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Preface

In the fall of 1990, I taught Math 581 at New Mexico State University
for the first time. This course on field theory is the first semester of the
year-long graduate algebra course here at NMSU. In the back of my mind,
I thought it would be nice someday to write a book on field theory, one
of my favorite mathematical subjects, and I wrote a crude form of lecture
notes that semester. Those notes sat undisturbed for three years until late
in 1993 when I finally made the decision to turn the notes into a book.
The notes were greatly expanded and rewritten, and they were in a form
sufficient to be used as the text for Math 581 when I taught it again in the
fall of 1994.

Part of my desire to write a textbook was due to the nonstandard format
of our graduate algebra sequence. The first semester of our sequence is field
theory. Our graduate students generally pick up group and ring theory in
a senior-level course prior to taking field theory. Since we start with field
theory, we would have to jump into the middle of most graduate algebra
textbooks. This can make reading the text difficult by not knowing what
the author did before the field theory chapters. Therefore, a book devoted
to field theory is desirable for us as a text. While there are a number of
field theory books around, most of these were less complete than I wanted.
For example, Artin’s wonderful book [1] barely addresses separability and
does not deal with infinite extensions. I wanted to have a book containing
most everything I learned and enjoyed about field theory.

This leads to another reason why I wanted to write this book. There are a
number of topics I wanted to have in a single reference source. For instance,
most books do not go into the interesting details about discriminants and
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how to calculate them. There are many versions of discriminants in different
fields of algebra. I wanted to address a number of notions of discriminant
and give relations between them. For another example, I wanted to discuss
both the calculation of the Galois group of a polynomial of degree 3 or
4, which is usually done in Galois theory books, and discuss in detail the
calculation of the roots of the polynomial, which is usually not done. I feel it
is instructive to exhibit the splitting field of a quartic as the top of a tower
of simple radical extensions to stress the connection with solvability of the
Galois group. Finally, I wanted a book that does not stop at Galois theory
but discusses non-algebraic extensions, especially the extensions that arise
in algebraic geometry. The theory of finitely generated extensions makes
use of Galois theory and at the same time leads to connections between
algebra, analysis, and topology. Such connections are becoming increasingly
important in mathematical research, so students should see them early.

The approach I take to Galois theory is roughly that of Artin. This
approach is how I first learned the subject, and so it is natural that I feel it
is the best way to teach Galois theory. While I agree that the fundamental
theorem is the highlight of Galois theory, I feel strongly that the concepts of
normality and separability are vital in their own right and not just technical
details needed to prove the fundamental theorem. It is due to this feeling
that I have followed Artin in discussing normality and separability before
the fundamental theorem, and why the sections on these topics are quite
long. To help justify this, I point out that results in these sections are cited
in subsequent chapters more than is the fundamental theorem.

This book is divided into five chapters, along with five appendices for
background material. The first chapter develops the machinery of Galois
theory, ending with the fundamental theorem and some of its most imme-
diate consequences. One of these consequences, a proof of the fundamental
theorem of algebra, is a beautiful application of Galois theory and the Sy-
low theorems of group theory. This proof made a big impression on me
when I first saw it, and it helped me appreciate the Sylow theorems.

Chapter II applies Galois theory to the study of certain field extensions,
including those Galois extensions with a cyclic or Abelian Galois group.
This chapter takes a diversion in Section 10. The classical proof of the
Hilbert theorem 90 leads naturally into group cohomology. While I believe
in giving students glimpses into more advanced topics, perhaps this section
appears in this book more because of my appreciation for cohomology. As
someone who does research in division algebras, I have seen cohomology
used to prove many important theorems, so I felt it was a topic worth
having in this book.

In Chapter III, some of the most famous mathematical problems of antiqg-
uity are presented and answered by using Galois theory. The main questions
of ruler and compass constructions left unanswered by the ancient Greeks,
such as whether an arbitrary angle can be trisected, are resolved. We com-
bine analytic and algebraic arguments to prove the transcendence of 7 and
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e. Formulas for the roots of cubic and quartic polynomials, discovered in
the sixteenth century, are given, and we prove that no algebraic formula
exists for the roots of an arbitrary polynomial of degree 5 or larger. The
question of solvability of polynomials led Galois to develop what we now
call Galois theory and in so doing also developed group theory. This work
of Galois can be thought of as the birth of abstract algebra and opened the
door to many beautiful theories.

The theory of algebraic extensions does not end with finite extensions.
Chapter IV discusses infinite Galois extensions and presents some impor-
tant examples. In order to prove an analog of the fundamental theorem
for infinite extensions, we need to put a topology on the Galois group.
It is through this topology that we can determine which subgroups show
up in the correspondence between subextensions of a Galois extension and
subgroups of the Galois group. This marks just one of the many places in
algebra where use of topology leads to new insights.

The final chapter of this book discusses nonalgebraic extensions. The
first two sections develop the main tools for working with transcendental
extensions: the notion of a transcendence basis and the concept of linear
disjointness. The latter topic, among other things, allows us to extend to
arbitrary extensions the idea of separability. The remaining sections of
this chapter introduce some of the most basic ideas of algebraic geometry
and show the connections between algebraic geometry and field theory,
notably the theory of finitely generated nonalgebraic extensions. It is the
aim of these sections to show how field theory can be used to give geometric
information, and vice versa. In particular, we show how the dimension of an
algebraic variety can be calculated from knowledge of the field of rational
functions on the variety.

The five appendices give what I hope is the necessary background in set
theory, group theory, ring theory, vector space theory, and topology that
readers of this book need but in which they may be partially deficient. These
appendices are occasionally sketchy in details. Some results are proven and
others are quoted as references. Their purpose is not to serve as a text
for these topics but rather to help students fill holes in their background.
Exercises are given to help to deepen the understanding of these ideas.

Two things I wanted this book to have were lots of examples and lots
of exercises. I hope I have succeeded in both. One complaint I have with
some field theory books is a dearth of examples. Galois theory is not an
easy subject to learn. I have found that students often finish a course in
Galois theory without having a good feel for what a Galois extension is.
They need to see many examples in order to really understand the theory.
Some of the examples in this book are quite simple, while others are fairly
complicated. I see no use in giving only trivial examples when some of the
interesting mathematics can only be gleaned from looking at more intricate
examples. For this reason, I put into this book a few fairly complicated and
nonstandard examples. The time involved in understanding these examples
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will be time well spent. The same can be said about working the exercises.
It is impossible to learn any mathematical subject merely by reading text.
Field theory is no exception. The exercises vary in difficulty from quite
simple to very difficult. I have not given any indication of which are the
hardest problems since people can disagree on whether a problem is difficult
or not. Nor have I ordered the problems in any way, other than trying to
place a problem in a section whose ideas are needed to work the problem.
Occasionally, I have given a series of problems on a certain theme, and
these naturally are in order. I have tried not to place crucial theorems
as exercises, although there are a number of times that a step in a proof
is given as an exercise. I hope this does not decrease the clarity of the
exposition but instead improves it by eliminating some simple but tedious
steps.

Thanks to many people need to be given. Certainly, authors of previously
written field theory books need to be thanked; my exposition has been in-
fluenced by reading these books. Adrian Wadsworth taught me field theory,
and his teaching influenced both the style and content of this book. I hope
this book is worthy of that teaching. I would also like to thank the colleagues
with whom I have discussed matters concerning this book. Al Sethuraman
read preliminary versions of this book and put up with my asking too many
questions, Irena Swanson taught Math 581 in fall 1995 using it, and David
Leep gave me some good suggestions. I must also thank the students of
NMSU who put up with mistake-riddled early versions of this book while
trying to learn field theory. Finally, I would like to thank the employees at
TCI Software, the creators of Scientific Workplace. They gave me help on
various aspects of the preparation of this book, which was typed in BTEX
using Scientific Workplace.

April 1996 Pat Morandi
Las Cruces, New Mexico



Notes to the Reader

The prerequisites for this book are a working knowledge of ring theory, in-
cluding polynomial rings, unique factorization domains, and maximal ide-
als; some group theory, especially finite group theory; vector space theory
over an arbitrary field, primarily existence of bases for finite dimensional
vector spaces, and dimension. Some point set topology is used in Sections
17 and 21. However, these sections can be read without worrying about the
topological notions. Profinite groups arise in Section 18 and tensor products
arise in Section 20. If the reader is unfamiliar with any of these topics, as
mentioned in the Preface there are five appendices at the end of the book
that cover these concepts to the depth that is needed. Especially important
is Appendix A. Facts about polynomial rings are assumed right away in
Section 1, so the reader should peruse Appendix A to see if the material is
familiar.

The numbering scheme in this book is relatively simple. Sections are
numbered independently of the chapters. A theorem number of 3.5 means
that the theorem appears in Section 3. Propositions, definitions, etc., are
numbered similarly and in sequence with each other. Equation numbering
follows the same scheme. A problem referred to in the section that it ap-
pears will be labeled such as Problem 4. A problem from another section
will be numbered as are theorems; Problem 13.3 is Problem 3 of Section 13.
This numbering scheme starts over in each appendix. For instance, Theo-
rem 2.3 in Appendix A is the third numbered item in the second section of
Appendix A.

Definitions in this book are given in two ways. Many definitions, including
all of the most important ones, are spelled out formally and assigned a
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number. Other definitions and some terminology are given in the body of
the text and are emphasized by italic text. If this makes it hard for a reader
to find a definition, the index at the end of the book will solve this problem.

There are a number of references at the end of the book, and these are
cited occasionally throughout the book. These other works are given mainly
to allow the reader the opportunity to see another approach to parts of field
theory or a more in-depth exposition of a topic. In an attempt to make this
book mostly self-contained, substantial results are not left to be found in
another source. Some of the theorems are attributed to a person or persons,
although most are not. Apologies are made to anyone, living or dead, whose
contribution to field theory has not been acknowledged.

Notation in this book is mostly standard. For example, the subset relation
is denoted by C and proper subset by C. If B is a subset of A, then the
set difference {z : z € A,z ¢ B} is denoted by A — B. If I is an ideal in a
ring R, the coset r + I is often denoted by 7. Most of the notation used is
given in the List of Symbols section. In that section, each symbol is given
a page reference where the symbol can be found, often with definition.
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I
Galois Theory

In this chapter, we develop the machinery of Galois theory. The first four
sections constitute the technical heart of Galois theory, and Section 5
presents the fundamental theorem and some consequences. As an appli-
cation, we give a proof of the fundamental theorem of algebra using Galois
theory and the Sylow theorems of group theory.

The main idea of Galois theory is to associate a group, the Galois group,
to a field extension. We can then turn field theory problems into group the-
ory problems. Since the Galois group of a finite dimensional extension is
finite, we can utilize the numerical information about finite groups to help
investigate such field extensions. It turns out that field theory is the right
context for solving some of the famous classical problems that stumped
mathematicians for centuries. As an application of field theory, in Chapter
ITT we give proofs of the famous impossibilities of certain ruler and com-
pass constructions, and we determine why roots of polynomials of degree
5 or greater need not be given by formulas involving field operations and
extraction of roots.

1 Field Extensions

In this section, we begin the study of field theory. Consequently, there are a
number of definitions in this section, although there are also a large number
of examples intended to help the reader with the concepts. We point out
now that we take a basic knowledge of ring theory and vector space theory
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for granted. For instance, we use the dimension of a finite dimensional
vector space frequently, and we use the theory of polynomial rings in one
variable over a field equally often. Any reader who is unfamiliar with a fact
used in this book is recommended to peruse the appendices; they contain
most of the background a reader will need but may not have.

While field theory is of course concerned with the study of fields, the
study of field theory primarily investigates field extensions. In fact, the
classical problems of ruler and compass constructions and the solvability
of polynomial equations were answered by analyzing appropriate field ex-
tensions, and we answer these problems in Chapter III in this way. While
it may seem unusual to some readers to consider pairs of fields, we point
out that much of group theory and ring theory is concerned with group
extensions and ring extensions, respectively.

Recall that a field is a commutative ring with identity such that the
nonzero elements form a group under multiplication. If F C K are fields,
then K is called a field extension of F. We will refer to the pair F C K
as the field extension K/F and to F as the base field. We make K into an
F-vector space by defining scalar multiplication for « € F and a € K as
a - a = aa, the multiplication of @ and a in K. We write [K : F] for the
dimension of K as an F-vector space. This dimension is called the degree of
K/F.If [K : F] < oo, then K is called a finite extension of F. Otherwise K
is an infinite extension of F. Most of this chapter will deal with finite field
extensions, although in a few places we will need to work with extensions
of any degree.

Example 1.1 In order to give examples of field extensions, we first need
examples of fields. In this book, the fields of rational numbers, real numbers,
and compler numbers will be denoted @, R, and C, respectively. The field
Z/pZ of integers mod p will be denoted F,,. The fields Q and F, will appear
often as the base field of examples. Finite field extensions of QQ are called
algebraic number fields and are one of the objects of study in algebraic
number theory.

Example 1.2 Let k£ be a field and let z be a variable. The rational func-
tion field k(z) is the quotient field of the polynomial ring k[z]; that is,
k(x) consists of all quotients f(z)/g(x) of polynomials with g(z) # 0. Sim-
ilarly, if z;,...,z, are independent variables, then the field k(z1,...,z,)
of rational functions in the z; is the quotient field of the polynomial ring
k[z1,...,2Zn] of polynomials in n variables, so it consists of all quotients
f(z1,...,zn)/g(z1,. .., z,) of polynomials in the z; with g # 0. Field ex-
tensions of a rational function field arise frequently in algebraic geometry
and in the theory of division rings. We will work with rational function
fields frequently.
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Example 1.3 Let k be a field and let k((z)) be the set of all formal gen-
eralized power series in z with coefficients in k; that is, the elements of
k((z)) are formal infinite sums } o a,z™ with ny € Z and each a, € k.

We define addition and multiplication on k((z)) by

Z anz™ + i bpz™ = i(an + bp)z™
and

i anz™ - i bpz™ = i (”il anbn_k> z".

n=ng n=njy n=ng+ny k:no

A straightforward calculation shows that k((x)) is a commutative ring with
identity. Moreover, we can show that k((z)) is a field. If f = 37 anz™is
a nonzero element of k((z)), we need to produce an inverse for f. Suppose
that we have written the series so that a,, is the first nonzero coefficient.
By multiplying by a;olm""‘), to find an inverse for f it suffices to assume
that ng = 0 and a,, = 1. We can find the coefficients b, of the inverse
Yool obnz™ to f by recursion. To have Y oo anz™ - > oo (bpz™ = 1, we
need by = 1 since ag = 1. For n > 0, the coefficient of z" is

bnag + bp_101 + - 4+ boan =0,

so if we have determined by,...,b,_1, then we determine b, from the equa-
tion b, = — 22:1 bn_rar. By setting g to be the series with coefficients
b, determined by this information, our computations yield fg = 1. Thus,
k((z)) is a field. The rational function field k(z) is naturally isomorphic to
a subfield of k((z)). In algebra, the field k((z)) is often called the field of
Laurent series over k, although this terminology is different from that used
in complex analysis.

We now give some examples of field extensions.

Example 1.4 The extension C/R is a finite extension since [C : R] = 2.
A basis for C as an R-vector space is {1,7}. As an extension of Q, both C
and R are infinite extensions. If a € C, let

zi iai i
Q(a) = {Zi(;iai tag, B € Q, Z:Bia # 0}.

We shall see in Proposition 1.8 that Q(a) is a field extension of Q. The de-
gree of Q(a)/Q can be either finite or infinite depending on a. For instance,
if a = /=1 or a = exp(27i/3), then [Q(a) : Q] = 2. These equalities are
consequences of Proposition 1.15. On the other hand, we prove in Section
14 that [Q(7) : Q] = oco.
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Example 1.5 If k is a field, let K = k(t) be the field of rational functions
in t over k. If f is a nonzero element of K, then we can use the construction
of Q(a) in the previous example. Let F' = k(f) be the set of all rational
functions in f; that is,

F= 2?:0 aifi

W Za-,:,bj € k and Zb]f] #0
j=0"7

=0

If f(t) = t2, then K/F is an extension of degree 2; a basis for K is {1,¢}.
In Example 1.17, we shall see that K/F is a finite extension provided that
f is not a constant, and in Chapter V we shall prove Liiroth’s theorem,
which states that every field L with k C L C K is of the form L = k(f) for
some f € K.

Example 1.6 Let p(t) = t3 — 2 € Q[t]. Then p(t) is irreducible over Q by
the rational root test. Then the ideal (p(t)) generated by p(t) in Q[t] is max-
imal; hence, K = Q[t]/(p(t)) is a field. The set of cosets {a + (p(t)) : a € Q}
can be seen to be a field isomorphic to @ under the map a — a + (p(t)).
We view the field Q[t]/(p(t)) as an extension field of Q by thinking of Q
as this isomorphic subfield. If f(t) € Q[t], then by the division algorithm,
f(t) = q(t)p(t) + r(t) with r(¢t) = 0 or deg(r) < deg(p) = 3. Moreover, f(t)
and r(t) generate the same coset in Q[t]/(p(t)). What this means is that any
element of K has a unique representation in the form a+ bt +ct? + (p(t)) for
some a,b,c € Q. Therefore, the cosets 1+ (p(t)), t + (p(t)), and t2 + (p(t))
form a basis for K over Q, so [K : Q] = 3. Let a = t + (p(t)). Then

a® - 2=+ (p(t)) - 2+ (p(t)) = t* — 2+ (p(1)) = 0.

The element a is then a root of 2 — 2 in K. Note that we used the identi-
fication of QQ as a subfield in this calculation.

If instead of t2 — 2 we had started with any irreducible polynomial of
degree n over Q, we would obtain a field extension of @Q of degree n that
contains a root of the polynomial. We will use this idea in Section 3 to
prove the existence of fields that contain roots of polynomials.

Generators of fields

In order to study the roots of a polynomial over a field F', we will consider
a minimal field extension of F' that contains all the roots of the polynomial.
In intuitive terms, we want this field to be generated by F' and the roots.
We need to make this more precise.

Definition 1.7 Let K be a field extension of F. If X is a subset of K,
then the ring F[X] generated by F and X is the intersection of all subrings
of K that contain F and X. The field F(X) generated by F and X is the
intersection of all subfields of K that contain F and X. If X = {a1,...,a,}
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is finite, we will write F[X] = Flay,...,a,] and F(X) = F(a1,...,a,). If
X is finite, we call the field F(X) a finitely generated extension of F.

It is a simple exercise to show that an intersection of subfields or subrings
of a field is again a subfield or subring, respectively. From this definition,
it follows that F'(X) is the smallest subfield with respect to inclusion of K
that contains F' and X. We can give more concrete descriptions of F[X]
and F(X). Let K be a field extension of F and let a € K. The evaluation
homomorphism ev, is the map ev, : Fz] — K defined by ev,(}; aiz’) =
>, aza’. We denote ev,(f(z)) by f(a). It is straightforward (see Problem
3) to show that ev, is both a ring and an F-vector space homomorphism.
We use this notion to see what it means for a field to be generated by a
set of elements. We start with the easiest case, when K is generated over
F by a single element.

Proposition 1.8 Let K be a field extension of F and let a € K. Then
Fla] = {f(a) : f(z) € F[z]}

and
F(a) ={f(a)/g(a): f,g € Flz],g(a) # 0}.
Moreover, F(a) is the quotient field of F|a].

Proof. The evaluation map ev, : F[z] — K has image {f(a) : f € F[z]},
so this set is a subring of K. If R is a subring of K that contains F
and a, then f(a) € R for any f(z) € F[z] by closure of addition and
multiplication. Therefore, {f(a) : f(z) € F[z]} is contained in all subrings
of K that contain F' and a. Therefore, Fla] = {f(a): f(z) € F[z]}. The
quotient field of Fl[a] is then the set {f(a)/g(a) : f,g € Flz],g(a) # 0}. It
clearly is contained in any subfield of K that contains Fa]; hence, it is
equal to F'(a). m]

The notation Fla] and F(a) is consistent with the notation F[z] and
F(z) for the ring of polynomials and field of rational functions over F, as
the description of F[a] and F(a) shows.

By similar arguments, we can describe the ring Flay,...,a,] and field
F(ay,...,a,) generated by F and ay,...,a,. The proof of the following
proposition is not much different from the proof of Proposition 1.8, so it is
left to Problem 4.

Proposition 1.9 Let K be a field extension of F' and let a,,...,a, € K.
Then

Flay,...,ax) ={f(a1,---,an) : f € Flz1,...,zn|}
and

F(a17"'7an) = {M

~—

: f,g € Flzy,...,z5], g(ar, ..., an) 750},
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so F(ay,...,a,) is the quotient field of Flay,...,an].

For arbitrary subsets X of K we can describe the field F(X) in terms of
finite subsets of X. This description is often convenient for turning ques-
tions about field extensions into questions about finitely generated field
extensions.

Proposition 1.10 Let K be a field extension of F' and let X be a subset
of K. If a € F(X), then a € F(ay,...,a,) for some ay,...,a, € X.
Therefore,

F(X) :U{F(al,...,an) fay,...,a, € X},
where the union is over all finite subsets of X.

Proof. Each field F(ay,...,a,) with the a; € X is contained in F(X);
hence, J{F(a1,...,an):a; € X} € F(X). This union contains F and
X, so if it is a field, then it is equal to F(X), since F(X) is the small-
est subfield of K containing F' and X. To show that this union is a
field, let a,8 € U{F(a1,...,an):a; € X}. Then there are a;,b; € X
with a € F(ay,...,a,) and 8 € F(by,...,by). Then both a and g
are contained in F(ai,...,an,b1,...,bm), so a £ 8, aB, and a/8 (if
B # 0) all lie in |J{F(ai,...,an):a; € X}. This union is then a field,
so F(X)=U{F(a1,...,a,):a; € X}. O

In this chapter, our interest will be in those field extensions K/F for
which any a € K satisfies a polynomial equation over F. We give this idea
a formal definition.

Definition 1.11 If K is a field extension of F, then an element a € K is
algebraic over F if there is a nonzero polynomial f(z) € Fz] with f(a) = 0.
If a is not algebraic over F, then a is said to be transcendental over F. If
every element of K is algebraic over F, then K is said to be algebraic over
F, and K/F is called an algebraic extension.

Definition 1.12 If « is algebraic over a field F, the minimal polynomial
of a over F' is the monic polynomial p(z) of least degree in F[z] for which
p(a) = 0; it is denoted min(F, a). Equivalently, min(F,a) is the monic
generator p(x) of the kernel of the evaluation homomorphism ev,,.

Example 1.13 The complex number i = /—1 is algebraic over Q, since
i2+1=0.Ifr € Q, then a = {/7 is algebraic over Q, since a is a root
of 2" — 7. If w = e2™/™ = cos(2n/n) + isin(27/n), then w™ — 1 = 0,
so w is algebraic over Q. Note that min(Q,i) = z? + 1 = min(R,7) but
min(C, {) = z—i. Therefore, the minimal polynomial of an element depends
on the base field, as does whether the element is algebraic or transcendental.
The determination of min(Q, w) is nontrivial and will be done in Section 7.
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Example 1.14 In 1873, Hermite proved that e is transcendental over Q,
and 9 years later, Lindemann proved that = is transcendental over Q.
However, 7 is algebraic over Q(r), since 7 is a root of the polynomial
z —m € Q(w)[z]. It is unknown if e is transcendental over Q(m). We will
prove in Section 14 that 7 and e are transcendental over Q.

To work with algebraic extensions, we need some tools at our disposal.
The minimal polynomial of an element and the degree of a field extension
are two of the most basic tools we shall use. The following proposition gives
a relation between these objects.

Proposition 1.15 Let K be a field extension of F' and let a € K be alge-
braic over F.

1. The polynomial min(F, a) is irreducible over F.

2. If g(z) € Flz], then g(a) = 0 if and only if min(F, o) divides g(z).

3. If n = deg(min(F, a)), then the elements 1,,...,a™"! form a basis
for F(a) over F, so [F(a) : F] = deg(min(F,a)) < co. Moreover,
F(a) = Fla].

Proof. If p(z) = min(F, a), then F(z]/(p(z)) = F|a] is an integral domain.
Therefore, (p(z)) is a prime ideal, so p(z) is irreducible. To prove statement
2, if g(z) € F[z] with g(a) = 0, then g(z) € ker(evy). But this kernel is
the ideal generated by p(z), so p(z) divides g(z). For statement 3, we first
prove that Fla] = F(a). To see this, note that F[a] is the image of the
evaluation map ev,. The kernel of ev, is a prime ideal since ev, maps
Fz] into an integral domain. However, F[z] is a principal ideal domain, so
every nonzero prime ideal of F[z] is maximal. Thus, ker(ev,) is maximal,
so Fla] @ F[z]/ker(evy) is a field. Consequently, Fla] = F(a). To finish
the proof of statement 3, let n = deg(p(x)). If b € F(«), then b = g(a) for
some g(z) € F[z]. By the division algorithm, g(z) = ¢(z)p(z) +r(z), where
r(z) = 0 or deg(r) < n. Thus, b = g(a) = r(e). Since () is an F-linear
combination of 1,a,...,a” !, we see that 1,q,...,a" ! span F(a) as an
F-vector space. If Y7 a;a* = 0, then f(z) = 37" a;a? is divisible by
p(x), so f(z) = 0, or else f is divisible by a polynomial of larger degree
than itself. Thus, 1,0,...,a" ! is a basis for F((a) over F. ]

Example 1.16 The element /2 satisfies the polynomial z3 — 2 over Q,
which is irreducible by the Eisenstein criterion, so 3 — 2 is the minimal
polynomial of /2 over Q. Thus, [Q(+/2) : Q] = 3. If p is a prime, then
z™ — p is irreducible over Q, again by Eisenstein, so [Q({/p) : Q] = n. The
complex number w = cos(27/3) + isin(27/3) satisfies z3 — 1 over Q. This
factors as ° — 1 = (z — 1)(z? + = + 1). The second factor has w as a root
and is irreducible since it has no rational root; hence, it is the minimal
polynomial of w over Q. Consequently, [Q(w) : Q] = 2.
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Let p be a prime and let p = exp(27i/p) = cos(27/p) +isin(27/p). Then
p satisfies the polynomial 2?7 — 1 = (z — 1)(zP~ ! + 2P 2 +--- + 2 + 1).
Since p # 1, it satisfies the polynomial 2P~ 4+ 2P~2 4 ... 42 + 1. Moreover,
this polynomial is irreducible over Q (see Problem 22b); hence, it is the
minimal polynomial of p over Q.

Example 1.17 Here is a very nice, nontrivial example of a finite field
extension. Let & be a field and let K = k(t) be the field of rational functions
in t over k. Let u € K with u ¢ k. Write u = f(t)/g(t) with f, g € k[t] and
ged(f(t),9(t)) =1, and let F = k(u). We claim that

[K : F] = max {deg(f(t),deg(g(t))},

which will show that K/F is a finite extension. To see this, first note that
K = F(t). By using Proposition 1.15, we need to determine the minimal
polynomial of ¢ over F to determine [K : F]. Consider the polynomial
p(z) = ug(z)—f(z) € Flz]. Then t is a root of p(z). Therefore, ¢ is algebraic
over F, and so [K : F| < oo as K = F(t). Say f(t) = Y . ,ait* and
g(t) = >~ bit*. First note that deg(p(z)) = max {deg(f(t),deg(g(t))}. If
this were false, then the only way this could happen would be if m = n
and the coefficient of ™ in p(z) were zero. But this coefficient is ub, — an,
which is nonzero since u ¢ k. We now show that p(z) is irreducible over F,
which will verify that [K : F] = max{n,m}. We do this by viewing p(z) in
two ways. The element u is not algebraic over k, otherwise [K : k] = [K :
F]-[F : k] < oo, which is false. Therefore, u is transcendental over k, so
k[u] = k{z]. Viewing p as a polynomial in u, we have p € k[z][u] C k(z)[u],
and p has degree 1 in u. Therefore, p is irreducible over k(z). Moreover, since
ged(f(t), g(t)) = 1, the polynomial p is primitive in k[z][u]. Therefore, p is
irreducible over k[z]. We have p € k[u][z] = k[z][u] (think about this!), so p
is irreducible over k[u], as a polynomial in z. Therefore, p is irreducible over
k(u) = F, which shows that p is the minimal polynomial of u over F, by
Proposition 1.15. Therefore, we have [K : F| = max{deg(f(t),deg(g(¢))},
as desired.

Example 1.18 Let K be a finitely generated extension of F', and suppose
that K = F(a1,...,a,). We can break up the extension K/F into a col-
lection of subextensions that are easier to analyze. Let L; = F(ay,...,a;),
and set Lo = F. Then we have a chain of fields

F=LyCL,CL,C---CL,=K

with L; 11 = L;(a;4+1). Therefore, we can break up the extension K/F into a
series of subextensions L;,,/L;, each generated by a single element. Results
such as Proposition 1.15 will help to study the extensions L;i,/L;. To
make this idea of decomposing K/ F into these subextensions useful, we will
need to have transitivity results that tell us how to translate information
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about subextensions to the full extension K/F. We will prove a number
of transitivity results in this book. We prove two below, one dealing with
field degrees and the other about the property of being algebraic.

Recall that the field K is finitely generated as a field over F if K =
F(ay,...,a,) for some a; € K. This is not the same as being finitely
generated as a vector space or as a ring. The field K is finitely generated as
an F-vector space if and only if [K : F] < oo, and K is finitely generated
as a ring over F if K = Flay,...,a,] for some a; € K.

Lemma 1.19 If K is a finite extension of F, then K is algebraic and
finitely generated over F.

Proof. Suppose that ay,...,a, is a basis for K over F. Then every el-
ement of K is of the form ) .a;0; with a; € F, so certainly we have
K = F(ay,...,an); thus, K is finitely generated over F. If a € K, then
{1,a,...,a™} is dependent over F, since [K : F] = n. Thus, there are
B; € F, not all zero, with Y, B;a* = 0. If f(z) = Y, B;z*, then f(z) € Fz]
and f(a) = 0. Therefore, a is algebraic over F', and so K is algebraic over
F. ]

The converse of this lemma is also true. In order to give a proof of
the converse, we need the following property of degrees. The degree of a
field extension is the most basic invariant of an extension. It is therefore
important to have some information about this degree. We will use the
following transitivity result frequently.

Proposition 1.20 Let FF C L C K be fields. Then
[K:F|=[K:L]-[L:F].

Proof. Let {a; : 2 € I} be a basis for L/F, and let {b; : j € J} be
a basis for K/L. Consider the set {a;b; : ¢ € I,j € J}. We will show that
this set is a basis for K/F. If z € K, then z = }_; a;b; for some a; € L,
with only finitely many of the b; # 0. But a; = ), B;;a;, for some §;; € F,
with only finitely many B;; nonzero for each j. Thus, z = Zi,j Bijaib;,
so the {a;b;} span K as an F-vector space. For linear independence, if
Zi,j Bija:b; = 0 with B;; € F', then the independence of the b; over L
shows that Y, B;;a; = 0 for each j. But independence of the a; over F
gives fB;; = 0 for each 4, j. Thus, the a;b; are independent over F', so they
form a basis for K/F. Therefore,

[K:Fl=Habj:iel,jeJ}
=|{a;:i€l}-{bj:5€J}=[K:L]-[L:F]
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This proposition is used primarily with finite extensions, although it is
true for arbitrary extensions. Note that the proof above does not assume
that the dimensions are finite, although we are being somewhat informal
in our treatment of infinite cardinals.

We now prove the converse to Proposition 1.19.

Proposition 1.21 Let K be a field extension of F. If each a; € K is
algebraic over F, then Flay,...,a,] is a finite dimensional field extension
of F with

[F[al, . ,Otn : H

Proof. We prove this by induction on n; the case n = 1 follows from
Proposition 1.15. If we set L = Flay,...,an—1], then by induction L is
a field and [L : F] < [[27}[F() : F]. Then Flay,...,an] = Lioy] is a
field since a, is algebraic over L, and since min(L, ;) divides min(F, a,,)
by Proposition 1.15, we have [Floy,...,an] : L] < [F(a,) : F]. Hence, by
Proposition 1.20 and the induction hypothesis,

[Floa,...,an] : F] = [Floa,...,an] : L] - [L: F] < H[F(ai) . F).

This finishes the proof. O

The inequality of the proposition above can be strict. For example, if
a=\“/§andb—\71_then[() Q] = [Q(b) : Q] = 4, since the
polynomials z%—2 and z*—18 are irreducible over Q by an application of the
Eisenstein criterion. However, we know that Q(a,b) = Q(v/2,v/3), which
has degree 8 over Q. To see this equality, note that (b/a)* = 3, so (b/a)?
is a square root of 3. Thus, V3 € Q(a,b). However, [Q(a,b) : Q(a)] < 2
because b satisfies the polynomial 22 — 3v/2 = 2% — 3a® € Q(a)[z]. Thus,
by Proposition 1.20,

[Q(a,b) : Q] = [Q(a,b) : Q(a)] - [Q(a) : Q] < 8 = [Q(V2,V3) : Q],

so since Q(+v/2, v/3) is a subfield of Q(a, b), we obtain Q(a,b) = Q(v/2, V3).
The equality [Q(+v/2,v/3) : Q] = 8 is left as an exercise (see Problem 18).

As a corollary to the previous proposition, we have the following conve-
nient criterion for an element to be algebraic over a field.

Corollary 1.22 If K is a field extension of F, then a € K is algebraic

over F if and only if [F(a) : F] < co. Moreover, K is algebraic over F if
[K : F] < 0.

The converse to the second statement of the corollary is false. There
are algebraic extensions of infinite degree. The set of all complex numbers
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algebraic over Q is a field, and this field is infinite dimensional over Q (see
Problem 16).

Proposition 1.21 can be extended easily to the case of fields generated
by an arbitrary number of elements.

Proposition 1.23 Let K be a field extension of F, and let X be a subset of
K such that each element of X is algebraic over F. Then F(X) is algebraic
over F. If | X| < oo, then [F(X) : F] < oco.

Proof. Let a € F(X). By Proposition 1.10, there are a;,...,a, € X with
a € Flay,...,a,). By Proposition 1.21, F(ay,...,a,) is algebraic over
F. Thus, a is algebraic over F and, hence, F(X) is algebraic over F. If
|X| < oo, then [F(X) : F] < co by Proposition 1.21. o

We are now ready to prove that the property of being algebraic is transi-
tive. We will use this result frequently. In the case of finite extensions, tran-
sitivity follows from Proposition 1.20 and Corollary 1.22, but it is harder
to prove for general extensions.

Theorem 1.24 Let F C L C K be fields. If L/F and K/L are algebraic,
then K/F is algebraic.

Proof. Let a € K, and let f(z) = ap +a1z+---+z™ be the minimal poly-
nomial of & over L. Since L/F is algebraic, the field Lo = F(ao,.-.,an-1)
is a finite extension of F' by Corollary 1.22. Now f(z) € Lo[z], so a is
algebraic over Ly. Thus,

[Lo(a) : F] = [Lo(a) : L()] . [Lo : F] < 0.
Because F(a) C Lo(a), we see that [F(a) : F] < oo, so « is algebraic over

F'. Since this is true for all @ € K, we have shown that K/F is algebraic.
O

As an application of some of the results we have obtained, we can help
to describe the set of algebraic elements of a field extension.

Definition 1.25 Let K be a field extension of F. The set
{a € K : a is algebraic over F}

is called the algebraic closure of F in K.

Corollary 1.26 Let K be a field extension of F', and let L be the algebraic
closure of F in K. Then L is a field, and therefore is the largest algebraic
extension of F' contained in K.



12 I. Galois Theory

Proof. Let a,b € L. Then F(a,b) is algebraic over F' by Proposition 1.23,
so F(a,b) C L, and since a £ b,ab,a/b € F(a,b) C L, the set L is closed
under the field operations, so it is a subfield of K. Each element of K that
is algebraic over F' lies in L, which means that L is the largest algebraic
extension of F' contained in K. m]

Composites of field extensions

Let F be a field, and suppose that L, and Lo are field extensions of F
contained in some common extension K of F. Then the composite Ly Lo of
Ly and L, is the subfield of K generated by L, and Lo; that is, Ly Ly =
Li(L3) = La(Ly). We will use this concept throughout this book. Some
properties of composites are given in the Problems. We finish this section
with some examples of composites.

Example 1.27 Let F = Q, and view all fields in this example as subfields
of C. Let w = e2™/3 50 w® = 1 and w # 1. The composite of Q(v/2)
and Q(wv/?2) is Q(w, v2). To see that this is the composite, note that
both Q(+/2) and Q(w+/2) are contained in Q(+¥/2,w), so their composite is
also contained in Q(¥/2,w). However, if a field L contains v/2 and w+/2,
then it also contains w = w+/2/¥/2. Thus, L must contain /2 and w, so it
must contain Q(¥/2,w). Therefore, Q(+/2,w) is the smallest field containing
both Q(¥/2) and Q(w+/2). We can also show that Q(v/2,w) = Q(¥/2 +w),
so Q(V¥/2,w) is generated by one element over Q. If ¢ = w + V2, then
(@ — w)® = 2. Expanding this and using the relation w? = —1 — w, solving
for w yields

a®—-3a-3

3a2 + 3a

so w € Q(a). Thus, V2 = a —w € Q(a), so Q(V2,w) = Q(V2 +w).

)

Example 1.28 The composite of Q(v2) and Q(v/3) is the field
Q(+v/2,+/3). This composite can be generated by a single element over Q.
In fact, Q(v/2,v3) = Q(v/2+v/3). To see this, the inclusion D is clear. For
the reverse inclusion, let a = v/2 + /3. Then (a — v/2)? = 3. Multiplying
this and rearranging gives 2v/2a = a? — 1, so

V2= L e Q(a).

a? —
2a

Similar calculations show that

_(a2+1)
V3= 5o € Q)

Therefore, Q(v/2,v/3) C Q(a), which, together with the previous inclusion,
gives Q(v2,v3) = Q(a).
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We will see in Section 5 that every finite extension of @Q is of the form
Q(a) for some a, which indicates that there is some reason behind these ad
hoc calculations.

Problems

1.

Let K be a field extension of F. By defining scalar multiplication for
a € F and a € K by a-a = aa, the multiplication in K, show that
K is an F-vector space.

If K is a field extension of F, prove that [K : F]) = 1 if and only if
K=F.

Let K be a field extension of F, and let a € K. Show that the
evaluation map ev, : Flz] — K given by ev,(f(z)) = f(a) is a ring
and an F-vector space homomorphism.

(Such a map is called an F-algebra homomorphism.)

Prove Proposition 1.9.

. Show that Q(v/5,v7) = Q(v5 + V7).

. Verify the following universal mapping property for polynomial rings:

(a) Let A be aring containing a field F. If a,...,a, € A, show that
there is a unique ring homomorphism ¢ : Flzi,...,z,] — A
with ¢(z;) = a; for each i.

(b) Moreover, suppose that B is a ring containing F', together with a
function f : {z1,...,z,} — B, satisfying the following property:
For any ring A containing F' and elements ay,...,a, € A, there
is a unique ring homomorphism ¢ : B — A with ¢(f(z;)) = a;.
Show that B is isomorphic to F|zy,...,Z,)].

Let A be a ring. If A is also an F-vector space and a(ab) = (aa)b =
a(ab) for all @ € F and a,b € A, then A is said to be an F-algebra.
If A is an F-algebra, show that A contains an isomorphic copy of F'.
Also show that if K is a field extension of F, then K is an F-algebra.

Let K = F(a) be a finite extension of F. For a € K, let L, be the
map from K to K defined by L,(z) = ax. Show that L, is an F-linear
transformation. Also show that det(z] — L,) is the minimal polyno-
mial min(F, a) of a. For which o € K is det(z] — L) = min(F, «)?

If K is an extension of F such that [K : F] is prime, show that there
are no intermediate fields between K and F'.
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22.
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I. Galois Theory

. If K is a field extension of F and if a € K such that [F(a) : F] is
odd, show that F(a) = F(a?). Give an example to show that this can
be false if the degree of F(a) over F is even.

If K is an algebraic extension of F' and if R is a subring of K with
F C RC K, show that R is a field.

Show that Q(v/2) and Q(v/3) are not isomorphic as fields but are
isomorphic as vector spaces over Q.

If L, = F(ay,...,a,) and Ly = F(by,...,b,), show that the com-
posite Ly Lo is equal to F(ay,...,an,b1,...,bm).

If L, and L, are field extensions of F' that are contained in a common
field, show that L, L, is a finite extension of F if and only if both L,
and L, are finite extensions of F.

If L, and L, are field extensions of F' that are contained in a common
field, show that L, L, is algebraic over F' if and only if both L, and
L, are algebraic over F.

Let A be the algebraic closure of Q in C. Prove that [A : Q] = oo.

Let K be a finite extension of F. If L; and L, are subfields of K
containing F, show that [LiLy: F| < [Ly : F}- [L2: F). If ged([L; :
F),[Ly: F]) =1, prove that [L1Ly : F]| = [Ly : F]-[Ly : F).

Show that [Q(¥/2,v3) : Q] = 8.

Give an example of field extensions L, Ly of F for which [L1 Ly : F] <
[Ly: F}-[Lz: F).

Give an example of a field extension K/F with [K : F| = 3 but with
K # F(3/b) for any b e F.

Letae Chbea root of ™ — b, where b € C. Show that 2™ — b factors
as [[7, (¢ — w'a), where w = 2™/

(a) Let F be a field, and let f(z) € Flz]. If f(z) = 3_,a;z* and
a€F,let f(z+a) =Y, a;(zx+a). Prove that f is irreducible
over F if and only if f(z+a) is irreducible over F for any o € F.

(b) Show that 2P~! +zP~2 + ...+ + 1 is irreducible over Q if p is
a prime.
(Hint: Replace z by z + 1 and use the Eisenstein criterion.)

Recall that the characteristic of a ring R with identity is the smallest
positive integer n for which n -1 = 0, if such an n exists, or else the
characteristic is 0. Let R be a ring with identity. Define ¢ : Z - R
by ¢(n} = n -1, where 1 is the identity of R. Show that ¢ is a
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ring homomorphism and that ker(p) = mZ for a unique nonnegative
integer m, and show that m is the characteristic of R.

24. For any positive integer n, give an example of a ring of characteristic
n.

25. If R is an integral domain, show that either char(R) = 0 or char(R)
is prime.

26. Let R be a commutative ring with identity. The prime subring of R
is the intersection of all subrings of R. Show that this intersection is
a subring of R that is contained inside all subrings of R. Moreover,
show that the prime subring of R is equal to {n-1:n € Z}, where 1
is the multiplicative identity of R.

27. Let F be a field. If char(F') = p > 0, show that the prime subring of
R is isomorphic to the field Fp, and if char(F) = 0, then the prime
subring is isomorphic to Z.

28. Let F be a field. The prime subfield of F is the intersection of all
subfields of F'. Show that this subfield is the quotient field of the prime
subring of F, that it is contained inside all subfields of F, and that
it is isomorphic to F, or Q depending on whether the characteristic
of Fisp>0or0.

2 Automorphisms

The main idea of Galois was to associate to any polynomial f a group of
permutations of the roots of f. In this section, we define and study this
group and give some numerical information about it. Our description of this
group is not the one originally given by Galois but an equivalent description
given by Artin.

Let K be a field. A ring isomorphism from K to K is usually called an
automorphism of K. The group of all automorphisms of K will be denoted
Aut(K). Because we are interested in field extensions, we need to consider
mappings of extensions. Let K and L be extension fields of F. An F'-
homomorphism 7 : K — L is a ring homomorphism such that 7(a) = a
for all a € F; that is, 7|p = id. If 7 is a bijection, then 7 is called an
F-isomorphism. An F-isomorphism from a field K to itself is called an
F-automorphism.

Let us point out some simple properties of F-homomorphisms. If 7 :
K — L is an F-homomorphism of extension fields of F', then 7 is also a
linear transformation of F-vector spaces, since 7(aa) = 7(a)7(a) = ar(a)
for « € F and a € K. Furthermore, 7 # 0, so 7 is injective since K is a
field. Also, if [K : F] =[L : F] < oo, then 7 is automatically surjective by
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dimension counting. In particular, any F-homomorphism from K to itself
is a bijection, provided that [K : F|] < oco.

Definition 2.1 Let K be a field extension of F. The Galois group
Gal(K/F) is the set of all F-automorphisms of K.

If K = F(X) is generated over F' by a subset X, we can determine the
F-automorphisms of K in terms of their action on the generating set X.
For instance, if K is an extension of F that is generated by the roots of a
polynomial f(z) € F|z], the following two lemmas will allow us to interpret
the Galois group Gal(K/F) as a group of permutations of the roots of f.
This type of field extension obtained by adjoining to a base field roots of a
polynomial is extremely important, and we will study it in Section 3. One
use of these two lemmas will be to help caiculate Galois groups, as shown
in the examples below.

Lemma 2.2 Let K = F(X) be a field extension of F that is generated by a
subset X of K. If 0,7 € Gal(K/F) with o|x = 7|x, then 0 = 7. Therefore,
F-automorphisms of K are determined by their action on a generating set.

Proof. Let a € K. Then there is a finite subset {a,...,a,} € X with
a € F(ay,...,ap). This means there are polynomials f,g € F[z,,...,Ty]
with @ = f(ay,...,an)/glo, ..., a,); say

= i1 .6 i
flze,...,zn) = E biyigi LTS - Ty,

- iy i i
g(z1,...,zn) = E Ciigein LTS - To

where each coefficient is in F. Since o and 7 preserve addition and multi-
plication, and fix elements of F’, we have

= biini, o(ar)ro(ag)? - o(ay)i
O'(a) - z Ciliz"' ( ) 1 (a ) . 'O'(an)in
_ biliz... T(al)n,r(a )1.2 .. T(an)i"
Ciyipi, T(Q1) 1T (a2)2 - - T(y )i

= 7(a).

Thus, o = 7, so F-automorphisms are determined by their action on gen-
erators. O

Lemma 2.3 Let 7 : K — L be an F-homomorphism and let a € K
be algebraic over F. If f(z) is a polynomial over F with f(a) = 0,
then f(r(a)) = 0. Therefore, T permutes the roots of min(F,a). Also,
min(F, a) = min(F, 7(a)).
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Proof. Let f(z) = ap + a1z + - - - + apz™. Then

0=7(0) = 7(f(a) = ) 7(ai)7(a)"

i

But, since each a; € F, we have 7(a;) = a;. Thus, 0 = Y, a;7(a)’, so
f(7(a)) = 0. In particular, if p(z) = min(F,a), then p(r(a)) = 0, so
min(F, 7(a)) divides p(z). Since p(z) is irreducible, min(F, 7(a)) = p(z) =
min(F, a). a

Corollary 2.4 If [K : F] < oo, then |Gal(K/F)| < 0.

Proof. We can write K = F(a,...,a,) for some a; € K. Any F-
automorphism of K is determined by what it does to the a;. By Lemma
2.3, there are only finitely many possibilities for the image of any «;; hence,
there are only finitely many automorphisms of K/F. O

Example 2.5 Consider the extension C/R. We claim that Gal(C/R) =
{id, o}, where o is complex conjugation. Both of these functions are R-
automorphisms of C, so they are contained in Gal(C/R). To see that there
is no other automorphism of C/R, note that an element of Gal(C/R) is
determined by its action on i, since C = R(z). Lemma 2.3 shows that if
7 € Gal(C/R), then 7(4) is a root of 2 + 1, so 7(i) must be either i or —i.
Therefore, 7 =id or 7 = 0.

Example 2.6 The Galois group of Q(+/2)/Q is (id). To see this, if o is a
Q-automorphism of Q(¥/2), then o(+/2) is a root of min(Q, ¥/2) = =3 — 2.
If w = €2™/3 then the roots of this polynomial are v/2, wv/2, and w? /2.
The only root of 3 — 2 that lies in Q(f/i) is ¥/2, since if another root lies
in this field, then w € Q(+v/2), which is false since [Q(¥/2) : Q] = 3 and
[Q(w) : Q] = 2. Therefore, 0(¥/2) = ¥/2, and since o is determined by its
action on the generator /2, we see that o = id.

Example 2.7 Let K = F5(t) be the rational function field in one variable
over Fa, and let F = Fy(t?). Then [K : F] = 2. The element ¢ satisfies the
polynomial 22 —t2 € F[z], which has only ¢ as a root, since z? —t2 = (z—t)?2
in K[z]. Consequently, if o is an F-automorphism of K, then o(t) = t, so
o = id. This proves that Gal(K/F) = {id}.

Example 2.8 Let F' = F,. The polynomial 14z +z?2 is irreducible over F,
since it has no roots in F'. In fact, this is the only irreducible quadratic over
F; the three other quadratics factor over F. Let K = F[z]/(1 + = + 22), a
field that we can view as an extension field of F'; see Example 1.6 for details
on this construction. To simplify notation, we write M = (1 + z + z2).
Every element of K can be written in the form a + bx + M by the division
algorithm. Let us write & = z + M. The subfield {a + M : a € F} of K is
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isomorphic to F. By identifying F' with this subfield of K, we can write
every element of K in the form a+ba with a,b € F. Then K = F(a), so any
F-automorphism of K is determined by its action on &. By Lemma 2.3, if o
is an F-automorphism of K, then o(c) is a root of 1+ z + z2. By factoring
1+z + 22 as (z — a)(z — B) and expanding, we see that the other root of
1+ 2+ 22 is a+ 1. Therefore, the only possibility for o(a) is o or a+1, so
Gal(K/F) has at most two elements. To see that Gal(K/F') has exactly two
elements, we need to check that there is indeed an automorphism o with
o(a) = a+1. If o does exist, then o(a+ba) = a+b(a+1) = (a+b)+ba. We
leave it as an exercise (Problem 7) to show that the function o : K — K
defined by o(a+ba) = (a+b)+ba is an F-automorphism of K. Therefore,
Gal(K/F) = {id,o}.

The idea of Galois theory is to be able to go back and forth from field
extensions to groups. We have now seen how to take a field extension
K/F and associate a group, Gal(K/F'). More generally, if L is a field with
F C L C K, we can associate a group Gal(K/L). This is a subgroup of
Gal(K/F), as we will see in the lemma below. Conversely, given a subgroup
of Gal(K/F) we can associate a subfield of K containing F. Actually, we
can do this for an arbitrary subset of Aut(K). Let S be a subset of Aut(K),
and set

F(S)={a€eK :7(a)=aforall 7€ S}.

It is not hard to see that F(S) is a subfield of K, called the fized field of S.
A field L with F C L C K is called an intermediate field of the extension
K/F. Therefore, if S C Gal(K/F), then F(S) is an intermediate field of
K/F.

The following lemma, gives some simple properties of Galois groups and
fixed fields.

Lemma 2.9 Let K be a field.

—

. If Ly C Ly are subfields of K, then Gal(K /L) C Gal(K/L,).
If L is a subfield of K, then L C F(Gal(K/L)).

If S1 C Sy are subsets of Aut(K), then F(S2) C F(S1).

If S is a subset of Aut(K), then S C Gal(K/F(S)).

If L = F(S) for some S C Aut(K), then L = F(Gal(K/L)).

S v e e

If H = Gal(K/L) for some subfield L of K, then H = Gal(K/F(H)).

Proof. The first four parts are simple consequences of the definitions. We
leave the proofs of parts 2, 3, and 4 to the reader and prove part 1 for the
sake of illustration. If o € Gal(K/L,), then o(a) = a for all a € Ly. Thus,
o(a)=aforall @ € Ly, as L; C Lg, so 0 € Gal(K/L,).
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To prove part 5, suppose that L = F(S) for some subset S of
Aut(K). Then S C Gal(K/L), so F(Gal(K/L)) C F(S) = L. But
L C F(Gal(K/L)), so L = F(Gal(K/L)). For part 6, if H = Gal(K/L) for
some subfield L of K, then L C F(Gal(K/L)), so

Gal(K/F(Gal(K/L))) C Gal(K/L) = H.

However, by part 4 we have H C Gal(K/F(H)), so H = Gal(K/F(H)).
a

Corollary 2.10 If K is a field extension of F, then there is 1-1 inclusion
reversing correspondence between the set of subgroups of Gal(K/F) of the
form Gal(K/L) for some subfield L of K containing F' and the set of sub-
fields of K that contain F of the form F(S) for some subset S of Aut(K).
This correspondence is given by L — Gal(K/L), and its inverse is given by

Proof. This follows immediately from the lemma. If G and F are respec-
tively the set of groups and fields in question, then the map that sends a
subfield L of K to the subgroup Gal(K/L) of Aut(K) sends F to G. This
map is injective and surjective by part 5 of the lemma. Its inverse is given
by sending H to F(H) by part 6. ]

If K/F is a finite extension, under what circumstances does the associ-
ation L — Gal(K/L) give an inclusion reversing correspondence between
the set of all subfields of K containing F' and the set of all subgroups of
Gal(K/F)? A necessary condition from part 5 is that F = F(Gal(K/F)).
We shall see in Section 5 that this is actually a sufficient condition.

The next three results aim at getting more precise numerical information
on |Gal(K/F)| for a finite extension K/F. We first need a definition.

Definition 2.11 If G is a group and if K is a field, then a character is a
group homomorphism from G to K*.

By setting G = K™, we see that F-automorphisms of K can be viewed
as characters from G to K*. The next lemma will lead to a bound on
|Gal(K/F)].

Lemma 2.12 (Dedekind’s Lemma) Let 71,...,7, be distinct charac-
ters from G to K*. Then the T; are linearly independent over K ; that is, if
S cimi(9) =0 for all g € G, where the ¢; € K, then all ¢; = 0.

Proof. Suppose that the lemma is false. Choose k¥ minimal (relabeling the
7; if necessary) so that there are ¢; € K with ) . ¢;7i(g) =0 for all g € G.
Then all ¢; # 0. Since 71 # T3, there is an h € G with 7y (h) # m2(h). We
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have Y, (cir1(h))7:(g) = 0 and
k
> cimi(hg) = > (cims(h))mi(g) =0
=1 B

for all g. Subtracting gives Zle(ci (r1(h) — 1:(h)))7Ti(g) = 0 for all ¢g. This
is an expression involving k — 1 of the 7; with not all of the coefficients zero.
This contradicts the minimality of k, so the lemma is proved. m]

There is a vector space interpretation of Dedekind’s lemma. If V is the
set of all functions from G to K, then V is a K-vector space under usual
function addition and scalar multiplication, and Dedekind’s lemma can be
viewed as showing that the set of characters from G to K* forms a linearly
independent set in V.

Proposition 2.13 If K is a finite field extension of F', then | Gal(K/F)| <
(K : F].

Proof. The group Gal(K/F) is finite by Corollary 2.4. Let Gal(K/F) =
{71,.-.,™}, and suppose that [K : F] < n. Let aj,...,amn be a basis for
K as an F-vector space. The matrix

Tl(al) Tl(az) 'rl(am)
B Tz(al) Tg(az) Tg(am)
Tn('al) Tn(‘a2) < Tn(am)

over K has rank(A) < m < n, so the rows of A are linearly dependent over
K. Thus, there are ¢; € K, not all zero, such that }, ¢;7i(c;) = 0 for all
j. If we set G = K*, then for g € G there are a; € F with g =} a;q;.
Thus,

Zcin(g) = Zci'ri Zajaj = Zci a; ZTj (o)
i i 3 i j
= Zaj (Z cm(aj)) =0.

All the ¢; are then 0 by Dedekind’s lemma. This contradiction proves that
Gal(K/F) < [K : F). a

The following question arises naturally from this proposition: For which
field extensions K/F does |Gal(K/F)| = [K : F]? The inequality in the
proposition above may be strict, as shown in Examples 2.6 and 2.7.

The next proposition determines when |Gal(K/F)| = [K : F), provided
that the group Gal(K/F) is finite.
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Proposition 2.14 Let G be a finite group of automorphisms of K with
F = F(G). Then |G| = [K : F}, and so G = Gal(K/F).

Proof. By the previous proposition, |G| < [K : F| since G C Gal(K/F).
Suppose that |G| < [K : F]. Let n = |G|, and take ay,...,an41 € K
linearly independent over F. If G = {ry,...,7}, let A be the matrix

Ti(on) Ti(a2) o0 Ti(ang1)

(c1) 7e(a2) -0 T2(ant1)
A=

m(@1) Ta(0z) -+ Ta(Gns)

Then the columns of A are linearly dependent over K. Choose k£ minimal
so that the first k columns of A are linearly dependent over K (relabeling
if necessary). Thus, there are ¢; € K not all zero with Zle c;Tj(a;) =0
for all j. Minimality of k& shows all ¢; # 0. Thus, by dividing we may
assume that ¢; = 1. If each ¢; € F, then 0 = 7;(3_,_ i) for each j, so
Zle c;a; = 0. This is false by the independence of the «; over F. Take
o € G. Since o permutes the elements of G, we get Zle o(c;)Ti(ey) =0
for all 7. Subtracting this from the original equation and recalling that
c1 = 1 gives Efﬂ(ci —0(c;))7j(a;) = 0 for all j. Minimality of k shows
that ¢; — o(c;) = 0 for each i. Since this is true for all & € G, we get all
¢; € F(G) = F. But we have seen that this leads to a contradiction. Thus
|G| = [K : F]. In particular, G = Gal(K/F), since G C Gal(K/F) and
|G| = [K : F] > |Gal(K/F)|. a

The field extensions described in Proposition 2.14 are those of particular
interest to us, as they were to Galois in his work on the solvability of
polynomials.

Definition 2.15 Let K be an algebraic extension of F. Then K is Galois
over F if F = F(Gal(K/F)).

If [K : F] < oo, then Proposition 2.14 gives us a numerical criterion for
when K/F is Galois.

Corollary 2.16 Let K be a finite extension of F. Then K/F is Galois if
and only if |Gal(K/F)| = [K : F].

Proof. If K/F is a Galois extension, then F' = F(Gal(K/F)), so by Propo-
sition 2.14, |Gal(K/F)| = [K : F]. Conversely, if |Gal(K/F)| = [K : F],
let L = F(Gal(K/F)). Then Gal(K/L) = Gal(K/F) by Proposition 2.14,
and so |Gal(K/F)| = [K : L] < [K : F]. Since |Gal(K/F)| = [K : F], this
forces [K : L] =[K : F],so L=F. O
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The previous corollary gives us a numerical criterion for when a finite
extension is Galois. However, to use it we need to know the Galois group of
the extension. This group is not always easy to determine. For extensions of
F of the form F'(a), we have a simpler criterion to determine when F(a)/F
is Galois.

Corollary 2.17 Let K be a field extension of ', and let a € K be algebraic
over F. Then |Gal(F(a)/F)| is equal to the number of distinct roots of
min(F,a) in F(a). Therefore, F(a) is Galois over F if and only if min(F, a)
has n distinct roots in F(a), where n = deg(min(F,a)).

Proof. If r € Gal(F(a)/F), we have seen that 7(a) is a root of min(F,a).
Moreover, if 0,7 € Gal(F(a)/F) with o # 7, then o(a) # 7(a), since F-
automorphisms on F(a) are determined by their action on a. Therefore,
|Gal(F(a)/F)| < n. Conversely, let b be a root in F(a) of min(F,a). Define
7: F(a) — F(a) by 7(f(a)) = f(b) for any f(z) € F[z]. This map is well
defined precisely because b is a root of min(F,a). It is straightforward to
show that 7 is an F-automorphism, and 7(a) = b by the definition of 7.
Thus, |Gal(F(a)/F)| is equal to the number of distinct roots of min(F, a)
in F(a). Since [F(a) : F} = deg(min(F, a)), we see that F(a) is Galois over
F if and only if min(F, a) has n distinct roots in F(a). O

There are two ways that a field extension F'(a)/F can fail to be Galois.
First, if p(z) = min(F,a), then p could fail to have all its roots in F(a).
Second, p(x) could have repeated roots. The next two sections will address
these concerns. We finish this section with a number of examples of ex-
tensions for which we determine whether or not they are Galois. Here and
elsewhere in this book, we use the idea of the characteristic of a field (or a
ring with identity). For the reader unfamiliar with this notion, the charac-
teristic char(F') of a field F is the order of the multiplicative identity 1 as
an element of the additive group (F,+), provided that this order is finite,
or else char(F) = 0 if this order is infinite. Note that the characteristic of
a field is either 0 or is a prime number. More information on the charac-
teristic of a ring can be found in Appendix A or in the last six problems in
the previous section.

Example 2.18 The extension Q(¥/2)/Q is not Galois, for we have seen
that [Q(¥/2) : Q] = 3 but !Gal Q(¥2)/Q)| = 1. The polynomial z° — 2 has
three distinct roots, but only one of them lies in Q(+/2).

Example 2.19 Let k be a field of characteristic p > 0, and let k(¢) be the
rational function field in one variable over k. Consider the field extension
k(t)/k(t?). Then t satisfies the polynomial P —t? € k(t?)[z]. However, over
k(t) this polynomial factors as zP —t? = (z—t)P. Thus, the minimal polyno-
mial of ¢ over k(t?) has only one root; consequently, Gal(k(t)/k(t?)) = {id}.
Thus, k(t)/k(t?) is not Galois.
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The previous two examples illustrate the two ways a field extension of the
form F(a)/F can fail to be Galois. The remaining examples are examples
of extensions that are Galois.

Example 2.20 Let F be a field of characteristic not 2, and let a € F be an
element that is not the square of any element in F. Let K = F[z]/(2% —a),
a field since z2 — a is irreducible over F. We view F as a subfield of K
by identifying F’ with the subfield {a + (z* — a) : @ € F'} of K. Under this
identification, each coset is uniquely expressible in the form a+ gz + (22 —a)
and, hence, is an F-linear combination of 1 + (22 — a) and z + (22 — a).
Thus, 1 and u = z + (2 — a) form a basis for K as an F-vector space, so
[K : F] = 2. If o is defined by

o(a+ fu) = a — Pu,

then o is an automorphism of K since u and —u are roots in K of z2 — a.
Thus, id,o € Gal(K/F), so |Gal(K/F)| = 2 = [K : F). Consequently, K/F
is a Galois extension.

The extension K = F(a) is generated by an element o with o? = a. We
will often write F'(y/a) for this extension. The notation /a is somewhat
ambiguous, since for an arbitrary field F' there is no way to distinguish be-
tween different square roots, although this will not cause us any problems.

Example 2.21 The extension Q(¥/2,w)/Q is Galois, where w = €2™*/3. In
fact, the field Q(¥/2,w) is the field generated over Q by the three roots ¥/2,
wv/2, and w?v/2, of 3 — 2, and since w satisfies 22 + x + 1 over Q and
w is not in Q(+v/2), we see that [Q(v/2,w) : Q] = 6. It can be shown (see
Problem 3) that the six functions

d: V2 - V2, w-ouw,
V2o w2, wow,
V2= V2, woWw?,
V2 - wV?2, w— W
V2 - w2, wow,
V2o WwV2, wow?

extend to distinct automorphisms of Q(¥/2,w)/Q. Thus,

mE © 3 9

Gal(Q(¥2,1)/Q)| = [@(V2,v) : Q),

and so Q(w, ¥/2)/Q is Galois.

One reason we did not do the calculation that shows that we do get
six automorphisms from these formulas is that this calculation is long and
not particularly informative. Another reason is that later on we will see
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easier ways to determine when an extension is Galois. Knowing ahead of
time that Q(+/2,w)/Q is Galois and that the degree of this extension is six
tells us that we have six Q-automorphisms of Q(¥/2,w). There are only six
possibilities for the images of ¥/2 and w under an automorphism, and so
all six must occur.

Example 2.22 This example shows us that any finite group can occur as
the Galois group of a Galois extension. We will use this example a number
of times in later sections. Let k& be a field and let K = k(z1,z2,...,Tn)
be the field of rational functions in n variables over k. For each permuta-
tion o € Sy, define o(z;) = z,(;)- Then o has a natural extension to an
automorphism of K by defining

p (f(‘rla' .. )xn)) _ f(xa(l)v“'vxcr(n))
9(1'1, e 7zn) g(zo(1)3 s aza(n))

The straightforward but somewhat messy calculation that this does define
a field automorphism on K is left to Problem 5. We can then view S, C
Aut(K). Let F = F(S,). By Proposition 2.14, K/F is a Galois extension
with Gal(K/F) = S,,. The field F is called the field of symmetric functions
in the z;. The reason for this name is that if f(z1,...,z,)/g(z1,...,2,) €
F, then

F(@oqys - To(n))/9(Zo1)s - - 1 Tom)) = f(Z1,. . Tn)/g(z1,. .., T0)
for all o € S,,. Let

S1 =X+ T2+ -+ Tn,

So =X1ZTo +T1Z3+ -+ Tpn—_1Zn,

Sp = IT1Z2 Tnp.

The polynomial s; is called the ith elementary symmetric function. We see
that each s; € F', so k(sy,...,s,) C F. Note that

(t—x1) - (t—zp) =t" — 518" L sot™ 2 oo+ (=1)"s,,.
From this fact, we shall see in Section 3 that F' = k(s;,...,8,). This

means that every symmetric function in the x; is a rational function in the
elementary symmetric functions.

Problems

1. Show that the only automorphism of Q is the identity.
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Show that the only automorphism of R is the identity.

(Hint: If o is an automorphism, show that o|g = id, and if a > 0,
then o(a) > 0. It is an interesting fact that there are infinitely many
automorphisms of C, even though [C : R] = 2. Why is this fact not a
contradiction to this problem?)

Show that the six functions given in Example 2.21 extend to Q-
automorphisms of Q(V/2,w).

Let B be an integral domain with quotient field F. If 0 : B — B

is a ring automorphism, show that o induces a ring automorphism
o' : F — F defined by ¢'(a/b) = o(a)/o(b) if a,b € B with b # 0.

Let K = k(z1,...,Tn) be the field of rational functions in n variables
over a field k. Show that the definition

” (f(xl,...,xn)) _ f(Zoq)s -y Ton))
g(xly'“az’n) g(zo‘(l)y"'vzo'(n))

makes a permutation ¢ € S, into a field automorphism of K.
(Hint: The previous problem along with Problem 1.6 may help some.)

Let F be a field of characteristic not 2, and let K be an extension
of F with [K : F] = 2. Show that K = F(y/a) for some a € F; that
is, show that K = F(a) with a? = a € F. Moreover, show that K is
Galois over F'.

Let F = F, and K = F(c), where o is a root of 1 + z + z2. Show
that the function o : K — K given by o(a + ba) = a + b + ba for
a,b € F is an F-automorphism of K.

Suppose that a € C is algebraic over Q with p(z) = min(Q, a), and
let b be any root in C of p. Show that the map o : Q(a) — C given
by o(f(a)) = f(b) is a well-defined Q-homomorphism.

Show that the complex numbers iv/3 and 1+ /3 are roots of flz) =
z* — 223 + 722 — 62 + 12. Let K be the field generated by Q and the
roots of f. Is there an automorphism o of K with o(iv/3) = 1 +14/3?

Determine whether the following fields are Galois over Q.

(a) Q(w), where w = exp(27i/3).
(b) Q(V2).
(Hint: The previous section has a problem that might be rele-
vant.)

Prove or disprove the following assertion and its converse: If F C L C
K are fields with K/L and L/F Galois, then K/F is Galois.
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Galois connections. The relationship given in Corollary 2.10 between
the set of intermediate fields of a Galois extension and the set of
subgroups of its Galois group appears in other situations, so we study
it here. We first need a definition. If S is a set, a relation < on S is
called a partial order on S provided that a < aforallae S;ifa<b
and b < a,thena =b;andifa < band b < ¢, thena < c. Let S
and T be sets with partial orders <g and <7, respectively. Suppose
that there are functions f : § — T and g : T — S such that (i) if
s1 <s Sz, then f(s2) <7 f(s1), (ii) if t; <7 ta, then f(t2) <s f(t1),
and (iil) s <g g(f(s)) and t <7 f(g(t)) forall s € S and t € T. Prove
that there is a 1-1 order reversing correspondence between the image
of g and the image of f, given by s — f(s), whose inverse is t — g(¢).

Let k be a field, and let K = k(z) be the rational function field in one
variable over k. Let ¢ and 7 be the automorphisms of K defined by
o(f(x)/9(x)) = f(1/z)/9(1/x) and 7(f(z)/g(x)) = F(1-x)/9(1-=),
respectively. Determine the fixed field F of {o,7}, and determine
Gal(K/F). Find an h € F so that F = k(h).

Let k be a field, and let K = k(z) be the rational function field in
one variable over k. If v € K, show that K = k(u) if and only if

u = (az + b)/(cz + d) for some a,b,c,d € k with det ( g 3 ) # 0.
(Hint: See the example before Proposition 1.15.)

Use the previous problem to show that any invertible 2 x 2 matrix
a b

d
b)/(cx + d). Moreover, show that every element of Gal(k(z)/k) is
given by such a formula. Show that the map from the set of invertible

determines an element of Gal(k(z)/k) with z — (az +

2 x 2 matrices over k to Gal(k(z)/k) given by ( Z Z ) — p, where

p(z) = (az + b)/(cz + d), is a group homomorphism. Determine the
kernel to show that Gal(k(z)/k) = PGL2(k), the group of invertible
2 x 2 matrices over £ modulo the scalar matrices.

(This group is the projective general linear group over k of 2 x 2
matrices.)

-1/2 —/3/2 ven b
V32 —1/2 ) given by
rotating the plane around the origin by 120°. Using the previous
problem, show that A determines a subgroup of Gal(k(z)/k) of order
3. Let F' be the fixed field. Show that k(x)/F' is Galois, find a u so
that F = k(u), find the minimal polynomial min(F,z), and find all
the roots of this polynomial.

Let £ = R, and let A be the matrix (
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17. Let k =F,, and let k(z) be the rational function field in one variable
over k. Define ¢ : k(z) — k(x) by ¢(x) = = + 1. Show that ¢ has
finite order in Gal(k(z)/k). Determine this order, find a u so that
k(u) is the fixed field of ¢, determine the minimal polynomial over
k(u) of z, and find all the roots of this minimal polynomial.

18. Let k be a field of characteristic p > 0, and let a € k. Let f(z) =
zP — aP~!z. Show that f is fixed by the automorphism ¢ of k(zx)

defined by (f(z)/9(z)) = f(z-+a)/g(z-+a) for any f(z), 9(z) € Klz].
Show that k(f) is the fixed field of .

19. Prove that (t —z1) -+ (t — zn) = t" — 51t" L + -« + (=1)"s,, as we
claimed in Example 2.22.

3 Normal Extensions

In the last section, we saw that there are two ways for the field extension
F(a)/F to fail to be Galois: if min(F, a) does not have all its roots in F'(a)
or if min(F,a) has repeated roots. The next two sections investigate these
two situations. In this section, we investigate the case when F'(a) contains
all the roots of p(z) and what this question means for general algebraic
extensions. We begin with a result that in the case of polynomials over R
should be familiar.

Lemma 3.1 Let f(z) € F[z] and o € F. Then « is a root of f if and
only if x — a divides f. Furthermore, f has at most deg(f) roots in any
extension field of F.

Proof. By the division algorithm, f(z) = ¢(z) - (x — a) + r(z) for some
g(z) and 7(z) with r(z) = 0 or deg(r) < deg(z — ). In either case, we see
that r(z) = r is a constant. But f(a) =r, so f(a) =0 if and only if z —
divides f(x).

For the second part, we argue by induction on n = deg(f). If n = 1, then
f(z) = ax + b for some a,b € F. The only root of f is —b/a, so the result
is true if n = 1. Assume that any polynomial over an extension field of F’
of degree n — 1 has at most » — 1 roots in any extension field K of F. If
f(z) has no roots in K, then we are done. If instead o € K is a root of
f, then f(z) = (z — @) - g(z) for some g(z) € K|[z] by the first part of the
lemma. Since g(x) has degree n — 1, by induction g has at most n — 1 roots
in K. The roots of f consist of a together with the roots of g. Thus, f has
at most n roots. O

Definition 3.2 If K is an extension field of F' and if f(x) € Flz], then f
splits over K if f(z) = a[[,(x — ;) € K[z] for some a,...,an € K and
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a € F. In other words, f splits over K if f factors completely into linear
factors in Klz].

In order to talk about roots of a given polynomial, we need to have
extension fields that contain the roots of the polynomial. The next theorem
shows that for any f(z) € F[z], there is a finite extension of F' over which
f splits. We use a generalization of the construction of Example 1.6 to
construct a field containing roots of a given polynomial.

Theorem 3.3 Let f(z) € Flz| have degree n. There is an extension field
K of F with [K : F] < n such that K contains a root of f. In addition,
there is a field L containing F with [L : F| < n! such that f splits over L.

Proof. Let p(z) be an irreducible factor of f(z) in Flz], and let K be
the field F[z]/(p(z)). Then F is isomorphic to a subfield of K; namely the
map ¢ : F — K given by ¢(a) = a + (p(z)) is an injection of fields. We
will view F' C K by replacing F' with o(F). If a = z + (p(z)) € K, then
p(a) = p(z) + (p(z)) = 0+ (p(x)). Thus, « is a root of p in K; therefore, a
is a root of f. Since [K : F] = deg(p) < n, this proves the first part of the
theorem.

For the second part, we use induction on n. By the first part, there is a
field K 2 F with [K : F] < n such that K contains a root a of f(z), say
f(z) = (z —a)-g(z) with g(z) € K|z]. By induction, there is a field L D K
with [L : K] < (n — 1)! such that g splits over L. But then f splits over L
and [L: F]=[L:K]-[K:F]<{(n-1)!-n=nl a

Definition 3.4 Let K be an extension field of F and let f(z) € F[z].

1. If f(z) € Flz], then K is a splitting field of f over F if f splits over
K and K = F(ay,...,on), where oq,. .., 0, are the toots of f.

2. If S is a set of nonconstant polynomials over F, then K is a splitting
field of S over F if each f € S splits over K and K = F(X), where
X is the set of all roots of all f € S.

Intuitively, a splitting field for a set S of polynomials is a minimal field
extension over which each f € S splits. This is made more concrete in
Problem 2.

Theorem 3.3 yields immediately the existence of splitting fields for a
finite set of polynomials.

Corollary 3.5 If fi(z),..., fu(z) € Flz], then there is a splitting field for
{f1s---, fn} over F.

Proof. Suppose that fi,...,fn € Flz]. Note that a splitting field of
{f1,-.-,fa} is the same as a splitting field of the product fy - f,. If
f = fi-++ fn, then by Theorem 3.3, there is a field L O F such that f
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splits over L. Let ay,...,a, € L be the roots of f. Then F(ay,...,a,) is
a splitting field for f over F. m|

Example 3.6 The field Q(w, ¥/2) is a splitting field for 23 —2 over Q, since
we have seen in Example 2.21 that this field is also the field generated by
the three roots of 23 — 2 over Q. The complex field C is a splitting field over
R for 22 + 1, since C = R(4, —1) is generated by R and the roots of 2> + 1.
In general, if F is a field and a € F, then the field F(y/a) is a splitting field
for 22 — a over F.

Example 3.7 Let F = F, and K = F[z]/(1 +z +z2) & F(a), where a is
a root of 1 +x + z2. Then 1 + = + 22 factors as (z — a)(z — (o + 1)) over
K, so K is a splitting field of 1 + z + z2.

We will show that splitting fields are unique up to isomorphism. From
this fact, the next corollary would follow from Theorem 3.3. However, we
give a different proof so that we can use it in the next example.

Corollary 3.8 Let F be a field and let f(x) € F[z] be a polynomial of
degree n. If K is a splitting field of f over F, then [K : F] < nl.

Proof. We prove this by induction on n = deg(f). If n = 1, then the result
is clear. Suppose that n > 1 and that the result is true for polynomials of
degree n — 1. Let K be a splitting field of f over F, and let a be a root of f
in K. Then [F(a) : F] < n, since min(F, a) divides f. If f(z) = (z —a)g(z),
then deg(g) = n—1 and K is the splitting field of g over F'(a). By induction,
[K : F(a)] < (n —1)! by Theorem 3.3, so

[K:F]=1[F(a): F]-[K: F(a)]
<n-(n—-1)!=nl

This proves the corollary. m]

Example 3.9 Let & be a field, and let K = k(z1,z2,...,Z,) be the ratio-
nal function field in n variables over k. We view the symmetric group S,
as a subgroup of Aut(K) by defining

o (f(xly' .. 7xn)) _ f(xa(l)a“ . 7xa(n))
9(x1,. .., Tn) 9(Zs1)s -+ » To(n))

for o € S,, as in Example 2.22. Let F = F(S,), the field of symmetric
functions in the z;. Then S,, = Gal(K/F) by Proposition 2.14, so [K : F] =
|Sn| = nl. We wish to determine F. Let s1,s2,...,S, be the elementary
symmetric functions in the x;; that is,

§1=ZT1+ T2+ -+ Tn,
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82 = E Z;Zj,

i#]

Sp = T1Tg- - Tp.

Then k(s1,$2,...,8,) C F. We claim that F = k(s,,...,s,). To show this,
we use the concept of splitting fields. Let

f@)=t" —sit" o+ (=1)"s,, € k(s1,52,...,5)[t].

Then f(t) = (t—x1) - - - (t—x,) in K[z], which can be seen by expanding this
product. Since K is generated over k by the z;, we see that K is a splitting
field for f(t) over k(s1,82,...,8,). We know that [K : F] = |S,| = nl,
and so [K : k(s1,S2,...,8,)] > nl. However, [K : k(s1,52,.-.,8,)] < n!
by Corollary 3.8. Therefore, [K : k(s1,82,...,8,)] = [K : F]. This forces
F = k(sy,82,...,8,). Therefore, any symmetric function can be written
in terms of the elementary symmetric functions. In fact, every symmetric
polynomial can be written as a polynomial in the elementary symmetric
functions (see Problem 17).

Algebraic closures

We have proved the existence of splitting fields for finite sets of polynomials.
What about infinite sets? Suppose that K is a splitting field over F of the
set of all nonconstant polynomials over F. We do not know yet that such a
field exists, but we will show it does exist. Let L be an algebraic extension
of K. If a € L, then a is algebraic over F' by Theorem 1.24, since K
is algebraic over F. Let f(z) = min(F,a). Then f splits over K; hence,
a € K. Thus, L = K. This proves that K has no algebraic extensions.
The existence of such a field will imply the existence of splitting fields of
an arbitrary set of polynomials. Moreover, given K, we shall see that any
algebraic extension of F' is isomorphic to a subfield of K. This will allow
us to view all algebraic extensions of F' as subfields of K.
We first give some equivalent conditions for such a field.

Lemma 3.10 If K is a field, then the following statements are equivalent:
1. There are no algebraic extensions of K other than K itself.
2. There are no finite extensions of K other than K itself.

3. If L is a field extension of K, then K = {a € L : a is algebraic over

4. Every f(z) € K|[z] splits over K.
5. Every f(z) € K[z] has a root in K.
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6. Every irreducible polynomial over K has degree 1.

Proof. (1) = (2): This is clear, since any finite extension of F is an alge-
braic extension of F'.

(2) = (3): Let a € L be algebraic over K. Then K (a) is a finite extension
of K, s0 K(a) = K. Thus, a € K.

(3) = (4): Let f(z) € K[z], and let L be a splitting field of f over K.
Since L is algebraic over K, statement 3 shows that L = K; that is, f splits
over K.

(4) = (5): This is clear.

(5) = (6): Let f(x) € K[z] be irreducible. By statement 5, f has a root
in K, so f has a linear factor. Since f is irreducible, this means f itself is
linear, so deg(f) = 1.

(6) = (1): Let L be an algebraic extension of K. Take a € L and let
p(z) = min(K,a). By statement 6, the degree of p is 1, so [K(a) : K] = 1.
Thus,a € K,so L =K. O

Definition 3.11 If K satisfies the equivalent conditions of Lemma 3.10,
then K is said to be algebraically closed. If K is an algebraic extension of

F and is algebraically closed, then K is said to be an algebraic closure of
F.

Example 3.12 The complex field C is algebraically closed. This fact is
usually referred to as the fundamental theorem of algebra, and it will be
proved in Section 5. If

A = {a € C : a is algebraic over Q},

then it is not hard to prove that A is algebraically closed by using that C is
algebraically closed; see Problem 4b. Furthermore, C is an algebraic closure
of R, and A is an algebraic closure of Q. However, C is not an algebraic
closure of Q since C is not algebraic over Q.

We wish to prove the existence of an algebraic closure of an arbitrary
field F and to prove the existence of a splitting field for an arbitrary set of
polynomials. In order to do this, we will use a Zorn’s lemma argument. The
next lemma is needed for technical reasons in the proof of the existence of
an algebraic closure.

Lemma 3.13 If K/F is algebraic, then |K| < max{|F|,|N|}.

Proof. In this proof, we require some facts of cardinal arithmetic, facts
that can be found in Proposition 2.1 in Appendix B. If a € K, pick a
labeling ay,...,a, of the roots of min(F,a) in K. If M is the set of all
monic polynomials over F, define f : K — M x N by f(a) = (p(z),r) if
p(z) = min(F,a) and a = a,. This map is clearly injective, so

|K| < |M x N| = max{|M]|, [N|}.
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We will be done by showing that |[M| < max{|F|,|N|}. For this, if M, is
the set of monic polynomials over F' of degree n, then |[M,| = |F"|, since
the map (ag,...,an-1) — " + Z;:ol a;z' is a bijection between F™ and
M,,. If F is finite, then |F"| = |F|" is finite, and if F is infinite, then
|F™| = |F|. Therefore, since M is the union of the disjoint sets M,, we
have |IM| = U, Mx| = max{|F], [N|}. o

Theorem 3.14 Let F be a field. Then F has an algebraic closure.

Proof. Let S be a set containing F with |S| > max{|F|,|N|}. Let A be
the set of all algebraic extension fields of F inside S. Then A is ordered by
defining K < L if L is an extension field of K. By Zorn’s lemma, there is a
maximal element M of A. We claim that M is an algebraic closure of M.
To show that M is algebraically closed, let L be an algebraic extension of
M. By Lemma 3.13,

|L| < max{|M|,|N|} < {|F|,[N]} <|S5].

Thus, there is a function f : L — S with f|ps = id. By defining + and - on
f(L) by f(a) + f(b) = f(a +b) and f(a) - f(b) = f(ab), we see that f(L)
is a field extension of M and f is a field homomorphism. Maximality of M
shows that f(L) = M, so L = M. Thus, M is algebraically closed. Since
M is algebraic over F', we see that M is an algebraic closure of F. u]

The existence of an algebraic closure yields immediately the existence of
a splitting field for an arbitrary set of nonconstant polynomials.

Corollary 3.15 Let S be a set of nonconstant polynomials over F. Then
S has a splitting field over F.

Proof. Let K be an algebraic closure of F. Then each f(z) € S splits over
K. Let X be the set of roots of all f € S. Then F(X) C K is a splitting
field for S over F', since each f splits over F'(X) and this field is generated
by the roots of all the polynomials from S. m]

To emphasize a useful interpretation of an algebraic closure, we record
the following easy consequence of the existence of arbitrary splitting fields.

Corollary 3.16 If F' is a field, then the splitting field of the set of all
nonconstant polynomials over F is an algebraic closure of F.

Now that we have the existence of a splitting field for any set of noncon-
stant polynomials, what can we say about such fields? Can we have many
different splitting fields, up to isomorphism? The answer is no; the next
lemma is the first step in showing this.

The following fact is used in the lemma below and in a number of other
places. If 0 : F — F’ is a field homomorphism, then there is an induced
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ring homomorphism F[z] — F’[z], which we also denote by o, given by
o (X air’) = Y o(a;)a’. It is an easy calculation to show that o does
indeed induce a ring homomorphism on Flz]. If f(z) = (x —a1) - (z —
an) € F[z], then the preservation of polynomial multiplication shows that
o(f(z)) = (x — o(a1)) - (z — o(an)). This relationship between o and
factorization of polynomials will help us to study splitting fields.

Lemma 3.17 Let o : F — F’ be a field isomorphism. Let f(z) € Fz] be
irreducible, let a be a root of f in some extension field K of F, and let o’ be
a root of o(f) in some extension K’ of F’. Then there is an isomorphism
7: F(a) — F'(¢) with T(a) =a' and 7|p = 0.

Proof. Since f is irreducible and f(a) = 0, the minimal polynomial
of o over F is a constant multiple of f. Thus, f and min(F,«) gener-
ate the same principal ideal in F[z]. We then have an F-isomorphism
¢ : Flz]/(f(z)) — F(a) given by ¢(g(z) + (f(z))) = g(a) and an F'-
isomorphism ¥ : F'[z]/(f/(z)) — F'(o’) given by $(g(x) + (f'(z))) =
9(a). Since o(f) = f', the map v(g(z) + (£(x))) = o(9(z)) + (f(z)) gives
a well-defined isomorphism v : Flz]/(f(z)) — F’[z]/(f'(z)) which extends
o. We have the following sequence of field isomorphisms:

~—

F(a) %> Fla)/(f() % F'lel/(f (@) % F'(a).

Therefore, the composition ¢~ ov o : F(a) — F(o') is an isomorphism
extending o on F with a — z + (f(z)) — z + (f'(z)) — o' a

Lemma 3.18 Let 0 : F — F’ be a field isomorphism, let K be a field
extension of F, and let K’ be a field extension of F'. Suppose that K is
a splitting field of {fi} over F and that 7 : K — K’ is a homomorphism
with 7|p = o. If f] = o(f;), then 7(K) is a splitting field of {f!} over F'.

Proof. Because K is a splitting field of a set {f;} of polynomials over F,
given f; there are a,0,...,a, € K with f;(z) = aHj(a: — a;). Therefore,
7(fi(z)) = 7(a) [[;(z — 7(a;)). Hence, each f; = o(f;) = 7(f;) splits over
T(K). Since K is generated over F' by the roots of the f;, the field 7(K)
is generated over F' by the images of the roots of the f;; that is, 7(K) is
generated over F' by the roots of the f/. Thus, 7(K) is a splitting field over
F' for {f!}. a

The next theorem, the isomorphism extension theorem, is one of the
most important results of Galois theory. It proves the uniqueness of splitting
fields, although its main use is in constructing automorphisms of a field, and
thus for calculating the Galois group of a field extension. Before proving
it, we give a proof of the case of splitting fields of a single polynomial.
While the full version certainly includes this case, we give a proof of this
special case for a few reasons: The proof of this special case is easy and the
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argument is useful to see, many applications of the theorem require only
this case, and the full proof uses a Zorn’s lemma argument and is not very
intuitive.

Theorem 3.19 Let o : F — F’ be a field isomorphism, let f(z) € Flz],
and let o(f) € F'[z] be the corresponding polynomial over F'. Let K be the
splitting field of f over F, and let K' be the splitting field of o(f) over F'.
Then there is an isomorphism 7 : K — K’ with 7|p = o. Furthermore, if
a € K and if o is any root of o(min(F,a)) in K', then T can be chosen
so that (o) = o'.

Proof. We prove this by induction on n = [K : F]. If n = 1, then f splits
over F', and the result is trivial in this case. So, suppose that n > 1 and that
the result is true for splitting fields of degree less than n. If f splits over
F, then the result is clear. If not, let p(z) be a nonlinear irreducible factor
of f(z), let a be a root of p, and let @’ be a root of o(p). Set L = F(a)
and L’ = F(¢/). Then [L: F] > 1,s0 [K : L] < n. By Lemma 3.17, there
is a field isomorphism p : L — L’ with p{a) = o’. Since K is the splitting
field over L for f(z) and K’ is the splitting field over L’ for o(f), by
induction the isomorphism 7 extends to an isomorphism 7 : K — K'. The
isomorphism 7 is then an extension of o (and p), and 7(a) = p(a) = .

0

Theorem 3.20 (Isomorphism Extension Theorem) Leto: F — F’
be a field isomorphism. Let S = {fi(z)} be a set of polynomials over F, and
let 8" = {o(f;)} be the corresponding set over F'. Let K be a splitting field
for S over F, and let K' be a splitting field for S’ over F'. Then there is
an isomorphism 7 : K — K’ with 7lp = o. Furthermore, if o € K and o'
is any root of o(min(F, @)) in K', then T can be chosen so that 7(a) = o'.

Proof. We prove this with a Zorn’s lemma argument. Let S be the set
of all pairs (L,¢) such that L is a subfield of K and ¢ : L — K’ is
a homomorphism extending o. This set is nonempty since (F,o) € S.
Furthermore, S is partially ordered by defining (L,p) < (L',¢') if L C L'
and ¢'|p = ¢. Let {(L;,p;)} beachainin S. f L=J,L;and p: L — K’
is defined by ¢(a) = ¢i(a) if a € L;, then it is not hard to see that L is a field
extension of all the L, and ¢ is a homomorphism extending o. Thus, (L, )
is an upper bound in S for this chain. Therefore, by Zorn’s lemma there is
a maximal element (M, 7) in §. We claim that M = K and 7(M) = K'. If
M # K, then there is an f € S that does not split over M. Let « € K be a
root of f that is not in M, and let p(z) = min(F, a). Set p’ = o(p) € F'[z]
and let o’ € K’ be a root of p’. Such an o’ exists since p’ divides f’ and
f’ splits over K’. By Lemma 3.17, there is a p : M(a) — 7(M)(c’) that
extends 7. Then (M(«), p) € S is larger than (M, 1), a contradiction to the
maximality of (M, 7). This proves that M = K. The equality 7(K) = K’
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follows immediately from Lemma 3.18, since 7(K) C K’ is a splitting field
for S’ over F". O

Corollary 3.21 Let F be a field, and let S be a subset of Fz]. Any two
splitting fields of S over F' are F-isomorphic. In particular, any two alge-
braic closures of F' are F-isomorphic.

Proof. For the proof of the first statement, the isomorphism extension
theorem gives an isomorphism extending id on F' between any two splitting
fields of S. The second statement follows from the first, since any algebraic
closure of F' is a splitting field of the set of all nonconstant polynomials in
Flz]. o

As a corollary to the existence and uniqueness of algebraic closures, we
can prove that any algebraic extension of a field F' can be viewed as living
inside a fixed algebraic closure of F'.

Corollary 3.22 Let F be a field, and let N be an algebraic closure of F.
If K is an algebraic extension of F, then K is isomorphic to a subfield of
N.

Proof. Let M be an algebraic closure of K. By Theorem 1.24, M is alge-
braic over F’; hence, M is also an algebraic closure of F'. Therefore, by the
previous corollary, M = N.If f : M — N is an F-isomorphism, then f(K)
is a subfield of N isomorphic to K. a

We now go into more detail about splitting fields. One question we will
address is the following. If K is the splitting field of a set S of polynomials
over F, can we determine all of the polynomials in F[z] that split over K?
Also, can we give a more intrinsic characterization of K, one that does not
refer to the set S? The answer to both questions is yes and is found in
Proposition 3.28.

Definition 3.23 If K is a field extension of F, then K is normal over F
if K is a splitting field of a set of polynomials over F.

Example 3.24 If [K : F| = 2, then K is normal over F. For, ifa € K—F,
then K = F(a), since [K : F| = 2. If p(z) = min(F, a), then p has one root
in K; hence, since deg(p) = 2, this polynomial factors over K. Because K
is generated over F by the roots of p(z), we see that K is a splitting field
for p(z) over F.

Example 3.25 If F C L C K are fields such that K/F is normal, then
K/L is normal. This is true because if K is the splitting field over F' of
a set of polynomials S C F|[z], then K is generated over F' by the roots
of the polynomials in S. Consequently, K is generated by the roots as an
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extension of L, so K is a splitting field of S over L, and so K is normal
over L.

Example 3.26 The field Q(w, ¥/2) is normal over Q, since it is the split-
ting field of z3 — 2 over Q. Similarly, if i = v/—1, then Q(+/2,14) is normal
over Q, since it is the splitting field of z¢ — 2 over Q. The subfield Q(i) is
also normal over Q, as it is the splitting field of 2 + 1 over Q. However,
the subfield Q(+v/2) is not normal over Q. At this point, we do not have
an effective way of showing Q(¥/2)/Q is not normal, for we would have to
show that there is no polynomial f € Q(x) whose roots generate Q(v/2). It
is clear that min(Q, v/2) does not split over Q(+/2), which will be enough
to show that Q(+/2) is not normal over Q once we prove Proposition 3.28.

Example 3.27 Let F be a field of characteristic p > 0, and suppose that
K = F(ay,...,a,) with a¥ € F for each i. Then we show that K is normal
over F. The minimal polynomial of a; divides zP — a¥, which factors com-
pletely over K as z? —a? = (z —a;)P; hence, min(F, a;) splits over K. Thus,
K is the splitting fleld of {min(F,a;): 1 < i < n} over F. Note that each
min(F, a;) has only one distinct root, and any F-automorphism of K is de-
termined by its action on the generators ay,...,an, so Gal(K/F) = {id}.

For instance, if k(z1, ..., z,) is the rational function field in n variables over
a field k of characteristic p, then k(zi,...,z,)/k(z¥,...,2%) is a normal
extension.

If K is the splitting field over F of a set of polynomials S C F[z], then
each polynomial in S splits over K. However, K can be viewed as a splitting
field in other ways, as the following proposition shows.

Proposition 3.28 If K is algebraic over F, then the following statements
are equivalent:

1. The field K is normal over F.

2. If M is an algebraic closure of K and if T : K — M 1is an F-
homomorphism, then 7(K) = K.

3. If F C L C K C N are fields and if o : L — N 1is an F-
homomorphism, then o(L) C K, and there is a 7 € Gal(K/F) with
Tl =o0.

4. For any irreducible f(z) € F[z], if f has a root in K, then f splits
over K.

Proof. (1) = (2): Let M be an algebraic closure of K, and let 7: K — M
be an F-homomorphism. If K is the splitting field for S C F[z] over F,
then so is 7(K) C M by Lemma 3.17. Since K and 7(K) are generated
over F' by the same set of roots, K = 7(K).
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(2) = (3): Suppose that F C L C K C N are fields and that 0 : L — N
is an F-homomorphism. Since L C K, the extension L/F is algebraic, and
so o(L) C N is algebraic over F. Let M’ be the algebraic closure of F in
N and let M be an algebraic closure of M’. Then M is also an algebraic
closure of K. By the isomorphism extension theorem, there is an extension
p: M — M with p|p = 0. Let 7 = p|k. By condition 2 we have 7(K) = K,
so o(L)=7(L) C 7(K) = K. Thus, 7 € Gal(K/F).

(3) = (4): Let f(z) € F[z] be irreducible over F, and let & € K be a
root of f. Let L = F(a) C K and let N be an algebraic closure of K. If
B € M is any root of f, then there is an F-homomorphism ¢ : L — M
given by g(a) — g¢(8). By condition 3, 6(L) C K, so 8 € K. Hence, all
roots of f lie in K, so f splits over K.

(4) = (1): Condition 4 shows that min(F, «) splits over K foreacha € K.
Thus, K is the splitting field over F of {min(F,a) : a € K}, so K is normal
over F. O

One useful consequence of Proposition 3.28 is that if K is normal over
F, then K is the splitting field of {min(F,a) : a € K} by condition 4. This
is perhaps the most useful criterion to show that an extension is normal.

Problems

1. Show that K is a splitting field over F for a set {f1,..., fn} of poly-
nomials in F[z] if and only if K is a splitting field over F for the
single polynomial f; - -- f,.

2. Let K be a splitting field of a set S of polynomials over F. If L is a
subfield of K containing F' for which each f € S splits over L, show
that L = K.

3. If F C L C K are fields, and if K is a splitting field of S C F[z] over
F, show that K is also a splitting field for S over L.

4. (a) Let K be an algebraically closed field extension of F'. Show that
the algebraic closure of F' in K is an algebraic closure of F.
(b) If A = {a € C: a is algebraic over Q}, then, assuming that C is

algebraically closed, show that A is an algebraic closure of Q.

5. Give an example of fields FF C K C L where L/K and K/F are
normal but L/F is not normal.

6. Let f(z) be an irreducible polynomial over F of degree n, and let K
be a field extension of F' with [K : F] = m. If ged(n,m) = 1, show
that f is irreducible over K.

7. Show that x5 — 923 + 15z + 6 is irreducible over Q(v/2,v/3).
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10.

11.

12.

13.

14.

15.

16.

I. Galois Theory

Find the degree of the splitting field of % + 1 over

(a) Q
(b) Fa.

Determine the splitting field of z¢ — 7 over

(a) Q
(b) Fs,
(C) ]Fll-

Let F be a field, and let f(z) € F[z] be a polynomial of prime degree.
Suppose for every field extension K of F that if f has a root in K,
then f splits over K. Prove that either f is irreducible over F or f
has a root (and hence splits) in F.

Show that the hypotheses of the previous problem hold for

(a) f(z) = 2P — a, where char(F) =panda € F.
(b) f(z) = zP — z — a, where char(F) =pand a € F.

(¢) f(z) = zP — a, where char(F) # p and F contains an element w
with w? =1 and w # 1.

Let K be a field, and suppose that o € Aut(K) has infinite order. Let
F be the fixed field of o. If K/F is algebraic, show that K is normal
over F.

Let K be a normal extension of F', and let f(z) € F[z] be an irre-
ducible polynomial over F. Let g;(x) and g2(x) be monic irreducible
factors of f(z) in K[z]. Prove that there is a o € Gal(K/F) with

o(g1) = ga-

Let K be a normal extension of F, and let p(z) be an irreducible
polynomial in F[z]. If p is not irreducible over K, show that p factors
over K into a product of irreducible polynomials of the same degree.
In particular, if p has a root in K, then p splits over K.

Let K and L be extensions of F. Show that KL is normal over F if
both K and L are normal over F. Is the converse true?

Let M be a normal extension of F'. Suppose that a,a’ € M are roots
of min(F,a) and that b, are roots of min(F,b). Determine whether
or not there is an automorphism o € Gal(M/F) with o(a) = o’ and
ob) ="b.
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17. This problem will prove that any symmetric polynomial is a polyno-
mial in the elementary symmetric functions. This problem requires
some knowledge of integral ring extensions along with theorems about
algebraic independence from Section 19. Let K = k(z1,...,z,) be the
field of rational functions in the x; over a field k. Then the group S,
acts as automorphisms on K as in Example 2.22. Let f € k[zy, ..., Z4]
be a symmetric polynomial; that is, o(f) = f for all ¢ € S,,. Show
that f € k[s1,..., sn]

(Hint: If F = F(S,), show that F N k[z1,...,z,] is integral over
k[s1,...,8n]. Moreover, show that k[si,...,sn] is integrally closed
since k[s1, ..., 8n] = k[z1,...,T,], a fact that falls out of Section 19.)

18. Give an example of fields k C K C L and [ C L for which I/k and
L/K are algebraic, k is algebraically closed in K, and |K = L, but [
is not algebraically closed in L.

19. This problem gives a construction of an algebraic closure of a field,
due to E. Artin. Let F be a field, and let S be the set of all monic
irreducible polynomials in F[z]. Let A= F[z; : f € S] be a polyno-
mial ring with one variable for each polynomial in S. Let I be the
ideal of A generated by all f(zs) for f € S. Show that I # A. Let
M D I be a maximal ideal of A, and let F; = A/M. Then F is an
extension of F' in which each f € S has a root. Given the field Fj,
construct the field F;,; by repeating this procedure starting with F;
as the base field in place of F. Let L = |J,, F,. Show that each
f € S splits into linear factors over L, and show that the algebraic
closure of F in L is an algebraic closure of F.

4 Separable and Inseparable Extensions

Recall from Corollary 2.17 that an algebraic extension F(a)/F fails to
be Galois if either min(F,a) does not split over F'(a) or if min(F,a) has
repeated roots. In the previous section, we investigated field extensions
K/F for which min(F,a) splits over K for each a € K. In this section, we
investigate when a minimal polynomial has repeated roots. We point out
that in the case of fields of characteristic 0, there is no problem of repeated
roots, as we show below.

Let f(z) € Flz]. A root a of f has multiplicity m if (x — @)™ divides
f(z) but (x —a)™*! does not divide f. If m > 1, then « is called a repeated
root of f.

Definition 4.1 Let F be a field. An irreducible polynomial f(z) € F|z]
is separable over F' if f has no repeated roots in any splitting field. A
polynomial g(x) € Flx] is separable over F if all irreducible factors of g
are separable over F'.
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Example 4.2 The polynomial z? — 2 is separable over Q, as is (z — 1)°.
The polynomial 22 + z + 1 is separable over Fs, since we saw in Example
2.8 that if « is a root, then so is @ + 1. Suppose that char(F) = p and
a € F — FP. Then zP — a is irreducible over F' (see Problem 5), but it is
not separable over F, since it has at most one root in any extension field
of F. Note that if o is a root of P — a, then z” — a is separable over F(a).

The following lemma gives some basic properties of separability.

Lemma 4.3 Let f(z) and g(x) be polynomials over a field F.

1. If f has no repeated roots in any splitting field, then f is separable
over F'.

2. If g divides f and if f is separable over F', then g is separable over
F.

3. If f1,...,fn are separable polynomials over F, then the product
fi++ fn is separable over F'.

4. If f is separable over F, then f is separable over any extension field
of F.

Proof. For property 1, if f has no repeated roots in any splitting field, then
neither does any irreducible factor of f. Thus, f is separable over F. To
show property 2, if g divides f with f separable over F', then no irreducible
factor of f has a repeated root. However, the irreducible factors of g are
also irreducible factors of f. Thus, g is separable over F. To prove property
3, we see that the set of irreducible factors of the f; is precisely the set
of irreducible factors of the polynomial f; --- f,. Each of these irreducible
factors have no repeated roots, so f; - - - f, is separable over F. Finally, for
property 4, let f(z) € F[z] be separable over F, and let K be an extension
of F. If p(z) is an irreducible factor of f(z) in K|z], let @ be a root of p in
some algebraic closure of K, and set g(z) = min(F, ). Then ¢(z) € K|[z],
so p divides ¢q. But ¢ has no repeated roots, since ¢ is an irreducible factor
of f. Thus, p has no repeated roots, so f is separable over K. m|

In order to have an effective test for separability, we need the concept of
polynomial differentiation. A more general notion of differentiation, that

of a derivation, will be used to study transcendental extensions in Chapter
V.

Definition 4.4 If f(z) = ap + a1z + - -+ + a,z™ € Flz], then the formal
derivative f'(z) is defined by f'(z) = a; + 2a2z + - -+ + naz" L.

The formal derivative of a polynomial is well defined for any field F.
We do not need limits in order to define it, as we do in calculus. However,
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some strange things can happen in prime characteristic. For instance, the
derivative of zP is 0 if the base field has characteristic p.

The formal derivative satisfies the same basic properties as the derivative
of calculus. If f(z),g(z) € F[z] and a,b € F, then

1. (af(z) +bg(z))" = af'(z) + bg'(x);
2. (f(2)g9(z)) = f(x)9(z) + f(2)g (2);
3. (f(g(=z))" = f'(9(2))g ().

The proof of these properties is straightforward and is left to Problem 1.
By using derivatives, we obtain a good test for determining when a poly-
nomial has a repeated root. This test is given in the following proposition.

Proposition 4.5 Let f(z) € F[z] be a nonconstant polynomial. Then f
has no repeated roots in a splitting field if and only if ged(f,f') = 1 in
Flz].

Proof. We first point out that f and f’ are relatively prime in F[z] if
and only if they are relatively prime in K[z]. To prove this, suppose that
ged(f, f') = 1 in Flz]. Then there are polynomials g,h € F[z] with 1 =
fg + f'h. This also is an equation in K(z], so the ged in KJ[z] of f and
f' must divide 1. Thus, gcd(f, f') = 1 in K|z]. Conversely, suppose that
ged(f, f') = 1in Klz]. If d is the ged of f and f’ in F[z], then d € K|z],
so d divides 1; thus, f and f’ are relatively prime in F[z].

Suppose that f and f’ are relatively prime in F[z]. In particular, let K
be a splitting field of {f, f'} over F. If f and f’ have a common root a € K,
then z — o divides both f and f’ in K|[z]. This would contradict the fact
that f and f’ are relatively prime in K[z]. Therefore, f and f’ have no
cominon roots.

Conversely, if f and f’ have no common roots in a splitting field K of
{f,f'}, let d(z) be the greatest common divisor in K[z] of f(z) and f'(z).
Then d splits over K since f splits over K and d divides f. Any root of d
is then a common root of f and f’ since d also divides f’. Thus, d(z) has
no roots, so d = 1. Therefore, f and f’ are relatively prime over K; hence,
they are also relatively prime over F'. O

With this derivative test, we can give the following criteria for when a
polynomial is separable. Note that this test does not require that we know
the roots of a polynomial.

Proposition 4.6 Let f(z) € Fz] be an irreducible polynomial.

1. If char(F) = 0, then f is separable over F. If char(F) = p > 0, then
f is separable over F if and only if f'(x) # 0, and this occurs if and

only if f(z) ¢ F[zP].
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2. If char(F) = p, then f(z) = g(zP") for some integer m > 0 and some
g(z) € Flz] that is irreducible and separable over F.

Proof. If f(z) € F[z] is irreducible over F, then the only possibility for
ged(f, f)) is 1 or f. If char(F) = 0, then deg(f’) = deg(f) — 1; thus, f does
not divide f’, and so ged(f, f') = 1. Therefore, by Proposition 4.5, f has
no repeated roots, so f is separable over F. If char(F) = p > 0, the same
reasoning shows ged(f, f') = f if and only if f divides f’, if and only if
f'(z) =0, if and only if f(z) € F[zP].

For statement 2, suppose that char(F) = p, and let f(z) € F[z]. Let m
be maximal such that f(z) € F[z?"]. Such an m exists, since f € F[z”o]
and f lies in F[zP"] for only finitely many r because any nonconstant
polynomial in F[zP'] has degree at least p". Say f(z) = g(zP" ). Then
g(z) ¢ F[zP] by maximality of m. Moreover, g(z) is irreducible over F,
since if g(z) = h(z) - k(z), then f(z) = h(zP")-k(zP") is reducible over F.
By statement 2, g is separable over F. (|

We now extend the concept of separability to field elements and field
extensions.

Definition 4.7 Let K be an extension field of F' and let o € K. Then
o is separable over F if min(F, «) is separable over F. If every a € K is
separable over F, then K is separable over F.

Example 4.8 If F is a field of characteristic 0, then any algebraic exten-
sion of F is separable over F, since every polynomial in F[z] is separable
over F. If k is a field of characteristic p > 0 and if k(z) is the rational
function field in one variable over k, then the extension k(z)/k(zP) is not
separable, for min(k(z?),z) = tP — zP, which has only z as a root.

We are now in a position to give a characterization of Galois extension.
This characterization is the most common way to show that a field exten-
sion is Galois.

Theorem 4.9 Let K be an algebraic extension of F'. Then the following
statements are equivalent:

1. K is Galois over F'.
2. K is normal and separable over F'.
3. K is a splitting field of a set of separable polynomials over F.

Proof. (1) = (2): Suppose that K is Galois over F, and let a € K. Let
aq,...,0a, be the distinct elements of the set {o(a) : 0 € Gal(K/F)}.
This set is finite by Lemma 2.3, since each o(c) is a root of min(F, c). Let
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f(z) =[L;(x — ;) € K[z]. Then 7(f) = f, since 7 permutes the a;. Thus,
the coefficients of f lie in F(Gal(K/F)) = F, so f(z) € F[z]. Therefore,
min(F, a) divides f, and so min(F, «) splits over K and has no repeated
roots. Since this is true for each a € K, the field K is the splitting field of
the set {min(F, @) : @ € K} of polynomials separable over F. Hence, K/F
is normal and separable.

(2) = (3): If K/F is normal and separable, then K is the splitting field
of the set of separable polynomials {min(F,a) : @ € K } by Proposition
3.28.

(3) = (1): We first assume that [K : F] < oo, and we use induction
onn =[K : F. If n =1, then K = F is trivially Galois over F. So,
suppose that n > 1 and that the result holds for field extensions of degree
less than n. Say K is the splitting field of the set of separable polynomials
{fi(z)}. Since n > 1, there is a root a of one of the f; which is not in
F.Let L = F(a). Then [L : F] > 1, s0 [K : L] < n. Since K is the
splitting field over L of the {f;}, which are separable over L, by induction
K is Galois over L. Let H = Gal(K/L), a subgroup of Gal(K/F). Let
ai, ...,y be the distinct roots of min(F,a). Then, since « is separable
over F, we have [L : F] = r. By the isomorphism extension theorem, there
are 7; € Gal(K/F) with 7;(a) = ;. The cosets 7; H are then distinct, since
if 7,71r; € H = Gal(K/L), then (7, '7j)(a) = «; hence, a; = 7(a) =
7j(a) = a;. Let G = Gal(K/F). We have

IG|=|G:H| |H>r |H =[L:F|-[K:L=[K:F

Since |G| < [K : F] by Proposition 2.13, we get |G| = [K : F], so K is
Galois over F.

Now suppose that K/F is arbitrary. By hypothesis, K is the splitting
field over F of a set S of separable polynomials over F. Let X be the set of
roots of all of these polynomials. So, K = F(X). Let a € F(Gal(K/F)). We
wish to show that a € F. There is a finite subset {a3,...,a,} C X witha €
F(as,...,an). Let L C K be the splitting field of {min(F,a;) : 1 < ¢ < n}.
Then, by the previous paragraph, L/F is a finite Galois extension. Note
that a € L. An application of the isomorphism extension theorem shows
that each element of Gal(L/F') extends to an F-automorphism of K, and
so Proposition 3.28 implies that

Gal(L/F) = {o|. : o € Gal(K/F)}.

Therefore, a € F(Gal(L/F)), and this fixed field is F', since L/F is Galois.
This proves F(Gal(K/F)) = F, so K/F is Galois. o

Corollary 4.10 Let L be a finite extension of F.

1. L is separable over F if and only if L is contained 1n a Galois exten-
sion of F.
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2. If L = F(ay,...,on) with each a; separable over F, then L is sepa-
rable over F.

Proof. If L C K with K/F Galois, then K/F is separable by Theorem 4.9.
Hence, L/F is separable. Conversely, suppose that L/F' is separable. Since
[L : F] < oo, we may write L = F(a,...,a,), and each o; is separable
over F. If K is the splitting field of {min(F, ;) :1 <¢ < n}, then LC K,
and K/F is Galois by Theorem 4.9.

For the proof of statement 2, let L = F(ay,...,a,) with each «a; sepa-
rable over F. Then each min(F, ;) is a separable polynomial over F. If K
is the splitting field of these polynomials, then K/F is Galois by Theorem
4.9. Thus, again by that theorem, K is separable over F. Since L C K, we
see that L is separable over F'. O

Fields for which all algebraic extensions are separable are particularly
well behaved. We now determine which fields have this property.

Definition 4.11 A field F is perfect if every algebraic extension of F 1is
separable.

Example 4.12 Any field of characteristic 0 is perfect. Therefore, any field
containing Q or contained in C is perfect. Any algebraically closed field is
perfect for the trivial reason that there are no proper algebraic extensions
of an algebraically closed field.

The following theorem characterizes perfect fields of prime characteristic.
We have seen in previous examples that if a € ' — FP, then 2P — a is an
irreducible polynomial that is not separable. Therefore, for F' to be perfect,
we must have FP = F. We now show this is sufficient to ensure that F is
perfect.

Theorem 4.13 Let F be a field of characteristic p. Then F is perfect if
and only if FP = F.

Proof. Suppose that F is perfect. Let a € F, and consider the field K =
F(a), where a is a root of P — a. The minimal polynomial of a divides
zP — a = (z — a)P. However, K is separable over F since F is perfect;
thus, this minimal polynomial has no repeated roots. This means o € F,
soa € FP.

Conversely, suppose that F'P = F. Let K be an algebraic extension of F,
and let o € K. If p(z) = min(F, o), then by Proposition 4.6 there is an m
with p(z) = g(z?") for some g(x) € F[z] with g irreducible and separable
over F. If g(z) = ap + a1z + --- + 2", then there are b; € F with b = q;
for all 4. Then p(z) = 3, b;zP ¢ = (3, b;z?" "~ '1)P. This contradicts the
irreducibility of p unless m = 1. Thus, p = g is separable over F, so a is
separable over F'. Therefore, any algebraic extension of F is separable, so
F is perfect. a
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Example 4.14 Any finite field is perfect; to prove this, let F' be a finite
field. The map ¢ : F — F given by ¢(a) = a” is a nonzero field homo-
morphism, so ¢ is injective. Since F is finite, ¢ is also surjective. Thus,
FP = im(p) = F, so F' is perfect by Theorem 4.13. We give another proof
of this fact in Corollary 6.13.

Purely inseparable extensions

We now discuss the condition diametrically opposed to separability. This
situation is only relevant in prime characteristic, since any algebraic exten-
sion in characteristic 0 is separable. If F' is a field of characteristic p > 0,
and if a € F, then P — a has only one distinct root in any splitting field,
since if « is a root of f, then zP — a = (x — «)P. In this case, a? =a € F.

Definition 4.15 Let K be an algebraic field extension of F. An element
a € K is purely inseparable over F' if min(F, ) has only one distinct root.
The field K is purely inseparable over F if every element in K is purely
inseparable over F.

The definition of purely inseparable requires that we know how many
roots there are of a minimal polynomial of an element. The following lemma
gives an easier way to determine when an element is purely inseparable over
a field.

Lemma 4.16 Let F be a field of characteristic p > 0. If « is algebraic over
F, then a is purely inseparable over F if and only if a?” € F for some n.
When this happens, min(F,a) = (z — a)?" for some n.

Proof. If o = a € F, then a is a root of the polynomial zP" — a.
This polynomial factors over F(a) as (z —)?", and min(F, ) divides this
polynomial, so min(F, @) has only « as a root. Conversely, suppose that « is
purely inseparable over F', and let f(z) = min(F,«). There is a separable
irreducible polynomial g(z) over F with f(z) = g(zP") by Proposition
4.6. If g factors over a splitting field as g(z) = (x — b1)--- (z — b;.), then
f(z) = (@™ —b;)--- (" —b.). If r > 1, then separability of g says that
the b; are distinct. By assumption, the only root of f is . Thus, b; = o
for each i. Hence, r = 1, so f(z) = zP" — b;. Therefore, aP” € F, and
min(F,a) = zP" — by = (z — a)?". O

The basic properties of purely inseparable extensions are given in the
following lemma.

Lemma 4.17 Let K be an algebraic extension of F'.

1. If a € K is separable and purely inseparable over F, then a € F.
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2. If K/F is purely inseparable, then K/F is normal and Gal(K/F) =
{id}. Moreover, if [K : F] < 00, and if p = char(F), then [K : F| =
p"™ for some n.

3. If K = F(X) with each o € X purely inseparable over F, then K is
purely inseparable over F.

4. If FC L C K are fields, then K/F is purely inseparable if and only
if K/L and L/F are purely inseparable.

Proof. Suppose that a € K is both separable and purely inseparable over
F. Then min(F, «) has only one distinct root, and it also has no repeated
roots. Therefore, p(z) =z —a,s0o a € F.

For property 2, if K/F is purely inseparable, then each min(F, «) splits
over K, since the only root of min(F,a) is « itself. Consequently, K is
normal over F' by Proposition 3.28. If o € Gal(K/F), then, for any a € K,
the automorphism o maps a to a root of min(F, a). Thus, o(a) = «, so
o = id. Therefore, Gal(K/F') = {id}. If [K : F] < oo, then K is finitely
generated over F; say, K = F(ay,...,a,). To prove that [K : F] is a power
of p = char(F'), by Proposition 1.20 it suffices by induction to prove this in
the case K = F(a). But then [K : F] = deg(min(F, «)), which is a power
of p by the previous lemma.

To prove property 3, suppose that K is generated over F' by a set X of
elements purely inseparable over F. Let a € K. Then a € F(ay,...,an,)
for some a; € X. Since each «; is purely inseparable over F', there is an m
such that af € F for each i. Because a is a polynomial in the a;, we see
that a?” € F. This forces min(F,a) to divide (z — a)?” ; hence, min(F,a)
has only one distinct root. Therefore, a is purely inseparable over F, and
so K/F is purely inseparable.

Finally, for property 4, if K/F is purely inseparable, then for any a € K,
there is an m with a?” € F. Thus, a®?” € L, so K/L is purely inseparable.
It is clear that L/F is purely inseparable. Conversely, if L/F and K/L
are purely inseparable, let @ € K. Then a?" € L for some m, and so
(@™ = a?""" € F for some r. Therefore, K /F' is purely inseparable.

0

Example 4.18 A field extension need not be either separable or purely
inseparable. For instance, if F' = Fa(z) is the rational function field in one
variable over Fy, and if K = F(z'/®), then K = F(y/z, ¥z). Moreover,
\/T is purely inseparable over F', and ¥/ is separable over F'. The subfield
F(y/z) is purely inseparable over F', and the subfield F(¥/z) is separable
over F.

In the previous example, we can show that F(/z) consists of all the
elements of K that are separable over F' and that F(1/z) consists of all the
elements of K that are purely inseparable over F. This is a special case of
the following lemma. We first give the relevant definitions.
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Definition 4.19 Let K be a field extension of F. Then the separable clo-
sure of F in K is the set {a € K : a 1s separable over F}. The purely insep-
arable closure of F in K is the set {a € K : a is purely inseparable over F'}.

The separable and purely inseparable closures of F in K are fields, as we
now show.

Proposition 4.20 Let K be a field extension of F. If S and I are the
separable and purely inseparable closures of F in K, respectively, then S
and I are field extensions of F with S/F separable, I/F purely inseparable,
and SNI =F. If K/F is algebraic, then K/S is purely inseparable.

Proof. Let a,b € S. Then F(a,b) is a separable extension of F' by Lemma
4.10. Hence, a b, ab, and a/b are separable over F', so they all lie in S.
Thus, § is a field. For I, if ¢,d € I, then there are n,m with ¢®" € F and
dP?" € F. Setting N = nm, we have (c + d)”N, (cd)i”N, and (c/d)pN e F.
Thus, c+d, ed, and ¢/d belong to I, so I is a field. The equality SNI = F
holds, since SN I is both separable and purely inseparable over F'. Finally,
suppose that K/F is algebraic. If @ € K, then min(F,a) = g(zP") for
some separable, irreducible polynomial g(z) € F[z] by Proposition 4.6. If
a=a”", then g(a) =0, so g(z) = min(F, a). Therefore, a is separable over
F,so o”" =a € S. Thus, K/S is purely inseparable. O

If K/F is an algebraic extension, we can break up the extension K/F into
a separable extension S/ F followed by a purely inseparable extension K/S,
where S is the separable closure of F' in K. Use of the separable closure is
a nice tool to prove results dealing with separability. As an illustration, we
prove that separability is a transitive property.

Proposition 4.21 If F C L C K are fields such that L/F and K/L are
separable, then K/F is separable.

Proof. Let S be the separable closure of F in K. Then L C S, as L/F
is separable. Also, since K/L is separable, K/S is separable. But K/S is
purely inseparable, so K = S. Thus, K is separable over F'. O

Example 4.22 Let K be a finite extension of F', and suppose that char(F’)
does not divide [K : F|. We show that K/F is separable. If char(F') = 0,
then this is clear, so suppose that char(F) = p > 0. Let S be the separable
closure of F' in K. Then K/S is purely inseparable, so [K : S| = p™ for
some n by Lemma 4.17. However, since p does not divide [K : F), this
forces [K : S] = 1. Thus, K = S, so K is separable over F.

A natural question that Proposition 4.20 raises is whether the extension
K/I is separable. The answer in general is no, although it is true if K/F
is normal, as we now show.
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Theorem 4.23 Let K be a normal extension of F, and let S and I be
the separable and purely inseparable closures of F in K, respectively. Then
S/F is Galois, I = F(Gal(K/F)), end Gal(S/F) = Gal(K/I). Thus, K/I
is Galois. Moreover, K = S1I.

Proof. Let a € S, and set f(z) = min(F,a). Since K is normal over F,
the polynomial f splits over K. Since a is separable over F, the polynomial
f has no repeated roots, so all its roots are separable over S. Thus, f
splits over S. Hence, S is normal over F' by Proposition 3.28, and since
S is separable over F', we see by Theorem 4.9 that S is Galois over F.
The map 6 : Gal(K/F) — Gal(S/F) given by 0(c) = ols is a well-defined
group homomorphism. The kernel of 8 is Gal(K/S), and this group is trivial
by Lemma 4.17 since K is purely inseparable over S. By the isomorphism
extension theorem, if 7 € Gal(S/F'), there is a 0 € Gal(K/F) with o|s = 7.
Thus, 6 is an isomorphism.

To show that I = F(Gal(K/F)), if a € I, then a?" € F for some n.
For o € Gal(K/F), we have a?" = a(a?") = o(a)?", so o(a) = a. Thus,
I C F(Gal(K/F)). Conversely, take b € F(Gal(K/F)). There is an n with
b" € S because K/S is purely inseparable. Let 7 € Gal(S/F). Since 6 is
surjective, there is a ¢ € Gal(K/F) with 7 = 6(0) = ol|s. Then 7(b*") =
o(b?") = bP". This is true for each 7; hence, b*" € F(Gal(S/F)) = F. This
equality holds since S is Galois over F. Thus, b is purely inseparable over
F. This proves I = F(Gal(K/F)), so Gal(K/F) = Gal(K/I). Therefore,
K is Galois over I; hence, K/I is separable. Finally, K is separable over ST
since I C SI, and K is purely inseparable over ST since S C SI. Therefore,
K =S5I. O

Let K be a finite extension of F. If S and I are the separable and purely
inseparable closures of F' in K, respectively, we define the separable degree
[K : F]s of K/F to be [S : F] and the inseparable degree [K : F); to be
[K : S]. With these definitions, we see that [K : F]s[K : F]; = [K : F]. By
Theorem 4.23, if K/F is normal, then [K : I| =[S : F], and so [K : §] =
[I: F]. However, as the example below shows, in general [K : S] # {I : F).
The inseparable degree is defined to be [K : S] and not [I : F) because the
degree [K : 5] is a better measure for how far the extension K/F is from
being separable. The example below shows that it is possible to have I = F'
even if K is not separable over F'. We will use the concepts of separable
and inseparable degrees in Section 8.

Example 4.24 We give an example of a field extension K/F in which
K is not separable over the purely inseparable closure I of F' in K. This
is also an example of a nonseparable field extension K/F in which the
purely inseparable closure is F'. Let k be a field of characteristic 2, let F' be
the rational function field F = k(z,y), let S = F(u), where u is a root of
t*+t+z, and let K = S(,/uy). Then K/S is purely inseparable and S/F is
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separable, so S is the separable closure of F in K. We will show that I = F,
which will prove that K/I is not separable since K/S is not separable. To
do this, we show that if a € K with a® € F, then a € F. A basis for K/F

is 1, u, \/uy, and u,/uy. Say a® € F and write a = o+ Bu+v,/uy + 6u./uy
with o, 3,7,6 € F. Then

a? = a® + (*(u + z) + ¥*(uy) + 6% (u + z)uy.
The coefficient of u is zero since a? € F, so
B? + (v +6)*y + 6%xy = 0.

If § = 0, then 82 +~%y = 0, so v = 0 since y is not a square in F. But then
B=0,s0a€ F.If § #0, then

B+ (v+8% v N2, (BY
“"“—5537‘—"(3“) +(3) v,

which means that z € F%(y). But this is impossible. Thus, § = 0, and so
we conclude that a € F. Thus, I = F, so K/I is not separable. Note that
K # SI also.

Problems

1. Prove the sum, product, and chain rules for formal polynomial dif-
ferentiation in F[z].

2. If F C L C K are fields such that K/F is separable, show that L/F
and K/L are separable.

3. If K is a field extension of F' and if @« € K is not separable over

F, show that a?” is separable over F for some m > 0, where p =
char(F).

4. Let F C L C K be fields such that K/L is normal and L/F is purely
inseparable. Show that K/F is normal.

5. Let F be a field of characteristic p > 0, and let a € F — FP. Show
that zP — a is irreducible over F.

6. Let F be a field of characteristic p > 0, and let K be a purely insep-
arable extension of F' with [K : F] = p™. Prove that a?" € F for all
a€ K.

7. Let K and L be extensions of F. Show that KL is separable over F'
if both K and L are separable over F'. Is the converse true?
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10.

11.

12.

13.

14.

15.

1. Galois Theory

Let K and L be extensions of F'. Show that K L is purely inseparable
over I if both K and L are purely inseparable over F. Is the converse
true?

Let K and L be extensions of F. Show that KL is Galois over F' if
both K and L are Galois over F. Is the converse true?

Let K and L be subfields of a common field, both of which contain a
field F. Prove the following statements.

(a) If K = F(X) for some set X C K, then KL = L(X).
(b) [KL:F)<|K:F}-[L:F)
(c¢) If K and L are algebraic over F, then KL is algebraic over F.

(d) Prove that the previous statement remains true when “alge-
braic” is replaced by “normal,” “separable,” “purely insepara-
ble,” or “Galois.”

Let K be the rational function field k(x) over a perfect field k of
characteristic p > 0. Let F = k(u) for some u € K, and write
u = f(z)/g(z) with f and g relatively prime. Show that K/F is
a separable extension if and only if u ¢ KP.

Let K be a finite extension of F with char ¥ = p > 0 and KP C F.
Thus, K/F is purely inseparable. A set {ai,...,a,} C K is said to be
a p-basis for K/F provided that there is a chain of proper extensions

FcF(a)C---C F(a,) =K.

Show that if {a1,...,a,} is a p-basis for K/F, then [K : F] = p",
and conclude that the number of elements in a p-basis is uniquely
determined by K/F. The number n is called the p-dimension of K/F.
Also, show that any finite purely inseparable extension has a p-basis.

Give three examples of a field extension K/F which is neither normal
nor separable. Note that two such examples are given in the section.

Let k be a field of characteristic p > 0, let K = k(z,y) be the rational
function field over k in two variables, and let F' = k(zP,y?). Show
that K/F is a purely inseparable extension of degree p?. Show that
K # F(a) for any a € K.

Prove the following product formulas for separability and insepara-
bility degree: If F C L C K are fields, then show that [K : F), =
[K:L|s[L:Flsand [K : F); = [K : L|;[L : F);.
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5 The Fundamental Theorem of Galois Theory

We are now in the position to prove the fundamental theorem of Galois
theory, which describes the intermediate fields of a Galois extension K/F
in terms of the subgroups of the Galois group Gal(K/F). This theorem
allows us to translate many questions about fields into questions about
finite groups. As an application of this theorem, we give a mostly algebraic
proof of the fundamental theorem of algebra, which says that the complex
field C is algebraically closed.

Theorem 5.1 (Fundamental Theorem of Galois Theory) Let K be
a finite Galois extension of F, and let G = Gal(K/F). Then there is a 1-1
inclusion reversing correspondence between intermediate fields of K/F and
subgroups of G, given by L — Gal(K/L) and H — F(H). Furthermore, if
L~ H, then [K : L] = |H| and [L : F] =[G : H]. Moreover, H is normal
in G if and only if L is Galois over F. When this occurs, Gal(L/F) < G/H.

Proof. We have seen in Lemma 2.9 that the maps L — Gal(K/L) and
H — F(H) give injective inclusion reversing correspondences between the
set of fixed fields L with FF C L C K and the set of subgroups of G of
the form Gal(K/L) for some L with F C L C K. Let L be a subfield of
K containing F. Since K is Galois over F, the extension K is normal and
separable over F. Thus, K is also normal and separable over L, so K is
Galois over L. Hence, L = F(Gal(K/L)), so any intermediate field is a
fixed field. Also, if H is a subgroup of G, then H is a finite group, so H =
Gal(K/F(H)) by Proposition 2.14. Every subgroup of G is therefore such
a Galois group. The maps above then yield the desired correspondences.
Recall that |Gal(K/F)| = [K : F] if K is Galois over F' by Proposition
2.14. Thus, if L < H, we have |H| = [K : L], since K is Galois over L and
H = Gal(K/L). Therefore,

(G:H]=|G|/|H|=[K: F/[K:L]=[L:F].

Suppose that H is normal in G, and let L = F(H). Take a € L, and let b
be any root of min(F, a) in K. By the isomorphism extension theorem, there
isa o € G with o(a) = b. If 7 € H, then 7(b) = o(0c~170(a)). However,
since H is normal in G, the element 070 € H, so 0~ !70(a) = a. Thus,
7(b) = o(a) = b, so b € F(H) = L. Since min(F,a) splits over K, this
shows that min(F,a) actually splits over L. Therefore, L is normal over F'
by Proposition 3.28. Since K/ F is separable and L C K, the extension L/F
is also separable, and so L is Galois over F'. Conversely, suppose that L is
Galois over F. Let 6 : G — Gal(L/F') be given by 8(c) = o|. Normality of
L/F shows that oy € Gal(L/F) by Proposition 3.28, so § is a well-defined
group homomorphism. The kernel of 4 is

ker(¢) = {o € K : 0| =id} = Gal(K/L) = H.
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Therefore, H is normal in G. The map 8 is surjective since, if 7 € Gal(L/F'),
then there is a 0 € G with o|; = 7 by the isomorphism extension theorem.
Thus, Gal(L/F) = G/H. O

Given a Galois extension K/F, on the surface it would seem to be in-
tractable to determine all intermediate fields; the main problem is know-
ing whether we have found all of them. However, the Galois group G =
Gal(K/F) is a finite group, which means that there is a systematic way of
finding all subgroups of G. By finding all subgroups, we can then deter-
mine the fixed fields of each, thereby having all intermediate fields by the
fundamental theorem. The next two examples illustrate this procedure. Of
course, if G is large, it may be too complicated to find all subgroups of G.

Example 5.2 The field Q(+/2,w) is Galois over Q, as we have seen pre-
viously. The Galois group is a group of order 6. From group theory, there
are two nonisomorphic groups of order 6: the cyclic group Z/6Z and the
symmetric group S3. Which is the Galois group? The subfield Q(¥/2) is
not Galois over Q, since the minimal polynomial of +/2 does not split over
Q(¥/2). Therefore, the corresponding subgroup is not normal in G. How-
ever, every subgroup of an Abelian group is normal, so our Galois group
is non-Abelian. Thus, G = Gal(Q(¥/2,w)/Q) = S;. We can also explic-
itly demonstrate this isomorphism. By the isomorphism extension theorem,
there are Q-automorphisms o, 7 of Q(¥/2,w) with

0:\3/§—>w\3/§, w — w,
T:\3/§—>\3/§, w — w?.

It is easy to check that o has order 3, 7 has order 2, and o7 # 70. The
subgroups of the Galois group are then

(i), (o), (), (o7),(07),G.
The corresponding fixed fields are
Q(V2,w), Qw), QV2), QW*V2), QwV2), @

One way to verify that these fields are in fact the correct ones is to show
that, for any of these fields, the field is indeed fixed by the appropriate
subgroup and its dimension over Q is correct. For instance, v/2 is fixed
by 7; hence, Q(v/2) C F(7). Since the index [G : (r)] = 3, we must have
[F(r) : F] = 3. But [Q(+/2) : Q] = 3, so Q(v/2) = F(7). This use of

dimension is extremely useful in determining the fixed field of a subgroup.
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Example 5.3 Let K = Q(v2,v3). Then K is the splitting field of
{z* — 2,22 — 3} over Q or, alternatively, the splitting field of (z°—2)(z*—3)
over Q. The dimension of K/Q is 4. The four automorphisms of K/Q are
given by

id:\/§—>\/§, \/§—>\/§,

o:vV25 —vV2, V33,
TiV2o V2, V3o V3,
or:V2— —v2, V3 V3.

This Galois group is Abelian and is isomorphic to Z/2Z x Z/2Z. The sub-
groups of G = Gal(K/Q) are

(id), (o), (7),(o7),G.
The corresponding intermediate fields are

K, Q(v3), Q(v2), Q(V6), Q.

/ K\ G\
Qv?) @my@ <a>\ @) (D)
<

Q id)

Example 5.4 Let F' = C(t) be the rational function field in one variable
over C, and let f(z) = z™ — t € F[z|. The polynomial f is irreducible over
F by the Eisenstein criterion, since F' is the quotient field of the unique
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factorization domain C[t] and ¢ is an irreducible element of C[t]. Let K be
the splitting field of f over F. Then K = F(a), where a is any root of f(z).
To see this, if w = exp(2mi/n), then w™ = 1, so w«a is a root of f(z) for
each ¢. There are exactly n distinct powers of w, so the n distinct elements
a,waq,...,w" o are precisely the roots of f. All of these lie in F(a) and
generate F(a), so K = F(a). The extension K/F is then Galois since f
has no repeated roots. We see that (K : F| = deg(f) = n.

The isomorphism extension theorem tells us that there is an automor-
phism o of K defined by o(a) = wa. This formula yields that o(a) = w'a
for each 4, so 0*(a) = a if and only if n divides i. Thus, ¢ has order n in
Gal(K/F). This forces Gal(K/F) to be the cyclic group generated by o.
Each subgroup of (o) is cyclic and can be generated by an element ¢™ with
m a divisor of n. Given a divisor m of n, if n = mk, then the element o
is fixed by o™, since

m(ak) _( m )k

"ok = ok

E

Moreover, F(o*) is the fixed field (am) for, if m’' is a divisor of n
and o™ (ak) = o, then w™*a* = of , which forces n to divide m'k.
But, n = mk, so m divides m/’, and thus o™ € {c™). This proves that
Gal(K /F(a*)) = (™), so the fundamental theorem tells us that F(a*)
is the fixed field of (™). We have thus determined the subgroups of
Gal(K/F) and the intermediate fields of K/F to be

{(¢™) : m divides n},
{F(c*) : k divides n},
with the correspondence F(a*) « (o™) if km = n.

Let K/F be Galois, and let L be any extension field of F' with K and L
inside some common field. Then K L/L is Galois, since if K is the splitting
field of a set of separable polynomials over F', then KL is the splitting field
of the same set of polynomials over L, and if f(z) € Fiz] is separable over

F, then f(zx) is separable over L. The following theorem determines the
Galois group of KL/L and the degree of this extension.

/\

KﬂL

&



5 The Fundamental Theorem of Galois Theory 55

Theorem 5.5 (Natural Irrationalities) Let K be a finite Galois exten-
sion of F, and let L be an arbitrary extension of F. Then KL/L is Galois
and Gal(KL/L) = Gal(K/K N L). Moreover, [KL: L] =[K : KN L].

Proof. Define 8 : Gal(KL/L) — Gal(K/F) by 6(c) = o|k. This map is
well defined since K is normal over F', and 6 is a group homomorphism.
The kernel of 8 is{oc € Gal(KL/L) : o|x = id}. However, if o € ker(d),
then 0| = id and 0|k = id. Thus, the fixed field of o contains both K and
L, so it contains K L. That means ¢ = id, so 0 is injective. Since the image
of 8 is a subgroup of Gal(K/F'), this image is equal to Gal(K/F), where E
is the fixed field of this image. We show that £ = KNL.Ifa € KNL, then
a is fixed by ok for each o € Gal(KL/L). Therefore,a € E,so KNL C E.
For the reverse inclusion, let a € E. Then a € K and o|k(a) = a for all
o € Gal(KL/L). Thus, o(a) = a for all such o, so a € L. This shows
ECKNL, and so E = KN L. We have thus proved that

Gal(KL/L) 2 im(0) = Gal(K/K N L).
The degree formula follows immediately from this isomorphism. m]

A field extension K/F is called simple if K = F(«) for some a € K. The
next theorem and its corollaries give some conditions for when an extension
is simple.

Theorem 5.6 (Primitive Element Theorem) A finite extension K/F
is simple if and only if there are only finitely many fields L with F C L C K.

Proof. We prove this with the assumption that |F| = co. The case for
finite fields requires a different proof, which we will handle in Section 6.
Suppose that there are only finitely many intermediate fields of K/F. Since
[K : F| < o0, we can write K = F(oy,...,a,) for some o; € K. We
use induction on n; the case n = 1 is trivial. If L = F(ay,...,0n-1),
then since any field between F' and L is an intermediate field of K/F,
by induction L = F(8) for some 3. Then K = F(an,8). For a € F, set
M, = F(a, + af), an intermediate field of K/F. Since there are only
finitely many intermediate fields of K/F but infinitely many elements of
F, there are a,b € F with a # b and M, = M,. Therefore,

(an +b8) — (an + apB)
b—a

B = € Mb~
Hence, o, = (a, + b8) — b8 € My, so K = F(a,,8) = M. Thus, K is a
simple extension of F.

Conversely, suppose that K = F(a) for some o € F. Let M be a field
with F C M C K. Then K = M(«). Let p(z) = min(F,a) and g(z) =
min(M,a) € M[z] Then g divides p in M|[z]. Suppose that ¢(z) = ap +
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a1z +---+ 2", and set My = F(ag,...,a,—1) € M. Then q € My[z], so
min(Mp, &) divides g. Thus,

[K : M] = deg(q) > deg(min(Mo,a)) = [K : My
=[K:M]-[M: M)

This implies that [M : M) = 1, so M = M. Therefore, M is determined
by ¢q. However, there are only finitely many monic divisors of p in K{z], so
there are only finitely many such M. O

Corollary 5.7 If K/F is finite and separable, then K = F(a) for some
a€K.

Proof. If K is finite and separable over F, then K = F(ay,...,qa,) for
some a;. Let N be the splitting field over F of {min(F,«;):1 <i < n}.
Then N/F is Galois by Theorem 4.9 since each min(F,q;) is separable
over F. Moreover, K C N. By the fundamental theorem, the intermediate
fields of N/F are in 1-1 correspondence with the subgroups of the finite
group Gal(N/F). Any finite group has only finitely many subgroups, so
N/F has only finitely many intermediate fields. In particular, K/F has
only finitely many intermediate fields. Therefore, K = F'(a) for some a by
the primitive element theorem. 0

Corollary 5.8 If K/F is finite and F has characteristic 0, then K = F(a)
for some a.

Proof. This corollary follows immediately from the preceding corollary
since any finite extension of a field of characteristic 0 is separable. m]

The normal closure of a field extension

Let K be an algebraic extension of F. The normal closure of K/F is the
splitting field over F of the set {min(F,a) : a € K} of minimal polynomials
of elements of K. As we will show below, the normal closure N of the
extension K/F is a minimal normal extension of ¥’ which contains K. This
is reasonable since, for each a € K, the polynomial min(F, a) splits over any
normal extension of F' containing K. Therefore, the set {min(F,a) : a € K}
is a minimal set of polynomials which must split in any extension of K that
is normal over F. We formalize this in the next result, which gives the basic
properties of normal closure.

Proposition 5.9 Let K be an algebraic extension of F, and let N be the
normal closure of K/F.

1. The field N is a normal extension of F containing K. Moreover, if
M is a normal extension of F with K C M C N, then M = N.
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2. If K = F(ai,...,an), then N is the splitting field of the polynomials
min(F,ay),...,min(F,a,) over F.

3. If K/F 1is a finite extension, then so is N/F.
4. If K/F is separable, then N/F is Galois.

Proof. Since N is a splitting field over F of a set of polynomials, NV is
normal over F'. It is clear that N contains K. Suppose that M is a normal
extension of F' with K C M C N. If a € K, then a € M, so by normality
min(F, a) splits over M. However, if X is the set of roots of the polynomials
{min(F,a) : a € K}, we have N = F(X). But since these polynomials split
over M, all of the roots of these polynomials lie in M. Thus , X C M, and
so N = F(X) C M. Therefore, M = N.

For part 2, let L = F(X), where X C N is the set of roots of the
polynomials {min(F,a;) : 1 <4 < n}. Then L is a splitting field over F' of
this set; hence, K C L and L/F is normal. By part 1, L = N.

For the third part, suppose that [K : F| < co. Then K is a finitely gen-
erated extension of F’; say that K = F(ay,...,a,). Let p;(z) = min(F, a;).
By part 2, N is a splitting field of {min(F,a;): 1 < ¢ < n}, a finite set of
polynomials. Therefore, [N : F] < co.

Finally, if K/F is separable, then each polynomial min(F, a) is separable
over F. Therefore, N is the splitting field of the set {min(F,a): a € K} of
separable polynomials over F, so N is Galois over F. ]

The normal closure of an algebraic extension K/F is uniquely determined
by the conditions in the first part of the previous proposition, as we now
show.

Corollary 5.10 Let K be an algebraic extension of F', and let N be the
normal closure of K/F. If N’ is any normal extension of F containing K,
then there is an F-homomorphism from N to N'. Consequently, if N’ does
not contain any proper subfield normal over F that contains K, then N
and N’ are F-isomorphic.

Proof. Suppose that N’ is normal over F' and contains K. Then min(F,a)
splits over N’ for each a € K. By the isomorphism extension theorem, the
identity map on F extends to a homomorphism o : N — N’. Then o(N) is
a splitting field of {min(F,a) : a € K} in N’, so o(N) is normal over F and
contains K. Therefore, if N’ does not contain any proper subfield normal
over F that contains K, then o(N) = N’, so N and N’ are F-isomorphic.

O

Example 5.11 Let F = Q and K = Q(+/2). If w3 = 1 and w # 1, then
Q(¥/2,w) is the splitting field of 3 — 2 over @, so it is normal over Q.
This field is clearly the smallest extension of K that is normal over Q, so
Q(¥/2,w) is the normal closure of Q(w)/Q.
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Example 5.12 If K is an extension of F, and if a € K has minimal
polynomial p(z) over F, then the normal closure of F(a)/F is the field
F(a,az,...,a,), where the a; are the roots of p(zx).

Suppose that K/F is a finite separable extension with normal closure
N. Let G = Gal(N/F) and H = Gal(N/K). So K = F(H). Suppose that
K is not Galois over F. Then H is not normal in G. The minimality of N
as a normal extension of F' containing K translates via the fundamental
theorem into the following group theoretic relation between G and H: The
largest normal subgroup of G contained in H is (id) for, if H' C H is
a normal subgroup of G, then L = F(H’) is an extension of K that is
normal over F. But, as L C N, minimality of N implies that L = N, so
H' = (id). Recall from group theory that if H is a subgroup of a group G,
then ﬂgec gHg™ ! is the largest normal subgroup of a group G contained
in a subgroup H. Therefore, in the context above, [, gH g~ ! = (id).

The fundamental theorem of algebra

The fundamental theorem of algebra states that every polynomial in C|z]
has a root in C. This was first proved by Gauss and is commonly proved
using the theory of analytic functions in a course in complex analysis. We
give here a proof using Galois theory, which combines the fundamental
theorem and the Sylow theorems of group theory. It is a nice application
of the interaction of group and field theory.

To prove the fundamental theorem of algebra, we do need to know one
result from analysis, namely the intermediate value theorem. Beyond this,
we can give a proof using group theory and Galois theory. We point out the
group theoretic fact we need: If G is a finite group whose order is a power
of a prime p, then any maximal subgroup of G has index p in G. This fact
can be found in Proposition 2.4 of Appendix C.

Lemma 5.13 Let f(z) € Rz].

1. If f(x) = z? — a for some a > 0, then f has a root in R. Therefore,
every nonnegative real number has a real square root.

2. If deg(f) is odd, then f has a root in R. Consequently, the only odd
degree extension of R is R itself.

Proof. Suppose that f(z) = 22—a with a > 0. Then f(0) < 0 and f(u) > 0
for u sufficiently large. Therefore, there is a ¢ € [0, u] with f(c) = 0 by the
intermediate value theorem. In other words, v/a = c € R.

For part 2, suppose that the leading coefficient of f is positive. Then

lim f(z) =c0 and lim f(z) = —oo.

By another use of the intermediate value theorem, there is a ¢ € R with
f(c) =0.1f L/Ris an odd degree extension, take a € L—R. Then R(a)/R is
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also of odd degree, so deg(min(R, a)) is odd. However, this polynomial has a
root in R by what we have just shown. Since this polynomial is irreducible,
this forces min(R, a) to be linear, so a € R. Therefore, L = R.

Lemma 5.14 FEvery complex number has a complex square root. Therefore,
there is no field extension N of C with [N : C] = 2.

Proof. To prove this, we use the polar coordinate representation of complex
numbers. Let a € C, and set a = re*® with > 0. Then /7 € R by Lemma
5.13, so b = \/re?®/2 € C. We have b? = r(e?/2)? = re? = a. If N is an
extension of C with [N : C] = 2, then there is an a € C with N = C(y/a).
But, the first part of the lemma shows that C(y/a) = C, so there are no
quadratic extensions of C. ]

Theorem 5.15 (Fundamental Theorem of Algebra) The field C is
algebraically closed.

Proof. Let L be a finite extension of C. Since char(R) = 0, the field L is
separable over R, and L is also a finite extension of R. Let N be the normal
closure of L/R. We will show that N = C, which will prove the theorem.
Let G = Gal(N/R). Then

|G| =[N:R]=[N:C]-[C:R]
=2[N:C]

is even. Let H be a 2-Sylow subgroup of G, and let E be the fixed field
of H. Then |G : H| = [E : R] is odd. Thus, by Lemma 5.13, we see that
E = F, so G = H is a 2-group. Therefore, Gal(N/C) is also a 2-group.
Let P be a maximal subgroup of Gal(N/C). By the theory of p-groups,
[Gal(N/C) : P] = 2. If T is the fixed field of M, then [T : C] = 2. This
is impossible by Lemma 5.14. This contradiction shows that |G| = 1, so
N =C. m]

Problems

1. A transitive subgroup of S, is a subgroup G such that for each 3,5 €
{1,...,n}, there is a ¢ € G with o(:) = j. If K is the splitting
field over F of a separable irreducible polynomial f(z) € F[x] of
degree n, show that |Gal(K/F)| is divisible by n and that Gal(K/F)
is isomorphic to a transitive subgroup of S,. Conclude that [K : F)
divides n!.

2. Write down all the transitive subgroups of S; and Sj.

3. Determine all the transitive subgroups G of S5 for which |G| is a
multiple of 5. For each transitive subgroup, find a field F' and an irre-
ducible polynomial of degree 5 over F' such that if K is the splitting
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field of f over F, then Gal(K/F) is isomorphic to the given subgroup.
(Hint: This will require use of semidirect products.)

In the following problems, let K be the splitting field of f(z) over F.
Determine Gal(K/F') and find all the intermediate subfields of K/F.

(a) F=Qand f(z)=2*-T1.
(b) F=Fsand f(z)=z*-"7.
(c) F=Q and f(z) =5 - 2.
(d) F=F, and f(z) =28 + 1.
(e) F=Q and f(z) =28 - L.

. Let K be a Galois extension of F' with [K : F] = n. If p is a prime

divisor of n, show that there is a subfield L of K with [K : L} = p.

Let N be a Galois extension of F with Gal(N/F) = A4. Show that
there is no intermediate field of N/F with [N : F] = 2.

Give examples of field extensions K/F with

(a) K/F normal but not Galois,
(b) K/F separable but not Galois.

. Let K/F be Galois with G = Gal(K/F), and let L be an intermediate

field. Let N C K be the normal closure of L/F. If H = Gal(K/L),
show that Gal(K/N) = ,cqoHo™".

Let K be a Galois extension of F and let a € K. Let n = [K : F],
r = [F(a) : F), and H = Gal(K/F(a)). Let 71,...,7 be left coset
representatives of H in G. Show that min(F,a) = []'_,(z — 7(a)).
Conclude that

II (@-o(a)=min(F e/

oc€Gal(K/F)

Let K be a Galois extension of F, and let a € K. Let L, : K - K
be the F-linear transformation defined by L,(b) = ab. Show that the
characteristic polynomial of L, is equal to [ ], cgai(x/r)(z—0(a)) and
the minimal polynomial of L, is min(F,a).

Let K be a finite Galois extension of F’ with Galois group G. Let L be
an intermediate extension, and let H be the corresponding subgroup
of G. If N(H) is the normalizer of H in G, let Ly be the fixed field
of N(H). Show that L/Ly is Galois and that if M is any subfield of
L containing F for which L/M is Galois, then M contains Lyg.
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12. Let F be a field of characteristic not 2, and let K be a Galois extension
with [K : F] = 4. Prove that if Gal(K/F) & Z/2Z x Z/2Z, then
K = F(y/a,/b) for some a,b € F.

13. If K is the splitting field of z* — 2 over Q, find Gal(K/Q) and find
all intermediate subfields. To what group is Gal(K/Q) abstractly iso-
morphic?

14. If K is the splitting field of 5 — 11 over Q, find Gal(K/Q) and find
all intermediate subfields.

15. Let K be a finite normal extension of F' such that there are no proper
intermediate extensions of K/F. Show that [K : F] is prime. Give a
counterexample if K is not normal over F'.

16. Let K be a Galois extension of Q. View K as a subfield of C. If o
is complex conjugation, show that o(K) = K, so o|x € Gal(K/Q).
Show that F(o|x) = KNR, and conclude that [K : KNR] < 2. Give
examples to show that both [K : KNR] =1 and [K : KNR] =2 can
occur.

17. Prove the normal basis theorem: If K is a finite Galois extension of
F, then there is an a € K such that {o(a) : 0 € Gal(K/F)} is a basis
for K as an F-vector space.

18. Let Qg be the quaternion group {£1, +i, +j, £k}, where multiplica-
tion is determined by the relations i2 = j?2 = —1 and ij = k = —ji.
Show that Qg is not isomorphic to a subgroup of S4. Conclude that
Qs is not the Galois group of the splitting field of a degree 4 polyno-
mial over a field.

19. (a) Let K C N both be Galois extensions of a field F'. Show that
the map ¢ : Gal(N/F) — Gal(K/F) given by (o) = 0|k
is a surjective group homomorphism. Therefore, Gal(K/F) =
{o|x : 0 € Gal(N/F)}. Show that ker(y) = Gal(N/K).

(b) Let K and L be Galois extensions of F'. Show that the restric-
tion of function map defined in (a) induces an injective group
homomorphism Gal(KL/F) — Gal(K/F) @ Gal(L/F). Show
that this map is surjective if and only if KN L = F.

20. Let k be a field of characteristic p > 0, let K = k(z,y) be the rational
function field in two variables over k, and let F = k(zP, y?).

(a) Prove that [K : F] = p%.
(b) Prove that K? C F.

(c) Prove that there is no a € K with K = F(«).
(d) Exhibit an infinite number of intermediate fields of K/F.
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21. This problem gives an alternative proof of the primitive element the-
orem for infinite fields.

(a) Let V be a finite dimensional F-vector space, where F' is an
infinite field. Show that V is not the union of finitely many
proper subspaces.

(b) Let K/F be a finite extension of finite fields. Show that K is not
the union of the proper intermediate fields of K/F. Conclude
that if {K;} is the set of proper intermediate fields and a €
K ~ |JK;, then K = F(a).

22. Let K = Q(X), where X = {,/p: p is prime}. Show that K is Galois
over Q. If o € Gal(K/Q), let Y, = {/p: 0(\/D) = —/P}. Prove the

following statements.

(a) fY, =Y,, theno =1.
(b) Y C X, then there is a 0 € Gal(K/Q) with Y, =Y.

(c) If P(X) is the power set of X, show that |Gal(K/Q)| = |P(X)|
and that |X| = [K : Q], and conclude that |Gal(K/Q)| > [K :
Q.

(Hint: A Zorn’s lemma argument may help in (b). You may want to
verify that if Y € X and \/p ¢ Y, then [Q(Y)(,/p) : Q(Y)] = 2. The
inequality |P(X)| > | X| is proved in Example 2.2 of Appendix B.)

23. Suppose that K is an extension of F with [K : F| = 2. If char(F) # 2,
show that K/F is Galois.

24. Let F C L C K be fields such that L/F is purely inseparable. Let
a € K be separable over F. Prove that min(F,a) = min(L,a). Use
this to prove the following statement: Suppose that FF C L C K
are fields such that L/F is purely inseparable, K/L is separable, and
[K : F] < co. Let S be the separable closure of F in K. Then K = SL
and [K : L] =[S : F).

25. This problem outlines a proof that the separable degree [K : F|s of
a finite extension K/F is equal to the number of F-homomorphisms
from K to an algebraic closure of F.

(a) Suppose that K = F(a), and let f(z) = min(F,a). If N is an
algebraic closure of F and b € N is a root of f, show that there
is an F-homomorphism K — N that sends a to b.

(b) If K = F(a) as above, show that all F-homomorphisms from K
to N are obtained in the manner of the previous step. Conclude
that [K : F; is equal to the number of such F-homomorphisms.
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(c) Let K/F be a finite extension, and let S be the separable closure
of Fin K. Show that any F-homomorphism from S to N extends
uniquely to K. Use the previous step to conclude that [S : F] =
[K : F); is the number of F-homomorphisms from K to N.

Let K/F be a normal extension and let L/F be an algebraic exten-
sion. If either K/F or L/F is separable, show that [KL : L] = [K :
K N L]. Give an example to show that this can be false without the
separability hypothesis.

Let F be a field. Show that the rational function field F(z) is not
algebraically closed.

Let F be a finite extension of Q. Show that F' is not algebraically
closed.
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Some Galois Extensions

Now that we have developed the machinery of Galois theory, we apply it
in this chapter to study special classes of field extensions. Sections 9 and
11 are good examples of how we can use group theoretic information to
obtain results in field theory. Section 10 has a somewhat different flavor
than the other sections. In it, we look into the classical proof of the Hilbert
Theorem 90, a result originally used to help describe cyclic extensions,
and from that proof we are led to the study of cohomology, a key tool in
algebraic topology, algebraic geometry, and the theory of division rings.

6 Finite Fields

In this section, we study finite fields and, more generally, finite extensions
of finite fields.

Let F be a finite field, and say char(F) = p. We can view F as an
extension field of IF,. Since F' is finite, F' is a finite dimensional F,-vector
space. If [F' : Fp] = n, then F and F, are isomorphic as FF,-vector spaces,
so |F| = p™. We will first obtain some field theoretic information about
F' by investigating the group structure of the multiplicative group F*. For
the next lemma, recall that if G is an Abelian group, then the ezponent
exp(G) of G is the least common multiple of elements in G. By a group
theory exercise, there is an element of G whose order is exp(G). From this
fact, it follows that G is cyclic if and only if |G| = exp(G). These facts are
proven in Proposition 1.4 of Appendix C.
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Lemma 6.1 If K is a field and G is a finite subgroup of K*, then G is
cyclic.

Proof. Let n = |G| and m = exp(G). Then m divides n by Lagrange’s
theorem. If g € G, then g™ = 1, so each element of G is a root of the
polynomial 2™ — 1. This polynomial has at most m roots in the field K.
However, £™—1 has at least the elements of G as roots, so n < m. Therefore,
exp(G) = |G|, so G is cyclic. O

Corollary 6.2 If F is a finite field, then F* is cyclic.

Example 6.3 Let F' = F,. A generator for F™* is often called a primitive
root modulo p. For example, 2 is a primitive root modulo 5. Moreover, 2
is not a primitive root modulo 7, while 3 is a primitive root modulo 7. In
general, it is not easy to find a primitive root modulo p, and there is no
simple way to find a primitive root in terms of p.

In Section 5, the primitive element theorem was stated for arbitrary
base fields but was proved only for infinite fields. If K/F is an extension of
finite fields, then there are finitely many intermediate fields. Therefore, the
hypotheses of the primitive element theorem hold for K/F. The following
corollary finishes the proof of the primitive element theorem.

Corollary 6.4 If K/F is an extension of finite fields, then K is a simple
extension of F.

Proof. By the previous corollary, the group K™ is cyclic. Let a be a gen-
erator of the cyclic group K*. Every nonzero element of K is a power of a,
so K = F(a). Therefore, K is a simple extension of F'. ]

The following theorem exploits group theoretic properties of finite groups
to give the main structure theorem of finite fields.

Theorem 6.5 Let F' be a finite field with char(F) = p, and set |F| = p™.
Then F is the splitting field of the separable polynomial zP" — x over Fp.
Thus, F/F, is Galois. Furthermore, if o is defined on F by o(a) = a®, then
o generates the Galots group Gal(F'/Fp), so this Galois group is cyclic.

Proof. Let |F| = p™, so |F*| = p™ — 1. By Lagrange’s theorem, if a € F*,
then ¢?"~1 = 1. Multiplying by a gives a?" = a. This equation also holds
for a = 0. Therefore, the elements of F are roots of the polynomial zP" — .
However, this polynomial has at most p™ roots, so the elements of F' are
precisely the roots of zP" — z. This proves that F is the splitting field over
F, of zP" — z, and so F is normal over F »- Moreover, the derivative test
shows that 2" — z has no repeated roots, so z?" — z is separable over Fp.
Thus, F is Galois over Fp.
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Define 0 : F — F by o(a) = aP. An easy computation shows that o is
an Fp-homomorphism, and ¢ is surjective since F is finite. Hence, o is an
Fp-automorphism of F. The fixed field of o is{a € F : a? = a} D F,. Each
element in F (o) is a root of P —z, so there are at most p elements in F (o).
This proves that F, = F(c), so Gal(F/Fp) is the cyclic group generated by
o. a

The automorphism o defined above is called the Frobenius automorphism
of F.

Corollary 6.6 Any two finite fields of the same size are isomorphic.

Proof. The proof of Theorem 6.5 shows that any two fields of order p™
are splitting fields over F, of zP" — z, so the corollary follows from the
isomorphic extension theorem. m]

We can use Theorem 6.5 to describe any finite extension of finite fields,
not only extensions of IFp,.

Corollary 6.7 If K/F is an extension of finite fields, then K/F is Galois
with a cyclic Galois group. Moreover, if char(F) = p and |F| = p™, then
Gal(K/F) is generated by the automorphism T defined by 7(a) = a" .

Proof. Say [K : F,] = m. Then Gal(K/F,) is a cyclic group of order m
by Theorem 6.5, so the order of the Frobenius automorphism o of K is
m. The group Gal(K/F') is a subgroup of Gal(K/F,), so it is also cyclic.
If s = |Gal(K/F)| and m = ns, then a generator of Gal(K/F) is ¢™. By
induction, we see that the function o™ is given by o™(a) = a?". Also, since
s = [K : F], we have that n = [F' : F,], so |F| = p™. a

We have described finite fields as extensions of F, and have shown that
any finite extension of I, has p™ elements for some n. However, we have
not yet determined for which n there is a field with p™ elements. Using the
fundamental theorem along with the description of finite fields as splitting
fields in Theorem 6.5, we now show that for each n there is a unique up to
isomorphism field with p™ elements.

Theorem 6.8 Let N be an algebraic closure of Fy,. For any positive integer
n, there is a unique subfield of N of order p™. If K and L are subfields of
N of orders p™ and p™, respectively, then K C L if and only if m divides
n. When this occurs, L is Galois over K with Galois group generated by T,
where T(a) = aP".

Proof. Let n be a positive integer. The set of roots in N of the polynomial
zP" — z has p" elements and is a field. Thus, there is a subfield of N of
order p". Since any two fields of order p™ in N are splitting fields of zP" —z
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over F, by Theorem 6.5, any subfield of NV of order p™ consists exactly of
the roots of zP" — . Therefore, there is a unique subfield of N of order p™.

Let K and L be subfields of N, of orders p™ and p™, respectively. First,
suppose that K C L. Then

n=[L:Fp,=[L: K| [K:Fp
=ml[L : K],

so m divides n. Conversely, suppose that m divides n. Each element a of
K satisfies a?” = a. Since m divides n, each a also satisfies a?" = a, so
a € L. This proves that K C L. When this happens L is Galois over K by
Corollary 6.7. That corollary also shows that Gal(L/K) is generated by 7,
where 7 is defined by 7(a) = al¥!. m]

If F is a finite field and f(z) € F[z], then Theorems 6.5 and 6.8 can be
used to determine the splitting field over F' of the polynomial f.

Corollary 6.9 Let F be a finite field, and let f(x) be a monic irreducible
polynomial over F of degree n.

1. Ifa is a root of f in some extension field of F, then F(a) is a splitting
field for f over F. Consequently, if K is a splitting field for f over
F, then [K : F] =n.

2. If |[F| = q, then the set of roots of f is {a?" : 71 > 1}.

Proof. Let K be a splitting field of f over F. If a € K is a root of f(z),
then F'(a) is an n-dimensional extension of F inside K. By Theorem 6.5,
F(a) is a Galois extension of F; hence, f(z) = min(F,a) splits over F(a).
Therefore, F(a) is a splitting field of f over F, so K = F(a). This proves
the first statement. For the second, we note that Gal(K/F) = (o), where
o(c) = c? for any ¢ € K, by Theorem 6.8. Each root of f is then of the
form 0™ (a) = a? by the isomorphism extension theorem, which shows that
the set of roots of f is {a? :r >1}. ]

Example 6.10 Let F' = Fy and K = F(a), where « is a root of f(z) =
z3 412+ 1. This polynomial has no roots in F, as a quick calculation shows,
so it is irreducible over F and [K : F|] = 3. The field K is the splitting field
of f over F, and the roots of f are a, o2, and a*, by Corollary 6.9. Since
f(a) =0, we see that a® = a® +1, so a* = o® +a = o? + a + 1. Therefore,
in terms of the basis {1,a,a?} for K/F, the roots of f are a, a?, and
1 + a + o?. This shows explicitly that F(a) is the splitting field of f over
F.

Example 6.11 Let F = F; and f(z) = z* + z + 1. By the derivative test,
we see that f has no repeated roots. The polynomial f is irreducible over
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f, since f has no roots in F' and is not divisible by the unique irreducible
quadratic 22 + z + 1 in F[z]. If a is a root of f, then a* = a + 1; hence,
the roots of f are o, a + 1, o2, and o? + 1.

Example 6.12 Let f(zr) = z? + 1. If p is an odd prime, then we show
that f is reducible over F' =T, if and only if p = 1(mod 4). To prove this,
if a € F is a root of 22 + 1, then a2 = —1, so a has order 4 in F*. By
Lagrange’s theorem, 4 divides |F*| = p—1, so p = 1(mod 4). Conversely, if
p = 1(mod 4), then 4 divides p — 1, so there is an element a € F* of order
4, since F* is a cyclic group of order p — 1. Thus, a* = 1 and a? # 1. This
forces a? = —1, so a is a root of f.

If F is a finite field, then we have seen that every finite extension of F
is Galois over F. Hence, every extension of F' is separable over F. Every
algebraic extension of F' is then separable over F', so F' is perfect. To note
this more prominently, we record this as a corollary. We have already seen
this fact in Example 4.14.

Corollary 6.13 Fuvery finite field is perfect.

Given an integer n, Theorem 6.8 shows that there is a finite field with p™
elements. For a specific n, how do we go about finding this field? To con-
struct finite fields, we can use irreducible polynomials over F,,. Note that if
f(z) is an irreducible polynomial of degree n in Fy[z], then Fplz]/(f(z)) is
a field extension of degree n over F,; hence, it has p™ elements. Conversely,
if F' has p™ elements, and if F' = F,(«), then min(F,, ) is an irreducible
polynomial of degree n. Therefore, finding finite fields is equivalent to find-
ing irreducible polynomials in F,[z]. For instance, Zz[z]/(z%2 + z + 1) is a
field of 4 elements, and Zs[z]/(z* — 7) is a field of 5* = 625 elements. The
following proposition gives one way of searching for irreducible polynomials
over [Fp,.

Proposition 6.14 Let n be a positive integer. Then xP" — z factors over
F, into the product of all monic irreducible polynomials over I, of degree
a divisor of n.

Proof. Let F be a field of order p™. Then F is the splitting field of 2?" —z
over [F, by Theorem 6.5. Recall that F is exactly the set of roots of zP" —z.
Let a € F, and set m = [Fp(a) : Fp|, a divisor of [F' : Fp]. The polynomial
min(F,, a) divides z?" — z, since a is a root of zP" — z. Conversely, if f(z)
is a monic irreducible polynomial over F,, of degree m, where m divides n,
let K be the splitting field of f over F, inside some algebraic closure of
F.If ais aroot of f in K, then K = F,(a) by Corollary 6.9. Therefore,
[K : Fp] = m, so K C F by Theorem 6.8. Thus, a € F, so a is a root of
zP" —z. Since f is irreducible over Fp, we have f = min(F,, a), so f divides
zP" — z. Since z?" — z has no repeated roots, z?" — z factors into distinct
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irreducible factors over F,. We have shown that the irreducible factors of
zP" — x are exactly the irreducible polynomials of degree a divisor of n;
hence, the proposition is proven. ]

Example 6.15 The monic irrseducible polynomials of degree 5 over 5 can
be determined by factoring z2° — z, which we see factors as

x25~x=x(x+1)(x5+x3+l) (z° + 22 + 1)
x(z®+a*+2+z+1) (e +2'+2° +z+1)
x(z°+zt+2+2?+1) (P +2 +2P + 2+ 1).

This factorization produces the six monic irreducible polynomials of degree
5 over Fy. Note that we only need one of these polynomials in order to con-
struct a field with 25 elements. Similarly, the monic lrredumble polynomials
of degree 2, 3, or 6 over F, can be found by factoring 22  — z. For example,
2% + z + 1 is an irreducible factor of 84 — x, so Fa[z]/(z® + z + 1) is a field
with 64 elements. The fac<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>