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Preface 

The only way to learn mathematics is to do mathematics. That tenet is the 
foundation of the do-it-yourself, Socratic, or Texas method, the method in 
which the teacher plays the role of an omniscient but largely uncommuni
cative referee between the learner and the facts. Although that method is 
usually and perhaps necessarily oral, this book tries to use the same method 
to give a written exposition of certain topics in Hilbert space theory. 

The right way to read mathematics is first to read the definitions of the 
concepts and the statements of the theorems, and then, putting the book 
aside, to try to discover the appropriate proofs. If the theorems are not 
trivial, the attempt might fail, but it is likely to be instructive just the same. 
To the passive reader a routine computation and a miracle of ingenuity 
come with equal ease, and later, when he must depend on himself, he will 
find that they went as easily as they came. The active reader, who has found 
out what does not work, is in a much better position to understand the reason 
for the success of the author's method, and, later, to find answers that are 
not in books. 

This book was written for the active reader. The first part consists of 
problems, frequently preceded by definitions and motivation, and some
times followed by corollaries and historical remarks. Most of the problems 
are statements to be proved, but some are questions (is it?, what is?), and 
some are challenges (construct, determine). The second part, a very short 
one, consists of hints. A hint is a word, or a paragraph, usually intended 
to help the reader find a solution. The hint itself is not necessarily a con
densed solution of the problem; it may just point to what I regard as the 
heart of the matter. Sometimes a problem contains a trap, and the hint may 
serve to chide the reader for rushing in too recklessly. The third part, the 
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longest, consists of solutions: proofs, answers, or constructions, depending 
on the nature of the problem. 

The problems are intended to be challenges to thought, not legal tech
nicalities. A reader who offers solutions in the strict sense only (this is what 
was asked, and here is how it goes) will miss a lot of the point, and he will 
miss a lot of fun. Do not just answer the question, but try to think of related 
questions, of generalizations (what if the operator is not normal ?), and of 
special cases (what happens in the finite-dimensional case?). What makes the 
assertion true? What would make it false? 

Problems in life, in mathematics, and even in this book, do not necessarily 
arise in increasing order of depth and difficulty. It can perfectly well happen 
that a relatively unsophisticated fact about operators is the best tool for the 
solution of an elementary-sounding problem about the geometry of vectors. 
Do not be discouraged if the solution of an early problem borrows from the 
future and uses the results of a later discussion. The logical error of circular 
reasoning must be avoided, of course. An insistently linear view of the 
intricate architecture of mathematics is, however, almost as bad: it tends 
to conceal the beauty of the subject and to delay or even to make impossible 
an understanding of the full truth. 

Jfyou cannot solve a problem, and the hint did not help. the best thing to 
do at first is to go on to another problem. If the problem was a statement, 
do not hesitate to use it later; its use, or possible misuse, may throw valuable 
light on the solution. If, on the other hand, you solved a problem, look at the 
hint, and then the solution, anyway. You may find modifications, generaliza
tions, and specializations that you did not think of. The solution may 
introduce some standard nomenclature, discuss some of the history of the 
subject, and mention some pertinent references. 

The topics treated range from fairly standard textbook material to the 
boundary of what is known. I made an attempt to exclude dull problems 
with routine answers; every problem in the book puzzled me once. I did 
not try to achieve maximal generality in all the directions that the problems 
have contact with. I tried to communicate ideas and techniques and to let 
the reader generalize for himself. 

To get maximum profit from the book the reader should know the 
elementary techniques and results of general topology, measure theory, 
and real and complex analysis. I use, with no apology and no reference, such 
concepts as subbase for a topology, 'precompact metric spaces, Lindelof 
spaces, connectedness, and the convergence of nets, and such results as 
the metrizability of compact spaces with a countable base, and the compact
ness of the Cartesian product of compact spaces. (Reference: [87].) From 
measure theory, I use concepts such as u-fields and L' spaces, and results 
such as that L' convergent sequences have almost everywhere convergent 
subsequences, and the Lebesgue dominated convergence theorem. 
(Reference: [61].) From real analysis I need, at least, the facts about the 
derivatives of absolutely continuous functions, and the Weierstrass poly-
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nomial approximation theorem. (Reference: [120].) From complex analysis 
I need such things as Taylor and Laurent series, subuniform convergence, 
and the maximum modulus principle. (Reference: [26].) 

This is not an introduction to Hilbert space theory. Some knowledge of 
that subject is a prerequisite; at the very least, a study of the elements of 
Hilbert space theory should proceed concurrently with the reading of this 
book. Ideally the reader should know something like the first two chapters 
of [50]. 

I tried to indicate where I learned the problems and the solutions and 
where further information about them is available, but in many.cases I could 
find no reference. When I ascribe a result to someone without an accompany
ing bracketed reference number, I am referring to an oral communication 
or an unpublished preprint. When I make no ascription, I am not claiming 
originality; more than likely the result is a folk theorem. 

The notation and terminology are mostly standard and used with no 
explanation. As far as Hilbert space is concerned, I follow [50], .except in a 
few small details. Thus, for instance, I now use f and 9 for vectors, instead 
of x and y (the latter are too useful for points in measure spaces and such), 
and, in conformity with current fashion, I use .. kernel" instead of "null
space". (The triple use of the word, to denote (I) null-space, (2) the con
tinuous analogue of a matrix, and (3) the reproducing function associated 
with a functional Hilbert space, is regrettable but unavoidable; it does not 
seem to lead to any confusion.) Incidentally kernel and range are abbreviated 
as ker and ran, their orthogonal complements are abbreviated as kerol and 
ranol, dimension is abbreviated as dim, and determinant and trace are 
abbreviated as det and tr. Real and imaginary parts are denoted, as usual, 
by Re and 1m. The "signum" ofacomplex number z, i.e., z/lzl or 0 according 
as z #= 0 or z = 0, is denoted by sgn z. 

The zero subspace of a Hilbert space is denoted by 0, instead of the correct, 
pedantic {OJ. (The simpler notation is obviously more convenient, and it is 
not a whit more illogical than the simultaneous use of the symbol .. 0" 
for a number, a function, a vector, and an operator. I cannot imagine any 
circumstances where it could lead to serious error. To avoid even a momen
tary misunderstanding, however, I write to} for the set of complex numbers 
consisting of 0 alone.) The co-dimension of a subspace is the dimension of 
its orthogonal complement (or, equivalently, the dimension of the quotient 
space it defines). The symbols V (as a prefix) and v (as an infix) are used to 
denote spans, so that if M is an arbitrary set of vectors, then V M is the 
smallest closed linear manifold that includes M; if M and N are sets of 
vectors, then M v N is the smallest closed linear manifold that includes both 
M and N; and if {Mj } is a family of sets of vectors, then Vi M j is the smallest 
closed linear manifold that includes each M J. Subspace, by the way, means 
closed linear manifold, and operator means bounded linear transformation. 

The arrow in a symbol such asf" .... findicates that a sequence u;,} tends 
to the limit f; the barred arrow in x 1-+ x 2 denotes the function cp defined by 
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qJ(X) = X2. (Note that barred arrows" bind" their variables, just as integrals 
in calculus and quantifiers in logic bind theirs. In principle equations such as 
(x f-+ X2)(y) = y2 make sense.) 

Since the inner product of two vectors f and g is always denoted by 
(j, g), another symbol is needed for their ordered pair; I usc (f, g). This 
leads to the systematic use of the angular bracket to enclose the coordinates 
of a vector, as in (fo, fl' f2' ... ). In accordance with inconsistent but 
widely accepted practice, I use braces to denote both sets and sequences; 
thus {x} is the set whose only element is x, and {xn} is the sequence whose 
n-th term is Xn , " = I, 2, 3, .. '. This could lead to confusion, but in context 
it does not seem to do so. For the complex conjugate of a complex number 
z, I use z*. This tends to make mathematicians nervous, but it is widely 
used by physicists, it is in harmony with the standard notation for the 
adjoints of operators, and it has typographical advantages. (The image of a 
set M of complex numbers under the mapping z t-+ z* is M*; the symbol M 
suggests topological closure.) 

Operator theory has made much progress since the first edition of this 
book appeared in 1967. Some of that progress is visible in the difference 
between the two editions. The journal literature needs time, however, to 
ripen, to become understood and simplified enough for expository pre
sentation in a book of this sort, and much of it is not yet ready for that. Even 
in the part that is reaqy, I had to choose; not everything could be fitted in. 
I omitted beautiful and useful facts about essential spectra, the Calkin 
algebra, and Toeplitz and Hankel operators, and I am sorry about that. 
Maybe next time. 

The first edition had 199 problems; this one has 199 - 9 + 60. I hope 
that the number of incorrect or awkward statements and proofs is smaller 
in this edition. In any event, something like ten of the problems (or their 
solutions) were substantially revised. (Whether the actual number is 8 or 9 
or II or 12 depends on how a .. substantial" revision is defined.) The new 
problems have to do with several subjects; the three most frequent ones are 
total sets of vectors, cyclic operators, and the weak and strong operator 
topologies. 

Since I have been teaching Hilbert space by the problem method for many 
years, I owe thanks for their help to more friends among students and 
colleagues than I could possibly name here. I am truly grateful to them all 
just the same. Without them this book could not exist; it is not the sort of 
book that could have been written in isolation from the mathematical 
community. My special thanks are due to Ronald Douglas, Eric Nordgren, 
and Carl Pearcy for the first edition, and Donald Hadwin and David Schwab 
for the second. Each of them read the whole manuscript (well, almost the 
whole manuscript) and stopped me from making many foolish mistakes. 

Santa Clara University P.R.H. 
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