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Foreword 

It is a distinct pleasure to have the opportunity to introduce Professor 
Malliavin's book to the English-speaking mathematical world. 

In recent years there has been a noticeable retreat from the level of ab­
straction at which graduate-level courses in analysis were previously taught 
in the United States and elsewhere. In contrast to the practices used in the 
1950s and 1960s, when great emphasis was placed on the most general 
context for integration and operator theory, we have recently witnessed 
an increased emphasis on detailed discussion of integration over Euclidean 
space and related problems in probability theory, harmonic analysis, and 
partial differential equations. 

Professor Malliavin is uniquely qualified to introduce the student to anal­
ysis with the proper mix of abstract theories and concrete problems. His 
mathematical career includes many notable contributions to harmonic anal­
ysis, complex analysis, and related problems in probability theory and par­
tial differential equations. Rather than developed as a thing-in-itself, the 
abstract approach serves as a context into which special models can be 
couched. For example, the general theory of integration is developed at an 
abstract level, and only then specialized to discuss the Lebesgue measure 
and integral on the real line. Another important area is the entire theory 
of probability, where we prefer to have the abstract model in mind, with 
no other specialization than total unit mass. Generally, we learn to work 
at an abstract level so that we can specialize when appropriate. 

A cursory examination of the contents reveals that this book covers most 
of the topics that are familiar in the first graduate course on analysis. It also 
treats topics that are not available elsewhere in textbook form. A notable 



VI Foreword 

example is Chapter V, which deals with Malliavin's stochastic calculus of 
variations developed in the context of Gaussian measure spaces. Originally 
inspired by the desire to obtain a probabilistic proof of Hormander's theo­
rem on the smoothness of the solutions of second-order hypoelliptic differ­
ential equations, the subject has found a life of its own. This is partly due 
to Malliavin and his followers' development of a suitable notion of "differen­
tiable function" on a Gaussian measure space. The novice should be warned 
that this notion of differentiability is not easily related to the more con­
ventional notion of differentiability in courses on manifolds. Here we have 
a family of Sobolev spaces of "differentiable functions" over the measure 
space, where the definition is global, in terms of the Sobolev norms. The 
finite-dimensional Sobolev spaces are introduced through translation op­
erators, and immediately generalizes to the infinite-dimensional case. The 
main theorem of the subject states that if a differentiable vector-valued 
function has enough "variation", then it induces a smooth measure on Eu­
clidean space. 

Such relations illustrate the interplay between the "upstairs" and the 
"downstairs" of analysis. We find the natural proof of a theorem in real 
analysis (smoothness of a measure) by going up to the infinite-dimensional 
Gaussian measure space where the measure is naturally defined. This in­
terplay of ideas can also be found in more traditional forms of finite­
dimensional real analysis, where we can better understand and prove for­
mulas and theorems on special functions on the real line by going up to the 
higher-dimensional geometric problems from which they came by "projec­
tion"; Bessel and Legendre functions provide some elementary examples of 
such phenomena. 

The mathematical public owes an enormous debt of gratitude to Leslie 
Kay, whose superlative efforts in editing and translating this text have been 
accomplished with great speed and accuracy. 

Mark Pinsky 
Department of Mathematics 
Northwestern University 
Evanston, IL 60208, USA 



Preface 

We plan to survey various extensions of Lebesgue theory in contemporary 
analysis: the abstract integral, Radon measures, Fourier analysis, Hilbert 
spectral analysis, Sobolev spaces, pseudo-differential operators, probabil­
ity, martingales, the theory of differentiation, and stochastic calculus of 
variations. 

In order to give complete proofs within the limits of this book, we have 
chosen an axiomatic method of exposition; the interest of the concepts in­
troduced will become clear only after the reader has encountered examples 
later in the text. For instance, the first chapter deals with the abstract inte­
gral, but the reader does not see a nontrivial example of the abstract theory 
until the Lebesgue integral is introduced in Chapter II. This axiomatic ap­
proach is now familiar in topology; it should not cause difficulties in the 
theory of integration. 

In addition, we have tried as much as possible to base each theory on the 
results of the theories presented earlier. This structure permits an econ­
omy of means, furnishes interesting examples of applications of general 
theorems, and above all illustrates the unity of the subject. For example, 
the Radon-Nikodym theorem, which could have appeared at the end of 
Chapter I, is treated at the end of Chapter IV as an example of the theory 
of martingales; we then obtain the stronger result of convergence almost 
everywhere. Similarly, conditional probabilities are treated using (i) the 
theory of Radon measures and (ii) a general isomorphism theorem show­
ing that there exists only one model of a nonatomic separable measure 
space, namely R equipped with Lebesgue measure. Furthermore, the spec­
tral theory of unitary operators on an abstract Hilbert space is derived from 
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Bochner's theorem characterizing Fourier series of measures. The treatment 
in Chapter V of Sobolev spaces over a probability space parallels that in 
Chapter III of Sobolev spaces over R". 

In the detailed table of contents, the reader can see how the book is 
organized. It is easy to read only selected parts of the book, depending on 
the results one hopes to reach; at the beginning of the book, as a reader's 
guide, there is a diagram showing the interdependence of the different sec­
tions. There is also an index of terms at the end of the work. Certain parts 
of the text, which can be skipped on a first reading, are printed in smaller 
type. 

Readers interested in probability theory can focus essentially on Chap­
ters I, IV, and V; those interested in Fourier analysis, essentially on Chap­
ters I and III. Chapter III can be read in different ways, depending on 
whether one is interested in partial differential equations or in spectral 
analysis. 

The book includes a variety of exercises by Gerard Letac. Detailed solu­
tions can be found in Exercises and Solutions Manual for Integration and 
Probability by Gerard Letac, Springer-Verlag, 1995. The upcoming book 
Stochastic Analysis by Paul Malliavin, Grundlehren der Mathematischen 
Wissenschaften, volume 313, Springer-Verlag, 1995, is meant for second­
year graduate students who are planning to continue their studies in prob­
ability theory. 

March 1995 

Interdependence 
of the sections 

P.M. 
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Prologue 

We recall briefly the definition and properties of the usual integral of con­
tinuous functions on R. 

The concepts involved are elementary and well known. However, since 
this integral will be used to construct the Lebesgue integral, we sketch a 
few facts for convenience. 

Given the segment [0,1] C R, a partition of [0,1] is a finite subset 7f of 
[0, 1] containing ° and 1. The partition 7f' is said to be finer than 7f if 7f' ~ 7f. 
Let ° = h < t2 < ... < t"-l < tr = 1 (r = card(7f)) be an enumeration 
of the points of 7f. With every function f continuous on [0,1]' we associate 
the sum 

T-1 

S7rU) = 2)tk+l - tdf(tk)' 
k=l 

This is a positive linear functional: 

The number 8(7f) = SUp(tk+l - tk) is called the diameter of the partition 
7f. We have the following statement. 

Given a continuous function f, for every E > ° there exists 7] such that 

for any partitions 7f and 7f' satisfying 8(7f) < 7] and 8(7f') < 7]. 

Indeed, since f is continuous on the compact set [0,1]. it is t~niformly 
continuous. Hence we can find 7] such that If (x) - f (x') I ::; ~ if I x - xii < 7]. 
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Let ]flf = ]f U ]fl. TheIL \vriting ]f~ = 7f' U [tk+l - tk]' where t 1, ... , tT denote 
the points of the subdivision of ]f, 

r-l 

7f" = U]f~' and 8 7T " (f) = L 87T~' (f). 
k=1 

1'v1oreover. 

whence 

and 

Choosing a sequence 7f" of partitions such that b( 7fk) -+ 0, we find that 
87Tk (f) is a Cauchy sequence whose limit is independent of the choice ]fk. 

Set 

J.l f(.1:)dx = lirn 87Tk (f). 
[) 

Then the integral is a pOHitive linear functional. In particular, 

I j .l f ( x ) d:r I ::; j.l 1 f ( :r ) 1 d:z; ::; max 1 f ( x ) I· 
. () () 

The change of variable x = a + t(b - a) reduces the integral over [a, b] to 
the preceding case: 

f" 1 J.l 
f(x) dx = -b _ f(a + t(b - a)) dt. 

(l a [) 

Differentiation. Let f be continuous. Set 

F(x) = r f(t) dt . 
.In 

Then F is differentiable and F' (x) = f (x). Evaluating integrals of contin­
uous functions is reduced to finding primitives. 
Improper integrals. Integrals will be evaluated either on all of R or on [0,1]. 
The functions we integrate on R will be continuous; thotie we integrate on 
[0,1] will be continuous on (0,1). The elementary procedure consists of 
passing to the limit: 

= lim J in 

rt---1-+CXJ -n' 
1·1 = lim t-~ 

n----+ + oc' } ~ 
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We have the concepts of convergence and of absolute convergence. The 
Lebesgue theory will be developed in the second setting: every Lebesgue 
integrable function will have Lebesgue-integrable absolute value. For this 
reason, we consider here only absolutely convergent improper integrals. The 
following results can easily be proved by calculating primitives. 

If f is continuous and positive on R and if f(x) rv lxi-a as Ixl -+ +00, 
then the integral of f on R exists if and only if a > 1. 

If f is continuous and positive on (0,1] and if f(x) rv Ixl-!3 as x -+ 0, 

then Jo1 f exists if and only if f3 < l. 
These results generalize to R n by passing to polar coordinates. We find 

in the first case that Q > n, and in the second that f3 < n. (In the second 
case, we integrate a function continuous on R n and zero outside a compact 
set.) 



I 
Measurable Spaces 
and Integrable Functions 

Introd uction 

In this chapter, we follow an axiomatic method of exposition. The interest 
of the concepts introduced will not appear until Chapter II. We introduce 
the notion of a measure space, a space endowed with a family of measurable 
subsets satisfying the axioms of a a-algebra. This approach parallels that 
of the theory of topological spaces, where a topological space is a space 
endowed with a family of open subsets. As we will see in Chapter IV, a 
peculiarity of the concept of a a-algebra is that it is adapted to the propo­
sitional calculus (Boolean algebra). Since negation is an operation of this 
calculus, this leads to the axiom that the complement of a measurable set is 
measurable. The fact that a-algebras are closed under taking complements 
is an essential difference between the family of open sets of a topological 
space and the family of measurable sets of a measure space. In order to 
be able to take limits of sequences, we impose another axiom: A countable 
union of measurable sets is measurable. 

Having defined the concept of a measurable space, we introduce a class of 
morphisms adapted to it: the measurable mappings. We introduce a natural 
measurable structure on a topological space: the Borel structure. Continu­
ous mappings are thus special cases of measurable mappings. A remarkable 
result is that the limit of a pointwise convergent sequence of measurable 
mappings is itself measurable. Thus all the functions appearing in prac­
tice in mathematical analysis are measurable functions. A measure space 
is a measurable space which is given a "mass distribution". The concept 
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of negligible sets, or sets of measure zero, is introduced; two measurable 
mappings are considered equivalent if they differ on a negligible set. 

\Ve introduce the concept of convergence in measure, which gives a com­
plete metric space structure to the space AI of equivalence classes of mea­
surable mappings from a measure 8pace to a complete metric space. \Vhen 
we consider functions on a measure space, i.e. mappings with values in R, 
we introduce simple functions, those that assume finitely many values. The 
integral, defined trivially on certain simple functions, extends to an appro­
priate completion, which defines the space L1 of integrable functions. The 
theorems 011 passage to the limit under the integral sign are then an easy 
consequence of the fact that L1 is a complete space. The chapter concludes 
with Fubini's tlworelll and the duality between LJl spaces. 

1 o--algebras 

Let X be an abstract set. A a-algebra on X is a family A of subsets of X 
satitlfying t he following three axioms: 

UJ.l The set X belongs to A. 

1.0.2 If A E A. its complement AC E A. 

1.0.3 Every countable anion of sets in A belongs to A; i.e.! if An E A 
Vn E N, then (UnENAn) E A. 

A Boolean algebra on X is a family B of subtlettl of X satisfying 1.0.1, 
l.0.2, and 

1.0.4 Every jinite union of sets 'in the algebra B is in B. 
Every a-algebra itl thus a Boolean algebra. By using Axiom l.0.2 and 

passing to the complement, we find that l.0.3 implies 

1.0.5 If An E A. then ( nnEN An) E A. 
All analogous statement is obtained for Boolean algebras by restricting 

to jinite intersec:tions. In what follows, we will not pursue the parallels 
between Boolean algebras and a-algebras, but the reader should note that 
most theorems involving passage to the limit are false for Boolean algebras. 

1.1 Sub-a-algebms. Intersection of (J-algebms 

Given two a-algebras A and A' on the abstrac:t set X, we say that A' is 
a sub-iT-algebra of A if A E A' implies A E A. .More formally, let P(X) 
denote the set of tlubsettl of X. \Ve may view a a-algebra A on X as a 
subset of P(X). The "order relation" between a-algebras c:orresponds to 
the relation of inc:lutlion between the subsets of P(X). 

l.l.1 ]'vIore generally, if 9 is an arbitrary family of subsets of X and A is a 
a-algebra on X, we say that A :) 9 if A E 9 implies A E A. 
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1.1.2 Intersection of a-algebras 

Definition. Let {An,a E I}, be a family of a-algebras on X. We denote 
by A' = naEIAn the family of subsets of X defined by A E A' if and only 
if A E An for all a E I. A' is a a-algebra called the intersection of the An. 

We verify only 1.0.3, the other axioms being even more obvious. Let 
An E A', set 

Z = UnENAn, 

and fix ao. Since An E Ano and Aao satisfies 1.0.3, it follows that Z E Ana' 
As this is true for all ao, we conclude that ZEA'. 

1.2 (J-algebra generated by a family of sets 

1.2.1 Theorem. Let 9 be a family of subsets of X. Then there exists on 
X a smallest a-algebra containing g. 

PROOF. Consider the a-algebras B on X such that 

(P) 

Let I denote the family of a-algebras B satisfying (P), and set Ao = 
nBEIB. Then Ao is a a-algebra by 1.1.2, and it is the smallest a-algebra 
of the family I. 0 

1.2.2 Definition. An is called the a-algebra generated by g. We say that 
9 is a system of generators of Au. 

1.2.3 Fundamental example: Borel algebras 

Let X be a topological space and let Ox be the family of open subsets of 
X. The a-algebra generated by Ox is called a Borel algebra, and written 
Bx. 

An element of B x is called a Borel set. Open sets are Borel sets, as are 
closed sets (as complements of open sets). The family of closed sets could 
equally well be taken as a system of generators of B x. 

1.3 Limit of a monotone sequence of sets 

1.3.1 Definition. Let An be an increasing sequence of subsets of X. We 
call the union of the An the limit of the sequence An, and we set 

ACX) = lim r An = U An, where An C A n +1 . 

n 

Similarly, given a decreasing sequence Bn of subsets of X, we call the 
intersection of the Bn its limit: 

BCX) = lim 1 Bn = n B n , where Bn::) B n +1 . 

n 
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A sequence of subsets of X is monotone if it is either increasing or de­
creasing. 

1.3.2 A monotone class is a family M of subsets of X such that if {An} is 
a monotone sequence for which An E A1 for each n, then its limit is in M. 

1.3.3 Proposition. A a-algebra is a monotone class. 

PROOF. Let {A,,} be an increasing sequence of sets in the a-algebra A. 
Then by l.0.3 

lim r An = U An E A. 

Similarly, l.0.5 proves the statement for decreasing sequences. 

1.3.4 An arbitrary inter8ection of monotone cla88e8 i8 a monotone clas8. 
Thus. given a family Z of subsets of X, there exists a smallest monotone 

class Mo containing Z. Mo is called the monotone class generated by Z. 

1.4 Theorem. Let Bb be a Boolean algebra of subsets of X, M the mono­
tone class generated by Bb • and B the a-algebra generated by B b . Then 
B = .1\1. 

PROOF. By 1.3.3. B is a monotone class. Since B contains Bb, it contains the 
smallest monotone class containing Bb; thus B :::J M. 

Conversely, for all A E P(X), let 

1.4.1 <I>(A) = {B E P(X) : AU B, A - B, B - A EM}. 

Then the assertions B E <I>(A) and A E <I>(B) are equivalent. 
Fixing A, we show that <I>(A) is a monotone class. Indeed, if Bn is an increasing 

sequence of elements of <t>(A). then 

{ 
AUBn 
B" -A 
A- Bn 

is an increasing sequence of elements of M, 
is an increasing sequence of elements of /vl, 
is a decreasing sequence of elements of M, 

and their limits are elements of ivl, Furthermore, 

lim T (A U Bn) = A U lim T B n , 

whence lim T Bn E <I>(A). 
Let Ao EBb; then Bu E <I>(Ao) for all Bo EBb. Hence <I>(Ao) is a monotone 

class containing Bb. Thus <t>(Au) :::J Ai, or B E <I>(Ao) for any Ao EBb, BE M. 
Conversely. Ao E <I>(B); i.e., <I>(B) :::J Bb for any fixed B E M. 
Since <I>(B) is a monotone class, it follows that <I>(B) :::J M. 
We have proved that 

1.4.2 B - B', B' - B. B U B' EM whenever B, B' E Ai. 

Taking B' = X shows that Be E M if BE Ai, and thus 

1.4.3 Ai is a Boolean algebra. 

The following lemma, 1.4.4, implies that ivl is a o--algebra. Since M :::J Bb, M 
contains the o--algebra generated by Bu; hence B c M. 0 
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1.4.4 Lemma. Let Z be a Boolean algebra which is closed under increasing 
limits. (That is, if Zn is an increasing sequence of elements of Z, then 
lim i Zn E Z.) Then Z is a a -algebra. 

PROOF. Let An E Z and set Zn = UI:SVSnAp; then 

and Axiom 1.0.3 is satisfied. 

1.5 Product (J" -algebras 

Definition. Let Xl, X 2 be abstract sets equipped with a-algebras AI, A 2 , 

and let the Cartesian product Xl x X2 be denoted by X. 

l.5.1 A rectangle R is a subset of X of the form 

R = Al X A2 with Ai E Ai (i = 1,2). 

The set of all rectangles is denoted by n. 
l.5.2 The a-algebra generated by n is called the product a-algebra and 
denoted by Al c>9 A 2 · 

l.5.3 The union of a finite number of disjoint rectangles is called an ele­
mentary set. The family of elementary sets is denoted by E. 

1.5.4 Proposition. The elementary sets form a Boolean algebra. 

PROOF. Note first that the union of a finite number of disjoint elementary sets 
is an elementary set. 

Let R = Al X A2, R' = A~ x A; be two rectangles; then 

Hence 
R' - R = RI U R2 U R3 , 

where RI (Aj n A~) x (A2 n A;), R2 = (AI n A;) x (A3 n A;), and R3 
(A~ n A~) x (AS n A;). Thus 

( i) R' - R is an elementary set. 

Let E = RUR4 be an elementary set that is the union of two disjoint rectangles. 
(We restrict to two in order to simplify notation.) 

Applying (i), we obtain 

( ii) R' - E is an elementary set if E E E. R' E R. 

If E' E E then E' = URi (Ri disjoint) and E' - E = U(Ri - E), whence 

( iii) (E' - E) E E for any E,E' E E. 
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Taking E' = Xl X X 2 , we obtain 1.0.2. Furthermore, 

(AI x A2 ) n (A~ x A;) = (AI n A~) x (A2 n A;). 

Hence the intersection of two rectangles is a rectangle and, more generally, 

(iv) EnE'EE if E,E'EE. 

Indeed, if E = URj and E' = UR~, then EnE' = Uj,q(Rj n R~). (Note that 
the sets R j n R~ are disjoint.) 

Finally, 

(v) E U E' = (E - E') U (E' - E) U (E n E'). 

The three quantities in parentheses on the right-hand side are elementary sets 
by (ii) and (iv); since they are disjoint, E U E' E E and 1.0.4 is satisfied. 

1.5.5 Corollary. The O'-algebra Al (5<) A2 is the monotone class generated 
by the elementary sets. 

PROOF. 1.5.4 and 1.4. 

2 Measurable Spaces 

2.1 Inverse image of a a-algebra 

Let X, X' be abstract sets and let f be a mapping from X to X'. Let g' 
be a family of subsets of X'. We write 

r1(Q') = {A E P(X) : A = rl(A') with A' E g'}. 

2.1.1 Proposition. Let A' be a O'-algebra on X'; then f-I(A') is a 0'­

algebra on X. It is called the inverse image of A' under f and denoted by 
A = f-l(A'). 

PROOF. The inverse image of X' is X. In addition, 

U.d-I(A~) = f-I(U.,A~) (Axiom 1.0.3 is satisfied); 
[f-I(A'W = f-I(A'C) (Axiom 1.0.2 is satisfied). 

2.1.2 Taking the inverse image preserves inclusion between O'-algebras: 
f-I(A~) ::::> f-I(A;) whenever A~ ::::> A;. 

2.1.3 EXAMPLE. Let Y be a subset of the set X', let i be the canonical 
injection of Y into X', and let A' be a O'-algebra on X'. Then 

{B E P(Y) : i-I (B) E A'} 
{B E P(Y) : ::lA' E A' such that A' n Y = B}. 

In this special case, i-I (A') is called the trace O'-algebra of the O'-algebra 
A' on the subset Y. 

Since Y is a subset of X', every subset of Y can be identified with a 
subset of X'. It is easy to verify that 

( i) i-I(A')cA' ? YEA'. 
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2.1.4 Transitivity of inverse images 

Suppose that X, X', and X" are three abstract sets, f and h are mappings 

such that X L X' ~ X", and gil is a family of subsets of X". Then 

2.2 Closure under inverse images of the generated (J-algebra 

2.2.1 Theorem. Suppose that X and X' are abstract sets, f is a mapping 
from X to X', 9' i8 a family of sub8ets of X', and A' i8 the u-algebra 
generated by 9'. Then f-1(A') is the u-algebra generated by f-1(9'). 

PROOF. Let S denote the u-algebra generated by f-1(9'). 
Be f-1(A') since f-1(9') C f-1(A'). 
To prove that S :=-J f- 1 (A'), we let 

S' = {B' c X' : f-1(B') E S} 

and prove that S' i8 au-algebra. 

(i) f- 1 (X') = XES; hence X' E S'. 
(ii) Let B' E S'; then f- 1(X' - B') = X - f- 1(B') E S since S is 

au-algebra. 
(iii) Let B;, E S'; then f-1(U nB;,) = UTJ-1(B~) E S. 

S' :=-J g'; hence S' contains A', the u-algebra generated by g'. Let A' E A'. 
Then A' E S' since S' :=-J A'. Hence f- 1(A') E s. 0 

2. 3 Measurable spaces and measurable mappings 

2.3.1 Definition. The pair (X, A) consisting of a set X together with a 
u-algebra A of subsets of X is called a mea8urable 8pace. 

2.3.2 Definition. Given two measurable spaces (X, A) and (X', A'), a map­
ping f of X to X' is called measurable if f-1(A') cA. 

M( (X, A); (X', A')) will denote the set of measurable mappings of (X, A) 
into (X', A'). 

2.3.3 Proposition. The comp08ition of mea8urable mapping8 is mea8ur­
able. 

PROOF. Let h E M((X, A); (X', A')), h E M((X', A'); (X", A")). Then 
by 2.1.4 f = h 0 h satisfies (12 0 fd- 1(A") = fl1 (f;1 (A")) c f11(A') c 
A, and hence 12 0 h is measurable. 0 
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2.3.4 Proposition (Measurability criterion). Let (X, A) and (X', A') 
be measurable spaces, let A' be the a-algebra generated by Q, and let Q' c 
A'. Then the following are equivalent: 

(i) f E M((X. A): (X'. A')) 
(ii) f-l(9') c A. 

PROOF. Let Al be the a-algebra generated by f-l(9'). Then (ii) is equiv­
alent to Al C A. Furthermore. Al = f-l(A') by Theorem 2.2.1; hence (ii) 
is equivalent to (i). 0 

2.3.5 r-.leasurable mappings into a product 

Let (X. A), (Y1 .E1 ), and (Y2 ,E2 ) be measurable spaces. Let Y1 x Y2 be 
given the product a-algebra El 0J E2 , defined in 1.5.2, and let 7r; (i = 1,2) 
be the natural projection of Yi x Y2 onto Y;. 

Lemma. 7r] E A1((Y1 X Y:z, El E2 ); (Y1 , Ed)· 

PROOF. We lllllst consider 7rjl(Bl)' where Bl EEl. But 7rjl(Bd = Bl xY2 
is a rectangle, and hence an element of El ;X) E2 . 0 

Proposition (Measurability criterion for a mapping into a prod­
uct). Let f be a mapping of X into Y 1 x Y2 . Then f is measurable if and 
only if its components fi = 7r/ 0 f (i=1,2) are measurable. 

PROOF. Suppose that f is measurable. Then. by the preceding lemma, 
7rl 0 f is a composition of measurable mappings and hence measurable. 
Conversely. suppose that hand h are measurable and let R = Bl X B2 
be a rectangle. Then f-l(R) = tll(Bd n f;;l(B2)' Each f i- 1 (B;) is in 
A. hence so is their intersection, and the measurability criterion 2.3.4 then 
shows that f it; measurable. 0 

2.4 Borel algebms. Measumbility and continuity. 
Opemtions on rneasumble functions 

2.4.1 Separability and measurability 

Separability of topologzcal spaces 

Let Y be a Hausdorff space. 

(i) Y satisfies the first separability aX'iom if there exists a subset D of Y which is 
countable and dense in Y (closure of D = Y). 

(ii) Y satisfies the second separability axiom if there exists a countable family of 
open subsets Hi such that every open set in Y may be written as a union of the 
Hi that it contains. The family HI is called a bas'is of open sets for Y. 

(iii) EXAMPLE. Let Y = R and let Q be the set of rational numbers. Setting 
H qj .Q2 = (QI.Q2), we obtain a countable family of intervals. Then every interval 
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(Xl, X2) can be written as a union of the Hi that it contains. The same holds for 
any open set. 

(iv) Proposition. Let Y be a metric space satisfying the first separability axiom. 
Then it satisfies the second. 

PROOF. Let {yd be a dense sequence in Y. We denote by d the distance on Y 
and set H i .m = {y E Y: d(y,Yi) < m- 1}, where mEN. For each open set 0 in 
Y, let 0' be the union of the Him contained in O. Then 0' is an open subset of 
O. Let z E O. Then there exists ma such that the ball with center z and radius 
mol is contained in O. Let j be such that d(yj,z) < (2ma)-1. Then z E H j ,2ma, 
and hence 0 C 0'. 

(v) The space R n satisfies the first separability axiom and hence the second. 

(vi) The second separability axiom implies the first. It suffices to choose a 
point y in each Hi to obtain a dense sequence. 

Because of (vi) and (iv), we refer to a metric space which has a dense 
sequence as a separable metric space. 

(vii) Let Y, Y' be two separable metric spaces. Then their product Y" is 
separable. Set yj~k = (Yj, y~); then the {y'j,k} form a countable dense subset 
ofY". 

(viii) Proposition (Measurability criterion). Suppose that (X, A) is a 
measurable space, Y is a topological space satisfying the second separability 
axiom, and Hi is a basis of open sets of Y. Then a mapping f : X --+ Y is 
measurable if and only if 

PROOF. This follows immediately from the measurability criterion 2.3.4. It 
must be shown that, for every open set 0, f- 1 (0) E A. Let 0 = UsHis; 
then f- 1(0) = Us f-1(HiJ EA. 0 

REMARK. (viii) provides an explicit criterion for the measurability of a 
function. 

2.4.2 Product of Borel algebras 

Proposition. Consider two separable metric spaces Xl and X 2 and their 
product Y = Xl X X 2 . Let Y be equipped with the product topology. Denote 
by 8 1 , 8 2 , and 8 y the associated Borel algebras. Then 8 y = 8 1 082 . 

PROOF. Y is separable by 2.4.1. The family of open sets of the product 
topology is generated by the countable unions of open rectangles: Ro = 
0 1 X O2 , where Oi E Oxi • Hence Ro E 8 1 082 ; that is, Oy C 8 1 082 , It 
follows that 8 y C 8 1 082 . 

Let 7r1 be the projection of Y onto Xl. Then 7r1 E M( (Y, 8 y ); (Xl, 8 1)) 

since 7rl1(OxJ C 8 y . 
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It follows from 2.3.5 and the fact that 7ri 0 j (j = 1,2) is measurable 
that the identity mapping j : (Y, By) f---+ (Y, B1 0 B2 ) is measurable. Thus 
r1(B1 0 B2) C By, or B1 0 B2 C By. 0 

2.4.3 Measurability and continuity 

Let X and X' be topological spaces. Equipping them with their Borel 
algebras Bx and BX" we obtain measure spaces (X,Bx ) and (X',Bx/). 

Proposition. Every continuous mapping f from X to X' is a measurable 
mapping from (X, Bx) to (X', BX/). 

PROOF. We use the measurability criterion 2.3.4. It must be shown that 
f- 1 (0 XI) C B x. But since f is continuous, the inverse image of an open set 
is open, whence f-1(Ox/) C Ox. Since Ox C Bx , the conclusion follows. 
o 

2.4.4 Algebraic operations on measurable functions 

Consider the field of real numbers R with its Borel algebra BR . Given 
a measurable space (X,A), we denote by £o(X,A) the set of measurable 
mappings from (X, A) to (R, BR)' Elements of £o(X, A) are called measur­
able functions. When X is a topological space with its Borel algebra B x, 
elements of £o(X, Bx) are often called Borel functions. 

Proposition. The absolute value of a measurable function f is measurable. 
The sum and product of two measurable functions are measurable. The 
multiplicative inverse of a measurable function which is everywhere nonzero 
is measurable. 

PROOF. Let u be the mapping from R to R defined by the absolute value: 
u( () = 1(1. Then u is continuous, hence measurable, and 2.3.3 implies that 
If I = u 0 f is measurable. 

Let <I> be the continuous mapping of R2 ----+ R defined by <I> ((1 , (2) = 
(1 + (2. Similarly, let \[!((1, (2) = (1(2. 

Let hand 12 be measurable functions on X, and let F(x) = (h (x), 12(x)). 
Then F : X ----+ R2 and, by 2.3.5, 

FE M((X, A); (R2, BR 0 BR))' 

By 2.4.2, BR0BR = BR2; hence F E M((X,A), (R2,BR 2)). Since <I> is 
continuous, <I> E M((R2 ,BR2);(R,BR))' Thus, by 2.3.3, 

<I> 0 FE M((X, A); (R, BR)) = £o(X, A). 

But (<I> 0 F)(x) = h(x) + 12(x). 
Similarly, \[! 0 FE £o((X, A)) and (\[! 0 F)(x) = h(x)12(x). 
We denote R - {O} by R'. Let 7] be the continuous mapping of R' ----+ R' 

defined by 7](() = ~ and let f E £o(X, A), f(x) -:f 0 for all x E X. If 0 is 
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an open set in R, then 0' = 0 n R' is an open set in R'. Set g(x) = flx)' 

Then g-1(0) = g-1(0') = f-1(1)-1(0')). Since 1)-1(0') is an open set 
in R' and R' is open in R, 1)-1(0') is open in R. Since f is measurable, 
f-1(1)-1(0')) E A. 0 

2.5 Pointwise convergence of measurable mappings 

In this section, (X, A) denotes a measurable space, Y a metric space, and 
By the Borel algebra of Y. We say that a sequence of mappings fn : X f-4 Y 
converges pointwise to fo if lim f n (x) = fo (x) for every x EX. 

2.5.1 Theorem. Let fn be a sequence of measurable mappings which con­
verge pointwise to fo. Then fo is measurable. 

REMARK. It is well known that the pointwise limit of a sequence of contin­
uous functions is not necessarily continuous. This theorem shows the great 
stability of the property of measurability. 

PkOOF. Let fn E M((X, A); (Y, B)). Let d denote the distance in Y and 
let 0 be an open set in Y. For every k > 0, let 

Ok = { x EO: d(x, OC) > ~ } . 

Then Ok is an increasing sequence of open sets in 0 and 0 = UkENOk. 

Moreover, denoting by Ok the closure of Ok, we have Ok C Ok+l' 
Since d(fo(x) , fm(x)) ~ 0, it follows that 

fo(x) E Ok =?- fq(x) E Ok if q is large enough, say q ;::: mo· 

Set H;;,o = nq?mof;;l(Ok)' Since fq is measurable, each f q- 1(Ok) E A, 
wllence H~,o E A. Let Ck = UmoH;;,o; then Ck E A. 

We have thus shown that fo(x) E Ok =?- x E Ck+1 or, taking the union 
over k, fo(x) EO=?- x E UrEN C 1' , which may be written as 

(i) 

We now prove the reverse inclusion. Let Xl E cr. Then there exists m1 

such that Xl E H:;"" or Xl E f;;l(01') if q > mI. Thus lim fq(xd E 0, C 

01'+1 cO and therefore 

( ii) 

From (i) and (ii) it follows that f01(0) = W, or W E A, whence fo is 
measurable. 0 

For emphasis, we restate (i) and (ii) in the following form. 
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2.5.2 Fundamental lemma. Let Un} be a sequence of mappings from X 
to the metric space Y that converges pointwise to ia. Then for every open 
setO in Y. 

2.6 Supremum of a sequence of measurable functions 

For convenience of notation, we introduce in this section the set R of real 
numbers completed by adjoining the two elements +x and -x. 

Addition and multiplication in R are defined in the elementary way, 
except for the "indefinite forms" +x - -00 and 0 ·x. 

R is given the obvious order relation, with +00 the largest and -'x the 
smallest element. A distance is defined on R by setting 

d(x, x') = IArctallx - Arctanx/i. 

Every subset of R has a supremum, or least upper bound. The empty 
set is assigned the supremum -x. 

2.6.1 Proposition. Let Un} be a sequence in M((X, A); (R, Ba)) and let 

P = sup fn· Then P E M((X, A); (R, B"R))' 

PROOF. Since {+x} is a closed subset of R, f;l({+x}) E A. Set G = 

Unfr~l({+x}). Then G E A and <p(x) = +x if x E G. 
Let X/ = Ge, equip X/ with the trace A' of the a-algebra A, and denote 

by I:, the restriction of in to X. Then 

f:, E M((X', A/): (R BR)) = L:°(X/, A'). 

Moreover, by 2.4.4, sup(ff,f~) E L:°(X',A/). 
More generally, let the sequence {9n} be defined by recursion: gl = ff 

and gk = sup(f{, gk-d if k > 1. 
An induction argument shows that gHl E L:()(X/, A'). Moreover, gk ::; 

9k+l. Thus {gk} is an increasing sequence, hence convergent in R. Set 
<PI (X') = limgk(x'), x' E X'. Then, by 2.5.1, <PI E M((X',A'): (R,BR))' 
Furthermore, p(x) = <PI (x) if x E X/ and <p(x) = +x if x tI X'. 

Let K be a closed subset of R. Then 

'P-1(K) = Pl1(K) if +x tI K 
<p-l(K) = <Pll(K) u G if +x E K. 

Since 'Pl1(K) = X/ n A with A E A and X' E A, it follows that pll(K) E 
A.D 
2.6.2 Corollary. Let in E M((X,A); (RBa))' Then (limsupin) E 
M((X, A); (R, Ba))' 
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PROOF. Let 'Pn = sUPp~n fp. Then 'Pn is measurable. The sequence {'Pr.(x)} 
is decreasing, hence convergent in R, and 2.5.1 gives the result. 0 

3 Measures and Measure Spaces 

Definition. Let R+ = {( E R : ( 2: O} U {+oo}. Given a measurable 

space (X, A), a measure on (X, A) is a mapping fJ : A -> R + satisfying the 
following two axioms: 

Countable additivity (O'-additivity) axiom 

3.0.1. Let Ak E A, k E I, be a finite or countable family of measurable sets 
that are pairwise disjoint; that is, Ak n Al = 0 if k =f: l. Then 

(i) 

In particular, 

O'-finiteness axiom 

There exist An E A such that 

3.0.2 

The sequence {An} is called an exhaustion sequence for X. If fJ(X) < 
+00, X is said to have finite measure (or finite total mass) and 11 itself is 
called a finite measure. It is possible to develop part of the theory without 
using 3.0.2, the O'-finiteness axiom. However, the axiom will always be sat­
isfied for the applications we have in mind, and we take this point of view 
for ease of exposition. 

Definition. A measurable space (X, A) equipped with a measure fJ defined 
on A is called a measure space and is denoted by (X, A, fJ). 

EXAMPLE. Let {Xi} be a countable sequence of points of X and let {ai} 
be a sequence of positive real numbers. For A = P(X) and A E A, set 

fJ(A) = L ai· 
xiEA 

Then (X, A, fJ) is a measure space. If ai = 1, i E N, this measure fJ is 
called the counting measure associated with the sequence {xd; fJ( A) equals 
the number of points of the sequence {xd which lie in A. 

This example is trivial and does not reveal the complexity of the theory. 
In fact, we will not obtain nontrivial examples of measure spaces until 
Chapter II. 
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3.1 Convexity inequality 

Proposition. Let (X, A, f.L) be a measure space. Then 

3.l.1 j1 is 'increasing; that is, if A1 and A2 E A and A1 C A 2. then j1(Ad <::: 
/1(A2 ) , 

3,1.211 is co n7Je:r:,' that is. if E 1 ..... En E A (not necessaril:1J disjoint), then 

(

" ) )I 

Ii ~Bi <:::~li(E;). 

PROOF. Let Al C A2 and let E = Ai n A 2 ; then B E A and A2 = Al U E. 
The finite additivity axiom give[; 

Since li(B) ?: 0, we conclude that li(A2) ?: j1(AI)' 
~ ~ 

Similarly, let the [;eqllence E 1 , ... , E,l' . " be defined recursively: 

~ ~ 

Then Bq E A. UT~IEj = Uj"~=IEj, and hy finite additivity 

Ii (Ujr~I13j) = fj1(13j ). 
j=1 

13j C E J implie[; f.L(13j ) <::: f.L(Hj), and the desired inequality follow[;. D 

3.2 Measure of limits of monotone sequences 

Theorem. Let A j • A 2 , ... , An, ... be an increasing sequence of measurable 
sets. Let 

+:x 

lim r Ai = U A.I' 
;=1 

Then 

3.2.1 f.L(lim r Ai) = limIL(A;). 

Theorem. Let E 1 , E21 ... , En 1 ••• be a decreasing sequence of measurable 
sets. Let 

+ ':xc 

lim 1 Hi = n Hi. 
i=l 

3.2.2 Suppose that there eX'ists ko such that j1(Eko) < +x. Then 

3.2.3 
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REMARK. The properties described by these two theorems are sometimes 
called continuity on increasing sequences and continuity on decreasing se­
quences. 

PROOF. Consider the measure space (X, A, J.L). For An E A, set Al = Al 

and An+~ = A~ n An+I ~f n > l. 
Then An+I E A, the An are disjoint, and Aj = Uq:'OjAq. Hence, by finite 

additivity, 

J.L(Aj ) = L J.L(Aq). 
q:'Oj 

Hence, for increasing sequences, 3.2.1 reduces to the simple observation 
that the sum of a series of nonnegative terms is the limit of its partial 
sums; that is, ~;~ J.L(Aj ) = limr ~~=I J.L(Ar). This limit always exists, 
whether it is finite or infinite. 

In order to prove 3.2.3, we set A~ = Bko n B'k, k > ko. Then A~ is 
an increasing sequence. The relation Bko = Bk U A~, Bk and A~ disjoint, 
implies J.L(Bk,J = J.L(Bk)+J.L(AU. Hence J.L(AU :s It(Bko) and p(lim T AU = 
limp(AU = f3:S J.L(Bko )· We have 

whence 

or finally 

3.2.4 Application - Exhaustion principle 

We now roughly sketch a principle that will often be used. Let (P) be a 
property that is true for all finite measures. Let (X, A, J.L) be a measure 
space with an exhaustion sequence An. Let Xn = An, equipped with the 
trace a--algebra An of the a--algebra A, and let Itn be the restriction of J.L 
to An. Then each J.Ln is finite and therefore satisfies (P). 

To conclude that J.L satisfies (P), it suffices to show that "the limits of 
values of Pn appearing in (P) are finite". 
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3.2.5 REMARK. Let a be a mapping from A to R+ satisfying the finite 
additivity axiom 3.0.1(ii) and property 3.2.1 of continuity with respect to 
increasing sequences. Then a satisfies 3.0.1(i), since 

n += 
a(Ur Ap) = a(lim(U~'Ap)) = lima(U~'Ap) = lim L a(Ap) = L a(Ap), 

1 1 

where the third equality follows from finite additivity. 

3.3 Countable convexity inequality 

Proposition. Let {An} be a sequence of (not necessarily disjoint) elements 
of A. Then 

PROOF. Set Bq 
3.2.1 we have 

U;,=l An· Then Bq is an increasing sequence, and by 

Furthermore, by the finite convexity property 3.1.2, 

(] += 
p(Bq) :::; L tL(An) :::; L tL(An).D 

n=l n=l 

4 Negligible Sets and Classes 
of Measurable Mappings 

The concept of measurable mappings is extremely easy to work with. In 
particular, the theorem that a pointwise limit of measurable mapping~ is 
measurable makes the operations of analysis very convenient. The drawback 
of this convenience is that the space of measurable functions is enormous, 
and therefore hardly usable. \Ve will work on a quotient space. 

4 .1 Negligible sets 

Definition. Let (X, A. p) be a measure space. A subset Z of X i~ called 
negligible if there exists A E A such that p(A) = 0 and A ~ Z. 

4.1.1 Proposition. A countable union of negligible sets is negligible. 
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PROOF. This follows from countable convexity: 

Since every term on the right-hand side is zero, the sum of the series is 
zero. 0 

Definition. A property (P) is said to be true J.l-almost everywhere (denoted 
J.l-a.e.) on the measure space (X, A, J.l) if 

{x : (P) does not hold at x} is contained in a negligible set. 

4.l.2 Let (Pd be a proposition implying the proposition (P2). Then (P1 ) 

true J.l-a.e. =} (P2 ) true J.l-a.e. 

4.1.3 Theorem. Let (P1 ), ... , (Pn ), ... be a sequence of properties defined 
on (X, A, J.l). Suppose that each of the properties (Pi) is true J.l-a.e. Then 
their conjunction is true J.l-a. e. 

PROOF. Let Ai be a negligible set that contains {x : (Pi) does not hold at x}. 
Then Aoo = UiAi is negligible. If x tJ- A"", then all the (Pd hold at x. 0 

4.2 Complete measure spaces 

4.2.1 Definition. Given the measure space (X, A, J.l), the O'-algebra A is 
called J.l-complete if every subset of a negligible set is measurable. 

The measure space (X, A, J.l) is called complete when A is J.l-complete. 
The space is complete if and only if every subset of a negligible set is 

negligible. 
On a complete measure space, a property P is true IL-a.e. if the set 

{x : (P) does not hold at x} is negligible. 

4.2.2 Completion theorem. Let (X, A, J.l) be a measure space. Then 
there exist a O'-algebra A' ::J A and an extension J.l' of J.l to A' such that 
(X, A', J.l/) is complete and, for all A' E A', there exist A 1 , A2 E A' with 
Al c A' C A 2 , J.l(A2 - Ad = O. This O'-algebra A' is unique and will be 
called the completion of A. 

PROOF. Define 

A' = {Z E P(X) : :JA I ,A2 E A such that Al c Z C A2 and P.(A2 - AI) = o}. 

Clearly A' ~ A. We show that A' is a O'-algebra. If ZEA', then A~ C ZC c Af 
and Al - A2 = A2 - AI, whence ZC E A'. Hence Axiom 1.0.2 is satisfied. 

Let zn E A'. Then there exist A]' and Az such that A]' c zn C Az. Set 
Zoo = UZn, Al = UAI , and A2' = UAz. Then 

Al c Zoo c A2' and A2' - Al c U(Az - AI)' 
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The right-hand side, as a countable union of negligible sets, is negligible, 
whence ZEA' and A' is a a-algebra. 

To extend 11 to A', we first note that p(A2) = p(Ad + p(A2 - Ad = p(Ad. 
For ZEA', let p'(Z) be defined by p'(Z) = p(A1)' 

vVe now show that this is independent of the choice of A1 C Z C A 2 . Let 
.4.1 c Z C .4.2: .4.1 .• 4.2 E A, 11.(.4.2 - .4.t) = 0. Then .4.2 ::J Z ::J AI, whence 
11(.4.2) -2' p(Al) = p(A2)' Similarly p(A2) -2' IL(iL), whence 11(.4.2) = Il(A2)' 
1\Ioreover, if zn is a sequence of disjoint sets, then so is Ai'; hence IL(UAn = 

L p( A;'), and we have shown that 1/ is countably additive. 
Finally, Ji.' is complete: letting ZEA' with pi (Z) = 0, there exists A2 E A 

satisfying Z C A2 and 11(A2) = 0. Let Zj C Z. Then 0 C Zl C A 2 , where 0, A2 
E A and p(A2 - 0) = O. Therefore Zl E Al 0 

4.3 The space Alf1((X, A): (X',A')) 

(i) On j\1/ ( (X, A); (X', A') ). let the equivalence relation be defined by 

1 .~ f' if 1(:1:) = f'(J.') Il-a.e. 

The equivalence class of 1 is denoted by 1. 

(ii) The transitivity of this relation follows from 4.1.3. 

4.3.1 Definition. The quotient of /v1 by this equivalence relation is denoted 
by Al,,((X, A); (X', A')). 

An element Y E "\1 f.L is a mapping f : X ---+ X', defined "up to a set of 
Il-measure zero". 

4.3.2 Let E be a negligible set and let cp : X - E --7 X'. 
Suppose that cp is a measurable mapping when X - E is given the trace 

a-algebra induced by A. Define 1 : X ---+ X' by setting 

1(:r) = cp(x) 
f(.c) = .r;) 

if 
if 

x EX-E 
x E E, 

where x;) is an arbitrarily chosen element in X'. 
Then f E M((X, A): (X', A')), and cp determines the equivalence class 

of 1 in M1L((X, A): (X',A')). 

4.3.3 REMARK. "Vhen X' = R and A = BR , the operations defined on 
measurable functions (sum, product, sup) are compatible with the equiva­
lence relation. The quotient of .c°(X, A) = M( (X, A); (R, BR)) is denoted 
by L~(X, A). 

Thus the operations sum, product. and sup are defined on L7,(X, A). 
I'vloreover, any element of L~(X, A) with a representative that is nonzero 
almost everywhere has a well-defined inverse. L ~ (X. A) is called the space 
of equivalence classes of measurable functions. 
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5 Convergence in MJL((X, A); (Y, By)) 

Throughout this section (X, A, JL) denotes a measure space, Y a 
separable metric space, and By the Borel algebra of Y. 

5.1 Convergence almost everywhere 

5.1.1 Definition. Let In E MI-'((X, A); (Y,By )). an} is said to converge 
almost everywhere if, when representatives f n of 1 n are chosen, {J n (x)} is 
convergent JL-a.e. 

We first show that this definition is independent of the choice of rep-
resentatives. Let gn fn JL-a.e. Denote by (Pn ) and (F) the following 
propositions: 

gn(X) = fn(x) 

lim f n (x) exists. 

Let (G) be the conjunction of (F) and the (Pn ). Then, by 4.1.3, (G) 
is true JL-a.e. Since (G) implies the convergence of the gn, 4.1.2 gives the 
result. 

5.1.2 Proposition. Let 1 n E MI-'((X, A); (Y, By)). Suppose that an} con­
verges almost everywhere. Then 

limfn(x) 

defines an element go E MI-'((X, A); (Y,B y )). 

PROOF. Choose an arbitrary Yo E Y, let (F) be defined as in 5.1.1, and let 
K be a negligible set such that K :J {x : (F) is not satisfied at x}. Let 

gn(X) = fn(x) 
gn(x) = Yo 

Then, by 4.3.2, gn E M((X, A), (Y, By)) and gn = In. 
Moreover, if x E K then {gn(x)} converges by 5.1.2; if x ~ K, then 

gn (x) = Yo and hence the sequence converges. 
Thus {gn(x)} converges for all x E X, and Theorem 2.5.1 shows that 

go = lim gn satisfies 
go E M((X, A); (Y, By)). 

Hence 
limln = go E MI-'((X, A); (Y,By)).D 

5.1.3 Lemma. Given f,g E M((X,A);(Y,By )), let qj,g be defined by 
qj,g(x) = d(f(x),g(x)). Then qj,g is a measurable function and 'tiT] E R+ 
{x: qj,g(x) > T]} is measurable. 
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PROOF. Let y2 = Y X Y and let '1jJ be the mapping from y2 into R + 
defined by the distance: '1jJ (Yl , Y2) = d(Yl' Y2). 

Let H : X -+ y2 be defined by x f--+ (J(x),g(x)); then, by 2.3.5, H E 

M((X,A); (y2,BY2)). 
Since '1jJ is continuous, '1jJ 0 HE M((X, A); (R, BR)). 
Moreover, since ('r/, +00) is an open set in R, qj-l(('r/, +00)) E A. 0 ,g 

5.1.4 Egoroff's theorem. Let (X, A, J-l) be a measure space and suppose 
in addition that J-l(X) < +00. 

Then fn E MIL((X,A),(Y,By )) converges J-l-a.e. to fa if and only if, 
choosing representatives fn' fa of the classes fn' fa, 

'tiE > 0 :JK, E A such that J-l(K~) < E 

and fn(x) converges uniformly on K, to fa. 

PROOF. Necessity is clear. Set E = m-1 , m a positive integer. Then fn 
converges to fa on UKm-l = G. Since J-l(GC) ::; J-l(K;',,-d for every m, 
J-l(GC) = o. 

We now prove sufficiency. Set 

An,q = { x: d(Jn(x), fo(x)) > ~} . 

Then An,q E A by 5.1.3. 
Let Bm,q = Un~mAn,q. Since Bm,q is a decreasing sequence for fixed q, 

the hypothesis of convergence J-l-a.e. together with the limit theorem 3.2 
imply that J-l(Bm,q) -+ 0 for every fixed q as m -+ +00. 

Fix an increasing sequence mk such that J-l(Bmk,k-1) < E 2-k. Set K, = 

U%"=l Bmk,k-l. Then 

1 
J-l(K~) < E and d(Jmj (x), fo(x)) < k if j;::: mk, x E K,.D 

5.2 Convergence in measure 

Convergence almost everywhere allowed us to introduce a notion of conver­
gence of sequences in MIL" We now define a metric on the space MIL' and 
thus a new notion of convergence. 

Let (X, A, J-l) be a measure space and let (Y, By) be a metric space 
equipped with its Borel measure. We denote by d the distance on Y. 

5.2.1 Construction of an extended distance on MIL ((X, A), (Y, By)) 

Let f, gEM and let qj,g be as defined in 5.1.3. With the pair of functions 
(J,g) we associate the subset of (R+)2 defined by 
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Set 
e(j,g) = inf(E + 17) where (1',17) E K(j,g). 

If K(j,g) is empty, we set e(j,g) = +00. 

5.2.2 An equivalent extended distance 

Set 
e(j,g) = 2inf(A) where (A,A) E K(j,g). 

Then we have 
e(j,g):::; e(j,g):::; 2e(j,g). 

The first inequality is proved by writing e(j, g) = inf(A+A), with (A, A) E 

K(j, g). Note, moreover, that if (1',17) E K(j, g), then (1'+0:,17+,6) E K(j, g) 
for any 0:,,6 ;:::: O. If I' > 17, we take 0: = 0 and ,6 = I' - 17 to obtain 
e(j, g) :::; 21' :::; 2e(j, g). The case I' < 17 is treated in the same way. 

5.2.3 Lemma. Letj,g,hEM((X,A);(Y,By )). Then 

e(j, g) 
e(j, g) 
e(j, h) 

e(g,j), 
o is equivalent to j (x) = g( x) J1,-a. e.! and 

< e(j,g)+e(g,h). 

PROOF. The first statement is clear, and we prove the second. If c(f, g) = 0, 
then there exists a pair 

(En,T)n) E K(f,g), En ---> 0, T)n ---> O. 

We may assume that T)n is a decreasing sequence. Then q-1((T)n, +(0)) is an 
increasing sequence and, by the limit theorem 3.2.1, 

p,(1im i q!,~((T)n, +(0))) = limp,(qf.~((T)n, +(0))) ::; lim En = 0, 

whence 
p,({x: d(f(x),g(x)) > O}) = 0, i.e. f(x) = g(x) p,-a.e. 

Conversely, if f(x) = g(x) p,-a.e., then 

p,(q!,~((T), +(0))) = 0 \IT) > O. 

It remains to show that the triangle inequality holds. By the triangle inequality 
on Y. 

qf.h(X) ::; qf.g(x) + qg.h(X). 

Let (E1,T)1) E K(f,g) and (E2,T)2) E K(g,h). Then qf.h(X) > T)1 +T)2 implies that 
qf,g(x) > T)1 or qg,h(X) > T)2. Hence 

and, by the convexity inequality, 
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We have thus shown that (cl,1]r) E K(f,g) and (1'2,1]2) E K(g,h) imply that 
(1'1 +1'2,1]1 +1]2) E K(f,h). 

Set 
G K(f, g) + K(g, h) 

{(I', 1]) E (R+)2: E = 1'1 + 1'2, 1] = 1]1 + 1]2, 
with (CJ,1]I) E K(f,g), (1'2,1]2) E K(g,h)}. 

Then G c K(f, h), and we obtain 

e(f, h) = inf (I' + 1]):::; inf (I' + 1]) = inf(cl + 1'2 + 1]1 + 1]2) 
(e.'1)EK (E,'1)EG 

with 

Thus 
e(f, h) :::; inf(cl + 1]1) + inf(c2 + 1]2) = e(f, g) + e(g, h).D 

5.2.4 Corollary. If f = l' and 9 = g' fJ,-a.e., then e(j,g) = e(j',g'). 

PROOF. Since e(j,g) :::; e(j,1') + e(j',g') + e(g',g) and the hypotheses 
imply that the first and third terms on the right-hand side are zero, it 
follows that e(j,g) :::; e(j',g'). 

The opposite inequality is proved in the same way. 0 

REMARK. e(j, g) depends only on the equivalence classes 1 and g. 
Abusing notation, we set ea, g) = e(j, g), where f and 9 are chosen in 

the classes of 1 and g. 

5.2.5 Proposition. Suppose that (X, A, fJ,) is a measure space and Y is 
a metric space. Let MI-'((X, A); (Y, By)) be the space of equivalence classes 
of measurable mappings from X to Y and let e be as defined in 5.2.2. Set 

d (-1 -) = ea, g) 
I' ,g l+e(j,g)' 

Then dl-' is a distance on Mw 

PROOF. Lemma 5.2.3 shows that e satisfies the axioms for a distance, except 
that e may assume the value +00. We use a construction common in topology; 
let 

k t _ _ t_ 
()-l+t' k(+oo) = 1. 

It is elementary to verify that the function t f-+ k(t) satisfies 

It follows that dl1- satisfies the triangle inequality and thus defines a distance 
onM,.,. 0 

REMARK (i). If fJ,(X) :::; C, then it is always true that (C,O) E K(j,g) and 
hence that e(j,g) :::; C. In this case it is unnecessary to use dl-'; e may be 
taken as a distance. 
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REMARK (ii). A sequence fn E MIL is a Cauchy sequence with respect to 
the distance dlL if and only if e(fm, fn) ---> 0 whenever m and n ---> +00. 

5.2.6 Definition. A sequence fn is said to converge to fa in measure if 
e(fn, fa) ---> o. 

Proposition. The sequence fn converges to fa in measure if and only if, 
for every fixed TI > 0, 

p,( {x: d(fn(x), fo(x)) > TI}) ---> 0 as n -+ +00. 

PROOF. ({=) Let no be such that 

p,( {x: d(fn(x) , fo(x)) > TI}) < T} if n:::: no· 

Then (77, TI) C K(fn, fa), whence 

e(fn, fa) < 2T1 if n:::: no· 

(=?) Let TIl < TI be given. Using 5.2.2, we can find nl such that e(fn' fa) < 

2T1l if n > nl; i.e., (TIl, TId E K(fn, fa). Hence 

p,({x: d(fn,fo) > TI}) < TIl· 

Since {x: d(fn' fa) > TId C {x: d(fn' fa) > TI}, it follows a fortiori that 

5.2.7 Theorem (Comparison of convergence in measure and con­
vergence almost everywhere). Suppose that (X, A, p,) is a complete 
measure space, Y is a metric space, fa E MI'((X,A), (Y,B y )), and {fn} is 
a sequence in MI'((x' A), (Y, By». 

(i) If dl'(fn, fo) ---> 0, then there exists a subsequence Unk} of Un} 
such that f nk ---> fa p,-a. e. 

(ii) Suppose in addition that It is a finite measure. Then the p,-a.e. 
convergence of fn to fo implies that dl'(fn, fa) ---> o. 

The proof depends on the following important lemma: 

5.2.8 Lemma (Borel-Cantelli). Let {An} be a collection of elements of 
A such that 

Then p,-almost every x lies in at most a finite number of An. 
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PROOF. Set Bm = Un::c:mAn. Then 11(Bm) :::; Ln>m M(Ar,) by the con­
vexity inequality; hence limm~x M(Bm) = O. But since Bn is a decreasing 
sequence, it follows from the continuity theorem (3.2.3) that M(nnBn) = 

limM(Bn) = O. Note finally that x 1:. n"Bn {=} x is in only finitely many 
An. D 

PROOF OF THE THEOREM (PART (i)). Let Ok be the general term of a 
convergent series (for example, aA: = 2- k ). Fix an increasing sequence {nd 
such that e(jm,fo) < 2ak ifm 2 nk. Set 

Ak = {.T: d(jn, (x) fo(x)) > ad: then M(Ak) < ak. 

The Borel-Cantelli lemma implies that, Ii-almost everywhere, x belongs 
to only finitely many A k . Thus 

for 11-almost every x, there exists an integer s( x) such that d(j n, (x), fo (x)) 
:::; akif k 2 s(x). 

Hence fnk converges li-a.e. to fo. D 

PART (ii). Fix E > O. Set 

Cn = {x: supd(jq(.T), fo(x)) > f} . 
q::C:n 

Then {Cn} is a decreasing sequence and, by 5.1.3 and 2.6.1, C n E A. Since 
C n C X implies that p(Cn ) < +00, we can use the limit theorem 3.2.3 to 
conclude that M(nn Cn) = limll(Cn ). 

The hypothesis of convergence M-a.e. implies that the left-hand side is 
zero. Let no be such that M(Cno ) < E; then we have e(jn, fa) < 2E ifn > no. 
D 

5.2.9 Theorem. Suppose that (X, A, p) is a measure space and Y is a 
complete metric space. Then lvlfJ((X, A); (Y, By)), equipped with the metric 
d/1 , is a complete metric space. 

PROOF. Our approach parallels that of the proof of 5.2.7(ii). Let Un} be a 
Cauchy sequence in lvlp: using a result from topology, we need only show 
that the sequence {fn} has a subsequence that is convergent with respect 
to the distance d/1 • Let ak be the general term of a convergent numerical 
sequence. Fix an increasing subsequence {nk} such that e(jnk' f m) < 2ak 
for all rn 2 nk. Set 

Ak = {x: d(jnk (x), f nk+l (x)) > ad; 
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Let E > 0 be given, fix ko such that Lk~ko ak < E, and set Dko 

Uk~koAk' Then 

(i) JL(Dko ) < E and L d(fnk(x),fnk+l(x)) < E if x ~ D ko ' 
k~ko 

Hence {yd = {fnk(x)} is a Cauchy sequence if x ~ D ko ' 
As this is true for every ko, it follows that {fnk(X)} converges if x ~ 

nkDk; but JL(nkDk) = 0, i.e. {fnk} converges JL-a.e. to fo E Mw 
By inequality (i) and the triangle inequality, 

(ii) d(fnk(x),fnk'(x)) < E if k,k' > ko and if x ~ Dko' 

Fixing nk and letting k' go to infinity, we obtain 

whence 

or 

6 The Space of Integrable Functions 

In this section, we exhibit a vector subspace of MIL((X,A); (R,BR )) 

L~(X, A) which will be provided with a Banach space structure. The dis­
tance defined by this norm will be an upper bound for the distance dIL , and 
will thus define a finer topology than that associated with dw 

6.1 Simple measurable functions 

Let (X, A) be a measurable space. A simple function is a measurable map­
ping from X to R such that cardinal (f(X)) < +00. We denote by [o(X, A) 
the set of simple functions. 

Let (X, A, JL) be a measure space. We denote by E~(X, A) the subset 
of L ~ (X, A) consisting of those equivalence classes of measurable functions 
which contain a simple function. 

If f, g E [o(X, A), then 

card((f + g)(X)) ::; card(f(X))card((g(X)) 

and 
card( (f g )(X)) ::; card(f(X) )card(g(X)), 

so that [o(X, A) is a vector space equipped with a product. The same holds 
for E~(X, A). Moreover, if f E [o(X, A) so is If I; hence the operation sup 
is defined on [0 and E~. 
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6.2 Finite J -algebr'as 

Let Y be an abstract set and let B be a a-algebra on Y. B is called finite 
if it has only a finite number of elements. Note that the finite Boolean 
algebras coincide 'with the finite a-algebras: the countable union property 
reduces to the finite union property in this case. Sets B E B such that 

B' c B. B' E B implies either B' = B or B' = 0 

are called atoms. 
Atoms are the minimal elements with respect to the inclusion relation in 

a a-algebra. If Band B are distinct atoms, then B n 13 = 0. 

6.2.1 Proposition. Let B be a finite a-algebra. Then ever?! nonempty sd 

in a 'is the union of the atoms it contains. 

PROOF. Let A E a. Either A is an atom or 3AI C A, Al cJ A, Al E B. 
Repeat the argument, starting from AI: either Al is an atom, or 3A2 C A 1, 

A2 cJ A 1 • A2 E a. This produces a sequence of subsets of Y, each strictly 
contained in the preceding one. Since a is finite. the process must terminate 
after finitely many steps, yielding an atom. \Ve have thus shown that 

every nonempty set A E a contains at least one atom of a. 

Let HI . ... , Hq be the atoms of B contained in A and let A = U}Hj. Then 

A c A. l\IoreoveL "4c n A E B. If AC n A were nonempty, AC n A wou~ 
contain an atom: but all the atoms contained in A are contained in A, 
whence A = A. 0 

6.2.2 Corollary. Let a be a finite a-algebra of subsets of Y. Then there 
exist a finite set 5a and a bijection between Band P(5aL the set of all 
81Lbsets of 5 a, such that the bijection respects the Boolean algebra structure 
(the operations of union and intersection). 

PROOF. We take for 5a the set of atoms of a. The bijection between a and 
5 a is obtained by associating with each set B E a the atoms it contains. 
o 

6.2.3 Partitions 

Definition. A partition of X is a finite family of pairwise disjoint subsets 
of X, say K 1 •... , Kn. whose union is X. The a-algebra a generated by 
the K;, 1 ~ i ~ TI, consists of sets B of the form B = UsKj ,. 

The atoms of a are precisely the K;. Conversely, given a finite a-algebra a 
on X, its atoms form a partition of X. 
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6.2.4 Finite a-algebras and simple mappings 

Let (X, A) be a measurable space and let Y be a metric space. A function 
f E M((X, A); (Y, By)) is called simple if card(f(X)) is finite. 

Proposition. A mapping f is simple if and only if f-l(B y ) is a finite 
a-algebra . 

PROOF. (=*) Let x~, '" x~ be an enumeration of the image f(X). Then 
f-l({x~}) are the atoms of f-l(B y ). 

( {=) Let U be an atom of f- 1 (By). Suppose that f assumes two distinct 
values on U, say Yl and Y2. Let 0 1 and O2 be disjoint open sets in Y, 
Yi E Oi (i = 1,2). 

Set Unf- 1 (Oi) = Ui (i = 1,2). Then Ui E f- 1(By), U1 -=I- 0, U1 C U, 
and U1 -=I- U, contradicting the hypothesis that U is an atom. 0 

6.3 Simple functions and indicator functions 

Given a subset A of X, the indicator function of A, written lA, is the 
function equal to 1 on A and zero on AC: lA(X) = 1 if x E A and lA(X) = 0 
otherwise. 

The next proposition is easily verified. 

6.3.1 Proposition. lA lB = lAnB and lA + Ie = lAue + lAne. More­
over, A is measurable if and only if lA E [o(X, A). 

6.3.2 Proposition. Suppose that f assumes only finitely many values. Let 
B be a finite a-algebra such that B :J f-l(BR ). Then f can be written 
uniquely in the form 

f = L QilHi with Qi E R, where the Hi range over the atoms of B. 

PROOF. Let Ho, ... , Hq be the atoms of B. Let ~ E f(X); then the hypoth­
esis f- 1 (E,) E B implies that f- 1 (~) can be written as a union of atoms. 
Hence f has constant value, say Qi, on Hi' The two sides of the identity co­
incide on Hi for every i, and since UiHi = X the identity holds everywhere. 
o 

6.3.3 Corollary. The measurable indicator functions generate the vector 
space of simple functions. 

PROOF. Let f be a simple function and let B = f- 1 (BR ) c A. Then B is 
a finite a-algebra by 6.2.4. 0 

6.4 Approximation by simple functions 

6.4.1 Proposition. Let f E .cO (X, A) be bounded. Then there exists a 
sequence of simple functions gn converging uniformly to f. 
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PROOF. Consider the half-open interval 

We may write it as a countable union of closed sets in the following way: 

Hence Jk is a Borel subset ofR, and IJk E .c°(X,8R ). 

Let C and ko be such that If(x)1 :::; C and 

+ko 

U Jk ~ [-C,+C]. 
k=-ko 

Set 

Since the Jk n [-C,+C] form a partition of [-C,+C], we have t - n-1 < 
Gn(t) :::; t if It I :::; C. 

Moreover, Gn takes only finitely many values and 

Gn E M((R, 8R), (R, 8R))' 

6.4.2 Corollary. Let f E .c°(X,A). Then there exists a sequence {4'n} of 
simple functions converging pointwise to f. 

PROOF. Let An = {x: If(x)1 < n}. Then fn = IAnf is a bounded 
measurable function. Let 4'n be a simple function, constructed (as in 6.4.1) 
so that 

If n ( x) - 4'n ( x ) I :::; n -1 for all x. 

Then 
lim4'n(x) = f(x) '<Ix E x.o 

6.4.3 Corollary. Let (X, A, p,) be a measure space and let (X, A', p,') be 
its completion (in the sense of 4.2.3). Let f' E .cO (X, A') be given. Then 
there exists f E .c°(X,A) such that f(x) = f'(x) p,-a.e. 

In particular, L~(X,A) can be identified with L~,(X,A'). 

PROOF. Consider first the indicator function of a set A' E A'. There exist B, C E 
A such that B c A' c C and J-L(C - B) = O. In particular, Is = lA' J-L'-a.e. 
Hence the corollary is true for A'-measurable simple functions. 
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Now let f' E .c°(X,A') be given. By 6.4.2 there exist 'P~ E [O(X,A') such 
that lim'P~(x) = f(x) VxEx. By the argument above, there exist 'Pn E [O(X, A) 
such that A~ = {x: 'Pn(X) #- 'P~(x)} satisfies jL'(A~) = o. 

Let AX) = UnA~; note that Aoo E A and jL(A,o) = O. Define 'Pn(X) = 'Pn(X) if 
x cJ. A"" and 'Pn (x) = 0 otherwise. Then 'Pn E £0 (X, A) and {'Pn (x)} converges 
for every x. Moreover, setting lim 'Pn(X) = f(x), we see by 2.5.1 that f E .c°(X, A) 
and f'(x) = f(x) jL-a.e. 0 

6.5 Integrable simple functions 

6.5.1 Definition. Simple functions f such that J.L({x : f(x) "I- O}) < +00 
are called integrable simple functions. We denote by £~(X, A) the integrable 

simple functions and by E~(X,A) the equivalence classes in £O(X, A) gen­
erated by the integrable simple functions. 

£~(X, A) is a vector subspace of £o(X, A) which is closed under multi­
plication and absolute value. 

6.5.2 Definition of the integral on £~(X, A) 

Let f E £~(X, A) be written in the unique form associated with the 
a-algebra f-1(BR), as in 6.3.2: 

f = L (lilHi (where (li "I- 0 Vi). 

The integral of f is defined by the formula 

If h E £~(X, A), h = f a.e., then it is easily verified that I(J) = I(h). It 
follows that the function 1(·) is defined on E~(X, A). 

6.5.3 Lemma (Evaluating the integral on certain finite a-algebras). 
Let f be an integrable simple function and let B be a finite a-algebra such 
that B :J f-l(BR). Denoting by KII ... , Kr the atoms of B, let 

f = L {3qlKq (where (3q "I- 0 Vq) 
q 

be the decomposition of f given by 6.3.2. Then 

I(J) = L (3qJ.L(Kq). 
q 

PROOF. Let {Hs} be the set of all atoms of f-l(BR). Since each Hs is in 
B, Hs can be written as a union of atoms of B: Hs = UqEIs Kq, where Is 
is a finite set. 
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But p(Hs) = LlJu, tL(KIJ)' 0 

6.5.4 Theorem (Properties of the integral on simple functions). 

(i) The integral defines a positive linmr functional on E~ (X, A). 
(i1) Setting q(.f) = 1(I.fI) defines a norm on E,~(X,A). Moreover'. 

II(f)1 ::; q(.f). 
(iii) fl({.?': Ih (J') - h(x)1 > II}) < *q(h - h) (Chebyshev's 

inequali ty). 
(iv) dk h) ::; 2q(.fl - h)~. 
(v) Every Cau,chy sequence in I.he nO'f'med space EI~ (X, A) is IJ. 

Cauchy sequence with respect to the distance of convergence in 
'(neasure. Convergence in norm impl'ies convergence in meaSUT'e. 

PROOF OF (i). Let / be a constant. Then lhf) = ,l(.f) for every f E 

EI~(X, A). 

Now let .1'1, f2 E [~I(X, A). Let F be the mapping from X to R2 defined 
by setting F(.I') = (h(.r),h(:r)). 

Thm F is a simple mapping anel F- 1 (BR 2) = B is a finite sub-a-algebra 
of A containillg f i- 1 (BR ) (i = L 2). The decomposition of Ii on the a-alge­
B gives 

h = L be and h = L(\lK " 

where the Ks range over the atoms of B. Then h + h can be decompo:sed 
in tIlt' a-algebra Bas fl + h = L(38 + b,,)lKs ' whence 

If f(:1') 2.: 0 tL-a.e., the only coefficients appearing in the sum are the non­
negative 38 , Thus 

(I'i) f(:r) 2.: 0 IHl.e. implieti l(.f) 2.: 0 (positivity of the integral). 

PROOF OF (ii). By the positivity of the integral, the inequality If + hi ::; 
If I + Ihl implies that q(f + h) ::; q(.f) + q(h). 

That q(af) = lalq(f) is trivial. It remains to show that q(.f) 2.: 0 and 
that q(.f) = () implies f = 0 11-a.e. 

The first inequality follows from the positivity of the integral. l\Ioreover, 
in a a-algebra adapteel to f. 

1(lfl) = L I ct ill1(Ki), 
iY,¥O 
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and this sum of nonnegative terms can be zero only if all the terms are 
zero. 

Finally, -If I :S f :S If I implies the same inequality for the integrals: 
-l(lfl) :S 1(1) :S 1(lfl)· 

PROOF OF (iii). We use the same finite O'-algebra B as in the proof of 
(i) and the same decompositions of hand 12 on the atoms of B. Then 
h - 12 = L(,6s -8s)lKs and q(h - h) = Ls 1sJL(Ks), where 1s = l,6s -8sl· 

JL({X: Ih(x) - h(x)1 > T}}) = LJL(Ks), where J = {s: 1s > T}}, 
sE] 

and 

sE] sE] 

It follows that 

q(h - h) > T}JL( {x: Ih(x) - h(x)1 > T}}). 

PROOF OF (iv). Consider the subset K(h,h) of (R+)2, which was used 
to define e(h, h): 

K(h,h) = {(E,T}) : JL(lh - 121> T}) :S E}. 

Then, by (iii), 

(T}-lq(h - h), T}) E K(h, h) for all T} > O. 

Hence 

e(h, h) = inf(E + T}) :S inf(T} + T}-lq(h - 12))· 
'1 

Taking T} = [q(h - h)l~ shows that e(h,h):S 2[q(h - h)l~. 0 

PROOF OF (v). It follows immediately from (iv) that a Cauchy sequence in 
the normed space E~ is a Cauchy sequence with respect to the distance of 
convergence in measure. Similarly, a sequence that converges to fo in norm 
also converges in measure. 0 

6.6 Some spaces of bounded measurable functions 

6.6.0 Definitions 

.cOO(X,A) U E .c°(X,A))::3M < 00 such that If(x)l:s M} . 

.c~,l(X,A) = U E .cOO (X, A) : JL({x: f(x) -1= On) < oo}. 
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6.6.1 Proposition. For every f E £c;:.1 (X, A), there exist 'Pn E [~L (X. A) 
such that 

(i) {'PT!} converges uniformly to f, and 
(ii) {x: :p" (:1:) cf O} = {:[ : f (:1:) cf O)}. 

PROOF. Cf. Proposition 6.4.1. D 

6.6.2 Proposition. If {'Pn} satisfies 6.6.1, then {I ('Pn)} is a Cauchy 
sequence. 

PROOF. Let Ii.' = {:[: f(x) cf a)}. Then 'Pn = :Pn1K and 

by the uniform convergence of {'Pn }. D 

6.6.3 Definition.7et) = limI(:p,,) vf E r:;·1, where {:Pn} is the sequence 
of Proposition 6.6.1. 

This is independent of the choice of sequence. Let {'P~ } be another sequence 
satisfying 6.6.1(i). Set 

if m is even, and 
if m is odd. 

Then :P~~I satisfies 6.6.1(i) and hence limI(:p~~J exists. But this implies that 
limI(:pn) = limI(:p~J. 

6.6.4 Proposition. Let f E r:· 1 . Then the following statements are true: 

(i) IU1 + h) = IUd + 7(12). 
(ii) .h ~ h =} 7Ud ~ 7(12)· 

(iii) .h = h a.e. =? 7Ud = 7(12)· 

6.7 The tr-uncation operator-

For a fixed positive integer n, let :p" be the continuous function defined on 
R by 

'Pn (t) = t 
'PH (t) = n 
'Pn(t) = -71 

if -n::; t::; +n 
if t > n 
if t < -no 

Let Al C A 2 ... C An ... be an exhaustion of X, i.e. /l(A k ) < +XJ vk 
and X = UkAk. 

We define Tn. the truncation operator of order n on £o(X, A), as follows: 

6.7.1 T"U) = fn1A n • where fn = 'Pn 01-
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fn is bounded and (since 'Pn is continuous) measurable. Furthermore, 
since the set {x : (TnJ)(x) i- O} c An, it has finite measure. Hence, by the 
definition of £C;,l, 

6.8 Construction of L1 

6.S.1 Definition of L~(X,A) 

(i) Definition. £~(X, A) = {J E £o(X, A) : limn~(xJ(lTn(J)I) < +oo}. 

Proposition. If h E £~ and 12 = h a.e., then 12 E £~(X,A). This 
justifies the notation 

L~ (X, A) = {equivalence classes of £i, (X, An· 
(ii) IlfllL' = lim1(ITn(J)I). 

(iii) If f E L~ and If I ::; Ihl, where h E L~, then f E L~. 
(iv) If f E £C;.l(X, A), then f E £~(X,A). 

6.8.2 Proposition. If f E L~, then limn->oo j (Tn (J)) exists. 

PROOF. Let f+ = supU, 0) and let f- = sup( - f, 0). Although Tn is not a 
linear operator, it is elementary to verify that, for all x EX, 

and 

whence 
I(Tn(J+)) ::; 1(ITn(J)1) ::; IIfIIL1. 

{1(Tn(J+))} is thus an increasing sequence which is bounded above, and 
therefore converges. 0 

Definition. For f E L~, the integral of f is defined by J f = lim j (Tn (J)). 

6.8.3 Proposition. L~ is a vector space with the following properties: 

(i) J(h + h) = J h + J 12· 
(ii) If f ? 0, then J f ? O. 

Set IlfllL' = J If I· Then 

(iii) I J fl ::; II fll L'. 
(iv) jJ({x: f(x) > c})::; ~llfllL" 
(v) 11f11L' is a norm. 

PROOF. The statements clearly hold for £C;,l and pass to L~. 0 
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7 Theorems on Passage to the Limit 
under the Integral Sign 

7.1 Fatou-Beppo Levi theorem. Let {f,J be an increasing sequence of 
integrable functions such that I fn ~ C) wher-e C is a constant independent 
of n. Then 

(i) limf" = fx exists and is finite /1-a.e.) 
(ii) fx E L;1' and 

(iii) II fll - f ex II/~ I ---+ O. 

PROOF. By setting .1" = fn - fl' we may assume that fn 2: O. Then J fn = 
Ilfnllr l • TqUx.) = limn~IU,J, and JTqUn) ~ Jfn ~ C.1t follows that 
II~fUx.)llu ~ C, whence /1({:r: (~IU00))(X) > n}) < en-I. Furthermore, 

{.r: Ix(x) > n} = lim T {n: (TqUcxJ)(x) > n}. 

Thus 

/1.( {x: fCX)(·T) > n}) ~ ~ and IITqUx)llu ~ C. 
n 

Hence f ex E Ll. 
We now shmv that IIIx - fnllL' ---+ O. Let Un = fx - fn. Then 

~ll1d -7;)Il(uI) 2: Tq(un) -~lc,(un)' where qo < q. 

Let qo be chosen so that J Tq (1L 1) - J Tqll (1Ld < ~. Then 

f 
Ilu,,11 < :2 + IITqlJ(un)llu. 

Let!'n = 7;!o(un). Then 0 ~ Vn ~ qo. 1}n(x) = 0 if x E A~o' and 'Un ---+ 0 
a.e. Recall, from 6.7, that !i(Aq(,) < +Xi. 

E 
By Egoroff's theorem, there exists K such that /1(K C ) < ~ and 'Un 

4qo . 
converges uniformly to zero on K. Hence 

Ilunll < ~ + ~ + li(A!](,) sup(vn(x)) ---+ 0 as n ---+ Xi.D 
2 4rEK 

7.2 Lebesgue's theorem on series. Let {U"},';"=1 be a sequence of el­
ements of Ll such that L Ilun II L' < Xi. Then L~ Un converges abso­
lutely a.e. Let Sn = U1 + ... + Un and let s= = limn ST).' Then 05= E Ll, 
Jscxc =limJsn. and Ils= -snllLl ---+0. 

PROOF. Set fn(x) = L~=lludx)l. Then {In} is an increasing sequence 
and J In ~ Lt~~ IlukllLl < +Xi. By the theorem of Fatou-Beppo Levi, this 
implies that lim fn = f ex exist.s, f= E Ll . and f ex < +x a.e. Thus SCX) E Ll 
since Isxl ~ f:xc, and Ilsx - SnllL' ~ Ilfx - fnllL'. which approaches zero 
by Fatou-Beppo Levi. 
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7.3 Proposition. The truncation operator is a contraction on L1(X, A); 
that is, 

PROOF. Assume first that f and J are simple functions. Let B be the 
a-algebra generated by f-1(BR), J-1(BR)' and {An}, and let S denote 
the atoms of B. Then 

f = LO:k1Hk and J = Lak1Hk, where Hk E S. 

Let I = {H E S : H n An i:- O}. Then 

Tn(J) 

Tn (i) 

ITn(J) - Tn(J) I 

L4?n(O:k)lHk , 
kEf 
L4?n(ak) lHk' 
kEf 
LI4?n(O:k) - 4?n(ak)11Hk· 
kEf 

Using the elementary inequality l4?n(t) - 4?n(t') I ::::; It - t'I, 'It, t' E R, 

IITn(J)-Tn(J)IIL' ::::; LJ-L(Hk)IO:k-akl::::; L J-L(Hk)IO:k-akl = Ilf-JIIL'· 
kEf kES 

Now let f and i E L1. We can find two sequences hq, hq of simple 

functions converging in the L1 norm to f and T Pas~ing if necessary to a 
subsequence, we may suppose in addition that hq and hq converge a.e. Then 

IITn(hq) - Tn(hq)llL' ::::; Ilhq - hqllL'; hence Tn(hq) is a Cauchy sequence in 
the L1 norm. Let k be its limit. Then k = Tn (J) since hq converges a.e. to 
f, and hence 

It follows that 

o 

7.4 Integrability criteria 

7.4.1 Theorem. Let f E L~(X,A). Then f E L1(X,A) if and only if 
there exists a constant C such that, for all n, IITn(J)IIL' ::::; C. 

PROOF. (<(=) Applying 7.3 with 1 = 0 yields IITn(f)IILl :::; IlfllLl. 
(=» We prove this first in the special case that f 2: 0, where Tn (f) :::; Tn+1 (f). 

By the Fatou-Beppo Levi theorem, there exists 9 E £1 such that lim Tn (f) = 9 
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a.e. Moreover, a direct calculation shows that lim Tn (f) (x) = f(x) for all x E X. 
Hence f = g, and therefore f ELI. 

For the general case, set f+ = sup(f, 0) and f- = sup( - f, 0). Then f+, r E 
L 0 , f+,.r are positive, and f = f+ - f- . 

Since ITn(f)1 = Tn(j+) + Tn(r) (cf. the proof of Proposition 6.8.2), 

It follows that 
IITn(f+)IILl ::; C and IITn(r)IILl::; C. 

Since f+ and f- are nonnegative, this implies that f+ and f- ELI and hence 
that f E L1 0 

7.4.2 Corollary. Let f E L~(X,A). Then f E L~(X,A) if and only if 
If I E Ll(X,A). 

PROOF. The direct implication follows from 2.4.4 and 6.8.1(iii). 
Conversely, assume that If I E LiJX,A). It is easy to see that ITn(f)1 = 

Tn(lfl). whence IITn(f)llv = IITn(IfI)llv. The conclusion follows by ap­
plying Theorem 7.4.1. 0 

7.4.3 Corollary. Let f E L~ (X, A) and suppose that there exists u E 

L;,(X,A) such that If I ::; u. Then f E L~(X,A). 

PROOF. IITn(f)llv ::; IITn(u)IILl ::; Iluliv. 0 

7. 5 Definition of the integral on a measurable set 

Let (X, A, 11) be a measure space and let Y be a fixed element of A, We 
denote by A' the trace OIl Y of the o--algebra A and by 11' the restriction 
of 11 to the elements of A', thus obtaining a measure space (Y, A', 11'). Let 
j be the canonical injection of Y into X. The restriction operator defines 
a mapping L;~(X.A) f-+ L~,(YA') by f ----> foj. 

Let f E L;,(X. A, 11)· We denote by J~ f the integral of f 0 j evaluated 
on the measure space (Y. A'. 11') . and call Iy f the integral of f on Y. 

7.5.1 Proposition. Let f E L~(X, A). Then fly E L~(X, A) and I fly 
= Iyf· 

PROOF. Since If1yl ::; IJI, Corollary 7.4.3 implies that fly E L~(X,A). 
The result follows by verifying that the integrals agree on simple functions 
and passing to the limit.D 

7.5.2 Proposition. Let f::: 0, f E L~(X,A), and set p(A) = IAf VA E 

A. Then p is a measure on X and p(X) < +00. 

PROOF. Finite additivity follows from the fact that 
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The theorem of Fatou-Beppo Levy implies that p is continuous on in­
creasing sequences; this gives countable additivity. 0 

7.5.3 Proposition. Let An be an increasing sequence of elements of A 
such that UAn = X. Let f E L ~ (X, A). Suppose that I An I f I is bounded 

above by a constant C independent ofn. Then f E L~(X,A). 

PROOF. Since IITn(J)IIL' ::::: IAn If I, the result follows from 7.4.1. 0 

7.6 Lebesgue's dominated convergence theorem 

Theorem. Let fn E L~(X,A). Suppose that 

(i) fn converges to h /-L-a.e. 

and that 

(ii) 3g E L~(X,A) such that Ifni::::: g'in (domination hypothesis). 

Then h E £1, 

( iii) Ilin - hilL' -> 0, 

and 

(iv) 

PROOF. It follows from 5.1.2 that h E L~(X,A). By (ii) and 7.4.3, hE Ll. 
As in 7.5.2, we introduce the measure p associated with g: 

p(A) = 1 g. 

Let {An} be an exhaustion sequence for X: An C An+! and /-L(An) < +00. 
Then p(An) -> p(X) < +00. Fix m such that 

p(A::n) < ~. 

For this fixed m, we will apply Egoroff's theorem (5.1.4) to Am. We can 
find a sequence {Kq} of sets in A such that Kq C K q+1 , fn -> fa uniformly 
on K q, and /-L(Kg n Am) < q-l. 

Set G q = KgnAm . Then { G q} is a decreasing sequence; setting H = nG q, 
we have limp(Gq) = p(H). But /-L(H) = 0, whence g. IH = 0 /-L-a.e.; i.e., 
g. IH = 0 in L~ and p(H) = O. Fix qo such that 

The identity 
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gives 

Using the upper bound 2g for the function Ifn - hi in the first and last 
integrals, we obtain 

Ilfn - hll£1 :S 2p(A~n) + 2p(Gq,,) + r If" - hi· 
iKq 

Each of the first two terms is bounded above by E/3. Furthermore, 

The last term tends to zero as n ----> +00, proving (iii). Finally, (iv) follows 
from the continuity of the integral with respect to the norm II . 11£1 (cf. 
6.8.3(ii)). 0 

7.7 Fatou's lemma. Let fn E L;,(X,A). Suppose that 

(i) Ilfnll£1 :S C, wher-e C is a constant independent of n, and 
(ii) fn conver-ges fL-a. e. to h. 

Then 

(iii) hELl and IlhlIL! :S C. 

PROOF. We prove this first with the additional hypothesis 

(iv) fL(X) < +00. 

In this case, convergence a.e. implies by Egoroff's theorem that, for every 
integer q > 0, there exists Kq C X such that fn converges uniformly on 
Kq to h and fL(K~) :S ~. Thus 

I 
r Ifnl- r Ihll:s fL(Kq) sup If,,(x) - h(x)l· 

iKq iKq xEKq 

Since fn(x) converges uniformly to h(x) on K q , the last expression tends 
to zero, whence 

Set hq = I hi· 1 K q' Then {hq} is an increasing sequence since Kq C Kq+ 1, 

and the Fatou-Beppo Levi theorem implies that 
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If X does not have finite measure, take an exhaustion sequence for X: 

X = UAr, Ar C Ar+l' M(Ar) < +00. 

For each fixed r, set f::; = fnlAr; then 1I/::;IIL1 :::; C. Fatou's lemma for finite 
measures can be applied to A r , giving 

The conclusion follows by applying the Fatou-Beppo Levi theorem to the in­
creasing sequence Kr = IhllAr . 0 

7. 8 Applications of the dominated convergence theorem 
to integrals which depend on a parameter 

7.8.1 Integral notation in which the measure J-L appears 

Up to now, we have dealt only with functions defined on the measure 
space (X, A, J-L). When we consider functions defined on different spaces, 
the integral notation used earlier can lead to confusion, and we denote 

J f by L f(x)dJ-L(x) for all f E L1(X,A). 

7.8.2 Integrals depending on a parameter 

Let (X, A, J-L) be a complete measure space. Consider a metric space Y and 
let 

u(y) = L k(x, y)dJ-L(x) 

be an integral depending on the parameter y. Suppose that 

(i) for each fixed y the function ky(x) = k(x, y) satisfies ky E 
L1(X,A). 

Then u(y) is a well-defined function for every y. 

7.8.3 Proposition (Continuity of an integral depending on a pa­
rameter). Assume condition (i) of 7.8.2. Let Yo E Y and assume in addi­
tion that 

(ii) for every sequence Yn ----> Yo, 

k(x, Yn) ----> k(x, Yo) J-L-a.e.; and 

(iii) there exist 9 E L1 (X, A) and E > 0 such that 

Ik(x,y)l:::; g(x) if d(y,yo) < t:. 

Then the function u is continuous at Yo. 
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PROOF. Since u is defined on a metric space, in order to show continuity at 
y it suffices to prove that u(Yn) ----+ u(yo) for every sequence {Yn} converging 
to Yo. Set fn(x) = k(x, Yn). Then the dominated convergence theorem (7.6) 
can be applied and 

7.8.4 Proposition (Differentiability of an integral depending on a 
parameter). Let Y = (Yo - E, YO+E) be an open interval in R, and suppose 
that the following three conditions hold: 

(i) 7.8.2{i) is satisfied Vy E Y. 
(ii) For p,-almost every x, g~ (x, Yo) exists Vy E Y and is continuous 

at Yo as a function of y. 
(iii) 3g E L1(X,A) such that, for p,-almost every x, Ig~(x,Y)1 :::; 

g(x) for every y E Y. 

Then u is differentiable at Yo and 

(iv) u'(Yo) = L ~~ (x, yo)dp,(x). 

PROOF. In order to show that u is differentiable, we must show that there 
exists l such that 

Since R is a metric space it suffices to show that there exists l such that, 
for every sequence {En} tending to zero, 

Making this detour lets us apply Lebesgue's theorem, which was stated 
for sequences of functions. Fixing the sequence {En}, set 

where 
fn(x) = E;;-l[k(x,yo + E) - k(x,yo)]. 

Let K be the negligible set such that (ii) and (iii) are satisfied in K C • 

Then, for x E K C , fn can be calculated using the mean value theorem: 

8k 
fn(x) = 8y (x, Yo + 8n (x)), where 18n (x)1 < En if X E K C

• 

Thus it follows from (ii) that 

8k 
fn(x) ----+ 8y (x, Yo) 
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Furthermore, by (iii), Ifn(x) I ::; g(x), x E KC; thus 

Ifn(x)1 ::; g(x) a.e. and 
8k 

limfn(x) = 8y(x,yo) a.e. 

Applying the dominated convergence theorem gives 

Ix fn(x)dfl(X) ---> J ~: (x, y)dfl(X).D 

8 Product Measures 
and the Fubini-Lebesgue Theorem 

8.1 Definition of the product measure 

Let (XI,AI,fld and (X2 ,A2 ,fl2) be measure spaces, let X = Xl X X 2 be 
the product space, and let A = Al 0 A2 be the product a--algebra (see 
1.5). The product measure is a measure fl defined on the measurable space 
(X, A) and satisfying 

8.2 Proposition (Uniqueness). There exists at most one product mea­
sure. 

PROOF. Let fl and ji be two measures satisfying 8.1(i). Then they coincide 
on rectangles and hence, by finite additivity, on disjoint unions of rectan­
gles, that is on the Boolean algebra E of elementary sets. Let 

M = {Z E A: fl(Z) = ji(Z)}; then M::> E. 

Let {Zn} be an increasing sequence of sets in M. Then, by 3.2.1, 

Thus M is closed under increasing limits. 
If we further assume that 

(i) 

then 

3.2.3 can be applied to prove that M is closed under decreasing limits. 
Hence M is a monotone class that contains E, and it follows by 1.5.5 that 
M =A1 0A2 . 
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To complete the proof, it remains to lift the restriction (i). Let {Yn} and {Zn} 
be exhaustions of Xl and X 2 , and let /kn and iJ,n denote the restrictions of /k and 
iJ, to Y" and Zn. Then, by the result above, 

Furthermore, /kn(Yn x Zn) < +00 and Un(Y" x Zn) = X. Thus Yn x Zn is an 
exhaustion of X with respect to both /k and iJ,. By 3.2.1, for all A E A 

/k(A) = lim/kn(A n (Xn x Zn)) 
n 

and 

iJ,(A) = limiJ,n(An (Xn x Zn)). 
n 

Since the two right-hand sides are equal, /k(A) = iJ,(A). 0 

Sections 

For fixed Xl, let ix, denote the injection of X 2 into X defined by X2 f-+ 

(Xl,X2). For Z E P(X), let Zx, = i;;} (Z). ZXl is called the section of 
Z over Xl. Letting 7ri be the projection of X onto Xi, we have Zx, = 
7r2(7r1l(Xl) n Z). 

8.3 Fundamental lemma. Let A E A = Al ® A 2 . Then 

(i) Ax, E A2 '<iXl E Xl· 
(ii) Suppose that /l2(X2) < +00 and set kA(Xl) = /l2(Ax,). 

Then 

PROOF. Since A is generated by the rectangles R, Theorem 2.2.1 implies 
that i;:-/(A)x, is generated by {i;:-/(R)}. But {i;:-/(R)} = A 2; since A2 is a 
u-algebra, it coincides with the u-algebra it generates, whence (i). Let 

M = {B E A: kB(Xll is a measurable function of xd. 

The rectangles are in M, as are finite unions of disjoint rectangles; thus 
the Boolean algebra of elementary sets is contained in M. We now show 
that M is a monotone class. 

Let Bn be an increasing sequence of elements of M. By the limit theo­
rem (3.2.1), kAn(xll = /k2((Bn )x,) satisfies limkBn(xl) = kB~(Xl)' where 
Boo = UBn. Hence kA~ (Xl) is measurable with respect to Xl by 2.5, which 
implies that Aoo EM. 

Since /l2(X2) < +00, Theorem 3.2.3 on the limits of decreasing sequences 
can also be applied, and it follows that M is a monotone class. Since M 
contains the Boolean algebra of elementary sets, M = A by 1.5.5.D 
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8.4 Construction of the product measure 

8.4.1 Theorem. Let (X I ,A I ,J.1d and (X2,A2,IL2) be measure spaces. 

(i) Suppose that J.11(Xd < +00 and J.12(X2 ) < +00. 

For every A E A = Al (:9 A2! set 

(ii) p(A) = Ix, kA(xddJ.1l(xd where kA(xd = J.12(Ax,). 
(p(A) is well defined by Lemma 8.3.} 

(iii) Then p is a measure on A! of total mass J.11 (XdJ.12(X2) < +00. 

Moreover, 

PROOF. Since p is a finite measure, it suffices to prove that the O'-additivity 
axiom is satisfied. We begin by proving finite additivity. Suppose that 

A = A' U A" and A' nAil = 0. 

p(A) = p(A') + p(A"). 

Now let AP C AP+1 C ... be an increasing sequence of elements of A. Set 
Aoc = UAP; then lim T (A~,) = (AOC)x, and, by 3.2.1, kAP(xd ----) kA~(XI) 
for all Xl. Next, kAP ::; kAP.+l. Applying Theorem 7.1, the theorem of Fatou­
Beppo Levi, 

This property, together with finite additivity and 3.2.4, gives O'-additivity; 
hence p is a measure. It is trivial to see that (iv) is satisfied. D 

8.4.2 Theorem on reversing the order of integration 

Theorem. Let (XI ,A I ,J.1d, (X2,A2,J.12) be measure spaces. Suppose that 
J.11(X) < +00 and J.12(X) < +00. Then, if A E Al ':9 A2! 

i, dJ.11(XI) [i2 1A (XI,X2)dJ.12(X2)] 

= i2 dJ.12(x2) [lx, 1A(Xl,X2)dJ.1I(Xl)]' 

PROOF. Although the hypotheses in 8.4.1 are symmetric in Xl and X 2 , the 
construction is not. 

Set IA(x2) = J.11(AxJ. Then O'(A) = J lA(x2)dJ.12(x2) exists and defines 
a product measure by 8.4.1. By 8.2, O'(A) = p(A) \fA E A. D 
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NOTATION. The product measure is denoted by ILl ~ IL2. By definition, for 
all A E Al ~ A2 , 

8.4.3 

8.4.4 Construction of the product measure in the general case 

If ILl and IL2 are not finite measures, let Xl' and X 2' be exhaustions of Xl 
and X 2. Set ILi' = lxnlLi. Then ILi'(Xd < +oo,i = L 2. We can define 
ILl ~ IL2' and set ' 

8.5 The Fubini-Lebesgue theorem 

Theorem. Suppose that (XI,AI,ILd and (X2 ,A2,IL2) are measure spaces. 
Set X = Xl X X 2, A = Al ~A2' and IL = ILl ~IL2, and let (X,A,IL) be the 
product measure space. Suppose that 

(i) f E £o(x, A). 

(ii) Then fx! : X2 f--+ f(XI, X2) satisfies fx! E £()(X2, A 2) \lXI E Xl. 

Now suppose that 

( iii) f E L~(X, A). 

Then the following two properties are satisfied: 

{ 
fx! E L~JX2' A 2) ILI-a.e. in Xl, and 

(iv) k E L1! (Xl, AI)' where k(xd = 1/(XI, x2)dIL2(X2). 

1 j(XI,X2)dIL(XI,X2) = 1, dILl (Xl) [12 f(XI,X2)d IL2(X2)] 

(v) 
r dIL2(X2) [r f(XI, X2)dILI (XI)]' .JX2 .Jx! 

Conversely: 

( vi) {

Suppose that (i) holds, fx! E L12 (X2, A 2) ILI-a.e., 
and there exists k* E L;L!(XI,Ad such that 

r If(XI,X2)l dIL2(X2):::; k*(xd . .J X 2 

Then (iii) is satisfied, and hence (iv) and (v). 
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REMARK. Denote the functions satisfying (ii) by Q and the functions sat­
isfying (ii), (iii), (iv), and (v) by R. Then Q and R are vector spaces. Since 
the indicator functions of measurable sets are in Q by 8.3, so are finite 
linear combinations of indicator functions: [(X, A) c Q. 

PROOF. First assume the following stronger hypothesis: 

( i)' 1 E ,eO(X,A) and 1 is bounded. 

Then, by 6.4.1, 1 is the uniform limit of a sequence of simple functions 'Pn: 

By the remark, 'PH E Q for each n; that is, 

('PH)x, E ,e°(X2 ,A2 ), VXI E Xl. 

Since (f)x, = lim('Pn)x" 2.5.1 shows that (i)' => (ii). 
Similarly, using 6.8.1(iv), hypothesis (iii) can be replaced by this stronger hy­

pothesis: 

(iii)' 1 satisfies (i)' and {x: l(x) i= O} C Al X A 2 , with /L,(A;J < +00. 

Let {'Pn } be a sequence of simple functions which converge uniformly to 1 and 
for which 'Pn(x) = 0 if x t/: Al X A2 . Then 'Pn satisfies (iv) and (v). 

Since 'PH ----> 1 uniformly, there exists a sequence {En} such that En 10 and 

Thus 

Similarly, 

whence J 'P~, d/L2 converges uniformly to J lx, d/L2. It follows from 2.5.3 that the 
left-hand side of the formula in (iv) is measurable. Repeating the same argument 
a third time for the integration in Xl gives (iv) and (v). Summarizing, we have 
shown that (iii)' => (v). 

Let {An and {An be exhaustion sequences for Xl and X 2 . Then {AP} = 
{Ai x A~} is an exhaustion sequence for X. Let Tp be the truncation operator 
defined in 6.7. Then Tp(f) satisfies (iii)'. 

Suppose now that (iii) holds and that 

( vii) I? o. 

{Tp(f)} is an increasing sequence of functions in L1 and IITp(f)IIL' :s: IIIIIL" 
Since Tp(f) satisfies (iii)', (v) holds and 
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As the sequence {kp } is increasing. the Fatou-Beppo Levi theorem (7.1) applied 
to Xl shows that 

limkp = kx E L~i(Xl,AI) and r k= = limllTpfllLl = IlfllL', lx, 
where the limit of the kp(.r:J) is finite if :1:1 rt E for some E E AI, Ill(E) = O. 

Fix Xl rt B and apply Fatou-Beppo Levi on the space X 2 : 

k.:x; (J;!) = lim .lx2 (Tp(f)Jxl d/-L2 = .f'2 lim(Tp(f))'1 d/-L2 = L2 (f)" d/-L2. 

We have thus prov(~d (iv) and (v) when f satisfies both (iii) and (vii). If (vii) 
is not satisfied, write f = .f~ - j-; then r, f- E R, and by the remark fER. 

It remains to prove the converse. Letting f satisfy (i). set f1 = If I· Using the 
truncation operator T1" we have 

Moreover, since Tpt E Lin we may use the identity (v) to obtain 

Jx TptdlL =.1 dill .I(Tp (t) L 1 d/-L2 <:: .I k*(X2)d/-L2(X2)' 

Hence the norm of Tp(t) is bounded, with a bound independent of p, and the 
integrability criterion 7.4.1 implies that fl E L~ Since f E L[)(X,A), 7.4.:3 
implies (iii). D 

9 The LP Spaces 

9.0 Integration of complex-valued functions 

Let f(x) = u(x) + iu(x) be a complex-valued function. Then f is a mea­
surable mapping from X to e if and only if u and u are measurable. 
F\lrthermore, we say that f is integrable if u and v are integrable, and set 

( i) .I f = .I u + i.l v. 

The integral f f--+ I f is a e-linear functional on the space Ll (X, A, /1; e) 
of complex-valued integrable functions. Moreover. setting 

Zf = {1; EX: f(x) -IO)}, 

Z f E A and the function arg f (x) is well defined for x E Z f. The argument 
is defined to be zero on Z'j. Thus, if f E MJ.l(X, A; e), we can write 

(ii) f(x) = 11'(;r;)e;8(1:), 

where 11' E }v[J.l(X, A; R+), () E }\1f1(X, A; [0, 27r)), and If(1:)1 = 11'(1:). 
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(iii) Lemma. Let f be a complex-valued integrable function. Then If I is 
integrable and 

If fl ~ f lfl . 

PROOF. If I ~ lui + Ivl and is thus dominated by two integrable functions, 
hence integrable. Set 

f f = rei'P; 

then 

Using the decomposition (ii), 

If fl = Re f w(x)cos(g(x) - cp)dM(X). 

Since Icos(g - cp)1 ~ 1, we obtain 

If fl ~ f w(x)dM(X).D 

NOTATION. The complex-valued integrable functions will be denoted by 
L1(X, A; C). 

9.1 Definition. Let (X, A, M) be a measure space. Let p be a real number, 
1 ~ p < +00. 

Let 

L~(X,A) = {f E L~(X,A) : Ifl P E L~(X,A)}. 

Set 

( ) 
lip 

IlfllLP = f Ifl P 

It is clear that IlfllLP = 0 implies f = 0 and that IlallLp = 1001 IlfllLP for 
every constant a. 

Complex-valued functions with integrable pth power can be defined sim­
ilarly: 

Writing f = u + iv or f = weilJ , we obtain the equivalences 

fEL~(X,A;C){=}UEL~(X,A) and VELf,(X,A) 

f E L~(X, A; C) {=} wE Lf,(X, A) and g E LZ(X, A). 
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9.2 Convexity inequalities 

9.2.0 This section is devoted to proving the inequalities of Holder and 
l\linkowski. \\Then p = 2 these inequalities become very easy. (Cf. Exer­
cises. Cauchy-Schwarz inequality.) 

9.2.1 Definition. A continuous function 'P defined 011 [a, b] c R is called 
convex if :p~(:r) = limdo('P(x + E) - :p(.r»)c 1 exists VX E [a, b) and 'P~(x) 
is an increasing function. In particular, if 'P is twice differentiable. then :p 
is convex if and only if 'PI! ;:::: O. 

9.2.2 Lemma (Jensen's inequality). Let :p be a convex function on 
[a. b] C R. Let 0k (1 S; k S; n) be positive numbers .mch that 2: Ok = l. 
Then 

:p (~CYktk) S; ~ Ok'P(tk) vt" E [a. b]. 

REtvIARK. This inequality may be taken as a definition of convex functions. 

PROOF. \Ve prove the lemma for the case n = 2. Let a and b be constants 
and set 

:P(t) = :p(t) + at + b. 

Then:; is convex. Choose a and b so that :;(td = :;(t2 ) = O. Jensen's 
inequality reduces to showing that 

Otherwise the maximum of p would be strictly positive and would be at­
tained at a point t3 E (tl' t2), and we would have 

p~ (f:l) = 0, P(t:l) > O. 

Since p~ is increasing, :P~(t) ;:::: :P~(t;;) = 0 if t E [t3, t2), whence :P(t'2) ;:::: 
:;(t:l ) , a contradiction. \Ve proceed by induction on n. Assuming that the 
inequality holds for n S; p, we prove it for 11 = ]I + l. 

Set ~ = 3-1 (2:~=1 Oili), where [j = 2:~)=1 0i· 

Then, by the result for n = 2, 'P(ri~ + op+ltp+d S; (J'P(O + Ctp+l:p(tp+Il· 
The first terrn on the right-hand side can be bounded above by using the 

induction hypothesis, which gives :p(O S; 2:;)=13- 10 i 'P(i,). 0 

9.2.3 Corollary. Let 6, ~2 2': 0 and let Ct. d > 0 satish! 0 + /3 = 1. Then 
~it~g S; 06 + ,36· 

PROOF. If ~l = 0, the left-hand side is zero ami the inequality is obvious. 
Suppose that (i > 0 (i = L 2), and set 171 = log ~i. The exponential function 
exp(t) satisfies the hypotheses of 9.2.1, whence 

exp(oTI1 + or}'2) S; oexp(TJIl + 3exp(r}2).D 

9.2.4 Lemma. Let (X. A, /1) be a measure space, let a, (j > 0 be such that 
0: +,3 = 1. and let f and g be nonnegative functions in Li,(X,A). Then 



(i) J"'g f3 E L1(X, A) and 

(ii) I J"'gf3:::; (J ft (J g)f3. 

9 The £P Spaces 49 

PROOF. If f = 0 a.e., both sides of the inequality (ii) are zero. Hence we 
may assume that Ilfll£1 > 0 and Ilgll£1 > O. Setting 

I' I' 

J = Ilflli;; f, g = IlgllI}g, 
we reduce the proof of (ii) to showing that 

J J<>gf3 :::; 1. 

We will use 9.2.3. For every x, Ja(x)gf3(x) :::; o](x) + (3g(x). 
The right-hand side is an integrable function; hence (i) follows from 7.4.3. 

Integrating both sides of this inequality gives 

J r gf3 :::; (} J J + (3 J g. 

Since I J = I g = 1, 

J rg f3 :::; (} + (3 = 1.D 

9.2.5 Definition of conjugate exponents 

Definition. Let 1 < p < +00 and 1 < q < +00. We say that p and q are 
conjugate exponents if 

1 1 
-+-=1. 
p q 

REMARKS. P is conjugate to itself if and only if p = 2. 
If 1 < p < 2, then q > 2. 

9.2.6 Theorem (HOlder's inequality). Let (X, A, J-l) be a measure space, 
let p and q be conjugate exponents, and let f E LP, gEL q. Then 

(i) fg E L1 and 

(ii) II fgl :::; IlfilLP IIgIILq. 
PROOF. Since the theorem is clear when p = 00 or q = 00, we may assume 
that 1 < p < 00. We first consider the case where f and 9 are nonnegative. 

Set u = p, v = gq, (} = 1, (3 = 1. Then fg = u"vf3 , and applying 9.2.3 
P q 

gives the theorem. 
In the general case, set If I = iI, Igl = gl. Then iIg1 E L1 by the 

argument above; hence by 7.4.2 fg E L1 and 
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9.2.7 Theorem (Minkowski's inequality). Let (X A, 11) be a measure 
space and let .r 9 E LP. where 1 :::; p < +oc. Then 

(i) (J + g) E LP and 

(ii) Ilf + gll£i~ :::; IlfllLI' + IlgIIL!" 

PROOF. The theorem is true for p = 1 by Proposition 6.8.:3. Note that the 
function cp(t) = tP is convex on [0.+(0). Using Jensen's inequality. we have 

whence 

Hence the integrability criterion 7.4.3 implies (i). It suffices to prove (ii) in the 
case that I and 9 :::: O. We then have 

Letting q be the conjugate exponent and using Holder. 

I (J )1/1' (j' ) 1/'1 . l(f + g)p-l :::; r (f + g)(p-l)q : 

but. since p and q are conjugate. p+q = pq, or (p-l)q = p. Writing the analogous 
integral for g. we obtain 

or 

III + gll~p :::; (II/IILP + IlgllLp )111 + glli?· 

If III + gllLP = 0, Minkowski's inequality holds trivially. Otherwise we can 

divide both sides by 111+ gllj!r7 to obtain 

and the conjugacy relation gives p - ~ = 1 - p [1 - il = 1. 0 
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REMARK. Writing f(x) = w(x)eili(x) shows that the Holder and Minkowski 
inequalities remain true for complex-valued functions. 

9.2.8 Theorem. Let (X, A, fJ) be a measure space and let 1 ~ p < +00. 
Then LP(X. A, fJ) is a vector space on which a norm is defined by the func­
tion f >-+llfIILP' 
PROOF. It follows from 9.2.7(i) that LP is a vector space. Moreover, 9.2.7(ii) 
and 9.1 show that II . IILP is a norm. 

9.3 Completeness theorem. Let (X, A, fJ) be a measure space and let 
1 ~ p < +00. Then Lf,(X,A) is a complete normed space. 

REMARK. For p = 1, Lebesgue's theorem (7.2) implies that every normally 
convergent series in L1 is convergent, and hence that L1 is complete. 

PROOF. We proceed as in 6.5.4(v) by proving the following lemma: 

9.3.1 Lemma. Let {fn} be a Cauchy sequence in Lf,. Then Un} converges 
in measure. 

PROOF. Fixing E, set 

Then 

implying the Chebyshev-type inequality 

Fix no such that Ilf" - fn'IILP < EHp- 1 if n,n' > no. It follows that 
e(fn, in') < 2E if n, n' > no. 0 

9.3.2 PROOF OF THE THEOREM. Since L~ is a complete space, Un} con­
verges in measure (by 5.2.9) to fa. By 5.2.7, we can extract a subsequence 
such that 

(i) fnk converges to fo fJ-a.e. 

Since f n is a Cauchy sequence in LP, we have 

(ii) IlfnilLP < C, or II Ifnl P 11£1 < C. 

By Fatou's lemma (7.7), IfolP ELI. 

Fixing k, consider the sequence {us} = {Ifn, - fnkIP}. Fatou's lemma 
can be applied since Us converges a.e. to I fa - f nk IP. We obtain 
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Fix ma such that llin - fn'IILP < E if n, n' 2: ma. Take k such that 
nk 2: ma; then 

and 

REMARK. Writing f = u + iv, we see that 9.3 implies that L~(X, A; C) is 
complete. 

9·4 Notions of duality 

Given a normed vector space E, the vector space E' of continuous linear 
functionals I on E is called the dual of E. For lEE', we set 

11111 = sup Il(x)1 where Ilxll ~ 1, x E E. 

It can be shown that E' is a Banach space. 

9.4.1 Theorem. Let (X,A,JL) be a measure space. Then L~(X,A) zs a 
Hilbert space when the scalar product is defined by 

( i) J fg = (fIg)· 

The scalar product for the complex-valued functions L~(X, A, JL) is defined 

by J fg = (fIg)· 

PROOF. (fl!) = Ilflll2' and Holder's inequality becomes 

( ii) 

This is just the Cauchy-Schwarz inequality, which can be proved directly. 
Moreover, L~ is complete, and hence is a Hilbert space. 

9.4.2 Corollary. The dual of the space L2 can be identified with L2; the 
dual pairing is given by 9.4.1(i}. 

PROOF. In a Hilbert space, by Riesz's theorem 1 every continuous linear 
functional can be expressed by a scalar product. 

9.4.3 Proposition. Let (X, A, JL) be a measure space and let p and q be 
conjugate exponents, 1 < p < +00. Then there is an isometric injection u 
from L~ into (L~)'. 

ISee, for example, W. Rudin, Real and Complex Analysis (New York: McGraw­
Hill, 1974). 
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PROOF. Define a mapping u. : L~ ---> (L~)' by associating with g E L~ the 
linear functional 

19(1) = J fg· 

Then by Holder 

(i) 

which shows both that lq is a continuous linear functional and that u is a 
contraction: 

Ilu(g) II (L")' ::; Ilgll Lq· 

In order to show that u is an isometry,we introduce fo = (signum(g) )Iglq/p. 
Then IfolP = Iglq, Ilfolli" = Ilglllq, and 

J fog = J Igl q/p+1 = J Iglq = Ilglllq· 

Hence 

Furthermore, 

whence 
Illg II(LP)' :::: IlglI'r-;q/p· 

But q - q/p = 1, and hence u is an isometry. 
It follows that u is an injective mapping of Lq into (LP),. D 

REMARK. It will be shown in Section IV.6 that u is surjective, and thus 
identifies (U)' with Lq (1 < p < +oc). 

9.5 The space Loa 

9.5.1 Definition. ] E L~;(X, A) is said to be essentially bounded if there ex­

ists a bounded representative f of]' The space of essentially bounded mea­
surable functions is denoted by L~(X,A). We define A g,/; = {x: Ig(x)1 > 
o and K(g) = {~ E R+ : I1(Ag.l;) = O}. 

If g E L~, then K(g) "10 and we set 

Ilgllvx = inf K(g). 
" 

9.5.2 Lemma. I1(Ag.E) > 0 if and only if ~ < IlglIL;;o' 

PROOF. The only case that is not obvious occurs when ~ = IlgIIL=. We then 
apply the continuity theorem for increasing sequences of measurable sets. 
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Setting ~o = IlglIL= gives 11 (U~=lAgEo+n-l) = O. But U~=lAg.E(j+n-l 
A9.1;()·D 

9.5.3 Proposition. L'(:(X. A, p) is a complete normed vector space. 

PROOF. We first prove the triangle inequality for II·IIL=. Let r gEL;' and 
set h = f+g; then Ih(x)1 s:: If(x)I+lg(x)1 implies that Ah.E+" =:> Aj.l;nA~.,!" 
Taking complements, we obtain 

p(Ah,Ur,) s:: p(Aj,d + P(Ag,T,)' 

or (~+ 17) E K(h) if ~ E K(f) and TI E K(g). Thus 

If Ilhllv= = 0, then h(x') = 0 a.e. by 9.5.2. and hence II· IIL= is a norm. 
11 ' •. II 

Let fn be a Cauchy sequence in the norm II· IlL,;' . Choose representatives f" of 

the class 1n and set Un.,,' = f" - fn" Let A n.n, = {x : lun.n,(x)1 > 31Iun .n , IIL~}: 
then, by the definition, p(A n .",) = O. 

Set Z = U".n,A n.n,. Then p(Z) = 0 and 

The sequence fn converges uniformly on ZC. Set fo (x) = lim fn (x) if x E ZC and 
fo(x) = 0 if x E Z. Then fn E L'(:: and Ilfn - follL= --+ O. D 

9.6 Proposition. Let (X, A, p) be a measure space. Suppose that p(X) < 
+00. Then Lf,(X, A) =:> Lf,' (X, A) ifl s:: p < pi s:: +00. 

PROOF. Use Holder's inequality to write 

where rand s are conjugate exponents. If pi < +00, note that 

II IfIl' IlL' = (/ IfIT!') 1/, 

pi 
and take T = - > 1. Then 

p 

( i) IlfilLP s:: [p(X)]CXllfIILP" where 
pi _ P 

cx= --. 
pi 

This shows that every function in LP' is in LP, If pi = 00, note that 



II 
Borel Measures 
and Radon Measures 

Introd uction 

The preceding chapter dealt with abstract measure theory; given an ab­
stract set X, we rather arbitrarily prescribed the a-algebra B of its mea­
surable subsets. In this chapter, we work in a space X which is locally 
compact and can be written as a countable union of compact sets. A natu­
ral a-algebra in this context is the Borel algebra B x. A locally finite Borel 
measure is a measure defined on B x such that every compact set has finite 
measure. For X metrizable, we prove Lusin's theorem: If p, is a locally finite 
Borel measure and A E B x, then for every E > 0 there exist an open set 
o and a closed set F such that F cAe 0 and p,( 0 - F) < Eo Thus an 
arbitrary Borel set can be approximated to within E by both an open and 
a closed set. 

A natural vector space on X is the space CK(X) of continuous functions 
with compact support. A linear functional 1 on CK(X) is called positive 
if 1(1) 2: 0 for every nonnegative function f. We prove the Radon-Riesz 
theorem, which constructs a bijection between the positive linear function­
als on CK(X) and the locally finite Borel measures. In the Prologue, we 
showed that the Riemann integral on R defines a positive linear functional 
on CK(R). In this chapter, we apply the Radon-Riesz theorem to obtain a 
canonical translation-invariant Borel measure on R, the Lebesgue measure. 
The theory of the Lebesgue integral appears as a special case of the theory 
of the abstract integral developed in Chapter 1. We obtain the Lebesgue 
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integral on R n by constructing the product measure, and prove the change­
of-variables formula for multiple integrals. 

\Vhen Y is compact, the space of continuous functions on Y is a Banach 
space. \Ve consider the dual vector space (C(Y))* of continuous linear func­
tionals on Y, ami show that. every linear functional can be written as the 
difference of two positive linear functionals. This leads us to the concept of 
signed Radon measures. 

Given a locally compact space X, we consider the Banach space Cb(X) 
of bounded continuous functions on X and the closed subspace Co(X) of 
functions which vanish at infinity. (Co(X))* is identified with the space 
Ail (X) of finite signed Radon measures. Three topologies can be defined 
on this set by using the pairings with CK(X), Co(X), and Cb(X). We 
compare the three corresponding notions of convergence. 

The first section of this chapter is devoted to the construction of parti­
tions of unity, which allow the passage from local to global considerations 
on X. It is purely topological, while the rest of the chapter describes mea­
sure theory on locally compact spaces. 

1 Locally Compact Spaces and Partitions of Unity 

1.0 Definition of locally compact spaces which are countable 
at infinity 

Let X be a Hausdorff topological space which satisfies the following hy­
potheses: 

1.0.1 X is locally compact, i.e. every point Xo E X has a compact neighbor­
hood. 

1.0.2 X is countable at infinity, i.e. there exists a sequence {Kn} of compact 
subsets of X such that 

K" C Kn+l and UKn = X. 
n 

1.0.3 Proposition. There exists a sequence Hrn of compact sets .such that 

Hm c H m+1 (where){ denotes the interioT of A) 

and 
:xc 

U Hm=X. 
'(n=1 

PROOF. The proof is by inductioll. Set HI = KI and, assuming that Hq 
has been constructed, set GI] = HI] U K q . Each x E Gq has a compact 

o 
neighborhood V(x); from the open cover of GI] formed by {V(x)}, extract 
a finite subcover. 
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This procedure gives points Xq,j E Gq, 1 ~ j ~ m q, such that Hq C 
o 

Ul:5j:5 m q V(xq,j). Set Hq+1 = Ul:5j:5m q V(xq,j). As the finite union of 
compact sets, H q+1 is compact. Furthermore, 

Hq+1::J U 
l:5j:5m q 

and 

1.1 Urysohn's lemma 

Lemma. Let Fl and F2 be disjoint closed subsets of a locally compact space 
X. Then there exists a continuous function f on X such that 

f(x) = 1 if and only if x E F1 ; 

f(x) = 0 if and only if x E F2; 
o ~ f (x) ~ 1 for all x E X. 

PROOF. We restrict the proof to the relatively trivial special case where X 
is a metric space. 

Let 
fi(x) = d(x,Fi) = min(d(x,Yi)), where Yi E Fi · 

Then fi (i = 1,2) is a positive continuous function and h(x) = 0 {:} x E 
Fi . 

Let a function q> be defined on Z = ([0, +00) x [0, +00))-(0, 0) by setting 

q>(~,1'}) = ~. 
",+1'} 

Then q> is continuous since (0,0) is not in the domain of definition Z of q>. 
Furthermore, 

o ~ q> ~ 1, 
q>(~,0)=1 if ~>o, and 
q>(0,1'}) = 0 if 1'} > O. 

Let f(x) = q>(h(x), h(x)). Since Fl n F2 = 0, the mapping into (R+)2 
defined by x ...... (h(x),h(x)) actually maps into Z. Thus f is the compo­
sition of continuous mappings and hence is continuous. 0 

1.2 Support of a function 

Definition. Let f be a continuous function on X. The support of f, de­
noted by supp (1), is the closed set 

supp (1) = closure {x: f(x) =I- o}. 

1.2.1 Proposition. The following statements are equivalent: 
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(i) z ~ supp (f). 
(ii) There exists a neighborhood V(z) 8w:h that f(x) = 0 Vx E V(z). 

PROOF. Let 0 = (supp (f))'; then 0 is an open set and 

{x: f(x) I' O} nO c supp (f) nO = 0, 

whence. setting 0 ~ F(z). we haW' shown [that] (ii) =? (i). 
Conversely, if F(z) n {x: f(x) I' O} = 0, then 

o 
\"(z) n {.r: f(x) I' O} = 0.0 

1.2.2 Proposition. Suppose that X is a locally compact space, F is a 
dosed subset of X, and 0 is an open subset of X such that F cO. Then 
there ex:ists a continuous function 9 such that 

() S; g(x) S; 1 
g(x) = 1 

8Upp (g) C O. 

for any x E x: 
if and only if x E F: and 

PROOF. Set F' = 0'. Applying Urysohn's lemma (1.1), let f be the function 
associated with the pair of closed sets (F F'). Set 

Then F" is a closed set since f is a continuous function. Let 9 be the function 
associated by Urysohn's lemma with the pair (F, F"). Then g(x) > 0 implies 
x rt F", or f(x) > ~, which may be written as 

{x: g(x) I' O} c rl((~, 1]). 

Hence supp (g) C closure (f-l)((~, 1]). 
Since f- 1 ([ ~, 1]) is closed, we have a fortiori 

8\1pp (g) C r-l([~, 1]) C 0.0 

1.3 Subor'dinate covers 

1.3.0 Definition. Let {U,,} be an open cover of X. An open cover {Vn } is 
said to be subordinate to {Ua,} if, for any n, there exists a(n) such that 

VII c Ur>(n)' 

A cover {HI} is said to be locally finite if, for every compact set K, 

card {~f : HI n K of. O} is finite. 

1.3.1 Theorem. Let X be a locally compact space which is co'untable at 
infinity. Then every open cover' has a locally finite subordinate open cover 
{v,,} such that the 17 n are compact. 
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PROOF. Let {Va} be an open cover of X and let {Hm} be the sequence of 
compact sets defined in 1.0.3. Set 

G1 = HI and Gm = (Hm - Hm-I). 

Then 

But 

so that 

o 
and thus Gm n H m - I = 0. Using 1.0.3, 

( i) Gm nHm - 2 = 0. 

Set 

( ii) 

Then Va,m is an open cover of Gm . 

For each x E Gm, there is an open set Wm(x) such that 

( iii) Wm(X) C Va,m where a = a(x). 

The Wm(x) form an open cover of the compact set Gm ; from this cover we can 
extract a finite subcover, say Wm(XI), ... , Wm(Xj). 

The family {Wm(Xk)} is a countable family of open sets, which we denote by 
{Vn}. We have Vn C Va, where a = a(n). The {Vn} cover Gm for every m, 
hence cover X. For fixed m, (i), (ii), and (iii) imply 

(iv) card {n : Vn n Gm of 0} < +00. 

We now prove a lemma. 

1.3.2 Lemma. Let K be a compact subset of X. Then there exists q such 
o 

that K C H q • 

PROOF. Set Fr = ( Hr) en K; then nrFr = 0. 
The Fr form a decreasing sequence of closed subsets of the compact set K. 

Since their intersection is empty, there exists q such that 

o = Fq = ( H q r n K. 0 

1.3.3 CONCLUSION OF THE PROOF OF THEOREM 1.3. 1. Given the compact 
set K, let q be determined by 1.3.2. Then (ii) and (iii) show that 

Wm(x) n K = 0 if m ~ q - 2, 

whence 
card {n: Vn n K of 0} < +00.0 
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1.4 Partitions of unity 

1.4.0 Definition. A partition of unity on the space X is a sequence of 
continuous functions 'Pn such that 

(i) 0:::; 'Pn :::; 1, 
(ii) supp ('Pn)is compact, 

(iii) card {n: KnsuPP('Pn) =I- 0} < +00 for every compact set K, and 
(iv) L 'Pn(x) = 1. 

REMARK. Condition (iii) is called a local finiteness condition. It implies 
that, for fixed x, the series (iv) contains only finitely many nonzero terms. 

The partition of unity is said to be subordinate to the open cover Un if 

(v) for every n, there exists a(n) such that supp ('Pn) C Un(n)' 

1.4.1 Theorem. Suppose that X is a locally compact space which is count­
able at infinity and {Un} is an open cover of X. Then there exists a parti­
tion of unity subordinate to { Un}. 

PROOF. Let {Vn } be the locally finite cover subordinate to {Un} con­
structed in Theorem 1.3.1. 

Since the Vn form a cover, by another application of 1.3.1 there is a 
locally finite cover {Ls} subordinate to {Vn } which satisfies 

Ls C Vn , where n = n(s). 

Applying 1.2.2 to the pair (Ls, Vn(s)), there is a function gs such that 
supp (gs) C Vn and gs(x) = 1 if x E 'Is' Since each V n is compact and 
the cover {Ls} is locally finite, only finitely many of the elements Ls are 
contained in any Vn . Since the cover {Vn } is locally finite, 

card {n : Vn n K =I- 0} < +00 

for any compact set K. Hence, setting J(K) = {s : supp (gs) n K =I- 0}, we 
obtain 

card (J(K)) < +00. 
Thus the sequence {gs} satisfies condition (iii). Set 

To calculate D(x) on a given compact set K, it suffices to let s range 
over J(K). As this set is finite, D(x) can be written on K as a sum of 
continuous functions; hence D(x) is continuous on K. Together with the 
local compactness of the space X, this implies that D is continuous. 

Furthermore, {L s} covers X. For every x, there exists s such that x E L s; 
that is, 

D(x) 2 1 for every x E X. 
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Setting 
1 

f3(x) = D(x) 

gives a continuous function on X. Finally, set 'Pn = f3gn. D 

2 Positive Linear Functionals on CK(X) 
and Positive Radon Measures 

2.0.1 Notation 

Given a locally compact space X, CK(X) denotes the vector space of con­
tinuous functions with compact support. We write 

f ;:::: 0 if f(x);:::: 0 for every x. 

2.0.2 Definition. A positive linear functional is a linear mapping / 
CK(X) ----+ R such that /(1) ;:::: 0 for every f ;:::: o. 

2.1 Borel measures 

Let Ex denote the Borel algebra on X. A measure defined on Ex is called 
a Borel measure, and is said to be locally finite if 

2.1.1 I-l(K) < +00 for every compact set K. 

REMARK. Since K is closed, K E Ex. 

2.1.2 Proposition. Let I-l be a locally finite Borel measure on X. Then 
every continuous function with compact support is integrable. Setting 

defines a positive linear functional on CK(X). 

PROOF. Since f is continuous, it is Ex-measurable. Furthermore, If I is 
bounded by a constant M, and setting K = supp (1) yields 

By 2.1.1, lK is integrable; by 1-7.4.2, so is f. The positivity of / follows 
from 1-6.8.3. D 

2.2 Fundamental theorem of Radon-Riesz. Let X be a metrizable lo­
cally compact space which is countable at infinity. Then the correspondence 
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of 2.1.2 defines a bijection which allows the locally finite Borel measures to 
be identified with the positive linear functionals on C K (X). 

PROOF. This statement contains both an existence and a uniqueness theo­
rem: Every positive linear functional is represented by an integral with re­
spect to a locally compact Borel measure, and this representation is unique. 

The proof of Theorem 2.2 occupies the rest of this section. 

2.2.1 Approximation lemma. Let X satisfy the hypotheses of 2.2. Then 
for every open set 0 in X there is an increasing sequence of compact sets 
Kn such that 

(i) 

For every compact set K in X, there is a decreasing sequence of open 
sets On such that On is compact, 

( ii) 

PROOF. Set Gn = {x: d(x, OC) ::=:: ~}; then G n is closed. Let Kn = GnnHn , 
where {Hn} is the sequence of compact sets of 1.0.3. 

o 9,. 0 
Then Kn:J (;n n Hn :J Gn- 1 n Hn- 1 , and (i) is satisfied. 

o 
To prove (ii), let m be determined as in 1.3.2 so that K c H m , and set 

On = Hm n {x: d(x, K) < ~} .D 

2.3 Proof of uniqueness of the Riesz representation 

Let J1 and v be locally finite Borel measures such that 

2.3.0. J f(x)dJ1(x) = J f(x)dv(x), Vf E CK(X). 

2.3.1 Proposition. Suppose that 2.3.0 is satisfied. Then the measures 
J1 and v coincide on open sets and on sets which can be written as the 
intersection of an open set and a closed set. 

PROOF. Using the approximation lemma 2.2.1(i), we can write 0 = UKn . 

For every pair (Kn' Kn+d, let gn be determined as in 1.2.2: 

gn(x) = 1 
supp (gn) C K n +1 , 

Then 1Kn ::; gn ::; 10, whence 

if x E K n ) 

and 0::; gn ::; 1. 
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Since, by 1-3.2.1, 

it follows that 

(i) lim J gndJL = JL(O) and similarly lim J gndv = v(O). 

Since gn E CK(X), 2.3.0 implies that the left-hand sides of the two equa­
tions are equal; thus v( 0) = JL( 0) :::; +00. 

Let A = F nO, where 0 is open and F is closed. Using the exhaustion 
principle (1-3.2.4) and setting 

Fn = F n Hn (Hn defined as in 1.0.3), 

we have 
JL(F n 0) = limJL(Fn nO), 

whence it suffices to show that 

JL(K n 0) = v(K n 0) 

for every compact set K. 
By the approximation lemma, 2.2.1(ii), there exists a sequence {On} of 

open sets with compact closures such that K = lim 1 On. Since the On are 
compact, JL( 0 1) < +00; it follows from the principle of decreasing sequences 
(1-3.2.3) that 

and from the first half of the proof that 

JL(O nOn) = v(O n On).D 

For convenient reference, we restate the first part of the proof of 2.3.1 in 
a more organized form. 

2.3.2 Constructive definition of JL( 0) 

Let 0 be an open set in X and let 

T(O) = {f E CK(X) : supp (1) C 0 and 0:::; f :::; 1}. 

Then 

JL(O) = sup J fdJL where f E T(O). 

PROOF. Set L = J fdJL, where f E T(O). Since f E T(O) implies f :::; 10, 

we have J fdJL :::; JL(O), whence L:::; JL(O). 

Furthermore, the gn constructed in the proof of 2.3.1 satisfy gn E T(O). 
Thus 

lim J gndJL :::; L, whence by 2.3.1(i) JL(O):::; L.D 
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2.3.3 Terminology 

Subsets of X which can be written as the intersection of an open set and a 
closed set are called sets of type o.c. Open sets and closed sets are special 
cases of o.c. sets. (Take their intersection with X.) A subset of X which can 
be writt.en as a finite union of disjoint o.c. sets is called an elementary set. 
lt follO\\iS from the additivity of 11 and 1/ and from 2.3.1 that /L(E) = I/(E) 
for every elementary set E. 

Lemma. Thr elementary sets form a Boolean algebm of subsets of X. 

Rr::VIARK. Compare 1-1.5.4. 

PROOF. 

(i) Let R be an o.c. set. Then R' is an elementary set. for if R = 0 n F, 
then R C = Dc U F C and we can write 

It = (DC n F C
) u (DC n F) U (0 n F'). 

The three sets in parentheses are disjoint and each is of type o.c. 

(ii) The intersection of two elementary sets is elementary. Indeed. let 
E = UiRi and [' = U)Rj, where Ri = 0, n Fi and Rj = OJ n F;. 
Then 

[n['=U'oIR,nR~. 

Since the Ri, Rj are disjoint, so are the R, nR'}' Moreover, R, n R; = 
(0, nO;) n (Fi n F;) and hence is of type o.c. 

(iii) The complement of an elementary set is an elementary set. If [ = 

UR, then [C = nRj. By (i), each R~ is an elementary set. By (ii), [c. 

as the intersection of finitely many elementary sets, is elementary. 

(iv) X is of type O.c. (hence elementary). 

(v) A finite union of elementary sets is elementary. By (iii), it suffices 
to prove the statement for complements of elementary sets; but this 
follows from (ii). 0 

2.3.4 Proof of the Radon-Riesz theorem (uniqueness) 

PROOF. Let B = {A E Bx : /.J(A n H,,) = p(A n Hn) \;In} (where H" was defined 
in 1.0.3). 

vVe first show that B is a monotone class. This is immediate for increasing 
sequences, by 1-3.2.1. Now let {As} be a decreasing sequence, A, E B. Then, by 
the compactness of Hn. 

ptA, n Hn) < +x and utA, n H,,) < +x. 

Applying 1-3.2.:), 

limp(A, n Hn) = p((lim 1 A,) n Hn). 
" 
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whence 
{L((lim 1 As) n Hn) = v(lim(l As) n Hn). 

As this is true for any n, we have (lim 1 As) E B. 
Furthermore, B contains the Boolean algebra of the elementary sets of X by 

2.3.1. Therefore, by 1-1.4, B coincides with the cr-algebra generated by the open 
sets and the closed sets; that is, B = Bx. 0 

2·4 Proof of existence of the Riesz representation 

Given a positive linear functional 1 on CK(X), we would like to represent 
it in integral form. We begin by using a construction that appeared in the 
proof of uniqueness. 

2.4.1 Measure of open sets 

As in 2.3.2, we set 

T(O) = {J E CK(X) : supp (J) cO and 0:::; f :::; 1}. 

Given a positive linear functional 1, we define 

(i) 1(0) = supl(J), where f E T(O). 

1(0) is called the measure of the open set 0 relative to the linear form 1. 
Note that 

( ii) 

(iii) Proposition (Convexity inequality). Let {On} be a sequence of 
open subsets of X. Then 

PROOF. Set W = UnOn. Let f E T(W) and set 

n = (supp (J))c. 

Then n, {On} form an open cover of X. Let '{Jq be a partition of unity 
subordinate to this cover. Set 

Let S = {q : '{Jqf =I- O}. Since f has compact support, card(S) < +00. If 
q E S, let q 1--+ O(q) be a mapping from S to N such that 

supp ('{Jq) C OO(q)· 
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Set 

Sen) = e- 1 (n). 

The nonempty Sen) form a partition of S. Set 

~)n = L 'Pq. 
qES(n) 

Set J = e(S) and fn = f1/;n· Then f :::; LnEJ In and, since fn E T(On), 
l(Jn) :::; 1(071) and 

(iv) Proposition (Additivity of I). Let Oi be a sequence of disjoint 
open sets. and set 0 = UOi. Then 

1(0) = L 1(0;). 

PROOF. Given nand E, consider the nth partial sum of the series on the 
right-hand side and choose f, E T ( 0;) such that 

l(i;) 2:: 1(0;) - ETI. 

Then I = L:~l I, satisfies I E T(O), whence 

n 71 
1(0) 2:: 1(J) = L l(ii) 2:: L I(Oi) - E. 

i=l i=1 

Since nand f are arbitrary, we obtain 

+oc 
1(0) 2:: L 1(0;), 

n=1 

which together with the convexity inequality gives (iv). 0 

2.4.2 l\leasure of compact sets 

Let K be a compact subset of X and set 

I(K) = inf 1(0), 0 open, 0 =:J K. 

Then 

(i) Kl C K2impliesl(Kd :::; I(K2); and 
(ii) if K is compact, 0 is open, and K C 0, then I(K) < 1(0). 
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(iii) Proposition (Finite additivity). Let K 1 , K 2 , ... , Kn be a finite 
collection of compact disjoint sets. Then 

PROOF. Let 2E denote the infimum (minimum) of the distances from Ki to K j 

and let 
UJ = {x : d(x, K J ) < E}. 

Then the UJ are disjoint open sets. 
Choose Oi such that Oi ~ Ki and I(Oi) < I(K;) - ET1, and set 0; = Ui nOi. 
Let K = UK" and choose 0 such that I(K) > 1(0) - E. Set OJ' = 0 n OJ; 

then K C UOj' C 0, which implies that 

Since the OJ' are disjoint, 2.4.1(iv) implies 

Since 

we have 

and thus 

2.4.3 Inner measure and outer measure 

We would like to define set functions for arbitrary subsets A of X. We set 

IL*(A) = inf 1(0). 0 open, 0 ~ A, and 

IL*(A) = sup1(K), K compact, K c A. 

Then by 2.4.2(ii) 

(i) IL*(A) ::; IL*(A). 

IL*(A) is called the inner measure of A and IL* its outer measure. 

(ii) Proposition (Convexity inequality for IL*). Let {An} be a sequence 
of subsets of X. Then 
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PROOF. Choose a sequence of open sets {Od such that 

AiCOi and J(Oi) <JL*(Ai)+E2-i. 

Let A = UiAi and let 0 = UOi; then A C 0, whence JL*(A) ::; J(O). 
By 2.4.1(iii), 

(iii) Proposition (Concavity inequality for JL*). Let {Ad be a se­
quence of disjoint subsets of X. Then 

PROOF. Consider the nth partial sum of the series on the right-hand side. 
Fix compact sets Ki such that 

Let K = Uf=l K i ; then K is compact. Since the Ai are disjoint, so are 
the K i , and finite additivity (2.4.2(iii)) gives 

n n 

J(K) = L J(Ki) ~ L JL* (Ai) - E. 

i=l i=l 

Since K is compact and K C A = UiAi, we conclude that JL*(A) ~ J(K). 
o 

2.4.4 Construction of the measure (compact case) 

Throughout this section, we assume that 

(H) X is compact. 

Let 

( i) B = {A E P(X): JL*(A) = JL*(A)}. 

If A E B, we set 

( ii) JL(A) = JL*(A) = JL*(A). 

(iii) Proposition. A E B if and only if for every E > 0 there exist a 
compact set K and an open set 0 such that 

K cAe 0 with J(O) - E < J(K) < 1(0). 
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PROOF. We prove sufficiency; the proof of necessity is similar. If A E B, 
there exists a compact set K such that K c A and I(K) + ~ > JL*(A). 

There exists an open set 0 such that 0 ~ K and 11*(A) > 1(0) - ~. 
Hence the fact that JL*(A) = JL*(A) implies that 

1(0) - E < I(K) < 1(0).0 

(iv) Proposition. Every closed set is in B. 

PROOF. Let K be closed (hence compact). Then 11*(K) = I(K) by defini­
tion, and 

JL*(K) = inf 1(0) = I(K) 
O~K 

by definition of I(K). 0 

(v) Proposition. Every open set is in B. 

PROOF. Let 0 be an open set. Formally, JL*(O) = 1(0). 
Furthermore, given E > 0, by the definition of 1(0) there exists 9 E T(O) 

such that l(g) > 1(0) - E. 

Let K be the support of g. Then 9 E T(O) for every open set 0 ~ K. 
Hence l(g) < 1(0) 'itO ~ K; that is, 

l(g) :::; inf 1(0) = I(K). 

Thus 
I(K) 2: l(g) 2: 1(0) - E 

and therefore 

(vi) Proposition. Let {An} be a sequence of disjoint elements of B. Then 

n 

PROOF. JL- (UAn) :::; Ln I1(An) by the convexity inequality, and JL- (UAn) 2: 
Ln JL(An) by the concavity inequality. 

Setting Z = UAn, we thus have 11_(Z) 2: 11*(Z), whence Z E Band 

n n 

We now refine criterion (iii). 

(vii) Lusin's criterion. Let A E P(X). Then A E B if and only if for 
every E > 0 there exist a compact set K and an open set 0 such that 

K cAe 0 and 11(0 - K) < E. 
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PROOF. By (iii), we can find K cAe 0 such that 

p,(0) < p,(K) + E. 

But (0 - K) and K are disjoint and belong to B (because (0 - K) is 
open and K is closed), whence by (vi) 

p,(0 - K) + p,(K) = p,(0), or p,(0 - K) = p,(0) - p,(K) < cD 

(viii) Proposition. B is a Boolean algebra. 

PROOF. We will use Lusin's criterion (vii). We first show that AC E B if 
A E B. There exist a compact set K and an open set 0 such that 

Then 

K cAe 0 with p,( 0 - K) < c 

OC cAe c K" and K C - Oc = 0 - K, whence 

p,(KC - OC) = p,(0 - K) < c 

Similarly, let A, A' E B; then K U K' c A U A' c 0 U 0' and 

(0 U 0') n (K UK')' (0 n (K U K')C) U (0' n (K U K')C) 
c (0 n KC) U (0' n K'C). 

Hence, by the convexity inequality for the outer measure, 

p,*((0 U 0') n (K U K')C) ::::; p,*(0 - K) + p,*(O' - K'). 

Since all the sets in this expression are in B, we can replace p,* by p, to 
obtain that A U A' satisfies (vii); hence A U A' E B. 0 

(ix) Theorem. Suppose that X is a compact space and B is the family of 
sets defined in (i). Then B is a O"-algebra containing the Borel algebra and 
p, defined in (ii) is a measure on B. The O"-algebra B is p,-complete. 

PROOF. It must be shown that a countable union of sets An E B is in B. 
Set 

El = AI, Bn = An n (Uj',:}Ajt· 

Then UEn = UAn and, since B is a Boolean algebra, En E B. 
Since the En are disjoint, it follows from (vi) that their union is in B. 

Thus B is a O"-algebra. By (vi), p, is a measure on B. By (iv), B contains 
the closed sets; therefore B contains the Borel algebra Bx. Next, let 

YeA, where A E Band p,(A) = o. 

Then 
p,*(Y) ::::; p,*(A) = o. 
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Furthermore, by 2.4.3(i), 

whence 
1l*(Y) = 1l*(Y) = 0. 

Thus Y E B, and hence B is Il-complete. 0 

(x) Definition. The measure 1" constructed in Theorem 2.4.4(ix) is called 
the Radon measure associated with the positive linear functional 1. The 
CT-algebra B on which the Radon measure 11 is defined contains the Borel 
algebra B x. By restricting 11 to B x, we can associate a Borel measure 11' 
with 11. The CT-algebra B is the completion of Bx with respect to the measure 
11'; this will be proved in 3.4.2. 

2.4.5 Proof of the representation theorem (compact caHe) 

Theorem. Let X be a compact space, let 1 be a positive linear functional 
on C(X), and let 11 be the Borel measure associated with 1 by 2.4.4(ix) and 
(x). Then 

.I fdll = 1(1). 

PROOF. We will show that 

( i) 1(1) s: .I fdll for every f E C(X). 

For a given E > 0, let 

with N chosen so that Ai = max If I < NE. Set 

Then Ok is open since f is continuous. nOk = A k , and hence the theorem 
on decreasing sequences gives 

Fix n HO large that 

( ii) L (k + 1)[11(01.') - Il(A k )] < 1. 
Ikl--::N 

Since the Ak form a partition of X, the Ok form an open cover of X. Let 
C(!k be a partition of unity subordinate to this cover. Set fA: = C(!kf; then 
f = L fA: and moreover fA: < (k + l)EC(!k' whence 1(fA:) s: (k + l)d(C(!k)' 
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Since O:S yl,; :S 1 and supp ('Pd cOli, we have J('Pd :S J1(Or'), whence 

t: sing (ii). 

Furthermore, 

But f(x) 2: kf if.r E A" whence 

and therefore 

Since AI. is a partition of X, ~ ;L(Ak) = ;L(X). Thus 

J(f) :S ./ fdfi. + e(l + p(X)). 

As E is arbitrarily small, we have proved (i). 
Now, applying (i) to f' = - f, we obtain the opposite inequality to (i): 

the two inequalities imply equality. 0 

2.4.6 Proof of the Radon-Riesz theorem (noncompact case) 

Let X be a locally compact space which is countable at infinity. Let {Hm} 
be the exhaustion sequence constructed in 1.0.3 and let Urn be the function 
associated by Urysohn's lemma with the pair (Hrn - 1 , (H'ir,)). 

(i) Lemma. Let C (Hm) denote the jitnctions defined and continuous on 
Hm· For f E C(Hm), define 11 m.f by 

(Urn.f)(X) = f(x)um(x) 
(urn.f)(x) = 0 

Then urn.f is a continuou8 function on X. 

if X E Hm: 
if X tic Hm. 

PROOF. Only the behavior at the boundary of Hm must be checked. Let 
Xn be a point in the boundary of Hm: then 11m(Xn) = 0 and there exists a 
neighborhood U of Xn such that IU rn (:1:) I < f if :1: E U. Hence 

I (u m . f) ( :r ) I < f max I.n 0 
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(ii) Corollary. Let I be a positive linear functional on CK(X). Set 

Then 1m is a positive linear functional on H m' 

(iii) By the compact case of Riesz's theorem, proved in 2.4.5, there exists 
a measure J.lm defined on the Borel algebra 13H ", of Hm such that 

(iv) Let f E CK(X); then there exists p such that 

o 
supp(f)C Hp. 

Hence um.f = f if m > p and 1(um.f) = 1(f), and thus 

J fdJ.lm = 1(f) if m > p. 

(v) Let 0 be an open subset of X such that 0 is compact; then there exists 
o 

p such that 0 C Hp. 
Hence, letting 

T(O) = {f E CK(X) : supp (f) cO}, 

we have 
J.lm(O) = sup 1m(f), where f E T(O). 

By (iv), 

1m(f) = 1(f) if m > p, 

whence 
J.lm(O) = sup1(f) = J.lml(O) if m and m' > p. 

(vi) The measures J.lm and J.lm' coincide on the Borel algebra 13Hp if m, 
m' >p. 

PROOF. Let 

Let Oq be a decreasing sequence of open sets such that 

Then fLm(Oq) = fLml(Oq) by (v). Hence 

fLm(Hp) = fLml(Hp). 



74 II. Borel Measures and Radon Measures 

Let BE Z; then, since Be = Hp - B, 

Hence B E Z implies Be E Z. 
o 

Let G be an open subset of Hp. Then there exists G' C H p+1 such that G' is 
open in X and 

G'nHp = G, 

whence 
G = limG' n Oq. 

By (v), 
ILrn(G' n Oq) = I1m,(G' n Oq). 

Hence Z contains the open subsets of Hp. Taking complements shows that Z 
contains the closed subsets. 

We now use 2.4.4(vii) (Lusin's criterion) and 2.4.4(ix). Given a Borel set A 
and an E > 0, there exist a closed set K and an open set 0 such that K cAe 0 
and I1m(O) < I1m(K) + E. 

Since I1m(O) = 11=,(0) and I1m(K) = 11m' (K), it follows that 

Hence 

I1m,(K) ::;; 11m' (A) < 11m' (0) = I1m(O) < I1m(K) + E, 

I1m(K) ::;; I1m(A) < I1m(O) < I1m(K) + E. 

111m (A) - 11m' (A)I < E. 

Since E is arbitrarily small, I1m(A) = 11m' (A). 0 

(vii) Definition of Borel measure. 
Let {Hm} be the exhaustion sequence defined in 1.0.3. For A E B x, set 

By (vi), 

whence the inclusion A n Hm- I cAn Hm implies that the sequence 
{JLm+2(A n Hm)} is increasing. Hence its limit exists and is finite or equal 
to +00. 

We first prove finite additivity. Let AI, A2 E B x, Al n A2 = 0. Then, 
setting A = Al U A 2 , 

Hence, passing to the limit, 

To prove a-additivity, it suffices to show that JL is continuous on increas­
ing sequences. 
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Let Bl C B2 C ... c B q, ... , where Bq E Bx , and set Boo = UBq. 
Suppose first that Ji(Boo) = +00. Let M be a positive real number; then there 

exists m such that 

By (vi), 
Ji(Boo n Hm) = Jirn+2(B= n Hm). 

Since Jirn+2 is continuous on increasing sequences, there exists q such that 

whence 
Ji(Bq) > M. 

As this is true for all M, limJi(Bq) = +00. 
We now consider the case Ji(Boo) = a < +00. Let E > 0 be given. There exists 

m such that 
a - E < Ji(Boo n Hrn) < a. 

By (vi), Ji(BoonHrn) = Jirn+2(BoonHrn)' Since Jim+2 is continuous on increasing 
sequences, we have 

lim Jirn+2(Bq n Hrn) = Jirn+2(Boo n Hrn). 
q 

Hence there exists r' such that 

and thus Ji(Br ) > Ji(Br n Hrn) implies that Ji(Br) > Ji(Boo) - 2E. 0 

(viii) Representation formula. 
o 

Let f E CK(X); then there exists m such that supp (1) C Hm. By (iv), 

But df.J,m+2 is equal to df.J, on Hm, whence 

1(1) = J fdf.J,. 

(ix) Definition of the associated Radon measure. 
Completing the measure space (X, Bx, f.J,) yields a measure Ti, called the 

Radon measure associated with the linear functional I. 

3 Regularity of Borel Measures 
and L usin' s Theorem 

3.0.1 Hypothesis. We assume that the space X is locally compact, metriz­
able, and countable at infinity. 
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3.0.2 Definition. A measure JL defined on a O"-algebra B containing the 
Borel algebra Bx of X is called regular if for every A E B and for every 
E > 0 there exist an open set 0 and a cl08ed set F such that F cAe 0 
and JL(O - F) < Co 

3.1 Proposition. Let X satisfy 3.0.1 and let p be a locally finite Borel 
measure on B x. Then there exists a Radon measure v such that p( A) = 

v(A) for every A E Bx. 

PROOF. Let f E CK(X). Since the indicator function of any compact 
set is integrable, the inequality If I <:::: M1 K , where K = supp (f) and 
M = max Iii, implies that f is integrable (see 1-7.4.3). 

Hence a positive linear functional can be defined on CK(X) by setting 

J(f) = J fdp. 

By the uniqueness theorem (2.3.4), the linear functional J determines 
the measure; that is, if v denotes the Radon measure associated with the 
form J by Riesz's theorem, then 

p(A) = v(A) for any A E Bx.D 

3.2 Theorem. Let X be a locally compact space satisfying the hypothesis 
of 3.0.1. Then every Radon measure lIon X is regular. 

PROOF. If X is compact, regularity follows from Lusin's criterion, 2.4.4(vii). 
If X is only locally compact, let A be a measurable subset of X and let Hn 

be the exhaustion of the space constructed in 1.0.3. Set An = CnnA, where 
C n = (Hn - Hn- I ). Using Lusin's criterion on the compact set Hn+l' fix 
a closed set Fn and an open set On of X such that 

Note that Fn is compact. Set 0 = uOn : then 0 is open and 0 =:> A 
Similarly, set F = UFn . By 1.3.2, this union is locally finite (that is, any 
compact set meets only a finite number of Fn); hence F is closed. Clearly 
Fe A and Il(O - F) < E. 0 

3.3 Theorem. Let X satisfy the hypothesis of 3.0.1. Then any locally finite 
Borel measure p on X is regular. 

PROOF. By 3.1, P is the restriction to the Borel algebra of a Radon measure 
v. Since v is regular by 3.2, a fortiori so is p. 0 

3.4 The classes 98(X) and Fa(X) 

3.4.0 Definition. The class of subsets of X which can be written as a 
countable intersection of open sets is called ~h (X). 
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A countable intersection of elements of Qt5(X) is in Qt5(X). 

The class of subsets of X which can be written as a countable union of 
closed sets is called F.,.(X). 

A countable union of elements of F.,.(X) is in F.,.(X). 

Clearly Qt5(X) and F.,.(X) are subclasses of the Borel algebra. 

3.4.1 Proposition. Let p, be a regular measure defined on the a-algebra B 
of the locally compact space X. Then for every A E B there exist 

r E Qt5(X) and <P E F.,.(X) 

such that 
<P cAe rand p,(r - <p) = o. 

PROOF. By 3.0.2, we can find a sequence {F~} of closed sets and a sequence 
{ O~} of open sets such that 

F~ cAe O~ and p,(0~ - F~) < n-1 . 

Set 
On = nq':;nO~ and Fn = Uq':;nF~. 

Then Fn cAe On and {On - Fn} is a decreasing sequence. Furthermore, 
On - Fn C O~ - F~, whence 0 = limp,(On - Fn) = limp,(! (On - Fn)). Set 
r = lim! On and <P = lim i Fn. 

Then r - <P = lim ! (On - Fn ), whence p,(r - <p) = O. Finally, 

lim! On E Qt5(X) and lim i Fn E F.,.(X).O 

3.4.2 Corollary. Let p, be a regular measure defined on a a-algebra B on 
X, let p,' be the restriction of p, to the Borel algebra B x, and let JI' denote 
the measure defined by extending p,' to the completion 13 x. Then 13 x ::> B 
and p, equals the restriction ofJI' to B. 

REMARK. Cf. 1-4.2.2. 

3.4.3 Lusin's theorem. Suppose that X is a locally compact space, v is a 
regular measure defined on the a-algebra B ::> Bx , and f is a B-measurable 
function. Then for every compact set H and every f > 0 there exists a 
compact set K such that K C H, v(H - K) < f, and the restriction of f 
to K is continuous. 

PROOF. Set Gn = {x : If(x)1 ;::: n}nH. Then {Gn } is a decreasing sequence 
and v(Gn ) < +00, whence 

Hence we can find m such that v(Gm ) < 2-1 f. 
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Considering l' = flG= reduces the proof to the case of bounded f. In 
this case, f is the uniform limit of a sequence {gn} of simple functions (cf. 
1-6.4.1, of which we follow the notation). Let ma be such that If(x)1 < ma 
for all x. Setting 

Jk,n = {x E H : f(x) E [kn- 1 , (k + 1)n-1]}, 

we may take 

- '" kn- 1 l gn - L .le,n' where - nma < k < nmo. 
k 

Using the regularity of v, we can find a compact set Kk,n such that 

Kk,n C Jk,n and ~ V(Jk,n - Kk,n) < 2-n - 1E, 

k 

Let 11" = UkKk,n, where Ikl < nma· 
Then Vn is a finite union of compact sets and hence compact. Further­

more, v(H n V~) < 2-n - 1 E. Let W = Un v;.~ n H. 
The convexity inequality (1-3.3) gives 

( i) v(W) < E and we n H = nvn. 

Set VeX) = nvn . Then Voo is compact, whence 

( ii) K~,n = Voo n Kk.n is compact. 

Moreover, 

( iii) Kk,n is open in Vn 

since Kk n n Vn = Uj#kKj,n, Ijl < nma· 
By (iii), there exists an open subset n of X such that nnVn = Kk,n and 

hence K~,n = n n Voo; it follows that 

(iv) K~ n is open in Voo· 

It follows from (ii) and (iv) that the indicator function of K~ n is contin­
uous on Voo' This, with the fact that h,n n Voo = Kk,n n Voo , gives 

(v) The restriction of gn to Voo is continuous. Since gn converges uniformly 
on V 00 to f, the restriction of f to V 00 is continuous. 

Furthermore, (i) shows that v(H - Voo ) < E. 0 

3.5 Density theorem. Let X be a locally compact space satisfying the 
hypothesis 3.0.1 and let v be a Radon measure on X. Then for every p, 
1::; p < +00, CK(X) is dense in U(X, v). 
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PROOF. Let {Hn} be the exhaustion of X defined in 1.0.3 and let Tn be the 
truncation operator, defined in 1-6.7, associated with this exhaustion. Let f E LP 
be given. Then 

(Tn)(f)(x) ---+ f(x) for every x E X 
and 

ITnf - flP ::; IfI P. 

By the dominated convergence theorem (1-7.6), 

Let m be such that 
IITmf - fllLP < E. 

Set fm = Tmf; then fm is bounded by m and its support is contained in the 
compact set Hm. Set", = (m-1E)P. 

Let K be a compact set, depending on m, such that the restriction 'Pm of fm 
to K is continuous and such that v(Hm - K) < ~. Let 0 be an open set such 
that 0 ::) Hm and v(O - Hm) < ~. 

By a theorem of Urysohn/ we can find u E CK(X) such that supp (u) C 0, 

u(x) = 'PTn(x) if x E K, and u(x)::; m for all x. 

On K, fm = 'Pm = u, whence fm - u = (fm - u)lKc1o. Since Ifm - ul ::; 2m, 

Ilfm - ullip ::; (2m)pv(0 n K C ) ::; (2m)P(m- 1 E)P. 

Hence IIfm - ullLP ::; 210, and finally Ilf - ullLP ::; 310. 0 

3.6 REMARK. The regularity of Radon measures allows us to approximate 
LP functions by continuous functions, and measurable sets by open or closed 
sets. 

4 The Lebesgue Integral on R and on R n 

4·1 Definition of the Lebesgue integral on R 

We first consider CK(R), the continuous functions on R with compact 
support. The Riemann integral (see the Prologue) defines a positive linear 
functional on C K (R) by 

J(f) = J f(t)dt. 

Hence there exists by 11-2 a Radon measure p, such that 

I(f) = J f(t)dp,(t). 

This p, is called the Lebesgue measure on R, and functions measurable 
in this sense are called Lebesgue measurable. 

lSee, for example, N. Bourbaki, General Topology (New York: Springer-Verlag, 
1989), IX.4.2. 
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4.2 Properties of the Lebesgue integral 

We include here only properties specific to the Lebesgue integral. Its most 
important properties are common to all Radon measures, and were estab­
lished in Sections 2 and 3 of this chapter. 

4.2.1 Proposition. Let a, bE R, a < b. Then 

J-l([a, b]) = J-l((a, b)) = b - a. 

PROOF. J-l( (a, b)) = sup I (f) where 0 ::; 1 ::; 1 and supp (f) C (a, b). Setting 

1=1 on [a+2E,b-2E]' 
f = 0 if t < a + E or t> b - 10, 

and f linear on [a + 10, a + 210] and [b - 210, b - EJ, we obtain 

J-l((a, b)) 2: b - a - 31:. 

Hence, since 10 is arbitrary, 

J-l((a, b)) 2: b - a. 

The opposite inequality follows from the mean value theorem for the Rie­
mann integral. 0 

4.2.2 Theorem. Let 0 be an open subset of R. Then 0 is a countable 
union of disjoint intervals: 

( i) o 

( ii) 

PROOF. Let x E 0 and set 

a(x) = sup{y : y < x, y rt. O}, 

fJ(x) = inf{y : y > x, y rt. O}. 

Since oc is closed, a(x) E OC if a(x) is finite and fJ(x) E OC if fJ(x) 
is finite. It follows that (a(x), fJ(x)) C 0 and that there exists no open 
interval which strictly contains (a(x),fJ(x)) and is itself contained in O. 
Moreover, x E (a(x), fJ(x)), whence 

0= U (a(x), fJ(x)). 
xED 

Define an equivalence relation on 0 by 

X rv x' if (a(x),fJ(x)) = (a(x'),fJ(x')). 
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Since every open interval in R contains at least one rational number, the 
set of equivalence classes is countable and (i) follows. We obtain (ii) by 
using the a-additivity of f-l and 4.2.1. 0 

4.2.3 Corollary. Every open set has strictly positive Lebesgue measure. 

4.2.4 Theorem (Characterization of negligible sets). A subset E of 
R is negligible with respect to Lebesgue measure if and only if, for every 
E > 0, there exists a sequence of intervals (Ck, dd such that 

U(Ck, dd ::::l E and 2)dk - cd < E. 

k 

PROOF. The sufficiency of the condition follows from 4.2.1 and the con­
vexity inequality (1.3.3). Its necessity follows from the regularity of Radon 
measures (3.2) and from 4.2.2. 0 

4.2.5 Corollary. Let x E R and let A = {x}. Then f-l(A) = O. 

PROOF. On = (X - ~,x +~) satisfies f-l(On) < 2n-1 . 0 

REMARK. We can summarize 4.2.5 by saying that a "point" of R has 
Lebesgue measure zero. 

4.2.6 Translation invariance 

For fixed a E R, translation by the vector a is the mapping Ta of R into R 
defined by 

Ta : x f--> x + a. 

Proposition. Let B be a Lebesgue-measurable subset ofR. Then Ta(B) is 
Lebesgue measurable and P,(Ta(B)) = f-l(B). 

PROOF. It follows from the definition of the integral I in 4.1 that I(TaU)) = 
IU), where (Taf)(X) = f(x - a). The uniqueness of the Radon measure 
associated with a positive linear functional implies the result. 0 

4.2.7 Notation 

By abuse of language, we write 

1 f(t)dt for 1 f(t)df-l(t). 

We thus use the same notation for the Riemann integral and the Lebesgue 
integral that extends it. Translation invariance is written 

( i) 1 f(t - a)dt = 1 f(t)dt. 

The vector space of Lebesgue-integrable functions defined on R will be 
denoted by £l(R). The next statement follows from the translation invari­
ance of Lebesgue measure. 
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(ii) If f E U(R), then Taf E U(R) and 

IIT"flb = IlfllLp, 1 <::: p <::: +:)0. 

4.3 Lebesgue measure on R n 

4.3.1 Definitions and notation 

To simplify notation, we begin by comitructing Lebesgue measure all R2. 
\Ve denote by (R, A, Ji) the real numbers equipped with Lebesgue mea­

sure Ji and the IT-algebra of Lebesgue-measurable subsets. Let (R, A, Jil) 
and (R, A, Ji2) be t,vo copies of the measure space (R, A, Ji). 

Let R2 = R x R and let B denote the tensor product IT-algebra: 

B = AJ ~'0 A 2 · 

Then B contains the Borel algebra of R:2 (1-2.4.2). Let Jil g /12 be the 
product measure defined on B by 1-8.4.1. 

Lebesgue measure on R2 is the measure v obtained by completing Jil gJi2 
(c:f. 1-4.2.3). The completion of B is the IT-algebra of Lebesgue-measurable 
subsets ofR2. We denote by U(R2) the space of Lebesgue-integrable func­
tions on R2. 

1 2 If f E L (R ), we write 

Then, by Fubini's theorem (1-8.5), 

Lebesgue measure on R n is constructed recursively, by writing RTI = R x 
Rn~l. For f E Ll(Rn), the integral thus obtained is written as 

and Fubini's theorem reduces the calculation of this integral to the calcu­
lation of n successive integrals on R. 

4.3.2 Lebesgue measure on RT/ and the Radon-Riesz theorem 

To simplify notation, we restrict to the case where n = 2. Let a positive 
linear functional be defined on CK (R2 ) by 

( i) 
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By the Radon-Riesz theorem, there exists a Radon measure p such that 

By the uniqueness part of the Riesz representation theorem, 

p(A) = v(A) for every Borel set A. 

Furthermore, since 

v([-R, +R] x [-R, +R]) = 4R2, 

Lebesgue measure is locally finite and hence regular by 3.2. 
The measures p and v are complete regular measures defined on the Borel 

algebra. 

Lebesgue measure on R2 may be regarded as the Radon measure associated 
with (i). 

4.3.3 Translation invariance 

This is proved as in 4.2.6, by using 4.3.2. 

4.3.4 Proposition. Every open set in R n has strictly positive Lebesgue 
measure. 

PROOF. We restrict to the case where n = 2. Let 0 be a nonempty open 
set and let (tl' t2) EO. Then there exists E > 0 such that 

Q = (t l - E, tl + E) X (t2 - E, t2 + E) C O. 

The product measure of the square Q is the product of the measures of its 
components (I-8.1(i)), whence 

v(Q) = 4E2 > 0 and v(O) 2': v(Q).o 

4.4 Change of variables in the Lebesgue integral on R n 

4.4.0 Some facts from differential calculus 

Let 0 be an open set in Rn. A mapping 1 = (fl, ... ,In) is said to be a 
diffeomorphism if 

(i) 1(0) is an open subset 0' of R n and 1 is a homeomorphism of 
o onto 0' (i.e. a bicontinuous bijection); and 

(ii) 1 and g have continuous first partial derivatives, where g de­
notes the inverse homeomorphism. The Jacobian matrix of 1 is 
the matrix 

ar 
J1 = -a ' 1:::; i:::; n, 1:::; k:::; n. 

Xk 
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We then have the following composition law: 
If J and hare diffeomorphisms for which the composition h 0 J = q is 

defined, then q is a diffeomorphism and the Jacobian matrix of q is the 
product of the Jacobian matrices, 

( iii) 

In particular, Jg = Ji 1. 

Thus the Jacobian matrix of a diffeomorphism is invertible: det(Jf(x)) 
is a continuous function that is nowhere zero, and hence has constant sign 
on a connected component of O. 

4.4.1 Change-of-variables theorem 

Theorem. Let 0 and 0' be open subsets of Rn and let J be a diffeomor­
phism from 0 onto 0'. 

Let CK(O') denote the continuous functions which have compact support 
contained in 0'. Then 

(i) r ip(f(x))ldet Jf(x)ldx = r ip(x')dx' if ip E CK(O'). lo lo' 
REMARKS. 

(ii) Since J is a homeomorphism, r.p E CK(O') implies (r.p 0 1) E 

CK(O). Since det(Jf(x)) is a continuous function, the inte­
grands on both sides of (i) are continuous functions with com­
pact support and therefore integrable. 

(iii) Using a partition of unity on 0', we can write r.p = 2: ips, where 
the ips are supported in arbitrarily small open sets. It thus suf­
fices to prove the theorem for each ips. This means that we may 
assume throughout that r.p has sufficiently small support. 

(iv) Functoriality. Suppose that f = 9 0 h, where 9 and hare dif­
feomorphisms. If the change-of-variables formula is proved for 
the diffeomorphisms 9 and h, then the result will hold for J in 
view of the identity 

4.4.2 Lemma. The change-oj-variables Jormula holds when n = l. 

PROOF. In this case, the formula becomes 

.I r.p(f(x))I!,(·r)ldx = .I r.p(x')dx'. 

Using (iii), we can reduce the proof to the case where the support of ip is 
small enough that J'(x) has constant sign. By the mapping x ---'> -X, this 
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can be further reduced to the case l' (x) > O. Then the formula is 

J 'P(f(x))1'(x)dx = J 'P(x')dx'. 

Set 

F(t) 10 t 
'P(f(x))1'(x)dx, 

f f(t) 

G(t) 'P(x')dx'. 
frO) 

Then, differentiating the integrals, we obtain 

G' (t) = 'P (f (t) )1' (t), 
F'(t) = 'P(f(t))1'(t). 

Hence F(t) - G(t) is a constant. 
Setting t = 0 shows that this constant is zero. D 

4.4.3 Proof of the change-of-variables theorem 

We proceed by induction on n. Assume that the result holds for m < n. 
Writing x E R" in the form x = (~, y), where ~ E R, y E R,,-I, set 

h(x) = (e, y'), 
g(x') = ((,B(x')), 

where (= fl(~, y), y' = y, and 

where B=(P(~,y'), ... ,1"(~,Y')). 

The notation P(C y) means that ~ has been replaced in this expression by 
(, by inverting the relation ( = fl (~, y). 

By the implicit function theorem, this inversion is possible in a neigh­
borhood of Xo if 

( ii) 

But the fact that det 1f -=f 0 implies that the column vector (~) 
x l<k<n 

is nomero, and we can renumber the coordinates so that (ii) holds. Thus 
g(x') can be defined, and it follows from (i) that 

f = 9 0 h. 

Using 4.4.1(iv), it suffices to prove the theorem for 9 and for h. Next, we 
calculate 

LXRn-l 'P((,B(x'))(det 19) d(dy'. 

By Fubini's theorem, this equals 

( iii) 
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Note that the Jacobian matrix lq has some row for which all entries are 
zero except the diagonal entry, which equals 1. 

Thus clet 19 = det lee' where BE,' : Vi ---) B(E,', Vi). 

By the induction hypothesis, 

and substituting this into (iii) proves the theorem for the change of variables 
defined by g. 

It remains to prove the theorem for h. Note that, by Fubini, 

(iv) r 'P(fl(~, V), v)det(lh)d~dV = r dV { :p(t (~, V), v)det .hd( iRn JRn-l ./R 

But det "" = DJE,l and, by 4.4.2, 

The result follows by substitution into (iv). D 

REl\IARK. This proof can be given the following geometric interpretation. 
Let p : R n ---) R, where p is differentiable and \lp -I- 0 everywhere. Then 
the volume element dVR" can be written locally as the volume element 
on the hypersurface p = constant. "multiplied" by II~II' The induction 
hypothesis allows us to treat the change of variable on the hypersurface; 
the other change of variable occurs in one dimension. 

5 Linear Functionals on CK(X) 
and Signed Radon J\;leasures 

In Section 2 we studied positive linear fUIlctionals on CK(X). We now drop 
the hypothesis of positivity and substitute the more general hypothesis of 
continuity. 

5.1 Continuous linear functionals on C(X) (X compact) 

Throughout this section. X is a compact space. Then CK(X) is the space 
C(X) of all continuous functions. A norm is defined on C(X) by setting 

Ilflle = max If(x)l· 
:rEX 
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Convergence in this norm corresponds to uniform convergence. C' (X) 
denotes the Banach space of continuous linear functionals 1 on C(X); that 
is, those for which there exists a constant a such that 

Il(f)1 ::; allflle. 

Setting Illlle* = sup Il(f)1 yields Il(f)1 ::; Illlle*llflle. 
1I/IIc9 

5.1.1 Proposition. If 1 is positive, then 1 is continuous. 

PROOF. Indeed, 
-llflle ::; f(x) ::; Ilflle 

implies 
-llflle l(lx) ::; l(f) ::; Ilflle l(lx), 

whence 

(i) Illlle* = l(lx ).0 

5.2 Decomposition theorem 

Theorem. Let X be a compact space and let 1 E C*(X). Then there exist 
positive linear functionals l+ and l- such that 

5.2.1 1 = l+ - l- and 

5.2.2 Illlle* = Ill+ lIe* + Ill-lIe* 

and such a decomposition is unique. 

PROOF. For each nonnegative f in C(X), let 

H(f) = {u E C(X) : 0 ::; U ::; f} 

and let 

( i) l+(f) = supl(u), where U E H(f). 

Let h, 12 ~ o. Since U1 E H(h) and U2 E H(h), U1 + U2 E H(h + h); 
hence H(fd + H(h) c H(h + h)· 

We now prove the opposite inclusion. Let U E H(h + h) be given. Set 
v = min{u, fd = ~(u + h - lu - hI); then v E C(X), v E H(h), and 
W = u - v E H(h). 

Thus u = v + w with v E H(h), W E H(h), and we have shown that 

( ii) 

This implies 

( iii) 

H(h + h) = H(fd + H(h)· 

Any 9 E C(X) can be written as 

(iv) 9 = gl - g2 with gl,g2 ~ o. 
(For example, we can take gl = max(g, 0).) 
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Define 

(v) 

We will justify this definition by showing that the right-hand side is 
independent of the choice of the decomposition (iv). Let 

Then gl - g2 = g3 - g4, or g1 + g4 = g3 + g2· Using (iii), 

or 
Z+(gl) -1+(g2) = Z+(g;1) -1+(g4), 

which justifies definition (v). 
It therefore follows from (iii) and (v) that 

Similarly, it follows from (i) that 

Since 0 E H(1), we have Z+(1) 2:: 0 if f 2:: 0, whence 

(v'i) Z+ is a pos'itive linear functional on C(X). 

Setting 1- = Z+ - I, we have 1- E C*(X). Furthermore, let f E C(X), 
f 2:: O. Then 

1-(1) = (supl(u)) -1(1) = sup(l(u - 1)), where u E H(1). 

For f 2:: 0, set G(f) = {v E C(X) : - f :::; v :::; O}. Then the mapping 
u f---> U - f defines a bijection of H(f) onto G(f); hence 1-(1) = supZ(v), 
where v E G(f). 

Since 0 E G(1), Z- (1) 2:: 0 and we have thus obtained the decomposition 
5.2.l. 

Let 1 denote the indicator function of the full set X; then, by 5.1(i), 

There exist Un E H(1) and Vn E G(1) such that 

1+(1) = liml(u,,) and 1-(1) = liml(vn ). 

It is straightforward to show that 
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We have 0 ~ Un ~ 1, -1 ~ Vn ~ 0, and -1 ~ un(x) + Vn(X) ~ 1, or 

Hence 

and we have shown that 

Since the opposite inequality follows from the triangle inequality, this 
proves 5.2.2. 0 

5.2.3 Uniqueness of the decomposition 

Let 

(i) l = <p - 'IjJ where <p, 1/J are positive linear functionals. 

Then 
l+(f) = sup{<p(u) -1/J(u)} with u E H(f). 

But 
<p(u) - 'IjJ(u) :::; <p(u) 

since u ::::: 0, and thus 

sup{<p(u) -1/J(u)} :::; sup <p(u) = <p(f). 

That is, 
l+ (f) :::; <p(f) for every f ::::: O. 

Set <p - l+ = (); then () is a positive linear functional, and it follows from (i) 
that 

(ii) <p = l+ + () and 1/J = l- + (). 

Then 11<pllc· = <p(1) = l+(l) + ()(1) = Ill+llc· + 11()11e'; similarly 111/J11e· 
Ill-lie' + 1I()lIc·. 

Suppose that the decomposition <p - 'IjJ satisfies 5.2.2; then 

Illllc· = 11<pllc· + 111/Jllc· = Ill+llc· + IInle· + 211()llc·. 

Furthermore, by 5.2.2, Illllc- = IIl+lIc· +IIZ-lIc·. Subtracting these two equations 
shows that 211()11e- = 0; thus () = o. 0 

5.2.4 Corollary. Given l E C*(X), there are two Borel measures ILl and 
1L2 uniquely determined by 

l(f) = f fdlLl - f dIL2 and 

lillie· = ILI(X) + 1L2(X). 

PROOF. By the decomposition theorem (5.2) and the Radon-Riesz theorem. 
o 



90 II. Borel Measures and Radon Measures 

5.3 Signed Borel measures 

In this section, we establish the equivalent of Theorem 5.2 for Borel mea­
sures. 

5.3.1 Definition. A signed Borel measure on the compact space X is a 
mapping 

v:Bx ----+R 

that can be written in the form 

( i) v(A) = PI(A) - P2(A), 

where PI, P2 are finite Borel measures. The decomposition (i) is clearly not 
unique; adding the same Borel measure () to PI and P2 will not change the 
mapping v. 

5.3.2 Mutually singular measures 

Two Borel measures VI and V2 are said to be mutually singular if there 
exists a Borel set A E B x such that 

( i) 

The relation is symmetric, for AC carries all the mass of V2 and has VI­

measure zero. 

5.3.3 Theorem. If X is a compact space, there exists a bijection between the 
continuous linear functionals on C(X) and the signed Borel measures. The de­
composition of a linear functional given in Theorem 5.2 corresponds to the de­
composition of the signed Borel measure as a difference of two mutually singular 
Borel measures. 

PROOF. We use 5.2.4. The only statement still needing proof is the equivalence 
of the following two properties: 

( i) 

( ii) 

lillie· = PI(X) + p2(X). 

PI and P2 are mutually singular. 

We first show that (ii) => (i). If PI and P2 are mutually singular, let A be an 
element of Bx such that 

PI(A) = pdX) and P2(A) = o. 

Set 

Then 
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whence J 'P(dpI - dp2) = PI(X) + P2(X). 

By Theorem 3.5, we can find f E C(X) such that 

Ilf-'PIIL'<E, where L I =LI (X,Bx,PI+P2). 

Set 
i(x) = f(x) 
}(x) = signumf(x) 

if If(x)1 ~ 1; 
if If(x)1 > 1. 

Then IIi - 'PilL' < 2E and 

J i(dpI - dp2) > PI(X) + P2(X) - 2E, where i E C(X), Ilille ~ 1. 

Conversely, we show that (i) => (ii). There exists a sequence {'Pn} in the closed 
unit ball of C(X) such that l('Pn) --> IIllle*. Set 'Pn = 'P;;' - 'P-; then 

Since 'P;;' ~ 1 and 'P-;; ~ 1, the first term in brackets is at most equal to PI(X) + 
P2(X) = Illlle* by (i). Hence the convergence of l('Pn) to Illlle* implies that 

J 'P~ dPI --> PI (X) and J 'P-;; dPI --> O. 

Since 

we conclude that 

Passing to a subsequence {'Pn,}, we may replace the convergence in L I (pI) of 
{1 - 'P;;'} by convergence pl-a.e. Passing to a new subsequence {'Pn,} reduces the 
proof to the case where 'l/Js = 'P;;', satisfies 

Let 

Then 

or 

'l/Js converges to 1 Pl-a.e.; 
'l/Js converges to 0 P2-a.e. 

A = {x: lim 'I/J; (x) = 1}. 

PI(A) = PI(X) and P2(A) = 0.0 

5.3.4 Proposition. Let v be a signed Borel measure. Then there exists a 
decomposition 
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such that p~ and pg are mutually singular. Such a decomposition is unique. 
We set 

Ivl = p~ + p2 

and call 11/1 the absolute value of v. 

PROOF. Let a continuous linear functional on C(X) be defined by setting 

Then. by 5.3.3, the decomposition of v as a difference of mutually singular 
Borel measures corresponds to the decomposition of l given by 5.2.4. This 
decomposition exists and is unique by 5.2.4. 0 

5.3.5 Signed Radon measures 

Given a signed Borel measure v on the compact space X, let p~ - pg be its 
canonical decomposition. Let B be the completion of the Borel algebra Bx 
with respect to Ivl. We define a signed measure on B by setting 

JL(B) = p~(B) - p2(B), vB E B. 

JL is called the signed Radon measure associated with the :signed Borel 
measure v. 

If X is a locally compact space, a signed Radon measure v on X is given 
by two mutually singular Borel measures Vj and V2. We set Ivl = Vj +V2 and 
define the O"-algebra Bv by completing the Borel algebra Bx with respect 
to Ivl. Then, if A E Bv and Ivl(A) < +CXJ, we define v(A) = vl(A) - v2(A). 

5.3.6 Important remark on terminology 

Let X be a locally compact space. We denote by lvI(X) the vector space of 
signed Radon measures and by Al+(X) the Radon measures on X; that is, 
the measures associated with positive linear forms. In the usual terminol­
ogy, lvI(X) is called the space of Radon measures and M+(X) the space 
of positive Radon measures. From the point of view of grammatical accu­
racy, this terminology is better than ours; a noun modified by an adjective 
should describe a nar7'Ower class of objects than the noun alone. Our use 
throughout Chapter I of the word "measure" to mean a positive measure 
may justify our ignoring this rule now. 

5.3.7 Complex measures 

We denote by C(X; C) the space of continuous complex-valued functions on 
the compact space X. Separating real and imaginary parts, we can write 

C(X; C) = C(X) EB C(X). 
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A C-linear functionall on C(X; C) is determined by restricting Re(l) to 
each summand of the direct sum. Since X is assumed compact, specifying 
l is equivalent to specifying two signed Radon measures J.LI and J.L2. Setting 
IIJ.LII = IIJ.LIII + 11J.L211 and l = J.LI + iJ.L2, we have 

l(J + ih) = f fdJ.LI - f hdJ.L2 + i f fdJ.L2 + hdJ.LI. 

J.LI + iJ.L2 is called the complex measure associated with this form. 

5.4 Dirac measures and discrete measures 

5.4.1 Dirac measures 

Let X be a locally compact space X and let Xo EX. The Dirac measure 
at Xo is the linear functional 

This positive linear functional is represented by a Borel measure Dxo whose 
completion is defined on the u-algebra P(X) consisting of all the subsets 
of X. We have 

Dxo (A) = 1 if Xo E A 
Dxo(A) = 0 if Xo tf- A. 

5.4.2 Discrete measures 

Now let Xl,"" Xj,'" E X and aj E R. Suppose that, for every compact 
set K, 

(i) L lajl < +00, where SK = {j : Xj E K}. 
jESK 

A locally finite signed Borel measure v is defined by setting, for B E B x, 

v(B) = Laj, where j E SB = {j: Xj E B}. 

This series is absolutely convergent by (i). Let v+ = 2:"'j>o ajDxj and let 
v- = 2:"'j<o -ajDxj' Then v+ and v- are locally finite Borel measures. 
Completing the Borel algebra with respect to Ivl = v+ + v-, we recover 
the u-algebra of subsets P(X); hence 

Ivl(C) ::; +00 is defined 'VC E P(X). 

In contrast, v(C) is defined only for those C E P(X) which also satisfy 
Ivl(C) < +00. 

We denote by Md(X) the discrete measures on A and by MJ(X) the 
finite discrete measures: MJ(X) = MI(X) n Md(X). 
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5.5 Support of a signed Radon measure 

5.5.1 Definition. Let IL E M(X). The support of IL, written supp (IL), is 
the smallest closed set F such that IILI(F C ) = O. Let us show that this set 
exists. Taking complements, finding F is equivalent to finding the largest 
open set H such that IILI(H) = O. 

The hypothesis 3.0.1 implies that X satisfies the second separability ax­
iom of I-2.4.1. Therefore we can find a countable family of open sets On 
which forms a basis for the open sets. Set 

Then H, as a countable union of sets of measure zero, has measure zero: 
IILI(H) = O. 

Let 0' be an open set such that IILI(O') = 0; then 0' = UnETOn (since 
{ On} is a basis for the open sets). The hypothesis IILI (0') = 0 implies that 
IILI(On) = 0, whence T C Sand 0' c H. 

5.5.2 Proposition. Suppose that X is a locally compact space, f E CK(X), 
and IL E M(X). Then 

J fdIL = 0 if supp (1) n supp (IL) = 0. 

PROOF. Let IL = ILl - IL2 with IILI = ILl + IL2, and let H = (supp (ILW· 
Then f = 0 IILI-a.e., whence f = 0 a.e. ILi' i = 1,2, which implies that 
J fdILi = 0, i = 1,2. 

6 Measures and Duality with Respect 
to Spaces of Continuous Functions 
on a Locally Compact Space 

6.1 Definitions 

We consider the following three vector spaces of continuous functions on 
X: 

CK(X), 
Co(X), 
Cb(X), 

the continuous functions with compact support; 
the continuous functions which vanish at infinity; and 
the bounded continuous functions. 

(i) Recall that a function f is said to vanish at infinity if, for every E > 0, 
there exists a compact set K such that If(x)1 < E for x ~ K. We have the 
following inclusions: 

( ii) 
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If X is compact, these three spaces coincide; if X is not compact, each 
of the inclusions is strict. A norm is defined on Gh(X) by setting, for f E 

Gb(X), 

( iii) Ilflleb = sup If(x)l, x EX. 

This norm defines, by restriction, Horms on Go(X) and GK(X). The re­
striction of II lie" to Go(X) will sometimes be denoted by II lleo. We then 
have 

(iv) Ilhlico = max Ih(x)l, x E X. 

The difference between (iii) and (iv) is that, although the supremum may 
not be attained in (iii), it is attained in (iv) and gives a maximum. 

6.2 Proposition. The space Gb(X) equipped with the norm (iii) is com­
plete. The space Go(X) is a closed subspace of Gb(X) and is therefore com­
plete. The space GK(X) is a dense subspace of Go(X). 

PROOF. Only the third (and hardest) assertion will be proved here. 2 

Let {Hn} be the exhaustion sequence of compact sets constructed in 
o 

1.0.3. Recall that Hn C H,,+I' For each n, let :;11' 'l/J" be a partition of 
o 

unity subordinate to the open cover consisting of the two sets Hn+l and 
H;;. Then, since ipn + 'l/J" = 1 on X, 

ip" = 1 on H". 

Given h E Go(X), set hn = h'Pn. Then hn E GK(X) and Ilh - h,,11co = 
Ilh'l/Jnlleo --+ 0 as n --+ IX, since supp ('l/Jn) C H;; and h(x) --+ 0 as x tends 
to infinity. 0 

6.3 The Alexandroff compaciijication 

Given a locally compact space X, we can associate with it a compact space 
Y and a homeomorphism 'l/J of X onto Y with one point removed. Y is 
called the Alexandroff compuctijication of X. The construction consists of 
adjoining a point at infinity to X by setting Y = X U {oo}, where 00 is 
a new element. The complements of compact subsets of X are taken as a 
system of open neighborhoods of 00. 

Having thus defined Y from the set-theoretic point of view, we now construct 
a topology on Y in a more precise way by specifying its closed subsets. 

2For the first two, see for example E. Hewitt and K. Stromberg, Real and 
Abstract Analysis, 3rd ed. (New York: Springer-Verlag, 1975). 
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A subset F of Y is closed if and only if it satisfies the following conditions: 

(i) F n X is closed: and 
(ii) if F n X is not compact. then :xc E F. 

Let]J he the injection of X into Y; then, by (il, p-l(F) is closed in X if F is 
closed in Y. Let H be closed in X; then. by (ii), H or H U {:xc} is closed in Y. 
Intersecting with {::xl V shows that H is a rdatively closed set in {x} c. Thus p 
is a homeomorphism of X onto {:xc}'. 

The open neighborhoods of :xc are the complements of closed sets that do not 
contain ,x: that is. the complements of compact subsets of X. It follows easily 
that the topology of Y is Hausdorff. 

\\'e now show that Y is compact. Let 0""1 be an open cover of Y. There exists 

,0 such that ::xc E 0"lll; hence there exists a compact set K such that 0'10 = K'. 
The sets 0"1 n K form an open cover of K. Let 0"11 n K, .... 0,,, n K be a finite 

subcover. Then O"yw ... , Orn form it finite subcover of Y. 

6.4 Proposition. Let X be a locally compact space and let Y be its Alexan­
droft compact·ification. Set 

v = {f E C(Y) : f(x) = O}. 

For ever-y function f E V, let f denote its r-estr'ict'ion to X. Then 

is a linear- mapping which is an isometr-y of V onto Co (X). 

PROOF. Let f E V: then the reDtriction f of f to X defines an element 
.f E Cb(X), Furthermore, since f is continuous at Xl, for every f > 0 there 
exists it compact set K such that If(x) - f(x)1 < E if :r: rt K. Hence 
.f E Co(X). 

Conversely, let h E Co(X). Then h can be extended to Y by setting 
hj(x) = 0 and setting hl('?:) = hex) if:r: E X. Since h E Co(X), hI IS 

continuous at the point Xl and hence continuous everywhere. 0 

6' "­,J The space All (X) 

(i) \Ve denote by J'P (X) the set of signed Radon measures v on X such 
that Ivl is finite. and define a norm on 1\{l(X) by setting 

IlvllMl = J d!v! = Ivl(X). 

J\Ioreover, for every Borel set A of X, v( A) = VI (A) - V2 (A) is well defined. 
(See 5.3.5.) 

(ii) Proposition. Let Y be the compactijication of X and let 

H' = {v E M(Y): v({oo}) = O}. 



6. Convergence and Duality 97 

Let a mapping v --> i/ 

be defined by setting 

i/(A) = v(A) 'itA E Bx c By. 

This mapping is an isometric bijection of W onto Ml(X). 

PROOF. It suffices to note that every B E By can be written either as 
B = AU {oo} or as B = A, for some A E Bx. In the first case, the 
additivity of v gives v(B) = v(A) + v( {oo}) = v(A) since v( {oo}) = O. 0 

6.6 Theorem. Ml(X) is the Banach space dual of Co(X). 

PROOF. With the notation of 6.4, Co(X) ~ V c C(Y). Let 1 E C*(Y); 
then its restriction to V defines a continuous linear form on V. By the 
Hahn-Banach theorem, every linear functional on V can be written in this 
way. Thus 

(V)* ~ C*(Y)jH, 

where H is the space of linear functionals which vanish identically on 
V. Since V has codimension 1, H has dimension 1 and is therefore the 
vector subspace generated by 800 , the Dirac measure at infinity. But, in 
the notation of 6.5(ii), W ~ M(Y)jH, whence (Co(X))* ~ M(Y)jH ~ 
W ~ Ml(X). All these identifications are isometric. In particular, for every 
IL E Ml(X), 

6.7 Defining convergence by duality 

The following three spaces of continuous functions are associated with a 
locally compact space X: 

Convergence in M(X). A sequence {ILn}, ILn E M(X), is said to converge 
vaguely to ILo E M(X) if 

( i) J fdILn --> J fdILo, 'Itf E CK(X). 

Convergence in Ml(X). Given a sequence {vn}, Vn E Ml(X), we have 
two new concepts of convergence. 

Vn is said to converge weakly to Vo if 

( ii) J hdvn --> J hdvo, 'Ith E Co(X). 
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Vn is said to converge narrowly to Vo if 

( iii) J kdvn -> J kdvo, Vk E Cb(X). 

Since Ml(X) c M(X), vague convergence can be defined on Ml(X) as 
well. Thus Ml (X) is provided with four notions of convergence, which 
imply each other according to the following diagram: 

(convergence in norm) =} (narrow convergence) =} (weak convergence) =} 

(vague convergence). 

6.8 Theorem. Let /1n E Ml (X). Consider the following statements: 

(i) {/1n} converges weakly. 
(ii) {/1n} converges narrowly. 

(iii) There exist a constant c and a dense set D C Co(X) such that 

II/1nIIMl ::; c and J gd/1n converges for every g E D. 

(iv) For every E > 0, there exists a compact set K such that 

l/1n I (KC) < E for all sufficiently large n. 

(v) Each /1n is positive, {/1n} converges weakly to /1, and J d/1n -> 

J d/1 < +00. 

Then 
(iii) ¢? (i), 

(i) and (iv) ¢? (ii) , 
(v) =} (ii). 

REMARK. To simplify the exposition, we prove only the direct implications, 
which are the easiest; these are practically the only ones used in what 
follows. 

PROOF THAT (iii) =} (i). The family of linear functionals on Co(X) 

satisfies 

It is thus an equicontinuous family. Since it converges on a dense subset 
D, by Ascoli's theorem3 it converges on all of Co· Let loo(1) = limln(f). 
Using 6.6, we find that loo is defined by a Radon measure /100 E Ml(X) 
and that {/1n} converges weakly to /100' 0 

3See Bourbaki, General Topology, X.2.5. 
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PROOF THAT (i) AND (iv) => (ii). Let f E Cb(X). Let K be the compact 
set determined by (iv), and let c.p denote a function with compact support 
such that c.p(x) = 1 if x E K. Then f = fc.p + u, where supp (u) c K C ; 

hence f fdf.-ln = f fc.pdf.-ln + f udf.-ln. 

By (i), the first integral converges to J c.pfdf.-loc» where df.-loo is the weak 
limit of {df.-ln}. Moreover, 

PROOF THAT (v) => (ii). It will suffice to prove that (v) implies (iv). Given 
E> 0, let K be a compact subset of X such that f.-l«Kc)) < E. Let f be a 
function with support contained in K such that 0 :S f :S 1 and 

f fdf.-l > 11f.-l1l - E. 

Let no be such that, if n > no, 

Then 

o 
6.9 Theorem. Let X be a locally compact space and let Md,f(X) denote 
the finite linear combinations of the Dirac measure on X. Then, for any 
f.-l E Ml(X), there exists a sequence {Jln}, f.-ln E Md,J(X), such that {f.-ln} 
converges narrowly to f.-l. 

PROOF. Let {'Pn} be an increasing sequence of functions with compact support 
such that 0 ::; 'Pn ::; 1 and lim'Pn = 1. Then II'PnJL - JLIIMI -+ 0 by Lebesgue's 
dominated convergence theorem. Hence it suffices to prove the theorem when JL 
has compact support K. Let {On,j : j E [l,sn]} be a finite cover of K by balls of 

• 1"" - c .... 
radIUS ;. Let An,l = On,l, A n,2 = On,2 n On,l, and set An,q = An,q n K. Then 
each An,q has diameter < ~ and the An,q form a partition of K. Restricting to 
An,q i= 0, choose Xn,q E An,q. 

JLn is constructed by setting 

q 

Let f E Cb(X); then 
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Since f is uniformly continuous on the compact set K, there exists a sequence 
{1]n} which tends to zero as n ~ 00 and satisfies 

If(x) - f(x')1 < Tin if d(x, Xl) < ~. 
n 

Hence J IAnqf dJ.L = f(x nq ) J IAnqdJ.L + eqT}nlJ.LI(An.q), 

where leqi < 1. Summing over q gives 



III 
Fourier Analysis 

Introduction 

Fourier analysis can be illustrated by analogies from optics. Given a light 
beam, the goal of spectral analysis is to determine the monochromatic 
beams it contains; that is, the beams of the form expe~7r t). Once a spec­
tral analysis has been carried out, one can ask whether the analysis is 
exhaustive: is all the energy of the beam really concentrated in the band of 
frequencies where the spectral analysis was done? One can also ask whether 
the beam can be reconstructed from its monochromatic components: can 
spectral synthesis be performed? 

It is well known that quantum mechanics determines the possible energy 
levels of a system as the eigenvalues of a hermitian operator defined on 
a Hilbert space H. More generally, given a system of pairwise-commuting 
hermitian operators, the eigenvalues of the system are the possible values 
of the associated "observables". 

In the general setting of spectral theory, the problems of spectral analy­
sis, conservation of energy, and spectral synthesis remain completely mean­
ingful. Taking the space L2(Rn) as a Hilbert space H and the hermitian 
operators generated by the translations as a family of operators, one nat­
urally recovers Fourier analysis as a special case; what is more surprising 
is that general spectral theory can be obtained as a classical theorem of 
Fourier analysis, Bochner's theorem. This will be done in Appendix 1. 

Since differentiation operators on L2(Rn) appear as limits of translation 
operators, Fourier analysis realizes their spectral decomposition as well. 



102 III. Fourier Analysis 

Thus partiitl differential equations ,vith constant coefficients are subject to 
the methods of r8al Fourier analysis (or complex Fourier itnalysis, but we 
will not pursue this poiut). 

Studying the domains of definition of the Laplace operator and its iter­
ales in L2(R") leads to the construction of Sobolev scales, a theory that 
is stable U11der local diffeomorphisms and thus well suited to the local the­
ory of partial differential equations withl'ariable coefficients. In dealing 
with the theory of distrihutions, W8 use the approaches of Sobolev and 
Schwartz silllultaneously. The chapt8r ends with the local inversion of d­
lipt ic operators v;ith variable coefficicnts, by meallS of Calderon's theory of 
pseudo-different ia 1 opera tors. 

1 Convolutions and Spectral Analysis 
on Locally Cornpact Abelian Groups 

1.1 .\'OTATION. Ld G be an abelian (commutative) group. The group 
operation will usually be written additivcly: 

\Vitl! this Ilotatioll, the identity element will be denoted by 1 and the 
inverse of g by ~ g. 

A locally compact ahelian group is an abelian group which is given the 
titructurc of a locally compact topological space compatible with the group 
operation. That is, the mapping from G x G to G defined by 

(i) 

is continuolls. It can he shown that a llletrizable group G has a translation­
invariant metric d: that is, d satitifies 

(ii) d(go + g,go + .9 ' ) = d(g,g'). 

1.2 E:ramples 

1.2.0 The integers Z form a group under addition. Given the dititance de­
fined by d(n,m.) = In ~ ml, they form a locally compact group. 

1.2.1 R n , with vector addition, is a locally compact group. 

1.2.2 The one-dimensional tOl'llti 

Let 
T = {z E C : Izi = I}. 
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T is the set of complex numbers of modulus 1. (From the set-theoretic 
point of view, T is a circle.) T is given the group operation defined by 
the multiplication of complex numbers. If Zl, Z2 E T, then ZlZ2 E T and 
z1 1 = 21 E T. Thus T is an abelian group; when endowed with the topology 
induced by C, it is compact. 

1.2.3 The n-dimensional torus 

We denote by Tn the product of n copies of T, endowed with the product 
topology and the product group operation. 

1.2.4 A homomorphism from R onto T 

With 0 E R, we associate the element 

u(O) = ei6 E T. 

Then u(O + 0') = u(O)u(O'), i.e. u is a homomorphism of R onto T. The 
kernel of u is 

u- 1 (1) = {O : ei6 = I} = 21fZ, 

where Z is the subgroup of R consisting of the integers. Let C(T) denote the 
functions defined and continuous on T and let Cb(R) denote the bounded 
continuous functions on R. Let u· be the map from C(T) into Cb(R) 
defined by 

(u· 1)(0) = f(u(O)), tie E R. 

Then the image of u· consists of those functions hE Cb(R) that are periodic 
with period 21f; that is, functions satisfying 

h(O + 21f) = h(O). 

1.2.5 A homomorphism from R n onto Tn 

With X = (Xl' ... ' Xn) we associate 

v(x) = (eix', ... ,eixn). 

The kernel of v is 21fZn. The operation 

f f---+ f 0 v = v· f 

maps C(Tn) onto the n-fold periodic functions on Rn; that is, functions h 
satisfying 

h(x + y) = h(x), 't/y E (21fZ)n. 

1.3 The group algebra 

M1 (G) denotes the Banach space of signed Radon measures on G which 
have finite total mass. 
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1.3.1 Discrete measures 

Let 6g denote the Dirac measure at the point g and let 

where L I 13k I < +00 } . 

1.3.2 Convolution in MJ(G) 

The convolution of two Dirac measures 69, and 6g2 is defined by 

That is, the convolution product is the Dirac measure at the point gl + g2. 

This definition is extended to MJ(G) by bilinearity. Given J.1 = L, !3k6gk 
and J.1' = L, !3~6g~ in MJ, we set 

J.1 * J.1' = L !3k!3~6gd9~' 
k,s 

Note that the convolution product is commutative, associative, and bi­
linear: 

Moreover, 

J.1 * J.1' = J.1' * J.1, 

(J.1 * J.1') * J.1" = J.1 * (J.1' * J.1"), 

(J.1 + v) * J.1' = J.1 * J.1' + v * J.1' . 

(Strict inequality can occur only if gk + g~ = gk' + g~" with (k, s) f (k', s').) 
We would like to extend the convolution operator from MJ (G) to all of 
Ml by an explicit formula realizing this extension. Let Co (G) denote the 
continuous functions on G which vanish at infinity. 

1.3.3 Fundamental lemma. Let J.1, J.1' E MJ (G) and let p = J.1 * J.1'. Then 

fa J(z)dp(z) = fa fa f(x + y)dJ.1(x)dJ.1'(y), Vf E Co(G). 

PROOF. The right-hand side, which we denote by II, can be written as 

II = L f(gk + gU!3k!3~. 
k,k' 
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Grouping together all terms such that gk + g~, = g~", we obtain 

II = L, f(g~,,) L, (3k{3~, = J f(z)dp(z). 
9k+9~,=g~" 

1.3.4 Definition of the convolution product on Ml (G). Given v, VI E 

Ml(G), we define a linear functional on Co(G) by setting 

l(l) = fa fa f(x + y)dv(x)dvl(y). 

This integral converges, since 

Il(l)1 ::; fa fa If(x + y)lldv(x)1 Idvl(y)1 ::; Ilflloo fa fa d)' 0 d).l, 

where). = lvi, ).1 = Iv/l. By Fubini, 

fa fa d)' 0 d).1 = )'(G).I(G) = IlvliM'llv/IIMl, 

and hence 

(i) 

Thus l is a linear functional on Co(G) which is continuous in the norm 
topology. By II-6.6, there exists a measure 0" E Ml(G) such that J fdO" = 
l (I). We set 0" = V * VI, and call 0" the convolution product of v and VI. 

1.3.5 Theorem (Properties of the convolution product). Let G be a 
locally compact group and let Ml (G) be the Banach space of finite Radon 
measures on G. The convolution product is defined on Ml(G) by the for­
mula 

(i) fa f(z)d)'(z) = fa fa f(x + y)dv(x)dvl(y), \:If E Co(G), 

where v, VI E Ml(G) and), = v * VI. 

It has the following properties. 

( ii) 

( iii) 

(iv) 

(v) 

Furthermore, 

Ilv * vIII::; Ilvll Ilv/ll 
v * VI = VI * V (commutativity) 

(v * VI) * v" = v * (VI * v") (associativity) 

(v + VI) * v" = v * VI + V * v" (linearity) 

(vi) if {vn} and {v~} converge narrowly to Vo and vb, then Vn *v~ converges 
narrowly to Vo * vb. 
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PROOF. Formula (ii) follows from 1.3.4(i). In order to prove (vi), note that 
the narrow convergence of Vn and v~ and Fubini's theorem imply that 
Vn Q9 v~ converges narrowly to Va Q9 vb. Let f E Cb(G) and set u(x, y) = 
f(x + V)· Then u E Cb(G x G), and 

lim r u dVn Q9 dv~ = r u dva Q9 dvb 
J GXG JGxG 

can be written as 

lim fa faf(X + y)dvn(x) Q9 dv;,(y) = fa faf(X + y)dva(x) Q9 dv~(y), 
Vf E Cb(G). 

Thus (vi) is proved. 
The algebraic properties (iii), (iv), and (v) can be proved by passing to 

the limit and using (vi), since these properties hold on MJ (G) by 1.3.2. By 
11-6.9, MJ(G) is dense in the topology of narrow convergence on M1(G). 
(Or this could easily be proved directly.) 

1.3.6 Support of the convolution product 

If F1 and F2 are subsets of G, we set 

F1 + F2 = {g : 9 = g1 + g2 with gi E Fd· 

Proposition. Let VI, V2 E Ml (G). Then sUPP (VI *V2) c supp (vd + supp (V2). 

PROOF. J 'P(X + y)dV1 (X) dV2(Y) = 0 if'P is zero on supp (VI) + supp (V2). 
D 

Equality holds if both measures are positive. 

1.4 The dual group. The Fourier transform on Ml 

1.4.1 Characters 

Let G be a locally compact abelian group and let T be the multiplicative 
group of complex numbers of modulus 1 considered in 1.2.2. A character 
on G is a mapping 

x: G --+ T 

such that 

(i) X is continuous, and 
(ii) X is a homomorphism: X(g + g') = X(g)X(g')· 
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1.4.2 The dual group 

The set of characters of G is denoted by G, and is given a group structure 
by defining the product X3 of two characters Xl and X2 as follows: 

X3(g) = XI(g)X2(g), "Ig E G. 

The inverse X4 of Xl is defined by the formula 

-- 1 
X4(g) = XI(g) = -(-). 

Xl g 

Thus G is an abelian group. The identity element is the trivial character 
XO defined by 

Xo(g) = I, "Ig E G. 

1.4.3 The Fourier transform on MI (G) 

Given /L E MI (G), we assign to it a function defined on G by 

Ji(X) = L X(g)d/L(g). 

Ji is called the Fourier transform of /L. 

1.4.4 Fundamental theorem (Trivialization of the convolution 
product). Let /L, v E MI(G). Then 

/L * v = Jif/; 
that is, the Fourier transform maps the convolution product of measures to 
the usual product of functions. 

PROOF. Let P = /L * v. Then 

LX(Z)dP(Z) = L Lx(x + y)d/L(x)dv(y) 

L L X(x)X(y)d/L(x)dv(y) 

(L X(X)d/L(X») (L X(Y)dV(Y)) 

Ji(X)iI(X)·D 

The first equality follows from 1.3.5, the second from the identity X(x+y) = 
X(x)X(Y), and the third from Fubini's theorem. 

REMARK. Let 60 denote the Dirac measure concentrated at o. Then 

80 (X) = X(O) = I, "IX E G. 
Moreover, 

60 * /L = /L, "I/L E MI(G); 

that is, 60 is the identity element of the algebra MI (G). 
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1.5 Invariant measures. The space U 
1.5.1 Translation-invariant measures 

A measure J1, E Ml (G) is said to be translation invariant if 

( i) J f(g + go)dJ1,(g) = J f(g)dJ1,(g), \:fgo E G. 

1.5.2 Proposition. Suppose that J1, satisfies (i) and that G is compact. 
Then 

( ii) fi(x) = 0 for every nontrivial character. 

PROOF. Let X be a nontrivial character. Then there exists go E G such 
that X(go) i= 1. Condition (i) can be written in the form 

( iii) 

(iv) Since G is compact, J1,(G) < ex) and thus J1, E Ml(G). Under these 
conditions, 1.4.4 can be applied: 

whence 
x(go)fi(x) - fi(x) = 0 '* fi(x) = 0.0 

1.5.3 Corollary. Suppose that G is a compact group, J1, is a translation­
invariant Radon measure on G, and L2(G; J1,) is the associated Hilbert space. 
Then any two distinct characters of G are orthogonal. If the measure J1, is 
also normalized by the condition 

J dJ1,= 1, 

then the characters of G form an orthonormal system. 

PROOF. Given Xl, X2 E C, we evaluate 

(xllx2)£2 = fa Xl (g)X2(g)dJ1,(g). 

Xl(g)X2(g) = Xl(g)(X2(g))-1 = X3(g), 

where X3(g) E C. By 1.5.2, the integral J X3 (g )dJ1,(g) is zero if X3 is not 
identically equal to 1, that is if Xl i= X2. Finally, if J1, is normalized, 
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1.5.4 Haar's theorem. Let G be a locally compact abelian group. Then 
there exists a translation-invariant positive Radon measure flo on G, and 
this measure is unique up to a multiplicative constant. 

REMARK. If flo is an invariant measure and c is a positive constant, it is 
clear that Cflo is an invariant measure. 

We assume without proof this general theorem of Haar) and restrict 
ourselves to constructing invariant measures in the special cases of the 
groups R, T, and Z. 

1.5.5 Examples of Haar measure 

(i) Counting measure on Z 

Let Z be the set of integers. Consider the measure flo such that 

flo ( { n }) = 1 for every n E Z. 

Then flo is translation invariant. 

(ii) Lebesgue measure on R 

Let R be the additive group of real numbers. The Lebesgue measure flo 
is translation invariant (II-4.2.6) and hence a Haar measure. 

(iii) Haar measure on T 

Let cp : R -+ T be defined by setting 

Let a mapping a : T -+ R be defined by 

a(() = arg (, where arg ( E [0,27T). 

Then a( () is a Borel mapping from T into R. Set 

1 
vo(A) = 27T flo (a(A)); 

then va is a Borel measure on T. Moreover, 

r fdvo = r27r f(ei(J) de and Jdvo = 1. iT io 27T 

Lemma. The measure va is translation invariant. 

PROOF. Let eo E [0,27T) and set 

127r (. ) de 1(Jo+27r . d)" 127r 127r +(JO 
J(Jo = f e,((J+!Jo) - = f (e7A ) - = + 

o 27T (Jo 27T (Jo 27r 
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Setting A - 27r = u in the last integral yields 

whence h f dvo = lli".D 

Uniqueness of the Haar measure in (i) i" clear. For case (iii), it will be 
proved in 2.2.8. 

(iv) The product structure 

The measures on Zn, R n , and Tn are the products of the Haar measures 
on each factor. 

1.5.6 Kotation 

The Haar measure of the group G will be denoted by dg. If G is locally 
compact, this measure is defined up to a normalizing factor. If G is compact, 
the factor is chosen so that G has measure 1. 

1.6 The space U(G) 

1.6.1 Identification of U (G) with a vector subspace of Ail (G) 

vVe denote by L 1 (G) the space of functions integrable with respect to Haar 
measure on G, and define an injection 

by associating with the function f ELI (G) the Radon measure 

(i) Pt = f(g)dg. 

1.6.2 The cOllvolution product on U (G) 

Proposition. Let f, h ELl (G) and let jL f and 11h be the Radon measur'es 
associated with them by 1. 6.1 (i). Then there eX2sts k ELI (G) such that 

( i) 

k is defined by 

(ii) k(go) = J f(go - g)h(g)dg = J h(go - g)f(g)dg, 

where the two integmls converge almost everywheTe in go with Tespect to 
HaaT meaSUTe. We wTite 

k = f * h. 
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(iii) REMARK. Since the convolution product on L1 (G) is the restriction of 
the product on M1(G), it satisfies the identities l.3.5(ii) to (v). 

PROOF. Let 'P E Co(G); then 

Using Fubini's theorem yields 

Set gl = g3 - g2 inside the brackets. Since dg1 is invariant under translation, 
dg1 = dg3 for fixed g2, whence 

Using Fubini again, we obtain 

Fubini's theorem implies that the integral in brackets converges for almost 
every g3 and is an integrable function k E L1(G). We have thus shown that 

l.6.3 The Fourier transform on L1 

The Fourier transform on U is obtained by restriction from the Fourier 
transform on M1 and thus is written 

(i) !(x) = i f(g)x(g)dg, Vx E G. 

Theorem l.4.4, on the trivialization of the convolution product, gives by 
restriction 

( ii) 

1.6.4 Bessel's inequality. Let G be a compact abelian group and let 
f E L2(G). Then f E L1(G) and 

2 ""~ 2 IIfll£2(0) 2: L If(x)1 . 
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PROOF. Since J.l(G) < +00, 1-9.6 implies that Ll(G) :::l L2(G). Moreover, 

Let S be a finite subset of G, let Vs denote the vector subspace generated 
in L2 (G) by {X : XES}, and let f s denote the orthogonal projection of f 
onto Vs· Then f = fs + f - fs, where f - fs is orthogonal to fs. Hence 

IIflli2 = IIIslli2 + Ilf - fslli2' 

and therefore 

IIflli2 2: Ilfslli2. 
But it follows from 1.5.3 that 

fs = L xUlx) = L i(x-1)X and 

2 ~ ~ 1 2 IIfsll£2 = ~ If(x- )1 .D 
XES 

1. 7 The translation operator 

1. 7.1 The translation operator on LP ( G) 

Given a function f defined on G and a fixed go E G, we denote by 7 go f the 
function defined by 

( i) (7go f)(g) = f(g - go). 

By the translation invariance of dg, f E LP(G) implies (7g f) E LP(G), and 
moreover 

( ii) 

Furthermore, 

( iii) 

We summarize the last identity by saying that g f---+ 7 g is a representation of 
G in LP(G); that is, the mapping is a homomorphism of G into the group 
of linear automorphisms of LP(G). We define the translate of a set A by an 
element go of G to be 7 go (A) = A + go. 

lf UA is the indicator function of the set A (UA(X) = 1 if x E A and 
UA(X) = 0 if x ~ A), then 7go (UA) = UTgo(A)' 

1. 7.2 Fundamental theorem (Trivialization of the translation op­
erator on Ll(G) under the Fourier transform). Let f E Ll(G). Then 
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PROOF. 

;;;:J(x) = fa f(g - go)x(g)dg. 

The change of variables 9 1---+ 9 - go = g' leaves the Haar measure invariant: 
dg = dg'. Making this change of variables gives 

f f(g - go)x(g)dg = f f(g')x(g' + go)dg' = X(go) f f(g')x(g')dg'.D 

1.7.3 Continuity of the translation operator 

Let CK(G) denote the compactly supported continuous functions on G, 
with the norm 

IlflicK = max If(g)l, 9 E G. 

Continuity theorem. (i) Let f E CK(G). Then the mapping from G to 
CK(G) defined by 9 1---+ Tgf is uniformly continuous. 
(ii) Similarly, let u E £P(G), where 1 ::; p < +00. Then the mapping from 
G to LP(G) defined by 9 1---+ TgU is uniformly continuous. 

PROOF.(i) Since f is continuous and compactly supported, f is uniformly 
continuous. Given E > 0, there exists TJ such that 

Hence 

ho (f)(g)-Tgh (f) (g) I = l1(g-go)- f(g-gb)1 < E if d(g-go,g-gb) < TJ· 

But it follows from the invariance of the distance under translation (cf. 
1.1(ii)) that d(g - go,g - gb) = d(go,gb), whence 

IITgo(f) - Tgh(f)lb < E if d(go,gb) < TJ·D 

(ii) We now consider the case where u E LP. Since p < +00, by II-3.5 there 
exists f E CK(G) such that Ilf - ullLP < ~. Let us write 

TgU - Tg'U = Tgf - Tgi f + Tg' (f - u) - Tg(f - u). 

Using 1.7.1(ii), 

whence 
2 

IITgU - TglullLP < "3 E + IITgf - Tg' fIILP. 

Let A = supp (f). Then 

supp (Tgf - Tgif) C Tg(A) U Tgl(A), 
meas(supp(Tgf - Tgif)) < 2 meas(A), 

IITgf-TglfIILP::; IITgf-Tglflb(2 meas(A))l/p. 

The right-hand side of the last inequality tends to zero as d(g, g') --> 0 by 
the first part of the theorem. 0 
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1.8 Extensions of the convolution product 

In this section, we give other cases where formula 1.6.2 converges. 

1.8.1 The cOllvolution product and the dual pairing 

Let f denote the function defined by 

1(g) = f( -g). 

Formula 1.6.2(ii) can be written formally as 

(i) 

Lemma. Let f E LP(G) and h E L'1(G), where 1 :::; p :::; +00 and p and q 
are conjl1gate exponents. Then, for every go E G, the integral 

( ii) J f(go - g)h(g)dg 

converges and defines a function k(go) which is l1niformly continl1OUS and 
bOl1nded and which satisfies 

( iii) 

PROOF. By symmetry, we may assume that p :::; q; then, since p and q are 
conjugate, 1 :::; p :::; 2. 

Using (i), we have 

and moreover 

Since p < +x, it follows from 1.7.3(ii) that the first term tends to zero 
when d(go. gJ) --t O. 0 

1.8.2 Theorem (Action of 11.{I(G) on LP(G) (1 :::; P ::; +00). Let 
M E All (G) and let f E LP (G). Then the integral 

( i) h(go) = J f(go - g)dM(9) 

converges almost evcr-ywhere in go with respect to Haar measure and defines 
a fl1nction in LP. Fl1rthermore. 

(i i) 
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PROOF. Let l' = If I and let /1/ = 1/1-1- Let u E Lq, u ~ 0, and consider the 
double integral 

1= / / f'(gO - g)u(go)dgo d/1,'(g). 

Choose a Borel representative of the equivalence class of f in Cl(G). For 
this fixed choice, I' (gO - g) is a Borel function and hence measurable with 
respect to the product measure dgoQ9d/l(g). Thus Fubini's theorem can be 
applied once we have shown the convergence of 

/ dIl' (g) [/ I' (go - 9 )u(go )dgo] . 

By 1.8.1, the integral in brackets is convergent and bounded above by 
IlfllLP IlullLq, whence 

( iii) 

Letting u equal the indicator function of a compact set K, it follows from 
Fubini's theorem that the integral (i) converges dg-almost everywhere on 
K. Since K is arbitrary, (i) converges dg-a.e. on G. Let h(g) be the function 
thus obtained. By (iii), 

If p > 1, then q < +00 and we define a linear functional on Lq(G) by 

l(u) = / h(g)u(g)dg. 

This form is bounded, since Il(u)1 ::; CllullLq. By the duality theorem (IV-
6.3), it follows that h E £P. If p = 1, take u(g) = sign(h(g)) if h(g) =1= 0 and 
u(g) = 0 otherwise. Then (iii) implies that 

/ Ih(g)ldg ::; 11/lIIM11Ifll£1 < +00. 

Thus hELl. 

1.8.3 The translation operator as a convolution operator 

Note that if /l = {591' then 

/ f(go - g)d/l(g) = f(go - gt} = (791 f)(gO). 
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In particular, Tof = f. Thus the action of M1 (G) on L1 (G) is a general­
ization of the translation operator. More generally, if fi E MJ (cf. 1.3.1), 
then It = L ,3k 15gk and 

NOTATION. Let fi E M1(G) and f E LP(G) (1 :::; p < +Xl). We make the 
notational convention that 

(T,J)(go) = I f(go - g)dfi(9)· 

Then 

IITIl(f)IILP :::; IlfiIlM1Ilfllv'. 

1.9 Convergence theorem. Let {fin} be a sequence of measures in M1 (G) 
satisfying hypotheses (iii) and (iv) of Theorem II-6.8 and converging nar­
rowly to v. Then 

IITllnf - TvfllLP ---; O. Vf E P, 1:::; p < +Xl. 

If in addition f E Co(G), then IITllnf - Tvfllco ---; O. 

REl\lARK. Using the converse of Theorem 11-6.8, it would suffice to assume 
that {fin} converges narrowly to v. Because this converse was not proved, 
we prefer to give the rather awkward statement above. 

PROOF. Since p < +Xl, we can find h E CK(G) such that 

IIf - hllLP < E. 

By hypothesis II-6.8(iii), sup II fin II Ml = c < +x, whence 

It thus suffices to show that 

( i) 

Hypothesis II-6.8(iv) implies that for every E > 0 there exists a compact 
set H such that, for sufficiently large n, 

Ill' dlfin I < E and r dlvl < E. Jll' 
Let cP be an element of CK(G) such that supp (cp) C K1 and cP = 1 on H. 
Set 

fi~ = CPfin, v' = cpv, fi~ = (1 - CP)fin, v" = (1 - cp)v. 
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Then liz/'ll < f, IltL~11 < f, and the proof is reduced to proving (i) for tL~ 
and v'. Furthermore, since tL~ converges narrowly to v', it suffices to show 
that (i) holds when the tLn are supported in a fixed compact set K 1 . Let 
K2 be the support of hi then the support of T/1>nh lies in K3 = Kl + K 2· 

But K3 is a compact subset of G. Moreover, by the definition of narrow 
convergence, for every fixed 9 

J h(g - g')dtLn(g') --+ J h(g - g')dv(g'). 

That is, Un (g) = (T /1>n h - Tv h) (g) satisfies Un (g) --+ 0 everywhere. It follows 
from the bound IT/1>nhl ::; cllhllcb1K3 that 

lun(g)1 ::; 2cllhlb1K3 = c11K3 · 

Hence, by Lebesgue's dominated convergence theorem, 

J lun(g)IPdg --+ O.D 

If f E Co(G), we now determine h E CK(G) by the condition Ilh - flleo < E. 

As above, we reduce the proof to showing the result when the f-£n are supported 
in a fixed compact set K 3 • Setting h(e) = h( -0, we write 

The mapping <I> : 9 --+ Tgh from G to Co(G) is continuous. Hence the image under 
<I> of the compact set K3 is a compact set if C Co(G). By hypothesis II-6.8(iii), 
ther.-: exists a constant c such that IIf-£nIIMl < c. Consider the functions Un defined 
onH by 

Un(y) = J y(e)df-£n(e), y E H. 

Since IIf-£nIIMl < c, these functions are equicontinuous. By the definition of narrow 
convergence, 

Un(y) --+ J y(e)dv(e), \iy E Co(G). 

Since the functions Un are equicontinuous and converge for every y E if, the 
compactness of if implies that they converge uniformly. 0 

1.9.1 Corollary. Let {tLn} be a sequence of measures which converge nar­
rowly to 150 and satisfy hypotheses (iii) and (iv) of II-6.8. Then IIT/1>nf -
fllLP --+ O. 

1.9.2 Corollary. P(G) is an Ml(G)-module; that is, 

(i) 

In particular, if 90 E G, 

( ii) 
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PROOF. It suffices to verify (i) in the case of discrete measures, where 
everything is obvious; the general case follows from the narrow density of 
MJ(G) in MI(G) combined with Theorem 1.9. 

For (ii), we note that 

( iii) 

where bgO denotes the Dirac measure at 90, and use (i). 0 

2 Spectral Synthesis on Tn and R n 

In Section 1 we introduced the Fourier transform, defined on the dual group 
8. \Ve were not concerned with whether the dual group of G conJ.ained 
other elements than the trivial character, everywhere equal to 1. If G were 
trivial, Fourier transform theory would have a very limited scope. We now 
exhibit the characters on Tn and R n and use them to prove the injectivity 
of the Fourier transform. In certain cases, we will be able to characterize 
its image and give an explicit inversion formula. 

2.1 The character groups of Rn and Tn 

(i) The characters on R are of the form 

Xt (x) = eitx , where t E R, t fixed. 

Hence R = R. 

PROOF. It is clear that an imaginary exponential satisfies the equation eit(x+ y ) = 
eitxeity and is a complex number of modulus 1. What must be proved is the 
converse. Let x f-+ X(x) be a character of R; then, since XeD) = 1 and a is 
continuous, there exists an interval [-a, a] such that 

Re(x(x)) > D if x E [-a,a]. 

Hence we can define a function lex) without ambiguity by 

logX(x) = il(x), 
7f 7f 
2<l(x)<2' xE[-a,a]. 

Then lex) is continuous and 

lex + y) = lex) + ley) if x, y, and x + y E [-a, a]. 

It follows from this equation that l(mx) = ml(x) if m is an integer such that 
Imxl :S a, and similarly that l (~) = ;};,l(y) if Iyl :S a. Hence l(ra) = rl(a) for 
every rational number r such that Irl :S 1. 

By continuity, l(xa) = xl(a) if x E R, Ixl :S 1. Hence 

where 
1 

Q = -lea) and Iyl :S a. 
a 
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For any Y1 E R there exists an integer m such that Y1 = my with Iyl :S a; thus 

(ii) The characters on R n are of the form 

where x = (Xl, ... ,Xn) ERn and t = (h, ... , tn) ERn. Hence ie = Rn. 

PROOF. The imaginary exponentials are obviously characters. It must be shown 
that every character is of this form. Let ek = (0,0,1,0, ... ) be the kth element 
of the canonical basis of Rn. Then A ~ Aek is a homomorphism from R to R n 

and hence A ~ X(Aek) is a character on R. By (i), we can write 

Writing x = L:k xkek, it follows that 

X(x) = IT X(xkek) = IT eitkXk.o 

k 

(iii) The characters on Tn are of the form 

h ( ) Zn d ( iOl ion) Tn H Tn zn were m = ml, ... , mn E an e , ... , e E . ence = . 

PROOF. The numbers (0 1 , •.. , on) are each defined only up to a multiple of 271"; 
this indeterminacy has no effect on the value of Xm(O) since m E zn, and thus 
Xm (0) is indeed a character on Tn. 

Conversely, let X be a character on Tn. We define (cf. 1.2.5) a homomorphism 

v : R n ...... Tn by setting vex) = (eixl , ... , e iXn ). Then X 0 v is a character on R n 

and hence, by (ii), is of the form 

Suppose that vex) = 1. Then X(v(x)) = 1; hence 

L tkxk == 0 modulo 271". 
k 

Setting x equal successively to 271"el, 271"e2, ... ,271"en shows that t1, t2, ... , tn E Z. 
o 
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2.2 Spectral synthesis on T 

2.2.1 The Poisson kernel 

Given a number r E [0,1), the Poisson kernel on T is the function defined 
by the series 

(i) Pr(B) = L rlnleinO. 
nEZ 

Not only is this series uniformly convergent, but its sum can be calculated: 

+00 +00 
Pr(B) = L(reiO)n + L(re-i0)p. 

n=O p=l 

Using the formula for the sum of a geometric series, we obtain 

1 re- iO 
Pr(B) =0 +0' 1 - reZ 1 - re- Z 

Thus 

( ii) 
(1 - r()(l - r() , 

where (= eiO . 

2.2.2 Proposition. Let e = 1 denote the identity element of T and let 
dv(() denote the Haar measure on T defined in 1.5.4. Then 

Pr(()dv(() --+ be narrowly as r --+ 1 

and, moreover, satisfies hypotheses (iii) and (iv) of 11-6.8. 

PROOF. Let f be a continuous periodic function, with period 21f. We must 
show that 

(i) j +7r dB 
Pr(B)f(B)- --+ f(O) as r --+ l. 

-7r 21f 

(ii) Note that, by 2.2.1(ii), Pr(B) > O. 
Integrating the uniformly convergent series 2.2.1(i) term by term shows 

j+" dB 
that Pr(B)- = 1. Hence, since Pr(B) > 0, 

-7r 21f 

(iii) 

(iv) For fixed 7] > 0, max'7~IOI~7r Pr(B) = Pr (7]) , which approaches zero as 
r--+l. 

Set h(B) = f(B) - f(O). Since 

1:" f(O)Pr(B) ~~ = f(O), 
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it suffices to show that 

1+71" d() 

-71" h(())Pr (()) 27r ---> o. 

Let f > 0 be given. Then there exists 'fl such that Ih (()) I < i if I()I < 'fl. 
Fixing 'fl, we split the integral in two: 

1+71" d() 1+'1 d() 1 d() 
h(())Pr(())-2 = h(())Pr(())-2 + h(())Pr(())-2 . 

-11" 7r -'1 7r [-'1,+'1]cn[-1I",+71"] 7r 

The first integral is bounded above by illPrllu, which equals i by (iii), 
and the second by IIfllc(T)P,('fl), which approaches zero by (iv). 

Hypothesis (iv) of II-6.8 clearly holds since T is compact, and hypothesis 
(iii) since Prdv has total mass 1. D 

(v) Corollary. Let dJ.lr denote the measure on Ml(T) defined by 
Pr (()d() /27r. 
If f E LP(T) (1::; p < +00), then Ih'rf - fllLP ---> 0 as r ---> l. 
If f E C(T), then IITJLrf - fllc(T) ---> O. 

PROOF. By 2.2.2 and 1.9.1. 

2.2.3 Proposition. Let f E Ll(T) and let J(n), nEZ, be its Fourier 
transform. Then 

(f * Pr)(() = L J(m)rlmle-imlJ. 
mEZ 

PROOF. 

The uniformly convergent series LnEZ rlnlein(lJ-ip) can be integrated term 
by term, giving 

The result follows by setting -n = m. D 

2.2.4 Spectral synthesis theorem. 

(i) Let f E LP(T), 1 ::; p < +00. Set 

9r(() = L rlnlJ(n)e-inlJ. 
nEZ 
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Then Ilf - g,llV' --+ 0 as r -+ l. 

(ii) Let f E C(T). Then Ilf - g,llc(T) --+ 0 as r --+ l. 

REMARK. Since gr is defined in terms of the Fourier transform of f, the 
theorem shows that f can be reconstructed from its Fourier transform. 

PROOF. By 2.2.2(v) and 2.2.3. 

2.2.5 Theorem on conservation of energy. Let f E U(T). Then 

(i) 
nEZ 

(ii) Ilf((}) - t [(TI)e-iT/ell -+ 0 as p -+ +oc. 
11--1' L2 

Plancherel's theorem. Let P(Z) denote the set of sequences such that 

2: lan l2 < +:x. 

(iii) The mapping f -+ 1 defines an isometric isomorphism from L2(T) 
onto P(Z). 

PROOF. Siuce the characters on T are mutually orthogonal, 

By Bessers inequality, 

IIflll2 2: L l[(nW. 
nEZ 

For a proof by contradiction, assume that the inequality is strict. Since 
Ilf - g,ll£2 -+ 0 by 2.2.4, Ilgrll£2 -+ Ilfllp· Hence 

lim L r 2lnl l[(nW > L 1[(71)1 2 , rn 
nEZ nEZ 

a contradiction: Bessel's inequality is in fact an equality and (i) is proved. 
Let l-jJ denote the vector subspace of L2 generated by those e inO for which 

-p S n S p. Then (cf. 1.6.4 and 1.5.3) the orthogonal projection of f onto 
Vp can be written as 

s1'((}) = L [(n)e- inll . 

Inl'S1' 
By the Pythagorean theorem, 

whence 
Ilf - 8 1' lli2 = IIfll12 - IIs1'll12 = L l[(nW, 

Inl>1' 
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where the second equality follows from (i). Since the last expression tends 
to zero, (ii) is proved. 

To prove (iii), let U : L2(T) ----> £2(Z) be defined by U(f) = {fen)}. 
Then U is an isometry by (i). It follows that the image of U is a complete 
subspace of l2(Z) and hence is closed. 

Let W = {{an} E £2 : an = 0 except for finitely many n}. The function 
that maps {an} E W to the trigonometric polynomial L an e -inO is con­
tinuous, since the sum is finite. Because the function is continuous, it lies 
in L2; thus U(L2) ~ W. Since W is dense in £2 and U(L2) is closed, we 
conclude that U(L2) = £2. D 

2.2.6 The Fourier inversion formula 

If we are given I and want to evaluate the function I at a point, the only 
result at our disposal so far is 2.2.4(ii). The drawback of this formula is 
that it involves a double limit: we must first sum a series, then let r tend 
to l. 

We would like to obtain results on the convergence of the partial sums 
of the Fourier series of I, that is the sums 

n=+p 

sp(O) = L fen)e- inO . 
n=-p 

Theorem 2.2.5(ii) is a convergence theorem for the L2 norm. 
Lennart Carleson showed in 1965 that the partial sums of the Fourier 

series of a function I in L2(T) converge almost everywhere to I. He thus 
resolved a problem that had remained open for fifty years. The following is 
an elementary result. 

2.2.7 Fourier inversion theorem. Let I E L1 (T). Assume 

(i) 

Then 

( ii) 

L Ifen)1 < +00. 

1(0) = L l(n)e- inlJ for almost every o. 
nEZ 

If f is also continuous, equality holds everywhere. 

PROOF. Set 

gr = 1* Pr = L l(n)rlnle-ino and 'P(O) = L l(n)e-ino . 
nEZ 

Then 'P E G(T) since the series converges uniformly. We now show that 

( iii) II'P - grIIC(T) ----> O. 
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Clearly 

II'P - g,.IIC(T) ~ L 1!(n)l(l- rlnl). 
n 

Given E, fix p so that I:lnl>p If(n) I < E/2. Then I:lnl:Sp If(n)l(l - rlnl) 
is the sum of 2p + 1 terms, each of which tends to zero. This proves (iii). 

It follows from the inequality Ilg,. -'PIlL' ~ IIg,.-'Pllc(T) that lim,.->o IIgr­
'PilL' = O. By 2.2.4, 

III - 'PilL' = O. 

Thus I and 'P are equal a.e., and (ii) is proved. 
Suppose that I is continuous; then, since 'P is continuous, so is 1- 'P = u. 

If u were not identically 0, {u -I- O} would contain an interval, contradicting 
(ii); hence u = 0 everywhere. 0 

(iv) REMARK. As an element of L1, f is defined only up to a set of measure 
zero. (ii) means that the equivalence class of f under the relation of equality 
almost everywhere contains a continuous function, namely cp. It is reasonable to 
take this continuous function as a representative of the equivalence class of f. 

2.2.8 Density of the trigonometric polynomials 

A finite linear combination of exponentials is called a trigonometric poly­
nomial. 

Proposition. The trigonometric polynomials are dense in the normed 
spaces U(T) (1 ~ p < +(0) and C(T). 

PROOF. Since C(T) is dense in LP by II-3.5, it suffices to prove density in 
C(T), recalling that II IILP ~ /I IIc(T)' 

Let h E C(T) and let E > 0 be given. Using 2.2.4(ii), fix r such that 
IIh - h,.IIC(T) < ~. Decompose h,. as 

h,.(8) = L h(n)rlnle-inO + L h(n)rlnle-inO. 
Inl:Sp Inl>p 

Note that Ih(n)1 ~ IIhllL'(T) ~ IIhllc(T); this implies 

Since r is fixed, this expression is less than ~ for sufficiently large p. Thus 

h - L h(n)rlnIX_n < E.O 

Inl:Sp 
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Corollary (Injectivity of the Fourier transform on measures). Let 
J-L, v E M1(T) satisfy 

Ii(n) = D(n) if n E Z. 

Then J-L = v. 

PROOF. Let Q be a trigonometric polynomial. By linearity, J Qdv = J QdJ-L. 
Since the trigonometric polynomials are dense in G(T), it follows that 

! fdv = ! fdJ-L Vf E G(T).O 

Corollary (Uniqueness of Haar measure on T). Let p be a Haar 
measure on T. Then there exists a constant c such that p = c g! . 
PROOF. By 1.5.2, pen) = 0 if n =I- O. It thus suffices to use the preceding 
corollary. 0 

2.3 Extension of the results to Tn 

The Poisson kernel is defined on Tn by 

n 

Pr«() = II Pr«(k), (= «(1, ... , (n) E Tn. 
k=l 

Since the Haar measure dv( () = dv( (1) ® ... ®dv( (n) is a product measure, 

By 2.2.2 each term converges narrowly to t5ek ; hence Pr«()dv«() converges 
narrowly to t5e • 

It can be shown as in 2.2.3 that, for all f E L1(Tn), 

2.3.1 (J * Pr)(O) = L j(m)rllmlle-im.o, 
mEZ n 

where Ilmil = Im11 + Im21 + ... + Imnl and m.O = E~=l mkOk . 
The following theorems are proved as in 2.2. 

2.3.2 Spectral synthesis theorem. Let f E £p(T) (1 ::; p < +00). Set 
gr(O) = E j(m)rllmll e-im.O• Then 

If f E G(T), then 
IIf - grIlC(T) ---+ o. 
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2.3.3 Theorem on conservation of energy. Let 1 E L2(Tn). Then 

(i) 1111112 = L 1!(m)12. 
mEZn 

Set sp(8) = LrnESp !(m)e-im.l1 , where Sp = {m E Zn Imkl::; p Vk}. 
Then 

( ii) 

(iii) (Plancherel) The mapping 1 --+! is a bijection 01 L2(Tn) onto£2(Zn). 

2.3.4 Fourier inversion theorem. Let 1 E Ll(Tn). Suppose that 

(i) L 1!(m)1 < +00. 
mEzn 

Then 

( ii) 1(8) = L j(m)e-im.e for almost every 8. 
mEZn 

(iii) If f is continuous, equality holds everywhere. 

2.4 Spectral synthesis on R 

2.4.0 Regularity of the Fourier transform on R n 

Let 11 E Ml (R n). Its Fourier transform is defined by 

2.4.0.1 Proposition. The Fourier transform fi(t) is a bounded continuous 
function and 

( i) 

PROOF. Set 11 = kll1l with k E L~. Then 

fi(tn) = J eitn .xk(x)dll1l(x). 

If the sequence {tn} converges to to, the sequence of functions {eitn.xk(x)} 
converges everywhere to eito.xk(x). Since it is bounded in modulus by 
1 E L II-' 1 , Lebesgue's dominated convergence theorem implies that fi( tn) --+ 
fi ( to). Finally, 
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2.4.0.2 Theorem (Lebesgue). If f E U(Rn), then its Fourier transform 
J(t) = IRn eit .x f(x)dx is a continuous function that vanishes at infinity, 
and 

(i) 

PROOF. Since f(x)dx E Ml(Rn), the only new property to be proved is 
that 

J(t) -70 as Iltll -7 +oc. 

Let E > 0 be given. Since the translation operator is continuous on 
Ll(Rn), there exists TJ such that 

( ii) IITyf - fll£l < E if Ilyll < TJ· 

It follows from the property Tyf(t) = eiy .t l(t) that (Tyf - f)l'·(t) 

(eiyt - l)J(t). 
Using (i) and (ii), 

( iii) I(eiyt - l).f(t)1 < E if IIYII < TJ· 

If t satisfies Iltll > 7rry-l, we can find y such that y.t = 7r and IIYII < ry. 
Hence, by (iii), 

2.4.1 Dilations and the Fourier transform 

A dilation on R is multiplication by a positive number A: 

X f---+ AX 'Vx E R, A fixed, A > O. 

Given a function u defined on R, let 

(i) 

Take u E Ll (R) and set A -IX = y. Then I u)..(x )dx = I u(y)dy. In partic­
ular, 

( ii) 

Similarly, again setting A -1 X = y, 

(iii) u)..(t) = J u)..(x)eitxdx = J u(y)eit)..Ydy = U(At). 

2.4.2 Lemma. Let u E L1(R) and assume that I u(x)dx = l. Then, as 
A -7 0, 1L)..(x)dx converges narrowly to the Dirac measure at 0 and satisfies 
hypotheses (iii) and (iv) of Theorem II-6.8. 
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PROOF. Let f E Cb(R) and set JI(x) = f(x) - f(O). Then 

J u)..(x)f(x)dx = f(O) J u)..(x)dx + J JI(x)u)..(x)dx. 

Since the first integral on the right-hand side equals 1, it suffices to show 
that the second tends to zero. Setting oX -lX = y, we can write this integral 
as J JI(oXy)u(y)dy. Fix A so that ~YI>A u(y)dy < ~IIJIllc;;' Then 

J JI(oXy)u(y)dy 
J1YI<OoA + J1Y1>A' 

IJ1Y1>AI 
< IIJIlb J lu(y)ldy < ~, and 

lyl>A 

IJ1YI<OoAI 
< maxltl9A IJI(t)lllull£l· 

Since A is fixed, oXA --> 0 as oX --> O. Since JI (0) = 0 and JI is continuous, 
the last expression will be less than ~ for oX sufficiently small. 0 

2.4.3 Proposition. For every j}, > 0, 

( i) 

PROOF. Cf. IV-4.3.2(ii), where this formula is proved for j}, = 1. The general 
case is obtained by applying 2.4.1(iii). 

2.4.4 Proposition. Set 

Then, as j},--> 0, GJi,(x)dx satisfies the conclusions of 2.4.2. 

PROOF. It follows from 2.4.3(i), with t = 0 and j}, = 1, that 

It now suffices to apply 2.4.2. 0 
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2.4.5 Spectral synthesis theorem. Let f E L1(R), let 1 be its Fourier 
transform, and set 

( i) 9JL(X) = 1 e-itx j(t) exp ( _ t;) :!. 
If f E L1 nLP (1 ~p < +00), then 

( ii) 

REMARK. We must assume that f E L1, since otherwise the integral defin­
ing the Fourier transform 1 does not converge. Moreover, since II 111 £0'" ~ 
Ilfll£1, this assumption implies the convergence of the integral defining gIL" 

PROOF. By 2.4.2 and 1.9, 

( iii) IIf * GIJ. - fllLP ---> o. 

Furthermore, since GIJ. is an even function, 

An integral expression for GIJ.(x) is obtained by interchanging t and x, writing 
/1--1 for /1-, and multiplying by (2IJ.:)1/2 in 2.4.3(i). Substituting this into the 
integral above yields 

The hypothesis f E L1 implies the convergence of the double integral 

J 12 exp ( - t:) If(y)1 dy dt. 

Hence Fubini's theorem can be applied; reversing the order of integration gives 

Recognizing the quantity in brackets as f(t), we have shown that 

(iv) (f * GIJ.)(x) = 1 f(t)exp ( - t:) e- itx g!, 
Now (iii) and (iv) imply (ii). 0 

2.4.6 Fourier inversion theorem. Let f E L1(R). Suppose that 

( i) 
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Then 

( ii) f(x) = e-,tx f(t)- for almost every x. l . ~ dt 

R 27r 

(iii) If f is also continnons, equality holds everywhere in (ii). 

PROOF. Let gIL be defined as in 2.4.5(i). Then, as J1. ---+ 0, the integrand in 
2.4.5(i) tends everywhere to e-,tx j(t). Furthermore, it is dominated by the func­

tion I j( t) I ELI. By Lebesgue's dominated convergence theorem, 

Next, since Ilf - 9ILIILI ---+ 0, we can extract a subsequence J1.k such that 

f(x) = limglLk(x) almost everywhere. 

This implies (ii). 
To prove (iii), note that rp(x) is continuous by 2.4.0.2. Thus rp(x) - f(x) = u(x) 

is continuous. By the same reasoning as in 2.2.7, u(x) = 0 a.e. =? u(x) == 0.0 
In the next section, we will study the space of those functions f to which the 

Fourier inversion formula applies. 

2.4.7 The Wiener algebra A(R) 

Let 
A(R) = {f E Ll(R) : i E Ll(R)}. 

It follows from 2.4.6(ii) that the equivalence class (for equality almost ev­
erywhere) of every f in A(R) contains a continuous function. From now 
OIl, we will take this function as the representative of f. Thus the Wiener 
algebra is contained in the Banach space of continuous functions. 

The Fourier inversion formula can be applied to f if and only if f E A(R). 

We set IlfIIA(R) = IlfllL' + IlillL" 

(i) f E A(R) is equivalent to i E A(R). 

PROOF. By the Fourier inversion theorem, 

f(x) = r !(t)e- itx dt. JR 211" 

Set f(-x) = u(x). Then u(x) = f j(t)eitx g!; that is, 

( ii) u=(!t. 
Hence 

(J) 1\ ELI ¢} u ELI ¢} f ELI . 

(iii) If f E A(R), then f E Co(R) and Ilfllco(R) ::; IlfIlA(R)*' 
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PROOF. By the inversion formula and 2.4.0.1. 

(iv) If f E A(R), then f E LP \:fp 1 ~ p ~ +00. 

PROOF. jlflPdX ~ Ilfll~~lllfll£1' 

(v) If f, hE A(R), then f * hE A(R). 

PROOF. IIf * hllLl ~ IlfllLlllhllLl and (f * h)1I = Ih, whence 

Thus f * h E A(R). 

(vi) Let f, hE A(R). Then (fh)1\ = j * hand fh E A(R). 

PROOF. By (ii), 

By (i) and (v), 1* hE A(R). The inversion formula can be applied, and 

j (fh)( _x)e-itx dx = (1* h)(t). 
27r 

Hence, replacing x by -x, we see that (fh)1I = 1* hE A(R); by (i), fh E A(R). 

(vii) A(R) is dense in LP, 1 ~ p < +00. A(R) is dense in Co(R). 

PROOF. Let L~ denote the LP functions which are zero a.e. outside a compact 
set. Then L~ is dense in LP. Let h E L~. Set hn = h * Gn-" where GJl was 
defined in 2.4.4; then Ilhn - hllLP --+ O. 

We now show that hn E A(R). Let K be a compact set such that hex) = 0 
a.e. on K C • By Holder's inequality, 

where p and q are conjugate exponents. Thus hELl and hn ELl. Moreover, 

whence hn ELl and h n E A(R). 
If hE CK(R), then hn = h * Gn-l E Co(R), hn E A(R), and Ilh - hnllco --+ O. 

o 
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2.4.8 Theorem on conservation of energy. Let fELl n L2. Then 

PROOF. Let f E J} n L2. Set fn = f * Cn-I. Then 

(i) 1 ~ ( t 2
) ~ fn ELand fn (t) = exp - 2n f(t). 

The Fourier inversion theorem can be applied to fn, giving 

f () r f~ ( ) -,.tx dt 
n x = JR n t e 21f' 

Replace fn(x) by this expression in the scalar product: 

r - r [ r -=----t dt] (flf,,)p = JR f(x)fn(x)dx = JR f(x) JR fn(t)e' x 21f dx. 

Since fELl and 1n E L1, the double integral converges and, applying Fubini's 
theorem, we can reverse the order of integration: 

Let n --> 00; then, by 2.4.5, Ilfn - fllL2 --> 0, and the left-hand side thus tends 
to Ilfll~2' Using (i) on the right-hand side, we obtain 

. j' ~ 2 (t2) dt 2 11m If(t)1 exp -- - = Ilf11L2. 
n~oo n 21f 

The sequence {exp ( -~) } is increasing. Applying the theorem of Fatou-Beppo 

Levi shows that 11(tW is integrable and that 

2.4.9 Plancherel's extension theorem. The Fourier transform has an 
extension 

(ii) (21f)-~ U is an isometric mapping of L2(R) -> L 2 (R). 
(iii) U is a continuous bijection of L2(R) -> L2 (R). 
(iv) The inverse of Uis given by 

1-­
U-1(h) = -U(h). 

21f 
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PROOF. Consider the mapping u : f f-+ 1, from V = £1 n L2 to L2. Then, 
by 2.4.8, 

(v) 

Hence u is a uniformly continuous mapping into the complete space L2. 
It thus has an extension to the closure of L1 n L2 in L2, which is just L2. 
Moreover, 2.4.8 extends by continuity and gives (ii). In particular, U is 
injective. It remains to prove (iii) and (iv). By 2.4.7(iv), 

Hence, by 2.4.7(i), 

U(L1 n L2) ::J U(A(R)) = A(R) = A(R), whence 

(vi) U(L1 n L2) is dense in L2 by 2.4.7(vii). 

Next, since (27r)-lU is an isometry, the image of L2 is a complete, hence 
closed, subspace of L2. Thus (vi) implies that U is surjective. Finally, the 
inverse mapping of U is, up to a factor of 27r, an isometry. It follows from 
(v) that it is determined by its restriction to A(R). The restriction is given 
by the Fourier inversion formula, and can be written as 

11'~ 11 --=- 1~ f(x) = - e-,tx f(t)dt = - e itx f(t)dt = -2 U(f). 
27r R 27r R 7r 

This expression for U- 1 on a dense set is valid everywhere, since U- 1 is 
continuous. 0 

(vii) REMARK. What is striking in Plancherel's theorem is that it gives an 
isomorphism of spaces. Thus a problem posed in L2 is equivalent under the 
Fourier transform to another problem posed in L2. 

2.5 Spectral synthesis on R n 

We now generalize the results of the last section to R n. Let 

GJJ>(X) = (2/-1:)n/2 exp ( - 2~ Ilx112) , 

where IIxII2 = (X1)2 + ... + (xn)2. Then GJJ>(x) = I1~=1 GJJ>(xk). 
By (2.4.4), GJJ>(xk)dxk converges narrowly in M1(R) to the Dirac mea­

sure at zero. When /-1 -> 0, /-1 > 0, we find that 
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converges uarrowly to the Dirac measure at zero in All (R"). :'Ioreover, by 
(2.4.3), 

G' ( .) - I/'( /1lltW') il.1'd 
Ji J - (27f)n .fRo exp --2- e t. 

Spectral synthesis theorem. Let f E Ll(RII) and set 

f~( ) (/1lltI12) dt t exp --- --. 
. 2 (27f) II 

Then Ilf - 9J,II£1 -. O. If, in addition, fELl n LIi (1 s: p < +::xJ), then 
Ilf - gpllLp -> O. 

Fourier inversion theorem. Let 

Then A(R") is dense in LIi(RII ). 1 s: p < +::xJ, and iT! Co(R"). 
Furthermore, almost ever'ywhere in :J: (with equality c1)erywhere if fis con­
timwus), 

f(x) = /' .1(t)e-ilJ~, Vf E A(R") . 
.fRO (27f) 

Plancherel's extension theorem. There exists a bijective mapping U of 
L R onto L R such that 2( n) 2( ") 

Alo rcoVf; r. 
1-­

U- 1 (II) = (27f)n U(f/). 

The proofs of these results are identical to those already given for the 
case where II, = l. \Ve end this section with a new result. 

2.6 Parseval's lemma. Let f E A(Rn) and let /1 E lIP (R"). Then 

/' f(:l:)d/1(J') = -( 1)1/ /' .1(t)ji( -t)dt . 
.fRO 27f .fRn 

PROOF. The Fourier inversion theorem. 

1 l ~ . f(:r) = -(2)11 f(t)e-il·I:dt, 
7r . Rri 

can be llsed to write f as a function of l on the left-hand side of the 
assertion of the lemma'. Since .1 E L1, Fubini's theorem can be applied to 
the resulting double integral. We obtain 
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Corollary. Let /1, /1' E M1(Rn) such that ji(t) = ji'(t). Then /1 = It'· 

PROOF. For all f E A(Rn), 

r f(x)d/1(x) = r f(x)dl/(x). JRn JRn 
Since A(Rn) is dense in Co(Rn ), /1' = /1. 0 

3 Vector Differentiation and Sobolev Spaces 

3.1 Differentiation in the vector sense. The spaces WI 
The goal of this section is to interpret the notion of derivative in terms of 
translation operators. The advantage of this point of view is that, since the 
Fourier transform realizes the spectral analysis of translation operators, the 
same will be true for differentiation operators. 

Given f E LP(Rn ) and a E R n , we say that the derivative of f in 
the direction of a exists in the LP sense and equals Daf if, when f --+ 0, 
limc 1(Twf - 1) ex'ists in LP(Rn) and equals -Daf. 

We then have 

Let 

wi = {J E LP(Rn) : Daf exists in the LP sense for every a ERn}. 

Decomposing a = a1e1 + ... + anen with respect to the canonical basis of 
R n , we write Daf = 2: ak Dekf if f E Wi- Given an integer s > 1, we 
define 

WI = {f E Wi: Daf E W:_ 1 "If ERn}. 

If f E Wl', D a, D a2 •.• D aJ is defined recursively. 

3.1.1 Theorem (Spectral analysis of differentiation operators). Let 
f E Wl. Then 

Daf(t) = -i(a.t)[(t). 

PROOF. Daf E L1, and hence Daf is well defined. Since the convergence 
occurs in L1, the order of integration in the following expression can be 
reversed: 

By 1.7.2, 

_ (eiw .t - 1) ~ ~ 
-Daf(t) = lim f(t) = i(a.t)f(t).D 

c--->O f 
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3.1.2 Corollary. If fEW}. then 

., 
(D"l D(L2 ... Daj)A(t) = II (-i(ak.t))](t). 

k=1 

3.1.3 Theorem. If f E VV;, then 

](t) = o(lltll-') as Iltll --> 00. 

PROOF. D;~ ELI. By 2.4.0.2, D:'f tends to zero at infinity. Hence la·W ](t) 
tends to zero at infinity, and this is true for every fixed a. 0 

3.1.4 Corollary. W'~+I C A = {J E Ll : i ELI}. 

PROOF. Since ](t) = o(lltll-n - l ) and i E Co, it follows that i E U. 0 

3.1.5 Proposition. Let IL E AI1(Rn) be a finite measure and let f E WI' 
(where 1 -s: p < +::x:). Then TIJ E WI' and 

PROOF. TaTpJ = TI1T(j} and C1(Tw - I)TIJ = TI,[C1(Tw - I)fl· 
Since Til is a bounded operator on LJI, the convergence of the right-hand 

side implies the convergence of the left-hand side. 0 

3.2 The space V(Rn) 

3.2.0 Definition. Let V(R") denote the space of infinitely differentiable 
functions on R n with compact support. We show that V(Rn) contains 
functions that are not identically zero. Let 

f(r) expC-=-l,) if 0 < r < 1 

o if r -s: 1. 

Set 

Then F is infinitelv differentiable. Since F > 0 on R n and F > 0 on a 
nonempty open set, .t F(x)dx > O. Let F(x) =-o:F(x), where the constant 
0: is determined so that J F(x)dx = l. Then, setting 

( ii) 

it follows from 2.4.2 that F;, (x )dx -> Do narrowly. 
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3.2.1 Proposition. If cp E V, then cp E WI' (1 ::; p ::; +00) for every 
positive integer s. In particular, 3.1.2 holds. Furthermore, 

'" k acp DaCP = 0 a axk ' 

PROOF. We use Taylor's formula with integral remainder: 

The right-hand side tends to zero uniformly in x when E ---> O. As its 
support lies inside a fixed compact set, we obtain convergence in all LP 
(1::; p ::; +00). 0 

3.2.2 Corollary. If f E LP and cp E V, then f * cp E WI' for every integer 
s > O. 

PROOF. CI(Tw - I) (1 * cp) = f * (Tw - I)clcp. 
The last term on the right-hand side converges in LI by 3.2.1 applied to cp, 
with p = 1, s = 1. 0 

3.2.3 Proposition. Let {l E MI and assume that {l has compact support. 
Then (TIlCP) E V for every cp E V. 

PROOF. Let KI be the support of {l and let K2 be the support of cpo Then 
the support of TIlCP lies in the compact set KI + K 2. 

Moreover, 

Differentiating with respect to Xl under the integral sign is legitimate since 
g;:, is continuous and the integral is taken on a compact set. Hence 

3.2.4 Proposition. The space V is dense in LP (1 ::; p < +00). 

~ROOF. Let f E L~. Using the truncation operator, we see that there exists 
f E LP such that f is zero outside a compact set and 

Ilf - lib < E. 

Set 1* F).. = u)... Then, by 3.2.0(ii), 

Ilu).. - 111 Lp ---> 0 as A ---> O. 

Since 1 E LP and J has compact support, it follows a fortiori that 1 E U. 
Hence, by 3.2.3, f * F).. E V. 0 
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3.3 Weak differentiation 

3.3.1 Definition. \Ve denote by Lloc the functions which are integrable on 
every compact set. Given f E Ltoe' the Radon measure f(x)dx is called the 
measure associated with f. 

f E Lfoe is said to have a derivative in the direction of the vector a in 
the weak: sense, or a weak derivative, if there exists U a E Lfoe such that 

j f Du.'P = - j l1o'P, \:I'P E D. 

The reader familiar with the distribution theory of Laurent Schwartz will 
recognize a special caJ-;e of differentiation in the sense of distributions. 

3.3.2 Theorem. Let f E UJ. Then the following statements are equivalent: 

(i) f E Wr 
(i'i) For every a E R IL , Dof e:r;ists in the weak: sense and D"f E U). 

PROOF. (i) =? (ii). The identity J(Taf)h = J f(T-ah) implies 

(iii) j(t-1(Trll-l)f)h= jf(Lf(lh-h)C 1 \:IfEV', hEU. 

\Vriting (iii) with h = 'P. we can pass to the limit on the left-hand side 
since 'P E D C L'I, anel 011 the right-hand side since 'P E Wi by 3.2.l. This 
yields the formula for integration by parts: 

j Da!'P = - j f(Da'P) \:If E Wi, 'P E D. 

Hence Uo = Dof, and (iii) follows since Do! E LP. 
The proof that (ii) =? (i) uses the following version of Taylor's formula 

with integral remainder. 

3.3.3 Lemma. Let f E Ltoe and suppose that f has a weak: derivative in 
the direction of a, say 11". Let Pc be the Radon meaS11re defined by 

(g, Pc) = j.f g( -(a)d(, \:Ig E Cb(Rn). 
o 

Then 
-E-l[Twf - fl = T(I,l1". 

PROOF. Let 'P E D. Using formula 3.3.2(iii), Taylor's formula with integral 
remainder for 'P, and Fubini's theorem, we have 
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Since f is weakly differentiable in the direction of a, 

-J (Lt,a<p)(x)ua(x)dx 

-J <p(x) (TE,aua)(x)dx, 

whence 

As we saw in 3.2.4, V is dense in Lq; this implies that the quantity in braces 
is the zero function of LP: 

3.3.4 Proof that (ii) =? (i) in Theorem 3.3.2 

The result follows from considering the limit of the right-hand side of (*) 
and using 1. 9.1. 0 

3.3.5 Corollary. Let {el, ... , en} be a basis for R n and let {In} be a 
sequence of functions in Wi such that IUn - filLP ---> 0 and, for all k, 
D ek fn converges in LP. Then f E Wi and, for any a in R n , 

PROOF. It suffices to prove that f is weakly differentiable in the direction 
of a. The hypotheses allow us to write 

Since fn and Dek fn converge in LP and since Dek <p and <p are in Lq, we 
can pass to the limit in this equation, obtaining 

That is, f is weakly differentiable in the direction of ek and its weak deriva­
tive is 

lim(Dekfn) E £P. 

Let a E R n , say a = 2: akek. Then Dafn = 2: ak Dek fn, and hence f has a 
weak derivative in the direction of a which is equal to 2: ak lim Dekfn. By 
Theorem 3.3.2, f E Wi and Daf = 2: ak lim Dek fn = lim Dafn. 0 

3.3.6 Corollary. Let Wi be given the norm 

Ilfllw!, = IlfllLP + L IIDekfiILv, 
k 
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where {el,"" en} is the canonical basis of Rn. Then T-Vi is a complete 
normed vector space and Da is a continuous mapping from Wi into LP. 

PROOF. The only statement that is not obvious is that Wi is complete. If 
{In} is a Cauchy sequence in the Wi norm, then both {f n} and {D ek fn } 
are Cauchy sequences in the LP norm. 

Since LP is complete, fn converges to some f E £1'. Moreover. f E Trf 
by 3.3.5. By definition, 

Ilfn - fllwi = Ilfn - fllLI' + L IIDekfn - Dekfllu'. 
k 

Since IIDekfn - D",fIILP --> 0 by 3.3.5, fn converges to f in Wi- 0 

3·4 Action of V on Wf. The space W:'loc 

3.4.1 Proposition. Let 'P E V and let the operation of multiplication by 
'{J, written mcp) be defined by (mcpJ)(x) = r.p(x)f(x). Then 

mcp : WI --> WI for every p E [1, +00] and for every integer s. 

PROOF. We prove the proposition when s = 1. First we show that 

( i) 

This formula is proved by passing to derivatives in the weak sense. Let Da denote 
the weak derivatives. Then 

Furthermore, by Leibnitz's formula for continuously differentiable functions. 
-'PDaCI/J) = 1/JDa('P) - Da('P1/J), whence 

Let 

- j jDa(:p,¢) + jfl/JDa('P) 

j Da(J):p1/J + j 1PjDa('P). 

Then G is orthogonal to every 1/J E D. Since D is dense in Lq if q < +x, it 
follows that G is zero. If p = 1, the fact that G = 0 follows from the density of 
Din Co(Rn). Thus (i) is proved for weak derivatives: 

Since :p and Da'P are in L oc , the right-hand side is in LP if j E ~V{'. Theorem 
3.3.2 then gives the result. D 
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3.4.2 Differentiable partitions of unity 

Theorem. Let Un be an open cover of an open subset 0 ofRn . Then there 
exists a partition of unity 'Pn such that 

and 

o ::::; 'Pn ::::; 1, 
'Pn E V(Rn), 

sUPP('Pn) C Ua(n) cO, 

L 'Pn(x) = 1, \;fx E O. 

The series is locally finite; that is, for every compact subset K of 0, 
supp ('Pn) n K = (/) except for a finite number of indices. 

PROOF. Let 

Kn = {x EO: dist(x, OC) ;::: ~ and Ilxll ::::; n} . 
Then each Kn is a compact set contained in 0, and the union of all the 
Kn equals O. By Theorem II-1.4.1 we can find a partition of unity with 
continuous functions fn. We may also assume that Un: is a locally finite 
cover. Set 

2En = dist(supp (In), U~(n»)· 

Let 1/;n = FEn * fn' where F).. was defined in 3.2.0(ii). Then 

By 3.2.3, 1/;n E V since FEn E V. 
Next, writing out the integral expression for 1/;n, 

we see that 1/;n (x) > 0 whenever f n (x) > O. Hence 

L wn(x) > 0 for every x E O. 

Set 

r(x) = L 1/;n(x). 

Then 1'-1 is an infinitely differentiable function and 'Pn = r- 11/;n satisfies 
the conditions of the theorem. D 
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3.4.3 The spaces R~;)I()( 

(i) Let 0 be an open set in R". \Ve denote by V( 0) the infinitely differ­
entiable functions defined in 0 which have compact support. A function 'P 
in V(O) can be extended to R" by setting 'P(x) = 0 for J: ~ O. 

\Vrit.ing .:p for the extension of 'P to R n, we note that :p is infinitely 
differentiable: given a point ;co on the boundary of 0, there exists an opel! 
neighborhood V of Xo in R" which does not meet the support of y. Hence 
:p vanishes identically in V ami is therefore infinitely differentiable. Tlms 

(ii) V(O) :::: {'P E V(R") : supp ('P) cO}. 

\Ve define 

{f defined and measurable on 0: 
f'P E nT(R") for any y E V(O)}. 

(iii) Proposition. f E W{)lo,(O) if and only if for every .to E 0 there 
exists an open neighborhood 1feo of :1'0 in 0 such that 

'Pf E vvt(R") Vy E V(Rn) with supp(y) c ~(J' 

PROOF. The forward implicaLioIl is trivial. The reverse implication is proved 
by using a partition of unity subordinate to the cover {Vro }' where Xo EO. 
o 

8.5 Sobolev spaces 

\Ve now study the spaces TV;. Since TV; is a subspace of [2 for ewry 8. 

Plancherel's theorem allows us to characterize its image under the Fourier 
transform. The space TV; is written H" and called the Sobolev space of 
order 8. The isomorphism of [2 (R") onto [2 (R") defined by Plancherel's 
extension of the Fourier transform in 2.5 is denoted by F. 

3.5.1 Theorem. Let f E [2(R") and let h = F(J) be its Fourier-Plan­
cherel tmnsfoTrn. Then the following two statements aT'e equivalent: 

(i) 

(ii) 

f E H'. 

r Ih(tW(1 + IltW}'dt < +:)0. JRIl 
PROOF. Restricting to the case where s = 1. we first show that (i) =} (ii). 
For f E HI, we have the following extension of Theorem 3.l.1: 

(iii) F(D"J) = -itkF(J)(t). 

To prove this, note that F(Tu.,J) = eitl'F(J) and 
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Since the left-hand side converges in £2 to -F(Dekf), the right-hand side 
also converges in £2. Passing to a subsequence Ek, convergence in £2 implies 
convergence a.e.; (iii) follows since the right-hand side converges everywhere 
to (itk)h(t). Hence 

f E H S =} h E £2 and (tkh(t)) E £2, 

and therefore 
Ih(t)12(1 + ti + ... + t~) E £1. 

We now prove that (ii) =} (i). Let cp E D; then, by Plancherel, 

J f DekCP = (2~)n J F(f)F(DekCP)· 

By (iii) (or 3.1.1), F(DekCP)(t) = -itkF(cp)(t), whence 

J f DekCP = (2~)n J (itk)F(f)(t)F(cp)(t)dt. 

By (ii), tkF(f)(t) E £2. The inverse Plancherel isomorphism F- 1 can now 
be used to show that there exists a function Uk E £2 such that F(Uk)(t) = 

-itk(Ff)(t). Thus 

J fDckCP = J UkCP; 

that is, the weak derivative of f in the direction ek is the function Uk E £2. 
Theorem 3.3.2 shows that f E Wf = HI. D 

3.5.2 Definition of H S for s not an integer 

Let s be a positive real number that is not an integer. Set 

H S = {f E £2 : in (1 + IltI1 2)SI(Ff)(t)12dt < +00 } . 

We define a norm on H S by 

(i) 

For s I, this norm is different from the R'? norm introduced earlier, 
but the two are equivalent. The advantage of the present norm is that HS 
becomes a Hilbert space with scalar product 

(h Ih)Hs = in (hlh2)(t)(1 + Il t l1 2rdt, where hk = F(fk), k = 1,2. 

3.5.3 Proposition. Let f E H S • Then 

(i) 

PROOF. F(Tp,f)(t) = Ji(t)F(f)(t). Hence, since IJi(t)1 S IlplIM" 3.5.2(i) implies 
that 
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3.5.4 Differential characterization of H' 

Proposition. Let f E L 2 (R") and let 0 < 8 < 1. Then the following two 
statements are equivalent: 

(i) f E H'(R"). 

j. 1 
(ii) Is (f) =. R" IITxf - flli2 Ilxll n +2s d:r < +Xl, wher'e n = dim(E). 

PROOF. \;Y'e use the Fourier-Plancherel isomorphism. Let u = F(f). Then 

Next, we i'let 

() /' I -ill t 12 dx 
,\ ~ = JR" e .. , - 1 Ilxll,,+2s' 

This integral ii'l invariant under the mapping x ---+ A.x, where A is an 
orthogonal matrix. Hence )'C A.~) = '\(0; that ii'l, there exists a function 
1jJ : R+ ---+ R+ such that ),(~) = 1jJ(II~II). 

Note that, under the dilation ~ f---+ a~ (a > 0), 

Setting a:r = y gives 

1jJ(all~ll) = /' le-iyE _ 112 a-ndy a,,+2s = 1j)(all~ll) = a 2s1/J(II.;II). JR" Ilylln+2s . 

Setting II~II = 1, this shows that 7,1)(0) = 02sJj)(1). Hence '\(0 = cll';11 2 8, 

where c is a strictly positive constant. Finally, 

Since f is assumed to be an L2 function, .r lu(';)12d~ < +Xl. Hence the 
finiteness of {, (11) is equivalent to that of 

Corollary. Let f E L2 (E), where oS is a positive real number. Let 8 be 
decomposed as 8 = P + 8', with 0 ::; 8' < 1 and p an integer. Then the 
following statements (iii) and (iv) are equivalent: 

(iii) f E H'(Rn). 
(iv) (D;:~' ... D;',"" f) E HS' , \:1m such that Iml ::; p. 
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REMARK. If s' = 0, then HS' = L2 and this is the definition of H S for 
integer s given in 3.1. 

If s' > 0, then 0 < s' < 1 and membership in HS' is characterized by 
convergence of the integral (ii). 

PROOF. Set Ff = Uj then (iii) becomes 

[~~' G'2 ... ~:n (1 + 11~11)"]u E L 2 , \1m such that Iml -:; p. 

This is equivalent to 

3.5.5 Operator of multiplication by a differentiable function 

Proposition. Let r..p E V(R n) and let f E H S. Then r..p f E HS. 

PROOF. The result was proved for integer n in 3.4.1. Using 3.5.4(iii) reduces 
the proof to the case where 0 < s' < 1. 

We begin by writing 

( i) 

Then, since cp is bounded, 

( ii) 

Set x - Xo = Yj then IE ho(cpf) - r..pTxofl2dx = I Icpf - (Lxocp)f12dy. Thus 

IITx(cpf) - cpTxo (f)lli2 = II(Lxocp - cp)flli2 -:; IIflli211Lxocp - cpllioo. 

By the mean value theorem, 

( iii) 

Substituting inequalities (ii) and (iii) into (i), we obtain the integral convergence 
criterion 3.5.4(ii). D 

3.5.6 The spaces Htoc( 0) 

Let 0 be an open set in Rn. We say that f E Lfoc(O) if flK E L2(Rn) 
for every compact subset K of Rn. For s > 0, we say that f E Htoc(O) if 
r..pf E HS(Rn) \lr..p E V(O). The next proposition follows essentially from 
3.5.5. 

Proposition. Let f E Lfoc( 0) and suppose that, fOT eveTY Xo EO, theTe 
exists a function r..p E V(O) such that r..p(xo) i- 0 and r..pf E HS(Rn). Then 
f E Htoc(O). 

PROOF. Let v E 1)(0) be such that v == 1 on a neighborhood of Xoj assume that 
its support supp (v) is small enough that cp(x) i- 0 on supp (v). Multiplying by 
'P(x) v(x), we obtain 

\lxo EO 38 E 1)(0) such that 8cp E HS(Rn) and 8 == 1 on a neighborhood of Xo. 
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Let iJ:ro = interior of B --I (1). Then, for Xu EO, the collection {Uro} is an open 
cover of O. Let Xl, ... ,X" E D(O) be a partition of unity subordinate to this 
cover. Then Xnl = XnBl, where B corresponds to the open set U containing 
supp (Xn). By :3.5.5. Xn(Bj) E H'; that is, KnJ E H S for every s. 

Let '-P E D(O). Then the identity 1 = L Xnl gives '-PI = L '-Px"l· This sum 
is finite and all the terms are in H": hence rp 1 E H S • 0 

3.5.7 Invariance under diffeomorphism 

Theorem. Let () be an open set in R" and let 9 be an infinitely differ­
entiable diffeomorphism from 0 onto an open set O. If J E Hl~)j 0), then 

(J 0 g) E Hi~c(O). 

PROOF. \Ve use the criterion in :3.5.6. If 8 is an integer, it suffices to compute 
the derivatives of the composite function;;; 09 (where;;; E: D(O)) and to use the 
characterization of H S by means of weak derivatives. ~ 

By using 3.5.4, we may assume that 0 < 8 < 1 and that 1 and 1 have compact 
support. Then the integral :3.5.4(ii) becomes 

Consider the mapping of X defined by 

py(x) = 9(X + y) - 9(Y)· 

Then p is a diffeomorphism for fixed y. Let 

. i' i' ~ ~ 2 dx I,(j) = dy 11(o9(Y) + Py(.E)) - 1(9(y))1 II Iln+2,,' w w x 

Setting o9(y) = Y and PQ(x) = z gives dy = (det o9-l)(y)dy and dx = det(p;l)dz. 
By the change-of-variables formula for multiple integrals, 

Since 09 b a diffeomorphism and all that matters is its restriction to a compact 
set, there exists a constant (;1 such that IIxll 2: clllzil. Similarly, there exists an 
upper bound C2 for the functional determinants. and 

The integral is finite because I E H S (0). 0 

3.5.8 Trace theorem. Let f E H S (R")! and consider Rn-p eRn. Then 
the restriction operator' 
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has a continuous operator extension 

·f p z s> 2. 

PROOF. Let 'P E V(Rn) and write x = y + z, where y E Rn-p and z E RP. 
Then, by the inversion formula, 

Similarly, writing € = ry + (, 

'P(y) = { e-iY .7J cp(ry + ()dryd(. 
lRPxRn-p 

Letting p('P) denote the operator of restriction to Rn-p, we obtain 

( i) (p('P»A(ry) = { cp(ry + ()d(. 
lRP 

Moreover, 

IIp('P)II~s_~ = jl(p('P»A(ry)1 2 (1 + IlryIl2)S-p/2dry 

= Ln-p ILp cp(ry + ()d(1
2 (1 + IlryI12)s-p/2dry. 

By the Cauchy-Schwarz inequality, 

ILp cp(ry + ()(1 + Ilry + (112)s/2(1 + Ilry + (112)-S/2d(12 

~ (Lp (1 + II:~ (1I2)S ) (L)cp(ry + (W(1 + Ilry + (112)Sd() . 

The first integral on the right-hand side, say J(ry), converges since 8 > p/2. 
Moreover, 

and 

J(ry) = Lp (1 + Ilryll~(+ 11(112)s = hc,"<"7J" + hC",>II7J"· 
The first integral is bounded above by 

vol({II(11 ~ Ilryll}) < C(l + II 11 2)p/2-s 
(1 + Ilryl12)s - ry 

and the second by 
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whence J(",) ::; c(l + 11",1I 2)p/2-s and 

IIp(cp)IIHs-P/2 < c Ln-p d",(l + 11",1I 2)p/2-s(1 + 11",11 2)S-p/2 

x [Lp 143(", + (W(1 + II", + (11 2)Sd(] 

< c Ln-p d", [Lp 143(", + 01 2(1 + II", + (11 2 )Sd(] = cllcpllks. 

Thus 

( ii) 

The existence of the desired extension follows from the density of VeRn) 
in HS(Rn). 0 

3.5.9 Corollary (Serge Bernstein). Let s > n/2. Then HS(Rn) C 
Cb(Rn ), where Cb(Rn ) denotes the bounded continuous functions. 

PROOF. The inequality 3.5.8(ii), with p = n, gives 

Since the H S norm is translation invariant, IPn(<p)(x)1 :S cll<pIIHs for every 
x E R n , whence, taking the sup over x, 

( i) 

Let f E HS(Rn). There exists a sequence <pq E V(Rn) such that Ilf -<pqIIHS -> 

O. Then 
Pn(<pq) = uq E Cb(Rn). 

The u q converge uniformly by (i); hence 

lim uq(x) = u E Cb(Rn).D 

3.5.10 Theorem. Let 0 be an open set in R n and let V be an (n - p)­
dimensional submanifold of R n such that V c O. If s > ~, then there 
exists a continuous restriction operator 

where I P s = s --. 
2 

PROOF. Htoc(V) is defined via an atlas of charts on V. This definition is indepen­
dent of the choice of atlas, since passage from one atlas to another is accomplished 
by local diffeomorphisms. 1 The result follows from Theorem 3.5.7. 

Given Vo E V, there is a local diffeomorphism from a neighborhood U of Vo 

to 0 such that the image of V n U is the space Rn-p eRn, and 3.5.9 can be 
applied. D 

ISee, for example, W. Boothby, An Introduction to Differentiable Manifolds 
and Riemannian Geometry (New York: McGraw-Hill, 1987). 
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4 Fourier 'Iransform 
of Tempered Distributions 

Plancherel's theorem, characterizing the image of L2 under the Fourier 
transform, played a major role in the last section. Although we hardly 
considered the spaces Wf (8 integer, p -=f 2), the systematic use of the 
Plancherel isomorphism enabled us to study the spaces HS = W;. In Sec­
tion 5, we will study pseudo-differential operators by restricting our atten­
tion to their action on the classes HS, where we will again use the Plancherel 
isomorphism. 

In this section, we characterize the image under the Fourier transform of 
the space S(Rn) of infinitely differentiable functions which, together with 
all their derivatives, are of rapid decrease. The Fourier transform is an 
isomorphism from S(Rn) onto itself, and S(Rn) will be given a topology 
in which this isomorphism is continuous. The dual of S(Rn) is the space of 
tempered distributions S' (R n) of Laurent Schwartz; the Fourier transform 
induces, by transposition, an isomorphism from S'(Rn ) onto itself. 

Our study of the Sobolev spaces of negative order will parallel that of 
S(Rn) and S'(Rn). 

4.1 The space S(Rn) 

(i) Functions of rapid decrease 

Definition. A continuous function f on R n is said to be of rapid decrease 
if, for any integer m, 

(1 + Ilxl1 2 )m f(x) -> 0 as Ilxll -> 00. 

The space of functions of rapid decrease is denoted by Co,o(Rn) and 
equipped with the following sequence of norms: 

Ilfllm,o = ~~(1 + IlxI1 2 )nlf(x)l· 

Co,o(Rn) is thus a vector subspace of Co(Rn), the space of continuous 
functions which vanish at infinity. Moreover, 

We define 

(ii) S(Rn) = {J E Co,o(Rn ) : aq f E Co,o(Rn), '<:/q = (ql, ... ,qn), 

where 
a1q1f(x) aq f = ..,-::--:-:----'-'-:-:'--~ 

(ax 1)q, ... (axn)qn' 
and this derivative is assumed to exist in the elementary sense. In other 
words, f is infinitely differentiable and all its derivatives are of rapid de­
crease. 
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(iii) Norms on S(Rn) 

A countable family of norms is defined on S by 

Ilfllm.r = sup 118q fllm,Q. 
iqi:'O:r 

These norms can be used to give S(Rn) a metrizable topology, with 
distance defined by 

d(f,O) 

d(f, !') 

2)-(r+m) IIfllm,r 
r,m 1 + IIfllm,r ' 
d(f -!" 0). 

(iv) VeRn) is a dense subset of S(Rn) 

Let tp be an element of VeRn) such that tp = 1 on a neighborhood of zero. 
Set tpn(x) = tp(~). If f E S(Rn), then d(f, ftpn) -+ 0 and ftpn E V. 

A linear functionall on S(Rn) is continuous if and only if there exist m, 
r, and a constant c such that 

Il(f)1 s: cllfllm,r' 

4.2 Isomorphism of S(Rn) under the Fourier transform 

Theorem (Laurent Schwartz). Let f E S(Rn). Then 

(i) JELl and the Fourier inversion theorem can be applied: 

J ~ . t dt 
f(x) = f(t)e-'x,-. 

(27T )n 

(ii) j E S(Rn) and there exist constants Cr,s such that 

IIjllr,s s: cr,sllfllr.m+s, where m > n. 

(iii) The mapping f -+ j defines a topological isomorphism ofS(Rn) 
onto S(Rn). 

(iv) (xkf)"\(x) =i8~kj(t) 
(v) (8~kf)/\ (t) = -itkj(t) 

(vi) If f, 9 E S(Rn), then fg E S(Rn) and (fg)/\ = j *-g. 
(vii) If f, 9 E S(Rn), then f * 9 E S(Rn) and (f * g)/\ = j-g. 

REMARKS. From now on, whenever there is no possibility of confusion, 
S(Rn) will be abbreviated by S. The Fourier transform on S has all the 
right properties: it maps differentiations to multiplications (by -i times the 
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variable of differentiation) and vice versa, and convolutions to products and 
vice versa. 

PROOF. If J E S, 

This identity can be checked by an integration by parts on the right-hand 
side; the variation of the integrated term vanishes because J is of rapid 

decrease. It follows that (::1) A (t) = -itJ(t), and (iv) is proved. More-

over, 

Ihllf(t)1 ~ II ::111£1 ~ II ::lllm,o since m > n. 

(The last inequality uses the fact that (1 + IlxI12)-m/2 E L1(Rn).) 
In general, it follows from repeated integrations by parts that (oq)/I J(t) = 

(-i)lq1tqf(t), whence Itqf(t) I ~ clloqJllm,o, and finally 

( viii) Ilfllr,o ~ cmIIJllm,r. 

Hence J E S implies f E 0 0 ,0 eLl. 
Thus the Fourier inversion formula can be applied, and (i) is proved. 
Let oi be a derivative of order q in t. It can be computed by differentiating 

the Fourier integral under the integral sign: 

Since xq J(x) E S, it follows from (viii) that 

Writing out in detail the norm on the right-hand side gives 

Ilxq J(x)llm,r = L Ilol(xq J(x))llm,o. 
Ill:S;r 

By Leibnitz's formula for the derivative of a product, 

It follows that Iixq J(x) Ilm,r ~ Cm,q IIJllm+q,ro whence 

Ilfllr,s ~ cr,s IIJllm+s,r. 

This proves (ii). 
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To prove (iii), we must show that the mapping f -+ I is surjective. Let 

I t. dt 
hE S be given, and set hJ(:r) =. h(t)e-' .,c (271")n' Then 

(ix) 
1 ~ 

hJ(x) = -( -)-h(-:r), 271" n 

and hi E S by (ii). We now compute its Fourier transform. 

~ J .. A 1 I~ ., 1 J~ ., h (,,\) = e'L h (x)dJ; = -- h(-x)e,';·/ldJ: = -- h(x)e-1x·/ldx. 
1 1 (271")n, (271")fI 

By (i), hi = h. This shows that the Fourier transform is surjective. The 
inven;e transform. given by (ix), is continuous by (ii). Both the isomorphism 
S --+ S and its inverse are continuous: it is thus a topological isomorphism. 

Applying the Fourier isomorphism to formula (iv), which has already 
been proved, gives (v). 

Since f, 9 ESC LI, 1.6.2 can be applied and (f * g)/\ = I9. It is clear 

that the product of two functions in S is in S: if IE Sand 9 E S, then 
I9 E s. It follows that f * 9 E S. This proves the first part of (vii), and the 
second part follows from (vi) by the Fourier isomorphism. 0 

4.3 The Fourier transform in spaces of distributions 

4.3.1 Notation 

Using the notation of Laurent Schwartz, we write S' for the vector space of 
continuous linear functionals on S. S' is called the vector space of tempered 
distributions on Rn. For example, let f.L E .i\J(RfI) be such that there exist 
land C for which 

( i) 1f.L1( {x: Ilxll < R}) .::: c(llxl1 2 + It 
Then.r f(J;)df.L(x) converges Vf E S and defines a distribution in S'. 

4.3.2 Operations on S' 

These are derived by transposition from continuous linear operations on S. 

(i) Differentiation is a continuous linear operation on S. Since 

II ::1 t,r S IIJllm.T+l, 

differentiation on 5' can be defined by 

- ({)~1 f. l ) = (J, a~l ) , VI E 5'. 

The left-hand side clearly defines a continuous form on Sl 
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(ii) Multiplication by a polynomial P of degree k is a continuous operation on S. 
Since 

IIP(x)f(x)llm,r :<:: cllfllmH,r, where c = c(P), 

multiplication by a polynomial on S' can be defined by 

(Pf, i) = (I,Pl). 

(iii) S is an algebra: the product of two functions in S is a function in S. That 
S' is an S-module follows from the formula 

(hf,l) = (I,hl), "If E S, 

where land h are fixed elements of S' and S, respectively. 

4.3.3 The weak topology on S' 

Definition. A sequence in E S' is said to converge weakly to lo if 

(I,ln) converges to (I,lo), "If E S. 

Proposition. The operations defined in 4.3.2 are continuous in the weak topology 
onS'. 

In particular, if in -> lo weakly, then 

a a 
ax! in -> ax! lo. 

In other words, the differentiation operator is a continuous operator on S in the 
topology of weak convergence of sequences. 

PROOF. We prove this for differentiation: 

Since l!r E S if f E S, the right-hand side converges to ( - :~ ,lo). 0 

4.3.4 Theorem (Laurent Schwartz). Let a mapping F S' : S' -+ S' be 
defined by setting 

(1, F S'l) = ([, I). 
Then F S' is an isomorphism from s' onto S', mapping weakly convergent 
sequences to weakly convergent sequences. 

Moreover, F S' can be restricted to L1 and L2 by means of the inclusions 
L1 C S', L2 C S'. The restriction of F S' to L1 gives the Fourier integral; 
the restriction of F S' to L2 gives the Fourier-Plancherel transform. 

Finally, the inverse of F S' is given by 

FS~(u) = F S,(u), Vu E S'. 

REMARK. If JL is a positive measure satisfying 4.3.1(i), F S' (JL) is defined 
even though the integral fi(t) might diverge for every t. 
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PROOF. Fixing I E S' and setting 

'P(f) = (1, I), 

we obtain a linear functional on S which, as the composition of continuous map­
pings, is itself continuous. Hence there exists II E S' such that 'P(f) = (f, h). 
Let 

Since f -'> f is an isomorphism of S onto S, its transpose :F S' is an isomor­
phism from S' onto S'. Moreover, by Parseval's relation (cf. 2.6), 

Hence :F S' is an extension of the Fourier integral on L 1. The same result holds 
on L2. 

Finally, the inversion formula for :F S' is proved by transposing the inversion 
formula on S. 0 

4.3.5 Support of a distribution 

Let l E S'. We say that l is zero on the open set 0 if l(",) = 0 for any 
cp E S(Rn) such that supp (cp) C O. Differentiable partitions of unity can 
be used to show that there exists a largest open set n on which l is zero. 
The complement of n is called the support of l. 

4.3.6 Sobolev scales of distributions 

For a fixed positive real number s, let V(Rn) be given the H-s norm 
defined by 

IIcpIlH-S = sup r cpfdx, where f E HS, 1lfllHs :::; 1. JRn 
Since V is dense in H S , IIcplIH-s = 0 implies that cp = O. 

Using the notation of Sobolev, we let H-S(Rn ) denote the completion 
of the space V with respect to the H- s norm. 

Theorem (Sobolev). The Fourier transform extends from V to H- s and 
realizes an isometric isomorphism from H- S onto £2 (R n , Ils), where dlls = 
(1 + IItI1 2 )-Sdt. 

PROOF. If f E HS, then f E L 2 and the Fourier-Plancherel isomorphism gives 

Hence 
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By the Cauchy-Schwarz inequality, 

< 

whence 

[/ d] 1/2 

IlcpIIH-S ::; 4?(t)2 (1 + Itt112)S 

Equality occurs when v(t) = c4?(t)(l + IltI12)-S, with the constant c determined 
so that IlvllHs = 1. D 

4.3.7 Comparison of the two theories 

(i) Proposition. For every s > 0, H-s(Rn) C S'(Rn). 

PROOF. S(Rn) c HS(Rn). Moreover, 

Ilfllm,r 2: IIfIIHS if T 2: s, m > ~. 

Let 8 E H- s . Then 8 defines a linear functional on H S and 

Hence 8 is continuous on H S if H S is given the topology induced by that of S. 
Restricting 8 to S gives a continuous linear functional 81 on Sand 8 I-> 81 defines 
the desired map H- s ~ S'. 

This map is injective: 1) is dense in H S ; a fortiori, so is S; thus a linear func­
tional on H S that vanishes on S is identically zero. D 

(ii) Proposition. Let l E 5' and suppose that l has compact support. Then 
there exists p such that l E H-P(Rn ). 

PROOF. There exists a pair of integers m, r such that 

Il(f)1 < cllfllm,r Vf E S(Rn). 

Let <p E VeRn) such that <p = 1 on the support of l. Then l(f<p) = l(f), 
whence Il(f)1 ~ cll<Pfllm,r. But 

lI<Pfllm,r ~ cll<Pllm,rllfllw,?". 

Moreover, by the corollary to the trace theorem, IIfllL'''' ::; cllfllHs if 
s > ~ and Ilfllw,?" ~ cllfIIHs+r. Hence 

Il(f)1 ~ cllfIIHs+r. 

Thus l extends to a continuous linear functional on H s+r , whence l E 
H-s-r.D 



156 III. Fourier Analysis 

5 Pseudo-differential Operators 

The Fourier transform on R n diagonalizes linear differential operators with 
constant coefficients. This property leads to representation theorems for the 
solution of the homogeneous equation as a limit of sums of complex expo­
nentials, as well as existence theorems for the nonhomogeneous equation. 
These theorems, due to Leon Ehrenpreis and Bernard Malgrange, use the 
Fourier transform in C n as a fundamental tool. 

Complex-analytic methods are needed to prove these theorems, which 
are naturally formulated in the context of Laurent Schwartz's theory of 
distributions. 

To obtain such general results, we would need not only to study locally 
convex topologies on spaces of distributions and duality between locally 
convex spaces, but also to prove minimum modulus theorems for holomor­
phic functions of several complex variables. All these methods originate in 
different currents of thought from those we have followed up to now. 

We will study differentiable operators with variable rather than constant 
coefficients, and on bounded open subsets of R n rather than on all of R n. In 
physics, differentiable operators with variable coefficients invariably appear 
when an inhomogeneous medium is considered. 

At first glance, Fourier analysis seems to have no means of obtaining re­
sults in this setting. It was thus a striking result when Alberto Calderon, in 
1957, introduced an "infinitesimal Fourier transform on the tangent space", 
which assigns a "symbol" to an operator and thereby embeds differential 
operators in the wider class of pseudo-differential operators. In this class, 
one introduces an infinitesimal symbolic calculus which consists of multiply­
ing symbols. Calderon's symbolic calculus theorem states that the symbolic 
calculus corresponds to the composition of operators modulo regularizing 
operators, i.e. with the gain of one derivative. 

The pseudo-inverse of a differential operator can be explicitly constructed 
in integral form. 

This section ends with an application of the pseudo-inverse, in the proof 
of the elliptic regularity theorem. 

Pseudo-differential operators are a basic tool of the theory of partial 
differential equations. The spectral pseudo-decomposition they effect, and 
the integral estimates they entail, make up, to some degree, the extension 
of Sections 1 to 4 of this chapter. 

5.1 Symbol of a differential operator 

5.1.0 Notation 

In order to distinguish clearly between the variables x E R n and tERn of 
the function f(x) and its Fourier transform i(t), we set R n = E, where E 
is an n-dimensional vector space over R, and write its dual as E. The dual 
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pairing is denoted by 

(x,~) or x.~, where x E E, ~ E E. 

For a fixed choice of volume measure on E, the Fourier transform is written 

i(~) = Ie f(x)eix.edx, where f E L 1(E). 

The volume measure d~ on E is fixed so that, on L1(E) n L2(E), 

Similarly, if <P E A(E), the Fourier inversion formula is written 

( i) 

The two measures dx and ~ are called associated. The Fourier-Plancherel 
transform is an isometry of L2(E) onto L2(E). We observe the convention 
of choosing a basis for E in such a way that the associated volume element 
is equal to 1. Under these conditions, we are led to define two bases ek of 
E and ek of E as Fourier-dual if 

(ej, ek ) = 27r if k = j, 
(ej,e k ) = 0 if ki=j. 

Let £(E) be the vector space of infinitely differentiable functions on E, 
and let VeE) be the subspace of £(E) consisting offunctions with compact 
support. We will consider differential operators of the form 

( ii) L = L am (x)8m , 

Iml:"Os 

where m = (m1' ... ,mn) denotes a multi-index, that is a system of n non­
negative integers. Let Iml = m1 + .. . +mn, let 81 = 8j8x1, ... , 8n = 8j8xn, 
and let 8m = 8~1 ... 8:;:n. The coefficients am (x) will be "sufficiently dif­
ferentiable" functions of x. If L is not the zero operator, the largest Iml 
such that am :f:- 0 is called its order. 

Given <P E £(E), we define 

(L<p)(x) = L am (x)(8m <p)(x). 
Iml:"Os 

If am E £(E), then L defines a linear operator from £(E) to £(E). The 
symbol of the operator L is the function defined on E x E by 

(iii) aL(x,~) = eix.eL<Pe(x), where <Pe(x) = e-ix.e. 
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Writing this out in a basis, 

(iv) 

The symbol is thus a polynomial in ~ for every fixed x. The advantage 
of (iii) is that it is independent of the choice of basis, while (iv) appears to 
depend on the choice of basis. 

A differential operator can evidently be reconstructed from its symbol; 
it suffices to write the symbol, in a basis, as a polynomial in ~, and to 
substitute iOk for ~k in the monomials. This elementary calculation can be 
replaced by an integral expression, which has the immense advantage of 
being applicable to functions u(x,~) more general than polynomials in ~. 

5.1.1 Theorem. Let L be a differential operator on E with symbol udx, O. 
Then 

where ij5(0 = J 'P(x)eixt.dx denotes the Fourier transform of 'P. 

PROOF. By 4.1(iv), V(E) C S(E) = S(E), whence ij5 is of rapid decrease. 
Thus udx, ~)ij5(~) is of rapid decrease and the integral in (i) is convergent. 
Moreover, by differentiating the inversion formula 

with respect to 01, we obtain 

and more generally 

The theorem follows by multiplying both sides by am (x), pulling am (x) 
through the integral sign, and summing over m. 0 

5.2 Definition of a pseudo-differential operator on D(E) 

5.2.1 The class of symbols C(;3, r, 0) 

Let ;3 be a real number and let r be a positive integer. We define a class 
C(;3, r, 0) of measurable functions q on E x E which satisfy the following 
two conditions. 
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(i) q has compact support in x; that is, there exists a compact subset K of 
E such that 

q(x,~) = 0 if x tJ- K, for any ~ E E. 

Derivatives with respect to x in E x if are denoted by or:. The functions 
q are required to satisfy the following regularity condition. 

(ii) 11(1 + 11~II)i3o~q(x, ~)IILOO(EXE) < +00 for every multi-index n such that 

Inl::::: r. 

5.2.2 EXAMPLE. Let L be the differential operator of order s considered in 
5.1.0(ii). If the coefficients of L are in W,:"', then 

udx,~) E C( -s, r, 0). 

It is clear from this example that, in the class C(j3, r, 0), the integer r 
corresponds to the regularity of the coefficients and the number -13 to the 
order of the operator. 

5.2.3 Pseudo-differential operators defined on V(E) 

With a given symbol g E C(j3, r, 0) and function 'P E V(E), we associate 
the function 

( i) 

The integral converges since, for fixed x, ij5 is of rapid decrease in ~ and 
g is of polynomial growth in ~. Differentiating under the integral sign with 
respect to x shows that Ag'P E W,:"', and it follows from 5.2.1 that Ag'P has 
compact support. All these observations are trivial; the following theorem 
is not. 

5.3 Extension of pseudo-differential operators 
to Sobolev spaces 

5.3.0 Theorem. Let g E C(j3, r + 1,0) and let n = dim(E). Assume that 
s ~ - 13 satisfies 

( i) 0::::: s < r - n. 

Then there exists a constant cs such that 

( ii) 

(iii) There exists a unique extension of Ag to a bounded operator A~ from 
HS(E) to HS+i3(E). 
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PROOF. Statement (iii) follows from the density of V(E) in HS(E) and 
from inequality (ii). 

Since the HS norms can be computed in terms of the Fourier transform, 
(ii) can be expressed as an inequality between Fourier transforms. Since 
Agip is a bounded function with compact support, its Fourier transform 
can be computed. This computation leads to the following lemma. 

5.3.1 Lemma. 

( i) 

where 

( ii) 

PROOF. 

(Agip)(17) = L eix.rl(Agip) (x)dx = L eix ·1)dx kg(x,f,)ip(f,)e-iX·E.df,. 

The double integral JEXE Ig(x, f,)ip(f,) Idf,dx converges: it is bounded above 
by 

where K' denotes the support in x of the symbol, and the integral on E 
converges because ip is of rapid decrease. Hence Fubini's theorem can be 
applied to reverse the order of integration: 

Fubini's theorem guarantees that the integral on E converges for almost 
every f,. Since 9 has compact support in x, it actually converges for every 
f" and there exists a constant c such that 

(iii) IKg(17, f,)1 S; c(l + 11f,II)-fJmeas (K'). 

5.3.2 Estimating the kernel Kg 

Lemma. Suppose that 9 E C((3, r + 1,0) and let r' be the integer defined 
by r S; 2r' S; r + 1. Then 

( i) 

PROOF. Let {xk} be an orthonormal basis with respect to the metric Ilxll. 
In terms of this basis, the Laplace operator on E is defined by 

n 

Ax = L(8x k)2. 
k=l 
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Then 

Let A~' be the differential operator on E with constant coefficients de­
fined by 

Since g(x,~) has compact support, we can integrate by parts and turn 
derivatives of the exponential into derivatives on g. Thus 

and (i) follows by 5.2.1(ii). 

5.3.3 Proof of the extension theorem 

(i) Lemma. Let f E L2(E) and let F(f) denote the Fourier transform of 

f. Then f E H 8 if and only if F(f)(~) = (1 + 11~11)-8k(~) with k E L2(£). 

PROOF. Cf. 3.5.1. 0 

(ii) Lemma. Let [(g(1/,~) = K(1/,~) (i!\\~::) s (1 + II~II)-~. Let 

(Ggf)(1/) = J [(g(1/, ~)f(~)d~. 

Then 5.3.0(ii) is equivalent to the inequality 

IIGgfllp(E) ~ cllfllp(E), Vf E L2(£). 

PROOF. By 5.3.3(i) and 5.3.1(ii). 0 

(iii) Lemma. 
l[(g(1/, ~)I ~ c(l + II~ _1/112)-r'+~. 

PROOF. This follows from the inequality 

which is proved by considering the following two cases: 

(a) 111/11 ~ 211~11· Observe that the left-hand side is less than or equal to 28. 

(b) 111/11 > 2WI· Observe that 1 + 111711 ~ 1 + 211~ -1/11. 0 
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(iv) CONCLUSION. To prove 5.3.0(ii), note that IGgfl is bounded above by 
replacing Kg with an upper bound for IKgl. Using 5.3.3(iii), it must be 
shown that 

II! (1 + 11~1~(;~I~Y'-s/2d~L2(E) :::; cllfll£2(E)' 

The left-hand side can be written formally as If I * U, where u(~) = (1 + 
11~112)-r' +8/2. 

Next, -2r' + s :::; s - r < -n by 5.3.0(i), whence U ELI. Finally, using 
1.8.2, 

II If I * U 11£2 :::; Ilull£1IIfII£2·D 

5.4 Calderon's symbolic pseudo-calculus 

5.4.0 Motivation 

The Fourier transform maps a differential operator LO with constant coeffi­
cients to multiplication by the symbol 0' LO (~). (The hypothesis of constant 
coefficients is reflected in the fact that the symbol no longer depends on x.) 
Thus the composition of constant-coefficient differential operators LO and 
MO ~ that is, the differential operator QO = LO MO ~ corresponds to the 
product of symbols 0' QO = 0' LO 0' MO. The differential operators with constant 
coefficients form a commutative algebra for which the Fourier transform 
makes possible, to some extent, a spectral theory. 

The differential operators with variable, but infinitely differentiable, co­
efficients also form an algebra: two such operators can be composed. But 
this algebra is no longer commutative. 

For example, consider the differential operators L = Xl a~' and lVI = a~' 
on R. Then 

1 ( a )2 
L]I;1 = x oxl ' a ( a )2 

]1;1 L = oxl +xl oxl ' 
a 

and LM-ML = ox l ' 

Commutativity has been lost. Nevertheless, the commutator LM - !vI L 
is an operator of order 1, while the product is an operator of order 2. 
One might say that commutativity is preserved, modulo operators of lower 
order. 

5.4.1 Introduction to the classes C((3, r, 1) 

A subclass C((3, r, 1) of the symbols C((3, r, 0) is defined by imposing the 
following additional axiom: 

(i) 11(1 + 11~1I)tJ+l(o~no~q)(x,OIIL=(ExE) < +00, Ifm such that Iml :::; r. 

Similarly, a class C((3, r, s) could be defined by differentiating s times with 
respect to ~ instead of once, and replacing (3 by (3 + s. These classes would 
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appear in computing multiple commutators; such computations would arise 
from taking limits that we have held fixed. 

Pseudo-products 

Let p and q be the symbols of the pseudo-differential operators Ap and 
A q. The pseudo-product of Ap and Aq is the operator whose symbol is the 
product of the symbols. This operator is written AqDAp and, by definition, 

Aqp = AqDAp-

With the formula for the derivative of a product, it is easy to verify that 

(ii) if g E C(;3, r, 0) and hE C(;3', r, 0), then gh E C(;3 + ;3', r, 0). 

The pseudo-product is a commutative operation and therefore cannot cor­
respond to the composition of operators. However, it does give an approx­
imation. 

5.4.2 Calderon's commutation theorem. Let p E C(8, 2r + 2,0) and 
let q E C(8', r + 1,1). Suppose that r 2: 8' + l. Set 

R = AqAp - AqDAp. 

Then, for s such that 0 ::; s < n - r, 

( i) 

and there exists a constant Cs such that 

( ii) 

PROOF. Since D(E) is dense in H S , it suffices to prove (ii) when f E D(E). 
As in the extension theorem, we take the Fourier transform of both sides 
of the inequality. For J E D(E), let 

ApJ(T)) = ApJ = Ie Kp(T), OJ(~)d~. 

The kernel Kp was computed in 5.3.l. 
The proof of this theorem will require several lemmas. 

5.4.3 Lemma. 

(i) (Aq(Apf))(A) = J Gq,p(A, ~)j(~)d~, where 

(ii) Gq,p(A,O = Ie dp, J L2 p(z + h, Oq(z, ~ - p,)ei/1h eiz(f,-).,)dh dz. 

PROOF. Composing the kernels gives 
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Replacing Kp and Kq by the expressions given in Lemma 5.3.1, 

Gq,p = C drl r p(x, t;)q(z, T/)eix(f,-r/)+iz(ry-).,)dx dz, 
iF: iE2 

Setting x = z + hand z = z in E2, and T/ = ~ - JL in E, we obtain 

Gq,p= CdJL r p(z+h,Oq(z,~-JL)eiJ1h+iz(f,-),)dzdh.O IE iE2 
5.4.4 Lemma. Let 0 be a compact subset of E containing the suppor-ts of 
p(x,.) and q(x, .). Then there exists an even function 'U E D(E) such that 
U(X1 - X2) = 1 if Xl; X2 EO, 

(i) Gq,p(A,O = C dJL I r p(z + h,t;)q(z, t; - JL)eiz(f,-).,)u(h)eiJ1hdh dz, h ,iE2 
and 

(ii) 1 = L dJL [L U(h)eiJ1h dh] . 

PROOF, Let 
0 1 = {y E E : y = Xl - X2, Xi EO}. 

Then 0 1 is a compact subset of E containing the origin. There exists a 
function u E D(E) equal to 1 on 0 1 , 

The right-hand side of formula 5.4.3(ii) is nonzero if z+h E 0 and z E 0; 
that is, if hE 0 1 . Multiplication by u(h) is multiplication by 1; this proves 
formula (i). 

The I:leconci formula il:l obtained by applying the Fourier inverl:lion formula 
tou E D(E) and noting that, since the origin is in 0 1 , u(O) = 1.0 

REMARK. We must be careful not to write a double integral in (ii), since Fubini's 
theorem does not apply. Similarly, 5.4.3(ii) cannot be written as a triple integral. 

5.4.5 Lemma. (Gq,p - Kqp)(A,t;) = J(A.~) + J(A,O, where 

(i) J(A,O = I r ~u(JL)p(z,mq(z,~ -IL) - q(z,~)leiz(t;-),)dZdJL , iEXE 

(Ii) J(A,~)= hdI1Lq(z'~-JL)eiZ(E-),)dz[L .. ·dhl and 

[L ... dh] = i(P(Z+h,O-P(z,~))eiJ1hu(h)dh. 
PROOF. Formulas (i) and (ii) of Lemma 5.4.4 and 5.4.3(i) imply that 

Gp,q - Kpq J JEXEeiZei;-A)dzdj.l J ei/-'h[ lu(h)dh, where 

[l p(z+h,Oq(z,~-j.l)-p(z,Oq(z,O=[ ll+[ l2 with 
[ L p(z, O(q(z, ~ - j.l) - q(z, 0) and 
[ l2 q(z,~ - j.l)(p(z + h,~) - p(z,O)· 
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Note that the first term no longer contains hj hence the integration in h affects 
only ei/-Lhu(h), which, since u is even, gives u(J.L). Thus we have 

Since U E L1, Fubini can now be applied to obtain (i). Integrating the expression 

[ 12 and applying Fubini to the integral I IE2 yield (ii). 0 

5.4.6 Lemma. Set 

and let 

l(z, €) = p(z, Og(z, €). 

Then I = K l . 

PROOF. Integrate 5.4.3(i) with respect to fJ, then use Lemma 5.3.1. 0 

5.4.7 Estimating the integral I 

We use the extension theorem 5.3.0 to show that 

(i) 9 E C((3' + 1,r + 1,0). 

5.4.1(ii) will then imply that pg E C((3 + (3' + 1, r + 1,0). 
We first use Taylor's formula with integral remainder on IE to obtain 

g(z,O = Ie C~=k qk(Z, €, fJ)fJk) u(fJ)dfJ, where 

qk(Z, €, fJ)=- Iol(a~kq(z,€ - tfJ))dt. 

Differentiating with respect to z gives 

whence, by 5.4.1(i), 

Let v(fJ) = IlfJll IU(fJ)l. Then v is of rapid decrease. Set 
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where A = {tL : Iltlll > "itll }. For any integer In, 

! s j' 14(' S em (1 + m) -In 

. A • t 

l\loreover. 

Hpnce, taking rn 2' 3' + 1, 

(i ii) 

'Nhere the constant C 1 is independent of t. Integrating with respect to t 
gives (i). D 

5.4.8 Estimating the integral J 

\Ve now use Taylor's formula with integral remainder on E. Set 

;;! h.O=jl(iJ,kP)(Z+th,()dt . 
• IJ 

Then p(z + h, 0 - p(z, I;) = :L h k ;;,. \Vriting ih, = iJl,keilJh gives 

- j' (p(z + h. 0 - p(z. Ole"'I'u(h)dh = i j' I: 'PdOJ1ke,hl')u(h)dh. 
E }o' 

Since J1 appears only in the exponential terms and we can differentiate uncler 
the integral sign. 

where 

( i) -4'" IL.O = i .i, 'Pk h.Oe,h/111(h)dh. 

Since 'Pk anciu are sufficiently differentiable in h ancl u has compact support. it 
follows that 11'" which can be regarded as a Fourier transform in h. vanishes at 
infinity together with its first derivative. Substituting into 5~4.5(ii) and reversing 

the order of integration, we can thus integrate by parts on E with respect to ILk. 

and we obtain 

Let 
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Then J = Lk K 9k . We now show that 

( ii) gk E C((3 + (3' + 1, r + 1,0) 

by finding an upper bound for 

Udz,~) = L k(8':la/Lkq)(Z'~ - /1»a';'21/Jk(Z,/1>,~)d/1>, 
ml,m2 

with Imll+lm21 ::;r+1. SinceqEC((3',r,l), 

(iii) IUk(Z,~)1 ::; c L h(1 + II~ - /1>11)-i3'-1Ia';'21/Jk(Z,/1>,~)ld/1>. 
m2 E 

(iv) Lemma. There exists a constant c, independent of~, such that 

where r' is the integer such that r ::; 2r' ::; r + 1. 

PROOF. Using (i), 

The inequality follows, with 

Here K is the support of pin x. 
The following lemma, 5.4.9, together with (iii), (iv), and the hypothesis that 

r > (3' + 1, imply that 

That is, (ii) is proved, and with it the commutation theorem 5.4.2. 0 

5.4.9 Lemma. Let r be a positive number and let 

~ ~ 

hr(ry) = (1 + Ilryll)-r, where ry E E, dim E = n. 

Then, ifr > nand s 2: 0, 

hr * hs ::; c(r, s)ht, where t = inf(r, s). 

PROOF. Let 
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where A(7]) = {A: ~117]11 ::; P·II ::; 2117]11}. Then 

J N('7J ::;max>'EAC('7J (11,\ -7]~1 + 1)8) IlhrllLl ::; (1 + ~17]II)S and 

J A(l/J ::;max>'EA('7J (1 + ~I'\IW Ii1A('7JT'7(hs)IILl, 

where T denotes the translation operator. 
(i) If s > n, then IIIA('7JT'7(hs)IILl ::; IlhsllLl < +00. Hence 

r < 1 
JA('7J - c(1 + II,\IW 

and 
hr * hs ::; c(hr + h8) ::; cht. 

(ii) If s ::; n, then IIIA('7JT'7(hs)IILl ::; ~1'711<211<1I h., = c(1 + lIelll n - s and 

hr * hs ::; chs + c(l + Ilellr- s - r ::; c(hs + hs+1·_n ). 

The conclusion follows by noting that s + T - n > s, whence hr * hs ::; chs. Since 
s ::; n < T, the lemma is proved. 0 

5.5 Elliptic regularity 

5.5.0 Definition. Let L be a differential operator defined on an open subset 
o of Rn : 

L = 2:= am(x)am. 
Iml::;d 

Let (J L (x, ~) be its symbol. L is said to be an elliptic operator if, for every 
compact subset K of 0, there exist two constants Cl, C2 depending on K 
such that 

(i) 

(ii) EXAMPLE. Consider the Cauchy-Riemann operator on R2, 

a a 
Lo = axl + i ax2 (where i = A). 

Then 

(iii) EXAMPLE. On R n , consider the operator 

where the matrix aij is symmetric and positive definite. Then 
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For II~II sufficiently large, the quadratic form dominates the first-order 
terms and Ll is elliptic. 

5.5.1 Theorem. Let L be an elliptic operator of order d defined on the 
open set O. Suppose that the coefficients of L are functions in W 2r+2 , 

where r > d + 1, r > n. Let f E Hl~c(O); then Lf is well defined and 
Lf E Lroc( 0). Under these hypotheses, the following two statements are 
equivalent: 

(i) Lf E Hi~c(O), where 0::; s < n - r. 

f E Hto~d(O), where 0::; s < n - r.(ii) 

PROOF. It is trivial that (ii) =} (i). 
In order to prove that (i) =} (ii), we construct a local pseudo-inverse of L. 

Here pseudo-inverse means an inverse in the sense of Calderon's symbolic 
pseudo-calculus, and local means on a compact subset of O. Let 0 1 be an 
open set such that 0 1 C O. Let 'P and 1jJ be elements of V(O) such that 
'P = Ion 0 1 and 1jJ = Ion the support of 'P. Let Ll = 'PL, u = Lf, Ul = 'PU, 
and JI = 1jJf· Then Ul E HS(E), JI E Hd(E), and 'PL(1jJf) = 'PL(f) since 
1jJ = 1 on the support of 'P. Hence 

(i) 

Let O'Lj(X,~) be the symbol of L 1 . Then O'L j has compact support in x 
(since its support is contained in the support of 'P)' Let 0 E VeE) be equal 
to 1 if II~II ::; c2(Od. Set 

g(x,~) = 'P(x)(l- o(~»[O'L(X,orl. 

Then it follows from 5.5.0(i) that g E C(d, r, 1). 
Moreover, let gO'L j = p, where p(x,~) = 'P2(x)(1- 0(0). Multiplying the 

two sides of (i) by Ag gives 

Set 8(x) = e( -x). Then 

(ApJI)(x) = 'P2 (x) [JI (x) - (8 * JI)(x)J. 

By the commutation theorem (5.4.2), 

Since 'P2(x)(8 * JI)(x) E V(E), it follows that 

( ii) 
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Rh E Hrl+l since .h E Hd: thus cp2 h E H rl+1 if s > l. As this is true for 
every cp E D(O), 

f E H d+ 1 (0) ()r f1/) E Hlrlo+c 1 (0). 
1 loe' ~ 

This last relation holds for every '0; hence f E Hl~)~l(O), and we have 
gained a degree of differentiability. Working backwards, we conclude that 
II E H'i+l and therefore Rf E Hd+2. 

Substituting into (ii) gives 

cp'2 f = Y'V - Rf, with VV E H,+d and Rf E H'1+'2. 

Hence, if.., 2: 2, f E H d+2 (O)): as this is true for all 0), we conclude that 
f E Hd+.2(0). 

loc 
Substituting again into (ii), we find that tpfn E H'i+3(E) for 8 2: 3, 

and hence that f E 1l,~)~3 (01 ), As this is true for all 0 1 • it follows that 

f E H,~~3(0). Hence 

Substituting a third time into (ii) gives. as before. 

\Ve continue this procedure until forced to stop, when d + j > s + d. The 
last possible step gives 

whence f E Hs+d(O).D 
lac 

RE1'vIARK. With appropriate hypotheses on the differentiability of symbols. 
it is possible to let pseudo-differential operatorlS act on Sobolev spaces of 
negative order and obtain the following improvement of the elliptic regular­
ity theorem (5.5.1). Let L be an elliptic operator of order d with infinitely 
differentiable coefficients, and let .5 be a real number. Then Lf E Htac im­
plies that f E Hi~~rl. 



IV 
Hilbert Space Methods 
and Limit Theorems 
in Probability Theory 

1 Foundations of Probability Theory 

1.1 Introductory remarks on the mathematical representation 
of a physical system 

Before we introduce the notion of probability, it seems advisable to describe 
the type of mathematical model used to represent a physical system. 

Representations can be given from two distinct points of view: 

• the point of view of essences, or 

• the point of view of phenomena. 

The point of view of essences, generally that of the pure mathematician, 
consists of thinking that the physical system can be perfectly known. The 
space of all possible states is introduced, and a state is a point in the space 
of states. This point of view is, for instance, that of rational mechanics: the 
state of a system of n physical points is completely determined by a point 
in R 6n (position and velocity of each of the particles). 

The point of view of phenomena, generally that of the experimental 
physicist, consists of observing a few facts which occur in a physical system 
so complex that the physicist, at the outset, concedes that he will never 
understand its basic structure. For example, the physicist can use thermo­
dynamics to analyze the phenomena of a gas without having to determine 
the state of all its molecules. 
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The mathematical model corresponding to a phenomenological represen­
tation is based on a logical calculus. The physicist introduces the set B of 
all events that he will be in a position to observe in studying the physical 
system. B is given the structure of the logical calculus, in which 

• Al + A2 denotes the occurrence of the event Al or the event A2; 

• Al .A2 denotes the occurrence of both the event Al and the event A2; 
and 

• 0 denotes the impossible event and 1 the sure event. 

The set B of all events thus forms an abstract Boolean algebra. (See I-I 
for the definition of Boolean algebras of sets.) 

The phenomenological point of view, initially of more modest scope than 
the point of view of essences, is much more adaptable to describing gains 
in knowledge. Indeed, a physical system described twenty years ago by a 
Boolean algebra Bo of events can be described today, after a more detailed 
analysis, by a Boolean algebra B l . All the events that appeared twenty 
years ago in Bo will appear in B l . Thus there is an injective mapping 

which commutes with the operations of the logical calculus and permits 
Bo to be identified with a subalgebra of B l . Progress in understanding the 
system is described by a sequence of Boolean algebras, 

where the arrows are injective homomorphisms of Boolean algebras. This 
sequence will give progressively more detailed representations of the phys­
ical system, although it may never arrive at a final representation that 
would correspond to complete understanding, beyond the reach of the ex­
perimenter. 

1.2 Axiomatic definition of abstract Boolean algebras 

A Boolean algebra is a set B together with two commutative and associative 
operations, written 

AUA' and AnA'. 

Each of the two operations is assumed to be distributive with respect to 
the other; that is, 

Au (Bn C) 

An (B U C) 

(A U B) n (A U C) and 

(A n B) U (A n C). 
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We assume further that there exist two elements 0 and 1 in B such that 

Au 0 = A, An 0 = 0, Au 1 = I, and AnI = A, 

and that there exists a mapping A ----> A C of B into B such that 

Au AC = 1, An A C = 0, and (N)C = A. 

Using the commutativity and associativity of U and n and the distributivity 
of each of these relations with respect to the other, it is easy to verify that 

Finally, 1 C = 0 and 0c = 1. 

Associated order relation 

Given a Boolean algebra B and A, B E B, we say that A implies B, and 
write A::; B, if AnB = A. 

It is easily verified that::; is an order relation on B. With respect to this 
ordering, 1 is the largest element and 0 the smallest element; that is, for 
any A E B, 0 ::; A ::; 1. 

Using the commutativity of U and n, we note that Au B and An Bare, 
respectively, an upper and a lower bound of A and B. In fact, Au B is the 
least upper bound of A and B and An B is the greatest lower bound of A 
and B. Let us show this, for example, for Au B. Let C be an element of B 
such that A ::; C and B ::; C; then, by definition of the order relation, 

(AUB)nC=(AnC)U(BnC)=AuB, and AUB::;C. 

1.3 Representation of a Boolean algebra 

How to pass from the point of view of essences to that of phenomena is 
clear. 

If 0 is the space of states of the physical system being studied, we asso­
ciate with an event A of this system the following subset of 0: 

A' = {w EO: the event A is satisfied by w}. 

The operations of the logical calculus correspond to taking unions and 
intersections in the set P(O) of subsets of O. \Vith these two operations, 
P(O) is a Boolean algebra. The following statement summarizes our obser­
vations. 

1.3.1 The data of a phenomenological representation of a physical system 
of which the space of states 0 is known are equivalent to the data of a 
Boolean sub algebra of P(O). 
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The converse, that every abstract Boolean algebra can be represented as 
a subalgebra of p(n), is proved in the following fundamental theorem. 

1.3.2 Stone's theorem. Let B be an abstract Boolean algeb·m. Then the'rc 
exist a compact space n and a representation identifying B with a Boolean 
subalgebra ofP(I2) of subsets that are both open and closed in 12. 

PROOF. The proof of Stone's theorem is clear when canl(B) < 00. In this 
case, we define atomic ('vents as those that are minimal in B with respect 
to the relation:::;: then n is the set of atomic evpnts. 

In the general case, wc introduce the notion of a filter 011 l3. A filta F is a 
nonempty subset of l3 such that 

A l . L'b E F ill1plies Al nib E F: 

Al E F, Al <::: A2 implies A2 E F: 

and 

The inclusion relation on the set of subsets of l3 defines an order relation on 
the set of filters: 

An 'ultrafilter is a filter U of l3 such that F = U for every filter F such that 
F?: U. Zorn's lemma shows that. given a filter Fo. there always exists an Illtra­
filter U finer than Fo. I 

1.3.3 Lemma, Let F be u filter on l3 and let An E l3. Suppose that An Ao # 0 
JOT (}ny A E F. Set 

F Ao = {Z E l3 : Z contains (L set oj the jom), A n Au with A E F}. 

Then FAil is a filter. 

PROOF. Clear. 

1.3.4 Lemma. A necessary and sl~fficient condition that a filteT U be an 
'Idtraftlter on B is that, for any Au E B. either Ao E U or Ai; E u. 
PROOF. Suppose that U is an ultrafilter. If ito rt u, then it is impossible that 
AnAo # 0 for every A E U. Otherwise 1.3.3 would imply that UAo is an ultrafilter. 
necessarily finer than U since Ao E U .4u: but this is a contradiction. Hence. if 
Ao rt U and Aej rt u, there must exi~t X, Y E U such that 

All n X = 0 and A;) n Y = 0. 

From this it would follow that X n Y = v), a contradiction. 
Conversely, let F be a finer filter than U. Let An E F. It is impossible that 

All E U, since this would imply At; E F, a contradiction. Hence All E U and 
F = U. 0 

ISee Bourbaki, General Topology, LG.4. 
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1.3.5 PROOF OF STONE'S THEOREM. Let r2 be the space of ultrafilters on the 
Boolean algebra B. 

Let a mapping r.p from B into P(r2) be defined by setting 

r.p(A) = {U E r2 : A E U}, A E B. 

If Al :::: A2 and A2 E U, then Al E U; hence r.p is compatible with the order 
relations, and is thus a Boolean algebra homomorphism. Let us show that r.p is 
injective. Suppose that A i- B; then either A n Be i- 0 or Ae n B i- 0. Suppose, 
for example, that A n B C i- 0, and consider the filter 

:F = {X E B : X :::: An BC}. 

Let U be a finer ultrafilter than :F. Then U E r.p(A) and U rf. r.p(B). 

To endow r2 with a topology, consider r2I = 2B , the product of infinitely many 
sets of two elements with the factors indexed by the set B. Then r2I is the product 
of compact spaces and hence is compact. Let a mapping iJ> : r2 ---> r2I be defined 
by setting 

iJ>(U) = {lU(A)}AEB, 

where lU(A) = 1 if A E U and is zero otherwise. iJ> is clearly injective; thus r2 
can be identified with a subset of r2 1 • We now prove that 

1.3.6 iJ>(r2) is a closed subset of r21. 

PROOF OF 1.3.6. Let r2I be identified with the set of functions f defined on B 
and with values in {O, I}. We will need the following lemma. 

1.3.7 Lemma. f E iJ>(r2) if and only if the following conditions are satisfied for 
any A, A', A", A"' E B: 

f(0) 
f(A) 

f(A" nAil') 
f(A) + f(A C

) 

0, 
::; f(A') if A::; A,' 

inf(f(A") , f(AIII )), 

1. 

PROOF. The first three conditions simply restate the fact that iJ>(U) is a fiiter, 
and the fourth that U is an ultrafilter. 0 

Now let 

Then LA is a closed subset of 0 1 , and nAEBLA is a closed subset of 0 1 . 

Proceeding similarly with the other conditions of 1.3.7 completes the proof 
of 1.3.6. D 

With the topology induced by 0 1 , <1>(0) is compact; pulling back this 
topology makes 0 a compact space. 

Fix Ao E B and define fo(U) = IU(Ao). Then 

<p(Ao) = {U EO: fo(U) = I}. 

Since fo is continuous, <p(Ao) is a closed subset of O. But (<p(AoW = <p(A8) 
is also closed, so <p(Ao) is an open and closed subset of O. This completes 
the proof of Stone's theorem. D 
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1.4 Probability spaces 

l.4.1 Definitions 

A probability space is a measure space (X. A. /1) for which the measure {I 

has total mass 1: {l(X) = l. 
Following the usual practice in this field. we denote X by nand {1 by P. 

Thus a probability space is written in the form (n. A, Pl. 
A measurable set A E A is sometimes called an event. The measure of the 

measurable set A is called the probability of A and written P(A). Clearly 
0:::; P(A) :::; l. 

P is called the probability meaSUTe. 
A property that is true a.e. on n is called an almost S'lLTe (or a.s.) property. 

l.4.2 Transporting a probability measure 

Let (n. A, P) be a probability space and let (Y B) be a measurahle space. 
Let cI> be a measurable mapping from n to Y: 

cI> E M((O. A): (Y. B)). 

Then a probability measure PI is defined on (Y. B) by setting 

1.4.3 

Axioms I-l.0.1 to l.0.:3 are easily verified. 11oreover. P1(Y) = P(rl) = l. 
PI is written 

l.4.4 

and called the diTect image, or simply the image, of the probability measure 
P under the mapping cI>. (cI> * P is sometimes called the measure induced by 
cI> on Y.) 

1.4.5 Proposition. Let (n. A, P) be a pr'obability space, let (Y. B) be a 
measumble space, and let cI>! cI>' E M (( n. A)); (Y, B)). If cI>( w) = cI>' (w) 
a.s., then cI>*P = cI>:P. 

PROOF. Let An = {w En: cI>(w) f cI>'(w)}. 
Then P(Ao) = 0 and P(A) = P(A n Au) \fA E A. 
In particular, P(cI>-l(B)) = P(cI>-l (B) n Au) for any B E B. If w E 

cI>-l(B) n Ao, then 1>'(w) = cI>(w) E B, whence cI>-l(B) n Au c (cI>')-l(B), 
or 

Since the argument is symmetric in 1> and 1>'. the opposite inequality 
also holds. D 

1.4.6 Corollary. The diTect 'image cI>*P depends only on the equivalence 
class of 1> in Mp((n,A): (Y.B)). 
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1.4.7 REMARK. In Chapter I, we never found it necessary to change the 
measure space, which was fixed once and for all. In probability theory, 
however, two operations will playa fundamental role: 

(i) transporting a probability by a measurable mapping; and 
(ii) restricting a probability to a sub-CT-algebra . 

1.5 M orphisms of probability spaces 

1.5.1 Definition. Let (f2, A, P) and (f2', A', Pi) be probability spaces and 
let 

<I> E Mp((f2, A); (f2', A')). 

If <I> * P = pi, <I> is called a morphism of probability spaces and is said to 
preserve probabilities. 

1.5.2 The inverse image operation 

Let <I> E M((f2, A); (f2', A')) and let (Y, B) be a measurable space. With 

u' E M((f2I, A'); (Y,B)) 

we associate <I>*u' , its inverse image under <I> , defined by 

(<I>*u')(w) = (u' 0 <I»(w). 

Then 

(<I>*u' ) E M((f2, A); (Y, B)). 

(<I>* u' is sometimes called the pullback of u l .) 

If we also assume that (f2, A) and (f2', A') are equipped with probability 
measures P and pi and that <I> is a morphism of probability spaces, then 

(i) The equivalence class of (<I>*u' ) in Mp( (f2, A); (Y, B)) depends only on 
the class ofu' in M p ,((f2' , A'); (Y,B)). 

Let u' , u~ E M((f2I, A'); (Y, B)) and set 

(ii) A = {w : (<I>*u')(w) =I- (<I>*uD(w)} and A' = {Wi: U'(W' ) =I- U~(W')}. 
Then A = <I>-I(A' ). 

P(A) = P(A' ) = 0 since pi = <I>*P. 
By abuse of language, <I>* will denote the inverse image mapping induced 

by <I> between the spaces Mp and Mp', 

(iii) Let <I> , <I>I E M((f2,A);(f2I,A')) and suppose that <I> = <I>I a.s. Then <I> * 
and <I>i define the same mapping from M p,((f2I,A' ); (Y,B)) to Mp((f2, A); 
(Y, B)). 
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If not, there would exist u' E Alp' such that 

A = {w : <P*u' =I <pTu'} and PtA) > O. 

Let 
Al = {w ED: <p(w) =I <PI (w)}. 

Then A C Al and P(Ad = O. But this implies that PtA) = O. a contra­
diction. 0 

(iv) Functor·iality. Let <P:; = <P2 0 <Pl. Then (<p:;), = (<P2)* 0 (<Pd. and 
<P3 = <Pi 0 <Pi. 

The proof is trivial. It suffices to recall that the composition of inverse 
images occurs in the opposite order to that of mappings. 

1.5.3 Injectivity proposition. Let <P be a morphism of the probability 
space (D, A, P) into (D', A', P') and let (Y, B) be an arbitrary measure 
space. Then <p* defines an injective mapping 

Alp,((n', A'): (Y, B)) --7 Mp((D, A); (Y, B)). 

PROOF. Leta'. u~ E M P' ((D, A'); (Y B)). Define 11 = <P*u.', III = <P'u~, 

A = {w :11 =I lid, and A' = {w': u' =I 11~}. 

Then <p-l(A') = <p(A) by 1.5.2(ii), whence P'(A') > 0 =} P(A) > 0.0 

1.5.4 Dynkin's theorem (Measurability and functional depen­
dence). Let (D,A,P) and (D',A',P') be two probability spaces, let <P 
be a morphism from the first to the second, and let B = <P -1 (A'). Then 
u E L~(n, A) can be written in the for'm 

(i) /J = ul 0 <P. with u' E LJ',,(O', A') 

if and only if the class of 11 contains a B-measumble function. 

PROOF. The forward implication is clear. Conversely, suppose thatu is 
B-measurable. Then, by 1-6.4.2, then~ exists a sequence Un} of simple B­
measurable functions that converges pointwise to 11. If B E B, then there 
exists A' E A' such that B = <p- 1 (A'); hence IB = <P*IA' 

This implie8 that every simple B-measurable function satisfies (i). Hence 
fn = u", 0 <P, with u;, E L~,(~Y,A'). 

(ii) \Ve show that 11;, converges a.s. on n'. 
H not, there would exist c> 0 and A' E A', with P'(A') > 0, such that 

sup lu",(w) - u;,,(w)1 > c, \jp \jw E A'. 
m.n>p 

Then 11" would satisfy the same inequality on <p-1(A'). But this would 
contradict the a.s. convergence of fn, since P(<p- 1 (A')) = P'(A') > O. 
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Thus (ii) is proved. Let u' = limu~ E Llj,,(0.', A'); then u = limf" = 
u' 0 <P. 0 

1.5.5 Corollary. Let <p be a probability space morphism from (0., A, P) to 
(0.',A',P') and let B = <p-l(A'). Using <P*, one can identify Llj,,(0.', A') 
with the subalgebm of Llj,(0., A) consisting of the B-measumble functions. 

PROOF. By 1.5.3 and 1.5.4. 

1.6 Random variables and distributions of random variables 

1.6.1 Definition. Given a probability space (0., A, P), a mndom variable 
X is a class of measurable functions, that is an element of Llj,(0., A). We 
will often write simply LV. 

1.6.2 Definition. The distribution of the random variable X is the direct 
image of P under X. 

Thus X.P is a Borel measure on R of total mass 1. Hence, by II-3.1, 

( i) (X*P) defines a Radon measure of total mass 1. 

1.6.3 Definition. Given a finite set Xl,"" Xk ofr.v. defined on the proba­
bility space (0., A, P), their joint distribution is the direct image of P under 
the mapping <p : w ----+ Rk defined by the Xp(w), 1 ~ p ~ k. 

It follows from 1-2.4.2 and 1-2.3.5 that <p E M( (0., A); (Rk, BRk))' 
Hence <P*P is a finite Borel measure on Rk and, by II-3.1, 

(ii) <P*P defines a Radon measure on Rk of total mass 1. 

1.6.4 Let PI be the projection of an element of R k onto its first component, 
let IL be the joint distribution of Xl, ... ,Xk , and let ILl be the distribution 
of Xl' Then ILl = (Pl)*IL· 

This follows from functoriality, 1.5.2(iv). 

1.7 Mathematical expectation and distributions 

1.7.0 Notation for expectations 

Let (0., A, P) be a probability space and let X E L~(0., A). Then the 
mathematical expectation of X is written E(X) and defined by 

E(X) = J X(w)dP(w). 

The reader should note that the measure P, and the probability space 
0. itself, are implicit in the notation E. 

In this notation, the Lq norm is written 
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1. 7.1 Change of variables 

Let (n, A, P) and (n' , A', P') be probability spaces, let <p be a morphism 
from the first space to the second, and let <p* : LO(n',A') ---+ LO(n,A) be 
as defined in 1.5.3. 

Proposition. Letu' E L~,(n', A'). Then u = (<p*u' ) E L~(n, A) and 
E(u) = E(u'). 

PROOF. Suppose that u.' is a simple function, say u' = L ctk1A' . Then 
k 

U=Lctk1Ak, where Ak=<P-I(AU. 

By 1.4.3, peAk) = P'(A~), whence E(u) = E(u'). 
Let v' E L~,; then there exists a sequence {u;,} of simple functions such 

that 
E(lv' ~ u~l) = Ilv' ~ u~IILl ---+ O. 

p' 

Let Un = <P*u~. Then 

Ilun ~ urnllLl = E(lun ~ urnl) = E(lu~ ~ u~l) ---+ 0 as m,n ---+ +00. 
p 

Thus {un} is a Cauchy sequence in L~. Let v be its limit; then v E L~. 
There exists a subsequence {u~ : n E (}} of {u~} that converges a.e. on 
n'. Similarly, there exists a subsequence {un: nET} of {Un: n E (}} that 
converges a.e. on n to v. Then the relation Un = u~ 0 <p passes to the limit, 
and v = v' 0 <P. l'v1oreover, since 

E( v) = lim E( U r,) and E( v') = lim E( u;,), 

the fact that E(un ) = E( u~) implies that 

E(v) = E(v').D 

1. 7.2 Computing expectations by means of distributions 

Let (n, A, P) be a probability space and let Xl,"" X k be a finite set of r.v. 
defined on n. Let p be the Radon measure on Rk that is the distribution 
of Xl,"" X k . 

Proposition. Let'P E L~ and let Yew) = 'P(XI(w), ... ,Xk(W)). Then 

Y E L~ and E(Y) = r 'Pdp. JRk 
PROOF. By 1.7.1. 

1.8 Various notions of convergence in probability theory 

This section consists of two subsections. In the first, we introduce the vocab­
ulary used in probability theory to study concepts that are already familiar. 
In the second, we study the new concept of convergence in distribution. 
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1.8.1 Vocabulary of probability theory 

Let {Xn} be a sequence of r.v. defined on the probability space (0, A, P), 
and let Y be another r.v. defined on the same probability space. 

Definitions 

(i) Xn converges to Y almost surely (abbreviated a.s.) if Xn(w) converges 
a.e. to Y(w). 

(ii) Xn converges to Y in mean if 

IIXn - Yllu -+ 0, or E(IXn - YI) -+ O. 

(iii) Xn converges to Y in mean square if 

(iv) Xn converges to Y in probability if Xn converges to Y in measure. 

(v) The relations among these different kinds of convergence were studied 
in Chapter 1. 

1.8.2 Convergence in distribution 

Let (On' An, Pn ) be a sequence of probability spaces and let (0', A', P') be 
another probability space. 

Let Xn E LO(On, An, Pn) and Y E LO(O',A',P') be given. We say that 
the sequence of distributions of Xn converges to the distribution of Y if, 
writing 

( i) 

for the respective distributions, 

(ii) Jln converges narrowly to v. 

A sequence Jln such that 

(iii) Jln converges narrowly 

is commonly, though rather ambiguously, described by saying that 

(iv) the r. v. Xn converge in distribution. 

1.8.3 Criterion for convergence in distribution 

Theorem. The r. v. Xn converge in distribution to the distribution of Y if 
and only if 

(i) 
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PROOF. By 1.7.2, in the notation of 1.8.2(i), 

E('P(Xn)) = L 'Pdf.Ln and E('P(Y)) = L 'Pdv. 

Thus J 'Pd/-in -+ J 'Pdv, 'iJ'P E CK(R). 

That is, 

(ii) /-in converges vaguely to v. 

By 1.6.2(i), 
f.Ln(R) = 1 and v(R) = 1; 

hence lim/-in(R) = v(R), and II-6.8 shows that (ii) is equivalent to narrow 
convergence. 0 

1.8.4 Extension to r.v. with values in R m 

An ordered m-tuple of r.v. Xl, ... , xm is called an r.v. with values in R m, 
or an Rm-valued r.v. Such a r.v. is sometimes denoted by X E Mp((f!, A); 
(Rm,BRm)). 

Given a r.v. X with values in R m, its distribution is the joint distribution 
of the Xk considered in 1.6.3; it is thus a Radon measure on Rm. 

A sequence of r.v. with values in R m , say Xl' ... ' Xn , ... , is said to 
converge in distribution to Xo if the sequence of distributions converges 
narrowly to that of Xo. We have the following propositions. 

(i) The sequence of r.v. Xn with values in R m converges to the distribution 
of Xo if and only if 

limE('P(Xn)) = E('P(Xo)), 'iJ'P E CK(Rm). 

In this criterion, a compactly supported 'P can be replaced by a bounded 
continuous 'IjJ. The next statement results from letting 'IjJ be a function that 
depends only on the first coordinate of R m and applying 1.8.3. 

(ii) If Xn converges in distribution to Xo, then each component X~ con­
verges in distribution to X~. 

The converse of this statement is false. 

1.8.5 Comparison of convergence in distribution 
with other types of convergence 

Proposition. 

(i) A.s. convergence implies convergence in distribution. 
(ii) Convergence in probability implies convergence in distribution. 

(iii) Convergence in LP implies convergence in distribution. 
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PROOF. Let the probability space D be fixed and let X n , Y E LO(D, A, P). 
Assume first that Xn converges a.s. to Y. Then Vrp E CK(R), rp(Xn(w)) 
converges a.s. to rp(Y(w). Since rp is bounded, Lebesgue's dominated con­
vergence theorem can be applied to show that E( rp(Xn)) --+ E( rp(Y)). This, 
with 1.8.3, gives (i). 

Assume now that Xn converges in probability to Y. By 1-5.2.7, every 
subsequence {Xn}nEa itself contains a subsequence {Xn}nEa' such that 
{Xn}nEa' converges a.s. Hence, if rp E CK(R), it follows from (i) that 

Let (3n = E(rp(Xn)) and let "/ = E(rp(Y)). Then every subsequence 
{{3n}nEa of {{3n} contains a subsequence {{3n}nEO"' that converges to "/. 
This implies that lim{3n = ,,/, and (ii) now follows from 1.8.3. 

Finally, by 1-9.3.1, convergence in LP implies convergence in probability; 
thus (iii) follows from (ii). 0 

2 Conditional Expectation 

2.0 Phenomenological meaning 

We now resume the discussion of the principles of probability theory begun 
in 1.1. 

From the phenomenological point of view, the set of all measurements 
an experimenter can possibly make on a physical system is represented by 
a Boolean algebra B. The physicist is interested in exhibiting the "laws of 
nature" in the context of B; given certain measurements, he would like to 
predict the values of others. 

There are two kinds of predictions. The first involves a functional depen­
dence. For example, in Ohm's law (that V = RI), the measurement of two 
quantities completely determines the third. The second involves a "corre­
lation" without necessity; for example, a substantial drop in barometric 
pressure makes it "likely" that a cyclone is approaching. 

The experimenter represents the known information about the physical 
system by a subalgebra B' of B. Given a physical quantity X, he asks himself 
the following questions. 

(a) Is X determined by the information B'? That is, in terms of 1.5.4, is X 
measurable with respect to the a-algebra generated by B'? 

(b) If not, the experimenter will try to extract from the information B' 
all it implies about X. What is the most likely value of X? Does he risk 
making a major error by taking this most likely value as the value of X? 
And so on. 
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Passing to Ii-algebras generated by Boolean algebras allows the problem 
to be posed as follows: 

Given a probability space (D, A, P), a sub-Ii-algebra A' of A, and X E 

LO(D, A, P), can X be approximated by Y E LO(D, A', P)? (We abuse lan­
guage by writing P for the restriction of P to A'.) 

In the next section, we will try to solve this problem by using an ap­
proximation that minimizes the L2 norm, i.e. an orthogonal projection on 
L2. 

2.1 Conditional expectation as a projection operator on L2 

Let (D, A, P) be a probability space and let B be a sub-Ii-algebra of A. 
U(D, B, P) is abbreviated as LP(E3), and so on. 

2.1.1 Lemma. Let 1 :S p :S +00. Then U(E3) can be identified with a 
closed vector subspace of LP(A). 

PROOF. A E3-measurable function is A-measurable: .cY(E3) c .c°(D, A). The 
same holds for simple functions: £(E3) c £(A). Since the probability mea­
sure on E3 is the restriction of that on A, the integral on the integrable 
simple functions El(E3) is given by restriction of the integral defined on 
El(A). Endowing El(B) with the norm II IILP, we obtain an isometric 
mapping from El(E3) to E1(A). 

Since El(E3) is dense in U(E3) and U(D, A, P) is complete, this isometry 
extends to an isometry 

U(E3) -+ U(A). 

The image of a complete space under an isometry is complete; hence the 
image of U(E3) is complete and, in particular, closed in LP(A). 

2.1.2 Definition. EE3 denotes the orthogonal projection operator from 

L2(A) onto L2(E3). Given f E L2(A), EB(f) is called the conditional ex­
pectation of f given E3. 

2.1.3 Theorem (Properties of the conditional expectation). 

( i) 

( ii) 

EB(f) 

IIEB(f) 11£2 

Let E3 and C be sub-Ii-algebras of A such that B :J C. Then 

( iii) 

(iv) 

EC and 

E. 
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PROOF. Properties (i) and (ii) follow from properties of the orthogonal 
projection. 

The inclusion between a-algebras 8 :::l C implies, for functions, that 
L2(8) :::l L2(C). 

Let I E L2(A) be decomposed as 

1= u + v, with v E (L2(8)).L and u = E8 (f). 

Then u = w+h, with hE (L2(C)).L and w = EC(u). Substituting this into 
the last line gives 

( vi) I=w+(h+v). 

By definition, w E L2(C), and since 

v E (L2(C)).L. Hence h + v E (L2(C)).L. The decomposition (vi) implies 

that w = EC(f). Thus (iii) is proved. 
Let A o denote the coarse a-algebra containing only the two sets nand 

0. A function <p is Ao-measurable if and only if it is constant. (L2(Ao)).L 
consists of the functions with zero expectation. Any function I E L2 can 
be written as 

1= E(f)10 + h, where E(h) = 0, 

and thus 

(vii) 

By abuse of language, we identify the conditional expectation relative to 
Ao with the expectation. Then (iv) becomes a special case of (iii). 

It remains to prove (v). Let M<p denote the bounded operator defined on 
L2(A) by multiplication by <p. Thus M<p : 11--+ <pI. Since <p E LO(8) and 
LO(8) is an algebra, 

Note that M<p is a hermitian operator; that is, 

This is just a restatement of the fact that 

E((<pf)g) = E(f(<pg)), VI,g E L2(A). 
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Since L2(8) is invariant under the hermitian operator M<p, its orthogonal 
complement is invariant under M<p. Thus, if f = u + v with u E L2 (8) and 
v E (L2(8))1., then 

M<pf = M<pu + M<pv, where (M<pu) E L2(8), (M<pv) E L2(8)1.. 

That is, E8(M<pf) = M<pE8 (J), and (v) is proved. 0 

2.2 Conditional expectation and positivity 

2.2.1 Proposition. Let f E L 2(A), f ;:: 0, and let 8 be a sub-O"-algebra of 

A. Then E 8 (J) ;:: O. 

PROOF. Let B E 8. Then, by (v), 

where the second equality follows from (iv). Setting v = E8 f, we have just 
shown that 

( i) E(v1B) ;:: 0, VB E B. 

Let Bn = {w : v(w) < _n- 1 }. Since v E LO(8), Bn E 8; it follows from (i) 
that 

E(v1Bn ) ;:: o. 
Moreover, E(v1B,.) :::; _n- 1 P(Bn). Hence P(Bn) = 0 for all n, and thus 
P(UBn) = lim P(Bn) = O. 0 

2.2.2 Corollary. Let f, 9 E L2(A). Then 

( i) 

and 

( ii) 

PROOF. Since f - 9 ;:: 0, we have E 8 (J - g) ;:: o. Furthermore, -If I :::; f :::; 
If I implies (ii). 0 

2.3 Extension of conditional expectation to £1 

Theorem. The operator E8 defined on L2(A) in 2.1 has a continuous 

extension E8 , defined on L1(A) and with values in L1(8). This extension 
has the following properties: 

(i) E8 (J) = f for every f E L 1(B). 
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(ii) II£B(f)II£1 ::; Ilfll£1· 
(iii) If 13 ::) C, then £C £13 = £C,. in particular, EEB = E. 
(iv) If <p E £00(13), then £B(<pn = <pEB(f). 

PROOF. Let f E £2. Then IEB fl ::; EB(lfl) by 2.2.2(ii), and hence E(IEB fl) 
::; E(EB(lfl)). It follows from 2.1.3(iv) that 

E(EB(lfl)) = E(lfl) = IIfll£1· 

That is, 

(v) 

Thus EB is a bounded operator when £2(A) is equipped with the £1 norm. 

Since £1(13) is complete and £2(A) is dense in £l(A), EB can be extended 

to an operator from £l(A) to £1(13). This extension is denoted by £13. 

Since EB(f) = f if f E £2(13) and since £2(13) is dense in £1(13), the 
operator extended by continuity has the same property; this implies (i). 
Assertion (ii) follows from (v). 

(iii) and (iv) are obtained from 2.1.3(iii), (iv) and (v), which we extend 
by continuity. 0 

(vi) ABUSE OF LANGUAGE. From now on we use the same notation, namely 

EB , for both EB and EB. 

2.4 Calculating EB when B is a finite O"-algebra 

Let 13 be a finite sub-a-algebra of A and let e1, ... , en be the atoms of 13 
with strictly positive probability. 

2.4.1 Proposition. EB(n = 2:ak1ek' where ak = p(~k)E(flek). 

PROOF. Since EB(n E £0(13), it suffices to check that f - EB(n is or­
thogonal to £0(13). Since the leg form a basis for £0(13), it suffices to show 
that 

But 
E(fleJ = asE(leJ = as(P(es)).D 

2.4.2 Definition. Let a measure 11k be defined on A by setting 

Note that I1k(n) = 1. 
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ILk is called the conditional probability given the atom ek. With the no­
tation of 2.4.1, 

CXk = J fdILk' 

2.4.3 PropositioQ. Let 13 be a finite a-algebra of A, let 'P be a convex 
function, and let f E L 1(A), f ;::: O. Then 

PROOF. Retaining the notation of 2.4.1 and letting ILk denote the condi­
tional probabilities, we have 

E!3 ('P(J)) 

rp(E!3 (J)) 
I: Jh1ek' where 13k = J rp(J)dILk> and 

Lrp(CXk)lek , where CXk = J fdILk' 

Since ILk has total mass 1, Jensen's inequality (1-9.2.2) can be applied, 
and shows that rp(CXk) :S 13k' 0 

2.5 Approximation by finite O'-algebras 

2.5.1 Proposition. Let h, ... , fn E £l(A). Then there exists an increas-
ing sequence 131 C ... 13k C ... c 13 of finite a-algebras such that 

13 13 liE k fj - E fJ 11£1 ----- 0 as k ----- 00, j = 1,2, ... , n. 

PROOF. We first consider the case where n = 1, and write f for h. Let 

U = E!3(J); then U E L1(!3), and hence u is the limit in L1 of a sequence 
{ud of simple functions in L1(!3). Let 13k be the a-algebra generated by 

the US) s :S k; then 13k C 13 and Uk is 13k-measurable. E!3k (Uk) = Uk and 

IIE!3 k (Uk - u)11 :S Iluk - ull£1, whence 

IIE!3k U - ull£1 < IIE!3k(u) - E!3k(Uk)II£1 + IIE!3k(Uk) - ull£1 
< IIE!3k (u - uk)II£1 + Iluk - ull£1 :S 211u - ukll£1' 

This ends the proof for n = 1. 

The general case is treated by induction on n. Letting {BD be a sequence of 
finite O'-algebras adapted to 12, . .. ,in, we take B~ to be the O'-algebra generated 
by B~ and Bk. 0 
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2.5.2 Corollary (Jensen's inequality). Let B be a sub-a-algebra of A, 
let f E L 1(A), f 2': 0, and let r.p be a nonnegative convex function such that 
E([r.p(f)]) < +00. Then 

PROOF. By 2.5.1, there exists a sequence of finite a-algebras Bk such that 

IIEBk f - filL' -t 0 and IIEBk(r.p(f)) - r.p(f)IIL' -t 0. 

By 2.4.3, r.p(EBk(f)) ::::; EBk(r.p(f)), or EBk(r.p(f)) - r.p(EBk(f)) 2': 0. 
Since L1 convergence preserves positivity, 

2.6 Conditional expectation and LP spaces 

Let 1 < p::::; +00. Then, since £p(A) c L 1 (A), the conditional expectation 

operator EB is defined on £p(A). 

2.6.1 Proposition. Let 1 ::::; P ::::; +00. If f E £p(A), then EB(!) E £p(B) 
and 

( i) B liE (f)IILP::::; IIfIlLP. 

Let p and q be conjugate exponents. Then 

(ii) EB(fg) = gEB(f), Vf E £p(A), 9 E Lq(B). 

( iii) 

E«EBg)(EB!)) = E(gEB(f)) = E(fEB(g)), Vf E £p(A), 9 E U(A). 

PROOF. If 1::::; p < +00, the function r.p(t) = tP, t 2': 0, is convex. Hence (i) 
follows (except when p = 00) from 2.5.2 (Jensen's inequality). 

It remains to prove (i) if p = 00. Given f E Loo, we can find a sequence 
Bk of finite sub-a-algebras such that 

Using the expressions given in 2.4.1 and 2.4.2, 

Let Vks be a subsequence of Vk = EBk f such that Vks -t EB f a.s. Then, 
since 
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(i) holds for p = 00. 

Note that (ii) holds for bounded functions by 2.3(iv). Using the truncation 
operator (1-6.7), we can find sequences In E L=(A) and gn E L=(B) such that 

Illn - IIILl' -+ 0 (whence, by (i), IIEB In - EB IIILl' -+ 0) and Ilgn - gllL'l -+ O. 

Hence, by 2.3(iv), EB(fngn) = gnEB(fn). 

Since IllnY" - jYIILl -+ 0 by Holder's inequality, IIEB(fngn) -EB(fg)IILl -+ O. 

Similarly, YnEB j" converges to gEB I in L1, and (ii) follows. 

When j, g E L2(A), we consider the scalar product 

(fIg)£> = E(fg). 

By the properties of the orthogonal projection, 

Since Loc C L2, this proves (iii) for the special case where j, g E LX(A). 
The general case is proved by using the truncation operator as above. 0 

3 Independence and Orthogonality 

3.0 Independence of two sub-a--algebras 

3.0.1 Definition. Let 8 and C be two sub-a-algebras of the probability 
space (0, A, P). 8 and C are said to be independent (relative to P) if L2(8) 
and L2 (C) are orthogonal on the constant functions; that is, if 

j E L2(8), g E L2(C), and E(f) = E(g) = 0 imply E(fg) = O. 

REMARKS. 

(i) The notion of independence involves the L2 norm, and thus the proba­
bility measure P. To be precise, we should speak of independence relative 
to P. Since we have considered P as given once and for all, by abuse of 
language we say simply independent. 

(ii) Since both L2(8) and L2(C) contain the function Ill, they can never be 
orthogonal; independence corresponds to the strongest notion of orthogo­
nality that can be expected. 

(iii) Consider the codimension-1 subspace H composed of functions orthog­
onal to the constant functions: 

H = {f E L2(A) : E(f) = O}. 

The relation E = EE8 implies E8 (H) C H. Moreover, 3.0.1 can be 
written as 

H n L2(8) is orthogonal to H n L2(C). 
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(iv) It follows from 3.0.1 that £2(8) n £2(C) reduces to the constant func­
tions. 

Since L2(8) n L2(C) = L2(8 n C), where 8 n C is the u-algebra of those 
functions in 0 that belong to both 8 and C, we conclude that if 8 and C 
are independent, then 8nC reduces to the sets of probability zero and their 
complements. Up to sets of probability zero, 8 n C is thus equivalent to the 
coarse u-algebra. 

3.0.2 Mutual independence of n sub-u-algebras 

Let 8 1 , ... , 8 n be n sub-u-algebras of A, let H be a subset of [0, 1], and let 
8 H be the u-algebra generated by {8i : i E H}. Then 8 1 , ... ,8n are said 
to be mutually independent if 

8 H and 8 H e are independent u-algebras for every H E P([O, 1]). 

3.1 Independence of random variables and of (J -algebras 

(i) Let (0, A, P) be a probability space and let 8 and C be two sub­
u-algebras that are independent on this space. Let 8' and C' be two other 
sub-u-algebras such that 8' c 8 and C' c C. Then 

8' and C' are independent. 

Indeed, L2(8) n1t ~ £2(8') n1t and L2(C) n1t ~ L2(C') n1t. Hence the 
orthogonality of the first pair of subspaces implies the orthogonality of the 
second pair. 

(ii) Let Xl"",Xn be n random variables and let 8k = X;;1(8R). Then 
Xl,'" ,Xn are said to be mutually independent if the 8 k are mutually 
independent u-algebras. 

(iii) Let V l , ... , Vn be mutually independent sub-u-algebras of the proba­
bility space (0, A, P). Let X k be a Vk-measurable r.v. defined on (0, A, P). 
Then the r.v. X k are independent. 

This follows from (ii) and the fact that X;; 1 (8R) c V k . 

(iv) Stability of independence under a change of variables. Let Xl, ... , Xn 
be independent r.v., let <,01,"" <,On be Borel functions from R to R, and 
let Yk = <'ok (Xk)' Then the Yk are mutually independent r.v. 

yk- l (8R) C X;;1(<,O;;1(8R)) c X;; 1 (8R), where the second inclusion 
holds since <,0 is Borel. (i) now implies the result. 0 

3.2 Expectation of a product of independent r.v. 

3.2.1 Theorem. Let 8 and C be two sub-u-algebras of the probability space 
(0, A, P). Then the following statements are equivalent: 
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(i) 8 and C are independent. 
(ii) E(Jg) = E(J)E(g) Vf E L2(8), 9 E L2(C). 

PROOF. Decompose f and 9 as f = u + E(J) 10 and 9 = v + E(g) 10. Then 
u E H n L2(8) and v E H n L2(C). Moreover, 

(iii) E(Jg) = E(uv) + E(J)E(g), 

since E(u In) = 0 and E(v In) = 0 if u, v E H. In view of (iii), (ii) is 
equivalent to 

E(uv) = 0, Vu E L2(8) n H, v E L2(C) n H; 

that is, to the orthogonality of L2(8) n Hand L2(C) n H.D 

3.2.2 Proposition. Let 8 1 , ... , 8 n be mutually independent sub-a-algebras 
of the probability space (D, A, P). If fi E Loo(8i ), i = 1, ... , n, then 

REMARK. The converSe will be proved in 3.6.1. 

PROOF. We proceed by induction on n. Assume that the theorem has been 
proved for q < n and let rr=2 fi = h. 

Let 8H denote the a-algebra generated by {fi- 1(8R ) : 2 s: i s: n}. Then 
h E Loo(8H) and, since f11(8R) and 8H are independent by 3.0.2, it 
follows from 3.2.1 that 

E(hfd = E(h)E(Jd· 

We conclude by using the induction hypothesis E(h) = Il~2 E(J;). D 

3.2.3 Corollary. Let II, ... , fn E Ll(D, A, P) and let h = Il~=1 k If the 
fi are independent, then 

n 

hEL1(D,A,P) and E(h)=IIE(Ji)' 
i=1 

PROOF. We first prove the corollary under the hypothesis fi ~ 0, i = 1, ... , n. 

Let Tq be the truncation operator. By 3.1(iv), the Tq(fi) are independent; 
by 3.2.2, 

E (If Tq(fd) = If E(Tq(fi)) ~ If E(fd = M. 

Set U q = Ili Tq (fd. Then {uq } is an increasing sequence and E( uq ) ~ M; 
hence Fatou-Beppo Levi implies that limuq = h E Ll and limE(uq ) = E(h). 

The general case is reduced to this special case by writing 

fi = f? - fil, where f2 = ft = SUp(fi, 0) and fl = fi- = sup( - 1;, 0), 
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and expanding the product 

Since the !i"'i are nonnegative, 

As the sum of 2n functions in L 1 , I1!i is in L 1 . 0 

3.3 Conditional expectation and independence 

3.3.1 Theorem. Let (0, A, P) be a probability space and let 8 and C be 
two sub-a-algebras. Then the following two statements are equivalent: 

(i) The a-algebras 8 and C are independent. 

(ii) E 8 (j) = E(j) Vf E £1(C). 

REMARK. The roles of 8 and C can be interchanged for a different formu­
lation of (ii). 

This statement can be given the following concrete interpretation. If 8 
and C are independent, then "knowledge of the events in the a-algebra 8" 
in no way improves the "mean value" of a C-measurable r.v. 

PROOF. (i) ::::} (ii). Assume that f E L2(C). Set 

J = f - E(j)ln. 

Then j E Hand 

EC(}) = EC(j) - E(j)ln = f - E(j)ln = j, 

whence j E L2(C) n H. 

By (i), j is orthogonal to L2(8); thus E8 (}) = 0, or 

E8 (j) = E(j)ln, 

implying (ii). 
When fELl, we use the truncation operator and pass to the limit. 

(ii) ::::} (i). Let f E L2(C) n H. Then, by (ii), E 8 (j) = O. That is, every 
f in L2(C) n H is orthogonal to L2(8), and it follows that 8 and Care 
independent. 0 

3.3.2 Corollary. Let 8 and C be independent sub-a-algebras of the proba­
bility space (0, A, P). Then 
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PROOF. Let IE Ll(D, A, P). Then EC IE Ll(C). Set u = EC(J); then 

E(u) = E(EC(J)) = E(J). 

Since u E Ll(C), it follows from 3.3.1 that EB(u) = E(u) = E(J). 0 

3.4 Independence and distributions 
(case of two random variables) 

3.4.1 Theorem. Let Xl and X 2 be two r.v. defined on the probability space 
(D, A, P). Let /11 and /12 denote the distributions of Xl and X 2, respectively, 
and let /1 denote their joint distribution. Then the following statements are 
equivalent: 

(i) Xl and X 2 are independent r.v. 
(ii) For all bounded Borel functions rp1, rp2 defined on R, 

(iii) /1 = /1 1 Q9 /12· 

PROOF. (i) ¢} (ii). Let Bi = Xi-1 (BR). Then the independence of the 
a-algebras B1 and B2 is equivalent to that of the r.v. Xl and X 2. 

Let Ii E L2(Bi). By 1.5.4, the functional dependence theorem, there exist 
Borel functions 7/Ji : R -+ R such that 

Hence (i) is equivalent, by 3.2.1, to 

for all Borel functions 7/Ji such that 7/Ji(Xi ) E L2. 
Using the truncation operator shows that this last condition is equivalent 

to the more restrictive condition that 7/Ji be a bounded Borel function; that 
is, to (ii). 

(ii) '* (iii). Let C, DE BR. Set rp = Ie and 7/J = 1D. Then, computing 
the expectations by means of the distributions, 

But L Ied/11 = E(1c(Xr)), 

whence, using (ii), 
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Since JL is a Borel measure on R2 and BR2 = BR ()9 BR, this last relation 
shows by 1-8 that JL = JLl ()9 JL2· 

(iii) =} (ii). Again using the distributions to compute the expectations, 
we have 

By Fubini's theorem, this is equal to 

and (ii) is proved. 0 

3.5 A function space on the a-algebra 
generated by two a-algebras 

3.5.1 Theorem. Let Band C be two sub-u-algebras of the probability space 
(0, A, P) and let V denote the u-algebra they generate. Let V be the vector 
subspace of L:xl(A) defined by 

V = { hE LOO(A) : h = ~ fig;, with fi E L=(B), gi E LOC(C)} . 

Then L2('O) => V and V is dense in L2('O). 

PROOF. We prove the theorem in the special case that there exist two 
mappings u : 0 ----) R n and v : 0 ----) RP such that 

( i) 

Let w : 0 ----) Rn+p be defined by w(w) = (u(w), v(w)). Then W~l (BRn+p) 
is a u-algebra containing Band C. 

Moreover, by 1-2.4.2, 

Hence BR n+p is generated by the rectangles R = X x Y, with X E BR n , 

Y E BRP. We have 

w~l(R) {w : u(w) E X and v(w) E Y} 
U~l(X) n V~l(y). 

That is, w~l(R) E 'O. With the hypothesis (i), we have thus shown that 

( ii) 
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Let p be the distribution of wand let w* be the inverse image mapping. 
Then it follows from l.7.2 that 

( ii i) 

and the mapping is a surjective isometry. 
The continuous functions with compact support, CK(Rn+P), are dense 

in L2(Rn+p;p). (See 11-3.) 
Let y E CK (Rn+P). Then, by the Stone-~Weierstrass theorem, there exists 

a sequence of polynomials PT converging uniformly to y on a compact set 
J{j x J{2 which contains the support of cpo Let gr = Prl Kl xK2 • Then 

(Iv) 1191 - cpll P(p) ---+ O. 

'Ne now show that 

(v) w*(g,) E 1/. 

This follows since the polynomial Pr is the sum of monomials of the form 

(v. I )ml ... (u'')'''n (I'd'll . .. (vP)qp 

and, setting 

f = lKJ (11l)rrll ... (u")m" and 9 = lK2(V1)Q, ... (vP)'!P, 

we call write w*(g,,) as a linear combination of functions of the form fg. 
Thus (v) holds. 

Since w* is an isometry, w*(CK(R"+P)) is dense in L2(D), and to the 
convergence of g,. to cp in L2(p) there corresponds a convergence in L 2 (D). 

(vi) REI\IARK. To prove the theorem without the hypothesis (i), we would con­

sider finite systems of B-measurable functions UI, ... ,Un and C-measurable func­
tions VI, ... , V q • Then B could be viewed as the O'-algebra generated by all the 
u-I(BR ,,), and similarly for C. We would then "pass to the limit". This passage 

to the limit will be carried out in detail for closely related cases in Section 6 of 

this chapter. 

3.5.2 Corollary. Let B 1, ... ,Bn be a finite collection of sub-O"-algebras of 
the probability space (fl. A, P) and let D be the O"-algebra generated by 
Bl, ... ,Bn . Set 

Then Wn C L2(D) and Wn is dense ,in L 2 (D). 

PROOF. vVe proceed by induction on n. Let C be the O'-algebra generated by 
B2 , ... , Bn. Then, by the induction hypothesis, 

(i) W n - J is dense in L2(C). 
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The a-algebra generated by B1 , ... , Bn equals the a-algebra generated by Bl 
and C. Let 

v = {h: h = L Jigi, with Ji E L OO (B 1 ), gi E L=(C)}. 

Then, by 3.5.2, V is dense in L 2(D). Let 

(ii) Vi = {h: h = L Jigi, where ii E L X (B 1 ), g, E L2(C)}. 

Then V' c L2(D), and Viis dense in L2(D) since Vi ::J V. By (i), each gi can 
be approximated by elements of W n - 1 . Hence there exists a sequence k: E W n -l 

such that Ilki' - gillL2 --+ 0, and 

The right-hand side tends to zero, and we conclude by noting that L i,k; E W". 
D 

3.6 Independence and distributions 
(case of n random variables) 

Theorem. Let Bl , ... , Bn be n sub-u-algebms of the probability space 
(n, A, P). Then the following statements are equivalent: 

(i) B l , ... , Bn are mutually independent. 
(ii) E (TI~=l fi) = TI~=l E(fi) for any Ii E LCXJ(Bi). 

PROOF. Recall that the direction (i) =? (ii) was proved in 3.2.2. We now 
prove that (ii) =? (i). Let H be a subset of {I, ... , n}, let H' be the 
complement of H, and let C and C' denote the u-algebras generated by 
{Hi: i E H} and {B j : j E H'}, respectively. vVe must prove the indepen­
dence of C and C' . By 3.2.1, this will follow from the identity 

(iii) E(gg') = E(g)E(g') Vg E L 2 (C), g' E L 2 (C'). 

Using (ii), the function space constructed in 3.5.2 on the u-algebra gener­
ated by C and C' , and bilinearity, it suffices to calculate 

E (II fi II p) = II E(fi) II E(P)· 
iEH jEH' iEH jEH' 

Using (ii) again and setting r = 1 if i E H', we find that the first term on 
the right-hand side is E(g), and similarly the second is E(g'). This proves 
(iii). 0 

3.6.2 Theorem. Let Xl"'" Xn be n r.v. on the probability space (fl, A, P). 
Then the following statements are equivalent: 
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(i) The r.v. X k are mu.tually independent. 

(ii) For all b01tr1ded Bord .I1m.ctions 'PI; on R. 

(iii) Ltt ff rielwte the juint distribu.tiun uj X 1 •...• X" and lei ff, 
denute the distr'ilJutio71 of XI' Then 

" 
fi(A1 x ib x ... x An) = IIfL/(Ai ) 

;=1 

jor any A, E SR. In other wurds, 11 = 

PHOOF. The theorem was proved ill 3.~.1 for 1/ = 2. The general case is 
proveci in the same wav. with TllPorem :3.2.1 replaced by Theorem 3.6.1. 0 

4 Characteristic Functions and Theorems 
on Convergence in Distribution 

4.1 The chamcteTlstic ju.nction of a mndorn variable 

Let (n. A. P) be a probability space on which the R"-valued r.v. 

x = (Xl ..... X") 

is defined. The ch amcteristic janc:tioTi of the 1'. V. X is t he function defined 
on R" = {(f1 ..... tTl)} by 

'Px(t 1. t2 ..... til) = E(exp[i(t1Xl + t'2X2 + ... + tIlX")]). 

when'i = p. Since the imaginary exponential is a function 'with modulus 
1. the expectation of the right-hand side exists for every t E R". 

4.1.1 Determining t.he dist.ribution from its characteristic function 

Proposition. Let (n. A. P) and (n'. A', Pi) be pT'obability spaces and let 
X and X' be R n -/Jalued T.V. Then statements (i) and (ii) are equivalent. 

(i) 'Px(t) = 'PXI(t). vt E R". 
(ii) X and X' have the same distribution. 

PROOF. Let f1 and 1/ be the distributiolls of X and X'. 
Calclllating the expectations by means of the distributions, we obtain 
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That is. 

( iii) 'Px(t) = ii(t), 

where ii denotes the Fourier transform of {L. 
But it was shown in III-2.6 that two measures with the same Fourier 

transform coincide. 0 

4.1. 2 Convergence in distribution and characteristic functions 

Theorem (Paul Levy). Let {Xp} be a sequence of Rn-valued r.v. defined 
on different probability spaces. Then the following statements are equiva­
lent: 

(i) {Xp} converges in distribution. 
(ii) The functions 'Pxp(t) converge uniformly on compact sets. 

Moreover, if (ii) holds, let 

Then there exists a positive Radon measure v of total mass 1 on R n such 
that v(t) = 1/J(t) and the distributions of the Xp converge to v. 

PROOF. We first prove that (ii) =? (i). Let {Lp denote the distribution of 

XP' 

(iii) Vague convergence of the {Lp. 

Consider the linear functionals lp on Co(Rn) defined by 

Then IIp(u)1 ::; Ilulico. Moreover, by Parseval's lemma (111-2.6), 

Vf E A(R"). 

Since 1 E £1, we can apply the dominated convergence theorem to obtain 

1 J ~ lim(lp(f)) = (27f)n f(t)1/J( -t)dt. 

Since A(Rn) is dense in Co(Rn) (d. 111-2.5), 1I-6.8(iii) can be applied to 
show that there exists v E .L\1~(Rn) such that the {Lp converge weakly to 
v; that is, 

lim J ud{Lp = J udv, Vu E Co(Rn). 
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Furthermore, 

.f j(t)u( -t)dt = .f }(t)lp( -t)dt. 

SincE) (A(Rn))i\ = A(Rn) is dense in Co(R"), it follows that u(t) = 1jJ(t). 

(iv) Narrow converyence of the /lp. 

Only the pointwise convergence of <px" (t) was used to prove (iii). We 
must now exploit uniform convergence. Let 

Then 

(GAt(t) =exp ( _~lltI12). 

Consider the following integral of the nonnegative function (1- GA) with 
respect to the positive measure d/l p : 

Writing Parseval's relation and taking into account that (G A) i\ (t) 
= GA( -t) = GA(t) and that jLp(O) = 1, we obtain 

h.p = 1 - .f jLp(t)GA(t)dt. 

Since I G A = 1, this can be written 

1A,p = /'(1- jLp(t))GA(t)dt = /' + 1 . 
, illtll<r] Iltll>r] 

where 1] is determined by first fixing q such that IjLp(t) - jLq(t)1 < E if p 2': q 

and Iltll ::; 1, then choosing 17 < 1 such that IjLq(t) - jLq(O)1 < f if Iltll ::; 1]. 

Then 

(v) 

whence 

0< 1A.P < 3E /' GA + 2 /' GA' iRn illtll>r] 

The first integral equals 1; the second tends to zero as A tends to zero, for 
fixed 1]. Hence there exists AD such that Iho.pl < 4E for every p 2': q. Let 

hE Cb(Rn ) and set u = hC};.,,,; then u E Co(Rn) and, by (iii), 

.fUd/lp --'; .f udv. 
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Since 1 - GAo is nonnegative, 

11 (u - h)d/Lpl :::: Ilhlb 111 - GAo IIL~ = Ilhll cb 1(1 - G>,o) d/Lp :::: 4Ellhll cb · 

Moreover, D(t) = 'lj;(t), the limit of the Jip(t), satisfies (v). Similarly, 

11 (u - V)dVI :::: 4Ellhlb, 

and finally 

lim 1 hd/Lp = 1 hdv, Vh E Cb(Rn). 

In particular, taking h = 1 shows that v(Rn) = 1; that is, v is a prob­
ability measure and the Xp converge in distribution to the distribution v. 
This proves (i). 

PROOF OF (i) =} (ii). By the definition of narrow convergence, 

1 eit .X dj1p(x) --> 1 eit.Xdv(x) 

for every fixed t. We must now prove uniform convergence in t. By II-6.8((ii) =} 

(iv)), given E > 0 there exists M such that j1p([-M, Ml C ) < E for p sufficiently 
large. Then 

'PXp(t) = J+M eit .x dj1p(x) +(h, 
-M 

where 181 < E. 

Differentiating with respect to t under the integral sign shows that the first partial 
derivatives of 'Pxp are bounded by At. Hence the 'Pxp (t) are equicontinuous 
functions, and the result follows by Ascoli's theorem that pointwise convergence 
on a compact set implies uniform convergence.2 0 

4.1.3 Differentiability of characteristic functions 

Proposition. Let X be a r. v. with values in R n. Suppose that 

E(IIXII~n) < 00, where p 2: 1. 

Then l{J x is r times continuously differentiable in t for r :::: p and 

PROOF. Using the criterion for differentiation under the integral sign (1-7), 
we have 

2See Bourbaki, General Topology, X.2.4. 
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The result follows by noting that 

4.1.4 Taylor series expansion of a characteristic function at the origin 

Proposition. Let X be a T.V. with values in R" and suppose that IIXIIR" E 
L2. Then 

(i) 
. 1 

'Px(t) = 1 + IE(X).t - 2Qx (t) + o(lltI1 2 ), 

where qx(t) = L ak'JtktJ and a k •J = E(X'Xj). 
The matrix a k .J is symmetr'ic and nonnegative; that is, 

( ii) qx (t) :::: 0 for eveTY t E R". 

PROOF. Since IIXIIR" E L'2, 4.l.3 implies that 'Px is twice continuously 
differentiable. The derivatives at the origin can be computed using 4.l.3(i), 
and (i) follows by using Taylor's formula with remainder. 

Moreover, 

4.l.5 Definitions. X is said to be centeTed if E(X) = O. 
If X is not centered, a centered r.v. is obtained by setting Y = X -

E(X)ln. The quadratic form qy(t) associated with the centered variable 
is called the covaTiance of X and written a x (t). 

4.2 CharacteTistic function of a sum of independent T.V. 

4.2.1 Proposition. Let Xl"'" Xp be Trmtually independent Rn-valued 
T. v. on the pTObability space (n, A, P). Let 

(i) 

be theiT chamcteTistic junctions, and set 

( Ii) 

Then 

p 

(iii) 'Ps(t) = II 'PxJt). 
k=l 



4 Characteristic Functions and Theorems on Convergence in Distribution 203 

Using 3.2.2 with fk = eit .Xk , we obtain 

'Ps(t) = ITE(eit ,Xk ) = IT 'Pxk(t).D 
k k 

4.2.2 Corollary. With the notation of 4.2.1, let /11, ... , /1p be the distri­
butions of Xl, ... , Xp and let 1/ be the distribution of S. Then 

1/ = /11 * /12 * ... /1p. 

PROOF. Using 4.1.1(iii), we may write 4.2.1(iii) in the form 

By III-1.4.4, the convolution product of measures corresponds to the prod­
uct of the Fourier transforms. 0 

4.2.3 Proposition. Let Xl, ... ,Xp be independent R n -valued r. v. Suppose 
that IIXkllRn E L2, 1 :s: k :s: p, and let S = Xl + ... Xp. Then the covariance 
forms are related by 

p 

as(t) = L aXk (t). 
k=l 

PROOF. Setting Xk = X k - E(Xk)lo, we can reduce the proof to the case 
where the X k are centered; then S is centered. We must verify the identity 
qs(t) = L~=l qXk(t), or 

But, for j i= m, xj and X;" are independent r.v. by 3.1(iv). Hence, by 
3.2.1, 

E(xjx;,,) = E(Xj)E(X;") = o. 

Thus 

k,l j j 
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4.3 Laplace's theorem and Gaussian distributions 

4.3.1 Laplace's theorem. Let Xl, X 2, ... , X p , ••• be a sequence of inde­
pendent Rn-valued r.v. defined on the probability space (O,A,P). 

Suppose that the Xp all have the same distribution, that IIXIilRn E L2, 
and that E(Xd = o. Set 

Then the sequence of r. v. Gn converges in distribution to a r. v. G with 
characteristic function 

or 

(Note that 'Px, (0) = 1. By continuity, there exists E > 0 such that, for 
It I < E, l'Px,(t)1 =1= 0 and -~ < arg'Px,(t) < ~. Thus 10g'Px,(t) is well 
defined for It I < E.) Furthermore, 

'Px (_t_) = 1 - ~qX (t) + 0 (~) 
1 fo 2n 1 n 

uniformly in t, when t ranges over a compact subset of Rn. Hence 

and 'PGn(t) ~ exp(-!qX, (t)) uniformly on compact sets. 4.1.2 implies the 
result. 0 

4.3.2 Gaussian distributions 

With the next few results, we make Laplace's theorem more explicit by 
computing the distribution of G. 
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(i) Lemma. fa exp ( - t;) dt = (27T)1/2. 

PROOF. We prove this well-known result by using a trick from real variables. 

Let 1 = JR exp ( - ~) dt. Then, by Fubini's theorem, 

Passing to polar coordinates, let u = r sin B and v = r cos B, with r > 0 and 
0< B < 27T. 

This change of coordinates defines a diffeomorphism of R2 with Jacobian ma-
trix 

J = ( sinB 
rcosB 

cosB ) 
-rsinB . 

Since Idet JI = r dr dB, 

12" 1+00 ( 2) 1+00 ( 2) 12 = 0 0 exp - r2 r dr dB = 27T 0 exp - r2 r dr. 

The last integral can be computed by setting r2 = w. Thus 

1+00 ( 2 ) 1+00 
o exp - r2 r dr = 0 exp( -w)dw = 1.0 

(ii) Lemma. (21r~1/2fa exp(itx _ t;) dt = exp ( _ ~2). 

PROOF. Let T be an auxiliary parameter defined by PT (t) = (2,,:)1/2 exp ( - ~: ) . 

It is straightforward to verify that 

( i) 
OPT lo2pT 
aT "2 ot2 . 

Note that x >-> PT(X) is an element of the space S(R). By III-4.2, differentiation 
with respect to x is mapped to multiplication by -it of the Fourier transform: 

PT(t) = fa PT(X) exp(itx)dx. 

By 1-7.8.4, we can differentiate under the integral sign; thus (i) can be written 

( ii) 

Note that, as T ---> 0, PT(t)dt converges narrowly to the Dirac measure at zero. 
Hence PT(t) ---> 1 for each fixed t as T ---> O. The differential equation (ii) thus 

gives PT(t) = exp ( -~T); the lemma follows by setting T = 1. 0 
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(iii) Lemma. Let Q(t) = (td 2 + ... (t n ? Then 

(21f~n/2 kn exp [-~Q(X) + it.X] dx = exp [-~Q(t)] . 
PROOF. Since exp[-~Q(x)l = n~=l exp[-~(xAYl, the conclusion follows 
from (ii) and Fubini's theorem. 0 

4.3.3 Definition. A Gaussian distribution is a measure /1 on Rfl with 
Fourier transform fi of the form 

( i) fi(t) = exp ( -~h(t)) , 

where h( t) is a positive quadratic form. 

4.3.4 Proposition. Let 11 be a Gaussian distTibution given by 4.S.S(i). 
Suppose that h is positive definite. Then 

dll = c exp [ - ~ h 1 (X)] dx, 

where c is a normalizing constant such that J d/l 
adjoint of h, defined by 

(ii) h1(X) = sup{LI:: h(t)::; I}. 

1 and h1(:r:) is the 

PROOF. Let a basis be chosen such that. h(t) = I: t~; then 4.3.2(iii) implies 
(i) with h1 (x) = I: xt. Using formula (ii), h1 (x) can be defined without 
changing bases. 0 

4.3.5 Proposition. Let /1- be a Gaussian distr-ibution of the fonn 4.3·S(i). 
Let 

v = {t : h(t) = O} and V~ = {.r: t.x = 0 VI. E V}. 

Then /1- is a measure with support V ~. Let y E V ~ and let dy be the volume 
measure on V ~. Then 

dll = c exp [-~hl(Y)] dy, 

where h1 'is the quadmtic form defined for :IJ E V ~ by 

h1(y) = sup{t.y: h(t) ::; I}. 

REIVIARK. The quadratic form hJ is positive definite. 

PROOF. Let x, t E R" be decomposed as 

Then 

x = Y + z, 

t=T/+(, 

\v11e1'e .IJEV~, zEV; 

where T} E V~, (E V. 

/eit(Y+Zldll = c.iv.l eirIYexp[-~h1(Y)] dy.D 
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5 Theorems on Convergence of Martingales 

5.1 Martingales 

5.1.1 Definition of a filtration 

Let (0, A, P) be a probability space. A filtration of the space is an increasing 
sequence {An} of sub-a-algebras of A such that 

A o C A1 C ... C An C .... 

Let Aoo be the a-algebra generated by all the An; we write Aoo = lim An. 
The filtering sequence is said to converge to A if Aoo = A. 

The phenomenological meaning of an increasing sequence of a-algebras is 
clear. Let 0,1,2, ... ,n be the various instants of an "experiment". 

Let A~ be the Boolean algebra generated by all the observations made 
up to time n (in the sense of 1.1). Then A~ encapsulates all the experi­
menter's knowledge of the system at time n. The a-algebra generated by 
A~ is written An, and might be called the a-algebra of the past at time n. 

5.1.2 Sequence of r.v. adapted to a filtration 

Let (0, A, P) be a probability space equipped with a filtration An. A se­
quence of r.v. {Xn} in LO(O, A) is said to be adapted to the filtration if 
Xn E LO(O, An). 

5.1.3 Given a sequence {YK } in LO(O, A), let Ak be the a-algebra generated 
by Ys- 1(BR), where s ::; k. 

Then the Ak form a filtration of (0, A, P). Moreover, the sequence of 
r. v. Yn is adapted to the filtration An if and only if An :) A~ for any n. 

5.1.4 REMARK. A~ might be called the a-algebra ofthe past corresponding 
to the "experiment" that consists of observing the values ofY1 (w), ... , Yn(w). 

5.1.5 Definition of a martingale 

Definition. Let (0, A, P) be a probability space equipped with a filtration 
{An}. A sequence {Xn} of r.v. is called a martingale if 

(i) the Xn are integrable: Xn E L1 (0, A); 
(ii) the sequence {Xn} is adapted to the filtration {An}; and 

(iii) EAn (Xn +1 ) = X n , n 2: 1. 

5.1.6 Proposition. If {Xn} is a martingale, then 

EAn (Xn+p) = X n, \::In and \::Ip > O. 

PROOF. Since An C An+l C An+2 C ... C An+p-l, it follows from 2.3(iii) that 

EAn = EAnEAn+l ... EAn+p-l. 
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By 5.1.5(iii), EAn+p-l(Xn +p) = X n +p- 1 , EA n+p-2(Xn +p_J) = X n +p- 2 , .... 

and finally 

5.2 Energy equality 

5.2.1 Proposition. Let {Xd be a martingale relative to the filtration 
{Ak}. and assume that X k E L2(0, A) (1 :::; k :::; n). Then, for TI > p. 

n-l 

E(X~) - E(X~) = I: E((Xj+1 - X j )2). 
j=p 

PROOF. Set ej = X j +1 - X)' Then, for Tn :::; j, 

n-1 

j=p j.j' 
FJ/ 

'1/,-1 

j=p 

We now show that all the terms appearing in the last two sums are 

zero. Assume that j < j'. By 2.1.3, E(ejej') = E(EA J+l (ejej' )). We now 

use the fact that EAJ+l(ejej') = ejEAJ+l(Cj'). Since j < j'. (i) implies 

that EAJ+l(ej') = 0, whence E A J+l(cjej') = O. Similarly, E(Xpej) = 
EEAJ (Xpej) = E(XpEAJ (eJ )) = O. D 

5.2.2 Corollary. Let {Xn} be a martingale. Then E(X;,) is an increasing 
seq'uence. 

PROOF. Apply the energy equality with p = n - 1. 

5.3 Theory of L2 martingales 

5.3.1 Definition. {Xd is called an L2 martingale if 

It follows from 5.2.2 that 

5.3.2 limE(Xn exists and is finite. 
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5.3.3 Structure theorem. Let {Xd be an L2 martingale. Then there 
exists Xoo E L2(n, Aoo) such that 

( i) 

( ii) 

XOCJ is called the final value of the martingale. 
Conversely, let ... Qn C Qn+l C ... be an increasing sequence of 

a-algebras on (n, A), let Qoo be the a-algebra generated by all the Qn, let 

f E L 2(n,QOCJ'p), and let Y k = EQk(J). Then 

( iii) Yk is an L2 martingale 

and 

(iv) 

PROOF. We first prove the following lemma. 

5.3.4 Lemma. E((Xn+p - Xn)2) = E(X~+p) - E(X~). 

PROOF. 

E((Xn+p - Xn)2) = E(X~+p) + E(X~) - 2E(Xn+pXn) and 

E(Xn+pXn) = EEAn (Xn+pXn ) = E(XnEAn (Xn+p)) = E(X~).D 

PROOF OF THE THEOREM. Since the sequence an = E(X~) is convergent 
by hypothesis, \:IE > 0 :lno \:Ip > 0 a n+p - an < E. By 5.3.4, 

IIXn+p - Xnll12 < E, \:In 2: no and \:Ip > O. 

Thus X k is a Cauchy sequence, which converges since L2 is complete. More­

over, X k = EAk(Xk +r ) for all r > 0 by 5.1.6. 

Let r ---> +00. Then X k +r ---> XOCJ in L2; hence EAk (Xk +r ) ---> EAk (Xoc ), 
and (ii) follows. 

We now prove the converse. By 2.3.3(iii), 

Applying this to f, we obtain 

or 
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Furthermore, I:lince the projection operator EYn has norm:::; 1, 

The sequence {Y,,} is an L 2 martingale. By the first part of the theorem, 
-::Jf 00 E L 2 such that 

IIY~, - Ix, II L2 ---+ O. 

By the lemma, f = fx, and this completel:l the proof of the theorem. 0 

5.3.5 Lemma. Let (n, A, P) be a probability space filtered by {An}. Set 
Ax) = lim An (in the sense of 5.1.1). Then 

PROOF. \Ve write v" for L 2 (0,A,,), a closed subspace of L 2 (0,A). Let V= = 
UnVn and let Ih'" and II v= denote the respective orthogonal projections. Then 
Hilbert space theory shows that 

l\Ioreover, L2(0, Ax) :J 17" for all n. Since V"XC is the smallest closed subspace of 
L 2 that contains all the "~,' L 2 (0, Ace) :J V>c' 

Now let B E Aoo. If we show that IB E Vx , the density of the simple functions 
in L2(0, Axe) will imply that L2(0, Ax.) c V= and hence that 

(i) 

To prove this, let B denote the set of subsets B of ° such that B E As for some 
8. From the set-theoretic point of view in P(O), B = UsA,. 

Then B is a Boolean algebra and B c Aoo. By I-1.4, Ax is the monotone class 
generated by B. 

If B E B, then IB E v'x. Let A1 denote the class of subsets D of n with 
indicator function satisfying ID E Voo. 

We now show that Ai is a monotone class. Let Dn be an increasing sequence 
of elements of M, with limit DCQ' Then 1Dn ----> 1Dx everywhere, and by the 
dominated convergence theorem 111Dn - ID= II r," ----> O. 

Since P(O) = 1, the analogous result for decreasing sequences follows by taking 
complements. Thus M is a monotone class and Ai = Axn so (i) is true and the 
lemma is proved. 0 

5.4 Stopping times and the ma.Timal inequality 

5.4.1 Definition of stopping time 

Let {Xu} be a martingale defined OIl the space (n, A, P) filtered by {An}. 
A stopping time T(w) is a fUllction on n, with strictly positive integer 

values, such that 

(i) AT .p = {w : T(w) > p} E Ap vp E N. 
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(ii) Proposition. rr TI and T2 are two stopping times, then 

is a stopping time. 

PROOF. AT,.p = AT!,p n A T 2.p E A p ' 

(iii) Any given time q can be thought of as a stopping time. 

5.4.2 Truncated martingales 

Definition. Given a martingale {Xn} and a stopping time T, the truncated 
martingale is defined by 

X~(W) = XT(w)/\n(w), 

We proceed to justify this terminology by showing that {X~} is a mar­
tingale. Since 

(i) 
m-l 

X;;' = L (Xj+l - Xj)lATJ + Xl 
j=l 

and all the functions on the right-hand side are Am-measurable, X;' is Am­

measurable. Moreover, EAn (X~+l) can be computed by observing that, on 
the right-hand side of (i), all the functions except X n +l are An-measurable. 
Thus 

But 

whence 

5.4.3 Definition of the maximal function 

Let {Yr,l be a martingale, let 

Y; = sup IYpl, 
l:S;p<n 

and let 

Y* = lim Y;. 
n----l-+CX: 

y* is called the maximal function of the martingale {Yn}. 
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5.4.4 Doob's maximal inequality 

Proposition. Let {Y,,} be a martingale on the space (D, A, P} filtered by 
{An}. Then, for every constant i > 0, 

(i) 

and 

( ii) 

2 
P(~~ 2': i) :s; -[E(IY"I) + E(IY11)] (n = 0,1, ... ) 

i 

P(Y* 2': i) :s; i supE(IY"I). 
i n 

PROOF. Let A~ = {w: sUPp<n Yp(w) 2': i} and let 

T(w) inf{p: Yp(w) 2': i} if w E A~ 
T (w) n if w 'f. A~. 

Then T(w) :s; n. Moreover, 

{w:T(w»q}=Up::;q{w:Yp(w)<i}EAq if q<n 

and 
{w : T(w) > n} = 0. 

Thus T is a stopping time; let {Y{} be the martingale truncated by T. 
Then E(yn = E(Yd (since Yt = Yd and 

E(y;n = E(Y'; IT<n) + E(Y'; IT=n). 

Y! 2': i on the event {w : T(w) < n} and Y! = Yn on {w : T(w) = n}; 
hence 

E(Y'; IT<n) 2': iE(lT<n) = iP(A~). 

Thus E(Y1) - E(YnlT=n) 2': iP(A~), and 

iP(A~) :s; E(lYnl) + E(IY11)· 

(i) follows by observing that 

{w : Y;(w) 2': i} = A~ U {w : sup[-Yp] 2': i} . 
p<n 

To prove (ii), it suffices to note that {Y;} is an increasing sequence with 
limit Y*. Hence Y* 2': i =? 'iE > 0 ::In such that P(Yn 2': i-E). Thus, by 
(i) , 

4 
P(Y* 2': i) :s; -- supE(lYnl)·O 

i- E 
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5.5 Convergence of regular martingales 

5.5.1 Definition of regular martingales 

Let {Yn} be a martingale relative to the filtration An on (O,A,P). {YrJ 
is called regular if there exists Z E L1 (0, A, P) such that 

EXAMPLE. Every L2 martingale is regular by 5.3.3. 

5.5.2 Final value of a regular martingale 

Let A:)O denote the a-algebra generated by the union of the a-algebras An, 
and set 

Y 00 is called the final value of the martingale {Yn}. 

5.5.3 Theorem on L1 convergence. Let {Yn } be a regular martingale 
and let Y (X) be its final value. Then 

(i) 

( ii) 

Yn = EAn(y=) and 

E(IYr, - Yool) ----> 0 as n ----> +00. 

PROOF. Let if'M(t) be the function introduced in 1-6.7 to define the trun­
cation operator and set ZM = if'M(Z). Then 

( iii) IIZM -ZIIL' ---->0 as M ---->0. 

Thus IlYn,MIIL= ::; M, and hence {Yn,M} is a martingale. Using 5.3.3 and 

5.3.5 and setting Y(X),lVI = EA=(ZM), we obtain 

(i) is proved by using (iii) and the first formula of (iv), then letting M tend 
to infinity. Similarly, since the L2 convergence in (iv) implies L1 convergence 
by the Cauchy-Schwarz inequality, (ii) follows for Yn,M. Letting M ----> 00 

shows that (ii) holds for Yn . 0 

5.5.4 Proposition (Almost sure convergence). Let {Yr,} be a regular 
martingale and let Y 00 be its final value. Then 

Yn (w) -; Y (X) (w) almost surely. 
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PROOF. Let /3q (w) = sUP,,>q IYn(w) - Yrj (,-,,') 1 and let 3(w) = limq~')() ;3'1 (w). 
For fixed q, let 

Then {Zm} is a regular martingale relative to the filtration {A q+m} and 

sup IIZ",IILl ::; IIYx - Y;IIILl + sup IIY:>o - Yq , IILl. 
m q'>q 

By 5.5.3(ii), the right-hand side is less than f if q ?: qo. Hence, using the 
maximal inequality 5.4.4(ii), 

Fixing ~/. let q -+ ::xJ. Since {,Jq } is a decreasing sequence of functions, 

P({w :3(".:) > r}) = D. whence J(w) = D a.s. 

{Yn(.<J)} converges a.s. Let Z= be its limit. Since {YT/} converges in Ll to Y:x;, it 
has a subsequence {Ynk } that converges a.s. to y,=; hence Z= = Y:x:. 0 

5.6 L1 martingales 

5.6.1 Definition. A martingale {Yn } is called an LI martingale if 

sup 11}~lIILl < +oc. 
n 

EXAr\IPLE. Every regular martingale is an LI martingale. 

5.6.2 Proposition. Let {Yn } be an L 1 maTtingale. Let T1 :.s T2 ::; .. , :.s 
T) :.S ... be an incTeasing sequence of stopping times such that, JOT eveT?J j, 
Tj(W) < +::xJ a.s. Let YT1(w) = YT)(w)(w). 

Then 

2:)YT1 +1 (w) - YTJ (w)? < +oc a.s. 
)=1 

PROOF. Set u = sup IIY~,IIL' and let Y* be the maximal function. Then. by 5.4.4. 
P(Y* ?: p) S 4ap-l, whence 

(i) y'(.<J) < +00 u.s. 

Fix p and let f be the continuously differentiable convex function defined by 
f(t) = e if It I S p and f(t) = 2pltl - p2 if It I ?: p. Let 9 be the nonnegative 
function defined by 

g(VI, ('2) = f(V2) - f(vd - (1'2 - Vdj'(Vl). 

Then g(Vl, V2) = (V2 - vIl 2 if Iv,l S p (i = 1,2). 

( ii) E[f(Yn)] S 2pE(IYn l) S 2pa 
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EEAJ = E[j'(YJ )EA j(Yj+1 - Yj)] = 0; 

E [~(f(Yj+1) - f(Yj ))] 

n-1 

.1=1 

Hence, letting p ---> +00 and using (i), 

( iv) 
+= 
2.:)Yj+1(w) - Yj(W))2 < +00 a.s. 
j=l 

We now generalize this "local version" of 5.2.1 to an increasing sequence of 
stopping times T1 :s: T2:S: ... :S: TJ :s: .... Set YTj(w) = YTJ(w)(w). We would like 
to show that 

+= 
(v) 2)YT )+1 (w) - YTj (W))2 < +00 a.s. 

j=1 

Once (ii) and (iii) have been generalized, the same calculation will give (v). 
Letting ATj . q = {w: T j > q}, we have, as in 5.4.2, 

whence 

( ii)' 

L(f(Yq+1 ) - f(Yq))lATjq · 

q=l 

+= 
"E(g(Yq+1 , Yq)lAT ):s:" g(Yq+1 , Yq) :s: 2pa, L-t J,q L-t 
q=l 

Let ATj denote the O'-algebra generated by the Aq nTj-
1 (q), where q E N. Then 

(iii)' 

This proves (v). D 

5.6.3 Fatou's theorem. Let Yr, be an L1 martingale. Then limn~oo Yn(w) 
exists a.s. 

PROOF. For a proof by contradiction, assume that Fatou's theorem fails; then 
there exists b > 0 such that 

(vi) G = {w: ~.~:u~ IYn(W) - Ynl(w)1 > 2b} satisfies P(G) > O. 
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Let TJ (w) = 1 and let the later stopping times be defined recursively by 

Since the sequence TJ(w) is increasing, jYr j + 1 (w) - YTj (w)1 > b. ThiH contradicts 
.5.6.2. D 

IMPORTANT REMARK. Nonzero L1 martingales can be constructed with 
lim Yn(w) = 0 a.s. It is thus impossible to reconstruct the martingale from 
this limit, as was done for regular martingales. Hence the importance of 
the regularity criterion that will be given in Section 5.8. In Section 5.7, we 
will develop a concept that is both interesting for its own sake and crucial 
for stating the regularity criterion. 

5.7 Uniformly integrable sets 

5.7.1 Definition. A subset H of L1 is called uniformly integrable if for 
every E > 0 there exists T} > 0 such that E(lhl lA) < E for all h E Hand 
for every A E A with P(A) ~ TI-

5.7.2 Proposition. Let H be a subset of L1. Then the following two state­
ments are equivalent: 

(i) H is uniformly integrable. 

( ii) lim [sup r Ihl dP] = o. 
q~x hEH J1hl>'l 

PROOF. To prove that (i) =} (ii), we first show that (i) implies 

(iii) 3M < += such that IlhllLI < M Vh E H. 

Let 'r} > 0 be the number associated with F = 1 by Definition 5.7.1. Then (iii) 
follows from setting AI = ~ + 1. 

By Chebyshev, P(lhl > q) ::; q-l AI. Since this expression tends to zero as 
q ----> =, (i) implies (ii) formally. 

We now prove that (ii) =} (i). For a proof by contradiction, suppose that there 
exist EO > 0 and sequences {hu} in Hand {An} in A such that 

E(hnl An ) > EO and P(A'l) ----> O. 

Let qo be chosen so that 

r h dP < ~ Vh E H. 
J1hl>qo 2 

Set En = {w : Ih,,(w)1 > qo}. Then 

EO < E(hn 1.4n (lB" + IH~))::; E(h'lbJn ) +qOP(An). 
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Since the first term on the right-hand side is less than ~ and the second tends 
to zero as n -> 00, this gives a contradiction. 0 

5.7.3 Proposition. Let H be a uniformly integrable subset of L1 and let 
H1 be the closure of H in the topology of almost sure convergence. Then 
Hl is uniformly integrable. 

PROOF. Set 

ep(E) = supE(lhI1A), where hE H and peA) < E. 

Let {hn } be a sequence of elements of H which converges almost surely to 
ho. Fatou's lemma implies that 

whence 

5.7.4 Theorem (Generalization of Lebesgue's dominated conver­
gence theorem). Let {un} be a sequence of integrable functions on a 
measure space (X, A, p,), p,( X) < +00, such that 

(i) the family {un} is uniformly integrable and 
(ii) Un converges a.s. to uo. 

Then 

Ilun - uoll£l -> O. 

PROOF. By Egoroff's theorem, there exist E > 0 and B E A such that 
p,(BC) < E and Un converges uniformly to Uo on B. 

Then 

The first term on the right-hand side tends to zero by uniform convergence, 
the second by uniform integrability, and the third by the same reasoning 
as in 5.7.3. 0 

5.8 Regularity criterion 

5.B.1 Theorem. Let {Xn} be an L1 martingale. Then the following con­
ditions are equivalent: 

(i) {Xn} is regular. 
(ii) {Xn : 1 ::; n ::; oo} is uniformly integrable. 
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PROOF THAT (ii) =} (i). We know by Fatou's theorem (5.6.2) that Xq(w) 
converges almost surely to Z. By 5.7.4, this implies that IIXq - ZII£l -+ O. 
Hence, using the identity 

fixing II, and letting q go to iufinity, 

PROOF THAT (i) =} (ii). For a c to be fixed later, set Bn = {w : IX,,(:v)1 > c}. 

Then, since Bn E An and IX"I <:: EAn(IZI), 

E(IX"IIBn)::; E((lB"EA " (IZI)) = E(EA"(IZj)lBn )) = E(IZlln,J. 

Hence. with b abo to be fixed later. 

1 ' IX". I riP ::; 
IXn'>C 

l~nl>,IZI riP 

! IZI riP + j IZI riP 
{I x" I >c }n{ I Z I >b} {IX" i >c}n{ I ZI <b} 

1 IZI riP + bP(IXnl > c). 
IZI>1> 

But, by Chebyshev's inequality, P(lX,,1 > c) ::; ~E(IXnl) <:: ~E(IZI), whence 

l"n!>r IX" I riP::; l~l>b IZI riP + ~E(IZI). 
Let b = ql/2 and c = q; then the right-hand side tends to zero as q -+ x, and 
the conclusion follows by 5.7.2. D 

6 Theory of Differentiation 

If j is a continuous function defined on [0,1] C Rand F(x) = Ir;" j, then 
F is differentiable for every x and F'(x) = j(x). The same result holds for 
JELl. provided that "for every x" is replaced by "almost everywhere"; 
this is another theorem of Lebesgue. 

The derivative is computed as the limit of quotients of the form 

( i) 
1 1 
~[F(x + E) - F(x)] = v(Ac) p(A), 

where v is Lebesgue measure. ptA) = J~ j, and Af = [x, X + fl. 
In this section, we study the limits of quotients of the form (i) on an ab­

stract measure space. A.s. convergence will be obtained for an appropriate 
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choice of the A,: the A, will be the atoms of an increasing sequence An of 
finite sub-a-algebras of A, "converging to A" . 

Quotients of the form (i), which thus form a martingale for the filtration 
An, will be used to prove the Radon-Nikodym theorem. 

Conditional probabilities can immediately be defined for conditionings by 
finite a-algebras; the existence of conditional distributions in the general 
case will depend essentially on a convergence theorem for vector-valued 
martingales. The convergence of such martingales will be clear for Radon 
measures. A structure theorem will allow all separable measure spaces to 
be realized by means of Lebesgue measure on R. 

6.0 Separability 

The measure space (X, A, J-L) is called separable if there exists a sequence 
that is dense in L~; in other words, if L~ satisfies the first separability 
axiom I-2.4.1(i). 

Consider the case of Radon measures on a compact space Y. If Y is metrizable, 
then C(Y) satisfies the first separability axiom and, since C(Y) is dense in L~, 
the same holds for L~. The same result is true if Y is locally compact, metrizable, 
and the countable union of compact sets. 

6.1 Separability and approximation by finite a-algebras 

Proposition. A measure space (0, A, P) is separable if and only if there 
exists an increasing sequence of a-algebras Al C A2 C ... C An ... such 
that each a-algebra An is finite and 

EAn (J) -t f for every f E Ll(O, A, P). 

The sequence of a-algebras An is said to P-generate A. 

PROOF. Assume that (O,A,P) is separable, and let h, ... ,fn, ... be a 
dense sequence in Ll. Approximating each fn by a sequence of simple 
functions gives a countable family If> of simple functions which is dense in 
L~. 

Let 91, ... , 9n, ... be an enumeration of this sequence and let Ai be the 
a-algebra generated by 9;I(A), 1 :S k :S i. 

With each f E Ll we now associate a sequence {Xd defined by 

EAkf = X k · 

Then {Xd is a regular martingale, which converges in Ll by 5.5.3. Let 
Xoo = limXk. Since IIXooll£1 :S Ilfll£1, a bounded operator x : P -t Ll 
can be defined by setting x(J) = X oo , and 

EAk Xoo = lim EAkEAq f = EAk f = Xk. 
q--+oo 
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That is, 7r2 = 7r. The image V of 7r is closed, for if Un = 7r(fn) and Un ---+ Uo, 
then since 7rUn = Un and 7r is continuous it follows that 7rUo = Uo. V is 
thus a closed vector subspace of Ll (X, A, f.l). 

Let fo be a simple function in CP. Then fo E LO(Ak) for k sufficiently 

large, and hence EAk (fo) = fo. Thus fo E V. Since the family cP of simple 
functions is dense in Ll, it follows that V = Ll. 

The proof in the other direction is clear. For each k, EAk (Ll) is a finite­
dimensional subspace of Ll and hence separable. The union of these spaces 
is separable and dense in Ll. 0 

6.2 The Radon-Nikodym theorem 

6.2.1 Theorem. Let (0, A, f.l) be a separable measure space and let f.l and 
v be finite measures defined on A. Then the following statements are equiv­
alent: 

(i) For every A E A, f.l(A) = ° =? v(A) = 0. 
(ii) There exists k E Ll, k 2 0, such that v(A) = fA kdf.l. 

REMARK. The function k is called the density of v with respect to f.l and 
is sometimes written k = ~~. 

PROOF. It is trivial that (ii) =? (i). Indeeed, if klA is a function that is 
zero a.e., then its integral is zero. To prove that (i) =? (ii), assume that 

( iii) f.l(X) < +00. 

This hypothesis can easily be dropped later, by taking an exhaustion se­
quence {An} for X. 

Multiplying by a constant reduces the proof to the case where 

(iv) f.l(X) = 1 and (X, A, f.l) will be considered as a probability space. 

We now prove that hypothesis (i) implies the following quantitative ver­
szon. 

6.2.2 Lemma. Assume that 6.2.1(i) holds. Then, for every f > 0, there 
exists 8 > ° such that 

f.l(A) < 8 implies v(A) < E. 

PROOF. Otherwise there would exist EO and Ak such that 

Set Gn = Uk>nAk; then f.l(Gn) < 2-n+1. Since Gn is a decreasing se­
quence, 

( i) 
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Furthermore, since lI(Gn) ~ lI(An) ~ fO, 

( ii) 

But (i) and (ii) contradict 6.2.1(i). 0 

6.2.3 Associated martingales 

Let AI, ... ,An, ... be the increasing sequence of finite a-algebras construct­
ed in 6.l. 

Let £p = {el,"" es} be the atoms of A p, and let a function Yp E LO(Ap) 
be defined by setting 

otherwise. 

Then E(Yp) = 2:'Yp(er)J.t(ek), where the sum 2:' is restricted to those 
atoms such that J.t( er) -=f. O. Since J.t( er) = 0 * 1I( er) = 0, it follows that 
E(Yp) = 2: 1I( er) = lI(X). 

More generally, let Ap+l be the a-algebra following Ap. An atom er of 
Ap can be decomposed into atoms of A p+1: er = gr,l U gr,2 U ... U gr,s' 

Since the function Yp+l is constant on each atom g, 

But Yp+l (gr,j)J.t(gr,j) = lI(gr"j) by the definition of Yp+1' Since 2: lI(gr,j) = 
lI(er), 

EAp (Yp+d = Yp, 

and we have proved the following result: 

The Yp form a martingale. 

6.2.4 Lemma. The martingale {Yp} constructed in 6.2.3 satisfies the uni­
form integrability condition. 

PROOF. Let p be fixed. Given f > 0, we must show that there exists 'T/ such 
that 

(i) l YpdJ.t = E(Yp lA) < f for any A E A such that J.t(A) < 'T/. 

By 2.6.1(iii), 
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Set 'P = EAp(lA); then O:S; 'P:S; 1 and E('P) = Il(A). 
Introducing the atoms er of Ap) we have 2.4.1. Since 'P is Ap-measurable, 

'P is constant on each atom er of Ap; thus 

Define a partition iPs of [; p by er E iPs if 'P( er ) E [2- 8 - 1 , 2- 8 ]. Then 

E(Yp'P) :s; LT8 v(H8 ), where Hs = U er , 

and 
Il(A) = E('P) 2:: L 2- s - 11l(Hs)' 

Let 80 be chosen so that 2- so+1v(X) < ~. Then 

E(Yp'P) < L T 8 v(Hs) + ~. 
0:<;8<80 

erE<P" 

Let r/ be the number associated by Lemma 6.2.2 with E' = t, and let 
"7 = 2- 80 - 1"7'. Then, if Il(A) < "7, we have Il(H8 ) < "7' for 0 :s; 8 < 80. It 
follows from 6.2.2 that v(Hs) < E', and thus 

E E 
E(Yp'P) :s; "2 + "2 = E. 

This proves (i). 0 

6.2.5 Proof of the Radon-Nikodym theorem 

Since {Y,J} is an L1 martingale and is uniformly integrable, there exists a 

function k E L 1 such that Yp = EAp (k). 
We begin by showing that 

v(A) = E(k lA)' 

By the construction of {Yp }, 

J'l/JdV = E(Yp'l/J) if 'l/J E £o(Ap)' 

In particular, 

E(EAp kEAp lA) = J (EAp lA)dv. 

Set 'Pp = EAp(lA); then 0 :s; 'Pp :s; 1. The martingale EAp(lA) converges 
Il-a.e. to lA by 5.5.4, and convergence Il-a.e. implies convergence v-a.e. by 
6.2(i). Hence, by Lebesgue's dominated convergence theorem, 

J EAp(lA)dv --t v(A). 
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Since {Yp} is uniformly integrable, so is {Ypcpp}. Moreover, Ypcpp con­
verges l1-a.e. to kIA, and Theorem 5.7.4 implies that 

Thus i k dl1 = v(A).D 

6.3 Duality of the LP spaces 

Theorem. Let (X, A, 11) be a measure space, let 1 ::; p < +00, and let q be 
the conjugate exponent to p. Then the space of continuous linear functionals 
on LP can be identified with Lq. As in 1-9.4.3, the dual pairing is written 

(I,g) = J f9 dl1, where f E LP, 9 E Lq. 

PROOF. Using an exhaustion sequence {An} of X, we can reduce the proof 
to the case where (0, A, 11) is a probability space. 

A positive linear functional I on LP is a linear functional such that l(f) ;::: 
o for every f ;::: 0, f E LP. As in II-5, it can be shown that every linear 
functional on LP can be written as the difference of two positive linear 
functionals. It thus suffices to prove the theorem when I is positive. 

Since I1(X) < +00, L oo c LP and we can define 

v(A) = 1(IA) ;::: O. 

Let Cn = Ul:5i:5nAi and let Coo = U~l Ai' Since the Ai can be assumed to 
be disjoint, 2:1:5i:5n IAi = lcn . Thus 

ICn ---+ lcce everywhere and ICn ::; 1; hence, by Lebesgue's dominated 
convergence theorem, Illcn - lc",,ii Lp ---+ O. It follows that v is a measure 
defined on A. Furthermore, I1(A) = 0 implies IA = 0 in L1, whence v(A) = 
1(IA) = O. Thus hypothesis 6.2.1(i) is satisfied, and the Radon-Nikodym 
theorem implies the existence of a nonnegative k E L1 such that 

i k dl1 = v(A). 

U sing linear combinations of characteristic functions, we see that 

( i) l(cp) = J kcp dl1 
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for all simple functions. If we show that 

(ii) 

each side of (i) will defillC' a continuolls linear functional on LJI: since they 
coincide on the dense set of simple functions, they will be equal everywhere. 

Let B" = {.r: k(x) < n} and let k" = kID,,: then k" E ['x. Ifq < +::x:, by 
Fatou-Beppo Levi the negation of (ii) is equivalent to the assertion that Ilk" IluI ~ 
,x' as n -----1> ,x. 

Let 0 = p-lq and let 

1 k" 
'U" = -Ilk-II" "". 

'n Lil 

I(u,,) = I unk = I u"k" = IlknilUI ~ 00 as n ~::x:, 

contradicting the inequality 

II(u,,)I::; 111'1 IlunllLP' 

The c:a"e q = ::x: is treated in the same way, using the inequality 

/(1-1/3,,) 2> nl11-lBn IIL1.0 

6.4 IsoTnOTI)hisrns of separable probability spaces 

6.4.1 Atoms of a measure space 

Let (n,.A, P) be a measure space. A E A is called a P-atom if PtA) > 0 and 
if. for any B E A such that In ::; lA a.e., either In = 0 a.e. or IE = lA 
a.e. This notioll of atom corresponds to the one introduced in 1-6.2, except 
that we now consider the classes defined by equality a.e. 

6.4.2 Structure theorem (nonatomic case). Let (D. A. P) be a sepa­
mble probability space which is complete and has no P -atoms. Then there 
eJ;ists f E L oc (D. A) such that 0 ::; f ::; 1 and f is a probability space 
isomorphism from (D. A. P) onto [0,1] equipped with Lebesgue measure. 

PROOF. Let {An} be the increasing sequellce of finite sub-rT-algebras of A 
constructed in 6.l. Note that we could regroup the atoms of An that have 
measure zero with an atom of strictly positive measure. to produce a new 
sub-O'-algebra A~, such that P(A) > 0 if A E A:', and A i= 0. Assume that 
this has been done. 

vVe next. enumerate the atoms of AI, say el,l,"" el,.5l where 5 = 5(1), 

and then the atoms of A 2 , consistently with the enumeration for AI' That 
is, all the atoms into which eLl is decomposed appear first, then the atoms 
into which C1.2 is decomposed, and so on. 
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With the atoms of Aq listed as eq,l,"" eq,s, S = s(q), there exists a 
strictly increasing integer-valued function c.p such that 

eq,s is decomposed into the atoms eq+l,j, with c.p(s) ::;: j < c.p(s + 1). 

Having defined this coherent enumeration of the atoms of An, we set (3q,r = 
P(eq,r) and define 

1 
fq(x) = 2{3q,1 + L (3q,T) where x E eq,l' 

r<l 

Then fq E LOO(Aq) and 

EAq(Jq+d(eq,s) = L (3q+l,r 
r<cp(s) 

+ P(~ s) L P(eq+l,j) [~{3q+l.j + L (3q+l,mj. 
q, cp(s):5j:5cp(s+l) m<J 

In the second sum, observe that 

~ [ L (3q+l,jj2 = ~[P(eq,s)f 
cp( s):5j :5cp( s+l) 

Similarly, the first sum can be written 2::t<s (3q,t, whence 

The fq form a martingale; since 0 ::;: fq ::;: 1, they form an L2 martingale. 
This martingale converges a.s. to its final value f E LOO(A), and fq = 

EAq(J). 

Furthermore, let 
'fJq = sup {3q,r. 

r 

Then {'fJq} is a decreasing sequence. Assume for contradiction that 

( i) lim'fJq=E>O. 

Then there exists a decreasing sequence of atoms an E An such that 

P(lim ! an) = lim P(an ) = E > O. 

Let C = lim ! an. Since the probability space (n, A, P) has no P-atoms, we can 
find D E A such that DeC and P(D) > 0, P(C - D) > O. 

Since the a-algebras An P-generate A, 

( ii) EAn (Iv) ~ Iv a.s. 
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But, since ID :::; Ie, EAn(ID) is constant on the atom an; that is, 

( iii) limEAn (ID) = Inle. where In is a constant. 

This contradicts (ii). Hence (i) cannot hold, and 

(iv) lim r]q = O. 

(v) The distribution of f is Lebesgue measure. 
Since the functions fn converge a.s. to f, their distributions converge to the 

distribution of f. Let u E C([O, 1]) and consider 

The right-hand side is a Riemann sum for u, and since the mesh of the parti­
tions tends to zero by (iv), the Riemann sums converge to J u dx, whence (v). 

(vi) Let A' = rl(BR)' where BR is the Borel algebra of R. Then Lp(A) = 
Lp(A'). 

Let j3~.t = LJ<t j3q.j. Then, by the construction of the fJ' 

fi-l((j3~.rl;3~.r+l)) = eq.r if j > q. 

By the a.s. convergence of the fJ, 

rl([j3~.r" j3~.r+l]) :J eq,r :J rl((j3~'rl j3~,r+d). 

Since p(f-l (j3~,r)) = Lebesgue measure of {j3q,r} = 0, the two inverse images 
above differ by sets of probability zero. Hence Lp(A') :J Lp(A), and (vi) follows. 
o 

6.4.3 Structure theorem (general case). Let (n, A, P) be a separa­
ble complete probability space. Then there exists a discrete measure 'Y = 
L ckb~k on [0, 1] satisfying the following two conditions: 

( i) II'YII = L Ck :::; 1. 

(ii) Setting 
dJ.l = d'Y + (1 - 11'YII)d~, 

there exists a function f in UXJ (n, A) which is an isomorphism from 
(n, A, P) onto [0,1] equipped with the completion with respect to J.l of its 
Borel algebra. 

PROOF. Let AI,"" Aa, ... denote the P-atoms of A. Since La P(Aa) ::; 1, 
the set of P-atoms is countable. Let Ck = peAk) and let ~k = i; then the 
measure 'Y is well defined. If II'YII = 1, the desired isomorphism is clear. If 
II'YII < 1, set 
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and 
- - 1 -
P(A) = -_-P(A) for A E A. 

P(Q) 

Applying Theorem 6.4.2 to (0, A,}5) shows that J E LOC(O, A). Now let 

6.5 Conditional probabilities 

We would like to express conditional expectation by an integral. This has 
already been done in 2.4.2 in the case of conditioning relative to a finite 
sub-a-algebra. 

6.5.1 Theorem. Let (0, A, P) be a separable complete probability space, 
let (X,8) be a measure space, let f E Mp((Q,A); (X,8)), and let fl = f.p 
be the distribution of f. For a a-algebra A' on Q, let 7r(Q, A') be the set of 
probability measures defined on A'. 

Then there exist 

(i) a a-algebra A' c A such that Lp(A/) = Lp(A) and 
(ii) a mapping x f--+ Vx from X to 7r(Q, A') that is defined fl-a.e. 

and satisfies 

E(u(J(w))h(w)) = j~ u(x)dfl(X) [L h(W)dVx(w)] 

for any u E L';'(8), hE £,X;(A/). 

(The expression in brackets on the right-hand side is a function in L1(8).) 

PROOF. Using Theorem 6.4.2 on isomorphisms of probability spaces and 
noting that the "atomic set" appearing in 6.4.3 can be handled easily, 
we reduce the proof to the case where Q = [0, 1], A is the a-algebra of 
Lebesgue-measurable sets, and P is Lebesgue measure. Taking A' = 8 R , 

this reduction to [0,1] allows us to use the theory of Radon measures. 
Let gn = x n , x E [0, 1]. Let W denote the finite linear combinations of gn 

with rational coefficients, that is the polynomials with rational coefficients. 
For every If) E W, the conditional expectation of w given f is defined in 
the complement of a fl-negligible set. Taking a countable union of such 
negligible sets, we can find Bo E 8 such that t1(Bo) = ° and 

lx(w) = E(w(w)lf(w) = x) is defined \;fx E B8. 

Then Ix is a linear functional on the Q-vector space Hr. Since Ilx(w)1 ::; 
Ilwlle, the Hahn-Banach theorem implies that Ix extends to a linear func­
tionall~ defined on G([O, 1]). 
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Hence. by II-5.2, there exists a Radon measure Vx on [0,1] such that 

l~.(h) = .I h(w)dvx(w), 'IIh E C([O, 1]). 

In particular, 

E(w(w)lf(w) = .r) = .I w(w) dvx(w). 

This formula extends by continuity from W to Lp(D). 
Note finally that Z~ (w) ;::: 0 if w ;::: 0; whence Vx is positive. Taking 

f = IB shows that vx(D) = 1. 0 

6.6 Product of a countably infinite set of probability spaces 

Theorem. Let (D n . An. Pn ) be a countably infinite set of probability spaces. 
Then there exists a unique probability space (D, A, P) with the following two 
properties: 

(i) For every q, there exists a morphism from the product of the first q 
probability spaces (Dn' An, Pn ) to (D, A, P). 

(ii) Furthermore, (D, A, P) is the smallest probability space satisfying (i). 
More precisely, if (D'. A', P') is a probability space satisfying (i), then there 
exists a morphism of probability spaces <I>: (D',A',P') ----> (D,A,P). 

PROOF. By the strnctnre theorem (6.4.3), we can reduce the proof to the 
case where D" = [0, 1 L An is the Borel algebra, and Pn is a Radon measure 
{Ln which is the sum of a discrete measure and a multiple of Lebesgue 
measure. Let 

n = [0, l]N. 

Then D is a compact space, which will be equipped with its Borel algebra. 
Define an injection 

f'1 : [0.1]'1 ----> [0, l]N 

by setting 

Let 

Then Pq converges vaguely to a Radon measure P=, and (D, 80., P(X)) is 
the desired probability space. 0 



v 
Gaussian Sobolev Spaces 
and Stochastic Calculus 
of Variations 

Introduction 

In Chapter IV, we began by basing probability theory on the theory of 
abstract measure spaces of Chapter 1. We then studied convergence in 
distribution by means of the Fourier transform on Rd. Thus both abstract 
integration theory and classical analysis were necessary to obtain the limit 
theorems of probability theory. Thcse two sources of Chapter IV derive 
from the dual nature of distributions. Although a distribution is attached 
to a very abstract object, a random variable on a probability space, it can 
also be thought of as given by a Radon measure on R. Borrowing an image 
from Plato, we might say that distributions have a daemonic nature: they 
come simultaneously from celestial objects (the abstract theory of measure 
spaces) and terrestrial objects (analysis on R). 

In this chapter, we study the "regularity of distributions". The concept 
of regularity is based on the existence of a standard Radon measure on R, 
Lebesgue measure. A distribution is called regular if it has a density k with 
respect to Lebesgue measure, very regular if k is a Coo function, and so on. 
Lebesgue measure is defined in terrestrial terms as the translation-invariant 
Radon measure on R. 

To study the regularity of distributions, we will have to go up to the 
celestial level of quasi-invariant measures. A Gaussian probability space 
is a probability space equipped with a sequence of independent Gaus­
sian random variables that generates the underlying O"-algebra. On such 
a space, the probability measure is quasi-invariant under the action of 
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distinguished translations, those of Cameron-Martin. The action of trans­
lations on L 2 (Rd ) led in Chapter III to the definition of the Sobolev spaces 
HS(Rd). 

Proceeding similarly here, we will define further celestial objects, spaces 
of infinitely differentiable random variables. We can then use differential 
calculus on both R and the probability space. The interaction, through 
a random variable, of these two kinds of differential calculus will make it 
possible to study the regularity of distributions. 

The use on an abstract probability space of a natural underlying differ­
ential structure, as developed here, is commonly called "stochastic calculus 
of variations" . 

1 Gaussian Probability Spaces 

1.1 Definition. Let (D, A, P) be a probability space and let X be an Rn_ 
valued random variable defined on D. X is called a Gaussian random vari­
able if the distribution of X is a Gaussian measure on R n. (See IV-4.3.3.) 
Gaussian measures and Gaussian random variables are sometimes called 
normal. 

REMARK. If X is Gaussian, X is in LP 'Vp < +00. 

1.2 Definition. Let (D, A, P) be a probability space and let {Xn} be a 
sequence of independent normal random variables. (D, A, P) is said to be 
a Gaussian space if the O"-algebra generated by all the Xn is equal to A-

We intend to construct a basis for L2(D, A, P). 

1. 3 Hermite polynomials 

On R, we define the Gaussian measure VI (A) = J~ exp ( - x22) .:Ii;. 
1.3.1 On L2(R, vd, we consider the scalar product 

the differentiation operator d = d~' and the operator D defined by 

() d'P x 2 /2 d ( _x2 /2 ) D'P x = - - + X'P = -e - e 'P. 
dx dx 

1.3.2 Lemma. When 'P and 1jJ are C 1 functions with compact support, 

( i) 
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(ii) Moreover, (i) remains true if cp and .1jJ are absolutely continuous and 
in L2(R,vd, with dcp and 81jJ in L2. 

(iii) d8 - 8d = Identity. 

PROOF. (i) follows from an integration by parts, and (ii) from approximat­
ing cp and .lj; by compactly supported C 1 functions. A different proof will 
be given later, in 2.2.3. 0 

1.3.3 Definition. The Hermite polynomials are defined by setting Ho = 1 
and Hn = 8n 1 for n 2: 1. Here 8n = 80 ... 08, n times. It is immediate that 

H1 81 = X, 

H2 881 = x 2 - 1, and 
H3 83 1=x3 -3x. 

1.3.4 Proposition. Hn is a polynomial of degree n whose highest-degree 
term is xn. The following relations hold: 

( i) bHn H n +1 : 

( ii) dHn nHn - 1 ; 

( iii) (6 + d)Hn xHn; 

(iv) 6dHn nHn · 

PROOF. 

(i) follows immediately from the definition. 
(ii) is proved by induction, using 1.3.2.(iii): 

(iii) follows from the definition of the operator 6 (1.3.1). 
(iv) follows from (ii) and the definition of Hn. 0 

1.3.5 Corollary. Let F(g(x))(~) = J~: ei~Xg(x)dx be the Fourier trans­

form of g at the point~. Then F(Hn (x)e- x2 / 2 ) = in~ne-e/2. 

PROOF. 

1.3.6 Theorem. {--L,-Hn} is an orthonormal basis of L2 (R, V1)' 
(n1) '2 
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PROOF. (i) We show that the polynomials Hn are dense in L2(R, vd. Oth­
erwise there would exist 'P E L2 such that ('Plxk) = 0 Vk = 0,1, ... 

Let 

F(t) = .I cp(v)eit 1'-v2/2dv. 

Setting t = (J" +iT, we have 

Thus 1-7.8.4 can be used to differentiate under the integral sign, showing 
that F is an entire function of t. Since 

for every k. F == O. Applying the inverse Fourier transform, we see that 
'P == O. 

(ii) The polynomials Hk are linearly independent since the coefficient of xk 
in Hk is l. 

(iii) We show that the functions (k!~'/2 Hk form an orthonormal system. If 
-" > k. then 

since d S bk 1 = O. If s = k, then d'b"l is the product of s! and the coefficient 
of the highest-degree term of Hs: that is, d8 b8 1 = s!. 0 

1. 4 Hermite series expansion 

1.4.1 Theorem. Let 9 be a Coc fund'ion on R such that 9 and all its 
derivatives are in L2 (R, vd. The expansion of 9 with respect to the basis 

(nl~'/2 Hn 1,8 

x 1 
g(x) = '" -E[g(n)]H,,(x), 

Ln! 
n=O 

where E(g(n)) = (g(Tl)11) andg(n) is the nth-order derivative ofg (g(O) = g). 

PROOF. Let g(x) = L~o CnHn(x) be the Hermite series expansion of g. 
Integrating term by term and using the orthogonality of the polynomials 
HI;:, we have 
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1.4.2 EXAMPLE. exp( -~ + tx) = L~=o ~ Hn(x). 

PROOF. 

dn (t2) (t2) - exp - - + tx = tn exp - - + tx 
~n 2 2 

and 

1+00 tn exp (_ t 2 + tx) exp (_ x2) ~ = tn.D 
-00 2 2 v'21T 

1.4.3 Corollary. H';,\x) = 2~i J'Yz-(n+l)exp(-~ + zx)dz, where'Y is a 
simple closed curve around the origin in C. 

PROOF. This follows from 1.4.2 and the Cauchy formula. 0 

1.5 The Ornstein- Uhlenbeck operator on R 

1.5.1 Definition. L = od = -l:2 + x lx is called the Ornstein-Uhlenbeck 
operator on R. 

1.5.2 Lemma. LHn = nHn . 

PROOF. By 1.3.4(iv). 0 

1.5.3 Definition. Let Po be the operator defined by 

1+00 2 dx 
Pof(y) = f(x cos 0 + y sin O)e- X /2 !iC' 

-00 v2n 

REMARK. The integral above takes the same value for 0 and n - 0; it 
depends only on sin O. 

1.5.4 Proposition. 

(i) (Poipl1/J) = (ip!Po1/J); 
(ii) dPo = sin OPod; 

(iii) Poo = sin 0 oPo; 
(iv) LPo = PoL; 
(v) PoHn = (sinO)n Hn-

PROOF. The measure exp( - X2iy2) d~y is rotation invariant. (i) follows 

from this; (ii) is immediate; (iii) follows from (i) and (ii) and the fact that 
(oipl1/J) = (ipld1/J). (ii) and (iii) imply (iv). 

(v) is proved by alternately using (iii) and the fact that oHn = Hn+l: 

PoHn = PooHn- 1 = sinO oPOHn- 1 = sinO oPOoHn- 2 = sin2 002 POHn- 2 . 

Iterating this gives 

(sin O)non PoHo = (sin O)nOn1 = (sin O)n Hn.D 

1.5.5 Proposition. Let O(t) = arcsin(e- t ), where t > O. Then 
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(i) lft(PIJ (t)J) = -L(Pe(t)!'), and 
(ii) Peu ) 0 PIJ(t') = PI!(t+t')' 

PROOF. Since PI! depends only on sin e, we can set e(t) = arcsin( e- t ). Then 

j+x e-:r 2 /2dJ' 
(-:rsine+ycose)j'(xcose+ysin8)' .. , 

-~ ~ 
ycosePe(dJ)(y) - sin e cos ePe(d2 J)(y), 

where the second term comes from an integration by parts. Using l.5.4(ii), 

d . 2 cooe 
dfl(POf)(y) = (ydPgf(y) - d Pef(Y))---;-n. 

u sinu 

Since de = _ sin II . 
dt cos Ii . 

This proves (i). 
We now prove (ii). By l.5.4(v), Pe 0 PI!' Hn = sin(n8) sin(ne')H". Since 

sin e(t) sin e(t') = sin e(t + t') = e-(t+t'), this implies (ii) for finite linear 
combinations of Hermite polynomials and hence, passing to the limit, for 
J}.D 

1.5.6 Lemma. (Pllf)(y) = r~: f(x)Ke(;r, y)e- X2 /2 J,i;, where 

J ' (. .) __ 1_ [2XY sill e - sin2 8(x2 + y2)] 
\11 X, Y - I III exp '2 fl . cos u 2 cos u 

PROOF. This follows from the change of variables u = x cos e + y sin 8 in 
l.5.3. 0 

l. 5. 7 REMARK. Since the operator Pe is self-adjoint with respect to the 
scalar product (see l.5.4(i)), the kernel Kg is symmetric in x and y. 

1.5.8 Examples of expansion in Hermite series 

(i) Hn(xcose+ysin8) = 2:::~=0 (;;) (cos e)P(sin e)n-pHp(x)Hn_p(Y) 

(ii) Ke(;r,y) = 2::::=0 (SiI~~)n Hn(x)Hn(Y) = exp(sine OI02)1(x)1(y), where 
( d 2 + d d I; ,p + d 
UI = - dx2 X dx an. 2 = - dy2 Y dy' 
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PROOF. 

(i) U7JP Hn (x cos 0 + y sin 0) = (c(~~~~! Hn_p(x cos 0 + y sin 0) if 

p::; n. To evaluate PoHn - p , use 1.5.4(v) followed by Theorem 
1.4.1. 

(ii) Expand y f---7 Ko(x, y) in a Hermite series, using Theorem 1.4.1: 

J+(X) [( d ) n ] 2 dy _= dy Ko(x, y) e-Y /2 y'21T 

By 1.5.4(v), this equals (sinO)nHn(x), D 

1.6 Canonical basis for the L2 space 
of a Gaussian probability space 

1.6.1 Notation. Let RN be the set of real-valued sequences and let B= 
be the Borel algebra on R N. Projection onto the first n coordinates is 
denoted by Jr n : R N ---+ R". It follows from the structure theorem (IV-6.6) 
that there exists a measure v on RN such that the direct image (Jrn)*v of v 

under Jr satisfies (Jr,,)*v = v", where Vn = [17=1 ( e-;Jt) dXi· Bn denotes 

the inverse image under Jrn of B=. 

1.6.2 Proposition. The increasing sequence {Bn} of a-algebras is a fil­
tration of the space (RN,Boc,v). 

The space (RN, B Xl , v) is a Gaussian probability space and B= is the 
a-algebra generated by the Gaussian variables Xn of projection onto the 
nth coordinate. 

PROOF. Follows from the definitions. D 

1.6.3 Proposition. Let f E L2(0" A, P) There exists j : RN ---+ R such 
that 

f(w) = j(XI(w), X 2 (w), ... , X,,(w), .. . ). 

PROOF. By Dynkin's theorem, IV-1.5.4. 

1.6.4 Lemma. If (0" A, P) is a Gaussian space and {Xn} is a sequence of 
Gaussian random variables that generates A, then Xn E L 2P(0" A, P) for 
l::;p<oo. 

PROOF. The integral J x 2p e _x2 /2 dx converges. D 

1.6.5 Definition. Let [; be the set of sequences of integers (n1' n2, ... ,0, ... ) 
for which all but finitely many terms are zero. For p = (nl,"" nk, 0, ... ) E 
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E and wED, let 
k· 

Hp(w) = II Hni (Xi(W)), 
i=l 

where Hni are the Hermite polynomial:s on R. We write p! = TI~=l nil. 

1.6.6 Theorem. {(p!) -1/2Hp( w)} is an orthonormal basis of L2 (D, A P). 

PROOF. \Ve prove the theorem for R2. By IV-3.5.1, linear combinations 
of the form f = L: Jih;, where f;(6), h;(6) E L2(R, vd, are deniSe in 
L2(R2, V2)' Approximating the function:s k hi by their expansions in Her­
mite polynomials show:s that the :set of function:s of the form 

generates L2 (R 2 , exp( _ Ei ~E~ ) d5~~6 ). 
Moreover, 

1.6.7 Theorem (Taylor-Stroock formula). Set 

for p = (nl' n2, ... , nk, 0, ... ,0, ... ). If E(8p J) e.Tists for every p, then 

PROOF. It suffices to prove l.6.7 when D = R n and f : R n --> R; that is, 

The proof proceeds a:s in 1.4.l. D 

1. 7 Isomorphism theorem. There exists an isomorphism cp between 
L 2 (D,A,P) and L2(RN,Boc,v). 

1.8 The Cameron-Martin theorem on (RN, Boo, v): 
quasi-invariance under the action of p2 

1.8.1 Proposition. Let (D,A, P) be a probability space and let {Mn} be 
a sequence of integrable random variables such that sUPn E(IMnIP) = Cp < 
+00 for p > l. Then {Mn} is uniformly integrable. 
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PROOF. fA IMnldP ::; IIMnllLP IIIAllLq ::; Cpp(A)l/q for A E A (cf. IV-
5.7.1). D 

In what follows, we consider the Gaussian probability space (RN, B,x)) v) 
(cf. 1.6.1 and 1.6.2). 

1.8.2 Notation. Let ji2 be the space of sequences x = (Xl, ... ,Xn , ... ) E 
RN such that I:~l x; < +00. The scalar product (xly) = I:~l XiYi is 
associated with the norm Ixi = JI:x; on ji2. Let Ty : RN ----+ RN denote 
the mapping defined by Ty(X) = X + Y and let (Ty)*V denote the image of 
the measure v under Ty . (See IV-1.4.3.) 

1.8.3 Theorem (Cameron-Martin). If y E ji2, then the image measure 
(Ty) * v is absolutely continuous with respect to v and the density is given by 

d((Ty)*v) ( ) (~ 1 ~ 2) 
Z = exp ~ YkZk - - ~ Yk . 

dv 2 
k=l k=l 

PROOF. Let Sn(z) = I:~=l YkZk· 

(i) The sequence {Sn} on (RN, Boo, v) is an L2 martingale relative 
to the filtration {Bn }. Hence {Sn} converges a.s. Let Soo = 

limn~oo Sn. Then S= < +00 a.s. 
(ii) The a.s. convergence of Sn implies its convergence in distribu­

tion. This follows from IV-1.8.5. 
(iii) Set Mn(z) = exp(I:~=l YkZk - ~ I:~=l YD· 

The sequence {.J\,1n} is a martingale relative to the filtration {Bn} and, 
for all n, E(Mn) = 1. By Fatou's theorem (IV-5.6.3), the limit Moo 
limn->oo Mn exists a.s. 

(iv) 

But 

Hence 

E[M~l=exp(~(p2_p)~y~) . 

Mn is therefore bounded in LP and hence uniformly integrable. By IV-
5.8, Mn converges in LP to Moc. Thus .J\,1n is the conditional expectation 
of Moo. Given a function f depending on the first r coordinates, we have 

The equality E(Mrf) = E(Moof) extends by continuity to all f in £P. D 
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REMARK. Although II is not invariant under the Cameron-Martin trans­
lations Ty , the measure (Ty )*11 is absolutely continuous with respect to II. 
This property of (Ty )*11 is called quasi-invariance. 

2 Gaussian Sobolev Spaces 

2.1 Finite-dimensional spaces 

2.1.1 Notation 

Let f E £2(R\ Ilk). We write E(f) = J f(Xl,"" xk)dllk. By 1.5.8(iii), f 
can be expanded in a Hermite series. If P = (PI, ... , Pk) E N k , we set 
p! = Pl!P2!" 'Pk! and Ipi = PI + P2 + ... + Pk· 

Then 

Let 

Then 

For a C1 function t.p : R k ---> R, we have the partial differential operators 

2.1.2 Operators on £2(Rk) 

An operator T defined on the polynomials can be extended to a formal 
operator on £2(Rk) as follows: for f E £2(lIk), let 

The domain of T consists of those f E £2 such that T f E £2. 
Restricting our attention to differential operators, we consider aj , OJ, and 

L = 2::7=1 Djaj . Let 

( i) 
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and let the gradient operator be defined by V f = (ad,.·. ,akf). For Z = 
(Zl, ... , Zj, ... , Zk), with Zj E L2(Vk), j = 1, ... , k, we set 

( ii) 

( iii) 

(iv) 

IIV S fll 

k 

{5z = L{5jZj. 
j=l 

We intend to determine the domains of the operators V, V 2 , and £; that 
is, the set of functions f E L2(Vk) whose images under these operators are 
in L2(Vk). Recall that the Sobolev space W;'loc was defined in III-3.4.3. 

2.1.3 Definition. 

2.1.4 Theorem. D~(Rk) with the norm IlflID~ = L:~=o IIVk fIILP(vk) is 
a complete space. 

PROOF. By II1-3.3.6. 0 

2.2 Using Hermite series to characterize D;(R) 
in the Gaussian L2 space 

Let f E L2 = L2(R, vr) and let L:~=o cn(f) ~!' = L:~=o fn be its Hermite 
series expansion. 
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2.2.1 Definition. On L2, the formal operators d, 8, and .c are defined by 

~ dHn ~ Hn 
df = L-Cn(f)-, = L-Cn+1(f)-, ; 

n. n. 
">1 n>O o Hn+l ~ Hn+l 

8f = L-c"(f)-,- = L-Cn(f)(n + 1) ( ),; n. n+ 1 . 
">0 n>O o Hn-

.cf= L-Cn(f) (n ~ I)!' 
n~l 

The reader can easily verify that .c = 8d. 

2.2.2 Lemma. 

For an integer s 2': 1, 

(ii) cn (d8 f) = cn +8 (f); 
(iii) cnW f) = 0 if n < sand cn(88 f) = (n~!8)! cn- 8(f) if n 2': s; 
(iv) cn(.cs f) = nScn(f). 

PROOF. (i) follows from 1.3.6, since fn = Cn (f) ~!' . 
The other identities follow from the definitions and from the relations 

dHn = nHn- 1 and 8Hn = H n+1. 0 

2.2.3 Proposition. Let f E L2 and let 2:n>o fn be its Hermite series 
expansion. Then for s an integer, s 2': 1, properties (i) through (iv) below 
are equivalent. 

( i) 

( ii) 

( iii) 

(iv) 

In particular, D;(R) is the domain of the operators d8 and 88 on L2. If 
both f and g are in Di (R), then 

(v) 

PROOF. (i) => (ii). dS 1 = 2:n>O cn+s(f) ~r since dHn = nHn- 1. Hence, by 
2.2.2, -

s 2 ~ 21 ~ (n+s)!11 112 lid 111£2 = L-lcn+s(f)1 , = L- , 1n+8' n. n. 
n~O n~O 

This proves (ii), since (n+,s)! "" (n + s)S as n ----+ 00. 
n. 
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(ii) =} (i). If (ii) holds, the series Ln>o Cn+s (f)!f;r- converges in £2 and 
d8 f E £2. -

(iv) =} (ii). By 2.2.1, 88 f = Ln~o cn(f)(n + l)(n + 2) ... (n + s) (~:;:.~)!. 
Hence, by 2.2.2, 

L:lcn(fW (n + l)(n +~) ... (n + s) 
n. 

n~O 

L:(n + l)(n + 2) ... (n + s)llfnI12. 
n~O 

(ii) =} (iii). We give the proof for the case s = 1. Let t.p E V; then 

J t.p'(x)f(x)dx = L: J t.p'(x)cn(f) H~~X) dx 
n>O 

--L: J t.p(x)cn(f) nHn;;!l (x) dx 

n~O 

-J t.p(x)df(x)dx. 

Hence f E wf loco Since df E £2, it follows that f E Di(R). 

(iii) =} (ii). As above, we give the proof only when s = 1. Let df be the 
weak derivative of f. Then df E £2 and df = Ln>o cn(df) ~! for t.p E V, 
and hence -J t.p'(x)f(x)ds = - J t.p(x)df(x)dx. 

This implies that Cn+l(f) = cn(df), and (ii) follows. 

(v) is proved by using the orthogonality of the Hermite polynomials. 0 

2.2.4 Proposition. If s = 2p, then (i), (ii), (iii), and (iv) of 2.2.3 are 
equivalent to 

( vi) 

PROOF. We verify only that (ii) =} (vi). Since £f = Ln~o cn(f)n ~!' 

This implies equivalence when s = 1. The proof for s > 1 is similar. 0 

2.2.5 Lemma. The following identities hold: 

( i) 
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and if k is an integer, k ?: 1, 

(ii) IIdk bfll12 = Ildk+1 fll12 + (2k + l)lldk fll12 + k2 1ldk - 1 f1112. 
PROOF OF (i). 

IIbfll12 = 2)n + 1)llfnll12 = Ilfoll12 + I)n + 2)llfn+Iil12' 
n2:0 n2:0 

Hence 

PROOF OF (ii). Since cn+l(bj) = (n + l)cn (J) and Icn(JW = n!llfnII12' 

~ 2 1 ~ 2 21 
IIdk bfll12 = L..-ICn+k(bf)1 XI" = L..-ICn+k-I(J)1 (n + k) "I n. n. 

Since 

n>O n>O 
~(n+k)! - 2 
L..--'------:-, -'--(n + k)llfn+k-111 . n. 
n2:0 

we can compute IIdk bfll12 - IIdk+1 fll12 by observing that 

(n + k ~ 2)!(;)~ k + 2) _ (n + k,+ I)! = (nt k ;)~)! [(2k+1)n+k 2+4k+2]. 
n+ . n. n+ . 

o 
2.2.6 Lemma (Differentiation of composite functions). Let 9 E 

Di(R) and let fl = g*VI be the image of VI under g. If tp E L4 (fl) and 
dtp E L4 (fl), then tp 0 9 E Di(R) and d(tp 0 g)(x) = (dtp)(g(x))dg(x). 

PROOF. d is the extension of the differentiation operator d~. By Holder's 
inequality, if h E L4 and 12 E L 4 , then h12 E L2. 0 

2.2.7 Lemma. If f E Di(R) and 9 E Di(R), then fg E Di(R) and 

( i) d(Jg) = fdg + gdf. 

If f E D~(R) and 9 E D~(R), then fg E D~(R) and 

(ii) £(Jg) = £(J)g + £(g)f + df dg. 

PROOF. (i) and (ii) follow from identities obtained when f and 9 are dif­
ferentiable, since d (respectively £) is the extension of the operator dd 

(respectively bd - see 1.5.1). Holder's inequality implies that d(Jg) E L'5. 
and £(Jg) E L2. 0 
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2.3 The spaces D;(Rk) (k ~ 1) 

2.3.1 Proposition. Let f E £2(Vk) and let f = L:Pt ... Pk fpt ... Pk be its 
Hermite series expansion. Then the following statements are equivalent: 

( i) 

( ii) 

( iii) 

PROOF. Note that 

Hence 

IIV fll E £2(Rk, Vk)' 

L Iplllfpt ... Pk 11£2(Vk) < +00. 
P""Pk 

L pjllfpt' .. PkI1 2 . 

p, .. ·Pk 

(i) {::} (ii) then follows from the relation IIV flli2 = L:~=1 Ilojflli2(Vk)' For 
(ii) {::} (iii), see Proposition 2.2.3. 0 

2.3.2 Proposition. Let f = L:P''''Pk fpt ... Pk be the Hermite series expan­
sion of f E £2(Vk). The following properties are equivalent: 

( i) 

( ii) 

( iii) 

£f E £2(Vk). 

L IpI21Ifp""Pk 112 < +00. 
P, .. ·Pk 

PROOF. See Proposition 2.2.3. 0 

2.3.3 Definition. Let V r f = (OJ,Oh ... Ojr!)j, ... jr· 
If aj,ah ... ajrf E £2(Vk) for every j1 ... ,jr, then 

IIvr flli2(Vk) = L lIaj, ... ojrflli2(Vk)' 
j, ... jr 

2.3.4 Proposition. If f E D~(Rk)) then 

II£flli2 = IIV2 flli2 + IIV flli2' 
PROOF. It suffices to check the formula for differentiable functions. In this 
case, £ = L: j 8jaj , where 8j = -oj + XjOj. 

Hence 

j,=l, ... ,k j 
h=l, ... ,k 

where we have used 1.3.2(i) and (ii). 0 



244 V. Gaussian Sobolev Spaces and Stochastic Calculus of Variations 

Let Xi : RN ---+ R denote projection onto the ith coordinate and let Bn be 
the O'-algebra generated by the random variables {Xih:Si:Sn' Then {Bn}n 
is a filtration (see 1.6.2). 

2.4.1 Lemma. Let 1 E LP(RN, v). Then 

(i) In = EBn (1) is a martingale in LP(RN, v) and 
(ii) limn~x IIIn - IIILP(RN) = O. Thus 1 is the final value 01 a 

martingale in LP (R N) relative to the filtration {Bn} (see IV-
5.5.2). 

PROOF. 

(i) By IV-5.1.5. 
(ii) By V-1.8.1 and IV-5.8.1. 0 

2.5 The spaces D~(RN) 

Next, starting with the Gaussian Sobolev spaces D~(Rk) on the finite­
dimensional space R k and using the martingale approximation of Lemma 
2.4.1, we will study the Gaussian spaces D~(RN). If 1 E LP(RN, v), the 

function In = EBn (1) depends only on the first n variables: 

2.5.1 Definition. We say that 1 E D~(RN) if In = EBn(1) E D~(RN) for 

all nand sUPn IIInIIDf(RN) < +00. 
In this case, we set IIIIIDf(RN) = sUPn IIInIIDf(RN), 

2.5.2 Operators on L2(RN, v) 

Let 1 E L2(RN, v) and let its Hermite series decomposition (see 1.6.7) be 

where P = (PI,'" ,Pb 0, ... ,0). 
As in 2.1.2, we set 
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and 

2.5.3 Lemma. Let f E Di(RN ). Then 

(i) 8j EBn(f) = EBn(8j f) if j:S; n; 

( ii) if j > n. 

PROOF. Let f E L2(RN,v) and let its Hermite series expansion be 

Then 

since the variables Xi are independent and EBn (Hp(Xk)) = 0 if k > n. (i) 
and (ii) follow immediately. 0 

2.5.4 Lemma. Let f E Di(RN ) and let fn = EBn(f). Then, for kEN, 
the sequence {8k f n }nEN converges in L 2 (R N) and 

(i) 8k f = lim 8k EBn (f). 
n---+'::xJ 

PROOF. Let k be fixed. Then {8k fn} is a martingale by 2.5.3(i); by 2.5.1 
it is an L2 martingale, which converges by IV-5.3.3 

To prove (i), note that 8k f - limn 8k fn is a continuous linear map from 
Di(RN) to L2(RN) which vanishes on the set of functions depending on a 
finite number of coordinates. 0 

2.5.5 Lemma. Let f E D~(RN). Then t:.f = limn~CXl EBn(t:.f). 

PROOF. Check that EBn (t:.f) = t:.EB" (f) on the Hermite series decompo­
sition of f. 0 

2.5.6 Theorem. Let f E L2(RN,v). Then the following statements are 
equivalent: 

(i) f E Di(RN ). 

(ii) For every k, k:2: I, 8kf E L2(RN, v) and Lk 118k flli2 < +00. 

Furthermore, the space Di(RN ) is complete in the metric given by the 

norm Ilfll~2 = IIflli2 + Lk 118k flli2' 
1 
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PROOF. (i) =? (ii): By 2.Ei.1, 

n 

IIInll~~ = IIInlli2 + L IIujInlli2 :S c, 
j=1 

where c is a constant independent of n. 
Thus L~=1 II8.dnlli2 :S c for p :S n. As TI --+ x, this inequality persists: 

L~=l II Ddlli2 :S c. Letting p --+ 00 gives (ii). 

(ii) =? (i): The same procedure as for (i) =? (ii). 
To show that Di(RN ) is complete, let {f(q)} be a Cauchy sequence in 

Di(RN ) and set 1,\(1) = EBn(f(q)). Then 

Since Df(RlI) is complete, the sequence {Ir\q)}qEN converges in Di(Rn ) to 
In. It is straightforward to show that {fn}nEN is a martingale associated 
with the filtration {Bn}: it converges to IE Di(RN ). 0 

3 Absolute Continuity of Distributions 

3.1 The Gaussian Space on R 

Let 9 : R --+ R, 9 E L 2 (R). \Ve seek sufficient conditions on 9 for the direct 
image measure g.Vl to be absolutely continuous with respect to Lebesgue 
measure on R. 

3.1.1 Lemma. Let (J be a finite positive Borel measure on R. Suppose that, 
for every cp which is C 1 and bounded on R, 

( i) 

Then (J is absolutely continuous with respect to Lebesgue measure d~ on R, 
and its density k is in L 2 (dO and satisfies 

/ k2d~ :S c(J(R) and k(O:s cd~ a.e. 

PROOF. Let 'P be a bounded increasing C 1 function such that cp( -(0) = o. 
Then cp(~) = J~= cp'(u)du. 

It follows from (i) that, for every nonnegative continuous function cp', 

(ii) 

(ii) extends to nonnegatiw Borel functions. 
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Hence, for every nonnegative Borel function, J fdu = 0 implies (}(f) = o. 
By the Radon-Nikodym theorem (IV-6.2.1), () is absolutely continuous with 
respect to Lebesgue measure. Let k(~) = ~~. Then k(~) 2': 0 and, since 

k(O ::; c d~ a.e. 
It remains to check that the density k = ~~ is in £2 (d~). This follows 

from the inequality 

J k2(~)d~ ::; c J k(~)d~ = c(}(R).O 

3.1.2 Corollary. If 9 E L2(Vl), Ildgll- 1 E L2(VI), and oU ) E LI(vr), 
9 

then Ji, = g*vI is absolutely continuous with respect to Lebesgue measure, 
and its density k = dJi,/ d~ is in L2 (dO. 

PROOF. 

and 

(IP'(g(x) )11) J d(IP 0 g)(x) x d9~X) dVl 

(IP 0 gIO(}g)) ::; SUP~ER IIP(~)I J 10( :g) I dVI· 

The result follows from Lemma 3.1.1. 0 

3.1.3 Let 9 E D~(R), the Sobolev space of order 2. Let A = {x E R : 
dg(x) =f. A}, let lA denote the indicator function of A, and let lAVI be the 
density measure lA with respect to VI. 

3.1.4 Theorem. The image measure g* lAVI is absolutely continuous with 
respect to Lebesgue measure. 

( dg(x). 2 2 
PROOF. Let f x) = (( ))2. Smce g E D 2 (R), we have dg E Dl (R) 

1 + dg x 
and Of E L2(R). Let AE = {x : dg(x) > E}. When x E Af and 0 < E < 1, 
dg(x)f(x) > %. 

Let 'l/J be a nonnegative function defined on R. Then 
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Suppose that PA = g*(lAI/1) is not absolutely continuous with respect to 
Lebesgue measure; then there exists a compact subset K of R such that 
JK d~ = 0 and PA(K) > O. 

Since A = UnA1!n, 

Hence there exists f such that PA, (K) > O. Let {un} be a sequence of 
continuous functions on R such that (i) 0 :::; Un :::; 1, (ii) limn~oo un(~) = 
lK(~)' and (iii) for some R, un(~) = 0 if I~I ::: R. 

Set 'Pn(~) = J~R un()..)d)... Then, by the dominated convergence theorem, 

Moreover, 

Since ('Pn 0 g18f) -+ 0 and J 'P~,(~)pA,(d~) -+ PA,(K), this gives a contra­
diction. 0 

3.2 The Gaussian space on R N 

Let 9 = (g1, ... ,9d) E L2(RN, 1/) be a function with values in Rd. We now 
seek sufficient conditions for the direct image measure g*1/ to be absolutely 
continuous with respect to Lebesgue measure on Rd. 

3.2.1 Notation. If 9 = (g1, ... ,9d) is such that gk E ni(RN ) for k = 
1, ... ,d, we set 

V' gk = (81gk, 82gk, ... ,8j gk, ... ). 

By 2.5.6, L:~1 118j 9kIIE2(V) < +00. 

3.2.2 Lemma. If 

00 00 

L 11 8jgkIIE2(v) < +00 and L 118j gp IIE2(V) < +00, 
j=1 j=l 

then 
00 

L(8j9kI8jgp)p(v) < +00. 
j=l 

PROOF. This follows immediately from Holder's inequality. 0 
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3.2.3 Notation. We set 

j=l 
00 

(ii) (V'gklV'gp)(x) = 2)Jjgk(X)Ojgp(x). 
j=l 

The series (i) and (ii) are convergent in L 1 ( V ) . 

3.2.4 Definition. The matrix aik = «V'gilV'gk)(X)) i=l, ... ,d is called the 
k=l, ... ,d 

covariance matrix associated with g. 

3.2.5 Lemma. If g = (gl, ... ,gd) : RN -+ Rd and, for k = 1, ... ,d, 
gk E Di(RN), then 

PROOF. This follows from Holder's inequality. 0 

3.2.6 Notation. Let g = (gl, ... , gd) : RN -+ Rd. Suppose that gi E 

Di(RN) for i = 1, ... , d and that the inverse matrix aik1 exists v-a.e. We 
set 

Lemma. If gi E Di(RN) for i = 1, ... , d and aik1 E L4(RN), then 

2:j Ilzjklli2(v) < +00 and, for every C1 function <p : Rd -+ R, 

( i) 

PROOF. 8j (<p 0 g)(x) = 2:;=1 *l';(g(x))8jgp(x), and hence 

d 8 d 

8j (<p 0 g)(X)Zjk(X) = L 8; (g(x)) L aik18jgi8jgp. 
p=l p i=l 

This implies (i). 0 

3.2.7 Definition. When gi E D~(RN) for i = 1, ... , d and aik1 E Di(RN), 
we set 

d d 

8zk = L(Cgi )aik1 - ~)V'gilV'(aik1)). 
i=l i=l 

3.2.8 Theorem. For every function 'l/J E Di(RN), 

L(8j'l/JIZjk)P(vJ = ('l/J18zk)L2(vJ' 
j 
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PROOF. Lj(Oj'l/J!Zjk)L2 = ('l/J! L~=18j((Jii/Oj9i)) and, recalling that OJ = 

-dd and 87" = - -ld + xJ", one can easily show that 
X J ' (x] 

bj(JOjgi) = f8 jojgi - ojfojgi. 

The relation follows by summing over j. 0 

3.2.9 Proposition. Let ip : Rd ---4 R and let 9 be such that gi E D~(RN) 
for i = 1, ... , d and (Jii,1 E Df(RN ). Then 

1d :~ d(g*v) = J(ip 0 g)(x)8zk(x)dv(x). 

The last equality follows from 3.2.8. 0 

3.2.10 Lemma. Let () be a finite measure on Rd. Suppose that there exists 
a constant C such that 

( i) 

for every bounded C 1 function ip on Rd. 
Then () is absolutely continuous with respect to Lebesgue measure d~ on 

Rd. 

PROOF. For the case d = 1, see 3.1.1. We prove the lemma when d = 2. 
Let ip be a compactly supported C 1 function on R 2 . We first show that 

To see this, let 

V(X1) = sup !ip(X1,X2)! and W(X2) = sup !ip(X1,X2)!. 
x2ER x,ER 

Then 

(iii) J 12 !ip!2dx1dx2 :::; J V(X1) dx1 J w(X2)dx 2. 

Since 

(iv) 

and 

(v) 

(ii) is proved. 
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Let 11 be a nonnegative continuous function with compact support such 
that 

( vi) 

For E > 0, we set l1t(X) = ~11(~) and 

'Pt(x) = r l1E(X - >')8(d>'). JR 2 

For every continuous compactly supported function 1/;, 

l2'Pt (X)1/;(X)dX = I l411(X~>')E~1/;(X)dX8(d>') 
I l4 11(Z)1/;(,X + Ez)dz 8(d'x). 

Since 1jJ is continuous, 1/;(>. + EZ) tends to 1/;('x) as E -t O. It follows that 

( vii) lim I 'Pt (x )ljJ(x )dx = I 1/;('x)8( d'x). 
t~O 

The measures 'Pt(x) thus converge vaguely to 8(dx) as E -t o. 
If 1/; is C 1 , 

It follows from (i) and (vii) that 

Hence 

( viii) 

II ~'PE 1/;dx l :s; c sup 11/;(,X)I· 
uX, ).ER2 

r la'PE 12 dx :s; C. 
JR 2 aXi 

For every E, by Holder's inequality, 

It follows that 



252 V. Gaussian Sobolev Spaces and Stochastic Calculus of Variations 

The mapping 1/J f-+ J 1jJ()")B(d)") is thus a continuous linear functional on 
L2(dx). This implies the existence of k E L2(dx) such that 

J 1jJ().,)e(d)") = J 1jJ(x)k(x)dx.D 

3.2.11 Principal theorem. Let g = (gl,'" ,gd) : RN -+ Rd be such that 
gi E Di(RN ) for i = L ... ,d. 

Let aik = (VgiIVgk) be the covariance matrix. Suppose that a-I E 
Di(RN ). Then the image measure g.v is absolutely continuous with re­
spect to Lebesgue measure on Rd. 

PROOF. By 3.2.9, 

Let C = sUPk J 18zk (x)ldv(x); then C < +00 and hypothesis 3.2.10(i) is 
satisfied. 0 



Appendix I 

Hilbert Spectral Analysis 

The spectral theorem in finite dimensions makes it possible to write a 
Hilbert space as a direct sum of eigenspaces of a hermitian endomorphism 
u. If the dimension is infinite, direct sums are replaced by "continuous 
sums". We will apply Bochner's theorem to obtain the spectral theorem by 
Fourier analysis. 

1 Functions of Positive Type 

Let f be a function defined on an abelian group G. f is said to be of positive 
type if, for any given gl, ... ,gn E G, the matrix 

is positive hermitian. That is, 

L Aj):,kf(gj - gk) 2:: 0, \;fA 1 , ... , An E C. 
j.k 

In particular, taking a single element, we find that the matrix 

( f(O) f(9)) 
f( -g) f(O) 

is positive hermitian. That is, 

1.1. f(O) > 0, ](g) = f( -g), and If(g)12:::; f(O). 
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Let P(G) denote the set of fUllctions of positive type on G. Observe that 
P( G) is a cone: 

Af + ph E P(G) Vf, hE P(G) and A,ll E R+. 

1.2 Proposition. Let r be an abelian gmup and let r be its dual. Then 

(M!(r)(' c p(r). 

PROOF. Let JI E Ml(I'), >..} E C. Then. writing (J, for 1(,), 

But 

whence 

q(>..) = Liley) - 1k)>..):\, = L r ~. - 1k)>..j:\kdJlh)· .ir 

= L>";:\j(J,'1})(J,'1k) = IL>",(J. 12 

q(>..) = IIL>")h.{}f d'L(,)::" 0.0 

Algebra structure of the cone of functions of posdive type 

Proposition. Let f and h be junctions oj positive type on the abelian gmup 
G. Then their pmduct fh is of positive type. 

PROOF. Set k = f h and let gl, ... ,gn E G be given. \Ve consider the matrix 

and apply the following lemma. 

1.4 Lemma. Let (Aj) and (Ej), 1 <::= i,j <::= n, be positive hermitian matrices. 
Let 

c; = AjBj, 1 <::= l,j <::= n. 

Then C; is a positive hermitian matrix. 

PROOF. Let X~ (respectively y;3) be an orthonormal system of eigenvectors of 
A (respectively E). and let IL" (respectively 1.6) be the corresponding eigenvalue. 
Then 

Aj = L /1" X:, X:, and Bj = L {!JyrfY},· 
iJ 

Hence 
C ' """' X"' v' X· J V') ·j=~J-1'Ct--:r'(j n1(] al/j. 

0: ,fi 

Set Z~.o = X,~Y,l and po,;J = /LO{i;' Then 

Since 

the matrix Z;,,i;Z~.iJ is positive. C is thus a linear combination, with positive 
coefficients, of positive matrices, and therefore is positive. 0 
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2 Bochner's Theorem 

Bochner's Theorem. Let Z be the group of integers. A function f on Z is 
of positive type if and only if there exists J.l E M+(T) such that Ii(n) = f(n). 
P ROO F. (¢=) This follows from 1. 2. 
( =?) Consider 

gr(n) = rlnl where r E [0,1). 

Then Pr(n) = gr(n), where Pr(B) denotes the Poisson kernel (see III-2.2.1), 
and thus gr E P(Z). By 1.3, kr = fgr E P(Z). Moreover, by 1.1, 

Ikr(n)1 :::; If(O)lr lnl . 

Set 

( i) 
n 

The right-hand side is an absolutely convergent series and kr(B) E C(T). 
Next, let Ap e- iplJ if Ipi < Nand Ap = 0 otherwise. Then, since 

kr E P(Z), 

( ii) \IN E Z. 

We now rewrite G N (B) in a slightly different form by noting that Ap:\q = 
ei(q-p)1J and summing over p - q = n: 

Letting N --+ +00, the absolute convergence of (i) and inequality (ii) show 
that 

( iii) 

A positive linear functional can thus be defined on C(T) by setting 

121T - dB 
Zr(u) = u(B)kr(B)-. 

o 27r 

Integrating the series in (i) term by term yields 

(iv) 
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Hence, if Q(e) is a trigonometric polynomial, 

(v) lim Ir(Q) exists. 
r ...... l 

Since the trigonometric polynomials are dense in C(T) (III-2.2.8) and 
the lr are equicontinuous by (iv), it follows that 

lim lr(u) exists for every U E C(T) 
r ...... l 

and defines a positive linear functional, that is a Radon measure Ii E 
M+(T). In particular, 

3 Spectral Measures for a Unitary Operator 

Let H be a complex Hilbert space, with hermitian inner product (hllh2) 
and norm (hlh) = Ih11 2 . A linear operator U is called unitary if it is invert­
ible and U* = U- 1 . Recall that the adjoint A * of a linear operator A is 
defined by the identity 

Theorem on existence of spectral measures. Let U be a unitary op­
erator on the Hilbert space H. For a trigonometric polynomial P( e) = 

'" C eimO let L... m , 

( i) P(U) = L CmUm . 

Given hE H, there exists a unique ILh E M+(T) such that, for any trigono­
metric polynomial P, 

( ii) (P(U)hlh) = l p(e)dILh(e). 

ILh is called the spectral measure of U relative to h. 
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PROOF. To prove the uniqueness of JLh, write (ii) for a trigonometric poly­
nomial consisting of a single monomial. This gives 

/i(m) = ')'(m) , where ')'(m) = (Umhlh), 

and uniqueness follows from III-2.2.S. To prove existence it suffices, using 
Bochner's theorem, to prove that ')'(m) is a function of positive type on Z. 
We must therefore consider the sign of 

1= L Ap)..q')'(p - q). 
p,q 

Since U is unitary, U- 1 = U*, whence ')'(p - q) 
Ap)..q')'(p - q) = (ApUPhIAqUqh) and 

1= L(ApUPhIAqUqh). 
p,q 

But this can be written 

4 Spectral Decomposition Associated 
with a Unitary Operator 

Theorem. Let U be a unitary operator on the Hilbert space H. Let £00 (BT ) 
be the algebra of bounded complex-valued functions which are measurable 
with respect to the Borel algebra of T. Then there exists an algebra homo­
morphism 

<1> : £00 (T) -+ En d (H) 

that associates the operator U with the function eiB and preserves conjuga­
tion. That is, 

(<1>(1))* = <1>(1). 

PROOF. Recall that the scalar product on H can be obtained from the 
norm by the following polarization identity: 

Polarized spectral measures are defined by setting 



258 Appendix 1. Hilbert Spectral Analysis 

Thus, for every trigonometric polynomial P, it follows from polarizing 3(ii) 
that 

(i) 

Fixing f E £% (BT ), we define a sesquilinear functional q.r by 

(]j(h].h 2 ) = Lf(())dAfh1.h2(())' 

This integral is well defined since f is a bounded Borel function. \Ve have 
the following upper hound: 

Hence fixing h] gives a conjugate linear functional in h2, and this form is 
represented by a scalar product. There exists a hounded linear operator 
1>(1') snch that 

(i i) 

l'vIoreover. when f" converges to f while remaining bounded, Lebesgue's 
dominated convergence theorem shows that 

(iii) 

In order to show that 1> is an algebra homomorphism, it suffices, using (iii). 
to check the assertion for trigonometric polynomials. In this case, (ii) and 
(i) show that 1>(P) = P(U), and the formula 

1>(P1 P2 ) = 1>(P1 )1>(P2 ) 

clearly holds. Finally. by the polarization identity. 117.,.112 = 1h, .h2 , which 
implies that 

Corollary. Let A E BT . Then 1>(lA) is an orthogonal projection and 

1>(lA)1>(lB) = <fJ(1AnB). 

PROOF. (1)(lA))* = <fJ(lA) = 1>(lA) and (1)(lA)J2 = 1>(1~) = 1>(lid. 
These properties characterize orthogonal projections. 0 

Corollary (Spectral decomposition). Let r(H) denote the set of closed 
vector subspaces of H. Let r(H) be given the structure of an abstract 
Boolean algebra. with products given by intersections and complements by 
orthogonal complements. Then 1> defines a homomorphism cp from the 
Boolean algebra BT to r(H) by sett'ing 

:p(A) = Image of 1>(lA)' 

AIoreover, 
U(cp(A)) C y(A). 
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5 Spectral Decomposition 
for Several Unitary Operators 

Let Ui , ... , Un be n pairwise-commuting unitary operators on the same Hilbert 
space H: 

UkUl = UlUk, 1:S k, I :S n. 

With every trigonometric polynomial 

on Tn, we associate the operator 

5.1 Theorem on existence of spectral measures. To every h E H there 
corresponds a positive measure /Lh on Tn such that 

This is proved by generalizing Bochner's theorem from Z to zn. Theorem 5.1 
leads to the simultaneous spectral decomposition of the operators Uk, 1 :S k :S n, 
i.e. a representation of £OO(BTn) in End(H). 



Appendix II 

Infinitesimal and Integrated Forms 
of the Change-of-Variables Formula 

In this appendix, we give a new proof of Theorem II-4.4. The variational 
method used here, coupled with the ideas of Chapter V, yields a proof in 
the setting of Gaussian spaces. 

1 Notation 

Let J-t be a Borel measure on Euclidean space Rn. Let {Tt : t E [0, I]} be 
a family of Rn-valued measurable mappings, defined on an open set D of 
R n and with the following properties: 

(i) Tt : D ~ D' c R n is a diffeomorphism. The inverse diffeomor­
phism is denoted by At. 

(ii) Vx E D the mapping t ~ Ttx is differentiable. The differential 
is denoted by (-!iTt) (x). 

(iii) Vt E [0,1] the direct image (At)*J-t under At of the measure J-t is 
absolutely continuous with respect to J-t. The density is denoted 

b G _ d((At)*J-t) 
y t - dJ-t . 

Let f : R n ~ RP be differentiable. Jf(x) denotes the Jacobian of f at the 
point x. 
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1.1 Definition. The vector fields 

are called velocity fields associated with (Tt)tE[O.lj' 

REMARK. y f-+ Zt (y) defines not only a vector field on D' but also a differ­
entiable mapping from D' to Rn. 

1.2 Definition. Let Zt be a vector field defined on D. Z is said to admit 
a divergence with respect to J.1 if there exists a function DJLZ : D ---+ R such 
that J Jj(x)(Z(x))dx = - J J(x)DJLZ(x)dx 

for every differentiable function J : R n ---+ R with support contained in D. 

2 Velocity Fields and Densities 

2.1 Theorem. Let Zt be the velocity field associated with Tt . Then the 

density Gt(x) = d((~~*J.1) is given by 

Gt(x) = Go(x)exp[lt bJL(Zs)(TsY)dS] a.e. dJ.1. 

PROOF. 

( i) r J(x)Gt (x)dJ.1(x) = r J(At y)dJ.1(Y). JD JD' 
Differentiating with respect to t gives 

Furthermore, 

( ii) 

and hence 

( iii) 

Since 

(iv) 
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we have 
h t (Aty)JAtY = Id, 

whence (JAty)-l = JTt(Aty). Differentiating (iv) with respect to t gives 

(v) 

Substituting into (iii), we find that 

and 

( vi) 
l, (f 0 At )(y)(t5J1Zd(y)dfJ(Y) 

l f(x) (t5/1 Zt ) (Ttx )Ct (x )dfJ(x), 

where the first equality follows from Definition 1.2 and the second from (i). 
Differentiating (i) with respect to t shows that 

o 
2.2 Corollary. Let JL = dx be Lebesgue measure on R n and suppose that 
To = Id. Then'Vt E [0.1] 

j f(Ttx)ldet htxldx = j f(x')dx', where D' = Tt(D). 
D D' 

PROOF. It suffices to verify the relation 

where 

Zt(Y) = (1tTt) (Aty) 

and t5Z is the divergence of Z with respect to dx. To do this, we use the 
following two lemmas. 

2.3 Lemma. 

PROOF. 

d 
-I (JTt)(Y) = J( d T )(y) = J(ZtoT,)(Y) = (Jz,)(TtY) 0 hty·D (t dt t 
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2.4 Lemma. Let (Bt ) be n x n matrices such that -fitBt = l'vItBt, where 
the (Mt ) are also n x n matrices. Then -fit log J det B t J = trace M t . 

PROOF. Let lli (t) be the ith column of Bt . It follows from 

that 

Hence 

d 
dt det[1l1 (t), ... , lln (t)] = ~)Mt)iidet[1l1 (t), ... , lln (t)].D 

i 

CONCLUSION OF THE PROOF OF COROLLARY 2.2. 

REMARKS. (1) Compare 2.2 with II-4.4.1, the change-of-variables theorem. 

(2) Let Tt = I + tM, where M is an n x n matrix. Suppose that I + tM is 
invertible for every t E [0,1]. Then -fit (I + tM) = M(I + tM)-l(I + tM). 
Letting A denote the exterior product, we can express the determinant of 
A + las 6,(t) = det(I + tM) = L~=o(traceAk M)tk. By 2.4, 

6,' 
6:" (t) = trace M(I + tM)-l. 

Thus 

det (I + tM) = exp fat trace (M(l + sM)-l)ds. 

2.5 Corollary. 

PROOF. By 2.2, 

and 

dd [vol (Tt(D))] = r 8Zt(y)dy. 
t JT,(D) 

vol (Tt(D)) = Iv Jdet h, (x)J dx 

Iv [:t logdet h,(X)] x Jdet h,(x)Jdx 

Iv (8Zt )(Tt x) Jdet h,(x)Jdx. 

Applying 2.2 once more proves the assertion. D 
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3 The n-dimensional Gaussian Space 

exp ( -4)dXi 
Let R n be given the measure f.l = rr=l V2ir and let (xly) = 
L~=l XiYi denote the scalar product of two vectors x, Y E Rn. 

3.1 Lemma. Let Z be a differentiable vector field on () C Rn. Then \Ix E () 

8!-,Z(x) = trace Jz(x) - (Z(x)lx). 

3.2 Theorem. Let (Tt)tE[O,l] be the mappings defined in Section 1 and let 

H ( ) - d((At)*f.l) Th 
t x - df.l . en 

PROOF. This follows from Lemma 3.1 and Theorem 2. 

EXAMPLE. Translations of the Gaussian space. 

For a differentiable mapping h : R n ........ R n , set Tx = x - h(x) and 
Ttx = x - th(x). Let At be the inverse of Tt . Then Atx = x + th(Atx). 

The velocity fields associated with Tt are 

We have 
(Zs(Tsx)ITsx) = -(h(x)lx) + s(h(x)lh(x)) 

and 

Compare this with the Cameron-Martin theorem (V-1.8.3). In particular, 
if Tx = x - y and Ttx = x - ty, then Atx = x + ty, det(Jrt (x)) = 1, and 

REMARK. This method can be extended to the infinite-dimensional Gaus­
sian space. 



Exercises for Chapter I 

Problem 1-1. If 9 is a family of subsets of a set X, we denote by a(Q) 
the Boolean algebra generated by 9 and by a(Q) the a-algebra generated 
by g. A partition of X is a family P = {Pj}jEJ of nonempty subsets of X 
such that Pi n Pj = 0 if i =I- j and UjEJ = X. 
(1) Let P = {Pj}jEJ be a partition of X. Characterize 

(a) a(P) if J is finite, 
(b) a(P) if J is infinite, 
(c) a(P) if J is finite or countable, and 
(d) a(P) if J is uncountably infinite. 

(2) Show that the family A of subsets of X is a Boolean algebra generated 
by a finite number of elements if and only if there exists a partition P = 
{Pj}jEJ, with J finite, such that A = a(P). 
(3) Let A be a a-algebra on a countable set X. Show that there exists a 
partition P of X such that A = a(P). 
(4) Show that a a-algebra never has a countable number of elements. 

Problem 1-2. Let 9 be a family of subsets of a set X such that X E 9 and 
9 is closed under finite intersections. An r-family is a family R of subsets 
of X which is closed under finite intersections of pairwise disjoint sets and 
such that, if Bl and B2 E R with Bl C B 2, then B2 \ Bl E R. Let r(Q) 
be the smallest r-family containing g. Show that r(Q) equals the Boolean 
algebra a(g) generated by g. 
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METHOD. Consider the families 

Rl = {B: B E r(Q) and An BE r(Q) VA E Q} and 
R2 = {B: B E r(Q) and AnB E r(Q) VA E r(Q)}, 

and show that they are r-families. 

Problem 1-3. Let Ql and Q2 be two nonempty families of subsets of a set 
X which are closed under finite intersections. Let AI, A2 , and A denote 
the (i-algebras generated by Ql, Q2, and Ql U Q2, respectively. Let P be a 
measure of total mass 1 on (X, A). Show that if 

then the same equality holds for all Al E Al and A2 E A2. 
METHOD. Consider the families 

Ml = {A: A E A and P(A n A2 ) = P(A)P(A2) VA2 E Q2} and 
M2 = {A: A E A and P(AI n A) = P(AJ)P(A) VAl E Ad, 

and apply the theorem on monotone classes, using Problem 1-2. 

REMARKS. 1. This result is especially useful in probability theory. Thus, if 
X = R2, Al(X) = {(Xl, X2): Xl < X}, and A2(y) = {(Xl, X2): X2 < y}, 
then Ql = {AI (x) : X E R} and Q2 = {A2 (y): y E R} are closed 
under finite intersections and A is the set of Borel subsets of R2. If P is a 
probability measure on (R2 ,A), it is the distribution of a pair (X l ,X2 ) of 
real random variables. By Problem II-3, (Xl, X 2 ) is a pair of independent 
random variables if and only if 

P[XI < X; X 2 < y] = P[XI < x] P[X2 < y] 

for all (x, y) E R2. 
2. The result can be extended from two factors to n factors by constructing 
monotone classes Mk for k = 1,2, ... , n and using induction on k. 

Problem 1-4. Let X = {xn}~=o and let 

£00 = {X: Xn E R Vn E Nand Ilxlloo = s~Plxnl < oo}. 
Define T : £00 --+ £00 by (Tx)o = Xo and (Tx)n = Xn - Xn-l if n > O. 
(1) If e = (1,1, ... ,1, ... ), show that the equation Tx = e has no solution 
X in £00. 
(2) Let F = T£oo be the image of T. Assume without proof that there exists 
a continuous linear functional f on £00 such that f(x) = 0 for every X in 
F, f(e) = 1, and sup{lf(x)1 : Ilxll oo ::; I} < +00 (Hahn-Banach theorem). 
Show that if x = {xn};;"=o is such that Xn 2: 0 for every n, then f(x) 2: O. 
(3) Let S : £00 --+ £00 be defined by (Sx)n = Xn+l if n 2: O. Show that 
f(x) = f(Sx) for every x in £00. 
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(4) Show that liminfn-++oo Xn 2: 0 implies that f(x) 2: O. Conclude that 
liminfn-++ooxn:::; f(x):::; limsuPn-++ooxn for every x E £00. 
(5) Let A c N and let lA E £00 be defined by lA(n) = 0 if n =1= A and 
lA(n) = 1 ifn E A. If peA) = f(lA), show that P(AUB) = P(A)+P(B) 
if A n B = 0 and that P does not satisfy the countable additivity axiom. 

REMARKS. The linear functional f above is called a Banach limit; it cannot 
be written down explicitly since it is constructed by means of the Hahn­
Banach theorem and the axiom of choice. Similarly, it is impossible to 
give an explicit example of an additive but not a-additive measure on a 
a-algebra. 

Problem 1-5. Let X be an uncountable set and let A be the a-algebra 
generated by the family of I-element subsets of X. (See Problem 1, question 
(ld).) Let P: A ----+ [0,1] be defined by 

peA) = 0 if A is finite or countable 
peA) = 1 if A is cocountable. 

(A is cocountable if AC is finite or countable.) Show that P is a probability 
measure on (X, A). 

Problem 1-6. Let (X, A, J.L) be a measure space and let f be a nonnegative 
measurable function on X. For every t 2: 0, set 

F(t) = J.L{x : f(x) > t} and G(t) = J.L{x : f(x) 2: t}. 

(1) Assume that f(X) ~ N and that f is integrable. Prove that 

1 f(x)dJ.L(x) = f F(n) = f G(n). 
x n=O n=l 

METHOD. Set J.Ln = J.L{X : f(x) = n} and show that Ix f(x)J.L(dx) 
I:~=onJ.Ln. 
(2) Assume that fO: is integrable for a: > O. Prove that 

{ {+oo (+oo 
lx r(x)dJ.L(x) = a: 10 to:- 1 F(t)dt = a: 10 to:-1G(t)dt. 

METHOD. Show that (2) holds for Q = 1 by considering the functions 
fn(x) = [2nfi xl ], where [a] means "the greatest integer:::; a", and using the 
monotone convergence theorem. The general case can then be reduced to 
the case Q = l. 

Problem 1-7. If 0 < r < 1, we write the Poisson kernel as 

00 1 _ r2 
Pr(8) = 1+2'"'rncosn8= 8 2 . 

~ 1- 2rcos + r n=l 
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(1) Show that r2 + cosO(1- 2r) 2': 0 if 0:<:; 0 :<:; 7r and ~ :<:; r :<:; 1. Deduce 

that 02 Pr(O) :<:; (i::::~:~~2 and evaluate limr~l 1011" 02 Pr(O)dO. 

(2) Show that Io7r 02 Pr(O)dO = ~3 + 47r L~=l (-;r and use this to derive 
another expression for limr~l Io7r 02 Pr(O)dO. 
( ) ( ) ( ) . "'= (_l)n "'= 1 3 Use 1 and 2 to find the sums of the senes L...m=1 ~, L...m=l (271-1)2' 

d ",DO 1 
an L....n=l 712' 

(4) Express 101 (log(l - x))2 ~:; as the sum of a double series and show that 

f1(log(1- X 2 ))2dx = 2"'= ~. Jo x 2 L....n=l 71 2 

= (1),,+1 1 I 
Problem 1-8. Evaluate Ln=l --=---n-- by using the integral 10 l';x and 
the monotone convergence theorem. 

Problem 1-9. Let (X, A, p) be a measure space and let x f-+ f(x) = 
(h (x), h(x), ... , fn(x)) be a measurable mapping from X to Rn. Suppose 
that R n is equipped with a norm II II such that x f-+ Ilf(x)11 is integrable. 
(1) Show that fj is integrable for every j = 1,2, ... , n. 
(2) Defining Ix f(x)dp(x) in R n by 

(j~ fI(x)p(dx), ... , l fI(X)P(dX)) , 

show that II Ix f(x)p(dx)11 :<:; Ix Ilf(x)llp(dx). 

METHOD. On the dual space (Rn)* consisting of linear functionals a : v f-+ 

(a,v) on R n , introduce the dual norm Ilall* = supV#o I(~~~)I and use the 

fact that Ilvll = SUPa#O 111:'1111. 

REMARKS. 1. The shortest path between two points is a straight line. Con­

sider R n with the Euclidean norm Ilvll = [v? + v§ + ... v;] 1/2. Let X = 
[0, 1] with Lebesgue measure. (See Chapter II.) Let F be a function from 
[0, 1] to R n such that the derivative f = F' exists everywhere and is con­

tinuous. Then 101 IIf(x)lldx can be interpreted as the Euclidean length of 

the curve described by F, and 11101 f(x)dxll = 11F(1) - F(O)II is the length 
of the line segment with endpoints F(O) and F(l). 
2. Case of equality. It can be shown that, when the unit ball B is strictly 
convex (that is, when IIv111 = IIv211 = IIAv1 + (1- A)v211 = 1 for A E [0,1] 
holds only for A = 0 or 1), the inequality is strict unless there exist v ERn 
and a function g(x) 2': 0 such that f(x) = g(x)v p-almost everywhere. The 
application to the Euclidean length of a curve is immediate. 

Problem 1-10. Let X, Xl,"" X n , ... be measurable functions from a 
space (E, E, p) to an open set n of Euclidean space R d such that 

IfE > a p({IIXn - XII ~ E}) ---t 0 as n ---t 00. 
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(1) Show that 'if > 0 there exists a compact set Ken such that Il( {X t/:. 
K}) ::::: to and, for every n, Il( {Xn t/:. K}) ::::: Eo 

(2) If I: n -4 R m is continuous, then 'if > 0 

1l({II/(Xn) - I(X)II ;:::: f}) -40 as n -4 00. 

Problem 1-11. Let (X, A, Il) and (Y, B, v) be measure spaces such that 
Il(X) and v(Y) > O. Let a : X -4 C and b : Y -4 C be functions, respec­
tively A and B measurable, such that 

a(x) = bey) 1lQ9 v-almost everywhere on X x Y. 

Show that there exists a constant A such that a(x) = A Il-a.e. and bey) = A 
v-a.e. 

Problem 1-12. On a measure space (X, A, Il), let I and 9 be complex 
functions such that 1/12 and Igl2 are Il-integrable and consider the function 

hex, y) = I/(x)g(y) - l(y)g(x)12. 

(1) Show that 0 ::::: ixxx hex, y)dll(X) dll(y), and use this to prove the 
Cauchy-Schwarz inequality: 

METHOD. Consider first the case where I ;:::: 0 and 9 ;:::: O. 
(2) Show that equality holds in Schwarz's inequality if and only if either 
g(x) = 0 Il-a.e. on X or there exists a constant A E C such that I(x) -
Ag(X) = 0 Il-a.e. on X. 

METHOD. Problem 1-11 can be used. 

Problem 1-13. If X and Yare measurable real-valued functions defined 
on the measure space (n, A, Il) such that Il( {Y ::::: x < X}) = 0 for all real 
x, show that Il( {Y < X}) = O. 

Problem 1-14. Let (X, A, Il) be a measure space, where Il(X) is not nec­
essarily finite, let (Y, B) be a measurable space, and let I be a measurable 
mapping from X to Y. Suppose that there exists a sequence {Bn} in B 
such that U::=lBn = y and 1l(f-l(Bn)) < 00 for every n. 
(1) Show that v(B) = 1l(f-l(B)) defines a measure v on (Y,B) (called the 
image of Il under f). 
(2) Show that if 9 E Ll(v), then 

Ix g(f(X))Il(dx) = [g(Y)V(dY). 

REMARKS. 1. The image measure always exists when Il is bounded; this is 
used extensively in probability theory, in Chapter IV. It does not always 
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exist if f.1(X) = +00. For example, if X = R2 is equipped with Lebesgue 
measure f.1 = dx dy and f : R2 -> R = Y is the projection f(x, y) = x, the 
image of f.1 does not exist. 
2. If X and Yare metrizable locally compact spaces which are countable at 
infinity and f.1 is a Radon measure on X, a sufficient condition for existence 
of the image measure is that, for every compact set K in Y, f- 1 (K) should 
be relatively compact. See problems II-H, 12, and 13 and 1II-3. 

Problem 1-15. (1) Let f be square integrable on [0,1] and let F(x) = 
J; f(t)dt. Applying the Cauchy-Schwarz inequality to the product f x 1 

on [0, x], show that limxlO x- 1 / 2 F(x) = O. 
(2) Let 9 be square integrable on [0, +00) and let G(x) = J; g(t)dt. Ap­
plying the Cauchy-Schwarz inequality to the product 9 x 1 on [a, x], with 
a sufficiently large, show that limx~+OG X- 1/2G(X) = O. 

REMARK. It is easy to replace £2 by £P, with p > 1. If ~ + i = 1, we find 

that x- 1/ QF(x) -> 0 as x -> 0 and x- 1/ QG(x) -> 0 as x -> +00. 
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Problem II-I. Let I be an open interval in R, equipped with the Borel 
algebra B. A function F : I ----t R is called increasing if x < y implies that 
F(x) ~ F(y). We set F(x - 0) = limyjx F(y), F(x + 0) = limYl x F(y), and 
DF = {x : F(x - 0) i- F(x + O)}. 
(1) If F : I ----t R is increasing, prove that DF is finite or countable. 

METHOD. If [a, b] c I, show that D(n; [a, b]) = {x E [a, b] : F(x + 0) -
F(x - 0) 2: ;} has a finite number of elements. 

(2) If F : I ----t R is increasing, prove that there exists exactly one measure 
p, 2: 0 on (I, B) such that 

F(y) - F(x) = p,([x,y]) 

for all x, y such that [x, y] c I and x, y ~ DF. 
Prove that p,( {a}) = F(a + 0) - F(a - 0) for every a in I. 

METHOD. Uniqueness: Use the fact (II-3.2) that a Borel measure that is 
locally finite on an interval is regular, and hence determined by its values 
on open sets. 
Existence: Imitate the construction of the Riemann integral. For every con­
tinuous function f with support contained in I, define the integral J fdp, 
as the limit of integrals of step functions 
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(3) Let 11 be a locally finite nonnegative measure on (I, B) and let Xo E I. 
Set F(:r) = fl([Xo.:c)) if x > .ro and F(:r) = -fl([X.xo)) if:r:::; :[0. Show 
that F is increasing and that F(y) - F(:r) = Il([l', y]) if Y rt DF · 
( 4) Let a relat.ion on the set of increasing functions on I be defined as 
follows: F1 ~ F2 if there exists a finite or countable subset. D1.2 of I such 
that F1(y) - FJ (:2:) = }2(Y) - F2 (x) for all x and y E I \ Dl.2' Show that 
this defines all equivalence relation OIl the set of increasing functions on 1. 
Chara('teri~e the equivalellce classes in terms of measure. 

RE!\lARKS. 1. Since perhaps as Illany as ~O per cent of the measures used 
ill practicc are measnres Oll R, a description of all the Radon measures 2: 0 
on an open interval is important. Historically, the first measures 2: 0 were 
considered by Stieltjes. precisely by lIleans of increasing functions. 
2. vVith every increasing function F on an open interval I, we can thus 
associate a lIleasure li(d:r). which is often written dF(x) or F( d:r). Con­
versely, given a measure 11 2: 0 on I. an increasing function F satisfying the 
hypotheses of part (2) is called a. distribution function for Ii. As we have 
seen. a distribution function for /1 is not unique: we can modify (slightly) 
its value at points of discolltinnity (the atoms of 11) and add an arbitrary 
wllstant. \\·'hm fl is a probability measure on R, there are three traditional 
choices for distribution functions: 

The third appears in the inversion formula for a characteristic function. 
3. If we consider a measure 11 2: 0 on a closed interval of the form (-x, b]. 
[a. +x), or [a, b]. we can define its distribution function as above. However, 
t,vo measures can then have the same distribution function but different 
masses at the endpoints of the interval. 
4. l\hny identities and inequalities use increasing functions on all interval. It 
is esscntial to express the latter in terms of measures in order to understand 
the fonner: this also gives a systemat.ic method of proof, although not 
necessarily the shortest. 

Problem 11-2. Specify for which measure 011 the open interval I each of 
the following increasing functions is the distribution function (8ee Problem 
II-I). 

(1) 1= R 
(a) F(x) = :c 

(2) 1=(-1,+1) 
(b) F(l:) = [x] (c) F(x) = .1 arctan :r 

7r 

(a) F(:r) = tan 7r{ (b) F(:r) = (signx)lxI 1/ 2 (c:) F(x) = ~ arcsin x 
(3) 1= (0. +x) 

(a) F(x) = log 1: (b) F(x) = -[+] (c) F(l;) = (x - 1)+ 

(Notation: [a] = sup{n : n. E Z and n :::; a}, a+ = sup{ 0, a}, and sign a = 
+ 1 if a > 0, sign 0 = 0, and sign a = -1 if a < 0.) 
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Problem 11-3. Let I be an open interval in R. A function G is called 
convex if its right derivative limdO[G(x + E) - G(x)] = G~(x) exists for 
every x in I and the function x 1-4 G~(x) is increasing. (See I-9.2.1.) 

Prove that G is convex if and only if there exists an increasing function 
F on I such that, for every Xo in I, 

G(x) - G(xo) = l x F(t)dt. 
Xo 

METHOD. For one direction, show that G~(x) = limdO F(x + E). For the 
other, consider H(x) = J:o G~(x)dt and use without proof the fact that, 
if a function has a right derivative that is zero in an open interval I, it is 
constant in I. 

REMARK. It can be shown that the definition of convex functions given 
here is equivalent to the following property: 

G[(>'x + (1 - >.)y] ::::: >'G(x) + (1 - >')G(y) if x, y E I and>' E [0,1]. 

For a proof of this equivalence and further details of convex functions, the 
reader may consult Artin1 or Zygmund2 . 

Problem 11-4. Let I be an open interval in R. Recall (see Problem II-3) 
that a function G : I -+ R is called convex if there exists an increasing 
function F on I such that, for every Xo in I, 

G(x) - G(xo) = l x 
F(t)dt. 

Xo 

If J1 is the measure on I given by the distribution function F (see Problem 
II-2), prove the following assertions. 
(1) If Xo ::::: x, with x and Xo E I, then 

G(x) - G(xo) = (x - xo)F(xo + 0) + 11(xo,X](U)(X - u)J1(du) 

(x - xo)F(xo - 0) + 11[xo.X](u)(x - u)J1(du). 

(2) If Xo :2 x, with Xo and x E I, then 

G(x) - G(xo) (x - xo)F(xo + 0) -11[X'xo](U)(x - u)J1(du) 

(x - xo)F(xo - 0) -11[X'xo)(U)(x - u)fJ(du). 

IE. Artin, The Gamma Function (New York: Holt, Rinehart and Winston 
1964), 1-6. 

2 A. Zygmund, Trigonometric Series (Cambridge: Cambridge University Press 
1959), 21-26. 
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REMARKS. If f.L has no atoms and Xo :s:; x, we can replace the notation 
JI 1(xo,X]Cu)g(u)du = JI l[xo,x] (u)g(u)du by J:o g(u)f.L(du) , since the lat­
ter is unambiguous in this case. If x :s:; xo, we write J:o g(u)f.L(du) = 
- JI l[x,xo] (u)f.L(du) , which permits us to state the relation of Chasles: 

J: = J: + Jbc for arbitrary a, b, and c in I. However, this relation does 
not hold if f.L has atoms. 

Problem 11-5. Let Ml be the set of measures f.L 2:: 0 on (0, +00) equipped 
with its Borel algebra, such that Jt l[x,+oo) (u)uf.L(du) < 00 for every x> O. 
(1) Let G be a convex function on (0, +00) (see Problem II-4) such that 
limx~+oo G(x) = O. Prove that there exists a unique f.L in Ml such that 

( i) 
roo 

G(x) = io (u - x)+f.L(du) for every x> 0, 

where a+ = max(O, a), and that JtXJ uf.L(du) = limx~o G(x) :s:; +00. 
(2) Conversely, let f.L E M 1 . Show that (i) defines a convex function G on 
(0, +00) such that limx~+oo G(x) = O. 

METHOD. Let F(x) be as in Problem II-4 and show that F(x) :s:; 0 and 
that limx--->+oo xF(x) = O. Then use Problem II-4. 

REMARK. The measure xf.L(dx) is not necessarily bounded: G(x) = ~ gives 

f.L(dx) = ~~. 
Problem 11-6. Let M be the set of measures v 2:: 0 on (0, +00) equipped 
with its Borel algebra, such that v([x, +00)) < +00 for every x > O. If 
k is a positive integer, we denote by Ck the set of functions 9 defined on 
(0, +00) such that G(x) = (_l)k-l g(k-1)(x) exists and is convex and also 
that limx->+oo g(x) = limx~+oo G(x) = O. 
(1) If 9 E Ck, show that there exists a unique v in M such that 

(i) g(x) = 100 
[ (1 - ~D +] k v(du) for every x > O. 

(2) Conversely, let v E M. Show that (i) defines an element of Ck. 

METHOD. (1) First use Taylor's formula to show that limx~+oo g(j)(x) = 0 
for j = 0,1, ... ,k - 1, then use Problem II-5. 

REMARK. It is clear that the functions f u (x) = [( 1 - ~) + ] k play the role of 
extremals in Ck; formula (i) shows that the functions in Ck are "barycen­
ters" of the fu. Formula (i) plays a role in the probability distributions of 
Polya and Askey. (See Problem III-5.) 

Problem 11-7. Let u be a decreasing function defined on (0, +00) such 
that u -> 0 as x -> +00 and Jooo x2u(x)dx < 00. Show that, for every 
y > 0, 

1+00 41+00 
y2 u(x)dx:S:; - x2u(x)dx (K.F. Gauss). 

y 9 0 
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Describe in detail the case of equality. 

METHOD. Consider a measure J1 on (0, +00) for which -u is a distribution 
function. 

Problem II-8. Let u be a decreasing function defined on (-a, +00), with 
a> 0, such that u ~ 0 as x ~ +00 and f~aoo u(x)dx < +00. Show that 

l y Y 1+00 
u(x)dx ~ -- u(x)dx \;fy > 0, 

o Y + a -a 

and describe in detail the case of equality. 

METHOD. Consider a measure J1 on (-a, +00) for which -u is a distribution 
function. 

Problem II-9. Let F be an increasing function on [a, b] and let f be an 
integrable function on [a, b]. Show that there exists a number ~ in [a, b] such 
that ib f(x)F(x)dx = F(a) if, f(x)dx + F(b) lb f(x)dx. 

(Second mean value theorem for integrals) 

METHOD. Show that this can be reduced to the case where F(a) = 0 
and F(b) = 1, and consider a probability measure J1 on [a, b] such that 
F(x) = J1([a, xl) for x $. DF = {x : a < x < band F(x - 0) < F(x + On. 
Problem II-IO. Let J1 be a probability measure on [0, 1]. Set m = f; xJ1(dx) 

and (72 = f01 x2J1(dx) - m 2. Show that (72 ~ i. Describe in detail the case 
of equality. 

Problem II-I1. Let f be a positive decreasing function on (0,1] such that 

f; f(x)dx = 1, and let A E [0,1]. Let P(dx) = Aoo(dx) + (1 - A)f(x)dx, 
where 00 is the Dirac measure at the origin, let m(A, f) = f01 xP(dx), and 

let (72(A, f) = f01 x2 P(dx) - m2(A, f). 
(1) Show that (72(A, f) ~ 1/9. Describe in detail the case of equality. 
(2) Show that (72(0, f) < 1/9. Is this inequality the best possible? 

METHOD. If Df is the set of points of discontinuity of fin (0,1], consider 
the measure v on (0,1] such that f(x) = v([x, 1]) if x$. Df and show that 
J1(dt) = tV(dt) is a probability measure on (0,1]. 

REMARK. If G is a convex function from (0, 1) to [0,1), it can be shown that 
the measure P on [0,1) which is the image under G of Lebesgue measure 
on (0, 1) is of the type considered in the problem. Hence 
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Problem 11-12. Let n be a positive integer and let a, a1, ... , an, C1, ... , Cn 

be real numbers such that a1 < a2 < ... < an and Cj > 0 for j = 1, ... , n. 
Let C and R denote the complex and the real numbers completed by a 
point at infinity 00. Consider the function f : C ......, C defined by f(x) = 00 

if x E {00,a1, ... ,an} and 

n 

f(x)=x+a- 2:=~ if xf/:.{00,a1, ... ,an }. 
j=l x - aj 

The function T : R ......, R i::; the restriction of f to R. Lebe::;gue measure on 
R is the measure m such that m( { 00 }) = 0 and the restriction of m to R 
is the usual measure. 
(1) Let y E R. Show that the equation in x given by f(x) = y has exactly 
n + 1 real roots {Xj(y)}j=o such that aj < Xj(Y) < aj+1 (with the con­
vention that aD = -00 and an+! = +(0). Show that 'L.7=oxj(y) = 1 and 
conclude that T preserves m. That is, for every F in L 1 (m), 

fIt F(T(x))m(dx) = kF(x)m(dx). 

(2) Prove by induction on the integer k 2 0 that, for every Z E C, 

n ( )k ~ [Xj(Y) - zr k - 1 xj(y) =~! :z [y - f(Z)]-1. 

(3) Let 9 be a nonnegative rational function such that hI g(x)m(dx) < 00. 

Prove that there exists a rational function gl with the same properties and 
such that the image g(x)m(dx) under T is gl(x)m(dx). Conclude from (2) 
that, if Zl is a pole of gl with multiplicity m1 > 0, there exists a pole z of 
9 with multiplicity m such that f(z) = Zl and m1 ::; m. Calculate gl when 

1 
f(x)=x--

x 

2X2 
and g(x) = (2 )2. 

71" X + 1 

(4) Let z = a + ib E C, with b > O. The Cauchy measure IZ on R is defined 

by Iz(dx) = 7r[(!'::.'~f;L21. Prove, using (3), that the image of IZ under T is 
If(z)· 

REMARKS. 1. A Cayley function is a function of the form 

n ""C f(x) = cox + a - L __ J -, 

j=l X - aj 

where Cj 20, j = 0,1, ... , n and a, a1, ... , an are real. If Co = 0 and n = 1, 
it is a positive linear fractional transformation; that is, f(x) = ax++db with ex 



Exercises for Chapter II 279 

a, b, c, and d real and ad - bc > O. It is easy to see that all Cayley functions 
can be obtained by composing positive linear fractional transformations 
with the Cayley functions corresponding to Co = 1. 
2. It is easy to see that if f is a positive linear fractional transformation 
and T is its restriction to R, then the image of rz under T is rl(z). This 
observation, the remark above, and result (4) of the problem show that the 
property holds for all Cayley functions. 
3. Conversely, let T : R ~ R be a rational function such that, for every z 
with positive imaginary part, the image of rz under T is a Cauchy distribu­
tion rZl (where ZI depends on z). It can be proved that T is the restriction 
to the real axis of a Cayley function. 
4. On the other hand, a Cayley function with Co > 0 maps Lebesgue mea­
sure m to com. If Co = 0, the image measure is no longer a Radon measure 
on R. For example, f(x) = -~ maps m(dx) to m~~x). 

Problem 11-13. The half-plane R! = {(x, y) : x E Rand y > O} is 
equipped with the measure J.l( dx, dy) = d~2dY. What is the image 1/ on 

[1, +00) of this measure under the mapping (x, y) 1--+ v( x, y) = 2~ (1 + x2 + 
y2) (in the sense of Problem I-14)7 

Problem 11-14. Let {J.ln}n2:0 be a sequence of positive measures on R, 
each with total mass ::; 1. Suppose that J.ln converges weakly to J.lo as 
n ~ 00 and that 

M = s~p 1:00 
x 2 J.ln(dx) < 00. 

(1) Show that J.ln converges narrowly to J.lo as n ~ 00. 

(2) Show that 1:00IxlJ.ln(dX) ~ 1:00IxlJ.lo(dX) as n ~ 00. 

(3) Show by a counterexample that 1:
00 

X 2J.ln(dx) does not necessarily 

tend to 1:
00 

x 2J.lo(dx). 

METHOD. Use Theorem II-6.8. 

Problem 11-15. If 9 is a measurable function on (0, +00) which is locally 

integrable, and if A = limT->+oo fIT g(x)dx and B = lime->o t g(x)dx 
exist, we say that fo+ oo g(x)dx exists and equals A + B. 

Let f be measurable and locally integrable on (0, +00) and suppose that 

limT->+oo f{ f(x)rt;; exists. Let a and b be positive. 
(1) Suppose that K = ft f(x)dxx exists and let F be defined by F(x) = 
fIX f(t)dt. Show that foOO[F(ax) - F(bx)l~ exists and express the integral 
in terms of a, b, and K. 
(2) Suppose that L = lime->o f(x) exists. Show that ftU(ax) - f(bx))d: 
exists and express the integral in terms of a, b, and L. 
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Problem 11-16. Writing x- 1 = 1000 e-yxdy for x > ° and applying Fubini's 
theorem, show that the integral 1000 sin x d: exists (in the sense of Prob­
lem II-15) and compute it. Use this to evaluate the integrals 1000 (cos ax -
cosbx)~ and 1000 (cos ax - cos bx) tt;' if a, b> 0. (See Problem II-15.) 

Problem 11-17. For an interval I in R, LP(I) denotes the set of real­
valued functions (rather, equivalence classes of functions) whose pth power 
is integrable with respect to Lebesgue measure on I. 
(1) Show that LP' ([0,1]) C LP([O, 1]) if ° < p < p' ::::; 00. Give an example 
of a function in L1([0, 1]) \ L2([0, 1]). 
(2) Give examples of functions in L1(R) \ L2(R) and in L2(R) \ L 1(R). 
(3) pP is the set of real-valued sequences a = {an}n::::O such that L Ian IP < 
00. Show that ppt (N) :) PP(N) if 0 < p < p' ::::; 00. Give an example of a 
sequence in p2 \ p1 (N). 

Problem 11-18. Let R~+l denote the set of pairs (a,p) with p > 0 and 
a ERn. Euclidean space R n is equipped with the scalar product (a, t, and 
the norm lIall. Let 

where Kn is the constant such that IRn K(x, l)dx = 1. The goal of this 
problem is to calculate 

where tERn. 

It(a,p) = r expi(x, t,K(x - a,p)dx, JRn 

If f: R~+l ----- C, we write Dof = gpf and Djf = a~J for j = 1, ... ,no 

f is said to be harmonic in R~+ 1 if 

(D5 + ... + D;)f(a,p) = ° for every (a,p) E W;:+l. 

(1) Show that K is harmonic in R~+l. Show that, if Po > ° and V 
(~, ~), there exists a constant C such that ID;K(a,p)1 and ID;DjK(a,p)1 
are less than C(l + IlaI1 2)- nt' for all (a,p) ERn x V and i, j = 0,1, ... , n. 
(2) Let IL be a Radon measure on R n such that 

and let Fp,(a,p) = IRn K(x - a,p)lL(dx). Show that Fp, is harmonic and 
that limp--++oo Fp, (a, p) = 0. 
(3) Show that there exists a function 9 : R n ----- C such that It(a,p) = 
g(pt) exp(i(a, t)). 
Use (2) to calculate g. 
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REMARKS. 1. In n dimensions, K(x - a,p) is sometimes called the Poisson 
kernel; in R n, it is sometimes called the Cauchy distribution. 
2. The calculation giving Kn = r(ntl )1f-(n+l)/2 is carried out in Problem 
III-4. 

Problem 11-19. (1) Let J-l and v be positive measures on R such that there 
exists an interval [a, b] c R with J-l([a, b]) = J-l(R) and v([a, b]) = v(R). 
Show that J-l = v if and only if 

L xnJ-l(dx) = L xnv(dx), Vn = a, 1,2, .... 

(2) Let J-l be a positive measure on [a, +00) (not necessarily bounded). Its 
Laplace transform is the function from R to [a, +ooJ defined by 

Sf---> (LJ-l)(s) = 100 e-SXJ-l(dx). 

(a) If Ep, = {s : (LJ-l)(s) < oo}, show that Ep, is an interval which, if 
nonempty, is unbounded on the right. Give examples where Ep, = R, 0, 
(a, +00), and [a, +00). 
(b) Use (1) to show that if there exists a number a such that LJ-l = Lv < 
+00 on [a, +00), then J-l = v. 

Problem 11-20. Give examples of sequences {J-ln}~=l of positive Radon 
measures on R such that there exists a positive Radon measure J-l with 
limn--->oo J-ln = J-l 
(1) vaguely but not weakly; 
(2) weakly but not narrowly; and 
(3) narrowly but not in norm. 

REMARK. If the sequence of positive measures {J-ln}~=l converges vaguely 
to J-l and J-l(X) < 00, then J-ln --+ J-l weakly, since CK(X) is dense in Co(X). 
It should also be noted that narrow and weak convergence coincide when 
X is complete. 

Problem 11-21. Let X be a locally compact space which is countable 
at infinity and let Ml(X) be the set of signed Radon measures v on X 
such that Ivl has finite total mass IIvll. If {vn}~=l is a sequence in Ml(X) 
such that r = sUPn IIvnll < 00, show that there exist v in Ml(X) and an 
increasing sequence of integers {ndk'=l such that vnk --+ vas k --+ 00. Show 
also that v ? a if Vn ? a for every n. 

METHOD. Use Theorem II-6.6. 

REMARK. When X = R, Vn ? a, and r = 1, this property is often called 
ReIly's theorem. 

Problem 11-22. On a locally compact space X which is countable at infin­
ity, let J-l and {J-ln}~=l be positive Radon measures such that J-ln converges 
vaguely to J-l as n --+ 00. 
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(1) If 0 is an arbitrary open set, show that f-L(O) ::; lim infn---> 00 f-Ln(O). 
(2) Suppose that 0 is an open set with compact closure K and such that 
its boundary ao = K \ 0 has f-L-measure O. Let {Ok }k=l be a decreasing 
sequence of open subsets of X such that nk=lok = K. Let fk be a function 
equal to 1 on K and to 0 on Ok and satisfying 0 ::; f(x) ::; 1 for x in Ok. 
(Such a function exists by Urysohn's lemma, II-l.l.) Show that 

limsuPf-Ln(O)::; r fk(x)f-L(dx), 
n---+OC) Jx 

and conclude that f-Ln(O) ----+ f-L(O) as n ----+ 00. 

(3) If f-L and {f-Ln}~=l are Radon measures on R, positive and with total 
mass less than or equal to 1, show that f-Ln converges weakly to f-L as n ----+ 00 

if and only if 
f-Ln((a, b)) ----+ f-L((a, b)) as n ----+ 00 

for all points of continuity of the distribution function x ~ f-L(( -00, x)). 
If, moreover, f-Ln(R) = f-L(R) = 1, show that f-Ln ----+ f-L narrowly if and only 

if 
f-Ln((-OO,x)) ----+ f-L((-OO, x)) as n ----+ 00 

for every point of continuity of the right-hand side. 

METHOD. Use Problems II-I and II-21 together with Theorem II-6.8. 

REMARK. In practice, (3) gives a necessary and sufficient condition for 
the convergence of probability distributions on R; it is often taken as a 
definition in elementary texts. 

Problem 11-23. Let X be a locally compact space which is countable at 
infinity, and let f-L and {f-Ln}~l be Radon measures on X such that f-Ln 
converges vaguely to f-L. 
(1) If 0 is an open set in X and f-L* is the restriction of f-L to 0, show that 
f-L~, converges vaguely to f-L* as n ----+ 00. 

(2) Show by an example that the statement is false if 0 is replaced by a 
closed set. 
(3) Suppose that X = R and that f-Ln ::::: 0, n = 1,2, .... Let a and b 
be real numbers with a < b. Show that there exist numbers p and q and 
an increasing sequence of integers {nk}k=l such that, for every continuous 
function f on [a, b]' 

r ff-Lnk ----+ pf(a) + qf(b) + r ff-L as n ----+ 00. 

J~.~ J~,~ 

METHOD. Use Problem 11-2l. 

Problem 11-24. (1) Let 0 and 0' be two open sets in R n , let f be a 
diffeomorphism from 0 onto 0', and let <p be a measurable function on 0' 
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such that fo' cp(x')dx' < 00. Show that 

j cp(f(x))ldetJf(X)ldX = jCP(X')dX', 
o 0' 

where IdetJf(x) 1 is the Jacobian. 
(2) Let a E R U {-oo}. Let f and g be functions satisfying the following 
conditions: (i) f is continuously differentiable for x > a: (ii) g is defined 

and integrable on [0, +00); (iii) If'(x + ~2)1 s g(u) for all x > a; and 

(iv) both u f-+ ug(u) and u f-+ f(x + ~2) are integrable on [0, +00). If 

F(x) = f~: f(x+ ~2 )du, show by a change of variables in polar coordinates 
that 

1 j+x v2 
f(x) = -- F'(x + - )dv. 

2Jr _= 2 

REMARK. The case f(x) = e- x is well known and is used in IV-4.3.2(i). 

Problem 11-25. Consider a subset X of R n with positive measure, a 
measurable function f : X -> R n , and a nonnegative locally integrable 
function h on X. Let JL denote the image in R n of the measure h (x) dx on 
X under f (in the sense of Problem 1-14) if this image measure exists. 
(1) If X and U are open sets and f is a diffeomorphism from X to U, show 
that 

JL(du) = h(f-1(u))ldetJf -l (u)ldu. 

(2) If there exist an open subset U of R n and disjoint open sets Xl, 
X 2 , ... ,Xd contained in X such that the restriction fj of f to Xj is a 

diffeomorphism on U, and if X \ L;~=1 Xj has Lebesgue measure zero, 
show that 

d 

JL(du) = L h(fi 1(u))ldetJfj-l (u)11u(u)du. 
]=1 

(3) If X = (0, +00)2, c(x) = X- 3 / 2 exp[-(ax + b/x)]' h(x, y) = c(x)c(y), 
and f(x, y) = (u, v), with u = x + y and v = l/x + l/y, calculate JL. 
Conclude from the result that the image of hdxdy under the map (x, y) f-+ 

(x + y.1/x + l/y - 4/(x + y)) is also a product measure. 

REMARKS. 1. The use of the change-of-variables theorem (11-4.4.1) to cal­
culate the image of a measure is important in practice, especially in prob­
ability theory. 
2. Problem 11-12 treats a special case of (2) for n = 1. 
3. (3) shows that if X and Yare independent random variables of density 
Kc(x)dx (a distribution called "inverse Gaussian"), then X +Y and l/X + 
l/Y - 4/(X + Y) are independent. It seems difficult to justify this result 
by Fourier analysis. 
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Problem 111-1. Let G be the group Od of d x d orthogonal matrices, acting 
on the Euclidean space Rd. The scalar product and the norm are denoted 
by (x. t) and Iltll, respectively. Let J-l be a bounded complex measure on 
R d, with Fourier transform 

fi(t) = r exp(i(x,t))J-l(dx) (t E R d ). JRd 
Prove the equivalence of the following three properties: 
(1) J-l is invariant under every element of G. 
(2) There exists r.p: [0,(0) ----+ C such that fi(t) = r.p(lltll) for every t. 
(3) The image Va. in R of J-l under the mapping x r-> (a, x) does not depend 
on a when a ranges over the unit sphere Sd-l of Rd. 

REMARK. Naturally, if J-l is real, then fi(t) = fi( -t) implies that r.p is real. 
But J-l ~ 0 does not imply that r.p ~ O. Thus, if (j is the uniform probability 

S th 't' h . R3 ~(t) - sin Iltll measure on 2, e um sp ere In , (j - -ilt-Il-' 

Problem 111-2. Let T be a compact space, let G be a compact topological 
group, and let (g, t) r-> gt be a continuous map from G x T to T such that 
9 r-> {(g, t) r-> gt} is a homomorphism from G to the group of bijections 
of T. Finally, suppose that (G, T) is a homogeneous space; that is, for 
every tl and t2 in T there exists 9 such that gtl = t2' Let dg denote the 
unique measure of total mass 1 on G which is invariant under left and right 
multiplication. eWe accept without proof the existence and uniqueness of 
dg.) 
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(1) If f is continuous on T, show that t ~ Ie f(g-lt)dg is a constant o-[f]. 
Conclude that ott] defines a probability measure on T which is invariant 
under the a.ction of G. 
(2) If p. is a probability measure Oll T ,'vhich iH invariant under the action 
of G, show that 9 ~ IT f[g-lt]/t(dt) is a constant. Integrate with respect 
to dg and conclude thalli = ey. 
(3) If (X, A) is an arbitrary measurable space and T is equipped with its 
Borel algebra, let T x X 1)(' given the product ey-algebra. Suppose that G 
acts on T x X by 9 ( t, :1") = (gt,:1:). Show that every positive measure Ii on 
T x X which is invariant under the action of G has the form ey(dt) I/(d:r). 
\vhere 1/ is a measurE' ::>: 0 on (X, A). ConVE'rse? 

::'.IETHOD. If A E A is such that 11.(T x A) E (D, +x), show that ji.A(B) = 

::i~~:1j dE'fineos a probability nwaSllre on T which is invariant undE'r G. 

(4) Apply the preceding results whE'n T = Sri is the unit sphere of the 
Euclidean space Rd+l. \vhere G = 0(1+1 is the group of (d + 1) x (d + 
1) orthogonal mat ricE's and X = (0, +cx:). Conclude that a probability 
mE'asurE' P on R'1+1 \ () is invariant under G if and only if and 11:1:11 are 

independent and ~ has the uniform distribution on Sci. 

Problem 111-3. In the Euclidean space Rd equipped with the norm 11.1:11, 

letm be Lebesgue measure. 
(1) If I/o and 1/1 arE' the images ofm in [0, +x) under the mappings x ~ Ilx II 
and x ~ II"t (SE'E' Problem 1-14), show that 

,,,,·here r is the usual Euler function (see, for example, Problem IV-H). Use 
this to find I/o ( dp ). 

l\IETHOD. Use the formula 

1 I exp (~ lI:J[) dx = 1. 
eyd( V27r)ci JRa 2ey2 

which holds for all ey > 0, to calculate the Laplace transform (LI/d(s) 
defined in Problem 11-19. 
(2) Keep the same notation Tn and I/o for the ret-ltrictions of Tn and I/o to 
R ci \ {O} and (0, +x). If ji is a measure::>: 0 on R ci \ {O} which has density 
f with respect to Tn, use Problem 111-2 to show that the image of jI on 
(O,+x) under the map:r ~ Ilxll is of the form Jr(p)l/o(dp) and calculate 
the function Jr in terms of f. If ji is rotation invariant, show that there 
exists a function Jr : (0, +x) ---> [0, +x) such that fr( Ilxll) = f(x) Tn-a.e. 

Problem 111-4. Euclidean space R d is equipped with the scalar product 
(.1:, t) and the norm Iltll. r is the usual Euler function. 
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(1) Use Problem 111-3 to evaluate 1= r dx d+l' If a and t are in 
JRd (1 + IlxI1 2)-2 

Rd and p > 0, use Problem II-18 to conclude that 

r( d!l) 1 i(x,t) pdx = e-plltll+i(a,t). 
d+l e d+l 

n-2 Rd (p2 + Ilx - aI1 2 )-2 

(2) Show that, if x E Rd and p > 0, 

Problem 111-5. Let k be a positive integer. In the Euclidean space R 2k - 1 , 

the norm is written Iltll and the scalar product (x, t). Consider the map 
t.p: R 2k- 1 f--* [0,1] defined by 

(1) Using Problem III-I, show that there exists a continuous function I : 
[0, +(0) -+ R such that 

1(llxll) = 12k-l exp(i(x,t))t.p(t)dt. 

(2) Use Problems 111-3 and 111-4 to show that, for every s > 0, 

where Ck is a constant. 
(3) Show that I ::::: ° and that IR2k - 1 I(x)dx < 00 by using Problem 11-19 
and the sequence offunctions In : [0, +(0) -+ R defined by h (u) = I-cos u 
and In+l(U) = Iou In(u - p)h(p)dp. 

Conclude that t.p is the Fourier transform of a probability measure on 
R 2k- 1 . Compute it for k = 1 and k = 2. 
(4) Suppose that g : [0, +(0) -+ R is continuous and satisfies the follow­
ing conditions: (i) g(O) = 1; (ii) (_I)k-l g(k-l)(X) exists and is convex on 
(0, +(0); and (iii) limx -->+= g(x) = limx -->+= g(k-l)(x) = 0. Use Problem 
11-6 to show that g(lltll) is the Fourier transform of a probability measure 
on R 2k - 1 . 
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RErvIARK. The result of (4) for k = 1 is due to C. Polya (1923), and the 
general case to R. Askey (1972). 

Problem 111-6. Let C denote the complex numhers. A function p : C --+ 

[0, +oc) is called a scrnirlOrrn if 

(i) p(AZ) = IAlp(z) for all A E Rand Z E C, and 
(ii) P(Z1 + Z2) .s p(zd + P(Z2) for all Z1 and Z2 in C. 

(1) Let p : C -7 [D, +oc) sat.isfy (i). Prove t.he equivalence of the following 
properties: 

(a) P is a semillonn. 
(b) {z : p(z) .s I} is a conveX subset of C = R2. 
(c) For all a], a2, a;l snch t.hat a1 < a2 < a;) and a3 - 01 < 1\, 

(iii) p(c'O')sin(02 -od+p(eio1 )sin(n:l-n2) -p(e'CY2)sin(n3 -nd 2: O. 

(2) Let fL be a bounded positive measure on [0,1\). Show that 

(iv) Pll(X +iy) = r I.Tsino - ycosaltl(dn) 
.in 

defines a seminonn. Show that Pll = PI'" implies f1 = tLI' 

l\iETHOD. Observe t.hat p(e' !!) is t.he convolution of f1 and I sin til in the 
gronp Rj1\Z. (See I1I-l.8.) 
(3) Let 0 .s n] < ct2 < ... On < 1\, with the convention t.hat no = an - 1\ 
and CX n +] = ell + 1\. The matrices A = (a'J);':j=l' B = (b'1);'.j=]' and 
D = (d iJ )i'.j=1 are defined as follows: 

(Ii] = Isin(ct; - nj)1 for all i,j = 1, ... , n. 
b,.i = - Ciin(o;+l -n,-1), b',H] = sin(o;-o'i-t} (with the convention that 

brl . n + 1 = bn . d, b;.I- 1 = sin( 0H] - 0;) (with the convention that bl.() = bl, 11) 
for i = l. ... ,n, and bij = 0 otherwise. 

du = 2sin(oi+1-aJJ sin(cy;-o;_1) for'i = l. ... , nand dij = 0 otherwise. 
Verify that. AB = D. If fL = I:,:;'=l m/lo) , where Tnj > 0 and Do] is the 

Dimc measure at OJ for .j = 1, 2, ... ,II, calculat.e p( eil!) and verify that 

(v) [mi' /H2,.'" IIl.nlA = [Pll(e ie" ),Pll(e'02 ), ... ,Pll(ei"" )]. 

(4) If P is a seminonn, show t.hat there exists a bounded posit.ive measure 
tL on [0,1\) such t.hat P = PI" 

l\iETHOD. Let T = {OJ, ... ,nn} with 00 = On -1\ < O.s ct] < ... < On < 
1\ < 0n+1 = 0) + Jr. Show t.hat there exists a seminorm PT such t.hat, if 
o .s A .s 1 and j = 1, ... , n, 

(vi) PT [Ae in ) + (1- A)eirYJ+l] = APT [e inj ] + (1- A)PT [eiQ)+l], 

and show by using (3) that t.here exists tiT concentrat.ed on T such that 

]J1'=PJiT' 
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Next, let Ctj = (j-n1)7r and set Pn = PT and J1n = J1T. Show that P = 
limn--->oo Pn and that there exists a bounded positive measure J1 on [0, 7l') 
such that J1n converges vaguely to J1 as n -+ 00. 

REMARKS. A consequence of (4) is that every semi norm on R2 can be 
approximated by finite sums of the type 2:j lajx + bjyl, and not only by 
SUPj lajx+bjyl. For R n with n > 2 this is false; in general, a seminorm can 
be approximated only by suprema of absolute values of linear functionals. 

Problem 111-7. Let C be the set of complex numbers, identified with 
R2, and let P be a semi norm on C. Show that exp(-p(t)) is the Fourier 
transform of a probability measure on R2. 

METHOD. Use the fact, proved in Problem III-6, that there exists a sequence 
of measures J1n ::: ° on [0,7l'), concentrated at a finite number of points, 
such that 

p(x + iy) = lim r IxsinCt - ycOsCtIJ1n(dCt). 
n-+oo 10 

Also use the formula e- 1tl = r~: eitx 7r(1~x2)' which appeared in Problem 
III-4. 

REMARKS. This result is due to T. Ferguson (1962). It is false in higher 
dimensions; only for certain norms (like the Euclidean norm) is exp( -p(t)) 
the Fourier transform of a probability measure. See Problem 111-8 for a 
counterexample. 

Problem 111-8. (1) What is the image 1/ in R, under the projection 
(xo, ... ,xn) f--+ Xo, of the measure exp( - maxj=o, ... ,n IXj I) dxodx 1 ... dXn 
in R n ? (See Problem 1-14.) 
(2) Compute the Fourier transform of 1/. 

METHOD. Show that k!(l - it)-(k+l) = Iooo xk exp( -x + itx)dx for t real 
and k a nonnegative integer. 
(3) Conclude that ipn+l (t) = exp( - maxj=o, ... ,n Itj I) is not the Fourier 
transform of a probability measure on Rn+l when n ::: 2. 

REMARK. (3) is due to C. Herz (1963). 

Problem 111-9. Let E be n-dimensional Euclidean space. 
(1) If Ct > 0, (3 > 0, and Ct + (3 < n, show that there exists a constant 
K( Ct, (3) such that I(y) = IE Ilxll',,-nll y - xll,8-ndx = K( Ct, (3) Ilyllet+,8-n. 

METHOD. Use Problem 111-3. 
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(2) Let 0 < ! < n and let 1\1, be the set of positive measures jL, not 
necessarily bounded, such that f(jL) = JEXE Ilx - YII'-"li(dx)/L(dy) < 00. 

Show that. if JI and // are in 1\1." 

I
f" II:r - yr-"Ii(dx)//(dy) I s; )f(/i)f(//). 

JEXE 

Problem 111-10. Let 1\1 be the space of real Radon measures on U 
{z : z E C and Iz 1 = I} and let p+ (respectively P-) be the vector 
space over R of complex fnnctiolls defined in {z : Izl > l} = D+ (resp. in 
{z: Izl < I} = D-). For Ii E 1\[, we define 

fi;(:::) = f (e ill - z)-ldp.(e iH ) for::: E D+. 
Ju 

f l-;(::;) = j~(eie - z)-ldp(e ili ) for z E D-. 

(1) Show that the linear mapping /1 f-t fi; from AI to P+ is injective. 

;'>.IETHoD. Expand f+ in a power series in 1/ z. 
(2) Find the kernel of the linear mapping II f-t f l-: from M to P-. 

REl\IARKS. 1. Although f;;- determines p. f l-: does not. 
2. The situation is completely different if 11 is complex, since there exist 
complex measures. like dll(e i!!) = e- ili d8, for which fi(n) = 0 for all n :2: O. 

Problem 111-11. Let P(:J:l •...• :1:,,) = P(x) be a homogeneous polynomial 

of degree Tn ill n variables which is harmonic; that is, L~=l h{)' 2 P (.r) = 0 for 
X k 

all :r in Rn. For a fixed a < 0, let 

f f. _ (~'-n (-II:rI12) () . vI) - ay2'if) exp ~ P.r. with II 11 2 ,\," 2 
X = L-k=l X k · 

Shmv by induction Oll Tn that there exists a number K m (a) such that 

l\IETHOD. TIl? = '\' , . . rk~P . Dr. (J,Ek 

Problem 111-12. The goal of this problem is to prove the following in­
equality of S. Bernstein: If /i is a complex measure on [-a, +a], then 

l/l'(tll S; asuPsER Ifi(s)l· 
(1) Consider the odd function h(8) of period 2'if defined by h(8) = 8 if 
OS; 8 S; 'if /2 and h(8) = 'if - 8 if 'if /2 S; 8 S; 'if. 

(a) Compute //n = (2i'if)-1 r:: h(8) exp( -in8)d8 for n in Z. 

(b) If v is the measure defined on R by v = L~=-oo vnbn, where 
071 is the Dirac measure at n, show that // is bounded and that h( 8) = 
i J~: exp(ix8)//(dr). 
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(2) If J.l is a complex measure on [-n/2,n/2]' let 

j1r/2 

f(t) = exp(iU})J.l(dO). 
-rr/2 

(a) Show that f(t) = (f * v)(t) for all real t. 
(b) If J.l = J.lo = (2i)-1(8i - D-i)' deduce from (a) that Lt':'_oo(2k-

1)-2 = n 2 /4. 
(c) Returning to the general case, deduce from (a) and (b) that 

If'(t)1 ~ ~ sup If(8)1 for all t in R. 
2 sER 

Show that equality holds if and only if J.l is concentrated at the points 
±n/2. 
(3) Prove Bernstein's inequality and discuss in detail the case of equality. 

Problem 111-13. Let f : (0, +00) ~ R be measurable and satisfy 

f(x + y) = f(x) + f(y) for all x and y > O. 

(1) If cp(t) = I; exp[itf(x)]dx for t E R, show that y 1--+ cp(t) exp[itf(y)] is 
continuous on (0, +00) and conclude that f is continuous. 
(2) Show that f(x) = xf(l) for x> O. 

Problem 111-14. Let E be a real vector space of finite dimension n and let 
it be its dual. Let el, ... ,en be a basis of E. The dual basis ei, ... ,e~ of it 
is defined by (ej, ei) = 0 if j #- i and 1 if j = i, where ( , ) is the canonical 
bilinear form on Ex E. E and it are equipped with Lebesgue measures dx 
and dt, respectively, such that, if f E Ll(E,dx) implies j E Ll(E), where 
j(t) = IE exp(i(x, t) )f(x)dx, then f(x) = (21f)-n fEexp( -i(x, t) )j(t)dt. 
Let Z denote the set of points z = L~l Ziei of E such that the Zi are 
integers and let Z· denote the set of points ( = L~=l (ie: of it such that 
the (i are integers. 
Prove Poisson's formula: 

If f is in the space S of infinitely differentiable functions of 
rapid decrease, then for every t in it 

(EZ' zEZ 

METHOD. Show that LZEZ If(z)1 < 00 and use Theorem III-4.2 to see 
that the left-hand side 7/J(t) of the equation exists. Observing that the set 
of periods of 7/J contains 21f Z·, compute the Fourier coefficients of 7/J. 

REMARKS. 1. With the above hypotheses on the choice of dt on E, it can 
be shown that 

VOI(el, ... ,en ) x vol(e;:, ... ,e~) = 1. 
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Without loss of generality we may assume that vol( el, ... ,en) = 1. Let 
E be ~iven the Euclidean structure such that (el,"" en) is orthonormal; 
then E can be identified canonically with E, ej = ej, and dx and dt are 
identical. 
2. Poisson's formula is also valid in some situations that differ slightly from 
that where f E S(E). One of these occurs when f E Ll(E), f 2:: 0, and i 
has compact support. 
3. A striking application of Poisson's formula is that if 

+00 

g(u) = J(i L exp( -u27Tn2 ), 

n=-oo 

then g( u) = g( u- 1 ). To prove this, it suffices to take E = R, el = 1, and 
f(x) = exp( -27T2 X 2 /( 2 ). 

Problem 111-15. Let E be a real vector space of dimension n > 0, let £ 
be its dua1-and let E be equipped with Lebesgue measure dx. It is always 

true that £ = E. The canonical linear form on E x £ is written ( , ). We 
consider the following operators, where a E E, b E £, c (respectively d) is 
an invertible linear mapping from E into E (resp. from £ into E), and tc 
(resp. td) is the transpose of c (resp. d). 

For f E L2(E), 

Taf(x) = f(x - a), Mbf(x) = ei(x,b) f(x), Hc!(x) = f(c-1x), 

and U f E L2(£) is the Fourier-Plancherel transform described in 1II-2.4.9. 
For 9 E L2(£), 

ng(t) = g(t - b), Mag(t) = ei(a,t) g(t), Hdg(T) = g(d-It), 

and V 9 E L2(E) is the Fourier-Plancherel transform. 
Prove the following formulas: 

(1) UTa = MaU 
(2) UMb = nU 
(3) UHc = Idet cIH(tc)-lU 

(4) (H_1 E U)(J) = u(l) 
(5) U-l=(27T)-nH_l~V 

E 

(I') 
(2') 
(3') 

( 4') 

(5') 

VTb = MbV 
VMa = Ta V 
V Hd = Idet dIH(td)-l V 

(H_1~ V)(g) = V(g) 
E 

V-I = (27T)-nH_1 E u. 

(Here IE and IE are the identity operators on E and £, respectively. 

Problem 111-16. Use the result of Problem IV-12, 

xO'-Ie-x+~xt __ = (1 - it)-a for t E R and a > 0, 100 . dx 

o r(a) 
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with the convention for ZO with Rez > 0 made in Problem IV-I2, to com­
pute the Fourier-Plancherel transforms of the following functions in L 2 (R): 
(1) IxI0-1e-x1[0,+(0)(x) 
(2) Ixlo-1ex1( -oo,oJ (x) 
(3) Ixlo-1e-x 
(4) -i, sign(x)lxIO-le-lxl 
(5) (x - a - ib)-n, with n a positive integer, a and b real, and b =I 0 
(6) b(x2 + b2 )-1 

(7) x(x2 + b2 )-1 

(8) f(x), where f(x) is a rational function with no real poles and without 
entire part. 

METHOD. For (5), use (1) and problem III-I5. 

Problem 111-17. Compute the Fourier-Plancherel transforms of the fol­
lowing functions: 
(1) l[-l,+1](X) 
(2) l[o,13J (x) 
(3) sin x/x 
(4) sin2 x/x2 

(5) (1 -Ixl)+ 
(Here a+ = max{O,a}.) 

Problem 111-18. If f E L2(R) and (Uaf)(t) = I~a eixt f(x)dx, show that 
lima-+oo Ua(f) = U(f), where U denotes the Fourier-Plancherel transform 
of f. 

Problem 111-19. If f and 9 are in L2(R), show that 

J f(x)g(x)dx = J !(x)g(x)dx. 

METHOD. Use the fact that L1 nL2(R) and A(R) are dense in L2(R). (See 
III-2.4.7.) 

Problem 111-20. Let gb(X) = i(signx)e- b1xl for b > 0, let U be the Fourier­
Plancherel transform in L2(R), and let M9b be the operator on L2(R) 
defined by MgJ(x) = gb(x)f(x). Set 

fib = U- 1 M9bU. 

(1) Show that fibf(x) = ~ J~: *' f(x - y)dy for almost every x, if 
f E L2(R) and b> O. 

METHOD. Use Problem III-I6(7) to compute U(gb), then apply Problem 
III-I9. 
(2) If f E L2(R), show that fiof = limblo ~ I~: *' f(x - y)dy exists in 
L2 and give its Fourier transform. Also calculate fi~f. 
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REMARK. Hof is called the Hilbert transform of f. 

Problem 111-21. Suppose that f E £2(R) and 9 E £l(R). Show that 

J+:xJ 
h(x) = _= f(x - y)g(y)dy 

exists for almost every x and defines a function h in £2(R) such that 

Ilhll£2 ::; Ilfll£2llgll£1 and h = g1 (where 9 is the Fourier transform of 
9 E £1 and hand 1 are the Fourier-Plancherel transforms in £2). 

METHOD. Apply the Cauchy-Schwarz inequality to If(x-y)llg(y)1 1/ 2 (con­
sidered as a function of y) and Ig(y)1 1/ 2 and use Problem III-18. 

Problem 111-22. Let 0 < E < (L and let g<.a(y) = (7Ty)-ll{c:Slyl:Sa}(y). 
(1) Compute limf->o lima->+oc gc,a(t), where gf.a is the Fourier transform 
on U(R) of gf.a' (Use Problem 11-16.) 
(2) For f E £2(R)) we set 

Hc.a(f) = l:s lu-xl:sa f;~; 
(This equals f * gE.11 in the sense of Problem 111-21.) Using Problems 1II-20 
and 111-21, show that limf->o lima->+:xJ Hc,u(f) exists and coincides with 
the Hilbert transform of f (Problem I1I-20). 

Problem 111-23. A function f in £2(R) is called hermitian if f(x) = 

f(-x) and skew hermitian if f(x) + f(-x) = O. Let j denote the Fourier­
Plancherel transform of f and let Hof denote the Hilbert transform of f. 
(See Problems III-20 and 111-22.) Prove the following statements: 

f is Hermitian Skew- Real Purely Even Odd 
iff hermitian imaginary 

f is Real Purely Hermitian Skew- Even Odd 
iff imaginary hermitian 

(HofY' is Purely Real Hermitian Skew- Odd Even 
iff imaginary hermitian 

(Ho!) is Skew- Hermitian Real Purely Odd Even 
hermitian imaginary 

Problem 111-24. Compute the Hilbert transform (see Problem 111-20) of 
each of the following functions: 

h(x) I 1 h(x) x 
IT 1+:£2 , 7r(I+x2) , 

h(x) ~l[_U](x)) f4(X) ~ log x+1 
x-I , 

J5(x) (1 - Ixl)+) f6(X) 1 log x+1 x 1 I x 2 -1 I 
7r x-I + IT og --xr- . 
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METHOD. Use Problem III-16 for h and Problem III-22 for f6. 
For f5, a+ = max{O,a}. 

Problem 111-25. Let S be the vector space of Coo functions on R which, 
together with all their derivatives, are of rapid decrease. 
(1) Show that if f E S, then lim,->o ~xl~' f~x) dx exists and defines a con­
tinuous linear functional (or "tempered distribution") on S. 
(2) Show that the Fourier transform of the distribution defined in (1) is 
the Radon measure fl(dt) = i7f(sign t)dt. 

METHOD. Split the first integral into {E ::::: Ixl ::::: I} U {Ixl > I}. Also use 
the fact, proved in Problem II-16, that Jo= si~xdx = ~. 

Problem 111-26. Let I = (a, b) and let f E Ll(I). 
(1) If F(x) = J: f(t)dt for x E I, show that F'(x) = f(x) in the weak 
sense (III-3.3.1). 
(2) If FE Ll(I) and F' = f in the weak sense, show that, for a < a < fJ < 
b, J: f(t)dt = F(fJ) - F(a). 

(3) Let s be a positive integer. Show that F is in Htoc' the local Sobolev 
space (see III-3.5.6), if and only if there exists f E Lroc(I) such that the 
weak derivative of order s - 1 of F exists in the ordinary sense and satisfies 

for all a and x in I. 

Problem 111-27. Let f E L2(R), with Fourier-Plancherel transform 1 
Prove Hermann Weyl's inequality, 

and analyze the case of equality. 

METHOD. Without loss of generality, assume that f is in the Sobolev space 
H1(R). Show that r~: If(x)j2dx = -2Re r~: xf(x)fl(X)dx, with the 
help of Problem 1-15(2). Conclude by using the Cauchy-Schwarz inequality 
(Problem 1-12). 

REMARK. This inequality has an interpretation in quantum mechanics, 
where it is known as Heisenberg'S uncertainty principle. 3 

3R. Weyl, The Theory 0/ Groups and Quantum Mechanics (London: Dover, 
1931). 
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Problem IV-I. The points marked on the faces of two dice are, respec­
tively, for the first: 1, 2, 2, 3, 3, 4; for the second: 1, 3, 4, 5, 6, 8. 
If X is the sum of the points obtained by throwing the two dice, compute 
P[X = k] for integer k. Answer the same question for ordinary dice. 

Problem IV -2. The random variable X is called a geometric distribution 
with parameter p, 0 < p < 1, if 

P[X = k] = (1 - p)k-lp , k = 1, 2, 3, ... 

Compute E(X) by using Problem 1-6(1). 

Problem IV-3. Suppose that {ja is the Dirac measure at a, p E (0,1), and 
A> o. Consider the following two probability measures on N: 

(1 - p)8o + p81 (Bernouilli distribution with parameter p) 

(Poisson distribution with parameter ),) 

(1) Show that the vague limit of the sequence {vl,.n}n>>. is J.L>. and that 
n 

J.L>" * J.L>'2 = J.L>'l +>'2· 
(2) Let 0 < p < 1. Consider the measure mp on N 2 concentrated at the 
points (0,0), (0,1), (1,1), and (k,O) with k 2: 2 (note the absence of (1, 0)), 
such that X has distribution J.Lp and Y has distribution vp if (X, Y) has 
distribution mp. Compute mp and conclude that P(X =1= Y) :s: 2p2. (Use 
the fact that e-P 2: 1 - p.) 



298 Exercises for Chapter IV 

(3) If (X, Y) is an arbitrary variable in N 2 and A c N, show that 

IP(X E A) - P(Y E A)I ::; P(X =F Y). 

( 4) Let (Xl, Yd, ... , (X n, Yn) be n independent random variables with val­
ues in N 2 and with distributions m pll m p2 , •.. ,mpn . Let A c N. Use (2) 
and (3) to show that 

n 

IP(Xl + ... Xn E A) - P(Yl + ... + Yr, E A)I ::; 2 LP;' 
j=l 

(5) If n > ,\ and A c N, show that 

IV~/n(A) - J-L>.(A) I ::; 2,\2. 
n 

REMARKS. The approximation of the binomial distribution by the Poisson 
distribution is both elementary and essential for applications. (5) gives an 
upper bound for the error committed by replacing a binomial distribution 
v; by a Poisson distribution J-Lnp, and (4) treats the case of experiments 
that are independent but not identical. This result is due to J.1. Hodges 
and L. Lecam (1960). 

Problem IV-4. On a probability space (n, A, P), we define a random 
variable N with positive integer values and random variables {Xn}n~1' 
with values in a measurable space (I, B), such that the Xn all have the 
same distribution m but are not necessarily independent. 
(1) Show that the distribution J-L of X N is absolutely continuous with respect 
to m. 
(2) If f(x) = ~~, (x) and a > 0, show that 

E(NQ) ~ _1_ ( r+l(x)dm(x). 
1 + a iI 

METHOD. If B(y) = {x E I : f(x) > y}, show that 

( i) J-L(B(y)) ::; L P[Xn E B(y)] + P[N > y] 
n~y 

and use Problem 1-6. 
(3) Show that 1 + E(log N) ~ I f(x) log f(x)dm(x) by letting a lOin (2) 
and using the monotone convergence theorem. 

Problem IV-5. With the notation of Problem IV-4, we take I = [0,1], 
B = the Borel algebra, and m = Lebesgue measure, and we assume that the 
{Xn}n>l are independent. Let f : I --> [0, +00) be a nonnegative measur­

able fu~ction, bounded by a number b > 1, which satisfies 101 f(x)dx = l. 
Let 

N = inf{2n : bX2n - 1 ::; f(X2n )}. 

Show that XN has density -!1;, = f· 
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REMARK. This procedure for constructing a random variable of given den­
sity f on [0,1] from uniform random variables was invented by J. Von 
Neumann in 1951. 

Problem IV-6. (1) Let Y be a positive random variable. Show that for 
all y > 0 

1 
P(Y 2 y) :S -E(Y) (Chebyshev's inequality). 

y 

(2) Let X be a real random variable such that E(X2) < oc. If m = E(X), 
show that for all t > 0 

1 
P(IX - ml 2 t) :S t2E((X - m)2) (BienairrH~'s inequality). 

(3) Let {Xr,}~=l be a sequence of independent real random variables with 
the same distribution and such that E(Xf) < oc. If m = E(X1 ), show that 
for all E > 0 and for all a E [O,~) 

--+ 0 as n --+ 0 

(weak law of large numbers). 
(4) Let {Xn}~=l be a sequence of independent real random variables with 
the same distribution, for which there exists k > 0 such that E[exp klX1Il < 
00. If m = E(Xl ), show that for every E > 0 there exists q in (0,1) such 
that 

P [I Xl + .~. + Xn - ml2 E] :S 2qn. 

Conclude that ~(X1 + ... + Xn) --+ m almost surely as n --+ 00 (strong 
law of large numbers). 

METHOD. Show that m = is [E( exp( sX 1))] s=o and apply Chebyshev's in­
equality to Y = exp(s(Xl + ... Xn)). 

Problem IV-7. Let {Xn}~=l be a sequence of nonnegative real random 
variables with the same distribution, such that Xj and Xn are independent 
for every pair (j, n) with j # n. Assume that E(Xl) < oc. Set STl = 
2:,7=1 Xj, Yn = Xn 1 {Xn"Sn}, and S~ = 2:,)'=1 Y j . The goal of this problem 
is to prove the law of large numbers: 

P [lim Sn = E(Xd] = l. 
n---+CXJ n 

(1) Using Problem 1-6, show that E(Xd < 00 implies 2:,~=1 P[Xn # Ynl < 
00. Using the Borel-Cantelli lemma (1-5.2.8), conclude that limn~(X)(Sn -
S~) exists with probability l. 
(2) Show that limn~= ~E(S;') = E(Xd. 
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(3) Let a be a real number greater than 1 and let kn be the integer 
part of an. Prove the existence of a constant Cl such that L{k~2 : 
n such that kn :2: j} ::; Cd-2 . With the help of Bienaime's inequality, 
conclude that 

Then prove that L~l p-E(Y/) < 00. 

(4) Deduce from (2), (3), and the Borel-Cantelli lemma that 

P [lim Skk n = E(Xl )] = 1, 
n-+oo n 

then from (1) that 

P [lim Skn = E(Xd] = l. 
n--+oo kn 

(5) Prove that, for every a > 1, 

Deduce the law of large numbers from this. 

REMARKS. The elementary proof whose outline is sketched here is due to 
N. Etemadi (1981). 

Problem IV-S. Let {Xm}~=l be independent real random variables with 
the same distribution and such that E(Xl) = 0 and 0 < E(Xt) < 00. Let 
Sn = Xl + .. ·Xn· 
(1) Show that limn--+oo P(Sn :2: 0) = ~ by using Laplace's theorem (IV-
4.3.1) and Problem II-22. 
(2) Use the preceding result and the weak law of large numbers proved in 
Problem IV-6(3) (that limn--+oo P[I~I :2: tJ = 0 for all t > 0) to show that 

limn--+oo[E(exp( -Sn)l{Sn~O})p/n = l. 
Problem IV-9. (1) If X and Yare independent real random variables, 
show that P(X + Y :2: a + b) :2: P(X :2: a)P(Y :2: b) for all real a and b. 
(2) Let {Xn}~=l be a sequence of real independent random variables with 
the same distribution, and set So = 0 and Sn = Xl + ... + X n. Let s be a 
fixed real number. Set Pn = P[Sn :2: nsJ. Show that Pn+m :2: PnPm for all 
m, n :2: 0 and that, for n > 0, Pn = 0 if and only if PI = o. 
(3) If the sequence {an} ;;'=0 of nonnegative real numbers is such that 
an+m :2: an + am for all m, n :2: 0, show that limn--+oo ~ = infd>o '7. 
Conclude that limn--+ oo ffn = a(s) exists. 
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Problem IV-IO. Let {Xn}~=l be a sequence of independent real variables 
with the same distribution. Suppose that 'P(t) = E(exptXl ) exists for all 
t in an open interval I containing 0 and fix a real number s > E(X) 
such that t f-+ e-ts'P(t) attains its minimum a(s) at a point T of I. Let 
Sn = Xl + ... + X n· 
(1) Show that log 'P(t) is convex on I and that T > O. Conclude, using 
Chebyshev's inequality (Problem IV-6), that 

(2) Let ILl be the distribution of Xl - s and let v(dx) = ~~:)ILl(dx). Prove 

that v is a probability measure, that I xv(dx) = 0, and that I x2v(dx) < 
00. 

(3) Let {Zn}~=l be a sequence of independent random variables with the 
same distribution v. Show that 

P [: ?: s] = (a(s))nE[exp( -T(ZI + ... + Zn))I{Zl+.+Zn2:0}]' 

Conclude from Problem IV-8 that 

a(s) = J~~ [p (: ?: s) fin 

(4) Compute a(s) in the following cases: 
(a) 'P(t) = exp(t2 /2) (normal distribution) 
(b) 'P(t) = cosh(t) (Bernouilli distribution) 
(c) 'P(t) = (1- t)-a, t < 1, a > 0 (gamma distribution) 
(d) 'P(t) = expA(et - 1), A> 0 (Poisson distribution) 
(e) 'P( t) = (R ), p + q = 1, 0 < p < 1, t < -log q, a > 0 

(negative binomial distribution) 
(f) 'P(t) = 1~t2' It I < 1 (Laplace's first distribution) 
(g) 'P(t) = co~t (logarithm of a Cauchy distribution) 

REMARK. It is not known what conditions on a decreasing function a on 
R are sufficient for the existence of a distribution IL of the Xn such that 

Problem IV-It. If Zl and Z2 are complex numbers with positive real 
part, set r(zt) = 1000 xZ1-Ie-Xdx and B(Zl, Z2) = 101 xZ1 - l (1 - xY2- l dx. 
Assume without proof the formula 
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If a and b are positive, the probability measures 

(d ) ( ) a-l -x dx 
la x = 1(0,+",,) x x e f(a) 

( a-l b-l dx 
fJa,b dx) = l(O,l)(X)X (1- x) B(a,b) 

(3 (2)(d ) _ ( ) Il-l( , )-a-b dx' 
a,b X - 1«J.+",,) x x 1 + x B(a, b) 

are called, respectively, the gamma distribution with parameter a and the 
beta distributions of the first and second kind with parameters a and b, (1) 
If /1 is a bounded measure on (0, +(0), its Mellin transform is (M/1)(t) 
= fo"" xit /1( dx) for t real. (This is the Fourier transform of the image of /1 

under x f--+ log x,) Compute Mia, M{3ab, and M{3~~), (2) If X is a random 
variable with distribution (3a,b, compute the distribution of X/I - X. (3) 
If X and Yare independent r.v. with distributions la and Ib, compute the 
distributions of X/Y and X/eX + Y). (4) If X, Y, and Z are independent 

r.v. with distributions {31l,b, {3a+b,c, and {3~~b.c' compute the distributions 
of XY and XZ. 

Problem IV-12. (1) Let la be the probability measure of Problem IV-11, 
with a > O. Compute its Fourier transform. If X and Yare independent 
random variables with distributions la and Ib, compute the distribution of 
X+Y. 
(2) Let X be a Gaussian random variable with density cr~e-x2 j2cr 2 dx. 

Compute E [ (~: ) it] for t real, and use Problem IV-11 to find the distri-

. X2 
butlOn of 2cr 2 ' 

(3) Let Xl,"" X d , Yl , ... , Ym be independent random variables with the 
same distribution as X of (2). Compute the distribution of 2';'2 [Xl + 
... + X~l by using (1) and (2), and the distributions of ~!~:::~~~ and 

1 nt 

xf+ .. +x~ b " P bl IV 11(3) X?+. +X~+YI2+ .. +y;. Y usmg ro em - . 

Problem IV-13. In Euclidean space R,l+l, consider a random variable 
X = (Xo, Xl,"" Xd) whose distribution /1 is invariant under every orthog­
onal matrix of R d+1 and satisfies /1( {O}) = O. Let v denote the distribution 
of X on (0, +(0) and let Y = (XXI, xx2 , ... , xxd ). 

U () 0 

(1) Use Problem 1II-2 to show that the distribution of Y is independent of 
v. 
(2) From now on, assume that the {Xj}j'=o are independent, with the same 

2 

distribution /1 and with Fourier transform exp( -~). Show, using Problem 
III-I, that /1 must be invariant under every orthogonal matrix. 
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(3) If a E R, compute the integral 

1 j+oo [1 ( a2 
)] I(a) = /CL exp -- ,y2 + 2 dx 

v27f -oc 2 x 

by using the following fact from Problem II-12(1): 

j +OO lal j+oo 
-oc J(x - -;:- )dx = -DO J(y)dy for every J integrable on R. 

(4) By first conditioning with respect to Xo (see Problem IV-34), compute 
the Fourier transform of the distribution of Y. 
(5) Using Problem IV-ll, find the distribution of 11Y112. Derive the density 
of Y from this, by observing that the distribution of Y is invariant under 
every orthogonal matrix in Od and using Problem III-3. 

Problem IV-14. Let la be the probability measure of Problem IV-ll, 
with a > O. 
(1) Use Problem IV-12 to compute lima-->DO foce exp[it(x7a)l!a(dx). 

(2) Using Problem II-14, show that 

l x j+oc d . x - a _ -x2/2 X 
hm I r;; ha(dx) - Ixle /CL' 

a-->+= 0 va -oc V 27f 

(3) Integrate by parts to compute the integral fooo I X7aha(dx) and prove 
Stirling's formula: 

1 

V27f' 
Problem IV-15. (1) Let f-l be a probability measure on R such that 
Ji(t) = Ji(tcose)Ji(tsine) for all real t and e. Show that there exists a ~ 0 
such that Ji( t) = exp( _ 0"~t2 ). 

METHOD. Show that Ji(t) ~ 0, then that Ji(t) > 0 for every t. Finally, 
consider J (x) = - log Ji( v'x) for x ~ O. 
(2) For positive integers dl and d2 , let f-ll and f-l2 be probability measures 
on the Euclidean spaces Rd1 and Rd2 such that v = f-li .~ f-l2 is invariant 
under the group G of orthogonal matrices on Rd 1 +d2 • Show that there 

2 

exists a ~ 0 such that Jij(t) = exp(-"; Iltllj), j = 1, 2, where Iltlh and IItl12 
are the norms in R d , and R d 2 • 

METHOD. Use Problem III-1 and part (1) of this problem for the case where 
d j = d2 = l. 

REMARK. The converse of the property in (2) is trivial. This characteriza­
tion of centered normal distributions is sometimes called Maxwell's theo­
rem. 
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Problem IV-16. A real random variable Z is called symmetric if Z and 
-Z have the same distribution. 
(1) Show that Z has distribution c(dz) = 7f(I~Z2) if and only if Z is symmet-

ric and IZI2 has distribution ;3(2)(1/2, 1/2). (See Problem IV-H.) Assuming 
without proof the formula r(z)r(l-z) = sin7r7rz for complex numbers z such 
that 0 < Rez < 1, compute E(IZlit) for real t in this case. 
(2) Let Xl and X 2 be two real random variables that are independent 
and symmetric, and have distributions J.lI and J.l2 such that J.lI ({O}) = 
J.l2( {O}) = O. Show that Z = ~~ has distribution c in the following cases: 

(a) J.lI(dx) = J.l2(dx) = exp(-x2/2)dx/~ 
(b) IXl 12 has distribution ;3(~, b) and IX212 has distribution ;3(2)a, ~+b) 
(c) J.lI(dx) = J.l2(dx) = V2/7fdx/(1 + x 4 ) 

(3) With Xl and X 2 as in (2), deduce from (2a) that U = (~, 
X , +X2 

~) is uniformly distributed on the unit circle of Euclidean space 
X , +X2 

R2 if and only if Z = ~ has distribution c. 

REMARKS. Example (2c) is due to Laha (1949). Moreover, if (Xl, X 2) is as 
in (2) with U uniform, then (i, ' i 2 ) has the same property. 

Problem IV-17. A probability measure v on a Euclidean space Rd is 
called isotropic if v( {O}) = 0 and the image of v under the mapping 
x f---+ 11~1I' in the unit sphere Sd-I of R d , is the unique rotation-invariant 
probability measure Ud-I on Sd-I. It is called radial if its image Va in R 
under the mapping x f---+ (a, x) does not depend on a when a ranges over 
the unit sphere. 
(1) Let J.ll and J.l2 be probability measures on the Euclidean spaces Rd l and 
R d2, with dl and d2 positive. Show that the probability measure v = J.lI ®J.l2 
on the Euclidean space R d, +d2 is isotropic if and only if J.lI and J.l2 are 
radial and if, for every al in Sd , -1 and a2 in Sd2 -1, the image of v under 
(XI,X2) f---+ ((a2 .x2 » is c(dz) = (ld+z 2)' 

al1Xl 7T' Z 

METHOD. Prove the assertion first for d l = d2 = 1 and use Problem IV-16. 
(2) Let (Xl, X 2, X 3) be three independent random variables such that the 
distribution v of (Xl, X 2, X 3) in R3 is isotropic. Show that there exists 
U > 0 such that 

( u2t2) E[exp(itXj)] = exp --2- for j = 1, 2, 3, and t E R. 

METHOD. Apply (1) to the distributions J.ll of Xl and J.l2 of (X2' X 3) and 
use Problem IV -14. 

REMARKS. The converse of (1) is true but rather lengthy to prove. (2) is 
true for n independent random variables, n ?: 3; this follows easily from 
the problem. (Problem IV-16 showed that this would be false for n = 2.) 
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This property of the normal distribution is due to 1. Kotlarski (1966), who 
proves it with the additional hypothesis that the Xj are symmetric. 

Problem IV-lB. Let E be a finite-dimensional real vector space, let E* 
be its dual, and let (x, t) be the canonical bilinear form on E x E*. If 11 is 
a probability measure on E, its Fourier transform is defined on E* by 

ji(t) = Ie exp(i(x,t))I1(dx). 

(1) If there exists to -1= 0 such that lji(to)I = 1, show that 11 is concentrated 
on a countable union of affine hyperplanes and determine them. 

METHOD. First consider the case where ji(to) = l. 
(2) If there exists a probability measure 1/ on E such that ji(t)iI(t) = 1 for 
every t in E*, show that 11 and 1/ are Dirac measures. 

METHOD. First prove this when dim E = l. 
REMARKS. This result can be generalized bX replacing E and E* by a 
locally compact abelian group and its group G of continuous characters X. 
(See III-I.4.) 

Problem IV-l9. Let Xl, X 2 , Yl , and Y2 be independent real random 
variables such that Yl and Y2 are strictly positive and E[exp(itXj)] = 
exp( _t2 /2) for j = 1,2 and t real. Let R = [XrY? + X?Y22j1/2. Using 
Problems IV-I6 and IV-I8, find the distributions of Yl and Y2 such that 
U = (Xl Yl/ R, X 2 Y2 / R) is uniformly distributed on the unit circle of R 2 . 

Problem IV-20. Let O"d-l be the uniform probability measure on the unit 
sphere Sd-l of the Euclidean space R d, and let l/d be the image of I1d under 
the dilation x I--> Vdx. 

Prove that l/d converges narrowly to l/(dx) = exp(-x2 /2)dx/v"Fff. 

METHOD. If Yl , ... , Yd, ... is a sequence of independent random variables 
with the same distribution 1/ and if Rd = [Y? + ... + Yl11/2, use the fact 
that O"d-l is the distribution of R;tl(yl , Y2 , ... , Yd), the weak law of large 
numbers of Problem IV-6, and Problem 1-10. 

REMARK. This property of uniform distributions on spheres is known as 
Poincare's lemma. 

Problem IV-21. Let Sn denote the set of probability measures 11 on R 
such that there exists a probability measure I1n on the Euclidean space R n 

whose image in R under x I--> (a, x) is 11 for every a in the unit sphere 
of Rn. Prove that 11 E n;:"=lSn if and only if there exists a probability 
measure p on [0, +00) such that the Fourier transform of 11 satisfies ji(t) = 
fa"" exp( -~ )p(dy). Prove that such a p, if it exists, is unique. 

METHOD. For the uniqueness of p, use Problem 11-20. For its existence, use 
Problems 111-1,111-2(4), and IV-20, as well as Paul Levy's theorem on the 
convergence of distributions. 
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REMARK. This property is due to 1. Schoenberg (1937) . 

Problem IV-22. Let (Xo, Xl"'" X d ) be an Rd+l-valued random variable 
that is radial, i.e. whose distribution is invariant under the group Od+l of 
d x d orthogonal matrices. Let t = (h, t2, ... , td) and Iltll = [tr + ... + t~] ~. 
Prove that E[exp(i L.~=l tjXj - IltIIXo)] = 1 for every t in Rd such that 
E[exp( -lltIIXo)] < 00. 

METHOD. Prove the assertion first for d = 1 and tL concentrated on the 
unit circle. 

Problem IV-23. Let {("\I,,, Wn)}~=l be a sequence of independent random 
variables with the same distribution, with values in R x Rd (where Rd has 
the Euclidean structure), and satisfying E[log IVII] < 0 and E[log+ IIWd] < 
00. 

(1) Prove that L~=o IVl ... Vnl IIWn+ll1 converges almost surely. 

METHOD. Use the Borel-Cantelli lemma to show that limsupn ..... oo IIWnllljn 
:-::; 1, then use the strong law of large numbers. (See Problem IV-7.) 
(2) Let tL be the distribution of the Rd-valued random variable which is 
equal to the sum of the series L~=o VI ... Vn Wn+l . Let 1/ be a distribution 
on R d whose Fourier transform v satisfies 

V(t) = E[V(Vlt) exp(i(WI' t))] for every t in Rd. 

Show that tL = 1/. 

(3) Let {Un}~=o be a sequence of independent Rd+l-valued random vari­
ables with the same distribution, the uniform distribution on the unit 
sphere Sd of Rd+l. Let Vn - 1 and Wn be the projections of Un onto 
(R, 0, 0, ... ) and onto its orthogonal complement. Prove that if tL is the 
distribution of L~o VI··· VnWn+l , then ji(t) = exp(-lltll)· 

METHOD. Use (2) and Problem IV-22. 
(4) Let {Xn}~=l be a sequence of independent random variables with values 
in N = {O, 1,2 .... } and with the same distribution, such that Xl satisfies 
Pk = P[XI = k] < 1 for every k in N. Set qk = P[XI < k]. Show that 
if tL is the distribution of L~=OPX1PX2" .Pxnqxn+1, then tL is Lebesgue 
measure on [0,1]. 

Problem IV-24. Let X and Y be independent random variables with the 
same distribution and with values in Euclidean space R d , d > 1, which 
satisfy the following conditions: (i) P[X = 0] = 0; (ii) II~II and IIXII are 

independent; and (iii) II~II is uniformly distributed on the sphere Sd-I' 

(That is, the distribution of X is "radial" - see Problem 1II-2( 4).) Prove 
that 

1 
P[J12X - YII :-::; IJYII] < "4 

and that this inequality is the best possible. 
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METHOD. Consider R = 11\;//' use the fact that Rand R- I have the same 
distribution on (0, +(0), and prove the inequality by first conditioning with 
respect to I log RI. For the second part, take IIXII with density ~x(1-n)/n 
on (0,1] and show that the distribution Vn of exp( -I log RI) tends vaguely 
to the Dirac measure at O. 

REMARKS. 1. There is also an explicit expression, 

P[l12X - YII :::; IWII] = ~ l x 
G(a)dv*(a), 

where G(y) = B(~\~) J; y'X(I~x)d/2 and v*(da) is the distribution of 

A 2 /(1 - A 2 ). 

2. This inequality is due to A.O. Pittenger, who proves it with the additional 
hypothesis P[IIXII = x] = 0 for all x ~ 0 (1981). 
3. Relaxing the hypothesis of the problem to P[IIX II = 0] = 0 easily yields 
the upper bound 

1 
P[112X - YII :::; IWlll < P + (1 - p?4"' 

where P = P[IIX II = 01 < 1, and this again is best possible. Note also that 
P[112X - YII < IWII] = (1 - p)2/4 < 1/4 in all cases. 

Problem IV-25. Let H be a separable Hilbert space and let Pu denote the 
orthogonal projection of H onto a subspace U. Define the Boolean algebra 
E of subsets B of H for which there exists a finite-dimensional subspace V 
of H and a Borel set Bv of V such that B = p~/(Bv). Let u(E) denote 
the u-algebra generated by E. 
(1) Show that {x: Ilxll :::; r} E u(E) if r > O. 

METHOD. Use the fact that, since H is separable, there exists an increasing 
sequence {Vr'}~=1 of finite-dimensional subs paces of H such that U~=I Vn 
is dense in H. 
(2) A cylindrical probability on H is given by probabilities /Lv on each finite­
dimensional subspace V of H such that, if VI C V2 , the image of /Lv2 under 
pv, is /LV" For BEE, let EB denote the set of finite-dimensional subspaces 
V such that there exists a Borel subset Bv of V with B = Pv 1 (Bv ). Prove 
that V f--+ Jiv(Bv) is constant on E B . Denoting this constant by Ji(B), 
prove that fJ is finitely additive on E. 
(3) Consider the cylindrical probability defined as follows. Let p be a prob­
ability measure on [0, +Xi) and let fJv be defined by its Fourier transform, 

( (= (y21ItI12) fiv(t) = Jv exp(i(x, t))/Lv(dx) = Jo exp --' -2- p(dy) for t E V. 

Show that /L is not u-additive on E if p( {OD < l. 
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METHOD. Otherwise J.L could be extended to a a-additive probability mea­
sure J.L on a(8). Use Problems 1-10 and IV-6 to show that this would imply 
J.L({x: IIxll ~ r}) = p({O}) for r > o. 
Problem IV-26. In Euclidean space R n , consider the positive quadratic 
form q defined by q(x) = L~=1 AkX~, where x = {xdk=l and Ak ?:: o. Set 
Ilqll = L~=1 Ak. 
(1) If X is an Rn-valued random variable such that 

E(exp(i(X,t))) =exp ( _lltt), 

show that P[q(X) ?:: r2] ~ I~JI for every r > O. 

METHOD. Use Chebyshev's inequality, Problem IV-6. 

(2) Let J.L be a probability measure on R n with Fourier transform fi(t) = 
IRn exp(i(x, t))J.L(dx) and let 10 > 0 be such that 11 - fi(t) I ~ 10 for every t 
in R n with q(t) ~ 1. Prove that, for every r > 0, 

r exp(_IIXI12) J.L(dx) ?:: 1- 10 _ 211qll. &n ~2 ~ 

(3) Prove that, for every r, R > 0, 

Conclude that there exists a number R(llqll, E) such that 

REMARK. This result is called Minlos's lemma (1959). 

Problem IV-27. The notation is that of Problem IV-25 and J.L = (J.Lv)v 
is a cylindrical probability on H. A positive quadratic form q on H is a 
bounded linear mapping A : H -> H such that q(x) = (Ax, x) ?:: 0 for 
every x. If the dimension of V is n, there exist a basis b = {b1 , ... , bn} 
of V and nonnegative numbers AI, ... , An such that, if L~=1 Xkbk is in 
V, then q(x) = L~=1 AkX~. Moreover, the distribution of the {Adk=1 is 
independent of b, and we may set Ilqvll = L~=1 Ak. This impliee that 
IIqv111 ~ IIqv2 11 if VI C V2 , and we set Ilqll = supv IIqvll ~ +00. 

(1) Let fiv( t) = Iv exp( i(x, t) )J.Lv( dx) for t E V. Show that fiVl (t) = fiV2 (t) 
if t E VI n V2 . 

(2) Set fi(t) = fiv(t) if t E V. Suppose that, for all 10 > 0, there exists a 
positive quadratic form q, on H such that Ilq,1I < 00 and 11- fi(t) I ~ 10 for 
all t such that q,(t) ~ 1. Deduce from Problem IV-26 that, for all 10 > 0, 
there exists R( E) such that 

J.Lv( {x: x E V and Ilxll ~ R(E)}) ?:: 1 - 210 for every V. 
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(3) With the preceding hypotheses, prove that J1 is a a-additive probability 
measure on the Boolean algebra l3 by showing that, if An E l3, An ::::> An+l, 
and J1(An) :2': {j > 0 for every n, then n;,:o=lAn of- 0. 

METHOD. Let Vn be a finite-dimensional subspace of H containing a Borel 
set A~, such that An = Pv:(A~) and let B~(R) be the closed ball of radius 
R in Vn· We may assume that Vn C Vn+l· Construct compact sets K~ of Vn 
contained in A~, n B~(R), introduce Kn = p,;}(K:J, and use the fact that 
Cn = Kn n ... n Kn n {x : Ilxll ::; R} is a de~~easing sequence of compact 
sets in the weak topology on H. 
REMARK. This result is due to l\Iinlos (1959). 

Problem IV-28. Let {Xn }n2:l be a sequence of independent random vari­
ables with the same distribution defined by P[Xn = 1] = P[Xn = -1] = 
1/2. Compute the limiting distribution as n -7 00 of 

Yr, = [1 + 4 + 9 + ... + n2]-1/2[Xl + 2X2 + 3X3 + ... + nXn]. 

METHOD. Consider the characteristic function of Yn . 

REMARK. This is a simple special case of Lindeberg's theorem, which is a 
significant generalization of Laplace's theorem, IV-4.3.1 (also often called 
the central limit theorem). Lindeberg's theorem is stated as follows: If (i) 
the real random variables {X 17 } ~= 1 are independent (but do not necessarily 
have the same distribution); (ii) for every n, E(X,,) = 0 and a~ = E[(Xl + 
... + Xn)2] <00; and (iii) for every c, 

then the distribution of .....L (Xl + .. +Xn ) tends to the Gaussian distribution 
an 

N(O, 1) as above. 

Problem IV-29. On the real line, consider the Gaussian distribution 
J1( dx) = 2~ exp( x22 )dx. Let L2 (J1) be the Hilbert space of functions which 
are square integrable with respect to /1, with the scalar product 

roo 
(1, g) = Loo f(x)g(x)p(dx). 

The Hermite polynomials {H n (x) } ~=o are defined by 

00 t2 L Hn(x)(it)n = exp(itx + "2) = cp(t, x) 'Vt E C. 
n=O 

Assume without proof that this implies 
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(1) By computing ('P(t, .), 'P(s, .)) in two different ways, show that (Hn' Hm) 
= 0 if n i- m and that (Hn' Hn) = rho Use the uniqueness of the Fourier 
transform to show that if f in L2(fL) satisfies (f, Hn) = 0 for every n, then 
f =0. 
(2) Show that H~_l(X) = Hn(x) and that (n + l)Hn+l(x) = xHn(x) -
Hn-1(x) if n ~ 1. 
(3) Let f E L2(J-l) and let fn = n!(f, Hn). Show that f = 2:.':=0 fnHn 
(where the convergence of the series is in the L2(fL) sense). If, moreover, l' 
exists (in the sense that F(x) = f(O) + J; 1'(t)dt for every x) and belongs 
to L2(fL), show that l' = 2:.':=0 fn+1Hn. 

METHOD. Compute (f', Hn) by means of an integration by parts and (2). 
(4) Prove H. Chernoff's inequality: If X is a Gaussian random variable with 
distribution fL and if f is a real-valued function such that both 1'E[I1'(X)i2] 
and E[If(X)12] exist, then E[i1'(XW] ~ variance of f(X). Analyze the 
case of equality. 

Problem IV-30. Let (X, Y) be a Gaussian random variable with values 
in R2 such that X and Y have distribution fL(dx) = (27r)-1/2exp(-X22)dx. 
(1) For the Hermite polynomials defined in Problem IV-29, prove that 

n 

Hn(Ycos e + z sin e) = L Hk(y) cosk eHn-k(z) sinn - k e. 
k=O 

(2) Assume that cose = E(XY) i- ±1 and define the random variable 
X - Ycose 

Z = . e . Verify that Y and Z are independent and use (1) to 
sm 

prove that E[Hn(X)IY] = Hn(Y)(E(xy))n. 
(3) Prove Gebelein's inequality: If f E L2(fL) with E(f(X)) = 0, then 

Analyze the case of equality. 

METHOD. Write f = 2:.~1 fnHn as in Problem IV-29. 

Problem IV-31. Let Hn be the nth Hermite polynomial described in 
Problem IV-29 and compute 

Use this to find 

1+00 ixt n _x 2 /2 dx 
e x e m=' 

-00 v 27r 

Problem IV-32. Let (n, A, P) be a probability space and let B be a sub-
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a-algebra of A. We would like to show that if X E U(A), then 

L XdP = L E[XIB]dP for all B E B, 

and that (*) characterizes E[XIB]. 
(1) Show that (*) holds if X E L2(A). 
(2) If X > 0, let L(X) = limn--->+oo E[min(X, n)IB]. If X E L 1(A), let 
L(X) = L(X+) - L(X-), where X+ = max(X, 0) and X- = max( -X, 0). 
Show that L(X) E Ll(B) and that fB(X - L(X))dP = 0 for all B in B. 
(3) Show that if I, g E Ll(B) are such that fBU - g)dP = 0 for every B 
in B, then I = g. 
(4) Show that L(X) is a bounded linear operator from Ll(A) to Ll(B) and 
infer that L(X) = E(XIB). 

REMARK. This characterization of conditional expectation is often taken 
as a definition in the literature. 

Problem IV-33. Suppose that, for every n 2: 0, Xn E Ll(A) and Xn 2: O. 
Use the preceding problem to show that if Xn i X o, then 

Yn = E[XnIB] i E[XoIB]. 

Problem IV-34. Suppose that (n, A, P) is a probability space, B is a sub­
a-algebra of A, Y is a B-measurable random variable, and X is a random 
variable independent of B. Consider I : R2 -+ R such that I(X, Y) is 
integrable. The goal of this problem is to show that if f-l is the distribution 
of X, then 

j +oo 
E[/(X, Y)IB] = -00 I(x, Y)f-l(dx). 

(1) Show that (*) holds if I(x,y) = II(X)lJ(y), where I and J are Borel 
subsets of R. 
(2) Let P be the Boolean algebra on R2 consisting of sets of the form 
E = U~=1 Ip x Jp, where Ip and Jp are Borel subsets of R. Show that (*) 
holds if I(x, y) = IE (x, y) with E E P. 
(3) Let M be the family of Borel subsets M of R2 such that I(x, y) = 
IM(X, y) satisfies (*). Show that M is a monotone class. 
(4) Prove (*) successively for the following cases: (a) I is a simple function 
on R2; (b) I is a positive measurable function with I(X, Y) integrable; and 
( c) the general case. 

Problem IV-35. On a probability space (n, A, P), consider an integrable 
random variable X and a sub-a-algebra B of A, both independent of an­
other sub-a-algebra C of A. Prove that if'D is the a-algebra generated by 
B UC, then 

E[XI'D] = E[XIB]. 
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METHOD. Prove the assertion first for square integrable X. 

Problem IV-36. If X and Yare integrable random variables such that 
E[XIY] = Y and E[YIX] = X, show that X = Y a.s. 

METHOD. Show that, for fixed x, 

( i) o ~ r (X - Y)dP = r (Y - X)dP, 
Jy'Oox'OoX Jx<x and x<y 

and conclude by symmetry that both sides of the equation are zero. Then 
use Problem 1-13. 

Problem IV-37. Suppose that (0, A, P) is a probability space, X and Y 
are integrable random variables, and B is a sub-a-algebra of A such that 
X is B-measurable. 
(1) Show that E[YIB] = X implies E[YIX] = X. 
(2) Show by a counterexample that E[YIX] = X does not imply that 
E[YIB] =X. 

REMARK. If {An}n~o is a filtration of (0, A, P), {Xn}n~O a sequence 
adapted to this filtration, and Bn the a-algebra generated by Xo, ... ,Xn, 
then {Xn, Bn}n>o is a martingale if {Xn, An}n>o is. The converse is false. - -

Problem IV-38. Let (Yo, Y1 , ... , Yn) be an en + I)-tuple of real random 
variables defined on a probability space (0, £, P). Let :F denote the sub­
a-algebra of £ generated by (y1(w), ... , yJw)) = few) and assume that 
E(IYol) < 00. 

(1) By applying Theorem IV-6.5.I to f, show that there exists a Borel­
measurable function g : R n ...... R such that 

E[YoIF] = g(Y1 , Y2 ,···, Yn) P-almost everywhere. 

(2) Assume that the distribution of (Yo, Y1 , ... Yn) in R n +1 is absolutely 
continuous with respect to Lebesgue measure dyo, dYl, ... , dYn, and let 
d(yo, Yl, ... , Yn) denote its density. Prove that 

where K(Yl, ... , Yn) = J~: d(yo, Yl,···, Yn)dyo· Prove that if A is a Borel 
subset of R, then 

P[Yo E AIF] E[lvoEAIB] 

[K(Y1 , ... , yn)]-l i d(yo, Y1 , ... , Yn)dyo. 

(3) Assume that the distribution of (Yo, Y1 , ... , Yn ) in Rn+l is Gaussian 
(with the definition in IV-4.3.4, which implies that E(Yj) = 0 for j = 
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0, ... , n). Use the observation that if (X, YI, ... , Yn ) is Gaussian in Rn+l, 
then X is independent of (Y1, ... , Yn ) if and only if E(XYj) = 0 Vj = 
1, ... , n, to show that there exist real numbers AI, ... , An such that E[YoIFJ 
= A1 Y1 + ... + AnYn· 

Problem IV-39. Let {Xn} be a sequence of independent real random 
variables with the same distribution and let F n be the a-algebra generated 
by Xl, ... , X n. Set Sn = Xl + ... + Xn for n > 0 and set So = O. Which of 
the following processes are martingales relative to the filtration {Fn}~=o? 
(1) Sn, if E(IX11) < 00. 

(2) Xl + ... + X;' - nA, if E(Xf) < 00 and A is real. 
(3) exp(o:Sn - nA), if 'P(O:) = E(exp(o:X1)) < 00 and 0: and A are real. 
(4) Yn = ISmin(n,Tll, where T = inf{n > 0: Sn = O}, and we assume that 
P[X1 = 1J = P[X1 = -lJ = ~. 

Problem IV-40. Let Y1 , ... , Yn , ... be independent real random variables 
with the same distribution and such that E[IY1 1l < 00. Set Sn = Y1 + ... + 
Yn . 

(1) Show that E[YkISnJ = Sn/n if 1::; k ::; n. 
(2) If m is fixed and X k = Sm-k/(m - k) for 0 ::; k ::; m - 1, show that 
(Xo, ... , X m - 1) is a martingale. (Apply Problem IV-35.) 

Problem IV-41. Let {Xn}~=l be a sequence of independent random 
variables with the same distribution defined by P[Xn = kJ = 2- k for 
k = 1,2, .... Random variables Zn are defined by letting Zo be a positive 
constant and setting Zn = (3Zn_t}/2Xn for n = 1,2, .... 
(1) Prove that {Zn}~=o is a martingale relative to the filtration {Fn}~=o, 
where Fn is the a-algebra generated by Xl'···' Xn. 
(2) Use the law of large numbers (see Problem IV-6) to prove that Zn ~ 0 
almost surely as n ~ 00. 

REMARK. This gives a heuristic confirmation of the following unproved 
conjecture in number theory. If n is an odd positive integer, let fen) = 
(3n + 1)2-v (3n+1), where 2v (3n+1) denotes the greatest power of 2 that 
divides the integer 3n + 1. The conjecture asserts that, for every n, there 
exists an integer k such that the kth iterate of f satisfies f(kl(n) = 1. If 
n is very large, v(3n + 1) appears to behave like the variable Xl of the 
problem, and {Zdk=l like the sequence {!k(n)}~l. 

Problem IV-42. Let H c L1(n, A, P), where (n, A, P) is a probability 
space. 
(1) If F is a positive function on (0,+00) such that F(x)/x is increasing 
and ~ +00 as n ~ 00, and if 

sup E(Flh) = M < 00, 
hEH 

show that H is uniformly integrable. 
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TvIETHOD. Use Proposition IV-5.7.2. 
(2) If H is a bounded subset of £7)([2, A. P) with p > 1, show that H is 
nniformly integrable. 

Problem IV-43. Let {Xi) }~;=1 be independent random variables with 
values in N and with the same distribution. Assume that 0 < m = E(Xll) < 
Xl and that (7'2 = E( (X 11 - mV) < 00. Consider the sequence of random 
variables defined by 

Zo 1 
Zn+l 0 if Zn = 0 

ZII-t-I :Lz" X 1=1 ;.11+1 if Zll > O. 

Fn is the o--algebra generated by {Xi .j : 1::; i < 00, 1::; j ::; n}. 
(1) Show that {Zn/mn,Fn}~l is a martingale. 
(2) Show that E (Z;'+1/m2(n+1)) = E (Z~/m2n) + 0-2/m2n+1. 

Conclude that, if m > 1, the martingale is regular. (Use Problem IV-42 
and Theorem IV-5.S.I.) 

RElvIARK. {Z" };;"=O is sometimes called the Galton-Watson process, and 
serves as a model in genetics. (Xi .j is the number of offspring of the indi­
vidual i of the jth generation, which has total size Zd 
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Problem V-I. Let E be the set of compactly supported CDC functions on 
R, and let d and 8 be the operators on E defined by 

(d<p)(x) = <p'(x) and (8<p)(x) = -<p'(x) + x<p(x). 

(1) Prove by induction on n that 

(2) Let p be a norm on E. Let B be the algebra of operators on E which 
are continuous with respect to this norm, that is the set of endomorphisms 
a of E such that 

Iiall = sup{p(a(<p)) : p(<p) ::; I} 

is finite. Assume that d and 8 are in B. Use (1) to prove that, for all n ;::: 1, 

(3) Deduce from (2) that d and 8 are never simultaneously continuous. 

REMARK. This result is due to Aurel Wintner (1947). 

Problem V-2. Let {Hn}~=o be the sequence of Hermite polynomials de­
fined in V-1.3. 
(1) Use Proposition V-1.3.4 to show that, for n ;::: 1, 
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~ H 
If Hn = n! (compare with Problem IV-29), show that 

~ :r ~ 1 ~ 
Hn+1 = --Hn+1 - --Hn- 1 · 

n+1 n+1 

(2) Conclude from (1) that the radius of convergence R(x) of I:~=o ~,'; Hn(x) 
is +00 for every complex number x. 

METHOD. For (2), show that for every f > 0 there exist an integer N(f) and 

a sequence {Xn}~=N(E)_1 such that IBnl ::; Xn and Xn+l = fXn + fXn-l. 

Problem V-3. Let {Hr,}~=o, d, and b be defined as in V-1.3. For nonneg­
ative integers n, consider 

Let A E C and define p by p = b + Ad. 
(1) For n ;::: 1, prove that dnp = pdn + ndn- I and Fn +1 = xFn + nFn - l . 

(2) Prove by induction on n that 

n 

(d + pt' = L C~Hk(p)dn-k, 
k=O 

where C~ denotes the binomial coefficient. 
(3) If tp is a polynomial and t is real, let Tt(tp)(X) = ip(x + t). Prove that 
(exp( td))( tp) = Tt (rp) and that 

(exp t(d + p))( rp) = (exp t; exp(tph) (tp). 

In particular, if A = 1 (that is, if p(rp)(x) = xrp(x)), compute (exp t(d + 
x))(rp). 

REMARK. The result of (2) is due to Viskov4 ; that of (3) is due to Ville. 5 

Problem V -4. Let X and Y be independent random variables with the 
same distribution vl(dx) = exp(-x2/2)dx/V21r. Let g: R ---> [0,+00) be 
a measurable function and let Z = X + Y vi g( X). Assume that Z has a 
normal distribution. Cantelli conjectured in 1917 that 9 is then constant 
almost everywhere; this is still unproved in 1994. 
(1) Let go = E(g(X)). For all real t, compute E(exp tZ) as a function of 
go. Prove that exp(ag) E L2(vd for all a > O. 

METHOD. Use the Cauchy-Schwarz inequality. 

40. Viskov, Theory of Probability and Its Applications, Vol. 30, n. 1 (1984), 
141-143. 

5 J. Ville, Comptes Rendus Acad. des Se. 221 (1945), 529-539. 
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(2) Let {gn};;,o=o be the sequence of real numbers such that g(x) = 
2:::"=0 gn H';.\x) in the L2(V1) sense. By considering E(Z3) and E(Z4), show 
that g1 = 0 and -2g2 = 2:::"=2 g~/n!. 
(3) Prove that g(x) :::; go + 1 almost everywhere. 

METHOD. If E > 0, let A, = {x : g(x) ~ E + go + I}, and let a be a real 
number such that A~ = A, n [a, +00) has positive measure. Consider 

1 t2 
exp[tx + -(g(x) - 1 - go)]v1(dx). 

A~ 2 

Problem V-5. As usual, we denote by {Hn}n>o the sequence of Hermite 
polynomials and by V1 the normal distribution on R. Let ft be a probability 
distribution on R2 such that if (X, Y) has distribution ft, then X and Y 
have distribution V1 and there exists a real sequence {Cn}n2:0 with 

E(Hn(X)IY) = CnHn(Y). 

(1) Prove that Cn = E(Hn(X)Hn(Y)) and -1 :::; Cn :::; 1 for all n in N. 
(2) Prove that if 2:n>1 C~ < +00, then ft is absolutely continuous with 
respect to V1 (dx) V1 (dii) and its density is 

f(x, y) = L C~ Hn(x)Hn(Y). 
n. n2:0 

METHOD. For (2), write ft(dx, dy) = V1 (dy)K(y, dx). Show that the func­
tion x f---> f(x, y) is in L2(vd y-almost everywhere and that, for every 
() E C, J exp(()x)(J(x,y)v1(dx) - K(y,dx)) = 0 y-a.e. 

Problem V-6. We keep the notation of Problem V-5 and denote by C 
the set of probability measures ft on R2 described there. Let ft be a fixed 
element of C. 
(1) Define {bn,d09:s;n by 

and let 

n 

xn = L bn,kHk(X) 
k=O 

n 

Pn(y) = L bn,kCkHk(y). 
k=O 

Show that JxnK(y,dx) = Pn(y) y-a.e. and that limy->ooy-nPn(y) = Cn. 
(2) Let a(y, dt) be the image of K(y, dx) under the mapping x f---> x/Yo For 
() E C, show that 
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and 

j +X OC G 
lin.l exp(et)lJ"(y.dt) = ~ ~I ek . 
.l!~X = L k . 

. - k=O 

(:3) Show that the probability measure IJ"(dt) = lillly~= IJ"(y, elt) exists and 
that 

en = ./ t"lJ"(dt). 

From the fact that IGnl ~ 1, conclude that IJ"(R \ [-1, 1]) = O. 
(4) Show that IJ" is the unique probability mea:mre on [-1,1] such that 

Gil = .f~l tf/lJ"(dt). 
(5) Show that the mapping {I f---'t IJ", from C to the set of probability measures 
on [-1, 1], is a bijection. \Vhat is {i when IJ" is the Dirac measure at p? 

.'-IETHO]). For (5), consider successively the cases where p = 1, p = -1, 
and (using Problem V-5(2) and 1\lehle1":-; formula, V-1.5.8(ii)) p < 1. 

RElvlAHK. This phenomenon was observed by O. Sarrnanov (1966) and 
generalized by Tyan, Derin, and Thomas (1976). 
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