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PREFACE

This second volume of our treatise on commutative algebra deals
largely with three basic topics, which go beyond the more or less classical
material of volume I and are on the whole of a more advanced nature
and a more recent vintage. These topics are: (a) valuation theory; (b)
theory of polynomial and power series rings (including generalizations to
graded rings and modules); (c) local algebra, Because most of these
topics have either their source or their best motivation in algebraic geom-
etry, the algebro-geometric connections and applications of the purely
algebraic material are constantly stressed and abundantly scattered through-
out the exposition. Thus, this volume can be used in part as an introduc-
tion to some basic concepts and the arithmetic foundations of algebraic
geometry. The reader who is not immediately concerned with geometric
applications may omit the algebro-geometric material in a first reading
(see “Instructions to the reader,” page vii), but it is only fair to say that
many a reader will find it more instructive to find out immediately what
is the geometric motivation behind the purely algebraic material of this
volume.

The first 8 sections of Chapter VI (including § 5bis) deal directly with
properties of places, rather than with those of the valuation associated
with a place. These, therefore, are properties of valuations in which the
value group of the valuation is not involved. The very concept of a valua-
tion is only introduced for the first time in § 8, and, from that point on,
the more subtle properties of valuations which are related to the value
group come to the fore. These are illustrated by numerous examples, taken
largely from the theory of algebraic function fields (§§ 14, 15). The
last two sections of the chapter contain a general treatment, within the
framework of arbitrary commutative integral domains, of two concepts
which are of considerable importance in algebraic geometry (the Riemann
surface of a field and the notions of normal and derived normal models).

The greater part of Chapter VII is devoted to classical properties of
polynomial and power series rings (e.g., dimension theory) and their
applications to algebraic geometry. This chapter also includes a treatment
of graded rings and modules and such topics as characteristic (Hilbert)
functions and chains of syzygies. In the past, these last two topics repre-

sented some final words of the algebraic theory, to be followed only by
v



vi PREFACE

deeper geometric applications. With the modern development of homo-
logical methods in commutative algebra, these topics became starting points
of extensive, purely algebraic theories, having a much wider range of
applications. We could not include, without completely disrupting the
balance of this volume, the results which require the use of truly homological
methods (e.g., torsion and extension functors, complexes, spectral se-
quences). However, we have tried to include the results which may be
proved by methods which, although inspired by homological algebra, are
nevertheless classical in nature. The reader will find these results in
Chapter VII, §§ 12 and 13, and in Appendices 6 and 7. No previous
knowledge of homological algebra is needed for reading these parts of the
volume. The reader who wants to see how truly homological methods
may be applied to commutative algebra is referred to the original papers
of M. Auslander, D. Buchsbaum, A. Grothendieck, D. Rees, J.-P. Serre,
etc., to a forthcoming book of D. C. Northcott, as well, of course, as to the
basic treatise of Cartan-Eilenberg.

Chapter VIII deals with the theory of local rings. This theory pro-
vides the algebraic basis for the local study of algebraic and analytical
varieties. The first six sections are rather elementary and deal with more
general rings than local rings. Deeper results are presented in the rest of
the chapter, but we have not attempted to give an encyclopedic account of
the subject.

While much of the material appears here for the first time in book
form, there is also a good deal of material which is new and represents
current or unpublished research. The appendices treat special topics of
current interest {the first 5 were written by the senior author; the last
two by the junior author), except that Appendix 6 gives a smooth treatment
of two important theorems proved in the text. Appendices 4 and 5 are
of particular interest from an algebro-geometric point of view.

We have not attempted to trace the origin of the various proofs in this
volume. Some of these proofs, especially in the appendices, are new.
Others are transcriptions or arrangements of proofs taken from original
papers. '

We wish to acknowledge the assistance which we have received from
M. Hironaka, T. Knapp, S. Shatz, and M. Schlesinger in the work of
checking parts of the manuscript and of reading the galley proofs. Many
improvements have resulted from their assistance.

The work on Appendix 5 was supported by a Research project at
Harvard University sponsored by the Air Force Office of Scientific Re-

search.

Cambridge, Massachusetts Oscar ZARISKI
Clermont-Ferrand, France PIERRE SAMUEL



INSTRUCTIONS TO THE READER

As this volume contains a number of topics which either are of some-
what specialized nature (but still belong to pure algebra) or belong to
algebraic geometry, the reader who wishes first to acquaint himself with
the basic algebraic topics before turning his attention to deeper and more
specialized results or to geometric applications, may very well skip some
parts of this volume during a first reading. The material which may thus
be postponed to a second reading is the following:

CHAaPTER VI
All of § 3, except for the proof of the first two assertions of Theorem
3 and the definition of the rank of a place; § 5: Theorem 10, the lemma and
its corollary; § 5bis (if not immediately interested in geometric applica-
tions); §11: Lemma 4 and pages 57-67 (beginning with part (b) of
Theorem 19); §12; § 14: The last part of the section, beginning with
Theorem 34’; § 15 (if not interested in examples) ; §§ 16, 17, and 18.

CHaPTER VII
§§ 3, 4, 4bis, 5 and 6 (if not immediately interested in geometric appli-
cations) ; all of § 8, except for the statement of Macaulay’s theorem and
(if it sounds interesting) the proof (another proof, based on local algebra,
may be found in Appendix 6); § 9: Theorem 29 and the proof of Theorem
30 (this theorem is contained in Theorem 25); § 11 (the contents of this
section are particularly useful in geometric applications).

Cuarter VIII
All of §5, except for Theorem 13 and its Corollary 2; §10; §11:
Everything concerning multiplicities; all of .§ 12, except for Theorem 27
(second proof recommended) and the statement of the theorem of Cohen-

Macaulay; § 13.

All appendices may be omitted in a first reading.

vii
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VI. VALUATION THEORY

§ 1. Introductory remarks. Homomorphic mappings of rings
into fields are very common in commutative algebra and in its applica-
tions. We may cite the following examples:

EXAMPLE 1. The reduction of integers mod p. More precisely, let p
be a prime number ; then the canonical mapping of the ring J of integers
onto the residue class ring J/Jp maps J onto a field with p elements.
More generally, we may consider a ring D of algebraic integers (Vol. I,
Ch.V, § 4, p. 265), a prime ideal p in D, and the mapping of D onto D/y.
These examples are of importance in number theory.

EXAMPLE 2. We now give examples pertaining to algebraic geometry.

Let k be a field and K an extension of k.. Let (x,, - - -, x,) be a point in
the affine n-space 4,X over K. With every polynomial F(X,, - - -, X,)
with coefficients in k& we associate its value F(x,, - - -, x,) at the given

point. This defines a homomorphic mapping of the polynomial ring
k[X,, -+, X,] into K. Now let us say that a point (xy,---,x",) of
AKX is a specialization of (x,,---,x,) over k if every polynomial
Fek[X,, --,X,] which vanishes at (xy,-- -, x,) vanishes also at
'y, -+, ',). Then (by taking differences) two polynomials G, H
with coefficients in k which take the same value at (x,, - - -, «,,) take also
the same value at (x',, - - -, &",). This defines a mapping of k[x, - - - ,x,]
onto A[x'y, - - -, x',] (= K), which maps x; on x’; for 1<i<n. Sucha
mapping, and more generally any homomorphic mapping ¢ of a ring R
into a field, such that p(x) # 0 for some x € R, is called a specialization (of
k[xy, - - -, x,] into K in our case). Note that this definition implies
that (1)=11if 1 e R. If, as in the above example, the specialization is
the identity on some subfield k of the ring, then we shall say that the
specialization is over k.

ExaMPLE 3. From function theory comes the following example:
with any power series in n variables with complex coefficients we
associate its constant term, i.e., its value at the origin.

Since any integral domain may be imbedded in its quotient field, a
homomorphic mapping of a ring 4 into a field is the same thing as a
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homomorphic mapping of 4 onto an integral domain. Thus, by Vol. I,
Ch. III, § 8, Theorem 10 a necessary and sufficient condition that a
homomorphism f of a ring A map 4 into a field is that the kernel of f be
a prime ideal.

From now on we suppose that we are dealing with a ring 4 which is
an integral domain. Let K be a field containing 4 (not necessarily its
quotient field), and let f be a specialization of A. An important problem
is to investigate whether f may be extended to a specialization defined
on as big as possible a subring of K. An answer to this question will be
given in §4. We may notice already that this problem is not at all
trivial.

exaMPLE 4. Consider, in fact, a polynomial ring k[X, Y] in two
variables over a field &, and the specialization f of k[X, Y] onto k de-
fined by f(a)=aforain &, f(X)=f(Y)=0 (“the value at the origin”).
The value to be given to the rational function X/Y at the origin is not
determined by f(since itappearsas 0/0). Wehavek[X/Y, Y]>k[X, Y],
and any maximal ideal § in X[X/Y, Y] which contains Y contains also
X and thus contracts to the maximal ideal (X, Y) in k[X, Y]. Since
there are infinitely many such maximal ideals ¥ (they are the ideals
generated by A(X/Y) and Y, where h(¢) is any irreducible polynomial
in k[¢t]) it follows that f admits infinitely many extensions to the ring
kX, Y, X|Y]

However, there are elements of K to which the given specialization f
of A may be extended without further ado and in a unique fashion.
Consider, in fact, the elements of K which may be written in the form
a/b with a in 4, b in 4, and f(b)#0. These elements constitute the
quotient ring Ap where p is the kernel of f and is a prime ideal. For
such an element a/b let us write g(a/b)=f(a)/f(b). It is readily verified
that g is actually a mapping: if a/b=a’/b’ with f(b)# 0 and f(b") #0, then
f(a)/f(b)=f(a")/f(b') since ab’=ba’ and since f is a homomorphism.
One sees also in a similar way that g is a homomorphism of 4, extending
f(see Vol. I, Ch. IV, §9, Theorem 14). Since g takes values in the
same field as f does, g is a specialization of 4;. The ring A, is some-
times called the specialization ring of f; it is a local ring if 4 is noetherian
(Vol. I, Ch. IV, § 11, p. 228).

In Example 1 this local ring is the set of all fractions m/n whose de-
nominator 7 is not a multiple of p. In Example 2 it is the set of all
rational functions in X, .-, X, which are “finite”’ at the point
(%1, -+ +, x,) (i.e., whose denominator does not vanish at this point).
In Example 3 it is the power series ring itself, as a power series with
non-zero constant term is invertible.
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On the other hand there are (when the specialization f is not an iso-
morphic mapping) elements of K to which f cannot be extended by any
means. These elements are those which can be written under the form
a/b, with a and & in A, with f(a)#0 and f(5) =0, for the value g(a/b) of
a/b in an extension g of f must satisty the relation g(a/b)- f(b) =f(a) (since
(a/b)-b=a), but this is impossible. The elements a/b of the above
form are the inverses of the non-zero elements in the maximal ideal of
the specialization ring of f.

We are thus led to studying the extreme case in which all elements of
K which are not in 4 are of this latter type. In this case 4 is identical
with the specialization ring of f, and every element of K which is not in
A must be of the form 1/x, where x is an element of 4 such that f(x)=0.

§ 2. Places

DEFINITION 1. Let K be an arbitrary field. A place of K is a homo-
morphic mapping P of a subring Ko of K into a field 4, such that the follow-
tng conditions are satisfied:

(1) if xe K and x ¢ Ko, then 1/x € Ko and (1/x)?=0;
(2) x? # 0 for some x in Ko.

In many applications of ideal theory (and expecially in algebraic geo-
metry) a certain basic field k is given in advance, called the ground field,
and the above arbitrary field K is restricted to be an extension of k:
k< K. Inthat case, one may be particularly interested in places 2 of K
which reduce to the identity on &, i.e., places 2 which satisfy the follow-
ing additional condition:

3) ¢? = c for all ¢ in k (whence k is a subfield of 4).

Any place 2 of K which satisfies (3) is said to be a place of K over &,
or a place of K/k.

EXAMPLES OF PLACES:

EXAMPLE 1. Let 4 be a UFD, and a an irreducible element in 4.
The ideal Aa is a prime ideal, whence 4/Aa is an integral domain. De-
note by 4 its quotient field. The canonical homomorphism of 4 onto
A[Aa is a specialization f of 4 into 4. The specialization ring B of f is
the set of all fractions x/y, withx € 4,y € 4, y ¢ Aa (i.e., y prime to a).
We denote by g the extension of f to B. The homomorphic mapping
£ 1s a place: in fact, by the unique factorization, any element z of the
quotient field K.of 4 which does not belong to B can be written in the
form y/x, with ye A, x€ A, y ¢ Aa, x € Aa; then its inverse 1/z=x]y
belongs to B and satisfies the relation g(1/2)=0.
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We call the place g which is thus determined by an irreducible ele-
ment a of A an g-adic place (of the quotient field of A).

EXAMPLE 2. A similar example may be given if one takes for 4 a
Dedekind domain and if one considers the homomorphic mapping f of
A into the quotient field of 4/p (p denoting a prime ideal of A). The
extension g of f to the local ring A, of f is again a place [notice that A4,
isa PID (Vol. I, Ch. V, § 7, Theorem 16), to which the preceding ex-
ample may be applied]. This place is called the p-adic place of A.

We shall show at once the following property of places: if 2 is a place
of K, then & has no proper extensionsin K. Or more precisely: if ¢ is
a homomorphic mapping of a subring L of K (into some field), such that
L>Kgp and p=Z% on K»,then L=Kp. We note first that, by condition
(1), the element 1 of K belongs to K. It follows then from condition
(2) that 122 must be the element 1 of 4. Now, let x be any element of L.
We cannot have simultaneously 1/x € K and (1/x)2=0, for then we
would have 1=1lp=(x-1/x)p=xp (1/x)p=xp-0=0, a contradiction.
It follows therefore, by condition (1), that x € K9. Hence L=Kg,
as asserted.

It will be proved later (§ 4, Theorem 5’, Corollary 4) that the above
is a characteristic property of places.

We introduce the symbol 0o and we agree to write x2= o0 if x ¢ Ko.
The following assertions are immediate consequences of conditions (1)
and (2) above:

(a) if 2 = © and yZ # o, then (x+y)? = o0;
(b) if 2 = o0 and yZ # 0, then (Ay)? = ©;
(c) if x # 0, then x2 = 0 if and only if (1/x)? = co.

If x € K» we shall call x2 the 2-value of x, or the value of x at the place
2, and we shall say that x is finite at & or has finite P-value if x# # 0,
i.e., if x € Kp. The ring Ko shall be referred to as the valuation ring of
the place 2.

It is clear that the elements x%, x € K», form a subring of 4. It is
easily seen that this subring is actually a field, for if « =x%# 0, then, by
condition (1), also 1/x € Kg, and hence 1/a=(1/x)#. We call this field
the residue field of . The elements of 4 which are not P-values of
elements of K do not interest us. Hence we shall assume that the
residue field of £ is the field 4 itself.

If K is an extension of a ground field %, if & is a place of K[k and if s
is the transcendence degree of 4 over & (s may be an infinite cardinal), we
call s the dimension of the place P, over k, or in symbols: s=dim P[k. If
K has transcendence degree r over &, then 0 <s<7. The place & of
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K|k is algebraic (over k) if s=0; rational if A=k. On the other extreme
we have the case s=7. In this case and under the additional assump-
tion that r is finite, 2 is an isomorphism (Vol. I, Ch. 11, § 12, Theorem
29), and furthermore it follows at once from condition (1) that K=K,
whence 2 is merely a k-isomorphism of K. Places which are iso-
morphisms of K will be called trivial places of K (or trivial places of
K|k, if they are k-isomorphisms of K).

It is obvious that the trivial places 2 of K are characterized by the
condition K#=K. On the other hand, if 2 is a place of K and K, is a
subfield of K, then the restriction #; of £ to K, is obviously a place of
K,. Therefore, if K,< K2 then 2, is a trivial place of K,. In parti-
cular, if K has characteristic p # 0, then any place £ of K is trivial on the
prime subfield of K (for 1 € Kg).

From condition (1) of Definition 1 it follows that if an element x of K#
is such that x# #0, then 1/x belongs to K# and hence x is a unit in Ka.
Hence the kernel of £ consists of all non-units of the ring Kz. The
kernel of & is therefore a maximal ideal in Kg; in fact it is the only
maximal ideal in Kp. (However, the valuation ring K of a place Z is
not necessarily a local ring, since according to our definition, a local ring
is noetherian (Vol. I, Ch. IV, § 11, p. 228), while, as we shall see later
(§ 10, Theorem 16), a valuation ring need not be noetherian.) The
maximal ideal in K» will be denoted by Mg and will be referred to as the
prime ideal of the place #. The field K#/M» and the residue field 4 of
& are isomorphic.

Let L be a subring of K. Our definition of places of K implies that
if L is the valuation ring of a place 2 of K, then L contains the reciprocal
of any element of K which does not belong to L; and, furthermore, L
must contain k if L is the valuation ring of a place of K/k. We now
prove that also the converse is true:

THEOREM 1. Let L be a subring of K. If L contains the reciprocal
of any element of K which does not belong to L, then there exists a place 2 of
K such that L is the valuation ring of . If, furthermore, K contains a
ground field k and L contains k, then there also exists a place P of K|k
such that L is the valuation ring of 2.

ProOF. Assume that L contains the reciprocal of any element of K
which does not belong to L. Then it follows in the first place that
l1e L. We next show that the non-units of L form an ideal. For this
it is only necessary to show that if x and y are non-units of L, then also
x+ y is a non-unit, and in the proof we may assume that both x and y are
different from zero. By assumption, either y/x or x/y belongs to L.
Let, say, y/xe L. Then x+y=2x(1+y/x), and since 1+y/x € L and x
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is a non-unit in L, we conclude that x+y is a non-unit in L, as asserted.
Let, then, M be the ideal of non-units of L, and let 2 be the canonical
homomorphism of L onto the field L/M. Then condition (1) of
Definition 1 is satisfied, with K» =L (while 4 is now the field L/3), for
if xe Kand x ¢ L, then 1/xe L, whence 1/x € 3 and therefore (1/x)# =0.
It is obvious that also condition (2) is satisfied, since L/9 is a field and
since Z maps L onto L/,

Assume now that the additional condition < L is also satisfied. Then
the field L/9M contains the isomorphic image k% of k. We may therefore
identify each element ¢ of & with its image ¢#, and then also condition
(3) is satisfied. Q.E.D.

An important property of the valuation ring K of a place & is that it
is integrally closed in K. For let x be any element of K which is in-
tegrally dependent on Kg: x"+ax* 1+ - .- +4,=0, a, € Kp. Divid-
ing by x* we find 1= —a,(1/x)—ay(1/x)?— - .- —a,(l/x)". If x¢ Kag,
then 1/x € K9, (1/x)% =0, and hence equating the P-values of both sides
of the above relation we get 1 =0, a contradiction. Hence x € Ky, and
K is integrally closed in K, as asserted.

DerINITION 2. If 2 and &’ are places of K (or of K/k), with residue
fields 4 and A’ respectively, then P and P’ are said to be isomorphic
places (or k-isomorphic places) if there exists an isomorphism ¢ (or a k-
isomorphism ) of 4 onto A’ such that P’ =P.

A necessary and sufficient condition that two places & and #’ of K (or
of K/k) be isomorphic (or k-isomorphic) is that their valuation rings Ky
and Kg- coincide. It is obvious that the condition is necessary.
Assume now that the condition is satisfied, and let ¢ be the canonical
homomorphism of Kz onto K#/Mp. Then #-l¢ is an isomorphism of
4 onto K#/M g, and similarly #'~lpisanisomorphism of 4’ onto K»/M».
Hence #-1%'(=#-'¢p-¢~12’) is an isomorphism ¢ of 4 onto 4, showing
that # and &’ are isomorphic places. If, moreover, & and &’ are places
of K|k, then  is a k-isomorphism of 4 onto 4, whence # and #’ are k-
isomorphic places.

It is clear that k-isomorphic places of K/k have the same dimension
over k. _

Isomorphic algebraic places of K/k will be referred to as conjugate
places (over k) if their residue fields are subfields of one and the same
algebraic closure k& of k. In that case, these residue fields are con-
jugate subfields of k/k.

If & is a place of K|k, where k is a ground field, then K and the
residue field 4 of 2 have the same characteristic (since k<4). Con-
versely, assume that 2 is a place of K such that K and 4 have the same
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characteristic p. (Note that this assumption is satisfied for any place &
of K if K has characteristic # 0, for in that case the restriction of 2 to the
prime subfield of K is an isomorphism.) Let I" denote the prime subfield
of K. We know that if p # 0 then the restriction of & to I' is an isomor-
phism. If p=0and if J denotes the ring of integers in I', then J=K»
(since 1 € K2) and the restriction of £ to J must be an isomorphism (for
otherwise 4 would be of characteristic #0). Hence again the restriction
of 2 to I'is an isomorphism (and we have I'c K»). It follows at once (as
in the proof of the last part of Theorem 1) that 2 is isomorphic to a place
of K/I'. We thus see that the theory of places over ground fields is
essentially as general as the theory of arbitrary places & in the equal
characteristic case (i.e., in the case in which K and 4 have the same
characteristic).

§ 3. Specialization of places. Let 2 and &’ be places of K. We
say that &’ is a specialization of # and we write  — &', if the valuation
ring K»' of &’ is contained in the valuation ring K» of £, and we say
that &’ is a proper specialization of P if Ky is a proper subring of K.
If both & and &’ are places of K[k and &’ is a specialization of 2, then
we shall write 2 5 &',

It is clear that 2 — 2’ if and only if either one of the following condi-
tions is satisfied: (a) x%'# o0 implies x2?# c0; (b) x#=0 implies
x?' =0 (for, x#=0 implies (1/x)# =00, whence (1/x)?'=oc0, or
x%#'=0). Hence we have, in view of (b):

(1) P>P <>Kp> Ky and Mip < My,
In particular, if both £ and &’ are places of K/k and & LY 2, then we
conclude at once with the following result: If x,, xy, - - -, x, are any

elements of K which are finite at ' (and therefore also at P), then any
algebraic relation, over k, between the P-values of the x, is also satisfied by
the P'-values of the x,. 'Thus, our definition of specialization of places is
a natural extension of the notion of specialization used in algebraic
geometry.

Every place of K is a specialization of any trivial place of K. Further-
more, isomorphic places are specializations of each other. Conversely,
if two places 2 and 2" are such that each is a specialization of the other,
then they are isomorphic places. As a generalization of the last state-
ment, we have the following theorem:

THEOREM 2. Let P and P’ be places of K, with residue fields 4 and

4’ respectively. Then P — P' if and only if there exists a place 2 of 4
such that ' =23 on Ky



8 VALUATION THEORY Ch. VI

ProOF. Assume that Z — 2'. We set 4;=K» 2 and we observe
that since Ky' < K, 43 is a subring of 4.  On the other hand, we have,
by (1), that M4 is a prime ideal in K. Let now ¢ and ¢’ denote the
canonical homomorphisms of K onto K/ and Kg'/Ms respec-
tively, and let £, be the restriction of Z to Ks-. Since Mg is the kernel
of #,, the product #,~1p is an isomorphism of 4s onto Kp'(Mg.
Similarly ¢'-'2”’ is an isomorphism of Kz /Mg onto 4’. Since
Map< Mo, p~l¢" is a homomorphism of Ky /Ms onto Ky [Map. We
set 2=2,7 199719 - ¢'"1P' =P ~1%'. Then 2 is a homomorphism of
ds onto 4'. If £ is an element of 4 which is not in 45 and x is some
fixed element of Kz such that x2=¢, then x ¢ Ky, (1/x)?’' =0, and
hence (1/£§)2=0. We have thus proved that 2 is a place of 4, with
residue field 4°, and that 2,2=2". Hence &' and 22 coincide on
Ko

Conversely, if we have ' =22 on Ky, where 2 is a place of 4, then
it is clear that x2’ # co implies ¥ # 00, whence Kg < Kp, and &’ is a
specialization of . This completes the proof.

We note that 2’ and 2.2 coincide not only on K- but also on K, in
the following sense: if x € Ko and x ¢ Ko (whence xP € A and xP' = o),
then (x#)2=00. For, if x¢ Kg, then (1/x)#'=0, and hence
(1/x)#2=0 (since ' =22 on Kg'), i.e., (1/x#)2=0 and (xP)2 = oo,
as asserted.

We note also that in the special case of isomorphic places 2, ', 2 is
an isomorphism of 4, i.e., 2 is a trivial place of 4.

It is clear that the place 2 whose existence is asserted in Theorem 2
is uniquely determined by Z and £’ and that if both & and 2’ are
places over k, then also 2 is a place over % (i.e., a place of 4/k).

COROLLARY. If 2 and P’ are places of K|k and P> ', then
dim Z'|k<dim P|k.  Furthermore, if the residue field A of P has finite
transcendence degree over k and P’ is a specialization of P over k, then
dim &' [k=dim 2P|k if and only if P and P’ are k-isomorphic places.

We shall now investigate the following question: given a place & of
K, find all the places of K of which & is a specialization. From
Theorem 1 (§ 2) it follows at once that any ring (in K) which contains
the valuation ring of a place of K is itself a valuation ring of a place of K.
Hence our question is equivalent to the following: find all the subrings
of K which contain Kg. The answer to this equation is given by the
following theorem:

THEOREM 3. Any subring of K which contains Kp is necessarily the
quotient ring of Kg with respect to some prime ideal of Kp. If M, and M,
are ideals in K, then either M, contains M, or M, contains M, (and hence
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the set of rings between K» and K is totally ordered by set-theoretic inclu-
sion <). If P is a place of K[k and if tr.d. Klk=r+# co, then Ko has
only a finite number of prime ideals, and the number of prime ideals of Ko
(other than Ko itself) is at most equal to r—s, where s=dim P|k.
Proor. Let L bearingbetween Kgand K: Kg<L<K. Then Lis
the valuation ring K2 of a place 2 of which 2 is a specialization and
hence the prime ideal 9 of 2 is also a prime ideal in K». Any element
of K» which is not in My is a unit in K2 (since M2 is the ideal of non-
units of Ko and since K#< K5). Hence the quotient ring of Kg with
respect to the prime ideal M (i.e., the set of all quotients a/b, where
a,be Ky and b ¢ M) is contained in K». On the other hand, we now
show that any element x of Ko belongs to the above quotient ring.
This is obvious if x € K». Assume that x ¢ Kp. If we set y=1/x,
then y € K (since K is a valuation ring). Furthermore, x ¢ M (since
Ma< Ko), and hence x is a unit in Ks. Therefore also y is a unit in
K, and so y ¢ Ms. It follows that x(=1/y) belongs to the quotient
ring of K with respect to M 3. This proves the first part of the theorem.
Let M, and M, be any two proper ideals in K (not necessarily prime
ideals) and assume that IR, ¢ 9M,. Let x be an element of M;, not in
M,, and let y be any element of M,, y#0. Then x/y ¢ Ky, and hence
ylx€ Kp, y € M, (since M, is an ideal and x € M,). Hence M, =M,.
Assume now that £ is a place of K/k and that tr.d. K/k=r# o0. Let
M, and M, be two prime ideals in K and let us assume that, say,
M, >M,. Let L, 1=1, 2, be the quotient ring of Ko with respect to
M;, and let Z; be a place of K whose valuation ring is L;, We have
L,>L,, and hence &, is a proper specialization of Z,. On the other
hand, & is a specialization of £,. It follows by Theorem 2, Corol-
lary, that dim Z/k<dim £,/k<dim P,/k<r. This shows that the
number of prime ideals of K is finite and that the number of prime
ideals in K, other than K itself, is at most r—s. This completes the
proof of the theorem.
DerINITION 1. The ordinal typet of the totally ordered set of proper
prime ideals q of Ko (0#(0), a# Ka; a, precedes a, if q,> a5) is called
the rank of the place 2.

t In most axiomatic systems of set theory it is possible to attach to every
totally ordered set E a well-defined object o(E) in such a way that we have
o(E)=o(F) if and only if E and F are isomorphic ordered sets (i.e., if there exists
a one-to-one mapping f of E onto F such that the relations x <y and f(x) < f(3)
are equivalent). The object o(E) is called the ordinal type of E.  Further-
more, if E is isomorphic to the set {1,2,...,#n} (i.e., if E is a finite, totally
ordered set with n elements), we shall identify its ordinal type with its cardinal
number n.
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CoroLrary 1. If K has finite transcendence degree r over k, then any
place P of K|k has rank <r—s, where s=dim P/k.

The rank of a place & of K is zero if and only if 2 is a trivial place of K.

The rank of 2 is 1 if and only if 2 is not a trivial place of K and is not
a proper specialization of any non-trivial place of K. A necessary and
sufficient condition that a place & be of rank one is that its valuation
ring be a maximal (proper) subring of K. We shall see later (§4,
Theorem 4, Corollary 3) that any maximal (proper) subring of K is in
fact the valuation ring of a place of K, provided the subring is a proper
ring, i.e., not a field.

We shall have occasion to use in § 6 the following corollary:

CoroLLARY 2. If ay, ay, - - -, a,, are elements of K, not all zero, then
for at least one integer j, 1<j<m, it is true that (a;/a;)P + o,
i=1,2,--.,m, a;#0.

Since K is the quotient field of K, it is sufficient to consider the case
in which all the @; are in K. In that case we take for a; the element
which generates the greatest ideal in the set of principal ideals (a;).

If # is of finite rank m, there are exactly m—1 rings L; between Ky
and K, and we have K<L ,<L,< --- <L, <K. If 2, is a place
of K whose valuation ring is L;, then £ is of rank m—i, 2, is a special-
ization of 2, if i<j (1=0,1,.--,m-1; #;=2). We have thus a
specialization chain for 2 :

(2) ‘@m—l_)ym—za"'e'gl_)yi

which joins a place Z,,_, of rank 1 to the given place Z of rank m. This
chain is maximal in the sense that it cannot be refined by insertion of
other places which are not isomorphic to any of the m places ;. We
shall call the chain (2) a composition chain for . Any place #* of
which 2 is a specialization is isomorphic to one of the places #,; (assum-
ing of course that Z* is not a trivial place of K), and if

Pu1> P pa—> > P >P

is any other composition chain for 2, then &, and &'; are isomorphic
places (1=0,1,.-.,m—1).

If r=tr.d. K/k# oo, then of particular importance are the places
which are of dimension »—1. It is clear that the rank of such a place
is 1 (Corollary 1). The (r—1)-dimensional places of fields of algebraic
functions of r independent variables are of particular importance in the
theory of algebraic varieties. A discussion of these places will be found
in § 14.
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§ 4. Existence of places. We shall prove the following existence
theorem:

THEOREM 4. Let o be a subring of K containing 1, and let % be an
ideal in v, different from o. Then there exists a place P of K such that
Kp>0 and Map> .

Proor. Let M denote the set of all subrings R; of K such that
o< R, and RA#R,;. The set M is non-empty, since o € M. We par-
tially order the rings R, by set-theoretic inclusion. Let {R} be a
totally ordered subset N of M, and let R be the join of the rings R,.
We cannot have a relation of the form 1=a,¢, +ayé,+ - -+ +a,¢,,
a; €%, £, € R, for the £'s would then belong to some R,, R;€ N (since
N is linearly ordered), and we would have R =R, a contradiction
(since R;e M). It follows that R% 5 R, and hence Re M. We have
therefore proved that every totally ordered subset N of M has an upper
bound Rin M. By Zorn’s lemma, M contains, then, maximal elements.
We shall prove that every maximal element of M is the valuation ring
of a place 2 of K, satisfying the required conditions.

Let L be a maximal element of M. The ring L satisfies, then, the
following conditions (1) o= L, LY # L; (2) if L’ is any subring of K such
that L<L’, then L'W=L’. The remainder of the proof will be based
on the following lemma:

LEMMA. Let R be a subring of a field K, containing 1, and let S be a
proper ideal in R. Then for any element x of K at least one of the
extended ideals R(x]3, R[1/x]3 is a proper ideal of R[x], R[1/x] respec-
tively.

PROOF OF LEMMA. Assume the contrary: R[x]¥=R[x], R[1/x]q=
R[1/x]. That means that we have two representations of the element
1 of R:

n

(1) 1=2axi, a;€8, 05i5n;
i=0
=0

We shall suppose that the relations (1) and (1') are of the smallest pos-
sible degrees #n and m. Let, say, m<n. We multiply (1) by 1-5,
and (1') by ax":

1=by = (1=bgag+ - - - + (1 —boae",

(1-bo)ax" = abyan1+ ... +ab xmm,
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Thus,

1-by = (1-bgag+ - - -+ (1=-bg)a,_ \x" ' +abx"1+ - - +ab,x"m,
or

-1
=D, ¢ €8S,
v=0

and this is a relation of the same form as (1) and of degree less than »,
contrary to our assumption that (1) is of lowest possible degree.

We now apply the lemma to the case R=L, I=L%. If x is any ele-
ment of K, and if we set L'=L[x], L" = L[1/x], then the lemma tells us
that at least one of the following two relations must hold: L'Q#L’,
L"3# L". This implies by the maximality property of L, that either
L=L"or L=L", ie., either xe L or 1/xe L. Hence L is a valuation
ring of a place 2 of K (§ 2, Theorem 1).

The prime ideal M» of Z is the ideal of non-units of L, whence
Ma > LAD YA, and since L Do the proof of the theorem is now complete.

We note that if £ is a trivial place of K then M»=(0). Hence if the
ideal % is not the zero ideal, any place £ satisfying the conditions of the
theorem is necessarily non-trivial.

CoroLLARY 1. If o is an integral domain, not a field, and if K is a
field containing o as subring, then there exist non-trivial places & of K such
that Ks>o.

For o contains ideals different from (0) and o.

CoROLLARY 2. A field K possesses only trivial places if and only if K
is an absolutely algebraic field, of characteristic p#0 (i.e., if and only if K
is an algebraic extension of the prime field of characteristic p#0).

For, the absolutely algebraic fields, of characteristic p # 0, are the only
fields with the property that all their subrings are fields, whereas the
valuation ring of a non-trivial place is not a field.

CoOROLLARY 3. If o is a proper ring and a maximal subring of a field K,
then o is the valuation ring of a place & of K.

This follows at once from Corollary 1. Note that # is then neces-
sarily of rank 1 (see § 3, Definition 1).

Of great importance for applications to algebraic geometry is the fol-
lowing consequence of our existence theorem:

THEOREM 5. If o is an integral domain contained in a field K and if wm
is a prime ideal in o, m#o, then there exists a place Z of K such that
Ks>20 and Mp no=m

Proor. Let o’ denote the quotient ring of o with respect to m and
let m’ =vo'm =ideal of non-units in o’. From our assumptions on m it
follows that m’#0’. Hence there exists a place & of K such that
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Ks>0', Mpno'>m’. Since m’ is a maximal ideal in o’ and since
1¢ My, it follows that Mpno'=m’. Hence Mpno=m, since
m' No=m,

The following is essentially an equivalent formulation of Theorem 5:

THEOREM 5. (The extension theorem). If o is an integral domain and
K is a field containing o, then any specialization ¢ of o can be extended to a
place P of K.  In particular, if k is a subfield of K then any place of k can
be extended to a place of K.

For if m denotes the kernel of  then m # o (by definition of specializa-
tions), and there exists a place & of K such that K >0 and M» No=m.
If Y denotes the restriction of £ to v, y~!g is an isomorphism of oy onto
og (since m is the kernel of both ¢ and ). This isomorphism can be
extended to an isomorphism of the residue field 4 of £ into some field
containing op. If 2 is such an extension, then the place 2.2 of K is an
extension of ¢.

We now give a number of important consequences of Theorems 5
and 5'.

For applications to algebraic function fields, or, more generally, to
fields K in which a subfield & has been specified as ground field, it is
important to analyze Theorem 5’ in the special case ¢=1 (whence
m = (0)), with reference to the following question: does there exist in this
case a non-trivial place which is an extention of ¢? If 2 is such a place
then K» contains the quotient field of o in K, and the restriction of 2
to that quotient field is also the identity. Therefore, we may as well
assume that o is a field, say o =k, and the non-trivial places Z which we
are seeking are the places of K/k. If K is an algebraic extension of k,
then Kp>k implies Kp=K, since K» must be integrally closed in K
and since every element of K is integrally dependent on k. Hence if K
is an algebraic extension of k, then K|k possesses only trivial places. On
the other hand, assume that K has positive transcendence degree over k.
Then if x is any transcendental element of K over k, the polynomial
ring k[x] is a proper ring (i.e., not a field) and admits at least one speciali-
zation @ over k which is not an isomorphism (in fact, there are infinitely
many such specializations of k[x], for each irreducible polynomial in
k[x] can be used to define a ¢). We have therefore the following.

CoroLLARY 1. If K is a field extension of a ground field k, then K |k has
non-trivial places if and only if K has positive transcendence degree over k.

To this corollary we can now add the following very useful additional
result:

CoroLLARY 2. If a field K has positive transcendence degree over a
subfield k, then there exist algebraic places of Kjk.
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For consider the set M of all valuation rings in K which belong to
places of K/k (i.e., valuation rings which contain k). By Corollary 1,
M isnon-empty. By Theorem 1, § 2, the intersection of any descending
chain of valuation rings in K is again a valuation ring. Hence, by Zorn’s
lemma, M contains minimal elements (it is understood that M is par-
tially ordered by set-theoretic inclusion). Let R be a minimal element
of M and let & be a place of K/k such that Ky=R. We assert that &
is algebraic over k. For, assuming the contrary, i.e., assuming that the
residue field 4 of 2 has positive transcendence degree over &, then it
would follow from Corollary 1 that there exists a non-trivial place 2 of
A/k. Then the composite place ' =22 is a place of K/k whose
valuation ring is a proper subset of R, a contradiction.

CoroLLARY 3. If ¢ is a specialization of an integral domain v, and if
K is a field containing v, then there exists a place of K which is an extension
of ¢ and whose residue field is algebraic over the quotient field of og.

Let % be the quotient field of the ¢-transform vp of v. We fix a place
¢ of K which is an extension of ¢ and whose residue field 4 therefore
contains k. If 4 is algebraic over & then & is the desired place. If 4
is not algebraic over 4, then we fix, by Corollary 2, an algebraic place 2
of 4/k. The composite place ' =22 of K is an extension of ¢ (since
2 is the identity of op) and its residue field is algebraic over k (since 2
is an algebraic place of 4/k).

CoRrOLLARY 4. Let o be an integral domain and let K be a field con-
taining v as subring.  If a specialization @ of o is such that it has no proper
extensions within K, then ¢ is a place of K (this is the converse of a result
proved in the beginning of § 2).

This is a direct consequence of Theorem 5’

The two corollaries that follow have already been proved in the pre-
ceding chapter in the more general case of arbitrary commutative rings
with identity. However, as in the case of domains they are very simple
consequences of Theorem 5, we give here a second proof of these
results.

COROLLARY 5. Let O and o be integral domains such that o is a subring
of © and such that every element of © is integrally dependent on o.
Then for every prime ideal m in o there exists a prime ideal M in O such
that M No=m.

The assertion being trivial if m=o, we assume m#o0. If K is the
quotient field of O, there exists a place & of K such that K=o and
Mo N o=m (Theorem 5). Since Kz is integrally closed in K and O is
integral over o, it follows from Kp>o that Ks>9. Hence Ms n O is
a prime ideal M in O, and we have M No=m.
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COROLLARY 6. The rings © and o being as in the preceding corollary,
let a be an ideal in 0. Then if a#o, we have La# O.

Since o contains an identity, there exists a prime ideal m in o such that
acwm##v (for instance, there exist maximal ideals containing a). By
Corollary 5, let M be a prime ideal in © such that M no=m. Then
clearly M+ O, and since Cac Omc M, it follows that Ca#O.

Place-theoretic properties of integrally closed domains are of parti-
cular importance in the arithmetic theory of algebraic varieties. Many
of these properties are based on the following theorem:

THEOREM 6. If o is an integral domain and K is a field containing o,
the intersection of all the valuation rings Kg of places P of K such that
K4>0 is the integral closure of o in K.

PROOF. Since every K is integrally closed, every Kz containing o
contains the integral closure d of 0. So we have only to show that if x
is an element of K which does not belong to 5, then there exists a place
2 of K such that Ks>v and x ¢ K». To show this, we consider the
ring o' =0o[y], where y=1/x. Our basic remark is to the effect that y
is a non-unit in o’. For, if y were a unit in o', then we would have a
relation of the form: lly=x=apx"+ax "'+ ... +aq, a;€0, or
xmtl—gxn— ... —ay=0, and hence x would be integrally dependent
on o, contrary to assumption. Since y is a non-unit in o’, the ideal o’y
is different from o’. By Theorem 4, there exists, then, a place 2 of K
such that Ks>0', Mp>0’y. Hence y is also a non-unit in Kp, and
consequently x ¢ Ka.

CoROLLARY. Let o be an integral domain and let K be a field containing
o. If o is integrally closed in K, then o is the intersection of all the valua-
tion rings Ko of places P of K such that Ks>o.

REMARK. If K is a field of algebraic functions over a ground field %,
then all the results established in this section continue to hold if by a
“place of K’ we always mean a ‘““place of K/k,”’ provided that k<o.-
For, every place £ such that Kp>o is k-isomorphic to a place of KJk.

§ 5. The center of a place in a subring. Let o be an integral
domain, let K be a field containing o and let 2 be a place of K. We say
that & is finite on o if 2 has finite value at each element of o, or—
equivalently—if oc Kp. If & is finite on o then the restriction of &
to o is a specialization of o. If this specialization is the identical
mapping of o onto itself, then we shall say that & is a place of K
over o.

Let & be a place of K which is finite on 0. The set p=Ms N o of
those elements of o at which & has value zero is clearly a prime ideal in
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o. This prime ideal is called the center of & in 0. The center p is
always different from o since 1 ¢ Mg ; it is the zero ideal if and only if
the restriction of £ to o is an isomorphism (in particular, p=(0) if &
is a place of K over o). It is clear that the residue class ring v/p is iso-
morphic to the subring o2 of the residue field 4 of Z.

Since any element of o which is not in the center p of 2 in o is a unit
in the valuation ring Kg, it follows that 2 is also finite on the local ring
o, of the specialization induced by £ in o, and it is clear that the center
of 2 in o, is the maximal ideal po, in 0,. Conversely, if p is a prime
ideal in o, different from o, and if & is a place of K such that (1) £ is
finite on o, and (2) the center of £ in o, is the maximal ideal m in o,
then £ is also finite on o and has center p in o (since m no=p). Note
that condition (1) by itself is only equivalent to the following condition:
P is finite on o and its center in o is contained in p.

Isomorphic places have the same center in any ring o on which they
are finite. On the other hand, if we have two places £ and 2 such that
2 is a specialization of £, then if 2 is finite on o also Z is finite on o
(since K#> Kg) and the center of Z in 0 is contained in the center of 2
in o (for Map< M).

Theorem 5 (§ 4) said that any prime ideal (different from (1)) in a
subring o of a field K is the center in o of a place of K. A more precise
result can be proved:

THEOREM 7. Let o be a subring of a field K, p and q two prime ideals
in v such that < g. Suppose that P is a place of K with center p in o.
Then there exists a place 2 of K which is a specialization of # and which
admits q as a center in .

PROOF. Without loss of generality we may assume that K»/Mz is the
residue field of #. Consider now the subring o/p of the residue field
Ka/Ms of P, the prime ideal q/p of o/p, and the canonical homomor-
phism of o/p onto (o/p)/(a/p). By Theorem 5’ (§4), this homomor-
phism can be extended to a place Z# of the field K#/Ms. The product
9=2PR is then a place of K. Its valuation ring contains v, and its
center on o is obviously q.

COROLLARY. Let O be an integral domain, v a subring of O over which
O is integral, B a prime ideal in O, p the prime ideal B N o, and q a prime
ideal in o containing p. Then there exists a prime ideal . in © containing
B and such that Q.no=q.

For, let K be a field containing ©. There exists a place Z of K with
center P in ©. Then the center of Z in o is p=onP. Theorem 7
shows the existence of a specialization 2 of 2 with center q in o. Since
O is integral over o, the valuation ring of 2 contains O. Thus 2 admits



§5 THE CENTER OF A PLACE IN A SUBRING 17

a center £ in O, and this center is a prime ideal containing 8. Further-
more, we have £ N o= q, since q is the center of 2 in o.

REMARK. This corollary has already been proved in Vol. I, Ch. V,
p. 259, without any assumption on zero divisors.

The places 2 of a field K which have given center p in a given subring
o of K are among the places of K whose valuation ring contains the
quotient ring op, but they are those which satisfy the additional condi-
tion Mg Noy=po,. By Theorem 6, §4, we know that the integral
closure of oy in K is the intersection of all the valuation rings K which
contain o,. We shall now prove the following stronger result.

THEOREM 8. Let o be an arbitrary subring of a field K and let p be a
given prime ideal in o, different from o. Let O be the quotient ring of o
with respect to .  If N denotes the set of all valuation rings R in K which
belong to places P of K having center p in o, then

() R = integral closure of O in K.
ReN
PROOF. It will be sufficient to show that every valuation ring S in K

which contains © contains as subset some member of N. Let 2 be a
place of K such that S=K_ and let Ma n 0= q, where q is a prime ideal
in 0. Since $OO, q is the contraction of some prime ideal in O
(namely of Ms n O), and hence q=p. By Theorem 7 (where q and p
have now to be interchanged) there exists a place & of K which is a
specialization of 2 and admits p as centerino. Then Kp< S, and since
Kg € N, the proof is complete.

CoroLLARY. If o is integrally closed in K, then (| R=o,.
ReN

For in that case also o, is integrally closed in K.

As an application of the notion of the center of a place we shall now
give a complete answer to the following question: given a Dedekind
domain R, find all the places of the quotient field of R which are finite
on R.

THEOREM 9. Let R be a Dedekind domain, K its quotient field. The
non-trivial places of K which are finite on R are the p-adic places of R (see
§ 2, Example 2) and these places are all of rank 1.

PROOF. Let 2 be a non-trivial place of K which is finite on R.
Since £ is non-trivial, and since K is the quotient field of R, the center
of Z in R is a proper prime ideal p. The valuation ring of # contains
the quotient ring Ry. In order to show that these two rings are equal,

we need only prove that R, is a maximal subring of K, and this will
prove Theorem 9.
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It has been proved (Vol. I, Ch. V, § 6, Theorem 15) that there exists an
element m of R, such that every element of R, may be written as um?
where u is a unit in R, and ¢ a non-negative integer. It follows, upon
division, that every element of K may also be written under the form vms,
where v is a unit in Ry and s an integer. Let S be a subring of K
properly containing Rp. Then S contains some element vms, with
s<0. Thus, since S contains Ry, it contains m~!=(m~~"1v-1)(vm?);
hence .S contains m~" for every integer n, and therefore also every ele-
ment um? (¢ a unit in R, g—any integer). It follows that S=K.
Q.E.D.

CoroLLaRY 1. The only non-trivial places of the field of rational
numbers are the p-adic ones (p, a prime number).

In fact, the valuation ring of such a place must contain the ring J of
ordinary integers.

CoroLLARY 2. Let k be a field, and K=k(X) the field of rational
functions in one indeterminate X over k. The non-trivial places of K|k
are:

(a) The p(X)-adic places (p(X), an irreducible polynomial in k[ X]).
(b) The place X whose valuation ring consists of all fractions a(X)/b(X)
(a, b: polynomials) such that da < 0b.

(Equivalent places may be obtained by replacing in the rational func-
tions f(X) either

(a) X by a root of the irreducible polynomial p(X) or
(b) 1/X by 0.)

Let # be a non-trivial place of K/k. If its valuation ring K« contains
X, it contains k[X], and we are in case (a). Otherwise 1/X is in Ka,
and is a non-unit in this ring. Thus Ky contains the polynomial ring
k[1/X], and the center of Z in this ring must be a prime ideal containing
1/X, i.e., it must be the principal ideal (1/X). Then the valuation ring
of # consists of all fractions &'(1/X)/b'(1/X) (a’, b’: polynomials over k)
such that '(0)#0. The verification of the fact that this is the valuation
ring described in (b) may be left to the reader. '

REMARK. The last corollary expresses the fact that the non-trivial places
of k(X)/k correspond to the elements of the algebraic closure k of k (more pre-
cisely to the classes of conjugate elements of k) and to the symbol co: the
value of the rational function f(X) at the place # corresponding to x in & (to c0)
being f(x) (f(20)). Notice that all these places have dimension 0 and rank 1,
and that their valuation rings are quotient rings of polynomial rings. The
places of K|k, where K is a field of rational functions in several variables over
k, are of more complicated types (see § 15).



§5 THE CENTER OF A PLACE IN A SUBRING 19

COROLLARY 3. An integrally closed local domain R in which the ideal
of non-units is the only proper prime ideal is the valuation ring of a place
of rank 1.

For, R is a Dedekind domain (Vol. I, Ch. V, § 6, Theorem 13), and if
p is the ideal of non-units in R then R=R,. Note that R is a discrete
valuation ring of rank 1 (in the sense of Vol. I, Ch. V, end of § 6, p. 278;
see also § 10 of this chapter, Theorem 16, Corollary 1).

We shall conclude this section with the derivation of another criterion
for a domain to be a valuation ring. Let o be an integral domain, q a
prime ideal in o, and let £ be a place of the quotient field K of o which is
finite on o and has center q. Since Mg N 0= g, the integral domain o/q
can be canonically identified with a subring of the residue field 4 of £.
Thus 4 is an extension of the quotient field 4, of o/q. We shall say
that the place & is of the first or of the second kind, with respect to o,
according to whether the transcendence degree of 4 over 4, is zero or
positive.

THEOREM 10. Given an integrally closed integral domain o and a
prime ideal q in 0, q # 0, a necessary and sufficient condition for the quotient
ring o, to be a valuation ring is that there should not exist a place P of the
quotient field of o such that P has center q and is of the second kind with
respect to 0.

For the proof of Theorem 10 we shall first prove a general lemma:

_LEMMA. Let o be an integrally closed integral domain, let K be the
quotient field of o and let q be a prime ideal ino. If an element t of K is a
root of a polynomial f(X)=aoX"+a, X" '+ - - +a,, where the coeffi-
cients a; are in o but not all in q, then either t or 1]t belongs to the quotient
ring o,.

PROOF. The element 1/¢is a root of the polynomial ay+a, X+ - - - +
a,X". Our assumptions are therefore symmetric in ¢ and 1/t. There
exists a place Z having center q. We shall show that 1 €0, or 1/t e o,
according as t# # o or (1/t)P # 0. Let, say, t## c0. Let us assume
thatay, a;, - - -, a;_; € q,a; ¢ q; herejis some integer such that 0<j<n.
If j=0, then the equation f(¢)=0, upon division by a,, implies that ¢ is
integrally dependent on 04, and hence ¢ € o4 since o, is integrally closed
(Vol. I, Ch. V, § 3, p. 261). We cannot have j=n, for in the contrary
case the existence of a place 2 having center q and such that t## oo
would imply-that ¢, =0, q, € g, a contradiction. We shall therefore
assume that O<j<n,

Let

€ =agi+ati-'+ .. ta;_ t+a;
N = G+ ap/tt - a, il
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Let 2 be any place which is finite on 0. If £22# o0, then also ¢ # oo,
and also 7# # oo since {t+7=0. If 1= o0, then 2 # 0, and since
E+7/t=0, it follows that £2=0. Hence, in all cases we have ¢ # oo
and 7?2 # . Since this holds for all places which are finite on o, it
follows that the elements ¢ and 7 both belong to v. Now, by assumption,
there exists a place & having center g and such that t2# c0. For such
a place Z we will have ¢2#0 since ¢ #=0, i=0,1,--.,j=1, and
a;? #0 (in view of the assumption made on the coefficients a,, 4,,..., a;).
Therefore the element ¢ of o does not belong to g, and consequently
= —n/é €0q. This completes the proof of the lemma.

We note the following consequence of the lemma:

CoROLLARY. Let o0 be an integrally closed integral domain, let K be the
quotient field of o and let q be a prime ideal in o. If an element t of K is
such that neither t nor 1/t belongs to the quotient ring oq and if  denotes
the ring o[t], then the extended ideal §=75q is prime, the contracted ideal
d N o coincides with q, and the G-residue of t is transcendental over o/q.

For, dq consists of all elements of the form mgt"+m "1+ ... 4+,
m; € G, n an arbitrary integer 20. If mgt"+m "4 ... 47, =aco,
then it follows from the lemma that a € q, showing that g no=g.
Hence the integral domain o/q can be regarded as a subring of 5/§. If
we have a relation of the form ¢ "+ &1+ ... +§,=0, where
¢, €0/q and { is the §-residue of ¢, and if we fix an element a; in o such
that £; is the g-residue of a;, then gyt +a,t*-1+ ... +a,€d, i.e., there
must exist elements 7'y, 7'y, - - -, 7'}, 7y, 7y, -+, 7, In g such that

h

> w4 (ag—mo)tn+ (a, —m)t"1+ - .. +(a,—m,)=0. Therefore, by
=1

the lemma, we must have ¢, — 7, € g, 4,= ¢, =0, showing that # is trans-
cendental over o/q. Hence o/q[{] is an integral domain, and since this
ring is the residue class ring 9/4, it follows that § is a prime ideal.

[In terms of dimension theory: dim §=1+dim q.]

The proof of Theorem 10 is now immediate. The necessity of the
condition is obvious, for if o4 is a valuation ring, any place & which is
finite on o and has center q necessarily has oq as valuation ring, and thus
the residue field of 2 coincides (to within an isomorphism) with the
quotient field of o/q. To prove the sufficiency of the condition, we
assume that o, is not a valuation ring and we show that there exists a
place £ of K which has center g and is of second kind with respect to o.
For this purpose, we consider an element ¢ of K such that neither ¢ nor
1/t belongs to o, (such an element exists since oq is not a valuation ring)
and we pass to the ring 5 =o[f] and to the ideal §=5q. By the above
corollary, § is a prime ideal, different from 5. Let & be a place of K
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which is finite on 0 and has center § in 8. Then it follows from the
corollary that the center of & in o is q and that £ is of the second kind
with respect to o (since the residue field of & contains 3/§).

The following consequence of Theorem 10 has been useful in the
geometric applications of valuation theory:

CoroLLARY OF THEOREM 10. Let {o.}, @ € A, be a collection of sub-
rings of a field K, integrally closed in K and indexed by a set A, and let for
each o, a proper prime ideal q, in o, be given. Assume that the following
conditions are satisfied: (a) if 0, <o, then g5 N0, = q,; (b) for any two rings
0, 0g (o, B€ A) there exists a third ring o, in the collection such that

0,50, and 0,<o,. Let ©= |J o, 8= U q,. Then Og is a valua-
aeAd acd

tion ring if and only if there does not exist a place P of K which satisfies,
for each «, the following conditions: P has center q, tn o, and is of the
second kind with respect to o,.

From condition (b) it follows that © is a ring, integrally closed in K,
and (a) implies that the set £ is a proper prime ideal in ©. Any place
2 of K which has center £ in O has center q_ in o, for each ¢ € 4; and
conversely. The residue class ring £/2 can be regarded, canonically,
as the union of the rings o,/q,. It follows that a place £ of K which has
center £ in O is of the second kind with respect to © if and only if &
is of the second kind with respect to each of the rings o,, and the corol-
lary now follows from Theorem 10.

§ 5bis. The notion of the center of a place in algebraic geo-
metry. The concept of center of a place has been first introduced in
algebraic geometry, and in fact the theorems given in the preceding
section are merely generalizations of similar theorems concerning
algebraic varieties. We shall briefly review here the algebro-geometric
background of the material presented in the preceding section. For
further details, see Chapter VII, § 3.

If K is a field, the n-dimensional affine space A X over K is the set of all
points (2, 25, - - *, 3,) (i.e., ordered n-tuples) whose (non-homogeneous)
coordinates 2, 2y, - * -, 2, are elements of K. We now assume that K
is an algebraically closed field and that it contains a ground field k. If
% is an ideal in the polynomial ring k[ X,, X,, - -+, X,] (=&[X]) in n
indeterminates, with coefficients in the ground field &, the variety of %
is the set of all points (2)(=(z,, 25, - - -, 2,)) in 4,K such that f(z)=0 for
every polynomial f(X) in %. An algebraic affine variety in A X (defined
over k) is any subset of 4,X which is the variety of some ideal in A[X].
If V is a variety in 4,K, defined over k, the polynomials in k[ X] which
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vanish at all points of V obviously form an ideal. This ideal, called the
ideal of the variety V, is the greatest ideal in k[X] whose variety is V.
It is clear that the ideal of a variety ¥ coincides with its own radical and
is therefore (see Vol. 1, Ch. IV, §4, Theorem 5) an intersection of
prime ideals. If the ideal of V' is itself a prime ideal, then V is said to
be irreducible (over k) (cf. Ch. VII, § 3).

Let V be an affine variety in 4,X, defined and irreducible over the
ground field &, and let p be the prime ideal of V' in 2[X]. The residue
class ring k[ X']/p is called the codrdinate ring of V. We shall denote this
ring by k[V]. If x; denotes the p-residue of X, then k[V]=
k[xy, %y, - - <, x,] (=k[x]). The point (x, x,, - - -, x,) is called a general
point of V over k. The quotient field k(x) of [x] is called the function
field of V, over k, and will be denoted by k(V). The dimension r
of V is the transcendence degree of k(V') over k. We have of course
0zrzn.

Since the p-residues x; of the X, are not generally elements of K, the
general point (x) is not always actually a point of the space 4,X How-
ever, if K has transcendence degree = over k, there always exist k-
isomorphisms of k(V) into K (since K is algebraically closed). If 7 is
one such isomorphism, and if x,7 = z;, then also the point (2, 25, - - -, 2,)
of AKX is called a general point of V" over k. It is now a standard pro-
cedure in algebraic geometry to assume once and for all an algebraically
closed field K which has infinite transcendence degree over k (a so-called
universal domain K). This guarantees that any irreducible variety V,
over k, in A,X (n arbitrary) carries general points (which are actually
points of the affine space 4,X).

Let 2 be a place of k(V)/k such that the residue field of 2 is contained
in K (which is not a serious restriction on £, at least if K is a universal
domain, for in that case every place of k(V')/k is isomorphic to a place
& satisfying the above condition). If @ is finite on the coérdinate ring
and if, say, x,2 =z, (3; € K), then the point (z) is called the center of the
place P on V. (It is obvious that (2) is indeed a point of V, for if a
polynomial f(X) belongs to the ideal of V' then f(x)=0 and hence
f(2)=f(x)?=0.) The elements g(x) of k['] which vanish at the point
(2) form a prime ideal p, the prime ideal of () in k[V]. We have
g(x) € p if and only if g(x)#?=0, i.e., if and only if g(x) € M». Hence
the prime ideal of the center of P on the variety V is merely the center of P
in the coordinate ring k[V] of V.

By the dimension of a point P=(2,, 25, - - - , %,), over k (in symbols:
dim P/k, or dim (z)/k) we mean the transcendence degree of k(z) over k.
Two points (2) and (2’) in 4,X are said to be k-isomorphic if there exists
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a k-iscmorphism 7 of the field k(z) onto the field k(z") such that
zr=2";, 12ign. For instance, any two general points of our irre-
ducible variety V, over k, are k-isomorphic, and any general point of V,
over k, has dimension r over k, where r=dim V. We now list some of
the properties of the center of a place on V. (We remind the reader
that a place & of (V) admits a center on an affine variety if and only if
2 is finite on k[V].)

ProperTY 1. A place 2 of k(V)/k is trivial if and only if its center on
V is a general point of V over k.

The proof is straightforward and may be left to the reader.

PropPERTY 2. If Q is the center on V of a place Z of k(V)/k then
dim Q/k<dim #[k<dim V, and 2 is trivial if and only if dim #/k=
dim V.

Obvious.

Given two points Q=(2,, 25, - -+, 2,) and Q' =(2,", 35/, - -+, 2,/) in
AKX, Q' is said to be a specialization of Q over k if there exists a specializa-
tion ¢ of the ring k[z] onto the ring k[2’] such that ¢ is the identity on &
and z,p=2";, Notation: Q LY Q- If Q LY O’ then dim Q'/k<
dim Q/k. If we have both O A O’ and O’ LY O, then Q and Q' are k-

isomorphic points, and conversely. If O A Q" and dim Q'/k=dim Q/k,
then again Q and Q' are k-isomorphic points, for any proper k-homo-
morphism of the integral domain k[2] lowers the transcendence degree
of the domain. (See Vol. I, Ch. 11, § 12, Theorem 29).

ProPERTY 3. Let P and 2 be places of k(V)/k and let P and Q be their
respective centers on V. If P A 9 then also P 5 0.

Obvious.

PROPERTY 4. Let P and Q be points of V such that P%> Q.  Suppose
that P is a place of k(V')|k which admits P as center on V. Then there
exists a place 2 of k(V)/k which is a specialization of P over k and has
center Qon V.

This is the analogue of Theorem 7, § 5, and the proof is the same.

If Q is a point of V and p is the prime ideal of Q in the codrdinate ring
k[V], then the quotient ring of k[V'] with respect to p is called the local
ring of V at Q (or also briefly: the local ring of Q (on V')). This ring
shall be denoted by o(Q; V), and the maximal ideal in that ring shall be
denoted by m(Q; V).

PROPERTY 5. If Q is the center on V of a place P of k(V)/k then
o(Q; V)<k(V)p and m(Q; V)=Mano(Q; V). Conversely, if these
two conditions are satisfied for a given point Q on V and a given place P of
k(V'), then the center of P on V is a point k-isomorphic to Q. If only
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condition o(Q; V)< k(V ) is satisfied, then Q is a specialization, over k, of
the center of P on V.

Obvious.

It follows that every point Q of V is the center of some place of
k(V)[k. :

PROPERTY 6. If Q is a point of V then the integral closure of o(Q; V)
is the intersection of all the valuation rings which belong to places P of
k(V)|k having center Q on V.

This is a particular case of Theorem 8, § 5.

To be able to speak of the center of a place & of k(V)/k also in the
case in which Z is not finite on k[}], it is only necessary to adjoin to V'
its points at infinity and to consider thus the enlarged projective variety
V*. We shall discuss this question later in the next chapter (see
Ch. VII, § 4bis). At this stage it will suffice to say that if V' is regarded
as a variety in the projective n-space, then every place of k(}') has a well-
defined center on V. This is important, since it allows one to introduce
the concept of a birational correspondence in a purely valuation-
theoretic fashion. Two irreducible varieties V and V', over k, are
birationally equivalent if their function fields k(V) and (V') are k-
isomorphic. In that case, after fixing a definite k-isomorphism between
k(V) and k(V'), we may identify these two fields. Assuming therefore
that k(V')=k(V’), we can set up a correspondence T between the points
of V and V' in the following fashion: a point Q of " and a point Q' of V'
are corresponding points if there exists a place & of k(V)(=k(}"')) whose
center on V is Q and whose center on V' is Q’.  Such a correspondence
T is called a birational correspondence. 'The fact that every point of V is
the center of at least one place guarantees that in a birational correspon-
dence between two birationally equivalent varieties to every point of one
variety corresponds at least one point of the other variety.

§ 6. Places and field extensions. Let K be a field and K* an
overfield of K. It follows easily from our definition of a place that if
P* is a place of K* then the restriction of #* to K is a place of K. If
&% and 2* are places of K and K* respectively, we say that #* is an
extension of P if P is the restriction of #* to K. Our object in this
section is to study the extensions in K* of a given place £ of K.

Lemma 1. If @* is an extension of P, then K3. N K=Kg. Con-
versely, if this last relation holds for given places # and P* of K and K*
respectively, then there exists an extension P* of P which is isomorphic
to P*. The relation K%.n K=Ky implies Mo« N K=Mgp and is
equivalent to “K3.> Ko and Max>Mo.”
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PROOF. The first part of the lemma is self-evident. Assume now
that K}. n K=Kg, and let 2, be the restriction of #* to K. Then
Kg =Kz, and hence & and &, are isomorphic places of K. Hence
P =2, [, where f is an isomorphism of the residue field 4, of &, onto
the residue field 4 of . Extend f to an isomorphism f* of the residue
field of 2* and set £ *=P*f*. Then #* and #,* are isomorphic
places, and 2, * is an extension of 2, which proves the second part of
the lemma. Furthermore, it is clear that Mg« N K=Myp, and this
proves one half of the last part of the lemma. Assume now that we
have K}.> K and Ma+> M4 for two given places Z and P* of K and
K * respectively. If x is any element of K, not in K, then 1/x belongs
to Mg, hence 1/x € Mp+, and therefore x ¢ KJ.. This completes the
proof of the lemma.

Note in particular the case in which & is a trivial place of K (#=an
isomorphism of K). If & is the identity automorphism of K, then the
extensions of & to K* are the places of K*/K. It follows from
Lemma 1 that if £ is an arbitrary trivial place of K, then any extension
of Z to K* is isomorphic with a place of K*/K.

The existence of extensions to K* of any given place & of K is assured
by the extension theorem (Theorem 5’, § 4), where o, K and ¢ are now
to be identified with K», K* and £ respectively.

We shall generally denote by 4 (or by 4*) the residue field of a
place 2 of K (or of a place Z* of K*). If 2 is the restriction of #*
in K, then 4<4*, and the transcendence degree of 4* over 4 shall be
called the relative dimension of #* and shall be denoted by dimg #*.
In the special case in which 2* is a place of K*/K, we have 4= K, and
our definition is in agreement with our earlier definition of the dimen-
sion of #*/K.

Lemma 2. Let P* be a place of K* and let P be the restriction of P*
to K. Let xy, xy, - -+, x,, be elements of K}. and let £, &,, - -+, £, be
their P*-values (in 4%). If the x; are linearly dependent over K, then the
¢, are linearly dependent over 4.

PROOF. We have, by assumption, a relation of the form a,x,+
agxy+ « -+ +a,x,=0, where the a; belong to K and are not all zero.
We select a coefficient a; which satisfies the following conditions: a;# 0
and (g,/a;)?+# o for i=1,2,.- ., m (see Theorem 3, Corollary 2, § 3).
Dividing the above linear relation by a; and passing to the #*-values, we
find u €, +usés+ - - - +u,é,=0, where u;=(g;/a;)? 4. Since the
u; are not all zero (u;, for instance, is 1), the lemma is proved.

CoROLLARY 1. The relative dimension of P* is not greater than the
transcendence degree of K*|K.
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For let {¢,} be a transcendence basis of 4*/4 and let x; be an element of
K suchthatx,#*=¢,. By assumption, any finite set of monomials in the
§; consists of elements which are linearly independent over 4. Hence, by
the above lemma, the corresponding monomials in the x; are also linearly
independent over K, i.e., the x; are algebraically independent over K.

CoroLLARY 2. If K* is a finite algebraic extension of K, of degree n,
then also A4* is a finite algebraic extension of 4, and we have [4*:4] <
[K*:K]. :

The integer [4*: 4] is called the relative degree of P* with respect to P
(or with respect to K).

THEOREM 11.  For any place P of K there exist extensions P* in K*
such that dimyg P* is any preassigned cardinal number 20 and < trans-
cendence degree of K*|K.

PROOF. Let {y } be a transcendence basis of K*/K and let {u ;} be a
set of indeterminates over 4, in (1, 1) correspondence with the set {y;}.
Let f be the (uniquely determined) homomorphism of the polynomial
ring Ko[{y;}] onto the polynomial ring 4[{x,}] such that y;f=u; and
f=2on K. By Theorem5’, §4, f can be extended to a place * of
K*. Then 2* is an extension of 2, and since the residue field of 2*
contains the elements u; it follows that dim, 2* is greater than or equal
to the transcendence degree of K*/K. It follows by Corollary 1 of the
preceding lemma that dimy #* is exactly equal to the transcendence
degree of K*|K.

We now observe that there also exist extensions Z* of & having rela-
tive dimension zero. This follows directly from Theorem 5’, Corol-
lary 3 (§ 4).

To complete the proof of the theorem, let « be any cardinal number
between 0 and the transcendence degree of K*/K. We fix a subset
L={x;} of K* which has cardinal number « and which consists of ele-
ments which are algebraically independent over K. Let K’ be the sub-
field of K* which is generated over K by the elements x; of L. Since
K'[K has transcendence degree «, it follows by the preceding proof that
there exists an extension 2’ of £ in K' such that the relative dimension
of #' (over K) is equal to «. Again by the preceding proof, there
exists an extension #* of 2’ in K* whose relative dimension (over K')
is zero. Then it is clear that £* is an extension of 2 and that the
relative dimension of #* (over K) is equal to «. This completes the
proof of the theorem.

CoroLLARY. If K is a field of algebraic functions of r independent
variables, over a ground field k, there exist places of K|k of any dimension
5,057,
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This follows from the preceding theorem if we replace K* and K by
K and k respectively and take for Z the identity automorphism of k.

§7. The case of an algebraic field extension. We shall now
study the case in which K* is an algebraic extension of K. Let # bea
place of K and let 2* be an extension of Z to K*. We denote by K3
the integral closure of K in K*. If we denote by B* the ideal
Ma+ N K 3, then the contraction of B* to K is a maximal ideal in Ky,
namely the ideal M» of non-units of Kp. It follows from Vol. I,
Ch. V, § 2, Complement (2) to Theorem 3, that B* is a maximal ideal
in K%.

THEOREM 12. Let K* be an algebraic extension of K, let #* be an
extension of a place P of K and let K } be the integral closure of K in K*.
If R*=K 50 Mps, then K}, is the quotient ring of K% with respect
to P*.

PROOF. It is clear that the quotient ring in question is contained in
K3.. Now, let «#0 be any element of K}. and let aga*+a,an!
+ -+ 4+a,=0, a; € K, ay#0, be the minimal equation for « over K.
Let j be the smallest of the integers 0, 1, - - -, n, such that (a;/a;)? # oo,
t=0,1,-..,n Then it is clear that (a,/a;)?=0, if i<j. If we set
b;=a;/a;, then we have bga"+bjoe"1+ ... +b, =0, and the b; are ele-
ments of K3, not all in $* (since b;=1). Since K} is integrally
closed, it follows from the lemma in § 5 that either « or 1/« belongs to
the quotient ring of K% with respect to ®*. Were o« not in this
quotient ring, 1/« would be a non-unit in that ring, whence we would
have (1/a)#*=0, a?*= c0, which is impossible. This completes the
proof.

CoroLLARY 1. If P, * and P ,* are two non-isomorphic extensions of P,
then gﬁglt n K; #* gﬁyzt n K;

Obvious.

CoroLLARY 2. If $* is any maximal ideal in K}, then the quotient
ring of K3 with respect to $* is the valuation ring of a place P* of K*
which is an extension of 2.

For, by Theorem 4, §4, there exists a place Z* of K* such that
K3.2K% and M»+>P*. Since K} is integrally dependent on Ka»
and since My is the only maximal ideal in Kg, it follows that
PB*N Kp=Mp. Therefore K3.5Kp and Msp+>Myp. This shows
that #* is, to within an isomorphism, an extension of £ (§ 6, Lemma 1).

Since B*=K 3 n Mo+, the corollary follows from the theorem just
proved above.
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Before stating the next corollary we give the following definition:

DErFINITION.  If K* is a normal extension of a field K, then two places
P>, P* of K* are said to be conjugate over K if there exists a K-auto-
morphism s of K* such that 2 ,* =sP*.t

CoroLLARY 3. Let K* be a finite normal extension of K and let P be
a place of K. If P* and P'* are extensions of P in K*, then P'* is iso-
morphic to a conjugate of P*.

Let P* and P'* be the centers of £* and #'* in the ring K3.
Since K } is integral over K» and since B* and P'* both lie over the
ideal M5 in Kg, it follows by V, § 9, Theorem 22, that B* and B'* are
conjugate prime ideals over K. Consequently some conjugate 2 * of
the place 2* will have center B'* in K%, and hence 2,* and 2'* are
isomorphic since, by Theorem 12, these two places have the same
valuation ring.

The above corollary can be extended to infinite normal extensions K*
of K. The proof is as follows:

Given the two extunsions * and Z'* of # to K*, let M denote the
set of all pairs (F, s) such that: (1) F'is a field between K and K* and is
a normal extension of K; (2) s is a K-automorphism of F’; (3) if  and
P’ are the restrictions of * and 2'* to F then #'p=sP5. 1If (F,s)
and (G, t) are two such pairs, we write (F, 5) <(G, t) if F < G and s is the
restriction of ¢ to F. Then M becomes a partially ordered set. It is
clear that M is an inductive set and hence, by Zorn’s lemma, M contains
maximal elements. Let (F, s,) be a maximal element of M. To prove
the corollary we have only to show that Fy=K*. Assuming the con-
trary, we take an element x in K*, not in F, and we adjoin to F, the
element x and all its conjugates over K. We thus obtain a field F,

1+ In § 2 (p. 6) we have defined conjugate algebraic places of a.field K over
a ground field k. In the present definition we have introduced the concept of
conjugate places, with respect to a field K, of a normal extension of K. The two
definitions agree whenever they are both applicable, namely when K is a normal
algebraic extension of k and when we are dealing with places of K over k. In
fact, let 2, and 2, be two places, over k, of a normal algebraic extension K of k.
If these places are conjugate in the sense of the present definition, then it is
obvious that they have the same residue field and are isomorphisms of K*
onto that common residue field; they are therefore conjugate over k& also in the
sense of the definition of § 2. (Observe that both places must be trivial, in
view of § 4, Theorem 5’, Corollary 1.) Conversely, assume that 2, and £,
are places of K[k (necessarily algebraic) which are k-conjugate in the sense of
the definition given in § 2, and let 4, and 4, be their residue fields. Since
both #, and 2, must be trivial places, 4, and 4, are k-isomorphic normal
extensions of k. Since they are subfields of one and the same algebraic
closure % of k, they must coincide. Therefore if we set s=2,2,7!, then s is

an automorphism of K/k and have 2,=s%,, i.e., 2, and £, are also con-
jugate in the sense of the present definition.
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which is a normal extension of K and such that Fy< F,< K*. Let the
restrictions of #* to F, and F, be respectively 2 and £, ; similarly, let
Z'yand £, be the restrictions of 2'* to F;, and F, respectively. We
fix an automorphism s, of F, such that s, is an extension of 54, and we
set 2", =5,"1%',. Since P=5,"12", it follows that 2, and 2", are
both extensions of &, By the finite case of the corollary we have
therefore that ", =7%,, where 7 is a suitable F-automorphism of F,.
Then &', =s5,72,, showing that (F, s;7) € M. This is a contradiction
with the maximality of (F, s,), since Fy < F, and s,, is the restriction of
5,7 to F,.

A similar argument could be used to prove that also Theorem 22 of
Vol. I, Ch. V, §9, holds for infinite normal algebraic extensions. On
the other hand, the above proof of the corollary already establishes
Theorem 22 in the infinite case, for every prime ideal is the center of
some place.

CoRrOLLARY 4. If K* is a finite algebraic extension of K and P is a
place of K, then the number of non-isomorphic extensions of 2 in K* is not
greater than the degree of separability [K*:K],.

This is an immediate consequence of Theorem 12, Corollary 3 if K*
is a normal extension of K. In the general case, it is sufficient to pass
to the least normal extension K,* of K which contains K* and to ob-
serve that: (a) every extension 2* of £ in K* is the restriction of an
extension of 2 in K,* (for #* has an extension in K;*); (b) two exten-
sions of £ in K,* which differ by a K*-automorphism of K,* have the
same restriction in K*; (c) if G and H are the Galois groups of K;*/K
and K,*/K* respectively, then the index of the subgroup H of G is
equal to the degree of separability [K*: K]..

In view of the intrinsic importance of the above corollary, we shall
give below another proof which makes no use of the theorems developed
in this section. The proof will be based on the following lemma which
expresses the independence of any finite set of places such that none is a
specialization of any other place in the set.

Lemma 1. If 2, P,,---,P, are places of a field K such that
Ko, P Ko, if i#], then there exist s elements £, &,, - - -, €, in K such that
§2,:#0, 0 and §,2,=0if i#5 (i,j=1,2,- - - ,5).

Proor. We first consider the case s=2. Since Ko ¢ Kp,, there
exists an element x in K such that x2, # 00, x2,=00. If x2,#0, we
set £, =1/x. IfxP,=0, we set £,=1/(x+1). In a similar fashion we
can find £,.

We assume now that s > 2 and we use induction with respecttos. By
our induction hypothesis, there exists an element x such that x#, #0, oo,
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x?,=0;1=2,3,--.,5—1. We show that there exists an element ¥s
such that y&#,#0, 0, y2,=0, i=2,3,---,5—1, and y P, # 0. If
xP, # oo, there is nothing to prove. If x# = o, we set y,=x/(x—1) if
x?,#1, and y,=x/(x+1) if x2,=1 and the characteristic of the
residue field of &, is #2. If the characteristic is 2 and 2, =1, we
set y,=(x3+x2+x)/(x®+x+1).

In a similar fashion we find, for each i=2,3,...,s, an element y;
such that y, 2, #0, ©, 3,2+ o and y,2,=0, lf];él 1(i=2,3,--,5).
If we then set £,=y,y;- -y, we have ¢ #0,00; ¢ .@, 0,
i=2,3,-.-,s. The existence of &,, &, - - -, &, is proved in a similar
manner.

The above Corollary of Theorem 12 can now be proved as follows:

Let 2%, #,*%, - - -, 2,* be non-isomorphic extensions of & in K*.
Since each P* has relative dimension zero, no P * is a specialization of
any P * if i#j. There exist then elements £,, £,, - - -, £, in K* satis-
fying the conditions ot the above lemma (with 2; replaced by 2*).
We assert that for any integer e>0 the elements £?° are linearly inde-
pendent over K (here p is the characteristic of K; if p=0, we set p*=1).
For assume that we have a linear relation of the form a,¢,?
+ab? + - - - +a,fp =0, where the a; are in K and are not all zero.
Upon dividing by one of the coefficients we may assume that one of the
coefficients, say a;, is equal to 1, while the remaining coefficients have
finite #-values. But then, passing to the P ;*-values, we find the absurd
relation 1=0.

Since for a suitable integer e the elements £,?° are all separable over K,
it follows that s £ [K*: K], establishing the corollary.

We shall need later on the following approximation theorem which
expresses the independence of places in a much stronger form than does
Lemma 1.

LemMma 2. If P, P, -+, P, are places of a field K, such that
Ko, Ko, if i#], then given s arbitrary elements a,, a,, - - -, a, belonging
to the residue fields of P, P,, - - -, P, respectively, there exists an element
uin K such that u?;=a;, i=1,2,---,s

PROOF. Using the elements £, §,,---, ¢, of Lemma 1 we set
L;=E/(6,+ €+ - - - +£). The s elements {; have then the following
properties: {#;=1, {{#,=0ifi#j. We shall make use of the {’sin the
present proof, in the following fashion: instead of proving the existence
of an element u satisfying the conditions of the lemma, we shall prove
that for eachi=1, 2, - - - , s there exists an element », such that 4,2, =q,,
u,.g’j¢ oo if i#j. For once this is proved, the element u= ulll
ugls+ - - - +ug, will satisfy all our requirements.
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Let us prove, for instance, that there exists an element %, such that
P =a, u,?;# 0 if j#1. We begin with the case s=2. Let 2, be
an arbitrary element of K such that 2,#,=a;. If 2,%,+# o0, we set
u,=2,. If 2,2,=o00, then we may set u,==2,/(1+2,{,).

We now assume that s >2 and we use induction with respect to s.
There exists then an element 2, in K such that 2,#,=a,, 2,2,;# ©,
7=2,3,---,5s—1. Ifalso 2,2 +# 0, we set u;=2,. If 2,2 =c0, we
may set u; =2,/(1+2,{,).

This completes the proof of the lemma.

We shall conclude our study of extensions of places in algebraic field
extensions by a theorem which is of importance for applications, since
it covers a situation which occurs whenever two integral domains are
given, one of which is integrally dependent on the other.

THEOREM 13. Let © be an integrally closed integral domain, and let
£* be an integral domain which is integrally dependent.on O. Let q be a
prime ideal in © and let q* be a prime ideal in O* which lies over 9. If P
is a place of the quotient-field K of © which has center o in O, then at least
one of the extensions of P to the quotient field K* of O* has center q* in O*,

PROOF. Since O* is integrally dependent on O, K* is an algebraic
extension of K. We also observe that we may replace O* by its integral
closure £* in K*, since there is at least one prime ideal in D* which lies
over q* (Vol. I, Ch. V, § 2, Theorem 3). Hence we may assume that
O* is integrally closed.

- We first consider the case in which K* is a finite normal extension of
K. We fix an extension #'* of & in K* and we denote by ¢'* the
center of #'* in ©*. Since both © and O* are integrally closed and
since both ¢'* and q* lie over q, the prime ideals q'* and q* are conjugate
over K (Vol. I, Ch. V, § 9, Theorem 22). If, say, q'* =(q*), where =
is a K-automorphism of K*, then the place 2* =72'* is an extension of
2 and has center g*.

If K*is a finite extension of K, not necessarily normal, we consider the
least normal extension K’ of K which contains K* and we denote by
©’ the integral closure of ©* in K’. There exists a prime ideal ¢’ in O’
such that ¢’ N ©*=g*, and by the preceding case, there exists an exten-
sion &’ of 2 in K’ such that Ms' N O'=q’. Then if P* is the restric-
tion of 2’ to K*, the place 2* will be an extension of £ with center q*.

Now, let K* be an arbitrary algebraic extension of K. Our theorem
is equivalent with the assertion that K}q*#(1), where K3 is the
integral closure in K* of the valuation ring Kp. For, if there exists an
extension #* of # which has center g*, then K Xq*<My+ and there-
fore 1¢ KZq*. Conversely, if KXq*#(1), then the ideal K2q* in
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K3 is contained in a maximal ideal $* of K% By Theorem 12,
Corollary 2, the quotient ring of K with respect to $* is the valuation
ring of an extension Z* of . The prime ideal Mg+ of 2* contracts in
* to a prime ideal which contains g* (since *> ¢*) and contracts to
the ideal q in €. Hence g*=Mgp+n £* (see Vol. I, Ch. V, p. 259,
complement 1 to Theorem 3), and thus q* is the center of #*.

Now, the proof that KZq*#(1) is achieved by observing that if

h

K}aq*=(1), then 1= 3 a;*q;*, a;*€ K}, ¢; € 9%, and from this rela-
i=1

tion one concludes easily that there exists an intermediate ring O’ be-
tween £ and ©* with the following properties: the quotient field K’ of
£'is a finite algebraic extension of K, and if '= g* n ©"then K'gq’ = (1),
where K’ is the integral closure of K» in K’.  The relation K's ¢’ =(1)
is, however, in contradiction with the fact that our theorem holds true
for the finite algebraic extension K'of K. This completes the proof of
the theorem. .

CorOLLARY. The assumption and notations being the same as in
Vol. I, Ch. V, § 13, Theorem 34 (the theorem of Kummer), given any place
2 of K which has center v in R and given any irreducible factor f,(X) of
F(X), there exists an extension P’ of P to K' such that y&' is a root of
f(X).

Apply the theorem to the case in which £*=R’, p*=R'p+ R'F,(y).

§ 8. Valuations. Let K be a field and let K’ denote the multiplica-
tive group of K, i.e., let K’ be the set of elements of K which are dif-
ferent from zero. Let I' be an additive abelian totally ordered group.

DEeFINITION. A valuation of K is a mapping v of K’ into I such that the
following conditions are satisfied:

(a) v(xy) = v(x)+u(y)
(b) u(x+y) 2 min {o(x), 2(y);

For any x in K’, the corresponding element v(x) of I' is called the
value of x in the given valuation. The set of all elements of I" which are
values of elements of K’ is clearly a subgroup of I" and is called the
value group of v. The elements of I which do not belong to the value
group do not interest us. We shall therefore assume that I itself is the
value group of v, i.e., that v is a mapping of K’ onto I'.

A valuation v is non-trivial if v(a)# 0 for some a in K'; in the contrary
case v is said to be a trivial valuation.

Condition (a) signifies that v is a homomorphism of the multiplicative
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group K’ onto the additive group I Hence o(1)=0; (- 1) +v(—1)=
2(1)=0, and hence v(—1)=0 since I' is a totally ordered group. More
generally, if an element w of K’ is a root of unity, say if w"=1, then
nv(w) =0, whence v(w) =0 (for I' is totally ordered).

From o(—1)=0 it follows that v( —x)=1v(x), and hence, by (b):

(b') v(x—y) 2 min {v(x), »(y)}

We also note the following consequences of the properties (a), (b)
and (b’):

(1) v(ylx) = v(y)—o(x), x#0
(2) v(l/x) = —v(x), x#0
3) o(x) < v(y) = v(x+y) = v(x).

To prove (3), we first observe that o(x +y) 2 v(x), by (b). On the other
hand, if we write x in the form (x+y)—y and apply (b’), we find
o(x) 2 min {v(x+ y), »(y)}. Hence v(x) 2 v(x+y), since, by assumption,
v(x)<v(y). Combining with the preceding inequality v(x+y)2 v(x)
we find (3).

The following are easy generalizations of (b) and (3):

4) v(lnz x,v) 2 min {v(x,), v(x,), - - -, v(x,)} for all x; € K;

=1
n

(5) v('z x,-) = min {v(x,), v(x,), - - -, ¥(x,)} if the minimum is

reached by only one of the v(x;).
Relation (4) follows by a straightforward induction. To prove (5), let ¢

be the unique value of the index j for which v(x;) attains its minimum.
We have

'v(j; xj) 2 T]Tll'n {v(x;)} > v(xy),

and now (5) follows from (3).

Let v and ¢’ be two valuations of K, with value groups I" and I
respectively. We shall say that v and v’ are equivalent valuations if there
exists an order preserving isomorphism ¢ of I" onto I'" such that v/(x) =
[v(x)}p for all x in K'. We shall make no distinction between equivalent
valuations ; we agree in fact to identify any two valuations of K if they
are equivalent.

If a particular subfield k of K has been specified as ground field, then
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a valuation v of K is said to be a valuation over k, or a valuation of K|k,
if v(c)=0forall cin &, c#0, i.e., if v is trivial on .

The set of elements x of K such that v(x) 2 0 is clearly a ring. This
ring will be denoted by R, and will be called the valuation ring of .

Since, for every x in K, we have either v(x) 2 0 or 2(x) £0, i.e., either
2(x)2 0 or »(1/x)2 0 (by (2)), it follows that either x or 1/x belongs to
the valuation ring. This justifies the name ‘valuation ring” (see
Theorem 1, § 2).

The “divisibility relation in K with respect to R,,” i.e., the relation
y|x defined by the condition that there exists an element z in R, such
that x=yz, is equivalent to the relation “v(x) 2 v(y).” This follows at
once from (a).

In order that both x and 1/x belong to R, it is necessary and sufficient
that 9(x)20 and —o(x)20, i.e., that o(x)=0. In other words: the
multiplicative group of units in R, coincides with the kernel of the homo-
morphism v of K’ onto I'.

The non-units in R, are therefore the elements y in K such that
2(y)>0. It follows directly from (a) and (b’) that the set of non-units
in R, is a prime ideal. We shall denote this prime ideal by 9, and
refer to it as the prime ideal of the valuation v. Notice that any element
of K which does not belong to R, is the reciprocal of an element of M,
Since M, is the set of all non-units in R, it is a maximal ideal in R,, in
fact the greatest proper ideal in R,. :

In the case of a non-trivial valuation, M, is not the zero ideal, and-R,
is a proper subring of K. For a trivial valuation v we have R =K,
M, =(0). '

Sin(ce) M, is a maximal ideal, R, /M, is a field. This field will be called
the residue field of the valuation v and will be denoted by D,, or simply
by D. The image of an element x of R, under the canonical homomor-
phism R, — R, /M, will be called the v-residue of x.

If v is a valuation of K over a ground field &, then k< R, and k can be
canonically identified with a subfield of the residue field D of v. The
transcendence degree of D/k is called the dimension of the valuation v
(over k).

It is obvious that equivalent valuations of K have the same valuation
ring and the same residue field. Conversely, if two valuations v and v’
of K have the same valuation ring, then they are equivalent. For let I'and
I'" be the value groups of v and v’ respectively, and assume that
R=R,=R,. The two valuations v and ¢' are homomorphisms of K’
onto I'and I" respectively. By assumption, they have the same kernel,
namely the set of units in R. Hence v~1¢’ is an isomorphism ¢ of I
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onto I". The elements of positive value are the same in both valuations,
namely they are the non-units of R. Hence ¢ transforms the set of
positive elements of I” onto the set of positive elements of I” and is
therefore order preserving. Since v’ =g, our assertion is proved.

§ 9. Places and valuations. Let v be a valuation of K, with value
group I'. It has been pointed out in the preceding section that if x is
an element of K, not in R,, then 1/x belongs to R, (1/x belongs then even
to M,). Now, we know from § 2 that this property of R, characterizes
valuation rings of places of K. Hence every valuation v of K determines
a class of isomorphic places P of K such that Ke=R,. These places are
non-trivial if and only if v is non-trivial. If £ is any place in the class
determined by a given valuation v, and if x is any element of K, then the
relations

xP =0, xP =00, xP #0, 0

are respectively equivalent to the relations
xEMp, x¢ Ko, xeKg—Ma,

and therefore are also respectively equivalent to the relations
v(x) >0, ox) <0, ovx)=0,

since Kp=R, and Map=M,,.

We now show that, conversely, every place P of K is associated (in the
above fashion) with a valuation of K. 'The case of a trivial place & is
trivial, and we shall therefore assume that £ is non-trivial. Let E
denote the set of units in Kp (E=Ks—Ms). Then E is a subgroup of
the multiplicative group K’ of K. Let I" denote the quotient group
K’[E and let us write the group operation in I" additively. Let v be
the canonical homomorphism of K’ onto I.  Then condition (a) of the.
definition of valuations is satisfied for v. We now introduce a relation
of order in the group I. It will be sufficient to define the set I'y of
positive elements of I.  We define I'y as the transform of Ms by v.
Since Mo is closed under multiplication, I'y is closed under addition.
Since Mg is an ideal in K» and since E is a subset of K, it follows that
Ma is the set-theoretic sum of a family of E-cosets in K’. Hence My,
with the zero element deleted, is the full inverse image of I';. under v-1,
Or, in other words: if y € K', y ¢ My, then v(y) ¢ I'y. Now, let « be
any element of I"and let e=2(x), xe K'. Ifce 'y, thenxe Myp. In
that case, 1/x ¢ Mo and hence —a=ov(1/x) ¢ I'y. If a¢ Iy and a#0,
then x ¢ Mo and x ¢ E, whence x ¢ Kp. But then 1/x € Mp and —a=
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v(1/x) € I'y. We have thus proved that I'; satisfies all the conditions
for the set of positive elements of an ordered group.

It remains to show that condition (b) of the definition of valuations is
satisfied. We have to show that if x, y€ K’ and v(x)<%(y), then
v(x+y) 2 v(x), or—what is the same—that ©(1+y/x)20. But that is
obvious, since the assumption v(x) £ () implies that y/x is an element
of Ko, and hence also 1+ y/x belongs to K.

Since by our construction of v the valuation ring of vis the ring Kg,
the proof is complete.

It is clear that if Z is a place of K and v is the corresponding valuation
of K, then the residue fields of £ and v are isomorphic. In particular,
if K contains a ground field & and if £ is a place of K/k, then the residue
fields of 2 and v are k-isomorphic, and hence 2 and v have the same
dimension. Note that, for a given valuation v a particular place asso-
ciated with v is the canonical homomorphism of R, onto D, (=R, /I,).

Although places and valuations are closely related concepts, they are
nevertheless distinct concepts. The value of an element x at a place
is, roughly speaking, the analogue of the value of a function at a point,
while the value of x in the corresponding valuation v is the analogue of
the order of a function at a point. We shall, in fact, adopt this function
theoretic teminology when we deal with places and valuations. If,
namely, 2 is a place and v is the corresponding valuation, then for any
x in K we shall refer to v(x) as the order of x at . 1If a=v(x) and « is
positive (whence x2 = 0), then we say that x vanishes at 2 to the order «.
If « is negative (whence 2 = ), then we say that x is infinite at P to
the order —«. The order of x at 2 is zero if and only if x##0, co.

It must be pointed out explicitly that the above definition of the order
of the elements of K at a given place 2 of K presupposes that among the
(infinitely many) equivalent valuations determined by & one has been
selected and fixed in advance. Without a fixed choice of v, the defini-
tion of the order is ambiguous. The ambiguity may remain even if
the value group I is fixed, for I" may very well possess non-identical
order preserving automorphisms.

It is well known that, with the exception of the additive group of
integers, every totally-ordered abelian group does possess such auto-
morphisms. Hence, it is only when the value group is the group of
integers that the order of any element of K at the given place £ is deter-
mined without any ambiguity. There is, of course, one canonical
valuation v associated with a class of isomorphic places £, and that is
the canonical mapping of K’ onto K'/E, where E is the set of units of
K». However, in practice one replaces K'/E by some isomorphic
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ordered group of a more concrete type (for instance, by a subgroup of
the additive group of real numbers, if v is of rank 1; see § 10 below) and
when that is done then the ambiguity referred to above reappears.

If a particular subfield & of K has been specified as a ground field then
the valuations v of K/k are characterized by the condition that k& is con-
tained in R,. It follows that the valuations of K/k are associated with
the places of K/k.

The following theorem seems, in some respects, to be an analogue of
the extension theorem for places (Theorem 5', § 4) but is actually a much
more trivial result:

THEOREM 14. Let o be an integral domain, K the quotient field of v,
and let vy be a mapping of o (the zero excluded) into a totally ordered
abelian group I satisfying the following conditions:

(1) o(%y) = vo(*) +2o(¥),
(2) vo(*+y) 2 min {24(x), vo(y)}-

Then v, can be extended to a valuation v of K by setting v(x[y)=vy(x)—
vo(¥), and this valuation v is the unique extension of v, to K.

PROOF. If y/x=y'[x" then xy'=x"y, vo(x) + vo(y") = vo(*") + vo(y), i.€.,
vo(x) — vo(y) =vo(x") —vy(y’), and this shows that v is well defined and
is, of course, the unique valuation of K which coincides with v, on 4.
Furthermore, v satisfies conditions (a) and (b) of the definition of valua-
tions. For, we have:

o : ;—) = 0y(x') = B(3y) = Vo) + (") ~ [04(3) + v()]
[0(x) — To(3)] + [2o(x') = a(¥)]

()

i.e., condition (a) is satisfied. We also have:

5+5)
vl -+
yy

I

vo(xy’ +xy) — vo(3y")
2 min {vg(xy"), vo(x'y)} —vo(3y")
= min {v(;) +v(yy"), 0(57) + ”o(}’y')} —vo(3y')

-3}

showing that condition (b) is also satisfied.
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By analogy with § 5 we say that a valuation v of a field K is non-
negative on a subring 4 of K if the valuation ring R, contains 4, i.e., if
each element of A4 has non-negative order for ». In this case the set
A n M, of all elements of 4 which have positive orders for v is a prime
tdeal p in A; it is called the center of vin A. 'The ideal p is also the
center of the (equivalent) places associated with v. It follows that if 4
is a subring of a field K and if p is a prime ideal in 4, then there exists
a valuation v of K having p as center in A4.

In the algebro-geometric case, when dealing with a valuation v of the
function field k(V') of an irreducible variety V/k, and assuming that v
is non-negative on the coérdinate ring k[ /'], we shall mean by the
center of v on V' the irreducible subvariety of V/k which is defined by
the prime ideal M, n k[}’]. Thus, while the center of a place 2, which
is finite on k[V'], is a point Q of V, the center of the corresponding valua-
tion is the irreducible subvariety of I which has Q as general point
over k.

ExAMPLES OF VALUATIONS:

EXAMPLE (1). A finite field K admits only trivial valuations. In fact,
all its non-zero elements are roots of unity.

EXAMPLE (2). Let 4 be UFD, K its quotient field. Given a non-
zero element x in K, we consider the (unique) factorization

x = u [] pv®,
peP

# denoting a unit in 4, and P a maximal set of mutually non-associated
irreducible elements in 4. For a given x#0 in K, there is always only
a finite number of elements p in P such that v,(x) #0, and the integers
v,(x) are all Z0 if and only if xe A. The uniqueness of such a fac-
torization shows immediately that v,(xy)=1v,(x)+v,(y). Denoting by
m, the integer min (v,(x), v,(y)), the fact that x+y may be written in
the form a[ | p™» with a in A, shows that v,(x+y) 2 min (v,(x), v,(¥))-
In other words, for each p in P, v, is a valuation of K. Its valuation
ring is obviously the quotient ring 4 4,, and its center in A is the prime
ideal Ap. This valuation is called the p-adic valuation of K. Its value
group is the additive group of integers.

EXAMPLE (3). Let R be a Dedekind domain, K its quotient field.
By Theorem 9, § 5, we know that if v is a non-trivial valuation of K
which is non-negative on R, then the valuation ring R, of v is the quotient
ring R, of R with respect to a proper prime ideal p in R, and that in fact
for every proper prime ideal p in R the quotient ring Ry is a valuation
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ring. Let then p be any proper prime ideal in R and let v, denote the
(unique) valuation of K whose valuation ring is R,. In the course of
the proof of Theorem 9 we have seen that every non-zero element x of
R, is of the form &t", where ¢ is a unit in R, and ¢ is some fixed element
of R which belongs to p but not to p2.  In other words, we have shown
that Ry, is a unique factorization domain, that ¢ is an irreducible element
in R, and that every other irreducible element of Ry is an associate of ¢.
It follows, as a special case of the preceding example, that if we set
v(et")=n, then v is a valuation of K and R; is the valuation ring of
v. Therefore v=v, (up to equivalence). The center of v, in R is
obviously the prime ideal p. This valuation v is called the p-adic
valuation of the quotient field K of R.  We have therefore shown that
every valuation v of the quotient field K of a Dedekind domain R such that v
is non-negative on R is (or, is equivalent to) a p-adic valuation of K, where
v 15 a suitable prime ideal in R, and that the value group of v is (or is order
isomorphic with) the additive group of integers.

In particular, all the non-trivial valuations of the field of rational
numbers, are equivalent to p-adic valuations, where p is a prime number,
Similarly, each non-trivial valuation of the field 24(X)/k of rational func-
tions of one variable is equivalent to a valuation of the following type:

(a) a p(X)-adic valuation, where p(X) is an irreducible polynomial in
k[X];

(b) the valuation defined by v, (f(X)/g(X))=deg. f(X)—deg. g(X).
(See Theorem 9, Corollary 2, § 5).

The above analysis can be applied to fields of algebraic numbers
(finite algebraic extensions of thé field of rational numbers). If K issuch
a field and v is a non-trivial valuation of K, then the valuation ring R, con-
tains the ring J of ordinary integers and therefore R, must also contain
the integral closure of J in X, i.e., the ring o of algebraic integers in K.
Since o is a Dedekind domain (Vol. I, Ch. V, § 8, p. 284), v is a p-adic
valuation of K, where y is a prime ideal in o, and the value group of v is
the additive group of integers. The center of v in J is a prime ideal Jp,
where p is a prime number and p n J=Jp. Given a prime number p,
there is only a finite number of prime ideals p in o such that p nJ=p
(they are the prime ideals of 0p). Hence, there is only a finite number
of mutually non-equivalent valuations v of X in which a given prime
number p has positive value v(p).

§ 10. The rank of a valuation. Let K be a field and let v be a
valuation of K. By the rank of v we mean the rank of any place 2 such
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that K= R, (see § 3, Definition 1). We proceed to interpret the rank
of v directly in terms of the value group I' of v.

A non-empty subset 4 of I' is called a segment if it has the following
property: if an element « of I" belongs to 4, then all the elements 8 of I
which lie between e and —« (the element —« included) also belong to 4.
A subset 4 of I'is called an isolated subgroup of I' if 4 is a segment and a
proper subgroup of I

It is clear that the set of all segments of I" is totally ordered by the
relation of set-theoretic inclusion. We shall say, namely, that 4, pre-
cedes 4, if the segment 4, is a proper subset of the segment 4,. . We
proceed to prove that the ordinal type of the set of all isolated subgroups of
I is equal to the rank of v. This assertion is included in the theorem
stated and proved below.

If A is any subset of the valuation ring R,, we shall denote by Av the
set of all elements « of I" which are of the form v(x), x € 4, x#0, and by
— Au the set of elements —a, e € Av. We denote by I'; the comple-
ment in I of the union of the two sets Av and — Av.

THEOREM 15.  If A is a proper ideal in R, (i.e., A+ (0), R,), then Iy is
a segment in I'.  The mapping W — I'n transforms in (1, 1) order-reversing
fashion the set of all proper ideals % in R, onto the set of all segments of I"
which are different from I'.  The segment I'y is an isolated subgroup of I
if and only if % is a proper prime ideal of R,

PROOF. If % is a proper ideal in R,, the set %v is non-empty and con-
tains only positive elements of I.  Hence I'y is non-empty (it contains
the zero of I') and is a proper subset of I.

Since AR, <A, we have v+ ', <Av. In other words: if & € v and
B>a, then Be Av. This shows that I'y is a segment.

Since % is an ideal, we have xE< ¥ for all x in A. Here E—the set of
units in R,—is the kernel of the mapping v of K’ onto I Hence %
consists of E-cosets and is therefore the full inverse image of %Av under
-1, Hence the mapping % — I'y is univalent. It is obvious that if
9 and B are ideals in Rv and YD B, then I'y<I'y. Hence the mapping
A — I'y reverses order.

Let 4 be an arbitrary segment of I', different from I', and let L be the
set of all positive elements of I" which do not belong to 4. We set
%=Lov-!. The fact that 4 is a segment implies that L+ I <L.
Hence AR, <A. Furthermore, if x, y € A and if, say, v(x) £2(y), then
v(x—y)2v(x) € L, and hence v(x—y) e L (since 4 is a segment) and
x—yeU (since A=Lv~'). We have proved that % is an ideal. Since
L is non-empty and does not contain the zero of I', % is a proper ideal.
Thus everything is proved, except the last part of the theorem.
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We observe that an ideal ¥ is prime if and only if its complement in
R, is closed under multiplication. Hence % is prime if and only if the
set of non-negative elements of I'y is closed under addition. But since
Ty is a segment, this property of the set of non-negative elements of
Iy is equivalent to the group property of I'n. Hence I'y is a subgroup
of I (necessarily isolated) if and only if % is a proper prime ideal of R,,.
This completes the proof of the theorem.

In the sequel we shall also speak of the rank of any ordered abelian
group I'; we mean by that the ordinal type of the set of all isolated sub-
groups of I'.

THeOREM 16. The valuation ring R, is noetherian if and only if the
value group I of v is the additive group of integers.

PROOF. We first show that if R, is noetherian then v must be of
rank 1. For suppose that v is of rank greater than 1. Since the null-
group is an isolated subgroup of I', there must exist an isolated subgroup
4 different from (0). Fix a positive element « in 4. Then o< 2«
< .-+ <na< ---. Since 4 is a proper subgroup of I" we can find in
I' a positive element 8 which does not belong to 4.  Since 4 is a segment
and since the elements na belong to 4, it follows that 8 > ne, n=1,2, - - ..
We thus have in I' a strictly descending sequence B, B—«a, B~2¢, - - -
of positive elements. Such a sequence determines an infinite strictly
descending sequence of segments of I', and therefore, by Theorem 15,
we have an infinite strictly ascending sequence of ideals in R,. Hence
R, is not noetherian.

Let now v be of rank 1. If R, is noetherian, there must be a least
positive element in I', say «. Then if n is any integer, no element of I
can lie between na and (7 + 1)e, for in the contrary case there would also
be elements between 0 and «. Hence the set of all multiples na of «
(n=0, £1, £2,.--)isa segment. Since this set is also a subgroup of
I, it follows that this set coincides with I', for otherwise v would be of
rank >1. We have thus proved that if R, is noetherian, then I is iso-
morphic with the additive group of integers. 'The converse is obvious,
for the group of integers contains no infinite strictly descending sequence
of segments.

We give another proof of Theorem 16, which does not make use of
Theorem 15.  We first observe that the following holds in any valuation
ring R,: if an ideal A in R, has a finite basis, then U is a principal ideal.
For if {x, x,, - - -, x,} is a basis of ¥ and if, say, x, is an element of the
basis having least value in v, then x,/x, € R,, and hence % is the prin-
cipal ideal (x;). Let us suppose now that R, is noetherian. By the
above remark, R, is then a principal ideal ring. Let ¢ be a generator of
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the maximal ideal M, of R, Then any element of R, which is not
divisible by ¢ is a unit. A familiar and straightforward argument shows
that no element of R, (different from zero) can be divisible by all powers
of t (if x=t"a,, a,e R, n=1,2,--., then the principal ideals (a,),
(ag), - - -, (a,), - - - would form a strictly ascending chain). It follows
that every element x of R, x#0, can be put (uniquely) in the form at",
where 720 and a is a unit. This shows that the principal ideals (),
n=1,2, .-, are all the proper ideals of R,. Hence the maximal ideal
(t) of R, is the only proper prime ideal of R,, whence v is of rank 1.
Furthermore, it is immediately seen that if K’ denotes, as usual, the
multiplicative group of the field K and E is the set of units in R,, then
the quotient group K'/E, written additively, is isomorphic to the group
of integers. The given valuation v is necessarily equivalent to the
valuation v’ obtained by setting v'(at”) =n, if a is a unit,

A valuation of rank 1 is said to be discrete if its value group is the addi-
tive group of integers. Thus, Theorem 16 states that a valuation ring
R, is noetherian if and only if v is a discrete valuation of rank 1.

CoROLLARY 1. An integrally closed local domain in which the ideal of
non-units is the only proper prime ideal is a discrete valuation ring of
rank 1.

This follows from § 5, Theorem 9, Corollary 3.

COROLLARY 2. If R is an integrally closed noetherian domain and p is
a minimal prime ideal in R, then the quotient ring Ry, is a discrete valuation
ring of rank 1.

For, the ring R, satisfies then the assumptions of the preceding
corollary (cf. Vol. I, Ch. V, § 6, Theorem 14, Corollary).

We add another important result concerning noetherian integrally
closed domains R. Let .S denote the set of minimal prime ideals in R.
If p € S, we denote by v;, the unique valuation of the quotient field K
of R which is non-negative on R and has center p. By Corollary 2, the
valuation ring of vp is Rp, and each vy, is discrete, of rank 1.

CoroLLARY 3. Let K be the quotient field of an integrally closed
noetherian domain R. If wis any element of K, w+0, then (1) there is only
a finite number of prime ideals p in the set S such that vp(w)#0; (2) w
belongs to R if and only vp(w) 2 0 for all p in S; furthermore (3) w is a unit
in R if and only if vy(w)=0 for all p in S.

If we R, then Rw=p,™ np,mn ... np,l), where s=0, the p;
are minimal prime ideals in R, n;,21 and s=0 if and only if w is a unit
(see Vol. I, Ch. V, § 6, Theorem 14, Corollary 1). If follows at once
that o, (w)=n;, i=1,2,.-.,s and vp(w)=0 if pe S and p#p,,
Py, -+ - p,. This proves (1) in the case in which w e R and therefore
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also in the general case. If we K, w#0, we write w=w,/w,, w; € R.
If vp(w,) = vp(w,) for all p in S, then in view of the relations

Rw1 = n pluplwn))

PeS

sz = n p(vp(wz)),
PeS
it follows that Rw,< Rw, and hence w,/w, € R. This proves (2). The
last part of the corollary is now obvious.

We now go back to the study of general valuations and we add first
some remarks about isolated subgroups, which we shall presently make
use of.

Let 4 be an isolated subgroup of I". It is immediately seen that the
canonical homomorphism of I" onto I'/4 defines a total ordering in I'/4,
in the following fashion: an element of I'/4 shall be, by definition, non-
negative if it corresponds to a non-negative element of I.  From now
on, when we speak of I'/4 as a totally ordered group we mean that I'/4
has been ordered in the above fashion.

In the canonical homomorphism of I" onto I'/4, the isolated sub-
groups of I" which contain 4 correspond in (1, 1) fashion to the isolated
subgroups of I'/4. Since every isolated subgroup of I either contains
or is contained in 4, it follows that if ¢ is the rank of 4 and v is the rank
of I'|4, then the rank of I is £ + .

In §3, we have defined specialization of places. The valuation-
theoretic interpretation of this concept leads to the notion of composite
valuations. Let v be a valuation of K, of rank >1. There exists then
another valuation v, of K such that R,<R,. Let 2 and 2, be the
places of K which are defined respectively by the canonical homomor-
phism of R, onto R /M, and of R,  onto R, /M, . Then £ is a proper
specxahzatxon of #, and we have P=P ? where Pis a place of

R, /M, . Let ¥ be the valuation of R, /m determined by #. We
then say that v is a composite valuation, that i it is composite with the valua-
tions v, and ¥ and we write v=1v, o 0.

Let B denote the prime ideal of v;. We know (§ 3) that B is also a
prime ideal in R,. If, then, I' is the value group of v, P determines an
isolated subgroup 4 of I' (see Theorem 15). We shall now prove the
following theorem:

THEOREM 17. The value group I'y of v, and the group I'/4 are iso-
morphic (as ordered groups). Szrmlarly, the value group I’ of & and the
group 4 are isomorphic.

PROOF. Let E and E, denote, respectively, the set of units in R, and
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R, respectively. We first observe that E is the full inverse image of 4
under v-. For if x is any element of E,, then x=y/z, where y and z
are elements of R, not in B (since R,,l is the quotient ring of R, with
respect to ). Then o(z2) is a non-negative element of I" which does
not belong to Bv, and hence, by the definition of 4, v(z) must belong
to 4. Similarly for v(y). Since 4 is a group, it follows that v(x) € 4.
Conversely, if x is an element of K’ such that v(x) belongs to 4, then
neither v(x) nor v(1/x) belongs to Pv. Since P is the full inverse image
of Bv under v~ it follows that neither x nor 1/x can belong to .
Hence x is a unit in R,. This establishes our assertion that E, is the
full inverse image of 4 under v-1.
We can therefore assert that

(a) the restriction of v to E, is a homomorphism of the multiplicative
group E, onto the additive group 4, and the kernel of this homomor-
phism is E.

Now, v and v, are homomorphisms of K’ onto I" and I'; respectively,
with kernels E and E,. Since E,DE, it follows that v-'v, is a homo-
morphism of " onto I',. By (a), the kernel of this homomorphism is
precisely the isolated subgroup 4. Hence I') and I'/4 are isomorphic
as groups. If « is a non-negative element of I', then the set av~! is
contained in R,, hence also in va, and therefore the element av—1v, is
non-negative. Hence the groups I'} and I'/d are isomorphic also as
ordered groups and this completes the proof of the first part of the
theorem.

Now consider the product 2,9. This transformation into I is de-
fined for those and only those elements x of K for which x#,#0, .
Hence the domain of £, is E,, and the range of #,7 is the value group
I’ of ¢. The transformation #,7 is clearly a homomorphism (of the
multiplicative group E| onto the additive group I'). Its kernel consists
of those elements x for which x#, has value zero in ¢, i.e., of those ele-
ments x for which x@lg—’;é 0, ©. Since 9‘1@= #, we conclude that the
kernel of 2,5 is E. Comparing this result with (a), we conclude that I”
and 4 are isomorphic as groups. An element x of E, is mapped by v
into a non-negative element of 4 if and only if x belongs to R,. On the
other hand, an element x of E, is mapped by #,7 into a non-negative
element of I" if and only if x# 2 # w0, i.e., if and only if x## oo, hence
again if and only if x € R,. This shows that I" and 4 are isomorphic
also as ordered groups, and this completes the proof of the theorem.

COROLLARY. Rank of v=rank of 9+ rank of v,.

The only valuations encountered in most applications (and, in parti-
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cular, in algebraic geometry) are valuations of finite rank (see §3,
Definition 1, Corollary 1), and we shall now derive some properties of
such valuations.

An archimedean totally ordered (additive) group I" is one satisfying
the following condition: if « and B are any two elements of I" and « > 0,
then there exists an integer n such that na >8. Let I" be archimedean
and let 4 be an isolated subgroup of I". It follows at once from the
above definition that if 4 contains a positive element « then 4 coincides
with I, contrary to the fact that an isolated subgroup of I is, according
to our definition, a proper subgroup of I Hence (0) is the only iso-
lated subgroup of I', and I' is therefore of rank 1. Conversely, suppose
that I is a totally ordered group of rank 1, and let o be a positive element
of I The set of all elements + 8, where 8 is a non-negative element of
I’ such that na > for a suitable n (depending on B), is a segment
and a subgroup of I', and this set does not consist only of the
element 0, for « belongs to the set. Since I is of rank 1, it follows that
the above set coincides with I, and hence I is archimedean. We have
thus proved that an ordered group is archimedean if and only if it is of
rank 1.

The following well-known argument shows that every archimedean
ordered abelian group I is isomorphic to a subgroup of the ordered additive
group of real numbers (and therefore valuations of rank 1 are frequently
referred to as real valuations).

We fix a positive element « of I'.  If 8 is any element of I" we divide
the set of all rational numbers m/n (n > 0) into two classes C, and C,, as
follows: m/n € C, if ma<nf, and m/n € C, if maznB. The fact that I'
is archimedean insures that neither Cy nor C, is empty. It is then seen
immediately that the pair of classes C,, C, defines a Dedekind cut in the
set of rational numbers. If b is the real number defined by this Dede-
kind cut, we set ¢(8)=>b. It is then easily verified that ¢ is an order
preserving isomorphism of I' into the set of real numbers. Note
that @ depends on the choice of the fixed positive element « of and that
ple)=1.

We have proved earlier (§ 7, Lemma 2) an approximation theorem
expressing the independence of any finite set of places, provided no
place in the set is a specialization of any other place in the set. For
valuations of rank 1 we have the following stronger approximation
theorem: ,

THEOREM 18. Let v,, v,, - - -, v, be rank 1 valuations of a field K,
with value groups I'y, I'y, - - -, ', respectively. (We may assume that each
T'; consists of real numbers.) Given h arbitrary elements u,, u,, - - - , uy of
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K and h arbitrary elements ay, ay, - - -, oy of I'y, Iy, - - -, I, respectively,
there exists an element u of K such that

(1) vu-—u)=eo, i=12,---,h

PROOF. It will be sufficient to prove the following: given any
integer m, there exists an element x in K such that

(2) v(x—u)zm, i=12,.--,h
For, assume that this has already been proved. We then fix an integer
m such that m >«;, i=1, 2, - - -, h, and for each { we fix an element x;

in K such that v,(x;)=«;. By assumption, there exists an element y in
K such that v(y—x;) 2 m,i=1,2,---,h. Since y=(y—x;)+x; and
v(y—x;) > v(x;), we conclude that v(y)=«; i=1,2, ---, h. Now
let x be an element of K satisfying the inequalities (2) and let u=x+y.
We have u—u,=(x—u;)+y and v y)=a;<mZv(x—u;). Hence
v(u—u)=v(y)=0; i=1,2,- -, h, ie., u satisfies relations (1).

Since the valuations v; are of rank 1, Lemma 1 of § 7 is applicable.
There exists therefore a set of elements 1y, 7y, - - -, 7, in K such that
v;(n;)=0 and v,(n;) >0 if i#j, for 4, j=1,2,--., h. We replace the
elements 7; by the following elements {; (compare with the proof of
Lemma 2, § 7):

Cz’ = 7).'/(7h+772+ Co ), i=12..-,h
Then it remains true that v,(;) =0 and v,({;) > 0 if i #7, but furthermore
we have that the v;-residue of {; is equal to the element 1 of the residue
field R, /M,. Hence v,({;—1)>0, where 1 now stands for the ele-
ment 1 of K.

We now fix a positive integer n satisfying the following conditions:
(3) n'vi(gi_l)_*_v:(ui) z m, 1= 1)2i"')h;
(4) nv(l)+o(u) 2 m, i#j 45 =1,2,--, h
(Note. If for some i we have u;=0, then the corresponding equation
(3) (or (4)) imposes no condition on the integer n, for 2,(0) is interpreted
then as + 0.)
Consider the following elements ¢; of K:
E=1-(1-¢m, i=1,2,---,h

We have: v,(¢§;,— 1) =nv,(1-0") 2 nv,(1-{,), whence, by (3):

) vlu i~ 1] 2 m.

We also have: £, ={,"f({;), where f is a polynomial with coefficients in
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the prime ring. Hence, if i#j then v;(§;)2nv({;), and therefore, in
view of (4):

(6) vi(u;€;) 2m.

If we now set x=u,£, +uy€,+ - - - +u,€,, then it follows at once from
(5) and (6) that the element x satisfies the inequalities (2). This com-
pletes the proof of the theorem.

The above approximation theorem holds also for valuations of
arbitrary rank provided the valuations v,, v,, - - - , v, are independent in
the sense of the following definition: the valuations v,, vy, - - - , v, are
said to be independent if no two of them are composite with one and the
same non-trivial valuation. We shall prove therefore the following:

THEOREM 18'. The approximation theorem (Theorem 18) remains
valid if the valuations vy, vy, - - - , v, are independent (and not necessarily
of rank 1).

PROOF. It will be sufficient to prove the existence of an element w
in K such that the inequalities

(7) vi(w—ui) > %y 1= 1’27"')}’7

hold (the «; and u, being arbitrary, as in Theorem 18). For assume that
this has already been proved. We then fix an element x; in K such that
v;(x;)=c; and an element y in K such that v,(y —x;) > ¢;, i=1,2, - - -, k.
We have then v (y)=v,(y—x;+x,)=c;. We then determine an ele-
ment x in K such that v (x—u;})>a; and we set u=x+y. Then
vi(u—u)=v,(x—u;+y)=a,;, since v,(y)=e; <v,(x—u,).

To prove the existence of an element w satisfying the % inequalities
(7) we proceed as follows:

We set o ;=0 —v,(u;) if u;#0 and o;;=0if u;=0(i,j=1,2,.- -, h).
Let B;=max {«;, «;5, - - -, @}. If B;>0 then we denote by 4, the
greatest isolated subgroup of I'; which does not contain §; (4, exists: it.
is the union of all the isolated subgroups of I'; which do not contain 8;).
If B, 0 we take for 4, the zero of I';.  If 4, (0) we denote by v’; the
valuation of K whose value group is the group I";=TI/4; and with
which v, is composite. If 4;=(0), we set v';=v,. Let 8, be the coset
B,‘ + Ai' ’

It is clear, by the definition of 4,, that if 8'; >0 then the zero of I,
is the only isolated subgroup of I'"; which does not contain 8';, Now
any positive element y’ of I'"; determines a smallest isolated subgroup
containing y': it is the subgroup of I"; consisting of all the elements + &'
such that 8’20 and such that #y’ > 8 for some integer n. It follows
that for any positive element ' of I'; there exists an integer n (depending
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on y’) such that ny' >B', and this is true for i=1,2,-- . h. Going
back to the value groups I'; we can express this property as follows: #f y
is any positive element of I';, not in 4,, then there exists an integer n such
that ny>B;. Another fact that has to be taken into account is the fol-
lowing: Ifi#j then K,»,$ K,/ . For, in the contrary case, both v; and
v; would be composite with the non-trivial valuation v’;, From this
fact follows, by Lemma 2, § 7, the existence of elements {,, {,, - - - y &y
in K such that v'y({;=1)>0 and o'}({;)>0if j#i (1,j=1,2,- .-, h).
Hence, in view of the above mentioned property, we can find an integer
n such that

n‘v,»(gi—- ]) >Bi’ n'v]-(g,-) >ﬁ), if j # l., i,j = l, 2, ey, ,l.

From the definition of the elements ; it follows then that we have for all
7 such that w,; #0:

nv(§i— 1) +vu;) > o
nv () +o,(u) > o if j#£ L
Hence, if we consider the elements §;=1—(1-{" introduced in
the proof of Theorem 18, we find that if u;#0 then v;(u;;—u;) >«
and v;(u,£,) > «;, and that therefore the element w=u,§, + u,€,+ - -+ +

u,é;, satisfies the inequalities (7). This completes the proof of the
Theorem.

REMARK. Concerning the notion of independent and dependent valua-
tions we point out the following criterion: two valuations v and v’ of K are
dependent if and only if some proper prime ideal of K, coincides with a prime
tdeal of K,». The “only if” is obvious. On the other hand, if K, and K
have in common a proper prime ideal p, then v is composite with a non-
trivial valuation v, such that M, =p. Similarly, v’ is composite with a
valuation o', such that M, =p. From M, =M, - follows K, =K’
v, =%, and hence v and v’ are dependent.

vy

We add some final remarks concerning (A) discrete ordered groups of
finite rank and (B) the rational rank of a valuation.

(A) Let I’ be a totally ordered (abelian) group of finite rank # and let
I'y=(0), I',---,T,_, be its isolated subgroups: I')<I'|< ... <
I',_,<TI. Itisclear that the quotient groups I';, ,/I";,i=0,1, - - - ,n—1
(I',=T), are groups of rank 1. If each of these quotient groups is iso-
morphic to the group of integers, then the ordered group I is said to
be a discrete group. A discrete ordered group of rank 1 is, then, a group
isomorphic to the group of integers. A valuation is called discrete if its
value group is discrete.
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We now observe, quite generally, that given a finite set of ordered
groups G,, Gy, -+, G, then the direct product G*=G,x G, x --- xG,,
can be ordered lexicographically, as follows: a*=(a,, ay, - - -, ) >
O(e, € G)), if the first o; which is not zero is positive. If H is an isolated
subgroup of G,(1<s<m), then the elements o* of G* such that a;=
o,= -+ =a,_,;=0, a € H, form an isolated subgroup of G*, and in this
fashion all the isolated subgroups of G* can be obtained. It follows at
once that the rank of G* is equal to the sum of the ranks of G,,, G,,_y, - * -,
G, (in this order).

With this observation in mind, we now show that a discrete totally
ordered group I', of rank n, is isomorphic to the direct product G, x
Gox -+ x Gy (n times), where G is the group of integers. We sketch
the proof. Let ¢; be the isomorphism of I'; ,/I'; onto G, where
Iy, .-, I, are the isolated subgroups of I" and where I',=T.
Foreachi=0,1,2,-..,n—1,wefixin I, a positive element o,,_; such
that the I';-coset of «,_; is mapped by g, into the integer 1. Then each
element & of I' can be expressed in one and only one way as a linear
combination of «y, ay, -« -, &, with integral coefficients: a=ma, +
myay+ - -+ +mue,. It is then found that « >0 if and only if the first
of the non-zero coefficients m; is positive. Hence the mapping ¢:
o —> (m,, my, - - -, m,) is an order preserving isomorphism of I" onto the
direct product Gy x Gyx - - - x G, (n times).

It should be noted that the isomorphism ¢ which we have just con-
structed depends on the choice of the n elements «, ;. Suppose that
a’y, @'y, - -+, &y is another set of elements of I" with the property that
o',_; € I';;; and the I'-coset of «,_, is mapped by ¢, into 1, and let ¢’
denote the isomorphism similar to ¢ and relative to this new set of
elements o'y, o'y, - - -, &,.  Since o',_;—a,_; € I'; it follows that
aln-—i = an—i+qn—i,n—l'+1an—i+l+ v +qﬂ—i,nam 1= 0! 11 MY n—1'
where the ¢, are integers. If we then write a=m' o'\ +m'ya,,
+ -« +m',a’,, then the following are the equations of the order pre-
serving automorphism ¢=1¢’ of Gy x Gyx - - - x Gy:

—_— ’ . — !’ ’ — ’ ! I
My =My My = 1My +My, Mg = QM 1+ GaaMm o +m'3, €LC.

(B) In addition to the rank of a valuation v we also introduce the so-
called rational rank of v. If I'is the value group of vand a;, ay, - - -, «,,
are elements of I', we say that the o's are rationally dependent if there
exist integers n,, 1, - « -, n,, not all zero, such that n,a, + n,a,+ - - - +
a2, =0. In the contrary case, the «’s are said to be rationally inde-
pendent.
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DEerINITION.  The maximum number of rationally independent elements
of I'is called the rational rank of v (the rational rank of v may be infinite).
Lemma.  Let v be a valuation of Kjk and let x,, x,, . .., x, be elements
of K, different from zero. If x,, x,, - - -, x, are algebraically dependent

over k, then v(x,), v(x,), - - -, v(x,) are rationally dependent.
PROOF. Let f(X;, X,, ---, X,) be a non-zero polynomial in k[X]
such that f(x,, x,, - - -, x,)=0. As has been pointed out in §8, the

valuation axioms imply then that there must exist a pair of distinct terms
in the polynomial f(X), say a X 1X,%2 - -+ X,s and X, /1 X2 - - - X Js,
such that v(ax,/ix,2 - - - x5) =v(bx,/ixy/2 - - - x7s), where a, b are non-
zero elements of k. Since v(a) =v(b)=0, it follows that (i, —j,)v(x,) +
(fa—jo)v(xg)+ - - - +(i,—j,)v(x,)=0, and this establishes the lemma,
since the s integers ,—J, are not all zero.

CoroLLaRY. If K[k is a field of algebraic functions of r independent
variables, then the rational rank of any valuation of K|k is not greater
than r.

NOTE. We observe that the rank of a valuation v is never greater than the
rational rank of » whenever the rational rank is finite. To show this we have
only to show the following: if 'y < I'; <- .- <I',_, is a finite, strictly ascending
chain of isolated subgroups of I" and if for each =1, 2, - - -, h we fix an ele-
ment «; which belongs to I'; and not to I';_, (I',=T), then ay, g, - - -, oy are
rationally independent. Assume then that we have a relation ma,+
myay+ -+ - +mya,=0, where the m; are integers, m,#0and g<h. Then mya,
e€I',_,, and since I, , is a segment and mf;éO it follows that ¢, e Iy_,, 2

contradiction. In particular, a valuation of rational rank 1 is necessarily a
real valuation. Its value group may be assumed to consist of rational num-
bers and for that reason a valuation of rational rank 1 is sometimes called a
rational valuation.

§ 11. Valuations and field extensions. Let K be a field and let
K* be an overfield of K. If ¢* is a valuation of K*, the restriction v of
v* to K is clearly a valuation of K (v may be trivial even if v* is non-
trivial). The valuation ring of v is then given by R« n K, and the valua-
tion o* is said to be an extension of v. If v* is an extension of v and if
P* is any place of K* whose valuation ring is R+, then the restriction
2 of P* to K is a place of K whose valuation ring is R,. It follows that
the results of §§ 6-7 on extensions of places, when translated into the
language of valuation theory, yield corresponding results on extensions
of valuations. However, in the valuation-theoretic interpretation of
these results it must be observed that isomorphic places are associated
with one and the same valuation, and corresponding formal changes
must be made in the statements of those results. Any reference to iso-
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morphic places should be replaced by a reference to one valuation, while
any mention of ‘‘non-isomorphic places” should be replaced by that of
“distinct valuations”. In particular, we point out explicitly the fol-
lowing changes:

In § 6, Lemma 1: The relation R,xn K= R, is not only a necessary
but also a sufficient condition for 2* to be an extension of v.

In §7, Theorem 12, Corollary 3: The field K* is now a normal
algebraic extension of K, and the result is to the effect that if v is any
valuation of K, then any two extensions v,* and v,* of v in K* are con-
jugate over K(v,* and v,* are conjugate valuations of K*, over K, if
v,* =sv,*, where s is a K-automorphism of K*).

Our principal object in this section is to derive some partial but basic
results on extensions of valuations, in which the value groups of the
valuations come into play. We shall be mainly concerned with finite
algebraic extensions of K.

Let v be a valuation of a field K and let v* be an extension of v in some
overfield K* of K. Let I and I'* be the value groups of v and v*
respectively. It is clear that I'is (or can be canonically identified with)
a subgroup of I'*.

Lemma 1. If K* is an algebraic extension of K, then every element of
the quotient group I'*|I” has finite order (and the two groups I" and I'* have
therefore the same rational rank).

PROOF. Let a* be an arbitrary element of I'*.  'We have to show that
there exists an integer s#0 such that sa* € I We fix an element z of
K* such that v*(2)=o*. Let 2"+a2" '+ ... +a,=0 (q;€ K) be a
relation of algebraic dependence for z over K. At least two terms in
this relation must have equal value in v* (see § 8). Let, say, v*(a;2") =
v*(a;z"7), i#j, a;#0, a;#0(ay=1). Then (j—i)v*(2)=v*(a;/a;) € I
and this proves the lemma.

Lemma 2. If K* is an algebraic extension of K, then the valuations v
and v* (or—equivalently—their value groups I' and I'*) have the same
rank.

PROOF. We have to exhibit an order preserving (1, 1) mapping of
the set of all isolated subgroups 4* of I'* onto the set of all isolated sub-
groups 4 of I We define such a mapping as follows: if 4* is any iso-
lated subgroup of I'*, let A=4* nI'. 1Itis obvious that 4 is a segment
and a subgroup of I', and to show that 4 is an isolated subgroup of I" we
have only to show that 4#I". We fix an element o* in I'* such that
a*¢ 4*. By Lemma 1, we have sa* € I for some integer s. On the
other hand, sa* ¢ 4* (since 4* is a segment and since o* ¢ 4%). Hence,
a fortiori, sa* ¢ 4, showing that 4# T
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We next show that our mapping 4* — 4 is univalent. We observe
that if «* is any element of 4%, then all integral multiples of «* belong
to 4*, while, by Lemma 1, some multiple sa*, s#0, belongs to I" and
hence alsoto 4. Conversely, if a* is an element of I'* such that se* € 4
for some integer s 0, then sa* € 4* and therefore «* € 4* (since 4* is a
segment). We have thus shown that 4* is uniquely determined by 4
as the set of all «* in I'* such that sa* € 4 for some integer s #0. Hence,
our mapping 4* — 4 is univalent, and it is clearly order preserving.
Finally, if 4 is an arbitrary isolated subgroup of I', then it is im-
mediately seen that the set 4* of elements o* in I'* such that se* € 4,
for some integer s 0, is an isolated subgroup of I'* and that 4* n I'=4.
Hence our mapping is onto the set of isolated subgroups of I', and the
lemma is proved.

CoroLLARY. If K* is a finite algebraic extension of K then v* is dis-
crete if v is discrete (we recall that it is implicit in our definition of a dis-
crete valuation that any such valuation is of finite rank).

For, let n be the relative degree [K*:K]. The proof of Lemma 1
shows that if we let N=n!, then Na* € I" for all «* in I'*. Let 4,* and
4,;,,* be two consecutive isolated subgroups of I'*(d,* <4,_,*) and let
4; and 4, , be the corresponding isolated subgroups of I. The map-
ping o* — No* (a* € I'*, Na* € I) transforms 4,* and 4,, ,* into 4, and
4, , respectively, and furthermore we know from the proof of Lemma 2
that No* € 4, if and only if «* € 4,*. Hence our mapping o* — Na*
induces an order preserving isomorphism of 4, ,*/4;* into 4, ,/4;.
Since the latter quotient group is, by assumption, isomorphic to the
group of integers, it follows that also 4, ,*/4,* is isomorphic to the
group of integers, and hence the valuation v* is discrete.

LemMA 3. Let x,*, x,%, - - -, x,* be elements of K* such that m ele-
ments v*(x;*) of I'* belong to distinct cosets of I Then the x;* are
linearly independent over K.

i

PROOF. Assume that there is a relation of the form D wx;*=0,
i=1

where the u; are elements of K|, not all zero. 'Then at least two terms
in this relation must have equal (and least) value in ¢*. Let, say,
v*(ux,*)=v*(u,x,*), where s#t and uu,#0. Then v*(x.*)—v*(x,*)
=v*(u,) —v*(u,) € I, in contradiction with our assumption on the v*-
values of the x;*. ,
CoroLLARY. If K* is a finite algebraic extension of K, of degree n,
then the index of the subgroup I' of I'* is finite and is not greater than n.
On the basis of this corollary we can now give the following definition:
DEFINITION. Let K* be a finite algebraic extension of K and let v and



§11 VALUATIONS AND FIELD EXTENSIONS 53

o* be valuations of K and K* respectively, such that v* is an extension of v.
Let I" and I'* be the value groups of v and v* respectively. Then the index
e of the subgroup I' of I'* is called the reduced ramification index of v* with
respect to v, or relative to v (or with respect to K).

If K* is a finite algebraic extension of K, we can speak of the relative
degree of a valuation * of K*, meaning by this the relative degree of any
place associated with v* (see § 6). If v is the restriction of v* to K| then
the residue field R, /M, of v is (or can be canonically identified with) a
subfield of the residue field R /M » of v*, and the relative degree of v*
is the relative degree [R«/M«:R,/M,]. We know that this relative
degree is at most equal to [K*: K] (§ 6, Lemma 2, Corollary 2).

The relative degree of v* shall be denoted by f. If K* is a separable
extension of K we also define the ramification index of v* relative to v as
the product ep?, where p* is the inseparable factor of f.

It is easy to see that the above terminology agrees with terminology
introduced for Dedekind rings in the preceding chapter. For, assume
that we have the following special case: K is the quotient field of a
Dedekind domain R and v is the p-adic valuation of K defined by a
proper prime ideal pin R. If R’ denotes the integral closure of Rin K*,
then the valuation ring of v* contains R'. Since R’ is a Dedekind
domain (Vol. I, Ch. V, §8, Theorem 19), v* is necessarily a -adic
valuation of K*, where  is a prime ideal in R’ lying over p. Let e,
be the reduced ramification index of B with respect to p. If u is an
element of p not in p2, then I' consists of all integral multiples of v(x).
On the other hand, since B occurs to the exponent e, in the factorization
of R'p, it follows that u € B4, u ¢ Pa+!, showing that I' consists of all
multiples me o*, o* € I'*, where m is an arbitrary integer. Hence e,
is the index of I' in I'*, and thus the reduced ramification index of R
with respect to p is also the reduced ramification index of v* with
respect to v. Furthermore, it is clear that the residue fields of v
and v* are isomorphic respectively with the residue fields R/p and
R'[%.

We shall need a lemma on extensions of composite valuations.

LeMMA 4. Let a valuation v of K, with value group I', be composite
with valuations v, and T (where v, is a valuation of K and % is a valuation
of the residue field of v,), and let G be the isolated subgroup of I which cor-
responds to this decomposition of v into vy and ©. Let v* be an extension of
v to an overfield K* of K and let I'* be the value group of v*. There exist
isolated subgroups H* of I'* such that H* n I'=G, and if v*=v,* o 5% is
the decomposition of v* which corresponds to such a subgroup H* then v,*
is an extension of vy and O* is an extension of ©. Conversely, if v,* is any
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extension of v, to K* and o* is any extension of ¥ to the residue field of
v,*, then v* =v,* o 0% is an extension of v to K*, and if H* is the isolated
subgroup of the value group of v* which corresponds to the decomposition
v, ¥ o 0%, then H*n I'=G.

PROOF. We consider the smallest segment G* in I'* such that
G*> G (G*=set of all elements of I"* which are of the form + «*, where
0<e*<a for some a in G). Then it is immediately seen that G* is a
subgroup of I'* and that it is a proper subgroup of I'*, since G is a
proper subgroup of I Hence G* is an isolated subgroup of I'*, and
it is clear from the definition of G* that we have G*nI'=G and
that G* is the smallest of all the isolated subgroups H* of I'* such that
H*nI'=G.

Let now H* be any isolated subgroup of I'* such that H* n I'=G,
and let *=v,* o * be the corresponding decomposition of v*, where
v,* is then a valuation of K*, with value group I'*/H*, and 7* is a
valuation of the residue field of v,*, with value group H* (see § 10,
Theorem 17). We know from the proof of Theorem 17 that v*-1v * is
a homomorphism of I'* onto I'*/H*, with kernel H*. The elements
of I'* which are mapped by this homomorphism into non-negative
elements are those and only those which belong to the set I'\* y H*.
Hence R, « is the full inverse image of I'y* U H* under v*-1. Similarly,
R, is the full inverse image of I'y UG under v=!. Now, since v is the
restriction of v* to K and since (I'y* U H*) n I'=T"1 U G, we conclude
that R, =R, . N K, showing that v,* is an extension of v,.

Let 2, and 2,* denote the canonical homomorphisms R, — D,
(=R, /M,) and R, ,— D, , respectively. The ring R, is the full in-
verse image of R; under 2,-1, and similarly R, is the full inverse image
of Ry» under 2,*-1.  Since R,= K n R,»and since we have just proved
that 2, is the restriction of Z,* to K, it follows at once that R;= Ry« N D
showing that ©* is an extension of .

Conversely, assume that we are given a valuation v,* of K* which is
an extension of v, and a valuation &* of the residue field of v,* which is
an extension of 9. If v*=1v,* o ¥*, then we can repeat the reasoning
of the preceding paragraph. This time we are given that Ry = Rg» 0 D,
and from this we can conclude that R =K n R+, showing that v* is an
extension of v. Furthermore, we have that v*-17,* is a homomorphism
of I'* onto I'*/H*, with kernel H*, and that v~1v, is a homomorphism
of I' onto I'/G, with kernel G.  Since v~'v, is the restriction of v*~1v*
to I, it follows that H* n I'=G.

This completes the proof of the lemma.

U1y
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COROLLARY 1. Assume that K* is an algebraic extension of K, and let
v* be an extension of a composite valuation v=v, o G of K. Then there is
only one decomposition v,* o T* of v* such that v,* and o* are extensions of
v, and  respectively.

For, it was shown in the course of the proof of Lemma 2 that if K*
is an algebraic extension of K, then for any isolated subgroup G of I
there exists one and only one isolated subgroup H* of I'* such that
H*nI'=G.

CoOROLLARY 2. The notations being the same as in the preceding corol-
lary, assume that K * is a finite algebraic extension of K.  Then the reduced
ramification index of v* relative to v is the product of the reduced ramifica-
tion indices of v,* and T* relative to v, and U respectively.

For, the reduced ramification indices of 2*, v,* and ¥* are equal
respectively to the orders of the following finite abelian groups: I'*/I,
(I'*|G*)(I')/G) and G*/G. Since G* n I'=G, the group G*/G can be
canonically identified with a subgroup of I'*/I".  Using the well known
isomorphism theorem from group theory, we find that the groups
(T*/N)/(G*|G) and (I'*|G*)/(I'/G) are isomorphic (they are both iso-
morphic to I'*/(I", G*)). Hence the order of I'*/I" is the product of the
orders of G*/G and (I'*/G*)/(T'|G).

We are now ready to prove two basic results (Theorems 19 and 20
below) on extensions of valuations.

THEOREM 19. Let K* be a finite algebraic extension of K, let v be a
valuation of K of finite rankt and let v,*, v,*, - - -, v,* be the exten-
stons of v to K*. If n=[K*:K] and if n; and e; are respectively the
relative degree and the reduced ramification index of v.* with respect to v
then

@) ey teanyt - e, SN

PROOF. (a) We shall first consider the case in which v is of rank 1.
In that case, the g valuations v;* are also of rank 1 (Lemma 2), and the
theorem of independence of valuations (§ 10, Theorem 18) is applicable
to the »,*.  The value groups I', I';* of v, v;* can be assumed to consist
of real numbers. For each 7, we fix an element «;, in each of the ¢;
cosets of I'in I';* (s=1,2,-- -, ¢;). We also fix n; elements #,, in K*
such that the v;*-residues of the u,, form a basis of the residue field of
v;* over the residue field of v (¢=1,2,---,n,;). Next, using the inde-
pendence of the valuations v;*, we find elements x,, and y;, in K*

1+ Later on, at the end of this section, we shall prove Theorem 19 also for
valuations of infinite rank, using an idea which we have found in some unpub-
lished notes of I. S. Cohen.
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(=1,2,---,g55=1,2,---,¢;t=1,2,- ., n) satisfying the following
conditions:

) V(%) = a;

(2 v*(x;) > max (e, g - -, Ggy, Cggy ¢, age‘), if j#1;
©) V7 (Yi—uy) > 05

(3) v*(¥i) > 0, j#i.

We assert that the eyn, + esny+ - - - +egn, products x;, y;, (s;=1,2,- -, e;;
t;=1,2,--+,n) are linearly independent over K. The proof of this
assertion will establish our theorem in the case of valuations of rank 1.

Assume that our assertion is false and that we have therefore a relation
of the form:
(4) ) Z s Xis Vi, = 0,

"‘i'ti

where the «;, , are elements of K, not all zero. We may assume that
these elements all belong to R, and that at least one of these elements is
a unit in R,. We may then assume, without loss of generality, that
v(ay,)=0. We set

5) 2 = (lzlalstylz)xl:’ s=1,2---, €.
We now observe that the v\* value of any element y, of K*, of the form

> by, b, € R, belongs to I'. For, if b, is one of the coefficients b,
=4

which has least v-value, we can write:

N = bq 'ZI €Y1

where all ¢, are in R, and ¢,=1. Now, by (3) (for i=1), we have that
the v,*-residues of the n; elements y,, are the same as the v,*-residues
of the u,,, and hence these residues are linearly independent over the
cesidue field of ».  On the other hand, the v-residues of the ¢, are not

all zero (since ¢,=1). It follows that the v,*-residue of D¢y is
=1

q

different from zero. Hence v,*(y,)=v,*(b,)=v(b,) € I, as asserted.
In view of this observation, we find from (5) that v,*(z,) — v,*(x,,) € I,

i.e., v,*(z,) belongs to the I-coset determined by «,, in I'}* [see (2)].

Since the e, elements «,, of I';* belong to distinct I'-cosets, it follows
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that the v,*-values of z,, 2y, - - -, 2,, are distinct elements of I';* and
that consequently v,*(z;+2,+ - - - +2,)=min {v;*(zy), v,*(z0),- - -,
v,*(2,,)}. Now, since v(ay;,)=0, the reasoning used in the proof of the

n
above observation shows that 'vl*( 2‘111:}’1:):0 and that conse-
=1

quently v,*(z;)=«a,;. Therefore v,*(z;+2,+ - - - +2,)Say,, L€,

(6) vl*( Z alxltlxlslylzl) S oy

0ty

On the other hand, we have by (2') and (3’) (for m=1) that

(7) 7 (‘Z :Z au,tl ulyu‘) > ay;.

By (6) and (7) it follows that the v,* value of the left-hand side of (4) is
< a,,, in contradiction with (4). This contradiction establishes our
assertion that the e,n; +e,n,+ - - - +e,m, products x;, y;, are linearly
independent over K.

(b) We now pass to the general case of a valuation v of finite rank
m > 1 and we shall use induction with respect to m. We assume there-
fore that our theorem is true for any valuation of rank<m. Let
v=1 o ¥ be a decomposition of v into valuations of rank <m. Let
V') *, v'p%, -+, v,/* be the distinct extensions of v’ to K* and let
Toy*, Deo*, - oy 0,0, * (s=1,2,- -, h) be the distinct extensions of ¢
to the residue field of v, *. We set v, *=v"*o 9, *. By Lemma 4
and Corollary 1 of that lemma, the ¢, +¢,+ - - - +¢, valuations v, * of
K* are distinct and represent all the extensions of v to K*, i.e., the set
{v11*. v12%, - -, Uy, *} coincides with the set {v,*,0,*, - - -, 9,*}. We
denote by n,, and e,, the relative degree and the reduced ramification’
index of v, * with respect to v. What we have to prove then is the
following inequality:

s=1 IZ e“s s =
We observe that the relative degree of &, * with respect to @ is equal to
n,, since the residue fields of 9,, * and o coincide respectively with the
residue fields of v, *and ». 'We denote by ¢, the reduced ramification

index of 7, * with respect to 7. We also denote by n’, and ¢, respec-
tively the relative degree and the reduced ramification index of v',*
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with respect to v’.  Since 9" and 7 are valuations of rank <m, we have
by our induction hypothesis:

s

8 2 Eun, S,
=1 s
h
(8) Sen, s
<
Hence

s

h
(8”) sZ Z ”s s

and this is the desired inequality, since, by Lemma 4, Corollary 2, we
have e, =¢'.,. This completes the proof of the theorem.

We shall see in the next section that (a) if the residue field D of v is of
characteristic zero then the equality sign holds in (1) (§ 12, Theorem 24,
Corollary); and (b) if K* is a normal extension of K and the characteristic
p of D is different from zero, then the quotient nf(e\n,+eny+ - - - +e,n,)
is a power p® of p, where & is an integer 20 (§ 12, Theorem 25, Corollary).
The integer 8 may be referred to as the ramification deficiency of v (this
integer is defined only in the case of normal extensions K*). Here we
shall only show that if we assume that (a) is valid in the case of normal
extensions K* then its general validity is an immediate consequence.
For, let K be the least normal extension of K which contains K* and
let ©,,, ©,, - -- be the extensions of v,* to K. Let N=[K: K]
n*=[K:K*). We denote by E,; and ¢, * the reduced ramification in-
dices of 9, relative to v and v;* respectlvely Similarly, we denote by
N;; and n;;* the two correspondmg relative degrees of 7;;, We have

E;;=ee;*, N j=nn %, ZZE,JN” Ze,n, Ze,, n*. By assump-
tion, we have N= ZE ;j» and n*-—Ze * for i=1,2,---,p

Hence N=n* Jen,, “whence Sen;=n,as asserted
We denote by R the valuatlon ring R, of v and by B8 the maximal
ideal M, of R,. Let R* denote the valuation ring of v;*. We set

(9) R* = (1R,

(10) S;)*—n(R**BnR*)
J#

(11) R = q 9* = () R;*%.
i= i=1

The g rings R;* are the only valuation rings in K* which belong to
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places of K* having center ® in R. Hence by Theorem 8, § 5, R*is the
integral closure of R in K*. We also observe that

(12) P* = R*P.

To.prove (12) we have only to show that *< R*®, for the opposite
inclusion is obvious. Let x* be any element of B*, and let v,*(x*) =a,*.
Since x* € R;*%, it is obvious that we can find, for each j, positive ele-
ments in I" which are not greater than «;*. Therefore we can also find
a positive element in I' which is not greater than any of the a;*. Let 8
be such an element: ¢ *28,j=1,2,-..,g. Wefix an element x in B
such that o(x)=8. Thenv,(x*/x)20,5=1,2, .-, g, whence x*/x € R*
and x* € R*q, as asserted.

It is clear that ¥* n R=9 Hence the ring R*/B* can be regarded
as a vector space over the field R/%. We next prove the following
lemma:

LemMA 5. The assumptions being the same as in Theorem 19, except
that v may now have infinite rank, the dimension of the vector space R*|R*
(over the field R|%) is not greater than e;ny+ - - - +epn,.

PROOF. The ring R* has exactly ¢ maximal prime ideals P, *=
M, *NR* i=1,2,-..,g and each valuation ring R;* is the quotient
ring of R* with respect to B,* (Theorem 12, § 7). We know that given
any element o* of the value group I';* of v;* there exists an integer s #0
such that s«* € I' (Lemma 1). Therefore, given any element x* of P *,
we will have some integer s21 such that v,*(x**)e I Let y be an
element of P such that ov(y)=v*(x**). Then x*jye R* and so
x** e R*B n R*. Since, on the other hand, R*B n R*< P, *, we have
therefore shown that B * is the radical of R*® n R*. It follows that for
i#j the ideals R*® n R* and R*B n R* are comaximal (see Vol. I,
Ch. II1, § 13, Theorem 31). Furthermore, from (11) and (12) it follows
that * is the intersection of the g ideals R*® n R*. Hence, by
Theorem 32 of III, § 13, the ring R*/B* is the direct sum of the g rings
9.*/B*. Since the H;* are ideals in R*, we have a direct decomposition
of the vector space R*/®* into the g subspaces $,*/B* (over the field
R/%B), and in order to prove the lemma it will be sufficient to prove that
$,*/B* has dimension =Ze;n;.

Let us consider, for instance, the space $,*/%®*. The subspaces of
9,*/%B* correspond in (1, 1) fashion to the R-submodules of $,* which
contain B*. We first make some straightforward observations about
the two value groups I';* and I'.  Let L, denote the set of non-negative
elements o* of I';* such that o* <8 for all positive elements 8 of I". If
a,* and a,* are two distinct elements of L,, and if say «;* < «,*, then
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0<o,*—a,*<ay*, and therefore, by definition of L, ay*—a,*¢ I
Thus, distinct elements of L, belong to distinct I'-cosets, and hence L, is a
finite set, consisting of at most e, elements.

If x* is any element of $,* then v *(x*) € L, if and only if x* ¢ P*.
For, if x* € $*=R*%, then it is clear that v,*(x*) 2 v,*(y), for some y
in P, and hence v, *(x*)¢L,, since v,*(y)el'y. Conversely, if
v, *(x*) ¢ L,, then v,*(x*) 2 v,*(y), for some y in B, and hence x*=
(x*/y)y € R,*B 1 ©,*= R¥E.

If follows from these remarks that if %* is any R-submodule of ©,*
which contains B* as a proper subset then A* contains elements of least
value and that this value is an element of L,. We denote this minimum
by v, *(A*).

If for a given element o«* of L, there exist elements x* in $,* such
that v, *(x*)=«*, then the set of all elements y* of ©,* such that
v,*(y*) 2 «* is an R-submodule A* of H,* which contains B* as a proper
subset and is such that v, *(A*)=o*. If0=a*<a,*< .- - <aX(s=Ze))
are those elements of L, which are v,*-values of elements of ,*, then we
obtain in this fashion a strictly descending chain of R-submodules of
9%

D =A% > W* > -0 > AUF > W *F = P,

where %% is the set of all y*in §,*such that v, *(y*) 2 ¢,*(1=1,2,---,s).
It is clear that for 1=2, 3, - -, s+1 the module %;* consists of all the
elements y* in $,* such that v, *(y*) > «;_,*.

To prove the inequality dim ,*/8* <e;n,, it will be sufficient to
show that for i=2,3,---,s+1 we have dim %, ,*/%;*<n, (since
s<e,); here A, */UX (=U,_,*/B*/AX/B*) is regarded as a vector
space over R/®. Let thenx,*, x,*, - -, x, ,,* beany n, + 1 elements of
%A;_,*. We have to show that there exist elements u,, u,, - - -, u, ,, In
R, not all in B, such that ux*+ - -+ +u, ;yx, ,, €A*. We fix an
element y* in ;_,* of least value: v, *(y*)=«;,_*=0,*(A,_,*), and we
set z*=x*[y*. Then the z;* are in the valuation ring of v,*, and since
the relative degree of v,* is n, it follows that we can find elements

Uy Ugy ooty Uy in R, not all in B, such that v, *(u2,* +uyz,*+ -+ +

* * * *o... *
U 4130 517) > 0. Then we have v, *{(ux,* + uyx,* + + Uy 1% 11%)
>0y (3%) =%, and therefore wyw* + -+l 1%, €A This

completes the proof of the lemma.

Of particular importance is the next theorem:

TueorRem 20. The notations and assumption being the same as in
Theorem 19, (in particular, it is now again being assumed that v has finite
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rank), assume also that the integral closure R* in K* of the valuation ring
R of v is a finite R-module. Then

(13) ey eyt - - temn, = n,
and
(14) dim R*/R*P = n.
PROOF. Let {w,, w,, - - -, w,} be an R-basis of R* which has the least

number of elements. We assert that the w are linearly independent over K.
For assume that we have a relation of linear dependence: x,w,+
xXWy+ -+ +x,w,=0, where the x; are elements of K, not all zero. An
argument which has been repeatedly used before shows that we may
assume that the x; belong to R and that one of the x;is 1.  If, say, x,,= 1,
then already {w,, w,, - - -, w,_,} is an R-basis of R*, a contradiction.
Any element x* of K* satisfies an algebraic equation with coefficients
in R (since K is the quotient field of R). If q, is the leading coefficient
of this equation then agx* is integral over R, whence agx* € R*. This

shows that {w,, w,, - - -, w,} is also a basis of K*/K. Consequently
m=n.
If @, denotes the R*P-residue of w;, then o,, @w,, - - -, , span the

vector space R*/R*P(over R/B). We assert that the n vectors w; are
linearly independent over R/B. We have only to show that if we have a
relation of the form x,w, + x,w,+ - - - +x,w, € R¥B, x; € R, then the x;
necessarily belong to 8.  But this follows at once from the linear inde-
pendence of the w; over R, for we have, by assumption: x,w,+

XgWot+ + - +X,W, =YW +YWy+ - - - +y,w,, where the y, are suitable
elements of %, and this relation implies x;=y,, 1=1,2, ..., n.
We have therefore proved that
(14) n = dim R*/R*}.
Since we have, by Theorem 19 and Lemma 5:
(15) dim R*/R*$ < ejny+eny+ - - - en, < n,

the theorem is proved.

CoroLLARY. If v is a non-discrete valuation of rank 1 and if R* is a
finite R-module, then all the extensions of v to K* are unramified.

For the proof, we first show that

(16) R*p = (x*e K*|oX(x*) >0, i=1,2,---,g}.
In fact, let x* be any element of K* such that v,*(x*)=8,>0, /=1,
2,---,g Since the value groups I', I';* are now groups of real num-

bers and I' is non-discrete, there exist positive elements of I" in an
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arbitrarily small neighborhood of zero. Hence there exists an element
a of I' such that 0<a<f;, 7=1,2,---,g. Let x be an element of ‘B
such that o(x)=a. Then v*x*/x)>0, i=1,2,--.,g, whence
x* € R*x< R*. This establishes (16). We now make use of the proof
of Lemma 5. From (16) it follows that the set denoted by L, in the
proof of Lemma 5 consists now of the element zero only, and that conse-
quently the integer s is now equal to 1. It was shown in the proof of
Lemma 5 that dim $,*/R*P <sn;. Hence dim $,*/R*B <n,. Simi-

larly dim $*/R*B<n;, i=1,2,.--,g. Hence dim R*/R*P=
£, .

> dim 9/ R*R<n,+ny+ - - - +n,.  Therefore, by Theorem 20,
i=1

we must have e;=e,= - - - =¢,=1.

The following example, due to F. K. Schmidt, shows that the finite-
ness assumption made in Theorem 20 (i.e., the assumption that R* is a
finite R-module) is essential, and that without this assumption the
strict equality (13) may fail to hold already in the case of a valuation v
which is discrete and of rank 1 (and whose valuation ring R, is therefore
noetherian):

Let J, be the prime field of characteristic p#0 and let

{fo,gl,...,fm...}

be an infinite sequence of algebraically independent elements over k.
We set k=F,(£g) €1, -5 €, - - -) and K=k(x, y), where x and y are
algebraically independent over k. Consider the formal power series

p(x) = EgP+EPxP+ - FELXP 4 o

We assert that ¢(x) is not algebraic over the field k(x) (or, in algebro-
geometric terms: the branch y=¢(x) is not algebraic). For assume the
contrary, and let, say, f(X, Y) be a non-zero polynomial in £[X, Y] such
that f(x, (x))=0. We may assume that X does not divide f(X, Y).
Then f(0, Y)#0, while f(0, {#)=0. Hence &, is algebraic over k,
where &, is the field generated over J, by the coefficients of f. Let X*
be the highest power of X which divides f(X, X?Y + £4?) (whence,
necessarily, s > 0) and let f(X, X?Y +£#)=Xf(X, Y). We have

fl(x) §1"+§2i’x?+ cee +§"Px(ﬂ—1)P+ .. ) =0

and therefore f,(0, £,)=0. On the other hand, the coefficients of
f1(X, Y) belong to ky(£,), and since £, is algebraic over k,, it follows
that also ¢, #s algebraic over k. Proceeding in this fashion, we find that
all the ¢, are algebraic over k,, and this is impossible since &, has finite
transcendence degree over J,.
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We now define a valuation v of k(x, y), as follows:

If u=f(x, y) is an element of k[x, y], then by the preceding result the
power series f(x, (x)) is not zero. If x" is the lowest power of x which
occurs in this series, we let v(u)=n. If 2 is an arbitrary element of
k(x, y), we write z in the form u,/u,, where u;=f(x, y) € k[x, y], and we
let v(x)=o(u,)—v(uy). The value group of v is then the group of
integers, and so v is discrete, of rank 1. It is immediately seen that the
residue field of v is the field .

Now we let K*=K(y*), where y*=+Vy. Then K*==k(x, y*), and
it is immediately seen that the extension v* of v to K* is the valuation

which is defined by the ‘“‘branch”
y*¥ = fot bt bpx®t - HEAT

in a fashion similar to that in which v was defined by the branch y = ¢(x).
(Note that since K* is a purely inseparable extension of K, v has a
unique extension to K*.) The two valuations v and v* have the same
value group and the same residue field (namely, the field k). Hence the
relative degree and the reduced ramification index of v* are both equal
to 1, while the degree [K*:K] is p. Thus (13) fails to hold in the
present case. In view of Theorem 20, we can conclude a prior: that the
integral closure R* of R, in K*is not a finite R -module. This can also
be seen directly as follows:

If R* has a finite R, -basis, then a minimal R -basis of R* will contain
precisely p elements, say w;, w,, - - -, w, (see the proof of Theorem 20).
Let w;=a;0+a;,y*+ -+ +a;, ,¥**", a,;€ K. Since the value
group I' of v is the group of integers, there exists an integer p such that
all the products @, belong to R, From this it follows that
R*x»c R+ R y*+ --- + R, y*»~1. Now, consider the element 2= [y* —
(Eo+€x+ - - - +&x°)]/xr*1. It is clear that 2 € R* (since v*(2)20).
Butzxr=—(£u+ & x+ - - +€x°)[x+y*/x ¢ R+ R, y*+ - - - + R, y**-1,
a contradiction.

An important case in which the finiteness assumption of Theorem 20
is always satisfied is the following: v is a discrete valuation of rank 1 and
K* is a separable extension of K. This follows from the following well-
known result: if R is any noetherian integrally closed domain having K as
quotient field, and if K* is a finite separable extension of K, then the
integral closure of R in K* is a finite R-module (Vol. I, Ch. V, §4,
Theorem 7, Corollary 1).

It may also be observed that for discrete valuations v, of rank 1, the
converse of Theorem 20 is also true, i.e., if relation (13) holds, then R* is
a finite R-module. 'To see this, we go back to the case (@) of the proof of
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Theorem 19 and we show that if v is discrete, of rank 1, and if (13) holds,
then the nie,+nye,+ - - - +mnge, products x,.:, form an R-basis for R*.
We know that these products are linearly independent over K. If (13)
holds, the number of these products is equal to n (=[K*:K]) and they
therefore form a basis of K*/K. Now let 2* be any element of R* and

let
¥ = ~Z‘ bis,t‘xi:‘yit,) bi:.-t‘ € K.
By
We have to show that the bi;,;, belong to R: Upon factoring out a

coefficient b;, , of least value we can write 5* in the form: z*=by*,
be K and

y* = Z Aisye Xis iy
5,2,

where the a;, , are elements of R, not allin .  We now make use of the
considerations developed in the course of the proof of Theorem 19,
case (a) (p. 56). As group I" we can now take the group of integers,
and as group I';* the additive group of integral multiples of 1/e;., As
representatives of the e; cosets of I' in I';* we take the rational numbers
o;;=(s—1)/e;, s=1,2,---,¢. By assumption, at least one of the
coefficients a;, , has order zero in v (and all have non-negative order).
If, say v(a,,)=0 then, as was shown in the course of the proof of
Theorem 19 (see the italicized statement immediately following in-
equality (7), p. 57), we have v,*(y*) £ ay,, and hence v,*(y*)<1. On
the other hand, we have that v(b)(=v,*(d)) is an integer (since b € K).
Since v,*(b) + v, *(y*) =v;*(2*) 2 0, we conclude that v(b) is necessarily
a non-negative integer. Hence b € R, and since b,, , =ba,, ,, it follows
that also the b;, belong to R, as asserted.

Note that this result has also been proved in Vol. I, Ch. V, §9
(Theorem 21).

NoTE. We shall end this section by extending Theorem 19 to valua-
tions of infinite rank. We first observe that the proof of Theorem 19,
in the case of valuations of rank 1, is based solely on the fact that for
such valuations the approximation theorem of § 10 (Theorem 18) is
valid. However, we have seen that the approximation theorem is valid
more generally for independent valuations of any rank (Theorem 18,
§ 10). Hence we can assert that Theorem 19 is valid whenever the g ex-
tensions v,*, v,*, - - -, v, * of v are independent. Our second observa-
tion is that in the inductive proof of Theorem 19 for valuations of finite
rank >1 we have actually proved the following: Let v=1v"09, let v',*,

v'y*, - o, VX be the extensions of V' to K* and let 4%, G,*, - -+, T, *

isgt
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be the extensions of © to the residue field 4’ * of v'* (s=1,2,-..,h).
Then if Theorem 19 holds for v', K, K* and for 9, 4", 4’ * (s=1,2,-- -, h;
A’ =residue field of v'), the theorem holds also for v, K and K*. We shall
now make use of these two observations. We shall use induction with
respect to the number g of extensions of ¢, i.e., we shall assume that
Theorem 19 holds true in all cases in which we are dealing with a valua-
tion v which has fewer than g extensions. (For g=1 the proof of
Theorem 19 is valid as given, for in that case the approximation theorem
is not needed; or—more precisely—the approximation theorem is
trivial in the case of single valuations.)

We first introduce some notations and prove an auxiliary lemma. If
v is a valuation of a field K we shall denote by L(v) the set of all valua-
tions v’ of K such that R,< R, < K. In other words, L(v) is the set of
all non-trivial valuations v’ such that v is composite with and is non-
equivalent to ¢’. We denote by E(v) the set of distinct (i.e., non-
equivalent) extensions of v to K*. We write v' < if v' € L(v) (note
that this partially orders the valuations according to increasing rank, or—
equivalently—according to decreasing valuation ring). If v'<v and v*
is any element of E(v), then there exists a unique element v'* in E(v')
such that v'*<o* (Lemma 4, Corollary 1). This defines a mapping
@,¥ of E(v) into E(v"), and it follows directly from the second part of
Lemma 4 that ¢,.* maps E(v) onto E(v"). If v" <%’ <o then it is im-
mediate that

Uy #U — v
Po' Py =@

For fixed » and a fixed extension v* of v to K*, the set of valuations
®,%(v*), v’ € L(v), coincides with the set L(v*). In fact, if v'* =g, ¥(v*)
and v’ € L(v), then v'* <v* by definition of ¢, ¥, and hence v'* € L(v*);
conversely, if v'* € L(v*), i.e., if v'* <v*, then the restriction v’ of v'* to
K satisfies the relation v’ <, and we have v'* € E(v'), whence v'*=
®,(v*). Another way of expressing this fact is to say that for fixed v*
the mapping v’ — @,*(v*) (where v=restriction of v* in K) is a (1, 1)
mapping of L(v) onto L(v*). Each of the two sets L(v) and L(v*)
is totally ordered, and the above mapping of L(v) onto L(v*) is order
preserving, for it maps each element of L(v*) into its restriction
in K.

For each valuation » of K we denote by y(v) the number of elements
in the set E(v), i.e., the number of distinct extensions of v to K*. If
v'<v then from the existence of the mapping ¢, it follows that
y(v')£y(v). Since 1<y(v)<[K*:K], the function y can assume only
a finite number of values.
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LemMa 6. Let v be a valuation of K such that the set L(v) has no last
element, and let m= max {y(v')}. Then y(v)=m.
v'eL(v)

PROOF. We fix a valuation v’ in L(v) such that y(v'y)=m. For each
v" in L(v) such that ©'( <" the set E(v') has exactly m elements, and
therefore ¢, *" is a (1, 1) mapping of E(v') onto E(v'y). Let v* be an
extension of v to K* and let ¢’ * be that extension of v’ with which v* is
composite; in other words, let v'(*=g,, “(v*). If ¢’ is any element of
L(v) such that v’y < ¢/, then the corresponding element v'* of L(v*), i.e.,
the valuation v'* =¢,.*(v*) is uniquely determined by v'y*, and by ¢/,
i.e., if v;* is another extension of v to K* which is composite with 2’ *
then ¢,*(v,*) =@, *(v*), for we must have v'(*=¢, ¥(v'*), and ¢, ¥ is
(1,1). We now observe that since L(v) and L(v*) are in (1, 1) order
preserving correspondence, also L(2*) has no last element and that
therefore

(17) Rp= [ Ry~

v v

Vot Sut<or
We have just seen that the set of valuations v'* in L(v*) such that
v'o* £ v'*, where v'¢* =, “(v*), is uniquely determined by v’y*. Hence
it follows from (17) that there exists only one extension v* of v to K*
which is composite with a given valuation v'y* belonging to the set
E(v'g). Since E(v'y) contains m valuations, v has exactly m extensions.
Q.E.D.

We now proceed to the proof of Theorem 19 for a valuation v of
arbitrary rank. Let y(v)=g. We first observe that the case in which
the g extensions of v are independent valuations is characterized by the
condition that the mapping ¢,.* be (1,1) for any ¢ in L(v), i.e., it is
characterized by the condition y(v')=g, for all ¢’ in L(v). We may
therefore assume that there exist valuations ¢’ in L(v) such that
y(v')<g. Let L,(v) be the set of all such valuations ¢’ and let

g = max {y(v')}. Then g'<g. The intersection of all the valuation
vel (v)

rings R, v' € L (), is again a valuation ring of some valuation v’, of K.
If L,(v) has a last element, then v, is the last element of L,(v) and hence
y(v'y)=g'. In the contrary case it is clear that L,(v)=L(v';), whence
L(v’,) has no lastelement. Itfollows thenfrom Lemma 6 that (v',)=g¢".
Thus we have y(v',)=g'<g in both cases (showing, incidentally, that
v', necessarily belongs to L,(v) and that consequently the second case
is to be ruled out), and Theorem 19 is valid for ¢’,.

Since v', € L(v), we can write v=9"; 0 9. Since ¢’; has exactly g’
extensions to K* and since g’ <g, it follows by our induction hypothesis
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that Theorem 19 holds for v';, K and K*. Let v';* be any extension
of v’ to K*, let 4, 4'; and 4',* be respectively the residue field of v, v,
amd v',* (whence 7 is a valuation of 4';, with residue field 4, and
A4',=4'*). We assert that the extensions of & to 4',* are independent.
This will establish the validity of Theorem 19 for ¢, 4’; and 4',*, and
hence, by the preceding remark, Theorem 19 will be established for v,
K and K*.

Let ¢',*, ©',* be two distinct extensions of ¥ to 4’;* and assume that
there exists a non-trivial valuation 9'* of 4’,* with which both valuations
7',* and 9',* are composite. Set vX=v'*o X i=1,2, and
*=0v'* o &'*, Then v,*, v,* are extensions of v, i.e., belong to E(v),
while 9* is an extension of a valuation ¥ of K such thatv>%> o',.
Hence both E(v) and E(%) consists exactly of g elements. On the
other hand, it is obvious that both v,* and v,* are composite with 3*,
and hence g;*(v,*) = ;¥(v,*) (=9*%). Thus ¢;* is not (1, 1), in contra-
diction with the fact that E(v) and E(%) have the same number of
elements.

§ 12. Ramification theory of general valuations. In Vol. I,
Ch. V, § 10 we have developed the ramification theory of prime ideals in
Dedekind domains. Now, if R is a Dedekind domain, with quotient
field K, and K* is an algebraic extension of K, then any proper prime
ideal p in R defines a discrete, rank 1 valuation » of K, whose valuation
ring is the quotient ring Ry (§ 2, Example 2), and the prime ideals which
lie over p in the integral closure R* of R in K* correspond to the exten-
sions of v in K*. Hence the theory developed in Vol. I, Ch. V, § 10 is
identical with the ramificatjon theory of discrete, rank 1 valuations. In
this section we shall generalize that theory to arbitrary valuations.

Let K be a field, K* a finite normal and separable extension of K, and
let G be the Galois group of K* over K. We fix a valuation v of K and:
we denote by 4 and I respectively the residue field and the value group
of v. If v*is an extension of v in K* and s is an element of G, then the
conjugate valuation sv* (= the automorphism s of K*/K, followed by the
mapping v* of the multiplicative group K'* of K* onto the value group
I'* of v*) is again an extension of v in K* (with the same value group
I'*), and we know (§ 7, Theorem 12, Corollary 3) that all the extensions
of v in K* are in fact, up to equivalence, conjugates sv* (s € G) of any
one of them.

We fix an extension v* of v. As usual, R, and M, will denote respec-
tively the valuation ring and the prime ideal of v. Similar notations
R,» and M« will be used for v*. We shall find it convenient to denote
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by v*s the valuation s—1v* (s€ G). With this notation, we will have
Rv*’ =S(Ru*)’ 9Rv""ts.(gﬁv") and

€))] o*(s(x)) = v¥(x), 0 #xe K*

We denote by 4* and I'* respectively the residue field and the value
group of v*. Here 4* is a finite algebraic extension of 4, and I' is a
subgroup of I'*, of finite index. We set, in agreement with previous
notations:

@) e = (I'*:T), f=[4*:4].

The integers e and f are the same for all the extensions of . We de-
note by g the number of distinct (i.e., non-equivalent) extensions of v.

We now introduce two subgroups G and G of G called respectively
the decomposition group and the inertia group of v*: G4 is the set of all s
in G such that v*s is equivalent to v* (i.e., has the same valuation ring
as v*), while G is the set of all 5 in G such that s(x) — x € M« for all x in
R,«. Itisobvious that G, is a subgroup of G. It is easy to see that G
is a subgroup of G. For if s € G, then it follows from the definition of
G that we have s(x) € R« for any x in R,», i.e., the valuation ring of v**
is contained in the valuation ring of v*. 'Therefore the valuation rings
of #* and v** coincide (since all extensions of v have the same relative
dimension zero with respect to K; see italicized statement on p. 30
immediately following the proof of Lemma 1, § 7), s € G, showing that
Gr< Gy Furthermore, if s € Gy and x € R,», then also y=s"(x) is in
R* (since s € Gy), and s7(x) — x =y — 5(y) € M+, whence s~ € Gr; and
if 5,2€ G, then for any x in R, we have (st)(x)—x=t(s(x)—x)+
(¢(x) — x) € M », since both s(x)—x and #(x)—x are in M+ and since
H(M )< M,». This proves that G is a group.

Moreover it is not difficult to see that G is an invariant subgroup of
G, For if s€e Gy, te Gz and x € R« and if we set #(x)=y (whence
y € R,#) and s(y) — y = = (whence z € M=), then (ts1=")(x) —x = (st ')(y) —
x=1"1y+2)—x=1"1(2) €M (since {(M,+) =M,+),and hence tst ! € Gy.

Let s be any element of G,. Then the valuation v*¢ defined by (1),
is, by definition of G, equivalent to v*. However, it is not difficult to
see—and that will be important for the sequel— that v** coincides with
v*, that we have therefore

(3) v*(s(x)) = v*(x), (s€Gyz 0 # xe K*).

For, since v* and v** are equivalent valuations, with the same value
group (see (1)), v*5v* -1 is an order preserving automorphism ¢, of the
value group I'*.  Since s has finite period, also ¢, has finite period, and
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it is immediate that such an order preserving automorphism of an
ordered abelian group is necessarily the identity. Thus, ¢,=1 and
¥ =¥,

THEOREM 21. The field A* is a normal extension of 4. The group of
automorphisms of 4% over 4 is canonically isomorphic to the factor group
G,/Gy.

PROOF. We first show that every automorphism s in G, defines an
automorphism § of 4% over 4. Given any element £ in 4%, there exists
an element x in R » whose v*-residue is £.  If s € G, then also s(x) € R».
If x’ is another element of R » with v*-residue ¢, then x'—x € M » and
hence also s(x’)—s(x) € M, since s€ G,. It follows that the ov*-
residue of s(x), for given s in G, depends only on £. We denote this
residue by §(£). It is immediate that the mapping £ — §(£) is an auto-
morphism § of 4%, and that § is an automorphism over 4, for if £ € 4
then we can choose x in R, and have then s(x)=x. It is also clear that
the mapping s — § is a homomorphism of G into the group G(4*/4) of
automorphisms of 4* over 4 and that the kernel of this homomorphism
is the inertia group G of v*.  We have now to show that 4* is a normal
extension of 4 and that the mapping s — § sends G, onto G(4*/4).

Let ¢ again be any element of 4%, different from zero. Since the
places defined by the g distinct extensions of v are such that none is a
specialization of another, it follows from Lemma 2, § 7, that we can find
an element x in R » having v*-residue ¢ and such that v *(x) > 0 for each
of the g—1 extensions v;* of v which are different from o*. Let
xy(=x), xy, - - -, X, be the roots of the minimal polynomial F(X)=
Xt4+a, ,X¢1+ ... +a,0f x over K. Since K* is normal over K, all
the x; belong to K*. For any x; we have x=s(x;), for a suitable s in
G(K*/K), and hence, by (1): v*(x)=v*(x;). Since v*{(x)20 for any
s in G(K*/K) (by our choice of x), it follows that all the roots x; and all

the coefficients a, of F(X) belong to R,x. We have F(X)= IqI (X —x;),
j=T

and taking v*-residues on both sides we find that the roots of the poly-
nomial F(X)=X+a, , X'+ - . +d, (4,=v*residue of a,) are the
v*-residues of x), x,, - - -, x, and therefore belong to 4*.  Since ¢ is
among these residues and since the coefficients d, of F(X) belong to
4, we have shown that all the conjugates of ¢ over 4 belong to 4*
Hence 4* is a normal extension of 4.

If £, is any conjugate of £ over 4, and if say £, =v*-residue of x}, let
s be an automorphism of K*/K such that x;=s-1(x). Then v*s(x)=
v*(x;)=0 (since £;#0), and hence v*=ov* (since v,*(x) >0 for each
extension v,* of v which is different from v*}and s € G,. Furthermore
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§1(¢)=¢,. If we take now for £ a primitive element, over 4, of the
maximal separable extension of 4 in 4%, then our result that every con-
jugate of ¢ over 4 is of the form 5(£), s € G, implies that the homomor-
phism s — § maps G, onto the group G(d4*/d). This completes the
proof of the theorem.

In the sequel we shall denote by K, and K respectively the fixed
fields of G, and G; K is the decomposition field of v*, and K is the
inertia field of v* (relative to K). We shall denote by v, and v respec-
tively the restriction of v* in K and K, by 4, and 4, the residue fields
of the valuations v, and vy, and by I'; and I'; their respective value
groups. Clearly 4, is a subfield of 4, and I', is a subgroup of I';.
Furthermore, K is a normal extension of K, with Galois group G,/Gr,
since G is a normal subgroup of G,.

These definitions have a relative character, and it is easy to see how
the decomposition field or inertia field of v* is affected if we replace K
by another field L between K and K*. Namely, if we denote by L,
and L, respectively the decomposition field and the inertia field of v*,
relative to L, then L, is the compositum of K ; and L (least subfield of K*
which contains both K, and 1) and similarly L. is the compositum of K.
and L:

(4) Ly = (Kz L),

(#) Ly = (Kp, L).

"I'he proof is straightforward and consists simply in observing that the
decomposition group and inertia group of v* relative to L are obviously
equal respectively to G, n G(K*/L) and G n G(K*/L).

THeorRem 22. (a) The valuation v* is the only extension of vz to K*,
and the decomposition field K ; is the smallest of all fields L between K and
K* with the property that v* is the only extension, to K*, of the restriction
of v* to L. (b) The field 4* is purely inseparable over A1, Ay is separable
and normal over 45, and 45 cotncides with 4.

PROOF. Since all the extensions of v in K* are conjugates of v%, it
follows that o* is the only extension of v if and only if G,=G, i.e., if
and only if K,=K. If L is an arbitrary field between K and L, then
K* is also a normal separable extension of L, and therefore it follows,
by the same token, that o* is the only extension to K* of the restriction
v’ of v* to L if and only if Ly=L, i.e., by (4), if and only if L>Kj.
This proves part (a) of the theorem.

We have G(K*/K;)=Gr, and therefore both the decomposition
group and the inertia group of v* relative to K, are equal to
G (=G4nGp=G;nGy). If we now replace in Theorem 21 the field
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K by the field K it follows that G(4*/47)= G /Gy =(1), showing that
A4* is purely inseparable over 4;. On the other hand, we have already
observed that Gy is an invariant subgroup of G and that consequently
K is a normal separable extension of K, with Galois group G/Gy.
Hence, if we replace in Theorem 21 the fields K and K* by the fields
K, and K respectively, we find that G(d1/4) is canonically isomorphic
with G;/Gy. Since [47:45) 2 [K7:Kz)=order of G,/Gr, it follows
that [4;:4,]< order of G(dy/4;), and hence [d7:d;]=order of
G(4r/47), showing that 4, is a normal separable extension of 4.

We point out that in the course of this proof we have shown inciden-
tally that

(5) [4r:47] = [K7:Kg).

It remains to prove that 4,=4. Let ¢ be any element of 4,. By the
cited Lemma 2 of § 7 we can find an element x in K, having v,-residue
¢ and such that v'(x) > 0 for every extension v’ of v to K, different from
vz If x; is any conjugate of x (over K), different from x, then x=s(x,)
for some s in G, and we have necessarily s ¢ G, since x;#x. By (1), we
have v*(x;) = v*%(x), and, furthermore, we have v*5(x) > 0 since v**# o*
(s being outside of G) and since therefore v* induces in K, a valuation
different from v, (v* being the only extension of v; to K*). We have
found therefore that ¥*(x;) >0 for every conjugate x; of x which is dif-
ferent from x. Consequently the trace x+ Zx; is an element y of K
whose v -residue is ¢ (=wvg-residue of x). Therefore, £ €4 and
dz=4. 'This completes the proof of the theorem.

THEOREM 23. The value groups I', I'; and I';. coincide.

PROOF. If we apply the inequality Ze;f;<n (§ 11, Theorem 19 and
Note on page 64) to the two fields K,, K; and to the valuation v, of
K, we deduce at once from (5) that v, has only one extension to K (a
fact that we know already) and also that (I'7:I';)=1. This proves that
Ip=Tr.

We shall first prove the equality I';=1T" under the assumption that
the g extensions of v to K* are independent. It will be sufficient to
show that every positive element of I'; is in I. Let « be a positive
element of I',. By the dpproximation theorem for independent valua-
tions (§ 10, Theorem 18’) there exists an element x in K, such that
vz(x)=c and v'(x) =0 for every extension v’ of v to K, different from
v, (since from our assumption that the extensions of v to K* are inde-
pendent follows a fortiori that also the extensions of v to K, are inde-
pendent). The argument developed toward the end of the proof of the
preceding theorem shows that if x; is any conjugate of x over K,
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different from x, then v,(x;)=0. Hence the norm x-Ix, is an element
y of K such that v(y)=vz(x)+0=ca. Therefore aeI' and I',=T.
This completes the proof of the theorem in the case in which the exten-
sions of ¥ to K* are independent valuations.

In the general case we shall use induction with respect to the number
g of distinct extensions of v to K*, for if g=1 then K= K, (by Theorem
22, part (a)) and the equality I'=1I"; is then trivial.

If v has rank 1 then the g extensions of v to K* are also of rank 1 and
are therefore independent. We shall therefore assume that v is of
rank >1 and we may also assume that the g extensions of v to K* are
not independent. We shall make use of the results proved at the end
of the preceding section (§ 11, Note). From our assumption that the
g extensions of v to K* are dependent valuations follows that y(v') is not
constantly equal to g as 2’ varies in the set L(v). It was shown in § 11
that in that case there exists a decomposition v=19" o ¥ of v satisfying
the following condition: y(v')=h<g, and if o'\ *, v',*, . - ., o', * are the
extensions of o’ to K* then foreach s=1, 2, - - -, & the extensions of ¢
to the residue field 4°* of v’ * are independent.

To the decomposition =20 ¢ there corresponds a decomposition
v*=0"% o % where v'* is one of the 4 extensions v’ * of ' to K* and o*
is an extension of & to the residue field 4'* of v'*. We denote by G,.
and G- respectively the decomposition group and the inertia group of
v'*. It is not difficult to see that we have the following inclustons:

(5" Gz 2 Gz > Gr = Gy,

The inclusion G2 G follows from the fact that v'* is the only exten-
sion of ¥’ such that v* is composite with ©'* and that, therefore, if s € G,,
then we must have v"**=v'*, since v*(=v**) is composite with both
valuations ©'* and v'*. The inclusion G;> G follows from the in-
clusions Rx< R, x, M x> M +. Namely, if s € G5 and x is any element
of R, then x € R« (since R2< R, .+), s(x) —x € M, « (since s € G.), and
s(x) —x € M (since M x> M,,.+), showing that G, <Gy

We denote by K. and K. respectively the decomposition field and
inertia field of v’.  We have therefore, by (5'):

(6) K< Ky < Ky< Kp< Ky,

We denote by vy, vz, v7, vp the restrictions of v* in K., K, K, Ky
respectively, and by v',., vy, v'7, v’ the corresponding restrictions of
v’*,  The associated value groups will be denoted by I',., I'y, - - - and
Iy, Iy, - - respectively.
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Since h < g, it follows from our induction hypothesis that Theorem 23
1s valid for v’ and 2%, i.e., we have

() I'="T% =TI,
where I' is the value group of v’. In view of (6), this also implies that
(8) r'=r,=I",.

The decomposition v*=2v'* o * yields a corresponding decomposition
of vy

) v = vz o Tz

where 7, is the restriction of 7* to the residue field 4', of v',.. By
Theorem 22, part (b), we have that A',. coincides with the residue field
4" of v'. Since 7, is an extension of the valuation 7 of 4’, it follows
that 9, = 9. This, in conjunction with (9) and equality (7), shows that
I’'=T,. It is therefore only necessary to show that I',. =I",. Thus
we may replace the field K by the field K,. We may therefore assume
that K is the decomposition field of v'* and that therefore v'* is the only
extension of ©" to K*. The valuation ¥ has then exactly g extensions
to 4'*, and by our choice of v’ these g extensions are independent valuations.

Let H be the isolated subgroup of I" which corresponds to the decom-
position v =1" o ¢ (H = value group of 7; I''=I'/H = value group of v').
Let similarly H, be the isolated subgroup of I', which corresponds to
the decomposition v;=1v",0 7, (here ¥, is the restriction of 7* to the
residue fields of ¢’;). We have therefore H=H,nI (see §11,
Lemma 4). We know that I''=I",, i.e.,, I'/H=I,/H,. To prove
the equality I'=1I", it will therefore be sufficient to show that

(10) HZ = H)

i.e., that the value group H of ¥ coincides with the value group H, of
its extension ¥, to the residue field of v',. Since the extensions of
to the residue field of v'* are independent it follows a fortiori that also
the extensions of ¢ to the residue field of v, are independent. Hence,
given a positive element « of H, we can find an element & of the residue
field of v', such that ¢,(%)=oc and 7',(%) =0 for all other extensions of
7'z of ¥ to the residue field of v',. If, now, x is an element of K,
whose v',-residue is % then we will have v,(x)=« and v,(x)=0 for all
other extensions of v to K,. By an argument given earlier it follows
that if y=Ng k() then v(y)=ea. This establishes the equality (10)
and completes the proof of the theorem.
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It is clear that the index of G in G is equal to the number g of exten-
sions of v to K*. Hence

(11) [Kz:K] = g = (G:Gp).
We denote by f, the separable factor of the relative degree f=[4%:4]
and we set

(12) f=fom,
where = is the characteristic of 4 if the characteristic is different from
zero and is 1 otherwise. Theorems 21 and 22 show that
(13) fo =[47:4,] = [K;:K;] = order of G,;/G;.
For any s in G and for any element a of K*, a#0, we denote by (a, s)
the v*-residue of s(a)/a. (By (3), this residue is different from co and
0 if s € Gz and hence, a fortiori, also if s is in G;.) We have the fol-
lowing relations
(14) (a,8) =1 if aeR,a¢M,seCGy;
(14) (ab, s) = (a, s)(b, S),}

b *.
(14") (@ st) = (a,s)(a, 8). ] DO EKT 9 1€Cr
Relation (14) is evident, since s(a) —a=m € M,, s(a)/a=1+m/a, and the
v-residue of mfa is zero if a¢ M.  Also relation (14') is evident since
s(ab)=s(a)s(b). As to (14"), we write ( z)(a)_M.E%z_) and we note

t(s(a)) _ ,(s(a)
that ( ) ('—a—
(whence L:—) € R, %a) ¢ va) it follows, by (14), that (st)a) has the same

#(a)
s{a)

v*-residue as = since t€ G;. Relations (14’) and (14”) show that

. . a)y.,
), and since the v*-residue of (T) is neither oo nor 0

[

the function (a, s) establishes a ““pairing” between the group G, and
the multiplicative group of K*. For fixed s in G the mapping
a — (a, 5) is a homomorphism of the multiplicative group of K* into
the multiplicative group of 4*. We denote by K*' and 4*' these
multiplicative groups and we use the customary notation Hom (K*’, 4*')
for the set of all homomorphisms of K*' into 4*. This set
Hom (K*’, 4*') is a group in an obvious way (if f and g are two homo-
morphisms of K*' into 4*' we define fg by (fg)(a) f(a)g(a) ae K*').
Hence, for fixed s in Gy the mapping a — (4, s) is an element of
Hom (K*', 4%'). If we denote this element by ¢(s):

(15) o(s): a—(a,s), aeK*,
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then (14") shows that the mapping
(159 ¢: Gp— Hom (K*', 4%)

is a homomorphism. Similarly, for fixed a in K*’, the mapping
s — (a, s) is an element of Hom (G, 4*'). If we denote this element

by ¢(a):

(16) Y(a): s—(a,5), seGy,
then (14’) shows that the mapping
(16" ¢: K*'— Hom (G, 4%)

is a homomorphism. We shall investigate the kernels of ¢ and ¢ in
order to determine to what extent the pairing (a, s) is ““faithful.”

The elements of the kernel of ¢ are those elements s of G for which
it is true that ¢(s) maps every element of K*’ into the element 1 of
4*', i.e., those elements s for which (g, s)=1 for any 4 in K*’. Now,

(a, s)=1 is equivalent to v*(‘%a)— l) >0. Hence the kernel of ¢ con-

sists of those elements s of G which satisfy the condition

17) v*(s(x)—x) > v*(x), for all x in K*',

These elements form therefore an invariant subgroup of G,. This
subgroup is denoted by G}, and is called the large ramification group of v*.

In the case of Dedekind rings treated in Chapter V, § 10, the large
ramification group G, is the inverse image in G of the subgroup G',
of G7/Gy,, mentioned in V, §10, Theorem 25. It is also the set,
denoted in V, § 10 (p. 295) by H, of all s in G such that s(u) —u € M2,
where u is a generator of M .

We now study the kernel of b. If a € K, then s(a) = a and therefore
(a,5)=1 for all s in G;. Hence the kernel of ¢ contains the inertia
field K. The kernel of ¢ also contains all the units of the valuation
ring R+, by (14). It follows now that the kernel of s contains all the
elements a of K* such that v*(a) € I, for if a is such an element and if b
is an element of K such that v*(a)=v*(d), then a=b¢, with ¢ a unit in
R+, and since both 4 and ¢ are in the kernel of ¢, also a is in the kernel.

The above consideration shows that (a, 5) depends only on the pair
(&, §), where a is the I'-coset of v*(a) and § is the Gj,-coset of s.  Since
v* is a homomorphism of K*’ onto I'*, it follows that the pairing (a, 5)
defines in a natural way a pairing between the (multiplicative) group
Gr/Gy and the (additive) group I'*|I".  The homomorphism ¢, given by
(15) and (15'), gives rise to an isomorphism

(18) #1: Gr/Gy— Hom (I'*[T, 4%
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of G/Gy into the group of homomorphisms of I'*[I" into 4*', while the
homomorphism ¢, defined by (16) and (16), gives rise to a homomor-
phism

(19) J,: I'*/T'— Hom (G1/Gy, 4*')

of I'*|I" into the group of homomorphisms of G|G} into 4*'.

We point out the special case in which I'*/I" is a cyclic group of order
e [see (2)] (we have this case, for instance, if v is a discrete valuation of
rank 1). If we choose a generator « of I'*/I" (for instance, a=the
I'-coset of the smallest positive element of I'*, if v is discrete of rank 1),
then any homomorphism 4 of I'*/I" into 4*' is uniquely determined by
the value A(z). Hence, if we set, for any o in G;/Gy, i(0) =(F,(0))(<),
then 7 is an isomorphism of G;|G,, into the multiplicative group 4*' (see
Vol. I, Ch. V, § 10, Theorem 25).

We denote by = the ‘characteristic exponent” of the residue field 4
of v, i.e., 7 is equal to the characteristic p of 4 if p#0 and 1s equal to 1 if
p=0. The finite abelian group I'*/I" is the direct sum of a w-group
I (=the set of elements & such that the order of & is a power of 7) and
a group Iy whose order is prime to = (I"y=set of elements @ such that
order of & is prime to =). If we set

(20) e = eyn', e, prime tom,

then = is the order of I"_, and e, is the order of I',. Since 1 is the only
element ¢ of 4* such that the order of ¢ is a power of =, it follows that
every homomorphism of I'*/I" into 4*' is trivial on I,

We thus have a pairing between the multiplicative group G;/G,, and
the additive group I',, defining an isomorphism of Gr/G, into
Hom (I, 4*'):

(21) ¢: Gr/Gy — Hom (I, 4*')
and a homomorphism of I'; into Hom (G/G,, 4*")
(22) g: I'y— Hom (G;/G,, 4*').

We shall prove later on that  and ¢ are actually isomorphisms onto. At
present we only note the following: since every element of I, has order
prime to , also every homomorphism of I'; has order prime to 7 ; hence
the order of the (finite) group Hom (I, 4*')t is prime to =, and conse-
quently

(23) The order €'y of G1|Gy, is prime to =.

+ Any homomorphism of the group I, (which is of order e,) into the group
A*" maps [, into the set of ¢,™ roots of unity; since the latter set is finite, the
set Hom (I, 4*’) is also finite.
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We note that in the case of characteristic zero Iy coincides with I'*/T".

We now study the large ramification group G.

THEOREM 24. G, is a w-group, i.e., a group whose order is a power of
m.  (In particular, Gy, =(1) if 4 has characteristic zero.)

Proor. We have only to show that if s € G|, and s has prime order ¢,
then g=n. Assume the contrary: ¢g#=. Let L be the fixed field of s.
Then K* is a cyclic extension of L, of degree g. Let x be a primitive
element of K*/L and let X+a, ;X9 '+ ... +a,, a; € L be the mini-
mal polynomial of x over L. We may assume that a,_, =0 since g# =
and since therefore we can replace x by x+a, ,/g. Hence we may
assume that the trace of x is zero. On the other hand, if we set s;=sf,
i=0, 1, -, ¢—1, then the v*-residue of x*i/x is 1, since s; € G},, and

. g—1
hence the v*-residue of > x*i/x is equal to ¢#0, a contradiction since
i=0
the trace > x% is zero. 'This completes the proof of the theorem.

At this stage we can already obtain, as a corollary of Theorem 24, the
definitive result in the case w=1 (i.e., in the case in which 4 has char-
acteristic zero):

COROLLARY. If the residue field 4 of v has characteristic zero then the
grouts Gy and I'*|I" are isomorphic. The ramification deficiency of v,
relative to K*, is zero, i.e., we have efg=n (n=[K*:K]).

In fact, if 4 has characteristic zero, then G, =(1) and hence @,, de-
fined by (18), is an isomorphism of G into the group Hom (I'*/I", 4*").
This latter group is a subgroup of the group of characterst of the
abelian group I'*/I".  Since I'*/I" has order e and since I'*/I" and its
group of characters are isomorphic groups, it follows that G, is
isomorphic with a subgroup of I'*/" and hence has order Ze.
Since n=gf -order Gr, it follows that n<efg, and therefore, by § 11,
Theorem 19, we must have n = efg, which proves all the assertions of the
corollary.

We now continue with the general case.

LEMMA.  The homomorphism s defined in (22) is an isomorphism (into).

PROOF. We have only to show that if an element x of K*' is such
s(x)

x
such that #*o*(x) e I Denote by = the order of G,, (Theorem 24)
and by K, the fixed field of G,,. We set y=Ng~ (x). It is clear

that v*(y)==v*(x). On the other hand, by applying the operation

that —1€ M« for every s in G, then there exists a power 7 of =

1 For properties of the group of characters of finite abelian groups see, for
instance, B. L. van der Waerden, Moderne Algebra, vol. 2 (p. 189), or E. Hecke,
Vorlesungen iiber die Theorie der algebraischen Zahlen, p. 33.
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s(x)
x

Ng# i, to the relation —1e M, we easily get %y)—l € M+ for

every s in Gy. It follows that the conjugates y; of y over K, may be
written in the form y,=y(1+b,)(b; € M,+). Since [K,:K,]=¢, (see
(23)), there are ¢’y conjugates y,, and, by summation, we get

Tgyx(¥) = y(€'o+0)

with b=73 b; € M «. Since e’y is prime to m, it is a unit.in R«. Hence
v*(y)=v*(T(y)) € I'y, and therefore v*(y) € I'by Theorem 23. Q.E.D.
It follows from the lemma that the pairing

h: GT/GVXPO'—)A*I

defined by (21) and (22) is faithful in the sense that 1 is the only element
o of G7/Gy, such that ko, &) =1 for every & in Iy, and that 0 is the only
element & of the additive group Iy such that h(a, «)=1 for every o in
G7/Gy. On the other hand, 4 takes its values in the group U of ¢’;-th
roots of unity contained in 4*; this group U is a cyclic group of order
prime to .

Now the theory of characterst for finite abelian groups shows that,
given a finite abelian group H, the only subgroup H’, of its character
group H’ which “separates” the elements of H (i.e., such that x(h)=1
for all ¥ in A’ implies 2=1) is the character group H' itself. Thus, if
we regard G;/G, as a group of characters of Iy, it is the entire character
group of 'y, Similarly I'; is the entire character group of G/G,. In
particulart

THEOREM 25. The groups Iy and G;|G, are isomorphic (whence
G1/Gy is abelian). Their orders ey and €' are equal.

CoroLLarY. The product efg divides the degree n=[K*:K], and
nlefg is a power of .

In fact, n=(G:G)(G4: Gr)Gr: Gy )Gy : 1) =gf seqm = efgn*~s- (the
notations are those of formulae (11), (12), and (20)). Sinceefg<n(§11,
Theorem 19), it follows that u—s—t¢is >0.

Finally, two series of subgroups of G, generalizing the higher rami-
fication groups, may be defined. For every ideal a in R,. we define
(24) G. as the set of all s in G such that s(x)—x € a for every x in R«;
(25) Hq as the set of all s in G such that s(x)— x € ax for every x in K*.

The following facts are easily verified (many proofs are as in Chapter
V, §10):

(a) Ho< Go.

(b) Hm » =Gy, Gm=Gp, Hp =G =G

+ See op. cit. in the footnote of the preceding page.
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(c) If acb, then Ga<= Gy and Ho< Hp.
(d) Ga and H, are invariant subgroups of G.
(¢) The commutator of an element of H, and of an element of Hp is

in Hab.

(f) Let the value group I'* be isomorphic to a dense subgroup of the

group of real numbers, and be identified with such a subgroup.
If « is a positive real number, and if a is the ideal in R+ defined
by v*(x)>«, then Go=H,. In fact take any x#0 in R+, any
real number £>0, and write x=x, - - - x, where 0<o* (x;)<e¢
(this is possible for n large enough, since I'* is a dense subgroup
of the real line). The formula

n

s(x)—x = ; $(1) - - - 8(i0)(8(%)) = %)% 0 - 0 X

shows that, if s is in G5, we have
v*(s(x) —x) = min; (v*(x) —v*(x;) + v*[s(x;) — x,]).

Taking s in G, this gives v*(s(x) —x) = v*(x) +a—¢. As this is
true for every e¢>0, we have v*(s(x)—x)=v*(x)+e, ie.,
s(x)—x € ax, whence se H. Our conclusion follows then
from (a).

REMARK. In the case of a discrete valuation 2* of rank 1,
the decomposition of x into a product of elements of order 1
shows, in a similar (and simpler) way that Gy, < Hm; .

(g) Let a be a principal ideal a= R »a, contained in (M,+)2. For s in

(26)
(27)

(28)

s(x)—x
a
For fixed s, the mapping x - B(x, s) is a derivation of R x (see

Chapter II, § 17) with values in the additive group of 4*:

B(x+y,s) = B(x, s)+ B(y, s)
B(xy, s) = %-B(y, s)+ yB(x, s)

(%, 7 denoting the v*-residues of x, y). The proofs are straight-
forward. On the other hand, for fixed x in R+, the mapping
s — B(x, s5) is a homomorphism of G, into the additive group of
4%

Ga und x in R «, we denote by B(x, s) the v*-residue of

B(x, ts) = B(x, s)+ B(x, t)

PROOF. We set s(x)=x+ay, and a=a'a" with @', a" in M« (this is
possible since ae(M,+)?). Then ay,=s(t(x))—x=s(x+ay,)—x=
ay,+s(@)s(y,) = ay, + ay, + (a)[s(y,) ~3,] + [s(a) — a]y,. Since v*(s(a))=
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v*(a) (s € G), and since s(y,) —y, € R+a< M+, the term s(a) - [s(y,)) ~ y,]
isin M»a. Similarly, since s(a) — a=s(a')s(a")— a'a" =s(a’)[s(a") — a"] +
a’[s(a’)—a’], the term (s(a)—a)y, belongs to M+a. Hence ay,=
ay,+ay, (mod M +a), and therefore y,, =y +y, (mod M),

In other words, we have a pairing B between G, and the additive
group of R.«, with values in the additive group of 4*. The kernel of
the homomorphism ¢ of G, into Hom (R,+, 4*) defined by ¢(s)(x)=

B(x, s) is the set of all s in G, such that Sx) = € M« for every x in R»;
a

in other words, this kernel is Gawm ». The image ¢(Ga) in Hom (R, 4%)
is therefore a subgroup of Hom (R, 4*), which is isomorphic to
Ga/Ga‘Dlv. and therefore finite. If the characteristic of 4* is zero, no
subgroup of Hom (R, +, 4*) is finite, except the subgroup (0), since such
a subgroup contains, with any element @0, all its multiples @ + 6,

O+60+6,...; we therefore have G, = G.vml_. in this case; more parti-
cularly, if o* is a discrete valuation of rank 1, then we get GmZ, =
Gmle= - - =Gml.= - - -, and this implies at once that Ga,n = {1} for

n

all n > 1 (since from s(x) — x € M4, all » and all x follows that s(x) —x=0
for all x, whence s=1). If the characteristic p of 4* is #0, then every
element #0 of Hom (R, 4%) is of order p; therefore Go/Gam,* is an
abelian group of type (p, - - - , p) (i.e., a direct sum of cyclic groups with
p elements).

On the other hand, the homomorphism ¢ of R+ into Hom (G,, 4%)
defined by ¢(x)(s) = B(x, s), takes the value 0 on (,«)% by formula (27),
and also on R,» N K(G.)(K(G.,) denoting the fixed field of G,), whence a
fortiori on R« n K;.. We suppose that there is no inseparability in the
residue field extension, i.e., that 4* is separable over 4; then 4* =4, by
Theorem 22 (b), and this means that every element of R+ is congruent
mod M« to some element of R« K. [In the case in which I'* is
dense (i.e., has no smallest strictly positive element), we have M «=
(9M,+)2, whence s takes everywhere the value 0. From what has been
seen above, it follows that Ga = Gam , for every principal ideal a; we may
notice that, if b is a non-principal ideal in R+, then b =0 « (still under
the assumption that I'* is dense).] '

In the case in which I'* admits a smallest positive element, say
v*(u) (u € M), then the assumption that 4*=4, shows that every x
in R » may be written in the form x=2"+zu+x’, with 2, 2’ € R» n K
and x’ in (M+)%  Denoting as usual by # the v*-residue of z, formula
(27) shows that (x)=y(zu)=%-y(u). Therefore the image ¢(R,+) in
Hom (G, 4*) is the 4*-vector subspace of Hom (G,, 4*) generated by
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(u); in particular we have ¢(u) =0 if and only if Go=Gum .. Further-

more (still under the assumptions that 4* is separable over 4 and that

I'* admits a smallest element > 0), the mapping s — J(u)(s)=B(x, s)

defines an isomorphism of Ga/Gam . onto an additive subgroup of 4*.

(h) Letstill a be a principal ideal R..a with ain M +. For t in H, and

x#0 in K*, we denote by C(x, t) the v*-residue of t(xg_;-x.
The mapping C satisfies the following relations:

(29) C(xy, t) = C(x, 1)+ C(y, 1),

(30) C(x, ts) = C(x, s)+ C(x, t).

PROOF. If we set s(x) =x(1 + ax,), then C(x, s) is the v*-residue of x,.

From s(xy)=xy(l +ax,+ay, +a%x,y,) and from a% € M +a, we deduce
formula (29). From

s(t(x)) = s(x)[1 +s(a)s(x)] = x(1+ax)[(1 +a(1+aa)(1+a(x,))x]
= x(1 + ax, + ax,)(mod. M, +ax),

we deduce formula (30).

We have again a pairing, this time between H, and the multiplicative
group K*' of K* with values in the additive group of 4*. Since
H,< Gy, we have Ho=(1) in characteristic 0 (Theorem 24), and we may
restrict ourselves to the case in which the characteristic p of 4* is #0.
It is easily seen that the kernel of the homomorphism ¢: Hqy — Hom
(K'*, 4*) defined by ¢(s)(x) = C(x, s) is Ham,+. Thus we see as above
that Ha/Ham,» is an abelian group of type (p, p, - - -, p).

(i) Since G is a finite group, the mappings a — G, a -> H, take only
a finite number of values. Let, for example, G’ be one of the
values taken by Ga.  If & denotes any set of ideals in R,x and we

set
b=«
ae®
we immediately verify that
Gb = n Gq.
aed

Taking for @ the set of all ideals a for which Go=G’, we deduce
that this set has a smallest element a(G’). We obtain in this way
a finite decreasing sequence

a; >a, > - >a, > (0)
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such that the G, form a decreasing sequence of distinct sub-
groups of G. It follows from the construction that

Go = Gy, for a>a
G¢.=Ga2 for a; >a>a,

Ga= G, for a,, >a>a,
Ga

1l
—

—
~—

for a, > a.

The ideals ay, - - -, a, are called the ramification ideals of v* (and
generalize the ramification numbers defined in Chapter V, § 10).

An analogous sequence b, >b,> - - >b,>(0), with analogous
properties, is defined by using the mapping a — H, instead of
a— Gq.

§ 13. Classical ideal theory and valuations. Let R be a UFD,
and K its quotient field. With every irreducible element 2 in R, there
is associated the z-adic valuation of K(§ 9, Example 1, p. 38). We have
noticed already (§ 9, Example 2, p. 38) that the ring R and the family
(F) of all z-adic valuations of K enjoy the following properties:

(E,) Every valuation v in (F) has rank 1 and is discrete.

(E3) The ring R is the intersection of the valuation rings R, (v € (F)).

(E3) For every x#0 in R, we have v(x)=0 for all v in (F) except a finite
number of them (we shall say “for almost all v in (F)”).

(Ey) For every v in (F), the valuation ring R, is equal to the quotient ring
Ry (), where p(v) is the center of v on R.

When we have a domain R and a family (F) of valuations of its
quotient field K which satisfy (E,), (Ey), (Es), (E,), we say that R is a
Krull domain (or a finite discrete principal order), and that the family (F)
is a family of essential valuations of R. Property (E,) shows that a
Krull domain R is integrally closed. 'The fact that every element of K is
a quotient of two elements of R shows that condition (Ej) is equivalent
with the seemingly stronger condition:

(E') For every x#0 in K, we have v(x)=0 for almost all v in (F).

Further examples of Krull domains may be given:

(a) Dedekind domains. A family of essential valuations in these
domains is given by the set of all p-adic valuations (§ 9, Example 3,
p. 38). A more general example is the following:

(b) Integrally closed noetherian domains. If R is an integrally closed
noetherian domain, then a family (F) of essential valuations of R is
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given by the p-adic valuations, where p is any minimal prime ideal in
R (Theorem 16, Corollary 3, § 10).

REMARK. A Krull domain need not be noetherian; for example,
polynomial rings in an infinite number of indeterminates, over a
field, are non-noetherian UFD’s.

The family (F) of essential valuations of a Krull domain R is uniquely

determined by R. More precisely:

THEOREM 26. Let R be a Krull domain, and (F) a family of essential
valuations of R. Then the valuation rings R, (v € (F)) are identical with
the quotients rings Ry, where p runs over the family of all minimal prime
ideals in R.

PROOF. Let v € (F), and let p(v) denote its center on R. Since the
quotient ring Ry(v) is the valuation ring (E,) of a discrete, rank 1 valua-
tion (E,), p(v)Rpw is its unique proper prime ideal. Thus, taking
into account the relations between prime ideals in R and in Ry,
(Vol. I, Ch. IV, § 11, Theorem 19), p(v) is a minimal prime ideal in R.

Conversely we have to show that every minimal prime ideal p in R
is the center of some valuation v in (F). More generally we shall prove
that every proper prime ideal p in R contains the center p(v) of some
valuation v in (F). Suppose this is not so. Take an element x#0 in

p. Since p#R, x is not a unit in R. Hence v(i) <0 for at least one

valuation v in (F)(E,). Denote by v,, - - -, v, the valuations v in (F)
such that v(x) >0 (E,;). As was just pointed out, we must have n=1.
Since no center p(v;) is contained in p, there exists an element y; € p(v;)
such that y;¢p. Since the valuations v; have rank 1 and since
v,(y;) >0, there exists an integer s(f) such that v,(y,@®) > v(x). Denot-
ing by y the product [] ¥, we have vy (y)=v,(x) for all i, whence

v(y) = v(x) for all v in (F) since v(x) =0 for every v in (F) distinct from
vy, -+, U, Inother words, we have v(y/x) = 0 for all v in (F), whence
y/x € Rby (E,). But, since p is a prime ideal, and since y; ¢ p, we have
¥ ¢ », in contradiction with the fact that y € Rx<p. Our theorem is
thereby proved.

We now characterize UFD’s and Dedekind domains among Krull
domains. (From now on, all valuations have the additive group of
integers as value group.)

THEOREM 27. Let R be a Krull domain, (F) its family of essential
valuations. In order for R to be a UFD, it is necessary and sufficient that,
for every v in (F), there exists an element a,, in R such that v(a,)=1 and
w(a,)=0 for every w+#v in (F).



84 VALUATION THEORY Ch. VI

PROOF. For the necessity we observe that if v is the a-adic valuation
of a UFD R (a being an irreducible element in R), we have v(a)=1,
and w(a)=0 for every other b-adic valuation w of R such that ws#wv.
Conversely, suppose the existence of the elements @, in R. These ele-
ments are irreducible, since, from a,=xy with x and y in R, we deduce
v(x)+2(¥)=1 and w(x)+w(y)=0 for every w#v in (F), whence
w(x)=w(y)=0 and either v(x)=0 and v(y)=1 or v(x)=1 and (y)=0;
therefore either x or y is a unit in R since it has values 0 for all valuations
in (F) (use (E,)). Secondly, for every element x in R we can write
x=u-]] a,**; from this we deduce that 2(x)=0 for all v in (F), i.e.,

that « is a unit in R (since # and 1/u belong to R by (E,)). Lastly such a
representation x=u- | [ @, (u: unit in R; the n(v) almost all zero) is

necessarily unique, since v(x) = v(u) + n(v)v(a,) + > n(w)v(a,) an