E: P].[P:<I>].. Since ~/E is purely inseparable, the first case ap
plied to ~ ::J E ::J <I> gives [~:<I>]. = [~: E].[E:<I>] •. Similarly, con
sidering ~ ::J E ::J P, we obtain [~: Pl. = [~: E].[E: P].. Com
bining, we obtain 

[~:<I>]8 = [~: E].[E:<I>]. 

= [~: E].[E: P].[P:<I>]. 

= [~: P].[P:<I>]., 

which is (12) in the general case. 
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We have seen that, if P/~ is Galois, then P/~ is separable (Cor. 
to Lemma 1, § 9). Also, since P!~ is a splitting field, this exten
sion is normal. Conversely, if P /~ is normal and separable, then 
P /~ is a splitting field of a polynomial which is separable. Hence 
P/~ is Galois. Thus the condition: P/~ Galois is equivalent to 
P /~ is separp.ble and normal. We claim also that any purely in
separable extension P /~ is normal. To see this let g(x) e ~[x] 
be irreducible and suppose g(O') = 0 for 0' e P. Then g(x) is the 
minimum polynomial of 0' over~, so g(x) = xP' - IX. Since O'P' = 
IX, we have the factorization g(x) = xP' - IX = xP' - O'P' = 

(x - O')P', s~ g(x) is a product of linear factors in P[x]. Hence 
P /~ is normal. The following theorem gives a rather precise 
description of the structure of normal extensions. 

Theorem 13. IfP /~ isfinite dimensional normal, then P = ~ ®~ 
r where ~/~ is Galois and r /~ is purely inseparable. Conversely, 
if r /~ is a finite dimensional purely inseparable extension and ~ /~ 
is .finite dimensional separable extension, then the algebra P /~ = 
r ®~ ~ is afield and this is normal if~/~ is Galois. 

Proof. Assume P /~ finite dimensional normal. Let r be the 
set of purely inseparable elements over ~, so r is a subfield over. 
~ (ex. 1, § 9). Let peP and let g(x) be the minimum polynomial 
of P over ~ and write g(x) = h(xP') where hex) is separable. Since 
g(x) is irreducible in ~[x], it is clear that hex) is irreducible in 
~[x]. Since h(pP') = 0, the normality of P /~ implies that hex) = 

r r 

IT (x - (3i) in P[x]. Also g(x) = h(xP') = IT (xP' - (3i) is a 
1 1 

product of linear factors in P[x]. Hence xP' - {3i has a root Pi 
in P and consequently xP' - {3i = xP' - pl' = (x - Pi)P·. Then 

r r 

g(x) = h(xP') = IT (xP" - (3i) = II (x - Pi)P", Now set k(x) = 
r 1 

II (x - Pi)' Since the (3i = PiP" are distinct, the Pi are dis-
1 

tinct. We have k(x)P' = II(xP' - pl') = II(xP' - (3i) = g(x). If 
k(x) = xm + 0'1Xm- 1 + ... + O'm, then the O'j e P and k(x)P' = 
xmp' + O'lP'X(m-l)p' + ... + O'mP' = g(x) which shows that O'l' e 
I}>; hence the O'j e r. Hence k(x) e r[x]. Since P is a root of k(x) 
and k(x) has distinct roots, P is separable over r. Since P was any 
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element of P, this proves that P If is separable. The factoriza
tion P = f ®~ 2: where 2: is the maximal separable subfield of 
P /4> therefore follows from the lemma at the beginning of this 
section. If U e 2: and j(x) is its minimum polynomial over 4>, then 
j(x) = II(x - Uk) in P[x]. Evidently the Uk are separable over 4> 
so they are contained in 2:. Hence the factorization lex) = 
II(x - Uk) holds in 2:[x]. This proves that 2:14> is normal as well as 
separable. Hence it is Galois over 4>. This proves the first state
ment. Now let f /4> be finite dimensional purely inseparable, 
2:/4> finite dimensional separable. We shall show first that, if 
(UI, U2, .. " Um) is a basis for 2:/4>, then the same is true for (UIP', 
U2P', .. " UmP'), e ~ 1. Clearly it suffices to show that every ele
ment U e 2: is a 4>-linear combination of the u/'. Now for any 
j ~ 0, ui is a linear combination of the Ui. Taking p8_th powers 
shows that (uP'); is a 4>-linear combination of the u/' for j = 
0, 1,2, .. '. Since U is separable, we know that U e 4>[uP1 (Lemma 
2 of § 9). Hence U e L 4>UiP" and (UIP', U2P', .. " umP') is a basis 

i 

for 2:/4>. Now consider P = f ®~ 2:. This is a commutative al
gebra and any element of this algebra can be written in the form 
2:'Yi ® Ui, 'Yi e f, and (UI, •• " u';'), the basis for 2:/4>. Now if 
p = 2:'Yi ® Ui r6- 0, then one of the 'Yi, say, 'YI r6- 0. Since r /4> is 
purely inseparable, we can choose e ~ ° so that 'Y/' = Ot.i e 4>, 
1 ~ i ~ m. Then pP' = 2:Ot.i ® ul" = 1 ® 2: Ot.iU/'. Since 
(UIP', •• " umP') is a basis for 2:/4> and 01.1 r6- 0, 2:Ot.iU/' is a non
zero element of 2:. Since this has an inverse in 2:, p has an in
verse in P. Thus P is a field. Now assume 2:/4> is Galois. Then 
2:/4> is a splitting field of a polynomial g(x) e 4>[x] and r/4> is a 
splitting field of hex) e 4>[x]. Since P is generated by subfields 
isomorphic to rand 2:, it follows that P /4> is a splitting field of 
g(x)h(x). Hence P /4> is normal. 

EXERCISES 

1. Let E/cJ? be finite dimensional, P 1cJ? an arbitrary field extension. Show that 
the number of distinct isomorphisms of E/cJ? into P 1cJ? does not exceed [E:cJ?l •• 
Show that this number is attained if P 1cJ? is the normal closure of E/cJ? 

2. Let P 1cJ? be finite dimensional normal, ~/cJ? the maximal separable subfield, 
G the Galois group ofP 1cJ? Show that G maps ~ into itself and that the mapping 
S -+ j the restriction of s e G to ~ is an isomorphism of G onto the Galois group 
of UcJ? Show that J(G) = r 1cJ?, the maximal purely inseparable subfield ofP 1cJ? 
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11. Primitive elements. In this section and the next we shall 
obtain some special generations of finite dimensional extensions 
P liP. The results are valid for arbitrary iP. However, the proofs 
in these two sections will require iP to be infinite; the validity of 
the results for finite iP will be established in § 13. 

If P = iP(8), that is, P is generated over iP by 8, then we have 
called P a simple extension of iP (Vol. I, p. 101). We shall now 
say also that 8 is a primitive element of P liP. We shall prove two 
results on existence of primitive elements. 

Theorem 14. Let iP be an infinite field and let P = iP(~, TJ) be a 
/ield generated over iP by a separable algebraic element ~ and an alge
braic element TJ. Then P liP has a primitive element. 

Proof. Let f(x) and g(x) be the minimum polynomial over iP 
of ~ and TJ respectively and let fliP be a splitting field of f(x)g(x). 
Then flliP is a splitting field of f(x)g(x) containing P. Let h = 
~'~2' ••• , ~m be the distinct roots of f(x), TJl, TJ2, .. " TJr those of 
g(x). Then the ~i are all the roots of f(x) and we may assume m > 
1 since, otherwise, ~ e iP and P = iP(TJ). Consider one of the 
linear equations X~l + TJI = X~i + TJj, i = 2, .. " m,} = 1, .. " r. 
This has at most one solution in iP. Hence, since iP is infinite, we 
can avoid the finite set of solutions of these equations and choose 
x = 'Y eiP so that 'Y~l + TJI ~ 'Y~i + TJh i = 2, '.', m;} = 1, "', 
r. We assert that 8 = 'Y~l + TJI is a primitive element of P. Thus 
consider the polynomial g(8 - 'Yx) which evidently belongs to 
iP(8) [x]. We have g(8 - 'Yh) = g(TJI) = 0 and, since 8 - 'Y~i ~ TJi 
for i = 2, "', m and} = 1,2, '.', r, g(8 - 'Y~i) ~ o. Hence the 

m 

highest common factor of g(8 - 'Yx) and f(x) = II (x - ~i) is 
I 

X - ~ = x - ~l. Hence there exist A(x), B(x) e iP(8) [x] so that 
(x - ~) = A(x)f(x) + B(x)g(8 - 'Yx), which implies that ~ e iP(8). 
Then TJ = 8 - 'Y~ e iP(8) and 8 is a primitive element. 

The result just proved has an immediate extension, by induc
tion on k to show that, if P = iP(~h .. " h, TJ) where the ~i are 
separable algebraic and TJ is algebraic, then P has a primitive ele
ment. In particular, we see that any finite dimensional separable 
extension has a primitive element. We note that the number of 
intermediate fields of such an extension is finite. This is clear 
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since P can be imbedded in an extension Ll/eI> which is finite di
mensional Galois, and the set of intermediate fields between Ll 
and eI> are in 1-1 correspondence with the set of subgroups of a 
finite group-the Galois group of Ll/eI>. The theorem on primitive 
elements for finite dimensional separable extensions is therefore 
also a consequence of the following 

Theorem 15 (Artin). Let eI> be an infinite field and P a ,finite di
mensional extension field of eI>. Then P leI> is a simple extension if 
and only if there are only a finite number of intermediate fields be
tween P and eI>. 

Proof. Suppose first that P = eI>(O) and let E be an inter
mediate field. Let g(x) be the minimum polynomial of 0 over E 
and let E'/eI> be the field generated by the coefficients of g(x). 
Then E' C E, but g(x) is also the minimum polynomial over E' 
of O. Hence [P:E'] = deg g(x) = [P:E]. Hence E = E' is 
generated by the coefficients of g(x). Now g(x) is a factor of the 
minimum polynomial f(x) of 0 over eI> and bothg(x), f(x) e P[x]. 
Since f(x) has only a finite number of distinct factors in P[x] 
with leading coefficients 1, the number of E is finite. Next assume 
that there are only a finite number of intermediate fields between 
P and eI>. It suffices to show that, if ~, 1/ e P, then eI>(~, 1/) is simple. 
Now let a eeI> and consider the subfield Po: = eI>(~ + a1/). We 
have an infinite number of a e eI> and a finite number of Po:. Hence 
there exist a, {3 in eI>, a ~ {3, such that Po: = P,g. Then 1/ = (a -

(3)-1(~ + a1/ - ~ - (31/) e Pa and hence ~ = ~ + a1/ - a1/ ePa. 
Thus Pa = eI>(~, 1/) and this is generated by ~ + a1/. 

EXERCISES 

1. Let <f?o be of characteristic p ;F. 0 and let P = <f?oC~, 1/) the field of fractions 
of <f?[~, 1/], ~, 1/ indeterminates. Let <fl = <f?oCPP) the sub field over <flo generated by 
all the p-th powers. Show that [P :<f?] = p2 and that P does not have a primitive 
element over <f? 

2. Let P be the splitting field over the rationals of (X2 - 3)(X2 - 2). Find a 
primitive element for P. 

3. Do the same for Xli - 2. 

12. Normal bases. If P is finite dimensional Galois over eI> 
with Galois group G = ISh S2, "', snl, then peP has a minimum 
polynomial of degree n over eI> if and only if the elements p8i , i = 
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1, .. " n, are distinct. This is clear since, "if p'l, .. " p" are the 
r 

distinct conjugates, then f(x) = II (x - p't) is the minimum 
i=1 

polynomial of p over <1>. It is clear also that p is a primitive element 
of P /<1> if and only if the degree of its minimum polynomial is 
n = (G: 1). Hence p is a primitive element if and only if the 
p", i = 1, .. " n, are distinct. A stronger condition than this is 
evidently that these elements are linearly independent. Then we 
have the basis (p'l, p'2, .. " p8,.) of P over <1>. Such a basis, con
sisting of the conjugates of a single element, is called a normal 
basis for the Galois extension. We shall now show that such 
bases always exist if <I> is infinite. Our proof of this fact will be 
based on the notion of algebraic independence of isomorphisms 
which is of considerable .interest on its own. We define this as 
follows: 

Definition 2. Let E be a field over <I> and 0 an extension field of 
E. Let St, ... , Sm be isomorphisms of E/<I> into 0/<1>. Then we shall 
call the s i algebraically independent over O' if the following is true: 
The only polynomial f(Xh ... , Xm) e O[Xh .. " xm], Xi indetermi
nates, such that f(-1]'I, '1]82, ••• , '1]8110) = 0 for all '1] e E is f = O. 

We require the following 

Lemma. Let 0 be an extension field qf an infinite field <I> and let 
f(Xh .. " Xm) e O[Xh .. " Xm] satisfy f(~h ... , ~m) = 0 for all ~i 
e <1>. Then f = O. 

Proof. Let (wa ) be a basis for 0 over <1>. Then we can write 
r 

f(Xh .. " Xm) = E fj(xt, .. " xm)Wi where {Wi} is a finite sub-
1 

set of (wa ) and thefi e <I>[Xh .. " Xm]. Then 0 = f(h, .. " ~m) = 
~fi(~h .. " ~m)Wi for all ~i e <1>. Since the Wi are <I>-independent and 
the fi(h, .. " ~m) e <1>, this implies that every fi(6, .. " ~m) = O. 
Hence, by a result proved in Vol. I, p.112,fi(xh "', Xm) = 0 for 
all} and SOf(Xh .. " xm) = O. 

We can now prove the following theorem on algebraic independ
ence of isomorphisms. 

Theorem 16. Let P be finite dimensional Galois over an infinite 
field <1>, E a subfield of P /<1>, and 0 an arbitrary extension field oj 
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P. Let S1) S2, .. " Sm be the different isomorphisms of E over <P into 
Paver <P. Then the s i are algebraically independent over n. 

Proof. We recall that the number m of isomorphisms is [E:<p] 
(§ 7). We note next that, if (El) E2, .. " Em) is a basis for E/<p, 
then the determinant det (E/;) of the matrix whose (i,j) entry 
is E/i is not O. Otherwise, the rows of this matrix are P-dependent, 
so there exist Pi not all 0 in <P such that "1:,PiE/; = 0, i = 1, 2, .. " 
m. If E is any element in E, we can write E = "1:,{jiEi, {ji e <P, and 
we obtain E {jiPiEis; = O. Since {j/; = (ji, we have E PiEsi = O . 

• ~ i 
This states that the operator "1:,siPiR = 0 contrary to Dedekind's 
independence theorem for isomorphisms. We have therefore 
established that det (E/i) ~ O. Now suppose f e n[X1) X2, .. " xm] 
and f(ESI, ES2, .. " ES"') = 0 for all E e E. Then f("1:,{jiE/I, "1:,{jiE/2, 

.• " "1:,{jiE/"') = 0 for all (ji in the infinite field <P. Now let g(x!, 

... x ) = f("1:,x·E.Bl "1:,X'E .82 ... "1:,x 'E .S"') "n[Xl ... X] This , m ~t' '"' , '1-1. c,.. , ,m' 

vanishes for all Xi = (ji e <P, so by the lemma, g(x!, .. " xm) = O. 
Now det (E/i) ,= 0, so the matrix (E/i) has an inverse (J.'ij). Then 
f(xh .. " xm) = g("1:,XiJ.'il) "1:,XiJ.'i2, "', "1:,XiJ.'in) = O. This proves 
that Sl) •• " Sm are algebraically independent over n. 

We can use the result just proved to establish 

Theorem 17. Let P be finite dimensional Galois over an infinite 
<P. Then P /<p has a normal basis. 

Proof. Let G = {Sh "', sn} be the Galois group of P/<p. We 
have just seen that, if (Ph' . " Pn) is a basis of P over <P, then 
det (p/i ) ,= O. Conversely, this condition is sufficient for a basis; 
for, if "1:,{jiPi = 0 where the {ji e <P, then "1:,{jiP/i = 0, j = 1, ... , m. 
This implies that the columns of (p/i) are <p-dependent unless 
every {ji = O. Our criterion shows that, for a particular p, (pSI, 
pB2, .. " pB,,) is a normal basis if and only if det (p.;Bi) ,= O. We 
now write SiSj = Sii and we know that (1;, 2;, .. " nj) is a permuta
tion of (1,2, .. " n). Consider the matrix whose (i,j) entry is the 
indeterminate Xii (ii = 1,2, .. " n) in P[x!, .. " xn]. We assert 
that the polynomial d(xh .. " xn) = det (Xii) ~ O. To see this 
we specialize Xl = 1, X2 = ... = Xn = O. Since each row and 
column of (Xi;) contains exactly one Xl) it follows that det (Xii) = 
± 1 if the Xi are specialized as indicated. Therefore, d(xh .. " xn) 
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~ 0, and so by the algebraic independence of the Xi we can 
find ape P such that det (p.;S;) = det (p.i;) ~ 0. Then p de
termines a normal basis. 

There is another, more sophisticated, formulation of the normal 
basis theorem which we shall now indicate. For this we introduce 
the group algebra <p(G) of the group G: <p(G) has the basis G = 
{Sl) ... , sn} and multiplication is defined by C1;()f.iSi)(};/JiSi) = 
};()f.i/JjS is j = };()f.i/JjS ij (cf. Vol. I, ex. 2, p. 95). We consider two 
right modules for <p(G): The first of these is <p(G) itself considered 
in the usual way: xa, X e <p(G) , a E <p(G) is the algebra product. 
Next we consider P as <p(G)-module by defining pa = };()f.ip·; for 
a = };()f.iSi in <p(G). It is immediate that the module axioms hold 
for this multiplication. The normal basis theorem is just the 
statement that these two modules are isomorphic. Thus, let 
(p.i) be a normal basis and consider the linear mapping of <p(G) 
over <P into P over <P sending Si into p.i. This is a <p-linear iso
morphism and, if x = };~iSi' then XSi = };~iSi; ~ E ~iP·;j = 

i 

E ~iP8i8j = (};~iP·i)Sj. Hence, if we denote the image of x by 
i 

x', then X'Sj = (XSj)'. This implies that x' a = (xa)' for all a e 
<p(G) so we have a <p(G)-isomorphism. It is easy to check that, 
conversely, if x ~ x' is a <I>(G)-isomorphism of <p(G) onto P, then 
the image of (SI = 1, S2, ••. , Sn) is a normal basis for P /<1>. 

EXERCISE 

1. Prove the following generalization of Theorem 16: Let f(.~l (1), ••• , Xm (1), 

Xl (2), ••• , Xm (2), ••• , Xl (r), ••• , Xm (r») be a nOll.-zero polynomial in indeterminates 
x/i). Then there exist 7]1, ••• , 7]r e E such that J(7]l'l, •• ·,7]1' "', ••• , 7]r"I, ••• , 
7]r'''') ;c O. 

13. Finite fields. The main results on finite fields are readily 
obtained as applications of Galois theory. We proceed to derive 
these. At the same time we shall establish the validity of the 
theorem on primitive elements and normal basis for finite base 
fields. 

We remark first that any finite field P is of characteristic p ¢ 0, 
since otherwise P contains a subfield isomorphic to the field of 
rational numbers. Hence the prime field <Po of P is isomorphic to 
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Ip = I/(p). If <I> is any subfield, of course, [P:<I>] = n < 00. If 
(Ph' . " Pn) is a basis for P over <1>, every element peP can be 

n 

written in one and only one way as E OliPi, Oli e <1>. If the cardinal 
1 

number /<1>/ = q, then it is clear from this that / p/ = qn. In 
particular, if [P :<1>0] = N, <1>0 the prime field, then / P / = pN. 
This shows that the number of elements in any finite field is a 
power of its characteristic. 

We show next that for any prime powerpN there exists one 
and, in the sense of isomorphism, only one field with pN elements. 
We consider the uniqueness first. Let P be a field with / P/ = pN. 
Then it is clear that the prime field <1>0 of P is isomorphic to Ip. 
If P is a non-zero element of P, then ppN -1 = 1 since the order of 
the multiplicative group p* of non-zero elements of P is pN - 1. 
We have also that ppN = p, an equation which is valid for every 
peP. Thus every element of P is a root of xPN - x = 0 and 
xPN - x e <l>o[x], <1>0 the prime field. Then 

pN 

(13) xPN - X = II (x - Pi) 
1 

where the Pi are the elements of P. This shows that P /<1>0 is a 
splitting field of the polynomial xPN - X. Now suppose P' is a 
second field such that / p'/ = pN; then P' has characteristic p so 
its prime field <1>0' '" <1>0' Also P' /<1>0 is a splitting field of xPN - x. 
Hence P' '" P by the uniqueness theorem on splitting fields. 

The method just used also gives the existence of a field P with 
/ P / = pN, P a prime. For this we begin with <1>0 = Ip which has 

p elements and we let P be a splitting field over <1>0 of xPN - x. 
Let 2: be the set of roots of xPN - x = 0 contained in P. Since 
the derivative (xPN - x)' = -1, xPN - x = 0 has distinct roots 
so /2: / = P N • We note next that 2: is a su bfield, since, if ~, 71 e 
2:, then ~pN =~, 7IPN = 71 so (~- 7I)pN = ~pN - 7IpN = ~ - 71, 

(~7I)pN = ~pN7IpN = ~7I and (7I-1)pN = (7IPN)-l = 71-1 if 71 ~ O. It 
now follows that 2: ::J <1>0 and, since P is a splitting field of xPN -

x, P = <1>0(2:) = 2:. Thus we have / p/ = /2:/ = pN. 
We prove next the theorem on primitive elements: If <I> is a 

finite field and P is a finite dimensional extension of <1>, then P = 
<1>(8). Clearly, under the given conditions P is finite. We now 
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show that the multiplicative group P* is cyclic. This is a con
sequence of the following useful general result. 

Lemma 1. Any finite subgroup A oj the multiplicative group oj 
a field is cyclic. 

Proof. Let m be the order of A and let m' be the highest order 
for the elements of A. It is known that, if a and b are two ele
ments of a finite commutative group, then there exists a c in the 
group whose order is the least common multiple of the orders of a 
and b (Vol. II, ex. 1, p. 69). It follows that, if m' is the highest 
order, then bm' = 1 for every b. On the other hand, we know 
that the equation xm' - 1 = 0 has at most m' roots in a field. 
Since m'l m, we have m' = m. Moreover, if a is an element of 
order m, then the order of the cyclic group [a] generated by a is m. 
Hence A = [a]. 

Now if P is a finite field and <I> is a subfield, then surely P = 
<1>(0) if 0 is chosen to be a generator of the cyclic group P*. 

We consider next the automorphisms of a finite field P. If the 
characteristic is p, then we know that the mapping 71": ~ ---+ ~p is 
an isomorphism of Pinto P. Since P is finite, this is an auto
morphism. If I PI = pN, then ppN = P for every peP. Evidently 
71"' is the automorphism ~ ---+ ~p" so we have 7I"N = 1. On the 
other hand, if 0 is a genet ator of the group P*, then opm ~ 0 if 
m < N. This implies that 7I"m ~ 1. Hence the cyclic group G = 
[71"] has the order N. Let <I> be the set of G-invariants of P. Then 
we know that <I> is a subfield and [P:<I>] = N. On the other hand, 
we know that [P:<I>o] = pN if <1>0 is the prime field. Hence <I> = 
<1>0. We now see that the field P is Galois over its prime field <1>0 
and the Galois group is G = [71"]. The Galois correspondence now 
gives a correspondence between the collection of subfields of P 
and the collection of subgroups of G. Since G is cyclic of order N, 
for each divisor n of N there exists one and only one subgroup H 
of index n. We have H = [r] where r = 7I"n. The correspond
ing field <I> of H-invariants (or of r-invariants) has dimension
ality n over <1>0. Hence I <I> I = pn and we have shown that the 
subfields <I> of P have order pn where n I N and for each such order 
there is precisely one subfield of P of this order. The Galois 
group of P over <I> is the cyclic group H = [r] as before. In general, 
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we shall call an extension field P lip cyclic, abelian, or solvable if P lip 
is finite dimensional Galois and its Galois group is respectively 
cyclic, commutative, or solvable. Hence we can say that any 
finite field is a cyclic extension of any of its subfields. We shall 
therefore have the normal basis theorem also for finite base 
fields by proving 

Lemma 2. Any cyclic extension P lip has a normal basis over ip. 

Proof. Let s be a generator of the Galois G group of P lip. 
We consider s as a linear transformation in P over ip and let p,(x) e 
ip[x] be its minimum polynomial. Now Dedekind's independence 
theorem implies that the automorphisms 1, s, ... , sn-l are P
independent if (G: 1) = n. It follows that these are also ip-in
dependent and consequently deg p,(x) ~ n. On the other hand, 
[P:ip] = n so the degree of p,(x) cannot exceed n (Vol. II, p. 69). 
Hence deg p,(x) = n. Since sn = 1, we see that p,(x) = xn - 1. 
Now we know that there exists ape P whose order polynomial 
relative to the linear transformation s is the minimum polynomial 
(Vol. II, p. 67). Then p, p8, ... , p8'd are ip-independent and so 
these elements form a normal basis for P lip. 

EXERCISES 

NOTE: A set of exercises on finite fields is given in Vol. I, pp. 112-113. 
1. Let <I> be a finite field of order of q( = pN). Show that an irreducible pol y

nomialf(x) e <I>[xl is a factor of xqn - x if and only if degf(x) I n. (Hint: consider 
the field <I>[xj/(f(x».) Show that xqn - x = IIf.(x) where/.(x) runs over the ir
reducible polynomials with leading coefficients 1 of degrees divisors of n. Let 
N(q, r) denote the number of these polynomials of degree r. Derive the formula 

N(q, n) =! LJ.I. (!!.) qr 
n rln r 

where J.I. is the Mobius function (cf. Vol. I, ex. 5, p. 120). 
2. Let ID1 be an n dimensional vector space over a finite field <I> of odd order q 

(characteristic ;e 2) and let g(x,y) be a non-degenerate symmetric bilinear form 
on ID1 over <1>. Show that if n ~ 2, then there exists a vector u in ID1 such that 
g(u, u) = 1. Apply this and the reduction theory of Vol. II, pp. 152-154, to 
prove that ID1 has an orthogonal basis (Ul, U2, ... , Un) such that g(Ul, Ul) = 
o ;e 0, g(u., u.) = 1 if i > 1. Use this to prove that any two non-singular sym
metric n X n matrices with entries in <I> are cogredient if and only if their 
determinants differ by a multiplicative factor which is a square (0 = o'p2) in <1>. 
Hence show that there are just two cogredience classes of non-singular sym
metric matrices. 
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3. Let <1>, 911, g be as in ex. 2. If (el, e2, ••• , en) is a basis, then a = 
det (g(e., ei» is called a discriminant of g. For D e <I> let N(g, D) he the number 
of vectors u e 911 satisfying g(u, u) = D. Show that 

r
q2v- 1 - q' + ,,-1, if n = 211 and 

(-I)'a is not a square 
N(g,O) = q2.-1 + " - ,,-1, if n = 211 and 

(-I)'a is a square 

N(g, D) = 

q2v, if n = 211 + 1 

t·-1 + ,,-1, if D oF 0, n = 211, and 
( -1)'a is not a square 

q2v-l - ,,-1, if D oF 0, n = 211, and 
(-I)'a is a square 

q'lv - ", if D oF 0, n = 211 + 1, and 
( -1)'aD is not a square 

q2. + ", if D oF 0, n = 2JI + 1, and 
(-I)'aD is a square 

4. Let O(n,g) denote the orthogonal group determined by g:O(n,g) is the 
group of linear transformations A of M such that g(xA, yA) = g(x,y) for all 
x,y eM. If u is a non-isotropic vector, let 0,. be thesubgroupofO(n,g) leavingu 
fixed. Show that 0,. is isomorphic to O(n - 1, g') where g' is the restriction of g 
to (<I>u).1. Use Witt's theorem to show that the number of cosets O,.A of 0,. in 
O(n, g) is the number of vectors v satisfying g(v, v) = g(u, u). Use this result and 
ex. 3 to establish the following formulas for the order (O(n, g): 1): 

2.q(n-l)2/4 II (q2i - 1), if n is odd 
[ 

(n-l)/2 

(O(n, g): 1) = .-1 (n-2){2 

2.qn(n-2){4(q n /2 - E) II (q2i - 1), if n is even 
i-=l 

Here E = 1 if (-1)' a is a square; otherwise E = -1. 

14. Regular representation, trace and norm. In this section 
we consider a finite dimensional extension field P /~ and we shall 
define certain mappings of P into ~ called the trace and the norm. 
These functions can be defined just as easily for arbitrary finite 
dimensional algebras and are of importance for these also. We 
shall therefore begin by considering a fini te dimensional algebra 
~/~ with basis (ut, U2, ••• , Un) over~. We define a (finite di
mensional) representation of !/~ to be a homomorphism of ~/~ 
into the algebra ~f)(911) of linear transformations of a finite di
mensional vector space 911/~. If S is such a representation: a ~ 
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as, then the defining condi tions are 

(a + b)S = as + bS, (aa)S = aas, 
(14) 

(ab)S = aSbs, IS = 1, 

a, b e 2I, a e 4>. If (XI, X2, ... , XN) is a basis for mover 4>, then 
we can determine the matrix as relative to this basis in the usual 
manner: We write 

N 

(15) xias = E aii(a)xh i = 1,2, ... , N. 
i=1 

This gives the matrix a(a) = (aii(a)) and the mapping a ---+ a(a) 
of 2I/4> into the algebra 4>N/4> of N X N matrices with entries in 
4>. Since the mapping A ---+ (a) of the linear transformation A 
into its matrix (a) relative to (Xl) X2, ... , XN) is an isomorphism, 
the mapping a ---+ a(a) is a homomorphism of 2I/4> into 4>N/4>. 
Such a homomorphism is called a matrix representation. We recall 
that, if we change the basis (XI, ... , XN) to another basis (YI, ... , 
YN) whereYi = 'l:,P,iixh then the matrix representation defined by 
S and this basis is a ---+ (p,)a(a)(p,) -1 where (p,) = (P,ii) (cf. Vol. 
II, p. 42). 

The most important representation of 2I/4> is the so-called 
regular representation R. Here aR = aR the right multiplication 
x ---+ xa defined by a. One checks directly that aR is a linear 
transformation in 2I over 4> and that a ---+ aR is an algebra homo
morphism (cf. Vol. I, p. 82). Since ~ has an identity, a ---+ aR 
is 1-1 and so is an isomorphism of ~/4> into ~4>(m. Since xaR = 
xa, we obtain the matrix representation associated with the basis 
(UI, U2, ... , un) of 2I/4> by writing the products Uia as 4>-linear 
combinations of the Ui: 

(16) 

We write pea) = (Pii(a)) and we have the matrix representation 
a ---+ pea) which is 1-1. Also since h = 1, p(1) = 1, the identity 
matrix. As in the general case, a change to the basis (VI, V2, ••• , 

vn), where Vi = 'l:,P,iiuh gives the new matrix representation a ---+ 
/T(a), where 

(17) 
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As an example of this we consider an algebra ~ = 4>[a] with a 
single generator. Since [~:4>] < 00, 4>[a] "'-'4>[x]/(j(x» wheref(x) is 
a non-zero polynomial with leading coefficient 1. We have f(a) = 
o and f(x) is the non-zero polynomial of least degree (leading 
coefficient 1) having a as a root. Thus the polynomialf(x) is the 
minimum polynomial of a (Introduction, p. 6). Also 4>[a] has 
the basis (l,a, ···,an- 1) where n = [~:4>] = degf(x). Suppose 

(18) f(x) = xn - alxn - 1 + ... + (-l) nan, aie4>. 

Then we have the relations 

(19) 
1a = a, aa = a2, .. " an- 2a = an- 1 

an-1a = alan - 1 - a2an - 2 + ... + (_l)n-lan. 

These show that, if pea) denotes the matrix of aR relative to 
(1, a, .. " an-I), then we have 

o 1 0 
o 0 1 

(20) pea) = 
1 

which is called the companion matrix of the polynomial f(x). In 
theory, once we know this matrix, we know pCb) for any element b 
in 4>[a] since b is a polynomial in a. 

We now consider the general case again and we define the charac
teristic polynomial of the element a e ~ to be the characteristic 
polynomial 

(21) fa(x) = det (xl - pea»~ 

of the linear transformation aR in ~ or of the corresponding matrix 
pea). By (17) we have 

xl - u(a) = (}L)(x1 - p(a»(}L)-l 

which shows that 

det (xl - u(a» = det (}L)(x1 - p(a»(}L)-l 

= det (}L) det (xl - pea»~ det (}L)-l 

= det (xl - pea»~. 
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Thus we see that ia(x) is independent of the choice of the basis 
for ~/<I>. We can write the characteristic polynomial as 

(22) ia(x) = xn - T(a)xn- 1 + ... + (-l)nN(a). 

n 

We have T(a) = trace pea) = L: Pii(a), N(a) = det (p(a» and we 
1 

call these respectively the trace and norm of a in ~ over <1>. We 
shall find it necessary at times to specify the base field of the alge
bra and also the algebra itself. In these cases we shall write 
T!!I<I>(a) for T(a), N!!I<I>(a) for N(a). Since the trace is a linear 
function of matrices and since a ~ pea) is linear, it is clear that 
a ~ T!!I<I>(a) is a linear mapping of ~ into <1>. Also since pel) = 
1, we have T!!I<I>(l) = nl and T!!I<I>(aa) = aT!!I<I>(a). Thus we 
have the following relations: 

T!!I<I>(a + b) = T!!I<I>(a) + T!!I<I>(b) 

(23) T!!I<I>(aa) = aT!!I<I>(a), a e <I> 

T(l) = n1. 

Since a ~ pea) is multiplicative and A ~ det A is a multiplica
tive mapping of the set of matrices, we have N!!I<I>(ab) = 
N!!I<I>(a)N!!I<I>(b). Also, it is clear that N!!I<I>(aa) = anN'll I <I> (a) 
and N!!I<I>(l) = 1. Thus we have: 

(24) 

N'lll<l>(ab) = N!!I<I>(a)N'llI<l>(b), 

N!!I<I>(aa) = anN!!I<I>(a), a e<T>, 

N(l) = 1. 

We recall that according to the Hamilton-Cayley theorem pea) 
is a root of ia(x) = O. If we apply the isomorphism pCb) ~ b, we 
see that ia(a) = O. Thus we have 

(25) an - T(a)an- 1 + ... + (-l)nN(a)l = O. 

Let ma(x) be the minimum polynomial of pea) (or of aR). Since 
b ~ pCb) is an isomorphism, it is clear that ma(x) is the minimum 
polynomial of a. We recall that the minimum polynomial of a 
matrix is a factor of its characteristic polynomial and these two 
have the same irreducible factors in <I>[x], differing only in the 
multiplicities of these factors (Vol. II, p. 99, or p. 102). 
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The trace function can be used to define an important bilinear 
form on the algebra ~/cI>. This is the regular trace form 

(26) (a, b) = T'iJ.I<JJ(ab). 

Evidently, we have the following rules governing this function 
whose values are in cI>: 

(27) 

(a, b1 + b2) = (a, bl ) + (a, b2) 

(al + a2, b) = (al) b) + (a2' b) 

a(a, b) = (aa, b) = (a, ab) 

(ab, c) = (a, bc) (= T'il.I<JJ(abc)). 

Also we recall that, if M and N are matrices, then the tr MN = 
tr NM (Vol. II, p. 104). This implies that 

(28) (a, b) = (b, a), 

so (a, b) is a symmetric bilinear form. We shall define also the 
discriminant of ~ over cI> relative to the basis (Ul) U2, ... , un) to 
be 

(29) a(Ui) = det ((Ui, Uj)) = det (T'iJ.I<JJ(UiUj)). 

It is immediate that, if we replace (Ul) •.. , Un) by the basis 
(Vl) ... , Vn ), Vi = ~JLijUh then the matrix ((Ui' Uj)) is replaced by 
((Vi, Vj)) = M((Ui, Uj))M', M = (JLij) (Vol. II, p. 149). Hence the 
discriminant relative to (Vi) is a(Ui)JL2, JL = det M. 

We now suppose that E is a subfield of cI> of finite co-dimension 
in cI>. Then ~ ~ cI> ~ E and [~: E] = [~:cI>][cI>: E] is finite so, if we 
consider ~ as a vector space over E, this is fini te dimensional. 
Hence ~ is a finite dimensional algebra over E. We can therefore 
carry out all of the above considerations for the algebra ~/E. We 
can also consider cI> as an algebra over E and we can define T'il.IE, 
T<JJIE, N'iJ.IE, N<JJIE as well as T'iJ.I<JJ, N'iJ.I<JJ. We shall now proceed 
to develop the following fundamental transitivity relations con
necting these functions: If cI> ~ E, 

(30) 

(31) 

T'iJ.IE(a) = T<JJIE(T'iJ.I<JJ(a)) 

N'iJ.IE(a) = N<JJIE(N'iJ.I<JJ(a)). 
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As before, we let (Uh .. " Un) be a basis for ~/4> and we suppose 
('Yh 'Y2, .. " 'Yh) is a basis for 4> IE. Then 

(32) ('YlUh 'Y2Uh "', 'YhUl; 'YlU2, "', 'YhU2; ... 'YhUn) 

is a basis for ~/E. If P e 4>, we write 

(33) 

so we have the isomorphism P ~ (>.Cp)) where X(p) is the matrix 
(Xqt(p)) with entries in E. Then T~IE(p) = ~Xqq(p) and N~IE(P) 
= det (X(p)). We now combine the relations (33) and (16) to 
write 

i,j = 1, "',n, q,t = 1, ···,h. This shows that if the 
('YqUi) is ordered as in (32), then the matrix of aR in ~/E is 

X(Pll) >'cPl2) 

(35) 

X(Pln)] 
X(P2n) 

X(Pnn) 

basis 

where X(Pii) is an h X h matrix with entries in E and we have ab
breviated Pii = Pii(a). It is clear from the form of (35) that 

T~IE(a) = tr A(a) (tr = trace) 

= tr X(Pll) + tr X(P22) + ... + tr X(Pn,,) 

= tr X(Pll + P22 + ... + Pn,,) 

= tr X(T~I<l>(a)) 

= T<l>IE(T~I<l>(a)). 
This establishes (30). 

For the proof of (31) we require a general transitivity property 
of determinants (Vol. II, ex. 2, p. 135) which we proceed to derive. 
We suppose we have an nh X nh matrix with entries in a field E 
and we assume that, if we partition this as an n X n matrix A = 
(Xii) where each Xii is an h X h matrix, then the Xii all commute. 
This is equivalent to assuming that the Xii all belong to a com
mutative sub algebra 58 of the matrix algebra 4>h. This is precisely 
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the situation for the matrix A(a) and the blocks A(Pii) of (35). 
Since the Xii e m and m is commutative, the usual definition and 
properties of determinants hold and we can consider 

(36) detn (A) = I: Ep X1i1X2iz ••• Xni,., 
p 

where the summation is over the permutations Cili2'" in) of 
(12 ... n) and Ep = 1, -1 according as P is even or odd. Now 
detn (A) as defined above is an element of <Ph. Hence we can take 
the usual determinant of this. We shall now establish the follow
ing formula: 

(37) det (detn (A)) = det A 

where det A is the usual determinant of the nh X nh matrix. 
To prove this result we extend the base field E to a splitting 

field over E of the product of the characteristic polynomials of all 
the matrices Xii' It suffices to prove the result in this field. Hence 
without loss of generality we may assume that E contains the 
characteristic roots of all the Xii' The theory of sets of commuting 
linear transformations (Vol. II, pp. 133-134) shows that there 
exists a matrix J.I. e Eh such that every J.I.-1XiiJ.l. is triangular: 

* 
Pij2 

(38) J.I. -1 XiiJ.l. = 7Jii = 

o Piih 
Hence if we set 

(39) M= 

J.I. 
then 

7111 7112 7Jln 

(40) M-1AM = 7121 7122 7J2n 

7Jnl 7Jn2 'l7nn 
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We have det A = det M-lAM and, since 1'/ij = IL-lXijIL, 

detn M-lAM = IL-l(dettl A)IL. 

69 

Hence det (detn M-lAM) = det (detnA); so it suffices to verify 
that 

(41) 

Now it follows directly from the definition of detn and from the 
way triangular matrices are multiplied and added that 

det Pl * 
det P2 

(42) detn M-lAM = 

0 det Ph 
where 

r'" 
P12k Plnk 

(43) 
P2lk P22k P2nk 

Pk = ... 
Pnlk Pn2k Pnnk 

Hence 

(44) det (detn M-lAM) = det Pl det P2 ... det Ph. 

We need to calculate next det M-lAM. For this we make the 
following permutations of rows and columns: 

column (i - 1)h + j ~ column U - 1)n + i 
row (i - 1)h + j ~ row U - 1)n + i 

for i = 1,2, .. " nand j = 1, 2, .. " h. This gives the matrix 

Pl * 
P2 

(45) 
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where Pk is as in (43). Hence, by Laplace's expansion, det M-lAM 
= det PI det P2 •.• det Ph = det (detn M-lAM). This proves (37), 
as required. 

We now apply this to norms. Here we have N!lI<J!(a) = 

det (Pii(a)) e <JI and 

NEI<J!N!lI<J!(a) = det (X(det Pii)). 

Since P ~ X(p) is an isomorphism, we have 

so 
det X(det Pii) = det detn (X(Pii)) = detA(a), 

by (37). Since detA(a) = N!lIE(a) we have the norm formula (31). 
We shall now specialize all of this to the case: ~ = P afield. * 
We know that the minimum polynomial ma(x) of any a e P is ir
reducible. Hence the characteristic polynomial fa(x) = ma(xt. 
We have [P:<JI] = n = degfa(x) and [<JI(a):<JI] = degma(x);there
fore r = degfa(x)/degma(x) = [P:<JI]/[<JI(a):<JI] = [P:<JI(a)]. Hence 
we have 

(46) 

We shall now obtain some important formulas for the norm 
and trace of a field and we look first at the separable case. Thus 
let P /<JI be finite dimensional separable, n/<JI the normal closure of 
Pj<JI. Then n/<JI is Galois and [n:<JI] = (G:1) for the Galois group 
G of nj<JI. Let H be the subgroup of G corresponding to P j<JI (the 
Galois group of njP). Since [P:<JI] = n, the index (G:H) = n 
and we have n distinct cosets Hs l ', Hs2', ••• , Hs n'. If Si denotes 
the restriction of s/ to P, then Sl, S2, ••• , Sn are distinct isomor
phisms of P j<JI into nj<JI and these are all the isomorphisms of P j<JI 
into n/<JI (§ 7). Next let peP and let K be the subgroup of G 
corresponding to <JI(p). Then G ~ K ~ H. Let 11', ... , 1m' be a 
complete set of representatives of the cosets KI' in G and let 
Ul', ... , u/ be a complete set of representatives of the cosets 
Hu' in K. Then we have G = U KI/, K = UHUk' so G = 

• A simplified version of the proof of the transitivity formula for norms in this case will 
be indicated in ex. 2 below. 
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UHUk'l/ and the mr elements uk'i/ form a complete set of rep
resentatives of the cosets of H in G. We may assume that these 
are the s/ which we indicated before. The restrictions of the 1/ 
to 4>(p) give all the isomorphisms of 4>(p)/4> into 0/4> and these 
are distinct. Since p generates 4>(p), it follows that the elements 
ptl ', pli', ... , pt",' are distinct and these include all the conjugates 
p.', s' e G. Hence the minimum polynomial of p over 4> is mp(x) = 
m 

II (x - pt;,). Also we have pUk't;, = pt;' for all k and j. Hence 
i=l 

" r m 
II (x - p.,) = II II (x - pUc't;,) = mp(xY. On the other hand, 
i=l k=l i=l 

r = [P:4>(p)], so by (46) (for a = p), we see that the charac-
teristic polynomial 

" 
(47) fp(x) = II (x - p.,) 

1 

where Sh S2, ••• , s" are the different isomorphisms of P /4> into 
its normal closure 0/4>. Comparison of this formula with (22) 
gives the following formulas for the trace and norm in the sepa
rable case: 

" " (48) Tplct(P) = L: p.', Nplct(P) = II p.'. 
1 1 

Next let P /4> be purely inseparable of characteristic p ¢ o. 
Then [P:<I>] = pl. If peP, the minimum polynomial mp(x) has 
the form xP• - a = (x - p)p.. Since P /4>(p) is purely insepa
rable, [P:4>(p)] = p' and pi = [P:4>] = [P:4>(p)][4>(p) :4>] = p'pe. 
Hence f = g + c. By (46), the characteristic polynomial is 

(49) 

This shows that 

Now let P/4> be arbitrary, ~/4> the maximal separable sub
field, 0/4> the normal closure of P /4>. Then 0/4> contains the 
normal closure 11/4> of ~/4>. Again we assume the characteristic 
is p ¢ o. Then [P:~] = pi, f ~ 0, and this is the degree of in-
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separability [P:~]i (§ 10). If peP we have, by (50) and (47), 

Npl~(p) = N'];I~(Npl'];(p» = N'];I~(P[P:~I.) 

= (p[P:~I;)81(p[P:~I;)82 ... (p[P:~I;)8" 

where Sh S2, ••• , s .. are the different isomorphisms of l:/~ into 
A/~. Now it is easily seen that every Si is the restriction of an 
isomorphism of P /~ into n/~ and distinct isomorphisms of P /~ 
in n/~ have distinct restrictions to l:/~ and map this field into 
A/~ (ex. 1, § 10). It follows that the foregoing formula can be re
written as 

(51) 

where Sh S2, ••• , s .. are now considered as the different isomor
phisms of P /~ into n/~. In exactly the same way we obtain 

(52) Tpl~(p) = [P:~Mp81 + p81 + ... + p8 .. ). 

If P is not separable over ~, then f > 0 and [P:~]i = pI is 
divisible by p. Hence we see that Tpl~(p) = 0 for inseparable 
P/~. 

We obtain next some formulas for the discriminan t of P /~ 
relative to a basis (Ph P2, •.. , P .. ). This is 

(53) 8 = det (TPI~(PiPi)). 

If P /~ is inseparable, Tpl~ = 0 so 8 = o. Now assume P /~ sepa
rable and, as before, let S1, S2, •.. , s .. be the isomorphisms of P /~ 
into n/~. Consider the matrix 

(54) A = (p/i), i, j = 1,2, ... , n. 

We have shown in the proof of Theorem 16 that det A ¢ O. We 
consider now the matrix £1£1', A' the transpose of A, whose (i, j)
entry is 

(55) p/lp/l + p/'p/' + ... + p/"p/" = TPI~(piPi). 

Hence 8 = det £1£1' and we have 

(56) 

Since det A ¢ 0, this shows that 8 ¢ O. We recall that this im
plies that the trace bilinear form (p, q) = Tpl~(pq) is non-de
generate (Vol. II, p. 140). We therefore have the following 
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Theorem 18. If P lip is finite dimensional separable, then the 
traceform (p, u) = Tp l4>(pu) is non-degenerate and the discriminants 
oaf P/ip are ~ o. 

Let 0 be a primitive element of the finite dimensional separable 
extension. Then it is clear from (46) that the characteristic poly
nomial f(x) of 0 is the same as the minimum polynomial. In n[x] 
we have f(x) = (x - 01)(X - O2) ... (x - On), 01 = 0, and the 
O. are distinct. Hf'(x) is the derivative off(x), then 

(57) l' (0) = (0 - O2) (0 - 03 ) ••• (0 - On) 

and this element is contained in P = ip(O) since f'(x) e ip[x]. The 
element f'(O) is called the different of o. We shall show that the 
discriminant 0 determined by the basis (1,0,02, ... , on-1) is 

n(n-1) 
(58) o = (-1)-2-Np l4>(f'(0)). 

We have 0 = det Tp l4>(Oi-10i-1). Now it is clear that we have an 
isomorphism of ip(O)/ip into n/ip sending 0 into Oi, 1 ~ i ~ n. 
Hence the Oi are the conjugates 08; of 0 and (Ok)8; = Oik. The 
matrix A of (54) for the basis (1,0,02, .. " on-1) now becomes 

111 

A = 01 O2 On 

I t is well known that det A, a so-called Vandermonde determinant, 
has the value II (0. - OJ). Consequently (56) gives the formula 

i>i 

(59) o = II (0· - 0·)2 i J' = 1 2 ... n . '" "" i<i 

for the discriminant. On the other hand, f'(O) = II (01 - Oi). 
i;o'1 

Applying Sj which sends 01 into8j we obtain f'(0)8j = II (OJ - 0.). 
i;o'j 

I t follows that 
n(n-l) 

(60) N p l4>(f'(O)) = (-1)-2 -II (Oi - OJ)2. 
i<j 

Comparison of (59) and (60) proves (58). 
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EXERCISES 

1. Let ~ be the algebra <I>[x1/(x" - 1), so that ~ has the basis (1,8, .. ',8,,-1) 
where 8 is the coset x + (x" - 1). Show that, if a = ao + a18 + ... + 
a,,_18"-t,a, e <1>, then the matrix of aR relative to the basis (1,8, .. ',8,,-1) is 
the circulant matrix 

ao al a,,_l 

an-I ao al a,,_2 
A= 

Show that, if <I> contains n distinct n-th roots r, of 1, then 

"("-1 ) N(a) = det A = II L a,ri' . 
i-I 0 

2. Let P ::::> <I> ::::> E be finite dimensional extension fields of the field E. Let 
a e P and let x" - alx,,-l + ... + (-l)"a .. be the minimum polynomial of a 
over <I> so that (20) defines a matrix representation of <I>(a)/<I>. Show that one ob
tains a matrix representation of <I>(a)/E by replacing the entries 0, 1 which 
appear by the h X h zero and identity matrices respectively and the a, by the 
representing matrices X(a,) for a matrix representation of <l>/E. Use Laplace's 
expansion to verify that the determinant of the resulting matrix is 

NifI(tJ)/E(a) = det X(a,,). 

Since a" = NifI(tJ)/ifI(a), this gives 

NifI(tJ)/E(a) = NifI/E(NifI(al/ifI(a». 

Next show that NpIE(a) = NifI(a)/E(a)', r = [P : <I>(a)]. Use these results to prove 
(31) for ~ = P. 

3. Let ~/<I> be an algebra with the basis (Ul, U2, ••. , u,,) and let I = 
<I>(~I, ~2, ••• , ~,,) the field of rational expressions in indeterminates ~,. Consider 
the algebra (~ ®ifI I) over I which has the basis (UI, U2, ••• , Un) over I. Show 

n 
that, if X = L ~iUi, then the characteristic polynomial/ x(x) of X is a homogene-

1 

ous polynomial of degree n in <I>[x, ~I' .. " ~n], x, ~" indeterminates. Use this 
and the arithmetic theory of polynomial rings of Vol. I, pp. 124-127, to show that 
the minimum polynomial fJ.x(x) of X has the form xm - t(~I, ... , ~,,)xm-l + ... 
+ (_l)mn(~I, ... , ~n) where the coefficient of xm- i is a homogeneous poly
nomial of degree i in the fs. If a = ~aiu, e~, set fJ.a(X) = xm - teat, ..• , 
an)xm- I + ... + (-l)mn(at, ... ,a,,). Prove that fJ.tJ(a) = 0. 

4. Let the notations be as in 3 and assume ~ = P is a field. Show that fJ.x(x) 
is irreducible (Hint: Use ex. 4, § 9); hence show that/x(x) is a power of fJ.x(x). 
Show that n(~I, .. " ~,,) is irreducible and that the norm form 

N(X) = ±n(~l, ... , ~,,)', 
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15. Galois cohomology. One is often interested in studying 
mappings of the Galois group G of a finite dimensional Galois 
extension P lifJ into P or into the multiplicative group p* of non
zero elements of P. More generally, one encounters mappings of 
the product sets G X G, G X G X G, ... (functions of several 
variables in G) into P or P*. A particularly important type of 
mapping of G into P*, s ---+ p.. e P*, is one which satisfies Emmy 
Noether's equations 

(61) 

If the p.. e ifJ, then p.. t = p.. and this reads: p.ot = p..p.t which is just 
a character or multiplicative mapping of G into ifJ. If G is cyclic 
with generator g: G = {I, g, ... , gn-1}, gn = 1, then any element 
p. e P such that N(p.) = p.p.' ... p.,,,-l = 1 defines a mapping s ---+ 

p.. satisfying (61) if we define 

(62) P.1 = 1, p.g = p., P.,2 = p.p.g, ... , P.g"-l = p.p.' ... p.,f&-J. 

Then P.gHl = p.p.' ... p." = (p.p.' ... p.,i-l), P. = p.,.' p.g holds for 
i = 1, ... , n - 2. Also (61) is clear for t = 1 since P.1 = 1 and 
1 = p.g" = P.g,,-l'P., = p.' ... p.g"-lp. = N(p.). Hence (61) holds 
for all s = g' and t = g. It is easy to check by induction that it is 
valid for all s and all t = gi. 

In the general case, if'Y is any element of P*, we can set p.. = 
'Y( 'Y.) -1 and we have 

p..tp.t = ('YC'Y·) -1)t'YC'Yt)-1 

= 'Yt( 'YBt) -1'Y( 'Yt) -1 

= 'Y( 'Yot) -1 

= p.1It· 

Thus p.. = 'YC 'Y.) -1 satisfies Noether's equations for any non-zero 
'Y in P. We proceed to show that this "trivial" solution of Noe
ther's equations is the only possible one, for we have 

Theorem 19. Let s ---+ p.. be a mapping oj G into P* such that 
p..t = p..tp.e, S, t e G. Then there exists a non-zero element 'Y in P 
such that p.. = 'Y( 'Y.) -1. 

Proof. Since the p.. are ¢ 0 and the automorphisms are right 
linearly independent over P, we see that the operator 'Xsp.. (== 
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'1;SJL.R) is ~ o. Thus we can find a ~ e P such that 'Y = ~('1;sp..) = 
'1;~8JL. ~ o. We now calculate 

= ( ~ ~atJL.tJLt) JLt-1 

= ( ~ ~.tJL.t) JLt-1 

= (~~·JL.)JLt-1 
since st ranges over G if s ranges over G. Hence we have 'Y' = 
'YJLt -1 and JLt = 'Y( 'Yt) -1 as required. 

We have seen that, if G is cyclic with generator g and JL is an 
element of norm one in P (Npl~(JL) = 1), then Noether's equations 
hold for JLgi = JLJLg ... JL gi-\ 1 ~ i ~ n - 1, JLl = 1. The theorem 
now states that there exists a'Y e p* such that JL = JLg = 'Y('Yg)-1. 
This gives the following corollary which is referred to in the 
literature as "Hilbert's Satz 90": 

Corollary. Lft P liP be a finite dimensional cyclic extension field 
and let g be a generator of the Galois group of P over iP. Then any 
element JL e P such that Np I~(JL) = 1 has the form JL = 'Y( 'Yg) -1 for 
a suitable 'YeP. 

The two results which we have just obtained have analogues 
for the additive group of the Galois extension P liP. We consider 
a mapping s ~ 5. of G into P. The additive analogue of Noe
ther's equation is: 

(63) 

If 'YeP and we set 5. = 'Y - 'Y., then 5at = 'Y - 'Yat and a,t + 
at = 'Yt - 'Yat + 'Y - 'Yt = aat; so (63) holds. The direct analogue 
of Theorem 19 is valid: 

Theorem 20. Let a., s e G, be elements of P satisfying (63). 
Then there exists a 'YeP such that 5. = 'Y - 'Y •• 
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Proof. We choose an element peP such that Tpl~(p) = ~p. ~ 
O. This can be done since E s ~ 0 by the Dedekind inde-

.p!.G 

pendence theorem. Set -y = E T(p)-10.p·. Then 
seG 

y - -yt = T(p)-1 (~ (08p. - o.tp.t)) 

= T(p) -1 ( ~ ( Oetp8t - o/pat)) 

= T(p)-1 (~otPst) 

= OtT(p)-1(~lt) 

= OtT(p)-1T(p) = ot, 

which is what we want. 
In the cyclic case, G generated by g, the analogue of the condi

tion Npl~(p.) = 1 is Tpl~(p.) = O. If p. is such an element, then 
we set 01 = 0, Og' = p. + p.g + ... + p.g'-l and it is easy to check 
that (63) holds. We therefore have the following additive analogue 
of Hilbert's Satz 90: 

Corollary. Let P lip be finite dimensional cyclic, g a generating 
automorphism of the Galois group of P Iif!. Then any element p. e P 
such that Tpl~(p.) = 0 has the form -y - -yg for a suitable -yeP. 

We recall that, if P/if! is finite dimensional Galois with G as the 
Galois group, then the set ~~(P) of linear transformations of P 
as vector space over if! coincides with the set ~ of operators of the 
form Esp. = E Sp.R (Lemma of § 4). We know also that by 

seG • 
the Dedekind independence theorem the group elements (s), 
s e G, form a basis for ~~(P) as right vector space over P. We shall 
now show that Noether's equations arise in considering the follow
ing question: What are the automorphisms of the ring ~~(P) which 
leave fixed every element of the subring PR (= IP)? Let A be 
such an automorphism and set SA = u., s e G. Then if we apply A 
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to the basic relation PRS = S(p·)R (eq. (2)), we obtain 

(64) 

Hence, 

PR(S-1U.) = S-1(p.-1)RU. = S-1U.(P·-1·)R = (S-1U.)PR. 

Thus we see that S-1U• is an endomorphism of the additive group 
of P which commutes with every right multiplication PRo This 
implies that S-1U• is itself a right multiplication (Vol. I, p. 83). 
Hence S-1U• = P..R and u. = Sp.., S e G. We now use the fact that 
S ~ SA = u. is a homomorphism of G. This implies that U.t = 

U.Ue, s, t e G and so we have stp..t = (sp..)(tp.t) = stp..tp.t. Hence 
the p.. e p* (since u. F- 0) satisfy Noether's equations. Con
versely, it is easy to see by reversing the steps that, if the p.. F- 0 
satisfy Noether's equations, then the mapping 

A: E SPa ~ E U.P., u. = sp., 
• • 

is an automorphism of ~4>(P) which is the identity on PR. We now 
recall that any automorphism of ~4>(P) which is the identity on <I>R 
(acting in P) is an inner automorphism (Vol. II, ex. 5, p. 237). 
Hence there exists an element C e ~4>(P) such that X A = C-1XC 
holds for all X e ~4>(P). In particular, we have PR = PRA = 
C-1pRC for all peP, that is, C commutes with every PRo This 
implies that C = 'YR, 'Y a non-zero element of P. Then 

sp., = u. = SA = C-1sC = 'YR-1S'YR 

= s('Y-1)'R'YR = s«'Y-1)·'Y)R, s e G 

which implies that p.. = 'Y( 'Y.) -1. This gives another proof of 
Theorem 19. Of course, this is considerably less elementary than 
the first proof. However, the method is useful in related con
texts in which the first method is not applicable. 

The representation of~4>(P) as ~ = {~sP.} suggests a construc
tion of a more general kind of ring, called a crossed product of 
the field P and its Galois group G. For this purpose we consider 
a right vector space 5S over P with basis (u.) in 1-1 correspondence 
s ~ u. with the group G. Thus the elements of 5S can be written 
in one and only one way in the form E U.P., P. e P, so that [5S: P]R 

• 
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= (G: 1). We now suppose we have a mapping of G X G into 
p* so that for each ordered pair (s, I) of group elements we have a 
corresponding p..,t e p*. We use these to define a multiplication 
in 58 according to the formula 

(65) 

It is easy to verify that the multiplication is both ways distribu
tive relative to addition. Hence 58 will be a ring if and only if the 
associative law of multiplication holds. Also because of the dis
tributive laws it suffices to have (ab)c = a(bc) for a = U,p, b = 
UtU, c = U,v'T', S, I, v e G. Now 

Hence associativity holds if and only if 

(66) p..,tfJp.,t,,, = p..,t"p.t,,,, S, I, v e G. 

A set of non-zero p..,t, s, leG, satisfying these conditions is 
called a (G, P*) jaclor sel. Our argument shows that such a set 
defines a ring .lB by means of (65), the associativity conditions cor
responding precisely to the conditions (66). The ring 58 is called 
the crossed producl of G and P with respect to the factor set p..,t. 
We shall write 58 = (G, P, p.) to indicate the ingredients G, P and 
the factor set p. = (p..,t). 

If we consider again the representation of ~~(P) as ~ = {~sp.}, 
we see that ~ is isomorphic to the crossed product (G, P, 1) where 
1 is the factor set p..,t = 1, s, leG, 1 the identity of P. This is 
clear if we compare (65) with the multiplication of elements of~. 
We now replace the right basis (s) of ~ over P by (u.) where u. = 

S'Y., 'Y. a non-zero element of P. Then we have 

U.Ut = (S'Y.)(/'Yt) = sl'Y.t'Yt 
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Thus we see that 2[ is also isomorphic with the crossed product 
(G, P, f.,L) where 

(67) -1 t 
f.,La,t = 'Yat 'Y. 'Yt. 

It is easy to check that these satisfy the factor set conditions but 
this is unnecessary since these are equivalent to the associative 
law. A factor set f.,L which is obtained from a function s ~ 'Y. e P* 
by means of (67) is said to be equivalent to 1 (f.,L rv 1). The result 
we have established is that, if f.,L rv 1, then (G, P, f.,L) is isomorphic 
to ~~(P). One might be tempted to guess that the analogue to 
Theorem 18 is valid for factor sets. However, this is not the case 
and we shall indicate this by considering the special case of a 
cyclic group. 

Let G be cyclic with g as generator and let (G: 1) = n. We set 
for 0 ~ i, j ~ n - 1, 

{ I if i + j < n 
f.,Lgi,gi = ~ ° . h.'f . + . > a 7""" In '*' 1 t J _ n. 

(68) 

We have to check the factor set conditions (66). Since 1, a e cP 
these 'simplify to 

(69) 

There are three cases: i + j + k < n, n ~ i + j + k < 2n, and 
i + j + k 2 2n. In the first case, both sides reduce to 1. In 
the second, both are a; and in the third, both are a 2 • A crossed 
product (G, P, f.,L) where G is cyclic and f.,L is of the type just de
fined is called a cyclic algebra or cyclic crossed product. The condi
tion that f.,L rv 1 is that there exist non-zero elements 'Ygi such that 
f.,Lgi,g = 'Y,'+1-1'Y,"'Y,. This gives for 'Y = 'Y" 'Y,I = 'Y'Y', "', 
'Y ,,,-1 = 'Y'Y' . . . 'Y,"-2, a = 'Y 1 -1'Y ,,,-1 ''Y = 'Y 1 -1'Y'Y' . . . 'Y,"-1 = 
'YI-INpl~('Y). Also 1 = f.,Ll,1 = 'Yl-l'Yl1'Ylgives'Yl = 1 so we must 
have a = Npl~('Y). It is easily seen also that this condition implies 
that f.,L rv 1. Thus we see that we can get a factor set f.,L rf-' 1 
simply by choosing an a e cP which is not the norm of any element 
'Y of P. For example, let cP be the field of real numbers and P 
the field of complex numbers, P = cp(i), i 2 = -1. Then if'Y = 
'Yl + i'Y2, 'Yh 'Y2 in CP, 'Y' = '9 = 'Yl - i'Y2 and N('Y) = 'Y12 + 
'Y22 2 O. Hence if a < 0, then a is not a norm. We remark that 
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it is easy to see that the cyclic crossed product constructed with 
such an a is isomorphic to Hamilton's quaternion algebra over~. 

The notions with which we have been dealing are all special 
cases of notions in the cohomology theory of groups. We shall 
now indicate briefly the general situation. We begin with an 
arbitrary group G and the group ring leG) of G over the integers. 
The elements of leG) are the elements :E m.s where the m. are 

seG 

in tegers and m. ~ 0 for a fini te su bset of G (cf. Vol. I, ex. 2, p. 95). 
We consider 'I,m.s = 'I,n.s if and only if m. = 11. for all s. Addi
tion in leG) is by components: 'I,m.s + 'I,n.s = 'I,(m. + n.)s. 

Multiplication is defined by (:E m.s) (:E ntt) = :E m8ntst. 
seG teG So teG 

Since G is associative, leG) is an associative ring. Let m be a 
right I(G)-module so that m is a commutative group under addi
tion and a product xa, x e m, a e leG), xa e m is defined so that 
(x + y)a = xa + ya, x(a + b) = xa + xb, x(ab) = (xa)b, xl = 
1. 

Let cr(G, m) denote the set of mappings of the r-fold product 
G X G X ... X G into m. The ~lements of cr(G, m) will be 
called r-cochains of G relative to the module m. These are the 
mappings (Sl) S2, "', Sr) -? f(sI, S2, "', sr) e m, Si e G. We 
make a commutative group out of cr(G, m) by defining f + g 
in the usual way by (j + g)(Sx, S2, .. " Jr) = f(sI, .. " Sr) + 
g(Sh .. " Sr). We shall now define a homomorphism d, the co
boundary operator of cr(G, m) into Cr+1(G, m). We do this by 
defining df for fin c r = cr(G, m) by 

(df)(sI, S2, .. " Sr+l) = f(S2, .. " Sr+l) 

r 

(70) + :E (-l)if(sI, .. " Si-l) SiSi+l) .. " Sr+l) 
i=l 

+ (_l)dl f(sI, .. " Sr)Sr+l' 

It is clear that d(j + g) = df + dg, so d is a homomorphism of 
cr into Cr +1• Strictly speaking we should denote the d we de
fined by (70) by dr ; however, it is convenient to use the same nota
tion for all of these homomorphisms which are defined on Cr, r = 
1,2, .. '. It is convenient to include also the group CO of 0-
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cochains which we take to be the module IDe itself. Then if 
x e Co = IDe, dx is the element of CI such that (dx)(s) = x - xs. 

The kernel of d (acting on cr) is denoted as zr and its elements 
are called r-cocycles of G relative to the module IDe. The image 
in cr of Cr- l under d is denoted as Br and its elements are called 
r-coboundaries. Both zr and Br are subgroups of c r and it can 
be shown that Zr ::::> Br. This is equivalent to showing that d 2 = 
o for the coboundary operator d. We shall leave the verification 
as an exercise (ex. 1 below). The factor group Hr(G, IDe) = 
zr / Br is called the r-th cohomology group oj G relative to the module 
IDe. Here we take r = 0, 1,2, .. " and we adopt the convention 
that BO = 0, so HO = ZO, the group of O-cocycles. The elements 
of this group are just the elements x of IDe such that xs - x = 0 
for all s e G. Evidently these are just the set of invariants of IDe 
relative to G. 

We shall now show that the notions we have been considering 
in this section fit into this general picture. We take G to be the 
Galois group of the field P /<1> where P /<1> is fini te dimensional 
Galois. For the module IDe we take either the multiplicative 
group p* of P or the additive group (P, +) of P. In the first 
case we make P* a module for I(G) by defining pa, p e P*, a = 
E m.s to be the element IT (p.)m.. Since G is a finite group 
~G ~G 

there is no difficulty in defining this product. I t is trivial to 
check the module axioms and we leave this to the reader. A 1-
cochain s -t Jl. = Jl(s) e P* is a cocycle if and only if (dJl)(s, t) = 
JltJl.t-IJl. t = 1 (the 0 of P*). This is equivalent to Jl.t = JltJl/ 
which are Emmy Noether's equations (61). If 'Y e P*, then 'Y is 
a O-cochain and its coboundary is the 1-cochain j(s) = 'Y('Y.)-l. 
Theorem 19 can now be re-interpreted as the statement that 
every 1-cocycle of G relative to P* is a coboundary. In other 
words, Zl / BI = 1, or the first cohomology group oj G relative #0 

p* is the identity. 
If (s, t) -t Jl.,t is a 2-cochain, then the coboundary definition 

gIves 
(dJl)(s, t, u) = Jlt,uJl8t,u -IJl8,tu(Jl8,t") -1. 

It follows that Jl8,t is a 2-cocycle if and only if Jl.,tuJlt,u = 

Jl.t,uJl.,t", s, t, u e G and these are just the conditions (66) defin-
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ing a factor set. Thus the 2-cocycles are just the factor sets. If 
s ~ "'8 is a l-cochain, its coboundary d", is given by (d",)(s, t) = 
"'th'.t) -1",/. Hence 2-coboundaries are just the factor sets 
equivalent to 1. The general considerations imply that the set of 
factor sets form a group under multiplication: (fJ.p).,t = fJ..,tP.,t. 

The factor sets equivalent to 1 form a subgroup and the second co
homology group H2(G, P*) is the factor group of the first of these 
groups relative to the second. As we have seen, in general the co
homology group HO(G, P*) is the set of G-invariants of P*. Thus 
this is the multiplicative group 4>* of the subfield 4>. 

An entirely analogous discussion can be made for the additive 
group (P, +) considered as an /(G)-module by means of the 
definition pa = E m.p·. It is easily seen that Theorem 20 states 

IJf!.G 

that the first cohomology group of G relative to (P, +) is O. It can be 
shown that if the characteristic of P is either 0 or not a divisor of 
the order n of G, then all the cohomology groups Hr(G, P) = 0, 
r ;::: 1. This is an immediate consequence of ex. 2 below. 

EXERCISES 
1. Prove tP = o. 
2. Let G be a finite group of order n and let 9)1 be a module for 1(G) which is 

uniquely n-tiivisible in the sense that for any y e 9)1 there exists a unique x 

(written as ~y) such that nx = y. Prove that the groups Hr(G,9)1) = 0 for 

r> 1. 
3. Let P Iii> be a cyclic fidd extension, [P:iI>j = n, r a divisor of n, '" a non-zero 

element of II> such that ",r = NPI"'(P), peP. Prove that", = NEI",(fJ) where 
E/II> is the (unique) subfield of PIli> such that [P :Ej = rand fJ e E. (Hint: Set 
n = mr and consider the element fJ = pp' ... p,l''''. Show that NpIE(fJ) = ",r 

and apply Hilbert's Satz 90 to fJ-Ly.) 

16. Composites of fields. In this section we consider a prob
lem which can be formula fed roughly in the following manner. 
Given two extension fields E and P over 4>, to determine the ways 
these can be put together to form another extension field of 4>. 
More precisely we seek to determine the composite fields of E and 
P over 4> in the following precise sense. 

Definition 3. Let E and P be two fields over 4>. Then a composite 
field of E/4> and P /4> is a triple (r, s, t) where r is a field over 4> and 
sand t are isomorphisms of E/4> and P /4> respectively into r /4> such 
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that r is generated as a field by the images E 8 and pt. The com
posites (r, s, t) and (r', s', t') of E/<I> and P /<1> are equivalent if there 
exists an isomorphism u of r /<1> onto r' /<1> such that su = s' and tu = 
t'. 

The problem is to determine the equivalence classes of com
posites. We shall consider this question now under the assump
tion that one of the fields, say P, is finite dimensional over <1>. In 
Chapter IV (§ 10) we shall investigate the problem for infinite 
dimensional extensions. 

Suppose (r, s, t) is a field composite of E/<I> and P /<1> where 
[P:<I>j = n < 00. We consider the subset 

E8 p t = { ~ E/p/ lEi e E, Pi e p} . 
Clearly this is the subalgebra of r /<1> generated by the two sub
algebras E8/<I> and pt /<1>. Also it is immediate that, if (Ph P2, ... , 
Pn) is a basis for P/<I>, then E8pt = E8pl t + E8p2 t + ... + E8pn t, 
the set of E8-linear combinations of the p/, 1 ~ i ~ n. Since r 
and hence E8pt is commutative, E8pt is an algebra over E8 and 
[E 8p t: E8] ~ n < 00. Since E8p t is contained in a field, it has no 
zero divisors; hence by VII of the Introduction, Espt is a field. 
Since r is the subfield of r generated by E8 and pt, we see that 
r = E8pt. This important relation leads us to look at the tensor 
product algebra E ®<t> P whose elements we indicate in the 
original notation: 2;Ei ® Pi. The basic property of the tensor 
product is that the mapping 2;Ei ® Pi ~ 2;E/p/ is a homomor
phism of E ®<t> Ponto r = E8pt. If 3 is the kernel of this homo
morphism, then r rv (E ®<t> P)/3. Since r is a field, this implies 
that 3 is a maximal ideal: 3 is a proper subset of E ® P and there 
exists no ideal 3' such that E ® P ::J 3' ::J 3. Conversely, if 3 
is a maximal 'ideal in E ® P, then r = (E ® P)/3 ~ 0 and this 
has no ideals ~ 0, E ® P. Hence r is a field (Vol. I, p. 77). We 
can now state the following result. 

Theorem 21. Let E/<I> and P /<1> be fields such that [P :<1>] < 00 

and let 3 be a maximal ideal in E ®<t> P. Let s be the mapping E ~ 
E ® 1 + 3 of E into r = (E ® P)/3 and let t be the mapping 
P ~ 1 ® P + 3 of Pinto r. Then (r, s, t) is a field composite 
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of E/tt> and P /tt>. Distinct maximal ideals 3', 3" in E ® P give 
rise in this way to inequivalent composites. Moreover, every.field 
composite of E/tt> and P /tt> is equivalent to one of the (r, s, t) given by 
a maximal ideal 3' in E ® P. 

Proof. If 3' is a maximal ideal in E ® P, then E ~ E ® 1 is a 
homomorphism into E ® P so s: E ~ E ® 1 + 3' is a homo
morphism into r = (E ® P)/3'. Since 1 ~ 1 + 3' and E is a 
field, s is an isomorphism. Similarly t:p ~ 1 ® P + 3' is an iso
morphism of P /tt> into r. Any element of r has the form ~Ei ® 

Pi + 3' and Ei ® Pi + 3' = (Ei ® 1 + 3')(1 ® Pi + 3') = E/p/; 
hence r is generated by E8 and pt. Also r is a field since 3' is 
maximal. Hence (r, s, t) is a composite. Next let 3' and 3" be 
two maximal ideals, (r, s, t), (r, s', t') the associated composites 
and assume that there exists an isomorphism u of r /tt> onto r'/tt> 
such that s' = su, t' = tu. Let ~Ei ® Pi e 3'. Then the defini
tions of s, t give the relation ~E,8p/ = 0 in r. Applying u we ob
tain ~E/ p/ = 0 which means that ~Ei ® Pi e 3<'. Thus we see 
that 3' C 3". Since 3' is maximal we have 3' = 3". We have 
therefore proved that, if the composites (r, s, t), (r, s', t') are 
equivalent, then 3' = 3". Finally, let (r', s', t') be a composite of 
E/tt> and P /tt> constructed in any way. We have seen that the 
mapping ~Ei ® Pi - ~E/p/ is a homomorphism of E ® Ponto 
r' whose kernel 3' is a maximal ideal in E ® P. We have the in
duced isomorphism u: ~Ei ® Pi + 3' ~ ~E/p/ ofr = (E ® P)/3' 
onto r'. One checks that this is an equivalence of the composite 
(r, s, t) defined by 3' with (r', s', t'). This completes the proof. 

We have now established a bijection of the collection of equiva
lence classes of com posi tes with the collection {3' l of maximal 
ideals in the tensor product E ®<I> P. Since E ®<I> P can be con
sidered as a finite dimensional algebra over E (Introduction), the 
following result implies that there are only a finite number of 
equivalence classes of composites of E/tt> and PItt>. 

Theorem 22. d finite dimensional algebra with an identity ele
ment has only a finite number of distinct maximal ideals. If these 

" are 3'1, 3'2, .. " 3'" and ~ = n 3';, then ~ = ~/~ '" r 1 EB r 2 EB 
1 
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Proof. The direct sum r 1 EB r 2 EB' . 'EB r h is just the set of h
tuples ('Yh'Y2," ','Yh), 'Yieri, where equality is defined by 
equality of components and addition and multiplication are also 
by components. Evidently the dimensionality of the direct sum 
is the sum of the dimension all ties of the r j. Now let 3h .. " ~h 
be any distinct maximal ideals and let 58 = r 1 EB r 2 EB' . 'EB rh, 
r j = ~/3j. We define a homomorphism of ~ into 58 by mapping 
a ~ (a + 3h a + 32, .. " a + 3h)' The fact that this map
ping is a homomorphism is immediate. The kernel 9? of this 
homomorphism is the set of elements a such that a + 3j = 3j 

h 

for every j. Hence 9? = n 3j. We shall now show that the 
1 

homomorphism is surjective. We show first that 31 + 3233 ... 3h 
=~. Since the 3j are distinct maximal ideals, ~ = 31 + 32 
and ~ = 31 + 33' Multiplication gives ~ = ~2 = 312 +3133 + 
3231 + 3233 = 31 + 3233, Now suppose we already have ~ = 
31 + 32 ... 3k. Since ~ = 31 + 3k+l a similar multiplication 
gives ~ = 31 + 3233 ... 3k+l' Hence we have ~ = 31 + 
32 ... 3h and this implies that ~ = 31 + (32 n .. , n 3h) since 
32 ... 3h C 32 n ... n 3h. If a is any element of ~, then our 
relation shows that a = b + c where be 3h c e 32 n··· n 3h. 
Hence the image of c in our homomorphism is (c + 3h C + 32, 
.. " c + 3h) = (a + 3h 32, ... , 3h), which shows that, if 'Yl is 
any element ofrh then the element ('Yh 0, ",,0) is in the image 
of the homomorphism. 141 a similar fashion, if 'Yi is any element 
of r i, then (0, ... 0, ')'i,O, ... 0) is in the image. Addition shows 
that any element ('Yh 'Y2, .. " 'Yh) is in the image so the homo
morphism is surjective. It is now clear that, if 3h 32, .. " 3h 
are distinct maximal ideals, then the dimensionality [~:«II] ~ 

h 

L [rj:«II] where r; = ~/3j. Since every [rj:«II] > 0, this of 
1 

course puts a bound on the number of 3j. Also we have seen 
that, if 3h 32, .. " 3h are distinct maximal ideals and 9? = n 3h, 
then ~/9? ::: r 1 EB' . 'EB rho 

We shall now obtain more precise information on composites 
under the assumption that P = «11(8) is a simple algebraic exten
sion of «II. Let f(x) be the minimal polynomial of 8 over «II. Then 
(1,8,82", ',8n - 1) is a basis for P/«II and (In = ClO + Cll(J + ... + 
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an_10n-1, if f(x) = xn - an_1xl1-1 - ... - ao. Now consider 
E ®~ P. The elements of this algebra can be written in one 

n-1 
and only one way as L: Ei ® 0', Ei e E. We consider E ®~ P 

o 
as an algebra over E by defining 1](~Ei ® 0') = ~1]Ei ® 0',1] e E (cf. 
Introd.). Then it is clear that 1 ® 0 is a generator of E ®~ P 
over E and the minimum polynomial over E of this element is f(x). 
Thus we see that E ®~ P '" E[x]/(f(x)). The ideals of this alge
bra have the form (p(x))/(f(x)) where p(x) is a divisor of f(x) 
and such an ideal is maximal if and only if p(x) is irreducible. 
Then the difference algebra (E[xJ!(f(x))/((p(x)/(f(x))) is iso
morphic to the field E[xJ!(p(x)). 

Suppose finally that P is a finite dimensional separable exten
sion ofel>. Then we know that P = eI>(O) where the minimum poly
nomial f(x) of 0 is irreducible and separable. The derivative 
criterion shows that in E[x] we have the factorization f(x) = 
P1(X)P2(X) ... Ph(X) where pj(x) is irreducible of positive degree 
and Pi(X) ;c pj(x) if i ;c j. Thus we see that we have h inequiva
lent field composites of P and E over eI>. These have the form 
(rj, Sj, Ij) where rj '" E[xJ!(pj(x)). Also by ex. 1, § 2 of Introd., 

h 

E ®~ P ~ E[xJ!(f(x)) '" r 1 E9 r 2 E9' . 'E9 r h and L: [ri:E] 

(P:eI>]. We state this result as 

Theorem 23. Let P /eI> be .finite dimensional separable and let 
E/eI> be an arbitrary extension .field. Ij 0 is a primitive element oj P 
and j(x) its minimum polynomial over eI>, then the .field composites 
(r, s, t) are in 1-1 correspondence with the irreducible jactors p(x) 
oj j(x) in E[x]. Ij (r;, s;, Ij), j = 1, "', h are the inequivalent 

h 

composites of P/eI> and E/eI>, then (P:eI>] = L: [rj:E]. 
j=l 

EXERCISES 

1. Show that, if P leI> is finite dimensional Galois, then there are n = [P :eI>] in
equivalent composites of P with itself and, if cr, s, t) is one of these, then r = 
P' = pt. Use this to prove that P ®~ P~ p(1) E9 p(2) E9 ... E9 p(n) where 
P(i) '" P. 

2. Let P be finite dimensional Galois over eI> and let E be a subfield of P over 
eI>. Show that P ®~ E '" p(1) E9 P(2) E9 ... E9 p(m) where pm '" P and m = 
[E:eI>]. 
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3. Let P /<I> be finite dimensional separable. Show that P /<I> and E/<I> have 
only one (in the sense of equivalence) composite if either 1) E/<I> is purely in
separable, or 2) E = <I>(~l, ~2, ••• ,~n) the field of rational expressions in indeter
minates ~i' 

4. Define a composite (r, h, S2, .. " Sr) of r extension fields Pi/<I>, 1 ::::; i ::::; r, as 
a field r /<I> and isomorphisms Si of Pi into r such that r is generated by the sub
fields Pi". Call two such composites (r, Sl, .. " Sr), (r', Sl', .. " sr') of Pi 
equivalent if there exists an isomorphism u of r /<I> into r' /<I> such that s/ = SiU, 
1 ::::; i ::::; r. Assume every Pi/<I> is finite dimensional and prove that Theorem 21 
generalizes to composites (r, Sl, .. " sr) and the tensor product PI ® P 2 ® ... ® 
Pr' 

5. Let P /<I> be finite dimensional Galois and let (h, S2, ... , Sr) be an ordered 
r-tuple of automorphisms of P /<I>. Then (P, Sl, S2, ... , Sr) is an r-fold composite 
of P /<I>. Show that (Sl, ... , Sr), (h', ... , sr') determine equivalent composites if 
and only if s/ = SiU is an automorphism of P /<I>. Let 3(Sl, ... ,Sr) be the ideal 
in P ® P ® ... ® P (r factors) associated with (P, Sl, ... , Sr)' Use the fact 
that there are [P : <I>jr-l distinct ideals 3(sl, ... , Sr) and that 

(P ® ... ® P) /3(h, ... , Sr) r-.J P 

to prove that the 3(SI, ... , Sr) are the only maximal ideals in p(r) == P ® ... ®P 
and that every r-fold composite of P /<I> is equivalent to one of the composites 
(P, SI, S2, ... , ST)' Note that 3(SI, ... , Sr) is the kernel of the homomorphism 
of P (T) /<I> in to P /<I> such that 



Chapter II 

GALOIS THEORY OF EQUATIONS 

In this chapter we shall consider the classical application of 
Galois theory: Galois' criterion for solvability by radicals of a 
polynomial equation J(x) = O. To say that an equation is solv
able by radicals means roughly that its roots can be obtained 
from the coefficients by rational operations and root extractions. 
A criterion for this was given by Galois after Abel and Ruffini had 
proved that the general equation of the fifth degree is not solvable 
by radicals. Galois was led to the development of his theory in 
order to give the criterion for solvability by radicals. Besides the 
fundamental group-field correspondence which we gave in the last 
chapter and whose scope goes far beyond the theory of equations, 
some results of a more special nature are needed. These concern 
cyclotomic fields, that is, fields of the roots of 1, and "pure" ex
tensions P = <1>(0), on = a in <1>. The study of these fields is 
interesting also beyond the theory of equations and we shall under
take a detailed study of such fields in the next chapter. In the 
present one we confine ourselves to the minimum which is needed 
for the theory of equations. 

1. The Galois group of an equation. Let q, be a field,f(x) a poly
nomial of positive degree in q,[xJ having leading coefficient 1. Let 
P /q, be a splitting field of J(x) , so p = q,(PI, .. " Pm) andJ(x) = 
(x - Pl)e1(X - P2)e2 ••• (x - Pm)e", in P[xJ where the Pi are dis
tinct and the ei are positive integers. Since the Pi are generators 
of P /q" any automorphism s of P /q, is completely determined by 
its action on the fini te set of roots R = I PI, P2, .. " Pm I. Also 
each Pi" is again a root ofJ(x), so Pi" e R and the restriction Sf of S 

to R is a permutation of this finite set. Thus we see that every s 
89 
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of the Galois group G of P /11> defines a permutation Sf of R. The 
mapping s ~ Sf is a homomorphism of G into the symmetric 
group S(R) of 1-1 mappings of R. Moreover, if s e G has the 
property that p/ = Pi, 1 ~ i ~ m, then s = 1 in P = II>(Pl) .. " 
Pm). Consequently, s ~ Sf is an isomorphism of G with a sub
group Gf = {Sf} of the symmetric group S(R). In view of this 
isomorphism we are led, in studying the equation f(x) = 0, to 
shift our attention from the group G to the permutation group 
Gf • Accordingly, we give the following 

Definition 1. If II> is afield andf(x) is a non-zero polynomial in 
lI>[x], then the Galois group of the equationf(x) = 0 over II> is the 
group Gf induced by the Galois group G of a splitting field P / II> in the 
set of roots of f(x) = 0 in P. 

Since any two splitting fields are isomorphic, Gf is essentially 
uniquely determined by II> andf(x). 

It is convenient to identify the permutation Pi ~ p/ of R with 
the permutation i ~ if of {I, 2, .. " m}. In this way we can 
consider Gf as a subgroup of the symmetric group Sm of per
mutations of {I, 2, .. " m}. We shall do this from now on. 
Moreover, we assume in the sequel thatf(x) has simple roots, that 
is, the ei = 1. This implies that P /11> is Galois. Hence we have 
the fundamental correspondence between the collection of sub
groups of the Galois group G and the collection of subfields E/II> of 
P /11>. Combining this with the isomorphism of G onto Gf we ob
tain a 1-1 correspondence between the collection of subgroups of 
Gf with the collection of subfields E/II>. We shall refer to the sub
field E/II> corresponding to a subgroup Hf of Gf as the "field of in
variants of Hf ." In reality, of course, E/II> is the field of invariants 
of the subgroup H of G corresponding to Hf • In the other direc
tion, H f is the Galois group off(x) = 0 over the subfield E. 

We recall that the symmetric group Sm contains the alternating 
group Am as an invariant subgroup of index 2. Am is the set of 
even permutations, that is, the set of permutations which can be 
written as products of an even number of transpositions (ij) (Vol. 
I, pp. 35-36). If Gf is the Galois group of the equationf(x) = 0 
over 11>, then Gf n Am is a subgroup of index 1 or 2 in Gf • We shall 
now give an identification of the corresponding subfield of P/II>, 
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assuming the characteristic is not two (see ex. 1 below for the 
characteristic 2 case). The result is the following 

Theorem 1. Let «I> be afield of characteristic ;;c 2 andf(x) a non
zero polynomial e «I>[x] without multiple roots. Let P /«1> be a splitting 
field of f(x), Ph P2, .. " Pm its roots, Gf the Galois group of the equa
tion f(x) = 0 considered as a permutation group of {1, 2, .. " m}. 
Then the subfield of invariants of Gf n Am is «I>(.(l), where 

m 

(1) .(l = II (pi - Pi)' 
i<i=1 

Proof. We recall a standard characterization of the alternating 
group. For this one considers the ring «I>[Xh X2, •• " xm], Xi in
determinates. If i ~ ilT is a permutation of 1,2, .. " m, then we 
have the automorphism A(u) of «I>[Xh .• " Xm] over «I> such that 
xl (IT) = X,.fT' (Vol. I, p. 107, and Introd.). Let X = II (Xi - Xi)' 

i<i 

Then XA(IT) = x(u)X where x(u) = 1 or -1 according as u is even 
or odd (cf. Vol. I, ex. 2, p. 110). Now let 7r be the homomorphism 
of «I>[Xh X2, •• " xm] over «I> into P /«1> such that xl = Pi, 1 ~ i ~ 
m. Let s be in the Galois group of P /«1>, Sf the corresponding per
mutation of the Pi. Then if we apply 7r to the relation XA(B,) = 
X(Sf)X we obtain .(lB = X(Sf).(l where .(l is given by (1). Since 
.(l ;;c 0 we see that .(lB = .(l if and only if Sf e Gf n Am. Thus the 
Galois group of the equation f(x) = 0 over «I>(.(l) is Gf n Am. 
Consequently, by the Galois correspondence, «I>(.(l) is the set of 
invariants of Gf n Am. 

We have seen that for any s e G, .(lB = ±.(l; hence if 5 = .(l2, 
then 58 = 5 for all s and so 5 e «1>. We have seen also that the 
statement of the theorem is equivalent to the assertion that the 
Galois group of the equation f(x) = 0 over «I>(.(l) is Am n G. 
This implies the 

Corollary. The Galois group of f(x) = 0 over «I> is a subgroup of 
the alternating group if and only if 5 is the square of an element of «1>. 

Proof. Clearly the condition Gf C Am or Gf = Gf n Am is 
that «I>(.(l) = «1>. If this holds, then .(l e «I> and 5 = .(l2 is a square 
of an element of «1>. Conversely, if 5 = a 2, a e «1>, then 5 = .(l2 
gives .(l = ±a e «1>. Hence «I>(.(l) = «1>. 
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We recall that, if () is a separable algebraic element over cI> and 
(}l = (), (}2, ••• , (}n are the distinct images of () under the isomor
phisms of cI>«(}) into its normal closure, then a = II «(}i - (}j)2 

i<i 
is a discriminant of the field cI>«(})/cI> (cf. § 1.14). If f(x) = 
(x - Pl) (x - P2) ... (x - Pm), as before, then we shall call a = Ll2 

= II (Pi - pj)2 the discriminant of the polynomial f(x) or of the 
i<i 

equationf(x) = o. It follows from the main theorem on symmetric 
polynomials (Vol. I, p. 109) that a can be expressed as a poly
nomial with coefficients in the prime field in the coefficients of 

(2) f(x) = xm - alxm - l + a2Xm-2 - ... + (-l)mam. 

We shall now indicate how this can be done. We begin with the 
Vandermonde formula: 

1 1 1 

(3) 
Pl P2 Pm 

= II (Pi - Pj). 
i>j 

PI 
m-l P2 m-l Pm m-l 

Squaring we get 

m O"m_l 

(4) a = 
0"3 

where O"i = Pl i + P2 i + ... + Pmi• Since the power-sums can be 
expressed as polynomials in the ai with coefficients in the prime 
field, (4) will give the same kind of expression for a. * 

We shall now carry this out for the cases m = 2,3. 
m = 2. We havef(x) = x2 - alX + a2 = (x - Pl)(X - P2) so 

0"1 = PI + P2 = al and PIP2 = a2' Then 0"2 = P1 2 + P22 = 
(PI + P2)2 - 2PIP2 = a1 2 - 2a2' The formula (4) gives 

(5) 

* That this can be done follows from the fundamental theorem on symmetric poly
nomials (Vol. I, p. 109). Explicit recursion formulas, the so-called Newton's identities 
can be used to express the IT; in terms of <Xi (Vol. I, ex. 4, p. 110). 
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m = 3. Here f(x) = xa - alx2 + a2X - aa = (x - Pl)(X -

P2) (x - Pa) so 0"1 = PI + P2 + Pa = ah PlP2 + P2Pa + PlPa = a2, 
PlP2Pa = aa. Then 0"2 = P1 2 + P2 2 + pa2 = (PI + P2 + pa)2 -
2(PlP2 + PlPa + P2pa) = a1 2 - 2a2' To calculate 0"3 and 0"4 we 
use the relations Pka = alPk2 - a2Pk + a3,Pk4 = alPka - a2Pk2 + 
aaPk. Then 

O"a = PIa + P2a + Paa 

= al(P12 + P22 + pa2) - a2(Pl + P2 + Pa) + 3aa 

= al(a12 - 2a2) - a2al + 3aa 

= ala - 3ala2 + 3aa 

= al(ala - 3ala2 + 3aa) - a2(a1 2 - 2a2) + aaal 

= a14 - 4a12a2 + 4alaa + 2a22• 

Using (4) and these formulas we obtain 

(6) 0 = 30"20"4 + 20"10"20"a - 0"2a - 30"a2 - 0"120"4 

= -4alaaa + a1 2a22 + 18ala2aa - 4a2a - 27aa2. 

We obtain next a criterion on Gf as permutation group of 
{1,2, .. " m} that f(x) be irreducible in lJ>[x). This is the following 

Theorem 2. Let f(x) e lJ>[x] have no multiple roots in its splitting 
field P. Then f(x) is irreducible in IJ>[.\'] if and only if the Galois 
group Gf of f(x) = 0 over IJ> is a transitive permutation group. 

Proof. We recall that a transformation group of a set M is 
called transitive if given any pair (x,y), x,y eM there exists a 0" 
in the group such that xtr = y. Suppose first thatf(x) is irreduci
ble in lJ>[x] and let Ph P2 be two of its roots in P. Sincef(x) is ir
reducible and f(Pl) = 0 = f(P2) , there exists an isomorphism of 
IJ>(Pl)/1J> onto IJ>(P2)/1J> mapping PIon P2. This isomorphism can 
be extended to an automorphism s of P/IJ>. Then s e G and 
P1 8 = P2. This implies that Gf is transitive. Conversely, suppose 
Gf is transitive. Let /I (x) be an irreducible factor of f(x) of 
positive degree and let PI be one of its roots. Let P2 be any root of 
f(x). Then there exists an s e G such that PI 8 = P2. Then 
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fl(P2) = fl(Pl B) = fl(Pl)B = O. This shows that every root of 
j(x) is a root of h(x). Hencef(x) = fl(X) is irreducible. 

The two results which we have derived make it trivial to calcu
late the Galois groups of quadratic and cubic equations. Similar 
ideas can be applied to quartics. We shall look at the first two 
cases now and will indicate how quartics can be handled in the ex
ercises which follow. We assume that the characteristic of «I> is 
not 2 and that f(x) has distinct roots. If f(x) is a quadratic: 
f(x) = x2 - alX + (2) then the group is the symmetric group S2 
or A2 = 1 according as 0 = al 2 - 4a2 is not or is a square in «1>. 
Next letf(x) = xa - alX + a2X - aa. If f(x) = (x - p)g(x) in 
«I>[x], then the Galois group of f(x) = 0 is the same as that of the 
quadratic g(x). Hence we may assume f(x) irreducible in «I>[x]. 
Since the only transitive subgroups of Sa are Sa and Aa, the Galois 
group G, is one of these. The corollary to Theorem 1 shows that 
G, = Aa if 0 = -4alaaa + al2a22 + 18ala2aa - 4a2a - 27aa2 is 
a square in «1>. Otherwise, G, = Sa. 

EXERCISES 

1. Assume <I> has characteristic 2 andf(x) e <I>[x] has distinct roots P1, P2, •. " Pm 
in its splitting field P. Let t::..' = L Pl"n-lp2"n-2 ••• p(n-W' Show that the 

'lOAm 

subfield of invariants of G, n Am is <I>(t::..'). 
2. Let <I> be a finite field, f(x) an irreducible polynomial of n-th degree with co

efficients in <1>. Show that G, consists of the powers of an n-eycle which may be 
taken to be (123 ... n). 

In the remainder of the exercises we assume the characteristic of the base field 
<I> is ~ 2, f(x) = x' - alx3 + a2x2 - aaX + a, has distinct roots PI, P2, Pa, P4 in 
the splitting field P /<1>, G the Galois group of P /<1>. 

3. Show that the subgroup P (Klein's Vierergruppe) = {I, (12)(34), (13)(24), 
(14)(23)} is invariant in 84• 

4. Show that the subfield of invariants relative to G, n Pis <1>(71,72,73) where 
71 = PIP2 + PaP4, T2 = PIPs + P2P4, 73 = PIP4 + P2Ps· 

5. Let g(x) = (x - 71)(X - T2)(X - T3) (the resolvent cubic of f(x». Verify 
that 

(7) 

where 
~l = at 

(8) ~2 = alaS - 4a4 

(Js = a12a4 + aa2 - 4a~4 

and that g(x) andf(x) have the same discriminant. 
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6. Prove that the transitive subgroups of S. are (i) S., (ii) A., (iii) Y, (iv) C = 
{1, (1234), (13)(24), (1432) I and its conjugates, (v) D = Y U {(12), (34), (1423), 
(1324) I a Sylow 2-group (subgroup of order 8) and its conjugates. 

7. Show that the Galois group G, of g(x) = 0 is isomorphic to GJi(G, n 1'). 
Assume f(x) is irreducible and verify that, if(i) G, = S., then G, is of order 6, (ii) 
Gl = A., G, is of order 3, (iii) G, = Y, G, = 1, (iv) G, = C or one of the con
jugates (that is, any cyclic subgroup of order 4 of S.), then G, is of order 2, (v) 
G, = D or one of its conjugates (any Sylow subgroup of order 8 in S.), then G, is 
of order 2. Note that these results identify G, if we know G, unless G, is either as 
in (iv) or (v). 

8. Prove that, if G, is of order 2, then G/:::::. D or G, '" C according as f(x) is or 
is not irreducible in 4>(~) where a is the discriminant o£j(x). 

9. Determine the Galois group of x' + 3x8 - 3x - 2 = 0 over the field of 
rational numbers. 

2. Pure equations. In this section we shall derive the special 
results which are needed for Galois' criterion. We shall formulate 
these in the invariant fashion in terms of splitting fields rather 
than, as in the last section, of the groups of equations. The re
sults we need concern equations of the form xn - a = 0 (or xn = 
a) which are called pure (or binomial) equations. Occasionally, 
we use the notation p = ~ or p = a l /n to indicate that p is a 
root of xn = a. We consider first the case a = 1. The roots of 
xn = 1 are called the n-th roots of 1 and a splitting field P of this 
equation is called a cyclotomic field of order n over CPo The 
derivative (xn - 1)' = nxn- l is not relatively prime to xn - 1 if 
and only if the characteristic is p ¢ 0 and pin. Then we can write 
n = pen', (n', p) = 1 and we have xn - 1 = (xnl - 1)P·. Hence 
the cyclotomic field of order n coincides with that of order n'. 
We shall therefore assume from now on that p % n in the char
acteristic p ¢ 0 case. 

Let P /cp be a cyclotomic field of order n over CPo Because of 
our assumption on the characteristic, the set Zen) = {td of n-th 
roots of 1 contains n elements. If min, then 11m = 1 implies 
11n = 1; hence the cyclotomic field of order n contains that of 
order m for every divisor m of n. We observe next that Zen) is a 
subgroup of the multiplicative semigroup of P. This is clear since 
tln = 1 = t2n imply (tlt2)n = 1, (rl-l)n = 1. Since Zen) is 
finite, this is a cyclic group (Lemma 1, § 1.13). Hence there 
exists are Zen) such that Zen) = {rili = 0,1, "', n - l}. 
Such a r is called a primitive n-th root of 1. Since P / cP is generated 
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by the ri, we have P = q,(r) so r is a primitive element of the field 
P/q,. We shall now prove 

Theorem 3. If the characteristic of q, is not a divisor of n (0 in
cluded), then the Galois group G of the cyclotomic field P / q, qf order 
n is isomorphic to a subgroup of the multiplicative group U(n) of 
units in I/(n), I the ring of integers. 

Proof. As in § 1 let G, denote the group of permutations of the 
set Z(n) of roots induced by G. Since the elements of G, are 
restrictions of automorphisms, it is clear that they are automor
phisms of the multiplicative group of Z(n). Hence G, ('"'" G) is 
isomorphic to a subgroup of the group of automorphisms of Z(n). 
Now Z(n) is a cyclic group of order n and it is well known that the 
group of automorphisms of such a group is isomorphic to U(n) 
(Vol. I, ex. 3, p. 47, and ex. 1, p. 82). Hence the Galois group G 
is isomorphic to a subgroup of U(n). 

It is important to note that G is commutative since U(n) is 
commutative. Moreover, we observe that, if I is a prime, then 
U(l) is just the multiplicative group (of order I - 1) of the field 
1/(1) and this is a cyclic group. Hence G which is isomorphic to a 
subgroup of U(l) is cyclic. We therefore have the 

Corollary. If the notation is as in Theorem 3, then G is a com
mutative group and G is cyclic if n is a prime. 

Next we consider the Galois group of any pure equation x" = a 
under the assumption that the base field q, contains n distinct 
n-th roots of 1. We have seen that this implies that the charac
teristic is not a divisor of n. Then x" - a is prime to its deriva
tive nx .. - l if a ~ 0 (the case a = 0 is trivial) and so x" - a has n 
distinct roots. We have the following 

Theorem 4. If q, contains n distinct n-th roots of 1 then the 
Galois group of the equation x" = a over q, is cyclic of order a divisor 
ofn. 

Proof. Let P /q, be a splitting field over q, of x" - a, G its 
Galois group. We have to show that G is cyclic. If a = 0, we 
have P = q" G = 1. Hence we assume a ~ o. Let p be one of 
the roots of x" - a in P. If Z(n) = {tl = 1, r2, ... , r .. } is the 
set of n-th roots of 1 contained in q" then we know that Z(n) is a 
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cyclic group under multiplication and, since P ~ 0, it is clear that 
{PSI, PS2, ... , PSn} is the set of roots of xn - a. Evidently P = 
<I>(p); so an automorphism s eGis completely determined by its 
effect on p. We have p8 = Si(B)P where Si(B) is one of the r's e Zen) 
and is uniquely determined by s. If t e G and pt = Si(t)P, then 

pBt = Si(B)pt = Si(B)Si(t)P. 

This shows that the mapping s ----+ Si(B) is a homomorphism of G 
into Zen). If Si(B) = 1, we have p8 = P so s = 1. Hence s----+ 
SiCS) is an isomorphism. Thus G is isomorphic to a subgroup of 
the cyclic group Zen) and the result is clear. 

We shall need one more special result for the proof of Galois' 
criterion. This is the following converse of Theorem 4. 

Theorem 5. Assume <I> has n distinct n-th roots of 1 and let P /<1> 
be a cyclic n dimensional extension field. Then P = <I>W where 
It = a e <1>. 

Proof. The hypothesis on P is that P/<I> is Galois with Galois 
group G which is cyclic of order n. Since P is separable over <I> it 
has a primitive element so P = <1>(0). Let s be a generator of G 
and let ~ be the "Lagrange resolvent": 

(9) ~ = 0 + 08S-1 + 082S-2 + ... + 08,,-ls-(n-l) 

where S is a primitive n-th root of 1. Then 

~8 = (JB + o82r-1 + ... + Or-(n-I) 

= s(O + O'S-l + ... + o...-lS-(n-l») = s~. 

Then ek = Sk~ so ~ has n distinct conjugates and hence its mini
mum polynomial is of degree n. Consequently P = <I>(~). Set 
It = a. Then (~)8 = (s~)n = ~n implies that a 8 = a so a e <I> and 
the proof is complete. 

EXERCISES 

1. Letp be a prime not equal to the characteristic of.the field <P. Show that, if 
a e <P, then xP - a is irreducible in <p[x] or it has a root in this field. 

2. Let <P be the field of rational numbers, p a prime, and let xP - a be ir
reducible in <p[x]. Show that the Galois group of the equation xP = a over <P is 
isomorphic to the group of transformations in I/(p) which have the form y ~ 
'YY + a, 'Y :;6 O. 
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3. Let <1> be a field of characteristic p ~ o. Show that xP - x - ex is ir
reducible in <1>[x] unless ex = {3P - {3, {3 in <1>. Show also that, if xP - x - ex is 
irreducible, then the group of the equation xP = x + ex is cyclic of order p. 
(Hint: Show that, if p is a root of xP - x - ex = 0, then p, p + 1,p + 2, ... , 
p + (p - l)are roots. Hence show that the Galois group of the equation is iso
morphic to a subgroup of the additive group of I/(p).) 

4. Let <1> be of characteristic p ~ 0, P /<1> cyclic and p dimensional. Show that 
P can be generated over <1> by an element ~ such that ~ - ~ = ex e <1>. 

3. Galois' criterion for solvability by radicals. It is essential 
first to have a precise formulation of the statement that an equa
tionf(x) = 0 is solvable by radicals over a field~. We give this in 
the following 

Definition 2. Let ~ be afield and letf(x) e ~[x] be of positive de
gree. Then the equation f(x) = 0 is said to be solvable by radicals 
over ~ if the splitting .field P / ~ can be imbedded in a field ~ which 
possesses a tower of su~fields: 

(10) ~ = ~1 C ~2 C ~a C ... C ~r+l = ~ 
where each ~i+l = ~i(~i) and ~l; = (Xi e ~i' A chain of fields such 
as (2) is called a root tower for ~/~. 

For the sake of simplicity we restrict our attention to fields of 
characteristic O. This will avoid the complications of insepara
bility and some difficulties with roots of 1 in the characteristic 
p rf 0 case. Our objective is to establish the following criterion 
of Galois: 

An equation f(x) = 0 is solvable by radicals over a .field ~ of 
characteristic 0 if and only if its Galois group is solvable. 

We recall that a group G is defined to be solvable if it has a 
chain of subgroups G = G1 ::J G2 ::J Ga ::J ••• ::J Gr +l = 1 such 
that each GH1 is invariant in Gi and GdGi +1 is commutative. 
Every subgroup and homomorphic image of a solvable group is 
solvable. Moreover, if G contains an invariant subgroup H 
such that Hand G/H are solvable, then G is solvable. A finite 
group G is solvable if and only if it has a composition series G = 
G1 ::> G2 ::> ... ::> G'+l = 1 whose composition factors GdGi +1 

are cyclic of prime order. We recall also that the alternating 
group An, n ~ 5, is simple and this implies that the symmetric 
group Sn on n letters is not solvable if n ~ 5. A proof of the 
statement about An ·is given in Vol. I, p. 139. All of the other 
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results which we have stated are easy consequences of the theory 
of normal series and most of these have been given as exercises in 
Vol. I, pp. 139, 143. At any rate we shall assume all of these 
results. 

In order to prove the necessity of Galois' criterion we shall need 
the following 

Lemma. If ~ has a root tower ouer 4> of characteristic 0, then 
~ has an extension field 0 which is finite dimensional Galois ouer 4> 
and also has a root tower ouer 4>. 

Proof. We are given 4> = 4>1 C 4>2 C ... C 4>r+l = ~ where 
4>.+1 = 4>'(~i)' ~t' = ai e 4>.. We shall show that there exists a 
field .:1i :J ~ which also contains a subfield 12i such that 1) 12i :J 4>i, 

2) 12i is Galois over 4>,3) 12. has a root tower over 4>: 

.:1i 

Now for i = 1 we take .:11 = ~, 121 = 4>1 and we suppose we are 
given Lli and 12i for a certain i. Let Gi be the Galois group of 12. 
over cI> and let a/ i , ••• , a/'" be the conjugates of the element a. 

k. 

under the automorphisms S; e G.. Set gi(X) = II (x'" - a/i). 
;=1 

Then g.(x) e 4>[x]. Let .:1i+1 be a splitting field over .:1. of gi(X) and 
let ~., U, U', ... be the roots of g.(x) in .:1i+1• Note that one of 
these is the ~. such that 4>.+1 = 4>'(~i) since gi(~i) = 0 and 
.:1.+1 :J .:1. :J~. Set 12.+1 = 12iai, U, U', ... ). Since 12./4> is a 
splitting field of a polynomial f.(x) e 4>[x], 12i+t!4> is a splitting 
field of f.(x)g.(x) and (since the characteristic is 0) 0'+1 is Galois 
over 4>. Since 0.+1 :J 12. and ~. e 12i, 12i+1 ;;d 4>'+1 = 4>.(~.). Let 
~.(A) be anyone of the elements ~., U, U', ... ; then gi(~i(A») = 0 
and g.(x) = II(x'" - a/i) show that (~.(A») ... is one of the a/t. 
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Hence Qi+l = Qi(~i' U, U', ... ) has a root tower over~. This 
shows that Lli +1 and Qi+l satisfies the conditions 1), 2), 3). We 
now take Q = Qr +1 and this satisfies the conditions stated in the 
lemma. 

Remark. Note that the integers ni for the root tower for Q/~ 
are the same as those for the given tower for 2:/~. 

We can now prove the necessity of Galois' condition. Thus let 
j(x) = 0 be solvable by radicals over ~ (of characteristic 0) so the 
splitting field P /~ of j(x) can be imbedded in a field 2: which has a 
root tower over~. By the lemma we may assume that 2:/~ is 
Galois. Let n be the least common multiple of the exponents ni 
occurring in a root tower for 2: and let Ll be a spli tting field over 2: 
of xn -- 1 so Ll = 2:(r) where r is a primitive n-th root of 1 and Ll 
is Galois over ~ and has a root tower over~. Moreover, it is 
clear that we can obtain a root tower for Ll which has the form: 

(11) ~ = ~l C ~2 = ~l (r) c ~3 

= ~2(b) c ... C ~T+l(~r) = Ll 

where ~in; e ~i+l' If H is the Galois group of Ll over ~, then the 
chain of subfields (11) gives rise to a decreasing chain of sub
groups 

(12) 

where Hi is the Galois group of A over ~i' By Theorem 3, ~2 is 
Galois over ~l with commutative Galois group and since ~2 con
tains the necessary roots of 1, ~i+l is cyclic over ~i if i ~ 2. This 
implies that HJ+l is an invariant subgroup of Hi for j ~ 1. The 
factor group Hd H2 is isomorphic to the Galois group of ~2 over 
~l and so is commutative while the factor group Hd H i+h 

i ~ 2, is isomorphic to the Galois group of ~i+l over ~i and so is 
cyclic. Thus the sequence of groups (12) shows that H is solvable. 
Now we have Ll :J P :J ~ where P/~ is the splitting field ofj(x). 
Hence if K is the subgroup corresponding to P, then K is invariant 
in H and HI K f'"o,J G, the Galois group of P /~. Since His solvable, 
this shows that G is solvable; hence the Galois group Gj of the 
equationj(x) = 0 is a solvable group. 

In order to prove the sufficiency of Galois' condition we require 
the following result which is of independent interest. 
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Theorem 6. Let P lip be finite dimensional Galois over ip and let 
P' be an extension field of P such that P' is generated by P and a 
second subfield ip' ::::> ip. Then P'lip' is finite dimensional Galois 
and its Galois group G' is isomorphic to a subgroup of the Galois 
group G of PI ip. 

P' 

G' 
ip' P 

G 
ip 

Proof. We know that P = ip(~h ... , ~n) where the ~i are the 
roots of a separable polynomialf(x) e ip[x]. Since P' is generated 
by ip' ::::> ip and P, we have P' = ip'(~h ... , ~n). Hence P' is a 
splitting field over ip' of/ex). Since separability is invariant under 
extension of the base field, f(x) is separable over ip' and conse
quently P' is Galois over ip'. Let s' belong to the Galois group G' 
of P'lip'. Then s' is the identity mapping in ip C ip' and s' maps 
the set R = {~h ~2' ... , ~n} into itself. Hence s' maps P = ip(R) 
into itself and so the restriction of s' to P is an element s of the 
Galois group of P over ip. The mapping s' ~ s is a homomor
phism 'of G' into G. Since s = 1 implies that U = ~i' 1 ~ i ~ n, 
and this implies that s' = 1, we see that s' ~ s is an isomorphism, 
so G' is isomorphic to a subgroup of G. 

We can now give the proof of the sufficiency of Galois' condi
tion. We assume thatf(x) = 0 has a solvable Galois group G/j 

hence the Galois group G of the splitting field P lip of f(x) is 
solvable. We are assuming also that ip is of characteristic o. Let 
n = (G: 1) and let P' = per) where r is a primitive n-th root of 1. 
Then P' is generated by P and the subfield ip' = ip(r). Hence, by 
Theorem 6, P' is Galois over ip' and its Galois group G' over ip' is 
isomorphic to a subgroup of G. Hence G' is solvable and has a 
composition series G' = Gl ' ::::> G/ ::::> ••• ::> GS+l ' = 1 whose com
position factors G/IGi+l' are cyclic of prime order. Evidently 
these orders are divisors of n = (G: 1). Let ip' = ipl' C ip2' C ... 

c ips+l' = P' be the chain of subfields corresponding to the com
position series for G'. Since Gi+l ' is invariant in G/ and G/IGi+l' 
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is cyclic, ~i+l' is Galois over ~/ with cyclic Galois group whose 
order ni is a divisor of n. Now ~/ contains a primitive ni-th root 
of 1 since ~/ ::) ~' = ~(r). Hence, by Theorem 5, ~i+l' = 
~i(~i) where ~ini = Oli e ~i. Thus ~1' c ~2' C ... C ~8+1' = pI 
is a root tower for pI over ~/. Since ~' = ~(r), rn = 1, ~ C ~1' C 

~2' C ... C ~8+1' = pI is a root tower for pI over~. Since 
pI ::) P, this shows thatj(x) = 0 is solvable by radicals over ~. 

EXERCISES 

1. Let P lip be a spli tting field over ip of characteristic 0 for xP - 1, P a prime. 
Prove that Plip can be imbedded in a field ~/ip which has a root tower (10) for 
which the n. are primes and [ipHl:ipi] = n.. Call such a root tower normaliud. 
(Hint: Use induction on p and ex. 1 of § 2.) 

2. Obtain normalized root tower fields over the cyclotomic fields of 5th and 7th 
roots of lover the field Ro of rational numbers. 

3. Prove that, if f(x) = 0 has a solvable Galois group over a field of charac
teristic 0, then its splitting field can be imbedded in an extension which has a 
normalized root tower. 

4. Let ip be of characteristic p ~ O. Call an equation f(x) = 0, f(x) e ip[x], 
solvable by equations xP - x = ex if its splitting field P lip can be imbedded in a 
field ~ which has a tower of fields ipl = ip C ip2 C ... C ipr+l = ~ where 
ipHl = ip.(~.), ~,.P - ~. = CXi e ip.. Show that, if f(x) has distinct roots, then 
f(x) = 0 is solvable by equations xP - x = ex if and only if its Galois group is of 
order pO. (Hint: Use ex. 3, 4 of § 2 and the fact that a finite group of prime 
power order is solvable.) 

4. The general equation of n-th degree. The formula x = 
(a ±Va2 - 40)/2 for the solutions of the quadratic equation 
x2 - ax + b = 0 (characteristic ~ 2) is valid if a, b are con
sidered as indeterminates. When this is done one has a "general 
quadratic equation." Particular quadratic equations are obtained 
by specializing the coefficients. The corresponding specialization 
for the solutions gives the solutions of the particular equations. 
Similar solutions for general cubic and quartic equations by radi
cals are known (ex. 3, 4 below). We shall now consider the ques
tion of solvability by radicals of the general equation of n-th de
gree for any n. 

Let ~ be a field and let ~ = ~(th t2, .. " tn) be the field of 
rational expressions in indeterminates ti over~. Then the equa
tion 
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is called the general equation of the n-th degree over 4>. We wish to 
determine the Galois group Gf over ~ of this equation. Let P = 
~(Xh X2, .. " xn) be a splitting field over ~ of lex) such that 
I(x) = (x - Xl)(X - X2) ... (x - Xn) in P[x]. Then 

(14) tl = ~Xi, t2 = 2: XiX;, .. " tn = XIX2 ... Xn; 
i<i 

hence 

(15) P = ~(Xh X2, .. " Xn) = 4>(t1) t2, ... , tn; Xl) .•. , Xn) 

= 4>(X1) X2, ... , Xn). 

In order to determine Gf we consider first a simpler problem. 
We introduce new indeterminates ~h ~2' ... , ~n over 4> and the 
field P = 4>(~1) ~2' ... , ~n) of rational expressions in the ~i' Con
sider the polynomial 

(16) j(x) = (x - ~1)(X - ~2) ... (x - ~n) 

in P[x]. We have 

(17) j(x) = xn - TIXn-1 + T2Xn-2 - ... + (-I)nTn 

where 

(18) Tl = ~~i' T2 = 2: ~i~;, ... , Tn = h~2 ... ~n' 
i<i 

We now consider the subfield ~ = 4>( T1) T2, ... , Tn) of P / 4> and 
we note that the relation P = ~(~1) ~2' ... , ~n) and (16) show 
that P is a splitting field over ~ of j(x). We assert that the Galois 
group Gl of the equation }(x) = 0 over ~ is the symmetric group. 
Thus we have to show that, if ~i ~ ~i' is any permutation of the 
~i' then there exists an sl e Gl such that ~/l = ~i" Now we know 
that we have an automorphism s of the polynomial algebra 
4>[~1) ~2' .•• , ~n] over 4> such that ~/ = ~i" 1 :::; i :::; n. We know 
also that s has an extension to an automorphism s of the field 
P = 4>(~1) ~2' ... , ~n) over 4>. Finally s can be extended to an 
automorphism s of P[x] so that i = :!C. Then we have lex) = 
(x - ~l')(x - ~2') ... (x - ~n') = lex) which, by (17), implies 
To" = Ti, 1 :::; i :::; n. (This can be seen also by using the expres
sion (18) for the Ti') Now To" = Ti implies that the elements of 
~ = 4>(T1) T2, .. " Tn) are fixed under s. Hence s is in the Galois 
group of P /~ and the induced mapping si satisfies ~"l = ~i" 
1 ~ i ~ n, as required. 
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We shall now carryover the result we have just obtained on the 
pair of fields P, ~ to the pair P, ~ by establishing an isomorphism 
of Ponto P which maps ~ onto~. We consider first the algebra 
homomorphism TJ over ~of 

~[th t2, .. " tn] ~ ~[Th T2, .. " Tn] 
~ 

such that tll = Ti, 1 :$ i :$ n. The existence of TJ is clear since 
the ti are indeterminates. We assert that TJ is an isomorphism. To 
see this we note that we have the homomorphism r over ~ of 

~[h, ~2' .. " ~n] r ~[Xh X2, .. " xn] 

so that U = Xi. Again this is clear since the ~i are indeterminates. 
Note also that ~[~h ~2' .. " ~n] =:> ~h, T2, .. " Tn] SO TJr is de
fined. Now the formulas (18) and (14) show that T! = ti. 
Hence ti~! = T! = Ii and consequently g~! = g for every g in 
~[th t2, .. " tn]. This implies that our first mapping TJ is an iso
morphism since g~ = 0 gives g = g~! = 0 for g in ~[th .. " tn]. 

We are now in a position to extend TJ to an isomorphism TJ of 
~ = ~(th t2, .. " tn) onto ~ = ~(Th T2, .. " Tn) and this extends 
to an isomorphism TJ of ~[x] onto ~[x] so that X~ = .'C. Then 

j(x)~ = (xn - t1xn- 1 + ... )~ = xn - TIXn- 1 + ... = J(x). 

On the other hand, P is a spli tting field over ~ of j(x) and P is a 
splitting field over ~ of }(x). Hence the general uniqueness 
theorem for splitting fields (Th. 1.7) provides an isomorphism TJ of 
Ponto P which coincides with the given TJ on~. It is immediate 
from the existence of such an isomorphism that the Galois group 
G of P /~ is isomorphic to the Galois group G of P /~. In fact, it is 
clear that the mapping s ~ TJ-1 STJ is an isomorphism of G onto C. 
The fact that G7 = Sn now implies that the Galois group Gf of 
j(x) = 0 over ~ is Sn. It is clear also that the roots ofj(x) are 
distinct and Theorem 2 shows thatj(x) is irreducible in ~{x]. The 
results we have obtained can be stated as 

Theorem 7. The general equation oj the n-th degree (13) is ir
reducible in ~ = ~(th t2, .. " tn) and has distinct roots. The 
Galois group oj j(x) = 0 is the symmetric group Sn. 

Since Sn is not solvable if n > 4 this implies the 

Theorem of Abel-Ruffini. The general equation oj the n-th degree 
is not solvable by radicals if n > 4 (characteristic 0). 
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EXERCISES 

1. Use the fact that every finite group is isomorphic to a subgroup of Sn to con
struct a field P whose Galois group over a suitable field <I> is isomorphic to a given 
finite group G. (The construction of P for a given <I> and G is an open problem. 
In fact, for <I> the field of rational numbers this is a classical problem which is still 
unsolved.) 

2. Use the Galois theory to prove that, if r(xI, X2, ... , Xn) e <I>(XI, X2, ... , Xn) 
the field of rational expressions in indeterminates Xi over the field <I> and r is 
symmetric in the sense that r(xI', X2', ... , xn') = r(xI, X2, .. " Xn) for every per
mutation Xi ~ Xi' of the x's, then r is a rational expression with coefficients in <I> 
in the elementary symmetric polynomials 11 = 2:Xi, 12 = L: XiXi, ... , In = 

i<i 
XIX2 ... Xn. (Compare the fundamental theorem on symmetric polynomials, 
Vol. I, p. 109.) , 

3. Assume the characteristic of <I> is not two or three and consider the general 
cubic XS - IIX2 + '2X - Is = (x - XI)(X - X2)(X - xs). Here the Ii are in
determinates and the Xi are in a splitting field P over 2: = <1>(/1,/2, la). Nothing is 
lost in replacing Xi by Yi = Xi - t(XI + X2 + xa) = Xi - ttl, Then the 
given equation is replaced by y3 + py + q = 0 whose roots are YI, Y2, Ys where 
YI + Y2 + Ys = O. Then the formula (6) for the discriminant gives 0 = _4p3 -

27q2. The group of P over 2:( va) is the alternating group Aa which is cyclic of 
order 3. Let r be a primitive cube root of 1 (e.g., r = -! + h/=3) and set 
Zl = YI + r-lY2 + r-2Y3 = YI + r2Y2 + rY3, Z2 = YI + r-2Y2 + r-4ys = YI + 
rY2 + r 2ys, Za = YI + Y2 + Ys = O. Verify that Zls = -¥q - !-v=3 va 
if r = -! + hi -3 and Z2S = -¥q + !-v=3 va, ZlZ2 = -3p. Hence 

(19) 
Zl = ~ -¥q -lv-30 

Z2 = ~ -¥q + h/-30 

where the determination of vi -30 is the same in both formulas and that of 
~- is such that ZlZ2 = -3p. Solve the equations Zl = YI + r2Y2 + rys, Z2 = 
YI + rY2 + r2Y3, Z3 = YI + Y2 + Ys for YI, Y2, Ys to obtain Cardan's solution of 
the equation y3 + PY + q = O. 

4. Assume the characteristic is not two or three and consider the general 
quartic X4 - ftxs + 12X2 - t3X + t4 = (x - XI)(X - X2)(X - xs)(x - X4). Re
placing Xi by Yi = Xi - tit gives an equation fey) == y4 + py2 + qy + r = 0 
whose roots are YI, Y2, Y3, Y4. Show that the resolvent cubic of fey) = 0 is 
g(z) = ZS - 2pZ2 + (p2 - 4r)z + q2 = 0 (cf. the exercises in § 1). Show that the 
Galois group of P = <I>(XI, X2, Xs, X4) = <I>(YI, Y2, Ys, Y 4) over <I>(ZI, Z2, Za), Zi the 
roots of g(z) = 0 is the Vierergruppe. Obtain formulas for Yl, Y2, Ys, Y4 in terms 
of Zl, Z2, Za and square roots of elements of <I>(ZI, Z2, zs). 

5. Consider a splitting field P over 2: = <1>(11, •• " tn), ti indeterminates, of the 
general equation (13) and let Xl, X2, .. " Xn be the roots. Assume <I> contains n 
distinct elements CI, C2, ..• , Cn. Prove that (J = CIXI + C2X2 + ... + CnX" is a 
primitive element of P /2:. 

5. Equations with rational coefficients and symmetric group as 
Galois group. The theorem of Abel-Ruffini shows that equations 
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of degree;?: 5 with indeterminate coefficients are not solvable by 
radicals. On the other hand, it is clear that for certain fields CP, 
e.g., the field of real numbers or the field of complex numbers, 
every equation with coefficients in cP is solvable by radicals. We 
shall now show that there exist equations with rational coeffi
cients which are not solvable by radicals. We shall do this by 
showing that there exist rational equations of any prime degree p 
with Galois group the symmetric group Sp. We prove first the 
following result on permutation groups. 

Lemma. If G is a permutation group on p elements where p is a 
prime and G contains an element of order p and a transposition, then 
G = Sp. 

Proof. We recall that any permutation can be written as a 
product of disjoint cycles (Vol. I, p. 35). Moreover, the order of a 
cycle is the number of letters it contains. This implies that, if 
u e G has order p, then u is a cycle contaihing all the letters 1, 
2, ... , p. By re-ordering the elements 1,2, ... suitably, we may 
assume that G contains the transposition (12). Since a suitable 
power of the p-cycle u has the form (12 ... ) further re-ordering 
of the elements 12, ... , p, if necessary, permits us to assume that 
G contains (12) and u = (123 ... p). We recall that, if T is any 
element of Sp (or Sn), then T-l(ij)T = (iTf) where iT, f are the 
images of i, j respectively under T. This shows that u-1(12)u = 
(23), u-2 (12)u2 = (34), ... , (p - 1, p) and (P1) are contained in 
G. Since 

(13) = (12)(23)(12) 

(14) = (13)(34)(13) 

(lp) = (1 P - 1)(P - 1 p)(l P - 1) 

all of these elements are contained in G. Since (if) = (li)(lj)(li) 
if 1, i,j are different, this shows that every transposition is con
tained in G. Since every element of Sp is a product of transposi
tions, we have G = Sp. 

We shall now prove the following 
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Theorem 8. Let f(x) be a polynomial of prime degree with ra
tional coefficients which is irreducible in the rational field. Suppose 
f(x) = 0 has exactly two non-real roots in the field C of complex 
numbers. Then the group G1 of f(x) = 0 over the rationals is the 
symmetric group. 

Proof. The fundamental theorem of algebra asserts that 
f(x) = (x - Pl)(X - P2) ... (x - pp) in C[xJ. Then the subfield 
P = RO(Ph P2, ... , pp), Ro the rationals, of C is a splitting field of 

f(x) over Ro. Since P :::J RO(PI) and [RO(PI): RoJ = degf(x) = p, 
[P:RoJ is divisible by p. Hence p is a divisor of (G: 1), G the 
Galois group of P over Ro. It follows from Sylow's theorem that G 
contains an element of order p. Now consider the automorphism 
a = a + fry=! ~ a - {3v=J. = a, a, {3 real, of C over the 
field of real numbers. This maps f(x) into itself since the co
efficients of/ex) are real. Hence it maps the set {Ph P2, ... , pp} of 
the roots off(x) belonging to C into itself. Let Ph P2 be the non
real roots off(x). Then a ~ a interchanges PI and P2 and leaves 
fixed all the Pi, i > 2. Thus the restriction of the automorphism 
a ~ a of C to the set of roots is an element of G, which is a 
transposition. Hence G1 contains an element of order p and a 
transposition and G1 = Sp by the lemma. 

We shall now indicate how one can construct polynomials 
satisfying the conditions of the theorem. * Let m be a positive 
integer, nl < n2 < ... < nr_2 be r - 2 even integers where r 
is odd and >3. Consider the polynomial 

(20) g(x) = (x2 + m)(x - nl){x - n2) ... (x - nr-2). 

The real roots of g(x) are nh n2, ... , nr-2 and the graph of y = 
g(x) has the form: 

• The construction we give is due to R. Brauer. 
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This has (r - 3)/2 relative maxima and, since Ig(k) I > 2 for any 
odd integer k, it is clear that the values of these relative maxima 
are >2. This implies that j(x) = g(x) - 2 has (r - 3)/2 posi
tive relative maxima between nl and nr-2' It follows that f(x) 
has r - 3 real roots in the interval (nl) nr -2)' Since j(n r -2) = 
-2 andj(aJ) = aJ, there is also a real root >n r -2. This gives 
r - 2 real roots for j(x). Let al) a2, .. " ar be the complex roots 
of j(x). Then j(x) = II(x - ai) = (x2 + m)(x - nl) '" (x -
nr_2) - 2, and equating coefficients of x r - l and xr - 2, we obtain 

r r-2 

(21) ~ ai = ~ nk, ~ aiai = ~ nknl + m. 
1 1 i<j k<l 

Hence 

(22) 

= };nk2 - 2m. 

If we choose m sufficiently large, (22) shows that };al < 0 and 
this implies that not every ai is real. If al is a non-real root, then 
al ~ al is another such root so we have at least two non-real roots. 
Since in any case we have r - 2 real roots, we see thatj(x) has 
exactly r - 2 real roots. We now write j(x) = xr + alxr - l 
+ ... + ar' Clearly the ai are even integers. Moreover, since 
the constant term of g(x) is divisible by 4, that ofj(x) = g(x) - 2 
is not divisible by 4. It follows by Eisenstein's criterion applied 
to the prime q = 2 that j(x) is irreducible in the rational field. 
We therefore see that we can satisfy the conditions of the theorem 
for every prime p = r ~ 5. It is easy to see that this holds also 
for p = 2,3. Hence the conditions hold for every prime, so we see 
that there exist rational equations of every prime degree p with 
Galois group the symmetric group Sp. 

EXERCISES 

1. Letf(x) e <I>[xj have distinct roots PI, P2, •• " P,. in a splitting field P /<1> and 
let Gf C S,. be the Galois group of the equation f. Let Yl,Y2, .. . ,y,. be in
determinates and set 

F(x) = II (x - (Pl'Yl + P2'Y2 + ... + p,.'y,.» 
t"s,. 
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Show that F(x) eif>[Yl,Y2, .. ',Yn, xj. Let F(x) = F l (x)F2(x) ... Fr(x) be the 
factorization of F(x) into irreducible factors with leading coefficient 1 in if>(Yl, Y2, 
••. ,Yn)[xj. Show that, if x - L: Pity, is a factor of Fl(x) , then 

i 

FI(X) = II (x - L: P,t.) 
seG, ' 

Hence show that deg Fi(X) = (G,: 1). 
2. Same notations as 1. Assume, moreover, that if> = Ro the field of rational 

numbers and thatf(x) has integer coefficients and leading coefficient 1. Assume 
p is a prime such that the polynomialj(x) obtained by replacing the coefficients 
of f(x) by their residues modulo p has distinct roots in a splitting field P / Ip. Show 
that F(x) = II (x - p,y,t) in P[x, YI, .. " y"j where PI, P2, "', p" are the roots 

leSn 

o£j(x) in P. Use this and ex. 1 to prove that, if the p, are suitably ordered, then 
GJ is a subgroup of G,. 

3. Show that any transitive subgroup of S" which contains an (n - I)-cycle 
and a transposition coincides with Sn. 

4. Show that the equation 

x6 + 22xo - 9x4 + 12x3 - 37x2 - 29x - 15 

over Ro has the group S6. (Hint: Apply ex. 2 using the primes p = 2,3,5.) 



Chapter III 

ABELIAN EXTENSIONS 

In this chapter we shall investigate several types of abelian ex
tension fields. First, we shall consider cyclotomic fields over the 
field of rational numbers and we shall determine their dimen
sionalities and Galois groups. Next we shall consider Kummer 
extensions, which are obtained. by adjoining the roots of a finite 
number of pure equations xm = a to a field containing m distinct 
m-th roots of 1. Finally, we shall study the so-called abelian p
extensions, which are defined to be abelian extensions of pi 
dimensions of a field of characteristic p ~ O. The theory of 
characters of finite commutative groups is a basic tool for the in
vestigation of Kummer extensions and abelian p-extensions. Be
sides this, our study of abelian p-extensions will be based on a cer
tain type of ring, a ring of Witt vectors which can be constructed 
from any commutative algebra ~ over a field of characteristic 
p ~ O. For any such ~ and integer m = 1,2, " " we have a ring 
of Witt vectors m3m(~) of characteristic pm. In the theory of 
valuations it is useful to pass to the limit as m ~ 0() and to con
sider also rings m3(~) of infinite Witt vectors. This will be con
sidered in Chapter V. A number of the results of this chapter will 
be needed for an application to the theory of formally real fields 
which we shall take up in Chapter VI. 

1. Cyclotomic fields over the rationals. We have defined the 
cyclotomic field of order m over a field <I> to be the splitting field 
over <I> of the polynomial xm - 1 (§ 2.2). We have shown that, if 
the characteristic of <I> is not a divisor of m, then the Galois group 
of the cyclotomic field is isomorphic to a subgroup of the group 
U(m) of units in the ring I/(m) (Th.2.3). We now assume that 
the base field <I> = Ro, the field of rational numbers, and we let 

110 
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p(m) denote the cyclotomic field of the m-th roots of 1 over Ro. 
Let Z(m) be the multiplicative group of the m-th roots of 1. We 
recall that Z(m) is cyclic and its generators are called primitive 
m-th roots of 1. Also p(m) = Ro(r), where r is any primitive m-th 
root of 1; hence the dimensionality [p(m): RoJ is the degree of the 
minimum polynomial of rover Ro. If r is a primitive m-th root of 
1, then any other primitive m-th root of 1 has the form rk where 
(k, m) = 1. Hence the number of primitive m-th roots of 1 is 
cp(m) the number of positive integers not exceeding m which are 
relatively prime to m. This is also the order of the group U(m). 

Now let 

(1) 
r primitive 

This is a polynomial of degree cp(m) with coefficients in p(m). If s 
is in the Galois group G of p(m) over Ro, then clearly s maps the 
set of primitive m-th roots of 1 into itself. Hence we have the 
relation Am8 (X) = Am(X) for every s e G. Since p(m) is Galois over 
Ro, we see that Am(X) e Ro[xJ, that is, Am(X) has rational coeffi
cients. We can see this also in a more elementary way which, at 
the same time, gives an inductive procedure for calculating 
Am(x).Since the order of any m-th root of 1 is a divisor of m and 
since every d-th root of 1 for dl m is an m-th root of 1, we clearly 
have the formula 

(2) Xm - 1 = II AaCX). 
dim 

l:::;d:::;m 

Evidently we have Al(X) = x - 1 and, assuming that Ad(X) e 
Ro[xJ for all d such that 1 ~ d < m, then the formula (2) gives 

(3) Am(X) = (xm - 1)/ II Ad(X) 
dim 

which shows that Am(X) e Ro[xJ. This gives a practical way of 
calculating Am(X). For example, we have Al(X) = x - 1, 

A2(X) = (X2 - 1)/Al(X) = x + 1, 

Aa(X) = (xa - 1)/Al(X) = X2 + X + 1, 

A4(X) = (X4 - 1)/Al(X)A2(X) = X2 + 1, 

A6(X) = (X6 - 1)/Al(X)A2(X)Aa(X) = X2 - X + 1 
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and 

A12(X) = (X12 - 1)/Al(X)A2(X)A3(X)A4(X)A6(X) = X4 - X2 + 1. 

If p is a prime, we have 

(4) Ap(X) = (xP - l)/(x - 1) = xp- 1 + xp- 2 + ... + 1 

and it is easy to see, using Eisenstein's criterion, that Ap(X) is ir
reducible in Ro[x] (Vol. I, ex. 2, p. 127). We shall now prove the 
following general resul t 

Theorem 1. Am(X) is irreducible in the rational field. 

Proof. We observe first that Am(X) has integer coefficients. 
For, assuming this holds for every Ad(X), d < m, and setting 
p(x) = II Ad(X), we obtain by the usual division algorithm 

dim 
l~d<m 

that xm - 1 = p(x)q(x) + rex) where q(x) and rex) e I[x] and 
deg rex) < deg p(x). On the other hand, we have xm - 1 = 
p(X)Am(X), so by the uniqueness of the quotient and remainder, 
Am(X) = q(x) has integer coefficients. Now suppose that Am(X) = 
h(x)k(x) where hex) is irreducible in Ro[x] and deg hex) 2:: 1. By 
Gauss' lemma (Vol. I, p. 125) we may assume that hex) and k(x) 
have integer coefficients and leading coefficients 1. Let p be a 
prime integer such that p % m and let r be a root of hex). We 
shall show that rp is a root of hex). Since (p, m) = 1, rp is a 
primitive m-th root of 1 and, if rp is not a root of hex), rp is a root 
of k(x); consequently r is a root of k(xP). Since hex) is irre
ducible in Ro[x] and has r as a root, hex) I k(xP ). It follows (as 
above) that k(xP ) = h(x)l(x), where lex) has integer coefficients 
and leading coefficient 1. Also we have xm - 1 = Am(X)P(x) = 
h(x)k(x)p(x) and all of these polynomials have integer coefficients 
and leading coefficients 1. We now pass to congruences modulo p 
or, what is the same thing, to relations in the polynomial ring 
I p [.\']. Then we obtain 

(5) xm - I = 'h(x)'k.(x)p(x) 

where in general, if lex) = aoxn + alxn- 1 + ... + an e I[x], then 
Jex) = aoxn + alXn- 1 + ... + an, ai = ai + (p) in Ip. Similarly, 
we have 'k.(xP ) = 'h(x)l(x). On the other hand, using aP = a for 
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every integer a, we see that 

}(x)P = (aoxn + ... + an)P = aoPxpn + ... + anP 

= aoxpn + ... + an = J(xP) 

for any polynomial/ex). Hence "k(x)P = "k(xP) = lz(x)i(x) which 
implies that (7i(x), "k(x» ¢ 1. Then (5) shows that xm - I has 
multiple roots in its splitting field over Ip. Since p ,r m this is 
impossible and so we have proved that rp is a root of hex) for every 
prime p satisfying p )' m. A repetition of this process shows that 
rr is a root of hex) for every integer r prime to m. Since any primi
tive m-th root of 1 has the form rr, (r, m) = 1 we see that every 
primitive m-th root of 1 is a root of hex). Hence hex) = Am(X) and 
Am(X) is irreducible in Ro[xJ. 

We now see that Am(X) is the minimum polynomial over Ro of 
any primitive m-th root of 1. Since p(m) = Ro(r), r primitive 
we have established the formula 

(6) [p(m):RoJ = ({J(m). 

This implies that (G: 1) = ((J(m) for the Galois group G of p(m) IRo. 
Since (U(m): 1) = ((J(m) and G is isomorphic to a subgroup of 
U(m), this proves 

Theorem 2. Let p(m) be the cyclotomic field of order m over the 
rationals Ro. Then the Galois group of p(m) I Ro is isomorphic to 
U(m), the multiplicative group of units in the ring II(m). 

We shall now proceed to determine the structure of the Galois 
group G or, what is the same thing, that of U(m). It is easy to see 
that, if m = PI e1p2 e2 ... Pr er where the Pi are distinct primes, then 
U(m) is isomorphic to the direct product of the U(P/i). For this 
reason we shall confine bur attention to the case m = pe a prime 
power. Then U(pe) is a commutative group of order ((J(pe) = 
pc _ pe-I = pe-I(p _ 1). We prove first 

Theorem 3. If p is an odd prime, then the multiplicative group 
U(pe) of units in II(pe) is cyclic. 

Proof. Since the order of this group is pe-l(p - 1), U(pC) is a 
direct product of its subgroup H of order pe-l consisting of the 
elements which satisfy xp.-1 = 1 and the subgroup K of order 
p - 1 of the elements satisfying xp - 1 = 1. It suffices to show 
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that both Hand K are cyclic since the direct product of cyclic 
groups having relatively prime orders is cyclic. If e = 1, then 
U(P) = K is the multiplicative group of the field Ij(p) and this is 
cyclic. Hence we can choose an integer a such that a + (p), a2 + 
(P), .. " aP -1 + (P) are distinct in I j (p). Set b = aPr-I. Since 
(a, p) = 1, (b, pe) = 1 and b + (pe) and a + (pe) e U(pe). Also 
bP-1 = (aPr-I)p-1 = (fP{p') = 1 (mod pe) so b + (pe) e K. Since 
b = aPr-I = a (mod p), b + (p), b2 + (P), •. " bP- 1 + \p) are 
distinct. Hence also b + (pe), b2 + (pe), .. " bP- 1 + (pe) are 
distinct. This implies that the order of b + (pe) is precisely 
p - 1. Since (K: 1) = P - 1, it follows that K is cyclic with 
generator b + (pe). It remains to prove that H is cyclic, and we 
may assume that e ~ 2, since, otherwise, H = (1) and the result 
is clear. Assuming e ~ 2, we can conclude that H is a direct 
product of k ~ 1 cyclic groups of order pe" ei ~ 1. Then the 
number of solutions of the equation xP = 1, x e His pk. Hence it 
will be enough to show that the number of integers n, 0 < n < pe, 
satisfying nP = 1 (mod pe) does not exceed p. Now if n satisfies 
these conditions, then, since nP == n (mod p), we have n = 1 
(mod p). Then if n =;6. 1, we may write n = 1 + ypf + zpf+1 
where 1 ~ f ~ e - 1, 0 < y < p, and z is a non-negative 
integer. Then 

nP = 1 + (~) (y + zp)pf + (;) (y + Zp)2p2f 

+ ... + (y + zp)pppf 

== 1 + ypfH (mod pf+2). 

If nP = 1 (mod po) and f < e - 1, this gives ypfH = 0 (mod 
pf+2) so y = 0 (mod p) contrary to 0 < y < p. Hence we see 
that, if 1 < n < pe satisfies nP = 1 (mod pe), then n = 1 + 
yp.-l, 0 < y < p. This gives altogether at most p solutions in
cluding 1 and completes the proof of the theorem. 

We consider next the case of the prime 2 in the following 

Theorem 4. U(2) and U(4) are cyclic and, if e ~ 3, then U(28) 
is a direct product of a cyclic group of order 2 and one of order 28- 2. 

Proof. The order of U(28) is cp(2") = 2"-1. If e = 1, (U(2): 1) 
= 1 and if e = 2, U(2e) = U(4) has only two elements and so is 
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cyclic. Suppose e ~ 3. We show first that there are four distinct 
elements x e U(26) satisfying x2 = 1. This will imply that U(26) 
is a direct product of at least two distinct cyclic groups ~ 1. Set 
a1 = 1, a2 = -1, aa = 1 + 26 - 1, a4 = -1 + 26 - 1, Xi = ai + 
(26). Then the Xi are distinct and satisfy Xi2 = 1, which proves 
our assertion. Also since U(26) is a direct product of at least two 
cyclic groups ~ 1 and the order of U(26) is 26 -\ we see that, if 
X e U(26), then X2.-,t = 1 or, what is the same thing, if a is an odd 
integer, then a2.-,t = 1 (mod 26). The proof will be completed by 
displaying an x such that x2'-S ~ 1. Then we shall have a cyclic 
subgroup of order 26 - 2 and this can happen only if U(26) is a 
direct product of a cyclic group of this order and one of order 2. 
We proceed to show that we may take x = 5 + (26). Note first 
that, if e = 3, then 52.-3 = 5 ~ 1 (mod 26) but 52.-8 = 1 (mod 
26 - 1). Now letf ~ 3 and let k(j) be the largest integer k such 
that 52/-' = 1 (mod 2k). Then we have k(3) = 2. Also for any 
f ~ 3 we have 52/-3 = 1 + y2k(f) where y is odd. This gives 

52(/+1)-3 = (5 2/-S)2 = 1 + y2k(/) +1 + y222k(f) 

which shows first that k(j + 1) .~ k(j), so k(j) ~ 2 if f ~ 3. 
Then the relation shows that 52 <1+1)-3 = 1 + z2k (/) +1 where 
z = y + 2k(/)-1 y2 is odd. Hence k(j + 1) = k(j) + 1. This and 
k(3) = 2 imply that k(j) = f - 1 for all f ~ 3. Thus 52.--1 ~ 1 
(mod 26) if e ~ 3 which is what we needed. This completes the 
proof. 

Theorems 2, 3, and 4 give a description of the Galois group of 
the field of the pB_th roots of 1 over the rationals. The result is 
the following 

Theorem 5. Let m = pe, p a prime, and let p(m) be the field of the 
m-th roots of 1 over the field Ro of rational numbers. Then the Galois 
group G of p(m) / Ro is cyclic unless p = 2 and e ~ 3, in which case 
G is a direct product of a cyclic group of order 2 and one of order 
26 - 2• 

EXERCISES 

1. Use the Mobius inversion formula (Vol. I, ex. 5, p. 120) to prove that 
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2. Let p be a prime and let PCp) be the cyclotomic field of p-th roots of 1 over 
the field Ro of rational numbers. Let g + (p) be a generator of the cyclic group 
U(p) and let s be the automorphism of PCp) / Ro such that f' = fg, f a fixed 
primitive p-th root of 1. Show that (f, f', f'\ .. " f,1>--2) form a basis (normal 
basis) for PCp) / Ro. Suppose p - 1 = ej, e, f positive integers and let E/ Ro be the 
subfield of e dimensions of pCp) / Ro. Show that, if t = s· and 77 = f + ft + ft2 

+ ... + f t'-I , then (77,77', •• ',77..-1) is a basis for E/ Ro. Show that the multipli
cation table for this basis has integer coefficients. 

3. Let P be the field of the 17-th roots of 1 over Ro. Determine the sub fields 
Ri, i = 1, 2, 3 such that Ro C Rl C R2 C R3 C R4 = P and [Ri:Ri_ll = 2. 
Find an element Wi in Ri so that Ri = Ri_l(Wi), Wi2 e Ri_l, 1 :::; i :::; 4. 

4. (0. Todd) Let P be the field of p-th roots of lover Ro where p is a prime of 
the form 4n + 3. Show that P is a tensor product of a quadratic sub field and a 
subfield of odd dimensionality. Show that the quadratic subfield is not real (if P 
is considered as a sub field of the field of complex numbers). 

5. Let ECm) be the cyclotomic field of degree m over CPo = [p. Write m = 
m'p·, (m', p) = 1. Show that [ECm) :CPol is the order of the element p + (m') in 
the group U(m'). 

2. Characters of finite commutative groups. In the remainder 
of this chapter we shall study two classes of abelian extension 
fields: Kummer extensions and abelian extensions of pe dimen
sions over a field of characteristic p. For both of these the theory 
of characters of finite commutative groups is basic, so we shall 
develop this first. 

Let A and B be two commutative groups (written multipli
catively) and let X and t/t be homomorphisms of A into B. We de
fine the product xt/t by aX'" = aXa"'. One checks that this is again a 
homomorphism and that the set Hom (A, B) of all the homo
morphisms of A into B is a commutative group under the prod
uct xt/t (cf. Vol. I, p. 78). We shall be interested particularly in 
the case A finite and B = Z a finite cyclic group whose order is 
divisible by the orders of all the elements of A. We shall call the 
maximum order of the elements of A the exponent of A. We recall 
that the order of every element is a divisor of the exponent (Vol. 
II, ex. 1, p. 69), so the condition we have imposed on Z is equiva
lent to: the order of Z is divisible by the exponent of A. 

We wish to determine Hom (A, Z) from a particular decom
position of A as A = Al X A2 X' .. X At where the Ai are cyclic 
subgroups. Thus we are assuming that A = Al ... Ar and 
Ai n Al ... Ai_lAi+1 ••• Ar = 1. Let ni = (Ai: 1) and let 
Ci be the subgroup of Z of elements z satisfying zn, = 1. Since ni 
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is a divisor of the order of Z, Ci is the subgroup of order ni of Z. 
Let C be the group of r-tuples (Cl) C2, ... , cr) where Ci e Ci and 
multiplication is defined componentwise. Hence C is the (ex
ternal) direct product of the groups Cl) C2 , ••• , Cr and C,....., A 
(cf. Vol. I, p. 144). We shall now obtain an isomorphism of 
Hom (A, Z) onto C. For this purpose we choose a generator ai 
of Ai, i = 1,2, ... , r. If X e Hom (A, Z), then aix = Ci satisfies 
Cin , = 1, since ain, = 1. Thus Ci e Ci. We now map X into the 
element (Cl) C2, ... ,cT ) == (aI X,a2x, ... ,arX) e C. If X, ~ eHom (A, Z), 
then 

(aIX"', ... , arx"') = (alxa/, ... , arxa/) 

= (aIX, ... , arX) (a/, ... , ar"'), 

so X ~ (aIX, ... , al) is a homomorphism of Hom (A, Z) into C. 
If aix = 1, i = 1, ... , r, then aX = 1 for every a e A, since the ai 
are generators of A. Thus aix = 1 for all i implies x = 1, which 
shows that x ~ (aIX, ... , al) is an isomorphism into C. It re
mains to show that this mapping is surjective. Let Ci be any ele
ment of Ci• Then Cin , = 1 and it is clear that we have a homo
morphism Xi of Ai onto Ci such that aix, = Ci. Since A = Al X 
A2 X· .. X Ar the mapping XIX2 ... Xr ~ XIX1X2x2 ... xl', Xi e 
Ai, is a homomorphism X of A into Z. Clearly X ~ (alX, ... , al) 
= (Cl) C2, ... , cr). This shows that the mapping of Hom (A, Z) in
to Cis surjective. Thus we have shown that A:: C,....., Hom (A, Z). 

Theorem 6. Let A be a finite commutative group and let Z be a 
finite cyclic group whose order is divisible by the exponent of A. 
Then the group Hom (A, Z) is isomorphic to A. 

If Z satisfies the condition of the theorem, then we shall call the 
group Hom (A, Z) a character group of the group A and we shall 
call the elements of this group characters of A. 

We are now in a position to derive in quick succession the results 
on characters which we need. We note first the following 

Corollary 1. If a ¢ 1 in A, then there exists a character X e 
Hom (A, Z) such that aX ¢ 1. 

Proof. Let B be the subgroup of A of elements b such that bX = 
1 for all X e Hom CA, Z). Then we see immediately that our 
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assertion will follow if we can show that B = 1. Now let X e 
Hom (A, Z). Since bX = 1, be B, B is in the kernel of X and 
so we have an induced homomorphism X of AlB into Z defined by 
(aB)i = aX. If x, if; e Hom (A, Z) and X = ~, then the definition 
shows that X = if;. Hence the mapping X ~ X of Hom (A, Z) 
into Hom (A/B, Z) is 1-1. Since (A:l) = (Hom (A, Z):I) and 
(AlB: 1) = (Hom (AlB, Z): 1), by Theorem 6, we must have 
equality of all of these numbers. This implies that B = 1, which 
is what we needed. 

If a is a fixed element of A, then we can define a mapping l1a of 
Hom (A, Z) into Z by x'lG = aX. If x, if; e Hom (A, Z) we have 
(xif;)'1G = aX'" = aXa'" = x'laif;'1a, which shows that l1a is a homo
morphism of Hom (A, Z) into Z. Thus l1a is a character of the 
group Hom (A, Z). Then we have the basic 

Corollary 2. For a e A define a mapping l1a of Hom (A, Z) into 
Z by x'la = aX. Then l1a e Hom (Hom (A, Z), Z) and the mapping 
a ~ l1a is an isomorphism of A onto Hom (Hom (A, Z), Z). 

Proof. Observe first that a -- l1a is a homomorphism since 
x'lab = (ab)X = axbX = x'1ax'1b = x'Yfa'Yfb (the last equation by the 
definition of the product in a character group). Next suppose 
l1a = 1. Then aX = 1 for all X so, by Cor. 1, a = 1. This 
shows that the kernel of the homomorphism a ~ l1a is the iden
tity. Hence the mapping is an isomorphism. Since (A: 1) = 
(Hom (A, Z): 1) = (Hom (Hom (A, Z), Z): 1), by Theorem 6, 
a ~ l1a is surjective and the proof is complete. 

Corollary 2 permits us to identify A with the character group 
(relative to Z) of Hom (A, Z). By virtue of this result we have a 
perfect duality between A and Hom (A, Z). We use this in the 
proof of 

Corollary 3. A set {Xh X2, .• " Xr} of characters generate the 
character group Hom (A, Z) if and only if the only a e A satisfying 
aX; = 1, i = 1, 2, .. " r is a = 1. 

Proof. This is equivalent to the dual statement {ah a2, .. " a,} 
generate A if and only if at< = 1, for i = 1,2, "', r holds only 
for the character 1. This is easy; for, if ah .. " a, generate A and 
at< = 1 holds for the character X, then aX = 1 holds since X is a 
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homomorphism. This implies that X = 1. On the other hand, if 
the subgroup B generated by ah .. " ar is a proper subgroup, 
then there exists a character X ~ 1 for AlB. If a e A the mapping 
defined by a ~ aB ~ (aB)'X. is an element ~ 1 of Hom (A, Z) 
satisfying at' = 1, i = 1, .. " r. 

3. Kummer extensions. It is generally a difficult problem to 
obtain a survey of the abelian extensions of a given field 4>. For 
example, if 4> is the field of rational numbers, this requires deep 
arithmetic considerations. However, there are two types of 
abelian extensions which can be quite exhaustively studied by 
comparatively elementary algebraic means. One of these, which 
we shall call abelian p-extensions, are the abelian extensions of pe 
dimensions over a field of characteristic p ~ O. We shall con
sider these in § 5. In the present section we shall develop the 
theory of Kummer extensions, which are defined as follows. 

Definition 1. Let P be an abelian extension oj a field 4>. Then 
P/4> is called a Kummer m-extension if the Galois group oj P /4> is oj 
exponent m and 4> contains m distinct m-th roots oj 1. 

We shall now suppose that 4> is a given field which contains m 
distinct m-th roots of 1. The field 4> and the integer m will be fixed 
throughout our discussion. We are interested in obtaining a sur
vey of the Kummer m'-extensions P/4> where m'lm. We recall 
that the condition that 4> contain m distinct m-th roots of 1 im
plies that the characteristic is not a divisor of m (§ 2.2). If P /4> 
is a Kummer m'-extension where m'lm, then [P:4>] = (G:l) and, 
since the exponent and order of a finite commutative group are 
divisible by the same primes, we see that the characteristic is not 
a divisor of [P: 4>]. 

Let 4> and m be as indicated and let P/4> be a Kummer m'-ex
tension, m'l m. Let P* and 4>* be the multiplicative groups of 
non-zero elements of P and 4> respectively. For p e P*, the 
mapping p ~ pm is an endomorphism of P* which maps 4>* into 
itself. The kernel of p ~ pm is Z(m) the group of order m of m-th 
roots of 1 and Z(m) C 4>*. Let 

(7) M(P) = {p e p*lpm e 4>*} 

(8) N(P) = {pml p e M(P)}. 
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Thus M(P) consists of the m-th roots in P of the elements of <p* 

and N(P) is the set of elements of <p* which are m-th powers of 
elements of P. It is clear that M(P) is a subgroup of p* con
taining <p* and N(P) is a subgroup of <p* containing <p*m = 

{amla e <p*l. 

Let p e M(P) and set xp(s) = p'p-l, s e G. Since pm = a e <P, 
(p,)m = a so p'p-l e Z(m). Moreover, since Z(m) C <P, 

xp(st) = p.tp-l = (pBp-l)t(ptp-l) = xp(s)xp(t). 

Thus we see that XP e Hom (G, Z), Z = Z(m), which is a character 
group of the finite commutative group G since the exponent of G 
is a divisor of m. Conversely, let X be any element of Hom (G, Z). 
Then we have x(st) = x(s)x(t) = x(s)tx(t), so Noether's equa
tions are satisfied. Consequently, by Noether's theorem (Th. 
1.19), there exists a non-zero element peP such that xes) = 
p8p-l. Since p"p-l e Z we have (pB)m = pm or (pm)" = pm for every 
s e G. This implies that pm e <p and so p e M(P). We have there
fore shown that every element of the character group Hom (G, Z) 
is of the form xes) = p"p-l, P in M(P). If Ph P2 e M(P) and 
XPI' XP2 are the corresponding characters of G, then XPIP2(S) = 

(PIP2)"(PIP2)-1 = Pl"Pl-1p2 8P2 -1 = XPl(S)xP2(S). Hence the map
ping p - xp(s) is a homomorphism of M(P) onto Hom (G, Z). 
The kernel of this homomorphism is the set of elements p e M(P) 
such that p.p-l = 1, s e G. This is just the set of elements satis
fying p. = p, s e G, p ~ 0 and so it is <p*. 

It is convenient to state the result which we have just obtained 
on the homomorphism of M(P) onto Hom (G, Z) as a result on 
exact sequences of group homomorphisms. If Gh G2, ••• , Gk are 
groups and l1i is a homomorphism of Gi into Gi +h then we say 
that the sequence 

G1 ~ G2 ~ ••• - Gk _ 1 ~ Gk 
'II '12 'Ik-I 

is exact if for each i = 1,2, ... , k - 2 the image of Gi under l1i 

coincides with the kernel of l1i+l. If 1 denotes the group consisting 
of 1 alone then the only homomorphism of 1 into any group Gis 
1 - 1. It follows from this and the definition of exactness that 
1 - G1 - G2 is exact if and only if 11 is 1-1 and G1 - G2 - 1 

'I 'I 

is exact if and only if 11 is surjective. 
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Using this terminology we can state the following theorem. 

Theorem 7. Let 1> be afield containing m distinct m-th roots of 1 
and let P / 1> be a Kummer m'-extension where m'l m. Let M(P) be 
defined by (7) where P* is the multiplicative group of P and 1>* is the 
multiplicative group of 1>. Then we have the exact sequence of 
multiplicative groups 

1 ~ 1>* ~ M(P) ~ Hom (G, Z) ~ 1 

where the homomorphism of 1>* is the inclusion mapping and that of 
M(P) is P ~ Xp, xp(s) = p8p- l • The factor group M(P)/P* is 
finite and isomorphic to G. We have P = 1>(M(P» and P = 

1>(PI, P2, .. " Pr), Pi in M(P), if and only if the cosets Pi1>* generate 
M(P)/1>*. 

Proof. The first statement on the exactness of the displayed 
sequence means that 1>* is the kernel of the mapping P ~ XP and 
this mapping is surjective on Hom (G, Z). Both of these facts 
were established above. Consequently, we have Hom (G, Z) rv 

M(P)/1>*. Since Hom (G, Z) rv G, by Theorem 6, we have 
M(P)/1>* ::::: G. This proves the second statement. Now let 
PI, ... ,Pr be elements of M(P) such that thecosetsPi1>* generate the 
finite group M(P)/1>*. Clearly the homomorphism P ~ XP of M(P) 
gives the isomorphism p1>* ~ Xp of M(P)/1>* onto Hom (G, Z). 
Hence we see that the characters XPi generate Hom (G, Z). Now let 
P' = 1>(PI, P2, .. " PT) and let H be the subgroup of G corre
sponding to P' (the Galois group of PIP'). If t e H, we have 
p/ = Pi, 1 :::; i :::; r, so XPi(t) = 1. This implies that x(t) = 1 for 
every X e Hom (G, Z). It follows from Corollary 1 to Theorem 6 
that t = 1. Thus H = 1 which implies that P' = 1>(PI, .. " PT) 
= P and P = 1>(M(P». Conversely, let PI,"', PT e M(P) 
satisfy 1>(PI, .. " Pr) = P and let s e G. Then Pi" = Pi, 1 :::; i :::; r, 
will imply that p. = p, peP. Hence we see that Xp,(s) = 1, 
1 :::; i :::; r, implies s = 1. Then Corollary 3 to Theorem 6 im
plies that the Xp, generate Hom (G, Z). In particular, if P e M(P), 
then XP = XP1k1Xp/ 2 ••• XPrkr . Thus for every s e G we have 

p.p-l = (PI 8PI-1)k1(P2 8P2 -1)k2 ... (Pr"PT -l)kr. 

Hence (PPI -k1P2 ...,k2 ••• PT -kr) 8 = PPI -k1P2 -k2 ... Pr -kr, S e G. It 
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follows that P = {3Pl kl ••• Pr kr, (3 e eI>*: Since p was any element of 
M(P), this shows that the cosets piel>* generate M(P)/eI>*. This 
completes the proof. 

Next we consider the mapping P ~ pmel>*m of M(P) onto the 
factor group N(p)/eI>*m. This is a homomorphism whose kernel 
is the set of elements of M(P) such that pm = am where a e eI>*. 
Then P = fa where fm = 1. Since Z C eI>*, these are just the ele
ments of eI>*. Hence we have the isomorphism peI>* ~ pmel>*m of 
M(P) / eI>* on to N(P) / eI>*m. Since M(P) / eI>* is isomorphic to the 
Galois group of P /eI>, it is clear that N(p)/eI>*m is a finite subgroup 
of eI>* /eI>*m and we have 

(9) N(p)/eI>*m I'J M(P)/eI>* I'J G. 

We shall now shift our attention to the subgroup N(P) of eI>*. 
This satisfies the two conditions: N(P) ::> eI>*m and N(p)/eI>*m is 
finite. We shall see that these subgroups, which are defined by eI> 
and m, can be used to give a survey of the Kummer extensions 
P/eI>. We observe first that, if at, a2, "', ar are elements of 
N(P) such that the cosets aiel>*m generate N(p)/eI>*m, then P/eI> 
is the spli tting field of 

(10) f(x) = (xm - al)(xm - a2) ... (xm - ar). 

For, we have pr = ai where Pi e M(P) and the isomorphism 
pel>* ~ pmel>*m of M(P)/eI>* with N(p)/eI>*m implies that the cosets 
piel>* generate M(P)/eI>*. Hence, by Theorem 7, P = eI>(pt, .. " 
Pr). If Z = Ifj}, then the roots of f(x) are Pifj, so we see that 
P = eI>(Pifj) is a splitting field over eI> of f(x). 

We proceed to show next that any subgroup N of eI>* satisfying 
the stated conditions arises from a Kummer extension. The pre
cise result is the following 

Theorem 8. Let eI> be a field containing m distinct m-th roots of 1 
and let N be a subgroup of eI>* containing eI>*m such that N I eI>*m is 
.finite. Then there exists a Kummer m'-extension PI eI> with m'l m 
such that N(P) = N where N(P) and M(P) are defined by (8) and 
(7). 

Proof. The foregoing analysis of Kummer extensions gives the 
clue to the definition of P lei>. In view of this, we are led to choose 
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a1, a2, ... , ar in the given group N so that the cosets aieI>*m 
generate NleI>*m. Let P/eI> be a splitting field of the polynomial 
j(x) given in (10). Since xm - ai has m distinct roots, j(x) is 
separable and PI eI> is finite dimensional Galois. Let G be the 
Galois group. If Pi is a root of xm - ai, then all the roots of this 
polynomial are the elements Pirh ri in the group Z of m-th 
roots of 1. Hence if S e G, then p/ = ri(S)Pi, ri(S) e Z. If s, t eG, 
we have p/t = (ri(S)Pi)t = ri(S)p/ = ri(S)ri(t)Pi. Hence p/t = 

p/8 , i = 1,2, ... , r, and since it is clear that P = eI>(P1, P2, ... , 
Pr), st = ts for all s, t e G. This shows that G is a commutative 
group. Also we have p/k = ri(s)kpi' k = 1,2, ... , and conse
quently p/'" = Pi which implies that sm = 1, S e G. Thus the ex
ponent of G is a divisor of m and P leI> is a Kummer m'-extension 
since Z C eI>. It remains to show that, if N(P) is defined by (8), 
then N(P) = N. Since pr = ai e eI>, Pi e M(P) defined by (7). 
Since P = eI>(P1, ... , Pr), Theorem 7 shows that the cosets pieI>* 
generate M(P)/eI>*. Applying the isomorphism of M(P)/eI>* with 
N(p)/eI>*m we see that the cosets aieI>*m generate N(p)/eI>*m. On 
the other hand, we know that the cosets aieI>*m generate NleI>*m. 
This implies that N(P) = N 

We now consider two Kummer mi-extensions PileI>, i = 1, 2, 
where mil m. It is clear from the definitions of M(Pi), N(Pi) that, 
if PIleI> ::: P2/eI>, then the subgroups N(Pl) and N(P2) of eI>* coin
cide. Conversely, suppose we have N(Pl) = N(P2 ). We have 
seen that, if ah a2, ... , a r are elements of N(Pi ) such that the 
cosets aieI>*m generate N(Pi)/eI>*m, then Pi is a splitting field over eI> 
ofj(x) = (xm - al)(xm - a2) ... (xm - ar). The uniqueness of 
splitting fields implies that PIleI> r-..J P2/eI> if N(Pl) = N(P2). 
N ext we look at the Kummer m' -extensions, PI eI>, m'l m, which 
are contained in one extension field Q/eI> (e.g., the algebraic closure 
of eI> in the sense of § 4.1). We have seen that, if PileI> is one of our 
extensions, then Pi = eI>(M(Pi)). Hence it is clear that P l ::) P2 

if and only if M(Pl) ::) M(P2). Also it is clear that M(Pl) ::) 
M(P2) if and only if N(Pl) ::) N(P2). Hence P l ::) P2 if and 
only if the N(Pl) ::) N(P2). It is apparent that our results give a 
completely satisfactory internal description of the Kummer ex
tensions P leI> by means of the subgroups N of eI>* satisfying the two 
condi tions: N ::) eI>*m, N / eI>*m is fini teo 
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EXERCISES 

1. Show that there exist an infinite number of non-isomorphic quadratic ex
tensions of the field of rational numbers. 

2. Assume cf> contains m distinct m-th roots of 1 and let P Icf> be cyclic of m 
dimensions over cf>, s a generator of the Galois group of P Icf>. Show that P = 
cf>(p) where pm = a e cf> and p' = tp where t is a primitive m-th root of 1. Show 
that, if (f e P satisfies (fm e cf>, then (f = {3pk where {3 e cf> and 1 ::::; k ::::; m. 

3. (Albert). Let P be cyclic of n = Ie dimensions over cf> where I is a prime and 
cf> contains I distinct l-th roots of 1. Let s be a generator of the Galois group G of 
P Icf>, H the subgroup of order I of G generated by t = sm, m = Ie-I, E the sub
field of H-invariants, so E/cf> is the unique subfield of m dimensions in P Icf>. By 
2, P = E(P) where pi = a e E and pI = tp, t a primitive I-th root of 1. Show 
that p8 = {3pk where {3 e E and 1 ::::; k < I. Show that pI = 'Ypkm = tp where 

'Ye E and hence that km == 1 (mod I) and k = 1. Show that NElifI({3) = t and 
a 8a-1 = {31. 

4. (Albert). Assume cf> has I distinct I-th roots of 1, I a prime, and that E/cf> is 
cyclic of m = le-l dimensions over cf>, e > 1. Suppose E cpntains an element 
{3 such that NElifI({3) = t a primitive I-th root of 1. Show that there exists an 
a e E such that a 8a-1 = {31 where s is a generator of the Galois group of E/cf>. 
Show that a is not an I-th power in E so that, if P = E(P) with pi = a, then 
[P:E] = I. Show that P is cyclic of Ie dimensions over cf>. 

5. Note that ex. 3 and 4 imply the following: If cf> contains I distinct I-th roots 
of 1, I a prime, and E/cf> is cyclic of II > 1 dimensions, then E/cf> can be im
bedded in an extension P Icf> which is cyclic of l!+1 dimensions if and only if 
the primitive l-th root of 1, t is a norm of an element of E. Use this to prove 
that, if cf> is of characteristic ,t. 2, the quadratic extension E = cf>(E), E2 = 'Y e cf>, 
can be imbedded in a quartic cyclic extension of cf> if and only if'Y is a sum of two 
squares of elements of cf>. In particular, show that, if Ro is the field of rational 
numbers, then an imaginary quadratic extension RO(E), E2 = 'Y < 0 in Ro cannot 
be imbedded in a cyclic quartic extension. 

6. (0. Todd). Let P be the field of p-th roots of lover Ro where p is a prime 
of the form 4n + 1. Show that P contains a real quadratic subfield. 

7. Assume cf> contains four distinct fourth roots of 1. Show that any quadratic 
extension E/cf> can be imbedded in a cyclic quartic extension P Icf>. 

4. Witt vectors. We have defined abelian p-extensions of a field 
<P of characteristic p ~ 0 to be abelian extensions of p. dimen
sions of <P. Cyclic p-extensions of dimensionality p and p2 were 
encountered first by Artin and Schreier in connection with a prob
lem on real fields (see § 6.9). Their construction was generalized by 
Albert to give an inductive construction of cyclic p-extensions of 
p. dimensions. Slightly later Witt gave a direct construction 
and survey of "abelian p-extensions along the lines of the theory of 
Kummer extensions which we have just considered. Witt's 
method is based on an ingenious definition of a ring of vectors 
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defined by a given field of characteristic p. This construction has 
important application in other connections (e.g., valuation theory) 
and we shall consider it now in its general form. 

We shall begin first with the polynomial ring x = RO[Xi,Yh Zk] 

in indeterminates Xi,Yh Zk, i,j, k = 0,1, "', m - 1, over the 
field Ro of rational numbers. Let x(m) be set of m-tuples (ao, ah 

.. " am_I), ai e x, with the usual definition of equality and with 
addition and multiplication by components. If a = (ao, .. " 

am-I), b = (bo, .. " bm_ l ), then we denote the sum and product 
by a EB b, a 0 b, so that a EB b = (ao + bo, .. " am_l + bm_ l ), 

a 0 b = (aobo, .. " am-Ibm_I)' Let p be a fixed prime number. 
We use this to define a mapping cp in x(m) by the rule that, if a = 
(ao, aI, "', am-I), then a'P = (a(O), a(1), "', a(m-l» where 

(11) a(p) = aoP' + paIP'-l + ... + pPap, II = 0, 1, .. " m - 1. 

Thus a(O) = ao, a(l) = aoP + pal) .. '. We introduce also the 
mapping P:a - aP = (aoP, alP, "', am-IP), Then the defini
tion (11) gives 

(12) a(O) = ao, a(p) = (aP)(p-I) + pPap, II ~ 1. 

Next let A = (a(O), a(l), .. " a(m-l» be arbitrary and define a 
mapping y; by A>f = (ao, aI, ... , am_I) where 

(13) 
ao = a(O), 

1 
a. = - (a(p) - aoP> - paIP.-1 - ... - p.-Iap_I), 

pp 1I~1. 

One checks directly that a'P>f = a, A>f'P = A, which shows that cp is 
1-1 surjective with y; as its inverse. 

We shall now use the mapping cp and y; = cp-l to define a new 
addition and multiplication composition in x(m). These are re
spectively 

a + b = (a'P EB lfP)IP-1 

ab = (alP 0 bIP)'P-l. 
(14) 

These provide another ring structure in x(m) (Vol. I, ex. 6, p. 71). 
We denote the new ring as xm so Xm and x(m) coincide as sets and 
a - alP is an isomorphism of Xm onto x(m). Hence xm, like x(m), is 
commu tative. 
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We now examine the formulas for x + y, xy, and x - Y for the 
"." ( ) ( ) generIc vectors x = Xo, xl, .. " Xm-l ,Y = Yo, Yh .. " Ym-l , 
Xi,Yi the given indeterminates. For example, we have 

1 p-l (P). . 
(x + Y)o = Xo + Yo, (x + Y)l = Xl + Yl - - L . xo'Yop -', 

P i=l t 

(xy)o = XoYo, (XY)l = XOPYI + XIYOP + PXIYl' 

In general, if 0 denotes anyone of the compositions +, " -, then 
it is clear from the definitions that the v-th component (x 0 y)v 
of x 0 Y is a polynomial with rational coefficients in Xo,Yo, XhYh 
.. " xV, YV' Also one sees easily that 

(15) (x + y)v = Xv + Yv + jv(xo, Yo, .. " Xv-I, Yv-l) 

where jv is a polynomial in the indicated indeterminates. The 
basic result which we shall now establish is that (x 0 y)v is a poly
nomial in Xo,Yo, "', Xv,Yv with integer coefficients. 

Throughout our discussion we write riP = (a(O), a(l),"', 

a(m-l») if a = (ao, ah .. " am-I) etc. Let I[Xi, Yi] be the ring of 
polynomials in Xo,Yo, "', Xm-hYm-l with coefficients in the ring 
of integers I. If fJ. is a non-negative integer we denote the ideal 
pI'I[xi,Yi] by (PI') and we write c == d (PI') for c - de (Pl'). Then 
we have 

Lemma 1. Let fJ. ~ 1, 0 ~ k ~ m - 1, a = (a.), b = (b.), 
o ~ v ~ m - 1, a., b. e I[Xi,Yi]' Write tiP = (a(v»), b'" = W·»). 
Then the system oj congruences 

(16) 

is equivalent to 

(17) 

Pro(;f. We have a(O) = ao, beD) = bo, so the result is clear for 
k = O. To prove the result by induction on k we may assume 
that both sets (16) and (17) hold for 0 ~ v ~ k - 1 and prove 
that under these conditions ak == bk(Pl') if and only if a(k) = b(k) 

(PI'H). It is clear that ak = bk(Pl') if and only if pkak = pkbk 
(PI'H). Hence, using (12), it is enough to show that (aP)(k-l) == 
(bP)(k-l)(pI'H) holds under the induction hypothesis. We have 
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av = bv(JY'), 0 ~ v ~ k - 1. Using (~) == 0 (p), 1 ~ i ~ P - 1, 

this gives avP == bvP(pIJ.+1), 0 ~ v ~ k - 1. Hence the induction 
on k applies to aP and bP to give (aP)(k-l) == (V)(k-l)(PIJ.+1H-l) 
which is what is required. 

We can now prove the basic 

Theorem 9. If x 0 y denotes x + y, xy or x - y, then (x 0 y)v is a 
polynomial in Xo, Yo, Xl) yl) .. " xv, Yv with integer coefficients. 

Proof. Since (xoy)v is a polynomial in Xo,Yo," ',Xv,Yv with 
rational coefficients, it suffices to prove that (x 0 y)v e I[xi,Yi]' 
This is clear for (x 0 y)o and we assume it for (x 0 yh, 0 ~ k ~ 
JI - 1. We have 

(18) pV(x 0 y)v = (x 0 y)(v) - «x 0 y)P)(v-l), 

by (12) and (x 0 y)(v) = x(v) ± y(v) e I[xi,Yi]' The induction 
hypothesis implies that «x 0 y)P)(V-l) e I[xi,y;]. Hence, by (18), 
it suffices to show that (x 0 y)(v) == «x 0 y)P)(v-l) (PV). We have 
x(v) = (XP)(v-l) (PV) and y(v) == (yP)(v-l) (PV), by (12). Hence 

(19) (x 0 y)(v) = x(v) ± y(v) == (XP)(v-l) ± (yP)(v-l) 

= (xP 0 yP)(v-l) (PV). 

We are assuming that (x 0 yh e I[xi,Yi], 0 ~ k ~ v-I. For any 
polynomial with integer coefficients one has f(xo,yo, .. . )P = 
f(xoP,yoP, ... ) (P). It follows that (x 0 yhP == (xP 0 yPh (P), 
o ~ k ~ v - 1. Hence, by Lemma 1, we have 

(20) «x 0 y)P)(v-l) == (xP 0 yP)(v-l) (PV). 

By (19) and (20), (x 0 y)(v) == «x 0 y)P)(v-l) (PV), which is what 
was needed. 

It is convenient to write the result we have proved as follows: 

(x + y)v = sv(xo,Yo, "', xv,Yv) eI[xi,Yi] 

(21) 

(x - y)v = dv(xo,yo, .. " xv,Yv) e I[Xi,Yi]' 

We note also that, since (0, .. ,,0) and (1, .. " 1) are the zero and 
identity elements of I(m) and (0 ... 0)'" = (0 '" 0) (1 0 ... 

" """ 
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O)g> = (1, .. " 1), then (0, .. ,,0) and (1,0, .. ,,0) are the zero 
and identity of Xm. Let 7J be an algebra homomorphism of x over 
Ro into itself and assume that x/' = av, Yv~ = bv, 0 ~ II ~ m - 1. 
Then we have (x(v»)~ = a(v), (y(v»)~ = b(v), ((x + y)(v»)~ = a(v) + 
b(v) and ((x + y)v)~ = (a + b)v. Hence, by (21), (a + b)v = 
sv(ao, bo, .. " av, bv) and similar formulas hold for (ab)v and 
(a - b)v. Since there exists a homomorphism 7J of x over Ro such 
that xv~ andyv~ are arbitrary elements of x, these formulas hold for 
all a, b e xm • Evidently they imply that, ifm is any subring of 
RO[Xi, Yf, Zk], then the set .18m of vectors (bo, bb .. " bm- I) with the 
bv em is a subring of xm • In particular, this holds form = ID = 
I[xi,yf, Zk] and form = W' = I[xi,Yi]' 

We are now ready to define the ring 5IDm(~) of Witt vectors. 
Here ~ is any commutative algebra over the field Ip of p elements, 
where p is the prime used above. The elements of5IDm(~) are the 
"vectors" (ao, ab .. " am-I), av e~, with equality defined as 
usual. If a = (ao, .. " am-I), b = (bo, .. " bm- I), then we define 
addition and multiplication in 5IDm(~) by 

(a + b)v = sv(ao, bo, ... , av, bv) 
(22) 

(ab)v = mv(ao, bo, .. " av, bv). 

Here we understand that a + b = ((a + b)o, .. " (a + b)m-I), 
ab = ((ab)o,"', (ab)m_I) and, if j(xo,yo,"') is a polynomial 
with integer coefficients, then ](ao, ab ... ) is the element of ~ 
obtained by replacing the integer coefficients of j(xo, Yo, ... ) by 
their cosets in I p , Xv by av, Yv by bv, 0 ~ II ~ m - 1. These re
placements amount to applying the homomorphism of I[xi,Yi] 
into ~ such that n ~ n = n + (P), n eI, Xv ~ av,Yv ~ bv. 

Now suppose a = (av), b = (bv), c = (cv) are any three elements 
of5IDm(~)' We have a homomorphism of I[xi,yf, Zk] into ~ such 
that n ~ n, n e I, XV ~ av, Yv ~ bv, Zv ~ cv. Consider the sub
ring 3m of Xm of vectors (wo, WI, •• " Wm-I) where w. e I[xi,yf, 
Zk]. We have seen that, if t = (to, .. " tm-I) e 3m, then (w + t)v 
= s.(wo, to, .. " w., tv), (wt). = mv(wo, to, .. " w., tv). It follows 
that the mapping (wo, "', Wm-I) ~ (wo~, "', Wm_I~) is a 
homomorphism of 3m into the system (5IDm(~), +, .) where + 
and· are defined by (22). Note that our homomorphism maps x 
into a, y into b, Z into c. We remark also that any element w = 
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(w.) such that the w. e (P) is in the kernel of the homomorphism 
of 3m into ~. 

We can now prove 

Theorem 10. 5IDm(~) is a commutative ring. 

Proof. Let a = (a.), b = (b.), c = (c.) be any three elements 
of5IDm(~)' Then we have just seen that we have a homomorphism 
of 3m into 5IDm(~) such that x = (xv) ~ a, Y = (y.) ~ b, z = 
(z.) ~ c. Then the associative, commutative, and distributive 
laws of addition and multiplication in 3m give the same rules for 
the elements a, b, c (e.g., (ab)c = a(bc)). The image of ° = (0, 
.. " 0) and 1 = (1, 0, .. " 0) under our homomorphism are ° == 
(0, .. ,,0) and 1 = (1,0, .. ,,0) and the relations x + ° = x, xl 
= x give a + ° = a, a1 = a in 5IDm(~). Also if we write a' for the 
image of -x under the homomorphism, then we have a + a' = 0. 
Since a, b, c are arbitrary in 5IDm(~), these remarks show that 
5IDm(~) is a commutative ring with ° = (0, .. ,,0), 1 = (i,O, .. " 
0) as ° and identity elements. 

We shall call5IDm(~) the ring of Witt vectors of length m over ~. 
We remark that5IDI(~) can be identified with ~ itself since we have 
the isomorphism a ~ (a) of ~ onto 5IDI(~)' 

Now let 58 be a subalgebra of ~ over Ip and form the ring 
5IDm(58) of Witt vectors over 58. Then it is clear that b = (b.) ~ b 
is an isomorphism of 5IDm(58) into 5IDm(~)' In this way we can 
identify $ffim(.18) with the subring of 5IDm(~) of the Witt vectors b 
with b. e 58. In particular, if we take 58 = Ip we obtain the sub
ring 5IDm (Ip) of vectors with components in Ip. This subring 
evidently consists of pm elements. 

We define the mapping P of 5IDm(~) into itself by aP = (aoP , 

alP, .. " am-I P) for a = (ao, ah .. " am-I)' We have noted that, 
if f(xo, Yo, ... ) e I[xi,Yi], then }(ao, bo, .. . )P = }(aoP, boP, ... ). 
This and the definitions of addition and multiplication in iffim(~) 
imply that 

(23) 

We shall call P the Frobenius endomorphism in 5IDm(~)' We intro
duce the restriction mapping R of5IDm(~) into 5IDm- 1 (~) by (ao, .. " 
am_I)R = (ao, .. " am-2) and the shift mapping V of 5IDm- 1 (~) 
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into 5IDm(m by (ao, .. " am_2) v = (0, ao, .. " am-2)' It is im
mediate that R is a ring homomorphism and we shall see that V 
is a homomorphism of the additive group of5IDm_l(~) into that of 
5IDm(!). We have 

(a ... a )VR - (0 a ... a ) - (a ... a )RV 0, ,m-l - ,0, ,m-2 - 0, ,m-l . 

Also it is clear that PV = VP, RP = PR, and (VR)m = ° hold 
in 5IDm(!). 

We prove next the important 

Lemma 2. The following relations hold in Witt rings: 

,....---p-----, 
(24) pI = 1 + 1 + 1 ... + 1 = 1 VR 

(25) (a + b) v = aV + V 

(26) aV b = (al/R) v, a e 5IDm(!), b e 5IDm+1 (!) 

(27) pa = aPVR. 

Proof. Consider the subrings 3m-I, 3m, 3m+l of Xm-I, Xm, 
Xm+l of elements with components in l[xi,Yh Zk] and define the 
mappings R and V for these in the same way as for the Witt rings. 
Also we have the mapping P defined before. Consider the ele
ment 1 = (1,0, .. ,,0) of 1. Set p = pI. We have 1'" = (1, 1, 
",,1) and 

,....---pr-----, 
l"'EB l"'EB"'EB 1'" = (p, .. ',p). 

Hence p(') = p, ° ~ p ~ m - 1. On the other hand, 1 VR = 
(0,1,0, ",,0), so the definition of ((J gives (lVR)CO) = 0, (lVR)C.) 
= p, 1 ~ p ~ m - 1. Then we have (1 VR)(.) == pC.) (p.+l), ° ~ p 

~ m - 1.. By Lemma 1, this implies that (1 VR). = P. (p). We 
have seen that there is a homomorphism of 3m into 5IDm(!) such 
that every w = (w.), w. e (p), is in the kernel. If we apply this 
to 1 VR and to p and use the foregoing relations on components, 
we obtain (24) in 5IDm(~)' Next we note that XV = (0, Xo, .. " 
Xm-l), yV = (O,Yo, .. ',Ym-l) for x = (xo, "', Xm-l), Y = (Yo, 
.. ',Ym-l) in 3m. Then 

(XV)(.) = pxop·-1 + p2X1 P·-J + ... + P·X.-I, 1 ~ p ~ m, 



ABELIAN EXTENSIONS 131 

by (11); hence 

(28) (XV) (v) = pX(v-I), 1 ~ II ~ m. 

Since (x + y)<v) = x(v) + y(v), this and (XV)(O) = (yV)(O) = «x + 
y)V)(O) = 0 give «x + y)V)(v) = (XV)(v) + (yV) (v) , 0 ~ II ~ m. 
Hence (x + y)V = XV + yV holds in 3m+I' If we apply the 
homomorphism of I[xi,Yh Zk] into & such that n ~ n = n + (P), 
Xv ~ av, Yv ~ bv, Zv ~ cv to the components of (x + y)V and 
XV + yV, we obtain (25) for a, b em3m(&). To prove (26) we shall 
show that 

(29) (XVy)v = «xyPR)V)v (P), 0 ~ II ~ m 

if x = (xo, Xl, "', Xm-I) e 3m and y = (YO,Y1, .. ',Ym) e 3m+1, 
Xi, Yj indeterminates. Set xVy = (wo, W1, "', wm), (xyPR)V = 
(to, t1, .. " tm). Then we have to show that Wv == tv (P), 0 ~ II ~ 
m. By Lemma 1, this is equivalent to w(v) = t(v) (pv+I). This 
holds for II = 0 since w(O) = 0 = t(O). For II ~ 1, we have, by (28), 
that w(v) = pX(v-I)y(v) and't(v) = pX(v-I)(yPR)(v-I). Sincey(v) = 
(yP)(v-I) + pVYv, this gives the congruences 

w(v) = pX(v-l)y(v) = pX(v-l)(yP)(v-l) 

= pX(v-I)(yPR)(v-l) == t(v) (pv+I). 

Hence (29) holds. Applying a suitable homomorphism into ~, 
we obtain (26). If we apply R to both sides of (26), we obtain 
aVRbR = (abPR)VR. Setting a = 1 and bR = e dmm(~), we ob
tain IVRe = cPVR• Since IVR = pI, by (24), this gives pc = cPVR• 
Since e = bR can be taken to be any element of m3m(~), this is 
equivalent to (27). 

We can now derive the basic properties of m3m(~) which we shall 
need. We prove first 

Theorem 11. m3m(&) is a ring of characteristic pm. 

Proof. It suffices to show that the order of I in the additive 
group of m3m(~) is pm. We have seen that pI = I VR = (0, 1,0, 
.. ,,0) and by iterating (27) we obtain p21 = (0,0, 1,0, ... ) 
etc. This shows that pm-II = (0, ",,0, 1) ~ 0 butpml = 0, as 
required. 

We have seen that, if m is a sub algebra of &, then we can con-
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sider 5illm(.58) as a subring of5illm(2l). In particular this holds if we 
take 58 = Ip. Then Z = 5illm(Ip) is the set of vectors with com
ponents in the field Ip and so the number of elements in Z is pm. 
On the other hand, Theorem 11 shows that there are pm distinct 
elements of the form kl, k an integer, in 5illm(2l) and these belong to 
Z. Hence it is clear that Z is just the set of integral multiples of 
the identity of 5illm(2l). Evidently Z is isomorphic to the ring 
I/(pm) of residues modulo pm. The following result gives an in
sight into the structure of5illm(2l). 

Theorem 12. The mapping a = (ao, ah ... ,am-I) ~ ao is a 
homomorphism of5illm(2l) onto 2l whose kernel 91 is a nilpotent ideal. 

Proof. We have seen that R is a homomorphism of 5illm(2l) onto 
5illm- I(2l). Iteration of this shows that Rm-I is a homomorphism 
of 5illm(2l) onto 5ill1(2l) = 2l. Evidently Rm-I is the mapping we 
have indicated. The kernel of our homomorphism is the ideal 91 
of elements of the form (0, ao, ah ... , am_2). Hence 91 = 

5illm(2l) YR. If we apply R to (26) we obtain aVRbR = (abPR) YR. 
Since bR can be taken to be any element c in 5illm(2l) , this gives the 
relation aVRc = (acP) VR in 5illm(2l). Then aVRcVR = (acPVR) VR = 
(aP?) (VR)2 e5illm(2l)(VR)2. Thus 912 = (5illn (2l)VR)2 C 91vR. Now 
assume that for some k ~ 2, 5Jlk C 915Jl(VR)k-2 C 5Jl(VR)k-l. Then if 
d = aVR e 91 and be 91\ we have b = C(VR)\ c e5illm(2l), since be 
91(VR)k-l = 5illm(2l)(VR)k. Hence db = aVRc(VR)k e 9191(VR)k-l and so 
91k +1 C 9191(VR)k-l. Moreover, if a, c e 5illm(2l) , then aVRc(VR)k = 
(aPVRc(VR)k-l) VR e (9191(VR)k-2) VR C (91(VR)k-l) VR = 91(VR)k. Hence 
9191(VR)k-l C 91(VR)k and so 91k +1 C 91(VR)k. This shows that 
91k c 91(VR)k-l holds for all k ~ 2. Since 91 = 5illm(2l) VR and 
5illm(2l)(VR)m = 0 this gives 91m = o. 

Corollary. An element a = (ao, ah ... , am-I) is a unit in 
5illm(2l) if and only if ao is a unit in 2l. 

Proof. This follows from Theorem 12 and the remark that, if 91 
is a nilpoten t ideal in a ring 5ill, then an elemen t a e 5ill is a uni t in 5ill 
if and only if the coset a + 91 is a unit in 5ill/91. We leave the 
proof as an exercise. 

5. Abelian p-extensions. It will be instructive to consider first 
briefly the abelian extensions of a field cJ? of characteristic p ;of 0 
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whose Galois groups G have exponent p (cf. ex. 3, 4, p. 98). In 
this case we let Z be the additive cyclic group generated by the 
element 1 of cP and we consider the character group Hom (G, Z) 
where G is the Galois group of an extension P of the type specified. 
The elements X e Hom (G, Z) are the mappings of G into Z 
satisfying X(SI) = xes) + X(/). Since xes) e Z C CP, this can be 
written also in the form x(SI) = x(s)t + x(/) so that we have an 
instance of the additive analogue of Noether's equations. Hence 
by Theorem 1.20, there exists ape P such that xes) = p. - p. Since 
xes) e Z, x(s)P = xes) so (p. - p)P = p. - p. This gives the 
equation (pP - p). = pP - p, s e G; hence pP - P = a e CP. Con
versely, let p be any element of P such that pP - P = a e cP and de
fine xes) = p. - p. Then x(s)P - xes) = (pP - p)8 - (pP - p) 
= a8 - a = O. Hence x(s)P = xes) and this implies that xes) is 
in the prime field, so xes) e Z. Also we have X(SI) = pst - P = 
(p8 _ p)t + (pt _ p) = (pS _ p) + (pt - p) = xes) + X(/); hence 
X e Hom (G, Z). Following the pattern of the Kummer theory 
this leads us to consider the subset S(P) of P of elements p such that 
pP - P e CP. This is a subgroup of the additive group (P, +) con
taining (cp, +) and we have the mapping p ~ XP' where xp(s) = 
p8 _ p, of S(P) onto Hom (G, Z). Since Z is an additive group the 
composition in Hom (G, Z) is (x + y;)(s) = xes) + y;(s). More
over, if p, q e S(P), then xp+ .. (s) = (p + q)S - (p + q) = xp(s) + 
x .. (s); hence p ~ XP is a homomorphism of S(P) onto Hom (G, Z). 
It is clear that the kernel of this homomorphism is CP. Hence 
S(P)/cp '" Hom (G, Z) '" G. 

The next step in the discussion is to consider the subset Q(P) of 
cP of elements of the form pP - p, p e S(P). This is a subgroup of 
the additive group (cp, +) containing the subgroup of elements of 
the form a P - a, a e CP. One sees easily that the factor group of 
Q(P) relative to the last subgroup is isomorphic to S(P)/cp, hence 
to Hom (G, Z) and to G. It can be shown that any subgroup of 
(cp, +) containing the subgroup of elements a P - a, a e CP, and 
having a finite factor group relative to this subgroup is a group 
Q(P) for an abelian p-extension with Galois group of exponent 
~ p. The groups Q give a survey of these extensions in the same 
manner that the group N(P) gave a survey of the Kummer ex
tensions. We shall not work out the details here but instead we 
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shall proceed to the general case of arbitrary p-extensions. The 
idea here is to work in the ring m3m(P) of Witt vectors over the 
given extension P where m ;::: e, pe the exponent of G. Then the 
subgroup Z of the additive group of m3m(P) generated by 1 is 
cyclic of order pm; hence, Hom (G, Z) is a character group of G. 
We shall need first of all the generalization of Theorem 1.20 to the 
ring of Witt vectors and we proceed to derive this result. 

Suppose first that P is a finite dimensional Galois extension field 
of the field 4> of characteristic p ~ 0 with Galois group G. Let 
m3m(P) be the ring of Witt vectors of length m ;::: lover P. We 
have seen that we can identifym3m(4)) with the subset ofm3m(P) of 
vectors (3 = «(30, (3h .. " (3m-I) with the (3. e 4>. If P = (Po, .. " 
Pm-I) em3m(P) and s e G, we define p" = (Po", "', Pm_I")' It is 
clear that P ~ p 8 is an automorphism ofm3m(P) and that the set 
of these automorphisms is a group isomorphic to G. We denote 
this group again as G. Evidently p" = P if and only if P."=P., 
o ~ 11 ~ m - 1. Hence m3m(4)) can be characterized as the sub
ring of G-invariants of the ring m3m(P). 

If P em3m(P) we define its trace T(p) = E pO. Evidently 
BeG 

T(p)8 = T(p), s e G, so T(p) em3m(4)). If p = (Po, Ph "', Pm-I), 
then the first component of T(p) is T(po) (trace in P over <1», 
since first components are added in forming a sum in m3m(P). We 
recall that the automorphisms s e G in Pare P-independent and 
this implies that there exists a Po e P such that T(po) ~ O. If Po 
is chosen in this way and p = (Po, ... ), then T(p) = (T(po), 
... ) has non-zero first component. It follows from the corollary 
to Theorem 12 that T(p) is a unit in m3m(4)). Hence we have 
proved the following 

Lemma 1. There exist p e m3m(P) such that T(p) -1 exists in 
m3m (4)). 

We use this to prove the following key cohomology result. 

Theorem 13. Let s ~ fJ.. be a mapping oj G into m3m(P) such 
that fJ.Bt = fJ." t + fJ.h S, t e G. Then there exists an element u e m3m(P) 
such that fJ." = u" - u. Conversely, if u e m3m (P), then fJ.. = u· - u 
satisfies the given equations. 
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Proof. The proof is identical with that of the special case of 
Galois extension fields treated in Theorem 1.20. We choose P in 
>IDm(P) so that T(p)-1 exists in >IDm(cf» and we let T = 

T(p) -1 (:2: J.LBPs), Then 
BeG 

T - Tt = T(p) -1 ( ~ (J.LBtp Bt - J.L/pBt) ) 

= T(p) -1 ( ~ J.Ltpst) 

= T(p) -1J.LtT(p) 

Hence if we take u = -T, then we have J.LB = US - u as required. 
Conversely, if we take J.Ls = US - u where u is any element of P, 
then we have J.L.' + J.Lt = uot - u t + u t - U = u Bt - U = J.L.t. 

We recall that the Frobenius mapping p - pP = (PoP, PIP, 
.. " PmP) is an endomorphism of the ring >IDm(P). We shall now 
introduce the mapping \.l3 in >IDm(P) defined by 

(30) \.l3(p) = pP - p. 

It is clear that \.l3 is an endomorphism of the additive group of 
>IDm(P) (but not of the ring >IDm(P». The kernel of \.l3 is the set of 
vectors (Po, PI, .. " Pm-I) such that P.p = P., 0 ~ II ~ m - 1. 
Evidently this is just the set of vectors with components Pi in the 
prime field cf>o ('"""" Ip). Hence the kernel of \.l3 is the set of Witt 
vectors (Po, Ph .. " Pm-I) with the Pi e cf>o. We have seen (after 
Th. 11) that this is just the set Z of integral multiples of the 
identity 1, and Z is a cyclic group of order pm under addition. 

We now assume that the Galois group G is an abelian group of 
order pi and that m ~ e where pe is the exponent of G. Let 

(31) S(>IDm(P» = {p e>IDm(P) 1\.l3(p) e>IDm(cf» l. 

Then S(>IDm(P» is a subgroup of the additive group (>IDm(P), +) 
containing >IDm(cf». If p e S(>IDm(P», then we define the mapping 
Xp of G by xp(s) = p. - p. Then xp(s)P = pBP - pP = pPB - pP 
= (pB + a) - (p + a) if \.l3(p) = a. Hence xp(s)P = pB - P = 
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Xp(s). We have seen that this implies that xp(s) e Z. Also we 
have xp(st) = pst _ p = pst _ pt + pt _ P = (pS _ p) + (pt _ p) 
= xp(s) + xp(t). Hence XP e Hom (G, Z). Next let p, u e 
S(5IDm (P». Then p + u e S(5IDm (P» and xp+ .. (s) = (p + u)S -
(p + u) = (pS - p) + (US - u) = xp(s) + x .. (s). This shows that 
the mapping p ~ XP is a homomorphism of S(5IDm (P» into 
Hom (G, Z). If xp(s) = 0 for all s e G, then we have p8 = p, 
s e G, and this implies that p e5IDm(4)). Hence the kernel of p ~ XP 
is 5IDm ( 4». Finally, we note that our homomorphism is surjective. 
For, let X e Hom (G, Z). Then x(st) = xes) + x(t) and, since 
the xes) e Z, we have also x(st) = x(s)t + x(t). Hence, by Th. 13, 
there exists a p e5IDm (P) such that xes) = pS - p. Since xes) e Z, 
x(s)P = xes) and this gives (pP - p)8 = pP - p. Hence ~(p) = 

pP - P e5IDm (4)) and so p e S(5IDm (P». We now see that the map
ping p ~ XP of S(5IDm (P» into Hom (G, Z) is surjective and since 
the kernel is 5IDm (4)) we have S(5IDm(P»/5IDm (4» "" Hom (G, Z) ::: 
G. We have therefore proved the first two statements of the 
following theorem which is a perfect analogue of Theorem 7: 

Theorem 14. Let 4> be a field of characteristic p ~ 0, P /4> an 
abelian p-extension whose Galois group G is of exponent pe and let 
5IDm (P) be the ring of Witt vectors of length mover P where m ~ e. 
Let S(5IDm (P» be defined by (31). Then we have the exact sequence of 
additive groups 

o ~ 5IDm (4)) ~ S(5IDm (P» ~ Hom (G, Z) ~ 0 

where the homomorphism of 5IDm (4)) is the inclusion mapping and 
that of S(5IDm (P» into Hom (G, Z) is p ~ XP, xp(s) = p8 - p. The 
factor group S(5IDm(P»/5IDm (4» isfinite and is isomorphic to G. The 
field P /4> is generated by the components of the vectors p e S(5IDm (P» 
and 

P = """(p (1) ••• P 1(1). Po(2) ... P 1(2) ••••• PO(r) .•. p l(r» 
'¥ 0, ,m- , , ,m- , , , ,m-

if and only if the cosets p(i) + 5IDm(4)), p(i) = (Po(i), "', Pm_1(i», 

generate S(5IDm(P»/5IDm(4». 

The proof of the last statement is exactly like that of the corre
sponding statement of Theorem 7. We leave it to the reader to 
check the details. 
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Following the pattern of our treatment of the Kummer theory 
we introduce next the set 

This is a subgroup of the additive group (5IDm (4»), +) containing 
\.l3(5ID m(4»» the subgroup of vectors \.l3(a), a e5IDm (4)>). Consider the 
homomorphism 

P ~ \.l3(p) + \.l3(5IDm (4»» 

of S(5IDm (P» onto Q(5IDm(P»/\.l3(5IDm (4»». An element P is in the 
kernel of this homomorphism if and only if \.l3(p) = \.l3(a), a e 
5IDm (4)>). This is equivalent to \.l3(p - a) = 0 which means that p -
a e Z. Hence it is clear that the kernel of the homomorphism is 
5IDm (4)>) and we have the isomorphism 

(33) Q(5IDm(P»/\.l3(5IDm(4»» '" S(5IDm(P»/5IDm(4»). 

This implies that Q(5IDm (P» /\.l3 (5IDm ( 4»» is a finite group isomorphic 
to Hom (G, Z) and to G. We wish to show next that, if Q is any 
subgroup of 5ID m (4)>) containing \.l3(5IDm (4»» as a subgroup of finite 
index, then Q = Q(5IDm(P» for an abelian p-extension P over 4». 
For this we need 

Lemma 2. Let (3 = ((30, (31, . 0 0, (3m-l) e5IDm(4)>). Then there 
exists a finite dimensional separable extension field P of 4» such that 
P = <I>(p) == <I>(po, Ph 0 0 0, Pm-l) and the element P = (Po, Ph 0 0 " 

Pm-l) of 5IDm(P) satisfies \.l3(p) = (3. 

Proof. If m = 1 we just have to construct a separable exten
sion P = <I>(p) generated by a root P of an equation xP - x = (3, (3 
a given element in 4». Since the derivative (xP - x - (3)' = -1 
the given equation has distinct roots so any field generated by a 
root of this equation will satisfy the condition. Now suppose 
we have already constructed a separable extension E = 4»(po, 

o 0 0, Pm,-2) so that the vector (1' = (Po, 0 0 0, Pm-2) of 5IDm - 2 (E) 
satisfies. \.l3((1') = ((30, 0 0 0, (3m-2)' Consider the polynomial ring 
E[x] and the Witt ring 5IDm (E[x]). We take the vector y = 
(Po, 000, Pm-2, x) in this ring and we form 

\.l3(y) = (PoP, 000, Pm-2P, xP) - (Po, 000, Pm-2, x). 
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Then $(y) = ({3o, (3h ... , (3m-2,!(X)), f(x) e E[x]. Hence ({3o, 
(3t, "',{3m-2,f(x)) + (Po, "',Pm-2,X) = (PoP, ···,Pm-2P,XP). 
Using the formula (15) we see that 

(34) xP = f(x) + x + 'Y 

where 'Y e E. Hence f(x) = xP - x - 'Y. The derivative argu
ment shows thatf(x) = (3m-1 has distinct roots. If P = E(Pm-l) 
where j(Pm-l) = (3m-h then P is separable over E so P = <I> (Po, 
... , Pm-I) is separable over <1>. Moreover, it is clear from the 
formulas given above that P = (Po, ... , Pm-I) is an element of 
5IDm(P) such that $(p) = (3. 

We can now prove 

Theorem 15. Let Q be a subgroup of (5IDm(<I», +) containing 
$(~m(<I») and having the property that Q/$(~m(<I») isfinite. Then 
there exists an abelian p-extension P of <I> such that the exponent of 
the Galois group is pe, e S m, and Q(~m(P)) = Q. 

Proof. Let (3(1), (3(2), ••• , (3(r) be elements of Q such that the 
cosets (3(i) + $(~m(<I») generate Q/$(~m(<I»). By Lemma 2, we 
can construct a field P which is finite dimensional separable over <I> 
and is generated by elements PYl, 1 ~ i ~ r, 0 ~ v ~ m - I, 
such that $(po (i), ... , Pm-I (i») = ({3o (i), •.. , (3m-1 (i») in ~m(P), 
Let n be a finite dimensional Galois extension field of <I> containing 
P. We form ~m(n) and let the Galois group G of n/<I> act in ~m(n) 
as before. If s e G and p(i) = (Po (i) , ••• , Pm-I (i»), then $(p(i») = 
(3(i) gives $(p(i)8) = (3(i). Hence $(p(i)8 - p(i») = 0 so p(i)8 -
p(i) e Z c ~m(<I». This implies that P' c P, s e G. It follows 
that P is Galois over <I> and so we may take n = P. If s, t are in 
the Galois group G of P over <1>, then p(i)8 = p(i) + 'Y(i) and p(i)t = 
p(i) + 5(i) where -yS-i), 5(i) e ~m( <1». Hence p(i) 8t = p(i) + 'Y(i) + 
5(i) = p(i)t8 which implies that G is commutative. Also p(i)8k = 
p(i) + k'Y(i), so p(i)8pm = p(i) since ~m(P) has characteristic pm. 
This shows that spm = 1 and so G is of order pi and of exponent pe, 
e ~ m. Let Xi be the character of G determined by p(i): Xi(S) == 
p(i)8 _ p(i). Then it is clear that Xi(S) = I, 1 ~ i ~ r, implies 
that s = 1. It follows that the Xi generate the character group 
Hom (G, Z). Hence if p is any element of ~m(P) such that 
$(p) e~m(<I», then we have XP = IIxri • This implies that p = 
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~miP(i) + {3, (3 dffim(ef», mi integers. Then l.l3(p) = ~mif3(i) + 
1.l3({3) e Q. Since p is any element of S(5ffim(P)) this shows that 
Q(5ffim (P)) C Q. The converse is clear so the proof is complete. 

The results which we have now obtained correspond to the 
main results on Kummer extensions. They have the consequence 
that two abelian p-extensions Pt/ef>, P 2/ef> with Galois groups of 
exponent pe, e ::s; m, are isomorphic if and only if Q(5ffim(P1)) = 
Q(5ffim(P2)) (ex. 2 below). We have also the order preserving cor
respondence between the subfields P/ef> of a particular !l/ef> and 
the subgroups Q(5ffim (P)) of the additive group (5ffim(ef», +) (ex. 1 
below). We shall now consider the special case of cyclic p-exten
sions. We note first that it is an immediate consequence of our 
results that the cyclic extensions of p dimensions of ef> have the 
form ef>(p) where pP - P = {3 e ef> and (3 ¢ '.!3(ef», that is, (3 .,e. aP -

a, a e ef>. We shall now show that, if such an extension exists 
over ef>, which is equivalent to the condition ef> ~ 1.l3(ef», then there 
exist cyclic extensions of pm dimensions over ef> for any m = 1,2, 
. . .. This will follow from 

Lemma 3. If {3o, ... , {3m-1 e ef>, then (3o e 1.l3( ef» if and only if 
{3 = ({3o, (3h •.• , 13m-I) satisfies pm-I{3 e 1.l3(5ffim(ef»). 

Proof. By (27), pm-I{3 = (0, .. ·,0, (3opm- 1). We have (0, ... , 
0, (3o) - (0, ... , 0, (3oP ... -1) = (0, ... , 0, (3o) - (0, ... , 0, (3oP) + 
(0, ... , 0, (3oP) - (0, ... , 0, (3op'2) + ... + (0, ... , 0, (3opm-'l) - (0, 
... , 0, (3oP ... -1) e 1.l3(5ffim(ef»). Hence pm-I{3 = (0, ... , 0, (3opm- 1) 

e 1.l3(5ffim(ef») if and only if (0, ···,0, (3o) e 1.l3(5ffim(ef»). Suppose 
this holds, say, (0, .. ·,0, (3o) = a P - a where a = (ao, ah ... , 
am_I). Then aPR - aR = (0, ... , 0, {3o)R = ° so a RP = a R 

and, if 'Y = (ao, a!, ... , a m_2, 0), then 'YP = 'Y so 0 = a - 'Y 

satisfies oP - 0 = (0, ... , 0, (3o). Moreover, 0 = (0, .. ·,0, 
Om_I). This implies that Om-IP - Om_l = {3o so (3o e 1.l3(ef». 
Conversely, if this condition holds so that {3o = am_IP - am-I, 
then a P - a = (0, .. ·,0, (3o) for a = (0, .. ·,0, am_I). 

We can now prove 

Theorem 16. Let ef> be a field of characteristic p .,e. 0. Then there 
exist cyclic extensions of pm dimensions, m = 1,2,3, ... over ef> 
if and only if there exist such extensions of p dimensions. The con
ditionfor this is CI> ~ 1.l3(CI». 
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Proof. We have seen that there exists a cyclic extension of p 
dimensions over tl> if and only if tl> ~ 1l3( tl». Suppose this condi
tion holds and choose (3o e tl>, ¢ 1l3(tl». Let {3 = ({3o, {3h "', (3m-l) 
where the (3i, i > 0, are any elements of tl>. We have shown that 
pm-l{3 ¢ 1l3(tl» and this implies that the subgroup Q of m3m (tl» 

generated by (3 and 1l3(m3m (tl») has the property that QIIl3(m3m (tl») 
is cyclic of order pm. By Theorem 15, Q = Q(P) for an abelian p
extension P. Moreover, we have seen that the Galois group G of 
PI tl> is isomorphic to Q IIl3(m3m( tl») and so this is cyclic of pm di
mensions over tl>. 

EXERCISES 

1. Let PI and P 2 be two abelian p-extensions of cP contained in the same field 
n. Show that PI :::,) P 2 if and only if Q(m3m(P1)) :::,) Q(m3m(P2)) where m ::?: ti, 

p.', the exponent of the Galois group of Pi/CPo 
2. Let Pi, m be as in 1, but do not assume that the Pi are contained in the 

same n. Show that PI and P2 are isomorphic over cP if and only if Q(m3m(P1)) = 
Q(m3m(P2))' 

3. Prove that if (3 is an element of m3m(CP) such that pm-l{3 e 1l3(m3m(CP)), then 
there exists a 'Y in m3m(CP) such that P'Y = {3. Use this to prove that any cyclic 
extension of pm-l dimensions over cP of characteristic p can be imbedded in a 
cyclic extension of pm dimensions over CPo 
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STRUCTURE THEORY OF FIELDS 

In this chapter we shall analyze arbitrary extension fields of a 
field CP. A study of fini te dimensional extension fields and a partial 
study of algebraic extensions has been made in Chapter 1. In this 
chapter our primary concern will be with infinite dimensional ex
tensions and we shall begin again with the algebraic ones. We 
define algebraically closed fields and prove the existence of an 
algebraic closure of any field. We shall extend the classical Galois 
theory to apply to infinite dimensional normal and separable ex
tensions. After this we shall consider arbitrary extension fields 
and we shall show that these can be built up in two stages: first a 
purely transcenden tal one and then on top of this an algebraic ex
tension. The invariant of this mode of generating a field is the 
transcendency degree which is the cardinal number of a transcend
ency basis. We shall obtain conditions for the existence of a 
transcendency basis such that the extension is separable algebraic 
over the purely transcendental ~xtension determined by the 
basis. We shall also give a definition of separability of an ex
tension field that generalizes the notion of algebraic separability. 
The notion of a derivation plays an important role in these con
siderations. Moreover, this notion can be used to develop a 
Galois theory for finite dimensional purely inseparable extensions 
of exponent one. We shall consider also briefly the notion of a 
higher derivation that is useful for purely inseparable extensions 
of exponent greater than one. At the end of the chapter we con
sider the tensor product of extension fields, neither of which is 
algebraic, and we apply this to the study of free composites of 
fields. 

141 



142 STRUCTURE THEORY OF FIELDS 

1. Algebraically closed fields. The "fundamental theorem of 
algebra" states that every algebraic equation J(x) = 0 with co
efficients in the field of complex numbers has a root in this field. 
Any field that has this property is called algebraically closed. If cJ> 
is an algebraically closed field, then every polynomial J(x) e cJ>[x] 
of positive degree has a linear factor x - P in cJ>[x] and, conse
quently, every J(x) can be written as a product of linear factors in 
cJ>[x]. Clearly, the converse holds also: If every polynomial of 
positive degree in cJ>[x] is a product of linear factors in cJ>[x], then cJ> 
is algebraically closed. We recall that a field cJ> is called alge
braically closed in an extension field P if the only elements of P 
which are algebraic over cJ> are the elements belonging to cJ> (§ 1.9). 
We now note that a field cJ> is algebraically closed if and only ifit is 
algebraically closed in every extension field. Thus let cJ> be alge
braically closed and let P be an extension field. Let peP be 
algebraic over cJ> and suppose J(x) is its minimum polynomial. 
SinceJ(x) is irreducible and cJ> is algebraically closed,j(x) is of first 
degree. Hence p e cJ>. Conversely, suppose cJ> is algebraically 
closed in every extension field and letJ(-'I-) be an irreducible poly
nomial of positive degree belonging to cJ>[x]. We can form the ex
tension field P = cJ>[x]/(f(x)) whose dimensionality is the degree 
ofJ(x). Since P is algebraic over <I> and <I> is algebraically closed 
in P, P = cJ>. Hence degJ(x) = 1, which shows that the only ir
reducible polynomials of positive degree in cJ>[x] are the linear ones. 
This means that cJ> is algebraically closed. 

Let cJ> be an arbitrary field and let P be an algebraically closed 
extension field of cJ>. Let A/cJ> be the subfield of elements of P 1cJ> of 
algebraic elements. If J(x) e A[x], we have J(x) = fl(x - Pi) in 
P[x] and the Pi are evidently algebraic over A. Since A is alge
braically closed in P (§ 1.9), the Pi eA. Hence we see that every 
polynomial of positive degree in A[x] is a product of linear factors 
in A[x]. This implies that A is algebraically closed. It is there
fore clear that, if there exists an algebraically closed field con
taining a given. field cJ>, then there exists such a field which is, 
moreover, algebraic over cJ>. This leads to the definition: An ex
tension field A/cJ> is called an algebraic closure of cJ> if: 1) A is alge
braic over cJ> and 2) A is algebraically closed. We proceed to 
prove the existence and uniqueness in the sense of isomorphism of 
an algebraic closure for any field cJ>. 
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1£ cf> is countable there is a rather straightforward way of con
structing an algebraic closure of cf>. Thus, in this case, it is easy to 
enumerate the polynomials of positive degree with leading co
efficients 1. Letfl(x),f2(x),fa(x),'" be such an enumeration. 
Then we begin with cf>o = cf> and we construct cf>i inductively as a 
splitting field over cf>i-l offi(x). There is a simple way of making 
precise the notion of the union A = U cf>i of all the cf>i. Once this 
has been done, one can prove that A is an algebraic closure of cf> 
in the following way. First, it is clear that A/cf> is algebraic. Let 
P be an algebraic extension of A and let peP. Since p is algebraic 
over A and A is algebraic over cf>, p is algebraic over cf>. Hence the 
minimum polynomialf(x) over cf> is one of the polynomialsfi(x), 
say f(x) = fn(x). Since cf>n contains all the roots of f(x) , p e cf>n 
CA. This shows that A is algebraically closed. 

The procedure just sketched can be used also in the general case 
by invoking transfinite induction. However, we prefer to give 
another construction which will be based on Zorn's lemma. * We 
shall need also the following 

Lemma. If A is an algebraic extension of an infinite field cf>, then 
the cardinal number / A / = / cf> /. 

Proof. Let ~ be the subset of cf>[x] of polynomials of positive 
degree with leading coefficients 1 and let ~(n) be the subset of~ of 
polynomials of degree n + 1 = 1,2,3, .. '. The elements of 
~(n) have the form xn+t + alxn + a2Xn-1 + ... + an, ai e cf>, so 
~(n) has the same cardinal number as the n-fold product set 
cf> X cf> X' .. X cf>. Since cf> is infinite, / ~(n) / = / cf> X' •• X cf> I = 
/ cf>/. Also /~ / = / u~(n) / = / cf>/.t We now map eachf(x) e ~ 
into the finite set Rf (possibly vacuous) of its roots in A. Since 
every element of A is algebraic, U Rf = A. Since each Rf is finite 

fe]; 

the cardinal number of the collection {Rf } of these subsets of A is 
the same as / A /. Hence / A / = / {Rf } / ~ / ~ / = / cf> /. This 
implies that / A / = / cf> /. 

• This has been used in several places in Vol. II. An adequate account of this lemma or 
"maximum principle" can be found in Kelley's General Topology, D. Van Nostrand Co., 
Inc., Princeton, N. J., 1955, p. 33. 

t For properties of cardinal numbers, see Sierpinski's Lefons sur les NomlJres Transfinis, 
Paris, 1928. 
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We can now prove 

Theorem 1. Any field has an algebraic closure. 

Proof. If <I> is a given field, then we can imbed <I> in a set 0 which 
is very large compared to <I> in the following sense: if <I> is finite, 
then 0 is not countable and, if <I> is infinite, then 101 > I <I> I. We 
now make extension fields out of subsets E of 0 containing <1>. 
More precisely, we consider the collection r of all triples (E, +, .) 
where E is a subset of 0 containing <1>, and + and . are binary 
compositions in E such that E with these compositions as addition 
and multiplication is an algebraic extension field of <1>. We par
tially order r by defining (El) + l) . 1) < (E2' + 2, . 2) if E2 is an 
extension field of E 1• Any linearly ordered sub collection (E", 
+'" ',,) of r has an upper bound whose underlying set is the union 
of the E" and whose addition and multiplication are defined in the 
obvious way. Thus Zorn's lemma is applicable and it gives a 
maximal element (A, +, .) in the collection r. We assert that A 
is algebraically closed. Otherwise, A has a proper algebraic ex
tension B. By the lemma, I B I = I A I = I <I> I if <I> is infinite. For 
finite <1>, I A I and hence I B I is countable. Hence, in both cases, 
IBI < 101. This implies that there exists a 1-1 mapping of B 
into 0 which is the identity on A. We can use this mapping to 
convert the image B' in 0 into a field over A isomorphic to E over 
A. Then (B', +, .), where the + and . are the addition and 
multiplication obtained by carrying over the + and· of B, is in the 
collection r. Moreover B' :::> A and this contradicts the maxi
mality of (A, +, .). Hence A is algebraically closed. Since A is 
algebraic over <1>, A is an algebraic closure of <1>. 

We shall generalize next the notion of a splitting field and we 
shall prove a result for these which will give the uniqueness of 
algebraic closures as a special case. For this we consider a collec
tion n of polynomials of positive degree with coefficients in <1>. 
We shall say that an extension field P /<1> is a splitting field of n if 
(1) every polynomial in 0 is a product oflinear factors in P[x] and 
(2) no proper subfield of P/<I> satisfies (1). Let A be an algebraic 
closure of <I> and let P be the subfield of A/<I> generated by all the 
roots of the polynomials f eO. Evidently P is a splitting field 
over <I> of the set O. It is clear also that A itself is a splitting field 
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over 4» of the complete set of polynomials of positive degree be
longing to 4»[x]. The isomorphism over 4» of any two algebraic 
closures of 4» is clearly a consequence of the following extension of 
the theorem on splitting fields of a polynomial (Th. 1.8). 

Theorem 2. Let a ~ a be an isomorphism of a field 4» onto a 
field ~ and let n be a set of polynomials of positive degree contained in 
4»[x], n the set of images of the fen under the isomorphism g(x) ~ 
g(x) of 4»[x] onto ~[x]. Let P/4» be a splitting field of n and P/~ a 
splitting field of n. Then the isomorphism of 4» onto ~ can be ex
tended to an isomorphism of Ponto P. 

Proof. We consider the collection .:l of isomorphisms s of sub
fields of P/4» onto subfields of P/~ which coincide with the given 
isomorphism a ~ a of 4» on to~. We can partially order.:l = {s} 
by defining Si < S2 if S2 is an extension of Si' Then it is clear that 
.:l is inductive, that is, every linearly ordered subset of .:l has an 
upper bound. We may therefore invoke Zorn's lemma to obtain a 
maximal element t e.:l. We assert that t is an isomorphism of P 
on to P extending a ~ a. Otherwise, the domain of defini tion of t 
is a proper subfield E of P/4». Since P/4» is a splitting field of n 
and E c P, there exists a polynomialf(x) en that does not have 
all of its roots in E. Hence if Ph P2, .. " Pn are these roots in P, 
then E(Ph P2, .. " Pn) :::) E and eviden tly E(Ph"', Pn) is a 
splitting field over E of f(x). On the other hand, E = Et can be 
imbedded in a subfield of P which is a splitting field over E of 
lex) en. The theorem on a single polynomial can now be applied 
to give an extension of t to an isomorphism of E(Ph .. " Pn) onto 
the splitting field over E of lex). This contradicts the maximality 
of t, so we see that E = P. Evidently the image pt is a splitting 
field over ~ of n. Hence pI = P and the theorem is proved. 

If we take ~ = 4» and a == a in this result we see that any two 
splitting fields over 4» of a set of polynomials are isomorphic over 
4». In particular, we have the 

Corollary. Any two algebraic closures of a field 4» are isomorphic 
over 4». 

Let A be an algebraic closure of a field 4». There are two sub
fields of A/4» which are of particular interest. The first of these is 
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the subfield ~ of separable elements over <1>. This can be defined 
also as a splitting field over <I> of the set of separable polynomials 
belonging to <I>[x]. We shall call ~ a separable algebraic closure 
of <1>. N ext let <I> be of characteristic p =;e. ° and let <l>P-'" be the 
subfield of elements of A which are purely inseparable over <1>. 
By Lemma 2 of § 1.9, these are the elements of A which are roots 
of equations of the form x P' - a = 0, a in <1>. If <I> is of charac
teristic p =;e. 0, we call <l>P-" a perfect closure of <1>, and if <I> is of 
characteristic 0, then the perfect closure of <I> is taken to be <I> it
self. It is immediate that for p =;e. ° every element of <l>P-'" is a p
th power so the mapping a ~ aP is an automorphism of <l>P-". 
Moreover, <l>P-'" is the smallest subfield of A over <I> which has the 
property that all of its elements are p-th powers in this sub
field. 

A field <I> is called perfect if every algebraic extension of <I> is 
separable. The perfect closure of any field which we have just de
fined is a perfect field; for we have the following 

Theorem 3. Any field of characteristic ° is perfect and a field <I> 
of characteristic p =;e. ° is perfect if and only if <I> = <l>P, that is, every 
element of <I> is a p-th power in <1>. 

Proof. The first statement is clear since inseparable poly
nomials exist only for characteristic p =;e. 0. Now let <I> be of 
characteristic p =;e. ° and suppose <l>P C <1>. Let a be an element 
of <I> which is not a p-th power in <1>. Then we know that xP - a 
is irreducible and inseparable in <I> [x] (Lemma in § 1.6). Then 
P = <I>[x1/ (xP - a) is an inseparable extension of <I> different from 
<I> so <I> is not perfect. Conversely, assume that <l>P = <I> and let 
((x) be a polynomial in <I> [x] such that f'(x) = 0. Then we can 
write f(x) = g(xP) where g(x) = xm + ~lXm-l + ... + ~m' Let 
'Yl = ~i' i = 1, .. " m, and set hex) = x ffl + 'YIXm - 1 + ... + 'Ymo 
Then we have f(x) = g(xP) = h(x)P. Thus every polynomial in 
<I> [x] having zero derivative is a p-th power and so there exist no 
irreducible inseparable polynomials of positive degree in <I>[x]. 
Hence <I> has no proper inseparable algebraic extension field. 

If <I> is a finite field of characteristic p, then the isomorphism a 
~ aP of <I> into <l>P is necessarily an automorphism. It follows 
from Theorem 3 that every finite field is a perfect field. 
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EXERCISES 

1. Let E be an algebraic extension of a field cP and let A be an algebraic closure 
of CPo Show that E/cp is isomorphic to a subfield of A/cp. (Hint: Consider the 
algebraic closure of E and note that this is an algebraic closure of CP.) 

2. Show that, if cP is of characteristic p ;t. ° and ~ is transcendental over CP, 
then cp(~) is not perfect. 

3. Prove that any algebraic extension of a perfect field is perfect. 
4. Let cP be a field, cp* its perfect closure. Prove that either cP* = cP or 

[cp*:cp] is infinite. 
5. Prove that any algebraically closed field is infinite. 
A field is called absolutely algebraic if it is algebraic over its prime field. 

Examples are finite fields. We recall that for every primep and every integer n 
there exists one and in the sense of isomorphism only one field of cardinality pro 
(§ 1.13). This result was generalized by Steinitz to arbitrary absolutely alge
braic fields of characteristic p ;t. 0. We indicate this in the following exercise. 

6. A Steinitz number is a formal product N = ITpt; over all primes Pi where 
ki = 0, 1,2, ... , or 00. If M = ITpi/; is a second Steinitz number, we say that 
M is a divisor of N (MIN) if Ii ::; ki for all i. This leads in an obvious way to a 
definition of the least common multiple (L.C.M.) of any collection of Steinitz 
numbers. Let cP be absolutely algebraic of characteristic p. Define deg cP to 
be the Steinitz number L.C.M. of the degrees of the minimum polynomials over 
the prime field ("" Ip) of the elements of CPo Note that if cP is finite, then I cP I = 
pdegit. Prove that for any given prime p and Steinitz number N there exists an 
absolutely algebraic field CPp.N of characteristic p and deg CPp.N = N. (Hint: Let 
r,. be the highest common factor of Nand nt, so that r" I r"+b n = 1,2, ...• 
Let CP" be a field of cardinality pr" and suppose CP" C CP,,+l C .... Then 
CPp.N =.UCPn.) Show that any two absolutely algebraic fields having the same 
prime ch~racteristic and Steinitz degree are isomorphic. Prove that CPp.M is iso
morphic to a subfield of CPp.N if and only if MIN. 

2. Infinite Galois theory. In this section we shall give a 
generalization of the fundamental theorem of Galois theory to 
certain infinite dimensional algebraic extensions P /4>. We 
assume that P is a splitting field over 4> of a set 11 of separable 
polynomials and we prove first the following 

Lemma 1. Any finite subset of P is contained in a subfield E/4> 
which is finite dimensional Galoi.)". 

Proof. Letf be a polynomial which is a product of a finite 
number of polynomials contained in the set 11. Then it is clear 
that P contains a splitting field Pt/4> of j. Moreover, we know 
that PI is finite dimensional Galois over 4> (Th. 1.10). It is clear 
also that, iff and g are both products of polynomials belonging to 
11, then Pig is the su bfield of P genera ted by PI and P g. It 
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follows that UP/) the union of all of these subfields, is a subfield 
of P over <1>. Since UP, contains a splitting field of every g e n, 
it is clear that UP, = P. This implies that any Pi e P is contained 
in a subfield PI; and consequently any finite subset {Ph P2, .. " Pm} 
is contained in the subfield pu/; which is finite dimensional 
Galois over <1>. 

Let G be the Galois group of P /<1>. The following result gives 
essentially the first half of the Galois correspondence. 

Lemma 2. <I> = I(G), that is, the only elements oj P which are 
G-inuariant are the elements of <1>. 

Proof. We have to show that, if peP, ¢<I>, then there exists 
an automorphism s of P over <I> such that p. ¢ p. By Lemma 1, 
P is contained in a subfield E/<I> which is finite dimensional Galois 
over <1>. Since P ¢ <I> there exists an element s of the Galois group 
of E/<I> such that pi ¢ p. On the other hand, it is clear that P is a 
splitting field over E of the set of polynomials n and consequently, 
by Theorem 2, the automorphism s of E can be extended to an 
automorphism s of P /<1>. Evidently s e G and p8 = p" ¢ p. 

The full intermediate subfield-subgroup correspondence which 
holds in the finite dimensional case fails if P is of infinite dimen
sionality. As an example of this we consider the algebraic closure 
P of the field <I> = Ip of p elements. Since <I> is perfect, all poly
nomials of <I>[x] are separable and so P is a splitting field over <I> 
of a set n of separable polynomials contained in <I>[x]. Let G be 
the Galois group of P /<1> and let H be the subgroup generated by 
the automorphism 7r:p ~ pp. (It is clear that this is an auto
morphism.) The subfield I(H) of H-invariants is <I> since the 
only elements p such that pP = P are the p elements of <1>. We 
shall now show that H is a proper subgroup of G; then we shall 
have two subgroups of G, namely, G and H which have the same 
subfield of invariants. To do this we note that, if p. is any power 
of p, e ~ 1, then P contains a subfield <1>. of order p.. We recall 
also that <1>. c <1>, if and only if e I j (§ 1.13). Now let I be a prime 
and let <l>zoo denote the union of the fields in the sequence <l>z C <1>1' 
C <l>z3 c· . '. It is immediate that <1>/00 is a proper subfield of P 
and P is a splitting field over <l>zoo of the set n. Hence Lemma 2 
shows that there exists an automorphism s of P over <1>/00 such that 
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s ,e 1. Now s is not a power of the automorphism 11"; for if s = 
71<, then the subfield of s-invariants is the finite set of elements 
satisfying ppk = p. This set must include eI>1'" and this is impossible 
since eI>1'" is an infinite subfield of P. 

This type of difficulty in the infinite Galois theory was first ob
served (in the field of algebraic numbers of the rationals) by 
Dedekind. The way out of the difficulty was found by Krull who 
saw that it was necessary to restrict the correspondence to sub
groups of the Galois group which are closed in a certain topology 
which we shall now define. 

The topology one needs is essentially the same as the finite 
topology which we introduced in Vol. II, p. 248, for the set of 
linear transformations of one vector space into a second one. 
We consider the set pP of (single-valued) mappings of the field 
p into itself. If (h, ~2' "', ~m) and (7]1) 7]2, "', 7]m) are finite 
sequences of elements of P, then we let O(~i' 7]i) be the subset of 
pP of all s such that ~/ = 7]i, i = 1, .. " m. The sets O(~i, 7]i) 
can be used as a basis for a set of open sets which make pP a 
topological space (cf. Vol. II, p. 248). This topology of pP is 
called thefinite topology. 

If G is any subset of pP, that is, any set of mappings of Pinto 
itself, then we topologize G as a subspace of Pp. In partiicular, we 
shall do this for the Galois group G of P/eI>. We now prove that 
the fact that P is algebraic over eI> implies that G is a closed sub
set of Pp. Thus let J belong to the closure of G and let ~,7] e P, 
a e eI>. Then there exists an s e G such that a8 = a·, ~8 = r, 
7]8 = 7]., (~+ 7])8 = (~ + 7])., (~7])8 = (~7]).. Since a 8 = a, (~ + 
7])8 = ~8 + 7]8, (~7])8 = e7]8 we have the same relations for J and 
these show that J is an isomorphism of P/eI> into itself. To see 
that J is surjective we let ~ be any element of P and we let E be 
the subfield of P leI> generated by all the roots f in P of the mini
mum polynomial j(x) of ~ over eI>. Clearly [E:eI>] < 00. Since J 
is an isomorphism of P leI> into itself, E· C E. Hence the restric
tion of J is a linear isomorphism of E I eI> in to itself and so this rna p
ping is surjective. Thus there exists an 7] e E such that 7]. = ~. 
Hence J is an automorphism of P leI>, so J e G and G is closed. 

We can prove the following fundamental theorem of the in
fini te Galois theory. 
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Theorem 4. Let P Iif! be a splitting jield of a set U of separable 
polynomials with coefficients in if! and let G be the Galois group of 
P Iif!. With each closed subgroup H of G we associate the subjield 
E = J(H) of H-invariants and with each subjield E of P over if! we 
associate the Galois group A(E) of P over E. Then these two cor
respondences are inverses of each other. Moreover, a closed subgroup 
H is invariant in G if and only if the correspondingjield E = l(H) is 
Galois over if! and, in this case, the Galois group of Ejif! is isomorphic 
to GjH. 

Proof. If E is a subfield of P jif!, then P is a splitting field over 
E of U. Hence if H = A(E) the Galois group of PIE, then H is 
closed and Lemma 2 shows that J(A(E)) = E. Next let H be a 
closed subgroup of G and let E = J(H). We have to show that, 
if s is an automorphism of PIE, then s e H. Since H is closed it is 
enough to show that s is in the closure of H, that is, if Ph .. " Pn e 
P, then there exists ate H such that p/ = p/, 1 :::; i :::; n. Let 
AlE be a subfield of PIE which is finite dimensional Galois and 
contains {Pi} (Lemma 1). Then s and the t e H map A into itself 
and so their restrictions are elements of the Galois group of A/E. 
If the r~triction s' of s to A coincides with no restriction t' of 
t e H to A, then the group H' of the restrictions of t e H is a proper 
subgroup of the Galois group of A over E. Consequently, there 
exists an element ~ e A, ¢ E such that e = ~ for every t e H. This 
contradicts the definition of E as l(H). This proves the first state
ment. If H is a closed subgroup and s e G, then s-lHs is closed, 
and if E = J(H), then E8 = l(s-lHs). It follows that H is 
invariant in G if and only if E8 = E for every s e G. If this con
dition holds, then the set of restrictions to E of the s eGis a 
group of automorphisms Gin E whose set of invariants is if!. Hence 
E is Galois over if!. Conversely, assume E is Galois over if! and let 
G be the Galois group of Elif!. If E e E and J e G, then E and i 
have the same minimum polynomial over if!. Hence E has only 
a finite number of conjugates i, J e G. If these are El = E, 

E2, •• " Er , then the polynomial f(x) = II(x - Ei) has coefficients 
in if! and E is a root of f(x) = O. If s e G, then E8 is also a root of 
lex) = 0 so E8 = Ei e E. Since E is arbitrary, this shows that 
Ea C E for s eGo This implies that H is invariant in G. Since 
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P is a splitting field over E of a set of polynomials belonging to 
cJl[x], any automorphism of E/cJl can be extended to an automor
phism of P /cJl. It follows easily from this that, if E is Galois over 
cJl, then the mapping s --+ J the restriction of s to E is a homo
morphism of G onto G. The kernel is H = A(E) so G ::::::: G/ H. 

EXERCISES 

1. Show that the hypothesis of Theorem 4 can be replaced by: P lit> is a 
separable and normal algebraic extension, where we define normality by the 
condition that, if f(x) is irreducible in it>[x] and has a root in P, then f(x) is a 
product of linear factors in P[x], (cf. § 1.8). 

2. A topological space is called discrete if every subset is open. Let P be a 
splitting field over it> of a set of separable polynomials and let G be the Galois 
group of P over it>. Show that G is discrete if and only if [P :it>] < 00. 

3. Let P, it>, and G be as in ex. 2. Use the fact that every peP has only a 
finite number of conjugates and the Tychonoff theorem to prove that G is a com
pact group. 

4. Let P be the algebraic closure of the field it> = 11' and let G be the Galois 
group of P over it>. Show that G is a commutative group. Let it>1'" be the sub
field of P defined for the prime / as in the text. Let 71" be the automorphism 
p ~ pP restricted to it>1"" Show that 7I"lk ~ 1 in the sense that, if S is any finite 
subset of it>1"', then there exists a positive integer N such that ~ .. Ik = ~ for all 
~ e S provided k ~ N. Let mi, m2, ... be a sequence of integers such that for 
any positive integer k there exists an N such that mr == m. (mod /k) if r, s ;::: N. 
Show that the sequence of automorphisms 7I"m" 71""'2, ••• converges to an auto
morphism (]' of it>1'" over it> in the sense that 7I"mk(],-l ~ 1. 

5. Let G be a group of automorphisms in a field P and let it> = I(G). Assume 
G is a compact subset of Pp. Show that this implies that for every ~ e P the set 
{~·I s e G} is finite. Hence prove that P is the splitting field over it> of a set of 
separable polynomials and that G is the Galois group of P lip. 

6. Let G be the Galois group of P lit> where P is algebraic over it> and let {Ga } 

be the collection of invariant subgroups of finite index in G. Show that nGa 

=1. 
7. Let it> be a finite field, A its algebraic closure, and G the Galois group of 

Alit>. Show that G has no elements of finite order ."r. 1. 
8. Let Ap be the algebraic closure of the field /1' of p elements, Gp the Galois 

group of Api 11" Show that Gp "-' Gq for any two primes p, q. 
9. Let P = it>(~l, ~2, ••• ) the field of rational expressions in an infinite number 

of indeterminates. Show that the Galois group of P lit> is not closed in the finite 
topology. 

3. Transcendency basis. We have defined the property of 
algebraic independence over cJl for a finite subset {h, ~2j ••• , ~n} 
of a field P over cJl in Vol. I and this definition has been reFated 
in Introduction, p. 4. We now extend this notion to arbitrary 
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subsets by stating that such a set 8 is algebraically independent if 
every finite subset of 8 is algebraically independent. A set which 
is not algebraically independent will be called algebraically 
dependent; hence a set is algebraically dependent if and only if 
it contains a non-vacuous algebraically dependent finite subset. 
We shall now introduce another notion, which we shall see in our 
first theorem is intimately related to those just given. 

Definition 1. Let 8 be a subset of P over 4> and let p be an element 
of P; then p is said to be algebraically dependent over 4> on 8 if p 

is algebraic over 4>(8). 

We note first that, if p is algebraically dependent over 4> on 8 
and f(x) e 4>(8) [x] is the minimum polynomial of p over 4>(8), 
then the coefficients of f(x) are contained in a subfield 4>(F) 
where F is a finite subset of 8. Hence it is clear that p is algebrai
cally dependent over 4> on a set 8 if and only if p has this property 
for a finite subset F of 8. 

Theorem 5. A non-vacuous subset 8 of a field P /4> is algebrai
cally dependent over 4> if and only if there exists an element ~ e 8 
which is algebraically dependent over 4> on the complementary set 
8 - {E). 

Proof. The remarks we have made show that it is sufficient to 
assume 8 is finite, say, 8 = {Eh E2, "', En). Assume the condi
tion stated holds. Then we may suppose that En is algebraic over 
4>(Eh .. " En-I)' Let f(x) e 4>(Eh .. " En-l)[x] be the minimum 
polynomial of ~n over 4>(~h .. " En-I) and let ~h ~2' •• " ~m be its 
coefficients. Now every element of 4>(~h .. " En-I) has the form 
g(Eh .. " En-l)h(Eh .. " En-I) -1 where g, he 4>[Xh .. " xn-Il, Xi 
indeterminates, and h(~h .. " En-I) =;t. O. In particular, ~j = 
gj(Eh "', En-l)hj(Eh "', En-I) -1, hj(~h"" ~n-l) =;t. O. Set 
h(Xh .. " Xn-l) = IIhj(Xh .. " Xn-l) and 

F(Xh "', xn) = h(Xh "', Xn_l){Xnm 

+ gl(Xh "', xn_l)h1(Xh "', Xn_l)-lxnm- 1 

+ ... + gm(Xh .. " xn_l)hm(Xh .. " Xn-l) -1). 

Then F is a non-zero element in cf>[Xh .. " xn ], Xi indeterminates, 
and we have F(~h .. " ~n) = O. This means that the ~i are alge-
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braically dependent. Conversely, assume there exists a non-zero 
polynomial F(Xh ... , Xn) e eI>[Xh ... , xn] such that F(~h ... , ~n) 
= 0, which amounts to saying that the ~i are algebraically depend
ent over eI>. We may assume that n is minimal and we may write 
F(Xh" ·,xn) = fO(Xh" ',Xn_l)Xnm + fl(Xh" ',Xn_l)Xnm- 1 + 
... + fm(Xh ... , Xn_l) where fo ;:C 0 and m ~ 1. Since n is 
minimal, fO(~h ... , ~n-l) ;:C O. Then 

m 

f(x) = xm + 1: fi(~h ... , ~n-l)fO(~h ... , ~n-l) -lXm- i 

1 

is a non-zero element of eI>(~h ... , ~n-l)[X] such that f(~n) = O. 
Hence ~n is algebraically dependent on ~h ... , ~n-l' 

The relation of algebraic dependence in a field P leI> is a special 
kind of relation between elements of P and subsets of P. Another 
relation of a similar type is that of linear dependence of a vector 
in a vector space on a subset of the space, and we shall encounter 
still others. It is therefore worthwhile to treat such relations 
axiomatically and we shall do this by considering an arbitrary set 
P. A relation < between elements ofp and subsets 8 ofp (~ < 8) 
is called a dependence relation if the following conditions hold. 

I. If ~ e 8, then ~ < 8. 
II. If ~ < 8, then ~ < F for some finite subset F of 8. 

III. If ~ < 8 and every ." in 8 satisfies." < T, then ~ < T. 
IV. If ~ < 8 and ~ <t 8 - {.,,} where." e8, then 1] < (8-

{.,,}) U {~} (Exchange axiom). 

Now let P be a field over eI> and let ~ < 8 for ~ in P,8 a subset 
of P, mean that ~ is algebraically dependent on 8 over eI>. Then 
we have 

Theorem 6. Algebraic dependence in P leI> is a dependence rela
tion in the sense of I -IV. 

Proof. I. This is evident. II. This was proved before. III. 
Let ~ be algebraic over eI>(8) and suppose every." e 8 is algebraic 
over eI>(T). Consider the subset A of P of elements which are 
algebraic over eI>(T). Then we know that A is a subfield of P 1eI>(T) 
and A is algebraically closed in P. Now 8 C A and ~ is alge
braic over eI>(8), so over A. Hence ~ e A which means that ~ < T. 
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IV. Suppose ~ < S and ~ <t T = S - {TJ} where TJ e S. Let E = 
<'P(T). Then ~ is transcendental over E and algebraic over E(TJ). 
Hence there exists a polynomial j(x, y) e E[x, y), x, y indetermi
nates over E, such that j(x,y) ~ 0 and j(~, TJ) = O. We write 
j(x,y) = ao(x)ym + al(x)ym-l + ... + am(x) where the ai(x) e 
E[x) and ao(x) ~ o. Then aoW ~ 0 and m > 0, since ~ is trans
cendental over E. The polynomial j(~,y) is a non-zero poly
nomial belonging to E(~)[y) and TJ is a root of j(~,y) = o. Hence 
TJ is algebraic over E(~), which implies that TJ is algebraic over 
<'P(T U {~}). Thus TJ < T U {~}. 

We now return to the general theory of dependence relations. 
As before, P is an arbitrary set. We define a subset S of P to be 
independent (relative to <) if no ~ eS is dependent on S - {~}. 
Then we have the following 

Lemma. Ij B is independent and ~ is not dependent on B, then 
B U {~} is independent. 

Proof. Otherwise, we have an TJ e B such that TJ < (B U {~}) -
{TJ}. Since TJ <t B - {TJ} the exchange axiom implies that ~ < B 
= (B - {TJ}) U {TJ} contrary to hypothesis. 

A subset B of P will be called a basis for P (relative to <) if (1) 
B is independent and (2) every ~ in P is dependent on S. The 
main result on dependence relations is the following, 

Basis theorem. The set P has a basis. Moreover, any two bases 
have the same cardinal number. 

Proof. To prove the existence of a basis we consider the collec
tion I of subsets of P which are independent. (It may happen 
that the vacuous set is the only member of I.) We order I by the 
inclusion relation. If {S} is a linearly ordered subset of I, then 
US is contained in I. Otherwise, there is a ~ e US which is 
dependent on US - {~}. Then ~ < F where F is a finite subset 
of US - {~} and F U {~} is a finite subset which is not independ
en t. Since {S} is linearly ordered, F U {~} C T for some T e {S} 
and this contradicts the assumption that T is an independent 
set. We now see that I is inductive and so, by Zorn's lemma, there 
exists a maximal element B in I. Now let ~ be any element of P. 
Then ~ is dependent on B since otherwise B U {~} is independent, 
by the lemma. This would contradict the maximality of B. 
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Hence every ~ in P is dependent on B. This means that B is a 
basis. 

Now let Band C be two bases for P. We have to show that the 
cardinal numbers 1 B 1 = 1 CI. Assume first that B is finite, say, 
B = {!3i> 132, .. " !3n}. We assert that there is a 'Y = 'Y1 e C such 
that'Y is not dependent on {!32, .. " !3n}. Otherwise, by III, every 
element of P is dependent on {!32, ···,!3n}. In particular,!31 
has this property, contrary to the independence of B. Now if 'Y1 
is not dependent on {!32, .. " !3n}, then hi> 132, .. " !3n} is in
dependent. Moreover, the exchange axiom shows that 131 < 
hi> 132, .. " !3n} so every !3i < hi> 132, .. " !3n}. Thus hi> 132, 
.. " !3n} is a basis. We can repeat this process and obtain 'Y2 
in C so that hi> 'Y2, 133, "', !3n} is a basis. Continuing in this 
way we obtain a basis hi> .. " 'Yn} which is a subset of C and has 
the same cardinal number as B. Since C is independent, this is 
all of C and we have 1 CI = 1 B I. Next assume 1 CI and 1 Blare 
infinite. In this case we use a counting argument which is due to 
Lowig (cf. Vol. II, p. 241). Let'Y e C. Then 'Y is dependent on a 
finite subset B-y of B. Consequently 1 {B-y} 1 =:; 1 CI and 

I U B'Y I =:; ~o 1 CI = 1 CI· -yee 

Next we note that UB'Y = B. Otherwise, we have a 13 e B, 
¢ U B'Y' Since 13 < C and every 'Y e C satisfies 'Y < U B'Y' we have 
13 < U B'Y which does not contain {3. This contradicts the in
dependence of B. Thus U B'Y = B and the above relation on 
cardinals gives 1 B 1 ~ 1 CI· By symmetry 1 CI ~ 1 B I; hence 1 B 1 

=ICI· 
This result is applicable in particular to algebraic dependence 

in P lip. In this case a basis B is a set of algebraically independent 
elements of P lip such that every ~ in P is algebraically dependent 
on B. Such a set B is called a transcendency basis for P lip and its 
cardinal number, which is the same for all bases, is called the trans
cendency degree (tr. d.) ofp lip. An extension P lip is algebraic if and 
only if P has a vacuous transcendency basis over ip, hence if and 
only if the transcendency degree is O. If a field P has a trans
cendency basis B overip such that P = ip(B), then P is called a purely 
transcendental extension of ip. The theorem on the existence of a 
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transcendency basis can be interpreted in the following manner: 
Every field can be obtained as an algebraic extension of a purely 
transcendental extension <I>(B) of the base field <1>. If Xh X2, .. " Xr 
are indeterminates, then the field of fractions of the algebra 
<I>[Xh .. " x r] is a purely transcendental extension <I>(Xh .. " x r) of 
<I> with the transcendency basis {Xi}' Moreover, it is clear that 
any purely transcendental extension of degree r < 00 is essentially 
identical with <I>(Xh .. " Xr). 

Of particular interest in algebraic geometry are the fields P = 
<I>(~h ~2' •. " ~n) which are generated over the base field <I> by a 
finite set of elements ~i' If B is a maximal algebraically independ
ent subset of the set {h, ~2' .. " ~n}, then B is a transcendency 
basis. We may assume B = {~h ~2' .. " ~r}. A field of the form 
P = <I>(~h ~2' ... ,~n) is called a field oj algebraic junctions over 

<I> and the transcendency degree r (~ n) is called the number oj 
uariables of P. If {~h .. " ~r I is a transcendency basis, then P is a 
finite dimensional extension of <I>(~h ~2' .. " ~r). If this is sepa
rable over <I>(h, .. " ~r), then one of the theorems on primitive 
elements shows that P = <I>(h, .. " ~r, 'II) for a suitable'll in P. 
This is always the case for characteristic 0 and we shall see in § 5 
that simple conditions can be given to insure the existence of a 
basis {~i I for a field of algebraic functions such that P is separable 
algebraic over <I>(~h ~2' .. " ~r)' 

EXERCISES 

1. Show that, if C is a subset of P /<fl such that every element of P is alge
braically dependent on C, then C contains a transcendency basis. Show also 
that, if D is an algebraically independent subset of P /<fl, then D can be imbedded 
in a transcendency basis. 

2. Let E/<fl be a subfield of P /<fl. Show that the transcendency degree tr. d. 
P/E::; tr. d. P/<fl and that tr. d. E/<fl::; tr. d. P/<fl. 

3. Let E/<fl be a subfield of P /<fl and let Band C be transcendency bases for 
E/<fl and P /E respectively. Show that B U C is a transcendency basis for 
P /<fl. Hence prove the formula 

(1) tr. d. P /<fl = tr. d. P /E + tr. d. E/<fl. 

Note that ex. 2 is a consequence of this. (Hint: Since E is algebraic over <fl(B) 
the subalgebra generated by E/<fl and <fl(C) is a field which is algebraic over 
<fl(B, C) (p.45). Hence E(C) is algebraic over <fl(B, C).) 

4. Prove that, if <fl is a field of characteristic ~ 3 and P = <fl(~, 71) where t 
is transcendental and 713 + e = 1, then P is not purely transcendental over <fl. 
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5. Let P be the field of complex numbers, <I> the subfield of rationals. Show 
that tr. d. P /<1> = c = 1 P I. Show that, if B is a transcendency basis of P /<1>, 
then any 1-1 surjective mapping of B can be extended to an automorphism of 
P/<I>. Hence show that P has as many automorphisms as 1-1 surjective map
pings. 

6. Prove that, if P is finitely generated over <1>, then this holds for any subfield 
E/<I>. 

4. Liiroth's theorem. The purely transcendental extensions 
p = ~(~h ~2' .. " ~r) appear to be the simplest types of extension 
fields. Nevertheless, it is easy to ask difficult questions about 
such extensions, particularly about subfields of P /~ if r > 1. If 
r = 1 the situation is comparatively simple and we shall look at 
this in this section. 

Let P = ~W, ~ transcendental, and let 11 be an element of P 
which is not contained in~. We can write 11 = I(~)g(~) -1 where 
IW and g(~) are polynomials in ~ which we may assume have no 
common factor of positive degree in~. We may write IW = 
ao + a1~ + ... + an~n, g(~) = f30 + f31~ + ... + f3n~n where either 
an ~ 0 or f3n ~ 0, so n is the larger of the degrees of I and g. The 
relation 11 = I(~)g(~) -1 gives IW - 11gW = 0 and 

o = (an - 11f3n)~n + (an_1 - 11f3n_1)~n-1 + ... + (ao - 11f3o). 

Moreover, an - 11f3n ~ 0 since an or f3n ~ 0 and 11 ¢~. Thus we 
n 

see that ~ is a root of the equation of degree n: L (ai - 11f3i)X' = 0 
o 

n 

with coefficients in <1>(11). We proceed to show that :E (ai - 11f3i)X' 
o 

is irreducible in <I>(11)[X]. First, it is clear that 11 is transcendental 
over ~, since ~ is algebraic over ~(11); hence 11 algebraic over ~ 
implies ~ algebraic over ~, contrary to assumption. The ring 
~[11, x] = ~[11][X] is the polynomial ring in two indeterminates 11, x 
and we know that this ring is Gaussian, that is, the theorem on 
unique factorization into irreducible elements holds in ~[11, x] 
(Vol. I, p. 126). We recall also that a polynomial in ~[11, x] of posi
tive degree in x is irreducible in ~(11)[X] if it is irreducible in ~[11, x] 
Now 1(11, x) = ~(ai - 11f3i)Xi = I(x) - 11g(X) is of degree 1 in 11. 

Hence if 1(11, x) is reducible in ~(11)[X], then it has a factor hex) 
of positive degree in x. This implies that I(x) andg(x) are divisible 
by hex) contrary to assumption. We have therefore shown that 
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f(11, X) is irreducible in <I>(11)[X]. Thus ~ is algebraic of degree n 
over <1>(11). This proves 

Theorem 7. Let P = <I>(~), ~ transcendental over <I> and let 11 be an 
element of P not in <1>. Write 11 = f(~)g(~) -1 where fm and g(~) 
are polynomials in ~ with no common factor of positive degree in ~. 
Let n = max (deg f, deg g). Then ~ is algebraic over <1>(11) and 
[<I>m :<1>(11)] = n. Moreover, f(X,11) = f(x) - 11g(X) is irreducible 
in <1>(11) [x]. 

This result enables us to determine the automorphisms of <I>(~) 
over <1>. Such an automorphism is completely specified by the 
image 11 of the generator~. For, if ~ ~ 11, then u(~)v(~) -1 ~ 
u (11) V(11) -1 for u, v polynomials in~. It is clear also that, if 11 is the 
image of ~ under an automorphism, then <1>(11) = <I>(~). If 11 = 
f(~)g(~) -1 as above, then [<I>(~) :<1>(11)] = n = max (deg f, deg g). 
This shows that <1>(11) = <I>(~) if and only if max (deg f, deg g) = 1. 
Then we have 

(2) 
a~ + fJ 

11 = 'Y~ + ~' 
where a ~ 0 or 'Y ~ 0 and a~ + fJ, 'Y~ + ~ have no common 
factor of positive degree. It is easy to see that these conditions 
are eq ui valen t to the single condi tion : 

(3) a~ - fJ'Y ~ o. 
If this condition holds, then <1>(11) = <I>(~) and the mappmg 
u(~)vm -1 ~ u (11) V(11) -1 is an automorphism of P /<1>. 

The condition (3) is equivalent to the requirement that the 
matrix 

(4) 

is non-singular. With each such matrix we associate the auto
morphism of <I>(~) over <I> such that ~ ~ 11 given by (2). One veri
fies directly that the mapping of the non-singular matrix into the 
corresponding automorphism is a group homomorphism. The 

kernel is the set of matrices [~ ~] such that (a~ + fJ)('Y~ + ~)-1 
= ~ or a~ + fJ = H'Y~ + ~). This implies 'Y = 0, fJ = 0, a = ~. 
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Hence the kernel is the set of scalar matrices ;;:e O. It [oa aD] 
is now clear that the group of automorphisms of<p(~) is isomorphic 
to the factor group of the group L(<p, 2) of 2 X 2 non-singular 
matrices relative to the subgroup of scalar matrices. This factor 
group is called the projective group PL(<p, 2). 

We now consider an arbitrary subfield E of <p(~)/<p. We may 
assume E ;;:e <P. Then E contains an element 11 not in <P so P = 
<p(~) is algebraic over <P(11) and hence is algebraic over E :) <p(11). 
Let the minimum polynomial of ~ over E be j(x) = xn + 'YIXn-1 
+ ... + 'Yn. The 'Yi have the form Jl-i(~)lIi(~) -1 where Jl-i, IIi are 
polynomials in the transcendental element~. Multiplication of 
j(x) by a suitable polynomial in ~ will give a polynomial 

(5) j(~, x) = coWxn + Cl Wxn- 1 + ... + Cn(~) 
in <p[~, x], ~, x indeterminates, which is a primitive polynomial in x 
in the sense that the highest common factor of the CiW is 1. Also 
we have 'Yi = Ci(~)COW -1 e E and not all of these are in <P since 
~ is transcendental over <P. Thus one of the 'Y's has the form 'Y = 
g(~)h(~) -1 where g(~), h(~) have no common factor of positive 
degree in ~ and max (deg g, deg h) = m > 0. We have seen before 
that g(x)-yh(x) is irreducible in <D(y)[x] and [P:<D(y)] = m. 
Since E :) <D(y) and [P: E] = n, clearly m > n. We shall show 
that m = n and this will prove that E = <Dey). 

Since ~ is a root of g(x) - 'Yh(x) = ° and the coefficients of this 
polynomial are contained in E, we have g(x) - 'Yh(x) = j(x)q(x) 
in E[x]. We have 'Y = g(~)hW-l and we can replace the coef
ficients of j and q by their rational expressions in ~ and then 
multiply by a suitable polynomial in ~ to obtain a relation in 
<p[~, x] of the form 

(6) k(~)[g(x)h(~) - g(~)h(x)] = j(~, x)q(~, x), 

where j(~, x) is the primitive polynomial given in (5). It now 
follows that k(~) is a factor of q(~, x) and so cancelling this we may 
assume the relation is 

(7) g(x)h(~) - g(~)h(x) = j(~, x)q(~, x). 

Now the degree in g of the left-hand side is at most m. Since 



160 STRUCTURE THEORY OF FIELDS 

I' = g(g)h(O-l with (g(g), h(O) = 1 and max(deg g, deg h) = m, 
the g-degree off(g, x) is at least m. It follows that it is exactly m 
and q(g, x) = q(x) E <I> [x]. Then the right hand side of (7) is 
primitive as a polynomial in x. This holds also for the left hand 
side. By symmetry, the left hand side is primitive as a poly
nomial in g also, and this implies that q(x) = q is a non-zero 
element of <1>. Then (7) implies that the x-degree and g-degree 
off(g, x) are the same. Thus m = nand E = <1>(1')' As we saw 
before, E) <I> implies that I' is transcendental. We have 
proved the following 

Theorem 8 (Liiroth). If P = 4>W, ~ transcendental over 4>, then 
any subjield E :::> 4> is also a simple transcendental extension: E = 
4>('Y), 'Y transcendental. 

The theorem of Liiroth is not valid for purely transcendental 
extensions P /4> of transcendency degree r > 1. The best positive 
result in this direction is a theorem of Castelnuovo-Zariski which 
states that, if 4> is algebraically closed and r = 2, then a subfield 
E/4> of tr. d. 2 such that P /E is separable is a purely transcendental 
extension. * 

EXERCISES 

1. Show that, if P = 4>(~, 1/) where ~ is transcendental and 1/2 + ~2 = 1, then P 
is purely transcendental. 

2. Let 4> be a finite field, 14>1 = q = pm. Determine the order of the Galois 
group of CI>(~)/4>, ~ transcendental. 

3. Give an example of a subalgebra of 4>(~], ~ transcendental, which does not 
have a single generator. 

5. Linear disjointness and separating transcendency bases. 
Let 4> be of characteristic p ¢ 0 and let P = 4>(~, 11) where ~ is 
transcenden tal and l1P =~. Then {~} is a transcendency basis 
for P /4> and P is inseparable over 4>(~). On the other hand, P = 
4>(11) is separable over P. This simple example shows that certain 
transcendency bases B for an extension may be preferable to 
others in that P /4> (B) is separable algebraic. We remark also 
that such bases may not always exist, as is shown by the example 

• See O. Zariski, On Castelnuouo's criterion of rationality Po. = P2 = 0, Illinois Jour. of 
Math., Vol. 2 (1958), pp. 303-315. 
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of any P lip which is algebraic and not separable over ip. A trans
cendency basis B for P lip such that P is separable algebraic over 
ip(B) is called a separating transcendency basis. If P lip has such 
a basis, then we shall say that P lip is separably generated. In 
this section we shall derive a criterion that P lip is separably 
generated, based on the following important notion. 

Definition 2. Let El and E2 be subalgebras oj an arbitrary field 
PI ip. Then El and E2 are said to be linearly disjoint over ip if the suo
algebra El E2 generated by El and E2 is the tensor product El ®~ E 2. 
More precisely, what is meant here is that the canonical homo
morphism oj El ®~ E2 into EIE2 sending El ® E2 into EIE2 is an 
isomorphism (see Introd., § 3). 

It is well to recall the conditions that EIE2 = El ®~ E2 which 
we obtained in the Introduction. We recall first that a sufficient 
condition is that there exist bases (ua), (VfJ) of El and E2 over ip 
respectively such that (uaVfJ) is a basis for EIE2 over ip. Since 
every element of the sub algebra EIE2 is anyhow a linear combina
tion of the elements UaVfJ, we see that a sufficient condition for 
EIE2 = El ®~ E2 is that there exist bases (ua), (VfJ) for Edip and 
E21ip such that {uaVfJ} is ip-independen t. If El is a subfield of 
P lip, then EIE2 = El ®~ E2 if there exists a basis (vp) for E2 
over ip such that the set (vfJ) is E1-independent. 

Conversely, assume El and E2 are linearly disjoint sub algebras. 
Then (uaVfJ) is a basis for EIE2/c1> for any basis (ua) of Edip and 
any basis (VfJ) of E21ip. Also if El is a subfield, then (VfJ) is a basis 
for E 1E2 /E 1• We note also that linear disjointness of the sub
algebras El and E2 implies that, if {ua } is any linearly independent 
subset of Edip and {VfJ} is any linearly independent subset of 
E21ip, then {uaVfJ} is ip-independent. 

We note next that El and E2 are linearly disjoint subalgebras 
over ip if and only if the subfields Ql and Q2 generated by El and 
E2 respectively are linearly disjoint over ip. For, if Ql and Q2 
have the property, then so do El and E2, since subalgebras of 
linearly disjoint algebras are clearly linearly disjoint by our 
criteria. Conversely, suppose El and E2 are linearly disjoint. 
Let ~h ~2' .. " ~m be elements of Ql which are ip-independent and 
7Jh 712, .. " 7Jn elements of Q2 which are cI>-independent. We can 
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write ~i = U~-I, 1'/j = 1'//1'/-1 where U, ~ e Eb 1'//, 1'/ e E2. Then 
{~t', ~2" "', ~m'} is a <I>-independent subset of El and {1'/l', 1'//, 
•. " 1'/n'} is a <I>-independent subset of E2• Hence the mn elements 
U1'// are <I>-independent and so also the elements ~i1'/j are <I>-in
dependent. This implies that Ql and Q2 are linearly disjoint over <1>. 

We are interested primarily in subfields of P and we shall 
require the following lemma which will enable us to prove linear 
disjointness by steps. 

Lemma. Let El and E2 be subfields of P 1<1>, dl a subfield of 
Ed<l>. Then El and E2 are linearly disjoint over <I> if and only if the 
following two conditions hold: (1) dl and E2 are linearly disjoint 
over <I> and (2) the field dl (E2) and El are linearly disjoint over dl' 

E1(E2) 

Proof. Assume (1) and (2). Let (u .. ) be a basis for E 2 /<I>. By 
(1), the Ua are linearly independent over d l • Since these elements 
are contained in dl(E2), and dl(E2) and Ed dl are linearly dis
joint over db by (2), the u .. are linearly independent over E 1• 

Hence EI and E2 are linearly disjoint over <1>. Conversely, 
assume this holds. Then it is clear that dl and E2 are linearly 
disjoint over <1>, that is, (1) holds. Also the hypothesis implies 
that, if (u .. ) is a basis for EI over db (vp) a basis for dl over <1>, 
(w'Y) a basis for E2 over <1>, then (u .. vpw'Y) is a basis for EIE2 over 
<1>. This implies that, if we have a relation };CiU .. , = 0, Ci e E2d b 
then every Ci = O. Now suppose we have };/)iU .. , = 0, /)i e dl(E2). 
Then we can write /)i = cid-I, Ci, d e E2dl and we obtain };CiU .. , = 
0, Ci = 0 and d i = O. Thus we have shown that the basis (u .. ) of 
Eddl is dl(E2)-independent. This implies that EI and dl(E2) 
are linearly disjoint over dl' 

We now embark on the study of linear disjointness and sepa
rability. We assume that P is an extension field of a field <I> of 
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characteristic p. ~ 0 and we shall operate in an algebraic closure 
A of P (which contains an algebraic closure of 4». We consider 
the subset 4>p-1 of A of elements 'Y such that 'YP e 4>. This is a 
subfield over 4>. We shall be interested in linear disjointness of P 
and 4>p-1 over 4>. In studying this question it is useful to note the 
following simple criterion: A set {Ph P2, "', Pn}, Pi e P is 4>p-1

_ 

independent if and only if {PIP, P2P, "', PnP} is 4>-independent; 
for, suppose we have };fJiPi = 0, fJi e 4>p-1• Then };(XiP/ = 0 for 
(Xi = fJiP in 4>. On the other hand, if };(XiPiP = 0, (Xi in 4>, then, 
since A contains an algebraic closure of 4>, (Xi = fJ/, fJi in 4>p-l • 

Then };fJ/PiP = O. Hence (};fJiPi)P = 0 and };fJiPi = O. Also it is 
clear in both situations that (Xi = 0 if and only if fJi = O. We shall 
now establish the following criterion. 

Theorem 9. If P is an algebraic extension of 4> (possibly infinite 
dimensional), then P is separable over 4> if and only if P is linearly 
disjoint to 4>p-1 over 4>. 

Proof. We recall that an algebraic element P of P over 4> is 
separable if and only if P e 4>(pP) (Lemma 2 of § 1.9). Suppose 
first that P and <J?P-1 are linearly disjoint over 4> and let peP. 
Let [4>(p) :4>] = n. Then (1, p, p2, .. " pn-I) is a basis for 4>(p) = 
4>[p] and hence these elements are 4>p-1-independent. This im
plies that the elements 1, pP, p2p, .. " p(n-I)p are 4>-independent. 
Since there are n of these and they are contained in 4>(p), they 
form a basis for 4>(p). Evidently this implies that P e 4>[pP] so P 
is separable over 4>. Conversely, assume P separable over 4> and 
let {Ph"', Pn} be a finite 4>-independent subset of P. We may 
imbed this set in a subfield E/4> which is finite dimensional, and 
we can choose a basis (Ph .. " Pn, Pn+h .. " pq) for E/4>. Any 
element E of E is a 4>-linear combination of the Ph 1 ~ j ~ q. 
Then EP is a 4>-combination of the pl. The same holds for E2p = 
(E2)P, E3p = (E3)P, .. '. On the other hand, since E is separable, 
E e 4>(EP) = 4>[EP]. Consequently, E itself is a 4>-linear combination 
of the pl. Since [E:4>] = q this implies that (PIP,P2P," ',pl) 

is a basis for E/4>. Hence {PIP, .. " PnP} is 4>-independent and 
{Ph "',Pn} is <J?P-l-independent. Since {Ph "',Pn} was an 
arbitrary finite 4>-independent subset of P, this proves that P 
and <J?P-1 are linearly disjoint over 4>. 
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We prove next the following 

Theorem 10. Ij P is purely transcendental over CP, then P is 
linearly disjoint to cpp-l over CPo 

Proof. Our assumption is that P = cp(B) where B is an alge
braically independent set. We have seen also that P is linearly 
disjoint to cpp-l over cP if and only if the subalgebra cp[B] of poly
nomials in the elements of Bis linearly disjoint to cpp-l. To prove 
that the latter holds, it suffices to give a basis for cp[B]/cp which is 
q,p-l-independent. For this we take the basis M consisting of the 
monomials in ~a e B. Now it is clear that, if ml and m2 are dis
tinct monomials, then mlP and m2P are distinct monomials. Hence 
it is clear that the set MP of p-th powers of the elements of M is a 
cp-independent set. We have seen that this implies that M is 
cpp-l-independent. Hence cp[B] is linearly disjoint to cpp-l and 
the proof is complete. 

We can now prove our main result which is 

MacLane's Criterion. Ij P /cp is separably generated (oj 
characteristic p), then P and cpp-l are linearly disjoint over CPo On 
the other hand, if P is finitely generated over cp and P and cpp-l are 
linearly disjoint over Cp, then P is separably generated over CPo 

Proof. Suppose first that P is separably generated over CP, 
which means that P has a transcendency basis B over cP such that 
P is separable algebraic over ~ = cp(B). Then, by Theorem 10, 
~ and cpp-l are linearly disjoint over CPo Also, by Theorem 9, P 
and ~p-l are linearly disjoint over~. Hence P and ~(cpp-l) 
which is a subfield of ~p-l over ~ are linearly disjoint over ~. 
The lemma now shows that P and cpp-l are linearly disjoint over CPo 

Next we assume P = CP(~h ~2' ••• , ~m) and P and cpp-l are 
linearly disjoint over CPo We may assume also that {~h b, ... , ~r) 
is a transcendency basis. Suppose we know already that ~r+h 
••• , ~8 are separable algebraic over cp(h, ... , ~r)' If s = m, then 
{~h .. " ~r} is a separating transcendency basis. Hence we 
suppose that ~8+1 is inseparable algebraic over ~ = CP(~h ... , ~r)' 
Let j(x) be the minimum polynomial of ~.+l over~. If we 
multiply j by a suitable polynomial in ~h .. " ~r we obtain a 
polynomial F(~h .. " ~r, x) e CP[~h .• " ~r, x] which is irreducible 
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in eI>[~h .. " ~r, x] and satisfies F(~h .. " ~r, ~8+1) = O. Since j is 
inseparable it is a polynomial in xP ; hence F(~h .. " ~r, x) is a 
polynomial in xp • We assert that there exists a ~i, 1 SiS r, 
such that F is not a polynomial in ~!. Otherwise, the monomials 
in ~h ~2' .. " ~r, X which actually occur in F are all p-th powers 
and this implies that F(~h"" ~r, x) = H(~h .. " ~r, x)P in 
el>P-l[~h .. " ~r, x]. Then H(~h .. " ~r, ~8+1) = 0, so the mono
mials in ~h .. " ~r, ~. +1 occurring in H are linearly dependent 
over el>p-1• The assumption of linear disjointness of P and el>p-1 

therefore implies that the same monomials are eI>-dependent. This 
implies that ~.+1 is a root of a polynomial hex) e 2":[x], hex) ~ 0 
of lower degree than j, contradicting the fact that j is the mini
mum polynomial of ~8+1 over 2":. This shows that we may suppose 
that F(~h .. " ~r, x) is not a polynomial in ~IP, The relation 
F(~h .. " ~r, ~'+1) = 0 shows that h is algebraic over eI>(~2' .. " 
~r, ~'+1)' Since ~2' .. " ~r are also algebraic over this subfield, it 
is clear that {~2' .. " ~r, ~.+d is a transcendency basis. 

We shall show that ~1 is separable over 2":' = eI>(~2' .. " ~r, ~.+1)' 
We recall that F(~h .. " ~r,Y) is irreducible in eI>[h, .. " ~r,Y]. 
Hence F(x, X2, "', xr,y) is irreducible in eI>[x, X2, "', xr,y], 
x, Xi, y, indeterminates, and consequently this polynomial is ir
reducible in eI>(X2' .. " xr, y) [.,,] where eI>(X2' .. " xr, y) is the field 
of fractions of eI>[X2' "', xr,y]. Since ~2' "', ~r, ~'+1 are alge
braically independent over eI>, eI>(~2' .. " ~r, ~'+1) ~eI>(X2' .. " xr, 
y) under a eI>-isomorphism such that Xi - ~i, 2 SiS r,y - ~.+1' 
I t follows that F(x, ~2' .. " ~r, ~8+1) is irreducible in eI>(~2' .. " 
~r, ~.+d[x] and so this is a multiple of the minimum polynomial of 
~1 over 2":'. Since this polynomial is not a polynomial in xP, ~1 
is separable algebraic over 2":'. Also ~i' 1 SiS s, are separable 
algebraic over eI>(~h .. " ~r'~8+1) and, since ~1 is separable alge
braic over 2":', ~i is separable algebraic over 2":'. If we re-number 
the rs we now have a transcendency basis ~h .. " ~r such that 
every ~h 1 S j s s + 1, is separable algebraic over eI>(~h .. " ~r)' 
This establishes the inductive step to show that we can choose 
h, .. " ~r among the generators ~h .. " ~m so that every ~i is 
separable algebraic over 2": = eI>(~h .. " ~r). Then {~h .. " ~r} is a 
separating transcendency basis for P lei>. This completes the 
proof of the second assertion of the theorem. 
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It is important to note for future use that, if P = !fl(~h .. " ~m) 
is linearly disjoint to !flP - 1 over !fl, then we have shown that a 
separating transcendency basis can be extracted from the set 
{~h ~2' .. " ~m}. We note also the following 

Corollary (F. K. Schmidt). If!fl is perfect, then any field of 
algebraic functions !fl(~h .. " ~m) has a separating transcendency 
basis ouer!fl. 

This is an immediate consequence of MacLane's criterion since 
P is certainly linearly disjoint to !flP - 1 = !fl. 

The results which we have proved, particularly Theorem 9, 
make it natural to extend the notion of separability to arbitrary 
(not necessarily algebraic) field extensions in the following way. 

Definition 3. A field P is separable ouer!fl if it is either of charac
teristic 0 or if it is of characteristic p ¢ 0 and P is linearly disjoint 
to 1J>P-1 ouer!fl. 

Theorem 9 shows that this is equivalent to the usual notion of 
separability if P is algebraic over !fl. Also MacLane's criterion 
shows that, if P is finitely generated over !fl, then it is separable 
over!fl if and only if P is separably generated over !fl. The follow
ing theorem gives two other properties of separability which are 
familiar in the algebraic case. 

Theorem 11. (1) If P is separable ouer!fl and E is a subfield of 
P ouer !fl, then E is separable ouer !fl. (2) If P is separable ouer E 
and E is separable ouer!fl, then P is separable ouer!fl. 

Proof. We may assume the characteristic is p ¢ O. (1) This 
is clear since the linear disjointness of P and !flP - 1 implies the 
linear disjointness of E and !flP - 1• (2) We are assuming that 1J>P-1 

is linearly disjoint to E over !fl and EP-l is linearly disjoint to P 
over E. Then E(IJ>P-1) which is a subfield of EP-l is linearly dis
joint over E to P. The lemma now applies to show that 1J>P-1 

and P are linearly disjoint over !fl. Hence P is separable over !fl. 
We close the present discussion with two negative results. 

First, we recall that, if P is separable algebraic over !fl, then P 
is separable algebraic over any intermediate field. This fails in 
the general case since, for ~ transcendental, !fl(~) is separable over 
!fl of characteristic p ¢ 0, but !fl(~) is not separable over !fl(~). 
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Next we note that a field may be separable over <I> and not sepa
rably generated. An example of this is given in ex. 1 below. 

EXERCISES 

1. Let <I> be of characteristic p ~ 0 and let P = <I>(~, ~-l, ~-'J, ••• ) where ~ 
is transcendental over <1>. Show that P is separable over <I> but not separably 
generated over <1>. 

2. Let <J>P-m be the subfield of the algebraic closure of P ::J <I> of elements ~ 
such that ~m e <I> and let <J>P_ oo = U <l>P-. Show that P is separable over <I> if 
and only if P and <l>P_ oo are linearly disjoint over <1>. 

3. Let E/<I> and ~/<I> be subfields of P /<1> such that E/<I> is purely transcen
dental and ~/<I> is algebraic. Show that E and ~ are linearly disjoint over <1>. 

4. Let P = <I>(t 1/, 5", r) where <I> is of characteristic p ~ 0, ~,1/, 5" are alge
braically independent and r P = ~5"P + 1/. Show that P is not separably gener
ated over E = <I>(~, 1/). 

5. (MacLane). Let <I> be a perfect field of characteristic p ~ 0, P an imperfect 
extension field of <I> such that tr. d. P /<1> = 1. Show that P is separably gener
ated over <1>. 

6. Derivations. We have found it useful to introduce the usual 
formal derivative of a polynomial in considering multiple roots 
(§ 1.6). The mapping of the polynomial algebra <I>[x] into itself 
defined by: f(x) ~ f'ex) the formal derivative of f(x), is an 
example of a derivation in the algebra <I>[x]. More generally it is 
convenient to consider derivations from a subalgebra into an 
algebra. This general notion, which is of great importance in 
algebra, is given in the following 

Definition 4. If & is a subalgebra of an algebra 58, a derivation 
D of & in to 58 is a linear mapping of & into 58 such that 

(8) (ab)D = (aD)b + a(bD), a, b e &. 

If & = 58, then we speak of a derivation in &. 

We shall be interested mainly in derivations in fields of alge
braic functions. In this section we consider some general results 
on extension of derivations and on the algebraic system consisting 
of all the derivations of an algebra into itself. We begin our con
siderations by noting first that the study of derivations is equiva
lent to the study of a certain type of algebra isomorphisms. This 
will enable us to derive the main facts''about derivations as con
sequences of corresponding results on homomorphisms. For this 
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purpose we introduce the algebra X with basis (1, I) over the 
base field ~ and multiplication rule r = O. Thus X = ~[X]/(X2), 
x an indeterminate, and I is the coset x + (x2). If 5B is an arbi
trary algebra, then we form the algebra 5B ® X. If we identify 5B 
in the usual way with the subalgebra of elements b ® 1 and X 
with the subalgebra of elements 1 ® u, u e X, then we see that 
the elements of 5B ® X can be written in one and only one way 
in the form bo + b1t, bl £ lB, the generator t of X. We have bt = 
Ib and in general the multiplication rule in 5B ® X is 

(9) (bo + b1/)(co + C1/) = boco + (bOCl + blCo)/, 

bi, Ci e 5B. The algebra 5B ® X is called the algebra of dual numbers 
over 5B. 

Now let D be a derivation of ~ into 5B. Then we can use this 
to define a mapping s = seD) of ~ into 5B ® X by 

(10) a ~ a8 = a + (aD)/. 

Evidently s is linear. Furthermore, if a, b e ~, then 

a8b8 = (a + (aD)/)(b + (bD)/) 

= ab + (a(bD) + (aD)b)1 

= ab + ((ab)D)1 

= (ab)'. 

Hence s is a homomorphism of the algebra ~ into the algebra of 
dual numbers 5B ® X. The homomorphism s has a simple charac
terization. For this we introduce the mapping 11": a + bl ~ a, 
a, b e 5B, of 5B ® X into 5B. It is clear that this is a homomorphism 
of 5B ® X into 5B which is the identity mapping on the sub algebra 
5B. Now we see that, if a e ~ and s is defined by the derivation 
D of ~ into 5B as before, then a8 ", = (a + (aD)t)'" = a. Evidently, 
this requirement guarantees that s is an isomorphism. 

Conversely, let s be any homomorphism of ~ into 5B ® X such 
that a'r = a, a e~. Then a8 = a + bl, a, b e 5B and b is uniquely 
determined by a. Hence we have the mapping D: a ~ b, and 
we may write a8 = a + (aD)t. It is clear that the linearity of s 
implies the linearity of D. Also since (ab)' = a'b8 for any a, b in ~, 

(a + (aD)/)(b + (bD)t) = ab + (a(bD) + (aD)b)t 

= ab + ((ab)D)/. 
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Hence we have (ab)D = (aD)b + a(bD) so D is a derivation. We 
can therefore state the following 

Theorem 12. If ~ is a subalgebra of .IS and D is a derivation of 
~ into .IS, then s: a -+ a + (aD)t is an isomorphism of ~ into the 
algebra of dual numbers .IS ® ~ over .IS such that a87r = a. Con
versely, any homomorphism of ~ into .IS ® ~ satisfying this condition 
has theform a -+ a + (aD)t where D is a derivation of ~ into .IS. 

We shall now obtain some simple consequences of this connec
tion between derivations and isomorphisms. First, let x be a 
set of generators of the sub algebra ~ of the algebra .IS and let Dl 
and D2 be derivations of ~ into.lS. Suppose xDl = XD2 for every 
x e x. Then X 31 = X 82 for the associated isomorphisms Sl = s(D l ), 

S2 = s(D2) of ~ into .IS ®~. It follows that a81 = a82 for every 
a e ~ so Sl = S2 and Dl = D2. This shows that, if two deriva
tions coincide on a set of generators of ~, then they are identical 
on~. We remark next that, if s is a homomorphism of ~ into 
58 ® ~ such that x 87r = x for x e x a set of generators, then a87r = 
a for all a e~. Hence s defines a derivation in the manner in
dicated. 

An element c of ~ such that cD = 0 is called aD-constant. 
Evidently c is a D-constant if and only if c· = c for the isomor
phism s = seD). It follows from this-or directly-that the set 
of D-constants is a subalgebra of~. In particular, 1 is a D
constant for every derivation D. If ~ is commutative and 4> is 
of characteristic p, then every p-th power in ~ is aD-constant. 
For, in any commutative algebra the basic property (8) for D 
implies that (ak)D = kak-l(aD). Hence if k = p, then (aP)D = o. 
We note also that, if ~ = P is a field, then the set of D-constants 
of P forms a subfield I' of P. This is clear from the consideration 
of s = seD) or it follows directly, by noting the rule for the deriva
tive of "1-1 :'Y-1D = - ('YD)-y-2, which follows by taking the 
derivative of the relation "1"1-1 = 1. If peP and "I e 1', then 
('YP)D = 'Y(pD) for the derivation D. This shows that De 
~r(P, 58) the set of derivations of P/I' into .IS/I'. In considering 
a particular derivation D of a field, it is often convenient to shift 
from the original base field to the field of constants I' of D or to 
some subfield E/4> of 1'/4>. 
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We shall now carryover to derivations the two basic results 
I and IV' on extensions of homomorphisms of commutative rings 
which we derived in the Introduction. We remark that these 
results are valid for algebras over a field ~ and we shall use them 
in this form. Our first result on extension of derivations is 

Theorem 13. Let P be a field over~, ~ a subalgebra of P /~ 
(containing I), M a multiplicatively closed subset of non-zero elements 
of ~ containing 1, and let ~M be the subalgebra of P of elements of 
the form ab-l, a e ~, be M. Let D be a derivation of ~ into P. 
Then D can be extended in one and only one way to a derivation of 
~M into P. 

Proof" Let s be the isomorphism a ---+ a + (aD)"t of ~ into 
P ®~. If a ;;i! 0, then a8 = a + (aD)t has the inverse a-I -
a-2 (aD)t since 

(a + (aD)t)(a-1 - a-2 (aD)t) = 1 + (aD)a-It - a-l(aD)t = 1. 

By I of the Introduction, s can be extended to an isomorphism 
of~Minto P. The extension is unique and maps ab-l ---+ a8 (b 8)-I. 
We have 

a8 (b 8 )-1 = (a + (aD)t)(b-1 - b-2(bD)t) 

= ab-l + «aD)b-1 - ab-2(bD))t. 

This formula shows that, if s denotes the extension of s to ~M, 
then (ab-I)87r = (a"(b8) -1)7r = ab-l . It follows that s defines the 
derivation: 

(11) 

of ~M into P. The argument shows also that this extension of 
D is unique. 

N ext we consider a sub algebra ~ of P /~ and an extension of this 
which has the form ~[6, b, .. " ~m], ~i elements of the field P. 
We suppose we are given a derivation D of ~ into P and elements 
'TIb'TI2, .• " 'TIm of P. We seek conditions on D and the 'TIi which 
insure that D can be extended to a derivation D of ~[~b ~2' .. " 
~m] such that ~iD = 'TIi, i = 1,2, .. " m. Since ~ and the ~i 
generate ~[~b .. " ~m] it is clear that, if the extension exists, then 
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It IS unique. As before, we consider the isomorphism s:a ~ a + 
(aD)1 of ~ in P ® ~ satisfying a 87r = a. Then D can be extended 
to a derivation of ~[~h .. " ~m] into P so that ~i ~ 11i if and only 
if s can be extended to an isomorphism of ~[~h .. " ~m] into P ® ~ 
so that ~i ~ ~i + 11il. Clearly the condition is necessary and, if 
it holds, we have a8 " = a and ~l'lf" = ~i for the extension s. Hence s 
will give rise to a derivation of ~[~h ~2' ... , ~m], as before. The con
ditions for the extension of s have been given in IV' of the Introduc
tion. We recall that the set Jr of polynomials l(xh X2, .•. , xm) e 
~[Xh X2, ••• , Xm], Xi indeterminates, such that l(~h ~2' .• " ~m) = 
o is an ideal in ~[Xh X2, •• " xm]. The condition IV' for an exten
sion s of s such that U = ri,l :s; i :s; m, is that g8(rh r2, .. " rm) 
= 0 for every g e x, a set of generators of Jr. Hence we see that 
D can be extended to a derivation of ~[~h .. " ~m] into P such 
that ~i ~ 11i, i = 1,2, .. " m, if and only if 

g8(~1 + 111/, ~2 + 1121, .. " ~m + 11ml) = 0 

for every g in a set x of generators of the ideal Jr of polynomials 
l(xh .. " xm) e ~[Xh '.", xm] such that l(~h .. " ~m) = o. 

We proceed to work ou t these condi tions in detail. Let a e ~ 
and consider the monomial M(Xb .. " Xm) = aX1 k'X2k • ... Xm km• 

Then 

M8(~1 + 111/, ~2 + 112/, ... , ~m + l1ml) 

= a 8(h + 111/)k'(~2 + 112t)k • ... (~m + l1rn1)km 

= (a + (aD)/)(~1 + 111/)k'(~2 + 112t)k2 ... (~m + l1ml)km 

= a~1k'bk • ... ~mkm + (aD)~1k'~l2 ... ~mkml 
+. (k1a~1 k,-1~2k • ... ~m km111 

+ k2a~1 k'~2k2-1~3ka ... ~m km112 

+ ... + kma~1 k, .•• ~m-1 km-'~m km -111m)/. 

If we define the formal partial derivative of 1 = 2;ak, ... kmX1k, ... 
Xm km relative to Xi as 
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and denote its value at (~h ~2' "', ~m) by (of) ,then the 
b I I · h h OXi z/~fJ a ove ca cu atlOn sows t at 

M'(~l + TIlt, .. " ~m + Tlmt) 

= M(~h "', ~m) + [MD(~h "', ~m) + :E (:~ Tli] t, 
1 V;:JZJ=fJ 

where, in general fD(xh .. " xm) is the polynomial obtained from 
f by replacing the coefficients by their images under D. Hence 
if f e ~[Xh .. " xm ], then we have 

(12) jB(~l + TIlt, ~2 + Tl2t, .. " ~m + Tlmt) 
m (Of) = f(h, .. " ~m) + fD(~h .. " ~m)t + E - Tlit• 
1 OXi zJ=fJ 

It is now clear that jB(~l + TIlt, .. " ~m + Tlmt) = 0 if and only if 
f(~h "', ~m) = 0 and 

m (Of) fD(~h "', ~m) + E;- Tli = O. 
i=l VXi zJ~fJ 

(13) 

The criterion which we gave can now be stated in the following 
manner. 

Theorem 14. Let ~ be a subalgebra over 4> of the field P /4> and 
let ~h ~2' .. " ~m, Tlh Tl2, .. " TIm be elements of P, D a derivation of 
~ into P. Let sr be the ideal of polynomials f(Xh .. " xm) e ~[Xh .. " 

Xm] such that f(h, .. " ~m) = 0 and let I be any set of generators 
for sr. Then D can be extended to a derivation D of ~[~h .. " ~m] 
into P such that ~iD = Tli, i = 1,2, .. " m, if and only if 

(14) 

for every gel. If the extension exists, then it is unique. 

A special case of the result is the following: If the ~i are alge
braically independent over ~, then there exists a derivation D 
extending D on ~ and mapping ~i - Tli where Tlh •• " TIm are 
arbi trary in P. This is clear since in this case the ideal sr = 0, 
so the condition for extension is trivially satisfied. 
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We consider next an arbitrary algebra .18, a sub algebra ~, and 
the set XJ~(~,.I8) of derivations of ~/<I> into .18/<1>. If Dl) D2 e 
1>~(~, .18) and a e <1>, then aDl and Dl + D2 are linear mappings 
of ~ into.l8. Moreover, if a, b e ~, 

(ab)(aDl) = a((ab)Dl) = a((aDl)b + a(bDl» 

= (a(aDl»b + a(b(aDl» 

(ab) (Dl + D2) = (ab)Dl + (ab)D2 

= (aDl)b + a(bDl) + (aD2)b + a(bD2) 

= (a(Dl + D2»b + a(b(Dl + D2». 

This shows that aDl and Dl + D2 are derivations. Hence 
XJ~(~, .18) is a subspace of the space 2~(~, .18) of linear mappings 
of ~/<I> into .18/<1>. Next let.c be an element of the center of .18 
and, as usual, let CR denote the mapping x ---+ xc = cx in.l8. We 
assert that, if D is a derivation of ~ into .18, then DCR is also a 
derivation of ~ into.l8. For, it is clear that DCR is linear and we 
have 

(ab)DcR = ((aD)b + a(bD»cR 

= (aDcR)b + a((bD)cR). 

Hence DCR e 1>~(~, .18). 
Next let.18 = ~ and let 1>~{~) = 1>~(~, ~) the set of derivations 

in~. Let Dl) D2 e 1>~(~). Then DlD2 is a linear transformation 
of the space 2{. However, 

(ab)DlD2 = (a(bDl) + (aDl)b)D2 

= a(bDlD2) + (aD2)(bDl) + (aDl)(bD2) + (aDlD2)b. 

Since (aD2) (bDl) + (aDl) (bD2) may be ~ 0, it is clear that 
DlD2 need not be a derivation. The "obstruction" (aD2)(bDl) + 
(aDl)(bD2) is symmetric in Dl and D2 so we obtain the same 
obstruction for D2Dl. These cancel off if we form [DlD2l = 
DlD2 - D2Dl. Hence it is clear that [DlD2l e XJ~(~). The expres
sion [DlD2l is called the Lie or additive commutator of Dl and D2• 

Our result is that XJ~(~) is a subspace of the space of linear trans
formations of ~ closed under Lie commutators, that is, if Dl) D2 e 
1>~(~), then [D l D 2l e 1>~(~). A subspace of 2~(~) having this 
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property is called a Lie algebra of linear transformations. The Lie 
product [DID2J is bilinear but it is not associative. The basic 
properties which it has are 

(15) [DDJ = 0, [[DID2JDaJ + [[D2DaJDd + [[DaDIJD2J = o. 
The first of these is clear and the second follows from a straight
forward calculation which we leave to the reader. We note next 
the following Leibniz formula for the k-th power of a derivation: 

(16) (ab)Dk = E (~) (aD i) (bDk-i), k = 1,2, .... 

This is readily proved by induction on k. Now suppose the base 

field is of characteristic p ~ o. Then (~) a = 0 for i = 1,2, ... , 

p - 1 and any a E ~, so in this case, (16) for k = p reduces to 

(17) (ab)DP = (aDP)b + a(bDP), 

which shows that 1)<I>(~) is also closed under p-th powers, that is, 
if D E 1)<I>(~)' then DP E 1)<I>(~). A Lie algebra of linear trans
formations in a vector space over a field <I> of characteristic p ~ 0 
having this extra closure property is called a restricted Lie algebra 
of characteristic p. 

EXERCISES 

1. Let ~ be an algebra over cp and let d E~. Verify that the mapping a ~ 
[ad] = ad - da is a derivation in~. Such a derivation is called an inner deriva
tion of~. Prove that, if Id denotes the inner derivation determined by d, then 
I a1dl+a,.d2 = Otddl + Ot2Id2' Oti in cp and I[dld21 = [IdJd21. Show also that, if cP is of 
characteristic p ;t. 0, then IdP = (Id)P. 

2. Let ~ be a subalgebra of an algebra 58. Verify that a mapping D of ~ into 
58 is a derivation if and only if the mapping 

a ~ [~ :DJ 
if ~ into the matrix algebra 582 of 2 X 2 matrices over 58 is an isomorphism. 

7. Derivations, separability and p-independence. We shall 
now take up the study of derivations in a field P/<I>. We note 
first that, if ~ is a subalgebra of P /<I>, then any derivation D of 
~/<I> into P /<I> has a unique extension to a derivation D of the sub
field E of P generated by~. This is a special case of Theorem 13 
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since E = ~M for M the set of non-zero elements of~. Suppose 
next that E is a subfield of P /<1> and D is a derivation of E/<I> into 
P /<1>. Let ~ e P. Then if ~ is transcendental over P, D can be 
extended to E[~] so that ~D = 7] is any element of P. This is a 
consequence of Theorem 14. Moreover, D can be extended to 
the field E(~) so that ~D = 7]. Next assume ~ is algebraic over E, 
so E[~] = E(~) and let f(x) be the minimum polynomial of ~ over 
E. Then the ideal sr in E[x] of polynomials hex) such that h(~) 
= 0 is the principal ideal (f(x». Hence Theorem 14 shows that 
D can be extended to a derivation of E(~) such that ~ ~ 7] if and 
only if 

(18) 

f'ex) the usual derivative of f(x) (cf. V of Introd.). If ~ is sepa
rable, then f'W ~ 0 and (18) gives 7] = - fD(~)f'W -1. Hence 
there is only one choice possible for 7] to give an extension of D. 
Thus we see that, if E(~) is separable algebraic over E, then a 
derivation of E/<I> into P /<1> can be extended in one and only one 
way to a derivation of E(~) over <1>. In particular, if D = 0 on 
E, then the only extension of D to a derivation in E(~) is D = 0 
on E(~). If ~ is inseparable, then f'W = O. Hence D can be 
extended to a derivation in E(~) if and only if fDW = 0 and, when 
this condition is fulfilled, then 7] is arbitrary so D can be extended 
to E(~) in such a way that ~D = 7] is any chosen element of P. If 
j(x) = xn + alxn- 1 + .. " then jD(X) = (a 1D)xn - 1 + (a2D)xn - 2 

+ ... and since f(x) is the· minimum polynomial, the condition 
fDW = 0 holds if and only if every aiD = O. Thus, a necessary 
and sufficient condition for the extendability of D to E(~), ~ in
separable algebraic over E is that the coefficients of the minimum 
polynomial of ~ over E are D-constants. We shall need this 
criterion particularly in the case f(x) = xP - a. Then the con
dition is simply that aD = O. 

Now let P = <I>(h, ~2' •• " ~m) a finitely generated extension 
field of <I> (that is, a field of algebraic functions). Let sr be the 
ideal in <I>[Xh X2, ... ,xm] of polynomials f(Xh X2, .. " xm ) such 
that f(~h ~2' •. " ~m) = 0 and let x be a basis for sr. If D is a 
derivation of the algebra <I>[~h ~2' .. '; ~m1l<l> into P /<1>, D has a 
unique extension to P /<1>. Theorem 14, applied to the derivation 
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D = 0 on I}>, shows that there exists a derivation D of 1}>[6, ~2' ..• , 

~m]/I}> into p lcJ?--hence of p II}> into itself-such that ~iD = ''Ii, 

i = 1,2, .. " m, if and only if 

(19) L - '1/i = 0 ( dg ) 
i dXi Zj=~j 

for every g e x. 
We have considered the system 1)~(P) of derivations of P/I}> 

in the last section and we have seen that this is a Lie algebra of 
linear transformations which is restricted in the characteristic 
p =;C. 0 case, and 1)~(P) is closed under right multiplication by 
elements PR, peP. Hence we see that 1)~(P) is a subspace of the 
right vector space .t!~(P) over P (see § 1.1). We shall now in
vestigate 1)~(P) as right vector space over P for P = I}>(~t, ~2' .. " 

~m)' 
For this purpose we introduce the right vector space p(m) of 

m-tuples (Pt, P2, .. " Pm), Pi e P, with the usual addition and 
multiplication by elements of P. If De 1) == 1)~(P), then we 
map D into the element (~lD, ~2D, .. " ~mD) e p(m). This map
ping is P-linear and so its image 1)' is a subspace of p(m) IP. If 
~iD = 0, 1 ~ i ~ m, then D = 0 since the ~i are generators of 
P = <I>(~t, ~2' .. " ~m)' This shows that the kernel of the mapping 
D -+ (~iD) of 1) onto 1)' is 0 and so the mapping is a P-linear 
isomorphism of 1) on to 1)'. 

Next we shall give a description of the subspace 1)' of p(m) in 
terms of the ideal ~ defined before. We note first that, if J e 
I}>[xt, X2, •. " xm ], then the mapping 

(20) d,: ('1/t, '1/2, •• " '1/m) -+ L (ddJ.) '1/i 
x. Zj=~j 

is a linear function on p(m), that is, an element of the conjugate 
space p(m)* of p(m). Let dx denote the subspace of p(m)* spanned 
by the elements d" g e x, a set of generators for~. The condition 
(19) on ('1/t, '1/2, .. " '1/m) is that ('1/i)dg = 0 for all g e x. Hence we 
see that there exists an element D e 1)~(P) such that ~iD = '1/i, 

1 ~ i ~ m, if and only if ('1/i)dg = 0 for all g e x. This clearly im
plies that 1)' is the subspace of p(m) of vectors incident with the 
subspace dx of p(m)* (Vol. II, p. 55). We recall that the sum of 
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the dimensionalities of 1)' and dI is m. If we replace I by the 
complete ideal ~, then we have dI C d~; but, since both spaces 
have the same dimensionality m - [1)': P]R, it is clear that dI = 
d~. This shows that dI is the same for any two sets of generators, 
a fact which is easy to see directly also. The result that we have 
obtained is the following 

Theorem 15. Let P = 1I>(~h ~2' .. " ~m) a field of algebraic func
tions overll>. Let I be a set of generatorsfor the ideal~ of polynomials 
f(xh X2, .. " xm) such that f(~h ~2' .. " ~m) = 0 and let 1)1l>(P) be 
the right P-vector space of derivations in P /11>. Then 

(21) [1)Il>(P): P] = m - [dI: P]R 

where dI is the set of linear functions d" g e I, defined by (20). 

If I = {gh g2, .. " gr}, then it is clear from the definition of d, 
and from the relation between dimensionality and determinantal 
rank (Vol. II, p. 22) that [dI: P]R is the rank of the matrix 

(agl ) 
aXI xJ=EJ 

(agl ) 
aX2 xJ=EJ 

(ag l ) 

aXm xJ=EJ 

(22) 

(agr) 
aXl XJ=EJ 

(agr ) 
aX2 xJ=EJ 

(agr ) 
iJxm xJ=EJ 

Hence the rank of this "Jacobian" matrix and (21) give the di
mensionality of 1)1l>(P) over P. 

We shall now look at these questions in a different way from 
the point of view of the structure of P /11> and we prove first the 
following 

Lemma. Let P = 1I>(~h ~2' .. " ~m)' Then 0 is the only deriva
tion of P /11> into itself if and only if P is separable algebraic over 11>. 

Proof. If p is a separable algebraic element of P and D is a 
derivation of P /11>, then we have seen that pD = O. Hence it is 
clear that, if P /11> is separable algebraic, then D = 0 is the only 
derivation in P /11>. Next suppose P is not separable algebraic over 
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<1>. We may suppose {6, ~2' .. " ~r} is a transcendency basis (r = 
o if P is algebraic). If P is not separable over <1>(6, ~2' •. " ~r), 
then the characteristic is p ~ 0 and, if ~ is the subfield of ele
ments of P which are separable over <I>(~h ~2' .. " ~r), then P ~ ~ 
and P is purely inseparable over~. We assert that there exists a 
subfield E :::> ~ such that P = E(p), where the minimum poly
nomial of p over E is xP - {3, {3 e E. We have [P:~] < 00 and 
we can take E to be a maximal proper subfield of P containing~. 
If q e P, ¢ E, P = E( q) by the maximali ty of E. Since P is purely 
inseparable over ~, hence over E, the minimum polynomial of q 

over E has the form Xpk - {3, k > O. Then p = qpk-l ¢ E so E(p) 
~ E. By the maximality of E we have E(p) = P. Moreover, 

pP = qpk = {3, so xP - {3 is the minimum polynomial of p over E. 
Now we have seen that there exists a derivation D of PIE such 
that pD is any chosen element of P. If we take pD ~ 0, D is a 
non-zero derivation of P 1<1>. Next assume P is separable algebraic 
over <I>(~h ~2' .. " ~r)' Then since P is not separable algebraic over 
<1>, r > 0, and there exists a non-zero derivation of <I>[~h .. " ~r] 
over <I> into P over <1>. This can be extended to P; hence in this 
case also we obtain a non-zero derivation in P /<1>. 

We can now prove the following result on the dimensionality 
of ~4>(P) over P. 

Theorem 16. If P = If>(~h ~2' .. " ~m)' then [~4>(P): P]R is the 
smallest integer s such that there exists a subset {~il' ~i2' .. " ~d of 
{~h ~2' .. " ~m I such that P is separable algebraic over <I>(~iI) ~i., .. " 

~i.)' 

Proof. As before, we consider the mapping D --+ (~1D, ~2D, 
.. " ~mD) of tl = tl4>(P) into p(m). We know that this is a P 
isomorphism into p(m) IP. Let (Dh D2, .. " D8 ) be a right basis 
of tl over P. Then s ~ m and the image of tl in p(m) has the 
basis (~1D;, bD;, .. " ~mDi)' 1 ~j ~ s. The rank of thes X m ma
trix (~iDi) is s, so we can choose the order of the rs so that det (~iDi) 
~ 0, 1 ~ i,j ~ s. Set E = <I>(~h ~2' .. " ~8) and let D be a deriva-

8 

tion of PIE into itself. Then De tl so D = E DilL;, lLi e P. 
8 i=1 

Also ~iD = E (~iDi)lLi = 0 for i = 1,2, .. " s. Since det (~iDi) 
3=1 
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=;e 0, this implies that every ILj = 0 so D = O. We therefore see 
that the only derivation of PIE is D = O. Hence, by the lemma, 
P is separable algebraic over E = <I>(~h ~2' .. " ~8)' Next suppose 
{~i" ~i2' ... , ~d is a subset of the fs such that P is separable 
algebraic over <I>(~il' ... , ~il)' If we re-order the fs we may assume 
the given set is {~h ~2' ... , ~t}. We now use these f s to map ~ 
into p(t) by means of the mapping D --+ (~jD), 1 ~ j ~ t. 
Again this is P-linear. If (~jD) = 0, then D maps E = <I>(~h ~2' 
... , ~t) into 0 and so D is a derivation of PIE into itself. Since 
P is separable algebraic over E, the lemma shows that D = O. 
Hence we see that the mapping D --+ (~jD) is an isomorphism 
and consequently s = [~: P]R ~ t. This completes the proof. 

Corollary. If P = <I>(~h ~2' "', ~m), then [~~(P):P]R ~ r = 
tr. d. P 1<1> and equality holds if and only if P is separably generated 
over <1>. 

Proof. The theorem shows that, if s = [~: P]R, then we may 
assume that P is separable algebraic over E = <I>(~h ~2' •. " ~8)' 
Since P is algebraic over E, it follows that {6, b, "', ~8} con
tains a transcendency basis; hence s ~ r. If s = r, then since P 
is separable over E, the set {~h ~2' ... , ~r} is a separating trans
cendency basis. Conversely, suppose P is separably generated. 
Then we know that we may select a separating transcendency 
basis from the set of fs. We may assume this is {~h ~2' "', ~r}. 
Then P is separable algebraic over <I>(~h ~2, ... , ~r) and the theorem 
shows that r ~ [~: P]R. Since we have shown that [~: P]R ~ r 
always, we see that [~: P]R = r. 

In the remainder of this section we shall assume the charac
teristic of the field P is p =;e o. We shall see that the theory of 
derivations in this case is closely connected with the study of 
purely inseparable extensions of a simple type. We assume P 
is purely inseparable (algebraic) over <1>. If peP, then the mini
mum polynomial of p over <I> has the form xP' - fJ (Lemma 2, 
§ 1.9). We call e the exponent of the purely inseparable element p. 

Evidently the exponent is 0 if and only if p e <1>. If there exists a 
maximum k for the exponents of the elements of P, then we say 
that P is of exponent k over <1>; otherwise, the exponent of P 1<1> is 
infinite. 
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We shall be interested particularly in purely inseparable exten
sions of exponent ~ 1. P has this property relative to cI> if and 
only if pp C cI> where pp is the subfield of p-th powers of elements 
of P. Hence it is clear that, if P is any extension of cI> of charac
teristic p, then P is purely inseparable of exponent ~ lover cI>' = 
cI>(PP). We shall now say that an element peP is p-dependent in 
P ouer cI> on the subset 8 oj P if p ecI>'(8) where cI>' = cI>(PP). We 
indicate this relation by p <p 8 (assuming P and cI> are fixed in 
our discussion). We proceed to show that this is a dependence 
relation in the sense of § 3. First, it is clear that, if p e 8, then 
p e cI>'(8); hence p <p S. If p <p S we have p ecI>'(S) and, since 
cI>'(S) is the union of its subfields cI>'(F) where F is a finite subset of 
8, then p <p F for some finite subset F of S. If p e cI>'(S) and 
every u e S is contained in cI>'(T), then p e cI>'(T). Hence if p <p S 
and every u e S satisfies u <p T, then p <p T. It remains to 
check the exchange axiom. This states that, if p e cI>'(8) and 
p ¢cI>'(8 - {uD for some u in S, then u ecI>'«8 - {uD U {pD. 
Set T = 8 - {u} and consider the subfields cI>'(T, p, u), cI>'(T, p), 
cI>'(T, u), cI>'(T) for which we: have the diagram: 

IJJ'(T, p, u) 

4>'(T, p) V (4)'(T, .)) 

cI>'(T) 

We have cI>'(T, p) ~ cI>'(T) and cI>'(T, u) ~ cI>'(T). Also pP e cI>'(T) 
and uP e cI>'(T). It follows that [cI>'(T, u) :cI>'(T)] = p = [cI>'(T, p): 
cI>'(T)]. Since p e cI>'(T, u), cI>'(T, p, u) = cI>'(T, u) so [cI>'(T, p, u): 
cI>' (T)] = p. It follows that cI>' (T, p, u) = cI>' (T, p) = cI>' (T, u) so 
u <p T U {p} = (8 - {uD U {pl. This completes the verifica
tion of the axioms for a dependence relation. 

We can now apply the general theory of dependence relations. 
Accordingly, we call a subset S of P p-independent if u <p S - {u} 
for every u e 8. The general basis theorem implies that there 
exists a p-independent subset B of P such that every element is 
p-dependent on B. The latter condition is equivalent to P = 
cI>'(B). The set B is called a p-basis for P over cI>. Any two p
bases have the same cardinal number. 
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If F = {Ph P2, ... , Pm} is a p-independent set, then PiP = (ji e 
4>' and Pi ¢ 4>' (Ph P2, ... , Pi-l). Hence [4>'(Ph ... , Pi) :4>'(Ph ... , 
Pi-l)] = P and [4>'(Ph ... , Pm) :cP'] = pm. It follows that the pm 
elements 

(23) 

form a basis for CP'(Ph P2, ... , Pm) over CP'. Conversely, if this 
condition holds, then it is immediate that F is a p-independent set. 
We shall find it useful to apply this criterion in the following 
equivalent form: F is p-independent if and only if the only relation 
of the form 

(24) 2;akl ••. k".Pl kl ••• Pm k", = 0, 0::; ki < p 

with the a's in 4>' is the trivial one in which every akl· •• k", = o. 
We note also that any p-independent subset A can be imbedded 

in a maximal p-independent set B and such a set is necessarily a 
basis. 

We return to the consideration of deri va tions in any field P /4> 
of characteristic p. If E is a subfield of P /4> and D is a derivation 
of E/cp into P/4>, then EPD = pEP-l(ED) = 0 for any E in E. The 
set of D-constants is a subfield r of E over cP and the remark just 
made shows that r :::> cp(EP). If 'Y e rand E e E, then ('YE)D = 
'Y(ED). This shows that D is a derivation of E/r into P/r. Since 
4>(EP) c r, every derivation of E/cp into P /4> is a derivation of 
E/cp(EP) into P /cp(EP) and the converse is clear. Hence, in con
sidering the derivations ofE over cP into P over CP, we may as well 
replace cP by cp(EP) and so we may assume EP C CPo In other 
words, we may assume E is purely inseparable of exponent::; lover 
4>. It is now an easy matter to determine the derivations of E 
over 4> into P over 4>. This is given in the following 

Theorem 17. Let P be an arbitrary jield of characteristic ¢. 0, 
4> a subjield and E an intermediate jield. Let B be a p-basis of E 
over 4>. Let a be an arbitrary mapping of B into P. Then there 
exists one and only one derivation D of E over 4> into P over 4> such 
that ED = aCE) for every E e B. 

Proof. As we indicated, there is no loss in generality in assum
ing E is purely inseparable of exponent::; lover 4>. Also, we may 
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suppose E :::::> <I> which means that B is non-vacuous and the ex
ponent of Ej<l> is exactly one. Let E e B and set B. = B - {E}. 
Then E ¢ <I>(B.) so the minimum polynomial of E over <I>(B.) is of 
the form xP - fJ. Hence there exists a derivation D. of E = 
<I>(B., E) over <I>(B.) into P/<JI sending E into the element ~(E). If 
F = {El) E2, .. " Er } is a finite subset F of B, then DF = D'l + 
D'2 + ... + D.r is a derivation of E/<I> into P /<1> such that 
EiDF = ~(Ei)' i = 1,2, "', j"". If G is a finite subset of B con
taining F, then the restriction of DG to <I>(F) coincides with the 
restriction of DF to <I>(F). Now if ~ is an arbitrary element of E, 
we can choose a finite subset F such that ~ e <I>(F) and we can 
map ~ ~ ~DF. Then it is clear that ~DF is the same for any 
finite subset such that ~e<l>(F). Hence the mapping D:~ ~ 
~DF is single-valued. It is immediate that D is a derivation of 
E/<I> into P/<I> such that ED = ~(E) for every E e B. Since E = 
<I>(B), D is unique. 

Let ~<I>(E, P) denote the set of derivations of E/<I> into P /<1>. 
We consider ~<I>(E, P) as right vector space over P as we did 
before for ~<I>(P) (cf. § 1.1 and p. 176). Then we have 

Corollary 1. [~<I>(E, P): P]R < <Xl if and only if E/<I> has a 
finite p-hasis. Then [~<I>(E, P): P]R = 1 B I. 

Proof. Let B be a p-basis for E over <1>. Let t:.(B, P) be the set 
of mappings of B into P which we consider as a right vector space 
over P in the obvious way: (~1 + ~2)(fJ) = ~l(fJ) + ~2(fJ), Oi e t:., 
fJ e B and (~p)(fJ) = o(fJ)p, 0 e t:., fJ e B, peP. We now map 
~<I>(E, P) into t:.(B, P) by sending D e ~<I>(E, P) into its restric
tion 0 to B. This mapping is linear and, since E = <I>(B), D ~ 0 
is an isomorphism. Moreover, the theorem shows that the map
ping is surjective. Now it is clear that [t:.(B, P): P]R is infinite 
(even uncountable) if B is infinite. Moreover, if B is finite, say, 
B = {fJl) fJ2, .. " fJr}, then the r-mappings Oi such that ~i(fJi) = 
Oii (the Kronecker Oii) form a basis for [t:.(B, P): P]R. Hence r = 
[t:.(B, P): P]R = '[~<I>(E, P): P]R. 

In the special case P = E = <I>(h, ~2' •. " ~m) this corollary 
gives, in addition to Theorem 15 and 16, still a third way of 
evaluating [~<I>(P): P]R in the characteristic p ~ 0 case, namely, 
this dimensionality is the number of elements in a p-basis for 
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P Iii!. A second consequence of Theorem 17 is the following 

Corollary 2. Every derivation of EliI! into P Iii! can be extended to 
a derivation of P Iii! if and only if the elements of any p-basis B of 
EliI! are p-independent in P Iii!. 

Proof. If the condition holds, then B can be imbedded in a p
basis C of P over iI!. If D is a derivation of EliI! into P Iii!, then 
the restriction ~B of D to B can be extended to a mapping ~c of 
C to P. The corresponding derivation D' of P Iii! into itself is an 
extension of D. On the other hand, suppose B is notp-independent 
in P over iI! and let {3 be an element of B which is p-dependent in 
P on B{3 = B - {{3}. If D' is any derivation in P such that 
{3'D' = 0 for all {3' e B{3, then since (3 eil!(PP, B(3), {3D' = O. The 
theorem shows that there exist derivations D of E over iI! into P 
over iI! such that {3'D = 0, {3' e B{3 but (3D ~ O. Clearly, such a 
derivation cannot be extended to P. 

Our next two corollaries will deal with the special case E = P. 
The proofs are quite similar to those we have just given so we 
leave these as exercises. 

Corollary 3. Let P be any./iBld of characteristic p ~ 0 over iI!. 
Then an element peP is in iI!' = iI!( PP) if and only if pD = 0 for 
every derivation D of P over iI!. 

Corollary 4. A subset S of P is p-independent if and only if for 
every peS there exists a derivation D of P over iI! such that pD ~ 0 
and oD = Ofor every (]' ~ p in S. 

We shall now specialize our results by taking iI! to be the prime 
field il!o ('" Jp ). A derivation of EliI!o into PliI!o will simply be 
called a derivation of E into P. We remark that, if D is a mapping 
of E into P such that (El + E2)D = ElD + E2D and (ElE2)D = 
(ElD)E2 + El(E2D), then D is a derivation of E into P in the 
present sense, since (ctE)D = a( ED) for a e il!o is a consequence of 
the first property. We note also thatil!o(EP) = EP. Hence Corol
lary 3 gives a criterion for an element to be a p-th power. We 
shall now investigate the criterion given in Corollary 2 that the 
derivations of E into P be extendable to derivations in P. We 
proceed to show that the condition given is equivalent to sepa
rability, in the general sense, of P over E. First assume the con-
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dition: every p-basis of E (over ~o) is p-independent in P. Let 
Ph P2, .. " Pn e P and suppose we have "1:,EiPiP = 0 for Ei ~ 0 in E. 
If B is a p-basis for E, then we can write Ei = "1:,'Yik,k2" .kr/31 k'/3l2 •.• 

/3/r where the /3j e B, 0 ~ kj < p, 'Yik""kr e EP. We have 
"1:,~k'."kr/31k, .•. /3rkr = 0 where 

~k'" 'kr = E 'Yik,·· 'krP? e Pp. 
i 

Since the /3's are p-independent in P we have ~k, ••• kr = o. We 
can write 'Yik, .. ·kr = TJik,. "k/, TJik""kr in E. Then 0 = ~k""kr = 

E TJik,· . 'klpiP gives E TJik,· . 'krPi = 0 for all kj• Since the Ei ~ 0 
i i 

one of these relations is non-trivial, so we have shown that any 
non-trivial relation of the form "1:,EiP? = 0, Ei e E, Pi e P implies 
one of the form "1:,TJiPi = 0, TJi e E. This is equivalent to sepa
rability of PIE. Conversely, assume P separable over E and let 
/3h /32, .. " /3r be elements of E for which we have a relation 
"1:,'Yk""kr/31 k'/32 k2 ... /3/r = 0, 'Yk, ... kr = TJk""krP e PP, 0 ~ ki < p. 

n 

Let {Pa} be a basis for P /E and wri te TJ k, ... kr = E Xk, ... kriPi, 

X's in E. Then we have 

o = 'Z'Yk, .. 'k/31k, .•• /3rkr = Ef..'iP? 
i 

wheref..'i = EXk""kriP/31 k'/3l2 ... /3rkr• SincePisseparableover 
k 

E, "1:,f..'iP? = 0 implies every f..'i = 0 so 

If some 'Yk, ... kr ~ 0, one of the Xk''''k;i ~ 0 and so we obtain a 
non-trivial relation with coefficients in EP involving the powers 
/31k, ... /3rkr• This implies that, if {/3h /32, "., /3r} is p-depend
ent in P, then it is p-dependent in E. It is clear that this implies 
the condition of Corollary 2. This corollary therefore gives the 
following 

Theorem 18. The jollowing two conditions on a field PIE oj 
characteristic p are equivalent: (1) PIE is separable, (2) every deriva
tion oj E into P can be extended to a derivation in P. 



STRUCTURE THEORY OF FIELDS 185 

EXERCISES 

1. Let P = <I>(P) where'; e <I> but pP ¢ <1>. Show that /pPj is a p-independent 
subset of E = <I>(pP)/<I> but /pp I is not a p-independent subset of P /<1>. 

2. Let B be a p-basis for P over <I> of characteristic p ;6. O. Show that for 
every positive integer k, P = <I>(PP\ B). 

In ex. 3, 4, P is purely inseparable of exponent one over <I> and [P:<I>] = pm < 
co. 

3. (Baer) Show that there exists a derivation D of P /<1> such that the only D
constants are the elements of <1>. (Hint: Let E be a proper subfield of P and sup
pose we already have a derivation D in E/<I> satisfying the condition. Let 
peP, ¢ E. We can choose a (3 e E which is not of the form ED, E in E and ex
tend D to E(P) by specifying that pD = (3. Then the only D-constants of E(P) 
are the elements of <1>.) 

4. Show that the D in ex. 3 can be chosen so that D is nilpotent. 
5. (Faith) Let P be a field of algebraic functions over <I> (any characteristic) 

and let E over <I> be a subfield. Show that [1)~(P): P]R ~ [1)~(E): E]R. 
6. Let P = <I>(~l' ~2, ••• , ~m), <I> of characteristic p ;6. o. Show that tr. d. P /<1> 

does not exceed the number of elements in a p-basis for P /<1>. 
7. Let P and <I> be as in ex. 6. Show that, if (DI, D2, ... , Dr) is a right P-basis 

for 1)~(P), then the elemen ts PI, P2, ... , Pr form a p-basis for P over <I> if and only 
if the matrix (P,Dj) is non-singular. Show also that, if PI, P2, ... , Pr is a p-basis, 
then the elements DI, D2, ••• , Dr form a right P-basis of 1)~(P) if and only if 
(PiDj) is non-singular. 

S. Let P = <I>(~l, ~2' ••• , ~m). Show that P /<1> is separable algebraic if and 
only if there exist m polynomials KI(XI, X2, ••. , Xm), ••• , Km(XI, X2, ••• , Xm) In 

<I>[XI, X2, .•• , Xm] such that Ki(~l, ~2' ••• , ~m) = 0 and the Jacobian 

9. Let D be a derivation in P /<1>, r the subfield of D-constants. Prove that 
the elements PI, P2, ... , pm are r -dependent if and only if the Wronskian deter
minant 

Pm 
PmD 

Pmnm-1 

= O. 

8. Galois theory for purely inseparable extensions of exponent 
one. In this section we shall develop a Galois theory for purely 
inseparable extensions of exponent one in which the role of the 
Galois group of the classical theory is taken by the Lie algebra of 
derivations. 

First, let P be purely inseparable of exponent ~ lover ct> and 
suppose P has a finite p-basis B = {Ph P2, ..• , Pm} over ct>. Then 
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[P:«I>] = pm and the elements PI k1p2k2 ... Pmkm, 0 ~ ki < p, form 
a basis for P /«1>. We have PI' = (3i e «1>. As before, we let ~<I>(P) 
denote the set of derivations of P /«1> and we recall that ~<I>( P) is a 
restricted Lie algebra of linear transformations in P over «1>. This 
means that ~<I>(P) is a subspace of the space ~<I>(P) of linear trans
formations of the vector space P over «I> such that, if Dh D2 e ~<I>(P), 
then [DID2] = DID2 - D2DI e ~<I>(P) and DIP e ~<I>(P), We 
have seen also that ~<I>(P) is a, right vector space over P relative 
to Dp = DpR for P in P. Also we know that [~<I>(P): P]R = m 
(Cor. 1 to Th. 17) and, if P is an element of P such that pD = 0 
for every D e ~<I>(P), then P e «I> (Cor. 3 to Th. 17). This last 
result gives one half of the Galois correspondence which we shall 
establish. 

To obtain the second half of this correspondence we now sup
pose that P is any field of characteristic p ~ 0 and we do not 
specify any subfield as base field. As at the end of the last sec
tion, we consider derivations in P, which can be defined either as 
derivations of P over its prime field or as endomorphisms D of 
(P, +) such that (pu)D = (pD)u + p(uD), p, u e P. We suppose 
now that we are given a set :[) of derivations in P with the follow
ing closure properties: (1) ~ is closed under addition. (2) ~ is 
closed under Lie commutation [DID21. (3) ~ is closed under p-th 
powers. (4) ~ is closed under right multiplication by elements 
PR, peP. The conditions (1) and (4) amount to saying that ~ is a 
subspace of the right vector space of endomorphisms of the addi
tive group (P, +) considered as a space over P relative to Ap = 
ApR. Any set of endomorphisms of (P, +) which satisfy (1) to 
(4) will be called a restricted P-Lie algebra of endomorphisms of 
(P, + ).* We can now state: the following theorem. 

Theorem 19 (Jacobson). Let P be a field oj characteristic p ~ 0 
and let ~ be a restricted P-Lie algebra oj derivations in P such that 
[~: P]R = m < 00. Then: (1) if «I> is the subfield oj ~-constants, 
then P is purely inseparable oj exponent ~1 over «I> and [P:«I>] = 
pm; (2) if D is any derivation oj P over «1>, then D e ~; (3) if (Dh D2, 
.. " Dm) is any right basis jor ~ over P, then the set oj monomials 

• It should not be inferred from this terminology that ~ is an algebra over P as base 
field. One of the conditions for an algebra is that [DID21p = [DIP, D21 = [DI, D2Pl and 
this does not hold for every p (see equation (26) given subsequently). 
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(25) DlklD2k2 ... Dmkm, 0 ~ ki < p, (Dl = 1) 

is a right basisjor the ring ~~(P) oj linear transformations oj P over 
cI> considered as a right vector space over P. 

Proof. The idea of the proof we shall give is basically the same 
as that we used for the Galois theory of automorphisms: we shall 
use the given set ~ to define a set of endomorphisms ~ satisfying 
the hypotheses of the Jacobson-Bourbaki theorem (Th. 1.2). In 
the present case we let ~ be the set of right P-linear combinations 
of the endomorphisms given in (25). Then it is clear that ~ is a 
right vector space over P and that [~: P]R < 00. It remains to 
show that ~ is a subring of the ring of endomorphisms of (P, +) 
and for this it is enough to show that 1 e ~ and that ~ is closed 
under multiplication. The first of these is clear since ~ contains 
D1oD2° ... Dmo = 1. To show closure under multiplication it is 
enough to prove that every product (D 1k1D2k2 ••• Dmkmp)Dj e ~ 
for peP; for, if this holds, then one sees easily that every product 
(Dlkl ... Dmkmp)(Dlll ... Dmlm(]"), (]" e P, is contained in~. If D 
is a derivation in P, the condition (~p)D = (~D)p + HpD) can 
be written in opera tor form as: 

(26) 

This implies that (D1kl ... Dmkmp)Dj = Dlkl ... DmkmDjp + 
Dlkl ... Dmkm(pDj). Hence to show that ~ is closed under multipli
cation it is enough to show that Dlkl ... DmkmDj e ~ for every} = 

1, ... , m and 0 ~ ki ~ P - 1. We shall now assign an (apparent) 
degree N = kl + k2 + ... + km to the monomial D1kID2k2 ••• 

Dmkm and we shall show that Dlkl ... DmkmDj is a right P-linear 
combination of monomials (25) of degree ~N + 1. This is clear 
if N = 0 so we assume it holds for every DIll ... Dmlm of degree 
};li < N. Suppose first that} = m. Then if km < p - 1, Dlkl ... 

Dm kmDm is one of the monomials (25) of degree N + 1 so the 
result holds in this case. If km = P - 1, then (D1kl ••• Dmkm)Dm 
= Dlkl ... Dm_lkm-IDmP and DmP = };DiJ.Lim since D is dosed 
under p-th powers. Hence 

Dlkl ... DmkmDm = };D1kl •.. Dm_lkm-IDiJ.Lim 

so the induction hypothesis applies to show that Dlkl ... Dm kmDm 
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is a right P-linear combination of monomials (25) of degree 
'5:N + 1. Thus we have the result if j = m and so we can now 
make an additional induction hypothesis, namely, that the result 
asserted holds for D1 ~l ••• D"" k"'Dz for alll > j. Since N = ];kj > 
0, some ki ~ 0 so we may assume kr ~ 0 and k8 = 0 if s > r. 
Then we have (D1kl ... Dm'~"')Dj = (D1kl ... D/r)Dj. If j > r, 
the product is a monomial (25) so the result holds in this case. If 
j = r, the argument given before for j = m is applicable to prove 
the assertion. Hence it remains to consider the case: j < r. 
Since m is closed under commutation, DrDj = DjDr + ];DhPhrh 
Phrj e P. Then 

D1kl ... DrkrDj = D1kl ... Drkr-1DjDr + L: D1kl ... Drkr-1DhPhjr 
h 

and every D1kl ... Drkr-1Dh is a P-linear combination of monomi
als (25) of total degree < N. Also this holds for D1 kl ••• Dr kr-1 D j 

and, since r > j, multiplication on the right by Dr gives a 
P-linear combination of terms (25) of total degree '5:N + 1. 
This completes the proof of our assertion and shows that 2( is a 
subring of the ring of endomorphisms of (P, +). It is clear from 
the definition of 2( that [2(: P]R '5: pm and equality holds only if 
the monomials (25) are right P-independent and thus form a 
basis. We can now apply the Jacobson-Bourbaki theorem (Th. 
1.2) to ~ and we obtain the following conclusions: If ~ is the sub
field of elements a of P such that aRA = AaR for all A e ~, then 
[P:~] = [~: P]R and ~ = ~~(P). Now it is clear that aRA = AaR 
holds for all A e ~ if and only if aRD = DaR for all D in m, and 
since aRD = DaR + (aD)R the condition for this is aD = 0 for 
all De m. Hence we see that <P is the subfield of m-constants. 
If p is any element of P, then pP is a m-constant. Hence P is 
purely inseparable of exponent '5:1 over <P so we have [P:<P] = 
p"l1 where m' is the number of elements in a p-basis of P /<P, and 
m' '5: m since [P:<P] = [2(: P]R '5: pm. Also we know that, if 
m~(p) is the set of derivations of P /<P, then [m«o(p): P]R = m'. If 
a e~ and De m, then (ap)D = a(pD) + (aD)p = a(pD) so De 
m~(p). Thus m c m~(p) and, since [m: P]R = m, we must 
have m = m«o(p) and m = m'. Then m contains every deriva
tion of P /~ and [P :~] = pm. This completes the proof. 
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We can now establish a Galois type correspondence between the 
following two collections determined by an arbitrary field P of 
characteristic p: Let ~ be the collection of subfields ~ of P such 
that P is purely inseparable of exponent::; 1 over~ and [P:~] < 00 

and let p) denote the collection of derivation algebras ~ in P 
which are restricted P-Lie algebras of finite dimensionality over 
P. If ~ e P), let C(~) be the subfield of ~-constants, and, if 
~ e ~,let ~<I>(P) be the set of derivations of P /~. Then C(~<I>(P)) 
= ~ and ~C(~)(C(~)) =~. In particular, we obtain a 1-1 cor
respondence between the collection of intermediate fields of P /~, 
P purely inseparable of exponent ::;1 over~, [P:~] < 00 and the 
restricted P-Lie subalgebras of the Lie algebra ~<I>(P) of deriva
tions in P over ~. 

EXERCISES 

1. Let cp[x,y] be the polynomial ring in indeterminates x,y over a field of 
characteristic p, ~ any algebra over CPo Use the identities (x - y)P = xP - yP and 
(x - y)p-l = E xiyi in cp[x,y] to prove the following identities in ~1: 

i+i=p-l 

(27) 

(28) 

~p-----, 

[ .•. [ba]a] ... a] = [baP] 

r-p - 1 .. 
[ •.. [ba]a] ••. a] = E a'bai• 

,+i-1>-l 

(Hint: Note that [ba] = beaR - aL) where aR and aL are the right and left multi
plications determined by a in~. Specialize the indicated identities by taking 
x = aR, y = aL in the commutative algebra of linear transformations generated 
by aR and aL.) 

2. Let ~ be as in ex. 1, ~[x] the polynomial algebra over ~ in an indeterminate 
X. Let a, b e ~ and write 

(29) 
p-l 

(a + bx)P = aP + E si(a,b)x; + bPxp. 
1 

Use the fact that l;aix' --+ l;;aixi - 1 is a derivation in ~[x] and (29) to obtain 

(30) 
p-l 

E (a + bx)'b(a + bx)i = E ;si(a, b)x·-1• 
i+i-p-1 ,_I 

Use this relation and (28) to prove the following identity 

(31) 
p-l 

(a + b)P = aP + bp + E SiCa, b) 
1 

where ;s,(a, b) is the coefficient of X,-l in 

r-p-l---, 
[ ... [[b, a + bx]a + bx] ... a + bx]. 
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3. Let P = 4>(P1, ... , Pm), 4> of characteristic p "c 0, pl' = 13. e 4>, [P:4>] = pm. 
Let D be a derivation in P /4> such that 4> is the subfield of D-constants (see ex. 3 
in § 7). Show that the minimum polynomial of D as linear transformation in P 
over 4> is a p-polynomial of the form 

(32) 

Show that there exists an element peP such that (p, pD, ... , p[)P"'-l) is a basis 
for P over 4>. (This is an analogue of the normal basis theorem for separable 
normal extensions.) Show that every element in the algebra \l4>(P) of linear 
transformations in P over 4> can be written in one and only one way in the form 

(33) 

4. Let P, 4> be as in ex. 3, ~4>(P) the set of derivations of P /4>. Let B= be a 
subspace of the right vector space ~4>(P) over P which is closed under p-th 
powers. Prove that B= is also closed under commutation so B= satisfies all the 
conditions of Theorem 19. 

5. Show that if D is a derivation in P and 71 e P, then 7JRD' = t (~) Di 
o ;-0 J 

(7JDt- 1)R. 
6. Let D be a derivation in an algebra ~ and let ~[t, D) be the set of formal 

m 
polynomials L: tiai' ai e~. Equality, addition, and multiplication by elements 

o 
of 4> are defined as for ordinary polynomials. Multiplication is defined by 

(34) 

Verify the associative law and hence show that ~[t, DJ is an algebra. 
7. Let D be a derivation in a field P of characteristic p "c 0,4> the subfield of 

D-constants and assume [P:4>] = pm < co. Then ex. 3 implies that there exists 
a p-polynomial (32) such that [)pm + !31[)pm-1 + ... + !3mD = 0, 13. e 4>. Let 
P[t, DJ be the algebra of differential polynomials defined as in 6. Verify that if 'Y 
is any element of 4>, then 7r('Y) == tpm + tpm- I!31 + ... + t!3m - 'Y is in the center of 
Plt, DJ. Let (7r('Y» denote the ideal generated by 7r('Y). Show that, if ~"Y = 
P[t, DlI(7r('Y», then [~"Y :4>] = p2m. Show that ~o '" \l4>(P). 

8. Same notations as 7. Let p be any element of P. Show that there exists an 
automorphism of P[t, D) such that t ~ t + p and 71 ~ 71 for every 71 e P. Note 
that [p, t] = pt - tp = pD by (34) and deduce from this and (31) that (I + p)P = 
tP + (pP + p[)P-1). More generally prove that 

(35) 

where 

(36) plP'"l = pP'" + (p[)p-1)P'"°-1 + (p]]y-1)P'"-1 + ... + pDP'" -1. 

9. Continuation of ex. 7 and 8. Show that the automorphism of P[t, D) such 
thftt t ~ 1+ p, 71 ~ 71,71 e P, sends the ideal generated by 7r('Y) into itself if and 
only if p satisfies 

(37) pIPml + !3IPIPm- ll + !32P1pm-2] + ... + !3mP = 0. 
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10. Continuation of ex. 7 through 9. Prove that there exists an automor
phism of ~iI>(P) sending every 7J e P into itself and sending D - D + 1p, peP, 
if and only if P satisfies (37). Use this to prove the following analogue of Hil
bert's Satz 90: An element P satisfies (37) if and only ifit is a "logarithmic deriva
tive" (aD)u-1 of some u in P. 

11. Prove the following analogue of the result that the first cohomology 
group Jl1(G, P*) = 0 in the Galois case (cf. § 1.15). Let P be a purely insepa
rable extension of exponent one over <1>, [P:<I>] = pm < CO and let ~ be there
stricted P-Lie algebra of derivations of P over <1>. Let D - p.(D) be a P-linear 
mapping of~ into P (thus an element of the conjugate space ~* of~) such that 

(38) p.([)P) = p.(D)P + p.(D)[)P-I. 

Then there exists a u in P such that p.(D) = (uD)u-1 for all D. 
12. Show that, if ~ is as in ex. 7, then ~ '" &, if 

(39) ~ - 'Y = p[pm) + (3IP[pm-l) + {3zp[pm-2j + ... + {3mP 

(as in (37)) for some peP. Hence use ex. 7 to show that ~ '" <l>p" if there exists a 
peP such that'Y = p[pm) + (3IP[pm_l ) + ... + {3mp. (The conditions given here 
are also necessary.) 

13. Apply ex. 1 to prove the following result on polynomials with integer co
efficients: Let g(x) be any such polynomial and define gk(X) = gk_I(X)g'(x), 
gl(X) = g(x) where' is the standard derivative. Show that for any prime p, 
gp-I'(X) == 7J(xP) (mod p) where 7J(x) is a polynomial with integer coefficients. 

14. Let'Y and ~ be elements of <I> which are not p-th powers in <I> of charac
teristic p ~ O. Use ex. 12 (both necessity and sufficiency) to prove that 

(40) (xrl' + Xp-l) + XIP'Y + X.;''Y2 + ... + Xp_IP'Yp- 1 = ~ 

has a solution for x, e <I> if and only if 

(41) (yrl' + Yp-l) + YIP~ + y.;'~2 + ... + yp_IP~p-I = 'Y 

has a solution for y, e <1>. 
15. Let D be a non-zero derivation in a field P of characteristic p. Show that 

the operators 1, D, ... , DP-l are right linearly independent over P and that, if 
Pi e P, then Po + DPI + ... + [)p-Ipp_l is a derivation only if every Pi = 0, 

k-l 

; ~ 1. Show that, if peP, then (Dp)k = Dkpk + D(PE)k-1 + L D'p, where 
2 

Pi e P and E = Dp (== DpR). Use these results to prove the following formula 
which is due to Hochschild: 

EP = (Dp)P = [)PpP + D(PP-I). 

16. Investigate the possibility of a Krull type Galois theory for purely in
separable extensions of exponent one of infinite dimensionality. 

9. Higher derivations. The notion of a derivation can be 
generalized in the following way. 

Definition 5. Let ~ be a subalgebra of an algebra 58 over CPo Then 
a sequence of mappings D(m) = {Do = 1, Db "', Dm} of ~ into 
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58 is called a higher derivation of rank m of ~ into 58 if every Di is 
CP-linear and 

j 

(42) (ab)D; = :E (aDi)(bDj_i ), j = 0,1, "', m 
i=O 

holds for every a, b e~. A higher derivation of infinite rank is an 
infinite sequence {Do = 1, D1, ... } of linear mappings of ~ into 
58 such that (42) holds for all j = 0, 1,2, .. '. 

Clearly, if {Do, D1, D2 , ••• } is a higher derivation of infinite 
rank, then the section {Do, D1, .. " Dm} is a higher derivation of 
rank m and any section {Do, D1, .. " Dq}, q ~ m, of the higher 
derivation {Do, .. " Dm} is a higher derivation. The mapping 
Dl is a derivation of ~ into 58. 

Let ~ = 58 = CP[x] where x is transcendental and let Di be the 
linear mapping in ~ whose effect on the basis (1, x, x2, ••• ) is 
given by 

(43) 

where we agree that (7) = 0 if i > m. Then 

xm+nD. = (m + n) xm+n- j 
, 1 . 

J 
and 

j (m) ( n ) (Tn + n) j Since:E. . . = '. , we have :E (XmDi)(xnDj_i) 
i=O t J - t J i=O 

= xm+nDj• This shows that (1, D1, D2 , ••• ) is a higher deriva-
tion of infinite rank in CP[x]. 

If cP is of characteristic 0, then (43) shows that i !Di = Dl i 
where Dl is the usual standard derivation in CP[x]. Thus Di = 

~ Dl i. More generally, if Dl is a derivation in any algebra of 
L 1 
characteristic 0 and we define Di = ~ D1', then {I, D1, D2 , ••• } 

L 

is a higher derivation of infinite rank in~. This follows im-
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mediately from Leibniz' formula: (ab)Di = it (~) (aD i) (bDi-i) 

which gives (ab)(Di Ij!) = ];(aDili!).(bDi-il(j - i) !). This is 
1 . 

(42) for Di = 7j D I'. 
t. 

The device we used for reducing the study of derivations to 
homomorphisms can be generalized so as to apply to higher deriva
tions. Let ~(m) be the algebra over cI> with basis (1, t, .. " tm ) 

such that tm+l = O. Hence ~(m) '"" cI>[x]/(xmH). Let 58(m) = 
58 ®~ ~(m). If D(m) = {l, Db .. " Dm} is a higher derivation 
of rank m of 2l into 58, then we introduce the mapping s(D(m») of 
2l into 58(m) as 

(44) a ~ a + (aDI)t + (aD2)t2 + ... + (aDm)r. 

Evidently s = s(D(m») is linear. Also 

m m 

a"b" = L (aDi)ti L (bDk)tk 
o 0 

m i 
L L (aD i) (bDi_i)ti 
o i=O 

m 

= L (ab)Diti 
o 

= (ab)". 

This shows that s is a homomorphism of 2l into 58(m). We have 
the homomorphism 1r:ao + alt + 42t2 + ... + amlm ~ ao, ai e 58 
and a""" = a for every a e 2l. As in the special case of derivations, 
this property is characteristic of the homomorphisms s obtained 
from higher derivations of rank m. 

Similar considerations apply to higher derivations of infinite 
rank. The place of the algebra 58(m) is now taken by the algebra 
58[[t]] of power series 

(45) 

where the ai e 58 (cf. Vol. I, p. 95). As before, if {1, Db ... } is 
a higher derivation of infinite rank, then the mapping s: a ~ a + 
(aDI)t + (aD2)t2 + ... is a homomorphism of 2l into 58[[t]] such 
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that as" = a for all a e ~ where 7r' is the homomorphism };aiti --? 

ao. Conversely, if a --? as is a homomorphism of & into m[[t]] 
such that as" = a, a e~, then we write as = a + (aD1)t + 
(aD2)t2 + ... and {Do = 1;, Dl) D2, ... } is a higher derivation 
of ~ into m. 

If {Di} is a higher derivation of rank m (infinite rank) of ~ into 
m, an element a e ~ is a constant relative to the higher derivation 
if aDi = 0 for all i > O. This simply means that as = a for the 
homomorphism associated with the higher derivation. Hence it is 
clear that the set of constants is a subalgebra of the algebra ~. 

Our purpose in this section is to give just an introduction to 
higher derivations and to examine briefly higher derivations of 
purely inseparable fields. We suppose now that P leI> is a field of 
characteristic p ~ O. Let E be a subfield of P leI> and let D(m) = 
{1, Dl) .. " Dm} be a higher derivation of rank m of E/eI> into 
P leI>. In general, if D1 = D2 = ... = Dq_1 = 0 but Dq ~ 0, 
then we shall say that the higher derivation is of order q and D(m) 
is called proper if D1 ~ O. If the order is q, the associated homo
morphism s = s(D(m») of E into p(m) has the form 

(46) E --? E + (EDq)tq + (EDq+1)td1 + ... + (EDm)tm, 

where EDq ~ 0 for some E in E. We shall use this to prove the 
following 

Theorem 20. Let P leI> be a field oj characteristic p ~ 0, E a sub
field oj P leI>, D(m) a higher derivation oj rank m and order q oj E/eI> 
into P leI>. Let r be the subfield oj D(m) -constants of E and let p. be 

m 
the smallest power oj p > --. Then E is pure~y inseparable oj 

q 
exponent e over r. 

Proof. We have to show that EP• e r for every E e E and that 
there exists an E e E such that EP.-l ¢ r. The first is clear from 
(46) since 

(EP')8 = (E8)P' = (E + (EDq)tq + ... )p' 

= EP' + (EDq)P·tP•q + ... = EP•• 

Hence EP' e r. Now choose E so that EDq ~ O. Then (EP.-l)s = 
EP·-l + (EDq)p.-ltp.-lq + .. '. Since p.-1q ~ m it is clear that 
(EP.-l)" ~ EP.-l. Hence EP.-l ¢ r. 
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We consider next a purely inseparable simple extension field 
P = <l>W where xPo - a is the minimum polynomial of ~ over <1>. 
Let {Di} be the higher derivation in the polynomial algebra <I>[x] 
defined by (43) and let D(pO-1) = {1, Dh ... , Dpo_d be the 
higher derivation of rank pe - 1 which is a section of this higher 
derivation. We have (xPO - a)Dj = 0 for 1 ~ j ~ pe - 1 which 
together with the defining relations (42) imply that the principal 
ideal 3 = (xPO - a) is mapped into itself by every Dj • Hence 
every Dj induces a linear mapping, which we denote again by Dj, 
in P = <I>(~) '"" <I>[xl/3. The conditions in <I>[x] for Dj go over to 
the same conditions (42) for the Dj in <I>(~). Hence we obtain a 
higher derivation D(po-l) in <I>(~) such that 

We shall now show that the subfield r of {Di}-constants for 
D(pO-1) is <1>. Thus suppose <I> cr. Then the minimum poly
nomial of ~ over r is xP - ~ with j < e and ~ in r. Then ~p/ e r. 
On the other hand, the definition (47) gives ~p'Dp' = 1. This 
proves our assertion. 

We assume next that P is a purely inseparable extension of <I> 
which is a tensor product of simple extensions. Ph P2 , ••• , Pr, 
Pi = <I>(~i). This means that P = <I>(~h ~2' ••• , ~r) and the mono
mials ~1kl~l2 ..• ~/r, 0 ~ ki < pel, form a basis for P over <1>. 
If we set <l>i = <I>(~h ... , ~i-h ~i+h ... , ~r), then P = <l>i(~i) and 
<1>1 n <1>2 n··· n <l>r = <1>. There exists a higher derivation in P 
whose cons tan ts are the elemen ts of <l>i. Hence it is clear that <I> is 
the subset of P of elements which are constants relative to all the 
higher derivations of finite rank in P over <1>. 

EXERCISES 

1. Let {Dol be the higher derivation in <1>[x], x transcendental, defined by (43). 
Show that 

J(x + a) = f(a) + (jDi)(a)x + (jD2)(a)x2 + .... 
2. Let <1>[X1, X2, ... ,xm ] be the algebra of polynomials in indeterminates x. 

over a field <1>. If (kl, k2, ... , km ) is a sequence of non-negative integers k. we de-
fine a linear operator D"lkt ... k", in <1>[Xl, X2, ... , xm] by its action in the basis 
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1
0 if any k, > n, 

(.~I"'X2"2 ..• Xmn".)Dk,~ ... "", = G:)(::)··· G:) Xl",-k'X2"2-~ •.• xmn".-km 

if k,:::; n, 

Show that, if 1(Xl, X2, ... , Xm) e 4>[Xl, X2, ... , Xm] and aI, a2, ••. , am e 4>, then 

1(Xl + al, X2 + a2, .•• , Xm + am) = L (JD~~"'kJ~_rl"X2~ .•• Xmkm• 
lei 

3. Let 1(Xl, ... , Xm) be a homogeneous polynomial of degree n :::; m in 
4>[Xl, X2, ... , Xm]. Suppose there exists an a = (aI, a2, ... , am), a, e cf>, such 
that (JD~~ .•. km)Zi-ai = 0 if 2:k, :::; n - 2 and 

L (JDkik"J· .. TtJ"'i_rl"X2~ ..• xm"'" ~ O. 
k,+K2+" '+km-,,-1 

Show that the equation 1(x1, X2, .. " Xm) = {J has a solution in 4> for any {J e 4>. 
Use this to prove that 

X3 + y3 + z3 - 3xyz = (J 

is solvable in any field of characteristic ~ 3. 
4. A higher derivation in ~ of infinite rank is called iterative if DiDi = e ~ j) DHi and a higher derivation D(m) = {Di} is called iterative if DiDi = 

e ~ j) Di+i for i + j :::; m and DiDi = 0 if i + j > m. Verify that the higher 

derivations defined by (43) and (47) are iterative. 
5. Let P = 4>(~) where 4> is of characteristic p ~ 0 and the minimum poly

nomial of ~ over 4> is xpo - a. Show that the subfields of P /4> are the fields 
4>(~/) where 0 :::; 1 :::; e, and that the indicated e + 1 subfields are distinct. 

6. (Weisfeld). Let 4>0 be a field of characteristic p ~ 0, cf> = 4>o(a, (J, 'Y) 
where a P, (JP, 'YP e 4>0 and these elements are p-independent over 4>0([4>:4>0] = p3). 
Let P = 4>(~, 71) where ~ = a, 71P = (J~ + 'Y. Show that [P:4>] = pi. Show 
that [«~) :4>] = p2, [4>(71) :4>j = p2 and 4>(t) n 4>(71) = 4>. Show that P ~ 
4>(~, t) and P ~ 4>(71, t) where t is any element such that t P e 4>. Hence show 
that P /4> is not a tensor product of simple extensions. . 

1 

7. Show that {Di} is a higher derivation if and only if aEDi = L D;(aDi-i)R, 
i'_0 

j = 0, 1, .. '. Show that, if Dl ;oC 0 in the higher derivation {l, Dl, D2, ..• , 
Dm }, then the endomorphisms (1, D1, ••• , Dm) in (P, +) are right P-independent. 

8. Let D(pO-l) be an iterative higher derivation of rank p' - 1 in a field P of 
characteristic p. Assume D<P"-l) is proper and that 4> is the subfield of con

p'-l 

stants. Show that every linear transformation in P over 4> has the form L DiPi == 
o 

2:DiPiR, P, e P, and that P = 4>(~) where the minimum polynomial of ~ over 4> is 
xp' - a. 

9. Continuation of 8. Show that a sequence of linear transformations {do, 

dI , ••. , dp'-I} in P /4> satisfies PRdi = t di(PDi-i), j = 0, 1, ... , p' - 1, if and 
i-o 
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only if there exists a vector (110,111, •• • ,1111"_1), 110 = 1, l1i e P such that di = 
D.'lTo + Di_1111 + ... + 111i. Use this to obtain necessary and sufficient condi
tions that a vector (110,111, •• . ,1111"-1) be a "logarithmic derivative" in the sense 
that there exists ape P such that l1i = p-1(pDi), i = 0, 1, ... , p. - 1. 

10. Tensor products of fields. In Chapter I we considered 
tensor products of two fields, one of which was finite dimensional 
over the base field. We saw that it was necessary to know the 
maximal ideals of P ®<I> E in order to survey the composites of 
the field P /If? and E/If? where [P :If?] < 00. In this section and the 
next we shall obtain the extension of these results to arbitrary 
fields. We shall first collect a number of results for the case in 
which one of the fields is algebraic. In our statements, sepa
rabili ty will mean separabili ty in the general sense defined on p. 
166; pure inseparability will be used for an extension which is 
purely inseparable algebraic. Also we shall say that a subfield 
If? is algebraically closed (separably algebraically closed) in P if 
every algebraic (separable algebraic) element of P /If? is contained 
in If? We can now state the following 

Theorem 21. Let P /If? and E/If? be extension fields oj If? 
(1) Ij P /If? is separable and E/If? is purely inseparable, then P 

®<I> E is a field. On the other hand, if P /If? is not separable, then 
there exists a purely inseparable extension E/If? oj exponent 1 such 
that P ®<I> E contains a non-zero nilpotent element. 

(2) Ij P /If? is separable algebraic, then P ®<I> E has no non-zero 
nilpotent elements jor arbitrary E/If?, and P ®<I> E is a field if If? is 
separably algebraically closed in E. 

(3) The elements oj P ®<I> E are either units or nilpotents if 
either P /If? is purely inseparable and E/If? is arbitrary, or P /If? is 
algebraic and If? is separably algebraically closed in E. 

Proof. In (1) and the first part of (3) we may assume the 
characteristic is p =;e o. In all cases we write P ® E for P ®<I> E 
and we identify P and E with sub algebras of P ® E = PE. 
These are linearly disjoint and consequently they satisfy the 
various linear independence properties which we have noted for 
this relation. 

(1) Assume P /If? is separable and E/If? is purely inseparable. The 
separability implies that, if Ph P2, ... , Pm are If?-independent ele-
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ments of P, then the elements PIP', P2P', .. " PmP' are Ifl-independ-
m 

ent for every e = 0, 1,2, .. '. Now let z = L: PiO"i e P ® E 
I 

where the Pi e P and O"i e E. We may assume the Pi are Ifl-inde
pendent and, if z =;e 0, then we may assume also that every O"i =;e 0. 
Since E/Ifl is purely inseparable there exists a positive integer e 
such that O"!' = ai elfl for 1 ~ i ~ m. Then zP' = };aiP!' e P 
and, if z =;e 0, then the ai =;e ° and zP' is a non-zero element of P. 
Hence zP' and consequently z has an inverse. Thus P ® E is a 
field. Next assume P /Ifl is not separable. Then there exist ele
ments Ph P2, .. " Pm in P which are Ifl-independent but for which 
there exist 'Yi =;e ° in Ifl such that };'YiP! = 0. Not all the 'Yi are 
p-th powers in Ifl so an extension field of the form E = Ifl(O"I, 0"2, •• " 

O"m), O"! = 'Yi, is of exponent lover Ifl. The element z = };PiO"i of 
P ® E is not zero since the Pi are Ifl-independent and the O"i e E. 
On the other hand, zP = };P!O"iP = };'YiP! = 0. 

(2) Assume P/Ifl is separable algebraic, E/Ifl is arbitrary. We 
have to show that P ® E has no non-zero nilpotents and that 
P ® E is a field if Ifl is separably algebraically closed in E. If 

m 

z e P ® E, z == L: PiO"i where the Pi e P and O"i e E. Since P/Ifl 
I 

is algebraic, the Pi generate a finite dimensional extension and we 
may clearly replace P by this extension in proving our result. 
Hence it suffices to assume that [P:Ifl] < 00. Then the sepa
rability of P implies that P = Ifl(O) "" lfl[x]j(J(x)) where lex) is 
separable and irreducible in Ifl[x]. As we saw in Chapter I (p. 87) 
P ® E "" E[x]j(J(x)). Hence our result will follow if we can 
show that E[x]j(J(x)) has no non-zero nilpotents and this is a 
field if Ifl is separably algebraically closed in E. Now we have 
seen in Chapter I that E[x]j(J(x)) is a direct sum of fields, and it 
is easy to verify that an algebra having this structure contains no 
non-zero nilpotent elements. This proves the first statement. 
Next assume E[x]/(J(x)) is not a field. Then lex) = g(x)h(x) in 
E[x] where deg g > ° and deg h > 0. Let n be a splitting field 
over Ifl of lex) and let lex) = II(x - Wi) in n[x]. Since the Wi 

are roots of lex), they are separable algebraic over Ifl. It follows 
that the coefficients of g(x) and hex) are separable algebraic over Ifl. 
These are elements of E and they are not all contained in Ifl 
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since f(x) is irreducible in <II[x]. Thus <II is not separably alge
braically closed in E. 

(3) Assume first that P /<11 is purely inseparable and E/<II is 
m 

arbitrary. Let z = E PiUi e P ® E where Pi e P, Ui e E. Choose 
1 

e > 0 so that PiP' = (Xi e<ll. Then zP' = ~(XiU?' e E. Either zP' 

= 0 or zP' has an inverse in E. In the latter case z is a unit in 
P ® E. Next assume P/<II is algebraic and <II is separably alge
braically closed in E. Let ~ /<11 be the maximum separable sub
field of ~/<II. The sub algebra ~E of PE = P ® E over <II is the 
tensor product of ~ /<11 and E/<II. Since <II is separably algebraically 
closed in E, we have, by (2), that ~E = ~ ® E is a field. Let 
{Pal be a basis for P/~, {U{1} a basis for ~/<II. Then {PaU{1} is a 
basis for P /<11 and these elements are E-independent in P ® E. It 
follows that the elements Pa are ~E-independent. This implies 
that, if P and ~E are regarded as algebras over~, then P(~E) = 
P ®l: ~E. On the other hand, P(~E) is the same algebra over 

<II as PE = P ®~ E; hence it suffices to show that every element of 
P ®l: ~E is either nilpotent or a unit. Since P /~ is purely in
separable, this follows from the first part of the present proof. * 

Our next task is to obtain some information on tensor products 
of two fields, one of which is purely transcendental. The result 
we shall prove for these in the following 

Theorem 22. Let P be purely transcendental over <II, say, P = 
<II(B) where B is a transcendency basis and let E/<II be arbitrary. 
Then P ®~ E has no zero-divisors, and if n is its field of fractions, 
then n = E(B) is purely transcendental over E with B as transcend
ency basis. Moreover, if <II is algebraically closed (separably alge
braically closed) in E, then P = <II(B) is algebraically closed (sepa
rably algebraically closed) in n = E(B). 

Proof. As usual, we consider P and E as sub algebras of P ®~ E. 
Since B is an algebraically independent set, the set M of 
distinct monomials {J/l{Jl2 ... {Jrk" ki ~ 0 in the (J e B forms 
a basis for the subalgebra <II[B] generated by B. Since <II[B] and 

• The identification of P®~ E with P®~ ~®~ E) which was used in the proof can be 
established also by general formulas on tensor products. One has the associativity: 
P®% (2;®~ E) ~ (P®~)®~ E (cf. ex. 5, p. 15). Moreover, P®x 2; ~ P. Hence 
P®% ~®~ E) ~ P®~ E. 
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E are linearly disjoint, the set Mis E-independent. Hence B is 
algebraically independent in E[B]. Then we know that, if F is a 
finite subset of B, E[F] has no zero divisors (Vol. I, p. 106). Hence 
E[B] is an integral domain and so it has a quotient field 11 whose 
elements have the form PQ-1 where P, Q e E[B]. Thus we see 
that 11 = E(B) and, since B is an algebraically independent set 
over E, clearly 11 is purely transcendental over E with B as a 
transcendency basis. We observe next that 11 contains the sub
algebra 111 of elements of the form Pq-1 where P e E[B] and q e 
~[B]. We proceed to show that this subalgebra can be identified 
with p ®4> E. First, we have the identity isomorphism of E[B] C 

11 into E[B] C P ®4> E and this can be extended, by I of the 
Introduction, to a unique isomorphism of 111 = {Pq-1 1 P e E[B], 
q =;e 0 in ~[B]} into P ®4> E, since the element q-1 exists in P = 
~(B). Let z be any element of P ®4> E and write z = 'l;PiEi, 
Pi e P = ~(B), Ei e E. We can write Pi = Piq-1 where Pi, q e 
~[B]. Then z = ('l;PiEi)q-1 = Pq-1 where P e E[B]. It follows 
that z is in the image of the isomorphism of 111, so 111 is isomorphic 
to P ®4> E. Hence if we identify P ®4> E with 111 and observe 
that 11 is also the field of fractions of 111 since 111 ::> ~[B], we ob
tain the first statement. To prove the second we shall show that, 
if 11 = E(B) contains an element which is algebraic (separable 
algebraic) over ~(B) which is not contained in ~(B), then E con
tains an element which is a.lgebraic (separable algebraic) over ~ 
not contained in~. Clearly, if an element of the type indicated 
exists in 11 = E(B), then it exists in E(F) for a finite subset F of 
B. Hence we may take B finite and an induction argument shows 
that it is enough to prove the following result: Let E/~ be arbi
trary and let ~ be transcendl;:ntal over E. HEW contains an ele
ment which is algebraic (separable algebraic) over ~(~) and not 
contained in ~W, then E contains an element which is algebraic 
(separable algebraic) over ~ and not contained in~. Thus let 11 be 
an element of E(~) which is algebraic over ~W and let xn + 
~lXn-1 + ... + ~n be its minimum polynomial over ~W. We 
can write ~i = Piq-i where Pi, q e ~[~] (e.g., q can be taken to be the 
product of the denominators of the ~i)' Then H = q1l is alge
braic over ~W with minimum polynomial xn + P1Xn - 1 + P2Xn-2 
+ ... + Pn. H H = PQ-1 where P and Q e E[~] and are rela·· 
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tively prime polynomials, then the equation for H gives 

If Q is of positive degree, then Q has an irreducible factor and the 
displayed relation shows that this is a factor of Pn, hence of P, 
contrary to the assumption on P and Q. It follows that Q is a 
unit and so H e E[~]. We now write H = EO + El~ + E2e + ... + 
Em~m where the Ei e E and we shall show that the relation 0 = 
HWn + PI (~)H(~)n-l + ... + PnW, H = H(~), Pi = PiW e 
~[~], implies that the coefficients Ej are algebraic over~. Thus let 
a e ~ and consider the homomorphism of E[~] over E into E send
ing ~ ~ a. Such a homomorphism exists since ~ is transcendental. 
As usual we denote the image of QW byQ(a). Then we have the 
relation H(a)n + Pl(a)H(a)n-l + ... + Pn(a) = O. Since the 
PiCa) e~, this shows that the element (3 = H(a) is algebraic over 
~. Suppose first that ~ contains m + 1 distinct elements al) 

m 

a2, ... , am+l' Then H(ak) = L: Ejai = 13k is algebraic over 
j=O 

~ for k = 1, 2, ... , m + 1. Since the Vandermonde determinan t 
det (ai) =F- 0, these equations for the Ej have a unique solution 
which is given by the usual determinant formulas. These show 
that the E'S are algebraic over~. If ~ does not have m + 1 ele
ments, we have to modify this argument slightly in the following 
manner. If P is the characteristic, we choose r so that pr > m 
and we let it be a splitting field over E of xP' - 1. We let ~ be 
the subfield of it of elements which are algebraic over~. Evi
dently this contains m + 1 distinct ak. We now make the argu
ment with these elements using it in place of E, ~ in place of~. 
Then we can conclude as before that the Ej are algebraic over~, 
hence, over~. Now it is clear that, if the TJ we started with 
¢ ~(~), then H ¢ ~(~) and consequently not every Ei in H = ~Ei~i 
is in~. Thus there exists an E in E algebraic over ~ which is not 
contained in E. Next assume TJ ¢ ~(~) and TJ is separable over 
~W. Then H ¢ ~W and is separable algebraic over ~W. Then 
the Ei are algebraic and the field ~(El) E2, .. " Em) contains a 
separable algebraic element not in~. Otherwise, the charac
teristic is P and we have El' e ~ for some e = 1, 2, .. '. Then we 
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have HP' e <l>W contrary to the separability of H over <I>(~). This 
completes the proof. 

We are now ready to handle the "mixed" cases in which the 
fields need not be either algebraic or purely transcendental. We 
prove first the following extension of a part of Theorem 21: 

Theorem 23. Ij P /<1> is separable and E/<I> is arbitrary, then 
P ®<I> E has no non-zero nilpotent elements. 

Proof. It is clear that it suffices to prove this result under the 
additional assumption that P is finitely generated. Then P is 
separably generated, so that P has a transcendency basis B such 
that P is separable algebraic over <I>(B). We now consider the 
sub algebra <I>(B)E = <I>(B) ®<I> E generated by <I>(B) and E and 
we regard this as well as P as an algebra over the field <I>(B). One 
sees easily that, if {Pal is a basis for P over <I>(B), then the only 
relations of the form ~CiPi = 0, Ci e <I>(B)E are the trivial ones for 
which every C i = O. This implies that P ®<I> E = P ®<I>(B) <I>(B) E. * 
We now apply Theorem 22 to the factor <I>(B)E = <I>(B) ®<I> E. 
According to this result <I>(B)E can be imbedded in a field Q = 
E(B). Then P ®<I>(B) <I>(B)E is a subalgebra of P ®<I>(B) Q where 
Q is a field over <I>(B) and it suffices to prove that P ®<I>(B) Q has 
no non-zero nilpotent elements. Since P is separable algebraic 
over <I>(B), this follows from Theorem 21 (2). 

We assume next that P is arbitrary and that <I> is separably 
algebraically closed in E. Let B be a transcendency basis for P 
over <1>. As in the foregoing proof we have P ®<I> E = P ®<I>(B) 

<I>(B)E and this is a subalg~~bra of P ®<I>(B) Q where Q is a field 
E(B). By Theorem 22 we know 1:hat <I>(B) is separably algebrai
cally closed in Q. Since P is algebraic over <I>(B), Theorem 21 (3) 
shows that every element of P ®<I>(B) Q is either nilpotent or a 
unit. Now let z be any element of P ®<I> E C P ®<I>(B) Q. Either 
z is nilpotent or it is a unit in P ®<I>(B) Q. In the latter case z is 
not a zero divisor in P ®<I> E. We can therefore state the following 

Theorem 24. Ij P is an arbitrary extension field oj a field <I> and 
<I> is separably algebraically dosed in E then every zero divisor of 
P ®<I> E is nilpotent. 

• A more sophisticated argument can be used to establish this. See the footnote on 
p.199. 
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Clearly the last two theorems have the following immediate 
consequence. 

Corollary 1. Let P and E be extension fields of CJI such that (1) 
either P /CJI or E/CJI is separable, (2) CJI is separably algebraically 
closed in either P or E. Then P ®4> E is an integral domain. 

In particular, we see that, if P /CJI is separable and CJI is alge
braically closed in P, then P ®4> E is an integral domain for any 
E/CJI. An extension P /CJI satisfying these two conditions is 
called regular. If CJI is algebraically closed, then it is perfect so 
any extension P /CJI is separable. Moreover, it is clear that CJI is 
algebraically closed in P. Hence every extension of an alge
braically closed field is regular and consequently we have 

Corollary 2. If CJI is algebraically closed, then P ®4> E is an 
integral domain for arbitrary extension fields P and E of CJI. 

11. Free composites of fields. We recall that a composite of 
two fields E and P over CJI is a triple (r, s, t) where r is a field over 
CJI and sand t are isomorphisms of E over CJI and P over CJI respec
tively into r such that r is generated by the images E 8 and pt 
(§ 1.16). The composites (r, s, t) and (r ', S', t') of E and Pare 
equivalent if there exists an isomorphism u of r onto r ' such that 
s' = us, t' = ut. In § 1.16 we studied composites of a finite di
mensional extension P and another extension. In algebraic 
geometry one is interested in composites of fields which need not 
be algebraic but one restricts the notion in the following way. 

Definition 6. A field composite (r, s, t) of E/CJI and P /CJI is 
called free if for any algebraically independent subsets C and D of 
E and P respectively, the sets C8, Dt are non-overlapping and C8 U Dt 
is algebraically independent in r / CJI. 

Since any algebraically independent set can be imbedded in a 
transcendency basis, it is clear that the condition that (r, s, t) is 
free is equivalent to the following: for every pair of transcendency 
bases Band B' of E/CJI and P /CJI, respectively, B8 and B't are non
overlapping and Bs U B't is algebraically independent. We now 
observe that the word "every" can be replaced by "some" in 
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this criterion. Thus suppose there exists a transcendency basis 
B for E/If> and a transcendency basis B' for P /If> such that B" and 
Bit are non-overlapping and B" U B't is algebraically independent. 
We assert that this implies that the comp6site r is free. It 
clearly suffices to establish the condition of the definition for 
finite sets, C, D. Now we can find a finite subset P of B such that 
C is algebraically dependent over If> on P. Since P is a subset of 
B, F" is algebraically independent in r over pt. Hence F" is 
algebraically independent in 1f>(F", Dt) over If>(Dt). This implies 
that the transcendency degree of 1f>(F", Co, Dt) over If> is f + d 
where fis the cardinal number IPI and d = IDI (cf. ex. 3, §3). 
Since the transcendency degree of 1f>(F", CO) over If> is f and C· is 
algebraically independent, the transcendency degree of 1f>(F", CB) 
over If>(CB) is f - c where c = I CI. It follows that the tran
scendency degree of If>(p., C", Dt) over If> ( C", Dt) does not exceed 
f - c. This and the formula for the transcendency degree of 
1f>(F", C8, Dt) over If> imply that the transcendency degree of 
If>(C8, Dt) over If> is at least U + d) - (f - c) = d + c. It follows 
that C·, Dt are not overlapping and C8 U Dt is algebraically in
dependent. We state this result as the following 

Lemma 1. Let (1', s, t) be a field composite of the fields E over 
If> and P over If>. Suppose there exists a transcendency basis B for E 
over If> and a transcendency basis B' for P over If> such that BB, B't 
are non-overlapping and B8 U B't is algebraically independent. 
Then (r, s, t) is a free composite of E/If> and P /If>. 

We remark also that if the condition of the lemma holds for B 
and B', then B8 U B't is a transcendency basis for r. For, it is 
clear that the elements of E· and of pt are algebraic over If>(B" U 
B't). Since r is generated. by E8 and pt, it follows that r is 
algebraic over If>(B8 U B't). Hence B8 U B't is a transcendency 
basis. 

We can use the criterion of the lemma to prove the existence of 
a free composite for any two fields E and P over If>. Let Band B' 
be transcendency bases for E and P over If> respectively. If B 
and B' are finite, say B = {~h ... , ~m}' B' = {'7h ... , '7n}, then 
we construct the polynomial algebra If>[Xh X2, •.• , xm+n ] in m + n 
indeterminates xl, X2, ••• , X m+n' and we form the field of frac-
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tions 4>(Xl) X2, ••• , Xm+n). We have an isomorphism s of 4>(B) 
into 4>(Xl) X2, ••• , X m+ n ) such that ~i ~ Xi, i = 1,2, ... , m and 
an isomorphism I of 4>(B') into 4>(Xl) X2, ••• , Xm+ n ) such that 
71j ~ X m+;, j = 1,2, ... , n. Now let n be an algebraic closure 
of 4>(Xh X2, ••. , Xm+ n ). Then we know that the isomorphisms s 
and I can be extended to isomorphisms s and I of the algebraic ex
tensions E and p of 4>(B) and 4>(B') into n (cf. ex. 1, p. 147). From 
the lemma, then, if r is the subfield of n generated by E8 and pt, 
(r, s, I) is a free com posi te of E and P. If ei ther B or B' is infini te 
a similar procedure can be employed, or we can modify it slightly 
by defining 1-1 mappings of B and of B' into the one of these, say 
B, which has the larger cardinal number, in such a way that the 
images are disjoint. These mappings can be extended to iso
morphisms s and I of 4>[B] and 4>[B'] into 4>(B). Then they can be 
extended to isomorphisms s and I of 4>(B) and 4>(B') into 4>(B), 
which can then be extended to isomorphisms s and I of E and P 
into an algebraic closure n of4>(B). Then (r, s, I), where r is the 
subfield generated by E8 and pt, is a free composite of P and E. 

We shall now extend the considerations of § 1.16 to obtain a 
survey of all the composites and all free composites (in the sense 
of equivalence) of two given fields E and P over 4>. As before, 
we form the tensor product E ®<I> P and we identify E and P with 
their images in E ®<I> P. Let '.13 be a prime ideal in E ®<I> P (Vol. 
I, p. 173); hence (E ®<I> P)/'.13 is an integral domain as well as an 
algebra over 4>. We can imbed this in its field of fractions r. Let 
s denote the canonical homomorphism E ~ E + '.13 of E (C E ® P) 
into (E ®<I> P)/'.13. Since E is a field and 1" = 1, this is an iso
morphism. Also since (E ®<I> P) /'.13 c r, we can consider s as 
an isomorphism of E/4> into r /4>. Similarly, we have the iso
morphism I:p ~ p + '.13 of Pinto r. Now E and P generate 
E ® P. Consequently E 8 and pt generate the algebra (E ® P)/'.13. 
Since r is the field of fractions of (E ® P)/'.13 we see that the 
field r is generated by its subfields E 8 and pt. Hence (r, s, I) is 
a composite of E/4> and P /4>. 

Next let '.13' be a second prime ideal in E ®<I> P and let (r', s', I') 
be the corresponding composite constructed in the manner just 
given. Suppose (r', s', I') is equivalent to (r, s, I). Then we 
have an isomorphism u of r onto r' so that s' = su, t' = lu. 
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Thus u maps ES = E + '13 ~ ES' = E + '13', pt = P + '13 ~ p + '13'. 
Consequently the restriction of u to the subalgebra EBpt/'13 
sends ~EiPi + '13 ~ ~EiPi + '13' for Ei e E, Pi e P. It follows as in 
§ 1.16 that ~EiPi e '13 implies ~EiPi e '13'. Hence '13 c '13', and if we 
repeat the argument with u-1 we see that '13' c '13. Thus we see 
that distinct prime ideals in E ®~ P give rise to inequivalent com
posites of E/<I> and P /<1>. 

Now let (r', s', t') be any composite of E/<I> and P/<I>. Then we 
can combine the isomorphisms s', t' of E/<I> and P /<1> into r' to 
obtain the homomorphism ~EiPi ~ ~E/ p/ of E ®~ Pinto r'. 
The image under this homomorphism is the subalgebra EB' pt' 
generated by ES' /<1> and pt' /<1>. This is an integral domain. 
Hence if '13 is the kernel of the homomorphism, then (E ® P) /'13 rv 

ES' pt' and (E ® P) /'13 is an integral domain. Hence '13 is a prime 
ideal in E ® P so this can be used to construct the composit.e 
(r, s, t) as before. Now the homomorphism of E ® Ponto 
EB'pt' gives rise to the isomorphism u of (E ® P)/'13 onto EB'pt' 
such that ~EiPi + '13 ~ ~E/p/. This has a unique extension to 
an isomorphism u of the field of fractions r of (E ® P)/'13 onto 
r'. We have EB '" = (E + '13)'" = ES', E e E and pt'" = (p + '13)'" = 
pt', peP. Hence u is an equivalence of (r, s, t) and (r', s', t'). Our 
considerations therefore establish a 1-1 surjective mapping from 
the set of prime ideals '13 in E ®~ P to the set of equivalence 
classes of composites in E/<I> and P /<1>. 

In § 1.16 we established a 1-1 surjective correspondence be
tween the set of maximal ideals in E ®~ P for [P:<I>] < 00 and 
the equivalence classes of composites of E/<I> and P /<1>. We can 
now see that this is a special case of the present more general 
considerations. We recall that an integral domain which is a 
finite dimensional algebra is a field (Introd., p. 8). This im
plies that any prime ideal in a finite dimensional algebra is maxi
mal. If P /<1> is finite dimensional, then E ®~ P can be considered 
as a finite dimensional algebra over E. Hence the prime ideals 
in this algebra are maximal and the present correspondence re
duces to the earlier one for [P:<I>] < 00. 

It remains to sort out the prime ideals '13 in E ® P for which the 
corresponding composites (T, s, t) are free. Let Band B' be 
transcendency bases for E and P respectively. We know that 
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the set M of monomials in the {3 e Bare <I>-independent. A similar 
statement holds for the set M' of monomials in the {3' e B'. More
over, if M = {m;} and M' = {nj}, then the set of products 
{minj} is <I>-independent. This implies that the sets Band B' are 
not overlapping and BUB' is an algebraically independent set. 
The same statement can be made about the images B8 = {{3 + 1.l3} 
and B,t = {{3' + 1.l3} if and only if no non-zero element of the 
subalgebra <I>[B U B'] is mapped into 0 in the canonical homo
morphism of E ® Pinto (E ® P)/I.l3. This is equivalent to the 
condition that <I>[B U B'] n I.l3 = O. Hence we obtain our first 
condition: The composite (r, s, t) determined by the prime ideal 
I.l3 in E ® P is free if and only if <I>[B U B'] n I.l3 = O. It is con
venient to change this slightly by replacing <I>[B U B'] by the 
subalgebra <I>(B)<I>(B') generated by the subfields <I>(B) and <I>(B') 
of E and P respectively. It is easily seen that the elements of 
this subalgebra of E ® P have the form Pq-1r-1 where P e 
<I>[B U B'], q e <I>[B] , r e <I>[B']. It is clear that <I>[B U B'] is an 
integral domain and this and the form of the elements of<l>(B)<I>(B') 
imply that <I>(B)<I>(B') is an integral domain. If Pq-1r-1 ~ 0 is 
in I.l3 n <I>(B)<I>(B'), then P ~ 0 and P e <I>(B)<I>(B') n 1.l3. Hence 
I.l3 n <I>(B)<I>(B') ~ 0 implies I.l3 n <I>[B U B'] ~ O. Since the con
verse is clear the foregoing condition gives the following 

Lemma 2. The composite field (r, s, t) defined by a prime ideal 
I.l3 in E ® P is jree if and only if I.l3 n <I>(B)<I>(B') = 0 where Band 
B' are transcendency bases jor E/<I> and P /<1> respectively. 

We recall that if D is a commutative ring and ® is a subring, then 
an element a e D is called integral over ® if there exists a polynomial 
g(x) e ®[x] such that g(x) has leading coefficient 1 and g(a) = 0 
(Vol. I, p. 181). We have proved in Vol. I, p. 182, that, if ® is 
Noetherian, then the set of ®-integral elements of D form a sub
ring containing ®. We shall see later (§ 5.13) that this result is 
valid also for any commutative integral domain D. However, the 
Noetherian case is adequate to prove the following result which 
we reqUIre. 

Lemma 3. Let Band B' be transcendency bases jor E/eI> and 
P /eI> respectively. Then every element oj E ®<) P is integral over 
eI>(B)eI>(B'). 
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Proof. Since E and P are algebraic over IJ.>(B) and IJ.>(B') respec
tively, it is clear that the elements of E and of P are integral over 
IJ.>(B)IJ.>(B'). Since E ® P is generated by E and P, the result will 
follow if we can show that the set of IJ.>(B)IJ.>(B')-integral elements 
is a subring. Hence we have to show that, if a, (3 are IJ.>(B)IJ.>(B')
integral, then so are a - {3 and a{3. Since any pair a, (3 are both 
integral over a subalgebra IJ.>(F)IJ.>(F') where F and F' are finite 
subsets of Band B', it suffices to prove this for Band B' finite. 
In this case we can apply Hilbert's basis theorem for polynomial 
rings (Vol. I, p. 172) to conclude that IJ.>(B) [B'] is Noetherian. We 
shall show next that IJ.>(B)IJ.>(B') is Noetherian. Thus let 3 be 
an ideal in IJ.>(B)IJ.>(B'). Then 3' = 3 n IJ.>(B)[B'] is an ideal in 
IJ.>(B) [B'], so it has a finite set of generators Ph P2 , ••• , Pm. 
Any element of IJ.>(B)IJ.>(B') has the form Pq-l where P e IJ.>(B)[B'] 
and q elJ.>[B']. If this element is in 3, then P = (Pq-l)q e 3' so 
P = };AiPi where Ai e IJ.>(B) [B']. Hence Pq-l = };(Aiq-l)Pi. 
This shows that Ph P 2, •.. , Pm is a set of genera tors for 3. 
Hence IJ.>(B)IJ.>(B') is Noetherian. It follows that a - fJ and afJ 
are IJ.>(B)IJ.>(B')-integral and this completes the proof. 

We can now prove the following 

Theorem 25. The composite (r, s, t) of E and P over IJ.> de
termined by the prime ideal '.13 in E ®~ P is free if and only if all the 
elements oj '.13 are zero divisors in E ®~ P. 

Proof. In view of Lemma 2 one has to show that 

'.13 n IJ.>(B)IJ.>(B') = 0 

for Band B' transcendency bases for E/IJ.> and P /IJ.> if and only 
if every element of '.13 is a zero divisor. Suppose first that '.13 con
tains only zero divisors and let P e '.13 n IJ.>(B)IJ.>(B'). Then P is 
an element of IJ.>(B)IJ.>(B') which is a zero divisor in E ® P. We 
shall show that P is a zero divisor in IJ.>(B)IJ.>(B'). For this pur
pose we choose a basis {ua} for E over IJ.>(B) and a basis {v~} for 
P over IJ.>(B'). Then it is easily seen that every element of E ® P 
can be written as a sum };Qa~uav~, Qa~ e IJ.>(B)IJ.>(B') and };Qa~Uav~ 
= 0 only if every Qafj = O. (We leave this as an exercise.) Since 
P is a zero divisor in E ® P we have an element };Qa~UaVfj ¢. 0 
such that P(};Qa~UaV~) = O. Then };PQafjuavfj = 0 and since 
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PQafJ e <'P(B)<'P(B') we have PQafJ = 0 and some QafJ ~ O. Thus P 
is a zero divisor in <'P(B)<'P(B'). Since <'P(B)<'P(B') is an integral 
domain, this implies P = O. Hence ~ n <'P(B)<'P(B') = O. Con
versely, suppose ~ n <'P(B)<'P(B') = O. Let P be any element of 
~. Then Lemma 3 implies that there exists a relation of the form 
pn + c1pn-l + C2pn - 2 + ... + Cn = 0 where the Ci e <'P(B)<'P(B'). 
We may assume n minimal. This relation shows that Cn = _pn 

- Clpn-l - ... - cn-lP e ~ n <'P(B)<'P(B'). Hence Cn = O. Then 
we have p(pn-l + Clpn-2 + ... + Cn-l) = 0 and since n was 
minimal pn-l + Clpn-2 + ... + Cn-l ~ O. Hence P is a zero 
divisor and we have shown that any P e ~ is a zero divisor. This 
completes the proof. 

The set of nilpotent elements of a commutative ring 0 forms an 
ideal called the (nil)radical ~ of 0 (Vol. I, p. 173). If ~ is a prime 
ideal in 0 and z e ~, then zm e ~ for some integer m. This implies 
that z e~. Hence ~ is contained in every prime ideal ~ of 0.* 
We have shown in the last section that, if E is any field over <'P 
and <'P is separably algebraically closed in P, then the zero divisors 
of E ®4> P are nilpotent. This and the result just noted implies 
that the radical ~ of E ® P is the only prime ideal in E ®4> Pall 
of whose elements are zero divisors. Hence we can conclude from 
Th. 25 and the fact that every composite of E and P over <'P is 
equivalent to one determined by a prime ideal in E ® P the follow-
109 

Theorem 26. If E is an arbitrary extension field of <'P and <'P is 
separably algebraically closed in P, then in the sense of equivalence 
there is only one jree composite oj E/<'P and P I<'P. 

* We shall see in Chapter V that m is the intersection of all the prime ideals of o. 



Chapter V 

VALUATION THEORY 

The notion of a valuation of a field arises when one attempts to 
assign magnitudes to the elements of a field. The classical case is 
that of the absolute value I a: I in the field of real numbers or in the 
field of rational numbers. Of basic importance for the study of 
arithmetic properties of the rational and more generally of number 
fields (finite algebraic extensions of the rationals) are the p-adic 
valuations of the field of rational numbers. For a given prime p 
the valuation ¥,p(a) of the rational number a indicates the power 
of p which divides the rational number a. Valuations playa 
fundamental role also in the study of algebraic function fields. For 
these it is necessary to generalize the notion somewhat so that it 
becomes equivalent to the notion of a place, which was first intro
duced by Dedekind and Weber in giving a purely algebraic defini
tion of Riemann surfaces for algebraic functions. V alua tion 
theory forms a solid link between algebra and analysis. On the 
one hand, it permits a precise study of algebraic functions and, on 
the other hand, it leads to the introduction of analytic notions 
(convergence, integration) in the study of arithmetic questions. 

We shall begin our discussion with real valued valu,p.tions. One 
can distinguish two types of these: archimedean and non-archime
dean. The latter lead to the extension in which the values are 
taken from an ordered commutative group rather than the field of 
real numbers. We shall determine the valuations of the simplest 
types of fields and consider in some detail the problem of extension 
of valuations. Applications to the Hilbert Nullstellensatz and to 
the study of the integral closure of a commutative integral domain 
will be given. 

210 
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1. Real valuations. We shall consider first valuations which are 
real valued and we shall call these real valuations. I t is possi ble 
to give a development of the theory which gives at the same time a 
development of the real number system from the point of view of 
convergence. This adds a small complication, so we shall avoid it 
and assume familiarity on the part of the reader with the basic no
tions on real numbers which will be needed. 

Definition 1. A real valuation !p of a field <I> is a mapping a ~ 
!pea) of <I> into the field of real numbers such that 

(i) !pea) ~ 0, !pea) = 0 if and only if a = 0 
(ii) !p(a{3) = !p(a)!p({3) 

(iii) !p(a + (3) ~ !pea) + !p({3). 

Examples. 
(1) <fl the field of complex numbers, tp(a) the usual absolute value ...; a2 + b2 

of the complex number a = a + b...;=-I, a, b real. This gives a valuation on 
any subfield, in particular, on the field of real numbers and on the rational field. 

(2) <fl the field of rational numbers. Let p be a prime integer. If a ~ 0 in <fl, 
we write a = a'pk where k = 0, ±1, ±2, ... and a' is a rational number prime 
to p (notation: (a', p) = 1) in the sense that its numerator and denominator in 
some representation are prime to p. The integer k is uniquely determined by a 
and we write pp(a) = k, tpp(a) = P-·1>(<<). Also, we set pp(O) = 00, tpp(O) = 0. 
Then (i) is evident and (ii) and (iii) are valid. This is obvious if either a = ° or 
fJ = 0. Suppose a ~ 0, fJ ~ 0, and let a = a'pk, fJ = fJ'pl where (a', p) = 1 = 
(fJ',p). Then afJ = a'fJ'pHI and (a'fJ',p) = 1. Hence pp(afJ) = k + I = 
pp(a) + pp(fJ), so tpp(a{3) = tpp(a)tpp(fJ). If k :$ I, then a + (3 = pk(a' + (3'pl-k) 
and pp(a + (3) ~ min (pp (a) , pp(fJ». Hence I{Jp(a + (3) :$ max (l{Jp(a) , I{Jp(fJ» 
which is a stronger relation than (iii). Hence tpp(a) is a valuation. This is called 
the p-adic valuation of the rational field. 

(3) P = <flex) the extension field of <fl by a transcendental element x. Let 7I"(x) 
be an irreducible polynomial in <fl[x). If a is a non-zero rational expression, we 
write a = 7I"(x)ka' where k is an integer and a' is a rational expression which is 
prime to 71" «a',7I") = 1) in the sense that it has a representation with numerator 
and denominator prime to 71". We set p .. (a) = k and tp .. = ck where c is a real 
number, ° < c < 1. Also we set P" (0) = 00, tp,,(O) = 0. One checks as in exam
ple 2 that tp .. is a valuation. A classical case of this type of valuation is that 
in which <fl is the field of complex numbers and <flex) is identified with the field 
of rational functions on <fl. Here 7I"(x) has the form x - rand P" (a (x» describes 
the behavior of the rational function a(x) in the neighborhood of the point x = r. 
One sees that, if p,,(a) = k > 0, then a has a zero of order k at r and, if p,,(a) 
= - k, k > 0, then a(x) has a pole of order k at x = r. If p .. (a) = 0, then a has 
neither a zero nor pole at x = r. It is of interest also to consider the behavior 
of a(x) at infinity. This can be done by introducing another valuation in <flex). 
If a(x) ~ 0, we write a(x) = (fJo + fJIX + ... + {3.,.xm)('Yo + 'YIX + ... + 'Y..x,,)-1 
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where ~m ~_?, ~,,~ O. Then o!(x) = Gr-{po Gf + ... + (jmH"to Gr 
+ ~1 (;) + ... + ~n)-l and (x(x) has a zero of order n - m at infinity if 

n - m > 0, a pole of order m - n if m - n > 0, and has neither a zero nor pole 
at infinity if n = m. We define p .. (a(x» = n - m, 1{J .. (a(x» = c"-,O < c < 1, 
p .. (O) = 00, I{J .. (O) = O. This gives: a valuation. This procedure is applicable to 
any <f?(x), x transcendental. 

(4) Any field <f? with l{J(a) = 1 if a ~ 0 and I{J(O) = O. Such a valuation is 
called trivial. We remark that the valuations I{Jr and I{J", of example 3 are all 
trivial on <f? 

We now list some immediate consequences of the definition of a 
real valuation. We note first that (ii) implies that !p(1) = 1, 
!pC -1) = 1, and !pC -a) = !pea). Also !p(a-1) = !pea) -1 if a ,e 0, 
and !per) = 1 if r is a root of unity. This implies that the only 
valuation in a finite field is the trivial one. Also we note that 

(1) 

where I I is the ordinary absolute value. All these assertions are 
readily established and we leave their verification to the reader. 

" 
Definition 2. The real valuations !P1 and !P2 are called equivalent 

if !P1(a) > !P1(fj) holdsjor a, ~ e ell if and only if !P2(a) > !p2(~)' 
It is natural from the point of view of convergence which we 

shall consider in § 4 to identify valuations that are related as in the 
foregoing definition. This relation leads to the following some
what surprising consequence. 

Theorem 1. Ij!Pl is equivalent to !P2, then there exists a positive 
real number s such that !P2(C:X) = !P1 (a)8 jor all a e ell. 

Proof. We may assume that one of the valuations is non-trivial 
and, since the conclusion is symmetric in !P1 and !P2(!P1 = !P28-1

), 

we may suppose that !P1 is non-trivial. Then there exists an ao in 
ell such that 0 < !P1(aO) < 1 = !P1(1). Then also 0 < !P2(ao) < 1, 
so !P2 is non-trivial. Moreover, we can write !P2(aO) = !P1(aO)8 
where s > O. In fact, this relation is equivalent to s = 
log !P2(ao)/log !P1(aO) which is positive since log !P1(aO) < 0 and 
log !P2(aO) < O. We wish to show that 

log 1{J2(a) log 1{J1(a) 
(2) = 
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if a is any element in <P such that 0 < r,ol (a) < 1 and so 0 < r,02(a) 
< 1. The two ratios in (2) are positive. Let m and n be positive 
integers such that min> log r,ol (a) Ilog r,ol (ao). Then m log r,ol (ao) 
< n log r,ol(a), log r,ol(aOm ) < log r,ol(an) and r,ol(aOm ) < r,ol(an). 
Hence r,02(aom ) < r,02(an) so, if we re-trace the steps, then we see 
that min> log r,02(a) Ilog r,02(aO). By symmetry (r,02 is non-trivial), 
if min> log r,02(a)llog r,02(ao), then min> log r,ol(a)/log r,ol(aO). 
Since these relations hold for all positive rationals r = min, we 
have the equality (2). Hence 

log r,02(a) log r,02(aO) 
---= =s 
logr,ol(a) logr,ol(ao) 

and r,02(a) = r,ol(a)" holds for all a with r,ol(a) < 1. By taking a-I 
we see that this holds also if r,ol(a) > 1. Moreover, it is clear 
that, if r,ol(a) = 1 = r,ol(1), then r,02(a) = 1. Hence r,02(a) = 
r,ol(a)" for all a. 

Definition 3. A real valuation is called archimedean tf r,o(n) > 1 
for some integer n( = n1 = 1 + 1 ... +1, n times) in the prime 
field. Otherwise the valuation is non-archimedean. 

If <P has characteristic p ~ 0, then any n ~ 0 in the prime field 
is a root of unity; hence r,o(n) = 1. Consequently, every valuation 
of a field of characteristic p is non-archimedean. We note also 
that any valuation which satisfies r,o(a + fj) ~ max (r,o(a), r,o(fj)) is 
non-archimedean. For, this can be extended by induction to 
give r,o(al + a2 + ... +an) ~ max (r,o(al), ... , r,o(an )) and this 
implies that r,o(n) ~ r,o(l) = 1. The converse of this result is valid 
also since we have 

Theorem 2. I] r,o is a non-archimedean real valuation, then 
r,o(a + (j) ~ max (r,o(a), r,o(fj))]or every a, {j in <P. 

Proof. We have 

r,o(a + (j)n = r,o(an + (~) an-l{j + ... + (jn) 

~ r,o(a)n + r,o(a)n-Ir,o(fj) + ... + r,o(fj)n 

~ (n + 1) max (r,o(a)n, r,o({j)n). 
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Hence we have cp(a + f') ~ (n + 1)1/n max (cp(a), cp(f'»). Since 
lim (n + 1)1/n = 1, this implies that ....... 
(3) cp(a + (j) ~ max (cp(a), cp({j)). 

EXERCISES 

In these exercises "valuation" will mean "real valuation." 
1. Show that, if cp is a valuation and s is a real number such that 0 < s < 1, 

then a - cp(a)' is a valuation. Show also that, if cp is non-archimedean, then 
a - cp(a)' is a valuation for any .r > O. 

2. Establish the following properties of non-archimedean valuations: 

(4) cp(a + (3) = cp(a) if cp(a) > cp({3). 

(S) If al + a2 + ... + a" = 0, then cp(a,) = cp(aj) for some i ~ j. 

3. Let cp be a valuation in P such that cp is trivial on a subfield <P ofP such that 
P is algebraic over <Po Show that cp is trivial on P. 

4. Let cp be a non-trivial valuation of <P and let (3 be a non-zero element of <P 
such thatcp({3) < 1. Show thatcp(a) ~ 1 if and only if cp({3a") < 1, n = 1,2, .... 
Use this to prove that, if if; is a valuation such that cp(-y) < 1 implies if;('Y) < 1, 
then also cp('Y) > 1 implies if;(-y) :> 1 and cp(-y) = 1 implies "'(-Y) = 1. Hence 
show that cp and if; are equivalent. 

S. Show that, if CPI, CP2, ••• , cp" are inequivalent non-trivial valuations of a 
field <P, then there exists an a in <P such that CPI(a) > 1 and cp,(a) < 1 for i = 
2, 3, ... , n. (Hint: The case n = 2 is an easy consequence of ex. 4. Using this 
and induction one obtains (3 such that CPI({3) > 1, cpj(fJ) < 1, j = 2, ... , n - 1, 
and'Y such that CPI('Y) > 1, cp,,('Y) <: 1. If cp,,({3) ~ 1, one can take a = (3"'Y for a 
sufficiently large integer k. If cp,,({3) > 1, one can take a = 'Y(3k(1 + (3k)-1 for k 
sufficiently large.) 

2. Real valuations of the field of rational numbers. We begin 
by determining the archimedean valuations of the rationals. The 
result is the following 

Theorem 3. Any archimedean real valuation of the rationals is 
equivalent to the absolute value valuation. 

Proof (Artin). Let nand n' be integers> 1 and write n' = ao 
+ a1n + ... + aknk, 0 ~ ai < n, ak ¢. O. Then, 

cp(n') ~ cp(ao) + cp(a1)cp(n) + ... + cp(ak)cp(n)k. 

Since 0 ~ cp(a.) ~ a. < n, this gives 

cp(n') < n(1 + cp(n) + ... + cp(n)k) < n(k + 1) max (1, cp(n)k). 

We have n' ~ nk so k ~ log n' flog nand 
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( log n' ) ( log n') 
(6) cp(n') < n log n + 1 max 1, cp(n) logn . 

If we replace n' by (n't, r a positive integer, we obtain from (6): 

( rlog n' ) ( ~) cp(n't < n log n + 1 max 1, cp(n) log n • 

Taking r-th roots we obtain 

(7) [ ( r log n' )] l/r ( log n,) 
cp(n') < n logn + 1 max 1,cp(n)logn . 

Since lim (ra + b)1/r = 1 if a ;:e 0, (7) implies 

(8) (
log n,) 

cp(n') ::; max 1,cp(n)logn . 

Since cp is archimedean, n' can be chosen so that cp(n') > 1; hence 
by (8), 

log n' 

(9) 1 < cp(n') ::; cp(n) log n • 

Hence cp(n) > 1, so we can interchange the roles of nand n' to ob
tain 

1 1 

(10) cp(n)logn = cp(n,)logn' 

for any two positive integers n, n'. Then log cp(n)/log n is a posi
tive real number s independent of nand cp(n) = nB• It follows 
that cp(a) = I a 1 8 for every rational number a. Evidently cp(a) is 
equivalent to the absolute value valuation. 

Theorem 4. Any non-trivial non-archimedean real valuation of 
the rationals is equivalent to a p-adic valuation for some prime p. 

Proof. We have cp(n) ::; 1 for every integer n. If cp(n) = 1 for 
every integer, then cp is trivial. Hence there exist non-zero integers 
b such that cp(b) < 1. Let'l3 be the collection of integers b satisfy
ing this condition. This set is an ideal in the ring of integers I 
since cp(b 1 - b2 ) ::; max (cp(b 1), cp(b2 ) < 1 if bi e 'l3, and cp(nb) = 
cp(n)cp(b) < 1 if n e I, be 'l3. Also 'l3 is prime since cp(n) = 1 = 
cp(n') implies cp(nn') = 1. Hence 'l3 = (P) where p is a prime. 
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We can write cp(P) = p-s where s > 0 since 0 < cp(P) < 1. Let 
n be any integer and write n = n'pk where k ~ 0, (n', p) = 1. 
Then n' ¢ ~ so cp(n') = 1; hence cp(n) = p-ks. It follows that cp 
is the s-th power of the p-adic valuation determined by p. 

3. Real valuations of t(x) which are trivial on t. We suppose x 
is transcendental in P = <p(x) and we shall determine the real 
valuations cp which are trivial on If>. Since the prime field is con
tained in <P, cp(n) = 1 for e:very integer ~ 0 in the prime field. 
Hence cp is non-archimedean. We distinguish two cases: 

I. cp(x) ~ 1. In this case cpU(x)) ~ 1 for every f(x) = aD + 
aIX + ... + anxn e <p[x]. This is clear from the non-archimedean 
property of cpo From now on we assume cp is non-trivial and this 
implies that there exists a polynomial f(x) such that cpU) < 1. 
Let ~ be the subset of If>[x] of polynomials f such that cpU) < 1. 
As in the proof of Theorem 4 one sees that ~ is a prime ideal, ~ = 
(-7r(x)), in <p[x]. We have Cp(-7r(x)) = C, 0 < c < 1. If f(x) = 
7I"(X)kg(X) where (7I"(x), g(x)) = 1, then cpU) = ck. Hence cp is the 
valuation cp" discussed in example 3 of § 1. 

II. cp(x) > 1. Letf(x) = aD + aIX + ... + amxm where am ~ 
o. Then cp(amXm) = cp(x)m > cp(aixi) for i < m. Hence cpU) = 
cp(x)m (cf. ex. 2 in § 1). If we set cp(x) = c-l, 0 < c < 1, then 
cpU) = c-m. It is easy to check that cp is a valuation CPoo as de
fined in example 3 of § 1. 

4. Completion of a field. One of the most important aspects of 
a real valuation is that it leads to the introduction of metric space 
notions for a field. The most convenient form for these is based on 
sequences and convergence. The basic definitions are patterned 
after those of ordinary analysis. 

Definition 4. Let <P be a field with a real valuation cpo A sequence 
{ad, k = 1, 2, ... is said to converge in <P (relative to cp) if there 
exists an a in If> such that for any real E > 0 there exists an integer 
N = N(E) such that 

(11) cp(a - an) < E 

for all n ~ N. Then a is unique and is called the limi t of {ak}. If 
a = 0, {ak} is a null sequence. A sequence {ak} is called a Cauchy 
sequence if for any E > 0 there exists an integer N = N( E) such 
that 
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(12) 

for all m, n ~ N(e). 
00 

Convergence of series L ak is defined as usual by the conver-
1 k 

gence of the sequence {sd of partial sums Sk = L aj. For ex-
1 

ample, in the rational field with the p-adic valuatIOn, the series 
00 

Lpk-l converges to 1/(1 - p) since 

1 CPP (_1 __ Sn) = cpp(pn)lcpp(1 _ p) = p-n < e 
1-p 

if n is sufficiently large. 
It is easy to see, as in the real case, that any convergent seq uence 

is a Cauchy sequence, but the converse need not hold. This leads 
to the following 

Definition S. Afield <P is said to be complete with respect to a real 
valuation cP if every Cauchy sequence of elements of <P is convergent 
in <P. 

We shall now carry out for any field <P with a real valuation cp a 
construction of a completion ~ of <P. This is a field ~ with the 
following properties: 

1. ~ is an extension field of <P and has a real valuation cp which 
is an extension of the valuation cp of <P. 

2. ~ is cp-complete. 
3. The subfield <P is dense in ~ in the sense that every element 

of ~ is a limit of a convergent sequence of elements of <P. 
We consider first the set C of Cauchy sequences {ad of ele

ments ak e <P. We shall show that C is a ring relative to the com
positions {ad + {~d = {ak + ~d, {ad {~d = {ak~d. For this 
and a later application we require the following 

Lemma 1. If {ak}, {~d e C, then {ak + ~d and {ak~d e C. 
If {ad e C and is not a null sequence, then there exists TI > 0 and an 
integer N such that cp(an) > Tlfor all n ~ N. 

Proof. Given E > 0, determine Nl so that cp(am - an) < e/2 
if m, n ~ Nl) and N2 such that cp(~p - ~q) < e/2 if p, q ~ N 2. 
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Let N = max (N!) N 2). Then tp(am + 13m - an - f3n) :s; tp(am -
an) + tp(f3m - f3n) < E/2 + 1:/2 = E if m, n ;:::: N. Hence {ak + 
f3k\ e C. We note next that there exist positive real numbers s, I 
such that tp(ak) < s for all k and tp(f3k) < I for all k; for, we have 
tp(am - aN) < 1 if m ;:::: Nand N is sufficiently large. Hence 
tp(am) - tp(aN) :s; tp(am - aN) < 1 so tp(am) < tp(aN) + 1 for all 
m ;:::: N. Then if s = max (tp(ai) + 1), i = 1,2, .. ',N, then 
tp(ak) < s for all k. Similarly we can find I > 0 such that tp(f3k) < 
I for all k. Then 

(13) tp(amf3m - a nf3n) 

= tp(amf3m - amf3n + a mf3n - a nf3n) 

:s; tp(am)tp(f3m - f3n) + tp(f3n)tp(am - an) 

< S(p(f3m - f3n) + Itp(am - an). 

If we take Nl so that tp(f3m .- f3n) < E/2s for m, n ;:::: N!) and N2 
so that tp(am - an) < E/21 for m, n ;:::: N 2, then (13) shows that 
tp(amf3m - a nf3n) < E if m, n;:::: N = max (N!) N 2). Hence 
{ akf3 k} e C. Now suppose {O!k} e C and this is not a null sequence. 
Then there exists E > 0 such that tp(ak) > E for an infinite number 
of k. Also there is an N such that tp(am - an) < E/2 for all m, 
n ;:::: N. There is a p ;:::: N such that tp(ap ) > E. Then if n ;:::: p, 
tp(an) = tp(ap - (ap - an» ;:::: tp(ap ) - tp(ap - an) > E/2 = '1/. 

This completes the proof. 
To see that C is a ring under the indicated compositions we re

call that the set of unrestricted sequences of elements of <I> is a 
ring under component addition and multiplication. This is just 
the complete direct sum of a countable number of copies of <1>. 
The 0 elemen t of the ring is {O I and the iden ti ty is {II where here 
we write {a} for the sequence {akl with ak = a for k = 1,2, "', 
We call this the constant sequence {a}. It is clear that the set of 
constant sequences is a subring of the ring of sequences and this 
subring is isomorphic to <I> under the mapping a ~ {a}. Lemma 
1 implies that the set C of Cauchy sequences is a subring of the 
ring of sequences and evidt'::ntly C contains the ring of constant 
sequences, Thus we see that C is a commutative ring with an ele
ment 1 = {1} and C contains the subring of constant sequences 
which is isomorphic to <1>. 
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We consider next the subset Z of C consisting of the null se
quences. We have the following 

Lemma 2. Z is a maximal ideal in C. 

Proof. It is easy to see that the difference {ak} - {~k} = 
{ak - ~k} of two null sequences is a null sequence. Now let {ak} 
be a null sequence and let {'Yk} be a Cauchy sequence. The proof 
of Lemma 1 shows that there exists a positive real s such that 
CP('Yk) < s for all k. If E > 0 we choose N so that cp(an) < E/S for 
all n ;::: N. Then cp(an'Yn) < E for all n ;::: N, so {ak'Yd is a null 
sequence. Hence Z is an ideal in C. To show that Z is maximal 
we have to show two things: Z =;e C and, if B is any ideal in C con
taining Z and an element {ak} ¢ Z, then B = C. The first of these 
is clear since no constant sequence =;e to} is contained in Z. Next 
let B be an ideal in C containing Z and containing the element 
{ad ¢ Z. Lemma 1 shows that there exists a positive 71 and an 
integer p such that cp(an) > 71 for all n ;::: p. Let ~k = 1 if k < p 
and ~k = ak if k ;::: p. Then {ad - {~d e Z. Consider the 

1 
sequence {~k -1}. We have CP(~m -1 - ~n -1) = ( ) CP(~m -

1 cp~~ 
~n) < 2 cp(am - an) if m, n ;::: p. This implies that {~k -1} e C. 

71 
Since {ak} - {~d e Z c Band {ak} e B, {~k} e B. Hence 1 = 
{~k -1 }{~d e B and so B = C. 

Lemma 2 implies that the difference ring ~ = C/Z is a field. 
We proceed to show that ~ is a field with a valuation which has the 
properties of a completion of If>. 

Theorem 5. Let If> be a field with a real valuation cp and let ~ = 
C/Z the difference ring of the ring of Cauchy sequences with respect to 
the ideal Z of null sequences. Then ~ is afield which contains a sub
field isomorphic to If> such that, if If> is identified with this subfield, 
then cI> is a completion of If>. 

Proof. We have seen that the mapping a ----+ {a} is an iso
morphism of If> with a subring of C. The canonical homomor
phism {a} ----+ {a} + Z is an isomorphism since the only con
stant sequence contained in Z is to}. Hence we have the iso
morphism a ----+ {a} + Z of If> into ~ = C/Z. From now on we 
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shall iden tify a wi th {a} + Z, cJ> wi th its image in ~. We show 
next that ~ has a valuation ip which is an extension of the valua
tion tp in cJ>. Now let {ad e C. Then {tp(ak)} is a Cauchy se
quence of real numbers since I tp(am) - tp(an) I ~ tp(am - an) and 
{ak} is a Cauchy sequence. Hence, by the completeness of the 
field of real numbers with respect to the absolute value valuation, 
lim tp(ak) exists. Next let {a/} be another Cauchy sequence such 
that {ak} + Z = {ak'} + Z. This means that tp(an - an') < E 

for a given E > 0 provided 1'.1 ~ N( E). Then I tp(an) - tp(an') I < 
tp(an - an') < E if n ~ N(e:). Hence lim tp(ak) = lim tp(ak'), so 
this real number is independent of the choice of the element {ak} 
in the coset A = {ad + z. We now set ip(A) = lim tp(ak) and 
we proceed to show that ip is a valuation in~. First, it is clear 
that ip(A) ~ o. If A = {ak} + Z and ip(A) = 0, then lim tp(ak) = 
0; hence {ad is a null sequence, so {ad e Z and A = o. If B = 

{,Bk} + Z, then AB = {akP:d + Z and ip(AB) = lim tp(ak,Bk) = 
lim tp(ak)tp(,Bk) = ip(A)ip(B). Also A + B = {ak + ,Bd + Z and 
ip(A + B) = lim tp(ak + ,Bk) ~ lim (tp(ak) + tp(,Bk» = ip(A) + 
ip(B). Hence ip is a valuation. If A = a e cJ>, so A = {a} + Z, 
then ip(A) = lim tp(a) = tp(a); hence ip is an extension of the 
valuation tp on cJ>. We shall show next that cJ> is dense in~. Let 
A = {ad + Z be an element of~. Let ak' be the constant se
quence all of whose terms are ak. Then we have identified Ak = 
ak' + Z with ak. We assert that lim Ak = A. For, if E > 0 is 
given, we can find N such that tp(am - an) < E if m, n ~ N. Then 
lim tp(am - an) exists and this is ~ E. On the other hand, ip(A -

n--+oo 

lim Ak = A and cJ> is dense in~. It remains to show that ~ is 
complete. Let {Ak } be a Cauchy sequence of elements of~. For 

each k we can choose ak e cJ> C ~ such that ip(Ak - ak) < ;k· 
Then tp(am - an) = ip(am - Am + Am - An + An - an) ~ 
ip(am - Am) + ip(Am - An) + ip(An - an) ~ ip(Am - An) + 
..!.. + ~. Since {Ad is a Cauchy sequence, this shows that {ak} 
2m 2n 

is a Cauchy sequence of elements of cJ>. If we now go back to the 



VALUATION THEORY 221 

original «I> and take the element A = {ad + Z, ak in the original 
«I>, then we see easily that lim Ak = A. 

From now on we shall write ({) for the valuation cp in ~. 
We now take up the question of uniqueness of the field ~. 

More generally, let ~i' i = 1,2, be a complete field with a valua
tion ({)i and let «I>i be a dense subfield. Suppose s is an isomorphism 
of «I>1 onto «I>2 which is isometric in the sense that ({)2(a 8 ) = ({)1 (a), 
a e «I>1. Let A e ~1 and let {ad be a sequence of elements of «I>1 
such that lim ak = A. Then {ak"l is a Cauchy sequence in «I>2, so 
it has a limit B. If {ak'l is a second sequence such that lim ak' = 

A, then lim (ak - ak') = 0, lim ({)1 (ak - ak') = 0; hence lim 
({)2(ak8 - ak'8) = 0 and lim (ak8 - ak'") = o. This implies that 
lim ak'" = B. Hence the mapping s:A --t B of ~1 into ~2 is 
single-valued. It is easy to check that this is a homomorphism. 
Clearly s = s on «I>1. Similarly, we can extend S-1 to a homo-
morphism S-1 of~2 into~1 which is defined in the same way as s. 
Then one sees that AB 8-1 = A for all A e ~1 and B8-1 8 = B for 
all B e ~2. This implies that s is surjective and an isomorphism. 
We remark finally that, if S1 and S2 are isometric isomorphisms of 
~1 onto ~2 which coincide on «I>I, then S1 = S2. The proof is clear. 
We have therefore established the following 

Theorem 6. Let ~i' i = 1, 2, be a complete field with a valuation 
({)i and «I>i a dense subfield of ~i. Let s be an isometric isomorphism oj 
«I>1 onto «I>2. Then s has a unique extension to an isometric isomor
phism oj ~l onto ~2. 

This result implies, in particular, that, if ~l and ~2 are com
pletions of the same field «I>, then there exists an isometric isomor
phism of ~d«I> onto ~2/«I>. We just have to apply the theorem to 
the identity mapping in «I>. In this sense the completion is unique 
and we have the right to use the term: the completion of the field 
«I> relative to the real valuation ({). 

EXERCISES 

1. Let <I> be a field with a real valuation ({). Show that the sum, product, and 
difference are continuous functions on <I> in the usual sense. Show also that the 
mapping a ~ a-I is continuous on <1>*, the set of non-zero elements of <1>. 

2. Let ifi be the completion of <1>. Show that the identity mapping is the only 
continuous automorphism ofifi over <1>. 
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5. Some properties of the field of p-adic numbers. We look 
first at some properties of any field relative to a non-trivial non
archimedean real valuation!p. If <I> is such a field, then the subset 
o of elements a e <I> such that: !pea) ~ 1 is a subring of <1>; for, if a, 
fJ eo, then !p(afJ) = !p(a)!p(fJ) ~ 1 and !p(a - fJ) ~ max (!p(a), 
!p(fJ» ~ 1. The ring 0 is called the valuation ring of!p. The subset 
p of 0 of elements (3 such that !p(fJ) < 1 is an ideal in 0, since 
!p(fJl) < 1, !P(fJ2) < 1, !pea) ~ 1 imply !P(fJl - fJ2) < 1 and 
!p(afJl) < 1. The elements a in 0 which are not in p satisfy !pea) = 
1; hence !p(a-l) = 1 and a-l eo. Conversely, if a is a unit in 0, 

then !pea) ~ 1, !p(a-l) ~ 1 and !p(a)!p(a-l ) = 1 imply that !pea) 
= 1, so a ¢ p. Thus we see that p is the set of non-units of o. This 
implies that any ideal of 0 properly containing p contains a unit 
and so coincides with o. Hence p is a maximal ideal in o. If q is 
any ideal properly contained in 0, then q contains no units of 0; 

consequently q c p. Hencep is the only maximal ideal of o. The 
difference ring o/p is a field which is called the residue field of <I> 

relative to !p. 
The set l' = {!pea), a =;e 0 in <I>} is clearly a subgroup of the 

multiplicative group of positive real numbers. l' is called the 
value group of!p. The valuation is called discrete if l' is a cyclic 
group. It is easy to see that a subgroup r =;e 1 of the positive reals 
is cyclic if and only if the subset 1" of elements < 1 has a maximal 
element. This element is a generator of 1'. Let!p be discrete and 
let 7r be an element of <I> such that !p(7r) is the largest element < 1 in 
1'. Then 7r e p the maximal ideal of the valuation ring 0 and, if fJ 
is any element of p, then !p(fJ) ~ !p(7r), !p(fJ7r-l) ~ 1, so fJ7r- l = 
a eo and fJ = a7r. Then p is the principal ideal (7r). Conversely, 
if p is a principal ideal: p = (7r), then any fJ e p has the form a7r, 
a eo, so !p(fJ) = cp(a)!p(7r) ~ !p(7r). Hence !p(7r) is the largest ele
ment < 1 in l' and !p is discrete. Since !p(7r) is a generator of 1', 
we have for any non-zero a in <1>, !pea) = !p(7r)k for some integer k. 
Then if E = a7r-k, !peE) = !p(a)!p(7r)-k = 1, so E is a unit in o. 
Consequently, any non-zero element of <I> has the form E7rk, k = 
0, ±1, ±2, ... where E is a unit in o. 

Let <I> be any field with a non-archimedean real valuation !p and 
let~ be the completion of <I> relative to!p. We shall now show that 
the value group of <I> and ~ are the same and in a certain sense the 
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same statement can be made for the residue fields. Let a e 4>. 
Then the density of cJ> in 4> implies that there exists an a in cJ> such 
that ~(a - a) < ~(a). Since the valuation isnon-archimedean 
we have ~(a) = ~(a + (a - a)) = max (~(a), ~(a - a)) = 
~(a). Thus we have an a: e cJ> such that ~(a) = ~(a) and clearly 
this means that cJ> and 4> have the same value group r. Next let 0 

be the valuation ring of 4>, j.i its maximal ideal of non-units. If 0 

and p are the corresponding subsets of cJ>, then 0 = 0 n cJ>, p = 
j.i n cJ>. If a e 0 we choose a e cJ> so that ~(a - a) < 1. Then a -
a e j.i and so a eo. Hence a == a (mod j.i) which shows that 0 + 
j.i = o. We have the standard isomorphism: 

o/j.i = (0 + j.i)/j.i '" 0/(0 n j.i) = o/p. 

By means of this isomorphism we can identify the residue field of 4> 
with that of cJ>. 

The theory of convergence of series in a complete field with a 
non-archimedean valuation is strikingly simple. The complete-

00 

ness implies that L ak converges if and only if for any E > 0 there 
1 

exists an integer N such that ~(~m+1 + ... + am+k) < E if m ~ N 
and k = 1,2, . . .. Since the valuation is non-archimedean, 
~(am+1 + ... + am+k) :::; max ~(am+i). Hence the condition is 
equivalent to ~(am+i) < E for m ~ N, i = 1,2, .. '. This is 
equivalent to lim an = O. This shows that a series converges if 

00 m 

and only if its n-th term converges to o. Since L ak = L ai 
1 1 

+ '£ a; we have ~ ('£ ak) :::; max (~(f ai) , ~ ( E a;)) and, 
m+1 00 1 1 m+1 

since ~ ( L a;) can be made arbitrarily small by taking m large 

enough, ::~ave ~ ( £.. a k ) = ~ ( f a i ) if m is large enough. If, 

in addition, we have ;(a1) >~(a2) 1> ~(a3) > .. " then ~ (E ai ) 

= ~(al). Hence ~ ( * a k ) = ~(al) in this case. 1 

We now consider the special case of the field R(p) which is the 
completion of the rational field Ro with respect to the p-adic valua-
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tion r,op(a) = p-k for a = pka', (a', p) = 1. The field R(p) is 
called the field of p-adic numbers. Evidently the value group of 
Ro relative to r,op is the cyclic group generated by p-1; hence the 
same result holds for R(p) and the valuations of Ro and R(p) are 
discrete. Let 0 be the valuation ring of R(p). The elements of 0 

are the p-adic numbers a such that r,op(a) ~ 1 and these are called 
p-adic integers. It is clear from the definition of r,op that the ra
tional numbers a which are p-adic integers are those which can be 
written in the form min where (n, p) = 1. If 0 is the valuation 
ring of Ro, ~ its maximal ideal, then 0 = 0 n Ro, ~ = p n Ro. We 
have seen that 0 = 0 + p. Hence, if a is any p-adic integer, then 
there exists a rational number min with (n, p) = 1 such that a -
min e p. There exist integers a, b such that na + pb = 1. Then 
min = ma + p(bmln) so min == ma (mod p). Hence a = ma 
(mod p), which shows that we have 0 = 1 + p, where 1 is the 
ring of integers. It is clear that p n 1 = (p). Hence the residue 
field o/p ::: 11(P) is just the field of p elements. 

Let a be a p-adic integer. Then our argument shows that there 
exists an element a of 1 (that is, an ordinary integer) such that a -
a e p. If a = b (mod p), then a - be p and so a - b e p. This 
shows that for every p-adic integer a we can choose ao in to, 1,2, 

1 
.. " p - 1} such that a - a(l e p. We assert that al = - (a - ao) 

p 
is a p-adic integer. We note first that p is an element of ~ such 
that r,o(P) is maximal. Since the value groups of Ro and Rtp) are 
identical, it follows that p is an element of p with maximal r,o(p). 
Consequently, the ideal p is principal with p as generator, so if ~ 
satisfies r,o(~) < 1, then ~ = 'YP where 'Y is a p-adic integer. In 

1 
particular, a - ao = pal where al eo. Hence al = - (a - ao) 

p 
eo. We can repeat the argument with al. Thus we can find al = 

1 
0,1,2, .. ',p - 1 such thatal - al e i5 and a2 = - (al - al) eo. 

p 
Then a = ao + pal = ao + alP + a2p2. Continuing this process 
we obtain 
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where 0 ~ ai ~ p - 1 and ak+l eo. Then ak+lpk+l ~ 0 and 
so we have 

(14) 

Conversely, consider any series of this form. We may suppose 
this is ampm + am+lpm+l + ... where m :2: 0, am =;e o. Then 
this series converges. If a is its limit, then ipp(a) = ipp(pm) = 
p-m. Hence a e 0. We see also that a is a unit in 0 if and only if 
m = o. Hence the units of 0 are the elements (14) with ao =;e o. 
We have seen that the idealp is the principal ideal generated by p. 
It follows that every element of R(p) has the form pkE where E is a 
unit and k = 1, ±1, ±2, .... Hence every element has the 
form pk(ao + alP + ... ) where 0 ~ ai ~ p - 1. 

Let U be the multiplicative group of units in 0. We wish to 
analyze the structure of U, and first we shall show that U con
tains a subgroup isomorphic to the multiplicative group of non
zero elements of I/(p), that is, a cyclic group of order p - 1. Let 
a be one of the numbers 1,2, ... , p - 1. We know that aP = a 
+ xp where x e I. It follows by induction that apk == apk-l 

apk _ apk-1 

(mod pk) so k e I C 0. It follows that 
p 

(15) ( ap - a) (ap2 - ap) r a = a + p p + p2 p2 + ... 
is a well-defined element of R(p). This is a limit of the sequence 
{r a (k)} where 

raCk) = a + (ap ; a)p + ... + (aPk ~kaPk-)pk = apk. 

Now in any field with a valuation one can prove as for the 
reals that lim ak = a, lim bk = ~ imply lim (ak ± bk) = a ± ~ 
and lim akbk = a~ (cf. ex. 1, § 4). Hence lim raCk) = ra implies 
lim (r a (k»p = raP. Since r a (k) = apk we have lim apk = r a and 
1· (pk) 1· k+l B·d 1 1· k+l H 1m a p = 1m aP = raP. ut eV1 ent y 1m aP = ra. ence 
we have raP = ra. Also ra = a (mod p) is clear from (15), and 
since a ~ 0 (mod p), ra =;e O. Hence raP - 1 = 1. The same argu
ment shows that, if a =;e b in the set {I, 2, ... , p - I}, then 
r a =;e rb. Hence we have constructed p - 1 distinct (p - l)-st 
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roots of 1. This is all we can have in a field. We know also that 
{tal is a cyclic group (Lemma 1, § 1.13). 

Let E e U, so that E = a + alP + a2p2 + ... where 0 < a < P 
and 0 ~ ai < p. Then!a == E (mod p) and E1 = !a-1E == 1 
(mod p). We shall call a p-adic integer a 1-unit (Einseinheit) if it 
is congruent to 1 modulo p. We have shown that every unit in 
o has the form E = E1!a where E1 is a 1-unit. Let U1 be the set ofl
units. Then U1 is a subgroup of U. To see this, let ;'11, 1/2 e U1 so 
fli = 1 + ~i' ~i e p. Then we have :;h'f12 = 1 + ~1 + ~2 + ~1~2 = 
1 (mod p), since ~1 + ~2 + ~1~2 e p. Also, it is easy to see that 
1 - ~1 + ~12 _ ... = (1 + ~1)-1. Clearly, 1 - ~1 + ~12 _ ... 
= 1 (mod p). Hence i'it -1 =: (1 + 111) -1 e U1• 

In order to study the subgroup U1 of U more closely we find it 
convenient to introduce the exponential function in the field of p
adic numbers. We define this by means of the series: 

(16) 
X x2 

expx = 1 +-+-+ ... 
11 2! 

which we shall show converges for all x e p if p ¢ 2. As in § 1, we 
write ipp(x) = p-vp(z) and we know that Jlp(x) is an integer. The 
condition Jlp(x) = I> 0 is equivalent to: x e pl. For a rational 
number, Jlp(x) is the power ofp which divides x in the sense that x 
= pVp(z)y where (y, p) = 1. In order to prove convergence of (16) 

we evidently need a formula for Jlp(k!). For this we note that [~] 
. p 

of the numbers 1,2, ", k are divisible by p where, as usual [z] 
denotes the integral part of the real number z. (These are p, 2p, 

3p, "', [~] p.) Similarly, ~2] of the numbers 1,2, "', k are 

divisible by p2, [;3] are divisible by p3, etc. This implies that 

Jlp(k!) = [~] + [:2] + [;3] + .. '. 

Hence Jlp(k!) < k(~ + ~ + ... ) = k(_l_). We now p p2 P _ 1 



VALUATION THEORY 227 

assume p ~ 2. Then if pp(x) = I ~ 1 and k > 0, pp(xk/k!) > 

k (I - _1_) > O. We can include x = 0 in this by taking 
p-l 

pp(O) = 00. The inequalities show that Xk / k! e p if k > 0 and 
lim xk/k! = O. Hence (16) is convergent and exp x is defined for 
all x e p. Moreover, since xk/k! e p for k > 0, exp x is an element 
of 0 and exp x == 1 (mod p). Hence exp x e UI • If x ~ 0 and 
pp(x) = I ~ 1, then pp(x2/2!) = 21> I and, if k > 2, then 

pp(xk/k!) > k (I - _1_) > I. It follows that, if x e pl, I ~ 1, 
p-l 

then 

(17) expx-l- xepl+l. 

We shall now show that, if x, yep, then 

(18) 

Let 

Since 

exp (x + y) = (exp x) (exp y). 

n Xk n yk n (x + y)k 
Xn = E-k" Y n = E-k" Zn = E kl . 

o . o· o· 

xlyk 
Z2n - XnYn = E -II -kl' 

l+k~2n . . 
l>nor 
k>n 

The inequalities noted before imply lim (Z2n - XnYn) = O. 
Since lim Xn = exp x, lim Y n = exp y, lim Z2n = exp (x + y), 
this gives (18). This equation and the fact that exp x e U I 

establish a homomorphism of the additive group (p, +) into UI • 

We shall show that the mapping x -+ exp x is in fact an iso
morphism of (p, +) onto U I • To see that the mapping is an iso
morphism, it suffices to show that x ~ 0 implies exp x ~ 1. Thus 
suppose pp(x) = I ~ 00, so x e p', ¢ pl+!. Then it is clear from (17) 
that exp x ~ 1. 

Next consider any element of U I • This has the form 1 + y, 
yep. Set Xl = Y and consider (1 + y) exp (-Xl)' By (17), 
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exp (-Xl) = 1 - Xl + Zl where Zl e p2; hence 

(1 + y) exp (-Xl) = (1 + XI)(l - Xl + Zl) 

= 1 + (Zl - Xl2 + XIZI) 

= 1 + X2 

where X2 = Zl - Xl2 + XIZI e p2. Suppose we have already deter
mined elements Xl, X2, ••• , Xk such that Xi e j.ii and 

(1 + y) exp (-Xl -. X2 _ ••• - Xk) = 1 + Xk+l 

where Xk+l e pk+l. Then 

(1 + y) exp (-Xl - X2 _ ••• - Xk+l) 

= (1 + y) exp (-Xl - X2 - ••• - Xk) exp (-Xk+l) 

= (1 + Xk+l) exp (-Xk+l) 

= (1 + Xk+I)(l - Xk+l + Zk+l), 

where Zk+l e pk+2 and (1 + .xk+l)(l - Xk+l + Zk+l) = 1 + Xk+2 

where Xk+2 = Zk+l - Xk+1 2 + Xk+IZk+1 e pk+2. This shows that 
for any integer n :2: 1 we have Xl, X2, •. " Xn , Xi e pi, such that 

n 00 

(1 + y) exp (- LXi) == 1 (mod pn+l). Then X = L Xk is an 
I I n 

element of p and we assert that exp X = 1 + y. Let Xn = LXi. 
I 

Then exp (-x) exp Xn = exp (Xn - x) == 1 (mod j.in+l) since 
Xn - X e pn+l. Now one verifies as for p that, if Zl == 1 (mod 
pn+l) and Z2 == 1 (mod j.in+l), then ZlZ2 == 1 (mod j.in+l). Hence 
we can conclude from (1 + y) exp (-Xn) == 1 (mod j.in+l) and 
exp (-x) exp Xn == 1 (mod pn+l) that 

(1 + y) exp (-x) == 1 (mod pn+l). 

Since n is arbitrary, this gives (1 + y) exp (-x) = 1 and 1 + y = 
exp X as required. This shows that X ~ exp x, X e p is surjective 
on UI • Hence we have proved the following 

Theorem 7. Let il be the maximal ideal in the ring 0 of p-adic 
integers, p ~ 2, and let U I be the group of elements = 1 (mod p). 
Then the exponential mapping X ~ exp X is an isomorphism oj the 
additive group (p, +) onto the multiplicative group U I of 1-units of o. 
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Remark. It is natural to establish the fact that x ~ exp x is 
surjective by giving the inverse function log (1 + y) = y -

2 3 

~ + ~ - .. " which is defined for all y e ji (ex. 4 below). Then 
2 3 
one has to show that exp (log (1 + y» = 1 + y. The details of 
this are somewhat lengthy. For this reason we have preferred the 
above proof that x ~ exp x is surjective since it does not require 
the explicit definition of the inverse. The reader may refer to 
Hasse's Zahlentheorie, Berlin 1949, pp. 188-199, for a complete 
treatment of these questions. 

It is clear from Theorem 7 that the group U1 has no elements of 
finite order. Hence if Z denotes the group of (p - l)-st roots 
of 1 which we constructed before, then U1 n Z = 1. We have 
seen that every element of the group of units U of 0 is a product of 
an element of Z and an element of U1• Hence we have U = U 1 X 
Z (direct product). 

As an application of these results we consider the question of 
solvability of equations of the form x 2 = m in p-adic fields where 
m is an ordinary in teger prime to p and p =;e 2. Then m e U and 
we can write m = 'iRa where 71 e U1 and m == a (mod p), 0 < a < 
p. It is clear that, if a2 = m for a e R(p), then r,op(a) = 1, so if a 
solution of x 2 = m exists in R(p), then this solution must belong to 
U. Hence it has the form >':rb where rb is one of the (p - 1)-st 
roots of 1 and>': e U1• It follows from U = U 1 X Z that >,:2 = 11, 
tb2 = ta. We now note that the equation x2 = 'ij has a solution 
for any 71 e U 1• Using the isomorphism of U 1 with (ji, +), it 
suffices to see that the mapping x ~ 2x is an automorphism of the 
latter group. This is clear since 2 -1 e U and x ~ 2 -1X maps ji 

into itself and is the inverse.of the mapping x ~ 2x. Hence we 
see that the equation x 2 = m is solvable in R(p) if and only if 
rb2 = r a is solvable. It is easy to see that the condition for this is 
that x2 == m or x 2 == a (mod p) is solvable, that is, m is a quadratic 
residue modulo p. Hence x2 = m is solvable in R(p), p =;e 2 
(m,p) = 1 if and only if x 2 == m (mod p) is solvable in integers, 

that is, if and only if(;) = 1 where (;) is the Legendre symbol. 

For example, if p = 5 and m = -1, then 22 == -1 (mod 5) so 
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(-1) 5 = 1. Hence -v=l exists in the 5-adic field. On the other 

hand, (~) = -1, so V3 does not exist in this field. 

EXERCISES 

1. Obtain the 5-adic expansion of the form (14) for the 5-adic integer j. 
2. Show that the field of p-adic numbers is uncountable for any p = 2, 3, 

5, .. '. Use this to prove the existence of p-adic numbers which are transcen
dental over the rational subfield. 

3. Use the binomial expansion of (1 - 2x) ~ to obtain a convergent series for v=-r = l(1 - 10) ~ in the 5-adic field. 
y2 yS 

4. Define log (1 + y) = y - "2 + 3" - .. '. Show that this series converges 

for all yep if p ~ 2. Show that log (1 + yv(1 + Y2) = log (1 + Yl) + 
log (1 + Y2), Yi e p. 

5. Show that the equation x3 = 4 is solvable in the field of 5-adic numbers. 
6. Show that in the field of 2-adic numbers the exponential mapping is an 

isomorphism of p2 onto the group of elements of 0 which are == 1 (mod p2). 

6. Hensel's lemma. There is another, more powerful, method 
for handling equations in p-adic fields and more generally in com
plete fields with a discrete non-archimedean real valuation. This 
is based on a fundamental reducibility criterion for polynomials 
which is known as 

Hensel's lemma. Let <I> be a complete jield relative to a non
archimedean discrete real valuation cpo Let 0 be the valuation ring of 
<1>, p its maximal prime ideal, Ll = o/p the residuejield and let a ~ 
a* = a + p be the canonical homomorphism of 0 onto Ll. Suppose 
f(x) e o[x] has the property that its image f*(x) = -r(x)-1](x) in Ll[x] 
where (-r(x), 71(X» = I and the leading coefficient of -rex) is 1. Then 
f(x) = g(x)h(x) in o[x] where g*(x) = -rex), h*(x) = 71(X), deg g(x) 
= deg -rex) and g(x) has leading coefficient 1. 

Proof. Let deg f(x) = n" deg -rex) = r ~ n. We can choose 
gl(X), h1(x) e o[x] so that gl*(X) = -rex), hl *(x) = 71(X), deg gl(X) 
= r, deg h1(x) ~ n - r, le~ding coefficient of gl(X) is 1. Then we 
havef(x) == gl(x)h1(x) (mod p) in the sense that the coefficients 
are congruent (mod p). W(! proceed to determine two sequences 
of polynomials {gk(X)}, {hk(x)}, k = 1,2, .. " in o[x] such that: 
(i) gk(X) == gk+l(X) (mod pk), hk(x) = hk+1(x) (mod pk), (ii)f(x) = 
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gk(x)hk(x) (mod llk), (iii) deg gk(X) = r, deg hk(x) ::; n - r, 
leading coefficient of gk(X) = 1. We can begin these sequences 
with the gl(X) and hl(X) which we have chosen. Hence we may 
suppose that the sequences have already been constructed for 
k ::; s. We set g.+l(X) = g.(x) + u(x)1J'"", h.+1(x) = h.(x) + 
v(x)1J'"·, where II = (1J'") (as in § 5). Then (i) will hold for any choice 
of u(x) and vex) in o[x]. We seek to satisfy (ii). This requires that 

f(x) = [g.(x) + u(x)1J'"·][h.(x) + v(x)1J'"·] 

== g.(x)h.(x) + [g.(x)v(x) + h.(x)u(x)]1J'"· (mod ll·+l) 
or 

(19) f(x) - g.(x)h.(x) = [g.(x)v(x) + h.(x)u(x)]1J'"· (mod llS+l). 

Sincef(x) == g.(x)h.(x) (mod ll·) we can writef(x) - g.(x)h.(x) = 

1J'"8W (X) where w(x) e o[x]. Since deg f(x) = nand deg g.(x)h.(x) 
::; n we may suppose deg w(x) ::; n. It is clear that (19) will hold 
if 

(20) g.(x)v(x) + h.(x)u(x) = w(x) (mod ll). 

Now it is clear from (i) that g8 *(x) = gl *(x) = 'Y(x) and h. *(x) = 
7J(x), so we consider the equation 

(21) 'Y(x)v*(x) + 7J(x)u*(x) = w*(x) 

in Ll[x]. Since ('Y(x), 7J(x» = 1, there exist polynomials a(x), (3(x) 
in Llfx] such that a(xh(x) + (3(x)r}(x) = 1. Multiplication by 
w*(x) gives polynomials K(X), X(x) such that K(xh(x) + X(x)1](x) 
= w*(x). We can write X(x) = 'Y(x)p,(x) + p(x) where deg p(x) 
< r and then we obtain 

w*(x) = K(xh(x) + ('Y(x)p,(x) + p(x»1](x) 

= (K(X) + p,(x)1](x)h(x) + p(x)r}(x). 

Then deg p(x)r}(x) < n while deg w*(x) ::; n. Since deg 'Y(x) = r, 
the foregoing relation shows that the deg"J"ee of (K(X) + p,(x)r}(x» 
does not exceed n - r. If we call this polynomial O"(x), we have 

O"(xh(x) + p(x)r}(x) = w*(x), 

where deg p(x) < rand deg O"(x) ::; n - r. Then we can choose 
u(x) and vex) e o[x] so that u*(x) = p(x), v*(x) = O"(x), deg u(x) 
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= deg p(x) < r, deg vex) ~ n - r. Then (21) holds and 
g.+1(X) = g.(x) + u(x)-Tr·, h.+1(x) + h.(x) + v(x)1r8 satisfy also 
(iii). This completes the proof of the existence of the sequence 
{gk(X)}, {hk(x)}, k = 1,2, '" satisfying (i), (ii), and (iii). The 
conditions (i) and (iii) and the completeness of ell imply that the 
sequences {gk(X)}, {hk(x)} converge to polynomials g(x), hex) in 
the sense that the sequences of coefficients of like powers of x con
verge to those of g(x), hex). Moreover, we have deg g(x) = r, 
deg hex) ~ n - r, leading coefficient of g(x) = 1. It follows also 
from (ii) thatj(x) = g(x)h(:x:) and this completes the proof. 

EXERCISES 

1. Use Hensel's lemma to prov1e that in the field of p-adic numbers there 
exists a r a such that r a P - 1 = 1, r a == a (mod j) where a is any integer prime to p. 
Also use this to obtain another proof of the existence of V -1 and ~ in the 
5-adic field. 

2. Hypotheses on cP as in Hensel's lemma. Letf(x) = aoX" + alx .. - 1 + ... + 
an e o[xl satisfy: ao, an e lJ but there exists ar, 1 :::; r :::; n - 1, such that a,· ¢ p. 
Then f(x) is reducible in o[xl. Use this to show that, if g(x) = x" + alx .. - 1 

+ ... + an is an irreducible polynomial in cp[xl and an e 0, then all the ai eo. 

7. Construction of complete fields with given residue fields. 
Let A be a given field. We consider the problem of constructing 
complete fields with non-archimedean real valuations such that 
the residue field is the given field A. We shall give two construc
tions: the first, in which the complete field contains A and so has 
the same characteristic as A; the second, in which A is perfect of 
characteristic p ~ 0 and the complete field is of characteristic O. 
A special case of the latter is A = Jp and the complete field is 
the field of p-adic numbers. 

We consider first the field ell = Am where ~ is transcendental 
over A. We introduce the order function P by p(a(~)) = k if am 
= ~kfj(~hm -1 where fj(~) and 'Ym are polynomials not divisible 
by~. We define a valuation cp by cp(a(~)) = c·(am), c a fixed real 
number 0 < c < 1 (cf. example 3, § 1). Let ~ be the completion 
of ell relative to cpo Since cp is trivial on A, it is clear that cp is non
archimedean. Hence its extension to ~, which we shall denote by 
cp also, is non-archimedean. The value group r of ell and of ~ 
consists of the powers of c, so the valuation is discrete. Let 0 be 
the valuation ring of~, j) its maximal ideal, and let 0 = 0 n ell, 
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p = p n <P. It is clear that ~ is an element of p for which <pm = c 
is maximal. Hence, as in the p-adic case, every element a of if, has 
the form ~kE where E e 0, ¢ p and k is an integer. We can therefore 
define 1I(~kE) = k and it is clear that this coincides on <P with the 
order II which we defined originally in <P. 

We have seen in § 5 that 0 = 0 + P and this permits us to 
identify the residue fields o/p and o/p. The ring 0 is the set of 
rational expressions in ~ with coefficients in A which are "finite at 
0" in the sense that a(~) = {jm'Ym -1 where (j and 'Yare poly
nomials and 'Y(O) =;e o. The argument in the p-adic case showing 
that 0 = 1+ P (p.224) can be used in the present situation to 
prove that 0 = A[~] + p. Since ~ e p, this gives 0 = A + p and, 
since p n A = 0, we have the isomorphism 0 ~ 0 + ji in o/ji of A 
with the residue field o/p. In this sense we can say that A is the 
residue field of if,. 

Now let a be any element of o. Then 0 = A + ji shows that we 
can find 00 e A such that a - 00 e p. Then a1 = (a - 00)~-1 eo 
and we can repeat the argument with this obtaining 01 e A such 
that a1 - 01 e P and a2 = (a1 - 01)~-1 eo. We have a = 00 + 
01~ + a2e, a2 eo. As in the p-adic case, we can continue this 
process and obtain 

(22) a = 00 + 01~ + 02e + ... + Ok~k + ak+1~k+1 
where the Oi e A and ak+1 eo. Since lI(ak+1~k+1) 2:: k + 1, it is 
clear that the sequence {ak~k} is a null sequence. Hence we have 

(23) 

for any a eo. If ~ is any element of if, we can write ~ = a~-k 
where k is a non-negative integer and a eo. Then we have 

(24) 

This shows that if, is the set of power series of the form (24) in ~ 
with coefficients in the field A. It is easy to see that the expression 
(24) for ~ is unique, that is, k and the 0i e A are uniquely deter
mined by~. Moreover, the addition and multiplication of ele
men ts of if, are the usual ones for formal power series based on the 
compositions in A. For example, we have (00 + 01~ + ... ) + 
(EO + E1~ + ... ) = (00 + EO) + (01 + E1)~ + ... for Oi, Ei in A and 
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( i:. ~i~i) (i:. Ej~j) = i:. 1] k~k where 1] k = t ~iEk -i. I t is clear 
° 0 0 i=O 

that we have a good hold on the field <i> as the field of formal power 
series (24). 

We consider next the case in which Ll is a perfect field of charac
teristic p ~ ° and we shall use this to construct a field <i> which is a 
generalization of the field of p-adic numbers. The construction 
we shall give is based on Witt vectors which we considered in 
§ 3.4. We begin with the definition of the ring W(~) of Witt 
vectors (of infinite length) based on a commutative algebra ~ over 
Ip. The elements of W(~) are the infinite sequences 

(25) 

where equality is defined component-wise. We can define addi
tion and multiplication by the formulas (22) of Chap. III which 
were used to define these compositions in Wm(~) the ring of Witt 
vectors of length m defined by~. Then one can verify that W(~) 
is a ring. It is more convenient, however, to adopt an equivalent 
but slightly different approach which is a special case of the defini
tion of an inverse limit of rings. In the present case we are deal
ing with such a limit for the rings ~ = WI(m, W2(~)' ... with 
the restriction homomorphism R of Wm(~) into m3m-I(~). We 
associate with the element A = (ao, ah ... ) of m3(~) its projec
tion Arm = (ao, ah .. " am-I) in Wm(~). Then ArmR = (ao, .. " 
am-2) = Arm-I. On the other hand, let {Ami m = 0,1,2, ... } be 
any sequence of elements Am where Am e Wm(~) and Am R = A m- h 

m = 1,2, . . .. Then it is clear that {Am} = Arm for a unique 
A e W(~). Hence we can identify the elements of W(~) with the 
sequences {Am}, Am e Wm(~) such that Am R = Am-I. If A = 
{Am} and B = {Bm} are two such sequences, we define £1+ B = 
{Am + Bm}, AB = {AmBm}. Since R is a ring homomorphism, 
(Am + Bm)R = AmR + BmR = Am _ 1 + Bm- I and (AmBm)R = 
AmRBmR = Am_IBm_I. Hence £1+ Band AB eW(~). It is 
trivial to check that W(~) is a commutative ring relative to these 
compositions and that ° = (0,0, ... ), 1 = (1,0,0, ... ). For a 
fixed m, the mapping '1rm: A ~ Arm is a homomorphism of m3(~) 
onto Wm(~). Since 1""m has order pm, it is clear that the identity 1 
of W(~) has infinite order in the additive group (W(~), +). 
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Let 91m denote the kernel of 7r m. Then 91m is the set of elements 
of ~(~) of the form (0, .. ,,0, am, am+h ... ). Hence 

00 

(26) 911 :::::> 912 :::::> 913 :::::> "', n 91m = 0. 
m=l 

We can use the set {91m l to define convergence in ~(~). If 
{A,. I k = 1,2, ... I is a sequence of elements of ~(~), then we 
say that {Ad converges to the element A of~(~) (A,. ~ A) if for 
any positive integer m there exists a positive integer N(m) such 
that A - A,. e 91N(m) for all k ~ N(m). It is easy to see that the 
limit A is unique and that A,. ~ A, B,. ~ B imply A,. ± B,. ~ 
A ± Band A,.B,. ~ AB. Suppose {C,.lk = 0, 1,2, ... } is a 
sequence such that Ck e 91,., k = 1,2, .. '. Set A,. = Co + 
Cl + ... + C,.. Then Am ... m+lR = Am ... m = Am_l"'m; hence the 
sequence of elements {Am ... m+l, m = 0, 1, ... } where Am ... m+l e 
~m+l(~) can be identified with an element A e ~(~). One 
checks that Ak ~ A. Since A,. = Co + Cl + ... + C,., we 

00 

shall indicate the convergence Ak ~ A by writing E C,. = A. 
"=0 

We recall that, if 91 is the ideal of elements (0, ah .. " am-l) in 
~m(~), then 91 is nilpotent (Th. 3.12), In fact, the proof of this 
result shows that 91" is contained in the set of vectors of the form 
(0, .. ,,0, a"+h .. " am-l)' This implies that 911" c 91,. in ~(~). 

Hence, if Z e 91h then i:. Zk is defined. Since (f Zk) (1 - Z) 
k=O 0 

00 

= 1 - zm+l, it follows that 1 - Z is a unit in ~(~) with E Zk as 
o 

inverse. Since (ao, ... )(ao -1, ' , ,) = (1, ' .. ) this implies that, 
if ao is a unit in ~, then (ao, ah ... ) is a unit in ~(~). 

Now let ~ = a a perfect field of characteristic p. The formula 
p(ao, ah .. " am-l) = (0, aoP, alP, ' . " am-2P) in ~m(~) which 
we established in § 3.4 (Equation (27)) implies that p(ao, ah ... ) 

= (0, aoP, alP, ... ) holds in ~(~). Iteration of this formula gives 

,-k,---. 

(27) pk(ao, ah ... ) = (0, .. ,,0, aoP·, alP·, .. , ). 

Since ~ = ..1 is perfect, the elements at· can be taken to be arbi-
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trary elements of.::l. Hence we have plc'ill(.::l) = 91k where 91k is the 
ideal we defined before. Also (27) shows that, if A ~ 0, then 
pkA ~ 0 for k = 1,2, .. o. Now let A and B be any non-zero 
elements of'ill(.::l). Then we can write A = pkC, B = plD where 
C, D ¢ 911, Then C = (co, 0 0 0) and D = (do, 0 0 0) where Co ~ 0, 
do ~ O. Hence CD = (codo, 0 0 0) ~ 0 and AB = pHlCD ~ O. 
This shows that 'ill(.::l) is an integral domain. Let tP be the field of 
fractions of'ill(.::l) and consider the subset tP' of tP of elements of 
the form pkC where C e'ill(.::l) and k = 0, ± 1, ±2, 0000 Since 
any Ce'ill(.::l), ¢p'ill(A) is a unit in 'ill(.::l), it is clear that the non
zero elements of tP' form a group under multiplication. Since tP' 
is a subring of tP which contains 'ill(.::l), it follows that tP' = tP. 

If A = pkC, C e 'ill(.::l) , ¢ 911) then we define the order peA) = k 
and we define rp(A) = P -k, rp(O) = O. Then rp is a real non
archimedean valuation of tPo The subring 'ill(.::l) is the set of ele
ments satisfying rp(A) ~ 1 and 911 is the ideal of elements B of 
'ill(.::l) such that rp(B) < 1. The residue ring is 'ill(.::l)/911 which is 
isomorphic to.::l. The result we noted before on convergence of 
sequences in 'ill(~) implies that tP is complete relative to the valua
tion rp. We leave it to the reader to check this. Since 1 is of in
finite order, tP is of characteristic O. Thus tP has all the properties 
we required: completeness relative to a non-archimedean real 
valuation, characteristic 0, residue field the given perfect field .::l 
of characteristic p. If we start with .::l = I p , then the field tP we 
obtain in this way is the field of p-adic numbers. 

8. Ordered groups and valuations. A non-archimedean real val
uation satisfies rp(a + f3) ~ max (rp(a), rp(f3)), rp(af3) = rp(a) rp(f3). 
Hence it is clear that in considering such a valuation the addi
tion of the reals plays no. role. Only the multiplication and 
order of the non-negative reals are involved in the defining proper
ties. As we shall see, this leads to a generalization of the concept 
of a non-archimedean real valuation to (non-archimedean) valua
tions with values in any ordered commutative group. Besides the 
increased generality which results from this extension, the 
generalization is essentially simpler and more natural than the 
original concept. We consider first the notion of an ordered 
commutative group. 
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Definition 6. An ordered (commutative) group G is a commuta
tive group G together with a subset H satisfying the three conditions: 
1) 1 ¢ H, 2) if a e G either a e H, a = 1 or a-I e H, 3) H is closed 
under the multiplication in G. 

If (G, H) is an ordered group, then we let H-I = 1 b-ll b e H}. 
Then condition 2 states that G = H U II} U H-I. Moreover, 
these sets are non-overlapping. This is assumed for Hand II} in 
condition 1 and it follows for H-I and {l} on observing that, if 
1 e H-I, then 1 e H contrary to condition 1. Finally, if a e H n 
H-I, then a-I e Hand 1 = aa- l e H by condition 3. This again 
contradicts condition 1. 

The positive reals form an ordered group if we take H to be the 
set of elements < 1. We can take H equally well to be the set of 
elements> 1. In fact, if G is any ordered group, then H-I is 
closed under multiplication and satisfies conditions 1 and 2 of 
Definition 6, so we can obtain another ordered group on replacing 
H by H-1• In any ordered group G we define a < b to mean that 
ab- l e H. This defines a linear ordering in G, that is, we have the 
following properties: 1. a < b, b < c implies a < c. 2. For any 
pair (a, b), a, beG, one and only one of the following holds: a < b, 
a = b, b < a (as usual we write b > a for a < b). The order in G 
is invariant under multiplication, that is, we have: 3. If a < b, 
then ac < bc. Conversely, if a relation a < b is defined in a group 
G so that properties 1, 2, and 3 hold, then G is ordered by the 
su bset H = 1 a I a < I}. Clearly condition 1 of Defini tion 6 holds 
for H. To prove conditions 2 and 3 we note first that, if a < b 
and c < d, then ac < bc < bd so ac < bd; hence, a < b if and only 
if a-I> b-l. In particulat:, a < 1 if and only if a-I> 1. Since 
any a satisfies one of the conditions: a < 1, a = 1, a > 1, it is 
clear that condition 2 of Definition 6 holds. Finally, a < 1, 
b < 1 implyab < 1, so H is closed under the multiplication in G. 
We remark also that the ordering defined by H in the manner 
indicated: a < b if ab- l e H is the same as the original ordering 
since ab- l e H means ab- l < 1 and this holds if and only if a < b. 

If G1 is a subgroup of an ordered group G ordered by the set 
H = 1 a I a e G, a > I}, then G1 has an induced ordering defined 
by HI = G1 n H. This can be verified directly, or it can be seen 
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by noting that the relation > defined in G gives a relation in G1 

which satisfies the conditions stated before. If G is ordered by H 
and G' is a second ordered group, ordered by H', then an isomor
phism "I of G into G' is called an order-isomorphism if H"I c H'. 
Also G and G' are order-isomorphic if there exists an order iso
morphism TJ of G onto G'. In this case one necessarily has HTJ = 
H'. For example, the group of positive reals under multiplication 
with H defined as before is order isomorphic to the additive group 
of all the real numbers ordered by the set H' of negative reals. 
The mapping a ~ log a (natural logarithm) is an order isomor
phism of the first group onto the second one. 

If G is an ordered group, G contains no elements ~ 1 of finite 
order; for, if a < 1 (a > 1), then an < 1 (an> 1), so an ~ 1 for 
every positive integer n. A consequence of this property of Gis 
that for any fixed integer n the mapping x ~ xn of G is an iso
morphism of G onto a subgroup of G, which is order preserving if 
n~1. 

To define general valuations we shall need to consider ordered 
groups V with O. We define such a system to be an ordered group 
G to which a 0 element has been adjoined: V = G U to}. The 
ordering in G is extended to V by defining 0 < a for every a e G 
and we define aO = 0 for all a. We can now give the following 

Definition 7. Let q, be a field and let V be an ordered (commuta
tive) group with O. A mapping!p: a ~ !p(a) of q, into V is called a 
valuation if 

(i) !p(a) = 0 if and only if a = O. 
(ii) !p(af3) = !p(a)!p(f3). 

(iii) !p(a + (3) ::::; max (!p(a), !p(f3)). 

The exact sweep of this definition will become apparent soon. 
At this point it is clear that real non-archimedean valuations are a 
special case in which V is the set of non-negative real numbers. 
On the other hand, it should be noted that the real archimedean 
valuations are not valuations in the present sense. This incon
sistency in terminology will cause no real difficulty. We shall now 
give an example of a valuation for which V is not the non-negative 
reals. 
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Example. In this example we shall find it convenient to use the additive 
notation in the group G. The modifications in Definition 7 which are necessi
tated by this change are obvious, so we shall not write these down. The group G 
we shall consider is the additive group of integer pairs (k, I). We introduce the 
lexicographic order in G, that is, we define (k, I) < (k' , I') if either k < k' or 
k = k' and I < I'. One checks that this is a linear ordering preserved under 
addition; hence G is an ordered (additive) group. We let 17 = G U {oo} where 
the ordering is extended to 17 by setting 00 > (k, I) for every (k, I) e G. Also we 
define (k, I) + 00 = 00. Now let P = <p(~, TJ), a purely transcendental extension 
of a field <P where {~, TJ} is a transcendency basis for P over <P. If a e P and 
a .,= 0, we can write a = f"TJnp(~, TJ)q(~, TJ) -1 where p(~, TJ) and q(~, TJ) are poly
nomials in ~,TJ with non-zero constant terms, and m and n are integers. Then 
we define cp(a) = (m, n). Also we set cp(O) = c.;). Then (i) holds. It is easy to 
check that cp(ab) = cp(a) + cp(b) and cp(a + b) ~ min (cp(a), cp(b)). The first of 
these is (ii) in the additive notation and the second can be changed to (iii) by re
versing the ordering (writing > for <). Hence our function is essentially a 
valuation. 

EXERCISES 

1. Let G be the additive ordered group of integer pairs (k, I) given in the fore
going example. Let c and e be real numbers such that 0 < c < 1 and e is posi
tive and irrational. Show that the mapping (k, I) ---+ c"+eI is an isomorphism of 
G into the ordered multiplicative group of positive real numbers P. Show that G 
is not order isomorphic to a subgroup of P. 

2. Let P = <p(~, TJ) and a = ~""TJnp(~, TJ)q(~, TJ) -1 where p and q are polynomials 
in ~,TJ with non-zero constant terms, as in the example above. Define 1/;(a) = 
cm +en wherec and e are real numbers, 0 < c < 1, e positive irrational. Show 
that 1/; is a non-archimedean real valuation which is not discrete. 

3. Define a valuation cp of an integral domain 0 by replacing the field <P in 
Definition 7 by the integral domain o. Show that any valuation 1/; of 0 into 17 
has a unique extension to a valuation of the field of fractions <P of D. 

4. Let G be an arbitrary (commutative) ordered group and let D = <Po(G) be 
the group ring over a field <Po of G (Vol. I, ex. 2, p. 95). Show that D is an integral 

r 

domain. If a = L: Cl!igi, Cl!i .,= 0 in <Po, gi e G, define cp(a) = min gi (in the 
1 

ordering < defined in G). Define cp(O) = o. Show that cp is a valuation of o. 
Use exs. 3 and 4 to show that if 17 is any ordered group with 0, then there exists a 
field <P with a valuation cp of <P into 17 such that cp(<p) = 17. 

9. Valuations, valuation rings, and places. In this section we 
shall establish an equivalence between the concepts of a valuation 
in the sense of Definition 7 and two other concepts: valuation ring 
and place. The first of these, valuation ring, is an intrinsic notion 
in the sense that its definition does not require any system external 
to the given field <1>. Moreover, the valuation rings give the link 
between valuations and places. We have already encountered 
these for real non-archimedean valuations. 
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Now let <I> be any field and let rp be a valuation with values in 
the ordered group V with O. We note first that rp(1)2 = rp(12) = 
rp(l) and, since G contains no elements of finite order ~ 1, rp(1) 
= 1. Also rp( -1)2 = rp(1) = 1, so rp( -1) = 1 and rp( -a) = 
rp( -l)rp(a) = rp(a). From aa-1 = 1 we obtain rp(a-1) = rp(a)-1 
and rp(a~-I) = rp(a)rp(m -1. Now let 0 be the subset of <I> of ele
ments a such that rp(a) .::; 1. Then, if a, ~ eo, rp(a - m .::; max 
(rp(a), rp(~)) .::; 1 and rp(am = rp(a)rp(~) .::; 1. Hence 0 is a sub
ring. Now suppose a ¢ 0, then rp(a) > 1 and rp(a-1) = rp(a)-1 
< 1. Hence a-I eo. We therefore see that 0 is a valuation ring 
(in <1» in the sense of the following 

Definition 8. If <I> is a field, a valuation ring 0 in <I> is a subring 
of <I> (containing 1) such that every element of <I> is either in 0 or is the 
inverse of an element of o. 

If 0 is the subring of elements a satisfying rp(a) .::; 1 for the 
valuation rp, then 0 is called the valuation ring of rp. This is a direct 
generalization of the definition we gave before for non-archime
dean real valuations. We shall now show that any valuation ring 
gives rise to a valuation rp' for which the given ring is the valua
tion ring. Suppose 0 is a valuation ring in <1>. Let U be the set of 
units of 0, I> the set of non-units, 1>* the set of non-units ~ 0, <1>* 
the multiplicative group of non-zero elements of <1>. Then U is a 
subgroup of the commutative group <1>* and we shall take G' = 
<1>* jU for our group. We introduce an ordering in G' by letting H' 
be the set of cosets ~U, ~ e 1>*. It is clear that the product of a 
non-unit of 0 with any element of 0 is a non-unit. Hence if ~h 
~2 e p*, then ~1~2 e 1>*; so if ~IU, ~2U, e H', then (~IU)(~2U) 
= ~1~2UeH'. If ~U is any element of G' = <I>*jU, then 
fJ ~ 0, and if ~ ¢ 1>*, then either ~ e U or {3 ¢ U and ~ ¢ 1>*. In the 
first case ~U = U, and in the second ~ ¢ 0, so ~-1 eo and, since 
~-1 e U implies ~ e U, we have ~-1 e 1>*. Hence (~U) -1 = 
~-1 U e H'. Thus we see that G' = H' U {1} U (H') -1 holds. 
Also 1 = U ¢ H'. Hence H' makes G' an ordered group as in 
Definition 6. Next we adjoin a 0 to G', obtaining V' = G' U to}, 
and we define a mapping rp' of <I> into V' by 

(28) rp'(O) = 0, rp'(a) = aU e G' if a ~ O. 
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The conditions (i) and (ii) for a valuation are clearly satisfied. 
Also (iii) is clear if either a = 0 or {3 = o. If a ~ 0, {3 ~ 0, 
either a{3-1 eo or {3a-1 eo and we may as well assume the former. 
Then we have a = (3'Y where 'Yeo and cp'(a) = cp'({3)cp'('Y) ~ cp'({3) 
since cp'('Y) = 'YU ~ 1 = U. Also a{3-1 + 1 eo, so cp'(a{3-1 + 
1) ~ 1 and cp'(a + (3) = cp'(a{3-1 + 1)cp'({3) ~ cp'({3) = max (cp'(a), 
cp'({3». Hence (iii) holds. It is clear from (28) and the defini
tion of G' and H' that cp'(a) ~ 1 is equivalent to a e o. Hence 0 

is the valuation ring of the valuation cp'. We shall call the valua
tion cp' the canonical valuation of the valuation ring o. 

Now consider again an arbitrary valuation cp of «I> into V = 
(G,O) where G is a commutative group ordered by H. Let 0 be 
the valuation ring of cp and cp' the canonical valuation of «I> into 
V' = (G',O) where G' = «I>*jU is ordered by H' = {{3U/{3 e p*}. 
The defihition (28) gives cp'(O) = 0, cp'(a) = aU if a ~ o. We 
have the homomorphism a ~ cp(a) of the multiplicative group «1>* 
into G whose kernel is the subgroup U. Hence we have the in
duced isomorphism 1]:cp'(a) = aU ~ cp(a) of G' = «I>*jU into G. 
This is an order isomorphism since, if {3U e H', then (3 e p*, so 
cp({3) < 1. We now see that the given valuation can be factored 
as cp = CP'T! where 1] is an order isomorphism of G' into G (more pre
cisely, V' into V). 

These considerations make it natural to lump together the 
valuations of «I> which have the same valuation ring o. Accord
ingly, we shall say that such valuations are equivalent. 

There is a third concept, that of a place which is also equivalent 
to the concepts of valuation and valuation ring. We define this as 
follows: 

Definition 9. Ij «I> is a field, a place g; is a homomorphism oj a 
subring 0 of «I> into a field .d such that, if a ¢ 0 then a-1 eo and 
g;(a-1) = O. (We recall that 1 eO and g;(1) = 1 by our conven
tions on subrings and homomorphisms.) 

It is clear from the definition that, if g; is a place, then the sub
ring 0 given by g; is a valuation ring. On the other hand, suppose 
o is any valuation ring and let p be the set of non-units of o. Then 
it is clear that, if {3 e p and a eo, a{3 e p. In particular, -{3 = 
( -1){3 e p. If {31 and {32 e p, we may assume that {31{32 -1 eO. 
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Then ~1~2 -1 + 1 eo, so ~1 + ~2 = (~1~2 -1 + 1)~2 e p. Hence p 
is an ideal in o. Since p is the set of non-units of 0, it is clear that p 
is maximal and il' = o/p is a field. Let gJ' be the canonical homo
morphism of 0 onto il' = o/p. Then it is clear that gJ' and 0 

satisfy the defining conditions for a place. We shall call this place 
the canonical place of the valuation ring o. The image of 0 under 
gJ' is il' = o/p where p is the ideal of non-units of o. As in the 
special case of real non-archimedean valuation, we shall call il' 
the residue field of the valuation ring o. 

Now consider again an arbitrary place gJ of cP into the field il 
and let 0 be the valuation ring on which gJ is defined. Let p be the 
ideal of non-units of o. If a e p and a ~ 0, then a-1 ¢ 0, so the 
hypothesis on gJ gives gJ(a) = 0. This holds also if a = 0. 
Hence we see that p is contained in the kernel of ~ Since p is a 
maximal ideal, this shows that p is the kernel of ~ The homo
morphism a ~ gJ(a), a eo, therefore gives an isomorphism gJ'(a) 

= a + p ~ gJ(a), and so the place gJ is the resultant of the 
canonical place gJ' and an isomorphism of il' into il. As for 
valuations, it is natural to consider as equivalent places that have 
the same valuation ring. 

We have now established the procedures for passing from one of 
the concepts: valuation, valuation ring, place, to any other. 
Clearly, a result on one of these can be translated to the other two. 
In the sequel we shall apply this idea to obtain extensions of 
valuations via extensions of places. The latter amounts to ex
tensions of homomorphisms, for which we have available the basic 
extension theorems of the Introduction. 

EXERCISES 

1. Let gJ be a place on cP with values in 11. Adjoin a new dement 00 to 11 and 
define 00 + ~ = 00 = ~ + 00, ~ ell, 0000 = 00, oo~ = 00 = ~oo if ~ ¢ 0 in 11. 
Extend gJ to the whole of cP by defining gJ(a) = 00 if a ¢ o. Verify that 

gJ(a + (3) = gJ(a) + (IJ({3) 

gJ(a{3) = gJ(a)gJ({3) 
(29) 

whenever the right-hand sides are defined. Conversdy, assume that gJ is a 
function defined on cP with values in (d, 00),11 a fidd where 11 n {oo} = SO and 00 
obeys the rules indicated. Assume (29) hold whenever the right-hand sides are 
defined. Let 0 be the inverse image gJ-l (11). Show that the restriction of gJ to 
o is a place. This gives an alternative definition of a place. 
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2. Let f:iJ be a place with valuation ring o. Assume f:iJ is an isomorphism. 
Show that 0 = ~ and that the canonical valuation of 0 is trivial in the sense that 
q/(O) = 0, 1fJ'(a) = 1 if a ~ 0. 

10. Characterization of real non-archimedean valuations. In 
order to apply the general theory of valuations to the case of non
archimedean real valuations it is necessary to characterize these 
among all possible valuations of a field. In view of the foregoing 
discussion this is equivalent to the problem of characterizing the 
ordered groups which are order isomorphic to subgroups of the 
multiplicative group of positive reals or, equivalently, to the 
additive group of all the real numbers with the usual order in this 
group. Hence we seek a characterization of the ordered groups 
which are order isomorphic to subgroups of the additive group of 
real numbers. It will be convenient to use the additive notation 
in all the groups which we shall consider in this section. 

Let G be an ordered group: If a e G, we define I a I = a if a ~ 0 
and I a I = -a if a < O. We define an isolated subgroup K of Gas 
a subgroup such that, if a e K and I b I ~ I a I, then b e K. Let 
Kl and K2 be isolated subgroups. Then we assert that either 
Kl C K2 or K2 C K 1• For, if neither of these inclusions holds, 
then there exists a b1 e Kt, ¢ K 2, and a b2 e K 2, ¢ Kt, and we may 
suppose that bi > O. If b2 ~ bt, then b1 e K2 contrary to assump
tion. Hence b2 > b1 and similarly b1 ~ b2 which contradicts the 
fact that G is an ordered group. Thus we have either Kl ~ K2 or 
K2 ~ Kl so the set of isolated subgroups is linearly ordered by the 
inclusion relation. The order type of the set of isolated subgroups 
is called the rank of G. * The simplest situation is that of a group 
of rank one in which G ~ 0 and G has no isolated subgroup ~ 
0, G. These groups can be characterized by the archimedean 
property which is familiar for real numbers: 

Lemma. An ordered group G (~ 0) is of rank one if and only if 
given any a, beG with a > 0 there exists a positive integer n such 
that na > b. 

Proof. Suppose first that G contains two elements a, b such 
that a > 0 and na ~ b for all positive integers n. Let K+ denote 
the subset of G of elements u such that 0 < u < ma for some 
positive integer m. K+ is not vacuous since a < 2a and clearly 

• Cf., for example, F. Hausdorff, Mmgmiehre, 3rd Ed., Chap. 3, de Gruyter & Co., 1937. 
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K+ is closed under addition. Moreover, K+ contains every v such 
that 0 < v < u for some u in K+. Hence if Ul and U2 e K+ and 
Ul < U2, then 0 < U2 - Ul < U2 so U2 - Ul e K+. It follows 
that the union of K+, 0, and - K+, the set of negatives of the ele
ments of K+, is a subgroup K of G. Now K is isolated, since, if 
U e K and U > 0, then every v such that 0 < v :::; U is in K. Also 
K ..,e G since b ¢ K. Hence G is not of rank one. Conversely, 
assume G not of rank one and let K be an isolated subgroup =/= 0, 
G. Since K =/= G there exists a positive element b such that b > a 
for every a e K. Choose a > 0 in K, then na < b for all n = 
1, 2, 3, . . . . Hence the archimedean property fails in G. 

I t is clear from this cri terion that if G is of rank one, then any 
non-zero subgroup of G is of rank one. In particular, any non-zero 
subgroup of the additive group of real numbers is of rank one. 
Moreover, these are essentially all the ordered groups of rank one, 
since we have the following 

Theorem 8. Any ordered group G of rank one is order isomorphic 
to a subgroup of the additive group of real numbers. 

Proof. We shall define an order isomorphism 11 of G into the 
additive group R of real numbers. For this purpose we choose a 
u > 0 in C. If v > 0, then there exist pairs (m, n) of positive 
integers m, n such that nv 2:: mu. Thus we may take m = 1 and, 
by the archimedean property, determine n so that nv > u = lu. 
If q e P, the collection of positive integers, then qnv 2:: qmu if and 
only if nv 2:: mu. Hence if r = min = m'ln', m, n, m', n' e P, 
then nv 2:: mu if and only if n'v 2:: m'u. The rational numbers r = 
min satisfying this condition form a set which we denote as Rv. 
If r = min and s = m'ln' < r, m', n' e P, then m'n < mn'. If 
r e R v , then nv 2:: mu and nn'v 2 mn'u > m'nu. Hence n'v > 
m'u so that s e Rv. We note next that the set of positive rationals 
Rv is bounded above. Otherwise, the result just proved implies 
that Rv is the complete set of positive rationals. Hence every 
positive integer k is in Rv which means that v 2 ku, k e P. This 
contradicts the archimedean property of G. We now define v"l to 
be the positive real number sup Rv. Since Rv contains every s :::; r 
for every r e Rv, it is clear that Rv and its complementary set Rv' 
in the set of positive rationals defines a Dedekind cut. Hence 
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sup Rv = inf Rv'. Now let VI, V2 be positive elements of G and let 
mdn1 e R V1 ' m2/n2 e Rvz where mi, ni e P. Then n1v1 ;;::: m1U, 
n2V2 ;;::: m2U and n1n2V1 ;;::: m1n2U, n1n2v2 ;;::: n1m2U' Hence 
n1n2(v1 + V2) ;;::: (m1n2 + m2n1)u and so mdn1 + m21n2 e 
R V1+VZ ' This implies that (VI + V2)'I ;;::: V1'1 + V2'1. On the other 
hand, a repetition of the argument just given shows that, if 
m1/n1 e Rv/ (that is, n1V1 < m1u) and m21n2 e Rv/, then mdn1 + 
m21n2 e RV1+V /' Since v'I = inf Rv', this implies that (VI + V2)'I ~ 
V1'1 + V2'1. Hence 

(30) 

holds for VI, V2 positive in G. We extend the mapping 11 to all of G 
by defining 0'1 = ° and (-v)'I = -V'I if V is positive. It is imme
diate that (30) holds if either VI ;;::: 0, V2 ;;::: 0, or VI ~ 0, V2 ~ 0. 
Suppose VI > ° and V2 < 0. If VI + V2 ;;::: 0, we write VI = (VI + 
V2) + (-V2) and obtain V1'1 = (VI + V2)'I + (-V2)'I = (VI + V2)'I -
V2'1. Then (VI + V2)'I = V1'1 + V2'1. If VI + V2 < 0, then we write 
-V2 = -(VI + V2) + VI and obtain (-V2)'I = (-(VI + V2»'I + 
V1'1. Thus -V2'1 = - (VI + V2)'I + V1'1 and again (30) holds. 
Similarly, (30) holds if VI < ° and V2 > 0. Thus 11 is a group 
homomorphism of G into R. If V > 0, then v'I > 0; hence no 
positive element is in the kernel of 11. It follows that the kernel is ° 
and 11 is an isomorphism. Since positive elements are mapped into 
positive elements by 11, 11 is an order isomorphism of G into R. 

There are several observations which should be made on the 
foregoing proof. In the first place it is clear from the definition of 
the isomorphism 11 that u'l = 1. We note next that 11 is deter
mined by this property, that is, if r is any order isomorphism of G 
into R such that ul = 1, then r = 11. Thus let b > ° and let 
min, m, n positive integers, satisfy min;;::: v'I. Then m1 ;;::: nv'I 
and mu'l ;;::: nv'I, (mu)'I ;;::: (nv)'I. Hence mu ;;::: nv and re-tracing the 
steps we obtain min;;::: VI. Similarly, min;;::: VI implies min ;;::: 
v'I. Since this holds for arbitrary rationals it follows that v'I = vl; 
hence 11 = r. If ~ is any positive real number, then the mapping 
x -+ ~x is an order preserving automorphism of R mapping 
1 -+~. It follows from this that there exists an order isomor
phism of G mapping the given positive element u into any positive 
~ in R. Moreover, such an isomorphism is unique. 
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A group of rank one is called discrete if it is order isomorphic 
to the ordered group of integers (positivity as usual). We have 
noted before (§ 5) that a subgroup of the multiplicative group of 
positive reals is discrete if and only if it contains a largest element 
< 1. This and Theorem 8 imply that an ordered group of rank 
one is discrete if and only if it contains a least positive element. 

EXERCISES 

1. Let RCn) denote the additive group of n-tuples x = (tl, ... , t n) of real 
numbers ti. Define the set of positive elements of R(n) by the condition that 
x > 0 if the first non-zero to is > o. Show that this gives an ordered group. 
Determine the isolated subgroups. 

2. Call an ordered group G of rank n, n a positive integer, if n is the cardinal 
number of the set of non-zero isolated subgroups. Show that any ordered group 
of rank n is order isomorphic to a subgroup of the group R(n) of ex. 1. 

3. Call an ordered group G of rank n discrete if the factor groups of successive 
isolated subgroups are all infinite cyclic groups. Show that any such group is 
isomorphic to the subgroup of R(n) of n-tuples a = (aI, a2, ••. , an) such that 
the ao are integers. 

11. Extension of homomorphisms and valuations. In this 
section we shall prove a fundamen tal theorem on extension of a 
homomorphism defined on a subring of a field. This result leads 
to a general theorem on extension of valuations from a subfield to a 
field. We prove first the following key lemma. 

Lemma 1. Let 0 be a subring of a field ~ and let m be a proper 
ideal in o. If a is a non-zero element of ~ and ora] is the subring of ~ 
generated by 0 and a, then either mora], the ideal generated by m in 
ora], is proper in ora] or mo[a-l] is proper in o[a-l]. 

Proof. Suppose the contrary: mora] = ora], mo[a-l] = ora -1]. 
Then 1 e mora] and 1 e mo[a-l], so we have relations of the form: 

(31) 1 = JLoam + JLlam - l + ... + JLm, JLi e m, 

(32) 1 = voa-n + vla-(n-l) + ... + lin, Vi em. 

Since m ~ 0, we have m > 0 and n > 0 and we may assume m, n 
are minimal for the relations (31) and (32). Also we may assume 
m ~ n. Then (32) implies that am = lIoam- n + vlam- nH + ... 
+ vnam ; hence 

(33) am(1 - vn ) = voam- n + ... + vn _lam - 1• 
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Multiplication of (31) by 1 - Pn gives 

(34) 1 - Pn = J'0(1 - Pn)am + J'1(1 - Pn)am- 1 

+ ... + J'm(1 - Pn). 

Hence, by (33), 

1 - Pn = J'o(poam- n + ... + Pn_lam-1) 

+ J'1 (1 - Pn)am- 1 + ... + J'm(1 - Pn). 

Since the J'i, Pi em, this gives another relation like (31) with m re
placed by m - 1 contrary to the minimality of m. Hence the 
proof is complete. 

If {fJ is a place which is a homomorphism of a subring 0 of the 
field «P into the field .a, then we shall say that {fJ is .a-valued. Our 
main result is an extension theorem for homomorphisms to places, 
as follows. 

Theorem 9. Let 00 be a subring of a field «P and let ~ be a homo
morphism of 00 into an algebraically closed field 11. Then ~ can be 
extended to an ~valued place {fJ on «P. 

Proof. We consider the collection of extensions {fJ' of the homo
morphism ~ where {fJ' is a homomorphism into 11 of a subring 0' 

of «P containing 00. These can be partially ordered in the usual 
manner: {fJ' < {fJ" if {fJ" is an extension of {fJ'. Then, as usual, we 
can apply Zorn's lemma to obtain a maximal extension {fJ which is 
defined on a subring 0 of «P. The proof will be completed by show
ing that 0 is a valuation ring. Then {fJ will be an ~valued place 
for «P. Let m be the kernel of ~ Since 1 ~ 1, m ;:e o. Since 11 
has no zero-divisors ;:e 0, m is a prime ideal on o. Consequently, 
the complementary set M of m in 0 is multiplicatively closed and 
o ¢ M. Let 0' be the subset of «P of elements of the form afj-l 

where a, fj eo and fj e M. Then 0' is a subring of «P containing 0 

and {fJ can be extended to a homomorphism {fJ' of 0' into 11 by de
fining {fJ'(afj-l) = {fJ(a){fJ(fj).-1 (IofIntrod.). Since {fJ is maximal 
we have 0' = o. This implies that the image of 0 under {fJ is a 
subfield E of 11; for, if 0 ;:e 'Y = {fJ(fj), fj eo, then fj eM, so fj-l e 
0' = 0 and 'Y-1 = {fJ(fj-l) is in the image of o. Now let a be any 
element ;:e 0 of «P. We shall show that either a or a-I eo, which 
is what is needed to prove that 0 is a valuation ring and {fJ is a place. 
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Now Lemma 1 shows that mo[a] C o[a] or mo[a-1] C 0[a-1] and 
we may as well assume the former. Then we shall show that g; can 
be extended to a homomorphism of o[a] into n. This and the 
maximality of g; will imply that a eo. We consider the poly
nomial rings o[x] and E[x], x an indeterminate, and we extend g; to a 
homomorphism of o[x] onto E[x] sending x ~ x. Let ~ be the 
ideal of polynomials g(x) e o[x] such that g(a) = 0 and let ~' be its 
image in E[x] under the extension of g;. Since the homomorphism 
of o[x] is surjective, ~' is an ideal in E[x]. Also~' C E[x]. Other-

r 

wise, there exists a polynomial L: (3ixi e o[x] such that ~(3iai = 0 
r o 

and L: g;«(3i)Xi = 1. Then g;«(30) = 1 and g; «(3i) = 0 if i > 0, so 
o 

1 - (30 em and (3i em for i > O. Then the relation ~(3iai = 0 
gives 1 = 1 - ~(3iai = (1 - (30) + L: ( - (3i)a i • Since 1 - (30, 

i>O 

(3; em, this implies that 1 e mo[a] contrary to hypothesis. Hence 
we see that ~' is a proper ideal in E[x] and, since E[x] is a principal 
ideal domain, ~' = (j(x)) wheref(x) is either 0 or a polynomial of 
positive degree. In the first case, we choose any element 'Y in n 
and in the second case we choose 'Yen so that f( 'Y) = O. This 
can be done since 12 is algebraically closed. Now our choice of 'Y 
amounts to this: If g(x) is any polynomial in o[x] such thatg(a) = 
0, thengg; ('Y) = 0 for the imagegg; [x] in E[x]. Hence the exten
sion theorem IV' of the Introduction shows that g; can be ex
tended to a homomorphism of o[a] into A sending a into 'Y. This 
completes the proof. 

Suppose now that CPo is a valuation of a sub field <Po of the field <P. 
Let 00 be the valuation ring of CPo, llo the ideal of non-units, Uo the 
multiplicative group of units of 00' We have seen that CPo is 
equivalent to the canonical valuation CPo' into the group <Po*/Uo 
where the positive elements of this group are the cosets (3oUo, 
(30 '¢ 0 in llo. We also have the canonical place g; 0' of <Po deter
mined by 00' This is the homomorphism ao ~ ao + llo of 00 
into the residue field oo/llo. We can imbed oo/llo in an algebrai
cally closed field n. Then g; 0' can be considered as an U-valued 
place g; 0 on <Po. Since n is algebraically closed, the extension 
theorem states that g; 0 can be extended to an U-valued place g; on 
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<P. Let 0 be the valuation ring in <P on which g; is defined and let ~ 
be the ideal of non-uni ts of o. Since g; is an extension of g; 0,0 ::::) 00 
and since ~ and ~o are respectively the kernels of g; and g; 0, ~ ::::) ~o. 
Hence we have 0 n <Po ::::) 00 and ~ n <Po ::::) ~o. If (:3 eon <Po and 
(:3 ¢ 00, then (:3-1 e ~o C ~, but this implies that (:3 ¢ o. Hence 0 n 
<Po = 00' Since ~ and ~o are the ideals of non-units of 0 and 00 
respectively, the relation 0 n <Po = 00 implies ~ n <Po c ~o. 
Hence ~ n <Po = ~o and U n <Po = Uo where U is the set of units 
of o. These relations imply that (:3oUo ~ (:3oU, (:30 e <Po*, is an 
order isomorphism of the ordered group <Po*/Uo into <p*/U 
ordered by the set of elements (:3U, (:3 e~. If we apply this iso
morphism to the canonical valuation rpo', we obtain an equivalent 
valuation rpo" of <Po into the group <P*/U. We also have the 
canonical valuation rp' of <P into <p* / U and the definitions show 
that rp' is an extension of the valuation rpo". In this sense we have 
obtained an "extension" of the given valuation of <Po to a valua
tion on <P. 

We shall be interested particularly in the case in which <P is 
finite dimensional over <Po and the given valuation rpo is of rank 1. 
In the general case, if rp is a valuation of a field <P into V = (G,O), 
then the subgroup of G of values rp(a), a ~ 0 in <P, is called the 
value group of rp. We shall need the following 

Lemma 2. Let rp be a valuation of a field <P, <Po a subfield of 
finite co-dimension in <P. Then the value group of <P is order iso
morphic to a subgroup of the value group of <Po (relative to the re
striction of rp). 

Proof. Let ~ e <P and let a1~nl + a2~n2 + ... + ak~nk = 0 where 
the a. ~ 0 in <Po and n1 > n2 > ... > nk. As in the case of 
non-archimedean real valuations, if rp«(:31) > rp«(:3j), j ~ 1, then 
rpCIt(:3.) = rp«(:31)' Hence our relation implies that there exist i < j 
such that rp(a.~ni) = rp(aj~nj). Then rp(~ni-nj) = rp(ajai-1). If 
[<p: <Po] = n, then we may assume that ni - nj ~ n; hence rp(~)nl 
is in the value group of <Po. This shows that for any a in the value 
group G of <P, ani is in the value group Go of <Po. On the other 
hand, we have seen that a ~ an! is an order preserving iso
morphism of G onto a subgroup. Hence G is order isomorphic to a 
subgroup of Go. 
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This result and Theorem 8 imply that the value group of <I> is of 
rank 1 (discrete of rank 1) if and only if the same is true for the 
value group of <1>0. 

We shall now see how all of this applies to real valuations. Let 
ipo be a non-trivial non-archimedean valuation of a field <1>0 into the 
non-negative reals and let <I> be a finite dimensional extension of 
<1>0. Then we know that ipo = ipo'TJ where ipo' is the canonical 
valuation of <1>0 associated with the valuation ring 00 of ipo and TJ is 
an order isomorphism of the value group Go' of ipo' into the posi
tive reals P. Also we have just seen that we have a valuation ring 
o of <I> and an order isomorphism r of Go' into the value group G' of 
the canonical valuation ip' determined by 0 such that ip'(ao) = 
(ip'r)(ao) for all ao e <1>0. Since Go' is of rank 1 the same is true of 
G' and consequently we have an order isomorphism X of G' into 
P. Thus we have the following diagram of mappings: 

<1>0 ~ Go' ~ P 

;1 ~o',l "11 
<I> ~ G' ~ P 

'P' X 

where i is the inclusion mapping and the first rectangle is commu
tative: iip' = ipo'r. Assume Go' ~ 1 and let 5 be some element ~ 
1 in Go'. Then we can choose X so that 5!>- = 5'1 and then we shall 
have 'Yo'!>- = 'Yo''I for all 'Yo' eGo' (§ 10). This means that the 
second rectangle in our diagram is also commutative. Then 
ip = ip'X is a real non-archimedean valuation which extends the 
given valuation ipo on <1>0; for if ao e <1>0, then ipo(ao) = (ipo'TJ)(ao) 
= (ipo'rX)(ao) = (ip'X)(ao) = ip(ao). If Go' = 1, then Lemma 2 
shows that necessarily G' = 1. Then TJ and X are unique and 
commutativity holds. This case is, of course, trivial at the out
set, since it is the one in which ipo is a trivial valuation. We have 
therefore proved the following 

Theorem 10. Let ipo be a non-archimedean real valuation on a 
field <1>0 and let <I> be a finite dimensional extension field of <1>. Then 
there exists a real valuation on <I> which is an extension of ip. 
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12. Application of the extension theorem: Hilbert Nullstel
lensatz. Before continuing our study of valuations we digress 
slightly to take up some important applications of the homomor
phism extension theorem (Th. 9). The first of these, Hilbert's 
Nullstellensatz, plays an important role in algebraic geometry. 
We shall give it in its original ideal-theoretic form. 

We consider a polynomial algebra cI>[XI, X2, .. " Xn] in indeter
minates Xi over a field cI>. Let 12 be the algebraic closure of cI>. If 
f(xI, .. " Xn) e cI>[XI, .. " Xn] and the ~i are elements of 12 such that 
f(~I, .. " ~n) = 0, then we shall call (~I, .. " ~n) an (algebraic) zero 
of f(xI, .. " Xn). If S is a set of polynomials contained in cI>[XI, 
.. " xn], then we define a zero of S to be an n-tuple (~I, .. " ~n), 
~i e 12, which is a zero for every f e S. Our main result concerns 
the zeros of a proper prime ideal I.l3 in cI>[XI, .. " Xn]. This is the 
following 

Theorem 11. Let I.l3 be a prime ideal in cI>[XI, .. " xn], cI> a field, 
and suppose I.l3 ~ (1) (= cI>[XI, .. " Xn]). Let g(XI, .. " Xn) be a 
polynomial not contained in 1.l3. Then there exist ~i in the algebraic 
closure 12 of cI> such that (~I, .. " ~n) is a zero for I.l3 and is not a zero 
for g(XI, .. " Xn). . 

Proof. Since I.l3 ~ (1), cI>[XI, .. " XnJ/1.l3 is an algebra over cI> 
which is ~ 0 and this is generated over cI> by the cosets "Ii = Xi 
+ 1.l3, i = 1,2, .. " n. Also <1>["11>"', "In] = <I>[X1> .. " xnJ/1.l3 
is an integral domain so this can be imbedded in its field of frac
tions P = cI>("II, "12, "', "In). Suppose first that all the "Ii are 
algebraic. Then P is an algebraic extension of cI> so we have an 
isomorphism of P / <I> in to the algebraic closure 12/ cI>. Suppose 
"Ii ~ ~i in this isomorphism. Then ifj(XI, .. " Xn) e 1.l3,j( "II, .. " 
"In) = 0 and so f(~I, .. " ~n) = O. Hence (~I, ~2' .. " ~n) is a 
zero of 1.l3. On the other hand, g(XI, .. " Xn) ¢ I.l3 so g( "II, .. " "In) 
~ 0; hence g(b, .. " ~n) ~ O. This proves the theorem in this 
case. Next assume that not all the "Ii are algebraic. We may 
suppose that the"l'S are ordered so that hI, "12, "', "Ir} (r ~ 1) is 
a transcendency basis for P / cI>. Since g(XI, .. " Xn) ¢ 1.l3, g( "II, .. " 
"In) ~ 0 in P so g( "II, .. " "In) -1 exists in P. This element and the 
elements "Ir+I, .. " "In are algebraic over cI>( "Ii> .. " "Ir) and so 
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they satisfy algebraic equations of the form 

(35) aO('Yh" ','Yr)Xm + a1('Yh" ','Yr)Xm- 1 

+ .. ·+am('Yh·· ','Yr) = 0 

where the ai are polynomials in the 'Yj, j = 1, ... , r, and aO('YH 
"','Yr):;e: O. For each 'Yr+h "','Yn and g('Yh "','Yn)-1 we 
choose such an equation and we let a('Yh ... , 'Yr) be the product 
of the leading coefficients of these equations. Since a(xh ... , x r ) 

:;e: 0, we may choose ~h ... , ~r in the infinite field Q so that 
a(b, ... ,~r) :;e: 0 (Vol. I, p. 112). Since the 'Yj, 1 ~ j ~ r, are 
algebraically independent, we have an algebra homomorphism of 
~['Yh ... , 'Yr] into Q/~ such that 'Yi -? ~i' By the extension 
theorem (Theorem 9) this homomorphism can be extended to an 
U-valued place f:lJ on P. Since f:lJ is an extension of an algebra 
homomorphism, f:lJ is the identity on ~ and so f:lJ is an algebra 
homomorphism into Q/~. We note next that the 'Yk, r + 1 ~ 
k ~ n, are in the valuation ring 0 of f:lJ. Otherwise, f:lJ('Yk -1) = O. 
On the other hand, we have an equation of the form 

aO('Yh "','Yr) + a1('Yh' ",'Yrhk-1 

+ ... + am('Yh ... , 'Yr)'Yk -m = 0, 

andapplyingf:lJ,weobtainao(~h"',~r) = f:lJ(aO('Yh "','Yr») = O. 
This contradicts the facts that a(~h ... , ~r) :;e: 0 and a( 'Yh ... , 
'Yr) has ao( 'Yh ... , 'Yr) as a factor. A similar argument shows that 
f:lJ(g('Yh ... , 'Yn» :;e: o. Now let h = f:lJ('Yk), r + 1 ~ k ~ n. 
Then we assert that (~h ~2' ••. , ~n) satisfies the conditions of the 
theorem. In the first place, if f(X1, ... , Xn) e~, then f( 'Yh ... , 
'Yn) = 0 and applying f:lJ we havef(~h ... , ~n) = O. Next we see 
thatg(b," ',~n) = f:lJ(g('Yh" ','Yn)):;e: O. 

The Hilbert Nullstellensatz is the extension of Theorem 11 from 
prime ideals to arbitrary ideals in ~[Xh ... , Xn]. To obtain this 
we need a characterization of the (nil)radical of an ideal of a 
commutative ring (Vol. I, p. 173). The result we require is that, 
if ~ is an ideal in a commutative ring 0, then the radical m(~) is the 
in tersection n ~ of the prime ideals ~ con taining~. If 0 is 
Noetherian, this result is an easy consequence of the decomposi
tion theorem for ideals in to primary ideals (Vol. I, p. 176, ex. 2, p. 
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181). Although this is all we need here it is of interest to estab
lish this result in the general case. We prove first the following 

Lemma 1. Let 0 be a commutative ring, ~ an ideal in 0 and S a 
non-vacuous multiplicatively closed subset of 0 such that ~ n S = 0. 
Then there exists a prime ideal \l3 in 0 such that \l3 :::> ~ and \l3 n S 
= 0. 

Proof. Let U be the collection of ideals 58 in 0 such that: 1. 
58 :::> ~, 2. 58 n S = 0. Then U is non-vacuous since ~ e U. We 
order the elements of U by inclusion. Let V be a linearly ordered 
subset of U and let ~ = U 58. Then ~ n S = 0 and ~:::>~. 

llleV 

Moreover, it is easy to check that ~ is an ideal. Hence ~ e U and 
~ is an upper bound for the set V. Thus U is an inductive set and 
so we can apply Zorn's lemma to conclude that U contains a 
maximal element \l3. Let ai, i = 1,2, be elements of 0 not con
tained in \l3. Then the ideal ~i generated by ai and \l3 properly 
contains \l3 and contains~. Since \l3 is maximal in U, it follows 
that ~i ¢ U which means that ~i n S ;;e 0. Let Si e ~i n S. If 
we take into account the form of the elements of ~i we see that 
Si = Xiai + Pi where Xi eo and Pi e \l3. Then 

(36) 

where p e \l3. Since S is multiplicatively closed, s e S. If ala2 e \l3, 
then (36) implies that s e'.J3 contrary to'.J3 n s = JZJ. Hence we see 
that ala2 ¢ \l3 so we have shown that al ¢ \l3, a2 ¢ \l3 implies ala2 ¢ \l3. 
Hence \l3 is a prime ideal satisfying the required conditions. 

We can now prove 

Theorem 12. Let ~ be an ideal in the commutative ring o. Then 
the radical jR(~) = n \l3 the intersection of the prime ideals \l3 con
taining ~. 

Proof. Let a e jR(~) and let \l3.be a prime ideal containing~. A 
suitable power an e ~ so an e \l3. Since \l3 is prime, this implies 
that a e \l3. Hence jR(~) C \l3 and jR(~) C n \l3 for the prime ideals 
\l3 containing~. Next let a ¢ jR(~) and let S = {an, n = 1,2, 
... }. Then S n ~ = fZf and S is multiplicatively closed. Hence 
the lemma implies that there exists a prime ideal \l3 containing ~ 
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such that a ¢ 1l3. Hence a is not contained in the intersection of the 
prime ideals containing~. Thus we have proved that n Il3 c 
~(~) and so by the earlier inclusion, ~(~) = n 1l3. 

Theorems 11 and 12 imply the 

Hilbert Nullstellensatz. Let ~ be an ideal in the polynomial 
algebra <I>[Xh X2, .. " xn], <I> a field, Xi indeterminates, and let 12 be 
the algebraic closure oj <1>. Then a polynomial g(Xh .. " Xn) e ~(~) 
if and only if g(~l' .. " ~n) = 0 jor every zero (~h .. " ~n), ~i e 12, oj 
the ideal ~. 

Proof. Let V denote the set of zeros (~h .. " ~n), ~i e 12, of ~. 
Suppose g(Xh .. " Xn) e ~(~). Then gn e ~ for some positive 
integer n. Hence g(~h .. " ~n)n = 0 for every (~i) e V and 
g(~h .. " ~n) = 0 for every (~i) e V. Conversely, let g(Xh .. " Xn) 
be a polynomial such that g(~h .. " ~n) = 0 for every (~i) e V. 
Let Il3 be a prime ideal con taining ~ and let W be the set of zeros of 
1l3. Since Il3 ~ ~, W c V and consequently g(~h .. " ~n) = 0 for 
every (~i) e W. It follows from Theorem 11 that g(Xh .. " Xn) e 
1l3. Thus g is contained in every prime ideal containing ~ and so, 
by Theorem 12, g e ~(~). This completes the proof. 

We shall give next an application of the existence of an alge
braic zero of a prime ideal to a theorem on finite generation of a 
field. We recall that we saw long ago (Lemma 2, § 1.5) that, if 
"Yh "Y2, .. " "Yn are algebraic over <1>, then the field P = <1>( "Yh "Y2, 
.. " "Yn) coincides with the algebra <I>["Yh "Y2, .. " "Yn] generated 
by the "Yi. We can now prove the following converse of this result. 

Theorem 13. Ij the algebra P = <I>["Yh "Y2, .. " "Yn] over <I> gener
ated by the "Y i is a field, then the "Y i are algebraic over <1>. 

Proof. Let <I>[Xh X2, .. " Xn] be the polynomial algebra over <I> in 
indeterminates Xi and consider the homomorphism of this algebra 
onto P/<I> mapping Xi ~ "Yi, 1 ~ i ~ n. Let Il3 be the kernel of 
the homomorphism. Since P is a field, Il3 is a maximal ideal. If 12 
is the algebraic closure of <1>, then we have seen that we can find 
(~h ~2' .. " ~n) in 12 such that j(~h .. " ~n) = 0 for every j e 1l3. 
By IV of the Introduction we have a homomorphism of P = 
<l>hh "Y2, •• " "Yn] over <I> onto <I>[~h ~2' •• " ~n] such that "Yi ~ ~i, 
1 ~ i ~ n. Since P is a field, this homomorphism is an isomor-
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phism. Since ~i is algebraic, it follows that 'Yi is algebraic, 1 ::; 
i ::; n. 

EXERCISE 

1. Let P = cf>hl, 'Y2, .• " 'Ynl be a finitely generated commutative algebra 
over cf> and let m be the ideal of nilpotent elements. Show that m is the inter
section of the maximal ideals of '.}3. 

13. Application of the extension theorem: integral closure. We 
shall apply the extension theorem next to obtain an important 
characterization of the integral closure of a subring of a field. Let 
g be a subring of the field <1>. We recall that an element a e <I> is 
called integral over g or g-integral if there exists a polynomial 
f(x) e g[x] with leading coefficient 1 such thatf(a) = O. The set 
@ of elements of <I> which are g-integral is called the integral 
closure of g in <1>. We shall characterize this set. In the proof we 
shall need the following 

Lemma 1. If 0 is a commutative ring (with an identity 1), any 
proper ideal ~ of 0 can be imbedded in a maximal ideal. 

Proof. The proof is obtained as a special case of the argument 
in the proof of Lemma 1 of § 12. We let S = {II, so S is mul tipli
catively closed and S n ~ = 0. Let U be the set of ideals sa such 
that sa ~ ~ and sa is proper (so that sa n S = 0). Then U con
tains a maximal element '.}3. It is immediate that '.}3 is a maximal 
ideal con taining ~. 

Theorem 14 (Krull). Let g be a subring containing 1 in a field <1>. 
Then the integral closure @ of g in <I> is n 0, the intersection of all the 
valuation rings of <I> which contain g. 

Proof. Let a e @ so that we have a relation an + 'Ylan-l 
+ ... + 'Yn = 0, n 2:: 1, 'Yi e g. Let tp be a valuation whose valua
tion ring 0 contains g. If a ¢ 0, then tp(a-:l ) < 1. But 1 
-'Yla-l - ... - 'Yna-n and tp('Yi) ::; 1. Hence every tp('Yia-i) < 
1 and this is impossible since the relation gives 1 = tp(l) ::; 
max (tp('Yia-i» < 1. Hence a eo so we have proved that @ is con
tained in n 0 for the valuation rings containing g. Next suppose 
a ¢ @. Then a-I is not a unit in the ring g[a-l], since otherwise 
its inverse a = 'Yol + 'Yla-l + ... + 'Yn_Ia-(n-I), 'Yi e g, and hence 
an = 'Yoan- l + 'Ylan - 2 + ... + 'Yn-l so a e @. Since a-I is not 
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a unit in g[a-1], the principal ideal a-1g[a-1] is properly contained 
in g[a-1]. By Lemma 1 there exists a maximal ideal m in g[a-1] 

containing a-1g[a-1]. Then g[a-1]/m is a field which can be im
bedded in an algebraically closed field n. The canonical homo
morphism of g[a-1] onto g[a-1]/m can be considered as a homo
morphism of g[a-1] into n. The extension theorem gives an u
valued place g; whose valuation ring 0 contains g[a-1]. The 
ideal \l of non-units of 0 contains m, hence, a-I. It follows that 
a ¢ o. Thus a ¢ @ implies a ¢ n 0 for the valuation rings 0 con
taining g. We therefore have @ = n 0 and the proof is complete. 

The subring g is called integrally closed in ct> if @ = g. Then 
we have the following 

Corollary. Ij g is a subring oj ct>, then the set @ oj g-integral ele
ments is a subring oj ct> containing g and @ is integrally closed in ct>. 

Proof. The first statement is clear since @ is an intersection of 
subrings of ct> and since @ certainly contains g. Also the set of @

integral elements is the intersection n 0 for the valuation rings 
containing @ and hence containing g. On the other hand, if 0 is a 
valuation ring containing g, then 0 :::> @. Hence the intersection 
of the valuation rings containing @ is the same as that of the 
valuation rings containing g, so this is @. Hence @ is integrally 
closed. 

EXERCISES 

1. (Artin). Let g be a subring of a field and let a1, a2, .. " aT be elements of <1>. 
Suppose that for each i there exists a positive integer ni such that aini = 
PiCa1, a2, .. " aT) where Pi is a polynomial of total degree < ni. Show that every 
ai is g-integral. 

2. (Artin). Let g be as in ex. 1 and let m be a subring of <I> which is a finitely 
generated g-module. Show that every element of m is g-integral (cf. Vol. I, p. 
182). 

3. A commutative integral domain g is called integrally closed if it is integrally 
closed in its field of fractions. Show that if g is Gaussian (that is; unique facto
rization holds), then g is integrally closed. 

4. (Cohn). Show that a sub algebra 2( of <I>[x], <I> a field, x an indeterminate, 
has a single generator if and only if 2( is integrally closed. (Hint: Use Liiroth's 
theorem and Th. 14.) 

14. Finite dimensional extensions of complete fields. In the 
remainder of this chapter we return to the consideration of real 
valuations (archimedean as well as non-archimedean). We shall 
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begin by considering the problem of extending a valuation on a 
complete field <I> to a finite dimensional extension field. Our first 
objective is to prove uniqueness of the extension. For this we re
qUlre 

Lemma 1. Let <I> be complete with respect to a non-trivial real 
valuation cp and let P be an extension field of <I> with a valuation cp 
which is an extension of that of <1>. Suppose Uh U2, .. " Ur are ele
ments of P which are <I>-independent. Then a sequence {an}, an = 

r 

L: aniUi, ani e <1>, is a Cauchy sequence in P if and only if the r 
i=1 
sequences {ani}, i = 1, 2, ... ,r, are Cauchy sequences in <1>. 

Proof. It is immediate that, if the {ani} are Cauchy sequences, 
then so is {an}. Conversely, suppose {an} is Cauchy. If r = 1, 
then it is clear that {and is Cauchy. We shall now prove our 
assertion for arbitrary r by induction. If the sequence {anr } is a 
Cauchy sequence, then the sequence Ibn}, bn = an - anrUr is a 

r-l 
Cauchy sequence. Since bn = L: anjUj the required result follows 

1 

by induction. The proof will now be completed by showing that 
the assumption that {anr } is not Cauchy leads to a contradiction. 
We make this assumption. Then there exists a real E > 0 such 
that for any positive N there exist p, q > N such that cp(apr -
aqr) > E. Hence there exist pairs of positive integers (Pk, qk), PI 
< P2 < "', ql < q2 < .. , such that cp(aPkr - aw ) > E. Then 
(apkr - aqkr) -1 exists and we can form the sequence {bd where 

(37) 

_ 1 . 
We have cp(apkr - aqkr) 1 < - and tap - aq } IS a null sequence. 

E k k 
r-l 

Hence {bd is a null sequence. On the other hand, bk = L: {3kjUj 
j=l 

+ Ur and this implies that, if Ck = };{3kjUj, then {Ck} is a Cauchy 
sequence. Then the r - 1 sequences {{3kj},} = 1,2", ',r - 1, 
are Cauchy sequences. Since <I> is complete, lim {3kj = {3j exists. 

r-l r-l 
Since lim bk = 0 we get from bk = L: {3kjUj + Ur, 0 = L: {3jUj 

1 1 
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+ ur• This contradicts the linear independence of the u's and 
completes the proof. 

We note two important consequences of this lemma: (1) If {an} 
is a null sequence, then all the sequences {ani} are null sequences. 
(2) If [P: 4>] < 00, then P is complete. The first of these is clear 
since the {ani} are Cauchy sequences. Hence lim ani = ai exists 
and X,aiui = O. Hence every ai = 0 by the linear indepen
dence of the Ui. To prove the second statement we suppose 
that (Uh U2, "', ur) is a basis. Then if {an} is Cauchy, every 
{ ani} is Cauchy and so lim ani = ai exists and lim an = X,aiui. 

We can now prove 

Theorem 15. Let P be a finite dimensional extension field of a 
field which is complete with respect to a non-trivial real valuation l{). 
Then if l{) can be extended to a real valuation of P, this valuation is 
unique and is given by the formula 

(38) 

Proof. Assume the extension l{) exists and suppose there exists a 
peP such that (38) does not hold. Then l{)(pn) ~ l{)(N(p)), so 
p ~ 0 and either l{)(pn) < l{)(N(p)) or l{)(pn) > l{)(N(p)). By re
placing p by p-l, if necessary, we may suppose cp(pn) < cp(N(p)). 
Set 17 = pnN(p)-l. Then l{)(u) < 1 and N(u) = N(pn)N(p)-n 
= 1. Since l{)(u) < 1, we have lim 17k = O. If (Uh U2, .. " un) is a 

n 

basis and 17k = L: akiUi, then lim 17k = 0 implies that lim aki = 0 
i=l 

for every i. Since the norm of an element E = X,'YiUi, 'Yi e 4>, is a 
homogeneous polynomial of the n-th degree in the 'Yi with fixed 
coefficients, it is clear that lim aki = 0 for every i implies that 
lim N(uk) = O. This contradicts N(uk) = N(U)k = 1. 

We have seen before that any non-archimedean real valuation 
on a subfield can be extended. Hence in the non-archimedean 
case the formula (38) provides a valuation for the finite dimen
sional extension P. It remains to consider the archimedean case. 
The extension theorem in this case will be obtained by a complete 
determination of the fields which are complete with respect to an 
archimedean real valuation. We shall show that the only such 
fields are the field of real numbers and the field of complex numbers. 
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Lemma 2. Let P be a quadratic extension of a field <I> which is 
complete with respect to a real archimedean valuation 11'. Then II' can 
be extended to a valuation of P. 

Proof. We recall that the existence of an archimedean valua
tion implies that the characteristic is O. Hence P is Galois over <1>. 
Let a ~ a be the au tomorphism of P / <I> which is not the iden ti ty. 
Then the trace and norm of a e Pare T(a) = a + a, N(a) = aa 
and we have a 2 - T(a)a + N(a) = 0 for any a e P. We shall 
show that ip(a) == ip(N(a))%. defines a valuation of P. If a e <1>, 
N(a) = a 2. This implies that the mapping II' defined on P is an 
extension of the II' which is given on <1>. We evidently have ip(a) = 
o only if a = 0 and the multiplicative property of the norm implies 
that ip(a{3) = ip(a)ip({3). Hence all one needs to show is: ip(a + (3) 
~ ip(a) + ip({3). This will follow if we can show that ip(a + 1) ~ 
ip(a) + 1; for, ip(a + (3) ~ ip(a) + ip({3) is clear if {3 = 0, and if 
(3 ¢ 0, then 

ip(a + (3) = ip«a{3-1 + 1){3) = ip(a{3-1 + l)ip({3). 

Hence, if ip(a{3-1 + 1) ~ ip(a{3-1) + 1, then 

ip(a + (3) ~ (ip(a{3-1) + l)ip({3) = (ip(a)ip({3) -1 + l)ip({3) 

= ip(a) + ip({3). 

Now ",(a + 1) :::; ip(a) + 1 holds if a e <I> so we suppose that 
a ¢ <1>. Then P = <I>(a) and x 2 - T(a)x + N(a) is the min
imum polynomial of a and N(a + 1) = (a + 1)(a + 1) = aa 
+ a + a + 1 = N(a) + T(a) + 1. Hence ip(a + 1) :::; ip(a) 
+ 1 is equivalent to ip(a + 1)2 :::; ip(a)2 + 2ip(a) + 1 and to 

(39) 11'(1 + T(a) + N(a)) ~ 1 + 2ip(N(a))%. + ip(N(a)). 

If we use the addition property of II' in <I> it is clear that (39) will 
hold if ip(T(a)) ~ 2ip(N(a))%.. Hence we suppose that ip(T(a)) 
> 2ip(N(a))%., or ip(T(a))2 > 4ip(N(a)). We write a = T(a), 
b = N(a), so we are assuming ip(a)2 > 4ip(b). We shall show 
that this implies that a e <I> which will contradict our assumption. 
Hence the proof will be completed by proving 

Lemma 3. Let <I> be a field which is complete relative to a real 
valuation II' and let x 2 - ax + b = 0 be an equation with coefficients 
a, b in <I> such that II' (a) 2 > 4ip(b). Then the equation has roots in <1>. 
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Proof. A non-zero root a of this equation will be a root of 
a = a - ba-1. We shall obtain such a root as a limit of a 
sequence {an I where an is defined recursively by a1 = ta, an+1 = 
a - ban -1. We show first that no an = 0 so the definition works 
for all n. We have ip(a1) = tip (a) > 0 and we may suppose that 
ip(an) ~ tip(a). Then 

ip(an+1) = ip(a - ban -1) ~ ip(a) - ip(b)ip(an)-l 

~ ip(a) - 2ip(b)ip(a)-1 

~ ip(a) - tip(a)2ip(a)-1 = tip(a). 

Hence ip(an) ~ tip (a) > 0 holds for all n = 1,2,3, ... and every 
an =;t!: o. Now we have an+2 - an+1 = ban+I-1an -1(an+1 - an); 
and ip(an+1)-lip(an)-1 :::; 4ip(a)-2; hence 

(40) 
4ip(b) 

ip(an+2 - an+1) :::; ip(a)2 ip(an+1 - an). 

If we set r = 4ip(b)jip(a)2 we have 0 :::; r < 1 and we may iterate 
(40) to obtain ip(an+2 - an+1) :::; rnc where c = ip(a2 - a1). This 
inequali ty implies easily that {an} is a Cauchy sequence. Hence 
a = lim an exists and since ip(an) ~ tip (a) > 0, a =;t!: O. Hence 
the recursion formula an+1 = a - ban -1 gives a = a - ba-1 so 
a2 - aa + b = O. 

We are now ready to prove 

Theorem 16 (Ostrowski). The only fields which are complete 
relative to a real archimedean valuation are the field of real numbers 
and the field of complex numbers. 

Proof. Le~ cf? be complete relative to the archimedean valua
tion 11'. Then cf? is of characteristic 0 and so it contains the ra
tionals. Since any real archimedean valuation of the rationals is 
equivalent to the absolute value valuation and cf? is complete, it is 
clear that cf? contains the field of real numbers. If cf? contains an 
element i such that i2 = -1, then cf? contains the field C of com
plex numbers. Otherwise, we adjoin i to cf? and obtain cf?U) which 
contains C. By Lemma 2, II' can be extended to a real valuation 
of cf?(i). Also we have seen that cf?U) is complete. The theorem 
will therefore follow if we can show that, if cf? is complete with 
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respect to an archimedean valuation and <I> ::> C, then <I> = C. 
Since the restriction of ep to the real subfield (the completion of 
the rationals) is equivalent to the absolute value valuation, 
Theorem 15 shows that ep is equivalent to the absolute value 
valuation on C. 

Now suppose <I> ::> C and let a e <1>, ¢ C. Let r = inf ep(a - c) 
for c e C. Then we claim that there exists a Co e C such that 
ep(a - co) = r. First, it is clear that r = inf ep(a - c) for all c 
such that ep(a - c) ~ r + 1 and, if CI and C2 are two complex 
numbers satisfying ep(a - CI) ~ r + 1, ep(a - C2) ~ r + 1, then 
ep(CI - C2) ~ 2r + 2. Hence the c satisfying ep(a - c) ~ r + 1 
form a closed and bounded set in C. Since ep(a - c) is a con
tinuous function of c it is clear that there exists a Co such that 
ep(a - co) = r. Since a ¢ C we have r > O. If we replace a by 
a - Co we may assume that Co = O. Then we have ep(a) = r > 0 
and ep(a - c) ~ r for every c e C. We shall now show that we 
have ep(a - c) = r for every complex c with ep(c) < r. To see 
this we let n be any positive integer and we consider an - cn = 
(a - c)(a - EC) ... (a - En-IC) where E is a primitive n-th root 
of 1 con tained in C. Then 

ep(a -:- c)ep(a - EC) ... ep(a - En-IC) 

= ep(an - cn) ~ ep(a)n + ep(c)n. 

Since ep(a - EkC) ~ r, we obtain 

ep(a - c) ~ r(1 + (ep~)r), 

so if ep(c) < r, then lim (1 + (ep~)r) = 1 gives the asserted re

lation ep(a - c) = r. We can now replace a by a - c for any c 
such that ep(c) < r and we obtain ep(a - 2c) = r. If we repeat 
this process we obtain ep(a - nc) = r for all n = 1,2, ... and all c 
such that ep(c) < r. This amounts to saying that ep(a - c) = r if 
ep(c) < nr and, since n is arbitrary, we have ep(a - c) = r for all 
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c e C. Then if Cl) C2 e C, r,o(C1 - C2) ~ r,o(a - C1) + r,o(a - C2) 
21" which is absurd since r,o is equivalent to the absolute value 
valuation on C. Thus we must have C = cf? and the theorem is 
proved. 

The extension theorem for valuations for complete fields relative 
to an archimedean valuation becomes trivial in view of Ostrowski's 
theorem. If cf? is complete relative to an archimedean valuation, 
then cf? is either the reals or the complexes. In the first case, the 
only finite dimensional extensions are cf? and the field of complex 
numbers. In the second, the only possibility is cf? In all cases the 
extension theorem is clear. If we combine this with the earlier 
results we obtain the following 

Theorem 17. Ij cf? is complete relative to a real valuation r,o and P 
is a finite dimensional extension oj cf?, then the valuation can be ex
tended in one and only one way to P. The extension is given by the 
jormula (38). Moreover, P is complete relative to its valuation. 

15. Extension of real valuations to :finite dimensional extension 
fields. We now take up the problem of determining all the ex
tensions of a real valuation defined in a field cf? to a finite dimen
sional extension field P Icf? The case in which cf? is complete has 
been treated in the last section. We shall use the result obtained 
there to treat the general case. Let <P be the completion of cf? rela
tive to r,o and denote the valuation in I) which extends that in r,o 
by ip. Now suppose (E, s, t) is a field composite of P/cf? and 1)/cf?: 
E is a field over cf?, sand t are isomorphisms of PI cf? and I) I cf? 
respectively into E/cf?, and E is generated by p. and I)t. Since 
[P: cf?] = n < 00 we have [E: I)t] ~ n < 00. The valuation ip in <P 
can be transferred to ~t by defining ipt(at) = cp(a), a e I). Clearly 
ipt coincides with r,o on cf? Since ~ is complete relative to ip, it is 
clear that I)t is complete relative to ipt. Since E is a finite dimen
sional extension of I)t, the real valuation CPt has a unique extension 
to a real valuation", on E. Let 1/1. be the restriction of '" to the 
subfield p. and transfer 1/1. to P by t/;(p) = 1/I.(p.). Then it is clear 
that 1/1 is a real valuation on P which extends r,o. 

Thus we have a process for associating with every composite 
(E, s, t) of P and ~ a real valuation 1/1 on P which extends r,o. We 
shall show that this correspondence between the composites and 
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the extensions of the valuations is 1-1 and surjective, if we identify 
equivalent composites. First, suppose the two composites 
(El, Sl, 11) and (E2' S2, 12 ) of P/<I> and ~/<I> are equivalent. Then 
we have an isomorphism u of Ed<l> onto E2/<I> such that atlu = 
at2, a e ~ and pSlU = pS2, peP. For the valuations on q,tl and ~t2 
we have <Pt2(at2) = <p(a) = <Ptl(atl). Hence <Pt2(atlU) = <Ptl(atl). 
Let IP1 and IP2 be the valuations of E1 and E2 respectively, which 
extend <Ptl and <Pt2' Now IP2'("(1 U) = IP1("(1), "(1 eEl, defines a real 
valuation on E2 such that for atlU(e q,t2) we have IP/(a tlU) = 
IP1(a tl ) = <Ptl(atl ) = <Pt2(atlU). Thus IP2' is an extension of the 
valuation <Pt2 on ~t2. Since ~t2 is complete, this eJ,l:tension is unique 
and so it coincides with IP2' Hence we have IP1 ("(1) = IP2( "(1 U) for 
every "(1 eEl' This implies that the restrictions 1/Isl and 1/182 to 
p8l and p82 satisfy 1/I8JpSl) = 1/I82(p8lU) = 1/I82(pS2). Hence the cor
responding valuations 1/11 and 1/12 on P satisfy 1/I1(P) = 1/I8l(P·l) = 
1/I82(pS2) = 1/I2(p), Thus equivalent composites give the same val
uation. 

Conversely, assume 1/I1(p) = 1/I2(P) for the valuations 1/11, 1/12 of P 
determined by the composites (El, Sl, 11) and (E2' S2, 12)' Then 
we have 1/181 (p.l) =1/IS2(pS2),peP. NextweobservethatEi,i = 1,2, 
is the closure of p.' in the topology defined by the valuation in E i • 

Clearly, this closure contains cf>t, and pS', hence Ei, since this field 
is generated by ~t, and PS'. It is now clear that Ei is a completion 
of pSi relative to the valuation 1/1., in the sense of Definition 5. 
Consequently, by Theorem 6, the isomorphism p., ~ p.2 of PSI 
onto P S 2 has a unique extension to an isometric isomorphism u of 
E1 onto E2. We have 1/11("(1) = 1/12("(1 U) for the valuations 1/Ii of Ei 
and pSlU = pS 2. Since ~t, is the closure of <I> in Ei and since u is the 
identity on <1>, it is clear that u maps ~tl onto ~t2. Hence the re
striction of u to ~tl is an i.sometric isomorphism which is the 
identity on <1>. On the other hand, the mapping atl ~ at2 has 
these same properties since iptl(a tl) = ip(a) = ipt2(at2). Hence by 
Theorem 6, atl ~ a t2 coincides with the mapping u. Hence we 
have atlu = at2 and so (E l, Sl, 11) and (E2' S2, 12) are equivalent. 

I t remains to show that every valuation 1/1 on P which is an ex
tension of cp can be obtained from a composite in the manner 
indicated. To see this we let E he the completion of P relative to 
1/1 and let S denote the canonical imbedding (isomorphism) of P 
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into E. Now we have an isomorphism t of the completion ~ into 
the closure of tl> in E. The subfield of E generated by <l>t and p 8 

is a finite dimensional extension of <l>t, so it is complete relative to 
the valuation obtained from E. It follows that this coincides 
with E. Hence we have a composite (E, s, t) and one checks that 
the valuation of P obtained from this composite is the given 
valuation t/I. We can now state the following 

Theorem 18. Let P be a finite dimensional extension field oj a 
field tl> with a real valuation cp and let cP be the completion oj tl>. Then 
the extensions oj cp to valuations t/I in P are in 1-1 correspondence 
with the equivalence classes oj composites (E, s, t) oj PI tl> and cPo 

In § 1.16 we have established a 1-1 correspondence between the 
equivalence classes of composites (E, s, t) and the maximal ideals 
of the algebra <I> ®<I> P. We have seen that, if 3 is a maximal ideal 
in <I> ® P, then this determines a composite whose field is E = 
(~ ® P)/3. Distinct 3 give inequivalent composites and every 
composite is equivalent to one obtained from a maximal ideal 3. 
We have seen also that the number of maximal ideals is finite and, 
if 31) 32, ... , 3h are the distinct maximal ideals in ~ ® P and 
9l = n 3;, then (<I> ® P)/91 = EtEB E2 (fl ... (fl Eh where Ej ~ 
(<I> ® P)/3j. The field Ej is the completion of P relative to a 
valuation t/lj. We shall call [Ej: <1>] = nj the local dimensionality of 
P determined by t/lj. Then we have 

"I,nj = [(el> ® P): <1>] - [m: ell] 

(41) = [P:tl>] - [m:<I>] 

= n - [91:<I>] :::;; n. 

Moreover, "I,nj = n if and only if 9l = O. Since cP ® P can be 
considered a finite dimensional algebra over <1>, VII of the Intro
duction implies that (<I> ® P) 13 is a field if and only if it is an 
integral domain. Hence 3 is maximal in (<I> ® P) if and only if 3 
is prime. Hence, by Theorem 12, n 3j = 9l is the radical of the 
algebra <I> ® P, that is, m is the set of nilpotent elements of el> ® P 
and 9l = 0 if and only if ell ® P has no non-zero nilpotent ele
ments. If P is separable over tl> we have cP ®<I> P = El EB E2 
(fl .. 'EB Eh where the Ejltl> are fields which can be determined ex-
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plicitly from the minimum polynomialf(x) of a primitive element 
() of P over <I> (§ 1.16). Since a direct sum of fields contains no 
non-zero nilpotents, it is clear that!fj ® P has zero radical 91 if Pis 
separable over <1>. Consequently, the formula (41) becomes 

(42) n = "1:,nj 

in this case. 

EXERCISE 

1. Determine the number of extensions of the p-adic valuation of the rationals 
to the cyclotomic field of 5-th roots of 1 for p = 3, 5, 11. 

16. Ramification index and residue degree. Let <I> be a field 
with a non-trivial non-archimedean real valuation 'P and let 'Y 
be the value group, oh the residue field of <I> relative to 'P (§ 5). 
Suppose P is a finite dimensional extension field, t/t an extension of 
the valuation 'P to P, r the corresponding value group, ,0/\.13 the 
residue field of P. Since ,0 and \.13 are the sets of elements P satis
fying t/t(p) ~ 1, t/t(p) < 1 respectively it is clear that 0 ~ ,0 and 
~ = 0 n \.13. Hence we can identify the residue field oh with the 
subfield (0 + \.13)/\.13 of the residue field ,0/\.13. In this way we can 
consider the dimensionality [,0/\.13 :oh] = f which we shall call the 
residue degree of the valuation t/t of the extension P /<1>. It is clear 
also that the value group 'Y is a subgroup of r and we shall call the 
index e of'Y in r the ramification index of t/t. If peP then we can 
multiply P by a suitable non-zero element of ~ to obtain an 
element of \.13. Hence we can choose elements of \.13 as representa
tives of the cosets of'Y in r. Both the residue degree and the 
ramification index are finite and, in fact, we have 

Lemma 1. ef ~ n = [P: <1>]. 

Proof. Let Ph P2, .. " Pit be elements of ,0 which are linearly 
independent over (0 + \.13)/\.13. Thus if ai are elements of 0 and 
"1:,aiPi e \.13, then every ai e~. Let 71"1, 71"2, •• " 71" el be elemen ts of \.13 
such that the cosets t/t(7I"1h, .. " t/t(7I"elh are distinct in r /'Y. We 
assert that the edl elements Pi7l"j are <I>-independent. Thus sup
pose "1:,aijPi7l"j = 0 where the aij e <1>. We shall show first that, if 
the ai e <I> and "1:,aiPi ~ 0, then t/t("1:,aiPi) e 'Y. If "1:,aiPi ~ 0, then 
some Pii ~ 0 and we may assume that 0 ~ t/t(al) ~ t/t(ai)' Then 
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if (3i = aial -1, if;({3i) ~ 1, so {3i is in the valuation ring 0 of cpo We 
have ~aiPi = al (~(3iPi)' Also if;(~{3iPi) ~ 1 and since {3l = 1 and 
the (3i e 0, it is clear that if;(~{3iPi) < 1 would contradict the 
linear independence of the Pi over (0 + '13)/'13. Hence we see that 
if;(~{3iPi) = 1 and so if;(~aiPi) = if;(al)(if;(~{3iPi)) = if;(al) e 'Y. We 
now return to our relation ~aiiPi7ri = 0, aii e <1>. Assume there 
exists a j so that if;(~aiiPi) ~ O. Then we have distinct j, say 
j = 1,2, so that if;(~ailPi7rl) = if;(~ai2Pi7r2) ~ 0 (ex. 2, § 1). Then 
if;(~ailPi)if;(7rl) = if;(~ai2Pi)if;(7r2) ~ 0 and the cosets 'Yif;(7rl) = 
-rif;(7r2) by the result we have proved. This contradicts the choice 
of the 7r's. Hence we see that we must have if;(~aiiPi) = 0 or 
~aiiPi = 0 for every j. The argument used before based on the 
linear independence over (0 + '13)/'13 of the Pi now implies that 
every aii = O. This proves our assertion that the edl elements 
Pi7ri are <I>-independent. Hence edl ~ n. Evidently the defini
tions of el andjl now imply that if ~ n. 

Lemma 2. if = n if cp is discrete and <I> is complete relative to cpo 

Proof. Since cp is discrete the valuation if; in P is discrete. 
Moreover, P is complete. The groups 'Y and r are cyclic and r /'Y 
is cyclic of order e. Let 7r and (3 be elements of '13 and p respec
tively such that if;(7r) and if;({3) = cp({3) are maximal. Any non
zero element of P has the form E7rk where if; ( E) = 1 and k = 0, 
± 1, ± 2, .. '. Hence if; ( 7r) is a generator of r. If {3 = 717re' where 
if;(71} = 1 and e' > 0 since (3 e p C '13, then if;(7r)e l e'Y so e' is divis
ible by the order e of the coset if;(7r)-y. On the other hand, if;(7r)e = 
if; ( 7re) = if;({3'} for some {3' e p and (3' = r{3k where if;(r) = 1. 
Hence if;(7re) = if;({3k) = if;«717re/ )k) = if;(7re1k). Hence e = e'k. It 
follows that k = 1, e' = e, and so we have the relation (3 = 717re, 
if;(71) = 1, e th~ order of r/'Y. Let Ph P2, .. " PI be elements of D 
such that the cosets Pi + '13 form a basis for the field D/'13 over the 
subfield (0 + '13)/'13 ::: o/p. We shall show that the elements 
Pi~' 1 ~ i ~ j, 0 ~ j ~ e - 1 form a basis for P over <1>. Since 
rf;(7r)-y is of order e, if;(1), if;(7r), .. " if;(7re- l) are in distinct cosets 
relative to 'Y; hence the proof of Lemma 1 shows· that the elements 
Pi7ri are <I>-independent. It remains to show that every element of 
P is a <I>-linear combination of these elements and we shall show 
first that every element of D is a linear combination with co-
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efficients in 0 of the elements Pi-rrI. Let v e O. Then tf;(v) = 
tf;(7rk) for some k 2 O. We can write k = mle + il where ml 2 
0, 0 ~ il ~ e - 1. Then tf;(v) = tf;({3ml7rh ) so JL = ((3ml7rh) -lv 
satisfies tf;(JL) = 1. The definition of the Pi shows that there exist 

I 
elements ali eo such that JL - L aliPi e 'l3. Then tf; C1:, a liP i) 

1 

= tf;(JL) = 1 and, if Vl = (3ml-rrIl(JL - ~alip;), then tf;(Vl) < tf;(v). 
We have 

(43) 

We may repeat this argument with Vl and obtain a sequence vI, 

V2, ... such that 

(44) 

where the aki eo, mk 2 0, 0 ~ ik ~ e - 1, tf;C1;akiPi) = 1 and 
tf;(Vk) < tf;(Vk-l)' Then (44) implies that tf;(Vk-l) = tf;({3mk7rik). It 
follows that Vk ~ 0, {3mk ~ 0, and (~akiPi){3mk ~ O. The last 
implies that every infinite series whose terms form a subse
quence of the sequence (~akiPi){3mk, k = 1, 2, converges. 
By (43) and (44) we have 

(45) v = (3ml-rrIl(~aliPi) + (3m27ri2(~a2iPi) + ... 
+ (3mk7rik(~akiPi) + Vk. 

Since Vk ~ 0 and the coefficients of the various powers 7ri , 0 ~ 
i ~ e - 1, in (45) converge, we obtain from (45) that v = ~(3iiPi7ri, 
o ~ i ~ e - 1, where {3ii eo. Now let v be any element of P. 
Then we can find a power of (3 so that v(3-k eO. Then we obtain 
v = (3k(~{3iiPi7ri) where {3ii eo so every element of P is a ~-linear 
combination of the pi7ri. 

We can now prove 

Theorem 19. Let ~ be afield with a non-archimedean real valua
tion. Let P be a finite dimensional extension field of ~, tf;h tf;2, .. " 
tf;h the different valuations of P which extend <p and let ei, fi be the 
ramification index and residue degree of P / ~ relative to tf;i. Then 

h 

(46) L edi ~ n = [P:~] 
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and 

(47) 

holds if P is separable over <I> and cp is discrete. 

Proof. Let Ei be the completion of P relative to t/li. Then for ~ 
the completion of <I> and ni = [Ei:~] we have '1;ni ~ nand '1;ni = 
n for P separable over <1>. Also we have seen in § 5 that Ei and P 
have the same value group relative to t/li and ~ and <I> have the 
same value group relative to cpo Hence the ramification index ei of 
P over <I> relative to t/li is the same as that of Ei over~. Similarly, 
§ 5 and the definitions show that the residue degree Ji of P / <I> 
relative to t/li is the same as that of E/~. By Lemmas 1 and 2 we 
have edi ~ ni and edi = ni if the valuation is discrete. Hence 
'1;edi ~ '1;ni ~ n in every case and '1;edi = '1;ni = n if P/<I> is 
separable and cp is discrete. 

EXERCISE 

1. Determine the residue degrees and ramification indices in the cases given in 
ex. 1 of § 15. 



Chapter J71 

ARTIN-SCHREIER THEORY 

In this chapter we shall consider the theory of formally real 
fields which is due to Artin and Schreier. A basic algebraic 
property of the field of real numbers is that the only relations of 
the form ~exi2 = 0 which can hold in this field are the trivial ones: 
02 + 02 + ... + 02 = O. This observation led Artin and Schreier 
to call any field having this property formally real. Any such 
field can be ordered and, on the other hand, any ordered field is 
formally real. Of central interest in the theory are the real closed 
fields, which are the formally real fields maximal under algebraic 
extension. A real closed field has a unique ordering which can 
be specified by the requirement that ex > 0 in such a field if and 
only if ex = (j2 ~ O. Also, if P is real closed, then P( v=T) is 
algebraically closed. Any formally real field can be imbedded in 
a real closed field which is algebraic over the given field. More
over, if the original field is ordered, then the imbedding can be 
made so that the (unique) ordering in the real closed algebraic 
extension is an extension of that of the given field. Such a real 
closed extension of an ordered field is essentially unique and is 
called the real closure of the ordered field. 

The classical application of the Artin-Schreier theory is to the 
problem of determining which elements of a field are representable 
as sums of squares of elements of the field. For finite algebraic 
extensions of the rationals this has a simple answer which is due 
to Hilbert and to Landau (Th. 11). The theory of formally real 
fields led Artin to the solution of Hilbert's problem on the resolu
tion of positive definite rational functions as sums of squares. 
We shall give a proof of Artin's theorem (Th. 12). 

269 
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The most important development of the theory of formally real 
fields subsequent to the original work of Artin and Schreier is the 
metamathematical principle due to Tarski which asserts that any 
elementary statement of algebra which is valid for one real closed 
field is valid for every real closed field. This is based on an algo
rithm for deciding the solvability in a real closed field of a finite 
system of polynomial equations and inequalities with rational 
coefficients. Such a decision method was given originally by 
Tarski. We shall give an alternative one due to Seidenberg. 

In the last section we shall establish the Artin-Schreier charac
terization of real closed fields as the fields which are not alge
braically closed but are of finite co-dimension in algebraically 
closed fields. 

1. Ordered fields and formally real fields. We have defined 
ordered groups in the last chapter (§ 5.7). In a similar manner 
one has the following 

Definition 1. An ordered field cP is a field cP together with a subset 
P (the set oj positive elements) oj cP such that: (1) 0 ¢ P, (2) Ij a e CP, 
then either a e P, a = 0, or -a e P, (3) P is closed under addition 
and multiplication. 

Since any field contains more than one element, it is clear that 
the subset P is not vacuous. If N denotes the set { - a I a e P}, 
then (2) states that cP = P U to} U N. Moreover, it is clear 
from (1) that P n to} = 0 and N n to} = 0. Also P n N = 
o since, if a e P n N, then -a e P n N and so 0 = a + (-a) e 
P contrary to (1). Hence the decomposition cP = P U to} U N 
is one into non-overlapping sets. It is clear that N is closed 
under addition since (-a) + (-fj) = -(a + fj) eN if a, fj e P. 
On the other hand, (-a)( -fj) = afj e P if -a, -fj eN. 

We can introduce a partial ordering in the ordered field cP (or 
more precisely CP, P) by defining a > fj if a - fj e P. Then if 
a, fj are any two elements of CP, we have the trichotomy: one and 
only one of the relations a > fj, a = fj, fj > a holds. Thus cP is 
linearly ordered by the relation a > fj. If a > fj, then a + 'Y > 
fj + 'Y and ao > fjo if 0 > o. Conversely, we can define an ordered 
field by means of a linear ordering > such that a > fj implies 
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a + 'Y > {3 + 'Y and a5 > {35 if 5 > o. Let P denote the set of 
elements a > O. Then it is immediate that «1>, P is an ordered 
field in the original sense and that the relation> defined by «1>, P 
is the given ordering relation. 

As usual, it is convenient to write a < {3 for {3 > a. The 
elementary properties of the ordering in the field of real numbers 
are readily established. We list some of these: a > 0 implies 
a-I> 0 and a > {3 > 0 implies {3-I > a-I> O. If a > {3, then 
- a < - {3 and, if a > {3 and 'Y > 5, then a + 'Y > {3 + 5. As 
usual, one defines I a I = a if a :::: 0 and I a I = - a if a < 0, and 
one proves that I a + {31 ~ I a I + I {31 and I a{31 = I a I I {31· 

If «1>' is a subfield of an ordered field «1>, P, then «1>' is ordered 
relative to pi = «1>' n P. We shall call this the induced ordering 
in «1>'. Evidently a ' > {3' in «1>', pi if and only if a ' > {3' in «1>, P. 
If «1>, P and «1>', pi are any two ordered fields, then an isomorphism 
s of «I> into «1>' is called an order isomorphism (or an isomorphism 
of the ordered fields) if ps c P'. This implies that NS c N ', the 
set of negatives of the elements of pi and, if s is surjective, then 
ps = pi and NS = N '. 

In any ordered field «1>, a ~ 0 implies a 2 > O. Hence if ah a2, 
... , aT are ~O, then 2;ai2 > O. This shows that any ordered 
field is formally real in the sense of the following 

Definition 2. A field «I> is called formally real if the only relations 
T 

of the form L ai2 = 0 in «I> are those for which every ai = O. 
i=1 

It is immediate that «I> is formally real if and only if -1 is not 
a sum of squares of elements of «1>. If the characteristic of «I> is 
p ~ 0, then 0 = 12 + 12 + ... + 12 (p terms); hence it is clear 
that formally real fields are necessarily of characteristic O. 

In any field «I> let 2;(<<1» denote the subset of elements which are 
sums of squares. Evidently 2;(<<1» contains 0 and is closed under 
addition and multiplication. Moreover, we have seen that «I> is 
formally real if and only if -1 ¢ 2;(<<1». If (3 ~ 0 is in 2;(<<1», then 
(3-I e 2;(<<1»; for, we have {3 = 2;{3i2 and so {3-I = (3({3-1)2 = 
2; ({3i{3-1)2. We note also that, if «I> is not formally real and not of 
characteristic two, then 2;(<<1» = «1>; for, -1 e 2;(<<1» and, if a is any 
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element of <1>, then 

a = c : ay -C ~ ay = c : ay + (-1) C ~ ay 
e ~(<I» since ~(<I» is closed under addition and multiplication. It 
will be useful to state these results on ~(<I» in the following 

Lemma. Let <I> be afield and let ~(<I» be the subset of<l> of elements 
which are sums of squares. Then ~(<I» is closed under addition and 
multiplication and contains f3-1forevery f3 ~ 0 in ~(<I». 1f<l> is not 
formally real and not of characteristic two, then ~(<I» = <1>. 

EXERCISES 

1. Show that the field of rational numbers can be ordered in one and only one 
way. 

2. Show that the field Ro( 0) where Ro is the field of rational numbers has 
exactly two distinct orderings. 

3. Let cP be an ordered field, j(x) = xn + alXn- l + ... + an a polynomial 
with coefficients in CPo Let M = max (1, lall + la21 + ... + Ian/). Show that 
every root ofj(x) in cP is contained in the interval -M ~ x ~ M. 

4. Show that any purely transcendental extension of a formally real field is 
formally real. 

5. Let Ro be the rationals and let cP = Rom where £ is transcendental. Show 
that cP has a non-countable number of distinct orderings. 

6. Let cP be a formally real field and let ~(CPn) denote the set of n X n sym
metric matrices with entries in CPo Show that ~(cpn) is formally real in the sense 
that '1:,Ai2 = 0, Ai e ~(CPn) implies that every Ai = 0. 

7. Let (x,y) be a symmetric bilinear form on an n dimensional vector space m 
over cP where cP is an ordered field. Let llil' 1i2, .. " linl be a diagonal matrix for 
(x,y). Prove the following extension of Sylvester's theorem (Vol. II, p. 156): 
The number of positive Iii is an invariant of (x,y). 

8. An ordered field is called archimedean if, given any a > 0, Ii > 0, there 
exists an integer n such that na > Ii (equivalently, given a > 0, there exists an 
integer n such that n > a). Let P be an ordered field, cP a sub field with the in
duced ordering. Show that P is archimedean if: 1) cP is archimedean and 2) 
[P:CPj < co. (Hint: Use ex. 3.) 

9. Prove that any archimedean ordered field is order isom()rphic to a sub
field of the field R of real numbers (cf. Th. 5.8). 

10. (Cohn). Let cP be ordered with P as the set of positive elements. Show 
that cp(~), ~ transcendental over \f? can be ordered by choosing as set P~ of posi
tive elements those elements which have the form Ii~'ig-l where Ii e P andj and g 
are polynomials in ~ with constant term 1. Show that cp(~) is not archimedean 
ordered. 

11. (Cohn). Let cP be ordered and let ~,1/ be algebraically independent over \f? 
in cp(~, 1/). Order cp(~) as in ex. 10 and then repeat the process for cp(~, 1/) con-
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sidering this as the purely transcendental extension 4>W('7) of 4>(~). Show that 
every element of 4>(~, '7) is majorized by an element of 4>('7) but that there exists 
no element of 4>('7) between ~ and e. 

12. Let P be an ordered field, 4> a subfield. Let p be the set of elements.8 of P 
such that 1.81 < lal for every a ~ 0 in 4> and let 0 = {'Y e PI'YP C pl. Show 
that 0 is a valuation ring in P containing 4> and that P is the ideal of non-units of 
o. Show that the residue field o/p can be ordered by defining l' + p > 0 if 
l' ¢ P and l' > 0 in P. Show that o/p is an extension of 4> (identified with 
(4) + p)/p) which is an archimedean extension of4> in the sense that every interval 
(a, b), a, b e o/p, contains an element of 4>. 

2. Real closed fields. The deeper properties of formally real 
fields concern real closed fields which are defined as follows. 

Definition 3. A field cP is called real closed if cP is jormally real 
and no proper algebraic extension oj cP is jormally real. 

We shall show first that any real closed field can be ordered in 
one and only one way. This is an easy consequence of the following 

Theorem 1. Ij cP is real closed, then any element oj cP is either a 
square or the negative oj a square. 

Proof. Let ex be an element of cP which is not a square. Then 
we can construct the proper algebraic extension 12 = cp(Va). 
This field is not formally real, so there exist {3i, 'Yi not all 0 in cP 
such that ~({3i + 'YiVa)2 = O. This gives ~({3l + 'Ylex) + 
2(~{3i'Yi)Va = O. Since Va ¢ cP we have 2~{3i'Yi = 0 and ~{3l + 
ex~'Yi2 = O. Since cP is formally real, ~'Yl ~ O. Then -ex = 

(~{3?)(~'Yi2)-1. Using the properties of the set ~(cp) of sums of 
squares stated in the lemma of § I, it follows that -ex e ~(cp). 
Since -1 ¢~(cp) by the formal reality of cP this implies that 
ex ¢ ~(cp). Thus we have shown that, if an element of cP is not a 
square, then it is not a sum of squares. In other words, if ex e ~(cp), 
then ex is a square. Moreover, we have seen that, if ex is not a 
square, then -ex e ~(cp) and this now implies that -ex is a square. 
This is what we wished to show. 

We can now prove 

Theorem 2. Any real closed field can be ordered in one and only 
one way. Any automorphism of such afield is an order isomorphism. 

Proof. Let P be the subset of non-zero squares in the real 
closed field CPo Then 0 ¢ P and, if ex ~ 0 and ex ¢ P, then -ex e P 
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by Theorem 1. If a = {32 and 'Y = 02 e P, then a + 'YeP. Other
wise, a + 'Y = - E2 where E e 4>. This gives {32 + 02 + E2 = 0 
contrary to the formal reality of 4>. Hence we see that the sub
set P satisfies the conditions 1, 2, 3 for an ordered field and 4>, P 
is such a field. Let pI be any subset of 4> which gives an ordering. 
If a e P, a = (32 ~ o. Then a > 0 in the ordering given by P'. 
Hence pI :::) P. This implies that pI = P so the ordering in 4> 
is uniquely determined. If s is an automorphism of 4>, then it is 
clear that s maps the set P of non-zero squares into itself. Hence 
s is an order isomorphism of 4>. 

The question of the existence of real closed fields is easily 
settled. In fact, we have the following 

Theorem 3. Let 4> be a jormally real field and let Q be an algebraic 
closure oj 4>. Then Q contains a real closed field Ll containing 4>. 

Proof. We consider the collection of formally real subfields of 
Q containing 4>. This collection is not vacuous since it contains 4>. 
Moreover, it is clear that the collection is inductive, so, by Zorn's 
lemma, it contains a maximal element Ll. If Ll is not real closed, 
then it has a proper algebraic extension Ll' which is formally real. 
Since Q is algebraically closed, we may suppose that Ll' C Q 

(ex. 1, p. 147). This contradicts the maximality of Ll in Q. Hence 
Ll is real closed. 

Evidently Theorems 2 and 3 and the existence of an algebraic 
closure for any field imply the following corollaries. 

Corollary 1. Any jormally real field can be imbedded in a real 
closed field which is algebraic over the given field. 

Corollary 2. Any jormally real field can be ordered. 

If 4> is real closed, then -1 is not a square in 4> so 4>( v'=1) 
:::J 4>. We shall show that 4>( v'=1) is algebraically closed and we 
shall see that this property is characteristic of real closed fields. 
For this purpose we prove first the following result. 

Theorem 4. Ij 4> is real closed, then every polynomial oj odd 
degree with coefficients in <I> has a root belonging to 4>. 

Proof. The result is clear for polynomials of degree 1 and we 
use induction on the degree n of j(x). If j(x) is reducible, one of 
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its factors is of odd degree so it has a root in «1>. Hence we may 
assume j(x) is irreducible. Let il = «1>(0) where j(O) = 0. Then 
il => «1>, so il is not formally reaL Hence we have a relation 
~rpi(0)2 = -1 where rpi(X) is a polynomial in x of degree 5.n - 1. 
The relation indicated implies that ~rpi(X)2 = -1 + j(x)g(x). 
The leading coefficient of ~rpi(X)2 is positive in the ordering in «I> 
and the degree of this polynomial is even and =::;2(n - 1). It 
follows that deg g(x) is odd and =::;2(n - 1) - n = n - 2. 
Hence there exists a f3 e «I> such that g(f3) = 0. Substituting this 
f3 in the relation ~rpi(X)2 = -1 + j(x)g(x) gives ~rpi(f3)2 = -1 
contrary to the formal reality of «1>. 

We shall prove next the following generalization to real closed 
fields of the so-called fundamental theorem of algebra. The proof 
is patterned rather closely after one of Gauss' proofs of the classical 
result. 

Theorem 5. Let ~ be an ordered field such that: (1) positive ele
ments in ~ have square roots in 4>, (2) any polynomial oj odd degree 
with coefficients in 4> has a root in 4>. Then v=T ¢ 4> and 4>( v=T) 
is algebraically closed. 

Proof. Since 4> is real, it is clear that v=T ¢ 4>. Consider 
4>(v=T) => 4>. Let p ~ p be the automorphism of 4>(v=T) 
over 4> such that t = -i for i = v=T. If j(x) e 4>(v' -1)[x], 
then j(x)}(x) e 4>[x], and if this has a root in 4>(v=T), then j(x) 
has a root in 4>( v=T). Hence the algebraic closure of 4>( v=T) 
will follow if we can show that every non-constant polynomial with 
coefficients in 4> has a root in 4>(v=T). This holds by (2) if the 
degree of the polynomial is odd. We show next that every ele
ment of 4>(v=T) has a square root in this field. First, if a e4> 
and a > 0, then, by (1), a = f32, f3 e 4>. Next if a e 4> and a < 0, 
then -a = f32 and a = (v=T)2f32. Now let p = a + f3i, i = 
v=T, a, f3 in 4>, f3 :;e 0. Consider the element ~ + 1/i, ~, 1/ in 4>. 
We have (~+ 1/i)2 = e - 1/2 + 2~1/i so (~+ 1/i)2 = a + f3i IS 

equivalent to 

(1) e - 1/2 = a, 2~1/ = f3. 

Since f3 :;e ° we may (by multiplying by a suitable element of 4» 
assume that f3 = 2, so the second equation becomes ~1/ = 1. This 
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holds if 1/ = ~-1. Then the first equation becomes e - ~-2 = a 
or }. - }. -1 = a for}. = e. Then we have }.2 - a}. - 1 = 0 
which has the solution (a + Va2 + 4)/2 in cJ> since a2 + 4 > o. 
Also a + va2 + 4 > 0 since a + Va2 + 4 ~ 0 leads to 4 ~ O. 
Hence there exists a ~ ~ 0 in cJ> such that e = tea + Va2 + 4). 
Then ~4 - ae = 1 and e - ~-2 = a. Hence ~ and 1/ = ~-1 
satisfy (1) with {3 = 2. We have therefore proved that every 
element of cJ>( v=T) has a square root in this field. Consequently 
there exists no extension field ~ of cJ>( v=T) such that 

[~:cJ>(v=T)] = 2. 

We proceed to use this fact to prove that every polynomial of 
positive degree with coefficients in cJ> has a root in cJ>(v=T). Let 
f(x) be such a polynomial and let E be a splitting field over cJ> of 
(x2 + l)f(x). We may assume that E ::> cJ>(v=T). Since the 
the characteristic is 0, E is Galois overcJ>. Let G be its Galois group 
and let (G: 1) = 2em where m is odd. By Sylow's theorem G has 
a subgroup H of order 2e• Let ~ be the subfield over cJ> of H
invariants. Then [E:~] = 2e and [~:cJ>] = m. Since cJ> has no 
proper odd dimensional extension field we must have ~ = cJ> and 
m = 1. Hence G = H has order 2e• Such a group is solvable. If 
e > 1, it follows easily from Galois theory that E contains a sub
field rover cJ>(v=T) such that [r:cJ>(vi=1)] = 2. This con
tradicts what we proved before. Hence e = 1, so [E :cJ>] = 2 and 
E = cJ>(vi=1). This shows that cJ>(vi=1) is a splitting field of 
(x2 + l)f(x) and thatf(x) has arootofcJ>(vi=1). HencecJ>(vi=1) 
is algebraically closed. 

If cJ> is a real closed field, then we have seen that cJ> can be ordered 
in exactly one way. The proof of Theorem 2 shows that this 
ordering is obtained by specifying that a > 0 if a = {32, {3 ~ O. 
Hence we see that every real closed field is ordered and satisfies 
condition (1) of Theorem 5. Theorem 4 shows that every real 
closed field satisfies condition (2) of Theorem 5. Hence we have 
the following 

Corollary. If cJ> is a real closed field, then v=T ¢ cJ> and cJ>( v=T) 
is algebraically closed. 

We shall prove next the converse of this, namely, 
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Theorem 6. Ij cI> is a field such that v=T ¢ cI> and cI>( vi -1) is 
algebraically closed, then cI> is real closed. 

Proof. Suppose cI> satisfies the conditions. We note first that 
the irreducible polynomials of positive degrees in cI>[x] have degree 
1 or 2. Let j(x) be such a polynomial and let 0 be a root of j(x) 
contained in n = cI>(v=T). Then [cI>(O) :cI>] = deg j(x) and 
[cI>(O) :cI>] ~ [U:cI>] = 2. Hence deg j(x) = lor 2 as asserted. Now 
let a, (3 ~ 0 e cI> and consider the polynomial 

(2) g(x) = (x2 - a)2 + {32 = (x2 - a - {3i)(x2 - a + (3i) 

= (x - (a + {3i)~)(x + (a + (3i)~). 
(x - (a - {3i)~)(x + (a - (3i)~), 

where i = v=T. This polynomial belongs to cI>[x] and has no 
linear factors in cI>[x] since ±a ± (3i ¢ cI>. Hence g(x) is a product 
of two irreducible quadratic polynomials. The one divisible by 
x - (a + (3i)~ cannot be 

(x - (a + {3i)~)(x + (a + (3i)~) = x2 - (a + (3i); 

for, this would imply that a + {3i e cI>. Hence the polynomial in 
question is either 

(x - (a + {3i)~)(x - (a - (3i)~) 
or 

(x - (a + {3i)~)(x + (a - (3i)~). 

Either possibility implies that (a2 + (32)~ e cI>. Since a and (3 were 
arbitrary non-zero elements of cI>, we have proved that the sum 
of two squares of elements in cI> is a square. Induction shows 
that every sum of squares is a square in cI>. Since -1 is not a 
square, this implies that -1 is not a sum of squares in cI> and so cI> 
is formally real. If P is a proper algebraic extension of cI>, then 
P is isomorphic to n = cI>(v=T). Then P is not formally real 
and so cI> is real closed. This completes the proof of Theorem 6. 

The corollary to Theorem 5 and Theorem 6 give the charac
terization of real closed fields by the properties that v=T ¢ cI> 
and cI>(v=T) is algebraically closed. We remark also that there 
is another characterization involved in our discussion, namely, 
an ordered field is real closed if and only if it satisfies conditions 



278 ARTIN-SCHREIER THEORY 

(1) and (2) of Theorem 5, that is, positive elements of <I> have 
square roots in <I> and polynomials of odd degree with coefficients in 
<I> have roots in <1>. This is easily deduced from our results. We 
derive next the following useful consequence of one of our charac
terizations of real closed fields. 

Corollary. If P is a real closed extension field of a field <1>, then 
the subfield A of elements of P which are algebraic over <I> is real 
closed. 

Proof. Let n = P(V-l). Then n is algebraically closed. 
Hence the subfield r of elements of n which are algebraic over <I> 

is algebraically closed. If cx + ,8v=T, cx, ,8 e P, is in r, then so is 
cx - ,8y' -1. Hence cx = t(cx + ,8v=T + cx - ,8v=T) e r. 
Then ,8 e r. Since cx, ,8 e P we see that cx,,8 e A. It follows that 
r = A(y' -1). Since v=T ¢ A, we see that A fulfills the condi
tions of Theorem 6. Hence A is a real closed field. 

EXERCISE 

1. Let n/<I> be algebraically closed, <I> formally real. Show that n/<I> contains a 
real closed subfield P /<1> such that n = P( v=-r). In particular, show that 
every algebraically closed field of characteristic 0 contains a real closed subfield 
P such that n = P( V -1 ). 

3. Sturm's theorem. In this section we shall derive a classical 
result, Sturm's theorem, which permits us to determine the exact 
number of roots in a real closed field of a polynomial equation 
f(x) = O. This result is fundamental in the sequel. In deriving 
it we shall follow rather closely Weber's exposition in Lehrbuch der 
Algebra (1898), Vol. I, pp. 301-313. We shall need first the follow
ing basic result. 

Lemma. Let <I> be a real closed field and f(x) a polynomial with 
coefficients in <1>. Suppose cx and ,8 are elements of <I> such that f(cx) 
< 0 while f(,8) > O. Then there exists a 'Y between cx and ,8 such 
that f('Y) = O. 

Proof. We recall that the only irreducible polynomials in <I>[x] 
are the linear ones and the quadratic ones. Let g(x) = x2 + 
p,x + II e <I>[x] be irreducible. We assert that necessarily p,2 - 4v < 
O. This is clear from the formulas for the roots of a quadratic 
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equation. We can now set 4v - JL2 = 4~2 where ~ is a non-zero 
element of <I> and we have 

(3) g(x) = x2 + JLX + v = (x + ~y + ~2. 
Evidently this formula shows that g('1) > 0 for every '1/ in <I>. 
Now let j(x), a, (3 be as in the statement of the theorem. In 
<I>[x] we have the factorization 

(4) j(x) = p(x - P1)(X - P2)· .. (x - Pk)g1(X) ... gz(x) 

where gi(X) is an irreducible quadratic with leading coefficient 1. 
Suppose none of the Pi is between a and {3. Then for each i, 
a - Pi and {3 - Pi have the same sign (both positive or both 
negative). Since gj(a) > 0 and gj({3) > 0, 1 5, j 5, I, this implies 
that j(a) and j({3) have the same sign, contrary to hypothesis. 
Hence there is a Pi between a and (3. This completes the proof. 

Let <I> be a real closed field and let j(x) be a polynomial of posi
tive degree with coefficients in <I>. Following Weber, we shall say 
that a sequence of polynomials 

(5) jo(x) = j(x), j1 (x), ... , jB(X) 

is a Sturm sequence of polynomials for j(x) for the interval [a, {3] 
(that is, a 5, x 5, (3) if the ji(X) e <I>[x] and satisfy the following 
condi tions: 

(i) jB(X) has no roots in [a, (3]. 
(ii) jo(a) ~ 0, jo({3) ~ o. 

(iii) If 'Y e [a, (3] is a root of jj(X), 0 < j < s, then 

jj-1('Y)ji+1('Y) < 0 

(iv) If j('Y) = 0, 'Y e [a, (3], then there exist intervals 'Y1 5, x < 
'Y and 'Y < x 5, 'Y2 such that jO(X)j1(X) < 0 for x in the 
first of these and jO(X)j1(X) > 0 for x in the second. 
(This amounts to saying that jo(x)ft(x) is an increasing 
function of x at x = 'Y.) 

We shall establish the existence of such sequences for any 
polynomial with distinct roots, but first we shall see how such a 
sequence can be used to determine the number of roots of j(x) in 
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the open interval (a,~) (that is, a < x < ~). We consider the 
number of variations in sign of the sequence 

fo(a), f1 (a), ... , f8(a) 

fo(~), f1 (~), ... , f8(~) 
(6) 

of elements of CPo If 'Y = hI, 'Y2, ... , 'Ym} is a finite sequence of 
non-zero elements of CP, then we define the number of variations in 
sign of'Y to be the number of i, 1 ~ i ~ m - 1, such that 'Yi'Yi+1 
< 0. If 'Y = hh 'Y2, ... , 'Ym} is an arbitrary sequence of ele
ments of CP, then we define the number of variations in sign of 'Y 
to be the number of variations in sign of the abbreviated sequence 
'Y' obtained by dropping the O's in 'Y. For example, 

{1, 0, 0, 2, -1,0,3,4, -2} 

has three variations in sign. 
We can now state 

Theorem 7. Let f(x) be a polynomial of positive degree with co
efficients in a real closed field cP and let fo(x) = f(x), fl (x), ... , 
f8(X) be a Sturm sequence for f(x) for the interval [a, ~]. Then the 
number of distinct roots of f(x) in (a,~) is Va - VfJ where, in 
general V-y denotes the number of variations in sign of the sequence 
{fo('Y), f1('Y), ... , f.('Y)}· 

Proof. The interval [a, ~] is decomposed into subintervals by 
the roots of the polynomials fi(X) of the given Sturm sequence. 
Thus we have a sequence a = ao < al < ... < am = ~ such 
that none of the fi(X) has a root in (ai, ai+l)' Choose a/ e 
(ai-I, ai), 1 ~ i ::; m (e.g., a/ = !(ai-l + ai)) and let Va,' be 
the number of variations in sign of the sequence {fi(a/), j = 
0,1, ... , st. Evidently, 

m-1 
Va - VfJ = Va - Val' + ~ (Va,' - Va,+l') + Va".' - V fJ, 

1 

SO we shall try to compute Va - Val" Va,' - Va,+l" Va".' - VfJ· 
We have fo(a) ~ 0, fo(~) ~ 0, f.(ai) ~ 0, f.(a/) ~ 0. Suppose 
first that no h(a) = 0, ° < j < S. Then h(a)h(al') > ° for 
k = 0, ... , s, since, otherwise, by the lemma, one of the hex) has 
a root in (a, a1') contrary to the property of the intervals (ai, 
ai+l)' Hence we have Va = Val' in the case under consideration. 
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Next let fi(a) = 0 for some}, 0 <} < s. Then fi-l(a)fi+l(a) 
< 0, by (iii). Since !i-leX) and fi(X) have no roots in (a, al), 
we have !i-l(a)fi-l(al') > 0 and fi+l(a)fi+l(al') > o. Hence 
fi-l(al')fi+l(al') < o. It follows that fi-l(a), 0, fi+l(a) and 
fi-l(al'), fi(al'), fi+l(al') contribute the same number of varia
tions of sign to Va and Val' respectively. Taking into account all 
the} we see that Va - Val' = O. A similar argument shows that 
Va",' - V~ = O. Also the same argument shows that, if ai, 1 ~ 
i ~ m - 1, is not a root of f(x) = fo(x) then again V ai , - V ai+!, 

= o. It remains to consider what happens if f(ai) = 0 for 1 ~ 
i ~ m - 1. Then, by (iv) and the choice of the a/, we have 
fo(a/)fl(a/) < 0 and fO(ai+l')ft(ai+l') > o. Then the se
quence fo(a/), fl(a/) has one variation in sign while the sequence 
fO(ai+l'), fl(ai+l') has none. The argument used before shows 
that iJ-l(a/), iJ(a/), fi+l(a/) and fi-l(ai+l'), fi(ai+l'), 
fi+l(ai+l') have the same number of variations of sign if} > 1. 
Hence we see that V ai , - Vai+l' = 1 if f(ai) = o. We have 
therefore shown that V ai , - V ai+l, = 0 or 1 according as f(ai) 
~ 0 or f(ai) = O. Hence 

m-l 

Va - V~ = Va - Val' + 1: (Va;' - Vai+t') + Va",' - V~ 
1 

is the number of ai such that f(ai) = o. 
Now let f(x) be an arbitrary polynomial. We define the 

standard sequence for j(x) by 

fo(x) = f(x), ft(x) = f'(x) (formal derivative of f(x», 

fo(x) = ql(x)fl(X) - f2(X), deg f2 < deg ft 

f.-l(X) = q.(x)f.(x). 

Thus the fi(X) are obtained by modifying the Euclid algorithm 
for finding the highest common factor of f(x) and f'ex) in such a 



282 ARTIN-SCHREIER THEORY 

way that the last polynomial obtained at each stage is the nega
tive of the remainder in the division process. Clearly, f8(X) is 
the highest common factor of f(x) and f'(x) and this is a divisor 
of all the fi(X). Now set gi(X) = fi(X)f8(X) -1 and consider the 
sequence 

(8) go(x), gl(X),"', g8(X). 

We proceed to show that this is a Sturm sequence for go(x) for 
any interval [a,,8] such that go(a) r5- 0, go(,8) r5- O. Clearly (ii) 
in the definition of Sturm sequences is satisfied. Also (i) holds 
since g8(X) = 1. Dividing the polynomials in (7) by f8(X) gives 
the relation gj-l(X) = qj(x)gj(x) - gi+l(X), 0 < j < s. Suppose 
gj('Y) = O. Then gj-l('Y) r5- 0 and gi+l('Y) r5- 0, since otherwise 
the relations indicated would imply that all the gk('Y) = 0 from 
a certain point on contrary to g8(X) = 1. Thus gj-l ('Y)gi+l (1') r5-
o and, sincegj_l('Y) = gj('Y)qj('Y) - gi+l('Y) = -gi+l('Y), we have 
gj-l('Y)gi+l('Y) < 0 and (iii) holds. Now suppose that go (1') = 0 for 
'I' in [a, ,8]. Then we have f(x) = (x - 'Y)eh(x), e > 0, h('Y) r5- 0 
and f'(x) = (x - 'Y)eh'(x) + e(x - 'Y)e-1h(x). Also f8(X) = (x -
'Y)e-1k(x) where k('Y) r5- O. Hence hex) = k(x)/(x) where 1(1') r5-
o and h'(x) = k(x)m(x). These relations give 

go(x) = (x - 'Y)/(x), 1(1') r5- 0 
(9) 

gl(X) = (x - 'Y)m(x) + el(x) 

so gl('Y) = el('Y) ~ O. Now choose an interval [1'1, 1'2] containing 
'Yin its interior such that I(x) r5- 0 and gl (x) ~ 0 in [1'1, 1'2]' Then 
the lemma implies that gl(X) and I(x) are either both positive or 
both negative in [1'1, 1'2] so gl(x)/(x) > 0 in [1'1, 1'2]' Hence 
gO(X)gl(X) = (x - 'Y)gl(x)/(x) has the same sign as x - 'Yin [1'1,1'2] 

so gO(X)gl (x) < 0 in 1'1 ~ x < 'I' and go (X)gl (x) > 0 in 'I' < x ~ 1'2' 
This shows that (iv) holds and so (8) is a Sturm sequence for go(x). 

If f(x) has no multiple roots, then f(x) and f'(x) have 1 as 
highest common factor. Then the sequence l!o(x), f1(X), .. " 
f8(X)} differs from {go(x), gl (x), .. " g8(X)} by a non-zero multi
plier in <1>. Hence the sequence of fi(X) is a Sturm sequence for 
f(x) = fo(x). If f(x) has multiple roots, then the standard se
quence (7) will not be a Sturm sequence for an interval contain
ing a multiple root. Nevertheless, we can still use the standard 
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sequence to determine the number of distinct roots of j(x) in 
(a, (3). This is the con ten t of 

Sturm's theorem. Let j(x) be any polynomial oj positive degree 
with coefficients in a real closedjield <II and let {jo(x) = j(x) , jl(X) = 
j'(X), ... , j,(x)} be the standard sequence (7) jor j(x). Assume 
[a, (3] is an interval such that j(a) ~ 0, j({3) :;e O. Then the number 
oj distinct roots oj j(x) in (a, (3) is Va - VI3 where V-y denotes 
the number oj variations in sign oj {joe 'Y), jl ('Y), ... , j.( 'Y) }. 

Proof. Let gi(X) = ji(X)j,(x) -1 as above. Then apart from 
multiplicities, the polynomialsj(x) and go (x) have the same roots in 
in (a, (3) (ex. 7, p. 40). Since the sequence {gi(X)} is a Sturm se
quence for go(x), the number of these roots is Va(g) - V13(g) where 
V-y(g) is the number of variations in sign in {gi('Y)}. Since 

ji('Y) = gi('Y)j,('Y) and j.(a):;e 0, j,({3):;e 0 

it is clear that Va(g) = Va and V 13(g) = V 13• Hence Va - VI3 
gives the number of distinct roots of j(x) in (a, (3). 

We have seen that the roots of j(x) = xn + alxn- l + ... + an 
in <II are in the interval [-M, M] where M = max (I, jail + 
la21+···+lan l)(ex.3,§I). IfwesetJL = 1 +Iall+···+lanl, 
then the roots of j(x) in <II are in (-JL, JL). If jo(x) = j(x), h(x), 
... , j8(X) is the standard sequence (7) for j(x), then the number 
of roots of j(x) in <II is V _,. - V,. where V-y is the number of varia
tions in sign in {jo( 'Y), h ('Y), ... , j.( 'Y) } • This gives a construc
tive way of determining the number of roots of f(x) in <1>. Some
times it is preferable to use instead of JL a bound 11 which is a 
polynomial in the ai. For this purpose we note that 1 + ai2 > 
lail, so we can take 11 = 1 + 2;(1 + al) = (n + 1) + 2;al. 
Then the roots in <II lie in ( -11,11). 

EXERCISES 

In all of these exercises <II is a real closed field. 
1. Prove Rolle's theorem: If J(x) e <II[x] has roots 01, {3 in <II, a < {3, then there 

exists a'Y in <II, a < 'Y < (3 such thatJ'(-y) = o. 
2. Prove the mean value theorem for polynomials: If a < {3, then there exists a 

'Y, a < 'Y < (3 such thatJ(p) - J(a) = (p - a)!'('Y). 
3. Prove thatJ(x) has a maximum on any closed finite interval, [01, {3]. 
4. (Budan's theorem). LetJ(x) have degree n and assume a < (3 in <II are not 

roots ofj(x). Let W-y denote the number of variations in sign in the sequences: 
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f('Y) , 1'("1), ... ,J(n)('Y). Prove that W" - W p exceeds the number of roots of 
f(x) in <P in (a, (3) counting the multiplicities of these roots by a non-negative 
even integer. 

5. Deduce from ex. 4 Descartes' rule: Let f(x) = aoxn + alxn - 1 + ... + 
alxn- l, ao ~ 0, al ~ 0, ai e <P. Let P denote the number of variations in sign in 
the sequence (ao, al, •.. , al). Show that P exceeds the number of positive roots 
of f(x) , counting multiplicities, by a non-negative even integer. 

4. Real closure of an ordered field. We have seen that every 
formally real field can be imbedded in a real closed field. In 
particular, this applies to ordered fields. We shall now show that, 
if <I> is an ordered field, then there exists a real closed algebraic 
extension field A of <I> whose (unique) ordering is an extension 
of that of <I>. Moreover, we shall see that A is essentially unique. 
To prove the existence of A we need the following 

Lemma. Let <I> be an ordered field, Q an algebraic closure of <I> and 
let E be the subfield of Q/<I> obtained by adjoining to <I> the square 
roots of the positive elements of <I>. Then E is formally real. 

Proof. Suppose we have a relation ~~i2 = 0 in E. Then the 
~i are contained in a finite dimensional extension field of the form 
<I> ( ~, ~, ••• , v13:.) where the {3i are positive elements of <I>. 
Hence it suffices to show that every subfield <I> ( ~, V (32, .. " 

v13:.), (3i > 0, of E is formally real. We prove this by induction 
on the dimensionality of the subfield and for this it is convenient 
to prove the apparently stronger statement that, if ~'Yi~l = 0 
for 'Yi > 0 in <I> and ~i in <I>(~,~, ... , v13:.), then every 
~i = O. This is clear for <I> since this is an ordered field. 
Suppose it holds for subfields of the indicated form of lower 
dimensionality than that of r = <I>(~, ..• , v13:.). We may 
assume that r ::J H = <I>(~, .'., V{3r-l), so the result holds 
for H. Now assume ~'Yi~l = 0, ~i e r, 'Yi > 0 in <I>. Write ~i = 

TJi + Siv13:., 'Y/i, Si e H. Then ~'YiTJl + ~{3r'YiSi2 + 2(~'YiTJiSi)V{3r 
= O. Since v13:. ¢ H, ~'YiTJiSi = 0, so ~'YiTJi2 + ~{3r'YiSi2 = O. 
Since 'Yi, {3r'Yi e <I>, 'Yi > 0, {3r'Yi > 0, and TJi, Si e H, every TJi and 
S i = O. Then every ~i = 0 and the result is valid for r. 

Definition 4. Let <I> be an ordered field. Then an extension field 
A of <I> is called a real closure of <I> if (1) A is real closed, (2) A is 
algebraic over <I>, (3) the ordering of A is an extension of that of <I>. 

We can now prove the following basic result. 
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Theorem 8. Every ordered field «I> has a real closure. If «I>1 and 
«I>2 are ordered fields with the real closures .:11 and .:12, respectively, 
then any order isomorphism of «I>1 onto «I>2 has a unique extension to 
an isomorphism of .:11 onto .:12. The extension is an order isomor
phism. 

Proof. Let «I> be an ordered field, n an algebraic closure of «I>. 
Let E be the subfield of n obtained by adjoining to «I> the square 
roots of all the positive elements of «I>. Then E is formally real 
and n is an algebraic closure of E. We have seen that there exists 
a real closed subfield.:1 ofn/E (Th. 3). Suppose /3 e«I> and /3 > o. 
Then /3 = p2, P e.:1. Hence /3 > 0 in .:1 so the ordering in .:1 is an 
extension of that of «I>. Hence.:1 is a real closure of «I>. 

Next let «I>i, i = 1,2, be ordered fields, .:1i a real closure of «I>i 
and let a ~ a be an order isomorphism of «I>1 onto «I>2. We wish 
to extend the given isomorphism to an isomorphism of .:11 onto 
.:12. We note first that, if f(x) e «I> 1 [x], then f(x) and its image 
J(x) under a ~ a have the same number of roots in .:11 and .:12 
respectively. We have seen that there exists a p, > 0 in «I>1 such 
that every root of f(x) in .:11 is contained in (- p" p,). Moreover, 
by Sturm's Theorem, the number of roots of f(x) in .:11 in the in
terval (- p" p,), hence the total number of roots of f(x) in .:11) is 
given by V _p. - Vp. where Vy is the number of variations in sign of 
the standard sequence (7) for fat 'Y. Since the standard sequence 
of f is contained in «I>l[X], all of this carries over to J(x) and .:12. 
Hence the number of roots of }(x) in .1.2 is the same as the number 
of roots of f(x) in .:11. We note next that, if F = {PI, P2, 000, Pnl 
is a finite subset of .:11) then there exists a subfield r 1 of .:1d«I> con
taining F and an isomorphism T of r 1 into .:12 which extends a ~ 
a and is such that, if PI < P2 < 0 0 0 < Pn, then PIT < P2T < 0 0 0 < 
PnT• For this purpose let f(x) be a polynomial in «I>l[X] which has 
the elements Pi, 1 ~ i ~ n, (J'j = VPHI - Ph 1 ~j ~ n - 1, 
among its roots. We note that the (J'j e .:11 since .:11 is real closed 
and PHI - Pj > 0 (proof of Tho 2). Let r 1 be the finite dimen
sional extension of «I> 1 generated by the roots of f(x) in .:11. Then 
r 1 = «I>l(Od and, if g(x) is the minimum polynomial of 01 over «I>1) 
lex) has a root O2 in .:12. We have an isomorphism T of r 1 onto 
«I>2(02) such that aT = a, a e«I>1) and 01T = O2• Then Pj+lT - p/ = 
(PHI - pj)T = ((J'/)2 > O. Hence PIT < P2T < 0 0 0 < PnT in .:12 as 
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required. We shall now define a mapping 71 of ~1 into ~2 in the 
following way: Let P be an element of ~1 and let h(x) be its mini
mum polynomial over 4>1' Let the roots of h(x) in ~1 be P1 < 
P2 < ... < Pm and suppose Pk = p. Then It(x) has exactly m 
roots P1' < P2' < ... < Pm' in ~2 and we now set P~ = Pk'. Evi
dently ex~ = a, ex e4>h and it is easy to see that 71 is 1-1 and surjec
tive. We assert that, if p, u e ~h then (p + u)~ = P~ + u~, 
(pu)~ = p~u~ so that 71 is an isomorphism of ~1 into ~2 extending 
ex ~ a. Let F be a finite subset of ~1 which includes the roots 
in ~1 of the minimum polynomials over 4>1 of p, u, P + u and pu. 
Then we have seen that there exist a subfield r 1 of ~1 over 4>1 
con taining F and an isomorphism T of r 1 in ~2 extending ex ~ a 
such that T preserves the order of the elements of F. As before, 
let h(x) be the minimum polynomial of P over 4>1 and let P1 < 
P2 < ... < Pm be the roots of h(x) contained in ~1' Then Pi e F 
and PI" < P2" < ... < Pm". We have It(p/) = 0 and it follows 
from the definition of 71 that P~ = p". Similarly, we see that u~ = 
u", (p + u)~ = (p + uy, (pu)~ = (puy. Since T is an isomorphism, 
this implies that (p + u)~ = P~ + u~, (pu)~ = p~u~. Hence 71 is an 
isomorphism of ~1 onto ~2 extending the given isomorphism of 4>1 
onto 4>2' Now let 71' be any isomorphism of ~1 onto ~2' Since 71' 
maps squares into squares it is clear that 71' is an order isomor
phism. Suppose also that 71' extends the mapping ex ~ a. Let 
P e ~1 and let P1 < P2 < ... < Pm be the roots in ~1 of the mini
mum polynomial h(x) of P over 4>1' Then P1 ~' < p2~1 < ... < Pm ~' 
are the roots in ~2 of It(x). It follows that p~1 = p~. Hence the 
extension 71 is unique. This completes the proof of the theorem. 

If ~1 and ~2 are two real closures of a given ordered field 4>, 
then the identity mapping on 4> can be extended to an order iso
morphism of ~1 onto ~2' In this sense real closures are equivalent 
and we may therefore speak of the real closure of 4>. 

EXERCISES 

1. Let 4> be an ordered field, A an extension field such that the only relations 
of the form ~'YiU = 0 with 'Yi positive in 4> and ~i in A are those in which every 
~i = O. Show that A can be ordered in such a way that its ordering is an ex
tension of that of <1>. 

2. Let 4> be an ordered field, A a real closed extension field whose order is an ex..; 
tension of that of 4>. Show that A contains a real closure of 4>. 
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5. Real algebraic numbers. We have seen that the field Ro of 
rational numbers has a unique ordering (ex. 1, § 1). This ordered 
field has a real closure do which is determined up to isomorphism. 
We shall call any real closure do of Ro the field of real algebraic 
numbers. Clearly no = do(v=T) is an algebraic closure of Ro, 
and we shall call this field the field of algebraic numbers. 

Now let r = Ro(()) be a finite dimensional extension field of the 
rationals. Then if n = [r:Ro], we have n distinct isomorphisms 
of r I Ro into nol Ro. These are determined by mapping () --+ ()i, 

1 ::; i ::; n, where {()h ()2, .. " ()n I is the set of roots of the mini
mum polynomial g(x) of () in no. Let ()h ()2, .. " ()r be those ()i 

which belong to do. We shall call these the real conjugates of (). 
We agree to set r = 0 if () has no real conjugates. Let Ti, 1 ::; i ::; 
r, be the isomorphism ofr I Ro into dol Ro such that or· = ()i. Then 
the ordering of RO(()i) C do imposed by the unique ordering in 
do provides an ordering of r: We define p > 0 for per if and 
only if pT. > O. We shall refer to this ordering of r as the order
ing determined by Ti. Now suppose we have any ordering of r 
and let d be a real closure of r relative to this ordering. Since r 
is algebraic over Ro, it is clear that d is a real closure of Ro. Con
sequently, we have an order isomorphism T of dl Ro onto dol Ro. 
The restriction of T to r coincides with one of the Ti and it is clear 
that the given ordering ofr is the same as the ordering determined 
by Ti. Finally, suppose Ti and Tj provide the same ordering of r. 
Then we have an order preserving isomorphism of RO(()i) onto 
RO(()j) such that ()i --+ ()j. Since do is a real closure of RO(()i) and 
of RO(()j), by Theorem 8, we have an automorphism of do (over 
Ro) sending ()i into ()j. On the other hand, since do is a real closure 
of Ro, Theorem 8 shows also that the identity is the only auto
morphism of do over Ro. Hence we must have ()j = ()i. These 
results establish the following 

Theorem 9. Let r be a finite dimensional extension of the field 
of rational numbers. Then the number of distinct orderings of r is 
the same as the number of isomorphisms of r I Ro into the field dol Ro 
of real algebraic numbers. 

In particular, this number cannot exceed [r:Ro] and there are 
no orderings of r = Ro(()) if and only if the minimum polynomial 
of () over Ro has no real roots, that is, no roots in do. 
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We shall now apply this result to obtain a theorem of Hilbert 
and Landau which gives a necessary and sufficient condition that 
an element of r = Ro(8), 8 algebraic, is a sum of squares in this 
field. First, let <I> be any field of characteristic ~2 and, as in 
§ 1, let ~(<I» be the subset of <I> of elements of the form ~a?, 
ai e <1>. Next, we introduce the following definition. 

Definition 5. An element p oj a field is called totally positive if 
p > 0 in every ordering oj the field. 

In particular, it will be understood that in a field which has no 
ordering, then every element is totally positive. Thus every 
element of a field which is not formally real is totally positive. 
We have the following general criterion 

Theorem 10. Let <I> be a field oj characteristic ~2. Then an 
element p ~ 0 in <I> is totally positive in <I> if and only if p is a sum oj 
squares oj elements oj <1>. 

Proof. If 0 ':/= p = ~ai2, then clearly p > 0 in every ordering of 
<1>. Conversely, assume p ~ 0 is not a sum of squares in <1>. Let 
Q be an algebraic closure of <I> and consider the collection of sub
fields E of Q/<I> in which p is not a sum of squares. This collection 
contains <I> and is inductive; hence it contains a maximal element 
P. Now P is formally real; otherwise, the lemma of § 1 shows 
that every element of P is a sum of squares, but we know that p 

is not a sum of squares in P. Then P can be ordered. We note 
next that -p is a square in P. Otherwise, we have the field 
P(y=p) in Q and this properly contains P. Hence in this field 
we must have p = ~(~i + 'YJiY=P)2, ~i, 'YJi in P. This gives p = 
~~? - P~'YJi2 + 2(~~i'YJiY=P), It follows that ~~i'YJi = 0 so 
p(1 + ~'YJ?) = ~~i2. Then 1 + ~'YJ? ~ 0 by the formal reality 
of P; hence p = (~~i2) (1 + ~'YJi2) -1 is a sum of squares in P by 
the lemma of § 1. This contradicts the choice of P. Hence we 
see that -p = {12, {1 e P. This implies that -p > 0 and p < 0 in 
every ordering of P. Since P can be ordered, the induced order
ing in <I> gives an ordering of <I> in which p < O. Thus p is not 
totally positive. 

This criterion and the result we obtained before on the form of 
the orderings of a finite dimensional extension of the rationals 
evidently imply the following 
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Theorem 11 (Hilbert-Landau). Let r be a finite dimensional 
extension field of rationals and let Tl) T2, •.. , Tr (r ~ 0) be the dif
ferent isomorphisms of r / Ro into the field of real algebraic numbers. 
Then an element p ~ 0 of r is a sum of squares in r if and only if 
pT; > 0 for i = 1, 2, ... , r. 

EXERCISES 

1. Let 4> be an ordered field and A a formally real field over 4>. Let p be an 
element of A which cannot be written in the form 

(10) 

~i in the larger field. Show that there exists an algebraic extension P of A such 
that p is not of the form (10) in P (~i in P) but p has this form in every proper 
algebraic extension pI ofP. Show that every positive element of 4> is a square in 
P and hence that p is a sum of squares in any pI :J P, pI algebraic over P. 
Prove that P is real closed and that the ordering in P is an extension of that of 4>. 
Prove that p < 0 in the ordering of P. Hence prove the following theorem: A 
necessary and sufficient condition that an element p of A have the form (10) in A 
is that p ;::: 0 in every ordering of A which extends the ordering of 4>. 

2. Let 4> be an ordered field, .6 the real closure of 4> and r a finite dimensional 
extension of 4>. Prove the following generalization of Theorem 9: If r is the 
number of isomorphisms of r /4> into .6/4>, then r is the number of ways of ex
tending the ordering of 4> to an ordering of r. 

6. Positive definite rational functions. One of the problems 
proposed by Hilbert in his address to the 1900 Paris Congress of 
Mathematicians was the following: Let Q be a rational function 
of n variables with rational coefficients such that Q(~l) ... , ~n) ~ 
o for all real (~l) ... , ~n) for which Q is defined. Then is Q neces
sarily a sum of squares of rational functions with rational coef
ficients? * By a rational function with rational coefficients we 
mean a mapping (~l) ... , ~n) ~ Q(h, ... , ~n) where Q(Xl) ... , 
Xn) is a rational expression in indeterminates Xi with rational coef
ficients. The domain of definition of Q is the set of real n-tuples 
(h, ... , ~n) for which the denominator of Q(Xl) ... , Xn) is not o. 
In 1927 Artin gave an affirmative answer to Hilbert's question 
and proved the following stronger result. 

Theorem 12 (Artin). Let cf> be a field of real numbers (that is, a 
subfield of the field R of ordinary real numbers) which has a unique 

• This is known as Hilbert's 17th problem. See D. Hilbert, Mathematische Probleme, 
Gottinger Nachrichten, 1900, p. 284 or Gosammelte Abhandlungen, Vol. 3, p. 317. 
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ordering and let Q be a rational function with coefficients in <P which 
is rationally definite in the sense that Q(h, ... , ~n) ~ 0 for all 
rational (~i) for which Q is defined. Then Q is a sum of squares of 
rational functions with coefficients in <P. 

Instances of fields <P which satisfy the condition are: the rational 
field, any real closed subfield of real numbers, the field of all real 
numbers. If we take <P to be the first of these, then Artin's 
theorem gives a stronger result than that suggested by Hilbert. 
Let <P be as in the theorem and consider the field <P(Xi) = <P(Xh X2, 
... , Xn) in indeterminates Xi with coefficients in <P. This field is 
formally real (ex. 4, § 1). According to Theorem 10, Q(Xh ... , Xn) 
~ 0 in <P(Xi) is a sum of squares in this field if and only if Q > 0 
in every ordering of <P(Xi)' Hence Theorem 12 will follow if we 
can show that, if Q ~ 0 is rationally definite, then Q > 0 in every 
ordering of <P(Xi)' This will follow from the following 

Theorem 13. Let <P be a field of real numbers, <P(Xi) == <P(Xh ... , 
Xn) the field of rational expressions in n indeterminates Xi with 
coefficients in <P and suppose an ordering has been given to <P(Xi) 
which extends the ordering of <P as a subfield of the field of real num
bers. Suppose fl(xh·· ·,xn),·· ·,h(Xh·· ·,xn) is a finite set of 
elements of <P(Xi). Then there exists a rational n-tuple (ah ... , an) 
such that for every j, 1 .::; j .::; k, fj(xh ... , xn) is defined at (ai) 
and fj and fj(ah ... , an) have the same sign in the sense that 

fj(ah ... , an) ~ 0 according as fj ~ 0 in the given ordering of<p(xi)' 

Suppose that this result holds and let <P be as in Theorem 12. 
Let Q ~ 0 be an element of <P(Xi) which is not a sum of squares in 
<P(Xi). Then we know that there exists an ordering of <P(Xi) for 
which Q < O. Since <P has only one ordering, the ordering of 
<P(Xi) is an extension of that of <P. Hence Theorem 13 gives a set 
(ai), ai rational, such that Q(ai) < O. Then Q is not rationally 
definite. Hence we see that, if Q is rationally definite, then it is a 
sum of squares of elements of <P(Xi) and this is Artin's theorem. 

We shall prove Theorem 13-after some necessary preliminaries 
-by induction on the number n of Xi. The result is clear if n = 0 
since in this case <P(Xi) = <P, so the functions are just constant 
functions. It remains to prove the inductive step, so we assume 
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the result for II>(Xh .. " Xn) and we shall prove it for II>(Xh .. " 
xn,y), wherey is an extra indeterminate. We shall see also that 
it is, in essence, sufficient to consider polynomials iny with coef
ficients inll>(xi). Let Fl(Xi,y), .. ',Fk(Xi,y) ell>(xi)[Y]. Then we 
shall call a property P of this set of polynomials in y rationally 
specializable if there exists a set of elements ,h(xi), .. " ,h(xi) in 
II>(Xi) such that, if (ah .. " an) is any rational n-tuple for which 
1/;h .. " 1/;" is defined and 1/;Z(ai), 1 :::; I :::; h, has the same sign as 
1/;z (in a given ordering of II>(Xi», then the coefficients of all the 
Fi(Xi,y) are defined at (ah "', an) and the polynomials Fl(ai,y), 
.", Fk(ai,y) have the property P. We shall require two results 
on specializable properties which we state as lemmas. 

Lemma 1. The property that F(Xi,y) = ym + CPl(Xi)ym-l + 
... + CPm(Xi) has precisely r roots in the real closure of II>(Xi) is 
rationally specializable. 

Proof. We are assuming that II> is a subfield of the field of real 
numbers and II> is ordered by the ordering of the field of real num
bers. The subfield of the latter of elements which are algebraic 
over II> is a real closure Ll of II> (Cor. to Th. 6 and ex. 2, § 4). The 
assertion of the lemma is that there exist 1/;h 1/;2, ... , 1/;" in II>(Xi) 
such that if (ah .. " an) is any rational n-tuple such that every 
1/;z is defined at (ah ... , an) and 1/;Z(ah .. " an) has the same sign 
as 1/;1, then F(ai,y) is defined and the number of its real roots (or 
roots in Ll) is r. Let Fo = F(Xi'Y)~ Fh "', Fa be the standard 
sequence for F(Xi, y) (as in (7». If (ah "', an) is a rational n
tuple for which the non-zero coefficients of the Fi and of the quo
tients Qi as in (7) are defined and have non-zero values in 11>, 
then FO(ai,y), .. " Fa(ai,y) is the standard sequence for F(ai,y) 

m 

= FO(ai'y). Let ",(Xi) = L CPi(Xi)2 + (m + 1). Then we have 
i=l 

seen (p. 283) that the r roots of F(Xi,y) in the real closure of 
II>(Xi) lie in the interval (-"" ",). By Sturm's theorem the differ
ence in the variations in sign between the two sequences 
FO(Xi, -",), Fl(Xi, -",), .. " F.(Xi, -",) and FO(Xi, ",), Fl(x., ",), 
···,F.(Xi,,,,) is r. Now let {1/;l(Xi), "',1/;,,(Xi)} be the set of 
elements of lI>(x.) consisting of the coefficients of the standard 
sequp.nce for F and of the quotients Qi in this sequence, and the 
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elements Fj(Xi, -17(Xl, ... , Xn)), Fj(Xi, 17(Xl, ... , Xn)), 0 5, j 5, s. 
Then it is clear from Sturm's theorem that, if (al, ... , an) is a 
rational n-tuple such that the vI's are defined at (al, ... , an) and 
every 1/Iz(at, ... , an) has the same sign as 1/Iz, then F(ai' y) is 
defined and has exactly r roots in tl in (-17(ah ... , an), 17(at, ... , 
an)). If we refer to the result on bounds for the roots again we see 
that there are no real roots of F(ai,y) outside of the indicated 
interval. Hence r is the number of real roots of F(ai'Y). 

Lemma 2. Let {FI (Xi, y), ... , Ft(Xi, y)} be a sequence of poly
nomials (not necessarily distinct) belonging to <J?(Xi) [y). Assume 
the leading coefficients are 1. The property that Fj(Xi, y) has a 
root Pj in the real closure P of <J?(Xi) and PI < P2 < ... < Pt is 
rationally specializable. 

Proof. The elements Pk and (PHI - pj)%, 1 5, j 5, t - 1, are 
contained in P and these generate a finite dimensional extension 
field A of <J?(Xi) which has a primitive element o. Let g(Xi,y) be 
the minimum polynomial of 0 over <J?(Xi). We have Pk = 'Pk(Xi,O), 
(PHI - pj)% = (J'j(Xi,O) where 'Pk(Xi,y), (J'j(Xi,y) e<J?(xi)[Y). Since 
Fk(Xi, Pk) = 0, Fk(Xi, 'Pk(Xi',y)) has 0 as root and since g(Xi,y) 
is the minimum polynomial of 0, we have 

(11) Fk(Xi, 'Pk(Xi',y)) = Gk(Xi,y)g(Xi,y), 1 5, k 5, t. 

Similarly the relation PHI - Pj = (J'j(Xi,O)2 or 'PHI (Xi, 0) -
'Pj(Xi,O) = (J'j(Xi, 0)2 gives a relation 

(12) 'PHI(Xi,y) - 'Pj(Xi,y) - (J'j(Xi,y)2 

= Hj(Xi,y)g(Xi,y), 1 5,j 5, t - 1, 

in <J?(Xi)[y). Since (J'j(Xi, 0) '¢ 0 it has an inverse Tj(Xi, 0) in A and 
so we have relations of the form 

(13) (J'j(Xi,y)Tj(Xi,y) - 1 = kj(Xi,y)g(Xi,y) 

in <J?(Xi)[Y). Let {1/IZ(Xh ... , Xn)} be a finite set of elements of 
<J?(Xi) which includes the coefficients of the Fk(Xi,y), all the coef
ficients of the polynomials in y appearing in (11), (12), and (13) 
and a set of elements given in Lemma 1 to insure that g(ai'y) 
has a real root 'Y. Moreover, if the ai are chosen so that every 
1/IZ(ai) is defined, then substitution of'Y for y in every polynomial 



ARTIN-SCHREIER THEORY 293 

which occurs in (11), (12), and (13) is permissible. Substituting 
y = 'Y in (11) we see that Fk(ai,y) has the root ~k == CPk(ai, 'Y)' 
Substitutingy = 'Y in (12) we see that ~i+1 - ~j = CPi+I(ai, 'Y) -
cpj(ai, 'Y) = (J'j(ai, 'Y)2 ~ O. By (13), we have (J'j(ai, 'Y)T;(ai, 'Y) = 
1. Hence (J'j(ai, 'Y) ~ 0 and ~i+1 > ~j. Thus we see that Fj(ai, y) 
has the real root ~j and ~I < ~2 < ... < ~t as required. 

We can now give the 
Proof of Theorem 13. As we have seen before, it suffices to 

prove that, if the theorem holds for CP(Xh .. " xn), then it holds 
for CP(Xh .. " X n , y), y an extra indeterminate. Let pi be a real 
closure of the ordered field CP(Xi' y), p the real closure of CP(Xi) con
tained in P'. We are given a finite set of elements F(Xi,y) of 
CP(Xi,y) and we have to show that rational ai and b can be chosen 
so that F(ai, b) is defined and has the same sign as F(Xi,y) in the 
ordering in pi and this holds for every F in the given set. We can 
write F = CP(Xh "', xn)PI(Xi,y)e1 ••• Ph(Xi,y)eh where CP(Xh "', 
Xn) e CP(Xi), Cj is an integer, Pj(Xi, y) is irreducible in CP(Xi)[y] and 
has leading coefficient 1, and the Pj(Xi,y) are distinct. If ai, b 
have the property that cp(ah .. " an), Pj(ai, b) are defined and 
have the same sign as cP and Pi> 1 :::; j :::; h, then F(ah .. " an, b) 
is defined and has the same sign as F. This remark shows that 
we may as well suppose that the given set consists of elements 
cP e CP(Xi) and F e CP(Xi)[Y] such that every F is irreducible in CP(Xi)[y] 
and has leading coefficient 1. Let PI < P2 < ... < Pt be the roots 
in p of the given set {FI of polynomials in y. We can form a 
sequence Fh F2, .. " F t whose terms are in {FI so that pj is a 
root of Fj • Since the F are irreducible and the field is of charac
teristic 0, the roots of F are distinct. Also distinct F's are relatively 
prime. Hence if G(Xi,y) is the product of the distinct F's, then 
G has distinct roots. By Lemma 1, we can find elements 1/11, .. " I/Ih 
in CP(Xi) such that, if ah "', an are rational and every 1/11 is 
defined at (ah "', an) and I/Il(ah "', an) has the same sign 
as 1/11, 1 :::; / :::; h, then G(ai' y) is defined and has t real roots. 
By Lemma 2, we have elements I/Ih+h .. " I/Ik so that, if the a's 
are rational and I/Im(ah .. " an) is defined and has the same sign 
as I/Im, h + 1 :::; m :::; k, then Fj(ai, y) is defined and has a real 
root ~i so that ~I < ~2 < ... < ~t. We now add to the I/I's al
ready given all the elements cP of the set given initially and the 
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discriminant ~ of G(Xi, y), which is different from 0, since G 
has distinct roots. By the induction hypothesis, we can choose 
rational ai so that all the conditions given by the 1/;'s, the cp's, and 
~ are satisfied. Now in P[yJ we have the factorization 

(14) Fj(Xi,y) = (y - pjJ(y - Pj2) ... (y - Ph)Ql(y) ... Q./y) 

where the Q's are irreducible quadratics with leading coefficients 
1 and Ub j2, ... , jtj} are distinct and are a subset of {I, 2, ... , 
t}. Our choice of the a's insures that in the field of real numbers 
we have 

(15) Fj(ai,y) = (y - ~it)(Y - ~h) ... (y - ~h) Sl(y) ... S.;Cy) 

where the S's are irreducible quadratics with leading coefficients 
1. Since y is transcendental over cI>(Xi) and the Pj are algebraic 
over this field, it is clear that y is contained in one of the follow
ing open intervals in P': (-00, Pl), (Pb P2), ... , (Pt-b Pt), (pt, 00). 
Also we have seen that an irreducible quadratic with coefficients 
in a real closed field and leading coefficient 1 has the form (y - 'Y)2 
+ ~2, ~ ~ 0 (see (3)). This implies that every Q(y) > 0 in P', 
and for any real number b, S(b) > 0 for the S's in (15). It now 
follows from (14) and (15) that, if y is in the k- th in terval of the 
sequence (- 00, Pl), (Pb P2), ... , (Pt, 00) and b is any real num
ber contained in the k-th interval (-00, ~l)' (~b ~2)' ... , (~t, 00), 
then Fj(ai, b) and Fj(Xi,y) have the same sign and this will hold 
for every j. Now it follows from the archimedean property of the 
real field that every open real interval contains a rational num
ber. Hence we can choose a rational b so that Fj(ai, b) has the 
same sign as Fj(x i, y) for all the j. This completes the proof. 

Remark. It is natural to ask if a result like Artin's holds for 
polynomials with coefficients in a field cI> such as in Artin's theorem. 
In view of this theorem one can formulate the question in the 
following way: Let P(Xb ... , Xn) e cI>[Xb ••• , XnJ such that P = 
};Ri(xb ... , Xn)2 where the Ri are rational expressions in the x's 
with coefficients in cI>. Does this imply that P = };Pj(Xb ... , xn)2, 
P j e cI>[Xb ••• , XnJ. Artin has shown that this is correct if n = 1 
and cI> is any field of real numbers. On the other hand, some ex
amples due to Hilbert show that the result is false for n ;:::: 2 even 
for cI> the field of real numbers. 
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EXERCISE 

1. Let <J? be an ordered field and <I>(Xl, ..• , Xn) the field of rational expressions 
in indeterminates Xl, ..• , Xn over <I>. Suppose Q e <I>(Xi) satisfies Q(~l, ... , ~m) 
~ 0 for all ~i in a real closure .:1 of <J? for which Q(~l, •.. , ~n) is defined. Prove 
that Q = "1;{jiFi(XI, ... , Xn)2 where the (jj are non-negative elements of <J? and the 
Fi e <I>(Xi). (Hint: See ex. 1 of § 5 and prove a suitable analogue ofTh. 13.) 

7. Formalization of Sturm's theorem. Resultants. In the 
next few sections we shall develop an algorithm, due to Tarski 
and to Seidenberg, for testing the solvability in a real closed 
field of a finite system of polynomial equations and inequalities (in 
several variables). The ultimate test (Th. 16) will consist in the 
verification of a finite system of polynomial equations and in
equalities in the coefficients of the given system. In this section 
we shall consider first a reformulation of Sturm's theorem in this 
manner. We shall develop also an elimination method based on 
resultants which will be essential in the sequel. 

To obtain the formalized version of Sturm's theorem it is con
venient to begin with the ring ~[x] where ~ = Ro[/h ... , Ir], x 
and the Ii are indeterminates and Ro is the field of rational num
bers. Let F(/h ... , Ir; x) e ~[x], so F(/i; x) = anxn + an_lXn- 1 
+ ... + ao where the ai e ~ and an ~ 0. If the Ii are specialized 
to Ii = Ti e <1>, then we obtain the polynomial lex) = F(Ti; x) e 
<I>[x] where deg lex) s n. We shall now obtain a number of se
quences E: {Fo(/i;X), FI(ti;X), .. ', F.(ti;X)} such that for any 
Ti, 1 SiS r, in <I> there exists one of these sequences E such that 
the specialized sequence {FO(Ti; x), F1(Ti; x), .. " F.(Ti; x)} is 
essentially the standard Sturm sequence (7) for lex). 

Our choice for Fo(/i; x) is anyone of the polynomials amxm + 
am_lXm- 1 + ... + ao, am ~ 0, m S n obtained by dropping lead
ing terms anxn + ... + am+lXm+1 of F(/i; x). Next we take 
F1(/i; x) = Fo/(/i; x) the formal derivative of Fo considered as a 
polynomial in x. Suppose we have already defined Fo, Fh ... , 
Fk. If Fk = 0, we break off the sequence with Fo, Fh ... , F. = 
Fk_1. Otherwise, let Fk- 1 = bpxP + ... + bo, Fk = cqXq + ... + 
Co where bp ~ 0, Cq ~ 0, and p > q. The usual division process 
shows that we can find polynomials Q(x), R(x) in ~[x] such that 
c/-q+1Fk_1 = QFk - R where deg", R(/i; x) < deg", Fk(/i; x). 
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For our purposes it is preferable to replace p - q + 1 by the 
smallest even integer e ~ p - q + 1. Thus, changing notation, 
we write cqeFk_ 1 = QFk - R and we call Q and R the quotient 
and remainder on dividing Fk- I by Fk. It is clear that these are 
unique. We now take F k +1 to be R or one of the polynomials ob
tained from R by dropping leading terms in the manner that 
FO(ti; x) was obtained from F(ti; x). The sequences {Fo, Fh "', 
F8l obtained in this way will be called generic standard sequences 
for F(ti; x). Clearly the number of these is finite. 

Let E: {Fo, Fh .. " F8l be one of the generic standard se
quences for F. Then we associate with E two finite subsets aCE) 
and A(E) of ~ = RO[ti]. The set aCE) is the set of coefficients of 
the terms dropped in forming the sequence. Thus, aCE) consists 
of the coefficients (of the powers of x) in F(ti; x) - Fo(ti; x) and 
those of R - Fk +h k ~ 1, as above. We let A(E) be the set con
sisting of the leading coefficients of the Fi in the sequence. 

Now let Ti eel>, 1 :::; i :::; r, and consider the polynomialj(x) = 
F(Ti; x). We assume j(x) ~ o. Suppose deg j(x) = m :::; n. 
Then we shall take FO(ti; x) = amxm + ... + ao and we have 
FO(Ti; x) = j(x), am(Ti) ~ O. The condition FO(Ti; x) = j(x) 
gives an(Ti) = ... = am+I(Ti) = O. One sees easily by an induc
tive argument that there exists a generic standard sequence 
{Fo, Fh .. " F8l for F such that, if h is the leading coefficient of 
F k , then 

Ik(Ti) ~ 0, 0:::; k :::; s 

(16) FO(Ti; x) = j(x) 

Ik(Ti)"kFk_I(Ti; x) = Fk(Ti; X)Qk(Ti; x) - Fk+I(Ti; x), 

where 0 ~ k :::; s, F8+I = 0 and ek is an even integer, and Qk 
is the quotient on dividing Fk- I by Fk. Since FO(Ti; x) = j(x), 
FI(Ti; x) = j'(X), Ik(Ti)ek > 0 and the degrees of the Fk(Ti; x) are 
decreasing, it is clear that the terms of {FO(Ti; x), FI(Ti; x), "', 
F8 (Ti; x) l differ from those of the standard sequence (7) for j(x) 
by positive multipliers in eI>. Hence the sequence {FO(Ti; x), .. ·l 
can be substituted for the standard sequence in applying Sturm's 
theorem. 

We shall now formalize the conditions given in this theorem by 
considering the finite collection of systems of equations and in-



ARTIN-SCHREIER THEORY 297 

equalities made up of relations of the following types: 

Fk(ti;y)Fz(ti;y) < 0, 

Fk+1(ti;y) = ... = FZ-1(ti;Y) = 0, k < I 
(17) 

Fp(ti; Z)Fq(ti; z) > 0, 

Fp+1(ti; z) = ... = Fq-1(ti; z) = 0, p < q, 

where y and z are indeterminates and we require that the pairs 
(k, I), .. " (p, q), ... used in the two sets of relations are such 
that, if Ek = 0, 1, -1, TIp = 0, 1, -1 satisfy the same conditions, 
namely, EkEZ < 0, Ek+l = ... = EZ-l = 0, .. " TlpTlq > 0, Tlp+l = 
... = Tlq-l = 0, .. " then the number of variations of sign of 
{ Eo, El) •• " E8 } exceeds that of {TID, TIl) •• " Tl8}' Now let (~, 'Y) 
be an interval in <1>, ~ < 'Y, such that J(~) ¢. 0, J('Y) ¢. 0. Then 
it is clear from Sturm's theorem that J(x) has a root in (~, 'Y) if 
and only if ti = Ti, Y = ~, z = 'Y satisfies one of the systems of 
relations (17). 

If we take into account all the generic sequences E and observe 
that (16) is equivalent to the conditions I(Ti) ¢. 0, d(Ti) = ° for 
alII e A(E) and de fleE), we see that (16) and (17) give a finite 
collection of conditions {Gl) G2, •• " Gh }, where each G j is a finite 
set of polynomial equations and inequalities with rational coef
ficients, such that J(x) has a root in (~, 'Y) if and only if ti = Ti, 
Y = ~, z = 'Y satisfies all the conditions of one of the systems Gj • 

Now let J(x) = amxm + am_lXm- 1 + ... + ao where am ¢. 0. 
Then we know that all the roots in <I> of J(x) are contained in the 

m-l 

interval (-Tl, TI) where TI = m + 1 + L alam -2. We have 
o 

Fo(ti; x) = amxm + am_lXm- 1 + ... + ao where am = am(tl) .. " 
m-l 

tr ) ¢. 0. If we substitute y = - (m + 1) - L alam -2 in Fk(ti; 
m-l 

o 

y) and z = m + 1 + L alam -2 in Fk(ti ; z) and clear of fractions 
o 

by multiplying by a suitable even power of am, we obtain poly
nomial relations like those in (17), for the ti alone. In this way 
one obtains a finite collection {Gl) G2, •• " Gh } where each G j is a 
finite system of polynomial equations and inequalities with 
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rational coefficients in the ti alone such that the statement that 
j(x) has a root in <I> is equivalent to the validity of one of the 
systems Gj for ti = T i. 

We shall consider next a classical determinant criterion for the 
existence of a common factor of positive degree for two poly
nomials. We consider the polynomials j(x) = anxn + an_lXn- l 
+ ... + ao, g(x) = 13mxm + 13m_lXm-l + ... + 130 in <I>[x] where 

<I> is an arbitrary field. We assume m > 0, n > 0, but we shall 
allow an = 0 or 13m = O. The result we require is the following 

Theorem 14. Let j(x) = anxn + an_lXn- l + ... + ao, g(x) = 
13mxm + 13m_lXm-l + ... + 130 where m, n > 0 and put 

an an-l ao 

}m rows 
an an-l ao 

(18) R(j,g) = 
an an-l ao 

13m 13m-l 130 

13m 13m-l 130 }n rows 

f3m f3m-l f30 

Then R(j, g) = 0 if and only if either an = 0 = 13m or j(x) and 
g(x) have a commonjactor oj positive degree in x. 

Proof. If an = 0 = 13m, then the first column of the determi
nant is O. Hence R(j, g) = O. Next assume j(x) and g(x) have 
a common factor hex) of positive degree and that either an ~ 0 
or 13m ~ O. Then j(x) = jl(x)h(x), g(x) = gl(x)h(x) and either 
jl(X) ~ 0 or gl(X) ~ 0, according as an ~ 0 or 13m ~ O. By sym
metry, we may assume an ~ 0, jl(X) ~ O. We have j(X)gl(X) = 
g(X)jl(X), j(x) = jl(x)h(x) ~ o. If deg hex) = r, then deg!I = 
n - r. If g(x) = 0, we have gl(X) = 0; otherwise the relation 
j(X)gl(X) = g(X)jl(X) gives deg gl(X) :$ m - r. Hence we may 
write jl(X) = -'Yn_lXn-l - 'Yn_2Xn - 2 - ... - 'Yo, gl(X) = 
5m_lxm- l + 5m_2xm- 2 + ... + 50, so that we have 

(19) (anXn + ... + ao)(5m_lxm- l + ... + 50) 

+ (13mxm + ... + (30)('Yn_l Xn - l + ... + 'Yo) = O. 
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If we equate to 0 the coefficients of xm+n-t, xm+n- 2, ••• , 1 in (19), 
we obtain the following equations: 

(20) 

a 050 + 110'Yo = o. 
We consider this as a system of homogeneous equations in the 
'Y's and 5's taken in the order 5m - h 5m - 2 , ••• , 50, 'Yn-h ... , 'Yo. 
Since not all the 'Y's are 0, the determinant of the coefficients of 
the 'Y's and 5's is o. If we take the transpose of this determinant 
obtained by ordering the 'Y's and 5's as indicated, we obtain (18). 
Hence R(j, g) = O. Conversely, assume R(j, g) = o. Then we 
can re-trace the steps through (20) and (19) and conclude that 
there exist j1(X), gl(X) such that j(X)gl(X) = g(x)ft(x) where 
deg j1 :::; n - 1, deg gl :::; m - 1, and either j1 ¢ 0 or gl ¢ O. 
Assume j1 ¢ O. If gl = 0, then g = 0, 11m = 0, and either j(x) 
is a non-zero common factor of j and g or an = o. If gl ¢ 0 and 
g = 0 the foregoing argument applies. Now suppose gl ¢ 0 and 
g ¢ o. Then the relations j(X)gl(X) = g(x)ft(x), j1 ¢ 0, gl ¢ 0, 
g ¢ 0 imply j ¢ O. Either an = 0 = 11m or we may assume an ¢ 

o which implies that deg j(x) = n. Since deg ft(x) :::; n - 1, 
the relation j(X)gl(X) = g(X)j1(X) and the factorization of the 
non-zero polynomials j, jh g, gl into irreducible factors implies 
that j(x) and g(x) have a common factor of positive degree. 

We shall call R(j, g) the resultant of j and g (relative to x). 
If either highest coefficient of j or of g is not 0, then the vanishing 
of R(j, g) is a polynomial relation on the ai, I1j with integer coef
ficients which is equivalent to the statement that j and g have a 
common factor of positive degree. 

EXERCISE 

1. Prove that, if f(x) = x" + a,,_lx,,-l + ... + ao, then R(J, f') is the dis
criminant off(x) (cf. § 3.1). 
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8. Decision method for an algebraic curve. In this section we 
shall give Seidenberg's method for deciding the solvability of an 
equation f(x,y) = 0 in a real closed field. This will be based on 
the result which we shall now establish, that if f(x,y) = 0 has a 

solution in <1>, then the equations f(x,y) = 0, (y - a) af -
ax 

(x - 'Y) af = 0, have a common solution in <I> for any'Y, a in <1>. The 
~ . 

geometric idea underlying this result will be clear from the two 
lemmas which are used to prove it. 

Lemma 1. Let f(x,y) e<l>[x,y], x,y indeterminates, <I> a real 
closed field. Then if f(x, y) = 0 has a solution in <1>, it has a solu
tion (a, (j) nearest the origin. 

Proof. We consider the intersection in the space <1>(2) of pairs 
(~, 1/),~, 1/ e<l>, of the curve C: f(x,y) = 0 with the circle x2 + y2 
= 'Y2, 'Y ~ O. Our hypothesis implies that there exist 'Y for which 
this in tersection is not vacuous, and we have to show that the 
set S of 'Y ~ 0 such that C meets x2 + y2 = 'Y2 in <1>(2) has a 
minimum. We now consider the polynomials f(x,y) and x2 + 
y2 _ e2 as polynomials in y with coefficients in <I>(e, x), where e 
and x are regarded as indeterminates, and we form the resultant 
gee, x) of these two polynomials. The formula (18) shows that 
gee, x) is a polynomial in e and x with coefficients in <1>. If (a, (j) 
is a point of intersection of the circle x2 + y2 = 'Y2 and the curve 
C, then f(a,y) and y2 + a2 - 'Y2 have a common factor 
y - (j. Hence g('Y, a) = 0 and g('Y, x) has the root a e <1>. More
over, -'Y ~ a ~ 'Y. Conversely, assume that for 'Y ~ 0, g('Y, x) 
has a root a in <1>, -'Y ~ a ~ 'Y. Since the leading coefficient of 
y iny2 + a 2 - 'Y2 is 1, it follows from Theorem 14 thaty2 + a 2 -

'Y2 and f(a,y) have a common factor in <I>[y]. Since the 
factors of y2 + a2 - 'Y2 are Y ± {j where {j = ('Y2 - a2)~, it 
follows that (a, (j) or (a, -fj) is a point of intersection of the two 
curves. Hence we see that the set S of 'Y ~ 0 such that C meets 
x2 + y2 = 'Y2 in <1>(2) is the same as the set of 'Y ~ 0 such that 
g('Y, x) = 0 has a root x = a e<l>, -'Y ~ a ~ 'Y. Let S' be the 
subset of S of the 'Y such that g( 'Y, ±'Y) ~ O. For these the condi
tion is that g('Y, x) has a root in (-'Y, 'Y)' It is clear that we can 
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obtain g('Y, x) by a suitable specialization of a polynomial with 
rational coefficients such that one of the parameters is specialized 
to 'Y. Hence we can apply the result obtained in the last section 
to conclude that 8' is the union of a finite number of sets defined 
by polynomial equations and inequalities of the form pee) = 0, 

q(e) = 0, r(e) ~ 0 where p, q, r are polynomials with coefficients 

in 4>. One sees easily that such a set is a union of a finite number 
of intervals which may be open, closed, half open, single points or 
extend to infinity. Since the set of 'Y such that g('Y, ±'Y) = 0 is 
either finite or all 'Y ~ 0, it is clear that 8 has the same structure 
as 8'. The result will now follow by showing that the complement 
of 8 in the set of non-negative elements is the union of open inter
vals; for, this implies that 8 is the union of a finite number of 
closed intervals and hence has a minimal element. Thus, let 
5 ~ 0, 5 ¢ 8. Then g(5, x) = 0, -5 :::; x :::; 5 has no solution x in 
4>. Write gee, x) = go(x) + gl(x)(e - 5) + ... + gm(x)(e - 5)m 
where the gi(X) are polynomials in x. Then go(x) ~ 0 in - 5 :::; 
x :::; 5. It follows that there exists a 5' > 5 such that go(x) ~ 0 
in - 5' :::; x :::; 5'. Then there exist b > 0, B > 0 such that 
Igo(x) I ~ b, Igi(x) I :::; B for all x in [- 5', 5'] (ex. 3, § 3). Then, 
if Ie - 51 < -! and Ie - 51 < b/4B and x e[ -5',5], 

Ig(e, x) I ~ Igo(x) I-Igl(x)(e - 5) + ... + gm(x)(e - 5)m I 
b b 

> b - 2B I e - 51 > b - - = -. - 2 2 

This implies that every 5" satisfying 5" :::; 5', 5" < 5 + i, 5" < 
5 + b/4B is contained in the complement of 8. Hence this com
plement contains an open interval containing 5 and the proof is 
complete. 

As in the classical case of the field of real numbers, a point 
(a, (j) on j(x,y) = 0 is called a simple point if 

((vf\ ,(vf\ ) ~ (0,0). 
v-;} (a.(3) vy} (a.(3) 

Then the normal vector at (a, (j) is ((vA , (vA ) and the v-; }(a.(3) vy} (a.(3) 
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tangent line to the curve at (O!,~) is defined by the equation 

( iJf\ (x _ O!) + (iJf\ (y - ~) = O. 
iJ;)(a.{3) iJY)(a.{3) 

Now let (O!,~) be a point on C: I(x,y) = 0 in 4>(2) nearest the 

origin. We wish to show that ~ (iJf\ - O! (iJf\ = o. 
iJ;)(a.{3) iJY)(a.{3) 

This is clear if (O!, m = (0,0) or (O!,~) is not a simple point. 
Otherwise, the equation states that the vector joining (0,0) to 
(O!, m and the normal vector are linearly dependent. Hence C 
and the circle with center at the origin and radius (0!2 + ~2)~ 
have the same tangent at (O!, ~). If this is not the case, then the 
tangent to Cat (O!, m contains interior points of the circle whereas 
C itself does not. The result will therefore follow from 

Lemma 2. Let p be a point 01 intersection (coordinates in 4» 01 a 
circle and a curve C:/(x,y) = 0, I(x,y) e 4>[x,y]. Assume p is a 
simple point and the tangent at p to C has points interior to the 
circle. Then C itself has points interior to the circle. 

Proof. We take p = (0,0) and the tangent to Cat p to be the 

x-axis. Then 1(0, 0) = 0 and (~0 = 0, and we may suppose 

that (:0 (0, 0) = 1. The center of the circle is not on the x

axis, so we may denote it as (a, b) with a =F- O. We have I(x,y) = 

1(0,0) + (iJf\ x + (iJ/)y + 21, [(iJ2~ x2 + 2 (fl) xy + 
iJ;)o iJy 0 • CJxz-)o CJxCJy ° 

(:;0;2J + .. " so taking into account the conditions on I we 

see that we can write I(x,y) = y(1 + h(x,y)) + g(x) where 
h(O,O) = 0 and g(x) is a polynomial in x divisible by x2• Since 
h(O, 0) = 0 we may choose a a> 0 such that Ih(x,y) I ~ -l- if 
Ixl ~ a and Iyl ~ a. Then i ~ 1 + h(x,y) ~ I and a(1 + 
hex, a)) is between -l-a and Ia while - a(1 + hex, - a)) is between 
-ia and -Ia for all x satisfying I x I ~ a. Since g(O) = 0 there 
exists a a', 0 < a' ~ a such that I(x, a) = a(1 + hex, a)) + 
g(x) > 0 and I(x, - a) < 0 if I x I ~ a'. Then for every xo, 
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I Xo I ::; 5' there exists a Yo e [ - 5, 5] such that f(xo, Yo) = O. Then 
Yo = - g(xo)(l + h(xo, Yo» -1 and 

(a - XO)2 + (b - YO)2 

= (a _ XO)2 + (b + g(xo) )2 
1 + h(xo, Yo) 

= a2 + b2 _ 2axo + xo2 + 2bg(xo) + (g(XO»2 2 

1 + h(xo, Yo) (1 + h(xo, Yo» 

Since g(xo) is divisible by xo2, it is clear that, if we take Xo suf
ficiently small so that axo > 0, then (a - XO)2 + (b - YO)2 < 
a2 + b2. Hence (xo, Yo) is a point on C interior to the given circle. 

Our results now show that, if C:f(x,y) = 0 has a solution in 

h h . l" h' h' 1 ' of of 0 eI>, t en t ere eXIsts a so utl0n mel> w lC IS a so my - - x- = . 
ox oy 

If we replace the origin by ('Y, 5) where 'Y, 5 eel>, then we see in 
the same way that the intersection of C and the curve D: 

(y - 5) of _ (x - 'Y) of = 0 contains a point in eI>(2). 
ox oy 

We shall now apply this to obtain Seidenberg's procedure for 
deciding the solvability in eI> of f(x,y) = O. First, we can obtain 
the highest common factor of the coefficients of the powers 
of y in f(x, y) and put f(x, y) = d(x)f1(X, y) where f1(X, y) is 
not divisible by a polynomial of positive degree in x alone. 
Evidently f(x,y) = 0 has a solution in eI> if and only if either d(x) 
= 0 or f1(X,y) = 0 has such a solution. This reduces the discus
sion to polynomials which are not divisible by polynomials of 
positive degree in x alone. Next we can compute a highest 

common factor in eI>(x)[y] of f(x,y) and ~ f(x,y) by using the 
oy 

Euclidean algorithm. We may assume this belongs to eI>[x, y] and 
is not divisible by polynomials of positive degree in x alone. Then 
we can divide out by this highest common factor and obtain a 
polynomial g(x, y) which is a factor of f(x, y), has the same 
irreducible factors asf(x,y) and has no multiple factors in eI>[x,y]. 
Clearly, f(x,y) = 0 is solvable in eI> if and only if g(x,y) = 0 is 
solvable in eI>. 
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If we replace j by g and change the notation back to j we may 
suppose that j(x,y) has no multiple factors of positive degree 
and no factors of positive degree in x alone. The first of these 

conditions implies that j(x,y) and !..- j(x,y) have no common 
Joy 

factor contained in 4>(x)[y] of positive degree iny. 

We now consider the polynomial g(x,y) = y oj - (x _ 'Y) oj 
ox oy 

where'Y is any element of 4>. We know that, if the curve C:j(x, 
y) = 0 contains a point in 4>(2), then the intersection of C and 
D:g(x,y) = 0 contains such a point. Before we can make use 
of this it is necessary to arrange matters, by choosing a suitable 
'Y so that the intersection of C and D is a finite set. To do this we 
introduce another indeterminate c and we consider the poly-

. oj oj 
nomlalg(c; x,y) = y - - (x - c) -. Let R(c; x) be the result-

ox oy 
ant relative to y (that is, considering the polynomials as poly
nomials iny) of j(x,y) andg(c; x,y). We claim that R(c; x) ~ o. 
Otherwise, R('Y; x) = 0 for all 'Y. Now, Theorem 14 shows that 
if'Y has this property, then g('Y; x,y) and j(x,y) have a common 
factor in 4>(x)[y] and, consequently, in 4>[x,y] of positive degree iny 
(see Vol. I, p. 125). Hence if R('Y; x) = 0 for all 'Y, then there exist 
distinct 'Y, say, 'Yl and 'Y2 such that j(x,y), g('Yl; x,y) and g('Y2; 
x, y) all have a common factor of posi ti ve degree in y. This follows 
from the fact that to within associates j(x,y) has only a finite 
number of different factors in 4>[x,y]. We can then conclude 

o 
that j(x,y) and ('Yl - 'Y2) - j(x,y) = g('Yl; x,y) - g('Y2; x,y) 

oy 
have a common factor of positive degree in y and this 

contradicts the fact that j(x,y) and !..- j(x,y) have no such 
oy 

common factor. This proves that R(c; x) ~ o. 
We can now choose a'Y e4> such that R(x) = R('Y; x) ~ O. Set 

g(x,y) = g('Y; x,y). Then j(x,y) and g(x,y) have no common 
factor of positive degree in y and no common factor of positive 
degree in x alone; hence they have no common factors except units 
in 4>[x,y]. It follows that the resultant Q(y) of j(x,y) and g(x,y) 
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relative to x is not O. Let V be the intersection in n(2), where 
n = <l>CV=-I) is the algebraic closure of <1>, of C: f(x, y) = 0 and 
D:g(x, y) = O. If (p, 0") e V, f(p, 0") = 0 = g(p, 0") imply that R(p) 
= 0 and Q(O") = O. Since R(x) ~ 0, Q(y) ~ 0, this gives only a 
finite number of possibilities. Hence V is a finite set. We know 
that, if C contains a point in <1>(2), then V has such a point and, 
consequently, R(x) has a root in <1>. Conversely, suppose R(x) 
has a root a in <1>. If a is not a root of the polynomial in x which 
is the coefficient of the highest power of yin f(x,y), then R(a) = 
o implies the existence of a (j en such that (a, (j) e V. If (j = 
(3 e <1>, then we have the desired result that V, and hence C, has a 
point in <1>(2). Otherwise, (a, iT) e V where iT ~ (j is the conjugate 
of (j under the automorphism ~ 1 of n/<I>. Then we have two 
points in V: (a, (j) and (a, iT) with the same abscissa. 

We can easily overcome-by a suitable choice of axes-the two 
difficulties which we have noted which may prevent concluding 
that V, and hence C, has a point in <1>(2) from the fact that R(x) 
has a root in <1>. We shall change to an x', y' -system where x = 
J.L(x' + y'), y = y' and J.L ~ 0 will be chosen suitably in <1>. The 
equation of C in the x',y'-system is f(J.L(x' + y'),y') = O. 
Let fn(x,y) be the homogeneous part of highest degree n (>0) 
in x andy in the polynomial f(x,y). Then the coefficient of (y,)n 
in f(J.L(x' + y'), y') isfn(J.L, 1). Sincefn(x, 1) ~ 0, we can choose 
J.L e <I> so that fn(J.L, 1) ~ O. Since the total degree of f(x, y) is 
n, it will follow that the constantjn(J.L, 1) ~ 0 is the polynomial 
in x' which is the coefficient of the highest power of y' in 
j(J.L(x' + y'), y'). This will take care of one of the difficulties. 
To take care of the other we compute, by using the Euclidean 
algorithm, applied to R(x) and R'(x), a polynomial rex) which 
has simple roots that are the 'Same as those of R(x). Similarly, we 
compute a polynomial q(y) having simple roots the same as those 
of Q(y). We note next that we can compute a polynomial sex) 
whose roots are (pi - Pi') «(ji - (ji') -1 where Ph .. " P8 are the 
roots of rex) and (jh .. " (jt are those of q(y), i ~ i', j ~ j'. For 
this we introduce indeterminates ~i, 1 ~ i ~ S,l1" 1 ~ j ~ t, and 
we consider the polynomial 

II [(l1i - l1i')X - (~i - ~i')]' 
i*i' 
i .. i' 
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This is invariant under all permutations of the fs and 11'S so the 
coefficients of the powers of x are polynomials with integer coef
ficients in the elementary symmetric polynomials of the fs and 
the 11'S (Vol. I, p. 109). If we replace these elementary symmetric 
polynomials by the corresponding coefficients of rex) and q(y) 
normalized to have leading coefficients 1, we obtain a polynomial 
s(x) whose roots are (Pi - Pi,)(Uj - uj')-I,i ~ i',} ~ j'. Assume 
now that f.L is not a root of sex) (as well as not a root of In(x, 1)) 
and consider the set of points (Pi, Uj). This contains V and no 
two distinct points in this set have the same abscissa in the x',y'
system since (p, u) is the point (f.L-lp - U, u) in the x',y'-system. 
H -1 ~ -1 ·f ( . 0) ~ (0' 0 / ) , ence f.L Pi - Uj r- f.L Pi' - Up 1 t, J r- t, J . 

We now choose f.L as indicated and we replace l(x,y), g(x,y) by 
h(x,y) = l(f.L(x + y),y) and k(x,y) = g(f.L(x + y),y). Let lex) 
be the resultant relative to y of h(x,y) and k(x,y). Then the 
argument shows that l(x,y) = 0 is solvable in «I> if and only if 
lex) has a root in «1>. The latter problem can be decided by Sturm's 
theorem. 

In order to carry this over to more than two variables it is 
necessary to consider polynomials involving parameters and to 
apply an inductive procedure. This necessitates an extension of 
the decision method we have just given to take care of an equa
tion l(x,y) = 0 restricted by an inequality g(x) ~ o. To handle 
this we first obtain a highest common factor d(x) of g(x) and the 
coefficients of the powers of y in l(x,y) by the Euclidean algo
rithm. Write l(x,y) = d(x)ll(x,y), g(x) = d(X)gl(X). Then 
the pair of conditions lea, m = 0, g(a) ~ 0 is equivalent to the 
pair: ll(a, (j) = 0, g(a) ~ o. This remark permits us to reduce 
the consideration to the case in which g(x) and l(x,y) have no 
common factor of positive degree. To avoid considering trivial 
cases we assume also that degg(x) > 0 and degx l(x,y) > o. 
Let T(y) be the resultant relative to x of l(x,y) and g(x). Then 
T(y) ~ 0 since, otherwise, l(x,y) and g(x) have a common factor 
of positive degree in x in «I>[x,y] contrary to our arrangement. 
We now choose T in «I> so that T(T) ~ 0 and we replace l(x,y) by 
h(x,y) = l(x,y + T). Then the resultant relative to x of h(x,y) 
and g(x) is T(y + T) which is not 0 for y = o. This implies that 
g(x) and hex, 0) are relatively prime. Clearly we can replace the 



ARTIN-SCHREIER THEORY 307 

pair j(x,y), g(x) by the pair h(x,y), g(x) for the problem of test
ing the existence of a solution in <JI of j(x,y) = 0, g(x) ~ o. Now 
letk(x,y) = hex, g(x)y). Then if (a, (3) satisfies h(a, (3) = 0, 
g(a) ~ 0, we have k(a, 'Y) = 0 for 'Y = (3g(a)-l. On the other 
hand, if k(a, 'Y) = 0, h(a, g(ah) = 0, so g(a) ~ 0 since h(x, 0) 
and g(x) are relatively prime. Hence a and (3 = g(ah satisfy 
h(a, (3) = 0, g(a) ~ 0. This shows that j(x, y) = 0, g(x) ~ ° has 
a solution (ex, (3) in <JI(2) if and only if k(x,y) = ° has a solution in 
<JI(2) and this is the situation we handled before. 

9. Equations with parameters. If one attempts to extend the 
method which we have given in the last section to more than two 
variables, one is led to treat all but two of the variables as parame
ters and to seek a reduction of the number of variables by means 
of the method. This leads to the consideration of polynomials in
volving parameters. Since the parameters will be allowed to take 
on any values in the real closed field, there is no loss in generality 
in assuming that the coefficients of the polynomials are rational 
numbers. Moreover, the result one obtains in this way will be 
applicable impartially to all real closed fields, and this can be used 
to establish an important principle due to Tarski which states 
that any elementary statement of algebra (this has to be made 
precise) which is valid for one real closed field is valid for all real 
closed fields. The main result in Seidenberg's method for treat
ing these questions is the following 

Theorem 15. Let F(ti; x,y) e Ro[tI, ... , tr ; x,y], G(ti; x) e 
Ro[tI, ... , tr ; x], ti, x, y indeterminates, Ro the jield oj rational num
bers. Then one can determine in ajinite number oj steps ajinite set 
oj pairs oj polynomials (Fi(ti; x), Gi(ti)), Fi e RO[ti; x], Gi e RO[ti], 
j = 1,2, ... , h, such that, if <JI is any real closed jield, then Ti e <JI, 
1 ::; i ::; r, has the property that 

(21) F(Ti; x,y) = 0, G(Ti; x) ~ 0· 

is solvable jor x, y e <JI if and only if one oj the conditions: 

(22) 

is solvable jor x in <JI, is satisjied. 
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The proof of this theorem is essentially a formalization of the 
decision method of the last section. We consider first some neces
sary preliminary notions. 

We shall call the set <I>(r) of r-tuples (Th T2, ... , Tr), Ti e<l>, the 
parameter space. A finite set of pairs of finite subsets (~j, ).j) of 
~ = RO[ti], } = 1, 2, ... , h, will be called a rational cover if for any 

<I> of characteristic 0, <I>(r) is the union of the sets Sj where Sj is 
defined by (oj, ).j) in the sense that it is the set of (T i) e <I>(r) satis
fyingd(Ti) = O,de OJ, I(Ti) ~O,le).j. H(o/,)./),} = 1, ···,h, 
(Ok'" ).k"), k = 1, ... , q are rational covers, then so is (0/ U Ok", 
)./ U ).k"), } = 1, ... , h, k = 1, ... , q. The corresponding sets 
are the intersections of those of the two given rational covers. 
We shall call this a refinement of the two rational covers. 

We have noted that, if F = anxn + ... + ao, G = bmxm + ... 
+ bo, aj, bj e RO[ti], an ~ 0, bm ~ 0, n ;:::: m, then we have a 
uniquely determined division algorithm which yields an even 
integer e ;:::: n - m + 1 and a quotient Q and remainder R in 
RO[ti; x] = ~[x], ~ = RO[ti], such that bm4 F = QG - R where 
deg", R < deg", G. This can be extended to the case n < m or F = 0 
by taking e = 0, Q = 0, R = -F. We now associate with the 
pair (F, G) a number of generic Euclidean sequences Fo, Fh ... , Fa 
determined by the following rules Fo and F1 are F and G or are 
obtained from these respectively by dropping leading terms. 
Thus, Fo = apxP + ... + ao where 0 ~ p ~ n, F1 = bqxq + ... 
+ bo, 0 ~ q ~ m. H F1 = 0 we take s = 0 and let the sequence 
consist of Fo alone. Otherwise, we divide Fo by F1 and we let F2 
be the remainder or a polynomial obtained from the remainder 
by dropping leading terms. H F2 = 0, we stop with Fo, F 1; 
otherwise, we repeat the process. Clearly, this process breaks off 
in a finite number of steps and, since we have only a finite number 
of choices for every F k , we obtain a finite number of generic 
Euclidean sequences E for (F, G). Set D(ti; x) = F.(ti; x) the 
last term in the sequence E. Then D ~ 0 unless Fo = F1 = 0 
and, except in t_his case, w.e can divide F and G by D obtaining 
m(ti)6F = F(1) D - R(1), m(ti)IG = G(l) D - S(1) where m(ti) is 
the leading coefficient of D, e and f are the even integers, and 
F(1), G(1) the quotients, R(1), S(1) the remainders obtained in the 
division. With each E we associate also the pair of subsets (o(E), 
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A(E)) of Ro[/i] where fJ(E) is the set of coefficients of the dropped 
terms in the process of forming E (e.g., the coefficients of F - Fo 
and G - Go) and A(E) is the set of leading coefficients of the F k • 

Now let q, be any field of characteristic 0, let (Ti) e q,(r) and set 
f(x) = F(Ti; x),g(x) = G(Ti; x). It is easily seen that there exists 
a generic Euclidean sequence E for (F, G) such that d(Ti) = 0 
for all de fJ(E), I(Ti) ~ 0 for all I e A(E). Hence the set of pairs 
(fJ(E), A(E)) for all generic E is a rational cover. If E is chosen 
as indicated for (Ti), then d(x) = D(Ti; x) is a highest common 
factor in q,[x] of f(x) and g(x) and, if D(/i; x) ~ 0, we have the 
polynomials F(1)(/i; x), G(1)(/i; x) such that m(Ti)".!(X) = d(x)fl(X), 
m(Ti)'g(X) = d(X)gl(X) wherefl(x) = F(l)(Ti;X),gl(X) = G(l)(Ti; x) 
and m(/i) is the leading coefficient of D(/i; x). We have m(Ti) ~ 0 
since m(/i) e A(E). 

The procedure we have just indicated can be extended in an 
obvious way to any finite set of polynomials. We shall need the 
process also for polynomials in two indeterminates X,y (besides 
the Ii). Here we begin with F(/i; x,y) and G(/i; x,y) in ~[x,y] = 
Ro[/i; x,y] and we treat x like one of the Ii. The division algo
rithm with respect to y gives 1(/i; x)ep = QG - R where degy R < 
degy G. If we observe that a relation d(Ti; x) = 0 for d(/i; x) e 
Ro[/i; x] is equivalent to Ik(Ti) = 0 for all the coefficients dk(/i) 
of d(/i; x) and I(Ti; x) ~ 0, 1(/i' x) e Ro[/i; x], holds if and only if 
Ik(Ti) ~ 0 for one of the coefficients lk' we see that we can de
termine a rational cover (fJj, Aj), j = 1,2, ... , h, and polynomials 
Dj(/i; x,y) and FP)(/i; x,y), GP)(/i; x,y) if Dj ~ 0, such that if 
(Ti) is~ in the subset Sj defined by (fJ;, Aj), then d(x,y) = Dj(Ti; 
x,y) is a highest common factor in q,(x)[y] of f(x,y) = F(Ti; 
x,y) and g(x,y) = G(Ti; x,y). Moreover, if D(/i; x,y) ~ 0 and 
m(/i; x) is its leading coefficient regarding D as a polynomial in y, 
then m(x) = m(/i; x) ~ 0 and m(x)ef(x,y) = d(x,y)fl(X,y), 
m(x)lg(x,y) = d(x, y)gl(X, y) where fl(X,y) = F/l)(Ti; x,y), 
gl(X,y) = GP)(Ti; x,y). 

There is one more device we shall need which will take the place 
of the step in the decision method of choosing an element 'Y in 
q, such that for a given polynomial f(x) ~ 0 one has f('Y) ~ o. 
Let F(li; x) = Fq(li)Xq + ... + Fo(/i) where Fq(/i) ~ O. Assume 
first that (Ti) in q,(r) satisfies Fq(Ti) ~ o. If we recall the bound 
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for the roots in 4> of a polynomial given in § 3 we see that 'T1 = 
q-1 

(q + 1) + L Fk(ri)2Fq(Ti) -2 is not a root of F(Ti; x). Hence 
o 

q-1 

if we set Q(ti) = (q + 1)Fq(ti)2 + L Fk(ti), P(ti) = Fq(ti)2, 
o 

then P(Ti) :;e 0, Q(Ti) :;e 0 for all (Ti) satisfying Fq(Ti) :;e 0 and 
'T1 = Q(ri)P(Ti) -1 is not a root of F(Ti; x). Next assume Fq(Ti) = 
o and Fp(Ti) :;e 0 for the first non-zero coefficient Fp(ti) after 
Fq(ti). Then we can reJieat the argument with p replacing q. 
Continuing in this way we obtain a rational cover (oj, X;), j = 
1,2, .. " h, such that F(Ti; x) = 0 for (Ti) e Sh and for j < h we 
have P;(ti) , Q;(ti) such that P;(Ti) :;e 0, Q;(Ti) :;e 0 and F(Ti; 
Q;(Ti)P;(Ti) -1) :;e 0 for (Ti) e S;. 

We are now ready to give the 
Proof of Theorem 15. We note first that it is sufficient to give a 

rational cover (Ok, Xk), k = 1, .. " m, such that for each k one 
defines a finite set of pairs of polynomials Gk;(ti) e RO[til, Fk;(ti; x) 
e RO[ti; xl having the property that, if (Ti) e Sk, the subset of 4>(r) 

defined by (Ok, Xk), then F(ri; x,y) = 0, G(Ti; x) :;e 0 is solvable 
in 4> if and only if one of the conditions: Gk;(Ti) :;e 0 and Fk;(Ti; x) 
= 0 is solvable in 4>, is satisfied. If we have this situation, we 
put Fk;*(ti; x) = Fk;(ti; X)2 + L d(ti)2, Gk;*(ti) = Gk;(ti) II l(ti)' 

*b ~k 

Then the finite set of pairs (Fk;*(ti; x), Gk;*(ti)) satisfies the con
dition for the set of pairs (F;(ti; x), G;(ti)) ih the statement of the 
theorem. 

We consider next the reduction of the theorem from the pair 
of conditions F(ti; x,y) = 0, G(ti; x) :;e 0 to a single condition 
F(ti; x,y) = O. (This corresponds to the second half of the argu
ment given in the last section.) We shall use an induction on 
deg", F and we note that the result is trivial if F does not involve 
x. Then we can take F(ti; x) to be the polynomial obtained by re
placing y by the missing x and take G(ti) to be the sum of the 
squares of the coefficients of G(ti; x). We now assume deg", 
F(ti; x,y) > 0 and we apply the considerations on highest com
mon factors to G(ti; x) and the coefficients of the powers of y in 
F(ti; x,y). Accordingly, we obtain a rational cover such that 
for each mem ber (0, X) of the cover we can determine polynomials 
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m(/i), D(/i; x), F(l)(/i; X,y), G(l)(/i; x) with rational coefficients 
such that D(Ti; x) is a highest common factor of G(Ti; x) and the 
coefficients of the y terms in F(Ti; x,y) and m(Ti) rf 0, 

m(Ti)8F(Ti; x,y) = D(Ti; x)F(l) (Ti; x,y), 

m(Ti)'G(Ti; x) = D(Ti; x)G(l) (Ti; x) 

for all (Ti) in the set S defined by (0, A). We can replace the pair 
F(/i; x, y), G(/i; x) by the pair F(1) (Ii; x,y), G(l) (ti; x) in the set S so 
if degz F(1) < degz F the induction can be used. Hence we may 
assume equality of the degrees indicated, which means that we 
have degz D = o. Then D(/i; x) = m(/i), and G(Ti; x) and the 
coefficients of F(Ti; x,y) are relatively prime. Now let T(li;Y) 
be the resultant relative to x of F(/i; x,y) and Ox + G(/i; x). 
Then T( T i; y) rf 0 for all (T i) e S and by passing to a refinement of 
the rational cover we may assume also that we can find P(/i), 
Q(li) e Ro[li] such that P(Ti) rfO, Q(Ti) rfO, and T(Ti; Q(Ti)P(Ti) -1) 
rf 0 for (Ti) in S. We replace F(/i; x,y) by H(/i; x,y) = P(li)'F(/i; 
X,y + Q(/i)P(/i)-1) where f = degy F(/i; x,y). The resultant of 
H(/i; x,y) and G(/i; x) relative to x has the form P(/i)gT(/i;y + 
Q(/i)P(/i) -1) and this is not 0 for (Ti) e S, y = o. It follows that 
H(Ti; x,y) = 0, G(Ti; x) ~ 0 is solvable in 4> if and only if K(Ti; 
x,y) = 0 is solvable in 4> for K(/i; x,y) = H(/i; x, G(/i;Y)Y). 

We now consider a single equation F(/i; x,y) = O. By con
sidering the highest common factor of the coefficients of the powers 
of y of F we reduce the consideration to subsets S defined by a 
rational cover and polynomials F(/i; x,y) such that F(Ti; x,y) is 
not divisible by a polynomial of positive degree in x for (Ti) e S. 

N ext we consider the highest common factor of F and of and 
oy 

after a refinement we may assume that we have determined poly
nomials m(/i; x), D(/i; x,y), F1(/i; x,y) with rational coefficients 
such that D(Ti; x,y) is a highest common factor in 4>(x)[y] of 

o 
F(Ti; x,y) and - F(ri; x,y), m(Ti; x) rf 0 and m(Ti; x)8F(Ti; x,y) 

oy 
= D(Ti; x,y)F1(Ti; x,y). Then F1(Ti; x,y) has no multiple fac
tors of positive degree iny and F and F1 have the same irreducible 
factors of positive degree in y in 4>[x, y]. Again we can determine 
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k(ti), L(ti; X), F2(ti; x,y) such that k(Ti)'F1(Ti; x,y) = L(Ti; 
x)F2 (Ti; x,y) where F 2 (Ti; x,y) is not divisible by a polynomial of 
positive degree in x. Then it is clear that we may replace F by F2 
and so we may assume that for (Ti) e S, F(Ti; x,y) has no mul
tiple factors of positive degree in y and no factor of positive 

a 
degree in y alone. Then F(Ti; x,y) and - F(Ti; x,y) have no 

ay 

common factors of positive degree. Set G(ti' C; x,y) = y aF -
ax 

(x - c) aF where c is another indeterminate and let R(ti' C; x) 
ay 

be the resultant relative to y of G(ti' C; x, y) and F(ti; x, y). Then 
one can argue as in the decision method itself that R(Ti, C; x) =;e O. 
By going to a refinement of the rational cover we can obtain 
P(ti) , Q(ti) e RO[ti] such that P( T i) =;e 0, Q( T i) =;e 0, R( T i, Q( T i) 
P(Ti) -1; x) =;e O. If we replace G(ti, C; x,y) by G(ti; x,y) == 
P(ti)G(ti, Q(ti)P(ti)-1; x,y), we see that the resultant R(ti; x) of 
F(ti; x,y) and G(ti; x,y) relative to y satisfies R(Ti; x) ~ 0, 
(Ti) e S. As before, we can argue that also the resultant Q(ti;y) of 
F and G relative to x satisfies Q(Ti;Y) =;e O. The remainder of 
the proof can be made along the lines of the decision method itself. 
We leave it to the reader to carry this out. 

10. Generalized Sturm's theorem. Applications. We. can now 
prove the following generalization of Sturm's theorem which is due 
to Tarski. 

Theorem 16. Let cp be a finite se.t of polynomial equations and 
inequalities of the form F(tl) ... , tr; Xl) ••• , X n ) = 0, G(tl) ... , 
tr; Xl) ' •• , xn ) =;e 0 or H(tl) ... , tr; Xl) ••• , x n ) > 0 where F, G, 
He Ro[tl) ... , tr; Xl) ' •• , x n ]. Then one can determine in a finite 
number of steps a finite collection of finite sets 1/1; of polynomial equa
tions and inequalities of the same type in the parameters ti alone 
such that, if <I> is any real closed field, then the set cp has a solution for 
the x's in <l>for ti = Ti, 1 ::; i ::; r, if and only if the Ti satisfy all the 
conditions of one of the sets 1/1;. 

Proof. We show first that we can reduce the system cp to a 
single equation of the form F(ti; x;) = 0 where the number of x's 
may have to be increased. First it is clear that an inequality 
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G ~ 0 is equivalent to G2 > o. Next we can replace an inequality 
H> 0 by the equivalent equation z2H - 1 = 0 where z is an 
extra indeterminate. Finally, a number of equations Fi = 0 can 
be replaced by the single equation ~Fi2 = o. These observations 
prove the assertion, so we take cp to be a single equation F(ti; Xj) = 
O. We show first by induction on the number n of x's that we 
can determine a finite number of sets of equations of the form 
Fk(ti; x) = 0, Gk(ti) ~ 0 such that a set Th ... , Tr, Ti in <P, has 
the property that F(Ti; Xj) = 0 is solvable for x's in <P if and only 
if for some k one has Gk(Ti) ~ 0 and Fk(Ti; x) = 0 is solvable in <P. 
This is trivial for n = 1 and it is a consequence of Theorem 15 
if n = 2. Assume it holds for n - 1 ~ 2. Then treating Xn as 
one of the parameters we conclude that we can determine a 
finite number of pairs of polynomials (Fk(ti, Xn; x), Gk(ti, xn)) 
with rational coefficients such that, if the Ti and ~n e <P, then 
F(Ti; Xh ... , Xn-h ~n) = 0 is solvable for Xh ... , Xn-l in <P if and 
only if, for some k, Gk(Ti, ~n) ~ 0 and Fk(Ti, ~n;Y) = 0 is solvable 
in <P. By Theorem 15, for each k one can find a finite set of pairs of 
polynomials (Fkj(ti; x), Gkj(ti)) with rational coefficients such that 
Fk(Ti, x;y) = 0, Gk(Ti; x) ~ 0 is solvable in <P if and only if for 
some j we have Gkj(Ti) ~ 0 and Fkj(Ti; x) = 0 is solvable in <P. It 
follows that the set of pairs (Fkj(ti; x), Gkj(ti)) satisfies the re
quired condition for F(ti; Xl, ... , xn). We now denote these pairs 
as (Fj(ti; x), Gj(ti)). For each Fj(ti; x) the version of Sturm's 
theorem we considered in § 7 shows that a finite set of polynomial 
equations and inequalities with rational coefficients in the ti can 
be found such that these are satisfied by ti = Ti e <P if and only 
if Fj(Ti; x) is solvable in <P. If we add to each set the inequality 
Gj(Ti) ~ 0 we obtain the sets 1/1 satisfying the requirement of the 
theorem. 

Suppose now that we have a system of equations and inequali
ties with rational coefficients which have a solution in one real 
closed field <Pl. It is clear that we can introduce parameters and 
change our assertion to one that a certain system with parameters 
and rational coefficients has a solution in <Pl for certain rational 
values of the parameters. Then Theorem 16 implies that these 
rational numbers satisfy one of a certain set of rational equations 
and inequalities. Then if <P is any other real closed field we can 
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apply Theorem 16 again in the reverse direction and conclude that 
the original system has a solution in <1>. 

Again, suppose we have a system of equations and inequalities 
with rational coefficients involving parameters and suppose that 
for one real closed field <1>1 it is true that the system has a solution 
in <1>1 for all choices of the parameters in <1>1. Then one concludes 
from Theorem 16 that this is equivalent to the statement that 
every set of values for the parameters in <1>1 satisfies one of a cer
tain finite collection of finite sets of equations and inequalities. 
It is easy to see that this in turn is equivalent to the statement 
that there are no solutions in <1>1 of anyone of another finite col
lection of finite sets of rational equations and inequalities for the 
parameters. The foregoing result shows that this carries over to 
every real closed field <1>. Hence we see that the original system 
has a solution in <I> for all choices of the parameters in <I> where <I> 

is any real closed field. 
We shall now consider an application of these results to an 

important theorem on division algebras. 
A long time ago, before real closed fields were invented, Fro

benius proved the following theorem: The only finite dimensional 
division algebras over the field R of real numbers are: (1) R it
self, (2) R(v=T), (3) Hamilton's quaternion algebra over R. 
The known proofs of this theorem are algebraic and give the same 
result for any real closed field. The reader may refer to Dickson's 
Algebras and Their Arithmetics, p. 62, for an elementary proof of 
this type. We now drop the assumption of associativity which we 
have made throughout this book and consider non-associative 
algebras. These are defined to be vector spaces over a base field 
<I> in which a multiplication xy is defined satisfying the distribu
tive laws and the rule a(xy) = (ax)y = x(ay), a e<l>. Such an 
algebra which is finite dimensional is called a division algebra if 
it has no zero divisors: xy = 0 implies either x = 0 or y = 0 in 
the algebra. Besides the examples noted above there is one other 
important example of a non-associative division algebra, namely, 
an algebra of eight dimensions of octonions which was discovered 
by Cayley and by Graves. The known examples of finite dimen
sional non-associative division algebras over the field of real 
numbers have dimensions 1,2,4, and 8. It was conjectured for 
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a long time that these are the only possible dimensions and this 
was finally established by deep topological considerations by Bott 
and Milnor. It would be a hardy task to attempt to carryover 
the proof to the case of real closed fields. Moreover, this is un
necessary since it is quite easy to conclude the result for arbitrary 
real dosed fields from its validity for the field of real numbers. 
Assuming the Bott-Milnor result for the field of real numbers, 
we shall prove that, if n =;e 1,2,4,8,00 and tI> is a real closed field, 
then there exists no n dimensional non-associative division algebra 
over tI>. To prove this let ~ be a non-associative algebra 
with the basis (Ul) U2, .. " Un) over tI> and suppose UiUi = "];'YiikUk 

where the 'Yijk e tI>. If x = "];~iUi, ~i e tI>, then the mapping y ~ xy 
in ~ is a linear one whose matrix relative to the basis (Ul) .. " Un) 

is (Pik) where Pik = L ~i'Yiik' The existence of a y =;e 0 such that 
i 

xy = 0 is equivalent to the statement that y ~ xy is a singular 
linear transformation and this is the case if and only if F('Yiik; ~i) 
== det (Pik) = o. To show that ~ is not a division algebra we 
have to show that there exists an x =;e 0 such that F('Yiik; ~i) = O. 
We now see that our assertion is equivalent to the following: Let 

F(tiik; Xi) = det (~ Xitiik) which can be considered as a poly

nomial in indeterminates tiik, Xi with rational coefficients. Then 
for all choices tiik = 'Yiik e tI> there exists a solution Xi = ~i in tI> of 
the system F('Yiik; Xi) = 0, ~xl ~ O. Now by the Bott-Milnor 
theorem this holds for tI> = R the field of real numbers. Hence our 
results show that it holds for every real closed field. 

Another example of the same type is a theorem of Hopf's which 
states that the only possible finite dimensionalities for real non
associative commutative division algebras are n = 1,2. Com
mutativity, of ~ is equivalent to the condition 'Yiik = 'Yiik for all 
i, j. Hence in the foregoing argument we consider indeterminates 

tiik for i ~ j and define tiik = tiik for j > i. Then det ( ~ XJiik) 

is a polynomial with rational coefficients in the indeterminates 
tiik, i ~ j. The rest of the argument carries over and shows that 
Hopf's theorem is valid for all real closed fields. 
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There is a general class of statements on real closed fields which 
can be treated in the foregoing manner. These are the so-called 
elementary sentences of algebra. We shall not attempt to give 
the precise definition for these but refer the reader to the literature 
(see the bibliographic notes on this chapter). The results we have 
considered are special cases of the general principle oj Tarski that 
any elementary sentence of algebra is either true for all real 
closed fields or is false for all real closed fields. 

EXERCISES 

1. Assuming the result for the field of real numbers prove that, if <1> is any real 
closed field and FI(XI, .. " Xn) = 0, .. " Fk(xl, .. " Xn) = ° where the F's e 
<1>[XI, •• " Xn) has a solution Xi = ~i e <1>, then it has a solution nearest the origin. 

2. Prove the analogue of Theorem 16 for algebraically closed fields <1> of charac
teristic ° and finite sets of equations F(It, .. " fr ; Xl, •• " Xn) = ° and inequalities 
G(It, .. " f r ; Xl, •• " Xn) ,c ° where the F, G e Ro[fi; Xi)' (Hint: A simple proof of 
this can be based on the generic Euclidean sequences and the following simple 
observation due to Tarski: if f(x) , g(x) e <1>[x) and degf > 0, deg g > 0, therfY(x) 
= 0, g(x) ,c ° has a solution in <1> if and only if/ex) is not a divisor of g(x)deg/(z»). 

3. Prove the result of ex. 2 also for <1> of characteristic p ,c ° by developing the 
corresponding results on generic Euclidean sequences of Ip[f,; x), Ip = Ij(p). 

11. Artin-Schreier characterization of real closed fields. We 
shall complete our discussion of real closed fields by proving a 
beautiful characterization of real closed fields which is due to 
Artin and Schreier. We recall that, if 4> is a field not containing 
V-l and 4>( V-l) is algebraically closed, then 4> is real closed 
(Th. 6). We shall now prove 

Theorem 17. Let 11 be an algebraically closed field and 4> a 
proper subfield which is oj finite co-dimension in 11. Then 4> is real 
closed and 11 = 4>(v'=T). 

Proof. Let 4>' = 4>( v=l) c 11. The theorem will follow from 
the result quoted if we can show that 4>' = 11. Hence we suppose 
that 11 ::> 4>'. Let E be an algebraic extension of 4>'. Then E is 
isomorphic to a subfield of 11 over 4>' and so [E :4>'] :::::; [11 :4>']. 
Hence the dimensionalities of algebraic extensions of 4>' are 
bounded. This implies that 4>' is perfect. Otherwise, the charac
teristic is p ~ 0 and there exists a {3 e 4>' which is not a p-th power. 
Then for every e > 0, xP' - {3 is irreducible in 4>'[x] (ex. 1, § 1.6) 
and this provides an algebraic extension of pe dimensions over 4>'. 
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Since e is arbitrary, this contradicts what we proved. Thus <Jl' 
is perfect and so n is separable over <Jl'. Since n is algebraically 
closed it is Galois over <Jl' and its Galois group Gover <Jl' is ;:e 1 be
cause n :::) <Jl'. Hence G contains a cyclic subgroup of prime order 
q and consequently there exists a subfield E :::> <Jl' such that n is 
cyclic of q dimensions over E. Since n is an algebraic closure of E 
and [n: E] = q, it is clear that nand E are the only algebraic exten
sions of E. I t now follows that the characteristic of <Jl is not q. 
Otherwise, n is a cyclic q-extension of E, and the existence of such 
an extension of E implies the existence of cyclic qm-extensions of 
E for every m (Th. 3.16). This has been ruled out and so the 
characteristic is not q. This implies that n, which is algebraically 
closed, contains q distinct roots of 1. Since these are roots of 
(x - 1)(xq- 1 + xq- 2 + ... + 1) and since the irreducible poly
nomials in E[x] have degrees 1 or q, all the q-th roots of 1 are con
tained in E. Since n is cyclic q-dimensional over E, n = E( Va) 
where ex e E and is not a q-th power in E (Th.2.S). Consider the 

q2 
polynomial g(x) = II (x - rip) where r is a primitive q2_root 

1 

of 1 and p is an element of n such that pq2 = ex. Since the inclu-
sion rip e E implies that E contains an element (rip)q = {3 such 
that (3q = ex, we see that no rip e E. Since g(x) = xq2 - ex e E[x], 
it follows that all of its irreducible factors in E[x] are of degree q. 
If {3 is the constant term of one of these, then {3 = pqTJ where TJ is a 
power of r. Since (pq)q = ex and n = E(Va), pq ¢ E and n = 
E(pq) = E({3p-q) = E(TJ). Since E contains all the q-th roots of 
1, we see that TJ is a primitive q2_root of 1. Let <Jlo be the prime 
field of n and now consider the subfield <Jlo(TJ) of n. If <Jlo is the 
field Ro of rational numbers we know that the dimensionality of 
the field of qr_th roots of 1 is cp(qr) (Th. 3.2) and this goes to in
finity with r. If <Jlo has characteristic p ;:e q, then the field of the 
qr_th roots of 1 over <Jlo contains at least qr elements, so again the 
dimensionality of this field over <Jlo approaches infinity. In any 
case it now follows that there exists a positive integer r such that 
<Jlo(TJ) contains a primitive qr_th root of 1 but no primitive qr+l_st 
root of 1. Since TJ is a primitive q2_root of 1, r ~ 2. The field n 
contains a primitive qrH_st root of 1, say~. Let h(x) be the 
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minimum polynomial of ~ over E. Since 71 ¢ E, ~ ¢ E, so deg hex) 
qr+l 

= q. Also hex) is a factor of xqr+l - 1 = II (x - ~i), so the 
1 

coefficients of hex) are contained in 4>0(~); hence they are con
tained in the field r = 4>0(~) n E. It follows that [4>0(~): r] = q. 
Next we consider the subfield r' = 4>o('Y), 'Y = ~q, of4>o(~). Evi
dently 'Y is a primitive qr_th root of 1, so r' contains q distinct q-th 
roots of 1. On the other hand, 4>0(~) = r'(~) where ~q = 'Y e r', 
so either 4>0(~) = r' or 4>0(~) is cyclic of q dimensions over r'. If 
4>0(~) = r' = 4>o('Y), we have 4>0(~) c 4>0(71) since <110(71) contains 
all the qr_th roots of 1. Then 4>0(71) contains ~, a primitive qr+l_st 
root of 1, contrary to hypothesis. Thus we have [4>0(~): r'] = q. 
Now r' ;;e r. Otherwise, r contains a primitive qr_th root of 1, 
so rand E contain 71 contrary to n = E(71) :::> E. We have there
fore proved that the field 4>0(~) of the t+1-st roots of 1 over the 
prime field contains two distinct subfields rand r' over which it is 
q-dimensional. It follows that the Galois group of 4>0(~) over 4>0 
is not cyclic. By Lemma 1 of § 1.13 and Theorem 3.5, this is the 
case only if the characteristic is 0 and q = 2. Then the element 
71 considered before is a primitive 4-th (q2 with q = 2) root of 1. 
On the other hand, E contains 4>' which contains V-l and this is 
a primitive 4-th root of 1. Hence we have n = E(71) = E con
trary to n ::::> E. This contradiction shows that 4>' = 4>( V-l) = 
nand 4> is real closed. 



SUGGESTIONS FOR FURTHER READING 

Chapter I. The classical Galois correspondence between groups of 
automorphisms and subfields has been extended in a number of different 
directions. First, one has Krull's Galois theory of infinite dimensional 
extensions which is considered in Chapter VI. Next one has the Galois 
theory of division rings which is due (independently) to H. Cartan and 
the present author. An account of this can be found in the author's 
Structure of Rings, A.M.S. Colloquium Vol. 37 (1956), Chapter VII. 
(Our development of the Galois theory in Chapter I is based on the 
methods which were developed originally to handle the non-commutative 
theory.) A Galois theory of finite dimensional separable extensions 
based on the notion of a self-representation of a field is due to Kaloujnine. 
This is contained in a more general theory given by the present author 
in two papers in Am. J. Math., Vol. 66 (1944), pp. 1-29 and pp. 636-644. 
See also two papers by Hochschild and by Dieudonne in the same 
journal, Vol. 71 (1949), pp. 443-460 and Vol. 73 (1951), pp. 14-24. 

Quite recently a Galois theory of automorphisms of commutative 
rings has been developed jointly by S. U. Chase, D. K. Harrison, and 
A. Rosenberg. This paper will appear in Transactions A.M.S. 

A general cohomology theory of fields has been given by Amitsur in 
Trans. A.M.S., Vol. 90 (1959), pp. 73-112. See also the paper by 
Rosenberg and Zelinsky on this subject in Trans. A.M.S., Vol. 97 (1960), 
pp. 327-356, and Amitsur's paper in J. Math. Soc. Japan, Vol. 14 (1962), 
pp 1-25. 

Chapter II. We have indicated in the text the unsolved problem of 
the existence for a given field eI> and a given finite group G of a Galois 
extension P leI> whose Galois group is isomorphic to G. A closely related 
question is that of the existence of an equation with coefficients in eI> 
having a given subgroup of Sn as group. These problems have been 
studied extensively for eI> the field of rational numbers and more generally 
for algebraic number fields (finite dimensional extensions of the ra
tionals). Two methods have been developed for this problem: one based 
on arithmetic properties of number fields, and a second more elementary 
method based on an irreducibility criterion due to Hilbert. The deepest 
results thus far obtained in the arithmetic theory are due to Safarevic. 
A summary of his results is given in Math. Reuiews, Vol. 16 (1955), pp. 
571-572. 

The Hilbert method (which was used by Hilbert to prove the existence 
of rational equations with Sn as Galois group) has two stages. Given 
a field eI> one requires first a purely transcendental extension field 
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<I>(t1, .. " tr ) and a Galois extension P of <I>(ti) with Galois group iso
morphic to the given group G. This problem is still open except for 
special cases (Sn, alternating group and some others). Next one needs 
to know that <I> is a Hilbertian field in the sense that Hilbert's irreduci
bility theorem holds for <1>. (For example, the rational field is Hil
bertian; the field of p-adic numbers and finite fields are not.) A discus
sion of this theorem and its relation to Galois theory is given in S. Lang's 
book Diophantine Geometry, New York, 1962, Chapter VIII. 

An interesting aspect of the classical Galois theory of equations is 
Klein's theory of form problems. A development of this from the point 
of view of algebras, particularly crossed products, is due to R. Brauer in 
Math. Annalen, Vol. 110 (1934), pp. 437-500. Reference to the classical 
works on the subject is given in this paper. 

A general reference book for Galois theory of equations is Tschebota
row's Gurndzuge der Galois'schen Theorie, Groningen, 1950 (translated 
from Russian by Schwerdtfeger). 

Chapter m. D. K. Harrison has given a general theory of abelian 
extension fields in Trans. A.M.S., Vol. 106 (1963), pp. 230-235. 

Chapter IV. Some of the deeper results of this chapter have been 
developed to meet the needs of algebraic geometry. The reader may con
sult S. Lang's Introduction to Algebraic Geometry, 1958, or A. Weil's 
Foundations of Algebraic Geometry, A.M.S. Colloquium Vol. 29, Provi
dence, 1st. Ed., 1946, 2nd. Ed., 1962, for these connections. 

Chapter V. There are several directions that one may take in pursuing 
the subject matter of this chapter. First, one can study the general 
theory of valuations as given in Zariski-Samuel's Commutative Algebra 
Vol. II, D. Van Nostrand Co., Inc., Princeton, 1960, Chapter VI. 
Secondly, this chapter leads to the arithmetic theory of number fields 
and fields of algebraic functions of one variable. For this the reader 
may consult Chevalley's book Algebraic Functions of One Variable, 
Princeton, 1951, Artin's book Theory of Algebraic Numbers, Gottingen, 
1959, and E. Weiss' book Algebraic Number Theory, New York, 1963. 
A third direction which one can take after studying Chapter V is local 
class field theory. For this the reader may consult Serre's book Corps 
Locaux, Paris, 1962. 

Chapter VI. The original Artin-Schreier theory is given in papers by 
Artin and Schreier and by Artin in the Hamburg Abhandl., Vol. 5 (1927). 
Our exposition follows these papers rather closely. Seidenberg's work 
is in Annals of Math., Vol. 60 (1954), pp. 365-374. This contains also a 
statement of Tarski's principle and, of course, a reference to Tarski's 
earlier paper. Much of the present chapter can be developed also as a 
part of mathematical logic, more exactly, as an aspect of the theory of 
models. The reader may consult A. Robinson's book, Model Theory, 
Amsterdam, 1963, particularly Chapter VIII. Also references to the 
literature are given in this book. 
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Abelian extension field, 61, Chapter III 
Abelian p-extensions, 132-140 
Algebraically closed field, 142-147 
Algebraic closure, 142 

separable, 146 
uniqueness of, 145 

Algebraic element, 6 
Algebraic field extension, 44 

absolutely, 147 
Algebraic functions, 156 
Algebraic independence, 4, 151-157 

of isomorphisms, 56 
Algebras, 7-9 

algebraic, 10 
homomorphism of, 7 
ideals of, 7 
of dual numbers, 168 
tensor products of, 15-17 

Artin's theorem on positive definite 
rational functions, 289 

Bilinear mapping, 10 
Bott-Milnor theorem, 315 

Character, 75 
Character group, 117 

of finite commutative group, 116-
119 

Characteristic polynomial, 64 
Cohomology groups, 82 
Complete field (relative to a real valua

tion), 217 
finite dimensional extensions of, 

256-262 
Completion of a field (relative to a real 

valuation), 216-221 
Composites of fields, 83-89, 262-264 

free, 203-209 
Constant, 169, 194 
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Crossed product, 79 
Cyclic algebra, 80 
Cyclic extension field, 61 
Cyclic p-extensions, 139-140 
Cyclotomic field, 95, 110-116 

Decision method, 300-307 
Dedekind independence theorem, 25 
Degree of separability and insepara-

bility, 49 
Dependence relations, 153-155 

algebraic, 151-157 
Derivations, 167-174, 183 

constant relative to, 169 
Galois theory of, 185-191 
higher, 191-197 
iterative higher, 196 

Different, 73 
Direct sum, 9, 85 
Discriminan t: 

of an algebra, 66 
of a polynomial, 92 

Equations with symmetric group as 
Galois group, 105-109 

Exponential function in p-adic num
bers, 226-228 

Extension of derivations, 170-172, 
174-185 

Extension of homomorphisms, 2-6, 
246-248 

Extension of valuations, 246-250, 
256-265 

Factor set, 79 
Finite fields, 58-62 
Finite topology, 149 
Formally real field, 271 
Frobenius' theorem, 314 
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Fundamental theorem of Galois 
theory, 41 

for infinite dimensional extensions 
(Krull's theorem), 150 

for purely inseparable extensions of 
exponent one, 186 

Galois cohomology, 75-83 
Galois correspondence, 23 

for subgroups and subfields, 29 
Galois' criterion for solvability by 

radicals, 98-102 
Galois extension field, 27 
Galois group: 

of an equation, 89-97 
of an extension field, 27 
of cyclotomic extensions, 96, 113, 

115 
of general equation, 104 
of quartic equations, 94-95 
of simple transcendental extensions, 

158-159 
Galois theory for purely inseparable 

extensions of exponent one, 185-
191 

General equation of n-th degree, 102-
105 

Groups of automorphisms of fields, 
27-31 

Hensel's lemma, 230-232 
Hilbert Nullstellensatz, 254 
Hilbert's "Satz 90," 76 
Hilbert's 17th problem, 289 
Homomorphism: 

of an algebra, 7 
of additive group of a field, 19 

Hopf's theorem, 315 

Ideal, 7 
imbedding in maximal ideal, 255 
imbedding in prime ideal, 253 
radical of, 209, 253 

Indeterminates, 4 
Infinite Galois theory, 147-151 
Integral closure, 255-256 
Isometric· mapping, 221 

Jacobson-Bourbaki theorem, 22 

Kronecker product, see tensor product 
Kummer extensions, 119-124 

Lie algebra of linear transformations, 
174 

restricted,174 
Lie commutator, 173 
Linear disjointness, 160-167 
Local dimensionality, 265 
Liiroth's theorem, 157-160 

MacLane's criterion, 164 
Minimum polynomial, 6 
Multiple roots, 37 

Noether's equations, 75 
Norm, 65 

transitivity of, 66 
Normal basis, 56, 61 
Normal closure, 43 
Normal extension, 43, 52-53 
Number of solutions of quadratic equa

tions in finite fields, 62 

Order isomorphism, 238, 271 
Ordered field, 270 

archimedean, 272 
Ordered group, 237 

rank of, 243 
of rank one, 244-246 

Ostrowski's theorem, 260 

p-adic numbers, 222-230, 234-236 
p-basis, 180 
p-independence, 180 
Perfect closure, 146 
Perfect field, 146 
Place, 241 
Positive definite rational functions, 

289-295 
Power series, 233-234 
Primitive elements, 54-55, 59 
Pure equation, 95 
Pure transcendental extension, 155 
Purely inseparable extension, 47 

exponent of, 179 
Galois theory of, 185-191 
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~cationindex, 265 
Rationally specializable property, 291 
Real algebraic numbers, 287-289 
Real closed field, 273 

characterization of, 276-278, 316-
318 

Real closure, 284-286 
Representation: 

matrix, 63 
regular, 63 

Residue degree, 265 
Residue field, 222 
Resultant, 298-299 
Root tower, 98 
Roots of unit, 95, 110-116 

Seidenberg's decision method, 300-
307 

Separable: 
algebraic closure, 146 
element, 45 
extension, 46, 166 
polynomial, 39 

Separating transcendency bases, 161, 
164-167 

and derivations, 178-179, 184 
Solvable extension field, 61 
Splitting field of a polynomial, 31 

isomorphism theorem for, 35 
Standard sequence, 281 
Sturm sequence, 279 
Sturm's theorem, 283, 295 

generalized (Tarski's theorem), 312 
Subalgebra, 7 

Tarski's theorem, 312 
Tensor products, 10-17 

of algebras, 15-17 
of fields, 52, 84-87, 197-203 
of subalgebras, 16 
of vector spaces, 10-15 

Theorem of Abel-Ruffini, 104 
Theorem of Hilbert-Landau, 289 
Trace, 65 

transitivity of, 66 
Trace form, 66 
Transcendency basis, 151-157 

separating, 161, 164-167 
Transcendency degree, 155 
Transitivity theorem for determinants, 

68 

Unit group In p-adic numbers, 225-
230 

Valuations : 
archimedean, 213 
discrete, 222 
equivalence of, 212 
general, 238 
of field of rational numbers, 214-216 
of simple transcendental extensions, 

216 
p-adic, 211 
real, 211 

Valuation ring, 222, 240 

Witt vectors, 124-132,234-236 
Wronskian, 185 
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