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Preface

This book grew out of lectures on Riemann surfaces which the author gave
at the universities of Munich, Regensburg and Miinster. Its aim is to give
an introduction to this rich and beautiful subject, while presenting methods
from the theory of complex manifolds which, in the special case of one
complex variable, turn out to be particularly elementary and transparent.

The book is divided into three chapters. In the first chapter we consider
Riemann surfaces as covering spaces and develop a few basics from topology
which are needed for this. Then we construct the Riemann surfaces which
arise via analytic continuation of function germs. In particular this includes
the Riemann surfaces of algebraic functions. As well we look more closely at
analytic functions which display a special multi-valued behavior. Examples
of this are the primitives of holomorphic 1-forms and the solutions of linear
differential equations.

The second chapter is devoted to compact Riemann surfaces. The main
classical results, like the Riemann-Roch Theorem, Abel’s Theorem and the
Jacobi inversion problem, are presented. Sheaf cohomology is an important
technical tool. But only the first cohomology groups are used and these are
comparatively easy to handle. The main theorems are all derived, following
Serre, from the finite dimensionality of the first cohomology group with
coefficients in the sheaf of holomorphic functions. And the proof of this is
based on the fact that one can locally solve inhomogeneous Cauchy-
Riemann equations and on Schwarz’ Lemma.

In the third chapter we prove the Riemann Mapping Theorem for simply
connected Riemann surfaces (or Uniformization Theorem) as well as the
main theorems of Behnke-Stein for non-compact Riemann surfaces, i.c., the
Runge Approximation Theorem and the Theorems of Mittag-Leffler and
Weierstrass. This is done using Perron’s solution of the Dirichlet problem

vil



viii Preface

and Malgrange’s method of proof, based on Weyl’s Lemma, of the Runge
Approximation Theorem. In this chapter we also complete the discussion of
Stein’s Theorem, begun in Chapter 1, concerning the existence of holomor-
phic functions with prescribed summands of automorphy and present
Ro&hrl's solution of the Riemann-Hilbert problem on non-compact Riemann
surfaces.

We have tried to keep the prerequisites to a bare minimum and to
develop the necessary tools as we go along. However the reader is assumed
to be familiar with what would generally be covered in one semester courses
on one complex variable, on general topology and on algebra. Besides these
basics, a few facts from differential topology and functional analysis have
been used in Chapters 2 and 3 and these are gathered together in the
appendix. Lebesgue integration is not needed, as only holomorphic or differ-
entiable functions (resp. differential forms) are integrated. We have also
avoided using, without proof, any theorems on the topology of surfaces.

The material presented corresponds roughly to three semesters of lec-
tures. However, Chapters 2 and 3 presuppose only parts of the preceding
chapters. Thus, after §1, 6 and 9 (the definitions of Riemann surfaces,
sheaves and differential forms) the reader could go directly to Chapter 2.
And from here, only §§12-14 are needed in Chapter 3 to be able to handle
the main theorems on non-compact Riemann surfaces.

The English edition includes exercises which have been added at the end
of every section and some additional paragraphs in §8, 17 and 29. As well,
the terminology concerning coverings has been changed. Thanks are due to
the many attentive readers of the German edition who helped to eliminate
several errors; in particular to G. Elencwajg, who also proposed some of
the exercises. Last but not least we would like to thank the translator,
B. Gilligan, for his dedicated efforts.

Miinster O. FORSTER
May, 1981

Addendum to Fourth Corrected Printing

For the second and fourth printing a number of misprints and errors have
been corrected. 1 wish to thank B. Gilligan, B. Elsner and O. Hien for pre-

paring lists of errata.

April 1999 0. FORSTER



CHAPTER 1
Covering Spaces

Riemann surfaces originated in complex analysis as a means of dealing with
the problem of multi-valued functions. Such multi-valued functions occur
because the analytic continuation of a given holomorphic function element
along different paths leads in general to different branches of that function. It
was the idea of Riemann to replace the domain of the function with a many
sheeted covering of the complex plane. If the covering is constructed so that
it has as many points lying over any given point in the plane as there are
function elements at that point, then on this “ covering surface ” the analytic
function becomes single-valued. Now, forgetting the fact that these surfaces
are “spread out” over the complex plane (or the Riemann sphere), we get
the notion of an abstract Riemann surface and these may be considered as
the natural domain of definition of analytic functions in one complex
variable.

We begin this chapter by discussing the general notion of a Riemann
surface. Next we consider covering spaces, both from the topological and
analytic points of view. Finally, the theory of covering spaces is applied to
the problem of analytic continuation, to the construction of Riemann sur-
faces of algebraic functions, to the integration of differential forms and to
finding the solutions of linear differential equations.

§1. The Definition of Riemann Surfaces

In this section we define Riemann surfaces, holomorphic and meromorphic
functions on them and also holomorphic maps between Riemann surfaces.

Riemann surfaces are two-dimensional manifolds together with an addi-
tional structure which we are about to define. As is well known, an

1



2 1 Covering Spaces

n-dimensional manifold is a Hausdorff topological space X such that every
point a € X has an open neighborhood which is homeomorphic to an open
subset of R".

1.1. Definition. Let X be a two-dimensional manifold. A complex chart on X
is a homeomorphism ¢: U — V of an open subset U — X onto an open
subset ¥ < C. Two complex charts ¢;: U, — V;, i = 1, 2 are said to be holo-
morphically compatible if the map

0201 (U N Uz) = 0a(Up 0 Uy)
is biholomorphic (see Fig. 1).

Figure 1

A complex atlas on X is a system U = {¢;: U; > V,, i € I} of charts which
are holomorphically compatible and which cover X, ie., Uie JUi=X.

Two complex atlases 9 and ' on X are called analytically equivalent if
every chart of 2 is holomorphically compatible with every chart of 2.

1.2. Remarks
(a) If ¢: U — V is a complex chart, U, is openin U and V; :== (U ), then
@| U, -V, is a chart which is holomorphically compatible with ¢: U — V.
(b) Since the composition of biholomorphic mappings is again biholo-
morphic, one easily sees that the notion of analytic equivalence of complex
atlases is an equivalence relation.

1.3. Definition. By a complex structure on a two-dimensional manifold X we
mean an equivalence class of analytically equivalent atlases on X.

Thus a complex structure on X can be given by the choice of a complex
atlas. Every complex structure X on X contains a unique maximal atlas 2[*.
If 91 is an arbitrary atlas in X, then 2U* consists of all complex charts on X
which are holomorphically compatible with every chart of 2.



1 The Definition of Riemann Surfaces 3

1.4. Definition. A Riemann surface is a pair (X, £), where X is a connected
two-dimensional manifold and X is a complex structure on X.

One usually writes X instead of (X, X) whenever it is clear which complex
structure X is meant. Sometimes one also writes (X, 2) where U is a re-
presentative of X,

Convention. If X is a Riemann surface, then by a chart on X we always
mean a complex chart belonging to the maximal atlas of the complex struc-
ture on X.

Remark. Locally a Riemann surface X is nothing but an open set in the
complex plane. For, if ¢: U —» V < C is a chart on X, then ¢ maps the open
set U < X bijectively onto V. However, any given point of X is contained in
many different charts and no one of these is distinguished from the others.
For this reason we may only carry over to Riemann surfaces those notions
from complex analysis in the plane which remain invariant under biholo-
morphic mappings, i.e., those notions which do not depend on the choice of
a particular chart.

1.5. Examples of Riemann Surfaces

(a) The Complex Plane C. Its complex structure is defined by the atlas
whose only chart is the identity map C — C.

(b) Domains. Suppose X is a Riemann surface and Y < X is a domain,
Le, a connected open subset. Then Y has a natural complex structure which
makes it a Riemann surface. Namely, one takes as its atlas all those complex
charts ¢: U - V on X, where U < Y. In particular, every domain Y = C isa
Riemann surface.

(c) The Riemann sphere P*. Let P! :==C U {0}, where o is a symbol not
contained in C. Introduce the following topology on P!. The open sets are
the usual open sets U < C together with sets of the form V' U {oo}, where
V < C is the complement of a compact set K « C. With this topology P! is a
compact Hausdorff topological space, homeomorphic to the 2-sphere S2. Set

U;=P'\{oc}=C
U, =P"\{0} = C* U {co}.
Define maps ¢;: U; - C, i = 1, 2, as follows. ¢, is the identity map and

_|1/z for z e C*

Z):
¢2(2) 0 forz=o0.
Clearly these maps are homeomorphisms and thus P! is a two-dimensional
manifold. Since U, and U, are connected and have non-empty intersection,
P! is also connected.
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The complex structure on P! is now defined by the atlas consisting of the
charts ¢;: U; »C, i = 1, 2. We must show that the two charts are holo-
morphically compatible. But ¢, (U; n U,) = ¢,{U, n U,)=C* and

, @i C*-C* z- 1z,
is biholomorphic.

Remark. The notation P! comes from the fact that one may consider P’
as the 1-dimensional projective space over the field of complex numbers.

(d) Tori. Suppose w,, w, € C are linearly independent over R. Define
I=2Zw, + Zw, = {nw, + mw,:n, me Z|.

I"is called the lattice spanned by w; and w, (Fig. 2). Two complex numbers
z, z' € C are called equivalent mod I' if z — 2’ € T". The set of all equivalence

classes is denoted by C/T. Let n: C — C/T" be the canonical projection, i.e.,
the map which associates to each point z € C its equivalence class mod I'.

10
o

//*\'f(yz

e

Figure 2

Introduce the following topology (the quotient topology) on C/T. A
subset U = C/T is open precisely if z7'(U) < C is open. With this topology
C/I" is a HausdorfT topological space and the quotient map n: C — C/T is
continuous. Since C is connected, C/I" is also connected. As well C/T is
compact, for it is covered by the image under = of the compact
parallelogram

P:={w, + pw,: A, pe [0, 1]}

The map = is open, i.e., the image of every open set V' < C is open. To see this
one has to show that V:=n"!(n(V)) is open. But
V=) (w+ V)
wel

Since every set w + V is open, so is V.
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The complex structure on C/T" is defined in the following way. Let VV < C
be an open set such that no two points in V are equivalent under I'. Then
U:=n(V)is open and |V — U is a homeomorphism. Its inverse ¢: U — V
is a complex chart on C/T". Let 2 be the set of all charts obtained in this
fashion. We have to show that any two charts ¢;: U; - V;, i = 1, 2, belong-
ing to W are holomorphically compatible. Consider the map

Y=, - (P1_13 (Pl(Ul m Uz)_’(Pz(U1 n U,).

For every ze ¢,(U; n U,) one has n(y(z)) =7 '(z) = n(z) and thus
¥(z) —zeT. Since T is discrete and ¢ is continuous, this implies that
¥(z) — z is constant on every connected component of ¢,(U; n U,). Thus
is holomorphic. Similarly ' is also holomorphic.

Now let C/I" have the complex structure defined by the complex atlas 9.

Remark. Let S' ={z € C: |z| = 1} be the unit circle. The map which
associates to the point of C/T" represented by iw; + pw,, (4, u € R), the
point

(elni}., eZniu)E Sl x Sl,

is a homeomorphism of C/I" onto the torus S! x S

1.6. Definition. Let X be a Riemann surface and Y < X an open subset. A
function f: Y — C is called holomorphic, if for every chart y: U — V on X the
function

fou (U A Y)=C

is holomorphic in the usual sense on the open set /(U n Y) = C. The set of
all functions holomorphic on Y will be denoted by ¢/(Y).

1.7. Remarks

(a) The sum and product of holomorphic functions are again holomor-
phic. Also constant functions are holomorphic. Thus ¢/(Y) is a C-algebra.

(b) Of course the condition in the definition does not have to be verified
for all charts in a maximal atlas on X, just for any family of charts covering
Y. Then it is automatically fulfilled for all other charts.

(c) Every chart yy: U — V on X is, in particular, a complex-valued func-
tion on U. Trivially it is holomorphic. One also calls i a local coordinate or
a uniformizing parameter and (U, ) a coordinate neighborhood of any point
a € U. In this context one generally uses the letter z instead of .

1.8. Theorem (Riemann’s Removable Singularities Theorem). Let U be an
open subset of a Riemann surface and let a e U. Suppose the function
fe €(U\{a}) is bounded in some neighborhood of a. Then f can be extended
uniquely to a function f e ¢(U).



6 1 Covering Spaces

This follows directly from Riemann’s Removable Singularities Theorem
in the complex plane.
We now define holomorphic mappings between Riemann surfaces.

1.9. Definition. Suppose X and Y are Riemann surfaces. A continuous map-
ping /> X — Y is called holomorphic, if for every pair of charts y,: U, - V;
on X and ¥,: U, -V, on Y with f{U,) = U,, the mapping

vy, fodg V-V

is holomorphic in the usual sense.

A mapping f© X — Y is called biholomorphic if it is bijective and both
f:X—>Yand/f ': Y- X are holomorphic. Two Riemann surfaces X and
Y are called isomorphic if there exists a biholomorphic mapping f: X — Y.

1.10. Remarks

(a) In the special case Y = C, holomorphic mappings f* X - C are
clearly the same as holomorphic functions.

(b) If X, Y and Z are Riemann surfaces and f: X —» Yand g: Y — Z are
holomorphic mappings, then the composition ¢« f: X > 7 is also
holomorphic.

(c) A continuous mapping f: X — Y between two Riemann surfaces is
holomorphic precisely if for every open set V¥ < Y and every holomorphic
function y € (*(V), the “ pull-back ” function ¥ - f: f ~ (V) — C is contained
in ¢(f~"'(V)). This follows directly from the definitions and the remarks
{1.7.c) and (1.10.b).

In this way a holomorphic mapping f: X — Y induces a mapping

fre)y=e(f vy )=y f
One can casily check that f* is a ring homomorphism. If g: Y — Z is another
holomorphic mapping, W is open in Z, V=g~ (W) and U :=f~}(V), then
(g - f)*: ¢(W)— ¢(U) is the composition of the mappings g*: ¢(W) — (V)
and f*: ¢(V) - ¢(U), ie, (g - f)* =f* - g*.

1.11. Theorem (Identity Theorem). Suppose X and Y are Riemann surfaces
and f1, f-: X - Y are two holomorphic mappings which coincide on a set
A <= X having a limit point a € X. Then f, and f, are identically equal.

ProoF. Let G be the set of all points x € X having an open neighborhood W
such that f; | W =f,| W. By definition G is open. We claim that G is also
closed. For, suppose b is a boundary point of G. Then f,(b) = f,(b) since f;
and f, are continuous. Choose charts p: U—->VonXandy: U - V'onY
with b € U and f;(U) = U’. We may also assume that U is connected. The
mappings

gi=y fico VoV cC
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are holomorphic. Since U n G # ¢, the Identity Theorem for holomorphic
functions on domains in C implies g, and g, are identically equal. Thus
f1|U =f,|U. Hence b € G and thus G is closed. Now since X is connected
either G = 7 or G = X. But the first case is excluded since a € G (using the
Identity Theorem in the plane again). Hence f; and f, coincide on all of X.

O

1.12. Definition. Let X be a Riemann surface and Y be an open subset of X
By a meromorphic function on Y we mean a holomorphic function f: Y’ — C,
where Y’ < Y is an open subset, such that the following hold:

(i) Y\Y" contains only isolated points.
(ii) For every point p € Y\Y" one has

lim| fix)| = .

The points of Y\Y” are called the poles of f. The set of all meromorphic
functions on Y is denoted by .#(Y).

1.13. Remarks
(a) Let (U, z) be a coordinate neighborhood of a pole p of fwith z(p) = 0.
Then f may be expanded in a Laurent series

e o
f= 3 ¢z

v=—k
in a neighborhood of p.

(b) .#(Y) has the natural structure of a C-algebra. First of all the sum
and the product of two meromorphic functions f, g € .#(Y)are holomorphic
functions at those points where both f and g are holomorphic. Then one
holomorphically extends, using Riemann’s Removable Singularities
Theorem, f + g (resp. fg) across any singularities which are removable.

1.14. Example. Suppose n > 1 and let
Fe)=2"+c, 2" '+ +¢,, ceC,

be a polynomial. Then F defines a holomorphic mapping F: C — C. If one
thinks of C as a subset of P!, then lim,_,|F(z)| = co. Thus F e .#(P").

We now interpret meromorphic functions as holomorphic mappings into
the Riemann sphere.

1.15. Theorem. Suppose X is a Riemann surface and f € .4 (X). For each pole
p of f, define f{p) == co. Then f> X — P is a holomorphic mapping. Conversely,
iff: X — P is a holomorphic mapping, then fis either identically equal to o or
else f (o) consists of isolated points and f: X\ f ~*(c0) — C is a meromorphic
Sunction on X.
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From now on we will identify a meromorphic function f € .# (X ) with the
corresponding holomorphic mapping /> X — P

PROOF

(a) Let fe .#(X) and let P be the set of poles of f. Then f induces a
mapping f: X - P! which is clearly continuous. Suppose ¢: U — V and
: U'— V" are charts on X and P! resp. with f{lU) = U'. We have to show
that

g=y [ oV oV

is holomorphic. Since f'is holomorphic on X\P, it follows that g is holomor-
phic on V\p(P). Hence by Riemann’s Removable Singularities Theorem, g is
holomorphic on all of V.

(b} The converse follows from the Identity Theorem (1.11). O

1.16. Remark. From (1.11) and (1.15) it follows that the Identity Theorem
also holds for meromorphic functions on a Riemann surface. Thus any
function f e .# (X ) which is not identically zero has only isolated zeros. This
implies that .#(X) is a field.

ExERrcises (§1)

1.1. (a) One point compactification of R". For n > 1 let oc be a symbol not belonging
to ®". Introduce the following topology on the set X :=R" L {cc}. A set
U < X is open, by definition, if onc of the following two conditions is
satistied:

(i) oo ¢ U and U is open in R" with respect to the usual topology on R".
(ii) oo e Uand K »== X\U is compact in R" with respect to the usual topology
on R"

Show that X is a compact Hausdorff topological space.
(b) Stereographic projection. Consider the unit n-sphere

ST =Xy, o X)) ERT XS 4k X2 = 1)
and the stereographic projection
a: 8" - R" U {0}

given by
G(Xqy vy Xpp ) =5

Show that ¢ is a homeomorphism of $" onto X.

1.2. Suppose

(f Z) e GL(2, C).
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1.3.

1.4.

1.5.

Show that the linear fractional transformation

_az+b
Tez+d’

fz)

which is holomorphic on {z € C: cz + d # 0}, can be extended to a meromorphic
function on P! (also denoted by /). Show that f: P! — P! is biholomorphic, i.e., f
is an automorphism of P!,

Identify ' with the unit sphere in R® using the stereographic projection
6:5* 5 C v {0} = P!

defined in Ex. 1.1. Let SO(3) be the group of orthogonal 3 x 3-matrices having
determinant 1, ie.,

SOB3)={4e GL(3,R): ATA=1,det A =1}
For every A € SO(3), show that the map

g Ao Pt p!
is biholomorphic.
[Hint: Use the fact that every matrix 4 € SO(3) may be written as a product

A=A, ' A, where
010
AJ»=(O 0 1)
1 00

or ¢lse is a matrix of the form
B 0
0 1

Let I' = Zw, + Zw, and T’ = Zw', + Zw’, be two lattices in C. Show that
I' = I'" if and only if there exists a matrix A € SL(2, Z) := {4 € GL(2, Z):

det A = 1} such that
( 1) A( 1)'
W W,

(a) Let T, I < C be two lattices. Suppose « € C* such that al’ < I'"". Show that
the map C — C, z+ oz induces a holomorphic map

C/T-C/T,

with B € SO(2).]

which is biholomorphic if and only if o’ = I'".
(b) Show that every torus X = C/T" is isomorphic to a torus of the form

X(1)=C/(Z + Z),
where 1 € C satisfies Im(z) > 0.
(c) Suppose ‘c’ Z € SL(2, Z) and Tm(7) > 0. Let

, _at+b
TiEm—
ct+d

Show that the tori X(z) and X(z') are isomorphic.
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§2. Elementary Properties of Holomorphic Mappings

In this section we note some of the elementary topological properties of
holomorphic mappings between Riemann surfaces. Using these we show
that one can easily derive some of the famous theorems of complex analysis,
e.g., Liouville’s Theorem and the Fundamental Theorem of Algebra.

2.1. Theorem (Local Behavior of Holomorphic Mappings). Suppose X and
Y are Riemann surfaces and f> X — Y is a non-constant holomorphic mapping.
Suppose a € X and b:=f{a). Then there exists an integer k > 1 and charts
@:U—>VonXand y: U — V' on Y with the following properties:

(1) ae U, pla) =0; be U, yi(b)=0.
(i) AV)< U
(iit) The map F=y - f @~ ': V> V' is given by

F(z)==z* forallzeV.

Proor. First we note that there exist charts ¢,: U, -V, on X and
ty: U'— V' on Y such that properties (i) and (ii) are satisfied if one replaces
(U, @) by (U,, ¢,). Now it follows from the Identity Theorem that the
function

Si=y-f- <P1_1: Vi»V <cC

is non-constant. Since f,(0) = 0, there is a k = 1 such that f,(z) =z'g(z),
where g is a holomorphic function on V; with g(0) # 0. Hence there exists a
neighborhood of 0 and a holomorphic function A on this neighborhood such
that h* = g. The correspondence z > zh(z) defines a biholomorphic mapping
a: ¥V, —» V of an open neighborhood V, = V, of zero onto an open neighbor-
hood V of zero. Let U := @7 *(V,). Now replace the chart ¢,: U, — V, by the
chart ¢: U—V where ¢ =a - ¢,. Then by construction the mapping
F=y - fo ¢ !satisfies F(z) = z* ]

2.2. Remark. The number k in Theorem (2.1) can be characterized in the
following way. For every neighborhood U, of a there exist neighborhoods
U = U, of aand W of b = f{a) such that the set f ~!(y) ~ U contains exactly
k elements for every point y € W, y # b. One calls k the multiplicity with
which the mapping f takes the value b at the point ¢ or one just says that f
has multiplicity k at the point a.

2.3. Example. Let f{z) = z* + ¢; 27! + -+ + ¢, be a polynomial of degree k.
Then f can be considered as a holomorphic mapping f: P! - P! where
Moo) = oo (cf. §1). Using a chart about oo, one can easily check that o is
taken with multiplicity k.
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2.4. Corollary. Let X and Y be Riemann surfaces and let > X - Y be a
non-constant holomorphic mapping. Then fis open, i.e., the image of every open
set under fis open.

Proor. It follows directly from Theorem (2.1) that if U is a neighborhood of
a point a € X then f{U) is a neighborhood of the point f{a). This implies fis
open. Ol

2.5. Corollary. Let X and Y be Riemann surfaces and let f X — Y be an
injective holomorphic mapping. Then f is a biholomorphic mapping of X onto

fix).

Proor. Since f'is injective, in the local description of f given by Theorem
(2.1), one always has k = 1. Hence the inverse mapping f~': f{X)— X is
holomorphic. O

2.6. Corollary (Maximum Principle). Suppose X is a Riemann surface and
f+ X - C is a non-constant holomorphic function. Then the absolute value of f
does not attain its maximum.

ProoOF. Suppose that there were a point a € X such that

R | f(a)] = sup{| /(x)]: x < X}.
Then
fiIX)cK:={zeC: |z| <R}

Since f{X) is open, it lies in the interior of K. This contradicts the assumption
that fla) € 0K. ]

2.7. Theorem. Suppose X and Y are Riemann surfaces. Suppose X is compact
and f: X — Y is a non-constant holomorphic mapping. Then Y is compact and f
is surjective.

PRrOOF. By (2.4) f{X) is open. Since X is compact, f(X) is compact and thus
closed. Since the only subsets of a connected topological space which are
both open and closed are the empty set and the whole space, it follows that
AX) =Y. Thus fis surjective and Y compact. |

2.8. Corollary. Every holomorphic function on a compact Riemann surface is
constant.

This follows from Theorem (2.7) since C is not compact.

2.9. Corollary. Every meromorphic function f on P! is rational, i.e., can be
written as the quotient of two polynomials.
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Proor. The function f has only finitely many poles. For if it did have
infinitely many poles then they would have a limit point and by the Identity
Theorem f would be identically equal to co. We may assume the point oo is
not a pole of f. Otherwise consider 1/f instead of f. Now suppose ay, ...,
a, € C are the poles of fand

-1

hiz)= Y ¢z —al.

=k

is the principal part of f at the pole a,, for v=1, ..., n. Then the function
g=f—(h, + -+ + h,) is holomorphic on P! and thus a constant by Corol-
lary (2.8). From this it follows that f is rational. O

2.10. Liouville’s Theorem. Every bounded holomorphic function f: C — C is
constant.

ProOF. By Riemann’s Removable Singularities Theorem (2.8) fcan be analy-
tically continued to a holomorphic mapping /> P! - C. By Corollary (2.8) f
is constant. 1

2.11. The Fundamental Theorem of Algebra. Let n > | and let
fey="+e " T+,

be a polynomial with coefficients ¢, € C. Then there exists at least one point
a € C such that fla) = 0.

PrOOF. The polynomial f may be considered as a holomorphic mapping
£ P' - P!, where f{oo) = co. By Theorem (2.7) this mapping is surjective
and thus 0 € f(C). O

2.12. Doubly Periodic Functions. Suppose w,, @, € C are linearly indepen-
dent over R and I':=Zw, + Zw, is the lattice spanned by them. A mero-
morphic function f: C — P! is called doubly periodic with respect to I, if

flz)=flz+w) foreveryzeC and weT.

Clearly, for this to hold it suffices that f{z) = flz + w,) = flz + w,) for every
ze C. Let n: C - C/T" be the canonical map. Then the doubly periodic
function f induces a function F: C/I" —» P! such that f=F - n. It follows
directly from the definition of the complex structure on C/I' that F is a
meromorphic function on C/I". Conversely, for any meromorphic function
F:C/T' - P!, the composition f = F - n: C — P! is a meromorphic function
which is doubly periodic with respect to I'. Thus the meromorphic functions
on the torus C/T" are in one-to-one correspondence with the meromorphic
functions on C, doubly periodic with respect to I'. Hence from Theorem (2.7)
we have:
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2.13. Theorem. Every doubly periodic holomorphic function f:C — C is
constant. Every non-constant doubly periodic meromorphic function f- C — P!
attains every value ¢ € PL.

EXERCISES (§2)

21. Let I' = C be a lattice. The Weierstrass §-function with respect to I is defined
by
1 1 1
2 (z) = — e
or(z) ? +m;—\o((2_“’)2 wz)-

(a) Prove that $ is a doubly periodic meromorphic function with respect to I’
which has poles at the points of I'. [Hint: First consider the derivative

(8]

Pie)= 2% ! 5~J

wel (Z; w)

(b) Let fe .#(C) be a doubly periodic function with respect to I' which has its
poles at the points of I' and which has the following Laurent expansion
about the origin

o
Mz)= 3 «z* whercc_,=1,¢c_;=co=0.
k==2

Prove that f= ¢,..

2.2. Suppose X is a Riemann surface and f: X — C is a non-constant holomorphic
function. Show that Re(f) does not attain its maximum.

2.3. Suppose f: C — C is a holomorphic function, whose real part is bounded from
above. Then fis constant.

24. Suppose f: X — Y is a non-constant holomorphic map and
f*O(Y)-e(X),  fHe)=¢  f
Show that f* is a ring monomorphism.

2.5. Suppose p,, ..., p, are points on the compact Riemann surface X and
X' =X\{py, ..., P.}- Suppose
X ->C
is a non-constant holomorphic function. Show that the image of / comes arbi-
trarily close to every ¢ e C.

§3. Homotopy of Curves. The Fundamental Group

In this section we present some of the topological results connected with the
notion of homotopy of curves.

By a curve in a topological space X we mean a continuous mapping
u:I— X, where I:=[0, 1] < R is the unit interval. The point a:=u(0) is
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called the initial point and b := u(1) the end point of u. One also says that u is
a curve from a to b or that the curve u joins a to b.

Let us recall that a topological space X is called arcwise connected or
pathwise connected if any two points a, b € X can be joined by a curve. An
arcwise connected space is also connected, i.¢., there does not exist a decom-
position X = U, v U, where U, and U, are non-empty disjoint open sets.
A topological space is called locally arcwise connected if every point has a
neighborhood basis of arcwise connected sets. In particular this is always the
case for manifolds. A connected, locally arcwise connected space X is
(globally) arcwise connected. For one can easily show that the set of all
points x € X which can be joined with a given pointa € X is both open and
closed.

3.1. Definition. Suppose X is a topological space and a, b € X. Two curves u,
v: I - X from a to b are called homotopic, denoted u ~ v, if there exists a
continuous mapping 4: I x I — X with the following properties:

(i) A
(i) A
A

(iii)

(t, 0) = u(t) for every t € I,
(t, 1} = ot) for every t e I,
(0, s) =a and A(1, s) = b for every s e I.

Remark. If one sets u,(t) == A(t, s), then every u, is a curve from g to b and
up = u, u; = v. The family of curves (u,)o ., is said to be a deformation of
the curve u into the curve v or a homotopy from u to v, cf. Fig. 3.

Figure 3

3.2. Theorem. Suppose X is a topological space and a, b € X. Then the notion
of homotopy is an equivalence relation on the set of all curves from a to b.

Proor. Reflexitivity and symmetry are clear. As to the transitivity, suppose
u, v, w: I — X are three curves from a to b with u ~ v and v ~ w. We must
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show that u ~w. By assumption there exist continuous mappings A,
B: I x I — X such that for every t, s e I the following hold:

A(t, 0) = u(t),
A(t, 1) = B(t, 0) = v(¢),
B(t, 1) = w(t),
A(0, s) = B(0, s) = a,
A(l,s)=B(l,s)=b
Define C: I x I - X by
C(t. )= A(L, 2s) for0<s <3,

B, 2s—1) fori<s< .
Then C is continuous and is a homotopy from u to w. O
3.3. Lemma. Suppose u: I — X is a curve in the topological space X and

@: I — 1 is a continuous mapping such that ¢(0) =0 and ¢(1) = 1. Then the
curves u and u - ¢ are homotopic.

ProOF. Define A: I x I - X by
A(t, s)=ul((1 — s)t + so(1)).
Then A is continuous and
A(t, 0) = u(r), AL, 1) = (u - @)(t)
A0, s)=u(0)  A(1, s)=u(1)
for every t, s € I. Thus 1 and u - ¢ are homotopic. O
3.4. Definition. Suppose a, b and c¢ are three points in a topological space X,
u:I-> X isacurve fromatob and v: I - X is a curve from b to c.
(i) The product curve u - v: I - X from a to c is defined by
o ozt
(1) The inverse curve u™: I — X from a to b is defined by
u=(t):==u(l —t) foreverytel.

The product curve u - v first traces the points of the curve u and then those of
the curve v but at twice the speed. The inverse curve u~ passes along the
same points as u but in the opposite direction.

One can easily check that if u, #,: I - X are homotopic curves from a to
b and v,, v,: I - X are homotopic curves from b to ¢, then u; - vy ~uy * v,
and u; ~u,.
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3.5. Definition. Suppose X is a topological space and a € X. By the constant
curve at g is meant the constant mapping uy: I — X, ie., uy(t) = a for every
tel

3.6. Theorem. Suppose X is a topological space and a, b, ¢ € X. Suppose u, t,
w: I — X are curves in X such that

u0)=a,  u(l)=>b=1v(0) () =c=w(0), w(l)=d.

Further let ug be the constant curve at a, v, the constant curve at b. Then the
Jollowing homotopies exist:

(1) up " u~u~u-vy,
(1) u-u” ~ug,
(iif) (u-v) - w~u-(v-w)

Proor
(i} By the definition of the product of curves

[uo(2t) = u(0) for0<t<3
. t —
(1o (1) |u(2t = 1) fort<r<1.
Thus ug - u = u -, where yy: I — I is the parameter transformation defined
by y(t) =0for 0 <t <4, y(t) =2t — 1 for § <t < 1. Thus it follows from
Lemma (3.3) that u, - u ~ u. Similarly u - vy ~ u.

(it) By definition

, ]u(2t) for0 <t <3,
) )=
0= 102 2 rorg=i=t
Now define 4: I x I - X by
— 1
oy RI=) forozisi

lu(2(1 = 1)(1 —5)) fori<r<l.

Then A4 is a homotopy from u - 4~ to the point curve u,.
(iii) One can easily check that

(o) W= (o w)) -y,
where : I — I is the parameter transformation given by:

(@) ¥(0)=0,y(@) =2 ¢¥(G) =2 v(1)=1

(b) ¥ is affine linear on each of the intervals [0, 1], [%, 1], [%. 1].
Hence the result follows from Lemma (3.3). O

Remark. Analogous to (iii) is the following fact. If uy, ..., u, are curves in
X such that the initial point of each u,, ; equals the end point of u,, then
bracketing the product u, - u, - -~ - u, in various ways corresponds to
taking various parameter transformations ¢: [ — I such that y/(0) = 0 and
(1) = 1. In particular all such bracketings are homotopic.
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3.7. Definition. A curve u: I — X in a topological space X is called closed if
u(0) = u(1). A closed curve u: I — X with initial and end point a is said to be
null-homotopic if it is homotopic to the constant curve at a.

3.8. Theorem and Definition. Suppose X is a topological space and a € X isa
point. The set m (X, a) of homotopy classes of closed curves in X with initial
and end point a forms a group under the operation induced by the product of
curves. This group is called the fundamental group of X with base point a.

Notation. For any closed curve u denote by cl(u) its homotopy class. Thus
the group operation in #,(X, a) is by definition cl(u) cl(v) = cl(u - v).

Proor. The fact that the group operation is well-defined follows from the
remark at the end of Definition (3.4). Theorem (3.6) implies that the opera-
tion is associative and the class of null homotopic curves is the identity
element. Inverses satisfy

clu)™ ' =cl(u). |

3.9. Dependence on the Base Point. Suppose X is a topological space and a,
b € X are points which are joined by a curve w. Then a mapping

Simy (X, a) > my(X, b)
can be defined as follows:

Aclw))=cliw™ - u - w).
One easily sees that this mapping is an isomorphism. Thus for an arcwise
connected space X the fundamental group is essentially independent of the
base point and we often just write 7,(X) instead of (X, a). Note however
that the isomorphism 7,(X, a) — n,(X, b) depends in general on the curve w

joining a to b used in its construction. If w, is another curve from a to b and
fi: (X, a) > n (X, b) is defined by

filel@)) =cl(wy - u-wy),
then the automorphism
F=f1'"fin(X, a)—> (X, a)
satisfies F(cl(u)) =cl(w, - w™ -u-w- wi), ie,
1

Fl@)=7y-a-y ' forevery a e n,(X, a),

where y denotes the homotopy class of the closed curve w, - w™. Thus if
n,(X, a) is abelian, then this shows that =,(X, a) and =,(X, b) are canon-
ically isomorphic.

3.10. Definition. An arcwisc connccted topological space X is called simply
connected if m,(X)=0.
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Remark. Although the group operation in m,(X) is written multiplica-
tively, one writes 7,(X) = 0 if ,(X) only contains the identity.

3.11. Theorem. Suppose X is an arcwise connected, simply connected topologi-
cal space and a, b € X. Then any two curves u, v: 1 = X from a to b are
homotopic.

PROOF. Let uj (resp. v,) be the constant curve at a (resp. b). Now (X, b)
=0 implies v~ -u~ vy and thus v-(v™ -u)~v-vy. But v-(v” -u)~
(t-v7) u~ug u~uwuandv- vy~ vby Theorem (3.6), ie, u ~ v. U

3.12. Examples

(a) A subset X — R"is called star-shaped with respect to a point a € X if
for every point x € X the straight line segment da + (1 — A)x, 0 <A< 1, is
contained in X. Every star-shaped subset X — R" is simply connected. For
suppose u: I — X is a closed curve with initial and end point a (with a as
above). Then

Al xT—-X, A, s)s=sa+ (1 — shu(t)

is a homotopy from u to the point curve at a. Thus n,(X, ¢) = 0. In particu-
lar, the complex plane C and every disk in C are simply connected. As well
C\R, and C\R_ are simply connected, where R, (resp. R_) denotes the
positive (resp. negative) real axis.

(b) The Riemann sphere P is also simply connected. One can see this as
follows. Let U, :=P'"\{o0} and U, :=P!\{0}. Since U, and U, are homeo-
morphic to C, they are simply connected. Now suppose u: I — P! is any
closed curve starting and ending at 0. Since I is compact and u is continuous,
one can find finitely many, not necessarily closed, curves ug, ...,
s+ ,: I = P! with the following properties:

(i) The product
Ui=Up c Uyttt " Uy

is, up to a parameter transformation, equal to the curve u and thus is
homotopic to u.

(ii) The curves uy ., k=0, ..., n, lie entirely in U, and the curves u,,,
k=1,..., n, lie entirely in U,. The initial and end points of the u,, are
different from co. Now by Theorem (3.11) one can find curves u5, , homoto-
pic to u,,, lying entirely in U, \{co}. Then

U/ =y u’z CUy ulln T Uzes
is homotopic to v and thus to u as well and lies in U,. Since n,(U,) = 0, v' is

null homotopic. Thus u is null homotopic too.

3.13. Definition. Suppose X is a topological space and u, v: I - X are two
closed curves in X, which do not necessarily have the same initial point.
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Then the curves u and v are called free homotopic as closed curves, if there
exists a continuous mapping A: I x I - X with the following properties:

(1) A(t, 0) = u(r) for every t e I,
(it) A(z, 1) = v(2) for every t e I,
(iii) A0, s)= A(1,s) foreverysel.

Remark. If one sets uy(t) = A(t, s), then each u, is a closed curve in X and
uy = u, u; = v. The family of curves u,, 0 < s < 1, gives a deformation of the
curve u into the curve v. Let w(t):=A(0, t), 0 <t < 1. Then w is a curve
which joins a :==u(0) = u(1) to b := v(0) = v(1). Note that for each s the point
w(s) is the initial and end point of the curve u,. It is easy to see (cf. Fig. 4)
that u is homotopic, while keeping the initial and end point « fixed, to the
curve w- v w.

Figure 4

3.14. Theorem. A pathwise connected topological space X is simply connected
if and only if any two closed curves in X are free homotopic as closed curves.
The proof is simple and is left to the reader.

3.15. Functorial Behavior. Suppose f: X — Y is a continuous mapping be-
tween the topological spaces X and Y. If u: I — X is a curve in X, then
fou:l—>Yisacurvein Y. Ifu,u': I - X are homotopic, thenf o u, f - u’ are
also homotopic. Hence f induces a mapping

Sfe: (X, a) - (Y, fla))

of the fundamental groups. This mapping is a group homomorphism, since
fou-v)y=(fou) (fev) If g: Y Z is another continuous mapping,
then (g o f), =gy © fo-

EXERCISES (§3)

3.1. (a) Suppose X is a manifold and U,, U, < X are two open, connected and
simply connected subsets such that U, n U, is connected. Show that
U, u U, is simply connected.
(b) Using (a) show that S" for n > 2 is simply connected.

3.2. Suppose X and Y are arcwise connected topological spaces. Prove
(X x Y) = n,(X) x ny(Y).
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3.3. Let (X, a) and (Y, b) be topological spaces with base pointsa € X andb € Y. Let
£, 9: X = Y be two continuous maps with fla) = g(a) = b. Then fand g are called
homotopic if there exists a continuous map

F:Xx[0,1]-Y

such that F(x, 0) = flx) and F(x, 1) = g(x) for every x € X and F(a, t) = b for
every t ¢ [0, 1]. Consider the induced maps

f*’ [/ TEI(X’ a)%nl(y’ b)

Show that f, = g, if f and g are homotopic.

§4. Branched and Unbranched Coverings

Non-constant holomorphic maps between Riemann surfaces are covering
maps, possibly having branch points. For this reason we now gather
together the most important ideas and results from the theory of covering
spaces.

4.1. Definition. Suppose X and Y are topological spaces and p: Y - X isa
continuous map. For x € X, the set p~!(x) is called the fiber of p over x. If
y € p~!(x), then one says that the point y lies over x. If p: Y - X and
q: Z— X are continuous maps, then a map f: Y — Z is called fiber-
preserving if p = q - f. This means that any point y € Y, lying over the point
x € X, is mapped to a point which also lies over x.

A subset A of a topological space is called discrete if every point a € 4 has
a neighborhood V such that V ~ A = {a}. A mapping p: Y — X, between
topological spaces X and Y, is said to be discrete if the fiber p~!(x) of every
point x € X is a discrete subset of Y.

4.2. Theorem. Suppose X and Y are Riemann surfuces and p: Y - X is a
non-constant holomorphic map. Then p is open and discrete.

ProOF. By (2.4) the map p is open. If the fiber of some point a € X were not
discrete, then, by the Identity Theorem (1.11}, p would be identically equal to
a. |

If p: Y — X is a non-constant holomorphic map, then we will say that Y is
a domain over X.

A holomorphic (resp. meromorphic) function f: Y — C (resp. f: ¥ — P!)
may also be considered as a multi-valued holomorphic (meromorphic) func-
tion on X. If x € X and p~*(x) = {y;:j € J}, then the f{y;), j € J, are the
different values of this multi-valued function at the point x. Of course it
might turn out that p~ !(x) is a single point or is empty.
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As an example, suppose Y = C, X = C* and p = exp: C — C*. Then the
identity mapping id: C — C corresponds to the multi-valued logarithm on
C*. For, the set exp™!(b), where b e C*, consists of exactly the various
values of the logarithm of b. The following diagram illustrates this.

id

C —

exp " log
C *

4.3 Definition. Suppose X and Y are Riemann surfaces and p: ¥ — X is a
non-constant holomorphic map. A point y € Y is called a branch point or
ramification point of p, if there is no neighborhood V of y such that plVis
injective. The map p is called an unbranched holomorphic map if it has no
branch points.

4.4. Theorem. Suppose X and Y are Riemann surfaces. A non-constant holo-
morphic map p: Y — X has no branch points if and only if p is a local homeo-
morphism, i.e., every point y € Y has an open neighborhood V which is mapped
homeomorphically by p onto an open set U in X.

PROOF. Suppose p: Y — X has no branch points and y € Y is arbitrary. Since
y is not a branch point, there exists an open neighborhood V of y such that
p|V is injective. Since p is continuous and open, p maps the set ¥ homeo-
morphically onto the open set U := p(V).

Conversely, assume p: Y — X is a local homeomorphism. Then for any
y € Y there exists an open neighborhood V of y which is mapped homeo-
morphically by p onto an open set in X. In particular, p|V is injective
and y is not a branch point of p. O

4.5. Examples

(a) Suppose k is a natural number >2 and let p,: C — C be the mapping
defined by p,(z):=z* Then 0 € C is a branch point of p, and the mapping
pi|C* - C is unbranched.

(b) Suppose p: Y — X is a non-constant holomorphic map, y € Y and
x :=p(y). Then y is a branch point of p precisely if the mapping p takes the
value x at the point y with multiplicity > 2, cf. (2.2). By Theorem (2.1) the
local behavior of p near y is just the same as the local behavior of
the mapping p, in example (a) near the origin.

(c) The mapping exp: C — C* is an unbranched holomorphic map. For
€Xp is injective on every subset V = C which does not contain two points
differing by an integral multiple of 2.

(d) Suppose I' = C is a lattice and n: C — C/T is the canonical quotient
mapping, cf. (1.5.d). Then = is unbranched.
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4.6. Theorem. Suppose X is a Riemann surface, Y is a Hausdor{f topological
space and p: Y — X is a local homeomorphism. Then there is a unique complex
structure on 'Y such that p is holomorphic.

Remark. By (2.5) it follows that p is even locally biholomorphic.

PrOOF. Suppose ¢,: U, - V = C is a chart of the complex structure of X
such that there exists an open subset U < Y with p|U — U, a homeo-
morphism. Then ¢ :=¢, v p: U — V is a complex chart on Y. Let ¥ be the
set of all complex charts on Y obtained in this way. It is easy to see that the
charts of 9 cover Y and are holomorphically compatible with one another.
Now let Y have the complex structure defined by 2. Then the projection p is
locally biholomorphic and so, in particular, is a holomorphic mapping.
Uniqueness may be proved as follows. Suppose 21’ is another complex
atlas on Y such that the mapping p: (Y, 9') - X is holomorphic and thus
locally biholomorphic. Then the identity mapping (Y, U)— (Y, ) is
locally biholomorphic and thus is a biholomorphic mapping. Hence 2l and
A’ define the same complex structure. O

4.7. The Lifting of Mappings. Suppose X, Yand Z are topological spaces and
p: Y- X and f: Z— X are continuous maps. Then by a lifting of f with
respect to p is meant a continuous mapping g: Z — Y such thatf=p < g, ie,
the following diagram commutes.

Y

4.8. Theorem (Uniqueness of Lifting). Suppose X and Y are Hausdorff spaces
and p: Y — X is a local homeomorphism. Suppose Z is a connected topological
space and {2 Z — X is a continuous mapping. If ¢,, g,: Z— Y are two liftings
of fand g,(zo) = ga(z,) for some point z, € Z then g, = g, .

Proor. Let T:={z € Z: g,(z) = g,(z)}. The set T is closed, since it is the
preimage of the diagonal A< Y x Y under the mapping (g;, ¢,): Z—
Y x Y. We claim that T is also open. Let z € T and let g,(z) = g.(z) = y.
Since p is a local homeomorphism, there exists a neighborhood V of y which
is mapped by p homeomorphically onto a neighborhood U of p(y) = f(z).
Since g, and g, are both continuous, there is a neighborhood W of z with
g(W) < V. Now let ¢: U — V be the inverse of p| V' — U and note that ¢ is
continuous. Because p < g; = f,onehasg;|W = ¢ - (f |W)fori=1, 2. Thus
gy |W=g,|Wand W< T. Hence T is open. Since Z is connected and T is
non-empty, T = Z and thus g, =g,. O
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4.9. Theorem. Suppose X, Y and Z are Riemann surfaces, p: Y — X is an
unbranched holomorphic map and f: Z — X is any holomorphic map. Then
every lifting g: Z — Y of f is holomorphic.

PRrOOF. Suppose ¢ € Z is an arbitrary point and let b :=g(c) and a := p(b) =
flc). There exist open neighborhoods V of b and U of a such that p| V — U is
biholomorphic. Suppose @: U — V is the inverse map. Since ¢ is continuous,
there is an open neighborhood W of ¢ such that g(W)c V. But f=p-g
implies g| W = ¢ « (f | W) and thus g is holomorphic at the point ¢. ]

Consequence. Suppose X, Y and Z are Riemann surfaces and p: Y - X
and ¢g: Z - X are unbranched holomorphic maps. Then every continuous
fiber-preserving map f: Y — Z is holomorphic. For fis a lifting of p with
respect to gq.

Lifting of Curves. Suppose X and Y are Hausdorffspacesand p: Y — X is
a local homeomorphism. We are particularly interested in the lifting of
curves u: [0, 1] —» X. By Theorem (4.8) a lifting 4: [0, 1] — Y of u, if it exists
at all, is uniquely determined once the lifting of the initial point is specified.

In the following we again let I -=]0, 1].

4.10. Theorem (Lifting of Homotopic Curves). Suppose X and Y are Haus-
dorff spaces and p: Y — X is a local homeomorphism. Suppose a, b € X and
ae Y is a point such that p(a) = a. Further suppose a continuous mapping
A: I x I — X is given such that A(0, s) = a and A(1, s) = b for every s € I. Set

uy(t) = A(t, s).
If every curve ug can be lifted to a curve ti; with initial point 4, then g and i,
have the same end point and are homotopic.

Proor. Define a mapping A: I x I - Y by A(t, 5)==d(t).

Claim (a) There exists &, > 0 such that 4 is continuous on [0, [ x I.

Proof. There are neighborhoods V of @ and U of a such that p|V > U isa
homeomorphism. Let ¢: U — V be the inverse map. Since A(0 x I) = {a}
and A is continuous, there exists &, > 0 such that A([0, ] x I) = U. Be-
cause of the uniqueness of the lifting of curves, one has

[0, o] = ¢ = uy|[0, &9] for every s e I.

Thus A = @ - Aon [0,¢,] x I and this implies 4 is continuous on [0, g x I.

Claim (b) The mapping A is continuous on all of I x I.

Proof. Suppose to the contrary that there is a point (t,d) € I x I at which 4
is not continuous. Let ¢ be the infinum of all those ¢ such that 4 is not
continuous at (t, o). By (a) t > ¢,. Let x :== A(t, ¢) and y := A(z, ¢) = i1,(1).
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There are neighborhoods V of y and U of x such that p|V — U is a homeo-
morphism. Let ¢: U — V be the inverse. Since A is continuous, there exists
¢ > 0 such that A(I,(t) x I,(c)) = U, where

L(&)={tel:|t—¢
In particular u,(I,(r)) = U and thus
g |1,(t) = ¢ = ug |1,(x).
Choose t; € I,(t) with t; < 7. Then
A(ty, o) =i (t,) e V.

< gl

Since A is continuous at (t,, o), there exists > 0, § < ¢, such that
A(ty, s)=1n,(t,) e V forevery s € I;(a).
Because of the uniqueness of liftings it now follows that for every s e I4(0)
| L(x) = @ o uy | L(7).

Thus A = ¢ - A on I,(t) x I4(c). But this contradicts the definition of (z, 5).
Thus A is continuous on [ x .

Since A = p - A and A({1} x I) = {b}, it follows that A({1} x I) = p~'(b).
Since p~!(b) is discrete and {1} x I is connected, A({1} x I) consists of a
single point. This implies that the curves &, and 4, have the same end point
and, by means of A, they are homotopic. O

Covering Maps. We would now like to give a condition which will ensure
that the lifting of curves is always possible.

4.11. Definition. Suppose X and Y are topological spaces. A mapping
p: Y — X is called a covering map if the following holds.

Every point x € X has an open neighborhood U such that its preimage
p~'(U) can be represented as

pHU)= UV
Jed

where the V;, j € J, are disjoint open subsets of Y, and all the mappings
p|V; - U are homeomorphisms. In particular, p is a local homeomorphism.

4.12. Examples

(a) Let D ={z e C: |z| < 1} be the unit disk in the complex plane and let
p: D — C be the canonical injection. Then p is a local homeomorphism, but
not a covering map. For, no point a € C with |a| = 1 has a neighborhood U
with the property required in the definition.

(b) Let k be a natural number >2 and let

pi: C* > C*, Zr 7%,
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Then p, is a covering map. For, suppose a € C* is arbitrary and choose
b e C* with p,(b) = a. Since p, is a local homeomorphism, there are open
neighborhoods ¥, of b and U of a such that p, | V, — U is a homeomorphism.
Then

P (U)=Vo v Vo U vt 1Y,

where w is a kth primitive root of unity, say w = exp(2ri/k). It is clear that
the sets Vii=w'V,, j=0,...,k— 1, are pairwise disjoint and each
p«|V; = U is a homeomorphism.

(¢) The mapping exp: C — C* is a covering map.

PROOF. Suppose a € C*and b € C withexp(b) = a. Since exp is a local homeo-
morphism, there exist open neighborhoods ¥, of b and U of a such that
exp|V, — U is a homeomorphism. Then

exp"(U)= (J V,, where V,:=2nin+ V,.

neZ

Clearly the V, are pairwise disjoint and each map exp|V,->U is a

homeomorphism.

(d) Suppose I' = C is a lattice and n: C — C/T is the canonical quotient
mapping. In the same way as in example (c) one can show that x is a
covering map.

4.13. Definition. A continuous map p: Y — X is said to have the curve lifting
property if the following condition holds. For every curve u: [0, 1] — X and
every point y, € Y with p(y,) = u(0) there exists a lifting &: [0, 1] > Y of u
such that 4(0) = y,.

4.14. Theorem. Every covering map p: Y — X of topological spaces X and Y
has the curve lifting property.

PROOF. Suppose u: [0, 1] — X isa curve and y, € Y with p(y,) = u(0). Because
of the compactness of [0, 1] there exists a partition

O=ty <ty <--<t,=1
and open sets U, = X, k=1, ..., n, with the following properties:

(1) u([te- 1, t]) = Uy,

(H) p_l(Uk) = UjeJk V;cj’
where the V,; = Y are open sets such that p | V; > U, are homeomorphisms.
Now we shall prove by induction on k =0, 1, ..., n the existence of a lifting
#|[0, ;] — X with 2(0) = y, . For k = 0 this is trivial. So suppose k > 1 and
a|[0, t,_,]— X is already constructed and let #(ty—1) =t ye_,. Since
P(Vi—1) = u(ty_1) € Uy, there exists jeJ, such that y, ,eV,;. Let
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@: U,— V,; be the inverse of the homeomorphism p|V,; — U,. Then if we
set

[te—i- ] =0 = (@][te-1n )

we obtain a continuous extension of the lifting 4 to the interval [0, (]. [

i

4.15. Remark. Suppose X and Y are Hausdorff spaces, p: ¥ — X is a cover-
ing map and x, € X, y, € Y are points with p(y,) = x,. Then by (4.14) and
(4.8) for every curve u: [0, 1]— X with u(0) = x, there exists exactly one
lifting @iz [0, 1]— ¥ such that #(0) = y,. When the curve u is closed, the
lifting # need not be closed. An example of this is the following. Let
X=Y=C*

. * * 2
p:C* > C* Zk>z%,

and x, = y, = 1. Define the curve u: [0, 1] C* by u(t) = ¢*™*. Then u has
initial and end point 1 and is thus closed. But i(r) :=¢™" defines a lifting
fi: [0, 17— C* of u with respect to p which has initial point 1 and end point
—1.

However from Theorem (4.10) it follows that every lifting of a closed
null-homotopic curve is again closed and null-homotopic.

4.16. Theorem. Suppose X and Y are Hausdorff spaces with X pathwise con-
nected and p: Y — X is a covering map. Then for any two points xq, x; € X
the sets p~*(xo) and p~*(x,) have the same cardinality. In particular, if Y is
non-empty, then p is surjective.

The cardinality of p~!(x) for x € X is called the number of sheets of the
covering and may be either finite or infinite.

Proor. Construct a mapping ¢: p~ '(x,)— p~'(x,) in the following way.
Choose a curve u: [0, 1] - X joining x, to x,. If y € p~'(x,) is an arbitrary
point, then there exists precisely one lifting i: [0, 1] - Y of u such that
ii(0) = y. Set o(y)=da(1) e p~'(x,). The uniqueness of liftings then implies
that the mapping just constructed is bijective. O

Remark. In general the bijective mapping constructed in the proof
depends on the choice of the curve u. Thus in general there is no well-defined
way to enumerate globally the “sheets” of a covering.

4.17. Theorem. Suppose X and Y are Hausdorff spaces and p: Y — X is a
covering map. Further, suppose Z is a simply connected, pathwise connected
and locally pathwise connected topological space andf- Z — X is a continuous
mapping. Then for every choice of points zq € Z and y, € Y with flz,) = p(¥o)
there exists precisely one lifting f: Z — 'Y such that Azo) = yo.-



4 Branched and Unbranched Coverings 27

Remark. In the following proof the only properties of the mapping p that
are used are that it is a local homeomorphism and has the curve lifting

property.

PROOF. Define the mapping f: Z — Y in the following way. Suppose z € Z is
an arbitrary point and u: I — Z is a curve from z, to z. Then v:=f-uisa
curve in X with initial point f{z,) and end point f{z). Let ?: I — Y be the
unique lifting of v which has initial point y,. Then set f{z):=i(1). This
definition is independent of the choice of curve u from z, to z. For, suppose
u, is another curve from z, to z. Then u, is homotopic to u. Thus v, =1« u,
and v = f - u are also homotopic. By Theorem (4.10) the liftings ¢, of v, and
¢ of v with £;(0) = #(0) = y, have the same end point. Hence f(z) is well-
defined. Also by construction f=p - f.

All that remains to be proved is that the mapping f: Z — Y is continuous.
Letz € Z, y = flz) and suppose V is a neighborhood of y. We must show that
there exists a neighborhood W of z such that f{lW) < V. Since p is a local
homeomorphism, we may assume, possibly by shrinking V, that there is a
neighborhood U of p(y) = f(z) such that p| V > U is a homeomorphism. Let
@: U -V be its inverse. Since f is continuous and Z is locally pathwise
connected, there exists a pathwise connected neighborhood W of z such that
fiw)= U.

Now we claim that f{W) = V. To see this suppose that the curves u, v and
D are defined as above. Let z” ¢ W be an arbitrary point and let #’' be a curve
from z to z' which lies entirely in W. Then the curve ¢v' :==f - u’ lies entirely in
Uand &' :==¢ - v 1s a lifting of ¢’ with initial point y. Hence the product § - &
is a lifting of v - v" =f - (u - ¥') with initial point y,. Thus

Az)= (- ¥)1)=¥(1) e V. O

4.18. Example (The Logarithm of a Function). Suppose X is a simply con-
nected Riemann surface and f: X — C* is a nowhere vanishing holomorphic
function on X. We would like to find the logarithm of f, i.e., find a holo-
morphic function F: X — C such that exp(F) = /. But this just means that F
is a lifting of f with respect to the covering exp: C — C*, ie.,

exp

x —71  cx

If xo, € X and ¢ € C is any solution of the equation ¢ = f{x,), then by
Theorem (4.17) there exists a lifting F: X — C of the required kind with
F(xo) = ¢. By Theorem (4.9), F is holomorphic. Also any other solution of
the problem differs from F by an additive constant 2zin, n € Z.
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As a special case suppose X is a simply connected domain in C* and
j: X — C* is the canonical injection, i.e., j(z) = z. Then every lifting of j with
respect to exp is nothing more than a branch of the function log on X.
Analogously one can construct various roots of a nowhere vanishing holo-
morphic function f: X — C* on any simply connected Riemann surface X.
To do this one uses the covering in Example (4.12.b).

4.19. Theorem. Suppose X is a manifold, Y is a Hausdorff space andp: Y — X
is a local homeomorphism with the curve lifting property. Then p is a covering
map.

PROOF. Suppose x, € X is an arbitrary point and y;,j € J, are the preimages
of x, with respect to p. Take U to be an open neighborhood of x, which is
homeomorphic to a ball and let /: U — X be the canonical injection. From
the remark in Theorem (4.17) it follows that for every j e J there is a lifting
fi: U—Y of fsuch that fj(x,) =y;. Let V;>=f(U). Now one can easily
convince oneself that
P '(U)= UV
jeld

that the V; are pairwise disjoint open sets and that every mapping p |Vi-U
is a homeomorphism. O

4.20. Proper Mappings. Recall that a locally compact topological space is a
Hausdorff space such that every point has a compact neighborhood. A
continuous mapping f: X — Y between two locally compact spaces is called
proper if the preimage of every compact set is compact. For example this is
always so if X is compact. A proper mapping is closed, i.e., the image of
every closed set is closed. This follows from the fact that in a locally compact
space a subset is closed precisely if its intersection with every compact set is
compact.

4.21. Lemma. Suppose X and Y are locally compact spacesandp: Y — X isa
proper, discrete map. Then the following hold.:

(a) For every point x € X the set p~'(x) is finite.
(b) If x € X and V is a neighborhood of p~'(x), then there exists a neigh-
borhood U of x with p~'(U) <= V.

PRrOOF

(a) This follows from the fact that p~!(x) is a compact discrete subset of
Y.

(b) We may assume that V is open and thus Y\V is closed. Then
p(Y\V)=:4 is also closed and x ¢ A. Thus U := X\A4 is an open neighbor-
hood of x such that p~}(U) < V. 0
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4.22. Theorem. Suppose X and Y are locally compact spaces and p: Y — X is
a proper local homeomorphism. Then p is a covering map.

PROOF. Suppose x € X is arbitrary and let p~'(x) = {y;, ..., yn}, Where
yi # y; for i # j. Since p is a local homeomorphism, for every j=1, ..., n
there exists an open neighborhood W of y; and an open neighborhood U; of
x, such that p| W, — U; is a homeomorphism. We may assume that the W,
are pairwise disjoint. Now W, U --- U W, is a neighborhood of p~ !(x). Thus
by (4.21.b) there exists an open neighborhood U = Uy n --- n U, of x with
p N (U)yc W, u-u W, If welet V=W, n p~'(U), then the V; are dis-
joint open sets with

plU)=V,u-—ul¥,

and all the mappings p|V;—> U, j =1, ..., n are homeomorphisms. O

4.23. Proper Holomorphic Mappings. Suppose X and Y are Riemann sur-
faces and f: X — Y is a proper, non-constant, holomorphic mapping. It fol-
lows from Theorem (2.1) that the set 4 of branch points of f'is closed and
discrete. Since fis proper, B:=f{A) is also closed and discrete. One calls B
the set of critical values of f.

Let Y:=Y\Band X' :==X\f"!(B) < X\A. Then f|X' —> Y’ is a proper
unbranched holomorphic covering and by (4.22), (4.16) and (4.21.a) it has a
well-defined finite number of sheets n. This means that every value ¢ € Y’ is
taken exactly n times. In order to be able to extend this statement to the
critical values b € B as well, we have to consider the multiplicities.

For x € X denote by v(f, x) the multiplicity, in the sense of (2.2), with
which f takes the values f{x) at the point x. Then we will say that f takes the
valuc ¢ € Y, counting multiplicities, m times on X, if

m= ) o(f x)

xep1e)

4.24. Theorem. Suppose X and Y are Riemann surfaces and f: X - Y is a
proper non-constant holomorphic map. Then there exists a natural number n
such that f takes every value ¢ € Y, counting multiplicities, n times.

ProOF. Using the same notation as in (4.23) let n be the number of sheets of
the unbranched covering f|X' — Y. Suppose b e B is a critical value,
Y6y ={x,...,x,} and ki :=uv(f,x;). By (2.1) and (2.2) there exist
disjoint neighborhoods U; of x; and V; of b such that for every ¢ € V;\{b}
the set 1 '(c) n U; consists of exactly k; points (j=1,...,r). By Lemma
(4.21.b) we can find a neighborhood V < Vi~ --- nV, of b such that
f'VYcUw---oU. Then for every point ce ¥nY' we have
that f~'(c) consists of k| + - - - + k, points. On the other hand, for ¢ € Y’ the
cardinality of p~(c) is equal to n. Thus n = k; + -+ + k,. O
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Remark. A proper non-constant holomorphic map will be called an n-
sheeted holomorphic covering map, where n is the integer found in the
previous Theorem. Note that holomorphic covering maps are allowed to
have branch points. If we wish to emphasize that there are none, then we will
specifically say that the map is unbranched. If we speak of a topological
covering map or if there is no complex structure, then we mean a covering
map in the sense of (4.11).

4.25. Corollary. On any compact Riemann surface X every non-constant
meromorphic function f* X — P! has as many zeros as poles, where each is
counted according to multiplicities.

Proor. The mapping /> X — P! is proper. 0

4.26. Corollary. Any polynomial of nth degree
fle)=z"+a 2" '+ +a,eC[z]

has, counting multiplicities, exactly n zero.

PROOE. By (2.3) we may consider f as a holomorphic mapping f: P' — P!
which, counting multiplicities, takes the value co exactly n times. O

EXERCISES (§4)
41 Let X =C\(+1}, Y :=C\{(%/2) + kn, k € Z}. Show that
sin: Y - X
is a topological covering map. Consider the following curves in X.
u: [0, 1] > X, u(t) =1 — p2rit
v [0, 1= X, oft) = — 1+ &

Let w,: [0, 1] — Y be the lifting of u - v with w;(0) = 0 and w,: [0, 1] — Y be the
lifting of v - u with w,(0) = 0. Show that

wi(l)=2=n
wy(l) = —2n.
Conclude that 7,(X) is not abelian.

4.2. Let X and Y be arcwise connected Hausdorff topological spaces and f* ¥ — X
be a covering map. Show that the induced map

f*i’H(Y)”"l(X)

is injective.
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4.3. Let X and Y be Hausdorff spaces and p: Y — X be a covering map. Let Z be a
connected, locally arcwise connected topological space and f: Z —» X a contin-
uous map. Let c € Z, a==f(c) and b e Y such that p(b) = a. Prove that there
exists a lifting f: Z — Y of f with f(c) = b ifand only if f,7,(Z,¢) < p.m (Y, b).

4.4. (a) Show that
tan: C - P!
is a local homeomorphism.
(b) Show that tan(C) = P'\{£i} and
tan: C — P'\{ +i}
is a covering map.

(c) Let X =C\{it: t € R, |t| = 1}. Show that for every k € Z there exists a
unique holomorphic function arctan,: X — C with

tan - arctan, = idy
and
arctan,(0) = k
(the kth branch of arctan).

4.5. Determine the ramification points of the map

feop, f(z):%(H})'

§5. The Universal Covering and Covering
Transformations

Amongst all the covering spaces of a manifold X, there is one which deserves
to be called the “largest,” namely, the universal covering. All other covering
spaces can be obtained from this one as quotients, and what happens to the
universal covering when it is acted on by the group of “covering trans-
formations ” is closely related to the fundamental group of X. An investiga-
tion of these ideas is the focus of attention in this section.

5.1. Definition. Suppose X and Y are connected topological spaces and
p: Y > X 1s a covering map. p: Y — X is called the universal covering of X if
it satisfies the following universal property. For every covering map
q: Z - X, with Z connected, and every choice of points y, € Y, z, € Z with
P(vo) = q(z,) there exists exactly one continuous fiber-preserving mapping
f: Y — Z such that fly,) = z,.

A connected topological space X has up to isomorphism at most one
universal covering. For, with the above notation, suppose q: Z — X isalsoa
universal covering. Then there exists a fiber-preserving continuous mapping
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g: Z—-Y such that g(zy) = y,. The compositions g f: Y —Y and
fog: Z—Z are continuous fiber-preserving mappings such that
g > flye) = yo and f = g(z,) = z, . Because of the universality condition there
can exist only one continuous fiber-preserving mapping in each case which
satisfies these conditions. Thusg » f=1dyandf- g =1id,. Hencef: Y —» Z is
a fiber-preserving homeomorphism.

5.2. Theorem. Suppose X and Y are connected manifolds, Y is simply con-
nected and p: Y — X is a covering map. Then p is the universal covering of X.

Proor. This follows directly from the definition and Theorem (4.17). [

5.3. Theorem. Suppose X is a connected manifold. Then there exists a con-
nected, simply connected manifold X and a covering map p: X — X.

By Theorem (5.2) X — X is the universal covering of X.

Proor. Pick a point x, € X. For x € X let n(x,, x) denote the set of
homotopy classes of curves having initial point x, and end point x. Let

X={xa):xeX, aemn(xg,x)

Define the mapping p: X — X by p(x, o) := x. We will now define a topology
on X so that X becomes a connected, simply connected Hausdorff manifold
and p: X — X is a covering map.

Suppose (x, «) € X and U = X is an open, connected, simply connected
neighborhood of x. Define a subset [U, «] = X as follows: [U, «] consists of
all points (y, B) € X such that ye U and f = cl(u - v), where u is a curve
from x, to x such that « = cl(u) and v is a curve from x to y which lies
completely in U. (Since U is simply connected, f§ is independent of the choice
of the curve v.) Now let B be the system of all such sets [U, «].

Claim (a) B is the basis for a topology on X.

Proof

(i) Clearly every point of X lies in at least one [U, o].

(i1) Suppose (z, y) € [U, «] n [V, B]. Then z € U n V and there exists an
open, connected and simply connected neighborhood W U n V of z.
Then, as one can easily check,

(z.y)e[W,y]=[U,a] ~ [V, B]
From (i) and (ii) the claim follows.
Claim (b) The mapping p: X —» X is a local homeomorphism and in

particular is continuous. This follows from the fact that for every [U, a] ¢ B
the mapping p|[U, «] » U is a homeomorphism.

Claim (c¢) X is Hausdorff.
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It suffices to show that any two points (x, «), (x, 8) € X, where « # B, have
disjoint neighborhoods. Suppose U < X is an open, connected, simply con-
nected neighborhood of x. Then [U, a] n [U, f] = &. Otherwise there
would be an element (y, y) in the intersection. Suppose w is a curve in U
from x to y and a = cl(u), f = cl(v). Then by definition y = cl(u - w) =
cl(v - w). Thus cl(u) = cl(v). But this contradicts the assumption that o # .

Claim (d) X is connected and p: X — X has the curve lifting property
and thus by (4.19) is a covering map. Suppose u: [0, 1] — X is a curve with
initial point x,. For s [0, 1] let u,: [0, 1] - X be the curve defined by
uy(t) == u(st). (The curve u, runs along the points of the curve u correspond-
ing to parameter values t € [0, s].) Further suppose v is a closed curve with
initial and end point x,. Then the mapping

a:[0, 11> X, o (u(e), cl(v - u,))

is continuous and is a lifting of u with #(0) = (x,, cl(v)). This follows directly
from the definition of the topology on X. Finally, suppose w: [0, 1] - X isa
curve with arbitrary initial point x, :=w(0), « € (x,, x,) and v is a curve
from x, to x, with cl(v) = & Then it is easy to see that the liftingof u:==v - w
with @(0) = (x,, ¢), where ¢ is the homotopy class of the constant curve at
X, gives rise to a lifting of w with W(0) = (x,, ).

Claim (e) X is simply connected.

Let w: [0, 1] —» X be a closed curve with initial and end point (x4, ¢). Then
u:=p o wis a closed curve in X with u(0) = x,. Now leti: [0, 1] —» X be the
lifting of u, which exists by claim (d), where v is chosen to be the constant
curve at x,. Because of the uniqueness of liftings, i =w. Thus #(1) =
(%0, cl(u)) = (xo, €) and hence u is null-homotopic. By Theorem (4.10) w is
also null-homotopic and thus X is simply connected.

This completes the proof of Theorem (5.3). O

Remark. In particular, one can construct the universal covering of any
Riemann surface and by (4.6) this universal covering is, in a natural way, a
Riemann surface as well.

5.4. Definition. Suppose X and Y are topological spaces and p: Y - X isa
covering map. By a covering transformation or deck transformation of this
covering we mean a fiber-preserving homeomorphism f: Y — Y. With opera-
tion the composition of mappings, the set of all covering transformation of
p: Y- X forms a group which we denote by Deck(Y/X). If there is any

chance of confusion, then we will write Deck(Y X ) instead of Deck(Y/X).

5.5. Definition. Suppose X and Y are connected Hausdorff spaces and
p: Y — X is a covering map. The covering is called Galois (the terms normal
and regular are also in common usage) if for every pair of points y,, v, € Y
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with p(y,) = p(y,) there exists a covering transformation f: ¥ — Y such that
Ayo) = y1-

Remark. By Theorem (4.8) there exists at most one covering trans-
formation f: Y - Y with f(y,) = y,, for fis a lifting of p: Y — X.

Example. The mapping p: C* — C*, z+— z*, is a covering map. It is Galois
since for any z,, z, € C* with p(z,) = p(z,), one has z, = wz, where m is a
kth root of unity and the mapping z+— wz is a covering transformation.

There is a connection between Galois coverings and Galois field exten-
sions, cf. (8.12).

5.6. Theorem. Suppose X is a connected manifold and p: X — X is its univer-
sal covering. Then p is Galois and Deck(X/X ) is isomorphic to the fundamental
group m,(X).

ProOF

(a) Suppose y,, y; € X with p(y,) = p(y;). By the definition of the
universal covering there exists a continuous fiber-preserving mapping
1+ X - X with f{y,) = v,. We have to show that fis a homeomorphism. This
can be seen as follows. As above there exists a continuous fiber-preserving
mapping g: X — X with g(y,) = y,. But then f - g and g - fare continuous
fiber-preserving mappings of X into itself such that /- g(y,) =y, and
g > flye) = yo . Again from the definition of the universal covering it follows
that /- g and g - f are both the identity map of X. Thus f is a homeo-
morphism and hence a covering transformation. This shows the covering
X - X is Galois.

(b) Suppose x, € X and y, € X is a point with p(y,) = x,. Define a
mapping

@: Deck(X/X)— m (X, xo)

as follows: Suppose ¢ € Deck(X/X) and v is a curve in X with initial point
¥o and end point a(y,). (The homotopy class of v is uniquely determined
since X is simply connected.) The curve p - ¢ in X has initial and end point
Xo . Let ®(c) be the homotopy class of p - v.

(i) @ is a group homomorphism. Suppose a, T € Deck(X/X) and v (resp.
w) is a curve in X with initial point y, and end point a(y,) (resp. ©(y,)). Then
g -w is a curve with initial point o(y,) and end point az(y,). Also
p = (0 > w)=p - w. The product curve v - (o - w) has initial point y, and
end point a1(y,). Thus

Do) =cllp - (v (o - w))=cllp - v)cl{p - {0 - w))
= cl(p = v)l(p - w) = O(c)D(z).

(i) @ is injective.
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Suppose ¢ € Deck(X/X) and v is a curve in X from y, to o(y,). Assume
®(c) = ¢, ie., p - v is null-homotopic. Since v is a lifting of p - v, it follows
from (4.10) that the end point o(y,) of v is the same as the initial point y, .
This implies ¢ = id ;.

(iil) @ is surjective.

Suppose a e (X, xo) and u is a curve representing «. Let v be a lifting of u
to X with initial point y, and suppose the end point of v is y;. Then there
exists o € Deck(X/X) such that 6(y,) = y;. From the definition of ® one has
®(0) = a. This completes the proof. O

5.7. Examples

(a) exp: C > C* is the universal covering of C*, since C is simply con-
nected. For n e Z let 7,: C — C be translation by 2zin. Then exp(z,(z)) =
exp(z + 2nin) = exp(z) for every zeC and thus 7, is a covering
transformation. If ¢ is any covering transformation, then exp(c(0)) =
exp(0) = 1 and thus there exists n e Z such that ¢(0) = 2zin. Since ,(0) =
2nin as well, ¢ = 1,,. Thus

Deck(C —2— C*)={1,:ne Z}.
Since the last group is isomorphic to Z,

n,(C*) = Z.
(b) Let
H={z e C:Re(z) <0}
be the left half plane and
D¥*={zeC:0< |z| <1].

Then exp: H — D* is the universal covering of the punctured unit disk. As in
Example (a) one can show that the group of covering transformations con-
sists of all translations by integral multiples of 2zi and that =,(D*) =~ Z.

(c) Suppose I' = Zy, + Zy, is a lattice in C. Then the canonical quotient
mapping C — C/I" is the universal covering of the torus C/T". For ye "
denote by 1,: C - C translation by 7. Analogous to Example (a) one can
show that Deck(C — C/T') = {r,: y € I'}. Thus

n(C/T)=T=Zx Z

Consequence. There does not exist any meromorphic function on C doubly-
periodic with respect to I which mod T has a single pole of first order.

PROOF. Such a function would define a holomorphic mapping f: C/I" — P!
which takes the value oo only once. By (4.24) and (2.5) f would be biholo-
morphic and in particular 7,(C/T’) = n,(P') = 0, a contradiction! O
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Remark. Later (18.3) we will give necessary and sufficient conditions for
the existence of a doubly periodic meromorphic function with prescribed
principal parts. However it is worth noting that one can make the above
observation using only topological reasons.

5.8. Definition. Suppose X and Y are topological spaces, p: ¥ — X is a cover-
ing map and G is a subgroup of Deck(Y/X). Two points y, y’ € Y are called
equivalent modulo G, if there exists ¢ € G such that g(y) = y. Clearly this
really is an equivalence relation on Y.

5.9. Theorem. Suppose X and Y are connected manifolds, q: Y — X is a cover-
ing map and p: X — X is the universal covering. Let f: X - Y be a continuous
Sfiber-preserving mapping, which by the definition of the universal covering
exists. Then f is a covering map and there exists a subgroup G < Deck(X/X)
such that two points x, x' € X are mapped onto the same point by f precisely if
they are equivalent modulo G. Moreover G = n((Y).

Proor. First we will show that fis a local homeomorphism. Suppose x € X,
p(x)=:s and f{x) =:y. Since p is a local homeomorphism, there exist open
neighborhoods W, of x and U, of s, such that p| W, -» U, is a homeo-
morphism. Since g is a covering map, there exists an open connected neigh-
borhood U of s contained in U, and pairwise disjoint open sets V,, i e I,
such that ¢~ '(U) = { ) V;and q| ¥, > U is a homeomorphism for every i € I.
Let V be the particular V; containing the point yand let W:=p~(U) n W,.
Then yeflW)cq }(U) and since f{W) is connected, it follows that
AIW) = V.Since p| W— U and q|V — U are homeomorphisms, f | W — V is
also a homeomorphism. Thus fis a local homeomorphism.

In order to prove that fis a covering map, consider a curve v in Y with
initial point y, and a point x, € X with f{x,) = y,. We have to show that the
curve v can be lifted to X with initial point x,. Since p: X — X is a covering
map the curve g - v in X may be lifted to a curve u in X with initial point x,, .
Then the curves f - u and v in Y are both liftings of the curve ¢ - vand have
the same initial point y,. Thus they coincide. But this means that u is the
desired lifting of v. Thus f'is a covering map by Theorem (4.19).

Let G = Deck(X/Y). This is a subgroup of Deck(X/X). Since X is simply
connected, f: X — Y is the universal covering of Y and so is Galois. Hence
G ~ 7,(Y) and f{x) = flx’) precisely if there exists ¢ € G such that o(x) = x'.
This completes the proof of Theorem {5.9). .

We will now use Theorem (5.9) to determine all the covering spaces of the
punctured unit disk D* ={z e C: 0 < |z| < 1}.

5.10. Theorem. Suppose X is a Riemann surface and f: X — D* is an un-
branched holomorphic covering map. Then one of the following holds:
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(i) If the covering has an infinite number of sheets, then there exists a
biholomorphic mapping ¢: X - H of X onto the left half plane such that

diagram (1) is commutative.
X2 4 H
f\ %p (1)
D*

(ii) If the covering is k-sheeted (k < o0), then there exists a biholomorphic
mapping @: X — D* such that diagram (2) is commutative, where p;: D* — D*

is the mapping zv z~.
\ ﬁ (2)

Thus every covering map of D* is either isomorphic to the covering given
by the logarithm or else by the kth root.

PrOOF. Since exp: H — D* is the universal covering, there exists a holo-
morphic mapping ¢: H —» X such that exp = f = y. Let G = Deck(H/D*) be
the corresponding subgroup.

(i) If G consists only of the identity, then y: H — X is a biholomorphic
map. Then the mapping ¢: X — H, which we are looking for, is the inverse
mapping of .

(ii} Now

Deck(H/D*) = {z,: n € Z},

where 1,: H —» H denotes the translation z— z + 2min. Thus for every sub-
group G = Deck(H/D*) which is not the identity, there exists a natural
number k > 1 so that

G={ty:nelZ}.

Let g: H — D* be the covering map defined by g(z) = exp(z/k). Then g(z) =
g(z’) precisely if z and 2z’ are equivalent modulo G. Hence there exists a
bijective mapping ¢: X — D* such that the diagram

H
/N
X—2— D*
is commutative. Since ¥ and g are locally biholomorphic, ¢ is biholo-

morphic. It is now easy to check that diagram (2) is commutative and the
Theorem is proved. O
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5.11. Theorem. Suppose X is a Riemann surface, D is the unit disk and
f: X — D is a proper non-constant holomorphic map which is unbranched over
D* = D\[0}. Then there exists a natural number k > 1 and a biholomorphic
mapping ¢: X — D such that the diagram

X 25D

/\\ ‘/A (*)

D

is commutative, where p(z) =z~

Proor. Let X*:=f71(D*). Then f|X* > D* is an unbranched proper
holomorphic covering map. By the previous Theorem there is a commuta-
tive diagram

X*

] D*
f\‘ %(
*

D

for some biholomorphic mapping ¢: X* — D*. We claim that /~*(0) con-
sists of only one point. To the contrary suppose f ~*(0) consists of n points
by, ..., b, where n > 2. Then there exist disjoint open neighborhoods V; of b;
and a disk D(r)={z e C: |z] <r}, 0 <r < 1, such that

fHDE) = Vv ol (**)

Let D*(r) = D(r}\{0}. Since f~!(D*(r)) is homeomorphic to p; '(D*(r)) =
D*(“\/ r), it is connected. Since every point b, is an accumulation point of
£ UD*(r)), f~1(D(r)) is also connected. But this contradicts (**). Thus
/7~ 10) consists of a single point b € X. Hence by defining ¢(b) =0 one can
continue the mapping ¢: X* — D* to a biholomorphic mapping ¢: X - D
which makes the diagram (*) commutative. O

EXERCISES (§5)
51. Let X =C\{+1}, and Y =C\{(n/2) + kn: ke Z} (cf. Ex. 4.1.). Prove that

sin

Deck(Y

(i) fulz) = z + 2km, kez
(i) gelz)= —z + 2k + 1)m, ke Z.

X) consists of the following transformations

Calculate the products f = fi, fi = g1, G1 = fur G < Gi-
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5.2.

5.3.

5.4.

5.5.

5.6.

5.7.

Let X be a connected manifold and p: X — X be its universal covering. Let
G < Deck(®/X) be a subgroup, Y :=X/G be the quotient of X by the equi-
valence relation defined in 5.8 and q: Y — X be the map induced by p. Show that
q is a covering map which is Galois if and only if G is a normal subgroup of
Deck(X/X). In the latter case

Deck(Y/X) =~ Deck(X/X)/G.
Determine the covering transformations of
tan: C — P"\{i, —i}
(cf. Ex. 4.4).
Let I, I = C be lattices and
fLCr-c/r

a non-constant holomorphic map with f{0) = 0. Show that there exists a unique
o € C* such that oI’ = T” and the following diagram is commutative

c——¢

cr— ¢

where F(z) = «z and = and =’ are the canonical projections. Prove that fis an
unbranched covering map and
Deck(C/T —L— €/I") = I"/aT".
Let X :==C\{2, —2}, Y:=C\{+1, +2}, and let p: Y — X be the map
p(z):=z* — 3z

Prove that p is an unbranched 3-sheeted holomorphic covering map. Calculate
Deck(Y/X) and show that the covering Y — X is not Galois.

[Hint: Use the fact that every biholomorphic map f: Y — Y extends to an auto-
morphism of P'.]

Let X :=C\{0, 1}, Y:=C\{0, +i, +i,/2} and let p: Y — X be the map
p(z):= (2% + 1)

Prove that p is an unbranched 4-sheeted covering map, which is not Galois and
that

Deck(Y/X) = {id, ¢},
where ¢(z) = —z.

Suppose X and Y are connected Hausdorff spaces. Show that every 2-sheeted
covering map p: Y — X is Galois.
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§6. Sheaves

In complex analysis one frequently has to deal with functions which have
various domains of definition. The notion of a sheaf gives a suitable formal
setting to handle this situation.

6.1. Definition. Suppose X is a topological space and T is the system of open
sets in X. A presheaf of abelian groups on X is a pair (&, p) consisting of

(i) a family # = (F(U))p. ; of abelian groups,
(ii) a family p = (p¥)r, v e 1. v v Of group homomorphisms
pv: F(U)—> F(V), where V is open in U,
with the following properties:
po=Iidzy, forevery Ue I,
ol o pl=ph for W Ve U.

Remark. Generally one just writes # instead of (#, p). The homo-

morphisms py are called restriction homomorphisms. Instead of p¥(f’) for

fe F(U) one writes just f | V. Analogous to presheaves of abelian groups
one can also define presheaves of vector spaces, rings, sets, etc.

6.2. Example. Suppose X is an arbitrary topological space. For any open
subset U = X let ¥(U) be the vector space of all continuous functions
f1U—>C.For V< Uletph: 4(U)— %(V) be the usual restriction mapping.
Then (4, p) is a presheaf of vector spaces on X.

6.3. Definition. A presheaf # on a topological space X is called a sheaf if for
every open set U < X and every family of open subsets U, = U, i € I, such
that U = | J;., U, the following conditions, which we will call the Sheaf
Axioms, are satisfied:

(1) If f; g € #(U) are elements such that f | U, = g| U, for every i € I,
then f=g.
(I1) Given elements f; € #(U,), i € I, such that

HlUinUj=fUin U; foralli,jel,
then there exists an f'e #(U) such that f |U; = f; for every i € I.
Remark. The element f, whose existence is assured by (II), is by (I)
uniquely determined.

Applying (I) and (II) to the case U = ¥ = | J; 5 U, implies # () con-
sists of exactly one element.



6 Sheaves 41

6.4. Examples

(a) For every topological space X the presheaf 4 defined in (6.2) is a
sheaf. Both Sheaf Axioms (I) and (IT) are trivially fulfilled.

(b) Suppose X is a Riemann surface and ¢(U) s the ring of holomorphic
functions defined on the open set U < X. Taking the usual restriction map-
ping ¢(U) - O(V) for V < U one gets the sheaf ¢ of holomorphic functions
on X. The sheaf .# of meromorphic functions on X is defined analogously.

(c) For an open subset U of a Riemann surface X let (*(U) be the
multiplicative group of all holomorphic maps f: U —» C*. With the usual
restriction maps (* is a sheaf of (multiplicative) abelian groups. The sheaf
#* is defined analogously: For any open set U = X, .#*(U) consists of all
meromorphic functions f'e .#(U) which do not vanish identically on any
connected component of U.

(d) Suppose X is an arbitrary topological space and G is an abelian
group. Define a presheaf % on X as follows: For any non-empty open subset
Uc X let 4(U)==G and let 4(¢F)=0. As for the restriction mappings, let
py =idg if V # 7 and let pY be the zero homomorphism. If G contains at
least two distinct elements g,, g, and if X has two disjoint non-empty open
subsets Uy, U,, then % is not a sheaf. This is because Sheaf Axion (II) does
not hold. For, since U, n U,=F one has g,|U nU,=0=
g2|U; n U, but thereisno fe 4(U; u U,) = G such that f |U, = g, and
S | Uy,=9,.

(e) One can easily modify the previous example to obtain a sheaf. For
any open set U, let 4(U) be the abelian group of all locally constant map-
pings g: U — G. Then if U is a non-empty connected open set, one has
4(U)=G.For V < U let 4(U) - (V) be the usual restriction. Then 7 is a
sheaf on X which is called the sheaf of locally constant functions with values
in G. Often it is just denoted by G.

6.5. The Stalk of a Presheaf. Suppose # is a presheaf of sets on a topological
space X and a € X is a point. On the disjoint union

) #(U),

UDa
where the union is taken over all the open neighborhoods U of a, introduce
an equivalence relation 3 as follows: Two elements f e #(U)and g € #(V)
are related f ~ g precisely if there exists an open set Wwithae We U A V
such that | W =g|W. One can easily check that this really is an equi-
valence relation. The set %, of all equivalence classes, the so-called inductive
limit of #(U), is given by

and is called the stalk of # at the point a. If # is a presheaf of abelian groups
(resp. vector spaces, rings), then the stalk %, with the operation defined on
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the equivalence classes by means of the operation defined on representatives,
is also an abelian group (resp. vector space, ring).
For any open neighborhood U of q, let

Par F(U)> F,

be the mapping which assigns to each element f ¢ # (U) its equivalence class
modulo . One calls p,(f) the germ of f at a. As an example consider the
sheaf ¢ of holomorphic functions on a domain X =« C. Leta e X. A germof
a holomorphic function ¢ € (,1s represented by a holomorphic function in an
open neighborhood of a and thus has a Taylor series expansion Y
¢,(z — a)® with a positive radius of convergence. Two holomorphic functions
on neighborhoods of a determine the same germ at a precisely if they have
the same Taylor series expansion about a. Thus there is an isomorphism
between the stalk ¢, and the ring C{z — a} of all convergent power series in
z — a with complex coefficients. In an analogous way, the ring .#, of germs
of meromorphic functions at a is 1somorphic to the ring of all convergent
Laurent series

s
3]
—_
[ 3]
|
=
ol
m
N
=
M
g

k

v

which have finite principal parts.
For any germ of a function ¢ e ¢, the value of the function, ¢(a) € C, is
well-defined, i.e., is independent of the choice of representative.

6.6. Lemma. Suppose .7 is a sheaf of abelian groups on the topological space
X and U c X is an open subset. Then an element f € #(U) is zero precisely if
all germs p(f) e #,, x € U, vanish.

This follows directly from Sheaf Axiom (I).

6.7. The Topological Space Associated to a Presheaf. Suppose X is a topolo-
gical space and # is a presheaf on X. Let

|7 | =) 7.
xeX

be the disjoint union of all the stalks. Denote by
p:|F|-X

the mapping which assigns to each element ¢ € %, the point x. Now intro-
duce a topology on |.# | as follows: For any open subset U = X and an
element fe #(U), let

[U.fl={puf): x € U = | #].
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6.8. Theorem. The system B of all sets [U, f], where U is open in X and
fe F(U), is a basis for a topology on | # |. The projectionp: |#| - X isa
local homeomorphism.

ProOF
(a) To see that B forms a basis for a topology on |# |, one has to verify
the following two conditions:

(i) Every element ¢ € | #| is contained in at least one [U, f]. This is
trivial.

(i) If @ e [U, f]1n [V, g]. then there exists a [W, h] € B such that ¢
[W, hl = [U, f] [V, g]. For suppose p(¢)=x. Then xe U n V and
@ = p,(f) = py(g). Hence there exists an open neighborhood W< U n V
of x such that f | W = g| W =:h. This implies ¢ € [W, h] < [U, f] ~ [V, g].

(b) Now we will show that p: |#| - X is a local homeomorphism.
Suppose ¢ € |# | and p(¢) = x. There exists a [U, f]e B with ¢ € [U, f].
Then [U, f]is an open neighborhood of ¢ and U is an open neighborhood of
x. The mapping p|[U, f]— U is bijective and also continuous and open as
one sees immediately from the definition. Thus p: |%#| —» X is a local
homeomorphism. O

6.9. Definition. A presheaf % on a topological space X is said to satisfy the
Identity Theorem if the following holds. If Y = X is a domain and f,
g € #(Y) are elements whose germs p,(f) and p,(g) coincide at a point
ac Y, then f=g.

For example, this condition is satisfied by the sheaf ¢ (resp. .#) of holo-
morphic (resp. meromorphic) functions on a Riemann surface X.

6.10. Theorem. Suppose X is a locally connected Hausdorff space and F is a
presheaf on X which satisfies the Identity Theorem. Then the topological space
| # | is Hausdorff.

PRrOOF. Suppose ¢,, ¢, € | # | and ¢, # ¢,. We have to find disjoint neigh-
borhoods of ¢, and ¢, .

Case 1. Suppose p(¢;) =:x # y = p(¢,). Since X is Hausdorff, there exist
disjoint neighborhoods U and V of x and y respectively. Then p~!(U) and
p~Y(V) are disjoint neighborhoods of ¢, and ¢,, respectively.

Case 2. Suppose p(¢,) = p(p,) = x. Suppose the germs ¢, € #, are re-
presented by elements f; ¢ #(U,), where the U, are open neighborhoods of x,
i=1,2 Let Uc U; n U, be a connected open neighborhood of x. Then
[U, f;]U] are open neighborhoods of ¢;. Now suppose there exists ¥ €
[U, f1|U] 0 [U, f2|U]. Let p(y) = y. Then ¥ = p,(f;) = p,(f>). From the
Identity Theorem it follows that f; |U = f,| U, thus ¢, = ¢, . Contradiction!
Hence [U, f; |U] and [U, f, | U] are disjoint. O
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EXERCISES (§6)

6.1. Suppose X is a Riemann surface. For U = X open, let #(U) be the vector space
of all bounded holomorphic functionsf: U — C. For V <= U let #(U) - (V) be
the usual restriction map. Show that # is a presheaf which satisfies sheaf axiom
(I) but not sheaf axiom (II).

6.2. Suppose X is a Riemann surface. For U < X open, let
F(U)=¢*(U)fexp ¢(U).

Show that # with the usual restriction maps is a presheaf which does not satisfy
sheaf axiom (I).

6.3. Suppose # is a presheafl on the topological space X and p: | #| — X is the
associated covering space. For U « X open, let #(U) be the space of all sections
of p over U, ie, the space of all continuous maps

U | F

with p » f'=id, . Prove the following:

(a) # together with the natural restriction maps is a sheaf,
(b) There is a natural isomorphism of the stalks

F.S3F., foreveryxeX.

§7. Analytic Continuation

Next we consider the construction of Riemann surfaces which arise from the
analytic continuation of germs of functions.

7.1. Definition. Suppose X is a Riemann surface, u: [0, 1] - X is a curve and
a=u(0), b-=u(1). The holomorphic function germ y € ¢, is said to result
from the analytic continuation along the curve u of the holomorphic function
germ ¢ € (', if the following holds. There exists a family ¢, € ¢, t € [0, 1]
of function germs with ¢, = ¢ and @, = with the property that for every
1 € [0, 1] there exists a neighborhood T < [0, 1] of 7, an open set U = X
with u(T) = U and a function f e ¢(U) such that

Pulf)=¢, foreveryteT.

Here p, (/) is the germ of f at the point u(t). Because of the compactness of
[0, 1] this condition is equivalent to the following (see Fig. 5). There exist a
partition 0 =t, <t, <--<t, ; <t,=1 of the interval [0, 1], domains
U, = X with u([t;_, t;]) = U; and holomorphic functions f; € ¢(U;) for
i=1, ..., nsuch that:

(i) ¢ is the germ of f; at the point a and y is the germ of f, at the point b.
(ii) f;|Vi=fis1| Vi for i=1, ..., n — 1, where V; denotes the connected
component of U; n U,, | containing the point u(t;).
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Figure 5

If one carries out the construction given in (6.7) for the sheaf ¢ of holo-
morphic functions, then one gets a map p: |¢| — X. The next Lemma
shows that one can interpret analytic continuation along a curve by means
of this map.

7.2. Lemma. Suppose X is a Riemann surface and u: [0, 1] — X is a curve in X
with u(0) =:a and u(1) =:b. Then a function germ s € (, is the analytic contin-
uation of a function germ ¢ € O, along u precisely if there exists a lifting
i: [0, 11— |O| of the curve u such that 4(0) = ¢ and (1) = Y.

PRrOOF

(a) Suppose ¥ € (0, is the analytic continuation of ¢ € ¢, along u. Let
¢ € Uy for t €0, 1] be the family of function germs as given in the
Definition (7.1). It follows directly from the definition of the topology of
|¢| that the correspondence t+— ¢, represents a continuous mapping
:[0, 1] - |@|. Thus u is a lifting of u with #(0) = @ = ¢ and u(1) = ¢, = ¢.

(b) Suppose thereis a lifting it: [0, 1] — @ of u with #(0) = ¢ and 4(1) = .
For t € [0, 1], let ¢, :==di(z). Then ¢, € O, and ¢, = @, ¢, = . Letz € [0, 1]
and suppose [U, f] = | @] is an open neighborhood of 4i(t). Then there exists
a neighborhood T < [0, 1] of t such that i(7T)<[U,f] This implies
u(T) = U and @, = i(t) = p,u(f) for every t € T. But this means that v is
the analytic continuation of ¢ along u. O

Because of the uniqueness of liftings (Theorem 4.8) it follows from the
lemma that if the analytic continuation of a function germ exists, then it is
uniquely determined. Another consequence of the lemma is the Monodromy
Theorem.

7.3. Monodromy Theorem. Suppose X is a Riemann surface and ug,
uy: [0, 1] —> X are homotopic curves from a to b. Suppose u;, 0 <s <1, is a
deformation of u, into u, and ¢ € O, is a function germ which admits an
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analytic continuation along every curve u,. Then the analytic continuations of
@ along uy and u, yield the same function germ \ € ¢,.

PrOOF. Apply Theorem (4.10) to the local homeomorphism |¢| — X,
noting that || is Hausdorff by Theorem (6.10). O

7.4. Corollary. Suppose X is a simply connected Riemann surface, a € X and
@ € (, is a function germ which admits an analytic continuation along every
curve starting at a. Then there exists a globally defined holomorphic function

S e O(X) such that p,(f) = o.

Remark. Because of the Identity Theorem, f is uniquely determined.

Proor. For any x € X let , € €, be the function germ which results from the
analytical continuation of ¢ along any curve from a to x. Since X is simply
connected, i, is independent of which curve is chosen. Set f{x):= (x).
Then f'is a holomorphic function on X such that p,(f) = ¢. O

7.5. In general, even if the analytic continuation of some function germ is
possible along two curves with the same initial and end points, then the
resulting germs at the end point may be different. Thus if we consider all the
germs arising by analytic continuation from the given function germ we get a
multi-valued function. Our next task is to look at this situation and to make
the details precise.

Suppose X and Y are Riemann surfaces and ¢’y and ¢y are the sheaves of
holomorphic functions on them. Suppose p: Y — X is an unbranched holo-
morphic map. Since p is locally biholomorphic, for each y € Y it induces an
isomorphism p*: ¢’y ., — Cy, . Let

. "
Py ('(Y‘y_’(z\’sp(y)

be the inverse of p*.

7.6. Definition. Suppose X is a Riemann surface,a € X isa pointand ¢ € ¢,
is a function germ. A quadrupel (Y, p, f, b) is called an analytic continuation
of @ if:

(1) Y is a Riemann surface and p: Y — X is an unbranched holomorphic
map.
(ii) fis a holomorphic function on Y.
(iii) b is a point of Y such that p(b) = a and

Pxlpo(f)) = 0.

An analytic continuation (Y, p, £, b) of ¢ is said to be maximal if it has the
following universal property. If (Z, g, g, ¢) is any other analytic continuation
of ¢, then there exists a fiber-preserving holomorphic mapping F: Z - Y
such that F(c)=b and F*(f)=g.
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A maximal analytic continuation is unique up to isomorphism. Namely,
using the above notation, if (Y, p,£, b} and (Z, q, g, ¢) are two maximal analytic
continuations of ¢, then there exists a fiber-preserving holomorphic map-
ping G: Y — Z such that G(b) = c and G*(g) = f. The composition F - G isa
fiber-preserving holomorphic mapping of Y onto itself which leaves the
point b fixed. Hence by Theorem (4.8) one has F - G =id,. Similarly
G - F =1id, and thus G: Y - Z is biholomorphic.

7.7. Lemma. Suppose X is a Riemann surface,ae X, ¢ € O, and (Y, p,f, b)is
an analytic continuation of . Then if v: [0, 1] — Y is a curve with v(0) = b and
v(1) =:y, then the function germ \y :=p (p,(f)) € O, is an analytic continua-
tion of ¢ along the curve u:=p o v.

Proor. For ¢ € [0, 1] let ¢, =p,(p,(f)) € Cpioiyy = Cugry- Then @y = @ and
@1 = p4(f,) = V. Suppose 1, € [0, 1]. Since p: Y - X is a local homeo-
morphism, there exist open neighborhoods V = Y and U = X of v(¢,) and
p(v(to)) = u(t,) resp. such that p| ¥V — U is biholomorphic. Let g: U - V be
the inverse mapping and let g :==g*(f | V) € O(U). Then p,(p,(f)) = Ppw(9)
for every n € V. There exists a neighborhood T of t, in [0, 1] such that
(T)c V,ie, u(T)< U. Foreveryte T

pu(r)(g) = p*(pv(r)(f)) = 0,.
This proves that i is an analytic continuation of ¢ along u. O

7.8. Theorem. Suppose X is a Riemann surface, a € X and ¢ € €, is a holo-
morphic function germ at the point a. Then there exists a maximal analytic
continuation (Y, p, f, b) of .

ProOF. Let Y be the connected component of | (7| containing ¢. Let p also
denote the restriction of the mapping p: |¢/| > X to Y. Thenp: Y > X isa
local homeomorphism. By Theorem (4.6) there is a complex structure on Y
so that it becomes a Riemann surface and the mapping p: Y — X is holo-
morphic. Now define a holomorphic function f: Y - C as follows. By
definition every # € Y is a function germ at the point p(rn). Set f(n) :=n(p(n)).
One easily sees that f is holomorphic and p,(p,(f)) = for every n e Y.
Thus if one lets b := ¢, then (Y, p, f, b) is an analytic continuation of ¢.
Now we will show that (Y, p, f, b) is a maximal analytic continuation of ¢.
Suppose (Z, g, g, ¢) is another analytic continuation of ¢. Define the map
F: Z — Y as follows. Suppose { € Z and ¢({) =: x. By Lemma (7.7) the func-
tion germ q,(p.(g)) € O, arises by analytic continuation along a curve from a
to x from the function germ ¢. By Lemma (7.2) Y consists of all function
germs which are obtained by the analytic continuation of ¢ along curves.
Hence there exists exactly one # € Y such that g,(po(g)) = n. Let F({) = 5. It
is easy to check that F: Z — Y is a fiber-preserving holomorphic map such
that F(c) =b and F*(f)=g. O
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Remark. The analytic continuation of meromorphic function germs can
be handled by using the techniques employed in this section for holo-
morphic function germs. One just looks at the map |.# | — X. So far we
have disregarded branch points but in the next section we will also consider
these for the special case of algebraic functions.

EXERCISES (§7)

7.1. Suppose X and Y are Riemann surfaces, p: ¥ — X is a holomorphic (un-
branched) covering map and f: Y —» C is a holomorphic function. Let b € Y,
a=p(b) and ¢ :==p,(ps(f)) € ,. Prove that (Y, p, f, b} is a maximal analytic
continuation of ¢ if and only if the following condition is satisfied: For any two
distinct points by, by € p~'(a) the germs @, == p,(0,,(f)) and @; = p,(ps,(f))
are different.

7.2. Suppose X is a Riemann surface and a € X. Suppose ¢ € (¢, admits an analytic
continuation along every curve in X which starts at a. Let (Y, p, f, b) be the
maximal analytic continuation of ¢. Prove that p: Y — X is a covering map.

§8. Algebraic Functions

One of the first examples of a multi-valued function which one encounters in
complex analysis is the square root w = \/ z. This is a particular case of an
algebraic function, L.e., a function w = w(z) which satisfies an algebraic equa-
tion w" + a,(zw" ' + -+ + a,(z) = 0, where the coefficients a, are given
meromorphic functions of z. In this section we present the construction of
the Riemann surfaces of algebraic functions. It turns out that they are proper
coverings such that the number of sheets equals the degree of the algebraic
equation.

8.1. The Elementary Symmetric Functions. Suppose X and Y are Riemann
surfaces, n: Y — X is an n-sheeted unbranched holomorphic covering map
and [ is a meromorphic function on Y. Every point x € X has an open
neighborhood U such that =~ !(U) is the disjoint union of open sets
Vi, ..., ¥V, and n: V, - U is biholomorphic for v=1,...,n. Lett: UV,
be the inverse mapping of |V, > U and let f, :==t* f=f- . Suppose T is
an indeterminate and consider

[MT—f)=T"+c¢,T" '+ +¢,.
v=1

Then the ¢, are meromorphic functions in U and

c, = (—l)vsv(fl’ ""f;l)7

where s, denotes the vth elementary symmetric function in n variables. If one
carries out this same construction in a neighborhood U’ of another point
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x" € X, then one gets the same functions ¢, ..., c¢,. Thus these functions
piece together to give global meromorphic functions cy, ..., ¢, € #(X),
which we call the elementary symmetric functions of f with respect to the
covering Y - X.

8.2. Theorem. Suppose X and Y are Riemann surfaces and n: Y — X is an
n-sheeted branched holomorphic covering map. Suppose A = X is a closed
discrete subset which contains all the critical values of n and let B = 1™ *(A).
Suppose f is a holomorphic (resp. meromorphic) function on Y\B and
Cpy vons €y € O(X\A) (resp. € #(X\A)) are the elementary symmetric functions
of f. Then f may be continued holomorphically (resp. meromorphically) to Y
precisely if all the c, may be continued holomorphically (resp. mero-
morphically) to X.

The Theorem ensures that the elementary symmetric functions of a func-
tion f e .#(Y) are also defined when the map Y — X is a branched holomor-
phic covering.

PRrOOF. Supposea € A and by, ..., b, are the preimages of a. Suppose (U, z) is
a relatively compact coordinate neighborhood of a with z(a) =0 and
U n A={a}. Then V:=n"'(U) is a relatively compact neighborhood of
each of the b,.

1. First consider the case f e (/(Y\B).

(a) Assume f may be continued holomorphically to all the points b,.
Then fis bounded on V\({b,, ..., b,,}. This implies that all the ¢, are bounded
on U\{a}. By Riemann’s Removable Singularities Theorem they may all be
continued holomorphically to a.

(b) Suppose all the ¢, may be continued holomorphically to a. Then all
the ¢, are bounded on U\{a}. But this implies fis bounded on V\(b,, ..., b},
for, if y € V\{by, ..., b, and x = n(y), then

FOY + X))+ + ailx) =0.

Again Riemann’s Removable Singularities Theorem implies that f may be
continued holomorphically to every point b,,.

2. Now suppose f e .#(Y\B).

(a) Assume f may be continued meromorphically to all points b,. The
function ¢ :=n*z € ¢(V) vanishes at all the points b,. Thus ¢*/ may be
continued holomorphically to all the points b, if k is sufficiently large. The
elementary symmetric functions of ¢*f are z**c, and by the first part of the
proof they may be continued holomorphically to a. Thus all the ¢, may be
continued meromorphically to a.

(b) Suppose all the ¢, may be continued meromorphically to a. Using the
above notation one has: For k sufficiently large all the z**c, admit holo-
morphic continuations to a. Thus ¢*f admits a holomorphic continuation to
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all the points b, . This implies that f may be continued meromorphically to
all of the points b,,. J

For later use note that the proof does not use the fact that Y is connected.
Thus the Theorem also holds in the case that Y is a disjoint union of finitely
many Riemann surfaces.

If 7: Y — X is a non-constant holomorphic map between Riemann sur-
faces X and Y, then for any meromorphic function f on X the function
n*f:=f o m is a meromorphic function on Y. Thus there is a map

(X)) H(Y)

which is a monomorphism of fields.

8.3. Theorem. Suppose X and Y are Riemann surfaces and n: Y - X is a
branched  holomorphic  n-sheeted covering map. If fe .#(Y) and
Cl, -v.s €, € M(X) are the elementary symmetric functions of f, then

fr4 (m*e) "1+ + (n*c,- ) f + m¥c, = 0.

The monomorphism n*: .4 (X)— .#(Y) is an algebraic field extension of
degree =< n. Moreover, if there exist an f € M(Y) and an x € X with preimages
Vir ---» Yo € Y such that the values f{y,) for v=1, ..., n are all distinct, then
the field extension n*: #(X)— .#(Y) has degree n.

Remark. We will see later (cf. (14.13) and (26.6)) that the last statement of
the Theorem is always fulfilled.

Proor. The existence of the equation
f74+ Y )" =0
v=1

follows directly from the definition of the elementary symmetric functions
of f.

Let L:=.#(Y) and K :=n*.#(X) = L. Then every f € L is algebraic over
K and the minimal polynomial of f over K has degree <n. Suppose f, € Lis
an element for which the degree n, of its minimal polynomial is maximal.
We claim L = K(fy). Choose an arbitrary element fe L and consider the
field K(fy,f). By the Theorem of the Primitive Element there exists g € L
such that K(f,, f) = K(g). By the definition of n, one has dimy K(g) < n, .
On the other hand,

dimy K(fo, f) = dim, K(fy) = no.

Thus K(fo) = K(fo.f) and fe K(fo).
Finally if the degree of the minimal polynomial of f over K were equal to

m < n, then f would be able to take at most m different values over every
point x € X. 0
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8.4. Theorem. Suppose X is a Riemann surface, A = X is a closed discrete
subset and let X' = X\A. Suppose Y' is another Riemann surface and
7': Y — X' is a proper unbranched holomorphic covering. Then n’" extends to a
branched covering of X, i.e., there exists a Riemann surface Y, a proper holo-
morphic mapping n: Y — X and a fiber-preserving biholomorphic mapping

@ Y\n~Y(A)> Y.

ProoF. For every a € 4 choose a coordinate neighborhood (U,, z,) on X
with the following properties: z,(a) =0, z,(U,) is the unit disk in C and
U,nU,=@ if a#d. Let U¥=U,\{a}. Since n': Y- X' is proper,
o'~ }Y(U¥) consists of a finite number of connected components V%,
v=1,..., n(a). For every v the mapping ='|V} — U} is an unbranched
covering. Let its covering number be k, . By Theorem (5.10) there exist
biholomorphic mappings {,,: V¥ — D* of V¥ onto the punctured unit disk

D* = D\{0} such that the diagram

is commutative, where n, ({) = {*=.
Now choose “ideal points” p,,, a € A, v=1, ..., n(a), ie., pairwise
distinct elements of some set disjoint from Y'. Then on

Y=Y ul{p,:ae A, v=1,..., na)}

there exists precisely one topology with the following property. If W, i e I is
a neighborhood basis of a, then

{Paj 0 (W) N VE), iE

is a neighborhood basis of p,, and on Y’ it induces the given topology. This
makes Y into a Hausdorff space. Define n: Y —» X by n(y) = n'(y)fory e YV’
and n(p,,) = a. Then, as one easily checks, 7 is proper.

In order to make Y into a Riemann surface, add to the charts of the
complex structure of Y’ the following charts. Let V,, = V¥ U {p,,} and let

av: Va2 D

be the continuation of the mapping {,,: V¥ — D* described above which is
obtained by defining {,,(p,,) :=0. Since the last mapping is biholomorphic
with respect to the complex structure of Y, the new charts {,: V,, — D are
holomorphically compatible with the charts of the complex structure of Y'.
The mapping n: Y — X is holomorphic. Since Y\n™!(4) = Y’ by construc-
tion, we may choose ¢: Y\n™ '(4) — Y’ to be the identity mapping. This then
shows the existence of a continuation of the covering n': ¥’ — X" O
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The following Theorem shows that the continuation of the covering,
whose existence was just proven, is uniquely determined up to isomorphism.

8.5. Theorem. Suppose X, Y and Z are Riemann surfaces and n: Y — X,
T: Z— X are proper holomorphic covering maps. Let A < X be a closed
discrete subset and let X' = X\A, Y :=n"Y(X")and Z' :=1"(X"). Then every
fiber-preserving biholomorphic mapping ¢': Y' — Z' can be extended to a fiber-
preserving biholomorphic mapping o. Y — Z. In particular every covering
transformation o" € Deck(Y'/X") can be extended to a covering transformation
o € Deck(Y/X).

PRrOOF. Suppose a € A and (U, z) is a coordinate neighborhood of a such that
z{a) =0 and z(U) is the unit disk. Let U* = U\{a}. Moreover we may
assume that U is so small that = and t are unbranched over U*. Let
Vs ., V, (resp. W,, ..., W,,) be the connected components of 7~ 1(U) (resp.
1Y (U)). Then V*:=V,\n" !(a) (resp. W¥:= W, \t~!(a)) are the connected
components ofn_ (U*) (resp T H{U*)).

Since ¢'|n” {(U*) —» v~ (U*) is biholomorphic, n = m and one may re-
number so that o'V ) W* Since n|V¥— U* is a finite sheeted un-
branched covering, ¥, n n~'(a) (resp. W, n t~'(a)) consists by Theorem
(5.11) of exactly one point b, (resp. ¢,). Hence o' | x ™ }(U*) —» ¢~ 1(U*) can be
continued to a bijective mapping =~ }(U)— ¢~ }(U) which assigns to b, the
point c,. Since n|V, » U and | W, — U are proper, the continuation is a
homeomorphism and by Riemann’s Removable Singularities Theorem it is
biholomorphic as well. (The Removable Singularities Theorem applies since
V, and W, are isomorphic to the unit disk by Theorem (5.11).) If one now
applies this construction to every exceptional point a € A4, then one gets the
desired continuation g: Y — Z. O

Theorem (8.5) makes the following definition meaningful (cf. Definition
5.5).

8.6. Definition. Suppose X and Y are Riemann surfaces and n: Y —» X is a

branched holomorphic covering. Let A = X be the set of critical values of 7

and let X':=X\A4 and Y :=z"!(X’). Then the covering Y — X is called

Galois if the covering Y’ — X' is Galois.

8.7. Lemma. Suppose ¢y, ..., ¢, are holomorphic functions on the disk
DR)={zeC:|z| <R}, R>0.

Suppose wy € C is a simple zero of the polynomial

T+ a7 '+ +¢,(0) € C[T].
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Then there exist anr,0 < r < R, and a function ¢ holomorphic on the disk D(r)
such that ¢(0) = w, and

"+ c@" "+ +c,=00nD(r)

ProOOF. For z € D(R) and w € C let
F(z, w)=w"+ ¢z ™+ + ¢,(2).

There exists an ¢ > 0 such that the function w— F(0, w) has a unique zero w,,
in the disk {w € C: |w — wy| < &}. Now because of the continuity of F there
exists an r with 0 < r < R such that in the set

{(z,w)eC*: |z| <,

w— wo| = ¢}

the function F has no zeros. For fixed z € D(r) the integral

|lw—wo|=¢

gives the number of zeros of the function w F(z, w) in the disk with radius
¢ and center wg. Since n(0) = 1 and n depends continuously on z, one has
n(z) = 1 for every z € D(r). By the Residue Theorem the zero of w— F(z, w)
in the disk |w — wq| < ¢ is equal to

1
J W Eulzw)

v(z) = 2ni F(z, w)

|w—wof=¢

Since the integral depends holomorphically on z, the function z+ ¢(z) is
holomorphic on D(r) and F(z, ¢(z)) = 0 for every z € D(r). O

8.8. Corollary. Let (', be the ring of holomorphic function germs at a point x of
a Riemann surface and let

PM=T"+c¢;,T" '+ +c,e0]T]
Suppose that the polynomial
p(T):=T"+ ¢;(x)T" ' + -+ + ¢,(x) e C[T]

has n distinct zeros wy, ..., w,. Then there exist elements @4, ..., p, € O, such
that ¢ (x) = w, and

n

P(T)= [[(T - 9,).

v=1

8.9. Theorem. Suppose X is a Riemann surface and
PM=T"+c¢;T" '+ +c,e MX)T]

is an irreducible polynomial of degree n. Then there exist a Riemann surface Y,
a branched holomorphic n-sheeted covering =: Y — X and a meromorphic



54 1 Covering Spaces

function F € #4(Y) such that (n*P)(F) = 0. The triple (Y, n, F) is uniquely
determined in the following sense. If (Z, ©, G) has the corresponding properties,
then there exists exactly one fiber-preserving biholomorphic mapping 6: Z — Y
such that G = o*F.

To simplify the terminology (Y, =, F)is called the algebraic function defined
by the polynomial P(T).

Remark. The classical case is when X is the Riemann sphere P*. Then by
(2.9) the coefficients c, of the polynomial P(T) are rational functions in one
variable. Since P! is compact and n: Y — P! is proper, Y is also compact.

PrROOF. Let A € .#(X) be the discriminant of the polynomial P(T). (A is a
certain polynomial in the coefficients of P.) The discriminant can not vanish
identically, for otherwise P would be reducible. There exists a closed discrete
subset 4 = X such that at every point x € X' := X\4 all the functions c,, ...,
¢, are holomorphic and A(x) # 0. Then for every x € X’ the polynomial

PAT)=T"+ cy(x)T"" " + -+ + ¢,(x) e C[T]

has n distinct zeros. Now we will use the topological space |¢ | — X asso-
ciated to the sheaf ¢, cf. (6.7). Let Y < |(*| be the set of all the function
germs @ € (U,, x e X', which satisfy the equation P(p)=0 and let
n': Y — X' be the canonical projection. By Corollary (8.8) for every point
x € X' there exist an open neighborhood U = X' and holomorphic func-
tions fi, ..., f, € G(U) such that

P(T)=[1(T—f) onU.

Then o'~ *(U) = | Ji- [U., £} The [U, 1,] are disjoint and =’ [ [U,f,] » Uisa
homeomorphism. This shows that ¥’ — X" is a covering map. The connected
components of ¥’ are Riemann surfaces which also admit covering maps
over X'. Let f: Y’ — C be defined by f(¢) = @(n'(¢)). Then fis holomorphic
and by construction

FOY+a@Oh oyt + +e@()=0

for every y € Y'. By Theorem (8.4) the covering n': Y’ — X’ may be continued
to a proper holomorphic covering n: ¥ — X, where we identify Y’ with
7~ '(X’). By Theorem (8.2) f may be extended to a meromorphic function
F e #(Y), for which

(P*P)F)=F" + (n¥*c )F" ' + -+ + n*c, = 0.

Now we will show that Y is connected and thus a Riemann surface. Suppose
this is not the case. Then Y has finitely many connected components
Yy, ..., Y, and n| ¥, - X is a proper holomorphic n;-sheeted covering, where
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*n, = n. Using the elementary symmetric functions of F|Y; one gets poly-
nomials Py(T) € .#(X)[T] of degree n; such that

P(T) = P(T)Py(T) --- P(T).
But this contradicts the assumption that P(T) is irreducible.

Uniqueness. Suppose (Z, , G) is another algebraic function defined by the
polynomial P(T). Let B = Z be the union of the poles of G and the branch
points of T and let A" :=1(B). Let

X// - XI\A/’ Yr/ :=T[_ I(X”), Zn i— I_A 1(XH).

Define a fiber-preserving mapping ¢”: Z” — Y” in the following way. Let
ze Z",1(z) = x and ¢ € @, be the function germ ¢ =1, G . Then P(¢) = 0.
By the construction of Y’ one sees that ¢ is a point of Y” over x and thus
@ € Y". Set 6"(z) = ¢. From the definition it follows directly that ¢” is con-
tinuous. Since ¢” is fiber-preserving, ¢” is thus holomorphic. Moreover, ¢” is
proper since 7| Y” — X" is continuous and 7| Z” — X" is proper. Hence ¢” is
surjective. Because Y” — X” and Z” — X" have the same number of sheets,
¢": Z" - Y" is biholomorphic. Also from the definition of ¢” one gets
G|Z" = (¢")*(F|Y"). By Theorem (8.5) ¢" can be extended to a fiber-
preserving biholomorphic mapping o: Z— Y for which one then has
G = ¢*F. The mapping ¢ is in fact uniquely determined by the property
G = ¢*F. For, otherwise there would exist a covering transformation
o: Y = Y different from the identity such that «*F = F. But this is not
possible since F assumes distinct values on the fiber 7~ !(x) over every point
xe X ]

8.10. Example. Suppose f(z) = (z — a;) -+ (z — a,) is a polynomial with
distinct roots ay, ..., a, € C. Consider f as a meromorphic function on the
Riemann sphere P!. The polynomial P(T)= T? —f is irreducible over
M (P') and defines an algebraic function which is usually denoted by /£ (z).
Its Riemann surface m: Y — P! may be described using the above construc-
tion as follows. Let

A={ay, ..., a,} U {©},

X =P"A4 and Y':=n"'(X’). Then n: Y'— X’ is an unbranched holo-
morphic two-sheeted covering. This implies that every function germ ¢ € 0,,
where x € X, such that ¢? = fcan be analytically continued along every curve
lying in X'. Now consider the covering over neighborhoods of the excep-
tional points.

(a) For each j € {1, ..., n} choose r; > 0 sufficiently small that no other
point of A4 lies in the disk

U;j={zeC: |z—aj|<r;
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Since the function g(z) = [ [is; (z — @) has no zeros in U; and U is simply
connected, there exists a holomorphic function h: U, - C such that h* = g.
Thus

Jz) = (z = ah(z)?

on U;. Suppose 0 < p <r;, § € Rand let { =a; + pe”. By Lemma (8.7)
there exists a function germ ¢, € (¢, such that ¢? = f'and

0:0) = /pe”*h(0).

If one continues this function germ along the closed curve { = a; + pe',
0 <6 <2z, then one obtains the negative of the original germ. Let
U¥:=U;\la;} and V¥:=n"'(U¥). Then n: V¥ — U¥ is a connected two-
sheeted covering as in Theorem (5.10.i) with k =2. For otherwise
n: V¥ - U¥ would split into two single-sheeted coverings and the analytic
continuation of the function germ ¢, along the curve {=a;+ pe®,
0 < # < 27, would lead back to the same function germ. Hence the Riemann
surface Y has exactly one point over the point g;.

(b) Suppose r > max{|a,|, ..., |a,|} and let
U¥:={zeC: |z| >r}

Then U := U* U {00} is a neighborhood of co, which is isomorphic to a disk,
and which contains no other points of 4. On U one can write f = z"F, where
F 1s a holomorphic function having no zeros in U. Now we distinguish two
cases:

(i) n odd. Then there exists a meromorphic function h on U such that

fz) = zh(z)*.

(ii) n even. Then there exists a meromorphic function h on U such that
£(2) = h(z)"

Let V*:=n~'(U*). Now one shows, the same as above, that in case (i)
n: V* - U* 1s a connected two-sheeted covering and thus Y has precisely

one point over co. But in case (ii) z: V* — U* splits into two single-shected
coverings and thus when n is even Y has two points over oo.

8.11. If X and Y are Riemann surfaces and n: Y — X is a branched holo-
morphic covering map, then Deck(Y/X) has a representation into the auto-
morphism group of the field .#(Y) defined in the following way. For
o € Deck(Y/X) let af:=f- ¢~ !. Clearly the correspondence fi—gf is an
automorphism of .#(Y). The mapping

Deck(Y/X) — Aut(.#(Y))

is a group homomorphism. For suppose a, 7 € Deck(Y/X). Then for every
fe #(Y)

(er)f=f-(or) ' =f-7 o =0a(fs 1 ") =0(tf).
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Trivially every such automorphism fi— af leaves invariant the functions of
the subfield n*.#(X) < .#(Y) and thus is an element of the Galois group
Aut(#(Y)/n*.4(X)).

8.12. Theorem. Suppose X is a Riemann surface, K = .#(X) is the field of
meromorphic functions on X and P(T) e K[T] is an irreducible monic poly-
nomial of degree n. Let (Y, 7, F) be the algebraic function defined by P(T) and
L=_#(Y). By means of the monomorphism n*: K —» L consider K as a
subfield of L. Then L: K is a field extension of degree nand L =~ K[T|/(P(T)).
Every covering transformationa: Y — Y of Y over X induces an automorphism
fioaf=f:a"' of L leaving K fixed and the mapping

Deck(Y/X)— Aut(L/K)

which is so defined, is a group isomorphism. The covering Y — X is Galois
precisely if the field extension L: K is Galois.

PROOF. The fact that L: K is a field extension of degree n follows from the last
statement of Theorem (8.3). Since P(F) =0, there is a homomorphism
K[T]/(P(T)) - L. Since both these fields are of degree n over K, this is an
isomorphism.

The mapping Deck(Y/X)— Aut(L/K) is injective, because oF # F for
any covering transformation ¢ which is not the identity. This mapping is
also surjective. For, suppose « € Aut(L/K). Then (Y, n, «F) is also an alge-
braic function defined by the polynomial P(T). Thus by the uniqueness
statement of Theorem (8.9) there exists a covering transformation
7 € Deck(Y/X) such that oF = t*F. If g :=17 !, then

6F=F g '=F .1=1*F =oF.

Since L is generated by F over K, the automorphism fi— af of L coincides
with a.

The last statement of the Theorem follows from the fact that Y is Galois
over X (resp. L is Galois over K) precisely when Deck(Y/X) (resp.
Aut(L/K)) contains n elements. O

8.13. Puiseux Expansions. Denote by C{{z}} the field of all Laurent series
with finite principal part

o(z)= Y2, keZ  ceC,
v=k

converging in some punctured disk {0 < |z| < r}, where r > 0 may depend
on the element ¢. Then C{{z}} is isomorphic to the stalk .#, of the sheaf .#
of meromorphic functions in the complex plane and is the quotient field of
C{z}.

Consider an irreducible polynomial

F(z, w)=w"+ a;(z2w" ™' + -+ + a,(z) e C{{z}}[w]
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of degree n over the field C{{z}}. For some r > 0, all the coefficients a, are
meromorphic functions on

D(r)={zeC: |z| <1},

and thus F may also be considered as an element of .#(D(r))[w]. It is clear
that F is also irreducible over the field .#(D(r)). Now suppose that r has
been chosen so small that for every a € D{r)\0 the polynomial

F(a, w) € C[w]

has no multiple roots. Let (Y, =, f) be the algebraic function defined by
F(z, w) € .4 (D(r))[w] in the sense of Theorem 8.9. Then n: Y — D(r) is an n-
sheeted proper holomorphic map which is ramified only over the origin. By
Theorem (5.11) there exists an isomorphism

x:D(p)->Y,  p=2/r,
such that
n(a(l)) =" for every { e D(p).
Since F(xn, f) = 0, it follows that
F(C" ¢(0))=0, where ¢ ==/ a.

This proves the following Theorem.

8.14. Theorem (Puiscux). Let
Flz,w)=w'+a(zw" "' + - + a,(z) e C{{z}}[w]

be an irreducible polynomial of degree n over the field C{{z}}. Then there exists
a Laurent series

p()= Y ¢, e Cl{LH
v=k
such that

F({" o({))=0

as an element of C{{}}.

Remarks

(1) If all of the coefficients a, are holomorphic, ie., a, £ C{z}, then
¢ € C{{} as well. This follows from the fact that in this case the function f
considered in (8.13) is holomorphic on Y.

(2) Another way of expressing the assertion of the Theorem is to say that
the equation

F(z, w)=0
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can be solved by a Puiseux series

w=o(/z)= chvz"/".

(3) We can interpret the Theorem of Puiseux in the following algebraic
way. By means of the map

Cilzf - Ciith. 2=l

C{{(}} becomes an extension field of C{{z}} of degree n. A basis of C{{}} over
C{{z}}is given by 1, {, ..., ("~ '. The series ¢({) is a root of F in this extension
field. Let ¢ be a primitive nth root of unity, e.g. &¢ = ¢2™/". Then for k = 0,
1,...,n— 1 we have (¢*{)" = {" and hence

F(", (")) = 0.

Thus ¢(*¢) e C{{}} is also a root of the polynomial F. It is easy to see that
the series @(e¢), k=0, 1, ..., n — 1, are distinct. Thus C{{C}} is a splitting
field of the polynomial F € C{{z}}[w].

EXERCISES (§8)

8.1. Suppose X and Y are compact Riemann surfaces such that .#(X)and .#(Y) are
isomorphic as C-algebras. Prove that X and Y are isomorphic.
[Hint: Represent X and Y as the Riemann surfaces of algebraic functions defined
by one and the same irreducible polynomial P e .#(P')[T]. Also use the fact
(proved in Corollary (14.13)) that on a compact Riemann surface the mero-
morphic functions separate points.]

8.2. Let X and Y be compact Riemann surfaces, a,, ..., a,€ X, by, ..., b, € Y and
X' =X\ay, ..., a,), Y :=Y\{by,..., b,}. Show that every isomorphism
f- X' > Y’ extends to an isomorphism f* X — Y.

8.3. Let F(z, w)==w? — 23w + z e C{{z}}[w].
(a) Show that F is irreducible over C{{z}}.
(b) Determine the Puiseux expansion

O
w= Y ¢z"?
V=0

of the algebraic function defined by F(z, w) = 0.

§9. Differential Forms

In this section we introduce the notion of differential forms on Riemann
surfaces. It is important to consider not only holomorphic and meromorphic
forms but also forms which are only differentiable in the real sense.
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9.1. Suppose U is an open subset of C. We identify C with R? by writing
z = x + iy, where x and y are the standard real coordinates on R*. Denote
by &(U) the C-algebra of all those functions f: U — C which are infinitely
differentiable with respect to the real coordinates x and y. Besides the partial
derivatives (0/0x) and (0/¢y), we also consider the differential operators

a 1 ( é ; é o 1 ( 0 +i 0
—_— = _— = — — = —_— l —.
0z 2\0x oy’ oz 2\éx ay
As is well-known, the Cauchy-Riemann equations say that the vector space

¢(U) of holomorphic functions on U is the kernel of the mapping
(6/02): £(U) - &(U).

9.2. By means of the complex charts one can define the notion of differen-
tiable function on any Riemann surface X. For any open subset Y = X, let
&(Y) consist of all functions f: Y —>C such that for every chart
z: U~V < C on X with U < Y there exists a function f'e &(V)withf | U =
fo z. Clearly the function f'is uniquely determined by f, for /= f - y, where
Y: V- Uis the inverse of z: U — V.

Together with the natural restriction mappings one gets the sheaf & of
differentiable functions on the Riemann surface X. In the following differen-
tiable will always mean infinitely differentiable.

If (U, z), where z = x + iy, is a coordinate neighborhood on X, then the
differential operators

L £(U) - £(U)

)

SIS
Sl

é @
ox’ 8y’
can be defined in the obvious way.

Suppose a is a point in X. Then the stalk &, consists of all the germs of
differentiable functions at the point a. Denote by m, = &, the vector sub-
space of all function germs which vanish at a and by m = m, the vector
subspace of those function germs which vanish to second order. A function
germ ¢ € m, is said to vanish to second order if it can be represented by a
function f such that, with respect to a coordinate neighborhood (U, z
= x + iy) of a, one has

b =2

ox (@ =5, @ =0

This definition is independent of the choice of the local coordinate z.

9.3. Definition. The quotient vector space

mnt
1),—_"4
T 3

a
my
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1s called the cotangent space of X at the point a. If U 1s an open neighbor-
hood of a and f e &(U), then the differential d, f € T, of fat a is the element

d, f=(f—f(a))mod m?.

Note that the function f — f(a) vanishes at the point a and thus represents an
element of m,. By definition its equivalence class modulo m? is d, f.

9.4. Theorem. Suppose X is a Riemann surface, a € X and (U, z)is a coordin-
ate neighborhood of a, where z = x + iy is the decomposition of z into its real
and imaginary parts. Then the elements d,x and d,y form a basis of the
cotangent space T". Aswell (d,z,d,Z) is a basis of TV, If fis a function which
is differentiable in a neighborhood of a, then

T

d
o=

(a) dax + E(a) day

= %(a) d,z + (;fz (a) d,z.

ProoOF

(a) First we will show that d,x and d,y span T\". Let t € T(" and sup-
pose @ € m, is a representative of . Expanding ¢ in a Taylor series about a
yields

@ = ci(x — x(a)) + ¢y — y(a) + ¥,
where ¢, ¢, € C and y € m?. Taking equivalence classes modulo n17, we get
t=c d,x+c,d,y.

(b) Now we claim d, x and d, y are linearly independent. For, ¢, d,x +
¢, d,y = 0 implies
e(x = x(a)) + ex(y — ¥(a)) € m?.

Then taking partial derivatives with respect to x and y,one has¢; = ¢, =0.
(c) Suppose f'is differentiable in a neighborhood of a. Then

) %)
71 =L@ = x@)+ L @ - @) + o
where g vanishes at a to second order. Thus
) )
d, f= 6_£ a) d,x +a~{)(a) d,y.

Similarly, one can prove the corresponding results for (d, z, d,Z). O
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9.5. Cotangent Vectors of Type (1, 0) and (0, 1). Suppose (U, z) and (U, z)
are two coordinate neighborhoods of ¢ ¢ X. Then

o o N ¢z _
E(a)—-( GC, 5‘5((1):(,

and

This implies d,z’ =cd,zand d,z2' = ¢ d,Z.

Thus the one-dimensional vector subspaces of T\'), which are spanned by
d,z and d, %, are independent of the choice of local coordinate (U, z} about a.
Introduce the following notation:

TI0=Cd,s TO'=Cd,=
By construction TV = T2 %@ T2 !. The elements of T} ° (resp. T2 ') are

called cotangent vectors of type (1, 0) (resp. (0, 1)).
If f is differentiable in a neighborhood of 4, define d, fand 4} /by

df=d, f+d.f d,feT:° difeT!

a

Then

9.6. Definition. Suppose Y is an open subset of the Riemann surface X. By a
differential form of degree one, or simply a 1-form, on Y we mean a mapping
w: Y- | JTY

aey
with w(a) € TS for every ae Y. If w(a) e T} ° (resp. w(a) € Ty ') for every
a € Y, then w is said to be of type (1, 0) (resp. of type (0, 1)).

9.7. Examples
(a) Suppose fe &(Y). Then the mappings df, d'f, d'f, which are defined by

@ Na):=d, . (df)a)=d,f  (dfNa)=d; ],
for every a € Y, are 1-forms. Clearly a function f'is holomorphic precisely if
d'f=0.
(b) Suppose w is a 1-form on Y and f: Y - C is a function. Then the
mapping fi defined by ( fw)(a) = f(a)v(a) is also a 1-form on Y.

Remark. If (U, z) is a complex chart with z = x + iy, then every 1-form on
U may be written

w=fdx+gdy=¢dz+ dz,
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where the functions f, g, ¢, ¥: U — C are not necessarily continuous in
general.

9.8. Definition. Suppose Y is an open subset of a Riemann surface X. A
1-form w on Y is called differentiable (resp. holomorphic) if, with respect to
every chart (U, z),  may be written

w=fdz+gdzonUn Y, wheref,ge&(Un Y),
resp.

w=fdzon Un Y, wherefeO(U n Y)

Notation. For any open subset U of a Riemann surface X we will denote
by &V(U) the vector space of differentiable 1-forms on U, by &' °(U) (resp.
&% 1(U)) the subspace of &*(U) of differential forms of type (1, 0) (resp.
(0, 1)) and by Q(U) the vector space of holomorphic 1-forms. Together with
the natural restriction mappings &, £'-°, £% ! and Q are sheaves of vector
spaces over X.

9.9. The Residue. Suppose Y is an open subset of a Riemann surface,a e Y
and o is a holomorphic 1-form on Y\{a}. Let (U, z) be a coordinate neigh-
borhood of a such that U = Y and z(a) = 0. Then on U\{a} one may write
w = fdz, where f e O(U\{a}). Let

be the Laurent series expansion of fabout a with respect to the coordinate z.
If ¢, = O for every n < 0, then w may be holomorphically continued to all of
Y. In this case a is called a removable singularity of w. If there exists k <0
such that ¢, # 0 and ¢, = 0 for every n < k, then w has a pole of kth order at
a. If there are infinitely many n < 0 with ¢, #+ 0, then © has an essential
singularity at a.

The coefficient ¢_ is called the residue of w at a and is denoted by

¢_, = Res,(®).
The next lemma shows that this definition makes sense.
Lemma. The residue is independent of the choice of chart (U, z).
Proor. Suppose V is an open neighborhood of a.

Claim (a) If g is holomorphic on V\{a}, then the residue of dg at a equals
zero and is thus independent of the choice of chart.
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PROOF. Let (U, z) be any coordinate neighborhood of a with z(a) = 0 and
suppose

el
g= > ¢,z
n=-—wK

is the Laurent series expansion of g about a. Then

dg = ( Y nc,,z"‘l) dz
and thus the coefficient of z™! dz is zero.

Claim (b) If ¢ is a holomorphic function on V which has a zero of first
order at a, then Res,(¢ ™' dp) = 1 and is thus independent of the choice of
chart.

PrOOF. Suppose (U, z) is a chart at a with z(a) = 0. Then ¢ = zh, where h is
holomorphic at a and does not vanish there. Thus dp = h dz + z dh and

dp _hdz+zdh d: +@
o zh oz h'

Since h(a) # 0, the differential form £~ ! dh is holomorphic at a and thus has
residue zero. This implies

Resa(d—(p) = Resa(dz) =1.
2

Now using (a) and (b) one can easily finish the proof. With respect to a
chart (U, z) with z(a) = 0 let o = f dz, where

f= Y 7
Let
g:= f n Zn+1+ i Cn Zn+1
T, E.n+1 wo H+ 1 '

Then w = dg + c¢_;z ! dz. From (a) and (b) one has Res,(w) = c_,, which
is independent of the chart. O

9.10. Meromorphic Differential Forms. A 1-form w on an open subset Y of a
Riemann surface is said to be a meromorphic differential form on Y if there
exists an open subset Y’ < Y such that the following hold:

(i) @ is a holomorphic I-form on Y,
(ii) Y\Y consists of only isolated points,
(iii) w has a pole at every point a € Y\Y".
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Let .#'") (¥) denote the set of all meromorphic 1-forms on Y. With the natural
algebraic operations and the usual restriction mappings .# ‘! is a sheaf of
vector spaces over X. The meromorphic 1-forms on X are also called abelian
differentials. As well an abelian differential is said to be of the first kind if it is
holomorphic everywhere, of the second kind if its residue is zero at every one
of its poles and of the third kind otherwise.

9.11. The Exterior Product. In order to be able to define differential forms of
degree two, we have to recall some properties of the exterior product of a
vector space with itself. Let V be a vector space over C. Then A2V is the
vector space over C whose elements are finite sums of elements of the form
vy A Dy for vy, v, € V. One has the following rules

(v + va)Av3 =0, A05 + 0, A0
(Av))Avy = vy Avs)
Vi AT, = —Uy Al

forv,, v, v3€ Vand Ae C. If (e, ..., e,) is a basis of V, then the elements
e;ne;, for i < j, form a basis of A’V. In fact these properties completely
characterize A2V,

Now we will apply this to the cotangent space T\’ of a Riemann surface
X at a point a. Set

T® = A2TW),

Let (U, z) be a coordinate neighborhood of a, where z = x + iy. Then, it
follows from what was just said, that d,x Ad, y is a basis of T{?). Another
basis is d,zAd,z = ~2id,x Ad,y. Thus T'® has dimension one.

9.12. Definition. Suppose Y is an open subset of a Riemann surface X. A
2-form on Y is a mapping

W Yo |JTO,

aeyY

where w(a) e TS for every a e Y. The form w is called differentiable on Y if,
with respect to every complex chart (U, z) on X, it can be written

w=fdzndz withfe &U n Y),
where @ = f dz A dz means that w(a) =f(a) d,z~d,Z for everyae U n Y.
Denote by &®(Y) the vector space of all differentiable 2-forms on Y.
Examples If w,, w, € §'*Y(Y) are 1-forms, then one can define a 2-form
w; Aw, € &3(Y) by letting
(@1 A @;)(a) = w,(a) A w,(a)

for every a € Y. For f € §(Y) and w € £®(Y) one gets a new 2-form
fw € £P(Y) by defining (fw)(a) = f(a)w(a) for every a e Y.
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9.13. Exterior Differentiation of Forms. We now define derivations d, d',
d’: E&NU)—> &P(U), where U is an open subset of a Riemann surface.
Locally a differentiable 1-form may be written as a finite sum

w = Zﬁ( dgks

where the f; and g, are differentiable functions, e.g., w = f, dz + f, dZ where
z 1s a local coordinate. Set

dow =Y dfi, ndg,,

dw:=Y dfindg,

d'w:=Y d"f, ndg,.
Now one has to show that this definition is independent of the representa-
;ii(r)nnﬂ;ur =Y f, dg,. We will do this for the operator d, the other cases being

Suppose @ = Y f, dg, =Y. f; dg;. Choose a particular coordinate neigh-
borhood (U, z), where z = x + iy. One has to show that ) df, ndg, =
Y df; ndj;. Because
d
if‘ dy,

_ 09

with a corresponding expression for d§;, one has by assumption
gy 99, g 0g;
kaax _Z]; ax’ ka ay _Z];ay

Taking appropriate partial derivatives with respect to x and y and sub-
tracting yields

(B diw) _y (@52
dy éx  dx dy dyéx  0xdy)
On the other hand

zdkadng(

with a corresponding formula for ) df;ndg;. The result follows
immediately.

o 0gx  Of Ogi
ox 0y 0Oy 6x) dx ndy,

9.14. Elementary Properties. Suppose U is an open subset of a Riemann
surface, f'e &(U) and w € &(U). Then
(i) ddf =d'df=d"d"f=0.
(i) do =d'o + d'w,
(iii) d(fw) = df nw + f do with similar rules for d' and d”.

These rules are straightforward consequences of the definitions; e.g.,

ddf = d(1 - df) = d1 A df = 0.
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From (i) and (ii) one gets
dd'f= —d"df,

since 0 = (d' + d")(d + d")f=dd'f+ d"df.
With respect to a local chart (U, z), where z = x + iy, one has

o f _f
r Jr j— d*
I = g 21(3 oy )d“dy
Hence a differentiable function f, defined on an open subset of a Riemann

surface, is called harmonic if d'd”’f = 0.

9.15. Definition. Suppose Y is an open subset of a Riemann surface. A differ-
entiable 1-form w € &V(Y) is called closed if dw = 0 and exact if there exists
fe &(Y) such that w = df.

Remark. Because ddf = 0, every exact form is closed. However the con-
verse is not true in general. We shall look at this question in more detail in
the next section.

9.16. Theorem. Suppose Y is an open subset of a Riemann surface. Then the
Sfollowing hold:

(a) Every holomorphic 1-form w € Q(Y) is closed.

(b) Every closed 1-form w € &' °(Y) is holomorphic.

Proor. Suppose w is a differentiable 1-form of type (1, 0). With respect to a
coordinate neighborhood (U, z) one may write w = f dz for some differen-
tiable function f. Then

0z
Thus dw = 0 is equivalent to (9f/dz) = 0 and the results follow. O

da):df/\dz—(f dz +6f )/\dZ= —ale/\df.

Consequence. If u is a harmonic function, then d'u is a holomorphic
1-form. For, dd'u = d"d'u = 0.

9.17. The Pull-Back of Differential Forms. Suppose F: X — Y is a holo-
morphic mapping between two Riemann surfaces. For every open set
U < Y the map F induces a homomorphism

F*: 6(U)- &(F 1(U)), F*(f):=f- F.

Generalizing this one can define corresponding mappings for differential
forms

F*: 6®(U) - 0(F~1(U)), k=12
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(Using the same symbol F'* should cause no confusion.) Locally a 1-form
(resp. 2-form) may be written as a finite sum ) f; dg; (resp. Y f; dg; ~ dh;),
where the functions f;, g;, h; are differentiable. Set

F*(Z.f} dgf) =2 (FY;) d(F*g)),

Fo( S day iy = X (F2) d*g) nd*hy),

It is easy to check that these definitions are independent of the local re-
presentations chosen and hence piece together to give unique global vector
space homomorphisms F*: §®(U)— &®(F~'(U)). For fe &(U) and
w e &§(U) one has

(i) FX(df) =d(F*f).  F*(do)=d(F*o),
(i) F*(d7) = d'(F*¥), F¥(do) =d(F*w),
with corresponding formulas for d”.

Consequence. If f e £(U) is harmonic, then F*f= [ Fe &(F1(U))is also
harmonic. For, d'd"(F*f) = d'(F*d"f) = F¥(d'd"f) = 0.

EXERCISES (§9)

9.1. Suppose p:=exp: C - C* is the universal covering of C* and o is the holo-
morphic I-form dz/z on C*. Find p*w.

9.2. Prove that the holomorphic 1-form

dz
1+ 2%

which is defined on C\{+i}, can be extended to a holomorphic 1-form & on
PY{+i). Let

p=tan: C - P"\{+i}
(cf. Ex. 4.4) and find p*w.

9.3. Suppose p: Y — X is a holomorphic mapping of Riemann surfaces, a € X,
b e p~'(a) and k is the multiplicity of p at b. Given any holomorphic 1-form w
on X\{a} show that

Resy(p*w) = k Res,(w).

§10. The Integration of Differential Forms

Differential 1-forms can be integrated along curves. If the form is closed,
then the integral only depends on the homotopy class of the curve. Thus on
any simply connected surface X the indefinite integral of a closed 1-form,
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where the integration takes place along a curve with fixed initial point and
variable end point, is a well-defined function on X. In general the integration
of closed forms yields multi-valued functions. But these functions display a
very special kind of multi-valued behavior. This will be looked at more
closely in this section. As well we consider the integration of 2-forms. This
will be useful in transforming line integrals into surface integrals and will
also be needed to prove the Residue Theorem.

A. Differential 1-Forms

10.1. Suppose X is a Riemann surface and w € §'V(X). Further suppose that
a piece-wise continuously differentiable curve in X is given. This means there
is a continuous mapping

c:[0,1]- X
for which there exists a partition
O=t,<t; < <t,=1

of the interval [0, 1] and charts (U,, z.), z, = X, + iy, k=1, ..., n, such
that ¢([t,- 1, t]) = U, and the functions

Xpe € [ ] = R, Vool [te-1, 1] > R

have continuous first order derivatives. The integral of w along the curve ¢ is
defined in the following way. On U, one may write w asw = f, dx, + ¢, dv,.
where the functions f;, g, are differentiable. Set

Jo=3 [ (A XG4 ol 5 ar

- Ik

One can easily check that this definition is independent of the choice of
partition and charts.

10.2. Theorem. Suppose X is a Riemann surface, ¢: [0, 1] - X is a piece-wise
continuously differentiable curve and F e &(X). Then

[ dF = F(c(1)) - F(c(0)).

Proor. Choose a partition 0 = t, < t, <--- < t,= 1 and charts (U, z,) as
above. On U, one has

F
dF =a—Fdxk +6“ dyk-
0x; Y
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Thus

(ar=73 | (gi(c(t))%‘t'(’)) +Z_ﬁ " dykc(ict(t))) o

Y k=1 "1~y

> [ (g Fe) d

k=1 "t /

= ¥ (Flelt)) = Flela-1)) = Flel1)) = F(e0) -

10.3. Definition. Suppose X is a Riemann surface and w € §*(X). A func-
tion F e £(X) is called a primitive of w if dF = w.

By (9.15) any differential form which has a primitive is necessarily closed.
But the primitive of a differential form is not unique. If F is a primitive of ©
and ¢ € C, then F + c is also a primitive of w. Conversely any two primitives
differ by a constant. For, if dF = 0, it follows, for example using Theorem
(10.2), that F is a constant.

Using Theorem (10.2} one can easily compute any line integral of a
differential form if one knows one of its primitives. And it also follows from
the Theorem that the integral of an exact differential form along a curve
depends only on the initial and end points of the curve.

104. The Local Existence of Primitives. Suppose U:={zeC: |z| <r],
where r > 0, is an open disk about zero in C and w € §(U). The differen-
tial form « may be written

w=fdx+ gdy, frge &)

where x, y are the usual real coordinates on R? =~ C. Assume that o is closed,
1.e., dw = Q. Since
0 0
do = df ndx + dg ndy = (J ~ I ax nay,
ox  dy
this is equivalent to (0g/0x) = (8f/dy). We will prove that w has a primitive F
which is given by the integral

F(x, y) ==J‘1(f(tx, ty)x + gltx, ty)y) dt, for (x, y)e U.

One sees directly that F is infinitely differentiable. One has only to verify
that dF = w, i.e., (0F/dx) = f and (6F/0y) = g. Differentiating under the
mtegral sign, we get

OF(x, ) _ J ! (af

X

0x

8
(tx, ty)ex + % (ex, ty)ey + f(tx, ty)) dt.
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Since

o _of . d o o
oy and @ ftx, ty) = o (tx, ty)x + 6y(tx, ty)y,

one then has

t% f(ex, ty) + f(tx, ty)) dt

0o ) de = £ (5 )

Y0

Similarly, (6F/dy) = g. This proves that dF = w.
In the special case that w is holomorphic, the proof of the existence of a
primitive on the disk U is much easier. Namely, in this case one has

w = f dz with fe O(U).
Let

f(z)= Zocnz"

be the Taylor series expansion of f. Then defining

e 9]

Fe)=Y =

o n+1

n
Zn+1

gives us a function F € ¢(U) such that dF = w.
Globally a primitive of a closed differential form exists in general only as
a multi-valued function. This is made precise in the next theorem.

10.5. Theorem. Suppose X is a Riemann surface and w € &V(X) is a closed
differential form. Then tpere exist a covering map p: X — X with X connected,
and a primitive F € £(X) of the differential form p*w.

ProoFE. Let # be the sheaf of primitives of w. This is defined as follows. For
an open set U < X let #(U) consist of all functions fe &(U) such that
df =w on U. The sheafl # satisfies the Identity Theorem (cf. Definition
(6.9)), since any two elements f;, f, € # (U), where U is a domain in X, differ
by a constant. Consider the associated space p: |# | > X. By Theorem
(6.10) the space |.# | is Hausdorff. Now we will show thatp: |#| - X isa
covering map. For every point a € X there exist by (10.4) a connected open
neighborhood U and a primitive f' € # (U) of w. Then f + ¢, for ¢ € C, are all
the primitives of @ on U. Hence

p~'(U)= U[U.f+c]

ceC
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The sets [U, f+c] are pairwise disjoint and all the mappings
p|[U, f+ ¢] - U are homeomorphisms. This proves that p: |#| - X is a
covering map. Let X < |# | be a connected component. Then plX > X is
also a covering map. Since X is a set of function germs, a function F: X — C
is defined in a natural way by F(¢) := @(p(p)). It then follows directly from
the definitions that F is a primitive of p*w. |

10.6. Corollary. Suppose X is a Riemann surface, n: X — X its universal
covering and o € &V(X) a closed differential form. Then there exists a primi-
tive f € §(X) of n*w.

PRrOOF. Let p: X — X be the covering map construction in (10.5) and let
F € &(X) be a primitive of p*w. Since m: X — X is the universal covermg,
there exists a holomorphic fiber-preserving mapping 7: ¥ - X. Let
f=1*F € £(X). Then fis a primitive of t*(p*w) = 1*w. O

10.7. Corollary. On a simply connected Riemann surface X every closed differ-
ential form w € §'V(X) has a primitive F € &(X).

This follows from (10.6) since id: X — X is the universal covering.

10.8. Theorem. Suppose X is a Riemann surface and p: X — X is its universal
covering. Suppose w € &'V(X) is a closed differential form and F € &§(X)is a
primitive of p*w. If ¢: [0, 1] > X is a piece-wise continuously differentiable
curve and ¢: [0, 1] — X is a lifting of c, then

| @ = F(e(1)) - F(@0)).

PRrOOF. For every piece-wise continuously differentiable curve v: [0, 1] > X
and every differential form » e £V(X) one has

‘ p¥w = ' w
J, U

This follows directly from the definitions. The theorem then follows from
Theorem (10.2). |

10.9. Remark. Theorem (10.8) now gives a way to define the integral of a
closed differential form along an arbitrary (continuous) curve ¢: [0, 1] - X,
namely by the given formula. This definition is independent of the choice of
the primitive F of p*w, for any two primitives only differ by a constant and
taking the difference kills this. The definition is also independent of the
lifting of the curve ¢. For suppose « and v are two liftings of c. Since the
covering p: X — X is Galois (cf. 5.6), there is a covering transformation ¢
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such that v = ¢ - u. Since p - ¢ = p, one has o*(p*w) = p*w. Thus o*F is
also a primitive of p*w and so ¢*F — F = const. Hence

F(u(1)) = F(2(0)) = o*F(u(1)) — a*F(u(0)) = F(u(1)) — F(4(0))

and thus the value of the integral is the same for both liftings.

10.10. Theorem. Suppose X is a Riemann surface and » € &'"(X) is a closed
differential form.

(@) If a, b e X are two points and u, v: [0, 1] > X are two homotopic curves
from a to b, then

o[

v

(b) Ifu, v: [0, 1] > X are two closed curves which are free homotopic, then

o=

u Yo

PROOF

(a) Let p: X — X be the universal covering and suppose &, #: [0, 1] > X
are liftings of u and v resp. with the same initial point. By Theorem (4.10)
and ¥ also have the same end point. Hence the result follows from Theorem
(10.8).

(b) Suppose the curve u has initial and end point x, and the curve v has
initial and end point x,. Then there exists a curve w from x, to x; such that u
is homotopic to w - v - w™, cf. (3.13). Hence by (a) one has

[o]

u W wT

w——-J‘ww+Lw—me:]‘w. O

w v

10.11. Periods. Suppose X is a Riemann surface and w € £"(X) is a closed
differential form. Then by Theorem (10.10) one can define the integral
a ==J' , o e ny(X),

a
a

by choosing any curve representing the homotopy class ¢ and integrating
along that curve. These integrals are called the periods of w. Clearly

J‘ w=J‘w+J‘w for o, 1 € my(X).
Thus one gets a homomorphism n,(X) — C of the fundamental group of X
into the additive group C. This homomorphism is called the period homo-
morphism associated to the closed differential form w.
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Example. Suppose X = C* By (5.7.a) n,(C*) = 7. A generator of z,(C*)
is represented by the curve u: [0, 1] > C*, u(t) = e*™. Let @ := (dz/z), where
z is the canonical coordinate. Then

’ W= ’ dj = 2mi.

u u

Hence the period homomorphism of w is
Z—-C, n— 2nuin,

where we have explicitly realized the isomorphism 7 = =,(C*) by the corre-
spondence n— cl(u").

10.12. Summands of Automorphy. Suppose X is a Riemann surface and
p: X — X is its universal covering. The group G = Deck(X/X) of covering
transformations of the universal covering, as was observed in (5.6), is isomor-
phic to the fundamental group of X. If ¢ € G and f* X — C is a function, then
we can define a function of: X - C by af:=f- ¢~ . If g: X — C is another
function, then o(f+ g) = of + og and o(fg) = (af }og). Also for 0, 1€ G
one has (a7)f = o(zf).

A function f: X — C is called additively automorphic with constant sum-
mands of automorphy, if there exist constants a, € C, ¢ € G, such that

f—af=a, foreveryoegG.

The constants a,, which are uniquely determined by f, are called the sum-
mands of automorphy of f. Then af — ozf = a, for any g, t € G, since
f—1f=a,. Thus

4 =f—otf=(f=df)+(of —0f) = a4, +a..

Hence the correspondence o¢+a, is a group homomorphism
Deck()?/X) - C.

Any function f: X — C which is invariant under covering transformations,
1e., af = f for every o € G, is an example of an additively automorphic
function. In particular its summands of automorphy are all zero. For any
such function there exists a function fy: X — C such that f= p*f,. If fis
differentiable (resp. holomorphic) then f, is differentiable (resp. holo-
morphic) as well.

10.13. Theorem. Suppose X is a Riemann surface and p: X — X is its univer-
sal covering.

(@) If € §V(X)is a closed differential form and F e §(X) is a primitive of
p*w, then F is additively automorphic with constant summands of automorphy.
Its summands of automorphy a,, ¢ € Deck(X/X), are, with respect to the
isomorphism 1,(X) = Deck(X/X), exactly the periods of .
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(b) Conversely suppose F € &(X) is an additive automorphic function with
constant summands of automorphy. Then there exists precisely one closed
differential form w € &Y(X) such that dF = p*w.

ProOF
(a) If o is any deck transformation, then because p - ¢~ ! = p the function
oF is also a primitive of p*w. Thus

—a,:= oF — F

is a constant. Suppose x, € X and z, € X is a point with p(z,) = x, . Suppose
o € Deck(X/X). By (5.6) the element 6 € m,(X, x,) which is associated to ¢
can be represented as follows. Choose a curve v: [0, 1]—> X with v(0):=
Yo =0 (zo) and v(1):=zy = a(y,). Then u:=p - v is a closed curve in X
and 5 = cl(u). By Theorem (10.8) the periods of @ with respect to g are given
by

f w = F(v(1)) — F(v(0)) = F(zy) — F(0 '(29)) = ~a,.

(b) If F has summands of automorphy a,eC, then for every
o € Deck(X/X) one has

o*(dF) = do*F = d(F + a,) = dF.

Thus the closed differential form dF is invariant under covering trans-
formations. Since p: X -» X is locally biholomorphic, there exists
w € &M(X) such that dF = p*w. Clearly w is uniquely determined and is
closed. O

10.14. Example. Suppose I' = Zy, + Zy,, where y,, y, € C are linearly
independent over R, is a lattice in C. Let X :=C/T.

The canonical quotient mapping n: C — X is also the universal covering
map and Deck(C/X) is the group of all translations by vectors y e T, cf.
(5.7.c). Consider the identity map z: C — C. Then the function z is additively
automorphic under the action of Deck(C/X ) with summands of automorphy
a, =7y, y € I'. Hence dz is invariant under covering transformations. Thus
there exists a holomorphic differential form w e Q(X) such that p*w = dz
and whose periods are exactly the elements of the lattice I'.

10.15. Theorem. Suppose X is a Riemann surface. A closed differential form
w € &Y(X) has a primitive f € £(X) if and only if all the periods of w are zero.

PrOOF. If @ has a primitive, then by (10.2) all its periods are zero.
Conversely, suppose that all the periods of w are zero. By Corollary (10.6)

there exists, on the universal covering p: X — X, a primitive F € &(X) of

p*w. By (10.3), F has summands of automorphy 0. Thus there is an f € &(X)
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such that F = p*f. Then this function is a primitive of w, since p*w = dF =
d(p*f) = p*(df) implies o = df. O

Remark. If all the periods of w vanish, then by Theorem (10.2) one gets a
special primitive of w from the integral

x

f(x)= I .

J
X0

Here x, € X is a fixed arbitrary point and the integral is along any curve
from x, to x (the integral is in this case independent of the choice of curve).

10.16. Corollary. Suppose X is a compact Riemann surface and w,, 5 € X))
are two holomorphic differential forms which define the same period homo-
morphism ©(X)— C. Then o, = w,.

Proor. The difference @ :=w; — w, has zero periods and thus has a primi-
tive fe ¢(X). Since X is compact, f is constant and thus w = df =0. [J

B. Differential 2-Forms

10.17. Next we look at integration of differential 2-forms in the complex
plane. Suppose U = C is open and @ € &#(U). Then ® may be written

w=fdxady= é fdzndz, where fe &(U).
Assume that f vanishes outside of a compact subset of U. Then define
H w =:” S(x, y) dx dy,
U v

where the right-hand side is the usual double integral.

Now suppose V is another open subset of C and ¢: V — U is a biholo-
morphic mapping. If ¢ = u + iv is the splitting of ¢ into its real and imagin-
ary parts, then by the Cauchy-Riemann equations the Jacobian determinant
of the mapping ¢ is

ou,v) Oudv oudv _ lo'|?
O(x,y) Oxdy Oyox '

Thus the transformation formula for the integral becomes

2 dx dy.

[[£axay=[[ (/- o)o

U
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On the other hand,
o*(dz ndz)=do Adp = (¢ dz) A (p' dZ) = |¢'|* dz ndZ
and thus p*w = (f- @)|¢’|* dx Ady. Hence

o[l

10.18. Now suppose X is a Riemann surface. By the support of a differential
form w on X we mean the closed set

Supp(w):={a € X: w(a) #0}.

The support Supp(f) of a function f* X — C is defined analogously.

(a) Suppose @: U — V is a chart on X and w € £?(X) is a differential
form whose support is compact and contained in U. Then (¢~ ')*w is a
differential form with compact support in ¥V « C and thus one can define

ffo=lfo={l e

X U 1 4

This definition is independent of the choice of chart. For, suppose
@,: U, = V, is another chart with Supp(w) = U,. Without loss of generality
we may assume U = U, (otherwise take the intersection). Then

Y=g, 0 VoV

is a biholomorphic mapping. Since
(0™ o = (o1 - ¥)o =y*((¢1 o),
by (10.17) one has

[ 0= 1y0 =[] (o7 "o

Vv Vi

Thus [y  is defined independently of the choice of chart.

(b) Now suppose w € &'®(X) is an arbitrary differential form with com-
pact support. Then there exist finitely many charts @,: U, —» Vi, k=1,...,n
such that

Supp(w) = U U,.
k=1

Then one can find functions f, € £(X) with the following properties (a
so-called “partition of unity,” cf. Appendix A):

(i) Supp(fi) = Us,
(i) Y4-1 filx)=1 for every x e Supp(w).
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Then f, w is a differential form with Supp( f; w) € Uy and

h
W= Z i,
K=1

Define

. n
Hw::z ka(u.
K1y

X

Here the right-hand side is defined by (a). Again it is straightforward to
check that the definition is independent of the choice of charts and functions

Ji-

10.19. Later on we want to use a special case of Stokes’ Theorem in the
plane. Suppose U < C is open and 4 < U is a compact subset with smooth
boundary éA4. Then for every differential form w e &V(U)

H do = ‘ .
L dos

Here the boundary is oriented so that the outward pointing normal of A and
the tangent vector to é 4 in this order determine a positively oriented basis of
the plane.

We will need the theorem only in the case that 4 is a disk or an annulus

A={zeC:e<|z| <R}, O0O<e<R

In the second case, 64 consists of the positively oriented circle |z| = Rand
the negatively oriented circle |z| =¢ Then Stokes’ Theorem for
w = fdx + g dy says

| o
f (ax ay) dx dy “!ZJ:R(de + g dy) JMZE(.f dx + g dy).

ESIZ]SR

We would now like to prove this formula directly by introducing polar
coordinates z = re'?, ie.,

x =rcos 6, y=rsin 6.
First we look al the case w = g dy. Thus dw = (0g/0x) dx A dy. Noting that

¢ 0 0 sin 8 ¢
— =cos 0~ ————,
0x or r oo
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and letting §(r, 0) = g(re’’), one gets

- ” (cos()j(g)—(%(smﬂg))drdﬂ.

Now for every fixed r € [¢, R}

2n 0=2n
J 0 (sin 6 §) d6 = sin 0 g(r, 0) =0.
0 9=0
Then
2n R (‘3 ~
de=f0 cosB(L ar(rg)dr)df)
—f f)R cos 0 d6 — J (e, 0)e cos 0 do

= gdy— gdy=| o
”||z| R J>|z| € f
The case w = f dx is reduced to the case just considered by making the
change 