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Preface to the First Edition

This textbook covers the basic properties of elliptic curves and modular
forms, with emphasis on certain connections with number theory. The ancient
“congruent number problem” is the central motivating example for most of
the book.

My purpose is to make the subject accessible to those who find it hard to
read more advanced or more algebraically oriented treatments. At the same
time | want to introduce topics which are at the forefront of current research.
Down-to-earth examples are given in the text and exercises, with the aim of
making the material readable and interesting to mathematicians in fields far
removed from the subject of the book.

With numerous exercises (and answers) included, the textbook is also
intended for graduate students who have completed the standard first-year
courses in real and complex analysis and algebra. Such students would learn
applications of techniques from those courses, thereby solidifying their under-
standing of some basic tools used throughout mathematics. Graduate stu-
dents wanting to work in number theory or algebraic geometry would get a
motivational, example-oriented introduction. In addition, advanced under-
graduates could use the book for independent study projects, senior theses,
and seminar work.

This book grew out of lecture notes for a course I gave at the University of
Washington in 1981-1982, and from a series of lectures at the Hanoi
Mathematical Institute in April, 1983. I would like to thank the auditors of
both courses for their interest and suggestions. My special gratitude is due to
Gary Nelson for his thorough reading of the manuscript and his detailed
comments and corrections. I would also like to thank Professors J. Buhler, B.
Mazur, B. H. Gross, and Huynh Mui for their interest, advice and
encouragement.



vi Preface to the First Edition

The frontispiece was drawn by Professor A. T. Fomenko of Moscow State
University to illustrate the theme of this book. It depicts the family of elliptic
curves (tori) that arises in the congruent number problem. The elliptic curve
corresponding to a natural number # has branch pointsat 0, oc, nand —#. In
the drawing we see how the elliptic curves interlock and deform as the branch
points +# go to infinity.

Note: References are given in the form [Author year]; in case of multiple

works by the same author in the same year, we use a, b, ... after the date to
indicate the order in which they are listed in the Bibliography.

Seattle, Washington NEAL KoBLITZ



Preface to the Second Edition

The decade since the appearance of the first edition has seen some major
progress in the resolution of outstanding theoretical questions concerning
elliptic curves. The most dramatic of these developments have been in the
direction of proving the Birch and Swinnerton-Dyer conjecture. Thus, one
of the changes in the second edition is to update the bibliography and the
discussions of the current state of knowledge of elliptic curves.

It was also during the 1980s that, for the first time, several important
practical applications were found for elliptic curves. In the first place, the
algebraic geometry of elliptic curves (and other algebraic curves, especially
the curves that parametrize modular forms) were found to provide a source
of new error-correcting codes which sometimes are better in certain respects
than all previously known ones (see [van Lint 1988]). In the second place,
H.W. Lenstra’s unexpected discovery of an improved method of factoring
integers based on elliptic curves over finite fields (see [ Lenstra 1987]) led to a
sudden interest in elliptic curves among researchers in cryptography. Further
cryptographic applications arose as the groups of elliptic curves were used as
the “site” of so-called “public key” encryption and key exchange schemes (see
[Koblitz 1987], [Miller 1986], [ Menezes and Vanstone 1990]).

Thus, to a much greater extent than I would have expected when I wrote this
book, readers of the first edition came from applied areas of the mathematical
sciences as well as the more traditional fields for the study of elliptic curves,
such as algebraic geometry and algebraic number theory.

I would like to thank the many readers who suggested corrections and
improvements that have been incorporated into the second edition.



Contents

Preface to the First Edition v
Preface to the Second Edition vii
CHAPTER 1

From Congruent Numbers to Elliptic Curves 1
1. Congruent numbers 3
2. A certain cubic equation 6
3. Elliptic curves 9
4. Doubly periodic functions 14
5. The field of elliptic functions 18
6. Elliptic curves in Weierstrass form 22
7. The addition law 29
8. Points of finite order 36
9. Points over finite fields, and the congruent number problem 43
CHAPTER 11

The Hasse-Weil L-Function of an Elliptic Curve 51
1. The congruence zeta-function 51
2. The zeta-function of E, 56
3. Varying the prime p 64
4. The prototype: the Riemann zeta-function 70
5. The Hasse-Weil L-function and its functional equation 79
6. The critical value 90



X Contents

CHAPTER 111

Modular forms 98
1. SL,(Z) and its congruence subgroups 98
2. Modular forms for SL,(Z) 108
3. Modular forms for congruence subgroups 124
4. Transformation formula for the theta-function 147
5. The modular interpretation, and Hecke operators 153
CHAPTER IV
Modular Forms of Half Integer Weight 176
1. Definitions and examples _ 177
2. Eisenstein series of half integer weight for I'4(4) 185
3. Hecke operators on forms of half integer weight 202
4. The theorems of Shimura, Waldspurger, Tunnell, and the congruent

number problem 212
Answers, Hints, and References for Selected Exercises 223
Bibliography 240

Index 245



CHAPTER 1

From Congruent Numbers to Elliptic
Curves

The theory of elliptic curves and modular forms is one subject where the
most diverse branches of mathematics come together: complex analysis,
algebraic geometry, representation theory, number theory. While our point
of view will be number theoretic, we shall find ourselves using the type of
techniques that one learns in basic courses in complex variables, real var-
iables, and algebra. A well-known feature of number theory is the abundance
of conjectures and theorems whose statements are accessible to high school
students but whose proofs either are unknown or, in some cases, are the
culmination of decades of research using some of the most powerful tools
of twentieth century mathematics.

We shall motivate our choice of topics by one such theorem: an elegant
characterization of so-called “congruent numbers” that was proved by J.
Tunnell [Tunnell 1983]. A few of the proofs of necessary results go beyond
our scope, but many of the ingredients in the proof of Tunnell’s theorem will
be developed in complete detail.

Tunnell’s theorem gives an almost complete answer to an ancient problem:
find a simple test to determine whether or not a given integer # is the area
of some right triangle all of whose sides are rational numbers. A natural
number # is called “congruent” if there exists a right triangle with all three
sides rational and area n. For example, 6 is the area of the 3—4-5 right
triangle, and so is a congruent number.

Right triangles whose sides are integers X, Y, Z (a “‘Pythagorean triple”)
were studied in ancient Greece by Pythagoras, Euclid, Diophantus, and
others. Their central discovery was that there is an easy way to generate all
such triangles. Namely, take any two positive integers a and b with a > b,
draw the line in the uv-plane through the point (— 1, 0) with slope b/a. Let
(4, v) be the second point of intersection of this line with the unit circle
(see Fig. I.1). It is not hard to show that
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Figure I.1

_at=b? . 2ab
=21 21

Then the integers X = a> — b?, Y = 2ab, Z = a* + b* are the sides of a
right triangle; the fact that X2 + Y2 = Z2 follows because u*> + v* = 1. By
letting @ and b range through all positive integers with a > b, one gets all
possible Pythagorean triples (see Problem 1 below).

Although the problem of studying numbers n which occur as areas of
rational right triangles was of interest to the Greeks in special cases, it
seems that the congruent number problem was first discussed systematically
by Arab scholars of the tenth century. (For a detailed history of the problem
of determining which numbers are ‘“‘congruent”, see [L. E. Dickson 1952,
Ch. XVI]; see also [Guy 1981, Section D27].) The Arab investigators
preferred to rephrase the problem in the following equivalent form: given »,
can one find a rational number x such that x? + n and x* — n are both
squares of rational numbers? (The equivalence of these two forms of the
congruent number problem was known to the Greeks and to the Arabs; for
a proof of this elementary fact, see Proposition 1 below.)

Since that time, some well-known mathematicians have devoted consid-
erable energy to special cases of the congruent number problem. For
example, Euler was the first to show that n =7 is a congruent number.
Fermat showed that n =1 is not; this result is essentially equivalent to
Fermat’s Last Theorem for the exponent 4 (i.e., the fact that X* + Y* = Z*
has no nontrivial integer solutions).

It eventually became known that the numbers 1, 2, 3, 4 are not congruent
numbers, but 5, 6, 7 are. However, it looked hopeless to find a straight-
forward criterion to tell whether or not a given n is congruent. A major
advance in the twentieth century was to place this problem in the context of
the arithmetic theory of elliptic curves. It was in this context that Tunnell
was able to prove his remarkable theorem.

U



§1. Congruent numbers 3

Here is part of what Tunnell’s theorem says (the full statement will be
given later):

Theorem (Tunnell). Let n be an odd squarefree natural number. Consider the
two conditions:

(A) nis congruent ;
(B) the number of triples of integers (x, y, z) satisfying 2x*> + y* + 82> =n
is equal to twice the number of triples satisfying 2x* + y* + 32z2 = n.

Then (A) implies (B), and, if a weak form of the so-called Birch—Swinnerton-
Dyer conjecture is true, then (B) also implies (A).

The central concepts in the proof of Tunnell’s theorem—the Hasse—Weil
L-function of an elliptic curve, the Birch—Swinnerton-Dyer conjecture,
modular forms of half integer weight—will be discussed in later chapters.
Our concern in this chapter will be to establish the connection between
congruent numbers and a certain family of elliptic curves, in the process
giving the definition and some basic properties of elliptic curves.

§1. Congruent numbers

Let us first make a more general definition of a congruent number. A
positive rational number re @ is called a “congruent number” if it is the
area of some right triangle with rational sides. Suppose r is congruent, and
X, Y, ZeQ are the sides of a triangle with area r. For any nonzero re Q we
can find some seQ such that s?r is a squarefree integer. But the triangle
with sides sX, sY, sZ has area s?r. Thus, without loss of generality we may
assume that r =n is a squarefree natural number. Expressed in group
language, we can say that whether or not a number r in the multiplicative
group Q" of positive rational numbers has the congruent property depends
only on its coset modulo the subgroup (Q*)? consisting of the squares of
rational numbers; and each coset in @*/(Q")? contains a unique squarefree
natural number r = n. In what follows, when speaking of congruent numbers,
we shall always assume that the number is a squarefree positive integer.

Notice that the definition of a congruent number does not require the
sides of the triangle to be integral, only rational. While n = 6 is the smallest
possible area of a right triangle with integer sides, one can find right triangles
with rational sides having area n = 5. The right triangle with sides 11, 62, 62
issuch a triangle (see Fig. 1.2). It turns out that n = 5is the smallest congruent
number (recall that we are using ‘‘congruent number” to mean ‘‘congruent
squarefree natural number”).

There is a simple algorithm using Pythagorean triples (see the problems
below) that will eventually list all congruent numbers. Unfortunately, given
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65

Figure 1.2

n, one cannot tell how long one must wait to get n if it is congruent; thus,
if » has not appeared we do not know whether this means that # is not a
congruent number or that we have simply not waited long enough. From a
practical point of view, the beauty of Tunnell’s theorem is that his condition
(B) can be easily and rapidly verified by an effective algorithm. Thus, his
theorem almost settles the congruent number problem, i.e., the problem of
finding a verifiable criterion for whether a given n is congruent. We must
say ‘“‘almost settles” because in one direction the criterion is only known to
work in all cases if one assumes a conjecture about elliptic curves.

Now suppose that X, Y, Z are the sides of a right triangle with area n.
This means: X? + Y? = Z? and XY = n. Thus, algebraically speaking,
the condition that n be a congruent number says that these two equations
have a simultaneous solution X, Y, Ze@Q. In the proposition that follows,
we derive an alternate condition for n to be a congruent number. In listing
triangles with sides X, Y, Z, we shall not want to list X, ¥, Zand Y, X, Z
separately. So for now let us fix the ordering by requiring that X < Y < Z
(Z is the hypotenuse).

Proposition 1. Let n be a fixed squarefree positive integer. Let X, Y, Z, x always
denote positive rational numbers, with X <Y < Z. There is a one-to-one
correspondence between right triangles with legs X and Y, hypotenuse Z, and
area n; and numbers x for which x, x + n, and x — n are each the square of a
rational number. The correspondence is:

X, Y, Z—x=(Z]2)? R
x> X= \/x+n—J/x—n Y= |/x+n+ /x—n Z=2\/§.

In particular, n is a congruent number if and only if there exists x such that x,
X + n, and x — n are squares of rational numbers.

ProOOF. First suppose that X, Y, Z is a triple with the desired properties:
X2+ Y?*=2Z2% 1XY = n If we add or subtract four times the second equa-
tion from the first, we obtain: (X + Y)? = Z2 + 4u. If we then divide both
sides by four, we see that x = (Z/2)? has the property that the numbers
Xx + n are the squares of (X + Y)/2. Conversely, given x with the desired
properties, it is easy to see that the three positive rational numbers X < ¥ < Z
given by the formulas in the proposition satisfy: XY = 2n, and X2 + Y? =
4x = Z?2.Finally, to establish the one-to-one correspondence, it only remains
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to verify that no two distinct triples X, Y, Z can lead to the same x. We leave
this to the reader (see the problems below). O

PROBLEMS

1.

6803298487826435051217540

Recall that a Pythagorean triple is a solution (X, Y, Z) in positive integers to the
equation X2 + Y2 = Z2 It s called “primitive” if X, ¥, Z have no common factor.
Suppose that a > b are two relatively prime positive integers, not both odd. Show
that X = a®> — b*, Y = 2ab, Z = a* + b* form a primitive Pythagorean triple, and
that all primitive Pythagorean triples are obtained in this way.

. Use Problem 1 to write a flowchart for an algorithm that lists all squarefree con-

gruent numbers (of course, not in increasing order). List the first twelve distinct
congruent numbers your algorithm gives. Note that there is no way of knowing
when a given congruent number n will appear in the list. For example, 101 is a
congruent number, but the first Pythagorean triple which leads to an area s* 101
involves twenty-two-digit numbers (see [Guy 1981, p. 106]). One hundred fifty-seven
is even worse (see Fig. 1.3). One cannot use this algorithm to establish that some »
is not a congruent number. Technically, it is not a real algorithm, only a “semi-
algorithm”.

. (a) Show that if 1 were a congruent number, then the equation x* — y* = »? would

have an integer solution with » odd.
(b) Prove that 1 is not a congruent number. (Note: A consequence is Fermat’s
Last Theorem for the exponent 4.)

. Finish the proof of Proposition 1 by showing that no two triples X, Y, Z can lead

to the same x.

. (a) Find xe(Q7")? such that x + 5e(Q")>2.

(b) Find xe(Q")? such that x + 6e(Q")>2.

224403517704336969924557513090674863160948472041
8912332268928859588025535178967163570016480830

411340519227716149383203

411340519227716149383203
21666555693714761309610

Figure 1.3. The Simplest Rational Right Triangle with Area 157 (computed by D.
Zagier).
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(c) Find two values xe(Q")? such that x + 210e(Q")2. At the end of this chapter
we shall prove that if there is one such x, then there are infinitely many. Equiva-
lently (by Proposition 1), if there exists one right triangle with rational sides
and area n, then there exist infinitely many.

6. (a) Show that condition (B) in Tunnell’s theorem is equivalent to the condition that
the number of ways # can be written in the form 2x2 + y? + 8z with x, y, z
integers and z odd, be equal to the number of ways  can be written in this form
with z even.

(b) Write a flowchart for an algorithm that tests condition (B) in Tunnell’s theorem
for a given n.

7. (a) Prove that condition (B) in Tunnell’s theorem always holds if » is congruent
to 5 or 7 modulo 8.

(b) Check condition (B) for all squarefree n = 1 or 3 (mod 8) until you find such
an n for which condition (B) holds.

(c) By Tunnell’s theorem, the number you found in part (b) should be the smallest
congruent number congruent to 1 or 3 modulo 8. Use the algorithm in Problem 2
to find a right triangle with rational sides and area equal to the number you
found in part (b).

§2. A certain cubic equation

In this section we find yet another equivalent characterization of congruent
numbers.

In the proof of Proposition 1 in the last section, we arrived at the equations
((X + Y)/2)? = (Z/2)® + n whenever X, Y, Z are the sides of a triangle with
area n. If we multiply together these two equations, we obtain (X2 — Y 2)/4)?
= (Z/2)* — n®. This shows that the equation u* — n? = v* has a rational
solution, namely, u = Z/2 and v = (X? — Y?)/4. We next multiply through
by u? to obtain u® — n?u? = (uv)?. If we set x = u*> = (Z/2)* (this is the same
x as in Proposition 1) and further set y = uv = (X* — Y?)Z/8, then we have
a pair of rational numbers (x, y) satisfying the cubic equation:

y?=x3—n’x.

Thus, given a right triangle with rational sides X, Y, Z and area n, we
obtain a point (x, y) in the xy-plane having rational coordinates and lying
on the curve y* = x* — n?x. Conversely, can we say that any point (x, »)
with x, y € @ which lies on the cubic curve must necessarily come from such
a right triangle? Obviously not, because in the first place the x-coordinate
x = u? = (Z/2)? must lie in (@*)? if the point (x, y) can be obtained as in
the last paragraph. In the second place, we can see that the x-coordinate of
such a point must have its denominator divisible by 2. To see this, notice that
the triangle X, Y, Z can be obtained starting with a primitive Pythagorean
triple X', Y’, Z’ corresponding to a right triangle with integral sides X', Y', Z’
and area s2n, and then dividing the sides by sto get X, Y, Z. But in a primitive
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Pythagorean triple X’ and Y’ have different parity, and Z’ is odd. We
conclude that (1) x = (Z/2)? = (Z’/2s)? has denominator divisible by 2 and
(2) the power of 2 dividing the denominator of Z is equal to the power of 2
dividing the denominator of one of the other two sides, while a strictly lower
power of 2 divides the denominator of the third side. (For example, in the
triangle in Fig. 1.2 with area 5, the hypotenuse and the shorter side have a 2 in
the denominator, while the other leg does not.) We conclude that a necessary
condition for the point (x, y) with rational coordinates on the curve y? =
x* — n®x to come from a right triangle is that x be a square and that its
denominator be divisible by 2. For example, when n = 31, the point (412/72,
29520/7°) on the curve y* = x> — 31%x does not come from a triangle, even
though its x-coordinate is a square.

Finally, a third necessary condition is that the numerator of x have no
common factor with n. To see this, suppose that p > 2 is a prime dividing
both n and the numerator of x. Then p divides the numerator of x + n =
((X £ Y)/2)% and so it also divides the numerators of (X + Y)/2 and
(X — Y)/2. Then p divides the numerators of the sum X and the difference Y.
Hence p? divides n = $X Y. But n was assumed to be squarefree. This contra-
diction shows that x must be a square with even denominator and numerator
prime to n. A numerical example (for which I thank Clas Léfwall) showing
that the first two conditions alone are not sufficient is provided by the point
(x, y) = (25/4, 75/8) on the curve y*> = x> — n®x, n = 5.

We next prove that these three conditions are not only necessary but also
sufficient for a point on the curve to come from a triangle.

Proposition 2. Let (x, y) be a point with rational coordinates on the curve
y* = x* — n*x. Suppose that x satisfies the three conditions: (i) it is the square
of a rational number, (ii) its denominator is even, and (iii) its numerator has no
common factor with n. Then there exists a right triangle with rational sides and
area n which corresponds to x under the correspondence in Proposition 1.

PROOF. Let u = \/; e Q". We work backwards through the sequence of steps
at the beginning of this section. That is, set v = y/u, so that v? = y?/x =
x? — n}ie., v? + n? = x% Now let ¢ be the denominator of u, i.c., the smallest
positive integer such that tue Z. By assumption, ¢ is even. Notice that the
denominators of v? and x? are the same (because n is an integer, and v? + n? =
x?), and this denominator is t*. Thus, t2v, t?n, t?x is a primitive Pythagorean
triple, with t?n even. (Here the primitivity of the triple follows from condition
(iii).) By Problem 1 of §1, there exist integers a and b such that: t2n = 2ab,
t*v = a*> — b?, t*x = a* + b2. Then the right triangle with sides 2a/t, 2b/t, 2u
has area 2ab/t* = n, as desired. The image of this triangle X = 2a/t, Y = 2b/t,
Z = 2u under the correspondence in Proposition 1 is x = (Z/2)?> = u?. This
proves Proposition 2. a

We shall later prove another characterization of the points P = (x, y) on
the curve y? = x* — n?x which correspond to rational right triangles of
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(u, v)

!
S\OQ?‘

N

Figure 1.4

area n. Namely, they are the points P = (x, y) which are “twice” a rational
point P’ = (x’, ). That is, P’ + P’ = P, where ““+” is an addition law for
points on our curve, which we shall define later.

PROBLEMS

1. Find a simple linear change of variables that gives a one-to-one correspondence
between points on ny? = x>+ ax? + bx 4+ ¢ and points on y? = x>+ anx? +
bn’x + cn®. For example, an alternate form of the equation y? = x3 — n’x is the
equation ny? = x3 — x.

2. Another correspondence between rational right triangles X, ¥, Z with area 1 XY = n
and rational solutions to y2 = x> — n?x can be constructed as follows.

(a)

(b)
(©)

@

(e)

Parametrize all right triangles by letting the point u = X/Z, v = ¥/Z on the unit
circle correspond to the slope ¢ of the line joining (—1, 0) to this point (see
Fig. 1.4). Show that

(Note: This is the usual way to parametrize a conic. If t = a/b is rational, then
the point (i, v) corresponds to the Pythagorean triple constructed by the method
at the beginning of the chapter.)

If we want the triangle X, Y, Z to have area n, express n/Z? in terms of ¢.
Show that the point x = —at, y = n?(1 + ¢?)/Z is on the curve y? = x3 — n?x.
Express (x, y) interms of X, Y, Z.

Conversely, show that any point (x, y) on the curve y? = x> — n%x with y # 0
comes from a triangle, except that to get points with positive x, we must allow
triangles with negative X and Y (but positive area $+XY = n), and to get points
with negative y we must allow negative Z (see Fig. 1.5). Later in this chapter we
shall show the connection between this correspondence and the one given in the
text above.

Find the points on y? = x> — 36x coming from the 3—4-5 right triangle and all
equivalent triangles (4-3-5, (—3)-(—4)-5, etc.).

3. Generalize the congruent number problem as follows. Fix an angle 6 not necessarily

90°.

But suppose that 4 = cos 6 and B = sin 0 are both rational. Let n be a square-
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X,Y<0,Z2>0
X, Y, Z>0

X, Y, Z2<0
X.Y>0,Z2<0

Figure 1.5

free natural number. One can then ask whether » is the area of any triangle with

rational sides one of whose angles is 6.

(a) Show that the answer to this question is equivalent to a question about rational
solutions to a certain cubic equation (whose coefficients depend on 6 as well
as n).

(b) Suppose that the line joining the point (—1, 0) to the point (4, B) on the unit
circle has slope A. Show that the cubic in part (a) is equivalent (by a linear
change of variables) to the cubic ny? = x(x — A)(x + (1/4)). The classical con-
gruent number problem is, of course, the case A = 1.

§3. Elliptic curves

The locus of points P = (x, y) satisfying y? = x> — n?x is a special case of
what’s called an “‘elliptic curve”. More generally, let K be any field, and let
f(x)e K[x] be a cubic polynomial with coefficients in K which has distinct
roots (perhaps in some extension of K). We shall suppose that X does not
have characteristic 2. Then the solutions to the equation

y* = f(x), 3.0

where x and y are in some extension K’ of K, are called the K’-points of the
elliptic curve defined by (3.1). We have just been dealing with the example
K=K =Q, f(x)=x>—n’x. Note that this example y?= x> — n’x
satisfies the condition for an elliptic curve over any field K of characteristic
P, as long as p does not divide 2n, since the three roots 0, +n of f(x) = x> —
n?x are then distinct.

In general, if x4, y,€K’ are the coordinates of a point on a curve C
defined by an equation F(x, y) = 0, we say that C is “smooth” at (x,, y,) if
the two partial derivatives dF/0x and 0F/0y are not both zero at (x,, yo).
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This is the definition regardless of the ground field (the partial derivative
of a polynomial F(x, y) is defined by the usual formula, which makes sense
over any field). If K’ is the field R of real numbers, this agrees with the usual
condition for C to have a tangent line. In the case F(x, y) = y* — f(x), the
partial derivatives are 2y, and —f"(x,). Since K’ is not a field of characteristic
2, these vanish simultaneously if and only if y, = 0 and x, is a multiple root
of f(x). Thus, the curve has a non-smooth point if and only if f(x) has a
multiple root. It is for this reason that we assumed distinct roots in the
definition of an elliptic curve: an elliptic curve is smooth at all of its points.

In addition to the points (x, y) on an elliptic curve (3.1), there is a very
important “‘point at infinity” that we would like to consider as being on
the curve, much as in complex variable theory in addition to the points on
the complex plane one throws in a point at infinity, thereby forming the
“Riemann sphere”. To do this precisely, we now introduce projective
coordinates.

By the “total degree™ of a monomial x'y’ we mean i + j. By the “‘total
degree” of a polynomial F(x, y) we mean the maximum total degree of the
monomials that occur with nonzero coefficients. If F(x, y) has total degree
n, we define the corresponding homogeneous polynomial F(x, y, z) of three
variables to be what you get by multiplying each monomial x'y/ in F(x, )
by 2"/ to bring its total degree in the variables x, y, z up to n; in other

words,
F(x,y,2) = z"F(f y>.

z Z
In our example F(x, y) = y> — (x> — n%x), we have F(x, y, z) = y?z — x> +
n?xz2. Notice that F(x, y) = F(x, y, ).
Suppose that our polynomials have coefficients in a field K, and we are
interested in triples x, y, z€ K such that F(x, y, z) = 0. Notice that:

(1) for any A€ K, F(Ax, 2y, 42) = i"F(x, y, z) (n = total degree of F);
(2) for any nonzero i€ K, F(/x, );y, +z) =0 if and only if F(x, y,z) =0. In
particular, for z # 0 we have F(x, y, z) = 0if and only if F(x/z, y/z) = 0.

Because of (2), it is natural to look at equivalence classes of triples x, y,
ze K, where we say that two triples (x, y, z) and (x’, y’, ') are equivalent if
there exists a nonzero A€ K such that (x’, 37, z’) = A(x, y, z). We omit the
trivial triple (0, 0, 0), and then we define the “‘projective plane Pz” to be
the set of all equivalence classes of nontrivial triples.

No normal person likes to think in terms of “equivalence classes”, and
fortunately there are more visual ways to think of the projective plane.
Suppose that K is the field R of real numbers. Then the triples (x, y, ) in
an equivalence class all correspond to points in three-dimensional Euclidean
space lying on a line through the origin. Thus, P} can be thought of geo-
metrically as the set of lines through the origin in three-dimensional space.

Another way to visualize P is to place a plane at a distance from the
origin in three-dimensional space, for example, take the plane parallel to the
xy-plane and at a distance 1 from it, i.e., the plane with equation z = 1. All
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lines through the origin, except for those lying in the xy-plane, have a unique
point of intersection with this plane. That is, every equivalence class of
triples (x, y, z) with nonzero z-coordinate has a unique triple of the form
(x, y, 1). So we think of such equivalence classes as points in the ordinary
xy-plane. The remaining triples, those of the form (x, y, 0), make up the
“line at infinity”.

The line at infinity, in turn, can be visualized as an ordinary line (say,
the line y =1 in the xy-plane) consisting of the equivalence classes with
nonzero y-coordinate and hence containing a unique triple of the form
(x, 1, 0), together with a single “‘point at infinity” (1, 0, 0). That is, we define
the projective line Px over a field K to be the set of equivalence classes of
pairs (x, y) with (x, y) ~ (/x, Ay). Then P2 can be thought of as an ordinary
plane (x, y, 1) together with a projective line at infinity, which, in turn,
consists of an ordinary line (x, 1, 0) together with its point at infinity (1, 0, 0).

More generally, n-dimensional projective space Py is defined using
equivalence classes of (n + 1)-tuples, and can be visualized as the usual
space of n-tuples (x,, ..., x,, 1) together with a P5 ! at infinity. But we
shall only have need of P} and P2.

Given a homogeneous polynomial F(x, y, z) with coefficients in K, we
can look at the solution set consisting of points (x, y, z) in PZ (actually,
equivalence classes of (x, y, z)) for which F(x, y, z) = 0. The points of this
solution set where z # 0 are the points (x, y, 1) for which F(x, y, 1) =
F(x, y) = 0. The remaining points are on the line at infinity. The solution
set of F(x,y,z)=0 is called the “projective completion” of the curve
F(x,y) = 0. From now on, when we speak of a “line”, a “‘conic section”,
an “elliptic curve”, etc., we shall usually be working in a projective plane
PZ, in which case these terms will always denote the projective completion
of the usual curve in the xy-plane. For example, the line y = mx + b will
really mean the solution set to y = mx + bz in PZ; and the elliptic curve
y? = x? — n*x will now mean the solution set to y?z = x> — n?xz2 in P2.

Let us look more closely at our favorite example: F(x, y) = y> — x3 + n?x,
F(x,y,z) = y*z — x> + n*xz2. The points at infinity on this elliptic curve
are the equivalence classes (x, y, 0) such that 0 = F(x, y, 0) = —x3. ie.,
x = 0. There is only one such equivalence class (0, 1, 0). Intuitively, if we
take K = R, we can think of the curve y* = x* — n’x heading off in an
increasingly vertical direction as it approaches the line at infinity (see Fig.
1.6). The points on the line at infinity correspond to the lines through the
origin in the xy-plane, i.e., there is one for every possible slope y/x of such
a line. As we move far out along our elliptic curve, we approach slope
y/x = oo, corresponding to the single point (0, 1, 0) on the line at infinity.
Notice that any elliptic curve y? = f(x) similarly contains exactly one point
at infinity (0, 1, 0).

All of the usual concepts of calculus on curves F(x, y) = 0 in the xy-plane
carry over to the corresponding projective curve £(x, y, z) = 0. Such notions
as the tangent line at a point, points of inflection, smooth and singular
points all depend only upon what is happening in a neighborhood of the
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Figure 1.6

point in question. And any point in P2 has a large neighborhood which
looks like an ordinary plane. More precisely, if we are interested in a point
with nonzero z-coordinate, we can work in the usual xy-plane, where the
curve has equation F(x, y) = F(x, y, 1) = 0. If we want to examine a point
on the line z = 0, however, we put the triple in either the form (x, 1, 0) or
(1, y,0). In the former case, we think of it as a point on the curve F(x, 1,z) = 0
in the xz-plane; and in the latter case as a point on the curve F(1,y,z)=0
in the yz-plane.

For example, near the point at infinity (0, 1, 0) on the elliptic curve
y?z — x> + n?xz? = 0, all points have the form (x, 1, z) withz — x* + n?xz? =
0. The latter equation, in fact, gives us all points on the elliptic curve except
for the three points (0, 0, 1), (£n, 0, 1) having zero y-coordinate (these are
the three ‘“‘points at infinity” if we think in terms of xz-coordinates).

PROBLEMS

1. Prove that if K is an infinite field and F(x, y, z)€ K[x, y, z] satisfies F(ix, Ay, Az) =
A"F(x, y, z) for all 4, x, y, ze K, then F is homogeneous, i.e., each monomial has
total degree n. Give a counterexample if K is finite.

2. By a “line” in P2 we mean either the projective completion of a line in the xy-plane
or the line at infinity. Show that a line in P2 has equation of the form ax + by + ¢z =
0, with a, b, ce K not all zero; and that two such equations determine the same line
if and only if the two triples (a, b, ¢) differ by a multiple. Construct a 1-to-1 cor-
respondence between lines in a copy of P with coordinates (x, y, z) and points in
another copy of P2 with coordinates (a, b, ¢) and between points in the xyz-projec-
tive plane and lines in the abc-projective plane, such that a bunch of points are on
the same line in the first projective plane if and only if the lines that correspond to
them in the second projective plane all meet in the same point. The xyz-projective
plane and the abc-projective plane are called the ““duals’™ of each other.
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3. How many points at infinity are on a parabola in P2? an ellipse? a hyperbola?

4. Prove that any two nondegenerate conic sections in Pz are equivalent to one another
by some linear change of variables.

5. (a)

(b)

©

(CY)

(©

6. (a)

(b

~

©

If F(x, y, z)e K[x, y, z] is homogeneous of degree n, show that

oF OF OF =
xax+yay+zaz—nF.

If K has characteristic zero, show that a point (x, y, z) P2 is a non-smooth
point on the curve C: F(x,y, z) =0 if and only if the triple (0F/ox, oF /oy,
0F/0z)is (0, 0, 0) at our particular (x, y, z). Give a counterexample if char K # 0.
In what follows, suppose that char K =0, e.g., K= R.

Show that the tangent line to C at a smooth point (x,, ¥, Zo) has equation
ax + by + cz = 0, where

_OF p o OF

— A_ bl - bl
ox (xg, Yo Zg) 6y (xg, Yo Z0)

_oF

a .
0z (Xg, ¥gs Zo)

c

Prove that the condition that (x, y, z) be a smooth point on C does not depend
upon the choice of coordinates, i.e., it does not change if we shift to x'y'z'-
coordinates, where (x" y* z’) =(x y z)4 with 4 an invertible 3 x 3 matrix.
For example, if more than one of the coordinates are nonzero, it makes no
difference which we choose to regard as the “z-coordinate”, i.e., whether we
look at C in the xy-plane, the xz-plane, or the yz-plane.

Prove that the condition that a given line / be tangent to C at a smooth point
(x, y, z) does not depend upon the choice of coordinates.

Let P, = (x,,y,, z,) and P, = (x,, y,, z,) be two distinct points in PZ. Show
that the line joining P; and P, can be given in parametrized form as sP, + tP,,
ie., {(sx, + tx,, sy; + ty,, sz, + 1z,)|s, te K}. Check that this linear map takes
P4 (with coordinates s, £) bijectively onto the line P, P, in PZ. What part of the
line do you get by taking s = 1 and letting ¢ vary?

Suppose that K = R or C. If the curve F(x, y) = 0 in the xy-plane is smooth at
P, = (x,, y,) with nonvertical tangent line, then we can expand the implicit
function y =f(x) in a Taylor series about x = x;. The linear term gives
the tangent line. If we subtract off the linear term, we obtain f(x) — y, —
f(x)(x—x)=a,(x —x)"+ ---,wherea, # 0,m > 2. mis called the “‘order
of tangency”. We say that (x,, y,) is a point of inflection if m > 2,i.e., /" (x;) = 0.
(In the case K = R, note that we are not requiring a change in concavity with
this definition, e.g., y = x* has a point of inflection at x =0.) Let P, = (x,,
Y1, 21), z; # 0, and let / = PP, be tangent to the curve F(x, y) = F(x, y, 1) at
the smooth point P,. Let P, = (x,, y¥,, z,). Show that m is the lowest power of
t that occurs in F(x, + tx,, y, + ty,, 2, + tz,) e K[1].

Show that m does not change if we make a linear change of variables in PZ.
For example, suppose that y, and z, are both nonzero, and we use the xz-plane
instead of the xy-plane in parts (a) and (b).

7. Show that the line at infinity (with equation z = 0) is tangent to the elliptic curve
y? = f(x) at (0, 1, 0), and that the point (0, 1, 0) is a point of inflection on the curve.
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§4. Doubly periodic functions

Let L be a lattice in the complex plane, by which we mean the set of all
integral linear combinations of two given complex numbers w, and w,,
where w, and w, do not lie on the same line through the origin. For example,
if w, =iand w, =1, we get the lattice of Gaussian integers {mi + n|m,
neZ}. It will turn out that the example of the lattice of Gaussian integers
is intimately related to the elliptic curves y* = x* — n*x that come from the
congruent number problem.
The fundamental parallelogram for w,, w, is defined as

I1={aw, + bo,|0<a<1,0<b< 1}

Since w,, w, form a basis for C over R, any number x € C can be written in
the form x = aw, + bw, for some a, be R. Then x can be written as the
sum of an element in the lattice L = {mw, + nw,| and an element in IT, and
in only one way unless @ or b happens to be an integer, i.e., the element of
IT happens to lie on the boundary dI1.

We shall always take w,, @, in clockwise order; that is, we shall assume
that w,/w, has positive imaginary part.

Notice that the choice of w,, @, giving the lattice L is not unique. For
example, w; = w; + w, and w, give the same lattice. More generally, we
can obtain new bases w}, ) for the lattice L by applying a matrix with
integer entries and determinant 1 (see Problem 1 below).

For a given lattice L, a meromorphic function on C is said to be an elliptic
function relative to L if f(z + I) = f(z) for all /€ L. Notice that it suffices to
check this property for / = w, and / = w,. In other words, an elliptic func-
tion is periodic with two periods w, and w,. Such a function is determined
by its values on the fundamental parallelogram IT; and its values on opposite
points of the boundary of I1 are the same, ie., flaw; + w,) = flaw,),
Ao, + bw,) = f(bw,). Thus, we can think of an elliptic function f{(z) as a
function on the set IT with opposite sides glued together. This set (more
precisely, “‘complex manifold™) is known as a ““torus”. It looks like a donut.

Doubly periodic functions on the complex numbers are directly analogous
to singly periodic functions on the real numbers. A function f(x) on R which
satisfies f(x + nw) = f(x) is determined by its values on the interval [0, w].
Its values at 0 and w are the same, so it can be thought of as a function on
the interval [0, w] with the endpoints glued together. The “‘real manifold”
obtained by gluing the endpoints is simply a circle (see Fig. 1.7).

Returning now to elliptic functions for a lattice L, we let &, denote the
set of such functions. We immediately see that &, is a subfield of the field
of all meromorphic functions, i.e., the sum, difference, product, or quotient
of two elliptic functions is elliptic. In addition, the subfield &, is closed under
differentiation. We now prove a sequence of propositions giving some very
special properties which any elliptic function must have. The condition that
a meromorphic function be doubly periodic turns out to be much more
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restrictive than the analogous condition in the real case. The set of real-
analytic periodic functions with given period is much ““larger” than the set
&, of elliptic functions for a given period lattice L.

Proposition 3. A function f(z)e &, L = {mw, + nw,}, which has no pole in
the fundamental parallelogram 1 must be a constant.

PROOF. Since IT is compact, any such function must be bounded on IT, say
by a constant M. But then | f(z)| < M for all z, since the values of f(z) are
determined by the values on II. By Liouville’s theorem, a meromorphic
function which is bounded on all of C must be a constant. a

Proposition 4. With the same notation as above, let o + I1 denote the translate
of I1 by the complex number a, i.e., {o + z|zeIl}. Suppose that f(z) € &, has
no poles on the boundary C of a + I1. Then the sum of the residues of f(z) in
o + I is zero.

Proor. By the residue theorem, this sum is equal to

1
3 Lf(z)dz.

But the integral over opposite sides cancel, since the values of f(z) at corre-
sponding points are the same, while dz has opposite signs, because the path
of integration is in opposite directions on opposite sides (see Fig. 1.8). Thus,
the integral is zero, and so the sum of residues is zero. ]

Notice that, since a meromorphic function can only have finitely many
poles in a bounded region, it is always possible to choose an « such that the
boundary of « + IT misses the poles of f(z). Also note that Proposition 4
immediately implies that a nonconstant f(z)e &, must have at least two
poles (or a multiple pole), since if it had a single simple pole, then the sum
of residues would not be zero.
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Propesition 5. Under the conditions of Proposition 4, suppose that f(z) has no
zeros or poles on the boundary of o + I1. Let {m;} be the orders of the various
zeros in o + I1, and let {n;} be the orders of the various poles. Then X m; = L n;.

ProOF. Apply Proposition 4 to the elliptic function f'(z)/f(z). Recall that the
logarithmic derivative f'(z)/f(z) has a pole precisely where f(z) has a zero
or pole, such a pole is simple, and the residue there is equal to the order of
zero or pole of the original f(z) (negative if a pole). (Recall the argument : If
f@D=c(z—a)y"+ --- thenf' (z2)=c,m(z—a)" '+ -- -, and so f'(2)/f(2)
=m(z —a) ! + ---.) Thus, the sum of the residues of f’(z)/f(z) is Tm; —
Zn;=0. O

We now define what will turn out to be a key example of an elliptic
function relative to the lattice L = {mw, + nw,}. This function is called the
Weierstrass g-function. It is denoted g(z; L) or g(z; w,, ®,), or simply
@(2) if the lattice is fixed throughout the discussion. We set

oo =G Dgh+ (L) @1

leL

1#0
Proposition 6. The sum in (4.1) converges absolutely and uniformly for z in
any compact subset of C — L.

Proor. The sum in question is taken over a two-dimensional lattice. The
proof of convergence will be rather routine if we keep in mind a one-
dimensional analog. If instead of L we take the integers Z, and instead of
reciprocal squares we take reciprocals, we obtain a real function f(x) =
1+ %L+ 1 where the sum is over nonzero /e Z. To prove absolute and
uniform convergence in any compact subset of R — Z, first write the sum-
mand as x/({(x — [)), and then use a comparison test, showing that the series
in question basically has the same behavior as /~2. More precisely, use the
following lemma: if £ b, is a convergent sum of positive terms (all our sums
being over nonzero /€Z), and if Tfi(x) has the property that |fi(x)/b/|
approaches a finite limit as / - + oo, uniformly for x in some set, then the
sum X f,(x) converges absolutely and uniformly for x in that set. The details
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are easy to fill in. (By the way, our particular example of f(x) can be shown
to be the function m cot nx; just take the logarithmic derivative of both
sides of the infinite product for the sine function: sin nx = nxII3, (1 —
2/,,2

x?*/n%).)

The proof of Proposition 6 proceeds in the same way. First write the
summand over a common denominator:

1 1 22—zl

=D B (z-0n"
Then show absolute and uniform convergence by comparison with /|73,
where the sum is taken over all nonzero /e L. More precisely, Proposition 6
will follow from the following two lemmas.

Lemma 1. If X b, is a convergent sum of positive terms, where the sum is taken
over all nonzero elements in the lattice L, and if X f(z) has the property that
| i(2)/b)| approaches a finite limit as |l| — oo, uniformly for z in some subset
of C, then the sum Z f,(z) converges absolutely and uniformly for z in that set.

Lemma 2. X |/|™° converges if s > 2.

The proof of Lemma 1 is routine, and will be omitted. We give a sketch
of the proof of Lemma 2. We split the sum into sums over / satisfying
n—1<|l|<nasn=1,2,....1tis not hard to show that the number of /
in that annulus has order of magnitude »n. Thus, the sum in the lemma is
bounded by a constant times T2, n-n"°=Xn!"% and the latter sum
converges for s — 1 > 1.

This concludes the proof of Proposition 6. ]
Proposition 7. ¢ (z) e &, and its only pole is a double pole at each lattice point.

PRroOOF. The same argument as in the proof of Proposition 6 shows that for
any fixed /e L, the function g@(z) — (z — /)~2 is continuous at z = /. Thus,
#(z) is a meromorphic function with a double pole at all lattice points and
no other poles. Next, note that @(z) = @ (—z), because the right side of
(4.1) remains unchanged if z is replaced by —z and / is replaced by —/; but
summing over /€ L is the same as summing over —/e L.

To prove double periodicity, we look at the derivative. Differentiating
(4.1) term-by-term, we obtain:

1
PR =-2% ——.
lgL -1
Now ’(z) is obviously doubly periodic, since replacing z by z + [, for
some fixed /, € L merely rearranges the terms in the sum. Thus, ¢’'(z)e&;.
To prove that gp(z)e &, it suffices to show that @(z + w;) — g(z) = 0 for
i =1, 2. We prove this for i = 1; the identical argument applies to i = 2.
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Since the derivative of the function @(z 4+ w,) — p(2) is ' (z + w,) —
' (z) =0, we must have @(z + w,) — @(2) = C for some constant C. But
substituting z = —4w, and using the fact that @(z) is an even function, we
conclude that C = p(3w,) — p(—%w,) = 0. This concludes the proof. O

Notice that the double periodicity of @(z) was not immediately obvious
from the definition (4.1).

Since (z) has exactly one double pole in a fundamental domain of the
form o + II, by Proposition 5 it has exactly two zeros there (or one double
zero). The same is true of any elliptic function of the form g (z) — u, where
u is a constant. It is not hard to show (see the problems below) that g (z)
takes every value ue C U {00} exactly twice on the torus (i.e., a fundamental
parallelogram with opposite sides glued together), counting multiplicity
(which means the order of zero of @(z) —u); and that the values as-
sumed with multiplicity two are o0, e; = 0(®,/2), €, & 9 (®,/2), and €5 =
o ((w, + w,)/2). Namely, g(z) has a double pole at 0, while the other three
points are the zeros of @'(z).

§5. The field of elliptic functions

Proposition 7 gives us a concrete example of an elliptic function. Just as
sin x and cos x play a basic role in the theory of periodic functions on R,
because of Fourier expansion, similarly the functions g(z) and g'(z) play a
fundamental role in the study of elliptic functions. But unlike in the real
case, we do not even need infinite series to express an arbitrary elliptic
function in terms of these two basic ones.

Proposition 8. &, = C(p, '), i.e., any elliptic function for L is a rational
expression in §(z; L) and ©'(z; L). More precisely, given f(z)e &y, there
exist two rational functions ¢g(X), h(X) such that f(z)=g(p(2))+
9’ (2D)h(9(2))-
PRrOOF. If f(z) is an elliptic function for L, then so are the two even functions
f@@) +/(=2) [ —f(=2)
3 and PO

Since f(z) is equal to the first of these functions plus ¢’(z) times the second,
to prove Proposition 8 it suffices to prove

Proposition 9. The subfield &; < &, of even elliptic functions for L is generated
by p(2), ie., & = C(p).

Proor. The idea of the proof is to cook up a function which has the same
zeros and poles as f(z) using only functions of the form g (z) — u with u a
constant.
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The ratio of f(z) to such a function is an elliptic function with no poles, and
so must be a constant, by Proposition 3.

Let f(z)e &, . We first list the zeros and poles of f(z). But we must do this
carefully, in a special way. Let IT" be a fundamental parallelogram with two
sides removed: IT' = {aw; + bw,|0 <a < 1,0 < b < 1}. Then every point
in C differs by a lattice element from exactly one point in IT’; that is, IT" is
a set of coset representatives for the additive group of complex numbers
modulo the subgroup L. We will list zeros and poles in IT’, omitting 0 from
our list (even if it happens to be a zero or pole of f(z)). Each zero or pole
will be listed as many times as its multiplicity. However, only “half” will
be listed; that is, they will be arranged in pairs, with only one taken from
each pair. We now give the details. We describe the method of listing zeros;
the method of listing poles is exactly analogous.

First suppose that aell’, a # 0, is a zero of f(z) which is not half of a
lattice point, i.e., a # w,/2, w,/2, or (w; + w,)/2. Let a*eI1’ be the point
“symmetric” to a, i.e., a* = w; + w, — a if a is in the interior of IT’, while
a* = w, —aora* = w, — aif ais on one of the two sides (see Fig. 1.9). If a
is a zero of order m, we claim that the symmetric point a* is also a zero of
order m. This follows from the double periodicity and the evenness of £(z).
Namely, we have f(a* — z) = f(—a —z) by double periodicity, and this is
equal to f(a + z) because f(z) is an even function. Thus, if f(a + z) = a,,z" +
higher terms, it follows that f(a* + z) = a,,(—z)™ + higher terms, i.e., a* is
a zero of order m.

Now suppose that aeIl” is a zero of f(z) which is half of a lattice point;
for example, suppose that ¢ = w,/2. In this case we claim that the order of
zero m is even. If f(a+ z)=fGw, + z) = a,z™ + higher terms, then
SGo, — 2) = f(—4w, + 2) = f(Gw, + z) by double periodicity and evenness.
Thus, a,,z" + higher terms = a,,(—z)™ + higher terms, and so m is even.

We are now ready to list the zeros and poles of f(z). Let {a;} be a list of
the zeros of f(z) in IT" which are not half-lattice points, each taken as many
times as the multiplicity of zero there, but only one taken from each pair of
symmetrical zeros a, a*; in addition, if one of the three nonzero half-lattice
points in IT" is a zero of f(z), include it in the list half as many times as its
multiplicity. Let {b;} be a list of the nonzero poles of f(z) in IT’, counted in
the same way as the zeros (i.e., “‘only half” of them appear).
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Since all of the g; and b; are nonzero, the values g (a;) and g (b)) are finite,
and it makes sense to define the elliptic function

(9 (2) — p(a))

Hi(p(2) — pb))

We claim that g(z) has the same zeros and poles as f(z) (counting multiplic-
ity), from which it will follow that f(z) = ¢ - g(z) for some constant ¢. Since
g(z) is a rational function of g(z), this will complete the proof.

To prove this claim, we first examine nonzero points in I1’. Since 0 is the
only pole in the numerator or denominator of g(z), it follows that the
nonzero zeros of g(z) must come from the zeros of g (z) — g(a;), while the
nonzero poles of g(z) must come from the zeros of p(z) — ¢ (b)). But we
know (see problems below) that g(z) — u (for constant ) has a double zero
at z = u if u is a half-lattice point, and otherwise has a pair of simple zeros
at u and the symmetric point #*. These are the only zeros of g (z) — uin IT".
By our construction of the a; and b;, we see that g(z) and f(z) have the same
order of zero or pole everywhere in IT’, with the possible exception of the
point 0. So it merely remains to show that they have the same order of zero
or pole at 0. But this will follow automatically by Proposition 5. Namely,
choose « so that no lattice point and no zero or pole of f(z) or g(z) is on the
boundary of a + I1. Then a + IT will contain precisely one lattice point /.
We know that f(z) and g(z) have the same orders of zeros and poles every-
where in a + IT with the possible exception of /. Let m, denote the order of
zero of f(z) at [ (m, is negative if there is a pole), and let m, denote the anal-
ogous order for g(z). Then

g(@) =

m; + (total of orders of zeros of /) — (total of orders of poles of f)
= m, + (total of orders of zeros of g) — (total of orders of poles of g).

Since the corresponding terms in parentheses on both sides of the equality
are equal, we conclude that m, = m,. Thus, Proposition 5 tells us that when
we know that two elliptic functions have the same order of zero or pole
everywhere but possibly at one point in the fundamental parallelogram, then
that one point is carried along automatically. This concludes the proof of
Proposition 9. O

The proof of Propositions 8 and 9 was constructive, i.e., it gives us a
prescription for expressing a given elliptic function in terms of g(z) once
we know its zeros and poles. Without doing any more work, for example,
we can immediately conclude that:

(1) the even elliptic function g’(z)? is a cubic polynomial in g(z) (because
' (2) has a triple pole at 0 and three simple zeros, hence there are three
a;’s and no b;’s);

(2) the even elliptic function @(Nz) (for any fixed positive integer N) is a
rational function in g(2).
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Both of these facts will play a fundamental role in what follows. The first
tells us that the Weierstrass g-function satisfies a differential equation of a
very special type. This equation will give the connection with elliptic curves.
The second fact is the starting point for studying points of finite order on
elliptic curves. Both facts will be given a more precise form, and the connec-
tion with elliptic curves will be developed, in the sections that follow.

PROBLEMS

1. Prove that the lattice L = {mw, + nw,} and the lattice L’ = {mw] + nw}} are the
same if and only if there is a 2 x 2 matrix 4 with integer entries and determinant
+1 such that " = Aw (Where @ denotes the column vector with entries w,, w,).
If the pairs w,, w, and w], w} are each listed in clockwise order, show that det 4 =
+1.

2. Let C/L denote the quotient of the additive group of complex numbers by the
subgroup L = {mw, + nw,}. Then C/L is in one-to-one correspondence with the
fundamental parallelogram IT with opposite sides glued together.

(a) Let C be thecircle group (the unit circle in the complex plane). Give a continuous
group isomorphism from C/L to the product of C with itself.

(b) How many points of order N or a divisor of N are there in the group C/L?

(c) Show that the set of subgroups of prime order p in C/L is in one-to-one corre-
spondence with the points of IP,}p (where [, = Z/pZ). How many are there?

3. Lets=2,3,4, ....Fix a positive integer N, and let f: Z x Z — C be any function
of period N, i.e., f(m + N, n) = f(m, n) and f(m, n + N) = f(m, n). Suppose that
f(0,0)=0. If s =2, further suppose that X f(m, n) = 0, where the sum is over
0 < m, n < N. Define a function

m, n

Eo, )=} —f(—)s

mneZ (mwl + na)l)

(a) Prove that this sum converges absolutely if s > 2 and conditionally if s =2
(in the latter case, take the sum over m and n in nondecreasing order of [mw, +
nw2|).

(b) Express F,(w,, w,) in terms of the values of p(z; w,, w,) or a suitable derivative
evaluated at values of z€e Il for which Nze L (see Problem 2(b)).

4. Show that for any fixed u, the elliptic function g (z) — u has exactly two zeros (or a
single double zero). Use the fact that @’(z) is odd to show that the zeros of gp’(z)
are precisely w,/2, w,/2, and (v, + w,)/2, and that the values ¢, = p(®,/2), e, =
#(w,/2), 3 = p((w; + w,)/2) are the values of u for which g@(z) — u has a double
zero. Why do you know that e, e,, e are distinct ? Thus, the Weierstrass g-function
gives a two-to-one map from the torus (the fundamental parallelogram IT with
opposite sides glued together) to the Riemann sphere C U {c0} except over the four
“branch points” e, e,, €3, o, each of which has a single preimage in C/L.

5. Using the proof of Proposition 9, without doing any computations, what can you
say about how the second derivative g ”(z) can be expressed in terms of (z)?



22 I. From Congruent Numbers to Elliptic Curves

§6. Elliptic curves in Weierstrass form

As remarked at the end of the last section, from the proof of Proposition 9
we can immediately conclude that the square of g’(2) is equal to a cubic
polynomial in g(z). More precisely, we know that g’(z)? has a double zero
at w,/2, w,/2, and (w,; + w,)/2 (see Problem 4 of §5). Hence, these three
numbers are the a,’s, and we have

9'(2)* = C(p(2) — P(0,/2))(P(2) — P(W/))(P(2) — (@, + ©,)[2))
= C(p(2) — e))(p(2) — €2)(p(2) — e3),

where C is some constant. It is easy to find C by comparing the coefficients
of the lowest power of z in the Laurent expansion at the origin. Recall that
@(2) — z~ % is continuous at the origin asis p’(z) + 2z73. Thus, the leading
term on the left is (—2z7%)? = 4z7°, while on the right it is C(z72)% = Cz°.
We conclude that C = 4. That is, g(z) satisfies the differential equation

©'(2)> =f(p(2)),  where f(x)=4(x —e)(x —e;)(x —e;)eC[x].
(6.1)

Notice that the cubic polynomial f'has distinct roots (see Problem 4 of §5).

We now give another independent derivation of the differential equation
for g (z) which uses only Proposition 3 from §4. Suppose that we can find a
cubic polynomial f(x) = ax?® + bx? + cx + dsuch that the Laurent expansion
at 0 of the elliptic function f(g(z)) agrees with the Laurent expansion of
#’(2)? through the negative powers of z. Then the difference '(z)? — f(p(2))
would be an elliptic function with no pole at zero, or in fact anywhere else
(since g (z) and gp’(z) have a pole only at zero). By Proposition 3, this differ-
ence is a constant; and if we suitably choose d, the constant term in f(x),
we can make this constant zero.

To carry out this plan, we must expand g(z) and ¢’(z)* near the origin.
Since both are even functions, only even powers of z will appear.

Let ¢ be the minimum absolute value of nonzero lattice points /. We shall
take r < 1, and assume that z is in the disc of radius ¢ about the origin.
For each nonzero /e L, we expand the term corresponding to / in the
definition (4.1) of g@(z). We do this by differentiating the geometric series
1/1 —x)=1+ x + x* + - - - and then substituting z// for x:

1 3

If we now subtract 1 from both sides, divide both sides by /2, and then
substitute in (4.1), we obtain
Zk—2

l#O
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We claim that this double series is absolutely convergent for |z| < rc,
in which case the following reversal of the order of summation will be
Justified:

() =L 436,22 + 5Goz* + 7G4z + -, (6.2)

22

where for k > 2 we denote

- 1
G, = G (L) = Gi(wy, w,) i Z I7* = Zz (m—ww—i-n—w)" (6.3)
150 notboth0 2

(notice that the G, are zero for odd 4, since the term for / cancels the term
for —/; as we expect, only even powers of z occur in the expansion (6.2)).
To check the claim of absolute convergence of the double series, we write
the sum of the absolute values of the terms in the inner sum in the form
(recall: |z| < r|l]):
_ 3 4 5 2lz] 1
2z 3 (1 +2r+ 212+ 23+ ) <« 2L
IZI II ( —|—2r+2r +2r + > (1 __r)2|[|3’
and then use Lemma 2 from the proof of Proposition 6.
We now use (6.2) to compute the first few terms in the expansions of

9(2), p(2)*, 9(2)°, p'(2), and p'(2)*, as follows:

0'(2) = —2—23 +6G,z + 2062+ 42G25 + - - (6.4)
02 = ;16 - 2464212 — 80G, + (36G2 — 168Gg)z2 + -1 (6.5)
0(2)? = Zi4 +6G, +10Gz2 + -+ (6.6)
0@ = z% + 9042—‘2 415G, + (21Gg + 227G + . (6.7)

Recall that we are interested in finding coefficients a, b, ¢, d of a cubic
f(x) = ax® + bx? + ¢x + d such that

(2 =ap(2)® + bp(2)* + cp(2) + d,

and we saw that it suffices to show that both sides agree in their expansion
through the constant term. If we multiply equation (6.7) by a, equation (6.6)
by b, equation (6.2) by ¢, and then add them all to the constant d, and finally
equate the coefficients of 2%, z7%, 272 and the constant term to the corre-
sponding coefficients in (6.5), we obtain successively:

a=4; b=0; —24G, = 4(09G,) + c; —80G, = 4(15Gg) + d.
Thus, ¢ = —60G,, d = —140G,. It is traditional to denote
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92 =9,(L) 560G, = 60 ), I™*;
leL
1#0

g3 = g5(L) = 140G, = 140 Y 17°.
leL
1#0

(6.8)

We have thereby derived a second form for the differential equation (6.1):

9'(2) =f(p(2)), where f(x)=4x>—g,x —g;eC[x]. (6.9)

Notice that if we were to continue comparing coefficients of higher powers
of z in the expansion of both sides of (6.9), we would obtain relations between
the various G, (see Problems 4-5 below).

The differential equation (6.9) has an elegant and basic geometric inter-
pretation. Suppose that we take the function from the torus C/L (i.e., the
fundamental parallelogram IT with opposite sides glued) to PZ defined by

z>(p(2), g'(2), 1) for z#0;

6.10
0 (0, 1, 0). (6.10)

The image of any nonzero point z of C/L is a point in the xy-plane (with
complex coordinates) whose x- and y-coordinates satisfy the relationship
y? = f(x) because of (6.9). Here f(x)eC[x] is a cubic polynomial with
distinct roots. Thus, every point z in C/L maps to a point on the elliptic
curve y? = f(x) in PZ. It is not hard to see that this map is a one-to-one
correspondence between C/L and the elliptic curve (including its point at
infinity). Namely, every x-value except for the roots of f(x) (and infinity)
has precisely two z’s such that @(z) = x (see Problem 4 of §5). The
y-coordinates y = 0’(z) coming from these two z’s are the two square roots
of f(x) = f(¢(2)). If, however, x happens to be a root of f(x), then there is
only one z value such that g (z) = x, and the corresponding y-coordinate is
y = 9'(z) = 0, so that again we are getting the solutions to y* = f(x) for our
given x.

Moreover, the map from C/L to our elliptic curve in P is analytic, meaning
that near any point of C/L it can be given by a triple of analytic functions.
Near non-lattice points of C the map is given by z— (¢(z), #'(z), 1); and
near lattice points the map is given by z+— (9 (2)/0'(2), 1, 1/§'(2)), which is
a triple of analytic functions near L.

We have proved the following proposition.

Proposition 10. The map (6.10) is an analytic one-to-one correspondence
between C/L and the elliptic curve y* = 4x> — g,(L)x — g,(L) in PE.

One might be interested in how the inverse map from the elliptic curve
to C/L can be constructed. This can be done by taking path integrals of
dx/y = (4x> — g,x — g;) dx from a fixed starting point to a variable
endpoint. The resulting integral depends on the path, but only changes by
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a “‘period”, i.e., a lattice element, if we change the path. We hence obtain
a well-defined map to C/L. See the exercises below for more details.

We conclude this section with a few words about an algebraic picture
that is closely connected with the geometric setting of our elliptic curve.
Recall from Proposition 8 that any elliptic function (meromorphic function
on the torus C/L) is a rational expression in g@(z) and g’(z). Under our
one-to-one correspondence in Proposition 10, such a function is carried over
to a rational expression in x and y on the elliptic curve in the xy-plane
(actually, in P2). Thus, the field C(x, y) of rational functions on the xy-plane,
when we restrict its elements to the elliptic curve y? = f(x), and then ‘“pull
back™ to the torus C/L by substituting x = @(z), y = 0'(z), give us precisely
the elliptic functions &; . Since the restriction of y? is the same as the restric-
tion of f(x), the field of functions obtained by restricting the rational func-
tions in C(x, y) to the elliptic curve is the following quadratic extension of
C(x): Cx)[¥]/(y* — (4x* — g,x — g3)). Algebraically speaking, we form
the quotient ring of C(x)[y] by the principal ideal corresponding to the
equation y? = f(x).

Geometrically, projection onto the x-coordinate gives us Fig. 1.10. Two
points on the elliptic curve map to one point on the projective line, except
at four points (the point at infinity and the three points where y = 0), where
the two ““branches” are “pinched” together.

In algebraic geometry, one lets the field F = C(x) correspond to the com-
plex line P¢, and the field K = C(x, y)/(y*> — (4x> — g,x — g3)) correspond
to the elliptic curve in PZ. The rings A = C[x] and B = C[x, y]/(y* — f(x))
are the “‘rings of integers’ in these fields. The maximal ideals in A4 are of
the form (x — a)A; they are in one-to-one correspondence with aeC. A4
maximal ideal in B is of the form (x — a)B + (y — b) B (where b is a square
root of f{(a)), and it corresponds to the point (a, ) on the elliptic curve.

K>B>(x—aB+(y—bB  (b=f@)
| | (x—aB+(y+bB
| | |

1|73/'13(x~cl)A
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The maximal ideal (x — @)A, when “lifted up” to the ring B, is no longer
prime. That is, the ideal (x — @) B factors into the product of the two ideals:

(x—a)B=((x—a)B+ (y — b)B)((x — a)B + (y + b)B).

The maximal ideal corresponding to the point @ on the x-line splits into
two maximal ideals corresponding to two points on the elliptic curve. If it
so happens that b = 0, i.e., @ is a root of f(x), then both of the ideals are the
same, i.e., (x — a)B is the square of the ideal ((x — a)B + yB). In that case
we say that the ideal (x — a)4 “‘ramifies” in B. This happens at values a
of the x-coordinate which come from only one point (g, 0) on the elliptic
curve. Thus, the above algebraic diagram of fields, rings and ideals is an
exact mirror of the preceding geometric diagram.

We shall not go further than these ad hoc comments, since we shall not
be using algebra geometric techniques in which follows. For a systematic
introduction to algebraic geometry, see the textbooks by Shafarevich,
Mumford, or Hartshorne.

PROBLEMS

1. (@) Let L = Z[{] be the lattice of Gaussian integers. Show that g;(L) = 0 but that
g,(L) is a nonzero real number.

(b) Let L = Z[w], where w = 3(—1 + i,/3), be the lattice of integers in the qua-
dratic imaginary field @(\/—_3). Show that g,(L) =0 but that g;(L) is a
nonzero real number.

(c) For any nonzero complex number ¢, let c¢L denote the lattice obtained by
multiplying all lattice elements by c. Show that g,(cL) = ¢”*g,(L),and g5(cL) =
¢ og5(L).

(d) Prove that any elliptic curve y* = 4x> — g,x — g, with either g, or g; equal
to zero, is of the form y? = 4x® — g,(L)x — g5(L) for some lattice L. It can
be shown that any elliptic curve is of that form for some lattice L. See, for
example, [Whittaker & Watson 1958, §21.73]; also, we shall prove this much
later as a corollary in our treatment of modular forms.

2. Recall that the discriminant of a polynomial f(x) = aox" + a;x" ' + -+ +a,=
ag(x —e))x — ey) - (x —e,) is af T, ;(e; — e)?. 1t is nonzero if and only if
the roots are distinct. Since it is a symmetric homogeneous polynomial of degree
n(n — 1) in the e/s, it can be written as a polynomial in the elementary symmetric
polynomials in the ejs, which are (— 1)'a;/a,. Moreover, each monomial term
I1, (a;/a,)™ has total “weight” m, + 2m, + - - - + nm, equal to n(n — 1). Applying
this to f(x) = 4x> — g,x — g5, we see that the discriminant is equal to a polynomial
in g,, g, of weight six, i.e., it must be of the form ag3 + fg3. Find « and § by com-
puting 4%(e, — e,)%(e, — e3)*(e, — e3)* directly in the case g, = 4, g; = 0 and the
case g, =0,g; =4

3. Since the even elliptic function g”(z) has a quadruple pole at zero and no other
pole, you know in advance that it is equal to a quadratic polynomial in (z).
Find this polynomial in two ways: (a) comparing coefficients of powers of z;
(b) differentiating g'? = 49> — g, % — g,. Check that your answers agree.
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4. Use either the equation for g2 or the equation for £” to prove that Gy = 3G 2.

5.

Prove by induction that all G;'s can be expressed as polynomials in G, and G
with rational coefficients, i.e., G, € Q[ G,. G,]. We shall later derive this fact again
when we study modular forms (of which the G, turn out to be examples).

6. Letw, = it be purely imaginary, and let w, = m. Show that as t approaches infinity,

G, (it, m) approaches 2n *{(k), where {(s) is the Riemann zeta-function. Suppose
we know that {(2) = n?/6, {(4) = n*/90, {(6) = n®/945. Use Problem 4 to find
{(8). Use Problem 5 to show that n”*{(k)e Q for all positive even integers k.

7. Find the limit of g, and g, for the lattice L = {mir + nn} as 1 > oc.

8. Show that v = csc? z satisfies the differential equation v'? = 4v?(v — 1), and that

10.

the function

v=csc?z—4

satisfies the differential equation ¢'? = 4v* — %0 — £,. What is the discriminant

of the polynomial on the right? Now start with the infinite product formula for
sin(nz), replace z by z/z, and take the logarithmic derivative and then the derivative
once again to obtain an infinite sum for csc? z. Then prove that

lim p(z; it, 7) = csc? = — 4.
—oc

. The purpose of this problem is to review the function = = log v for v complex,

in the process providing a “dry run’’ for the problems that follow.
(a) For v in a simply connected region of the complex plane that does not include
the origin, define a function z of v by:

’7{&
11"

where the path from 1 to v is chosen arbitrarily, except that the same choice
is made for all points in the region. (In other words, fix any path from 1 to
0o, and then to go to other v's use a path from v, to v that stays in the region.)
Call this function z = log v. Show that if a different path is chosen, the function
changes by a constant value in the “lattice” L = {27im|; and that any lattice
element can be added to the function by a suitable change of path. (L is actually
only a lattice in the imaginary axis R/, not a lattice in C.)

(b) Express dz/dv and dv/dz in terms of v.

(c) If the function v = ¢° is defined by the usual series, use part (b) to show that
e is the inverse function of z = log v.

(d) Show that the map ¢” gives a one-to-one correspondence between C/L and
C — {0}. Under this one-to-one correspondence, the additive group law in
C/L becomes what group law in C — {0}?

Let L be a fixed lattice, set g, = g,(L), g5 = g3(L), (z) = @(z; L). Letu = f(z)bea
non-constant function on a connected open region R = C which satisfies the differ-
ential equationu'? = 4u® — g,u — g;. Prove thatu = p(z + «)for some constant o.

. Let L = {mw, + nw,} be a fixed lattice, and set g, = g,(L), g = g5(L), p(2) =

(2. L). Let R, be an unbounded simply connected open region in the complex
plane which does not contain the roots e, ¢,, ¢y of the cubic 4x* — g,x — g5.
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0 @, /2 ¢

Figure I.11

For ue R,, define a function z = g(u) by

® dt
Z=9(u)=J r—
w VA — gyt — g

where a fixed branch of the square root is chosen as ¢ varies in R,. Note that the
integral converges and is independent of the path in R, from u to oo, since R, is
simply connected. The function z = g() can be analytically continued by letting
R, be a simply connected region in C — {e,, e,, ¢;} which overlaps with R,. If
ueR,, then choose u;eR;NR,, and set z=g(u) = g(u,) + [ (41> — g1 —
g3)~Y2dr. This definition clearly does not depend on our choice of u; € R, " R, or
our path from « to u, in R,. Continuing in this way, we obtain an analytic function
which is multivalued, because our sequence of regions R,, R;, Rs, ... can wind
around e, €, Or e5.

(a) Express (dz/du)* and (du/dz)? in terms of u.

(b) Show that u = g(z). In particular, when we wind around e,, e,, or e, the
value of z can only change by something in L. Thus, z = g(u) is well defined
as an element in C/L for ueC — {e,, ¢,, e5}. The function z = g(u) then
extends by continuity to ey, e,, €3.

(c) Let C, be the path in the complex u-plane from e, to co that is traced by u =
@(2) as z goes from w,/2 to 0 along the side of IT (see Fig. 1.11). Show that
fc, (41 — g, — g3)72dt = —w,/2 for a suitable branch of the square root.

(d) Let C, be the path that goes from oo to e, along C;, winds once around e,,
and then returns along C, to oc. Take the same branch of the square root as
in part (c), and show that [ (41° — g,1 — g3)™%dt = ©,.

(e) Describe how the function z = g(u) can be made to give all preimages of u
under v = @(2).

(a) Prove that all of the roots e;, e,, e; of 4x> — g,x — g, are real if and only
if g, and g, are real and A = g3 — 2793 > 0.

(b) Suppose that the conditions in part (a) are met, and we order the ¢; so that
e, > e; > e,. Show that we can choose the periods of L to be given by

1 .rl dt 1 r’ dt
5w1=l —— and -w,=

—w g3+ gyt -4’ 2 e, VAP — gyt —gs

where we take the positive branch of the square root, and integrate along the
real axis.

(c) With these assumptions about the location of the e; on the real axis, describe
how to change the path of integration and the branch of the square root in
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Problem 11 so as to get the other values of z for which u = @(z), namely
Tz + mw,; + nw,.

13. Suppose that g, = 4n?, g, = 0. Take e,, e,, e, so that e, > e; > e,. What are
ey, €,, e in this case? Show that w, = iw,, i.e., the lattice L is the Gaussian integer
Iattice expanded by a factor of w,. Show that as z travels along the straight line
from w,/2 to w,/2 + w, the point (x, y) = (g(2), ¢’(z)) moves around the real
points of the elliptic curve y* = 4(x> — n?x) between —n and 0; and as z travels
along the straight line from 0 to w, the point (x, y) = (g (2), @'(2)) travels through
all the real points of this elliptic curve which are to the right of (n, 0). Think of
the “open’’ appearance of the latter path to be an optical illusion: the two ends are
really ““tied together” at the point at infinity (0, 1, 0).

Ymdr T 135 1
14. (a) Show that —_—=——>=...{n—=)forn=0,1,2, ....
@ L,/t(l—t) n! 222 ( 2)
(b) Under the conditions of Problem 12, withe, > e; > e,,set 4 223 - Zle(O, 1).
27 &

Derive the formula:

1 j‘ dt
w, = .
Jea—ep Jo JIT =01 — &)

(c) Derive the formula w, = n(e, — ¢,) Y2F(J), where

{135 1\]? i
F() = 22020, _ - .
) ngo [2 22 (" 2)] nt?
The function F(4) is called a ““hypergeometric series”.

(d) Show that the hypergeometric series in part (c) satisfies the differential equa-
tion: A(1 — )F"(A) + (1 — 20)F' () — sF(A) = 0.

§7. The addition law

In the last section we showed how the Weierstrass g-function gives a
correspondence between the points of C/L and the points on the elliptic
curve y? = f(x) = 4x> — g,(L)x — g5(L) in PZ. We have an obvious addition
law for points in C/L, obtained from ordinary addition of complex numbers
by dividing by the additive subgroup L, i.e., ordinary addition “modulo L.
This is the two-dimensional analog of “‘addition modulo one” in the group
R/Z.

We can use the correspondence between C/L and the elliptic curve to
carry over the addition law to the points on the elliptic curve. That is, to
add two points P, = (x,, y,) and P, = (x,, y,), by definition what we do is
go back to the z-plane, find z,; and z, such that P, = (¢ (z,), 9'(z,)) and
P, = (p(z,), ' (zz)),and thenset Py + P, = (9(z; + z,), (2, + 2,)). This
is just a case of the general principle: whenever we have a one-to-one corre-
spondence between elements of a commutative group and elements of some
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ot w) tw,

ot w,

atw,

Figure 1.12

other set, we can use this correspondence to define a commutative group
law on that other set.

But the remarkable thing about the addition law we obtain in this way is
that (1) there is a simple geometric interpretation of “adding” the points on
the elliptic curve, and (2) the coordinates of P, + P, can be expressed
directly in terms of x,, x,, y;, y, by rather simple rational functions. The
purpose of this section is to show how this is done.

We first prove a general lemma about elliptic functions.

Lemma. Let f(z)e&;. Let T1 = {aw, + bw,|0 < a, b < 1} be a fundamental
parallelogram for the lattice L, and choose o so that f(z) has no zeros or poles
on the boundary of o + 1. Let {a;} be the zeros of f(z) in o + I, each repeated
as many times as its multiplicity, and let {b;} be the poles, each occurring as
many times as its multiplicity. Then Ta; — Zb;e L.

ProoOF. Recall that the function f'(z)/f(z) has poles at the zeros and poles
of f(z), and its expansion near a zero a of order m is m/(z — a) + - - - (and
near a pole b of order —m the expansion is —m/(z — b) + - - - ). Then the
function zf"(z)/f(z) has the same poles, but, writing z = a + (z — a), we see
that the expansion starts out am/(z — a). We conclude that Za; — Z5; is
the sum of the residues of zf'(z)/f(z) inside « + I1. Let C be the boundary
of o + Il. By the residue theorem,

_ 1 [ @
Zai—ij—zm_ L dz

f@

We first take the integral over the pair of opposite sides from « to o + w,
and from o« + @, to o + @, + w, (see Fig. 1.12). This part is equal to

1 atw, f/(Z) B atw;tw, f/(Z)
sl oL )

B L atw, f/(z) _ atw, i@
=5 <L z 7o) dz ja z+ wy) 70) dz)

_ LT ()
=05 j I dz.
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Now make the change of variables u = f(z), so that f'(2)dz/f(z) = du/u. Let
C, be the closed path from f(a) to f(¢ + w,) = f(«) traced by u = f(2) as z
goes from a to o + w,. Then

e e £1(z) dr — 1 du
2m’ f(@) i | u’

and this is some integer #, namely the number of times the closed path C,
winds around the origin (counterclockwise). Thus, we obtain — w, 7 for this
part of our original integral. In the same way, we find that the integral over
the remaining two sides of C is equal to —w,m for some integer m. Thus,
Xa,—Xb = —nw, —mw,eL,as desired. This proves the lemma. O

We are now ready to derive the geometrical procedure for adding two
points on the elliptic curve y* = f(x) = 4x* — g,(L)x — g5(L). For z in C/L,
let P, be the corresponding point P. = (g (z2), ¢'(2), 1), P, = (0, 1, 0) on the
elliptic curve. Suppose we want to add P, =(xy,y) to P =(x;,y,) to
obtain the sum P, .. = (x;,y;). We would like to know how to go from
the two points to their sum directly, without tracing the points back to the
z-plane.

We first treat some special cases. The additive identity is, of course, the
image of z = 0. Let 0 denote the point at infinity (0, 1, 0), i.e., the additive
identity of our group of points. The addition is trivial if one of the points
is 0, i.e., if z; or z, is zero. Next, suppose that P. and P, have the same
x-coordinate but are not the same point. This means thatx, = x,,y, = —y,.
In this case z, = —z, because only ‘‘symmetric” values of z (values which
are the negatives of each other modulo the lattice L) can have the same
g-value. In this case, P, + P, = P, =0, i.e,, the two points are additive
inverses of one another. Speaking geometrically, we say that two points of
the curve which are on the same vertical line have sum 0. We further note
that in the special situation of a point P, =P, on the x-axis, we have
Y, = —y, =0, and it is easy to check that we still have P, +P =2P, =0
We have proved:

Proposition 11. The additive inverse of (x, y) is (x, —y).

leen two pomtsP =P, =(x;,y)and P, = P, = (x,, y,) ontheelliptic
curve y? =4x> — g,x — g, (nelther the point at 1nf1mty 0), there is a line
/= P, P, joining them. If P, = P,, we take / to be the tangent line to the
elliptic curve at P,. If [ is a vertical line, then we saw that P, + P, = 0.
Suppose that / is not a vertical line, and we want to find P, + P, = P, =
(x3,¥3). Our basic claim is that — P, = (x;, —y,) is the third point of
intersection of the elliptic curve with /.

Write the equation of / = P, P, in the form y = mx + b. A point (x, y) on
[ is on the elliptic curve if and only if (mx + b)? = f(x) = 4x> — g, x — g3,
that is, if and only if x is a root of the cubic f(x) — (mx + b)2. This cubic
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has three roots, each of which gives a point of intersection. If x is a double
root or triple root, then / intersects the curve with multiplicity two or three
at the point (x, y) (see Problem 6 of §1.3). In any case, the total number of
points of intersection (counting multiplicity) is three.

Notice that vertical lines also intersect the curve in three points, including
the point at infinity 0; and the line at infinity has a triple intersection at 0
(see Problem 7 of §1.3). Thus, any line in PZ intersects the curve in three
points. This is a special case of

Bezout’s Theorem. Let F(x, y, z) and G(x, y, z) be homogeneous polynomials
of degree m and n, respectively, over an algebraically closed field K. Suppose
that F and G have no common polynomial factor. Then the curves in Pg defined
by F and G have mn points of intersection, counting multiplicities.

For a more detailed discussion of multiplicity of intersection and a proof
of Bezout’s theorem, see, for example, Walker’s book an algebraic curves
[Walker 1978].

In our case F(x,p,z)=y%% —4x>+ g,xz2 +¢g52° and G(x,y,z)=
y —mx — bz.

Proposition 12. If P, + P, = P;, then — Py is the third point of intersection
of 1 = P, P, with the elliptic curve. If P, = P,, then by P, P, we mean the
tangent line at P, .

PRrOOF. We have already treated the case when P, or P, is the point at infinity
0, and when P, = — P,. So suppose that / = P, P, has the form y = mx + b.
Let P, = P, , P, = P, . To say that a point P, = (9(2), 9’(2)) is on [ means
that g’'(z) = mgp(z) + b. The elliptic function @'(z) — mgp(z) — b has three
poles and hence three zeros in C/L. Both z; and z, are zeros. According to
the lemma proved above, the sum of the three zeros and three poles is equal
to zero modulo the lattice L. But the three poles are all at zero (where ’(z)
has a triple pole); thus, the third zero is —(z, + z,) modulo the lattice.
Hence, the third point of intersection of / with the curveis P_. ,.,= —F.,,
as claimed.

The argument in the last paragraph is rigorous only if the three points
of intersection of / with the elliptic curve are distinct, in which case a zero
of @'(z) — mgp(z) — b corresponds exactly to a point of intersection F,.
Otherwise, we must show that a double or triple zero of the elliptic function
always corresponds to a double or triple intersection, respectively, of /
with the curve. That is, we must show that the two meanings of the term
“multiplicity”” agree: multiplicity of zero of the elliptic function of the
variable z, and multiplicity of intersection in the xy-plane.

Let z,, z,, —z; be the three zeros of g'(z) — mg(z) — b, listed as many
times as their multiplicity. Note that none of these three points is the negative
of another one, since / is not a vertical line. Since —z,, —z,, z, are the three
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P+ P

Figure 1.13

zeros of '(z) + mgp(z) + b, it follows that +z,, +z,, +z, are the six
zeros of 9'(2) — (mMP(2) + b)? = f(p(2) — (Mp(2) + b)2 = 4(p(2) — x,)
(9 (z2) — x,)(¢(z) — x3), where x,, x,, x5 are the roots of f(x) — (mx + b)>.
If, say, ¢(z,) = x,, then the multiplicity of x, depends upon the number
of +z,, +z; which equal +z,. But this is precisely the number of z,, —z,4
which equal z; . Hence ‘“‘multiplicity” has the same meaning in both cases.
This concludes the proof of Proposition 12. O

Proposition 12 gives us Fig. 1.13, which illustrates the group of real points
on the elliptic curve y? = x* — x. To add two points P, and P,, we draw the
line joining them, find the third point of intersection of that line with the
curve, and then take the symmetric point on the other side of the x-axis.

It would have been possible to define the group law in this geometrical
manner in the first place, and prove directly that the axioms of an abelian
group are satisfied. The hardest part would have been the associative law,
which would have necessitated a deeper investigation of intersections of
curves. In turns out that there is some flexibility in defining the group law.
For example, any one of the eight points of inflection besides the point at
infinity could equally well have been chosen as the identity. For details of
this alternate approach, see [Walker 1978].

One disadvantage of our approach using g (z) is that a priori it only applies
to elliptic curves of the form y? = 4x® — g,(L)x — g5(L) or curves that can
be transformed to that form by a linear change of variables. (Note that the
geometrical description of the group law will still give an abelian group law
after a linear change of variables.) In actual fact, as was mentioned earlier
and will be proved later, any elliptic curve over the complex numbers can
be transformed to the Weierstrass form for some lattice L. We already know
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that our favorite example y? = x> — n’x corresponds to a multiple of the
Gaussian integer lattice. In the exercises for this section and the next, we
shall allow ourselves to use the fact that the group law works for any elliptic
curve.

It is not hard to translate this geometrical procedure into formulas
expressing the coordinates (xs, y;) of the sum of P, = (x,,y,) and P, =
(x5, y2) in terms of x,, x,, y,, ¥, and the coefficients of the equation of the
elliptic curve. Although, strictly speaking, our derivation was for elliptic
curves in the form y? = f(x) = 4x> — g,(L)x — g5(L) for some lattice L, the
procedure gives an abelian group law for any elliptic curve y? = f(x), as
remarked above. So let us take f(x) = ax® + bx* + cx + de C[x] to be any
cubic with distinct roots.

In what follows, we shall assume that neither P, nor P, is the point at
infinity 0, and that P; # — P,. Then the line through P, and P, (the tangent
line at P, if P, = P,) can be written in the form y = mx + f§, where m =
(2 = y)/(xy — xy) if Py # P, and m = dy[dx|, , if P, = P,. In the latter
case we can express m in terms of x; and y, by implicitly differentiating
y? = f(x); we find that m = f'(x,)/2y,. In both cases the y-intercept is
B =y — mx,.

Then x,, the x-coordinate of the sum, is the third root of the cubic
f(x) — (mx + B)?, two of whose roots are x,, x,. Since the sum of the three
roots is equal to minus the coefficient of x? divided by the leading coefficient,

we have: x, + x, + x3 = — (b — m?)/a, and hence:
b -y, \? .
XBZ—XI_XZ_E_*_%(—{Z—%CI)’ it P, # Py (7.1)
X, — 2
b 1{f(x)) ~
= —2x, — —+ - | f P =P,. 2
X3 X1 a+a< 2, ) 1 1 2 (7.2)

The y-coordinate y, is the negative of the value y = mx; + f, i.e.,
Y3 = —y+mx; — x3), (7.3)
where x5 is given by (7.1) and (7.2), and
m=(y, —y)/(x;—xy) if P #P,;
m = f"(x;)/2y, if P =Pp,.

(7.4)

If our elliptic curve is in Weierstrass form y? = 4x* — g,x — g5, then
we have a =4, b =0, and f'(x;) = 12x? — g, in the addition formulas
(7.1)-(7.4).

In principle, we could have simply defined the group law by means of
these formulas, and then verified algebraically that the axioms of a commu-
tative group are satisfied. The hardest axiom to verify would be associativity.
Tedious as this procedure would be, it would have one key advantage over
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either the complex-analytic procedure (using @(z)) or the geometrical pro-
cedure. Namely, we would never have to use the fact that our field K over
which the elliptic curve is defined is the complex numbers, or even that it has
characteristic zero. That is, we would find that our formulas, which make
sense over any field K of characteristic not equal to 2, give an abelian group
law. That is, if y? = f(x) = ax® + bx? + cx + de K[x] is the equation of
an elliptic curve over K, and if we define f'(x) = 3ax?® + 2bx + ¢, then any
two points having coordinates in some extension of K can be added using
the formulas (7.1)-(7.4). We shall make use of this fact in what follows,
even though, strictly speaking, we have not gone through the tedious purely
algebraic verification of the group laws.

PROBLEMS

1. Let L = R be the additive subgroup {mw} of multiples of a fixed nonzero real
number w. Then the function z+ (cos(2nz/w), sin(2nz/w)) gives a one-to-one
analytic map of R/L onto the curve x> + y* =1 in the real xy-plane. Show that
ordinary addition in R/L carries over to a rational (actually polynomial) law for
“adding” two points (x,, y;) and (x,, y,) on the unit circle; that is, the coordinates
of the “sum” are polynomials in x,, X5, y;, y,. Thus, the rational addition law on
an elliptic curve can be thought of as a generalization of the formulas for the sine
and cosine of the sum of two angles.

2. (a) Simplify the expression for the x-coordinate of 2P in the case of the elliptic

curve y2 = x3 — n’x.

(b) Let X, Y, Z be a rational right triangle with area n. Let P be the corresponding
point on the curve y? = x> — n?x constructed in the text in §1.2. Let Q be the
point constructed in Problem 2 of §I.2. Show that P = 20.

(¢) Prove that, if P is a point not of order 2 with rational coordinates on the curve
y? = x* — n’x, then the x-coordinate of 2P is the square of a rational number
having even denominator. For example, the point Q = ((41/7)?, 720 41/7%)
on the curve y? = x* — 312x is not equal to twice a point P having rational
coordinates. (In this problem, recall: » is always squarefree.)

3. Describe geometrically: (a) the four points of order two on an elliptic curve; (b)
the nine points of order three; (c) how to find the twelve points of order four which
are not of order two; (d) what the associative law of addition says about a certain
configuration of lines joining points on the elliptic curve (draw a picture).

4. (a) How many points of inflection are there on an elliptic curve besides the point
at infinity? Notice that they occur in symmetric pairs. Find an equation for
their x-coordinates.

(b) In the case of the elliptic curve y? = x> — n?x find an explicit formula for
these x-coordinates. Show that they are never rational (for any »).

5. Given a point Q on an elliptic curve, how many points P are there such that 2P = Q?
Describe geometrically how to find them.

6. Show that if K is any subfield of C containing g, and g5, then the points on the
elliptic curve y2 = 4x> — g,x — g, whose coordinates are in K form a subgroup
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of the group of all points. More generally, show that this is true for the elliptic
curve y? = f(x) if f(x)e K[x].

. Consider the subgroup of all points on y? = x> — n’x with real coordinates. How
group p

many points in this subgroup are of order 2?7 3?7 4? Describe geometrically where
these points are located.

. Same as Problem 7 for the elliptic curve y? = x> — a, aeR.

. If y? = f(x) is an elliptic curve in which f(x) has real coefficients, show that the

group of points with real coordinates is isomorphic to (a) R/Z if f(x) has only
one real root; (b) R/Z x Z/27 if f(x) has three real roots.

. Letting 4 approach zero in Problem 8, show that for the curve y? = x* the same

geometric procedure for finding P, + P, as for elliptic curves makes the smooth
points of the curve (i.e., P # (0, 0), but including the point at infinity) into an
abelian group. Show that the map which takes P = (x, y) to x/y (and takes the
point at infinity to zero) gives an isomorphism with the additive group of complex
numbers. This is called ‘‘additive degeneracy” of an elliptic curve. One way to
think of this is to imagine both w, and w, approaching infinity (in different direc-
tions). Then g, and g, both approach zero, so the equation of the corresponding
elliptic curve approaches y? = 4x®. Meanwhile, the additive group C/L, where
L = {mw, + nw,}, approaches the additive group C, i.e., the fundamental par-
allelogram becomes all of C.

. Let a = 0 in the elliptic curve y* = (x? — a)(x + 1). Show that for the curve y* =

x%(x + 1) the same geometric procedure for finding P; + P, as for elliptic curves
makes the smooth points of the curve into an abelian group. Show that the map
which takes P = (x, y) to (y — x)/(y + x) (and takes the point at infinity to 1)
gives an isomorphism with the multiplicative group C* of nonzero complex num-
bers. This is called ‘“‘multiplicative degeneracy” of an elliptic curve. Draw the
graph of the real points of y* = x?(x + 1), and show where the various sections
go under the isomorphism with C*. One way to think of multiplicative degeneracy
is to make the linear change of variables y— £y, x> —x — 4, so that the equation
becomes y? = 4x> — 4x — £ (compare with Problem 8 of §1.6). So we are dealing
with the limit as ¢ approaches infinity of the group C/{mif + nn}, i.e., with the
vertical strip C/{nn} (rather, a cylinder, since opposite sides are glued together),

and this is isomorphic to C* under the map z+ e?.

§8. Points of finite order

In any group, there is a basic distinction between elements of finite order
and elements of infinite order. In an abelian group, the set of elements of
finite order form a subgroup, called the “torsion subgroup”. In the case of
the group of points in P2 on the elliptic curve y* = f(x), we immediately see
that a point P, = (x, y) has finite order if and only if Nze L for some N,
i.e., if and only if z is a rational linear combination of w, and w,. In that
case, the least such N (which is the least common denominator of the
coefficients of w, and w,) is the exact order of P,. Under the isomorphism
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from R/Z x R/Z to the elliptic curve given by (a, b)+— Paw, +bo,» 1t is the
image of Q/Z x Q/Z which is the torsion subgroup of the elliptic curve.

This situation is the two-dimensional analog of the circle group, whose
torsion subgroup is precisely the group of all roots of unity, i.c., all €>™*
for ze Q/Z. Just as the cyclotomic fields—the field extensions of @ generated
by the roots of unity—are central to algebraic number theory, we would
expect that the fields obtained by adjoining the coordinates of points
P = (x,y) of order N on an elliptic curve should have interesting special
properties. We shall soon see that these coordinates are algebraic (if the
coefficients of f(x) are). This analogy between cyclotomic fields and fields
formed from points of finite order on elliptic curves is actually much deeper
than one might have guessed. In fact, a major area of research in algebraic
number theory today consists in finding and proving analogs for such fields
of the rich results one has for cyclotomic fields.

Let N be a fixed positive integer. Let f(x) =ax® +bx*+cx +d=
a(x — e,;)(x — e,)(x — e;) be a cubic polynomial with coefficients in a field
K of characteristic #2 and with distinct roots (perhaps in some extension
of K). We are interested in describing the coordinates of the points of order
N (i.e., exact order a divisor of N) on the elliptic curve y? = f(x), where
these coordinates may lie in an extension of K. If N = 2, the points of order
N are the point at infinity 0 and (e;, 0), i = 1, 2, 3. Now suppose that N > 2.
If N is odd, by a “‘nontrivial” point of order N we mean a point P # 0 such
that NP = 0. If N is even, by a “nontrivial” point of order N we mean a
point P such that NP = 0 but 2P # 0.

Proposition 13. Let K’ be any field extension of K (not necessarily algebraic),
and let o: K’ — oK’ be any field isomorphism which leaves fixed all elements
of K. Let PeP§. be a point of exact order N on the elliptic curve y* = f(x),
where f(x)e K[x]. Then oP has exact order N (where for P = (x, y, z) € P2,
we denote 6P = (ox, oy, 0z) € PZ.).

PRrOOF. It follows from the addition formulas that 6P, + ¢P, = (P, + P,),
and hence N(aP) = g(NP) = 60 = 0 (since ¢(0, 1, 0) = (0, 1, 0)). Hence oP
has order V. It must have exact order N, since if N'aP = 0, we would have
o(N'P)=0=(0, 1, 0), and hence N'P = 0. This proves the proposition. O

Proposition 14. In the situation of Proposition 13, with K a subfield of C, let
Ky < C denote the field obtained by adjoining to K the x- and y-coordinates
of all points of order N. Let Ky denote the field obtained by adjoining just
their x-coordinates. Then both Ky and K}; are finite galois extensions of K.

PROOF. In each case Ky and Ky, we are adjoining a finite set of complex
numbers which are permuted by any automorphism of C which fixes K.
This immediately implies the proposition. O

As an example, if N = 2, then K, = K is the splitting field of f(x) over K.
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Recall that the group of points of order N on an elliptic curve in P¢ is
isomorphic to (Z/NZ) x (Z|NZ). Because any ¢ € Gal(K/K) respects addi-
tion of points, i.e., a(P, + P,) = 6P, + oP,, it follows that each ¢ gives an
invertible linear map of (Z/NZ)? to itself.

If R is any commutative ring, we let GL,(R) denote the group (under
matrix multiplication) of all n x n invertible matrices with entries in R. Here
invertibility of a matrix A is equivalent to det A€ R*, where R* is the
multiplicative group of invertible elements of the ring. For example:

(1) GL(R) = R*;
(2) GL,(ZINZ) = {(“ })|a. b, ¢, de Z|NZ, ad — bce (Z/NZ)*}.

It is easy to construct a natural one-to-one correspondence between invertible
linear maps R" — R" and elements of GL,(R). There is no difference with
the more familiar case when R is a field.

In our situation of points of order N on an elliptic curve, we have seen
that Gal(Ky/K) is isomorphic to a subgroup of the group of all invertible
linear maps (Z/NZ)* — (Z/NZ)*. Thus, any o€ Gal(Ky/K) corresponds to
a matrix (¢ §) e GL,(Z/NZ). The matrix entries can be found by writing

an1/N = Pau)1/N+cw2/N7 O-sz/N = wal/N+da)2/N‘

Notice that this is a direct generalization of the situation with the
N-th cyclotomic field @y = Q(J1). Recall that Gal(Qy/Q) = (Z/NZ)* =

GL,(Z/NZ), with the element @ which corresponds to ¢ determined by

O.(elni/N) — €27zia/N.

But one difference in our two-dimensional case of division points on elliptic
curves is that, in general, Gal(Ky/K) — GL,(Z/NZ) is only an injection, not
an isomorphism.

In the case K = C, say K = Q(¢,, g5), where y? = f(x) = 4x> — g,x — g,
is in Weierstrass form, we shall now use the g@-function to determine the
polynomial whose roots are the x-coordinates of the points of order NV. That
is, K5 will be the splitting field of such a polynomial.

We first construct an elliptic function fy(z) whose zeros are precisely the
nonzero values of z such that P, is a point of order N. We follow the prescrip-
tion in the proof of Proposition 9 of §1.5. If ue C/L is a point of order NV,
then so is the symmetric point —u (which we denoted u* when we were
thinking in terms of points in a fundamental parallelogram). We consider
two cases:

(i) N is odd. Then the points # and —u are always distinct modulo L. In
other words, © cannot be w, /2, w,/2 or (w; + w,)/2 if u has odd order N.
We define

W@ =N[l(pk) — pW), 8.1
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where the product is taken over nonzero ue C/L such that Nue L, with
one u taken from each pair u, —u. Then fy(z) = Fy(9(z)), where Fy(x) e
C[x] is a polynomial of degree (N2 — 1)/2. The even elliptic function
/fx(2) has N2 — 1 simple zeros and a single pole at 0 of order N2 — 1.
Its leading term at z = 0 is N/zV" L.

(if) N is even. Now let u range over ue C/L such that Nue L but u is not of
order2,ie.,u # 0, /2, 0,/2, (0, + w,)/2. Define fy(z) by the product
in (8.1). Then fy(z) = Fy(¢(2)). where Fy(x)eC[x] is a polynomial of
degree (N2 — 4)/2. The even elliptic function /,1;(5) has N2 — 4 simple
zeros and a single pole at 0 of order N2 — 4. Its leading term at z = 0 is
NjzV* 4,

If N is odd, the function fy(z) has the property that
@)= N? [ (p(2) — p ).

0#ueC/L.NueL
If N is even, then the function fy(z) = —10'(z)fy(2) has the property that
W@ =19 (@ (@)

= N2(p(2) = e)(p(2) — ) (9 (2) — e3) [1 (9(2) — p(u))

ue C/L.Nue L, 2u¢ L

=N? [T (0@ - pw).

0#ueC/L.Nuel

We see that a point (x, ¥) = ($(z), £'(2)) has odd order N if and only if
Fy(x) = 0. It has even order N if and only if either y = 0 (i.e., it is a point of
order 2) or else Fy(x) = 0.

Because of Propositions 13 and 14, we know that any automorphism of
C fixing K = Q(y,, g;) permutes the roots of Fy. Hence, the coefficients of
Fy are in K = Q(g,. ¢5)-

If we started with an elliptic curve not in Weierstrass form, say y? =
S(x) = ax® + bx* + ¢x + d, and if we wanted to avoid using the p-function,
then we could repeatedly apply the addition formulas (7.1)—(7.4) to compute
the rational function of x and y which is the x-coordinate of NP, where
P = (x,y). We would simplify algebraically as we go, making use of the
relation y? = f(x), and would end up with an expression in the denominator
which vanishes if and only if NP is the point at infinity, i.e., if and only if
P has order N (recall: “order N*” means “‘exact order N or a divisor of N7).

What type of an expression would we have to get in the denominator of
the x-coordinate of NP? Suppose, for example, that N is odd. Then this
denominator would be an expression in K[ x, y] (with y occurring at most to
the first power), where K = Q(a, b, ¢, d), which vanishes if and only if x is
one of the (N2 — 1)/2 values of x-coordinates of nontrivial points of order N.
Thus, the expression must be a polynomial in x alone with (N2 — 1)/2 roots.
Similarly, we find that when N is even, this denominator has the form
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y - (polynomial in x alone), where the polynomial in K[x] has (N? — 4)/2
roots.

It is important to note that the algebraic procedure described in the last
two paragraphs applies for any elliptic curve y* = f(x) over any field K of
characteristic # 2, not only over subfields of the complex numbers. Thus,
for any K we end up with an expression in the denominator of the x-
coordinate of NP that vanishes for at most N2 — 1 values of (x, y).

For a general field K, however, we do not necessarily get exactly N2 — 1
nontrivial points of order N. Of course, if K is not algebraically closed, the
coordinates of points of order N may lie only in some extension of K.
Moreover, if K has characteristic p, then there might be fewer points of order
N for another reason: the leading coefficient of the expression in the denom-
inator vanishes modulo p, and so the degree of that polynomial drops. We
shall soon see examples where there are fewer than N? points of order N
even if we allow coordinates in K¢,

This discussion has led to the following proposition.

Proposition 15. Let y* = f(x) be an elliptic curve over any field K of characteris-
tic not equal to 2. Then there are at most N * points of order N over any exten-
sion K" of K.

Now let us turn our attention briefly to the case of K a finite field, in
order to illustrate one application of Proposition 15. We shall later return
to elliptic curves over finite fields in more detail.

Since there are only finitely many points in [P’2 (namely, ¢* + g+ 1),
there are certainly only finitely many [ -points on an elhptlc curve y2 = f(x),
where f(x)e F,[x]. So the group of F, pomts is a finite abelian group.

By the “type” of a finite abelian group, we mean its expression as a
product of cyclic groups of prime power order. We list the orders of all
of the cyclic groups that appear in the form: 2%, 282 272, .. 3%, 3F3 37,

, 5%s, s, ... But Proposition 15 implies that only certain types can
occur in the case of the group of F -points on y? = f(x). Namely, for each
prime / there are at most two /-th power components /%, {1 since otherwise
we would have more than /? points of order /. And of course /**#t must equal
the power of / dividing the order of the group.

As an example of how this works, let us consider the elliptic curve y* =
x* — n*x over K = F, (the finite field of ¢ = p/ elements), where we must
assume that p does not divide 2n. In the case when ¢ = 3 (mod4), it is
particularly easy to count the number of [ -points.

Proposition 16. Let g = p/, pJ( 2n. Suppose that ¢ = 3 (mod 4). Then there are
q + 1 F,-points on the elliptic curve y* = x> — n*x.

Proor. First, there are four points of order 2: the point at infinity, (0, 0),
and (£n, 0). We now count all pairs (x, y) where x # 0, n, —n. We arrange
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these ¢ — 3 x’s in pairs {x, —x}. Since f(x) = x*> — n?x is an odd function,
and —1 is not a square in F, (here’s where we use the assumption that g = 3
(mod 4)), it follows that exactly one of the two elements f(x) and f(—x) =
—f(x) is a square in F,. (Recall: In the multiplicative group of a finite field,
the squares are a subgroup of index 2, and so the product of two nonsquares
is a square, while the product of a square and a nonsquare is a nonsquare.)
Whichever of the pair x, —x gives a square, we obtain exactly two points
(x, +/f(x)) or else (—x, +./f(—x)). Thus, the (¢ — 3)/2 pairs give us
g — 3 points. Along with the four points of order two, we have ¢ + 1 F,-
points in all, as claimed. O

Notice that when ¢ = 3 (mod 4), the number of F -points on the elliptic
curve y? = x> — n?x does not depend on #. This is not true if ¢ = 1 (mod 4).

As an example, Proposition 16 tells us that for g = 7° there are 344 =
23 -43 points. Since there are four points of order two, the type of the group
of F;,5-points on y? = x> — n?x must be (2, 22, 43).

As a more interesting example, let ¢ = p = 107. Then there are 108 =
22-33 points. The group is either of type (2, 2, 3%) or of type (2, 2, 3, 3%).
To resolve the question, we must determine whether there are 3 or 9 points
of order three. (There must be nontrivial points of order 3, since 3 divides
the order of the group.) Recall the equation for the x-coordinates of points
of order three (see Problem 4 of §7): —3x* + 6n?x2 +n*=0, ie., x=

+nvl1+ 2ﬁ/3. Then the corresponding y-coordinates are found by taking
+/f(x). We want to know how many of these points have both coordinates
in [, -, rather than an extension of [, ,;,. We could compute explicitly, using
\/3 = +18in F,4,, so that x = i\/l‘3, +./—11, etc. But even before doing
those computations, we can see that not all 9 points have coordinates in
F107. This is because, if (x, y) is in F, o5, then (—x, \/— 1y) is another point
of order three, and its coordinates are not in [F,,,. Thus, there are only 3
points of order three, and the type of the group is (2, 2, 3%).

Notice that if K is any field of characteristic 3, then the group of K-points
has no nontrivial point of order three, because —3x* + 6n*x? + n* = n* # 0.
This is an example of the ““dropping degree” phenomenon mentioned above.
It turns out that the same is true for any p = 3 (mod 4), namely, there are no
points of order p over a field of characteristic p in that case. This is related
to the fact that such p remain prime in the ring of Gaussian integers Z[{],
a ring which is intimately related to our particular elliptic curve (see Problem
13 of §6). But we will not go further into that now.

PROBLEMS

1. For the elliptic curve y? = 4x3 — g,x — g5, express g (Nz) as a rational function
of g(z) when N = 2.

2. Let fy(2) be the elliptic functions defined above. Express f3(z) as a polynomial in
$(2).
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3. Set f,(z) = 1. Prove that for N=2, 3,4, ... we have:
P(N2) = 9(2) — fy1 @S D)

4. In the notation of Proposition 14, suppose that ¢ € Gal(Ky/K) fixes all x-coordinates
of points of order N. That is, o[KN = identity. Show that the image of 6in GL,(Z/N Z)
is + 1. Conclude that Gal(Ky/Ky) = {+1} n G, where G is the image of Gal(Ky/K)
in GL,(Z/N Z). What is the analogous situation for cyclotomic fields?

5. Let L = {mw, + nw,}, and let E be the elliptic curve y? = 4x> — g,(L)x — g5(L).
Notice that E does not change if we replace the basis {®;, w,} of L by another
basis {®], ®3}. However, the group isomorphism C/L = R/Z x R/Z changes, and
so does the isomorphism from the points of order N on Eto Z/NZ x Z/[NZ. For
example, the point (@ (w|/N), @' (w}/N)), rather than (@ (w,/N), ' (w,/N)), corre-
sponds to (1, 0)e Z/NZ x Z/N Z. What effect does the change of basis from w; to
; have on the image of Gal(Ky/K) in GL,(Z/N Z)?

6. Show that the group GL,(Z/27) is isomorphic to S5, the group of permutations of
{1, 2, 3}. For each of the following elliptic curves, describe the image in GL,(Z/2Z)
of the galois group over Q of the field generated by the coordinates of the points
of order 2.

(@) y2=x3—nx (n not a perfect square)

(b) y>=x*—n’x

(c) y2=x3—n (n not a perfect cube)
d) y*=x3—n’.

7. (a) How many elements are in GL,(Z/3Z)?

(b) Describe the field extension K of K = Q generated by the coordinates of all
points of order 3 on the elliptic curve y? = x> — n’x.

(c) Find [K5: Q]. What subgroup of GL,(Z/3Z) is isomorphic to Gal(K;/Q)?

(d) Give a simple example of an element in GL,(Z/3Z) that is not in the image of
Gal(K,/Q); in other words, find a pair of elements z, = (myw, + n,w,)/3,
2, = (M, + nyw,)/3 which generate all (mw, + nw,)/3 but such that P, , P,
cannot be obtained from P, 5, P, ;5 by applying an automorphism to the
coordinates of the latter pair of points.

8. In Problem 13 of §1.6, we saw that the lattice corresponding to the curve y? =
x3 — n%x is the lattice L of Gaussian integers expanded by a factor w,e R: L =
{miw, + nw,} = w,Z[i].

(a) Show that the map z+ iz gives an analytic automorphism of the additive group
C/L; and, more generally, for any Gaussian integer a + bie Z[i] we have a
corresponding analytic endomorphism of C/L induced by z > (a + bi)z.

(b) Notice that if b = 0, this is the map z+>z + z + - - - + z (a times) which gives
¢,: P—aP on the elliptic curve. By looking at the definition of (z), #'(2),
show that the map z+ iz gives the automorphism ¢;: (x, )= (—x, iy) on the
elliptic curve. This is an example of what’s called “complex multiplication™.
Show that ¢;0¢; = ¢_,, and in fact the map a + bi—> ¢,,,; is an injection of
the ring Z[i] into the ring of endomorphisms of the group of points on the
elliptic curve.

(c) If L is a lattice in C and if there exists a complex number « = a + bi, b # 0,
such that 2L — L, show that « is a quadratic imaginary algebraic integer, and
that L contains a sublattice of finite index of the form w,Z[«].
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9. Each of the following points has finite order N on the given elliptic curve. In each
case, find its order.
(a) P=(0,49)ony>=4x>+16
(b) P=(2,8) ony? =4x3 + 16x
) P=(2,3)ony’=x3+1
(d) P=(3,8) ony?=x>—43x + 166
(€) P=(3,12)on y* = x> — 14x? + 81x
(f) P=(0,0)ony?+y=x*~x?
@ P=(1,0ony’+xy+y=x3—x2—-3x+3.

§9. Points over finite fields, and the congruent
number problem

We have mainly been interested in elliptic curves E over Q, particularly the
elliptic curve y* = x> — n?x, which we shall denote E,. But if X is any field
whose characteristic p does not divide 2n, the same equation (where we
consider » modulo p) is an elliptic curve over K. We shall let £,(K) denote
the set of points on the curve with coordinates in K. Thus, Proposition 16
in the last section can be stated: If ¢ = 3 (mod 4), then #E,(F,)) = ¢ + 1.

The elliptic curve E, considered as being defined over [F,, is called the
“reduction” modulo p, and we say that E, has “good reduction” if p does
not divide 2n, i.e., if y> = x> — n’x gives an elliptic curve over F,. More
generally, if y? = f(x) is an elliptic curve E defined over an algebraic number
field, and if p is a prime ideal of the number field which does not divide the
denominators of the coefficients of f(x) or the discriminant of f(x), then by
reduction modulo p we obtain an elliptic curve defined over the (finite)
residue field of p.

At first glance, it may seem that the elliptic curves over finite fields—
which lead only to finite abelian groups—are not a serious business, and
that reduction modulo p is a frivolous game that will not help us in our
original objective of studying Q-points on y? = x* — n%x. However, this is
far from the case. Often information from the various reductions modulo p
can be pieced together to yield information about the Q-points. This is
usually a subtle and difficult procedure, replete with conjectures and unsolved
problems. However, there is one result of this type which is simple enough
to give right now. Namely, we shall use reduction modulo p for various
primes p to determine the torsion subgroup of E,(Q), the group of Q-points
on y? = x3 — n?x.

In any abelian group, the elements of finite order form a subgroup,
called the “‘torsion subgroup”. For example, the group E(C) of complex
points on an elliptic curve is isomorphic to C/L, which for any lattice L is
isomorphic to R/Z x R/Z (see Problem 2 of §I.5). Its torsion subgroup
corresponds to the subgroup Q/Z x Q/Z =« R/Z x R/Z, i.e., in C/L it
consists of all rational linear combinations of w; and w,.

A basic theorem of Mordell states that the group E(Q) of Q-points on an
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elliptic curve E defined over @ is a finitely generated abelian group. This
means that (1) the torsion subgroup E(Q),,,, is finite, and (2) £(Q) is iso-
morphic to the direct sum of E(Q),, and a finite number of copies of
Z: E(Q) = E(Q),,. ® Z". The nonnegative integer r is called the “rank” of
E(Q). It is greater than zero if and only if £ has infinitely many Q-points.
Mordell’s theorem is also true, by the way, if Q is replaced by any algebraic
number field. This generalization, proved by André Weil, is known as the
Mordell-Weil theorem. We shall not need this theorem for our purposes,
even in the form proved by Mordell. For a proof, the reader is referred to
[Husemoller 1987] or [Lang 1978b].

We shall now prove that the only rational points of finite order on E, are
the four points of order 2: 0 (the point at infinity), (0, 0), (£#, 0).

Proposition 17. # E,(Q),,,, = 4.

PrOOF. The idea of the proof is to construct a group homomorphism from
E(Q)ors to E,(F,) which is injective for most p. That will imply that the
order of E,(Q),,, divides the order of E,(F,) for such p. But no number
greater than 4 could divide all such numbers # E,(F,), because we at least
know that # E,(F,) runs through all integers of the form p + 1 for p a prime
congruent to 3 modulo 4 (see Proposition 16).

We begin the proof of Proposition 17 by constructing the homomorphism
from the group of Q-points on E,, to the group of F,-points. More generally,
we simply construct a map from P to [P’Efp. In what follows, we shall always
choose a triple (x, y, z) for a point in P3 in such a way that x, y, and z are
integers with no common factor. Up to multiplication by +1, there is a
unique such triple in the equlvalence class. For any fixed prime p, we define
the image P of P = (x, y.z)eP3 to be the point P = (X, ¥, z)e[]% , where

the bar denotes reduction of an integer modulo p. Note that P is not the
identically zero triple, because p does not divide all three integers x, y, z
Also note that we could have replaced the triple (x, y, z) by any multiple
by an integer prime to p without affecting P.

It is edsy to see that if P = (x, y, z) happens to be in E,(Q), i.e., if y*z =
x3 —n?xz%, then Pis in E .(F,). Moreover, the image of P, + P, under thxs
map is P, + P,, because it makes no difference whether we use the addition
formulas (7. 1)—(7.4) to find the sum and then reduce mod p, or whether we
first reduce mod p and then use the addition formulas. In other words, our
map is a homomorphism from E,(Q) to E,(F,), for any prime p not dividing
2n.

We now determine when this map is not injective, i.e., when two points
P, = (xy.y,,z;) and P, = (x,, 5, z,) in P§ have the same image P, = P,
in P7 .

p
Lemma. P, = 1‘_’2 if and only if the cross-product of P, and P, (considered as
vectors in R3) is divisible by p, i.e., if and only if p divides y,z, — y,2,, x,2, —
X123, and X1y, — X3 )1
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ProOF OF LEMMA. First suppose that p divides the cross-product. We consider
two cases:

(i) p divides x,. Then p divides x,z, and x,y,, and therefore divides x,,
because it cannot divide x,, y; and z,. Suppose, for example, that 1262
(an analogous argument will apply if pfz,). Then P, = (0, 3, 7, ¥,Z,) =
0, 7,7,, ¥2Z,) = (0, ,, Z,) = P, (where we have used the fact that p
divides y,z, — ¥,2,)- B
(i) p does not divide x,. Then P, = (X;X,, X;¥,, X1Z;) = (X, X,, X, )1,
XyZ) = (X1, Y1, Zy) = Py
Conversely, suppose that P, = P,. Without loss of generality, suppose
that pfx, (an analogous argument will apply if p{y, or pfz,). Then, since
P, = P, = (X,, 7,, Z,), we also have pfx,. Hence, (¥,X,, X, ¥,, X,Z,) =
P, = P, = (X,X,, X,7,, X,Z,). Since the first coordinates are the same, these
two points can be equal only if the second and third coordinates are equal,
i.e., if p divides x,y, — x,y; and x,z, — x,z,. Finally, we must show that p
divides y,z, — y,z,. If both y, and z, are divisible by p, then this is trivial.
Otherwise, the conclusion will follow by repeating the above argument with
X, X, replaced by y,, y, or by z,, z,. This concludes the proof of the lemma.
We are now ready to prove Proposition 17. Suppose that the proposition
is false, i.e., that E,(Q) contains a point of finite order greater than 2. Then
either it contains an element of odd order, or else the group of points of
order 4 (or a divisor of 4) contains either 8 or 16 elements. In either case we
have a subgroup S = {P,, P, ..., P,} < E,(Q),,s, Where m = # S is either
8 or else an odd number.
Let us write all of the points P, i =1, ..., m, in the form in the lemma:
P. = (x;, yi, z;). For each pair of points P;, P, consider the cross-product
vector (¥;z; — Yz, X;2; — XiZj, X;V; — X;V;) € R?. Since P, and P, are distinct
points, as vectors in R* they are not proportional, and so their cross-product
is not the zero vector. Let n; be the greatest common divisor of the coor-
dinates of this cross-product. According to the lemma, the points P, and P,
have the same image P, = P, in E,(F,) if and only if p divides n;;. Thus, if p
is a prime of good reduction which is greater than all of the n;;, it follows
that all images are distinct, i.e., the map reduction modulo p gives an injection
of Sin E,(F,).
But this means that for all but finitely many p the number m must divide
# E,(F,), because the image of S is a subgroup of order m. Then for all but
finitely many primes congruent to 3 modulo 4, by Proposition 16 we must
have p = —1 (mod m). But this contradicts Dirichlet’s theorem on primes
in an arithmetic progression. Namely, if m = 8 this would mean that there
are only finitely many primes of the form 8k + 3. If m is odd, it would
mean that there are only finitely many primes of the form 4mk + 3 (if 3fm),
and that there are only finitely many primes of the form 12k + 7 if 3|m. In
all cases, Dirichlet’s theorem tells us that there are infinitely many primes of
the given type. This concludes the proof of Proposition 17. )
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Notice how the technique of reduction modulo p (more precisely, the use
of Proposition 16 for infinitely many primes p) led to a rather painless proof
of a strong fact: There are no ““non-obvious’’ rational points of finite order
on E,. As we shall soon see, this fact is useful for the congruent number
problem. But a far more interesting and difficult question is the existence
of points of infinite order, i.e., whether the rank r of £,(Q) is nonzero. As
we shall see in a moment, that question is actually equivalent to the question
of whether or not # is a congruent number.

So it is natural to ask whether mod p information can somehow be put
together to yield information about the rank of an elliptic curve. This
subtle question will lead us in later chapters to consideration of the Birch—
Swinnerton—Dyer conjecture for elliptic curves.

For further general motivational discussion of elliptic curves over finite
fields, see [ Koblitz 1982].

We now prove the promised corollary of Proposition 17.

Proposition 18. n is a congruent number if and only if E,(Q) has nonzero
rank r.

ProOF. First suppose that » is a congruent number. At the beginning of §2,
we saw that the existence of a right triangle with rational sides and area n
leads to a rational point on E, whose x-coordinate lies in (@*)?. Since the
x-coordinates of the three nontrivial points of order 2 are 0, + n, this means
that there must be a rational point not of order 2. By Proposition 17, such a
point has infinite order, i.e., r > 1.

Conversely, suppose that P is a point of infinite order. By Problem 2(c)
of §1.7, the x-coordinate of the point 2P is the square of a rational number
having even denominator. Now by Proposition 2 in §1.2, the point 2P
corresponds to a right triangle with rational sides and area n (under the
correspondence in Proposition 1). This proves Proposition 18. O

Notice the role of Proposition 17 in the proof of Proposition 18. It tells
us that the only way to get nontrivial rational points of the form 2P is from
points of infinite order. Let 2E,(Q) denote the subgroup of E,(Q) consisting
of the doubles of rational points. Then Proposition 17 is equivalent to the
assertion that 2E,(Q) is a torsion-free abelian group, i.e., it is isomorphic
to a certain number of copies (namely, r) of Z. The set 2E,(Q) — 0 (0 denotes
the point at infinity) is empty if and only if r = 0.

We saw that points in the set 2E,(Q) — 0 lead to right triangles with
rational sides and area » under the correspondence in Proposition 1. It is
natural to ask whether all points meeting the conditions in Proposition 2,
i.e., corresponding to triangles, are doubles of points. We now prove that
the answer is yes. At the same time, we give another verification of Proposi-
tion 18 (not relying on the homework problem 2(c) of §1.7).

Proposition 19. There is a one-to-one correspondence between right triangles
with rational sides X <Y < Z and area n, and pairs of points (x, +y)e
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2E,(Q) — 0. The correspondence is:

(x, TN Ux+n—Jx—n, Jx+n+ Jx—n,2x;
X, Y, Z~(Z2/4, +(Y? — X?)ZJ3).

In light of Proposition 1 of §I.1, Proposition 19 is an immediate conse-
quence of the following general characterization of the doubles of points on
elliptic curves.

Proposition 20. Let E be the elliptic curve y* = (x — e,)(x — e,)(x — e3) with
ey,¢e5,e5€Q. Let P = (xy, y,)€E(Q) — 0. Then Pe2E(Q) — 0 if and only if
Xog — €y, Xy — €5, Xo — €5 are all squares of rational numbers.

ProOOF. We first note that, without loss of generality, we may assume that
xo = 0. To see this, make the change of variables x’ = x — x,. By simply
translating the geometrical picture for adding points, we see that the point
P’ = (0, yo) on the curve E’ with equation y? = (x — €})(x — €})(x — €}),
where €] = ¢; — x,, is in 2E’(Q) — 0 if and only if our original P were in
2E(Q) — 0. And trivially, the x, — ¢; are all squares if and only if the (0 — ¢))
are. So it suffices to prove the proposition with x, = 0.

Next, note that if there exists Q € E(Q) such that 2Q == P, then there are
exactly four such points Q, Q,, Q,, Q€ E(Q) with 2Q; == P. To obtain Q;,
simply add to Q the point of order two (¢;, 0) € E(Q) (see Problem 5 in §1.7).

Choose a point Q = (x, y) such that 20 = P = (0, y,). We want to find
conditions for the coordinates of one such Q (and hence all four) to be
rational. Now a point Q on the elliptic curve satisfies 2Q = P if and only if
the tangent line to the curve at Q passes through — P = (0, —y,). That is,
the four possible points Q are obtained geometrically by drawing the four
distinct lines emanating from — P which are tangent to the curve.

We readily verify that the coordinates (x, y) are rational if and only if the
slope of the line from —P to Q is rational. The “only if” is immediate.
Conversely, if this slope m is rational, then the x-coordinate of Q, which is
the double root of the cubic (mx — py)? = (x — €;)(x — e,)(x — e;), must
also be rational. (Explicitly, x = (e, + e, + e5 + m?)/2.) In this case the
y-coordinate of Q is also rational: y = mx — y,. Thus, we want to know
when one (and hence all four) slopes of lines from — P which are tangent to
E are rational.

A number meC is the slope of a line from — P which is tangent to E if
and only if the following equation has a double root:

(mx —y)y’=(x—e)(x—e)(x—ey)=x>+ax’+bx+c, (9.1)
with

a= —e; —e, —e;, b:€1€2+€1€3+€2€3, C= —ee,e, :yg,

(9.2)

where the last equality ¢ = y3 comes from the fact that (0, y,) is on the curve
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y? = x3 4+ ax? + bx + ¢. Now if we simplify (9.1) and factor out x, our
condition becomes: the following quadratic equation has a double root:

x2 4+ (a — mH)x + (b + 2my,) = 0.
This is equivalent to saying that its discriminant must vanish, i.e.,
(@ — m?)? — 4(b + 2myy) = 0. 9.3)

Thus, our task is to determine when one (and hence all four) roots of this
quartic polynomial in m are rational.

We want to find a condition in terms of the ¢;’s (namely, our claim is that
an equivalent condition is: —e;e @?). In (9.3), the a and b are symmetric
polynomials in the ¢;, but the y, is not. However, y, is a symmetric polyno-
mial in the \/Z . That is, we introduce f; satisfying f;> = —e;. There are two
possible choices for f;, unless e; = 0. Choose the f; in any of the possible
ways, subject to the condition that y, = f £, f3. If all of the e; are nonzero,
this means that the sign of f; and f, are arbitrary, and then the sign of f; is
chosen so that y, and f, f>f; are the same square root of —e,e,e;. If, say,
e; = 0, then either choice can be made for the sign of f}, f5, and of course
f» = 0. In all cases there are four possible choices of the f;’s consistent with
the requirement that y, = f; f> /5. Once we fix one such choice f;, f5, f3, we
can list the four choices as follows (here we’re supposing that e, and e, are
nonzero):

f1=f2’f3§ fla _.f2’ _f3; _flvfz’ _fs; _.fla —ﬁ7f3' (94)

The advantage of going from the e;’s to the f;’s is that now the coefficients
of our equation (9.3) are symmetric functions of f;, f5, f3. More precisely,

if weset s, =f1 +/f5 +/f3. 52 =f1fa + fifs + fofss 85 = [1/213, the elemen-
tary symmetric functions, then

a=f7F+f7+17=51—25;
b=f37+ 1+ = 53 — 251833
Yo = 3.
Thus, equation (9.3) becomes
0 = (m? — 52 + 25,)% — 4(s3 — 25,53 + 2ms3)
= (m? — )% + 4s,(m? — s7) — 8s3(m — 59).

9.5)

We see at a glance that the polynomial in (9.5) is divisible by m — 5, i.e.,
m=s, =f, +f, +/; is a root. Since we could have made three other
choices for the signs of the f;, the other roots must correspond to these
choices, i.e., the four solutions of equation (9.3) are:

m; =fi +f, + /3 my,=f —f— /s
my= —fi +f,—f3 my=—fi —fr+ /s

(9.6)
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We want to know whether the four values in (9.6) are rational. Clearly,
if all of the f; are rational, then so are the m;. Conversely, suppose the m;
are rational. Then f; = (m, + m,)/2, f, = (m; + m3)/2, and f; = (m; + m,)/2
are rational. The conclusion of this string of equivalent conditions is: the
coordinates (x, y) of a point Q for which 2Q = P are rational if and only
if the f; = \/ —e¢; are rational. This proves Proposition 20. o

Finally, we note that Proposition 20 holds with Q replaced by any field
K not of characteristic 2. Essentially the same proof applies. (We need only
take care to use algebraic rather than geometric arguments, for example,
when reducing to the case P = (0, y,).)

PROBLEMS

1. Prove that for fodd, any [,;-point of order 3 on the elliptic curve E,: y* = x* — n’x
is actually an F,-point; prove that there are at most three such points if p =3
(mod 4); and find a fairly good sufficient condition on p and f which ensures nine
F,s-points of order 3.

2. For each of the following values of ¢, find the order and type of the group of
F,-points on the elliptic curve E; : y* = x*> — x. In all cases, find the type directly,
if necessary checking how many points have order 3 or 4. Don’t “peek” at the
later problems.

(a) All odd primes from 3 to 23.
() 9

(c) 27

d) 71

(e) 11°.

3. Find the type of the group of F,-points on the elliptic curve E5: y? = x> — 25x
for all odd primes p of good reduction up to 23.

4. Prove that for nonzero a e Q the equation y* = x* — a determines an elliptic curve
over any field K whose characteristic p does not divide 6 or the numerator or
denominator of a; and that it has g + 1 F-points if g = 2 (mod 3).

5. Prove that there are exactly 3 F,-points of order 3 on the elliptic curve in Problem 4
if ¢ = 2 (mod 3).

6. For all odd primes p from 5 to 23, find the order and type of the group of F,-points
on the elliptic curve y? = x> — 1.

7. Prove that the torsion subgroup of the group of Q-points on the elliptic curve
y? = x* — a has order dividing 6 and that its order is equal to:
(@) 6ifa= —b® for some beQ;
(b) 2if a = ¢* for some ce @ with ¢ not of the form —b?;
(c) 3if either @ = —d? for some de @ with d not of the form b3, or if a = 432b°
for some beQ;
(d) 1 otherwise.

8. Show that the correspondence constructed in Problem 2 of §I.2 gives a one-to-one
correspondence between right triangles as in Proposition 19 and pairs + P of
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non-identity elements of the quotient group E,(Q)/E,(Q)\orsion, Which is isomorphic
to 2E,(Q) under the map P+ 2P. See Problem 2(b) of §L.7.

In the problems below, we illustrate how more information can be obtained
using two additional tools: (1) the complex multiplication automorphism
(x, y)—(—x, f —1y) of the group of K-points of the elliptic curve y? =
x3 — n?x if K contains a square root of —1; (2) the action of Gal(K*®°//K)
on the coordinates of the K*'#!-points.

9.

10.

1.

12.

13.

Suppose that ¢ = 3 (mod 4), and / is an odd prime. Prove that:

(a) there are at most / F,-points of order / on the elliptic curve y* = x* — n’x,
and there are at most eight [ -points of order 4;

(b) the group of F,-points is the product of a group of order 2 and a cyclic group
of order (g + 1)/2.

Suppose that ¢ = 2 (mod 3), 2/ N, 3} N. Prove that there are at most N F,-points
of order N on the elliptic curve y> = x* — a.

Suppose that ¢ = 1 (mod 4), and /=3 (mod 4) is a prime not equal to p. Let
(1%, 1?) be the [-part of the type of the group of F,-points on the elliptic curve y* =
x* — n2x. Prove that o = f. If / = 2, prove thata = fora=f + 1.

The group of K-points on an elliptic curve is analogous to the multiplicative group

K*. In Problem 11 of §1.7, we saw that for K = C, as a — 0 the elliptic curve ¥t =

(x2 — a)(x + 1) “becomes” the multiplicative group C*. Now let K be the finite

field F,. In this problem we work with K*, and in the next problem we work with

the group of K-points on an elliptic curve. Let / be a prime not equal to p, and
suppose that F, contains all /-th roots of 1, i.e., ¢ = p/ =1 (mod /).

(a) Show that the splitting field of x' — a, where ae[,, has degree either 1 or /
over F,.

(b) Show that the subfield of F2"#¢' generated by all /**'-th roots of 1 is Fy"
where M’ < M.

(¢) (For readers who know about /-adic numbers.) Construct an isomorphism
between the additive group Z, of l-adic integers and the galois group over F,
of the field extension generated by all /-th power division points (i.e., /-th power
roots of unity).

Now let E be an elliptic curve defined over F,. Suppose that there are / % F,-points

of order /.

(a) Let 4 be an F-point, and let Fr be the extension of F, generated by the co-
ordinates of a solution « to the equation /o = A (i.e., Fr is the smallest extension
of F, containing such an «). Show that there are {* F-points «; such that
lo; = A.

(b) Fix an F,-point o such that /x = 4. Prove that the map ¢+—o(2) — « gives an
imbedding of Gal([F,+/F,} into the group of points of order / on E.

(¢) Show thatr=1orl

(d) What is the field extension of F, generated by all points of order ™M M=1,
2, ...7 What is its galois group?



CHAPTER 11

The Hasse—Weil L-Function of an
Elliptic Curve

At the end of the last chapter, we used reduction modulo p to find some
useful information about the elliptic curves E,: y? = x> — n%x and the con-
gruent number problem. We considered E, as a curve over the prime field
F, where pf2n; used the easily proved equality #E,(F,)=p+ 1 when
p =3 (mod 4); and, by making use of infinitely many such p, were able
to conclude that the only rational points of finite order on E, are the four
obvious points of order two. This then reduced the congruent number
problem to the determination of whether r, the rank of E,(Q), is zero or
greater than zero.

Determining r is much more difficult than finding the torsion group. Some
progress can be made using the number of F, -points. But the progress does
not come cheaply. First of all, we will derive a formula for # E,(F,) for any
prime power g = p". Next, we will combine these numbers N, = N,,=
# E,(F,r) into a function which is analogous to the Riemann zeta-function
(but more complicated). The behavior of this complex-analytic function
near the point 1 is intimately related to the group of rational points.

Before introducing this complex-analytic function, which is defined using
all of the N, ,, we introduce a much simpler function, called the “congruence

r,p>
zeta-function”, which is built up from the N, = N, , for a fixed prime p.

§1. The congruence zeta-function

Given any sequence N,, r = 1, 2, 3, ..., we define the corresponding ““zeta-
function” by the formal power series

0 Tr 0 uk
Z(T) = exp (Z Nr7>, where exp(u) = oL (1.1)
r=1 k=0""
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At first glance, it might seem simpler to define Z(T) as £ N,T"; however,
the above definition has crucial properties which make it the most useful
one (see the problems below).

Let K be a field. Let A} denote the set of m-tuples of elements of X.
By an “‘affine algebraic variety in m-dimensional space over K we mean
a system of polynomial equations of the form f(x,, ..., x,) =0, where
fi€K[x,, ..., x,]. For example, a conic section is a system of two equations

fitey, ) =x2+y?=22=0;  filx,y,D)=ax+by+cz+d=0

in 3-dimensional space over R. If L is any field extension of K, the *“ L-points”
of the variety are the m-tuples (x, ..., x,,)€ AT for which all of the poly-
nomials f; vanish.

By a “‘projective variety in m-dimensional space over K** we mean a system
of homogeneous polynomial equations fi(x,, x;, ..., x,,) inm + 1 variables.
If L is a field extension of K, the ““L-points” of the projective variety are the
points in P} (i.e., equivalence classes of m + 1-tuples (x,, ..., x,,), where
(Xgs v X)) ~ (Axg, ..., 2X,), A€ L*) at which all of the Jf; vanish. For
example, in the last chapter we studied the F -points of the elliptic curve
defined in PZ by the single equation f(x, y, z) = y*z — x> + n?xz? = 0.
(Note: Here )go =2z, Xx; = X, X, =y are variables for a projective variety
in P%, while in the last paragraph x, = x, x, = y, x; = z were variables for
an affine variety in A3}.)

If we have a projective variety, by setting x, = 1 in the f; we obtain an
affine variety whose L-points correspond to the m + 1-tuples with nonzero
first coordinate. The remaining L-points of the projective variety will be
the projective variety in P! obtained by setting x, = 0 in all of the equa-
tions and considering the equivalence classes of m-tuples (x,, ..., x,) which
satisfy the resulting equations. For example, the elliptic curve with equation
y*z — x* + n*xz? consists of the affine points—the solutions of y2 = x> —
n*x—and the points (x, y) of Pk for which —x3 = 0, i.e., the single point
(0, 1) on the line at infinity z = 0.

Let V be an affine or projective variety defined over F,. For any field
K o F,, we let V(K) denote the set of K-points of V. By the “congruence
zeta-function of V over .’ we mean the zeta-function corresponding to the
sequence N, = # V(F /). That is, we define

00

ZWV[t,; T) = exp <Z1 #V(F,r) T'/r>. (1.2)
Of course, N, is finite, in fact, less than the total number of points in A;;,
(in the affine case) or PF;, (in the projective case).

We shall be especially interested in the situation when ¥V is an elliptic
curve defined over [F,. This is a special case of a smooth projective plane
curve. A projective plane curve defined over a field K is a projective variety
given in PZ by one homogeneous equation f(x, y, z) = 0. Such a curve is
said to be “smooth™ if there is no K®#.point at which all partial derivatives
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vanish. This agrees with the usual definition when K = C (“has a tangent
line at every point”).

It turns out that the congruence zeta-function of any elliptic curve E
defined over [, has the form

com 1 —2a, T+ qT?

2R D == g1y
where only the integer 2a; depends on E. We shall soon prove this in the
case of the elliptic curve E,: y?> = x> — n’x. Let « be a reciprocal root of
the numerator; then 1 — 2a;T + qT? = (1 — aT)(1 — £7). If one takes the
logarithmic derivative of both sides of (1.3) and uses the definition (1.1),
one easily finds (see problems below) that the equality (1.3) is equivalent
to the following formula for N, = # E(F,r):

N=qg +1—-o —(q/0)". (1.4)

As a special case of (1.4) we have

(1.3)

N1=#E([Fq)=q+1—a—§=q+1—2a5. (1.5)
Thus, if we know that Z(E/F,; T) must have the form (1.3), then we can
determine ay merely by counting the number of F_-points. This will give us
Z(E[F,; T), the value of «, and all of the values N, = #E(F,») by (1.4).
In other words, in the case of an elliptic curve, the number of [, -points
determines the number of [ r-points for all r. This is an important property
of elliptic curves defined over finite fields. We shall prove it in the special
case y? = x° — n%x.

It will also turn out that a is a quadratic imaginary algebraic integer whose
complex absolute value is \/g. In the case y? = x* — n’x, it will turn out
that o is a square root of —q if ¢ = 3 (mod 4), and is of the form a + bi,
a,beZ,a*> +b*=q,if g=1(mod 4).

This situation is a special case of a much more general fact concerning
smooth projective algebraic varieties over finite fields. The general result
was conjectured by André Weil in [Weil 1949], and the last and most
difficult part was proved by Pierre Deligne in 1973. (For a survey of Deligne’s
proof, see [Katz 1976a].) We shall not discuss it, except to state what it says
in the case of a smooth projective curve (one-dimensional variety):

(i) Z(V/F,; T) is a rational function of T (this is true for any variety
without the smoothness assumption) which for a smooth curve has the
form P(T)/(1 — T)(1 — qT). Here P(T) has coefficients in Z and con-
stant term 1 (equivalently, its reciprocal roots are algebraic integers).

(i) If ¥ was obtained by reducing modulo p a variety ¥ defined over Q,
then deg P = 2g is twice the genus (“Betti number”) of the complex
analytic manifold V. Intuitively, g is the “number of handles” in the
corresponding Riemann surface. An elliptic curve has g = 1, and the
Riemann surface in Fig. I1.1 has g = 3.
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Figure I1.1

(iii) If o is a reciprocal root of the numerator, then so is g/.
(iv) All reciprocal roots of the numerator have complex absolute value \/q.

One reason for the elegance of the Weil conjectures is the intriguing
indirect connection between the ‘“‘physical” properties of a curve (e.g., its
number of handles as a Riemann surface when considered over C) and the
number theoretic properties (its number of points when considered over
F,). Roughly speaking, it says that the more complicated the curve is (the
higher its genus), the more N,’s you need to know before the remaining
ones can be determined. In the simplest interesting case, that of elliptic
curves, where g = 1, all of the N,’s are determined once you know N;.

PROBLEMS

I.

Show that if N, = N* + N** and Z(T), Z*(T), Z**(T) are the corresponding
zeta-functions, then Z(T) = Z*(T) - Z**(T);and if N, = N¥ — N** then Z(T) =
ZXT)[Z**(T).

. Show that if there exists a fixed set «t,, ..., o, f;, ..., f such that for all r we have
N=p{+ -+ —oaf — -+ —af, then
Z(T) = (1—o, 7)1 —oa,T)---(1 — aST)'
(I =11 =BT --(1 = BT)
. Prove that if |[N,| < CA" for some constants C and A, then the power series Z(T)

converges in the open disc of radius 1/4 in the complex plane.

1

0, rodd,

reven; . i . .
then Z(T) is not a rational function; but if N, =

>

Show that if N, :{

2, reven, . . .
{0 ad then Z(T) is rational. In the latter case, interpret N, as the number
, Fodd,

of F,r-solutions of some equation.

The Bernoulli polynomials B,(x) e Q@[x] have the properties: (i) deg B, = r; (ii) for
all M, B(M)—B,(0)=r(1""' + 27" + .- + (M — 1)""). Now for fixed M let
N,_, = XB.(M) — B,(0)). Find the corresponding Z(T'). (Cultural note: B,(x) =
x =1, By(x) = x?— x + 1, etc.: they are uniquely determined by properties (i)
and (ii) along with the normalization requirement that {3 B,(x)dx = 0 for r > 1.
One way to define them is by equating terms in the relation: te™/(e' — 1) =
Lo Bx)1'frl)
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10.

13.

14.

. Suppose that / is a prime, g is a power of another prime p, ¢ =1 (mod /), ¢ # 1

(mod /?).

(a) For fixed M, let N, = # {xe [qu]x'M = 1}. Find the corresponding Z(T).

(b) Now let N, = # {xe [qulx'M =1 for some M}. Find the corresponding zeta-
function. Is it rational?

. A special case of an affine or projective variety V is the entire space, corresponding

to the empty set of equations. Let A¥ denote m-dimensional affine space (the

usual space of m-tuples of numbers in the field K), and let P} denote projective

space, as usual.

(a) What is Z(AZ/F,; T)?

(b) Find Z(Pﬁ};/qu; T) by writing P as a disjoint union of A%, k=m, m —1,
..., 0, and using Problem 1.

(c) Also find Z(P}/F,; T) by counting equivalence classes of (m + I)-tuples,

q
and check that your answers agree.

- Show that, if V'is a variety in A}, or P¥,_, then Z(V/F,; T) converges for |T| < g™

. If one wants to prove that Z(V/F,; T)e Z[[ T]] with constant term 1 for any affine

or projective variety V, show that it suffices to prove this when V is any affine
variety. Then show that it suffices to prove this when ¥ is given by a single equation.
Show that the rationality assertion Z(V/F,; T)e Q(T) can also be reduced to the
case of an affine variety V defined by a single equation. A variety defined by a
single equation is called a “hypersurface”.

Find the zeta-function of the curve y? = x* — n%x in Pﬁq if p|2n, ie., pis not a
prime of good reduction.

. Find the zeta-function of the hypersurface in Af}q defined by x;x, — x3x, = 0.

12.

Let N, be the number of lines in P} ,. Find its zeta-function. (It is possible to view
q

the set of k-dimensional subspaces in P} as a variety, called the grassmannian;
inourcase k =1, m=3)

Using the form (1.3) for the zeta-function of an elliptic curve, where the numerator
has reciprocal root &, show that N, is equal to the norm of 1 — «". Now, in the
situation of Problem 13 of §1.9, suppose that E has /? F -points of order /, and no
F,-points of exact order /2. Prove that the field extension of F, generated by the
coordinates of the points of order /M*! is F*. (Note the close analogy with the
multiplicative group F¥, with ¢ = 1 (mod /) but ¢ # 1 (mod /?), where the field
generated by all /™*'-th roots of unity is F.)

Let V' be an affine algebraic variety defined over K by equations fi(x,, ..., x,) =

0. By the coordinate ring R(V') we mean the quotient ring of K[x,, ..., x,]

by the ideal generated by all of the f;. Let P = (a4, ..., a,) be a K*#\-point on

V.Let L = K(ay, ..., a,) be the finite extension of K generated by the coordinates

of P. L is called the residue field of P, and its degree over K is called the residue

degree.

(a) Show that the map x;+— q; is well-defined on R(V'), and extends to a homo-
morphism whose kernel is a maximal ideal m(P) in R(V). (It is not hard to
prove that every maximal ideal of R(V') arises in this way.)

(b) Show that m(P") = m(P) if and only if there is an isomorphism from L to L’
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(the residue fields of P and P’, respectively) which takes a; to a;. Thus, the
maximal ideal m(P) corresponds to d different K*#°.points P on V, where
d = [R(V)/m(P): K] is the residue degree of any of the points P.

15. In the situation of Problem 14, let K = F,. For a given K*®#-point P, the residue
field is Fua for some d. Then P contributes | to each N, for which r is a multiple of
d. That is, the contribution of P to the exponent in the definition of the zeta-
function is L%, T*/kd. Then Z(V/F,; T) is exp of the sum of all contributions
from the different K*#°-points P. Group together all points corresponding to a
given maximal ideal, and express Z(V/F,; T) as the product over all maximal
ideals m of (I — 7%&")"!, Then show that the zeta-function belongs to 1 +
TZ[[T]]. (Cultural note: If we make the change of variables T = ¢™*, and define
Norm(m) to be the number of elements in the residue field, i.e., Norm(m) = g™,
then we have Z(V/F,; ¢ ) = I1,,(1 — Norm(m)~*)~', which is closely analogous
to the Euler product for the Dedekind zeta-function of a number field: {x(s) =
[1.(1 — Norm(p) %)*, in which the product is over all nonzero prime ideals of
the ring of integers in the field K. In a number ring, a nonzero prime ideal is the
same as a maximal ideal.)

16. Prove that if Z(V/F,; T)eQ(T), then the numerator and denominator are in
1 + TZ[T] (equivalently, the «’s and f’s in Problem 2 are algebraic integers).

§2. The zeta-function of E,

We now return to our elliptic curve E,, which is the curve y* = x* — n’x,
where 7 is a squarefree positive integer. More precisely, E,, is the projective
completion of this curve, i.e., we also include the point at infinity. E, is
an elliptic curve over any field K whose characteristic does not divide 2n,
and, as we have seen, it is sometimes useful to take K = [F,, or more generally
K = F,. The purpose of this section is to express the number of F,-points
on E, in terms of “Jacobi sums”’.

To do this, we first transform the equation of E, to a “diagonal form™.
We say that a hypersurface f(x,, ..., x,) = 0 in A} is ““diagonal” if each
monomial in finvolves at most one of the variables, and each variable occurs
in at most one monomial. For example, the “Fermat curve” x? + y4=11is
diagonal. It turns out that diagonal hypersurfaces lend themselves to easy
computation of the N, (much in the same way that multiple integrals are
much easier to evaluate when the variables separate). We shall not treat the
general case, but only the one we need to evaluate N, = # E (F,r). (For a
general treatment of diagonal hypersurfaces, see [Weil 1949] or [Ireland
and Rosen 1990, Chapter 11].)

We first show a relation between points on E,: > = x* — n’x and points
onthecurve E,:u? = v* + 4n?. As usual, we suppose that p f 2n. First suppose
that (u, v) is on E,. Then it is easy to check that the point (x, y) = (5(u + v?),
Lo(u + v?)) is on E,. Conversely, if (x, y) is on E, and its x-coordinate is
nonzero, then we check that the point (u, v) = (2x — y?/x%, y/x) is on E,.
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Moreover, these two maps are inverse to one another. In other words, we
have a one-to-one correspondence between points on E; and points on
E, — {(0,0)}. Let N" be the number of F_ -solutions (u, v) to u? = v* + 4n>.
Then the points on our elliptic curve consist of (0, 0), the point at infinity,
and the N’ points corresponding to the pairs («, v). In other words, N, =
#E,(F,) is equal to N" + 2. So it remains to compute N’. The advantage
of the equation u? = v* + 4n? is that it is diagonal.

The basic ingredients in determining the number of points on a diagonal
hypersurface are the Gauss and Jacobi sums over finite fields. We shall now
define them and give their elementary properties.

Let y: F, —» C* be a nontrivial additive character, i.e., a nontrivial homo-
morphism from the additive group of the finite field to the multiplicative
group of complex numbers. (Since [F, is finite, the image must consist of
roots of unity.) In what follows, we shall always define ¥ (x) = £T°*, where
¢ =e?™P and Tr is the trace from F, to F,. Since the trace is a nontrivial
additive map, and its image is [, = Z/pZ, we obtain in this way a nontrivial
additive character.

Now let y: F} — C* be any multiplicative character, i.e., a group homo-
morphism from the multiplicative group of the finite field to the multi-
plicative group of nonzero complex numbers. In what follows, the additive
character ¥ will be fixed, as defined above, but y can vary.

We define the Gauss sum (depending on the variable y) by the formula

g0 =Y 1Y)
xe !Fq
(where we agree to take x(0) =0 for all y, even the trivial multiplicative
character). We define the Jacobi sum (depending on two variable multi-
plicative characters) by the formula

JOs 1) = X 210 22(1 = x).
xe IFq
The proofs of the following elementary properties of Gauss and Jacobi
sums are straightforward, and will be left as exercises. (Here y,,;, denotes
the trivial character, which takes all nonzero elements of F, to 1; y, x;, and
1. denote nontrivial characters; and ¥ denotes the complex conjugate (also
called “‘inverse”) character of y, whose value at x is the complex conjugate

of x(x).)

(D 90wi) = =15 Itwivs Xeri) =9 — 25 IQlueiv> 1) = — 15
JOu0) = —x2(=1D; I x2) = (2 215

(2 90 9@ =2(=Dg; |g)| = Va;

() JGis x2) = 9991 x2) i X2 # Xa-

We now proceed to the computation of the number N’ of u, v € F satisfying
u? = v* + 4n*. The key observation in computing N’ is that for any a # 0
in |, and any m dividing ¢ — 1, the number of solutions x & [, to the equation
x™ = a is given by:
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#{x"=al= ) ya), 2.1

where the sum is over all multiplicative characters whose m-th power is the
trivial character. Namely, both sides of (2.1) equal m if a is an m-th power
in F, and equal 0 otherwise; the detailed proof will be left as a problem
below.

By Proposition 16 of the last chapter, we know that Ny =g+ 1 if ¢ =3
(mod 4). In what follows, we shall suppose that ¢ = 1 (mod 4).

In counting the pairs (u, v), we count separately the pairs where either u
or v is zero. Thus, we write

N = #{ue{Fq|u2 =4n2} + #{ve[Fq|O=v4+4n2}

2.2
+ #{u, ve F}|lu? = v* + 4n*}. @2

The first term in (2.2) is obviously 2 (recall that we are assuming that p f 2n).
We use (2.1) to evaluate the second term. Let y, be one of the characters
of F¥ having exact order 4, i.e., y,(g) = i for some generator g of the cyclic
group F¥. Then, by (2.1), the second term in (2.2) equals

> (—4n?) = 2+ 2a(— dn?) @3)

ji=1
(where we use the fact that —4n? is a square in F}). Finally, we evaluate the
third term in (2.2). Let y, denote the nontrivial character of order 2 (i.e.,
¥, = x3). Using (2.1) again, we can write the third term in (2.2) as

Y #lut=al-#it=bl= ) Y 15@ria —4n?).

a,bel: aeF? a—4n2#0 j=1,2,3,4
q
a=b+4n2 k=1,2

Note that since y4(0) = 0, we can drop the condition a — 4n* # 0 on the
right. We now make the change of variable x = a/4n” in the first summation
on the right. As a result, after we reverse the order of summation, the right
side becomes

Y (=4’ Y Au1 -0 = Y d(=4)I(Gs 1)

2,3,4 xefg j=1,2,3,4
1,2 k=1,2

J=1,
k=

Finally, bringing together the three terms in (2.2) and using property (1) of
Jacobi sums when y% or yi is trivial or they are conjugate to one another,
we obtain:

N =4+ 2,(—4n%) + Y xd(=4n)J(x2, 7)) + 94— 2+ 3(=1)

+ 21 (—4n?) (= 1) (2.4)
=g — 1+ xa(= ) (12: 18) + I (125 Xa))-

In the problems we show that y,(—4) = 1. Hence, x,(—4n?) = y,(n). Thus,
if we set

o= an,q(;_;f _XZ(n)J(X27 X4)a (25)
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we conclude that
N =#EF)=q+1—a—ua (2.6)

Notice that « is an algebraic integer in Q (), since the values of y, and x,
in the definition of J(),, x4) are all +1, +i. We now pin down the Gaussian
integer « = a + bi, at least in the case when g = p is a prime congruent to 1
mod 4 or g = p? is the square of a prime congruent to 3 mod 4. By property
(3) relating Jacobi to Gauss sums, we have

a= —x,(Mg(x2)9(xa)/9(Xa)>

and hence, by property (2), we have |«|> = a*> + b*> = q. In the two cases
g =p = 1(mod 4) and ¢q = p?, p = 3 (mod 4), there are very few possibilities
for such an a. Namely, in the former case there are eight choices of the form
+a + bi, +b + ai; and in the latter case there are the four possibilities +p,
+ pi. The following lemma enables us to determine which it is.

Lemma 1. Let g = 1 (mod 4), and let y, and y, be characters of % of exact
order 2 and 4, respectively. Then 1 + J(x,, x4) is divisible by 2 + 2i in the
ring Z[i].

ProoF. We first relate J(y,, x4) to J(x4, x4) by expressing both in terms of

Gauss sums. By property (3), we have: J(x2, 14) = J(Xa» 14)9(X2)*/9(x4)9 (%)
= y4(—1)J (x4, x4) by property (2). Next, we write

T(tas %a) = L %G 2a(l = ) = 237 + 2 1a(0)1a(1 = %),

where X’ is a sum over (¢ — 3)/2 elements, one from each pair x, 1 —
with the pair 32, @D omitted. Notice that y,(x) is a power of i, and so is
congruent to 1 modulo 1 + iin Z[{]; thus, 2),(x) x4 (1 — x) = 2(mod 2 + 2i).
As a result, working modulo 2 + 2/, we have J(x,, 14) = ¢ — 3 + 2(%D) =
2 + x4(4) (since g = 1 (mod 4)). Returning to J(x,, x4), We obtain:

L+ J(x2s xa) = 1+ 22(= DI (g x2) = 1+ 1a(—4) + 2x4(=1)
(mod 2 + 2i).

Since y,(—4) = 1, as mentioned above (and proved in the problems below),
and since 2(1 + x,(—1)) = 0 or 4, it follows that 1 + J(x,, x4) is divisible by
2 + 2i, as claimed. ]

We now have the basic ingredients to prove a formula for Z(E,/F,; T).

Theorem. Let E, be the elliptic curve y*> = x> — n’x defined over F,, where
pf2n. Then

—2aT +pT?> (1 —aT)(1 —aT)
( (1 —-pT) (1 —T)1-pT)’

wherea = Re o, o0 = i\/; if p=3(mod 4), and if p = 1 (mod 4), then o is an
element of Z[i] of norm p which is congruent to (5) modulo 2 + 2i.

Z(E,[F,; T) = @7
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Before proving the theorem, we note that in the case p = 1 (mod 4) it says
we choose o = a + bi with @ odd (and b even), where the sign of a is deter-
mined by the congruence condition modulo 2 + 2i. There are two possible
choices a + bi and a — bi; and of course the formula (2.7) does not change
if we replace o by its conjugate.

PROOF. In order to obtain Z(E,/F,; T'), we must let the power of p vary, and
determine N, = # E,(F,) for p=1 (mod 4) and N,, = #E,(F,) for p =3
(mod 4), ¢ = p? (since we know that N, = p” + 1 for odd r in that case). So we
fix g equal to p in the first case and equal to p? in the second case (in either
case ¢ = 1 (mod 4)), and we replace ¢ by ¢" throughout the work we did
earlier to find a formula for #E,(F,), ¢ = 1 (mod 4).

Because the r is varying, we need a notation to indicate which y, and y,
we are talking about, i.e., to indicate for which finite field they are multi-
plicative characters. Let x, ; = y, denote the unique nontrivial character of
F} of order 2, and let y, , = y, denote a fixed character of [} of exact order 4
(there are two, the other one being 7,). Then by composing x, or y, with
the norm from F,r to [F,, we obtain a character of [} of exact order 2 or 4,
respectively. We denote these characters y, , and y, .. For example, if g is

a generator of F¥ such that y,(g) = i, and if g, is a generator of [ whose
norm is g, i.e., ()" ** ! = g, then we have y, ,(g,) = i. If N, denotes
the norm from F, to F,, we can write our definitions:

X4.r: X40Nr5 XZ,r = XZONr' (28)
With these definitions, using (2.5) and (2.6), we can write:

#E"([F r) = qr + 1 — an! r— an, r,
q q q 2.9)
Q(Xz r)g(xél- r)

X4,r)

where @, o= —x,.,.(1)

We now use a basic relationship, called the Hasse—Davenport relation, for
Gauss sums over extensions of finite fields. The Hasse—Davenport formula
is:

—g(xoN,) = (—g(0)" (2.10)

The proof of this fact will be given in a series of exercises below. Applying
(2.10) to the three Gauss sums in (2.9), and observing that y, {(n) = x,(#") =
x,(n)", we conclude the following basic relationship:

&y or = Oy, (2.11)

n.q nq:

The theorem now follows quickly. First suppose p = 1 (mod 4), in which
case ¢ = p. Then x,(n) is the Legendre symbol (5). Using (2.5) and Lemma 1,
we find that « = «, , is a Gaussian integer of norm p which is congruent to
(%) modulo 2 + 2i; and, by (2.9) and (2.11),
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N=p+1—o—&.

This proves the theorem when p = 1 (mod 4) (see Problem 2 of §II.1).

Now suppose that p = 3 (mod 4), ¢ = p>. Then y,(n) = 1, since all elements
of [, are squares in .. Then Lemma 1 tells us that a, , is a Gaussian integer
of norm ¢ which is congruent to 1 mod 2 + 2i. Of the four Gaussian integers
i‘p, j=0, 1, 2, 3, having norm g, only o, , = —p satisfies the congruence
condition. Then, by (2.9) and (2.11), we conclude that for r even we have

N, = #E,Fyr) =p" + 1= (=p)" = (=p)™.
Since N, = p" + 1 for odd r, we have for any r:
N, =p +1—(ip) = (=ip).
This completes the proof of the theorem. O

We conclude this section by calling attention to the role Lemma 1 has
played in pinning down the reciprocal roots « and & in (2.7). The congruence
condition in Lemma 1 will again be needed when we start working with the
Hasse—Weil L-function of the elliptic curve E,, which combines the o’s for
different primes p. In that context, Lemma 1 is a special case of a general
fact about how Jacobi sums vary as we vary the prime p. The general case
is treated in [Weil 1952].

PROBLEMS
1. Prove properties (1)--(3) of Gauss and Jacobi sums that were given in the text.

2. Let G be a finite group, and let G denote the group of characters y (i.e., of homo-
morphisms x: G — C*). Recall that for any nontrivial y e G, 2,6 x(g) = 0. Notice
that any fixed ge G gives a character g: y y(g) on the group G, and also on any
subgroup S « G. Apply these general considerations to the case when G = Fr
and S is the subgroup of characters y such that y™ = 1. In that way prove the
relation (2.1) in the text.

3. Let ¢ = 1 (mod 4), and let y, have exact order 4. Show that y,(4) and y,(—1) are
both equal to 1 if ¢ = 1 (mod 8) and equal to — 1 if ¢ = 5 (mod 8). Conclude that
7a(—4) = 1 in all cases.

4. Show that g(y,)* = (— 1)~ '¥24. It is somewhat harder to determine which square
root to take to get g(y,) (see [Borevich and Shafarevich 1966, pp. 349-353]).
Compute g(y,) wheng =3,5,7,9.

5. For ¢ =1 (mod 4), again let y, be the nontrivial quadratic character, and let y,
and ¥, be the two characters of exact order 4. Compute J(x,, x4) and J(x,, ¥4)
directly from the definition when ¢ = 5,9, 13, 17.

6. Show that if y, is the nontrivial quadratic character of F} and y is any nontrivial
character, then J(x,, x) = x(4)J (. ).

7. Let x5 and ¥, be the two characters of [ of order 3, where ¢ = 1 (mod 3). Compute
J(x3, x3) and J(¥5, ¥3) directly from the definition when g = 7, 13.
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8. (a) Notice that we proved that the number N, of F ~points on E, is independent
of n if r is even. Show this directly.
(b) Also notice that N, does not change if » is multiplied by an integer which is
a square in F,. This is for the same reason that we could, without loss of gen-
erality, reduce to squarefree » when considering Q-points. Namely, if K is
any field not of characteristic 2 and if m, ne K*, construct a simple corre-
spondence between E,(K) and E,,2(K).

9. This problem concerns a more general definition of Gauss sums, examples of
which will occur later in the chapter. Let R be the ring of integers in a number field
K, and let I be a nonzero ideal of R. Then R/[ is a finite ring. Let ¥ : R/I— C* be
an additive character which is nontrivial on any additive subgroup of R/J of the
form J/I for any strictly larger ideal J = I (including the “improper ideal” J = R,
which will be the only such J if / is a prime ideal). Define the norm N/ = # (R/]).
Let y: (R/I)* - C* be any multiplicative character. Take y(x) = 0 for xe R/I not
prime to I. Define g(y) = g(x, ¥) = X y(x)¥(x), where the summation is over
xeR/I.

(a) Prove that Z y(x)¥(ax) = y(a)g(y, ¥) for any ae (R/1)*.

In parts (b) and (c) we suppose that y is “primitive”” modulo 7. By definition, this
means that, for any strictly larger ideal J > I, y is nontrivial on the subgroup of
(R/I)* consisting of elements congruent to 1 modulo J.

(b) If y is primitive, show that the formula in part (a) holds for all ae R/I.

(c) For y primitive, prove that g(x, ¥)g(¥, ¥) = x(— DNI, and |g(x, )| = /NI
Some examples of the characters and Gauss sums in this problem are: (1) if /is a
prime ideal with residue field [F,, then property (2) of Gauss sums in the text is a
special case of part (c); (2) if R = Z and [ is the ideal (N), then x is an ordinary
Dirichlet character. N/ = N, we often take y(x) = ™" and “primitive” means
that the value of y(x) for xe(Z/N Z)* does not depend only on its residue modulo
some proper divisor of N ; (3) later in the chapter we will encounter examples where
R=17[{].

Problems 10-17 will lead to a proof of the Hasse—Davenport relation.

10. Let S be the set of all monic polynomials in F,[x], and let ™ denote the subset of
all irreducible monic polynomials. Subscripts will indicate degree. By writing
x4 — x =TI, (x — o), prove that x? — x = I1f, where the product is over all
fin Sj” for all d dividing r.

11. Let ¢ be a nontrivial additive character and y a multiplicative character of [,.
If fe§ is written in the form f(x) = x! — ¢, x*™1 + - -+ + (= 1)%,, define a map
A2 8> Cby A(f) = x(ch¥(c,y). (If f= 1 is the constant function in S, then define
A(1) = 1.) Prove that A(f, f3) = A(f)A(f3) for f1, f,€S.

12. Prove that the Gauss sum can be written g(z) = Z;.s, A(f).

13. Suppose that xelF, satisfies monic irreducible polynomial f€S;”, where d|r.
Then show that A( /)™ = y,(«) - ¥, (a), where the subscripts here indicate the charac-
ters of F, obtained by composing with the norm from F, to F, (in the case of a
multiplicative character) or with the trace from F, to F, (in the case of an additive

character).

14. Prove that g(x,) = Zy, Zscsirr dr ()™,
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15.
16.
17.

18.

19.

20.

21.

22.

Prove the power series identity T, s A(f) T/ =1 girr (1 - A(f)T5/)7".
Show that if d > 1, then X5, A(f) = 0.

Taking the logarithmic derivative of both sides in Problem 15, prove that

D=2 Y dAN™,

d|r fe Si;'
and conclude the proof of the Hasse—Davenport relation.

(a) Show that the ideal (2) in Z[{] is the square of the prime ideal (1 + i); and
that any element aeZ[i] not in (1 + #) has a unique associate ifa which is
congruent to 1 modulo (1 + i)* = (2 + 2i).

(b) Show that the ideal (3) in Z[w], @ = (—1 4+ /—3)/2, is the square of the
prime ideal (,/—3); and that any element a € Z[w] not in (y/ —3) has a unique
associate ( — )’ which is congruent to 1 modulo 3.

Consider the elliptic curve y* = x* — a, aeF}¥. Recall from Problem 4 of §1.9
that it has ¢ + 1 points if ¢ = 2 (mod 3). So suppose that ¢ = 1 (mod 3). Let x,
be the nontrivial quadratic character of F¥, and let x; be either of the nontrivial
characters of F} of order 3. Prove that the number of F,-points on the elliptic curve
is equal to

g+ 1+ (=) (@I (12, 13) + X3(@JI (X2, X3))-

Let ¢ = 1 (mod 3), and let x; be a nontrivial character of F} of order 3.

(a) Prove that ¢J(x3, x3) = g(x3)°.

(b) Prove that J(x3, x3) = — 1 (mod 3) in Z[w)], where © = (—1 + i\/3)/2.

(c) Show that J(xs, x3) =pif ¢ = p?, p =2 (mod 3).

(d) Suppose that g =p =1 (mod 3). Choose a+ bw so that p = |a + bo|* =
a® — ab + b?. Show that exactly one of the two ideals (¢ + bw), (a + bd)
(without loss of generality, suppose the first one) has the property that

x3(x) = x?"3 (mod a + bw) forall xeF,.

(e) Letg = p =1 (mod 3), and choose a + bw as in part (d). Show that —J(x3, x3)
is the unique element generating the ideal (a + bw) which is congruent to 1
modulo 3.

Let N, be the number of F~points on the elliptic curve y? = x* — a, where aeF},

p#23.

(a) If p =1 (mod 3), let x, and y; be nontrivial characters of F of order 2 and 3,
respectively, and set a = —y,(—a)ys(4a)J(¥s, x3)- Prove that N, =p" + 1 —
a"— .

(b) If p = 2 (mod 3), let x, and y; be nontrivial characters of F}: of order 2 and 3,
respectively. First prove that y, and y, are both trivial on elements of [F}.
Now set o = i/p. Provethat N, =p" + 1 —a" — &".

(c) Conclude that in both cases the zeta-function is (1 — 2¢7 + pT?)/(1 — T)(1 —
pT), where ¢ =0 if p =2 (mod 3), and ¢ = —y,(—a)Re(y3(4a)J(x3, x3)) if
p =1 (mod 3).

Let C = P2 be the curve y* + ay = x3, aeK (ie., F(x, y, z) = y*z + ayz* — x?).
(a) Find conditions on the characteristic of K and on a € K which are equivalent
to C being smooth at all of its K*' '-points.
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(b) Let K = F,r. Show that for r odd, # C(F,r) = 2" + 1 (this is independent of a).
(c) Let K="F,r, aeK, a#0. Let y; be a nontrivial character of K* of order 3,
and let y; be the other one. Derive the formula:

#C(F4r) =4+ 1 + 1@ (23, 23) + 13(@JI (X3, X3)-
(d) Inthesituation of part (c), show that J(y5, x3) = (— 1)""'2"; then find a formula
for Z(C/F,; T)whena = 1.
(e) Now let K= Q, a= 1. Find a linear change of variables (with coefficients
in Q) which transforms C to the elliptic curve y? = x* + 16.

23. Let N, be the number of F,~points on the elliptic curve E,: y* = x*> — n’x, where

pI2n.

(a) Show that if p = 3 (mod 4), then N, is independent of n; it equals p” + 1 if
ris odd; and it equals (p"? — (— 1)")?if r is even.

(b) Now let p =1 (mod 4). In Problem 8 above, we saw that ¥, is independent
of n if r is even, and if » is odd it depends only on whether # is a quadratic
residue or nonresidue modulo p. For odd r, let NS* and N denote the N,
for n a residue and for »n a nonresidue, respectively. Show that N,, is a multiple
of the least common multiple of N/* and N,

(¢) For p =5, make a table of N/ and N/ for r =1, 3, 5, 7 and a table of N,
for r=2,4,6,8, 10, 12, 14. In each case, determine the type of the abelian
group E,(F,-). (See Problems 9 and 11 in §1.9.)

(d) For p = 13, make a table of N/** and N,"" for r = 1, 3, 5 and a table of N, for
r=2,4,6,8, 10; and in each case, find the type of E,(F,).

§3. Varying the prime p

In this section we look at the elliptic curve E,: y? = x*> — n?x and its zeta-
function Z(E,/F,; T) as p varies. We shall later want to combine these
zeta-functions for the various p into a single function, called the Hasse—Weil
L-series of the elliptic curve. It is the Hasse—Weil L-function that is intimately
related to the group of Q-points on E,,.

The denominator of Z(E,/F,; T) is always (1 — T)(1 — pT). Only the
numerator depends on p. If p|2n, in which case E, is not even an elliptic
curve, the numerator is simply 1 (see Problem 10 in §II.1). Otherwise, the
numerator is a quadratic polynomial in 7 of the form (1 — «7T)(1 — «7).

When we later define the Hasse—-Weil L-series of E,, we shall take this
quadratic polynomial and replace T by p~° (s is a new complex variable).
The resulting expression (1 — op~%)(1 — ap~) is called the “Euler factor at
p”, by analogy with the term in the Euler product expansion of the Riemann
zeta-function:

()= 2 = 1

—s
primes p 1 - V4

|

(where Re s > 1). 3.1

In this section we shall study how this ““Euler factor” depends on p. This
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dependence will turn out to be described by a certain character y, of Z[i]
(see Problem 9 of the last section).

For the duration of this section we shall let P denote prime ideals of the
Gaussian integer ring Z[i]. There are two types: (1) P =(p) for p=3
(mod 4); (2) P = (a + bi) for a*> + b>* =p =1 (mod 4). In the latter case
we have PP = (p), and we say that p “splits” in Z[i]. (There is also the
special case P = (1 + i), which “‘ramifies”, i.e., P? = (2).) The degree of a
prime P dividing ( p) is defined to be the degree of the field extension Z[i]/P
of F,; itis 2 in the first case and 1 if p splits. We can then rephrase the theorem
in the last section as follows.

Proposition 1.

(1 =T)(1 —pT)Z(E,/F,; T)= [T (1~ (apT)dee?), 3.2

P|(p)

where the product is over the (one or two) prime ideals of Z[i] dividing (p),
and where op = i\/; if P = (p)and ap = a+ biif p splits, where a + bi is the
unique generator of P which is congruent to (%) modulo 2 + 2i. We take ap = 0
if P|(2n).

We now define a map §, on Z[i] which will be multiplicative and will
satisfy ¥,(x) = af®® for any generator x of P = (x). This multiplicative map
is of the form j,(x) = xy,(x), where x,(x) has value 0, + 1, or +i. First of all,
we define y,(x) = 0 if x has a common factor with 2n. Next, for n =1 we
define x(x) to equal , where i is the unique power of i such that #x = 1
(mod 2 + 2i). Here x is assumed prime to 2, and hence an element of
(Z[7]/(2 + 2i))*, which has four elements represented by the powers of i.
Finally, for other n and for x € Z[{] prime to 2, we define y,(x) = x1(x)(§x),
where Nx = x - X is a positive odd integer, and (i) is the Legendre symbol
(which extends from prime modulus () to arbitrary positive odd modulus
by requiring that (w%;) = (=) (s;)). To summarize, we have defined:

11(x) (NL> for x prime to 2n;
In(X) = xx0(x); (X)) = . X (3.3)

otherwise;
where for x prime to 2
¥1(x)=i" with i’x=1 (mod?2+ 2i). 3.4)

Suppose that x generates a prime ideal P = (x) not dividing 2x. If P = (p)
with p = 3 (mod 4), then (&%) = (%) = 1, and J,(x) = #x = —p. That is, %,
takes any of the four possible generators of P to a3. If x is any of the four
possible generators of a prime P of norm p =1 (mod 4), then j7,(x) =
Px(®) =@ (mod 2 + 2i), i.e., Z,(x) is the unique generator ap which is
congruent to (5) modulo 2 + 2i. We have thus shown:
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Proposition 2. The map j, defined in (3.3)—(3.4) is the unique multiplicative
map on Z[i] which coincides with o3¢ on any generator of a prime ideal P.

Notice that y; is a character on (Z[i]/(2 + 2i))*. It takes any x to the
root of unity in the class 1/x. The general y, is obtained from y; using the
Legendre symbol, with the variable x appearing on the bottom. We now
use quadratic reciprocity to bring the variable x up on top, thereby showing
that y;, is a character. At this point recall Problem 9 of the last section, in
particular, the definition of a “primitive” character on a number ring.

Proposition 3. The map y, defined in (3.3)—(3.4) is a primitive multiplicative
character modulo (2 + 2i)n for odd n and modulo 2n for even n.

PROOF. Suppose x is prime to 2n. Let n = 2°/, - - - [, where the /; are distinct
odd prime numbers, and ¢ = 0 or 1. Note that Nx is a product of odd prime

powers, where the primes p,, ..., p, occurring to odd powers are all con-
gruent to 1 (mod 4). First, it is easy to see that
1 if Nx =1 (mod 8);
2 _ HNx =1 (mod &) (3.5)
Nx —1 if Nx =5 (mod 8).

Next, we compute that

()= () L G - )

by quadratic reciprocity, since p, = 1 (mod 4). Since Nx is equal to an odd
square factor times the product of the p,, we conclude that

1) = 149 (@ H(N,f‘> hx )( ) (%) (36)

where ny, = nif nis odd, ny = n/2 if n is even.

We now prove the proposition in the case n odd. The proof for n even is
very similar, and will be left as an exercise below.

We must first show that y,(x) depends only on what x is modulo (2 + 2i)n.
Suppose that x" = x + (2 + 2i)nf. Since x’ = x (mod 2 + 2i), we clearly
have y;(x") = x;(x). Next, we have

Nx = (x + 2+ 20)np) (X + 2 —2i)nf) = x-X = Nx (mod n),

and hence the Legendre symbols are also equal. (This would not have been
clear until we used quadratic reciprocity to bring Nx to the top, obtaining
(%) in (3.6).)

To show primitivity, we must show that there is no proper divisor of
(2 + 2i)n such that y,(x) depends only on what x is modulo that proper
divisor. Thus, if y, were not primitive mod (2 + 2i)n, there would exist a
prime ideal Q dividing (2 + 2i)n such that y,(x) depends only on x modulo
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the ideal ((2 + 2i)n)/Q. In particular, y,(x) # —1 for all x = 1 mod((2 +
2i)n)/Q. We consider three cases, and show that each leads to a contradic-
tion.

(i) Q=@ +1), ie., yi(x)# —1 for all x=1+ 2np, feZ[i]. But since
Nx = 1 (mod n), we have y,(x) = x1(x) = 1 (1 + 2f), and this value is
— 1 if, for example, f = i.

(ii) Q = (a + bi) with (a + bi)(a — bi) =1=1 (mod 4), /|n. Then we are
supposing that y.(x) # —1 for all x of the form 1 + (2 + 2i)n(a — bi)/I,
where feZ[i]. Let B = k(1 — i), where k is an arbitrary integer, i.e.,
x = 1 + 4kn(a — bi)/l. Then y;(x) = 1, and Nx = 1 + 8akn// (mod n).
Hence, y,(x) = (1*8#%nL) Since 8an/l is prime to /, it follows that
1 + 8akn/I runs through all residues modulo / as k varies. In particular,
there is a value of k for which 1 + 8akn/! is a quadratic nonresidue,
ie., x,(x) = —1, a contradiction.

(iii) Q = (/) with =3 (mod 4). Then we are supposing that y,(x) # —1 for x
= 1(mod (2 + 2i)n/!). Since x = 1 (mod 2 + 2i), we have y;(x) =1, and
50 xn(x) = (8%) = (8%), since Nx = 1 (mod n//). Now since (2 + 2i)n/l
is prime to /, it follows by the Chinese remainder theorem that x of the
form 1 4+ B(2 + 2i)n/l runs through all residues of Z[i] modulo Q.
If we consider x modulo Q, i.e., as an element in the field Z[/]/Q ~ [,
then the norm map x— Nx = x- X is simply the norm map from Fp.
to F,. And the latter map is surjective (for instance, a generator g, of
F: goes to a generator g = g5 * of F*). Hence, there are x of the required

form for which y.(x) = (3%) = —1. This concludes the proof of the

proposition. O

For the remainder of this chapter, we shall let n" denote the conductor of
1., 1.e., a generator of the largest ideal such that y;(x) depends only on x
modulo that ideal. By Proposition 3, we may choose
, {(2 + 2i)n, nodd;

(3.7
2n, n even.

Whenever one studies transformation formulas for functions involving
characters, as we shall do in the sections that follow, the Gauss sum of the
character is almost certain to make an appearance. In preparation for our
later derivation of the functional equation for the Hasse— Weil L-series of E,,,
we now find a formula for the Gauss sum of the character y,: (Z[i]/n)*+— C*
(whose image consists of powers of 7).

We define our additive character on Z[i]/n’ by the rule:

l,l/(X) — €2ni Re(x/n’). (38)

It is easy to check that i is a nontrivial additive character of Z[i]/n” which
satisfies the condition in Problem 9 of the last section, namely, it is nontrivial
on the multiples of any proper divisor of n".
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Proposition 4.

<_ n, nodd,
Z X;(x)eZni Re(x/n’) — _l’l]) (39)
xezliyn’ < >1n n = 2n, even.

Ry

90 &

Proor. To show that g(x7) = 2 + 2i and g(x5) = 4i is a short computation
that will be left as an exercise (Problem 2 below).

Let m be a positive squarefree odd number. Let (7) denote the character
x> (&%) on (Z[i]/m)*. Then by (3.6) we have

I = X1 <E> for n odd; In =15 (;) for n = 2n, even. (3.10)

0

We define the Gauss sum for the character () as follows:

Nx ni Re(x/m
(e g o
xeZl[i)/m

We can obtain an alternate form for g((z)) if we replace x by 2x. (Note that
2x runs through (Z[{]/m)* as x runs through (Z[ {]/m)*.) Since N(2x) = 4Nx,
we have (82%) = (5%). Writing Re(2x/m) as & Tr x, where Tr x denotes x + X,

we have
Nx (2mifm) Trx
gli—1}] = — Je . (3.12)
<<m>> xe%]/m<m>

Proposition 4 will follow as an immediate consequence of the following
lemmas, which will be proved below.

6() = (5 )ouir () o
()oa(() =
)-

() ((-m:>)-

Lemma 3. If p is an odd prime, then g <<;>) =p.

Lemma 1.

Lemma 2. If m = m mz,lheng<< )

PrROOF OF LEMMA 1. First suppose that # is odd. Write x in the form x =
(2 4 2i)x, + nx,, where x,; runs through a set of representatives of Z[i]
modulo »# and x, runs through a set of representatives of Z[i] modulo
2 + 2i. By the Chinese remainder theorem, x then runs through a set of
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representatives of Z[i] modulo (2 + 2i)n. By (3.10), we have x,(x) =
K (nx,) (N2H20x)) By (3.4), we have x;(n) = (). Also, N((2 + 2i)x,) =
8Nx,, and so the second term becomes (2¥*1). Meanwhile, in the additive
character we have Re(x/n’) = Re(x,/n + x,/(2 + 2i)). Hence, in the defini-
tion (3.9) of g(x,) we have

N (=1 2 ’ Nx; 2mi Re(x,/n)+ 2mi Re(x,/(2+2i))
g(x,.)—( - )(n> > xl(xz)< - )e ,

x,ez[i)/n
x, eZ[i}(2+2i)
and the double sum on the right separates out into g(x;)g(G))-
The proof for even n is very similar, where we write x = 4x; + nyx,.
The details will be left as an exercise. O

PrOOF OF LEMMA 2. The proof is quite similar to that of Lemma 1. In the
definition (3.11) we write x = x,m, + x,m,, where x; runs through a set of
representatives of Z[i]/m;, j=1, 2. Since Nx =m}Nx, (mod m,) and
Nx = m?Nx, (mod m,), we have

()5 (2)-(2) )

Since also Re(x/m) = Re(x,/m,) + Re(x,/m,) the sum in (3.11) separates
out into a product over x; which is equal to g((z;)) and a product over x,
which is equal to g((z))- ]

PROOF OF LEMMA 3. We first consider the case p = 1 (mod 4). Let p = - B,
where f = a + bi. In (3.11), we write x = x,  + x,, where x, and x, each
run through 0, 1, 2, ..., p — 1 (note that these numbers are representatives
of Z[i]/p and also of Z[i]/B). Again, since § and p are relatively prime, the
Chinese remainder theorem tells us that x will run over Z[i]/p. We have
Nx = (x; 8 + x,8)(x, B + x,B) = 2x,x, Re f? (mod p). But Re 2 = a* —
b? = 2a* (mod p), since p = a® + b2, Thus, since Re x = x,a + x,a, we have

by (3.11)
— axlax2 (2ni/p)ax,+ax,)
g — = — 1 " <le 1 2),
((P)) xl.x;e:llpl ( p )

The double sum separates out into the square of a single sum over x, € Z/pZ.
If we then replace ax; by x, we obtain

(G)=(z,6)=)

which we know equals p by property (2) of Gauss sums for finite fields (see
§I1.2; also see Problem 4 of §11.2).

Finally, suppose that p = 3 (mod 4). Then (p) is a prime ideal of Z[i],
and Z[i]/p is the field of p? elements. In that case, g((3)) in (3.12) is the
Gauss sum for the multiplicative and additive characters of F,. obtained
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from the multiplicative character (3) and additive character ™7 of F,
using the norm and the trace. In other words, we are in the situation of the
Hasse—Davenport relation (2.10), which tells us that —g((3)) is the square
of the Gauss sum X__; (3)e?™*?, Again using Problem 4 of §I1.2 (this time
with ¢ = p = 3 (mod 4)), we conclude that g((3)) = p.

This completes the proof of the lemmas, and hence of Proposition4. O

In Proposition 4, the term (32) for n odd, (7}) for n even, is equal to + 1
if n=1, 2, 3 (mod 8) and is equal to —1 if n =5, 6, 7 (mod 8). This sign
will turn out to play a crucial role in the functional equation for the Hasse—
Weil L-series for E,. It is called the “‘root number”. If it equals —1, then
conjecturally it follows that » must be a congruent number. But there is no
known direct reason why any squarefree n congruent to 5, 6, or 7 modulo 8
should be the area of a rational right triangle.

PROBLEMS

1. Using (3.6), prove Proposition 3 for n = 2n, even.

2. Verify the formula in Proposition 4 for n = 1, 2 by a direct computation.
3. Prove Lemma 1 for even n.

4. Give another proof of Lemma 3 directly from the definition of g({(3)).

§4. The prototype: the Riemann zeta-function

For Re s > 1, the Riemann zeta-function is defined by the convergent infinite
sum of reciprocal s-th powers, or alternatively by the product of “Euler
factors” 1/(1 — p~*) with the product over all primes p (see (3.1)). In this
section we give a proof of analytic continuation and the functional equation
for the Riemann zeta-function ¢ (s). The proof has all of the essential elements
that will later be needed to prove analogous facts about the Hasse—Weil
L-function of E,,.

We start by recalling some basic tools for working with real- and complex-
valued functions. First, we summarize the properties of the gamma-function
(for the proofs and further details, see, for example, [ Whittaker and Watson
1958, Chapter XI1], or [Artin 1964]).

The gamma-function I'(s) interpolates n! in the sense that I'(n) = (n — 1)!.
It can be defined for se C with Re s > 0 by the integral

INOF J e‘ff%. @.1

0
It satisfies the relation

I'(s + 1) = sT(s), (4.2)
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which enables one to continue I'(s) analytically onto all of the complex
s-plane, except that it has simple poles at s =0, —1, —2, —3, .... The
gamma-function also satisfies the relations

n
sin(7s)

Cra—s) = (4.3)

and

r (%) r (s ; l) = /72T (s). (4.4)

Finally, using (4.2) and (4.3), one easily sees that the reciprocal of the gamma-
function is an entire function of s.

The gamma-function (4.1) is a special case of a construction known as the
“Mellin transform”. Given a function f(¢) on the positive real axis, its
Mellin transform is the function g(s) defined by the formula

o0 = | "ot 5)
0

for values of s for which the integral converges. Thus, I'(s) is the Mellin
transform of ¢™*. Notice that for any constant ¢ > 0, the Mellin transform
of e7is ¢7°I'(s):

J e‘“tsﬂ = ¢°T'(s), 4.6)
o t
as we see after a simple change of variables. We shall often have occasion
to use (4.6).

Another tool we shall need is the Fourier transform. Let & be the vector
space of infinitely differentiable functions f: R+ C which decrease at infinity
faster than any negative power function, i.e., |x|V/(x) > 0 as x > + oo for
all N. An example of such a function is f(x) = e ™. For any fe % we define
its Fourier transform £ by:

o)

0z J €2 (x)dx. @)

It is not hard to show that the integral converges for all y, and fe &.
The following properties of the Fourier transform are also easy to verify:

(1) If aeR and g(x) = f(x + a), then §(») = €>"f(y).
(2) If aeR and g(x) = e*™*f(x), then §(») = f(y — a).
(3) If b > 0 and g(x) = f(bx), then §(y) = % f(y/b).

For example, to check (3), we compute

§0) = J " eyt = [ ey G= ol

— 0 — 0
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Proposition 5. If f(x) = e ™, then f = f.

ProoF. Differentiating under the integral sign, we have

f )= diyj e M (x)dx = -—2niJ e 2mM T gx..

— -

Integrating by parts gives

f/(y) = _Dpje  2mixy 1 e*nxz
—2r

+ Zm'J —2miye~ e gy
—2r

—

= —27!va e~V (x)dx = —2ny f(y).
Thus, satisfies the differential equation 1 y)/f (¥) = —2my; this clearly has
solution f(y) = Ce ™", where C is obtained by setting y = 0:

el

C=£0)= J e ™ dx = 1.

— 00

(Recall the evaluation of the latter integral:

C= J e"”‘zdxj e ’dy = J e dxdy
RZ

— a0 —

= J e ™ 2nrdr = J e *du=1.)

0 (0]
Thus, f( y) = e ™", as claimed. O

Proposition 6 (Poisson Summation Formula). If ge &, then
Y gmy=Y gom. (48)

ProoF. Define h(x) = X _  g(x + k). The function A(x) is periodic with

period 1, and has Fourier series 4(x) = Z2__ . ¢,,¢>™™*, where
1 1 o« ©

Cp = J. h(x)e™2™m<dx = J Y g(x + k)e *™mdx = J g(x)e 2mmxdx,
0 0 k=—w —o

where we interchanged summation and integration, and made a change of
variables (replacing x + k£ by x) to obtain the last equality. But the last
expression is simply §(m). Now the left side of (4.8) is #(0), by definition;
and the right side is also A(0), as we see by substituting x = 0 in the Fourier
series for A(x) and using the fact that c,, = g(m). O

We now define the theta-function:

0= Y e™ for 1>0. (4.9)

n= —ao
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Proposition 7. The theta-function satisfies the functional equation

0(f) = %9(1 /1) (4.10)

Ji

Proor. We apply Poisson summation to g(x) = e ™ for fixed ¢t > 0. We
write g(x) = f(\/?x) with f(x) = e~™. By Proposition 5 and property (3)
of the Fourier transform (with b = /1) we have §(y) = t""2¢"™"". Then
the left side of (4.8) is 0(¢), and the right side is ¢~¥/20(1/¢). This proves the
proposition. O

We sometimes want to consider 0(¢) for complex ¢, where we assume that
Re 1 > 0 in the definition (4.9). The functional equation (4.10) still holds
for complex ¢, by the principle of analytic continuation of identities. That is,
both sides of (4.10) are analytic functions of ¢ on the right half-plane. Since
they agree on the positive real axis, they must be equal everywhere for
Re > 0.

Proposition 8. As t approaches zero from above, we have
|0@) — 72| < e 4.11)
for some positive constant C.
PROOF. By (4.10) and (4.9), the left side is equal to 2 /2 £ e~™/*_ Suppose
¢ is small enough so that /7 > 4e~"* and also e/ < 1. Then
[0(r) — 1712 <Ltei(e™™ + e 4 4 .. )< FeT V(A 44245+ 00)
— e'(n*l)/t'

Thus, we can take C=mn — 1. O

We now relate 0(¢) to the Riemann zeta-function. Roughly speaking, {(s)
is the Mellin transform of 6(¢). The functional equation for 6(¢) then leads

us to the functional equation for {(s), and at the same time gives analytic
continuation of {(s). We now show how this works.

Theorem. The Riemann zeta-function {(s) defined by (3.1) for Re s > 1 extends
analytically onto the whole complex s-plane, except for a simple pole at s = 1
with residue 1. Let

A(s) = n T (%) £(s). 4.12)

Then A(s) is invariant under replacing s by 1 — s:
A(s) = Al — ).

That is, {(s) satisfies the functional equation
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s/2r< )g(s)—n'“ ”’Zr( )c(l ~ ). (.13)

ProoF. Basically, what we want to do is consider the Mellin transform
{2 0(0)r(%). However, for large ¢ the theta-function is asymptotic to 1
(since all except the n = 0 term in (4.9) decrease rapidly); and for r near 0
it looks like 1 Y2, by Proposition 8. Hence, we must introduce correction
terms if we want convergence at both ends. In addition, we replace s by §
(otherwise, we would end up with {(2s)). So we define

() = J rr00 — % J "2<0(t> ﬁ)‘” (4.14)
0

—nn?t

In the first integral, the expression 8(f) — 1 =2X% ¢ approaches
zero rapidly at infinity. So the integral converges, and can be evaluated
term by term, for any s. Similarly, Proposition 8 implies that the second
integral converges for any s. In any case, since 6(¢) is bounded by a constant
times ¢~ 2 in the interval (0, 1], if we take s with Re s > 1 we can evaluate
the second integral as

1 1 1
[s/ZO(Z)Q _ t(S—l)/Zﬂ — ZS/ZO(I)Q _ L
o t o t o t s—1

Thus, for s in the half-plane Re s > 1, we obtain:

© 0 1 fes) 1
(IS(S) — 2 Z e*rmztls/zgt‘ + ls/Zﬂ + 2 Z e—nnztts/Zﬂ _ 2
n=1), t t n=1Jo r s—1

0

&% _lepdt (22
=2y e”%“7+§+1_5
0

Using (4.6) with ¢ replaced by nn? and s replaced by %, we have:

206 = i () 2T (g) O

(4.15)

= n_s/zl"( )C(s) +-+ —1
1—s
where always here Re s > 1.
Now ¢(s) is an entire function of s, since the integrals in (4.13) converge
so well for any s, as we saw. Thus, (4.14) shows us that there is a meromorphic

function of s on the whole complex plane, namely

nsi? 1
rwm(¢0—__1—g’

which is equal to {(s) for Re s > 1. Moreover, since n%%, 1/T'(3), and ¢(s)
are all entire functions, it follows that the only possible poles are at s =0
and at s = 1. But near s = 0 we can replace sI'(3) in the denominator by
2(3)T'(3) = 2T'(3 + 1), which remains nonzero as s — 0. Hence the only pole
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is at s = 1, where we compute the residue

. 2 (1 1 1 iz
imG = Drem) (Ed’(s) “stso 1) “rap !

It remains to prove the functional equation. Since, by (4.15), A(s) =
$¢(s) — § — 155, and since § + 745 is invariant under replacing s by 1 — s,
it suffices to prove that ¢(s) = ¢(1 — s). This is where we use the functional
equation (4.10) for the theta-function. Using (4.10) and replacing ¢ by + in
(4.14), we obtain (note that d(})/() = —%, and |7 becomes [{ = — [§ under
the substitution):

v 1 dt © 1\ dt
o= [ o (o)) 5 [T () )
<replacing t by :)

R S dt © s dt
= | PG00 - DT+ | PG00 -7 (by (4.10)

0

! 1-s)/2 ___L fi_l 00 -s —_ al
= JO (=9 (0(t) \/;> p +J1 t17I2(6(1) l)z

= ¢(1 — ).

This completes the proof of the theorem. O

In a similar way one can prove analytic continuation and a functional
equation for the more general series obtained by inserting a Dirichlet
character y(n) before n™* in (3.1), or, equivalently, inserting y( p) before p~*
in the Euler product (see Problem 1 below). That is, for any character
x: (Z|NZ)* — C*, one defines:

1

L(x, ) = n; X}g’:) = l;[ T (where Re s > 1).  (4.16)

The details of the proof of analytic continuation and the functional equation
will be outlined in the form of problems below.

The Hasse—Weil L-function for our elliptic curve E,, to be defined in the
next section, will also turn out to be a series similar to (4.16), except that
the summation will be over Gaussian integers x, the denominator will be
the norm of x to the s-th power, and the numerator will be ¥,(x), where 7,
was defined in (3.3) in the last section. The techniques used in this section
to treat the Riemann zeta-function can be modified to give analogous
facts—analytic continuation and a functional equation—for the Hasse—Weil
L-function for E,. In the final section we shall use this information to
investigate the ‘“‘critical value” of the Hasse—Weil L-function, which is
related to the congruent number problem.
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PROBLEMS

1. (a) Show that the summation form and the Euler product form of the definition of
L(y, s) are equal.
(b) Prove that if y is nontrivial, then the sum in (4.15) actually converges (condi-
tionally) for Re s > 0.

2. Let G = Z/NZ, and let & = 2™V,
(@) Define the “finite group Fourier transform” of a function f: G — C by setting
fla) = Lo f(B)E™ for aeG. Prove that f(b) = L Z,_ o f(a@)E®.
(b) For fixed se C with Re s > 1, let f.: G — C be the function
Jiby = > ne.
n>1,n=b(mod N)
Prove that for any primitive Dirichlet character y modulo N and for any s with
Res>1:
L(z, $) = *g(y) > 1(a) Z é
aeG
where g(y) is the Gauss sum (see Problem 9 of §11.2).
(c) Take the limit in part (b) as s approaches 1 from above, supposing y nontrivial.
In that way derive a simple formula for L(y, 1).
(d) Define the “dilogarithm™ function by /(x) = T, %7 for |x| < 1. Express L(x, 2)
in terms of the dilogarithm.

3. (a) For fixed ¢ > 0 and ae R, what is the Fourier transform of ¢~ ™*9%9
(b) Suppose that ae R is in the open interval (0, 1). Define the following functions:

{(a,s) = i(n-{-a)", Res>1;

n=0

la,s)= Z n-se?™re Res>1;

o
0.()= Y e ™t t>0;

n=—ow

0"(!) — z eZninuefntnz’ t> 0
(The notation /(a, s) should not be confused with the function /(x) in Problem 2.)
Prove that
(i) 6,0 = 1720°(h);
(i) |6,(ry — 12| < e as ¢ — 0 for some positive constant C, ;
(iii) |6°(r)| < e~ as 1 — 0 for some positive constant C,.
(c) Prove that {(a, s) + {(1 — a, 5) as a function of se C extends to a meromorphic
function with no pole except for a simple pole at s = 1 ; that the function /(a, s) +
I(1 — a, s) extends to an entire function; and that

‘WF( )(C(a )+l —a,s)
_ ,fufs»zr(l_;f) (a, 1 =)+ (1 —a, 1 —y5)).
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(d) Let y be a primitive Dirichlet character mod N. Let L(y, s) be defined as in (4.16).
Prove that for Re s > 1:

0 ¥ x(h)C(%,S)=NSL(x,S);

0<h<N

@ T ai(5) = oL

0<h<N

(e) Suppose that y is a nontrivial even character, i.e., y(— 1) = 1. Prove that L(y, s)
extends to an entire function of seC, and find a functional equation relating
L(x, ) to L(%, 1 — ).

(f) Let x be a primitive even quadratic character, i.e., y(n) = +1. Recall from
Problem 9(c) of §I1.2 that g(x)? = N, so that g(y) = +./N. Suppose you some-
how knew that L(y, 3) # 0. Show that this implies that g(x) = \/N.

(g) With y asin part (e), show that L(y, s) = 0if s is an even negative integer or zero.

(h) With y as in part (e), express L'(y, — 2k) in terms of L(%, 2k + 1). In particular,
express L'(y, 0) in terms of L(¥, 1).

4. Let x be a nontrivial even primitive Dirichlet character mod N, and define

0(x, t) = z X(n)e”""z :% Z X(n)e"""z, t>0.
n=1

neZ

(a) Prove that

() 00 0= 3 3. @0V
a=1

N
(i) 3 ¥ 1@0(0) = 40, )

a=1

90 g /a2
Git) 6(y, 1) = Z=2=6(x, 1/N*1).
A )
(b) Show that the Mellin transform of 6(y, ) converges for any s (with no need for
any correction term), and that for Re s > 4 it is equal to T (s) L(y, 2s).
(c) Use the functional equation in part (a)(iii) to give another proof of the functional
equation for L(y, s) in Problem 3(e) above.

S. (@) Let fe %, and g(x) = f(x). Show that §(y) = 2miyf(y).
(b) Find the Fourier transform of (x + a)e ™**%” with ¢ and a as in Problem 3(a).
(c) Letae(0, 1). Define {(a, s) and /(a, 5) as in Problem 3 above, but now define 6,
and 0 differently:

0,)= 5 (m+ae ™ 150;

n=-—o

a0
0"([) — z neZninaevnmz’ t>0.
n=—ow
Prove that:
(i) 0,() = —ir>20%(2);
(i) |6,(r)| < e~ € as t — 0 for some positive constant C; ;
(i) [0%(1)| < e ¥ as ¢ — 0 for some positive constant C,.
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(d) Express the Mellin transform of §, and 6 in terms of {(a, s) and /(a, 5); prove
that {(a, s) — {(1 — a, 5) and /(a, s) — /(1 — a, s) extend to entire functions of
seC; and derive a functional equation relating these two functions.

(e) Suppose that y is a primitive odd character mod N, i.e., y(—1) = — 1. Prove that
L(y, s) extends to an entire function of seC, and find a functional equation
relating L(y, s) to L(¥, 1 —s).

(f) Let y be an odd quadratic character. Show that if you somehow knew that
L(y, 1/2) # 0, then this would imply that g(x) = i/N (rather than —i,/N).

(g) With y as in part (e), show that L(y, s) = 0 if s is a negative odd integer.

(h) With y as in part (e), express L'(y, | — 2k) in terms of L(}, 2k). In particular,
express L'(y, —1) in terms of the dilogarithm. For example, express L'(y, — 1),
where y(n) = (5), in terms of the dilogarithm.

6. Let y be an odd primitive Dirichlet character mod N, and define

0, ty= Y n;((ﬂ)g”“"2 :% Y nx(n)ef’""z, t>0.
n=1 neZ

(Note that this is different from the definition of 6(y, ¢) for even y in Problem 4.)

Let 6, and 6 be as in Problem 5(c).

(a) Prove that:

. N
D) 0G0 ="~

z l(a)ea/N(Nzt)é

(i) 3 Y 1@0™ (0 = 900 1)

(iti) O(x, 1) = —iN "2 3g()0(x, 1/N21).

(b) Show that the Mellin transform of 6(y, f) converges for any s, and that for
Re s > Litisequal to a7 (s)L(y, 25 — 1).

(¢) Use the functional equation in part (a)(iii) to give another proof of the func-
tional equation for L(y, s) in Problem 5(e) above.

7. Let x be the character mod 12 such that y(+1) =1, y(£5) = —1. Let n(z) = 0()(,
—iz/12) for Im z > 0. Prove that n(—1/z) = \/—n(z) where we take the branch of
\/7/1' which has value 1 when z = i. We shall later encounter #(z) again, and give a
different expression for it and a different proof of its functional equation.

8. (a) Use the functional equations derived above to express /(a, 1 — s) in terms of
{(a, sy and {(1 — a, ).
(b) Use the properties (4.3) and (4.4) of the gamma-function along with part (a) to
show that

la, 1 — 5) = T (s5)(2m)*e""({(a, s) + ¢ (1 — a, 5)).

(c) ForaeC,a+ —n,define (@ + n)~* to mean e *'°5“*"_where we take the branch
of log having imaginary part in (— =, 7]. Show that foraeC,Ima > 0, Re 5 > 1,
one has:

I, 1 — s) = ['(s)(2m) e i (a+mn)

n=—oo
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(d) Let s = k be a positive even integer. Show that for aeC, Ima > 0:

© ik
Z l _ (27”) Z nk~leZ1tina.

elat )t k=115

(e) Give a second derivation of the formula in part (d) by successively differentiating
the formula

+3

n cot(na) = 1
a

§5. The Hasse—Weil L-function and its functional
equation

Earlier in this chapter we studied the congruence zeta-function Z(E/F,; T)
for our elliptic curves E,: y? = x3 — n?x. That function was defined by a
generating series made up from the number N, = N, , of F-points on the
elliptic curve reduced mod p. We now combine these functions for all p to
obtain a function which incorporates the numbers N, , for all possible prime
powers p", i.e., the numbers of points on E, over all finite fields.

Let s be a complex variable. We make the substitution 7 =p™° in
Z(E,[F,; T), and define the Hasse-Weil L-function L(E,, s) as follows:

__{®is=1
L(Em 5) def l'Ip Z(E,,/[Fp; pvs)

= — (5.1)
pgnl - 2aE,,.pp o

= [l 1 serprs (5.2)

We must first explain the meaning of these products, why they are equiv-
alent, and what restriction on se€ C will ensure convergence. In (5.1) we are
using the form of the congruence zeta-function in the theorem in §I1.2 (see the
first equality in (2.7)), where the notation ag, , indicates that the coefficient
a depends on E, and also on the prime p. We put the term {(s){(s — 1) in
the definition so that the uninteresting part of the congruence zeta-function—
its denominator—disappears, as we see immediately by replacing {(s) and
{(s — 1) by their Euler products (see (3.1)). Note that when p|2n, the deno-
minator term is all there is (see Problem 10 of §I1.1), so we only have a
contribution of 1 to the product in that case; so those primes do not appear
in the product in (5.1).

In (5.2) the product is over all prime ideals P of Z[i] which divide primes
p of good reduction. Recall that those primes are of two types: P = (p),
p=3 (mod4), degP=2, NP=p?; and P=(a+ bi), a>+b*=p=1
(mod 4), deg P = 1, NP = p. The meaning of a«p and the equivalence of
(5.1) and (5.2) are contained in Proposition 1 (see (3.2)).



80 11. The Hasse—Weil L-Function of an Elliptic Curve

As in the case of the Riemann zeta-function, we can expand the Euler
product, writing each term as a geometric series and multiplying all of the
geometric series corresponding to each prime. The result is a Dirichlet
series, i.e., a series of the form

LE,s)= S by m™ (5.3)
m=1

Before discussing the “‘additive” form of L(E,, s) in detail, let us work out
the values of the first few b, , for the example of the elliptic curve E, : y* =
x? — x. We first compute the first few values of ag_,in (5.1).If p = 3 (mod 4),
thenag , = 0.1fp = 1 (mod 4), there are two easy ways to computea = ag,
() as the solution to a? + b* = p for which a + bi =1 (mod 2 + 2i); (2)
after counting the number N, of [ -points on E;, we have 2a =p + 1 — N,
(see (1.5)). Here is the result:

1 1 1 1
1439 142-5°+5-25° 14+7-49~° 1+11-121°°
. l . 1
1—6-13°+13-169° 1 —2-17°+17-289"*
=1-2-5°-3-9°+6-13742-17°+ Y b,,m™ (54)

m>25

L(E,, s) =

We have not yet discussed convergence of the series or product for L(E,,, s).
Using (5.2) and the standard criterion for an infinite product to converge
to a nonzero value, we are led to consider Zp|ap|*®P(NP)™* for s real. By
Proposition 1, we have |op|*#” = NP2, In addition, NP'>7* < p'27* for
s > 1 (where P = (p) or else PP = (p)). Since there are at most two P’s for
each p, it follows that the sum is bounded by 2X,p"*~%, which converges if
Res > 2. To summarize, the right half-plane of guaranteed convergence is
1/2 to the right of the right half-plane of convergence for the Riemann
zeta-function, because we have a term of absolute value /p in the Euler
product which was absent in the case of {(s).

We now discuss the additive form of L(E,, s) in more detail. Using
Proposition 2, we can rewrite (5.2) in terms of the map ¥, defined in (3.3)-
(3.4):

L(E.. §) — _ z,,(P)>‘1 _
Ees)= 11 (1 ey ) (5.5)
where we have used 7,(P) to denote its value at any generator of the ideal P.
Notice that, since J, is a multiplicative map taking the value 1 at all four
units +1, +i7, we may regard it equally well as a map on elements x of
Z[i] or on ideals I.

We can now expand the product (5.5) in the same way one does for the
Riemann zeta-function and for Dirichlet L-series (see Problem 1(a) in the
last section). We use the two facts: (1) every ideal 7 has a unique factorization
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as a product of prime power ideals; and (2) both j, and N are multiplicative:
(L L) = 7,(I)7.(I), N(I; 1) = NI, -NI,. Then, by multiplying out the
geometric series, we obtain:

L(E,, s) = X 1(D(ND) ™, (3.6)

where the sum is over all nonzero ideals of Z[i].

A series of the form (5.6) is called a ““‘Hecke L-series”, and the map j, is
an example of a “Hecke character”. In a Hecke L-series, the sum on the
right of (5.6) is taken over all nonzero ideals in some number ring. A multi-
plicative map y on the ideals in that ring is said to be a Hecke character if
the following condition holds. There is some fixed ideal { and a fixed set of
integers n,, one for each imbedding ¢ of the number field into @*¢¢, such
that if 7 is a principal ideal generated by an element x which is congruent to
1 modulo the ideal f, then (/) = Il o(x)". In our example, the number
ring is Z[i]; there are two imbeddings ¢, = identity, o, = complex conju-
gation in Gal(Q[i]/Q); we take n, =1, n, =0; and we take |= (1)
(" =Q + 2i)nif nis odd, 2n if n is even). Then the condition simply states
that 7,((x)) = x if x = 1 (mod #’).

It is very useful when the Hasse—Weil L-series of an elliptic curve turns
out to be a Hecke L-series. In that case one can work with it much as with
Dirichlet L-series, for example, proving analytic continuation and a func-
tional equation. It can be shown that the Hasse—Weil L-series of an elliptic
curve with complex multiplication (see Problem 8 of §I.8) is always a Hecke
L-series.

The relation between the additive form (5.6) and the additive form (5.3)
is quite simple. We obtain (5.3) by collecting all terms corresponding to
ideals I with the same norm, i.e.,

buw= 2 Tl

I'withNI=m

Notice that, since 7,(/) = ¥, (I) - (&) by (3.3), we have

Bn = ”) 7 (1)=(1>bm,
' (m Iwilh}f:\llzm ! m

where we have denoted b,, = b,, ;. Thus, if for fixed n we let x, denote the
multiplicative map on Z given by m— () (for m prime to 2n), we have

LE,. )= 5 pa(0mbum™

m=1

2
=1- 2(ﬁ>5-s - 3<9> 975 4 6(ﬁ> 1375 + 2(l) 1775+ - -
5 3 13 17 5.7)

(note: (5)? is 1 if 3fn and 0 if 3|n); one says that L(E,, s) is a “‘twisting”
of L(E,, s) = L b,,m™° by the character y,. One can verify that for n square-
free, the conductor of y, is » when n = 1 (mod 4) and is 4n when n = 2 or 3
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mod 4 (this follows from quadratic reciprocity). In other words, ¥, is a
primitive Dirichlet character modulo # or 4n.

To keep the notation clear in our minds, let us review the meaning of ,,,
xn, and 7,. First, y, is a map from Z to {+1, 0} which is defined by the
Legendre symbol on integers prime to 2n. Second, y, is a map from Z[]
to {+1, +4, 0} which takes elements x prime to 2 to the unique power of i
such that y,(x)x = y,(Nx) modulo 2 + 2i (see (3.3)—(3.4)). Thirdly, 7, is a
map from Z[i] to Z[i] which takes an element x to xy,(x); also, 7, can be
regarded as a map from ideals of Z[i] to elements of Z[i] which takes an
ideal I prime to 2# to the unique generator of 7/ which is congruent to y,(N/7)
modulo 2 + 2i.

The character y, is intimately connected with the quadratic field Q(\/n).
Namely, if m = p # 2 1s a prime number, then the value of y,(p) = (5) shows
whether p splits into a product of two prime ideals (p) = P, P, in Q(/n)
(this happens if (%) = 1), remains prime (if () = — 1), or ramifies (p) = P?
(if (3) =0, i.e., p|n). (See [Borevich and Shafarevich 1966].) We say that y,
is the quadratic character associated to the field @(\/ﬁ).

It is not surprising that the character corresponding to the field @(\/;)
appears in the formula (5.7) which links L(E,, s) with L(E, s). In fact,
if we allow ourselves to make a linear change of variables with coefficients in
Q(+/n), then we can transform E,: y> = x> —n’x to E,: y’> = x> — x’ by
setting y = n\/ﬁy/, x = nx’. One says that E, and E, are isomorphic “over
the field Q(\/n).”

Returning now to the expression (5.6) for L(E,, s), we see that it can also
be written as a sum over elements of Z[i ] rather than ideals. We simply note
that every nonzero ideal has four generators, and so appears four times if
we list elements instead of ideals. Thus,

bun=1 Y Jaatbi),
4a+biwith a2+b2=m
and
1 " -s
LE, =% T BNy
xelli] (58)
1 (@ + bi)y(a + bi)

4 srpiczriy (a2 + bz)s ’
where y,, was defined in (3.3)—(3.4). (The sums are over nonzero x, a + bi.)
Notice the analogy between the sum (5.8) and Dirichlet L-series. The only
differences are that the number ring is Z[i] rather than Z, and our Hecke
character ¥,(x) includes an ordinary character y,(x) (with values in the roots
of unity) multiplied by x.
We now proceed to show that L(E,, s) can be analytically continued to the
left of Re s = 2, in fact, to an entire function on the whole complex plane;
and that it satisfies a functional equation relating L(E,, s) to L(E,, 2 — ).
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Since L(E,, s) is a “two-dimensional” sum over Z[i ] ~ Z?, i.e., over pairs
of integers rather than integers, it follows that we shall need to look at
Fourier transforms, the Poisson summation formula, and theta-functions
in two variables. We shall give the necessary ingredients as a sequence of
propositions whose proofs are no harder than the analogous results we
proved in the last section for the case of one variable.

Since the definitions and properties we need in two dimensions are just
as easy to state and prove in #» dimensions, we shall consider functions on R".
For now, n will denote the number of variables (not to be confused with
our use of n when writing E,: y? = x> — n?x, x,, etc.). We will use x =
(x4, ..., x,)and y = (¥4, - .., ¥, to denote vectors in R". As usual, we let
X'y =X Y1+ -+ + X0 |x| =/xx. We shall also use the dot-product
notation when the vectors are in C"; for example, if n = 2we have x - (1, i) =
Xy + x50,

Let % be the vector space of functions f: R” — C which are bounded,
smooth (i.e., all partial derivatives exist and are continuous), and rapidly
decreasing (i.e., |x|"f(x) approaches zero whenever |x| ‘approaches infinity
for any N). For fe & we define the Fourier transform f: R" — C as follows
(where dx denotes dx,dx, - - - dx,):

f) = f ¢ 2 (x)dx. (5.9)

This integral converges for all ye R", and fe &.

Proposition 9. Let f: R" - C, g: R" — C be functions in &.

(1) If aeR" and g(x) = f(x + a), then §(y) = e*™**{(y).
(2) If aeR" and g(x) = e*™*f(x), then §(y) = f(y — a).
(3) IfbeR, b > 0, and g(x) = f(bx), then §(y) = b~ "f(y/b).
@) Iff(x) = e ™, thenf=f.

Proposition 10 (Poisson Summation Formula). If ge &, then

2 gmy= 3 g(m).
mez" meZ"

The proofs of Propositions 9 and 10 are completely similar to those of pro-
perties (1)—(3) of the Fourier transform in one variable and Propositions 5
and 6 of the last section. One simply has to proceed one variable at a time.

If weC" and fe &, we let w-%fd—?fwl,f?fl + w”% + -+ w,,a'l—fn.

Proposition 11. If fe & and g = w - ., then G(¥) = 2niw - y f(3).

PRrROOF. Since both sides of the equality are linear in w, it suffices to prove
the proposition when w is the j-th standard basis vector, i.e., to prove that
the Fourier transform of % S(x) is 2miy; f(y). This is easily done by sub-
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stituting & s2 f(x) in place of f(x) in (5.9) and integrating by parts with respect
to the j-th Variable (see Problem 5(a) in the last section). O

For the rest of this section, we take » = 2 in Propositions 9-11, and we
return to our earlier use of the letter » in E,, ,, etc.

Theorem. The Hasse—Weil L-function L(E,,s) for the elliptic curve E,:
¥ = x3 — n’x, which for Re s > 3 is defined by (5.1), extends analytically
to an entire function on the whole complex s-plane. In addition, let

N =4n|? = {32”2’ odd; (5.10)
16n2, n even.
Let
AG) = (ﬁ) I'(s)L(E,, s). (5.11)
Then L(E,, s) satisfies the functional equation
A@E)= A2 —3), (5.12)

where the “root number” +1 isequalto 1 ifn=1, 2, 3 (mod 8) and is equal
to —1ifn=>5,6,7 (mod 8).

PrRoOOF. The proof is closely parallel to the proof of analytic continuation
and the functional equation for Dirichlet L-series with odd character, which
was outlined in Problem 5 of the last section. Namely, we express L(E,, s),
written in the form (5.8), in terms of the Mellin transform of a two-dimen-
sional version of the theta-function 6,(¢) defined in Problem 5(c). We shall
use the letter u rather than a to avoid confusion with the use of @ in (5.8).

Thus, let u = (u,, u,) € R?, where u¢ Z?, and let 1€ R be positive. Let w
be the fixed vector (1, /)eC?, so that, for example, m-w = m, + m,i for
meZ?. We define:

0= Y (m+u) we ™m’ (5.13)
me 72

0“1y = Y. m-werrimuemmimi?, (5.14)
me 72

Regarding u and ¢ as fixed, we find a functional equation for 6,(f) by
means of the Poisson summation formula (Proposition 10); to obtain 6,(¢)
on the left side of Proposition 10, we choose

gx) = (x + u)-we ™, (5.15)

To find the Fourier transform of g(x), and hence the right side of the Poisson
summation formula, we proceed in several steps, writing f(x) = e™™*"",
9:1(x) = f(/1x), g2(x) =w-7%g,(x), and finally g(x) =3ng,(x +u). We
have:
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f(y) = e7™P” by Proposition 9, part (4);
§,(y) = t71e~ @ by Proposition 9, part (3);
G,(y) = 2mit™'w - y e~ @MII* by Proposition 11;
§(y) = —it"2w -y e2mimre= @ by Proposition 9, part (1).

If we now evaluate §(m) for me Z?, and sum over all m, we obtain the func-
tional equation

0.(1) = ;2’0"<1>. (5.16)
t t

We now consider the Mellin transform of 6,(2): ¥ £°6,()¥%, and show that
the integral converges to an entire function of s. First, for large ¢ it is easy
to bound the integrand by something of the form ™, using the fact that
|m + u|? is bounded away from zero, since u is not in Z*. Next, for ¢ near
zero one uses the functional equation (5.16) and a bound for 6*(%) of the
form ™", where we use the fact that the only term in (5.14) with |m|*> =0
vanishes because of the factor m - w. These bounds make it a routine matter
to show that the integral converges for all s, and that the Mellin transform
is analytic in s.

If we now take Re s > 2, we can evaluate the Mellin transform integral
term by term, obtaining a sum that begins to look like our L-function:

j tSH,,(t)ﬂ =Y (m+u- wJ ot ui2 41
0 d me 72 0 t
m+u)w

=T ¥ ¢

|m n u|25 (see (4.6)).
me 72

Now for Re s > 3, we can rewrite L(E,, s) as a linear combination of these
sums with various u.

We now suppose that # is odd. The case n = 2n, even is completely similar,
and will be left as an exercise below. We take w = (1, i). If we use (5.8) and
recall that y,(x) depends only on x modulo »" = (2 + 2i)n, and hence, a
fortiori, only on x modulo 4n, we obtain:

1 , . a+ bi + 4nm-w
L(E", S) - ZOSa,zb<4nxn(a + bl)mez;zz |(a, b) + 4nm|2:,

“lamr Y @by RS

0<a,b<4n mer|m + G >

Thus

s 1 s , I el dt
T 1—‘(S)l‘(E‘ns S) = 2(4’1)1 2 Z Xn(a + bl)J\ t 90/4n,b/4n(t)7' (517)
St o

Since the integral inside the finite sum is an entire function of s, as are the
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functions (4n1)' ~2% and 7%/T'(s), we conclude that L(E,, s) has an analytic
continuation to an entire function of s.

Moreover, we can transform this integral using the functional equation
(5.16) and replacing 7 by 1:

* dt Y e 1\ dt © t
J\ t5 a/4n,b/4"(t)7 = _IJ 5 29a/4n,b/4n<7> T = —j t2—50a/4n,b/4n(t)_‘i‘.
0 (0] 0

In the entire function (5.17) we now suppose that Re 2 — s > 3 (i.e., Re s < 3)
so that we can evaluate this last integral as an infinite sum. Using (4.6) again,
inserting the definition (5.14), and interchanging summation and integration,
we obtain

©

J t2~s0a/4n,b/4n(t) dt — ns—Zr(z _ S) Z m- we(Zﬂi/“-")m'(a.b)|m'*2(2‘3).

4
[¢] mez7?

Thus, for Re 2 — s > 3, the right side of (5.17) is equal to

. s s— 1 m-w
—1(4}’1)1 2 T 2F(2 — S)Z ZZZW m (518)
where for me 7?2
Smdzef Z 1n(a + bi)et2ritdmm(a.b) (5.19)
O0<a,b<4n

Lemma. If m, + my,i is not in the ideal (1 + i), then S, =0, whereas if
m, + myi = + i)x with xe Z[i], then S,, = 2x,(x)g9(x,), where g(yx,) is the
Gauss sum defined in Proposition 4 of §11.3 (see (3.9)).

Before proving the lemma, we show how the functional equation in the
theorem follows immediately from it. Namely, if we make the substitution
m-w=m, +m,i = (1 + i)xin the sum in (5.18), the lemma gives us

m-w 2(1 +)x , ,
T = T 0 ()9 ()
m§2 |m|2<2—s) erZ[i] |(1 + i)x|2‘2*s)7 )

=+ 02 (%) @+20n Y 70N
xeZ[i]
by Proposition 4. But this last sum is 4L(E,, 2 — s), by (5.8). Bringing this
all together, we conclude that for Re 2 — s > 3 the right side of (5.17) is
equal to

@) BT (2 — 5)(1 4 )27 <_72> Q2 + 2i)nL(E,, 2 — 5)
(5.20)

= (%) 5702 — 5)(8n?) SL(E,, 2 — ).

On the other hand, if we bring the term (\/N/2)* over to the right in the
functional equation (5.11)—(5.12) in the theorem, we find that what we want
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to prove is:
7T ($)L(E,, 5) = (“72) N2 Q@r)*(/N)* T Q2 — $)L(E,, 2 — 3)

N <_72> (N/4)l—sns—2r(2 - S)L(En’ 2-- S)'

And this is precisely (5.20).
Thus, to finish the proof of the theorem for odd #, it remains to prove
the lemma.

PROOF OF LEMMA. First suppose that m, + m,i is not divisible by 1 + i. This
is equivalent to saying that m, and m, have opposite parity, i.e., their sum
is odd. Now as a, b range from 0 to 4n, the Gaussian integer a + bi runs
through each residue class modulo (2 + 2i)n exactly twice. Each time gives
the same value of y,(a + bi), since y,(a + bi) depends only on what a + bi
is modulo »n" = (2 + 2i)n. But meanwhile, the exponential terms in the two
summands have opposite sign, causing the two summands to cancel. To see
this, we observe that if a, + b,/ and a, + b,i are the two Gaussian integers
in different residue classes modulo 4n but the same residue class modulo
(2 + 2i)n, then a, + b,i — (a, + b,i) = (2 + 2i)n (mod 4n), and so

e(21ti/4n)m<((