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Preface 

The only way to learn mathematics is to do mathematics. That tenet 
is the foundation of the do-it-yourself, Socratic, or Texas method, the 
method in which the teacher plays the role of an omniscient but largely 
uncommunicative referee between the learner and the facts. Although 
that method is usually and perhaps necessarily oral, this book tries to 
use the same method to give a written exposition of certain topics in 
Hilbert space theory. 

The right way to read mathematics is first to read the definitions of 
the concepts and the statements of the theorems, and then, putting the 
book aside, to try to discover the appropriate proofs. If the theorems are 
not trivial, the attempt might fail, but it is likely to be instructive just 
the same. To the passive reader a routine computation and a miracle 
of ingenuity come with equal ease, and later, when he must depend on 
himself, he will find that they went as easily as they came. The active 
reader, who has found out what does not work, is in a much better 
position to understand the reason for the success of the author's method, 
and, later, to find answers that are not in books. 

This book was written for the active reader. The first part consists of 
problems, frequently preceded by definitions and motivation, and 
sometimes followed by corollaries and historical remarks. Most of the 
problems are statements to be proved, but some are questions (is it?, 
wha t is?), and some are challenges ( construct, determine). The second 
part, a very short one, consists of hints. A hint is a word, or a paragraph, 
usually intended to help the reader find a solution. The hint itself is 
not necessarily a condensed solution of the problem; it may just point 
to what I regard as the heart of the matter. Sometimes a problem con
tains a trap, and the hin t may serve to chide the reader for rushing in too 
recklessly. The third part, the longest, consists of solutions: proofs, 
answers, or constructions, depending on the nature of the problem. 

The problems are intended to be challenges to thought, not legal 
technicalities. A reader who offers solutions in the strict sense only 
(this is what was asked, and here is how it goes) will miss a lot of the 
point, and he will miss a lot of fun. Do not just answer the question, 
but try to think of related questions, of generalizations (what if the opera
tor is not normal?), and of special cases (what happens in the finite-

VIl 
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dimensional case?). What makes an assertion true? What would make 
it false? 

If you cannot solve a problem, and the hint did not help, the best 
thing to do at first is to go on to another problem. If the problem was 
a statement, do not hesitate to use it later; its use, or possible misuse, 
may throw valuable light on the solution. If, on the other hand, you 
solved a problem, look at the hint, and then the solution, anyway. 
You may find modifications, generalizations, and specializations that 
you did not think of. The solution may introduce some standard nomen
clature, discuss some of the history of the subject, and mention some 
pertinent references. 

The topics treated range from. fairly standard textbook material to 
the boundary of what is known. I made an attempt to exclude dull 
problems with routine answers; every problem in the book puzzled me 
once. I did not try to achieve maximal generality in all the directions 
that the problems have contact with. I tried to communicate ideas and 
techniques and to let the reader generalize for himself. 

To get maximum profit from the book the reader should know the 
elementary techniques and results of general topology, measure theory, 
and real and complex analysis. I use, with no apology and no reference, 
such concepts as subbase for a topology, precompact metric spaces, 
LindelOf spaces, connectedness, and the convergence of nets, and such 
results as the metrizability of compact spaces with a countable base, 
and the compactness of the Cartesian product of compact spaces. 
(Reference: Kelley [1955].) From measure theory, I use concepts such 
as u-fields and Lp spaces, and results such as that Lp convergent se
quences have almost everywhere convergent subsequences, and the 
Lebesgue dominated convergence theorem. (Reference: Halmos 
[1950 b].) From real analysis I need, at least, the facts about the deriva
tives of absolutely continuous functions, and the Weierstrass polynomial 
approximation theorem. (Reference: Hewitt-Stromberg [1965].) From 
complex analysis I need such things as Taylor and Laurent series, sub
uniform convergence, and the maximum modulus principle. (Reference: 
Ahlfors [1953].) 

This is not an introduction to Hilbert space theory. Some knowledge 
of that subject is a prerequisite; at the very least, a study of the ele
ments of Hilbert space theory should proceed concurrently with the 
reading of this book. Ideally the reader should know something like 
as the first two chapters of Halmos [1951J. 

I tried to indicate where I learned the problems and the solutions and 
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where further information about them is available, but in many cases 
I could find no reference. When I ascribe a result to someone without an 
accompanying bracketed date (the date is an indication that the details 
of the source are in the list of references), I am referring to an oral 
communication or an unpublished preprint. When I make no ascription, 
I am not claiming originality; more than likely the result is a folk 
theorem. 

The notation and terminology are mostly standard and used with no 
explanation. As far as Hilbert space is concerned, I follow Halmos 
[1951J, except in a few small details. Thus, for instance, I now use f 
and g for vectors, instead of x and y (the latter are too useful for points 
in measure spaces and such), and, in conformity with current fashion, I 
use "kernel" instead of "null-space". (The triple use of the word, to 
denote (1) null-space, (2) the continuous analogue of a matrix, and 
(3) the reproducing function associated with a functional Hilbert space, 
is regrettable but unavoidable; it does not seem to lead to any confu
sion.) Incidentally "kernel" and "range" are abbreviated as ker and 
ran, "dimension" is abbreviated as dim, "trace" is abbreviated as tr, 
and real and imaginary parts are denoted, as usual, by Re and 1m. The 
"signum" of a complex number z, i.e., z/I z I or 0 according as z =;!: 0 or 
z = 0, is denoted by sgn z. The co-dimension of a subspace of a Hilbert 
space is the dimension of its orthogonal complement (or, equivalently, 
the dimension of the quotient space it defines). The symbol v is used 
to denote span, so that M v N is the smallest closed linear manifold 
that includes both M and N, and, similarly, V j M j is the smallest 
closed linear manifold that includes each M j • Subspace, by the way, 
means closed linear manifold, and operator means bounded linear 
transformation. 

The arrow has two uses:fn -+ f indicates that a sequence {in) tends 
to the limit/, and x -+ x2 denotes the function !P defined by !pCx) = x2• 

Since the inner product of two vectors / and g is always denoted by 
(j, g), another symbol is needed for their ordered pair; I use (f, g). 
This leads to the systematic use of the angular bracket to enclose the 
coordinates of a vector, as in (/0'/1'/2, ... ). In accordance with incon
sistent but widely accepted practice, I use braces to denote both sets 
and sequences; thus {x} is the set whose only element is x, and {xn } is 
the sequence whose n-th term is xn, n = 1, 2, 3, .•.. This could lead to 
confusion, but in context it does not seem to do so. For the complex 
conjugate of a complex number z, I use z*. This tends to make mathe
maticians nervous, but it is widely used by physicists, it is in harmony 
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with the standard notation for the adjoints of operators, and it has 
typographical advantages. (The image of a set M of complex numbers 
under the mapping z -+ z* is M*; the symbol if suggests topological 
closure.) 

For many years I have battled for proper values, and against the one 
and a half times translated German-English hybrid that is often used 
to refer to them. I have now become convinced that the war is over, 
and eigenvalues have won it; in this book I use them. 

Since I have been teaching Hilbert space by the problem method for 
many years, lowe thanks for their help to more friends among students 
and colleagues than I could possibly name here. I am truly grateful to 
them all just the same. Without them this book could not exist; it is 
not the sort of book that could have been written in isolation from the 
mathematical community. My special thanks are due to Ronald Douglas, 
Eric Nordgren, and Carl Pearcy; each of them read the whole manu
script (well, almost the whole manuscript) and stopped me from making 
many foolish mistakes. 

P. R. H. 
The University oj Michigan 
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Problems 



Chapter 1. Vectors and spaces 

1. Limits of quadratic forms. The objects of chief interest in the 
study of a Hilbert space are not the vectors in the space, but the operators 
on it. Most people who say they study the theory of Hilbert spaces in 
fact study operator theory. The reason is that the algebra and geometry 
of vectors, linear functionals, quadratic forms, subspaces and the like 
are easier than operator theory and are pretty well worked out. Some 
of these easy and known things are useful and some are amusing; perhaps 
some are both. 

Recall to begin with that a bilinear functional on a complex vector 
space H is sometimes defined as a complex-valued function on the 
Cartesian product of H with itself that is linear in its first argument and 
conjugate linear in the second; d. Halmos [1951, p. 12]. Some mathe
maticians, in this context and in other more general ones, use "semi
linear" instead of "conjugate linear", and, incidentally, "form" instead 
of "functional". Since "sesqui" means "one and a half" in Latin, it has 
been suggested that a bilinear functional is more accurately described 
as a sesquilinear form. 

A quadratic form is defined in Halmos [1951, p. 12J as a function cp

associated with a sesquilinear form cp via the equation cp- (j) = cp (j,j). 
(The symbol cp is used there instead of cp-.) More honestly put, a quad
ratic form is a function 1/t for which there exists a sesquilinear form cp such 
that 1/t(j) = «!(j,j). Such an existential definition makes it awkward to 
answer even the simplest algebraic questions, such as whether or not the 
sum of two quadratic forms is a quadratic form (yes), and whether or 
not the product of two quadratic forms is a quadratic form (no). 

Problem 1. Is the limit of a sequence of quadratic forms a quad
raticform? 

2. Representation of linear functionals. The Riesz representation 
theorem says that to each bounded linear functional ~ on a Hilbert space 
H there corresponds a vector g in H such that H f) = (j,g) for all J. 

3 
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The statement is "invariant" or "coordinate-free", and therefore, ac
cording to current mathematical ethics, it is mandatory that the proof 
be such. The trouble is that most coordinate-free proofs (such as the 
one in Halmos [1951, p. 32J) are so elegant that they conceal what is 
really going on. 

Problem 2. Find a coordinatized proof 0] the Riesz representation 
theorem. 

3. Strict convexity. In a real vector space (and hence, in particular, 
in a complex vector space) the segment joining two vectors] and g is, by 
definition, the set of all vectors of the form if + (1 - t)g, where 
o ~ t ~ 1. A subset of a real vector space is convex if, for each pair of 
vectors that it contains, it contains all the vectors of the segment joining 
them. Convexity plays an increasingly important role in modern vector 
space theory. Hilbert space is so rich in other, more powerful, structure, 
that the role of convexity is sometimes not so clearly visible in it as in 
other vector spaces. An easy example of a convex set in a Hilbert space 
is the unit ball, which is, by definition, the set of all vectors] with 
II] II ~ 1. Another example is the open unit ball, the set of all vectors] 
with II] II < 1. (The adjective "closed" can be used to distinguish the 
unit ball from its open version, but is in fact used only when unusual 
emphasis is necessary.) These examples are of geometric interest even 
in the extreme case of a (complex) Hilbert space of dimension 1; they 
reduce then to the closed and the open unit disc, respectively, in the 
complex plane. 

If h = if + (1 - /)g is a point of the segment joining] and g, and 
if 0 < t < 1 (the emphasis is that t ~ 0 and t ~ 1), then h is called an 
interior point of that segment. If a point of a convex set does not belong 
to the interior of any segment in the set, then it is called an extreme 
point of the set. The extreme points of the closed unit disc in the complex 
plane are just the points on its perimeter (the unit circle). The open 
unit disc in the complex plane has no extreme points. The set of all those 
complex numbers z for which IRe z I + lIm z I ~ 1 is convex (it con
sists of the interior and boundary of the square whose vertices are 
1, i, -1, and -i); this convex set has just four extreme points (namely 
1, i, -1, and -i). 
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A closed convex set in a Hilbert space is called strictly convex if all its 
boundary points are extreme points. The expression "boundary point" 
is used here in its ordinary topological sense. Unlike convexity, the 
concept of strict convexity is not purely algebraic. It makes sense in 
many spaces other than Hilbert spaces, but in order for it to make sense 
the space must have a topology, preferably one that is properly related 
to the linear structure. The closed unit disc in the complex plane is 
strictly convex. 

Problem 3. The unit ball of every Hilbert space is strictly convex. 

The problem is stated here to call attention to a circle of ideas and to 
prepare the ground for some later work. No great intrinsic interest is 
claimed for it; it is very easy. 

4. Continuous curves. An infinite-dimensional Hilbert space is 
even roomier than it looks; a striking way to demonstrate its spaciousness 
is to study continuous curves in it. A continuous curve in a Hilbert space 
H is a continuous function from the closed unit interval into H; the 
curve is simple if the function is one-to-one. The chord of the curve f 
determined by the parameter interval [a,b] is the vector f (b) - f (a) . 
Two chords, determined by the intervals [a,b] and [c,d] are non
overlapping if the intervals [a,b] and [c,d] have at most an end-point in 
common. If two non-overlapping chords are orthogonal, then the curve 
makes a right-angle turn during the passage between their farthest 
end-points. If a curve could do so for every pair of non-overlapping 
chords, then it would seem to be making a sudden right-angle turn at 
each point, and hence, in particular, it could not have a tangent at any 
point. 

Problem 4. ConstructJor every infinite-dimensional Hilbert space, 
a simple continuous curve with the property that every t.wo non-over
lapping chords of it are orthogonal. 

5. Linear dimension. The concept of dimension can mean two 
different things for a Hilbert space H. Since H is a vector space, it has a 
linear dimension; since H has, in addition, an inner product structure, 
it has an orthogonal dimension. A unified way to approach the two con-
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cepts is first to prove that all bases of H have the same cardinal number, 
and then to define the dimension of H as the common cardinal number 
of all bases; the difference between the two concepts is in the definition 
of basis. A Hamel basis for H (also called a linear basis) is a max
imallinearly independent subset of H. (Recall that an infinite set is 
called linearly independent if each finite subset of it is linearly inde
pendent. It is true, but for present purposes irrelevant, that every 
vector is a finite linear combination of the vectors in any Hamel basis.) 
An orthonormal basis for H is a maximal orthonormal subset of H. 
(The analogues of the finite expansions appropriate to the linear theory 
are the Fourier expansions always used in Hilbert space.) 

Problem 5. Does there exist a Hilbert space whose linear dimension 
is No? 

6. Infinite Vandennondes. The Hilbert space l2 consists, by defini
tion, of all infinite sequences (~o, ~l, ~2, ••• ) of complex numbers such 
that L~=o I ~n 12 < 00. The vector operations are coordinatewise and 
the inner product is defined by 

00 

( (~o, ~1, ~2, ••• ), (1/0, 1/1, 1/2, ••• ») L ~n1/n*. 
n=O 

Problem 6. If 0 < I a I < 1, and if 

fk = (1 a k a 2k aSk ••• ) . "" , k = 1,2,3, "', 

determine the span of the set of all Ns in l2. Generalize (to other col
lections of vectors), and specialize (to finite-dimensional spaces). 

7. Approximate bases. 

Problem 7. If leI, e2, ea, ... } is an orthonormal basis for a Hilbert 
space H, and if {fl, f2, h, ... I is an orthonormal set in H such that 

00 

L II ej - h W < 00, 

j=I 

then the vectors h span H (and hence form an orthonormal basis for H) . 
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This is a hard one. There are many problems of this type; the first 
one is apparently due to Paley and Wiener. For a related exposition, 
and detailed references, see Riesz-Nagy [1952, No. 86J. The version 
above is discussed by Birkhoff-Rota [1960J. 

8. Vector sums. If M and N are orthogonal subspaces of a Hilbert 
space, then M + N is closed (and therefore M + N = M v N). Orthog
onality may be too strong an assumption, but it is sufficient to ensure 
the conclusion. It is known that something is necessary; if no additional 
assumptions are made, then M + N need not be closed (see Halmos 
[1951, p. 28J, and Problem 41 below). Here is the conclusion under 
another very strong but frequently usable additional assumption. 

Problem 8. If M is a finite-dimensional linear manifold in a 
Hilbert space H, and ifN is a subspace (a closed linear manifold) in 
H, then the vector sum M + N is necessarily closed (and is therefore 
equal to the span M v N) . 

The result has the corollary (which it is also easy to prove directly) 
that every finite-dimensional linear manifold is closed; just put N = {O}. 

9. Lattice of subspaces. The collection of all subspaces of a Hilbert 
space is a lattice. This means that the collection is partially ordered 
(by inclusion), and that any two elements M and N of it have a least 
upper bound or supremum (namely the span M v N) and a greatest 
lower bound or infimum (namely the intersection M n N). A lattice is 
called distributive if (in the notation appropriate to subspaces) 

Ln (MvN) = (LnM) v (LnN) 

identically in L, M, and N. 
There is a weakening of this distributivity condition, called mod

ularity; a lattice is called modular if the distributive law, as written 
above, holds at least when N c L. In that case, of course, L n N = N, 
and the identity becomes 

Ln (MvN) (LnM) vN 

(with the proviso N c L still in force). 
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Since a Hilbert space is geometrically indistinguishable from any other 
Hilbert space of the same dimension, it is clear that the modularity or 
distributivity of its lattice of subspaces can depend on its dimension 
only. 

Problem 9. For which cardinal numbers m is the lattice of subspaces 
of a Hilbert space of dimension m modular? distributive? 

10. Local compactness and dimension. Many global topological 
questions are easy to answer for Hilbert space. The answers either are 
a simple yes or no, or depend on the dimension. Thus, for instance, 
every Hilbert space is connected, but a Hilbert space is compact if and 
only if it is the trivial space with dimension O. The same sort of problem 
could be posed backwards: given some information about the dimension 
of a Hilbert space (e.g., that it is finite), find topological properties that 
distinguish such a space from Hilbert spaces of all other dimensions. 
Such problems sometimes have useful and elegant solutions. 

Problem 10. A Hilbert space is locally compact if and only if it is 
finite-dimensional. 

11. Separability and dimension. 

Problem 11. A Hilbert space H 'ts separable if and only if 
dimH ~ ~o. 

12. Measure in Hilbert space. Infinite-dimensional Hilbert spaces 
are properly regarded as the most successful infinite-dimensional generali
zations of finite-dimensional Euclidean spaces. Finite-dimensional Eu
clidean spaces have, in addition to their algebraic and topological 
structure, a measure; it might be useful to generalize that too to infinite 
dimensions. Various attempts have been made to do so (see L6wner 
[1939J and Segal [1965J). The unsophisticated approach is to seek a 
countably additive set function IJ. defined on (at least) the collection 
of all Borel sets (the u-field generated by the open sets), so that 
o ~ IJ.(M) ~ 00 for all Borel sets M. (Warning: the parenthetical 
definition of Borel sets in the preceding sentence is not the same as the 
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one in Halmos [1950 b].) In order that J.L be suitably related to the 
other structure of the space, it makes sense to require that every open 
set have positive measure and that measure be invariant under trans
lation. (The second condition means that J.L(j + M) = J.L(M) for every 
vector f and for every Borel set M.) If, for now, the word "measure" is 
used to describe a set function satisfying just these conditions, then the 
following problem indicates that the unsophisticated approach is doomed 
to fail. 

Problem 12. For each measure in an infinite-dimensional Hilbert 
space, the measure of every non-empty ball is infinite. 



Chapter 2. Weak topology 

13. Weak closure of subspaces. A Hilbert space is a metric space, 
and, as such, it is a topological space. The metric topology (or norm 
topology) of a Hilbert space is often called the strong topology. A base 
for the strong topology is the collection of open balls, i.e., sets of the 
form 

If: Ilf - /0" < e}, 

where/o (the center) is a vector and e (the radius) is a positive number. 
Another topology, called the weak topology, plays an important role 

in the theory of Hilbert spaces. A subbase (not a base) for the weak 
topology is the collection of all sets of the form 

If: ICf - /0, go) I < e}. 

It follows that a base for the weak topology is the collection of all sets 
of the form 

t = 1 ... k} , , , 

where k is a positive integer, /0, gl, ... , gk are vectors, and e is a positive 
number. 

Facts about these topologies are described by the grammatically 
appropriate use of "weak" and "strong". Thus, for instance, a function 
may be described as weakly continuous, or a sequence as strongly 
convergent; the meanings of such phrases should be obvious. The use of 
a topological word without a modifier always refers to the strong to
pology; this convention has already been observed in the preceding 
problems. 

Whenever a set is endowed with a topology, many technical questions 
automatically demand attention. (Which separation axioms does the 
space satisfy? Is it compact? Is it connected?) If a large class of sets is 
in sight (for example, the class of all Hilbert spaces), then classification 
problems arise. (Which ones are locally compact? Which ones are 

10 
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separable?) If the set (or sets) already had some structure, the con
nection between the old structure and the new topology should be 
investigated. (Is the closed unit ball compact? Are inner products 
continuous?) If, finally, more than one topology is considered, then the 
relations of the topologies to one another must be clarified. (Is a weakly 
compact set strongly closed?) Most such questions, though natural, 
and, in fact, unavoidable, are not likely to be inspiring; for that reason 
most such questions do not appear below. The questions that do appear 
justify their appearance by some (perhaps subjective) test, such as a 
surprising answer, a tricky proof, or an important application. 

Problem 13. Every weakly closed set is strongly closed, but the 
converse is not true. Nevertheless every subspace of a Hilbert space 
(i.e., every strongly closed linear manifold) is weakly closed. 

14. Weak continuity of norm and inner product. For each fixed 
vector g, the functionj ~ (j,g) is weakly continuous; this is practically 
the definition of the weak topology. (A sequence, or a net, {fn} is 
weakly convergent to j if and only if (jn,g) ~ (j,g) for each g.) This, 
together with the (Hermitian) symmetry of the inner product, implies 
that, for each fixed vectorj, the function g ~ (j,g) is weakly continuous. 
These two assertions between them say that the mapping from ordered 
pairs (j,g) to their inner product (j,g) is separately weakly continuous 
in each of its two variables. 

It is natural to ask whether the mapping is weakly continuous jointly 
in its two variables, but it is easy to see that the answer is no. A counter
example has already been seen, in Solution 13; it was used there for a 
slightly different purpose. If {el, e2, ea, ••• } is an orthonormal sequence, 
then en ~ 0 (weak), but (en,cn ) = 1 for all n. This example shows at 
the same time that the norm is not weakly continuous. It could, in fact, 
be said that the possible discontinuity of the norm is the only difference 
between weak convergence and strong convergence: a weakly convergent 
sequence (or net) on which the norm behaves itself is automatically 
strongly convergent. 

Problem 14. Ij jn ~ j (weak) and II in II ~ II! II, then in ~ i 
(strong) . 
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15. Weak separability. Since the strong closure of every set is in
cluded in its weak closure (see Solution 13), it follows that if a Hilbert 
space is separable (that is, strongly separable), then it is weakly sepa
rable. What about the converse? 

Problem 15. Is every weakly separable Hilbert space separable? 

16. Uniform weak convergence. 

Problem 16. Strong convergence is the same as weak convergence 
uniformly on the unit sphere. Precisely: Ilfn - f II ~ 0 if and only if 
(jn,g) ~ (j,g) uniformly for /I g /I = 1. 

17. Weak compactness of the unit ball. 

Problem 17. The closed unit ball in a Hilbert space is weakly 
compact. 

The result is sometimes known as the Tychonoff-Alaoglu theorem. 
It is as hard as it is important. It is very important. 

18. Weak metrizability of the unit ball. Compactness is good, but 
even compact sets are better if they are metric. Once the unit ball is 
known to be weakly compact, it is natural to ask if it is weakly metrizable 
also. 

Problem 18. Is the weak topology of the unit ball in a separable 
Hilbert space metrizable? 

19. Weak metrizability and separability. 

Problem 19. If the weak topology of the unit ball in a Hilbert space 
His metrizable, must H be separable? 

20. Uniform boundedness. The celebrated "principle of uniform 
boundedness" (true for all Banach spaces) is the assertion that a point
wise bounded collection of bounded linear functionals is bounded. The 
assumption and the conclusion can be expressed in the terminology 
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appropriate to a Hilbert space H, as follows. The assumption of pointwise 
boundedness for a subset T of H could also be called weak boundedness; 
it means that for eachfin H there exists a positive constant a(j) such 
that I (j,g) I ~ a(j) for aU g in T. The desired conclusion means that 
there exists a positive constant (3 such that I (j,g) I ~ (3llfll for allf 
in H and all g in T; this conclusion is equivalent to II g II ~ (3 for all g in 
T. It is clear that every bounded subset of a Hilbert space is weakly 
bounded. The principle of uniform boundedness (for vectors in a 
Hilbert space) is the converse: every weakly bounded set is bounded. 
The proof of the general principle is a mildly involved category argu
ment. A standard reference for a general treatment of the principle 
of uniform boundedness is Dunford-Schwartz [1958, p. 49]. 

Problem 20. Find an elementary proof of the principle of uniform 
boundedness for Hilbert space. 

(In this context a proof is "elementary" if it does not use the Baire 
category theorem.) 

A frequently used corollary of the principle of uniform boundedness 
is the assertion that a weakly convergent sequence must be bounded. 
The proof is completely elementary: since convergent sequences of 
numbers are bounded, it follows that a weakly convergent sequence of 
vectors is weakly bounded. Nothing like this is true for nets, of course. 
One easy generalization of the sequence result that is available is that 
every weakly compc.ct set is bounded. Reason: for each f, the map 
g ~ (f,g) sends the g's in a weakly compact set onto a compact and 
therefore bounded set of numbers, so that a weakly compact set is 
weakly bounded. 

21. Weak metrizability of Hilbert space. Some of the preceding 
results, notably the weak compactness of the unit ball and the principle 
of uniform boundedness, show that for bounded sets the weak topology 
is well behaved. For unbounded sets it is not. 

Problem 21. The weak topology of an infinite-dimensional Hilbert 
space is not metrizable. 

The shortest proof of this is tricky. 
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22. Linear functionals on 12. If 

then 

The following assertion is a kind of converse; it says that 12 sequences 
are the only ones whose product with every 12 sequence is in II. 

Problem 22. Ij Ln 1 cxnf3n I < OC) whenever Ln 1 CXn 12 < OC), then 
Ln 1 f3n /2 < oc). 

23. Weak completeness. A sequence 19n} of vectors in a Hilbert 
space is a weak Cauchy sequence if (surely this definition is guessable) 
the numerical sequence I (j,gn) I is a Cauchy sequence for each j in the 
space. Weak Cauchy nets are defined exactly the same way: just replace 
"sequence" by "net" throughout. To say of a Hilbert space, or a subset 
of one, that it is weakly complete means that every weak Cauchy net has 
a weak limit (in the set under consideration). If the conclusion is known 
to hold for sequences only, the space is called sequentially weakly complete. 

Problem 23. (a) No infinite-dimensional Hilbert space is weakly 
complete. (b) W hich Hilbert spaces are sequentially weakly complete? 



Chapter 3. Analytic functions 

24. Analytic Hilbert spaces. Analytic functions enter Hilbert space 
theory in several ways; one of their roles is to provide illuminating 
examples. The typical way to construct these examples is to consider a 
region D ("region" means a non-empty open connected subset of the 
complex plane), let J.L be planar Lebesgue measure in D, and let A2(D) 
be the set of all complex-valued functions that are analytic throughout 
D and square-integrable with respect to J.L. The most important special 
case is the one in which D is the open unit disc, D = {z: I z I < 1}; the 
corresponding function space will be denoted simply by A2. No matter 
what D is, the set A2(D) is a vector space with respect to pointwise 
addition and scalar multiplication. It is also an inner-product space with 
respect to the inner product defined by 

(j,g) = f j(z)g(z) *dJ.L(z). 
D 

Problem 24. Is the space A2(D) of square-integrable analytic func
tions on a region D a Hilbert space, or does it have to be completed 
before it becomes one? 

25. Basis for A 2. 

Problem 25. If en(z) = v(n + 1)j1r·zn for I z I < 1 and 
n = 0, 1, 2, ... , then the en's form an orthonormal basis for A2. If 
f E A2, 'With Taylor series L~=o anZn, then an = V (n + 1) /11" (j,en) 
for n = 0, 1, 2, .... 

26. Real functions in H2. Except for size (dimension) one Hilbert 
space is very like another. To make a Hilbert space more interesting 
than its neighbors, it is necessary to enrich it by the addition of some 
external structure. Thus, for instance, the spaces A2(D) are of interest 
because of the analytic properties of their elements. Another important 

15 
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Hilbert space, known as HZ (H is for Hardy this time), endowed with 
some structure not usually found in a Hilbert space, is defined as follows. 

Let C be the unit circle (that means circumference) in the complex 
plane, C = {z: 1 z 1 = 1}, and let p. be Lebesgue measure (the extension 
of arc length) on the Borel sets of C, normalized so that p. (C) = 1 
(instead of p.(C) = 211"). If c,,(z) = Zl1 for 1 z 1 = 1 (n = 0, ±1, ±2, ... ), 
then, by elementary calculus, the functions en form an orthonormal set 
in V(p.); it is an easy consequence of standard approximation theorems 
( e.g., the Weierstrass theorem on approximation by polynomials) that 
the en's form an orthonormal basis for V. (Finite linear combinations 
of the e,,'s are called trigonometric polynomials.) The space H2 is, by 
definition, the subspace of V spanned by the cn's with It ~ 0; equiva
lently HZ is the orthogonal complement in V of {Cl' e_2, e_3, ... }. 
A related space, playing a role dual to that of H2, is the span of the en's 
with n ~ 0; it will be denoted by H2*. 

Fourier expansions with respect to the orthonormal basis {en: n = 
0, ±1, ±2, ... } are formally similar to the Laurent expansions that 
occur in analytic function theory. The analogy motivates calling the 
functions in H2 the analytic elements of V; the elements of H2* are 
called co-analytic. A subset of H2 (a linear manifold but not a subspace) 
of considerable technical significance is the set Hoo of bounded functions 
in H2; equivalently, Hoo is the set of all those functions in V" for which 
ffcn*dp. = 0 (n = -1, -2, -3, ···).SimilarlyHlisthesetofall 
those elements f of V for which these same equations hold. What gives 
HI, HZ, and Heo their special flavor is the structure of the semigroup of 
non-negative integers within the additive group of all integers. 

It is customary to speak of the elements of spaces such as HI, H2, and 
Hoo as functions, and this custom was followed in the preceding para
graph. The custom is not likely to lead its user astray, as long as the 
qualification Halmost everywhere" is kept in mind at all times. Thus 
Hbounded" means "essentially bounded", and, similarly, all statements 
such as ''1 = 0" or ''1 is real" or "I f 1 = 1" are to be interpreted, when 
asserted, as holding almost everywhere. 

Some authors define the Hardy spaces so as to make them honest 
function spaces (consisting of functions analytic on the unit disc). In 
that approach (see Problem 28) the almost everywhere difficulties are 
still present, but they are pushed elsewhere; they appear in questions 
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(which must be asked and answered) about the limiting behavior of the 
functions on the boundary. 

Independently of the approach used to study them, the functions in 
H2 are anxious to behave like analytic functions. The following statement 
is evidence in that direction. 

Problem 26. If f is a real function in H2, then f is a constant. 

27. Products in H2. The deepest statements about the Hardy spaces 
have to do with their multiplicative structure. The following one is an 
easily accessible sample. 

Problem 27. The product of two functions in H2 is in HI. 

A kind of converse of this statement is true: it says that every function 
in HI is the product of two functions in H2. (See Hoffman [1962, p. 52].) 
The direct statement is more useful in Hilbert space theory than the 
converse, and the techniques used in the proof of the direct statement 
are nearer to the ones appropriate to this book. 

28. Analytic characterization of H2. Iff E H2, with Fourier expansion 
f = L:~=o anen , then L:~=o / an /2 < 00, and therefore the radius of 
convergence of the power series L:~=o an2zn is greater than or equal to 1. 
It follows from the usual expression for the radius of convergence in 
terms of the coefficients that the power series L:~=o anzn defines an 
analyticfunctionJin the open unit discD. Themappingf ~ J (obviously 
linear) establishes a one-to-one correspondence between H2 and the set 
H2 of those functions analytic in D whose series of Taylor coefficients is 
square-summable. 

Problem 28. If cP is an analytic function in the open unit disc, 
cp(z) = L:~=o anZn , and if CPr(z) = cp(rz) for 0 < r < 1 and I z I = 1, 
then cpr E H2 for each r; the series L:~=o / an /2 converges if and only if 
the norms II cpr II are bounded. 

Many authors define H2 to be H2; for them, that is, H2 consists of 
analytic functions in the unit disc with square-summable Taylor series, 
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or, equivalently, with bounded concentric V norms. If q; and l/; are 
two such functions, with ip(z) = L::'=o anZn and l/;(z) = L~'FO (3nzn, 
then the inner product (ip,l/;) is defined to be L~=o an(3n *. In view of 
the one-to-one correspondence f ~ J between H2 and R2, it all comes to 
the same thing. If f e H2, its image J in R2 may be spoken of as the 
extension of f into the interior (d. Solution 32). Since Heo is included in 
H2, this concept makes sense for elements of HCD also; the set of all their 
extensions will be denoted by Reo. 

29. Functional Hilbert spaces. Many of the popular examples of 
Hilbert spaces are called function spaces, but they are not. If a measure 
space has a non-empty set of measure zero (and this is usually the case), 
then the V space over it consists not of functions, but of equivalence 
classes of functions modulo sets of measure zero, and there is no natural 
way to identify such equivalence classes with representative elements. 
There is, however, a class of examples of Hilbert spaces whose elements 
are bona fide functions; they will be called functional Hilbert spaces. 
Afunctional Hilbert space is a Hilbert space H of complex-valued func
tions on a (non-empty) set X; the Hilbert space structure of H is 
related to X in two ways (the only two natural ways it could be). 
It is required that (1) if f and g are in H and if a and (3 are scalars, 
then (af + (3g) (x) = af(x) + (3g(x) for each x in X, i.e., the evaluation 
fundionals on H are linear, and (2) to each x in X there corresponds a 
positive constant lX, such that If(x)i ~ 'Yx iifll for allfin H, i.e., the 
evaluation functionals on H are bounded. The usual sequence spaces are 
trivial examples of functional Hilbert spaces (whether the length of the 
sequences is finite or infinite) ; the role of X is played by the index set. 
More typical examples of functional Hilbert spaces are the spaces A2 
and R2 of analytic functions. 

There is a trivial way of representing every Hilbert space as a func
tional one. Given H, write X = H, and let H be the set of all those 
functions f on X (= H) that are bounded conjugate-linear functionals. 
There is a natural correspondence f ~ J from H to R, defined by J(g) = 
(j,g) for all g in X. By the Riesz representation theorem the corre
spondence is one-to-one; since (f,g) depends linearly on f, the corre
spondence is linear. Write, by definition, (J,g) = (f,g) (whence, in 
particular, II J II = Ilf II); it follows that R is a Hilbert space. Since 
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IU(g)1 I (f,g) I ~ IIfll·IIgll = IIJII·IIgll, it follows that H is a 
functional Hilbert space. The correspondence f ~ J between Hand H 
is a Hilbert space isomorphism. 

Problem 29. Give an example of a Hilbert space of functions such 
that the vector operations are pointwise, but not all the evaluation 
functionals are bounded. 

An early and still useful reference for functional Hilbert spaces is 
Aronszajn [1950]. 

30. Kernel functions. If H is a functional Hilbert space, over 
X say, then the linear functionalf ~ fey) on H is bounded for each y 
in X, and, consequently, there exists, for each y in X, an element KII of 
H such thatf(y) = (j,KII ) for all]. The function K on X X X, defined 
by K (x,y) = KlI (x), is called the kernel function or the reproducing 
kernel of H. 

Problem 30. If {ejl is an orthonormal basis for a functional 
Hilbert space H, then the kernel function K of H is given by 

K(x,y) = 2::ei(x)ej(Y)*. 
j 

What are the kernel functions of A2 and of H2? 

The kernel functions of A2 and of :H2 are known, respectively, as the 
Bergman kernel and the Szeg6 kernel. 

31. Continuity of extension. 

Problem 31. The extension mapping f ~ J (from HZ to :H2) is 
continuous not only in the Hilbert space sense, but also in the sense 
appropriate to analytic functions. That is: if fn ~ f in H2, then 
In(Z) ~ J(z) for I Z I < 1, and, in fact, the convergence is uniform 
on each disc {z: I z I ~ r \, 0 < r < 1. 

32. Radial limits. 
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Problem 32. If an element f of H2 is such that the corresponding 
analytic function J in H2 is bounded, then f is bounded, (i.e., f I: Hoo). 

33. Bounded approximation. 

Problem 33. If f f Hoo, does it follow that J is bounded? 

34. Multiplicativity of extension. 

Problem 34. Is the mapping f ~ J multiplicative? 

35. Dirichlet problem. 

Problem 35. To each real function u in V there corresponds a 
unique real function v in V such that (v,eo) = 0 and such that 
u + iv I: H2. Equivalently, to each u in V there corresponds a unique 
fin H2 such that (f,eo) is real and such that Re f = u. 

20 

The relation between u and v is expressed by saying that they are 
conjugate functions; alternatively, v is the Hilbert transform of u. 



Chapter 4. Infinite matrices 

36. Column-finite matrices. Many problems about operators on 
finite-dimensional spaces can be solved with the aid of matrices; matrices 
reduce qualitative geometric statements to explicit algebraic compu
tations. Not much of matrix theory carries over to infinite-dimensional 
spaces, and what does is not so useful, but it sometimes helps. 

Suppose that I ej} is an orthonormal basis for a Hilbert space H. 
If A is an operator on H, then each Aej has a Fourier expansion, 

the entries of the matrix that arises this way are given by 

The index set is arbitrary here; it does not necessarily consist of positive 
integers. Familiar words (such as row, column, diagonal) can neverthe
less be used in their familiar senses. Note that if, as usual, the first index 
indicates rows and the second one columns, then the matrix is formed 
by writing the coefficients in the expansion of Aej as thej column. 

The correspondence from operators to matrices (induced by a fixed 
basis) has the usual algebraic properties. The zero matrix and the unit 
matrix are what they ought to be, the linear operations on matrices are 
the obvious ones, adjoint corresponds to conjugate transpose, and 
operator multiplication corresponds to the matrix product defined by 
the familiar formula 

Yij = L a-ik13kj· 
k 

There are several ways of showing that these sums do not run into 
convergence trouble; here is one. Since aik = (ek,A *ei) , it follows that 
for each fixed i the family {ai,.) is square-summable; since, similarly, 
Ski = (Beih) , it follows that for each fixedj the family {13kj} is square-

21 
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summable. Conclusion (via the Schwarz inequality) : for fixed i and j 
the family {aik{1kj} is (absolutely) summable. 

It follows from the preceding paragraph that each row and each 
column of the matrix of each operator is square-summable. These are 
necessary conditions on a matrix in order that it arise from an operator; 
they are not sufficient. (Example: the diagonal matrix whose n-th 
diagonal term is n.) A sufficient condition of the same kind is that the 
family of all entries be square-summable; if, that is, LiL; I (Xi; 12 < 00, 

then there exists an operator A such that ai; = (Aej,ei). (Proof: since 
I L; aiiCf,ej) 12 ~ Lj I (Xii 12·llf W for each i and eachf, it follows that 
II Li( L; aij(j,ej) )ei W ~ LiLj 1 aij 12.11 f 1\2.) This condition is not 
necessary. (Example: the unit matrix.) There are no elegant and usable 
necessary and sufficient conditions. It is perfectly possible, of course, 
to write down in matricial terms the condition that a linear transfor
mation is everywhere defined and bounded, but the result is neither 
elegant nor usable. This is the first significant way in which infinite 
matrix theory differs from the finite version: every operator corresponds 
to a matrix, but not every matrix corresponds to an operator, and it is 
hard to say which ones do. 

As long as there is a fixed basis in the background, the correspondence 
from operators to matrices is one-to-one; as soon as the basis is allowed 
to vary, one operator maybe assigned many matrices. An enticing game 
is to choose the basis so as to make the matrix as simple as possible. 
Here is a sample theorem, striking but less useful than it looks. 

Problem 36. Every operator has a column-finite matrix. More 
precisely, if A is an operator on a Hilbert space H, then there exists an 
orthonormal basis {ej} for H such that, for each j, the matrix entry 
(Aej,ei) vanishes for all but finitely many i's. 

Reference: Toeplitz [1910]. 

37. Schur test. While the algebra of iniinite matrices is more or less 
reasonable, the analysis is not. Questions about norms and spectra are 
likely to be recalcitrant. Each of the few answers that is known is con
sidered a respectable mathematical accomplishment. The following result 
(due in substance to Schur) is an example. 
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Problem 37. If aij ~ 0 (i,j = 0,1,2, ... ), if Pi> 0 (i = 0, 
1, 2, ... ), and if t3 and 'Yare positive numbers such that 

L aijpj ~ 'YPi 
j 

()' = 0 1 2 ... ) , " , 

(i = 0 1 2 ... ) , " , 

then there exists an operator A (on a separable infinite-dimensional 
Hilbert space, of course) with II A W ~ t3'Y and with matrix (aij) 
(with respect to a suitable orthonormal basis). 

For a related result, and a pertinent reference, see Problem 135. 

38. Hilbert matrix. 

Problem 38. There exists an operator A (on a separable infinite
dimensional Hilbert space) with II A II ~ 7r and with matrix 
(l/(i + j + 1» (i,j = 0,1,2, ... ). 

38 

The matrix is named after Hilbert; the norm of the matrix is in fact 
equal to 7r (Hardy-Littlewood-P6Iya [1934, p. 226J). 



Chapter 5. 
Boundedness and invertibility 

39. Boundedness on bases. Boundedness is a useful and natural 
condition, but it is a very strong condition on a linear transformation. 
The condition has a profound effect throughout operator theory, from 
its mildest algebraic aspects to its most complicated topological ones. 
To avoid certain obvious mistakes, it is important to know that bounded
ness is more than just the conjunction of an infinite number of conditions, 
one for each element of a basis. If A is an operator on a Hilbert space H 
with an orthonormal basis {el' e2, e3, .•. }, then the numbers II Aen II 
are bounded; if, for instance, II A II ~ 1, then II Aen II ~ 1 for all n; 
and, of course, if A = 0, then Aen = 0 for all n. The obvious mistakes 
just mentioned are based on the assumption that the converses of these 
assertions are true. 

Problem 39. Give an example of an unbounded linear transfor
mation that is bounded on a basis; give examples of operators of arbi
trarily large norms that are bounded by 1 on a basis; and give an 
example of an unbounded linear transformation that annihilates a basis. 

40. Uniform boundedness of linear transformations. Sometimes 
linear transformations between two Hilbert spaces playa role even when 
the center of the stage is occupied by operators on one Hilbert space. 
Much of the two-space theory is an easy adaptation of the one-space 
theory. 

If Hand K are Hilbert spaces, a linear transformation A from H 
into K is bounded if there exists a positive number ex such that II Af II ~ 
ex II f II for all f in H; the norm of A, in symbols II A II, is the intimum 
of all such values of ex. Given a bounded linear transformation A, the 
inner product (Af,g) makes sense whenever f is in Hand g is in K; the 
inner product is formed in K. For fixed g the inner product defines a 
bounded linear functional of f, and, consequently, it is identically equal 
to (f,g) for some g in H. The mapping from g to g is the adjoint of A ; 
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it is a bounded linear transformation A * from K into H. By definition 

(Af,g) = (j,A *[) 

whenever f E Hand g E K; here the left inner product is formed in K and 
the right one in H. The algebraic properties of this kind of adjoint can 
be stated and proved the same way as for the classical kind. An es
pecially important (but no less easily proved) connection between A 
and A * is that the orthogonal complement of the range of A is equal to 
the kernel of A *; since A ** = A, this assertion remains true with A 
and A * interchanged. 

All these algebraic statements are trivialities; the generalization of 
the principle of uniform boundedness from linear functionals to linear 
transformations is somewhat subtler. The generalization can be formu
lated almost exactly the same way as the special case: a pointwise 
bounded collection of bounded linear transformations is uniformly 
bounded. The assumption of pointwise boundedness can be formulated 
in a "weak" manner and a "strong" one. A set Q of linear transformations 
(from H into K) is weakly bounded if for each fin H and each g in K 
there exists a positive constant a (j,g) such that I (Af,g) I ~ a(j,g) for all 
A in Q. The set Q is strongly bounded if for each fin H there exists a 
positive constant (3(j) such that II Af II ~ (3(j) for all A in Q. It is 
clear that every bounded set is strongly bounded and every strongly 
bounded set is weakly bounded. The principle of uniform boundedness 
for linear transformations is the best possible converse. 

Problem 40. Every weakly bounded set of bounded linear trans
formations is bounded. 

41. Invertible transformations. A bounded linear transformation 
A from a Hilbert space H to a Hilbert space K is invertible if there 
exists a bounded linear transformation B (from K into H) such that 
AB = 1 (= the identity operator on K) and BA = 1 (= the identity 
operator on H). If A is invertible, then A is a one-to-one mapping of H 
onto K. In the sense of pure set theory the converse is true: if A maps 
H one-to-one onto K, then there exists a unique mapping A -1 from K 
to H such that AA-l = 1 and A-IA = 1; the mapping A-l is linear. 
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It is not obvious, however, that the linear transformation A -1 must be 
bounded; it is conceivable that A could be invertible as a set-theoretic 
mapping but not invertible as an operator. To guarantee that A -1 is 
bounded it is customary to strengthen the condition that A be one-to
one. The proper strengthening is to require that A be bounded from 
below, i.e., that there exist a positive number 8 such that II Af II ~ 8 II f II 
for every fin H. (It is trivial to verify that if A is bounded from below, 
then A is indeed one-to-one.) If that strengthened condition is satisfied, 
then the other usual condition (onto) can be weakened: the requirement 
that the range of A be equal to K can be replaced by the requirement 
that the range of A be dense in K. In sum: A is invertible if and only 
if it is bounded from below and has a dense range (see Halmos [1951, 
p. 38J). Observe that the linear transformations A and A * are in
vertible together; if they are invertible, then each of A-1 and A *-1 is 
the adjoint of the other. 

It is perhaps worth a short digression to discuss the possibility of the 
range of an operator not being closed, and its consequences. If, for in
stance, A is defined on {2 by A (~1, ~2, ~3, ... ) = (~l, Hz, Hz, ... ), then 
the range of A consists of all vectors 

(7]1, 7]z, 7]3, ••• ) with L n21 1)" 12 < 00. 

TO 

Since this range contains all finitely non-zero sequences, it is dense in l2; 
since, however, it does not contain the sequence (1, t, }, ... ), it is not 
closed. Another example: for f in 12(0,1), define (Af) (x) = xf(x). 
These operators are, of course, not bounded from below; if they were, 
their ranges would be closed. 

Operators with non-closed ranges can be used to give a very simple 
example of two subspaces whose vector sum is not closed; d. Halmos 
[1951, p. 110]. Let A be an operator on a Hilbert space H; the con
struction itself takes place in the direct sum H $ H. Let M be the 
"x-axis", i.e., the set of all vectors (in H $ H) of the form (f,0), and 
let N be the "graph" of A, i.e., the set of all vectors of the form (f,Af). 
It is trivial to verify that both M and N are subspaces of H $ H. When 
does (f,g) belong to M + N? The answer is if and only if it has the 
form (u,O) + (v,Av) = (u + v,Av); since u and v are arbitrary, a 
vector in H $ H has that form if and only if its second coordinate 
belongs to the range R of the operator A. (In other words, M + N = 
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H EB R) Is M + N closed? This means: if (jn,gn) ~ (j,g), where 
fn € Hand gn € R, does it follow that f € H? (trivially yes), and does it 
follow that g € R? (possibly no) . Conclusion: M + N is closed in H EB H 
if and only if R is closed in H. Since A can be chosen so that R is not 
closed, the vector sum of two subspaces need not be closed either. 

The theorems and the examples seem to indicate that set-theoretic 
invertibility and operatorial invertibility are indeed distinct; it is one 
of the pleasantest and most useful facts about operator theory that they 
are the same after all. 

Problem 41. If Hand K are Hilbert spaces, and if A is a bounded 
linear transformation that maps H one-lo-one onto K, then A is 
invertible. 

The corresponding statement about Banach spaces is usually proved 
by means of the Baire category theorem. 

42. Preservation of dimension. An important question about 
operators is what do they do to the geometry of the underlying space. 
It is familiar from the study of finite-dimensional vector spaces that a 
linear transformation can lower dimension: the transformation 0, for an 
extreme example, collapses every space to a O-dimensional one. If, 
however, a linear transformation on a finite-dimensional vector space 
is one-to-one (i.e., its kernel is to}), then it cannot lower dimension; 
since the same can be said about the inverse transformation (from the 
range back to the domain), it follows that dimension is preserved. The 
following assertion is, in a sense, the generalization of this finite-dimen
sional result to arbitrary Hilbert spaces. 

Problem 42. If there exists a one-to-one bounded linear transfor
mation from a Hilbert space H into a Hilbert space K, then dim H ~ 
dim K. If the image of H is dense in K, then equality holds. 

43. Projections of equal rank. 

Problem 43. If P and Q are projections such that II P - Q II < 1, 
then P and Q have the same rank. 

This is a special case of Problem 101. 
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44. Closed graph theorem. The graph of a linear transformation A 
(not necessarily bounded) between inner product spaces Hand K (not 
necessarily complete) is the set of all those ordered pairs (f,g) (elements 
of H EB K) for which Af = g. (The terminology is standard. It is curious 
that it should be so, but it is. According to a widely adopted approach to 
the foundations of mathematics, a function, by definition, is a set of 
ordered pairs satisfying a certain univalence condition. According to 
that approach, the graph of A is A, and it is hard to see what is ac
complished by giving it another name. Nevertheless most mathema
ticians cheerfully accept the unnecessary word; at the very least it serves 
as a warning that the same object is about to be viewed from a different 
angle.) A linear transformation is called closed if its graph is a closed set. 

Problem 44. A linear transformation from a Hilbert space into a 
Hilbert space is closed if and only if it is bounded. 

The assertion is known as the closed graph theorem for Hilbert spaces; 
its proof for Banach spaces is usually based on a category argument 
(Dunford-Schwartz [1958, p. 57J). The theorem does not make the 
subject of closed but unbounded linear transformations trivial. Such 
transformations occur frequently in the applications of functional analy
sis; what the closed graph theorem says is that they can occur on in
complete inner-product spaces only (or non-closed linear manifolds in 
Hilbert spaces) . 

45. Unbounded symmetric transformations. A linear transformation 
A (not necessarily bounded) on an inner-product space H (not neces
sarily complete) is called symmetric if (Af,g) = (f,Ag) for allf and g 
in H. It is advisable to use this neutral term (rather than "Hermitian" 
or "self-adjoint"), because in the customary approach to Hermitian 
operators (A = A *) boundedness is an assumption necessary for the 
very formulation of the definition. Is there really a distinction here? 

Problem 45. (a) Is a symmetric linear transformation on an 
inner-product space H necessarily bounded? (b) What if H is a 
Hilbert space? 



Chapter 6. 
Multiplication operators 

46. Diagonal operators. Operator theory, like every other part of 
mathematics, cannot be properly studied without a large stock of con
crete examples. The purpose of several of the problems that follow is to 
build a stock of concrete operators, which can then be examined for the 
behavior of their norms, inverses, and spectra. 

Suppose, for a modest first step, that H is a Hilbert space and that 
{ej} is a family of vectors that constitute an orthonormal basis for H. 
An operator A is called a diagonal operator if Aej is a scalar multiple of 
e;, say Aej = ajej, for each j; the family {aj} may properly be called 
the diagonal of A. 
Th~ definition of a diagonal operator depends, of course, on the basis 

{ej}, but in most discussions of diagonal operators a basis is (perhaps 
tacitly) fixed in advance, and then never mentioned again. Alternatively, 
diagonal operators can be characterized in invariant terms as normal 
operators whose eigenvectors span the space. (The proof of the char
acterization is an easy exercise.) Usually diagonal operators are associ
ated with an orthonormal sequence; the emphasis is on both the cardinal 
number (~o) and the order (w) of the underlying index set. That special 
case makes possible the use of some convenient language (e.g., "the first 
element of the diagonal") and the use of some convenient techniques 
(e.g., constructions by induction). 

Problem 46. A necessary and sufficient condition that a family 
{ aj} be the diagonal of a diagonal operator is that it be bounded; if it 
is bounded, then the equations Aej = ajej uniquely determine an 
operator A, and II A II = SUpj I aj I. 

47. Multiplications on 12. Each sequence {an} of complex scalars 
'induces a linear transformation A that maps l2 into the vector space 
of all (not necessarily square-summable) sequences; by definition 
A (~l' ~2, ~3, ... ) = (al~l' a2~2, a3~3, ••• ). Half of Problem 46 implies 
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that if A is an operator (i.e., a bounded linear transformation of l2 into 
itself) , then the sequence I an} is bounded. What happens if the bounded
ness assumption on A is dropped? 

Problem 47. Can an unbounded sequence of scalars induce a 
(possibly unbounded) transformation of 12 into itself? 

The emphasis is that all12 is in the domain of the transformation, i.e., 
that if (h, ~2, ~3, ••• ) E l2, then (alh, a2~2, a3~3, ••• ) E l2. The question 
should be compared with Problem 22. That problem considered sequences 
that multiply l2 into {l (and concluded that they must belong to /2); 
this one considers sequences that multiply l2 into l2 (and asks whether 
they must belong to leo). See Problem 51 for the generalization to V. 

48. Spectrum of a diagonal operator. The set of all bounded se
quences I an I of complex numbers is an algebra (pointwise operations) , 
with unit (an = 1 for all n), with a conjugation (Ian} - lan*}), and 
with a norm (III an} II = supn I an I). A bounded sequence I an} will be 
called invertible if it has an inverse in this algebra, i.e., if there exists a 
bounded sequence I~n} such that an~n = 1 for all n. A necessary and 
sufficient condition for this to happen is that I an} be bounded away 
from 0, i.e., that there exist a positive number 0 such that I an I ~ 0 
for all n. 

If H is a Hilbert space with an orthonormal basis I en}, then it is 
easy to verify that the correspondence I an} - A, where A is the operator 
on H such that Aen = anen for all n, is an isomorphism (an embedding) 
of the sequence algebra into the algebra of operators on H. The corre
spondence preserves not only the familiar algebraic operations, but also 
conjugation; that is, if Ian} - A, then lan*} - A *. The correspondence 
preserves the norm also (see Problem 46). 

Problem 48. A diagonal operator with diagonal I an I is an in
vertible operator if and only if the sequence I an} is an invertible se
quence. Consequence: the spectrum of a diagonal operator is the closure 
of the set of its diagonal terms. 

The result has the following useful corollary: every non-empty compact 
subset of the complex plane is the spectrum of some operator (and, in 
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fact, of some diagonal operator). Proof: find a sequence of complex 
numbers dense in the prescribed compact set, and form a diagonal 
operator with that sequence as its diagonal. 

49. Norm of a multiplication. Diagonal operators are special cases 
of a general measure-theoretic construction. Suppose that X is a measure 
space with measure J.!.. If ip is a complex-valued bounded (i.e., essentially 
bounded) measurable function on X, then the multiplication operator 
(or just multiplication, for short) induced by ip is the operator A on 
V(J.!.) defined by 

(Af) (x) = ip(x)f(x) 

for all x in X. (Here, as elsewhere in measure theory, two functions are 
identified if they differ on a set of measure zero only. This applies to 
the bounded ip'S as well as to the square-integrable !'s.) If X is the set 
of all positive integers and J.!. is the counting measure (the measure of 
every set is the number of elements in it), then multiplication operators 
reduce to diagonal operators. 

Problem 49. What, in terms of the multiplier ip, is the norm of 
the multiplication induced by ip? 

50. Boundedness of multipliers. Much of the theory of diagonal 
operators extends to multiplication operators on measure spaces, but the 
details become a little fussy at times. A sample is the generalization of 
the assertion that if a sequence is the diagonal of a diagonal operator, 
then it is bounded. 

Problem 50. If an operator A on V (for a o--ftnite measure) is 
such that Af = ip·f for all f in V (for some function ip), then ip is 
measurable and bounded. 

51. Boundedness of multiplications. Each complex-valued meas
urable function ip induces a linear transformation A that maps V into 
the vector space of all (not necessarily square-integrable) measurable 
functions; by definition (Ai) (x) = ip(x)j(x). Half of Problem 50 
implies that if A is an operator (i.e., a bounded linear transformation of 



51 MULTIPLICATION OPERATORS 32 

V into itself), then the function rp is bounded. What happens if the 
boundedness assumption on A is dropped? 

Problem 51. Can an unbounded function induce a (possibly un
bounded) transformation of V (for a u-finite measure) into itself? 

This is the generalization to measures of Problem 47. 

52. Spectrum of a multiplication. Some parts of the theory of di
agonal operators extend to multiplication operators almost verbatim, 
as follows. The set of all bounded measurable functions (identified 
modulo sets of measure zero) is an algebra (pointwise operations), with 
unit (rp(x) = 1 for all x), with a conjugation (rp - rp*), and with a 
norm (II rp II co). A bounded measurable function is invertible if it has an 
inverse in this algebra, i.e., if there exists a bounded measurable function 
if; such that rp(x)if;(x) = 1 for almost every x. A necessary and sufficient 
condition for this to happen is that rp be bounded away from 0 almost 
everywhere, i.e., that there exist a positive number 0 such that I rp(x) I ~ 0 
for almost every x. 

The correspondence rp - A, where A is the multiplication operator 
defined by (Ai) (x) = rp(x)f(x) , is an isomorphism (an embedding) of 
the function algebra into the algebra of operators on V. The corre
spondence preserves not only the familiar algebraic operations, but also 
the conjugation; that is, if rp - A, then rp* - A *. If the measure is 
u-finite, the correspondence preserves the norm also (see Solution 49). 

The role played by the range of a sequence is played, in the general 
case, by the essential range of a function rp; by definition, that is the set 
of all complex numbers " such that for each neighborhood N of " the 
set rp-l(N) has positive measure. 

Problem 52. The multiplication operator on V (jor au-finite 
measure) induced by rp is an invertible operator if and only if rp is an 
invertible function. Consequence: the spectrum of a multiplication is 
the essential range of the multiplier. 

53. Multiplications on functional Hilbert spaces. If a function 
rp multiplies V into itself, then rp is necessarily bounded (Solution 51), 
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and therefore multiplication by <p is necessarily an operator on V. Are 
the analogues of these assertions true for functional Hilbert spaces? 

Problem 53. Suppose that H is a functional Hilbert space, over a 
set X say, and suppose that <p is a complex-valued function on X such 
that <p·f f H whenever f f H. (a) If Af = <p·f, is the linear trans
formation A bounded? (b) If Af = <p·f and if A is bounded, is the 
function <p bounded? 

54. Multipliers of functional Hilbert spaces. Suppose that H is a 
functional Hilbert space over a set X. A function <p on X is a multiplier 
of H if <p·f f H for every fin H. Solution 53 says that every multiplier 
is bounded. It is frequently interesting and important to determine all 
multipliers of a functional Hilbert space. 

For 12, the easiest infinite-dimensional space, it is easy to prove that 
a necessary and sufficient condition that a function (i.e., a sequence) 
be a multiplier is that it be bounded. In a certain sense the space l2 has 
too many multipliers: most of them do not belong to the space. 

The space A2 behaves differently: for it a necessary and sufficient 
condition that a function be a multiplier is that it be bounded and 
belong to the space. In a certain sense the space has too few multipliers: 
most of the functions in the space are not among them. 

If X is finite and if H consists of all functions on X, then the set of 
multipliers of H is neither too large nor too small: it consists exactly of 
the elements of H. Can this happen for infinite-dimensional spaces? 

Problem 54. Construct an infinite-dimensional functional Hilbert 
space H such that the multipliers of H are exactly the elements of H. 

To say that every element of H is a multiplier is the same as to say 
that H is closed under multiplication, i.e., that H is an algebra. The 
constant function 1 is a multiplier of every H; hence, to say that every 
multiplier of H belongs to H is the same as to say that 1 f H. If 1 f H, 
then, of course, the algebra H has a unit, but trivial examples show that 
the converse is not true. Thus, the construction of an infinite-dimensional 
functional Hilbert space that is an algebra with unit (under pointwise 
functional multiplication) is not quite, but almost, what the problem 
asks for. 



Chapter 7. Operator matrices 

55. Commutative operator determinants. An orthonormal basis 
serves to express a Hilbert space as the direct sum of one-dimensional 
subspaces. Some of the matrix theory associated with orthonormal bases 
deserves to be extended to more general direct sums. Suppose, to be 
specific, that H = HI EB H2 EB Ha EB .... (Uncountable direct sums 
work just as well, and finite ones even better.) If the direct sum is viewed 
as an "internal" one, so that the H/s are subspaces of H, then the ele
ments i of H are sums 

i = il + i2 + h + ... , 

with ii in Hi. If A is an operator on H, then 

Ai = Ail + Ah + Aia + .... 

Each Aii) being an element of H, has a decomposition: 

with gij in Hi. The gi/S depend, of course, on fi, and the dependence is 
linear and continuous. It follows that 

where A ii is a bounded linear transformation from Hi to Hi. The con
struction is finished: corresponding to each A on H there is a matrix 
(A ii ), whose entry in row i and column} is the projection onto the i 
component of the restriction of A to Hi. 

The correspondence from operators to matrices (induced by a fixed 
direct decomposition) has all the right algebraic properties. If A = 0, 
then Aij = 0 for all i and}; if A = 1 (on H), then Aij = 0 when i ~} 
and A ii = 1 (on Hi). The linear operations on operator matrices are 
the obvious ones. The matrix of A * is the adjoint transpose of the matrix 
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of A; that is, the matrix of A * has the entry Aji* in row i and columnj. 
The multiplication of operators corresponds to the matrix product de
fined by Lk A i,J3kj. There is no convergence trouble here, but there 
may be commutativity trouble; the order of the factors must be watched 
with care. 

The theory of operator matrices does not become trivial even if the 
number of direct summands is small (say two) and even if all the direct 
summands are identical. The following situation is the one that occurs 
most frequently: a Hilbert space H is given, the role of what was H in 
the preceding paragraph is played now by the direct sum H $ H, and 
operators on that direct sum are expressed as two-by-two matrices whose 
entries are operators on H. 

Problem 55. If A, B, C, and D are pairwise commutative oper
ators on a Hilbert space, then a necessary and sufficient condition that 
the operator matrix 

be invertible is that the formal determinant AD - BC be invertible. 

56. Operator determinants. There are many situations in which the 
invertibility of an operator matrix 

plays a central role but in which the entries are not commutative; any 
special case is worth knowing. 

Problem 56. If C and D commute, and if D is invertible, then a 
necessary and sufficient condition that 

be invertible is that AD - BC be invertible. Construct examples to 
show that if the assumption that D is invertible is dropped, then the 
condition becomes unnecessary and insufficient. 
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For finite matrices more is known (cf. Schur [1917J): if C and D 
commute, then 

and AD - BC have the same determinant. The proof for the general 
case can be arranged so as to yield this strengthened version for the 
finite-dimensional case. 

57. Operator determinants with a finite entry. If A, B, and Dare 
operators on a Hilbert space H, then the operator matrix 

M = (~ ~) 
induces (is) an operator on H ED H, and (d. Problem 56) if both A 
and D are invertible, then M is invertible. The converse (if M is in
vertible, then A and D are) is not true (see Problem 56 again). 

Operator matrices define operators on direct sums of Hilbert spaces 
whether the direct summands are identical or not. In at least one special 
case of interest the converse that was false in the preceding paragraph 
becomes true. 

Problem 57. If Hand K are Hilbert spaces, with dim H < 00, 

and if 

M = (~ ~) 
is an invertible operator on H ED K, then both A and D are invertible. 
Consequence: the spectrum of M is the union of the spectra of A and D. 

Note that A operates on H, D operates on K, and B maps K into H. 



Chapter 8. Properties of spectra 

58. Spectra and conjugation. It is often useful to ask of a point in 
the spectrum of an operator how it got there. To say that A is in the 
spectrum of A means that A - A is not invertible. The question reduces 
therefore to this: why is a non-invertible operator not invertible? There 
are several possible ways of answering the question; they have led to 
several (confusingly overlapping) classifications of spectra. 

Perhaps the simplest approach to the subject is to recall that if an 
operator is bounded from below and has a dense range, then it is in
vertible. Consequence: if A (A) is the spectrum of A, if II (A) is the set 
of complex numbers A such that A - A is not bounded from below, and 
if rCA) is the set of complex numbers A such that the closure of the 
range of A - A is a proper subspace of H (i.e., distinct from H), then 

A(A) = II(A) u rCA). 

The set II (A) is called the approximate point spectrum of A; a number 
A belongs to II (A) if and only if there exists a sequence lin I of unit 
vectors such that II (A - 'A.)fn II ~ O. An important subset of the ap
proximate point spectrum is the point spectrum IIo(A); a number A 
belongs to it if and only if there exists a unit vector f such that Af = Af 
(i.e., IIo(A) is the set of all eigenvalues of A). The set rCA) is called 
the compression spectrum of A. Schematically: think of the spectrum 
(A) as the union of two overlapping discs (II and r), one of which (II) 

is divided into two parts (llo and II - IIo) by a diameter perpendicular 
to the overlap. The result is a partition of A into five parts, each one of 
which may be sometimes present and sometimes absent. The born 
taxonomist may amuse himself by trying to see which one of the 25 

a priori possibilities is realizable, but he would be well advised to post
pone the attempt until he has seen several more examples of operators 
than have appeared in this book so far. 

This is a good opportunity to comment on a sometimes confusing 
aspect of the nomenclature of operator theory. There is something called 
the spectral theorem for normal operators (see Problem 97), and there 
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are things called spectra for all operators. The study of the latter might 
be called spectral theory, and sometimes it is. In the normal case the 
spectral theorem gives information about spectral theory, but, usually, 
that information can be bought cheaper elsewhere. Spectral theory in 
the present sense of the phrase is one of the easiest aspects of operator 
theory. 

There is no consensus on which concepts and symbols are most con
venient in this part of operator theory. Apparently every book introduces 
its own terminology, and the present one is no exception. A once popular 
approach was to divide the spectrum into three disjoint sets, namely the 
point spectrum ITo, the residual spectrum r - ITo, and the continuous 
spectrum IT - (r u ITo). (The sets IT and r may overlap; examples will 
be easy to construct a little later.) As for symbols: the spectrum is 
often IT (or ~) instead of A. 

The best way to master these concepts is, of course, through illumi
nating special examples, but a few general facts should come first; they 
help in the study of the examples. The most useful things to know are 
the relations of spectra to the algebra and topology of the complex 
plane. Perhaps the easiest algebraic questions concern conjugation. 

Problem 58. What happens to the point spectrum, the compression 
spectrum, and the approximate point spectrum when an operator is 
replaced by its adjoint? 

59. Spectral mapping theorem. An assertion such as that if A is an 
operator and p is a polynomial, then A(P(A)) = P(A(A)) (see Halmos 
[1951, p. 53J) is called a spectral mapping theorem; other instances of it 
have to do with functions other than polynomials, such as inversion, 
conjugation, and wide classes of analytic functions (Dunford-Schwartz 
[1958, p. 569J). 

Problem 59. Is the spectral mapping theorem for polynomials true 
with ITo, or IT, or r in place of A? What about the spectral mapping 
theorem jor inversion (P(s) = liz wf-um z ~ 0), applied to invertible 
operators, ulith ITo, or ll, or r? 

60. Similarity and spectrum. Two operators A and B are similar if 
there exists an invertible operator P such that P-IAP = B. 
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Problem 60. Similar operators have the same spectrum, the same 
point spectrum, the same approximate point spectrum, and the same 
compression spectrum. 

63 

61. Spectrum of a product. If A and B are operators, and if at least 
one of them is invertible, then AB and BA are similar. (For the proof, 
apply BA = A-l(AB)A in case A is invertible or AB = B-l(BA)B 
in case B is.) This implies (Problem 60) that if at least one of A and B 
is invertible, then AB and BA have the same spectrum. In the finite
dimensional case more is known: with no invertibility assumptions, AB 
and BA always have the same characteristic polynomial. If neither A 
nor B is invertible, then, in the infinite-dimensional case, the two 
products need not have the same spectrum (many examples occur 
below), but their spectra cannot differ by much. Here is the precise 
assertion. 

Problem 61. The non-zero elements of A(AB) and A(BA) are the 
same. 

62. Closure of approximate point spectrum. 

Problem 62. Is the approximate point spectrum always closed? 

63. Boundary of spectrum. 

Problem 63. The boundary oj the spectrum of an operator is in
cluded in the approximate point spectrum. 



Chapter 9. Examples of spectra 

64. Residual spectrum of a normal operator. The time has come to 
consider special cases. The first result is that for normal operators, the 
most amenable large class known, the worst spectral pathology cannot 
occur. 

Problem 64. If A is normal, then rCA) = lIo(A) (and therefore 
A(A) = II(A)). Alternative formulation: the residual spectrum of a 
normal operator is always empty. 

Recall that the residual spectrum of A is r (A) - 110 (A) . 

65. Spectral parts of a diagonal operator. The spectrum of a diagonal 
operator was determined (Problem 48) as the closure of its diagonal; 
the determination of the fine structure of the spectrum requires another 
look. 

Problem 65. For each diagonal operator, find its point spectrum, 
compression spectrum, and approximate point spectrum. 

66. Spectral parts of a multiplication. 

Problem 66. For each multiplication, find its point spectrum, 
compression spectrum, and approximate point spectrum. 

67. Unilateral shift. The most important single operator, which 
plays a vital role in all parts of Hilbert space theory, is called the uni
lateral shift. Perhaps the simplest way to define it is to consider the 
Hilbert space l2 of square-summable sequences; the unilateral shift is 
the operator U on P defined by 

U (~o, ~I, ~2, ••• ) = (0, ~o, ~h ~2, ••• ). 

(The unilateral shift has already occurred in this book, although it was 
not named until now; see Solution 56.) Linearity is obvious. As for 
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boundedness, it is true with room to spare. Norms are not only kept 
within reasonable bounds, but they are preserved exactly; the unilateral 
shift is an isometry. The range of U is not l2 but a proper subspace of l2, 
the subspace of vectors with vanishing first coordinate. The existence of 
an isometry whose range is not the whole space is characteristic of 
infinite-dimensional spaces. 

If en is the vector (~o, ~l, ~2, ••• ) for which ~n = 1 and ~i = ° whenever 
i ¢ n (n = 0, 1, 2, ... ), then the en's form an orthonormal basis for 12. 
The effect of U on this basis is described by 

(n = 0, 1, 2, ... ). 

These equations uniquely determine U, and in most of the study of U 
they may be taken as its definition. 

A familiar space that comes equipped with an orthonormal basis 
indexed by non-negative integers is H2 (see Problem 26). Since, in that 
space, en(z) = zn, the effect of shifting forward by one index is the same 
as the effect of multiplication by el. In other words, the unilateral shift 
is the same as the multiplication operator on H2 defined by 

(Uf) (z) = zf(z). 

To say that it is the "same", and, in fact, to speak of "the" unilateral 
shift is a slight abuse of language, a convenient one that will be main
tained throughout the sequel. Properly speaking the unilateral shift is 
a unitary equivalence class of operators, but no confusion will result 
from regarding it as one operator with many different manifestations. 

Problem 67. What is the spectrum of the unilateral shift, and what 
are its parts (point spectrum, compression spectrum, and approximate 
point spectrum)? What are the answers to the same questions for the 
adjoint of the unilateral shift? 

68. Bilateral shift. A close relative of the unilateral shift is the 
bilateral shift. To define it, let H be the Hilbert space of all two-way 
(bilateral) square-summable sequences. The elements of H are most 
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conveniently written in the form 

< ... , ~-2, ~-l, (~o), 6, b, ... ); 

the term in parentheses indicates the one corresponding to the index o. 
The bilateral shift is the operator W on H defined by 

W < ... , ~-2, ~-l, (~o), 6, ~2, ... ) = < ... , ~-3, ~-2, (~-l), ~o, ~l, ... ). 

Linearity is obvious, and boundedness is true with room to spare; the 
bilateral shift, like the unilateral one, is an isometry. Since the range of 
the bilateral shift is the entire space H, it is even unitary. 

If en is the vector ( ... , ~-l, (~o), 6, ... ) for which ~n = 1 and ~i = 0 
whenever i 7fI= n (n = 0, ±1, ±2, ... ), then the en's form an ortho-
normal basis for H. The effect of W on this basis is described by 

(n = 0, ±1, ±2, ... ). 

Problem 68. What is the spectrum of the bilateral shift, and what 
are its parts (point spectrum, compression spectrum, and approximate 
point spectrum)? What are the answers to the same questions for the 
adjoint of the bilateral shift? 

69. Spectrum of a functional multiplication. Every operator studied 
so far has been a multiplication, either in the legitimate sense (on an 
V) or in the extended sense (on a functional Hilbert space). The latter 
kind is usually harder to study; it does, however, have the advantage 
of having a satisfactory characterization in terms of its spectrum. 

Problem 69. A necessary and sufficient condition that an operator 
A on a Hilbert space H be representable as a multiplication on a 
functional Hilbert space is that the eigenvectors of A * span H. 

Caution: as the facts for multiplications on V spaces show (d. 
Solution 66) this characterization is applicable to functional Hilbert 
spaces only. The result seems to be due to P. R. Halmos and A. L. 
Shields. 
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70. Relative spectrum of shift. An operator A is relatively invertible 
if there exists an operator B such that ABA = A. This is a rather 
special concept, not particularly useful, but with some curious properties. 
Clearly every invertible operator is relatively invertible; in fact every 
operator that is either left invertible or right invertible is also relatively 
invertible. These remarks are obvious; it is much less obvious (but true) 
that every operator on a finite-dimensional space is relatively invertible. 
(Hint: write the operator as a direct sum of an invertible operator and 
a nilpotent one.) The concept belongs to general ring theory; the as
sertion about finite-dimensional spaces can be expressed by saying that 
a finite-dimensional full matrix algebra over the complex numbers is a 
regular ring (see von Neumann [1936J). The relative spectrum of an 
operator A (on a Hilbert space of any dimension) is the set of all those 
complex numbers J.. for which A - A is not relatively invertible. 

Problem 70. What is the relative spectrum of the unilateral shift? 

The concept of relative spectrum was introduced and studied by 
Asplund [1958]. 

71. Closure of relative spectrum. 

Problem 71. Is the relative spectrum always closed? 



Chapter 10. Spectral radius 

72. Analyticity of resolvents. Suppose that A is an operator on a 
Hilbert space H. If A does not belong to the spectrum of A, then the 
operator A - A is invertible; write p(A) = (A - A)-I. (When it is 
necessary to indicate the dependence of the function p on the operator 
A, write p = PA.) The function P is called the resolvent of A. The domain 
of p is the complement of the spectrum of A; its values are operators 
onH. 

The definition of the resolvent is very explicit; this makes it seem 
plausible that the resolvent is a well-behaved function. To formulate 
this precisely, consider, quite generally, functions cp whose domains are 
open sets in the complex plane and whose values are operators on H. 
Such a function cp will be called analytic if, for each j and g in H, the 
numerical function A -- (cp(A)j,g) (with the same domain as cp) is 
analytic in the usual sense. (To distinguish this concept from other 
closely related ones, it is sometimes called weak analyticity.) In case 
the function if; defined by if;(A) = cp(l/A) can be assigned a value at the 
origin so that it becomes analytic there, then (just as for numerical 
functions) cp will be called analytic at 00, and cp is assigned at 00 the 
value of if; at O. 

Problem 72. The resolvent oj every operator is analytic at each 
point oj its domain, and at 00; its value at 00 is (the operator) O. 

For a detailed study of resolvents, see Dunford-Schwartz [1958, 
VII, 3]. 

73. Non-emptiness of spectra. Does every operator have a non
empty spectrum? The question was bound to arise sooner or later. 
Even the finite-dimensional case shows that the question is non-trivial. 
To say that every finite matrix has an eigenvalue is the same as to say 
that the characteristic polynomial of every finite matrix has at least 
one zero, and that is no more and no less general than to say that every 
polynomial equation (with complex coefficients) has at least one (com-
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plex) zero. In other words, the finite-dimensional case of the general 
question about spectra is as deep as the fundamental theorem of algebra, 
whose proof is usually based on the theory of complex analytic functions. 
It should not be too surprising now that the theory of such functions 
enters the study of operators in every case (whether the dimension is 
finite or infinite). 

Problem 73. Every operator has a non-empty spectrum. 

74. Spectral radius. The spectral radius of an operator A, in symbols 
r ( A), is defined by 

rCA) = sup{iAI:AEACA)}. 

Clearly 0 ~ r (A) ~ II A II; the spectral mapping theorem implies also 
that r(An) = (r(A»n for every positive integer n. It frequently turns 
out that the spectral radius of an operator is easy to compute even when 
it is hard to find the spectrum; the tool that makes it easy is the following 
assertion. 

Problem 74. For each operator A, 

rCA) = limn II An Ill/n, 

in the sense that the indicated limit always exists and has the indicated 
value. 

It is an easy consequence of this result that if A and B are com
mutative operators, then 

r(AB) ~ rCA )r(B). 

It is a somewhat less easy consequence, but still a matter of no more 
than a little fussy analysis with inequalities, that if A and B commute, 
then 

rCA + B) ~ rCA) + rCB). 

If no commutativity assumptions are made, then two-dimensional ex-
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amples, such as 

B = (~ ~), 
show that neither the submultiplicative nor the subadditive property 
persists. 

75. Weighted shifts. A weighted shift is the product of a shift (one
sided or two) and a compatible diagonal operator. More explicitly, 
suppose that {en I is an orthonormal basis (n = 0, 1, 2, "', or else 
n = 0, ±1, ±2, "'), and suppose that {O'nl is a bounded sequence of 
complex numbers (the set of n's being the same as before). A weighted 
shift is an operator of the form SP, where S is a shift (Sen = en+l) 
and P is a diagonal operator with diagonal {O'nl (Pen = O'nen). Not 
everything about weighted shifts is known, but even the little that is 
makes them almost indispensable in the construction of examples and 
counterexamples. 

Problem 75. If P and Q are diagonal operators, with diagonals 
{O'n I and {(3n I, and if \ O'n \ = \ (3n \ for all n, then the weighted shifts 
A = SP and B = SQ are unitarily equivalent. 

A discussion of two weighted shifts should, by rights, refer to two 
orthonormal bases, but the generality gained that way is shallow. If 
{en} and {fn} are orthonormal bases, then there exists a unitary operator 
U such that Uen = fn for all n, and U can be carried along gratis with 
any unitary equivalence proof. 

The result about the unitary equivalence of weighted shifts has two 
useful consequences. First, the weighted shift with weights O'n is unitarily 
equivalent to the '.veighted shift with weights I O'n \. Since unitarily 
equivalent operators are "abstractly identical", there is never any loss 
of generality in restricting attention to weighted shifts whose weights 
are non-negative; this is what really justifies the use of the word "weight". 
Second, if A is a weighted shift and if 0' is a complex number of modulus 
1, then, since O'A is a weighted shift, whose weights have the same moduli 
as the corresponding weights of A, it follows that A and O'A are unitarily 
equivalent. In other words, to within unitary equivalence, a weighted 
shift is not altered by multiplication by a number of modulus 1. This 
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implies, for instance, that the spectrum of a weighted shift has circular 
symmetry: if ).. is in the spectrum and if I a I = 1, then a).. is in the 
spectrum. 

76. Similarity of weighted shifts. Is the converse of Problem 7S 
true? Suppose, in other words, that A and B are weighted shifts, with 
weights {anI and {j3n}; if A and B are unitarily equivalent, does it 
follow that I an I = I j3n I for all n? The answer can be quite elusive, but 
with the right approach it is easy. The answer is no; the reason is that, 
for bilateral shifts, a translation of the weights produces a unitarily 
equivalent shift. That is: if Aen = anen+l and Ben = an+len+l (n = 0, 
±1, ±2, ... ), then A and B are unitarily equivalent. If, in fact, W is 
the bilateral shift (Wen = en+l,n = 0, ±1, ±2, ... ), then W*AW = B; 
if, however, the sequence {I an II is not constant, then there is at least 
one n ~uch that 1 an 1 ~ I an+l I· 

Unilateral shifts behave differently. If some of the weights are allowed 
to be zero, the situation is in part annoying and in part trivial. In the 
good case (no zero weights), the kernel of the adjoint A * of a unilateral 
weighted shift is spanned by eo, the kernel of A *2 is spanned by eo and el, 
and, in general, the kernel of A *n is spanned by eo, "', en-l (n = 1, 2, 
3, ... ). If A and B are unitarily equivalent weighted shifts, then A *n 
and B*n are unitarily equivalent; if, say, A = U*BU, then U must 
send ker A *" onto ker B*n. This implies that the span of {eo, "', en-I! 
is invariant under U, and from this, in turn, it follows that U is a diagonal 
operator. Since the diagonal entries of a unitary diagonal matrix have 
modulus 1, it follows that, for each n, the effect of A on en can differ 
from that of B by a factor of modulus 1 only. 

This settles the unitary equivalence theory for weighted shifts with 
non-zero weights; what about similarity? 

Problem 76. If A and B are unilateral weighted shifts, with non
zero weights {an I and {j3n I, then a necessary and sufficient condition 
that A and B be similar is that the sequence of quotients 

be bounded away from ° and from 00. 
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Similarity is a less severe restriction than unitary equivalence; questions 
about similarity are usually easier to answer. By a modification of the 
argument for one-sided shifts, a modification whose difficulties are more 
notational than conceptual, it is possible to get a satisfactory condition, 
like that in Problem 76, for the similarity of two-sided shifts; this was 
done by R. L. Kelley. 

77. Norm and spectral radius of a weighted shift. 

Problem 77. Express the norm and the spectral radius of a weighted 
shift in terms of its weights. 

78. Eigenvalues of weighted shifts. The exact determination of the 
spectrum and its parts for arbitrary weighted shifts is a non-trivial 
problem. Here is a useful fragment. 

Problem 78. Find all the eigenvalues of all unilateral weighted 
shifts (with non-zero weights) and of their adjoints. 

The possible presence of 0 among the weights is not a genuine difficulty 
but a nuisance. A unilateral weighted shift, one of whose weights vanishes, 
becomes thereby the direct sum of a finite-dimensional operator and 
another weighted shift. The presence of an infinite number of zero 
weights can cause some interesting trouble (d. Problem 81), but the 
good problems about shifts have to do with non-zero weights. 

79. Weighted sequence spaces. The expression "weighted shift" 
means one thing, but it could just as well have meant something else. 
What it does mean is to modify the ordinary shift on the ordinary 
sequence space f2 by attaching weights to the transformation; what it 
could have meant is to modify by attaching weights to the space. 

To get an explicit description of the alternative, let p = {po, PI, h ... } 
be a sequence of strictly positive numbers, and let 12(P) be the set of 
complex sequences (~o, h, ~2, ••• ) with L~~o pn 1 ~p 12 < 00. With 
respect to the coordinatewise linear operations and the inner product 
defined by 

( (~o, h, h, ... ), (1]0, 1]1, 1]2, ••• ») 
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the set l2(P) is a Hilbert space; it may be called a weighted sequence 
space. (All this is unilateral; the bilateral case can be treated similarly.) 
When is the shift an operator on this space? When, in other words, is 
it true that iff = (~o, ~1,~2' ••• ) el2 (P) , then Sf = (0, ~o, b'~2,··· ) d 2 (P), 
and, as f varies over l2 (P), II Sf II is bounded by a constant multiple of 
II f II? The answer is easy. An obviously necessary condition is that there 
exist a positive constant a such that II enHl1 ~ a \I en II, where en, of 
course, is the vector whose coordinate with index n is 1 and all other 
coordinates are 0. Since II en JI2 = pn, this condition says that the se
quence IPnH/pnl is bounded. It is almost obvious that this necessary 
condition is also sufficient. If Pn+l/ pn ~ a2 for all n, then 

00 00 pn 
\I Sf W = LPn I ~n-l 12 = L - pn-l I ~n-l 12 

n=l n=l pn-l 

00 

~ a2 LPn I En 12 = a 211f112. 
n=O 

Every question about weighted shifts on the ordinary sequence space 
can be re-asked about the ordinary shift on weighted sequence spaces; 
here is a sample. 

Problem 79. If P = IPnl is a sequence of positive numbers such 
that I pn+l/ pn I is bounded, what, in terms of 1 pn I, is the spectral radius 
of the shift on PCP)? 

80. One-point spectrum. The proof in Problem 48 (every non-empty 
compact subset of the plane is the spectrum of sume operator) is not 
sufficiently elastic to yield examples of all the different ways spectral 
parts can behave. That proof used diagonal operators, which always 
have eigenvalues; from that proof alone it is not possible to infer the 
existence of operators whose point spectrum is empty. Multiplication 
operators come to the rescue. If D is a bounded region, if 'P(z) = z for 
z in D, and if A is the multiplication operator induced by 'P on the V 
space of planar Lebesgue measure in D, then the spectrum of A is the 
closure D, but the point spectrum of A is empty. Similar techniques 
show the existence of operators A with IIo(A) = f2f and A(A) = [O,lJ, 
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say; just use linear Lebesgue measure in [0,1]. Whenever a compact 
set M in the plane is the support of a measure (on the Borel sets) that 
gives zero weight to each single point, then M is the spectrum of an 
operator with no eigenvalues. (To say that M is the support of !J. means 
that if N is an open set with !J.(M n N) = 0, then M n N = 0.) It is a 
routine exercise in topological measure theory to prove that every 
non-empty, compact, perfect set (no isolated points) in the plane is the 
support of a measure (on the Borel sets) that gives zero weight to each 
single point. (The proof is of no relevance to Hilbert space theory.) It 
follows that every such set is the spectrum of an operator with no 
eigenvalues. What about sets that are not perfect? 

A very satisfactory answer can be given in terms of the appropriate 
analytic generalization of the algebraic concept of nilpotence. An oper
ator is nilpotent if some positive integral power of it is zero (and the 
least such power is the index of nilpotence); an operator A is quasi
nilpotent if limn II An Win = O. It is obvious that nilpotence implies 
quasinilpotence. The spectral mapping theorem implies that if A is 
nilpotent, then A (A) = 10). The expression for the spectral radius in 
terms of norms implies that if A is quasinilpotent, then A(A) = {OJ, 
and that, moreover, the converse is true. A nilpotent operator always 
has a non-trivial kernel, and hence a non-empty point spectrum; for 
quasinilpotent operators that is not so. 

Problem 80. Construct a quasinilpotent operator whose point spec
trum is empty. 

Observe that on finite-dimensional spaces such a construction is clearly 
impossible. 

81. Spectrum of a direct sum. The spectrum of the direct sum of 
two operators is the union of their spectra, and the same is true of the 
point spectrum, the approximate point spectrum, and the compression 
spectrum. The extension of this result from two direct summands to any 
finite number is a trivial induction. What happens if the number of 
summands is infinite? A possible clue to the answer is the behavior of 
diagonal operators on infinite-dimensional spaces. Such an operator is 
an infinite direct sum, each summand of which is an operator on a 
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one-dimensional space, and its spectrum is the closure of the union of 
their spectra (Problem 48). 

Problem 81. Is the spectrum of a direct sum of operators always 
the closure of the union of their spectra? 

82. Reid's inequality. Algebraic properties of operators, such as 
being Hermitian or positive, have not played much of a role so far in 
this book. They occur in the next problem, but only incidentally; the 
main point of the problem in its present location is its reference to 
spectral radius. 

Problem 82. If A and B are operators such that A is positive and 
AB is Hermitian, then I (ABf,j) I ~ r(B)· (Aj,j) jor every vector J. 

A slightly weaker version of the result is due to Reid [1951J; it is 
weaker in that he has II B II instead of r(B). 



Chapter 11. Norm topology 

83. Metric space of operators. If the distance between two operators 
A and B is defined to be II A - B II, the set of all operators on a Hilbert 
space becomes a metric space. Some of the standard metric and topo
logical questions about that space have more interesting answers than 
others. Thus, for instance, it is no more than minimum courtesy to ask 
whether or not the space is complete. The answer is yes. The proof is 
the kind of routine analysis every mathematician has to work through 
at least once in his life; it offers no surprises. The result, incidentally, 
has been tacitly used already. In Solution 72, the convergence of the 
series L:~=o A n was inferred from the assumption II A II < 1. The alert 
reader should have noted that the justification of this inference is in 
the completeness result just mentioned. (It takes less alertness to notice 
that the very concept of convergence refers to some topology.) 

So much for completeness; what about separability? If the underlying 
Hilbert space is not separable, it is not to be expected that the operator 
space is, and, indeed, it is easy to prove that it is not. That leaves one 
more natural question along these lines. 

Problem 83. If a Hilbert space is separable, does it follow that 
the metric space of operators on it is separable? 

84. Continuity of inversion. Soon after the introduction of a topology 
on an algebraic structure, such as the space of operators on a Hilbert 
space, it is customary and necessary to ask about the continuity of the 
pertinent algebraic operations. In the present case it turns out that all 
the elementary algebraic operations (linear combination, conjugation, 
multiplication) are continuous in all their variables simultaneously, 
and the norm of an operator is also a continuous function of its argument. 
The proofs are boring. 

The main algebraic operation not mentioned above is inversion. Since 
not every operator is invertible, the question of the continuity of in
version makes sense on only a subset of the space of operators. 

S2 



53 PROBLEMS 

Problem 84. The set of invertible operators is open. Is the mapping 
A ~ A -1 of that set onto itself continuous? 

86 

The statement that the set of invertible operators is open does not 
answer all questions about the geometry of that set. It does not say, 
for instance, whether or not invertible operators can completely surround 
a singular (= non-invertible) one. In more technical language: are there 
any isolated singular operators? The answer is no; the set of singular 
operators is (arcwise) connected. Reason: if A is singular, so is tA for 
all scalars t; the mapping t ~ tA is a continuous curve t@.at joins the 
operator 0 to the operator A. Is the open set of invertible operators 
connected also? That question is much harder; see Problem 110. 

85. Continuity of spectrum. The spectrum (restricted for a moment 
to operators on just one fixed Hilbert space) is a function whose domain 
consists of operators and whose range consists of compact sets of complex 
numbers. It would be quite reasonable to try to define what it means 
for a function of this kind to be continuous. Is the spectrum continuous? 
The following example is designed to prove that however the question 
is interpreted, the answer is always no. 

Problem 85. If k = 1,2,3, ... and if k = (X) , let Ak be the two
sided weighted shift such that A"en is en+1 or (l/k)en+l according as 
n '¥- 0 or n = O. (Put 1/ (X) = 0.) What are the spectra of the operators 
Ak (k = 1,2,3, "', oo)? 

86. Semicontinuity of spectrum. The example of Problem 85 shows 
that there exists an operator with a large spectrum in every neighborhood 
of which there are operators with relatively small spectra. Could it 
happen the other way? Is there a small spectrum with arbitrarily near 
large spectra? The answer turns out to be no. The precise assertion is 
that the spectrum is an upper semicontinuous function, in the following 
sense. 

Problem 86. To each operator A and to each open set Ao that 
includes A (A) there corresponds a positive number E such that if 
II A - B II < E, then A(B) c Ao· 
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This is a standard result. One standard reference is Hille-Phillips 
[1957, p. 167J; another is Rickart [1960, p. 35]. The semicontinuity of 
related functions is discussed in Halmos-Lumer [1954]. 

87. Continuity of spectral radius. Since the spectrum is upper semi
continuous (Problem 86), so is the spectral radius. That is: to each 
operator A and to each positive number 0 there corresponds a positive 
number e such that if II A - B II < 10, then reB) < rCA) + o. (The 
proof is immediate from Problem 86.) The spectrum is not continuous 
(Problem 85); what about the spectral radius? 

Problem 87. Is it true that to each operator A and to each positive 
number 0 there corresponds a positive number e such that if 
II A - B II < 10, then I rCA) - reB) I < o? Equivalently: if An - A, 
does itfollow that r(An) - rCA)? 

This is hard. Note that the example in Problem 85 gives no infor
mation; in that case the spectral radius is equal to 1 for each term of 
the sequence and also for the limit. 



Chapter 12. 
Strong and weak topologies 

88. Topologies for operators. A Hilbert space has two useful topolo
gies (weak and strong); the space of operators on a Hilbert space has 
several. The metric topology induced by the norm is one of them; to 
distinguish it from the others, it is usually called the norm topology or 
the uniform topology. The next two are natural outgrowths for operators 
of the strong and weak topologies for vectors. A subbase for the strong 
operator topology is the collection of all sets of the form 

{A:I/(A -Ao)J1I <e}; 

correspondingly a base is the collection of all sets of the form 

{A: II(A - Ao)fi II < 10, i = 1, ···,k}. 

Here k is a positive integer, h, ... , fk are vectors, and 10 is a positive 
number. A subbase for the weak operator topology is the collection of 
all sets of the form 

{A: I«A - Ao)f,g)/ < IO}, 

wheref and g are vectors and 10 > 0; as above (as always) a base is the 
collection of all finite intersections of such sets. The corresponding 
concepts of convergence (for sequences and nets) are easy to describe: 
An ~ A strongly if and only if Anf ~ Af strongly for each f (i.e., 
II (An - A)f \I ~ 0 for each f), and An ~ A weakly if and only if 
Anf ~ Afweakly for eachf (i.e., (Anf,g) ~ (Af,g) for eachf and g). 

The easiest questions to settle are the ones about comparison. The 
weak topology is smaller (weaker) than the strong topology, and the 
strong topology is smaller than the norm topology. In other words, 
every weak open set is a strong open set, and every strong open set is 
norm open. In still other words: every weak neighborhood of each oper-

ss 
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ator includes a strong neighborhood of that operator, and every strong 
neighborhood includes a metric neighborhood. Again: norm convergence 
implies strong convergence, and strong convergence implies weak con
vergence. These facts are immediate from the definitions. In the presence 
of uniformity on the unit sphere, the implications are reversible (d. 
Problem 16). 

Problem 88. If (Anf,g) - (Af,g) uniformly for II g II = 1, then 
II An! - Afll-O, and if II Anf - Afll-Ouniformlyfor Ilfll = 1, 
then II An - A 11- O. 

89. Continuity of norm. In the study of topological algebraic struc
tures (such as the algebra of operators on a Hilbert space, endowed 
with one of the appropriate operator topologies) the proof that something 
is continuous is usually dull; the interesting problems arise in proving 
that something is not continuous. Thus, for instance, it is true that the 
linear operations on operators (aA + f3B) are continuous in all variables 
simultaneously, and the proof is a matter of routine. (Readers who have 
never been through this routine are urged to check it before proceeding.) 
Here is a related question that is easy but not quite so mechanical. 

Problem 89. Which of the three topologies (uniform, strong, weak) 
makes the norm (i.e., the function A - II A II) continuous? 

90. Continuity of adjoint. 

Problem 90. Which of the three topologies (uniform, strong, weak) 
makes the adjoint (i.e., the mapping A - A *) continuous? 

91. Continuity of multiplication. The most useful, and most re
calcitrant, questions concern products. Since a product (unlike the 
norm and the adjoint) is a function of two variables, a continuity state
ment about products has a "joint" and a "separate" interpretation. 
It is usual, when nothing is said to the contrary, to interpret such 
statements in the "joint" sense, i.e., to interpret them as referring to 
the mapping that sends an ordered pair (A,B) onto the product AB. 
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Problem 91. Multiplication is continuous with respect to the uni
form topology and discontinuous with respect to the strong and weak 
topologies. 

94 

The proof is easy, but the counterexamples are hard; the quickest 
ones depend on unfair trickery. 

92. Separate continuity of multiplication. Although multiplication 
is not jointly continuous with respect to either the strong topology or 
the weak, it is separately continuous in each of its arguments with re
spect to both topologies. A slightly more precise formulation runs as 
follows. 

Problem 92. Each of the mappings A ~ AB (jor fixed B) and 
B ~ AB (for fixed A) is both strongly and weakly continuous. 

93. Sequential continuity of multiplication. Separate continuity 
(strong and weak) of multiplication is a feeble substitute for joint 
continuity; another feeble (but sometimes usable) substitute is joint 
continuity in the sequential sense. 

Problem 93. (a) If {AnI and {Bnl are sequences of operators that 
strongly converge to A and B, respectively, then AnBn ~ AB strongly. 
(b) Does the assertion remain true if "strongly" is replaced by 
"weakly" in both hypothesis and conclusion? 

94. Increasing sequences of Hermitian operators. A bounded in
creasing sequence of Hermitian operators is weakly convergent (to a 
necessarily Hermitian operator). To see this, suppose that {AnI is an 
increasing sequence of Hermitian operators (i.e., (Anf,f) ~ (An+d,f) 
for all nand all f) , bounded by a: (i.e., (Anf,/) ~ a: IIfl12 for all nand 
allf). If if;n (f) = (Anf,/) , then each if;n is a quadratic form. The assump
tions imply that the sequence {if;nl is convergent and hence (Solution 1) 
that the limit if; is a quadratic form. It follows that if;(j) = (Af,J) for 
some (necessarily Hermitian) operator A; polarization justifies the 
conclusion that An ~ A (weakly). 
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Does the same conclusion follow with respect to the strong and the 
uniform topologies? 

Problem 94. Is a bounded increasing sequence of Hermitian oper
ators necessarily strongly convergent? uniformly convergent? 

95. Square roots. The assertion that a positive operator has a 
unique positive square root is an easy consequence of the spectral 
theorem. In some approaches to spectral theory, however, the existence 
of square roots is proved first, and the spectral theorem is based on 
that result. The following assertion shows how to get square roots 
without the spectral theorem. 

Problem 95. If A is an operator such that 0 ~ A ~ 1, and if a 
sequence IBn} is defined recursively by the equations 

n = 0, 1, 2, "', 

then the sequence IBn} is strongly convergent. If limn Bn = B, then 
(1 - B)2 = A. 

96. Infimum of two projections. If E and F are projections with 
ranges M and N, then it is sometimes easy and sometimes hard to find, 
in terms of E and F, the projections onto various geometric constructs 
formed with M and N. Things are likely to be easy if E and F commute. 
Thus, for instance, if MeN, then it is easy to find the projection with 
range N n Mi, and if M ..L N, then it is easy to find the projection with 
range M v N. In the absence of such special assumptions, the problems 
become more interesting. 

Problem 96. If E am F are projections with ranges M and N, 
find the projection E 1\ F with range M n N. 

The problem is to find an "expression" for the projection described. 
Although most mathematicians would read the statement of such a 
problem with sympathetic understanding, it must be admitted that 
rigorously speaking it does not really mean anything. The most obvious 
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way to make it precise is to describe certain classes of operators by the 
requirement that they be closed under some familiar algebraic and 
topological operations, and then try to prove that whenever E and F 
belong to such a class, then so does E 1\ F. The most famous and useful 
classes pertinent here are the von Neumann algebras (called "rings of 
operators" by von Neumann). A von Neumann algebra is an algebra of 
operators (i.e., a collection closed under addition and multiplication, 
and closed under multiplication by arbitrary scalars), self-adjoint (i.e., 
closed under adjunction), containing 1, and strongly closed (i.e., closed 
with respect to the strong operator topology). For von Neumann alge
bras, then, the problem is this: prove that if a von Neumann algebra 
contains two projections E and F, then it contains E 1\ F. 

Reference: von Neumann [1950, vol. 2, p. 55]. 



Chapter 13. Partial isometries 

97. Spectral mapping theorem for normal operators. Normal opera
tors constitute the most important tractable class of operators known; 
the most important statement about them is the spectral theorem. 
Students of operator theory generally agree that the finite-dimensional 
version of the spectral theorem has to do with diagonal forms. (Every 
finite normal matrix is unitarily equivalent to a diagonal one.) The 
general version, applicable to infinite-dimensional spaces, does not have 
a universally accepted formulation. Sometimes bounded operator repre
sentations of function algebras play the central role, and sometimes 
Stieltjes integrals with unorthodox multiplicative properties. There is a 
short, simple, and powerful statement that does not attain maximal 
generality (it applies to only one operator at a time, not to algebras of 
operators), but that does have all classical formulations of the spectral 
theorem as easy corollaries, and that has the advantage of being a 
straightforward generalization of the familiar statement about diagonal 
forms. That statement will be called the spectral theorem in what follows; 
it says that every normal operator is unitarily equivalent to a multipli
cation. The statement can be proved by exactly the same techniques as 
are usually needed for the spectral theorem; see Halmos [1963J, Dun
ford-Schwartz [1963, pp. 911-912J. 

The multiplication version of the spectral theorem has a technical 
drawback: the measures that it uses may fail to be a-finite. This is not 
a tragedy, for two reasons. In the first place, the assumption of a-finite
ness in the treatment of multiplications is a matter of convenience, not 
of necessity (see Segal [1951J). In the second place, non-a-finite meas
ures need to be considered only when the underlying Hilbert space is not 
separable; the pathology of measures accompanies the pathology of 
operators. In the sequel when reference is made to the spectral theorem, 
the reader may choose one of two courses: treat the general case and 
proceed with the caution it requires, or restrict attention to the separable 
case and proceed with the ease that the loss of generality permits. 

In some contexts some authors choose to avoid a proof that uses the 
spectral theorem even if the alternative is longer and more involved. 

60 
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This sort of ritual circumlocution is common to many parts of mathe
matics; it is the fate of many big theorems to be more honored in evasion 
than in use. The reason is not just mathematical mischievousness. Often 
a long but "elementary" proof gives more insight, and leads to more 
fruitful generalizations, than a short proof whose brevity is made possible 
by a powerful but overly specialized tool. 

This is not to say that use of the spectral theorem is to be avoided at 
all costs. Powerful general theorems exist to be used, and their willful 
avoidance can lose insight at least as often as gain it. Thus, for example, 
the spectral theorem yields an immediate and perspicuous proof that 
every positive operator has a positive square root (because every positive 
measurable function has one); the approximation trickery of Problem 95 
is fun, and has its uses, but it is not nearly so transparent. For another 
example, consider the assertion that a Hermitian operator whose spec
trum consists of the two numbers 0 and 1 is a projection. To prove it, 
let A be the operator, and write B = A - A2. Clearly B is Hermitian, 
and, by the spectral mapping theorem, A(B) = to}. This implies that 
II B II = reB) = 0 and hence that B = O. (It is true for all normal 
operators that the norm is equal to the spectral radius, but for Hermitian 
operators it is completely elementary; see Halmos [1951, p. 55].) Compare 
this "ith the proof via the spectral theorem: if cp is a function whose 
range consists of the two numbers 0 and 1, then cp2 = cpo For a final 
example, try to prove, without using the spectral theorem, that every 
normal operator with a real spectrum (i.e., with spectrum included in 
the real line) is Hermitian. 

The spectral theorem makes possible a clear and efficient description 
of the so-called functional calculus. If A is a normal operator and if F 
is a bounded Borel measurable function on A (A), then the functional 
calculus yields an operator F(A). To define F(A) represent A as a 
multiplication, with multiplier cp, say, on a measure space X; the operator 
F (A) is then the multiplication induced by the composite function 
Focp. In order to be sure that this makes sense, it is necessary to know 
that cp maps almost every point of X into A(A), i.e., that if the domain 
of cp is altered by, at worst, a set of measure zero, then the range of cp 

comes to be included in its essential range. The proof goes as follows. 
By definition, every point in the complement of A (A) has a neighborhood 
whose inverse image under cp has measure zero. Since the plane is a 
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Lindelof space, it follows that the complement of A(A) is covered by 
a countable collection of neighborhoods with that property, and hence 
that the inverse image of the entire complement of A(A) has measure 
zero. 

The mapping F -t F(A) has many pleasant properties. Its principal 
property is that it is an algebraic homomorphism that preserves conju
gation also (i.e., F*(A) = (F(A)) *); it follows, for instance, that if 
F(}..) = I}.. 12, then F(A) = A*A. The functions F that occur in the 
applications of the functional calculus are not always continuous (e.g., 
characteristic functions of Borel sets are of importance), but continuous 
functions are sometimes easier to handle. The problem that follows is a 
spectral mapping theorem; it is very special in that it refers to normal 
operators only, but it is very general in that it allows all continuous 
functions. 

Problem 97. If A is a normal operator and if F is a continuous 
function on A (A), then A (F (A») = F (A (A) ) . 

Something like F (A) might seem to make sense sometimes even for 
non-normal A's, but the result is not likely to remain true. Suppose, 
for instance, that F(}..) = A *}.. (= I A 12), and define F(A), for every 
operator A, as A * A. There is no hope for the statement F (A (A) ) 
A (F(A)) ; for a counterexample, contemplate the unilateral shift. 

98. Partial isometries. An isometry is a linear transformation U 
(from a Hilbert space into itself, or from one Hilbert space into another) 
such that II Uj II = II j II for all f. An isometry is a distance-preserving 
transformation: II Uf - Ug II = Ilf - g II for allf and g. A necessary 
and sufficient condition that a linear transformation U be an isometry 
is that U*U = 1. Indeed: the conditions (1) II Uf 112 = IIf W, 
(2) (U*Uf,f) = (j,/) , (3) (U*Uj,g) = (j,g) , and (4) U*U = 1 are 
mutually equivalent. (To pass from (2) to (3), polarize.) Caution: the 
conditions U*U = 1 and UU* = 1 are not equivalent. The latter con
dition is satisfied in case U* is an isometry; in that case U is called a 
co-isometry. 

It is sometimes convenient to consider linear transformations U that 
act isometrically on a subset (usually a linear manifold, but not neces-
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sarily a subspace) of a Hilbert space; this just means that II Uf II = Ilf II 
for all f in that subset. A partial isometry is a linear transformation that 
is isometric on the orthogonal complement of its kernel. There are two 
large classes of examples of partial isometries that are in a sense opposite 
extreme cases; they are the isometries (and, in particular, the unitary 
operators), and the projections. The definition of partial isometries is 
deceptively simple, and these examples continue the deception; the 
structure of partial isometries can be quite complicated. In any case, 
however, it is easy to verify that a partial isometry U is bounded; in 
fact if U is not 0, then II U II = 1. 

The orthogonal complement of the kernel of a partial isometry is 
frequently called its initial space. The initial space of a partial isometry 
U turns out to be equal to the set of all those vectors f for which 
II Ufll = IIfll· (What needs proof is that if II Ufll = IIfll, then 
f ..L ker U. Writef = g + h, with g e ker U and h ..L ker U; then Ilf II = 

II Uf II = II U g + Uh II = II Uh II = II h II; since II f 112 = II g 112 + II h W, 
it follows that g = 0.) The range of a partial isometry is equal to the 
image of the initial space and is necessarily closed. (Since U is isometric 
on the initial space, the image is a complete metric space.) For partial 
isometries, the range is sometimes called the final space. 

Problem 98. A bounded linear transformation U ~s a partial 
isometry if and only if U* U is a projection. 

Corollary 1. If U is a partial isometry, then the initial space of U 
is the range of u* u. 

Corollary 2. The adjoint of a partial isometry is a partial isometry, 
with initial space and final space interchanged. 

Corollary 3. A bounded linear transformation U is a partial 
isometry if and only if U = UU*U. 

99. Maximal partial isometries. It is natural to define a (partial) 
order for partial isometries as follows: if U and V are partial isometries, 
write U ~ V in case V agrees with U on the initial space of U. This 
implies that the initial space of U is included in the initial space of V. 
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(Cf. the characterization of initial spaces given in Problem 98.) It 
follows that if U ~ V with respect to the presen t order, then U* U ~ V* V 
with respect to the usual order for operators. (The "usual" order, 
usually considered for Hermitian operators only, is the one according 
to which A ~ B if and only if (Af,f) ~ (Bf,J) for all J. Note that 
U*U ~ V*V in this sense is equivalent to II Uf II ~ II Vf II for all J.) 
The converse is not true; if all that is known about the partial isometries 
U and V is that U*U ~ V*V, then, to be sure, the initial space of U is 
included in the initial space of V, but it cannot be concluded that U and 
V necessarily agree on the smaller initial space. 

If U*U = 1, i.e., if U is an isometry, then the only partial isometry 
that can dominate U is U itself: an isometry is a maximal partial isom
etry. Are there any other maximal partial isometries? One way to get 
the answer is to observe that if U ~ V, then the final space of U (i.e., 
the initial space of U*) is included in the final space of V (the initial 
space of V*), and, moreover, V* agrees with U* on the initial space of 
U*. In other words, if U ~ V, then U* ~ V*, and hence, in particular, 
UU* ~ VV*. This implies that if UU* = 1, i.e., if U is a co-isometry, 
then, again, U is maximal. If a partial isometry U is neither an isometry 
nor a co-isometry, then both U and u* have non-zero kernels. In that 
case it is easy to enlarge U to a partial isometry that maps a prescribed 
unit vector in ker U onto a prescribed unit vector in ker U* (and, of 
course, agrees with U on (ker U) 1). Conclusion: a partial isometry is 
maximal if and only if either it or its adjoint is an isometry. 

The easy way to be a maximal partial isometry is to be unitary. If U 
is unitary on H and if M is a subspace of H, then a necessary and suffi
cient condition that M reduce U is that UM = M. If U is merely a 
partial isometry, then it can happen that UM = M but M does not 
reduce U, and it can happen that M reduces U but UM ~ M. What 
if U is a maximal partial isometry? 

Problem 99. Discover the implication relations between the state
ments "UM = M" and "M reduces U" when U is a maximal partial 
isometry. 

100. Closure and connectedness of partial isometries. Some state
ments about partial isometries are slightly awkward just because 0 
must be counted as one of them. The operator 0 is an isolated point of 
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the set of partial isometries; it is the only partial isometry in the interior 
of the unit ball. For this reason, for instance, the set of all partial isom
etries is obviously not connected. What about the partial isometries on 
the boundary of t.he unit ball? 

Problem 100. The set of all non-zero partial isometries is closed 
but not connected (with respect to the norm topology of operators) . 

101. Rank, co-rank, and nUllity. If U is a partial isometry, write 
p(U) = dim ran U, p'(U) = dim (ran UP, and v(U) = dim ker U. 
(That U is a partial isometry is not really important in these definitions; 
similar definitions can be made for arbitrary operators.) These three 
cardinal numbers, called the rank, the co-rank, and the nullity of U, 
respectively, are not completely independent of one another; they are 
such that both p + p' and p + v are equal to the dimension of the 
underlying Hilbert space. (Caution: subtraction of infinite cardinal 
numbers is slippery; it does not follow that p' = v.) It is easy to see that 
if p, p', and v are any three cardinal numbers such that p + p' = p + v, 
then there exist partial isometries with rank p, co-rank p', and nullity v. 

(Symmetry demands the consideration of v' (U) = dim (ker U) 1, the 
co-nullity of U, but there is no point in it; since U is isometric on (ker U) 1 

it follows that v' = p.) 

Recall that if U is a partial isometry, then so is U*; the initial space 
of U* is the final space of U, and vice versa. It follows that v(U*) = 
p'(U) and P'(U*) = v(U). 

One reason that the functions p, p', and v are useful is that they are 
continuous. To interpret this statement, use the norm topology for the 
space P of partial isometries (on a fixed Hilbert space), and use the 
discrete topology for cardinal numbers. With this explanation the mean
ing of the continuity assertion becomes unambiguous: if U is sufficiently 
near to V, then U and V have the same rank, the same co-rank, and the 
same nullity. The following assertion is a precise quantitative formu
lation of the result. 

Problem 101. If U and V are partial isometries such that 
II U - V II < 1, then p(U) = p(V), p'(U) = p'(V), and v(U) 
v(V) . 
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For each fixed p, p', and II let P (p,p' ,II) be the set of partial isometries 
(on a fixed Hilbert space) with rank p, co-rank p', and nullity II. Clearly 
the sets of the form P(p,p',II) constitute a partition of the space P of all 
partial isometries; it is a consequence of the statement of Problem 101 
that each set P (p,p' ,II) is both open and closed. It follows that t.he set of 
all isometries (II = 0) is both open and closed, and so is the set of all 
unitary operators (p' = II = 0). 

102. Components of the space of partial isometries. If <p is a meas
urable function on a measure space, such that I <p I = 1 almost every
where, then there exists a measurable real-valued function (J on that 
space such that <p = ei8 almost everywhere. This is easy to prove. What 
it essentially says is that a measurable function always has a measurable 
logarithm. The reason is that the exponential function has a Borel 
measurable inverse (in fact many of them) on the complement of the 
origin in the complex plane. (Choose a continuous logarithm on the 
complement of the negative real axis, and extend it by requiring one
sided continuity on, say, the upper half plane.) 

In the language of the functional calculus, the result of the preceding 
paragraph can be expressed as follows: if U is a unitary operator, then 
there exists a Hermitian operator A such that U = eiA • If U t = eitA , ° ~ t ~ 1, then t -+ Ut is a continuous curve of unitary operators 
joining 1 (= Uo) to U (= U1). Conclusion: the set of all unitary oper
ators is arcwise connected. In the notation of Problem 101, the open
closed set P(p,O,o) (on a Hilbert space of dimension p) is connected; it 
is a component of the set P of all partial isometries. Question: what are 
the other components? Answer: the sets of the form P (p,p' ,II) . 

Problem 102. Each pair of partial isometries (on the same 
Hilbert space) with the same rank, co-rank, and nullity, can be joined 
by a continuous curve of partial isometries with the same rank, co-rank, 
and nullity. 

103. Unitary equivalence for partial isometries. If A is a contraction 
(that means II A II ~ 1), then 1 - A A * is positive. It follows that there 
exists a unique positive operator whose square is 1 - AA *; call it A'. 
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Assertion: the operator matrix 

M(A) = (~ ~') 

is a partial isometry. Proof (via Problem 98): check that MM*M = M. 
Consequence: every contraction can be extended to a partial isometry. 

Problem 103. If A and B are unitarily equivalent contractions, 
then M(A) and M(B) are unitarily equivalent; if A and B are in
vertible contractions, then the converse is true. 

There are many ways that a possibly "bad" operator A can be used 
to manufacture a "good" one. Samples: A + A * and 

None of these ways yields sufficiently many usable unitary invariants 
for A. It is usually easy to prove that if A and B are unitarily equivalent, 
then so are the various constructs in which they appear. It is, however, 
usually false that if the constructs are unitarily equivalent, then the 
original operators themselves are. The chief interest of the assertion of 
Problem 103 is that, for the special partial isometry construct it deals 
with, the converse happens to be true. 

The result is that the unitary equivalence problem for an apparently 
very small class of operators (partial isometries) is equivalent to the 
problem for the much larger class of invertible contractions. The unitary 
equivalence problem for invertible contractions is, in turn, trivially 
equivalent to the unitary equivalence problem for arbitrary operators. 
The reason is that by a translation (A ---t A + a) and a change of scale 
(A ---t (jA) every operator becomes an invertible contraction, and 
translations and changes of scale do not affect unitary equivalence. The 
end product of all this is a reduction of the general unitary equivalence 
problem to the special case of partial isometries. 

104. Spectrum of a partial isometry. What conditions must a set of 
complex numbers satisfy in order that it be the spectrum of some partial 
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isometry? Since a partial isometry is a contraction, its spectrum is 
necessarily a subset of the closed unit disc. If the spectrum of a partial 
isometry does not contain the origin, i.e., if a partial isometry is in
vertible, then it is unitary, and, therefore, its spectrum is a subset of 
the unit circle (perimeter). Since every non-empty compact subset of 
the unit circle is the spectrum of some unitary operator (d. Problem 48), 
the problem of characterizing the spectra of invertible partial isometries 
is solved. What about the non-invertible ones? 

Problem 104. What conditions must a set of complex numbers 
satisfy in order that it be the spectrum of some non-unitary partial 
isometry? 

105. Polar decomposition. Every complex number is the product of 
a non-negative number and a number of modulus 1; except for the num
ber 0, this polar decomposition is unique. The generalization to finite 
matrices says that every complex matrix is the product of a positive 
matrix and a unitary one. If the given matrix is invertible, and if the 
order of the factors is specified (UP or PU) , then, once again, this polar 
decomposition is unique. It is possible to get a satisfactory uniqueness 
theorem for every matrix, but only at the expense of changing the kind 
of factors admitted; this is a point at which partial isometries can 
profitably enter the study of finite-dimensional vector spaces. In the 
infinite-dimensional case, partial isometries are unavoidable. It is not 
true that every operator on a Hilbert space is equal to a product UP, 
with U unitary and P positive, and it does not become true even if U 
is required to be merely isometric. (The construction of concrete counter
examples may not be obvious now, but it will soon be an easy by-product 
of the general theory.) The correct statements are just as easy for 
transformations between different spaces as for operators on one space. 

Problem 105. If A is a bounded linear transformation from a 
Hilbert space H to a Hilbert space K, then there exists a partial isom
etry U (from H to K) and there exists a positive operator P (on H) 
such that A = UP. The transformations U and P can be found so 
that ker U = ker P, and this additional condition uniquely determines 
them. 
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The representation of A as the product of the unique U and P satis
fying the stated conditions is called the polar decomposition of A, or, 
more accurately, the right-handed polar decomposition of A. The corre
sponding left-handed theory (A = PU) follows by a systematic exploi
tation of adjoints. 

Corollary 1. If A 
U*A = P. 

UP is the polar decomposition of A, then 

Corollary 2. If A = UP is the polar decomposition of A, then a 
necessary and sufficient condition that U be an isometry is that A be 
one-to-one, and a necessary and sufficient condition that U be a co
isometry is that the range of A be dense. 

106. Maximal polar representation. 

Problem 106. Every bounded linear transformation is the product 
of a maximal partial isometry and a positive operator. 

107. Extreme points. The closed unit ball in the space of operators 
is convex. For every interesting convex set, it is of interest to determine 
the extreme points. 

Problem 107. What are the extreme points of the closed unit ball 
in the space of operators on a Hilbert space? 

108. Quasinormal operators. The condition of normality can be 
weakened in various ways; the most elementary of these leads to the 
concept of quasinormality. An operator A is called quasinormal if A 
commutes with A * A. It is clear that every normal operator is quasi
normal. The converse is obviously false. If, for instance, A is an isometry, 
then A * A = 1 and therefore A commutes with A * A, but if A is not 
unitary, then A is not normal. (For a concrete example consider the 
unilateral shift.) 

Problem 108. An operator with polar decomposition UP is quasi
normal if and only if UP = PU. 
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Quasinormal operators (under another name) were first introduced 
and studied by Brown [1953]. 

109. Density of invertible operators. It sometimes happens that a 
theorem is easy to prove for invertible operators but elusive in the 
general case. This makes it useful to know that every finite (square) 
matrix is the limit of invertible matrices. In the infinite-dimensional 
case the approximation technique works, with no difficulty, for normal 
operators. (Invoke the spectral theorem to represent the given operator 
as a multiplication, and, by changing the small values of the multiplier, 
approximate it by operators that are bounded from below.) If, however, 
the space is infinite-dimensional and the operator is not normal, then 
there is trouble. 

Problem 109. The set of all operators that have either a left or a 
right inverse is dense, but the set of all operators that have both a left 
and a right inverse (i.e., the set of all invertible operators) is not. 

110. Connectedness of invertible operators. 

Problem 110. The set of all invertible operators is connected. 



Chapter 14. Unilateral shift 

111. Reducing subspaces of normal operators. One of the principal 
achievements of the spectral theorem is to reduce the study of a normal 
operator to subspaces with various desirable properties. The following 
assertion is one way to say that the spectral theorem provides many 
reducing subspaces. 

Problem Ill. If A is a normal operator on an infinite-dimensional 
Hilbert space H, then H is the direct sum of a countably infinite col
lection of subspaces that reduce A, all with the same infinite dimension. 

112. Products of symmetries. A symmetry is a unitary involution, 
i.e., an operator Q such that Q*Q = QQ* = Q2 = 1. It may be pertinent 
to recall that if an operator possesses any two of the properties "unitary", 
"involutory", and "Hermitian", then it possesses the third; the proof is 
completely elementary algebraic manipulation. 

Problem 112. Discuss the assertion: every unitary operator is the 
product of a finite number of symmetries. 

113. Unilateral shift versus normal operators. The main point of 
Problem 111 is to help solve Problem 112 (and, incidentally, to provide 
a non-trivial application of the spectral theorem). The main point of 
Problem 112 is to emphasize the role of certain shift operators. Shifts 
(including the simple unilateral and bilateral ones introduced before) 
are a basic tool in operator theory. The unilateral shift, in particular, 
has many curious properties, both algebraic and analytic. The techniques 
for discovering and proving these properties are frequently valuable 
even when the properties themselves have no visible immediate appli
cation. Here are three sample questions. 

Problem 113. (a) Is the unilateral shift the product of a finite 
number of normal operators? (b) What is the norm of the real part 
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of the unilateral shift? (c) How far is the unilateral shift from the set 
of normal operators? 
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The last question takes seriously the informal question: "How far 
does the unilateral shift miss being normal?" The question can be asked 
for every operator and the answer is a unitary invariant that may 
occasionally be useful. 

114. Square root of shift. 

Problem 114. Does the unilateral shift have a square root? In 
other words, if U is the unilateral shift, does there exist an operator 
V such that V2 = U? 

115. Commutant of the bilateral shift. The commutant of an oper
ator (or of a set of operators) is the set of all operators that commute 
with it (or with each operator in the set). The commutant is one of the 
most useful things to know about an operator. One of the most important 
purposes of the so-called multiplicity theory is to discuss the commutants 
of normal operators. In some special cases the determination of the 
commutant is accessible by relatively elementary methods; a case in 
point is the bilateral shift. 

The bilateral shift W can be viewed as multiplication by el on V of 
the unit circle (d. Problem 68). Hereen(z) = zn (n = 0, ±1, ±2, ... ) 
whenever I z I = 1, and V is formed with normalized Lebesgue measure. 

Problem 115. The commutant of the bilateral shift is the set of all 
multiplications. 

Corollary. Each reducing subspace of the bilateral shift is de
termined by a Borel subset M of the circle as the set of all functions 
(in V) that vanish outside M. 

Both the main statement and the corollary have natural generali
zations that can be bought at the same price. The generalizations are 
obtained by replacing the unit circle by an arbitrary bounded Borel set 
X in the complex plane and replacing Lebesgue measure by an arbitrary 
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finite Borel measure in X. The generalization of the bilateral shift is 
the multiplication induced by el (where el(z) = Z for all Z in X). 

116. Commutant of the unilateral shift. The unilateral shift is the 
restriction of the bilateral shift to H2. If the bilateral shift is regarded 
as a multiplication, then its commutant can be described as the set of 
all multiplications on the same V (Problem 115). The wording suggests 
a superficially plausible conjecture: perhaps the commutant of the uni
lateral shift consists of the restrictions to H2 of all multiplications. On 
second thought this is absurd: H2 need not be invariant under a multipli
cation, and, consequently, the restriction of a multiplication to H2 is 
not necessarily an operator on H2. If, however, the multiplier itself is 
in H2 (and hence in H"'), then HZ is invariant under the induced multipli
cation (d. Problem 27) , and the conjecture makes sense. 

Problem 116. The commutant of the unilateral shift is the set of 
all restrictions to H2 oj multiplicatior:s by multipliers in H"'. 

Corollary. The unilateral shift is irreducible, in the sense that its 
only reducing subspaces are {o} and H2. 

Just as for the bilateral shift, the main statement has a natural 
generalization. Replace the unit circle by an arbitrary bounded Borel 
subset of the complex plane, and replace Lebesgue measure by an 
arbitrary finite Borel measure p. in X. The generalization of H2, some
times denoted by HZ (J.I.), is the span in V (J.I.) of the functions en, n = 0, 
1, 2, ... , where en(z) = zn for all z in X. The generalization of the 
unilateral shift is the restriction to H2 (p.) of the multiplication induced 
byel' 

The corollary does not generalize so smoothly as the main statement. 
The trouble is that the structure of HZ (p.) within V (p.) depends strongly 
on X and p.; it can, for instance, happen that HZ(p.) = V(p.). 

The characterization of the commutant of the unilateral shift yields a 
curious alternative proof of, and corresponding insight into, the assertion 
that U has no square root (Solution 114). Indeed, if VZ = U, then V 
commutes with U, and therefore V is the restriction to HZ of the multipli
cation induced by a function cp in H"'. Apply V2 to eo, apply U to eo, 
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and infer that (<p(Z»2 = z almost everywhere. This implies that 
(<p(Z»2 = z in the unit disc (see Solution 34), i.e., that the function l!r 
has an analytic square root; the contradiction has arrived. 

117. Commutant of the unilateral shift as limit. 

Problem 117. Every operator that commutes with the unilateral 
shift is the limit (strong operator topology) of a sequence of polynomials 
in the unilateral shift. 

118. Characterization of isometries. What can an isometry look 
like? Some isometries are unitary, and some are not; an example of the 
latter kind is the unilateral shift. Since a direct sum (finite or infinite) 
of isometries is an isometry, a mixture of the two kinds is possible. 
More precisely, the direct sum of a unitary operator and a number of 
copies (finite or infinite) of the unilateral shift is an isometry. (There 
is no point in forming direct sums of unitary operators-they are no 
more unitary than the summands.) The useful theorem along these 
lines is that that is the only way to get isometries. It follows that the 
unilateral shift is more than just an example of an isometry, with 
interesting and peculiar properties; it is in fact one of the fundamental 
building blocks out of which all isometries are constructed. 

Problem 118. Every isometry is either unitary, or a direct sum of 
one or more copies of the unilateral shift, or a direct sum of a unitary 
operator and some copies of the unilateral shift. 

An isometry for which the unitary direct summand is absent is called 
pure. 

119. Distance from shift to unitary operators. 

Problem 119. How far is the unilateral shift from the set of unitary 
operators? 

120. Reduction by the unitary part. Each isometry decomposes into 
a unitary part and a pure part (Problem 118) . If the subspace on which 
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the unitary part acts is M, then M reduces the given isometry, and, 
therefore, M reduces each polynomial in that isometry. Does M reduce 
every operator that commutes with that isometry? 

Problem 120. Does the domain of the unitary part of an isometry 
reduce every operator that commutes with the isometry? 

121. Shifts as universal operators. If U is an isometry on a Hilbert 
space H, and if there exists a unit vector eo in H such that the vectors 
eo, Ueo, U2eo, .•. form an orthonormal basis for H, then (obviously) U 
is unitarily equivalent to the unilateral shift, or, by a slight abuse of 
language, U is the unilateral shift. This characterization of the unilateral 
shift can be reformulated as follows: U is an isometry on a Hilbert space 
H for which there exists a one-dimensional subspace N such that the 
subspaces N, UN, U2N, .•. are pairwise orthogonal and span H. If 
there is such a subspace N, then it must be equal to the co-range (UH)!. 
In view of this comment another slight reformulation is possible: the 
unilateral shift is an isometry U of co-rank 1 on a Hilbert space H such 
that the subspaces (UH).L, U(UH).L, U2(UH).L, .•. span H. (Since U 
is an isometry, it follows that they must be pairwise orthogonal.) Most 
of these remarks are implicit in Solution 118. 

A generalization lies near at hand. Consider an isometry U on a 
Hilbert space H such that the subspaces (UH).L, U(UH)1, U2(UH).L,··· 
are pairwise orthogonal and span H, but make no demands on the value 
of the co-rank. Every such isometry may be called a shift (a unilateral 
shift). The co-rank of a shift (also called its multiplicity) constitutes a 
complete set of unitary invariants for it; the original unilateral shift is 
determined (to within unitary equivalence) as the shift of mUltiplicity 
1 (the simple unilateral shift). 

Unilateral shifts of higher multiplicities are just as important as the 
simple one. Problem 118 shows that they are exactly the pure isometries. 
They playa vital role in the study of all operators, not only isometries; 
they, or rather their adjoints, turn out to be universal operators. 

A part of an operator is a restriction of it to an invariant subspace. 
Each part of an isometry is an isometry; the study of the parts of uni
lateral shifts does not promise anything new. What about parts of the 
adjoints of unilateral shifts? If U is a unilateral shift, then II U II = 
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1/ U* II 1, and it follows that if A is a part of U*, then II A II ~ 1. 
Since, moreover, u*n -t 0 in the strong topology (d. Solution 90), it 
follows that An -t 0 (strong). The miraculous and useful fact is that 
these two obviously necessary conditions are also sufficient; d. Foia~ 
[1963J and de Branges-Rovnyak [1964, 1965]. 

Problem 121. Every contraction whose powers tend strongly to 0 
is unitarily equivalent to a part of the adjoint of a unilateral shift. 

122. Similarity to parts of shifts. For many purposes similarity is 
just as good as unitary equivalence. When is an operator A similar to a 
part of the adjoint of a shift U? Since similarity need not preserve norm, 
there is no obvious condition that II A II must satisfy. There is, however, 
a measure of size that similarity does preserve, namely the spectral 
radius; since r(U*) = 1,itfoliowsthatr(A) ~ 1. It is easy to see that 
this necessary condition is not sufficient. The reason is that one of the 
necessary conditions for unitary equivalence (A n -t 0 strongly, d. 
Problem 121) is necessary for similarity also. (That is: if An -t 0 strongly, 
and if B = S-IAS, then Bn -t 0 strongly.) Since there are many oper
ators A such that r (A) ~ 1 but A n does not tend to 0 in any sense 
(example: 1), the condition on the spectral radius is obviously not 
sufficient. There is a condition on the spectral radius alone that is 
sufficient for similarity to a part of the adjoint of a shift, but it is quite 
a bit stronger than rCA) ~ 1; it is, in fact, rCA) < 1. 

Problem 122. Every operator whose spectrum is included in the 
interior of the unit disc is similar to a contraction whose powers tend 
strongly to O. 

Corollary 1. Every operator whose spectrum is included in the 
interior of the unit disc is similar to a part of the adjoint of a unilateral 
shift. 

Corollary 2. Every operator whose spectrum is included in the 
interior of the unit disc is similar to a proper contraction. 

(A proper contraction is an operator A with II A II < 1.) 
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Corollary 3. Every quasinilpotent operator is similar to operators 
with arbitrarily small norms. 

These simple but beautiful and general results are due to Rota [1960]. 

Corollary 4. The spectral radius of every operator A is the infimum 
oj the numbers II S-lAS II jor all invertible operators S. 

123. Wandering subspaces. If A is an operator on a Hilbert space 
H, a subspace N of H is called wandering for A if it is orthogonal to all 
its images under the positive powers of A. This concept is especially 
useful in the study of isometries. If U is an isometry and N is a wandering 
subspace for U, then UmN ..1 UnN whenever m and n are distinct positive 
integers. In other words, if j and g are in N, then Umf ..1 Ung. (Proof: 
reduce to the case m > n, and note that (Umf,Ung) = (u*nUmj,g) = 
(Um-nf,g) .) If U is unitary, even more is true: in that case UmN ..1 UnN 
whenever m and n are any two distinct integers, positive, negative, or 
zero. (Proof: find k so that m + k and n + k are positive and note that 
(Umj,Ung) = (Um+kj,un+kg).) 

Wandering subspaces are important because they are connected with 
invariant subspaces, in this sense: if U is an isometry, then there is a 
natural one-to-one correspondence between all wandering subspaces N 
and some invariant subspaces M. The correspondence is given by setting 
M = V'::=o UnN. (To prove that this correspondence is one-to-one, 
observe that UM = V':=l UnN, so that N = M n (UM)!.) For at 
least one operator, namely the unilateral shift, the correspondence is 
invertible. 

Problem 123. If U is the (simple) unilateral shift and if M is a 
non-zero subspace invariant under U, then there exists a (necessarily 
unique) one-dimensional wandering subspace N such that M = 
V'::=o UnN. 

The equation connecting M and N can be expressed by saying that 
every non-zero part of the simple unilateral shift is a shift. To add that 
dim N = 1 is perhaps an unsurprising sharpening, but a useful and 
non-trivial one. In view of these comments, the following concise state-
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ment is just a reformulation of the problem: every non-zero part of the 
simple unilateral shift is (unitarily equivalent to) the simple unilateral 
shift. With almost no additional effort, and only the obviously appropri
ate changes in the statement, all these considerations extend to shifts of 
higher multiplicities. 

124. Special invariant subspaces of the shift. One of the most re
calcitrant unsolved problems of Hilbert space theory is whether or not 
every operator has a non-trivial invariant subspace. A promising, inter
esting, and profitable thing to do is to accumulate experimental evidence 
by examining concrete special cases and seeing what their invariant 
subspaces look like. A good concrete special case to look at is the uni
lateral shift. 

There are two kinds of invariant subspaces: the kind whose orthogonal 
complement is also invariant (the reducing subspaces), and the other 
kind. The unilateral shift has no reducing subspaces (Problem 116); 
the question remains as to how many of the other kind it has and what 
they look like. 

The easiest way to obtain an invariant subspace of the unilateral 
shift U is to fix a positive integer k, and consider the span Mk of the en's 
with n ;?; k. After this elementary observation most students of the 
subject must stop and think; it is not at all obvious that any other 
invariant subspaces exist. A recollection of the spectral behavior of U 
is helpful here. Indeed, since each complex number A of modulus less 
than 1 is a simple eigenvalue of u* (Solution 67), with corresponding 
eigenvector jx = L~~o Anen , it follows that the orthogonal complement 
of the singleton {jxl is a non-trivial subspace invariant under U. 

Problem 124. Ij Mk(A) is the orthogonal complement oj 
{jx, "', UHjxl (k = 1,2,3, ... ), then M,,(A) is invariant under 
U, dim Mkl(A) = k, and Vk~l Mkl(A) = H2. 

Note that the spaces Mk considered above are the same as the spaces 
Mk(O). 

125. Invariant subspaces of the shift. What are the invariant sub
spaces of the unilateral shift? The spaces Mk and their generalizations 
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MIc(>") (see Problem 124) are examples. The lattice operations (inter
section and span) applied to them yield some not particularly startling 
new examples, and then the well seems to run dry. New inspiration can 
be obtained by abandoning the sequential point of view and embracing 
the functional one; regard U as the restriction to H2 of the multiplication 
induced by el. 

Problem 125. A non-zero subspace M of H2 is invariant under U 
if and only if there exists a function cp in HOO, of constant modulus 1 
almost everywhere, such that M is the range of the restriction to H2 of 
the multiplication induced by cpo 

This basic result is due to Beurling [1949]. It has received considerable 
attention since then; d. Lax [1959J, Halmos [1961J, and Helson [1964]. 

In more informal language, M can be described as the set of all 
multiples of cp (multiples by functions in H2, that is). Correspondingly 
it is suggestive to write M = cp·H2. For no very compelling reason, the 
functions such as cp (functions in Hoo, of constant modulus 1) are called 
inner functions. 

Corollary 1. If cp and 'if; are inner functions such that cp' H2 C 'if;' H2, 
then cp is divisible by 1/1, in the sense that there exists an inner function 
(J such that cp = 'if;. (J. If cp' H2 = 'if;. H2, then cp and 'if; are constant 
multiples of one another, by constants of modulus 1. 

The characterization in terms of inner functions does not solve all 
problems about invariant subspaces of the shift, but it does solve some. 
Here is a sample. 

Corollary 2. If M and N are non-zero subspaces invariant under 
the unilateral shift, then M n N ~ IO}. 

Corollary 2 says that the lattice of invariant subspaces of the unilateral 
shift is about as far as can be from being complemented. 

126. Cyclic vectors. An operator A on a Hilbert space H has a 
cyclic vector f if the vectors f, Af, A 2j, ... span H. Equivalently, f is a 
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cyclic vector for A in case the set of all vectors of the form P(A)f, 
where p varies over all polynomials, is dense in H. The simple unilateral 
shift has many cyclic vectors; a trivial example is eo. 

On finite-dimensional spaces the existence of a cyclic vector indicates 
something like multiplicity 1. If, to be precise, A is a finite diagonal 
matrix, then a necessary and sufficient condition that A have a cyclic 
vector is that the diagonal entries be distinct (i.e., that the eigenvalues 
be simple). Indeed, if the diagonal entries are AI, "', An, then 
peA) (~1' "', ~n) = <P(A1)~1' "', p(An)~n) for every polynomial p. 
For f = (6, "', ~n) to be cyclic, it is clearly necessary that ~i ~ 0 
for each i; otherwise the i coordinate of P(A)f is 0 for all p. If the A's are 
not distinct, nothing is sufficient to make f cyclic. If, for instance, 
Al = A2, then <~2*, -~1*, 0, "', 0) is orthogonal to P(A)f for all p. 
If, on the other hand, the A's are distinct, then p (AI), "', p (An) can be 
prescribed arbitrarily, so that if none of the es vanishes, then the p(A)J's 
exhaust the whole space. 

Some trace of the relation between the existence of cyclic vectors and 
multiplicity 1 is visible even for non-diagonal matrices. Thus, for in
stance, if A is a finite matrix, then the direct sum A EEl A cannot have 
a cyclic vector. Reason: by virtue of the Hamilton-Cayley equation, at 
most n of the matrices 1, A, A2, '" are linearly independent (where n 
is the size of A), and consequently, no matter what f and g are, at most 
n of the vectors Aif EEl Aig are linearly independent; it follows that their 
span can never be 2n-dimensional. 

If A has multiplicity 1 in any sense, it is reasonable to expect that A * 
also has; this motivates the conjecture that if A has a cyclic vector, then 
so does A *. For finite matrices this is true. For a proof, note that, 
surely, if a matrix has a cyclic vector, then so does its complex conjugate, 
and recall that every matrix is similar to its transpose. 

The methods of the preceding paragraphs are very parochially finite
dimensional; that indicates that the theory of cyclic vectors in infinite
dimensional spaces is likely to be refractory, and it is. There is, to 
begin with, a trivial difficulty with cardinal numbers. If there is a cyclic 
vector, then a countable set spans the space, and therefore the space is 
separable; in other words, in non-separable spaces there are no cyclic 
vectors. This difficulty can be got around; that is one of the achievements 
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of the multiplicity theory of normal operators (Halmos [1951, III].). 
For normal operators, the close connection between multiplicity 1 and 
the existence of cyclic vectors persists in infinite-dimensional spaces, 
and, suitably reinterpreted, even in spaces of uncountable dimension. 

For non-normal operators, things are peculiar. It is possible for a 
direct sum A $ A to have a cyclic vector, and it is possible for A to 
have a cyclic vector when A * does not. These facts were first noticed 
by D. E. Sarason. 

Problem 126. If U is a unilateral shift of multiplicity not greater 
than No, then U* has a cyclic vector. 

It is obvious that the simple unilateral shift has a cyclic vector, but 
it is not at all obvious that its adjoint has one. It does, but that by itself 
does not imply anything shocking. The first strange consequence of the 
present assertion is that if U is the simple unilateral shift, then U* $ U* 
(which is the adjoint of a unilateral shift of multiplicity 2) has a 
cyclic vector. The promised strange behavior becomes completely ex
posed with the remark that U $ U cannot have a cyclic vector (and, 
all the more, the same is true for direct sums with more direct sum
mands). To prove the negative assertion, consider a candidate 

< <~o, ~l, ~2, ••• ), (7Jo, 7Jl, 7J2, ••• ) ) 

for a cyclic vector of U $ U. If (cx,/3) is an arbitrary non-zero vector 
orthogonal to (~0,1]0) in the usual two-dimensional complex inner product 
space, then the vector 

( (at, 0, 0, ... ), (f3, 0, 0, ... ) ) 

is orthogonal to 

(U $ U) .. ( (~o, ~1, ~2, ••• ), (1]0, 7Jl, 1]2, ••• ) ) 

for all n (= 0, 1,2, ... ), and that proves that the cyclic candidate fails. 
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127. The F. and M. Riesz theorem. It is always a pleasure to see a 
piece of current (soft) mathematics reach into the past to illuminate 
and simplify some of the work of the founding fathers on (hard) analysis; 
the characterization of the invariant subspaces of the unilateral shift 
does that. The elements of H2 are related to certain analytic functions 
on the unit disc (Problem 28) ,and, although they themselves are defined 
on the unit circle only, and only almost everywhere at that, they tend 
to imitate the behavior of analytic functions. A crucial property of an 
analytic function is that it cannot vanish very often without vanishing 
everywhere. An important theorem of F. and M. Riesz asserts that the 
elements of H2 exhibit the same kind of behavior; here is one possible 
formulation. 

Problem 127. A function in H2 vanishes either almost everywhere 
or almost nowhere. 

Corollary. Iff and g are in H2 and if fg = 0 almost everywhere, 
then f = 0 almost everywhere or g = 0 almost everywhere. 

Concisely: there are no zero-divisors in H2. 
For a more general discussion of the F. and M. Riesz theorem, see 

Hoffman [1962, p. 47]. 

128. The F. and M. Riesz theorem generalized. The F. and M. 
Riesz theorem says that if f f H2 and if f vanishes on a set of positive 
measure, then f = 0 almost everywhere. To say "f f H2" is to say that 
the Fourier coefficients of f with negative index are zero. This implies 
that iff = Ln anen, then ana_n = 0 for all non-zero n's. Is this condition 
sufficient to yield the conclusion of the F. and M. Riesz theorem? 

Problem 128. Iff E V with Fourier expansion f = Ln anen, if 
ana_n = 0 for all non-zero n's, and if f vanishes on a set of positive 
measure, does it follow that f = 0 almost everywhere? 

129. Reducible weighted shifts. Very little of the theory of reducing 
and invariant subspaces of the bilateral and the unilateral shift is known 
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for weighted shifts. There is, however, one striking fact that deserves 
mention; it has to do with the reducibility of two-sided weighted shifts. 
It is due to R. L. Kelley. 

Problem 129. If A is a bilateral weighted shift with strictly positive 
weights an, n = 0, ±1, ±2, "', then a necessary and sufficient con
dition that A be reducible is that the sequence {an} be periodic. 



Chapter 15. Compact operators 

130. Mixed continuity. Corresponding to the strong (s) and weak 
(w) topologies for a Hilbert space H, there are four possible interpre
tations of continuity for a transformation from H into H: they are the 
ones suggested by the symbols (s -t s), (w -t w), (s -t w), and (w -t s). 
Thus, to say that A is continuous (s -t w) means that the inverse image 
under A of each w-open set is s-open; equivalently it means that the 
direct image under A of a net s-convergent to f is a net w-convergent 
to Af. Four different kinds of continuity would be too much of a good 
thing; it is fortunate that three of them collapse into one. 

Problem 130. For a linear transformation A the three kinds of 
continuity (s -t s), (w -t w) , and (s -t w) are equivalent (and hence 
each is equi-valent to boundedness) , and continuity (w -t s) implies that 
A has finite rank. 

Corollary. The image of the closed unit ball under an operator on 
a Hilbert space is always strongly closed. 

It is perhaps worth observing that for linear transformations of finite 
rank aU four kinds of continuity are equivalent; this is a trivial finite
dimensional assertion. 

131. Compact operators. A linear transformation on a Hilbert space 
is called compact (also completely continuous) if its restriction to the 
unit ball is (w -t s) continuous (see Problem 130). Equivalently, a 
linear transformation is compact if it maps each bounded weakly con
vergent net onto a strongly convergent net. Since weakly convergent 
sequences are bounded, it follows that a compact linear transformation 
maps every weakly convergent sequence onto a strongly convergent one. 

The image of the closed unit ball under a compact linear transfor
mation is strongly compact. (Proof: the closed unit ball is weakly 
compact.) This implies that the image of each bounded set is precompact 

84 
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(i.e., has a strongly compact closure). (Proof: a bounded set is included 
in some closed ball.) The converse implication is also true: if a linear 
transformation maps bounded sets onto precompact sets, then it maps 
the closed unit ball onto a compact set. To prove this, observe first that 
compact (and precompact) sets are bounded, and that therefore a linear 
transformation that maps bounded sets onto precompact sets is neces
sarily bounded itself. (This implies, incidentally, that every compact 
linear transformation is bounded.) It follows from the corollary to 
Problem 130 that the image of the closed unit ball is strongly closed; this, 
together with the assumption that that image is precompact, implies 
that that image is actually compact. (The converse just proved is not 
universally true for Banach spaces.) The compactness conditions, here 
treated as consequences of the continuity conditions used above to 
define compact linear transformations, can in fact be shown to be equiva
lent to those continuity conditions and are frequently used to define 
compact linear transformations. (See Dunford-Schwartz [1958, p. 484].) 

An occasionally useful property of compact operators is that they 
"attain their norm". Precisely said: if A is compact, then there exists 
a unit vector 1 such that II Alii = II A II. The reason is that the mapping 
1 ---7 Al is (w ---7 s) continuous on the unit ball, and the mapping g ---7 II g II 
is strongly continuous; it follows that 1 ---7 II Al II is weakly continuous 
on the unit ball. Since the unit ball is weakly compact, this function 
attains its maximum, so that II Al II = II A II for some 1 with 111 II ~ 1. 
If A = 0, then 1 can be chosen to have norm 1; if A rE 0, then 1 neces
sarily has norm 1. Reason: since 1 rE 0 and 1/11 1 II ~ 1, it follows that 

II A II ::; ~ = II Al II ::; II A II. 
- 11111 11111-

Problem 131. The set C 01 all compact operators on a Hilbert 
space is a closed self-adjoint (two-sided) ideal. 

Here "closed" refers to the norm topology, "self-adjoint" means that 
if A E C, then A * E C, and "ideal" means that linear combinations of 
operators in C are in C and that products with at least one factor in C 
are in C. 
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132. Diagonal compact operators. Is the identity operator compact? 
Since in finite-dimensional spaces the strong and the weak topologies 
coincide, the answer is yes for them. For infinite-dimensional spaces, 
the answer is no; the reason is that the image of the unit ball is the 
unit ball, and in an infinite-dimensional space the unit ball cannot be 
strongly compact (Problem 10). 

The indistinguishability of the strong and the weak topologies in 
finite-dimensional spaces yields a large class of examples of compact 
operators, namely all operators of finite rank. Examples of a slightly 
more complicated structure can be obtained by exploiting the fact that 
the set of compact operators is closed. 

Problem 132. A diagonal operator with diagonal {an I is compact 
if and only if an ~ 0 as n ~ ~. 

Corollary. A weighted shift with weights {an: n 
is compact if and only if an ~ 0 as n ~ ~. 

o 1 2 ···1 , , , 

133. Normal compact operators. It is easy to see that if a normal 
operator has the property that every non-zero element in its spectrum 
is isolated (i.e., is not a cluster point of the spectrum), then it is a 
diagonal operator. (For each non-zero eigenvalue A of A, choose an 
orthonormal basis for the subspace {f: Af = VI; the union of all these 
little bases, together with a basis for the kernel of A, is a basis for the 
whole space.) If, moreover, each non-zero eigenvalue has finite multi
plicity, then the operator is compact. (Compare Problem 132; note that 
under the assumed conditions the set of eigenvalues is necessarily 
countable.) The remarkable and useful fact along these lines goes in the 
converse direction. 

Problem 133. The spectrum of a compact normal operator is count
able; all its non-zero elements are eigenvalues of finite multiplicity. 

Corollary. Every compact normal operator is the direct sum of the 
operator 0 (on a space that can be anything from absent to non-sepa
rable) and a diagonal operator (on a separable space) . 
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A less sharp but shorter formulation of the corollary is this: every 
compact normal operator is diagonal. 

134. Kernel of the identity. Matrices have valuable" continuous" 
generalizations. The idea is to replace sums by integrals, and it works
up to a point. To see where it goes wrong, consider a measure space X 
with measure J.I. (fT-finite as usual), and consider a measurable function 
K on the product space X X X. A function of two variables, such as K, 
is what a generalized matrix can be expected to be. Suppose that A is 
an operator on V(J.I.) whose relation to K is similar to the usual relation 
of an operator to its matrix. In precise terms this means that iff E L2(J.I.) , 

then 

(Af) (x) = f K(x,y)f(y)dJ.l.(Y) 

for almost every x. Under these conditions A is called an integral operator 
and K is called its kernel. 

In the study of a Hilbert space H, to say "select an orthonormal 
basis" is a special case of saying "select a particular way of representing 
H as V". Many phenomena in V spaces are the natural "continuous" 
generalizations of more familiar phenomena in sequence spaces. One 
simple fact about sequence spaces is that every operator on them has a 
matrix, and this is true whether the sequences (families) that enter are 
finite or infinite. (It is the reverse procedure that goes wrong in the 
infinite case. From operators to matrices all is well; it is from matrices 
to operators that there is trouble.) On this evidence it is reasonable to 
guess that every operator on V has a kernel, i.e., that every operator is 
an integral operator. This guess is wrong, hopelessly wrong. The trouble 
is not with wild operators, and it is not with wild measures; it arises 
already if the operator is the identity and if the measure is Lebesgue 
measure (in the line or in any interval). 

Problem 134. If J.I. is Lebesgue measure, then the identity is not an 
integral operator on V(J.I.). 

135. Hilbert-Schmidt operators. Under what conditions does a 
kernel induce an operator? Since the question includes the corresponding 
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question for matrices, it is not reasonable to look for necessary and 
sufficient conditions. A somewhat special sufficient condition, which is 
nevertheless both natural and useful, is that the kernel be square 
integrable. 

Suppose, to be quite precise, that X is a measure space with O"-finite 
measure p., and suppose that K is a complex-valued measurable function 
on X X X such that I K 12 is integrable with respect to the product 
measure p. X p.. It follows that, for almost every x, the function 
y ~ K(x,y) is in V(p.), and hence that the product function 
y ~ K (x,y) f (y) is integrable whenever f f V (p.). Since, moreover, 

1 I 1 K(x,y)f(y)dJ1.(Y) 1
2dJ1.(X) 

~ 1(/1 K(x,y) 12 dJ1.(Y)· /If(Y) 12 dJ1.(Y) )dp.(x) = II K W·llf 112 

(where II K II is the norm of K in V (p. X J1.) ) , it follows that the equation 

(Af) (x) = 1 K(x,y)f(y)dJ1.(Y) 

defines an operator (with kernel K) on V(J1.). The inequality implies 
also that 

IIA II ~ IIKII· 

Integral operators with kernels of this type (i.e., kernels in V(J1. X J1.)) 
are called Hilbert-Schmidt operators. A good reference for their properties 
is Schatten [1960]. 

The correspondence K ~ A is a one-to-one linear mapping from 
D(p. X J1.) to operators on V(p.). If A has a kernel K (in V(J1. X J1.)), 
then A * has the kernel K defined by 

K(x,y) = (K(y,x»)*. 

If A and B have kernels Hand K (in V(J1. X J1.)), then AB has the 



89 PROBLEMS 137 

kernel HK defined by 

(HK) (x,y) = f H(x,z)K(.z,y)d/L(z), 

The proofs of all these algebraic assertions are straightforward compu
tations with integrals. 

On the analytic side, the situation is just as pleasant. If {Kn} is a 
sequence of kernels in V(/L X /L) such that Kn ---t K (in the norm of 
L2(/L X /L», and if the corresponding operators are An (for Kn) and 
A (for K), then II An - A II ---t O. The proof is immediate from the 
inequality between the norm of an integral operator and the norm of its 
kernel. 

Problem 135. Every Hilbert-Schmidt operator is compact. 

These considerations apply, in particular, when the space is the set of 
positive integers with the counting measure. It follows that if the 
entries of a matrix are square-summable, then it is bounded (in the 
sense that it defines an operator) and compact (in view of the assertion 
of Problem 135). It should also be remarked that the Schur test (Problem 
37) for the boundedness of a matrix has a straightforward generalization 
to a theorem about kernels; see Brown-Halmos-Shields [1965]. 

136. Compact versus Hilbert-Schmidt. 

Problem 136. Is every compact operator a Hilbert-Schmidt oper
ator? 

137. Limits of operators of finite rank. Every example of a compact 
operator seen so far (diagonal operators, weighted shifts, integral oper
ators) was proved to be compact by showing it to be a limit of operators 
of finite rank. That is no accident. 

Problem 137. Every compact operator is the limit (in the norm) 
of operators of finite rank. 
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The generalization of the assertion to arbitrary Banach spaces is an 
unsolved problem. 

138. Ideals of operators. An ideal of operators is proper if it does 
not contain every operator. An easy example of an ideal of operators 
on a Hilbert space is the set of all operators of finite rank on that space; 
if the space is infinite-dimensional, that ideal is proper. Another example 
is the set of all compact operators; again, if the space is infinite-dimen
sional, that ideal is proper. The second of these examples is closed; in 
the inn.'1ite-dimensional case the first one is not. 

Problem 138. If H is a separable Hilbert space, then the collection 
of compact operators is the only non-zero closed proper ideal of operators 
onH. 

Similar results hold for non-separable spaces, but the formulations 
and proofs are fussier and much less interesting. 

139. Square root of a compact operator. It is easy to construct non
compact operators whose square is compact; in fact, it is easy to con
struct non-compact operators that are nilpotent of index 2. (Cf. Problem 
80.) What about the normal case? 

Problem 139. Do there exist non-compact normal operators whose 
square is compact? 

140. Fredholm alternative. The principal spectral fact about a 
compact operator (normal or no) on a Hilbert space is that a non-zero 
number can get into the spectrum via the point spectrum only. More 
precisely: if C is compact, and if A is a non-zero complex number, then 
either A is an eigenvalue of C or C - A is invertible. Division by A shows 
that it is sufficient to treat A = 1. The statement has thus been trans
formed into the following one. 

Problem 140. If C is compact and if ker (1 - C) 
1 - C is invertible. 

{O}, then 
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The statement is frequently referred to as the Fredholm alternative. 
The Fredholm alternative has a facetious but not too inaccurate re
formulation in terms ofthe equation (1 - C)f = g, in which g is regarded 
as given andf as unknown; according to that formulation, if the solution 
is unique, then it exists. 

Corollary. A compact operator whose point spectrum is empty is 
quasinilpotent. 

141. Range of a compact operator. 

Problem 141. Every (closed) subspace included in the range of a 
compact operator is finite-dimensional. 

Corollary. Every eigenvalue of a compact operator has finite multi
plicity. 

142. Atkinson's theorem. An operator A is called a Fredholm oper
ator if (1) ran A is closed and both ker A and (ran A).L are finite
dimensional. (The last two conditions can be expressed by saying that 
the nullity and the co-rank of A are finite.) An operator A is invertible 
modulo the ideal of operators of finite rank if (2) there exists an operator 
B such that both 1 - AB and 1 - BA have finite rank. An operator A 
is invertible modulo the ideal of compact operators if (3) there exists an 
operator B such that both 1 - AB and 1 - BA are compact. 

Problem 142. An operator A is (1) a Fredholm operator if and 
only if it is (2) invertible modulo the ideal of operators of finite rank, 
or, alternatively, if and only if it is (3) invertible modulo the ideal of 
compact operators. 

The result is due to Atkinson [1951]. 

143. Weyl's theorem. The process of adding a compact operator to 
a given one is sometimes known as perturbation. The accepted attitude 
toward perturbation is that compact operators are "small"; the addition 
of a compact operator cannot (or should not) make for radical changes. 
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Problem 143. If the difference between two operators is compact, 
then their spectra are the same except for eigenvalues. More explicitly: 
if A - B is compact, and if A € A(A) - IIo(A), then A € A(B). 

Note that for B = 0 the statement follows from Problem 140. 

92 

144. Perturbed spectrum. The spectrum of an operator changes, of 
course, when a compact operator is added to it, but in some sense not 
very much. Eigenvalues may come and go, but otherwise the spectrum 
remains invariant. In another sense, however, the spectrum can be 
profoundly affected by the addition of a compact operator. 

Problem 144. There exists a unitary operator U and there exists a 
compact operator C such that the spectrum of U + C is the entire unit 
disc. 

145. Shift modulo compact operators. Weyl's theorem (Problem 
143) implies that if U is the unilateral shift and if C is compact, then 
the spectrum of U + C includes the unit disc. (Here is a small curiosity. 
The reason the spectrum of U + C includes the unit disc is that U has 
no eigenvalues. The adjoint U* has many eigenvalues, so that this 
reasoning does not apply to it, but the conclusion does. Reason: the 
spectrum of U* + C is obtained from the spectrum of U + C* by 
reflection through the real axis, and C* is just as compact as C.) More 
is true: Stampfli [1965J proved that every point of the open unit disc 
is an eigenvalue of (U + C) *. 

It follows from the preceding paragraph that U + C can never be 
invertible (the spectrum cannot avoid 0), and it follows also that U + C 
can never be quasinilpotent (the spectrum cannot consist of 0 alone). 
Briefly: if invertibility and quasinilpotence are regarded as good prop
erties, then not only is U bad, but it cannot be improved by a pertur
bation. Perhaps the best property an operator can have (and U does 
not have) is normality; can a perturbation improve U in this respect? 

Problem 145. If U is the unilateral shift, does there exist a compact 
operator C such that U + C is normal? 
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Freeman [1965J has a result that is pertinent to this circle of ideas; 
he proves that, for a large class of compact operators C, the perturbed 
shift U + C is similar to the unperturbed shift U. 

146. Bounded Volterra kernels. Integral operators are generalized 
matrices. Experience with matrices shows that the more zeros they have, 
the easier they are to compute with; triangular matrices, in particular, 
are usually quite tractable. Which integral operators are the right gener
alizations of triangular matrices? For the answer it is convenient to 
specialize drastically the measure spaces considered; in what follows the 
only X will be the unit interval, and the only }L will be Lebesgue measure. 
(The theory can be treated somewhat more generally; see Ringrose 
[1962].) 

A Volterra kernel is a kernel K in V(}L X }L) such that K(x,y) = ° 
when x < y. Equivalently: a Volterra kernel is a Hilbert-Schmidt kernel 
that is triangular in the sense that it vanishes above the diagonal (x = y) 
of the unit square. In view of this definition, the effect of the integral 
operator A (Volterra operator) induced by a Volterra kernel K can be 
described by the equation 

(Aj) (x) = {" K(x,y)f(y)dy. 
o 

If the diagonal terms of a finite triangular matrix vanish, then the 
matrix is nilpotent. Since the diagonal of the unit square has measure 0, 
and since from the point of view of Hilbert space sets of measure ° are 
negligible, the condition of vanishing on the diagonal does not have an 
obvious continuous analogue. It turns out nevertheless that the zero 
values of a Volterra kernel above the diagonal win out over the non-zero 
values below. 

Problem 146. A Volterra operator with a bounded kernel is quasi
nilpotent. 

Caution: "bounded" here refers to the kernel, not to the operator; 
the assumption is that the kernel is bounded almost everywhere in the 
unit square. 
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147. Unbounded Volterra kernels. How important is the bounded
ness assumption in Problem 146? 

Problem 147. Is every Volterra operator quasinilpotent? 

148. The Volterra integration operator. The simplest non-trivial 
Volterra operator is the one whose kernel is the characteristic function 
of the triangle { (x,y >: 0 ~ y ~ x ~ 1}. Explicitly this is the Volterra 
operator V defined on V(O,l) by 

(Vf) (x) = I" f(y)dy. 
o 

In still other words, V is indefinite integration, with the constant of 
integration adjusted so that every function in the range of V vanishes 
at O. (Note that every function in the range of V is continuous. Better: 
every vector in the range of V, considered as an equivalence class of 
functions modulo sets of measure 0, contains a unique continuous func
tion.) 

Since V* is the integral operator whose kernel is the "conjugate 
transpose" of the kernel of V, so that the kernel of V* is the characteristic 
function of the triangle { (x,y >: 0 ~ x ~ y ~ 1}, it follows that V + V* 
is the integral operator whose kernel is equal to the constant function 1 
almost everywhere. (The operators V* and V + V* are of course not 
Volterra operators.) This is a pleasantly simple integral operator; a 
moment's reflection should serve to show that it is the projection whose 
range is the (one-dimensional) space of constants. It follows that Re V 
has rank 1; since V = Re V + i 1m V, it follows that V is a perturbation 
(by an operator of rank 1 at that) of a skew Hermitian operator. 

The theory of Hilbert-Schmidt operators in general and Volterra 
operators in particular answers many questions about V. Thus, for 
instance, V is compact (because it is a Hilbert-Schmidt operator), and 
it is quasinilpotent (because it is a Volterra operator). There are many 
other natural questions about V; some are easy to answer and some are 
not. Here is an easy one: does V annihilate any non-zero vectors? 
(Equivalently: "does V have a nontrivial kernel?", but that way 
terminological confusion lies.) The answer is no. If f~f(y)dy = 0 for 
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almost every x, then, by continuity, the equation holds for every x. 
Since the functions in the range of V are not only continuous but, in 
fact, differentiable almost everywhere, the equation can be differenti
ated; the result is that f(x) = 0 for almost every x. As for natural 
questions that are not so easily disposed of, here is a simple sample. 

Problem 148. What is the norm of V? 

149. Skew-symmetric Volterra operator. There is an operator Vo on 
V ( -1, + 1) (Lebesgue measure) that bears a faint formal resemblance 
to the operator Von L2(O,1) ; by definition 

j+z 
(Voj) (x) = f(y)dy. 

-:& 

Note that Vo is the integral operator induced by the kernel that is the 
characteristic function of the butterfly { (x,y): 0 ~ I y I ~ I x I ~ 1}. 

Problem 149. Find the spectrum and the norm of the skew-sym
metric Volterra operator Yo. 

150. Norm 1, spectrum {I}. Every finite matrix is unitarilyequiv
alent to a triangular matrix. If a triangular matrix has only l's on the 
main diagonal, then its norm is at least 1; the norm can be equal to 1 
only in case the matrix is the identity. The conclusion is that on a 
finite-dimensional Hilbert space the identity is the only contraction with 
spectrum {1}. The reasoning that led to this conclusion was very finite
dimensional; can it be patched up to yield the same conclusion for 
infinite-dimensional spaces? 

Problem 150. Is there an operator A, other than 1, such that 
A(A) = {1} and II A II = 1? 

151. Donoghue lattice. One of the most important, most difficult, 
and most exasperating unsolved problems of operator theory is the 
problem of invariant subspaces. The question is simple to state: does 
every operator on an infinite-dimensional Hilbert space have a non
trivial invariant subspace? "Non-trivial" means different from both {O} 
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and the whole space; "invariant" means that the operator maps it into 
itself. For finite-dimensional spaces there is, of course, no problem; as 
long as the complex field is used, the fundamental theorem of algebra 
implies the existence of eigenvectors. 

According to a dictum of P6Iya's, for each unanswered question there 
is an easier unanswered question, and the scholar's first task is to find 
the latter. Even that dictum is hard to apply here; many weakenings of 
the invariant subspace problem are either trivial or as difficult as the 
full-strength problem. If, for instance, in an attempt to get a positive 
result, "subspace" is replaced by "linear manifold" (not necessarily 
closed), then the answer is yes, and easy. (For an elegant discussion, 
see Schaefer [1963].) If, on the other hand, in an attempt to get a 
counterexample, "Hilbert space" is replaced by "Banach space", nothing 
happens; no one has succeeded in finding a counterexample in any space. 

Positive results are known for some special classes of operators. The 
cheapest way to get one is to invoke the spectral theorem and to conclude 
that normal operators always have non-trivial invariant subspaces. The 
earliest non-trivial result along these lines is the assertion that compact 
operators always have non-trivial invariant subspaces (Aronszajn-Smith 
[1954J). That result has been generalized (Bernstein-Robinson [1966], 
Halmos [1966J), but the generalization is still closely tied to compact
ness. Non-compact results are few; here is a sample. If A is a contraction 
such that neither of the sequences {A n} and {A *n} tends strongly 
to 0, then A has a non-trivial invariant subspace (Nagy-Foia~ [1964J). 
A relatively recent bird's-eye view of the subject was given by Helson 
[1964J; a more extensive bibliography is in Dunford-Schwartz [1963]. 

It is helpful to approach the subject from a different direction: instead 
of searching for counterexamples, study the structure of some non
counterexamples. One way to do this is to fix attention on a particular 
operator and to characterize all its invariant subspaces; the first signifi
cant step in this direction is the work of Beurling [1949J (Problem 125). 

Nothing along these lines is easy. The second operator whose invariant 
subspaces have received detailed study is the Volterra integration oper
ator (Brodskii [1957J, Donoghue [1957 b J, Kalisch [1957J, Saklmovich 
[1957J). The results for it are easier to describe than for the shift, but 
harder to prove. If (Vj) (x) = f~j(y)dy for j in V(O,l), and if, for 
each a in [O,lJ, Ma is the subspace of those functions that vanish almost 
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everywhere on [0,0::], then Ma is invariant under V; the principal result 
is that every invariant subspace of V is one of the Ma's. An elegant 
way of obtaining these results is to reduce the study of the Volterra 
integration operator (as far as invariant subspaces are concerned) to 
that of the unilateral shift; this was done by Sarason [1965]. 

The collection of all subspaces invariant under some particular oper
ator is a lattice (closed under the formation of intersections and spans). 
One way to state the result about V is to say that its lattice of invariant 
subspaces is anti-isomorphic to the closed unit interval. ("Anti-" because 
as 0:: grows Ma shrinks.) The lattice of invariant subspaces of V* is in 
an obvious way isomorphic to the closed unit interval. 

Is there an operator whose lattice of invariant subspaces is isomorphic 
to the positive integers? The question must be formulated with a little 
more care: every invariant subspace lattice has a largest element. The 
exact formulation is easy: is there an operator for which there is a one
to-one and order-preserving correspondence n ---+ Mn , n = 0, 1, 2, 3, 
•• " 00, between the indicated integers (including 00) and all invariant 
subspaces? The answer is yes. The first such operator was discovered by 
Donoghue [1957 bJ; a wider class of them is described by Nikolskii 
[1965]. 

Suppose that {O::n I is a monotone sequence (O::n ~ O::n+I, n = 0, 1,2, ... ) 
of positive numbers (O::n > 0) such that E~=o O::n2 < 00. The unilateral 
weighted shift with the weight sequence {O::n { will be called a monotone 
[2 shift. The span of the basis vectors en, en+l, en+2, •.. is invariant under 
such a shift, n = 0, 1,2, .... The orthogonal complement, i.e., the span 
Mn of eo, "', en_I, is invariant under the adjoint, n = 1, 2, 3, "'; the 
principal result is that every invariant subspace of that adjoint is one 
of these orthogonal complements. 

Problem 151. If A is the adjoint of a monotone l2 shift, and if M 
is a non-trivial subspace invariant under A, then there exists an integer 
n (= 1, 2, 3, ... ) such that M = Mn. 



Chapter 16. Subnormal operators 

152. The Putnam-Fuglede theorem. Some of the natural questions 
about normal operators have the same answers for finite-dimensional 
spaces as for infinite-dimensional ones, and the techniques used to prove 
the answers are the same. Some questions, on the other hand, are 
properly infinite-dimensional, in the sense that for finite-dimensional 
spaces they are either meaningless or trivial; questions about shifts, or, 
more generally, questions about subnormal operators are likely to belong 
to this category (see Problem 154). Between these two extremes there 
are the questions for which the answers are invariant under change of 
dimension, but the techniques are not. Sometimes, to be sure, either the 
question or the answer must be reformulated in order to bring the 
finite and the infinite into harmony. As for the technique, experience 
shows that an infinite-dimensional proof can usually be adapted to the 
finite-dimensional case; to say that the techniques are different means 
that the natural finite-dimensional techniques are not generalizable to 
infinite-dimensional spaces. It should be added, however, that sometimes 
the finite and the infinite proofs are intrinsically different, so that neither 
can be adapted to yield the result of the other; a case in point is the 
statement that any two bases have the same cardinal number. A familiar 
and typical example of a theorem whose statement is easily generalizable 
from the finite to the infinite, but whose proof is not, is the spectral 
theorem. A more striking example is the Fuglede commutativity theorem. 
It is more striking because it was for many years an unsolved problem. 
For finite-dimensional spaces the statement was known to be true and 
trivial; for infinite-dimensional spaces it was unknown. 

The Fuglede theorem (cf. Solution 115) can be formulated in several 
ways. The algebraically simplest formulation is that if A is a normal 
operator and if B is an operator that commutes with A, then B commutes 
with A * also. Equivalently: if A * commutes with A, and A commutes 
with B, then A * commutes with B. In the latter form the assertion is 
that in a certain special situation commutativity is transitive. (In 
general it is not.) 

98 
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The operator A plays a double role in the Fuglede theorem; the 
modified assertion, obtained by splitting the two roles of A between two 
normal operators, is true and useful. Here is a precise formulation. 

Problem 152. If Al and A2 are normal operators and if B is an 
operator such that AlB = BA 2, then Al*B = BA2*' 

Observe that the Fuglede theorem is trivial in case B is Hermitian 
(even if A is not necessarily normal); just take the adjoint of the as
sumed equation AB = BA. The Putnam generalization (i.e., Problem 
152) is, however, not obvious even if B is Hermitian; the adjoint of 
AlB = BA2 is, in that case, BAl* = A 2*B, which is not what is wanted. 

Corollary. If two normal operators are similar, then they are 
unitarily equivalent. 

Is the product of two commutative normal operators normal? The 
answer is yes, and the proof is the same for spaces of all dimensions; 
the proof seems to need the Fuglede theorem. In this connection it 
should be mentioned that the product of not necessarily commutative 
normal operators is very reluctant to be normal. A pertinent positive 
result was obtained by Wiegmann [1948J; it says that if H is a finite
dimensional Hilbert space, and if A and B are normal operators on H 
such that AB is normal, then BA also is normal. Away from finite
dimensional spaces even this result becomes recalcitrant. It remains 
true for compact operators (Wiegmann [1949J), but it is false in the 
general case (Kaplansky [1953J). 

153. Spectral measure of the unit disc. One of the techniques that 
can be used to prove the Fuglede theorem is to characterize in terms 
of the geometry of Hilbert space the spectral subspaces associated with 
a normal operator. That technique is useful in other contexts too. 

A necessary and sufficient condition that a complex number have 
modulus less than or equal to 1 is that all its powers have the same 
property. This trivial observation extends to complex-valued functions: 
{x: I cp(x) I ~ I} = {x: I cp(x) I" ~ 1, n = 1,2,3, ... J. There is a close 
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connection between complex-valued functions and normal operators. 
The operatorial analogue of the preceding numerical observations should 
be something like this: if A is a normal operator on a Hilbert space H, 
then the set E of those vectorsfin H for which II Anf II ~ Ilf II, n = 1, 
2,3, "', should be, in some sense, the part of H on which A is below 1. 
This is true; the precise formulation is that E is a subspace of Hand 
the projection on E is the value of the spectral measure associated with 
A on the closed unit disc in the complex plane. The same result can be 
formulated in a more elementary manner in the language of multipli
cation operators. 

Problem 153. If A is the multiplication operator induced by a 
bounded measurable function 'P on a measure space, and if 
D = I z: I z I ~ 1}, then a necessary and sufficient condition that 
an element f in V be such that X",-l(Dl/ = f is that II Anf II ~ Ilf II 
for every positive integer n. 

Here, as usual, x denotes the characteristic function of the set indicated 
by its subscript. 

By translations and changes of scale the spectral subspaces associated 
with all discs can be characterized similarly; in particular, a necessary 
and sufficient condition that a vector f be invariant under multiplication 
by the characteristic function of Ix: I cp(x) I ~ E} (E > 0) is that 
II A nf II ~ En II f II for all n. One way this result can sometimes be put 
to good use is this: if, for some positive number 10, there are no j's in V 
(other than 0) such that II Anf II ~ En IIf II for all n, then the subspace 
ofj's that vanish on the complement of the set Ix: I cp(x) I ~ E} is 10}, 
and therefore the set {x: I cp(x) I ~ z} is (almost) empty. Conclusion: 
under these circumstances I cp(x) I > E almost everywhere, and conse
quently the operator A is invertible. 

154. Subnormal operators. The theory of normal operators is so 
successful that much of the theory of non-normal operators is modeled 
after it. A natural way to extend a successful theory is to weaken some 
of its hypotheses slightly and hope that the results are weakened only 
slightly. One weakening of normality is quasinormality (see Problem 
108). Subnormal operators constitute a considerably more useful and 
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deeper generalization, which goes in an altogether different direction. 
An operator is .subnormal if it has a normal extension. More precisely, 
an operator A on a Hilbert space H is subnormal if there exists a normal 
operator B on a Hilbert space K such that H is a subspace of K, the 
subspace H is invariant under the operator B, and the restriction of B 
to H coincides with A. 

Every normal operator is trivially subnormal. On finite-dimensional 
spaces every subnormal operator is normal, but that takes a little prov
ing; d. Solution 159 or Problem 160. A more interesting and typical 
example of a subnormal operator is the unilateral shift; the bilateral 
shift is a normal extension. 

Problem 154. Every quasinormal operator is subnormal. 

Normality implies quasinormality, but not conversely (witness the 
unilateral shift). The present assertion is that quasinormality implies 
subnormality, but, again, the converse is false. To get a counterexample, 
add a non-zero scalar to the unilateral shift. The result is just as sub
normal as the unilateral shift, but a straightforward computation shows 
that if it were also quasinormal, then the unilateral shift would be 
normal. 

155. Minimal normal extensions. A normal extension B (on K) of 
a subnormal operator A (on H) is minimal if there is no reducing sub
space of B between Hand K. In other words, B is minimal over A if 
whenever M reduces Band H c: M, it follows that M = K. What is the 
right article for minimal normal extensions: "a" or "the"? 

Problem 155. If BI and B2 (on KI and K2) are minimal normal 
extensions of the subnormal operator A on H, then there exists an isom
etry U from KI onto K2 that carries Bl onto B2 (i.e., UBI = B2U) 
and is equal to the identity on H. 

In view of this result, it is permissible to speak of "the" minimal 
normal extension of a subnormal operator, and everyone does. Typical 
example: the minimal normal extension of the unilateral shift is the 
bilateral shift. 
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156. Similarity of subnormal operators. For normal operators 
similarity implies unitary equivalence (Problem 152). Subnormal oper
ators are designed to imitate the properties of normal ones; is this one 
of the respects in which they succeed? 

Problem 156. Are two similar subnormal operators necessarily 
unitarily equivalent? 

157. Spectral inclusion theorem. If an operator A is a restriction of 
an operator B to an invariant subspace H of B, and ifjis an eigenvector 
of A (i.e.,j EO Hand Aj = V for some scalar A), thenj is an eigenvector 
of B. Differently expressed: if A c B, then IIo (A) c IIo (B), or, as an 
operator grows, its point spectrum grows. An equally easy verification 
shows that as an operator grows, its approximate point spectrum grows. 
In view of these very natural observations, it is tempting to conjecture 
that as an operator grows, its spectrum grows, and hence that, in par
ticular, if A is subnormal and B is its minimal normal extension, then 
A (A) c A (B). The first non-trivial example of a subnormal operator 
shows that this conjecture is false: if A is the unilateral shift and B is 
the bilateral shift, then A(A) is the unit disc, whereas A(B) is only the 
perimeter of the unit disc. It turns out that this counterexample illus
trates the general case better than do the plausibility arguments based 
on eigenvalues, exact or approximate. 

Problem 157. Ij A is subnormal and ij B is its minimal normal 
extension, then ACB) cA(A). 

Reference: Halmos [1952 a]. 

158. Filling in holes. The spectral inclusion theorem (Problem 
157) for subnormal operators can be sharpened in an interesting and 
surprising manner. The result is that the spectrum of a subnormal 
operator is always obtained from the spectrum of its minimal normal 
extension by "filling in some of the holes". This informal expression can 
be given a precise technical meaning. A hole in a compact subset of the 
complex plane is a bounded component of its complement. 
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Problem 158. If A is subnormal, if B is its minimal normal 
extension, and if d is a hole of A (B), then d is either included in or 
disjoint from A(A). 

159. Extensions of finite co-dimension. 

Problem 159. Can a subnormal but non-normal operator on a Hil
bert space H have a normal extension to a Hilbert space K when 
dim (K n H.l) is finite? 

160. Hyponormal operators. If A (on H) is subnormal, with normal 
extension B (on K), what is the relation between A * and B*? The 
answer is best expressed in terms of the projection P from K onto H. 
If j and g are in H, then 

(A *f,g) = (f,Ag) = (f,Bg) = (B*f,g) = (B*f,Pg) = (PB*j,g). 

Since the operator PB* on K leaves H invariant, its restriction to H is 
an operator on H, and, according to the preceding chain of equations, 
that restriction is equal to A *. That is the answer: 

A*j = PB*j 

for every f in H. 
This relation between A * and B* has a curious consequence. If f E H, 

then 

II A *j II = II PB*f II ~ II B*j II = II Bf II (by normality) = II Af II· 

The result (II A *f II ~ II Af II) can be reformulated in another useful 
way; it is equivalent to the operator inequality 

AA* ~ A*A. 

Indeed: II A*j112 = (AA*j,j) and II Afl12 = (A*Af,f). 
The curious inequality that subnormal operators always satisfy can 

also be obtained from an illuminating matrix calculation. Corresponding 
to the decomposition K = H EEl H.l, every operator on K can be expressed 
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as an operator matrix, and, in particular, that is true for B. It is easy 
to express the relation (A c B) between A and B in terms of the matrix 
of B; a necessary and sufficient condition for it is that (1) the principal 
(northwest) entry is A, and (2) the one below it (southwest) is O. The 
condition (2) says that H is invariant under B, and (1) says that the 
restriction of B to H is A. Thus 

so that 

( A* 0) 
B* = R* S*' 

Since B is normal, it follows that the matrix 

B*B_BB*=(A*A A*R )_(AA*+RR* RS*) 
R*A R*R + S*S SR* SS* 

must vanish. This implies that A * A - AA * = RR*, and hence that 
A*A - AA* ~ O. 

There is a curious lack of symmetry here: why should A * A play a 
role so significantly different from that of AA *? A little meditation on 
the unilateral shift may help. If A = U, the unilateral shift, then A is 
subnormal, and A * A = 1, whereas AA * is a non-trivial projection; 
clearly A * A ~ AA *. If A = U*, then A is not subnormal. (Reason: if 
it were, then it would satisfy the inequality A * A ~ AA *, i.e., 
UU* ~ U*U, and then U would be normal.) If it were deemed abso
lutely essential, symmetry could be restored to the universe by the 
introduction of the dual concept of co-subnormality. (Proposed defi
nition: the adjoint is subnormal.) If A is co-subnormal in this sense, 
then AA * ~ A * A. An operator A such that A * A ~ AA * has been 
called hyponormal. (The dual kind might be called co-hyponormal. Note 
that "hypo" is in Greek what "sub" is in Latin. The nomenclature is 
not especially suggestive, but this is how it grew, and it seems to be 
here to stay.) The result of the preceding paragraphs is that every 
subnormal operator is hyponormal. The dull dual result is, of course, 
that every co-subnormal operator is co-hyponormal. 
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On a finite-dimensional space every hypo normal operator is normal. 
The most efficient proof of this assertion is a trace argument, as follows. 
Since tr(AB) is always equal to tr(BA), it follows that tr(A * A - AA *) 
is always 0; if A * A ~ AA *, then A * A - AA * is a positive operator 
with trace 0, and therefore A * A - AA * = o. What was thus proved 
is a generalization of the statement that on a finite-dimensional space 
every subnormal operator is normal (d. Problem 154). 

Problem 160. Give an example of a hyponormal operator that is 
not subnormal. 

This is not easy. The techniques used are almost sufficient to yield 
an intrinsic characterization of subnormality obtained by Halmos 
[1950 a] and sharpened by Bram [1955]. "Intrinsic" means that the 
characterization is expressed in terms of the action of the operator on 
the vectors in its domain, and not in terms of the existence of something 
outside that domain. The characterization is of "finite character", in 
the sense that it depends on the behavior of the operator on all possible 
finite sets of vectors. With still more work of the same kind an elegant 
topological characterization of subnormality can be obtained; this was 
first done by Bishop [1957]. Bishop's result is easy to state: the set of 
all subnormal operators is exactly the strong closure of the set of all 
normal operators. 

161. Normal and subnormal partial isometries. 

Problem 161. A partial isometry is normal if and only if it is the 
direct sum of a unitary operator and zero; it is subnormal if and only 
if it is the direct sum of an isometry and zero. 

In both cases, one or the other of the direct summands may be absent. 

162. Norm powers and power norms. The set T of those operators 
A such that II A n II = II A lin for every positive integer n has, at the 
very least, a certain curiosity value. If AfT, then II An Win = II A II, 
and therefore rCA) = II A II; if, conversely, rCA) = II A II, then 
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II An II ~ II A lin = (r(A»n = r(An) ~ II An II, so that equality holds 
all the way through. Conclusion: A e T if and only if rCA) = II A II. 

The definition of T implies that every normal operator belongs to T 
(and so does the conclusion of the preceding paragraph). For two-by-two 
matrices an unpleasant computation proves a strong converse: if 
II A211 = II A W, then A is normal. Since neither the assertion nor its 
proof have any merit, the latter is omitted. As soon as the dimension 
becomes greater than 2, the converse becomes false. If, for example. 

(1 0 0) 
A = 0 0 0 , 

010 

then II A n II = 1 for all n, but A is certainly not normal. 
The quickest (but not the most elementary) proof of the direct 

assertion (if A is normal, then A e T) is to refer to the spectral theorem. 
Since for subnormal and hyponormal operators that theorem is not 
available, a natural question remains unanswered. The answer turns out 
to be affirmative. 

Problem 162. If A is hyponormal, then II An II 
every positive integer n. 

IIA lin fw 

Corollary. The only hyponormal quasinilpotent operator is O. 

163. Compact hyponormal operators. It follows from the discussion 
of hyponormal operators on finite-dimensional spaces (Problem 160) 
that a hyponormal operator of finite rank (on a possibly infinite-dimen
sional space) is always normal. What about limits of operators of finite 
rank? 

Problem 163. Every compact hyponwmal operator is normal. 

Reference: Ando [1963J, Berberian [1962J, Stampfli [1962]. 

164. Powers of hyponormal operators. Every power of a normal 
operator is normal. This trivial observation has as an almost equally 
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trivial consequence the statement that every power of a subnormal 
operator is subnormal. For hyponormal operators the facts are different. 

Problem 164. Give an example of a hyponormal operator whose 
square is not hyponormal. 

This is not easy. It is, in fact, bound to be at least as difficult as the 
construction of a hyponormal operator that is not subnormal (Problem 
160), since any solution of Problem 164 is automatically a solution of 
Problem 160. The converse is not true; the hyponormal operator used 
in Solution 160 has the property that all its powers are hyponormal also. 

165. Contractions similar to unitary operators. 

Problem 165. Is a contraction similar to a unitary operator neces
sarily unitary? 



Chapter 17. Numerical range 

166. The Toeplitz-Hausdorff theorem. In early studies of Hilbert 
space (by Hilbert, Hellinger, Toeplitz, and others) the objects of chief 
interest were quadratic forms. Nowadays they playa secondary role. 
First comes an operator A on a Hilbert space H, and then, apparently 
as an afterthought, comes the numerical-valued functionf ~ (Af,J) on 
H. This is not to say that the quadratic point of view is dead; it still 
suggests questions that are interesting with answers that can be useful. 

Most quadratic questions about an operator are questions about its 
numerical range, sometimes called its field of values. The numerical range 
of an operator A is the set W(A) of all comPlex numbers of the form 
(Af,J) , where f varies over all vectors on the unit sphere. (Important: 
Ilf II = 1, not Ilf II ~ 1.) The numerical range of A is the range of the 
restriction to the unit sphere of the quadratic form associated with A. 
One reason for the emphasis on the image of the unit sphere is that the 
image of the unit ball, and also the entire range, are easily described in 
terms of it, but not vice versa. (The image of the unit ball is the union 
of all the closed segments that join the origin to points of the numerical 
range; the entire range is the union of all the closed rays from the origin 
through points of the numerical range.) 

The determination of the numerical range of an operator is sometimes 
easy. Here are some sample results. If 

then W(A) is the closed unit interval (easy); if 

then W (A) is the closed disc with center 0 and radius! (easy, but more 
108 
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interesting) ; if 

then W(A) is the closed elliptical disc with foci at 0 and 1, minor axis 
1 and major axis V1 (analytic geometry at its worst). There is a theorem 
that covers all these cases. If A is a two-by-two matrix with distinct 
eigenvalues a and (3, and corresponding eigenvectors 1 and g, so normal
ized that 111 II = II g II = 1, then W(A) is a closed elliptical disc with 
foci at a and (3; if '1' = I (j,g) I and 0 = -V 1 - '1'2, then the minor axis 
is '1' I a - {3 110 and the major axis is I a - (3 1/0. If A has only one eigen
value a, then W(A) is the (circular) disc with center a and radius 
! II A - a II. 

A couple of three-dimensional examples will demonstrate that the 
two-dimensional case is not typical. If 

o 0 A 

A 100 

1 0 

where A is a complex number of modulus 1, then W (A) is the equilateral 
triangle (interior and boundary) whose vertices are the three cube roots 
of A. (Cf. Problem 171.) If 

o 0 

A 100 

o 1 

then W(A) is the union of all the closed segments that join the point 1 
to points of the closed disc with center 0 and radius!. (Cf. Problem 171.) 

The higher the dimension, the stranger the numerical range can be. 
If A is the Volterra integration operator (see Problem 148), then W (A) 
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is the set lying between the curves 

1-cost t-sint 
t-7 ±i---

(where the value at 0 is taken to be the limit from the right). 
The following assertion describes the most important common prop

erty of all these examples. 

Problem 166. The numerical range of an operator is always convex. 

The result is known as the Toeplitz-Hausdor.fJ theorem. Every known 
proof is computational. The computations can be arranged well, or they 
can be arranged badly, but any way they are arranged they are still 
computations. A conceptual proof would be desirable even (or es
pecially?) if the concepts it uses are less elementary than the ones in a 
computational proof. 

One more comment is pertinent. Consideration of real and imaginary 
parts shows that the Toeplitz-Hausdorff theorem is a special case (n = 2) 
of the following general assertion: if AI, "', An are Hermitian operators, 
then the set of all n-tuples of the form < (Ad,j) , ... , (Anf,j) ), where 
II f II = 1, is a convex subset of n-dimensional real Euclidean space. 
True or false, the assertion seems to be a natural generalization of the 
Toeplitz-Hausdorff theorem; it is a pity that it is so very false. It is 
false for n = 3 in dimension 2; counterexamples are easy to come by. 

The first paper on the subject was by Toeplitz [1918J, who proved 
that the boundary of W (A) is a convex curve, but left open the possi
bility that it had interior holes. Hausdorff [1919J proved that it did not. 
Donoghue [1957 aJ re-examined the facts and presented some pertinent 
computations. The result about the Volterra integration operator is due 
to A. Brown. 

167. Higher-dimensional numerical range. The numerical range 
can be regarded as the one-dimensional case of a multi-dimensional 
concept. To see how that goes, recall the expression of a projection P 
of rank 1 in terms of a unit vector f in its range: 

Pg = (g,j)f 
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for all g. If A is an arbitrary operator, then PAP is an operator of rank 1, 
and therefore a finite-dimensional concept such as trace makes sense for 
it. The trace of PAP can be computed by finding the (one-by-one) 
matrix of the restriction of PAP to the range of P, with respect to the 
(one-element) basis {fl; since Pf = f, the value of that trace is 

(P APf,!) = (APf,Pf) = (Af,f). 

These remarks can be summarized as follows: W(A) is equal to the set 
of all complex numbers of the form tr PAP, where P varies over all 
projections of rank 1. Replace 1 by an arbitrary positive integer k, and 
obtain the k-numerical range of A, in symbols Wk(A): it is the set of 
all complex numbers of the form tr PAP, where P varies over all pro
jections of rank k. The ordinary numerical range is the k-numerical 
range with k = 1. 

Problem 167. Is the k-numerical range of an operator always 
convex? 

168. Closure of numerical range. 

Problem 168. Give examples of operators whose numerical range 
is not closed. 

Observe that in the finite-dimensional case the numerical range of 
an operator is a continuous image of a compact set, and hence necessarily 
compact. 

169. Spectrum and numerical range. 

Problem 169. The closure of the numerical range includes the 
spectrum. 

The trivial corollary that asserts that if A = B + iC, with Band C 
Hermitian, then A(A) c WeB) + iW(C) is the Bendixson-Hirsch 
theorem. 
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170. Quasinilpotence and numerical range. If A is a quasinilpotent 
operator, then, by Problem 169, 0 E W(A). By Solution 168, the set 
W(A) may fail to be closed, so that from 0 E W(A) it does not follow 
that 0 E W (A). Is it true just the same? 

Problem 170. Give an example of a quasinilpotent operator A 
such that 0 f W(A). 

Observe that any such example is a solution of Problem 168. 

171. Normality and numerical range. Can the closure of the nu
merical range be very much larger than the spectrum? The answer is 
yes. A discouraging example is 

the spectrum is small ({O}), but the numerical range is large 
( {z: I z I ~ j}). Among normal operators such extreme examples do not 
exist; for them the closure of the numerical range is as small as the 
universal properties of spectra and numerical ranges permit. 

To formulate the result precisely, it is necessary to introduce the 
concept of the convex hull of a set M, in symbols conv M. By definition, 
conv M is the smallest convex set that includes M; in other words, 
conv M is the intersection of all the convex sets that include M. It is a 
non-trivial fact of finite-dimensional Euclidean geometry that the convex 
hull of a compact set is closed. Perhaps the most useful formulation of 
this fact for the plane goes as follows: the convex hull of a compact set 
is the intersection of all the closed half planes that include it. A useful 
reference for all this is Valentine [1964]. 

So much for making convex sets out of closed sets. The reverse process 
of making closed sets out of convex sets is much simpler to deal with; 
it is true and easy to prove that the closure of a convex set is convex. 

Problem 171. The closure of the numerical range of a normal 
operator is the convex hull of its spectrum. 
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As an application consider the matrix 

00;\ 

100 

010 

where 1;\ I = 1. Since this matrix is unitary, and therefore normal, the 
result just proved implies that its numerical range is the convex hull 
of its eigenvalues. The eigenvalues are easy to compute (they are the 
cube roots of ;\), and this proves the assertion (made in passing in 
Problem 166) that the numerical range of this particular matrix is the 
triangle whose vertices are the cube roots of ;\. 

The general result includes the special assertion that the numerical 
range of every finite diagonal matrix is the convex hull of its diagonal 
entries. A different generalization of this special assertion is that the 
numerical range of a direct sum is the convex hull of the numerical 
ranges of its summands. The proof of the generalization is straight
forward. For an example, consider the direct sum of 

and (1), and recapture the assertion (made in passing in Problem 166) 
about the domed-cone shape of the numerical range of 

o 0 

100 

o 1 

172. Subnormality and numerical range. 

Problem 172. Does the conclusion of Problem 171 remain true if 
in the hypothesis "normal" is repl(f.ced by "subnormal"? 
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173. Numerical radius. The numerical range, like the spectrum, 
associates a set with each operator; it is a set-valued function of oper
ators. There is a closely related numerical function w, called the numerical 
radius, defined by 

w(A) = sup II A I: A E W(A)}. 

(Cf. the definition of spectral radius, Problem 74.) Some of the properties 
of the numerical radius lie near the surface; others are quite deep. 

It is easy to prove that wis a norm. Thatis:w(A) ~ O,andw(A) = 0 
if and only if A = 0; w(o:A) = I 0: l·w(A) for each scalar 0:; and 
w(A + B) ~ w(A) + weB). This norm is equivalent to the ordinary 
operator norm, in the sense that each is bounded by a constant multiple 
of the other: 

~ II A II ~ w(A) ~ II A II· 

(See Halmos [1951, p. 33].) The norm w has many other pleasant 
properties; thus, for instance, w(A *) = w(A), w(A * A) = II A 11 2, and 
w is unitarily invariant, in the sense that w(U*AU) = w(A) whenever 
U is unitary. 

Since A (A) c W (A) (Problem 169), there is an easy inequality be
tween the spectral radius and the numerical radius: 

rCA) ~ w(A). 

The existence of quasinilpotent (or, for that matter, nilpotent) operators 
shows that nothing like the reverse inequality could be true. 

Problem 173. (a) Ifw(l - A) < 1, then A is invertible. (b) If 
w(A) = II A II, then rCA) = II A II. 

174. Normaloid, convexoid, and spectraloid operators. If A is nor
mal, then w(A) = II A II. Wintner called an operator A with 
w(A) = II A II normaloid. Another useful (but nameless) property of a 
normal operator A (Problem 171) is that W(A) is the convex hull of 
A(A). To have a temporary label for (not necessarily normal) operators 
with this property, call them convexoid. Still another (nameless) property 
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of a normal operator A is that r (A) = w (A); call an operator with 
this property spectraloid. It is a consequence of Problem 173 that every 
normaloid operator is spectraloid. It is also true that every convexoid 
operator is spectraloid. Indeed, since the closed disc with center 0 and 
radius r (A) includes A (A) and is convex, it follows that if A is con
vexoid, then thatdiscincludes W(A). Thisimpliesthatw(A) ~ rCA), 
and hence that A is spectraloid. 

Problem 174. Discuss the implication relations between the prop
erties of being convexoid and normaloid. 

175. Continuity of numerical range. In what sense is the numerical 
range a continuous function of its argument? (Cf. Problems 85 and 86.) 
The best way to ask the question is in terms of the Hausdorff metric for 
compact subsets of the plane. To define that metric, write 

M + (e) = {z + a: Z E M, I a I < e} 

for each set M of complex numbers and each positive number e. In this 
notation, if M and N are compact sets, the Hausdorff distance d(M,N) 
between them is the infimum of all positive numbers 10 such that both 
MeN + (e) and NeM + (e). 

Since the Hausdorff metric is defined for compact sets, the appropriate 
function to discuss is lV, not W. As for the continuity question, it still 
has as many interpretations as there are topologies for operators. Is TV 
weakly continuous? strongly? uniformly? And what about w? The only 
thing that is immediately obvious is that if TV is continuous with respect 
to any topology, then so is w, and, consequently, if w is discontinuous, 
then so is TV. 

Problem 175. Discuss the continuity of TV and w in the weak, 
strong, and uniform operator topologies. 

176. Power inequality. The good properties of the numerical range 
and the numerical radius have to do with convexity and linearity; the 
relations between the numerical range and the multiplicative properties 
of operators are less smooth. Thus, for instance, w is certainly not multi-
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plicative, i.e., w(AB) is not always equal to w(A )w(B). (Example with 
commutative normal operators: if 

then w(A) = weB) = 1 and w(AB) = 0.) The next best thing would 
be for w to be submultiplicative (w(AB) ~ w(A)w(B)), but that is 
false too. (Example: if 

then w(A) = weB) = ! and w(AB) = 1.) Since w(AB) ~ II AB II ~ 
II A II-II B II, it follows that for normal operators w is submultiplicative 
(because if A andBarenormal, then II A II = weAl and II B II = weB)), 
and for operators in general w(AB) ~ 4w(A)w(B) (because II A II ~ 
2w(A) and II B II ~ 2w(B)). The example used to show that w is not 
submultiplicative shows also that the constant 4 is best possible here. 

Commutativity sometimes helps; here it does not. Examples of com
mutative operators A and B for which w(AB) > w(A )w(B) are a 
little harder to come by, but they exist. Here is one: 

000 0 

100 0 
A= 

o 1 0 0 

o 0 1 0 

and B = A2. It is easy to see that W(A2) = W(A3) = !. The value of 
w (A) is slightly harder to compute, but it is not needed; the almost 
obvious relation w(A) < 1 will do. Indeed: w(AB) = W(A3) = ! > 
w(A) -! = w(A)w(B). 
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The only shred of multiplicative behavior that has not yet been ruled 
out is the power inequality 

This turns out to be true, but remarkably tricky. Even for two-by-two 
matrices there is no simple computation that yields the result. If not the 
dimension but the exponent is specialized, if, say, n = 2, then relatively 
easy proofs exist, but even they require surprisingly delicate handling. 
The general case requires either brute force or ingenuity. 

Problem 176. If A is an operator such that w(A) ~ 1, then 
w (A") ~ 1 for every positive integer n. 

The statement is obviously a consequence of the power inequality. 
To show that it also implies the power inequality, reason as follows. 
If w(A) = 0, then A = 0, and everything is trivial. If w(A) ¥- 0, then 
write B = A/w(A), note that weB) ~ 1, use the statement of Problem 
176 to infer that w(B") ~ 1, and conclude that w(A") ~ (w(A))". 

Generalizations of the theorem are known. Here is a nice one: if p is a 
polynomial such that P(o) = ° and I P(z) I ~ 1 whenever I z I ~ 1, 
and if A is an operator such that w(A) ~ 1, then w(P(A)) ~ 1. With 
a little care, polynomials can be replaced by analytic functions, and, 
with a lot of care, the unit disc (which enters by the emphasis on the 
inequality I z I ~ 1) can be replaced by other compact convex sets. 

The first proof of the power inequality is due to C. A. Berger; the 
first generalizations along the lines mentioned in the preceding paragraph 
were derived by J. G. Stampfli. The first published version, in a quite 
general form, was given by Kato [1965]. An interesting generalization 
along completely different lines appears in Nagy-Foia~ [1966]. 



Chapter 18. Unitary dilations 

177. Unitary dilations. Suppose that H is a subspace of a Hilbert 
space K, and let P be the (orthogonal) projection from K onto H. 
Each operator B on K induces in a natural wayan operator A on H 
defined for each J in H by 

AJ = PBJ. 

The relation between A and B can also be expressed by 

AP = PBP. 

Under these conditions the operator A is called the compression of B to 
Hand B is called a dilation of A to K. This geometric definition of 
compression and dilation is to be contrasted with the customary concepts 
of restriction and extension: if it happens that H is invariant under B, 
then it is not necessary to project BJ back into H (it is already there), 
and, in that case, A is the restriction of B to Hand B is an extension of 
A to K. Restriction-extension is a special case of compression-dilation, 
the special case in which the operator on the larger space leaves the 
smaller space invariant. 

There are algebraic roads that lead to compressions and dilations, as 
well as geometric ones. One such road goes via quadratic forms. It makes 
sense to consider the quadratic form associated with B and to consider 
it for vectors of H only (i.e., to restrict it to H). This restriction is a 
quadratic form on H, and, therefore, it is induced by an operator on H; 
that operator is the compression A. In other words, compression and 
dilation for operators are not only analogous to (and generalizations of) 
restriction and extension, but, in the framework of quadratic forms, they 
are restriction and extension: the quadratic form of A is the restriction 
of the quadratic form of B to H, and the quadratic form of B is an 
extension of the quadratic form of A to K. 

Still another manifestation of compressions and dilations in Hilbert 
118 
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space theory is in connection with operator matrices. If K is decomposed 
into H and HI, and, correspondingly, operators on K are written in 
terms of matrices (whose entries are operators on H and HI and linear 
transformations between H and HI), then a necessary and sufficient 
condition that B be-a dilation of A is that the matrix of B have the form 

Problem 177. (a) If II A II ~ 1, then A has a unitary dilation. 
(b) If 0 ~ A ~ 1, then A has a dilation that is a projection. 

Note that in both cases the assumptions are clearly necessary. If A 
has a dilation B that is a contraction, then II Afll = IIPBfl1 ~ IIBfl1 ~ 
Ilf II for allf in H, and if A has a positive dilation B, then (Af,j) 
(Bf,!) ~ 0 for allf in H. 

Corollary. Every operator has a normal dilation. 

178. Unitary power dilations. The least unitary looking contraction 
is 0, but even it has a unitary dilation. The construction of Solution 177 
exhibits it as 

The construction is canonical, in a sense, but it does not have many 
useful algebraic properties_ It is not necessarily true, for instance, that 
the square of a dilation is a dilation of the square; indeed, the square of 
the dilation of 0 exhibited above is 
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which is not a dilation of the square of o. Is there a unitary dilation of 0 
that is fair to squares? The answer is yes: 

0 0 1 

1 0 0 

0 1 0 

is an example. The square of this dilation is 

0 1 0 

0 0 1 

1 0 0 

which is a dilation of the square of O. Unfortunately, however, this 
dilation is not perfect either; its cube is 

1 0 

010 

001 

which is not a dilation of the cube of o. The cube injustice can be reme
died by passage to 

000 1 

1 000 

o 1 0 0 

o 0 1 0 

but then fourth powers fail. There is no end to inductive greed; the 
clearly suggested final demand is for a unitary dilation of 0 with the 
property that all its powers are dilations of O. In matrix language the 
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demand is for a unitary matrix with the property that one of its diagonal 
entries is a and that, moreover, the corresponding entry in all its powers 
is also O. Brief meditation on the preceding finite examples, or just 
inspired guessing, might suggest the answer; the bilateral shift will 
work, with the (0,0) entry playing the distinguished role. (Caution: the 
unilateral shift is not unitary.) The general definition suggested by the 
preceding considerations is this: an operator B is a power dilation (some
times called a strong dilation) of an operator A if Bn is a dilation of An 
for n = 1,2,3, .... 

Problem 178. Every contraction has a unitary power dilation. 

In all fairness to dilations, it should be mentioned that they all have 
at least one useful algebraic property: if B is a dilation of A, then B* is 
a dilation of A *. The quickest proof is via quadratic forms: if (Af,J) = 
(Bf,j) for each f in the domain of A, then, for the same /,s, (A *f,J) = 
(j,Af) = (Af,J) * = (Bf,j) * = (j,Bf) = (B*f,J)· One consequence of 
this is that if B is a power dilation of A, then B* is a power dilation of A *. 

The power dilation theorem was first proved by Nagy [1953]. The 
subject has received quite a lot of attention since then; good summaries 
of results are in Nagy [1955J and Mlak [1965]. An especially interesting 
aspect of the theory concerns minimal unitary power dilations. Their 
definition is similar to that of minimal normal extensions (Problem 155), 
and they too are uniquely determined by the given operator (to within 
unitary equivalence). The curious fact is that knowledge of the minimal 
unitary power dilation of an operator is not so helpful as one might think. 
Schreiber [1956J proved that all proper contractions (see Problem 122) 
on separable Hilbert spaces have the same minimal unitary power 
dilation, namely a bilateral shift; Nagy [1957J extended the result to 
non-separable spaces. 

179. Ergodic theorem. If u is a complex number of modulus 1, then 
the averages 

1 n-l 

- LUi 
n j=f) 

form a convergent sequence. This is an amusing and simple piece of 



179 UNITARY DILATIONS 122 

classical analysis, whose generalizations are widely applicable. To prove 
the statement, consider separately the cases u = 1 and u ~ 1. If u = 1, 
then each average is equal to 1, and the limit is 1. If u ~ 1, then 

11 n- 1 I 11 - un I - .L: ui = 
ni=o n(l-u) 

and the limit is o. 
The most plausible operatorial generalization of the result of the pre

ceding paragraph is known as the mean ergodic theorem for unitary 
operators; it asserts that if U is a unitary operator on a Hilbert space, 
then the averages 

1 n-l 

- .L: Ui 
n ;=0 

form a strongly convergent sequence. A more informative statement of 
the ergodic theorem might go on to describe the limit; it is, in fact, the 
projection whose range is the subspace {j: Uf = f}, i.e., the subspace of 
fixed points of U. 

It is less obvious that a similar ergodic theorem is true not only for 
unitary operators but for all contractions. 

Problem 179. If A is a contraction on a Hilbert space H, trten 

- .L: Ai {1 n-l } 

n i=O 

is a strongly convergent sequence of operators on H. 

180. Spectral sets. If F is a bounded complex-valued function de
fined on a set M, write 

II FilM = sup!1 F(A)I: AeM}. 

If A is a normal operator with spectrum A, and if F is a bounded Borel 
measurable function on A, then II F(A) II ~ II FilA. (Equality does not 
hold in general; F may take a few large values that have no measure-
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theoretically detectable influence on F (A) .) It is not obvious how this 
inequality can be generalized to non-normal operators. There are two 
obstacles: in general, F(A) does not make sense, and, when it does, 
the result can be false. There is an easy way around both obstacles: 
consider only such functions F for which F (A) does make sense, and 
consider only such sets, in the role of A, for which the inequality does 
hold. A viable theory can be built on these special considerations. 

If the only functions considered are polynomials, then they can be 
applied to every operator. If, however, the spectrum of the operator is 
too small, the inequality between norms will fail. If, for instance, A is 
quasinilpotent and P(z) = z, then II peA) II = II A II and II p IIA(A) = 0; 
the inequality II peA) II ~ II p IIA(A) holds only if A = o. The earliest 
positive result, which is still the most incisive and informative statement 
along these lines, is known as the von Neumann-Heinz theorem. (Refer
ence: von Neumann [1951J, Heinz [1952].) 

Problem 180. If II A II ~ 1 and if D is the closed unit disc, then 

for every polynomial p. 

The general context to which the theorem belongs is the theory of 
spectral sets. That theory is concerned with rational functions instead 
of just polynomials. Roughly speaking, a spectral set for an operator is 
a set such that the appropriate norm inequality holds for all rational 
functions on the set. Precisely, a spectral set for A is a set M such that 
A (A) c M and such that if F is a bounded rational function on M (i.e., 
a rational function with no poles in the closure of M), then II F (A) II ~ 
II F 11M. (Note that the condition on the poles of the admissible F's 
implies that F(A) makes sense for each such F.) It turns out that the 
theory loses no generality if the definition of spectral set demands that 
the set be closed, or even compact, and that is usually done. To demand 
the norm inequality for polynomials only does, however, seriously 
change the definition. A moderately sophisticated complex function 
argument (d. Lebow [1963J) can be used to show that the polynomial 
definition and the rational function definition are the same in case the 
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set in question is sufficiently simple. (For this purpose a set is sufficiently 
simple if it is compact and its complement is connected.) In view of 
the last remark, the von Neumann-Heinz theorem is frequently stated 
as follows: the closed unit disc is a spectral set for every contraction. 

181. Dilations of positive definite sequences. The theorem on 
unitary power dilations (Problem 178) says that certain sequences of 
operators can be obtained by compressing the sequence of powers of one 
unitary operator. More precisely: if A is a contraction on H, and if 
An = An for n ~ ° and An = A *n for n ~ 0, then there exists a unitary 
operator U, on a space that includes H, such that the compression of 
UntoHisAn,n = 0, ±1, ±2, .... \Vhatothersequences {An} can be 
obtained in this way? Is there a usable intrinsic characterization of such 
sequences? The answers to these questions are best formulated in terms 
of positive definite sequences of operators. The sequence of powers of a 
unitary operator turns out to be positive definite in a strong sense of 
that phrase; the compression of a positive definite sequence is itself 
positive definite; and, for suitably normalized sequences, positive defi
niteness is, in fact, a necessary and sufficient condition for the possession 
of a unitary dilation. The detailed explanations and definitions follow. 

A sequence {An: n = 0, ±1, ±2, ... } is positive definite if 

j 

for every finitely non-zero sequence {in} of vectors. A standard ele
mentary argument via polarization shows that a positive definite se
quence is Hermitian symmetric in the sense that An * = A_n for all n. 

If An = Un with U unitary, then 

so that 

j j 

the sequence of powers of U is positive definite. 
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Suppose now that U is unitary on K, that H is a subspace of K, and 
that P is the projection from K to H. H Anf = PUnf for eachf in H 
(i.e., if An is the compression of Un to H), and if {fn} is a finitely non-zero 
sequence of vectors in H, then 

it follows that {AnI is positive definite. The sequence {An} is also 
normalized in the sense that Ao = 1; the reason is that uo = 1. 

The preceding paragraphs have introduced positive definiteness and 
have shown it to be a necessary condition for the possession of a unitary 
dilation. (To speak of a unitary dilation of a sequence means, as it has 
meant above, that each term of the sequence is the compression of the 
corresponding power of a fixed unitary operator.) The main task is to 
prove that the condition is sufficient. (Reference: Nagy [1955].) 

Problem 181. If {AnI is a positive definite sequence of operators 
on a Hilbert space H, such that Ao = 1, then there exists a unitary 
operator U on a Hilbert space that includes H such that the compression 
of Un to H is An. 

The theorem is non-trivial even if the given Hilbert space H is one
dimensional. It says in that case that if {an} is a positive definite se
quence of complex numbers with ao = 1, then there exists a Hilbert space 
K, there exists a unit vector fin K, and there exists a unitary operator U 
on K such that an = (U1,f) for every integer n. H U is represented as a 
multiplication induced by a multiplier cp on some V(JL), the result is 
that an = f IfJn If 12dJL. By a standard change of variables, this can be 
reformulated as follows: there exists a normalized measure 1/ on the 
Borel sets of the unit circle such that an = fl-ndl/(l-) for all n. In this 
form the statement is sometimes called Herglotz's theorem; it has been 
extensively generalized to groups other than the additive group of 
integers. The derivation of Herglotz's theorem from dilation theory and 
spectral theory is probably not the most economical way of getting at 
it, but it is a way. In any case it is good to be aware of still another 
connection between Hilbert space theory and classical analysis. 



Chapter 19. 
Commutators of operators 

182. Commutators. A mathematical formulation of the famous 
Heisenberg uncertainty principle is that a certain pair of linear trans
formations P and Q satisfies, after suitable normalizations, the equation 
PQ - QP = 1. It is easy enough to produce a concrete example of this 
behavior; consider V( - 00 ,+ 00) and let P and Q be the differentiation 
transformation and the position transformation, respectively (that is, 
(Pf) (x) = f'(x) and (Qf) (x) = xf(x). These are not bounded linear 
transformations, of course, their domains are far from being the whole 
space, and they misbehave in many other ways. Can this misbehavior 
be avoided? 

To phrase the question precisely, define a commutator as an operator 
of the form PQ - QP, where P and Q are operators on a Hilbert space. 
More general uses of the word can be found in the literature (e.g., 
commutators on Banach spaces), and most of them do not conflict with 
the present definition; the main thing that it is intended to exclude is 
the unbounded case. The question of the preceding paragraph can be 
phrased this way: "Is 1 a commutator?" The answer is no. 

Problem 182. The only scalar commutator is O. 

The finite-dimensional case is easy to settle. The reason is that in that 
case the concept of trace is available. Trace is linear, and the trace of a 
product of two factors is independent of their order. It follows that the 
trace of a commutator is always zero; the only scalar with trace 0 is 0 
itself. That settles the negative statement. More is known: in fact a 
finite square matrix is a commutator if and only if it has trace 0 (Shoda 
[1936J, Albert-Muckenhoupt [1957J). 

For the general (not necessarily finite-dimensional) case, two beautiful 
proofs are known, quite different from one another; they are due to 
Wintner [1947J and Wielandt [1949]. Both apply, with no change, to 
arbitrary complex normed algebras with unit. A normed algebra is a 
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normed vector space that is at the same time an algebra such that 

Ilfg II ~ Ilf 11·11 g II 

for all f and g. A unit in a normed algebra is, of course, an element e 
such that ef = fe = ffor allf; it is customary to require, moreover, that 
II e II = 1. The algebraic character of the Wintner and Wielandt proofs 
can be used to get more information about commutators, as follows. 

The identity is a projection; it is the unique projection with nullity O. 
(Recall that the nullity of an operator is the dimension of its kernel.) 
What about a projection (on an infinite-dimensional Hilbert space) with 
nullity 1; can it be a commutator? Intuition cries out for a negative 
answer, and, for once, intuition is right (Halmos [1963 aJ). Consider 
the normed algebra of all operators and in it the ideal of compact oper
ators. The quotient algebra is a normed algebra. In that algebra the unit 
element is not a commutator (by Wintner and Wielandt); translated 
back to operators, this means that the identity cannot be equal to the 
sum of a commutator and a compact operator. Since a projection with 
nullity 1 is a very special example of such a sum, the proof is complete. 
The following statement summarizes what the proof proves. 

Corollary. The sum of a compact operator and a non-zero scalar 
is not a commutator. 

The corollary gives a sufficient condition that an operator be a non
commutator; the most surprising fact in this subject is that on separable 
spaces the condition is necessary also (Brown-Pearcy [1965J). In other 
words: on a separable space every operator that is not the sum of a 
non-zero scalar and a compact operator is a commutator. The proof 
is not short. 

183. Limits of commutators. Granted that the identity is not a 
commutator, is it at least a limit of commutators? Do there, in other 
words, exist sequences {Pn} and {Qn} of operators such that 
111 - (PnQn - QnPn) II ~ 0 as n ~ co? The Brown-Pearcy characteri
zation of commutators (see Problem 182) implies that the answer is yes. 
(See also Problem 187.) A more modest result is more easily accessible. 
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Problem 183. If IPnl and lQnl are bounded sequences of oper
ators (i.e., if there exists a positive number a such that II P n II ~ a 
and II Qn II ~ a for all n), and if the sequence IPnQn - QnPnl con
verges in the norm to an operator C, then C ~ 1. 

In other words: the identity cannot be the limit of commutators 
formed from bounded sequences. Reference: Brown-Halmos-Pearcy 
[1965J. 

184. The Kleinecke-Shirokov theorem. The result of Problem 182 
says that if C = PQ - QP and if C is a scalar, then C = O. How does 
the proof use the assumption that C is a scalar? An examination of 
Wielandt's proof suggests at least part of the answer: it is important 
that C commutes with P Commutators with this sort of commutativity 
property have received some attention; the original question 
(PQ - QP = 1?) fits into the context of their theory. An easy way for 
PQ - QP to commute with P is for it to be equal to P. Example: 

If that happens, then an easy inductive argument proves that 
pnQ _ QPn = npn, and this implies that 

for every positive integer n. Since it is impossible that n ~ 211 Q II for 
all n, it follows that pn = 0 for some n, i.e., that P (= PQ - QP) is 
nilpotent. 

The first general theorem of this sort is due to Jacobson [1935J, who 
proved, under suitable finiteness assumptions, that if C = PQ - QP 
and C commutes with P, then C is nilpotent. This is a not unreasonable 
generalization of the theorem about scalars; after all the only nilpotent 
scalar is O. In infinite-dimsnsional Hilbert spaces finiteness conditions 
are not likely to be satisfied. Kaplansky conjectured that if nilpotence 
is replaced by its appropriate generalization, quasinilpotence, then the 
Jacobson theorem will extend to operators, and he turned out to be 
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right. The proof was discovered, independently, by .Kleinecke [1957J 
and Shirokov [1956]. 

Problem 184. If P and Q are operators, if C = PQ - QP, and 
if C commutes with P, then Cis quasinilpotent. 

185. Distance from a commutator to the identity. By Wintner and 
Wielandt, commutators cannot be equal to 1; by Brown-Pearcy, com
mutators can come arbitrarily near to 1. Usually, however, a commutator 
is anxious to stay far from 1. 

Problem 185. (a) If C = PQ - QP and if P is hyponormal 
(hence, in particular, if P is an isometry, or if P is normal), then 
111 - C II ~ 1. (b) If C commutes with P, then 111 - C II ~ 1. 

If the underlying Hilbert space is finite-dimensional, then it is an easy 
exercise in linear algebra to prove that II 1 - C II ~ 1 for all com
mutators C. 

186. Operators with large kernels. As far as the construction of 
commutators is concerned, all the results of the preceding problems are 
negative; they all say that something is not a commutator. 

To get a positive result, suppose that H is an infinite-dimensional 
Hilbert space and consider the infinite direct sum H EEl H EEl HEEl···. 
Operators on this large space can be represented as infinite matrices 
whose entries are operators on H. If, in particular, A is an arbitrary 
operator on H (it could even be the identity), then the matrix 

o A 0 0 

o 0 A 0 

p= 0 0 0 A 

o 0 0 0 
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defines an operator; if 

0 0 0 0 

1 0 0 0 

Q= 0 1 0 0 

0 0 1 0 

then it can be painlessly verified that 

A 0 0 0 

o 0 0 0 

PQ - QP = 0 0 0 0 

o 0 0 0 

Since the direct sum of infinitely many copies of H is the direct sum of 
the first copy and the others, and since the direct sum of the others is 
isomorphic (unitarily equivalent) to H, it follows that every two-by-two 
operator matrix of the form 

is a commutator (Halmos [1952 b J, [1954J). 
It is worth while reformulating the result without matrices. Call a 

subspace M of a Hilbert space H large if dim M = dim H. (The idea 
has appeared before, even if the word has not; d. Problem 111.) In this 
language, if H is infinite-dimensional, then H (regarded as one of the 
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axes of the direct sum H EB H) is a large subspace of H EB H. If the 
matrix of an operator on H EB H is 

then that operator has a large kernel, and, moreover, that kernel reduces 
A. If, conversely, an operator on an infinite-dimensional Hilbert space 
has a large reducing kernel, then that operator can be represented by a 
matrix of the form 

(Represent the space as the direct sum of the kernel and its orthogonal 
complement. If the dimension of that orthogonal complement is too 
small, enlarge it by adjoining "half" the kernel.) In view of these re
marks the matrix result of the preceding paragraph can be formulated 
as follows: every operator with a large reducing kernel is a commutator. 
This result can be improved (Pearcy [1965J). 

Problem 186. Every operator with a large kernel is a commutator. 

Corollary 1. On an infinite-dimensional Hilbert space commu
tators are strongly dense. 

Corollary 2. Every operator on an infinite-dimensional Hilbert 
space is the sum of two commutators. 

Corollary 2 shows that nothing like a trace can exist on the algebra 
of all operators on an infinite-dimensional Hilbert space. The reason is 
that a linear functional that deserves the name "trace" must vanish 
on all commutators, and hence, by Corollary 2, identically. 

187. Direct sums as commutators. 
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Problem 187. If an operator A on a separable Hilbert space is not 
a scalar, then the infinite direct sum A EEl A EEl A EEl ••• is a com
mutator. 

Even though this result is far from a complete characterization of 
commutators, it answers many of the obvious questions about them. 
Thus, for instance, it is an immediate corollary that the spectrum of a 
commutator is quite arbitrary; more precisely, each non-empty compact 
subset of the plane (i.e., any set that can be a spectrum at all) is the 
spectrum of some commutator. Another immediate corollary is that the 
identity is the limit (in the norm) of commutators; compare Problems 
183 and 185. 

The techniques needed for the proof contain the germ (a very rudi
mentary germ, to be sure) of what is needed for the general characteri
zation of commutators (Brown-Pearcy [1965J). 

188. Positive self-commutators. The self-commutator of an operator 
A is the operator A * A - AA *. The theory of self-commutators has 
some interest. It is known that a finite square matrix is a self-commutator 
if and only if it is Hermitian and has trace 0 (Thompson [1958J). An 
obvious place where self-commutators could enter is in the theory of 
hyponormal operators; a necessary and sufficient condition that A be 
hyponormal is that the self-commutator of A be positive. That self
commutators can be non-trivially positive is a relatively rare phenome
non (which, by the way, is strictly infinite-dimensional). It is natural 
to ask just how positive a self-commutator can be, and the answer is 
not very. 

Problem 188. A positive self-commutator cannot be invertible. 

Reference: Putnam [1951 a]. 

189. Projections as self-commutators. If a self-commutator C = 

A * A - AA * is positive, then, by Problem 188, C is not invertible. 
The easiest way for C to be not invertible is to have a non-trivial kernel. 
Among the positive operators with non-trivial kernels, the most familiar 
ones are the projections. Can C be a projection, and, if so, how? 
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The most obvious way for C to be a projection is for A to be normal; 
in that case C = O. Whatever other ways there might be, they can always 
be combined with a normal operator (direct sum) to yield still another 
way, which, however, is only trivially different. The interesting question 
here concerns what may be called abnormal operators, i.e., operators 
that have no normal direct summands. Otherwise said, A is abnormal 
if no non-zero subspace of the kernel of A * A - AA * reduces A. 

It is not difficult to produce an example of an abnormal operator 
whose self-commutator is a projection: any non-normal isometry will do. 
If A is a non-normal isometry (i.e., the direct sum of a unilateral shift 
of non-zero multiplicity and a unitary operator-see Problem 118), 
then II A II = 1 and C = A*A - AA* = 1 - AA* is the projection 
onto the kernel of A *. What is interesting is that in the presence of the 
norm condition (II A II = 1) this is the only way to produce examples. 

Problem 189. (a) If A is an abnormal operator of norm 1, such 
that A * A - AA * is a projection, then A is an isometry. (b) Does 
the statement remain true if the norm condition is not assumed? 

190. Multiplicative commutators. The word" commutator" occurs 
in two distinct mathematical contexts. In ring theory it means PQ - QP 
(additive commutators); in group theory it means PQP-IQ-I (multipli
cative commutators). A little judicious guessing about trace versus 
determinant, and, more generally, about logarithm versus exponential, 
is likely to lead to the formulation of multiplicative analogues of the 
results about additive commutators. Some of those analogues are true. 
What about the analogue of the additive theorem according to which 
the only scalar that is an additive commutator is O? 

Problem 190. If H is an infinite-dimensional Hilbert space, then 
a necessary and sufficient condition that a scalar ex acting on H be a 
multiplicative commutator is that I ex I = 1. 

For finite-dimensional spaces determinants can be brought into play. 
The determinant of a multiplicative commutator is 1, and the only 
scalars whose determinants are 1 are the roots of unity of order equal 
to the dimension of the space. This proves that on an n-dimensional 
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space a necessary condition for a scalar a to be a mUltiplicative com
mutator is that an = 1; a modification of the argument that works for 
infinite-dimensional spaces shows that the condition is sufficient as well. 

It turns out that the necessity proof is algebraic, just as in the additive 
theory, in the sense that it yields the same necessary condition for an 
arbitrary complex normed algebra with unit. From this, in turn, it 
follows, just as in the additive theory, that if a commutator is congruent 
to a scalar modulo the ideal of compact operators, then that scalar must 
have modulus 1. 

191. Unitary multiplicative commutators. The positive assertion of 
Problem 190 can be greatly strengthened. One of the biggest steps toward 
the strengthened theory is the following assertion. 

Problem 191. On an infinite-dimensional Hilbert space every uni
tary operator is a multiplicative commutator. 

192. Commutator subgroup. The commutator subgroup of a group is 
the smallest subgroup that contains all elements of the form PQP-lQ-l; 
in other words it is the subgroup generated by all commutators (multipli
cative ones, of course). The set of all invertible operators on a Hilbert 
space is a multiplicative group; in analogy with standard finite-dimen
sional terminology, it may be called the full linear group of the space. 

Problem 192. What is the commutator subgroup of the full linear 
group of an infinite-dimensional Hilbert space? 



Chapter 20. Toeplitz operators 

193. Laurent operators and matrices. Multiplications are the proto
types of normal operators, and most of the obvious questions about 
them (e.g., those about numerical range, norm, and spectrum) have 
obvious answers. (This is not to say that every question about them 
has been answered.) Multiplications are, moreover, not too sensitive to 
a change of space; aside from the slightly fussy combinatorics of atoms, 
and aside from the pathology of the uncountable, what happens on the 
unit interval or the unit circle is typical of what can happen anywhere. 

If cp is a bounded measurable function on the unit circle, then the 
multiplication induced by cp on V (with respect to normalized Lebesgue 
measure J.l) is sometimes called the Laurent operator induced by cp, in 
symbols L.p. The matrix of L.p with respect to the familiar standard 
orthonormal basis in V (en(z) = zn, n = 0, ±1, ±2, ... ) has a simple 
form, elegantly related to cpo To describe the relation, define a Laurent 
matrix as a (bilaterally) infinite matrix (Aij) such that 

for all i and j (= 0, ±1, ±2, ... ). In words: a Laurent matrix is one 
all of whose diagonals (parallel to the main diagonal) are constants. 

Problem 193. A necessary and sufficient condition that an operator 
on V be a Laurent operator L.p is that its matrix (Aij) with respect to 
the basis len: n = 0, ±1, ±2, ... \ be a Laurent matrix; if that con
dition is satisfied, then Aij = Cii-h where cp = Ln Cinen is the Fourier 
expansion of cpo 

194. Toeplitz operators and matrices. Laurent operators (multiplica
tions) are distinguished operators on V (of the unit circle), and H2 is 
a distinguished subspace of V; something interesting is bound to happen 
if Laurent operators are compressed to H2. The description of what 
happens is called the theory of Toeplitz operators. Explicitly: if P is the 
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projection from L2 onto H2, and if 'P is a bounded measurable function, 
then the Toeplitz operator T.p induced by 'P is defined by 

T.pj = P('P·j) 

for all j in H2. The simplest non-trivial example of a Laurent operator 
is the bilateral shift W (= Lei); correspondingly, the simplest non-trivial 
example of a Toeplitz operator is the unilateral shift U (= Tel)' 

There is a natural basis in V; the matrix of a Laurent operator with 
respect to that basis has an especially simple form. The corresponding 
statements are true about H2 and Toeplitz operators. To state them, 
define a Toeplitz matrix as a (unilaterally) infinite matrix (Aij) such 
that 

for all i andj (= 0, 1, 2, ... ). In words: a Toeplitz matrix is one all of 
whose diagonals (parallel to the main diagonal) are constants. The 
structural differences between the Laurent theory and the Toeplitz 
theory are profound, but the difference between the two kinds of matrices 
is superficial and easy to describe; for Laurent matrices both indices go 
both way" from 0, but for Toeplitz matrices they go forward only. 

Problem 194. A necessary and sufficient condition that an operator 
on H2 be a Toeplitz operator T.p is that its matrix (Aij> with respect 
to the basis {en: n = 0, 1, 2, ... } be a Toeplitz matrix; ij that con
dition is satisfied, then Aij = CXi-iJ where 'P = Ln cxnen is the Fourier 
expansion oj 'P. 

The necessity of the condition should not be surprising: in terms of an 
undefined but self-explanatory phrase, it is just that the compressed 
operator has the compressed matrix. 

The unilateral shift U does for Toeplitz operators what the bilateral 
shift W does for Laurent operators-but does it differently. 

Corollary 1. A necessary and sufficient condition that an operator 
A on H2 be a Toeplitz operator is that U* AU = A. 
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Since W is unitary, there is no difference between W* AW = A and 
AW = W A. The corresponding equations for U say quite different 
things. The first, U* AU = A, characterizes Toeplitz operators. The 
second, AU = U A, characterizes analytic Toeplitz operators (see 
Problem 116). The Toeplitz operator T<p induced by cp is called analytic 
in case cp is analytic (see Problem 26), i.e., in case cp is not only in Leo 
but in Heo. (To justify the definition, note that the statement of Problem 
194 implies that the correspondence cp ---,) T<p is one-to-one.) Observe 
that an analytic Toeplitz operator is subnormal; it is not only a com
pression but a restriction of the corresponding Laurent operator. 

Corollary 2. The only compact Toeplitz operator is O. 

195. Toeplitz products. The algebraic structure of the set of all 
Laurent operators holds no surprises: everything is true and everything 
is easy. The mapping cp ---,) L<p from bounded measurable functions to 
operators is an algebraic homomorphism (it preserves unit, linear oper
ations, multiplication, and conjugation), and an isometry (supremum 
norm to operator norm); the spectrum of L<p is the essential range of cpo 

Since the Laurent operators constitute the commutant of W (Problem 
115), and since the product W-IAW is weakly continuous in its middle 
factor, it follows that the set of all Laurent operators is weakly (and 
hence strongly) closed. 

Some of the corresponding Toeplitz statements are true and easy, but 
some are hard, or false, or unknown. The easiest statements concern 
unit, linear operations, and conjugation: since both the mappings cp ---,) L<p 
and L<p ---,) (P L<p) I H2 (= the restriction of P L<p to H2 = T <p) preserve 
the algebraic structures named, the same is true of their composite, 
which is cp ---,) T <p' (The preservation of adjunction is true for compressions 
in general; see Problem 178.) The argument that proved that the set of 
all Laurent operators is weakly closed works for Toeplitz operators too; 
just replace W-1AW by U*AU (d. Corollary 1 of Problem 194). 

It is a trivial consequence of the preceding paragraph that a Toeplitz 
operator T<p is Hermitian if and only if cp is real; indeed T<p = T<p * if and 
only if cp = cp*. It is also true that T <p is positive if and only if cp is positive. 
Indeed, since (T<pf,j) = (L<pf,J) whenever f E H2, it follows that T<p is 
positive if and only if (L<pf,J) ~ 0 for allf in H2. The latter condition 
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is equivalent to this one: (WnL",f,Wnf) ~ 0 whenever f f H2 (and n is 
an arbitrary integer). Since W commutes with L"" the condition can 
also be expressed in this form: (L",Wnf,Wnf) ~ 0 whenever f E H2. Since 
the set of all Wnf's, with fin H2, is dense in V, the condition is equivalent 
to L", ~ 0, and hence to cp ~ O. 

The easiest statements about the mUltiplicative properties of Toeplitz 
operators are negative: the set of all Toeplitz operators is certainly not 
commutative and certainly not closed under multiplication. A counter
example for both assertions is given by the unilateral shift and its adjoint. 
Both U and U* are Toeplitz operators, but the product U* U (which is 
equal to the Toeplitz operator 1) is not the same as the product UU* 
(which is not a Toeplitz operator). One way to prove that UU* is not 
a Toeplitz operator is to use Corollary 1 of Problem 194: since 
U*(UU*)U = (U*U)(U*U) = 1 (~ UU*), everything is settled. 
Alternatively, this negative result could have been obtained via Problem 
194 by a direct look at the matrix of UU*. 

When is the product of two Toeplitz operators a Toeplitz operator? 
The answer is: rarely. Reference: Brown-Halmos [1963]. 

Problem 195. A necessary and sufficient condition that the product 
T ",T", of two Toeplitz operators be a Toeplitz operator is that either 
cp* or 1{1 be analytic; if the condition is satisfied, then T",T", = T",,,,. 

The Toeplitz operator T", induced by cp is called co-analytic in case cp 

is co-analytic (see Problem 26). In this language, Problem 195 says that 
the product of two Toeplitz operators is a Toeplitz operator if and only 
if the first factor is co-analytic or the second one is analytic. 

Corollary. A necessary and sufficient condition that the product of 
two Toeplitz operators be zero is that at least one factor be zero. 

Concisely: among the Toeplitz operators there are no zero-divisors. 

196. Spectral inclusion theorem for Toeplitz operators. Questions 
about the norms and the spectra of Toeplitz operators are considerably 
more difficult than those for Laurent operators. As for the norm of T "', 
for instance, all that is obvious at first glance is that II T '" II ~ II L", II 
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(= II cp 1100); that much is obvious because T is a compression of L. 
About the spectrum of T nothing is obvious, but there is a relatively 
easy inequality (due to Hartman and Wintner [1950J) that answers 
some of the natural questions. 

Problem 196. If Land T are the Laurent and the Toeplitz oper
ators induced by a bounded measurable function, then IT (L) c IT (T) . 

This is a spectral inclusion theorem, formally similar to Problem 157; 
here, too, the "larger" operator has the smaller spectrum. The result 
raises a hope that it is necessary to nip in the bud. If T.p is bounded from 
below, so that Of IT(T.p) , then, by Problem 196, OfIT(L.p). This is 
equivalent to L.p being bounded from below and hence to cp being bounded 
away from O. If the converse were true, then the spectral structure of 
T.p would be much more easily predictable from cp than in fact it is; 
unfortunately the converse is false. If, indeed, cp = Cl, then cp is bounded 
away from 0, but T.peo = Pe-l = 0, so that T.p has a non-trivial kernel. 

Although the spectral behavior of Toeplitz operators is relatively bad, 
Problem 196 can be used to show that in some respects Toeplitz operators 
behave as if they were normal. Here are some samples. 

Corollary 1. If cp is a bounded measurable function, then r (T.p) 

II T.p II = II cp 1100' 

Corollary 1 says, among other things, that the correspondence cp ~ T.p 
is norm-preserving; this recaptures the result (d. Problem 194) that 
that correspondence is one-to-one. 

Corollary 2. There are no quasinilpotent Toeplitz operators other 
than O. 

Corollary 3. Every Toeplitz operator with a real spectrum ~s 

Hermitian. 

Corollary 4. The closure of the numerical range oj a Toeplitz 
operator is the convex hull of its spectrum. 
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197. Analytic Toeplitz operators. The easiest Toeplitz operators are 
the analytic ones, but even for them much more care is needed than for 
multiplications. The operative word is "analytic". Recall that associated 
with each rp in Hco there is a function ;p analytic in the open unit disc D 
(see Problem 28). The spectral behavior of T", is influenced by the 
complex analytic behavior of ;p rather than by the merely set-theoretic 
behavior of rp. Reference: Wintner [1929]. 

Problem 197. If rp E H"', then the spectrum of T", is the closure 
of the image of the open unit disc D under the corresponding element 
rp of R"'; in other words ACT",) = cp(D). 

Here is still another way to express the result. If rp E V"', then the 
spectrum of L", is the essential range of rp; if rp E Hco, then the spectrum 
of T", is what may be called the essential range of cpo 

198. Eigenvalues of Hermitian Toeplitz operators. Can an analytic 
Toeplitz operator have an eigenvalue? Except in the trivial case of 
scalar operators, the answer is no. The reason is that if rp is analytic and 
rp·f = Ajfor somefin H2, then the F. and M. Riesz theorem (Problem 
127) implies that either rp = X or f = O. Roughly speaking, the reason 
is that an analytic function cannot take a constant value on a set of 
positive measure without being a constant. For Hermitian Toeplitz 
operators this reasoning does not apply: there is nothing to stop a non
constant real-valued function from being constant on a set of positive 
measure. 

Problem 198. Given a real-valued function rp in V"', determine the 
point spectrum of the Hermitian Toeplitz operator T",. 

199. Spectrum of a Hermitian Toeplitz operator. 

Problem 199. Given a real-valued function rp in L"', determine the 
spectrum oj the Hermitian Toeplitz operator T",. 

For more recent and more general studies of the spectra of Toeplitz 
operators, see Widom [1960J, [1964J. 
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Chapter 1. Vectors and spaces 

Problem 1. Polarize. 

Problem 2. Use uniqueness: if f 
Lj Cl!jHej). 

Lj Cl!jej, then Hf) 

Problem 3. Use inner products to reduce the problem to the strict 
convexity of the unit disc. 

Problem 4. Consider characteristic functions in V(O,I). An al
ternative hint, for those who know about spectral measures, is to con
template spectral measures. 

Problem 5. A countably infinite set has an uncountable collection 
of infinite subsets such that the intersection of two distinct ones among 
them is always finite. 

Problem 6. Determine the orthogonal complement of the span. 

Problem 7. Ufo.l f. for all i and if L:i>n II e, - fi 112 < 1, then 
fo, ft, "', fn are linearly dependent. 

Problem 8. Prove that M + N is complete. There is no loss of 
generality in assuming that dim M = 1. 

Problem 9. In an infinite-dimensional space there always exist 
two subspaces whose vector sum is different from their span. 

Problem 10. How many basis elements can an open ball of diam
eter V2 contain? 

Problem 11. Given a countable basis, use rational coefficients. 
Given a countable dense set, approximate each element of a basis close 
enough to exclude all other basis elements. 

Problem 12. Fit infinitely many balls of the same radius inside 
any given ball of positive radius. 

143 
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Chapter 2. Weak topology 

Problem 13. Consider orthonormal sets. Caution: is weak closure 
the same as weak sequential closure? 

Problem 14. Expand 111" - 1 W. 

Problem 15. The span of a weakly dense set is the whole space. 

Problem 16. Assume that I (f",g) I < e for all unit vectors g, and 
replace g by 1"/111,, II· 

Problem 17. Consider the set of all complex-valued functions ~ on 
H such that I HI) I ~ 111 II for aUf, endowed with the product topology, 
and show that the linear functionals of norm less than or equal to 1 
form a closed subset. 

Problem 18. Given a countable dense set, define all possible basic 
weak neighborhoods of each of its elements, using finite subsets of itself 
for the vector parameters and reciprocals of positive integers for the 
numerical parameters of the neighborhoods; show that, the resulting 
collection of neighborhoods is a base for the weak topology. Alterna
tively, given an orthonormal basis leI, e2, ea, ••• }, define a metric by 

Problem 19. If the unit ball is weakly metrizable, then it is weakly 
separable. 

Problem 20. If the conclusion is false, then construct, inductively, 
an orthonormal sequence such that the inner product of each term with 
a suitable element of the given weakly bounded set is very large; then 
form a suitable (infinite) linear combination of the terms of that ortho
normal sequence. 

Problem 21. Construct a sequence that has a weak cluster point 
but whose norms tend to co. 
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Problem 22. Consider partial sums and use the principle of uni
form boundedness. 

Problem 23. (a) Given an unbounded linear functional ~, use a 
Hamel basis to construct a Cauchy net {gJ I such that (j,gJ) ~ H f) 
for each f. (b) If {gn I is a weak Cauchy sequence, then H f) = limn (j,gn) 
defines a bounded linear functional. 

Chapter 3. Analytic functions 

Problem 24. The value of an analytic function at the center of a 
disc is equal to its average over the disc. This implies that evaluation 
at a point of D is a bounded linear functional on A2(D) , and hence that 
Cauchy sequences in the norm are Cauchy sequences in the sense of 
uniform convergence on compact sets. 

Problem 25. What is the connection between the concepts of 
convergence appropriate to power series and Fourier series? 

Problem 26. Is conjugation continuous? 

Problem 27. Is the Fourier series of a product the same as the 
formal product of the Fourier series? 

Problem 28. A necessary and sufficient condition that 

n=O 

is that the numbers 

(0 < r < 1) 
n=O 

be bounded. Use continuity of the partial sums at r = 1. 

Problem 29. Start with a well-behaved functional Hilbert space 
and adjoin a point to its domain. 
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Problem 30. To evaluate the Bergman and the Szego kernels, use 
the general expression of a kernel function as a series. 

Problem 31. Use the kernel function of H2. 

Problem 32. Approximate j, in the norm, by the values of J on 
expanding concentric circles. 

Problem 33. Use the maximum modulus principle and Fejer's 
theorem about the Cesaro convergence of Fourier series. 

Problem 34. Assume that one factor is bounded and use Problem 
27. 

Problem 35. Given the Fourier expansion of an element of H2, 
first find the Fourier expansion of its real part, and then try to invert 
the process. 

Chapter 4. Infinite matrices 

Problem 36. Treat the case of dimension No only. Construct the 
desired orthonormal set inductively; ensure that it is a basis by choosing 
every other element of it so that the span of that element and its pred
ecessors includes the successive terms of a prescribed basis. 

Problem 37. Write Li aii~i as 

and apply the Schwarz inequality. 

Problem 38. Apply Problem 37 with Pi = 1/Vi + t. 

Chapter 5. Boundedness and invertibility 

Problem 39. To get the unbounded examples, extend an ortho
normal basis to a Hamel basis; for the bounded ones use a matrix with 
a large but finite first row. 
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Problem 40. Apply the principle of uniform boundedness for linear 
functionals twice. 

Problem 41. Prove that A * is bounded from below by proving 
that the inverse image under A * of the unit sphere in H is bounded. 

Problem 42. Write the given linear transformation as a matrix 
(with respect to orthonormal bases of Hand K) ; if No ~ dim K < dim H, 
then there must be a row consisting of nothing but O's. 

Problem 43. Use Problem 42. 

Problem 44. Apply Problem 41 to the mapping that projects the 
graph onto the domain. 

Problem 45. For a counterexample, look at unbounded diagonal 
matrices. For a proof, apply the closed graph theorem. 

Chapter 6. Multiplication operators 

Problem 46. I CXj I = II Aej II and 

j j 

Problem 47. If I CXn I ~ n, then the sequence 11/cxn } belongs to l2. 

Problem 48. The inverse operator must send en onto (l/cxn) en. 

Problem 49. If e > 0 and if f is the characteristic function of a set 
of positive finite measure on which Irp(x) I > Ilrp lice - e, then II Af II ~ 
(IIrp lice - e) ·lIf II· 

Problem 50. If II A II = 1, then IIrpn·f II ~ 11 f II for every positive 
integer n and for every f in V; this implies that Irp(x) I ~ 1 whenever 
f(x) ¢ o. 

Problem 51. Imitate the discrete case (Solution 47), or prove that 
a multiplication is necessarily closed and apply the closed graph theorem. 
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Problem 52. Imitate the discrete case (Solution 48). 

Problem 53. For the boundedness of the multiplication, use the 
closed graph theorem. For the boundedness of the multiplier, assume 
that if x E X, then there exists anfin H such thatf(x) ~ 0; imitate the 
"slick" proof in Solution 50. 

Problem 54. Consider the set of all those absolutely continuous 
functions on [O,lJ whose derivatives belong to v. 

Chapter 7. Operator matrices 

Problem 55. If AD - BC is invertible, then the formal inverse of 

can be formed, in analogy with two-by-two numerical matrices. If 

is invertible, then AD - BC is bounded from below; imitate the ele
mentary process of solving two linear equations in two unknowns. 

Problem 56. Multiply on the right by 

with T chosen so as to annihilate the lower left entry of the product. 
Look for counterexamples formed out of the operator on 12 defined by 

(~o, ~l, ~2, ••• ) ---+ (0, ~o, ~l, ~2, ••• ), 

and its adjoint. 
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Problem 57. If a finite-dimensional subspace is invariant under 
an invertible operator, then it is invariant under the inverse. 

Chapter 8. Properties of spectra 

Problem 58. The kernel of an operator is the orthogonal comple
ment of the range of its adjoint. 

Problem 59. ToproveIIo(p(A») C P(IIo(A)), given a inIIo(p(A)) , 
factor peA) - a. Use the same technique for II, and, for r, apply the 
result with A * in place of A. 

Problem 60. For II: if II fn II = 1, then the numbers II P-ljn II 
are bounded from below by 11// P II. For r: the range of P-IAP is 
included in the image under p-l of the range of A. 

Problem 61. Pretend that it is legitimate to expand (1 - AB)-l 
into a geometric series. 

Problem 62. Prove that the complement is open. 

Problem 63. Suppose that An f A(A), A E A(A), and An -7 A. If 
f ;rE. 0 andf .1 ran(A - A), then 

Chapter 9. Examples of spectra 

Problem 64. If A is normal, then IIo(A) = (IIo(A *)) *. 

Problem 65. Use Problem 64. 

Problem 66. If cpo f = Aj almost everywhere, then cp = A whenever 
f~ O. 

Problem 67. Verify that U* (~o, ~l, ~2, ... ) = (~l' ~2, ~3, ... ). 
Compute that IIo(U) is empty and IIo(U*) is the open unit disc. If 
/ A I < 1, then U - A is bounded from below. 
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Problem 68. Represent W as a multiplication. 

Problem 69. Use a spanning set of eigenvectors of A * "for the 
domain; for each! in that domain, define the multiplier as the conjugate 
of the corresponding eigenvalue. 

Problem 70. For an operator with a trivial kernel, relative in
vertibility is the same as left invertibility; for all operators, left inverti
bility is the same as boundedness from below. 

Problem 71. Consider the operator matrix 

where U is the unilateral shift. 

Chapter 10. Spectral radius 

Problem 72. If Ao is not in the spectrum of A and if I A - Ao I is 
sufficiently small, then 

co 

PA(A) = (A - Ao)-I 2:( (A - Ao)-I(A - Ao) )n. 
n=O 

Problem 73. Apply Liouville's theorem on bounded entire func
tions to the resolvent. 

Problem 74. Write 

Use the analyticity of the resolvent to conclude that T is analytic for 
I A I < l/r(A), and then use the principle of uniform boundedness. 

Problem 75. Look for a diagonal operator D such that AD = DB. 
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Problem 76. If A = S-lBS, then the matrix of S must be lower 
triangular; find the matrix entries in rown + 1, column n, n = 0, 1,2, .... 

Problem 77. For the norm: S is an isometry, and therefore 
II S II = II SP II· For the spectral radius: use Problem 74. 

Problem 78. Imitate the coordinate technique used for the un
weighted unilateral shift. 

Problem 79. Iff = (~o, ~l, ~2, ••• ) E l2(P), write 

and prove that U is an isometry from l2(P) onto l2 that transforms the 
shift on l2 (P) onto a weighted shift on l2. 

Problem 80. Try unilateral weighted shifts; apply Solution 77. 

Problem 81. Try unilateral weighted shifts with infinitely many 
zero weights; apply Solution 77. 

Problem 82. Use induction to prove the inequality I (ABf,!) \2n ~ 
(AB2"j,f) . (Af,f)2n-I. 

Chapter 11. Norm topology 

Problem 83. Think of projections on 12(0,1). 

Problem 84. If Ao is invertible, then 1 - AAo-l = (Ao - A)Ao-I; 
use the geometric series trick to prove that A is invertible and to obtain 
a bound on II A-III. 

Problem 85. Find the spectral radius of both A", and Aci • 

Problem 86. The distance from A - A to the set of singular 
operators is positive on the complement of A(A). Alternatively, the 
norm of the resolvent is bounded on the complement of Ao; the reciprocal 
of a bound is a suitable E. 
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Problem 87. Approximate a weighted unilateral shift with positive 
spectral radius by weighted shifts with enough zero weights to make 
them nilpotent. 

Chapter 12. Strong and weak topologies 

Problem 88. Use the results and the methods of Problem 16. 

Problem 89. For a counterexample with respect to the strong 
topology, consider the projections onto a decreasing sequence of sub
sraces. 

Problem 90. For a counterexample with respect to the strong 
topology, consider the powers of the adjoint of the unilateral shift. 

Problem 91. The set of all nilpotent operators of index 2 IS 

strongly dense. 

Problem 92. Use nets. 

Problem 93. (a) Use the principle of uniform boundedness. 
(b) Look at powers of the unilateral shift. 

Problem 94. If IAn} is increasing and converges to A weakly, 
then the positive square root of A - An converges to 0 strongly. For 
a counterexample with respect to the uniform topology, consider se
quences of projections. 

Problem 95. The En's form a bounded increasing sequence. 

Problem 96. Study the sequence of powers of EF E. 

Chapter 13. Partial isometries 

Problem 97. If N is a neighborhood of F(A), then F-l(N) IS a 
neighborhood of A. If A f F (A (A) ), then some neighborhood of A is 
disjointfrom F(A(A)). 
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Problem 98. If U is a partial isometry with initial space M, 
evaluate (U*Uf,j) whenf f M and whenf ..L M; if U*U is a projection 
with range M, do the same thing. 

Problem 99. The only troublesome part is to find a co-isometry 
U and a non-reducing subspace M such that UM = M; for this let U 
be the adjoint of the unilateral shift and let M be the (one-dimensional) 
subspace of eigenvectors belonging to a non-zero eigenvalue. 

Problem 100. For closure: A is a partial isometry if and only if 
A = AA * A. For connectedness: if U is a partial isometry, if V is an 
isometry, and if II U - V II < 1, then U is an isometry. 

Problem 101. For rank: the restriction of U to the initial space of 
V is one-to-one. For nullity: if f f ker V and f l.. ker U, then 

II Uf - Vfll = Ilfll· 

Problem 102. Find a unitary operator that matches up initial 
spaces, and another that matches up final spaces, and find continuous 
curves that join each of them to the identity. 

Problem 103. If A and B are invertible contractions, and if a 
unitary operator transforms M(A) onto M(B), then it maps the sub
space of all vectors of the form (f,0) onto itself. 

Problem 104. If a compact subset A of the closed unit disc con
tains 0, find a contraction A with spectrum A, and extend A to a partial 
isometry. 

Problem 105. Put p2 = A * A, and define U by U Pf = Af on 
ran P and by Uf = ° on ker P. 

Problem 106. Every partial isometry has a maximal enlargement. 

Problem 107. To prove that maximal partial isometries are ex
treme points, use Problem 3. To prove the converse, show that every 
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contraction is the average of two maximal partial isometries; use Problem 
106. 

Problem 108. If UP commutes with p2, then it commutes with P, 
so that UP - PU annihilates ran P. 

Problem 109. For the positive result, apply Problem 106. For the 
negative one: a non-invertible operator that has a one-sided inverse 
cannot be the limit of invertible operators. 

Problem 110. Consider polar decompositions UP and join both 
U and P to 1. 

Chapter 14. Unilateral shift 

Problem Ill. Assume that H is separable, and argue that it is 
enough to prove the existence of two orthogonal reducing subspaces of 
infinite dimension. Prove it by the consideration of spectral measures. 

Problem ll2. Apply Problem 111, and factor the given unitary 
operator into two operators, one of which shifts the resulting two-way 
sequence of subspaces forward and the other backward. 

Problem 113. (a) If a normal operator has a one-sided inverse, 
then it is invertible. (b) Since 1 is an approximate eigenvalue of the 
unilateral shift, the same is true of the real part. (c) There is no in
vertible operator within 1 of the unilateral shift. 

Problem 114. If V2 = U*) then dim ker V ~ 1 and V maps the 
underlying Hilbert space onto itself. 

Problem 115. If W commutes with an operator A, and if if; is a 
bounded measurable function on the circle, then, by the Fuglede com
mutativity theorem, if;(W) commutes with A. Put Aeo = cp, prove that 
Aif; = cp.if;, and use the technique of Solution 50. 

Problem 116. Begin as for Solution 115; use Solution 50; imitate 
Solution 51. 
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Problem 117. Every function in H"" is the limit almost everywhere 
of a bounded sequence of polynomials; cf. Solution 33. 

Problem 118. If V is an isometry on H, and if N is the orthogonal 
complement of the range of V, then n~-o VnH = n~_o(VnN).1. 

Problem 119. Use Problem 118, and recall that -1 belongs to the 
spectrum of the unilateral shift. 

Problem 120. Consider the direct sum of the unilateral shift and 
infinitely many copies of the bilateral shift. 

Problem 121. If II A II ~ 1 and An - 0 strongly, write T 
Vi - A * A and assign to each vector j the sequence 

(Tj, TAj, TA2j, ... ). 

Problem 122. If rCA) < 1, then I:~=o II An 112zn converges at 
z = 1, and consequently an equivalent norm is defined by II j 1102 

I:~-o II A"f 1\2. 

Problem 123. Write N = M n (UM).i and apply the results of 
Solution 118. To prove dim N = 1, assume the existence of two ortho
gonal unit vectors 1 and g in N and use Parseval's equation to compute 
111112 + II g 11 2. It is helpful to regard U as the restriction of the bilateral 
shift. 

Problem 124. Prove that Mk.1(X) is invariant under U*. 

Problem 125. Use Problem 123 to express M in terms of a wander
ing subspace N, and examine the Fourier expansion of a unit vector in N. 

Problem 126. For the simple shift, consider a vector (~o, ~l, ~2, ••• ) 

such that 

lim _1_ ~ 1 12 - 0 kit 12 £..J ~n+k - • 
'>k n-1 
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For shifts of higher multiplicity, form vectors whose components are 
subsequences of this sequence {~,,}. 

Problem 127. Given j in H2, let M be the least subspace of H2 
that contains j and is invariant under U, and apply Problem 125 to M. 

Problem 128. Let g be a non-zero element of V that vanishes on 
a set of positive measure, and write j(z) = zg(Z3). 

Problem 129. Necessity: consider a Hermitian operator that com
mutes with A (and hence with A * and with A * A), and examine its 
matrix. Sufficiency: assume {an} periodic of period p; let M j be the 
span of the e/s with n == } (mod p) ; observe that each vector has a 
unique representation in the formjo + ... + jp, withjj in M j ; for each 
measurable subset E of the circle, consider the set of all those j's for 
whichh(z) = 0 for all} and for all z in the complement of E. 

Chapter 15. Compact operators 

Problem 130. Use nets. In the discussion of (w ~ s) continuity 
recall that a basic weak neighborhood depends on a finite set of vectors, 
and consider the orthogonal complement of their span. 

Problem 131. To prove self-adjointness, use the polar decompo
sition. 

Problem 132. Approximate by diagonal operators of finite rank. 

Problem 133. If the restriction of a compact operator to an in
variant subspace is invertible, then the subspace is finite-dimensional. 
Infer, via the spectral theorem, that the part of the spectrum of a normal 
compact operator that lies outside a closed disc with center at the origin 
consists of a finite number of eigenvalues with finite multiplicities. 

Problem 134. If the identity has kernel K, then 

p,(Fn G) = if K (x,y) dp, (x) dp, (y) 
FXG 
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whenever F and G are measurable sets; it follows that the indefinite 
integral of K is concentrated on the diagonal. 

Problem 135. Approximate by simple functions. 

Problem 136. If A is a Hilbert-Schmidt operator, then the sum 
of the eigenvalues of A * A is finite. 

Problem 137. Use the polar decomposition and Problem 133. 

Problem 138. Every operator of rank 1 belongs to every non-zero 
ideal. Every non-compact Hermitian operator is bounded from below 
on some infinite-dimensional invariant subspace; its restriction to such 
a subspace is invertible. 

Problem 139. Use the spectral theorem. 

Problem 140. (1) If ran(1 - C) = H, then ker(l - C) = {OJ. 
(The sequence {ker A, ker A2, ker A3, ..• } is strictly increasing.) 
(2) 1 - C is bounded from below on (ker(l - C) )1. After proving (1) 
and (2), apply them not only to C but also to C*. 

Problem 141. If M is a subspace included in ran A, the restriction 
of A to the inverse image of M is invertible. 

Problem 142. From (1) to (2): the restriction of A to (ker A)l is 
invertible. From (3) to (1): if 1 - BA is compact, apply Solution 140 
to 1 - BA. 

Problem 143. Assume A 
A = B(l + B-l(A - B)). 

0; note that if B is invertible, then 

Problem 144. Perturb the bilateral shift by an operator of rank 1. 

Problem 145. If C is compact and U + C is normal, then the 
spectrum of U + C is large; but the spectrum of (U + C) * (U + C) 
is small. 
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Problem 146. If A is a Volterra operator with kernel bounded 
by c, then An is a Volterra operator with kernel bounded by cn/ (n - 1)!' 

Problem 147. Prove first that if A is a Volterra operator, and if € 
is a positive number, then there exist Volterra operators Band C and 
there exists a positive integer k such that (1) A = B + C, (2) II B II < €, 

and (3) every product of B's and C's in which k or more factors are 
equal to C is equal to O. To get the kernel of B, redefine the kernel of 
A to be 0 on a thin strip parallel to the diagonal. 

Problem 148. Express V*V as an integral operator. By differenti
ation convert the equation V*Vf = Ai into a differential equation, and 
solve it. 

Problem 149. Identify V( -1,+1) with V(O,1) EB V(O,1), and 
determine the two-by-two operator matrix corresponding to such an 
identification. Caution: there is more than one interesting way of 
making the identification. 

Problem 150. Put A = (1 + V)-l, where V is the Volterra 
integration operator. 

Problem 151. Reduce to the case where M contains a vector f 
with infinitely many non-zero Fourier coefficients; in that case prove 
that there exist scalars An such that AnA nf ~ eo, so that M contains eo; 
use induction to conclude that M contains ek for every positive integer k. 

Chapter 16. Subnormal operators 

Problem 152. Apply Fuglede's theorem to two-by-two operator 
matrices made out of Al , A2, and B. 

Problem 153. IfllA111 ~ Ilfllforalln,andif 

Mr = {x: I <p(x) I ~ r > 1}, 

then II f 112 ~ f M ,r2n I f I 2dp.. 
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Problem 154. Show that ker A reduces A and throw it away. 
Once ker A = to}, consider the polar decomposition of A, extend the 
isometric factor to a unitary two-by-two matrix, extend the positive 
factor to a positive two-by-two matrix, and do all this so that the two 
extensions commute. 

Problem 155. The desired isometry U must be such that if 
{h, "', in} is a finite subset of H, then U CLi Bl*'l;) = Li B2*'li' 

Problem 156. Consider the measure space consisting of the unit 
circle together with its center, with measure defined so as to be normal
ized Lebesgue measure in the circle and a unit mass at the center. Form 
a subnormal operator by restricting a suitable multiplication on V to 
the closure of the set of all polynomials. 

Problem 157. It is sufficient to prove that if A is invertible, then 
so is B. Use Problem 153. 

Problem 158. Both A - A(A) and An A(A) are open. Use 
Problem 63. 

Problem 159. Every finite-dimensional subspace invariant under 
a normal operator B reduces B. 

Problem 160. If A (on H) is subnormal, and if io, "', in are 
vectors in H, then the matrix < (A 'lilA j'i) ) is positive definite. A weighted 
shift with weights {ao, al, a2, ••• } is hyponormal if and only if 1 an 12 ~ 
1 an+1 12 for all n. 

Problem 161. Use Problem 118. 

Problem 162. If A is hyponormal, then 

for every vector j. 



163-171 SUBNORMAL OPERATORS 160 

Problem 163. If A is hyponormal, then the span of the eigen
vectors of A reduces A. If A is compact also, then consider the restriction 
of A to the orthogonal complement of that span, and apply Problem 
140 and Problem 162. 

Problem 164. Let H be the (infinite, bilateral) direct sum of 
copies of a two-dimensional Hilbert space, and consider an operator
weighted shift on H. 

Problem 165. If C = P-IUP, where P is positive and Uisunitary, 
then a necessary and sufficient condition that C be a contraction is that 
UP be hyponormal. 

Chapter 17. Numerical range 

Problem 166. It is sufficient to prove that if j and g are unit 
vectors such that (Aj,f) = 1, (Ag,g) = 0, and (Aj,g) is real, then 
W(A) includes the whole unit interval. Consider if + (1 - t)g, 
o ~ t ~ 1, and argue by continuity. 

Problem 167. If M and N are k-dimensional Hilbert spaces and if 
T is a linear transformation from M to N, then there exist orthonormal 
bases {jl, ···,Jd for M, and {gl, ... , gk} for N, and there exist positive 
scalars ai, ... , ak such that Tji = a~i, i = 1, ... , k. If P and Q are 
projections of rank k, apply this statement to the restriction of QP to 
the range of P, and apply the Toeplitz-Hausdorff theorem k times. 

Problem 168. Try a diagonal operator. Try the unilateral shift. 

Problem 169. The closure of the numerical range includes both 
the compression spectrum (the complex conjugate of the point spectrum 
of the adjoint) and the approximate point spectrum. 

Problem 170. Let V be the Volterra integration operator and 
consider 1 - (1 + V)-l. 

Problem 171. Use the spectral theorem; reduce the thing to be 
proved to the statement that if the values of a function are in the right 
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half plane, then so is the value of its integral with respect to a positive 
measure. 

Problem 172. Use Problems 157, 169, and 171. 

Problem 173. (a) Prove the contrapositive. (b) If II A II = 1 and 
(Afn,fn) - 1, then Afn - fn - O. 

Problem 174. Write 

let N be a normal operator whose spectrum is the closed disc with center 
o and radius t, and consider 

Problem 175. If II A - B II < I; and IIf II = 1, then (Af,f) E 

WeB) + (1;). Let U be the unilateral shift and consider u*n, n = 1, 
2, 3, .... 

Problem 176. A necessary and sufficient condition that w(A) ~ 1 
is that Re(l - ZA)-l ~ 0 for every z in the open unit disc. Write down 
the partial fraction expansion of 1/ (1 - zn) and replace z by zA. 

Chapter 18. Unitary dilations 

Problem 177. (a) Suppose that the given Hilbert space is one
dimensional real Euclidean space and the dilation space is a plane. 
Examine the meaning of the assertion in this case, use analytic geometry 
to prove it, and let the resulting formulas suggest the solution in the 
general case. (b) Imitate (a). 

Problem 178. Look for a bilaterally infinite matrix that does the 
job; use the techniques and results of Solution 177. 
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Problem 179. Use the spectral theorem to prove the assertion for 
unitary operators, and then use the existence of unitary power dilations 
to infer it for all contractions. 

Problem 180. Find a unitary power dilation of A. 

Problem 181. If {fn} and {gn} are finitely non-zero bilateral se
quences of vectors in H, and if Uj = Li Ai-di and Vj = Li Ai-jgi, 
write [u,vJ = Lj(uj,gj). Use this as a definition of inner product for 
the dilation space K. 

Chapter 19. Commutators of operators 

Problem 182. Wintner: assume that P is invertible and examine 
the spectral implications of PQ = QP + 1. Wielandt: assume 
PQ - QP = 1, evaluate pnQ - QPn, and use that evaluation to esti
mate its norm. 

Problem 183. Consider the Banach space of all bounded sequences 
of vectors, modulo null sequences, and observe that each bounded se
quence of operators induces an operator on that space. 

Problem 184. Fix P and consider tlQ = PQ - QP as a function 
of Q; determine tlnQn. 

Problem 185. (a) Generalize the formula for the "derivative" of a 
power to the non-commutative case, and imitate Wielandt's proof. 
(b ) Use the Kleinecke-Shirokov theorem. 

Problem 186. Represent the space as an infinite direct sum in 
such a way that all summands after the first are in the kernel. Examine 
the corresponding matrix representation of the given operator, and try 
to represent it as PQ - QP, where P is the pertinent unilateral shift. 

Problem 187. Find an invertible operator T such that A + T-I AT 
has a non-zero kernel; apply Problem 186 to the direct sum of A + T-I AT 
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with itself countably many times. Prove and use the lemma that if 
B + C is a commutator, then so is B $ C. 

Problem 188. If C = A*A - AA* G; 0, choose A in Il(A), 

find Un} so that 11/,. II = 1 and (A - A)/n ---+ 0, and prove that Cfn ---+ O. 

Problem 189. (a) Prove that (1) A is quasi normal, (2) 
ker(l - A * A) reduces A, and (3) ker(l - A * A))l c ker(A * A - AA *). 
(b) Consider a weighted bilateral shift, with all the weights equal to 
either 1 or-./2. 

Problem 190. For sufficiency, try a (bilateral) diagonal operator 
and a bilateral shift; for necessity, adapt the Wintner argument from 
the additive theory. 

Problem 191. Use Problem 111, and then try a diagonal operator 
matrix and a bilateral shift, in an operator matrix imitation of the 
technique that worked in Problem 190. 

Problem 192. Use Problem 111, together with a multiplicative 
adaptation of the introduction to Problem 186, to prove that every 
invertible normal operator is the product of two commutators. 

Chapter 20. Toeplitz operators 

Problem 193. For necessity: compute. For sufficiency: use Problem 
115. 

Problem 194. For necessity: compute. For sufficiency: write 
An/ = W*nAPWn/for all/in V, n = 0, 1,2, "', and prove that the 
sequence {An} is weakly convergent. 

Problem 195. If ('Yii> is the matrix of T",T"" then 'Yi+l.i+l 

'Yii + CXi+If3-i-l, where II' = l:i aiei and I/t = Li {3jej. 

Problem 196. Prove that w*nT PWn ---+ L strongly, and use that 
to prove that if 0 " II (L), then 0 " IT ( T) . 
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Problem 197. Let K be the kernel function of H2, and, for a fixed 
y in D and a fixed J in H2, write g(z) = (~(z) - ~(y) )J(z). Since 
g(y) = 0, it follows that g .1 KII and hence that ~(y) is in the (com
pression) spectrum of T <p' 

Problem 198. If cp is real and T<pj = 0, then cp.f*.j is real and 
belongs to HI. 

Problem 199. If cp is real and T<p is invertible, then cp.j* E H2, and 
this implies that sgn cp is constant. 



Solutions 



Chapter 1. Vectors and spaces 

Solution 1. The limit of a sequence of quadratic forms is a quad
raticform. 

Proof. Associated with each function cp of two variables there is a 
function cp- of one variable, defined by cp-(j) = cp(j,j); associated with 
each function Vt of one variable there is a function Vt+ of two variables, 
defined by 

Vt+(j,g) = Vt(tef + g» - Vt(tef - g) 

+ iVt(tef + ig» - iVt(tef - ig»). 

If cp is a sesquilinear form, then cp = cp- +; if 1/t is a quadratic form, 
then 1/t = Vt+ -. If {Vtn} is a sequence of quadratic forms and if Vtn ~ Vt 
(that is, Vtn (j) ~ Vt(j) for each vector f), then Vtn + ~ Vt+ and 
Vtn + - ~ Vt+ -. Since each Vtn is a quadratic form, it follows that each Vtn + 
is a sesquilinear form and hence that Vt+ is one too. Since, moreover, 
Vtn = 1/tn + -, it follows that Vt = Vt+ -, and hence that Vt is a quadratic 
form. 

The index set for sequences (i.e., the set of natural numbers) has 
nothing to do with the facts here; the proof is just as valid for ordered 
sequences of arbitrary length, and, more generally, for nets of arbitrary 
structure. 

Solution 2. To motivate the approach, assume for a moment that it 
is already known that Hf) = (j,g) for some g. Choose an arbitrary but 
fixed orthonormal basis lei} and expand g accordingly: g = 'Ed3jej. 
Since 

(3i = (g,ej) = (e;,g) * = He;) *, 

the vector g could be captured by writing 

i 

167 
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If the existence of the Riesz representation is known, this reasoning 
proves uniqueness and exhibits the coordinates of the representing 
vector. The main problem, from the point of view of the present approach 
to the existence proof, is to prove the convergence of the series L; (3;e;, 
where (3; = He;) *. 

For each finite set J of indices, write gJ = Lj<J (3jej. Then 

HgJ) = L I (3j 12, 

jeJ 

and therefore 

This implies that 
vI: 1(3; 12 ;£ II ~ II, 

jeJ 

and hence that 

This result justifies writing g = Lj (3jej. If f = Lj CI:;e;, then 

Hf) = L Cl:jHej) 
; 

and the proof is complete. 

L CI:;(3/ = (f,g) , 
; 

Solution 3. The boundary points of the closed unit ball are the 
vectors on the unit sphere (that is, the unit vectors, the vectors f with 
II f II = 1). The thing to prove therefore is that if f = tg + (1 - t) h, 
where 0 ;£ t ;£ 1, II f II = 1, II g II ;£ 1, and II h II ;£ 1, then f = g = h. 
Begin by observing that 

1 = (f,j) = (f,tg + (1 - t)h) = t(f,g) + (1 - t) (f,h). 

Since I (f,g) I ;£ 1 and I (f,h) I ;£ 1, it follows that (f,g) = (f,h) = 1; 
this step uses the strict convexity of the closed unit disc. The result 
says that the Schwarz inequality degenerates, both for f and g and for 
f and h, and this implies that both g and h are multiples of j. Write 
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g = af and h = ~j. Since 1 ( j,g) = (j,aj) a*, and, similarly, 
1 = ~*, the proof is complete. 

Solution 4. Since every infinite-dimensional Hilbert space has a sub
space isomorphic to V(O,I), it is sufficient to describe the construction 
for that special space. The description is easy. If 0 ~ t ~ 1, let j( t) be 
the characteristic function of the interval [O,tJ; in other words, 
(j(t» (s) = 1 or 0 according as 0 ~ s ~ tor t < s ~ 1. If 0 ~ a ~ 
b ~ 1, then 

Ilj(b) - j(a) 112 = /1 (j(b) )(s) - (j(a» (s) 12ds 

b 

= f ds = b - a; 
a 

this implies that j is continuous. The verifications of simplicity and of 
the orthogonality conditions are obvious. 

As for the existence of tangents: it is easy to see that the difference 
quotients do not tend to a limit at any point. Indeed, 

which shows quite explicitly that j is not differentiable anywhere. 
Although there is nothing mathematically unique about this con

struction, it is a curious empirical fact that the example is psychologically 
unique; everyone who tries it seems to come up with the same answer. 

Infinite-dimensionality was explicitly used in the particular proof 
given above, but that does not imply that it is unavoidable. Is it? An 
examination of the finite-dimensional situation is quite instructive. 

Constructions similar to the one given above are familiar in the 
theory of spectral measures (cf. Halmos [1951, p. 58 J). If E is the 
spectral measure on the Borel sets of [O,IJ such that E(M) is, for each 
Borel set M, multiplication by the characteristic function of M, and if e 
is the function constantly equal to 1, then the curvej above is given by 

j(t) = E([O,tJ)e. 
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This remark shows how to construct many examples of suddenly turning 
continuous curves: use different spectral measures and apply them to 
different vectors. It is not absolutely necessary to consider only continu
ous spectral measures whose support is the entire interval, but it is 
wise; those assumptions guarantee that every non-zero vector will work 
in the role of e. 

Solution 5. If the orthogonal dimension of a Hilbert space 1S 

infinite, then its linear dimension is greater than or equal to 2Ko. 

(Recall that if either the linear dimension or the orthogonal dimension 
of a Hilbert space is finite, then so is the other, and the two are equal.) 

Proof. The main tool is the following curious piece of set theory, 
which has several applications: there exists a collection {J d , of cardinal 
number 2Ko, consisting of infinite sets of positive integers, such that 
J. n J t is finite whenever s ~ t. Here is a quick outline of a possible 
construction. Since there is a one-to-one correspondence between the 
positive integers and the rational numbers, it is sufficient to prove the 
existence of sets of rational numbers with the stated property. For each 
real number t, let J t be an infinite set of rational numbers that has t as 
its only cluster point. 

Suppose now that tel, e2, ea, ···l is a countably infinite orthonormal 
set in a Hilbert space H, and let 1 = Ln ~nen (Fourier expansion) be 
an arbitrary vector such that ~n ~ 0 for all n. If {J t l is a collection of 
sets of positive integers of the kind described above, write 1t = Ln.Jt ~nen. 
Assertion: the collection {ft! of vectors is linearly independent. Suppose, 
indeed, that a finite linear combination of the f's vanishes, say 
L~=l c<i/t, = O. Since, for each i ~ 1, the set J t1 contains infinitely 
many integers that do not belong to Jti! it follows that J t1 contains at 
least one integer, say n, that does not belong to any J t , (i ~ 1). It 
follows that (Xl~n = 0, and hence, since ~n ~ 0, that (Xl = o. The same 
argument proves, of course, that (Xi = 0 for each i = 1, ... , k. 

This result is the main reason why the concept of linear dimension is 
of no interest in Hilbert space theory. In a Hilbert space context "di
mension" always means "orthogonal dimension". 
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There are shorter solutions of the problem, but the preceding argument 
has the virtue of being elementary in a sense in which they are not. 
Thus, for instance, every infinite-dimensional Hilbert space may be 
assumed to include V(a,1), and the vectorsf(t), a < t ~ 1, exhibited 
in Solution 4, constitute a linearly independent set with cardinal number 
2Ko. Alternatively, every infinite-dimensional Hilbert space may be 
assumed to include l2, and the vectors 

get) = (1, t, (2, ••• ), a < t < 1, 

constitute a linearly independent set with cardinal number 2Ko. 

Solution 6. If a < 1 a 1 < 1 and fk = (1, ak, a2k, a3k, •.. ) for 
k = 1, 2, 3, "', then the fk'S span l2. 

Proof. Perhaps the quickest approach is to look for a vector f orthog
onal to all the fk'S. Iff = (~o, h, ~2, ••• ), then 

(D 

a = (j,jk) = L ~na*nk. 
n=O 

In other words, the power series L~=o ~nzn vanishes for z = a*k 
(k = 1, 2, 3, ... ), and consequently it vanishes identically. Conclusion: 
~n = a for all n, and therefore f = a. 

The phrasing of the problem is deceptive. The solution has nothing 
to do with the arithmetic structure of the powers a k ; the same method 
applies if the powers a k are replaced by arbitrary numbers ak (and, 
correspondingly, ank is replaced by akn) , provided only that the numbers 
ak cluster somewhere in the interior of the unit disc. (Note that if 
L~=o 1 ~n 12 < 00, then the power series L~=o ~nzn has radius of con
vergence greater than or equal to 1.) 

The result is a shallow generalization of the well known facts about 
Vandermonde matrices, and the proof suggested above is adaptable to 
the finite-dimensional case. If 1m2 is the m-dimensional Hilbert space of 
all sequences (~o, "', ~m-l) of length m (= 1, 2, 3, ... ), and if the 
vectorsfk (k = 1, "', m) are defined by fk = (1, ak, "', akm- 1) (where 
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o ;;;; I a" I < 1 and the ak's are distinct), then the span of {fl, ... ,jm} 
is lm2. Indeed, if f = (~, "', ~m-l) is orthogonal to each fA, 
then L::',:~ ~"ak *n = 0, i.e., the polynomial L::',:~ ~nzn of degree m - 1 
(at most) vanishes at m distinct points, and hence identically. 

Solution 7. It is to be proved that if fo .1 fi (i= 1, 2, 3, ... ), then 
fo = O. If fo ;:C 0, then {fo, h, f2, ••. } is an orthogonal set of non-zero 
vectors, and therefore linearly independent; the purpose of the argument 
that follows is to show that this cannot happen. The argument is es
sentially the same as the one used by Birkhoff-Rota, but somewhat 
simpler; it was discovered by J. T. Rosenbaum. 

Begin by choosing a positive integer n so that 

i>n 

it will turn out that for this n the vectors fo, /I, "', fn are linearly 
dependent. Write 

n 

gk = L:Ukh)eh 
j=1 

k=O,l,···,n. 

Since each gk belongs to the (n-dimensional) span of el, ... , en, and 
since the number of gk'S is n + 1, it follows that the gk'S are linearly 
dependent; say 

This implies that 

n n n n 

k=O j=1 j=1 k=O 

Since the e/s are linearly independent, the coefficients in the last sum 
must vanish; in other words, if 

n 
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then h 1. el, ... , en. Compute the norm of h from its Fourier expansion 
in terms of the e/s: 

j>n 

(because h 1. ej for j ~ n) 

L I (h,e;) - (h,/i) 12 
j>n 

(because, by definition, h belongs to the span of io, iI, ... , in, so that 
h 1. ii for j > n) 

i>n 

The definition of n implies that, unless h = 0, the last term is strictly 
less than II h W. It follows that h = 0, i.e., that io,j1, ..• , in are indeed 
linearly dependent. 

There is an alternative way to look at this proof; it is a shade less 
elementary, but it is less computational, and perhaps more transparent. 
Find n as above, and define a linear transformation A, first on the linear 
combinations of the e/s only, by writing 

Aei = ej if j ~ n, 
and 

Aei =j; if j > n. 

Ifi = L; ~iei (finite sum), then 

IIi - Ai W = II L ~j(ej - i;) W 
i>n 

j>n i>n 

~ IIi 11 2 • .'E II e; - j; W· 
j>n 
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It follows that 1 - A is bounded (as far as it is defined) by 

;>n 

which is strictly less than 1. This implies (Halmos [1951, p. 52J) that 
A has a (unique) extension to an invertible operator on H (which may 
as well be denoted by A again). The invertibility of A implies that the 
vectors el, "', en, /n+l, /n+2, .•• (the images under A of el, "', en, 
en+l, en+2, ••• ) span H. It follows that if M is the span of jn+l, /n+2, "', 

then dim M.1 = n. Conclusion: the vectors it, "', in, /n+l, /n+2, ••• 
span H. 

Solution 8. It is sufficient to prove that if dim M = 1, then M + N 
is closed; the general case is obtained by induction on the dimension. 
Suppose, therefore, that M is spanned by a single vector /0, so that 
M + N consists of all the vectors of the form a/o + g, where a is a 
scalar and g f N. If /0 EN, then M + N = N; in this case there is nothing 
to prove. If /0 f N, let go be the projection of /0 in N; that is, go is the 
unique vector in N for which/o - go ..1 N. 

Observe now that if g is a vector in N, then 

II a/o + g 112 = II a(fo - go) + (ago + g)W 

(since /0 - go ..1 ago + g), or 

and therefore 

\I g \I = II (a/o + g) - a/o II 
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These inequalities imply that M + N (the set of all afo + g's) is closed. 
Indeed, if a,.fo + g,. ~ h, so that {a,.fo + gn} is a Cauchy sequence, 
then the inequalities imply that both {an} and {gn} are Cauchy se
quences. It follows that an ~ a and gn ~ g, say, with g in N of course, 
and consequently h = limn a,.fo + gn = afo + g. 

Solution 9. The lattice of subspaces of a Hilbert space H is modular 
if and only if dim H < No (i.e., H is finite-dimensional); it is dis
tributive if and only if dim H ~ 1. 

Proof. If H is infinite-dimensional, then it has subspaces M and N 
such that M n N = to} and M + N ;;e M v N (d. Problem 41). Given 
M and N, find a vector fo in M v N that does not belong to M + N, 
and let L be the span of N andfo. By Problem 8, L is equal to the vector 
sum of N and the one-dimensional space spanned by fo, i.e., every 
vector in L is of the form afo + g, where a is a scalar and g is in N. 

Both Land M v N contain fo, and, therefore, so does their intersection. 
On the other hand, L n M = {O}. Reason: if afo + gEM (with g in N), 
then afo E M + N; this implies that a = 0 and hence that g = O. Con
clusion: (Ln M) vN = N, which does not containfo. 

The preceding argument is the only part of the proof in which infinite
dimensionality plays any role. All the remaining parts depend on easy 
finite-dimensional geometry only. They should be supplied by the 
reader, who is urged to be sure he can do so before he abandons the 
subject. 

Solution 10. In a Hilbert space of dimension n « No) the (closed) 
unit ball is a closed and bounded subset of 2n-dimensional real Euclidean 
space, and therefore the closed unit ball is compact. It follows, since 
translations and changes of scale are homeomorphisms, that every 
closed ball is compact; since the open balls constitute a base for the 
topology, it follows that the space is locally compact. 

Suppose, conversely, that H is a locally compact Hilbert space. The 
argument in the preceding paragraph reverses to this extent: the as
sumption of local compactness implies that each closed ball is compact, 
and, in particular, so is the closed unit ball. To infer finite-dimensionality, 
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recall that the distance between two orthogonal unit vectors is V2, so 
that each open ball of diameter V2 (or less) can contain at most one 
element of each orthonormal basis. The collection of all open balls of 
diameter V'J. is an open cover of the closed unit ball; the compactness of 
the latter implies that every orthonormal basis is finite, and hence that 
H is finite-dimensional. 

Solution 11. H dim H ~ No, then H has a countable orthonormal 
basis. Since every vector in H is the limit of finite linear combinations 
of basis vectors, it follows that every vector in H is the limit of such 
linear combinations with coefficients whose real and imaginary parts are 
rational. The set of all such rational linear combinations is countable, 
and consequently H is separable. 

Suppose, conversely, that {/1, f2, fa, ... I is a countable set dense in 
H. H {gil is an orthonormal basis for H, then for each index j there 
exists an index nj such that Ilfn; - gi II < V2/2. Since two open balls of 
radius V'J./2 whose centers are distinct g/s are disjoint, the mapping 
j ~ nj is one-to-one; this implies that the cardinal number of the set of 
indices j is not greater than No. 

The Gram-Schmidt process yields an alternative approach to the 
converse. Since that process is frequently described for linearly inde
pendent sequences only, begin by discarding from the sequence Un} all 
terms that are linear combinations of earlier ones. Once that is done, 
apply Gram-Schmidt to orthonormalize. The resulting orthonormal set 
is surely countable; since its span is the same as that of the original 
sequence Un}, it is a basis. 

Solution 12. Since a measure is, by definition, invariant under trans
lation, there is no loss of generality in considering balls with center at 0 
only. If B is such a ball, with radius r (> 0), and if tel, e2, e3, ••• } is 
an infinite orthonormal set in the space, consider the open balls Bn with 
center at (r/2)en andradiusr/4; that is, Bn = U: Ilf - (r/2)en II < r/4}. 
Hi EBn , then 
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so that Bn c: B. If f ~ Bn and g ~ Bm, then 

This implies that if n rf m, then 

and hence that if n rf m, then Bn and Bm are disjoint. Since, by invari
ance, all the Bn's have the same measure, it follows that B includes 
infinitely many disjoint Borel sets of the same positive measure, and 
hence that the measure of B must be infinite. 



Chapter 2. Weak topology 

Solution 13. If S is a weakly closed set in H and if {jn} is a sequence 
of vectors in S withjn -4 j (strong), then 

IUn,g) - (j,g) I ~ Ilfn-jll·llgll-40, 

so that in -4 f (weak), and therefore f E S. This proves that weakly 
closed sets are strongly closed; in fact, the proof shows that the strong 
closure of each set is included in its weak closure. The falsity of the 
converse (i.e., that a strongly closed set need not be weakly closed) can 
be deduced from the curious observation that if {el' e2, ea, ••• } is an 
orthonormal sequence, then en -40 (weak). Reason: for each vector f, 
the inner products U,en ) are the Fourier coefficients off, and, therefore, 
they are the terms of an absolutely square-convergent series. It follows 
that the set of all en's is not closed in the weak topology; in the strong 
topology it is discrete and therefore closed. Another way of settling the 
converse is to exhibit a strongly open set that is not weakly open; one 
such set is the open unit ball. To prove what needs proof, observe that 
in an infinite-dimensional space weakly open sets are unbounded. 

It remains to prove that subspaces are weakly closed. If {fn} is a 
sequence in a subspace M, and if fn -4 f (weak), then, by definition, 
(jn,g) -4 (j,g) for every g. Since eachfn is orthogonal to Ml, it follows 
thatf 1- Ml and hence thatf EM. This argument shows that M contains 
the limits of all weakly convergent sequences in M, but that does not 
yet justify the conclusion that M is weakly closed. At this point in this 
book the weak topology is not known to be metrizable; sequential 
closure may not be the same as closure. The remedy, however, is easy; 
just observe that the sequential argument works without the change of 
a single symbol if the word "sequence" is replaced by "net", and net 
closure is always the same as closure. 

Solution 14. The proof depends on a familiar trivial computation: 

IIfn - f 112 = Un - f,Jn - f) = II fn 112 - U,Jn) - Un,!) + Ilf /12. 
178 
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Sincefn --t f (weak), the terms with minus signs tend to IlfW, and, by 
assumption, so does the first term. Conclusion: Ilfn - f 112 --t 0, as 
asserted. 

Solution 15. Every weakly separable Hilbert space is separable. 

Proof. The span of a countable set is always a (strongly) separable 
subspace; it is therefore sufficient to prove that if a countable set S is 
weakly dense in a Hilbert space H, then the span of S is equal to H. 
Looked at from the right point of view this is obvious. The span of Sis, 
by definition, a (strongly closed) subspace, and hence, by Problem 13, 
it is weakly closed; being at the same time weakly dense in H, it must 
be equal to H. 

Caution: it is not only more elegant but it is also safer to argue without 
sequences. It is not a priori obvious that if f is in the weak closure of S, 
then f is the limit of a sequence in S. 

Solution 16. It is sufficient to treat the case f = O. If Ilfn II --t 0, 

then, since I (jn,g) I ~ IIfnll'lIgll = IIfnll whenever IIgll = 1, it 
follows that (fn,g) --t 0 uniformly, as stated. 

Suppose, conversely, that, for each positive number E, if n is sufficiently 
large, then 

I (jn,g) I < E whenever II g II = 1; 

uniformity manifests itself in that the size of the n that is needed does 
not depend on g. It follows that if n is sufficiently large, then 

I (rn' II ! II) I < E whenever g ~ 0, 

and hence that 

I (jn,g) I ~ E II g II for all g. 

Hence, in particular, if n is sufficiently large, then (put g = fn) 

IIf" W ~ E IIfn II 
or 

IIfnll ~ E. 
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Note that the argument is perfectly general; it applies to all nets, and 
not to sequences only. 

Solution 17. Given the Hilbert space H, for eachf in H let Dj be the 
closed disc {z: I z I ~ II f II} in the complex plane, and let D be the 
Cartesian product of all the D/s, with the customary product topology. 
For each g in the unit ball, the mappingf ~ (j,g) is a point, say 8(g), 
in D. The mapping 8 thus defined is a homeomorphism from the unit 
ball (with the weak topology) into D (with the product topology). 
Indeed, if 8(gl) = 8(g2) , that is, if (j,gl) = (j,gz) for allf, then clearly 
gl = g2, so that 8 is one-to-one. As for continuity: 

gj ~ g (weak) if and only if (j,gj) ~ (j,g) 

for eachfin H, and that, in turn, happens if and only if 8 (gj) ~ 8(g) in 
D. The Riesz theorem on the representation of linear functionals on H 
implies that the range of 8 consists exactly of those elements ~ of D 
(complex-valued functions on H) that are in fact linear functionals of 
norm less than or equal to 1 on H. 

The argument so far succeeded in constructing a homeomorphism 8 
from the unit ball into the compact Hausdorff space D, and it succeeded 
in identifying the range of 8. The remainder of the argument will show 
that that range is closed (and therefore compact) in D; as soon as that 
is done, the weak compactness of the unit ball will follow. 

The property of being a linear functional is a property of "finite 
character". That is: ~ is a linear functional if and only if it satisfies 
equations (infinitely many of them) each of which involves only a finite 
number of elements of H; this implies that the set of all linear functionals 
is closed in D. In more detail, consider fixed pairs of scalars al and a2 
and vectorsfl andf2, and form the subset E(al,a2,hJ2) of D defined by 

The assertion about properties of finite character amounts to this: the 
set of all linear functionals in D (the range of 0) is the intersection 
of all the sets of the form E (aI, a2, fl' f2). Since the definition of product 
topology implies that each of the functions ~ ~ ~ (fl), ~ ~ ~ (h), and 
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~ ~ HO'.lf1 + 0'.2f2) is continuous on D, it follows that each set 
E (0'.1, 0'.2, f1' f2) is closed, and hence that the range of 0 is compact. 

The proof above differs from the proof of a more general Tychonoff
Alaoglu theorem (the unit ball of the conjugate space of a Banach space 
is weak * compact) in notation only. 

Solution 18. In a separable Hilbert space the weak topology of the 
unit ball is metrizable. 

Proof 1. Since the unit ball B is weakly compact (Problem 17) , it is 
sufficient to prove the existence of a countable base for the weak topology 
of B. For this purpose, let {ki:j = 1,2,3, ... } be a countable set dense 
in the space, and consider the basic weak neighborhoods (in B) defined 
by 

U(p,q,r) = {fEB: l(f - hp,hi) I < ~,j = 1, "', r}, 

where p,q,r = 1, 2, 3, .... To prove: if fo E B, k is a positive integer, 
gl, "', g", are arbitrary vectors, and E is a positive number, and if 

U = {jEB:I(f-fo,gi)1 < E,i = 1, "',k}, 

then there exist integers p, q, and r such that 

fo E U(p,q,r) C U. 

The proof is based on the usual inequality device: 

I (f - fo,gi) I ~ I (f - hp,hi) I + I (hp - fo,hi) I + I (f - fo,gi - hi) I 

~ ICi - hp,hi)I + II hp - fo 11·11 hi II + IH - fo 11·11 gi - hi II· 

Argue as follows: for each i (= 1, "', k) chooseji so that II gi - hi; II 
is small, and choose p so that \I hp - fo II is very small. Specifically: 
choose q so that l/q < E/3, chooseji so that II gi - hi; II < 1/2q, choose 
r so that ji ;;:; r for i = 1, "', k, and, finally, choose p so that 
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II hp - fo II < l/qm, wherem = max{11 hj II:j = 1,·· ·,r}.Ifj = 1,· .. , r, 
then 

so thatfo € U(p,q,r). Iff € U(p,q,r) and i = 1, ... , k, then 

and 

1 E 

II hp - fo 11·11 hj, II < -·m < -3' 
qm 

1 E 

Ilf - fo 11·11 gi - hj, II < 2·2q < 3' 

(recall that Ilfll ~ 1 and Ilfoll ~ 1). It follows thatf€U, and the 
proof is complete. 

Proof 2. There is an alternative procedure that sheds some light on 
the problem and has the merit, if merit it be, that it exhibits a concrete 
metric for the weak topology of B. Let tel, e2, ea, .•• } be an orthonormal 
basis for H. (There is no loss of generality in assuming that the basis is 
infinite; in the finite-dimensional case all these topological questions 
become trivial.) For each vector f write 

1 
If I = L 2i i(f,ff) I; 

J 

since I (f,ej) I ~ II f II, the series converges and defines a norm. If 
d(f,g) = If - g I wheneverfandgareinB, thendisametricforB. To 
show that d metrizes the weak topology of B, it is sufficient to prove that 
fn ~ 0 (weak) if and only if I fn I ~ o. (Caution: the metric d is defined 
for all H but its relation to the weak topology of H is not the same as its 
relation to the weak topology of B. The uniform boundedness of the 
elements of B is what is needed in the argument below.) 

Assume that fn ~ 0 (weak), so that, in particular, (fn,ej) ~ 0 as 
n ~ 00 for eachj. The tail of the series for IJn I is uniformly small for 
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all n (in fact, the tail of the series for I f I is uniformly small for all fin 
B). In the present case the assumed weak convergence implies that 
each particular partial sum of the series for I fn I becomes small as n 
becomes large, and it follows that Ifn I ~ O. 

Assume that I fn I ~ O. Since the sum of the series for I fn I dominates 
each term, it follows that (jnh) ~ 0 as n ~ 00 for eachj. This implies 
that if g is a finite linear combination of e/s, then (fn,g) ~ O. Such 
linear combinations are dense. If hE H, then 

I (jn,h) I ~ I (jn,h - g) I + I (jn,g) I· 

Choose g so as to make II h - g II small (and therefore I (jn,h - g) I 
will be just as small), and then choose n so as to make I (fn,g) I small. 
(This is a standard argument that is sometimes isolated as a lemma: a 
bounded sequence that satisfies the condition for weak convergence on 
a dense set is weakly convergent.) Conclusion:fn ~ 0 (weak). 

Solution 19. If the weak topology of the unit ball in a Hilbert space 
H is metrizable, then H is separable. 

Proof. If B, the unit ball, is weakly metrizable, then it is weakly 
separable (since it is weakly compact). Let Un: n = 1, 2, 3, ... } be a 
countable set weakly dense in B. The set of all vectors of the form 
mfn, m,n = 1,2,3, "', is weakly dense in H. (Reason: for fixed m, the 
mfn's are weakly dense in mB, and UmmB = H.) The proof is completed 
by recalling (Solution 15) that weakly separable Hilbert spaces are 
separable. 

Solution 20. Suppose that T is a weakly bounded set in H and that, 
specifically, I (f,g) I ~ a (f) for all g in T. If H is finite-dimensional, the 
proof is easy. Indeed, if {el, "', en} is an orthonormal basis for H, then 

n n 

I (j,g) I = I (L(j,ei)ei,g) I = I L(j,ei)(ei,g) I 
i=1 

~ Ilf II'n'max{a(el), "', a(en )}, 

and all is well. 
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Assume now that H is infinite-dimensional, and assume that the con
clusion is false. A consequence of this assumption is the existence of an 
element gl of T and a unit vector el such that I (el,gl) I ;;;; 1. Are the 
linear functionals induced by T (i.e., the mappings j ---t (f,g) for g in 
T) bounded on the orthogonal complement of the at most two-dimen
sional space spanned by el and gl? If so, then they are bounded on H, 
contrary to the present assumption. A consequence of this argument is 
the existence of an element g2 of T and a unit vector orthogonal to el and 
gl, such that I (e2,g2) I ;;;; 2 (a(el) + 2). Continue in the same vein. Argue, 
as before, that the linear functionals induced by T cannot be bounded 
on the orthogonal complement of the at most four-dimensional space 
spanned by el, e2, gl, g2; arrive, as before, to the existence of an element 
ga of T and a unit vector ea orthogonal to el, e2 and gl, g2, and such that 

Induction yields, after n steps, an element gn+l of T and a unit vector 
en+l orthogonal to el, "', en and gl, "', gn, such that 

Now putj = L~=1(1/i)ei' Since 

n 1 1 (n 1 ) 
;;;; - L-:-a(ei) + --l(n + 1)· L-:-a(ei) + n + 1 

i=1't n + ;=1 't 

= n + 1, 

it follows that if T is not bounded, then it cannot be weakly bounded 
either. 

This proof is due to D. E. Sarason. Special cases of it occur in von 
Neumann [1929, footnote 32J and Stone [1932, p. 59J; almost the 
general case is in Akhieser-Glazman [1961, p. 45J. 
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Solution 21. Let {el' e2, ea, ••• 1 be an infinite orthonormal set in H 
and let E be the set of all vectors of the form m.en , n = 1, 2, 3, .... 
Assertion: the origin belongs to the weak closure of E. Suppose indeed 
that 

{f: I (f,gi) I < e, i = 1, "', kl 

is a basic weak neighborhood of 0. Since E~~l I (gi,en ) 12 < 00 for each i, 
it follows that E~~l( ELI I (g;,en ) 1)2 < 00. (The sum of a finite number 
of square-summable sequences is square-summable.) It follows that 
there is at least one value of n for which ELI I (gi,en ) I < e/ vii; (other
wise square both sides and contemplate the harmonic series). If n is 
chosen so that this inequality is satisfied, then, in particular, I (gi,en ) I < 
e/ vii for each i, and therefore 1 (\In. en,gi) I < dor each i (= 1, "', k). 

The weak non-metrizability of H can be established by proving that 
no sequence in E converges weakly to 0. Since no infinite subset of E is 
bounded, the desired result is an immediate consequence of the principle 
of uniform boundedness. 

The first construction of this kind is due to von Neumann [1929, 
p. 380]. The one above is simpler; it was discovered by A. L. Shields. 

Solution 22. Write gk = {.8I*, "', .8k*, 0, 0, 0, ... j, so that clearly 
gkd2,k = 1,2,3, .. ·.Ifj= {ClI' Cl2,Cla, .. ·1 isinl2, then (j,gk) = 

E~~l Clj.8i ---+ Ei~l Cli.8j· It follows that, for each j in 12, the sequence 
{ (j,gk) 1 is bounded, i.e., that the sequence {gk\ of vectors in 12 is weakly 
bounded. Conclusion (from the principle of uniform boundedness) : there 
exists a positive constant {3 such that II gk 112 ~ (3 for all k, and, therefore, 
Ei~l l.8i 12 ~ .8. 

The method generalizes to many measure spaces, including all u-finite 
ones. Suppose that X is a measure space with u-finite measure p., and 
suppose that g is a measurable function on X with the property that its 
product with every function in V(p.) belongs to V(p.); the conclusion is 
that g belongs to V(p.). 

Let {Ek 1 be an increasing sequence of sets of finite measure such that 
UkEk = X and such that g is bounded on each Ek • (Here is where 
u-finiteness comes in.) Write gk = XE.g* (where XE. is the characteristic 
function of E k ), k = 1, 2, 3, .... The rest of the proof is the obvious 
modification of the preceding discrete proof; just replace sums by inte
grals. 
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For those who know about the closed graph theorem, it provides an 
alternative approach; apply it to the linear transformationf ~ fg* from 
V into V. For a discussion of an almost, but not quite, sufficiently 
general version of the closed graph theorem, see Problem 44. 

Solution 23. (a) The idea is that a sufficiently "large" Cauchy net 
can turn out to be anxious to converge to an "unbounded vector", i.e., 
to something not in the space. To make this precise, let ~ be an unbounded 
linear functional, fixed throughout what follows; on an infinite-dimen
sional Hilbert space such things always exist. (Use a Hamel basis to 
make one.) Then let lei} be a Hamel basis, and, corresponding to each 
finite subset J of the index set, let MJ be the (finite-dimensional) sub
space spanned by the e/s withj in J. Consider the linear functional ~J 
that is equal to ~ on MJ and equal to 0 on M/. Since the Us are bounded 
(finite-dimensionality), there exists a net J ~ gJ of vectors such that 
~J (f) = (f,gJ) for each f and for each J. (The finite sets J are ordered 
by inclusion, of course.) Givenfo, let J o be a finite set such thatJo € MJo
If both J and K include J o, then (j,gJ) - (j,gK) = 0; it follows that 
IgJ} is a weak Cauchy net. This Cauchy net cannot possibly converge 
weakly to anything. Suppose indeed that gJ ~ g weakly, so that 
~J (fo) ~ (fo,g) for each fixed fo. As soon as J 0 is so large that fo € MJ 0' 

then h 0 (fo) = H fo) ; it follows that H 10) = (jo,g) for each fo. Since 
~ is unbounded, that is impossible. 

(b) Every Hilbert space is sequentially weakly complete. 

Proof. If Ign} is a weak Cauchy sequence in H, then {(j,gn)} is 
Cauchy, and therefore bounded, for each f in H, so that Ign} is weakly 
bounded. It follows from the principle of uniform boundedness that 
{gn} is bounded. Since lirhn(j,gn) = ~(j) exists for each fin H, and 
since the boundedness of Ign I implies that the linear functional ~ is 
bounded, it follows that there exists a vector g in H such that 
limn (j,gn) = (j,g) for all j. This means that gn ~ g (weak), so that 
{gn} does indeed have a weak limit. 
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Solution 24. For each region D, the inner-product space A2(D) is 
complete. 

Proof. It is convenient to present the proof in three steps. 

(1) If D is an open disc with center A and radius r, and if f E A2(D) , 
then 

f(A) = ~f f(z)dp.(z). 
7r'Y D 

There is no loss of generality in restricting attention to the unit disc 
DI in the role of D, Dl = {z: I z I < I}; the general case reduces to this 
special case by an appropriate translation and change of scale. Suppose, 
accordingly, that f E A2 (= A2(D1» with Taylor series 2:::'=0 anzn, and 
let Dr be the disc {z: I z I < r}, 0 < r < 1. In each Dr, 0 < r < 1, the 
Taylor series of f converges uniformly, and, consequently, it is term-by
term integrable. This implies that 

f f(z)dp.(z) = fan f zndp.(z) 
Dr n=O Dr 

Since If I is integrable over DI , it follows that JD,fdp. ~ JDJdp. as r ~ 1; 
since ao = f(O), the proof of (1) is complete. 

Return now to the case of a general region D. 
(2) If v,,(f) = f(A) whenever A ED and f E A2(D) , then, for each 

fixed A, the functional v" is linear. If r = rCA) is the radius of the largest 
open disc with center A that is entirely included in D, then 

1 
I v,,(f) I ;;i; J1rr Ilf II· 

187 
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Let Do be the largest open disc with center A that is entirely included 
in D. Since 

11111 2 = f 11Cz)12dJ.LCz) ~f 11Cz)12dJ.LCz) 
D Do 

~ ~ 1 f lCz)dJ.L(z) 12 (by the Schwarz inequality) 
7rr Do 

= 7rr21 ~ f l(z)dJ.LCz) 12 
7rr Do 

= 7rr2 11(AlI2 (by (1», 

the proof of (2) is complete. 
(3) The proof of the main assertion is now within reach. Suppose that 

{fn} is a Cauchy sequence in A2(D). It follows from (2) that 

for every A in D; here, as before, rCA) is the radius of the largest open 
disc with center at A that is entirely included in D. It follows that if K 
is a compact subset of D, so that rCA) is bounded away from 0 when 
A E K, then the sequence I In} of functions is uniformly convergent on 
K. This implies that there exists an analytic function 1 on D such that 
In(A) -t I(A) for all A in D. At the same time the completeness of the 
Hilbert space L2(J.L) implies the existence of a complex-valued, square
integrable, but not necessarily analytic function g on D such that 
In -t g in the mean of order 2. It follows that a subsequence of {fn} 
converges to g almost everywhere, and hence that 1 = g almost every
where. This implies that 1 is square-integrable, i.e., that 1 E A2(D) , and 
hence that A2(D) is complete. 

These facts were first discussed by Bergman [1947, p. 24J; the proof 
above is due to Halmos-Lumer-Schaffer [1953]. The latter makes 
explicit use of the Riesz-Fischer theorem (the completeness of V), 
instead of proving it in the particular case at hand, and consequently, 
from the point of view of the standard theory of Hilbert spaces, it is 
simpler than the analytic argument given by Bergman. 
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Solution 25. The evaluation of the inner products (en,em ) is routine 
calculus. If, in fact, Dr = {z: I z I < r}, then 

It follows (put r = 1) that if n ~ m, then (en,em ) = 0, and it follows 
also (put n = m) that II en W = 1. This proves orthonormality. 

To prove that the en's form a complete orthonormal set, it is tempting 
to argue as follows. If f E A2, with Taylor series 2:::'=0 unzn, then fez) = 
2:::'=0 an V 11"/ (n + 1) ·en(z); this shows that each f in A2 is a linear 
combination of the en's, q.e.d. The argument is almost right. The trouble 
is that the kind of convergence it talks about is wrong. Although 
2:::'=0 avzn converges to fez) at each z, and even uniformly in each com
pact subset of the disc, these facts by themselves do not imply that the 
series converges in the metric (norm) of A2. 

There is a simple way around the difficulty: prove something else. 
Specifically, it is sufficient to prove that iff EA2 andf ..1 en for n = 0, 
1, 2, ... , then f = 0; and this is an immediate consequence of the second 
statement in Problem 25 (the statement about the relation between the 
Taylor and Fourier coefficients). That statement is a straightforward 
generalization of (1) in Solution 24 (which is concerned with eo only). 
The proof of the special case can be adapted to the general case, as 
follows. In each Dr, 0 < r < 1, the series 

co 

f(z)z*m = 2: anznz*m 
n=O 

converges uniformly, and, consequently, it is term-by-term integrable. 
This implies that 

11" ° r2m+2 
= a ---

mm+ r 
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Since Ij·em* 1 is integrable over DI , it follows that fDJ·em*dJ.l. ~ 
fDd'em *dJ.l. = (j,em) as r ~ 1, and the proof is complete. 

Note that the above argument makes tacit use of the completeness of 
A2. The argument proves that the orthonormal set {eo, el, e2, ••• I is 
maximal; a maximal orthonormal set deserves to be called a basis only 
if the space is complete. The point is that in the absence of completeness 
the convergence of Fourier expansions cannot be guaranteed. 

An alternative proof that the en'S form a basis, which uses completeness 
in a less underhanded manner, is this. If j € A2, with Taylor series 
L:=o anzn, then (j,en) V'Ir / (n + 1)· an. This implies, via the Bessel 
inequality, that 

converges. It follows that the series whose n-th term is 

converges in the mean of order 2; this conclusion squarely meets and 
overcomes the obstacle that stops the naive argument via power series 
expanSIOns. 

The result establishes a natural isomorphism between A2 and the 
Hilbert space of all those sequences (ao, aI, a2, ••• ) for which 

ro 1 an 12 L:-- < 00 
n=O n + 1 ' 

with the inner product of (ao, aI, a2, ••. ) and «(30, (31, (32, ••• ) given by 

co (3 * L: 'Iran n . 

n=O n + 1 

Solution 26. Formally the assertion is almost obvious. For any jin L2 
(not only H2), with Fourier expansionj = Ln anen, complex conjugation 
yields 

n n n 

it follows that if f = j*, then an a-n * for all n. If, moreover, f € H2, 
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so that an = 0 whenever n < 0, then it follows that an = 0 whenever 
n ~ 0, and hence thatf = ao. 

The trouble with this argument is its assumption that complex conju
gation distributes over Fourier expansion; that assumption must be 
justified or avoided. It can be justified this way: the finite subsums of 
Ln anen converge to f in the sense of the norm of V, i.e., in the mean 
of order 2; it follows that a subsequence of them converges to f almost 
everywhere, and the desired result follows from the continuity of conju
gation. The assumption can be avoided this way: since an = ffen *djJ., it 
follows that a-n * = (ffcn *djJ.) * = ff*en *djJ., so that if f = f*, then, 
indeed, an = a-n *. It is sometimes useful to know that this last argument 
applies to Vas well as to V; it follows that the constants are the only 
real functions in HI. 

Solution 27. Like the assertion (Problem 26) about real functions 
in H2, the assertion is formally obvious. Iff and g are in V, with Fourier 
expansions 

n m 

then 

n m Ie n 

If, moreover,! and g are in H2, so that an = f3n = 0 whenever n < 0, 
then Ln anf3le-n = 0 whenever k < O. Reason: for each term anf3le-n, 

either n < 0, in which case an = 0, or n ~ 0, in. which case k - n < 0 
and therefore f31e-n = O. 

The trouble with this argument is the assumption that the Fourier 
series of a product is equal to the formal product of the Fourier series 
of the factors. This assumption can be justified by appeal to the subse
quence technique used in Solution 26. Alternatively the assumption can 
be avoided, as follows. The inner product (f,g*) is equal to L an f3-n 

(by Parseval, and by the results of Solution 26 on the Fourier coefficients 
of complex conjugates); in other words, the O-th Fourier coefficient of 
fg is given by 
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Apply this result with g replaced by the product ge,,*. Since the Fourier 
coefficients 'Yn of gek * are given by 

it follows that 

jfgek *d}L = L an'Y-n = L a n{3k-n. 
n n 

It is an immediate corollary of this result that if f E Heo and g E H2, 
thenfg E H2. It is true also that iff E Hoo and g E HI, thenfg E HI, but the 
proof requires one additional bit of analytic complication. 

Solution 28. If cp(z) = L:::,=o anzn for 1 z 1 < 1, then CPr(z) = 
L:::o anrnzn for 0 < r < 1 and 1 z 1 = 1. Since, for each fixed r, the 
latter series converges uniformly on the unit circle, it converges in every 
other useful sense; it follows, in particular, that the Fourier series 
expansion of CPr in V is L:::'=o anrnen , and hence that cpr E H2. 

Since II CPr W = L:::,=o I an 12r2n, the second (and principal) assertion 
reduces to this: if {3 = ~=o 1 an 12 and {3r = L::'~ 1 an 12r2n, then a 
necessary and sufficient condition that {3 < 00 is that the {3r's (0 < r < 1) 
be bounded. In one direction the result is trivial; since {3r ~ (3 for all r, 
it follows that if (3 < 00, then the (3r's are bounded. Suppose now, con
versely, that (3, ~ 'Y for all r. It follows that for each positive integer k, 

" k k " L 1 an 12 = (L 1 an 12 - L 1 an 12r2n) + L 1 an 12r2n 
n=O n=O n=O 

k 

~ L 1 an 12(1 - r2n) + /3r 
n=O 

k 

~ L 1 an [2(1 - r2n) + 'Y. 
n=O 

For k fixed, choose r so that L:~=o 1 an Nl - r2n) < 1; this can be done 
because the finite sum is a polynomial in r (and hence continuous) that 
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vanishes when r = 1. Conclusion: .L:!...p I an 12 ;;:; 1 + "Y for all k, and 
this implies that .L:~~o 1 an 12 ;;:; 1 + "Y. 

Solution 29. Start with an arbitrary infinite-dimensional functional 
Hilbert space H, over a set X say, and adjoin a point that acts like an 
unbounded linear functional. To be specific: let cp be an unbounded 
linear functional on H (such a thing exists because H is infinite-dimen
sional), and write X+ = Xu {cpl. Let H+ be the set (pointwise vector 
space) of all those functions j+ on X+ whose restriction to X, say j, is 
in H, and whose value at cp is equal to cp(j). (Equivalently: extend 
eachjin H to a functionj+ on X+ by writingj+(cp) = cp(j).) Iij+ and 
g+ are in H+, with restrictionsj and g, write (j+,g+) = (j,g). (Equiva
lently: define the inner product of the extensions of j and g to be equal 
to the inner product of j and g.) The vector space H+ with this inner 
product is isomorphic to H with its original inner product (e.g., via the 
restriction mapping), and, consequently, H+ is a Hilbert space of func
tions. Since cp f X + and j+ (cp) = cp (j) for all j in H, and since cp is not 
bounded, it follows that 1 cp(j) 1 can be large for unit vectors j, and 
therefore that 1 j+ (cp ) I can be large for unit vectors j+. 

Solution 30. Ii H is a functional Hilbert space, over a set X say, 
with orthonormal basis {ei} and kernel function K, write K,,(x) 
K(x,y) , and, for each y in X, consider the Fourier expansion of K,,: 

j 

Parseval's identity implies that 

K(x,y) (K",Kz ) 

In A2 the functions en defined by 

j 

.L: ej(x)ej(y)*. 
j 

en (z ) = V' (n + 1) /11" • zn for 1 z I < 1 (n = 0 1 2 ... ) , , , 

form an orthonormal basis (see Problem 25); it follows (by the result 
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just obtained) that the kernel function K of A2 is given by 

1 co 

K(x,y) = - 2:(n + l)xny*n, 
7r n=O 

(Note that x and y here are complex numbers in the open unit disc,) 
Since 2::=o(n + l)zn = 1/(1 - z)2 when I z I < 1 (discover this by 
integrating the left side, or verify it by expanding the right), it follows 
that 

1 1 
K(x,y) 

7r (1 - xy*)2' 

As for ft2: by definition it consists of the functions J on the unit disc 
that correspond to the elementsj of H2. Ifj = 2::=0 O!nen and if I y I < 1, 
then ley) = 2::=0 O!nyn and consequently J(y) = (j,Ky) , where Ky = 
2::=0 y*nen . This proves two things at once: it proves that J ---* ley) is 
a bounded linear functional (so that ft2 is a functional Hilbert space), 
and it proves that the kernel function of fl2 is given by 

co 

K(x,y) = L: xny*n, I x I < 1, I y I < 1. 
n=O 

In dosed form: K(x,y) = 1/(1 - xy*) , 

Solution 31. Let K be the kernel function of 11:2 (see Solution 30), 
Ifjn ---* jin H2, and if I y I < 1, then 

Since 

it follows that if I y I ~ r, then 

_ _ 1 
I in(Y) - fey) I ~ lIin - j 11'1 _ r2' 
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Solution 32. The function f determines f - but how? Taylor and 
Fourier expansions do not reveal much about such structural properties 
as boundedness. The most useful way to approach the problem is to 
prove that the values off (on the unit circle) are, in some sense, limits 
of the values of f (on the unit disc). For this purpose, write 

/r(Z) = f(rz) , o < r < 1, I z I = 1. 

The functions fT are in H2 (see Problem 28) ; the assertion is that fT - f 
(as r -1) in the sense of convergence in the norm of H2. (The bounded
ness of f is not relevant yet.) 

To prove the assertion, recall that if f = L:~o CtnCn, then fT = 

L;:'=o Ctnrncn, and that, consequently, 

00 

Ilf - fT W = L I Ctn 12(1 - rn)2. 

It follows that for each positive integer k 

k 00 

Ilf - fr 1\2 ~ L I Ctn 12(i - rn)2 + L I Ctn \2, 

n~O n~k+l 

The desired result (II f - fT II is small when r is near to 1) is now easy: 
choose k large enough to make the second summand small (this is inde
pendent of r), and then choose r near enough to 1 to make the first 
summand small. 

Since convergence in L2 implies the existence of subsequences con
verging almost everywhere, it follows that frn - f almost everywhere 
for a suitable subsequence I r n} , r n - 1; the assertion about the bounded
ness of f is an immediate consequence. 

The assertion fr - f is true in a sense different from (better than ?) 
convergence in the mean of order 2; in fact, it is true that fr - f almost 
everywhere. This says, in other words, that if a point z in the disc tends 
radially to a boundary point Zo, then the function value fez) tends to 
f(zo), for almost every zoo The result can be strengthened; radial con
vergence, for instance, can be replaced by non-tangential convergence. 
These analytic delicacies are at the center of the stage for some parts 
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of mathematics; in the context of Hilbert space, norm convergence is 
enough. 

Solution 33. If f E Boo, then j is bounded, and, in fact, II j 1100 = 

II f 1100' 

(The norms are the supremum of j on the disc and the essential 
supremum off on the boundary.) 

Proof. Consider the following two assertions. (1) Iff E Loo, and, say, 
I f I ~ 1, then there exists a sequence {fn I of trigonometric polynomials 
converging to f in the norm of V, such that I fn I ~ 1 for all n; if, more
over, f is in Boo, then so are the fn's. (2) If P is a polynomial and if 
I P(z) I ~ 1 whenever I z I = 1, then I P(z) I ~ 1 whenever I z I < 1. 
Both these assertions are known parts of analysis: (1) is a consequence 
of Fejer's theorem about the Cesaro convergence of Fourier series, and 
(2) is the maximum modulus principle for polynomials. Of the two 
assertions, (2) seems to be far better known. In any case, (2) will be 
used below without any further apology; (1) will be used also, but after 
that it will be buttressed by the outline of a proof. 

It is easy to derive the boundedness conclusion about j from the two 
assertions of the preceding paragraph. Given f in Boo, assume (this is 
just a matter of normalization) that I f I ~ 1, and, using (1), find 
trigonometric polynomials fn such that I fn I ~ 1 and such that fn -+ f 
in the norm of L2. Since, according to (1), the fn's themselves are (can 
be chosen to be) in Boo, it follows that their extensionsjn into the interior 
are polynomials. Since fn -+ f in the norm of B2, it follows from Problem 
31 that ]n(Z) -+ ](z) whenever I z I < 1. By (2), I ]n(Z) I ~ 1 for all n 

and all z. Conclusion: I j(z) I ~ 1 for all z. 
The inequality II] 1100 ~ I1f 1100 is implicit in the proof above. To get 

the reverse inequality, use Solution 32 (jr -+ f as r -+ 1). 
It remains to look at a proof of (1). If f = En anen , write Sk = 

Et,!-k ajej (k = 0, 1, 2, ... ). Clearly Sk -+ f in V, but this is not good 
enough; it does not yield the necessary boundedness results. (If If I ~ 1, 
it does not follow that I Sk I ~ 1.) The remedy is to consider the averages 

1 n-l 

tn = - 2:Sk (n = 1,2, 3, ... ). 
nk-(} 
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(Note that if f E H2, then so are the tn'S.) Clearly tn -+ f in v. (In fact 
it is known that tn -+ f almost everywhere, but the proof is non-trivial, 
and, fortunately, the fact is not needed here.) This turns out to be good 
enough: if If I ~ 1, then it does follow that I tn I ~ 1. 

For the proof, write Dk = L:t~-k ej (k = 0, 1, 2, ... ), and Kn = 
(lin) L:~:~ Dk (n = 1, 2, 3, ... ); the sequences of functions Dk and 
Kn are known as the Dirichlet and the Fejer kernels, respectively. Since 
fDkdp, = fertip, = 1, it follows that fKndp, = 1. The principal property 
of the Kn's is that their values are real, and in fact positive. This is 
proved by computation. For z = 1, it is obvious; for z ~ 1 (but, of 
course, I z I = 1) write Dk(z) = 1 + 2 Re L:~=l Zi (k = 1, 2, 3, ... ), 
and apply the formula for the sum of a geometric series to get 

(Zk - ZkH) 
D,,(z) = 2 Re 11 _ z 12 . 

(Computational trick: note that if I z I = 1, then 11 - Z 12 = 
2 Re(l - z).) Substitute into the expression for K,., observe that the 
sum telescopes, and get 

2 1 - zn 
K,.(z) = - Re . 

n 11 - z 12 

This makes it obvious that Kn is real. Since, moreover, Re zn ~ 1 
(recall that I zn I = I z In = 1), i.e., 1 - Re zn ~ 0, it follows that 
K,.(z) ~ 0, as asserted. 

To apply these results to f, note that 

Sk(Z) = f !f(y)y*jzidp,(y) 
j=-k 

= ! Dk(y*z)f(y)dp,(y) 

= f Dk(y)f(y*z)dp,(y) , 
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and hence that 

tn(Z) = f Kn (y)f(y*z) dp.(y) ; 

this implies that if I f I ~ 1, then 

The proof is over. Here is one more technical remark that is sometimes 
useful: under the assumptions of (1) it makes no difference whether 
the convergence in the conclusion is in the norm or almost everywhere. 
Reason: if it is in the norm, then a subsequence converges almost every
where; if it is almost everywhere, then, by the Lebesgue bounded 
convergence theorem, it is also in the norm. 

Solution 34. Iff E Hco, g E H2, and h = fg, then h = ]g. 

Proof. The trouble with the question as phrased is that it is easier 
to answer than to interpret. Iff and g are in H2 and h = fg, then h is not 
necessarily in H2, and hence the definition given in Problem 28 does not 
apply to h; no such thing as h is defined. The simplest way out is to 
assume that one factor (say f) is bounded; in that case Problem 27 shows 
that hE H2, and the question makes sell3e. (There is another way out, 
namely to note that h E HI, by Problem 27, and to extend the process 
of passage into the interior to HI. This way leads to some not over
whelming but extraneous analytic difficulties.) Once the question makes 
sense, the answer is automatic from Solution 27; the result there is that 
the Fourier coefficients of h are expressed in terms of those of f and g in 
exactly the same way as the Taylor coefficients of J. g are expressed in 
terms of those of J and g. In other words: formal multiplication applies 
to both Fourier and Taylor series, and, consequently, the mapping from 
one to the other is multiplicative. 

Solution 35. In order to motivate the construction of, say,! from u, 
it is a good idea to turn the process around and to study the way u is 
obtained from j. Suppose therefore that f E H2 with Fourier expansion 
f = L:;=o anen, and write u = Re j. Since I u I ~ I f I, the function u 
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is in 12. If the Fourier expansion of u is u = Ln ~nen, then (see Solution 
26) 

u = Hf + f*) = H Lane,.. + Lan *e_n) 
n<;O ,..<;0 

= Re ao + L !anen + L !a_n *e"" 
,..>0 n<O 

and therefore 

~o = Re ao and ~n = {!an 

!a_n* 

(n > 0), 

(n < 0). 

It is now clear how to go in the other direction. Given u = Ln ~nen, 
with ~n = ~-n *, and, in particular, with ~o real, write 

ao = ~o and an = 2~n = 2~-n* = ~n + ~-n* (n > 0). 

Since the sequence of a's is square-summable, an element f of H2 is 
defined by f = Ln~o anen. Write 

f= Du 

(D for Dirichlet); then Re Du = u for every real u in 12. It is not quite 
true that D Re f = f for every fin H2, but it is almost true; the difference 
f - D Ref is a purely imaginary constant that can be prescribed arbi
trarily. 

As for the formulation in terms of v: given u, put v = Im Du. Since 
ImDu = -Re(iDu) , it is easy to get explicit expressions for the 
Fourier coefficients of v. If, as above, u = Ln ~nen and f = Du = 

Ln<;o anen, then 

7}0 = Im ~o and 

r -~'2~n = -i~n 
7}n = i 

(n > 0), 

l ~'2'" ~ it" (n < 0). 
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If 1m ~o = 0, the result can be concisely expressed: 

11 .. = (-i sgn nH .. 

for all n. 
As far as L2 functions on the unit circle are concerned, these algebraic 

trivialities are all there is to the Dirichlet problem on the unit disc. 
The formal expression for 'V in terms of u makes sense even when u is not 
necessarily real, and the terminology (conjugate function, Hilbert trans
form) remains the same. It is important to note that the Hilbert trans
form of a bounded function need not be bounded, or, in other words 
(consider extensions to the interior) that unbounded analytic functions 
can have bounded real parts. Standard example: f(z) = i log ( 1 - z). 



Chapter 4. Infinite matrices 

Solution 36. Since H is the direct sum of separable subspaces that 
reduce A, there is no loss of generality in assuming that H is separable 
in the first place. This comment, while only feebly used in the proof, 
eliminates the discomfort of having to worry about the pathology of the 
uncountable. 

There is a tempting attack on the proof that is doomed to failure but 
is illuminating just the same. Let el be an arbitrary unit vector. Since 
el and Ael span a subspace of dimension at most 2, it follows that, unless 
dim H = 1, there exists a unit vector e2 orthogonal to el such that 
Ael e V {el,e2}. Since el, e2, and Ae2 span a subspace of dimension at 
most 3, it follows that, unless dim H = 2, there exists a unit vector es 
orthogonal to el and e2 such that A e2 e V {el,e2,ea}. An inductive repetition 
of this argument yields an orthonormal sequence {el, e2, ea, ••• } (which 
is finite only in case dim H < (0) such that Aen e V {el' "', en, en+!}. 
The finite-dimensional case is transparent and, from the present point 
of view, uninteresting. In the infinite-dimensional case (Aehei) = 0 
when i > j + 1, and everything seems to be settled. There is a difficulty, 
however: there is no reason to suppose that the en'S form a basis. If 
they do not, then the process of embedding them into an orthonormal 
basis may ruin the column-finiteness of the matrix. That is, it could 
happen that for some e orthogonal to all the en's infinitely many of the 
Fourier coefficients (Ae,e;) are different from O. If A happens to be 
Hermitian, then no such troubles can arise. The span of the en'S is, in 
any case, invariant under A, and hence, for Hermitian A, reduces A; it 
follows that when the en'S are embedded into an orthonormal basis, the 
new matrix elements do not interfere with the old columns. This proof, 
in the Hermitian case, shows more than was promised: it shows that 
every Hermitian operator has a Jacobi matrix. (A Jacobi matrix is a 
Hermitian matrix all whose non-zero entries are on either the main 
diagonal or its two neighboring diagonals. Some authors require also 
that the matrix be irreducible, i.e., that none of the elements on the 
diagonals next to the main one vanish.) Indeed: if (Aehei) = 0 when 
i > j + 1, then (ehAei) = 0 when i > j + 1; the argument is com-

201 
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pleted by inductively enlarging the en'S to an orthononnal basis selected 
the same way as the en'S were. 

In the non-Hermitian case the argument has to be refined (and the 
conclusion weakened to the form originally given) as follows. Let 
{ it, h, fa, •.. } be an orthonormal basis for H. Put el = fl. Find a unit 
vector e2 orthogonal to el such that A el E V {elh}. (Once again restrict 
attention to the infinite-dimensional case.) Next find a unit vector ea 
orthogonal to e1 and e2 such that f2 E V {el,e2,ea}, and then find a unit 
vector e4 orthogonal to el, e2, and ea such that Ae2 E V {e1,e2,ea,e4}. Con
tinue in this way, catching alternately one of the fn's and the next as 
yet uncaught Aen • The selection of the needed new e is always possible. 
The general lemma is this: for each finite-dimensional subspace M and 
for each vector g, there exists a unit vector e orthogonal to M such 
that gEM v Ie}. Conclusion: the sequence {el, e2, ea, ••• } is orthonormal 
by construction; it forms a basis because its span contains eachfn; and 
it has the property that for each n there is an in (calculable in case of 
need) such that Aen E V{el, ... , ei.}. This last condition implies that 
(Aej,ei) = 0 whenever i > h and the proof is complete. 

Solution 37. If (~o, h, ~2, ••• ) is a finitely non-zero sequence of 
complex numbers (Le., ~n = 0 for n sufficiently large), then 

~ I ~>~ij~j 12 = ~I ~(v%Vf;)(~~j)12 

~ .:EC2>~ijP;)(.:E (Xii I ~i 12) 
i j i P, 
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These inequalities imply that the operator A on l2 defined by 

j j j 

satisfies the conditions. 

Solution 38. The result is a corollary of Problem 37. For the proof, 
apply Problem 37 with Pi = 1/Vi + !. Since the Hilbert matrix is 
symmetric, it is sufficient to verify one of the two inequalities (with 
f3 = 'Y = 7r). The verification depends on elementary calculus, as follows: 

1 
L (XijPi = L (. + 1. + . + 1.)~ 

i it 2 J 2 1, 2 

= 21'" ~_d_u __ 
o u2 + j + ! 



Chapter 5. 
Boundedness and invertibility 

Solution 39. Let {el' e2, ea, •.. } be an orthonormal basis for a Hilbert 
space H, and find a Hamel basis for H that contains each en. Let fo be an 
arbitrary but fixed element of that Hamel basis distinct from each en 

(see Solution 5). A unique linear transformation A is defined on H by 
the requirement that Afo = fo and Af = 0 for all other elements of the 
selected basis; in particular, Aen = 0 for all n. If A were bounded, then 
its vanishing on each en would imply that A = O. This solves the first 
and the third parts of the problem. 

For the second part, choose an arbitrary but fixed positive integer k 
and define an operator A (depending on k) by 

It follows that Aen = el or 0 according as n ~ k or n > k, and hence 
that II Aen II ~ 1 for all n. Since (easy computation) A *f 
(j,el) (el + ... + ek) for all f, so that, in particular, A *el = 
el + ... + ek, it follows that 

II A II = II A * II ~ II A *el II = II el + ... + ek II = Vk. 

A simple alternative way to say all this is to describe the matrix of A 
with respect to the basis {el, e2, ea, ..• j: all the entries are 0 except the 
first k entries in the first row, which are l's. 

Solution 40. The conclusion can be obtained from two successive 
applications of the principle of uniform boundedness for vectors (Prob
lem 20). Suppose that Q is a weakly bounded set of bounded linear 
transformations from H to K, and that, specifically, I (Af,g) I ~ a(j,g) 
for all A in Q. Fix an arbitrary vector go and write To = {A *go: A e Q j. 
Since 

I (j,A *go) I = I (Af,go) I ~ a (j,go) , 
204 
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the set To is weakly bounded in H, and therefore there exists a constant 
{3 (go) such that II A *go II ~ {3 (go) for all A in Q. 

Next, write T = {AJ: A f Q, f fB}, where B is the unit ball of H. 
Since 

I (g,Af) I = I(A*g,f) I ~ {3(g)·lIfll ~ (3(g), 

the set T is weakly bounded in K, and therefore there exists a constant 
'Y such that 

II Af II ~ 'Y 

whenever A f Q and f f B. This implies that 

II A II ~ 'Y, 

and the proof is complete. 

Solution 41. It is sufficient to prove that A * is invertible. The range 
of A * is dense in H (because the kernel of A is trivial), and, conse
quently, it is sufficient to prove that A * is bounded from below. This 
means that II A *g II ~ 0 II g II for some 0 (and all g in K). To prove it, 
it is sufficient to prove that if II A *g II = 1, then II g II ~ 1/ afor some o. 
Caution: the last reduction uses the assumption that the kernel of A * is 
trivial, which is true because the range of A is dense in K. (The full 
force of the assumption that A maps H onto K will be used in a moment.) 
To see the difficulty, consider the transformation 0 in the role of A *: 
for it the implication from II A *g II = 1 to II g II ~ 1/0 is vacuously 
valid. Summary: it is sufficient to prove that if S = {h: II A *h II = I}, 
then the set S is bounded, and that can be done by proving that it is 
weakly bounded. To do that, take g in K, find fin H so that Af = g, 
and observe that 

I (g,h) I = I (Af,h) I = I (j,A *h) I ~ IIf II 

for all h in S. The proof is complete. 

Solution 42. If dim K < dim H, then there is no loss of generality 
in assuming that Kc H. Suppose, accordingly, that A is an operator on 
H with range included in K; it is to be proved that ker A is not trivial. 
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Assume that dim K is infinite; this assumption excludes trivial cases 
only. Let {fd and {gj} be orthonormal bases of Hand K, respectively. 
Each A *gj can be expanded in terms of countably many 1's; the assumed 
inequality between the dimensions of Hand K implies the existence of 
an i such that (hA *gj) = 0 for all j. Since (fi,A *gj) = (Afi,gj), it 
follows that Afi is orthogonal to each gj and therefore to K. Since, 
however, the range of A is included in K, it follows that Af; = O. 

Consider next the statement about equality. If dim H is finite, all is 
trivial. If dim H is infinite, then a set of cardinal number dim H is dense 
in H. (Use rational linear combinations; d. Solution 11.) It follows that 
a set of cardinal number dim H is dense in K, and this implies that 
dimK ~ dimH. 

The proof above is elementary, but, for a statement that is completely 
natural, it is not at all completely obvious. (It is due, incidentally, to 
G. L. Weiss; d. Halmos-Lumer [1954].) There is a quick proof, which, 
however, is based on a non-trivial theory (polar decomposition). It goes 
as follows. If A is a one-to-one linear transformation from H into K, 
with polar decomposition UP (see Problem 105), then, since ker A is 
{O I, it follows that U is an isometry. As for the case of equality: if ran A 
is dense in K, then ran U is equal to K. 

Solution 43. Observe first that no non-zero vector in the range of P 
is annihilated byQ. Indeed, if Pf = f and Qf = 0, then II Pf - Qf II = 
Ilf II, and therefore f ~ 0 would imply II P - Q II ~ 1. From this it 
follows that the restriction of Q to the range of P is a one-to-one bounded 
linear transformation from that range into the range of Q, and therefore 
that the rank of P is less than or equal to the rank of Q (Problem 42). 
The conclusion follows by symmetry. 

Solution 44. Suppose that A is a linear transformation from H to K, 
and suppose, first, that A is bounded. Let { (fn,Afn) I be a sequence of 
vectors in the graph of A converging to something, say (fn,Afn) -> 

(f,g). Since fn -> f and A is continuous, it follows that Afn -> Af; since 
at the same time Afn -> g, it follows that g = Af, and hence that (f,g) 
is in the graph of A. 

The proof of the converse is less trivial; it is a trick based on Problem 
41. Let G be the graph of A, and consider the linear transformation B 
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from G to H defined by B (j,Af) = J. Clearly B is a one-to-one mapping 
from G onto H; since 

II B (j,Af) I 12 = IIf W ~ Ilf W + II Af W = II (j,Af)1I2, 

it follows that B is bounded. Since G is a closed subset of the complete 
space H EB K, it is complete, and all is ready for an application of 
Problem 41; the conclusion is that B is invertible. Equivalently the con
clusion says that the mapping B-1 from H into G, defined by B-Ij = 
(j,Af) is a bounded linear transformation. This means, by definition, 
that 

for some ~ (and allf in H) ; the boundedness of A is an immediate conse
quence. 

It is worth remarking that the derivation of the result from Problem 
41 is reversible; the assertion there is a special case of the closed graph 
theorem. This, of course, is not an especially helpful comment for some
one who wants to know how to prove the closed graph theorem, and not 
just how to bounce back and forth between it and a reformulation. 

Solution 45. (a) On incomplete inner-product spaces unbounded 
symmetric transformations do exist. (b) On a Hilbert space, every 
symmetric linear transformation is bounded. 

Proof. (a) Let H be the complex vector space of all finitely non-zero 
infinite sequences. That is, an element of H is a sequence (~1' ~2, ~3, ..• ), 
with ~n = 0 for all sufficiently large n; the "sufficiently large" may vary 
with the sequence. Define inner product in H the natural way: if 
f = (~1, ~2, ~3, ••• ) and g = (7]1, 7]2, 7]3, ••• ), write (j,g) = L~=1 ~n7]n *. 
Let A be the linear transformation that maps each sequence 
(~1, 6, ~3, ... ) onto (~1' 26, 3~3, ... ); in an obvious manner A is de
termined by the diagonal matrix whose sequence of diagonal terms is 
(1, 2, 3, ... ). The linear transformation A is symmetric; indeed both 
(Af,g) and (f,Ag) are equal to L~=1 n~n7]n *. The linear transformation 
A is not bounded; indeed if Un} is the sequence whose n-th term is 1 
and all other terms are 0, then IIfn II = 1 and \I Afn II = n. 



45 BOUNDEDNESS AND INVERTIBILITY 208 

(b) This is an easy consequence of the closed graph theorem. Indeed, 
if A is symmetric, and if fn ~ f and Afn ~ 1', then, for all g, 

(f',g) = limn(Afn,g) = limn(fn,Ag) = (f,Ag) = (Af,g) , 

and therefore f' = Af; this proves that A is closed, and hence that A is 
bounded. 



Chapter 6. 
Multiplication operators 

Solution 46. If A is a diagonal operator, with Aej = ah, then 

so that lai} is bounded and SUPi I ai I ~ II A II. The reverse inequality 
follows from the relations 

i i 

~ (SUPi I ai 1)2. L I ~i 12 = (SUPi I aj 1)2·11 L ~iej w· 
i 

Given a bounded family I aj), define A by A Li ~iei = Li ai~iei; the 
preceding computations imply that A is an operator. Clearly A is a 
diagonal operator, and the diagonal of A is exactly the sequence {ail. 
The proof of uniqueness is implicit in the construction: via Fourier 
expansions the behavior of an operator on a basis determines its behavior 
everywhere. 

Solution 47. Ij Ian} is a sequence oj complex scalars, such that 
Ln 1 an~n 12 < 00 whenever Ln 1 ~n 12 < 00, then {an} is bounded. 

Proof. Expressed contrapositively, the assertion is this: if {an} is 
not bounded, then there exists a sequence {~n} such that Ln I ~n 12 < 00 

but Ln I an~n \2 = 00. The construction is reasonably straightforward. 
If {an} is not bounded, then \ an \ takes arbitrarily large values. There 
is no loss of generality in assuming that \ an I ~ n; all it takes is a slight 
change of notation, and, possibly, the omission of some a's. If, in that 

209 
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case, ~n = llan, n = 1,2,3, "', then 

Solution 48. The assertion is that if A is a diagonal operator with 
diagonal {an}, then A and Ian} are invertible together. Indeed, if l!1n} 
is a bounded sequence such that an!1n = 1 for all n, then the diagonal 
operator B with diagonall!1n} acts as the inverse of A. Conversely: if A 
is invertible, then A-l(anen) = en, so that 

since II A -len II ~ II A -I II, this implies that the sequence {1 I an} is 
bounded, and hence that the sequence I an} is invertible. 

As for the spectrum: the assertion here is that A - A is invertible if 
and only if A does not belong to the closure of the diagonal Ian}. (The 
purist has a small right to object. The diagonal is a sequence of complex 
numbers, and, therefore, not just a set of complex numbers; "the closure 
of the diagonal" does not make rigorous sense. The usage is an instance 
of a deservedly popular kind of abuse of language, unambiguous and 
concise; it would be a pity to let the purist have his way.) The assertion 
is equivalent to this: I an - A} is bounded away from 0 if and only if A 

is not in the closure of {an}. Contrapositively: the sequence {a'll - A} 
has 0 as a limit point if and only if the set Ian} has A as a cluster point. 
Since this is obvious, the proof is complete. 

Solution 49. If A is the multiplication induced by a bounded 
measurable function cp on a u-finite measure space, then II A II = II cp 1100 

(= the essential supremum of I cp I) . 

Proof. Let}J. be the underlying measure. It is instructive to see how 
far the proof can get without the assumption that }J. is u-finite; until 
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further notice that assumption will not be used. Since 

it follows that II A II ;;;:;; II cp II.". In the proof of the reverse inequality a 
pathological snag is possible. 

A sensible way to begin the proof is to note that if e > 0, then I cp(x) I > 
II cp 1100 - e on a set, say M, of positive measure. Iff is the characteristic 
function of M, then 

Ilf W = f 1· dJL = JL (M) , 
M 

and 

II Af W = f I cp 12dJL ;:;; (II cp 1100 - e)2JL(M). 
]I{ 

It follows that II Af II ~ (/I cp 1100 - e) II f II, and hence that" A II ;:;; 
" cp 1100 - e; since this is true for all e, it follows that II A " ;:;; "cp 1100. 
The proof is over, but it is wrong. 

What is wrong is that M may have infinite measure. The objection 
may not seem very strong. After all, even if the measurable set 
Ix: I cp(x) I ;:;; II cp 1100 - e} has infinite measure, the reasoning above 
works perfectly well if M is taken to be a measurable subset of finite 
positive measure. This is true. The difficulty, however, is that the 
measure space may be pathological enough to admit measurable sets of 
positive measure (in fact infinite measure) with the property that the 
measure of each of their measurable subsets is either 0 or 00. There is 
no way out of this difficulty. If, for instance, X consists of two points 
Xl and X2, and if JL( {xr}) = 1 and JL( {X2}) = 00, then V(JL) is the one
dimensional space consisting of all those functions on X that vanish at 
X2. If cp is the characteristicfunction of the singleton {X2}, then II cp "00 = 1, 
but the norm of the induced multiplication operator is o. 

Conclusion: if the measure is locally finite (meaning that every 
measurable set of positive measure has a measurable subset of finite 
positive measure), then the norm of each multiplication is the essential 
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supremum of the multiplier; otherwise the best that can be asserted is 
the inequality II A II ~ II cp II",· Every finite or IT-finite measure is locally 
finite. The most practical way to avoid excessive pathology with (usually) 
hardly any loss in generality is to assume IT-finiteness. If that is done, 
the solution (as stated above) is complete. 

Solution 50. Measurability is easy. Since the measure is IT-finite, 
there exists an element J of V that does not vanish anywhere; since 
cp·Jis in V, it is measurable, and, consequently, so is its quotient by j. 

To prove boundedness, observe that 

II cpn.J II = II A"f II ~ II A Iln·IIJ II 

for every positive integer n. If A = 0, then cp = 0, and there is nothing 
to prove; otherwise write I/! = cplll A II, and rewrite the preceding in
equality in the form 

(Here Jl. is, of course, the given IT-finite measure.) From this it follows 
that ifJ ~ ° on some set of positive measure, then II/! I ~ 1 (i.e., I cp I ~ 
II A II) almost everywhere on that set. If J is chosen (as above) so that 
J ~ ° almost everywhere, then the conclusion is that I cp I ~ II A II 
almost everywhere. 

This proof is quick, but a little too slick; it is not the one that would 
suggest itself immediately. A more natural (and equally quick) approach 
is this: to prove that I cp I ~ II A II almost everywhere, let M be a 
measurable set of finite measure on which I cp I > II A II, and prove that 
M must have measure 0. Indeed, if J is the characteristic function of M, 
then either J = ° almost everywhere, or 

II AJ IJ2 = /1 cp-J 12dJl. = f I cp 12dJl. > II A 1\2Jl.(M) = II A W·IIJ li2; 
M 

the latter possibility is contradictory. The proof in the preceding para
graph has, however, an advantage other than artificial polish: unlike 
the more natural proof, it works in a certain curious but useful situation. 
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The situation is this: suppose that H is a subspace of V, suppose that 
an operator A on H is such that Af = <pof for all f in H, and suppose 
that H contains a nowhere vanishing function. Conclusion, as before: 
<p is measurable and bounded (by II A II). Proof: as above. 

Solution 51. If <p is a complex-valued function such that <pof E V 
(jar a (j-finite measure) whenever f E V, then <p is essentially bounded. 

Proofo One way to proceed is to generalize the discrete (diagonal) 
construction (Solution 47). If <p is not bounded, then there exists a dis
joint sequence {Mn} of measurable sets of positive finite measure such 
that <p(x) ;?; n whenever x e Mn. (There is no trouble in proving that <p 
is measurable; d. Solution SO.) Define a function f as follows: if x E Mn 
for some n, then 

1 
f(x) 

otherwisef(x) = O. Since 

the function f is in V; since 

the function <pof is not. 
For another proof, let A be the linear transformation that multiplies 

each element of V by <p, and prove that A is closed, as follows. Suppose 
that (fn,gn) belongs to the graph of A (i.e., gn = <p-jn) , and suppose 
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that (fn,gn) ---+ (f,g) (i.e., fn ---+ f and gn ---+ g). There is no loss of 
generality in assuming that fn ---+ f almost everywhere and gn ---+ g almost 
everywhere; if this is not true for the sequence {fn}, it is true for a 
suitable subsequence. Since fn ---+ f almost everywhere, it follows that 
cp·fn ---+ cp·f almost everywhere; since, at the same time, cp·fn ---+ g almost 
everywhere, it follows that g = cp·f almost everywhere, i.e., that (f,g) 
is in the graph of A. Conclusion (via the closed graph theorem): A is 
bounded, and therefore (by Problem 50) cp is bounded. 

The second proof is worth a second glance. The concept of multipli
cation operator can be profitably generalized to unbounded multipliers. 
If cp is an arbitrary (not necessarily bounded) measurable function, let 
M be the set (linear manifold) of all thosefin L2 for which cp·f E V. The 
second proof above proves that the linear transformation (from Minto 
V) that maps eachfin M onto cp·fis a closed transformation. (This sort 
of thing is the operator analogue of a vague, but well-known and correct, 
measure-theoretic principle. In measure theory, every function that can 
be written down is measurable; in operator theory, every transformation 
that can be written down is closed.) Briefly: multiplications (bounded 
or not) are closed. The closed graph theorem can then be invoked to 
prove that if, in addition, a mUltiplication has all V for its domain, 
then it must be bounded. 

Solution 52. For invertibility: if cp.if; = 1, then the multiplication 
operator induced by if; acts as the inverse of A. Suppose, conversely, 
that A is invertible. This implies that cp can vanish on a set of measure 
o at most. (Otherwise take for f the characteristic function of a set of 
positive finite measure on which cp vanishes.) Since cpo A -lj = f, it follows 
that A-lj = (l/cp)·f whenever f E V. Conclusion (from Solution 50): 
11/cp I ~ II A-I II, and therefore I cp I ~ 1/11 A-I II almost everywhere. 

The assertion about the spectrum reduces to the one about inverti
bility. The beginner is advised to examine the reduction in complete 
detail. The concept of essential range is no more slippery than other 
measure-theoretic concepts in which alterations on null sets are gratis, 
but on first acquaintance it frequently appears to be. 

Solution 53. (a) A multiplication transformation on a functional 
Hilbert space is necessarily bounded. 
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Proof. A proof can be based on the closed graph theorem. Suppose, 
indeed, that (jn,gn) is in the graph of A, n = 1, 2, 3, ... , and suppose 
that (jn,gn) ~ (j,g) (i.e.,fn ~ f and gn ~ g). Since convergence in H 
implies pointwise convergence (if fn ~ f strongly, then fn ~ f weakly) 
it follows that fn(x) ~ f(x) and gn(X) ~ g(x) for all x. Since gn = 
Afn = <P·fn, and since <p(x)fn(x) ~ <p(x)f(x) for all x, it follows that 
g = AJ. Conclusion: A is closed and therefore bounded. 

The answer to (b) is not quite yes. The trouble is that there is nothing 
in the definition of a functional Hilbert space to prevent the existence 
of points x in X such thatf(x) = 0 for allf in H. The situation can be 
produced at will; given H and X, enlarge X arbitrarily, and extend each 
function in H so as to be 0 at the new points. At the same time, "null
points" are as easy to eliminate as they are to produce; omit them all 
from X and restrict each function in H to the remaining set. As long as 
infinitely many null-points are present, however, the answer to (b) must 
be no. Reason: any function on X can be redefined at the null-points so 
as to become unbounded, without changing the effect that multiplication 
by it has on the elements of H. Null-points play the same role for func
tional Hilbert spaces as atoms of infinite measure play for V spaces 
(cf. Solution 49). 

(b)If H is a functional Hilbert space with no null-points, then 
every (necessarily bounded) multiplication on H is induced by a 
bounded multiplier. 

Proof. Note that 

whenever n is a positive integer andfis in H (cf. Solution 50). If A = 0, 
then <p = 0, and there is nothing to prove; othernise write!/t = <pjll A II, 
and rewrite the preceding inequality in the form 

From this it follows that if f(x) ~ 0, then I !/t(x) I ~ 1 (i.e., I <p(x) I ~ 
II A Ii). Reason: (!/tn·f) (x) is bounded by some mUltiple of II !/tn·f II. 
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Since for each x there is an f such that f(x) ~ 0, it follows that 
I cp I ~ II A II everywhere. 

Here is an alternative proof that is more in the usual spirit of func
tional Hilbert spaces; it is due to A. L. Shields. Let K be the kernel 
function of the space (d. Problem 30). Since AK" = cp·K" for each x, 
and since, at the same time, (AK,,) (y) = (AK",KlI ) , it follows that 

I cp(x)K(x,x) I = I (AK",K,,) I ~ II A 11·11 K" 11 2• 

Since II K" 112 = (K",K,,) , and since always (K",KlI ) = K,,(y) , so that 
II K" W = K(x,x) , it follows that 

I cp(x)K(x,x) I ~ IIA 11·1 K(x,x) I. 

The relation K(x,y) = K 1I (x) = (K1I,K,,) implies that the "matrix" 
K is positive definite and hence, in particular, that I K (x,y) I ~ 
VK(x,x) VK(y,y). It follows that if K(x,x) = 0 for some x, then 

K(x,y) = 0 for all y, i.e., K" = 0, and hencef(x) = (j,K,,) = 0 for 
all f. The assumption that there are no null-points guarantees that this 
does not happen. Conclusion: I cp(x) I ~ II A II· 

The proof used the Schwarz inequality for sesquilinear forms that 
are not known to be strictly positive. Some of the standard proofs of 
the Schwarz inequality work in this case; the one in Halmos [1951, p. 
15J does not. The problem is to prove that if cp is a positive, symmetric, 
sesquilinear form, then 

(Two alphabetic customs are in temporary collision here: the letter cp 
in this paragraph is not, as it was above, a mUltiplier on X, but a sesqui
linear form on H.) For the proof, let cp+ be an arbitrary strictly positive, 
symmetric, sesquilinear form on the same space, and write, for each 
positive number e, 

The form CPt is strictly positive; apply the Schwarz inequality to it and 
let e tend to O. As for finding a strictly positive form cp+ (on every real 
or complex vector space): just use Hamel bases. H {ei} is one, write 
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'P+( 'Ej ajej, 'Ej (3jej) 'Ej aj{3/. The sums are formally infinite but 
only finitely non-zero. 

All this about the Schwarz inequality is a digression, but it is amusing; 
here is one more addition to it. The proof of the Schwarz inequality for 
inner products (strictly positive forms) consists of the verification of 
one line, namely: 

It might perhaps be more elegant to mUltiply through by II g 11 2, so 
that the result should hold for g = 0 also, but the identity seems to be 
more perspicuous in the form given. This one line proves also that if 
the inequality degenerates to an equality, then 1 and g are linearly 
dependent. The converse is trivial: if 1 and g are linearly dependent, 
then one of them is a scalar multiple of the other, say g = aI, and then 
both I (j,g) 12 and (j,j)' (g,g) are equal to I a 12(j,f)2. 

Solution 54. Let H be the set of all those absolutely continuous 
(complex-valued) functions on [0,1J whose derivatives belong to V; 
define inner product in H by (f,g) = I(O)g(O) * + J~f'(x)g'(x)*dx. If 
111 II = 0, then n If'(x) 12dx = 0, so thatf'(x) = 0 almost everywhere, 
and therefore f is a constant; since, however,I(O) = 0, it follows that 
1 = O. This proves that the inner product is strictly positive. If I In} is 
a Cauchy sequence in H, then I fn(O) } is a numerical Cauchy sequence 
and Un'} is Cauchy in V. It follows that fn(O) ~ a and fn' ~ g, for 
some complex number a and for some g in V; putl(x) = a + g g(t)dt, 
and thus obtain an f such that fn ~ 1 in H. This proves that H is com
plete. If 0 ~ x ~ 1, then 

this proves that evaluations are bounded and hence that H is a functional 
Hilbert space. 

If 1 and g are in H, then 1 and g are bounded; it follows that (fg)' 
(=fg' + f'g) belongs to V and hence thatfg E H. Since 1 obviously be
longs to H, all the requirements are satisfied. 

This example is due to A. L. Shields. 
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Solution 55. Write.il = AD - Be. If .il is invertible, then the 
product of 

in either order, is 

this proves the sufficiency of the condition. (Note that in this context 0 
and 1 are not numbers but operators on the appropriate Hilbert space.) 

Suppose now that 

is invertible, and hence, in particular, bounded from below. This means 
that 

II Af + Bg W + II Cj + Dg 112 ~ 5(llf112 + II g 112) 

for some positive number 5. Two special cases of this relation can be 
usefully combined. First, set one of the two coordinates of (j,g> equal 
to zero (and, in both cases, call the other one f) to get 

II AfW + II CfW ~ 511fW, 

IIBfW + II Dfl12 ~ 511fW· 

Second, take (Df, - Cf) and (-Bf,Af) instead of (j,g> (compare this 
with the two columns of the candidate for the inverse) to get 

II (AD - BC)f W ~ 5(11 Cf W + II Df 11 2), 

II (AD - BC)f W ~ 5(11 Af W + II Bf 11 2). 

218 
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Add the latter pair of inequalities, divide by 2, and combine with the 
former pair to get 

II (AD - BC)! 112 ~ ~ II! W· 

Conclusion: AD - BC is bounded from below. 
Since A, B, C, and D are pairwise commutative, the same is true of 

A *, B*, C*, and D*; since 

is invertible, the same is true of the adjoint 

(
A* C*). 

B* D* 

The result of the preceding paragraph implies that A *D* - B*C* is 
bounded from below, and hence that its kernel is trivial, and this, in 
turn, implies that the range of AD - BC is dense. 

Since AD - BC is bounded from below and has a dense range, it 
follows that AD - BC is invertible, and the proof is complete. 

Solution 56. Since 

is always invertible, with inverse 

it follows that 
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are invertible together. The product works out to 

(+BT 
C +DT ;} 

set T = - D-IC and conclude that 

(: ;) 
is invertible if and only if 

( -:v-,c ;) 
is invertible. 

Introduce the temporary abbreviation E = A - ED-IC and proceed 
to consider the invertibility of 

The assumption that D is invertible is still in force. If E also is invertible, 
then so is 

with inverse 

The converse is also true: if 
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is invertible, then so is E. The proof is an easy computation. Suppose 
that 

is the inverse of 

then 

(
PE PB + QD) = (EP + BR EQ + BS) = (1 0). 
RE RB + SD DR DS 0 1 

Since DR = 0 and D is invertible, it follows that R = 0; since P E = 1 
and EP + BR = 1, itfollows that Eisinvertible (and, in fact, E-1 = P). 

Now unabbreviate and conclude that 

is invertible if and only if A - BD-1C is invertible. Since D is invertible, 
multiplication by D does not affect any statement of invertibility; it 
follows that 

is invertible if and only if AD - BD-1CD is invertible. Up to this point 
the assumed commutativity of C and D was not needed; it comes in 
now and serves to make the statement more palatable. Since C and D 
commute, it follows that C and D-l commute, and hence that 
BD-1CD = BC. Conclusion: 

is invertible if and only if AD - BC is invertible. 
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The unsymmetry of the hypothesis (why C and D? and why D-l?) is 
not so ugly as first it may seem. The point is that the conclusion is 
equally unsymmetric. What rights does (1) AD - BC have that (2) 
DA - BC,or (3) DA - CB,or (4) AD - CBdonothave?Symmetry 
is restored not by changing the statement but by enlarging the context. 
The theorem is one of four. To get a conclusior. about all possible versions 
of the formal determinant, assume that D is invertible and make the 
commutativity hypothesis about (1) C and D, or (2) Band D, or, 
alternatively, assume that A is invertible, and make the commutativity 
hypothesis about (3) A and B, or (4) A and C. 

It is well known and obvious that if the underlying Hilbert space is 
finite-dimensional, then the invertible operators are dense in the metric 
space of all operators. This remark (together with the result proved 
above) implies that in the finite-dimensional case the invertibility 
assumption is superfluous: if C and D commute, then a necessary and 
sufficient condition that 

be invertible is that AD - BC be invertible. Actually the proof proves 
more than this: since multiplication by 

leaves unchanged not only the property of invertibility, but even the 
numerical value of the determinant, what the proof proves is that 

det(: :) ~ det(AD - Be). 

As for the counterexamples, an efficient place to find them is l2. Define 
A andD by 

and 

D (~o, ~l' ~2, ••• ) = (0, ~o, ~1, ~2, ••• ), 
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and put B = C = 0. It follows that AD - BC = 1, but 

has a non-trivial kernel. (Look at (J,g), where f = (1, 0, 0, ... ), 
and g = 0.) If, on the other hand, B is defined by 

B (~o, ~l, ~2, ••• ) = (~o, 0, 0, 0, ... ), 

then 

is invertible, with inverse 

but the formal determinant DA has a non-trivial kernel. 

Solution 57. It is convenient to begin with a lemma of some inde
pendent interest: if a finite-dimensional subspace is invariant under an 
invertible operator, then it is invariant under the inverse too. (Easy 
examples show that the assumption of finite-dimensionality is indis
pensable here.) To avoid the introduction of extra notation, let H EI1 K 
be the space, H the subspace, and M the operator. (To be sure, H is 
not really a subspace of H EI1 K, but it becomes one by an obvious 
identification.) Since MH c H, and since (by invertibility) M preserves 
linear independence, it follows that dim MH = dim H, and hence (by 
finite-dimensionality) that MH = H. This implies that M-IH = H, 
and the proof of the lemma is complete. 

The lemma applies to the case at hand. If 
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then H is invariant under M; it follows from the lemma that if M is 
invertible, then M-l has the form 

(AI BI). 
o D' 

Finite-dimensionality has served its purpose by now; the rest of the 
argument is universally valid. Once it is known that a triangular matrix 
has a triangular inverse, then, regardless of the sizes of the entries, each 
diagonal entry in the matrix is invertible, and its inverse is the corre
sponding entry of the inverse matrix. Proof: multiply the two matrices 
in both possible orders and look. 
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Solution 58. If A is an operator, then IIo(A *) 
II(A*) uII(A)* = A(A*). 

r(A)* and 

Proof. If A E IIo(A *), then A * - A has a non-zero kernel, and there
fore the range of A - A * has a non-zero orthogonal complement; both 
these implications are reversible. 

The second equation is the best that can be said about the relation 
between II and conjugation. The assertion is that if A * - A is not 
invertible, then one of A * - A and A - A * is not bounded from below. 
Equivalently (with an obvious change of notation) it is to be proved 
that if both A * and A are bounded from below, then A * is invertible. 
The proof is trivial: if A is bounded from below, then its kernel is trivial, 
and therefore the range of A * is dense; this, together with the assumption 
that A * is bounded from below, implies that A * is invertible. (This 
argument has been used already, to prove a special case of the present 
assertion; d. Solution 55.) 

Corollary. IIo(A) = r(A*)*andII(A)uII(A*)* = A(A). 

Proof. Replace A by A *. 

Solution 59. If A is an operator and p is a polynomial, then 
IIo(P(A» = P(IIo(A», II(p(A» = P(II(A), and r(p(A») = 

p (r (A) ) ; the same equations are true if A is an invertible operator 
and P(z) = liz for z ~ o. 

Proof. It is convenient to make three elementary observations before 
the proof really begins. If the product of a finite number of operators 
(1) has a non-zero kernel, or (2) is not bounded from below, or (3) has 
a range that is not dense, then at least one factor must have the same 
property; if the factors commute, then the converse of each of these 
statements is true. The idea of the proofs is perhaps best suggested by 
the following sentences. If AB sends (1) a non-zero vector onto 0, or 
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(2) a sequence of unit vectors onto a null sequence, then argue from the 
right: if B does not already do so, then A must. (3) If the range of AB 
is not dense, argue from the left: if the range of A is dense, then the 
range of B cannot be. 

Now for the proofs of the spectral mapping theorems. Assume, with 
no loss of generality, that the polynomial p has positive degree and 
leading coefficient 1. Since p(X) - p(Xo) is divisible by X - Xo, it follows, 
by (1), that if XoEl1o(A), then P(Xo) eIIo(p(A», and hence that 
P(IIo(A» C IIo(p(A». (This part ofthe statement can be proved much 
more simply: if AJ = X oJ, then P(A)J = P('NJ)j. The longer sentence is 
adaptable to the other cases, and therefore saves time later.) If, on the 
other hand, a e IIo(P(A», then express P(X) - a as a product of factors 
such as X - Xo, and apply (1); the conclusion is that a = P(Xo) for 
some number Xo in IIo(A). This means that a e P(IIo(A», and hence 
that IIo(P(A» c p(IIo(A». The arguments for II, or r, are exactly the 
same, except that (2), or (3), are used instead of (1). An alternative 
method is available for r: apply the result for IIo to A *, conjugate, and 
apply Solution 58. 

Turn now to inversion. If A is invertible and AJ = Xi with I ~ 0, 
then X ~ 0. Apply A -I to both sides of the equation, divide by X, and 
obtain 

Conclusion: 

1 
A-Ij = -j. 

X 

1 
IIo(A) C IIo(A-l). 

Replace A by A -I and form reciprocals to get the reverse inclusion. Use 
the same method, but starting with AJn - Xin ~ 0, IIIn II = 1, to get 
the inversion spectral mapping theorem for II. Derive the result for r 
by applying the result for IIo to the adjoint. 

Solution 60. (1) If A - X is invertible, then so is P-l(A - X)P = 
P-IAP - x. 

(2) If AJ = Xi, then P-IAP(P-Ij) = X(P-Ij). 
(3) If AJn - XJn ~ 0, where IIJn II = 1, then P-IAP(P-Ijn) 
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A (P-ljn) = P-l(Afn - Ajn) ~ o. The norms II P-ljn II are bounded 
from below by 1/11 P II, and, consequently, division by II P-ljn II does 
not affect convergence to O. This implies that 

( P-1f) (P-y) 
P-IAP II P-lj: II - A II P-lj: II ~ o. 

(4) If g belongs to the range of P-IAP - A (= P-l(A - A)P), 
then g belongs to the image under p-l of the range of A - A; this implies 
that if the closure of the range of A - A is not H, then the closure of 
the range of P-l(A - A)P is not H either. 

The four proofs just given show that each named part of the spectrum 
of A is included in the corresponding part for P-IAP. This assertion 
applied to P-IAP and P-l (in place of A and P) implies its own con
verse. 

Solution 61. It is to be proved that if A ~ 0, then AB - A and 
BA - A are invertible or non-invertible together. Division by - A reduces 
the theorem to the general ring-theoretic assertion: if 1 - AB is in
vertible, then so is 1 - BA. The motivation for the proof of this assertion 
(but not the proof itself) comes from pretending that the inverse, say 
C, of 1 - AB can be written in the form 1 + AB + ABAB + ... , 
and that, similarly, the inverse of 1 - BA is 1 + BA + BABA + ... = 
1 + B(1 + AB + ABAB + ···)A = 1 + BCA. The proof itself 
consists of verifying that if 

C(l - AB) (1 - AB)C = 1, 

then 

(1 + BCA) (1 - BA) = (1. - BA) (1 + BCA) = 1. 

The verification is straightforward. It is a little easier to see if the as
sumption on C is rewritten in the form 

CAB = ABC = C - 1. 

Solution 62. For each operator A, the approximate point spectrum 
Il(A) is closed. 
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Proof. A convenient attack is to prove that the complement of IT (A) 

is open. If Ao is not in IT(A), then A - Ao is bounded from below; say 

II Af - Ao/II ~ c5llfll 
for all j. Since 

II Af - Ao1ll ~ II A/ - Ajll + II Af - Ao/II 

for all A, it follows that 

(15 - I A - 1.0 I)llfll ~ II A/ - Afll· 

This implies that if I A - Ao I is sufficiently small, then A - A is bounded 
from below. 

Solution 63. It is convenient (but not compulsory) to prove the 
following slightly more general assertion: if {An} is a sequence of in
vertible operators and if A is a non-invertible operator such that 
II An - A II ~ 0 as n ~ 00, then 0 E IT(A). Since A is not invertible, 
either 0 E IT(A) or 0 E r(A). If 0 E IT(A), there is nothing to prove. It 
is therefore sufficient to prove that A is not bounded from below (i.e., 
that 0 E IT (A» under the assumption that ran A is not dense. Suppose 
then that/is a non-zero vector orthogonal to ran A, and write 

An-If 
fn = II An-If II 

Since Ilfn II = 1, it follows that II (An - A)/n II ~ II An - A II ~ o. 
Since, however, A/n E ran A and An/ n 1.. ran A, it follows that 

and hence that II Afn II ~ o. 
To derive the original spectral assertion, suppose that A is on the 

boundary of A(A). It follows that there exist numbers An not in A(A) 

such that An ~ A. The operators A - An are invertible and A - A is 
not; since 

II(A - An) - (A - 1.)11 = I An - A I ~ 0, 

it follows from the preceding paragraph that~ A E IT (A) . 
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Solution 64. Normality says that II Af II = II A *f II for every vector 
f. It follows that II (A - X)j II = II (A * - X*)f II for every x, and hence 
that IIo(A) = (IIoCA *» *. The conclusion follows from Solution 58. 

Solution 65. If A is a diagonal operator, then both IIo(A) and 
r (A) are equal to the diagonal, and II (A) (= A (A» is the closure 
of the diagonal. 

Proof. Suppose that {eil is an orthonormal basis such that Aei = 

aiei. The first assertion is that a number is an eigenvalue of A if and 
only if it is equal to one of the a/So "If" is trivial: each ai is an eigenvalue 
of A. By an obvious subtraction, the "only if" is equivalent to this: 
if A has a non-zero kernel, then at least one of the a/s vanishes. Contra
positively: if ai ~ 0 for all j, then Af = 0 implies f = O. Indeed: if 
f = Li ~iei, then Af = Li ai~ieh so that Af = 0 is equivalent to 
ai~i = 0 for allj; since no ai vanishes, every ~j must. 

Now that IIo(A) is known, the result of Problem 64 applies. Since a 
diagonal operator is normal, it follows that r (A) also is equal to the 
diagonal, and that the approximate point spectrum is the same as the 
entire spectrum. 

Solution 66. If A is the multiplication induced by a multiplier cp 
(over a u-finite measure space), then both IIo(A) and rCA) are equal 
to the set of those complex numbers X for which cp-l ( {X I) has positive 
measure, and II (A) (= A (A) is the essential range of cpo 

Proof. If f EO V and cp(x)f(x) = Aj(x) almost everywhere, then 
cp(x) = X whenever f(x) ~ O. This implies that in order for X to be an 
eigenvalue of A, the function cp must take the value X on a set of positive 
measure. If, conversely, cp(x) = X on a set M of positive measure, and 
if f is the characteristic function of a measurable subset of M of positive 
finite measure, thenf EO L2,j ~ 0, and Af = Af, so that X is an eigenvalue 
of A. 

The remaining assertions are proved just as in Solution 65. 
229 
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Solution 67. If U is the unilateral shift, then A (U) = D (= the 
closed unit disc), no (U) = 0, n (U) = C (= the unit circle), and 
r(U) = D - C (= the interior of the unit disc). For the adjoint: 
A(U*) = D, no(u*) = D - C, n(u*) = D, and r(U*) = 0. 

Proof. It is wise to treat U and U* together; each gives information 
about the other. To treat U*, whether together with U or separately, 
it is advisable to know what it is. Since (for i,j = 0,1,2, ... ) 

it follows that 

U*eo = 0; 

if i > 0, then 

and therefore 

U*ei = ei-l (i = 1,2,3, ... ). 

In terms of coordinates the result is that 

The functional representation of U (i.e., its representation as a multipli
cation on H2) is deceptive; since the adjoint of a multiplication operator 
is multiplication by the complex conjugate function, it is tempting to 
thinkthatiffEH2, then (U*j)(z) = z*f(z). This is not only false, it is 
nonsense; H2 is not invariant under multiplication by Ll. The corre
spondence between adjunction and conjugation works for V, but there 
is no reason to assume that it will work for a subspace of V. The correct 
expression for U* on H2 is given by 

(U*f)(z) =z*(f(z) - (f,eo». 

Now for the spectrum and its parts. Since U is an isometry, so that 
II U II = 1, it follows that the spectrum of U is included in the closed 
unit disc, and hence the same is true of U*. 
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If Uf = Xi, where f = (~o, ~l, ~2, ••• ), then 

(0, ~o, ~l, ~2, ••• ) = (X~o, X~l, X~2, ••. ), 

so that 0 = X~o, and ~n = X~n+l for all n. This implies that ~n = 0 for 
all n (look separately at the cases X = 0 and X ~ 0), and hence that 
IIo(U) = 0. Consequence: r(U*) = 0· 

Here is an alternative proof that U has no eigenvalues, which has 
some geometric merit. It is a trivial fact, true for every operator A, that 
if f is an eigenvector belonging to a non-zero eigenvalue, then f belongs 
to ran An for every positive integer n. (Proof by induction. Trivial for 
n = 0; iff = Ang, thenf = (l/X) Af = (lIX) An+l g.) The range of Un 
consists of all vectors orthogonal to all the e/s with 0 ~ j < n, and, 
consequently, nn ran Un consists of 0 alone. This proves that U has no 
eigenvalues different from O. The eigenvalue 0 is excluded by the iso
metric property of U: if Uf = 0, then 0 = \I Uf II = Ilf II· 

If U*f = Xf, then 

so that ~n+l = X~n, or ~n+l = xn~o, for all n. If ~o = 0, thenf = 0; otherwise 
a necessary and sufficient condition that the resulting rs be the co
ordinates of a vector (i.e., that they be square-summable) is that 
I X I < 1. Conclusion: IIo(U*) is the open unit disc (and consequently 
r (U) is the open unit disc). Each X in that disc is a simple eigenvalue 
of u* (i.e., it has multiplicity 1); the corresponding eigenvector f .. 
(normalized so that (jx,eo) = 1) is given by 

j , = (1 X X2 X3 •.• ) 
f\ "" • 

Since spectra are closed, it follows that both A (U) and A (U*) include 
the closed unit disc, and hence that they are equal to it. All that remains 
is to find II (U) and II (U*). Since the boundary of the spectrum of 
every operator is included in the approximate point spectrum, it follows 
that both II(U) and II(U*) include the unit circle. If I X I < 1, then 

II Uf - Xi II ~ III Uf II - II Xi III = 11 - I X 11'llf II 
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for allf, so that U - A is bounded from below; this proves that IT(U) 
is exactly the unit circle. For U* the situation is different: since ITo is 
always' included in IT, and since ITo ( U*) is the open unit disc, it follows 
that IT (U*) is the closed unit disc. 

Solution 68. If W is the bilateral shift, then A(W) = C (= the 
unit circle), ITo(W) = 0, IT(W) = C, and r(W) = 0. The same 
equations are true for the adjoint W*. 

Proof. The determination of the spectrum of W, and of the fine 
structure of that spectrum, can follow the pattern indicated in the study 
of the unilateral shift U (Solution 67), but there is also another way to 
do it, a better way. Corresponding to the functional representation of U 
on H2, the bilateral shift W has a natural functional representation on 
V(JL) (where JL is normalized Lebesgue measure on the unit circle; see 
Problem 26). Since the functions en defined by en(z) = zn (n = 0, 
±1, ±2, ... ) form an orthonormal basis for V, and since the effect on 
them of shifting forward by one index is the same as the effect of multi
plying by el, it follows that the bilateral shift is the same as the multipli
cation operator on V defined by 

(Wf) (z) = zf(z). 

This settles everything for W; everything follows from Solution 66. 
As for W*, its study can be reduced to that of W. Indeed, since W is 

unitary, its adjoint is the same as its inverse. The calculation of W-I 
takes no effort at all; clearly W-l shifts backward the same way as W 
shifts forward. There is a thoroughgoing symmetry between Wand W*; 
to obtain one from the other, just replace n by -no In more pedantic 
language: Wand W* are unitarily equivalent, and, in particular, the 
unitary operator R determined by the conditions Ren = e-n (n = 0, 
±1, ±2, ... ) transforms Wonto W* (i.e., R-IWR = W*). Conclusion: 
the spectrum of W* is equal to the spectrum of W, and the same is true, 
part for part, for each of the usual parts of the spectrum. 

Solution 69. Suppose first that the eigenvectors of A * span H. Let 
X be an index set such that corresponding to each x in X there is an 
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eigenvector K", of A *, and such that the K",'s span H; denote the eigen
value corresponding to K", by cp(x) *. (The conjugation has no profound 
significance here; it is just a notational convenience.) It follows that 
A*K", = cp(x)*K",. For eachjin H, letJbe the function on X defined 
by J(x) = (f,K",). The correspondence j ~ J is linear. If J = 0, i.e., 
if (j,K",) = 0 for all x, then f = 0 (since the K",'s span H). This justifies 
the definition (J,g) = (j,g). With this definition of inner product, the 
set H of all functions of the form J (with f in H) becomes a functional 
Hilbert space. [Note: I J(x) I = I (j,K",) I ~ Ilj 11·11 K", II = II J 11·11 Kx II.J 
Let 1 be the image of A under the isomorphismf ~ J (i.e., lJ = (Aj)-); 
then 

(1]) (x) (Aj)-(x) = (Aj,K",) = (j,A *K:t) 

(j,cp(x) *K",) = cp(x) (j,K",) 

= cp(x)J(x) , 

so that 1 is a multiplication. 
The converse is proved by retracing the steps of the last computation. 

In detail, if A is a multiplication (with multiplier ip, say) on a functional 
Hilbert space H with domain X and kernel function K, so that 
(Af) (x) = cp(x)f(x), then (Aj,K",) = cp(x) (j,K",) (where K",(y) = 

K(y,x)) , and therefore (j,A *Kx - cp(x) *K",) = 0 for all f. It follows 
that A *K", = cp(x) *K",; since in a functional Hilbert space the set of 
K/s always spans the space, the proof is complete. 

Compare the construction with what is known about the unilateral 
shift (Solution 67). 

Solution 70. The relative spectrum of the unilateral shift is the 
unit circle. 

Proof. The proof can be made to depend on two simple lemmas. 
(1) For an operator with a trivial kernel, relative invertibility is the same 
as left invertibility. (2) For all operators, left invertibility is the same 
as boundedness from below. 

The proof of (1) in one direction is trivial; left invertibility always 
implies relative invertibility. To prove the converse, suppose that 



70 EXAMPLES OF SPECTRA 234 

ABA = A, so that A (1 - BA) = O. If the kernel of A is trivial, then 
it follows that 1 - BA = 0, and hence that A is left invertible. 

To prove (2), suppose that A is left invertible, say BA = 1; it follows 
that Ilf II = II BAf II ;;:; II B 11·11 Af II for every f, and hence that A is 
bounded from below. If, conversely, A is bounded from below, then the 
mapping A has a uniquely determined inverse mapping B that sends 
the (closed) range of A onto the whole space. The mapping B is a 
bounded linear transformation; extend it to an operator by, for instance, 
defining it to be 0 on the orthogo!lal complement of the range of A. The 
extended B is a left inverse of A. 

The lemmas (1) and (2) imply that if the point spectrum of an 
operator is empty, then for that operator the relative spectrum is equal 
to the approximate point spectrum. The assertion for the unilateral 
shift is now immediate (see Solution 67). 

Solution 71. If A is an operator on a Hilbert space H, if a is a 
non-zero scalar, and if M is the operator matrix 

then a necessary and sufficient condition that M be relatively invertible 
is that A be such. 

The scalars a and 1 appearing in M are to be interpreted as operators 
onH. 

Proof. Suppose first that M is relatively invertible. If 

is a relative inverse of M, i.e., if MNM = M, then aQA = 0 and 
QA + ASA = A. (Carry out the indicated matrix multiplication; all 
that is needed is the second column of the product.) Since a ~ 0, it 
follows that QA = 0 and hence that A SA = A; this proves that A is 
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relatively invertible. The converse is another easy computation: if A is 
relatively invertible, say ABA = A, then put 

N = (l/(¥)AB 1 -BAB) , 

- (l/a)B 

and verify that MNM = M. 
The result just proved implies the existence of operators whose relative 

spectrum is not closed. To prove this, a glance at the case a = 0 is in 
order. The fact is that if 

then M is relatively invertible no matter what A is. Reason: Write 

and verify that MNM = M. 
The preceding two paragraphs together imply that the relative spec

trum of the operator matrix 

is almost the same as the relative spectrum of the operator A ; the only 
possible difference between them is the single number 1. More precisely: 
if the relative spectra of M and of A are cf> and 'It, respectively, then 
cf> = 'It - {1}. This in turn implies that if A is chosen so that its relative 
spectrum contains 1 as a cluster point, then the relative spectrum of M 
is not closed. For a concrete example, let A be the unilateral shift; see 
Solution 70. 
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Solution 72. A standard trick for proving operator functions analytic 
is the identity 

(1 - A)-l = 1 + A + A2 + .... 

If II A II < 1, then the series converges (with respect to the operator 
norm), and obvious algebraic manipulations prove that its sum indeed 
acts as the inverse of 1 - A. (Replace A by 1 - A and recapture the as
sertion that if 111 - A II < 1, then A is invertible. Cf. Halmos [1951, p. 
52J; see also Problem 83.) 

Suppose now that AO is not in the spectrum of A, so that A - AO is 
invertible. To prove that (A - A)-I is analytic in A, for A near AO, 
express A - A in terms of A - AO: 

A - A = (A - AO) - (A - AO) 

= (A - Ao)(l - (A - Ao)-l(A - Ao)). 

If I A - AO I is sufficiently small, then II(A - Ao)-l(A - Ao)11 < 1, and 
the series trick can be applied. The conclusion is that if I A - AO I is 
sufficiently small, then A - A is invertible, and 

00 

(A - A)-l = (A - Ao)-l :L((A - Ao)-l(A - AO))n. 

It follows that if! and g are in H, then 

co 

(p(A)!,g) = :L( (A - AO)-n-lj,g) (A - Ao)n 
n=O 

in a neighborhood of AD, and hence that p is analytic at Ao. 
236 



237 SOLUTIONS 74 

As for "A = co, note that 

1 1 
A - - = - -(1 - "AA) 

"A "A 

whenever "A r" 0, and hence that A - 1/"A is invertible whenever I"A I 
is sufficiently small (but different from 0). Since 

the series trick applies again: 

The parenthetical series converges for small "A, and the factor -"A in 
front guarantees that r(O) = o. 

Solution 73. Proceed by contradiction. If the spectrum of A is 
empty, then (PAj,g) (i.e., the function "A ----7 «A - "A)-lj,g» is an 
entire function for each j and g; since PA ( 00) = 0, the function (PAj,g) 
is bounded in a neighborhood of 00 and therefore in the whole plane. 
Liouville's theorem implies that (PAj,g) is a constant; since PAC 00) = 0, 
it follows that 

«A - "A)-lj,g) = 0 

identicallyinj, g, and "A. Since this is absurd (replacej and g by (A - "A)j 
and j) , the assumption of empty spectrum is untenable. 

Solution 74. Since (r(A»n = r(An) ~ II An Ii, so that rCA) ~ 

Ii An li lln for all n, it follows that 

rCA) ~ lim infn II An lII'n. 

The reverse inequality leans on the analytic character of the resolvent 
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(Problem 72). If 

then r(A) = -A(1 - AA)-lwhenever A rf= 0 and l/A is not in the spec
trum of A. Since, for each j and g, the numerical function (rj,g) is 
analytic as long as IliA I > rCA) (i.e., I A I < l/r(A), it follows that 
its Taylor series 

n=O 

converges whenever I A I < l/r(A). This implies that the sequence 
{( (AA)"j,g) I is bounded for each such A. The principle of uniform 
boundedness yields the conclusion that the sequence {I A In·11 An III is 
bounded. If I A In·11 An II ~ a for all n, then 

and therefore 

I A I· lim supn 1\ A n WI" ~ 1. 

Since this is true whenever I A I < l/r(A), it follows that 

lim sup" \I An Ill/n ~ rCA). 

The proof is complete. 

Solution 75. The asserted unitary equivalence can be implemented 
by a diagonal operator. To see which diagonal operator to use, work 
backwards. Assume that D is a diagonal operator with diagonal {On}, 
and assume that AD = DB. It follows (apply both sides to en) that 

for each n. Put 00 = 1, and determine the other o's by recursion. Consider 
first the positive n's. If i3" rf= 0, put On+l = (ani i3n) On. If i3n = 0, then 
an = 0 (since, by assumption, I an I = I i3n I); in that case put On+! = l. 
For negative n's (if there are any) apply the same process in the other 
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direction. That is, if an ;¢ 0, put On = (/3n/ an) On+!; if an = 0, then 
put On = 1. The result is a sequence {On} of complex numbers of modulus 
1. The steps leading to this sequence are reversible. Given the sequence, 
let it induce a diagonal operator D; note that since I On I = 1 for all n, 
the operator D is unitary; and, finally, note that since ADen = DBen 
for all n, the operator D transforms A onto B. 

Solution 76. Suppose first that S is an invertible operator such that 
A = S-IBS. It follows that A * = S*B*S*-I, and hence that A *n = 
S*B*n S*-I. Use the argument that worked for unitary equivalence to 
infer that S* sends ker B*n onto ker A *n. This implies that the matrix 
{O'i,} of S is lower triangular. Consider the equation SA = BS, and 
evaluate the matrix entries in row n + 1, column n (n = 0, 1, 2, ... ) 
for both sides. The result is that O'n+!.n+Ian = /3nO'n.n, and hence that 

I /30' •• /3 n l = I O'n+I.n+11 = I (Sen+I,en+!) I ~ ~. 
ao" 'an 0'0.0 0'0.0 10'0.0 I 

Consequence: {I ao" ·an//3o·· '/3n II is bounded away from 0. To get 
boundedness (away from O()), work with S-I (instead of S) and with 
the equation AS-I = S-IB (instead of SA = BS). 

If, conversely, the boundedness conditions are satisfied, then write 
0'0 = 1, O'n+1 = /30" '/3n/ao" 'an, let S be the (invertible) diagonal 
operator with diagonal sequence {O'O, 0'1, 0'2, ••• I, and verify that 
SA = BS. 

Solution 77. If A is a weighted shift with weights an, then II A II = 
supn I an I, and rCA) = limk SUpn I In:~ an+i II/k. 

The expression for r looks mildly complicated, but there are cases 
when it can be used to compute something. 

Proof. Since A is the product of a shift and the diagonal operator 
with diagonal {an l, and since a shift is an isometry, it follows that the 
norm of A is equal to the norm of the associated diagonal operator. 

To prove the assertion about the spectral radius, evaluate the powers 
of A. If Aen = a nen+1, then A 2en = anan+1en+2, A 3en = anan+!an+2en+3, 
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etc. What this shows is that A k is the product of an isometry (namely 
the k-th power of the associated shift) and a diagonal operator (namely 
the one whose n-th diagonal term is the product of k consecutive a'S 

starting with an). Conclusion: the norm of A k is the supremum of the 
moduli of the "sliding products" of length k, or, explicitly, 

/0-1 

1\ Ak II = SUpn I II an+i I (k = 1,2,3, ... ). 
i=O 

The expression for the spectral radius follows immediately. 

Solution 78. If A is the unilateral weighted shift with weights 
{ao, aI, a2, ... ), and if an ~ 0 for n = 0, 1, 2, "', then lIo ( A) = SZf, 
and lIo(A *) is a disc with center 0 and radius lim infn I II~:~ ai II/n. 
The disc may be open or closed, and it may degenerate to the origin only. 

Proof. The proof for A is the same as for the unweighted unilateral 
shift (Solution 67). In sequential (coordinate) notation, if Af = Aj, 
where f = <~o, ~I, ~2, ... ), then Af = (0, ao~o, alh, a2~2, ... ), so that 
o = A~O and an~n = A~n+1 for all n. This implies that ~n = 0 for all n; 
look separately at the cases A = 0 and A ~ O. 

To treat A *, it is advisable to know what it is. That can be learned 
by looking at matrices (the diagonal just below the main one flips over 
to the one just above), by imitating the procedure used to find U* 
(Solution 67), or by writing A as the product of U and a diagonal 
operator and applying the known result for U*. The answer is that 
A *en = 0 if n = 0 and A *en = a~-len-l if n > O. Sequentially: if f = 

<~o, h, ~2, ... ), then A *f = (ao*~l, al*~2, a2*~3, .•. ). It follows that 
A *f = Af if and only if 

for all n. This implies that if n > 1, then ~n is the product of ~o by 
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Since a sequence of numbers defines a vector if and only if it is square
summable, it follows that X E IIo(A *) if and only if 

co xn 
2: ~ < 00. 
n=l II (){i 

i=O 

The condition is that a certain power series in X2 be convergent; that 
proves that the X's satisfying it form a disc. The radius of the disc can 
be obtained from the formula for the radius of convergence of a power 
senes. 

If (){n = 1 (n = 0, 1, 2, ... ), then II::Ol (){i = 1 (n = 1, 2, 3, ... ), 
and therefore the power series converges in the open unit disc; d. 
Solution 67. If 

(= (:! ~)), 
then II~:-J (Xi = (n + 1)2, and therefore the power series converges in 
the closed unit disc, which in this case happens to be the same as the 
spectrum; d. Solution 77. If (){n = 1/(n + 1), then II~:-J (){i = lin!, 
and therefore the power series converges at the origin only. 

Solution 79. If P = IPn} is a sequence of positive numbers such 
that I Pn+ti pn} is bounded, then the shift S on [2 (P) is unitarily equiva
lent to the weighted shift A, with weights I V pn+ll pn}, on l2. 

Proof. If f = (to, tI, t2, ... > E l2 (P) write 

The transformation U maps l2 (P) into l2; it is clearly linear and isometric. 
If (7]0, 7]1, 7]2, ••• > E l2, and if tn = 7]nl vi pn, then 2::=0 pn 1 tn 12 = 
2::=0 l7]n 12; this proves that U maps l2(P) onto l2. 
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Assertion: U transforms S onto A. Computation: 

U SU-I (1/0, 7}1, 1/2, •.• > = US (1/01 V Po, 1/I/ V PI, 1/d V P2, ••• > 

U (0, 1/01 V po, 1/I/ V PI, 1/d V P2, ••• ) 

= (0, V PII p01/O, V P21 h1/1, V Pal P21/2, ••• ) 

= A (1/0, 1/1, 1/2, .•• ). 

Conclusion: the transform of the ordinary shift on a weighted sequence 
space is a weighted shift on the ordinary sequence space. 

In view of this result, all questions abollt weighted sequence spaces 
can be answered in terms of weighted shifts. The spectral radius of S, 
for instance, is limk SUpn ( n~:; V pn+i+I/ pn+i) 11k (see Solution 77). 

Solution 80. If A is a unilateral weighted shift with positive 
weights an such that an ~ 0, then A(A) = {OJ and IIo(A) = 0. 

Proof. Use Solution 77 to evaluate rCA). In many special cases that 
is quite easy to do. If, for instance, an = 1/2n, then the supremum 
(over all n) of cIn~ 1/2n+i)1/k is attained when n = O. It follows that 
that supremum is 

where 

1 k-l 1 
m=-}2i=-(k-l). 

k i=O 2 

This implies that the supremum tends to 0 as k tends to 00. 

In the general case, observe first that (II!:; ai)1lk ~ 0 as k ~ 00. 

(This assertion is the multiplicative version of the one according to 
which convergence implies Cesaro convergence. The additive version is 
that if an ~ 0, then (11k) }2~:~ ai ~ O. The proofs are easy and similar. 
It is also easy to derive the multiplicative one from the additive one.) 
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Since an+! ~ 0, it follows equally that (II~:J a1+i)1,k ~ 0; more gener
ally, (II~:J an+i)1lk ~ ° as k ~ 00 for each n. 

The problem is to prove that Supn (II~:J an+i) 11k is small when k is 
large. Given e (>0) and given n (= 0, 1, 2, ... ), find ko(n,e) so that 
(II~:~ an+i) 11k < e whenever k ~ ko(n,e). If no is such that an < e for 
n ~ no, then max(kO(O,E), ko(l,e), "', ko(no-l,e) is "large" enough; 
if k is greater than or equal to this maximum, then supn (II~:ci an+i) 11k < e. 
Indeed, if n < no, then (II~:J an+i) 11k < e just because k ~ ko(n,e); 
if n ~ no, then (II~,:-J an+i) 11k < e because each factor in the product is 
less than E. 

To see that IIo(A) is empty, apply Solution 78. 

Solution 81. There exists a countable set oj operators, each with 
spectrum 10 j, whose direct sum has spectral radius 1. 

Proof. Here is an example described in terms of weighted shifts. 
Consider the (unilateral) sequence 

11,0, 1, 1,0, 1, 1, 1,0, 1, 1, 1, 1,0, "'j, 

and let A be the unilateral weighted shift with these weights. The O's 
in the sequence guarantee that A is the direct sum of the operators 
given by 

° ° 0 0) 
000 

1 000 
100 

° 1 0 0 
o 1 ° lo 0 1 0) 

and hence it is the direct sum of operators each of which has spectrum 
10}. Since, however, the sequence of weights has arbitrarily long blocks 
of l's, the formula for the spectral radius of a weighted shift (Solution 
77) implies that rCA) = 1. 

What makes such examples possible is the misbehavior of the approxi
mate point spectrum. For the point spectrum the best possible assertion 
is true (and easy to prove): the point spectrum of a direct sum is the 
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union of the point spectra of the summands. Passage to adjoints implies 
that the same best possible assertion is true for the compression spectrum. 

Solution 82. The main step in the proof is the inequality 

To prove this, proceed by induction. For n = 0, the assertion is trivial. 
For the induction step, apply the Schwarz inequality to the inner 
product defined by the operator A, as follows: 

1 (ABf,J) 12n+1 = (I (ABf,J) 12")2 

~ ((AB2J,J) (Af,J)2n- 1 )2 

~ (AB2j,B2j). (AI,J) . (Af,J)2n+1-2 

The desired inequality would now follow if it were known that powers 
of B* can be shifted from the left of A to become powers of B on the 
right. Precisely: B *k A = ABk for all k. The induction argument that 
proves this is easy; only the case k = 1 is worth a second glance. That is 
where the assumption that AB is Hermitian comes in; indeed, AB = 

(AB)* = B*A. 
The proof of the inequality involving the spectral radius of B is now 

immediate. The inequality just established implies that 

In this latter inequality take the 2n-th root of both sides and pass to 
the limit as n _ 00. 
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Solution 83. The metric space of operators on an infinite-dimen
sional Hilbert space is not separable. 

Proof. Since every infinite-dimensional Hilbert space has a separable 
infinite-dimensional subspace, and since every separable infinite-dimen
sional space is isomorphic to V(O,l), there is no loss of generality in 
assuming that the underlying Hilbert space is V(O,1) to begin with. 
That granted, let CPt be the characteristic function of [O,t], and let PI 

be the multiplication operator induced by CPt, 0 ~ t ~ 1, If s < t, then 
P t - p. is the multiplication operator induced by the characteristic 
function of (s,t], and therefore II P t - P.II = 1. Conclusion: there 
exists an uncountable set of operators such that the distance between 
any two of them is 1; the existence of such a set is incompatible with 
separability. For an alternative example of the same thing, consider 
diagonal operators whose diagonals consist of O's and l's only. 

Solution 84. The set of invertible operators is open and inversion 
is continuous. 

Proof. Recall first that if II 1 - A II < 1, then A is invertible and 
A-l = L:~=o(1 - A)n (d. Solution 72); it follows that 

II A-lil 
Ol 1 

~ Ell 1 - A lin = 1 _ 111 _ A II 

Suppose now that Ao is an invertible operator. Since 

1 - AAo-l = (Ao - A)Ao-l 

for each A, it follows that if II Ao - A II < 1/11 AO-l II, then 
111 - AAo-l II < 1. This implies that if II Ao - A 1/ < 1/1/ AO-l II, 

245 
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then A is invertible (because AAo-l is) and 

II A-l II = II ((AAo-l)Ao)-l II ~ II AO-l 11·11 AoA-l II 

II A 0-1 II 
< -------------------
= 1 - II Ao - A 11·11 Ao-1 II 

Conclusion: not only is the set of invertible operators open, but so long 
as an operator stays in a sufficiently small neighborhood of one of 
them, it is not only invertible, but its inverse remains bounded. 

The result of the preceding paragraph makes the continuity proof 
accessible. Observe that 

If Ao is fixed and if A is sufficiently near to A o, then the middle factor 
on the right makes the outcome small, and the other two factors remain 
bounded. 

Solution 85. The sequence of weights for Ak is 

{ .. " 1, 1, 1, (~), 1, 1, 1, ... }. 

Since 11k ~ 1, it follows that the supremum of the sliding products 
that enter the formula for the spectral radius of a weighted shift (see 
Solution 77) is equal to 1, and hence that r(Ak) = 1. Conclusion: the 
spectrum of Ak is included in the closed unit disc, and this is true for 
k = 1,2, 3, "', 00. 

If k < 00, then Ak is invertible, and, in fact, Ak-1 itself is a weighted 
shift. Since Ak-1en is en_lor ken_1 according as n ~ lor n = 1, it follows 
that Ak-1 shifts the en's backwards (and weights them as just indicated). 
Backwards and forwards are indistinguishable to within unitary equiva
lence (d. Solution 68), and, consequently, the theory of weighted shifts 
is applicable to Ak-l. The sequence of weights for Ak-J is 

{ .. " 1, 1, 1, (1), k, 1, 1, 1, ... }. 
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The supremum of the sliding products of length m is now equal to k; 
it follows that r(A k-I) = limm kI/m = 1. Conclusion: the spectrum of 
A,,-I is included in the closed unit disc, and this is true for k = 1,2,3, ... 
(but not for 00). 

The conclusions of the preceding two paragraphs, together with the 
spectral mapping theorem for inverses, imply that the spectrum of A" 
(and also the spectrum of A,,-l) is included in the unit circle (perimeter). 
This, together with the circular symmetry of the spectra of weighted 
shifts (see Problem 75), implies that the spectrum of Ak is equal to the 
unit circle (k = 1,2,3, ... ). 

The spectrum of Aoo is clearly not the unit circle; since Acoeo = 0, 
the spectrum of A (X) contains the origin. This shows that the spectrum 
of Aoo is discontinuously different from the spectra of the other Ak'S. 
(Note that Ak ~ A"" i.e., II Ak - A", II ~ 0, as k ~ 00.) The spectrum 
of A", is, in fact, equal to the unit disc. The quickest way to prove this 
is to note that the span of the en's with n > ° reduces A", (both it and 
its orthogonal complement are invariant under A (0)' and that the re
striction of Aoo to that span is the unilateral shift. Since the spectrum 
of every operator includes the spectrum of each direct summand, the 
proof is complete. 

This example is due to G. Lumer. 

Solution 86. Let T be the set of all singular operators (on a fixed 
Hilbert space), and, given an operator A, fixed from now on, let ~(A) 
be the distance (in the metric space of operators) from A - A to T. 
The function ~ is continuous. (This is an elementary fact about metric 
spaces; it does not even depend on T being closed.) If Ao is an open set 
that includes A(A), if ~ is the closed disc with center ° and radius 
1 + II A II, and if A E ~ - Ao, then ~(A) > 0. (This does depend on T 
being closed; if ~(A) = 0, i.e., d(A - A, T) = 0, then A - A E T, i.e., 
A E A(A).) Since ~ - Ao is compact, there exists a positive number E 

such that ~(A) ~ E for all A in ~ - Ao; there is clearly no loss of generality 
in assuming that e < 1. Suppose now that II A - B II < e. It follows 
that if A E ~ - Ao, then 

II (A - A) - (B - A) II < e ~ d(A - A, T). 
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This implies that B - A is not in T, and hence that A is not in A (B). 
Conclusion: ACB) is disjoint from .1 - AD. At the same time, if A ~ A(B), 

then 

I A I ~ II B II ~ II A II + II A - B II < 1 + II A II, 

so that A (B) c.:l. These two properties of A (B) say exactly that 
A(B) c AD; the proof is complete. 

A different proof can be based on the known properties of resolvents. 
If cp(A) = II (A - A)-1 II, then cP is defined and continuous outside AD; 

since it vanishes at 00, it is bounded (d. Problem 72). If, say, cp(A) < a 

whenever A f AD, put 10 = l/a. If II A - B II < E and A f AD, then 

1 
II (A - A) - (B - A) II = II A - B II < E < ; II (A - A)-1 II 

it follows as in Solution 84 that B - A is invertible. 
The metric space proof is due to C. Wasiutynski; the resolvent proof 

is due to E. A. Nordgren. 

Solution 87. There exists a convergent sequence of nilpotent oper
ators such that the spectral radius of the limit is positive. 

Proof. The construction is based on a sequence {IOn} of positive 
numbers converging to O. The question of what the c's can be will be 
answered after the question of what they are expected to do. Begin by 
defining a sequence {an} as follows: every second a is equal to Eo (Le., 
0'0 = Eo, 0'2 = cO, a4 = 100, ••• ); every second one of the remaining a's is 
equal to 101 (i.e., a1 = 101, a5 = 101, a9 = 101, ••• ); every second one of the 
still remaining a's is equal to 102; and so on ad infinitum. The sequence 
of a's looks like this: 

Let A be the weighted unilateral shift whose weights are the a's, 
and, for each non-negative integer k, let Ak be the weighted unilateral 
shift whose weights are what the a'S become when each 10k is replaced 
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by 0. Thus, for instance, the sequence of weights for A2 is 

Two things are obvious from this construction: Ak is nilpotent of index 
2k+I, and the norm of A k - A (which is a weighted shift) is Ek. 

All that remains is to prove that the E'S can be chosen so as to make 
r(A) > 0. For this purpose note that 

ao = EO, 

and, in general, if n = 2p - 2 (P = 1, 2, 3, ... ), then 

p-I 
ao' .. an = Eo2 ... lOp_I. 

Hence 

p-l Pr:-1 log 10k 
'" 2p- I - k log 10k = 2p --
L.J 2k+I ' 
k=O k=O 

or 

This implies that if the series 

f: log 10k 
2k+I 

k=O 

is convergent (which happens if, for instance, 10k = 1/2k), then 

lim infn log(ao" 'an)I/nH > - 00, 

and therefore 

The desired conclusion follows from Solution 78. 
This example is due to S. Kakutani; see Rickart [1960, p. 282]. 



Chapter 12. 
Strong and weak topologies 

Solution 88. The first assertion involving uniformity has nothing to 
do with operators; it is just a special case of Problem 16. To prove the 
second assertion, assume A = OJ this loses no generality. The assumption 
in this case is that, for each positive number 10, if n is sufficiently large, 
then 

II An/II < 10 whenever Ilfll = 1; 

the uniformity manifests itself in that the size of n does not depend on 
f. It follows that if n is sufficiently large, then 

IIAn LII < 10 wheneverf ~ 0, 
Ilfll 

and hence that 

II An/ II ~ 10 II/ II for all f· 

This implies that if n is sufficiently large, then 

The argument is general; it applies to all nets, not only to sequences. 

Solution 89. The norm is continuous with respect to the uniform 
topology and discontinuous with respect to the strong and weak topol
ogies. 

Proof. The proof for the uniform topology is contained in the in
equality 

III A II - liB III ~ II A - B II· 
250 
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This is just a version of the subadditivity of the norm, and it implies 
that the norm is a uniformly continuous function in the norm topology. 
The proof says nothing about the continuity of the norm in any other 
topology. A norm is always continuous with respect to the topology it 
defines; other topologies take their chances. 

To show that the norm is not continuous with respect to the strong 
topology (not even sequentially), and, a fortiori, it is not continuous 
with respect to the weak topology, consider the following example. 
Let {Mn} be a decreasing sequence of non-zero subspaces with inter
section {O}, and let {P n} be the corresponding sequence of projections. 
The sequence {Pn } converges to 0 strongly. (To see this, form an 
orthonormal basis for Mll, one for Ml n M2l, another for M2 n Mal, etc., 
and string them together to make a basis for the whole space. Cf. also 
Solution 94.) The sequence {liP n II} of norms does not converge to the 
number 0; indeed II Pn II = 1 for all n. 

Solution 90. The adjoint is continuous with respect to the uniform 
and the weak topologies and discontinuous with respect to the strong 
topology. 

Proof. The proof for the uniform topology is contained in the identity 

II A * - B* II = II A - B II. 

If a function from one space to another is continuous, then it remains 
so if the topology of the domain is made larger, and it remains so if 
the topology of the range is made smaller. (This is the reason why the 
strong discontinuity of the norm implies its weak discontinuity.) If, 
however, a mapping from a space to itself is continuous, then there is 
no telling how it will behave when the topology is changed; every change 
works both ways. In fact, everything can happen, and the adjoint proves 
it. As the topologies march down (from norm to strong to weak), the 
adjoint changes from being continuous to being discontinuous, and back 
agam. 

To prove the strong discontinuity of the adjoint, let U be the uni
lateral shift, and write Ak = U*Ie, k = 1, 2, 3, .... Assertion: Ale ~ 0 
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strongly, but the sequence {Ak *} is not strongly convergent to anything. 
Indeed: 

n=k 

so that II Akjl12 is, for eachj, the tail of a convergent series, and therefore 
Ad - O. The negative assertion about {Ak*} can be established by 
proving that ifj ~ 0, then {Ak*jl is not a Cauchy sequence. Indeed: 

II A!+nj - An*j 112 = II Um+nj - Unj 112 = II Umj - j 112 

= II Umj 112 - 2 Re(Umj,j) + II! 112 

= 2(lljW - Re(f,u*mj». 

Since II U*mj 11- 0 as m -) 00, it follows that II A!+nj - An*j II refuses 
to become small as m and n become large; in fact if m is large, then 
II A!+nj - An *j II is nearly equal to Y1.llj II. 

As for the weak continuity of the adjoint, that is implied by the identity 

I (A *j,g) - (B*j,g) I = I (f,Ag) - (f,Bg) I = I (Ag,j) - (Bg,f) I· 

Solution 91. The proof for the uniform topology is contained in the 
inequalities 

II AB - AcJ30 II ~ II AB - ABo II + II ABo - AcJ30 II 

~ IIA II·IIB -Boll + IIA - Aoll·IIBoll 

~ (II A - Ao II + II Ao II) II B - Bo II + II A - Ao 11·11 Bo II· 

An elegant counterexample for the strong topology depends on the 
assertion that the set of all nilpotent operators of index 2 (i.e., the set 
of all operators A such that A 2 = 0) is strongly dense. (The idea is due 
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to Arnold Lebow.) To prove this, suppose that 

{A: II A 0/ .. - A/ .. II < E,i = 1, ···,k} 

is an arbitrary basic strong neighborhood. There is no loss of generality 
in assuming that the f's are linearly independent (or even orthonormal) ; 
otherwise replace them by a linearly independent (or even orthonormal) 
set with the same span, and, at the same time, make E as much smaller 
as is necessary. For each i (= 1, ... , k) find a vector gi such that 
II A O/ i - gi II < E and such that the span of the g's has only 0 in common 
with the span of thef's; so long as the underlying Hilbert space is infinite
dimensional, this is possible. Let A be the operator such that 

(i = 1, ... , k) 

and 

Ah = 0 whenever h 1.. /i and h 1.. gi (i = 1, ... , k). 

Clearly A is nilpotent of index 2, and, just as clearly, A belongs to the 
prescribed neighborhood. 

If squaring were strongly continuous, then the set of nilpotent oper
ators of index 2 would be strongly closed, and therefore every operator 
would be nilpotent of index 2, which is absurd. 

This result implies, of course, that multiplication is not jointly strongly 
continuous. Since the strong topology is larger than the weak, so that a 
strongly dense set is necessarily weakly dense, the auxiliary assertion 
about nilpotent operators holds for the weak topology as well as for the 
strong. Conclusion: squaring is not weakly continuous, and, conse
quently, multiplication is not jointly weakly continuous. 

Solution 92. The easiest proof uses convergence. The convergence of 
sequences is sometimes misleading in general topology, but the con
vergence of nets (generalized sequences) is good enough. Suppose there
fore that Aj ~ A strongly, i.e., that Ad ~ A/ for eachf. It follows, in 
particular, that AiB/ ~ AB/ for each/, and this settles strong continuity 
in A. If, on the other hand, B j ~ B strongly, i.e" if Bl ~ B/ for each/, 
then apply A to conclude that ABd ~ AB/for each/; this settles strong 
continuity in B. Weak continuity can be treated the same way. If 
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(Al,g) ~ (Aj,g) for each j and g, then, in particular, (AjBj,g) ~ 
(ABj,g) for eachj and g; if (Bl,g) ~ (Bj,g) for eachj and g, then, in 
particular, (AB;j,g) = (Bl,A *g) ~ (Bj,A *g) = (A Bj,g) for each 
j and g. 

Solution 93. (a) The crux of the matter is boundedness. Assume 
first that the sequence {II A n II} of norms is bounded. (The boundedness 
of {II Bn II} would do just as well.) Since, for each j, 

II AnBnf - ABj II ~ II AnBnj - AnBj II + II AnBj - ABj II 

~ II An 11'II(Bn - B)jll + II(An - A)Bjll, 

the assumed boundedness implies, as desired, that AnBnj ~ ABJ. 
Now what about the boundedness assumption? The answer is that it 

need not be assumed at all; it can be proved. It is, in fact, an immediate 
consequence of the principle of uniform boundedness for operators: if a 
sequence of operators is weakly convergent (and all the more if it is 
strongly convergent), then it is weakly bounded, and therefore bounded. 

(b) Multiplication is not weakly sequentially continuous. 

Proof. Let U be the unilateral shift, and write An = U*n, Bn = Un, 
n = 1,2,3, .... Since An ~ 0 strongly, it follows that An ~ 0 weakly, 
and hence that Bn ~ 0 weakly (d. Solution 90). Since, however, 
AnBn = 1 for all n, it is not true that AnBn ~ 0 weakly. 

Solution 94. A bounded increasing sequence oj Hermitian oper
ators is always convergent with respect to the strong topology, but not 
necessarily with respect to the uniform topology. 

Proof. One way to prove the assertion about the strong topology is 
to make use of the weak version. Let {An} be a bounded increasing 
sequence of Hermitian operators, and let A be its weak limit. Since 
An ~ A, the operator A - An is positive, and therefore it has a positive 
square root, say Bn (see Problem 95). Since 
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the sequence {Bn} tends strongly to o. Since III A - An II} is bounded, 
so is {II Bn II} ; say II Bn II ~ f3 for all n. The asserted strong convergence 
now follows from the relation 

II(A - An)fll = II Bn:!11 ~ f3IIBnfll. 

As once before (d. Solution 1) sequences play no essential role here; 
nets would do just as well. 

There is sometimes a technical advantage in not using the theorem 
about the existence of positive square roots. The result just obtained 
can be proved without that theorem, if it must be, but the proof with 
square roots shows better what really goes on. Here is how a proof 
without square roots goes. Assume, with no loss of generality, that 
A ~ 1. If m < n, then 

II (An - Am)f 114 = «An - Am)f,(An - Am)j)2 

~ «An - Am)f,J) «An - Am):!,(An - Am)f), 

by the Schwarz inequality for the inner product determined by the 
positive operator An - Am. Since An - Am ~ 1, so that II An - Am II ~ 1, 
it follows that 

A frequently used consequence of the strong convergence theorem is 
about projections. If I Mn} is an increasing sequence of subspaces, then 
the corresponding sequence IPn } of projections is an increasing (and 
obviously bounded) sequence of Hermitian operators. It follows that 
there exists a Hermitian operator P such that P n --t P strongly. Asser
tion: P is the projection onto the span, say M, of all the Mn's (d. 
Solution 89). Reason: if f belongs to some Mn, then Pf = f, and if f is 
orthogonal to all Mn's, then Pf = 0; these two comments together imply 
that there is a dense set on which P agrees with the projection onto M. 

Increasing sequences of projections serve also to show that the mono
tone convergence assertion is false for the uniform topology. Indeed, if 
the sequence I Mn} is strictly increasing, then the sequence {P n} cannot 
converge to P (or, for that matter, to anything at all) in the norm, 
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because it is not even a Cauchy sequence. In fact, a monotone sequence 
of projections can be a Cauchy sequence in trivial cases only; 
II Pn - Pm 1\ = 1 unless Pn = Pm. 

Solution 95. It is convenient (for purposes of reference) to break up 
the proof into small steps, as follows. 

(1) All the positive integral powers of a positive operator are positive. 
Indeed (A2nj,j) = II Anj Wand (A2n+lj,j) = (A . A nj,Anj) ; the former 
is positive because norms are, and the latter is positive because A is. 
In the sequel the result is needed not for A but for 1 - A. (Note: the 
assertion is a trivial consequence of the spectral theorem.) 

(2) Each Bn is a polynomial in 1 - A with positive coefficients (by 
induction), and hence (by (1» each Bn is a positive opera tor. 

(3) By (2), all the Bn's commute with one another, and it follows 
that 

This implies (by (2) and induction) that Bn+l - Bn is a polynomial in 
1 - A with positive coefficients, and hence positive; it follows that the 
sequence {Bn} is increasing. 

(4) The definition of Bn+l in terms of Bn implies (induction) that 
II Bn II ~ 1 for all n; the sequence {Bn} is bounded. 

(5) By (3) and (4), {Bn} is a bounded increasing sequence of positive 
operators, and therefore it is strongly convergent to some (necessarily 
positive) operator B. Note that the argument needs Solution 94. Since 
the point of what is now going on is to avoid square roots, it is necessary 
to use the version of Solution 94 that does not use square roots. 

Convergence is proved; it remains only to evaluate the limit. This is 
easy from Problem 93; since Bn ~ B (strongly), it follows that Bn2 ~ B2 
(strongly), and hence that 

B = H (1 - A) + B2). 

This says that 

A = 1 - 2B + B2 = (1 - B)2, 

and the proof is complete. 
The proof is standard; cf. Riesz-Nagy [1952, §104]. 
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Solution 96. Even a small amount of experience with non-commu
tative projections shows that the familiar algebraic operations are not 
likely to suffice to express E /\ F in terms of E and F. The following 
quite pretty and geometrical consideration shows how topology comes 
in, and motivates the actual proof. Suppose that the underlying Hilbert 
space H is two-dimensional real Euclidean space, and suppose that M 
and N are two distinct but not orthogonal lines through the origin. Take 
an arbitrary point fin H, project it on M (i.e., form Ef), project the 
result on N (F Ef), then project on M (EF Ef), and continue so on 
ad infinitum; it looks plausible that the sequence so obtained converges 
to 0, which, in this case, is (E /\ F)f. This suggests the formation of the 
sequence 

E, FE, EFE, FEFE, EFEFE, .... 

The proof itself works with the subsequence 

EFE, EFEFE, EFEFEFE, ... ; 

this is a matter of merely technical convenience. 
Since II EF E II ~ I, the powers of EF E form a decreasing (and even 

commutative) sequence of positive operators. It follows that (EF E)n is 
weakly convergent to, say, G; since in this case weak and strong con
vergence are equivalent, G belongs to the given von Neumann algebra. 
Assertion: G = E/\ F. Clearly G is Hermitian. Since (EFE)mG = G 
for all m, therefore G2 = G, so that G is a projection. Since 
(EF E)mFG = G for all m, therefore GFG = G; this implies that G ~ F. 
(Proof: 0 = G - GFG = G(l - F)G = G(l - F) (1 - F)G, and 
(1 - F)G = (G(l - F))*.) Since E(EFE)n = (EFE)n for all n, 
therefore EG = G or G ~ E. If, finally, Go is a projection such that 
Go ~ E and Go ~ F, then Go(EFE)n = Go, whence GoG = Go, so that 
Go ~ G. The proof is complete. 

The theorem has its own dual for an easy corollary. The assertion is 
that the projection E v F on the subspace M v N belongs to any von 
Neumann algebra containing E and F. Since 

EvF = 1- «1- E)/\(l- F)), 

the proof is immediate. 
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An examination of the proof shows that not all the defining properties 
of von Neumann algebras were used; all that was needed was a se
quentially strongly closed set of operators such that if A and B are in 
the set, then so is ABA (for the theorem about EAP) or 

1 - (1 - A) (1 - B)(l - A) 

(for the theorem about E v P). Observe that even in the latter case it 
is not required that 1 belong to the set; an expression such as 

1 - (1 - A)(l - B) (1 - A) 

is a convenient way of writing something that can obviously (though 
clumsily) be written without 1 if so desired. 



Chapter 13. Partial isometries 

Solution 97. Use the spectral theorem to represent A as a multipli
cation by, say, I{J. If X E A(A) and if N is an arbitrary neighborhood of 
F(X), then F-l(N) is a neighborhood of X, and therefore I{J-l (F-l (N) ) 
has positive measure. Since l{J-l(F-l(N») = (F°I{J)-l(N) , itfollows that 
X is in the essential range of F°I{J, so that X E A(F(A». This proves 
that F(A(A» C A(F(A». 

To prove the reverse inclusion is the same as to prove that if 
HF(A(A)), then XfA(F(A). The set F(A(A) is compact. (It is 
the image under the continuous function F of the compact set A(A).) 
Since X is not in it, X has a neighborhood disjoint from it. If N is such a 
neighborhood, N n F(A(A» = JZf, thenF-l(N) n A(A) = JZf, and there
fore l{J-l(F-l(N») n l{J-l(A(A» = JZf. Since l{J-l(A(A» can differ from 
the whole underlying measure space by a set of measure zero at most, 
it follows that (Fol{J)-l(N) has measure zero, and hence that X does not 
belong to the spectrum of F(A). This completes the proof. 

Soultion 98. Suppose that Hand K are Hilbert spaces and suppose 
that U is a partial isometry from H into K with initial space M. (For a 
discussion of such transformations and their adjoints, see Problem 40.) 
If E is the projection from H onto M, and if j E M, then 

(U*Uj,j) = II Uj W = IIj 112 = (Ej,j); 

ifj 1.. M, then 

(U*Uj,j) = 0 = (Ej,j). 

It follows that (U* Uj,j) = (Ej,j) for all j in H, and this implies that 
U*U = E. 

Suppose, conversely, that U is a bounded linear transformation from 
H into K such that U*U is a projection with domain H and range M, 
say. It follows that 

II Uj W = (U*Uj,j) 
259 

(Ej,j) 
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for all f, and hence that II Uf II = II f II or Uf = 0 according as f E M 
orf..l M. 

To prove Corollary 1, observe that ker U*U = ker U (this is true for 
every bounded linear transformation U). The proof of Corollary 2 is a 
trick. If U*U is idempotent, then (UU*)3 = U(U*UU*U) U* = 
(UU*)2; the spectral theorem implies that a Hermitian operator A 
with A 3 = A 2 is idempotent. The assertion about initial and final spaces 
follows from the observation that (ker UU*)l = (ker U*)1 = ran U 
(since ran U is closed). As for Corollary 3: if U is a partial isometry, 
then the product of U and the projection U*U agrees with U on both 
ker U and its orthogonal complement; if, conversely, U = UU*U, then 
premultiply by U* and conclude that U*U is idempotent. 

Solution 99. If U is an isometry and if UM = M, then M reduces 
U; if U is a co-isometry and if M reduces U, then UM = M. The 
first implication is false for co-isometries; the second implication is false 
for isometries. 

Proof. If U*U = 1 and UM = M, then U*M = U*UM = M. 
If UU* = 1 and both UM c M and U*M c M, then apply U to the 
second inclusion to obtain the reverse of the first. 

The first implication is false if U is the adjoint of the unilateral shift 
and M is the (one-dimensional) subspace of eigenvectors belonging to 
a non-zero eigenvalue (see Solution 67). In that case UM = M, but M 
does not reduce U. The second implication is false if U is the unilateral 
shift and M is the whole space. In that case M reduces U, but UM ¢ M. 

Solution 100. The assertion about closure is obvious; the reason is 
that (1) the mapping A ~ AA * A is continuous, and (2) the equation 
A = A A * A characterizes partial isometries. 

An even easier version of the same proof shows that the set of all 
isometries is closed; consider the mapping (1) A ~ A * A and the equa
tion (2) A * A = 1. This comment is pertinent to the question concerning 
the connectedness of the set of all non-zero partial isometries. One way 
to prove that the answer to that question is no is to prove that the set 
of all isometries is not only closed but also open in the set of all partial 
isometries (in the relative topology of the latter). The fact is that if a 
partial isometry is sufficiently near to an isometry, then it is an isometry. 
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More precisely, if U is a partial isometry, if V is an isometry, and if 
II U - V II < 1, then U is an isometry. It is sufficient to prove that if 
Uf = 0, thenf = O. Indeed, since Ilf II = II Vf II = II Uf - Vf II ~ 
II U - V 11·11 f II, it follows that if f ~ 0, then \I U - V II ;?; 1, which 
contradicts the assumption that II U - V II < 1. 

The same argument shows that if the underlying Hilbert space is 
infinite-dimensional, then the set of all isometries is not connected. 
Reason: the set of all unitary operators is a non-empty proper (!) 
subset that is simultaneously open and closed. 

Solution 101. The kernel of U and the initial space of V can have 
only 0 in common. Indeed, if f is a non-zero vector such that Uf = 0 
and II Vf II = Ilf II, then II Uf - Vf II = Ilf II, and this contradicts the 
hypothesis II U - V II < 1. It follows that the restriction of U to the 
initial space of V is one-to-one, and hence (Problem 42) the dimension 
of the initial space of V is less than or equal to the dimension of the 
entire range of U. In other words, the result is that p(V) ~ p(U); 
the assertion about ranks follows by symmetry. 

The assertion about nullities can be phrased this way: if v (U) ~ v (V) , 

then II U - V II ;?; 1. Indeed, if v(U) ~ v(V), say, for definiteness, 
v (U) < v (V), then there exists at least one unit vector f in the kernel 
of V that is orthogonal to the kernel of U. To say that f is orthogonal 
to the kernel of U is the same as to say thatfbelongs to the initial space 
of U. It follows that 1 = II f II = II Uf II = II Uf - Vf II ~ II U - V II, 
and the proof of the assertion about nullities is complete. 

The assertion about co-ranks is an easy corollary: if II U - V II < 1, 
then II U* - V* II < 1,andthereforep'(U) = v(U*) = v(V*) = p'(V). 

The result appears in Riesz-Nagy [1952, §105J for the special case of 
projections (which is, in fact, Problem 43). The present statement is a 
generalization, and, at the same time, the proof is a considerable simplifi
cation. The proof in Riesz-Nagy is, however, more constructive; it not 
only proves that two subspaces have the same dimension, but it exhibits 
a partial isometry that has the first for initial space and the second for 
final space. The generalization appears in Halmos-McLaughlin [1962]. 

Solution 102. Suppose that VI and V2 are partial isometries with the 
same rank, co-rank, and nullity; let NI and N2 be their kernels, MI and M2 
their initial spaces, and Rl and R2 their ranges. Let U be an arbitrary 
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unitary operator that maps NI onto N2 and MI onto M2• Let W be a 
linear transformation that maps RI! isometrically onto R2!; for i in R I , 

define Wi = V2UVI*f. Since it is easy to verify that this definition yields 
a linear transformation W that maps RI isometrically onto R 2, it follows 
that there exists a unitary operator W that maps RI onto R2 and RI! 
onto R2! as indicated. If g E NI , then 

if g E MI , then 

It follows that WVI = V2U, or WVIU* = V2.If t ~ WI and t - U t are 
continuous curves of unitary operators that join 1 to Wand to U, then 
t ~ WtVIU/ is a continuous curve of partial isometries all with the same 
rank, co-rank, and nullity, that joins VI to V2• 

This proof is a simplification of the one in Halmos-McLaughlin [1962]; 
it is due to R. G. Douglas. 

Solution 103. Suppose that A and B are unitarily equivalent. If U 
is a unitary operator that transforms A onto B, then U transforms A * 
onto B*, and therefore U transforms A' = V1 - AA * onto B' = 
V 1 - BB*; it follows that 

transforms M(A) onto M(B). 
Suppose next that A and B are invertible and that M(A) and M(B) 

are unitarily equivalent. The range of M(A) consists of all ordered 
pairs of the form (Ai + A'g,O). This set is included in the set of all 
ordered pairs with vanishing second coordinate; the invertibility of A 
implies that the range of M(A) consists exactly of all ordered pairs with 
vanishing second coordinate. Since the same is true for M (B), it follows 
that every unitary operator matrix that transforms M(A) onto M(B) 
maps the subspace of all vectors of the form <1,0) onto itself. This 
implies that that subspace reduces every such unitary operator matrix 
(d. Solution 99), and hence that every such unitary operator matrix is 
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diagonal. Since the diagonal entries of a diagonal unitary matrix are 
unitary operators, it follows that if M(A) and M(B) are unitarily 
equivalent, then so also are A and B. 

Solution 104. If a compact subset A of the closed unit disc contains 
the origin, then there exists a partial isometry with spectrum A. 

Proof. Let A be a contraction whose spectrum is A (see Problem 48). 
If, as in Problem 103, 

where A' = VI - AA *, then M is a partial isometry; what is its 
spectrum? The question reduces to this: for which values of A is the 
operator matrix 

not invertible? Since M* annihilates every ordered pair whose first 
coordinate is 0, it follows that 0 is in the spectrum of M* and hence of 
M. If A ;of 0, then Problem 56 applies. The conclusion is that A is in the 
spectrum of M if and only if A is in the spectrum of A. Summary: 
A(M) = Au {O} = A. 

In the finite-dimensional case more can be said. If A is a finite subset 
of the closed unit disc, with 0 in A, and if each element of A is assigned 
a positive integral mUltiplicity, then there exists a partial isometry with 
spectrum A whose eigenvalues have exactly the prescribed algebraic 
multiplicities; see HaImos-McLaughlin [1962]. 

Solution lOS. Begin with the construction of P. Since A * A is a 
positive operator on H, it has a (unique) positive square root; call it P. 
Since 

II PfI12= (Pf,P]) = (F2f,j) = (A*Af,j) = IIAfl12 

for allf in H, it follows that the equation 

UPj = Af 
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unambiguously defines a linear transfonnation U from the range R of P 
into the space K, and that U is isometric on R. Since U is bounded on 
R, it has a unique bounded extension to the closure R, and, from there, 
a unique extension to a partial isometry from H to K with initial space 
R. The equation A = UP holds by construction. The kernel of a partial 
isometry is the orthogonal complement of its initial space, and the 
orthogonal complement of the range of a Hermitian operator is its 
kernel. This implies that ker U = ker P and completes the existence 
proof. 

To prove uniqueness, suppose that A = UP, where U is a partial 
isometry, P is positive, and ker U = ker P. It follows that A * = PU* 
and hence that 

A *A = PU*UP = PEP, 

where E is the projection from H onto the initial space of U. Since that 
initial space is equal to (ker U)l, and hence to ran P, it follows that 
EP = P, and hence that A *A = P2. Since the equation UPj = Aj 
uniquely determines U for j in ran P, and since Uj = 0 when j is in 
ker P, it follows that U also is uniquely determined by the stated 
conditions. 

To deduce Corollary 1, multiply A = UP on the left by U*, and 
use the equation U*U = E; d. Solution 98. For Corollary 2, observe 
that ker U = ker P = ker A *A = ker A, and ker U* = (ran U)l = 
(ran A)l. 

Solution 106. Suppose that A is a bounded linear transformation 
from a Hilbert space H to a Hilbert space K, let A = UP be the polar 
decomposition of A, let M ( c H) be the initial space of the partial 
isometry U, and let R( c K) be the range of U (or, equivalently, the 
closure of the range of A). If dim Ml ~ dim Rl, then there exist isom
etries from H into K that agree with U on M (many of them); all that 
is needed is to map Ml isometrically into Rl and to combine such a 
mapping with what U does on M. If, on the other hand, dim Rl ~ 
dim Ml, then there exist isometries from K into H that agree with U* 
on R; the adjoint of each such isometry is a co-isometry from H into K 
that agrees with U on M. In either case there exists a linear transfor
mation V from H into K such that either Vor V* is an isometry and such 
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that V agrees with U on M. Since the range of P is included in M, it 
follows that VP = UP = A. 

Solution 107. The extreme points of the unit ball in the space of 
operators on a Hilbert space are the maximal partial isometries. 

Proof. Suppose first that U is an isometry and that U = aA + {jB, 
with a > 0, {j > 0, a + {j = 1, II A II ~ 1, and II B II ~ 1. Iff is a unit 
vector, then so is Uf, and Uf = aAf + {jBf, where II Af II ~ 1 and 
II Bf II ~ 1. Since the closed unit ball of a Hilbert space is strictly 
convex (Problem 3), it follows that Af = Bf = Uf, and hence that 
A = B = U. Conclusion: isometries are extreme points. The result for 
co-isometries is an immediate consequence. 

The converse can be proved by showing that every operator A, with 
II A II ~ 1, is equal to a convex combination (in fact, to the average) 
of two extreme points of the kind already found. Here the theory of 
polar decompositions (or, rather, a consequence of it) is useful. By 
Problem 106, it is possible to write A = V P, where V is a maximal 
partial isometry and 0 ~ P ~ 1. (The justification for the upper bound 
on P is that II A II ~ 1.) Assertion: there exists a unitary operator W 
such that P = ! (W + W*). (The assertion is true and the proof below 
is valid whenever -1 ~ P ~ 1; in case the underlying Hilbert space is 
one-dimensional, then both the assertion and its proof make simple 
geometric sense.) To prove the assertion, just write 

and verify that everything works. Now, since A = V P and P = 
HW + W*), it follows that A = HVW + VW*). Since the product 
of a maximal partial isometry and a unitary operator is a maximal 
partial isometry, the proof is complete. 

Kadison [1951J has proved that, for certain operator algebras, the 
extreme points in the unit ball of the algebra are those partial isometries 
U that satisfy the identity 

(1 - U*U)A (1 - UU*) = 0 

for all A in the algebra. For the algebra of all operators on a Hilbert 
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space this is consistent with what was just proved. It is, indeed, clear 
that if either U or U* is an isometry, then the Kadison condition is 
satisfied. Suppose, conversely, that the condition is satisfied, and assume 
that 1 - UU* ~ 0; it is to be proved that 1 - U*U = O. In other 
words, it is to be proved that if (1 - UU*)f ~ 0 for some f, then 
(1 - U*U)g = 0 for each g. That is easy: given g, find an operator A 
such that A (1 - UU*)f = g. 

Solution 108. Write UP = A. If U commutes with P, then U 
commutes with p2; since P also commutes with p2, it follows that 
A (= UP) commutes with A *A (= P2). 

The converse is harder. If A is quasinormal, then A commutes with 
p2 (= A * A). It follows from the most elementary aspects of the func
tional calculus that A commutes with P. (Compare Problem 95, which 
shows that the positive square root of a positive operator is the weak. 
limit of a sequence of polynomials in that operator. Alternatively, apply 
the Weierstrass theorem on the approximation of continuous functions 
by polynomials to prove that "weak" can be replaced by "uniform".) 
This says that (UP - PU)P = 0, so that UP - PU annihilates ran P. 
Since ker P = ker U, it is trivial that UP - PU annihilates ker P also, 
and it follows that UP - PU = O. 

Solution 109. By Problem 106, every operator has the form VP, 
where V is a maximal partial isometry and P is positive. Given a positive 
number e, find an invertible operator Q (which can be made positive, if 
so desired) such that II P - Q II < e. Itfollows that II VP - VQ II < e. 
The proof of the density theorem for unilaterally invertible operators is 
completed by observing that if V is a maximal partial isometry, then V 
is unilaterally invertible (left invertible if V is an isometry and righ t 
invertible if V* is one) , and that the product of a unilaterally invertible 
operator and an invertible operator is unilaterally invertible. 

To obtain the negative conclusion for invertible operators, consider 
an operator A that is unilaterally invertible but not invertible. (Ex
ample: the unilateral shift.) Assertion: there is a neighborhood of A 
that contains no invertible operators. Assume (with no loss of generality) 
that A has a left inverse B, with II B II ~ 1. In the presence of this 
normalization, the assertion can be made more precise: the open ball 
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with center A and radius 1 contains no invertible operators. Now, for 
the proof, observe first that B cannot be invertible, for if it were, then 
it would follow that A = B-IBA = B-1, and hence that A is invertible. 
It is to be proved that if II A - T II < 1, then T is not invertible. 
Indeed: 

111 - BT II = II B(A - T) II ~ II A - Til < 1, 

and hence BT is invertible; this implies that if T were invertible, then 
B would be, but it is not. 

Solution 110. One way to approach the proof is to show that for 
each invertible operator A there is a continuous curve that connects it 
to the identity. For this purpose, consider the polar decomposition UP 
of A. Since A is invertible, so also are U and P. It follows that U is 
unitary and P is strictly positive. Join U to 1 by a continuous curve 
t -t U t of unitary operators (d. Problem 102), and, similarly, join P 
to 1 by a continuous curve t -t P t of strictly positive operators. (The 
latter does not even need the spectral theorem; consider tP + (1 - t), 
o ~ t ~ 1.) If At = UtPt , then t -t At is a continuous curve of in
vertible operators that joins A (= A l ) to 1 (= Ao). 



Chapter 14. Unilateral shift 

Solution 111. If H is not separable, then it is the direct sum of 
separable infinite-dimensional subspaces that reduce A, and, conse
quently, there is no loss of generality in assuming that H is separable in 
the first place. In a separable Hilbert space all infinite-dimensional 
subspaces have the same dimension; the assertion, therefore, is just that 
H is the direct sum of ~o infinite-dimensional subspaces that reduce A. 
It is sufficient to prove the assertion for 2 in place of ~o. In other words, 
it is sufficient to prove that jor each normal operator on a separable 
infinite-dimensional Hilbert space there exists a reducing subspace such 
that both it and its orthogonal complement are infinite-dimensional. Indeed, 
if this is true, then there exists a reducing subspace Hl of H such that 
both Hl and HlJ. are infinite-dimensional. Another application of the 
same result (consider the restriction of A to Hl!) implies that there 
exists a reducing subspace H2 of Hl! such that both H2 and Hl! n H2! 
are infinite-dimensional. Proceed inductively to obtain an infinite se
quence IHn} of pairwise orthogonal infinite-dimensional reducing sub
spaces. If the intersection n;:'=1 Hn1 is not zero, adjoin it to, say, HI. 

lt remains to prove the assertion italicized above. The spectral theorem 
shows that there is no loss of generality in restricting attention to a 
mUltiplication operator A induced by a bounded measurable function cp 
on some measure space. For each Borel subset M of the complex plane, 
let E(M) be the multiplication operator induced by the characteristic 
function of cp-I(M); the operator E(M) is the projection onto the sub
space of functions that vanish outside cp-l(M). Clearly each E(M) 
commutes with A, i.e., the range of each E(M) reduces A. If, for some 
M, both E(M) and 1 - E(M) have infinite-dimensional ranges, the 
desired assertion is true. 

In the contrary case what must happen is that for each M either 
E(M) or 1 - E(M) has finite rank. Draw a sequence of finer and finer 
square grids on the plane, and let each square in each grid play the role 
of M; it follows that if E(M) has positive rank, then M contains at 
least one point A such that Ee IA}) has positive rank. There cannot be 
more than finitely many A's like that, for then they could be separated 

268 
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into two infinite subsets, and that would contradict the main assumption 
of this paragraph. Conclusion: there exists at least one point A. such that 
the dimension of the range of E( {A.}) is infinite; let M be that range. 
The restriction of A to M is a scalar and is therefore reduced by every 
subspace of M. Split M into two infinite-dimensional subspaces Mo and 
Ml; if Ho = Mo and Hl = MI V MJ., then Ho and HI do everything that 
is required. 

Solution 112. Every unitary operator on an infinite-dimensional 
Hilbert space is the product of four symmetries; three is not always 
enough. 

If the underlying Hilbert space H is finite-dimensional, then the con
cept of determinant makes sense. Since the determinant of a symmetry 
is ±1, it follows that no unitary operator with a non-real determinant 
can be the product of symmetries. 

Proof. Suppose that HI is an infinite-dimensional Hilbert space, and 
begin by representing H as the direct sum of a sequence {Hn} of equi
dimensional subspaces each of which reduces the given unitary operator 
U (Problem 111). It is convenient to let the index n run through all 
integers, positive, negative, and zero. 

Relative to the fixed direct sum decomposition H = Ln H n, define a 
right shift as a unitary operator S such that SHn = H n+l , and define a 
left shift as a unitary operator T such that THn = H n_ l , n = 0, ±1, 
±2, .... The equi-dimensionality of all the Hn's guarantees the existence 
of shifts. If S is an arbitrary right shift, write T = S*U. Since THn = 

S*UHn = S*Hn = Hn _ l for all n, it follows that T is a left shift. Since 
U = ST, it follows that every unitary operator is the product of two 
shifts; the proof will be completed by showing that every shift is the 
product of two symmetries. 

Since the inverse (equivalently, the adjoint) of a left shift is a right 
shift, it is sufficient to consider right shifts. Suppose then that S is a 
right shift; let P be the operator that is equal to SI-2n on Hn and let Q 
be the operator that is equal to S-2n on Hn (n = 0, ±1, ±2, ... ). 
If f € Hn, then Qf = S-2n{ € S-2nHn = H_n, so that PQf = P S-2nf = 
SI-2(-n) S-2nf = Sf. The existence proof is complete. 
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To prove that on every Hilbert space there exists a unitary operator 
that is not the product of three symmetries, let w be a non-real cube 
root of unity, and let U be wI. The operator U belongs to the center of 
the group of all unitary operators; the order of U in that group is exactly 
three. The remainder of the proof has nothing to do with operator 
theory; the point is that in no group can a central element of order 3 be 
the product of three elements of order 2. Suppose indeed that u is central 
and that u = xyz, where x2 = y2 = Z2 = 1; it follows that 

u4 = uxuyuz = u(xu)y(uz) = u(yz)y(xy) 

= y(uz)y(xy) = yxy·yxy = 1. 

Reference: Halmos-Kakutani [1958]. 

Solution 113. (a) The unilateral shijt is not the product oj a finite 
number oj normal operators. (b) The norm oj both the real and the 
imaginary part oj the unilateral shijt is 1. (c) The distance from the 
unilateral shijt to the set oj normal operators is 1. 

Proof. (a) The principal tool is the observation that if a normal 
operator has a one-sided inverse, then it has an inverse. (Proof: for 
every operator, left invertibility is the same as boundedness from below, 
d. (2), Solution 70; boundedness from below for a normal operator is 
the same as boundedness from below for its adjoint.) Suppose, indeed, 
that U = AI··· A "" where U is the unilateral shift and AI, ... , A n are 
normal. Since U* = An * .. ·A1*, itfollows that An * ... AI* AI·· ·An = 1, 
and hence that An is left invertible. In view of the preceding comments, 
this implies that A n is invertible, and therefore so is An *. Invertible 
operators can be peeled off either end of a product without altering its 
invertibility character. It follows by an obvious inductive repetition of 
the argument that each of the A's is invertible, and so therefore is U. 
This is a contradiction, and the proof is complete. 

(b) If U is the unilateral shift, and if A = ! (U + U*), then it is 
clear that II A II ~ 1. Since 1 is an approximate eigenvalue of U, there 
exists a sequence Un} of unit vectors such that Uj", - jn ~ o. Apply 
U* and change sign to get U*jn - jn ~ o. Add and divide by 2 to get 
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Afn - fn ~ 0. Conclusion: 1 is an approximate eigenvalue of A, and 
therefore II A II ~ 1. To get the result for the imaginary part, note that 
if U = A + iB, then -iU = B - iA, and -iU is unitarily equivalent 
to U (d. Problem 75). 

(c) It is trivial that there is a normal operator (namely 0) within 1 
of U; the less trivial part of the assertion is that if A is normal, then 
II U - A II ~ 1. If A is invertible, this follows from Solution 109; the 
assertion there implies that the open ball with center U and radius 1 
contains no invertible operators. The general case is now immediate: the 
set of invertible normal operators is dense in the set of all normal oper
ators. 

Solution 114. The unilateral shift has no square root. 

Proof. It turns out that U* is easier to treat than U, and, of course, 
it comes to the same thing. Suppose therefore that V2 = U*, and let No 
be the (one-dimensional) kernel of U*. Since ker V c ker V2 = No, it 
follows that dim ker V ~ 1. If the kernel of V were trivial (zero-dimen
sional), then the same would be true of U*; it follows that dim ker V = 1, 
and hence that ker V = No. Since u* maps the underlying Hilbert space 
onto itself, the same must be true of V. It follows in particular that No 
is included in the range of V, and hence that there exists a vector f such 
that Vf is a non-zero element of No. Since No is the kernel of V, this 
implies that Vo/ = 0, i.e., that U*f = 0, and hence that f E No. Do it 
again: since No is the kernel of V, this implies that Vf = 0, in contra
diction to the way f was chosen in the first place. Conclusion: there is no 
such V. 

Similar negative results were first obtained by Halmos-Lumer-Schaffer 
[1953J; the techniques used there would serve here too. The very much 
simpler proof given above is due to J. G. Thompson. Further interesting 
contributions to the square root problem were made by Deckard-Pearcy 
[1963J and Schaffer [1965]. 

Solution 115. It is obvious that every multiplication operator on V 
commutes with W. If A is the multiplication operator induced by a 
bounded measurable function ((J, then 

Aeo = ((J·eo = ((J. 
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This shows that in any attempt to prove that some operator A is a 
multiplication on V there is no choice in the determination of the 
multiplier; if there is one, it must be Aeo. 

Suppose now that AW = WA, and put cp = Aeo. The first (and in 
fact the major) difficulty is to prove that cp is bounded; one way to do 
it is this. If 1/; is an arbitrary bounded measurable function, and if B is 
the multiplication operator it induces, then, in the usual sense of the 
functional calculus for normal operators, B = 1/;(W). Since W commutes 
with A, every function of W commutes with A, and hence, in particular, 
B commutes with A; it follows that 

Cp'1/; = 1/;'CP = Bcp = BAeo = ABeo = A1/;. 

The statement that every function of W commutes with A is not trivial; 
it is the Fuglede commutativity theorem for normal operators. (See 
Halmos [1951, p. 68J and Problem 152.) It is not necessary in this 
argument to use all bounded measurable functions; it would be sufficient 
to use trigonometric polynomials (i.e., finite linear combinations of the 
en'S). The Fuglede theorem would still come in; it is needed to show that 
if W commutes with A, then W* commutes with A. 

At this point Problem 50 is almost applicable. The hypothesis there 
was that A is an operator on V such that Af = cp·f for allf in V; the 
situation here is that A is an operator on V such that A1/;= cp.1/; for 
all bounded measurable 1/;. The difference is large enough to invalidate 
one of the proofs that worked there, but not large enough to invalidate 
the second, more "natural" proof. Conclusion: cp is bounded. 

The rest of the proof is trivial. Since cp is bounded, it induces a multipli
cation operator; since that multiplication operator agrees with A on 
the dense set of all bounded functions, it agrees with A everywhere. 

To prove the corollary, note that if a multiplication is a projection, 
then the multiplier is a characteristic function. 

Solution 116. As in Solution 115, it is inevitable to put cp = Aeo and 
to try to prove that cp is the desired multiplier. Since, for each n, multipli
cation by en leaves H2 invariant (n = 0, 1, 2, ... ), it follows that 
cp·en E H2. Since, moreover, 
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it follows that, for each polynomial p, the product ip' P belongs to H2 and 
ip' P = Ap. If ip were known to be bounded, the proof would be over 
(the multiplication operator induced by ip agrees with A on a dense set), 
and, if it were known that ip·f = Af for all fin H2, then ip would be 
bounded (d. the last comment in Solution 50). Since at the moment 
neither of these ifs is known, there is nothing for it but to prove some
thing. The least troublesome way seems to be to adapt (or, to put it 
bluntly, to repeat) the second proof used in Solution 51. 

If f E H2, then there exist polynomials pn such that pn ~ fin H2; it 
follows, of course, that Apn ~ Afin H2. There is no loss of generality in 
assuming that pn ~ f almost everywhere and Apn ~ Af almost every
where; if this is not true for the sequence IPn}, it is true for a suitable 
subsequence. Since pn ~ f almost everywhere, it follows that ip' pn ~ ip·f 
almost everywhere; since, at the same time, ip,pn ~ Af almost every
where, it follows that ip·f = Af almost everywhere. 

There are two ideas in this twice used proof: (1) if a closed transfor
mation agrees with a bounded one on a dense set, then it, is bounded, 
and (2) multiplications are always closed. 

The corollary is equivalent to this: if E is a projection that commutes 
with U, then E = 0 or E = 1. The result proved above implies that E 
is the restriction to H2 of a multiplication, where the multiplier itself is 
in Hoo. Since an idempotent multiplication on H2 must be induced by an 
idempotent multiplier (apply to eo), the multiplier must be the char
acteristic function of a set, and hence, in particular, real; the desired 
conclusion follows from Problem 26. 

The corollary, incidentally, does not have to be deduced from the 
main assertion; for an easy direct proof see Halmos [1951, p. 41]. 

Solution 117. Let U be the unilateral shift, represented as the re
striction to H2 of the multiplication induced by eli see, for instance, 
Problem 116. If A commutes with U, then (by Problem 116) there 
exists a function ip in Hoo such that Af = ip-J for allf in H2. The crucial 
tool is that ip is the limit almost everywhere of a sequence IPn} of poly
nomials such that" pn II", ~ II ip II", for every n; d. Solution 33. It 
follows that if f E H2, then 
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almost everywhere. Since Pn·f ~ <p·f almost everywhere, the Lebesgue 
dominated convergence theorem applies; the conclusion is that pn·f ~ <p·f 
in H2. Since multiplication by pn is a polynomial in U (namely pn(U»), 
the proof is complete. 

Solution 118. The only wayan isometry V on a Hilbert space H can 
fail to be unitary is to map H onto a proper subspace of H. This suggests 
that the extent to which VH differs from H is a useful measure of the 
non-unitariness of V. One application of V compresses H into VH, 
another application of V compresses VH into V2H, and so on. The 
incompressible core of H seems to be what is common to all the VnH's. 
This is true, and it is the crux of the matter: the main thing to prove is 
that that incompressible core reduces the operator V. A slightly sharper 
result is sometimes useful; it is good to know exactly what the ortho
gonal complement of that core is. Write N = (VH)l; in terms of N the 
main result is that 

co co n VnH = n (VnN)l, 
n=O n=O 

Both the statement (and the proof below) become intuitively obvious 
if orthogonal complements are replaced by ordinary set-theoretic comple
ments. (A picture helps.) 

Begin with the observation that VMl c (VM)l for all subspaces M. 
(Indeed, iff E Ml, so that Vfis a typical element of VM1, and if gEM, 
so that Vg is a typical element of VM, then Vf 1- Vg follows, since V 
is an isometry, fromf 1- g.) This implies that 

and that settles half the proof. For the reverse inclusion, assume that 
f E n~=o(VnN)l and prove by induction thatf E VnH for all n. If n = 0, 
this is trivial. Iff E VnH, so thatf = Vng for some g, then Vng 1- VnN 
(since f E (VnN)l), and therefore g 1- N. This implies that g f VH, and 
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hence that f e VnHH, as desired. The proof of the asserted equation is 
complete. 

The rest is easy. Obviously n~=o VnH is invariant under V; since, by 
the result just proved, its orthogonal complement is equal to V~=o VnN, 
which is also invariant under V, it follows that n~=o VnH reduces V. 
The restriction of V to this reducing subspace is unitary (because it is 
an isometry whose range is equal to its domain). The restriction of V to 
the orthogonal complement V~=o VnN is a direct sum of copies of the 
unilateral shift; the number of copies is dim N. 

Solution 119. If U is the unilateral shift, then II U - V II 2 
for each unitary operator V. 

Proof. The proof begins with the observation that if -1 belongs to 
the spectrum of an operator A, then - 2 belongs to the spectrum of 
A - 1. It follows that if A is a non-normal (i.e., non-unitary) isometry, 
then rCA - 1) ~ 2, and hence II A - 111 ~ 2. (Use Problem 118, and 
recall that the spectrum of the unilateral shift is the closed unit disc.) 
If V is unitary, then II U - V II = II V*U - 111. Since v*u is a non
normal isometry, it follows that II U - V II ~ 2; the reverse inequality 
is trivial. 

This is a geometrically very peculiar result. The unilateral shift is on 
the unit sphere of the space of operators, and so also is each unitary 
operator. What was just proved can be expressed in geometric language 
by saying that if V is unitary, then U and V are diametrically opposite; 
they are as far from each other as if they were at the opposite ends of a 
diameter. What is peculiar is that this is true for every V. 

Solution 120. There exist commutative isometries Uo and Vo such 
that the domain of the unitary component of UO does not reduce Vo. 

Proof. Let Uo be the direct sum of the unilateral shift and infinitely 
many copies of the bilateral shift; let Vo be an isometry that transplants 
the unilateral component into the first bilateral one and shifts the 
bilateral components forward. To make this description computationally 
explicit, let U be the unilateral shift, write E = 1 - UU*, and define 



(Note: the O's and 1's in Vo are operators, the same size as the entries 
in Uo.) Computation proves that UoVo = VoUo. The domain of the 
unitary part of Uo is the tail (all vectors with vanishing first coordinate); 
clearly the orthogonal complement of the tail (all vectors that vanish 
after the first coordinate) is not invariant under Vo. 

The 3 X 3 northwest corners of Uo and Vo serve the same purpose, 
but in that case Vo is not an isometry, but only a partial isometry. 

Solution 121. Given: a Hilbert space H and on it a contraction A 
such that An _ 0 strongly. To construct: a Hilbert space H and on it a 
shift U with the stated unitary equivalence property. The construction 
is partially motivated by the following observation: if a vector j in H is 
replaced by Aj, then the sequence 

(j, Aj, A2j, ... ) 

is shifted back by one step, i.e., it is replaced by 

(Aj, A2j, A3j, ... ). 

What this suggests is that H be something like the direct sum 
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That does not work. There is no reason why the sequence (f, Af, A'1, .•• > 
should belong to the direct sum (the series L:~=o II A nf 112 need not con
verge), and, even if it does, the correspondence between f and (f, Af, 
A '1, ••• > may fail to be norm-preserving (even if L:~=o II A nj 112 con
verges, its sum will be equal to II j 112 only in case Aj = 0). 

The inspiration that removes these difficulties is to transform each 
term of the sequence <1, Af, A 2j, ... ) by an operator T so that the 
resulting series of square norms converges to Ilf W the easy way, by 
telescoping. That is: replace <1, A f, A 2j, ... ) by < Tf, T A f, T A '1, •.• ), 
so that 

II TfW = IIjll2 - II AfW, 

II T Af W = II Af 112 - II A 2j W, 

"TA'111 2 = II A'1112 - II A~W, 

etc. 

The first of these equations alone, if required to hold for all j, implies 
that T*T = 1 - A * A, and, conversely, if T*T = 1 - A * A, then all 
the equations hold. 

The preceding paragraphs were intended as motivation. For the proof 
itself, proceed as follows. Since A is a contraction, 1 - A * A is positive; 
write T = V 1 - A * A, and let R be the closure of the range of T. Let 
:H be the direct sum R EEl R EEl REEl· . '. If j € H, then T A nf € R for all 
n,and 

k k 

L: II T A"1 112 = L ( (1 - A * A) A nf,A nj) 
n=O n=O 

k 

= L(II Anf 112 - II An+y 112) 
n=O 

Since II A Hy II ~ 0 by assumption, it follows that if f E H, and if the 
mapping V is defined by 

Vj = (Tj, TAj, TA2j, ... ), 
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then V is an isometric embedding of H into H. If U is the obvious shift 
on H (U (jO,/1,j2, ... ) = (0,10,11, .,. », then, clearly, V Af = U*Vf 
for allf. Since the V image of H in H is invariant under U*, the proof 
is complete. 

Note that the multiplicity of the shift that the proof gives is equal to 
the rank of 1 - A * A, where "rank" is interpreted to mean the dimension 
of the closure of the range. 

Solution 122. Suppose that A is an operator on a Hilbert space H 
such that r (= r(A) < 1. Since r = limn II An Win, it follows that 
the power series L~=o II A n II zn converges in a disc with center 0 and 
radius (= l/r) greater than 1. This implies that L~=o II An II < co, 
and hence, all the more, that L~=o II An 112 < co. Let Ho be the Hilbert 
space obtained from H by redefining the inner product; the new inner 
product is given by 

00 

(j,g)o = L(Ani,Ang). 
n=O 

Since I (A'i,Ang) I ~ IIAnill·IIAngll ~ IIAnW·llill·llgll,thereisno 
difficulty about convergence. If Iii 115 = (j,j)o, then 

00 

Iii W ~ Iii 115 ~ (L II An W) ·lli 11 2, 
n=O 

and that implies that the identity mapping I from H to Ho is an in
vertible bounded linear transformation. (This, incidentally, is what 
guarantees that Ho is complete.) If Ao = I AI-I, then Ao is an operator 
on Ho, similar to A. If i -¢ 0, then 

II Ao! II~ 
Ilill~ 

n=1 --.:.n:.....==-.1 _____ _ 
00 00 

Iii 112 + L II Ani W 1 + L(ll Ani II/Iii 11)2 

n=1 
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so that Ao is a proper contraction. This implies that the powers of Ao 
tend to zero not only strongly, but in the norm. 

Corollary 1 is immediate from Problem 121, and Corollary 2 is implied 
by the proof (given above) that II Ao II < 1. For Corollary 3: if A is 
quasinilpotent, then 

for every positive number e; if (l/e)A is similar to the contraction C, 
then A is similar to eC. 

Corollary 4 requires a little more argument. Clearly rCA) = 
rCS-lAS) ~ II S-IAS II and therefore rCA) ~ infs II S-IAS II. To 
prove the reverse inequality, let t be a number in the open unit interval 
and write 

t 
B = rCA)A. 

CIf rCA) = 0, apply Corollary 3 instead.) Corollary 2 implies that 
II S-IBS II < 1 for some S, so that t·1I S-IAS II < rCA). Infer that 
t·infs II S-IAS II ~ rCA), and then let t tend to 1. 

Solution 123. The restriction of U to M is an isometry. If N 
M n (UM)!, then N is the orthogonal complement of the range of that 
restriction. Apply the result obtained in Solution 118 to that restriction 
to obtain 

ex> co n UnM = M n n CUnN)1. 
n=O 

Since n~=o UnH2 = {O}, it follows that 

Since, on the other hand, UnN c UnM c M, it follows that 

co 

V UnN eM. 
n=O 
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The span of Ml and a proper subspace of M can never be the whole 
space. Conclusion: 

co 

V UnN = M. 
n=O 

It remains to prove that dim N = 1. For this purpose it is convenient 
to regard the unilateral shift U as the restriction to H2 of the bilateral 
shift W on the larger space V. If f and g are orthogonal unit vectors in 
N, then the set of all vectors of either of the forms W10r Wmg (n,m = 

0, ±1, ±2, ... ) is an orthonormal set in V. (This assertion leans on 
the good behavior of wandering subspaces for unitary operators.) It 
follows that 

n m 

n m 

,. m 

~ II eo 112 = 1. 

(The inequality is Bessel's.) This absurdity shows that f and g cannot 
co-exist. The dimension of N cannot be as great as 2; since it cannot be 
o either, the proof is complete. 

The last part of the proof is due to 1. Halperin; see Nagy-Foia~ [1962, 
p. 108]. It is geometric; the original proof in Halmos [1961J was analytic. 
See also Robertson [1965]. 

Solution 124. Since Mkl ().,) is spanned by f)., "', Uk-lj)., it is clear 
that dim Mlel ().,) ~ k. To prove equality, note first that Mlel ().,) is 
invariant under U*. (Indeed U*f). = Ai). and, if j ~ 1, U*Uij). = 
U*UUi-lj). = Ui-lj).. Note that this proves the invariance of M),().,) 
under U.) If dim Mlel ().,) < k, then I:~;;;-J aiUij" = 0 for suitable scalars 
ai, or, in other words, there exists a polynomial p of degree less than k 
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such that p (U)j).. = O. This implies that Unj}.. is a linear combination of 
j}.., "', Uk-Ij}.. for all n, and hence that Mk1 (A) is invariant under U also. 
This is impossible, and therefore dim Mi(A) = k. 

Since j}.. - A Uj}.. = L~=o 'X nen - 'X L~=l 'X n-1en = eo, it follows that 
eo E Mk1 ('X) as soon as k > 1. This implies that Uij}.. - 'XUi+Ij}.. = Ujeo = 
ej E Mk1 ('X) as soon as k > j + 1, and, consequently, Y'k=l Mk1 ('X) 
contains all e/s. 

Solution 125. If M = cp·H2, then UM = el"M = el·cp·H2 = 
cp' el . H2 C cp' H2 = M; this proves the "if". For another proof of the 
same implication, use the theory of wandering subspaces. If N is the 
(one-dimensional) subspace spanned by cp, then N is wandering; the 
reason is that (Uncp, Umcp) = f enem *dJ.L = onm. To prove "only if", suppose 
that M is invariant under U and use Problem 123 to represent M in the 
form Y~=o UnN, where N is a wandering subspace for U. Take a unit 
vector cp in N. Since, by assumption, (Uncp,cp) = 0 when n > 0, or 
fen I cp 12dJ.L = 0 when n > 0, it follows (by the formation of complex 
conjugates) that fen I cp 12dJ.L = ° when n < 0, and hence that I cp 12 is a 
function in V such that all its Fourier coefficients with non-zero index 
vanish. Conclusion: I cp I is constant almost everywhere, and, since 
fl cp 12dJ.L = 1, the constant modulus of cp must be 1. (Note that the 
preceding argument contains a proof, different from the one used in 
Solution 123, that every non-zero wandering subspace of U is one
dimensional.) Since cp, by itself, spans N, the functions cp·en (n = 0, 1, 
2, ... ) span M. Equivalently, the set of all functions of the form cpo p, 
where p is a polynomial, spans M. Since multiplication by cp (restricted 
to H2) is an isometry, its range is closed; since M is the span of the 
image under that isometry of a dense set, it follows that M is in fact 
equal to the range of that isometry, and hence that M = cp·H2. 

To prove the first statemen t of Corollary 1, observe that if cp' H2 C .p. H2, 
then cp = cp·eo = .p.j for somej in H2; since j = cp.1/t*, it follows that 
I j I = 1, so that j is an inner function. To prove the second statement, 
it is sufficient to prove that if both e and e* are inner functions, then e 
is a constant. To prove that, observe that both Re e and 1m e are real 
functions in H2, and therefore (Problem 26) both Re 0 and 1m e are 
constants. As for Corollary 2: if M = cp·H2 and N = .p·H2, then 
cp·.pEMnN. 
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Solution 126. Consider first the simple unilateral shift U. Let 
(~o, ~l, ~2, ••• ) be a sequence of complex numbers such that 

li _1_ ~ 1 12 - ° mk 1 12 £.oJ ~n+k - • 
~k n=1 

(Concrete example: ~" = lin!.) Assertion: j = (~o, h, ~2, ••• ) is a 
cyclic vector for U*. For the proof, observe first that U*kj = 

(~k' ~k+l, ~k+2, .•• ), and hence that 

11
1 k 112 II ~k+l ~k+2 112 ~U*'j-eo = (1,~,~, ... )- (1,0,0",,) 

Consequence: eo belongs to the span of j, U*j, U*'1, .... This implies 
that 

belongs to that span (k = 1, 2, 3, ... ). Since 

11
1 k-l 112 1 ~ -(U* j - ~k-leO) - el = -I -12 £.oJ 1 ~n+k 12 ~ 0, 
& & _1 

it follows that el belongs to the span of j, U*j, U*}, .... An obvious 
inductive repetition of this twice-used argument proves that en belongs 

2 to the span of j, U*j, U* j, ... for all n (= 0, 1, 2, ... ), and hence that 
j is cyclic. 

Once this is settled, the cases of higher multiplicity tum out to be 
trivial. For multiplicity 2 consider the same sequence {~n} and form the 
vector 
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For higher finite multiplicities, and even for multiplicity ~o, imitate this 
subsequence formation. Thus, for instance, a cyclic vector for the shift 
of mUltiplicity ~o is the vector whose i-th component is the i-th row of 
the following array: 

~o ~l 0 ~3 0 0 ~6 0 0 0 

0 0 ~2 0 ~4 0 0 ~7 0 0 

0 0 0 0 0 h 0 0 ~8 0 

0 0 0 0 0 0 0 0 0 ~9 

(Rule: lengthen the diagonals. Each column contains only one non-zero 
entry; each row is an infinite subsequence of {~n}') The point is that 
each sub series of a series with the property that L:~=o I ~n 12 has (the 
ratio of terms to tails tends to 0) has the same property. 

Solution 127. Given] in H2, let M be the least subspace of H2 that 
contains] and is invariant under U. By Problem 125, either] = 0 or M 
contains a function cp such that I cp I ~' 1 almost everywhere. Since 
p (U)f e M for every polynomial p, and since the closure of the set of 
all vectors of the form p (U)] is a subspace of H2 that contains] and is 
invariant under U, it follows that cp is the limit in H2 of a sequence of 
vectors of the form P(U)j. Since every vector of that form vanishes at 
least when] does, it follows that cp vanishes when] does. 

To prove the corollary, observe that if f does not vanish almost every
where, then, by the F. and M. Riesz theorem, it vanishes almost nowhere, 
and therefore g must vanish almost everywhere. 

Solution 128. There exists a non-zero element] of V that vanishes 
on a set of positive measure, such that (],en ) (f,e-n ) = 0 whenever 
n ~O. 
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Proof. Let g be any non-zero element of V that vanishes on a set of 
positive measure, and writef(z) = zg(Z3). Clearly fis anon-zero element 
of V that vanishes on a set of positive measure. If g = Ln {3nen, then 
f = Ln {3ne3n+l (this needs justification), so that (j,en) = 0 unless 
n == 1 (mod 3). If n == 1 (mod 3), then -n == 2 (mod 3), and therefore 
(f,en ) (f,e-n ) = 0 for all n. 

Solution 129. Suppose first that {an) is periodic of period 
p (= 1, 2, 3, ... ), and let M j (j = 0, "', p - 1) be the span of all 
those basis vectors en for which n == j (mod P). Each vector f has a 
unique representation in the form fo + ... + fp-1 with fj in Mj. Consider 
the functional representation of the two-sided shift, and, using it, make 
the following definition. For each measurable subset E of the circle, 
let M (= ME) be the set of all thosej's for whichj;(z) = 0 whenever 
j = 0, "', p - 1 and z f E. Iff = L~~j; (withj; in Mj), then 

and 

p-1 
Af = LajWj; 

j=O 

p-1 

A *f = L aj_1W*j;; 
j=O 

this proves that M reduces A. (Note that WM j = Mi+1 and W*M j = 
Mj _ 1, where addition and subtraction are interpreted modulo p.) 

To show that this construction does not always yield a trivial reducing 
subspace, let Eo be a measurable set, with measure strictly between 0 
and liP, and let E be its inverse image under the mapping z ~ zp. 
The set E is a measurable set, with measure strictly between 0 and 1. 
If g is a function that vanishes on the complement of Eo, and iffo(z) = 

g(zp), thenfo vanishes on the complement of E. If, moreover, fj(z) = 

zijo(z) ,j = 0, .. " P - 1, then the same is true of eachfj. Clearly j; EM,., 
and fo + ... + f p-1 is a typical non-trivial example of a vector in M. 
This completes the proof of the sufficiency of the condition. 

Necessity is the surprising part. To prove it, suppose first that B is 
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an operator, with matrix l,Bij}, that commutes with A. Observe that 

Consequence 1: the main diagonal of l,Bij} is constant (put i = j). 
Consequence 2: if ,Bij = 0 for some i andj, then ,Bi+k,j+k = 0 for all k. 

If B happens to be Hermitian, then it commutes with A * also, and 
hence with A * A. Since A * Aen = an2en , it follows that 

(3ij = (Bej,ei) = (B 1.. A * Aej,e i ) 
a? 

Consequence 3: if ai ~ aj, then ,Bij = O. 
Assume now that the sequence Ian} is not periodic; it is sufficient to 

prove that every Hermitian B that commutes with A is a scalar. The 
assumption implies that if m and n are distinct positive integers, then 
there exist integers i and j such that ai ~ aj and i - j = m - n. It 
follows that 

(by Consequence 3) 

= f3i-i+n,j-i+n (by Consequence 2), 

i.e., that (3mn = 0 whenever m ~ n. This says that the matrix of B is 
diagonal; by Consequence 1 it follows that B is a scalar. 



Chapter 15. Compact operators 

Solution 130. If A is (s -+ s) continuous, and if {hI is a net w-con
vergent to f, then (Ah,g) = (fi,A *g) -+ (f,A *g) = (Af,g) for all g, 
so that Af; -+ Af (w). This proves that A is (w -+ w) continuous. 
Note that the assumption of (s -+ s) continuity was tacitly, but heavily, 
used via the existence of the adjoint A *. 

If A is (w -+ w) continuous, and if {fil is a net s-convergent to f, 
then, a fortiori, h -+ f (w), and the assumption implies that 
Afi -+ Af (w). This proves that A is (s -+ w) continuous. 

To prove that if A is (s -+ w) continuous, then A is bounded, assume 
the opposite. That implies the existence of a sequence Un} of unit 
vectors such that II Afn II ~ n2• Since 

the assumption implies that 

and hence that 

1 

1 
- fn -+ 0 (s), 
n 

- Afn -+ 0 (w), 
n 

is a bounded sequence; this is contradicted by 

Suppose, finally, that A is (w -+ s) continuous. It follows that the 
inverse image under A of the open unit ball is a weak open set, and 
hence that it includes a basic weak neighborhood of O. In other words, 
there exist vectors fl' "', fk and there exists a positive number € such 

286 
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that if I (j,ji) I < €, i = 1, ... , k, then II Af II < 1. Iff is in the orthogonal 
complement of the span of {f1, ... , fk}, then certainly I (j,fi) I < €, 

i = 1, ... , k, and therefore II Af II < 1. Since this conclusion applies 
to all scalar multiples off too, it follows that Af must be 0. This proves 
that A annihilates a subspace of finite co-dimension, and this is equiva
lent to the statement that A has finite rank. (If there is an infinite
dimensional subspace on which A is one-to-one, then the range of A is 
infinite-dimensional; to prove the converse, note that the range of A 
is eq).lal to the image under A of the orthogonal complement of the 
kerneL) 

To prove the corollary, use the result that an operator (i.e., a linear 
transformation that is continuous (s ~ s» is continuous (w ~ w). 
Since the closed unit ball is weakly compact, it follows that its image is 
weakly compact, therefore weakly closed, and therefore strongly closed. 

Solution 131. The proof that C is an ideal is elementary. The proof 
that C is self-adjoint is easy via the polar decomposition. Indeed, if 
A EC and A = UP, then P = U*A (see Corollary 1, Problem 105), 
so that P E C; since A * = PU*, it follows that A * E C. 

Suppose now that An E C and II An - A II ~ 0; it is to be proved that 
Afj ~ Af whenever {fj} is a bounded net converging weakly to j. 
Note that 

II Ah - Afll ~ II Ah - Anh II + II Anh - Anfll + II Anf - Afll· 

The first term on the right is dominated by II A - An 11·11 h II; since 
{ II h II} is bounded, it follows that the first term is small for all large n, 
uniformly inj. The last term is dominated by II An - A 11·llfl\, and, 
consequently, it too is small for large n. Fix some large n; the compactness 
of An implies that the middle term is small for lClarge" j. This completes 
the proof that C is closed. 

Solution 132. Let A be an operator with diagonal {an}, and, for each 
positive integer n, consider the diagonal operator An with diagonal 
lao, ... , an-I, 0, 0, 0, ... }. Since A - An is a diagonal operator with 
diagonal to, ···,0, an, an+l, ••• }, so that II A - An II = SUPk I an+k I, 
it is clear that the assumption an ~ ° implies the conclusion 



132 COMPACT OPERATORS 288 

II A - An II ~ O. Since the limit (in the norm) of compact operators is 
compact, it follows that if an -t 0, then A is compact. 

To prove the converse, consider the orthonormal basis {en I that makes 
A diagonal. If A is compact then Aen -t 0 strongly (because en -t 0 
weakly; d. Solution 13). In other words, if A is compact, then 
II anen II-t 0, and this says exactly that an -t O. 

If Sen = en+l, then each of A and SA is a multiple of the other (recall 
that S* S = 1), which implies that A and SA are simultaneously com
pact or not compact. This remark proves the corollary 

Solution 133. With a sufficiently powerful tool (the spectral theorem) 
the proof becomes easy. Begin with the observation that a compact 
operator on an infinite-dimensional Hilbert space cannot be invertible 
(Proof: the image of the unit ball under an invertible operator is strongly 
compact if and only if the unit ball itself is strongly compact). Since 
the restriction of a compact operator to an invariant subspace is compact, 
it follows that if the restriction of a compact operator to an invariant 
subspace is invertible, then the subspace is finite-dimensional. 

Suppose now that A is a compact normal operator; by the spectral 
theorem there is no loss of generality in assuming that A is a multipli
cation operator induced by a bounded measurable function cp on some 
measure space. For each positive number E, let ME be the set 
{x: I cp(x) I > El, and let ME be the subspace of V consisting of the 
functions that vanish outside ME' Clearly each ME reduces A, and the 
restriction of A to ME is bounded from below; it follows that ME is 
finite-dimensional. 

The spectrum of A is the essential range of cpo The preceding paragraph 
implies that, for each positive integer n, the part of the spectrum that 
lies outside the disc {,,: I "I ~ lin I can contain nothing but a finite 
number of eigenvalues each of finite multiplicity; from this everything 
follows. 

Solution 134. Suppose that the identity operator is an integral oper
ator, with kernel K say. This means that if lEV (over a measure space 
X, with a-finite measure p.), then 

f K(x,y)l(y) dp. (y) = lex) 
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for almost every x, and it follows that if] and g are in V, then 

(j,g) = II K(x,y)j(y)g(x) *d~(x)d~(y). 

If, in particular,] and g are the characteristic functions of measurable 
sets, F and G say, then the equation becomes 

~(F n G) = If K(x,y)d~(x)d~(y). 
FXG 

In the latter form the equation is one between two set functions. The 
right side is the indefinite integral of K evaluated at F X G. For a 
useful description of the left side, let T be the diagonal mapping from 
X to X X X (Tx = (x,x»), and let II be the measure defined for measur
able subsets E of X X X by 

II(E) = ~(T-IE). 

If F and G are measurable subsets of X, then T-l(F X G) 
and therefore 

II(F X G) = ~(FnG). 

FnG, 

Conclusion: the indefinite integral of K agrees with II on all "rectangles" 
and hence on all measurable sets, and therefore, in particular, the 
indefinite integral of K is concentrated on the diagonal. The last assertion 
means that if D is the diagonal of X X X, D = {(x,y): x = y}, then 
the indefinite integral of K vanishes on every measurable subset of the 
complement of D (because II does). It follows that K(x,y) = 0 for 
almost every point in the complement of D. 

The preceding reasoning is valid for general (O"-finite) measures; it 
used no special property of Lebesgue measure. It applies, for instance, 
to the counting measure on a countable set, and it implies, in that case, 
that the matrix of the identity operator is a diagonal matrix-no sur
prise. Since, however, the reasoning applies to Lebesgue measure too, 
and since the Lebesgue measure of the diagonal in the plane is 0, it 
follows that if ~ is Lebesgue measure, then K = 0 almost everywhere. 
In view of the expression for (j,g) in terms of K, this is absurd, and the 
proof is complete. 



135 COMPACT OPERATORS 290 

Solution 135. Recall that a simple function is a measurable function 
with a finite range; equivalently, a simple function is a finite linear 
combination of characteristic functions of measurable sets. A simple 
function belongs to L2 if and only if the inverse image of the complement 
of the origin has finite measure; an equivalent condition is that it is a 
finite linear combination of characteristic functions of measurable sets 
of finite measure The simple functions in V (p.) are dense in V (p.). It 
follows that the finite linear combinations of characteristic functions of 
measurable rectangles of finite measure are dense in V(p. X p.). In 
view of these remarks it is sufficient to prove that if A is an integral 
operator with kernel K, where 

n 

i=l 

and where each gi and each hi is a scalar multiple of a characteristic 
function of a measurable set of finite measure, then A is compact. It is 
just as easy to prove something much stronger: as long as each gi and 
each hi belongs to V(fJ.), the operator A has finite rank. In fact the 
range of A is included in the span of the g's. The proof is immediate: 
iff E L2(fJ.) , then 

(Aj)(x) = tgi(x)!h;(y)j(y)dfJ.(y). 
i=1 

Solution 136. If A is a Hilbert-Schmidt operator, then the sum of 
the eigenvalues of A * A is finite. 

Proof. To say that A is a Hilbert-Schmidt operator means, of course, 
that A is an integral operator on, say, V(p.) , induced by a kernel Kin 
V(fJ. X p.). Since A * A is a compact normal operator, there exists an 
orthonormal basis {fj I consisting of eigenvectors of A * A (Problem 133) ; 
write A * Afj = A;Jj. The useful way to put the preceding two statements 
together is to introduce a suitable basis for V(p. X p.) and, by Parseval's 
equality, express the V(p. X p.) norm of K (which is finite, of course) 
in terms of that basis. There is only one sensible looking basis in sight, 
the one consisting of the functions gij, where gij(X,y) = f. (x>!t (y) . 
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It turns out, however, that a slightly less sensible looking basis is 
algebraically slightly more convenient; it consists of the functions gij 
defined by gij(X,y) = fi(X)j;(y) *. 

The rest is simple computation: 

11K W = EEl (K,gij) 12 (by Parseval) 
i j 

~~ 1 II K(x,y)fi(X) *fj(y)dp. (x)dp. (y) 12 

~~ 1 1(1 K(x,y)j;(y)dp.(y) )fi(X)*dp.(x) 12 

~~ 1 I (Af;) (X)fi(X) *dp.(x) \2 

EE I CAj;,fi) 12 = Ell Afj 112 (by Parseval) 
j i j 

E(A*Ah,fj) = EAj. 
j 

The proof is over. The construction of a concrete compact operator 
that does not satisfy the Hilbert-Schmidt condition is now easy. Consider 
an infinite matrix (i.e., a "kernel" on l2). By definition, if the sum of the 
squares of the moduli of the entries is finite, the matrix defines a Hilbert
Schmidt operator. This is true, in particular, if the matrix is diagonal. 
The theorem just proved implies that in that case the finiteness condition 
is not only sufficient but also necessary for the result to be a Hilbert
Schmidt operator. Thus, in the diagonal case, the difference between 
compact and Hilbert-Schmidt is the difference between a sequence that 
tends to 0 and a sequence that is square-summable. 

Solution 137. If A is compact and UP is its polar decomposition, 
then P C = U* A) is compact. By Problem 133, P is the direct sum of 0 
and a diagonal operator on a separable space, and the sequence of 
diagonal terms of the diagonal operator tends to O. This implies that P 
is the limit (in the norm) of a sequence {Pn } of operators of finite rank, 
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and hence that A U . limn P n = limn UP n. Since UP n has finite rank 
for each n, the proof is complete. 

Solution 138. Suppose that I is a non-zero closed ideal of operators. 
The first step is to show that I contains every operator of rank 1. To 
prove this, observe that if U and v are non-zero vectors, then the operator 
A defined by Af = (f,U) v has rank 1, and every operator of rank 1 has 
this form. To show that each such operator belongs to I, take a non-zero 
operator Ao in I, and let Uo and Vo be non-zero vectors such that Aouo = Vo. 
Let B be the operator defined by Bf = (f,u) Uo, and let C be an arbitrary 
operator such that CVo = v. It follows that 

CAoBf = CAo(f,u)uo = (f,u) CVo = (f,u)v = Af, 

i.e., that CAoB = A. Since I is an ideal, it follows that A E I, as promised. 
Since I contains all operators of rank 1, it contains also all operators 

of finite rank, and, since I is closed, it follows that I contains every com
pact operator. (Note that separability was not needed yet.) 

The final step is to show that if I contains an operator A that is not 
compact, then I contains every operator. If UP is the polar decompo
sition of A, then P E I (because P = U* A), and P is not compact 
(because A = UP). Since P is Hermitian, there exists an infinite
dimensional subspace M, invariant under P, on which P is bounded 
from below, by 10 say. (If not, P would be compact.) Let V be an isometry 
from H onto M. (Here is where the separability of H comes in.) Since 
PM = M, it follows that V* PVH = V* PM = V*M = H. Since, 
moreover, Vf EM for allf, it follows that 

IIV*PVfll = IIPVfll ~ EIIVfll = Ellfll. 

These two assertions imply that V* PV is invertible. Since V* PV E I, 
the proof is complete; an ideal that contains an invertible element con
tains everything. 

Solution 139. If A is normal and if A n is compact for some positive 
integer n, then A is compact. 
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Proof. Represent A as a multiplication operator, induced by a 
bounded measurable function cp on a suitable measure space, and note 
that this automatically represents A n as the multiplication operator 
induced by cpn. Since, by Problem 133, A n is the direct sum of 0 and a 
diagonal operator with diagonal terms converging to 0, it follows that 
the essential range of cpn is a countable set that can cluster at 0 alone. 
This implies that A is the direct sum of 0 and a diagonal operator with 
diagonal terms converging to 0, and hence that A is compact. 

Solution 140. Given the compact operator C on a Hilbert space H, 
write A = 1 - C. It is to be proved that if ker A = to}, then A is 
invertible. It is convenient to approach the proof via the following two 
lemmas. (1) If ran A = H, then ker A = {OJ. (2) A is bounded from 
below on (ker A )1. 

(1) Put Kn = ker An, n = 1,2,3, .... If Kl ~ 0, let fl be a non-zero 
vector in K1, and then, inductively, findfn+l so that Afn+! = fn. It follows 
that fn € Kn for all n, and that, in fact, the smallest power of A that 
annihilates fn is the n-th. This implies that the sequence {Kl, K 2, Ka, ••• } 

is strictly increasing, and hence that there exists an orthonormal sequence 
{el' e2, ea, ••• } such that en € Kn for all n. Since Aen+! € Kn, so that 
Aen+! ..1 en+l, it follows that 

Since en ~ 0 weakly, this contradicts the assumed compactness of C. 
Conclusion: Kl = {OJ. 

(2) If A is not bounded from below on (ker A)1, then there exist 
unit vectors fn in (ker A) 1 such that A fn ~ O. In view of the compactness 
of C, there is no loss of generality in assuming that the sequence {Cfn} 
is (strongly) convergent, to f say. Since fn = Afn + Cfn ~ f, it follows 
thatf € (ker A)1 and that Ilf II = 1; since, however, Afn ~ Af, so that 
Af = 0, itfollows thatf € ker A, and hence thatf = O. This contradiction 
completes the proof that A is bounded from below on (ker A)1. 

The results of (1) and (2) apply to C* and A * just as well as to C 
and A. Since ran A = AH = A «ker A)1), it follows from (2) that 
ran A is always closed, and hence, by the comment just made, that 
ran A * is always closed. Suppose now that ker A = {O}; it follows, of 
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course, that ran A * is dense in H. Since ran A * is closed, this implies 
that ran A * = H, and hence that (1) is applicable (to A *) . Conclusion: 
ker A * = to}, and therefore (ker A *)! = H. Apply (2) (to A *) and 
infer that A * is bounded from below. Together with the density of ran A *, 
already established, this implies that A * is invertible, and hence that 
A is invertible; the proof is complete. 

Solution 141. Suppose that A is compact and suppose that M is a 
subspace such that M c ran A. The inverse image of M under A is a 
subspace, say N, and so is the intersection N n (ker A)!. The restriction 
of A to that intersection is a one-to-one bounded linear transformation 
from that intersection onto M, and therefore (Problem 41) it is invertible. 
The image of the closed unit ball of N (i.e., of the intersection of the 
closed unit ball with N) is a strongly compact subset of M, and, by 
invertibility, it includes a closed ball in M (i.e., it includes the inter
section of a closed ball with M). This implies that M is finite-dimensional; 
the proof is complete. 

Solution 142. (1) implies (2). It is always true that A maps (ker A)! 
one-to-one onto ran A, and hence that the inverse mapping maps ran A 
one-to-one onto (ker A)!. In the present case ran A is closed, and there
fore, by the closed graph theorem, the inverse mapping is bounded. Let 
B be the operator that is equal to that inverse on ran A and equal to 
o on (ran A)!. Let P be the projection on ker A, and let Q be the pro
jection on (ran A)l. Note that both P and Q have finite rank. Since 
BA = 1 - P on both (ker A)! and ker A, and since AB = 1 - Q on 
both ran A and (ran A)!, it follows that both 1 - BA and 1 - AB 
have finite rank. 

(2) implies (3). Trivial: an operator of finite rank is compact. 
(3) implies (1). If C = 1 - AB and D = 1 - BA, with C and D 

compact, then both ker B* A * and ker BA are finite-dimensional. It 
follows that both ker A * and ker A are finite-dimensional, and hence 
that both (ran A)! and ker A are finite-dimensional. To prove that 
ran A is closed, note first that BA is bounded from below on (ker BA)!. 
(See Solution 140.) Since II BAlli ~ II B 11·11 Alii for alii, it follows 
that A is bounded from below on (ker BA)!, and hence that the image 
under A of (ker BA)! is closed. Since ker BA is finite-dimensional, the 
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image under A of ker BA is finite-dimensional and hence closed, and 
ran A is the sum A (ker BA) + A (ker BA)l. (Recall that the sum of 
two subspaces, of which one is finite-dimensional, is always a subspace; 
see Problem 8.) 

Solution 143. Translate by A and reduce the assertion to this: if A 
is not invertible but ker A = {O}, then B is not invertible. Contra
positively: if B is invertible, then either ker A ¢ to} or A is invertible. 
For the proof, assume that B is invertible and write 

A = B + (A - B) = B(l + B-l(A - B)). 

The operator B-l(A - B) is compact along with A-B. It follows 
that either -1 is an eigenvalue of B-l(A - B) (in which case ker A ¢ 

{O}), or 1 + B-l(A - B) is invertible (in which case A is invertible). 

Solution 144. The bilateral shift is an example. Suppose that 
{en: n = 0, ±1, ±2, ... } is the basis that is being shifted (Wen = en+!) , 
and let C be the operator defined by Cf = (j,e-l) eo· The operator C 
has rank 1 (its range is the span of eo), and it is therefore compact. 
What is the operator W - C? Since H2 (the span of the en's with n ~ 0) 
is invariant under both Wand C, it is invariant under W - C also. 
The orthogonal complement of H2 (the span of the en's with n < 0) is 
invariant under neither W nor C (since We_l = CLI = eo), but it is 
invariant under W - C. (Reason: if n < 0, then W - C maps en onto 
en+l or 0, according as n < -lor n = -1.) Conclusion: H2 reduces 
W - C. This conclusion makes it easy to describe W - C; it agrees 
with the unilateral shift on H2 and it agrees with the adjoint of the 
unilateral shift on the orthogonal complement of H2. In other words, 
W - C is the direct sum U* EEl U, and, consequently, its spectrum is 
the union of the spectra of u* and U. 

It helps to look at all this via matrices. The matrix of W (with respect 
to the shifted basis) has l's on the diagonal just below the main one 
and O's elsewhere; the effect of subtracting C is to replace one of the 
l's, the one in row 0 and column -1, by O. 

Solution 145. No perturbation makes the unilateral shift normal. 
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Proof. The technique is to examine the spectrum and to use the 
relative stability of the spectrum under perturbation. 

If U = B - C, with B normal and C compact, then 

U*U = B*B - D, 
where 

D = C*B +B*C - C*C, 

so that D is compact. Since U*U = 1, and since A(l) = {ll, it follows 
(Problem 143) that every number in A(B*B), except possibly 1, must 
in fact be an eigenvalue of B*B. (Alternatively, use the Fredholm 
alternative.) Since a Hermitian operator on a separable Hilbert space 
can have only countably many eigenvalues, it follows that the spectrum 
of B* B must be countable. Since A (U) is the closed unit disc, and since 
U has no eigenvalues, another consequence of Problem 143 is that the 
spectrum of B can differ from that disc by the set of eigenvalues of B 
only. A normal operator on a separable Hilbert space can have only 
countably many eigenvalues. Conclusion: modulo countable sets, A(B) 
is the unit disc, and therefore (Problem 97), modulo countable sets, 
A (B*B) is the interval [0,1]. This contradicts the countability of 
A(B*B). 

Solution 146. If Hand K are Volterra kernels, then so IS their 
"product" (matrix composition). Reason: 

(HK) (x,y) = 11 H(x,z)K(z,y)dz, 
o 

and if x < y, then, for all z, either x < Z (in which case H(x,z) = 0), or 
Z < Y (in which case K(z,y) = 0). In other words (HK) (x,y) = 0 if 
x < y; if x ~ y, then 

(HK) (x,y) = I" H(x,z)K(z,y)dz, 
y 

because unless Z is between y and x one of H(x,z) and K(z,y) must 
vanish. It follows that if K is a bounded Volterra kernel, with, say, 
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I K(x,y) I ~ e, and if x ~ y, then 

I K2(X,y) I = It' K(X,Z)K(Z,Y)dZI ~ e2·(x - y). 

(In this context symbols such as K2, K3, etc., refer to the "matrix prod
ucts" KK, KKK, etc.) From this in tum it follows that if x ~ y, then 

These are the first two steps of an obvious inductive procedure; the 
general result is that if J't ~ 1 and x ~ y, then 

en 
I Kn(x,y) I ~ (n _ i)! (x - y)n-l. 

This implies, a fortiori, that 

I Kn(x,y) I ~--
(n - i)!' 

and hence that if A is the induced integral operator, then 

Since 

( 1 )l/n 
(n-1)! ~O as n ~ 00 

(recall that the radius of convergence of the exponential series is 00), 
the proof that A is quasinilpotent is complete. 

Solution 147. Every Volterra operator is quasiJ'tilpoient. 

Proof. It is natural to try to prove the theorem by approximation. 
Given a kernel that vanishes above the diagonal, redefine it to be 0 on a 
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thin strip parallel to the diagonal, and prove that the approximating 
kernel so obtained induces a nilpotent operator. It turns out that this 
works, but only if the approximation is handled with care. Recall 
(Solution 87) that a limit of quasinilpotent operators may fail to be 
quasinilpotent. The necessary care can be formulated as follows. 

Lemma. If A is a Volterra operator, and if e is a positive number, 
then there exist Volterra operators B and C and there exists a positive 
integer k such that (1) A = B + C, (2) II B" < €, and (3) every 
product of B's and C's in which k or more factors are equal to C is 
equal to O. 

Proof oflemma. (1) Let K be the Volterra kernel that induces A. 
The natural way to break K into a small part M and a nilpotent part 
N is to break the lower right triangle E (= I (x,y): x > y I) into a 
diagonal strip D ( 0) (= {(x,y): 0 ~ x - y ~ 15 j) and a similar parallel 
triangle E(!5) (= {(x,y): x > y + oJ). The natural way works. Using 
the absolute continuity of indefinite integrals, choose 0 so that 
ffD(o) I K(x,y)/2dxdy < e2• Let M be K in D(o) and 0 elsewhere, and 
let N be K in E( 0) and 0 elsewhere. If Band C are the integral operators 
induced by M and N, respectively, then it is clear that A = B + c. 

(2) The proof that" B /I < e is immediate; since the V norm ofthe 
kernel of B is less than e, it follows that the operator norm of B is less 
than E. 

(3) The proof that C has the unusually strong nilpotence property 
depends on some simple calculations with integrals. The kernel of BC 
is given by f~ M(x,z) N(z,y) dz when x ~ y. (When x < y it vanishes, 
of course.) Assertion: if (x,y) ED (0), this integral vanishes. Indeed: if 
y ~ z ~ x, then 0 ~ z - y ~ x - y ~ 0, and therefore N(z,y) = O. 
More generally (same proof): if Band C are Volterra operators (not 
necessarily the ones constructed above), and if the kernel of C vanishes 
on D(o), then the kernel of Be vanishes on D(o). Next: the kernel of 
CB is given by f~N(x,z)M(z,y)dz when x ~ y. Assertion: if (X,y)E 
D (0), this integral vanishes. Indeed: if y ~ z ~ x, then 0 ~ x - z ~ 
x - y ~ 0, and therefore N(x,z) = O. More generally (same proof): if 
Band C are Volterra operators, and if the kernel of C vanishes on D( 0), 
then the kernel of CB vanishes on D(o). Summary: for each positive 
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number 0, the Volterra operators whose kernel vanishes on D( 0) form 
a two-sided ideal in the algebra of all Volterra operators. Finally, the 
kernel of C2 is given by J~ N(x,z)N(z,y)dz when x ~ y. Assertion: if 
(x,y) E D(20), this integral vanishes. Indeed, if 0 ~ x - y ~ 20, then, 
for all z, either x - z ~ 0 or z - y ~ 0, and therefore either N(x,z) = 0 
or N(z,y) = O. More generally (same proof): if C1 and C2 are Volterra 
operators whose kernels vanish on D( 01) and D( 02), respectively, then 
the kernel of C1C2 vanishes on D( 01 + 02). These three algebraic relations 
(BC, CB, and C1C2) imply what is wanted. Consider a collection of B's 
and C's and start multiplying them. Each time that a factor C is used, 
the strip on which the kernel vanishes grows by 0; when a B is used, the 
strip at least does not shrink. Conclusion: if k is the smallest integer 
such that ko > 1, then the product vanishes as soon as k of the factors 
are equal to C. The proof of the lemma is complete. 

What was proved so far was an approximation lemma; it says that 
every Volterra operator can be approximated by "highly nilpotent" 
Volterra operators. The alleged consequence of this approximation lemma 
says that, for each positive number e, the inequality II A n Win < e holds 
when n is sufficiently large. For the proof, apply the approximation 
lemma, but, for convenience, with e/2 in place of e. Since An = (B + C) n, 
it follows that if n > k (this is the k mentioned in the approximation 
lemma), then 

II An II ~ ~(~)(:.)n-i II C Iii. 
t=O t 2 

Reason: the other terms that the binomial theorem contributes have k 
or more factors equal to C, and therefore (by (3)) they vanish. Now if 
o ~ i ~ k - 1, then (by a wastefully generous estimate) 

and therefore 

( k-l( )-i )l/n II An WIn ~ ~.nkln. E ~ II C W . 

The second and third factors on the right side of this inequality tend to 
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1 as n becomes large; the proof is completed by choosing n large enough 
to make their contribution less than 2. 

Solution 148. II V II = 2/7r. 

Proof. A direct attack on the problem seems not to lead anywhere. 
Here is a not unnatural indirect attack: evaluate II V*V II and take its 
square root. The reason this is promising is that V*V is not only compact 
(as is V), but it is also Hermitian. It follows that V*V is diagonal; the 
obvious way to find its norm is to find its largest eigenvalue. (Note that 
V*V is positive, so that its eigenvalues are positive.) 

Since V* is given by 
1 

(V*j) (x) = 1 j(y)dy, 
x 

it is easy to find the integral kernel that induces V*V. A simple compu
tation shows that that kernel, K say, is given by 

1
1 - x if ° ~ y ~ x ~ 1, 

K(x,y) = 1 - max(x,y) = 

1-y ifO~x<y~1. 

It follows that 

(V*Vj) (x) = 11 j(y)dy - x fX j(y)dy - 11 yj(y)dy 
o 0 x 

for almost every x, whenever j E: V(O,l). This suggests that the eigen
values of V*V can be explicitly determined by setting V*Vj = Aj, 
differentiating (twice, to get rid of all integrals) , and solving the resulting 
differential equation. There is no conceptual difficulty in filling in the 
steps. The outcome is that if 

for k = 0, 1,2, "', then the Ck'S form an orthonormal basis for V, and 
each Ck is an eigenvector of V*V, with corresponding eigenvalue 
ljCk + !)27r2. The largest of these eigenvalues is the one with k = 0. 
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The outline above shows how the eigenvalues and eigenvectors can be 
discovered. If all that is wanted is an answer to the question (how much 
is II V II?), it is enough to verify that the Ck'S are eigenvectors of V*V, 
with the eigenvalues as described above, and that the Ck'S form an 
orthonormal basis for L2. The first step is routine computation. The 
second step is necessary in order to guarantee that V*V has no other 
eigenvalues, possibly larger than any of the ones that go with the Ck'S. 

Here is a way to prove that the c/s form a basis. For eachfin V write 

1 
(Uf) (x) = '\fj,U(x)e i1rX12 + f(1 - x)e- i ll'xI2). 

It is easy to verify that U is a unitary operator. If en (x) = e2'1rinx, n = 0, 
±1, ±2, ... , then Uen = C2n for n = 0,1,2, ... , and Uen = C(2n+1) for 
n = -1, -2, -3, .... 

Solution 149. A(Vo) = {o}, II VO II = 4/11". 

Proof. The most illuminating remark about Vo is that its range is 
included in the set of all odd functions in V ( -1, + 1). (Recall that f is 
even if f(x) = f( -x), and f is odd if fex) = -fe -x).) The second 
most illuminating remark (suggested by the first) is that if f is odd, 
then Vof = 0. These two remarks imply that Vo is nilpotent of index 2, 
and hence that the spectrum of Vo consists of ° only. 

One way to try to find the norm of Vo is to identify V( -1,+1) with 
VeO,1) EB L2(0,1), determine the two-by-two operator matrix of Vo 
corresponding to such an identification, and hope that the entries 
in the matrix are simple and familiar enough to make the evaluation 
of the norm feasible. One natural way to identify V( -1, +1) with 
V(O,!) EB L2(0,1) is to mapfonto (g,h),whereg(x) =f(x) andh(x) = 
f( -x) whenever x (; (0,1). This gives something, but it is not the best 
thing to do. For present purposes another identification of V( -1, +1) 
with V(O,1) EB V(0,1) is more pertinent; it is the one that mapsf onto 
(g,h ), where 

g(x) = tef(x) - f( -x» and hex) = tef(x) + f( -x» 
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whenever x E (0,1). The inverse map sends (g,h) onto f, where 

f(x) = hex) + g(x) and f( -x) = hex) - g(x) 

whenever x E (0,1). Since 

(Vof) (x) = 2 f" Hf(y) + f( -y) )dy, 
o 

it follows that if x E (0,1), then 

(Vof) (x) = 2(Vh) (x) and (Vof) (-x) -2(Vh)(x). 

The conclusion can be expressed in the form 

Vo (g,h) = (2Vh,0). 

From this form the matrix of Va can be read off; it is 

This proves, again, that Vo2 = 0, and it shows, moreover, that 

II Vo /I = 211 V II· 

Solution 150. If V is the Volterra integration operator, and if 

A = (1 + V)-l, then A(A) = III and II A II = 1. 

Proof. The example is simple, but it is the sort that takes either 
inspiration or experience to produce; reason alone does not seem to be 
enough. To prove that the example works, begin by recalling that 
A(V) = to} (cf.Problems146and74);itfollowsthatA(1+V) = {I}, 
so that 1 + V is invertible, and hence that the definition of A makes 
sense. Since A (1 + V) = {I}, it follows that A (A) = { 1 }. Since 
r (A) = 1, it follows that II A II ~ 1. Clearly A .= 1. This settles all 
properties except one; everything except the inequality II A II ~ 1 is 
obvious. 
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One way to prove that II Af II ~ Ilf II for allf, i.e., that A is bounded 
from above by 1, is to prove that A -1 is bounded from below by 1. 
Since 

II A-YW = 11(1 + V)f11 2 = (f + Vf,! + Vf) 

= Ilf 112 + (Vf,j) + (V*f,f) + II Vf W, 

it is sufficient to prove that (( V + V*)f,j) ~ 0 (i.e., that the real part 
of V is positive). This is true and already known; the operator V + V* 
is, in fact, the projection onto the (one-dimensional) space of constant 
functions (see Problem 148). 

Solution 151. Let I an} be the weight sequence, so that ao ~ al ~ 
a2 ~ ••• , an ;C 0, and E:=o a,,2 < 00; the operator A is given by 
Aen = an-1en-1 when n > 0 and Aeo = o. 

Each non-zero vector f in the given Hilbert space H has a "degree", 
namely the largest index n (or 00 if there is no largest) such that the 
Fourier coefficient (f,en) is not zero. Suppose that f EM and that 
deg f = n < 00. It is easy to see that the vectors f, ... , A nf are linearly 
independent; the point is that the non-vanishing of the a's implies that 
deg A if = n - i i = 0 ... n Since A if E M" i = 0 ... n itfollows 

J '" 4 J, , " 
that the span of If, ... , A "fl is M n , and hence that M" c M. 

The degrees of the non-zero vectors in M are either bounded or not. 
If they are, and if their maximum is n, then M c Mn , and the preceding 
paragraph implies that M = Mn. It remains to show that if M is a 
subspace invariant under A and if the degrees of the non-zero vectors 
in M are not bounded, then M = H. If M contains vectors of arbitrarily 
large finite degree, then, by the preceding paragraph, M" c M for infi
nitely many n, and hence M = H. The only remaining case is the one 
in which M contains a vector of infinite degree. 

Consider the following lemma: if M is a subspace invariant under A, 
and if M contains a vector of infinite degree, then M contains eo. Asser
tion: the lemma implies the theorem. To prove this, it is sufficient to 
prove that M" c M for all k. The idea of the proof is that nothing changes 
if the first few terms of the basis are omitted. In precise language, 
the proof is induction on k. The initial step is the lemma itself. Suppose 
now that Mk c M, let Pk be the projection onto Mk!, and let Ak be the 
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operator on Mkl defined by AkJ = PkAffor eachfin Mkl. The induction 
hypothesis implies that P kJ E M for all f, and hence that M n Mi is 
invariant under Ak • Since Ak is a weighted shift on Mi (with respect 
to the orthonormal basis {ek' ek+1, ••• }), satisfying exactly the same 
conditions as A on H, and since the image under Pk of a vector of infinite 
degree in H has infinite degree in Mkl (with respect to the basis 
{ek' ek+1, ••• \), the lemma is applicable. The conclusion is that M n Mkl 
contains ek (so that, in particular, ek E M, whence Mk c M), and the 
derivation of the theorem from the lemma is complete. 

Turn now to the proof of the lemma. Suppose that f E M and 
degf = 00. Iff = L~o ~iei, then 

00 

A nf - ~ t.~. l' .. ~. e· J - L..J £;'lo\..4.t- \A.l-n t-n· 

i=n 

If n is such that ~n ~ 0, then 

where 

1 
---Anf=eo+fn 
~n<Xn-l ••• <Xo 

It is sufficient to prove that for each positive number E the integer n 
can be chosen so that II fn Ii < c:. To do this, first choose k so that 

00 

L <Xi2 < c:2<X02, 

i=k 

and then choose n so that n ~ k and so that 

I ~n I ~ max { I ~i I: i ~ k}. 

With this choice, ~n ~ 0, and, if i ~ n, then I ~i~n I ~ 1. Note also 
that if i ~ n + 1, then <Xi-2 ~ <Xn-l, "', <Xi-n ~ <Xl (here is where mo-
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notoneness is used). Conclusion: 

E O!i-l CD ( )2 
~ i=n+l --;;-

CD (a.)2 = E ~ < e2• 
i=n ao 



Chapter 16. Subnormal operators 

Solution 152. Every known proof of Fuglede's theorem can be modi
fied so as to yield this generalized conclusion. Alternatively, there is a 
neat derivation, via operator matrices, of the statement for two normal 
operators from the statement for one. Write 

The operator A is normal, and a straightforward verification proves 
that 13 commutes with it. The Fuglede theorem implies that B commutes 
with A* also, and (multiply the matrices A* and 13 in both orders and 
compare corresponding entries) this implies the desired conclusion. 

The corollary takes a little more work. If B is invertible, and if UP 
is its polar decomposition, then U is unitary and P is, as always, the 
positive square root of B*B. If Al and A2 are normal and AlB = BA 2, 
then 

so that 

it follows that 

(Compare Solution 108.) Since AIU P = U PA 2 (by assumption) = 
U A 2P (by what was just proved), it follows that AIU = U A 2, and the 
proof of the corollary is complete. 

There is a breathtakingly elegant and simple proof of the Putnam
Fuglede theorem in Rosenblum [1958]. The original proof is in Fuglede 
[1950J; a variant is in Halmos [1951, §41J or Halmos [1963 bJ; the 
two-operator generalization first appeared in Putnam [1951 b]. The 
ingenious matrix derivation of Putnam from Fuglede is due to Berberian 
[1959]. 

306 
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Solution 153. If X.p-'(D)j = f, then {x: f(x) ~ OJ C ifJ-l(D) , and 
therefore 

If, conversely, II A nf II ~ Ilf II for all n, and if Mr = {x: I ifJ(x) I ~ r > I}, 
then 

Unless f vanishes on Mr , the last written integral becomes infinite with 
n. Conclusion:fvanisheson M r , for everyr, and therefore {x:f(x) ~ OJ C 

cp-l(D). 

Solution 154. It is convenient to begin with the observation that if 
A is quasinormal, then ker A reduces A. Reason: ker A = ker A * A 
for every operator A; since quasinormality implies that A * commutes 
with A * A, it follows that ker A * A is invariant under A *. 

In view of the preceding paragraph every quasinormal operator is the 
direct sum of 0 and an operator with trivial kernel. Since the direct 
summands can be treated separately, there is no loss of generality in 
assuming that ker A = {O} in the first place. If, in that case, UP is the 
polar decomposition of A, then U is an isometry, and (by Problem 108) 
UP = PU and U* P = PU*. The isometric character of U implies 
that if E is the projection UU*, then (1 - E) U = U*(l - E) = O. 
In view of these algebraic relations, A can be shown to be subnormal by 
explicitly constructing a normal extension for it. If A acts on H, then a 
normal extension B can be constructed that acts on H E9 H. (If H is 
identified with H E9 to}, then H is a subspace of H E9 H.) An operator 
on H E9 H is given by a two-by-two matrix whose entries are operators 
on H. If, in particular, 
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then V is unitary, Q is positive, V and Q commute, and therefore 

B~(: 
is a normal extension of A. 

(1 - E)P) 
U*p 
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Solution 155. Let MI be the set of all finite sums of the form 
L; BI *1h where]; E H for allj (= 0, 1, 2, ... ). The set MI is a linear 
manifold; since BI (L;BI *1;) = L;BI*j(BIj;) and BI*(L;BI*ij ;) = 
Lj BI *;+lj;, the closure of MI reduces BI. Since H itself is included in 
MI, the minimality of BI implies that KI = MI. Similarly, of course, the 
set M2 of all finite sums of the form Lj B 2*1;, where each]; is in H, is 
dense in K2• 

It is tempting to try to complete the proof by setting U (L; BI *1;) = 
L; B2*1;. This works, but it takes a little care. First: does this equation 
really define anything? That is: if L;BI*1; = L;BI*;g; (with]; and 
g; in H), does it follow that L; B2*1; = L; B2*j g;? Equivalently 
(subtract): if L; BI *1; = 0, does it follow that L; B2*1; = O? The 
answer is yes; the reason is contained in the following computation: 

; j k 

i k i k 

This computation accomplishes much more than the proof that U is 
unambiguously defined; it implies that U is an isometry (from MI onto 
M2), that therefore U has a unique isometric extension that maps KI 
onto K2, and that U is the identity on H. The proof that UBI = B2U 
is another computation. It suffices to verify that UBI agrees with B2U 
on MI , and this is implied by 

; 

; j ; 

Solution 156. There exist two subnormal operators that are similar 
but not unitarily equivalent. 
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Proof. Consider the measure space consisting of the unit circle to
gether with its center, with measure II defined so as to be normalized 
Lebesgue measure in the circle and a unit mass at the center. Let B be 
the position operator on L2(1I) (that is, (Bf) (z) = zf(z» , and let A be 
its restriction to the closure H2 (II) of all polynomials. Clearly B is 
normal and A is subnormal. 

An orthonormal basis for H2(1I) consists of the functions e" (n = 1, 
2,3, ... ), defined by en(z) = zn, together with the function eo, defined 
by eo(z) = 1/V2. The action of A on this basis is easy to describe: 
Aeo = (l/V2)el and Aen = en+l for n = 1, 2, 3, .... In other words, 
A is a unilateral weighted shift, with weight sequence (1/V2, 1, 1, 1, ... ). 
It follows from Problem 76 (but it is just as easy to verify directly) that 
A is similar to the ordinary unweighted unilateral shift U. There are 
several ways of proving that U and A are not unitarily equivalent. 
One way is to recall that two unilateral weighted shifts are unitarily 
equivalent only if corresponding weights have equal moduli (d. Problem 
76); the simplest way, however, is to observe that U is an isometry and 
A is not. 

It is worth noting that B is the minimal normal extension of A (see 
Problem 155). This is not obvious at a glance, but it is quite easy to 
prove. From this it follows again that U and A are not unitarily equiva
lent. Reason: their minimal normal extensions are not. 

This example is due to D. E. Sarason. 

Solution 157. It is to be proved that if A is a complex number such 
that B - A is not invertible, then neither is A-A. By simple geometry 
(translate) and equally simple logic (form the contrapositive), the 
assertion reduces to this: if A is invertible, then so is B. Suppose therefore 
that A is invertible.; without loss of generality normalize so that 
II A-III = 1. Let E be an arbitrary number in the open interval (0,1), 
fixed from now on, and writeE = If: II Bnf II ~ En Ilf II, n = 1,2,3, ... ). 
If Hand K are the domains of A and B, and if fEE and g E H, then 

I (f,g) I = I (f,AnA-ng) I = I (f,BnA-ng) I 

= I (B*nf,A-ng) I ~ II B*"jII'11 A-ng II 

= II Bnf 11·11 A -ng II ~ En ·11 f 11·11 g II 
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for all n, and, consequently, (j,g) = O. In other words, E 1- H, and 
therefore HeEl. Since (Problem 153) E is a reducing subspace for B, 
it follows that El = K, so that E = {O}; from this in turn (see Problem 
153) it follows that B is invertible. 

Solution 158. The proof depends on the one non-trivial relation be
tween the spectra of A and B, namely the spectral inclusion theorem, 

A(B) c A(A), 

and on the trivial fact about spectral inclusion, 

II(A) c II(B). 

The conclusion holds for a pair of operators A and B whenever their 
spectra and approximate point spectra are so related; no deeper or more 
special properties of subnormal and normal operators are needed. 

Consider the sets A- = A - A(A) and A+ = An A(A). Since A is 
open and A(A) is closed, the set A- is open. Assertion: A+ is also open. 
To prove this, consider an arbitrary point A in A+. Since A € A and A is 
a hole of A(B), the point A cannot belong to A(B). This implies, of 
course, that A is not in II(B) , hence that A is not in II(A), and hence 
that A is not on the boundary of A(A) (see Problem 63). Since, however, 
A € A+ and A+c A(A), it follows that the only place A can be is in the 
interior of A(A). This argument proves that A+ is, in fact, the inter
section of A with the interior of A(A), and it follows, as asserted, that 
A+ is open. 

Since A is the union of the disjoint open sets A- and A+, the connected
ness of A implies that one of them is empty. 

The result is due to Bram [1955J; for a generalization see Ito [1958]. 
The simple proof above is due to S. K. Parrott. 

Solution 159. Every finite-dimensional subspace invariant under a 
normal operator B reduces B. 

Proof. Since on a finite-dimensional space every operator has an 
eigenvalue, it is sufficient to prove that each one-dimensional invariant 
subspace of B reduces B. This is easy: in fact each eigenvector of B is 
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an eigenvector of B* too. (If Bf = V, then, by normality, 

0= II(B - >')fll = II(B* - >'*)fll·) 

Corollary. On finite-dimensional spaces every subnormal operator 
is normal. 

Proof. The restriction of a normal operator to a reducing subspace 
is normal. 

From the result thus proved it follows that the answer to the dimension 
question is no. Reason: if B is a normal extension of A to K, then K n HL 
is invariant under the normal operator B*, and, therefore, if dim(K n Hl) 
is finite, H reduces B. Since A was assumed to be non-normal, this is 
impossible. 

Solution 160. The difficulty is to prove that something is not sub
normal. Since subnormality was defined by requiring the existence of 
something, what is wanted here is a non-existence theorem. The best 
way to prove such a theorem (the only way?) is to assume existence, 
derive a usable "constructive" necessary condition from it (with luck it 
will be sufficient as well), and then look for something that violates the 
condition. 

If B (on K) is a normal extension of A (on H), and if fo, ••• , fn are 
vectors in H, then II Li B *ij; II ~ O. This triviality can be rewritten in 
a non-trivial way, as follows: 

o ~ (L B*ij;, L B*Yi) 
j j i 

i i 

L2:-CB*iBiji,ji) (because B is normal) 
i i 

i i j i 

Replace each fi by some scalar multiple ~dh and conclude that 
LjLi(AijhAji)~/~i ~ 0, i.e., that the finite matrix «Aijj,Aji) is 
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positive definite. This is a "constructive" intrinsic necessary condition 
that follows from subnormality; it will be used to exhibit a hyponormal 
operator that is not subnormal. First, however, it is pertinent to comment 
that the condition is sufficient, as well as necessary, for subnormality. 
To put it precisely; if, for each finite set of vectors jo, "', jn, the corre
sponding matrix «A ijj,A ifi) > is positive definite, then the operator A 
is subnormal. The proof is somewhat involved; the fact will not be used 
in the sequel. 

The desired counterexample can be found among weighted shifts. 
When is a weighted shift S, with weights lao, aI, a2, ... } hyponormal? 
Since both S* Sand S S* are diagonal, there is an easy answer in terms 
of the a's. The diagonal of S* S is {I ao 12, I al 12, I a212, ... }, and the 
diagonal of SS* is {O, I ao 12, I al 12, I a212, ... }; it follows that S is 
hyponormal if and only if the sequence {I an II is monotone increasing. 

With this much information available, the construction of a counter
example along these lines (if it is possible at all) should be easy. A 
finite amount of experimentation might lead to the weighted shift S 
with weights {a, 13, 1, 1, 1, ... }, where ° < a < 13 < 1. The preceding 
paragraph implies that S is hyponormal. To prove that S is not sub
normal, examine the matrix (CSiej,Sie;», where {eo, el, e2, ···1 is the 
orthonormal basis that S shifts, and where i and j take the values 
0, 1, 2. Written explicitly, the matrix is 

1 a aj3 

a (32 (3 

a(3 (3 1 

Its determinant is -a2 (1 - (32)2, which is negative. 
Examples of this type have been studied by J. G. Stampfli. 

Solution 161. The "if" for normal partial isometries is trivial and for 
subnormal ones is a consequence of Problem 118. (The point is that 
the typical non-unitary isometry, the unilateral shift, is subnormal.) To 
prove "only if", suppose that U is a partial isometry, so that U*U is the 
projection on the initial space (the orthogonal complement of the 
kernel), and UU* is the projection on the final space (the range). If U 
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is subnormal, then it is hyponormal, and consequently the initial space 
includes the range. This implies that the initial space is invariant under 
U, and hence that it reduces U; clearly the restriction of U to the initial 
space is an isometry. If, moreover, U is normal, then the initial space is 
equal to the range, and therefore the restriction of U to the initial space 
is unitary. 

It is interesting to note (as a consequence of the proof) that a partial 
isometry is subnormal if and only if it is hyponormal. 

Solution 162. For n = 1, the equality is trivial; proceed by induction. 
Since 

II AnjW = (Anj,Anj) = (A*Anj,An-Y) 

~ II A*A'1I1'1I An-YII ~ II An+!:f II· II An-YII 

~ II A n+I 11·11 A n-I 11·11 j 112 

for every vector j, it follows that 

In view of the induction hypothesis (II A k II = II A W whenever 1 ~ 
k ~ n), this can be rewritten as 

II A 112n ~ II An+III·1I A lin-I, 

from which it follows that 

Since the reverse inequality is univearsl, the induction step is accom
plished. 

Reference: Ando [1963J, Stampfli [1962]. The proof.above is a slight 
simplification of Stampfli's simple proof. 

Solution 163. Suppose that A is hyponormal. The program is to 
prove that the span of the eigenvectors of A reduces A; compactness 
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does not enter here. In the presence of compactness the orthogonal 
complement of that span becomes amenable; an application of Problem 
162 will yield the conclusion. 

(1) For each complex number A, 

{j: Af = VI c {j: A *f = A*fl· 

The reason is that A - A is just as hyponormal as A, and that, on 
general grounds that have nothing to do with hyponormality, a necessary 
and sufficient condition that (A * - A *)f = 0 is that 

(A - A)(A* - A*)f = O. 

(2) For each complex number A, the subspace {f: Af = Afl reduces A. 
Indeed: invariance under A is trivial, and invariance under A * follows 
from (1). 

(3) If 1.1 r5- 1.2, then 

{j: Af = At/I ..L {j: Af = Ail· 

A straightforward and often-used argument: if Afl = Adl and Af2 = Ad2' 
then 

(4) The span of all the eigenvectors of A reduces A and the restriction 
of A to that span is normal. Proof: use (2) and observe that, by (3), the 
restriction of A to each eigenspace is normal (in fact equal to a scalar). 

(5) Now assume that A is compact, and consider the restriction of A 
to the orthogonal complement of the span of all the eigenvectors. The 
resulting operator is still hyponormal (by the reduction assertion of (4», 
and still compact. Since the point spectrum of this compact operator is 
empty, it is quasinilpotent (Problem 140); an application of Problem 
162 implies that it must be O. If the orthogonal complement on which 
all this action is taking place is not {O}, then there is a contradiction: 
the non-zero vectors in it both must be and cannot be eigenvectors of 
eigenvalue o. 

Solution 164. Let V be a Hilbert space and let H be the direct sum 
of count ably many copies of V indexed by the set of all integers (positive, 
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negative, or zero). Explicitly, H is the set of all sequences 

f = ( .. "f-1, (fO),f1' ... ) 

of vectors in V such that Ln II fn W < 00; the inner product of f and g 
is defined by (f,g) = Ln(fn,gn).If {S1O:n = 0, ±1, ±2, ... } isa 
sequence of positive operators on V such that the sequence {II S10 II} of 
norms is bounded, then the equations (Sf)1O = Snfn define an operator 
S on H. If W is the shift defined by (Wf) n = fn-1, then W is an operator 
on H. The adjoints are easy to compute: (S*f)n = Sn*fn = Snf10 (so 
that S is Hermitian, and, in fact, positive), and (W*f)n = f1O+1 (so that 
W is invertible, and, in fact, unitary). 

If A = W S, then (Af)1O = Sn-dn-1; since A * = SW*, it follows that 
(A *f) 10 = S"f1O+1' These relations imply that (A * Af) 10 = S102j1O and 
(AA *f)1O = S!-d1O' and consequently that A is hyponormal if and only 
if the sequence {S102} is increasing. On the other hand, (A2j)n = 
Sn-1Sn-dn-2, and (A *1)10 = SnSn+dn+2, and therefore (A *2A2j)n = 

S1OS!+lSnfn and (A2A *2f)n = Sn-1S!-2S1O-dn, so that A2 is hyponormal 
if and only if S1O-1S!-2S1O-1 ;;;::; SnS!+lSn for all n. 

It remains to choose V and the Sn's so that A is hyponormal but A 2 

is not. The construction is based on the existence of positive operators 
C and D such that C ~ D is true but C2 ;;;::; D2 is false. If, for instance, 
V is two-dimensional, so that operators on V may be identified with 
two-by-two matrices, and if 

then 

but 

which has a negative determinant. If Sn is defined to be the positive 
square root of C (which is equal to C) whenever n ;;;::; 0 and the positive 
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square root of D whenever n > 0, then Sn2 ~ S!+l for all n, so that A 
ishyponormal,but,ifn = 1,thenSn_lS;_2Sn_l = OandSnS!+lSn = D2, 
so that A 2 is not hyponormal. 

Solution 165. If U is unitary, P is positive and invertible, 
C = p--lU P, and A = UP, then a necessary and sufficient condition 
that C be a contraction is that A be hyponormal. 

Proof. Under the stated assumptions, the following assertions are 
mutually equivalent: 

CC* ~ 1, 

p-lU F2U* p-l ~ 1, 

(UP) (UP)* ~ (UP)*(UP), 

AA* ~ A*A. 

The answer to the question formulated in Problem 165 is now rela
tively easy. If W is unitary, S is invertible, and C = S-lW S, then 
consider the polar decomposition V P of S, and observe that C = p-lU P, 
where U (= V-IWV) is unitary and P is positive. Consequence: it is 
sufficient to consider the transforms of unitary operators by positive 
operators, and to them the statement just proved is applicable. 

Observe next that if "~" is replaced by "=" in each of the five 
displayed relations above, the resulting relations are still mutually 
equivalent. Consequence 1: on a finite-dimensional space a contraction 
that is similar to a unitary operator is unitary. Reason: on a finite
dimensional space every hyponormal operator is normal. Consequence 2: 
on an infinite-dimensional space a contraction that is similar to a unitary 
operator need not be unitary. Reason: there exist invertible hyponormal 
operators that are not normal. (Note that if A is hyponormal, then so 
is A + A, for every scalar A.) 

The argument is due to R. G. Douglas. 
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Solution 166. Suppose that A is an operator on a Hilbert space, and 
thaq = (Aj,]) , 11 = (Ag,g) , wherej andg are unit vectors. The problem 
is to prove that every point of the segment joining ~ and 11 is in W (A) . 
Two preliminary reductions will simplify the proof. 

If ~ = 11, the problem is trivial. If ~ ~ 11, then there exist complex 
numbers a and {3 such that a~ + {3 = 1 and a11 + (3 = O. It is sufficient 
to prove that the unit interval [O,lJ is included in W(aA + (3) 

(= aW(A) + (3). Reason: if a(Ak,k) + (3 = t, then 

a(Ak,k) + (3 = t(a~ + (3) + (1 - t) (a11 + (3) 

= a(t~ + (1 - t)n) + {3. 

Consequence: there is no loss of generality in assuming that ~ = 1 and 
11 = 0 in the first place. 

Write A = B + iC with Band C Hermitian. Since (Aj,]) (= 1) 
and (Ag,g) (=0) are real, it follows that (Cj,J) and (Cg,g) vanish. 
Ifjis replaced by Ai, where I A I = 1, then (Aj,j) remains the same and 
(Cj,g) becomes A (Cj,g). Consequence: there is no loss of generality in 
assuming that (Cj,g) is purely imaginary. 

With these reductions agreed on, put k(t) = if + (1 - t)g, 0 ~ t ~ 1. 
Assertion: k (t) is never 0; in fact, the vectors j and g are linearly inde
pendent. This is a consequence of (Aj,]) ~ (Ag,g). If, indeed, j and g 
were linearly dependent, then, since they are unit vectors, either one 
could be written as a multiple of the other. Since, moreover, the factor 
would have to have absolute value 1, it would then follow that (Aj,j) = 
(Ag,g) . 

Since 

(Ck(t) ,h(t» = t2(Cj,j) + t(l - t) «Cj,g) + (Cj,g) *) + (1 - t)2(Cg,g) , 

the relations (Cj,j) = (Cg,g) = 0 and Re(Cj,g) = 0 imply that 
(ChU) ,h(t» = 0 for all t, and hence that (Ah(t) ,h(t» is real for all t. 

317 



166 NUMERICAL RANGE 318 

That is all that is needed. The function 

t -+ (Ah(t),h(t))/1I h(t)\\2 

is real-valued and continuous on the closed unit interval; its values at 
o and 1, respectively, are 0 and 1. Conclusion: the range of the function 
contains every number in the unit interval. 

This arrangement of the proof is due to C. W. R. de Boor. 

Solution 167. For every operator A and jor every positive integer 
k, the k-numerical range Wk(A) is convex. 

Proof. Suppose to begin with that M and N are k-dimensional 
Hilbert spaces and that T is a linear transformation from Minto N. 
There is a useful sense in which T and T* (from N into M) can be 
simultaneously diagonalized. The assertion is that there exist ortho
normal bases {/1, "', jk I for M and {gl, "', gk I for N, and there exist 
positive (~ 0) scalars aI, "', ak such that Tji = aigi and T*gi = aifi, 
i = 1, "', k. To prove this, let UP be the polar decomposition of T, 
and diagonalize P. That is: find an orthonormal basis {jl, "', jk I for 
M and find positive scalars aI, ... , ak such that Pj, = ai/i. If the partial 
isometry U is not an isometry from M onto N, it can be replaced by one 
(since dim M = dim N = k); assume that that has been done. Then 
put gi = Uji, i = 1, "', k, and reap the consequences: Tji = UPj. = 
U(ai!i) = aigi, and T*gi = PU*gi = Pj. = adi' i = 1, "', k. 

That is a lemma; now for the theorem. Suppose that P and Q are 
projections of rank k, with respective ranges M and N. If T is the re
striction of QP to M, then the preceding lemma is applicable. For each i 
(= 1, "', k), let Li be the span of Ji and gi. Assertion: the subspaces 
Li are pairwise orthogonal. Suppose, indeed, that i ¢ j; since Ji .L j; and 
gi .L gil it is sufficient to prove thatJi .L gj (for thenJj .L gi follows by 
symmetry). The proof is easy: 

The desired convexity proof is now near at hand. If 0 ~ t ~ 1, use 
the classical Toeplitz-Hausdorff theorem k times to obtain a unit vector 
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hi in Li so that 

Since {hI, "', hk } is an orthonormal set, the projection R onto its span 
has rank k, and 

t·tr PAP + (1 - t) ·tr QAQ = t· L: (Aji,ji) + (1 - t)· L:(Agi,gi) 

i . 

The proof of the theorem is complete. 
The problem was raised by HaImos [1964]. The first solution, some

what more complicated than the one above, is due to C. A. Berger. 

Solution 168. If A is an operator and A is a complex number 
such that I A I = II A II and A E W (A), then A is an eigenvalue of A. 

Proof. If A = (AfJ) with Ilf II = 1, then 

II A II = I A 1= I (Af,f) I ~ II Afll·llill ~ II A II, 

so that equality holds everywhere. The known facts about when the 
Schwarz inequality becomes an equation imply that Af = Aoj for some 
Ao, and this in turn implies that 

AO = AO( f,!) = (AO!,!) = (Af,j) = A, 

so that A is an eigenvalue of A. 
It follows from this theorem that if A is a number in W(A) such that 

I A I = il A II and A is not an eigenvalue of A (and, in particular, if A 
has no eigenvalues), then A does not belong to W (A). In view of this 
comment it is easy to construct examples of operators whose numerical 
range is not closed. 

(1) Observe that the eigenvalues of every operator A belong to 
W(A). (Proof: if Af = Ajwith Ilfll = 1, then (Af,!) = A.) If A is 
normal, then II A II = sup {I A I: A E W (A) }, so that there always exists 
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a ~ in W (A) such that I A I = II A II. It follows that if a normal operator 
has sufficiently many eigenvalues to approximate its norm, but does not 
have one whose modulus is as large as the norm, then its numerical 
range will not be closed. Concrete example: a diagonal operator such 
that the modulus of the diagonal terms does not attain its supremum. 
Another example, along slightly different lines: take A to be the diagonal 
operator with diagonal {1, t, !, ... j. Since A ~ 0 and ker A = {O}, 
it follows that 0 f W(A); in fact W(A) = (0,1]. This shows, by the 
way, that the numerical range may fail to be closed even for compact 
operators. 

(2) Take A to be the unilateral shift. Since every number in the open 
unit disc is an eigenvalue of A *, it follows that the open unit disc is 
included in W (A *). Since W (A *) is always (W (A» * (proof: (A *f,j) = 
(A f,/) *), it follows that the open unit disc is included in W (A). Since, 
finally, A has no eigenvalues, the theorem proved above implies that 
W(A) cannot contain any number of modulus 1, so that W(A) is 
equal to the open unit disc. 

Solution 169. If A is the compression spectrum of A, then A * is an 
eigenvalue of A*, so that ~*EW(A*), and therefore AEW(A). Con
clusion: the numerical range includes the compression spectrum. 

If A is in the approximate point spectrum of A, then there exist unit 
vectors fn such that (A - ~)fn ~ O. Since 

I (Afn,jn) - A I = I ((A - A)fn,jn) I 

~ II (A - ~)fn II, 

it follows that (Afn,jn) ~ A. Conclusion: the closure of the numerical 
range includes the approximate point spectrum. 

These two paragraphs complete the proof. A slightly different proof 
can be obtained by combining the fact just proved for the approximate 
point spectrum with two other facts: the boundary of the spectrum is 
included in the approximate point spectrum, and the numerical range 
IS convex. 

Solution 170. If V is the Volterra integration operator and if 
A = 1 - (1 + V)-l (= V(l + V)-l), then A is quasinilpotent 
but W(A) does not contain O. 
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Proof. Since the quasinilpotence of A is obvious (Problem 146), it 
is sufficient to prove that if I is a vector such that (AI,J) = 0, then 
I = O. If, indeed, (Af,f) = 0, then 

Ilf 112 = «(1 + V)-Ij,f) ~ II (1 + V)-l 11·llf 112 = Ilf 112. 

(See Solution 150. The trick of considering (1 + V)-l has more than 
one application.) It follows (by what is known about when the Schwarz 
inequality degenerates) that f must be an eigenvalue of (1 + V)-l. 
Since AC(1 + V)-l) = {1l, it follows that (1 + V)-Ij = I, or 
I = (1 + V)I, or VI = O. This implies thati = 0 (see Problem 148); 
the proof is complete. 

Observe that the operator A is compact. 

Solution 171. Suppose that A is a normal operator. Since W (A) is 
convex and A (A) c: W (A) (Problems 166 and 169), it follows that 
conv A (A) c W (A). It remains to prove the reverse inclusion. In view of 
the characterization of convex hulls in terms of half planes, the desired 
result can be formulated this way: if a closed half plane includes A (A) , 
then it includes W (A). If A is replaced by aA + {3 (where a and (3 

are complex numbers), then A and Ware replaced by aA + {3 and 
aW + {3. This remark makes it possible to "normalize" the problem. 
Its effect is to reduce the problem to the study of anyone particular 
half plane, for instance the right half plane. The desired result now is 
this: if every number in the spectrum of A has a positive (~ 0) real 
part, then the same is true of the numerical range of A. (Observe that 
the reduction to this point did not use normality; that assumption 
enters in the proof of the reduced statement.) 

Use the spectral theorem to justify the assumption that A is a multipli
cation, induced by a bounded measurable function <p on a measure space 
with measure p.. If It V(p.), then (Af,J) = J <p I I 12dp.. In these terms, 
the reduced statement says that if 0 ~ Re <p almost everywhere (this 
says that the essential range of <p is included in the right half plane), then 
o ~ ReJ<pIII 2dp. = J(Re<p)III2dp..This,finally,isobvious;ifdv = III 2dp., 
then v is a positive measure, and the assertion is just that the integral 
of a positive function with respect to a positive measure is positive. 

Solution 172. The closure of the numerical range of a subnormal 
operator is the convex hull of its spectrum. 
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Proof. If A is subnormal and B is its minimal normal extension (see 
Problem ISS), then A(B) c A(A) (Problem 157), and, trivially, 
W(A) cW(B). It follows that 

WeB) = conv A(B) (Problem 171) 

c conv A(A) 

c W(A) (Problems 166 and 169) 

cW(B), 

and hence that all the sets that enter are the same. 
Note, as a corollary of the proof, that the closure of the numerical 

range of a subnormal operator is the same as the closure of the numerical 
range of its minimal normal extension. 

Solution 173. (a) If A is not invertible, then 0 E A (A), so that 
1 E AC1 - A); it follows that 1 ~ r(1 - A) ~ w(1 - A). (b) Assume, 
with no loss of generality, that II A II = 1. (Multiply by a suitable 
positive constant.) The hypothesis w(A) = II A II then guarantees the 
existence of a sequence {fn} of unit vectors such that I (Ajn,!n) I ~ 1; 
assume with no loss of generality that (Ajn,fn) ~ 1. (Multiply by a 
suitable constant of modulus 1.) Since I (Afn,f,,) I ~ II Af" II ~ 1 and 
(Af,,'!,,) ~ 1, it follows that II Af" II ~ 1. This implies that 

II Ajn - jn W = II Ajn W - 2 Re(Af",!,,) + 1 ~ 0, 

so that 1 is an approximate eigenvalue of A, and therefore rCA) must 
be equal to 1. 

Solution 174. There exist convexoid operators that are not nor
maloid and vice versa. 

Proof. Write 
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and let N be a normal operator whose spectrum is the closed disc D 
with center 0 and radius !. If 

A ~ (: ;} 

then A(A) = to} U D = D, and W(A) = conv(W(M) u WeN»~ = D. 
This shows that A is convexoid. Since II A II = 1 (in fact II M II = 1), 
A is not normaloid. 

Next write 

Since II A II = 1,andW(A) = conv(Du {1}),itiollowsthatw(A) = 1 
and hence that A is normaloid. Since, however, A(A) = to} u {I}, so 
that cony A(A) is the closed unit interval, A is not convexoid. 

Many of these concepts were first studied by Wintner [1929J. The 
paper contains a small error; it asserts that every normaloid operator is 
convexoid. 

Solution 175. The junction TV is continuous with respect to the 
unijorm (norm) topology; ij the underlying Hilbert space is infinite
dimensional, then the junction w is discontinuous with respect to the 
strong topology (and hence with respect to the weak) . 

Proof. If II A - B II < 10, and if j is a unit vector, then 

I «A - B)j,f) I < 10, 

and therefore 

(Aj,f) = (Bj,j) + «A - Bj,J) e WeB) + (E). 

It follows that W(A) C WeB) + (E); symmetrically, WeB) C 
W(A) + (E). This proves the first assertion. (The proof is due to 
A. Brown.) 
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As for the second assertion, consider the unilateral shift U. The se
quence {U*"} tends to 0 in the strong topology (more and more Fourier 
coefficients get lost as n increases), but w(U*") = 1 for all n. 

Solution 176. If a is a complex number with I a I ~ 1 and if I z I < 1, 
then Re(l - za) = 1 - Re(za) ~ 1 - I z I > O. If conversely the 
complex number a is such that Re(l - za) ~ 0 for each z with I z I < 1, 
then this is true, in particular, if za = t I a I, 0 < t < 1; since, therefore, 
1 - t I a 1= Re(l - t I a D ~ O,itfollows (letttend to 1) that I a I ~ 1. 

The operator fact corresponding to (and implied by) this numerical 
fact is that w(A) ~ 1 if and only if Re(l - zA) ~ O. Indeed, the 
following assertions about A are pairwise equivalent: 

w(A) ~ 1, 

I (Af'!) I ~ 1 whenever 11111 = 1, 

(Re(l - zA)j,j) ~ 0 whenever II! II = 1 and I z I < 1. 

If w(A) ;£ 1, then rCA) ;£ 1, and therefore 1 - zA is invertible 
whenever I z I < 1. Since an invertible operator has positive real part if 
and only if its inverse has positive real part (if B is invertible, then 
(B-Ij,j) = (B-Ij,BB-Ij) = (B(B-Ij),(B-Ij»*),itfoliowsthatw(A) ~ 1 
if and only if Re(l - ZA)-l ~ 0 in the unit disc. 

Observe next that if n is a positive integer and if w is a primitive n-th 
root of unity (i.e., n is the smallest positive integer such that w" = 1), 
then 

1 1 10-1 1 
--='-L--
1 - z.. n 10=0 1 - wkz 

for all z other than the powers of w. This identity is, in fact, the partial 
fraction expansion of the left side. For a direct verification, mUltiply 
through by 1 - zn, observe that the right side becomes a polynomial of 
degree n - 1 at most that is invariant under each of the n substitutions 
z ~ wkz (k = 0, ... , n - 1) and is therefore constant, and then evaluate 
the constant by setting z equal to O. 
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The identity of the preceding paragraph implies that if w (A) ~ 1, then 

1 n-I 

(1 - znAn)-1 = - L(l - wkzA)-1 
nk=O 

whenever I z I < 1. Since each summand on the right side has positive 
real part (because w(wkA) ~ 1), it follows that the left side has positive 
real part, and that implies that w (A n) ~ 1. 

One step in the proof might be unfamiliar enough to deserve a second 
look. To prove an identity between operators by substitution into an 
identity between rational functions is to make use of the functional 
calculus for rational functions (cf. Problem 97). Explicitly: if 'PI and 'P2 
are rational functions whose poles are not in the spectrum of A, so that 
'PI(A) and 'P2(A) make sense, then the same is true of each polynomial 
p in 'PI and 'P2; if 'P(A) = P ('PI (A) ,'P2(A)), then 'P(A) = P( 'PI (A) ,'P2(A)). 
The proof is obvious. 

The equivalence of w(A) ~ 1 and Re(l - ZA)-l ~ 0 for I z I < 1 is 
elementary, but basic for the argument; it was Berger's main new idea. 
That idea is visible in some form in all subsequent proofs. The proof 
given above is a simplification of a simplification discovered by Pearcy 
[1966]. 
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Solution 177. (a) As a heuristic guide to the proof, consider the very 
special case in which the given Hilbert space H is one-dimensional real 
Euclidean space and the dilation space K is the plane. In that case the 
given contraction A is a scalar a (with I a I ~ 1), and, in geometric 
terms, the assertion is that multiplication (on the line) by a can be 
achieved by a suitable rotation (in the plane), followed by projection 
(back to the line). A picture makes all this crystal clear; simple analytic 
geometry shows that the matrix of the rotation is 

The proof itself is the most direct possible imitation of the technique 
that worked for the plane. A few experiments are needed, to see whether 
the role of a 2 should be played by A2, or AA*, or A*A, or sometimes 
one and sometimes another. The result can be described as follows. 
Given H, write K = H $ H and identify H with the first summand; 
then each operator on K is a two-rowed matrix of operators on H, and, 
in particular, 

Given A, write 

s = -vii - AA * and T = -vii - A * A, 

where the positive square roots are meant, of course; note that since 
II A II ~ 1, it follows that 1 - AA* and 1 - A*A are positive. The 
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desired dilation B can be defined by 

(
A S) B= 
T -A* 

That B is a dilation of A is clear. Since 

it follows by direct computation that 

(
A * A + 'J'2 A * S - T A *), 

B*B = 
SA - AT S2 + AA * 

( 
AA * + S2 AT - SA) 

BB* = 

TA*-A*S T2+A*A 

178 

It remains only to prove that AT = SA. Trivially A P = S2 A, and 
it follows, by induction, that Apn = S2nA for n = 0, 1, 2, .... This 
implies that A p ('J'2) = P (S2) A for every polynomial p (d. Solution 
108), and hence that AT = SA, as desired. 

(b) The proof is similar to that of (a), and simpler. Given A, with 
o ~ A ~ 1, let R be the positive square root of A (1 - A), and write 

(A R) B= 
R 1 - A 

The verification that B is a projection is painless. (The result (b) is due 
to E. A. Michael; see Halmos [1950 a].) 

Solution 178. The proof is constructive. Given H, let K be the direct 
sum of countably infinitely many copies of H, indexed by all integers 
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(positive, negative, zero) ; then each operator on K is an infinite operator 
matrix, and, in particular, the projection P from K to H is given by 

000 

P = 0 (1) 0 

000 

l· . ) 
(The parentheses indicate the entry in position (0,0 ).) Given A, put 

o 0 o o 000 

1 0 o o 000 

o 1 o o 000 

B= o 0 S (A) 0 0 0 

o 0 -A* TOO 0 

0000100 

0000010 

where Sand T are as in Solution 177. Since B is triangular, its powers 
are triangular, and the diagonal entries of the powers are the corre
sponding powers of the diagonal entries of B. This makes it obvious that 
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B is a power dilation of A. The proof that B is unitary is an obvious 
computation (which uses the results of Solution 177). 

Although this may not be the most revealing proof of the theorem, 
it is certainly the shortest; it is due to Schaffer [1955]. 

Solution 179. The theorem can be proved directly, but the proof via 
unitary operators and dilation theory has an elegance that is hard to 
surpass. As for the theorem for unitary operators, it can be proved by 
relatively elementary and widely generalizable geometric methods (d. 
Halmos [1958, p. 185J), but the parochial Hilbert space proof via the 
spectral theorem is more transparent. 

If U is a unitary operator on H, then the spectral theorem justifies 
the assumption that H = 12(1-') for some measure 1-', on some suitable 
measure space, in such a way that U is the multiplication induced by a 
measurable function tp of constant modulus 1 almost everywhere. If 
f E H (= Vel-')), then 

Since I tp I 1 almost everywhere, it follows that 

- L: tpJ ~ 1 1
1 n-l "I 

n j=O 

almost everywhere. Since, moreover, the assumption that I tp I 1 
almost everywhere implies that the averages 

1 n-l 

- L: tpi 

n i=O 

form a convergent sequence almost everywhere (whose limit is the 
characteristic function of the set where tp = 1), it follows that the 
Lebesgue dominated convergence theorem (not necessarily the bounded 
convergence theorem) is applicable to the sequence 
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This completes the proof of convergence; a quick second glance will even 
reveal what the limit is. 

If A is an arbitrary contraction on H, then let U be a unitary power 
dilation of it on a Hilbert space K, say, and let P be the projection 
from K to H. This means that if! E H, then A nJ = PU"!, n = 0,1,2, . ", 
and it follows that 

Since 
1 n-l 

- :E Uif 
n ;=0 

has a limit as n ~ 00 for each!, and since P is continuous (i.e., bounded), 
it follows that 

1 n-I 

- :E Aif 
n ;=0 

has a limit as n ~ 00 for each f. 
The mean ergodic theorem for unitary operators was first proved by 

von Neumann [1932]. The extension to contractions is due to Riesz
Nagy [1943J; the proof via dilation theory is due to Nagy [1955]. A 
good recent reference to ergodic theory in general is Jacobs [1960]. 

Solution 180. Relatively hard analytic proofs can be given; with 
dilation theory all becomes simple (Nagy [1955J). Given A on H, let 
U on K be a unitary power dilation of it, and let P be the projection 
from K to H. If P is a polynomial and if! is in H, then 

II p (A )! II = II PP (U)! II (by the definition of power dilation) 

~ II P(U) II· II! II (because II P II = 1) 

~ II p IID·11i II (because U is normal), 

and it follows, as stated, that II peA) II ~ II p liD. 
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Solution 181. Let Ho be the vector space of all finitely non-zero 
sequences of vectors in H (with coordinatewise vector operations), and 
let Ko be the vector space of all sequences of the form {Un: n = 0, ±1, 
±2, ... }, where 

for some sequence {fn: n = 0, ±1, ±2, ... } in Ho (with, again, co
ordinatewise vector operations). If U = {Un} and v = {'lin} are in Ko, 
with Ui = Li Ai-;/i and Vi = Li Ai-jgi, write 

[U,v] = L(uj,gj). 
j 

This definition appears to be ambiguous, because it appears to depend 
on the representation of v in terms of Ho. Since, however, 

j i j i j 

that dependence is illusory. The definition yields an inner product for 
Ko. The verifications of sesquilinearity and Hermitian symmetry are 
obvious, and positiveness follows from the assumed positive definiteness 
of {An}. Only strict positiveness needs a moment's pause, but that is 
easy too. By the Schwarz inequality for (not necessarily strictly positive) 
inner products, 

l[u,v]i 2 ~ [u,v}[v,v]. 

It follows that if [u,u] = 0, then [u,v] = ° for all v in Ko. Fix an index 
i, choose {gn} so that gi = Ui and gn = ° for n ;c i, infer that 

and conclude that U = 0. 

L(Uj,gj) = [u,v] = 0, 
j 

The vector space Ko with the inner product so obtained may fail to 
be complete; let K be its completion. To each element f of H there 
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corresponds a sequence {fn} in Ho defined by fo = f and fn 0 for 
n ~ O. To this sequence Un}, in turn, there corresponds a sequence 
{Un} in Ko, 

Iff and g are in H, with corresponding sequences U = {Un} and V = {vn} 
in Ko, then the definitions imply that 

[U,V] = (j,g). 

It follows that the mapping f ---+ U is an isometric embedding of H into 
K; in the rest of the proof H will be identified with its image in K. 

If P is the projection from K to H, if U = {Un} is an element of Ko, 
and if g E H, then 

[Pu,g] = [u,g] = (Uo,g) , 
and therefore 

Pu = Uo 

for all such u's. 
If u = {Un} is in Ko, write Uu = v = {vn }, where Vn = Un-l. If Uj = 

Li A i-;Ji, with {fn} in Ho, then 

This implies that U is not only a one-to-one linear transformation, but 
one that maps Ko onto itself. If Un} and {gn} are arbitrary sequences 
in Ho and if U = {un} and v = {vn } are their correspondents in Ko, then 

j j 

so that U is an isometry. It follows that U has a unique extension to a 
unitary operator on K (which might as well be denoted by the same 
symbol as U). Since PUnu = (Unu)o = U_n = LiAi+nJi, it follows 
that iff E H, then 

and the proof is complete. 



Chapter 19. 
Commutators of operators 

Solution 182. Wintners's proof. If PQ - QP = a, replace P by 
P + X, where X is an arbitrary scalar, and observe that the new P 
satisfies the same commutation relation. There is, consequently, no loss 
of generality in assuming that P is invertible. Since, in that case, QP = 
P-l(PQ)P, and therefore A(QP) = A(PQ), the relation PQ = QP + a 
implies that 

A(PQ) = A(QP + a) = A(QP) + a = A(PQ) + a. 

The only translation that can leave a non-empty compact subset (such 
as A(PQ» of the complex plane invariant is the trivial translation 
(i.e., no translation at all); in other words, a must be O. 

Wielandt's proof. If PQ - QP = a, then 

P2Q _ QP2 = F2Q _ PQP + PQP _ QP2 

= P(PQ - QP) + (PQ - QP) P = 2Pa, 

and more generally (induction) 

n = 1,2,3, .... 

If P is nilpotent, of index n, say, then npn-la = 0, and therefore a = O. 
If P is not nilpotent, then the inequality 

n II pn-l 11·1 a I ~ 2 II P 11.11 Q 11·11 pn-l II, 

true for n = 1, 2, 3, "', implies that 

n I a I ~ 211 p 11·11 Q II, 

and hence that, again, a = O. 
333 
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Solution 183. Given the Hilbert space H, let B be the normed vector 
space of all bounded sequences / = (f1, /2, fa, ... ) of vectors in H 
(coordinatewise vector operations, supremum norm), and let N be the 
subspace of all null sequence::. inB (i.e., sequences/with limn II/n II = 0). 
The quotientspaceB = BIN isa normed vector space. Each bounded se
quence A = (AI, A 2, A a, ••• ) of operators on H induces an operator on 
B; the image of (/I,j2,ja, ... ) under (AI, A2, Aa, ... ) is (Adl, A2/2, A~a, 
... ). Since the subspace N is invariant under each such induced opera
tor, the sequence A also induces, in a natural manner, anoperatoronB; 
call it A. Bounded sequences of operators on H form a normed algebra 
(coordinatewise operations, supremum norm). The correspondence 
A ---+ A from such bounded sequences to operators on B is a norm
decreasing homomorphism. If P = (PI, P 2 , Pa, ... ) and Q = 
(QI, Q2, Qa, ..• ) are such that PnQn - QnPn ---+ C, then PfJ - fJP is a 

commutator on B; since that commutator cannot be equal to i (= the 
identity operator on B), the proof is complete. 

Solution 184. Fix P and consider C = ~Q = PQ - QP as a function 
of Q. The operation ~ is obviously a linear transformation on the vector 
space of operators; since 

II ~Q II = II PQ - Q P II ~ 2 II P 11·11 Q II, 

that linear transformation is bounded (on the Banach space of operators) , 
and 

II ~ II ~ 2 II P II· 
Mappings such as ~ often play an important algebraic role. The most 
important property of ~ is that it is a derivation in the sense that 

~(QR) = ~Q·R + Q·~R. 
Proof: PQR - QRP = (PQR - QPR) + (QPR - QRP). 

Derivations have many of the algebraic properties of differentiation, 
but, as is visible in the definition itself, they have them in a non-commu
tative way. First among those properties is the validity of the Leibniz 
formula for "differentiating" products with several factors. The assertion 
is that ~(Ql" ·Qn) is the sum of n terms; to obtain the j-th term, 
replace Q; by ~Q; in the product Ql'" Qn. The proof is an obvious 
induction. For n = 1, there is nothing to do; for the step from n to 
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n + 1, write Ql' •• Q"+l as (Ql' •. Q,,) Q"+l and use the given (two-factor) 
product formula. The result is, of course, applicable to the special case 
in which all the Q/s coincide, but it does not become much more pleasant 
to contemplate. 

A special property of the derivation .d is that .d'Q = O. Here .d2 is, 
of course, the composition of .d with itself, so that 

.d'Q = .d(.dQ) = P·.dQ - .dQ.p; 

the vanishing of .d2Q expresses exactly that .dQ commutes with P. 
The Leibniz formula and the vanishing of .d'Q make it easy to evaluate 

higher order derivatives of higher powers of Q. The process begins with 
.dQ": it is equal to the sum of the n possible products each of which has 
one factor equal to .dQ and n - 1 factors equal to Q. When .d is applied 
to one of these summands, the result is the sum of only n - 1 products. 
(Reason: when .d is applied to .dQ, the result is 0.) Each of the n - 1 
products so obtained has two factors equal to .dQ and n - 2 factors 
equal to Q. Consequence: .d2Qn is equal to the sum of the n(n - 1) 
possible products of that kind. The argument continues from here on 
with no surprises and yields a description of .dkQn. With k = n, the 
result is that .d"Q" is the sum of n! terms, each of which is (.dQ)n; in 
other words 

The last equation is the crucial point of the proof; the desired result 
is a trivial consequence of it. Indeed, since 

111 
11(.dQ)n II = -; II.dnQn II ~ -; II.dn 11,11 Qn II ~ -; 11.d 11",11 Q II", 

n. n. n. 

it follows that 

and hence that .dQ is quasinilpotent. 
As a dividend, the equation for .d"Q" yields a proof of Jacobson's 

original algebraic result. Statement: if an element Q of an algebra over 
a field of characteristic greater than n! satisfies a polynomial equation of 
degree n, and if .d is a derivation of that algebra such that .d2Q = 0, 
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then t:.Q is nilpotent of index n. Proof: from t:.(t:.Q) 0 infer that 
t:.(t:.Q)k = 0 for every positive integer k, and hence, from the equation 
for t:.nQn infer that t:.n+1Qn = O. Consequence: t:.nQi = 0 whenever n > i. 
If Qn = L:~~ol a.Qi is the polynomial equation satisfied by Q, then it 
follows that t:.nQn = 0, and hence it follows, again from the equation 
for t:.nQn, that n!(t:.Q)n = O. The conclusion follows from the assumption 
about the characteristic. 

Solution 185. (a) The trick is to generalize the formula for the 
"derivative" of a power to the non-commutative case; d. Solutions 182 
and 184. The generalization that is notationally most convenient here 
says that 

n-l 

the proof is a straightforward induction. It follows that 

n-l 

pnQ _ QPn = npn-l - L: pn-i-l(l - C)Pi, 
.-0 

and hence that 

n-l 

.=0 

Up to now P could have been arbitrary. Since P was assumed hypo
normal, the last written sum is equal to n II pn-111 (see Problem 162). 
Divide through by n II pn-l II. (If p = 0, everything is trivial, and if 
p ¢ 0, then pn-l ¢ 0.) The result is that 

2 
1 ~ -II p 11·11 Q II + 111 - C II, 

n 

and the conclusion follows. 
(b) If 111 - C II < 1, then C is invertible; since, by the Kleinecke

Shirokov theorem, C is quasinilpotent, that is impossible. 

Solution 186. If A has a large kernel, then that kernel is the direct 
sum of No subspaces all of the same dimension. The orthogonal comple-
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ment of the kernel mayor may not be large. If, however, one of the 
direct summands of the kernel is adjoined to that orthogonal comple
ment, the result is a representation of the underlying Hilbert space in 
the form of an infinite direct sum H EB H EB H EB ... in such a way 
that the direct sum of all the summands beginning with the second one 
is annihilated by A. If corresponding to this representation of the 
space the operator A is represented as a matrix, it will have the form 

( Ao 0 0 0 

Al 0 0 0 

A A2 0 0 0 

A3 0 0 0 

l 
where each An (and each 0) is an operator on H. Write 

(0 0 0 0 I 
1 0 0 0 

p= 
0 1 0 0 

0 0 1 0 

and 

r Al -Ao 0 0 

A2 0 -Ao 0 

Q= A3 0 0 -Ao 

A4 0 0 0 

l 
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then P and Q are operators and (straightforward computation) 
PQ - QP = A. The proof of the main assertion is complete. 

To prove Corollary 1, suppose that {fl, ••• ,jn} is a finite set of vectors 
in an infinite-dimensional Hilbert space H, and let M be their span. 
If A is an operator on H, let C be the operator that is A on M and 0 on 
M!; by what was just proved C is a commutator, and C agrees with A 
on eachfi, i = 1, ... , n. This implies that every basic strong neighbor
hood of A contains commutators. 

The proof of Corollary 2 is similar. Given H, let M be a large subspace 
with a large orthogonal complement; given A, define C as in the pre
ceding paragraph, and write B = A - C. Since A = B + C and both 
Band C are commutators, the proof is complete. 

Solution 187. Since A is not a scalar, there exists a vector f such 
that f and Af are linearly independent. Let T be an invertible operator 
such that Tf = f and TAf = -Af. Since this implies that 
(A + T-IAT)f = Af - Af = 0, it follows that the direct sum 

S = (A + T-IAT) $ (A + T-IAT) $ (A + T-IAT) $ ... 

has a large kernel. (What really follows is that the kernel is infinite
dimensional; since the whole space is separable, this implies that the 
kernel is large.) By Problem 186, the direct sum S is a commutator. If 

and 

C = T-IAT $ T-IAT $ T-IAT $ 

then 

S=B+C. 

The next step is the following somewhat surprising lemma: whenever 
Band C are operators such that B + C is a commutator, then B $ C 
is a commutator. The proof is an inspired bit of elementary algebra. 
If B + C = PQ - QP, then write R = C + QP = PQ - B, and 
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compute the commutator of 

C:)andC:} 
(: :)(~ :) -C :X: :) 

189 

= (PQ 0) _ (R 0) = (B 0). 
ORO QP 0 C 

Consequence: B $ C is a commutator. Since, however, C is clearly 
similar to B, it follows that B EB B is a commutator; since, finally, 
B $ B is unitarily equivalent to B, the proof is complete. 

Solution 188. Suppose that C = A * A - AA * ~ O. The problem is 
to show that 0 E A (C) . It is sufficient to show that there exists a sequence 
{fn} of unit vectors such that Cfn ~ 0 (i.e., that 0 E II (C)). For this 
purpose, take a complex number X in the approximate point spectrum 
of A, and, corresponding to X, find a sequence {fn} of unit vectors such 
that (A - X)fn ~ O. Since the self-commutator of A - X is equal to C, 
and since C ~ 0, it follows that 

(A - X)*(A - X) ~ (A - X)(A - X)*. 

Since (A - X)fn ~ 0, it follows that (A - X) *(A - X)fn ~ O. The 
last two remarks imply that (A - X) (A - X) *fn ~ O. Since, therefore, 
C is the difference of two operators, each of which annihilates {fn I, 
the operator C does so too. 

Solution 189. (a) The program is to show that (1) A is quasinormal, 
(2) ker (1 - A * A) reduces A, and (3) the orthogonal complement of 
ker (1 - A * A) is included in ker (A * A - AA *). 

(1) Write P = A*A - AA*. Since, for allf, 

IIfll2 ~ II Afl12 = (A*Af,j) = (AA*f,J) + (Pf,j) 

= II A*JW + II PJ112, 
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it follows that if Pf = f, then A * P = O. (The norm condition was used 
at the first step.) This implies that A * P = 0, and hence that PA = 0, 
or, equivalently, that (A*A)A = A(A*A). 

(2) Write M = ker (1 - A*A). IffeM, thenf - A*Af = O. It 
followsthatAf- (A*A)Af= Af- A(A*A)f= A(f- A*Aj) = 0, 
so that M is invariant under A. Similarly (instead of replacingfby Af, 
replacef by A *f) M is invariant under A *. (Cf. Solution 154.) 

(3) Since P is idempotent, it follows that 

A*A - AA* = A*AA*A - AA*A*A - A*AAA* + AA*AA*. 

Since A * A commutes with both A and A *, this can be rewritten as 

A*A - AA* = A*A(A*A - AA*). 

In other words, 
P = A*AP, 

or 
(1 - A*A)P = o. 

It follows that 
ran PcM, 

or 
MJ.cker P. 

Now use the assumption that A is abnormal: it says exactly that 
ker P includes no non-zero subspace that reduces A. Conclusion: 
MJ. = to}, and this means that A is an isometry. 

(b) If A is the bilateral shift with weights {an} such that an = 1 or V2 
according as n ~ 0 or n > 0, then A is abnormal and the self-commutator 
of A is a projection. 

Proof. The self-commutator of A is easy to compute; it turns out 
of be the projection of rank 1 whose range is spanned by el. The abnor
mality of A follows from Problem 129: according to that result, A is 
irreducible, and hence as abnormal as can be. 

Solution 190. An infinite-dimensional Hiibert space is the direct sum 
of Hilbert spaces of dimension ~o. To prove that every scalar of modulus 
1 is a commutator, it is therefore sufficient to prove that on a Hilbert 
space of dimension ~o every scalar of modulus 1 is the commutator of 
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two unitary operators. (The unitary character of the factors guarantees 
that the possibly uncountable direct sum is bounded.) In a Hilbert 
space of dimension No there always exists an orthonormal basis {en: 
n = 0, ±1, ±2, 00 oj. Given a with I a I = 1, let P be the diagonal 
operator defined by Pen. = anen and let Q be the bilateral shift, Qen = 
en+!. Both P and Q are unitary; a straightforward computation shows 
that PQP-1():-l = a. 

The proof that if a= PQP-IQ:-l, then I a I = 1 is an adaptation of 
the Wintner argument (Solution 182). Since PQ = aQP, it follows that 
A(PQ) = aA(QP); since, however, PQ is similar to QP, it follows that 
A(PQ) = A (QP) , and hence that A(QP) = aA(QP). Since A(QP) is 
a non-empty compact set different from to} (remember that QP is 
invertible), and since the only homothety that can leave such a set 
fixed is a rotation, the result follows. 

Solution 191. The proof is an adaptation of Solution 190. The first 
step is to use Problem 111 to represent the given space as the direct 
sum of No subspaces, all of the same dimension, each of which reduces 
the given unitary operator U. The direct sum decomposition serves to 
represent U as a diagonal operator matrix whose n-th diagonal entry is 
Un, say, for n = 0, ±1, ±2, 000. 

Solution 190 suggests that the multiplicative commutator of a diagonal 
operator and a bilateral shift may work here too. To avoid writing down 
large matrices, it is convenient to introduce some more notation. Think 
of the given Hilbert space as the set of all sequences f = {fn: n = 0, 
±1, ±2, 000 } of vectors in some fixed Hilbert space (subject of course 
to the usual condition Ln II fn 112 < 00). A typical diagonal operator 
matrix P is defined by 

and the bilateral shift Q is defined by 

(Qf) n = fn-l. 

The commutator is easy to compute; the result is that 

The equations 
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can be solved for the V's in terms of the U's. If, for instance, Vo is set 
equal to 1, then 

and 
V -(n+1) = U~~··· U;1 for n ~ o. 

The unitary character of the U's implies that the transformation P 
given by these V's is a unitary operator, and all is well. 

Solution 192. On an infinite-dimensional Hilbert space, the com
mutator subgroup of the full linear group is the full linear group itself. 

Proof. The assertion is that every invertible operator is the product 
of a finite (but not necessarily bounded) number of multiplicative 
commutators. The fact is that every invertible operator is the product 
of two commutators (Brown-Pearcy [1966J). The proof of that fact 
takes more work than the present purpose is worth; it is sufficient to 
prove that every invertible operator is the product of three commutators, 
and that is much easier. 

Given an arbitrary invertible operator A on an arbitrary infinite
dimensional Hilbert space, consider the infinite operator matrices 

'1 

0 1 0 0 0 0 0 

0 0 1 0 0 0 0 

0 0 0 1 0 0 0 

p= 0 0 0 (0) A 0 0 

0 0 0 0 0 A 0 

0 0 0 0 0 0 A 

0 0 0 0 0 0 0 
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and 

0 0 0 0 0 0 0 

1 0 0 0 0 0 0 

0 1 0 0 0 0 0 

Q= 0 0 1 (0) 0 0 0 

0 0 0 1 0 0 0 

0 0 0 0 1 0 0 

0 0 0 0 0 1 0 

l-
Routine computation proves that 

(- -I 

1 0 0 0 0 0 0 

0 1 0 0 0 0 0 

0 0 1 0 0 0 0 

PQP-1Q-l = 0 0 0 (A) 0 0 0 

0 0 0 0 1 0 0 

0 0 0 0 0 1 0 

0 0 0 0 0 0 1 

l· 
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Regard the direct sum on which these matrices act as the direct sum of 
the summand with index 0 and the others, and identify the direct sum of 
the others with one of them. With an obvious change of notation, the 
result of the above computations becomes this: every operator matrix 
of either of the forms 

is a multiplicative commutator (provided that the matrix entries operate 
on an infinite-dimensional space, and that A is invertible). 

Every invertible normal operator on an infinite-dimensional Hilbert 
space has large reducing subspaces with large orthogonal complements 
(Problem 111), and is therefore representable as the product of two 
matrices of the indicated forms. Consequence: every invertible normal 
operator is the product of two commutators. Since every invertible 
operator is the product of a unitary operator and an invertible positive 
operator (polar decomposition), it follows, as stated, that every in
vertible operator is the product of three multiplicative commutators. 
(Apply Problem 191 to dispose of the unitary factor.) 



Chapter 20. Toeplitz operators 

Solution 193. H cp = Ln anen, then the matrix entries of L", are 
given by 

n 

n 

H, conversely, A is an operator on V such that 

for all i andj, and if W is the bilateral shift (multiplication by el), then 

This implies that A commutes with W, and hence (Problem 115) that 
A is a multiplication. 

Solution 194. The proof of necessity is a simple computation: if 
i,j = 0,1,2, ... , then 

To prove sufficiency, assume that A is an operator on H2 such that 

(i J' = 0 1 2 ... ) . , '" , 

it is to be proved that A is a Toeplitz operator. Consider for each non
negative integer n the operator on V given by 

An = W*" APWn 
345 
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(where W is, as before, the bilateral shift). If i,j ~ 0, then 

Something like this is true even for negative indices. Indeed, for n 
sufficiently large both j + nand i + n are positive, and from then on 
(Ao/l;+n,ei+n) is independent of n. Consequence: if p and q are trigono
metric polynomials (finite linear combinations of the e/s, i = 0, ±1, 
±2, ... ), then the sequence {(Anp,q)} is convergent. Since 

II An II ~ II Ao II = II A II, 

it follows on easy general grounds that the sequence {A n} of operators 
on V is weakly convergent to an operator Am on V. 

Since, for all i and j, 

n 

n 

n 

it follows that the operator A", has a Laurent matrix and hence that it 
is a Laurent operator (Problem 193). Iff and g are in H2, then 

n 

so that PA",! = Af for eachf in H2. Conclusion: A is the compression 
to H2 of a Laurent operator, and hence, by definition, A is a Toeplitz 
operator. 

How can the function cp that induces A be recaptured from the matrix 
of A? If A = T"" then Ao:> = L"" and therefore the Fourier coefficients 
of cp are the entries in the 0 column of the matrix of Aw This is an 
answer, but not a satisfying one; it is natural to wish for an answer 
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expressed in terms of A instead of Aro. That turns out to be easy. If 
i,j ~ 0, then 

this implies that 

and 

Conclusion: rp is the function whose forward Fourier coefficients (the 
ones with positive index) are the terms of the 0 column of the matrix 
of A and whose backward Fourier coefficients are the terms of the 0 row 
of that matrix. 

To prove Corollary 1, observe that 

To prove Corollary 2, observe that if rp is a bounded measurable 
function, and if both nand n + k are non-negative integers, then 

If T", is compact, then II T",e,,11 ~ 0 (since e" ~ 0 weakly); it follows 
that (rph) = 0 for all k (positive, negative, or zero), and hence that 
rp = o. 

Solution 195. Write C = T",T", and let ("Iii) be the (not necessarily 
Toeplitz) matrix of C. If the Fourier expansions of rp and", are rp = 
Li CXiei and", = Li (3je,., so that the matrices of T", and T '" are (CXi-i) 
and ({3i-j), respectively, then 

whenever i,j ~ o. The proof is straightforward. Since 

CD 

"Iii = L cxi-,,{3k-h 
k=O 
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it follows that 

TOEPLITZ OPERATORS 

co 

1'i+1,i+1 = L (Xi+l-k{3k-i-1 
10=0 

co 

= (Xi+tf3-j-1 + L (Xi+1-k{3k-j-1 
k=1 

co 

= (Xi+1{3-i-1 + L (Xi-k{3k-i 

k=O 

If now Yt is analytic, then 

348 

This proves the sufficiency of the condition and the last assertion of the 
problem. If, conversely, the product T",T", is a Toeplitz operator, then 
its matrix is a Toeplitz matrix (Problem 194) ; the equation for /'i+1,i+1 

then implies that (Xi+1{3-i-1 = 0 whenever i,j ~ O. From this, in turn, it 
follows that either (Xi+! = ° for all i ~ ° or else {3-i-1 = ° for allj ~ 0, 
which is equivalent to the desired conclusion. 

As for the corollary, sufficiency is trivial. If, conversely, T",T", = 0, 
then, since ° is a Toeplitz operator, it follows from Problem 195 that 
either cp* or Yt is analytic and that CPYt = 0. The F. and M. Riesz theorem 
applies (Problem 127) and proves that if cp* is analytic, then Yt = 0, 
and if Yt is analytic, then cp = 0. 

Solution 196. It is helpful to begin with some qualitative reflections. 
Consider a Laurent matrix written, as usual, so that the row index 
increases (from - 00 to + 00) as the rows go down, and the column 
index increases (from - 00 to + 00) as the columns go to the right. 
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Fix attention on any particular entry on the main diagonal, and look 
at the unilaterally infinite matrix that starts there and goes down and 
to the right. All the matrices obtained in this way from one fixed Laurent 
matrix look the same; they all look like the associated Toeplitz matrix. 
Intuition suggests that as the selected diagonal entry moves up and left, 
the resulting Toeplitz matrices swell and tend to the original Laurent 
matrix. 

An efficient non-matrix way of describing the situation might go like 
this. If P n is the projection onto the span of I e_n , ••• , Ll, eo, el, e2, •.. }, 
n = 1,2,3, ... , then each Laurent operator L is the strong limit of the 
Toeplitz-like operators PnLPn • Since P n = W*npWn, and since W 
commuteswithL (sothatWLW* = L),itfollowsthatW*nPLPWn~L 
(strongly) as n ~ oc!. This implies that if T is the Toeplitz operator 
corresponding to L, then W *n T PWn ~ L (strongly). It is instructive 
to compare this result with Solution 194 where weak convergence was 
enough. 

The ground is now prepared for the proof of the spectral inclusion 
theorem for Toeplitz operators. It is sufficient to prove that if 0 is an 
approximate eigenvalue of L, then it is an approximate eigenvalue of T 
also; the non-zero values are recaptured by an obvious translation 
argument. Suppose therefore that to each positive number E there corre
sponds a unit vector je such that II Lje II < E. The preceding paragraph 
implies that W*npWnje ~ je and W*"TPWnje ~ Lje (strongly). It 
follows that II PWnje II ~ 1 and II T PWnJ. II ~ O. The first of these 
assertions says that PWnj. is, for large n, nearly a unit vector; the second 
one says that T nearly annihilates it. It follows, as promised, that 0 is 
an approximate eigenvalue of T. 

Corollary 1 is now straightforward. Since L is normal, II L II = r(L), 
and, by the result just proved, r(L) ~ reT). It follows that II L II ~ 
II T II· The reverse inequality was proved before, and the corollary 
follows from the known facts about the norm of a multiplication. 

For Corollary 2: if the spectrum of T", consists of 0 alone, then the 
same is true of L"" and it follows that cp = O. 

The proof of Corollary 3 is similar to that of Corollary 2: if the spec
trum of T", is real, then the same is true of L"" and it follows that cp is real. 

The proof of Corollary 4 is the same as Solution 172: W (L) = 
conv A(L) c conv A(T) c WeT) c W(L). 
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Solution 197. It is useful to remember that H2 is a functional Hilbert 
space, and, as such, it has a kernel function (Problem 30); it is not, 
however, important to know what that kernel function is. LetT", be 
what T", becomes when it is transferred from H2 to H2; it follows from 
Solution 34 that '1' ",J = q,. J for each J in H2. If y is a complex (!) number, 
with I y I < 1, then J(y) = (J,KlI ); this implies that J(y) = 0 if and 
only if J 1. K II• Fix y, put A = q,(y) , temporarily fix an element J in H2, 
and let g be the function defined by g(z) = (q,(z) - "A)J(z). Since 
g(y) = (q,(y) - "A)J(y) = 0, it follows that 11 1. K II • This implies that 
('1'", - "A)H2 is included in the orthogonal complement of K II , so that it 
is a proper subspace of H2, and hence that "A belongs to the (compression) 
spectrum of T",. Conclusion: q,(D) C A (T",) ,and therefore q,(D) c A (T",) . 

The converse is even easier. If I q, (z) - "A I ~ 8 > 0 whenever I z I < 1, 
then 1/(q, - "A) is a bounded analytic function in the open unit disc. 
It follows that its product with a function analytic in the disc and having 
a square-summable set of Taylor coefficients is another function with the 
same properties, i.e., that it induces a bounded multiplication operator 
on H2. Conclusion: T", - "A is invertible, i.e., "A is not in A(T",). 

Solution 198. A Hermitian Toeplitz operator that is not a scalar 
has no eigenvalues. 

Proof. It is sufficient to show that if ip is a real-valued bounded 
measurable function, and if T",'f = 0 for somefin H2, then eitherf = 0 
or ip = O. Since ip·f* = ip*·f* E H2 (because P(ep·f) = 0), and since 
f E H2, it follows that ip·f*·f E HI (Problem 27). Since, however, ep·f*·f 
is real, it follows that ep·f*·f is a constant (Solution 26). Since 
Jep·f*·fdJ.L = (ip'f,j) = (T",j,j) = 0 (because T",f = 0), the constant 
must be O. The F. and M. Riesz theorem (Problem 127) implies that 
either f = 0 or ep ·f* = O. Iff .,e 0, then f* can vanish on a set of measure 
o only, and therefore ip = O. 

Solution 199. If ip is a real-valued bounded measurable function, 
and if its essential lO'Wer and upper bounds are a and fj, then A (T "') 
is the closed interval [a,fj]. 
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Proof. If a = {3, then cp is constant, and everything is triviaL If 
a < X < {3, it is to be proved that T<p - X is not invertible. Assume the 
contrary, i.e., assume that T<p - X is invertible, and, by an inessential 
change of notation, assume X = O. It follows, as an apparently very 
small consequence of invertibility, that eo belongs to the range of T<p, 
and hence that there exists a (non-zero) function f in H2 such that 
T<pf = eo. This means that cp·f - eo 1.. H2. Equivalently (recall that 
eo(z) = 1 for all z) the complex conjugate of cp·f is in H2; the next step 
is to deduce from this that sgn cp is constant (so that either cp > 0 almost 
everywhere or cp < 0 almost everywhere) . 

Since cp is real, it follows that (cp.j)* = cp.j*. Since both cp.f* andf 
are in H2, Problem 27 implies that cp·f*·f E HI. Solution 26 becomes 
applicable and yields the information that cp.f*.j is a constant almost 
everywhere. Since f ~ 0, it follows that f is different from 0 almost 
everywhere (Problem 127), and consequently cp has almost everywhere 
the same sign as the constant value of cp.J-j*. 

In the original notation the result just obtained is that sgn(cp - X) is 
constant, and, since a < X < {3, that is exactly what it is not. This 
contradiction proves that [a,{3] c: A (T <p)' 

The reverse inclusion is easier. Since a ~ cp ~ {3, it follows that 
a ~ L<p ~ {3; since T <pf = P L<pf whenever f E H2, itfollows that (T l,j) = 
(P Ll,j) = (Ll,f) , and hence that a ~ T<p ~ (3. This of course implies 
that A(T<p) c: [a,{3]. 
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Toeplitz operator, 139 

Quasinormal operator, 69, 266 

r,45 
Radial limit, 19, 195 
Ran, ix 
Range of a compact operator, 91, 294 
Rank, 65 
Re, ix 
Real function in H2, 15, 190 
Reducible weighted shift, 82, 284 
Reducing subspace of a normal op-

erator, 71, 269 
Reduction by the unitary part, 74,275 
Region, 15 
Regular ring, 43 
Reid's inequality, 51, 244 
Relative spectrum, 43, 233 
Representation of linear functional, 3, 

167 
Reproducing kernel, 19 
Residual spectrum, 38 

of a normal operator, 40, 229 
Resolvent, 44 
p, 165 
Riesz-Fischer theorem, 188 
Riesz representation theorem, 3, 167 
Riesz theorem, 82, 283 
Riesz theorem generalized, 82, 283 
Right shift, 269 
Ring of operators, 59 

Schur test, 22, 202 
Schwarz inequality, 216, 331 
Segment, 4 
Self-adjoint ideal, 85, 287 
Self-commutator, 132 
Semicontinuity of spectrum, 53, 247 
Semilinear functional, 3 
Separability: 

and dimension, 8, 176 
and weak metrizability, 12, 183 
of space of operators, 52, 245 

Separate continuity of multiplication, 
57, 253 

Sequential continuity of multiplica-
tion, 57, 254 

Sequential weak completeness, 14 
Sesquilinear form, 3 
Sgn, ix 
Shift: 

as universal operator, 75, 276 
modulo compact operators, 92, 295 

q-field, 8 
Similar: 

normal operators, 99, 306 
operators, 38 
subnormal operators, 102, 308 

Similarity: 
and spectrum, 38, 226 
of weighted shifts, 47, 239 
to parts of shifts, 76, 278 

Simple: 
curve,S 
unilateral shift, 75 

Singular operator, 53 
Skew-symmetric Volterra operator, 95, 

301 
Sliding product, 240 
Special invariant subspaces of the 

shift, 78, 280 
Spectra and conjugation, 37, 225 
Spectral: 

set, 122, 330 
theorem, 60 

Spectral inclusion theorem, 102, 309 
for Toeplitz operators, 138, 348 

Spectral mapping theorem, 38, 225 
for normal operators, 60, 259 

Spectral measure, 169 
of the unit disc, 99, 307 

Spectral parts: 
of a diagonal operator, 40, 229 
of a multiplication 40, 229 

Spectral radius, 45, 237 
of a weighted shift, 48, 239 

Spectraloid operator, 114 
Spectrum: 

and numerical range, 111,320 
and similarity, 38, 226 
of a commutator, 132 
of a diagonal operator, 30, 210 
of a direct sum, 50, 243 
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of a functional multiplication, 42, 
232 

of a Hermitian Toeplitz operator, 
140,350 

of a multiplication, 32, 214 
of a partial isometry, 67, 263 
of a product, 39, 227 

Square root, 58, 256 
of a compact operator, 90, 292 
of shift, 72, 271 

Strict convexity, 4, 5, 168 
Strong: 

boundedness, 25 
convergence, 10 
dilation, 121 
operator topology, 55 
topology, 10 

Subnormal: 
operator, 100, 307 
partial isometry, 105, 312 
versus hyponormal, 105, 311 
versus quasinormal, 101, 307 

Subnormality and numerical range, 
113,321 

Subspace, ix 
Support, 50 
Supremum, 7 
Symmetric transformation, 28 
Symmetry, 71, 269 
Szeg5 kernel, 19, 194 

Toeplitz: 
operator and matrix, 135, 345 
product, 137, 347 

Toeplitz-Hausdorff theorem, 108, 317 
Topologies for operators, 55, 250 
Tr, xi, 111 
Trigonometric polynomial, 16 
Two-sided ideal, 85 
Tychonoff-Alaoglu theorem, 12, 180 

Unbounded: 
symmetric transformation, 28, 207 
Volterra kernel, 94, 297 

Uniform: 
strong convergence, 56, 250 

topology, 55 
weak convergence, 12, 56, 179, 250 

Uniform boundedness, 12, 56 
of linear transformations, 24, 204 

Unilateral shift, 40, 230 
of higher multiplicity, 75, 276 
versus normal operators, 71,270 

Unilaterally invertible operator, 70, 
266 

Unit, 127 
ball, 4 
disc, 4 

Unitary: 
dilation, 118, 326 
multiplicative commutator, 134, 341 
power dilation, 119, 327 

Unitary equivalence: 
of partial isometries, 66, 262 
of similar normal operators, 99, 306 
of similar subnormal operators, 102, 

308 
Upper semicontinuity, 53, 247 

Vandennonde, 6, 171 
Vector sum, 7, 174 
Volterra: 

integration operator, 94, 300 
kernel, 93, 296, 297 
operator, 93, 300 

Von Neumann algebra, 59, 258 
Von Neumann-Heinz theorem, 123 
W,108 
w,114 
Wandering subspace, 77, 279 
Weak: 

analyticity, 44 
boundedness, 13 
Cauchy net and sequence, 14, 186 
closure of a subspace, 10, 178 
compactness of the unit ball, 12, 180 
completeness, 14, 186 
continuity, 10 
continuity of norm and inner prod-

uct, 11, 178 
operator topology, 55 
separability, 12, 179 
topology, 10 



Weak metrizability: 
and separability, 12, 183 
of Hilbert space, 13, 185 
of the unit ball, 12, 181 

Weighted: 
sequence space, 48, 241 
shift 46, 238 

INDEX 

Weyl's theorem, 91, 295 
Wielandt's proof, 333 
Wintner's proof, 333 
W k , 111,318 

Zero-divisor, 82, 138, 283 
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