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Introduction

The theory of Teichmiiller spaces studies the different conformal structures
on a Riemann surface. After the introduction of quasiconformal mappings
into the subject, the theory can be said to deal with classes consisting of
quasiconformal mappings of a Riemann surface which are homotopic
modulo conformal mappings.

It was Teichmiiller who noticed the deep connection between quasicon-
formal mappings and function theory. He also discovered that the theory
of Teichmiiller spaces is intimately connected with quadratic differentials.
Teichmiiller ([1], [2]) proved that on a compact Riemann surface of genus
greater than one, every holomorphic quadratic differential determines a quasi-
conformal mapping which is a unique extremal in its homotopy class in the
sense that it has the smallest deviation from conformal mappings. He also
showed that all extremals are obtained in this manner. It follows that the
Teichmiiller space of a compact Riemann surface of genus p > 1 is homeo-
morphic to the euclidean space R®7~S.

Teichmiiller’s proofs, often sketchy and intermingled with conjectures, were
put on a firm basis by Ahlfors [1], who also introduced a more flexible defini-
tion for quasiconformal mappings. The paper of Ahlfors revived interest in
Teichmiiller’s work and gave rise to a systematic study of the general theory
of quasiconformal mappings in the plane.

Another approach to the Teichmiiller theory, initiated by Bers in the early
sixties, leads to quadratic differentials in an entirely different manner. This
method is more general, in that it can also be applied to non-compact Rie-
mann surfaces. The quadratic differentials are now Schwarzian derivatives of
conformal extensions of quasiconformal mappings considered on the uni-
versal covering surface, the extensions being obtained by use of the Beltrami
differential equation.



2 Introduction

The development of the theory of Teichmiiller spaces along these lines
gives rise to several interesting problems which belong to the classical theory
of univalent analytic functions. Consequently, in the early seventies a special
branch of the theory of univalent functions, often studied without any con-
nections to Riemann surfaces, began to take shape.

The interplay between the theory of univalent functions and the theory
of Teichmiiller spaces is the main theme of this monograph. We do give a
proof of the above mentioned classical uniqueness and existence theorems of
Teichmiiller and discuss their consequences. But the emphasis is on the study
of the repercussions of Bers’s method, with attention both to univalent func-
tions and to Teichmiiller spaces. It follows that even though the topics dealt
with provide an introduction to the Teichmiiller theory, they leave aside
many of its important aspects. Abikoff’s monograph [2] and the surveys of
Bers [10], [11], Earle [2], Royden [2], and Kra [2] cover material on Teich-
miiller spaces not treated here, and the more algebraic and differential geo-
metric approaches, studied by Grothendieck, Bers, Earle, Thurston and many
others, are not considered.

There is no clearly best way to organize our material. A lot of background
knowledge is needed from the theory of quasiconformal mappings and of
Riemann surfaces. A particular difficulty is caused by the fact that the inter-
action between univalent functions and Teichmiiller spaces works in both
directions.

Chapter I is devoted to an exposition of quasiconformal mappings. We
have tried to collect here all the basic results that will be needed later. For
detailed proofs we usually refer to the monograph Lehto-Virtanen [1]. The
exceptions are cases where a brief proof can be easily presented or where we
have preferred to use different arguments or, of course, where no precise
reference can be given.

Chapter II deals with problems of univalent functions which have their
origin in the Teichmiiller theory. The leading theme is the interrelation be-
tween the Schwarzian derivative of an analytic function and the complex
dilatation of its quasiconformal extension. A large fraction of the results of
Chapter Il comes into direct use in Chapter III concerning the universal
Teichmiiller space. This largest and, in many ways, simplest Teichmiiller
space links univalent analytic functions and general Teichmiiller spaces.

A presentation of the material contained in Chapters II and 111 paralleling
the introduction of the Teichmiiller space of an arbitrary Riemann surface
would perhaps have provided a better motivation for some definitions and
theorems in these two chapters. But we hope that the arrangement chosen
makes the theory of Teichmiiller spaces of Riemann surfaces in Chapter V
more transparent, as the required hard analysis has by then largely been dealt
with. Also, we obtain a clear division of the book into two parts: Chapters I,
IT and IIT concern complex analysis in the plane and form an independent
entity even without the rest of the book, while Chapters IV and V are related
to Riemann surfaces.
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The philosophy of Chapter IV on Riemann surfaces is much the same as
that of Chapter I. The results needed later are formulated, and for proofs
references are usually made to the standard monographs of Ahlfors—Sario
[1], Lehner [1], and Springer [1]. An exception is the rather extensive treat-
ment of holomorphic quadratic differentials, which are needed in the proof of
Teichmiiller’s uniqueness theorem. Here we have largely utilized Strebel’s
monograph [6].

Finally, after all the preparations in Chapters I-1V, Teichmiiller spaces of
Riemann surfaces are taken up in Chapter V. We first discuss their various
characterizations and, guided by the results of Chapter III, develop their
general theory. After this, special attention is paid to Teichmiiller spaces of
compact surfaces. The torus is first treated separately and then, via the study
of extremal quasiconformal mappings, compact surfaces of higher genus are
discussed.

Each chapter begins with an introduction which gives a summary of its
contents. The chapters are divided into sections which consist of numbered
subsections. The references, such as 1.2.3, are made with respect to this three-
fold division. In references within a chapter, the first number is omitted.

In this book, the approach to the theory of Teichmiiller spaces is based on
classical complex analysis. We expect the reader to be familiar with the
theory of analytic functions at the level of, say, Ahlfors’s standard textbook
“Complex Analysis”. Some basic notions of general topology, measure and
integration theory and functional analysis are also used without explana-
tions. Some acquaintance with quasiconformal mappings and Riemann sur-
faces would be helpful, but is not meant to be a necessary condition for
comprehending the text.



CHAPTER 1

Quasiconformal Mappings

Introduction to Chapter I

Quasiconformal mappings are an essential part of the contents of this book.
They appear in basic definitions and theorems, and serve as a tool over and
over again.

Sections 1-4 of Chapter I aim at giving the reader a quick survey of the
main features of the theory of quasiconformal mappings in the plane. Com-
plete proofs are usually omitted. For the details, an effort was made to give
precise references to the literature, in most cases to the monograph Lehto—
Virtanen [1].

Section 1 introduces certain conformal invariants. The Poincaré metric is
repeatedly used later, and conformal modules of path families appear in the
characterizations of quasiconformality.

In section 2, quasiconformality is defined by means of the maximal dilata-
tion of a homeomorphism. Certain compactness and distortion theorems,
closely related to this definition, are considered. Section 3 starts with the
classical definition of quasiconformal diffeomorphisms and explains the con-
nections between various geometric and analytic properties of quasiconfor-
mal mappings.

Section 4 is concerned with the characterization of quasiconformal map-
pings as homeomorphic solutions of Beltrami differential equations. Com-
plex dilatation, a central notion throughout our presentation, is introduced,
and the basic theorems about the existence, uniqueness and representation of
a quasiconformal mapping with prescribed complex dilatation are discussed.

The remaining two sections are more self-contained than sections 1-4, and
their contents are more clearly determined by subsequent applications. Sec-
tion S is devoted to the now classical problem of extending a homeomorphic
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self-mapping of the real axis to a quasiconformal self-mapping of the half-
plane. The solution is used later in several contexts.

Section 6 deals with quasidiscs. Along with the complex dilatation and
the Schwarzian derivative the notion of a quasidisc is a trademark of this
book. For this reason, we have given a fairly comprehensive account of their
numerous geometric properties, in most cases with detailed proofs.

1. Conformal Invariants
1.1. Hyperbolic Metric

In the first three chapters of this monograph, we shall be concerned primarily
with mappings whose domain and range are subsets of the plane. Unless
otherwise stated, we understand by “plane” the Riemann sphere and often
use the spherical metric to remove the special position of the point at infinity.

In addition to the euclidean and spherical metrics, we shall repeatedly
avail ourselves of a conformally invariant hyperbolic metric. In the unit
disc D = {z||z| < 1} one arrives at this metric by considering M&bius trans-

formations z —» w,

w— wq o Z—Zg
— = . —, Zg, Wo€ED,
[ — wow 1 —2zyz

which map D onto itself. By Schwarz’s lemma, there are no other conformal
self-mappings of D. It follows that the differential
|dz|
1—|z|?

defines a metric which is invariant under the group of conformal mappings of
D onto itself.

The shortest curve in this metric joining two points z, and z, of D is the
circular arc which is orthogonal to the unit circle. The hyperbolic distance
between z, and z, is given by the formula

[1 =2z, + [z, — 2,

1
h(z;,z,) = ;log (L.1)

2 11 =225 — |z, — 25|

The Riemann mapping theorem says that every simply connected domain
A of the plane with more than one boundary point is conformally equivalent
to the unit disc. Let /: A —» D be a conformal mapping, and

PR V(G
1—1f@)1?
Then the differential
na(z)|dz]
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defines the hyperbolic (or Poincaré) metric of A. The function 7 ,, which is
called the Poincaré density of A, is well defined, for it does not depend on the
particular choice of the mapping f. In the upper half-plane, 1 ,(z) = 1/(2Im z).
The geodesics, which are preserved under conformal mappings, are called
hyperbolic segments.

The Poincaré density is monotonic with respect to the domain: If 4, is a
simply connected subdomain of 4 and ze 4,, then

Na(2) < 14,(2). (1.2)

For let f and f; be conformal maps of 4 and 4, onto the unit disc D, both
vanishing at z. Then 7,4(z) = | f'(z)|, n4,(z) = | f{(2)I, and application of Sch-
warz’s lemma to the function fo f;7! yields (1.2).

Similar reasoning gives an upper bound for 5 ,(z) in terms of the euclidean
distance d(z,0A4) from z to the boundary of A. Now we apply Schwarz’s
lemma to the function { - f(z + d(z,0A){) and obtain

< . 1.3
na(z) < d(z.54) (1.3)
For domains A not containing co we also have the lower bound
1
Na(2) = ————. (1.4)

4d(z,0A)

This is proved by means of the Koebe one-quarter theorem (Nehari [2],
p. 214): If f is a conformal mapping of the unit disc D with f(0) = 0, f'(0) =
1, f(z) # oo, then d(0,df(D)) > 1/4. We apply this to the function w—
(g(w) — z)/g'(0), where g is a conformal mapping of D onto A with g(0) = z.
Because 1 4(z) = 1/|g'(0)], the inequality (1.4) follows. Both estimates (1.3) and
(1.4) are sharp.

There is another lower estimate for the Poincaré density which we shall
need later. Let 4 be a simply connected domain and w,, w, finite points
outside A. Then

Wy — w,|

z) > (1.5)
4z — wyllz — wy]

na(

for every ze A. To prove (1.5) we observe that z — f(z) = (z — w,)/(z — w,)
maps A onto a domain A’ which does not contain 0 or oo. Hence, by the
conformal invariance of the hyperbolic metric and by (1.4),

1 (wy — w,|
| > : )
4d(f(2),04) |z — w,|?

Since d(f(z), 04"y < | f(2)], the inequality (1.5) follows.

The hyperbolic metric can be transferred by means of conformal mappings
to multiply connected plane domains with more than two boundary points
and even to most Riemann surfaces. This will be explained in IV.3.6. Finally,

n4(2) = n4(f(2)|f(2)
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in V.9.6 we define the hyperbolic metric on an arbitrary complex analytic
manifold.

1.2. Module of a Quadrilateral

A central theme in what follows is to measure in quantitative terms the
deviation of a homeomorphism from a conformal mapping. A natural
way to do this is to study the change of some conformal invariant under
homeomorphisms.

In 1.6 we shall exhibit a general method to produce conformal invariants
which are appropriate for this purpose. Hyperbolic distance is not well suited
to this objective, whereas two other special invariants, the module of a quad-
rilateral and that of a ring domain, have turned out to be particularly im-
portant. We shall first discuss the case of a quadrilateral.

A Jordan curve is the image of a circle under a homeomorphism of the
plane. A domain whose boundary is a Jordan curve is called a Jordan domain.

Let f be a conformal mapping of a disc D onto a domain A. Suppose that
A is locally connected at every point z of its boundary JA4, i.e., that every
neighborhood U of z in the plane contains a neighborhood V of z, such that
V n A is connected. Under this topological condition on A, a standard length-
area argument yields the important result that f can be extended to a homeo-
morphism between the closures of D and A. It follows, in particular, that 64
is a Jordan curve (Newman [1], p. 173).

Conversely, a Jordan domain is locally connected at every boundary point.
We conclude that a conformal mapping of a Jordan domain onto another
Jordan domain has a homeomorphic extension to the boundary, and hence
to the whole plane. For such a mapping, the images of three boundary points
can, modulo orientation, be prescribed arbitrarily on the boundary of the
image domain. In contrast, four points on the boundary of a Jordan domain
determine a conformal module, an observation we shall now make precise.

A quadrilateral Q(z,,z,,25,2,) is @ Jordan domain and a sequence of four
points z,, z,, z3, z, on the boundary dQ following each other so as to
determine a positive orientation of dQ with respect to Q. The arcs (z,,z,),
(z5,23), (z3,24) and (z,,z,) are called the sides of the quadrilateral.

Let f be a conformal mapping of Q onto a euclidean rectangle R. If the
boundary correspondence is such that f maps the four distinguished points
Zy, Z,, Z3, Z4 to the vertices of R, then the mapping f is said to be canonical,
and R is called a canonical rectangle of Q(z,,z,,23,24). It is not difficult to
prove that every quadrilateral possesses a canonical mapping and that the
canonical mapping is uniquely determined up to similarity transformations.

The existence can be shown if we first map Q conformally onto the upper
half-plane, arrange the four distinguished points in pairwise symmetric posi-
tions with respect to the origin, and finally perform a conformal mapping by
means of a suitable elliptic integral. The uniqueness part follows directly from
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the reflection principle. (For the details, see Lehto-Virtanen [1]; for this
monograph, to which several references will be made in Chapter I, we shall
henceforth use the abbreviation [LV].)

Now suppose that R = {x + iy|0 < x < a,0 < y < b} is a canonical rect-
angle of Q(z,, z,, 23, z,) and that the first side (z,, z,) corresponds to the line
segment 0 < x < a. The number a/b, which does not depend on the parti-
cular choice of the canonical rectangle, is called the (conformal) module of the
quadrilateral Q(z,, z,, z5, z,). We shall use the notation

M(Q(zy,2;,25,24)) = a/b

for the module. It follows from the definition that M(Q(z,,z,,23,24)) =
l/M(Q(ZZ,Z3,Z4,Zl)).

From the definition it is also clear that the module of a quadrilateral is
conformally invariant, i.e., if f is a conformal mapping of a domain 4 and
Q(z,,2,,23,24) is a quadrilateral such that Q = 4 and f(Q) is a Jordan do-

main’ then M(Q(21322323,24)) = M(f(Q)(f(Zl)’f(zz)’f(z3)5f(24)))~

1.3. Length-Area Method

It is possible to arrive at the notion of the module of a quadrilateral through
an extremal problem, by use of a length-area method. This approach has
turned out to be extremely useful and it leads to far-reaching generalizations,
even beyond complex analysis. In the general situation we shall discuss it in
1.6. In explicit form the idea was announced by A. Beurling in the 1946
Scandinavian Congress of Mathematicians in Copenhagen, and a few years
later it was used systematically for the first time by L. Ahlfors and A. Beurling.

In order to arrive at this characterization of the module we consider the
canonical mapping f of the quadrilateral Q(z,, z,, z3, z,) onto the rectangle
R ={u+iv0<u<a0<v<b} Then

Jj | f'(z)]*dxdy = ab.
0

Let I" be the family of all locally rectifiable Jordan arcs in Q which join the
sides (z,,z,) and (z3,2,). Then

J |f'(2)||dz| > b

for every y e I', with equality if y is the inverse image of a vertical line segment
of R joining its horizontal sides. Hence
jj |f'(2)]* dx dy
0

3
(infj If'(Z)lleI>
yel Jy

M(Q(thz,z3az4))= (16)
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We can get rid of the canonical mapping f if we introduce the family P
whose elements p are non-negative Borel-measurable functions in Q and
satisfy the condition j'yp(z)ldzl > 1 for every yeI'. With the notation

m,(Q) = fj p*dxdy,
Q

M(Q(z1,25,23,24)) = inf m,(Q). (1.7)

peP

we then have

This basic formula can be proved by a length-area reasoning. Define for every
given pe P a function p, in the canonical rectangle R by (p,o f)|f’| = p.
Then, by Fubini’s theorem and Schwarz’s inequality,

a b 2
m,(Q) = JJ pidudy le du<J p(u+ iv)dv> :
R bJo 0

The last integral at right is taken over a line segment whose preimage is in I'.
Therefore, the integral is >1, and so m,(Q) > a/b = M(Q(z,,2,,23,24))- To
complete the proof we note that p = |f’|/b belongs to P. By (1.6) this is an
extremal function for which m,(Q) = M(Q(z,,2,,23,24))-

1.4. Rengel’s Inequality

The power of the characterization (1.7) is that it yields automatically upper
estimates: M(Q(z,,25,23,24)) < m,(Q) for any pe P. An important applica-
tion is obtained if we choose p to be the euclidean metric. Let s; denote the
euclidean distance of the sides (z,,z,) and (z3,z,) in Q, and m the euclidean
area. Then (1.7) gives Rengel’s inequality

m(Q)

M(Q(zy,23,23,24)) < 2
1

(1.8)

It is not difficult to prove that equality holds if and only if Q(z,,2,,23,24) is
a rectangle with its usual vertices ([LV], p. 22).

Using (1.8) we can easily prove that the module depends continuously on
the quadrilateral. For a precise formulation of the result let us consider a
sequence of quadrilaterals Q,(z},z25,25,24), n =1, 2, .... Suppose that this
sequence converges to Q(z,,z,,23,2,) from inside, i.e., 0, < Q for every n and
to every ¢ > 0 there corresponds an n, such that for n > n, every point of the
sides of Q,(z", 24,24, 2%) has a spherical distance <e from the corresponding
sides of Q(z,,z,,23,24). Then

lim M(Q,,(Z';,Zg, 23’22)) = M(Q(zla ZZ,Z3aZ4))‘
To prove this, we only need to carry out a canonical mapping of Q(z,,z,,
z5,2,) and apply Rengel’s inequality to the image of Q,(z1,23,23,23)-
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Rengel’s inequality also makes it possible to characterize conformality in
terms of the modules of quadrilaterals, without any a priori differentiability:

Theorem 1.1. Let f: A — A’ be a sense-preserving homeomorphism which leaves
invariant the modules of the quadrilaterals of the domain A. Then f is conformal.

We sketch a proof. Map a quadrilateral of A and its image in A’ canonically
onto identical rectangles R and R’ whose sides are parallel to the coordinate
axes. Given a point z = x + iy of R, we consider the two rectangles R, and
R, onto which R is divided by the vertical line through z. Since all modules
remain invariant, it follows from Rengel’s inequality, with regard to the
possibility for equality, that the images of R, and R, in R’ are also rectangles
(cf. [LV], p. 29). But then the real part of the image of z must be x. A similar
argument shows that the imaginary part of z does not change either. Thus the
induced mapping of R onto R’ is the identity, and the conformality of f
follows.

1.5. Module of a Ring Domain

A doubly connected domain in the extended plane is called a ring domain.
Unlike simply connected domains, which fall into three conformal equiva-
lence classes, ring domains possess infinitely many conformal equivalence
classes. A counterpart for Riemann’s mapping theorem says that a ring
domain can always be mapped conformally onto an annulus r < |z| < R,
where r > 0, R < oo. It follows that every ring domain B is conformally
equivalent to one of the following annuli: 1° 0 < |z] < 00, 2° | < |z| < o0, 3°
1 <|z] < R, R < 0. In case 3° the number R determines the equivalence
class, and

M(B) =logR

is called the module of B. In cases 1° and 2° the module of B is said to be
infinite. A conformal mapping of B onto an annulus is called a canonical
mapping of B.

Just as in the case of quadrilaterals, the module of ring domains can also
be defined without reference to canonical mappings. Let I' now be the family
of all rectifiable Jordan curves in a ring domain B which separate the bound-
ary components of B. As before, P is the family of all non-negative Borel-
measurable functions in B with |, p|dz| > 1 for every yeT. Then

M(B) = 2r inf m,(B).
peP

By use of this formula, many geometrically more or less obvious state-
ments can be rigorously founded. We list here some applications. The first
result says that the module cannot be large if neither of the boundary com-
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ponents is small in the spherical metric: Let B be a ring domain which sepa-
rates the points a,, b, from the points a,, b,. If the spherical distance between
a;and b, i = 1,2,is >0, then

M(B) < n2/25* (1.9)

The second estimate shows that if the boundary components are close to
each other and none of them is small, then the module is small. More pre-
cisely: Let B be a ring domain whose boundary components have spherical
diameters > 6 and a mutual spherical distance <e¢ < 8. Then

tan(d/2)
tan(e/2)

For the proofs of (1.9) and (1.10), see [LV], p. 34.

The third inequality solves an extremal problem. We introduce the Grétzsch
ring domain whose boundary components are the unit circle and the line
segment {x|0 < x <r}, 0 <r < 1; let u(r) denote its module. If B is a ring
domain separating the unit circle from the points 0 and r, then

M(B) < u(r).

This was proved by Grotzsch in 1928 ([LV], p. 54).

A simple application of the reflection principle shows that the Teichmiiller
ring domain B bounded by the line segments —r; < x < 0and x > r, has the
module

M(B) < n/log (1.10)

M(B) = 2u((ry/(ry + 13))'?). (1.11)

This domain is also connected with an extremal problem: If the ring domain
B separates the points 0 and z, from the points z, and oo, then

M(B) < 2u((1z,1 /12, ] + 1221))). (1.12)

Inequality (1.12) generalizes a result of Teichmiiller; for the proof we refer
to [LV], p. 56.

1.6. Module of a Path Family

We showed above that the modules of quadrilaterals and ring domains can
be defined with the aid of certain path families. We shall now consider the
more general situation in which an arbitrary family of paths is given.

By our terminology, a path is a continuous mapping of an interval into the
plane and a curve the image of the interval under a path. We feel free not to
make a very clear distinction between a path and a curve, if there is no fear
of confusion, e.g., to use the same symbol for a path and its image.

Let A be a domain and I" a family of paths in 4. We associate with I" the
class P of non-negative Borel measurable functions p in A4 which satisfy the
condition
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J pldz| > 1

for every locally rectifiable y in I'; such a p is said to be admissible for I'". The
number

M(T) = inf jj prdxdy
peP A

is called the module of the path family T'.

The module of a quadrilateral and of a ring domain are special cases of this
notion, whose properties are studied in [LV], pp. 132-136.

If f: A— A’ is a homeomorphism, we define f(I') = { foy|yeT}. It follows
from the definition of the module that if f is conformal, then M(f(I')) =
M(I), i.e., the module of a path family is conformally invariant.

2. Geometric Definition of Quasiconformal
Mappings

2.1. Definitions of Quasiconformality

Given a domain A, consider all quadrilaterals Q(z,,2,,23,2,) With Q < A.
Let f: A —» A’ be a sense-preserving homeomorphism. The number

sy MU U 1), 1G22, S o))
Q M(Q(z,,22,23,24))

is called the maximal dilatation of f. It is always > 1, because the modules of
0(z,,25,25,24) and Q(z,, 23,24, z,) are reciprocals.

Since the module is a conformal invariant, the maximal dilatation of a
conformal mapping is 1. By Theorem 1.1, the converse is also true: if the
maximal dilatation of f is equal to 1, then f is conformal. From this observa-
tion we arrive conveniently at the notion of quasiconformality.

Definition. A sense-preserving homeomorphism with a finite maximal dilata-
tion is quasiconformal. If the maximal dilatation is bounded by a number K,
the mapping is said to be K-quasiconformal.

This “geometric” definition of quasiconformality was suggested by Pfluger
[1]in 1951, and its first systematic use was by Ahlfors [1] in 1953.

By this terminology, f is 1-quasiconformal if and only if f is conformal. If
f is K-quasiconformal, then M(f(Q)) > M(Q)/K for every quadrilateral in
A. A mapping f and its inverse ! are simultaneously K-quasiconformal.
From the definition it also follows that if f: A — B is K,-quasiconformal and
g: B — C is K,-quasiconformal, then go f is K, K,-quasiconformal.
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The definition of quasiconformality could equally well have been given in
terms of the modules of ring domains: A sense-preserving homeomorphism f of
a domain A is K-quasiconformal if and only if the module condition

M(f(B)) < KM(B) (2.1)

holds for every ring domain B, B — A.

The necessity of the condition can be established easily if the canonical
annulus of B, cut along a line segment joining the boundary components, is
transformed to a rectangle with the aid of the logarithm. To prove the suf-
ficiency requires somewhat more elaborate module estimations ([LV], p. 39).

Inequality (2.1) shows that a quasiconformal mapping cannot “blow up”
a point, and the well known result on the removability of isolated singu-
larities of conformal mappings can be readily generalized ([LV], p. 41):
A K-quasiconformal mapping of a domain A with an isolated boundary point
a can be extended to a K-quasiconformal mapping of A U {a}.

We mention here another generalized extension theorem (cf. 1.2): A quasi-
conformal mapping of a Jordan domain onto another Jordan domain can be
extended to a homeomorphism between the closures of the domains. This can be
proved by a modification of the proof for conformal mappings ([LV], p. 42),
or deduced directly from the corresponding result for conformal mappings
by use of Theorem 4.4 (Existence theorem for Beltrami equations).

The modules of quadrilaterals and ring domains, which we used to charac-
terize quasiconformality, are modules of certain path families. As a matter of
fact, the following general result, proved by Vdiséld in 1961, is true.

A K-quasiconformal mapping f of a domain A satisfies the inequality

M(f(T) < KM(T) (2.2)

for every path family T of A.

Hersch, one of the pioneers in applying curve families to quasiconformal
mappings, asked as early as 1955 in his thesis whether (2.2) could be true for
all path families. At that time, certain “analytic” properties of quasiconformal
mappings, which the proof ([LV], p. 171) seems to require, were not yet
known. These properties will be discussed in section 3. The reason we men-
tion the result (2.2) here is that we could have taken it as a definition for
K-quasiconformality. In a way, a characterization by means of the general
relation (2.2) is more satisfactory than the definition which is based on the
special notion of the module of a quadrilateral. However, we have preferred
to use quadrilaterals, not merely for historical reasons, but also to remain
true to the presentation in the monograph [LV], to which repeated refer-
ences are being made.

2.2. Normal Families of Quasiconformal Mappings

Let us consider a family whose elements are mappings of a plane domain A
into the plane. Such a family is said to be normal if every sequence of its
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elements contains a subsequence which is locally uniformly convergent in A.
To cover the possibility that oo lies in 4 or in the range of the mappings, we
use the spherical metric. If oo is not there, we can of course switch to the
topologically equivalent euclidean metric.

If a family is equicontinuous, then it is normal. This is the result on which
the proofs for a family to be normal are usually based in complex analysis.
For instance, if the family consists of uniformly bounded analytic functions,
equicontinuity follows immediately from Cauchy’s integral formula, and so
normality can be deduced. A generalization of this result, proved by use of
the elliptic modular function, says that if the functions are meromorphic and
omit the same three values, then the family is normal.

Much less is needed for normality if the functions are assumed to be
injective.

Lemma 2.1. Let F be a family of K-quasiconformal mappings of a domain A.
If every f € F omits two values which have a mutual spherical distance >d > 0,
then F is equicontinuous in A.

Proor. Let s denote the spherical distance. Given an ¢, 0 < ¢ <d, and
a point zoe A, we consider a ring domain B = {z|d < s(z,z,) < r} with
{z]s(z,20) < r} = A, and choose § > 0 so small that M(B) > n?K/2¢* Let z,
be an arbitrary point in the neighborhood V = {z|s(z,z,) < 8} of z,.

Let us consider an fe€ F. By assumption, f omits two values a and b with
s(a,b) = d. The ring domain f(B) separates the points f(z,), f(z,) from the
points a, b. If n = min(d, s(f(z,), f(z,))), it follows from formula (1.9) that
M(f(B)) < 2n%/n?. This yields n < ¢ and hence the desired estimate s(f(z,),
f(2)) < ¢ whenever ze V, for every feF. O

Lemma 2.1 yields various criterions for a family to be equicontinuous and
hence normal. The following will come into use several times.

Theorem 2.1. A family F of K-quasiconformal mappings of a domain A is
equicontinuous and normal, if for three fixed points z,, z,, z3 of A and for
every f€F, the distances s(f(z;), f(z;)) are uniformly bounded away from zero
forij=1,2,3,i%#]j.

Proor. By Lemma 2.1, the family F is equicontinuous in A\{z;,z;}, i, j =
1,2, 3,i # j, and hence throughout A. O

2.3. Compactness of Quasiconformal Mappings

Let (f,) be a sequence of K-quasiconformal mappings of a domain A which
is locally uniformly convergent in A. If the limit function f is not constant, it
must take at least three different values, because it is continuous. It follows
from Theorem 2.1 that the functions f, constitute an equicontinuous family.
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K-quasiconformal mappings possess the same compactness property as
conformal mappings.

Theorem 2.2. The limit function f of a sequence (f,) of K-quasiconformal
mappings of a domain A, locally uniformly convergent in A, is either a con-
stant or a K-quasiconformal mapping.

Proor. If f is a homeomorphism, then it follows easily from the definition of
K-quasiconformality and from the continuity of the module of quadrilaterals
that f is K-quasiconformal ([LV], p. 29). A continuous injective map of an
open set of the plane into the plane is a homeomorphism (Newman [1],
p. 122). Therefore, it is sufficient to show that a non-constant limit function
f is injective. This we can prove, utilizing the fact that the family {f,} is
equicontinuous, with the aid of the module estimate (1.10) ([LV], p. 74). O

In case every f, maps A onto a fixed domain A’, more can be said about
the limit function.

Theorem 2.3. Let A be a domain with at least two boundary points and
(f,) a sequence of K-quasiconformal mappings of A onto a fixed domain
A'. If the sequence (f,) converges in A, then the limit function is either a
K-quasiconformal mapping of A onto A', or a mapping of A onto a boundary
point of A'.

Here we need not assume that ( f,) is locally uniformly convergent, because
we conclude from Lemma 2.1 that {f,} is a normal family. The theorem
follows from equicontinuity and normal family arguments ([LV], p. 78).

In 4.6 we shall study the convergence of K-quasiconformal mappings f,
more closely. It turns out that, even though the mappings f, tend uniformly
towards a K-quasiconformal limit f, the local mapping properties of f and
the approximating functions f, may be quite different.

2.4. A Distortion Function

In later applications we shall often encounter a distortion function which we
shall now introduce, starting from its simple geometric interpretation.

Let F be the family of K-quasiconformal mappings of the plane which map
the real axis onto itself and fix the points —1, 0 and cc. By Theorem 2.1, F is
a normal family, and so

A(K) = max{f(1)|fe F} (2.3)

exists. This defines our distortion function 4, for which we shall now derive a
more explicit expression.
Consider the quadrilateral H(— 1,0, 1, o), where H is the upper half-plane.
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The Mobius transformation z — (1 + z)/(1 — z) maps it onto the quadri-
lateral H(0, 1, oo, — 1). Hence, these two quadrilaterals have the same module.
On the other hand, the modules are reciprocal, and so M(H(—1,0, 1, ®0)) =
M(H(0,1,00, —1)) = 1.

Let us choose an f e F and write t = f(1). We form the Teichmiiller ring B
bounded by the line segments —1 < x <0 and x > t. If B is conformally
equivalent to the annulus A = {z|1 < |z| < R}, then the canonical mapping
of B can be so chosen that the upper half of B is conformally equivalent to
the upper half of A. By applying the mapping z — log z we conclude that

M(H(O,t, o0, — 1)) = M(B)/.

By formula (1.11), M(B) = 2u((1 + t)~*2). Since f is K-quasiconformal,
M(H(0,t,00, —1)) < KM(H(0, 1,00, — 1)) = K. If we combine all these esti-
mates, we obtain

t=f(1) <(u'(nK/2)"% — 1. (2.4)

In order to show that there is an f for which equality holds, we first make
a general remark: Let f be a homeomorphism of a domain A4 and I a closed
line segment which lies in 4 with the possible exception of its endpoints. Then
f has the same maximal dilatation in A and in A\I. This can be proved by
means of Rengel’s inequality ([LV], p. 45), or by making use of the analytic
characterization of quasiconformality which will be given in 3.5. It follows
that the reflection principle for conformal mappings generalizes as such for
K-quasiconformal mappings. In particular, a K-quasiconformal self-mapping
of the upper half-plane can be extended by reflection in the real axis to a
K-quasiconformal mapping of the plane.

Let us now return to (2.4). Let f; be the canonical mapping of the quadri-
lateral H(0,1, co, — 1) onto the square Q(0, 1,1 + i,i), « the affine stretching
X + iy - Kx + iy, and f, the canonical mapping of H(0,t, co, —1) onto the
rectangle R(0, K, K + i,i). Then the mapping f which is equal to f, 'oao f;
in H and its mirror image in the lower half-plane is K-quasiconformal in the
plane. For this f, equality holds in (2.4). It follows that

MK) = (11 (nK/2))7? — 1.
From the obvious result A(1) = 1 we conclude that

u(1/y/2) = n/2. (2.5)

Typically the reasoning goes in the other direction, in that we retrieve in-
formation about A(K) by estimating u(r). For instance, we obtain in this way

AMK) = {ge™ — 1 + o(1), (2.6)
with a positive remainder term o(1) as K — oo ([LV], p. 82). Also,

A(K) < exp(4.39(K — 1))
(Beurling—Ahlfors [1]), which tells about the behavior of A(K) as K — 1. In
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particular, we see that 1 is continuous at K = 1; continuity at an arbitrary K
follows from the continuity of r — u(r).

2.5. Circular Distortion

A conformal mapping of the plane which fixes 0 and co maps the family
of circles centered at the origin onto itself. Under normalized K-quasicon-
formal mappings the images of these circles have “bounded distortion”. To
be precise:

Theorem 2.4. Let f be a K-quasiconformal mapping of the plane fixing 0 and
00. Then for every r > 0,

max,|f(re'?)|
W < c¢(K), 2.7

where the constant ¢(K) depends only on K.

There are many ways to prove this important theorem. A normal family
argument shows that a finite bound ¢(K) must exist. A quantitative esti-
mate is obtained as follows. Let z, and z, be points on the circle |z| =
r at which the minimum and maximum of |f(z)| are attained. For B’ =
{wlmin,| f(re'®)| < |w| < max,|f(re’*)|}, let B be the inverse image of B'.
Then B separates the points 0, z;, from the points z,, co. Hence, by (1.12)
and (2.5),

M(B) < 2u((1z,\/(121] + 12:1))"2) = 2p(1/3/2) = .

Consequently, M(B') < KM(B) < =K, and it follows that (2.7) holds for
c(K) = e™ .

The sharp bound in (2.7) is A(K) (proved by Lehto—Virtanen—Véisild in
1959). This follows from the fact that, as a generalization of (2.3), A(K) is the
maximum of |f(z)| on the unit circle in the family of K-quasiconformal
mappings of the plane which fix —1, 0 and oo but which are not required to
map the real axis onto itself. There seems to be no easy way to prove this
result.

Theorem 2.4, in a form in which the value of the sharp bound is not
needed, will render us valuable service in section 6 when we study the geo-
metry of quasidiscs. With these applications in mind, we draw here a further
conclusion from (2.7).

Let f be a K-quasiconformal mapping of the plane fixing co. We infer from
(2.7) that if |z, — zo] < |z, — z,], then

1f(z2) — f(20)] < c(K)|f(z1) — f(20)I- (2.8)

The following generalization is also readily obtained. If |z, — zo| < n|z, — z,,
where n > 1 is an integer, then
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1f(z2) — f(zo)] < ne(K)'| f(z1) — flzo)l- (2.9)
In order to prove this, we denote by (,, k =0, 1, ..., n, the equidistant
points on the ray from z, through z, for which |, — {,—,| = |z, — z,l/n; here

go = 20, {, = z;. By (2.8), | f({x) — f(C-)| < c(K) | f(Ck-1) — f(C-2)| for k =
2, ..., n. Hence, by the triangle inequality,

n—1
1f(z2) = f(zo)l < 1/(Cy) — f(Zo)lkzo c(K)* < ne(K)" | f(&y) = f(z0)l.

By (2.8), | f({y) — f(zo)l < c(K)|f(z1) — f(20)], and (2.9) follows.

We conclude this section with the remark that quasiconformality can be
defined by means of the distortion function H,

H(z) = lim sup M2¥el /(2 £ re’”) — f2)
= P min, | f(z + re) — fG)]

even though we shall not make use of this characterization. A sense-
preserving homeomorphism f of a domain A is K-quasiconformal if and only
if H is bounded in A\{oo, f'(o0)} and H(z) < K almost everywhere in A
([LV], pp. 177-178).

3. Analytic Definition of Quasiconformal
Mappings

3.1. Dilatation Quotient

When the definition of quasiconformality in terms of the modules of quadri-
laterals was given in the early fifties, quasiconformal mappings had been
studied and successfully applied in complex analysis for more than two
decades. Historically, the starting point for generalizing conformal mappings
was to consider, not arbitrary sense-preserving homeomorphisms, but diffeo-
morphisms, i.e., homeomorphisms which with their inverses are continuously
differentiable. We can then generalize the characteristic property of confor-
mal mappings that the derivative is independent of the direction by requiring
that the ratio of the maximum and minimum of the absolute value of the
directed derivatives at a point is uniformly bounded.

We shall now show that this classical definition gives precisely those quasi-
conformal mappings which are difffomorphic. This local approach using
derivatives is often much more convenient than the definition using modules
of quadrilaterals when the problem is checking the quasiconformality of a
mapping given by an analytic expression.
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To make the above remarks precise, we introduce for a sense-preserving
difffomorphism f the complex derivatives

o =3f—if) o =3+ ify),

and the derivative 4, f in the direction o:

flz +re®) — f@

ia

0,f(z) = lim

r—0 re

Then 0, f = df + dfe % and so

maXIa @I =19 + 13f(2)), mlnla f@)) =19/(2)] - 1 (2).

The difference |9f(z)| — |0f (z)| is positive, because the Jacobian J, = |of |2 —
|0f|? is positive for a sense-preserving diffeomorphism. We conclude that the
dilatation quotient
_max,|0,f| _19f| +|9f|
7 mingla,f]  19f1 — 19f]

is finite.

The mapping f is conformal if and only if df vanishes identically. Then 4, f
is independent of a: we have d,f = df = f'. This is equivalent to the dilata-
tion quotient being identically equal to 1.

The dilatation quotient is conformally invariant: If g and h are conformal
mappings such that w = ho fog is defined, then direct computation shows
that D/(z) = D,,(g7'(2)).

3.2. Quasiconformal Diffeomorphisms

For difffomorphisms quasiconformality can be characterized with the aid of
the dilatation quotient.

Theorem 3.1. Let f: A — A’ be a sense-preserving diffeomorphism with the
property
Dy(z) < K

for every ze A. Then f is a K-quasiconformal mapping.

Proor. We pick an arbitrary quadrilateral Q of A. Let w be the mapping
which is induced from the canonical rectangle R(0, M, M + i,i) of Q onto
the canonical rectangle R'(0, M', M’ + i,i) of f(Q). Because of the conformal
invariance of the dilatation quotient, D,, is also majorized by K. Hence
|w.|? < max|d,w|*> < KJ,, and the desired result M’ < KM follows by use
of a customary length-area reasoning:
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M =m(R) = jJ‘ Jw(z)dxdyz—l—JJ |w.(2)|*dx dy
R K ) Jr
1 1 2

M
ZWJO dy<f0 |wx(z)|dx> > MIZ/MK. O

Theorem 3.1 is the classical definition of K-quasiconformality given by
Grotzsch [1] in 1928.
The converse to Theorem 3.1 is as follows:

Theorem 3.2. Let f: A — A’ be a K-quasiconformal mapping. If f is differenti-
able at z,€ A, then

max |0, f(zo)| < Kmin|d, f(zo)l- (3.1)

The idea of the proof is to consider a small square Q centered at z, and
regard it as a quadrilateral with the vertices at distinguished points. The area
and the distance of the sides of f(Q) can be approximated by expressions
involving the partial derivatives of f at z,. Application of Rengel’s inequality
then yields a lower estimate for M(f(Q)) from which the desired inequality
(3.1) follows. (For details we refer to [LV], p. 50.)

By combining Theorems 3.1 and 3.2 we obtain the following characteriza-
tion for quasiconformal diffeomorphisms: A sense-preserving diffeomorphism
f is K-quasiconformal if and only if the dilatation condition D(z) < K holds
everywhere.

The class of K-quasiconformal diffeomorphisms does not possess the com-
pactness property of Theorem 2.2. This is one of the reasons for replacing the
classical definition of Grétzsch by the more general one. Another reason will
be discussed in 4.5.

3.3. Absolute Continuity and Differentiability

We shall soon see that an arbitrary quasiconformal mapping of a domain A4
is differentiable almost everywhere in A. From Theorem 3.2 it then follows
that the dilatation condition (3.1) is true at almost all points of A. However,
the converse is not true, i.e., a sense-preserving homeomorphism f which is
differentiable a.e. and satisfies (3.1) a.e. is not necessarily K-quasiconformal.
What is required is a notion of absolute continuity.

A continuous real-valued function u is said to be absolutely continuous on
lines (ACL) in a domain A if for each closed rectangle {x + iyla < x < b,
¢ <y <d} < A, the function x — u(x + iy) is absolutely continuous on [a, b]
for almost all ye[c,d] and y — u(x + iy) is absolutely continuous on [c,d]
for almost all x € [a, b]. A complex valued function is ACL in 4 if its real and
imaginary parts are ACL in A.
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It follows from standard theorems of real analysis that a function f which
is ACL in A4 has finite partial derivatives f, and f, a.e. in A.

Theorem 3.3. A quasiconformal mapping is absolutely continuous on lines.

This result was first established by Strebel (1955) and Mori. A later proof
by Pfluger, which uses Rengel’s inequality and a minimum of real analysis, is
presented in [LV], p. 162.

From Theorem 3.3 we conclude that a quasiconformal mapping has finite
partial derivatives a.e. From this we can draw further conclusions by making
use of the following result:

Let f be a complex-valued, continuous and open mapping of a plane domain
A which has finite partial derivatives a.e. in A. Then f is differentiable a.e. in A.

The proof, which is due to Gehring and Lehto (1959), uses the maximum
principle and a standard theorem on the density of point sets ([LV], p. 128).
Application to quasiconformal mappings yields, with regard to Theorem 3.2,
a basic result:

Theorem 3.4. A K-quasiconformal mapping f of a domain A is differentiable
and satisfies the dilatation condition (3.1) almost everywhere in A.

Differentiability a.e. of quasiconformal mappings was first proved by Mori
[1] with the aid of the Rademacher—Stepanoff theorem and Theorem 2.4.

3.4. Generalized Derivatives

The ACL-property, which depends on the coordinate system, becomes much
more useful when combined with local integrability of the derivatives. A
function f is said to possess (generalized) LP-derivatives in a domain A, p > 1,
if fis ACL in A and if the partial derivatives f, and f, of f are L?-integrable
locally in A. It is also customary to say that the function f then belongs to
the Sobolev space W,',,.. This property is preserved under continuously
differentiable changes of coordinates ([LV], pp. 151-152).

Roughly speaking, classical transformation rules of Calculus between curve
and surface integrals remain valid for functions with LP-derivatives. This is
one reason for the importance of this class of functions. (For details and more
information see, e.g., [LV], pp. 143-154 or Lehto [4], pp. 127-131.)

A quasiconformal mapping has L?-derivatives. In order to prove this we first
note that the dilatation condition (3.1) implies the inequality

max |0,f(z)|* < KJ(2).

In particular, | f,(z)|* < KJ(2),|/,(z)|* < KJ(z) a.e. The Jacobian of an almost
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everywhere differentiable homeomorphism is locally integrable ([LV],
p. 131). Consequently, f, and f; are locally L-integrable.

A homeomorphism with L2-derivatives is absolutely continuous with respect
to two-dimensional Lebesgue measure ([LV], p. 150). Thus quasiconformal
mappings have this property. They carry sets measurable with respect to
two-dimensional measure onto other sets in this class. The formula

f J = m(f(E)) (3.2)
E

holds for every quasiconformal mapping f of a domain 4 and for every
measurable set E = 4. If we apply (3.2) to the inverse mapping f !, we
deduce that for a quasiconformal mapping J(z) > 0 almost everywhere.

The considerations in 4.4 will show that every quasiconformal mapping
has not only L2-derivatives but actually L-derivatives for some p > 2. This
is a much deeper result than the existence of L2-derivatives.

3.5. Analytic Characterization of Quasiconformality

A simple counterexample, constructed with the help of Cantor’s function,
shows that a homeomorphism need not be quasiconformal even though it
is differentiable a.e., satisfies (3.1) a.e. with K = 1, has bounded partial de-
rivatives, and is area preserving ([LV], p. 167). What is required is the
ACL-property, but once this is assumed it together with (3.1) guarantees
quasiconformality.

Theorem 3.5. A sense-preserving homeomorphism f of a domain A is K-quasi-
conformal if

1° fis ACL in A4;
2° max,|d,f(z)| < K min,|d,f(z)| a.e. in A.

Proor. We first note that being ACL, the mapping f has partial derivatives
a.e. and, as a homeomorphism, is therefore differentiable a.e. Thus condition
2° makes sense. As above, we conclude that f has L2-derivatives. After this,
we can follow the proof of Theorem 3.1, apart from obvious modifications.
O

Theorem 3.5 is called the analytic definition of quasiconformality. Appar-
ently different from the equivalent geometric definition, it sheds new light on
the connection with the classical Grotzsch mappings. In the next section we
shall show that the analytic definition can be written in the form of a differen-
tial equation. This leads to essentially new problems and results for quasi-
conformal mappings.

Under the additional hypotheses that f is differentiable a.e. and has
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L!-derivatives, Theorem 3.5 was first established by Y{ij6bd in 1955. Later
Bers and Pfluger relaxed the a priori requirements. Under the above mini-
mal conditions, the theorem was proved by Gehring and Lehto in 1959.
(For references and more details, see [LV], p. 169.)

4. Beltrami Differential Equation

4.1. Complex Dilatation

Inequality (3.1) is a basic property of quasiconformal mappings. The very
natural step to express therein more explicitly the maximum and minimum
of |0, f(z)| leads to the important notion of complex dilatation and reveals a
connection between the theories of quasiconformal mappings and partial
differential equations.

Let f: A > A’ be a K-quasiconformal mapping and z€ 4 a point at which
f is differentiable. Since max|d,f| = |0f| + |df|, min|d,f| = |df| — |0f], the
dilatation condition (3.1) is equivalent to the inequality

K—-1

3(@) < 1 @.1)

Suppose, in addition, that J(z) > 0. Then df(z) # 0, and we can form the
quotient

_0)
o)

The function g, so defined a.e. in A, is called the complex dilatation of f. Since
f is continuous, u is a Borel-measurable function, and from (4.1) we see that

u(z)

K —1
< <1l 4.2
lu2)] < K+l (4.2)
Complex dilatation will play a very central role in our representation. It
has a simple geometric interpretation. At a point z at which p is defined, the

mapping
(= f(2) + @) —2) + I —7)

is a non-degenerate affine transformation which maps circles centered at z
onto ellipses centered at f(z). The ratio of the major axis to the minor axis of
the image ellipses is equal to (1 + |u(z)|)/(1 — |u(z)|). We see that the smaller
|p(2)| is, the less the mapping f deviates from a conformal mapping at the
point z. If u(z) # 0, the argument of u(z) determines the direction of maximal
stretching: |0, f(z)| assumes its maximum when o = arg u(z)/2.
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4.2. Quasiconformal Mappings and the Beltrami Equation

The definition of complex dilatation leads us to consider differential equations

of = uaf. (4.3)

An equation (4.3), where u is measurable and || u|,, < 1, is called a Beltrami
equation. If f is conformal, p vanishes identically, and (4.3) becomes the
Cauchy-Riemann equation df = 0.

A function f is said to be an LP-solution of (4.3) in a domain A4 if f has
LP-derivatives and (4.3) holds a.e. in 4.

Theorem 4.1. A homeomorphism f is K-quasiconformal if and only if f is an
L2-solution of an equation of = udf, where u satisfies (4.2) for almost all z.

Proor. The necessity follows from Theorem 3.4 and the sufficiency from
Theorem 3.5, when we note that ||u||, < 1 implies that f is sense-preserving.

a

The Beltrami equation has a long history. With a smooth coefficient p, it
was considered in the 1820’s by Gauss in connection with the problem of
finding isothermal coordinates for a given surface (cf. IV.1.6). As early as
1938, Morrey [1] systematically studied homeomorphic L2-solutions of the
equation (4.3). But it took almost twenty years until in 1957 Bers [1] ob-
served that these solutions are quasiconformal mappings.

In 4.5 it will become apparent that (4.3) always has homeomorphic solu-
tions, i.e., that the complex dilatation of a quasiconformal mapping can be
prescribed almost everywhere. This is a deep result. It is much easier to
handle the question of the uniqueness of the solutions of (4.3).

Let f and g be quasiconformal mappings of a domain 4 with complex
dilatations p, and p,. Direct computation yields the transformation formula

_1(2) = p(2) (0g(2) \? .
breo O = D@ (Iﬁg(Z)l> el 4

valid for almost all ze 4, and hence for almost all { € g(A).

Theorem 4.2 (Uniqueness Theorem). Let [ and g be quasiconformal mappings
of a domain A whose complex dilatations agree a.e. in A. Then fog™ is a
conformal mapping.

ProoF. By (4.4), the complex dilatation of fog~' vanishes a.e. From Theo-
rem 3.5 we deduce that fog~! is 1-quasiconformal. Hence, by Theorem 1.1,
it is conformal. O

Conversely, if fog™! is conformal, we conclude from (4.4) that f and g have
the same complex dilatation. :
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4.3. Singular Integrals

The Uniqueness theorem says that a quasiconformal mapping of the plane is
determined by its complex dilatation yu up to an arbitrary Mobius trans-
formation. It follows that a suitably normalized mapping is uniquely deter-
mined by u. We shall now show that, by use of singular integrals, it is possible
to derive a formula which gives the values of a normalized quasiconformal
mapping in terms of p.

Let f be a function with L'-derivatives in a domain A4 of the { = & + in-
plane and D, D < A, a Jordan domain with a rectifiable boundary curve.
Application of Green’s formula yields a generalized Cauchy integral formula
([LV], p. 155)

f&%=lf fM) -——Jj W@%ﬁd zeD. (4.5)
2ni Jopl —z P4

The first term on the right, a Cauchy integral, defines an analytic function
in D. We conclude, in passing, that a function f with L'-derivatives in A is
analytic if 0f =0 a.e. in A. The second term on the right in (4.5) is to be
understood as a Cauchy principal value.

Suppose that f has L!-derivatives in the complex plane C and that f(z) — 0
as z — oo. If we take D = {{||{| < R} and let R — oo, the first term on the
right-hand side of (4.5) tends to zero for every fixed z. With the notation

Tw(z) = ——JJ ﬂdﬁd (4.6)

we then obtain from (4.5)

f=Tof. (4.7)

Assume, for a moment, that w in (4.6) belongs to class C§ in the complex
plane, i.e., w is infinitely many times differentiable and has a bounded sup-
port. Straightforward computation then shows that

0Tw = Ho 4.8)

o(0)
=—— dé dy,
”c(c—z Sdn

the integral again being defined as a Cauchy principal value. The linear
operator H is called the Hilbert transformation. We also see that

oTw = w,

([LV], pp. 155-157), where

that the operators 0 and d commute with T and H, and that Tw and Hw
belong to C* and are analytic outside the support of w ([LV], p. 157).

The Hilbert transformation can be extended as a bounded operator to LP,
1 < p < oo. One first proves that if we Cg", there exists a constant 4,, not



26 I. Quasiconformal Mappings

depending on w, such that
IHoll, < A,llw]l,. 4.9)

This is called the Calderon—-Zygmund inequality; proofs are given, apart
from the original paper by Calderon and Zygmund (1952), in Vekua [1],
Ahlfors [5] and Stein [1]. Since C§ is dense in L? and L? is complete, we can
use (4.9) to extend the Hilbert transformation to the whole space L?. Inequa-
lity (4.9) then holds for every we L” (cf. [LV], p. 159).

Using (4.9) we deduce that (4.8) holds a.e. for every w e L? (cf. [LV], p. 160).
For applications it is also important to note that the norm

IH|, =sup{|Ho|,| |, =1}

depends continuously on p (Ahlfors [5], Dunford—Schwartz [1]).

The special case p = 2 is much easier to handle than a general p. A rather
elementary integration shows that Hilbert transformation is an isometry in
L? ([LV], p. 157). In particular, |H|, = 1.

4.4. Representation of Quasiconformal Mappings

We shall now apply the results of 4.3 to quasiconformal mappings. Let f be
a quasiconformal mapping of the plane whose complex dilatation u has a
bounded support. Wishing to represent f by means of u, we introduce a
normalization so that yu determines f uniquely.

We first require that f(co) = oco. Near infinity, where f is conformal, we
then have f(z) = Az + B + negative powers of z. f we set A = 1, B = 0, then
f is uniquely determined by pu.

In a neighborhood of oo we thus have

fo)=z+ 2 bz

It follows that the partial derivatives of the function z — f(z) — z, which are
locally in L2, are L*-integrable over the plane. We conclude from (4.7) and
from the generalized formula (4.8) that df = 1 + Hdf a.e. Since 0f = udf a.e.
we thus have

of =+ pHof ae. (4.10)

This integral equation can be solved by the customary iteration procedure.
The Neumann series obtained converges in L2, but it also converges in L?,
p > 2, if p satisfies the condition

Il HI, < 1. (4.11)
More explicitly, suppose that u(z) = 0 if |z| > R, and define inductively

0, = U, ¢, = uHeop,_,, n=23,.... 4.12)
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Then
loill, < @RYPIH |G (o) (4.13)
Hence, under condition (4.11),
lim Y o = of, (4.14)
n—o i=1

and it is a function in L*.
This solution gives the desired representation formula for f(2), first estab-
lished by Bojarski in 1955.

Theorem 4.3. Let f be a quasiconformal mapping of the plane whose com-
plex dilatation u has a bounded support and which satisfies the condition
lim, . (f(z) — z) = 0. Then

f@) =z + 3. T

where @; is defined by (4.12). The series is absolutely and uniformly convergent
in the plane.

ProoF. By (4.7) we have f(z) = z + T0f(2). By (4.14), Tof(z) = (T Y. ¢;)(2). For
p > 2, it follows from Hélder’s inequality that | Te,(z)| < c, | ;| ,, where the
constant ¢, depends only on p and R. Therefore, by (4.13),

| To(2)l < c,(I1H 1,1l )s (4.15)

where ¢, depends only on p and R. (For this crucial estimate, (4.10) must be
solved in a space L? with p > 2.) We conclude from (4.15) that

(T’Zi (Pi> (2= Z To;(2)
and that the series on the right is absolutely and uniformly convergent. []

We proved above that under condition (4.11), of € L? locally. From df =
1 + Hof and (4.9) we see that the same holds for df. It follows that the partial
derivatives of a quasiconformal mapping are locally in L? for same p > 2
([LV], p. 215). The p will, of course, depend on || | -

4.5. Existence Theorem

In proving Theorem 4.3 we started from a quasiconformal mapping which
gave the function . The following result, fundamental in the theory of quasi-
conformal mappings, shows that we could equally well have started from a
measurable function pu.
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Theorem 4.4 (Existence Theorem). Let u be a measurable function in a domain
A with || ||, < 1. Then there is a quasiconformal mapping of A whose complex
dilatation agrees with u a.e.

The proof can be divided into three parts. One first shows that if ue Cg,
the Beltrami equation dw = udw has a locally injective solution. This can be
so constructed that a topological argument shows it to be in fact globally
injective. Another way to obtain from locally injective solutions a globally
injective one is to use the general uniformization theorem for Riemann sur-
faces (Theorem 1V.3.3). Finally, we get a general solution by approximating
the given p with C¢-functions (cf. Theorem 4.5 below). For details of the
proof and historical remarks we refer the reader to Lehto [4], p. 136. The
proof in [LV], p. 191, employs step functions, while Vekua [1] makes use of
the explicit expression in Theorem 4.3.

For continuous p, the solutions of the Beltrami equation are not neces-
sarily continuously differentiable. In other words, for a diffeomorphic quasi-
conformal mapping its complex dilatation, which is continuous, cannot be
prescribed as an arbitrary continuous function g with ||u|, < 1. This is one
more reason to generalize the classical Grotzsch definition of quasiconfor-
mality (cf. the remark made at the end of 3.2).

If u is a little more regular than just continuous, we are back in the classical
situation. For instance, a quasiconformal mapping whose complex dilatation is
locally Hélder continuous is a diffeomorphism. (See [LV], p. 235, where this
conclusion is drawn from a still weaker condition on p.)

Theorem 4.4 gives immediately a striking generalization of the Riemann
mapping theorem: Let A and B be simply connected domains in the extended
plane whose boundaries consist of more than one point, and let u be a mea-
surable function in A with |||, < 1. Then there is a quasiconformal mapping
of A onto B whose complex dilatation agrees with p a.e.

In fact, by Theorem 4.4 there exists a quasiconformal mapping f of A with
complex dilatation equal to p a.e. The boundary of the simply connected
domain f(A) consists of more than one point. Hence, by Riemann’s mapping
theorem, there is a conformal map g of f(A4) onto B. Then g o f has the desired
properties.

4.6. Convergence of Complex Dilatations

It is important in proving Theorem 4.4 that we can initially consider a
smooth y and then obtain the general result by approximation. Let us now
study more closely what relations there are between the convergence of
mappings and that of their complex dilatations.

We first remark that convergence of mappings need not imply convergence
of their complex dilatations. More precisely, let (f,) be a sequence of quasi-
conformal mappings of a domain A. We suppose that the complex dilatations
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u, of f, satisfy the condition ||y,l, <k < 1 and that f, converges locally
uniformly in A towards a quasiconformal mapping f with complex dilatation
u. By Theorem 2.2, ||ul|l, < k, but otherwise there need be no connection
between the functions p, and , i.e., the local mapping properties of f, and f
may be quite different (see [LV], p. 186).

The situation changes if the functions y, converge.

Theorem 4.5. Let (f,) be a sequence of K-quasiconformal mappings of A
which converges locally uniformly to a quasiconformal mapping f with com-
plex dilatation p. If the complex dilatations u, of f, tend to a limit a.e., then
lim p,(2) = p(z) ae.

This result ([LV], p. 187) is needed to take the third step in the proof of
Theorem 4.4 sketched above. It can also be used to prove that an arbitrary
quasiconformal mapping can be approximated by smooth quasiconformal
mappings (cf. [LV], p. 207).

The following complement to Theorem 4.5 shows that convergence of
complex dilatations implies convergence of the corresponding normalized
mappings.

Theorem 4.6. Let pand p,,n =1, 2, ..., be measurable functions in the plane
such that || u,ll, < k <1 and lim p,(z) = p(z) a.e. If f and f, are the quasi-
conformal mappings of the plane which fix the points 0, 1 and oo and have the
complex dilatations p and p,, then f(z) = lim f,(z) uniformly in the plane in the
spherical metric.

Proofr. By Theorems 4.4 and 4.2, the mappings f and f, exist and are uni-
quely determined. By Theorem 2.1, { f,} is a normal family. By Theorems 4.5
and 4.2, every convergent subsequence ( f, ) tends to f. Then the sequence (f,)

itself has the limit f. O

4.7. Decomposition of Quasiconformal Mappings

Let f be a quasiconformal mapping with maximal dilatation K, and assume
that f = f,of;, where f; and f, are K,- and K,-quasiconformal. We then
have trivially K < K, K,. Using Theorem 4.4 we shall now show that for
any given K, < K, a “minimal” decomposition f = f, o f; always exists with
K = K,K,.

Theorem 4.7. Let f be a quasiconformal mapping with maximal dilatation
K, and 0 <t < 1. Then f = f,o f,, where f, is K'-quasiconformal and f, is
K*~'-quasiconformal.

Proor. Let u denote the complex dilatation of f. We choose the complex
dilatation u, of f; as follows: u,(z) is the point on the line segment from 0 to
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u(z) for which h(0, u,(z)) = th(0, u(z)), where h is the hyperbolic distance in

the unit disc. It then follows from formula (1.1) that
1+ |py(2)] _ <1 + |,U(Z)l>'
1 —|uy(2) 1 —|u@)

From this we see that f; is K‘-quasiconformal.
If u, denotes the complex dilatation of f, = fo f;!, then by formula (4.4),

(4.16)

|m@n=Fﬁi¥ﬂ3

—aoue | e

Hence, again by (1.1),

1+ p,(0)] 1+ |p(2)]
log———=——="2h , = 2(1 — t)h(0, =1 —t)log——.

8T L0 2h(p1(2), w(2) = 2(1 — Dh(0, u(2)) = (1 — 1) log -— )|
We conclude that f, is K''-quasiconformal. O

It follows from Theorem 4.7 that if f is a K-quasiconformal mapping and
¢ > 0 is given, we can always write

=1t ofa0fis (4.17)

where each mapping f;,i = 1,2, ..., n,is (1 + ¢)-quasiconformal.

5. The Boundary Value Problem

5.1. Boundary Function of a Quasiconformal Mapping

A quasiconformal mapping f of a Jordan domain 4 onto another Jordan
domain B can always be extended to a homeomorphism between the closures
of A and B (cf. 2.1). Thus we can speak of the boundary function of f, and it
is a homeomorphism of 04 onto dB.

Now let h: 04 — 0B be a given homeomorphism under which positive
orientations of the boundaries with respect to the Jordan domains 4 and B
correspond to each other. The boundary value problem is to find necessary
and sufficient conditions for h to be the boundary function of a quasicon-
formal mapping f: A — B.

We restrict ourselves here to studying the normalized case in which 4 =
B = the upper half-plane, which we denote by H. Then the given mapping h
is a homeomorphism of the one point compactification R of the real axis
onto itself. :

Let x,, X,, X3, X, be a sequence of points of R determining the positive
orientation with respect to H. We call
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M(H (h(x,), h(x,), h(x3), h(x4)))
M(H(Xl,xz,X3,X4)) ’

where the supremum is taken over all such sequences x,, x,, X3, X4, the
maximal dilatation of h. If it is finite, h is said to be quasiconformal, and if it is
<K, the mapping h is K-quasiconformal. From the definition it is clear that
these one-dimensional quasiconformal mappings have the customary prop-
erties of quasiconformal mappings in the plane: If h is K-quasiconformal,
then so is its inverse h™*, and if h; is K;-quasiconformal, i = 1, 2, then h,oh,
is K, K,-quasiconformal.

Now suppose that h is the boundary function of a K-quasiconformal
mapping f: H — H. Then clearly h itself must be K-quasiconformal, and we
have found a necessary condition for h, albeit an implicit one.

This necessary condition becomes much more explicit if we choose the
points Xx,, x,, X3, X4 in a special manner and introduce the normalization
h(o0) = co. The normalization means that h is a strictly increasing contin-
uous function on the real axis, growing from —oo to +oo.

Theorem 5.1. The boundary values h of a K-quasiconformal self-mapping f of
the upper half-plane, f(o0) = o0, satisfy the double inequality
h(x + t) — h(x)
IJAMK) S ———— - < A(K 5.1
JUK) < e < AK) (5.1)
for all x and all t > 0. Here A is the distortion function of 2.4. The inequality is
sharp for any given K, x and t.

Proofr. Choose x;, =x —1t, x, =X, x3=x+1t, x, = 00, and denote the
middle term in (5.1) by a«. By the considerations in 2.4, we then have

M(H(xl,x2’x3’x4)) = 1 and

2 s
M(H(h(x,), h(x,), h(x5), 0)) = (E w((1 + a_‘)‘1/2)>

for s=1 and s = —1. Thus (5.1) follows from the fact that h is K-quasi-
conformal. From the characterization of 4 as an extremal function we deduce
that (5.1) is sharp. O

5.2. Quasisymmetric Functions

An increasing homeomorphism h: R — R with h(o0) = oo is said to be k-
quasisymmetric if

I _hGx+0—he) _
k= h(

- <
X)—h(x —1)
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for all xeR and all t > 0. A function is quasisymmetric if it is k-quasi-
symmetric for some k. The smallest possible k is called the quasisym-
metry constant of h. From the proof of Theorem 5.1 it follows that if h is
K-quasiconformal and h(c0) = oo, then h is A(K)-quasisymmetric.

Lemma 5.1. The family of k-quasisymmetric functions h which keep 0 and 1
fixed is equicontinuous at every point of the real axis.

Proor. We first conclude from A(27"*!) — h(2™") > h(27")/k that

o k"
h(2 )s<m> (5.2)

for every non-negative integer n. In looking for a bound for h(a + x) — h(a)
we may assume that a and x are non-negative. Then, if x < 27", it follows
from (5.2) that

0<h(a+x)—ha) < (h(a+ 1) — h(a))(%)n. (5.3)

If m < a <m+ 1, where m is an integer, then
h(a + 1) — h(a) < k™(h(a + 1 — m) — h(a — m)) < k™h(2) < k™(k + 1).

Hence, (5.3) implies equicontinuity at a. O

A quasisymmetric function which fixes 0 and 1 is said to be normalized.
We conclude that every infinite sequence (h,) of normalized k-quasisym-
metric functions contains a subsequence which is locally uniformly con-
vergent on the real axis. The limit is also a normalized k-quasisymmetric
function. This result allows the following conclusion.

Lemma 5.2. Let [a,b] be a closed interval on the real axis, and ¢ > 0. Then
there is a 6 > 0 such that for a normalized quasisymmetric function h,
|h(x) — x| <&, xe[ab],

whenever h is (1 + 0)-quasisymmetric.

Proor. If the lemma is not true, there is an ¢ > 0 and a sequence of normal-
ized (1 + 1/n)-quasisymmetric functions h,, n = 1, 2, ..., such that
sup |h,(x) — x| =>¢
a<x<b
for every n. Since {h,} is a normal family, there is a subsequence which

converges uniformly on [a, b]. The limit is 1-quasisymmetric and hence the
identity. This is a contradiction. d
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5.3. Solution of the Boundary Value Problem

By Theorem 5.1, quasisymmetry is a necessary condition for h to be the
boundary function of a quasiconformal self-mapping of H fixing co. The
condition is also sufficient (Beurling and Ahlfors [1]):

Theorem 5.2. Let h be k-quasisymmetric. Then there exists a quasiconformal
self-mapping of the upper half-plane which has the boundary values h and whose
maximal dilatation is bounded by a number K (k) which depends only on k and
tendsto 1 ask — 1.

ProoOF. Let f be defined in the closure of H by the formula

1 1
flx +iy) = %f (h(x + ty) + h(x — ty))dt + ij (h(x + ty) — h(x — ty))dt.
0 0
(5.9)

Clearly f = h on the real axis. We call f the Beurling—Ahlfors extension of h
and prove that it has the desired properties.
Set

x+y

a(x,y) = J h(x + ty)dt = ;J h(t)dt,
0 x

(5.5)

X

1
B(x,y) = J h(x — ty)dt = lf h(t)dt.

0 YJx-y
We see that « and f are continuously differentiable in H, and an easy calcula-
tion shows that the Jacobian J = a8, — a,f, is positive throughout H. More
than that, we deduce from (5.5) that f is a continuously differentiable bijective
self-mapping of H (cf. [LV], p. 84). This conclusion can be drawn from the
fact that h is a homeomorphism of R onto itself, quasisymmetry is not needed
here.

In estimating the maximal dilatation of (5.4) we make use of linear func-
tions z —» A;(z) = a;z + b, j = 1, 2, with real coefficients a; > 0 and b;. If fis
the Beurling—Ahlfors extension of h, then A, o fo A, is the Beurling—Ahlfors
extension of A,0ho A, |R. This can be verified directly from (5.4). Moreover,
the maximal dilatation of f and the quasisymmetry constant of h do not
change under such a transformation.

Suppose now that there is not a number K(k) bounding the maximal
dilatation of an extension (5.4). Then there are k-quasisymmetric functions
h, and points z,e H such that the dilatation quotients D, of the Beurling—
Ahlfors extensions f, of h, have the property D,(z,) — oo (cf. Theorem 3.1).

Application of suitable linear transformations A; makes it possible to as-
sume that the boundary functions h, are normalized and that z, = i for every
n. By Lemma 5.1, the functions h,, then constitute a normal family. We may
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thus suppose that the functions h, converge to a k-quasisymmetric function
h, uniformly on bounded intervals of the real axis. Let f denote the Beurling—
Ahlfors extension of this limit function h.

Let «,, 8, be the functions (5.5) for h,. From («,).(i) = 1, (B,):(i) = —h,(—1),
and

0

(CZ")}(I) =1- jl hn(t) dt’ /jn ’) - h ) - J‘ hn([) dt

[¢] -1

we conclude that the partial derivatives of «, and f, at i converge to the
partials of o and B at i. Because J(D + 1/D) = (5/4)(a + o} + B + ;) —
(3/2)(a, B + a,B,), it follows that D,(i) tends to the dilatation quotient of f at
i. Hence, D,(i) » oo is impossible, and the existence of a finite bound K(k)
follows.

The above reasoning can also be used to proving the existence of a bound
K (k) with the additional property K(k) — 1 as k — 1. If no such K(k) exists,
there is a sequence of normalized functions h, whose quasisymmetry con-
stants tend to 1 while D,(i) does not converge to 1. From Lemma 5.2 we
conclude that lim h,(x) = h(x) = x. By (5.4), the Beurling—Ahlfors extension
of the limit function is then the identity mapping. Thus lim D,(i) = D(i) = 1,
and we have arrived at a contradiction. O

For all our applications it is sufficient just to know the existence of a
bound K (k) which is finite and tends to 1 as k — 1. For the sake of complete-
ness, we mention here that K(k) can be estimated. Beurling and Ahlfors [1]
show, after rather laborious computation, that if the imaginary part of (5.4)
is multiplied by an appropriate positive constant, the maximal dilatation K
of the modified extension satisfies the inequality K < k2. For the required
calculations, see also Lehtinen [1].

The smallest upper bound known at present for the maximal dilatation
in the class of quasiconformal mappings with k-quasisymmetric boundary
values is min(k*2, 2k — 1) (Lehtinen [3]).

5.4. Composition of Beurling—Ahlfors Extensions

Let h, and h, be k-quasisymmetric functions and f; and f, their Beurling—
Ahlfors extensions. If the quasisymmetry constant of h,oh7' tends to 1, it
follows from the proof of Theorem 5.2 that the maximal dilatation of the
Beurling—Ahlfors extension of h,ohy! converges to 1. However, f,0 f;! is
not necessarily the Beurling—Ahlfors extension of h, o h7!. A small modifica-
tion for the proof of Theorem 5.2 is therefore required to show that the
maximal dilatation of f, o f;”! then also tends to 1. (Cf. Earle and Eells [1].)
This is a result which we shall need in I1I1.3.2-3.
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Lemma 5.3. Let h, and h, be k-quasisymmetric functions and f, and f, their
Beurling— Ahlfors extensions. If the quasisymmetry constant of h,oh7! tends
to 1, then the maximal dilatation of f,o f,”! converges to 1.

ProOF. Suppose the lemma is not true. Making use again of the linear
transformations A;, appealing to Lemmas 5.1 and 5.2, and reasoning as in the
proof of Theorem 5.2, we would arrive at the following situation. There exist
normalized k-quasisymmetric mappings h,, and h,,, n=1, 2, ..., which
converge locally uniformly on the real axis to k-quasisymmetric mappings h,
and h, and for which h,,oh;! converges locally uniformly to the identity
mapping. On the other hand, if f,, and f,, are the Beurling—Ahlfors exten-
sions of h,; and h,,, the dilatation quotient of f,,0f,;! at the point i is
bounded away from 1.

Let f, and f, be the Beurling—Ahlfors extensions of h, and h,. Arguing as
in Theorem 5.2 we obtain the result

limD; . +(i) = Dy, (0. (5.6)
But from (h,,oh;})(x) = x it follows that h, = h,. Hence f, = f>, and so
D;, , ;-1(i) = 1. Thus (5.6) is a contradiction. O

5.5. Quasi-Isometry

In a later application, the following property of the mapping (5.4) will be
needed (Ahlfors [4]).

Lemma 5.4. The Beurling— Ahlfors extension of a quasisymmetric function is a
quasi-isometry in the hyperbolic metric of the upper half-plane.

PrOOF. Let h be a k-quasisymmetric function and f its Beurling—Ahlfors
extension (5.4). We have to prove the existence of a constant ¢ depending only
on k, such that

lleIsldf(Z)I < leI.
cImz = Imf(2) Imz

(5.7

The mapping f is K-quasiconformal for a K which depends only on k. We
have |df(z)|/|dz| < max|d,f(z)] and max|d,f(2)]*> < KJ(z), where J, is the
Jacobian of f. Hence, the right-hand inequality (5.7) follows if we prove that

y*KJ,(z) < c*(Im f(2))? (5.8)

with y = Imz.

Suppose that (5.8) is not true, and apply again the same method of rea-
soning used in the proofs of Theorem 5.2 and Lemma 5.3. We conclude that
there are normalized k-quasisymmetric functions h,, which converge locally
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uniformly to a k-quasisymmetric function h, such that for the Beurling—
Ahlfors extensions f, of h,,

J; ()/(Im f,(i))* - co. (5.9)

But if f is the Beurling—-Ahlfors extension of h, then J; (i) = J (i), Im f,(i) —
Im f(i), as we showed in the proof of Theorem 5.2. It follows that (5.9) is
impossible.

Similar reasoning yields the lower inequality (5.7). O

5.6. Smoothness of Solutions

In the 1950’s it was a famous open problem whether the boundary function
of a quasiconformal self-mapping of H is absolutely continuous. A direct
construction (Beurling—Ahlfors [1]) combined with Theorem 5.2 gives an
entirely negative answer:

For every k > 1, there is a k-quasisymmetric function h which is singular, i.e.,
for which h'(x) = 0 a.e.

Hence, a quasiconformal mapping, while absolutely continuous on lines,
need not be absolutely continuous on every closed line segment in its domain
of definition. Singular quasisymmetric functions were first regarded as a
curiosity. But now we know that, except for linear mappings, all boundary
functions encountered in the classical theory of Teichmiiller spaces are singu-
lar (see V.3.6).

In spite of the fact that a given boundary function may be singular, it
always admits extensions which are very smooth in the upper half-plane. We
remarked already that the solution (5.4) is continuously differentiable in H,
and very much more is true:

Theorem 5.3. For every quasisymmetric function, the boundary value problem
has a real-analytic solution.

Proor. The result can be proved with the aid of the decomposition formula
(4.17) in 4.7 which makes it possible to express a k-quasisymmetric function
as a composition of (1 + ¢)-quasisymmetric functions. The proof based on
this method will be given in I1.5.2. A more direct proof (Lehtinen [1]) is
obtained by a modification of the formula (5.4). We can write in (5.4)

e}

Re f(z) = %J k(t)(h(x + ty) + h(x — ty))dt,
where k() =1 on [0, 1] and vanishes elsewhere, and a similar expression
obtains for Im f(z). If k is replaced by a suitable exponential, the correspond-
ing f turns out to be a real-analytic solution. O
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5.7. Extremal Solutions

Let F, be the family of all quasiconformal self-mappings of H whose bound-
ary values agree with a given quasisymmetric h. Then F, is a countable union
of normal families, and each of these contains its limits under locally uniform
convergence. This allows an important conclusion:

In the class F,, there always exists an extremal mapping which has the
smallest maximal dilatation in F,.

While the existence of an extremal mapping can be deduced immediately,
it is much more difficult to study its uniqueness. It was in fact an open
problem for quite a long time whether the extremal mapping in F, is always
unique, until Strebel in 1962 gave an example which shows that F, can
contain more than one extremal.

In Strebel’s example one considers the domain 4 which is the union of the
lower half-plane and the “chimney” {z|Imz > 0} n {z|0 < Rez < 1} (Fig. 1).
In A we set fi(x + iy) = x + iKy, K > 1, and define another mapping f, so
that f, agrees with f; in the chimney and is the identity in the lower half-
plane. Then f; and f, are K-quasiconformal in A, they agree on the boundary
of 4, and both are extremal for their boundary values (Strebel [1]). By using
a suitable conformal mapping of A onto H we can transform f; and f, to
normalized self-mappings of H.

More examples of boundary values with non-unique extremals will be
obtained in V.3.7. On the other hand, there are important cases in which
uniqueness can be proved (V.8.5). The question of unique extremality has
been systematically studied by Reich and Strebel; see, for instance, Strebel
[1], Reich and Strebel [1] and Reich [1].

In certain cases the Beurling—Ahlfors solution (5.4) is far from extremal.
Lehtinen [3] proved that if 4 has the quasisymmetry constant k, the maximal
dilatation of (5.4) is always >k. Now let h be the restriction to R of the
K-quasiconformal extremal mapping described in 2.4. Then h has the quasi-
symmetry constant A(K). In this case the minimal maximal dilatation in F, is
equal to K, whereas by (2.6), the maximal dilatation of the Beurling—Ahlfors
extension is >e™¥/16 — 1/2.

The preceding considerations make it possible to compare the maximal
dilatation of the boundary function h with the extremal maximal dilatation
for F,.

Figure 1. Strebel’s chimney.
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Lemma 5.5. Let K* be the maximal dilatation of the quasisymmetric function
h and K the minimal maximal dilatation of the quasiconformal self-mappings of
H with boundary values h. Then K — 1 as K* — 1.

Proor. The function h is A(K*)-quasisymmetric by the remark in 5.2 pre-
ceding Lemma 5.1. Here A(K*) —» 1 as K* — 1, as we noted at the end of 2.4.
By Theorem 5.2, the maximal dilatation of the Beurling—Ahlfors extension of
h tends to 1 as K* — 1. A fortiori, the same is true of the minimal maximal
dilatation K. O

The bounds at the end of 5.3 for the maximal dilatation of the quasicon-
formal extensions of h yield quantitative estimates between K and K*. For
instance, we have

K* < K < A(K*)*2, (5.10)

Here the lower estimate is trivial, and the upper estimate follows if we use
Lehtinen’s bound for the maximal dilatation of the modified extension (5.4).
For our later applications, the qualitative result in Lemma 5.5 is sufficient.

6. Quasidiscs

6.1. Quasicircles

A Jordan curve can be defined as the image of a circle under a homeomor-
phism of the plane. If the homeomorphism is conformal, then the image is a
circle. Between the topological and proper circles, quasicircles form a class of
curves which will come to frequent use in Chapters II, III and V.

A quasicircle in the extended plane is the image of a circle under a
quasiconformal mapping of the plane. If the mapping can be taken to be
K-quasiconformal, the image curve is called a K-quasicircle. A domain
bounded by a quasicircle is called a quasidisc.

Let f be a quasiconformal mapping of a domain A and F a compact subset
of A. Then there exists a quasiconformal mapping of the plane whose restric-
tion to F agrees with f ([LV], p. 96). It follows that f maps circles in 4 onto
quasicircles.

Since a quasiconformal mapping preserves sets of area zero, a quasicircle
has zero area. On the other hand, it is possible that all non-empty subarcs of
a given quasicircle are non-rectifiable; concrete examples are provided in
[LV], p. 104. Gehring and Viisdld [1] have proved the striking result that,
while the Hausdorff dimension of a quasicircle is always less than 2, it can
take any value 4, 1 < 1 < 2. We remark that quasicircles with Hausdorff
dimension greater than 1 play a role in the modern theory of iteration of
polynomials in the plane.

It follows from what we said in 2.4 that a homeomorphism of the
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plane which is K-quasiconformal in the complement of a straight line is
K-quasiconformal everywhere. From the definition of quasicircles we obtain
immediately a generalization, which we shall need later several times.

Lemma 6.1. Let C be a quasicircle and f a homeomorphism of the plane which
is K-quasiconformal in the complement of C. Then f is a K-quasiconformal
mapping of the plane.

Proor. It follows from the definition of a quasicircle that there is a quasi-
conformal mapping w of the plane which maps the real axis onto C. Then
fow s quasiconformal in the plane, as is also f = (fow)ow™". Since the area
of C is zero, we conclude from Theorem 3.5 (Analytic definition) that f is
K-quasiconformal. O

6.2. Quasiconformal Reflections

Let C be a Jordan curve bounding the domains 4, and A,. A sense-reversing
K-quasiconformal involution ¢ of the plane which maps A, onto A4, is a
K-quasiconformal reflection in C if ¢ keeps every point of C fixed.

Theorem 6.1. A Jordan curve admits a quasiconformal reflection if and only if
it is a quasicircle.

Proor. Suppose first that C is a quasicircle. Let f be a quasiconformal map-
ping of the plane which maps 4, onto the upper half-plane H. Then the
mapping ¢ = f ' ojo f, where j(z) = Z, is a quasiconformal reflection in C.
Conversely, let ¢ be a quasiconformal reflection in a Jordan curve C. Let
h map H conformally onto A4,. Define f by f(z) = h(z) in the closure of H,
and f(z) = ¢(h(z)) in the lower half-plane. Then f is a homeomorphism of the
plane which is quasiconformal off the real axis, which it maps onto C. By
Lemma 6.1, f is quasiconformal in the plane, and so C is a quasicircle. [

We can draw certain additional conclusions from the above proof.
First, if C admits a K-quasiconformal reflection, then C is a K-quasicircle.
In the opposite direction we deduce that a K-quasicircle always admits a
K?-quasiconformal reflection.

In the second part of the proof, the required quasiconformal mapping of
the plane is conformal in a half-plane. For the sake of later reference, we wish
to express certain connections between conformal mappings and quasicircles
explicitly.

Lemma 6.2. A K-quasidisc A has the following properties:

1° Every quasiconformal reflection in 0A is of the form fojo f~!, where fisa
quasiconformal mapping of the plane which maps the upper half-plane H
conformally onto A, and j denotes the reflection z — Z.
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2° A is the image of H under a K*-quasiconformal mapping f of the plane
which is conformal in H.

3° Every conformal mapping f: H — A has a K*-quasiconformal extension to
the plane.

Proor. Let ¢ be an arbitrary quasiconformal reflection in dA4. If f is con-
structed as in the second part of the proof of Theorem 6.1, with 4 replacing
A;, we obtain 1°. Since 04 is a K-quasicircle, there exists a K?-quasicon-
formal reflection ¢. The corresponding f is also K2-quasiconformal, and 2°
follows. We use this same ¢ in 3° and conclude that @o foj is a desired
extension of f. O

We return to our previous notation and denote by C a Jordan curve which
bounds the domains 4, and A4,. In what follows, ¢(K), ¢,(K), ... denote
constants which depend only on K.

Lemma 6.3. Let ¢ be a K-quasiconformal reflection in C which passes through
00. Then

. c1(K)
AR TE

where 1, is the Poincaré density of A,.

> zeAl’ (61)

Proor. Let h: H— A, be a conformal mapping, h(co) = oo, and set again
f = hin the closure of H and f = ¢ ohoj in the lower half-plane. Then f is a
K-quasiconformal mapping of the plane.

Fix ze A, and z,€ C. The function f maps the circle {w||w — h7!(zo)| =
|h™'(z) — h™'(z,)|} onto a curve which passes through the points z and ¢(z).
By Theorem 2.4,

|z — zol/e(K) < l@(2) — zo| < c(K)|z — z,]. (6.2)
If we choose z, such that |@p(z) — z,| is equal to the distance d(¢(z), C), then
lo(2) — z| < |@(2) — zo| + |1z — 20| < (1 + ¢(K))d(o(2), C).

From this we obtain (6.1) by using the inequality (1.3). O

We remark that (6.2) yields the estimate
d(z, C)/c(K) < d(p(z), C) < ¢(K)d(z, C). (6.3)

Here we can take ¢(K) = A(K) (see 2.5).

For our later applications (see 11.4.2) it is important to know that there
exist quasiconformal reflections which are quasi-isometries in the euclidean
metric (Ahlfors [4]). We also call such reflections Lipschitz-continuous.

Lemma 6.4. Let C be a K-quasicircle bounding the domains A, and A, and
passing through co. Then there exists a c,(K)-quasiconformal reflection ¢ in C,
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continuously differentiable in A, and A,, such that
ldo(2)] < c;3(K)|dz] (6.4)

at every point ze A,.

Proor. Let h; be a conformal mapping of A, onto the upper half-plane H
and h, a conformal mapping of A, onto the lower half-plane, both fixing co.
Since h, and h, have homeomorphic extensions to the boundary, we can
form the function h,ohi! on the real axis. It is quasisymmetric. For if { is a
K2-quasiconformal reflection in C and j again denotes the reflection z — Z,
then joh,oohy! is a quasiconformal self-mapping of H with boundary
values hyohy'.

By using the Beurling—Ahlfors extension (5.4), we construct a quasi-
conformal diffeomorphism f: H - H with boundary values h,ohy*. Set
@ =@, = hy'ojofoh, in the closure of A, and ¢ = ¢;! in 4,. Then ¢ is
a c,(K)-quasiconformal reflection in C, which is continuously differentiable
outside C.

Since the Poincaré metric is conformally invariant, it follows from formula
(5.7) that

M2(¢(2))1do(2)] < ca(K)n,(2) |dz].
From this we obtain (6.4), in view of (1.3), (1.4) and (6.3). O

6.3. Uniform Domains

Let us now start studying the geometry of quasidiscs. We shall prove a chain
of theorems which, when put together, give several characterizations for
quasidiscs and shed light on their geometric properties. In subsections 6.3—
6.5, we follow the presentation of Gehring [4]. A summary will be given at
the end of subsection 6.7.

Throughout this subsection we assume that A4 is a simply connected proper
subdomain of the complex plane. The domain A is said to be uniform if there
are constants a and b such that each pair of points z,, z, € A can be joined by
an arc o in A with the following properties:

1° The euclidean length of a satisfies the inequality
(@) < alz; — z,|. (6.5)
2° Forevery zea,
min(/(a,), l(2;)) < bd(z,0A), (6.6)
where «; and a, are the components of a\{z}.

It will appear that a domain 4 is uniform if and only if it is a quasidisc. We
first prove directly that a quasidisc is uniform. This requires a fairly lengthy
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argument, and we begin with a lemma in which, as before, c(K), ¢,(K), ...
denote constants depending only on K. These are not necessarily the same
constants that arose in the previous subsection.

Lemma 6.5. Let 4 be a K-quasidisc with co €A, and f: H — A a conformal
mapping satisfying f(c0) = co. Then

J |/ (D)l dt < ¢, (K)d(f(iy), 0A)
(o]
for0 <y < o0.

Proor. By Lemma 6.2, f has a K2-quasiconformal extension to the plane. We
may assume without loss of generality that f(0) = 0.
For y > 0, the mapping f satisfies the inequality

_ (/). 04)

[/ (y)l (6.7)

This follows directly from the Koebe one-quarter theorem cited in 1.1, if we
apply it to the function { — (f(iy + y{) — f(iy))/yf (iy).

In order to estimate the distance d(f(iy),04) we fix y. After this, we
choose a sequence (y;) so that 0 < y;,; < y; < y and that | f(iy;)| = ¢™/| f(iy)l,
j=0,1,..., where ¢ = ¢(K?) is a constant for which Theorem 2.4 holds for f.

(We can take, for instance, ¢ = e™¥*))
Let y;.; <t < y;. Because d(f(it), 0A4) < | f(it) — f(0)|, we obtain from (2.8)

d(f(it),04) < c|f(iy;) — f(O)| = c77*| f(iy)l.
Hence, by (6.7)

jj (0] dt < 47 f(iy)] log—2-.

Yj+1 j+1

The logarithm can be estimated by aid of (2.9). Let n be the smallest integer
for which ¢ < n. Then | f(iy;) — f(0)| < n|f(iy;+,) — f(0)l, and so by (2.9),

yi = Ii)’j -0l < nC"“)’jﬂ -0 = CZ(K)yj+1'
It follows that

f |f"(i)ldt < 4logc,(K)| f(iy)| ioc_”‘ = c;(K)f(iy)l.
0 J=

Finally, if xedH, then by applying (2.8) again we infer that |f(iy)| <
c| f(iy) — f(x)]. Thus | f(iy)| < cd(f(iy),0A), and the proof is completed. [J

Let z, and z, be points of 4 and o the hyperbolic segment of 4 joining z,
and z,. If A is a disc or a half-plane, it is easy to show that (6.5) and (6.6) hold
for a = b = m/2. This property generalizes to quasidiscs.
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Theorem 6.2. Let A be a K-quasidisc and o a hyperbolic segment in A with
endpoints z, and z,. Then o satisfies the conditions (6.5) and (6.6) with constants
a and b which depend only on K.

Proor. By Lemma 6.2, there is a K2-quasiconformal mapping f of the plane
which maps A conformally onto the unit disc D. We can choose f so that
f(z,) and f(z,) are real. Let D’ be the open disc in D which has the line seg-
ment with endpoints f(z,) and f(z,) as a diameter. Then f~!(D’) is a bounded
K2-quasidisc, in which « is a hyperbolic line. Since d(z, f ~'(dD’)) < d(z, 0 A)
for ze f~}(D’), we may assume, therefore, that A itself is bounded and a is a
hyperbolic line in A4, i.e., z,, z, € 0A.

Let A’ and o' be the images of A and o under the Mobius transformation
z-g(z) = (z — z,)/(z — z;). Then (g7')Y(w) = (z;, — z,)(w — 1)72, and so

|dw|
=|z; — zzlj ™ W”z (6.8)

In order to estimate the integral, we use the arc length representation
s— w(s) for o. Let s, = ¢,(K)/(c;(K) + 1), where ¢,(K) is the constant of
Lemma 6.5. If 0 < s < s, then |w(s) — 1| =1 — |w(s)| =1 — s > 1/(c,(K) + I).
For s > s,, we apply Lemma 6.5 to a conformal mapping f: H — A’ fixing
0 and oo. Then o« is the image of the positive imaginary axis, and so by
Lemma 6.5,

s= jy]f’(it)ldt < ¢,(K)d(w(s),04")
0

for iy = f~Y(w(s)). From 1 = g(oco0)¢ A’ we further conclude that d(w(s),0A4’) <
[w(s) — 1]|. It follows that

2

J ldwl_ _f (c1(K) + 1)2ds +J S s = 26, (K) ey (K) + 1)
lw—1] s S

Thus (6.5) is obtained from (6.8) with a = 2¢,(K)(c,(K) + 1).

In order to establish (6.6), we consider a K2-quasiconformal mapping f of
the plane, f(o0) = oo, which maps 4 conformally onto the unit disc D. Fix
zeo and choose z,€ 04 so that |z — zy| = d(z, 0A). Since f(«) is a hyperbolic
line in D,

min | f(z) — f(z;)| < 2d(f(2),0D) < 2|f(z) — f(zo)I.

Jj=1,2
By formula (2.9),
min |z — z;| < 2¢(K?)?|z — zo| = 2¢(K?)?d(z, 0A).
Jj=1,2
Since /() < alz—z;| by (6.5), we obtain (6.6) with b = 4c(K?)*c, (K)(c,(K)+1).

a

The following result follows immediately from Theorem 6.2.
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Theorem 6.3. A quasidisc is a uniform domain.

Theorem 6.3 is the first link in a closed chain of four theorems. Once these
have all been proved we get the converse to Theorem 6.3.

6.4. Linear Local Connectivity

A set E is linearly locally connected if there is a constant ¢ such that the
following two conditions hold for every finite z and every r > 0, where
D(z,r) = {w||lw — z| < r}:

1° Any two points of the set E n D(z,r) can be joined by an arc in E N D(z, cr).
2° Any two points of the set E\D(z,r) can be joined by an arc in E\D(z, r/c).

In order to illustrate this notion, we let E be the parallel strip {x + iy|
—1'< y < 1}. The points 0 and 2r > 0 of E\D(r,r) can be joined in E\D(r,r/c)
only if ¢ >r. Letting r - oo we conclude that E is not linearly locally
connected.

If a simply connected domain 4 with more than one boundary point is
linearly locally connected, then 4 is a Jordan domain. To prove this, we
consider a finite boundary point z of 4. Let U be an arbitrary neighborhood
of z, and choose r > 0 such that the closure of the disc D(z, cr) lies in U. Then
V = D(z,r) is a neighborhood of z such that 4 n V lies in a component of
A n U. It follows that A4 is locally connected at z. A similar reasoning, based
on the use of condition 2°, shows that if co € A4, then A4 is locally connected
at oo. We conclude that A is a Jordan domain (see 1.2 or Newman [1],
pp. 167 and 161).

We shall see after completing our chain of theorems that in fact, a simply
connected domain with more than one boundary point is linearly locally
connected if and only if it is a quasidisc. We shall now establish the second
link of the chain.

Theorem 6.4. A uniform domain A is linearly locally connected.

Proor. Fix a finite z, and r > 0, and suppose that z,, z,e A N D(zq,7).
Since A is uniform, there exists an arc « joining z, and z, in A4 such that
l(a) < alz, — z,| < 2ar. If zea, we thus have

|z—zol <z —2zy| + |2z, — 2ol < U @) + ¥ < (2a + D)r.

It follows that « joins z; and z, in A N D(zq,cr) if ¢ = 2a + 1.

Next assume that z,, z, € A\D(z,,r). We consider an arc « joining z, and
z, in A with minl(«;) < bd(z,0A) for every zea. Set ¢ = 2b + 1. If « joins z,
and z, in A\D(z,,r/c), the theorem is proved. Now suppose that a does not
join z, and z, in A\D(z,,r/c). We prove that, nonetheless, A\D(z,,r/c) is
connected.
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By our hypothesis, there is a point zeo for which |z — zy| <r/c. For
j=1,2 we have

lo) > |z; — z| = |zj — zo| — |z — zol 2 7 — r/c.
Thus

1 — 2
M—vo 2
b c c

d(z,0A) >
We conclude that D(z,,r/c) = A. It follows that z, and z, can be connected
in A\D(zy, r/c). O

From the proof we see that A is linearly locally connected with the con-
stant ¢ = 2 max(a, b) + 1.

6.5. Arc Condition

Let C be a Jordan curve and z,, z, finite points of C. They divide C into two
arcs, and we consider the one with the smaller euclidean diameter. The curve
C is said to satisfy the arc condition if the ratio of this diameter to the distance
|z, — z,| is bounded by a fixed number k for all finite z,, z, € C.

A circle satisfies the arc condition for the constant k = 1. An example in
the opposite direction is obtained if we consider the curve C = {x + iyjx > 0,
y=+x2}.1fz, = x + ix% z, = x — ix?, then |z; — z,| = 2x?, and the smal-
ler diameter in the above definition is >x. Hence d/|z, — z,| = o0 as x =0,
so that this curve does not satisfy the arc condition.

We shall now establish the third link of our chain.

Theorem 6.5. Let A be a simply connected domain whose boundary contains
more than one point. If A is linearly locally connected, then 0A is a Jordan
curve which satisfies the arc condition.

Proor. In 6.4, after defining the notion of linear local connectivity, we proved
that 04 is a Jordan curve.

Choose two finite points z,, z,€0A4 and set z,=(z; + 2,)/2, r=
|z, — z,|/2. The theorem follows if we prove that at least one of the arcs
o, o, into which the points z,, z, divide d4 lies in the closure of the disc
D(z,,c?r).

The proof is indirect. Suppose there is a ¢t > r and points w; € o\ D(zo, c*t),
i=1,2. Letr <s, <s, <t then z, and z, belong to the set 64 N D(z,,s,).
Since A is a Jordan domain, its boundary points are accessible. We can thus
find points z; € A N D(z,,s,) and arcs f; joining z; to z; in A N D(zy,s,). By the
linear local connectivity of A4, the points z; and z5 can be joined by an arc f3,
in AN D(zy,cs,).

The points w, and w, lie in 4\D(z,, ¢*s,). Therefore, we can find an arc y
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joining w, and w, in A\D(z,, cs,). But then the cross-cut y does not meet the
cross-cut fi; U 8, U 5. This is a contradiction, because their endpoints are in
the order z,, w,, z,, w, on 0A. O

The proof indicates that if A is linearly locally connected with a constant
¢, then 84 satisfies the arc condition with the constant c¢2.

6.6. Conjugate Quadrilaterals

We shall now close our chain of theorems by proving that if the boundary of
a Jordan domain A satisfies the arc condition, then A is a quasidisc. This is a
difficult step for which no simple proof seems to exist. As a preparatory
result, we give a characterization of quasicircles in terms of quadrilaterals.

Let C be a Jordan curve bounding the domains A, and A4,. Take a se-
quence of four points z,, z,, z3, z,€ C such that A,(z,,z,,23,2,) is a qua-
drilateral. Then A,(z,,z5,2,,2,) is also a quadrilateral, and these two
quadrilaterals are said to be conjugate.

Lemma 6.6. Let C be a Jordan curve such that for all conjugate quadrilaterals
Ay, A, with M(A;) =1 we have M(A,) < K. Then C is a c(K)-quasicircle,
where ¢(K) depends only on K.

Proor. Let g,: A; - H and ¢g,: A, > H' be conformal mappings, where H' is
the lower half-plane. Consider the increasing homeomorphism x — h(x) =
g>(g97"'(x)) of the real axis. For all quadrilaterals H(z,, z,, 25, z,) with module
1 we then have

1/K < M(H(h(z,), h(z3), h(z3), h(z4))) < K.

We proved in section 5 that the validity of this module inequality is
a sufficient condition for the existence of a ¢(K)-quasiconformal mapping
f+H - H with boundary values h. Then fog, extended by ¢, is a ¢(K)-
quasiconformal mapping of the plane carrying 4, onto H. Thus C is a
¢(K)-quasicircle. O

In order to utilize Lemma 6.6, we need a result about the geometry of
conformal squares.

Lemma 6.7. Let Q(z,,z,,z5,2,4) be a quadrilateral with module 1, and let s, and
s, denote the euclidean distances in Q between the sides (z,,z,), (z3,24) and
(z5,23), (24, 2,), respectively. Then

sy/s, > 1073,

Proor. We may assume that among the arcs which join the sides (z,, z3) and
(z4,2z,)in Q there is a y, of length s,. Let z, be the point which divides y, into
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two parts of length s,/2. Set p(z) = 2/s, if |z — zo| < 5,/2, p(2) = 1/|z — zo| if
$,/2 < |z — zo| < s; + 5,/2, and p(z) = 0 elsewhere. The area m,(Q) of Q in
this p-metric then satisfies the inequality

m,(Q) < n(1 + 2log(1 + 2s,/5,)).

Consider next an arc y joining the sides (z,,z,) and (z3,z,) in Q. For the
p-length of y we obtain a minorant if we integrate 1/x over a segment with
endpoints s,/2 and s,/2 + s;. Therefore,

'[ p(z)ldz| > log(l + 2s,/s,).

Setting
1+ 2log(l + x)

F =
™) = ~log(l + %)?
we thus we have by formula (1.7),
1 = M(Q(z,,25,23,24)) < TF(25,/s5).

From this we obtain, by interchanging the roles of s, and s,

5, 2 2 -
s = S 1073
s, SFi(im) e 1 =

6.7. Characterizations of Quasidiscs
We can now establish the remaining link of our chain.

Theorem 6.6. A Jordan domain whose boundary satisfies the arc condition is a
quasidisc.

Proor. Let C be a Jordan curve which satisfies the arc condition and bounds
the domains 4, and 4,. Choose four points z,, z,, z3, z, on C such that
Ay(z,,2,,25,24) is a quadrilateral with module 1. We shall derive an upper
bound for the module of the conjugate quadrilateral A,(z4,23,25,2;).

Let s, denote the distance in 4, between the sides (z,,z,) and (z3,z4), and
d, the same distance measured in the plane. For the remaining sides (z,,z3)
and (z4,z,) these distances are denoted by s, and d,. From Lemma 6.7 it
follows that

s; > 1073%d,. (6.9)

Since C satisfies the arc condition, there is a constant k > 1 such that one
of the sides (z,,z3), (z4,2,) lies inside a disc of diameter kd,. From this we
conclude that
d,

RS

(6.10)
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For if not, one of the sides (z,,z3), (z4,z,) lies in a disc of diameter 1073d, /x.
The other, which is at a distance d, from this one, must lie outside this disc.
It follows that the sides (z,,z,) and (z5,z,) can be joined in A, by a circular
arc of length <1073d,. This is in contradiction with (6.9), and (6.10) follows.

Since (6.10) is formulated in terms of the distances in the plane, it can be
used to estimating the module of 4,. We first conclude as above the existence
of a disc |z — z,| < kd,/2 which contains one of the sides (z,, z,), (z3,24). Let

r = kdy/2 + 1073d,/nk,

and define p(z) =1 if |z — zo| < r, and p(z) = 0 elsewhere. By (6.10), the
p-length of an arc y joining the first and the third side of 4, is >1073d,/nk.
Hence,

M(A,(24,23,25,2;)) < 10973r2k2/d2 = 10%m(nk?/2 + 1073)2

By Lemma 6.6, C is a quasicircle, and the theorem is proved. We remark that
C is a c(k)-quasicircle where c(k) depends only on the constant k in the arc
condition. O

Before summarizing our results we remark that the converse of Theorem
6.6, which we now know to be true, admits a fairly simple direct proof ([LV],
p. 101).

Quasicircles passing through oo satisfy a particularly simple geometric
condition.

Theorem 6.7. Let C be a K-quasicircle passing through oo, and z,, z,, z5 finite
points of C such that z, lies between z, and z5. Then

|2y — 25| + |z, — z3] < c(K)|z; — z3]. (6.11)

Proor. Let f be a K-quasiconformal mapping of the plane which maps the
real axis onto C such that f(c0) = co0. Denote x; = f~!(z,), i = 1, 2, 3, and
C, = {w|lw— x| =|x; — x5|}, C; = {w||w — x3| = |x; — x3|}. Join z, and
z3 by a line segment L, and denote by a, and a, the first points at which L
meets f(C,) and f(C,) when one moves along L from z, and from z;. Then

lz)y —a,| + 123 — a,| < |z; — z;5].
By Theorem 2.4,

lz1 =zl < e(K)|zy —ayl,  |z; — 23] < c(K)[z3 — a,].

These yield the desired inequality (6.11). It follows from the proof and our
remark in 2.5 that (6.11) holds for ¢(K) = A(K). dJ

Conversely, assume that a Jordan curve C containing oo satisfies (6.11).
Then C satisfies the arc condition with the constant ¢(K), and C is a
quasicircle.

The implications in Theorems 6.2-6.6 form an unbroken chain which
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starts and ends with quasidiscs. This makes it possible to draw the remark-
able conclusion that the converse of each of these theorems is true. It follows
that quasidiscs can be characterized as domains with the hyperbolic segment
property of Theorem 6.2, as uniform domains (Theorem 6.3), as domains
which are linearly locally connected (Theorem 6.4) or as domains whose
boundary satisfies the arc condition (Theorem 6.5 or Theorem 6.6). Here we
assume of course that the domains are simply connected and have more than
one boundary point. In addition, Theorem 6.1 tells that quasidiscs are Jordan
domains whose boundaries admit quasiconformal reflection.

The special position of infinity necessitates some clarification. In defining
uniform domains A we assumed that oo is not in A4, and Theorem 6.2 is not
true if A contains co. By contrast, Theorems 6.5 and 6.6 hold without this
restriction, which is not utilized in the proofs. It is not hard to prove that the
converses of these theorems are also valid for domains in the extended plane.
For Theorem 6.6 this follows immediately from the fact that if A is a quasi-
disc and o0 €4, then 04 is a bounded quasicircle. Since the converse of
Theorem 6.6 holds for quasidiscs of the complex plane, 04 satisfies the arc
condition.

There are also characterizations of quasidiscs in terms of analysis rather
than geometry. They sometimes reveal surprising connections between var-
ious problems of analysis which on the surface have nothing to do with
quasiconformal mappings. In I1.4 we shall establish a result of this type, using
Schwarzian derivatives (see especially 11.4.4). A comprehensive account of the
main properties of quasidiscs known in 1982 is given in Gehring’s lecture
notes [4], which we have utilized to a large extent in this section. These notes
also contain an extensive bibliography.

Quasicircles were introduced by Pfluger [2] (1961) and Tienari (1962). In
1963, Ahlfors [4] characterized quasicircles geometrically by proving that the
arc condition is necessary and sufficient. In this same paper, he also intro-
duced quasiconformal reflections and used them to prove an important ex-
tension theorem for conformal mappings (Theorem I1.4.1). Gehring [2]
defined the notion of linear local connectivity and proved Theorem 6.5 in
1977. Theorem 6.3 and its converse were established by Martio and Sarvas
[17(1979), and Theorem 6.2 with its converse by Gehring and Osgood [1]
(1979).



CHAPTER 1II

Univalent Functions

Introduction to Chapter 11

The theory of univalent analytic functions covers a large part of complex
analysis. In this chapter, we deal with certain aspects of the theory which are
directly or indirectly connected with Teichmiiller theory. The interaction
between univalent functions and Teichmiiller spaces was already explained
briefly in the Introduction to this monograph. A more comprehensive des-
cription is provided by Chapters II, III, and V, taken together.

In this chapter a central position is occupied by the Schwarzian derivative
of a locally injective meromorphic function. In section 1 we begin with the
classical result that the Schwarzian derivative vanishes identically if and only
if the function is a Mobius transformation. Some other basic properties of the
Schwarzian and its hyperbolic sup-norm are also established.

In section 2 we consider Schwarzian derivatives of conformal mappings of
a simply connected domain A. Particular attention is paid to the case in
which the image domain is a disc. The norm of the Schwarzian is then
intimately related to the geometry of 4 and provides a measure of the dis-
tance of A from a disc.

Sections 3 and 4 deal with a problem which, apart from its intrinsic interest,
plays an important part in Teichmiiller theory. Let f be quasiconformal in
the plane with complex dilatation u and conformal in a simply connected
domain A. The problem is to describe the interrelations existing between u
and the Schwarzian derivative of the restriction f| A.

In section 3 we derive a quantitative estimate which shows that if the sup
norm of p is small, then the norm of the Schwarzian of f|A is also small.
The method of proof can be adapted to the study of many other problems
concerning univalent functions with quasiconformal extensions. We establish
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some results of this type, even though they might veer a little off the main
track from the standpoint of applications to the Teichmiiller theory.

We return to the main problem in section 4. A basic result says that if a
function f, meromorphic in a quasidisc, has a small Schwarzian derivative,
then f is univalent and has a quasiconformal extension to the plane with a
small p. It is then proved that the result does not hold in simply connected
domains which are not quasidiscs. In this section, the interplay of the con-
cepts complex dilatation, quasidisc and Schwarzian derivative becomes very
concrete.

In section 5 we consider meromorphic functions in a disc. Results of
section 4 can then be supplemented and expressed in a more explicit form.
Again, this is not only of interest in itself but leads to important conclusions
in Teichmiiller theory.

1. Schwarzian Derivative

1.1. Definition and Transformation Rules

Let us consider a Mobius transformation z — f(z) = (az + b)/(cz + d). Dif-
ferentiation yields

@) 2¢ Y 2¢2
f'z) cz+d 1 (Z)_(cz+d)2'

Using the notation
f/r)/ l (fu)
Ss=|—=) -2 , 1.1
f <f/ 2 fr ( )

we conclude that every Mobius transformation satisfies the differential
equation

S, =0. (1.2)

Conversely, if we start from the equation (1.2) and set y = f"/f’, then
y’ = y?/2. From this we deduce, by an easy integration, that every solution of
(1.2) is a MObius transformation.

The expression (1.1) is called the Schwarzian derivative of the function f. It
can of course be defined for a much more general class of functions than
Mobius transformations. In order to make clear the notions to be used, we
remark that in our terminology, a meromorphic function need not necessar-
ily have poles. A holomorphic function is a meromorphic function without
poles. The word “analytic” is a synonym for “meromorphic”, but to avoid
confusion it is more rarely used. The terms “conformal mapping”, “injective

b
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meromorphic function”, and “univalent analytic (meromorphic) function” all
have the same meaning. Sometimes we follow time-honored practice and say
“univalent” instead of “univalent analytic”.

Let us first assume that f is holomorphic in a domain A in the complex
plane and f'(z) # 0 in A. We then define the Schwarzian derivative S, of f by
means of formula (1.1).

If, in addition, f(z) # 0, we see from (1.1) that

Sf(z) = Sl/f(Z)-

We use this formula to define S;(z) for a meromorphic f at points where f has
a first order pole. It follows that if a meromorphic f is locally injective in A,
then S, is defined everywhere in A, and it is holomorphic in A.

Direct computation gives the transformation rule

Srog = (Sfog)g'2 +S,. (1.3)
If g is a Mobius transformation, we have S, = 0, and so
Sfo_q = (Sfog)g,Z (14)

This formula can be used to define the Schwarzian derivative at infinity.
Assume that f is meromorphic and locally injective in a domain which
contains oo, and let ¢ be defined in a neighborhood of the origin by
¢(z) = f(1/2). By (1.4), we have z*S,(z) = S;(1/z). Hence, if we define

Sp(o0) = limz*S,(2),
z—0

then S, is holomorphic at co. We see that S; has a zero of order >4 at
infinity. In conclusion, the Schwarzian derivative can be defined in any do-
main A for every function f meromorphic and locally injective in A4, and it is
a holomorphic function in A.

The Schwarzian derivative will play a very central part throughout this
chapter on univalent functions and in the presentation of Teichmiiller theory
in Chapters IIT and V. It was introduced to complex analysis in 1869 by
H. A. Schwarz ([1], p. 78). Schwarz established equation (1.2) and used it to
map a simply connected domain bounded by finitely many circular arcs con-
formally onto a disc.

The special role of Mobius transformations in connection with Schwarzian
derivatives appears not only from equation (1.2) but also from the invariance
property following from (1.3) and (1.2): If f is a M ébius transformation,

Sfog = Sg.

In studying the local approximation of a meromorphic function by Mobius
transformations Martio and Sarvas arrived at the Schwarzian derivative in
a way which justifies using the word “derivative” for the operator S;. Let f be
a locally injective meromorphic function in a domain A and z, an arbitrary
finite point of A. Then there is a unique M6bius transformation h such that
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i 2@ — 2
m-——m

sy (2 —20)?

is finite. This limit is equal to S;(z)/6.

In the proof we may assume that f(z,) # oo, for if h corresponds to
1/f, then z — h(1/z) corresponds to f. For an undetermined MGobius
transformation h, we write (hof)(z) = ao + a,(z — zo) + a5(z — z¢)* +
a3(z — z9)® + -+ . Since h depends on three complex parameters, there is a
unique h such that ag = zy, a;, = 1, a, = 0. Then ((ho f)(2) — 2)/(z — z0)® has
the finite limit a, as z — z,. A direct computation, based on a, = 1, a, =0,
and S, = 0, shows that 6a; = S;(zo).

1.2. Existence and Uniqueness
The Schwarzian derivative can be prescribed:

Theorem 1.1. Let ¢ be a holomorphic function in a simply connected domain A
in the complex plane. Then there is a meromorphic function fin A such that

S, = . (1.5)

The solution is unique up to an arbitrary Mdbius transformation.

Proor. Through the substitution y = f”/f’ equation (1.5) transforms to the
Riccati equation y’ — y2/2 = ¢. From this we obtain, by the standard sub-
stitution y = —2w’/w, the linear second order equation

w” +1ow=0. (1.6)

It is a well-known result in the classical theory of linear differential equa-
tions that given a point z,€ 4, equation (1.6) has a unique holomorphic
solution w in a neighborhood of z,, once we prescribe the values w(z,) and
w'(z,). It is also easy to verify this directly, with the aid of power series. In
fact, we have ¢(z) = 2Za,,(z — z,)"in a disc around z,. If

w(z) = icn(z — Z), (1.7)

then for w to be a solution we obtain from (1.6)

n—2
nn—1c, + Y a4 =0, n=23,....
k=0

The coefficients ¢, and ¢, can be chosen arbitrarily; we take ¢, =0, ¢; = 1.
Next we fixanr,0 < r < 1, and a finite number M > 1 such that |a,| < Mr™",
n=0,1,...,and that Mr? < 1. Then

n—2

n—2
nn — Ve, <M Y r ™2 e | <r™" 3 r¥lel.
k=0 k=0
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The hypothesis |¢,| < r *for k=0, 1, ..., n — 2, which is fulfilled for k = 0,
1, gives n|c,| < r~" It follows that (1.7) is a holomorphic solution of (1.6) in
the disc |z — zo| < 1.

Since A is simply connected, we can apply the Monodromy theorem and
obtain a global solution of (1.6) by analytic continuation.

Let w; and w, be two linearly independent holomorphic solutions of (1.6).
Since w, wj — wiw, = 0, we have w, w; — wjw, = constant. This constant is
not zero, because w, and w, are linearly independent. Set f = w, /w,; then f
is a locally injective meromorphic function in 4. Direct computation yields
SUlf' = —=2wy/w,,and so §; = —2w;/w, = @.

From the invariance of the Schwarzian derivative under Mdbius transfor-
mations we conclude that, if f is a solution of (1.5) and h an arbitrary Mobius
transformation, then ho f also is a solution of (1.5).

Assume, conversely, that f and g are solutions of (1.5) in A4. Since f is
locally injective, we can define go f ™! locally. Using (1.3) we deduce from
Sy = S, that S, -, = 0. It follows that locally g = ho f, where h is a M&bius
transformation. But then g = ho f with the same Mobius transformation h
everywhere in A, and the uniqueness part of the theorem is proved. d

We supposed in Theorem 1.1 that oo is not in A. If oo € 4, it follows from
the definition of the Schwarzian derivative at oo (see 1.1) that Theorem 1.1
remains valid under the sole restriction that the given function ¢ must have
a zero of order > 4 at infinity. In particular, a function is determined by its
Schwarzian derivative up to a Mobius transformation.

1.3. Norm of the Schwarzian Derivative

The Schwarzian derivative S; measures the deviation of f from a Mdbius
transformation. In order to make this statement more precise we introduce a
norm for §;.

Let A be a simply connected domain conformally equivalent to a disc and
n the Poincaré density of A (cf. I.1.1). For functions ¢ holomorphic in 4 we
define the norm

el =suplo(z)n(z)2

ze A

In particular,
I1Splle = SUEISJ(Z)M(Z)_Z- (1.8)

ZEe
There are many reasons to use this “hyperbolic sup-norm” instead of the
ordinary norm sup|S,(z)]. We shall soon see that (1.8) exhibits more in-
variance with respect to Mdbius transformations than sup|S,(z)|. This is
important as such and becomes crucial when we generalize the notion of
Schwarzian derivative to Riemann surfaces, because |S;|#~? is a function on
a Riemann surface whereas |S;| is usually not.
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It is important to see how the norm (1.8) transforms under conformal map-
pings. Let f and g be meromorphic functions in a domain 4 and h: B— A a
conformal mapping. By the transformation rule (1.3),

Sfoh — SgOh = (Sf Oh - Sg Oh)h!Z‘

We also know that the hyperbolic metric is conformally invariant: ng =
(n40h)|W’|. If w = h(z), we thus obtain the basic invariance formula

ISf(W) - Sg(W)I _ ISfoh(Z) - Sgoh(z)l
’7A(W)2 '73(2)2 .

Equation (1.9) yields a number of results about the norm. First, it follows
immediately from the definition of the norm that we have the invariance

”Sf - Sg“A = ”Sfoh - Sgoh”B'

For the special case in which g = h™! is a conformal mapping of 4 we obtain
the formula

(1.9)

”Sf - SgHA = “S_fog“l”g(A)’ (1.10)

which will be repeatedly used later. If we choose f here to be the identity
mapping, we get the invariance

I1Sslla = 11851 llgca) (1.11)

between a conformal mapping and its inverse. Finally, if g = h™! is a M6bius
transformation, (1.9) shows the invariance of |S;|/#* under Mobius transfor-
mations, and (1.10) assumes the form

IS lla = 11Srog-1lgca- (1.12)

We see that || S, || is completely invariant with respect to Mobius transforma-
tions: If h and g are Mobius transformations, the norms of the Schwarzians
are the same for f in A and ho fogin g~'(A).

1.4. Convergence of Schwarzian Derivatives

Suppose that the functions f,, n =1, 2, ..., are meromorphic and locally

injective in a domain A. If they converge to a locally injective meromorphic

function f locally uniformly in A, then the Schwarzians S, also tend to S,

locally uniformly in 4. However, this does not imply convergence in norm:
From

lim S (z) = §,(2)
locally uniformly in A, it does not necessarily follow that

lim ||, — Syll+ = 0. (1.13)

n—o
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A counterexample is obtained as follows. Letr,, 0 <r, <1, n=1,2,...,
be numbers tending to 1 and 4 = {z||z| > 1}. If we set f,(z) =z 4+ r,/z,
f(z) = z + 1/z, then f, and f are meromorphic and even globally injective
in A. From |f,(z) — f(z)| < 1 — r, we see that f,(z) — f(z) uniformly even in
the whole domain A. In spite of this, it follows from 7,(z) = (|z|* — 1)™ and

6r, 6
S0 =~y S@= Ty
that
) xZ -1 2
1S, — S 4= 61121(1 — r,,(x2 — r,,) > =6
for every n.

The approximating functions f, map A4 onto the exteriors of ellipses which
collapse to a slit domain f(A4). However, if a slit domain is approximated
differently, we do get for the Schwarzian derivatives both locally uniform
convergence and convergence in norm.

This is seen from the example in which A4 is the upper half-plane and
f.(z) = z°, where the numbers a, are positive and tend increasingly to 2.
Then f, and the limit function z — f(z) = z? are univalent in A. From
S, (z2) = (1 — a})/(22?) it follows that

4 — a?

. “Sf,,_Sf||A:2(4_a3)-

|Sf,,(Z) - Sf(z)l = W,

We see that S, (z) - S,(z) locally uniformly in 4 and that S;, — S, in norm. In
this case f(A) is the plane slit along the non-negative real axis, and the
approximating domains f,(A4) = {w|0 < argw < na,} are infinite sectors.

Figure 2 illustrates the difference between the two cases. In order to get the
same limit domain and the same “critical” points, we have replaced f, in the
first example by 2f, /(1 + r,) and in the second one by 2(f, + b,)/(f, — b,) with
b, = e/, These changes leave the Schwarzians invariant.

The converse problem is to study whether we can conclude from (1.13) that
the mappings f, converge to f. Since the Schwarzian derivative determines

f : : f i
LN o .
: ; =
J I
Example 1. Sy + 5 Example 2. Sy 8,

Figure 2
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z—>logz h

Figure 3

the function only up to a Mdbius transformation, some normalization is of
course needed for the functions f, and f.

If no normalization is imposed on the functions f, in (1.13), they may
converge pointwise but the limit can be very different from f. For instance,
consider the mappings z — f(z) = log z and z — f,(z) = z*" in the upper half-
plane. Since S,(z) = 1/(2z%), we have

ISy, — Spll = 2/n%,

and so (1.13) is valid. But f,(z) does not tend to log z but to the constant 1.
The situation changes if suitable M6bius transformations are applied to f,

and f. In fact, set
1 —(mi/2n)
h,(w) = tanl- + we
4n 1 — we

4

“(mij2n)’ h(w) = i — 2w’
(For the images of the upper half-plane under h,o f, and ho f, see Fig. 3.)
‘We still have of course S, ., — S,.,, but now we also have lim h,(z'") =
h(log z).

In general, the reasoning might go as follows. If we can infer that the
functions f, constitute a normal family, then there is a subsequence f, which
tends locally uniformly to a limit function f,. If f, is a locally univalent

meromorphic function, then S; (z) — S;, (z) for every ze A. On the other
hand, (1.13) implies that S, (z) —» :S‘,(z) in A. Hence, by the uniqueness part of
Theorem 1.1, f = ho f,, where h is a MGbius transformation.

Let us give an application. Assume that in (1.13) the functions f, are
conformal mappings of A which have K-quasiconformal extensions to the
plane and which keep three fixed boundary points a,, a,, a; of 4 invariant.
By Theorem 1.2.1, the mappings f, form a normal family. Let f, be the limit
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of a locally uniformly convergent subsequence f,. In A the function f; is
conformal and §; = lim S; . Hence, we conclude as above that f = ho f,,

where h is a Mobius transformation. It follows that f also is a conformal
mapping of A4 with a quasiconformal extension. If f fixes a,, a,, as, then
every convergent subsequence f, tends to f. In this case (1.13) implies that the
sequence (f,) itself converges pointwise and f(z) = lim f,(z) locally uniformly
in A.

We remark that there is a certain analogy in the behavior of Schwarzian
derivatives and complex dilatations. In 1.4.6 we pointed out that locally
uniform convergence of quasiconformal mappings does not imply the con-
vergence in L*-norm of their complex dilatations. On the other hand, Theo-
rem 1.4.6 shows that the L*-convergence of complex dilatations does imply
pointwise convergence of suitably normalized mappings.

1.5. Area Theorem
Let us leave Schwarzian derivatives for a moment and establish a classical
result on univalent functions, which we shall need in estimating the norm of

the Schwarzian derivative of a conformal mapping.

Theorem 1.2 (Area Theorem). Let f be a univalent meromorphic function in the
domain {z||z| > 1}, with a power series expansion

f@=z+ 3 bz ™" (1.14)
n=0
Then
Y nlb> < 1. (1.15)
n=1

The inequality is sharp.

Proor. Let C, be the image of the circle |z| = p > 1 under f. The finite
domain bounded by C, has the area

i _
m, = EL,, wdw.
Substituting w = f(z) and considering (1.14) we obtain
m,=mnp?—m Zl nlb,|2p~2".
As an area, m, > 0 and the result (1.15) follows as p — 1. O

The Area theorem was first proved by Gronwall in 1914 and efficiently
used by Bieberbach two years later. It is a historically significant result as it
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marks the beginning of the systematic theory of univalent functions. We need
the following immediate consequence of it:
Under the assumptions of the Area theorem,

b < 1. (1.16)

Equality holds if and only if f(z) = z + €'/z.

For the extremal function of (1.16), the equality sign holds as well in (1.15).
For (1.15), there are many other extremals.

The functions satisfying the conditions of the Area theorem with b, = 0 are
said to form the class £. Another important class in the theory of univalent
functions is S, which consists of functions f univalent and holomorphic in
the unit disc with f(0) =0, f(0)= 1. If feS and f(z) =z + ) ¥ a,2", then
z— @(z) = 1/f(z7%)" belongs to T and ¢(z) = z — 3a,/z + ---. Hence by
(1.16),

lay| <2, (1.17)

with equality only for the Koebe functions z — z/(1 + e™2).
If feS and g is an arbitrary conformal self-mapping of the unit disc, then

fog — f(g(0)
f’(g(0))g’(0)

belongs to S. Setting g({) = ({ + z)/(1 + z{), we obtain by calculating a, for
(1.18) and considering (1.17),

(1.18)

(=128 <

/(@)
Integration of this inequality twice leads to the estimate | f(2)| > |z|/(1 + |z|)>.

As |z| — 1 we get the Koebe one-quarter theorem which we used already in
I.1.1.

1.6. Conformal Mappings of a Disc

By Theorem 1.1, any function ¢ holomorphic in a simply connected domain
A of the complex plane is the Schwarzian derivative of a function f which is
meromorphic and locally injective in A. It follows that |S,(z)|/n,(z)? can grow
arbitrarily rapidly as z tends to the boundary of 4. In particular, there are
many classes of functions f for which the norm of S; is infinite. Even if f is
bounded, it may happen that ||S,|| , = co. An example is the function

z— f(2) = exp((z + 1)/(z — 1)) (1.19)

in the unit disc, for which Sy(z) = —2(1 — z)™*.

The behavior of (1.19) differs greatly from that of a Mobius transformation
in that (1.19) takes every value belonging to its range infinitely many times.
In contrast, a univalent f is analogous to a M&bius transformation in its
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value distribution, and it will turn out that the norm of its Schwarzian is
always finite. We shall first prove this in the case where A4 is a disc, a disc
meaning a domain bounded by a circle or a straight line.

Theorem 1.3. If fis a conformal mapping of a disc, then
IS;1l < 6. (1.20)
The bound is sharp.

Proor. By formula (1.12) it does not matter in which disc f is defined. We
suppose that f is a conformal mapping of the unit disc D. Let us choose a
point zoe D and estimate |S;(zo)|7(z0) "2 = (1 — |201?)*|S/(2o)|- By (1.9), this
expression is invariant under Mobius transformations. Hence, we may as-
sume that z, = 0. Also, since f can be replaced by ho f, where h is an arbi-
trary Mobius transformation, there is no loss of generality in supposing that
f€S. Let a, denote the nth power series coefficient of f.
The function

z—=1/f(1)z) =z + 20 b,z™"

satisfies the conditions of the Area theorem. From b, = a? — a; we thus
conclude that |a — as| < 1. On the other hand, S;(0) = 6(a; — a3). Conse-
quently, |S,(0)| < 6, and (1.20) follows.

For the Koebe functions f the coefficient b, of z — 1/f(1/z) is of absolute
value 1. Hence, for the Koebe functions |a3 — a;| = 1, and equality holds in
(1.20). More generally, in D equality holds in (1.20) for all functions ho fog,
where g is a conformal self-mapping of D, f a Koebe function, and h an
arbitrary Mdbius transformation. In the upper half-plane, z — f(z) = z2is a
simple example of a univalent function for which || S, || = 6. O

The estimate (1.20) was proved by Kraus [1] in 1932. His paper was
forgotten and rediscovered only in the late sixties. Meanwhile, (1.20) was
attributed to Nehari ([1]) who proved it in 1949.

2. Distance between Simply Connected Domains

2.1. Distance from a Disc

Let A be an arbitrary simply connected domain which is conformally equi-
valent to a disc. Even in this general case, the norm of the Schwarzian
derivative of a conformal mapping of A4 is always finite, but the bound may
be as high as 12.
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In order to study the situation more closely, we introduce the domain
constant

5(1‘1) = Sf”Aa

where f is a conformal mapping of 4 onto a disc. We call 6(A) the distance of
the domain A from a disc. In view of the invariance of the norm of the
Schwarzian derivative under Mobius transformations, the distance §(A) is
well defined.

We have 6(A4) = 0 if and only if A is a disc. By Theorem 1.3 and formula
(1.11),

6(A) <6

for all domains A. The distance 6(4) measures how much A4 deviates from a
disc, or equivalently, how much a function f mapping 4 onto a disc deviates
from a M&bius transformation.

An illustrative example is provided by the case in which 4 is the exter-
ior of the ellipse {z =e' + ke™™|0 < ¢ <27n}, 0 <k < 1. (For k = 1, the
ellipse degenerates into the line segment with endpoints +2.) The func-
tion z —> f(z) = z + k/z maps the disc E = {z||z| > 1} conformally onto A.
Because S,(z) = —6k(z> — k)72, it follows that

5(A) = 6k.

We see that §(A4) changes continuously from 0 to 6 as k increases from O to 1.
Thus the range of 6(A) for varying domains A is the closed interval [0, 6].

Another simple example is the angular domain 4 = {z|0 < argz < kn},
0 <k <2 Now z- f(z) = z* maps the upper half-plane onto 4. From
Si(z) = (1 — k?)/(2z%) we obtain

5(A) = 2|k? — 1. 2.1)

Again, 6(A) covers the whole closed interval from 0 to 6 as k grows from 1 to
2.

It might be expected that domains close to a disc are quasidiscs. This is
indeed the case: In section 3 we shall prove that for a K-quasidisc 4 the
distance 6(4) - 0 as K — 1, and in section 5 that all domains with §(4) < 2
are quasidiscs.

2.2. Distance Function and Coefficient Problems

The problem of estimating the distance function 6(A4) is connected with
classical problems regarding the power series coefficients of univalent func-
tions. Theorem 1.3 gave an indication of this. To make this more precise, we
first note that in view of formula (1.11), we could define 6(A4) with the aid of
conformal mappings of the unit disc D onto A. Let g be a conformal self-
mapping of D, such that g(0) = z,. Since 5,(0) = 1, we conclude from the
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invariance relation (1.9) that
|Sf(zo)|'7(zo)_2 = ISfog(O)l-
This yields the characterization
0(A) = sup{|S;(0)[| f: D - A conformal} (2.2)

for the distance function.

Since composition of f with a Mobius transformation does not change
6(A), we may further assume that f(0) = 0, f'(0) = 1 and that oo is not in A4,
i.e., that feS. Then

$,(0) = 6(a; — a). (2.3)

Hence, determining 5(A) amounts to maximizing the expression |ay — a3|.

2.3. Boundary Rotation

As an example of the use of the characterization (2.2) and the formula (2.3),
we shall determine the sharp upper bound for §(A) in certain classes of
domains characterized geometrically in terms of their boundary. We shall
first introduce “boundary rotation”.

Let A be a domain of the complex plane whose boundary is a regular
Jordan curve. It follows that dA is the image of the interval [0, 27) under a
continuously differentiable injection y with a non-zero derivative. Let my(z)
be the angle between the tangent vector y'(t) to A at y(t) and the vector in
the direction of the positive real axis. We assume that y(t) describes 04 in
the positive direction with respect to A4 as ¢ increases. Then

rn dy(t) = 2. (2.4)

0

The boundary rotation of A is the total variation of ny. If

2n
J ldyi(t)] = k < oo, (2.5)
0
the domain 4 is said to have the boundary rotation k.

For an arbitrary domain A in the complex plane conformally equivalent to
a disc, boundary rotation is defined as follows. Let 4,, n =1, 2, ..., be an
exhaustion of 4, i.e., A, = A,,; = A for every n and U 4, = A. Suppose that
A, < B,, B, c A, and that B, is bounded by a regular Jordan curve. For a
fixed n, let o, be the infimum of the boundary rotations of all such domains
B,. Then the boundary rotation of A4 is defined to be « = lim «,,. The limit «
does not depend on the choice of the exhausting domains A4,, and it agrees
with the previously defined boundary rotation for domains whose boundary
is a regular Jordan curve.

Boundary rotation can also be defined directly for the above domain 4 in
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purely analytic terms. Let f be a conformal mapping of the unit disc D onto
A, and let

2f"(2)

u(zy =1+ Re———". (2.6)
@)
Then the boundary rotation of A4 is equal to
2n
limJ lu(re)| de. (2.7
r—1 Jo

Suppose that A4 has finite boundary rotation kz. From the finiteness of (2.7)
it follows that the harmonic function u can be represented by means of the
Poisson-Stieltjes formula. Integration then yields

['(2) = f'(0)e” Jirortt me v 0, (2.8)

Here y is a function of bounded variation satisfying (2.4) and (2.5). It agrees
with the y defined earlier using the tangent if 04 is a regular Jordan curve. In
integrated form (2.8) is a generalization of the classical Schwarz—Christoffel
formula for the function mapping a disc conformally onto the interior of a
polygon.

Conversely, let  be a function of bounded variation satisfying (2.4) and
(2.5). Under the additional condition k < 4, a function f whose derivative is
defined by (2.8) is then univalent in D and maps D onto a domain with
boundary rotation k.

Convex domains of course have finite boundary rotation.More exactly, a
domain is convex if and only if its boundary rotation is 2n. Equivalent to this
is the assertion that the function u defined by (2.6) is positive in D or that the
function  is non-decreasing.

For convex domains formula (2.8) was derived by Study in 1913. The
notion of boundary rotation was introduced in 1931 by Paatero; his thesis
[1] contains detailed proofs for all the results in this subsection.

2.4. Domains of Bounded Boundary Rotation

Using the representation formula (2.8) we can easily estimate 6(4) for convex
domains.

Theorem 2.1. If A is Mébius equivalent to a convex domain, then
5(A) < 2. (29)
Equality holds if A is the image of a parallel strip under a Mobius trans-

formation.

Proor. We may assume that A itself is convex. Let f be an arbitrary con-
formal mapping of D onto A. In view of (2.2), inequality (2.9) follows if we



64 I1. Univalent Functions

prove that |S;(0)| < 2. Since we may replace f by the function z — ¢f(ze') for
¢ complex and ¢ real, there is no loss of generality in assuming that S,(0) > 0
and that f'(0) = 1.

From (2.8) we obtain by direct computation

n 2n 2
§,(0) = JZ e 20 dy(6) — %(J e""dlp(())) . (2.10)

0o 0

Since 5,(0) is real and dy/(0) > 0, it follows that

f2n (f2n 2 2n 2
§:(0) = cos20dy(6) — %( cos Odt//((?)) + %(J sin 9d¢(0)>

JO JO [
(f2n (f2n 2 2n

< cos20dy () — %( cos 0d¢(9)> + J sin? 0 dys(6) (2.11)
JO JO 0
f2n (f2rn 2 2n

= cos2 0dy(6) — %( cos@ddx(@)) < J cos20dy(0) < 2.
JO JO 0

Because S;(0) > 0, we have proved (2.9).
Equality holds if

2n 2n
J cos20dy(0) = 2, J cos6dy(0) = 0.

0 0

These conditions are fulfilled if i has a jump + 1 at the points 0 and = and is
constant on the intervals (0, 7) and (x, 27). Then S;(0) = 2, and it follows from
(2.8) that f'(z) = (1 — z?)~*. We conclude that the image of D is a parallel

strip. |

Theorem 2.1 expresses in a quantitative manner the fact that a convex
domain is close to a disc: Its distance to a disc is at most 2, while the distance
can be as large as 6 in the general case.

Not all domains close to a disc need be Mdbius equivalent to a convex
domain, as the example 4 = {z|0 < argz < kn}, k > 1, shows. Its boundary
forms two interior angles >, one at 0 and the other at co. Since these angles
are preserved under Mobius transformations, 4 is not Mobius equivalent
to a convex domain. On the other hand, by formula (2.1) we have §(4) =
2(k? — 1).

Theorem 2.1 can be generalized.

Theorem 2.2. Let A be Mébius equivalent to a domain with boundary rotation
<km. Ifk < 4, then

2k + 4
6 —k

8(A) < . (2.12)

The bound is sharp.
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k=25 k=3.5

Figure 4. Extremal domains.

The main lines of the proof are the same as those in Theorem 2.1. After
similar initial remarks we start from (2.10), assuming this time that S;(0) < 0.
In the first line of (2.11) we now ignore the third integral and conclude that

2n 2 2n
1S,(0)] < %(J cos()dtﬂ(())) — J cos 20 dys(0).
(0] 0
With attention paid to (2.4) and (2.5), the estimate (2.12) follows from this
after some computation; for the details we refer to Lehto and Tammi [1],
p. 255.
From (2.8) we get for the extremal f with f(0) = O the representation

z (1+Ck/2—l
f(Z):L 4_2k) : a4
(1 +te it >

The corresponding domain A = f(D) is symmetric with respect to the real
axis. Its boundary consists of two half-rays in the right half-plane emanating
from a point of the real axis and forming the angle km/2 in A4, and of a
vertical line in the left half-plane (Fig. 4). As k grows from 2 to 4, the vertical
line moves to the left until it disappears when k = 4, i.e., it then reduces to the
point co.

2.5. Upper Estimate for the Schwarzian Derivative

The use of the distance function é makes it possible to generalize Theorem
1.3 in a precise form.

Theorem 2.3. Let A and A’ be domains conformally equivalent to a disc and
f: A — A" a conformal mapping. Then

1S,1l4 < 6(A) + 6(A"). (2.13)
The estimate is sharp for any given pair of domains A and A'.

ProoOF. Let h be a conformal mapping of the unit disc D onto 4. From
f = (foh)oh™" we conclude that ||S;|| ; = [|S;o4 — Sillp- Since
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ISullp=0(A),  [ISrenllp = 0(4"),

the triangle inequality yields (2.13).

In order to verify that the estimate (2.13) cannot be improved, we consider
conformal mappings h,: D — A, h,: D - A’. Given an ¢ > 0, we choose h,
and h, such that

[S5,(0)] > Sy, 1lp — & i=12 (2.14)

This is possible, because ]Sf(z)lr;(z)"2 is invariant under Mobius transforma-
tions (cf. the reasoning in 2.2).

Let g be the rotation z — ¢"z. Then f =h,0goh]' maps A conformally
onto A’, and

HSfHA = “Shzog - Sh, ”D'
Now
I1Sh,00 = Sk, lp = 1S4, 04(0) — S4,(0)] = 1S,,(0)e?* — S, ()],
For a suitable 6 we obtain from this and (2.14),
I1Splla = 1S5,(0)] + 1S4,(0) > 3(A") + 6(A) — 2e.
Consequently, (2.13) is sharp. ’ d

From Theorem 2.3 we obtain the new characterization
8(A) = 3sup{||S,|l 4| f conformal self-mapping of 4}

for the distance function.

2.6. Outer Radius of Univalence

Let us introduce another domain constant
0o(A) = sup{||S, |l 4| f univalent in 4}.

We call g,(A) the outer radius of univalence of A. In 111.5.1 we shall also define
the inner radius of univalence of A.

Theorem 2.3 shows that there is a simple connection between the outer
radius of univalence and the distance function é (Lehto [6]).

Theorem 2.4. Let A be a domain conformally equivalent to a disc. Then

0o(A) = 6(A4) + 6. (2.15)
Proor. We write the definition of g,(A4) in the form

0o(A) = sup{||S; || 4| f: A = A’ conformal}.
v
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Then it follows from Theorem 2.3 that
0o(A) = 6(A) + supd(A4').
o

Hence, we obtain (2.15) from Theorem 1.3. O

We can thus extend Theorem 1.3 to domains A4 for which we know 6(A).
For instance, if f is univalent in the sector A = {z|0 < argz < kn},1 <k <2,
then |S;|l, < 2k*>+4, or if f is univalent in a convex domain A, then
IS;04 <8

Since d(A4) < 6, we see that in all simply connected domains A and for all
functions f univalent in A, we always have

I1S,114 < 12.

The maximum 12 can be attained. We must then have 6(A4) = 6, and extre-
mals are obtained, for instance, if we consider suitable self-mappings of such
domains A.

As one example, let us consider the domain A which is the complement of
the line segment {x| —1 < x < 1} with respect to the extended plane. In the
disc E = {w||w| > 1} we set hy(w) = (W + e/w)/2, 0 < 0 < 7, and define

fo= e hyohy’.

Then every hy is a conformal mapping of E, and f, a conformal self-mapping

of A. We have
0 0
Solz) = zcos 5 — i/z2 — 1 sini.
From S, (w) = —6e”/(w* — ¢)* and ||S;, ||, = || S}, — Si, Il it follows that

0
187,14 = 12sin .

In particular, the maximum value 12 is taken by the function

z— f(z2)= —i/z? — 1.

There is even a point of 4, namely oo, at which ISfx(z)|r7A(z)‘2 takes the
value 12.

2.7. Distance between Arbitrary Domains

Let us consider again two domains A and A’ which are conformally equiva-
lent to a disc. As a generalization of the distance to a disc, we introduce the
number

0(A, A’) = inf{||S;|| 4 f: A - A’ conformal}

and call it the distance between the domains 4 and A'.
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The triangle inequality yields the estimates
[0(A) — 6(A')| < 5(A, A) < O(A) + o(A").

Equality holds in both places if 4 or A’ is a disc. A less trivial example of
equality in the lower estimate is provided by the angular domains

A ={z]0 < argz < kn}, A ={zl0 < argz < k'n},

0<k<k <21ffi(z) = z% f,(z) = z*, then f, 0 f;"! is a conformal mapping
of A onto A’. Hence

oA, A) < ISy, = Sy, lly = 2(k"2 — k2).

If <1 or if k>1, we have 2(k'? —k?)=2(1 —k?)—=2(1 —k'?) =
|6(A) — 6(A")], so that in these cases 6(A4, A’) = |6(A4) — 6(A4')|.

Ifk' > 1,k < 1, then 2(k'> — k?) = 6(A) + 5(A’), but §(A4, A’) is presumably
smaller.

Let Q be the quotient of the set of domains conformally equivalent to a
disc by the group of Mdbius transformations. The equivalence class con-
taining all discs can be called the origin of Q and our previous function 6(A)
the distance to the origin of the equivalence class which contains A.

It is an open problem whether

0(A4,4) =0

implies that A and A’ are Mobius equivalent. If the answer is affirmative, then
(Q,0) is a metric space. Another open problem is to determine the diameter
of Q.

3. Conformal Mappings with Quasiconformal
Extensions

3.1. Deviation from Mobius Transformations

Let f be a sense-preserving homeomorphism of the extended plane onto
itself. If f is conformal everywhere, then f is a M&bius transformation. If f is
a quasiconformal mapping whose complex dilatation p is small in absolute
value, we know that f behaves locally almost like a conformal mapping; we
remind the reader of the simple geometric interpretation of |u(z)| in [.4.1.
Thus the number ||u||, can be regarded as a measure for the deviation of f
from a Mdbius transformation.

Suppose now that f is quasiconformal in the extended plane with complex
dilatation p and that, furthermore, f is conformal in a simply connected
domain A. From the results in the preceding sections we know that there is
another measure for the deviation of f from a Md&bius transformation, its
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Schwarzian derivative: If the norm |S;,| is small, then at least in A the
mapping f is close to a Mobius transformation.

It turns out that the norms || u||. and [|S, 4|l are closely related. If || x|, is
small, then so is || S 4, i.e., the behavior of f in the complement of 4, which
contains the support of g, is reflected in the behavior of f in 4 (Theorem 3.2
in this section). Conversely, if f is conformal in a quasidisc 4 and ||S;]l 4 is
small, then f can be extended to a quasiconformal mapping of the plane with
a small || ||, (Theorem 4.1 in the following section).

The study of the relationships between complex dilatations and Schwar-
zian derivatives will be one of the leading themes of this monograph. Apart
from its intrinsic interest, the possibility of using these two apparently dif-
ferent measures of the deviation from Mdbius transformations is important
in the theory of Teichmiiller spaces.

3.2. Dependence of a Mapping on its Complex Dilatation

In studying the effect of the complex dilatation on the Schwarzian derivative
we need a result detailing how a quasiconformal mapping changes when its
complex dilatation is multiplied by a complex number. We consider the
normalized case of Theorem 1.4.3 and make use of the representation formula
given therein.

Theorem 3.1. Let y be a measurable function in the plane with bounded support
and | u|l, < 1. Let z — f(z,w) be the quasiconformal mapping of the plane with
complex dilatation wu and with the property im(f(z,w) —z) =0 as z - o0.
Then, for every fixed z # oo, the function w — f(z, w) is holomorphic in the disc

wl < 1/llpll -
Also, for every fixed z outside the support of u, the derivatives of the analytic
Sfunction z — f(z,w) depend holomorphically on w for |w| < 1/| ul| ..

Proor. By Theorem 1.4.3,

1) = 11 = 2+ 3 Ta ()

where we now write ¢,(u) instead of ¢; to accentuate the dependence of ¢; on
u. From the definition of the functions ¢;(p) it follows that

Pi(wp) = wio,(w).

Hence,

few) =2+ ¥ o' (3.1)

From formula (4.15) in 1.4.4 we see that Y Tip,(u)(z) converges uniformly
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whenever | u|, < 1. It follows that the power series (3.1) converges if
[w| [l ull, < 1. Consequently, w — f(z, w) is analytic in the disc |w| < 1/||u]| ..

Outside the support of u, the function z — f(z, w) is a conformal mapping.
Also, each function z — Tip;()(z) is holomorphic, and Ty;(1)(z) is no longer a
singular integral. Therefore, we can differentiate in (3.1) with respect to z term
by term, without affecting the convergence of the series. If prime denotes
differentiation with respect to z, we obtain

Few =1+ 3 (Ta@yEw.

and similarly for higher derivatives. It follows that all derivatives of z — f(z, w)
depend holomorphically on w in the disc |w| < 1/| ]l ,,. d

Theorem 3.1 makes it possible to study the dependence of the power series
coefficients of z — f(z, w) on w. Let

flz,w) =z + i b,(w)z™"
n=1

in a neighborhood of infinity. Then the coefficients w — b,(w) are holomorphic
in [wl < 1/l ull-

To prove this we first note that if f is analytic for |z| > R, then z —» f(Rz)/R
is in class X. Therefore, we may assume without loss of generality that f
satisfies the conditions of the Area theorem.

First of all, we have

b,(w) = lim z(f(z,w) — z).

Here the convergence is uniform in w, because Schwarz’s inequality and the
Area theorem yield the estimate

lz(fz,w) = 2) = by (W)I> < ) |2)*7?/n < P10
n=2 -

By Theorem 3.1, the function w — z(f(z,w) — z) is holomorphic in |w| <

1/ nll for every fixed z. Hence w — b,(w) is holomorphic, as the uniform

limit of holomorphic functions. The analyticity of w — b,(w) is deduced simi-

larly from

n—1
b,(w) = lim z"(f(z,w) — z — Y b(w)z™/)
o j=1
by induction.

The special normalization of the mappings is not essential in Theorem 3.1.

Corollary 3.1. Let u be a measurable function in the plane which vanishes in the
upper half-plane and for which || ull,, < 1. Let f,,, be the quasiconformal map-
ping of the plane with complex dilatation wu which keeps the points 0, 1, oo
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fixed. Then the function w — f,,,(z) is holomorphic in |w| < 1/||u|l, for every
finite z.

Proor. Let g be the Mdbius transforma}ion which maps the points 0, 1, «©
on the points — 1, i, 1, respectively, and f,,, a quasiconformal mapping of the
plane whose complex dilatation wv agrees with that of f,,,og~'. Then

k(@) = v(9(2)9'(2)/g'(2)
Further, let f,, satisfy the normalization condition foull) — >0 as { > oo.
By Theorem 3.1, w — £,,,(g(2)) is analytic in [w| < 1/||v] o = 1/l -
Sel al = fwv(_ 1)’ aZ = fwv(i)’ [13 = fwv(l)’ and

_az—asé—al
a, —a, { —a;

hu(0)

Then hwofw‘.og has the complex dilatation wy, and it fixes 0, 1, co. Conse-
quently,

Fun(@) = hy(fun(9(2))).

By applying Theorem 3.1 again, we conclude that h,,({) depends analytically
on w. It follows that w — f, (z) is holomorphic in the disc claimed. O

From f,, = h,o f..,og we also deduce that for every z in the upper half-
plane, the derivatives of z — f,,(z) depend holomorphically on w in the disc
Iwl < 1/l pll -

Remark. Theorem 3.1 (and Corollary 3.1) can be generalized: The mapping
depends holomorphically on w if its complex dilatation u(-,w) is a holomor-
phic function of w. We shall not need the result in this generality. (A proof,
which is still a straightforward application of the representation formula
for f(z,w), is in Lehto [3].) For most of our applications, the simple case
u(z, w) = wu(z) is sufficient, but in V.5 we shall also be dealing with complex
dilatations of the form wu + v. In this case, the generalization of Theorem 3.1
is immediate.

More precisely, let us assume that u and v vanish outside of a disc and that
Tulle <1, Ivlle, < 1. Now To;(wu + v) = Pi(w), i=1, 2, ..., where P, is a
polynomial in w of degree i. We again use the fact that ) To,(u)(z) converges
uniformly whenever || u|,, < 1. It follows that in the representation

flewi+v) =z + i P(w)(2),

the right-hand series is uniformly convergent in w, provided that ||wu +
v|l, < 1. We conclude that for every finite z, the function w — f(z,wu + v) is
holomorphic in the disc |w| < (1 — [[v]lo)/II 4]l -

By using this result we see that in Corollary 3.1, the complex dilatation wu
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can be replaced by wu + v. Also, the holomorphic dependence of the deriva-
tives on the parameter w remains in effect if wyu is replaced by wu + v.

Ahlfors and Bers realized that in the theory of Teichmiiller spaces it is of
basic importance to study quasiconformal mappings with varying complex
dilatations. In their joint paper [1] they proved the holomorphic dependence
of the mapping on its complex dilatation.

3.3. Schwarzian Derivatives and Complex Dilatations

Using Theorem 3.1, we can prove a result which shows that a small complex
dilatation forces the Schwarzian derivative to be small.

Theorem 3.2. Let f be a quasiconformal mapping of the plane which has the
complex dilatation u and which is conformal in a simply connected domain A
with at least two boundary points. Then

ISn1alla < do(A) [ 1]l - (3.2

Proor. If g is a Mobius transformation, we can replace f by fog without
changing the norms of either the Schwarzian derivative or the complex
dilatation. Also, g4(4) = g4(g~'(4)). We may therefore assume that oo € A4.
Then u has bounded support.

Let w be a complex number with |w| < 1. We consider for a moment the
unique quasiconformal mapping z — f(z,w/| 1|, ) of the plane which has the
complex dilatation wy/||ull, and the property f(z,w/|ull,) —z—0 as
z — c0. (We may assume that ||u|,, > 0.) By Theorem 3.1, the derivatives of
the analytic function z — (f|A4)(z, w/|| u|l ) With respect to z depend analyti-
cally on w in the unit disc, at every finite point z of 4.

Keeping z fixed, we define the function

w— l//(W) = Sj‘(-‘w/HuHao)(Z)nA(z)_z'

Since S, is a rational function of the first three derivatives of f| 4, we conclude
that ¢ is analytic in the unit disc |w| < 1. Furthermore, the function V¥ is
bounded: |(w)| < g,(A4). From the fact that z — f(z,0) is the identity map-
ping it follows that (0) = 0. We can therefore apply Schwarz’s lemma to ¥
and get

[y (W) < oo(A)Iw].
Setting w = || 1|, we get back, modulo a Mdbius transformation, the func-
tion z — f(z) we started with, and (3.2) follows. O

If A is a disc, (3.2) assumes the form

(Spall < 6lull.
(Kiithnau [1], Lehto [1]). The bound is sharp: For each || u| ., = k,0 <k < 1,
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there are mappings f for which |S, [l = 6k. For instance, in the case
A = {z||z| > 1} the function f defined by

f@=z+k/z if |z|>1, f@=z+kz if [z]<]1, (3.3)

is such an extremal. Other extremals are obtained if this f is composed with
Mobius transformations.
Using Theorem 3.2, we can estimate §(A) for quasidiscs.

Theorem 3.3. If A is a K-quasidisc, then
K2 —1
K> +1

5(A4) <6 (34)

ProoF. By Lemma 1.6.2, the domain A is the image of the upper half-plane H
under a K2-quasiconformal mapping f of the plane which is conformal in H.
By Theorem 3.2,

2_

K241
On the other hand, ||S; 4y = 6(4). O

ISrialle < 6

It is not known whether the bound in (3.4) is sharp. From the example (3.3)
we deduce that the sharp bound is > 6(K — 1)/(K + 1). In any event, in-
equality (3.4) shows that for a K-quasidisc A, the distance 6(A) —» 0 as K — 1.

3.4. Asymptotic Estimates

Application of the representation formula (3.1) and reasoning similar to that
used in proving Theorem 3.2 make it possible to obtain readily a number of
results for conformal mappings with quasiconformal extensions. The rest of
this section will be devoted to questions of this type. This entails a brief
detour from our main theme, the connection between Schwarzian derivatives
and complex dilatations.

Let us consider conformal mappings f which belong to class Z, i.e., f is
univalent in E = {z||z| > 1} and has a power series expansion of the form

fle) =z + 2 b,z " (3.5)

in E. If f has a quasiconformal extension to the plane with complex dilatation
u satisfying the inequality ||u|l, < k < 1, we say that f belongs to the subclass
%, of Z. By abuse of notation, we sometimes use the symbol f both for the
conformal mapping of E and for its extension to the plane.

We shall first derive asymptotic estimates for |f(z) — z| and |b,| in X, as
k—0.
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Theorem 3.4. Let feX, and k < ko < 1. Ask —> 0,

fz)=z— 1“ L(C—)dédn + 0(k?) (3.6)
D

s {—z
in the whole plane. Here |0 (k?)| < ck?, the constant ¢ depending only on k.
Proor. If p > 2 and k|| H ||, < 1, we see from formula (4.15) in 1.4.4 that
3.1 Toa) < 3, (KIHI,) < ok
Hence, Theorem 3.4 follows from Theorem 1.4.3. O

Corollary 3.2. The functions f € £, satisfy the asymptotic inequality

If(z)—z|35” d dn + ck?. (3.7)
n)Jpll -z
If
=z
() = ke ——— 3.8
u() = ke T (3.8)
then
_k | d&dn 2
If(z)—zl—n”nw_z| + O(k?).

For z = 0, the estimate (3.7) gives | f(0)| < 2k + ck®. The mapping with
extremal u’s (3.8) can be determined:

z + k?e*?/z if |z] > 1,

/o= {z +2ke"(|z| — 1) + k?*?zifjz] < 1.

Hence | f(0)| = 2k: These functions f are not only asymptotically extremal
but they actually maximize | f(0)| in X, (Kithnau [2], Lehto [3]).

For the coefficients b, in (3.5), a counterpart of (3.7) can also be easily
established.

Theorem 3.5. In the class X,

2k
b,| < —— + ck? = .
|,,l_n+1+c , n=12,..., (3.9)
withe < n (1 — k)" If
(Z(n+1)/2 + kz—(n+l)/2)2/(n+1) lf|Z] > 1,
f,,(Z) = {(z(rﬁl)/z + kE("+l)/2)2/("+l) 1f|2| < 1’ (310)

then f,e %, and b, = 2k/(n + 1).
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Proor. We have

1 . 1 =
o) = — | | 28 geay=L¥ < o) de dn)z-"
b4 pl—z =] D

for |z| > 1. Hence,
1 <]
by=-% ” Q)" dE dn. (3.11)
Ti=1 D

Schwarz’s inequality and the estimate (4.13) in 1.4.4 for p = 2 (in which case
IH], = 1) yield

” o) didn‘ <70 g, < an2kE
D

Consequently, we have the asymptotic representation

| b,,=]—” WO dEdn + O,  n=1,2,..,
n D

the remainder term being <n~"2k2/(1 — k) in absolute value. From this (3.9)
follows.
We conclude by easy computation that b, = 2k/(n + 1) + O(k?) if

p(Q) = k(O™ V2 ae.

Direct verification shows that the function f, defined by (3.10) has this com-
plex dilatation. We also see that for f,, the coefficient b, = 2k/(n + 1). O

Inequality (3.9) was established by Kiithnau [2] using variational methods.
Note that the functions (3.10) are related to each other by

fol2) = ([T R)HeED o =1,2,

Along with f,, the functions z — e~/ 1f (z¢i%*1) are also extremal. Some
extremal domains are pictured in Fig. 5.
In 3.6 we shall make a few more remarks on the coefficients b, in Z,.

n=3>5 n=23

Figure 5. Extremal domains for k = 1.
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3.5. Majorant Principle

By the Area theorem, the coefficients of a function f'e X satisfy the inequality
|b,] < 1.1t follows that
0 n 1
1f@) =zl < ) |z|™" =

n=1 lz =1

(3.12)

We conclude from Theorem 1.2.1 that ¥ is a normal family. The estimate
(3.12) also shows that X is closed, i.e., it contains the limits of its locally
uniformly convergent sequences.

Every subfamily X, is then also normal. Applying Theorem 1.2.1 once more
we infer that the functions of X, extended quasiconformally to the plane with
|l <k, constitute a normal family. This implies that every Z, is closed
also.

Let ® be a complex-valued functional defined on X. We say that @ is
continuous if ®(f,) - ®(f) whenever f,(z) — f(z) locally uniformly in E. For
a continuous ®, there are extremal functions which maximize |®(f)| in Z,.
This follows immediately from the fact that X, is a closed normal family. We
set

M(k) = max |®(f)|.
SeZy

Clearly M (k) is non-decreasing in k.

Let us assume, in particular, that ®(f) is a holomorphic function of finitely
many of the power series coefficients of f and of the values of f and its
derivatives f’, f”, ..., f"™ at finitely many given points of E. We call such
functionals analytic. An analytic functional is continuous, because uniform
convergence of analytic functions implies uniform convergence of their de-
rivatives. An example of an analytic functional is ®(f) = (|z|*> — l)ZSf(z),
considered in Theorem 3.2, which is a rational function of f'(z), f”(z) and
/(@)

Applying Schwarz’s lemma as in the proof of Theorem 3.2, we get the
following general result (Lehto [3]).

Theorem 3.6. Let ® be an analytic functional on £ which vanishes for the
identity mapping. Then M (k)/k is non-decreasing on the interval (0, 1).

Proor. Fix k and k', 0 < k < k' < 1, and choose an arbitrary mapping f, e Z,.
Let u be the complex dilatation of some extension of f, || u|l,, < k. Consider
the mappings fe £,. which have the complex dilatation wu with |w| < k'/k.
By Theorem 3.1, ®(f) depends holomorphically on w in the disc |w| < k'/k.
If w=0, then f is the identity mapping, so that ®(f) vanishes at w = 0.
Therefore, by Schwarz’s lemma

k
1O(N)] < 7 MK wl.
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For w = 1 we have f = f,. Since f, is an arbitrary element of X,, we get the
desired inequality M (k) < kM (k')/k’. O

Corollary 3.3 (Majorant Principle). If @ is an analytic functional on X which
vanishes for the identity mapping, then

max |®(f)| < kmax|D(f)|. (3.13)

SeZy fex

If equality holds for one value k € (0, 1), then it holds for all values of k.

Proor. Inequality (3.13) follows immediately from Theorem 3.6 if we let
k-1

Suppose that equality holds in (3.13) for some value k, 0 < k < 1. Let f
be extremal in this £, and p the complex dilatation of its extension. For
functions f with complex dilatation wy, |w| < 1/k, Schwarz’s lemma gives
|®O(f)] < kM (1)|w|, where M (1) = max|®(f)| over . But now equality holds
for w = 1. It follows that

D) = kM(1)|w| (3.14)

in the whole disc |w| < 1/k. If k' € [0, 1) is arbitrarily given, then for w = k'/k
the function f is in X,.. Combining (3.13) and (3.14) we deduce that f is
extremal in X,.. In other words, if equality holds in (3.13) for one value
ke (0, 1), then it holds for all values of k, and if u is an extremal complex
dilatation, then all dilatations wu, |w| < 1/|| 1|l , are extremal. O

3.6. Coefficient Estimates

Let us illustrate the majorant principle (3.13) with an example. We choose
®(f) = b, for an arbitrary fixed n. This @ is admissible, because every b, is
zero for the identity mapping. It follows that
max |b,| < kmax|b,|. (3.15)
Tk b
Assume that for a fixed n, equality holds for some k > 0. By what was said
about equality in (3.13), equality then holds for all values of k. It follows that
the extremal |b,| for k is k/k,-times the extremal |b,| for k,. Furthermore, if y,
is an extremal dilatation for k,, then wy, is extremal for k with |w| = k/k,.
Now consider the formula (3.11). If y, is replaced by wu,, then ¢; is multi-
plied by the power w'. It follows that all terms in the series (3.11) vanish,
except for the first one. But then |b,| = 2k/(n + 1), and by (3.15),

max |b,| = 2/(n + 1).
X

This is known to be true if n =1, 2. (For classical results on univalent
functions we refer to Duren’s monograph [1], which also contains an exten-
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sive bibliography.) We showed that b, = 2k/(n + 1) for the extremal (3.10) in
Theorem 3.4. Consequently, (3.15) is sharp if n = 1, 2.

Thus in X,, max|b,| = k, max|b,| = 2k/3. In I, max|bs| = 1/2 + 75,
whereas in X,, k >0, we only know that max|b;| is strictly less than
k(1/2 + e7%). For n > 4, max|b,| is unknown both in £ and X,. From
Theorem 3.5 it follows that

limmax|b,|/k = 2/(n + 1)
k=0 I,
for all values of n.

The Area theorem can also be established for X,. Getting its sharp form

requires a small modification of the reasoning which led to (3.13).

Theorem 3.7. In the class Z,,
Y nlb,|* < k*. (3.16)
n=1

The estimate is sharp.

Proor. Given an arbitrary function feX, with the coefficients b,, we set
4, = |b,|?/b? if b, # O; otherwise 4, = 1. Let u be the complex dilatation of
the extended f, and b,(w) the coefficients of the function z — f(z, w/k) with
S-normalization and complex dilatation wu/k.

For an arbitrary positive integer N, we write

Y = 3 nigby(w)

By Theorem 3.1, i is holomorphic in the unit disc. The Area theorem gives
the estimate |y(w)| < 1. Since b,(0) = 0, the function ¥ has a zero of order
>2 at the origin. Schwarz’s lemma therefore yields the improved estimate

[y (w)| < [w]. (3.17)
If we set w = k, we get back the function f with which we started. Hence
N N
Y ni,br =Y nlb,|* < k%
n=1 n=1

The desired inequality (3.16) follows as N — 0.

Equality holds in (3.16) if f(z) = z + ke®®/z in |z| > 1 and f(z) = z + ke"Z
in |z| < 1. A relatively simple argument shows that there are no other ex-
tremals (Lehto [1]). O

The result (3.16) is due to Kithnau [2] and Lehto [1].

In V.7.5 we shall again use an estimate of type (3.17) in connection with
another problem where we know that the holomorphic function under con-
sideration has at least a double zero at the origin.
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The general inequality (3.13) allows many other applications. For instance,
the classical Grunsky and Golusin inequalities in £ can be immediately
sharpened for Z,. It is also possible to change the original setting and use
other normalizations for the mappings. If we consider the class S instead of
T and define the subclass S, of S in the same way we defined Z,, a difficulty
is encountered, because the complex dilatation of the extended mapping does
not determine the element of S, uniquely (S contains many Mobius trans-
formations). Unique correspondence follows, for example, if we require that
the extended mappings fix co. For this subclass S,(c0) we can sharpen a
number of results known to be valid in S. (For various applications of the
majorant principle, see e.g. Lehto [3], [5].)

Univalent functions with quasiconformal extensions can also be studied by
use of variational techniques. Compared to (3.13), such methods often involve
much more laborious computations, but are essentially better in many cases
where (3.13) fails to give a sharp result. Kithnau is a pioneer in this field. He
has had many successors, so that an extensive literature exists today. Delving
into these questions would take us too far afield from our main topic, and we
content ourselves here with mentioning, besides Kithnau’s works [1] and [2],
the papers of Schiffer [1] and Schiffer—Schober [1], the lecture notes of
Schober [1], and the monographs of Pommerenke [1] and Krushkal-
Kiihnau [1] among many others.

4. Univalence and Quasiconformal Extensibility of
Meromorphic Functions

4.1. Quasiconformal Reflections under Mobius
Transformations

Theorem 3.2 establishes a relation between complex dilatations and Schwar-
zian derivatives in one direction: If a quasiconformal mapping of a plane
which is conformal in a simply connected domain A is close to a Mobius
transformation in the sense that its complex dilatation is small, then it is close
to a Mobius transformation also in the sense that its Schwarzian derivative
is small in A.

We shall now establish a result in the opposite direction: If f is meromor-
phic in a quasidisc 4 and has a small Schwarzian derivative, then f is
univalent and can be extended to a quasiconformal mapping of the plane
with a small complex dilatation. We shall then complement this result by
proving that the result does not hold for a simply connected domain A4 unless
A is a quasidisc.

The extension of f is carried out by means of smooth quasiconformal
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reflections. We begin by studying the behavior of quasiconformal reflections
under conjugation by Mobius transformations.

Let C be a quasicircle bounding the domains A, and A4, and ¥ a
K-quasiconformal reflection in C. If h is a Mobius transformation, then
@ = hoyoh™!is a quasiconformal reflection in h(C). Using the identity

h(z,) — h(z,) = (h'(zl)h’(zz))llz(zl — 2,),

valid for all Mobius transformations, we shall establish two formulas, both of
which reveal invariance properties of quasiconformal reflections with respect
to Mobius transformations.

Writing { = h(z), {, = h(z,), we conclude from ¢({) = h(y(z)) that ¢({) —
o = (W (Y(2)h'(20))?(Y(2) — z,). Hence

@) —Co _ <h'(lﬂ(2))>”2 Y(2) — 2o
{—0Co h'(2) z—1zp

Now fix z, € C, such that z,, h(z,) # oo, and let z — z,. Then also Y(z) — z,,
and we obtain our first invariance

lim sup [ ———— (p(C) CO = lim sup M . 4.1)
=0 - CO z—zp Z— 2
If C passes through oo, then by formula (6.2) in 1.6.2,
lim sup| 22 =% | < ¢, (k) 42)
z=zg z — Z()

with a finite constant ¢, (K) depending only on K. The invariance (4.1) shows
that inequality (4.2) holds for all K-quasiconformal reflections.

In order to derive the second invariance property, we assume that y is
continuously differentiable off C. From h'(/(z)) dy (z) = do({) we then obtain

h'(Y(2)) dy(z)/dz = h'(z)de ({)/dL.
Combined with the identity @({) — { = (h'(¥(2))h’(2))*(Y(z) — z), this yields
dl//(z)h do()
ac -

Finally, let f be a locally injective meromorphic function in 4,. If f=
foh™, then S;(Y(z)) = S]((p(C))h’(np(z))z, and we arrive at our second invari-
ance

W(z) — W) = () - P —

d d
v - 7Y s 0@ = 00 - 0 ‘;f’

This invariance gives an estimate which will be needed in what follows:

Let C be a K-quasicircle bounding the domains 4, and A,. There exists a
quasiconformal reflection W in C such that, for every function f meromorphic
and locally injective in A,,

Si(@ (). (4.3)
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¥(2) — zI?|dy(2)/dz] 1S; (¥ (2)] < c(K) IS4, (4.4)

at each point ze A,, z # o0, Yy '(0). Here the finite constant ¢(K) depends
only on K.

Proor. If C passes through oo, we take ¥ = ¢ as in Lemma 1.6.4. Then (4.4)
follows directly from the formulas (6.1) and (6.4) in L.6. If C is bounded, we
choose the Mobius transformation h so that co € h(C). We then obtain (4.4)
from the invariance formula (4.3), because || S, 4, = IS llnca,)- d

4.2. Quasiconformal Extension of Conformal Mappings

We can now prove the main result on the role of the Schwarzian derivative
for the univalence and quasiconformal extension of meromorphic functions
(Ahlfors [4]).

Theorem 4.1. Let A be a K-quasidisc. Then there is a constant &(K) > 0,
depending only on K, such that every function f meromorphic in A with the
property

1Sy 1l4 < &(K) (4.5)

is univalent in A and can be extended to a quasiconformal mapping of the plane
whose complex dilatation satisfies the inequality

ISy 1.4
e(K)

Iulle < (4.6)

PRrOOF. Let f be meromorphic in 4. We may assume that f is locally injective
and that oo does not lie in A. Let w, and w, be solutions of the differential
equation w” + S;w/2 =0 in A, so normalized that w;wj —w,w} =1. In
proving Theorem 1.1 we showed that S, ,, = S;. It follows that f is the
composition of w,/w, with a Mbius transformation. We may therefore take
S =wi/w,.

The desired extension of f is obtained by an explicit construction. In order
to circumvent the difficulty arising from the fact that we have no a priori
knowledge about the behavior of f on the boundary of 4, we resort to an
approximation procedure. We assume first that w;, w, and f are holomor-
phic on the boundary of A. Having proved the theorem under this additional
condition, we obtain the general result by exhausting 4 with subdomains
which are K-quasidiscs and on whose boundaries f has no poles.

Let A, denote the complement of the closure of A4 and ¥ a quasiconformal
reflection satisfying (4.4); the domain 4 now plays the role of 4, in the earlier
discussion. We write z = {/({) and define a function g in 4, by

_ wy(2) + (€ — 2wi(2)

90 = O+ (= 2w
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At infinity, g is defined as its limit: g(o0) = wi(¥(oc))/w5(¥(0)). We prove
that g is a desired continuation of f if (4.5) holds for an appropriate ¢(K) > 0.

It is immediate that g({) — f(z,) as { approaches a boundary point z,e 0 A.
Moreover, if { is a finite point of A4, and g({) # oo, then g is continu-
ously differentiable at {. In view of the relations w,wj — w,wj =1 and
w/' = —S;w/2,i = 1,2, we obtain by direct computation

1+ S,(2)(C — 2?9 (0)/2
(W2(2) + (€ — 2)w(2)?
S/(2)(¢ — 2)* 0y ()2
(w2(2) + (= 2)w3(2))*
From this we get an estimate for the complex dilatation p = 0g/dg. With

c(K) the constant in (4.4), we choose ¢(K) = 1/c(K). It then follows from (4.4)
that

99() = —

4.7

ag() = -

o IS, _ 1151
T2 RIS eK)

We see from (4.7) that with this ¢(K), we have dg({) # 0. Thus the Jacobian

= |dg|*(1 — |u|?) is positive at {. Hence g is injective at every finite point {
at which g({) # oo. By symmetry, 1/g is injective at every finite point of 4,
which is not a zero of g. Consequently, g is injective at all finite points of 4,.
By considering the function { — g(1/{) we conclude that g is locally injective
at oo also, and hence throughout A,.

Define a function F by F(z f(;) in AudA, and F(z) =g(z) in A4,.
Then F is locally injective in A and in A,. Since F(z) # oo on 0A4, the set

= {z|F(z) = o0} consists of only finitely many points.

Let z, be an arbitrary point of 04. Considering (4.2) we deduce by direct
computation that

|u(©)

(4.8)

lim Q(C) fzo)_f( o).

{—z0 C )
Applying (4.4) for z - f(z) = log(z — z,), we conclude that ({ — z)?dy/({) » 0
and ({ — 2)20y({) » 0 as { — z,. Consequently, by (4.7), 6g({) = f(z,) and
0g(0) > 0 as { - z,. We conclude that F is continuously dlfTerenuable on 04,
and hence everywhere outside E. On 84 we have Jp(z) = | f'(z)|?, and so F is
locally injective throughout the plane.

By the existence theorem for Beltrami equations (Theorem 1.4.4), there is a
quasiconformal homeomorphism w of the plane which has the same complex
dilatation as F a.e. The function ¢ = Fow™! satisfies the Cauchy-Riemann
equation dp = 0 a.e. As a quasiconformal mapping w™! has L2-derivatives.
Since the derivatives of F are continuous outside E, we conclude that outside
the finite set w(E) the function ¢ has L2-derivatives. By the remark made
in connection with formula (4.5) in 1.4.3, ¢ is analytic in the complement
of w(E). Since ¢ is continuous everywhere, the points of w(E) cannot
be essential singularities, and it follows that ¢ is meromorphic throughout
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the extended plane. Hence, ¢ is rational, and being locally injective, it is a
Mobius transformation. We conclude that F = gow is a quasiconformal
homeomorphism of the plane. This proves the theorem, provided that f is
holomorphic on the boundary of 4.

4.3. Exhaustion by Quasidiscs

In order to complete the proof, we shall now show how to relax the restrictive
assumption that f is holomorphic on 0A. Since A is a K-quasidisc, there
exists a K-quasiconformal mapping of the plane under which the unit disc
maps onto A. It follows that there is an increasing sequence of positive
numbers r, < 1,n = 1,2, ..., tending to 1, such that the image of each circle
|w| = r, is a K-quasicircle on which f(z) # c. Let 4,, and A, c A denote the
complementary K-quasidiscs bounded by this quasicircle. As n— oo, the
domains A, exhaust A.

We proved in L.1.1 that the Poincaré density is smaller in 4 than in its
subdomain A,. Therefore,

S04, < 1Sy lla- (4.9)

It follows that condition (4.5) can be applied to f|A,. If we choose ¢(K) as in
the above proof (note that ¢(K) depends only on K, not on A4), we conclude
that f|A, agrees with the restriction to A4, of a quasiconformal mapping F,
of the plane.

Let u, be the complex dilatation of F,. By (4.8) and (4.9)

(KIS N, _IS;la _
—c®)IS/l, ()

lu ()] < 3

We see that the maximal dilatations of the quasiconformal mappings F, are
uniformly bounded. Thus these mappings constitute a normal family. The
limit of a locally uniformly convergent subsequence is a quasiconformal
mapping of the plane whose restriction to A4 is f. Its complex dilatation also
satisfies (4.8), i.e., (4.6) is true and the theorem is proved. O

4.4. Definition of Schwarzian Domains

Theorem 4.1 leads to the question whether the condition that 4 be a quasidisc
is necessary for the conclusion that a meromorphic function with a small
Schwarzian derivative is univalent in 4 and has a quasiconformal extension.
Or we may restrict ourselves to classical complex analysis and pose the
simpler question: In which domains does a small Schwarzian derivative
imply univalence?

Let us introduce the following definition: A simply connected domain A
with more than one boundary point is called a Schwarzian domain if there is
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a positive constant ¢ such that every meromorphic function f with |[S,{|, <
is univalent in A. More precisely, we say that A is then an e-Schwarzian
domain. This notion is due to Gehring [2].

Theorem 4.1 tells us that every quasidisc is a Schwarzian domain. It was
for a long time an open problem whether or not this sufficient condition was
also necessary, and few conjectures were expressed favoring either direction.
Finally, in 1977, Gehring [2] solved the problem by proving that every
Schwarzian domain is a quasidisc. Thus a small Schwarzian derivative forces
a function to be univalent in A4 if and only if A is a quasidisc. This is one of
the unexpected characterizations of quasidiscs in terms of analysis we were
talking about in 1.6.7. Unexpected, because it shows that quasiconformal
mappings are intrinsic to the problem of relating the injectivity of meromor-
phic functions to their Schwarzian derivative, a problem which on the sur-
face has nothing to do with quasiconformality.

We shall now present Gehring’s proof, which is based on the fact that a
linearly locally connected domain conformally equivalent to a disc is a qua-
sidisc (cf. 1.6.4 and 1.6.7).

4.5. Domains Not Linearly Locally Connected

Topological properties of plane domains can often be expressed in analytic
terms with the aid of the complex logarithm. We shall derive a result of this
type for domains which fail to be linearly locally connected with a given
constant. (For the definition of linear local connectivity, see 1.6.4.)

Lemma 4.1. Let A be a simply connected domain which is not linearly locally
connected for a constant ¢ > 1. Then there are two points z,, z, of A and two
finite points w,, w, outside A, such that the function z — h(z) = log((z — w,)/
(z — wy)) satisfies the inequality

4
lh(z,) — h(z,) — 2mi] < T (4.10)

Proor. It follows from the assumption and from the definition of linear local
connectivity that there is a disc D(z,,r) with the following property: Either
there are two points p, and p, in A4 N D(z,,r) which cannot be joined in
AN D(zq,cr), or else there are two points in A\D(z,r) which cannot be
joined in A\D(z,,r/c). Suppose initially that the former alternative is true.

Consider the line segment with endpoints p,, p, and a simple arc in 4 from
p, to p, which meets the line segment at finitely many points only. Among
these points of intersection there are two adjacent, z, and z,, which cannot
be joined in 4 N D(z,, cr). Let a be the line segment with endpoints z,, z,, and
B the subarc from z, to z, of the arc joining p, and p,. Then 2 U 8 bounds
two Jordan domains A, and A,; we assume that infinity lies in A4,.
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For brevity we write D(zy, cr) = U. Suppose that there are points w;e 0U N
A;, i =1,2,in the complement CA of A. Then

h(z,) — h(z,) = J‘ (z = wy)™ = (z = wy) 1) dz = 2mi(n(w;) — n(w,))

B
- J ((z - Wl)_l —(z — Wz)_l)dz,

where n(w;) is the winding number of o U § with respect to w;,. Since w, € A,,
w,¢ A,, we have n(w,) = n = +1, n(w,) = 0. It follows that

lh(zl)—h(zz)—ZnnilsJ< : ~+§1—>Idzl. 4.11)
Nz =wil [z —wy

Because o < D(zq,r) and w,, w,€dD(z,,cr), we see that |z — w,| > (c — D)r
for every z e a. Therefore

1 1
. 4.12
K]z B R Pa—— 21>' I)J‘z" - *12

If n = 1, we thus get (4.10) from (4.11) and (4.12). If n = — 1, we obtain (4.10)
by interchanging the roles of w, and w,.

We still have to prove that it is possible to find points w;e 0U N A; which
are not in A4, i.e., that

CAndUNA, +#F, i=12. (4.13)

This requires topological arguments.

We first observe that, because « = U and f has points outside the closure
of U, the curve a U meets U in at least two points. By Kerékjartd’s
theorem (Newman [1], p. 168), each component of the complement of
au BfudU is a Jordan domain. In particular, each component of 4, N U is
a Jordan domain. Since a Jordan domain is locally connected at every bound-
ary point, there is a neighborhood V of z, such that each pair of points in
A;nVcanbe joinedin 4, " U. Let ze A, n V and let A’ be the z-component
of A, nU. Every point p of A; n Vcan be joined with z in 4, n U, and the
joining arc lies in A}. It follows that pe A}, and so A, "V < A\ NV, ie, A}
is the only component of A; N U whose boundary contains z,.

If z’ea, we can join z’ and z, by an arc whose inner points lie in 4, n U.
Then this arc is in the closure of 4. Hence z’' € A4, and we conclude that
o < 0A;. If y is the complement of o with respect to 04, then y =« AU
(0U n A). On the other hand, y joins z, and z, in the closure of U. Thus y is
not contained in A4, and (4.13) follows for i = 1. Similar reasoning yields (4.13)
fori=2.

Finally, we have to consider the case in which there are two points in
A\D(z,,r) which cannot be joined in A\D(z,,r/c). Let f(z) = zo + 1/(z — zq).
By what we just proved, there are points {,, {, in f(A4) and points ¢,, ¢,
outside f(A), such that the function z — g(z) = log((z — t,)/(z — t,)) satisfies
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the inequality
4
[9(¢y) — g(¢3) — 2] <7 (4.14)

If z; = f71(), w; = f7'(t;), i = 1, 2, then direct calculation yields

h(z) = g(f(2)) + log

Zo — W,
Zo — W3

Hence, (4.10) follows from (4.14). |

4.6. Schwarzian Domains and Quasidiscs

The result we set out to prove can now be established without difficulty.
Theorem 4.2. A Schwarzian domain is a quasidisc.

ProoFr. Let 4 be an a-Schwarzian domain. Then A4 is trivially a’-Schwarzian
for a’ < a. We may suppose, therefore, that a < 2. (In IIL.5 we shall show
that, in fact, no domain A is a-Schwarzian for a > 2, but here this result is not
needed.) Nor is there any loss of generality in assuming that co does not lie
in A.

We shall show that A is linearly locally connected with constant

c=1+ 16/a. 4.15)

The theorem then follows from Theorems 1.6.5 and 1.6.6. More precisely, we
conclude that an a-Schwarzian domain is a K(a)-quasidisc, where the con-
stant K (a) depends only on a.

The proof is indirect. Suppose that A4 is not linearly locally connected with
the constant ¢ = 1 + 16/a. By Lemma 4.1, there are points z,, z, in A and w,
w, outside A, such that (4.10) holds. Clearly h(z,) # h(z,).

Define

2mi

" h(zy) — hizy)

Then f(z,)/f(z,) = 1, so that f is not univalent.
From S, = —b*h'?/2 + S, we get by an easy computation

_1—b? W, — w, 2
e =3 ((z T w2)> '

If # denotes the Poincaré density of A, then formula (1.5) in L.1.1 yields the
estimate

f@) = e,

IS;(z)n(z)"2 < 8|b* — 1]. (4.16)

Since a < 2, we see from (4.15) that ¢ — 1 > 8. Then |h(z,) — h(z,)| =
21 — 1/2, and so
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4 4 1

b—1]< < <—.
c—1)2r—1/2) “S(c-1)"10

It follows that

21 4 a
- < -.

b2 — 1)< =—-
| ‘_IOS(C——I) 8

We conclude from (4.16) that || S;|| , < a. Since A is an a-Schwarzian domain,
fis univalent. This is a contradiction, and so 4 is linearly locally connected
with the constant ¢ = 1 + 16/a. O

The effect of the Schwarzian derivative on the univalence and quasicon-
formal extension of meromorphic functions will be studied in more detail in
sections I11.4 and II1.5.

5. Functions Univalent in a Disc

5.1. Quasiconformal Extension to the Complement of a Disc

Certain special curves admit simple quasiconformal reflections. In such cases
Theorem 4.1 can be expressed in a more explicit form. Particularly important
is the case where the domain is a disc. From the expression for the complex
dilatation of the extended mapping in this special setting we shall draw in
Chapter V important conclusions regarding the theory of Teichmiiller spaces.

Theorem 5.1. Let f be meromorphic in a disc D. If

1S,1p <2,

then f is univalent and can be extended to a quasiconformal mapping of the
plane. The constant 2 is best possible.
If D is the unit disc, there is an extension with complex dilatation

u(1/z) = —=3(z/2)*(1 — |2|*)?S,(2) (5.1
Sor z in D, while if D is the upper half-plane, an extension exists with
u(z) = —2y28;(2) (5.2)

for zin D.

ProoF. Suppose first that D is the unit disc. In this case we have the simple
quasiconformal reflection { — 1/{. More precisely, in proving Theorem 4.1
we use in the approximation stage of the argument the reflection y({) = r2/C,
r, < 1. By letting r, — 1, we then obtain from (4.7) the expression (5.1) for the
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complex dilatation u = dg/dg. Since | ul., = | S;1/2, it follows that we can
take ¢(K) = 2.

After this it is clear that ¢(K) = 2 (= ¢(1)) will do for any disc, because all
discs are Mobius equivalent.

If the domain is the upper half-plane, we have the reflection { — (. In this
case (4.7) yields the expression (5.2) for pu.

In order to show that the bound 2 cannot be replaced by any larger, we
consider the function z — f(z) = log z in the upper half-plane H. This func-
tion f is univalent, and from S,(z) = (2z%)7" it follows that ||S;|| = sup 2y?/
|z|?> = 2. But the image of H is the parallel strip {w|0 < Imw < =}, which is
not a Jordan domain. Consequently, f does not even possess a homeomor-
phic extension to the plane. O

Here we obtained Theorem 5.1 as a corollary of the general Theorem 4.1,
but actually Theorem 5.1, proved by Ahlfors and Weill [1] in 1962, was
discovered before Theorem 4.1. Thanks to the simple reflections z — 1/Z for
the unit disc and z — Z for the half-plane, the proof of Theorem 5.1 is consi-
derably shorter than that of Theorem 4.1. We can bypass the considerations
which guarantee the existence of the special reflection y needed in the case of
an arbitrary quasidisc.

Theorem 5.1 gives the result we mentioned in 2.1:

Let A be a simply connected domain with more than one boundary point. If
the distance 5(A) from a disc is <2, then A is a quasidisc.

Let us return to (5.2) and set ¢(z) = —S,(z)/2. We then have in the lower

half-plane
1= ¢/n?
where ¢ is a holomorphic function and # the Poincaré density.

Supplementing Theorem 4.1, Bers proved that the same result holds even
in the general case: A function f which is meromorphic in a quasidisc A and has
a sufficiently small || S; || is univalent and has a quasiconformal extension with a
complex dilatation @/n?, where ¢ is a holomorphic function and n the Poincaré
density in the complement of the closure of A.

The complex dilatations @/n? turn out to be important in Chapter V when
we consider quasiconformal mappings which are lifts to the universal cover-
ing surface of quasiconformal mappings between Riemann surfaces. In our
applications we shall get along with the case of the half-plane and content
ourselves therefore to indicating only briefly how the reasoning goes in the
general case. For the complete proof we refer to Bers [7] or [9].

Let M be the set of complex dilatations which are zero in A and of the form
@/n? outside the closure of 4, and Q the space of holomorphic functions of 4
with a finite hyperbolic sup-norm. If f is a quasiconformal mapping with
complex dilatation y in M, then S, is uniquely determined by u. By methods



S. Functions Univalent in a Disc 89

of functional analysis, Bers proves that the mapping u — S, of M into Q is
invertible in a neighborhood of the origin of Q. The proof makes use of the
representation formula for f, of the reproducing property of the Bergman
kernel function and, just as in Theorem 4.1, of a Lipschitz-continuous quasi-
conformal reflection.

5.2. Real Analytic Solutions of the Boundary Value Problem

Interrupting briefly the study of functions meromorphic in a disc, we show
how Theorem 5.1 can be utilized for constructing real analytic solutions of
the boundary value problem discussed in LS.

Let a k-quasisymmetric function h be given (cf. 1.5.2). We assume first that
k < \/5 Let i be a quasiconformal self-mapping of the upper half-plane H
with boundary values h. We construct h by using the Beurling—Ahlfors
method so that the maximal dilatation of i does not exceed k2 (cf. 1.5.3).
Because k? < 2, the complex dilatation p of i satisfies the condition

el < 1/3. (5.3)

By Theorem [.4.4, there exists a quasiconformal mapping f of the plane
which has the complex dilatation x in H and which is conformal in the lower
half-plane H’'. By Theorem 3.2 and formula (5.3),

ISpm- Nl < 6llpll, <2

Thus we can apply Theorem 5.1 and obtain a new quasiconformal extension
f for f|H'. Then f* = ho(f|H) o f is a quasiconformal self-mapping of H
with boundary values h. From the expression

WD)+ E — 2w
SO = @+ G = owme)

ze H', we see that f is real analytic. By the Uniqueness theorem 1.4.2, the
mapping ho(f|H)™! is conformal. Hence f* is real analytic.

In the case of an arbitrary quasisymmetric function h we write h =
h,o-+-oh,oh,, where each h; is k-quasisymmetric for k < \/i Using formula
(4.17) in 1.4.7 we remark that this is possible, because the boundary function
of a K-quasiconformal self-mapping of H fixing oo is A(K)-quasisymmetric
and A(K) — 1 as K — 1. If f* is a real analytic solution corresponding to h;,
then f,¥o---o fi* is a real analytic solution for h. We have thus given a proof
for Theorem 1.5.3.

5.3. Criterion for Univalence

Theorem 1.3 says that if f is univalent in a disc, then ||S,|| < 6. By use of
Theorem 5.1, we obtain a converse to this theorem.
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Theorem 5.2. Let f be meromorphic in a disc. If
1S, <2,

then f is univalent. The bound 2 is best possible.

Proor. Consider functions f,, n =1, 2, ..., which are meromorphic in the
given disc, fix three points of the disc, and have Schwarzians (1 — 1/n)S;; by
Theorem 1.1 such functions exist. Since || S, || < 2, every f, is univalent owing
to Theorem 5.1. They form a normal family, and the limit of a locally
uniformly convergent subsequence is a univalent function. Since the limit
function shares the same Schwarzian derivative with f, we conclude that f is
univalent.

In order to prove that the bound 2 cannot be replaced by a larger number,
consider the analytic function z — f(z) = z%, ¢ > 0, in the upper half-plane.
Then S,(z) = (1 + ¢*)(2z%)7", and so ||S;|| = 2(1 + ¢?). On the other hand, f
is not univalent for any ¢ > 0: For instance, f takes the same value at the
points i and i exp(2n/e) of the upper half-plane. O

Here we derived Theorem 5.2 as an easy corollary of Theorem 5.1. How-
ever, as might be expected, quasiconformal mappings are not needed for the
proof of Theorem 5.2, which is in fact a much older result than Theorem 5.1.
It was proved in 1949 by Nehari [1], and in the same year Hille showed that
the bound 2 is sharp.

5.4. Parallel Strips

We shall now show that the condition [|S,|| < 2 in a disc allows for conclu-
sions about the function f beyond its univalence. The results in the remaining
part of this section are due to Gehring and Pommerenke [1].

Let f be a meromorphic function in a disc D, h a conformal mapping of a
domain A onto D, and g = foh. Since ||S;|p = ||S; — Sull 4» we can transfer
Theorem 5.2 to A. If we can construct h explicitly, the modified theorem can
be of interest. In particular, if A is a parallel strip, certain technical advan-
tages are gained which will be utilized in the following.

Let us normalize the domains and assume that D is the unit disc and
A = {z||Imz| < 7/2}. Then

z — h(z) = tanh(z/2)

is a conformal map of 4 onto D. It maps the real axis R onto the real
diameter of D, and it has the Schwarzian S,(z) = — 1/2. The Poincaré density
of A at z = x + iy has the value (2cos y)~!.

We list two immediate consequences. First, Theorem 5.2 assumes the fol-
lowing form: Let g be meromorphic in 4 = {z||Imz| < =/2}. If
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<
2cos?y’

1
S,(2) + 3

then g is univalent in A. The bound is best possible.
Second, if x is a point of the real axis and w = h(x), then by the basic
invariance formula (1.9) in 1.3,

418,(x) + 3| = (1 — [wI*)*|Sp(w)]. (5.4)

This equation remains valid if 4 is replaced by an arbitrary conformal map-
ping of 4 onto D. The image of the real axis is always a geodesic line in the
Poincaré metric of the unit disc, i.e., it is a circular arc which intersects the
unit circle orthogonally.

If f has no poles in D, then g is holomorphic in A. Direct computation
shows that on the real axis R, the function x — v(x) = |g’(x)|”!/* then satisfies
the differential equation

v = v (5.5
with
_ 1
2

1 n\ 2
ReS, + (— Im %) . (5.6)

¢ 2

We remark that equation (5.5) with ¢ determined by (5.6) is an identity which
holds on R for every g holomorphic in 4. Note that by (5.4), condition
1S/l p < 2 implies Re S,(x) < 0 and hence ¢(x) > 0.

5.5. Continuous Extension

We shall prove that if | S;||, < 2, then f always has a continuous extension
to the boundary of D. Using (5.5) and (5.6), we first establish as a preparatory
result an estimate on | f'| when f satisfies certain additional conditions.

Lemma 5.1. Let f be a function meromorphic in the unit disc D satisfying
S0 =0, [IS;llp <2, and (1 — |w|*)?|S;(w)| < 1 in a neighborhood |w| < a < 1
of the origin. Then f is holomorphic in D and

, M| f () L+ wl\2
Il =<1~ Mk <log1 — IWI> ) (5.7)

where M is a constant depending only on a.

Proor. By symmetry, it is sufficient to consider the case w > 0. Assume first
that f is holomorphic in D.

We make use of the conformal mapping h: A — D defined in 5.4, the com-
position g = foh, and the function x — v(x) = |g’(x)|~*2. Because h"(0) = 0,
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we conclude from the assumption f”(O) = 0 that g”(0) = 0. Hence

, g"(0)
v'(0) = (0) Re 70) 0.

The hypothesis ||S; |, < 2 implies, as we mentioned at the end of 5.4, that
¢@(x) > 0 on R. By (5.5) we then have v”(x) > 0, so that v’ is increasing in x.
From v'(0) = 0 it follows that v’(x) > 0 for x > 0. Consequently, v(x) > v(0),
and by (5.5), v"(x) = @(x)v(0).

From (1 — |w|?)?|S;(w)| < 1 in |w| < a we infer, in view of (5.4) and the
relation z = h™'(w) = log((1 + w)/(1 — w)), that Re S;(x) < —1/4if 0 < x <
b = log((1 + a)/(1 — a)). Hence, by (5.6), ¢(x) > 1/8, and so v"(x) = v(0)/8
for 0 < x < b. This yields v'(x) > xv(0)/8 for 0 < x < b. We conclude that

v(x) = v(0)(1 + b(x — b)/8)
for x > b. If ¢ = min(1/b, b/8), it follows that v(x) > cv(0)x, i.e.,

o 1g'(0)]
Immsiﬁ,

for x > 0. Because 2|g'(x)| = 2[h'(x) /' ()| = (1 — [w[?)|f"(W)], 29'(0) = f"(0),
and x = log((1 + w)/(1 — w)), this is (5.7) with M = ¢~

Now drop the assumption that f is holomorphic in D and set r = inf
{Iwol|wo a pole of f}. Repetition of the above reasoning shows that (5.7)
then holds in |w| < r. We see that if r < 1 and |wy| = r, then | f'(w)| remains
bounded as w — w,,. This is a contradiction, and so f has no polesin D. []

Inequality (5.7) yields the following preliminary result: A function f satisfy-
ing the conditions of Lemma 5.1 has a continuous extension to the boundary
of D. This follows from the fact that

M|f'(0)] (10 1+ r>_2

1 —r? 1—r

Y(r) =
is integrable over the interval [a, 1]. Hence, we see from
|f(rzew)—f("1eio)|5f Y(r)dr, ry >ry,

that the limit of f(re®) as r — 1 exists uniformly in 6. It defines, therefore, a
continuous extension of f.

5.6. Image of Discs

We can now prove the main theorem about the image of a disc under a
conformal mapping f for which ||S,|| < 2. The result (Gehring and Pomme-
renke [1]) complements Theorem 5.2.
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Theorem 5.3. Let f be meromorphic in a disc D and |S;|| < 2. Then f(D)
is either a Jordan domain or the image of a parallel strip under a Mdbius
transformation.

Proor. We may assume that D is the unit disc. We first note that

m = inf (1 — |w|?)2|S,(w)| = 0. (5.8)

weD
For if m > 0, the function 1/S; is holomorphic in D. From
. 2\2
1 < (1 —1Iwl?)
[S(w)| m

and the maximum principle we then arrive at the impossible conclusion that
1/S; vanishes identically in D.
From (5.8) we conclude the existence of a point wy € D at which

1S, (wo)l < (1 — Iwol?)™2

We may assume that f(w,) = 0. If g,(w) = (w + wy)/(1 + Wow) and f, =
fog,,then “Sf, | <2and

1S7,(0) = [Sp(wo)l(1 — [wo|*)* < 1.
Thus there is an a > 0 such that
IS, W) < (1 —|w|?)~?

for |w| < a. Next set ¢ = f7(0)/2f;(0)%, g,(w) = w/(cw + 1), and f, = g, f,.
Then S;, =S, and f,'(0) =0, so that f, fulfills all conditions of Lem-
ma 5.1. It follows that f, has a continuous extension to 0D, and hence
[ =930 f,0g7" also has this property.

If the extended f is injective in the closure of D, then it is a homeomor-
phism of the closure of D onto its image. In this case f(D) is a Jordan domain.

Suppose then that the extended f is not injective. Let f take the same value
at the points w; and w, in the closure of D. Since the condition ||S,[ <2
implies that f is injective in D, it follows that w, and w, lie on dD. Let y be
the noneuclidean line of D with endpoints w, and w,, and w, a fixed interior
point of y. We assume first that the value the extended f takes at w, and w,
is co. Then the images of the components of y\{w,} under f both have
infinite length.

Let h now be a conformal mapping of the parallel strip A onto D which
maps the real axis onto y,and g = f o h. Then the g-images of the components
of R\{xo}, xo = h™!(w,), are the same as the f~images of y\{w, }. Hence,

f " 19/ ()] dx =f 199l dx = oo. (59)

- Xo

On the other hand, we get upper estimates for these integrals by studying
the function v = |g’'|™"2. As before, we deduce from (5.5) that v’ is increasing
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in x. If v'(xq) > 0, it follows that v(x) > v(xq) + v'(xo)(x — Xo) for x = x,.
Hence,

f lg'(x)]dx <

%o v(xo)v'(Xo)

Similarly, if v’(x,) < O,

X0
lg'(x)ldx < —————.
j—w v(x0)v"(xo)
In conjunction with (5.9) these estimates show that v'(x,) = O, i.e., that v’
vanishes on the real axis. It follows that Re(g”/g’) = —2v’/v = 0 on R. By
(5.6) and (5.5),

GIm(g"/9"))* <@ = 0.
We conclude that g” vanishes on R and hence in A. Thus g is a similarity
transformation, and f(D) = g(A) is a parallel strip.
If the extended f takes a finite value c at w, and w,, we can apply the above

reasoning to the function f; = 1/(f — ¢). We infer that f, (D) is a parallel strip,
and the proof of the theorem is completed. O

5.7. Homeomorphic Extension

The following result (Gehring—Pommerenke [1]), an easy consequence of
Theorem 5.3, fits in the narrow gap between Theorems 5.1 and 5.2.

Theorem 5.4. Let f be meromorphic and satisfy

2
S <—
I f(z)l (l _ |Z[2)2
in the unit disc. Then f is univalent and has a homeomorphic extension to the
plane.

Proor. By Theorem 5.2, f is univalent. The image f(D) is a Jordan domain if
and only if f has a homeomorphic extension to the plane. Hence, if a homeo-
morphic extension does not exist, then by Theorem 5.3, f(D) is the image of
the parallel strip 4 under a Mobius transformation. If h again denotes the
conformal mapping z — tanh(z/2) of A4 onto D, then g = foh is a Mobius
transformation. It follows from (5.4) that

(1 = 1zI*)?18,(2)| = 2
at every point of h(R). This is in contradiction with the hypothesis. O

Summarizing, we obtain the following precise classification for functions f
meromorphic in the unit disc: Condition
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(1 —1z1*)?[S,(2) <2
implies that f is univalent, condition
(1= 12*)?(Sp(2)] < 2

that f is univalent and has a homeomorphic extension to the plane, and
condition

sup (1 — [z[?)?|Sy(2)] < 2

that f is univalent and has a quasiconformal extension to the plane.



CHAPTER I1I

Universal Teichmiiller Space

Introduction to Chapter 111

The notion of universal Teichmiiller space was crystallized in connection
with the problem of imbedding the Teichmiiller space of a Riemann surface
into a space of Schwarzian derivatives. In the general case, the Schwarzians
in question are holomorphic quadratic differentials for a group of Mdobius
transformations (see V.4). The universal Teichmiiller space corresponds to
the situation in which the group is trivial. The Schwarzians are then just
holomorphic functions, and the machinery developed in Chapter II can be
applied directly. It follows that Chapter III, devoted to the study of the
universal Teichmiiller space, provides a bridge between univalent functions
and Teichmiiller spaces.

The other end of the bridge will not be visible until Teichmiiller spaces of
Riemann surfaces are introduced in Chapter V. The drawback is that in
section 1 of this chapter we are unable to motivate the definition of the
universal Teichmiiller space. In fact, plenty of explanation is required before
the role of the universal space in Teichmiiller theory becomes clear; a reader
who wishes to get an early idea of this role may want to consult V.3.

In section 1, various models of the universal Teichmiiller space T are in-
troduced, and the group structure of T is discussed.

Following Teichmiiller’s classical example, we define in section 2 a distance
function which makes T a metric space. This space is shown to be pathwise
connected and complete.

In section 3, we study the model of T provided by the family of normalized
quasisymmetric functions. This characterization offers certain technical ad-
vantages. Using it, we prove that T is contractible and that T is not a topo-
logical group.
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Section 4 deals with the problem of mapping T into the Banach space of
Schwarzian derivatives with finite norm. By appealing to the results of Chap-
ter I, we prove that the mapping is a homeomorphism of T onto its image
and that the image agrees with the interior of the set consisting of the
Schwarzians of univalent functions. The mapping could also be used to intro-
duce a natural complex analytic structure into the universal Teichmiiller
space, but we shall not take up this question until V.5, in connection with an
arbitrary Teichmiiller space.

In section 5 we introduce the inner radius of univalence of a simply con-
nected domain. Its use makes it possible to analyze further the image of the
universal Teichmiiller space in the space of Schwarzian derivatives.

1. Models of the Universal Teichmiiller Space

1.1. Equivalent Quasiconformal Mappings

Let us consider the family of all quasiconformal mappings of a fixed domain
in the plane. In this section we assume that this domain is the upper half-
plane H. We wish to introduce additional structure to this family and begin
by regarding two mappings as equivalent if they differ by a conformal map-
ping. In view of the Riemann mapping theorem, we may then restrict our-
selves to self-mappings of H and require that they are normalized so as to
keep fixed the three boundary points 0, 1 and co. We denote by F the family
of such normalized mappings. (Recall: every element of F can be extended to
a homeomorphic self-mapping of the closure of H. It is actually the extended
mappings to which the normalization requirements apply.)

By the existence and uniqueness theorems for Beltrami equations (Theo-
rems [.4.4 and 1.4.2), there is a one—one correspondence between F and the
open unit ball B of the Banach space which consists of all L*-functions on H.

A more interesting space is obtained if we introduce a weaker equivalence
relation.

Definition. Two mappings of the family F are equivalent if they agree on the
real axis. The complex dilatations of equivalent mappings are also said to be
equivalent. The set of the equivalence classes is the universal Teichmiiller
space T.

We thus have two models for T: Its points are classes of equivalent map-
pings in the family F or of equivalent functions on the ball B.

A third model is obtained in terms of quasisymmetric functions. We recall
that a quasisymmetric function is said to be normalized if it fixes the points 0
and 1. Let X denote the class of all normalized quasisymmetric functions. If
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[f] is the point of T represented by the mapping f € F, then
[f1-/IR (1.1)

is a bijective mapping of T onto X. For it is clear from the definition of T that
(1.1) is well defined and injective. By Theorem 1.5.1, it maps T into X, and by
Theorem 1.5.2, it is surjective. It follows that we can rephrase the definition of
the universal Teichmiiller space: T is the set of all normalized quasisymmetric
functions.

This observation allows an important conclusion:

Theorem 1.1. Every point of the universal Teichmiiller space can be represented
by a real analytic quasiconformal mapping f € F or by a real analytic complex
dilatation pe B.

Proor. The result follows immediately from Theorem 1.5.3. (For a complete
proof, see 11.5.2.) |

We shall see in V.3.2 that the universal Teichmiiller space contains as a
subset the Teichmiiller space of any Riemann surface which allows a half-
plane as its universal covering surface. It was Bers [7, 8] who recognized the
importance of this largest and, in many ways, simplest Teichmiiller space and
gave it the name universal.

1.2. Group Structures

If f belongs to F, then so does its inverse f~!; along with f and g in F, the
composition fog is also in F. The family F can thus be regarded as a group.
From the definition of the universal Teichmiiller space it follows that T
inherits this group structure: T is the quotient of the group F of all normalized
quasiconformal self-mappings of the upper half-plane by the normal subgroup of
mappings equivalent to the identity.

If f, g€ F, the rule

[f1elg]l =L[fe4d] (1.2)

defines the group operation in T. The neutral element, ie., the point of T
determined by the identity mapping (or by the complex dilatation which is
identically zero) is called the origin of T and denoted by 0.

Normalized quasisymmetric functions also form a group under composi-
tion. This follows from Theorems 1.5.1 and 1.5.2 or from an easy elementary
computation. We see that the mapping (1.1) is an isomorphism between the
groups T and X.

Let us consider, for a moment, quasiconformal self-mappings of H which
are not necessarily normalized. If f; and f, are two such mappings, we still
say that f; is equivalent to f, if (f,0f,')|R is the identity. Let feF be a
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normalized and g an arbitrary quasiconformal self-mapping of H. We choose
a Mdbius transformation h, mapping H onto itself, such that ho fog™' €F,
and define w = wy,: T — T by the formula

o([fD) =[hofog™'].

Then w, which depends only on the equivalence class [g], is a well
defined bijection of T onto itself. Further, [g] = 0 implies that w is the
identity and

Wig,1° O, ([Lf]) = [hyohyo fogytogi'] = Wy, yoen(LS])-

We conclude that when g runs through all quasiconformal self-mappings of
H, the transformations wy,: T — T form a group. It is called the universal
modular group M.

We now return to normalized quasiconformal self-mappings of H and
consider the subgroup M, of the universal modular group consisting of trans-
formations wy, with ge F. Then

w[g]([f]) = [fog‘ll

i.e., elements of M, are right translations of the group T.

In 2.1 we shall introduce a metric into T and prove that every wy, is an
isometry with respect to this metric.

The group M, of right translations is transitive: If p, = [ f;] and p, = [f,]
are given points of T, there is an wy, e M, such that p, = wy,(p,). This is
clearly the case if g = f, ' o f].

1.3. Normalized Conformal Mappings

The mappings belonging to F can be continued quasiconformally to the
plane by reflection in the real axis. However, such an extension does not give
new insight into the properties of T. It was a fundamental observation of Bers
[4] that one should extend, not the mappings of F but rather their complex
dilatations, in such a way that the corresponding extended mappings are
conformal in the lower half-plane. The machinery developed in Chapter II
can then be applied to the study of T.

Let ue B and f* be the mapping of F with complex dilatation u. We extend
u to the lower half-plane H’' by giving it there the value 0. Let f, be the
quasiconformal mapping of the plane which fixes 0, 1, co and whose complex
dilatation agrees with the extended u. Then f,|H’ is conformal.

Theorem 1.2. The complex dilatations p and v are equivalent if and only if
the conformal mappings f,|H' and f|H’ coincide.

Proor. Suppose first that f,|H = f,|H’. The mappings f,o(f*)™' and
f,o(f¥)"! are both conformal in the upper half-plane H, which they map
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onto the same quasidisc. Because they fix 0, 1, oo, it follows that they agree in
H, and hence also on the real axis R. Since f, = f, on R, we conclude that
f*= fYon R, ie., uand v are equivalent.

Assume, conversely, that f#* = f* on R. We define a mapping w of
the plane by the requirements w = f,of ' in f(H'UR), and w=
Sue(f*) tof¥o ;7 in f,(H). From the hypothesis f* = f* on R it follows
that w is a homeomorphism of the plane. In addition, w| f,(H’) is conformal.
But so is also w]| f,(H), because f,o(f*)™! and f~of,”! are conformal. Since
f.(R) is a quasicircle, we infer from Lemma [.6.1 that w is a Mobius trans-
formation. Owing to the normalization, w is the identity mapping, and so

f.=f,inH. O

Let F* be the family of all quasiconformal mappings of the plane which fix
the points 0, 1, co and are conformal in the lower half-plane. Two mappings
S, and f, of F* are said to be equivalent if they agree in the lower half-plane.

Theorem 1.1 says that every equivalence class [ f*] contains real analytic
mappings. It follows that each class [ f,] has representatives which are real
analytic in the upper half-plane H. For in H,

Ju= Lo (f*) o f",

where f, o(f*)™! is conformal. Therefore, f,|H is real analytic whenever f* is.

In particular, there are mappings f, which are conformal in H' and real
analytic in H but which, nonetheless, are very irregular on the real axis R.
We recall that the Hausdorff dimension of the image curve f,(R) can be arbi-
trarily close to 2 (cf. 1.6.1).

By Theorem 1.2, the space T can be regarded as the set of the equivalence
classes [ f,]. Or more explicitly: The universal Teichmiiller space is the set of
the normalized conformal mappings f,|H'.

1.4. Sewing Problem

The characterization of T by means of the conformal mappings f,|H’ leads
to far-reaching conclusions. Section 4, in particular, will be devoted to consi-
derations emanating from this model of T.

Anticipating a need in section 1.5, we give a solution to the following
sewing problem: Let h be a strictly increasing continuous function on the
real axis, growing from — oo to + co. Find conformal mappings f; and f, of
the upper and lower half-plane, respectively, onto complementary Jordan
domains such that

fitefa=h

on the real axis. We call the pair (f, f,) normalized if f; and f, both fix 0, 1
and co.
Depending on h, the sewing problem, to which many questions in complex
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analysis seem to lead, need not have any solution or it may have infinitely
many pairs of solutions. However, if h is a normalized quasisymmetric func-
tion, the existence of a unique normalized solution can be easily established
by aid of the quasiconformal mappings f* and f,. It is in this form that the
result will be used for studying the universal Teichmiiller space.

Lemma 1.1. Let h be a normalized quasisymmetric function. Then the sewing
problem has a unique normalized pair of solutions.

Proofr. Given a function he X, there is a mapping f* € F such that f*|R = h.
Then

fi =H) o (S, fa=/JH,

is a solution of the sewing problem. This can be verified immediately.
Suppose that the pair (g,,g,) is also a normalized solution. Then g,|R =
g,oh =g, o f*|R. Hence, the mapping w which agrees with g, o f* in H U R
and with ¢, in H' is a homeomorphism of the plane. Off the real axis it is
quasiconformal. By Lemma 1.6.1, w is quasiconformal everywhere. Since w
has the same complex dilatation as f, and both mappings fix 0, I and oo, it
follows from the uniqueness theorem (Theorem 1.4.2) that w = f,. Compari-
son of the definitions of w, f; and f, then shows that g, = f, g, = f. O

Note that f; and f, map the half-planes onto quasidiscs. Lemma 1.1 is due
to Pfluger [2]; in [LV], p. 92, it was proved without the use of the existence
theorem for Beltrami equations.

1.5. Normalized Quasidiscs

We shall now express in geometric terms the fact that points of the universal
Teichmiiller space can be represented by the conformal mappings f,|H'. We
call a quasidisc normalized if its boundary passes through the points 0, 1, o
and is so oriented that the direction from 0 to 1 to oo to 0 is negative with
respect to the domain. Let A denote the class of all normalized quasidiscs.

If fe F*, then

[f1-f(H) (1.3)

is a bijective mapping of Tonto A. We first conclude from Theorem 1.2 that
(1.3) is well defined. If f(H') = g(H'), then g~! o f is a conformal self-mapping
of H' fixing 0, 1, oo. Hence f|H' = g|H', i.e, [f] = [¢], and it follows that
(1.3) is injective. Finally, by Lemma 1.6.2, every quasidisc is the image of H’
under a quasiconformal mapping of the plane which is conformal in H'. Since
the required normalization is achieved by use of a suitable Mobius transfor-
mation, we conclude that (1.3) is surjective.
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The bijection (1.3) provides one more model for the universal Teichmiiller
space: Tis the collection of all normalized quasidiscs.

Using Lemma 1.1 we obtain a connection between normalized quasidiscs
and the group structure of T(Gardiner [1]).

Theorem 1.3. Two points [ f*], [ f*]€ T are inverse elements of the group T if
and only if the quasidiscs f,(H) and f,(H') are mirror images with respect to the
real axis.

ProOF. Assume first that [ f*] and [f*] are inverse; we can then take
SY=(f*"" Let f,. be the quasiconformal mapping of the plane which fixes
the points 0, 1, co and whose complex dilatation p* vanishes in H and
equals ji(z) at almost all points ze H'. We write g, = f,.|H and denote by g,
the unique conformal mapping of H' onto f,.(H') which keeps 0, 1, oo fixed.
Then g, and g, are normalized conformal mappings of the upper and lower
half-planes, respectively, onto complementary quasidiscs.

In order to study g;'og, on the real axis R, we continue f* by reflection
in R and use the same notation f* for the extended mapping. Then

“:gglof;‘*

in H’, because both sides are normalized quasiconformal self-mappings of H’
with the same complex dilatation. Hence, on R

gileg, = (/""" =/
Now set

fi=Loo(f'IH)Y,  f,=fIH.

Then f, and f, are also normalized conformal mappings of the upper
and lower half-planes onto complementary quasidiscs. On the real axis,
fitofy =f"=gi'og,. We conclude from Lemma 1.1 that g, = f,, g, = f5.

From the definition of f,. it follows that f,.(z) = f_ﬂ(z) one way to verify
this is to compute the partial derivatives. Since f,(H) = f,(H) = g,(H) =
J.+(H), we obtain

SH') = fL.(H') = f,(H),

and the first part of the theorem has been proved.

After this the converse is easily established. Suppose that ﬁ(H) = f.(H').
By what was just proved, there is a quasiconformal mapping f;, where 2 is
determined by f* = (f*#)7!, such thatf_u(H) = f,(H’). Since the mapping (1.3)
is injective, we conclude that 1 is equivalent to v. It follows that [ f*] and
[f*] are inverse elements of T. O

In I1.2.1 we defined the distance d(f(H')) = ||S;4- || 4- between the domains
S(H') and H'. This notion was generalized in I11.2.7 to apply to two arbitrary
domains conformally equivalent to discs. When the domains are normalized
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quasidiscs, we can give a new definition: If f, ge F*, then the distance be-
tween f(H’) and g(H’) is defined by

q(f(H), g(H")) = IIS; — S;llu-

It is easy to check that g, so defined, is a metric on A. By use of the
bijection (1.3), the metric can be transferred to T. This g-metric will be studied
in detail in section 4. Before that in section 2, a different metric will be defined
for T in a more direct manner.

2. Metric of the Universal Teichmiiller Space

2.1. Definition of the Teichmiiller Distance

In addition to the group structure, the universal Teichmiiller space has a
natural metric. We obtain this metric by measuring the distance between
quasiconformal mappings in terms of their maximal dilatations. When repre-
senting points of T by mappings f it does not matter whether we assume that
feF (normalized self-mapping of H) or that f e F* (normalized mapping of
the plane, conformal in H’). This follows from the fact that f* and f, have the
same maximal dilatation.
The distance between the points p and g of T is defined by

©(p,q) = 3inf {log K. ;| fep,geq}, (2.1)

where K denotes the maximal dilatation and f, ge F or f, ge F*. This is
called the Teichmiiller distance between p and q. Teichmiiller [1] used this
idea for defining distance in his studies on compact Riemann surfaces
(cf. V.2.2).

Before proving that the Teichmiiller distance makes T into a metric space,
we show that t admits various other formulations. In order to fix the ideas,
we assume for a moment that the quasiconformal mappings representing
points of T are in the class F*.

Fix a representative f, € p and set

Tl(paq) = %inf{logKgof(,"geq}' (22)

Alternatively, we can fix both f,ep and g,€q, consider the class W of all
quasiconformal mappings of the plane which agree in f,(H') with gyo f5 !,
and set

7,(p,q) = 3inf{log K, |we W}. (2.3)

Lemma 2.1. The functions t, t, and t, are the same.

Proor. Clearly, T < 7,. If we W, then g = wo f,eq, so that 7, < t,. Finally,
if fep,geq,thengof~'eW,andso 1, < 1. O
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By our previous remark, Lemma 2.1 holds also if the points of T are
represented by mappings from F. The class W must of course be modified,
being now the family of all quasiconformal self-mappings of H which agree
on R with gy o fo !, If we set h = g, o f5 'R, we thus reencounter the family we
considered in 1.5.7, there under the name F,. We proved that F, contains an
extremal mapping which has the smallest maximal dilatation in F,. If this is
denoted by K, then by Lemma 2.1,

7(p.q) = 3log K, (2.4)

One important consequence of the existence of an extremal mapping in F,
is that in expressions (2.1), (2.2), and (2.3), we can replace inf by min. After this
observation, it is readily seen that (2.1) (or (2.2), (2.3), or (2.4)) defines a metric
in T. Clearly t is non-negative and symmetric, and 7(p, p) = 0. Suppose that
7(p,q) = 0. Then it follows from (2.4) that F, contains a conformal mapping,
and because of the normalization, this mapping is the identity. Hence f,|R =
9ol R, which implies p = g. The triangle inequality follows from the property
K,.; < K;K, of the maximal dilatation.

The Teichmiiller distance is invariant under the universal modular group. For
the subgroup M,, the trivial observation

gof Tt =(gofo)o(fofo )
yields immediately the invariance
(L1 0gD) =t fofo 'L gofo D).
In particular,
©([f1.[9]) = (0, [gof""])

so that all distances can be measured from the origin. The general result
(which we shall not make use of) follows from the fact that conformal map-
pings do not change maximal dilatation.

2.2. Teichmiiller Distance and Complex Dilatation

If f and g have the complex dilatations p and v, the norm of the complex
dilatation of go f ™! is equal to ||(u — v)/(1 — jzv)]||,. Therefore, in terms of
complex dilatations, the Teichmiiller distance assumes the form

T+ [[(u =)/l — i),
=1 = /(1 = )
The right-hand expression displays a striking similarity to the hyperbolic

distance 4 in the unit disc D given by formula (1.1) in I.1.1. We introduce the
number

1
7(p,q) = - min{log luep,veq).
2

1h(k, v)] o = ess sup h(u(2), v(2))

and call it the hyperbolic distance between the complex dilatations u and v.
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From (1.1) in I.1.1 we then obtain the characterization

©(p,q) = min{||h(, V)|l . |pEp,vEq}

of the Teichmiiller distance as the minimal hyperbolic distance.
Consider the bounded function

1 —pv

B(p,q) = inf{

UED,VE q}.
From § = tanh t we see that in the definition of 8, inf can be replaced by min,
that B also makes T into a metric space, that f§ is invariant under the universal
modular group and that the metrics defined by t and f are topologically
equivalent. In other words, in studying topological properties of T we may
use the metric provided by f instead of the Teichmiiller metric. Let us give a
simple application.

Theorem 2.1. The universal Teichmiiller space is pathwise connected.
Proor. Consider the origin of T, i.e., the point represented by the function of

B which is identically zero, and an arbitrary point p € T represented by u. For
0 <t < 1, let p, be the point represented by the function tu of B. Then

Lip— b [ty — 5]
B(p.,p:,) < < .
e L—titpul |l — 1= lulZ
We see that the mapping t — p, is continuous, i.e., it is a path in T joining
the origin to p. O

In 3.3 we shall prove that the universal Teichmiiller space is not only
pathwise connected but even contractible. This means that T can be de-
formed continuously to a point. The result is less trivial than it would seem
at first glance, because for equivalent u and v, the complex dilatations tu and
tv need not be equivalent for 0 < t < 1 (Gehring [1]).

2.3. Geodesics for the Teichmiiller Metric

The length of an arc y: [0, 1] = (T, 7) is the supremum of Z (y(¢;-,), y(t;)) for
all subdivisions 0 =t, <t, <--- <t,= 1 of the unit interval. An arc y is a
geodesic if the length of every subarc « of y is equal to the distance between
the endpoints of a.

Geodesics of T can be described explicitly with the help of extremal com-
plex dilatations. We say that pep is extremal if || u||, = min{||v| ,|vep}.

Theorem 2.2. If u is an extremal complex dilatation for the point pe T, then

= ) = (1= )
T D) (= ) Tl

0<t<l, (2.5



106 ITI. Universal Teichmiiller Space

is extremal for the point p, = [u,]. The arc t — p, is a geodesic from 0 to p, and

7(p,, 0) = tt(p,0). (2.6)

Proor. From (2.5) we see that g,(z) is the point which divides the hyperbolic
length (in the unit disc) of the line segment from 0 to u(z) in the ratio t: (1 — t)
(cf. formula (4.16) in 1.4.7).

If f# has maximal dilatation K, then by Theorem 1.4.7, the mapping f*
has maximal dilatation K' and f*o(f*)™! has maximal dilatation K'™.
Suppose that we p,. Then ¢ = f*o(f*)'owep,andso K < K, < K'7'K,,.
Consequently, K,, > K'. We conclude that y, is extremal for the point p,.
This reasoning also shows that t(p,,0) = Jlog K' = tt(p,0), i.e., the validity
of (2.6).

Since f*o(f*)~! has maximal dilatation K! ™, we conclude that t(p,, p) <
(1 — t)z(p,0). Consequently, (0, p,) + t(p,, p) = (0, p) for every ¢. Finally, if
we repeat the above argument for an arbitrary subarc of t — p,, we see that
t — p, is a geodesic. O

Since the extremal p need not be unique (cf. 1.5.7), we cannot conclude that
the geodesic t — [, ] is unique.

2.4. Completeness of the Universal Teichmiiller Space

We shall now prove that the space (T, ) is complete. We first describe ex-
plicitly the construction on which our proof of the completeness is based and
list the pertinent facts associated with that construction.

Lemma 2.2. Every Cauchy sequence in (T,1) contains a subsequence whose
points are represented by complex dilatations p, with the following properties:

1° lim w,(z) = p(z) exists almost everywhere,

2° [f,, 1= [f,] in the Teichmiiller metric;

3° fu.(2) = f,(2) uniformly in the spherical metric;

4° fHn(z) > f*(2) locally uniformly in the upper half-plane.

Proor. In order to simplify the notation, we renumber functions each time
that we pass from a sequence to its subsequence. Also, we write f, = f, .
Let ([ f,]) be a Cauchy sequence in (7, 7). We shall construct inductively a
subsequence with the properties 1°—4° using suitably chosen mappings f,.
First, fix a mapping f; so that

inflogKprofi,<%, p=12 ...,

where for each p, the infimum is taken over all mappings of [ f;.,]. Since
([£,]) is a Cauchy sequence, such a mapping f; exists, as can be seen from
formula (2.2) and Lemma 2.1. We renumber the sequence by setting f; = f;.
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After this, we choose for every n > 1 the mapping f, from its equivalence
class so that

logK; ;i1 <73
From this new sequence ( f,) we choose a mapping f, so that
inflog Ky, ozt <3

where again for each p the infimum is taken over all mappings of the class
[ fe+p]- We set f, = f,, and for n > 2, choose a representative of [ f,] so that

1
log Kfnoffl < 4

Continuing this procedure we obtain a sequence (f;), such that ([ f,]) is a
subsequence of the given Cauchy sequence and such that, for any two con-
secutive indexes, the maximal dilatations satisfy the inequality

logK, o0 <27", n=12,....

It follows that

P .
log Ky, o < 3 27070 <274 2.7
j=1

forn,p=1,2,....

Considering the connection between the maximal dilatation and the norm
of the complex dilatation, we deduce from (2.7) that the complex dilatations
u, of f, satisfy the inequality

Hn+p — Hn

~ < 2tanh27"
1 - .un.un+p

e ¢}

”#n+p - #n”w <2

Thus (u,) is a Cauchy sequence in L*. Since L* is complete, the limit
u = lim p, exists in L™. Thus the validity of condition 1° follows. From (2.7)
we conclude that the mappings f, (and hence also f*») are K-quasiconformal
for a fixed K. It follows that |||, < 1. Therefore, [u] = lim[u,] in (7, f) and
hence also in (T,t). This means that the statement 2° is true. Since the
mappings f, and f*~ keep the three points 0, 1, oo fixed, the families { f,} and
{f*} are normal, by Theorem I.2.1. Hence 3° and 4° follow, after possible
passage to further subsequences. O

Theorem 2.3. The universal Teichmiiller space is complete.

ProoF. In view of statement 2° in Lemma 2.2, it is enough to observe that if
a Cauchy sequence contains a convergent subsequence, then the sequence
itself is convergent. ]

Having proved Theorem 2.3 we see that in Lemma 2.2, we need not pick a
subsequence: If p, — p in (T, ), there are complex dilatations pu, € p,,, jt€ p, such
that the conditions 1°, 3°, and 4° of Lemma 2.2 hold (cf. Theorem 1.4.6).
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In view of the simple relation between the distances t and f, it is easy to
show that the metric space (T, f§) is also complete. In contrast, using Schwar-
zian derivatives we shall obtain in section 4 one more model for T which is a
metric space homeomorphic to (7, ), but is not complete. (It is, in fact, the
metric space (A, q) discussed at the end of 1.5.)

3. Space of Quasisymmetric Functions

3.1. Distance between Quasisymmetric Functions

Let us consider again the space X of normalized quasisymmetric functions
discussed in 1.1. For he X we defined in 1.5.1 the maximal dilatation Kj.
Imitating the method we used in defining the Teichmiiller distance, we set

p(hy,hy) = 3log K3, onp

for hy, h, € X. It is easy to verify that p defines a metric on X.

Theorem 3.1. The group isomorphism

[f1-fIR (3.1)

is a homeomorphism of (T, 1) onto (X, p).

Proor. We proved in 1.1 that (3.1) is a bijection of T onto X. From (2.4) and
the left-hand inequality (5.10) in 1.5.7 it follows that

p(f1IR, f2IR) < «([f11.[ L2 D). 3.2)
Hence (3.1) is continuous. From Lemma 1.5.5 (or from the right-hand inequa-
lity (5.10) in 1.5.7) we conclude that the inverse of (3.1) is continuous. O

From the double inequality (5.10) in 1.5.7 we can draw another conclusion:
The space (X, p) is complete. For we conclude from the right-hand inequality
(5.10) that the preimage of a Cauchy sequence in (X, p) is a Cauchy sequence
in (T, 7). The inequality (3.2) then shows that (3.1) maps a convergent sequen-
ce of (T, 7) onto a convergent sequence of (X, p).

Suppose that h, h,e X, n =1, 2, ..., and that lim p(h,,h) = 0. Then h, - h
locally uniformly in the euclidean metric. For by Lemma L.5.1, {h,} is a
normal family. If 4 is the limit of a convergent subsequence (hy,) of (h,), we
have K¥,,-: <lim K}y on1 = 1. Hence h = h. Since every convergent sub-
sequence of (h,) has the limit A, the sequence itself tends to h.

The converse is not true. A counterexample is obtained if we set h,(x) = x
for x < n,and h,(x) = 2x — nfor x > n. Then h,€ X and lim h,(x) = h(x) = x,
uniformly on every bounded interval. But the quasisymmetry constant of h,
is 2, so that by the remark in 1.5.2, liminf p(h,, h) > (log A71(2))/2 > 0.
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3.2. Existence of a Section

Using the space (X, p), we can prove that the universal Teichmiiller space is
contractible, i.e., there exists a continuous mapping of T x {¢|0 <t < 1} into
T which is the identity mapping for t = 0 and a constant mapping for ¢t = 1.

As a preparation for the proof, we modify the mapping (3.1) by changing
its domain of definition. Let L® be the space of functions bounded and
measurable in the upper half-plane, and B = {ue L*||ull, < 1} its open
unit ball. For ue B, we now consider the mapping ¥ of B onto X, defined by

Y(u) = fHIR.

In view of the definition of the Teichmiiller distance, inequality (3.2) can be
written in the form

u v T 1+ (=1 = )l
p(fHIR, f IR)szlog

=l = v/ =)l

It follows that y is continuous.

Of course, the mapping ¥: B — X is not invertible. However, there exists a
section s: X — B, i.e., a continuous mapping of X into B such that i os is the
identity mapping of X.

A section s can be constructed with the aid of the Beurling—Ahlfors exten-
sion of a quasisymmetric function. Given a function he X, we set as in 1.5.3,

1 1

(h(x + ty) + h(x — ty))dt + ij (h(x + ty) — h(x — ty))dt.
0

flx +iy) = %J
(0]
Let u be the complex dilatation of f. We shall prove that the mapping
s: X — B, defined by s(h) = y, is a section.
For h;e X, i = 1, 2, we denote their Beurling—Ahlfors extensions by f;, and
set s(h;) = u;. Let K be the maximal dilatation and k the quasisymmetry
constant of h,ohj!. We showed in 1.5.2 that k < A(K). Hence,

p(hy,h;) = 3log K > 3log A7 (k).

Now suppose that h, — h; in (X, p). It follows from the above inequality
that k — 1. By Lemma 1.5.3, the maximal dilatation of f, f;"! then tends to
1. This is equivalent to u, converging to x,, and we have proved that s is
continuous.

Trivially, (f o s)(h) = f*®|R = h, so that Y os is the identity mapping of X.
Consequently, s: X — B is a section.

3.3. Contractibility of the Universal Teichmiiller Space

After these preparations, the desired result can be easily established (Earle
and Eells [1]).

Theorem 3.2. The universal Teichmiiller space is contractible.
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Proor. Every point of T is an equivalence class [s(h)], h€ X. We show that

(Ls(h ], 0) = [(1 — 1)s(h)] (3.3)

deforms T continuously to the point 0 as ¢ increases from 0 to 1.

In proving this, we make use of Theorem 3.1 which says that [u] — f*|R
is a homeomorphism of (7, t) onto (X, p). It means that instead of (3.3), we
can consider the induced mapping

(h,) > f070|R (34)

of X x [0,1] into X. Clearly, (h,0) - h and (h, 1) — identity. The theorem
follows if we prove that (3.4) is continuous.
The mapping (3.4) is the composition of the three mappings

(h,) = (s(h),0),  (s(h,) > (1 —Os(h), (1 = 0)s(h) - fO7PIR.

The first one is continuous, because we just proved that h — s(h) is a con-
tinuous map of X into B. The second maps B x [0, 1] continuously into B,
since [|(1 — t,)s(h,) — (1 — t,)s(hy) |1, < lIs(hy) — s(hy)ll.. + [t; — t,]. Final-
ly, the third mapping is continuous, because we showed that u — f*|R maps
B continuously into X. Hence, (3.4) is a continuous contraction of X to a
point, and (3.3) has the same property with respect to T. O

3.4. Incompatibility of the Group Structure with the Metric

We showed at the end of 3.1 that pointwise convergence of functions of X
does not imply p-convergence. A slightly more complicated counterexample
leads to the conclusion that the topological structure and the group structure
of X are not compatible. We express the result in terms of T.

Theorem 3.3. The universal Teichmiiller space is not a topological group.

Proor. The theorem follows if we find an [ f]e T and a sequence of points
[g.]€ T, such that [g,] tends to [¢g] but [ fog,] does not tend to [ fog].
Because the mapping (3.1) is a group isomorphism and a homeomorphism,
the counterexample can be constructed in X. We follow a suggestion of
P. Tukia.

In order to simplify notation we write f instead of f|R. We define f
as follows: f(x)=x if x>0, f(x)=x/2 if —2<x<0, and f(x)=x+1
if x< —2. Then f is a 2-quasisymmetric function of X. Set 1,(x) = x
if x>0 and 1,(x)=( + 1/n)x if x<0, n=1, 2, .... Then 1,€X is
(1 + 1/n)-quasisymmetric, and therefore (1 + 1/n)*-quasiconformal (cf. I.5.3).
If : denotes the identity mapping of R onto itself, we thus have

p(,,1) < log(l + 1/n).
Let us define g, = 1,0 f ~'. Because p(g,,f ') = p(1,,1), we deduce that
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lim p(g,, /™) = 0. (3:5)
We prove that fog, = fou1,0 ™! (which converges to the identity 1 point-
wise) does not tend to fo(limg,) = ¢ in the p-metric.
Direct calculation yields

(1 + 1/n)x if —n/n+1)<x<0,

S(gu(x)) = {2(1 +1/mx+1 if —1<x< —n/(n+1)

It follows that fog, has a quasisymmetry constant >2 for every n.
Consequently,

p(fog,1) = 3logA71(2).

In conjunction with (3.5), this shows that (X, p), and hence (T, 1), is not a
topological group. O

We see that, unlike the right translation, the left translation [ /] — [ foo f],
fo fixed, need not be continuous in T.

4. Space of Schwarzian Derivatives

4.1. Mapping into the Space of Schwarzian Derivatives

The universal Teichmiiller space was defined by means of quasiconformal
self-mappings of the upper half-plane. In this section and in section 5, we
change the roles of the upper and lower half-planes. Now f* is a self-mapping
of the lower half-plane H' and f, is conformal in the upper half-plane H. This
change, which does not affect any of the results in sections 1-3, simplifies
notation here, because we are now dealing primarily with the conformal part
of the mappings f,.

It follows from what we proved in 1.3 that each point of the universal
Teichmiiller space T can be represented by a normalized conformal mapping
f,|H. It was Bers [6] who noticed the importance of forming the Schwarzian
derivative and defining the mapping

[u]— Sf‘,IH

of T. The image points, as Schwarzian derivatives, are holomorphic functions
in H, for which the norm defined in I1.1.3 is pertinent.

This leads us to introduce the space Q of all functions ¢ holomorphic in H
for which the hyperbolic sup norm

ol = §U54yzl(p(2)l,
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z = x + iy, is finite. The space Q has a natural linear structure over the
complex numbers.

Furthermore, Q is complete. For if (¢,) is a Cauchy sequence in Q, then
o.n" 2, n(z) = (2y)7!, is a Cauchy sequence in L™. Since L* is complete, there
is a i € L® such that ¢,n~ 2 converges to ¢ in L®. Here y can be taken to be
continuous. Then ¢, converges locally uniformly to ¢ = 5%, because 7 is
locally bounded. It follows that ¢ is holomorphic, | ¢, — ¢|| = 0, and p€Q.
We conclude that Q is a Banach space. Its points are Schwarzian derivatives:
By Theorem II.1.1 every function ¢ €Q is the Schwarzian derivative of a
function f meromorphic in H.

Going back to the functions f,, we write s, = S; 5. By Theorem I1.1.3,
Is,|l < 6. Therefore, [u] — s, maps T into Q. The mapping is well defined, for
if v is equivalent to u, we have f|H = f,|H and hence s, = s,,.

4.2. Comparison of Distances

We shall prove that the mapping [ ] — s, is a homeomorphism of T onto its
image in Q. To this end we shall compare the -distance of two given points
[«] and [v] of T to the distance of their images s, and s, in Q. We write
q(¢1,92) = llo; — @, | for points of Q.

In the special case v = 0, estimates in both directions can be obtained
directly from our previous results. If v = 0, then also s, = 0, and ¢(s,,0) =
IIs,|l. Moreover, B([1],0) = inf| u| .. By Theorem I1.3.2, ||s, || < 6| u| . This
holds no matter how u is chosen from the equivalence class. Consequently,

q(s,,0) < 6B([1], 0). (4.1)

We remark that g(s,, 0) is equal to the distance 6( f,(H)) of f,(H) from H (cf.
the remark at the end of 1.5).

In order to get an inequality in the opposite direction, we choose an
arbitrary ¢ € Q such that | ¢| < 2. By Theorems II.1.1 and IL.5.1, there is a
normalized quasiconformal mapping f of the plane which is conformal in H,
for which S;; = @, and whose complex dilatation y in the lower half-plane
is obtained from the formula u(z) = —2y?¢(z), z€ H. For this mapping f =
f, we have | ull,, = |Is,ll/2. Hence,

q(s,,0) = 2B([ 1], 0). (4.2)
We assumed that g(s,,0) < 2. But since all S-distances are <1, (4.2) holds
trivially if g(s,,0) > 2.
We shall now generalize (4.1) and (4.2) for arbitrary points [ ] and [v]. We
start with the transformation rule

s, — Sullg =1l Sf“of;’ e (4.3)

for the Schwarzian derivatives (formula (1.10) in I1.1.3). We write A, = f,(H)
and apply Theorem I1.3.2 to the conformal mapping w = f,o(f,"'|4,) in the
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quasidisc A,. It follows that

H Sw “Av < UO(AV)

’
o0

1 — v

here a4(4,) = 6 + 8(A,) is the outer radius of univalence of A4,. In view of
(4.3), this yields the estimate

4(8,:8,) < 0o(A,)B(Lul, [vD) (4.4)

which is the desired generalization of (4.1). Since 64(A,) < 12, we could use as
the coefficient on the right-hand side the absolute constant 12. On the other
hand, 64(4,) can be replaced by min(g4(A4,), 00(A4,)), where A, = f,(H).

It is more difficult to generalize the inequality (4.2). We choose v from its
equivalence class so that f, has the smallest possible maximal dilatation K.
After this, we consider Schwarzian derivatives s, which are so close to s, that
q(s,,s,) < &(K,), where ¢ is the constant of Theorem I1.4.1. Then, by formula
(4.3),

I1Swlla, < &(K,).

We know that w has a quasiconformal extension, namely, f, o f,”'. However,
we prefer to extend w by utilizing Theorem I1.4.1, which makes it possible to
estimate the complex dilatation. By that theorem, w has a quasiconformal
extension to the plane such that the complex dilatation « of the extended
mapping satisfies the inequality

”Sw “AV _ q(Su,S‘.)
K, e(K,)

Kl < (4.5)

If the extended w is also denoted by w, then f, = wo f, is a quasiconformal
extension of f,|H to the lower half-plane. Thus 4 is equivalent to u. Because
w = f,0 f.7!, we have, therefore,

T

> B(Lud. V)

Combining this with (4.5) we finally arrive at the inequality
q(sy, s,) = e(K,)B([ 1], [v]), (4.6)

valid also if g(s,,s,) > &(K,). This contains (4.2) as a special case: If v =0,
then K, = 1 and ¢(K,) = 2. Since the roles of ¢ and v can be interchanged, we
can replace ¢(K,) in (4.6) by max(e(K,), e(K,)).

4.3. Imbedding of the Universal Teichmiiller Space
The estimates (4.4) and (4.6) show that the - and g-metrics are topologically

equivalent. Thus a new important model is obtained for the topological space
(T, 7).
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Theorem 4.1. The mapping
[u]l—- SfulH 4.7)

is a homeomorphism of the universal Teichmiiller space onto its image in Q.

Proor. We noted already in 4.1 that (4.7) is well defined in T. If [ 1] and [v]
have the same image, it follows from the normalization that f,|H = f,|H, i..,
u and v are equivalent. Hence (4.7) is injective. Inequality (4.4) shows that
(4.7) is continuous, and (4.6) that its inverse is continuous. O

In 4.5 we shall show that the image of T under the homeomorphism (4.7)
is open in Q. (We have almost proved this in establishing (4.6).) The mapping
(4.7), which will later be considered in connection with an arbitrary Teich-
miiller space, is called the Bers imbedding of Teichmiiller space.

By Theorem 4.1, the convergence Sf — S, in Q implies that [x,] — [¢] in
T. Hence, by Lemma 2.2 and the remark following Theorem 2.3, f, (z) — £,(2)
uniformly in H.

Anticipating developments in Chapter V, we denote the image of T under
(4.7) by T(1). When there is no fear of confusion, we often identify T(1) with
the universal Teichmiiller space. Like X, the space T(1) is simpler than T in
that its points are functions and not equivalence classes of functions.

We can also define T(1) = {S,|f is conformal in H and has a quasicon-
formal extension to the plane}. For such an f is equal to a normalized
mapping f,|H modulo a Mdbius transformation, which does not change the
Schwarzian derivative.

By Theorem II.5.1, the set T(1) contains the open ball B(0,2) =
{peQ|ll@] <2). In this ball, the inverse of the mapping (4.7) can be
described explicitly:

e—[1l,  pE) = -2y
The space (T(1), q) is not complete, even though it is homeomorphic to the
complete spaces (T, 1), (T, §) and (X, p). In order to prove this, it is sufficient
to find an S, € Q\T(1) and functions S, e T(1),n = 1,2, ..., such that §, — S,
in Q. Then (S, ) is a Cauchy sequence in T(1) but its limit is not in T(1). An
example is provided by the functions z — f(z) = logz, z — f,(z) = z!/" in H,
which we considered, for another purpose, in I1.1.4. Since

s (=1 1 1
T\ w2 )22

we have ||S; ||, = 2(1 — 1/n*) < 2. By Theorem IL5.1, the mapping f, has a
quasiconformal extension to the plane. Hence S; € T(1). In I1.1.4 we saw
already that

IS, — Sl = 2/n* > 0.

But since z — log z does not even have a homeomorphic extension, S; is not
in T(1).
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4.4. Schwarzian Derivatives of Univalent Functions

Let us define the set
U = {S;|f univalent in H}.

Then trivially T(1) = U, and by Theorem I1.1.3, U = Q. More precisely, we
conclude from Theorem I1.1.3 that U is contained in the closure of the ball
B(0,6) = {¢€Q| ¢l < 6}. On the other hand, it follows from Theorem IL.5.2
that U contains the closure of B(0, 2).

Let f;(w) = w + 1/w, f,(w) = w — 1/w. If h is a conformal mapping of the
upper half-plane onto {w||w| > 1}, then S, .;, S;,.,€ U. From the calcula-
tions in I1.2.6 it follows that ||S; ., — S;,.4ll = 12. We conclude that the
diameter of U is 12.

The set U is closed in Q. For suppose that S, e U, n = 1,2,...,and that S,
converges to S, in Q. We show that f is univalent.

We are free to compose the functions f, with arbitrary Mobius transforma-
tions. There is no loss of generality, therefore, in assuming that every f, fixes
the same three points a,, a,, a; in H. By Theorem 1.2.1, the family { £, } is then
normal. Consequently, ( f,) contains a subsequence which is locally uniformly
convergent in H. By renumbering the functions we may assume that ( f,) itself
has this property. The limit g = lim f, fixes a,, a, and aj, and is there-
fore univalent in H. At every point ze H we have lim S, (z) = S,(z) and also
lim S, (z) = S;(z). Hence, f differs from g by a M6bius transformation, and so
fis univalent.

Since U is closed and T(1) < U, the closure of T(1) is contained in U. If
S;€ U, we can always find functions f, with S, e T(1) such that

f(z) = lim f,(2) locally uniformly in H. (4.8)
An approximating sequence f, with S, € T(1) is obtained as follows. Set

a@= 2 s

1 —iz/n
Then g, maps H onto the disc D, = {w||w — i| < ((n — 1)/(n + 1))|w + i|},
whose closure lies in H. As n — oo, the discs D, exhaust H, and g,(z) — z,
locally uniformly. Hence, by setting f, = fog,, we obtain a sequence of
functions for which (4.8) is true. The property S, € T(1) follows from the fact
that f,(R) = f(éD,) is a quasicircle (cf. the remark in 1.6.1).

If (4.8) holds, the derivatives of f, converge to the derivatives of f. Hence,

S;(z) = lim S, (2)
locally uniformly in H. However, as we showed in II.1.4, it does not neces-
sarily follow that S, — S, in Q. We cannot conclude, therefore, that the
closure of T(1) coincides with U. A counterexample such as the one in I1.1.4
does not disprove this either, but actually the closure of T(1) is not the whole
of U. This will be explained in 4.6.
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4.5. Univalent Functions and the Universal Teichmiiller Space

From Theorems I1.4.1 and 11.4.2 we obtain a remarkable connection between
the sets T(1) and U (Gehring [2]).

Theorem 4.2. The set T(1) is the interior of U.

Proor. We prove first that T(1) is an open subset of Q. Fix an arbitrary point
S; of T(1). For S, Q we write g = h o f~!, and conclude that g is meromor-
phic in the quasidisc f(H). By Theorem I1.4.1, there exists a positive constant
¢ such that if ||S, || ;) < ¢ then g is univalent in f(H) and has a quasicon-
formal extension to the plane. Now choose S, € Q such that ||S, — S|y <e.
Then

ISgll pany = 1Sk — Syl <e

Because h = go f, we conclude that S, e T(1). It follows that T(1) is open.
Since T(1) = U, the proof will be complete if we show that int U < T(1).
Choose a point S eint U. We then have an &£ > 0 such that

V=1{peQ|lo—Sll <&} cU.

Let g be an arbitrary meromorphic function in the domain f(H), with the
property || S,ll sy < & If h = go f, then

N Sf”H =S, ”f(ll) <e

It follows that S,e V < U, i.e., h is univalent in H. But then g = ho f ! is
univalent in f(H). What we have proved is that f(H) is an ¢-Schwarzian
domain. Hence, by Theorem I11.4.2, the domain f(H) is a quasidisc. We
conclude that S,e T(1) (cf. Lemma 1.6.2, statement 3°) as we wished to
show. O

The result that T(1) is open in Q was first proved by Ahlfors [4].

4.6. Closure of the Universal Teichmiiller Space

For a long time it was a famous open problem, raised by Bers, whether the
closure of T(1), which is contained in U, actually agrees with U. In 1978,
Gehring [3] showed that the answer to this question is in the negative. He
constructed a counterexample with the help of the simply connected domain
G which is the complement of the curve

y={z= 40 <1< w}uU{0}

where a > 0 is small (Fig. 6). This G is not a Jordan domain, but more than
that, at the origin its boundary is so rigid that G possesses the following
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T
\9
Figure 6. S, not in the closure of T(1).

property: There is a positive constant ¢ such that if f is a conformal mapping
of G and || S|l < &, then f(G) is not a Jordan domain.

For the proof we refer to Gehring [3]. With the aid of this result the
negative answer to the question of Bers is readily established.

Theorem 4.3. The closure of T(1) is a proper subset of U.

ProoF. Let G be the domain defined above and ¢ > 0 the associated constant.
If h is a conformal mapping of the upper half-plane onto G, we prove that S,
does not lie in the closure of T(1).

Consider an arbitrary point S,, of the neighborhood {(pte lo — Sully < €}
For f = woh™" we then have ||S;|c = IIS,, — S,lly < & Therefore, either f is
not univalent or f is univalent but f(G) = w(H) is not a Jordan domain. It
follows that S,, is not in T(1). O

Recently, Theorem 4.3 has been strengthened: There exists a conformal
mapping h: H - G, where G is now a Jordan domain, such that S,¢ T(1)
(Flinn [1]).

Theorem 4.3 gives rise to the study of the boundary of T(1). If T(1) is
visualized as the collection of quasidiscs f,(H), then Flinn’s result means that
there are Jordan domains which do not belong to the boundary of T(1).
More information about the boundary of T(1) is provided by some recent
results in the joint paper of Astala and Gehring [1].

We showed in 4.4 that the diameter of U is 12. Since the closure of T(1)
does not coincide with U, we cannot conclude immediately that the diameter
of T(1) is also 12. But this can be proved if we modify slightly the example
which we used for U. For every positive r < 1, the functions w — fi(w) = w +
r/w,w = f,(w) = w — r/w are not only univalent in E = {w||w| > 1} but have
the quasiconformal extensions w —»w + rw and w — w — rw, respectively.
Moreover, an easy calculation shows that

lim (Jw]* — 1)?[S;,(w) — S;,(w)| > 12r.
If h: H— E is a conformal mapping, Sy, .. Sy,.»€ T(1), and by the invari-
ance formula (1.9) in IL.1.3, ||S; o) — S;,.nll = 12r. Tt follows that the set
T(1) has diameter 12.

Theorem 2.1 says that the universal Teichmiiller space is pathwise con-
nected. Therefore, T(1) and its closure are connected, and by Theorem 3.2,
the set T(1) is even contractible.



118 II1. Universal Teichmiiller Space

Since U is not the closure of T(1), the connectedness of T(1) does not imply
that U is connected. In fact, the author just learned of a striking result of
Thurston [1] which asserts that U possesses one-point components. (Thurs-
ton’s result contains Theorem 4.3 as a corollary.)

5. Inner Radius of Univalence

5.1. Definition of the Inner Radius of Univalence

Let A be a simply connected domain of the extended plane whose boundary
consists of more than one point. In 11.2.6 we defined the outer radius of
univalence

0o(A) = sup{||S; | 4|/ univalent in A}

of the domain A. We proved that g,(A) is directly connected with the dis-
tance 6(A) of A from a disc (defined in I1.2.1): g4(4) = 6(A4) + 6 for all do-
mains A.

Let us now define the inner radius of univalence

o,(A) = sup{a||S;|l 4 < a= f univalent in 4}

of A. Note that a = 0 is always an admissible number, because ||S;|| =0
implies that f is a Mobius transformation and hence univalent. Like the
distance 6 and the radius ¢, the inner radius o, is also invariant under
Mobius transformations, i.e., two Mobius equivalent domains have the same
ay.

The set {S;|f univalent in A4} is closed in the family of functions holomor-
phic in A4, when the topology is defined by the hyperbolic sup norm. We
proved this in 4.4 in the case where 4 was the upper half-plane, and the same
proof applies to an arbitrary A. It follows that we can replace sup by max in
the definition of ¢;(A4). In other words, if || S; || , = o,(A), then f is univalent.

Theorems I1.4.1 and 11.4.2 imply that a,(A4) > 0 if and only if 4 is a quasi-
disc. As we remarked before, this is an interesting result because quasicon-
formal mappings do not appear in the definition of the inner radius of
univalence.

For a disc,

a,/(A) =2.

This follows directly from Theorem I1.5.2. We shall see in 5.7 that for all
other domains A, the inner radius of univalence is smaller. Before that, we
shall show how to get information about ¢; from the results derived in the
previous section. For this purpose, these results must be slightly generalized
so that the special position of the half-plane in the definition of the universal
Teichmiiller space is removed.
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5.2. Isomorphic Teichmiiller Spaces

Throughout this section the roles of the upper and lower half-planes in
connection with the universal Teichmiiller space are as in section 4, i.e., f# is
a self-mapping of the lower half-plane and f, is conformal in the upper
half-plane.

Let A be a quasidisc whose boundary contains the points 0, 1, oo and for
which the direction from 0 to 1 to oo orients dA positively with respect to A.
The universal Teichmiiller space T, is defined by means of quasiconformal
self-mappings of the complement of A which fix 0, 1, and oo, exactly as we did
itin 1.1 in the case of a half-plane. Theorem 1.2 can be proved for 4 word for
word as in the case of a half-plane. It follows that the points of T, can be
represented by conformal mappings of A which are restrictions to A of
quasiconformal mappings of the plane and which fix the points 0, 1, and co.

The given quasidisc A can be regarded as a point of the universal Teich-
miiller space T = Tj. By this we mean that there is a unique point p € Ty such
that f, (H) = A whenever poep (cf. 1.5).

Take a fixed mapping f, with the property f, (H) = A, and consider the
transformation

SflH = fo(fir 1 A). (5.1)

This is an isomorphism between T;; and T, in the sense that it is a bijective
isometry. Obviously, (5.1) is well defined in T} and a bijection of T; onto T,.
Ifw, = fiof,.l,i=1,2,then wyow;! = fo0f"!, and so (5.1) preserves Teich-
miiller distances.

Note that under (5.1) the origin is shifted: the point [1,]€ Ty maps to the
origin of T,. More generally, [x#] maps to the point represented by the
complex dilatation of f, o f,-'.

Suppose [1]€ T;. In order to study the mapping [u] — S;,,, we define
Q, as the space of functions ¢ holomorphic in 4 for which the norm
sup|@(z)|n4(z)"2 is finite. As in the case A = H, we set U, = {¢ = S;|f univa-
lent in A}; by Theorem I1.2.3, this is a subset of Q4. Finally, T,(1) = {S,e U,| f
has a quasiconformal extension to the plane}. Our previous space Q will now
be denoted by Q.

The function w = fo f,-'|4 is meromorphic in A4 if and only if f is mero-
morphic in H. From [|S,. |, = IS, — Sfu(, |y we get

ISple — 1Sy, e < USwlla < I1Sellu + 1Sy, lln
and conclude that || S, |, is finite if and only if || S, |4 is finite. It follows that
the mapping
Sf_>Sf°f[1|A (52)

is a bijection of Q;; onto Q,. Clearly, (5.2) maps U, onto U, and Ty(1) onto
T,(1). If w; = fio f,- 1| A, i = 1, 2, then by formula (1.9) in I1.1.3,

IS, = Swlla =11, — Sy, la-
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We see that the mapping (5.2) of Q, onto Q, is also an isometry.

Let ¢, be the mapping [u] — S, 4 of Ty onto Ty(1) and ¥, the mapping
[1] = S; 4 of T, onto T,(1). Then (5.1) followed by ¥, is the same as ¥,
followed by (5.2)

5.3. Inner Radius and Quasiconformal Extensions

Let A be a quasidisc. We define the spaces Q,, U,, and T,(1) as in 5.2.
Let h: H —» A be a conformal mapping. Generalizing (5.2) we can define a
bijective isometry of Q onto Q, by

Sy = Sponr- (5.3)

We conclude that for varying quasidiscs A, all spaces U, and T,(1) are
isomorphic. In particular, Theorem 4.2 can be generalized:
For all quasidiscs A,

T,(1) = int U,. (5.4)

This relation leads to a new characterization of the inner radius of univa-
lence. It follows from the definition of o; and from the subsequent remark
about sup and max in the definition that the closed ball {peQ ¢, <
a;(A)} is contained in U,. By (5.4), the interior of this ball lies in T,(1). In
other words, if

I1Spll4 < 0,(A),

then f is not only injective in A but has a quasiconformal extension to the plane.
This result generalizes the statements of Theorems I1.5.1 and I1.5.2 which
are concerned with a disc. It sheds new light on the inner radius of univalence
and explains why quasiconformal mappings play a role. We conclude that
the definition of the inner radius of univalence can be expressed in the form

;(A) = inf{|| S || ;| f univalent in A, f(A4) not a quasidisc}. (5.5)

This characterization yields upper bounds for g,(A).

Another way of expressing (5.5) is that B(0,0,(4)) = {0€Q,| @l 4+ < 0,(4)}
is the largest open ball in Q, centered at the origin which is contained in
T,(1). The inverse of the isomorphism (5.3) takes this ball onto the ball
B(S;,0,(A)) of Q. This gives a characterization for the inner radius of uni-
valence in geometric terms: If h is a conformal mapping of H onto a quasidisc
A, then o,(A) is the distance from the point S, to the boundary of Ty(1).

This result gives additional information about the mapping [1] — S, of
Ty onto Ty(1). We proved in section 4 that T(1) is open in Q. Now we can
express this result in a more precise form:

Theorem 5.1. The largest open ball of Qy which is centered at the point Sy
and lies in Ty(1) has the radius o,(f,(H)).
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We recall that the domain constant § also has a similar geometric interpre-
tation: 8(A) is the distance from the point S, to the origin of Ty(1). The
geometric interpretations of ¢, and & can actually be exploited. Before doing
it we shall estimate the inner radius for certain specific domains. We first
derive a lower estimate for a,(A4) with the aid of quasiconformal reflections.

5.4. Inner Radius and Quasiconformal Reflections

The outer radius of univalence can often be readily determined thanks to the
relation ¢, = 6 + 6. In contrast, there seems to be no easy way to find the
exact value of the inner radius of univalence of a quasidisc. A modification of
the proof of Theorem 11.4.1 yields a lower bound for ¢,(4) which turns out to
be sharp in certain cases.

Lemma 5.1. Let A be a bounded quasidisc which can be exhausted by the
domains A, = {rz|ze A}, 0 <r < 1, and A a quasiconformal reflection in 0A
which is continuously differentiable off 0A. Let A’ = A\{A7'(c0)}. Then

10A(2)] — |0A(2)]

g,(A) =2 inf ——m———. (5.6)
A =2 0 5@ — PGy

ProoFr. Let f be a meromorphic function in 4. Suppose first that f is holo-

morphic on 4. As in the proof of Theorem I1.4.1, we set f = w, /w, and write

_ wile) + (42) — 2w (@)
wa(2) + () — Dwi(2)

Letg = @oAi ' and p, = 0g/dg be the complex dilatation of g. The reasoning
in the proof of Theorem I1.4.1 shows that if ||y,ll,, < 1, then f is univalent
and g is a quasiconformal extension of f. (In proving Theorem I11.4.1 we
resorted to inequality (4.4) to determine the boundary values of dg and dg.
Here we can proceed more directly, since we may assume that the right-hand
expression in (5.6) is positive.)

Now

¢(2)

Ho — My
1 - ﬁﬁ.#w
Since 4 is a sense-reversing quasiconformal mapping, u; = 04/d4 is bounded
away from 1 in absolute value. It follows that |lu,|, <1 if and only if

lpplle < 1.
Direct computation gives

o - Do) _ 94 + (6) — 78,(0))2
Kol = Fe(2) 3i(2) '

We conclude that |y, ll, < 1if

lpgo Al =
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[04(2) + (A(z) — 2)2S,(2)/2] < t|0A(2)]
for some t < 1. A fortiori, this is the case if

t10A(z)] — |0A(2)|

IS/ = 25

This in turn holds whenever

_|0A@)| — |0A(2)|
IS <2 I PG

Under this condition S; is a point of the ball B(0,0,(A)) of Q.

If f is not holomorphic on dA, we apply the above reasoning to f|A, for
suitable values of r tending to 1. The function z — ri(z/r) is a quasiconformal
reflection in 0A,, and rn, (z) = #4(z/r). It follows that whenever (5.7) holds,
the mappings f|A, are univalent and have quasiconformal extensions with
uniformly bounded maximal dilatations. As in I11.4.3, a normal family argu-
ment then shows that under (5.7), S, € T,(1), and (5.6) follows. O

(5.7

Remark. Let h be a Mobius transformation, ¢ = hoZioh™, and { = h(z).
Then

104(2)] — [04(2)| _ 18@(0)| — [0e(0)

1(2) = 22142~ 19(0) = LPuay©)?
This can be verified by direct computation (cf. 11.4.1). It follows that Lemma
5.1 holds for quasidiscs which are Mobius equivalent to a quasidisc A ful-
filling the conditions of the lemma.
Let us test the accuracy of (5.6). If A4 is the upper half-plane and Ai(z) = z,
then

G R GG N
@) — 2P T =2 T

Hence (5.6) gives 0,(A) > 2. We get the same result if A4 is the unit disc and
4(z) = 1/z. Consequently, in these two cases the lower bound in (5.6) is equal
to a,(A).

If A is the exterior of the ellipse {z = ¢'* + ke |0 < ¢ < 2n},0 < k < 1,
we have the reflection z —» 1/w + k/w with 2w = z + (22 — 4k)'2. Now (5.6)
gives the simple estimate ¢,(4) > 2(1 — k)%. This lower bound is asymptoti-
cally correct as k - 0 or k — 1, but is not sharp, as we shall see in 5.6.

5.5. Inner Radius of Sectors

Lemma 5.1, combined with the characterization (5.5), makes it possible to
determine o,(A) for sectors (Lehto [7], Lehtinen [2]).
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Theorem 5.2. Let A be the sectoral region {z|0 < argz < kn},0 < k < 2. Then

2k? ifo<k<l,

5.8
4k — 2k ifl<k<2 8)

ai(4) = {

PrOOF. A continuously differentiable quasiconformal reflection 4 in 04 can
be defined by the formula

Az) =z Yk Uk ze A.
It follows that
10A(2)| — |0A(z)] _ 1/k — |1 = 1/k]|

M(Z) _ Z|2 |Zl_1/kfllk _ Z|2'

Setting z = re® we obtain

ZITVkZ Uk _ 7 = _ Dpjeit =10 gin(6/k).
In addition,
% = z—f‘%i = 2kr sin(6/k).

Therefore,

|zl VkZ Uk _ z| = —1—

kn(z)

Thus (5.6) gives, in view of the Remark in 5.4,

a,(A) = 2k(1 — [k — 1)), (5.9)

which is (5.8) with > instead of equality.

We still have to show that equality holds in (5.9). Suppose first that
0 < k < 1. In this case it is easy to prove directly, without making use of
Lemma 5.1, that ¢,(4) = 2k?. The proof is based on the fact that g,(A4) is
equal to the distance from S, to 0Ty(1), where h: H— A is a conformal
mapping. Now z — h(z) = z* is such a mapping. Hence, S,(z) = (1 — k?)/(2z?)
and ||S,]l; = 2(1 — k?). For the function z — g(z) = logz we have S,(z) =
1/(2z%), and we know that S, is not in Ty(1), because g(H) is not a Jordan
domain. It follows that

0,(A) < IS, — Syll = sup4y?k?/(2|z|?) = 2k*.

In conjunction with (5.9), this yields the first result (5.8).
As we said, in this case the inequality (5.9) is readily obtained directly. In
fact, if ¢ is a boundary point of Ty(1) nearest to S,, then

o(A)=llo = Sl = llell — ISl

Since ¢ is not in Ty(1), we have || ¢| > 2, and so
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Figure 7. S;€ 0T,(1) closest to the origin.

o1(A) =2 — 2(1 — k?) = 2k

(If no nearest point exists, an obvious ¢-reasoning yields this inequality.)

In order to complete the proof, we still have to show that ¢,(4) < 4k — 2k?
if 1 <k < 2. In view of (5.5), this follows if we find a conformal mapping
f: A — Bsuch that || S ||, = 4k — 2k* and B is not a Jordan domain.

Set

B = {z||argz| < kn/2} N {z||arg(l — 2)| < kn/2}.

This is not a Jordan domain because of the behavior of 6B at oo (Fig. 7). The
Schwarzian derivative of the conformal mapping w,: H - H n B, with w,(0) =
1, w,(o0) = 0, w,(1) = o0, can be computed (see Nehari [2], p. 203). It follows
that

4—k*  2k—k* k* — 2k

Sl = e T o )

A conformal mapping w: H — B is obtained if the map z — w,(z?), defined in
the first quadrant of the plane, is reflected in the imaginary axis. The compo-
sition rule for Schwarzian derivatives yields

1 —k* 4k —2k?

Su@) =" * oy

With h(z) = z*, the function f = woh™ maps A4 conformally onto B. Since
IS;1l4 = ISy — Sullu, we finally arrive at the desired result

4 2(4k — 2k?
18,14 = sup——> )

= 4k — 2k2.
>0 (XZ _ y2 _ 1)2 + 4x2y2

This completes the proof of (5.8). The example of the conformal mapping
f: A — Bis due to Lehtinen [2]. ad
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5.6. Inner Radius of Ellipses and Polygons

In many cases Theorem 5.2, in conjunction with the fact that the hyperbolic
metric depends monotonically on the domain, provides an efficient means for
deriving estimates of the inner radius. The underlying ideas, which are due to
Lehtinen ([5]; cf. also [4]), are in the following two lemmas.

Lemma 5.2. Let A be a quasidisc which is contained in a domain B, Mébius
equivalent to the sector A, = {z||argz| < kn/2}. If 0 < k < 1, assume that a
vertex v of B, lies on 0A. Then

o,(A) < 2k?.

If 1 <k <2, assume that there are points z, and z, in 0A such that for a
M ébius transformation g mapping B, onto A, g(z,) = e*™?, g(z,) = e *2,
Then

o,(A) < 4k — 2K,

Proofr. Suppose first that 0 <k < 1. Let g be a Mobius transformation
mapping B, onto A, with g(v) = 0. Set f(z) = logg(z). Then f(A) is not a
quasidisc, and so by (5.5), g,(4) < ||S,|| 4. By the monotonicity of the hyper-
bolic metric (formula (1.2) in L1.1), IS/l , < IS/l 5, = 2k>.

Suppose next that 1 < k < 2. From the proof of Theorem 5.2 we deduce
the existence of a conformal mapping f of 4, such that ||S,|| ,, = 4k — k? and
that f(e®*™?) = f(e"*"?) = 0. Then f(g(A)) is not a Jordan domain, and by

reasoning as in the case 0 < k < 1, we arrive at the desired estimate. O
The second lemma, which does not rest on Theorem 5.2, is more general.

Lemma 5.3. Let A be a quasidisc. If every two-point subset of A is contained in
the closure of a quasidisc B = A for which ¢,(B) > m, then

0;(A) = m.

Proor. Let an ¢ > 0 be given. There exists a meromorphic function f in A4 for
which [|S;| 4 < 0,(A) + & but which is not univalent. Let z;, and z, be two
different points of A such that f(z,) = f(z,), and B = A a quasidisc such that
{z,,2,} < B and g,(B) > m. Since either f is not univalent in B or else f(B) is
not a quasidisc, || S; |z > o,(B). By the monotonicity of the hyperbolic metric,
I1S;ll4 = ISy |l 5. Hence 6,(4) > m — &, and the lemma follows. O

As a first application, let us reconsider the case in which A4 is the exterior
of the ellipse {z = ¢ + ke™*?|0 < ¢ < 27},0 < k < 1. The domain 4 is con-
tained in the infinite domain B whose boundary consists of two circular arcs
of which one passes through the points 1 + k, i(1 — k), —(1 + k) and the
other through 1 + k, —i(1 — k), —(1 + k). Since B is Mobius equivalent to
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the angle 4, with | = 1 + (4/n)arctan k, Lemma 5.2 yields the upper estimate
0,(A) <2 — (32/n?)(arctan k)2

On the other hand, simple geometry shows that each pair of points in 4
lies in a domain B’ = A M{bius equivalent to the angle A, with I’ =1 + (2/n)
arctan(4k/((1 — k)(k? + 6k + 1)'/?)). By Lemma 5.3,

o,(A) = 2 — (8/n?)(arctan(4k/((1 — k)(k? + 6k + 1)'2)))%.

This is sharper than the simple estimate a,(4) > 2(1 — k)*> we obtained from
Lemma 5.1.
In the second application of Lemmas 5.2 and 5.3, we suppose that A4

is a finite polygonal domain with interior angles k;z, i = 1, 2, ..., n. Then
Lemma 5.2 yields immediately the upper estimate
o;(A) < min {2k,(1 — |k; — 1])}. (5.10)

In certain cases, we can refine this result with the aid of Lemma 5.3 so as
to obtain the exact value of the inner radius. If A is a triangle or a regular
n-sided polygon, then (5.10) holds as an equality.

It follows that for a triangle A,

o 2
0,(4) = 2(—) , (5.11)
T
where o is the smallest angle of 4, and for a regular n-sided polygon
—2\2
o,(A) = 2(" ; ) . (5.12)

For the proofs we refer to Lehtinen [5]; the results (5.11) and (5.12) are also
due to Calvis [1].

5.7. General Estimates for the Inner Radius

Let h: H — A be a conformal mapping. Then §(A4) is the distance from S, to
the origin of Qy, and o,(A4) the distance from S, to Uy \Ty(1). The set Ty(1)
contains the ball B(0,2), and Uy, is contained in the closure of B(0,6). It
follows that the double inequality

2<6(A)+0,(A) <6

holds for all domains A conformally equivalent to a disc.

The left-hand inequality ¢,(A) > 2 — 6(A) is an equality for all sectors
A =1{z|0 <argz <kn}, 0 <k <1, because by Theorem 5.2, g,(A4) = 2k?,
and we have earlier computed 6(4) = 2(1 — k?). Other extremals are ob-
tained as follows. Consider a domain for which || S, || = 2 and which is not a
quasidisc. If 0 <r <1 and S, = rS,, then for A = f(H), we have 6(4) = 2r
and o,(4) = 2(1 —r).
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The upper estimate g,(A4) < 6 — d(A) is of interest only if §(A4) is close to 6.
For §(A) < 4, a better estimate can be derived.

Theorem 5.3. For all domains A conformally equivalent to a disc,
o,(A) <2 (5.13)
Equality holds if and only if A is a disc.

ProOF. Let A be an arbitrary quasidisc. Every Jordan domain is Mdbius
equivalent to a subdomain of H having 0 and oo as boundary points. We may
assume, therefore, that A4 itself is such a domain.

In A, we consider the function z — f(z) = logz, for which S,(z) = 1/(2z?).
From the monotonicity of the hyperbolic metric it follows that || S, , < 2.
Because f maps both 0 and oo to infinity, f(A4) is not a Jordan domain.

Hence, we obtain (5.13) from the characterization (5.5) of the inner radius.

The same idea, in a refined form, can be used to prove that ,(4) = 2 only
if A is a disc (Lehtinen [2]). We now assume that 4 < H has two finite
boundary points on the real axis. If 4 is not H, there are two finite points in
0A N R such that the open interval on R between these points lies in the
complement of 0A4. A simple geometric argument shows that A4 then lies in a
non-convex sector both of whose sides contain a point of 4 at an equal
distance from the vertex (for the details, see Lehtinen [2]). Therefore, we may
assume that A lies in an angle 4, = {z|0 < argz < kn}, | < k < 2, such that
the points 1 and e*™ are on the boundary of A.

Instead of the logarithm, we now consider the extremal mapping f of the
sectoral domain A, exhibited in the proof of Theorem 5.2. Since f(1) = f(e*™),
the image of 4 under f|A4 is not a Jordan domain. It follows from (5.5), the
monotonicity of the hyperbolic metric, and Theorem 5.2, that

(A < ISpalla < 18,14, = 4k — 2k? < 2. O

By Theorem 5.3, every point # 0 of Ty(1) has a distance < 2 from the
boundary of Ty(1).

It is an open question what values the inner radius of univalence can
assume for K-quasidiscs. The sectoral domains show that

inf{o,(4)|A K-quasidisc} < (—K+—l)2

We may also ask whether Theorem I1.4.1 holds if ¢(K) is replaced by a,(A).



CHAPTER 1V

Riemann Surfaces

Introduction to Chapter 1V

A number of textbooks have been written on the subject of Riemann surfaces.
In spite of this, we found it advisable to include in our presentation a chapter
in which we have collected the material on Riemann surfaces that will come
into play in Chapter V. A brief survey of the general theory of Riemann
surfaces is given in sections 1-3 and of groups of M6bius transformations in
section 4. We have occasionally lingered on some topics slightly longer than
would be strictly necessary for later needs, in order to provide the reader with
a broader background.

In section 1 standard definitions of manifolds and Riemann surfaces and
of functions and differentials are given. We have also treated in some detail
the classical problem of Gauss to map a portion of a surface imbedded in
euclidean three-space conformally into the plane. This problem inaugurated
the theory of quasiconformal mappings around 1825. It also gives a first hint
of the intrinsic role of quasiconformal mappings in the theory of Riemann
surfaces.

Section 2 deals with covering surfaces and their topology. The main results
are formulated but proofs are usually only sketched. References for complete
proofs are to the monograph Ahlfors and Sario [1].

In section 3, results of section 2 are applied to Riemann surfaces. In con-
junction with the general uniformization theorem, they yield the fundamental
result that, modulo conformal equivalence, every Riemann surface is the
quotient of a disc or the finite plane or the extended plane by a discontinuous
group of Mobius transformations. The section concludes with a study of how
mappings between Riemann surfaces induce mappings between the covering
surfaces and the covering groups.
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Section 4 provides a survey of some main features of the theory of groups
of Mobius transformations. For detailed proofs, reference is usually made to
the monograph of Lehner [1]. In section 5 we have collected various results
on compact Riemann surfaces, using Springer [1] as a reference.

Quadratic differentials play a remarkable role in the theory of Teichmiiller
spaces. Therefore, the geometry and the metric induced by a quadratic differ-
ential are studied quite extensively in sections 6 and 7. Here we have largely
utilized the recent monograph of Strebel [6], to which we also refer for more
details.

1. Manifolds and Their Structures

1.1. Real Manifolds

A real n-dimensional manifold M is a Hausdorff space with a countable base
for topology which is locally homeomorphic to the euclidean space R”". This
means that to every point pe M there is an open neighborhood U < M of p
and a homeomorphism h of U onto an open set in R". Such a mapping h is
called a local parameter on M. A set of local parameters is said to be an atlas
of M if the union of their domains covers M.

Let h,, h, be local parameters on M such that their domains U, and U,
have a non-void intersection. Restricting h, and h, to U, n U,, we obtain a
homeomorphic mapping h,oh;! between the open sets h,(U, n U,) and
h,(U; n U,) in R". With the help of this induced mapping, which we call a
parameter transformation, properties definable in R” can be transported to the
manifold M.

An atlas is called differentiable if for all pairs of local parameters, the
parameter transformations are differentiable where defined. A maximal dif-
ferentiable atlas is called a differentiable structure on the manifold, and a
manifold with a differentiable structure is a differentiable manifold. When
speaking in the following of the local parameters on a differentiable manifold,
we always assume that the parameters belong to its differentiable structure.

With obvious modifications, the method used for defining differentiable
manifolds leads to manifolds with other structures. For instance, if every
parameter transformation is of class C* (has continuous partial derivatives
up to order k), we speak of C*-manifolds. Or if the word “differentiable” is
replaced by “real-analytic”, we obtain real-analytic manifolds.

A continuous map f of a differentiable manifold M into a differentiable
manifold N is said to be differentiable at a point pe M if there are local
parameters h and k, defined in neighborhoods of p and f(p), respectively,
such that the composition ko f o h™! is differentiable at h(p). If f is differenti-
able at p, then ko foh™! is differentiable at h(p) for all local parameters h and
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k near p and f(p). The map f: M — N is said to be differentiable if it is
differentiable at every point of M.

A path on a manifold M is a continuous mapping of an interval into M. If
M is differentiable, we can speak of a differentiable path.

Let f be a mapping of an n-dimensional C'-manifold M into a manifold N.
The function f is said to be (Lebesgue) measurable on M if for every local
parameter h on M defined in an open set U, the function foh™! is measurable
with respect to n-dimensional Lebesgue measure, i.e., if for every open set
G = N, the inverse image (foh™')™}(G) = h(U n f"'(G)) is a measurable
subset of h(U). If the preimage h(U n f~!(G)) is always a Borel set, f is Borel
measurable on M. This latter definition can be used for all manifolds, because
Borel sets are preserved under homeomorphisms.

A surface is a connected two-dimensional manifold. A surface is always
pathwise connected. This follows by standard reasoning from the facts that a
surface is connected and, clearly, locally pathwise connected. A surface may
or may not be compact. In the classical literature a compact surface is called
closed, a non-compact surface open.

1.2. Complex Analytic Manifolds

If we replace in the definition of an n-dimensional manifold in 1.1 the euclidean
space R" by the space C" of n-tuples of complex numbers, we get a complex
n-dimensional manifold. The euclidean space R?" becomes identified with
the space C" if we associate (x;,...,X,, Vi,...,V,) € R®" with (x, + iy,,...,
X, + iy,) e C". Therefore, a complex n-dimensional manifold can be regarded
as a real 2n-dimensional manifold.

Let M be a complex n-manifold. Suppose M has an atlas in which all
parameter transformations are biholomorphic, i.e., along with their inverses
they are holomorphic functions of n complex variables. Maximal atlases with
this property are called complex analytic structures on M. We say that a
manifold equipped with such a structure is a complex analytic manifold.

Definition. A one-dimensional connected complex analytic manifold is a
Riemann surface.

In the case n = 1 we also call the complex analytic structure conformal.
Thus a Riemann surface is a surface with a conformal structure.

Besides playing a central role in complex analysis, the notion of a Riemann
surface has initiated or influenced a multitude of other mathematical disci-
plines. The basic observation that the natural habitat of an analytic function
is not a subdomain of the complex plane but a surface which is locally
conformally equivalent to a plane domain appears already in Riemann’s
thesis [1] from 1851. A rigorous definition of Riemann surface in modern
terms was given as early as 1913 by Weyl [1]. Weyl’'s monograph also
contains the first precise definition for a surface.
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A domain in the complex plane is to be regarded as the Riemann surface
with its natural conformal structure induced by the identity mapping, unless
otherwise stated. The Riemann sphere is another example of a Riemann
surface with a natural conformal structure.

An open subset of a Riemann surface S is assumed to have the conformal
structure induced by the conformal structure of S. When speaking of the local
parameters on a Riemann surface, we always assume that the parameters
belong to its conformal structure.

Analytic functions can be defined on Riemann surfaces. A continuous map
f of a Riemann surface S into a Riemann surface W is analytic at a point pe S
if there are local parameters h and k, defined in a neighborhood of p and f(p),
such that ko foh™ is holomorphic at h(p). This is an invariant definition,
independent of the choice of the local parameters near p and f(p). If f is
analytic at each point, f is an analytic mapping. In case W is the complex
plane, an analytic mapping f is said to be holomorphic, while if W is the
extended plane, f is termed meromorphic.

An injective analytic function on § is called a conformal mapping of S.
It follows from the definitions that local parameters of S are conformal
mappings of open subsets of S into the complex plane.

1.3. Border of a Surface

A bordered surface is a connected Hausdorff space with a countable base for
topology in which there exists an open covering by sets homeomorphic
with sets open in the closed half-plane H = {x + iy|y > 0}. The concepts of a
local parameter and an atlas can be introduced in an obvious manner for
bordered surfaces.

Let S* be a bordered surface, pe S*, and h a homeomorphism of an open
neighborhood of p onto an open subset of H. Let us assume that h(p) is an
interior point of H. If k is another homeomorphism of a neighborhood of p
onto an open set in H, we can choose a disc D with center at h(p) and with
closure in H, such that koh™' is homeomorphic in D. Now koh™! is an
injection of D into the plane and it is continuous in the topology of the plane.
Since D is an open neighborhood of h(p) in the topology of the plane, it
follows from the invariance of open sets under continuous injections that
k(p) must be an interior point of H. Hence, if the image of p under one local
parameter of S* is an interior point of H, then it is so under all local para-
meters of S* defined at p.

It follows that we can write S* = S U B, where S is the subset of S* whose
points map into the interior of H under any local parameter, and B the set
whose points map on the boundary of H. Clearly, S is open in S*, and so B
is closed. Each neighborhood of every point of S* contains points of S.
Consequently, S* is the closure of S. It is easy to show that S is connected,
whence it follows that S is a surface. The set B is called the border of S*. Each
point pe B has a neighborhood U in S$* which is homeomorphic to the
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half-disc {z = x + iy||z| < 1,y > 0} under a parameter which maps p to the
origin and B n U onto the line segment (— 1, 1). We conclude that B is a real
one-dimensional manifold.

A bordered Riemann surface is a bordered surface S* = S U B with a con-
formal structure on S determined by an atlas on S*. It follows that S is a
Riemann surface.

1.4. Differentials on Riemann Surfaces

Let S be a Riemann surface whose conformal structure is determined by the
local parameters z; with domains U;,i = 1,2, ....

Let f be a complex-valued holomorphic function on S. Suppose that z; and
z; have overlapping domains, and write f; = foz; !, f; = foz;'. It is custom-
ary to regard z; and z; as complex variables. If we do so and differentiate
fi(z;) = fi(z;), we arrive at the invariance

Jidz; = fj dz;. (1.1)

It follows that while an invariant derivative cannot be defined for f, we can
speak of the invariant differential df, defined locally by (1.1).

Let us now generalize the notion of a differential. A collection ¢ of
complex-valued functions ¢; defined on U, i =1, 2, ..., is said to be an

(m, n)-differential on S if
dz; \" (dz; \"
122 (22 = o, 1.2
(p'<dzj> <dzj> @ (12

in U; n U;. The function element ¢; is a representation of ¢ in terms of the
local coordinate z;. The differential ¢ is said to be holomorphic if all functions
@; are holomorphic. Meromorphic differentials are defined similarly.

Two (m, n)-differentials ¢ and y on S are equal if their local representations
in the same local coordinate always agree. In case ¢ and y are mero-
morphic, we conclude that ¢ = ) if their representations agree for some local
coordinate.

From the definition it is clear that the set of (m, n)-differentials on S and
the subset of all holomorphic (m, n)-differentials form linear spaces over the
complex numbers. We can also form the product of an (m, n)-differential and
a (p, g)-differential in an obvious manner and so obtain an (m + p,n + q)-
differential.

Particularly important in the following is the case m = 2, n = 0. Then ¢ is
called a quadratic differential. Such differentials will be studied in sections 5,
6, and 7 of this chapter, as a preparation for the applications in Chapter V. A
holomorphic or meromorphic (1,0)-differential is called an Abelian differ-
ential. Its square is a quadratic differential. Deeper connections between
holomorphic Abelian and quadratic differentials will be investigated in 5.5.
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Quasiconformal mappings between Riemann surfaces will be introduced
in V.1. It turns out that in this setting the complex dilatation generalizes to a
(—1, 1)-differential. For a (— 1, 1)-differential ¢ it follows from the invariance
(1.2) that we can speak of the function |@]| on S. If ¢ is Lebesgue measurable
in all local coordinates and | ¢|,, < I, then the (— 1, 1)-differential ¢ is called
a Beltrami differential.

In applications (1, 1)-differentials are often important, because they can
be integrated with respect to the two-dimensional Lebesgue measure. This
follows from the fact that if z — w is a change of local coordinates, then

dwdw = |w'(z)|* dz dz,

where |w'|? is the Jacobian of the mapping z — w. If ¢ is a quadratic differ-
ential, then |@,dz?| = |¢;| dz;dz; for all local representations ¢;. Thus the
absolute value of a quadratic differential is a (1, 1)-differential. Another im-
portant observation is that the product of a quadratic differential and a
(—1, 1)-differential is a (1, 1)-differential.

1.5. Isothermal Coordinates

The natural question of how to make a concrete surface in R? into a Rie-
mann surface leads us to quasiconformal mappings. Let S be an orientable
C'-surface in R3, and f = (f;, f>, f3) the inverse of a local parameter of S. The
metric on S is defined locally by the line element ds, where

3 (of; of; 2
dszzi;<5édx+5j;dy> = Edx?* + 2F dxdy + Gdy*. (1.3)

Here

i=1 0x 6y’

NEAY 2. o, 9f o, ()?
R B e )

are the classical Gaussian quantities. The expression (1.3) is invariant, i.e.,
independent of the choice of the local parameter.

Using the complex notation dz = dx + idy, dz = dx — idy, we obtain
from (1.3)

ds = Aldz + pdz|, (1.4)
with
1 E — G + 2iF
i*=—(E+ G+ 2/EG - F?), U= )
4 E+G+2/EG — F?
Note that

_E+G-2/EG-F?

lul* = —
E+G+2J/EG - F?

<1 (1.5)
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It is a classical result (and not difficult to prove by direct calculation) that
fis conformal in the sense that it preserves angles if and only if E = G, F = 0.
This condition is equivalent to u being identically zero. In this case

ds = Aldz|.

Local coordinates z of S with this property are called isothermal.

Let us consider another local parameter of S which defines the local co-
ordinates w. If the coordinates z and w are both isothermal (ds = 4,|dw|) and
if the induced mapping z — w is defined in some non-empty open set of the

plane, then
A ldw| = Aldz|.

This shows that z — w is conformal or indirectly conformal. Since S is ori-
entable, we may assume that z - w is conformal. We conclude that isothermal
coordinates define a natural conformal structure for an orientable C'-surface,
which thus becomes a Riemann surface.

1.6. Riemann Surfaces and Quasiconformal Mappings

We are thus led to the new problem of finding isothermal coordinates for
a surface. Without bothering about minimal conditions, we show how a
solution is obtained with the aid of the existence theorem for Beltrami
equations.

Theorem 1.1. Every orientable C*-surface in R> can be made into a Riemann
surface.

ProoF. Let S be an orientable C2-surface. Consider an arbitrary local para-
meter of S inducing local coordinates z in a domain A of the complex plane.
The theorem follows if we can transform the z-coordinates diffeomorphically
so that the new coordinates are isothermal.

Expressed in terms of z, the line element of S is of the form (1.4). Here u
is continuously differentiable and by (1.5), we have sup|u(z)| < 1 in every
relatively compact subdomain of A. Let z —» w be a quasiconformal mapping
of such a subdomain with complex dilatation . By the Existence theorem
1.4.4 such a mapping w exists, and by the remark in [.4.5, w is continuously
differentiable and dw(z) # 0 everywhere. Comparison of

|[dw| = |owdz + dwdz| = |0w||dz + udz|
with (1.4) shows that

A
ds = ——|dw|.
i l@wll W

We see that the w-coordinates are isothermal, and the theorem is proved.
g
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In essence, Theorem 1.1 is due to Gauss [1]. Since every sense-preserving
diffeomorphism is locally quasiconformal, there is no undisputed criterion
to determine the first appearance of quasiconformal mappings in analysis.
But in developing the theory of surfaces, Gauss realized the importance of
finding locally injective solutions for a Beltrami equation (i.e., quasiconformal
mappings with a given complex dilatation) and he actually constructed such
solutions. Therefore, it is not without justification to say that quasiconformal
mappings entered analysis around 1825, in connection with the problem of
how to map a plane domain conformally onto a portion of a surface imbedded
in euclidean three-space.

For Gauss conformal mappings were just a tool in differential geometry. It
was Riemann who recognized the fundamental connection between conformal
mappings and complex analysis. Later, the concrete method of Theorem 1.1
to generate Riemann surfaces was used by Klein [1], whose work paved the
way for Weyl’s monograph [1] cited in 1.2.

Theorem 1.1 and its proof mark the first indication of the intimate rela-
tionship between Riemann surfaces and quasiconformal mappings. Later we
shall uncover plenty of additional evidence of the depth of this connection,
and Theorem 1.1 will be generalized in various ways.

2. Topology of Covering Surfaces

2.1. Lifting of Paths

The unifying link between the theory of abstract Riemann surfaces and com-
plex analysis in the plane is provided by covering surfaces. In this section, we
shall discuss topological properties of covering surfaces.

A smooth covering surface of a surface S is a pair (W, f), where W is a
surface and f: W — S is a local homeomorphism. The mapping f is called a
projection, and the inverse images of a point pe S are said to lie over p. Being
locally a homeomorphism, f is both continuous and open.

Let y be a path on S, more precisely a continuous map of the closed unit
interval I = {t|0 <t < 1} into S. A path y' on W with initial point a = 7'(0)
and with the property foy =y is called a lift of y from a. It is easy to prove
that on a smooth covering surface the lift from a fixed initial point is unique
(Ahlfors-Sario [1], p. 28).

From the local injectiveness of f it is clear that a part of y can always be
lifted from an arbitrary point a lying over its initial point. If the whole of y
cannot be lifted, there is a ty, 0 < t, < 1, such that y restricted to any closed
subinterval of [0, ¢,) can be lifted from a but y|[0,t,] cannot be so lifted.

A smooth covering surface (W, f') of S is said to be unlimited (regular, in the
terminology of Ahlfors—Sario [1]) if every path on S has a lift to W from each
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point lying over its initial point. In this case f: W — S is surjective, and the
cardinality of the set f ™' {p} is the same for all points peS.

Unlimited covering surfaces have an important topological property
(Ahlfors—Sario [ 1], p. 30).

Theorem 2.1 (Monodromy Theorem). Let (W, f) be an unlimited covering
surface of a surface S, and y, and y, homotopic paths on S. Then the lifts of y,
and y, on W from the same initial point have the same terminal point and they
are homotopic.

Suppose, in particular, that the surface S is simply connected, i.e., that the
fundamental group of S is trivial. In this case the monodromy theorem yields
an interesting corollary:

If (W, f) is an unlimited covering surface of a simply connected surface S,
then the mapping f: W — S is a homeomorphism.

For since the projection f is continuous, open and surjective, it is enough
to show that f is injective. Assume that there are two points a and b of W
such that f(a) = f(b). A path y from a to b then has a projection on S which
is a closed curve. This is homotopic to zero, since S is simply connected. By
the monodromy theorem, y terminates at the same point as the constant path
t - a Hence a = b.

2.2. Covering Surfaces and the Fundamental Group

Let S be a surface, (W, f) an unlimited covering surface of S, and a a point of
S. We denote by F, the fundamental group of S whose elements are homo-
topy classes [y] of closed paths y on S from a. Fix a point a’e W over a, and
consider a homotopy class [y] containing a path whose lift from a’ is closed.
It follows from the Monodromy theorem that the lifts of all paths of [y] from
a’ are then closed, and such elements [y] form a subgroup of F,. We denote
this subgroup, determined by the triple (W, f,a’), by I',..

The choice of ae S is immaterial. For given another point b e S, consider a
path ¢ on S from a to b; let b’ be the terminal point of the lift of o from a’. If
[y]leF,, then [y] » [6'yo] is a group isomorphism of F, onto F, which
carries I',. onto the subgroup I',. determined by (W, f,b’). Also, if a’e W is
replaced by another point a” of W over a, then the groups determined by
(W, f,a’) and (W, f,a") are conjugate subgroups of F,. This can be easily
verified.

An unlimited covering surface (W, f) of S is said to be normal if the triple
(W, f,a’) determines a normal subgroup of F,. This notion is well defined,
because the property of a covering surface being normal does not depend on
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the choice of the points ae S and a’e W. If (W, f) is normal, then all triples
(W, f,a’) with a’ € f "' {a} determine the same subgroup of F,.
There is an important connection between the topologies of W and S:

Let (W, f) be an unlimited covering surface of S. Then the fundamental group
of Wis isomorphic to the subgroup of F, determined by a triple (W, f, a’).

The proof is easy. We consider closed paths y of W from a’ and check that
[y] = [foy]is a required isomorphism (Ahlfors—Sario [1], p. 36).

The connection between the triples (W, f, a’) and the subgroups of F, makes
it possible to partially order the unlimited covering surfaces of S according to
strength. The strongest covering surfaces are those which determine the trivial
subgroup of F,. They are called universal covering surfaces of S. By what we
Just proved, a universal covering surface is simply connected. 1t is of course a
normal covering surface.

Every surface possesses universal covering surfaces. This can be shown by
direct construction. Given a surface S and a point ae S, consider all paths vy
of S from a to a point p. We define the set

W= {p =(p,[vDIpeS}

and the mapping f: W — S by the requirement f(p’) = p. Then a topology
can be introduced on W so that (W, f) is a universal covering surface of S. For
the details of the proof we refer to Ahlfors—Sario [1], p. 35. There the more
general result is proved that, given any subgroup of F,, there exists an un-
limited covering surface of S which determines this subgroup.

The notion of a universal covering surface is due to H. A. Schwarz, who
noticed its importance in the theory of Riemann surfaces (see Theorem 3.4 in
the next section).

2.3. Branched Covering Surfaces

In elementary function theory, Riemann surfaces are first encountered in
connection with the mapping z — z". This defines the plane as a covering of
itself, but in such a way that the projection mapping has branch points at 0
and co. More generally, if f: W— S is a non-constant analytic mapping
between the Riemann surfaces W and S, then (W, f) need not be a smooth
covering surface of S. This state of affairs leads us to generalize the notion of
smooth covering surface. '

A covering surface of a surface S is a pair (W, f), where W is a surface,
St W— S is a continuous mapping, and every point pe W has a neigh-
borhood U such that (U\ {p},f|U\ {p}) is a smooth covering surface of
S\ {f(p)}.

A smooth covering surface is trivially a covering surface. A covering surface
which is not smooth is called branched.
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We can deduce from the definition that the projection mapping f: W — S
behaves locally like the mapping z — z" for suitable n. More precisely, the
following result is true:

Lemma 2.1. Let (W, f) be a covering surface of S. For every pe W, there are
parameter discs U 3 p and f(U), with local parameters k and h normalized by
k(p) = h(f(p)) = 0, such that in U,

hof =k", (2.1

where n is a natural number.

The proof is given in Ahlfors—Sario [1], p. 40. Conversely, if /: W —> Sisa
continuous mapping and the above condition holds, we conclude immediately
that (W, f) is a covering surface of S. Thus this condition characterizes
covering surfaces.

We mention here that there are other non-trivially equivalent character-
izations of covering surfaces, even though we shall not be using them in what
follows. Let S and W be surfaces and f: W — S a continuous mapping. Then
(W, f) is a covering surface of S if and only if f is locally homeomorphic with
the possible exception of a discrete set, or if and only if f is light (the preimage
of a point is totally disconnected) and open. (A function which is continuous,
light and open is called an interior mapping. It is a famous theorem of Stoilov
that an interior mapping f of a plane domain is of the form f = @ oh, where
h is homeomorphic and ¢ analytic.)

2.4. Covering Groups

Let S be a surface and (W, f) its smooth covering surface. A cover trans-
formation g of W over S is a homeomorphism g: W — W such that fog = f.
All such mappings g form a group G which is called the covering group of W
over S.

Two points of W equivalent under G have the same projection on S. If
conversely, any two points lying over the same point of S are equivalent
under G, then G is said to be transitive.

Let us consider the quotient space W/G and furnish it with the quotient
topology. Under certain conditions, W/G is a surface which is homeomorphic
to the surface S.

Theorem 2.2. If the projection mapping f: W — S is surjective and the covering
group G of Wover S is transitive, then W/G and S are homeomorphic.

Proor. We write [p]e W/G for the equivalence class containing the point
pe W and prove that
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[p]1— f(p) (2.2)

is a homeomorphism of W/G onto S. First, it follows from f = fog, geG,
that (2.2) is well defined in W/G. It is surjective, because f: W — S is onto, and
injective, because G is transitive. Its continuity follows from the continuity of
f: W -8, and the continuity of its inverse from the fact that f: W — S is
locally homeomorphic. O

The points of W are isolated with respect to G in the following sense:

Each point of the surface W has a neighborhood in which no two points are
equivalent under the action of the covering group.

In fact, it follows from the definition of a cover transformation that an
open set in which the projection mapping f: W — § is injective cannot contain
points equivalent modulo G. From this observation we can draw another
conclusion:

Except for the identity mapping, a cover transformation has no fixed points.

For assume that ¢ is a fixed point for a transformation ge G. Since g is
continuous, it maps a point p near g onto a point g(p) near g(q) = q. Because
p and g(p) are equivalent under G, we conclude that for all p in a sufficiently
small neighborhood of g, we have g(p) = p. It follows that the set in which
g(p) = p is open. It is also closed and nonvoid. Since a surface is connected,
we see that g is the identity mapping.

For the most part, we shall be dealing with the covering groups corre-
sponding to universal covering surfaces.

Theorem 2.3. The covering group of a universal covering surface W over a
surface S is transitive.

Proor. Suppose that a and a’ are points of W which lie over the same point
of S. Choose a point pe W, join a to p by a path on W, project this path onto
S, and lift the projection back, but from the point a’. Let p’ be the terminal
point of this lift. We define g by the condition g(p) = p’, and check that g is
well defined and a cover transformation of W over S. Hence a and a’ are
equivalent under the covering group. dJ

Combined with Theorem 2.3, Theorem 2.2 says that for a universal covering
surface W of S, the space W|G is always homeomorphic to S. The following
result sheds additional light on this connection.

Theorem 2.4. The covering group of a universal covering surface of S is iso-
morphic to the fundamental group of S.
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ProoF. Given a point ae W, let y be a closed path on S from f(a), and be W
the terminal point of the lift of y from a. Then a and b both lie over f(a). By
Theorem 2.3, there is a unique cover transformation g, with the property
g,(a) = b. It is easy to verify that [y] — g, is the desired group isomorphism
(cf. Ahlfors—Sario [1], p. 38). a

2.5. Properly Discontinuous Groups

Starting with a given surface S, we arrived via a covering surface (W, f) of S
at the covering group G of W over S. Theorem 2.2 tells that, under very
general conditions, the circle from S to W to G closes, in the sense that the
quotient W/G is homeomorphic to S.

We shall now take a different starting point and prescribe directly a surface
W together with a group G of homeomorphic self-mappings of W. Again, we
form the quotient space W/G, furnish it with the quotient topology, and want
to impose a condition on G which makes W/G a surface.

For a covering group, every point has a neighborhood in which no two
points are equivalent. However, this property does not characterize covering
groups. In fact, examples can be given of groups G which possess this prop-
erty but for which W/G is not even a Hausdorff space. We need a stronger
condition on G.

A group G acting on W is said to be properly discontinuous if for any two
compact sets A, B = W, the intersection g(A4) N B is void, except for finitely
many g€ G. Unlike a covering group, a properly discontinuous group need
not be fixed point free.

A point pe W is a limit point of a group G acting on W if there are distinct
mappings g,€ G, n = 1, 2, ..., such that p = lim g,(q) for some point ge W. A
properly discontinuous group has no limit points. This follows immediately
from the definition of proper discontinuity.

A fixed point free properly discontinuous group G shares the property of
covering groups that every point pe W has a neighborhood in which no two
points are equivalent modulo G. For assume that there are two sequences of
different points a,, b,, n = 1,2, ..., in a compact neighborhood A4 of p such that
lima, = limb, = p and b, = g,(a,) for mappings g,€ G. Then g,(A) N A # .
If there are infinitely many different mappings g,, then G is not properly
discontinuous. If there are only finitely many different transformations g,,
then at least one of them appears infinitely many times in the sequence. For
such a mapping p is a fixed point.

Theorem 2.5. A4 transitive covering group is properly discontinuous.

ProoF. Let (W, f) be a covering surface of S, and suppose that the covering
group G of W over S is transitive. Given two compact sets A and B in W, we
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consider the subset C = {(p,q)| f(p) = f(q)} of A x B. The complement of C
is open, because f is continuous and two different points f(p) and f(g) have
disjoint open neighborhoods in S. It follows that C is closed and hence
compact.

For g€ G fixed, we write U, = {(p,q)€ Clq = g(p)}. Each U, is open in C,
because f is a local homeomorphism. By the transitivity of G, the union of the
disjoint sets U,, where g runs through all elements of G, agrees with C. Since
C is compact, we conclude that only finitely many of the sets U, are non-
empty. Consequently, G is properly discontinuous. (]

The following result is a converse to Theorem 2.2.

Theorem 2.6. Let W be a surface, G a properly discontinuous fixed point free
group of homeomorphisms of W onto itself, and f: W — W/G the canonical
projection. Then

1. WG is a surface,
2. (W, f) is an unlimited covering surface of W/G,
3. G is the (transitive) covering group of Wover W/G.

Proor. By definition, f is continuous. If 4 = W, then f'(f(A4)) = U g(A),
g € G, from which we conclude that fis open.

In order to prove that W/G is a Hausdorff space we consider two different
points f(a) and f(b) of W/G. Since G is properly discontinuous, there exists a
compact neighborhood B of b which does not contain any point g(a), g€ G.
After this we conclude the existence of a compact neighborhood A4 of a
such that 4 N g(B) is empty for every ge G. Then g¢,(4) N g,(B) = & for all
g1, 9, €G, and it follows that f(A4) and f(B) are disjoint neighborhoods of
f(a) and f(b).

Clearly W/G is connected and has a countable base for topology. In order
to find local parameters we fix a point pe W. Since G is properly discon-
tinuous and fixed point free, there exists an open neighborhood U of p such
that g(U)n U = J for all mappings g€ G different from the identity. Then
f1U is injective, and if U is so small that it lies in the domain of a local
parameter h of W, then ho(f|U)™! maps the open set f(U) in W/G homeo-
morphically onto an open set in the plane. Since f: W — W/G is surjective, it
follows that W/G is a surface. Also, (W, f) is a smooth covering surface of
W/G.

From the definition it is clear that every g€ G is a cover transformation.
Conversely, let w be a cover transformation and pe W. Then there is a ge G
such that g(p) = w(p), for otherwise we would have f(w(p)) # f(p). Hence
w=g.

Since G is a transitive covering group, it is not difficult to show that (W, f)
is an unlimited covering surface of W/G (cf. Ahlfors—-Sario [1], p. 29). d
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3. Uniformization of Riemann Surfaces

3.1. Lifted and Projected Conformal Structures
Let us now apply the results of section 2 to Riemann surfaces.

Theorem 3.1. Let S be a Riemann surface and (W, f) a smooth covering surface
of S. Then W carries a unique conformal structure which makes the projection
mapping f analytic.

Proor. Let H be the conformal structure of S. For every point pe W we
choose a neighborhood U of p such that f|U is injective and f(U) is con-
tained in the domain of some he H. Then the atlas {ho(f|U)|pe W} defines
a conformal structure for W, and f is analytic with respect to this structure.
We say that this conformal structure of W is obtained by lifting the
conformal structure of S. If the projection f: W — S is analytic with respect
to a conformal structure of W, then the condition which expresses this fact
shows directly that this structure is the same as the lifted structure. Thus the
uniqueness assertion in the theorem follows. O

Using the characterization (2.1) of a covering surface, we could show
without difficulty that Theorem 3.1 holds also in the case where (W, f) is a
branched covering surface of S (cf. Ahlfors—Sario [1], p. 119).

In the sequel, a covering surface of a Riemann surface is always regarded
as the Riemann surface with the lifted conformal structure.

The following observation is immediate: Let S be a Riemann surface and
(W, ) a smooth covering surface of S. Then the cover transformations of W
over S are conformal. For locally a cover transformation g is of the form
(flg(U))™'o f|U, and hence conformal.

Theorem 2.6 can be refined in the setting of Riemann surfaces.

Theorem 3.2. Let W be a Riemann surface, G a properly discontinuous fixed
point free group of conformal self-mappings of W, and f- W — W/G the canoni-
cal projection. Then the surface W/G carries a unique conformal structure which
lifts to the original conformal structure of W.

This follows immediately from the way the local parameters of W/G were
defined in the proof of Theorem 2.6. In the situation of Theorem 3.2, the
conformal structure of W is said to have been projected to W/G. If Wis a
given Riemann surface, we always regard the quotient W/G as the Riemann
surface with the projected structure.

Suppose that G is a properly discontinuous group of conformal self-
mappings of a Riemann surface W, but not fixed point free. We can still
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conclude that W/G is a surface and that W/G carries a conformal structure
which makes the projection mapping f: W — W/G analytic. However, W is
now a covering surface of W/G which is branched at the fixed points of G
(Ahlfors—Sario [1], p. 121).

3.2. Riemann Mapping Theorem

Our results in 2.4, 2.5 and 3.1 lead to a fundamental representation of
Riemann surfaces if they are combined with the following generalization of
the Riemann mapping theorem for plane domains.

Theorem 3.3 (Riemann Mapping Theorem). Every simply connected Riemann
surface is conformally equivalent to one and only one of the following plane
domains: the unit disc, the complex plane, or the extended plane.

This is a deep result, and a complete proof requires lengthy preparations.
We content ourselves, therefore, with sketching the main lines of a proof
based on the use of subharmonic functions. (Subharmonic functions are
defined on Riemann surfaces with the aid of local parameters. This is possible
because subharmonicity is a local and conformally invariant property.)

First of all, a classification of Riemann surfaces into compact, parabolic,
and hyperbolic surfaces is needed. A non-compact Riemann surface S is
parabolic if every negative subharmonic function on S is constant; otherwise
S is hyperbolic.

Using subharmonic functions and Perron families, we can define Green’s
functions for Riemann surfaces just as it is done for the case of plane domains.
The Green’s function g, of a Riemann surface S with singularity at the point
peS is a function which is positive and harmonic on S — {p}. To describe its
singularity, we consider a local parameter z mapping a neighborhood of p
onto the unit disc such that z(p) = 0. Then it is required that g, + log|z| be
harmonic at p; this is an invariant definition not depending on the choice of
the local parameter. The Green’s function is characterized by the property
that among all functions positive and harmonic on S — {p} and possessing
the same singularity at p as g,, the function g, is the smallest. If a Green’s
function exists for some pe S, then it exists for every pe S. By a theorem of
Ohtsuka, the Green’s function exists if and only if S is hyperbolic.

If S is parabolic or compact, Green’s functions do not exist but it is
possible to prove the existence of a function u, , with the following prop-
erties: u, , is harmonic in S — {p} — {q}; if z(p) =0, then u, , — log|z| is
harmonic at p, and if z(q) = 0, then u, , + log|z| is harmonic at g; outside
parameter discs (preimages of discs under z) containing p and g, the function
u, 4 1s bounded (Nevanlinna [1], p. 212).

Suppose now that S is simply connected. If S is hyperbolic, we take a
Green’s function g, form its conjugate g in a parametric disc, and extend
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exp(—(g, + igy)) by analytic continuation to S. Using the Monodromy theo-
rem, we conclude that the extended function is single-valued on S. Finally,
application of the maximum principle shows that it maps S conformally onto
the unit disc (Nevanlinna [1], p. 204).

If S is parabolic or compact, a conformal mapping of S into the extended
plane can be constructed with the aid of the function u, , (Nevanlinna [1],
p. 213). In case S is parabolic the boundary of the image consists of one point,
whereas the boundary is empty if S is compact.

Theorem 3.3 can also be proved by a method which is based on the use of
quasiconformal mappings (Bers [5]). The idea is to first construct a topo-
logical and locally quasiconformal mapping of the given Riemann surface S
into the plane, then apply the existence theorem of Beltrami equations to
obtain a conformal mapping of S (as Gauss did; cf. 1.6), and complete the
proof with the aid of the Riemann mapping theorem for plane domains.

Theorem 3.3 occupies a central position in the theory of Riemann surfaces.
It is often called the general uniformization theorem. The first proofs are
attributed to Koebe (in 1907) and Poincaré.

3.3. Representation of Riemann Surfaces

Let S be an arbitrary Riemann surface and (W, f) its universal covering
surface. Since W is simply connected, we conclude from Riemann’s mapping
theorem the existence of a conformal mapping w: W — D, where D is the unit
disc, the finite plane or the extended plane. But then (D, fow™!) is also a
universal covering surface of the Riemann surface S, and we have proved the
following important result:

Every Riemann surface admits as its universal covering surface the unit disc,
the finite plane, or the extended plane.

This makes possible a far-reaching normalization of universal covering
surfaces. A consequence of basic importance is the fact that the elements of
the covering group of D over S, being conformal self-mappings of D, are
Mobius transformations.

Summarizing the topological results in 2.4-5 and the analytical results in
3.1-2, we obtain the basic representation theorem for Riemann surfaces.

Theorem 3.4. Given an arbitrary Riemann surface S, let D be its universal
covering surface, and G the covering group of D over S. Then S is conformally
equivalent to the Riemann surface D/G.

Proor. It follows from Theorems 2.3, 2.5, and 3.2 that the quotient D/G is a
Riemann surface with the projected conformal structure. By Theorem 2.2, the
mapping (2.2) is a homeomorphism of D/G onto S. It is conformal, because
the conformal structure of S is also obtained by projection from D. |
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Theorem 3.4 is the analytic counterpart of the topological result expressed
in 2.4 that every surface S is topologically equivalent to the quotient W/G,
where W is a universal covering surface of S.

Theorem 3.4 can be supplemented as follows: Let G be an arbitrary
properly discontinuous group of conformal mappings acting on D. Then D/G
is a Riemann surface. This follows from Theorem 3.2 and the remark made
after it.

3.4. Lifting of Continuous Mappings

We have seen above that, under certain circumstances, a mapping between
universal covering surfaces projects to a mapping between the underlying
surfaces. Here we take the opposite view and show how to lift mappings
between Riemann surfaces to mappings between their universal covering
surfaces.

Let ¢ be a continuous mapping of a Riemann surface S, into another
Riemann surface S,, and (D;,n;) a universal covering surface of §;, i = 1, 2.
Here we consider only the case D, = D,. By 3.3, we can choose this common
surface, which we denote by D, so that D is the unit disc, the complex plane
or the extended plane.

In the extended plane every Mdbius transformation has a fixed point.
Thus, if the extended plane is the universal covering surface of a Riemann
surface, the covering group over this surface is trivial. By Theorem 3.4, the
surface itself is then the extended plane up to conformal equivalence. There-
fore, we can exclude this trivial case in what follows.

The continuous mapping ¢: S, — S, always induces a continuous mapping
[ of D into itself. More precisely, there is a continuous f: D — D such that

pomy =m,of. (3.1

The construction of f, which is called a lift of ¢, is as follows: Fix first zye D
and woen; ' {@(n,(z0))}. If y is a path in D from z, to z, we define f(z) as the
endpoint of the path which we obtain by lifting g om, oy from w,. If y' is
another path in D from z, to z, then pom, oy and ¢ om, oy are homotopic,
and it follows from the Monodromy theorem that f(z) is well defined. From
the definition it is clear that f is continuous.

The mapping ¢ induces a mapping of the covering group G, of D over S,
into the covering group G, of D over S,: We shall show that the relation

0(g)of = fog (3.2)

defines a mapping 0 which is a homomorphism of G, into G,.
In order to prove that (3.2) defines a homomorphism 0: G, — G,, we
choose an element g€ G,. From (3.1) it follows that

myofog=@omog=gom, =m,of.

For every ze D we thus have an element he G, such that f(g(z)) = h(f(2)).
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Figure 8. Mappings induced by a homeomorphic ¢.

The mapping h depends only on g, not on the point z. For if y is a path in D
from z to z, then fogoy and ho foy start at the same point and have the
same projection @ om, oy. It follows that they have the same terminal point,
i.e., the element of G, corresponding to z’ is also h. Hence (3.2) holds for
0(g) = h. From

0(g,)o0(g,)of =0(gy)ofog, = fog,og, = 0(gs°9,)°f,

we see that the mapping 0 is a homomorphism.

The mappings f and 0 induced by ¢ are not unique. If f is a lift of ¢, then
fog is also a lift of ¢ for every ge G,. From fog = 0(g)o f it follows that
such lifts are of the form ho f, where h = 0(g) is an element of G,. The
mappings

hof, heG,,

represent all possible lifts of ¢. We see this by repeating the reasoning which
showed that (3.2) defines an element 6(g) of G,.

If f induces the group homomorphism 6, then ho f induces the homo-
morphism g — ho6(g)o h™!, which differs from 6 by an inner automorphism
of G,. We call two such homomorphisms equivalent and conclude that all
homomorphisms induced by ¢: S; — S, are equivalent.

Suppose that ¢o:S, —» S, and ¢,:S; — S, determine equivalent homo-
morphisms. If ¢, induces 6, then ¢, can be so lifted that it also induces 6. In
fact, a lift f, of ¢, induces a homomorphism g — ho0(g)oh™', he G,, and so
h™'o f,, which is a lift of ¢, induces 0.

If ¢: S, = S, is a homeomorphism, then so is every lift f: D — D. In this
case g = 0(g) = fogo f~!is an isomorphism of G, onto G,. (Fig. 8.

3.5. Homotopic Mappings
Lifting of mappings is closely related to the topological notion of homotopy.

Let ¢,: S, = S, be a homeomorphism and I = {t|0 <t < 1} the unit interval.
A homeomorphism ¢,: S; = S, is said to be homotopic to ¢, if there is a
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continuous mapping h: S; x I — S,, such that h(.,0) = ¢q, h(.,1) = @,. The
mapping h is called a homotopy from ¢, to ¢,.

Suppose that h is a homotopy from ¢, to ¢,. Given a lift f, of ¢, the
mappings h(.,t): S; = S,, 0 <t < 1, can then be so lifted that we obtain a
homotopy from fj to a lift f; of ¢,. This homotopy lifting property follows
easily from the definitions.

Theorem 3.5. Two homeomorphisms ¢;: S, = S,, i =0, 1, induce the same
group isomorphisms if and only if they are homotopic.

Proofr. Assume first that ¢, is homotopic to ¢,. Let h be a homotopy from
@0 to @, and f, a lift of h(.,t), 0 <t < 1, such that f; is a homotopy between
Joand f;.

Choose ge G, and ze D, and consider the two paths t — f,(g(z)) and
t = (foogofo 1) (fi(2)). Both have the same initial point f,(g(z)) and the same
projection t — 7, ( f;(z)) on S,. Hence they agree, and for t = 1 we obtain the
desired result

foo.‘1°f0‘1 =f1°g°f1_1- (3.3)

Assume, conversely, that ¢, and ¢, have lifts f, and f; such that (3.3)
holds for every geG,. If D is the unit disc, we define f,(z), 0 <t < 1, as
follows: f,(z) is the point of the hyperbolic geodesic arc joining f,(z) and f,(z)
which divides the hyperbolic length of this arc in the ratio t: (1 — ¢). Then f,
is a homotopy between f, and f;.

Under the mapping 6(g) = foogofy ' (= fiogo fi ') the endpoints of the
arc map to f,(g(z)) and f,(g(z)). But since 6(g) leaves hyperbolic distances
invariant, 6(g) maps the point f,(z) to f,(g(z)). Hence, 6(g)o f, = f,og. In other
words, all mappings f,, 0 < t < 1, determine the same group homomorphism.
It follows that m,0 fiom;! is a well defined mapping, and it is a homotopy
between ¢, and @, .

If D is the finite plane, all cover transformations are translations z — z + b.
Therefore, the above reasoning remains valid if the hyperbolic metric is
replaced by the euclidean. O

3.6. Lifting of Differentials

Let S and W be Riemann surfaces and f: W — S a non-constant analytic
mapping. It follows from the definition of a covering surface in 2.3 that (W, f)
is a covering surface of S (cf. Ahlfors—Sario [1], p. 119).

Let the conformal structures of W and S be determined by the local
parameters h; and k;, respectively. Given an arbitrary point of W, we consider
an open neighborhood V of this point which is contained in the domain of a
local parameter h; and is so small that f(V) lies in the domain of a local
parameter k;. For pe V, we write z; = hy(p), w; = k;(f(p)).

Let ¢ be an (m, n)-differential on S (cf. 1.4), and let ¢; denote its represen-
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tation in the local coordinate w;. Set

dw, \" [ dw: "
b2 () o4

By formula (1.2), the function element y; does not depend on the partic-
ular choice of the parameter made in f(V). We now require that (3.4) re-
mains valid when we change the parameter of W in V. Then (3.4) defines an
(m, n)-differential on V, and since we started with an arbitrary point of W, on
the whole surface W. It is called the lift of ¢ to W.

We can say a little more: Formula (3.4) shows that f: W — S induces a
linear mapping of the space of holomorphic (m, n)-differentials of S into the
space of holomorphic (m, n)-differentials of W. If f is a conformal mapping of
W onto S, the induced mapping is bijective.

Suppose, in particular, that W = D is the universal covering surface of S,
where D is the unit disc or the complex plane. In both cases the conformal
structure of S is determined by the local inverses of the projection mapping
of D onto S. The conformal structure of D is of course given by the identity
mapping z — z.

What we gain from the use of the universal covering surface D is that we
now possess a global coordinate ze D for the representation of ¢. In other
words, in (3.4) we can put z; = w; = z. Thus ; = ¢;, and formula (1.2) shows
that every ¢; is the restriction of a function globally defined in D. We denote
this function by ¢, i.e., we identify it with the collection of its restrictions. It
follows that the lift of the differential ¢ of S to the universal covering surface D
is a global representation of ¢ in terms of the coordinate z € D.

Let g be an arbitrary element of the covering group G of D over S. Suppose
p — z is a local parameter in an open subset U of S defined by the inverse of
a suitable restriction of the projection mapping. Then p — g(z) is a local
parameter in U such that z and g(z) have the same preimage in U. Hence, it
follows from the invariance (1.2) that

?(9(2)g'(D"g (2)" = p(2) (3.5)

for every geG.

Conversely, if ¢ is a complex-valued function in D with the property (3.5),
then ¢ defines an (m, n)-differential of S. A function ¢ satisfying (3.5) is said to
be an (m, n)-differential for the group G. Thus there is no difference whether we
interpret ¢ to be a differential on the Riemann surface S or for the covering
group G of D over S.

As one application, we introduce the hyperbolic metric, which we have
so far considered in plane domains conformally equivalent to a disc, to
Riemann surfaces. Let S be a Riemann surface which has the unit disc D as
its universal covering surface. The Poincaré density z — (z) = 1/(1 — |z|?) of
D satisfies the condition

(meog)lg’'l =n (3.6)
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for every cover transformation g. It follows that x is a (1/2, 1/2)-differential on
S, and n(z) = 1/(1 — |z|?) is its global representation in the coordinate z of D.

Now let y be a rectifiable arc on S. We define its hyperbolic length to be
equal to the hyperbolic length of its lift to D. Because of the invariance (3.6)
it does not matter how we choose the point of D lying over the initial point
of y.

In order to study the geodesics on S, we take two points p and g of S and
join them by an arc y. Let z, be a point of D over p, and let z; denote the
terminal point of the lift of y from z,. Then the projection of the hyperbolic
geodesic from z, to z, has the shortest hyperbolic length in the homotopy
class of y. The infimum of these shortest lengths over all homotopy classes is
the hyperbolic distance between p and g. The infimum is attained. In fact, the
hyperbolic geodesic in D joining z, to a “closest” point of the preimage of g
projects to a geodesic between p and gq.

4. Groups of Mobius Transformations

4.1. Covering Groups Acting on the Plane

Let S be an arbitrary Riemann surface. We again normalize its universal
covering surface D so that D is the unit disc, the complex plane or the
extended plane, and denote by G the covering group of D over S. In view of
the representation S = D/G modulo conformal equivalence, the theory of
Riemann surfaces can be regarded as essentially equivalent with the theory of
discontinuous groups of Mdbius transformations acting on D. Lehner ([1],
Chapter I) gives an interesting survey of the historical development of the
theory of Mobius groups.

The points of D/G are called orbits of G. A subdomain of D is said to be a
Sfundamental domain of G if it contains at most one point of every orbit of G
and its closure in D meets every orbit of G.

In the cases where the universal covering surface D is the extended plane
or the complex plane, all possible covering groups of D over S can be readily
listed. We know already that if D is the extended plane, the covering group G
is trivial and S is conformally equivalent to D.

Suppose next that D is the complex plane. Since the elements of G have
their fixed point at oo, they are translations z — z + a. Here three possible
types of discontinuous groups G arise. First, G may be trivial, in which case
S is conformally equivalent to the finite plane. Second, G can be infinite,
generated by a transformation z —» z + w, w # 0. A fundamental domain of
such a group is the interior of the parallel strip bounded by straight lines
through 0 and through o and perpendicular to the vector from 0 to w.
Topologically, D/G is an infinite cylinder. The function z — exp(2miz/w),
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which is invariant under G, shows that D/G is conformally equivalent to the
finite plane punctured at 0.

A third possibility is that G has two generators z =z + w;, z =z + ©,,
Im(w,/w,) # 0. A fundamental domain is now the interior of the parallelo-
gram P with vertices at 0, w,, w, + w,, and w,. In this case the Riemann
surface S = D/G is compact. For the closure P is compact and S is the image
of P under the continuous projection mapping D — D/G.

Since the opposite sides of P are equivalent under G, it follows that
topologically S is a torus. Two different tori obtained in this fashion are
generally not conformally equivalent. The conformal structures on a torus
will be studied in V.6.

A simple geometric argument shows that there are no other ways to form
groups of translations which are properly discontinuous in the finite plane.

4.2. Fuchsian Groups

Let us now consider the case in which the Riemann surface S admits a disc D
as its universal covering surface. It follows from the results of section 3 that
the covering group G of D over S is a properly discontinuous fixed point free
group of Mobius transformations which keeps the disc D invariant. We
call such groups Fuchsian groups. (In the literature, fixed points are usually
allowed.) Conversely, every Fuchsian group G acting on D is the covering
group of D over the Riemann surface D/G.

An arbitrary Mdobius transformation z — w with two finite fixed points z;
and z, has the representation

W —z; Q02 %1

w— 2z, z—2z,

If z, = o0, we have w — z, = pe®®(z — z,). The geometric action of a Mobius
transformation is best seen from this representation, which also gives rise to
the division of Mdbius transformations (different from the identity) into four
classes. If p = 1, 0 # 0, the transformation is elliptic, if p # 1, 6 =0, it is
hyperbolic, and if p # 1, 6 # 0, it is loxodromic (0 < 0 < 2n). A M0bius
transformation with only one fixed point is parabolic. The class of a Mdbius
transformation g remains the same when g is conjugated by an arbitrary
Mobius transformation h, i.e., when g is replaced by hogoh™.

A loxodromic transformation does not keep any disc invariant. If an
elliptic transformation g maps a disc D onto itself, then one of the fixed points
of g lies inside D while the other is its mirror image with respect to 0D.

Let a Fuchsian group act on a disc D. Since it has no fixed points in D, it
follows from the reflection principle that the elements of the group do not
have fixed points in the complement of the closure of D either (with the
identity mapping excluded of course). We conclude that the elements of a
Fuchsian group are hyperbolic or parabolic, with fixed points on éD.
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In studying a Fuchsian group G, we choose the invariant disc on which G
acts to be the upper half-plane. The elements of G are then of the form

_az+b

=

where the coefficients a, b, ¢, d are real and ad — bc > 0. Groups of Mobius
transformations with real coefficients are said to be real.

The conformally invariant hyperbolic metric ds = |dz|/2Imz of H is a
natural tool for the study of the geometric properties of G. As before, we use
the notation h(z,,z,) for the distance between the points z, and z, of H in
this metric. We fix a point z,€ H and denote by G(z,) the orbit of z,. For
every z;e G(z0),j = 0, 1, ..., we write

N; = {zeH|h(z,z)) < h(z,{) forall (eG(z,),{ # z}.

The sets N are non-empty, open and mutually disjoint, and the union of the
closures in H of all N; is H. If z, = g(z;) for g€ G, then N, = g(N)). It follows
that all sets N; are congruent in the non-euclidean geometry of H. In studying
the properties of the sets N; we may therefore restrict ourselves to one of
them, say to N,, for which we also use the shorter notation N.

A point ze H lies on the boundary of N if and only if h(z,z,) < h(z, z,)
for all z,eG(z,) and equality holds for at least one z,, k # 0. The set
{ze H|h(z,2,) = h(z,z;)} is the non-euclidean line which is the perpendicular
bisector of the non-euclidean segment joining z, and z,. It follows that N is
a convex polygon; in particular, N is connected. N is called the Dirichlet
region of G with center at z.

From the definition of N we conclude that N is a fundamental domain of
G. Its boundary arcs lie either on the real axis, in which case they are said
to be free sides, or they are situated in H, with the possible exception of
endpoints on R, and are called inner sides of N.

The inner sides of N are pairwise equivalent under G, whereas inner points
of a free side have no equivalent points in the closure of N. These properties
of N can be deduced without difficulty from the definition. More careful
analysis is required to prove the following fundamental result:

Theorem 4.1. The elements of a Fuchsian group which map the inner sides of a
Dirichlet region onto each other generate the whole group.

Dirichlet regions are studied in detail in Springer [1]; for the proof of
Theorem 4.1, see p. 237.
4.3. Elementary Groups

A group of Mobius transformations can of course be regarded as acting on
the extended plane. We shall now adopt this point of view.
The limit set L of a group G of Mobius transformations is the set of the
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limit points of G. From the definition of a limit point, which was given in 2.5,
it follows that g(L) = L for every g€ G. Also, L is closed (cf. Lehner [1], p. 88).
If L contains at most two points, the group G is said to be elementary.

All elementary groups can be listed. (A comprehensive treatment of ele-
mentary groups is given in Ford [1], Chapter VI.) First of all, a finite group
is necessarily elementary, its limit set being empty. If the Riemann sphere
is rotated so that a regular solid remains invariant, then stereographic pro-
jection leads to Mobius transformations which form a finite group. All
non-cyclic finite groups of Mobius transformations are obtained from such
groups by conjugation.

The elements of a finite group are elliptic transformations. They are of
finite period, i.e., there is a natural number » such that the nth iterate of the
transformation is the identity mapping. A cyclic group generated by an
elliptic transformation which is not of finite period is very different: Every
point of the plane is a limit point of such a group (Lehner [1], p. 87).

There is a second type of elementary groups G all of whose elements are
elliptic or parabolic transformations sharing a common fixed point. Then G
has this common fixed point as its sole limit point (Lehner [1], p. 93). A
simple example is the group generated by the elliptic transformation z » —z
and the parabolic transformation z — z + 1. In this case L = {o0}.

Any other infinite group is elementary if and only if it is cyclic and the
generator is not elliptic. The limit set L then agrees with the set of the fixed
points of the generator (Lehner [1], p. 87). Thus L consists of a single point if
the generator is parabolic and of two points if the generator is hyperbolic or
loxodromic.

An example of an elementary Fuchsian group acting on the upper half-
plane H is the real cyclic group

G={z—a"zln=0,%1,+2,...}, a>1l
In this case L = {0, oo }. The function
7 — @~ 2milogz/loga (41)

is invariant under G. By studying the image of the fundamental domain
{ze H|1 < |z| < a} under (4.1) we deduce that the annulus

A= {w|l < |w| < g?"leea)

is a model of H/G. In other words, G is the covering group of the upper
half-plane H over the annulus A.

4.4. Kleinian Groups

Returning to an arbitrary group G of Mdbius transformations, we denote by
Q the complement of the limit set L with respect to the plane. A point of Q is
called an ordinary point of G, and Q is said to be the set of discontinuity of G.
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The set Q can be empty. A trivial example is the group of all Mobius trans-
formations. But Q can be empty even for a cyclic group: We pointed out
in 4.3 that this is always the case if the group is generated by an elliptic
transformation which is not of finite period.

Since L is closed, Q is open. The set Q need not be connected. From the
invariance of L under G it follows that g(Q) = Q for every g€ G.

If Q is not empty, G is called a Kleinian group. A Kleinian group is
countable (Lehner [1], p. 90). Fuchsian groups and elementary groups are of
course special cases of Kleinian groups.

Let g be a Mobius transformation and ¢(z) = (az + b)/(cz + d) its uni-
modular representation, i.e., ad — bc = 1. All 2 x 2-matrices with determi-
nant 1 form a group SL(2) under matrix multiplication. The mapping

a b
g—»(c d) 4.2)

is an isomorphism of the group M of all Mobius transformations onto the
quotient group SL(2)/+ I, where I is the identity matrix.
If the distance of the matrices (a;;) and (b;;) is defined by

max{laij - bijllisj = 1,2}>

then SL(2) becomes a topological group. Via the mapping (4.2), the topo-
logical structure is transferred to M. A subgroup G of M is called discrete if
its elements are isolated in the topology of M. It is not difficult to prove that
G is discrete if and only if it does not contain infinitesimal transformations,
i.e., if and only if there is no sequence of distinct elements g,e G,n = 1,2,...,
such that lim g,(z) = z for every z (Lehner [1], p. 96). From this characteriza-
tion of discreteness we conclude that if G is not discrete, then every point of
the plane is a limit point of G. It follows that a Kleinian group is discrete. The
converse is not true.

The set of discontinuity Q can be characterized by means of normal
families. Let A be a domain of the plane and G a Kleinian group. The family
{g|A|g € G} is normal if and only if A is a subdomain of Q (Lehner [1], p. 98).
In particular, if Q is connected, then Q is the largest domain in which the
mappings g € G constitute a normal family.

4.5. Structure of the Limit Set

The normal family criterion for sets of discontinuity can be used to proving
the following result, which reveals several properties of the limit set (Lehner
[1], p. 103).

Lemma 4.1. For a Kleinian group G, every point { € L is the cluster point of
each orbit G(z), with the possible exception of z = { and one other point z€ L.
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We first deduce from this lemma that if G is not elementary, every point of
L is the cluster point of other limit points. Hence, L is then always a perfect
set. It follows that for Mobius groups there is a striking dichotomy: Either the
limit set contains at most two points or else it contains uncountably many
points.

A second conclusion from Lemma 4.1 is that the limit set of a Kleinian
group agrees with the boundary of the set of discontinuity. For we have trivially
0Q = Qn L, so that 9Q = L. On the other hand, we infer from Lemma 4.1
that L = Q. Hence, L = Q n L = dQ, and we obtain the desired result

L =0Q. 4.3)

Third, Lemma 4.1 (or (4.3)) shows that the limit set of a Kleinian group is
nowhere dense in the plane. For to every (€L there is a point zeQ and
mappings g, € G, such that g,(z) — (. For Fuchsian groups the same reasoning
gives the following result:

The limit set of a Fuchsian group acting on a disc D is either the whole
boundary @D or a nowhere dense subset of 0D.

If the limit set of a Fuchsian group G agrees with the boundary of the
invariant disc, G is said to be of the first kind (or horocyclic). Otherwise, G is
of the second kind. 1t follows that for groups of the first kind, Q has two
components, whereas Q is connected if the group is of the second kind.

For a Kleinian group G, let F denote the set of the fixed points of its
clements (other than the identity). If g€ G and z is a fixed point of g, € G, then
g(z) is a fixed point of gog,og~"'. Hence g(F) = F for every geG.

For the group generated by z — z + 2 and z —» —1/z, the set Q is the union
of the upper and lower half-planes while the point i belongs to F. This shows
that F need not be a subset of L even though the group is infinite. But if a
Kleinian group does not contain elliptic transformations of finite period, then
the closure of the set of its fixed points coincides with its limit set.

In particular, if G is a Fuchsian group of the first kind acting on the upper
half-plane, then the fixed points of G are everywhere dense on the real axis.

There are even sharper relations between F and L. Let F,, F;, and F,
denote the subsets of F consisting of the fixed points of the hyperbolic,
loxodromic and parabolic elements of the Kleinian group G. Then

L=F, L=F, L=F, (4.4)

whenever G contains an element from the class in question. The relations
(4.4) can be proved with the aid of Lemma 4.1 (cf. Lehner [1], p. 104).
Suppose that G is a Fuchsian group of the second kind acting on H. Then

S* =(HuU(R\L))/G

is a bordered Riemann surface with (R\ L)/G as its border (cf. the definition
given in 1.3).
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From this representation of a bordered Riemann surface S* we see that S*
can be imbedded in a larger Riemann surface. In fact, interpreting G as acting
on the plane, we form the quotient Q/G. By Theorem 3.2, it is a Riemann
surface, and clearly it contains S*. It is called the double of S = H/G. The
Riemann surface (Q\ (H u R))/G is called the mirror image of S = H/G, no
matter whether G be of the first or of the second kind.

4.6. Invariant Domains

The components of the set of discontinuity Q of a Kleinian group G are
disjoint domains. A component which is mapped onto itself by every element
of G is called an invariant domain of G.

A Kleinian group G with no fixed points in Q is Fuchsian if it has a disc in
Q as an invariant domain, and it is said to be quasi-Fuchsian if it has a Jordan
domain in Q as an invariant component.

The following result makes it possible to analyze invariant domains.

Lemma 4.2. Let G be a Kleinian group such that Q has an invariant component
A which is a Jordan domain different from a disc. Then 0A does not have a
tangent at a fixed point of a loxodromic element of G.

Proor. Assume that the tangent exists at a fixed point of a loxodromic

element g € G. We may suppose without loss of generality that the fixed point

of g lies at z = 0, that the tangent at z = 0 is the real axis and that oo is the

repulsive fixed point of g. Then g(z) = re®®z, where 0 <r < 1and 0 < 6 < 2n.
Suppose first that 8 # 7, and set

a =min(6/2,|n — 0]/2,2n — 6)/2),

then 0 < a < n/4. Consider the two angles V, = {pe*|pe(—a,a) or pe(n — a,
7 + a), p > 0}. Since the real axis is a tangent, we have for every a > 0 a disc
D, centered at the origin, such that

J0AnD,cV,nD,. 4.5)

Now choose zedAnD,nV,, z+# 0. Then g(z)e dA n D,. On the other hand,
it follows from the definition of a that g(z) ¢ V,. This contradicts (4.5).

If z > g(z) = —rz belongs to G, then gog is a hyperbolic transformation
with the same fixed points as g. A modification of the above proof shows that
0A does not have a tangent at a fixed point of a hyperbolic element of G. This
proves the lemma. O

Combined with our previous results on Kleinian groups, Lemma 4.2 yields
the following result.



156 IV. Riemann Surfaces

Theorem 4.2. The boundary of an invariant component of a quasi-Fuchsian
group is either a circle or a Jordan curve which fails to have a tangent on an
everywhere dense set.

Proor. First, if A denotes an invariant component, we clearly have ¢4 < 0Q.
From (4.3) we then conclude that 04 < L. If the group is not Fuchsian, it
always contains loxodromic elements (Lehner [1], p. 107). By (4.4), we have
in this case 4 c F,. Hence, the theorem follows from Lemma 4.2. O

It was Klein who first noticed that such weird invariant Jordan domains
exist. He obtained such domains by direct construction. For details, inter-
esting pictures and almost philosophical comments on this unexpected
phenomenon we refer to Fricke—Klein [1]. Here we shall only briefly explain
Klein’s method. In V.3.4 we shall arrive at invariant quasidiscs in a completely
different manner.

Let {D;li = 1,2,...} be a closed chain of discs, i.e., the discs D; are disjoint
but for every i, the closure of the union | JD;, j # i, is connected. We form the
group G whose elements are compositions of an even number of reflections
in the circles 0D;. The elements of G are Mobius transformations. We say that
G is generated by the chain {D,}.

If the number of the discs in the chain is one, G is trivial, if it is two, G is
cyclic, and if it is three, G is Fuchsian. In case the complement of the closure
of the union ( JD; of all discs is not empty, it is easy to see that this comple-
ment is contained in the set of discontinuity Q of G. In other words, G is then
always a Kleinian group.

The importance of Klein’s method derives from the fact that under very
general conditions, Q has two invariant components which are comple-
mentary Jordan domains. This is the case, for instance, if the chain has only
a finite number (> 2) of discs. The boundary of the invariant domain passes
through the points at which the closed discs touch each other and through
their reflected images (Fig. 9).

Figure 9. Klein’s method of generating invariant domains.
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5. Compact Riemann Surfaces

5.1. Covering Groups over Compact Surfaces

Let G be a Fuchsian group acting on the upper half-plane H. We recall that
all Dirichlet regions of G are congruent in the non-euclidean geometry induced
by the hyperbolic metric on H. The Dirichlet regions clearly have a bounded
hyperbolic diameter if and only if their closures lie in H. This property
characterizes compact Riemann surfaces.

Theorem 5.1. Let S be a Riemann surface and G the covering group of the upper
half-plane H over S. Then S is compact if and only if the Dirichlet regions of G
are bounded in the hyperbolic metric of H.

ProoF. Suppose first that S is compact. Let N be a Dirichlet region with
center a. We consider the hyperbolic discs D, = {z|h(z,a) <n},n=1,2,....
Their projections on S = H/G form an open covering of S. Since S is compact,
there is an n such that the projection of D, alone covers S. In other words, for
every z € H there exists a mapping g € G for which h(g(z),a) < n. Now if ze N,
then h(z,a) < h(g(z), a) for every ge G. It follows that N < D,.

Assume, conversely, that the closure of a Dirichlet region of G lies in H.
Then S is the image of a compact set under a continuous mapping and hence
compact. O

Theorem 5.1 admits interesting conclusions.

Theorem 5.2. The covering group of the upper half-plane over a compact
Riemann surface is finitely generated and of the first kind.

Proor. Let S be a compact Riemann surface and G the covering group of H
over S. The vertices of a Dirichlet region of G cannot have a limit point in H.
Hence, by Theorem 5.1, a Dirichlet region for G has a finite number of sides.
We conclude using Theorem 4.1 that G is finitely generated.

In order to determine the limit set L of G, we consider an arbitrary point
x of the real axis and set U = {{e H||{ — x| < r}. The hyperbolic distance
from the point x + iye U to the semicircle |{ — x| = r tends to oo as y — 0.
On the other hand, by Theorem 5.1 the Dirichlet region containing x + iy
has a uniformly bounded hyperbolic diameter for every y > 0. It follows that
U contains a Dirichlet region for every r > 0. Consequently, xe L, and so L
is the whole real axis. O
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5.2. Genus of a Compact Surface

Let S be a compact Riemann surface and G the covering group of H over S.
A Dirichlet region N for G is then a non-euclidean polygon with finitely
many sides, which are pairwise equivalent under G. Now it is possible to
transform N to another non-euclidean polygon which is also a fundamental
domain of G and whose sides follow each other according to the pattern

a;b;a\by...a,b,a,b,, (5.1)

the sides a; and b; being equivalent to a; and b;, respectively. The number p is
at least 2. Such a polygon is called a normal polygon for G. The transformation
of a Dirichlet region to a normal polygon is described in Nevanlinna [1],
pp- 229-230.

The pattern (5.1), which generalizes the pattern a, b, a} b’ of a torus (see
4.1), can be regarded as a representation of the compact Riemann surface S.
But it is in fact of a more general character. Let S be an arbitrary compact
orientable surface. A fixed (necessarily finite) triangulation of S leads in a
natural manner to a polygon representing S, in which identified sides either
have the simple pattern a,a’; or else the pattern (5.1), with p=1, 2, ...
(Springer [1], p. 117). Here p does not depend on the triangulation by way of
which we arrived at it. The pattern a, a} occurs if and only if S is a topological
sphere.

The number p in (5.1) is called the genus of the compact surface S. A sphere
is said to have the genus p = 0. It follows that a torus has the genus p = 1 and
every compact Riemann surface which has the upper half-plane as a universal
covering surface has a genus p > 1.

The genus characterizes the topology: Two orientable compact surfaces are
homeomorphic if and only if they have the same genus. In analogy with the case
of a torus, the topological type of a surface can be read from the pattern (5.1):
A compact orientable surface of genus p is a topological sphere with p handles.

These two results are proved in Springer [1], which contains a detailed
discussion of the relations of genus to such topological invariants as the
fundamental group, homology groups, and the Euler characteristic. We shall
study here certain analytic implications of genus.

5.3. Function Theory on Compact Riemann Surfaces

Let f be a non-constant meromorphic function on a compact Riemann surface
S of genus p. If p = 0, the surface S can be identified with the extended plane,
and f is a rational function. In particular, f takes on every complex value
and oo, each of them the same number of times, provided of course that
multiple values are counted according to their multiplicities.

If p =1, the study of f amounts to function theory on a torus. (Its ele-
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ments are described in Springer [1], p. 34.) The lift of f to the universal cover-
ing surface C is double-periodic, i.e., an elliptic function.

Regardless of p, the property of rational functions remains true as indicated
above (Springer [1], p. 176):

Theorem 5.3. On a compact Riemann surface, a non-constant meromorphic
function assumes every value the same finite number of times.

For topological reasons, injective meromorphic functions can exist only if
p = 0. The theory of meromorphic functions on compact Riemann surfaces is
classical analysis, which is intimately connected with the theory of algebraic
functions (see, e.g., Springer [ 1], p. 286). In a way, the theory was born before
the notion of a Riemann surface existed in any form.

A striking example of the interaction between topology and analysis on
compact Riemann surfaces is provided by the complex vector space con-
sisting of holomorphic Abelian differentials. The study of the periods of
regular harmonic differentials on a homology basis yields the following result
(Springer [ 1], p. 252):

On a compact Riemann surface of genus p, the dimension of the space of
holomorphic Abelian differentials is equal to p.

We shall use this result in determining the dimension of the complex
vector space formed by holomorphic quadratic differentials. This linear space
will play an important role in the theory of Teichmiiller spaces.

5.4. Divisors on Compact Surfaces

Let S be a compact Riemann surface. A divisor D on S is a mapping of S
whose values are integers and which is non-zero only at finitely many points
of S. Addition of two divisors D, and D, is defined by (D, + D,)(p) =
D,(p) + D,(p). The degree of D, degD, is the sum of its values. We write
D, = D, if D,(p) = D,(p) for every point peS.

Let ¢ be a holomorphic differential of an arbitrary type on S. Fix a point
peS and consider two local parameters z, and z, in a neighborhood of p,
both mapping p to zero. The mapping z, — z, is conformal at the origin and
has, therefore, a non-zero derivative at 0. We conclude from formula (1.2) in
1.4 that if the representation of ¢ in z, has a zero of order n (>0) at the origin,
then the representation of ¢ in z, also has a zero of order n at the origin. Thus
the zeros of ¢ and their orders are well defined, being independent of local
parameters. Similarly, we infer that the poles of a meromorphic differential
and their orders can be defined in an invariant manner.

Let ¢ be a meromorphic differential on S with the zeros of order m; at the
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points p; and the poles of order n; at the points g;. The divisor D, of the
differential ¢ is the function which takes the value m; at p;, the value —n; at
g, and vanishes elsewhere. Hence, deg D, = Y m; — ) n;.

Suppose, in particular, that ¢ is a function on S. By Theorem 5.3, we then
have deg D, = 0. If ¢, and ¢, are differentials of the same type, the quotient
@,/¢, is a function. From the definition of the divisor of a differential we see
thatdeg D, ,,, = deg D, — degD,,. It follows that the divisors of differentials
of the same type all have the same degree.

Given a divisor D, consider the family which consists of all meromorphic
functions f with D, > D, together with the function which is identically zero.
This family is a complex linear space. Its dimension is called the dimension of
the divisor D and denoted by dim D.

If D =0, i.e.,, D(p) = 0 for every pe S, the space consists of the constants,
and so

dim0 = 1. (5.2)
We also conclude that
dimD =0 if degD >0, (5.3)

because the space then contains only the zero function.

5.5. Riemann—Roch Theorem

We denote here by Q the complex vector space of all holomorphic quadratic
differentials on S. We fix a non-zero Y €Q and write D, = D,. If ¢ is an
arbitrary meromorphic quadratic differential, f = ¢/} is a meromorphic
function. From D, = D, + D, we see that ¢ is holomorphic if and only if
D, > —D,. It follows that

dim Q = dim(—D,). (5.4)
Exactly the same reasoning can be applied to (1, 0)-differentials. If D, is the
divisor of a holomorphic Abelian differential, we conclude that the space of

these differentials has the dimension dim(— D, ). On the other hand, by what
was said in 5.3, this dimension is equal to the genus p of S. Hence

dim(—D,) = p. (5.5)
The results (5.4) and (5.5) can be put together with the help of a classical

result on compact surfaces (Springer [1], p. 264).

Theorem 5.4 (Riemann—Roch Theorem). On a compact Riemann surface of
genus p, every divisor D satisfies the equation

dimD = dim(—D — D,) — degD — p + 1. (5.6)
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Let us first apply (5.6) for D = —D,. Then, by (5.5) and (5.2), p=1+
deg D, — p + 1, so that deg D, = 2p — 2. By our previous remark, we have

degD, =2p—2

for every meromorphic (1, 0)-differential ¢, .
Now let ¢, be a meromorphic quadratic differential. Then ¢,/¢, is a
(1,0)-differential. From deg D,,, + degD,,,,, = deg D,,, it thus follows that

degD,, = 4p — 4. (5.7)

In particular, every non-zero holomorphic quadratic differential on a Riemann
surface of genus p has 4p — 4 zeros.
The dimension of Q can now be readily determined.

Theorem 5.5. On a compact Riemann surface of genus p, the space of holo-
morphic quadratic differentials has dimension 1 if p =1 and 3p — 3 if p > 1.

Proor. In the case p = 1, the Riemann—Roch theorem is not needed to
determine the dimension of Q. We saw in 4.1 that cover transformations are
translations z — z + mw, + hw,, m, ne Z. Formula (3.5) shows, therefore,
that ¢ is a holomorphic quadratic differential for the covering group G if and
only if ¢(z + mw, + nw,) = ¢(z) for all m and n. It follows that peQ is
a bounded holomorphic function in the complex plane and hence a constant.
Conversely, every constant is a quadratic differential for G. We see that
dimQ = 1.

Next suppose that p > 1. We fix a holomorphic quadratic differential and
denote its divisor by D,. After this, we choose D = —D, in (5.6). Then, by
(5.4) and (5.7),

dim Q = dim(D, — D,) + 3p — 3. (5.8)
Now deg(D, — D,) = degD, — deg D, = 2p — 2 > 0. Hence the desired result
dim Q = 3p — 3 follows from (5.8) and (5.3). O

If p = 0, the space Q reduces to zero.

6. Trajectories of Quadratic Differentials

6.1. Natural Parameters

Let ¢ be a holomorphic quadratic differential on a Riemann surface S. We
assume that ¢ is not identically zero, and regard ¢ as fixed throughout this
section. A point pe S is said to be regular if ¢(p) # 0, and critical if p(p) = 0.
We showed in 5.4 that these are invariant definitions, independent of the
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representation of ¢. Critical points form a discrete set, and on a compact
Riemann surface there are only finitely many of them.

Let p be a regular point and g — h(q) = z a local parameter in a neighbor-
hood of p mapping p to the origin. Since ¢(0) # 0, there is a simply connected
domain containing the origin in which the two branches of z — \/¢(z) are
single-valued. For a fixed branch of f, every integral function

z->O®(z) = J /p(z)dz

is then also single-valued in this neighborhood of the origin and uniquely

determined up to an additive constant. From the invariance of ./¢(z)dz
under changes of parameter it follows that every @ is a function on S near p.

From ®'(0) = . /¢(0) # 0 we conclude that there is a disc around the
origin which z — ®(z) maps injectively into the complex plane. It follows that
q —w = ®(z) is a local parameter near p. From

dw? = ¢(z)dz?

we see that with respect to w, the function representing the quadratic differ-
ential ¢ is the function which is identically equal to 1.

We call w = ®(z) a natural parameter at p. An arbitrary natural parameter
at p is of the form +w + constant. We see that in each case, near a regular
point the local representation of ¢ in terms of a natural parameter is the con-
stant function 1.

There are natural parameters at a critical point also. Suppose that pe S is
a zero of order n of ¢. Again, let ¢ — h(q) = z be a local parameter near p
which maps p to the origin. Then there is a disc D(0, ) around the origin in
which ¢(z) = z"y(z) with ¥(z) # 0. We fix a single-valued branch of f in
D(0,r). If n is odd, we cut D(0,r) along its positive radius I = {x]|0 < x < r},
and fix a branch of z — z"? in D(0,r)\ I; if n is even, no such cut is needed. In
either case

z-®(2) = J Jo@)dz = 2" (co + ez + ), ¢ #0,
0

is single-valued in D(0,r)\ I. Moreover, z — w(z) = ®(z)z""*»? is single-
valued and # 0 in a disc D(0,r,) = D(0,r). (Note that the cut I is no longer
needed in the definition of w.)

In D(0,r,), the function

7 cD(Z)Z/(rHZ) — zw(Z)ZI(n+2)

is single-valued. Since it has the non-zero derivative w(0)¥"*? at the origin,
it is injective in a disc D(0,r,) = D(0,r,). It follows that

g = D)0

is a local parameter near p. We now call { a natural parameter at p.
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From ¢ = (®')*> we obtain

, n+2\*,
o(z)dz* = < > rdee. (6.1)

In other words, near a critical point of order n, a holomorphic quadratic
differential has the representation { — (1 + n/2)*{" in terms of the natural
parameter (.

The idea of associating natural parameters with a quadratic differential is
due to Teichmiiller [1].

6.2. Straight Lines and Trajectories

A continuously differentiable mapping y of an open interval I into the
Riemann surface S with a non-zero derivative on I is called a regular path on
S. Near a point p e y(t) we introduce a local parameter g — h(q) = z and write,
with a slight abuse of notation, z(t) = (hoy)(t). We assume that y does not
pass through any critical point of ¢. The function t — arg(¢p(z(t))z'(t)?) is then
well defined on I, of course modulo 27.

If

arg(p(z(t))z'(t)?) = 6 = constant (6.2)

at every point t € I, we say that y is a straight line (in the geometry induced by
the quadratic differential ¢). The condition for y to be a straight line is often
expressed in the form

arg(o(z)dz?) = constant

along y. It follows from the definition that a straight line does not pass
through a zero of ¢.

We say that a straight line is horizontal if § = 0, and vertical if 6 = n. The
straight line (6.2) is a horizontal line for the quadratic differential e ®¢. A
straight line (6.2) is called maximal if it is not properly contained in any
regular curve on which (6.2) is true. A horizontal trajectory is a maximal
horizontal straight line. Similarly, a vertical trajectory is a maximal vertical
straight line.

In natural parameters, the trajectories have simple representations. Let w
be a natural parameter near a point of y. From dw? = ¢(z)dz? and from (6.2)
it follows that locally, a horizontal straight line is a euclidean horizontal line
segment in the w-plane. Similarly, a vertical straight line is locally a euclidean
vertical segment.

Near a critical point pe S the behavior of trajectories is more complicated.
Let { = w¥"*? w = ®(z), be a natural parameter in a neighborhood of p.
Horizontal lines near p are horizontal line segments in the w-plane, whereas
in the {-plane, they are located in n + 2 different sectoral domains. Consider,
in particular, a horizontal line segment in the w-plane which contains the
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Figure 10. Horizontal trajectories under natural parameters.

origin. In view of the relation { = w?"*?, we conclude that its preimage on
S consists of n + 2 rays emanating from the critical point p such that the
angle between two adjacent rays is equal to 2n/(n + 2) (Fig. 10).

A trajectory with an endpoint which is a zero of ¢ is called critical. The
number of critical horizontal trajectories is countable, and on a compact
Riemann surface there are only finitely many such trajectories.

From the definition it is clear that given a regular point of S, there exists
exactly one horizontal trajectory passing through that point.

6.3. Orientation of Trajectories

A sufficiently small subarc of a horizontal trajectory is mapped by a natural
parameter onto a segment of the real axis. The orientation of the real axis can
thus be transferred locally to horizontal trajectories.

The global situation is more complicated. Let S, = S\ {zeros of ¢}. For
any two natural parameters w, and w, of S, for which w, o wi'! is defined, we
have w,ow(!(z) = +z + constant. The trajectory structure of ¢ is said to be
orientable if S, has an atlas of natural parameters w;, such that every change
of variables is of the form

wjow; !(z) = z + constant.

More briefly, we then say that ¢ is orientable.

Let us assume that ¢ is not orientable. We shall show that S then has a
two-sheeted covering surface §, branched over the zeros of ¢ of odd order,
such that the lift of ¢ to S is orientable.

In order to prove this, we consider for a moment ¢ on the punctured
surface S,. Suppose that ¢ is a collection of holomorphic functions ¢;, i = 1,
2, ..., defined in simply connected domains U; = S, with local parameters z;.
Then ¢;dz} = @;dz} on U;,n U

Consider all triples (p, z;, o;), where pe U; and «; is holomorphic and satis-
fies af = @; on U,. We identify (p,z;, ;) with (q,z;, %) if p = g and ;dz; =
o;dz; at p = q. Let S, denote the set of identified triples and 7: S, — S, the
projection which maps (p, z;, ;) to p.
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We introduce the standard topology on S,. It follows that (5,,7) is an
unlimited covering surface of S,. It becomes a Riemann surface with the
conformal structure lifted from S,.

Let S be the natural extension of S, to the holes over the points of S\ S,.
More precisely, if the lift of a closed path on S, around a zero p of ¢
terminates at the initial point, we have two points of S over p (as we have over
all points of S,). Otherwise S has a branch point of order 2 over p. The latter
alternative occurs if and only if p is a zero of odd order. If n: §— S is
the natural extension of 7: Sy — S,, then (§,7) is a two-sheeted branched
covering surface of S.

Finally, let ¢ and &, denote the lifts of ¢ and «; to S. From the construction
it is clear that the functions &; form a holomorphic Abelian differential & and
that ¢ = @>. As the square of an Abelian differential @ is orientable, as we
wished to show.

6.4. Trajectories in the Large

In order to study the global structure of trajectories, we choose a regular
point p, €S, fix a branch of @, in a neighborhood of p,, and normalize it so
that ®y(py) = 0. Let r < oo be the largest number, such that the analytic
continuation f, of the local inverse of ®, maps the disc D, = D(0,r) injectively
into S. The image V, = f,(D,) is called a maximal disc around p,, and
r = r(po) is said to be its radius. The maximal disc V,, is uniquely determined
by ¢, ie., V, does not depend on the choice of the integral function of \/5
The function p — r(p) is continuous in p.

Next we choose a point u,; € D, which lies on the real axis R; then fy(u,) =
p; is a regular point. Hence, there is a conformal mapping f, of D, =
D(uy,r(p,)) onto the maximal disc V; around p,, such that f; = f,in Dy " D,
and that f, is the inverse of ®,. By continuing this procedure, we obtain
connected chains of discs D, D, ..., D, with centers on R, such that f; =
(®;|V;)~! is a conformal mapping of D; into S and that f;,, is a direct analytic
continuation of f;.

Let G be the union of all the discs of such chains which we obtain
by starting from D,. Since the intersection of two chains is connected and
contains D,, the analytic continuation f of f, to G is single-valued. We write
I =GN R and deduce that f(I) is the horizontal trajectory which passes
through the point p,.

If [a,b] is a closed subinterval of I on which f is injective, there is a
rectangle {u + ivla <u <b,—0 <v <0} which f maps injectively into S.
The image of every horizontal line segment in this rectangle is a subarc of
some horizontal trajectory.

We shall now show that the character of the horizontal trajectory f(I)
varies, depending on whether f is injective or not on the whole interval I.
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6.5. Periodic Trajectories

Suppose first that there are points a, be I such that f(a) = f(b). Among the
pairs of points of [a,b] at which f takes the same value, there is a pair u,, u,
with a minimal distance from each other. It is not difficult to show that f is
then periodic in G, with the primitive period w = u; — u, (cf. Strebel [6],
p- 39). In this case f can be continued analytically to the whole real axis R by
periodicity. The horizontal trajectory o = f(R) = f([uo,u,]) = f([0,w])is a
closed curve. There is a maximal rectangle R, = {u + iv|0 < u < w,v, <
v < v,} in whose interior f is analytic.

If f is injective in Ry, then
(- f(—“’. log c)
2mi

-2

maps the annulus A4 = {{|e”?™2* < |{| < ¢~ 2™1/*} conformally onto a ring
domain on S. The image is called the maximal annulus around the horizontal
trajectory a. Every circle |{| = constant in 4 maps onto a closed horizontal
trajectory of S. It follows that the maximal annulus around « is swept out by
closed horizontal trajectories, freely homotopic to « and all of the same
length w in the w-plane. From the maximality it is clear that if &, and «, are
closed horizontal trajectories of S, their maximal annuli are either disjoint or
identical.

If /" is not injective in the rectangle R,, simple reasoning shows that f has
another primitive period o’¢ R and that f has an analytic extension through-
out the complex plane C (cf. Strebel [6], p. 41). The parallelogram with
vertices at the points 0, w, w + ' and ' and with the opposite sides identi-
fied is mapped by f bijectively onto S. We conclude that S is a torus. The pair
(C, f) is a universal covering surface of S. From the global representation
dw? = @(z)dz? it follows that the straight lines on S are images under f of
euclidean straight lines in the plane. All horizontal trajectories are closed
curves on S.

6.6. Non-Periodic Trajectories

Let us now assume that the function f, obtained by analytic continuation of
a germ of ®7', is injective on the interval I = GAR = (u_,,u,). Then
J:1— S is a parametric representation of the horizontal trajectory « passing
through the point p, € S with which we started. The trajectory is now an open
arc, and we define its length to be the same as the length of I. (The metric
induced by ¢ will be studied in the next section 7.) The two parts into which
Po divides « are called trajectory rays from p,. We denote a* = f([0,u.,)),
= f((u-,0]).

Let L be the limit set of the ray «*, i.e., L is the set of points p e S for which
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there exists a sequence of points u, €I tending to u_. such that f(u,) — p. The
limit set L is contained in the closure of %, and it does not depend on the
choice of the initial point p, of a.

Regarding the set L, there are three essentially different possibilities. First,
L may be empty. We then say that o™ tends to the boundary of S, and call «*
a boundary ray. If both «* and «~ are boundary rays, the trajectory « is said
to be a cross-cut of S. On a compact surface, there are no boundary rays.

Second, L might consist of a single point p. The point p cannot be regular,
because f could then be continued on R past u_ . Hence, f(u) tends towards
the critical point p along a™ as u — u,, on I. In this case, «* is called a critical
ray.

The remaining case is that L contains more than one point. Suppose pe L
is a regular point, and consider the horizontal trajectory a, through p. This
cannot be closed, because it could then be covered by an open annulus which
contains only closed trajectories. Choose another point g€, and construct
an open rectangle R, such that f,|R, is injective and that the image of the
middle line of R, contains the trajectory arc from p to g. Since pe L, we have
points p,€a, such that p, — p. If f,”'(p,) € R, the horizontal line segment in
R, through f,”'(p,) maps on a subarc of a. There are infinitely many such
subarcs, and we conclude that « has infinite length.

The same reasoning shows that if the subarc of «, from p to g has length
a and if p, = f(u,) - p, then q, = f(u, + a)ea with properly chosen signs
converge to q. Here g a, was arbitrarily chosen. We conclude that if pe L,
then the whole trajectory through p belongs to L.

The trajectory « has infinite length also in the case when pe L is a critical
point. The ray «* cannot end at p, because L would then reduce to the single
point p. Therefore, at least one of the finitely many sectors into which the
horizontal trajectory rays emanating from p divide a neighborhood of p
contains infinitely many points p,ea. After this, the reasoning used in the
case where p was a regular point can be modified so as to yield the desired
result (Strebel [6], p. 44).

Consequently, if the limit set L of the ray a* contains more than one point,
then a* is always of infinite length. The ray a* is then said to be divergent.

Suppose that the initial point p, of 2™ belongs to the set L. From what we
just proved it follows that the whole trajectory « is then contained in L. Since
L lies in the closure @ of «, we conclude that in this case

L=

A trajectory ray a* with p,e L is called recurrent. A trajectory both rays
of which are recurrent is said to be a spiral, and its limit set L is called a spiral
set (Fig. 11).

On a compact Riemann surface, every divergent ray is recurrent and all
non-periodic trajectories are spirals, save for finitely many exceptions. (For
two simple examples, see Figs. 11 and 12. For a detailed account of tra-
jectories on compact surfaces, we refer to Strebel [6],§11.)
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Figure 11. A torus and a part of its universal covering surface. A straight line projects
on a spiral.

Figure 12. Horizontal trajectories on a surface of genus 2. 4p — 4 = 4 critical points.

7. Geodesics of Quadratic Differentials

7.1. Definition of the Induced Metric

As in the previous section, ¢ is a holomorphic quadratic differential on a
Riemann surface S, and not identically zero. The invariant differential

lo(2)]"?|dz| (7.1)

is called the line element of the metric induced by ¢.

Let y be a curve on S locally rectifiable with respect to the euclidean metric
in any parametric plane. The length of y in the metric induced by ¢ can be
obtained with the aid of the following geometric reasoning. First, if y lies in a
maximal disc around a point p, the length of y is equal to the euclidean length
of the image of y under a natural parameter defined in a neighborhood of p.
An arbitrary y not passing through any critical points can be subdivided into
parts each one lying in a maximal disc. The length I(y) of y is the sum of the
lengths of these parts; it is independent of the subdivision of .

Since the differential (7.1) is an invariant on S, we can also define directly

I(7) = J lp(2)|'? |dz],
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in terms of arbitrary local parameters. The length /() is then well defined also
in the case where y passes through critical points.

The invariant |¢(z)| dx dy is called the area element of the ¢-metric. Hence,
the total area of S is the L!-norm of ¢.

In the following, ¢ is fixed, and notions like distance, length, and area,
refer to the @-metric, unless otherwise stated.

The area of a compact surface S is always finite. If the genus of S is 1, i.e,,
if S is a torus, its universal covering surface is the complex plane. The lifted ¢
is then bounded in the plane and hence constant. It follows that the ¢-metric
is euclidean, a result at which we arrived in a different manner in 6.5.

7.2. Locally Shortest Curves

The existence of a unique shortest curve joining two given points of S can be
established without difficulty if the points are close to each other. The curve
itself can be described geometrically by use of natural parameters.

Theorem 7.1. Every point of a Riemann surface has a neighborhood in which
any two points can be joined by a unique shortest curve.

PRroOF. Let a point pe S be given and suppose first that p is regular. Let V
be the maximal disc around p and {w||w| < r} its image under a natural
parameter w = ®(z). Let V,, < V be the preimage of |w| < r/2, and p,, p,
arbitrary points of V. Then the preimage y, of the line segment connecting
®(p,) and ®(p,) is the unique shortest curve which joins p, and p, on S. For
let y (# y,) be an arbitrary curve on S which joins p, and p,. If y stays in V,
then clearly I(yo) < I(y). If y leaves V, then I(y) > r > I(y,).

Suppose next that p is a zero of ¢ of order n. We proved in 6.1 that if { is
a natural parameter near p, then

2
o(0) = (" “; 2) o w=0() = (e, (7.2)

in a disc || < r. Let ¥, now be the preimage of the disc || < 27%"*+2)r on S.
Then any two points p, and p, in V; can be connected by a unique shortest
curve. This is either a straight line segment in the w-plane, or it is composed
of two radii in the {-plane which emanate from the origin. The former case
occurs if and only if |arg{, — arg{,| < 2n/(n + 2), where {, and {, are the
{-images of p, and p,. These conclusions can be drawn from (7.2); for the
details we refer to Strebel [6], p. 35. O

It follows from the above that if the shortest curve is the union of two
radii, both angles 6 between these rays satisfy the inequality
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2
> .
n+2

(7.3)

This “angle condition” will be utilized in the study of globally shortest curves.

7.3. Geodesic Polygons

A curve y on S is called a geodesic if it is locally shortest, i.e., every point pey
has a neighborhood V on S such that for any two points p,, p,€y N V¥, no arc
joining p, and p, in V is shorter than the subarc of y from p, to p,. From the
results of 7.2, we know the local structure of a geodesic. It will turn out that
a geodesic is also globally the unique shortest curve in its homotopy class.

A geodesic polygon is a curve which consists of open intervals of straight
lines (in the geometry of ¢) and of their endpoints. The endpoints can be
zeros of ¢. In case the polygon is a Jordan curve, it is called simple and
closed.

Assuming the existence of a geodesic, we shall first prove that it is uniquely
extremal in its homotopy class. The proof uses the argument principle in
its generalized form, in which the holomorphic function considered in a
subdomain of the complex plane is allowed to have zeros on the boundary of
that domain.

Argument Principle. Let f be holomorphic in the closure of a plane domain A
bounded by finitely many piecewise regular curves. Let y; denote the arcs into
which the zeros z;e 0A of f divide the boundary, and 0; the interior angle at z;
between the arcs y;_, and y;. Then

J darg f(z) = ZJ darg f(z) =21y m; + Y On;,
dA )

where m; are the orders of the zeros of f in A and n; the orders of those on 0A.

If f(z) # 0 on 0A, this is the standard principle of argument. The refine-
ment says that the zeros z; on the boundary have the weights 0;/2x.

Teichmiiller ([1], p. 162) drew the following conclusion from the Argument
principle.

Lemma 7.1 (Teichmiiller’s Lemma). Let ¢ be holomorphic in the closure of a
domain A in the complex plane which is bounded by a simple closed polygon in
the @-metric, whose sides y; form the angles 0; at the vertices. If m; and n; denote
the orders of the zeros of @ in A and on 0A, respectively, then

Z(l _(nj+2):2()—;t> =2+ m. (7.4)
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Proor. On y; we have arg(o(z) dz?) = constant, and so
darg ¢(z) + 2d(argdz) = 0. (7.5)

The argument of the tangent vector dz increases by 2n — Y (n — 0,) after a
full turn along ¢A. This observation, coupled with (7.5) and the Argument
principle, yields

2y m + Y Onj= —4n+ 2y (1 — 0,),
which is (7.4). O

It follows from (7.4) that

0.
1—(n+2)L | =2 7.6
Z( (n; + )2n>_ (7.6)
We conclude that there are at least three angles 0; so small that
2n
< . 7.7
Tom+2 7.7

Hence, these angles do not satisfy the angle condition (7.3).

7.4. Minimum Property of Geodesics

In order to prove that a geodesic is globally the unique shortest curve in its
homotopy class, we need two auxiliary results. As before, we assume that we
have a fixed ¢-metric.

Lemma 7.2. Let S = G be a simply connected domain in the complex plane and
z, and z, points of G. Then there exists at most one geodesic from z, to z,.

ProOOF. Let us assume that there are two geodesics joining z, and z, in,G. If
they do not coincide we can find two subarcs, both from a point a to a point
b, which form a simple closed polygon. The angle condition (7.3) is satisfied
at the vertices, except possibly at the two points a and b. This is in contra-
diction with the fact that (7.7) holds for at least three angles. O

A geodesic is called maximal if it is not a proper subset of any other
geodesic.

Lemma 7.3. In a simply connected subdomain of the complex plane every
maximal geodesic is a cross-cut.

ProoF. Let y be a maximal geodesic in a simply connected plane domain
S = G. Fix a point z, €7 and represent a ray of y with the initial point z, by
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using its arclength u as parameter, 0 < u < u_,. Assume that y(u) does not
tend to 0G as u — u,,. Then there is a sequence of points u, — u_, such that
z, = 7(u,) = z€ G. By Theorem 7.1, there is a disc U around z in which any
two points can be joined by a unique shortest curve. Consider the maximal
subarc y, of y which contains the point z, and lies in U. There is a point
z,€ U, n > k, which is not on y,. Otherwise y would terminate at z, which
contradicts the fact that every geodesic arc in U can be continued to dU.
Therefore, the part of y from z, to z, is a geodesic which leaves U. On the
other hand, there is a shortest curve and hence a geodesic from z, to z, inside
U. This is in contradiction with Lemma 7.2. d

With the aid of the above two lemmas, the unique extremality of geodesics
can now be established.

Theorem 7.2. Let S be a Riemann surface and p and q points of S. Then a
geodesic arc from p to q is strictly shorter than any other curve in its homotopy
class.

Proor. Let y, and y, be homotopic curves on S joining p and g. Let z, be a
point of the universal covering surface D of S over the point p. By Theorem
2.1 (Monodromy theorem), the lifts of y, and y, from z, terminate at the same
point z over g. Since lifting does not change lengths, we may assume that S is
a simply connected domain D in the complex plane.

Let y be a geodesic from z, to z; by Lemma 7.2, y is unique. Consider an
arbitrary curve 7' in D which connects z, to z. Replacing subarcs of y’ by
locally shortest arcs with the same endpoints does not make " longer. We
may thus assume that ' is a geodesic polygon. Also, it is not difficult to
construct a Jordan domain G, G = D, which is bounded by a geodesic polygon
and which contains y and y'.

Suppose first that y is a straight arc; we may assume that it is horizontal.
Let z,, z,, ..., z,_, denote the points of y which lie on a critical vertical arc
with respect to G. We pick an arbitrary point z’ of an open interval (z;_,, z;)
of y, where i can take any value 1, 2,..., n; z, = z. By Lemma 7.3, the maximal
vertical arc f§ through z' is a cross-cut of G. It follows that y" intersects .

Now let z' run through all points of (z;_,,z;). The vertical arcs f then
sweep out a simply connected domain A;, which is mapped by ® onto a
vertical parallel strip. If a; denotes the width of the strip, then the length of
7" N A; is at least a;, with equality if and only if 7" N A, is a single arc parallel
to y. The domains A4, are disjoint so that I(y') > ) a; = I(y). Equality can hold
only if I(y’ n A;) = a, for every i. Starting with i = 1, we first deduce that then
YN A, =yn A, and continuing the reasoning we conclude that y’ = .

After this, let y be an arbitrary geodesic. Then v is the union of straight
arcs ;. For every y;, we construct the orthogonal strips A4;; as before. An
arc f}; orthogonal to y; does not meet y again; this follows from Lemma 7.2.
Neither can a f3; intersect a f§, orthogonal to y,, k # j. For if it would, we
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would get a simple closed geodesic polygon with two interior angles equal
to m/2, one positive angle at the intersection of f; and f,, and the other
angles satisfying the condition (7.3). This would contradict the inequality
(7.6). Therefore, the strips A4;; are disjoint, and since y’ goes through every 4;;,
we conclude as before that I(y') > I(y) and that equality can hold only if
V=7 U

It follows from Theorem 7.2 that every horizontal arc is uniquely length
minimizing in its homotopy class.

7.5. Existence of Geodesics

If the Riemann surface S and the ¢-metric are arbitrary, it is not always
possible to connect two given points p and g with a geodesic. A simple
example is the case in which S is a non-convex plane domain and the metric
1s euclidean. The existence of geodesics can be shown if the distance between
the lifts of the points p and g to the universal covering surface is smaller than
their distances to the boundary.

In view of our applications, we shall restrict ourselves to the case in which
S is a compact surface. Then every point of the universal covering surface D
has an infinite distance to the boundary of D (Ahlfors [1]).

This is trivially true if D is the complex plane. For then D = {00}, and we
know that the ¢p-metric is euclidean (cf. 6.5 and 7.1).

If D is the unit disc, the Dirichlet regions of the covering group of D over
S are relatively compact (Theorem 5.1). Hence, given a point { € D, there is an
ro < 1 such that the disc |z| < r, covers the Dirichlet region with center at (.
Pick an r, such that ry, < r; < 1, and let d denote the ¢-distance between the
circles |z| = rq and |z| = r,. The circle |z| = r, can be covered by the images
of |z| < ry under finitely many cover transformations. The images of the disc
|z| < r, under these finitely many transformations are contained in a disc
|z| < ry with ry <r, < 1. From the invariance of ¢-distances under the cov-
ering group we conclude that the distance from ( to the circle |z| = r, is > 2d.
A repetition of the argument shows that the distance from { to 0D is infinite.

We can now prove the existence of geodesics on compact surfaces.

Theorem 7.3. Let S be a compact Riemann surface and p and q points of S. Then
each homotopy class of curves joining p and q on S contains a unique shortest
(hence geodesic) arc.

PrOOF. As in the proof of Theorem 7.2, we may replace S by its universal
covering surface D. Let two points z, and z, of D be given. Since the distance
from z, and z, to dD is infinite, we can find a Jordan domain G, G < D, such
that z,, z,e G and that any arc connecting z, and z, in D and leaving G
cannot be length minimizing. If a denotes the infimum of the lengths of the
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curves in D which join z, and z,, we then obtain the same infimum a if we
restrict attention only to curves which lie in G.

Let (y;) be a minimal sequence of curves in G from z, to z,, ie., I(y;) > a.
Subdivide the parameter interval [0,[(y;)] into n equal parts and take n so
large that the endpoints of the resulting subarcs of y; can be joined by a
unique shortest arc in D. That this is possible follows from Theorem 7.1,
combined with a standard compactness argument. For a subsequence (y;,),
these n + 1 endpoints converge. By joining the limit points with shortest arcs
in D we obtain a shortest arc y from z, to z,. Being globally shortest y is also
locally shortest, i.e., a geodesic.

The uniqueness follows from Theorem 7.2. dJ

7.6. Deformation of Horizontal Arcs

A horizontal arc a of S is shortest in its homotopy class. We shall prove that
this is asymptotically true if the competing curves are images of o under
deformations of S (Teichmiiller [1], p. 159).

Lemma 7.4. Let S be a compact Riemann surface, f: S — S a homeomorphism
homotopic to the identity, and o a horizontal arc. Then there is a constant M,
which does not depend on a, such that

I(f(2)) = I(ot) — 2M.

Proor. Let h: § x [0,1] — S be a homotopy from the identity mapping to f.
Fix a point pe S and denote by j, the path t — h(p,1). Let y, be the (unique)
geodesic in the homotopy class of §,. If p' is close to p, the difference
[1(y,) — I(y,)| is majorized by the sum of the distances between p and p’ and
J(p)and f(p'). Hence, the function p — I(y,) is continuous. Since S is compact,
it follows that

M = maxI(y,) < .
peS
Now let p be the initial point and g the terminal point of the horizontal arc
a. If ;' denotes the path ¢ — 74(1 — 1), then y, f(«)y, ! is homotopic to «. By
Theorem 7.2, the geodesic « is shortest in its homotopy class. Therefore,

(@) < I(f(2)) + 2M,
as we wished to show. O
On a spiral trajectory we can take o as long as we please. If « is a part of a

closed trajectory, we may allow « to cover itself. Thus we can always let
() = oo, and have then lim infI( f(a))/I(2) > 1.



CHAPTER V

Teichmiiller Spaces

Introduction to Chapter V

In this chapter we introduce the theory of Teichmiiller spaces of Riemann
surfaces by utilizing the results in all four preceding chapters.

In section 1 we define the notion of a quasiconformal mapping between
Riemann surfaces and prove that the existence and uniqueness theorems
for Beltrami equations generalize from the plane to Riemann surfaces. The
complex dilatation turns out to be a (— 1, 1)-differential on a surface. The uni-
queness theorem shows that every such Beltrami differential determines a
conformal structure for the surface.

The Teichmiiller space of a Riemann surface is defined in section 2 as a set
of equivalence classes of quasiconformal mappings. A metric is introduced in
this space in the same manner as in the universal Teichmiiller space. The use
of the complex dilatation leads to a characterization of the Teichmiiller space
in terms of different conformal structures.

In sections 3, 4 and 5 we consider Riemann surfaces which have a half-
plane as a universal covering surface. In section 3, the quasiconformal map-
pings used in the definition of a Teichmiiller space are lifted to mappings of
the half-plane onto itself. This gives a clear picture of an arbitrary Teich-
miiller space as a subset of the universal space, and makes it possible to
generalize many previous results.

In 111.4 we mapped the universal Teichmiiller space homeomorphically
onto an open set in the space of Schwarzian derivatives. In section 4 of this
chapter, we consider the restriction of this mapping to the Teichmiiller space
of a Riemann surface. The image is then contained in the subspace consisting
of the Schwarzians which are holomorphic quadratic differentials for the
covering group of the half-plane over the “mirror image” of the given surface.
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The unifying link with the earlier results concerning the universal space is
provided by a theorem which says that the image of an arbitrary Teichmiiller
space is the intersection of the image of the universal Teichmiiller space with
the space of the quadratic differentials for the covering group. It follows that
the image is an open set in the space of quadratic differentials. The distance
from a point of this image to its boundary can be estimated. Using Schwarzian
derivatives, we also obtain simple estimates relating the metric of a Teichmiil-
ler space and the metric it inherits from the universal space, showing that
these two metrics are topologically equivalent.

The results of section 4 are used in section 5, where a complex analytic
structure is introduced into Teichmiiller spaces. Quasiconformally equivalent
Riemann surfaces turn out to have isometrically and biholomorphically
isomorphic Teichmiiller spaces.

While sections 2—-5 deal with the general theory of Teichmiiller spaces, the
remaining sections 6-9 are primarily concerned with Teichmiiller spaces of
compact surfaces. Section 6 is devoted to the study of the Teichmiiller space
of a torus, which is shown to be isomorphic to the upper half-plane furnished
with the hyperbolic metric.

In section 7 we consider extremal quasiconformal mappings of Riemann
surfaces, which determine the distance in the Teichmiiller space, i.e., which
have the smallest maximal dilatation in their homotopy class. A necessary
condition for the extremal complex dilatation is derived in the general case. If
the surface is compact, we can conclude that the extremal is always a Teich-
miiller mapping, i.e., its complex dilatation is of the form k¢@/|¢|, where
0 <k < 1 and ¢ is a holomorphic quadratic differential of the surface.

In section 8 we prove Teichmiiller’s famous theorem that on compact
Riemann surfaces of genus > 1, every Teichmiiller mapping is a unique ex-
tremal in its homotopy class. In section 9 we show how this result leads to
a mapping of the Teichmiiller space of a compact surface onto the open unit
ball in the space of holomorphic quadratic differentials. If the surface is of
genus p (> 1), the Teichmiiller space is proved to be homeomorphic to the
euclidean space R®7~°. Finally, the connection between the Teichmiiller met-
ric and the complex analytic structure is discussed briefly, and some remarks
are made on the Teichmiiller spaces of Riemann surfaces of finite type.

1. Quasiconformal Mappings of Riemann Surfaces

1.1. Complex Dilatation on Riemann Surfaces

A homeomorphism f between two Riemann surfaces S; and S, is called
K-quasiconformal if for any local parameters h; of an atlas on S;, i = 1, 2, the
mapping h,o foh! is K-quasiconformal in the set where it is defined. The
mapping f is quasiconformal if it is K-quasiconformal for some finite K > 1.
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Suppose that the local parameters hy, k; of S, have overlapping domains
U,, V;, and that f(U; n V}) lies in the domains of the local parameters h,,
k, of S,. Using the notation g = h,ok7', h =k,oh;', we then have in
ki(UynVy),

kyofoki' =ho(hyofohi')oyg.

The mappings h and g are conformal and, therefore, do not change the maxi-
mal dilatation. It follows that K-quasiconformal mappings between Riemann
surfaces are well defined.

Let (D, 7, ) be a universal covering surface of S,, where D is the unit disc or
the complex plane. (Here and in what follows the trivial case in which D is the
extended plane is excluded.) For the quasiconformal mapping f:S; = S,
consider all mappings w = h,o foh;!, where we choose h;' to be a suitable
restriction of 7,. Then the complex dilatations of the mappings w define a
function p on D. Set k, = g~ oh,, where g is an arbitrary cover transforma-
tion of D over S,. Then h,o fok;! = wog. From this and formula (4.4) in
1.4.2 it follows that u satisfies the condition

’

= (o), (L1)
g

for every cover transformation g. Consequently, a quasiconformal mapping f
of a Riemann surface S, determines a Beltrami differential for the covering
group G or, what is the same, a Beltrami differential on the surface S; (cf.
1V.1.4 and 1V.3.6). This differential is called the complex dilatation of f.

We can also arrive at the complex dilatation of a quasiconformal mapping
of a Riemann surface in a slightly different manner; namely, by lifting the
given quasiconformal mapping to a mapping between the universal covering
surfaces. Let (D, m;) be a universal covering surface of S;, i = 1, 2, and G; the
covering group of D over S;. Consider a lift w: D — D of the given quasicon-
formal mapping f: S; — S,. Since the projections 7, and =, are analytic local
homeomorphisms, w is quasiconformal. Let u be the complex dilatation of w.
Because wogow™! is conformal for every g€ G, (cf. IV.3.4), the mappings w
and wog have the same complex dilatation. Hence, we again obtain (1.1).
Clearly this u is the complex dilatation of f.

We assumed that S, and S, admit the same universal covering surface D.
But if S, and S, are quasiconformally equivalent, the same is true of their
universal covering surfaces. Therefore, it is not possible that the universal
covering surface of one of the surfaces is a disc and of the other the complex
plane.

The existence theorem for Beltrami equations (Theorem 1.4.4) can be easily
generalized to Riemann surfaces.

Theorem 1.1. Let u be a Beltrami differential on a Riemann surface S. Then
there is a quasiconformal mapping of S onto another Riemann surface with
complex dilatation p. The mapping is uniquely determined up to a conformal
mapping.
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Proor. We consider u as a Beltrami differential for the covering group G of D
over S. By Theorem 1.4.4, there is a quasiconformal mapping f: D — D with
complex dilatation p. Since (1.1) holds, f and fog have the same complex
dilatation for every ge G. Then fogo f ™! is conformal, and we conclude that
/ induces an isomorphism of G onto the Fuchsian group G’ = { fogo f7}|ge
G}. If = and 7’ denote the canonical projections of D onto S and S’ = D/G/,
then @ on = n'o f defines a quasiconformal mapping ¢ of S onto S'. This
mapping has the complex dilatation pu.

Let ¢ be another quasiconformal mapping of S with complex dilatation u
and w: D — D its lift. Then wo f~': D — D is conformal, and so its projection
o~ is also conformal. O

1.2. Conformal Structures

Let p be a Beltrami differential on a Riemann surface S, and h an arbitrary
local parameter on S with domain V. From the existence theorem for Beltra-
mi equations it follows that there is a complex-valued quasiconformal map-
ping w of h(V) with complex dilatation goh™!. (For this conclusion we can
use the plane version, Theorem 1.4.4.) Then f = woh is a quasiconformal
mapping of V into the plane with complex dilatation p. If f; and f, are two
such mappings with intersecting domains V; and V,, then by the Uniqueness
theorem (Theorem 1.4.2), f,0 f,"! is conformal in f,(V; N V,). This allows an
important conclusion:

A Beltrami differential of S defines a conformal structure on S.

If H is the original conformal structure and H, the structure induced by p,
then H, is determined by all quasiconformal mappings of open subsets of
(S, H) into the plane whose complex dilatations are restrictions of p. These
mappings are conformal with respect to the structure H,,.

We can relax the conditions on u slightly and still obtain conformal struc-
tures. In fact, the above reasoning works if u is a (— 1, 1)-differential of S and
lull, < 1inevery compact subset of S.

1.3. Group Isomorphisms Induced by Quasiconformal
Mappings

Let us now assume that the universal covering surface D of S is the unit disc.
The lifts of homeomorphisms of Riemann surfaces need not possess limits at
the boundary of D. However, if the homeomorphism is quasiconformal, then
a lift always admits a homeomorphic extension to the boundary. This makes
it possible to rephrase Theorem IV.3.5 in terms of the boundary behavior of
lifted mappings.
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Before formulating the theorem, we make a remark on the transformation
of the limit sets of covering groups. Let f: D — D be a lift of a quasiconformal
mapping of a Riemann surface with the covering group G onto a Riemann
surface with the covering group G'. If z is a fixed point of ge G and f(z) = (,
then (fogof 1) () = f(g(z)) = {. We conclude that f maps the fixed points
of G onto the fixed points of G'. Since the limit set is the closure of the set of
the fixed points (IV.4.5), it follows that f maps the limit set L of G onto the
limit set L' of G'.

Theorem 1.2. Let S and S’ be Riemann surfaces with non-elementary covering
groups G and G', ¢;: S — §', i = 0, 1, two quasiconformal mappings, and f a lift
of @q. Then @, and ¢, induce the same group isomorphism between G and G' if
and only if there is a lift f| of ¢, which agrees with f, on the limit set of G.

ProOF. Suppose first that there is a lift f; of ¢, such that f; = f; on the limit
set L of G. Because f, and f; map L onto the limit set L’ of G’ and because L
1s invariant under G, we then have

foog"fo—1 =f1°g°f1"1, geg, (1.2)

at every point of L’. Both sides are Mdbius transformations. Since they are
equal on a set with at least three points, they agree everywhere.

In order to prove the necessity of the condition, we now assume that (1.2)
is true in D. Setting h = f; ! o f,, we rewrite (1.2) in the form

goh =hog.

If z is a fixed point of some g, then g(h(z)) = h(z), i.e., h(z) is also a fixed point
of g. If z is an attractive fixed point and { € D, then for the nth iterate g, of g,
gn(h({)) = z as n - oo. On the other hand, g,(h({)) = h(g,({)) = h(z). Hence
h(z) = z for all fixed points of G. Since these fixed points comprise a dense
subset of L (see 1V.4.5), it follows that f,(z) = f,(z) for all z in L. O

Theorem 1.2, combined with Theorem IV.3.5, plays an important role in
the theory of Teichmiiller spaces. The following special case deserves partic-
ular attention.

Theorem 1.3. Let S be a Riemann surface with a non-elementary covering
group. If f: S — S is a conformal mapping homotopic to the identity, then f is
the identity mapping.

ProoF. By Theorem 1V.3.5, f and the identity mapping of S induce the same
group isomorphism of the covering group of D over S. By Theorem 1.2, f has
a lift which is the identity mapping of D. Hence, the projection f itself is the
identity mapping. OJ
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1.4. Homotopy Modulo the Boundary

For covering groups of the first kind, the existence of homotopy between two
mappings ¢, and ¢, is equivalent to the existence of lifts which agree on the
whole boundary of D. In the theory of Teichmiiller spaces this is a very
satisfactory state of affairs. For analogous behavior to occur when covering
groups are of the second kind, which would make it possible to develop a
unified theory, we need a stronger form of homotopy.

Let us consider a Riemann surface S = D/G, where D is the unit disc and
G is of the second kind. We denote by B the non-void complement of the
limit set L of G with respect to the unit circle. Then S* = D/G U B/G is a
bordered Riemann surface (cf. IV.1.3 and 1V .4.5).

If we use the quotient representation D/G for Riemann surfaces under
consideration, an amazingly strong result can be easily proved: A quasiconfor-
mal mapping @ of S = D/G onto S' = D/G’ can always be extended to a homeo-
morphism of S* onto (S')*.

In order to prove this, we consider a lift f: D — D of ¢. We continue f by
reflection to a quasiconformal mapping of the plane. The extended f then
induces the isomorphism g — fogo f ™! between G and G’ in the whole plane.
We proved in 1.3 that f maps the set of discontinuity Q of G onto the set of
discontinuity Q' of G

We assumed that G is of the second kind, in which case G’ also is of the
second kind. Extend the canonical projections n: D — D/G and n': D - D/G’
to the domains Q and Q. Then

(p*on:n'of

defines a quasiconformal mapping ¢* of the double Q/G of S onto the double
Q'/G' of §'. Its restriction to S* = (D U B)/G is the desired extension of ¢.

Let ¢;: S—> §',i=0, 1, be two quasiconformal mappings between the Rie-
mann surfaces S = D/G and S’ = D/G’. We just proved that ¢, and ¢, can be
extended to mappings of S* onto (S')*. We say that ¢, is homotopic to ¢,
modulo the boundary if ¢, = ¢, on the border and there is a homotopy from
@, to @, which is constant on the border.

Theorem 1.4. Twwo quasiconformal mappings ¢;: S - S, i = 0, 1, are homotopic
modulo the boundary if and only if they can be lifted to mappings of D which
agree on the boundary.

Proor. Assume first that ¢, and ¢, are homotopic modulo the boundary. If
fo is a lift of ¢, then the lift f; of ¢, homotopic to f, through the lifted
homotopy agrees with f, on the set B. The mappings f, and f; determine the
same group isomorphism (Theorem IV.3.5). From the proof of Theorem 1.2
it follows that f, = f; on L.

Conversely, if f, = f; on the boundary of D, we construct a homotopy f,
from fj to f; as in the proof of Theorem IV.3.5, and conclude again that it can
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be projected to produce a homotopy from ¢, to ¢,. Since f, keeps every
point of B fixed, the projected homotopy is constant on the border of S. [

1.5. Quasiconformal Mappings in Homotopy Classes

Not every sense-preserving homeomorphism between two given Riemann
surfaces is homotopic to a quasiconformal mapping. A trivial counterexam-
ple is the case where one of the surfaces is a disc and the other the complex
plane. These are homeomorphic Riemann surfaces but not quasiconformally
equivalent.

In the case of compact surfaces, the situation is different (Teichmiiller [2]).

Theorem 1.5. Let S and S’ be compact, topologically equivalent Riemann sur-
faces. Then every homotopy class of sense-preserving homeomorphisms of S
onto S’ contains a quasiconformal mapping.

Proor. Let f: S — S’ be a sense-preserving homeomorphism. Since S is com-
pact, it has a finite covering by domains U,, U,, ..., U,, such that U, is
conformally equivalent to the unit disc and dU, is an analytic curve. Set
fo = f, and define inductively a sequence of mappings f,, k=1, 2, ..., n, as
follows: f, = f,_; in S\U,, while in U,, the mapping f, is the Beurling—Ahlfors
extension of the boundary values f,_,|0U,. More precisely, we map U, and
Ji-1(U,) conformally onto the upper half-plane H. Since U, and f,_,(U,) are
Jordan domains, these conformal transformations of U, and f,_,(U,) onto H
have homeomorphic extensions to the boundary (see I.1.2). We normalize the
mappings so that the induced self-mapping w of H keeps oo fixed. After that,
we form the Beurling—Ahlfors extension of w|R as in 1.5.3. By transferring
this extension to S we obtain f,|U,. The mapping f,|U, is a difftomorphism
and hence locally quasiconformal. Moreover, if f,_; is quasiconformal at a
point z € 0U,, then f,|U, N V is quasiconformal for some neighborhood V of
z (cf. [LV], pp. 84-85). Hence, f; is quasiconformal at z, because AU, is a
removable singularity (cf. Lemma 1.6.1). It follows that f, is a quasiconformal
mapping of S, since S is compact.

The mapping (p,t) - tfi(p) + (1 — t)fi,_,(p) i1s a homotopy between f,_,
and f,. It follows that f, is homotopic to f. d

Theorem 1.5 is not true for arbitrary Riemann surfaces S and S’, not even
in cases in which S and S’ each admits a disc as its universal covering surface.

We shall prove later (Theorems 4.5 and 6.3) that if S and S’ are arbitrary
Riemann surfaces which are quasiconformally equivalent, then every homo-
topy class of quasiconformal mappings of S onto S’ contains a real analytic
quasiconformal mapping. This result can be regarded as a generalization of
Theorem III.1.1.
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2. Definitions of Teichmiiller Space

2.1. Riemann Space and Teichmiiller Space

We shall now generalize the notion of the universal Teichmiiller space intro-
duced in III.1 and define the Teichmiiller space for an arbitrary Riemann
surface.

Let us consider all quasiconformal mappings f of a Riemann surface S
onto other Riemann surfaces. If two such mappings f; and f, are declared to
be equivalent whenever the Riemann surfaces f; (S) and f,(S) are conformally
equivalent, the collection of equivalence classes forms the Riemann space Ry
of S.

In the classical case where S is a compact Riemann surface we could
equally well start with homeomorphic mappings of S: by Theorem 1.5, every
homotopy class of homeomorphisms contains quasiconformal mappings.
The study of Rg is called Riemann’s problem of moduli. In the case where S
is the upper half-plane, the equivalence relation is so weak that all mappings
f are equivalent, and so Rg reduces to a single point.

Teichmiiller [1] observed that even in the case of a compact surface, a
space simpler than Rg is obtained if we use a stronger equivalence relation. Let
J1 and f, be quasiconformal mappings of a Riemann surface S. Suppose that
the universal covering surface of S is the extended plane or the complex plane
or a disc with a covering group of the first kind. Then f; and f, are said to be
equivalent if f,0 f;”' is homotopic to a conformal mapping of f,(S) onto
f>(S). If the universal covering surface of S is a disc and the covering group is
of the second kind, ie., if S is bordered, “homotopic” in this definition of
equivalence is to be replaced by “homotopic modulo the boundary”.

Definition. The Teichmiiller space T of the Riemann surface S is the set of the
equivalence classes of quasiconformal mappings of S.

Teichmiiller restricted his interest to compact Riemann surfaces and, a
little more generally, to certain cases in which Tj is finite-dimensional (cf. 9.7).
Ahlfors [1] seems to have been the first to use the name “Teichmiiller space”,
this in 1953. The above definition applying to all Riemann surfaces is due to
Bers ([7], [8]).

It is not difficult to see that if S = H, then Ty agrees with the universal
Teichmiiller space Ty. In applying the above definition of Ty to S = H, we
first note that all quasiconformal images of H are conformally equivalent. It
follows that we may consider without loss of generality only the normalized
quasiconformal self-mappings of H which we denoted in III.1 by f*. By The-
orem 1.4, the condition that f*20(f*')~! be homotopic modulo the boundary
to a conformal mapping is fulfilled if and only if f#20(f*#1)"! agrees with the
identity mapping on the real axis R. Consequently, f** is equivalent to
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f*2 by the above definition if and only if f*'|R = f*2|R. By the definition in
[11.1.1, this is the condition for f#' and f*2 to determine the same point in the
universal Teichmiiller space Tj.

A connection is obtained between Ty and the universal Teichmiiller space
if we lift the mappings between S and other Riemann surfaces to mappings
between the universal covering surfaces. In this way we are able to transfer
many results associated with the universal Teichmiiller space to the general
case. This will be done in sections 3-5.

By slightly changing the definition of Ty we arrive at the reduced Teichmiiller
space of S. Its points are also equivalence classes of quasiconformal mappings
of S, but now two such mappings f; and f, are declared equivalent if f, o f;™*
is just homotopic (not necessarily homotopic modulo the boundary) to a
conformal mapping.

The reduced Teichmiiller space differs from the Teichmiiller space T; only
if S is bordered. In what follows, we shall not deal with reduced Teichmiiller
spaces. For this reason we henceforth use the term “homotopy” to mean
“homotopy modulo the boundary” in the case of bordered surfaces. This
simplifics the language and, if this convention is kept in mind, should not
cause confusion.

2.2. Teichmiller Metric

Exactly as in the case of the universal Teichmiiller space, we define the
distance

©(p,q) = yinf{log K, ;1| f€p,geq} 2.1

between the points p and g of the Teichmiiller space Ty (cf. I11.2.1). In the
proof that 7 defines a metric in T, the only non-trivial step is again to show
that t(p,q) = 0 implies p = g. This can be deduced from the following result.

Theorem 2.1. Let f: S — S’ be a quasiconformal mapping and F the class of all
quasiconformal mappings of S onto S’ homotopic to f,. Then F contains an
extremal mapping, i.e., one with smallest maximal dilatation.

Proor. Let D be a universal covering surface of S. The theorem is trivial if D
is the extended plane or if D is the complex plane and S is non-compact. In
the case where D is the complex plane and S is compact, the theorem will be
proved in 6.4. Hence, we may assume that D = H is the upper half-plane (cf.
IV.4.1).

By Theorem 1.4, we can lift each f e F to a self-mapping w, of H such that
all mappings w, agree on the real axis. The class W = {w,| f € F} contains its
quasiconformal limits. Hence, there exists a mapping we W with smallest
maximal dilatation (cf. .5.7). The projection of w is the extremal sought in F.

OJ
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Given the points p, q € Ty, we fix the mappings f, € p, go € g, and let F now
be the class of all quasiconformal mappings of f,(S) onto g,(S) homotopic to
do° fo !. Again mimicking what was done in the case of the universal Teich-
miiller space (cf. I11.2.1) we conclude that

1(p,q) = inf{log K| f € F}. 2.2)

In other words, in determining the distance between two points of T; we can
always take the infimum of maximal dilatations in a homotopy class of
quasiconformal mappings between two fixed Riemann surfaces.

Theorem 2.1 says that the inf in (2.2) can be replaced by min. Consequently,
if 7(p,q) = 0, the class F contains a conformal mapping, and so p = q. After
this, it is clear that (Tg, t) is a metric space.

The point which is defined by the identity mapping of S is called the origin
of T. The origin contains all conformal mappings of S.

2.3. Teichmiiller Space and Beltrami Differentials

The definition of the Teichmiiller space T can also be formulated in terms of
the Beltrami differentials on S. Every quasiconformal mapping of S deter-
mines a Beltrami differential on S, namely, its complex dilatation. Conversely,
if pu is a Beltrami differential of S, then by Theorem 1.1 there is a quasicon-
formal mapping of S whose complex dilatation is u, and by the uniqueness
part of Theorem 1.1, all such mappings determine the same point of Ty. Two
Beltrami differentials are said to be equivalent if the corresponding quasicon-
formal mappings are equivalent. Hence, a point of Ty can be thought of as a
set of equivalent Beltrami differentials. The Teichmiiller distance (2.1) can be
expressed in terms of Beltrami differentials:

T+ (e = /(1 — )l
L= 1l(e =/ = ),

Let S admit the half-plane as its universal covering surface. Then geodesics
in T allow the same description as in the universal Teichmiiller space (see
Theorem 111.2.2): If p is an extremal complex dilatation for the point pe Tg,
then

1
(p,q) = Einf{log uep,veq}. (2.3)

_ @+ {u) = A = ful) w
(U L)+ (1=l ul
is extremal for the point p, = [u,]. The arc t — p, is a geodesic from O to p, and
T(p,,O) = tT(P, 0)
By using Theorem 3.1, to be established in subsection 3.1, we can merely
repeat the proof of Theorem II1.2.2. We only have to make the additional
verification that y, represents a point of Tg. Since u represents a point of Tg,

t<1

= == 1

(2.4)

t
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it is a Beltrami differential for the covering group G of the universal covering
surface over S, i.e., (og)g'/g’ = u for every ge G. From (2.4) we see immedi-
ately that g, also satisfies this condition. Hence [,] is a point of T.

The following generalization of Theorem I11.2.1 is immediate.

Theorem 2.2. The Teichmiiller space Ty is pathwise connected.

Proor. The geodesic t — [,] is a path joining the origin to the point p in Tg;
the path t — [tu] of Ty also has this property. Od

2.4. Teichmiiller Space and Conformal Structures

Let S be a Riemann surface with the conformal structure H and {h} an atlas
of local parameters belonging to H. If f is a homeomorphism of S onto itself,
then {ho f ™'} is an atlas which determines another conformal structure of S.
We denote this structure by f, (H) and note that f, (H) does not depend on
the particular choice of the atlas on H.

It follows from the definition that f: (S, H) — (S, f,(H)) is a conformal map-
ping. Conversely, if H and H’ are conformal structures of S and f: (S, H) —»
(S, H') is conformal, then H' = f_(H).

We say that two conformal structures H and H' of S are deformation equiva-
lent if H can be deformed conformally to H', i.e., if there is a conformal map-
ping of (S, H) onto (S, H') which is homotopic to the identity.

In 1.2 we showed that every Beltrami differential x on the Riemann surface
(S, H) defines a new conformal structure H,. Given two conformal struc-
tures H and H’ of S, suppose that there exists a quasiconformal mapping
f:(S,H)— (S, H'). Let u denote the complex dilatation of f. Then

H' = f,(H,). (2.5)

This follows directly from the definitions, because now f: (S, H,) — (S, H') is
conformal.

There is a simple connection between different structures H, and points of
the Teichmiiller space of S.

Theorem 2.3. The conformal structures H, and H, induced by the Beltrami
differentials p, and p, on the Riemann surface S are deformation equivalent if
and only if i, and p, determine the same point in the Teichmiiller space Tg.

Proor. Let f;, i =1, 2, be quasiconformal mappings of S with complex
dilatations y;. If ¢:(S,H,) — (S, H,) is a conformal mapping homotopic to
the identity, we first conclude that the mapping

h=fyo@ofi ' fi(S) = f2(S)
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is conformal. Also, we see that 50 f;"! is homotopic to h. It follows that u,
and p, are equivalent.

Conversely, if i, and p, are equivalent, there is a conformal map h: f,(S) —»
f>(S) such that ¢ = f; 'ohof,: S — S is homotopic to the identity. In addi-
tion, ¢: (S, H,;) — (S, H,) is conformal, and so H, is equivalent to H,. O

We conclude that the Teichmiiller space Ty can be characterized as the set of
equivalence classes of conformal structures H, on S modulo deformation. Note
that a conformal structure H' on S is of the form H, if and only if id: (S, H) —
(S, H') is quasiconformal.

2.5. Conformal Structures on a Compact Surface

In considering different conformal structures on a surface S, we assume here
that for any two structures H and H’, the identity mapping of (S, H) onto
(S, H') is sense-preserving. The above results can then be supplemented if S is
a compact surface.

Theorem 2.4. On a compact Riemann surface S, every conformal structure is
deformation equivalent to a structure induced by a Beltrami differential of S.

PRrROOF. Let H be the given and H' an arbitrary conformal structure on S. By
Theorem 1.5, there is a quasiconformal mapping f: (S, H) — (S, H') which is
homotopic to the identity. Let f have the complex dilatation u. Then H' =
f«(H,) (formula (2.5)). But f:(S,H,)— (S, f,(H,)) is a conformal mapping
homotopic to the identity. Consequently, H' = f,(H,) is deformation equiva-
lentto H,. O

Theorems 2.3 and 2.4 yield an important characterization of Ts.

Theorem 2.5. The Teichmiiller space of a compact Riemann surface is isomor-
phic to the set of equivalence classes of conformal structures modulo deforma-
tion.

This result can also be expressed in somewhat different terms. Let J#(S)
denote the set of all conformal structures of S. The group Homeo™ (S) consist-
ing of all sense-preserving homeomorphic self-mappings of S acts on #(S): If
He #(S) and fe Homeo™ (S), then f,(H)e #(S).

Let Homeo,(S) be the subgroup of Homeo™ (S) whose mappings are homo-
topic to the identity. Then H, H'e #(S) are deformation equivalent if and
only if there is an fe€ Homeo,(S) such that f, (H) = H'. It follows, therefore,
that for a compact surface S we have the isomorphism

Ts ~ A (S)/Homeo(S).
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In section 8 we shall prove that every class of equivalent complex dilata-
tions contains a unique dilatation of the form k@/|¢|, where 0 < k < 1 and ¢
is a holomorphic quadratic differential of S. It thus follows from Theorems
2.4 and 2.5 that every conformal structure of a compact Riemann surface is
deformation equivalent to a structure induced by a Beltrami differential
k@/||. Since ¢ is uniquely determined up to a multiplicative positive con-
stant (except of course for the case k = 0), we see that there is a simple
relationship between the normalized quadratic differentials and the equiva-
lence classes of conformal structures on S.

The role of holomorphic quadratic differentials in the Teichmiiller theory
of compact Riemann surfaces will be studied in more detail in sections 7-9.

2.6. Isomorphisms of Teichmiiller Spaces

In II1.5.2 we proved that the universal Teichmiiller spaces associated with
different quasidiscs are all isomorphic. Again, it is a trivial consequence of the
definition that we have a counterpart of this result in the general case.

Theorem 2.6. The Teichmiiller spaces of two quasiconformally equivalent
Riemann surfaces are isometrically bijective.

Proor. Let S and S’ be Riemann surfaces and h a quasiconformal mapping
of S onto S’. The mapping f — foh™' is a bijection of the family of all
quasiconformal mappings f of S onto the family of all quasiconformal map-
pings of S". If w; = fioh™!, we have w,ow[! = f,0 f,"'. We first conclude that
/1 and f, determine the same point of T if and only if w, and w, determine
the same point in Ty, i.e.,

[f1-0foh™"] (2.6)
is a bijective mapping of Ty onto Ty.. It also follows that (2.6) is an isometry,
i.e., it leaves all Teichmiiller distances invariant. O

Under (2.6) the point [h] of T is mapped to the origin of Ty.. We shall later
utilize this simple method of moving an arbitrary point of one Teichmiiller
space to the origin of another isometric Teichmiiller space.

If S and S’ are compact Riemann surfaces of the same genus, they are
homeomorphic (IV.5.2). By Theorem 1.5, they are also quasiconformally
equivalent. We conclude from Theorem 2.6 that all Teichmiiller spaces of
compact surfaces of the same genus are isomorphic.

In sections 5 and 6 we shall introduce complex analytic structure in Teich-
miiller spaces. We can then enhance Theorem 2.6 and prove that the Teich-
miiller spaces of quasiconformally equivalent Riemann surfaces are even
biholomorphically isomorphic.



188 V. Teichmiiller Spaces

2.7. Modular Group

Let h be a quasiconformal self-mapping of S. Then (2.6) defines a bijective
isometry of T onto itself. The group Mod(S) of all such isomorphisms [ /] —
[foh™'] of Ty is called the modular group of Ty.

If S = H, in which case T is the universal Teichmiiller space, Mod(S) is the
universal modular group introduced in IT1.1.2.

The modular group Mod(S) is also a generalization of the classical modular
group I' of Mobius transformations acting on the upper half-plane H, in the
following sense: If S is a torus, the Teichmiiller space Ty can be identified with
H and the group Mod(S) with I'. This will be explained in 6.7.

In section 5 we shall prove that even in the general case, the elements of the
modular group are biholomorphic self-mappings of Tg.

Let Qc(S) be the group of all quasiconformal self-mappings of S and Qc,(S)
the normal subgroup of Qc¢(S) whose mappings are homotopic to the identity.
We associate with every he Qc(S) the element [ f]— [foh™!] of Mod(S).
This rule defines a mapping of the quotient group Qc(S)/Qc,(S) into Mod(S).
In fact, if h3' oh, € Qcy(S), then [ fohi!] = [foh;']. Clearly, this mapping
of Qc(S)/Qcy(S) into Mod(S) is surjective and a group homomorphism. We
remark that the mapping is injective if S admits no conformal self-mappings
other than the identity transformation. It follows that in this case the modular
group Mod(S) is isomorphic with the quotient group Qc(S)/Qco(S). This is
also true of all Riemann surfaces quasiconformally equivalent to such an S.

The following result illustrates the homotopy condition which makes Rg a
quotient space of Tg.

Theorem 2.7. The Riemann space is the quotient of the Teichmiiller space by the
modular group.

Proor. Assume first that the points [ f] and [g] of T; are equivalent under
Mod(S). We then have a quasiconformal mapping h: S — S such that foh™!
is equivalent to g. But this means that there is a conformal mapping of f(S)
onto g(S), i.e,, f and g determine the same point of Rj.

Conversely, let f and g represent the same point of Rg. Then a conformal
mapping ¢: f(S) — g(S) exists, and h = g~ oo f is a quasiconformal self-
mapping of S. From g = @o(foh™") we see that g and foh™! determine the
same point of Tg. O

Theorem 2.7 says that two points [ f;] and [ f,] of the Teichmiiller space
T are equivalent under Mod(S) if and only if the Riemann surfaces f;(S) and
f>(8) are conformally equivalent. In other words, the modular group is transi-
tive if and only if the Riemann space Ry reduces to a singleton. This occurs
only in the exceptional cases where quasiconformal equivalence of Riemann
surfaces implies their conformal equivalence. The universal Teichmiiller space
(S = H) is such an exception.
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Not only the Riemann space but even the Teichmiiller space may reduce
to a single point. This occurs if S is a sphere (a compact surface of genus zero)
or a sphere from which 1, 2 or 3 points are removed. All quasiconformal
images of S are then conformally equivalent; this can be seen if Theorem 1.4.4
is combined with the fact that three points of the extended plane can be
moved to arbitrary positions by a Mobius transformation. After this we
conclude that every point of Ty contains a conformal mapping, i.e., that Ty is
a singleton. If S is the sphere minus three points, S has the disc as a universal
covering surface (cf. IV.4.1), and the covering group is of the first kind.

3. Teichmiiller Space and Lifted Mappings

3.1. Equivalent Beltrami Differentials

For a Riemann surface S, we defined the Teichmiiller space Ty by means of
quasiconformal mappings of S onto Riemann surfaces. Lifting these mappings
to mappings between the universal covering surfaces leads to new character-
izations of T; and makes it possible to see better the connection between the
general space Ty and the universal Teichmiiller space.

We impose on the Riemann surface S the sole restriction that it has a
half-plane as its universal covering surface. Since we try to follow as closely
as possible the reasoning applied in III.1 and II1.2 in the case of the universal
Teichmiiller space, we take here the lower half-plane H' as the universal
covering surface of S. The cases in which the universal covering surface of S
is the complex plane will be discussed in section 6.

Given a Riemann surface S, we consider a Beltrami differential x on S or,
what is the same, a function u defined in H' which is a Beltrami differential
for the covering group of H' over S. As before, we denote by f* the uniquely
determined quasiconformal self-mapping of H' which has the complex dilata-
tion p and which keeps fixed the points 0, 1 and oo on the real axis R, and by
£, the quasiconformal mapping of the plane which has the complex dilatation
win H’, is conformal in the upper half-plane H and fixes the points 0, 1 and
oo. Theorem II1.1.2 has an exact counterpart:

Theorem 3.1. The Beltrami differentials p and v of S are equivalent if and only
iff*IR = f*|R or if and only if f,|H = f,|H.

Proor. Let us first assume that u and v are equivalent. Let ¢ and y be
quasiconformal mappings of S which lift to f# and f*, respectively. Then
there is a conformal map #: ¢(S) — Y¥/(S) such that y o ¢ is homotopic to . By
Theorem 1.4, we have [* = ho f* on the real axis R, where A, as a lift of #, is
a Mobius transformation. Since f* and f" both fix 0, 1, oo, it follows that h
is the identity.
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Suppose, conversely, that f# = f* on the boundary R. Then f* and f*
induce the same isomorphism of the covering group of H' over S onto a
Fuchsian group G'. The projections of f* and f* map S onto the same
Riemann surface H'/G’, and by Theorem 1.4, these projections are homoto-
pic. It follows that u and v are equivalent.

After this we can show that f*|R = f*|R if and only if f,|H = f,|H by
repeating the proof of Theorem III.1.2 verbatim. O

3.2. Teichmiiller Space as a Subset of the Universal Space

Theorem 3.1 says that
(1] - fHIR and [u]- f,IH

are well defined injective mappings of the Teichmiiller space. In particular, T
can be characterized as the set of equivalence classes [ f*], two mappings
being equivalent if they agree on R. We have thus arrived at the situation
which was our starting point in III.1 when we defined the universal Teich-
miiller space. In the general case the complex dilatations of the mappings f*
are Beltrami differentials for the covering group G. If G is trivial, then T is
the universal Teichmiiller space T (cf. also the remarks in 2.1).

This characterization of Ty shows that the family of Teichmiiller spaces
admits a partial ordering. Let S; and S, be Riemann surfaces and G, and G,
the covering groups of H' over S; and S,. If G, is a subgroup of G,, then
T, = Ts,. In particular, every Teichmiiller space T can be regarded as a subset
of the universal Teichmiiller space T.

Let 7 and 15 denote the Teichmiiller metrics in the spaces Tand Tg. Then
the restriction | Ty is also a metric in T;. From the definitions of T and g it
follows immediately that

| Ts < 5. (3.1)

It was for many years an open question whether the metrics tg and | T
actually agree. We now know that Ty does not inherit its metric from the
universal Teichmiiller space: The metrics tg and t| Ty need not be the same.

This was proved by Strebel [4] who gave two examples of surfaces S for
which 7| Ty is strictly less than 7. In one case S is a punctured torus, in the
other a compact surface of genus 2; cf. also 3.7 and 7.6.

Even though (3.1) does not always hold as an equality, the metrics 7| Ty and
g are topologically equivalent. In other words, the inclusion (T, t5) — (T, 1)
is a homeomorphism onto its image. This will be proved in 4.6.

3.3. Completeness of Teichmiiller Spaces

Lemma II1.2.2 is true in every Teichmiiller space Tg:
A Cauchy sequence in (T, 75) contains always a subsequence whose points
have representatives y, such that lim y,(z) = u(z) exists almost everywhere,
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[ /.1 — [f.] in the tg-metric, f, (z) = f,(z) uniformly in the spherical metric,
and f*r(z) > f*(z) locally uniformly in H' in the euclidean metric.

The proof is word for word the same as in Lemma II1.2.2. In this case every
U, is a Beltrami differential for G, ie., (u,09)g'/g’ = pn,. From p,(z) — u(z)
almost everywhere it follows that the limit u also is a Beltrami differential for
G, ie., [u1] is a point of Ts.

From this observation we obtain a generalization of Theorem II1.2.3.

Theorem 3.2. The Teichmiiller space (T, tg) is complete.
For an application in section 9 we need the following result.

Lemma 3.1. Let [u,] = [p] in T, |ualle < k < 1, and p, — v ae. Then [u] =
[v]in Ts.

Proor. Let 4,e[p,] be an extremal complex dilatation for which 4([u,],
[1]) = artanh||(4, — w)/(1 — &A,)||, (formula (2.3)). The hypothesis [u,] —
[ ] then implies that 4, —» u in L*. By Theorem 1.4.6, f, — f, and f; — f,.
Since f, |H = f; |H it follows that f,|H = f,|H, and so [u] = [v]. d

3.4. Quasi-Fuchsian Groups

The mappings f, lead to discontinuous groups of Mobius transformations
with an invariant domain different from a disc.

Theorem 3.3. The mapping g — f, o go f,”" defines an isomorphism of the cover-
ing group G onto a group G, of Mébius transformations acting on the quasidisc

JuH).

Proor. Consider the quasiconformal mapping f,ogo f,”!, g€ G, of the plane.
It is conformal in f,(H), because f,|H is conformal. Since u is a Beltrami
differential for G, the mappings f, and f, og have the same complex dilata-
tion. It follows that f,ogof,”' is conformal in f.(H') also. The common
boundary of f,(H) and f,(H’), being the image of the real axis under f,, is a
quasicircle. We conclude, therefore, from Lemma 1.6.1 that f,ogo f, ! is a
Mobius transformation. O

By the terminology we adopted in IV.4.6, the group
Gy = {/ucgeofi lge G}

is quasi-Fuchsian. A quasi-Fuchsian group of this special type is called a
quasiconformal deformation of the Fuchsian group G. Such groups were
discovered by Bers [4].

The invariant domain f,(H') is a half-plane if and only if p is a trivial
complex dilatation, i.e., u is equivalent to the complex dilatation which is
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Figure 13. Invariant Jordan domain which is not a quasidisc.

identically zero. If G is of the first kind, the limit set of G, is the whole
boundary of f,(H'). By Theorem IV.4.2, only two strikingly different cases are
then possible: Either the boundary is a straight line or else it is a quasicircle
which fails to have a tangent at each point of a set dense in the curve.

Not all simply connected invariant domains of properly discontinuous
groups of Mébius transformations are necessarily quasidiscs. A simple ex-
ample is obtained if we consider a countable set of circles, all of diameter 1,
of which one has the center at 0 and the others at the points +i + n,n =0, 1,
2, .... The method of Klein, which we described at the end of IV.4.6, applied
to this family of circles yields an invariant Jordan domain whose boundary
has a cusp at the origin. Thus the boundary curve violates the condition
(6.11) of Theorem 1.6.7 at the origin (z, = 0, z, and z; — 0) and cannot be a
quasicircle (Fig. 13).

There can even be invariant domains whose boundary has positive area
(Abikoff [1]). In 4.3 we shall exhibit a general (albeit implicit) method for
producing invariant domains which are not quasidiscs.

A point [u]e Ty uniquely determines the domains A, = f,(H) and A4, =
f.(H’). Like the universal Teichmiiller space, T; can be regarded as a collec-
tion of the quasidiscs A, (cf. ITL.1.5). In I11.4 we defined a distance between
two such domains by using Schwarzian derivatives. The relation of this
distance to the Teichmiiller distance will be studied in section 4.

3.5. Quasiconformal Reflections Compatible with a Group

The point [u] = pe Ty determines uniquely the quasicircle f,(R). We show
here that f,(R) admits always quasiconformal reflections which are compati-
ble with the covering group G.

In order to make this statement more precise, we choose a uep and
consider the mapping
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A= fuojofih (32)
as before j denotes the reflection z — z. This mapping is a quasiconformal
reflection in f,(R).

By Theorem 3.3, the mapping f, induces an isomorphism of the group G
acting on H’ onto the quasi-Fuchsian group G, = {f,cgo f, '|g€ G} acting
on A,. But since the elements of G and G, are restrictions of M&bius trans-

formations, we may consider g and g, = f,ogof,”' in H and A, also. If
z = f,(0), then

Mg,(2) = f(G(©0) = £(9(D)) = gu(A(z)).

We conclude that the sense-reversing quasiconformal mappings 4 and
4o g, have the same complex dilatation. Therefore, if x; = d1/04 denotes this
complex dilatation, then

(K1°9,)(9,/9u) = K, (3.3)
for every g, € G,. In other words, the complex conjugate of the complex dilata-
tion of A is a Beltrami differential for the quasi-Fuchsian group G,,.

Conversely, we prove that if 4 is a quasiconformal reflection in f,(R) whose
complex dilatation «, satisfies the relation (3.3), then 4 is of the form (3.2) (cf.
Lemma 1.6.2). Set f = f, in the closure of H,and f = Ao f,ojin H'. Then fis
a quasiconformal mapping in the plane which is conformal in H. For geG,
we have in f,(H’),

fogof Tl = ,{ofuogof;l"lo)_-l = Aoguoﬂ.—l.

Because of (3.3), Aog,0A™! is conformal. Hence fogof~' is a con-
formal self-mapping of f,(H'). Since fogof™' =g, in f,(H), it follows
that fogo f™! = g, everywhere. We see that f is a mapping f, equivalent to
fu»and so 2 = fojo f~!is of the form (3.2).

The point [u] e Ty determines the conformal mapping f,|H uniquely, but
not f,|H’ and hence not 4. In 4.8 we shall see that for each G and [ ], there
are Lipschitz-continuous reflections (3.2). We also remark that by Theorem
4.5 (to be proved in section 4), there are reflections A which are real-analytic
in the complement of f,(R).

3.6. Quasisymmetric Functions Compatible with a Group

The mapping f* induces an isomorphism of the group G onto the Fuchsian
group
G' ={g" = f"ogo(f*)"IgeG}.

In particular, (f#|R)ogo(f*)"'|R agrees with the restriction to R of a
Mobius transformation.
Let us consider again the space X of normalized quasisymmetric functions,
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which we defined in III.1.1 and studied in I11.3. We relate X to the group G
as follows: X(G) is the subset of X for whose functions h the composition
hogoh™! is the restriction to R of a Mdbius transformation for every geG.
We let X (G) inherit the metric of X, i.e., the distance in X (G) is the restriction
to X (G) of the distance function p on X. Then (X (G), p) is a metric space, and
if G is trivial we get back our previous space (X, p).

Theorem II1.3.1 states that the mapping [ 4] — f*|R is a homeomorphism
of the universal Teichmiiller space onto X. In order to generalize this the-
orem to Ty and X(G), we need the following result.

Theorem 3.4. Every quasisymmetric function he X (G) ha