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Foreword

It is a distinct pleasure to have the opportunity to introduce Professor
Malliavin’s book to the English-speaking mathematical world.

In recent years there has been a noticeable retreat from the level of ab-
straction at which graduate-level courses in analysis were previously taught
in the United States and elsewhere. In contrast to the practices used in the
1950s and 1960s, when great emphasis was placed on the most general
context for integration and operator theory, we have recently witnessed
an increased emphasis on detailed discussion of integration over Euclidean
space and related problems in probability theory, harmonic analysis, and
partial differential equations.

Professor Malliavin is uniquely qualified to introduce the student to anal-
ysis with the proper mix of abstract theories and concrete problems. His
mathematical career includes many notable contributions to harmonic anal-
ysis, complex analysis, and related problems in probability theory and par-
tial differential equations. Rather than developed as a thing-in-itself, the
abstract approach serves as a context into which special models can be
couched. For example, the general theory of integration is developed at an
abstract level, and only then specialized to discuss the Lebesgue measure
and integral on the real line. Another important area is the entire theory
of probability, where we prefer to have the abstract model in mind, with
no other specialization than total unit mass. Generally, we learn to work
at an abstract level so that we can specialize when appropriate.

A cursory examination of the contents reveals that this book covers most
of the topics that are familiar in the first graduate course on analysis. It also
treats topics that are not available elsewhere in textbook form. A notable
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example is Chapter V, which deals with Malliavin’s stochastic calculus of
variations developed in the context of Gaussian measure spaces. Originally
inspired by the desire to obtain a probabilistic proof of Hérmander’s theo-
rem on the smoothness of the solutions of second-order hypoelliptic differ-
ential equations, the subject has found a life of its own. This is partly due
to Malliavin and his followers’ development of a suitable notion of “differen-
tiable function” on a Gaussian measure space. The novice should be warned
that this notion of differentiability is not easily related to the more con-
ventional notion of differentiability in courses on manifolds. Here we have
a family of Sobolev spaces of “differentiable functions” over the measure
space, where the definition is global, in terms of the Sobolev norms. The
finite-dimensional Sobolev spaces are introduced through translation op-
erators, and immediately generalizes to the infinite-dimensional case. The
main theorem of the subject states that if a differentiable vector-valued
function has enough “variation”, then it induces a smooth measure on Eu-
clidean space.

Such relations illustrate the interplay between the “upstairs” and the
“downstairs” of analysis. We find the natural proof of a theorem in real
analysis (smoothness of a measure) by going up to the infinite-dimensional
Gaussian measure space where the measure is naturally defined. This in-
terplay of ideas can also be found in more traditional forms of finite-
dimensional real analysis, where we can better understand and prove for-
mulas and theorems on special functions on the real line by going up to the
higher-dimensional geometric problems from which they came by “projec-
tion”; Bessel and Legendre functions provide some elementary examples of
such phenomena.

The mathematical public owes an enormous debt of gratitude to Leslie
Kay, whose superlative efforts in editing and translating this text have been
accomplished with great speed and accuracy.

Mark Pinsky

Department of Mathematics
Northwestern University
Evanston, IL 60208, USA



Preface

We plan to survey various extensions of Lebesgue theory in contemporary
analysis: the abstract integral, Radon measures, Fourier analysis, Hilbert
spectral analysis, Sobolev spaces, pseudo-differential operators, probabil-
ity, martingales, the theory of differentiation, and stochastic calculus of
variations.

In order to give complete proofs within the limits of this book, we have
chosen an axiomatic method of exposition; the interest of the concepts in-
troduced will become clear only after the reader has encountered examples
later in the text. For instance, the first chapter deals with the abstract inte-
gral, but the reader does not see a nontrivial example of the abstract theory
until the Lebesgue integral is introduced in Chapter II. This axiomatic ap-
proach is now familiar in topology; it should not cause difficulties in the
theory of integration.

In addition, we have tried as much as possible to base each theory on the
results of the theories presented earlier. This structure permits an econ-
omy of means, furnishes interesting examples of applications of general
theorems, and above all illustrates the unity of the subject. For example,
the Radon-Nikodym theorem, which could have appeared at the end of
Chapter I, is treated at the end of Chapter IV as an example of the theory
of martingales; we then obtain the stronger result of convergence almost
everywhere. Similarly, conditional probabilities are treated using (i) the
theory of Radon measures and (ii) a general isomorphism theorem show-
ing that there exists only one model of a nonatomic separable measure
space, namely R equipped with Lebesgue measure. Furthermore, the spec-
tral theory of unitary operators on an abstract Hilbert space is derived from



viil Preface

Bochner’s theorem characterizing Fourier series of measures. The treatment
in Chapter V of Sobolev spaces over a probability space parallels that in
Chapter IIT of Sobolev spaces over R™.

In the detailed table of contents, the reader can see how the book is
organized. It is easy to read only selected parts of the book, depending on
the results one hopes to reach; at the beginning of the book, as a reader’s
guide, there is a diagram showing the interdependence of the different sec-
tions. There is also an index of terms at the end of the work. Certain parts
of the text, which can be skipped on a first reading, are printed in smaller
type.

Readers interested in probability theory can focus essentially on Chap-
ters I, IV, and V: those interested in Fourier analysis, essentially on Chap-
ters I and III. Chapter III can be read in different ways, depending on
whether one is interested in partial differential equations or in spectral
analysis.

The book includes a variety of exercises by Gérard Letac. Detailed solu-
tions can be found in Ezercises and Solutions Manual for Integration and
Probability by Gérard Letac, Springer-Verlag, 1995. The upcoming book
Stochastic Analysis by Paul Malliavin, Grundlehren der Mathematischen
Wissenschaften. volume 313, Springer-Verlag, 1995, is meant for second-
year graduate students who are planning to continue their studies in prob-
ability theory.

March 1995 P. M.

V.1

Interdependence
of the sections
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Prologue

We recall briefly the definition and properties of the usual integral of con-
tinuous functions on R.

The concepts involved are elementary and well known. However, since
this integral will be used to construct the Lebesgue integral, we sketch a
few facts for convenience.

Given the segment [0,1] C R, a partition of [0,1] is a finite subset 7 of
[0, 1] containing 0 and 1. The partition 7 is said to be finer than = if 7’ O 7.
Let 0 =t; <ty <...<t—; <t.=1(r=card(m)) be an enumeration
of the points of 7. With every function f continuous on [0, 1], we associate
the sum

r—1
se(f) =D (tesr — te) f(th).
k=1
This is a positive linear functional:

Se(f1+ f2) = s2(f1) + 52(f2) and s.(f) >0 if f>0.

The number §(7) = sup(tp+1 — tx) is called the diameter of the partition
7. We have the following statement.
Given a continuous function f, for every e > 0 there exists n such that

|S7r(f) - 37r’(f)| <€

for any partitions ™ and ©’ satisfying 6(7) < n and 6(7') < 7.
Indeed, since f is continuous on the compact set [0, 1], it is uniformly
continuous. Hence we can find 7 such that | f(z) — f(z')| < § if [z —2'| <n.
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Let 7" = 7Un’. Then, writing 7} = ' U[tg41 —tx], where ¢y, .., ,t, denote
the points of the subdivision of ,

r—1
"=ur and s (f) = Z S (f)-
k=1
Moreover,
[snp (f) = (tkgr — tr) f(tr)] < 2(n+1 — 1),
whence
sz (f) = sz (f)] < %Z(“‘H ) = g
and

() = s < 4 & =
5o (f) = sw(fl < 5+5 =

Choosing a sequence 7 of partitions such that 6(7;) — 0, we find that
sz (f) is a Cauchy sequence whose limit is independent of the choice 7.
Set

/l f(z)der =lim sy, (f).
0

Then the integral is a positive linear functional. In particular,

(e da < / 1£(2)| dz < max|f(z)|.

The change of variable = a 4 t(b — a) reduces the integral over [a,b] to
the preceding case:

b

f(z)dz = ﬁ /01 fla+t(b—a))dt.

Ja

Differentiation. Let f be continuous. Set
F(z) = f(t)dt.
Jo

Then F is differentiable and F’(z) = f(z). Evaluating integrals of contin-
uous functions is reduced to finding primitives.

Improper integrals. Integrals will be evaluated either on all of R or on [0, 1].
The functions we integrate on R will be continuous; those we integrate on
[0,1] will be continuous on (0,1). The elementary procedure consists of
passing to the limit:

1—1
/ = lim / / lim .
n—-+oo n—-+0oo
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We have the concepts of convergence and of absolute convergence. The
Lebesgue theory will be developed in the second setting: every Lebesgue
integrable function will have Lebesgue-integrable absolute value. For this
reason, we consider here only absolutely convergent improper integrals. The
following results can easily be proved by calculating primitives.

If f is continuous and positive on R and if f(x) ~ |z|~* as
then the integral of f on R exists if and only if a > 1.

If f is continuous and positive on (0,1] and if f(z) ~ |z|™? as = — 0,
then fol f exists if and only if 3 < 1.

These results generalize to R™ by passing to polar coordinates. We find
in the first case that o > n, and in the second that 8 < n. (In the second
case, we integrate a function continuous on R" and zero outside a compact
set.)

x| — 400,
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Measurable Spaces
and Integrable Functions

Introduction

In this chapter, we follow an axiomatic method of exposition. The interest
of the concepts introduced will not appear until Chapter II. We introduce
the notion of a measure space, a space endowed with a family of measurable
subsets satisfying the axioms of a o-algebra. This approach parallels that
of the theory of topological spaces, where a topological space is a space
endowed with a family of open subsets. As we will see in Chapter IV, a
peculiarity of the concept of a g-algebra is that it is adapted to the propo-
sitional calculus (Boolean algebra). Since negation is an operation of this
calculus, this leads to the axiom that the complement of a measurable set is
measurable. The fact that o-algebras are closed under taking complements
is an essential difference between the family of open sets of a topological
space and the family of measurable sets of a measure space. In order to
be able to take limits of sequences, we impose another axiom: A countable
unton of measurable sets is measurable.

Having defined the concept of a measurable space, we introduce a class of
morphisms adapted to it: the measurable mappings. We introduce a natural
measurable structure on a topological space: the Borel structure. Continu-
ous mappings are thus special cases of measurable mappings. A remarkable
result is that the limit of a pointwise convergent sequence of measurable
mappings is itself measurable. Thus all the functions appearing in prac-
tice in mathematical analysis are measurable functions. A measure space
is a measurable space which is given a “mass distribution”. The concept
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of negligible sets, or sets of measure zero, is introduced; two measurable
mappings are considered equivalent if they differ on a negligible set.

We introduce the concept of convergence in measure, which gives a com-
plete metric space structure to the space M of equivalence classes of mea-
surable mappings from a measure space to a complete metric space. When
we consider functions on a measure space, i.e. mappings with values in R,
we introduce simple functions, those that assume finitely many values. The
integral, defined trivially on certain simple functions, extends to an appro-
priate completion. which defines the space L! of integrable functions. The
theorems on passage to the limit under the integral sign are then an easy
consequence of the fact that L' is a complete space. The chapter concludes
with Fubini’s theorem and the duality between L? spaces.

1 o-algebras

Let X be an abstract set. A o-algebra on X is a family A of subsets of X
satisfying the following three axioms:

1.0.1 The set X belongs to A.
1.0.2 If A € A, its complement A° € A.

1.0.3 Every countable union of sets in A belongs to A; i.e., if A, € A
Vn € N, then (U, .NAn) € A.

A Boolean algebra on X is a family B of subsets of X satisfying 1.0.1,
1.0.2, and

1.0.4 Every finite union of sets in the algebra B is in B.
Every o-algebra is thus a Boolean algebra. By using Axiom 1.0.2 and
passing to the complement, we find that 1.0.3 implies

1.0.5 If A, € A, then (N, N An) € A.

An analogous statement is obtained for Boolean algebras by restricting
to finite intersections. In what follows, we will not pursue the parallels
between Boolean algebras and o-algebras, but the reader should note that
most theorems involving passage to the limit are false for Boolean algebras.

1.1 Sub-o-algebras. Intersection of o-algebras

Given two o-algebras A and A’ on the abstract set X, we say that A’ is
a sub-c-algebra of A if A € A’ implies A € A. More formally, let P(X)
denote the set of subsets of X. We may view a o-algebra A on X as a
subset of P(X). The “order relation” between c-algebras corresponds to
the relation of inclusion between the subsets of P(X).

1.1.1 More generally, if G is an arbitrary family of subsets of X and A is a
o-algebra on X, we say that 4 D G if A € G implies A € A.
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1.1.2 Intersection of o-algebras

Definition. Let {A,,a € I}, be a family of o-algebras on X. We denote
by A" = NaerAq the family of subsets of X defined by A € A’ if and only
if Ae A, forall « € I. A’ is a o-algebra called the intersection of the A,.

We verify only 1.0.3, the other axioms being even more obvious. Let
A, € A, set

Z = UnGNAn’

and fix ap. Since A,, € A,, and A,, satisfies 1.0.3, it follows that Z € A,,.
As this is true for all ag, we conclude that Z € A’.

1.2 o-algebra generated by a family of sets

1.2.1 Theorem. Let G be a family of subsets of X. Then there exists on
X a smallest o-algebra containing G.

PRrROOF. Consider the o-algebras B on X such that
(P) B>gG.

Let I denote the family of o-algebras B satisfying (P), and set Ag =
NpBeB- Then A is a o-algebra by 1.1.2, and it is the smallest o-algebra
of the family I. O

1.2.2 Definition. A is called the o-algebra generated by G. We say that
G is a system of generators of Ay.

1.2.3 Fundamental example: Borel algebras

Let X be a topological space and let O x be the family of open subsets of
X. The o-algebra generated by Ox is called a Borel algebra, and written
Bx.

An element of Bx is called a Borel set. Open sets are Borel sets, as are
closed sets (as complements of open sets). The family of closed sets could
equally well be taken as a system of generators of By.

1.3 Limit of a monotone sequence of sets

1.3.1 Definition. Let A, be an increasing sequence of subsets of X. We
call the union of the A,, the limit of the sequence A,,, and we set

A =lim T A, = JAn, where A, C Ani1.
n
Similarly, given a decreasing sequence B,, of subsets of X, we call the
intersection of the B,, its limit:

Boo =lim | B, =(|Bn, where B, D Byyi.
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A sequence of subsets of X is monotone if it is either increasing or de-
creasing.

1.3.2 A monotone class is a family M of subsets of X such that if {4,} is
a monotone sequence for which A,, € M for each n, then its limit is in M.

1.3.3 Proposition. A o-algebra is a monotone class.

PROOF. Let {A,} be an increasing sequence of sets in the o-algebra A.
Then by 1.0.3

lim 1 A, = JAn € 4.
Similarly, 1.0.5 proves the statement for decreasing sequences.

1.3.4 An arbitrary intersection of monotone classes is a monotone class.
Thus, given a family Z of subsets of X, there exists a smallest monotone
class M containing Z. My is called the monotone class generated by Z.

1.4 Theorem. Let BB, be a Boolean algebra of subsets of X, M the mono-
tone class generated by By, and B the o-algebra generated by By. Then
B =M.

PROOF. By 1.3.3, B is a monotone class. Since B contains By, it contains the
smallest monotone class containing Bj; thus B D M.
Conversely, for all A € P(X), let

1.4.1 ®(A)={BeP(X): AUB,A—B,B—A¢c M}

Then the assertions B € ®(A) and A € ®(B) are equivalent.
Fixing A, we show that ®(A) is a monotone class. Indeed, if B, is an increasing
sequence of elements of ®(A), then

B, — A is an increasing sequence of elements of M,

AU B, is an increasing sequence of elements of M,
A — B, is a decreasing sequence of elements of M,

and their limits are elements of M. Furthermore,
lim] (AUB,)=AUlim T By,

whence lim 1 B,, € ®(A).
Let Ag € By; then By € ®(Ayp) for all By € By. Hence ®(Ayp) is a monotone
class containing By. Thus ®(A¢) D M, or B € ®(Ap) for any Ao € By, B € M.
Conversely, Ag € ®(B); i.e., ®(B) D By for any fixed B € M.
Since ®(B) is a monotone class, it follows that ®(B) D M.
We have proved that

1.42 B—- B, B — B, BUB' € M whenever B, B € M.
Taking B’ = X shows that B¢ € M if B € M, and thus
1.4.3 M is a Boolean algebra.

The following lemma, 1.4.4, implies that M is a o-algebra. Since M D By, M
contains the o-algebra generated by Bp; hence B C M. O
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1.4.4 Lemma. Let Z be a Boolean algebra which is closed under increasing
limits. (That is, if Z, is an increasing sequence of elements of Z, then
lim 1 Z,, € Z.) Then Z is a o-algebra.

PROOF. Let A, € Z and set Z, = Ui<p<nAp; then
UnAy =UnZy, =lim 1 Z, € Z,

and Axiom 1.0.3 is satisfied.

1.5 Product o-algebras

Definition. Let X, X» be abstract sets equipped with o-algebras A;, As,
and let the Cartesian product X; x X3 be denoted by X.

1.5.1 A rectangle R is a subset of X of the form
R=A, x Ay with A, €A, (i=1,2).

The set of all rectangles is denoted by R.

1.5.2 The o-algebra generated by R is called the product o-algebra and
denoted by A; ® As.

1.5.3 The union of a finite number of disjoint rectangles is called an ele-
mentary set. The family of elementary sets is denoted by £.

1.5.4 Proposition. The elementary sets form a Boolean algebra.

PROOF. Note first that the union of a finite number of disjoint elementary sets
is an elementary set.
Let R = A; x A2, R’ = A} x A} be two rectangles; then

(R)® = (AT x X2) N (X1 x A3).

Hence
R’—R=R1UR2UR3,

where R1 = (A§ N A]) x (A2 N A5), R = (A1 N A}) x (A5 N AY), and R; =
(A5 N AL) x (AN Ay). Thus

(%) R' — R is an elementary set.

Let £ = RUR4 be an elementary set that is the union of two disjoint rectangles.
(We restrict to two in order to simplify notation.)

R —E=(R' —R)~Rs = (RiUR2UR3) — Ry = (R1 — Ra)U(R2— R4)U(R3 — Ry).
Applying (i), we obtain

(47) R'— E is an elementary set if E€&, R €R.
If E' € £ then E' = UR; (R; disjoint) and E' — E = U(R; — E), whence

(i23) (E'—E)e& forany E,E €E&.
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Taking E' = X; x X2, we obtain 1.0.2. Furthermore,
(A1 x A2) N (A] x AS) = (A1 N A}) x (A2 N AY).
Hence the intersection of two rectangles is a rectangle and, more generally,
(iv) ENE €& if EE €€

Indeed, if £ = UR; and E' = UR;, then ENE" = U, 4(R; N Ry). (Note that
the sets R; N Ry are disjoint.)
Finally.

(v) EUE =(E—-E)YU(E' - E)U(ENE').

The three quantities in parentheses on the right-hand side are elementary sets
by (ii) and (iv); since they are disjoint, EU E’ € £ and 1.0.4 is satisfied.

1.5.5 Corollary. The o-algebra Ay © Ay is the monotone class generated
by the elementary sets.

PRroOOF. 1.5.4 and 1.4.

2 Measurable Spaces

2.1 Inverse image of a o-algebra
Let X, X’ be abstract sets and let f be a mapping from X to X’. Let G’
be a family of subsets of X’. We write
UG ={AeP(X): A= f1A) with A €d'}.

2.1.1 Proposition. Let A" be a o-algebra on X'; then f~1(A') is a o-
algebra on X . It is called the inverse image of A" under f and denoted by
A= f1A).
PROOF. The inverse image of X’ is X. In addition,

Usf (AL FHUAL) (Axiom 1.0.3 is satisfied);

[f_l(A’)]( fHA™) (Axiom 1.0.2 is satisfied).
2.1.2 Taking the inverse image preserves inclusion between o-algebras:
YA D fYH(AL) whenever A] D AL
2.1.3 EXAMPLE. Let Y be a subset of the set X', let i be the canonical
injection of ¥ into X', and let A’ be a g-algebra on X’. Then

i~1(A") {BeP(Y):i }(B)e A’}
{BeP(Y):3A € A such that A’ NY = B}.

I

Il

In this special case, i ~!(A’) is called the trace o-algebra of the g-algebra
A’ on the subset Y.

Since Y is a subset of X', every subset of Y can be identified with a
subset of X’. It is easy to verify that

(i) A A e Yed.
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2.1.4 Transitivity of inverse images

Suppose that X, X', and X" are three abstract sets, f and h are mappings
such that X v X/ % X" and G” is a family of subsets of X”'. Then

FTHRTHG)) = (ho )H(G").

2.2 Closure under inverse images of the generated o-algebra

2.2.1 Theorem. Suppose that X and X' are abstract sets, f is a mapping
from X to X', G’ is a family of subsets of X', and A’ is the o-algebra
generated by G'. Then f~1(A') is the o-algebra generated by f~(G').

PROOF. Let B denote the o-algebra generated by f~1(G’).
BcC f~Y(A') since f71G) C f7UA).
To prove that B D f~1(A), we let

B' ={B' cX':fYB)eB)
and prove that B’ is a o-algebra.

(i) f7%X’) = X € B; hence X' € B'.
(ii) Let B € B'; then f~Y(X’ — B") = X — f~Y(B’) € B since B is
a o-algebra .
(iii) Let B, € B'; then f~1(U,B),) = U,f~'(B.) € B.

B’ O G'; hence B’ contains A’, the o-algebra generated by G'. Let A’ € A'.
Then A’ € B’ since B’ D A". Hence f~1(A’) € B. O

2.3 Measurable spaces and measurable mappings

2.3.1 Definition. The pair (X, .A) consisting of a set X together with a
o-algebra A of subsets of X is called a measurable space.

2.3.2 Definition. Given two measurable spaces (X, .A) and (X', A"), a map-
ping f of X to X' is called measurable if f~1(A") C A.

M((X, A); (X', A")) will denote the set of measurable mappings of (X, A)
into (X', A").

2.3.3 Proposition. The composition of measurable mappings is measur-
able.

PROOF. Let f; € M((X,A); (X', A")), fo € M((X', A'); (X", A")). Then
by 2.1.4 f = f> 0 fy satisfies (fao f1)~'(A") = f; 1 (f; 1(A") € /i 1(A) C

A, and hence f5 o f; is measurable. O
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2.3.4 Proposition (Measurability criterion). Let (X, A) and (X', A')
be measurable spaces, let A’ be the o-algebra generated by G, and let G’ C
A’. Then the following are equivalent:

(i) f € M((X,A): (X" A))
(i) f~1(G") C A
PROOF. Let A; be the o-algebra generated by f~1(G’). Then (ii) is equiv-

alent to A; C A. Furthermore, A; = f~1(A") by Theorem 2.2.1; hence (ii)
is equivalent to (i). O

2.3.5 Measurable mappings into a product

Let (X, A), (Y1,B71), and (Y, B2) be measurable spaces. Let Y7 x Y5 be
given the product o-algebra B; ® Ba, defined in 1.5.2, and let 7; (i = 1,2)
be the natural projection of Y; x Y5 onto Y;.

Lemma. m; € M((Y] x Y3,B; ® Bs); (Y1,B1)).

PROOF. We must consider 7T1_1(Bl). where B, € B;. But 7T1_1(Bl) = B xY5
is a rectangle, and hence an element of B; ® By. O

Proposition (Measurability criterion for a mapping into a prod-

uct). Let f be a mapping of X into Yy x Yo. Then f is measurable if and
only if its components f; = w;o f (i=1,2) are measurable.

PROOF. Suppose that f is measurable. Then, by the preceding lemma,
m o f is a composition of measurable mappings and hence measurable.
Conversely, suppose that f; and f, are measurable and let R = By x B;
be a rectangle. Then f~Y(R) = f'(B1) N f; '(Bz). Each f7'(B;) is in
A, hence so is their intersection, and the measurability criterion 2.3.4 then
shows that f is measurable. O

2.4 Borel algebras. Measurability and continuity.
Operations on measurable functions

2.4.1 Separability and measurability

Separability of topological spaces

Let Y be a Hausdorff space.

(i) Y satisfies the first separability aziom if there exists a subset D of Y which is
countable and dense in Y (closure of D =Y).

(ii) Y satisfies the second separability aziom if there exists a countable family of
open subsets H; such that every open set in Y may be written as a union of the
H; that it contains. The family H; is called a basis of open sets for Y.

(iii)) EXAMPLE. Let Y = R and let Q be the set of rational numbers. Setting
Hgy, 4o = (q1,q2), we obtain a countable family of intervals. Then every interval
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(z1,x2) can be written as a union of the H; that it contains. The same holds for
any open set.

(iv) Proposition. Let Y be a metric space satisfying the first separability aziom.
Then it satisfies the second.

PROOF. Let {y:} be a dense sequence in Y. We denote by d the distance on Y’
and set H;m = {y € Y : d(y,4:) < m™'}, where m € N. For each open set O in
Y, let O’ be the union of the H;,, contained in O. Then O’ is an open subset of
O. Let z € O. Then there exists mg such that the ball with center z and radius
mg ' is contained in O. Let j be such that d(y;,z) < (2mo)~'. Then z € H; 2m,,
and hence O C O'.

(v) The space R" satisfies the first separability axiom and hence the second.

(vi) The second separability axiom implies the first. It suffices to choose a
point y in each H; to obtain a dense sequence.

Because of (vi) and (iv), we refer to a metric space which has a dense
sequence as a separable metric space.

(vii) Let Y,Y’ be two separable metric spaces. Then their product Y is
separable. Set y/, = (y;,y;); then the {y7, } form a countable dense subset
of Y”.

(viii) Proposition (Measurability criterion). Suppose that (X, A) is a
measurable space, Y is a topological space satisfying the second separability
aziom, and H; is a basis of open sets of Y. Then a mapping f: X — Y 1is
measurable if and only if

f~Y(H;)€ A, i€eN.

PROOF. This follows immediately from the measurability criterion 2.3.4. It
must be shown that, for every open set O, f~}(0) € A. Let O = U,H;
then f~1(0) =U,f~1(H;,) € A. O

s

s

REMARK. (viii) provides an explicit criterion for the measurability of a
function.

2.4.2 Product of Borel algebras

Proposition. Consider two separable metric spaces X, and Xo and their
product Y = X1 x Xo. Let Y be equipped with the product topology. Denote
by B1, Bz, and By the associated Borel algebras. Then By = B, ® Bs.

PROOF. Y is separable by 2.4.1. The family of open sets of the product
topology is generated by the countable unions of open rectangles: Ry =
O1 x Oy, where O; € Ox,. Hence Ry € By ® Bo; that is, Oy C B; ® By. It
follows that By C B; ® Bs.

Let m; be the projection of ¥ onto X;. Then m € M((Y, By); (X1,B1))
since 77 ' (Ox,) C By.
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It follows from 2.3.5 and the fact that m; o j (j = 1,2) is measurable
that the identity mapping 7 : (Y, By) — (Y, B; ® Bs) is measurable. Thus
j_l(Bl @'82) CBy,or By®By C By. O

2.4.3 Measurability and continuity

Let X and X’ be topological spaces. Equipping them with their Borel
algebras Bx and Bx/, we obtain measure spaces (X, Bx) and (X', Bx/).

Proposition. Every continuous mapping f from X to X' is a measurable
mapping from (X,Bx) to (X', Bx).

PRrROOF. We use the measurability criterion 2.3.4. It must be shown that
f~1(Ox') C Bx. But since f is continuous, the inverse image of an open set
is open, whence f~1(Ox/) C Ox. Since Ox C By, the conclusion follows.
O

2.4.4 Algebraic operations on measurable functions

Consider the field of real numbers R with its Borel algebra Br. Given
a measurable space (X, A), we denote by L£°(X, A) the set of measurable
mappings from (X, A) to (R, Br). Elements of £°(X, A) are called measur-
able functions. When X is a topological space with its Borel algebra Bx,
elements of £%(X, Byx) are often called Borel functions.

Proposition. The absolute value of a measurable function f is measurable.
The sum and product of two measurable functions are measurable. The
multiplicative inverse of a measurable function which is everywhere nonzero
1s measurable.

PROOF. Let u be the mapping from R to R defined by the absolute value:
u(¢) = |¢|. Then u is continuous, hence measurable, and 2.3.3 implies that
|fl = uo f is measurable.

Let ® be the continuous mapping of R? — R defined by ®(¢1,¢(2) =
¢1 + 2. Similarly, let ¥(¢q,C2) = (1¢o.

Let fi and f; be measurable functions on X, and let F/(z) = (f1(z), f2(x)).
Then F : X — R? and, by 2.3.5.

F e M((X.A); (R* Br @ Br)).

By 2.4.2, B @ Br = Bgez; hence FF € M((X, A),(R? Bg2)). Since ® is
continuous, ® € M((R?, Bg:); (R, Br)). Thus, by 2.3.3,

doF e M((X,A);(R,Br)) = L*(X, A).

But (® o F)(z) = fi(z) + fa2(z).

Similarly, ¥ o F € £°((X, A)) and (¥ o F)(z) = fi(x) fa(x).

We denote R — {0} by R’. Let 1 be the continuous mapping of R" — R’
defined by 7(¢) = ¢ and let f € L°(X, A), f(z) #0 forallz € X. If O is
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an open set in R, then O’ = ON R’ is an open set in R'. Set g(z) = ﬁ
Then ¢=1(0) = g7 1(0") = f~Y(n~(0")). Since n~'(0’) is an open set
in R" and R’ is open in R, 71(0’) is open in R. Since f is measurable,

ftn7(0) e A O

2.5 Pointwise convergence of measurable mappings

In this section, (X,.A) denotes a measurable space, Y a metric space, and
By the Borel algebra of Y. We say that a sequence of mappings f,, : X — Y
converges pointwise to fo if lim f,(z) = fo(x) for every z € X.

2.5.1 Theorem. Let f, be a sequence of measurable mappings which con-
verge pointwise to fo. Then fy is measurable.

REMARK. It is well known that the pointwise limit of a sequence of contin-
uous functions is not necessarily continuous. This theorem shows the great
stability of the property of measurability.

Proor. Let f, € M((X,.A);(Y,B)). Let d denote the distance in Y and
let O be an open set in Y. For every k > 0, let

Ok={$EOZd($,OC)>%}.

Then Oy, is an increasing sequence of open sets in O and O = UeNOk-

Moreover, denoting by Oy the closure of Oy, we have Oy C Ok11-
Since d(fo(z), fm(z)) — 0, it follows that

fo(z) € Or = fy(x) € Oy if g is large enough, say ¢ > my.

Set HF = Ng>mofy ' (Ok). Since f, is measurable, each f7H(Ok) € A,
whence Hf, € A. Let G* = UmoHE, ; then GF € A.

We have thus shown that fo(z) € Oy = x € G¥*! or, taking the union
over k, fo(z) € O = z € J,.N G, which may be written as

©) fH(0) c W, where W = U, NG € A

We now prove the reverse inclusion. Let z; € G”. Then there exists m;
such that r; € H, , or r; € fq‘l(Or) if ¢ > my. Thus lim f,(z1) € O, C
O,4+1 C O and therefore

(id) fl(0)>w.

From (i) and (ii) it follows that f;'(O) = W, or W € A, whence f, is
measurable. O
For emphasis, we restate (i) and (ii) in the following form.
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2.5.2 Fundamental lemma. Let {f,} be a sequence of mappings from X
to the metric space Y that converges pointwise to fo. Then for every open
set O inY,

oY= [N #7110 . where OT:{er:d(w,O“)>%}.

rm | g>m

2.6 Supremum of a sequence of measurable functions

For convenience of notation, we introduce in this section the set R of real
numbers completed by adjoining the two elements 400 and —oo.
Addition and multiplication in R are defined in the elementary way,
except for the “indefinite forms” +o0o — —oo and 0 - co.
R is given the obvious order relation, with +oo the largest and —oo the
smallest element. A distance is defined on R by setting

d(z,7') = |Arctanx — Arctanz’|.

Every subset of R has a supremum, or least upper bound. The empty
set is assigned the supremum —ooc.

2.6.1 Proposition. Let { f,} be a sequence in M((X, A); (R, Bg)) and let
@ = sup fn. Then p € M((X, A); (R, Bg)).

PROOF. Since {400} is a closed subset of R, f;!({+oc}) € A. Set G =
Unf7 ({+0oc}). Then G € A and p(z) = +oo if z € G.

Let X’ = G°, equip X’ with the trace A’ of the o-algebra A, and denote
by f/ the restriction of f,, to X. Then

e M(X',A); (R,Br)) = LO(X', A).

Moreover, by 2.4.4, sup(f], f3) € L2(X', A').

More generally, let the sequence {g,} be defined by recursion: g1 = f}
and g = sup(fy, gr—1) if & > 1.

An induction argument shows that gx4+; € LO(X ", A’). Moreover, g <

gr+1. Thus {gi} is an increasing sequence, hence convergent in R. Set
©1(x’) = limgg(2'), 2’ € X'. Then, by 2.5.1, ¢1 € M((X', A'); (R, Br)).
Furthermore, ¢(z) = ¢1(x) if x € X’ and ¢(z) = 4o if x ¢ X'.
Let K be a closed subset of R. Then
UK =T (K)  if 4o ¢ K
e UK)=p " (K)UG if +oc€K.

Since ¢ '(K) = X'N A with A € Aand X’ € A, it follows that o7 N(K) €
A O

2.6.2 Corollary. Let f, € M((X,A);(R,Bg)). Then (limsup f,) €
M((X, A (R. Bg)).
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PROOF. Let ¢, = sup,>,, fp- Then ¢, is measurable. The sequence {p,(z)}
is decreasing, hence convergent in R, and 2.5.1 gives the result. O

3 Measures and Measure Spaces

Definition. Let R = {¢ € R : ¢ > 0} U {+0c}. Given a measurable
space (X, A), a measure on (X,.A) is a mapping p : A — R satisfying the
following two axioms:

Countable additivity (c-additivity) axiom

3.0.1. Let Ay € A, k € I, be a finite or countable family of measurable sets
that are pairwise disjoint; that is, Ay N Ay =0 if k # 1. Then

(i) 7 (U Ak) = n(Ap).

kel kel

In particular,
(11) u(A1U Ag) = p(Ar) +p(A2) if AiNAy=0 (finite additivity).
o-finiteness axiom

There exist A, € A such that
3.0.2 X =UpA, and p(A4,) < +oo Vn.

The sequence {A,} is called an ezhaustion sequence for X. If u(X) <
+00, X is said to have finite measure (or finite total mass) and p itself is
called a finite measure. It is possible to develop part of the theory without
using 3.0.2, the o-finiteness axiom. However, the axiom will always be sat-
isfied for the applications we have in mind, and we take this point of view
for ease of exposition.

Definition. A measurable space (X, .A) equipped with a measure  defined
on A is called a measure space and is denoted by (X, A, ).

EXAMPLE. Let {z;} be a countable sequence of points of X and let {a;}
be a sequence of positive real numbers. For A = P(X) and A € A, set

n(A) = Z Q.

T, €EA

Then (X, A, i) is a measure space. If o; = 1, i € N, this measure y is
called the counting measure associated with the sequence {z;}; u(A) equals
the number of points of the sequence {z;} which lie in A.

This example is trivial and does not reveal the complexity of the theory.
In fact, we will not obtain nontrivial examples of measure spaces until
Chapter II.
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3.1  Convexity inequality
Proposition. Let (X, A, 1) be a measure space. Then

3.1.1 p is increasing; that is, if Ay and As € A and Ay C As, then pu(A;) <
1(Az2).

3.1.2 p is convex; that is, if By, ..., B, € A (not necessarily disjoint), then

i=1 i=1
PROOF. Let A; C A and let B = A{N Ay; then B € Aand Ay = A U B.
The finite additivity axiom gives
p(A2) = p(Ar) + p(B).
Since u(B) > 0, we conclude that pu(As) > p(A;).
Similarly, let the sequence Bj,. ... By, ... be defined recursively:

By =B; and éq = B, N (Uj<yB;) . ¢ > 1.

Then B, € A, U, B; = U, B;. and by finite additivity

m

I (U}"':lBj> =Y u(By).
j=1
Ej C Bj implies ,u(éj) < u(Bj), and the desired inequality follows. O

3.2  Measure of limits of monotone sequences

Theorem. Let Ay, Ay, ..., A, ... be an increasing sequence of measurable
sets. Let

+oc
lim 1 A; = | J 4.

i=1

Then
3.2.1 p(lim T A4;) = lim p(A4;).
Theorem. Let By, By. ..., B, ... be a decreasing sequence of measurable
sets. Let
+o0
lim | B; = (] B:.

1=1

3.2.2 Suppose that there exists ko such that p(By,) < +oc. Then

3.2.3 uw(lim | By) = lim pu(By).
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REMARK. The properties described by these two theorems are sometimes
called continuity on increasing sequences and continuity on decreasing se-
quences.

PRrOOF. Consider the measure space (X, A, u). For A, € A, set A, = A
and Ap41 = A5 N Apt ifn>1. B
Then An41 € A, the A, are disjoint, and A; = U,<;A,. Hence, by finite
additivity,
p(A) = u(Ay).

q<j

Moreover, U2, A; = U;‘;lﬁj and, by o-additivity,

[e ] +oc
pl U4 | =D uA).
j=1 j=1

Hence, for increasing sequences, 3.2.1 reduces to the simple observation
that the sum of a series of nonnegative terms is the limit of its partial
sums; that is, ;L:f n(A;) = lim, >0, pu(A;). This limit always exists,
whether it is finite or infinite.

In order to prove 3.2.3, we set A} = By, N Bf, k > ko. Then A} is
an increasing sequence. The relation By, = By U A}, By and A disjoint,
implies yu(Bk,) = p(Bk)+p(Ay). Hence u(Ay) < u(By,) and pu(lim 1 A}) =
lim p(A}) = 8 < p(Bg,)- We have

(lim | By)°U (lim 1 A}) = Bg,,

whence
p(lim | By) 4+ p(lim T Ay) = pu(B,),

or finally

pllim | By) = p(Br,) — lim u(Ay) = lim[u(By, ) — p(A})] = lim u(By).0

3.2.4 Application — Exhaustion principle

We now roughly sketch a principle that will often be used. Let (P) be a
property that is true for all finite measures. Let (X, A4, u) be a measure
space with an exhaustion sequence A,. Let X,, = A,,, equipped with the
trace o-algebra A,, of the o-algebra A4, and let u,, be the restriction of y
to A,. Then each p, is finite and therefore satisfies (P).

To conclude that p satisfies (P), it suffices to show that “the limits of
values of p,, appearing in (P) are finite”.
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3.2.5 REMARK. Let o be a mapping from A to R" satisfying the finite
additivity axiom 3.0.1(ii) and property 3.2.1 of continuity with respect to
increasing sequences. Then o satisfies 3.0.1(i), since

g(UFA,) = o(lim(U} 4,)) = lim (U 4,) = 1im Y o(4,) = > a(4,),
1 1

where the third equality follows from finite additivity.

3.3  Countable convexity inequality

Proposition. Let {A,,} be a sequence of (not necessarily disjoint) elements
of A. Then

+oo +oc
1 (U An) <Y ulAn).
n=1 n=1

PROOF. Set B, = Ui,
3.2.1 we have

+oc
H (U An) = hm,u'(Bq)'

n=1

A,. Then B, is an increasing sequence, and by

Furthermore, by the finite convexity property 3.1.2,

q +o0
p(By) < D p(An) <D p(An) B

n=1 n=1

4 Negligible Sets and Classes
of Measurable Mappings

The concept of measurable mappings is extremely easy to work with. In
particular, the theorem that a pointwise limit of measurable mappings is
measurable makes the operations of analysis very convenient. The drawback
of this convenience is that the space of measurable functions is enormous,
and therefore hardly usable. We will work on a quotient space.

4.1 Negligible sets

Definition. Let (X, A, p) be a measure space. A subset Z of X is called
negligible if there exists A € A such that u(A) =0and AD Z.

4.1.1 Proposition. A countable union of negligible sets is negligible.
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PRroOOF. This follows from countable convexity:

p (U Ai) < zi:u(Ai)

Since every term on the right-hand side is zero, the sum of the series is
zero. O

Definition. A property (P) is said to be true u-almost everywhere (denoted
p-a.e.) on the measure space (X, A, p) if

{z : (P) does not hold at x} is contained in a negligible set.

4.1.2 Let (P;) be a proposition implying the proposition (P). Then (P;)
true p-a.e. = (P) true p-a.e.

4.1.3 Theorem. Let (Py), ..., (P,), ... be a sequence of properties defined
on (X, A, ). Suppose that each of the properties (P;) is true p-a.e. Then
their conjunction is true p-a.e.

PROOF. Let A; be a negligible set that contains {z : (P;) does not hold at x}.
Then A, = U;A; is negligible. If ¢ A, then all the (P;) hold at z. O

4.2 Complete measure spaces

4.2.1 Definition. Given the measure space (X, A, 1), the o-algebra A is
called p-complete if every subset of a negligible set is measurable.

The measure space (X, A, i) is called complete when A is p-complete.

The space is complete if and only if every subset of a negligible set is
negligible.

On a complete measure space, a property P is true p-a.e. if the set
{z : (P) does not hold at z} is negligible.

4.2.2 Completion theorem. Let (X, A, ) be a measure space. Then
there exist a o-algebra A" O A and an extension p' of u to A’ such that
(X, A", 1) is complete and, for all A’ € A', there exist A1, Ay € A’ with
Ay C A" C Ay, (A2 — A1) = 0. This o-algebra A’ is unique and will be
called the completion of A.

PROOF. Define
A ={Z € P(X):3A1, Az € Asuch that A, C Z C As and pu(Az — A;) = 0}.

Clearly A’ > A. We show that A’ is a o-algebra. If Z € A’, then A C Z¢ C AS
and AT — A5 = A — A;, whence Z° € A’. Hence Axiom 1.0.2 is satisfied.

Let Z" € A'. Then there exist A7 and A} such that A? C Z" C A}. Set
Z* =UZ", AY® = UAT, and A = UAZ. Then

AP CZ¥ C AT and AP - Ay C | J5 - AD).
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The right-hand side, as a countable union of negligible sets, is negligible,
whence Z € A" and A’ is a o-algebra.

To extend u to A, we first note that pu(A4z) = p(A1) + p(A2 — A1) = p(Ar).
For Z € A', let 1/(Z) be defined by p'(Z) = pu(A1).

We now show that this is independent of the choice of Ay C Z C A;. Let
A1~C Z C As: A1 As € A, ,u(/iz - 111) = 0. lihen Ay D Z 2 A;, whence
w(Az) > (A1) = p(Az2). Similarly p(Az) > p(Az), whence u(A2) = p(Az2).
Moreover, if Z" is a sequence of disjoint sets, then so is AT; hence pu(UAY) =
>~ (A7), and we have shown that ' is countably additive.

Finally, i/ is complete: letting Z € A" with u’(Z) = 0, there exists A2 € A
satisfying Z C Az and pu(A2) = 0. Let Z, C Z. Then ) C Z; C Az, where 0, Ao
€ A and p(Az — @) = 0. Therefore Z; € A'. O

4.3 The space M, ((X,A); (X' A"))
(i) On M((X,A); (X', A")), let the equivalence relation be defined by

ff it f@) = (@) peae.
The equivalence class of f is denoted by f.

(ii) The transitivity of this relation follows from 4.1.3.

4.3.1 Definition. The quotient of M by this equivalence relation is denoted
by M,((X,A); (X', A")).

An element f € M, is a mapping f : X — X', defined “up to a set of
[-measure zero”.

4.3.2 Let € be a negligible set and let ¢ : X — & — X'.
Suppose that ¢ is a measurable mapping when X — £ is given the trace
o-algebra induced by A. Define f: X — X' by setting

f(x) = ¢(x) if reX-¢€
flz) =z it xef,

where z{, is an arbitrarily chosen element in X'.
Then f € M((X,A);(X’, A")), and ¢ determines the equivalence class
of fin M,((X,A):; (X", A")).

4.3.3 REMARK. When X’ = R and A = Bgr, the operations defined on
measurable functions (sum, product, sup) are compatible with the equiva-
lence relation. The quotient of £°(X, A) = M((X, A); (R,Br)) is denoted
by L)(X, A).

Thus the operations sum, product, and sup are defined on L?L(X JA).
Moreover, any element of Lg(X ,A) with a representative that is nonzero
almost everywhere has a well-defined inverse. Lg(X , A) is called the space

of equivalence classes of measurable functions.
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5 Convergence in M,((X, A); (Y, By))

Throughout this section (X, .A, ) denotes a measure space, Y a
separable metric space, and By the Borel algebra of Y.

5.1 Convergence almost everywhere

5.1.1 Definition. Let f, € M,((X,A); (Y,By)). {f,} is said to converge
almost everywhere if, when representatives f,, of f, are chosen, {f,(x)} is
convergent pu-a.e.

We first show that this definition is independent of the choice of rep-
resentatives. Let g, = f, p-a.e. Denote by (P,) and (F) the following
propositions:

(Pn) gn(z) = fo(2)
(F) lim fp,(z) exists.

Let (G) be the conjunction of (F) and the (P,). Then, by 4.1.3, (G)
is true p-a.e. Since (G) implies the convergence of the g,, 4.1.2 gives the
result.

5.1.2 Proposition. Let f,, € M, ((X, A); (Y, By)). Suppose that {f,} con-
verges almost everywhere. Then

lim f,(x)
defines an element g, € M, ((X,A); (Y, By)).

PROOF. Choose an arbitrary yo € Y, let (F) be defined as in 5.1.1, and let
K be a negligible set such that K D {z : (F) is not satisfied at x}. Let

gn(z) = fu(z) reK
gn(l') =Yo r € K°.

Then, by 4.3.2, g, € M((X, A),(Y,By)) and g,, = f,,.
Moreover, if z € K then {g,(z)} converges by 5.1.2; if x ¢ K, then
gn(x) = yo and hence the sequence converges.
Thus {gn(z)} converges for all x € X, and Theorem 2.5.1 shows that
go = lim g,, satisfies
9o € M((X, A); (Y, By)).

Hence _
lim f, = g0 € M,((X, A); (Y,By)).0

5.1.3 Lemma. Given f,g € M((X,A);(Y,By)), let q54 be defined by
qr.g(x) = d(f(z),9(z)). Then qs,4 is a measurable function and ¥n € R*
{z: qpq4(x) > n} is measurable.
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PROOF. Let Y2 = Y x Y and let ¢ be the mapping from Y2 into R*
defined by the distance: ¥(y1,y2) = d(y1,y2).

Let H : X — Y? be defined by z — (f(z),g(x)); then, by 2.3.5, H €
M((X, A); (Y2, Byz)).

Since 1 is continuous, ¥ o H € M((X, A); (R, Br))-

Moreover, since (1, 4+0oc) is an open set in R, q;;((n, +0)) € A. O

5.1.4 Egoroff’s theorem. Let (X, A, u) be a measure space and suppose
in addition that u(X) < +oo.

Then f, € M,((X,A),(Y,By)) converges p-a.e. to f, if and only if,
choosing representatives f,, fo of the classes ?n, 7(,,

Ve >0 3K, € A such that pu(K¢) <e

and fp(x) converges uniformly on K. to fo.

PROOF. Necessity is clear. Set ¢ = m™!, m a positive integer. Then f,
y g

converges to fo on UK,,-1 = G. Since u(G®) < u(K¢ -,) for every m,
n(G) = 0.
We now prove sufficiency. Set

Ay ={25 (o) o) > 1.

Then A, , € Aby 5.1.3.

Let By, = Un>mAn,q. Since By, 4 is a decreasing sequence for fixed g,
the hypothesis of convergence p-a.e. together with the limit theorem 3.2
imply that p(B,,q) — 0 for every fixed ¢ as m — +o0.

Fix an increasing sequence my, such that p(B,,, x-1) < € 27F. Set K, =

21 By k-1 Then

if j>mg, x€ K.O

x| =

WKS) < and d(fm, (@), folx)) <

5.2 Convergence in measure

Convergence almost everywhere allowed us to introduce a notion of conver-
gence of sequences in M,,. We now define a metric on the space M,, and
thus a new notion of convergence.

Let (X, A,u) be a measure space and let (Y,By) be a metric space
equipped with its Borel measure. We denote by d the distance on Y.

5.2.1 Construction of an extended distance on M, ((X,A), (Y, By))

Let f,g € M and let g5 4 be as defined in 5.1.3. With the pair of functions
(f,9) we associate the subset of (R")? defined by

K(f.9) = {(e.n) € (RT)? : u(qz 4 (n, +00)) < e}
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Set
e(f,g9) = inf(e +n) where (e,n) € K(f,g).

If K(f,g) is empty, we set e(f,g) = +oo.

5.2.2 An equivalent extended distance

Set
€(f,g) = 2inf(\) where (A A) € K(f,9).

Then we have

e(f,g) <e(f,g) <2e(f,9)

The first inequality is proved by writing €(f, g) = inf(A+X), with (A, \) €
K(f,g). Note, moreover, that if (¢,n) € K(f,g), then (e+a,n+8) € K(f,g)
for any a,3 > 0. If ¢ > 7, we take @ = 0 and 8 = € — n to obtain
e(f,g) < 2e<2e(f,g). The case € < 7 is treated in the same way.

5.2.3 Lemma. Let f,g,h € M((X, A); (Y,By)). Then

e(f,9) e(g, f),
e(f,9) 0 is equivalent to f(z) = g(x) p-a.e., and

((fih) < elf.g)+elgh).

PROOF. The first statement is clear, and we prove the second. If e(f,g) = 0,
then there exists a pair

(En7nn)€K(f7g)7 En_)Oa Wn_’O

We may assume that 7, is a decreasing sequence. Then ¢~ ((n,, +0o0)) is an
increasing sequence and, by the limit theorem 3.2.1,

p(lim 1 g5 o ((1n, +00))) = lim p(g;, o (7, +00))) < lime,, =0,
whence
p{z : d(f(z),g9(x)) > 0}) =0, ie. f(z)=g(z) p-ae.
Conversely, if f(z) = g(z) p-a.e., then
(a7 4((n,+00))) =0 ¥n > 0.

It remains to show that the triangle inequality holds. By the triangle inequality
onY,

g5, (%) < qf,9(T) + gg,n ().

Let (e1,m) € K(f,g) and (e2,7m2) € K(g,h). Then qsn(x) > n + n2 implies that
qf.g(x) > m or qg,n(x) > n2. Hence

a7 1 ((m + m2,400)) C g5 ((m, +00)) U g, 1 (12, +00))

and, by the convexity inequality,

(a7 4 ((m + M2, +00))) < €1 + €2.
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We have thus shown that (e1,7m1) € K(f,g) and (e2,7n2) € K(g,h) imply that
(€1 +e2,m +m2) € K(f, h).
Set
G = K(f.g) +K(gh)

= {leme®)?: e=ate, n=mn+mn,
with  (e1,m) € K(f,9), (e2,m2) € K(g,h)}.
Then G C K(f,h), and we obtain

e(f,h) = . i"r)lgk(f +n) < (Sigfec& +n) = inf(er + €2 +m1 + 12)

with
(e1,m) € K(f,g9) and (e2,m2) € K(g,h).
Thus
e(f,h) <inf(er +m) + inf(e2 + n2) = e(f, g) + e(g, h).O

5.2.4 Corollary. If f = f' and g = ¢’ p-a.e., then e(f,g) =e(f',¢g’).
PRrROOF. Since e(f,g) < e(f,f) +e(f'.g") + e(¢g’,g) and the hypotheses

imply that the first and third terms on the right-hand side are zero, it
follows that e(f,g) <e(f’,g’).

The opposite inequality is proved in the same way. O

REMARK. e(f, g) depends only on the equivalence classes fand 3.
Abusing notation, we set e(f,g) = e(f,g), where f and g are chosen in
the classes of f and 3.

5.2.5 Proposition. Suppose that (X, A, i) is a measure space and Y is
a metric space. Let M,((X,A); (Y, By)) be the space of equivalence classes
of measurable mappings from X to'Y and let e be as defined in 5.2.2. Set

< _ _elf.9)
WD =y

Then d,, 1s a distance on M,,.

PROOF. Lemma 5.2.3 shows that e satisfies the axioms for a distance, except
that e may assume the value +o0c. We use a construction common in topology;
let ;
k(t)y=——, teR”, k(+o0)=1
0 = ~ k(+o0)

It is elementary to verify that the function t — k(t) satisfies
k(t1 + tg) < k)(h) + k(tz), t1, t2 > 0.

It follows that d,, satisfies the triangle inequality and thus defines a distance
on M,. D

REMARK (i). If u(X) < C, then it is always true that (C,0) € K(f,g) and
hence that e(f,g) < C. In this case it is unnecessary to use d,; e may be
taken as a distance.
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REMARK (ii). A sequence f, € M, is a Cauchy sequence with respect to
the distance d,, if and only if e(fy,, fn) — 0 whenever m and n — +o0.

5.2.6 Definition. A sequence f, is said to converge to fy in measure if

e(fn» fO) — 0.

Proposition. The sequence f,, converges to fo in measure if and only if,
for every fized n > 0,

p({z 2 d(fn(@), fo(z)) >n}) =0 as n— +oo.

PROOF. (<) Let ng be such that

p({z 2 d(fal), fo()) > n}) <n if 1 =>no.

Then (n,n) C K(fn, fo), whence

e(fn,f(]) < 27] if n > ng.

(=) Let n; < n be given. Using 5.2.2, we can find n; such that €(fn, fo) <

2my if n > ny; e, (m,m) € K(fn, fo)- Hence

u({z 2 d(fn, fo) >n}) <m.

Since {z : d(fn, fo) > m} C {z : d(fn, fo) > n}, it follows a fortiori that

p({x : d(fn, fo) >n}) <m ifn>n,.0

5.2.7 Theorem (Comparison of convergence in measure and con-
vergence almost everywhere). Suppose that (X, A, ) is a complete
measure space, Y is a metric space, fo € M,((X,A),(Y,By)), and {fn} is
a sequence in M, ((X,A), (Y,By)).

(i) If dy(fn, fo) — O, then there exists a subsequence { fn, } of {fn}
such that fn, — fo p-a.e.

(i1) Suppose in addition that p is a finite measure. Then the p-a.e.
convergence of fr, to fo implies that d,(fn, fo) — 0.

The proof depends on the following important lemma:

5.2.8 Lemma (Borel-Cantelli). Let {A,} be a collection of elements of
A such that

> u(A,) < +oc.

Then p-almost every x lies in at most a finite number of Ay,.
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PROOF. Set B, = Up>mA,. Then pu(B,,) < > <, 1(A,) by the con-
vexity inequality; hence lim,, .~ u(B,) = 0. But since B,, is a decreasing
sequence, it follows from the continuity theorem (3.2.3) that u(N,B,) =
lim p(By) = 0. Note finally that z ¢ N, B, < x is in only finitely many
An- D

PROOF OF THE THEOREM (PART (i)). Let ax be the general term of a
convergent series (for example, ay = 27%). Fix an increasing sequence {n;}
such that e(f,, fo) < 2ax if m > ny. Set

A ={x: d(fn.(z), fo(z)) > ar}; then wu(Ax) < ax.

The Borel-Cantelli lemma implies that, u-almost everywhere, x belongs
to only finitely many Ax. Thus

for p-almost every x, there exists an integer s(x) such that d(fn, (z), fo(z))
<ay if k> s(x).

Hence f,, converges p-a.e. to fo. O

PART (ii). Fix € > 0. Set

Gy = {a+ supd(f @), folo) > <}

q>n

Then {G,} is a decreasing sequence and, by 5.1.3 and 2.6.1, G,, € A. Since
G, C X implies that u(G,,) < 400, we can use the limit theorem 3.2.3 to
conclude that p(, Gn) = lim u(G,,).

The hypothesis of convergence p-a.e. implies that the left-hand side is
zero. Let ngy be such that p(G,,) < €; then we have €(f,, fo) < 2¢if n > ng.
O

5.2.9 Theorem. Suppose that (X, A, ) is a measure space and Y is a
complete metric space. Then M, ((X, A); (Y,By)), equipped with the metric
d,, s a complete metric space.

PROOF. Our approach parallels that of the proof of 5.2.7(ii). Let {f,} be a
Cauchy sequence in M,,; using a result from topology, we need only show
that the sequence {f,} has a subsequence that is convergent with respect
to the distance d,. Let ai be the general term of a convergent numerical
sequence. Fix an increasing subsequence {ny} such that €(fy,, fm) < 2ax
for all m > n,. Set

Ap ={z 2 d(fn, (), friy, (%)) > ar}
then p(Ax) < ag, or

Ad(fri (@), frgr (@) S ar i 2 ¢ Ay
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Let € > 0 be given, fix ko such that > ,, ar < € and set Dy, =
UkkuAk. Then

() wDg) <cond Y dlfus(®)s frn (@) <€ i 7 ¢ Diy.
k>ko

Hence {yi} = {fn.(z)} is a Cauchy sequence if ¢ Dy,.

As this is true for every ko, it follows that {f,,(z)} converges if = ¢
Ng Dy; but u(ﬂka) =0, i.e. {fn,} converges p-a.e. to fo € M,,.

By inequality (i) and the triangle inequality,

(i7) d(fny(2), fr, () <€ if k,k'>ko andif z ¢ Dy,.
Fixing ny and letting k¥’ go to infinity, we obtain
d(fn,(z), fo(z)) <€ if k>koand x ¢ Dy,,

whence
g(fnk,fo) < 2¢ if k> k’o,

or
d#(fnk’fO)SQG if k‘>k0D

6 The Space of Integrable Functions

In this section, we exhibit a vector subspace of M,((X,A);(R,Br)) =
LY (X, A) which will be provided with a Banach space structure. The dis-
tance defined by this norm will be an upper bound for the distance d,,, and
will thus define a finer topology than that associated with d,,.

6.1 Simple measurable functions

Let (X, A) be a measurable space. A simple function is a measurable map-
ping from X to R such that cardinal (f(X)) < +oc. We denote by £2(X, A)
the set of simple functions.

Let (X, A,u) be a measure space. We denote by Ej(X,.A) the subset
of Lg(X , A) consisting of those equivalence classes of measurable functions
which contain a simple function.

If f,g € £%(X, A), then

card((f + 9)(X)) < card(f(X))card((g(X))
and

card((fg)(X)) < card(f(X))card(g(X)),

so that SO(X , A) is a vector space equipped with a product. The same holds
for Eﬂ(X, A). Moreover, if f € £°(X, A) so is |f|; hence the operation sup
is defined on £° and E).
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6.2 Finite o-algebras

Let Y be an abstract set and let B be a o-algebra on Y. B is called finite
if it has only a finite number of elements. Note that the finite Boolean
algebras coincide with the finite o-algebras: the countable union property
reduces to the finite union property in this case. Sets B € B such that

B'C B, B'€ B implies either B'=B or B =0

are called atoms.
Atoms are the minimal elements with respect to the inclusion relation in
a o-algebra. If B and B are distinct atoms, then BN B = (.

6.2.1 Proposition. Let B be a finite o-algebra. Then every nonempty set
in B is the union of the atoms it contains.

PROOF. Let A € B. Either A is an atom or 34, C A, A; # A, A, € B.
Repeat the argument, starting from A;: either A, is an atom, or 345 C 4,
Az # Ay, Az € B. This produces a sequence of subsets of Y, each strictly
contained in the preceding one. Since B is finite, the process must terminate
after finitely many steps, yielding an atom. We have thus shown that

every nonempty set A € B contains at least one atom of B.

Let Hy. ..., H, be the atoms of B contained in A and let A= UjH;. Then

Ac A Moreover, A°N A € B. If A°N A were nonempty, AN A would
contain an atom; but all the atoms contained in A are contained in A,

whence A = A. O

6.2.2 Corollary. Let B be a finite o-algebra of subsets of Y. Then there
exist a finite set S and a bijection between B and P(Sp), the set of all
subsets of Sg, such that the bijection respects the Boolean algebra structure
(the operations of union and intersection).

PROOF. We take for Sp the set of atoms of B. The bijection between B and
Sp is obtained by associating with each set B € B the atoms it contains.
O

6.2.3 Partitions

Definition. A partition of X is a finite family of pairwise disjoint subsets
of X, say Ki, ... . K,, whose union is X. The o-algebra B generated by
the K;, 1 < @ < n, consists of sets B of the form B = U,Kj..

The atoms of B are precisely the K;. Conversely, given a finite o-algebra B
on X, its atoms form a partition of X.
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6.2.4 Finite o-algebras and simple mappings

Let (X,.A) be a measurable space and let Y be a metric space. A function
fe M((X,A);(Y,By)) is called simple if card(f(X)) is finite.

Proposition. A mapping f is simple if and only if f~Y(By) is a finite
o-algebra .

PROOF. (=) Let z7, ... zj be an enumeration of the image f(X). Then
f~1({z}}) are the atoms of f~!(By).

(<) Let U be an atom of f~(By). Suppose that f assumes two distinct
values on U, say y; and ys. Let O; and Oz be disjoint open sets in Y,
y; € O; (l = 1,2).

Set Uﬂf_l(Oi) =U; (2 = 1,2). Then U; € f_l(By), Uy ?é (D, U, CU,
and U; # U, contradicting the hypothesis that U is an atom. O

6.3 Simple functions and indicator functions

Given a subset A of X, the indicator function of A, written 1,4, is the
function equal to 1 on A and zero on A% 14(z) =1lifzx € Aand 14(z) =0
otherwise.

The next proposition is easily verified.

6.3.1 Proposition. 14 13 = 1aq5 and 14 + 1¢ = 1 auc + 1anc. More-
over, A is measurable if and only if 14 € E°(X, A).

6.3.2 Proposition. Suppose that f assumes only finitely many values. Let
B be a finite o-algebra such that B > f~Y(Br). Then f can be written
uniquely in the form

f= ZailHi with «a; € R, where the H; range over the atoms of B.

PRrROOF. Let Hy, ..., H, be the atoms of B. Let £ € f(X); then the hypoth-
esis f71(¢) € B implies that f~1(£) can be written as a union of atoms.
Hence f has constant value, say «;, on H;. The two sides of the identity co-

incide on H; for every 7, and since U; H; = X the identity holds everywhere.
O

6.3.3 Corollary. The measurable indicator functions generate the vector
space of simple functions.

PROOF. Let f be a simple function and let B = f~1(Br) C A. Then B is
a finite o-algebra by 6.2.4. O

6.4 Approximation by simple functions

6.4.1 Proposition. Let f € L°(X, A) be bounded. Then there exists a
sequence of simple functions g, converging uniformly to f.



28 I. Measurable Spaces and Integrable Functions

PROOF. Consider the half-open interval
Ji = [kn_l, (k‘ + 1)TL—1).
We may write it as a countable union of closed sets in the following way:

ey e ()]

q

Hence Ji is a Borel subset of R, and 1, € LO(X, Br).
Let C and kg be such that |f(z)| < C and

+ko

U % >ol-c.+a.
k=—kq
Set
G, = Z kn_lle.
—ko<k<+ko

Since the Ji. N [~C, +C] form a partition of [~C, +C], we have t — n~! <
Gn(t) <tif |t < C.
Moreover, G,, takes only finitely many values and

Gn € M((R,Br), (R,Br)).
Set g, = G, o f; then g, € SO(X, A) and
lgn(i) - f(x)l < n~l.O

6.4.2 Corollary. Let f € L°(X, A). Then there exists a sequence {¢n} of
simple functions converging pointwise to f.

PROOF. Let A, = {z : [f(z)] < n}. Then f, = 14, f is a bounded
measurable function. Let ¢, be a simple function, constructed (as in 6.4.1)
so that

[fn(z) — pn(x)| <n~ ! for all z.

Then
lim ¢, (z) = f(x) Vze X.O

6.4.3 Corollary. Let (X, A, u) be a measure space and let (X, A" 1) be
its completion (in the sense of 4.2.3). Let f' € L%(X, A') be given. Then
there exists f € L°(X,.A) such that f(z) = f'(z) p-a.e.

In particular, L%(X, A) can be identified with Lz, (X, A).

PROOF. Consider first the indicator function of a set A’ € A’. There exist B,C e
A such that B C A’ C C and u(C — B) = 0. In particular, 15 = 14 g-ae.
Hence the corollary is true for A’-measurable simple functions.
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Now let f' € £°(X,A’) be given. By 6.4.2 there exist ¢}, € £°(X,.A’) such
that lim ¢}, (z) = f(z) Vzex. By the argument above, there exist p, € £°(X, A)
such that A, = {z: @n(z) # @) (x)} satisfies u’'(A},) = 0.

Let Aco = UnAL; note that Ao € A and u(Ax) = 0. Define pn(x) = @n(x) if
z ¢ As and pn(x) = 0 otherwise. Then ¢, € L°(X,.A) and {®.(z)} converges
for every . Moreover, setting lim ¢, (z) = f(z), we see by 2.5.1 that f € £°(X, A)
and f'(z) = f(z) p-a.e. O

6.5 Integrable simple functions

6.5.1 Definition. Simple functions f such that pu({z : f(z) # 0}) < +
are called integrable simple functions. We denote by £ }L(X , A) the integrable

simple functions and by E}L(X , A) the equivalence classes in £°(X, A) gen-
erated by the integrable simple functions.

SL(X . A) is a vector subspace of £°(X, A) which is closed under multi-
plication and absolute value.

6.5.2 Definition of the integral on EL(X, A)

Let f € 8L(X, A) be written in the unique form associated with the
o-algebra f~}(BRr), as in 6.3.2:

f= ZailHi (where «; # 0 Vi).

The integral of f is defined by the formula

I(f) = Z aip(H,).

If f1 € SL(X, A), f1 = f a.e., then it is easily verified that I(f) = I(f1). It
follows that the function I(-) is defined on E} (X, A).

6.5.3 Lemma (Evaluating the integral on certain finite s-algebras).
Let f be an integrable simple function and let B be a finite o-algebra such
that B D f~Y(Br). Denoting by K1, ..., K, the atoms of B, let

f= Zﬂqlxq (where 84 # 0 VYq)
q

be the decomposition of f given by 6.3.2. Then

I(f) =) Beu(K,).

PRrROOF. Let {H,} be the set of all atoms of f~!(Bgr). Since each H; is in
B, Hs can be written as a union of atoms of B: H, = | K,, where I

. . g€l
is a finite set.



30 I. Measurable Spaces and Integrable Functions

On each K, (¢ € I5). f = o thus ay = 3, if ¢ € I, and

Zo’qu( ) Z Z agp(Ky) Z:Ozs Z

s q€l. s qel.

But u(Hy) = quh (Ky). O

6.5.4 Theorem (Properties of the integral on simple functions).

(i) The integral defines a positive linear functional on El(X A).

(1) Setting q(f) = I(|f]) defines a norm on EL(X, A). Moreover
()] < alf)

fiii) n({x © |fi(@) = @) > n}) < La(fi = f2) (Chebyshev's
inequality).

(iv) e(fif2) < 24(f = f2)*.

(v) Every Cauchy sequence in the normed space E (X A) is a
Cauchy sequence with respect to the distance of confuergence mn
measure. Convergence in norm implies convergence in measure.

PROOF OF (i). Let v be a constant. Then I(vf) = ~I(f) for every f €
EL(X.A).
Now let f, fo € 5 (X, A). Let F be the mapping from X to R? defined

by setting F(r) = (f] x), fa(x)).
Then F'is a simple mapping and F~!(Bgz) = B is a finite sub-o-algebra
of A containing f,"'(Bgr) (i = 1, 2). The decomposition of f; on the o-alge-

B gives
fi= Z.‘j’SlKﬁ and  fo = Zéle_u

where the K, range over the atoms of B. Then f; + f» can be decomposed
in the o-algebra B as f1 + fo = >_(8s + 65)1k., whence

I(fi+f2) =Y (Bs+by) =D BB )+ 6su(KL) = I(f1)+1(f2).

If f(x) > 0 p-a.e., the only coefficients appearing in the sum are the non-
negative ;. Thus

(vi) f(x) > 0 p-a.e. implies I(f) > 0 (positivity of the integral).

PROOF OF (ii). By the positivity of the integral, the inequality |f + h| <
|/ + [h| implies that ¢(f + k) < q(f) + q(h).

That g(af) = |alq(f) is trivial. It remains to show that q(f) > 0 and
that ¢(f) = 0 implies f = 0 p-a.e.

The first inequality follows from the positivity of the integral. Moreover,
in a g-algebra adapted to f,

I(f) =) Jailu(K).
a; #0
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and this sum of nonnegative terms can be zero only if all the terms are
zero.
Finally, —|f| < f < |f| implies the same inequality for the integrals:

—I(f1) < I(f) < I(f]).

PROOF OF (iii). We use the same finite o-algebra B as in the proof of
(i) and the same decompositions of f; and fo on the atoms of B. Then

=2_(Bs—65)1k, and q(f1— f2) = >° s p(K), where v5 = |55 =6

p({z | fi(x) = fal@)| > n}) =Y u(K,), where J={s:7,>n},
seJ
and
- 2) > Z'YSIL(KS) > 7IZM(K )
sedJ seJ

It follows that

q(f1 = f2) > nu({z : [fi(x) = f2(z)| > n}).

PROOF OF (iv). Consider the subset K(fi, f2) of (R*)?, which was used
to define e(fi, f2):

K(f1s f2) = {(e:m) s | fr = fol > m) <€}

Then, by (iii),

(0" Yq(fr — f2),n) € K(f1. fo) forall n>0.

Hence
e(f1, f2) = inf(e +n) < inf(y + nta(fr = f2))-

Taking n = [q(f1 — f2)]? shows that e(f1, f2) < 2[g(fi — f2)]2. O

PROOF OF (v). It follows immediately from (iv) that a Cauchy sequence in
the normed space E}L is a Cauchy sequence with respect to the distance of
convergence in measure. Similarly, a sequence that converges to fy in norm
also converges in measure. O

6.6 Some spaces of bounded measurable functions

6.6.0 Definitions

L®(X, A)
LiH(X,A)

I

{f € £°(X,A)): IM < oo such that |f(z)] < M}.
{f e (X, A): p({z: f(z) #0)}) < oo}

Il
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6.6.1 Proposition. For every f € [:ff‘l(X, A), there exist ¢, € E}L(X, A)
such that

(i) {¢n} converges uniformly to f, and

(i) {x:on(x) # 0} = {z: f(z) #0)}.
Proor. Cf. Proposition 6.4.1. O

6.6.2 Proposition. If {y,} satisfies 6.6.1, then {I(¢,)} is a Cauchy
sequence.

PRrROOF. Let K = {z: f(x) #0)}. Then ¢, = p,1x and
I(\r")n - \r97n) = I((\Pn - Pm)lK) S /l(K) sup lipn - <pm| —0

by the uniform convergence of {¢,}. O

6.6.3 Definition. I(f) = lim I(pn) Vf € Cff"l. where {¢,,} is the sequence
of Proposition 6.6.1.

This is independent of the choice of sequence. Let {¢!, } be another sequence
satisfying 6.6.1(i). Set

Pm = Pmy2 if m is even, and

T
ol = Plm-1)/2 if m is odd.

Then ¢}, satisfies 6.6.1(i) and hence lim I () exists. But this implies that

lim I (p,) = im I(y),).

6.6.4 Proposition. Let f € E;c'l. Then the following statements are true:
(i) 1(f1 + f2) = I(A) + 1(fa).

(ii) fi >fz:>1(f1)>[(fz)
(iii) fir = fo ace. = I(f1) = I(fa).

6.7 The truncation operator

For a fixed positive integer n, let ¢, be the continuous function defined on
R by

on(t) =t if —n<t<-+n
$n (t) =n if t>n
Let Ay C Ay... C A, ... be an exhaustion of X, i.e. u(A4;) < +oo Vk
and X = UpAy.

We define T,, the truncation operator of order n on EU(X , A), as follows:

6.7.1 To(f) = fula,, where f,=p,0f.
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fn is bounded and (since @, is continuous) measurable. Furthermore,
since the set {z : (T}, f)(z) # 0} C A,, it has finite measure. Hence, by the
definition of Ezo’l,

6.7.2 T.(f) € L2(X,A) forany fe L(X,A).

6.8 Construction of L'
6.8.1 Definition of L} (X,.A)

(i) Definition. £1(X,A) = {f € L2(X, A) : limy oo I(|Tn(f)]) < +00}.

Proposition. If f; € EL and fo = f1 a.e., then fy € E}L(X, A). This
justifies the notation

. 1
L}L(X, A) = {equivalence classes of L,(X,A)}.

(1) | fllzr = lim I(|T(f)I)-
(iii) If f € LY and |f| < |h|, where h € L},, then f € L},.

(iv) If f € L(X, A), then f € L (X, A).

6.8.2 Proposition. If f € L}, then lim, o I(Tn(f)) exists.
PROOF. Let f* = sup(f,0) and let f~ = sup(—f,0). Although T, is not a
linear operator, it is elementary to verify that, for all z € X,
Ta(f)(x) = Tu(f*)(2) = Tu(f7)(2)
and
|Tn(f)$ = Tn(f+) + Tn(f_)a

whence

HTo(F1)) < I(Tu(HI) < I fllzr-

{I(T,(f*))} is thus an increasing sequence which is bounded above, and
therefore converges. O

Definition. For f € L}, the integral of f is defined by /f = lim I(T,,(f)).

6.8.3 Proposition. L}L s a vector space with the following properties:

(i) [(fr+f2)=[Fi+ [ fe
(ii) If f >0, then [ f > 0.

Set ||flizr = [ |f]. Then

(iii) | [ FI< |1l
(iv) n({z : f(z) > c}) < 2l Sl

(v) || fllLr is a norm.

PROOF. The statements clearly hold for [ZZ"’I and pass to L}L. O
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7 Theorems on Passage to the Limit
under the Integral Sign

7.1 Fatou-Beppo Levi theorem. Let {f,} be an increasing sequence of
integrable functions such that f fn £ C, where C is a constant independent
of n. Then

(i) lim f,, = fo exists and is finite p-a.e.,
(ii) fx € L. and
(7”) ”fn - foLl — 0.

PROOF. By setting J‘N',,, = fn — f1. we may assume that f,, > 0. Then ffn =
| fnll 1 Tq(f’x) = lilnan(fn): and qu(fn) < ffn < C. It follows that
1T, (fxc )l < C. whence p({z : (T;(fx))(z) > n}) < Cn~!. Furthermore,

{r: foc(x) >n} =1lim T {n: (T,(fx))(z) > n}.
Thus

3|lQ

p{z: fx(z) >n}) <

Hence f € L'.
We now show that || fo — fn]lzr — 0. Let u, = foo — fn. Then

and [T, (fx)ll1: < C.

Ty(uy) — Tyo(uy) > Ty(un) — Ty (un), where gy < q.

Let go be chosen so that [ Ty(u;) — [T, (u1) < §. Then
€
uall < 5 + 1T (un )l 21

Let v, = Tf]o(un)' Then 0 < v, < q0, Un.(x) =0ifzr e A;u:
a.e. Recall, from 6.7, that p(Ag,) < +oc.

By Egoroff’s theorem, there exists K such that u(K¢) < 4L and v,
q0

and v, — 0

converges uniformly to zero on K. Hence

lunll < iy 1(Ag,) sup(vy(z)) = 0 as n — oc0.0
2 4 reK

7.2 Lebesgue’s theorem on series. Let {u,}5%, be a sequence of el-

ements of L' such that Y |luy||pn < oo. Then 33w, converges abso-

lutely a.e. Let s,, = uy + ...+ u, and let s, = lim,, s,,. Then s~ € LI,

J s =1lim [ s,,. and ||$s — spllz1 — 0.

PROOF. Set f,(z) = > ,_; |uk(z)|. Then {f,} is an increasing sequence
and [ f, < 372 |Jug||Lr < +00. By the theorem of Fatou-Beppo Levi, this
implies that lim f,, = fo exists, foo € L', and fo. < 400 a.e. Thus so, € L?
since [sx| < f, and ||Soc — snllz1 < || foc — fullz:. which approaches zero
by Fatou-Beppo Levi.
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7.3 Proposition. The truncation operator is a contraction on L}L(X, A);
that 1s,

IT(f) = Tu(F)lles < If = Fllea,  Vf € LL(X,A).

PROOF. Assume first that f and f are simple functions. Let B be the

o-algebra generated by f~'(Br), f~'(BR), and {A,}, and let S denote
the atoms of B. Then

f:ZOzlek and fzzaklyk, where Hi € S.

Let I={H €S:HNA, #0}. Then

Tn(f) = E‘pn(ak)lHkv

_ kel
Tn(.f) = Z@n(ak)le
kel
ITa(f) = Tu(F)l = D lenlon) — enl@) 1,
kel

Using the elementary inequality |p,(t) — on(t)| < |t —t'|, Vi, t' € R,

1T () ~Tu (Dl < 3 n(Hi)law—ael < 3 puHi)law—au| = |17l

kel keS

Now let f and f € L'. We can find two sequences hy, i~Lq of simple
functions converging in the L' norm to f and f~ Passing if necessary to a
subsequence, we may suppose in addition that hg and h, converge a.e. Then
| Tn(hq) — Tn(ﬁq)HLl < ||hq — hgllL1; hence T, (hy) is a Cauchy sequence in
the L' norm. Let k be its limit. Then k = T,,(f) since h, converges a.e. to
f, and hence

“Tn(hq) - Tn(f)”Ll — 0.
It follows that

1T () =Ta(F)llr = lim [T (hg) =T (ho)ll s < limlhg=hyllzr = | f=FllL-

]

7.4 Integrability criteria

7.4.1 Theorem. Let f € L%(X, A). Then f € L\(X,A) if and only if
there exists a constant C such that, for all n, |T,(f)|: < C.

PROOF. (<) Applying 7.3 with f = 0 yields | Tn ()l 22 < |If]l1:.
(=) We prove this first in the special case that f > 0, where T, (f) < Th+1(f).
By the Fatou-Beppo Levi theorem, there exists g € L' such that im T, (f) = ¢
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a.e. Moreover, a direct calculation shows that lim 7, (f)(z) = f(z) for all z € X.
Hence f = g, and therefore f € L!.

For the general case, set f* = sup(f,0) and f~ = sup(—f,0). Then f*,f~ €
LY, f*,f~ are positive, and f = f+ — f~.

Since |Tw (f)] = Tu(fT) + Tn(f ™) (cf. the proof of Proposition 6.8.2),

ITu(F) s :/ITn(f)I:/Tn(f+)+/Tn(f‘)~

It follows that
ITn(f)lzr <C and  ||To(f7)|l < C.

Since f* and f~ are nonnegative, this implies that f* and f~ € L' and hence

that f € L'. O

7.4.2 Corollary. Let f € Lj(X,A). Then f € L}(X,A) if and only if

|fl € LY(X, A).

PROOF. The direct implication follows from 2.4.4 and 6.8.1(iii).
Conversely, assume that |f| € L}, (X, A). It is easy to see that |T,,(f)| =

T (1f]), whence | T,,(f)|lzr = [|Tn(|f])|lz:- The conclusion follows by ap-

plying Theorem 7.4.1. O

7.4.3 Corollary. Let f € LZ(X, A) and suppose that there exists u €
L, (X, A) such that |f| < u. Then f € L\(X, A).

PROOF. || T, (f)ller < [|Tn(w)|lor < [lullp:. O

7.5 Definition of the integral on a measurable set

Let (X. A, i) be a measure space and let Y be a fixed element of A. We
denote by A’ the trace on Y of the o-algebra A and by p’ the restriction
of y1 to the elements of A’, thus obtaining a measure space (Y, A, /). Let
j be the canonical injection of Y into X. The restriction operator defines
a mapping L), (X, A) — L, (Y, A') by f — foj.

Let f € L}, (X, A n). We denote by [, f the integral of f o j evaluated
on the measure space (Y, A’, 1), and call [,, f the integral of f on Y.

7.5.1 Proposition. Let f € L/ (X, A). Then fly € L (X, A) and [ f1y
= fy -
PROOF. Since [f1y| < |f], Corollary 7.4.3 implies that fly € L, (X, A).

The result follows by verifying that the integrals agree on simple functions
and passing to the limit.O

7.5.2 Proposition. Let f >0, f € L (X, A), and set p(A) = [, f VA€
A. Then p is a measure on X and p(X) < +oo0.

PROOF. Finite additivity follows from the fact that

14, +14, =14,04, if AiNAy=0.



7 Theorems on Passage to the Limit under the Integral Sign 37

The theorem of Fatou-Beppo Levy implies that p is continuous on in-
creasing sequences; this gives countable additivity. O

7.5.3 Proposition. Let A, be an increasing sequence of elements of A
such that UA, = X. Let f € L3(X,A). Suppose that [, |f| is bounded

above by a constant C independent of n. Then f € L}L(X, A).
PROOF. Since | T,,(f)ll: < [, |f], the result follows from 7.4.1. O

7.6 Lebesque’s dominated convergence theorem
Theorem. Let f, € L),(X,.A). Suppose that

(i) fn converges to h p-a.e.
and that

(i) g € L}L(X, A) such that |f,| < g Vn (domination hypothesis).
Then h € L',

(112) Ifn = hllLr — 0,

and

(iv) / fo— / h

PROOF. It follows from 5.1.2 that h € LY(X, A). By (ii) and 7.4.3, h € L'.
As in 7.5.2, we introduce the measure p associated with g:

p(4) = /A 6

Let {A,} be an exhaustion sequence for X: A,, C A, 41 and u(4,) < +oo.
Then p(A,) — p(X) < +oo. Fix m such that

€
plAm) < &
For this fixed m, we will apply Egoroff’s theorem (5.1.4) to A4,,. We can
find a sequence {K,} of sets in A such that K, C K441, fn — fo uniformly
on K, and u(K§N Ay) < g7
Set G, = K{NAy,. Then {G} is a decreasing sequence; setting H = NGy,
we have lim p(G,) = p(H). But p(H) = 0, whence g- 15 = 0 p-a.e; ie.,
g-1yg =0in L}, and p(H) = 0. Fix gy such that

p(G%) <

[N e}

The identity
1x =14 +1k, +1¢

a0
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/|j’,,_h|:/:\”+/,\- +/Gq |fn — Rl

Using the upper bound 2g for the function |f,, — k| in the first and last
integrals, we obtain

gives

a0

1 = Bl < 20(A5,) + 20(Goy) + / o — .
K<1

Each of the first two terms is bounded above by ¢/3. Furthermore,

/" fu—hl < ( sup Ifn(I)—h(J?)|> (K y).
Ky, 1€ Ky,

The last term tends to zero as n — +oc, proving (iii). Finally, (iv) follows
from the continuity of the integral with respect to the norm || - ||z1 (cf.
6.8.3(ii)). O

7.7 Fatou’s lemma. Let f, € LL(X.A). Suppose that

(i) || fullor < C. where C is a constant independent of n, and
(ii) f, converges p-a.e. to h.

Then

(i1i) h € L' and ||h|| < C.

PROOF. We prove this first with the additional hypothesis
(iv) u(X) < 4oc.

In this case, convergence a.e. implies by Egoroff’s theorem that, for every
integer ¢ > 0, there exists K, C X such that f, converges uniformly on
K, to h and p(K{) < % Thus

| - /A |

a

< (k) sup |fn(2) = h(z)].

J'EA,I

Since f,(z) converges uniformly to h(xz) on K, the last expression tends

to zero, whence
/ | < C.
JK

q

Set hy = |h| - 1k,. Then {h,} is an increasing sequence since K, C K 41,
and the Fatou-Beppo Levi theorem implies that

limh, = ho € L' and |hol, <C.
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If X does not have finite measure, take an exhaustion sequence for X:
X =UA,, A, CAr1, wplAr) < +oo.

For each fixed r, set f;, = fnla,; then ||f;|lz: < C. Fatou’s lemma for finite
measures can be applied to A,, giving

R =limf, =hla, € L' and |h"||;: <C.

The conclusion follows by applying the Fatou-Beppo Levi theorem to the in-
creasing sequence K, = |h|14,. O

7.8  Applications of the dominated convergence theorem
to integrals which depend on a parameter

7.8.1 Integral notation in which the measure i appears

Up to now, we have dealt only with functions defined on the measure
space (X, A, ). When we consider functions defined on different spaces,
the integral notation used earlier can lead to confusion, and we denote

/f by /Xf(:b)du(x) for all fEL}L(X,.A).

7.8.2 Integrals depending on a parameter

Let (X, A, 1) be a complete measure space. Consider a metric space Y and
let

u(y) = /X K(z. y)du(z)

be an integral depending on the parameter y. Suppose that

(i) for each fixed y the function k,(z) = k(r,y) satisfies k, €
L,(X,A).

Then u(y) is a well-defined function for every y.

7.8.3 Proposition (Continuity of an integral depending on a pa-
rameter). Assume condition (i) of 7.8.2. Let yo € Y and assume in addi-
tion that

(i1) for every sequence y, — yo,
k(z,yn) — k(z,y0) wp-a.e.; and
(i1i) there exist g € L}, (X, A) and € > 0 such that

|k(z,y)| < g(x) if d(y,yo) <e

Then the function u is continuous at yq.
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PROOF. Since u is defined on a metric space, in order to show continuity at
y it suffices to prove that u(y,) — u(yo) for every sequence {y, } converging
to yo. Set fn(z) = k(x,yn). Then the dominated convergence theorem (7.6)

can be applied and
/fll - /f()~D

7.8.4 Proposition (Differentiability of an integral depending on a
parameter). Let Y = (yo—€,yo+¢€) be an open interval in R, and suppose
that the following three conditions hold:
(i) 7.8.2(1) is satisfied Yy € Y.
ok

(i) For p-almost every z, O_y(”L yo) exists Vy € Y and is continuous

at yo as a function of y.
(iii) 3g € L,(X.A) such that, for p-almost every , |%(I,y)| <
g(z) for everyy €Y.

Then u is differentiable at yy and

(iv) lt/(y()):Ag_z(xsy0>dﬂ($)'

PROOF. In order to show that w is differentiable, we must show that there
exists [ such that
eh_l}(lf_l[u(yo +€) —u(yo)] = 1.

Since R is a metric space it suffices to show that there exists [ such that,
for every sequence {€,} tending to zero,
lime, u(yo + €n) — u(yo)] = L.

Making this detour lets us apply Lebesgue’s theorem, which was stated
for sequences of functions. Fixing the sequence {¢,}, set

e [u(yo + €n) — uyo)] = / fo(x)dp(z),
X

where
fn('T) = 6;1[’6(5'3,3/0 + 6) - k(w-yo)]~
Let K be the negligible set such that (ii) and (iii) are satisfied in K°.
Then, for z € K¢, f,, can be calculated using the mean value theorem:

fulz) = ?(I{yo +6,(z)), where |f(z)| <en if z€ K.
Yy

Thus it follows from (ii) that

Ok , .
falz) — %(%yo) if ze K"
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Furthermore, by (iii), | fn(z)| < g(z), z € K¢; thus

ful@)] < 9(c) ae. and umnu»=ggam»ae

Applying the dominated convergence theorem gives

ok
Anmwwe/@mwwmm

8 Product Measures
and the Fubini-Lebesgue Theorem

8.1 Definition of the product measure

Let (X3, A1, 1) and (X2, A2, u2) be measure spaces, let X = X; x X5 be
the product space, and let A = A; ® Az be the product o-algebra (see
1.5). The product measure is a measure u defined on the measurable space
(X, .A) and satisfying

8.2 Proposition (Uniqueness). There erxists at most one product mea-
sure.

PROOF. Let p and & be two measures satisfying 8.1(i). Then they coincide
on rectangles and hence, by finite additivity, on disjoint unions of rectan-
gles, that is on the Boolean algebra &£ of elementary sets. Let

M={ZecA:u(Z)=n(Z)}; then MDE.
Let {Z,,} be an increasing sequence of sets in M. Then, by 3.2.1,
w(UnZy) =lim u(Z,) = limp(Z,) = p(UZ,).

Thus M is closed under increasing limits.
If we further assume that

(@) p1(X1) < +oo and  pa(Xa) < +oo,

then
#(X) = p1(X1)p2(Xz) < +oo.
3.2.3 can be applied to prove that M is closed under decreasing limits.

Hence M is a monotone class that contains £, and it follows by 1.5.5 that
M=A; ® A,
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To complete the proof, it remains to lift the restriction (i). Let {Y,} and {Z,}
be exhaustions of X; and X», and let u, and g, denote the restrictions of x and
i to Y, and Z,. Then, by the result above,

Hn = l’zu‘

Furthermore, p, (Y, x Z,) < 400 and U, (Y, x Z,) = X. Thus Y,, x Z,, is an
exhaustion of X with respect to both y and p. By 3.2.1, for all A € A

w(A) = lim p, (AN (X, X Zy))

and
w(A) = lim g, (AN (X, X Z2)).

Since the two right-hand sides are equal, p(A) = p(A4). O

Sections

For fixed z;, let i, denote the injection of Xy into X defined by zy —
(z1,22). For Z € P(X), let Z,, = i;!(Z). Z,, is called the section of
Z over z;. Letting m; be the projection of X onto X;, we have Z,, =
mo(m; 1) N Z).

8.3 Fundamental lemma. Let A €¢ A= A, ® Ay. Then

(i) A.rl € AQ V.L‘l (S Xl.
(ii) Suppose that po(X2) < 400 and set ka(x) = pa(Az,).

Then
(ZZZ) ka € LO((Xl‘.Al)) VA € A.

PROOF. Since A is generated by the rectangles R, Theorem 2.2.1 implies
that i, '(A),, is generated by {i;'(R)}. But {i;'(R)} = Ay; since Ay is a
o-algebra, it coincides with the o-algebra it generates, whence (i). Let

M ={B € A: kg(x;) is a measurable function of z1}.

The rectangles are in M, as are finite unions of disjoint rectangles; thus
the Boolean algebra of elementary sets is contained in M. We now show
that M is a monotone class.

Let B, be an increasing sequence of elements of M. By the limit theo-
rem (3.2.1), ka, (z1) = u2((Bn)a, ) satisfies limkp, (z1) = kp__(z1), where
B = UB,. Hence k4__(x1) is measurable with respect to x; by 2.5, which
implies that A, € M.

Since p2(X2) < 400, Theorem 3.2.3 on the limits of decreasing sequences
can also be applied, and it follows that M is a monotone class. Since M
contains the Boolean algebra of elementary sets, M = A by 1.5.5.0
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8.4 Construction of the product measure

8.4.1 Theorem. Let (X1, A1, 1) and (Xo, Ag, u2) be measure spaces.
(i) Suppose that ui1(X1) < +oo and ps(Xs) < +oo.

For every A € A= A; ® Ay, set

(i) p(A) = [x, ka(@1)dui(z1) where ka(z1) = po(Az,).
(p(A) is well defined by Lemma 8.3.)
(iit) Then p is a measure on A, of total mass p1(X1)p2(Xz) < +oo.

Moreover,

(iv) p(Ay x Ag) = u(A)pa(A2) if A€ A,

PROOF. Since p is a finite measure, it suffices to prove that the o-additivity
axiom is satisfied. We begin by proving finite additivity. Suppose that

A=A UA" and A NnA"=0.
Then A, N A =0, whence ka(21) + kar(21) = ka(z1) and

p(A) = p(A") + p(A”).
Now let A? C AP*! C ... be an increasing sequence of elements of A. Set
A = UAP; then lim T (AP ) = (A*),, and, by 3.2.1, kar(z1) — ka=(z1)
for all ;1. Next, kar < kgp+1. Applying Theorem 7.1, the theorem of Fatou-
Beppo Levi,

lim/kAp(:cl)dul(a:l) — /kAoo(:tl)dul(ml), ie.  limp(AP) = p(lim AP).

This property, together with finite additivity and 3.2.4, gives o-additivity;
hence p is a measure. It is trivial to see that (iv) is satisfied. O

8.4.2 Theorem on reversing the order of integration

Theorem. Let (X1, A1, p1), (X2, Az, u2) be measure spaces. Suppose that
11(X) < 400 and pa(X) < +oo. Then, if A€ A; @ As,

dpy (z1) {/){2 1A(I11$2)dﬂ2($2)}

X1

Z/X2 dpia(ws) [/X lA(zl,xQ)d,ul(:cl)].

PROOF. Although the hypotheses in 8.4.1 are symmetric in X; and X5, the
construction is not.

Set la(z2) = p1(Ag,). Then o(A) = [la(z2)dpa(x2) exists and defines
a product measure by 8.4.1. By 8.2, 0(A) = p(A) VA€ A. O
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NOTATION. The product measure is denoted by p; ® po. By definition, for
all A e A; ® As,

Il

/ 1a(z)d(p1 ® po)(x)
X

/dm(:vl)/ 1a(z1, 22)dpa(2)
8.4.3 o

2

I

/dﬂz(wz) 14 (21, 22)dp (21).
Xa X1

8.4.4 Construction of the product measure in the general case

If 111 and po are not finite measures, let Xi* and X3' be exhaustions of X
M 1 2

and Xp. Set p = 1xrp;. Then ur(X;) < 400, i = 1,2. We can define

uy ® py and set

(1 ® 12)(A) = lim(u} @ ) (A).

8.5 The Fubini-Lebesque theorem

Theorem. Suppose that (X1, A1, p1) and (X2, A2, u2) are measure spaces.
Set X = X1 x Xo, A= A1 Q@ Ay, and p = 1 ® pe, and let (X, A, p) be the
product measure space. Suppose that

(2) feL’ (X, A).
(i1) Then fz, : T2 — f(x1,22) satisfies fz, € LO(Xz,.AQ) Vz; € X.
Now suppose that
(i) feL(X A).
Then the following two properties are satisfied:

fo, € L}, (X2, A2) p1-a.e. in z1, and
() 4 kel (X, A), where k(zy)= /X Flar, 22)dpa ().

2

flxy, w2)dp(zr,22) = dp1(z1) f(x1, 22)dp2(z2)
('U) X X1 X
= /X2 dpo(x2) [/)(1 f(a:l,xg)dul(xl)}.

Conversely:

Suppose that (i) holds, fs, € L},,(X2, A2) p1-a.e.,
and there exists k* € L}, (X1, A1) such that

|f(z1, z2)|dpo(z2) < K™ (1)
X2

Then (iii) is satisfied, and hence (iv) and (v).

(vi)
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REMARK. Denote the functions satisfying (ii) by @ and the functions sat-
isfying (ii), (iii), (iv), and (v) by R. Then @ and R are vector spaces. Since
the indicator functions of measurable sets are in @ by 8.3, so are finite
linear combinations of indicator functions: £(X,A) C Q.

PROOF. First assume the following stronger hypothesis:
(1)’ feL’(X,A) and fisbounded.

Then, by 6.4.1, f is the uniform limit of a sequence of simple functions ¢™:
SO" — Z a?lA? .

By the remark, ¢" € Q for each n; that is,
(¢")ey € L7(X2,A2), Va1 € X1

Since (f)z; = lim(¢n)z,, 2.5.1 shows that (i)’ = (ii).
Similarly, using 6.8.1(iv), hypothesis (iii) can be replaced by this stronger hy-
pothesis:

(zi2)"  f satisfies (i)’ and {z : f(z) # 0} C A1 x A2, with p;(A;) < 400.

Let {¢"} be a sequence of simple functions which converge uniformly to f and
for which ¢"(z) =0 if z ¢ A; x Az. Then " satisfies (iv) and (v).
Since ¢™ — f uniformly, there exists a sequence {e, } such that ¢, | 0 and

|f - ‘Pn‘ < EnlAlez-

/ If —¢"ldu < en/ dp = enp2(Az).
X Al X Ag

Thus

Similarly,

/ ’Lpgl = fau |d.u2 < fn/ dﬂ?(xQ) = Enll2(A2),
Xs

Az

whence f ¢z, dpz converges uniformly to ff,lduz. It follows from 2.5.3 that the
left-hand side of the formula in (iv) is measurable. Repeating the same argument
a third time for the integration in z; gives (iv) and (v). Summarizing, we have
shown that (iii)’ = (v).

Let {A7} and {A%} be exhaustion sequences for X; and X,. Then {A?} =
{A} x A%} is an exhaustion sequence for X. Let T}, be the truncation operator
defined in 6.7. Then T, (f) satisfies (iii)’.

Suppose now that (iii) holds and that

(vii) f>0.
{T»(f)} is an increasing sequence of functions in L, and || Tp(f)|lz1 < || fllz1-

Since T, (f) satisfies (iii)’, (v) holds and

/ kp(z1)dpr (@1) = | Tpfllpr, where ky(z1) = [ (Tp(f))eidpe.
X1

X2
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As the sequence {k,} is increasing, the Fatou-Beppo Levi theorem (7.1) applied
to X1 shows that

limk, = kx € L, (X1,41) and / koo = Lim | Tpfllor = Ifll o1,
X

N

where the limit of the kp(x1) is finite if z1 ¢ B for some B € Ay, u1(B) = 0.
Fix 1 ¢ B and apply Fatou-Beppo Levi on the space Xb:

koo (z1) :lim/ (Tp(f)) 2y dp2 :/ L (75, (f)) e, dpsz :/ (f)ardpa.
X 7 Xo X2

We have thus proved (iv) and (v) when f satisfies both (iii) and (vii). If (vii)
is not satisfied, write f = f* — f: then f*. f~ € R, and by the remark f € R.

It remains to prove the converse. Letting f satisfy (i), set f' = |f|. Using the
truncation operator T),, we have

/(Tpfl).rldllz < /Ef(‘»Cl-JUz)lduz(Iz) < k™(z2).

Moreover, since T}, f' € LL, we may use the identity (v) to obtain

/ T f da = / i / (T, (7))o dpis < / K (@2)dpa (2).
X .

Hence the norm of T}, (f"') is bounded, with a bound independent of p, and the
integrability criterion 7.4.1 implies that f' € L). Since f € L°(X,A). 7.4.3
implies (iii). O

9 The L? Spaces

9.0 Integration of complex-valued functions

Let f(z) = u(z) + iv(z) be a complex-valued function. Then f is a mea-
surable mapping from X to C if and only if v and v are measurable.
Furthermore, we say that f is integrable if u and v are integrable, and set

(i) /f=/u+i/v.

The integral f — [ f is a C-linear functional on the space LY X, A 1;C)
of complex-valued integrable functions. Moreover, setting

Zy={z € X : f(z) #0)}.

Zy € A and the function arg f(z) is well defined for x € Zy. The argument
is defined to be zero on ZJ?. Thus, if f € M,(X,A;C), we can write

(id) f(z) = w(x)e™),
where w € M, (X, ;RY), 0 € M,(X. A4;[0,27)), and |f(z)| = w(z).



9 The L? Spaces 47

(iii) Lemma. Let f be a complez-valued integrable function. Then |f] is

integrable and
<[

PROOF. |f| < |u| + |v| and is thus dominated by two integrable functions,
hence integrable. Set
/ f=re'?;

e

Using the decomposition (ii)

then

] [ 1] =re / (2)eos(0(x) — )dp(z).

Since |cos(f — ¢)| < 1, we obtain

‘/f‘ w(z)dp(zx).0

NOTATION. The complex-valued integrable functions will be denoted by
L)(X,A4;C).

9.1 Definition. Let (X, A, u) be a measure space. Let p be a real number,
1<p<+oo.
Let
— 0 . 1
LI(X,A) ={feL,(X A :|flPeL,(X A}

i1 = (| |f|”>1/p

It is clear that | f||z» = O implies f = 0 and that ||a|L» = || ||f||Le for
every constant a.

Complex-valued functions with integrable pth power can be defined sim-
ilarly:

Set

LP(X,A;C) = {f € M,(X,A;C) : |f]P € L'}.

Writing f = u + iv or f = we'®, we obtain the equivalences

feLl(X,AC) s ue LL(X,A) and ve Lh(X,A)
feLl(X, A4C)ewe (X, A) and 6 € LI(X,A).
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9.2 Convezxity inequalities

9.2.0 This section is devoted to proving the inequalities of Holder and
Minkowski. When p = 2 these inequalities become very easy. (Cf. Exer-
cises, Cauchy-Schwarz inequality.)

9.2.1 Definition. A continuous function ¢ defined on [a,b] C R is called
convez if ¢/ (z) = lim, | o(¢(x + €) — p(z))e ! exists Yz € [a,b) and ¢/ (z)
is an increasing function. In particular, if ¢ is twice differentiable, then ¢
is convex if and only if ©” > 0.

9.2.2 Lemma (Jensen’s inequality). Let ¢ be a convex function on
[a,b] C R. Let ay (1 < k < n) be positive numbers such that 3" oy = 1.

Then
P (Z akt;‘) < Zak;p(tk) Vi € [a,b].
k=1 k=1

REMARK. This inequality may be taken as a definition of convex functions.

PROOF. We prove the lemma for the case n = 2. Let a and b be constants
and set
o(t) = p(t) +at +b.
Then ¢ is convex. Choose a and b so that @(t;) = ¢(t2) = 0. Jensen’s
inequality reduces to showing that

\E(f) SO for t1 Stftg.

Otherwise the maximum of ¢ would be strictly positive and would be at-
tained at a point t3 € (t1,t2), and we would have

P (ts) =0, o(ts) > 0.

Since ¢/, is increasing, @', (t) > ¢, (t3) = 0if t € [t3,t2), whence p(t2) >
@(t3), a contradiction. We proceed by induction on n. Assuming that the
inequality holds for n < p, we prove it for n = p + 1.

Set & = 371 (3°P_, ast;), where 5 =31 ;.

Then, by the result for n = 2, p(3€ + apritpr1) < Bp(€) + apr19(tprr).

The first term on the right-hand side can be bounded above by using the

induction hypothesis, which gives ¢(£) < Y7, 87 au(t;). O

9.2.3 Corollary. Let &, & > 0 and let o, 3 > 0 satisfy a + 3 = 1. Then
£y < oy + Ba.

PROOF. If £; = 0, the left-hand side is zero and the inequality is obvious.
Suppose that & > 0 (i = 1,2), and set 7; = log&;. The exponential function
exp(t) satisfies the hypotheses of 9.2.1, whence

exp(an; + Bn2) < aexp(m ) + Bexp(nz).0

9.2.4 Lemma. Let (X, A, 1) be a measure space, let a, 3 > 0 be such that
a+ 3 =1, and let f and g be nonnegative functions in L}L(X, A). Then
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(i) f*g° € LL(X, A) and
(i) [ 129" < ([ )" (J9)”.

PROOF. If f = 0 a.e., both sides of the inequality (ii) are zero. Hence we
may assume that || f|[zy > 0 and ||g[[1 > 0. Setting

F=IIf7f =lgllzi,

we reduce the proof of (ii) to showing that

/f“ﬁﬂ <1

We will use 9.2.3. For every z, f*(z)3%(z) < af(z) + B4(z).
The right-hand side is an integrable function; hence (i) follows from 7.4.3.
Integrating both sides of this inequality gives

/fagﬁﬁa/f—kﬁ/ﬁ.

/f“gﬁ§a+ﬂ=1.[:1

Since [ f=[g=1,

9.2.5 Definition of conjugate exponents

Definition. Let 1 < p < +00 and 1 < ¢ < +00. We say that p and ¢ are
conjugate exponents if
-+-=1
P q
REMARKS. p is conjugate to itself if and only if p = 2.
If1<p<?2, then g > 2.

9.2.6 Theorem (Holder’s inequality). Let (X, A, 1) be a measure space,
let p and q be conjugate exponents, and let f € LP, g € LY. Then

(i) fge L' and
(i) |[ fg| < I fllzellgllia-

PROOF. Since the theorem is clear when p = oo or ¢ = oo, we may assume
that 1 < p < oco. We first consider the case where f and g are nonnegative.
Set u=fP,v=¢% a= %, 8= %. Then fg = u®v?, and applying 9.2.3
gives the theorem.
In the general case, set |f| = fi, |g| = gi1- Then fig;1 € L' by the
argument above; hence by 7.4.2 fg € L' and

Jof=
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9.2.7 Theorem (Minkowski’s inequality). Let (X, A, u) be a measure
space and let f, g € LP, where 1 < p < 4+00. Then

(i) (f +g) € LP and
(i) |1f +gllee < 1 fllee +llgllee-

PROOF. The theorem is true for p = 1 by Proposition 6.8.3. Note that the
function ¢(t) = t¥ is convex on [0, +oc). Using Jensen’s inequality, we have

S +&N\ _ 1, 1
(B57) =<3 +3%

whence
1f(2) + g(@)” < (1f(@)] + |g(@)])? < 2°7 | f(@)]” + 27 g(a) "

Hence the integrability criterion 7.4.3 implies (i). It suffices to prove (ii) in the
case that f and g > 0. We then have

/(f+g)” = /f(f”rg)”“1 +/9(f+g)’“]‘

Letting ¢ be the conjugate exponent and using Holder,

1/p 1/q
[revar< (o) (furarr)

but, since p and q are conjugate, p+q = pq, or (p—1)g = p. Writing the analogous
integral for g, we obtain

foor<[(f)" () | (o)

If + g%, < (Ifllze + llgllLe)llf + gllFs.

or

If ||f + glle» = 0, Minkowski’s inequality holds trivially. Otherwise we can
divide both sides by || f + g|[%4? to obtain

I+ gl < | fllee + llgllze,

and the conjugacy relation gives p — § =1-p [1 — ﬂ =1.0
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REMARK. Writing f(z) = w(z)e?®) shows that the Hélder and Minkowski
inequalities remain true for complex-valued functions.

9.2.8 Theorem. Let (X, A, 1) be a measure space and let 1 < p < +o0.
Then LP(X, A, u) is a vector space on which a norm is defined by the func-
tion f— ||fllLe-

PROOF. It follows from 9.2.7(i) that L? is a vector space. Moreover, 9.2.7(ii)
and 9.1 show that || - ||z» is a norm.

9.3 Completeness theorem. Let (X, A, p) be a measure space and let
1 <p < +oo. Then LE(X, A) is a complete normed space.

REMARK. For p = 1, Lebesgue’s theorem (7.2) implies that every normally
convergent series in L! is convergent, and hence that L' is complete.

PROOF. We proceed as in 6.5.4(v) by proving the following lemma:

9.3.1 Lemma. Let {f,} be a Cauchy sequence in L. Then { f,} converges
in measure.

ProoOF. Fixing ¢, set

{z:|fn(x) = fr(x)| > €} = Ap .
Then
/|fn_fn’lp2/ |fn—fn’|p2€p#(An.n’)v

n

implying the Chebyshev-type inequality
N(An,n’) < 6_p”fn - fn'H:Zw
Fix ng such that ||f, — furllzr < €777 if n,n/ > ng. It follows that
e(fn, fn) <2¢if n,n' >ny. O

9.3.2 PROOF OF THE THEOREM. Since L), is a complete space, {f,} con-

verges in measure (by 5.2.9) to fo. By 5.2.7, we can extract a subsequence
such that

(i) fn, converges to fo p-a.e.
Since f, is a Cauchy sequence in LP, we have
(i) faller < C,or || [fal? [ < C.

By Fatou’s lemma (7.7), | fo|? € L*.
Fixing k, consider the sequence {us} = {|fn, — fn,|?}. Fatou’s lemma
can be applied since uy converges a.e. to |fo — fr, |P. We obtain

[ lim ugllpr < sup [lug| L
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Fix mg such that || f, — fo/llr < € if n,n’ > my. Take k such that
ng > myo; then
Hf() - fnk ||LI’ <e if n> mo

and
fo = fallze < |lfo = failler + [ fne = fallr < 2e.0

REMARK. Writing f = u + iv, we see that 9.3 implies that L (X, A4; C) is
complete.

9.4 Notions of duality

Given a normed vector space E, the vector space E’ of continuous linear
functionals | on FE is called the dual of E. For [ € E’, we set

Il{]l =sup|i(z)] where |z|| <1, z¢€E.

It can be shown that E’ is a Banach space.

9.4.1 Theorem. Let (X, A, i) be a measure space. Then Li(X, A) is a
Hilbert space when the scalar product is defined by

(i) / fa=(fl9)-

The scalar product for the complex-valued functions Li(X, A, p) is defined
by [ f3 = (flg).

PROOF. (f|f) = ||f||32, and Hélder’s inequality becomes

(i) I(Flo)l < 1 Fliz2ligll 2

This is just the Cauchy-Schwarz inequality, which can be proved directly.
Moreover, Lz is complete, and hence is a Hilbert space.

9.4.2 Corollary. The dual of the space L? can be identified with L?; the
dual pairing is given by 9.4.1(i).
PRrROOF. In a Hilbert space, by Riesz’s theorem! every continuous linear

functional can be expressed by a scalar product.

9.4.3 Proposition. Let (X, A, ) be a measure space and let p and g be
conjugate exponents, 1 < p < +oo. Then there is an isometric injection u
from LY into (LT)".

1See, for example, W. Rudin, Real and Complex Analysis (New York: McGraw-
Hill, 1974).
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PROOF. Define a mapping u : L}, — (L) by associating with g € LY the
linear functional

ly(f) = /fg-
Then by Holder

(2) llg (N < llgllzallflle = Cllfllze,

which shows both that [, is a continuous linear functional and that u is a
contraction:

(@)l Ly < llgllze-

In order to show that u is an isometry,we introduce fy = (signum(g))|g|?/?.
Then |fol? = |g|%, lfollZ» = llgll7., and

[ g = [rater = [ gt = .

Hence
ly(fo) = llgll .-
Furthermore,
g (fo)l < Wgllczoy I folle = Mgl Loy gl e,
whence

gl oy > Nlglga "

But ¢ — ¢/p = 1, and hence u is an isometry.

It follows that u is an injective mapping of L? into (LP)'. O

REMARK. It will be shown in Section IV.6 that u is surjective, and thus
identifies (LP)" with L? (1 < p < +00).

9.5 The space L™

9.5.1 Definition. f € L)(X, A) is said to be essentially bounded if there ex-

ists a bounded representative f of f. The space of essentially bounded mea-
surable functions is denoted by L3°(X,A). We define 4, ¢ = {z : [g(z)[ >
€} and K(g) = {£ € RY : u(Ag¢) =0}

If g € L2, then K(g) #  and we set

M
lgllzee = inf K(g).

9.5.2 Lemma. 1(Ag¢) > 0 if and only if £ <||g|lLzx-

PROOF. The only case that is not obvious occurs when € = ||g|| L. We then
apply the continuity theorem for increasing sequences of measurable sets.
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Setting & = ||gllL~ gives p (UpZ Ay ¢4n-1) = 0. But Unli1Ageotn-t =
A!l~f(1' o
9.5.3 Proposition. L (X, A, u) is a complete normed vector space.
PROOF. We first prove the triangle inequality for || [[L~. Let f,g € L} and
set h = f+g; then |h(z)| < [f(2)|+]|g(z)| implies that A} ., D Af NAF .
Taking complements, we obtain
/L(Ah.£+7]) S N(Aff) + ﬂ(AQJI)'f

or (§+n) e K(h)if £ € K(f) and n € K(g). Thus

Al < 1fllLg + llgllLze-
If [[Afl = 0, then h(x) = 0 a.e. by 9.5.2, and hence || - Ly is @ norm.

Let fn be a Cauchy sequence in the norm || || . Choose representatives f, of

the class 771 and set u, n' = fﬂ - fn,’- Let A, v = {l‘ : Iun.n’(x)l > '?)Hun.n’HL;):C }§
then, by the definition, p(A4,, ) = 0.
Set Z = U, An nr. Then p(Z) = 0 and

[fr(x) = fur(z)] < 3| fn — fn/||L7f if e Z°

The sequence f, converges uniformly on Z¢. Set fo(z) = lim fn(z) if z € Z¢ and
fo(x) =0if z € Z. Then fo € LY and ||fn — follze — 0. O

9.6 Proposition. Let (X, A, p) be a measure space. Suppose that u(X) <
+00. Then LE (X, A) D LY (X, A) if 1 <p < p' < +oo.

PROOF. Use Holder’s inequality to write

1y|

[ it = [1PLedu@) < 11117 iy
X

s,
Ly,

where r and s are conjugate exponents. If p’ < 400, note that

I fP e = </|f|rp>1/,.

and take r = d > 1. Then
p

p—p
p

(1) Iflle < (WO fll L. where o=
This shows that every function in L is in L?. If p’ = oo, note that

/ 1P < 111 ().
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Borel Measures
and Radon Measures

Introduction

The preceding chapter dealt with abstract measure theory; given an ab-
stract set X, we rather arbitrarily prescribed the o-algebra B of its mea-
surable subsets. In this chapter, we work in a space X which is locally
compact and can be written as a countable union of compact sets. A natu-
ral o-algebra in this context is the Borel algebra Bx. A locally finite Borel
measure is a measure defined on Bx such that every compact set has finite
measure. For X metrizable, we prove Lusin’s theorem: If u is a locally finite
Borel measure and A € By, then for every ¢ > 0 there exist an open set
O and a closed set F' such that F C A C O and p(O — F) < e. Thus an
arbitrary Borel set can be approximated to within € by both an open and
a closed set.

A natural vector space on X is the space Ck(X) of continuous functions
with compact support. A linear functional I on Ck(X) is called positive
if I(f) > 0 for every nonnegative function f. We prove the Radon-Riesz
theorem, which constructs a bijection between the positive linear function-
als on Ck(X) and the locally finite Borel measures. In the Prologue, we
showed that the Riemann integral on R defines a positive linear functional
on Ck(R). In this chapter, we apply the Radon-Riesz theorem to obtain a
canonical translation-invariant Borel measure on R, the Lebesgue measure.
The theory of the Lebesgue integral appears as a special case of the theory
of the abstract integral developed in Chapter I. We obtain the Lebesgue
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integral on R" by constructing the product measure, and prove the change-
of-variables formula for multiple integrals.

When Y is compact, the space of continuous functions on Y is a Banach
space. We consider the dual vector space (C'(Y))* of continuous linear func-
tionals on Y, and show that every linear functional can be written as the
difference of two positive linear functionals. This leads us to the concept of
signed Radon measures.

Given a locally compact space X, we consider the Banach space Cy(X)
of bounded continuous functions on X and the closed subspace Co(X) of
functions which vanish at infinity. (Co(X))* is identified with the space
M'(X) of finite signed Radon measures. Three topologies can be defined
on this set by using the pairings with Ck(X), Co(X), and Cy(X). We
compare the three corresponding notions of convergence.

The first section of this chapter is devoted to the construction of parti-
tions of unity, which allow the passage from local to global considerations
on X. It is purely topological, while the rest of the chapter describes mea-
sure theory on locally compact spaces.

1 Locally Compact Spaces and Partitions of Unity

1.0 Definition of locally compact spaces which are countable
at infinity

Let X be a Hausdorff topological space which satisfies the following hy-
potheses:

1.0.1 X is locally compact, i.e. every point zy € X has a compact neighbor-
hood.

1.0.2 X is countable at infinity, i.e. there exists a sequence { K, } of compact

subsets of X such that
K, CKny and | JK, =X,

n
1.0.3 Proposition. There exists a sequence H,, of compact sets such that

H,, C ﬁ[,n+1 (where ﬁ denotes the interior of A)

and

X0

U Hm =X.

m=1
PROOF. The proof is by induction. Set H; = K, and, assuming that H,
has been constructed, set G, = H; U K,. Each z € G4 has a compact

neighborhood V(z); from the open cover of G, formed by {13(;17)} extract
a finite subcover.
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This procedure gives points z4; € G4, 1 < j < my, such that H; C

O . .
Ui<j<m, V(Zq ). Set Hop1 = Ui<j<m, V(Zq;)- As the finite union of
compact sets, Hg1 is compact. Furthermore,

(0] [e]
Hg1 D U Vi(zq,;) D Hq

1<j<mq

and
UH, > |JK, = Xx.0

1.1 Urysohn’s lemma

Lemma. Let F and F; be disjoint closed subsets of a locally compact space
X. Then there exists a continuous function f on X such that

flz)=1 if and only if x € Fy;
f(x)=0 if and only if x € Fy;
0< f(z) <1 forall zeX.

PROOF. We restrict the proof to the relatively trivial special case where X
is a metric space.
Let
fi(z) = d(z, F;) = min(d(z,y;)), where y; € F;.
Then f; (i = 1,2) is a positive continuous function and f;(z) =0 & z €
F;.
Let a function ® be defined on Z = ([0, +00) % [0, +00)) — (0, 0) by setting

((.‘
¢®m)=§;n-

Then @ is continuous since (0,0) is not in the domain of definition Z of ®.
Furthermore,

0<®<1,
®(¢,0)=1 if £>0, and
®(0,7) =0 if n>0.

Let f(z) = ®(f1(x), f(x)). Since F; N Fy = (), the mapping into (R™)?
defined by z — (f1(x), f2(x)) actually maps into Z. Thus f is the compo-
sition of continuous mappings and hence is continuous. O

1.2 Support of a function

Definition. Let f be a continuous function on X. The support of f, de-
noted by supp (f), is the closed set

supp (f) = closure {z : f(z) # 0}.

1.2.1 Proposition. The following statements are equivalent:
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(1) = & supp (f).
(i) There exists a neighborhood V (z) such that f(x) = 0 Vx € V(z).

PROOF. Let O = (supp (f)); then O is an open set and
{z: f(x) #0}NO Csupp(f)NO =0,

whence, setting O = V/(z), we have shown [that] (ii) = (i).
Conversely, if V(z) N {z: f(z) # 0} = 0, then
o] _—
Viz)n{z: f(z) #0} = 0.0
1.2.2 Proposition. Suppose that X is a locally compact space, F is a
closed subset of X, and O is an open subset of X such that F C O. Then
there exists a continuous function g such that

0<g(x) <1 forany reX;
g(z) =1 if and only if = € F; and
supp (g) C O.

PROOF. Set F' = O°. Applying Urysohn’s lemma (1.1), let f be the function
associated with the pair of closed sets (F, F’). Set

F' = (0. 5))

Then F" is a closed set since f is a continuous function. Let g be the function
associated by Urysohn’s lemma with the pair (F, F”). Then g(z) > 0 implies
x ¢ F” or f(z) > 3, which may be written as

fas9@) £ 0} < 17 (5.1,

Hence supp (g) C closure (f"l)((% 1]).
Since f~'([3,1]) is closed, we have a fortiori

supp (g) C f‘l({%-, 1)coo

1.3  Subordinate covers

1.3.0 Definition. Let {U,} be an open cover of X. An open cover {V,,} is
said to be subordinate to {U,} if, for any n, there exists a(n) such that

Vn - Ua(n)'
A cover {H,} is said to be locally finite if, for every compact set K,
card {v: Hy,NK # 0} is finite.

1.3.1 Theorem. Let X be a locally compact space which is countable at
infinity. Then every open cover has a locally finite subordinate open cover
{V..} such that the V,, are compact.
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PROOF. Let {U,} be an open cover of X and let {H} be the sequence of
compact sets defined in 1.0.3. Set

Gi=H: and G = (Hmn— Hpn-1).

Then
Gm=HnN(Hn_1)*C HyaNHS, ;.
But
o) < o c .
(Hm_l) D Hy,_;, whence (Hm_l) D HE .,
so that

Gm C Hrnm (I?Im—l) )

and thus G, N I?Im_l = (). Using 1.0.3,

(7’) Gm N H7n~2 = @
Set
(’LZ) Uoz.m = Ua N ﬁm-{»] n an~2'

Then U, ,m is an open cover of G,.
For each x € G, there is an open set W,,,(z) such that

(i23) Wm(z) C Ua,m where o= a(z).

The W,,(z) form an open cover of the compact set Gp,; from this cover we can
extract a finite subcover, say Wi, (z1), ..., Wn(z;).

The family {Wy.(zx)} is a countable family of open sets, which we denote by
{V.}. We have V,, C U,, where a = a(n). The {V,,} cover G,, for every m,
hence cover X. For fixed m, (i), (ii), and (iii) imply

(iv) card {n: V, N Gm # 0} < +00.
We now prove a lemma.

1.3.2 Lemma. Let K be a compact subset of X. Then there exists q such
o]
that K C H,.

PROOF. Set F, = ( flr) N K; then N, F. = 0.

The F,. form a decreasing sequence of closed subsets of the compact set K.
Since their intersection is empty, there exists ¢ such that

0=Fq=(f§rq) nK.O

1.3.3 CONCLUSION OF THE PROOF OF THEOREM 1.3.1.Given the compact
set K, let ¢ be determined by 1.3.2. Then (ii) and (iii) show that
W@ NK=0 if m>q-—2,

whence
card {n: V, N K # 0} < +00.0
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1.4 Partitions of unity

1.4.0 Definition. A partition of unity on the space X is a sequence of
continuous functions ¢,, such that

(i) 0 S (/)n S 13
(ii) supp (pn)is compact,
(iii) card {n: K Nsupp (¢n) # 0} < +oo for every compact set K, and

(iv) Y nle) = L.

REMARK. Condition (iii) is called a local finiteness condition. It implies
that, for fixed z, the series (iv) contains only finitely many nonzero terms.
The partition of unity is said to be subordinate to the open cover U, if

(v) for every n, there exists a(n) such that supp (¢n) C Ua(n)-

1.4.1 Theorem. Suppose that X is a locally compact space which is count-
able at infinity and {Uy} is an open cover of X. Then there ezists a parti-
tion of unity subordinate to {Uy,}.

PRrROOF. Let {V,} be the locally finite cover subordinate to {U,} con-
structed in Theorem 1.3.1.

Since the V,, form a cover, by another application of 1.3.1 there is a
locally finite cover {L;} subordinate to {V,} which satisfies

Ly, CV,, where n=n(s).

Applying 1.2.2 to the pair (—L_S,Vn(s)), there is a function g, such that
supp (gs) C V,, and gs(x) = 1 if x € L. Since each V,, is compact and
the cover {L,} is locally finite, only finitely many of the elements L, are
contained in any V,,. Since the cover {V,,} is locally finite,

card {n: V, N K # 0} < +o0

for any compact set K. Hence, setting I(K) = {s : supp (gs) N K # 0}, we
obtain
card (I(K)) < +oo0.

Thus the sequence {g,} satisfies condition (iii). Set
D(z) =) g:(x).

To calculate D(z) on a given compact set K, it suffices to let s range
over I(K). As this set is finite, D(z) can be written on K as a sum of
continuous functions; hence D(z) is continuous on K. Together with the
local compactness of the space X, this implies that D is continuous.

Furthermore, {Ls} covers X. For every z, there exists s such that z € Lg;
that is,

D(z) > 1 forevery zé€ X.
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Setting
gives a continuous function on X. Finally, set ¢, = 8g,. O

2 Positive Linear Functionals on Ck(X)
and Positive Radon Measures

2.0.1 Notation

Given a locally compact space X, Cx(X) denotes the vector space of con-
tinuous functions with compact support. We write

f>0 if f(x)>0 forevery x.

2.0.2 Definition. A positive linear functional is a linear mapping I :
Ck(X) — R such that I(f) > 0 for every f > 0.

2.1 Borel measures

Let Bx denote the Borel algebra on X. A measure defined on By is called
a Borel measure, and is said to be locally finite if

2.1.1 w(K) < +o0o for every compact set K.

REMARK. Since K is closed, K € By.

2.1.2 Proposition. Let p be a locally finite Borel measure on X. Then
every continuous function with compact support is integrable. Setting

(5 = | fau

defines a positive linear functional on Ck(X).

PROOF. Since f is continuous, it is Bx-measurable. Furthermore, |f]| is
bounded by a constant M, and setting K = supp (f) yields

|fl < M1g.

By 2.1.1, 1k is integrable; by 1-7.4.2, so is f. The positivity of I follows
from 1-6.8.3. O

2.2 Fundamental theorem of Radon-Riesz. Let X be a metrizable lo-
cally compact space which is countable at infinity. Then the correspondence

w—=1,
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of 2.1.2 defines a bijection which allows the locally finite Borel measures to
be identified with the positive linear functionals on Ck(X).

PRrROOF. This statement contains both an ezxistence and a uniqueness theo-

rem: Every positive linear functional is represented by an integral with re-

spect to a locally compact Borel measure, and this representation is unique.
The proof of Theorem 2.2 occupies the rest of this section.

2.2.1 Approximation lemma. Let X satisfy the hypotheses of 2.2. Then
for every open set O in X there is an increasing sequence of compact sets
K,, such that

(i) O=UK, and K,C [%TH—I'

For every compact set K in X, there is a decreasing sequence of open
sets O,, such that O,, is compact,

(i) K =0n0,. and O, C O,_;.

PROOF. Set G,, = {z : d(z,0°) > 711} then G,, is closed. Let K,, = G,,NH,,,
where {H,,} is the sequence of compact sets of 1.0.3.

Then }O(,, D 8’,,, N I%,, D G,-1NH, 1, and (i) is satisfied.

To prove (ii), let m be determined as in 1.3.2 so that K C ﬁlm, and set

1
0, = [%.,,, N {x cd(z, K) < —} .0
n

2.3 Proof of uniqueness of the Riesz representation

Let p and v be locally finite Borel measures such that

2.3.0. /f(r)du(r):/f(x)dl/(a;). Ve Cr(X).

2.3.1 Proposition. Suppose that 2.3.0 is satisfied. Then the measures
i and v coincide on open sets and on sets which can be written as the
intersection of an open set and a closed set.

PROOF. Using the approximation lemma 2.2.1(i), we can write O = UK,.
O
For every pair (K., K,+1), let g, be determined as in 1.2.2:

gn(z) =1 if zekK,,
supp (gn) C Knqa, and 0<g, <1.

Then 1x, < gn < 1o, whence

w(Kn) < /gndu < p(0).
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Since, by 1-3.2.1,
lim pu(K,) = u(0) < +oo,
it follows that

(7) lim/gndu = p(0) and similarly lim/gndu =v(0).

Since g, € Ck(X), 2.3.0 implies that the left-hand sides of the two equa-
tions are equal; thus v(0) = p(0) < +oc.

Let A = F N O, where O is open and F' is closed. Using the exhaustion
principle (I-3.2.4) and setting

F,=FnH, (H, defined as in 1.0.3),

we have
w(F N O) =limu(F, NO),
whence it suffices to show that
wW(KNO)=v(KNO)

for every compact set K.

By the approximation lemma, 2.2.1(ii), there exists a sequence {On} of
open sets with compact closures such that K = lim | O,,. Since the O, are
compact, 4(01) < +oo; it follows from the principle of decreasing sequences
(1-3.2.3) that

w(KNO) =limu(0OnO0,),
and from the first half of the proof that
wONO,) =rv(0ONOo,).0

For convenient reference, we restate the first part of the proof of 2.3.1 in
a more organized form.

2.3.2  Constructive definition of u(O)
Let O be an open set in X and let
T(O)={feCk(X):supp(f) COand 0 < f <1}.
Then
w(0) = sup/fd,u where f € T(0).

PROOF. Set L = /fdu, where f € T(O). Since f € T(O) implies f < 1,
we have

/fdu < u(0), whence L < u(0).

Furthermore, the g, constructed in the proof of 2.3.1 satisfy g, € T(O).
Thus

lim/gnd,u < L, whence by 2.3.1(1) wu(0) < L.O
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2.3.3 Terminology

Subsets of X which can be written as the intersection of an open set and a
closed set are called sets of type o.c. Open sets and closed sets are special
cases of o.c. sets. (Take their intersection with X.) A subset of X which can
be written as a finite union of disjoint o.c. sets is called an elementary set.
It follows from the additivity of u and v and from 2.3.1 that (&) = v(€)
for every elementary set .

Lemma. The elementary sets form a Boolean algebra of subsets of X .
REMARK. Compare 1-1.5.4.
PROOF.

(i) Let R be an o.c. set. Then R is an elementary set, for if R = ONF,
then R“ = O° U F° and we can write

R =(0O°NF)YU(O°NF)u(ONF°).
The three sets in parentheses are disjoint and each is of type o.c.

(i) The intersection of two elementary sets is elementary. Indeed, let
& = U;iR; and &' = U; R}, where R; = O; N F; and R; = O N Fj.
Then

ENE =Ui,RiNR;.

Since the R;, R); are disjoint, so are the R, N Rj. Moreover, R; NR; =
(0: N Of) N (F; N F}) and hence is of type o.c.

(iii) The complement of an elementary set is an elementary set. If £ =
UR; then £° = NR;. By (i), each R{ is an elementary set. By (ii), £°,
as the intersection of finitely many elementary sets, is elementary.

(iv) X is of type o.c. (hence elementary).

(v) A finite union of elementary sets is elementary. By (iii), it suffices
to prove the statement for complements of elementary sets; but this
follows from (ii). O

2.3.4 Proof of the Radon-Riesz theorem (uniqueness)

PROOF. Let B={A € Bx : v(AN H,) = u(AN H,) Vn} (where H,, was defined
in 1.0.3).

We first show that B is a monotone class. This is immediate for increasing
sequences, by I-3.2.1. Now let {A,} be a decreasing sequence, A5 € B. Then, by
the compactness of H,,

u(AsNH,) <400 and v(AsNH,) < 4oo.
Applying 1-3.2.3,

lim p(As N Hp) = p((lim | As) N Hy,),
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whence
/J'((lim ! As) n Hn) = V(lim(i As) n Hn)'

As this is true for any n, we have (lim | A;) € B.

Furthermore, B contains the Boolean algebra of the elementary sets of X by
2.3.1. Therefore, by I-1.4, B coincides with the o-algebra generated by the open
sets and the closed sets; that is, B = Bx. O

2.4 Proof of existence of the Riesz representation

Given a positive linear functional I on Ck(X), we would like to represent
it in integral form. We begin by using a construction that appeared in the
proof of uniqueness.

2.4.1 Measure of open sets

As in 2.3.2, we set

T(0) = {f € Cx(X) :supp(f) CO and 0<f<1}.
Given a positive linear functional I, we define
(2) I(O) =sup I(f), where feT(O).

I(O) is called the measure of the open set O relative to the linear form I.
Note that

(i4) 1(0)) < I(0;) if Oy C 0.

(iii) Proposition (Convexity inequality). Let {O,} be a sequence of
open subsets of X. Then

I (U on> <) I(0n).
PROOF. Set W = U,,0,. Let f € T(W) and set

Q = (supp (f))"-

Then ©,{0,} form an open cover of X. Let ¢, be a partition of unity
subordinate to this cover. Set

fq :f¢q~

Let S = {q: pqf # 0}. Since f has compact support, card(S) < +oo. If
g € S, let ¢ — 6(q) be a mapping from S to N such that

supp (¢q) C Og(q)-
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Set
S(n) =6~ (n).

The nonempty S(n) form a partition of S. Set

> e

qeS(n)

0(S) and f, = fo,. Then f < 3" _ fn and, since f, € T(O,)

Set J =
I(fn) < I(On) and

I(f) <> 1(0,) <> 1(0,).0
neJ n

(iv) Proposition (Additivity of I). Let O; be a sequence of disjoint

open sets, and set O = UQ;. Then

0)=>_1(0).

PROOF. Given n and ¢, consider the nth partial sum of the series on the

right-hand side and choose f; € T(O;) such that

I(fi) 2 1(0;) — e27",

Then f =", f; satisfies f € T(O), whence

Z[ f) >Yi1(o,;)—e.
=1

I(0) > I(f) =

Since n and € are arbitrary, we obtain

1{0) = ) 1(0y),

which together with the convexity inequality gives (iv). O

2.4.2 Measure of compact sets
Let K be a compact subset of X and set

) =infI(0), O open, O D K.

I(K

Then
; and

(l) I\,l C Kglnlplleb](Kl) < ](KQ)
(ii) if K is compact, O is open, and K C O, then I(K) < I(O)
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(iii) Proposition (Finite additivity). Let K1, K», ..., K, be a finite
collection of compact disjoint sets. Then

I (U KL-> = ZR:I(K,;).

PROOF. Let 2¢ denote the infimum (minimum) of the distances from K; to K
and let
U; = {z:d(z,K;) < €}.

Then the U; are disjoint open sets.
Choose O; such that O; D K; and I(0;) < I(K;) —€27", and set O; = U;NO;.
Let K = UK, and choose O such that I(K) > I(O) — €. Set O} = O N Oj;
then K C UOj C O, which implies that

I (U o;’) —e<I(K)<I (U o;’) .

Since the O] are disjoint, 2.4.1(iv) implies

(U o;’) =5 10)).

Since
K; C O;/ C 0y,
we have _
1(07) — 277 < I(K;) < I(0}),
and thus

Y 10y —e< Y I(K,) <> 1(05).0

2.4.3 Inner measure and outer measure

We would like to define set functions for arbitrary subsets A of X. We set

@ (A) =inf I(O), O open, O DA, and
u«(A) =supI(K), K compact, K C A.

Then by 2.4.2(ii)
(4) e (A) < p*(A).

1+ (A) is called the inner measure of A and p* its outer measure.

(ii) Proposition (Convexity inequality for u*). Let { A, } be a sequence
of subsets of X. Then

Iy (U&) < Zu*(Ai)-
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PROOF. Choose a sequence of open sets {O;} such that
A; CO; and I(0;) < p*(A;)+e270

Let A =U;A; and let O = UQ;; then A C O, whence p*(A) < I(0).
By 2.4.1(iii),

I0) <) 1(0) <Y u'(4) +eD

(iii) Proposition (Concavity inequality for u.). Let {A;} be a se-
quence of disjoint subsets of X. Then

+oo +00
Mo (U Ai) 2 Zﬂ*(Ai)-

PRrROOF. Consider the nth partial sum of the series on the right-hand side.
Fix compact sets K; such that

K;C A, and I(K;)> p.(A;)—e27"

Let K = UL, K;; then K is compact. Since the A; are disjoint, so are
the K;, and finite additivity (2.4.2(iii)) gives

I(K) =Y I(Ki) > 3 pe(As) — e

i=1

Since K is compact and K C A = U;A;, we conclude that u.(A) > I(K).
O

2.4.4  Construction of the measure (compact case)
Throughout this section, we assume that
(H) X is compact.

Let
(i) B={A€P(X): 1(A) = u(A)}.
If A € B, we set
(47) n(A) = p*(A) = pe(A).

(iii) Proposition. A € B if and only if for every ¢ > 0 there ezist a
compact set K and an open set O such that

KCACO with I(0)—e<I(K)<IO).
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Proor. We prove sufficiency; the proof of necessity is similar. If A € B,
there exists a compact set K such that K C A and I(K) + § > p.(A).

There exists an open set O such that O D> K and p*(A) > I(O) — §.
Hence the fact that p.(A) = p*(A) implies that

1(0) — e < I(K) < I(0).0

(iv) Proposition. Fvery closed set is in B.

PROOF. Let K be closed (hence compact). Then p,(K) = I(K) by defini-
tion, and
u (K) = inf 1(0) = I(K)
by definition of I(K). O
(v) Proposition. Every open set is in B.

PROOF. Let O be an open set. Formally, p*(0) = I(O).

Furthermore, given € > 0, by the definition of 7(Q) there exists g € T(O)
such that I(g) > I(O) — .

Let K be the support of g. Then g € T(f2) for every open set Q2 D K.
Hence I(g) < I(2) VQ D K; that is,

I(g) <inf I(Q) = I(K).

Thus
I(K) > 1(g) 2 1(0) — ¢

and therefore
1.(0) = u*(0) - €5

(vi) Proposition. Let {A,} be a sequence of disjoint elements of B. Then

Undn, €B and pu(UpA,) = ZM(A)

PROOF. p* (UA,) < 3, u(Ar) by the convexity inequality, and p. (UA,) >
> (Ay) by the concavity inequality.
Setting Z = UA,,, we thus have u.(Z) > u*(Z), whence Z € B and

D ulAn) < pa(2) = w(2) = p*(2) £ Y plAn).0

We now refine criterion (iii).

(vii) Lusin’s criterion. Let A € P(X). Then A € B if and only if for
every € > 0 there exist a compact set K and an open set O such that

KCACO and p(O-K)<e.
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ProoOF. By (iii), we can find K C A C O such that
w(O) < u(K) +e.

But (O — K) and K are disjoint and belong to B (because (O — K) is

open and K is closed), whence by (vi)
WO — K)+ p(K) = p(0). or pw(O—-K)=p0)—- k) <eD
(viii) Proposition. B is a Boolean algebra.
PrOOF. We will use Lusin’s criterion (vii). We first show that A € B if
A € B. There exist a compact set K and an open set O such that
KCACO with p(O-K)<e

Then

O°CA°CK° and K°—-0°=0 - K, whence
WHE—=0% =pu(0—-K) <e.

Similarly, let A, A’ € B; then KUK’ Cc AUA’ C OU O’ and

(OUO')N (K UK’ (ON (KUK U (O N(KUK'))

C (ONKY)YU(O'NK'").
Hence, by the convexity inequality for the outer measure,
wW((OUOHN(KUK)) <p"(O—K)+p (0 —K').

Since all the sets in this expression are in B, we can replace p* by u to
obtain that AU A’ satisfies (vii); hence AUA’ € B. O

(ix) Theorem. Suppose that X is a compact space and B is the family of
sets defined in (i). Then B is a o-algebra containing the Borel algebra and
i defined in (ii) is a measure on B. The o-algebra B is p-complete.

PROOF. It must be shown that a countable union of sets A,, € B is in B.
Set
) — (&
B,=A4,. B,=A4,nN (u.’;:fA_,-) :
Then UB,, = UA,, and, since B is a Boolean algebra, B,, € B.
Since the B, are disjoint, it follows from (vi) that their union is in B.
Thus B is a o-algebra. By (vi), u is a measure on B. By (iv), B contains
the closed sets; therefore B contains the Borel algebra Bx. Next, let

Y CA where A€eB and p(A)=0.

Then
pr(Y) < pt(A) =0.
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Furthermore, by 2.4.3(i),

(V) < (Y),
whence

s (Y) = p*(Y) = 0.
Thus Y € B, and hence B is y-complete. O

(x) Definition. The measure p constructed in Theorem 2.4.4(ix) is called
the Radon measure associated with the positive linear functional I. The
o-algebra B on which the Radon measure p is defined contains the Borel
algebra Bx. By restricting u to Bx, we can associate a Borel measure p’
with u. The o-algebra B is the completion of Bx with respect to the measure
15 this will be proved in 3.4.2.

2.4.5 Proof of the representation theorem (compact case)

Theorem. Let X be a compact space, let I be a positive linear functional
on C(X), and let u be the Borel measure associated with I by 2.4.4(iz) and
(z). Then

[ ran=109).

ProOOF. We will show that
(7) I(f) < /fdu for every f € C(X).
For a given € > 0, let

Ay = f ([ke, (k + 1)), where |k| < N,

with N chosen so that M = max|f| < Ne. Set

o= (v )

Then O} is open since f is continuous. NO? = A, and hence the theorem
k k ks
on decreasing sequences gives

lim p(Oy) = p(Ag)-
Fix n so large that

(i) Y (k+1)[u(OF) - p(Ay)] < 1.

[k|<N

Since the Ay form a partition of X, the O} form an open cover of X. Let
@i be a partition of unity subordinate to this cover. Set fr = @i f; then
f =73 fr and moreover fi < (k+ 1)epk, whence I(fx) < (k + 1)el(or).
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Since 0 < ¢ < 1 and supp (¢x) C O}, we have I(py) < u(O}), whence
I(f) =D _I(fx) < > _(k+ 1eu(O}).

Using (ii),
I(f) < Z(k + 1)en(Ax) + e

Jram=%]

But f(x) > ke if x € Ay, whence

[ rdn =3 ket

Furthermore,

and therefore
I(f) S/fd/l'+f<1+ZH(Ak)>-
k

Since Ay is a partition of X, > u(Ax) = u(X). Thus

I(f) < /_fd,u.+6(1+,u(X)).

As € is arbitrarily small, we have proved (i).
Now, applying (i) to f* = —f, we obtain the opposite inequality to (i):
the two inequalities imply equality. O

2.4.6 Proof of the Radon-Riesz theorem (noncompact case)

Let X be a locally compact space which is countable at infinity. Let {H,,}
be the exhaustion sequence constructed in 1.0.3 and let u,, be the function
associated by Urysohn’s lemma with the pair (H,,—1, (HSE,)).

(i) Lemma. Let C(H,,) denote the functions defined and continuous on
H,,. For f € C(H,,), define uy,.f by

(U,m.f)(l‘) = f(.’L')’um(Jﬁ) Zf S Hml
(um-f)(x) =0 if ¢ Hp.

Then u,,.f is a continuous function on X.

PROOF. Only the behavior at the boundary of H,, must be checked. Let
zo be a point in the boundary of H,,; then u,,(z9) = 0 and there exists a
neighborhood U of z¢ such that |u,,(z)| < € if z € U. Hence

[(Um-f)(x)| < emax|f|.0
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(ii) Corollary. Let I be a positive linear functional on Cg(X). Set

Ln(f) = I(um-f), f € C(Hp).
Then I,, is a positive linear functional on H,,.

(iii) By the compact case of Riesz’s theorem, proved in 2.4.5, there exists
a measure W, defined on the Borel algebra By, of H,, such that

Im(f)=/fdum, Vf € C(Hp).

(iv) Let f € Cx(X); then there exists p such that

supp (f) C I%p.

Hence u,,.f = f if m > p and I(un,.f) = I(f), and thus

/ fdpm =I(f) if m>p.

(v) Let O be an open subset of X such that O is compact; then there exists

p such that O C ﬁlp.
Hence, letting

T(0) = {f € Ck(X) : supp (f) C O},

we have
pm(O) = sup I, (f), where f€T(0).
By (iv),
In(f)=1(f) if m>p,
whence

pm(0) =sup I(f) = pm(0) if mand m' > p.
(vi) The measures pym and pm: coincide on the Borel algebra By, if m,
m' > p.

PROOF. Let
Z ={A€Bu, : pm(A) = pm (A)}.

Let O4 be a decreasing sequence of open sets such that
NOq=H, and Oy C I%,,H.
Then pm(Oq) = pms(Oq) by (v). Hence

pm(Hp) = pims (Hp).
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Let B € Z; then, since B = H, — B,
/"'I”(B[‘) = HKm (HP) - um(B) = )um’(HP) - ﬂm'(B) = .um’(B(:)'

Hence B € Z implies B € Z.
(0]
Let G be an open subset of H,. Then there exists G' C H,4+1 such that G’ is

open in X and
G'NH, =G,
whence
G =1limG' N O,.
By (v).
(G N O0g) = o (G' N Oy).

Hence Z contains the open subsets of H,. Taking complements shows that Z
contains the closed subsets.

We now use 2.4.4(vii) (Lusin’s criterion) and 2.4.4(ix). Given a Borel set A
and an € > 0, there exist a closed set K and an open set O such that K C A C O
and pum(0) < pm (K) + €.

Since pm(O0) = pyn (O) and pim (K) = iy (K), it follows that

M"'/(K') S 'u‘"l'(A) < /L,—,,/(O) = lu""l(o) < Nm(K) + €,
/'L""(K') S llm(A) < M771(O) < llm(K) + €.

Hence
[m (A) — H"l'(A)' <e

Since € is arbitrarily small, pm(A) = o (A). O

(vii) Definition of Borel measure.
Let {H,,} be the exhaustion sequence defined in 1.0.3. For A € By, set

w(A) = lim pry2(AN Hy,).

By (vi).
Nm+2(A N Hm—l) = ﬂm+1(A N Hm—l)w
whence the inclusion AN H,,.1 C AN H,, implies that the sequence
{ttm+2(AN Hy,)} is increasing. Hence its limit exists and is finite or equal
to +oo.
We first prove finite additivity. Let Ay, Ay € Bx, A1 N Ay = (). Then,
setting A = A; U Ao,

ﬂm+2(A n Hm) - /Lm+2(Al N Hm) + ﬂm+2(A2 N Hm)~
Hence, passing to the limit,
1(A) = p(Ar) + p(Az).

To prove o-additivity, it suffices to show that p is continuous on increas-
ing sequences.
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Let By C By C ... C Bq, ..., where By € Bx, and set Bo, = UB,.
Suppose first that u(Bs) = +00. Let M be a positive real number; then there
exists m such that
(B N Hp) > M.

By (vi),
N(Boo NHy) = Nm+2(Boo N Hm)~

Since pm42 is continuous on increasing sequences, there exists ¢ such that
N"H‘z(Bq N H’") > ]\/[7

whence
m(Bg) > M.

As this is true for all M, lim p(Bg) = +o0.
We now consider the case u(Bo) = a < +00. Let € > 0 be given. There exists
m such that
a—¢€< (Bo NHn)<a.

By (vi), t(Boo NHm) = pim42(Boo N Hr,). Since pim+2 is continuous on increasing
sequences, we have

lim ,U,m+2(Bq N Hm) = Hm+2(Boo N Hm)
q

Hence there exists r such that
pmt2(Br N Hm) > pimy2(Boo N Hm) — €,
and thus p(B;) > p(B, N Hy,) implies that u(Br) > p(Bs) — 2¢. O

(viii) Representation formula.
Let f € Ck(X); then there exists m such that supp (f) C I?Im. By (iv),

I(f) = L fdimo.

m

But dym+2 is equal to du on H,,, whence

100 = [ a

(ix) Definition of the associated Radon measure.
Completing the measure space (X, Bx, i) yields a measure 7, called the
Radon measure associated with the linear functional I.

3 Regularity of Borel Measures
and Lusin’s Theorem

3.0.1 Hypothesis. We assume that the space X is locally compact, metriz-
able, and countable at infinity.
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3.0.2 Definition. A measure yu defined on a o-algebra B containing the
Borel algebra Bx of X is called regular if for every A € B and for every
€ > 0 there exist an open set O and a closed set F' such that F C A C O
and p(O — F) < e.

3.1 Proposition. Let X satisfy 3.0.1 and let p be a locally finite Borel
measure on Bx. Then there exists a Radon measure v such that p(A) =
v(A) for every A € Bx.

PROOF. Let f € Ck(X). Since the indicator function of any compact
set is integrable, the inequality |f| < M1k, where K = supp(f) and
M = max|f|, implies that f is integrable (see 1-7.4.3).

Hence a positive linear functional can be defined on Ck(X) by setting

1) = [ fdo

By the uniqueness theorem (2.3.4), the linear functional / determines
the measure; that is, if v denotes the Radon measure associated with the
form I by Riesz’s theorem, then

p(A) =v(A) forany Ae€Bx.O

3.2 Theorem. Let X be a locally compact space satisfying the hypothesis
of 3.0.1. Then every Radon measure u on X 1is reqular.

PROOF. If X is compact, regularity follows from Lusin’s criterion, 2.4.4(vii).

If X is only locally compact, let A be a measurable subset of X and let H,,
be the exhaustion of the space constructed in 1.0.3. Set A, = G,NA, where
Gn = (H, — H,—1). Using Lusin’s criterion on the compact set H, 1, fix
a closed set F,, and an open set O, of X such that

F,CH,y1, F,CA,CO,, and pO,—F,) <e™".

Note that F, is compact. Set O = UQ,; then O is open and O DO A.
Similarly, set F = UF,,. By 1.3.2, this union is locally finite (that is, any
compact set meets only a finite number of F},); hence F is closed. Clearly
FcAand p(O—-F)<e. O

3.3 Theorem. Let X satisfy the hypothesis of 3.0.1. Then any locally finite
Borel measure p on X is regular.

PROOF. By 3.1, p is the restriction to the Borel algebra of a Radon measure
v. Since v is regular by 3.2, a fortiori so is p. O

3.4 The classes Gs(X) and F,(X)

3.4.0 Definition. The class of subsets of X which can be written as a
countable intersection of open sets is called Gs(X).
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A countable intersection of elements of Gs(X) is in Gs(X).

The class of subsets of X which can be written as a countable union of
closed sets is called F,(X).

A countable union of elements of F,(X) is in F(X).
Clearly Gs(X) and F,(X) are subclasses of the Borel algebra.

3.4.1 Proposition. Let u be a reqular measure defined on the o-algebra B
of the locally compact space X. Then for every A € B there exist

FeGs(X) and @€ F,(X)

such that
dbCcACT and T -2)=0.

PROOF. By 3.0.2, we can find a sequence {F, } of closed sets and a sequence
{O.,} of open sets such that

F/, CcAcO, and u(O,—-F))<n '

Set

O, = QQSnO;

and  F, = Ug<n F,.
Then F,, C A C O,, and {O,, — F,,} is a decreasing sequence. Furthermore,
Oy — F, C O, — F), whence 0 = lim u(O,, — F,,) = limu(| (O, — F,)). Set
I'=1lim | O, and ® =lim T F,.

Then I' — & = lim | (O,, — F},), whence u(I' — &) = 0. Finally,

lim | O, € Gs(X) and lim 1 F, € F,(X).O

3.4.2 Corollary. Let pu be a regular measure defined on a o-algebra B on
X, let u' be the restriction of u to the Borel algebra Bx, and let i’ denote
the measure defined by extending y' to the completion Bx. Then Bx D B
and p equals the restriction of @' to B.

REMARK. Cf. 1-4.2.2.

3.4.3 Lusin’s theorem. Suppose that X is a locally compact space, v is a
reqular measure defined on the o-algebra B D Bx, and f is a B-measurable
function. Then for every compact set H and every ¢ > 0 there exists a
compact set K such that K C H, v(H — K) < €, and the restriction of f
to K is continuous.

PROOF. Set G, = {z : |f(z)| > n}NH. Then {G, } is a decreasing sequence
and v(G,) < 400, whence

lim v(G,) = v(NGy,) = 0.

Hence we can find m such that v(G,,) < 27 1.
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Considering f' = f1¢,, reduces the proof to the case of bounded f. In
this case, f is the uniform limit of a sequence {g,} of simple functions (cf.
1-6.4.1, of which we follow the notation). Let mq be such that | f(x)| < my
for all z. Setting

Jen={zeH: fz)€kn ' (k+1)n" 1]},
we may take

gn = an_ll,;k_". where —nmg < k < nmy.
k

Using the regularity of v, we can find a compact set Ky, such that

Kypn CJgn and Z’/(Jk.n — Kpp) <27 e,
k

Let V,, = Uk K n, where |k| < nmy.

Then V,, is a finite union of compact sets and hence compact. Further-
more, v(HNV,) < 27" le. Let W = U, VSN H.

The convexity inequality (I-3.3) gives

(7) v(W)<e and W NH=nNV,.

Set Vo = NV,,. Then V. is compact, whence

(i1) K}, =Va N Ky, is compact.
Moreover,
(#i7) Ky, isopenin V,

since K, NV, = Uz Ky, 5] < nimy.
By (iii), there exists an open subset €2 of X such that QNV,, = Kj , and
hence Kj, ,, = QN Vy; it follows that

(iv) Ky, isopenin V.

It follows from (ii) and (iv) that the indicator function of K, is contin-
uous on V.. This, with the fact that Jy, NV = Ki.n NV, gives

(v) The restriction of g, to Vo is continuous. Since g, converges uniformly
on V4 to f, the restriction of f to V. is continuous.
Furthermore, (i) shows that v(H — V) <e. O

3.5 Density theorem. Let X be a locally compact space satisfying the
hypothesis 3.0.1 and let v be a Radon measure on X. Then for every p,
1 <p < +4o0, Cx(X) is dense in LP(X,v).
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PROOF. Let {H,} be the exhaustion of X defined in 1.0.3 and let T; be the
truncation operator, defined in I-6.7, associated with this exhaustion. Let f € LP
be given. Then
(Tn)(f)(z) — f(z) forevery z€ X

and

Tnf = fI" < |fIP.

By the dominated convergence theorem (I-7.6),

ITnf = fliLe — 0.
Let m be such that

T f — flle <e.
Set fm = Twnf; then f,, is bounded by m and its support is contained in the
compact set Hm. Set n = (m™'e)?.

Let K be a compact set, depending on m, such that the restriction ¢,, of f,
to K is continuous and such that v(H,, — K) < g Let O be an open set such
that O O H,, and v(O — Hy) < 3.

By a theorem of Urysohn,' we can find u € Ck (X) such that supp (u) C O,

u(z) = pm(z) if z€ K, and wu(z) <m forall z.
On K, fm = ¢m = u, whence fr, —u = (fm — u)1kclo. Since | fm —u| < 2m,
1fm — ullty < 2m)Pp(0 N K®) < (2m)"(m~ )",
Hence ||fm — ul||zr < 2¢, and finally ||f — ul|zr < 3e. O

3.6 REMARK. The regularity of Radon measures allows us to approximate
LP functions by continuous functions, and measurable sets by open or closed
sets.

4 The Lebesgue Integral on R and on R"

4.1 Definition of the Lebesgue integral on R

We first consider Ck(R), the continuous functions on R with compact
support. The Riemann integral (see the Prologue) defines a positive linear
functional on Ck(R) by

1) = [ £t
Hence there exists by II-2 a Radon measure p such that
1) = [ ft)aute).

This p is called the Lebesgue measure on R, and functions measurable
in this sense are called Lebesgue measurable.

!See, for example, N. Bourbaki, General Topology (New York: Springer-Verlag,
1989), IX.4.2.
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4.2 Properties of the Lebesgue integral

We include here only properties specific to the Lebesgue integral. Its most
important properties are common to all Radon measures, and were estab-
lished in Sections 2 and 3 of this chapter.

4.2.1 Proposition. Let a. b€ R, a < b. Then
u(la,b) = pl(a,b) = b a.
PROOF. u((a,b)) = sup I(f) where 0 < f < 1 and supp (f) C (a,b). Setting

f=1 on [a+ 2¢b— 2,
f=0 if t<a+e or t>b—e

and f linear on [a + €, a + 2¢] and [b — 2¢,b — €], we obtain
w((a,b)) >b—a— 3e.
Hence, since € is arbitrary,
p((a.b)) = b—a.

The opposite inequality follows from the mean value theorem for the Rie-
mann integral. O

4.2.2 Theorem. Let O be an open subset of R. Then O is a countable
union of disjoint intervals:

(2) O = U(ag,br); and

(i1) wO) = > (bx —a).
PROOF. Let z € O and set
a(z) =sup{y:y <z, y ¢ O},
B(z) =infly :y >z, y ¢ O}.

Since O°¢ is closed, a(z) € O° if a(z) is finite and G(z) € O° if §(z)
is finite. It follows that (a(x),8(z)) C O and that there exists no open
interval which strictly contains («a(z),8(z)) and is itself contained in O.
Moreover, x € (a(z), 3(z)), whence

0= (a(2), B(x)).

€0

Define an equivalence relation on O by

z~z if (a(z),8(z)) = (a(z'),3(z")).
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Since every open interval in R contains at least one rational number, the
set of equivalence classes is countable and (i) follows. We obtain (ii) by
using the o-additivity of p and 4.2.1. O

4.2.3 Corollary. Every open set has strictly positive Lebesgue measure.

4.2.4 Theorem (Characterization of negligible sets). A subset E of
R is negligible with respect to Lebesgue measure if and only if, for every
€ > 0, there exists a sequence of intervals (ck,dx) such that

U(ck,dk) DFE and Z(dk —cg) <e.
k

ProOF. The sufficiency of the condition follows from 4.2.1 and the con-
vexity inequality (1.3.3). Its necessity follows from the regularity of Radon
measures (3.2) and from 4.2.2. O

4.2.5 Corollary. Let z € R and let A = {z}. Then p(A) =0.
PROOF. O, = (z — L,z + &) satisfies u(Oy,) < 2n7'. O

REMARK. We can summarize 4.2.5 by saying that a “point” of R has
Lebesgue measure zero.

4.2.6 Translation invariance

For fixed a € R, translation by the vector a is the mapping 7, of R into R
defined by

Tg 1T — T+ Q.

Proposition. Let B be a Lebesgue-measurable subset of R. Then 1,(B) is
Lebesgue measurable and u(r,(B)) = pu(B).

PROOF. It follows from the definition of the integral I in 4.1 that I(7,(f)) =
I(f), where (7,f)(z) = f(z — a). The uniqueness of the Radon measure
associated with a positive linear functional implies the result. O

4.2.7 Notation

By abuse of language, we write

/Rf(t)dt for /Rf(t)du(t).

We thus use the same notation for the Riemann integral and the Lebesgue
integral that extends it. Translation invariance is written

(i) /R f(t—a)dt = /R F(t)dt.

The vector space of Lebesgue-integrable functions defined on R will be
denoted by L!(R). The next statement follows from the translation invari-
ance of Lebesgue measure.
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(i) If f € LP(R), then 7,f € LP(R) and

||T{l.f”L1’ = “f”Lp. 1 < p < 400.

4.3  Lebesque measure on R"
4.3.1 Definitions and notation

To simplify notation, we begin by constructing Lebesgue measure on R?.
We denote by (R, A, 1) the real numbers equipped with Lebesgue mea-
sure ;1 and the o-algebra of Lebesgue-measurable subsets. Let (R, A, u1)
and (R, A, i2) be two copies of the measure space (R, A, u).
Let R* = R x R and let B denote the tensor product o-algebra :

B=A ® A.

Then B contains the Borel algebra of R? (I-2.4.2). Let p; @ po be the
product measure defined on B by 1-8.4.1.

Lebesgue measure on R? is the measure v obtained by completing pq & pso
(cf. I-4.2.3). The completion of B is the o-algebra of Lebesgue-measurable
subsets of R*. We denote by L'(R?) the space of Lebesgue-integrable func-
tions on R?.

If f € LY(R?), we write

fdv = // [(t1,ta)dtydts.
R? R?2
Then, by Fubini’s theorem (I-8.5),

/R2 f(t1, t2)dt dty, = /Rdtz [/R f(tl,tz)dtl} .

Lebesgue measure on R" is constructed recursively, by writing R"” = R x
R™"!. For f € L'(R™), the integral thus obtained is written as

ft,ta,. .., ty)dtydty ... dt,,

and Fubini’s theorem reduces the calculation of this integral to the calcu-
lation of n successive integrals on R.

4.3.2 Lebesgue measure on R" and the Radon-Riesz theorem

To simplify notation, we restrict to the case where n = 2. Let a positive
linear functional be defined on C'x (R?) by

(1) I(p) = /dtz [/ @(tl,tg)dtl} . @€ Ckg(R?).
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By the Radon-Riesz theorem, there exists a Radon measure p such that

I(p) = / pdp.
By the uniqueness part of the Riesz representation theorem,
p(A) =v(A) for every Borel set A.
Furthermore, since
v([-R,+R] x [-R, +R]) = 4R?,

Lebesgue measure is locally finite and hence regular by 3.2.
The measures p and v are complete regular measures defined on the Borel
algebra.

Lebesgue measure on R? may be regarded as the Radon measure associated
with ().
4.3.3 Translation invariance
This is proved as in 4.2.6, by using 4.3.2.

4.3.4 Proposition. Every open set in R™ has strictly positive Lebesgue
measure.

PROOF. We restrict to the case where n = 2. Let O be a nonempty open
set and let (t1,t2) € O. Then there exists e > 0 such that

Q:(tl—e,t1+€)X(tg—G,t2+€)CO.

The product measure of the square @ is the product of the measures of its
components (I-8.1(i)), whence

v(Q) =4 >0 and v(0)>v(Q).0

4.4 Change of variables in the Lebesque integral on R"

4.4.0 Some facts from differential calculus

Let O be an open set in R™. A mapping f = (f!,..., f") is said to be a
diffeomorphism if

(i) f(O) is an open subset O’ of R" and f is a homeomorphism of
O onto O’ (i.e. a bicontinuous bijection); and

(ii) f and g have continuous first partial derivatives, where g de-
notes the inverse homeomorphism. The Jacobian matriz of f is
the matrix

= , 1<i<n, 1<k<n.
f B <i1<n <k<n
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We then have the following composition law:

If f and h are diffeomorphisms for which the composition ho f = ¢ is
defined, then ¢ is a diffeomorphism and the Jacobian matrix of ¢ is the
product of the Jacobian matrices,

(iid) Jq = Jnl;.

In particular, J, = Jf_l.

Thus the Jacobian matrix of a diffeomorphism is invertible: det(J¢(z))
is a continuous function that is nowhere zero, and hence has constant sign
on a connected component of O.

4.4.1 Change-of-variables theorem

Theorem. Let O and O’ be open subsets of R" and let f be a diffeomor-
phism from O onto O'.

Let C (O') denote the continuous functions which have compact support
contained in O'. Then

0 [ e s@ide = [ o)as i oeCk(O).

REMARKS.

(ii) Since f is a homeomorphism, ¢ € Ck(O’) implies (¢ o f) €
Ck(0O). Since det(Js(x)) is a continuous function, the inte-
grands on both sides of (i) are continuous functions with com-
pact support and therefore integrable.

(iii) Using a partition of unity on O’, we can write ¢ = > ¢, where
the ¢, are supported in arbitrarily small open sets. It thus suf-
fices to prove the theorem for each ¢g. This means that we may
assume throughout that ¢ has sufficiently small support.

(iv) Functoriality. Suppose that f = g o h, where g and h are dif-
feomorphisms. If the change-of-variables formula is proved for
the diffeomorphisms g and h, then the result will hold for f in
view of the identity

|det Jf| = |det Jy| |det Jy|.

4.4.2 Lemma. The change-of-variables formula holds when n = 1.

PROOF. In this case, the formula becomes

/ o(f(@)|f(2)ldz = / p(a’)da.

Using (iii), we can reduce the proof to the case where the support of ¢ is
small enough that f’(z) has constant sign. By the mapping * — —z, this
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can be further reduced to the case f/(z) > 0. Then the formula is

[ etrens @i = [ owas

Set

F(t) /0 o(f(@) ' (@)dz,

f(t)
Gt) = / o(x')dx'.
f(0)

Then, differentiating the integrals, we obtain

G'(t) = o(f()f'(1),
F'(t) = o(f(t) ().

Hence F(t) — G(t) is a constant.
Setting ¢t = 0 shows that this constant is zero. O

4.4.3 Proof of the change-of-variables theorem

We proceed by induction on n. Assume that the result holds for m < n.
Writing z € R" in the form z = (£, y), where € R, y € R, set

h(z) = (€,v), where ¢ = f'(§,y), ¥’ =y, and
g(z') = (€,6(z"),  where 8= (f2(&Y), ....f(&Y))

The notation P(E ,y) means that £ has been replaced in this expression by
¢, by inverting the relation & = f1(&,y).

By the implicit function theorem, this inversion is possible in a neigh-
borhood of zg if

af!

But the fact that det J; # 0 implies that the column vector (gﬁ-) ch<
1<k<n

is nonzero, and we can renumber the coordinates so that (ii) holds. Thus
g(z') can be defined, and it follows from (i) that

f=goh.

Using 4.4.1(iv), it suffices to prove the theorem for g and for h. Next, we
calculate

[ o€ o den g,) dedy’
RxR"—1

By Fubini’s theorem, this equals

) /R ae’ /R (€Y (det Jy)dy'



86 II. Borel Measures and Radon Measures

Note that the Jacobian matrix J, has some row for which all entries are
zero except the diagonal entry, Wthh equal% 1.

Thus det J, = det Jo., . where Og =y — (&', y').

By the 1nduct10n hypothesis,

/ ¢(€'-y’)det(JeE,)dy'=/ p(&y")dy"
Rn—l . Rnfl

and substituting this into (iii) proves the theorem for the change of variables
defined by g.
It remains to prove the theorem for h. Note that, by Fubini,

(iv) / o(fH (€ ), y)det(Jy,)dEdy —/ dy/ Y€ y).y)det Jyde.

But det J,, = %%l and, by 4.4.2,

. oft [
/R P € 0)o) s = /Rv(n,y)dn.

The result follows by substitution into (iv). O

REMARK. This proof can be given the following geometric interpretation.
Let p : R" — R, where p is differentiable and Vp # 0 everywhere. Then
the volume element dvg» can be written locally as the volume element
on the hypersurface p = constant, “multiplied” by ”g.—’;”. The induction
hypothesis allows us to treat the change of variable on the hypersurface:
the other change of variable occurs in one dimension.

5 Linear Functionals on Ck(X)
and Signed Radon Measures

In Section 2 we studied positive linear functionals on Ck (X). We now drop
the hypothesis of positivity and substitute the more general hypothesis of
continuity.

5.1  Continuous linear functionals on C'(X) (X compact)

Throughout this section, X is a compact space. Then Ck(X) is the space
C(X) of all continuous functions. A norm is defined on C(X) by setting

Ifllc = max |f(z)].
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Convergence in this norm corresponds to uniform convergence. C*(X)
denotes the Banach space of continuous linear functionals [ on C(X); that
is, those for which there exists a constant a such that

LI < allflle-
o= suwp lL(£)] yields [1(H)] < [Ulc-Iflle-

flle<

Setting |||

5.1.1 Proposition. If! is positive, then | is continuous.

PROOF. Indeed,
=[Iflle < f(=z) < |Iflle
implies
—Ifllel1x) <U(f) < [ fllel(Lx),

whence

(4) 112

o =1(1x).0

5.2 Decomposition theorem
Theorem. Let X be a compact space and let | € C*(X). Then there exist
positive linear functionals It and I~ such that

5.2.1 Il=1t"—1" and
5.2.2 [Ule- =N lle- + 117

o
and such a decomposition is unique.
PROOF. For each nonnegative f in C'(X), let

H(f) ={ueC(X):0<u<f}
and let
(1) IT(f) =supl(u), where u€ H(f).

Let f1, fo > 0. Since uy € H(f1) and uz € H(f2), u1 +uz € H(f1 + f2);
hence H(f1) + H(f2) C H(f1 + f2).

We now prove the opposite inclusion. Let u € H(f1 + f2) be given. Set
v = min{u, f1} = %(u—l— fi — |u— fi|); then v € C(X), v € H(f1), and
w=u—v € H(f2).

Thus u = v+ w with v € H(f,), w € H(f2), and we have shown that

(1) H(fi + f2) = H(f1) + H(f2).
This implies
(i) (fi+ f2) =15 (f1) + 17 (f2),  fi,f220.

Any g € C(X) can be written as
(iv) g=g1—g2 with g1,92>0.

(For example, we can take g; = max(g,0).)
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Define
(v) IM(g) =1%(g1) — 1" (g2).

We will justify this definition by showing that the right-hand side is
independent of the choice of the decomposition (iv). Let

9=93—9s, 93,94 20.
Then g1 — g2 = g3 — g4, or g1 + g4 = g3 + go. Using (iii),
"(g1) + 17 (ga) = 1" (g3) + 1" (g2),

or
" (g1) = 1" (g2) = 1" (g3) — " (9),

which justifies definition (v).
It therefore follows from (iii) and (v) that

T(g+9g")=1"(9) +17(g).
Similarly, it follows from (i) that
T(af)=al™(f) if a>0, f>0.
Since 0 € H(f), we have [T (f) > 0 if f > 0, whence

(vi) I is a positive linear functional on C(X).

Setting I~ = [T — [, we have [~ € C*(X). Furthermore, let f € C(X),
f > 0. Then

7 (f) = (supl(w)) = I(f) = sup(i(u — f)), where ue€ H(f).

For f > 0, set G(f) = {v € C(X) : —f < v < 0}. Then the mapping
u — u — f defines a bijection of H(f) onto G(f); hence {7 (f) = supl(v),
where v € G(f).

Since 0 € G(f), " (f) > 0 and we have thus obtained the decomposition
5.2.1.

Let 1 denote the indicator function of the full set X; then, by 5.1(i),

c-x)=17(1) and [I7[lc-(x) =17(1).

There exist u,, € H(1) and v, € G(1) such that

1]

I*(1) =limi(u,) and [~ (1) = limi(v,).
It is straightforward to show that

1= + 17 lle- = lim(U(un) + 1(vn))-
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We have 0 < u, <1, -1 < v, <0, and -1 < up(z) + va(z) <1, or
un +vnllc < 1.

Hence
[1(wn + va)| < ||

C*,
and we have shown that
1l + 11 lles < Nile--

Since the opposite inequality follows from the triangle inequality, this
proves 5.2.2. O

5.2.3 Uniqueness of the decomposition

Let
(1) I = ¢ — ¢ where ¢, 1 are positive linear functionals.

Then
IY(f) = sup{p(u) — ¥(u)} with we H(f).
But
o(u) — Y(u) < p(u)
since u > 0, and thus

sup{p(u) — P(u)} < supp(u) = o(f).

That is,
I*(f) < o(f) for every f > 0.
Set ¢ — It = 6; then 8 is a positive linear functional, and it follows from (i)
that
(i1) e=1T+6 and Y =1 +6.

Then [pllc- = ¢(1) = I7(1) +6(1) = [[I*]lc- + [|Bllc+; similarly [[¢]lc- =
N lle= + 118l
Suppose that the decomposition ¢ — 1 satisfies 5.2.2; then

e =llelles +lIelics = 11Fllex + 11t llox + 2(16llc-.

Furthermore, by 5.2.2, ||l|lc= = ||I*||c* +||l” ||c*. Subtracting these two equations
shows that 2||6||cx = 0; thus § = 0. O

5.2.4 Corollary. Given | € C*(X), there are two Borel measures u; and
o uniquely determined by

I(f) = / fu — / duz  and
Il = p(X) + pa(X).

PROOF. By the decomposition theorem (5.2) and the Radon-Riesz theorem.
0O
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5.3  Signed Borel measures

In this section, we establish the equivalent of Theorem 5.2 for Borel mea-
sures.

5.3.1 Definition. A signed Borel measure on the compact space X is a
mapping
v:Bx — R

that can be written in the form

(i) v(A) = p1(A) — p2(A),

where p;, p2 are finite Borel measures. The decomposition (i) is clearly not
unique; adding the same Borel measure 6 to p; and py will not change the
mapping v.

5.3.2  Mutually singular measures

Two Borel measures v, and v are said to be mutually singular if there
exists a Borel set A € Bx such that

(7) v1(A) =11 (X) and w(A)=0.

The relation is symmetric, for A¢ carries all the mass of v» and has v;-
measure zero.

5.3.3 Theorem. If X is a compact space, there exists a bijection between the
continuous linear functionals on C(X) and the signed Borel measures. The de-
composition of a linear functional given in Theorem 5.2 corresponds to the de-
composition of the signed Borel measure as a difference of two mutually singular
Borel measures.

PROOF. We use 5.2.4. The only statement still needing proof is the equivalence
of the following two properties:

(1) e = p1(X) + p2(X).
(i7) p1 and p2 are mutually singular.

‘e first show that (ii) = (i). If p; and p2 are mutually singular, let A be an
element of Bx such that

pi(A) = p1(X) and  p2(A4) = 0.

Set
Y = lA — 1AC-
Then
/\pdm =pi1(X) and /wdpz = —p2(X),
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whence
[ otdon = am) = () a0
By Theorem 3.5, we can find f € C(X) such that
If —@llzr <€  where L' = LY(X, Bx, p1 + p2).

Set _
f(z) = f(z) if [f(2)l <15
f(x) = signum f(z) if [f(z)] > 1.

Then ||f — ¢|l11 < 2¢ and

[ o = o) > 10) + () ~ 2, where [ € 000 e <1

Conversely, we show that (i) = (ii). There exists a sequence {¢n} in the closed
unit ball of C'(X) such that {(¢n) — ||llc=. Set pn = o5 — 7 ; then

Upn) = [/widm +/<pndpz] - [/cp;dpl +/90de2} :

Since ;) < 1 and ¢;, < 1, the first term in brackets is at most equal to p1(X) +
p2(X) = ||l]lc~ by (i). Hence the convergence of I(¢n) to [|l]|c~ implies that

/widm — p1(X) and /wﬁdm — 0.
Since
1= ekl = [ = phion,
we conclude that
11— @illLiey =0 and lonllLip,) — O

Passing to a subsequence {¢n, }, we may replace the convergence in L'(p1) of
{1 -} by convergence p1-a.e. Passing to a new subsequence {®n, } reduces the
proof to the case where s = 50:1 satisfies

s converges tol pi-a.e;
s converges to 0 p2-a.e.

Let
A= {z:limyS(z) =1}
Then
Il —1allpipy =0 and |[[Lallpice,) =0,
or
p1(A) = p1(X) and p2(A) =00
5.3.4 Proposition. Let v be a signed Borel measure. Then there ezists a
decomposition
v=pi-p
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such that pY and pY are mutually singular. Such a decomposition is unique.
We set

vl = p} + 0
and call |v| the absolute value of v.

PROOF. Let a continuous linear functional on C(X) be defined by setting

Km=/ww=/Wm—/Wm

Then, by 5.3.3, the decomposition of v as a difference of mutually singular
Borel measures corresponds to the decomposition of | given by 5.2.4. This
decomposition exists and is unique by 5.2.4. O

5.3.5 Signed Radon measures

Given a signed Borel measure v on the compact space X, let p{ — p9 be its
canonical decomposition. Let B be the completion of the Borel algebra Bx
with respect to |v|. We define a signed measure on B by setting

w(B) = pi(B) - p3(B), VBE€B.

i is called the signed Radon measure associated with the signed Borel
measure v.

If X is a locally compact space, a signed Radon measure v on X is given
by two mutually singular Borel measures v; and vo. We set |v| = v; +1v» and
define the o-algebra B, by completing the Borel algebra Bx with respect
to |v|. Then, if A € B, and |v|(A) < +oo, we define v(A) = v1(A) —v2(A).

5.3.6 Important remark on terminology

Let X be a locally compact space. We denote by M (X)) the vector space of
signed Radon measures and by M*(X) the Radon measures on X; that is,
the measures associated with positive linear forms. In the usual terminol-
ogy, M(X) is called the space of Radon measures and M*(X) the space
of positive Radon measures. From the point of view of grammatical accu-
racy, this terminology is better than ours; a noun modified by an adjective
should describe a narrower class of objects than the noun alone. Our use
throughout Chapter I of the word “measure” to mean a positive measure
may justify our ignoring this rule now.

5.3.7 Complex measures

We denote by C'(X; C) the space of continuous complez-valued functions on
the compact space X. Separating real and imaginary parts, we can write

C(X;C) = C(X) & C(X).
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A C-linear functional [ on C(X;C) is determined by restricting Re(l) to
each summand of the direct sum. Since X is assumed compact, specifying
l is equivalent to specifying two signed Radon measures p; and po. Setting
lall = llpall + llp2ll and T = p + ipo, we have

17 +it) = [ s~ [ o+ [ fas + s

(1 + tpe is called the compler measure associated with this form.

5.4  Dirac measures and discrete measures
5.4.1 Dirac measures

Let X be a locally compact space X and let g € X. The Dirac measure
at xq is the linear functional

lzo(f) = f(x())v Vf € CK(XO)

This positive linear functional is represented by a Borel measure 6,, whose
completion is defined on the o-algebra P(X) consisting of all the subsets
of X. We have

050(A)=1 if zp€ A

bz0(A) =0 if z0 ¢ A.

5.4.2 Discrete measures

Now let z1,...,z;,... € X and o; € R. Suppose that, for every compact
set K,
(7) z laj| < 400, where Sk ={j:z; € K}.

JESK

A locally finite signed Borel measure v is defined by setting, for B € By,
v(B) = Zaj, where j € Sp={j:z; € B}.

This series is absolutely convergent by (i). Let v = Zaj>0 a;jby; and let

vo o= Za,<o —a;jbz,;. Then v+ and v~ are locally finite Borel measures.
Completing the Borel algebra with respect to |v| = v + v~ we recover
the o-algebra of subsets P(X); hence

[V|(C) < +o0  is defined VC € P(X).

In contrast, v(C) is defined only for those C € P(X) which also satisfy
v|(C) < 4oc.

We denote by My(X) the discrete measures on A and by M}(X) the
finite discrete measures: Mj(X) = M (X) N My(X).
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5.5 Support of a signed Radon measure

5.5.1 Definition. Let p € M(X). The support of u, written supp (u), is
the smallest closed set F' such that |[u|(F°) = 0. Let us show that this set
exists. Taking complements, finding F' is equivalent to finding the largest
open set H such that |u|(H) = 0.

The hypothesis 3.0.1 implies that X satisfies the second separability ax-
iom of 1-2.4.1. Therefore we can find a countable family of open sets O,
which forms a basis for the open sets. Set

S={n:|u/(0,) =0} and H =UpesO,.

Then H. as a countable union of sets of measure zero, has measure zero:
| (H) = 0.

Let O’ be an open set such that |u|[(O") = 0; then O = U,,e7O,, (since
{O,} is a basis for the open sets). The hypothesis |u|(O’) = 0 implies that
[1]/(Oy) =0, whence T'C S and O’ C H.

5.5.2 Proposition. Suppose that X is a locally compact space, f € Ck(X),
and pp € M(X). Then

/ fdp =0 if supp(f)Nsupp(u)=10.

PROOF. Let p = py — po with |p| = py + po, and let H = (supp (u))°.
Then f = 0 |ul-a.e., whence f = 0 a.e. y;, i = 1,2, which implies that
J fdp; =0, 1=1.2.

6 Measures and Duality with Respect
to Spaces of Continuous Functions
on a Locally Compact Space

6.1 Definitions
We consider the following three vector spaces of continuous functions on

X:

Ck(X). the continuous functions with compact support;
Cq(X). the continuous functions which vanish at infinity; and
Cyp(X). the bounded continuous functions.

(i) Recall that a function f is said to vanish at infinity if, for every ¢ > 0,
there exists a compact set K such that |f(z)| < € for z ¢ K. We have the
following inclusions:

(i1) Ck(X) C Co(X) C Cp(X).
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If X is compact, these three spaces coincide; if X is not compact, each
of the inclusions is strict. A norm is defined on Cy(X) by setting, for f €
Cp(X),

(i) Ifllc, =sup [f(z)], =eX.

This norm defines, by restriction, norms on Co(X) and Cg(X). The re-
striction of || ||¢, to Co(X) will sometimes be denoted by || [c,. We then
have

(i) lhllce = max [p(z)], =€ X.

The difference between (iii) and (iv) is that, although the supremum may
not be attained in (iii), it is attained in (iv) and gives a maximum.

6.2 Proposition. The space Cy(X) equipped with the norm (iii) is com-
plete. The space Co(X) is a closed subspace of Cy(X) and is therefore com-
plete. The space Cx(X) is a dense subspace of Cy(X).

PROOF. Only the third (and hardest) assertion will be proved here.?
Let {H,} be the exhaustion sequence of compact sets constructed in

1.0.3. Recall that H, C I?IHH. For each n, let ¢,, ¥, be a partition of

(0]
unity subordinate to the open cover consisting of the two sets Hp,1 and
HE. Then, since ¢, + 1, =1 on X,

pn =1 on H,.

Given h € Cy(X), set h, = hy,. Then h, € Cx(X) and ||h — hylc, =
|htmllc, — O as n — oc, since supp (¥n) C Hy;, and h(z) — 0 as z tends
to infinity. O

6.3 The Alexandroff compactification

Given a locally compact space X, we can associate with it a compact space
Y and a homeomorphism 1 of X onto Y with one point removed. Y is
called the Alezandroff compactification of X. The construction consists of
adjoining a point at infinity to X by setting ¥ = X U {oo}, where oo is
a new element. The complements of compact subsets of X are taken as a
system of open neighborhoods of oo.

Having thus defined Y from the set-theoretic point of view, we now construct

a topology on Y in a more precise way by specifying its closed subsets.

2For the first two, see for example E. Hewitt and K. Stromberg, Real and
Abstract Analysis, 3rd ed. (New York: Springer-Verlag, 1975).
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A subset F' of Y is closed if and only if it satisfies the following conditions:

(i) FNX is closed; and

(ii) if F N X is not compact, then oc € F.

Let p be the injection of X into Y; then, by (i), p~ ' (F) is closed in X if F is
closed in Y. Let H be closed in X: then, by (ii), H or H U {cc} is closed in Y.
Intersecting with {co}” shows that H is a relatively closed set in {c0}°. Thus p
is a homeomorphism of X onto {oo}‘.

The open neighborhoods of oo are the complements of closed sets that do not
contain oo; that is, the complements of compact subsets of X. It follows easily
that the topology of Y is Hausdorff.

We now show that Y is compact. Let O, be an open cover of Y. There exists
Yo such that oo € O,,; hence there exists a compact set K such that O,, = K°.
The sets O, N K form an open cover of K. Let O,, N K, ..., O,, N K be a finite
subcover. Then O,,, ..., O,, form a finite subcover of Y.

6.4 Proposition. Let X be a locally compact space and let Y be its Alexan-
droff compactification. Set

V={feCY): floo) =0}
For every function f € V., let f denote its restriction to X. Then
f=f
is a linear mapping which is an isometry of V onto Co(X).

PROOF. Let f € V: then the restriction f of f to X defines an element
fe Cy(X). Furthermore, since f is continuous at oo, for every € > 0 there
exists a compact set K such that |f(z) — f(oo)| < € if x ¢ K. Hence
f € Co(X).

Conversely, let h € Cy(X). Then h can be extended to Y by setting
hi(oc) = 0 and setting hi(x) = h(z) if z € X. Since h € Co(X), hy is
continuous at the point oo and hence continuous everywhere. O

6.5 The space M*(X)

(i) We denote by M!(X) the set of signed Radon measures v on X such
that |v| is finite, and define a norm on M!(X) by setting

Wl = / dly] = [v](X).

Moreover, for every Borel set A of X, v(A) = v1(A) —v2(A) is well defined.
(See 5.3.5.)

(ii) Proposition. Let Y be the compactification of X and let
W={veMY):v({c}) =0}
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Let a mapping v — U
W — MY(X)

be defined by setting
v(A)=v(A) VA€ Bx CBy.
This mapping is an isometric bijection of W onto M*(X).

PrOOF. It suffices to note that every B € By can be written either as
B = AU {oo} or as B = A, for some A € Bx. In the first case, the
additivity of v gives v(B) = v(A) + v({oo}) = v(A) since v({occ}) =0. O

6.6 Theorem. M!(X) is the Banach space dual of Co(X).

PRrROOF. With the notation of 6.4, Co(X) >~V C C(Y). Let | € C*(Y);
then its restriction to V defines a continuous linear form on V. By the
Hahn-Banach theorem, every linear functional on V' can be written in this
way. Thus

(V)" ~C*(Y)/H,

where H is the space of linear functionals which vanish identically on
V. Since V has codimension 1, H has dimension 1 and is therefore the
vector subspace generated by 6, the Dirac measure at infinity. But, in
the notation of 6.5(ii), W ~ M(Y)/H, whence (Co(X))* ~ M(Y)/H ~
W ~ M!'(X). All these identifications are isometric. In particular, for every
p € MY(X),

sup [ = .0
Ifllce <1
6.7 Defining convergence by duality

The following three spaces of continuous functions are associated with a
locally compact space X:

Ck(X) C Co(X) C Cy(X).

Convergence in M(X). A sequence {u,}, pun € M(X), is said to converge
vaguely to pp € M(X) if

(4) /fdun — /fduo, Vf e Cx(X).

Convergence in M'(X). Given a sequence {v,}, v, € M(X), we have
two new concepts of convergence.
vy, is said to converge weakly to vy if

(’LZ) /hdl/n — /hdl/o, Vh € C()(X)
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v, is said to converge narrowly to vy if
(ZZZ) /kdi/n — /k‘dl/(). Vk € Cb(X)

Since M'(X) C M(X), vague convergence can be defined on M!(X) as
well. Thus M (X) is provided with four notions of convergence, which
imply each other according to the following diagram:

(convergence in norm) = (narrow convergence) = (weak convergence) =
(vague convergence).

6.8 Theorem. Let ju,, € M'(X). Consider the following statements:
(i) {un} converges weakly.

(i) {pn} converges narrowly.
(iii) There exist a constant ¢ and a dense set D C Cy(X) such that

lnllarr <c¢ and /gdu.,,v converges for every g € D.

(iv) For every € > 0, there exists a compact set K such that
lun|(K€) < € for all sufficiently large n.

(v) Each p, 1s positive, {pn} converges weakly to p, and [ dp, —

[ du < +0c.
Then
(iii) < (1),
(i) and (iv) < (i),
(v) = (ii).

REMARK. To simplify the exposition, we prove only the direct implications,
which are the easiest; these are practically the only ones used in what
follows.

PROOF THAT (iii) = (i). The family of linear functionals on Cy(X)

L) = [ ru

satisfies

L (f = £ < ellf = Fllco-
It is thus an equicontinuous family. Since it converges on a dense subset
D, by Ascoli’s theorem? it converges on all of Cy. Let I (f) = lim I, (f).
Using 6.6, we find that I is defined by a Radon measure o, € M (X)
and that {u,} converges weakly to pioc. O

3See Bourbaki, General Topology, X.2.5.
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PROOF THAT (i) AND (iv) = (ii). Let f € Cp(X). Let K be the compact
set determined by (iv), and let ¢ denote a function with compact support
such that p(z) = 1if x € K. Then f = fyp + u, where supp (u) C K¢

hence
/ Fdpn = / Fodin + / el

By (i), the first integral converges to [ ¢ fdpso, where duo is the weak
limit of {du,}. Moreover,

[ e

PROOF THAT (v) = (ii). It will suffice to prove that (v) implies (iv). Given
€ > 0, let K be a compact subset of X such that u((K°¢)) < e. Let f be a
function with support contained in K such that 0 < f < 1 and

< Jlullo, lual(K°) < €|l f]1.0

/ fdu > llull €.

Let ng be such that, if n > ng,

I/dun—/du|<e and ‘/fd,un—/fdu‘<e.

12 (B) < | - / f ditn, whence 1, ((K%) < 3¢ if n > ng.

Then

0O

6.9 Theorem. Let X be a locally compact space and let My ((X) denote
the finite linear combinations of the Dirac measure on X. Then, for any
p € MY(X), there exists a sequence {n}, pn € My ;(X), such that {u,}
converges narrowly to p.

PROOF. Let {©n} be an increasing sequence of functions with compact support
such that 0 < ¢ < 1 and limy, = 1. Then |pnp — p|lps1 — 0 by Lebesgue’s
dominated convergence theorem. Hence it suffices to prove the theorem when p
has compact support K. Let {O, ; : j € [1, sx]} be a finite cover of K by balls of
radius +. Let Api =O0nj, Anp = Opnan 05 1, and set A, 4 = A, N K. Then
each A, 4 has diameter < 1 and the A, 4 form a partition of K. Restricting to
Anq # 0, choose Tp g € Ap g.
Wn is constructed by setting

i =) p(Ang)be .
q
Let f € Cy(X); then

/fdu=Z/A f dp.

n.,q
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Since f is uniformly continuous on the compact set K, there exists a sequence
{nn} which tends to zero as n — oo and satisfies

3=

[f(@) = f@) <nn if d(z,2') <

Hence

[ et = 1) [ an gt + o),
where [6,| < 1. Summing over g gives

‘/fdu—/fdun

< |pl(K).O
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Fourier Analysis

Introduction

Fourier analysis can be illustrated by analogies from optics. Given a light
beam, the goal of spectral analysis is to determine the monochromatic
beams it contains; that is, the beams of the form exp(m%t). Once a spec-
tral analysis has been carried out, one can ask whether the analysis is
exhaustive: is all the energy of the beam really concentrated in the band of
frequencies where the spectral analysis was done? One can also ask whether
the beam can be reconstructed from its monochromatic components: can
spectral synthesis be performed?

It is well known that quantum mechanics determines the possible energy
levels of a system as the eigenvalues of a hermitian operator defined on
a Hilbert space H. More generally, given a system of pairwise-commuting
hermitian operators, the eigenvalues of the system are the possible values
of the associated “observables”.

In the general setting of spectral theory, the problems of spectral analy-
sis, conservation of energy, and spectral synthesis remain completely mean-
ingful. Taking the space L2(R") as a Hilbert space H and the hermitian
operators generated by the translations as a family of operators, one nat-
urally recovers Fourier analysis as a special case; what is more surprising
is that general spectral theory can be obtained as a classical theorem of
Fourier analysis, Bochner’s theorem. This will be done in Appendix L.

Since differentiation operators on LZ2(R"™) appear as limits of translation
operators, Fourier analysis realizes their spectral decomposition as well.
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Thus partial differential equations with constant coefficients are subject to
the methods of real Fourier analysis (or complex Fourier analysis, but we
will not pursue this point).

Studying the domains of definition of the Laplace operator and its iter-
ates in L*(R") leads to the construction of Sobolev scales, a theory that
is stable under local diffeomorphisms and thus well suited to the local the-
ory of partial differential equations with variable coefficients. In dealing
with the theory of distributions, we use the approaches of Sobolev and
Schwartz simultaneously. The chapter ends with the local inversion of el-
liptic operators with variable coefficients. by means of Calderon’s theory of
pseudo-differential operators.

1 Convolutions and Spectral Analysis
on Locally Compact Abelian Groups

1.1 NOTATION. Let G be an abelian (commutative) group . The group
operation will usually be written additively:
(91.92) = g1 + g2

With this notation, the identity element will be denoted by 1 and the
inverse of g by —g.

A locally compact abelian group is an abelian group which is given the
structure of a locally compact topological space compatible with the group
operation. That is, the mapping from G x G to G defined by
(1) (91:92) — 91 — g2

is continuous. It can be shown that a metrizable group G has a translation-
invariant metric d; that is, d satisfies

(1) d(go+9.90 +9') = d(g.9").

1.2 Examples
1.2.0 The integers Z form a group under addition. Given the distance de-
fined by d(n,m) = |n — m|, they form a locally compact group.

1.2.1 R", with vector addition, is a locally compact group.

1.2.2 The one-dimensional torus

Let
T={zeC:|z|=1}.
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T is the set of complex numbers of modulus 1. (From the set-theoretic
point of view, T is a circle.) T is given the group operation defined by
the multiplication of complex numbers. If 21,20 € T, then 212, € T and
27 ! — %, € T. Thus T is an abelian group; when endowed with the topology
induced by C, it is compact.

1.2.3 The n-dimensional torus

We denote by T" the product of n copies of T, endowed with the product
topology and the product group operation.

1.2.4 A homomorphism from R onto T

With 6 € R, we associate the element
u(f) = e € T.

Then u(0 + 6') = u(@)u(d'), i.e. u is a homomorphism of R onto T. The
kernel of u is _
u” (1) = {6 :e? =1} = 27Z,

where Z is the subgroup of R consisting of the integers. Let C(T) denote the
functions defined and continuous on T and let Cp(R) denote the bounded
continuous functions on R. Let u* be the map from C(T) into Cp(R)
defined by

(u"f)(0) = f(u(0)), VOeR.

Then the image of u* consists of those functions h € C,(R) that are periodic
with period 27; that is, functions satisfying

h(6 + 27) = h(0).
1.2.5 A homomorphism from R" onto T"
With z = (z1,...,z,) we associate
v(z) = (e, ... etm).
The kernel of v is 27Z™. The operation
frofov=1'f

maps C(T") onto the n-fold periodic functions on R"; that is, functions h
satisfying
h(z +y) = h(z), Yye (27Z)".

1.3 The group algebra

M'(G) denotes the Banach space of signed Radon measures on G which
have finite total mass.
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1.3.1 Discrete measures

Let 04 denote the Dirac measure at the point g and let
+oc
M}(G) = {ﬂ €M G):p= Biby,. where > |B|< +oo} .
k=1

1.3.2 Convolution in M (G)

The convolution of two Dirac measures é,, and ¢4, is defined by

é_(ll * 6!12 = é_(]1+_<12'

That is, the convolution product is the Dirac measure at the point g; + go.
This definition is extended to Mj(G) by bilinearity. Given p = Y Bib,,
and p' = 37 Bi.oy in M, we set

poxp = Z 3k.ﬁ;‘syk+y;’
k.s

Note that the convolution product is commutative, associative, and bi-
linear:
poxp' =,
(o) g = s (p' % 1),
(u+v)ysp =pxp +vsp.

Moreover,
i 1) < D 188 = (Zw) (ZWJ) = {lull 11
k.s k s

(Strict inequality can occur only if gx +¢., = g +g.,, with (k,s) # (K, s').)
We would like to extend the convolution operator from M}(G) to all of
M! by an explicit formula realizing this extension. Let Co(G) denote the
continuous functions on G which vanish at infinity.

1.3.3 Fundamental lemma. Let u, ' € Mj(G) and let p = p*p'. Then

[ 1ot = [ [ @+ dutrdi ). v € GolG).
G GJG
PROOF. The right-hand side, which we denote by I/, can be written as

I1="" f(gk + 9;) Bk i

k.k’
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Grouping together all terms such that gi + g, = gj», we obtain
=S5 X G = [ Fde).
gx+9,,=9.

1.3.4 Definition of the convolution product on M!(G). Given v, V' €
M'(G), we define a linear functional on Cy(G) by setting

- /G /G f(z + y)du(z)dv (y).

This integral converges, since

e /G /G F@+ )] ldv(@)] 1/ )] < Ifllcy /G /G dr@dy,

where A = |v|, A = |v/|. By Fubini,

/ / dA® AN = NC)N(G) = IIllare [/ lars.
GJG
and hence

(4) O < I o) 1w lae 1V arr-

Thus [ is a linear functional on Cy(G) which is continuous in the norm
topology. By 11-6.6, there exists a measure o € M*(G) such that [ fdo =
I(f). We set 0 = v x 1/, and call o the convolution product of v and v/'.

1.3.5 Theorem (Properties of the convolution product). Let G be a
locally compact group and let M'(G) be the Banach space of finite Radon
measures on G. The convolution product is defined on M'(G) by the for-
mula

(@) / F(2)dA(z / / f(@ +y)du(@)d'(y), Vf € Co(G),

where v, V' € MY(G) and A\=v V.
It has the following properties.

(i) v« < vl 11/

(441) vV =V xv  (commutativity)

(iv) (vx ) x V' =vx (V' xV") (associativity)
(v) (w+V)*xv" =vxv +vxv"  (linearity)
Furthermore,

(vi) if {vn} and {v]} converge narrowly to vy and v, then v, xv,, converges
narrowly to vy * 1.
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PRrROOF. Formula (ii) follows from 1.3.4(i). In order to prove (vi), note that
the narrow convergence of v, and v/, and Fubini’s theorem imply that
vy, @ v}, converges narrowly to vy ® 1. Let f € Cp(G) and set u(x,y) =
f(z +y). Then u € Cp(G x G), and

lim/ u dv, ® dv), = / u dvy ® dy,
GxG GxG

can be written as

hm/ /f(1+y)d1/,l(:c @ dv, (y /(/f T+ y)dvo(x) ® drg(y),
Vi € Cy(Q). ,

Thus (vi) is proved.

The algebraic properties (iii), (iv), and (v) can be proved by passing to
the limit and using (vi), since these properties hold on M}(G) by 1.3.2. By
11-6.9, M}(G) is dense in the topology of narrow convergence on M(G).
(Or this could easily be proved directly.)

1.3.6  Support of the convolution product

If F} and F), are subsets of G, we set

Fi+F,={9:9=gq1 +9g2 with g¢; € F;}.

Proposition. Let vy, v € M*(G). Then supp (v1*v2) C supp (v1) + supp (v2).

PROOF. /@(:E + y)dvy (z)dve(y) = 0 if ¢ is zero on supp (v1) + supp (v2).
O
Equality holds if both measures are positive.

1.4 The dual group. The Fourier transform on M*!
1.4.1 Characters

Let G be a locally compact abelian group and let T be the multiplicative
group of complex numbers of modulus 1 considered in 1.2.2. A character
on G is a mapping

x:G—T

such that

(i) x is continuous, and
(ii) x is a homomorphism: x(g + ¢’) = x(g9)x(¢’)-
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1.4.2 The dual group

The set of characters of G is denoted by G, and is given a group structure
by defining the product x3 of two characters x; and x2 as follows:

x3(9) = x1(9)xz2(9), Vge€G.
The inverse x4 of x; is defined by the formula

1
x4(9) = xa(g) = e

Thus G is an abelian group. The identity element is the trivial character
Xo defined by

Xolg) =1, VgeG.
1.4.3 The Fourier transform on M*(G)

Given 1 € M'(G), we assign to it a function defined on G by

u(x) = /G x(9)du(g)-

i1 is called the Fourier transform of p.

1.4.4 Fundamental theorem (Trivialization of the convolution
product). Let u, v € MY(G). Then

fxv = [iv;

that is, the Fourier transform maps the convolution product of measures to
the usual product of functions.

PRrROOF. Let p = pu* v. Then
/G x(2)dp(z) = /G /G x(& + y)dpu(z)dv(y)
/ / x(@)x(v) dua)dv(y)
GJG

([x@an@) ([ xwavin)

HO)P(x).0

The first equality follows from 1.3.5, the second from the identity x(z+y) =
x(z)x(y), and the third from Fubini’s theorem.

Il

Il

Il

REMARK. Let 8y denote the Dirac measure concentrated at 0. Then
o) =x(0) =1, Vxed.

Moreover,
bo*xp=p, YpeM(G)
that is, &y is the identity element of the algebra M!(G).
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1.5 Invariant measures. The space L'
1.5.1 Translation-invariant measures

A measure y € M!(G) is said to be translation invariant if

(i) /&@+%mmm=/}mmmw,v%ec

1.5.2 Proposition. Suppose that p satisfies (i) and that G is compact.
Then

(i) i(x) =0 for every nontrivial character.

PROOF. Let x be a nontrivial character. Then there exists g9 € G such
that x(go) # 1. Condition (i) can be written in the form

(iid) Bgy * 1 = 1.

(iv) Since G is compact, u(G) < oo and thus g € M!(G). Under these
conditions, 1.4.4 can be applied:

(690 * 1) (X) = 890 ()E(X) = x(90)A(xX)

whence
x(g0)i(x) — A(x) = 0 = fi(x) = 0.0

1.5.3 Corollary. Suppose that G is a compact group, u is a translation-
invariant Radon measure on G, and L*(G; 1) is the associated Hilbert space.
Then any two distinct characters of G are orthogonal. If the measure p is
also normalized by the condition

/du:l.

then the characters of G form an orthonormal system.

PrROOF. Given xi, x2 € 6’, we evaluate

(x1lx2)r2 = / x1(9)x2(9)du(g)-
— G
x1(9)x2(9) = x1(9)(x2(9)) ™" = x3(g),

where xs3(g) € G. By 1.5.2, the integral J x3(g9)du(g) is zero if x3 is not
identically equal to 1, that is if x; # x2. Finally, if p is normalized,

HM@ZLM@E@W@=A@@=M
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1.5.4 Haar’s theorem. Let G be a locally compact abelian group. Then
there exists a translation-invariant positive Radon measure py on G, and
this measure is unique up to a multiplicative constant.

REMARK. If yg is an invariant measure and c is a positive constant, it is
clear that cpp is an invariant measure.

We assume without proof this general theorem of Haar, and restrict
ourselves to constructing invariant measures in the special cases of the
groups R, T, and Z.

1.5.5 Examples of Haar measure

(i) Counting measure on Z

Let Z be the set of integers. Consider the measure pg such that
wo({n}) =1 forevery n€Z.

Then pg is translation invariant.
(ii) Lebesgue measure on R

Let R be the additive group of real numbers. The Lebesgue measure 1
is translation invariant (II-4.2.6) and hence a Haar measure.

(iii) Haar measure on T

Let ¢ : R — T be defined by setting
() = €.
Let a mapping o : T — R be defined by
o(¢) = arg ¢, where arg ¢ € [0,27).

Then o(¢) is a Borel mapping from T into R. Set

1

vo(A) = %NO(U(A));

then v is a Borel measure on T. Moreover,

2 L do
/ fdyy = f(e®)y— and /dz/o =1.
T 0 27

Lemma. The measure vy is translation invariant.

PROOF. Let 6y € [0,27) and set

2m Oo+27 2m 2m+6
) do o L d) o
o= [ (o) [ ey B T
o 0 ( )271' 0o f( )27T 9 2

us
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Setting A — 27 = u in the last integral yields

Go+27 o,
0 L dA o - du
i 2 — uy 27
L reng = [ e,
whence
/f dI/() :19“.D
T

Uniqueness of the Haar measure in (i) is clear. For case (iii), it will be
proved in 2.2.8.

(iv) The product structure

The measures on Z", R", and T" are the products of the Haar measures
on each factor.

1.5.6 Notation

The Haar measure of the group G will be denoted by dg. If G is locally
compact, this measure is defined up to a normalizing factor. If G is compact,
the factor is chosen so that G has measure 1.

1.6 The space L'(QG)
1.6.1 Identification of L'(G) with a vector subspace of M!(G)

We denote by L!(G) the space of functions integrable with respect to Haar
measure on G, and define an injection

j: LYG) — MYG)
by associating with the function f € L!(G) the Radon measure
(4) 1y = f(g)dg.

1.6.2 The convolution product on L'(G)

Proposition. Let f, h € L'(G) and let yuy and py, be the Radon measures
associated with them by 1.6.1(i). Then there exists k € L'(G) such that

(2) pr*pn =k (LY(G) is a subalgebra of M*(G)).

k is defined by

(id) Koo) = [ oo - 9)htg)dg = [ hian — 9)(a)ds

where the two integrals converge almost everywhere in gy with respect to

Haar measure. We write

k= f=xh.
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(iii) REMARK. Since the convolution product on L'(G) is the restriction of
the product on M1(G), it satisfies the identities 1.3.5(ii) to (v).

PROOF. Let ¢ € Cy(G); then
(s tig % pn) = /G /G g1+ 92)f(91)h(g2)dg1dga.

Using Fubini’s theorem yields

(w,uf*m:/ch(gz)dgz [/GsO(gl +g2) f(g1)dg1 | -

Set g1 = g3— g inside the brackets. Since dg; is invariant under translation,
dg, = dgs for fized g2, whence

(@, g * pn) z/ch(gz)dgz VG @(93)f(9:5—92)d93- :

Using Fubini again, we obtain

(s g * fan) =/G<P(93)d93 UG h(92)f(93—g2)d92-

d

Fubini’s theorem implies that the integral in brackets converges for almost
every gs and is an integrable function k € L!(G). We have thus shown that

(0 1 * piz) = / (g3)k(gs)dgs. 0

1.6.3 The Fourier transform on L'

The Fourier transform on L! is obtained by restriction from the Fourier
transform on M*! and thus is written

(i) fx) =/Gf(g)x(g)dg, vx € G.

Theorem 1.4.4, on the trivialization of the convolution product, gives by
restriction

(i3) Fxh(x) = FOORX).

1.6.4 Bessel’s inequality. Let G be a compact abelian group and let
f € L?(G). Then f € LY(G) and

1£12200) > S 1FOOI.

xea
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PROOF. Since u(G) < +oc, 1-9.6 implies that L'(G) D L?(G). Moreover,

Let S be a finite subset of G, let Vs denote the vector subspace generated
in L?(G) by {x: x € S}, and let fs denote the orthogonal projection of f
onto Vs. Then f = fs+ f — fs, where f — fs is orthogonal to fg. Hence

1flIF2 = I1fslze + If = fslli2

and therefore
1172 = I £s]I72-

But it follows from 1.5.3 that

fs =Y x(fl)=>_ F(x™Y)x and

XES XES

Ifsl3: =" 1F(xHIP.0

XES

1.7 The translation operator
1.7.1 The translation operator on LP(G)

Given a function f defined on G and a fixed gy € G, we denote by 7, f the
function defined by

(1) (790)(9) = f(g = 90)-

By the translation invariance of dg, f € L?(G) implies (7, f) € LP(G), and
moreover

(1) g fllLe = 1 fllLr.
Furthermore,
(’iii) Tgr ©Tgy = Tgi1+ga-

We summarize the last identity by saying that g — 7, is a representation of
G in LP(G); that is, the mapping is a homomorphism of G into the group
of linear automorphisms of LP(G). We define the translate of a set A by an
element gy of G to be 14,(A) = A + go.

If uy is the indicator function of the set A (usa(z) = 1 if 2 € A and
ua(z) =0if z ¢ A), then 74, (ua) = ur (a).

1.7.2 Fundamental theorem (Trivialization of the translation op-
erator on L!(G) under the Fourier transform). Let f € L'(G). Then

Tood () = x(90)f(x) Vx € G.
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PROOF.
rof (X / £(9 - go)x

The change of variables g — g — gg = ¢’ leaves the Haar measure invariant:
dg = dg’. Making this change of variables gives

/fg 90)x(g dg—/f x(g' + g0)dg" = x(g0) /f x(g')dg'.0

1.7.3 Continuity of the translation operator

Let Ck(G) denote the compactly supported continuous functions on G,
with the norm

I fllcx = max|f(g)l, g € G.

Continuity theorem. (i) Let f € Cx(G). Then the mapping from G to
Ck(G) defined by g — 14f is uniformly continuous.

(ii) Similarly, let uw € LP(G), where 1 < p < +00. Then the mapping from
G to LP(G) defined by g — Tqu is uniformly continuous.

PROOF. (i) Since f is continuous and compactly supported, f is uniformly
continuous. Given € > 0, there exists 7 such that

If(g1) — f(g2)l <€ if d(g1,92) <n.

Hence

790 (£)(9) =747 (f)(9)| = | f(9—90) = f(9—9g0)| <€ if d(g—g0,9~95) <.
But it follows from the invariance of the distance under translation (cf.
1.1(ii)) that d(g — go,9 — 9¢) = d(go, g4), whence
1790 (f) = 79y (Hllc, <€ if d(go,g0) <n.O
(ii) We now consider the case where u € LP. Since p < +o0, by 1I-3.5 there
exists f € Ck(GQ) such that ||f — u» < §. Let us write
To — Tgu = Tgf — Tg [+ Tg (f —u) — To(f — u).
Using 1.7.1(ii),
€
I7e(f = W)llzr = If = ullze < 3,
whence 9
ITgu — TgrullLe < 3¢ +llrgf = 79 fllLe-
Let A = supp (f). Then
supp (7gf — 7g' f) C 74(A) U 74 (A),
meas (supp (74 f — 7¢' f)) < 2 meas (A),
g f — T fllLr < l7gf — 79 fllc, (2 meas (A))l/p-

The right-hand side of the last inequality tends to zero as d(g,¢’) — 0 by
the first part of the theorem. O
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1.8 Ezxtensions of the convolution product

In this section, we give other cases where formula 1.6.2 converges.

1.8.1 The convolution product and the dual pairing

Let f denote the function defined by

f(g) = f(=g).

Formula 1.6.2(ii) can be written formally as

(i) k(go) = (o f 1) = (f. 7, h).

Lemma. Let f € LP(G) and h € LY(G), where 1 < p < +occ and p and g
are conjugate exponents. Then, for every gy € G, the integral

(i4) / f(90 — 9)h(g)dg

converges and defines a function k(go) which is uniformly continuous and
bounded and which satisfies

(iid) IEllc, < 1 f e llRliLe-

PROOF. By symmetry, we may assume that p < g; then, since p and ¢ are
conjugate, 1 <p < 2.
Using (i), we have

k(g)] = [(rg f )| < g fllzellhlle = 1 fller 1] 2o
and moreover
Ik(g()) - k(gl)l = |<7—yuf_ T!hf'h>| < HTgnf_ 7-{11f~‘||L7’||h||L‘7'

Since p < +oc, it follows from 1.7.3(ii) that the first term tends to zero
when d(gp,g1) — 0. O

1.8.2 Theorem (Action of M!(G) on LP(G) (1 < p < +00)). Let
pu € MYG) and let f € LP(G). Then the integral

(i) h@w=/ﬂ%—www>

converges almost everywhere in gy with respect to Haar measure and defines
a function in LP. Furthermore,

(i) hllee < I llze liallarr-
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PROOF. Let f' = |f| and let p’ = |u|. Let w € L9, u > 0, and consider the
double integral

I= //f'(go — g)u(go)dgo du'(g).

Choose a Borel representative of the equivalence class of f in LP(G). For
this fixed choice, f'(go — g) is a Borel function and hence measurable with
respect to the product measure dgo ® du(g). Thus Fubini’s theorem can be
applied once we have shown the convergence of

/du’(g) [/ f'(go — g)u(go)dgo | -

By 1.8.1, the integral in brackets is convergent and bounded above by
Ifllzellw)l e, whence

(4id) | < Wl ae N llall o

Letting u equal the indicator function of a compact set K, it follows from
Fubini’s theorem that the integral (i) converges dg-almost everywhere on
K. Since K is arbitrary, (i) converges dg-a.e. on G. Let h(g) be the function
thus obtained. By (iii),

[ Morutords| < b lusliuler, e 15

If p > 1, then ¢ < 400 and we define a linear functional on L(G) by

ttw) = [ hlg)u(g)d.
This form is bounded, since |I(u)| < C|lu|/Lqa. By the duality theorem (IV-

6.3), it follows that h € LP. If p = 1, take u(g) = sign(h(g)) if h(g) # 0 and
u(g) = 0 otherwise. Then (iii) implies that

/ Ih(9)ldg < lullans | fll: < +oc.
Thus h € L!.

1.8.3 The translation operator as a convolution operator

Note that if u = é,,, then

g

/ F(g0 — 9)du(g) = Flgo — a1) = (70 F)(g0)-
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In particular, 79 f = f. Thus the action of M1(G) on L'(G) is a general-
ization of the translation operator. More generally, if p € M} (cf. 1.3.1),
then o = 3" Grb,, and

/f(go —9)du(g) = (Z ﬁkTgkf) (90)-

NoTaTION. Let 4 € M*(G) and f € LP(G) (1 < p < +00). We make the
notational convention that

(Tuf)(g0) = /f(go - g)du(g)-

Then
T (Olle < letliae | fll Lo

1.9 Convergence theorem. Let {1, } be a sequence of measures in M'(G)
satisfying hypotheses (iii) and (i) of Theorem II-6.8 and converging nar-
rowly to v. Then

17 f =7 fllLe — 0, VfeLP, 1<p<+oo.

If in addition f € Cy(G), then |7, f — 7o fllc, — 0.

REMARK. Using the converse of Theorem 11-6.8, it would suffice to assume
that {u,} converges narrowly to v. Because this converse was not proved,
we prefer to give the rather awkward statement above.

PROOF. Since p < +o0, we can find h € Ck(G) such that
If = Al <e.
By hypothesis II-6.8(iii), sup ||un||ar = ¢ < +00, whence
17 (f = W)llLe < lpnllarelf = Rllze < cllf = Rl|zs.
It thus suffices to show that
(1) ITunh = Tohl e — 0.

Hypothesis 11-6.8(iv) implies that for every € > 0 there exists a compact
set H such that, for sufficiently large n,

/ dlpn| < e and / dlv| < e.

Let ¢ be an element of Cx(G) such that supp (¢) C K; and ¢ =1 on H.
Set
o = Ptin, V' =pv, pp=1—=@)u,, V' =(1-p)
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Then ||| < e, ||u|| < €, and the proof is reduced to proving (i) for p;,
and /. Furthermore, since p!, converges narrowly to v/, it suffices to show
that (i) holds when the p, are supported in a fixed compact set K;. Let
K3 be the support of h; then the support of 7, h lies in K3 = K; + K.

But K3 is a compact subset of G. Moreover, by the definition of narrow
convergence, for every fixed g

/h(g - ¢")dun(g") — /h(g —g')dv(g').

That is, u,(g) = (74, h — 7, h)(g) satisfies u,(g) — 0 everywhere. It follows
from the bound |7, h| < c||h|lc, 1k, that

lun(9)] < 2¢llhlic,1k; = 11k,

Hence, by Lebesgue’s dominated convergence theorem,

/ fun(g)[Pdg — 0.0

If f € Co(G), we now determine h € Ck(G) by the condition ||k — f|lc, < €.
As above, we reduce the proof to showing the result when the i, are supported
in a fixed compact set K3. Setting h(§) = h(—¢), we write

/ h(g — €)dpn(€) = / (7o) (€)dpn (E).

The mapping ® : g — ‘rgﬁ from G to Co(G) is continuous. Hence the image under
® of the compact set K3 is a compact set H C Cs(G). By hypothesis 1I-6.8(iii),
there exists a constant ¢ such that ||un||a;1 < c. Consider the functions u, defined
on H by

unly) = / y(©)dun(), ye A

Since ||pn || a1 < ¢, these functions are equicontinuous. By the definition of narrow
convergence,

un(y) — / Y(©)d(e). Vy € ColG).

Since the functions u, are equicontinuous and converge for every y € H , the
compactness of H implies that they converge uniformly. O

1.9.1 Corollary. Let {u,} be a sequence of measures which converge nar-
rowly to &y and satisfy hypotheses (iii) and () of II-6.8. Then |1, f —
f“LP — 0.

1.9.2 Corollary. LP(G) is an M'(G)-module; that is,

(1) (T o) (f) = Tpwr (f) = (10 0 1) (f)-
In particular, if gy € G,

(17) Tgo(Tuf) = Tu(Tgof) = Tuxébg, (f)-
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PROOF. It suffices to verify (i) in the case of discrete measures, where
everything is obvious; the general case follows from the narrow density of
M}(G) in M'(G) combined with Theorem 1.9.

For (ii), we note that

(iii) T.f/uu = 690 *u,

where 64, denotes the Dirac measure at gy, and use (i). O

2 Spectral Synthesis on T" and R"

In Section 1 we introduced the Fourier transform, defined on the dual group
G. We were not concerned with whether the dual group of G contained
other elements than the trivial character, everywhere equal to 1. If G were
trivial, Fourier transform theory would have a very limited scope. We now
exhibit the characters on T and R"™ and use them to prove the injectivity
of the Fourier transform. In certain cases, we will be able to characterize
its image and give an explicit inversion formula.

2.1 The character groups of R" and T"

(i) The characters on R are of the form
xi(x) = ™, where t€R, t fired.

Hence R = R.

PROOF. It is clear that an imaginary exponential satisfies the equation e
e’ and is a complex number of modulus 1. What must be proved is the
converse. Let = — x(x) be a character of R; then, since x(0) = 1 and a is
continuous, there exists an interval [—a, a] such that

it(xt+y) _

Re(x(z)) >0 if z € [—a,a].
Hence we can define a function [(z) without ambiguity by

log x(z) = il(x), g <l(z) < 7—;, z € [—a,al.

Then [(z) is continuous and
lz+y)=Ux)+(y) if z, y, and z+y € [—a,aqa].

It follows from this equation that {(mz) = mli(z) if m is an integer such that
|mz| < a, and similarly that l(%) = Li(y) if |y| < a. Hence I(ra) = ri(a) for
every rational number r such that |r| < 1.

By continuity, I(za) = zl(a) if z € R, |z| < 1. Hence

tay

1
x(y) =e where o= al(a) and |y| < a.
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For any y1 € R there exists an integer m such that y; = my with |y| < a; thus

X(y1) = (x(y)™ =™ =0

(ii) The characters on R™ are of the form

x¢(x) = exp (iZtmﬂ“) ,
k=1

where x = (z!,...,2") € R" and t = (t1,...,t,) € R™. Hence R" =R".

PROOF. The imaginary exponentials are obviously characters. It must be shown
that every character is of this form. Let ex = (0,0,1,0,...) be the kth element
of the canonical basis of R™. Then A — Aex is a homomorphism from R to R"
and hence A — x(Aei) is a character on R. By (i), we can write

ite A

x(Aek) = e

Writing ¢ = Zk xkek, it follows that

() = Hx(xkek) _ Hez‘tkmkﬂ
k
(iii) The characters on T" are of the form

Xm(0) = exp (2 Z mk9k> ,
k=1

where m = (my,...,myp) € Z" and (¢ ,... ") € T". Hence T = Z".

PROOF. The numbers (8*,...,6") are each defined only up to a multiple of 2m;
this indeterminacy has no effect on the value of xm(8) since m € Z"™, and thus
xm () is indeed a character on T".

Conversely, let x be a character on T". We define (cf. 1.2.5) a homomorphism

v:R"™ — T" by setting v(z) = (ei"l - ,e”‘"). Then x owv is a character on R™

and hence, by (ii), is of the form

x(v(x)) = exp(i Ztkzk) .

Suppose that v(z) = 1. Then x(v(z)) = 1; hence
Zthk = 0 modulo 2.
k

Setting = equal successively to 2we,, 2meq, . .., 2we, shows that t1, t2,...,t, € Z.
]
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2.2 Spectral synthesis on T
2.2.1 The Poisson kernel

Given a number r € [0, 1), the Poisson kernel on T is the function defined
by the series

(l) 131(9) — Z Tjnlemﬁ‘

nezZ

Not only is this series uniformly convergent, but its sum can be calculated:
+oc ) +00 »
P0) = (re”)" + (re ).
n=0 p=1

Using the formula for the sum of a geometric series, we obtain

1 re~0
P.(6) = . _
©) 1 —rei? + 1—ret
Thus
1—r? 1—r? ;
(i) P(0) = ! = — . where (¢=¢".
1—=2rcosf@+7r2 (1 —r{)(1-r()

2.2.2 Proposition. Let e = 1 denote the identity element of T and let
dv(C) denote the Haar measure on T defined in 1.5.4. Then

P.(Q)dv(¢) — 6. narrowly as r — 1

and, moreover, satisfies hypotheses (iii) and (iv) of 11-6.8.

PROOF. Let f be a continuous periodic function, with period 27. We must
show that

) +m dO
(i) P (0)f(0) 5 — f(0) as r—1
(ii) Note that, by 2.2.1(ii), P-(6) > 0.
Integrating the uniformly convergent series 2.2.1(i) term by term shows
t db
that / Pr(0)2— = 1. Hence, since P,(6) > 0,
™

(iii) |12l = 1.
(iv) For fixed n > 0, max, <9<~ P-(¢) = P;(n), which approaches zero as

r— 1.

Set f1(0) = f(8) — f(0). Since

+m
/ f(O)Pr(e)g — f(0),

-7
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it suffices to show that

+m
KOPO)5 0.

-

Let € > 0 be given. Then there exists  such that [f,(0)| < 5 if [6] <.
Fixing 1, we split the integral in two:

d0 do
Cnorog- [Crerege]  nepeg

-
The first integral is bounded above by §||P.||z:, which equals § by (iii),

and the second by || f|| C(T)Pf(n)’ which approaches zero by (iv).
Hypothesis (iv) of II-6.8 clearly holds since T is compact, and hypothesis

(iii) since P.dv has total mass 1. O

(v) Corollary. Let du, denote the measure on M*(T) defined by

P.(6)do/ 2.

If fe LP(T) (1 <p < +00), then |7y f — fllL» = 0 asr — 1.

If f € C(T), then |7y, f — fllcer) — 0.

PrOOF. By 2.2.2 and 1.9.1.

2.2.3 Proposition. Let f € L(T) and let f(n), n € Z, be its Fourier

transform. Then
0) =Y fmyrimieme.

meZ
PROOF.
d
F=B)O) = [ 1RO )2
+m ) d
- In| gin(6—p) 2P
» f(w)gzr e o

The uniformly convergent series ) ., rinle(0=¢) can be integrated term
by term, giving

FeP)O) = X o @ [ enie ) 22

21
nez

= Zr'"lem(e)f(—n).

nezZ
The result follows by setting —n = m. O
2.2.4 Spectral synthesis theorem.
(i) Let f € LP(T), 1 < p < +o00. Set
0) = Z r‘"'f(n)e_me.

neZ
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Then || f — grllLy — 0 asr — 1.
(ii) Let f € C(T). Then ||f — grllc(r) = 0 as T — 1.

REMARK. Since g, is defined in terms of the Fourier transform of f, the
theorem shows that f can be reconstructed from its Fourier transform.

PROOF. By 2.2.2(v) and 2.2.3.
2.2.5 Theorem on conservation of energy. Let f € L?(T). Then

(i) 11720y = D 1) and
nez
P
(i) ‘f(H) - Z f(n)e‘me —0 as p— +oo.
n=-—p L2

Plancherel’s theorem. Let (?(Z) denote the set of sequences such that
S lan|? < +oc.

(iii) The mapping [ — f defines an isometric isomorphism from L?(T)
onto (*(Z).

PROOF. Since the characters on T are mutually orthogonal,

lgellze = D rm1f ().
By Bessel’s inequality,
1£l72 = > 1F ).
nez

For a proof by contradiction, assume that the inequality is strict. Since
If = grllz — 0 by 2.2.4, |lgr([2 — || f]|L2- Hence

lim 4 f))* > Y (F (),
r1l nez neZ
a contradiction; Bessel’s inequality is in fact an equality and (i) is proved.
Let V}, denote the vector subspace of L? generated by those e™? for which
—p < n < p. Then (cf. 1.6.4 and 1.5.3) the orthogonal projection of f onto
V) can be written as

sp(B) = D Flme ™.

In|<p
By the Pythagorean theorem,
1 = spllFz + lIspllzz = £

whence ’ ‘ ~
If = splze = IflIF2 — lIsplzz = Z If(n)I?,

[n[>p
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where the second equality follows from (i). Since the last expression tends
to zero, (ii) is proved.

To prove (iii), let U : L?(T) — ¢2(Z) be defined by U(f) = {Ff(n)}.
Then U is an isometry by (i). It follows that the image of U is a complete
subspace of [2(Z) and hence is closed.

Let W = {{an} € ¢% : a, = 0 except for finitely many n}. The function
that maps {a,} € W to the trigonometric polynomial 3" a,e™*"? is con-
tinuous, since the sum is finite. Because the function is continuous, it lies
in L?; thus U(L?) D W. Since W is dense in ¢? and U(L?) is closed, we
conclude that U(L?) = ¢2. O

2.2.6 The Fourier inversion formula

If we are given f and want to evaluate the function f at a point, the only
result at our disposal so far is 2.2.4(ii). The drawback of this formula is
that it involves a double limit: we must first sum a series, then let r tend
to 1.

We would like to obtain results on the convergence of the partial sums
of the Fourier series of f, that is the sums

n=-+p

s(0) = 3 Flmpeine.

n=-p

Theorem 2.2.5(ii) is a convergence theorem for the L? norm.

Lennart Carleson showed in 1965 that the partial sums of the Fourier
series of a function f in L?(T) converge almost everywhere to f. He thus
resolved a problem that had remained open for fifty years. The following is
an elementary result.

2.2.7 Fourier inversion theorem. Let f € L}(T). Assume

() Z [f(n)l < +00.
Then

(i) f(6) = Z f(n)e”ine for almost every 6.

If f is also continuous, equality holds everywhere.

PROOF. Set

gr=f*xP.= Zf(n)ﬂnle—irw and  (f) = Z J?(n)e—me.

nez

Then ¢ € C(T) since the series converges uniformly. We now show that

(#i1) le = grllcery — 0.
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Clearly
e = grlleem < D 1FR)I(1 = 7).

Given ¢, fix p so that 3, -, [f(n)l < €/2. Then 3, o, |f(n)[(1 — rlnly
is the sum of 2p + 1 terms, each of which tends to zero. This proves (iii).

It follows from the inequality (|g, —¢[/ 1 < [|gr—¢llc(T) that lim, ¢ [|gr —
@l = 0. By 2.2.4,

lf — ¢l =0.

Thus f and ¢ are equal a.e., and (ii) is proved.

Suppose that f is continuous; then, since ¢ is continuous, so is f —¢ = u.
If u were not identically 0, {u # 0} would contain an interval, contradicting
(ii); hence u = 0 everywhere. O

(iv) REMARK. As an element of L', f is defined only up to a set of measure
zero. (ii) means that the equivalence class of f under the relation of equality
almost everywhere contains a continuous function, namely ¢. It is reasonable to
take this continuous function as a representative of the equivalence class of f.

2.2.8 Density of the trigonometric polynomials

A finite linear combination of exponentials is called a trigonometric poly-
nomial.

Proposition. The trigonometric polynomials are dense in the normed
spaces LP(T) (1 < p < 400) and C(T).

PROOF. Since C(T) is dense in L? by II-3.5, it suffices to prove density in
C(T), recalling that || |[z» < || llc(T)-

Let h € C(T) and let ¢ > 0 be given. Using 2.2.4(ii), fix r such that
A= hrllc(Ty < §. Decompose h, as

he(®) = Y h(n)r®le=? + 37 h(n)rivle=in?.

In|<p In|>p
Note that [A(n)| < [|hllLicr) < [|Bllcer; this implies

rptl

~ ) 2
> h(myrle= ) < ko T—
[n]>p

Since r is fixed, this expression is less than § for sufficiently large p. Thus

h — Z h(n)r™x_,|| < O

In|<p
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Corollary (Injectivity of the Fourier transform on measures). Let
u, v e MY(T) satisfy

fi(n) =v(n) if nei.
Then p=v.

PROOF. Let @ be a trigonometric polynomial. By linearity, [ Qdv = [ Qdp.
Since the trigonometric polynomials are dense in C(T), it follows that

/fdu:/fdu Vf € C(T).0

Corollary (Uniqueness of Haar measure on T). Let p be a Haar

measure on T. Then there exists a constant ¢ such that p = cg—f:.

PRrROOF. By 1.5.2, p(n) = 0 if n # 0. It thus suffices to use the preceding
corollary. O

2.3 Eaxtension of the results to T"
The Poisson kernel is defined on T" by

Po) = [T P(¢), ¢=(C1ynicmy e T
k=1

Since the Haar measure dv(¢) = dv(¢!)®---®dv(¢") is a product measure,

P (¢)dv(¢) = Pr(¢H)dv(Ch) @ -~ @ Pr(¢")dv(CT).

By 2.2.2 each term converges narrowly to 6., ; hence P.(¢)dv(¢) converges
narrowly to 6.
It can be shown as in 2.2.3 that, for all f € L(T"),

2.3.1 (f*P)(0) = Z f(m)rllmlle—imﬂ?
mezZn
where ||m|| = |mi| + |ma| + -+ + |m,| and m.0 = Y}, my6*.

The following theorems are proved as in 2.2.
2.3.2 Spectral synthesis theorem. Let f € LP(T) (1 < p < +00). Set
gr(0) =3 f(m)rlmlle=im-6  Thep

If = grllLe(zry — 0.

If f € C(T), then
If = grllcery — 0.
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2.3.3 Theorem on conservation of energy. Let f € L?*(T"). Then

(i) IF1I7: = > Fm)l

mezn

Set s,(0) = Zmes,, f(m)e‘””“). where S, = {m € Z" : |my| < p Vk}.
Then

(i1) [lf =spllezerny =0 as p— +o0.

(iii) (Plancherel) The mapping f — f is a bijection of L*(T™) onto (*(Z™).
2.3.4 Fourier inversion theorem. Let f € LY(T"). Suppose that

(i) Z |f(m)| < 400.
mezr
Then
(i1) f(o) = Z f(m)e””"‘e for almost every 6.
mezan

(iii) If f is continuous, equality holds everywhere.

2.4 Spectral synthesis on R
2.4.0 Regularity of the Fourier transform on R"

Let u € MY (R™). Its Fourier transform is defined by

i) = [ e duta).

2.4.0.1 Proposition. The Fourier transform ji(t) is a bounded continuous
function and

(4) l#llc, ey <l

PROOF. Set 1 = k|u| with k € L. Then

ﬁm»:/a%%wmmuy

If the sequence {t,} converges to ty, the sequence of functions {e''»Tk(z)}
converges everywhere to e't-®k(x). Since it is bounded in modulus by

1e Lllul’ Lebesgue’s dominated convergence theorem implies that fi(t,) —

i(to). Finally,

lMMs/dm=umww=wmnm
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2.4.0.2 Theorem (Lebesgue). If f € LY(R"), then its Fourier transform

f(t) = [gn €' f(x)dz is a continuous function that vanishes at infinity,
and

(i) I fllcomny < I1fIlLrmny-

PROOF. Since f(z)dz € M'(R"), the only new property to be proved is
that R
fit) =0 as ||| = +oo.

Let ¢ > 0 be given. Since the translation operator is continuous on
L*(R™), there exists 1 such that

(12) Iy f = fllr <e if yll <n.

It follows from the property T/y?(t) = e¥tf(t) that (ryf = F)ME) =
(V! ~1)f(1).

Using (i) and (ii),

(1) (e = Df(O) <e if fyl <n.

If t satisfies ||t|| > 7n~', we can find y such that y.t = 7 and ||y|| < 7.
Hence. by (iii),
21f(t)| <e if |t| >mnt.O

2.4.1 Dilations and the Fourier transform

A dilation on R is multiplication by a positive number A:
z— Az VreR, )fixed, A\ >0.

Given a function u defined on R, let

(7) uy(z) = A tu(A ).

Take u € L'(R) and set A™'z = y. Then [u,(z)dz = [ u(y)dy. In partic-
ular,

(i2) lunllzs = flull -

Similarly, again setting A~z = v,

(7i7) u(t) = /ux(x)eimdm = /u(y)e”’\ydy = u(At).

2.4.2 Lemma. Let u € L*(R) and assume that [u(z)dz = 1. Then, as

A — 0, ux(z)dz converges narrowly to the Dirac measure at 0 and satisfies
hypotheses (iii) and (w) of Theorem II-6.8.
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PRrOOF. Let f € Cy(R) and set fi(z) = f(z) — f(0). Then

/.UA(J’)f(.T)dI = f(0) / uy(x)dz + /fl(I)uA(I)dlv‘

Since the first integral on the right-hand side equals 1, it suffices to show
that the second tends to zero. Setting A~'x = y, we can write this integral
as [ fi(Ay)u(y)dy. Fix A so that fiy|>A u(y)dy < 5|l f1ll¢, - Then

[riowtnay = | Lt / .

€
/ HleC,,/ lu(y)|dy < 5 and
v lyl>A ly|>A

/.

Since A is fixed, AA — 0 as A — 0. Since f;(0) = 0 and f; is continuous,
the last expression will be less than § for A sufficiently small. O

IA

IN

IIlaXmS)\A ‘fl(f)| Hu||L1 N

2.4.3 Proposition. For every p > 0.

t2p 1 2\ 5,
: Y [ R N an
o e[ g o)

PRrooF. Cf. IV-4.3.2(ii), where this formula is proved for ;« = 1. The general
case is obtained by applying 2.4.1(iii).

2.4.4 Proposition. Set

1 x?
) = G35

Then, as p — 0, G, (x)dz satisfies the conclusions of 2.4.2.

PROOF. It follows from 2.4.3(i), with ¢ = 0 and g = 1, that

1 x?

It now suffices to apply 2.4.2. O
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2.4.5 Spectral synthesis theorem. Let f € L}(R), let f be its Fourier
transform, and set

(i au(@) = [ e Ft)en (J—22ﬂ> a,

Iffe L'NLP (1 <p< +00), then

(i) If—gullce =0 as p—0.

REMARK. We must assume that f € L', since otherwise the integral deﬁn-
ing the Fourier transform f does not converge. Moreover, since |||z~ <
|| fllL:, this assumption implies the convergence of the integral defining g,,.

PROOF. By 2.4.2 and 1.9,
(44) lf*Gu— fliLe — 0.

Furthermore, since G, is an even function,

(f * C)(x) = / Guly — 2)f(y)dy

An integral expression for G, (z) is obtained by interchanging ¢t and z, writing
p~! for p, and multiplying by W in 2.4.3(i). Substituting this into the
integral above yields

The hypothesis f € L' implies the convergence of the double integral

//Rz exf’(‘%““) |£(v)| dy dt.

Hence Fubini’s theorem can be applied; reversing the order of integration gives

(f*Gu)(x) = /ReXP <—t—é/i> e e L/Re“yf(y)dy} g—;

Recognizing the quantity in brackets as f(t), we have shown that

(iv) (f xGu)(z) :/ f(t)exp(—tz—‘u> e_"zﬂ, VfelL'.
R 2 2

Now (iii) and (iv) imply (ii). O

2.4.6 Fourier inversion theorem. Let f € L'(R). Suppose that

(i) feL'(R).
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(i) flz) = / (,”""TJ?(t)ilE for almost every x.
R 2m

(iii) If f is also continuous, equality holds everywhere in (i1).

PROOF. Let g, be defined as in 2.4.5(i). Then, as 4 — 0, the integrand in

2.4.5(i) tends everywhere to e *** f(t). Furthermore, it is dominated by the func-
tion |f(t)] € L'. By Lebesgue’s dominated convergence theorem,

dt

) = [ 05t = o(o)

Next, since ||f — g, — 0, we can extract a subsequence i such that

[
f(x) =limg,, (r) almost everywhere.
This implies (ii).
To prove (iii). note that () is continuous by 2.4.0.2. Thus ¢(z) — f(z) = u(x)
is continuous. By the same reasoning as in 2.2.7, u(z) =0 a.e. = u(z) =0. O
In the next section, we will study the space of those functions f to which the
Fourier inversion formula applies.

2.4.7 The Wiener algebra A(R)

Let R
AR)={feL'(R): feL'(R)}.

It follows from 2.4.6(ii) that the equivalence class (for equality almost ev-
erywhere) of every f in A(R) contains a continuous function. From now
on, we will take this function as the representative of f. Thus the Wiener
algebra is contained in the Banach space of continuous functions.

The Fourier inversion formula can be applied to f if and only if f € A(R).

We set [[fly gy = 1/l + [ Fllo-
(i) f € A(R) is equivalent to fe AR).
PROOF. By the Fourier inversion theorem,

fa) = /R Fitye 2L
Set f(—z) = u(z). Then u(z) = [ f(t)e""” &; that is,
(i) w=(F)".

Hence N
(Helleouel o felL

(iii) If f € A(R). then f € Co(R) and [Ifllc, R, < I laR)--
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PROOF. By the inversion formula and 2.4.0.1.

(w) If f € A(R), then f € LP Vp 1 < p < 4o00.
PROOF. / \fPdz < A1l

(v) If f, h € A(R), then fxh € A(R).

PROOF. ||f Al < [|fl|z:]lkllz1 and (f * h)" = f h, whence

ICF* )M = 1F Rl < Iz lRlles < If ool oo
Thus f *h € A(R).
(vi) Let f, h € A(R). Then (fh)" = f * h and fh € A(R).

PROOF. By (ii),
(fh)(=z) = (F * b)"(x).

By (i) and (v), f* he A(R). The inversion formula can be applied, and
(FR)(~w)e 52 = (FuR) (0
z 5. = .

Hence, replacing = by —z, we see that (fh)" = f*ﬁ € AR); by (i), fh € AR).
(vit) A(R) is dense in LP, 1 < p < +o0o. A(R) is dense in Cy(R).
PROOF. Let L%, denote the L functions which are zero a.e. outside a compact
set. Then L% is dense in LP. Let h € L. Set h, = h * G,-1, where G, was
defined in 2.4.4; then ||h, — h||zr — 0.

We now show that h, € A(R). Let K be a compact set such that h(z) = 0
a.e. on K°. By Holder’s inequality,

1/q
Al < [/ dw] Ihllze,
K

where p and g are conjugate exponents. Thus h € L* and h,, € L'. Moreover,
-~ -~ t? t?
[ (9] = \h(t) exp(—%) S exp(;-g—n) ,

whence h, € L' and h, € A(R).

If h € Ck(R), then hy, = h*x G, -1 € Co(R), hn € A(R), and ||h — hnl|lc, — 0.
0O




132 ITI. Fourier Analysis

2.4.8 Theorem on conservation of energy. Let f € L' N L2. Then

17122 = 2m) Y| F]12..

PROOF. Let f € L' N L?. Set f, = f * G,,-1. Then

~ 2 ~
(1) fo€ L' and  fu(t) =exp <—;—n> f(@).

The Fourier inversion theorem can be applied to f,, giving

A _ite dt
fule) = /R Futtre s 2L

Replace fn(x) by this expression in the scalar product:

i = [ s00G = [ @ | [ f—(ﬂef—;] de.

Since f € L' and fn € L', the double integral converges and, applying Fubini’s
theorem, we can reverse the order of integration:

N itx dt _ v =, _dt
see = [ 70| [ s@was] £ - [ Rofioge.

Let n — oo; then, by 2.4.5, || fn — f||L2 — 0, and the left-hand side thus tends
to “in2 Using (i) on the right-hand side, we obtain

) ~ 2\ dt Lo
nhllolc/lf(t)l eXP<—E> b = ||fliz2-

2

The sequence {exp(— t,—l) } is increasing. Applying the theorem of Fatou-Beppo

Levi shows that [J?(t)|2 is integrable and that

[ 170 & = 151220

2.4.9 Plancherel’s extension theorem. The Fourier transform has an
extension

(1) U:L*R)— L*R).
(ii) (27)"3U is an isometric mapping of L*(R) — L?(R).

(1ii) U is a continuous bijection of L*(R) — L?(R).
(iv) The inverse of U is given by

U k) = 5-U(R).
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PrROOF. Consider the mapping u : f — f, from V = L' N L? to L?. Then,
by 2.4.8,

(v) lu()l|7= = 27[lv][Z2, Vv eV.

Hence u is a uniformly continuous mapping into the complete space L2.
It thus has an extension to the closure of L' N L? in L?, which is just L.
Moreover, 2.4.8 extends by continuity and gives (ii). In particular, U is
injective. It remains to prove (iii) and (iv). By 2.4.7(iv),

AR) c LY(R) N L*(R).
Hence, by 2.4.7(i),
U(L' N L?) > U(A(R)) = A(R) = A(R), whence

(vi) U(L* N L?) is dense in L? by 2.4.7(vii).

Next, since (27)~1U is an isometry, the image of L? is a complete, hence
closed, subspace of L?. Thus (vi) implies that U is surjective. Finally, the
inverse mapping of U is, up to a factor of 27, an isometry. It follows from
(v) that it is determined by its restriction to A(R). The restriction is given
by the Fourier inversion formula, and can be written as

- =

1
10)= g [[ e Farii= o [ et Foat = -0 (P,
2T R
This expression for U~! on a dense set is valid everywhere, since U1

continuous. O

(vii) REMARK. What is striking in Plancherel’s theorem is that it gives an
isomorphism of spaces. Thus a problem posed in L? is equivalent under the
Fourier transform to another problem posed in L2.

2.5 Spectral synthesis on R"

We now generalize the results of the last section to R". Let

1 1
Gu(o) = gt x5 llel?)

where ||z]|? = (z')? + ... + (z")?. Then G,(z) = [[j_; Gu(z").
By (2.4.4), G#(:ck)dmk converges narrowly in M!(R) to the Dirac mea-
sure at zero. When p — 0, p > 0, we find that

Gu(z)dr = @G, (z%)dz*
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converges narrowly to the Dirac measure at zero in M!(R"). Moreover, by

(2.4.3),
1/ 2N e
G,(r)= )" / ) ex;><—ﬁ||2f—”> e *dt.

Spectral synthesis theorem. Let f € L'(R") and set

' -~ 2
gll(.T) = _f * Gll(l) _ / ) e—i[”z'f(t) eXp<—H”2t_H> (2671:)" .

Then ||f — guller — 0. If. in addition, f € L'NLP (1 < p < +00), then
||f - guHL” — 0.

Fourier inversion theorem. Let

A Rn {f c Iz Rn) fe LI(R”)}.

Then A(R") is dense in LP(R"). 1 < p < +oc. and in Co(R").
Furthermore, almost everywhere in x (with equality everywhere if f is con-
tinuous).

@ =[ Fwer o vre ARy,

R (2m)n’
Plancherel’s extension theorem. There exists a bijective mapping U of
L*(R"™) onto L*(R™) such that

IUHllez = @m)" 2| fllz2 and U(f)=f, VfeL'n L2

Moreover.

1 =
U (h) = ——U(h).
(2m)"
The proofs of these results are identical to those already given for the
case where n = 1. We end this section with a new result.

2.6 Parseval’s lemma. Let f € A(R") and let p € MY(R"). Then

/ fa)d(z) = / Ft)a(-

PROOF. The Fourier inversion theorem,

1

@7 Jn f()"’

flr) =

can be used to write f as a function of f on the left-hand side of the
assertion of the lemma. Since f € L', Fubini’s theorem can be applied to
the resulting double integral. We obtain

. f(@)dp(x) = - f(t)dt </ ) e”""’du(:c)) X (271r)” O
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Corollary. Let i, ' € M*(R™) such that fi(t) = @'(t). Then p = p'.
PROOF. For all f € A(R"),

fl@)du(z) = | f(z)dy'(z).

R" R”

Since A(R") is dense in Co(R"), ' = p. O

3 Vector Differentiation and Sobolev Spaces

3.1 Differentiation in the vector sense. The spaces WP

The goal of this section is to interpret the notion of derivative in terms of
translation operators. The advantage of this point of view is that, since the
Fourier transform realizes the spectral analysis of translation operators, the
same will be true for differentiation operators.

Given f € LP(R") and a € R", we say that the derivative of f in
the direction of a exists in the LP sense and equals D, f if, when ¢ — 0,
lime Y (1.of — f) exzists in LP(R") and equals —D, f.

We then have

| Daf + f_l(Teaf = fller — 0.

Let
WP = {f € LP(R") : D, f exists in the L? sense for every a € R"}.

Decomposing a = a'e; + ... + a"e, with respect to the canonical basis of
R", we write D, f = Y. a*D,, f if f € WF. Given an integer s > 1, we
define

WP={feWl:D,fe WP, VfeR"}
If f € WP, Dy, D, ...D,. f is defined recursively.
3.1.1 Theorem (Spectral analysis of differentiation operators). Let
f € Wl. Then

D.f(t) = —i(at) f(t).

PROOF. D, f € L', and hence E\Qf is well defined. Since the convergence

occurs in L', the order of integration in the following expression can be
reversed:

-~

D.f(t) = /!i_r%ﬁ_l(Teaf — @)™ tde = lim e (reaf — F)(1).

€e—

By 1.7.2,

(eiea.t _ 1) - N

~D,f(t) = lim ft) = i(at) f(£).0
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3.1.2 Corollary. If f € W], then
(Day Day - Da, £ (1) = [[ (=iart) F0).
k=1

3.1.3 Theorem. If f € W}, then

f@) =o(lth™*) as |it] — oo.
PROOF. Dj € L'. By 2.4.0.2, lig\f tends to zero at infinity. Hence |a-t|* f(t)
tends to zero at infinity, and this is true for every fixed a. O
3.1.4 Corollary. W), c A={feL': fe L'}.
PROOF. Since f(t) = of||t|~"~!) and f € Cy, it follows that f € L. O
3.1.5 Proposition. Let p € M'(R") be a finite measure and let f € WF
(where 1 < p < +oc). Then 7,.f € WI and

Da(Tuf) = T[L(D(Lf)‘

PROOF. 7,7, f = 7,7af and € N7y — I)7uf = 74 Y 7ew — 1) f].
Since 7, is a bounded operator on L?, the convergence of the right-hand
side implies the convergence of the left-hand side. O

3.2 The space D(R")

3.2.0 Definition. Let D(R") denote the space of infinitely differentiable
functions on R™ with compact support. We show that D(R"™) contains
functions that are not identically zero. Let

fr) = eXp(l%l,,) if 0<r<i1
= 0 if r<1.
Set
(4) F(z) = f(|z||?), where |z|>=(z")2+...+ (z")%

Then F is infinitely differentiable. Since F >0 on R" and F>0ona
nonempty open set, [ F(z)dz > 0. Let F(z) = aF(z), where the constant
« is determined so that [ F(z)dz = 1. Then, setting

(i) Fi(z) = A "F(\~1z),

it follows from 2.4.2 that F)(z)dz — &y narrowly.
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3.2.1 Proposition. If ¢ € D, then p € WP (1 < p < +00) for every
positive integer s. In particular, 3.1.2 holds. Furthermore,

dp
_ k
Dap =2 @ gr

PROOF. We use Taylor’s formula with integral remainder:
€ Op Op
-1 _
e o= D+ Dule) = [ S (te o) - 2w dc

The right-hand side tends to zero uniformly in = when ¢ — 0. As its
support lies inside a fixed compact set, we obtain convergence in all L?
(1<p<+00). O

3.2.2 Corollary. If f € LP and ¢ € D, then f ¢ € WP for every integer
s> 0.

PROOF. € HTeq — I)(f * ) = f * (Tea — I)e L.
The last term on the right-hand side converges in L' by 3.2.1 applied to ¢,
withp=1,s=1.0

3.2.3 Proposition. Let y € M! and assume that p has compact support.
Then (T,¢) € D for every ¢ € D.

PROOF. Let K; be the support of u and let K> be the support of ¢. Then
the support of 7,¢ lies in the compact set K; + Ko.
Moreover,

(7)) = / oz — y)du(y).

1

Differentiating with respect to ! under the integral sign is legitimate since
%‘% is continuous and the integral is taken on a compact set. Hence

0 e
aar ) = (55 ) ©

3.2.4 Proposition. The space D is dense in LP (1 < p < +00).

PROOF. Let f € LP. Using the truncation operator, we see that there exists
f € LP such that f is zero outside a compact set and

If = Fllzr <e.
Set f * Fy = uy. Then, by 3.2.0(ii),
lux = flls =0 as A—0.

Since fe LP andf has compact support, it follows a fortiori that fe L.
Hence, by 3.2.3, fx F), € D. O
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3.8  Weak differentiation

3.3.1 Definition. We denote by L} . the functions which are integrable on

every compact set. Given f € L}, ., the Radon measure f(z)dz is called the
measure associated with f.

f € L}, is said to have a derivative in the direction of the vector a in
the weak sense, or a weak derivative, if there exists u, € L} _such that

loc
/fDagp = —/uu'p. Yo € D.

The reader familiar with the distribution theory of Laurent Schwartz will
recognize a special case of differentiation in the sense of distributions.

3.3.2 Theorem. Let f € LP. Then the following statements are equivalent:

(i) feW?.

(ii) For everya € R", D, f exists in the weak sense and D, f € LP.
PROOF. (i) = (ii). The identity [(7,f)h = [ f(7_oh) implies

(iii) /(6_1(7}(, ~1)f)h = /f(r_mh —h)e ! YfelLP helf.

Writing (iii) with A = ¢, we can pass to the limit on the left-hand side
since ¢ € D C L9, and on the right-hand side since ¢ € W} by 3.2.1. This
yields the formula for integration by parts:

[ Duto== [ 1(Dup) Wiewl ge.

Hence u, = D, f, and (iii) follows since D, f € LP.
The proof that (ii) = (i) uses the following version of Taylor’s formula
with integral remainder.

3.3.3 Lemma. Let f € L} . and suppose that f has a weak derivative in

loc

the direction of a, say u,. Let p. be the Radon measure defined by

(9:pc) = Kg(—Ca)dC- Vg € Cy(R™).

Then
”671[7_euf - f] = Tp Uq-

PROOF. Let ¢ € D. Using formula 3.3.2(iii), Taylor’s formula with integral
remainder for ¢, and Fubini’s theorem, we have

fe—l[Teaf—f]iP = /f(rfm,\pﬁip)eﬂ

€ a,
/R"f(a)dq;/o ;“ka—gﬁ(r%a)d&
/Ofdf/ . Zak%($+§a)f(x)dx
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Since f is weakly differentiable in the direction of a,

Il

Zak?%‘%(x +&a)f(x)dx —/(T—gagﬁ)(:ﬂ)ua(a:)d:v

- / () (Teatia) (2)de,

whence
/{6_1[7’eaf — fl+ 1. ua}(@)p(x)de =0, Vo eD.

As we saw in 3.2.4, D is dense in L9; this implies that the quantity in braces
is the zero function of LP:

(*) _5_][Teaf - f] = Tpgua'D

3.3.4 Proof that (ii) = (i) in Theorem 3.3.2

The result follows from considering the limit of the right-hand side of ()
and using 1.9.1. O

3.3.5 Corollary. Let {e1,...,e,} be a basis for R" and let {fn} be a
sequence of functions in WY such that ||f, — fllLr — 0 and, for all k,
Do, fn converges in LP. Then f € WY and, for any a in R",

HDaf - Dafn”LP — 0.
ProOOF. It suffices to prove that f is weakly differentiable in the direction

of a. The hypotheses allow us to write

/anek@:_/DekfnSOv VSDED

Since f, and D, f, converge in LP and since D, ¢ and ¢ are in LY, we
can pass to the limit in this equation, obtaining

[ D=~ [ otimDe 1)
That is, f is weakly differentiable in the direction of ey and its weak deriva-
tive is
lim(D,, fn) € LP.

Let a € R™, say a = 5_ a*ex. Then D, f, =Y akD,, f,, and hence f has a
weak derivative in the direction of a which is equal to Y a* lim D, f,.. By
Theorem 3.3.2, f € WP and D, f = 3 a*lim D, f, =lim D, f,,. O

3.3.6 Corollary. Let WP be given the norm

1 lwe = Ifllze + Y I Dey fllze,
k
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where {ey,... ey} is the canonical basis of R™. Then W} is a complete
normed vector space and Dg is a continuous mapping from W} into LP.

PRrROOF. The only statement that is not obvious is that W? is complete. If
{fn} is a Cauchy sequence in the W} norm, then both {f,} and {D,, f.}
are Cauchy sequences in the LP norm.

Since L? is complete, f,, converges to some f € LP. Moreover, f € W/
by 3.3.5. By definition,

Ifu = flwe = fn = flliee + Y 1Dey fo = De, £l Lo
k
Since || De, fn — De, fllz» — 0 by 3.3.5, f,, converges to f in W}. O

5.4 Action of D on WP. The space W,

3.4.1 Proposition. Let ¢ € D and let the operation of multiplication by
@, written my,, be defined by (m, f)(xz) = p(x)f(x). Then

my : WP — WP for every p € [1, +0c] and for every integer s.
PROOF. We prove the proposition when s = 1. First we show that
(%) Du(¢f) = (Dap)f + ¢Daf.

This formula is proved by passing to derivatives in the weak sense. Let 50 denote
the weak derivatives. Then

/ Dulefyo = - / SF(Dal¥)) Vo € D.

Furthermore, by Leibnitz’s formula for continuously differentiable functions,
—@Dqo(¥) = ¥Da(p) — Da(y), whence

/ Da(of)0

- fDa(aow)+/waa(so)

il

/Da(f)ww + /waa(w)-

Let ~ ~

G = [Da(¢f) — pDa(f) — fDa(0)].
Then G is orthogonal to every ¥ € D. Since D is dense in L7 if ¢ < +oo, it
follows that G is zero. If p = 1, the fact that G = 0 follows from the density of
D in Co(R™). Thus (i) is proved for weak derivatives:

Da(f¢) = ¢Duf + fDa(gp).

Since ¢ and Dgyp are in L*, the right-hand side is in L? if f € WF. Theorem
3.3.2 then gives the result. O
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3.4.2 Differentiable partitions of unity

Theorem. Let U, be an open cover of an open subset O of R™. Then there
exists a partition of unity ¢, such that

0<pn <1,
¢n € D(R"),
Supp(@n) - Ua(n) - Oa

and

Zg@n(:r) =1, VzeO.

The series is locally finite; that is, for every compact subset K of O,
supp (¢n) N K = 0 except for a finite number of indices.

PROOF. Let
. 1
K, = {ac € O : dist(z,0°) > - and ||z < n} .

Then each K, is a compact set contained in O, and the union of all the
K, equals O. By Theorem II-1.4.1 we can find a partition of unity with
continuous functions f,. We may also assume that U, is a locally finite
cover. Set

2¢,, = dist(supp (fn), Ug(y)-
Let ¢, = F._ * fn, where F) was defined in 3.2.0(ii). Then
supp (¥n) C supp (fn) + B(0,€5) C Ua(n)-

By 3.2.3, ¥,, € D since F,, € D.

€n

Next, writing out the integral expression for v,

[ e =P @y = o),
we see that ¢, (z) > 0 whenever f,(z) > 0. Hence

Ewn(:r) > 0 for every z € O.

Set

r(z) = Z Yn ().

Then r~! is an infinitely differentiable function and ¢,, = 714, satisfies
the conditions of the theorem. O
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3.4.3  The spaces W"

s.loc

(i) Let O be an open set in R". We denote by D(O) the infinitely differ-
entiable functions defined in O which have compact support. A function ¢
in D(O) can be extended to R" by setting p(z) = 0 for ¢ O.

Writing ¢ for the extension of ¢ to R", we note that ¢ is infinitely
differentiable: given a point zy on the boundary of O, there exists an open
neighborhood V' of 2 in R" which does not meet the support of ¢. Hence
@ vanishes identically in V and is therefore infinitely differentiable. Thus

(i) D(O) ~ {¢ € D(R") : supp (p) C O}.
We define
wr

s.loc

(O) = {f defined and measurable on O:
fo e WP(R") for any ¢ € D(O)}.

(iii) Proposition. f € W”, (O) if and only if for every x, € O there

s,loc
exists an open neighborhood V., of xo in O such that

pf € WIR") Ve e DR") with supp (@) C V.

PRrOOF. The forward implication is trivial. The reverse implication is proved
by using a partition of unity subordinate to the cover {V,, }, where zy € O.
O

3.5  Sobolev spaces

We now study the spaces W2. Since W2 is a subspace of L? for every s,
Plancherel’s theorem allows us to characterize its image under the Fourier
transform. The space W2 is written H* and called the Sobolev space of
order s. The isomorphism of L*(R") onto L?(R™) defined by Plancherel’s
extension of the Fourier transform in 2.5 is denoted by F.

3.5.1 Theorem. Let f € L*(R") and let h = F(f) be its Fourier-Plan-
cherel transform. Then the following two statements are equivalent:

() feH".
(i) / B(E)2(1 + [[¢]2)*dt < +oc.
-

PROOF. Restricting to the case where s = 1, we first show that (i) = (ii).
For f € H', we have the following extension of Theorem 3.1.1:

(4ii) F(Deyf) = —itp F(f)(1).
To prove this, note that F(7.., f) = e'“'* F(f) and

€ F(Teen f = f) = e He™ — 1)h(t).
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Since the left-hand side converges in L? to —F (D, f), the right-hand side
also converges in L?. Passing to a subsequence €, convergence in L? implies
convergence a.e.; (iii) follows since the right-hand side converges everywhere
to (itk)h(t). Hence

f e H® = heL?and (txh(t)) € L?,
and therefore
WP+t +...+t2) e L
We now prove that (ii) = (i). Let ¢ € D; then, by Plancherel,
_ 1 [
[ Pae= o [FnFDL)

By (iii) (or 3.1.1), F(De, ¢)(t) = —itxF(p)(t), whence
. 1 . -
[0 - & [@FpOFRw:

By (i), txF(f)(t) € L2 The inverse Plancherel isomorphism F ' can now
be used to show that there exists a function uy € L? such that F(u)(t) =

—itk (F f)(t). Thus
/fDesz/uw;

that is, the weak derivative of f in the direction ey is the function uy € L2
Theorem 3.3.2 shows that f € W = H!. O

3.5.2 Definition of H?® for s not an integer

Let s be a positive real number that is not an integer. Set
w={rert [ 0 PPIEN©OP < oo
We define a norm on H*® by
(0 190 = [+ P IFEN e

For s = 1, this norm is different from the W7 norm introduced earlier,
but the two are equivalent. The advantage of the present norm is that H*®
becomes a Hilbert space with scalar product

(filf2)me =/R"(h152)(t)(1+||tu2)5dt, where hy = F(fe), k=1,2.

3.5.3 Proposition. Let f € H°. Then
(7) 7.f € H® for every measure pu € M*.

PROOF. F(r.f)(t) = u(t)F(f)(t). Hence, since |p(t)] < ||ullarn, 3.5.2(i) implies
that
Iruflles < llpllan lfllas < +00.0
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3.5.4 Differential characterization of H*

Proposition. Let f € L*(R") and let 0 < s < 1. Then the following two
statements are equivalent:

(i) f€HR").
(i) I(f) = /R” 7o f—flI32 W(ix < 400, wheren = dim(E).

PROOF. We use the Fourier-Plancherel isomorphism. Let u = F(f). Then

d
nw= [ [ e araePas

Next, we set

' . dx
&) = P |
(E) /7l |e | !lxll1z+2s

This integral is invariant under the mapping z — A.z, where A is an
orthogonal matrix. Hence A('A.£) = A(£); that is, there exists a function
¥ : RY — R7 such that A(€) = w(|€]]).

Note that, under the dilation £ — af (a > 0),

v 5 dr
bl rv _ —ir.af _ q12__ "
U/(Q|I§|D - /le |e 1| |I$||"+25'

Setting ax = y gives
| _ —iy.E g o Mdy o _ 2s,
v(allgl]) = o le™= —1| Ty = y(alléll) = a™w(lIgl]).

Setting €|l = 1, this shows that ¥(a) = a?*¥(1). Hence \(€) = c||€]|**.
where c is a strictly positive constant. Finally,

L) = [ @) Plel e

Since f is assumed to be an L? function, [ |u(§)[?d¢ < +oc. Hence the
finiteness of Is(u) is equivalent to that of

/ (©)2(1 + [l€]|?)*de.0

Corollary. Let f € L%(E), where s is a positive real number. Let s be
decomposed as s = p+ s, with 0 < s’ < 1 and p an integer. Then the
following statements (iii) and (iv) are equivalent:

(i) f € HS(R™). ,
(w) (DI ...D' f) e HY,  Vm such that |m| < p.



3 Vector Differentiation and Sobolev Spaces 145

REMARK. If ' = 0, then H® = L? and this is the definition of H*® for
1nteger s given in 3.1.

If & >0, then 0 < s’ < 1 and membership in H s’ is characterized by
convergence of the integral (ii).

PROOF. Set Ff = u; then (iii) becomes
Erepe e (1+ i€l Ju € L?,  ¥m such that [m| < p.
This is equivalent to
(1+|l€l)’u e L2.O
3.5.5 Operator of multiplication by a differentiable function
Proposition. Let o € D(R") and let f € H*. Then ¢of € H®.

PROOF. The result was proved for integer n in 3.4.1. Using 3.5.4(iii) reduces
the proof to the case where 0 < s’ < 1.

We begin by writing

(¢) m2(ef) — of = (o f = f) + 2(0f) = @72(f)-
Then, since ¢ is bounded,
(49) lo(rzf = iz < llellzelref — flizz-

Set 2 — 20 = y; then [, 720 (pf) — ¢Tao f?dx = [ |of — (r—ao9)f|*dy. Thus

I72(2f) = o720 (DlIF2 = (T=209 = ) flI72 < 1fl72ll7—z00 — @lZoe-

By the mean value theorem,
(444) I7-z0 = @l < Clizoll™.

Substituting inequalities (ii) and (iii) into (i), we obtain the integral convergence
criterion 3.5.4(ii). O

3.5.6 The spaces H} .(O)

Let O be an open set in R™. We say that f € L? (O) if f1x € L*(R")
for every compact subset K of R". For s > 0, we say that f € H} (O) if
of € H*(R™) Yo € D(O). The next proposition follows essentially from
3.5.5.

Proposition. Let f € L2 (O) and suppose that, for every xo € O, there
exists a function ¢ € D(O) such that o(zo) # 0 and ¢f € H*(R™). Then
f € loc( )

PROOF. Let v € D(O) be such that v = 1 on a neighborhood of xo; assume that
its support supp (v) is small enough that ¢(z) # 0 on supp (v). Multiplying by
ﬁv(x), we obtain

Vzo € O 36 € D(O) such that 6o € H*(R") and 6 = 1 on a neighborhood of zo.
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Let U,, = interior of #7'(1). Then, for 24 € O, the collection {U,,} is an open
cover of O. Let xi1,...,) (n € D(O) be a partition of unity subordinate to this
cover. Then x,.f = xn0f, where 6 corresponds to the open set U containing
supp (x»). By 3.5.5, xn(0f) € H®; that is, x,f € H® for every s.

Let ¢ € D(O). Then the identity f = > xnf gives of = >~ @xnf. This sum
is finite and all the terms are in H®; hence of € H®. O

3.5.7 Invariance under diffeomorphism

Theorem. Let O be an open set in R" and let g_be an inﬁnitelg differ-
entiable diffeomorphism from O onto an open set O. If f € H} (O), then

(fog) € H},(0).

PROOF. We use the criterion in 3.5.6. If s is an integer, it suffices to compute
the derivatives of the composite function 1 o g (where 1 € D(0)) and to use the
characterization of H° by means of weak derivatives. _

By using 3.5.4, we may assume that 0 < s < 1 and that f and f have compact
support. Then the integral 3.5.4(ii) becomes

loc

L= [ et ) - TP

Consider the mapping of x defined by
py(x) =gz +y) — g(y).

Then p is a diffeomorphism for fixed y. Let

/ dy / IFlatn) + puta) = Flato)F

Setting g(y) = y and py(x) = z gives dy = (det g~ ')(y)dy and dz = det(p, *)d=.
By the change-of-variables formula for multiple integrals,

' d
Iq(f):/ dy(det g+ /|f U+2) — f@)P° (det p, )HTHfTA < +00.

Since g is a diffeomorphism and all that matters is its restriction to a compact
set, there exists a constant ¢; such that ||z|| > ci]|z||. Similarly, there exists an
upper bound cy for the functional determinants, and

~ ~ YR dz
I(f) < C/ dy/lf(y-i—z)*f(y)IZW < +o0.
Rn
The integral is finite because jTG H5(6). O

3.5.8 Trace theorem. Let f € H*(R"), and consider R"™P C R"™. Then
the restriction operator

» : D(R") — D(R"7)
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has a continuous operator extension
H® = H P2 4f s> g.

PROOF. Let ¢ € D(R™) and write z = y + z, where y € R""P and z € RP.
Then, by the inversion formula,

plu+2) = [ eI
Similarly, writing € = n + ¢,
o= [ e+ dndc.
RPxR"—P
Letting p(¢) denote the operator of restriction to R" ™7, we obtain

() (oo)'@ = [ @+

Moreover,

Jite P + a2

L[ o]

(1+ [Im[?)*~7/2dn.
By the Cauchy-Schwarz inequality,

le()I g

Il

2
’/Rpﬂn + O+ [In+ <) + lIn + ¢|1*)~*/2d¢

< ([ arrsame) (Lsm+opa i+ arra).

The first integral on the right-hand side, say J(n), converges since s > p/2.
Moreover,

L+ lIn+ClI*)* = @+ Inl* + lIc)*)®

dg
T = | S Y
re (L1012 +1KID)* Sycu<pmn icsmi
The first integral is bounded above by

vol({II<I < limll})
(L +[ImlI?)®

and

< C(L+ |nl?)P/2=

and the second by

—ﬁ_ 2\p/2—s
/ucn>nn| A+ <P = (L Q57575
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whence J(n) < ¢(1 + ||[n?)P/?~* and

oo < cf dn(i+ Il gy
= 2 2\s
< | [ g+ 0P+ e+ oiPrac]
< of an| [ g+ QPO I+ cIPyac] = cliele
Thus
(i) lep(P)sesre < cllglfye i s> 2.

The existence of the desired extension follows from the density of D(R")
in H*(R"). O

3.5.9 Corollary (Serge Bernstein). Let s > n/2. Then H$(R") C
Cy(R"), where Cp(R™) denotes the bounded continuous functions.

PROOF. The inequality 3.5.8(ii), with p = n, gives
lpn(9)(0)] < cllellas, Vo€ DR").

Since the H® norm is translation invariant, |pn(¢)(z)| < c|l¢|lus for every
r € R", whence, taking the sup over x,

(@) lon()lle, rR7y < cllelas.

Let f € H*(R"™). There exists a sequence @, € D(R") such that || f —q||gs —
0. Then
prnlpq) = uq € Ch(R").

The uq converge uniformly by (i); hence
limug(z) =u € Cp(R™).0

3.5.10 Theorem. Let O be an open set in R™ and let V be an (n — p)-
dimensional submanifold of R" such that V C O. If s > L, then there
exists a continuous restriction operator

H} . (0) — Hp (V), where s =s— g
PROOF. H;, (V) is defined via an atlas of charts on V. This definition is indepen-
dent of the choice of atlas, since passage from one atlas to another is accomplished
by local diffeomorphisms.’ The result follows from Theorem 3.5.7.
Given vg € V, there is a local diffeomorphism from a neighborhood U of v
to O such that the image of V N U is the space R""? C R", and 3.5.9 can be
applied. O

1See, for example, W. Boothby, An Introduction to Differentiable Manifolds
and Riemannian Geometry (New York: McGraw-Hill, 1987).
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4 Fourier Transform
of Tempered Distributions

Plancherel’s theorem, characterizing the image of L? under the Fourier
transform, played a major role in the last section. Although we hardly
considered the spaces WP (s integer, p # 2), the systematic use of the
Plancherel isomorphism enabled us to study the spaces H* = W2. In Sec-
tion 5, we will study pseudo-differential operators by restricting our atten-
tion to their action on the classes H®, where we will again use the Plancherel
isomorphism.

In this section, we characterize the image under the Fourier transform of
the space S(R™) of infinitely differentiable functions which, together with
all their derivatives, are of rapid decrease. The Fourier transform is an
isomorphism from S(R™) onto itself, and S(R™) will be given a topology
in which this isomorphism is continuous. The dual of S(R") is the space of
tempered distributions S’(R") of Laurent Schwartz; the Fourier transform
induces, by transposition, an isomorphism from S’(R") onto itself.

Our study of the Sobolev spaces of negative order will parallel that of
S(R") and S'(R™).

4.1 The space S(R™)
(i) Functions of rapid decrease

Definition. A continuous function f on R" is said to be of rapid decrease
if, for any integer m,

1+ [l2*)™f(z) =0 as |z| — oo.

The space of functions of rapid decrease is denoted by Cgo(R"™) and
equipped with the following sequence of norms:

1£llm.0 = max (1 +[|z]*)"[f(x)]

Coo(R™) is thus a vector subspace of Cy(R™), the space of continuous
functions which vanish at infinity. Moreover,
C().’(](Rn) = {f € C(](Rn) : Hf”m() < 400 \'/m}

We define
(i)  SR") ={f € Coo(R"):9f € Coo(R"), VYa=(q1,..-,qn),
where

0l9l f(x)
(ozl)ar ... (Bz™)an’
and this derivative is assumed to exist in the elementary sense. In other

words, f is infinitely differentiable and all its derivatives are of rapid de-
crease.

of =
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(iii) Norms on S(R™)

A countable family of norms is defined on S by

”f”m.r = sup ”aqf”m()

lgl<r

These norms can be used to give S(R") a metrizable topology, with
distance defined by

d(f.0) = 2*<"+7">M’_.
o Z U+ 01T
d(f, ")

d(f = f',0).
(iv) D(R™) is a dense subset of S(R")

Il

Let ¢ be an element of D(R") such that ¢ = 1 on a neighborhood of zero.
Set pn(r) = (7). If f € S(R"), then d(f, fe,) — 0 and fp, € D.

A linear functional { on S(R") is continuous if and only if there exist m,
r, and a constant ¢ such that

1LHOI < ell fllmr-

4.2 Isomorphism of S(R") under the Fourier transform
Theorem (Laurent Schwartz). Let f € S(R"). Then

(i) fe L' and the Fourier inversion theorem can be applied:
PN . dt
) — t /711‘1.‘ .
f(l) /f( )() (271_)71

(ii) f € S(R") and there exist constants c,., such that

“f“rs S C'r.s”f“r.m+s~ where m > n.

(iii) The mapping f — fdeﬁnes a topological isomorphism of S(R™)
onto S(R™). R
(iv) (a* f)"z) =iz f(1)
(v) (%f)/\ (t) = —iti f() -
(vi) If f, g € S(R™), then fg € S(R") and (fg)" = f*g.A
(vii) If f, g € S(R™), then fxg € S(R") and (f xg)" = fg.

REMARKS. From now on, whenever there is no possibility of confusion,
S(R") will be abbreviated by S. The Fourier transform on S has all the
right properties: it maps differentiations to multiplications (by —i times the
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variable of differentiation) and vice versa, and convolutions to products and
vice versa.

Proor. If f € S,

[rwetac= [ ( 2 f) (t—e> iz,

This identity can be checked by an integration by parts on the right-hand
side; the variation of the integrated term vanishes because f is of rapid

A
decrease. It follows that <§}Jil> (t) = —itlf(t), and (iv) is proved. More-

(The last inequality uses the fact that (1 + HmH )~™% e LYR™M).)
In general, it follows from repeated integrations by parts that (89)" f(t) =
(—=i)lalta f(t), whence [t9f(t)]| < ¢||0f||m.0, and finally

over,
of
dzt

since m > n.

llfo)] < |24

(viii) I £llr0 < emllfllm.r-
Hence f € S implies f € Cpo C L.
Thus the Fourier inversion formula can be applied, and (i) is proved.

Let 8] be a derivative of order ¢ in t. It can be computed by differentiating
the Fourier integral under the integral sign:

o1t = [(ote*) (@de = [ (i) olatf(a)da.
Since z79f(z) € S, it follows from (viii) that
107 £l < emllzf(@)llmr-
Writing out in detail the norm on the right-hand side gives

127f (@) lmr = D 16" (@f (@) lm,0-

[L<r
By Leibnitz’s formula for the derivative of a product,
@) = 3 CLE"a (0" f)(a).
It follows that |22f(z)|lm,» < cm.gll fllm+q.r» Whence

Ifllrs < crsllfllmts.

This proves (ii).
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To prove (iii), we must show that the mapping f — fis surjective. Let
. dt
h € S be given, and set hy(z) = /h(t) -t ‘(2 X Then

(iz) hi(z) = h(~z),

(Qﬂ-)n

and h; € S by (ii). We now compute its Fourier transform.

El(x)z/ ey (z)d DR / (-z) 'Md% / (z)e” " M.

By (i), h1 h. This shows that the Fourier transform is surjective. The
inverse transform, given by (ix), is continuous by (ii). Both the isomorphism
S — S and its inverse are continuous: it is thus a topological isomorphism.

Applying the Fourier isomorphism to formula (iv), which has already
been proved, gives (v).

Since f, g € S C L', 1.6.2 can be applied and (f * g)" = f§ It is clear
that the product of two functions in § is in St if f € Sand g € S, then
fg € S. It follows that fxg € S. This proves the first part of (vii), and the
second part follows from (vi) by the Fourier isomorphism. O

4.3 The Fourier transform in spaces of distributions
4.3.1 Notation

Using the notation of Laurent Schwartz, we write S’ for the vector space of
continuous linear functionals on S. &’ is called the vector space of tempered
distributions on R". For example, let u € M(R") be such that there exist
l and C for which

(i) lul({z : lzll < R}) < C(ll=]* +1)".
Then [ f(z)du(z) converges Vf € S and defines a distribution in S

4.3.2 Operations on S’
These are derived by transposition from continuous linear operations on S.

(i) Differentiation is a continuous linear operation on S. Since

— “f“mﬂ‘%»l‘

”81:1

differentiation on S’ can be defined by

_<%f’l>:<f’%>’ viesS'.

The left-hand side clearly defines a continuous form on §’.
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(ii) Multiplication by a polynomial P of degree k is a continuous operation on S.
Since

I1P(@)f(@)llm» < cl|fllmtk,r, wherec=c(P),
multiplication by a polynomial on S’ can be defined by

<Pfal) :<faPl>

(iii) S is an algebra: the product of two functions in S is a function in S. That
S’ is an S-module follows from the formula

(hf,1) = (f, ), Vf €S,

where [ and h are fixed elements of S’ and S, respectively.

4.3.3 The weak topology on S’

Definition. A sequence I, € S’ is said to converge weakly to lo if
(f,1n) converges to (f,lo), Vfe€S.

Proposition. The operations defined in 4.3.2 are continuous in the weak topology
on S'.
In particular, if I, — lo weakly, then
0 0
Ll -
ox! Ozt
In other words, the differentiation operator is a continuous operator on S in the
topology of weak convergence of sequences.

lo.

PROOF. We prove this for differentiation:

(7 gartn) == (arotn)

Since a%Ll € S if f € S, the right-hand side converges to <—%,lo>. a

4.3.4 Theorem (Laurent Schwartz). Let a mapping Fg' : S — 8 be
defined by setting

(f,Fgly = (f,1).

Then F g is an isomorphism from S’ onto S’, mapping weakly convergent
sequences to weakly convergent sequences.

Moreover, F g can be restricted to L! and L? by means of the inclusions
L' C 8, L* C §'. The restriction of F g to L' gives the Fourier integral;
the restriction of F g/ to L? gives the Fourier-Plancherel transform.

Finally, the inverse of F g is given by

fg}(u) =Fg @), VueS

REMARK. If u is a positive measure satisfying 4.3.1(i), F g/(u) is defined
even though the integral [i(t) might diverge for every ¢.
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PROOF. Fixing [ € 8" and setting

o(f) = (f,0),

we obtain a linear functional on S which, as the composition of continuous map-
pings, is itself continuous. Hence there exists {1 € S’ such that o(f) = (f,l1).
Let

h=Fg (1)

Since f — f is an isomorphism of § onto S, its transpose F g/ is an isomor-
phism from S” onto S’. Moreover, by Parseval’s relation (cf. 2.6),

(fou) = (£,@), Vfe€S, Yuell.

Hence F g is an extension of the Fourier integral on L'. The same result holds
on L.

Finally, the inversion formula for F g/ is proved by transposing the inversion
formula on S. O

4.3.5 Support of a distribution

Let [ € S’. We say that [ is zero on the open set O if [(p) = 0 for any
¢ € S(R™) such that supp (¢) C O. Differentiable partitions of unity can
be used to show that there exists a largest open set 2 on which [ is zero.
The complement of €2 is called the support of L.

4.3.6 Sobolev scales of distributions

For a fixed positive real number s, let D(R") be given the H~° norm
defined by

lellg- = sup/ ofdz, where fe H® |fllgs <1
Rn

Since D is dense in H®, ||¢||g-s = 0 implies that ¢ = 0.
Using the notation of Sobolev, we let H™*(R™) denote the completion
of the space D with respect to the H~* norm.

Theorem (Sobolev). The Fourier transform extends from D to H~*° and
realizes an isometric isomorphism from H™° onto L*(R", us), where dus =
(1 + [[¢]1*)~*dt.

PROOF. If f € H®, then f € L? and the Fourier-Plancherel isomorphism gives

/ pfdr = / P(H)F f(t)dt.
n R‘Il

Hence

ol —s =Sup/99(t)v(t), with /lv(t)|2(1 +[[¢]%) dt < 1.
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By the Cauchy-Schwarz inequality,

\ / @(tﬁ@dt’

I

/@(t)(l + 1) 72+ 11E1%) Y *o (¢ dt
[ o)

1/2
a1

whence

172
~ N2 dt
lollg-s < [/@(t) W] :

Equality occurs when v(t) = c(t)(1+¢]|%) "%, with the constant ¢ determined
so that ||v||gs = 1.0

4.3.7 Comparison of the two theories
(i) Proposition. For every s > 0, H*(R") c S'(R").
Proor. S(R™) ¢ H*(R"™). Moreover,

. n
Wl > e 36 7>, m> 2.

Let # € H™°. Then 0 defines a linear functional on H® and
0N <cllflias <cllfllmr YfeH".

Hence 6 is continuous on H*® if H® is given the topology induced by that of S.
Restricting 6 to S gives a continuous linear functional 8; on S and 8 — 6, defines
the desired map H™* — &'.

This map is injective: D is dense in H?®; a fortiori, so is S; thus a linear func-
tional on H® that vanishes on S is identically zero. O

(ii) Proposition. Let [ € S’ and suppose that | has compact support. Then
there exists p such thatl € H-P(R").

PROOF. There exists a pair of integers m, r such that
O < el fllmr Yf e SERY).

Let ¢ € D(R"™) such that ¢ = 1 on the support of I. Then I(f¢) = I(f),
whence |I(f)| < ¢|l@f]lm.» But

lofllmr < cllllmrll fllwee.

Moreover, by the corollary to the trace theorem, ||f|lre < c||fllms if
s> % and || fllwe < c||f||ps+-. Hence

WA < ellf | gosr

Thus [ extends to a continuous linear functional on H*'", whence | €
H—s-". O
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5 Pseudo-differential Operators

The Fourier transform on R™ diagonalizes linear differential operators with
constant coefficients. This property leads to representation theorems for the
solution of the homogeneous equation as a limit of sums of complex expo-
nentials, as well as existence theorems for the nonhomogeneous equation.
These theorems, due to Leon Ehrenpreis and Bernard Malgrange, use the
Fourier transform in C" as a fundamental tool.

Complex-analytic methods are needed to prove these theorems, which
are naturally formulated in the context of Laurent Schwartz’s theory of
distributions.

To obtain such general results, we would need not only to study locally
convex topologies on spaces of distributions and duality between locally
convex spaces, but also to prove minimum modulus theorems for holomor-
phic functions of several complex variables. All these methods originate in
different currents of thought from those we have followed up to now.

We will study differentiable operators with variable rather than constant
coefficients, and on bounded open subsets of R™ rather than on all of R"™. In
physics, differentiable operators with variable coefficients invariably appear
when an inhomogeneous medium is considered.

At first glance, Fourier analysis seems to have no means of obtaining re-
sults in this setting. It was thus a striking result when Alberto Calderon, in
1957, introduced an “infinitesimal Fourier transform on the tangent space”,
which assigns a “symbol” to an operator and thereby embeds differential
operators in the wider class of pseudo-differential operators. In this class,
one introduces an infinitesimal symbolic calculus which consists of multiply-
ing symbols. Calderon’s symbolic calculus theorem states that the symbolic
calculus corresponds to the composition of operators modulo regularizing
operators, i.e. with the gain of one derivative.

The pseudo-inverse of a differential operator can be explicitly constructed
in integral form.

This section ends with an application of the pseudo-inverse, in the proof
of the elliptic regularity theorem.

Pseudo-differential operators are a basic tool of the theory of partial
differential equations. The spectral pseudo-decomposition they effect, and
the integral estimates they entail, make up, to some degree, the extension
of Sections 1 to 4 of this chapter.

5.1 Symbol of a differential operator
5.1.0 Notation

In order to distinguish clearly between the variables z € R™ and t € R" of
the function f(x) and its Fourier transform f(t), we set R" = E, where E

is an n-dimensional vector space over R, and write its dual as E. The dual
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pairing is denoted by
(z,€) or .6, wherexz € E, £ € E.

For a fixed choice of volume measure on E, the Fourier transform is written
Fo = / f(z)e™€dx, where fe L'(E).
E
The volume measure d¢ on E is fixed so that, on L'(E) N L2(E),

X 2 Ir = i 2 .
/E () /Elf(f)l e

Similarly, if p € A(E), the Fourier inversion formula is written

(i) o(z) = /E@@)e*"fds.

The two measures dz and d€ are called associated. The Fourier-Plancherel
transform is an isometry of L2(E) onto L?(E). We observe the convention
of choosing a basis for E in such a way that the associated volume element
is equal to 1. Under these conditions, we are led to define two bases ey of
E and e* of E as Fourier-dual if

(ej, ¥y = 2m if k=4,
(ej.e*¥) = 0 if k#j.

Let £(E) be the vector space of infinitely differentiable functions on F,
and let D(E) be the subspace of £(F) consisting of functions with compact
support. We will consider differential operators of the form

(i) L= )" am(z)0™,

Im|<s

where m = (my, ..., m,) denotes a multi-index, that is a system of n non-
negative integers. Let |m| = mi+...+my, let 8; = 8/dz',...,8, = 0/0z",
and let 9™ = 9" ... 9" . The coefficients a,,(x) will be “sufficiently dif-
ferentiable” functions of x. If L is not the zero operator, the largest |m|
such that a,, # 0 is called its order.

Given ¢ € £(E), we define

(Le)(@) = Y am(2)(0"¢)().

Iml|<s
If a,, € E(E), then L defines a linear operator from E(E) to E(E). The
symbol of the operator L is the function defined on E x E by

—ix.£

(322) or(z,&) = e Lpe(z), whete pg(z) =e
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Writing this out in a basis,
(iv) oL(2.€) =Y am(x)(=i&)"™ ... (—i&)™"

The symbol is thus a polynomial in £ for every fixed x. The advantage
of (iii) is that it is independent of the choice of basis, while (iv) appears to
depend on the choice of basis.

A differential operator can evidently be reconstructed from its symbol;
it suffices to write the symbol, in a basis, as a polynomial in &, and to
substitute idy for & in the monomials. This elementary calculation can be
replaced by an integral expression, which has the immense advantage of
being applicable to functions o(z, &) more general than polynomials in &.

5.1.1 Theorem. Let L be a differential operator on E with symbol op(x,€).
Then

(i) Lo)@) = [Loue 93 "l e e D(E)

E

where p(&) = /¢(x)ei""'£(lx denotes the Fourier transform of .

PROOF. By 4.1(iv), D/(\E) C S/(E) = S(E), whence  is of rapid decrease.
Thus o (z.£)@(€) is of rapid decrease and the integral in (i) is convergent.
Moreover, by differentiating the inversion formula

o) = [ plepen<ae
E
with respect to Ji, we obtain
Oro)le) = [ FE (=)o <

and more generally
O o) = (i) (i e e

The theorem follows by multiplying both sides by a,,(z), pulling a,,(x)
through the integral sign, and summing over m. O

5.2 Definition of a pseudo-differential operator on D(FE)
5.2.1 The class of symbols C(3,1,0)

Let 3 be a real number and let r be a positive integer. We define a class
C(/3,7,0) of measurable functions g on E x E which satisfy the following
two conditions.
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(i) g has compact support in x; that is, there exists a compact subset K of
E such that

q(z, &) =0 if z¢ K, forany &€ E.
Derivatives with respect to z in E x E are denoted by 97'. The functions
q are required to satisfy the following regularity condition.

(ii) (1 +1€NPorg(z, E)HLoo(ExE) < +o0 for every multi-index n such that
In] <r.

5.2.2 EXAMPLE. Let L be the differential operator of order s considered in
5.1.0(ii). If the coefficients of L are in W°, then

or(z, &) € C(—s,r,0).

It is clear from this example that, in the class C(8,r,0), the integer r
corresponds to the regularity of the coefficients and the number —/3 to the
order of the operator.

5.2.3 Pseudo-differential operators defined on D(E)

With a given symbol g € C(3,r,0) and function ¢ € D(E), we associate
the function

(i) (Agp) () = /Eg@.,o@(s)e*"-fds.

The integral converges since, for fixed z, ¢ is of rapid decrease in £ and
g is of polynomial growth in £. Differentiating under the integral sign with
respect to x shows that A, € W, and it follows from 5.2.1 that Ay¢ has
compact support. All these observations are trivial; the following theorem
is not.

5.3 Extension of pseudo-differential operators
to Sobolev spaces

5.3.0 Theorem. Let g € C(B,r + 1,0) and let n = dim(E). Assume that
s > =03 satisfies

) 0<s<r-—n.
Then there exists a constant cs such that
(1) [Agplias < csll@llmets, Vo € D(E).

(iii) There exists a unique extension of Ay to a bounded operator Aj from
H*(E) to H*P(E).
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PROOF. Statement (iii) follows from the density of D(E) in H*(F) and
from inequality (ii).

Since the H® norms can be computed in terms of the Fourier transform,
(ii) can be expressed as an inequality between Fourier transforms. Since
Agyp is a bounded function with compact support, its Fourier transform
can be computed. This computation leads to the following lemma.

5.3.1 Lemma.

(0 Aot = [ K, (.36,
where

(i7) Kg(n-f)é/E (z,&)e™ 1= du.
PROOF.

(A = [ emnage)@pn = [ ewras [ o pe00 e

The double integral fExE lg(z,&)p(&)|dEdx converges: it is bounded above
by

1+ 1179 (@ O 1 ) meas (K) /E|a<f>|<1+n§n>"“d¢

where K’ denotes the support in x of the symbol, and the integral on E
converges because @ is of rapid decrease. Hence Fubini’s theorem can be
applied to reverse the order of integration:

‘@(U):Aﬁ(é)dg/g(g;,g)eiﬂ(fl—f)d$

Fubini’s theorem guarantees that the integral on F converges for almost
every £. Since g has compact support in z, it actually converges for every
&, and there exists a constant ¢ such that

(112) [Ky(1.€)] < e(1+||€])~ " meas (K7).

5.3.2 Estimating the kernel K,

Lemma. Suppose that g € C(3,r + 1,0) and let r' be the integer defined
byr <2r' <r+1. Then
(4) |Kg(m, ) < L+ [1ED7 (A + [l = nl*) ™"

PROOF. Let {z*} be an orthonormal basis with respect to the metric ||z||.
In terms of this basis, the Laplace operator on F is defined by

n

Ay =) (90)

k=1
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Then ‘ _
Arew.ﬁ — _”gHQew.E.

Let A;’ be the differential operator on E with constant coefficients de-
fined by / , "
A;=(1—-Az)"":l—T/A+...+(_1)TAr.

Then A} e/®(1=6) = (1 + ||n — £||?)"e'>(1=) whence
Ky(n,6)1+|In - €)»)" = /E.‘J(%ﬁ)A;'e””'(”‘f)dm.

Since g(z,&) has compact support, we can integrate by parts and turn
derivatives of the exponential into derivatives on g. Thus

(14 Iln = €I1")" Kg(n,€) = / (A7 g(x,8))e™ (O da,
and (i) follows by 5.2.1(ii).

5.3.3 Proof of the extension theorem

(i) Lemma. Let f € L?(E) and let F(f) denote the Fourier transform of
f. Then f € H® if and only if F(£)(€) = (1 + ||€])~*k(€) with k € L*(E).

Proor. Cf. 3.5.1. O

(i) Lemma. Let K,(n,€) = K(1,€) (}iﬂg”)s (1+ €)=5. Let

(Gof)0) = [ Ryln,)f(€)de.
Then 5.8.0(ii) is equivalent to the inequality
“GQfHLz(E) < c”f”LZ(E)? vf € LZ(E)

PROOF. By 5.3.3(i) and 5.3.1(ii). O
(iii) Lemma.

[Kg(n,€)] < (L +[l€ = nll*) ™4,
PRrROOF. This follows from the inequality

L) et o el
(FHH) <za+ln-ee)

which is proved by considering the following two cases:
(a) |Inll < 2||€]|- Observe that the left-hand side is less than or equal to 2°.
(b) lInll > 2[|€]|. Observe that 1+ [In|| <1+ 2[|§ —nl|. O
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(iv) ConcLUsION. To prove 5.3.0(ii), note that |G, f]| is bounded above by
replacing K, with an upper bound for |K,|. Using 5.3.3(iii), it must be

shown that
' 1f(€)]
d
H/ AT e - npy—7%

The left-hand side can be written formally as |f| * u, where u(§) = (1 +
[l€]12) = +s/2.

Next, —2r’' + s < s — 7 < —n by 5.3.0(i), whence u € L'. Finally, using
1.8.2.

< ol fllz2ce)-
L2(E)

I lle < el flle2-0

5.4 Calderon’s symbolic pseudo-calculus
5.4.0 Motivation

The Fourier transform maps a differential operator L® with constant coeffi-
cients to multiplication by the symbol o0(&). (The hypothesis of constant
coefficients is reflected in the fact that the symbol no longer depends on z.)
Thus the composition of constant-coefficient differential operators L" and
MO — that is, the differential operator Q° = LYM? — corresponds to the
product of symbols oo = oo 0. The differential operators with constant
coefficients form a commutative algebra for which the Fourier transform
makes possible, to some extent, a spectral theory.

The differential operators with variable, but infinitely differentiable, co-
efficients also form an algebra: two such operators can be composed. But
this algebra is no longer commutative.

For example, consider the differential operators L = x! %1- and M = 3—27
on R. Then

a0 \? ) a1\’ B
_ 1[99 V3 S , V2 A
LM =2z (0$1) ., ML BIs +x <8x1> , and LM-ML e

Commutativity has been lost. Nevertheless, the commutator LM — ML
is an operator of order 1, while the product is an operator of order 2.
One might say that commutativity is preserved, modulo operators of lower
order.

5.4.1 Introduction to the classes C(3.r, 1)

A subclass C(3,r,1) of the symbols C(3,7,0) is defined by imposing the
following additional axiom:

(@) I+ 1D (05 0eq) (2. )l oy 5y < +00.  Vm such that [m| < 7.

Similarly, a class C(3, r, s) could be defined by differentiating s times with
respect to £ instead of once, and replacing 3 by 3 + s. These classes would
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appear in computing multiple commutators; such computations would arise
from taking limits that we have held fixed.

Pseudo-products

Let p and ¢ be the symbols of the pseudo-differential operators A, and
A,. The pseudo-product of A, and A, is the operator whose symbol is the
product of the symbols. This operator is written A,0A, and, by definition,

Agp = AJ0A,.
With the formula for the derivative of a product, it is easy to verify that
(i) if g € C(B3,7,0) and h € C(3',7,0), then gh € C(3 + ', 7,0).

The pseudo-product is a commutative operation and therefore cannot cor-
respond to the composition of operators. However, it does give an approx-
imation.

5.4.2 Calderon’s commutation theorem. Let p € C(3,2r + 2,0) and
let g € C(B',7 +1,1). Suppose that r > 3’ 4+ 1. Set

R = AjA, — A,0A,.
Then, for s such that 0 < s<n-—r,
(i) R:H*(E) — HSH}“}’“(E)
and there exists a constant cs such that
(i) IR prsvorersr < csll fllms-

PROOF. Since D(E) is dense in H*, it suffices to prove (ii) when f € D(E).
As in the extension theorem, we take the Fourier transform of both sides
of the inequality. For f € D(FE), let

Apf(n) = Apf = | Kp(n, &) F(&)de.
E

The kernel K, was computed in 5.3.1.
The proof of this theorem will require several lemmas.

5.4.3 Lemma.

(0 (AN = [ Gup\OF(Ede. where

(i) Gap0 &) = [ [ [ ple+h€ateg - e eV an =
PRrOOF. Composing the kernels gives

Gq,p()‘» §) = /1/5\ Kq()\v W)Kp(n, £)dn.
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Replacing K, and K, by the expressions given in Lemma 5.3.1,
Gop = /Adn/ p(l"-f)Q(Z-U)eiz(f_")+iz(n_/\)dx dz.
E E?
Setting = z + h and z = z in B2, and n = ¢ — p in E, we obtain

Gop = /,\dﬂ/ p(z + h,€)q(z, & — p)erhTi=E=N gy dh.0
E B2

5.4.4 Lemma. Let O be a compact subset of E containing the supports of
p(x,.) and q(x..). Then there exists an even function u € D(E) such that
u(zy —x2) =1ifxy, 12 € O,

(i) Gop(M6) = /,;d“/ /F Pz + . €)q(z. € — 1) "€ Nu(h)¢*dh dz,

and

(i) 1= /E du [ /E u(h)ei“hdh}.

PROOF. Let

Or={yeE:y=1z1— 22, T; € 0}.
Then O is a compact subset of E containing the origin. There exists a
function u € D(F) equal to 1 on O;.

The right-hand side of formula 5.4.3(ii) is nonzero if z+h € O and z € O;
that is, if h € O;. Multiplication by u(h) is multiplication by 1; this proves
formula (i).

The second formula is obtained by applying the Fourier inversion formula
to u € D(F) and noting that, since the origin is in O1, u(0) = 1.0

REMARK. We must be careful not to write a double integral in (ii), since Fubini’s
theorem does not apply. Similarly, 5.4.3(ii) cannot be written as a triple integral.

5.4.5 Lemma. (G, — Kgp)(A\. &) = I(N, &) + J(\,€), where
() I\ = // w(w)p(z,€)la(z,€ — p) — q(z,6)]e* N dadp

(ii) J(A.g):/Edu/Eq(z,g—ﬂ)e"“—*)dz UE.,.dh}, and

L/E...th :/E(p(z+h"§)‘p(zvf))ei“hu(h)dh,

PROOF. Formulas (i) and (ii) of Lemma 5.4.4 and 5.4.3(i) imply that

[ o ze* ¢ Vdzdp [ e[ Ju(h)dh, where

[ ] p(z+h,8)q(2,6 —p) —p(2,8)q(z,8) = ], +[ ], with
[ 1 p(2,8)(q(2,€ — ) —q(2,6)) and
[ ] q(z,& — p)(p(z + h, &) — p(2,€)).

GI)-‘I - AI"I

([
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Note that the first term no longer contains h; hence the integration in h affects
only e**"u(h), which, since u is even, gives u(u). Thus we have

I06) = /Adu / A0 1, exp((iz(€ — A))dz.

Since u € L*, Fubini can now be applied to obtain (i). Integrating the expression
[ ], and applymg Fubini to the integral [ sz yield (ii). O

5.4.6 Lemma. Set
gu@waému@—uy~«zomwmu

and let
1(2,€) = p(z,§)9(,§).
Then I = K.

PROOF. Integrate 5.4.3(i) with respect to u, then use Lemma 5.3.1. O

5.4.7 Estimating the integral 1

We use the extension theorem 5.3.0 to show that
(i) gelC(B +1,7+1,0).

5.4.1(ii) will then imply that pg € C(8 + 8 + 1,7 + 1,0).
We first use Taylor’s formula with integral remainder on E to obtain

=J5 (Z qr(2, &, M)Mk) a(p)dp, where
i (2, €, )= fo (O q(2,€ — tp))dt

Differentiating with respect to z gives
9;"(9(2,¢)) = Z/E(al”q:c(zvé,u))ﬁ(u)ukdu,
k
whence, by 5.4.1(i),

(@) 197(9(2,8)| < C/F/U (14 11€ = tul) ™|l ll @) dtdp.

Let v(p) = ||pll |a(p)]. Then v is of rapid decrease. Set

F(.€) = [+ le=tul) ™ olwdu= [ + [ .
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where A = {pu : ||l > @} For any integer m,

/ < /‘IAU < ¢ <1 + Hﬂ)"”'
JAa t

Moreover,

TR IR
Hence, taking m > 3" + 1.
(i) F(t,6) < Cy(1+ [igl) =",

where the constant ('} is independent of ¢. Integrating with respect to ¢
gives (i). O

5.4.8 Estimating the integral .J

We now use Taylor’s formula with integral remainder on E. Set

1
er(z, h &) = / (Ouxp)(z + th,&)dt.

<0

Then p(z 4+ h.&) —p(z.€) = h* or. Writing ihy = Dure™ ™ gives

_/ (p(z 4+ h, &) — p(z.6))e" *u(h)dh = 1‘/ Zp;\.(i)ﬂkc”"“)u(h)dh.
E E

Since p appears only in the exponential terms and we can differentiate under
the integral sign,

/ (p(z+ h. &) — p(2,8))e" *u(p)dp = Z(’iukw(zw-é),
JE
where
() — (2,1, &) = z‘/ on(z, b, €)e" P u(h)dh.
-

Since @y and u are sufficiently differentiable in h and u has compact support, it
follows that 1, which can be regarded as a Fourier transform in h, vanishes at
infinity together with its first derivative. Substituting into 5.4.5(ii) and reversing
the order of integration, we can thus integrate by parts on E with respect to p,
and we obtain

T &) =3 / eV /A(amq)(z.é-;1.>w-<z.u,£)du.
I3 E JE

Let
g (2.6) = /A (D) (21 € — 1)z, 1, €

E
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Then J =3, K,,. We now show that
(i1) g €C(B+ 08 +1,7+1,0)
by finding an upper bound for
U(z8) = ) /A (07 By q) (2, € — )BT iz, 11, €)dps,
mi,mg E

with |m1| + |m2| <7+ 1. Since ¢ € C(8', 7, 1),
(i) Uk(z,6) e /A<1+||<—uurﬁ’-wa;"wku,u,§>|dur.
mo E

(iv) Lemma. There ezxists a constant c, independent of €, such that

c

)‘3
(L lpl)

(T+1€

07w (2, 1, 8)| <

where v’ is the integer such that r < 2r' <r+ 1.

PROOF. Using (i),

/((*Ah + 1) [u(R)OT (pr (2, b €)])e™ Hdh = (1 + [|pl*)" 022w (2, 1, ).
E

The inequality follows, with

’

¢ =meas (K)||(=Ar 4+ 1)" [u(h)0]**or(z, u, h)||

L<(EXE)’
Here K is the support of p in x.

The following lemma, 5.4.9, together with (iii), (iv), and the hypothesis that
r > ' + 1, imply that

Ui (2,€)] <1+ [lE) (1 + 11~ "
That is, (ii) is proved, and with it the commutation theorem 5.4.2. O

5.4.9 Lemma. Let r be a positive number and let
he(n)=(1+]|nl))"", where neE, dimE =n.
Then, if r > n and s > 0,
hy x hs < c(r,s)hy, where t=inf(r,s).

PROOF. Let

1 1
hr * hs = d\ = + s
s m) = [ e e = . /A(,])
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where A(n) = {X: 3llnll <Al < 2[|n]}. Then

1 c
<maxycac(n) | v ) lArllr € =————— and
/() redctn (HA—nuH)s) Wl < Gy

1
SIII&XAEA, —l‘lA(r)Tl(hs)” 1,
/ Al O @ fayr A T

where 7 denotes the translation operator.
(i) If s > n, then ||1 40,7 (hs)|[L1 < ||hs]lp1r < +o00. Hence

/ < C—l‘.
A S PYI)E

hr x hs < c(hy + hs) < chy.

(ii) If s < n, then |[1a¢y)7y(hs)ll1 < flinil<2HEII hs =c(1+ ||€N""° and

and

hr * hs S Chs + C(l + H{”)nis*r S C(hs + h/s+7‘7n)~

The conclusion follows by noting that s+ —n > s, whence h, x hs < chs. Since
s < n < r, the lemma is proved. O

5.5 FElliptic regularity
5.5.0 Definition. Let L be a differential operator defined on an open subset

O of R™:
L= Y an(x)d".

jm|<d

Let o (z, &) be its symbol. L is said to be an elliptic operator if, for every
compact subset K of O, there exist two constants ¢, ¢o depending on K
such that

(7) lop(z,&)] > c1||£]|d if x € K and if ||€]| > co.

(ii) ExaMPLE. Consider the Cauchy-Riemann operator on R?,

+ ii (where i = v/—1).

0
Lo =gt ige

Then
or,(§) ==& +& and oL, (&) = €]l

(iii) ExAMPLE. On R", consider the operator
Ly ==Y a"(x)0kd; + C*(2)0,s + q(x).
where the matrix a;; is symmetric and positive definite. Then

o, (2,8) =Y aM (2)&&; — iCH ()& + q().
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For ||¢|| sufficiently large, the quadratic form dominates the first-order
terms and L; is elliptic.

5.5.1 Theorem. Let L be an elliptic operator of order d defined on the
open set O. Suppose that the coefficients of L are functions in W32,
where + > d+ 1, r > n. Let f € HY _(O); then Lf is well defined and
Lf € L? (O). Under these hypotheses, the following two statements are

loc
equivalent:

(7) Lf e H (0), where 0<s<n-—r.
f e H0), where 0<s<n—r.(i)

loc

PROOF. It is trivial that (ii) = (i).

In order to prove that (i) = (ii), we construct a local pseudo-inverse of L.
Here pseudo-inverse means an inverse in the sense of Calderon’s symbolic
pseudo-calculus, and local means on a compact subset of O. Let O; be an
open set such that O; C O. Let ¢ and ¢ be elements of D(O) such that
¢ =1on O; and ¢ = 1 on the support of . Let L; = ¢L,u = Lf, u; = pu,
and f, = ¢ f. Then u; € H*(E), fi € HY(E), and pL(¢ f) = ¢L(f) since
1) = 1 on the support of ¢. Hence

(1) L1f1 =Uj.

Let o, (z, &) be the symbol of L;. Then oz, has compact support in =

(since its support is contained in the support of p). Let 6 € D(E) be equal
to 1if ||€]|| < ¢2(01). Set

g(z,€) = p(x)(1 = 0(6))[or(z,6)] 7"
Then it follows from 5.5.0(i) that g € C(d,,1).
Moreover, let gor, = p, where p(z, &) = ¢?(z)(1 —6(£)). Multiplying the
two sides of (i) by Ay gives
AgLifi = Aguy =v, where ve Hste,

Set O(z) = 0(—z). Then
(A4pf1)(@) = *(@)[f1(2) = (0 * f1)(@)].
By the commutation theorem (5.4.2),
AyLy = Ay + R, where R:H® — H**L
Since ©(z)(0 * f1)(x) € D(E), it follows that

(i) ©2fi+ Rfi =W, with W € H*VY(E).
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Rfy € H™ ! since f; € H% thus p?f; € HY1 if s > 1. As this is true for
every ¢ € D(0),
fi € HIYY0O), or fv € HEY0).

loc loc

This last relation holds for every ; hence f € Hldn’: 1(0), and we have
gained a degree of differentiability. Working backwards, we conclude that
f1 € H**! and therefore Rf € H*2.

Substituting into (ii) gives
O*f =W —Rf, with WeH™ and Rfe H™.

Hence, if s > 2, f € H¥2(0,); as this is true for all Oy, we conclude that
f € H*(0).

Substituting again into (ii), we find that ¢f, € H3(E) for s > 3,
and hence that f € Hﬂ)“:3(01). As this is true for all Oy, it follows that
fe H,dotB(O). Hence

(vf) € HH3(E) and  R(yf) € H(E).

Substituting a third time into (ii) gives, as before,

O’ f e HYYE) if s> 4.

We continue this procedure until forced to stop, when d+ j > s+d. The

last possible step gives
o’ f € HYY(E), whence fe Hl”()t‘i(O) o

REMARK. With appropriate hypotheses on the differentiability of symbols,
it is possible to let pseudo-differential operators act on Sobolev spaces of
negative order and obtain the following improvement of the elliptic regular-
ity theorem (5.5.1). Let L be an elliptic operator of order d with inﬁnitely
differentiable coefficients, and let s be a real number. Then Lf € H} . im-
plies that f € HZ .

loc



IV

Hilbert Space Methods
and Limit Theorems
in Probability Theory

1 Foundations of Probability Theory

1.1 Introductory remarks on the mathematical representation
of a physical system

Before we introduce the notion of probability, it seems advisable to describe
the type of mathematical model used to represent a physical system.
Representations can be given from two distinct points of view:

e the point of view of essences, or
e the point of view of phenomena.

The point of view of essences, generally that of the pure mathematician,
consists of thinking that the physical system can be perfectly known. The
space of all possible states is introduced, and a state is a point in the space
of states. This point of view is, for instance, that of rational mechanics: the
state of a system of n physical points is completely determined by a point
in R (position and velocity of each of the particles).

The point of view of phenomena, generally that of the experimental
physicist, consists of observing a few facts which occur in a physical system
so complex that the physicist, at the outset, concedes that he will never
understand its basic structure. For example, the physicist can use thermo-
dynamics to analyze the phenomena of a gas without having to determine
the state of all its molecules.



172 IV. Hilbert Space Methods and Limit Theorems in Probability Theory

The mathematical model corresponding to a phenomenological represen-
tation is based on a logical calculus. The physicist introduces the set B of
all events that he will be in a position to observe in studying the physical
system. B is given the structure of the logical calculus, in which

e A; 4+ As denotes the occurrence of the event A; or the event As;

e A;.A; denotes the occurrence of both the event A; and the event As;
and

e () denotes the impossible event and 1 the sure event.

The set B of all events thus forms an abstract Boolean algebra. (See I-1
for the definition of Boolean algebras of sets.)

The phenomenological point of view, initially of more modest scope than
the point of view of essences, is much more adaptable to describing gains
in knowledge. Indeed, a physical system described twenty years ago by a
Boolean algebra By of events can be described today, after a more detailed
analysis, by a Boolean algebra B;. All the events that appeared twenty
years ago in By will appear in B;. Thus there is an injective mapping

BO e Bl-,

which commutes with the operations of the logical calculus and permits
By to be identified with a subalgebra of B;. Progress in understanding the
system is described by a sequence of Boolean algebras,

BU—>31—>82—’83—>...,

where the arrows are injective homomorphisms of Boolean algebras. This
sequence will give progressively more detailed representations of the phys-
ical system, although it may never arrive at a final representation that
would correspond to complete understanding, beyond the reach of the ex-
perimenter.

1.2 Aziomatic definition of abstract Boolean algebras

A Boolean algebra is a set B together with two commutative and associative

operations, written
AUA and ANA.

Each of the two operations is assumed to be distributive with respect to
the other; that is,

AU(BNC) = (AUB)N(AUC) and

AN(BUC) (ANB)U (AN Q).



1 Foundations of Probability Theory 173

We assume further that there exist two elements () and 1 in B such that
AUD=A, An0=0, AU1l=1, and AN1l=A,
and that there exists a mapping A — A€ of B into B such that
AUA°=1, ANA°=0, and (A°)°=A

Using the commutativity and associativity of U and N and the distributivity
of each of these relations with respect to the other, it is easy to verify that

(AUB)* = A°N B¢ (AN B)° = A°U B".

Finally, 1¢ = § and (¢ = 1.
Associated order relation

Given a Boolean algebra B and A, B € B, we say that A implies B, and
write A < B,if ANB = A.

It is easily verified that < is an order relation on B. With respect to this
ordering, 1 is the largest element and ) the smallest element; that is, for
any Ae B, <A<1.

Using the commutativity of U and N, we note that AU B and AN B are,
respectively, an upper and a lower bound of A and B. In fact, AU B is the
least upper bound of A and B and AN B is the greatest lower bound of A
and B. Let us show this, for example, for AU B. Let C be an element of B
such that A < C and B < C; then, by definition of the order relation,

(AuB)NC=(AnC)u(BNC)=AUB, and AUB<ZC.

1.8 Representation of a Boolean algebra

How to pass from the point of view of essences to that of phenomena is
clear.

If Q is the space of states of the physical system being studied, we asso-
ciate with an event A of this system the following subset of {:

A" = {w € Q) : the event A is satisfied by w}.

The operations of the logical calculus correspond to taking unions and
intersections in the set P(Q) of subsets of 2. With these two operations,
P(Q) is a Boolean algebra. The following statement summarizes our obser-
vations.

1.3.1 The data of a phenomenological representation of a physical system
of which the space of states {2 is known are equivalent to the data of a
Boolean subalgebra of P(Q).
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The converse, that every abstract Boolean algebra can be represented as
a subalgebra of P(2), is proved in the following fundamental theorem.

1.3.2 Stone’s theorem. Let B be an abstract Boolean algebra. Then there
exist a compact space 2 and a representation identifying B with a Boolean
subalgebra of P(2) of subsets that are both open and closed in €.

PRroOF. The proof of Stone’s theorem is clear when card(B) < oo. In this
case, we define atomic events as those that are minimal in B with respect
to the relation <; then €2 is the set of atomic events.

In the general case, we introduce the notion of a filter on B. A filter F is a
nonempty subset of 5 such that

Ay, Ay € F implies A1 NAy e F;
AreF, Ay < A, implies A, € F;
and
D¢ F.
The inclusion relation on the set of subsets of B defines an order relation on
the set of filters:
Fi1>F2 it A€ Foimplies A€ Fy. (F) is then called finer than Fs).

An wultrafilter is a filter U of B such that F = U for every filter F such that
F > U. Zorn’s lemma shows that, given a filter Fy, there always exists an ultra-
filter U finer than Fo.!

1.3.3 Lemma. Let F be a filter on B and let Ay € B. Suppose that AN Ay # 0
for any A € F. Set

Fa, ={Z € B:Z contains a set of the form AN Ay with A € F}.
Then F a, is a filter.
PROOF. Clear.

1.3.4 Lemma. A necessary and sufficient condition that a filter U be an
ultrafilter on B is that. for any Ay € B, either Ay €U or Aj € U.

PROOF. Suppose that U is an ultrafilter. If Ay ¢ U, then it is impossible that
ANAp # 0 for every A € Y. Otherwise 1.3.3 would imply that U 4, is an ultrafilter,
necessarily finer than U since Ag € Ua,; but this is a contradiction. Hence, if
Ao ¢ U and Af ¢ U, there must exist X, Y € U such that

AoNX =0 and AgNY =0.

From this it would follow that X N'Y = ), a contradiction.
Conversely, let F be a finer filter than . Let Ag € F. It is impossible that
0 € U, since this would imply Aj € F. a contradiction. Hence Ay € U and
F=U.0O

'See Bourbaki, General Topology, 1.6.4.
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1.3.5 PROOF OF STONE’S THEOREM. Let 2 be the space of ultrafilters on the
Boolean algebra B.
Let a mapping ¢ from B into P(Q2) be defined by setting

p(AY={UeN: AclU}, AecB.

If Ay > A; and A2 € U, then A; € U; hence ¢ is compatible with the order
relations, and is thus a Boolean algebra homomorphism. Let us show that ¢ is
injective. Suppose that A # B; then either AN B¢ # 0 or A°N B # 0. Suppose,
for example, that A N B¢ # ), and consider the filter

F={XeB:X>ANB}.

Let U be a finer ultrafilter than F. Then U € p(A) and U ¢ ¢(B).

To endow 2 with a topology, consider 2; = 28, the product of infinitely many
sets of two elements with the factors indexed by the set B. Then §2; is the product
of compact spaces and hence is compact. Let a mapping ® : Q2 — Q; be defined
by setting

®U) = {11(A)} aes,
where 1;,/(A) = 1 if A € U and is zero otherwise. ® is clearly injective; thus
can be identified with a subset of ;. We now prove that

1.3.6 ®(Q) is a closed subset of Q.

PROOF OF 1.3.6. Let Q; be identified with the set of functions f defined on B
and with values in {0,1}. We will need the following lemma.

1.3.7 Lemma. f € ®(Q) if and only if the following conditions are satisfied for
any A, A’, A", A" € B:

f@ =0,
f(A) < f(A) if A< A/
fA"NA™) = inf(f(A”), F(A™)),
f(A+ (A = 1.

PROOF. The first three conditions simply restate the fact that ®(Uf) is a filter,
and the fourth that U is an ultrafilter.O
Now let

La={fe:f(A)+f(A) =1}

Then L4 is a closed subset of €y, and NacpL is a closed subset of ;.
Proceeding similarly with the other conditions of 1.3.7 completes the proof
of 1.3.6. O

With the topology induced by Qq, ®(f2) is compact; pulling back this
topology makes {2 a compact space.

Fix Ag € B and define fo(U) = 174(Ao). Then
P(Ag) = (U € Q: fyUd) = 1},

Since fj is continuous, ¢(Ag) is a closed subset of Q. But (p(A4p))¢ = p(A4§)
is also closed, so ¢(Ap) is an open and closed subset of 2. This completes
the proof of Stone’s theorem. O
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1.4 Probability spaces
1.4.1 Definitions

A probability space is a measure space (X, A, u) for which the measure
has total mass 1: u(X) = 1.

Following the usual practice in this field, we denote X by € and u by P.
Thus a probability space is written in the form (Q, A, P).

A measurable set A € A is sometimes called an event. The measure of the
measurable set A is called the probability of A and written P(A). Clearly
0< P(A)<1.

P is called the probability measure.

A property that is true a.e. on {2 is called an almost sure (or a.s.) property.

1.4.2 Transporting a probability measure

Let (2, A, P) be a probability space and let (Y, B) be a measurable space.
Let ® be a measurable mapping from Q2 to Y:

® e M((Q2, A): (Y. B)).
Then a probability measure P; is defined on (Y, B) by setting
1.4.3 Pi(B) = P(®~'(B)).

Axioms I-1.0.1 to 1.0.3 are easily verified. Moreover, P,(Y) = P(Q2) = 1.
P is written

1.4.4 P, =®,.(P)

and called the direct image, or simply the image, of the probability measure
P under the mapping ®. (®, P is sometimes called the measure induced by
donY.)

1.4.5 Proposition. Let (2, A, P) be a probability space, let (Y,B) be a
measurable space, and let ®, ® € M((2, A)); (Y.B)). If ?(w) = ¢’ (w)
a.s., then ®,P = &, P.

PROOF. Let Ay = {w € Q: d(w) # P'(w)}.

Then P(Ap) =0 and P(A) = P(AN A§) VA€ A

In particular, P(®"'(B)) = P(® Y(B) N A§) for any B € B. If w €
®~1(B) N Ay, then ®'(w) = ®(w) € B, whence ®~(B) N A5 C (&)~ 1(B),
or

P(®~1(B)) < P((2")71(B)).
Since the argument is symmetric in ® and ®’, the opposite inequality
also holds. O

1.4.6 Corollary. The direct image ®.P depends only on the equivalence
class of ® in Mp((Q2, A); (Y, B)).
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1.4.7 REMARK. In Chapter I, we never found it necessary to change the
measure space, which was fixed once and for all. In probability theory,
however, two operations will play a fundamental role:

(i) transporting a probability by a measurable mapping; and
(ii) restricting a probability to a sub-o-algebra .

1.5 Morphisms of probability spaces

1.5.1 Definition. Let (2, 4, P) and (€', A’, P’) be probability spaces and
let
® € Mp((Q,A); (2, A")).

If ®,P = P’, ® is called a morphism of probability spaces and is said to
preserve probabilities.

1.5.2 The inverse image operation

Let ® € M((Q, A); (€,.A")) and let (Y, B) be a measurable space. With
u € MY, A); (Y,B))
we associate ®*u’, its inverse tmage under ®, defined by
(@"u)(w) = (u 0 ®)(w).
Then
(®*u') € M((Q,A); (Y,B)).

(®*u’ is sometimes called the pullback of u'.)
If we also assume that (£2,.4) and (Q’, A’) are equipped with probability
measures P and P’ and that ® is a morphism of probability spaces, then

(i) The equivalence class of (®*u') in Mp((Q, A); (Y, B)) depends only on
the class of v’ in Mp: (€, A"); (Y,B)).

Let v/, u} € M((Y, A'); (Y, B)) and set
(i) A = {w: (*v)(w) # (P*u})(w)} and A" = {w' : W/ (') # uj (W)}
Then A = ®~1(A4").
P(A) = P(A’) =0 since P/ = O, P.

By abuse of language, ®* will denote the inverse image mapping induced

by ® between the spaces Mp and Mp-.

(iii) Let ®, ®; € M((22,A); (', A")) and suppose that ® = ®1 a.s. Then *
and ®% define the same mapping from Mp: (', A"); (Y, B)) to Mp((Q2, A);
(Y. B)).
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If not, there would exist v’ € Mp/ such that
A={w:9"d # ®ju'} and P(A) > 0.

Let
Al ={weQ:P(w) # P1(w)}.

Then A C A; and P(A;) = 0. But this implies that P(A) = 0, a contra-
diction. O
(iv) Functoriality. Let ®35 = ®y 0 ®1. Then (®3). = (P2). o (1), and
;5 = &7 o OJ.

The proof is trivial. It suffices to recall that the composition of inverse
images occurs in the opposite order to that of mappings.

1.5.3 Injectivity proposition. Let ® be a morphism of the probability
space (2, A, P) into (', A", P") and let (Y,B) be an arbitrary measure
space. Then ®* defines an injective mapping

Mp (. A'): (Y. B)) — Mp((Q, A); (Y, B)).
PROOF. Let v, u} € Mp/((Q, A'): (Y. B)). Define u = ®*u’/, u; = ®*u},
A={w:u#wu}. and A ={u :u #u}}.
Then @ 1(A") = ®(A) by 1.5.2(ii), whence P'(A’) > 0= P(A) > 0. O

1.5.4 Dynkin’s theorem (Measurability and functional depen-
dence). Let (Q,A,P) and (', A, P') be two probability spaces, let ®
be a morphism from the first to the second, and let B = ®~1(A’). Then
u € L%(Q, A) can be written in the form

(1) u=uo® with u € LpH(Q,A)
if and only if the class of u contains a B-measurable function.

PROOF. The forward implication is clear. Conversely, suppose that u is
B-measurable. Then, by I-6.4.2, there exists a sequence {f,} of simple B-
measurable functions that converges pointwise to u. If B € B, then there
exists A’ € A" such that B = ®71(A’); hence 153 = ®*1,4.

This implies that every simple B-measurable function satisfies (i). Hence
fn=ul, 0®, with u), € LY, (2, A").
(ii) We show that u], converges a.s. on .

If not, there would exist € > 0 and A’ € A’, with P'(A’) > 0, such that

sup |ul, (w) —u),(w)| >¢€, VpVwe A

m.n>p

Then u, would satisfy the same inequality on ®~!(A’). But this would
contradict the a.s. convergence of f,,, since P(®~1(A’)) = P'(A") > 0.
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Thus (ii) is proved. Let v’ = limu}, € L% (', A'); then u = lim f, =
uo®. O
1.5.5 Corollary. Let ® be a probability space morphism from (2, A, P) to
(Q, A, P') and let B = & '(A). Using ®*, one can identify L% (', A)
with the subalgebra of L% (2, A) consisting of the B-measurable functions.

PROOF. By 1.5.3 and 1.5.4.

1.6 Random variables and distributions of random variables

1.6.1 Definition. Given a probability space (2,4, P), a random variable
X is a class of measurable functions, that is an element of L%(f2,.A). We
will often write simply r.v.

1.6.2 Definition. The distribution of the random variable X is the direct
image of P under X.
Thus X, P is a Borel measure on R of total mass 1. Hence, by II-3.1,

(1) (X.P) defines a Radon measure of total mass 1.

1.6.3 Definition. Given a finite set X1,..., X of r.v. defined on the proba-
bility space (€2, A, P), their joint distribution is the direct image of P under
the mapping ® : w — R¥ defined by the X,(w), 1 <p < k.
It follows from 1-2.4.2 and 1-2.3.5 that ® € M((Q2, A); (R*, Br,)).
Hence ®, P is a finite Borel measure on RF and, by II-3.1,

(i) @, P defines a Radon measure on R* of total mass 1.

1.6.4 Let p; be the projection of an element of R* onto its first component,
let 1 be the joint distribution of X1, ..., Xk, and let y; be the distribution
of X;. Then p; = (p1)«pt-

This follows from functoriality, 1.5.2(iv).

1.7 Mathematical expectation and distributions
1.7.0 Notation for expectations

Let (€, A, P) be a probability space and let X € Lp(€,.A). Then the
mathematical expectation of X is written E(X) and defined by

E(X) = / X (w)dP(w).

The reader should note that the measure P, and the probability space
Q itself, are implicit in the notation E.
In this notation, the L9 norm is written

E(Y D)1= Yo
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1.7.1 Change of variables

Let (2, A, P) and (€', A', P’) be probability spaces, let ® be a morphism
from the first space to the second, and let ®* : LO(Q', A") — L°(, A) be
as defined in 1.5.3.

Proposition. Let v’ € Lp (¥, A’). Then u = (®*u') € LL(Q, A) and
E(u) = E(u).

PROOF. Suppose that v’ is a simple function, say v’ =} a1, . Then
u = ZaklAw where A = ®71(A4}).

By 1.4.3, P(Ax) = P'(A}), whence E(u) = E(u/).
Let v' € L},; then there exists a sequence {u/,} of simple functions such
that
E(|v" —up)) = [l = upllz, — 0.

Let u,, = ®*u],. Then

lun = umllLy, = E(jun — um|) = B(juy, —up[) >0 as m,n — +oo.

Thus {un} is a Cauchy sequence in Lp. Let v be its limit; then v € L}.
There exists a subsequence {u], : n € o} of {u},} that converges a.e. on
. Similarly, there exists a subsequence {u, : n € 7} of {u, : n € ¢} that

converges a.e. on {2 to v. Then the relation u,, = u}, o ® passes to the limit,
and v = v/ o ®. Moreover, since

E(v) =limE(u,) and E(v) = limE(u),),
the fact that E(u,) = E(u,,) implies that
E(v) = E(W).O

1.7.2  Computing expectations by means of distributions

Let (2, A, P) be a probability space and let X1, ..., X be a finite set of r.v.
defined on €. Let x be the Radon measure on R* that is the distribution
Ole,...,Xk.

Proposition. Let ¢ € L), and let Y (w) = p(X1(w),..., Xk(w)). Then
YeLL and E(Y) = / wdp.
RF

PRrOOF. By 1.7.1.

1.8  Various notions of convergence in probability theory

This section consists of two subsections. In the first, we introduce the vocab-
ulary used in probability theory to study concepts that are already familiar.
In the second, we study the new concept of convergence in distribution.
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1.8.1 Vocabulary of probability theory

Let {X,,} be a sequence of r.v. defined on the probability space (2, A, P),
and let Y be another r.v. defined on the same probability space.

Definitions

(i) X, converges to 'Y almost surely (abbreviated a.s.) if X,(w) converges
a.e. to Y(w).

(ii) X, converges to Y in mean if

1Xn =Yz — 0, or E(|X,-Y|) — 0.

(iii) X,, converges to' Y in mean square if

| Xn = Yl|lzz =0, or E(X,-Y[?)—0.

(iv) X, converges to'Y in probability if X, converges to'Y in measure.
(v) The relations among these different kinds of convergence were studied
in Chapter I.

1.8.2 Convergence in distribution

Let (Q,,A,, P,) be a sequence of probability spaces and let (', A", P') be
another probability space.

Let X, € L%(Qn, A, Py) and Y € LO(Q', A', P') be given. We say that
the sequence of distributions of X, converges to the distribution of Y if,
writing

(2) (Xn)ePrn=pn and Y. P =v

for the respective distributions,

(ii) @ converges narrowly to v.

A sequence ., such that

(iii) pn converges narrowly

is commonly, though rather ambiguously, described by saying that

(iv) the r.v. X,, converge in distribution.

1.8.3 Criterion for convergence in distribution

Theorem. The r.v. X,, converge in distribution to the distribution of Y if
and only if

(4) lim E(p(Xy)) = E(p(Y)), V€ Ck(R).
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PROOF. By 1.7.2, in the notation of 1.8.2(i),

E(e(X,)) = [ odn, and E(e(v) = [ o

Thus i X

/,Jd/z-n — /\,S‘dl/. Vo € Ck(R).
That is,
(ii) py, converges vaguely to v.

By 1.6.2(i).
un(R)=1 and v(R)=1;

hence lim i1, (R) = v(R), and I1-6.8 shows that (ii) is equivalent to narrow
convergence. O

1.8.4 Extension to r.v. with values in R"”

An ordered m-tuple of r.v. X', ..., X" is called an r.v. with values in R™,
or an R™-valued r.v. Such a r.v. is sometimes denoted by X € Mp((Q, A);
(R™.Bgm)).

Given ar.v. X with values in R™, its distribution is the joint distribution
of the X* considered in 1.6.3; it is thus a Radon measure on R™.
A sequence of r.v. with values in R™, say Xi,...,X,,..., is said to

converge in distribution to X, if the sequence of distributions converges
narrowly to that of X,. We have the following propositions.

(i) The sequence of r.v. X, with values in R™ converges to the distribution
of Xo if and only if
lim E(p(X,)) = B(¢(Xy)). Ve € Cx(R™).
In this criterion, a compactly supported ¢ can be replaced by a bounded

continuous ¥. The next statement results from letting v/ be a function that
depends only on the first coordinate of R™ and applying 1.8.3.

(ii) If X, converges in distribution to Xo. then each component Xk con-
verges in distribution to X{.

The converse of this statement is false.
1.8.5 Comparison of convergence in distribution
with other types of convergence

Proposition.

(i) A.s. convergence implies convergence in distribution.
(ii) Convergence in probability implies convergence in distribution.
(iii) Convergence in LP implies convergence in distribution.
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PROOF. Let the probability space Q be fixed and let X,,, Y € L%(Q, A, P).
Assume first that X, converges a.s. to Y. Then Vyp € Cg(R), p(X,(w))
converges a.s. to p(Y (w). Since ¢ is bounded, Lebesgue’s dominated con-
vergence theorem can be applied to show that E(¢(X,,)) — E(¢(Y)). This,
with 1.8.3, gives (i).

Assume now that X, converges in probability to Y. By I-5.2.7, every
subsequence {X,}neo itself contains a subsequence {X,}neo such that
{ X }neor converges a.s. Hence, if ¢ € Ck(R), it follows from (i) that

lim E(o(X,)) = E(o(Y)).

neo’

Let 8, = E(p(X,)) and let v = E(p(Y)). Then every subsequence
{Bn}nes of {Bn} contains a subsequence {f,}ne, that converges to 7.
This implies that lim 3,, =+, and (ii) now follows from 1.8.3.

Finally, by 1-9.3.1, convergence in LP implies convergence in probability;
thus (iii) follows from (ii). O

2 Conditional Expectation

2.0 Phenomenological meaning

We now resume the discussion of the principles of probability theory begun
in 1.1.

From the phenomenological point of view, the set of all measurements
an experimenter can possibly make on a physical system is represented by
a Boolean algebra B. The physicist is interested in exhibiting the “laws of
nature” in the context of B; given certain measurements, he would like to
predict the values of others.

There are two kinds of predictions. The first involves a functional depen-
dence. For example, in Ohm’s law (that V = RI), the measurement of two
quantities completely determines the third. The second involves a “corre-
lation” without necessity; for example, a substantial drop in barometric
pressure makes it “likely” that a cyclone is approaching.

The experimenter represents the known information about the physical
system by a subalgebra B’ of B. Given a physical quantity X, he asks himself
the following questions.

(a) Is X determined by the information B'? That is, in terms of 1.5.4, is X
measurable with respect to the o-algebra generated by B'?

(b) If not, the experimenter will try to extract from the information B’
all it implies about X. What is the most likely value of X? Does he risk
making a major error by taking this most likely value as the value of X7
And so on.
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Passing to o-algebras generated by Boolean algebras allows the problem
to be posed as follows:

Given a probability space (€2, 4, P), a sub-o-algebra A’ of A, and X €
L%(Q, A, P), can X be approzimated by Y € L°(2, A’, P)? (We abuse lan-
guage by writing P for the restriction of P to A’.)

In the next section, we will try to solve this problem by using an ap-
proximation that minimizes the L? norm, i.e. an orthogonal projection on
L2,

2.1 Conditional expectation as a projection operator on L*

Let (2, A, P) be a probability space and let B be a sub-o-algebra of A.
LP(Q, B, P) is abbreviated as L”(B), and so on.

2.1.1 Lemma. Let 1 < p < +4oc0. Then LP(B) can be identified with a
closed vector subspace of LP(A).

PROOF. A B-measurable function is A-measurable: £'(B) c £°(£2, A). The
same holds for simple functions: £(B) C £(.A). Since the probability mea-
sure on B is the restriction of that on A, the integral on the integrable
simple functions E*(B) is given by restriction of the integral defined on
E'(A). Endowing E'(B) with the norm || ||z», we obtain an isometric
mapping from E'(B) to E'(A).

Since E!(B) is dense in LP(B) and LP(Q, A, P) is complete, this isometry
extends to an isometry

LP(B) — LP(A).

The image of a complete space under an isometry is complete; hence the
image of LP(B) is complete and, in particular, closed in LP(A).

2.1.2 Definition. EB denotes the orthogonal projection operator from
L?(A) onto L?(B). Given f € L?(A), EB(f) is called the conditional ex-
pectation of f given B.

2.1.3 Theorem (Properties of the conditional expectation).

(i) B e 1*8)
(i) BBl < 1]

Let B and C be sub-o-algebras of A such that B D C. Then
(ii7) E°EP = EC and
(iv) EEP) = E
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(v) Let o € L®(B). Then EB(of) = vEB(f), ¥f € L2(A).

PROOF. Properties (i) and (ii) follow from properties of the orthogonal
projection.

The inclusion between o-algebras B O C implies, for functions, that
L?(B) D L*(C).

Let f € L?(.A) be decomposed as

f=u+wv, with v € (L*3(B))* and u = EB(f)

Then u = w+ h, with h € (L?(C))* and w = EC (u). Substituting this into
the last line gives

(vi) f=w+(h+v).
By definition, w € L?(C), and since
L*(B) > L*(C) = (L*(B))* c (L*(C))*,

v € (L*(C))*. Hence h + v € (L?(C))*. The decomposition (vi) implies
that w = Ec(f). Thus (iii) is proved.

Let Ay denote the coarse o-algebra containing only the two sets 2 and
(. A function ¢ is Ag-measurable if and only if it is constant. (L2(Ap))~*
consists of the functions with zero expectation. Any function f € L? can
be written as

f=E(f)lg+h, where E(h)=0,
and thus
(vid) EX (1) = B(f)10.

By abuse of language, we identify the conditional expectation relative to
Ao with the expectation. Then (iv) becomes a special case of (iii).

It remains to prove (v). Let M, denote the bounded operator defined on
L?(A) by multiplication by ¢. Thus M,, : f — ¢f. Since ¢ € LO(B) and
LO(B) is an algebra,

M,(L*(B)) C L*(B).

Note that M, is a hermitian operator; that is,

(My(£)lg)r2 = (fIMy(g)) L2

This is just a restatement of the fact that

E((¢f)9) = E(f(vg)), Vf g€ L*(A).
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Since L?(B) is invariant under the hermitian operator M, its orthogonal
complement is invariant under M. Thus, if f = u+v with u € L?(B) and
v € (L?(B))*, then

M, f = Mju+ Mjv, where (M,u) € L*(B), (M,v) € L*(B)*.

That is. EB(A1,f) = M, EB(f). and (v) is proved. O

2.2 Conditional expectation and positivity

2.2.1 Proposition. Let f € L?(A), f >0, and let B be a sub-o-algebra of
A. Then EB(f) > 0.

PRrROOF. Let B € B. Then, by (v),
EEP(f)15) = EEP(f15)) = E(f15) > 0,

where the second equality follows from (iv). Setting v = EB f, we have just
shown that

(i) E(vlp) >0, VBeDB.

Let B, = {w: v(w) < —n~'}. Since v € L°(B), B,, € B; it follows from (i)
that
E(U].B,l) > 0.

Moreover, E(vlpg,) < —n~!P(B,). Hence P(B,) = 0 for all n, and thus
P(UB,) =1lmP(B,) =0.0

2.2.2 Corollary. Let f, g € L*(A). Then

(i) f>9=EB(5)>EB(
and
(i) EB(1) < EB(1)).

PROOF. Since f—g > 0, we have EB(f —g) > 0. Furthermore, —|f| < f <
| f] implies (ii). O

2.3  Extension of conditional expectation to L'

Theorem. The operator EB defined on L?(A) in 2.1 has a continuous

extension EB, defined on L'(A) and with values in L*(B). This extension
has the following properties:

(i) EB(fy=f for every fe LY(B).
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(i) 1EB(f)ller < 1flp.
(ii) If B D C, then SCSB = SC; in particular, E€B =E.
(iv) If g € L(B), then £B(of) = p€B(f).

PROOF. Let f € L?. Then |EBf| < EB(|f|) by 2.2.2(ii), and hence E(\EBfD
< E(EB(lfl)) It follows from 2.1.3(iv) that

EEB(f1) = E(f) = £l
That is,

(v) BBl < £l Vf € L3(A).

Thus EB is a bounded operator when L?(A) is equipped with the L! norm.
Since L!(B) is complete and L?(A) is dense in L(A), EB can be extended
to an operator from L!(A) to L!(B). This extension is denoted by ¢B.
Since EB(f) = f if f € L?(B) and since L?(B) is dense in L!(B), the
operator extended by continuity has the same property; this implies (i).
Assertion (ii) follows from (v).
(iii) and (iv) are obtained from 2.1.3(iii), (iv) and (v), which we extend
by continuity. O
(vi) ABUSE OF LANGUAGE. From now on we use the same notation, namely
EB, for both &8 and EB.

2.4 Calculating EB when B is a finite o-algebra

Let B be a finite sub-o-algebra of A and let ey,...,e, be the atoms of B
with strictly positive probability.

2.4.1 Proposition. EB(f) =" axle,, where a = Fé:;E(flek).

PROOF. Since EB(f) € L9(B), it suffices to check that f — EB(f) is or-
thogonal to L°(B). Since the 1., form a basis for L°(B), it suffices to show
that

E((f - BB (m1.) =o.
But
E(fles) = asE(1e,) = as(P(ey)).0
2.4.2 Definition. Let a measure puj be defined on A by setting

ji(A) = —pék—)mmek).

Note that pe(Q) = 1.
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iy is called the conditional probability given the atom er. With the no-

tation of 2.4.1,
Qg = /fdﬂk~

2.4.3 Proposition. Let B be a finite o-algebra of A, let ¢ be a conver
function, and let f € L*(A), f > 0. Then

P(EB (1)) < EB(o(f)).

PROOF. Retaining the notation of 2.4.1 and letting px denote the condi-
tional probabilities, we have

EB(cp(f)) > Brle,. where B = [¢(f)dur, and
PEB() = Yelaw)le,. where ax= [ fdu.

Since py has total mass 1, Jensen’s inequality (I-9.2.2) can be applied,
and shows that p(ag) < fg. O

2.5 Approximation by finite o-algebras

2.5.1 Proposition. Let fi,..., f, € L'(A). Then there exists an increas-
ing sequence By C ...By C ... C B of finite oc-algebras such that

(BB f, BB Sl —0 ask—oo, j=1,2....n

PRrROOF. We first consider the case where n = 1, and write f for f;. Let

u = EB(f); then v € L'(B), and hence u is the limit in L! of a sequence
{ug} of simple functions in L'(B). Let By be the o-algebra generated by

the ug, s < k; then By C B and uy is Bx-measurable. EBk (ux) = uy and
IEB* (uy, — w)|| < Ilux — ull11, whence

BB (u) — BB (ug) |1 + 1EB* (wr) — w11
BB (u — we) s + g — wllr < 2[u — w1

BB u — u)|

INIA

Moreover, EBru = EB*(EB £) = EB«(f) by 2.3(iii). Thus
IEB: f —EB sl < 2)u- £l — 0.

This ends the proof for n = 1.

The general case is treated by induction on n. Letting {B}.} be a sequence of
finite o-algebras adapted to fa, ..., fa, we take B to be the o-algebra generated
by B}, and Bx. O
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2.5.2 Corollary (Jensen’s inequality). Let B be a sub-o-algebra of A,
let f € LY(A), f >0, and let ¢ be a nonnegative convex function such that
E([o(f)]) < +o00. Then

o(EB(1)) < EB(s(1)).

PRrROOF. By 2.5.1, there exists a sequence of finite o-algebras By such that
IEPf = fllzs =0 and JEP*(o(£) = @()ls — 0.

By 2.4.3, p(EB* (1)) < EB*(0(1)), or EB*(o(f)) — w(EB*(f)) > 0.
Since L' convergence preserves positivity,

EB(o(f) - o(EB(f)) > 0.0

2.6 Conditional expectation and LP spaces

Let 1 < p < +00. Then, since L?(A) C L'(A), the conditional expectation
operator EB is defined on L? (A).

2.6.1 Proposition. Let 1 < p < 4+o0. If f € LP(A), then EB(f) € LP(B)
and

(i) EB(H)llze < 1£1lze-

Let p and q be conjugate exponents. Then

(i) BB(f9) = gEB(f), vfeLr(W), g€ L9B).

0

E(EB)(EP ) = EGEP(f)) = E(fEB(g)), Vfe LP(A), g LU(A).

PROOF. If 1 < p < 400, the function ¢(t) = t?, t > 0, is convex. Hence (i)
follows (except when p = co) from 2.5.2 (Jensen’s inequality).

It remains to prove (i) if p = co. Given f € L*°, we can find a sequence
By of finite sub-o-algebras such that

1B f —EB | —o0.

Using the expressions given in 2.4.1 and 2.4.2,

[ san

Let v, be a subsequence of v, = EB’“f such that v, — EBf a.s. Then,
since

BB £, = sup

< fllzee-

vk, (W) < 1 fllzess
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(i) holds for p = .
Note that (ii) holds for bounded functions by 2.3(iv). Using the truncation
operator (I-6.7). we can find sequences f, € L°(A) and g, € L>(B) such that

1fu = flle = 0 (whence, by (). |E f, — BB flLr — 0) and |lgn — glles — 0.
Hence. by 2.3(iv), EB(f,g.) = g.EB(f.).
Since || fugn — fgll.1 — 0 by Holder's inequality, ||E8(fngn) —EB(fg)HLJ — 0.
Similarly, gv,,EBf,, converges to gEBf in L', and (ii) follows.

When f, g € L*(A). we consider the scalar product

(flg)r= = E(f9).

By the properties of the orthogonal projection,
(EBfl9) = (11EPg) = (BF 11EBy).

Since L> C L2, this proves (iii) for the special case where f, g € L>(A).
The general case is proved by using the truncation operator as above. O

3 Independence and Orthogonality

3.0 Independence of two sub-o-algebras

3.0.1 Definition. Let B and C be two sub-o-algebras of the probability
space (92, A, P). B and C are said to be independent (relative to P) if L?(B)
and L?(C) are orthogonal on the constant functions; that is, if

f€L*B), ge L*C), and E(f) = E(g) =0 imply E(fg) = 0.

REMARKS.

(i) The notion of independence involves the L? norm, and thus the proba-
bility measure P. To be precise, we should speak of independence relative
to P. Since we have considered P as given once and for all, by abuse of
language we say simply independent.

(i) Since both L?(B) and L?(C) contain the function 1¢, they can never be
orthogonal; independence corresponds to the strongest notion of orthogo-
nality that can be expected.

(iii) Consider the codimension-1 subspace H composed of functions orthog-
onal to the constant functions:

H={feL*A):E(f)=0}.

The relation E = EEB implies EB(H) C H. Moreover, 3.0.1 can be
written as
H N L?(B) is orthogonal to H N L?(C).
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(iv) It follows from 3.0.1 that L?(B) N L?(C) reduces to the constant func-
tions.

Since L?(B) N L?(C) = L?>(BNC), where BN C is the o-algebra of those
functions in Q that belong to both B and C, we conclude that if B and C
are independent, then BNC reduces to the sets of probability zero and their
complements. Up to sets of probability zero, BNC is thus equivalent to the
coarse o-algebra.

3.0.2 Mutual independence of n sub-c-algebras

Let Bq,..., B., be n sub-c-algebras of A, let H be a subset of [0, 1], and let
By be the o-algebra generated by {8; : ¢ € H}. Then By, ..., B, are said
to be mutually independent if

By and By are independent o-algebras for every H € P([0, 1]).

3.1 Independence of random variables and of o-algebras

(1) Let (Q,.A, P) be a probability space and let B and C be two sub-
o-algebras that are independent on this space. Let 