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PREFACE

My main purpose in this book is to present a unified treatment
of that part of measure theory which in recent years has shown
itself to be most useful for its applications in modern analysis.
If T have accomplished my purpose, then the book should be
found usable both as a text for students and as a source of refer-
ence for the more advanced mathematician.

I have tried to keep to a minimum the amount of new and
unusual terminology and notation. In the few places where my
nomenclature differs from that in the existing literature of meas-
ure theory, I was motivated by an attempt to harmonize with
the usage of other parts of mathematics. There are, for instance,
sound algebraic reasons for using the terms “lattice” and “ring”
for certain classes of sets—reasons which are more cogent than
the similarities that caused Hausdorff to use “ring” and “field.”

The only necessary prerequisite for an intelligent reading of
the first seven chapters of this book is what is known in the
United States as undergraduate algebra and analysis. For the
convenience of the reader, § 0 is devoted to a detailed listing of
exactly what knowledge is assumed in the various chapters. The
beginner should be warned that some of the words and symbols
in the latter part of § 0 are defined only later, in the first seven
chapters of the text, and that, accordingly, he should not be dis-
couraged if, on first reading of § 0, he finds that he does not have
the prerequisites for reading the prerequisites.

At the end of almost every section there i1s a set of exercises
which appear sometimes as questions but more usually as asser-
tions that the reader is invited to prove. These exercises should

be viewed as corollaries to and sidelights on the results more
v



vi PREFACE

formally expounded. They constitute an integral part of the
book; among them appear not only most of the examples and
counter examples necessary for understanding the theory, but
also definitions of new concepts and, occasionally, entire theories
that not long ago were still subjects of research.

It might appear inconsistent that, in the text, many elementary
notions are treated in great detail, while,in the exercises,some quite
refined and profound matters (topological spaces, transfinite num-
bers, Banach spaces, etc.) are assumed to be known. The mate-
rial is arranged, however, so that when a beginning student comes
to an exercise which uses terms not defined in this book he may
simply omit it without loss of continuity. The more advanced
reader, on the other hand, might be pleased at the interplay
between measure theory and other parts of mathematics which
it is the purpose of such exercises to exhibit.

The symbol | is used throughout the entire book in place of
such phrases as “Q.E.D.” or “This completes the proof of the
theorem” to signal the end of a proof.

At the end of the book there is a short list of references and a
bibliography. I make no claims of completeness for these lists.
Their purpose is sometimes to mention background reading,
rarely (in cases where the history of the subject is not too well
known) to give credit for original discoveries, and most often to
indicate directions for further study.

A symbol such as #.v, where « is an integer and v is an integer
or a letter of the alphabet, refers to the (unique) theorem, formula,
or exercise in section # which bears the label o.
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§0. PREREQUISITES

The only prerequisite for reading and understanding the first
seven chapters of this book is a knowledge of elementary algebra
and analysis. Specifically it is assumed that the reader is familiar
with the concepts and results listed in (1)-(7) below.

(1) Mathematical induction, commutativity and associativity
of algebraic operations, linear combinations, equivalence relations
and decompositions into equivalence classes.

(2) Countable sets; the union of countably many countable
sets is countable.

(3) Real numbers, elementary metric and topological properties
of the real line (e.g. the rational numbers are dense, every open
set is a countable union of disjoint open intervals), the Heine-
Borel theorem.

(4) The general concept of a function and, in particular, of a
sequence (1.e. a function whose domain of definition is the set of
positive integers); sums, products, constant multiples, and abso-
lute values of functions. .

(5) Least upper and greatest lower bounds (called suprema and
infima) of sets of real numbers and real valued functions; limits,
superior limits, and inferior limits of sequences of real numbers
and real valued functions.

(6) The symbols + and —, and the following algebraic rela-
tions among them and real numbers x:

(o) + (£o) = x + (£®) = (£®) + x = oo
0o ifx >0,
x(£®) = (£x)x = {0 ifx =0,

Fo if x <0
(o) (F£x) = +o,
(£0)(Fw) = —o;
x/(£o) = 0;

—o < x < o,
1
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The phrase extended real number refers to a real number or one
of the symbols 0.
(7) If x and y are real numbers,

xUy=max{xy} =3x+y+|x—y]),
¥ Ny =min {xy} = 3G +y —|x—y|).

Similarly, if f and g are real valued functions, then f U g and
f N g are the functions defined by

(fUQ) =f(x) Uglx) and (f N g)x) =f(x) N gx),

respectively. The supremum and infimum of a sequence {x,}
of real numbers are denoted by

Urai%x and a1 %y

respectively. In this notation
lim supn #2 = (Yne1 Unar %n

lim inf, x, = Un=i Nimen *m.

In Chapter VIII the concept of metric space is used, together
with such related concepts as completeness and separability for
metric spaces, and uniform continuity of functions on metric
spaces. In Chapter VIII use is made also of such slightly more
sophisticated concepts of real analysis as one-sided continuity.

In the last section of Chapter IX, Tychonoff’s theorem on the
compactness of product spaces is needed (for countably many
factors each of which is an interval).

In general, each chapter makes free use of all preceding chap-
ters; the only major exception to this is that Chapter IX is not
needed for the last three chapters.

In Chapters X, XI, and XII systematic use is made of many
of the concepts and results of point set topology and the elements
of topological group theory. We append below a list of all the
relevant definitions and theorems. The purpose of this list is not
to serve as a text on topology, but (a) to tell the expert exactly

and
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which forms of the relevant concepts and results we need, (b) to
tell the beginner with exactly which concepts and results he should
familiarize himself before studying the last three chapters, (c) to
put on record certain, not universally used, terminological con-
ventions, and (d) to serve as an easily available reference for
things which the reader may wish to recall.

Topological Spaces

A topological space is a set X and a class of subsets of X, called
the open sets of X, such that the class contains 0 and X and is
closed under the formation of finite intersections and arbitrary
(i.e. not necessarily finite or countable) unions. A subset E
of X is called a G; if there exists a sequence {U,} of open sets
such that £ = [);.; U,. The class of all G5’s is closed under the
formation of finite unions and countable intersections. The topo-
logical space X is discrete if every subset of X is open, or, equiva-
lently, if every one-point subset of X is open. A set E is closed
if X — E is open. The class of closed sets contains 0 and X and
is closed under the formation of finite unions and arbitrary inter-
sections. The interior, E% of a subset E of X is the greatest open
set contained in E; the closure, E, of E is the least closed set con-
taining E. Interiors are open sets and closures are closed sets;
if E is open, then E° = E, and, if E is closed, then £ = E. The
closure of a set E is the set of all points x such that, for every open
set U containing x, E N U 0. A set E isdense in Xif £ = X.
A subset Y of a topological space becomes a topological space
(a subspace of X) in the relative topology if exactly those subsets
of Y are called open which may be obtained by intersecting an
open subset of X with Y. A neighborhood of a point x in X
[or of a subset E of X] is an open set containing x [or an open set
containing E]. A base is a class B of open sets such that, for
every x in X and every neighborhood U of x, there exists a set
B in B such that x e B < U. The topology of the real line is
determined by the requirement that the class of all open intervals
be a base. A subbase is a class of sets, the class of all finite inter-
sections of which is a base. A space X is separable if it has a
countable base. A subspace of a separable space is separable.
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An open covering of a subset E of a topological space X is a
class K of open sets such that £ ¢ {J K. If X is separable and
K is an open covering of a subset E of X, then there exists a
countable subclass { K, K3, - - -} of K which is an open covering
of E. A set Ein X is compact if, for every open covering K of E,
there exists a finite subclass {Kj, - - -, K,} of K which is an open
covering of E. A class K of sets has the finite intersection prop-
erty if every finite subclass of K has a non empty intersection.
A space X is compact if and only if every class of closed sets with
the finite intersection property has a non empty intersection. A
set E in a space X is o—compact if there exists a sequence {C,}
of compact sets such that £ = |J,;., C.. A space X is locally
compact if every point of X has a neighborhood whose closure is
compact. A subset E of a locally compact space is bounded if
there exists a compact set C such that £ < C. The class of all
bounded open sets in a locally compact space is a base. A closed
subset of a bounded set is compact. A subset E of a locally com-
pact space is o-bounded if there exists a sequence {C,} of compact
sets such that £ ¢ UUy-; Cs. To any locally compact but not
compact topological space X there corresponds a compact space
X* containing X and exactly one additional point x*; X* is called
the one-point compactification of X by x*. The open sets of X*
are the open subsets of X and the complements (in X*) of the
closed compact subsets of X.

If {X;:iel} is a class of topological spaces, their Cartesian
product is the set X = X {X;: i e I} of all functions x defined
on [ and such that, for each 7 in I, x(i) e X;. For a fixed 7, in
1, let E, be an open subset of X;, and, for i 5 iy, write E; = X,;
the class of open sets in X is determined by the requirement that
the class of all sets of the form X {E;: i e I} be a subbase. If
the function £; on X is defined by £;(x) = x(4), then §; is continu-
ous. The Cartesian product of any class of compact spaces is
compact.

A topological space is a Hausdorff space if every pair of distinct
points have disjoint neighborhoods. Two disjoint compact sets
in a Hausdorff space have disjoint neighborhoods. A compact
subset of a Hausdorff space is closed. If a locally compact space
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is a Hausdorff space or a separable space, then so is its one-point
compactification. A real valued continuous function on a compact
set is bounded.

For any topological space X we denote by & (or $(X)) the class
of all real valued continuous functions f such that 0 = f(x) = 1
for all x in X. A Hausdorff space is completely regular if, for
every point y in X and every closed set F not containing y, there
is a function f in & such that f(y) = 0 and, for x in F, f(x) = 1.
A locally compact Hausdorff space is completely regular.

A metric space is a set X and a real valued function & (called
distance) on X X X, such that d(x,y) = 0, d(x,y) = 0 if and only
if x = y,d(x,y) = d(y,x), and d(x,y) £ d(x,2) + d(z,y). If E and
F are non empty subsets of a metric space X, the distance between
them is defined to be the number d(E,F) = inf {d(x,y): x ¢ E,
yeF}. If F = {x,} is a one-point set, we write d(E,xo) in place
of d(E,{x}). A sphere (with center x, and radius ro) is a subset
E of a metric space X such that, for some point x, and some posi-
tive number ro, E = {x: d(x¢,x) < ro}. The topology of a metric
space is determined by the requirement that the class of all
spheres be a base. A metric space is completely regular. A closed
set in a metric space is a Gs. A metric space is separable if and only
if it contains a countable dense set. If E is a subset of a metric
space and f(x) = d(E,x), then f is a continuous function and
E = {x:f(x) = 0}. If X is the real line, or the Cartesian product
of a finite number of real lines, then X is a locally compact separa-
ble Hausdorff space; it is even a metric space if for x = (x1, - - -, %5)
and y = (y1, ', ya) the distance d(x,y) is defined to be
Gty (s — y)H*. A closed interval in the real line is a com-
pact set.

A transformation T from a topological space X into a topological
space Y is continuous if the inverse image of every open set is
open, or, equivalently, if the inverse image of every closed set is
closed. The transformation T is open if the image of every open
set is open. If B is a subbase in Y, then a necessary and sufficient
condition that T be continuous is that 77*(B) be open for every
B in B. If a continuous transformation 7 maps X onto Y, and
if X is compact, then Y is compact. A homeomorphism is a one
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to one, continuous transformation of X onto Y whose inverse is
also continuous.

The sum of a uniformly convergent series of real valued, con-
tinuous functions is continuous. If f and g are real valued con-
tinuous functions, then f U g and f N g are continuous.

Topological Groups

A group is a non empty set X of elements for which an associa-
tive multiplication is defined so that, for any two elements @ and
b of X, the equations ax = 4 and ya = b are solvable. In every
group X there is a unique identity element e, characterized by
the fact that ex = xe = x for every x in X. Each element x
of X has a unique inverse, x™*, characterized by the fact that
xx~' = x7'x = e. A non empty subset ¥ of X is a subgroup
if x7'y ¢ Y whenever x¥ and y are in Y. If E is any subset of a
group X, E7! is the set of all elements of the form x™, where
x e E; if E and F are any two subsets of X, EF is the set of all
elements of the form xy, where x ¢ E and y e F. A non empty
subset Y of X is a subgroup if and only if Y'Y < Y. Ifx e X,
it is customary to write x£ and Ex in place of {x}E and E{x}
respectively; the set £ [or Ex] is called a left translation [or right
translation] of E. If Y is a subgroup of X, the sets xY and Y
are called (left and right) cosets of Y. A subgroup Y of X is
invariant if xY = Y& for every x in X. If the product of two
cosets Y7 and Y, of an invariant subgroup Y is defined to be
Y,Y5, then, with respect to this notion of multiplication, the class
of all cosets is a group X, called the quotient group of X modulo
Y and denoted by X/Y. The identity element & of X is Y. If
Y 1s an invariant subgroup of X, and if for every x in X, w(x)
is the coset of Y which contains w, then the transformation =
is called the projection from X onto X. A homomorphism is a
transformation T from a group X into a group Y such that
T(xy) = T(x)T(y) for every two elements x and y of X. The
projection from a group X onto a quotient group X is a homo-
morphism.

A topological group is a group X which is a Hausdorff space
such that the transformation (from X X X onto X) which sends
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(x,y) into ¥~y is continuous. A class N of open sets containing
¢ in a topological group is a base at ¢ if (a) for every x different
from e there exists a set U in N such that x ¢’ U, (b) for any two
sets Uand 7 in N there exists aset # inNsuchthat # c U N 7,
(c) for any set U in N there exists a set 7 in N such that
V=V < U, (d) for any set U in N and any element & in X, there
exists a set ¥ in N such that 7 ¢ xUx™, and (e) for any set U
in N and any element x in U there exists a set 7" in N such that
Vx c U. The class of all neighborhoods of ¢ is a base at ¢; con-
versely if, in any group X, N is a class of sets satisfying the condi-
tions described above, and if the class of all translations of sets
of N is taken for a base, then, with respect to the topology so
defined, X becomes a topological group. A neighborhood 7 of e
is symmetric if 7 = V!; the class of all symmetric neighbor-
hoods of ¢ is a base at e. If N is a base at ¢ and if F' 1s any closed
set in X, then F = () {UF: U e N}.

The closure of a subgroup [or of an invariant subgroup] of a
topological group X is a subgroup [or an invariant subgroup] of
X. If Y is a closed invariant subgroup of X, and if a subset of
X = X/Y is called open if and only if its inverse image (under
the projection ) is open in X, then X is a topological group and
the transformation = from X onto X is open and continuous.

If Cis a compact set and U is an open set in a topological group
X, and if C c U, then there exists a neighborhood 7 of ¢ such
that VC¥V c U. 1If C and D are two disjoint compact sets, then
there exists a neighborhood U of ¢ such that UCU and UDU
are disjoint. If C and D are any two compact sets, then C™!
and CD are also compact.

A subset E of a topological group X is bounded if, for every
neighborhood U of e, there exists a finite set {x, - - -, x,} (which,
in case E = 0, may be assumed to be a subset of E) such
that E < J?., »:U; if X is locally compact, then this definition
of boundedness agrees with the one applicable in any locally com-
pact space (i.e. the one which requires that the closure of E be
compact). If a continuous, real valued function f on X is such
that the set N(f) = {x:f(x) = 0} is bounded, then f is uniformly
continuous in the sense that to every positive number ¢ there
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corresponds a neighborhood U of e such that | f(x;) — f(x2) | < e
whenever x;x;™! e U.

A topological group is locally bounded if there exists in it a
bounded neighborhood of e. To every locally bounded topo-
logical group X, there corresponds a locally compact topological
group X* called the completion of X (uniquely determined to
within an isomorphism), such that X is a dense subgroup of X*.
Every closed subgroup and every quotient group of a locally
compact group is a locally compact group.




Chapter 1

SETS AND CLASSES

§ 1. SET INCLUSION

Throughout this book, whenever the word set is used, it will
be interpreted to mean a subset of a given set, which, unless it is
assigned a different symbol in a special context, will be denoted
by X. The elements of X will be called points; the set X will
be referred to as the space, or the whole or entire space, under
consideration. The purpose of this introductory chapter is to de-
fine the basic concepts of the theory of sets, and to state the
principal results which will be used constantly in what follows.

If x is a point of X and E is a subset of X, the notation

xek

means that x belongs to E (i.e. that one of the points of E is x);
the negation of this assertion, i.e. the statement that x does not
belong to E, will be denoted by

x ¢ E.
Thus, for example, for every point x of X, we have
xelX,
and for no point x of X do we have
x ¢ X.
If E and F are subsets of X, the notation

EcF or FDOE
9
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means that E is a subset of F, i.e. that every point of E belongs
to F. In particular therefore

EcCcE

for every set E. Two sets E and F are called equal if and only
if they contain exactly the same points, or, equivalently, if and
only if

EcF and FCcE

This seemingly innocuous definition has as a consequence the
important principle that the only way to prove that two sets are
equal is to show, in two steps, that every point of either set be-
longs also to the other.

It makes for tremendous simplification in language and nota-
tion to admit into the class of sets a set containing no points, which
we shall call the empty set and denote by 0. For every set E
we have

OcEcJX;
for every point x we have
x € 0.

In addition to sets of points we shall have frequent occasion to
consider also sets of sets. If, for instance, X is the real line, then
an interval is a set, i.e. a subset of X, but the set of all intervals
is a set of sets. To help keep the notions clear, we shall always
use the word class for a set of sets. The same notations and
terminology will be used for classes as for sets. Thus, for instance,
if E is a set and E is a class of sets, then

EeE

means that the set £ belongs to (is 2 member of]| is an element of)
the class E; if E and F are classes, then

EcPF

means that every set of E belongs also to F, i.e. that E is a sub-
class of F.

On very rare occasions we shall also have to consider sets of
classes, for which we shall always use the word collection. If,



Sec. 2] SETS AND CLASSES 11

for instance, X is the Euclidean plane and E, is the class of all
intervals on the horizontal line at distance y from the origin, then
each E, is a class and the set of all these classes is a collection.

(1) The relation C between sets is always reflexive and transitive; it is sym-
metric if and only if X is empty.

(2) Let X be the class of all subsets of X, including of course the empty set 0
and the whole space X let x be a point of X, let E be a subset of X (i.e. 2 member
of X), and let E be a class of subsets of X (i.e. a subclass of X). If # and v vary
independently over the five symbols », E; X, E, X, then some of the fifty rela-
tions of the forms

ueyv or uCyo

are necessarily true, some are possibly true, some are necessarily false, and some
are meaningless. In particular # € v is meaningless unless the right term is a
subset of a space of which the left term is a point, and # C v is meaningless
unless # and v are both subsets of the same space.

§2. UNIONS AND INTERSECTIONS

If E is any class of subsets of X, the set of all those points of
X which belong to at least one set of the class E is called the
union of the sets of E; it will be denoted by

UE or U {E:E<E}.

The last written symbol is an application of an important and
frequently used principle of notation. If we are given any set of
objects denoted by the generic symbol &, and if, for each x, w(x)
is a proposition concerning x, then the symbol

{x: w(x)}
denotes the set of those points x for which the proposition m(x)
is true. If {w.(x)} is a sequence of propositions concerning x,
the symbol
{x: m(x), ma(x), -+ -}

denotes the set of those points x for which =, (x) is true for every
n =12 ... If more generally, to every element v of a certain
index set T' there corresponds a proposition m,(x) concerning x,
then we shall denote the set of all those points x for which the
proposition m,(x) is true for every v in I by

{x: m (x), veT}.
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Thus, for instance,

{x:xeE} = E
and

{E: E ¢E} = E.

For more illuminating examples we consider the sets
{:0=<r=1)
(= the closed unit interval),
{(y):x® + 52 =1}
(= the circumference of the unit circle in the plane), and
{n?:n=1,2, -}

(= the set of those positive integers which are squares). In ac-
cordance with this notation, the upper and lower bounds (supre-
mum and infimum) of a set E of real numbers are denoted by

sup {x:x e E} and inf {x:x ¢ E}

respectively.

In general the brace {---} notation will be reserved for the
formation of sets. Thus, for instance, if x and y are points, then
{x,y} denotes the set whose only elements are x and y. It is
important logically to distinguish between the point x and the
set {x} whose only element is x, and similarly to distinguish
between the set E and the class {£} whose only element is E.
The empty set 0, for example, contains no points, but the class
{0} contains exactly one set, namely the empty set.

For the union of special classes of sets various special notations
are used. If, for instance,

E = {Eb Ez}
then
UE=U{E:i=1,2}
is denoted by
E, U Eg;

if, more generally,
E = {E, -, E,}
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is a finite class of sets, then
UE=U{E,':1.=1,"‘,TI}
E1 u..-u En or U?—l E,’.

If, similarly, {E,} is an infinite sequence of sets, then the union
of the terms of this sequence is denoted by

E,UE, U .-+ or im1 Ei

More generally, if to every element v of a certain index set T
there corresponds a set E,, then the union of the class of sets

{E,:veT}

U,er £, or Uy E,.
If the index set I' is empty, we shall make the convention that
U, E, =0.

The relations of the empty set O and the whole space X to
the formation of unions are given by the identities

EUO=E and EU X = X.
More generally it is true that
EcF

is denoted by

is denoted by

if and only if
EUF=F.

If E is any class of subsets of X, the set of all those points of
X which belong to every set of the class E is called the intersection
of the sets of E; it will be denoted by

NE or ) {E:E¢E}.

Symbols similar to those used for unions are used, but with the
symbol U replaced by N, for the intersections of two sets, of a
finite or countably infinite sequence of sets, or of the terms of
any indexed class of sets. If the index set I' is empty, we shall
make the somewhat startling convention that

nveI‘E'r = X.
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There are several heuristic motivations for this convention. One
of them is that if T; and T’y are two (non empty) index sets for
which T} < TI'y, then clearly

nvel‘l E"/ ) nweI‘zE'v

and that therefore to the smallest possible T, i.e. the empty one,
we should make correspond the largest possible intersection.
Another motivation is the identity

n‘yel‘lul‘zE'Y = nveerv n nvzrzEv)

valid for all non empty index sets T'; and T'5. If we insist that this
identity remain valid for arbitrary T, and T, then we are com-
mitted to believing that, for every T,

nvePEv = nvel‘uoE'y = n'veI‘E'v n n-yzOE'y;

writing E, = X for every v in T, we conclude that

n'yeOE‘Y = X.

Union and intersection are sometimes called join and meet,
respectively. As a mnemonic device for distinguishing between
U and N (which, by the way, are usually read as cup and cap,
respectively), it may be remarked that the symbol U is similar
to the initial letter of the word “union” and the symbol N is
similar to the initial letter of the word “meet.”

The relations of 0 and X to the formation of intersections are
given by the identities

EN0O=0 and EN X =E.
More generally it is true that

EcF
it and only if
ENF=E

Two sets E and F are called disjoint if they have no points in
common, i.e. if

ENF=0.
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A disjoint class is a class E of sets such that every two distinct
sets of E are disjoint; in this case we shall refer to the union of the
sets of E as a disjoint union.

We conclude this section with the introduction of the useful
concept of characteristic function. If E is any subset of X, the
function xg, defined for all ¥ in X by the relations

1 if xekE,
0 if xe¢'E,
is called the characteristic function of the set E. The correspond-
ence between sets and their characteristic functions is one to one,
and all properties of sets and set operations may be expressed

by means of characteristic functions. As one more relevant illus-
tration of the brace notation, we mention

E = {x: xg(x) = 1}.

(1) The formation of unions is commutative and associative, i.e.
EUF=FUE and EU@FUG =(EU F) UG;

the same is true for the formation of intersections.
(2) Each of the two operations, the formation of unions and the formation
of intersections, is distributive with respect to the other, i.e.

ENEFUG=ENRAHUENG

xg(¥) = {

and
EUFENG =EUF NEUG).

More generally the following extended distributive laws are valid:

FNU{E:EeE} = U{EN F: EcE}
and

FUNI{E:EcE} = N {EU F: EcE}.

(3) Does the class of all subsets of X form a group with respect to either of
the operations U and N ?

(4) xo(x) = 0, xx(x) = 1. The relation

xe(*) = xr(x)
is valid for all ¥ in X ifand only if EC F. f ENF=A4and EU F = B,
then
xa=xexr=Xe N xr and xa=xg+xr — x4 =xz U xr.

(5) Do the identities in (4), expressing x4 and xg in terms of xg and xr,
have generalizations to finite, countably infinite, and arbitrary unions and
intersections?
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§ 3. LIMITS, COMPLEMENTS, AND DIFFERENCES

If {E,} is a sequence of subsets of X, the set E* of all those
points of X which belong to E, for infinitely many values of #
is called the superior limit of the sequence and is denoted by

E* = lim sup, E..

The set E4 of all those points of X which belong to E, for all but
a finite number of values of # is called the inferior limit of the
sequence and is denoted by

Ey = liminf, E,.

If it so happens that
E* = E*,

we shall use the notation
lim, E,
for this set. If the sequence is such that
E,cE,,, for n=12,.--,
it is called increasing; if
E,.>E., for n=1,2,---,

it is called decreasing. Both increasing and decreasing sequences
will be referred to as monotone. It is easy to verify that if { £,}
is a monotone sequence, then lim, E, exists and is equal to

UrE. or NaEa

according as the sequence is increasing or decreasing.

The complement of a subset £ of X is the set of all those
points of X which do not belong to Ej; it will be denoted by E'.
The operation of forming complements satisfies the following
algebraic identities:

ENE =0, EUFE =X,
0=X, (E) =E X =0, and
if EcF, then E' DF.
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The formation of complements also bears an interesting and very
important relation to unions and intersections, expressed by the

identities
(U{E:EcE}) = N {E:E<E},

(N{E: EeE}) = U {E": EE}.

In words: the complement of the union of a class of sets is the
intersection of their complements, and the complement of their
intersection is the union of their complements. This fact, together
with the elementary formulas relating to complements, proves the
important principle of duality:

any valid identity among sets, obtained by forming unions,
intersections, and complements, remains valid if in it the

symbols
N,c, and 0

are interchanged with

U,o, and X
respectively (and equality and complementation are left
unchanged).

If E and F are subsets of X, the difference between E and F,

in symbols
E - F,

is the set of all those points of E which do not belong to F. Since
X—-—F=F,
and, more generally,
E-F=ENF,
the difference E — F is frequently called the relative complement
of F in E. The operation of forming differences, similarly to the

operation of forming complements, interchanges {J with () and
c with D, so that, for instance,

E—-(FUG =(E—-F)N(E-QG).
The difference E — F is called proper if E D F.
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As the final and frequently very important operation on sets
we introduce the symmetric difference of two sets E and F,
denoted by

EAF,
and defined by

EAF=(E-F)UF-E)y=(ENF)YU(E NF).

The formation of limits, complements, and differences of sets
requires a bit of practice for ease in manipulation. The reader
is accordingly advised to carry through the proofs of the most
important properties of these processes, listed in the exercises
that follow.

(1) Another heuristic motivation of the convention
ny eo By =X
is the desire to have the identity
n‘y er By = (Uy el E‘r’)')

which is valid for all non empty index sets T', remain valid for I’ = 0.
(2) If Ex = lim inf, E, and E* = lim sup, E,, then

E* = U:-l n:-n Em c n:=l U;=n Em = E*,

(3) The superior limit, inferior limit, and limit (if it exists) of a sequence of
sets are unaltered if a finite number of the terms of the sequence are changed.
(4) If E, = A4 or B according as 7 is even or odd, then

liminf, E, = A4 B and limsup, E, = 4 U B.
(5) If {E,} is a disjoint sequence, then
lim, E, = 0.
(6) If Ey = lim inf, E, and E* = lim sup, E,, then
(Ex) = limsup, E,’ and (E* = liminf, E. .
More generally,
F — E, =limsupy, (F — E,) and F — E* = lim inf, (F — E,).
NE-F=E—-(ENF)=EUF) —F
ENF-G=ENH-ENG, EUFN-G=(E-6)U F-0G)
B E-GNEF-G =((ENF -G,
(E-F)—G=E—-(FUG, E-(F-G =(E-FHUENG),
E-FNG-H)=ENG —(FUH).
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(9) EAF=FAE EA(FAG = (EAF)AG,
ENEFAG =(ENFAENOG),
EAO0O=E, EAX=F,
EAE=0, EAF =X,
EAF=(EUF) —(ENPF.

(10) Does the class of all subsets of X form a group with respect to the opera-
tion A?
(11) If Eyx = lim inf, E, and E* = lim sup, E,, then

xe,(x) = lim inf, xg,(¥) and xgs(x) = lim sup, xz,(x).

(The expressions on the right sides of these equations refer, of course, to the
usual numerical concepts of superior limit and inferior limit.)
(12) xgr = 1 — x&, xg—r = x£(1 — xr),

Xear = | xeg — x¢| = x& + xr (mad 2).
(13) If {E,} is a sequence of sets, write
Dy=FE;, Ds=DiAE; D3=D:AE,
and, in general,
Dpy1 = DyAEpy for n=1,2 ---.
The limit of the sequence {D,} exists if and only if lim, E, = 0. If the opera-
tion A is thought of as addition (cf. (12)), then this result has the following

verbal phrasing: an infinite series of sets converges if and only if its terms ap-
proach zero.

§ 4. RINGS AND ALGEBRAS

A ring (or Boolean ring) of sets is a non empty class R of sets

such that if
EeR and FeR,

then
EUFeR and E - FeR.

In other words a ring is a non empty class of sets which is closed
under the formation of unions and differences.
The empty set belongs to every ring R, for if

EeR,

then
0= E—EeR.
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Since
E—-F=(EUF)—-F,

it follows that a non empty class of sets closed under the formation
of unions and proper differences is a ring. Since

EAF=(E—-F)UF—-E)
and

ENF=(EUF)—-(EAF),

it follows that a ring is closed under the formation of symmetric
differences and intersections. An application of mathematical
induction and the associative laws for unions and intersections
shows that if R is a ring and

E;eR, i=1, -, n,
then

ULiE;eR and (. E:eR.

Two extreme but useful examples of rings are the class {0}
containing the empty set only, and the class of all subsets of X.
Another example, for an arbitrary set X, is the class of all finite
sets. A more illuminating example is the following. Let

X = {x: —0 < x < +oo}

be the real line, and let R be the class of all finite unions of
bounded, left closed, and right open intervals, i.e. the class of
all sets of the form

Ui {x: —o < a; £ x < b < +oo).

Union and intersection are treated unsymmetrically in the
definition of rings. While, for instance, it is true that a ring is
closed under the formation of intersections, it is not true that a
class of sets closed under the formation of intersections and dif-
ferences is necessarily closed also under the formation of unions.
If, however, a non empty class of sets is closed under the formation
of intersections, proper differences, and disjoint unions, then it
is a ring. (Proof:

EUF=[E-(ENFJUF-(ENF]U(ERNF).)
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It is easily possible to give a definition of rings which is more
nearly symmetric in its treatment of union and intersection: a
ring may be defined as a non empty class of sets closed under the
formation of intersections and symmetric differences. The proof
of this statement is in the identities:

EUF=(EAF)A(ENF), E—F=EA(ENF.

If in this form of the definition we replace intersection by union
we obtain a true statement: a non empty class of sets closed under
the formation of unions and symmetric differences is a ring.

An algebra (or Boolean algebra) of sets is a non empty class
R of sets such that

(@) f EeRand F eR, then E U FeR, and
(b) if EeR, then E' eR.

Since
E—-F=ENF =(FE UF),

it follows that every algebra is a ring. The relation between the
general concept of ring and the more special concept of algebra is
simple: an algebra may be characterized as a ring containing X.
Since

E = X - E,

it is clear that every such ring is an algebra; if, conversely, R
is an algebra and
EeR

(we recall that R is non empty), then
X=EUFE eR

(1) The following classes of sets are examples of rings and algebras.
(1a) X is n-dimensional Euclidean space; E is the class of all finite unions of
semiclosed “intervals” of the form

{(er, ooy n): —0 < @i S <8; <00, §=1,---, 1.

(1b) X is an uncountable set; E is the class of all countable subsets of X.

(1c) X is an uncountable set; E is the class of all sets which either are count-
able or have countable complements.

(2) Which topological spaces have the property that the class E of open sets
is a ring?
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(3) The intersection of any collection of rings or algebras is again a ring or an
algebra, respectively.
(4) If R is a ring of sets and if we define, for £ and F in R,

EOQF=ENF and E®F=EAF,

then, with respect to the operations of “addition” (&) and “multiplication”
(®), the system R is a ring in the algebraic sense of the word. Algebraic rings,
such as this one, in which every element is idempotent (i.e. £E ©® E = E for
every E in R) are also called Boolean rings. The existence of a very close rela-
tion between Boolean rings of sets and Boolean rings in general is the main
justification of the ring terminology in the set theoretic case.

(5) If R is a ring of sets and if A is the class of all those sets E for which

either EeR orelse E'eR,
then A is an algebra.
(6) A semiring is a non empty class P of sets such that

(6a) if EePand FeP, then E N FeP, and

(6b) if EePand FeP and E C F, then there is a finite class {Cy, Cy, - -+, Cn}
of sets in P such that E=Co,C C; C---C Cp=F and D; = C; —
CiayePfori=1,---, n

The empty set belongs to every semiring. If X is any set, then the class P
consisting of the empty set and all one-point sets (i.e. sets of the form {x} with
x € X) is a semiring. If X is the real line, the class of all bounded, left closed, and
right open intervals is a semiring.

§ 5. GENERATED RINGS AND ¢—RINGS

Theorem A. If E is any class of sets, then there exists a
unique ring Ro such that Ro D E and such that if R is any
other ring containing E then Ro < R.

The ring Ry, the smallest ring containing E, is called the ring
generated by E; it will be denoted by R(E).

Proof. Since the class of all subsets of X is a ring, it is clear
that at least one ring containing E always exists. Since more-
over (cf. 4.3) the intersection of any collection of rings is also a
ring, the intersection of all rings containing E is easily seen to be
the desired ring Ry. |

Theorem B. If E is any class of sets, then every set in R(E)
may be covered by a finite union of sets in E.
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Proof. The class of all sets which may be covered by a finite
union of sets in E is a ring; since this ring contains E, it also con-
tains R(E). ||

Theorem C. If E is a countable class of sets, then R(E) is
countable.

Proof. For any class C of sets, we write C* for the class of all
finite unions of differences of sets of C. 1t is clear that if C is
countable, then so is C*, and if

0eC,
then
C c C*

To prove the theorem we assume, as we may without any loss
of generality, that

0¢E,
and we write

E0=E, En= 4:_1’ n=1’2,"‘.

It is clear that
E c U7-cE. cR(E),

and that the class
n=0En

is countable; we shall complete the proof by showing that J=_, E,
is a ring. Since

E=E,cE cEc: -,

it follows that if 4 and B are any two sets in U0 E., then there
exists a positive integer # such that both 4 and B belong to E,.
We have
1{ - B SEn_H,
and, since
O0¢E) CcE,,
it follows also that

AUB=(4—0)U (B—0)¢cE,,,.
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We have proved therefore that both 4 — B and 4 U B belong
to Ur-0 En, i.e. that y-0 En is indeed closed under the forma-
tion of unions and differences. |

A o-ring is a non empty class S of sets such that

(a) fEeSand FeS, then E— FeS, and
(b) le,,ES,Z = 1,2, ---,then U?=1E1'SS-

Equivalently a o-ring is a ring closed under the formation of
countable unions. If S is a o-ring and if

E;eS, i=1,2,---, and E = UL E,
then the identity

?=1 Ei =E — U::-l (E - Ei)
shows that
n:;l E;e S,

i.e. that a o—ring is closed under the formation of countable inter-
sections. It follows also (cf. 3.2) that if S is a o-ring and

E:eS, i=12 ---

then both lim inf; E; and lim sup; E; belong to S.

Since the truth and proof of Theorem A remain unaltered if
we replace “ring” by “o-ring” throughout, we may define the
o-ring S(E) generated by any class E of sets as the smallest
o-ring containing E.

Theorem D. IfEisany classof sets and E is any set in S =
S(E), then there exists a countable subclass D of E such that
E ¢ S(D).

Proof. The union of all those o—subrings of S which are
generated by some countable subclass of E is a ¢-ring containing
E and contained in S; it is therefore identical with S. |

For every class E of subsets of X and every fixed subset A4
of X, we shall denote by

ENd

the class of all sets of the form £ N A4 with E in E.
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Theorem E. If E is any class of sets and if A is any subset
of X, then
S(E) N 4 =SE N A).

Proof. Denote by C the class of all sets of the form B U
(C — A4), where
BeSEN A and C eS(E);
it is easy to verify that C is a o—ring. If E ¢ E, then the relation

E=(ENAU(E-4A,
together with

ENAdeENAcCSEN A,
shows that E ¢ C, and therefore that

EcC.
It follows that
SE)cC
and therefore that

SE)NAcCN 4
Since, however, it is obvious that

CNA=SEn A,
it follows that
SE) N 4 c SE N A).

The reverse inequality,
SEN A cSE)N 4,
follows from the facts that S(E) N A is a o-ring and
ENAcSE NAL 1|

(1) For each of the following examples, what is the ring generated by the
class E of sets there described?

(1a) For a fixed subset E of X, E = {E} is the class containing E only.

(1b) For a fixed subset E of X, E is the class of all sets of which £ is a subset,
ie. E={F: EC F}.

(1c) E is the class of all sets which contain exactly two points.

(2) A lattice (of sets) is a class L such that 0 e L and such that if £ ¢ L and
FeL, then EU FeL and EN FeL. Let P = P(L) be the class of all sets
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of the form F — E, where E¢L, FeL, and E C F; then P is a semiring;
(cf. 4.6). (Hint:if
Di=F.—E, i=12

are representations of two sets of P as proper differences of sets of L, and if
D1 D Ds, then for
C=(F1 N F) — (E; N F),

or, alternatively, for
C = F1 bt [E] U (F1 ﬂ Ez)],

we have Fo — E;, C CC Fy; — E1.) IsParing?

(3) Let P be a semiring and let R be the class of all sets of the form [J7-; E;,
where {E1, - -+, E,} is an arbitrary finite, disjoint class of sets in P.

(3a) R is closed under the formation of finite intersections and disjoint
unions.

@Bb) If EeP, FeP,and EC F, then F — EcR.

(Bc) If EeP, FeR,and EC F, then F — EeR.

(Bd) If EeR, FeR,and EC F, then F — EcR.

(3e) R = R(P). It follows in particular that a semiring which is closed under
the formation of unions is a ring.

(4) The fact that the analog of Theorem A for algebras is true may be seen
either by replacing “ring” by “algebra” in its proof or by using 4.5.

(5) If P is a semiring and R = R(P), then S(R) = S(P).

(6) Is it true that if a non empty class of sets is closed under the formation of
symmetric differences and countable intersections, then it is a o-ring?

(7) IfE is a non empty class of sets, then every set in S(E) may be covered by
a countable union of sets in E; (cf. Theorem B).

(8) If E is an infinite class of sets, then E and R(E) have the same cardinal
number; (cf. Theorem C).

(9) The following procedure yields an analog of Theorem C for o-rings;
(cf. also (8)). If E is any class of sets containing 0, write Eg = E, and, for any
ordinal @ > 0, write, inductively,

Eo = (U {Es: 8 < a])¥,

where C* denotes the class of all countable unions of differences of sets of C.
(9a) If 0 < a < B, then E C E, C Eg C S(E).
(9b) If Qis the first uncountable ordinal, then S(E) = |J{Ea: @ < Q}.
(9¢) If the cardinal number of E is not greater than that of the continuum,
then the same is true of the cardinal number of S(E).
(10) What are the analogs of Theorems D and E for rings instead of ¢—tings?

§ 6. MONOTONE CLASSES

It is impossible to give a constructive process for obtaining the
o-ring generated by a class of sets. By studying, however,
another type of class, less restricted than a o-ring, it is possible
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to obtain a technically very helpful theorem concerning the
structure of generated o—rings.

A non empty class M of sets is monotone if, for every monotone
sequence {E,} of sets in M, we have

lim, E, ¢ M.

Since it is true for monotone classes (just as for rings and
o-rings) that the class of all subsets of X is a monotone class,
and that the intersection of any collection of monotone classes
is a monotone class, we may define the monotone class M(E)
generated by any class E of sets as the smallest monotone class
containing E.

Theorem A. A o-ring is a monotone class; a monotone ring
is a o-ring.
Proof. The first assertion is obvious. To prove the second
assertion we must show that a monotone ring is closed under
the formation of countable unions. If M is a monotone ring

and if
E;eM, i=12,.--,

then, since M is a ring,
Ui EieM, n=1,2,---.

Since {{Ji-1 E:} is an increasing sequence of sets whose union is

©

i=1 E;, the fact that M is a monotone class implies that
::,1 Ei A M- l

Theorem B. If R is a ring, then M(R) = S(R). Hence
if a monotone class contains a ring R, then it contains S(R).

Proof. Since a o-ring is a monotone class and since S(R) D
R, it follows that
SR) oM = M(R).

The proof will be completed by showing that M is a o—ring; it
will then follow, since M(R) D R, that M(R) o S(R).

For any set F let K(F) be the class of all those sets E for which
E—-F, F—E, and EU F are all in M. We observe that,
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because of the symmetric roles of E and F in the definition of
K(F), the relations

EeK(F) and FeK(E)

are equivalent. If {E,} is a monotone sequence of sets in K(F),
then
lim, E, — F = lim, (E, — F) e M,

F — lim, E, = lim, (F — E,) e M,
F U lim, E, = lim, (F U E,) eM,

so that if K(F) is not empty, then it is a monotone class.

If E ¢ R and F ¢ R, then, by the definition of a ring, E ¢ K(F).
Since this is true for every E in R, it follows that R < K(F),
and therefore, since M is the smallest monotone class containing
R, that

M c K(F).

Hence if E ¢ M and F e R, then E ¢ K(F), and therefore ' e K(E).
Since this is true for every F in R, it follows as before that

M c K(E).

The validity of this relation for every E in M is equivalent to the
assertion that M is a ring; the desired conclusion follows from
Theorem A. |

This theorem does not tell us, given a ring R, how to construct
the generated o-ring. It does tell us that, instead of studying
the o—ring generated by R, it is sufficient to study the monotone
class generated by R. In many applications that is quite easy
to do.

(1) Is Theorem B true for semirings instead of rings?

(2) A class N of sets is normal if it is closed under the formation of countable
decreasing intersections and countable disjoint unions. A ¢-ring is a normal
class; a normal ring is a o-ring.

(3) If the smallest normal class containing a class E is denoted by N(E),
then, for every semiring P, N(P) = S(P).

(4) If a o—algebra of sets is defined as a non empty class of sets closed under
the formation of complements and countable unions, then a g-algebra is a
o-ring containing X. If R is an algebra, then M(R) coincides with the smallest
g—algebra containing R. Is this result true if R is a ring?
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(5) For each of the following examples what is the o-algebra, the o-ring,
and the monotone class generated by the class E of sets there described?

(5a) Let X be any set and let P be any permutation of the points of X i.e.
P is a one to one transformation of X onto itself. A subset E of X is invariant
under P if, whenever x ¢ E, then P(x) ¢ E and P~}(x) e E. Let E be the class
of all invariant sets.

(5b) Let X and Y be any two sets and let T be any (not necessarily one to
one) transformation defined on X and taking X into Y. For every subset £
of Y denote by T—1(E) the set of all points x in X for which T(x) e £. Let E
be the class of all sets of the form T—(E), where E varies over all subsets of Y.

(5¢) X is a topological space; E is the class of all sets of the first category.

(5d) X is three dimensional Euclidean space. Let a subset E of X be called
a cylinder if whenever (x,5,2) ¢ E, then (v,9,%) ¢ E for every real number 2.
Let E be the class of all cylinders.

(5e) X is the Euclidean plane; E is the class of all sets which may be covered
by countably many horizontal lines.



Chapter 11

MEASURES AND OUTER MEASURES

§ 7. MEASURE ON RINGS

A set function is a function whose domain of definition is a
class of sets. An extended real valued set function u defined on a
class E of sets is additive if, whenever

EcE, FeE, EUFeE, and ENF =0,
then
wE U F) = u(E) + wF).
An extended real valued set function p defined on a class E is
finitely additive if, for every finite, disjoint class {E;, ---, E,}
of sets in E whose union is also in E, we have

p(Uioi E) = 2o w(ED.

An extended real valued set function u defined on a class E is
countably additive if, for every disjoint sequence {E,} of sets in
E whose union is also in E, we have

p(Ur=1 En) = 220-1 w(En).

A measure is an extended real valued, non negative, and countably
additive set function y, defined on a ring R, and such that u(0) = 0.
We observe that, in view of the identity,

Ui Es=E U---UE,U0UOU---,

a measure is always finitely additive. A rather trivial example
of a measure may be obtained as follows. Let f be an extended
30
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real valued, non negative function of the points of a set X. Let
the ring R consist of all finite subsets of X; define u by

p({xr, v oy xa}) = 2o f(x;) and p(0) = 0.

Less trivial examples will be presented in the following sections.

If 4 is a measure on a ring R, a set E in R is said to have finite
measure if u(£) < oo; the measure of E is o—finite if there exists
a sequence {E,} of sets in R such that

Ec Ui E, and uE) <w, n=1,2, ---.

If the measure of every set E in R is finite [or o—finite], the measure
u is called finite [or o-finite] on R. If X e R (i.e. if R is an algebra)
and p(X) is finite or o—finite, then u is called totally finite or
totally o—finite respectively. The measure u is called complete
if the conditions

EeR, FcE, and wE) =0
imply that F ¢R.

(1) If u is an extended real valued, non negative, and additive set function
defined on a ring R and such that u(E) < « for at least one £ in R, then u(0) = 0.

(2) If E is a non empty class of sets and u is a measure on R(E) such that
#(E) < o whenever E ¢ E, then p is finite on R(E); cf. 5.B.

(3) If p is a measure on a o—ring, then the class of all sets of finite measure
is a ring and the class of all sets of o—finite measure is a o—ring. If, in addition,
i is o—finite, then a necessary and sufficient condition that the class of all sets
of finite measure be a g-ring is that u be finite. Is the latter statement true if
u is not g—finite?

(4) Suppose that p is a measure on a o-ring S and that E is a set in S of
o—finite measure. If D is a disjoint class of sets in S, then u(E 1 D) £ 0 for
at most countably many sets D in D. (Hint: assume first that u(E) < oo; for
each positive integer 7 consider the class

{p:DeD, wEn D) ;%})

(5) If p is an extended real valued, non negative, and additive set function
defined on a ring R and such that u(0) = 0, then u is finitely additive. The proof
of the same statement for a semiring P is not trivial; it may be achieved by the
following considerations. A finite, disjoint class {Ei, +--, E,} of sets in P
whose union, E, is also in P is called a partition of E. The partition { £} is called
a P~partition if, for every F in P,

HE N F) = ¥ uwE: N F).
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If {E;} and {F;} are partitions of E, then {E;} is called a subpartition of {F;}
if each set E; is contained in one of the sets Fj.

(5a) If {E:} and {F;} are partitions of E, then so is their product, consisting
of all sets of the form E;  F;.

(5b) If a subpartition of a partition {E;} is a p—partition, then {E;} is a
u—partition.

(5¢) The product of two u—partitions is a u—partition.

S HE=CCCCiC---C Cp=F, where C;eP,i=0,1, -+, n, and if

D,‘ = C,; - C,'_18P, i='1, tee, N,

then {E, Dy, -+, Da} is a p—partition of F.
(5e) Every partition of a set E in P is a u—partition.

§ 8. MEASURE ON INTERVALS

In order to motivate and illustrate the elementary notions of
measure theory, we now propose to discuss an important and
classical special case. Throughout this section the underlying
space X is to be the real line. We shall denote by P the class of
all bounded, left closed, and right open intervals, i.e. the class of
all sets of the form

{x: —0 <a L x<b< o}

we shall denote by R the class of all finite, disjoint unions of sets
of P, i.e. the class of all sets of the form

Ul-i{x: —w0 < a; S % < b; < »}.

(It is easy to verify that any union of this form may be written
as a disjoint union of the same form.)

For simplicity of language we shall always use the expression
“semiclosed interval” instead of “bounded, left closed, and right
open interval.” The consideration of semiclosed intervals, instead
of open intervals or closed intervals, is a technical device. If, for
instance, a4, 4, ¢, and 4 are real numbers, —0 < a2 <é<c<d
< o, then the difference between the open intervals

{x:a<x<d} and {x:b6<x<c}

is neither an open interval nor a finite union of open intervals,
and the same negative statement holds for the corresponding
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closed intervals. The fact that semiclosed intervals are better
behaved in this respect is what makes them desirable.
We shall, as usual, write [4,4] for a closed interval,

[4,6) = {x:a < x < b},
[a,6) for a semiclosed interval,

[2,8) = {x:a = x < b},
and (a,6) for an open interval,

(a,6) = {x:1a < x < &}.

In writing any of these symbols it shall always be understood that
a = b

On the class P of semiclosed intervals we define a set function
u by

w([a8)) = & — a.
We observe that when @ = 4, the interval reduces to the empty
set, so that
z(0) = 0.

We proceed to investigate the relation of the set function p to
some set theoretic notions in P,

Theorem A. If {E, ---, E.} is a finite, disjoint class of
sets in P, each contained in a given set Eq in P, then
i1 w(E:) £ u(Ey).
Proof. We write E; = [4;4:), i =0, 1, ---, n, and, without
any loss of generality, we assume that

a é...éan_

—

It follows from the assumed properties of {E;, - - -, E,} that
4oL a b S5 a. S ba by,

and therefore
2 w(E) = 2y (b — a) S
S X (b —a) + 205 (@i — b)) =
=bn — a1 S by — a0 = p(Eo). 1
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Theorem B. If a closed interval Fyo, Fy = [ag,by), is con-
tained in the union of a finite number of bounded, open inter-
valsy Uyy +++y Uny U = (asy0:), i = 1, <+ -, n, then

by — ap < D iar (b — ay).

Proof. Let %; be such that a¢ e Uy,. If 4, < by, then let &,
be such that &, € Uy,; if &, < by, then let k3 be such that 4, € Uy,
and so on by induction. The process stops with &, if &, > b.
There is no loss of generality in assuming that m = nand U, = U;
for i =1, ---, n, because this state of affairs may be achieved
merely by omitting superfluous U,’s and changing the notation.
In other words we may (and do) assume that

a < ag < by, a, < by < by,
and, in case n > 1,
i < b;<byyy for i=1,---;n—1;
it follows that
bo—ag < bp—ar= (b1 — a1) + Digicn—1 (biyn — b)) =
< 2t (b —a). 1

Theorem C. If {Ey, Ei, Es, ---} is a sequence of sets in
P, such that
E, c Uf=1 E,,
then
p(Eo) = 2251 u(E)).

Proof. We write E; = [a;,6:), 1 =0, 1, 2, ---. If ag = by,
the theorem is trivial; otherwise let e be a positive number such
that € < 6o — ao. If we write, for any positive number §,

b)
F0=[ﬂo,bo—€] and U;=(di—'§;,,é,;>, i=1,2,"',

then
Fy c U::-l Ui

and therefore, by the Heine-Borel theorem, there is a positive
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integer # such that Fo ¢ (Ji-; U:. From Theorem B we obtain
0
p(Eo) — e = (bo — ag) — € < Z?—l(&i - ai+'§) =
< 2 u(E) + 8

Since € and & are arbitrary, the conclusion of the theorem fol-
lows. |

Theorem D. The set function p is countably additive on P.

Proof. If {E;} is a disjoint sequence of sets in P whose union,
E, is also in P, then from Theorem A we have

St u(E) S wE) for n=1,2,---.
It follows that
D i1 n(E:) £ wE);
an application of Theorem C completes the proof. |

Theorem E. There exists a unique, finite measure i on the
ring R such that, whenever E e P, p(E) = u(E).

Proof. We know that every set E in R may be represented as
a finite, disjoint union of sets in P. Suppose that

E=Ul-1E: and E = 7.1 F;

are two such representations of the same set E. Then, for each
i=1,-,mn

E;= Ui (E:NF))

is a representation of the set E; in P as a finite, disjoint union of
sets in P, and therefore, since u is finitely additive,

Z?=1 w(E;) = 21;1 Z;'n=1 u(E; N FJ’)-
Similarly, of course, we have
2m w(Fy) = iy 201 w(E: O FY).

It follows that, for every E in R, the function i is unambiguously
defined by the equation

B(E) = 230-1 m(E),
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where {E;, ---, E,} is a finite, disjoint class of sets in P whose
union is E.

It is clear from its definition that the function i thus defined
coincides with p on P and is finitely additive. Since any function
satisfying these conditions must in particular be finitely additive
when the terms of the union to be formed are in P, it is also clear
that j is unique. The only non trivial thing left to prove is that
4 is countably additive.

Let { E;} be a disjoint sequence of sets in R whose union, E,
is also in R; then each E; is a finite, disjoint union of sets in P,

E;=U;E; and @(E) = 2; u(Ey).

If E ¢ P, then, since the class of all E;; is countable and disjoint,
it follows from the countable additivity of u that

A(E) = w(E) = 22: 225 w(Ey) = 224 6(E)).
In the general case E is a finite, disjoint union of sets in P,
E = Uk Fk,

and, using the result just obtained, we have
BE) = 20 i(Fy) = 26 2 i(E; N Fy) =
=22k (E; N F) = 2 4(E). |

In view of Theorem E we shall, as we may without any possi-
bility of confusion, write u(E) instead of @(E) even for sets £
which are in R but not in P.

(1) In the notation of the proof of Theorem D, let E, be that term of the
sequence { E;} whose left end point is the left end point of E; let E,, be the term
whose left end point is the right end point of E,,, and so on. It may be shown,
without using Theorems A, B, and C, that

U?len.'ep and V«(Ur;l En.') = z:osll"(Eu.')-

(2) An alternative proof of Theorem D (which does not use Theorems A, B,
and C) proceeds by arranging the terms of the sequence {E,;} in the order of
magnitude of their left end points and then applying transfinite induction;
cf. (1).

(3) Let g be a finite, increasing, and continuous function of a real variable,

and write
ue(a,8)) = g(8) — g(a).



{Skc. 9] MEASURES AND OUTER MEASURES 37

Theorems D and E remain true if p is replaced by p,.
(4) Theorems D and E may be generalized to n—dimensional Euclidean space
by considering “intervals” of the form

E={(x1’...’xn):ai5xi<bi, i:l,...’n},

and defining u by
WE) = ITt-1 (3 — ai).

(5) If u is a countably additive and non negative set function on a semiring
P, such that u(0) = 0, then there is a unique measure f on the ring R(P) such
that, whenever E e P, i(E) = u(E). If u is [totally] finite or o—finite, then so
is fi; (cf. 5.3 and the proof of Theorem E).

§9. PROPERTIES OF MEASURES

An extended real valued set function u on a class E is monotone
if, whenever E ¢ E, F ¢ E, and E C F, then u(E) £ u(F). An
extended real valued set function u on a class E is subtractive
if, whenever E¢E, FeE, ECF,F — E¢E, and | p(E) | < o,
then

pF — E) = p(F) — w(E).

Theorem A. If uis a measure on a ring R, then u is mono-
tone and subtractive.

Proof. IfEeR,FeR,andE C F,thenF — E eRand u(F) =
uw(E) + u(F — E). The fact that u is monotone follows now from
the fact that it is non negative; the fact that it is subtractive
follows from the fact that u(E), if it is finite, may be subtracted
from both sides of the last written equation. |

Theorem B. If u is a measure on a ring R, if E ¢ R, and
if {E;} is a finite or infinite sequence of sets in R such that
Ec U‘i E; then

w(E) £ 20 w(E)).

Proof. We make use of the elementary but important fact
that if {F;} is any sequence of sets in a ring R, then there exists
a disjoint sequence {G;} of sets in R such that

G,‘CF,' and Ui G,; = U,'F,;.

(Write G; = F; — |J {F;: 1 <5 < i}.) Applying this result to
the sequence { £ N E,}, the desired result follows from the count-
able additivity and monotoneness of p. |
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Theorem C. If uis a measure on a ring R, if E ¢ R, and if
{E.} is a finite or infinite disjoint sequence of sets in R such
that U,- E;c E, then

i uw(E) = wE).

Proof. If the sequence {E;} is finite, then {J; E; e R, and it
follows that

i n(E) = w(U: E) = w(E).

The validity of the inequality for an infinite sequence of sets is a
consequence of its validity for every finite subsequence. |l

Theorem D. If u is a measure on a ring R and if {E,} is
an increasing sequence of sets in R for which lim, E, ¢ R, then
plim, E,) = lim, p(E,).

Proof. If we write E, = 0, then
plim, E,) = p(Uis E) = p(Uit (B: — Ei)) =
= 2. wE Ei) = lim, 270 w(Es — Eiy) =
= lim, lJ'(Uu'nl (E; — Eiy)) = lim, u(E,). |

Theorem E. If p is a measure on a ring R, and if {E,} is a
decreasing sequence of sets in R of which at least one has finite
measure and for which lim, E, eR, then p(lim, E,) =
lim, p(E,).

Proof. If w(E,) < «, then u(E,) £ u(E,) < « for n = m,
and therefore u(lim, n) < o, It follows from Theorems A
and D, and the fact that {£, — E,} is an increasing sequence,
that

w(En) — plim, E,) = p(En — lim, E,) =
= plim, (En — E,)) = lima p(Epn — E,) =
= lim, (W(En) — p(En)) =
= wEn) — lim, p(E,).

Since u(E,,) < =, the proof of the theorem is complete. |
We shall say that an extended real valued set function u de.
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fined on a class E is continuous from below at a set E (in E) if,
for every increasing sequence {E,} of sets in E for which
lim, E, = E, we have lim, u(E,) = u(E). Similarly u is con-
tinuous from above at E if, for every decreasing sequence {E,}
of sets in E for which | u(E,,) | < « for at least one value of m
and for which lim, E, = E, we have lim, u(E,) = u(E). Theo-
rems D and E assert that if u is a measure, then p is continuous
from above and from below (at every set in the ring of definition
of u); the following result goes in the converse direction.

Theorem F. Let p be a finite, non negative, and additive
set function on a ring R. If u is either continuous from below
at every E in R, or continuous from above at O, then p is a measure
on R.

Proof. We observe first that the additivity of u, together
with the fact that R is a ring, implies, by mathematical induction,
that u is finitely additive. Let {£,} be a disjoint sequence of
sets in R, whose union, E, is also in R and write

Fn=U?1Ei, Gn=E—'Fn

If 4 is continuous from below, then, since {F,} is an increasing
sequence of sets in R with lim, F, = E, we have

wE) = lim, p(F,) = lim, 27001 (Ey) = 202 p(E).

If 1 is continuous from above at 0, then, since {G,} is a decreas-
ing sequence of sets in R with lim, G, = 0, and since p is finite,
we have

p(E) = (-1 m(E)) + u(G,) =
= lim, X 7=) p(E) + lim, p(G,) = 270 w(E). |

(1) Theorems A, B, C, D, and E are true for semirings in place of rings.
The proofs may be carried out directly or they may be reduced to the correspond-
ing results for rings by means of 8.5.

(2) If p is a measure on a ring R, and if E and F are any two sets in R, then

HE) + p(F) = p(E U F) + u(E N F).
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If E, F, and G are any three sets in R, then
B(E) +uF) +uG) +(ENFNG) =
=w(EUFUG +pENF+pF NG +uGNE).

These statements may be generalized to any finite union.

(3) If u is a measure on a ring R, and E and F are sets in R, we write E~F
whenever u(E A F) = 0. The relation “~”" is reflexive, symmetric, and transi-
tive; if E~ F, then u(E) = u(F) = p(E N F). Is the class of all those sets
E in R for which E ~ 0 a ring?

(4) Continuing in the notation of (3), we write p(E,F) = p(EAF). Then
p(E,F) 20, p(E,F) = p(F,E), and p(E,F) = p(E,G) + p(G,F). If Ey ~E,
and Fy ~ Fz, then p(El,Fl) = p(E2,F2).

(5) The following generalizations of Theorems D and E are valid. If uis a
measure on a ring R and if {£,.} is a sequence of sets in R for which

Ni~s EieR, n=1,2,--- and liminf, E, = Us-1[)i=n E:ieR,
then u(lim inf, E,) = lim inf, u(E,). If, similarly,
UnE:eR, n=1,2,--- and limsups E, = [}5=1 Uten EieR,

and if u(Uiin E;) < o for at least one value of #, then u(lim sup, E.) =
lim supy, p(Ex).

(6) Under the hypotheses of the second part of (5), if D 1 p(Es) < 0, then
u(lim sup, E,) = 0.

(7) Let X be the set of all rational numbers x for which 0 < » £ 1, and let
P be the class of all “semiclosed intervals” of the form {x: xe X, 2 < » < &},
where 0 < 2 £ 4 < 1, and 2 and 4 are rational. Define u on P by

pix:asx<b))=46—a.

The set function u is finitely additive and continuous from above and below
but it is not countably additive, so that Theorem F is not true for semirings in
place of rings.

(8) Let X be the set of all positive integers and let R be the class of all finite
sets and their complements. For E in R write u(E) = 0 or p(E) = » according
as E is finite or infinite. The set function u is continuous from above at 0 but
it is not countably additive, so that the second half of Theorem F is not true
if infinite values are admitted.

(9) Is Theorem E true without the finiteness condition described in its
statement?

(10) If u is a measure on the Borel sets of a separable, complete, metric space
X such that u(X) = 1, then there exists a subset E of X such that E is a count-
able union of compact sets and such that u(E) = 1. (Hint:let {x,} be a sequence

. . . N
of points dense in X and write U,* for the closed sphere of radius 2 with center

at xp. If0 < e < 1and F,.* = Ui-1 U.¥ let my, be defined inductively as the
smallest positive integer for which

p(NNe1Fn) > 1 — e
If C = (¢=1 Fu, then Cis compact and u(C) = 1 — €.)



[Skc. 10} MEASURES AND OUTER MEASURES 41

§ 10. OUTER MEASURES

A non empty class E of sets is hereditary if, whenever E ¢ E
and FF c E, then F ¢ E.

A typical example of a hereditary class is the class of all sub-
sets of some subset E of X. The part of the algebraic theory of
hereditary classes that we shall need is very easy and it is similar
in every detail to the theories of rings, o-rings, and other classes
of sets we have considered. It is, in particular, true that the
intersection of every collection of hereditary classes is again a
hereditary class, and that, therefore, corresponding to any class
of sets, there is a smallest hereditary class containing it. We
shall be especially interested in hereditary classes which are
o-rings; it 1s easy to see that a hereditary class is a o-ring if and
only if it is closed under the formation of countable unions. If
E is any class of sets, we shall denote the hereditary o—ring
generated by E, i.e. the smallest hereditary o—ring containing E,
by H(E). The hereditary o—ring generated by E is, in fact, the
class of all sets which can be covered by countably many sets in
E;if E is a non empty class closed under the formation of countable
unions (for instance if E is a o—ring), then H(E) is the class of all
sets which are subsets of some set in E.

An extended real valued set function u* defined on a class E
of sets is subadditive if, whenever E ¢eE, F ¢E, and E U F ¢ E,
then

r¥E U F) = p*(E) + u*(F).

An extended real valued set function u* on E is finitely subadditive
if, for every finite class {E;, - - -, E,} of sets in E whose union is
also in E, we have

p*(Ui-1 E) £ 2o w*(E).

An extended real valued set function p* on E is countably sub-
additive if, for every sequence {E;} of sets in E whose union is
also in E, we have

F'*(U:;l Ei) = Z?-:l M*(Ei).-
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An outer measure is an extended real valued, non negative, mono-
tone, and countably subadditive set function u*, defined on a
hereditary o-ring H, and such that p*(0) = 0. We observe that
an outer measure is necessarily finitely subadditive. The same
terminology concerning [total] finiteness and o—finiteness is used
for outer measures as for measures.

Outer measures arise naturally in the attempt to extend meas-
ures from rings to larger classes of sets. The first precise formula-
tion of some of the details is contained in the following statement.

Theorem A. If u is a measure on a ring R and if, for every
E in H(R),

p*(E) = inf {Z:=1 p(En): En, eR, n= l) 2, :
Ec U:=1En}:

then u* is an extension of u to an outer measure on H(R); if
u is [totally] o—finite, then so is u*.

Verbally p*(E) may be described as the lower bound of sums
of the type > »_, u(E,), where {E,} is a sequence of sets in R
whose union contains £. The outer measure u* is called the outer
measure induced by the measure p.

Proof. If EeR, then EC EUOQOUOU--- and therefore
p*(E) = p(E) + u(0) 4+ p(0) +---= u(E). On the other hand
fEeR E,eR,n=1,2,---,and E c -, E., then, by 9.B,
p(E) £ X 71 u(Er), so that u(E) £ p*(E). This proves that
p* is indeed an extension of u, i.e. that if E ¢ R, then p*(E) =
w(E); it follows in particular that u*(0) = O.

If EcHR), FeHR), E C F, and {E,} is a sequence of sets
in R which covers F, then {E,} also covers E, and therefore
p*(E) £ u¥*(P).

To prove that p* is countably subadditive, suppose that E and
E; are sets in H(R) such that E c |J/.; E;; let € be an arbitrary
positive number, and choose, for each 7 = 1, 2, - -, a sequence
{E;;} of sets in R such that

E;c Ui E; and oo u(Ey) S w™E) + 5_—
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(The possibility of such a choice follows from the definition of
w*(E)).) Then, since the sets E;; form a countable class of sets
in R which covers E,

p*(E) S Do Dimi w(Ey) £ 2 wM(E) + e
The arbitrariness of ¢ implies that
p*(E) S 2ia1 w*(E).

Suppose, finally, that p is o-finite and let E be any set in H(R).
Then, by the definition of H(R), there exists a sequence {E;}
of sets in R such that £ c |, E;. Since p is o-finite, there
exists, for each i = 1,2, -- -, a sequence {E;;} of sets in R such

that
E,' c U;;l E,‘j and M(E{j) < o,

Consequently
Ec U;:-l Uf-l E; and p*(Ey) = w(Ey) < . |

(1) Is it necessarily true, under the hypotheses of Theorem A, that if u is
finite, then so is u*?

(2) For any class E of sets we denote by J(E) the smallest hereditary ring
containing E. If u is a real valued, finite, non negative, and finitely additive
set function defined on a ring R, and if, for every E in J(R),

w*(E) = inf {u(F): EC FeR},

then p* is a real valued, finite, non negative, and finitely subadditive set func-
tion on J(R). Is it true that, for E in R, p*(E) = p(E)?

(3) A necessary and sufficient condition that a class H of subsets of a set X
be an ideal in the Boolean ring of all subsets of X is that H be a hereditary ring;
cf. 4.4.

(4) The following are some examples of set functions defined on hereditary
o-rings; some of them are outer measures, while others violate exactly one of the
defining conditions of outer measures.

(4a) X is arbitrary, H is the class of all subsets of X. For any fixed point
xo in X, write p*(E) = xg(x0)-

(4b) X and H are as in (4a); p*(E) = 1 for every E in H.

(4c) X = {x,y} is a set consisting of exactly two distinct points x and y,
H is the class of all subsets of X, and u* is defined by the relations

p*0) =0, p*({x}) =p*({y}) =10, u*X) =1

(4d) X is a set of 100 points arranged in a square array of 10 columns each
with 10 points; H is the class of all subsets of X; u*(E) is the number of columns
which contain at least one point of E.,
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(4e) X is the set of all positive integers, H is the class of all subsets of X.
For every finite subset E of X, v(E) is the number of points in E;

p*(E) = lim sup,,};v(E n {1, .-, 2.

(4f) X is arbitrary, H is the class of all countable subsets of X, u*(E) is the
number of points in E, (= = if E is infinite).

(5) If p* is an outer measure on a hereditary o-ring H and Fj is any set in
H, then the set function uo*, defined by p*(E) = u*(E 1 Ey), is an outer meas-
ure on H.

(6) If \* and p* are outer measures on a hereditary g-ring H, then the set
function v*, defined by »*(E) = A*(E) U u*(E), is an outer measure on H.

(7) If {u.*} is a sequence of outer measures on a hereditary o-ring H and

a,} is a sequence of positive numbers, then the set function u* defined by
p*(E) = D.%_1 apun*(E), is an outer measure on H.

§11. MEASURABLE SETS

Let u* be an outer measure on a hereditary o—ring H. A set E
in H is p*~measurable if, for every set 4 in H,

p¥(d) = w*(4 N E) + p¥(4 N E).

The concept of p*—measurability is the most important one
in the theory of outer measures. It is rather difficult to get an
intuitive understanding of the meaning -of p*-measurability ex-
cept through familiarity with its implications, which we propose
to develop below. The following comment may, however, be
helpful. An outer measure is not necessarily a countably, nor
even finitely, additive set function (cf. 10.4d). In an attempt to
satisfy the reasonable requirement of additivity, we single out
those sets which split every other set additively—the definition
of p*-measurability is the precise formulation of this rather loose
description. The greatest justification of this apparently compli-
cated concept is, however, its possibly surprising but absolutely
complete success as a tool in proving the important and useful
extension theorem of § 13.

Theorem A. If p* is an outer measure on a hereditary
o-ring H and if S is the class of all y*~measurable sets, then
S is a ring.
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Proof. If E and F are in S and 4 ¢ H, then
(2) p*(d) = p*4 N E) + p*(4 N E),
b) w*ANE)=p*ANENF)+pu*(4dNENF),
) w*(ANEY=p*ANENF)+pu*(4N0E NF).
Substituting (b) and (c) into (a) we obtain
d) p*) =p*ANENF)+p*¥(4NENF)
+u*ANE NF)+u*x(4N0E NF).

If in equation (d) we replace 4 by 4 N (E U F), the first three
terms of the right hand side remain unaltered and the last term
drops out; we get

e WYAN(EUF)=p*dNENF)+u*(4d4N0ENF)
+u¥4 N E NF).

Since E' N F' = (E U F)’, substituting (e) into (d) yields

® p*4) = p* 4 N (EUF)) + p*(4 N (EUF)),

which proves that £ U F ¢S.

If, similarly, we replace 4 in equation (d) by 4 N (E — F)’ =

AN (E'"U F), we get

(8 wWANE-=-F)=p*dNENF)+p*4NE NF)
+ u¥(4 N0 E NF).

Since E N F' = E — F, substituting (g) into (d) yields

h) MDD =4 N(E-F)+up*40(E-F)),

which proves that £ — FeS. Since it is clear that E =0
satisfies (a), it follows that S is a ring. ||

Before proceeding with the study of the deeper properties of
p*-measurability, we remark on the following elementary but
frequently useful fact.

If u* is an outer measure on a hereditary g-ring H and if
a set £ in H is such that, for every 4 in H,

p*(4) 2 p*(4 N E) 4+ p*(4 N E),

then E is p*-measurable.
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The proof of this remark is achieved simply by recalling that the
reverse inequality, u*(A4) £ u*(A4 N E) 4+ pu*(A4 N E'),1s an auto-
matic consequence of the subadditivity of u*.

Theorem B. If u* is an outer measure on a hereditary
o-ring H and if S is the class of all u*~measurable sets, then S
isao—ring. If A eH and if {E,} is a disjoint sequence of sets
in S with Jra1 E, = E, then

A NE) =2 an* 4N E,).

Proof. Replacing E and F in (e) by E; and E, respectively,
we see that

p*(A4 N (Ey U Ep)) = pu*(4 N Ey) + p*(4 N Ey).
It follows by mathematical induction that
¥4 N Uic  E) = 2 w*(4 N E))
for every positive integer n. If we write
Fo=UiE;y n=1,2,---,
then it follows from Theorem A that
p¥ ) = p* A N F,) +p*4 N F)) =
Z 20 w4 N E) +p¥4 0 E).
Since this is true for every », we obtain
@) p*A) z s (A NE)+p*(4NE)z
z pX4 N E)+ p*4 N E.

it follows that E &8 (so that, by the way, S is closed under the
formation of disjoint countable unions), and therefore that

G) 2Zimaw*dNE)+u*4NE)=

=u¥(d N E) 4+ p*¥(4 N E).
Replacing 4 by 4 N E in (j), we obtain the second assertion of
the theorem. (Since p*(A4 N E’) may be infinite, it is not permis-
sible simply t6 subtract it from both sides of (j).) Since every

countable union of sets in a ring may be written as a disjoint
countable union of sets in the ring, we see also that Sis ao-ring. }
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Theorem C. If u* is an outer measure on a hereditary
o—ring H and if S is the class of all p*-measurable sets, then
every set of outer measure zero belongs to S and the set function
i, defined for E in S by G(E) = u*(E), is a complete measure
on S.

The measure i is called the measure induced by the outer

measure ¥,
Proof. If E ¢H and p*(E) = 0, then, for every A in H, we
have

p*(A4) = p*(E) + u*(4) z p*(4 N E) + p*(4 N E),

so that indeed E ¢ S. The fact that i is countably additive on 8§
follows from (j) upon replacing 4 by E. If

EeS, FcE, and a(E) = u*(E) =0,
then u*(F) = 0, so that F' ¢ §, which pi'oves that z is complete. |

(1) For the example 10.4d, a set E is p*—measurable if and only if with every
point x in E the entire column which includes x is contained in E. Which sets
are u*-measurable in 10.4f?

(2) If u* is an outer measure on a hereditary g-ring H, under what addi-
tional conditions is the class of u*-measurable sets an algebra?

(3) In the notation of Theorem A, replacing A4 in equation (d) by 4 N
(E' U F’) may be used to give a direct proof of the fact that S is closed under the
formation of intersections. What would the same technique prove if 4 were
replaced by 4 N (F — EY = 4 N (E U F')?

(4) Let u* be a finite, non negative, monotone, and finitely subadditive set
function with u* (0) = O on a hereditary ring J; cf. 10.2. The class of all u*-
measurable sets is a ring, and the set function u* is additive on this ring.

(5) Suppose that u* is an outer measure on a hereditary o—ring H and that
S is the class of all p*-measurable sets. If 4eH and {E,} is an increasing
sequence of sets in S, then u*(lim, (4 N} E,)) = lim, p*(4 N E,). Similarly,
if {E,} is a decreasing sequence of sets in S, and if a set 4 in H is such that
p*(4 N E,) < o for at least one value of m, then p*(lim, (4 N E,)) =
lim, u*(4 N E,).

(6) Ifu*isan outer measure on a hereditary o-ring H and if E and F are two
sets in H of which at least one is u*~measurable, then (cf. 9.2)

K*E) + p*(F) = p*E U F) +p*E N F).

(7) The results of this section could also have been obtained by means of
partitions (cf. 7.5). A partition is a finite or infinite disjeint sequence {E.} of
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sets such that |J; E; = X. If u* is an outer measure on 2 hereditary o-ring
H, the partition {E£;} is called a p*-partition if
p*d) = 2ip*(4 N E)

for every A in H; a set E is a W*~set if the partition {£,E'} is 2 u*-partition,
If {E;} and {F;} are partitions, then {E;} is called a subpartition of {F;} if
each E; is contained in one of the sets F;. The product of two partitions, { E;}
and {F;}, is the partition consisting of all sets of the form E; 1 F;. We note
that a set in H is a u*-set if and only if it is u*-measurable in the sense of this
section.

(7a) The product of two p*~partitions is a u*—partition.

(7b) If a subpartition of a partition {E;} is a u*—partition, then {£;} is a
p¥*-partition.

(7c) A partition {E;} is a p*~partition if and only if each E; is a u*-set.

(7d) The class of all u*-sets is a o-ring. (Hint: the class of all u*-sets is a
ring closed under the formation of countable disjoint unions.)

(8a) An outer measure u* on the class H of all subsets of a metric space X
is a metric outer measure if

K*E U F) = p*(E) + p*(F)
whenever p(E,F) > 0, where p is the metric on X. If u* is a metric outer meas-
ure, if E is a subset of an open set U in X, and if E, = E N {x: px,U) = %} s

n=1,2 «--, then lim, u*(E,) = u*(E). (Hint: observe that {E,} is an in-
creasing sequence of sets whose union is E. If Eg =0, D, = En,1 — E,, and
if neither Dpqq nor E, is empty, then p(Dat1,E.) > 0, and it follows that

p*(Eangr) = 20-1p*(D2) and  p*(Ezn) Z 271 w*(Das).
The desired conclusion is trivial if either of the two series,

2e1p¥(Dy) and 27y p*(Dai),

diverges; if they both converge, then it follows from the relation

R¥(E) £ p*(Ean) + 2ab* (Do) + 2tung1 #*(D2ic1).)

(8b) If u* is a metric outer measure, then every open set (and therefore
every Borel set) is u*-measurable. (Hint: if U is an open set and 4 is an arbi-
trary subset of X, apply (8a) to E = 4 N U. Since p(E,,4 N U’) > 0, it
follows that

w¥A) Z p*(Ea U (4 N UY) = p*En) +p*4 N T).)

(8¢) If u* is an outer measure on the class of all subsets of a metric space X
such that every open set is u*-measurable, then u* is a metric outer measure.
(Hint: if p(E,F) > 0, let U be an open set such that EC U and F N U = Q,
and test the u*-measurability of U with 4 = E U F.)



Chapter IIT

EXTENSION OF MEASURES

§ 12. PROPERTIES OF INDUCED MEASURES

We have seen that a measure induces an outer measure and
that an outer measure induces a measure, both in a certain natural
way. If we start with a measure p, form the induced outer meas.
ure p*, and then form the measure @ induced by u*, what is the
relation between p and 37 The main purpose of the present sec-
tion is to answer this question. Throughout this section we shall
assume that

p is a measure on a ring R, u* is the induced outer measure
on H(R), and i is the measure induced by p* on the o-ring
S of all y*~measurable sets.

Theorem A. Every set in S(R) is p*-measurable.

Proof. If EeR, 4 eHR), and € > 0, then, by the definition
of p*, there exists a sequence {E,} of sets in R such that
Ac Ur-1 Esn and

p*(A) + e 2 2nai w(En) = 201 (w(E. N E) + w(E, N EY) 2
> u*(4 N E) + u*(4 N EY).

Since this is true for every ¢, it follows that E is u*~measurable.
In other words, we have proved that R ¢ S; it follows from the
fact that S is a o-ring that SR) < S. |

49
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Theorem B. If E e H(R), then
p*(E) = inf {a(F): Ec Fe8} =
= inf {a(F): E c F e SR)}.

Equivalent to the statement of Theorem B is the assertion
that the outer measure induced by i on S(R) and the outer meas-
ure induced by i on S both coincide with p*.

Proof. Since, for F in R, u(F) = a(¥) (by the definition of
i and 10.A), it follows that
p*(E) = inf {2 0 i w(En): Ec Una1 Eny EneR,

n=1,2, } >
inf {Z:=1 ﬁ(En): Ec U:==1 Em E, ¢ S<R);
n=1,2,.--}.
Since every sequence {E,} of sets in S(R) for which
EcUi-1E.=F

may be replaced by a disjoint sequence with the same property,
without increasing the sum of the measures of the terms of the
sequence, and since, by the definition of g, a(F) = p*(F) for F
in S, it follows that

p*(E) z inf {i(F): ECc FeS®R)} 2
= inf {a(F): E c FeS} = u*(E). 1

If Ee HR) and F £ S(R), we shall say that F'is a measurable
cover of E if E c F and if, for every set G in S(R) for which
G c F — E, we have a(G) = 0. Loosely speaking, a measurable
cover of a set £ in H(R) is a minimal set in S(R) which covers E.

v

Theorem C. If a set E in H(R) is of o—finite outer measure,
then there exists a set F in S(R) such that p*(E) = g(F) and
such that F is a measurable cover of E.

Proof. If u*(E) = «, and E < F ¢ S(R), then clearly a(F) =
o, so that it is sufficient to prove the assertion p*(E) = a(F)
only in the case in which u*(E) < ». Since a set of o—finite
outer measure is a countable disjoint union of sets of finite outer
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measure, it is sufficient to prove the entire theorem under the

added assumption that u*(E) < oo,
It follows from Theorem B that, for every n = 1, 2, - - -, there
exists a set F,, in S(R) such that

EcF, and ﬁ(Fn) éﬂ*(E) +':;
If we write F = [\n=1 Fr, then
1
Ec FeSR) and p*(E) = a(F) £ a(Fn) = w*(E) + -

Since # is arbitrary, it follows that u*(E) = a(F). If G eS®R)
and G F — E, then E ¢ F — G and therefore

A(F) = p*(E) = aF — G) = a(F) — a(G) = a(F);

the fact that F is a measurable cover of E follows from the finite-
ness of a(F). |
Theorem D. If E e H(R) and F is a measurable cover of

E, then u*(E) = a(F); if both F, and Fy are measurable covers

of E, then ag(Fy A F,) = 0.

Proof. Since the relation E c F; N F; c F; implies that
F, — (F, N F,;) ¢ F, — E, it follows from the fact that F; is a
measurable cover of E that

A(Fy — (F1 N F)) = 0.

Since, similatly,
a(F — (F1 N Fp)) =0,
we have, indeed, a(F, A F;) = 0.
If u*(E) = o, then the relation u*(E) = a(F) is trivial; if
p*(E) < =, then it follows from Theorem C that there exists a
measurable cover Fy of E with

A(Fo) = w*(E)

Since the result of the preceding paragraph implies that every
two measurable covers have the same measure, the proof of the
theorem is complete. ||

Theorem E. If uon R is o—finite, then so are the measures
i on SR) and jon S.
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Proof. According to 10.A, if u is o-finite, then so 1s p*. Hence
for every E in S there exists a sequence {E;} of sets in H(R)
such that

Ec UL E, wHE) <, i=12, -

An application of Theorem C to each set E; concludes the proof
of the theorem. |

The main question at the beginning of this section could have
been asked in the other direction. Suppose that we start with
an outer measure u*, form the induced measure j, and then form
the outer measure @* induced by 4. What is the relation between
p* and g*? In general these two set functions are not the same;
if, however, the induced outer measure g* does coincide with the
original outer measure p*, then p* is called regular. The asser-
tion of Theorem B is exactly that the outer measure induced by a
measure on a ring is always regular. The converse of this last
statement is also true: if u* is regular, then p* = g* is induced by
a measure on a ring, namely by & on the class of u*-measurable
sets. Thus the notions of induced outer measure and regular outer
measure are coextensive.

(1) Theorem D asserts that a measurable cover is uniquely determined to
within a set of measure zero, if it exists at all; Theorem C asserts that for sets
of g—finite outer measure a measurable cover does exist. The following con-
siderations show that the hypothesis of o-finiteness cannot be omitted from
Theorem C.

If L is a line in the Euclidean plane X, and E is any subset of X, we shall
say that E is full on L if L — E is countable. Let Ry be the class of all those sets
E which may be covered by countably many horizontal lines on each of which
E is either full or countable; let R be the algebra generated by Ry; (cf. 4.5).
If, for every E in R, u(E) = 0 or » according as E is countable or not, then u
is a measure on R; it is easy to verify that in this case R = S(R) and S = H(R)
is the class of all subsets of X. If E is the y-axis and E C F e S(R), then there
always exists a set G in S(R) such that G C F — E and u(G) # 0.

(2) A subset E of the real line is said to have an infinite condensation point
if there are uncountably many points of £ outside every finite interval. Let
X be the real line and define a set function u* on every subset E of X as follows:
if E is finite or countably infinite, then u*(E) = 0; if E is uncountable but does
not have an infinite condensation point, then u*(E) = 1; if £ has an infinite
condensation point, then u*(E) = . Then u* is a totally o—finite outer meas-
ure, but, since the only u*-measurable sets are the countable sets and their
complements, the induced measure f is not o—finite. Is p* regular? What can



[Skc. 12] EXTENSION OF MEASURES 53

be said if, instead, u*(E) is defined to be 17 whenever E has an infinite con-
densation point?

(3) Let # be a fixed positive integer, and let ¥q, 8y, - - -, N, be the first 7 + 1
infinite cardinal numbers in the well ordering of the cardinals according to
magnitude. If X is a set of cardinal number §&,, and E is a finite subset of X,
write p*(E) = 0; if the cardinal number of a subset E of X is the infinite cardinal
N, 0 < k < n, write u*(E) = k. The set function p* is an outer measure; is it
regular?

(4) If u*is a regular outer measure on a hereditary o-ring H, and if { E,} is an
increasing sequence of sets in H with lim, E, = E, then u*(E) = lim, u*(E,).
(Hint: if lim, u*(E,) = «, the result is clear. If not, then let F,, be a u*-meas-
urable cover of E,, n = 1, 2, +--, so that the sequence {F,} is increasing, and
write F = lim, F,. Since u*(F,) = p*(E,) S u*(E), we have lim, u*(F,) =
w*(F) S p*(E); since E C F, p*(E) £ p*(F). Hence F is a measurable cover
of E.) This result is not true for non regular outer measures; a counter example
may be constructed on the basis of (2) above.

(5) For every subset E of an arbitrary set X write u*(E) = 0 or 1 according
as E is empty or not; the set function u* is a regular outer measure on the class
of all subsets of X. If {E,} is a decreasing sequence of non empty sets with an
empty intersection (such a sequence exists whenever X is infinite), then

lim, p*(Ez) =1 and p*(lim, E,) = 0;

in other words the analog of (4) for decreasing sequences is false even for totally
finite, regular outer measures.

(6) Let u1* and ue* be two finite outer measures on the class of all subsets
of a set X, and let S;, 7 = 1, 2, be the class of u;*-measurable sets. If, for all

subsets E of X,
B*(E) = m*(E) + p2*(E),

then the class S of all y*-measurable sets is the intersection of §; and S;.  (Hint:
if u*(4 N E) + p*(4 N E') = u*(4), then both the inequalities, u*(4 N E)
+ p*(4 N E) = pi*(A), i = 1,2, must become equalities.) What can be said
if u1* and pe* are not necessarily finite?

(7) Let p1* be any finite, regular outer measure on the class of all subsets of a
set X, and write u2*(E) = 0 or 1 according as E is empty or not. Then u*
is also a finite, regular outer measure, but, if u;* assumes more than two values,
then u;* + uo* is not regular.

(8) If X is a metric space, p is a positive real number, and E is a subset of X,
then the p-dimensional Hausdorff (outer) measure of E is defined to be the
number

pp*(E) = supe>oinf {1381 GEN™E = U1 Eiy, 8(E) <e, i=1,2,---},

where 8(E) denotes the diameter of E.

(8a) The set function up* is a metric outer measure; cf. 11.8a.

(8b) The outer measure u,* is regular; in fact, for every subset E of X,
there exists a decreasing sequence {U,} of open sets containing E such that

Hp*(E) = p’p*(n:-l Ua).
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§ 13. EXTENSION, COMPLETION, AND APPROXIMATION

Can we always extend a measure on a ring to the generated
o-ring? The answer to this question is essentially contained in
the results of the preceding sections; it is formally summarized
in the following theorem.

Theorem A. If u is a o—finite measure on a ring R, then
there is a unique measure ji on the o—ring S(R) such that, for E
in R, a(E) = p(E); the measure j is o—finite.

The measure g is called the extension of u; except when it is
likely to lead to confusion, we shall write u(E) instead of a(E)
even for sets E in S(R).

Proof. The existence of i (even without the restriction of
o—finiteness) is proved by 11.C and 12.A. To prove uniqueness,
suppose that u; and up are two measures on S(R) such that
m (E) = py(E) whenever E ¢ R, and let M be the class of all sets
E in S(R) for which u;(E) = us(E). If one of the two measures
is finite, and if {E,} is a monotone sequence of sets in M, then,

since
w(lim, E,) = lim, u;(E,), i=1,2,

we have lim, E, e M. (The full justification of this step in the
reasoning makes use of the fact that one of the two numbers
w(E,) and uo(E,), and therefore also the other one, is finite for
every n = 1,2, --+; cf. 9.D and 9.E.) Since this means that M
is a monotone class, and since M contains R, it follows from
6.B that M contains S(R).

In the general, not necessarily finite, case we proceed as follows.
Let A be any fixed set in R, of finite measure with respect to one
of the two measures y; and . SinceR N Aisaringand S(R) N A4
is the o—ring it generates (cf. 5.E), it follows that the reasoning
of the preceding paragraph applies to R N 4 and S(R) N 4,
and proves that if £eSR) N A, then u(E) = uo(E). Since
every E in S(R) may be covered by a countable, disjoint union
of sets of finite measure in R (with respect to either of the meas-
ures u; and ug), the proof of the theorem is complete. |

The extension procedure employed in the proofs of § 12 yields
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slightly more than Theorem A states; the given measure u can
actually be extended to a class (the class of all p*-measurable
sets) which is in general larger than the generated o—ring. The
following theorems show that it is not necessary to make use of
the theory of outer measures in order to obtain this slight enlarge-
ment of the domain of u.

Theorem B. If u is a measure on a a—ring S, then the class
S of all sets of the form E AN, where E €S and N is a subset
of a set of measure zero in S, is a o-ring, and the set function [
defined by i(E A N) = u(E) is a complete measure on S.

The measure i is called the completion of u.
Proof. If EeS, NcC 4 ¢S, and u(A4) = 0, then the relations

EUN=(E-4AA[4N (EUN)
and

EAN=(E-4AHU[4N0 (EAN)]

show that the class 8 may also be described as the class of all
sets of the form E U N, where E ¢S and N is a subset of a set
of measure zero in S. Since this implies that the class S, which
is obviously closed under the formation of symmetric differences,
is closed also under the formation of countable unions, it follows
that S is a o-ring. If

ElANl = EzANz,

where E; ¢S and N; is a subset of a set of measure zero in S,
i=1,2, then
EIAEz = NlANz,

and therefore w(E; A E;) = 0. It follows that u(E;) = u(E,),
and hence that  is indeed unambiguously defined by the relations

AEAN) = i(E U N) = u(E).

Using the union (instead of the symmetric difference) representa-
tion of sets in S, it is easy to verify that @ is a measure; the
completeness of i is an immediate consequence of the fact that
S contains all subsets of sets of measure zeroin S. |
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The following theorem establishes the connection between the
general concept of completion and the particular complete exten-
sion obtained by using outer measures.

Theorem C. If u is a o—finite measure on a ring R, and if
u* is the outer measure induced by p, then the completion of the
extension of u to S(R) is identical with p* on the class of all
w¥—measurable sets.

Proof. Let us denote the class of all y*~measurable sets by
S* and the domain of the completion & of u by S. Since u* on
S* is a complete measure, it follows that S is contained in S*
and that @ and p* coincide on S. All that we have left to prove
is that S* is contained in S; in view of the o—finiteness of u* on
S* (cf. 12.E) it is sufficient to prove that if £ ¢ S* and p*(E) < <,
then E ¢ S.

By 12.C, E has a measurable cover F. Since p*(F) = u(F) =
p*(E), it follows from the finiteness of u*(E), and the fact that
p* is a measure on S*, that u*(¥' — E) = 0. Since F — E also
has a measurable cover G, and since

p(G) = u*(F — E) =0,
the relation
E=F-G)UENG

exhibits £ as a union of a set in S(R) and a set which is a subset
of a set of measure zero in S(R). This shows that E ¢ S, and thus
completes the proof of Theorem C. |

Loosely speaking, Theorem C says that in the o—finite case the
o-ring of all p*-measurable sets and the generated o-ring S(R)
are not very different; every p*-measurable set suitably modified
by a set of measure zero belongs to S(R).

We conclude this section with a very useful result concerning
the relation between a measure on a ring and its extension to the
generated o-ring.

Theorem D. If p is a o—finite measure on a ring R, then,
Sfor every set E of finite measure in S(R) and for every positive
number e, there exists a set Eg in R such that W(E A Ep) S e
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Proof. The results of §§ 10, 11, and 12, together with Theorem
A, imply that

”(E) = inf{z;‘;] P(Ei): Ec U:=1 Ei) Ei BR) i = 1: 2) }'

Consequently there exists a sequence {E;} of sets in R such that

Ec Uz E: and w(Usi E) < wE) + 5

Since
lim, p(Ui=1 E)) = p(Ui=1 E),

there exists a positive integer » such that if

EO = U?=1 Ei)
then

w(Uim1 E) = w(Eo) + _;_

Clearly E, € R; since

W(E — Eo) £ w(Ui1 Ei — Ey) = p(Ura1 E) — w(By) < g
and
p(Eo — E) < p(Use1 E: — E) = (U1 Eo) — w(E) < 5

the proof of the theorem is complete. |

(1) Let u be a finite, non negative, and finitely additive set function defined
on a ring R. The function u* defined by the procedure of § 10 is still an outer
measure, and, therefore, the i of 11.C may still be formed, but it is no longer
necessarily true that fI is an extension of w3 (cf. 10.2, 10.4e, and 11.4).

(2) If & is the extension of the measure u on the ring R described in § 8,
then, for any countable set E, E e S(R) and G(E) = 0.

(3) The uniqueness assertion of Theorem A is not true if the class R is not a
ring. (Hint: let X = {a,5,c,d} be a space of four points and define the measures
p1 and g2 on the class of all subsets of X by

m{a}) = m({d}) = pa({8}) = pa({c}) = 1,
m({8}) = m({c}) = pa({a}) = pa({a}) = 2.)

(4) Is Theorem A true for semirings instead of rings?

(5) Let R be a ring of subsets of a countable set X, with the property that
every non empty set in R is infinite and such that S(R) is the class of all subsets
of X; (cf. 9.7). 1If, for every subset E of X, u;(E) is the number of points in E
and uz(E) = 2u1(E), then uz and g agree on R but not on S(R). In other words,
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the uniqueness assertion of Theorem A is not true without the restriction of
o—finiteness on R, even for measures which are totally o—finite on S(R).

(6) Suppose that p is a measure on a g—ring S and that & on S is its completion.
If #and BareinSandif 4 C EC B, and u(B — 4) = 0, then E¢S.

(7) Let X be an uncountable set, let S be the class of all countable sets and
their complements, and, for every E in S, let u(E) be the number of points in
E. Then u is a complete measure on S, but every subset of X is u*-measurable;
in other words, Theorem C is false without the assumption of o—finiteness.

(8) If 1 and » are g—finite measures on a ring R, then, for every £ in S(R)
for which both u(E) and »(E) are finite and for every positive number e, there
exists a set Eq in R such that

WEAE) =€ and »(EAEy) = e

§ 14. INNER MEASURES

We return now to the general study of measures, outer measures,
and the relations among them, in order to describe an interesting
and historically important part of the theory.

We have seen that if u is a measure on a o-ring S, then the set
function u* (defined for every E in the hereditary o-ring H(S) by

u*(E) = inf {u(F): E c F eS})

is an outer measure; in the o—finite case the induced measure g
on the g-ring S of all u*-measurable sets is the completion of p.
Analogously we now define the inner measure us induced by u;
for every E in H(S) we write

p.*(E) = sup {/.L(F): E> FSS}.

In this section we shall study ps and its relation to p*; we shall
show that the properties of ux are in a very legitimate sense the
duals of those of u*. It is very easy to see that the set function
ps 1s non negative, monotone, and such that u«(0) = 0; in what
follows we shall make use of these elementary facts without any
reference. Throughout this section we shall assume that

p 1s a o—-finite measure on a g—ring S, u* and 4 are the outer
measure and the inner measure induced by u, respectively,
and g on S is the completion of u;

we recall that i on S coincides with u* on the class of all p*~meas-
urable sets (cf. 13.C).
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Theorem A. If E ¢ H(S), then
px(E) = sup {a(F): ED> FeS}.

Proof. Since S ¢ §, it is clear from the definition of us that
px(E) < sup {a(F): E > FeS}.

On the other hand 13.B implies that, for every F in S, there is a
G in S with G ¢ F and a(F) = u(G). Since this means that every
value of i on subsets of E in S is also attained by u on subsets of
E in S, the proof is complete. ||

If E ¢H(S) and F &S, we shall say that F is a measurable
kernel of E if F c E and if, for every set G in S for which
G c E — F, we have u(G) = 0. Loosely speaking a measurable
kernel of a set £ in H(S) is a maximal set in S which is contained
in E.

Theorem B. Every set E in H(S) has a measurable kernel.

Proof. Let £ be a measurable cover of E, let N be a measurable
cover of £ — E, and write F = E — N. We have

F=E—-NckE-(E£E—-E)=E,
and, if G ¢ E — F, then
GcE—-(E—N)=ENNcN - (£ - E).

It follows (since N is a measurable cover of £ — E), that F'is a
measurable kernel of E. |

Theorem C. If E e H(S) and F is a measurable kernel of
E, then p(F) = ux(E); if both Fy and F, are measurable
kernels of E, then p(F1 A Fy) = 0.

Proof. Since F C E, it is clear that u(F) = usx(E). If u(F) <
ux(E), then u(F) is finite and, by the definition of ux(E), there
exists a set Fy in S such that Fy ¢ E and u(Fy) > u(F). Since

Fo—FcE—F and wFo—F) 2 ulFo) — uF) >0,

this is a contradiction, and therefore indeed p(F) = ux(E).
Since the relation F; ¢ F; U F, c E implies that (F; U Fp) —
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Fy, c E — F,, it follows from the fact that F, is a measurable
kernel of E that

u((Fy U Fp) — Fy) = 0.
Since, similarly,

w((FL U Fy) — Fp) =0,
we have u(F; A Fy) = 0. |

Theorem D. If {E.} is a disjoint sequence of sets in H(S),
then
H*(U:=1 En) 2 Z:-:l I“"*(En)

Proof. If F, is a measurable kernel of E,, n =1, 2, -..
then the countable additivity of u implies that

=1 M*(En) = :=1 M(Fn) = M(U:=1 Fn) = M*(U:=1 En)- l

Theorem E. If 4 ¢ H(S) and if {E,} is a disjoint sequence
of sets in S with |J;-1 E. = E, then

px(4 N E) =2 i ux(4 N Ey).
Proof. If F is a measurable kernel of 4 N E, then
(A N E) = u(F) = 25 a(F N E) £ 37 ue(4 N Ey);

the desired result follows from Theorem D. |
Theorem F. If E €8S, then

p*(E) = ps(E) = i(E),
and, conversely, if E e H(S) and

B p*(E) = px(E) < oo,
then E € S.

Proof. If E ¢S, then both the supremum in Theorem A and
the infimum in 12.B are attained by g(E). To prove the converse,
let 4 and B be a measurable kernel and a measurable cover of E,
respectively. Since u(A4) = ux(E) < o, we have

(B — A) = u(B) — u(d) = p*(E) — ue(F) =0,
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and the desired conclusion follows from the completeness of i
on S; (cf. 11.C and 13.6). |

Theorem G. If E and F are disjoint sets in H(S), then
px(E U F) = px(E) + p*(F) S w*(E U F).

Proof. Let A be a measurable cover of F and let B be a meas-
urable kernel of E U F. Since B — A4 C E, it follows that

pe(E U F) = u(B) = p(B — 4) + p(d) £ ps(E) + p*(F).

Dually, let 4 be a measurable kernel of £ and let B be a meas-
urable cover of E U F. Since B — A4 D F, it follows that

p*EUF) = uB) = pld) + 1B — 4) 2 umx(E) + p*F). 1
Theorem H. If E €8, then, for every subset A of X,
px(4 N E) + p*(4' N E) = a(E).
Proof. Applying Theorem G to 4/ N E and 4’ N E, we obtain
px(E) S px(4 N E) + p*(4' N E) < p*(E).

Since E ¢S, we have, by Theorem F, ux(E) = u*(E) = a(E). 1

The results of this section enable us to sketch the steps of an
alternative approach to the extension theorem, an approach that
is frequently employed. If u is a o—finite measure on a ring R,
and if u* is the induced outer measure on H(R), then, for every
set £ in R with u(E) < « and for every 4 in H(R), we have

pe(4 N E) = p(E) — p*(4' N E).

If we prove now that whenever E and F are two sets of finite
measure in R for which 4 N E = 4 N F, then it follows that
wWE) — u*(4' N E) = w(F) — u*(4' N F), then we may use the
equation for ux(4 N E) as a definition of inner measure, and we
may define a set E in H(R) of finite outer measure to be p*-meas-
urable if and only if ux(E) = p*(E). The details of this procedure
may be easily carried out by the interested reader, using the
techniques we have introduced in our development of the exten-
sion theory.
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(1) Do the results of 12.4 remain true if u* is replaced by ps?

(2) With suitable finiteness restrictions the dual of 12.4 is true for inner
measures, but the unaltered result of 12.4 is not; (cf. 12.5).

(3) If E is a set of finite measure in S, if F C E, and if g(E) = p*(F) +

u*(E — F), then Fe8. In other words the p —m_easurablllty of F may be
tested by employing a fixed set E (containing F) in S instead of an arbitrary 4
in H(S). (Hint: use Theorem H.)

(4) Is an analog of 11.6 true for inner measures?

(5) If E e H(S) and F is a measurable cover of E, then, for every p*-measur-
ableset M, i(F N M) = u*(E N M). (Hint: apply TheoremHto £ = F N M
and 4 = E’.) Conversely, any set F with this property and such that E C Fe S
is a measurable cover of E. Similarly, F is a measurable kernel of E if and only

ifED FeSand g(F N M) = ue(E N M) for every M in S.

§ 15. LEBESGUE MEASURE

The purpose of this section is to apply the general extension
theory to the special measure discussed in § 8, and to introduce
some of the classical results and terminology pertinent to this
special case. Throughout this section we shall assume that

X is the real line, P is the class of all bounded, semiclosed
intervals of the form [4,6), S is the o-ring generated by P,
and p is the set function on P defined by u([4,6)) = 6 — a.

The sets of the o-ring S are called the Borel sets of the line;
according to the extension theorems 8.E and 13.A, we may assume
that u is defined for all Borel sets. If i on S is the completion
of pon S, the sets of S are the Lebesgue measurable sets of the
line; the measure i is Lebesgue measure. (The incomplete
measure u on the class S of all Borel sets is usually called Lebesgue
measure also.)

Since the entire line X is the union of countably many sets in
P, we sec that X ¢S, so that the o-rings S and S are even
o—algebras. Since clearly u(X) = «, u is not finite on S, but,
since u is finite on P, both x on S and  on S are totally o—finite.
Some of the other interesting properties of u and i are contained
in the following theorems.

Theorem A. Every countable set is a Borel set of measure
zero.
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Proof. For any 4, —o < 2 < », we have

{a} = {x:x = a} =n;‘f=1{x:a§x<a+%},

and therefore
u({a}) = lim, u([a,a + %)) = lim, ~ = 0,

n

so that every one-point set is a Borel set of measure zero. Since
the Borel sets form a o-ring and since u is countably additive,
the theorem follows. |

Theorem B. The class S of all Borel sets coincides with
the o-ring generated by the class U of all open sets.

Proof. Since, for every real number 4, the set {a} is a Borel
set, it follows from the relation (a,6) = [4,6) — {4}, that every
bounded open interval is a Borel set. Since every open set on
the line is a countable union of bounded open intervals, it follows
that S D U and consequently that S D S(U). To prove the
reverse inequality, we observe that, for every real number 4,

1 1
{”} = n%7=1<ﬂ '—'—>ﬂ+“):
n n
so that {a} e S(U). It follows from the relation [2,6) = (a,6) U
{a} that P ¢ S(U) and consequently that
S = S(P) c S(U). |

Theorem C. If U is the class of all open sets, then, for
every E in X,

pu*(E) = inf {up(U): E c U eU}.

Proof. Since p*(E) = inf {u(F): E c F ¢ 8}, it follows from
the fact that U < S that

u*(E) < inf {u(U): E c U £ U}.

If, on the other hand, ¢ is any positive number, then it follows
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from the definition of p* that there exists a sequence {[a,,6)}
of sets in P such that

Ec Ur-ilanbs) and Donei (bn — an) S p*(E) + %

Consequently
€
Ec U"=1 (a" - ant1? é") =U SU:

and

p(U) £ 21 (ba — an) + 5 < u*E) + e

The desired result follows from the arbitrariness of e. |

Theorem D. Let T be the one to one transformation of the
entire real line onto itself, defined by T(x) = ax + B, where
a and B are real numbers and o # 0. If, for every subset E
of X, T(E) denotes the set of all points of the form T(x) with
x in E, i.e. T(E) = {ax + B: x ¢ E}, then

WH(T(E)) = | awW*(E) and ws(T(E)) = | |ux(E).

The set T(E) is a Borel set or a Lebesgue measurable set if and
only if E is a Borel set or a Lebesgue measurable set, respectively.

Proof. It is sufficient to prove the theorem for & > 0. For,
if & < 0, then the transformation T is the result of the iteration
of two transformations T; and Ty, T(x) = T,(Ts(x)), where
Ti(x) = | a|x + P and Ty(x) = —x. We leave to the reader the
verification of the fact that the transformation 7. sends Borel
sets and Lebesgue measurable sets into Borel sets and Lebesgue
measurable sets, respectively, and that it preserves the inner and
outer measures of every set.

Suppose then that a > 0, and let T(S) be the class of all sets
of the form T(E) with E in S. It is clear that T(S) is a o-ring;
we are to prove that T'(S) = S. If E = [4,6) e P, then E = T(F),

where
_ b —
F = [ﬂ A s B) e P,

a o

so that £ ¢ T(S) and therefore S — T(S). By the same reasoning
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X —

applied to the transformation T7!, T (x) = , We may con-

clude that S ¢ T7I(S), and, applying the transformation T to
both sides of the last written relation, we obtain, T(S) < S and
therefore T(S) = S.

If, for every Borel set E, we write

m(E) = W(T(E)) and p(E) = au(E),

then both u; and u, are measures on S. If E = [4,4) ¢ P, then
T(E) = [ea + B, ab + B), and ‘

m(E) = l(T(E)) = (b + B) — (@ + B) = a(b — a) =
= op(E) = pa(E),

so that, by 8.E and 13.A, u(T(E)) = au(E) for every E in S.
Applying the results of the preceding two paragraphs to the
transformation T, we obtain the relations

WH(T(E) = inf {u(F): T(E) c Fe$} =

inf {ap(TYF): EC TY(F) eS} =
= ainf {u(G): EC GeS} =

= ap*(E),

and, replacing inf by sup, u* by ux, and < by D throughout,
px(T(E)) = opx(E),

for every set E.
If E is a Lebesgue measurable set and A is any set, then

w*(4 N T(E)) + p*(4 N (T(E)) =
= p*(T(T7X(4) N E)) + p*(T(T7Y(4) N E)) =
= o[u*(T(A) N E) + p*(TH(4) N E)] =
= ap*(T7(4)) =
= u*(4),

so that T(E) is Lebesgue measurable. This result applied to 7!
proves its own converse and completes the proof of the theorem. |
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(1) The class of all Borel sets is the o-ring generated by the class C of all
closed sets, and, for every set E,

ws(E) = sup {u(C): ED Ce C}.

(2) To every Lebesgue measurable set E there correspond two Borel sets
A and B such that

ACECB, uB~-4) =0,

and such that 4 is an F, and B is a G;.

(3) A bounded set has finite outer measure. Is the converse of this statement
true?

(4) Let {x1, xs, - - -} be an enumeration of the set M of rational numbers in
the closed unit interval X. For every € >0and i = 1,2, -+, let Fi(e) be the

. € . .
open interval of length T whose center is at x;, and write

F(e) = U Fi(e), F= ﬂf=l”(£)'

The following statements are true.

(4a) There exists an € > 0 and a point x in X such that x &’ F(e).

(4b) The set F(e) is open and u(F(e)) < e.

(4c) The set X — F(e) is nowhere dense.

(4d) The set X — F is of the first category and therefore, since X is a com-
plete metric space, F is uncountable. (Hence, in particular, F % M.)

(4e) The measure of F is zero.

Since F D M, the statement (4e) yields a new proof of the fact that the set
M of rational numbers (as every countable set) has measure zero. More inter-
esting than this, however, is the implied existence of an uncountable set of
measure zero; cf. (5).

(5) Expand every number x in the closed unit interval X in the ternary system,
1.e. write

x=z;'f=1(;—:, an=07 1)2) n=1)2y"')

and let C be the set of all those numbers » in whose expansion the digit 1 is not
needed. (Observe that if, motivated by the customary decimal notation, we
write .oqaz- - - for Y m—q @,/3" then for instance 3 = .1000--- = .0222--., and
therefore % e C, but since 3 = .111- - - and since this is the only ternary expan-
sion of §, therefore 3 &’ C.) Let X; be the open middle third of X, X1 = (}, 2);
let X, and X3 be the open middle thirds of the two closed intervals which make
up X — Xl, ie. Xy = (%, %) and X3 = (%, %); let X4, X5, Xe, and X7 be the
the open middle thirds of the four closed intervals which make up

X — (Xl UX2 U X3))

and so on ad infinitum. The following statements are true.
(5a) C =X — Un-1 Xs. (Hint: for every » in X write ¥ = .aj0- - -,
ap=0,1,2,7 = 1,2, -+ insuch a way thatifx e C, thena, = O0or2,n = 1,2,
Then the expansion of ¥ is unique and (i) ¥ e X; if and only if &y = 1,
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(ii) ifoy 7 1, then x € X; U X;if and only if s = 1; (iii) if on 7% 1 and ez # 1,
thenxe X, U X5 U Xs U Xy ifand only ifag = 15 ---.)

(5b) u(C) =0.

(5¢) Cis nowhere dense. (Hint: assume that X contains an open subinterval
whose intersection with {Jn-1 Xn is empty.)

(5d) C is perfect. (Hint: no two of the intervals Xj, Xj, - - - have a common
point.)

(5¢) C has the cardinal number of the continuum. (Hint: consider the corre-
spondence which associates with every x in C, ¥ = .10+ -+, o =0 or 2,
n = 1,2, -- -, the number y whose binary expansionis y = .Bi8z-- -, Bn = an/2,
n=1 2 -, or, equivalently, y = > 7_; a,/2"tL, This correspondence is
not one to one between C and X, but it is one to one between the irrational
numbers in C and the irrational numbers in X. Alternative hint: use (5d).)

The set C is called the Cantor set.

(6) Since the cardinal number of the class of all Borel sets is that of the
continuum (cf. 5.9c), and since every subset of the Cantor set is Lebesgue
measurable (cf. (5b)), there exists a Lebesgue measurable set which is not a
Borel set.

(7) The set of those points in the closed unit interval in whose binary expan-
sion all the digits in the even places are 0 is a Lebesgue measurable set of measure
zero.

(8) Let X be the perimeter of a circle in the Euclidean plane. There exists a
unique measure u defined on the Borel sets of X such that u(X) = 1 and such
that u is invariant under all rotations of X. (A subset of a circle is a Borel set
if it belongs to the o—ring generated by the class of all open arcs.)

(9) If g is a finite, increasing, and continuous function of a real variable,
then there exists a unique complete measure i, defined on a o~ring S; containing
all Borel sets, such that #;([4,6)) = g(6) — g(@) and such that for every E in
S, there is a Borel set F with fg(E A F) = 0; (cf. 8.3). The measure f, is called
the Lebesgue-Stieltjes measure induced by g.

§ 16. NON MEASURABLE SETS

The discussion in the preceding section is not delicate enough
to reveal the complete structure of Lebesgue measurable sets on
the real line. It is, for instance, a non trivial task to decide
whether or not any non measurable sets exist. It is the purpose
of this section to answer this question, as well as some related
ones. Some of the techniques used in obtaining the answer are
very different from any we have hitherto employed. Since, how-
ever, most of them have repeated applications in measure theory,
usually in the construction of illuminating examples, we shall
present them in considerable detail. Throughout this section we
shall employ the same notation as in § 15.
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If E is any subset of the real line and 4 is any real number,
then E + a denotes the set of all numbers of the form x + 4,
with x in E£; more generally if £ and F are both subsets of the real
line, then £ + F denotes the set of all numbers of the form x + y
with ¥ in E and y in F. The symbol D(E) will be used to denote
the difference set of E, i.e. the set of all numbers of the form
% — y with ¥ in E and y in E.

Theorem A. If E is a Lebesgue measurable set of positive,
finite measure, and if 0 < « < 1, then there exists an open inter-
val U such that g(E N U) = au(U).

Proof. Let U be the class of all open sets. Since, by 15.C,
a(E) = inf {u(U): E c U £ U}, we can find an open set U, such
that E ¢ Uy and ap(Uy) £ @(E). If {U.,} is the disjoint sequence
of open intervals whose union is U,, then it follows that

a a1 w(Ua) £ 22021 6(E N Uy).

Consequently we must have au(U,) < a(E N U,) for at least
one value of #; the interval U, may be chosen for U. |

Theorem B. I[f E is a Lebesgue measurable set of positive
measure, then there exists an open interval containing the
origin and entirely contained in the difference set D(E).

Proof. If E is, or at least contains, an open interval, the result
is trivial. In the general case we make use of Theorem A, which
asserts essentially that a suitable subset of E is arbitrarily close
to an interval, to find a bounded open interval U such that

AENTU) z 3u().
If —3u(U) < x < 3u(U), then the set
(END)UWENU)+ %)

is contained in an interval (namely U U (U 4+ «)) whose length
is less than 3u(U). If EN U and (E N U) 4+ x were disjoint,

then, since they have the same measure, we should have

AMENU)UNEND) + &) =2a(E N U) z §u0).
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Hence at least one point of E N U belongs also to (E N U) + «,
which proves that x e D(E). In other words the interval (—3u(U),
2u(U)) satisfies the conditions stated in the theorem. ||

Theorem C. If £ is an irrational number, then the set A
of all numbers of the form n 4+ mé&, where n and m are arbitrary
integers, is everywhere dense on the line; the same is true of the
subset B of all numbers of the form n + m& with n even, and the
subset C of numbers of the form n + m& with n odd.

Proof. For every positive integer 7 there exists a unique
integer n; (which may be positive, negative, or zero) such that
0 =< n; + i£ < 1; we write x; = n; + #£. If U is any open inter-

e. . 1
val, then there is a positive integer k& such that u(U) > z Among

the £ 4+ 1 numbers, %y, - - -, xx41, in the unit interval, there must

1
be at least two, say x; and wj; such that |x; — x;| < - It

k
follows that some integral multiple of x; — x;, i.e. some element
of A4, belongs to the interval U, and this concludes the proof of
the assertion concerning 4. The proof for B is similar; we have
merely to replace the unit interval by the interval [0,2). The
proof for C follows from the fact that C = B+ 1. |

Theorem D. There exists at least one set Ey which is not
Lebesgue measurable.

Proof. For any two real numbers ¥ and y we write (for the
purposes of this proof only) ¥ ~y if x — y e 4, (where 4 is
the set described in Theorem C). It is easy to verify that the
relation “~” is reflexive, symmetric, and transitive, and that,
accordingly, the set of all real numbers is the union of a disjoint
class of sets, each set consisting of all those numbers which are
in the relation “~”" with a given number. By the axiom of choice
we may find a set E, containing exactly one point from each such
set; we shall prove that E; is not measurable.

Suppose that F is a Borel set such that F < E,. Since the
difference set D(F) cannot contain any non zero elements of the

dense set 4, it follows from Theorem B that ¥ must have meas-
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ure zero, so that ux(E;) = 0. In other words, if E, is Lebesgue
measurable, then its measure must be zero.

Observe next that if ¢; and 4, are two different elements of
A, then the sets Ey + a; and Ey + a4, are disjoint. (If x; + 4, =
%o + as, with x; in Ey and x in Ey, then x; — xo = a3 — a2, £ 4.)
Since moreover the countable class of sets of the form E; 4 a4,
where a e A, covers the entire real line, i.e. Ey + 4 = X, and
since the Lebesgue measurability of E, would imply that each
E, + a is Lebesgue measurable and of the same measure as F,
we see that the Lebesgue measurability of Ey would imply the
nonsensical result u(X) = 0. |

The construction in the proof of Theorem D is well known, but
it is not strong enough to yield certain counter examples needed
for later purposes. The following theorem is an improvement.

Theorem E. There exists a subset M of the real line such
that, for every Lebesgue measurable set E,

M NE) =0 and p*M N E) = a(E).

Proof. Write 4 = B U C, as in Theorem C, and, if E, is
the set constructed in the proof of Theorem D, write

M=E0+B.

If F is a Borel set such that F ¢ M, then the difference set D(F)
cannot contain any elements of the dense set C, and it follows
from Theorem B that ux(M) = 0. The relations

M=E+C=E+B+1)=M+1

imply that us (M’) = 0; (cf. 15.D). If E is any Lebesgue meas-
urable set, then the monotone character of usx implies that
pe(M N E) = pxe (M’ N E) = 0, and therefore (14.H) u*(M N E)
= iE). 1

The proofs of this section imply among other things that it is
impossible to extend Lebesgue measure to the class of all subsets
of the real line so that the extended set function is still a measure
and is invariant under translations.
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(1) If E is a Lebesgue measurable set such that, for every number & in an
everywhere dense set,

BEA(E+ %) =0,

then either G(E) = O or else i(E’) = 0.

(2) Let pu be a g—finite measure on a g-ring S of subsets of a set X, and let
p* and ux be the outer measure and the inner measure, respectively, induced
by u on H(S). Let M be any set in H(S), and let S be the o-ring generated
by the class of all sets in S together with M. The chain of assertions below is
designed to lead up to a proof of the assertion that x4 may be extended to a
measure [ on S. -

(2a) The o-ring S is the class of all sets of the form (£ N M) A (F N M),
where E and F are in S. (Hint: it is sufficient to prove that the class of all sets
of the indicated form is a g-ring. Observe that

ENMAFNM)=ENMUEFNM).)

(2b) If u*(M) < o, if G and H are a measurable kernel and a measurable
cover of M respectively, and if D = H — G, then the intersection of any set in
S with D’ belongs to S.

(2¢) There exist two sets G and H in S such that G C M C H and us (M — G)
= us(H — M) = 0, and such that if D = H — G, then the intersection of any
set in S with D’ belongs to S. (Hint: there exists a disjoint sequence {X,}
of sets in S with u(X,) < wand M = Js.; (M N X,).)

(2d) In the notation of (2c), us(M M D) = ue (M’ N D) = 0, and therefore
p*(M N D) = p*(M' N D) = w(D).

(2e) In the notation of (2¢), if

WENMAFENM)ND=[(E NMAFNM)]ND,
where E,, Fi1, Es, and Fj are in S, then
u(Er N D) = p(E2 N D) and w(F1 N D) = u(F; N D).

*

(Hint: use the fact that the condition
(BFAAE) N MNODIA{FAFR) N M ND =0
implies that
FENDAENDCMND and (HND)AFND CcMOD,)

(2f) Let & and B be non negative real numbers witha + 8 = 1. In the nota-
tion of (2c) the set function i on S, defined by

BENMAFNM) =
=u({((EN M) AFN M) N D)+ oapE N D)+ puF N D),

is a measure on § which is an extension of u on S.

(3) If u is a o—finite measure on a o-ring S and if {My, ---, M,} is a finite
class of sets in the hereditary o-ring H(S), then {Mj, - - -, M,} may be adjoined
to S and a measure  may be defined on the generated o-ring S so that it is an
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extension of won S.  The analogous statement, for an infinite sequence {Ma}
of sets in H(S), is not known.

(4) The following example is useful for developing intuition about non
measurable sets; virtually all general properties of non measurable sets may be
illustrated by it. Let X = {(x,5): 0 < x £ 1,0 < y £ 1} be the unit square.
For every subset E of the interval [0,1], write

E={(xy:xeE 0=y=l1}CX

Let S be the class of all sets of the form £, for Lebesgue measurable sets E;
define u(£) as the Lebesgue measure of E. A set M such as M = {(%,9):
0 < x =<1,y =%} is non measurable; us(M) = 0 and p*(M) = 1.

(5) Let p* be a regular outer measure on the class of all subsets of a set X
such that p*(X) = 1, and let M be a subset of X such that us(#) = O and
u*(M) = 1; (cf. Theorem E and (4)). If »*(E) = u*(E) + u*(E N M), then
v* is an outer measure; (cf. 10.5 and 10.7).

(5a) A set E is v*~measurable if and only if it is p*-measurable; (cf. 12.6).

(5b) The infimum of the values of »*(E) over all »*~measurable sets £ con-
taining a given set A is 2u*(A4). (Hint: if E is v*~measurable, then u*(£ N M)
= p*(E).)

(5¢) The outer measure v* is not regular. (Hint: test regularity with M".)



Chapter 1V

MEASURABLE FUNCTIONS

§17. MEASURE SPACES

A measurable space is a set X and a o-ring S of subsets of X
with the property that |J S = X. Ordinarily it causes no con-
fusion to denote a measurable space by the same symbol as the
underlying set X; on the occasions when it is desirable to call
attention to the particular o—ring under consideration, we shall
write (X,S) for X. Itis customary to call a subset E of X meas-
urable if and only if it belongs to the o-ring S. This terminology
is not meant to indicate that S is the o-ring of all p*—measurable
sets with respect to some outer measure p*, nor even that a non
trivial measure is or may be defined on S.

In the language of measurable sets, the condition in the defini-
tion of measurable spaces may be expressed by saying that the
union of all measurable sets is the entire space, or, equivalently,
that every point is contained in some measurable set. The purpose
of this restriction is to eliminate certain obvious and not at all
useful pathological considerations, by excluding from the space
points (and sets of points) of no measure theoretic relevance.

A measure space is a measurable space (X,S) and a measure
w on S; just as for measurable spaces we shall ordinarily allow
ourselves to confuse a measure space whose underlying set is X
with the set X. On the occasions when it is desirable to call atten-
tion to the particular ¢-ring and measure under consideration, we
shall write (X,S,u) for X. The measure space X is called [totally]

finite, o—finite, or complete, according as the measure u is [totally]
73
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finite, o-finite, or complete. For measure spaces we may and shall
make use, without any further explanation, of the outer measure
p* and (in the o—finite case) the inner measure us induced by p
on the hereditary o—ring H(S).

Most of the considerations of the preceding chapter show by
deductions and examples how certain measurable spaces may be
made into measure spaces. In this section we shall make a few
general remarks on measurable spaces and measure spaces and
then, in the remainder of this chapter and in the following chap-
ters, turn to the discussion of functions on measure spaces, useful
ways of making new measure spaces out of old ones, and the
theory of some particularly important special cases.

We observe first that a measurable subset X, of a measure
space (X,S,u) may itself be considered as a measure space
(X0,S0,m0), Where S, is the class of all measurable subsets of X,
and, for E in Sp, uo(E) = p(E). Conversely, if a subset X, of a
set X is a measure space (Xo,S0,u0), then X may be made into a
measure space (X,S,u), where S is the class of all those subsets
of X whose intersection with Xj is in Sy, and, for E in S, u(E) =
po(E N Xo). (Entirely similar remarks are valid, of course, for
measurable spaces.) A modification of this last construction is
frequently useful even if X is already a measure space. If Xjis a
measurable subset of X, a new measure yy may be defined on the
class of all measurable subsets E of X by the equation u(E) =
r(E N Xy); it is easy to verify that (X,S,uo) is indeed a measure
space.

What happens to the considerations of the preceding paragraph
if the subset X, is not measurable? In order to give the most
useful answer to this question, we introduce a new concept. A
subset X, of a measure space (X,S,u) is thick if ux(E — Xo) = 0
for every measurable set E. If X itself is measurable, then X,
is thick if and only if us (X — Xp) = 0; if u is totally finite, then
Xo 1s thick if and only if p*(X,) = u(X). (For examples of thick
sets cf. 16.E and 16.4.) Slightly deeper than any of the comments
in the preceding paragraph is the following result, which asserts
essentially that a thick subset of a measure space may itself be
regarded as a measure space,
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Theorem A. If X, is a thick subset of a measure space
(X,S,n), if So =S N Xy, and if, for E in S, p(E N Xp) =
p(E), then (Xo,So,m0) 15 @ measure space.

Proof. If two sets, E; and E,, in S are such that E; N X, =
E2 n Xo, then (El A Ez) N Xo = 0, SO that I‘(El A Ez) =0 and
therefore p(E,) = p(E;). In other words po is indeed unam-
biguously defined on S,.

Suppose next that {F,} is a disjoint sequence of sets in S,
and let E, be a set in S such that

F,=E,NXy, n=12,---.
IfE,=E,—Uf{E:12i<n}l,n=1,2,---,then
(E.AE)N Xy = (Fo—U{F:12i<n)AF, =
=F,AF, =0,
so that u(&, A E,) = 0, and therefore
Domm1bo(Fn) = X w(En) = Zaoiu(Bn) = w(Un-1 Ea) =
= w(Ur=1 Ez) = po(Uz=1 Fa)-

In other words ug is indeed a measure, and the proof of the theorem
is complete. |

(1) The following converse of Theorem A is true. If (X,S,u) is a2 measure
space and if Xp is a subset of X such that, for every two measurable sets E;
and E,, the condition E; (1 Xo = E2 N X, implies that u(E;) = u(E;), then
Xo is thick. (Hint: if F C E — X, then

(E-FNX,=EN X,)

(2) The extension theorem 16.2 may be used to give an alternative proof
of Theorem A in the g—finite case.

(3) The following proposition shows that the concept of a finite measure space
is not very different from the apparently much more special concept of a totally
finite measure space. If (X,S,u) is a finite measure space, then there exists a
thick measurable set X,. (Hint: write ¢ = sup {u(E): E€S}. Let {E,} bea
sequence of measurable sets such that lim, u(E,) = ¢ and write Xo = {Jn.1 En.
Observe that u(Xp) = ¢.) This result enables us, in most applications, to assume
that a finite measure space is totally finite, since we may replace X by X, with-
out significant loss of generality. For an example of a finite measure space
which is not totally finite, let X be the real line, let S be the class of all sets of
the form E U C, where E is a Lebesgue measurable subset of [0,1] and C iy
countable, and let u on 8 be Lebesgue measure. The methnd suggested above
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to show the existence of Xy has frequent application in measure theory; it is
called the method of exhaustion.

(4) If (X,S,u) is a complete, o—finite measure space, then every u*-measurable
set is measurable. Hence for complete, o—finite measure spaces the two con-
cepts of measurability collapse into one.

§ 18. MEASURABLE FUNCTIONS

Suppose that f is a real valued function on a set X and let M
be any subset of the real line. We shall write

fHM) = {x:f(x) e M},

1.e. f71(M) is the set of all those points of X which are mapped
into M by f. The set f7'(M) is called the inverse image (under
f, or with respect to f) of the set M. If, for instance, f is the
characteristic function of a set E in X, then f7({1}) = E and
f~1({0}) = E’; more generally

f_l(M)=O) E> E,> or X)

according as M contains neither 0 nor 1, 1 but not 0, 0 but not 1,
or both 0 and 1.

It is easy to verify that, for every £,

S Ui M) = Ui 70,
S M — N) = f7{(M) =7 (N)s

in other words the mapping /2, from subsets of the line to subsets
of X, preserves all set operations. It follows in particular that if
E is a class of subsets of the line (such as a ring or a o-ring) with
certain algebraic properties, then f~*(E) (= the class of all those
subsets of X which have the form f~!(M) for some M in E) is a
class with the same algebraic properties. Of particular interest
for later applications is the case in which E is the class of all
Borel sets on the line.

Suppose now that in addition to the set X we are given also a
o-ring S of subsets of X so that (X,S) is a measurable space.

For every real valued (and also for every extended real valued)
function f on X, we shall write

N(f) = {x:f(x) = 0};
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if a real valued function f is such that, for every Borel subset M
of the real line the set N(f) N f~*(M) is measurable, then f is
called a measurable function.

Several comments are called for in connection with this defini-
tion of measurability. First of all, the special role played by the
value O should be emphasized. The reason for singling out 0
lies in the fact that it is the identity element of the additive group
of real numbers. In the next chapter we shall introduce the con-
cept of integral, defined for certain measurable functions; the
fact that integration (which is without doubt the most important
concept in measure theory) may be viewed as generalized addition
necessitates treating O differently from other real numbers.

If f is a measurable function on X and if we take for M the
entire real line, then it follows that N(f) is a measurable set.
Hence if E is a measurable subset of X and if M is a Borel subset
of the real line, then it follows from the identity

En{fn} =
= [E NN NfAD]UE = N(F) 0 M),

that E N f71(M) is measurable. (Observe that the second term
in the last written union is either empty or else equal to
E — N(f).) 1If, in other words, we say that a real valued func-
tion f defined on a measurable set E is to be called measurable on
E whenever E N f7'(M) is measurable for every Borel set M,
then we have proved that a measurable function is measurable
on every measurable set. If, in particular, the entire space X
happens to be measurable, then the requirement of measurability
on f is simply that f~'(M) be measurable for every Borel subset
M of the real line. In other words, in case X is measurable, a
measurable function is one whose inverse maps the sets of one
prescribed o—ring (namely the Borel sets on the line) into the sets
of another prescribed o-ring (namely S).

It is clear that the concept of measurability for a function
depends on the o—ring S and therefore, on the rare occasions when
we shall have more than one o-ring under consideration at the
same time, we shall say that a function is measurable with rcspect
to S, or, more concisely, that it is measurable (S). If in particular
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X is the real line, and S and S are the class of Borel sets and the
class of Lebesgue measurable sets respectively, then we shall call
a function measurable with respect to S a Borel measurable
function, and a function measurable with respect to S a Lebesgue
measurable function.

It is important to emphasize also that the concept of measur-
ability for functions, just as the concept of measurability for sets,
as used in §17, does not depend on the numerical values of a
prescribed measure u, but merely on the prescribed o-ring S.
A set or a function is, from this point of view, declared measurable
by fiat; the concept is purely set theoretical and is quite inde-
pendent of measure theory.

The situation is analogous to that in the modern theory of
topological spaces, where certain sets are declared open and cer-
tain functions continuous, without reference to a numerical
distance. The existence or non existence of a metric, in terms of
which openness and continuity can be defined, is an interesting
but usually quite irrelevant question. The analogy is deeper
than it seems: the reader familiar with the theory of continuous
functions on topological spaces will recall that a function f is
continuous if and only if, for every open set M in the range
(in our case the real line), the set f~ (M) belongs to the prescribed
family of sets which are called open in the domain.

We shall need the concept of measurability for extended real
functions also. We define this concept simply by making the
convention that the one-point sets {«} and { —«} of the extended
real line are to be regarded as Borel sets, and then repeating
verbatim the definition for real valued functions. Accordingly
a possibly infinite valued function f is measurable, if, for every
Borel set M of real numbers, each of the three sets

fHe), S =e}), and N(f) NfTHM)

is measurable. We observe that for the extended concept of
Borel set it is no longer true that the class of Borel sets 1s the e—ring
generated by semiclosed intervals.

We shall study and attempt to make clear the structure of
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measurable functions in great detail below. The following is a
preliminary result of considerable use.

Theorem A. A real function f on a measurable space (X,S)

is measurable if and only if, for every real number c, the set
N(f) N {x: f(x) < ¢} is measurable.

Proof. If M is the open ray extending from ¢ to — on the
real line, i.e. M = {¢: 7 < ¢}, then M is a Borel set and f (M) =
{x: f(x) <c}. Itis clear therefore that the stated condition is
indeed necessary for the measurability of f.

Suppose next that the condition is satisfied. If ¢; and ¢, are
real numbers, ¢; < ¢3, then

{x:f(x) < o} — {:f(%) < a1} = {w:c1 S f(x) < ¢z}

In other words if M is any semiclosed interval, then N(f) N
f71(M) is the difference of two measurable sets and is therefore
measurable. Let E be the class of all those subsets M of the
extended real line for which N(f) N f~'(M) is measurable. Since
E is a o—ring, and since a o—-ring containing all semiclosed intervals
contains also all Borel sets, the proof of the theorem is complete. |

(1) Theorem A remains true if < is replaced by < or > or =. (Hint: if
—ow < ¢ < oo, then

{x:f(x) S ¢} = Np-1 {x:f(x) <c +%} )

(2) Theorem A remains true if ¢ is restricted to belong to an everywhere
dense set of real numbers.

(3) If fis a measurable function and ¢ is a real number, then ¢f is measurable.

(4) If a set E is a measurable set, then its characteristic function is a measur-
able function. Is the converse of this statement true?

(5) A non zero constant function is measurable if and only if X is measurable.

(6) If X is the real line and f is an increasing function, then f is Borel measur-
able. Is every continuous function Borel measurable?

(7) Let X be the real line and let E be a set which is not Lebesgue measurable;
write f(x) = x or —x according as x € E or x &' E. Is f Lebesgue measurable?

(8) If f is measurable, then, for every real number ¢, the set N(f) N
{x: f(x) = ¢} is measurable. Is the converse of this statement true?

(9) A complex valued function is called measurable if both its real and
imaginary parts are measurable. A complex valued function f is measurable
if and only if, for every open set M in the complex plane, the set N(f) N f~1(M)
is measurable.
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(10) Suppose that f is a real valued function on a measurable space (X,S),
and, for every real number ¢, write B(#) = {x: f(x) < #}. Then

(10a) s <t implies B(s) C B(@),
(10b) . UeB® =X and N:B@) =0,
(10c) Ns<t B®) = B(s).

Conversely, if { B(#)} is a class of sets with the properties (10a), (10b), and (10c),
then there exists a unique, finite, real valued function f such that {x: f(x) < #}
= B(f). (Hint: write f(x) = inf {#: x e B(¥)}.)

(11) If f is a measurable function on a totally finite measure space (X,S,u)
and if, for every Borel set M on the extended real line, we write »(M) =
p(f (M), then v is a measure on the class of all Borel sets. If fis finite valued,
then the function g of a real variable, defined by g(#) = u({x: f(x) < #}), is
monotone increasing, continuous on the left, and such that g(—«) = 0 and
g(») = u(X); g is called the distribution function of /. If g is continuous, then
the Lebesgue—Stieltjes measure p,, induced by g according to the procedure of
15.9, is the completion of ». If fis the characteristic function of a measurable
set E, then »(M) = xu(Du(E) + xa(O)p(E").

§19 COMBINATIONS OF MEASURABLE FUNCTIONS

Theorem A. If f and g are extended real valued measurable
functions on a measurable space (X,S), and if ¢ is any real
number, then each of the three sets

A4 = {x:f(x) < glx) + ¢},
B = {x:f(x) = g(x) + ¢},
C = {x:f(x) = g(x) + ¢},
has a measurable intersection with every measurable set.

Proof. Let M be the set of rational numbers on the line.
Since

A=Urenlix:flx) <r} 0 {x:r —c < glx)}],

it follows that 4 has the desired property. The conclusions for
B and C are consequences of the relations

B=X-—{x1g(x) < f(x) —¢} and C=B— 4

respectively. ||
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Theorem B. If ¢ is an extended real valued Borel measur-
able function on the extended real line such that ¢$(0) = 0,
and if f is an extended real valued measurable function on a
measurable space X, then the function f, defined by f(x) =
& (f(%)), is a measurable function on X.

Proof. It is convenient to use here the definition of measur-
ability (instead of the necessary and sufficient condition of § 18).
If M is any Borel set on the extended real line, then

N() N7 (M) = {x: ¢(f(x)) e M — {0} =

= {x:f(x) e o7 (M — {OD}.
Since ¢(0) = 0, we have

oI (M — {0}) = 672 (M — {0}) — {0}.

Since ¢ is Borel measurable, ¢ 71(M — {0}) is a Borel set and the
measurability of the set

N(J) N7 M) = N(f) 0 fH (@M — {0}))

follows from the measurability of f. |

Since it is easy to verify that, for any positive real number o,
the function ¢, defined for every real number # by ¢(¥) = | ¢]2,
is Borel measurable, it follows that the measurability of a func-
tion f implies the measurability of | f|* Similarly any positive
integral power of a measurable function is again a measurable
function, and it follows similarly, by an even simpler argument,
that a constant (real) multiple of a measurable function is also
measurable. By considering Borel measurable functions ¢ of
two or more real variables a similar argument may be used to
prove such statements as that the sum and product of two measur-
able functions are measurable. Since, however, we have not yet
defined and proved any properties of Borel measurability for
functions of several variables, we postpone these considerations
and turn now to a direct proof of the measurability of sums and
products.

Theorem C. If f and g are extended real valued measurable
Sfunctions on a measurable space X, then so also are f+ g

and fg.
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Proof. Since the behavior of f + g and fg at those points x
at which at least one of the two numbers, f(x) and g(x), 1s infinite
is easily understood, after the examination of a small number of
cases, we restrict our attention to finite valued functions. (We
recall incidentally that if f(x) = st and g(¥) = Fw, then
f(x) + g(x) is not defined.)

Since if f and g are finite and if ¢ is a real number, then

{w: flx) + g(x) < ¢} = {x:f(x) < ¢ — glx)},

the measurability of f + g follows from Theorem A (with —g
in place of g). The measurability of fg is a consequence of the
identity

fe=Hf+2—=(—-297 1

Since if f and g are finite we have
fUg=3(f+g+I|f—2D
fng=3/+teg-1f-2D

Theorems B and C show that the measurability of f and g implies
that of f U g and f N g. If for every extended real valued func-
tion f we write

fr=fU0 and f~=—(fN0),
f=fr=f" and [f]=f"+/"

(The functions f* and f~ are called the positive part and the
negative part of f, respectively.) The comment at the beginning
of this paragraph implies that the positive and negative parts of
a measurable function are both measurable; conversely, a func-
tion with measurable positive and negative parts is itself measur-

able.

and

then

(1) If f is such that | f| is measurable, does f have to be measurable?

(2) If X is measurable, then Theorem B is true even without the assumption
that ¢(0) = 0; in other words, in this case a Borel measurable function of a
measurable function is a measurable function.
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(3) 1t is not true, even if X is measurable, that a Lebesgue measurable func-
tion of a measurable function is a measurable function. The purpose of the
sequence of statements below is to indicate the proof of this negative statement
by the construction of a suitable example. The construction will yield a Lebesgue
measurable function ¢ of a real variable y, and a continuous and strictly increas-
ing function f of a real variable #, 0 < x < 1, such that if f(x) = ¢(f(x)), then
f is not Lebesgue measurable.

For every x in X (where X = [0,1] is the closed unit interval), write

X = Z?—lai/y = 00003t t

wherea; = 0,1,0r2,7 = 1,2, ---,sothatifx £ C, thena; = Oor2,i = 1,2, ---,
(The set C is the Cantor set, defined in 15.5.) Let #» = n(x) be the first index
for which a, = 1. (If there is no such #, i.e. if x € C, write #(x) = »,) Define
the function ¢ by the equation

. 1
Y() = Disicn@i/27 + o

(The function ¥ is sometimes called the Cantor function.)
(Ba) If0 S x =y = 1, then

0=90) S¢¥H) =¥ sy =L

(Hint: if ¥ = .oqoaz- -+ <y = LiPofs- -+, and if a; = B; for 1 £ i < 4, then
a; < B;.)

(3b) The function ¥ is continuous. (Hint: if x = .oqaeaz- -+, ¥ = L1Befs- - -,
and a; = Bi for1 £ 7 <, then

196 =¥ | = 55

(3c) For every x in X there is one and only one number y, 0 £ y £ 1, such
that ¥ = 1(y + ¥(»)), and therefore the equation y = f(x) defines a strictly in-
creasing, continuous function f on X. (Hint: 3(y + (1)) is strictly increasing
and continuous.)

(3d) The set f ~1(C) is Lebesgue measurable and has positive measure. (Hint:

the set
Y(X -0 = {Y(y):ye X~ C}
is countable and therefore has measure zero; consequently
pUTHX = O) = 3)

(3e) There exists a Lebesgue measurable set M, M C {y: 0 £ y < 1}, such
that f~1(M) is not Lebesgue measurable. (Hint: by 16.E, f~*(C) contains a
non measurable set. Recall that every subset of a set of Lebesgue measure zero
is Lebesgue measurable.)

(3f) If ¢ is the characteristic function of the set M mentioned in (3e) and if
J(x) = ¢(f(x)), then ¢ is Lebesgue measurable but f is not.

(4) The set M in (3¢) is an example of a Lebesgue measurable set which is
not a Borel set; (cf. 15.6).
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§ 20. SEQUENCES OF MEASURABLE FUNCTIONS

Theorem A. If {f.} is a sequence of extended real valued,
measurable functions on a measurable space X, then each of the

four functions b, g, f*, and fx, defined by
A(x) = sup { fulx)im = 1,2, - -},
gl) = inf {ful¥)in = 1,2, -},
f*(x) = lim sup, fa(x),
Sx(x) = lim inf, f,(x),

is measurable.

Proof. It is easy to reduce the general case to the case of
finite valued functions. The equation

{x:g(x) <} = Una1 {2 falx) < cf

implies the measurability of g. The result for % follows from the
relation

h(x) = —inf {—fo(x):m = 1,2, ---}.
The measurability of /* and f« is a consequence of the relations

f*(X) = ir-1fn%1 supm?:nfm(x)> f*(.X') = SUDPpz1 infmgnfm(x))

respectively. |
It follows from Theorem A that the set of points of convergence
of a sequence {f,} of measurable functions, i.e. the set

{%: lim sup, f»(*¥) = lim inf, f. (%)},

has a measurable intersection with every measurable set, and,
consequently, that the function f, defined by f(x) = lim, fa(x)
at every x for which the limit exists, is a measurable function.

A very useful concept in the theory of measurable functions is
that of a simple function. A function f, defined on a measurable
space X, is called simple if there is a finite, disjoint class { £y, - - -,
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E.,} of measurable sets and a finite set {ay, - - -, @s} of real num-
bers such that

£ = |

a; if xekE; i=1,.--,nm,
0 if xe'E;fU.--UE,.

(We emphasize the fact that the values of a simple function are
to be finite real numbers: this will be essential in the sequel.)
In other words a simple function takes on only a finite number
of values different from zero, each on a measurable set.

The simplest example of a simple function is the characteristic
function xg of a measurable set E. It is easy to verify that a
simple function is always measurable; in fact we have, for the
simple function f described above,

fx) = Z?ul aiXE,-(x)-

The product of two simple functions, and any finite linear com-
bination of simple functions, are again simple functions.

Theorem B. Every extended real valued measurable function
f is the limit of a sequence { f.} of simple functions; if f is non
negative, then each f, may be taken non negative and the sequence
{ fu} may be assumed increasing.

Proof. Suppose first that f 2 0. For every n =1, 2, ..
and for every x in X, we write

)

— 1 —1
) = | 2 e S0

n if f(x) = n.

i
5;:

i=1, ., 2%,
Clearly f. is a non negative simple function, and the sequence
{fa} is increasing. If f(x) < o, then, for some 7,
1
0 é.f(x) _fn(x> = ?‘;

if f(x) = oo, then f,(x) = n for every n. This proves the second
half of the theorem; the first half follows (recalling that the
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difference of two simple functions is a simple function) by apply-
ing the result just proved separately to f* and f/~. §

(1) All the concepts and results of this section and the preceding one (except,
of course, the ones depending on such order properties of the real numbers as
positiveness) can be extended to complex valued functions.

(2) If the function f in Theorem B is bounded, then the sequence {f,} may
be made to converge to f uniformly.

(3) An elementary function is defined in the same way as a simple function,
the only change being that the number of sets E;, and therefore the number of
corresponding values «;, is allowed to be countably infinite. Every real valued
measurable function f is the limit of a uniformly convergent sequence of ele-
mentary functions.

§21. POINTWISE CONVERGENCE

In the preceding three sections we have developed the theory
of measurable functions about as far as it is convenient to do so
without mentioning measure. From now on we shall suppose
that the underlying space X is a measure space (X,S,u).

If a certain proposition concerning the points of a measure
space is true for every point, with the exception at most of a
set of points which form a measurable set of measure zero, it is
customary to say that the proposition is true for almost every
point, or that it is true almost everywhere. The phrase ‘‘almost
everywhere” is used so frequently that it is convenient to intro-
duce the abbreviation a.e. Thus, for instance, we might say that
a function is a constant a.e.—meaning that there exists a real
number ¢ such that {x: f(x) # ¢} is a set of measure zero. A
function f is called essentially bounded if it is bounded a.e., i.e.
if there exists a positive, finite constant ¢ such that {x:| f(x) | > ¢}
is a set of measure zero. The infimum of the values of ¢ for which
this statement is true is called the essential supremum of |f]|,
abbreviated to

ess. sup. | f|.

Let { f.} be a sequence of extended real valued functions which
converges a.e. on the measure space X to a limit function f.
This means, of course, that there exists a set Ey of measure zero
(which may be empty) such that, if x ¢’ £y and € > 0, then an
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integer 1 = no(x,¢) can be found with the property that
fl) <=2, ) = o,
[fale) —=f(0) | <& i —o0 <flx) < oo,
Sa(x) > %, if f(x) = o,

whenever # = n,. We shall say that a sequence {f,} of real
valued functions is fundamental a.e. if there exists a set E, of
measure zero such that, if ¥ ¢€’Ey and ¢ > 0, then an integer

ny = my(x,¢) can be found with the property that
| fa(®) — fu(x) | < & whenever n = m and m = n.

Similarly in the theory of real sequences one distinguishes between
a sequence {a,} of extended real numbers which converges to an
extended real number 4, and a sequence {4,} of finite real numbers
which is a fundamental sequence, i.e. which satisfies Cauchy’s
necessary and sufficient condition for convergence to a finite
limit.

It is clear that if a sequence converges to a finite valued limit
function a.e., then it is fundamental a.e., and, conversely, that
corresponding to a sequence which is fundamental a.e. there
always exists a finite valued limit function to which it converges
a.e. If moreover the sequence converges a.e. to f and also con-
verges a.e. to g, then f(x) = g(x) a.e., i.e. the limit function is
uniquely determined to within a set of measure zero.

We shall have occasion in the sequel to refer to several differ-
ent kinds of convergence, and we shall consistently employ
terminology similar to that of the preceding paragraphs. Thus,
if we define a new kind of convergence of a sequence {f,} to a
limit f, by specifying the sense in which f, is to be near to f for
large #, then we shall use without any further explanation the
notion of a sequence which is fundamental in this new sense—
meaning that, for large » and m, the differences f, — fn are to
be near to 0 in the specified sense of nearness.

An example of another kind of convergence for sequences of
real valued functions is uniform convergence a.e. The sequence
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{ .} converges to f uniformly a.e. if there exists a set E, of meas-
are zero such that, for every ¢ > 0, an integer 1, = 7(e) can be
found with the property that

| fal®) —f) | < e if mnZm and x¢ E

in other words if the sequence of functions converges uniformly
to f (in the ordinary sense of that phrase) on the set X — E,.
Once more it is true, and easily verified, that a sequence con-
verges uniformly a.e. to some limit function if and only if it is
uniformly fundamental a.e.

The following result (known as Egoroff’s theorem) establishes
an interesting and useful connection between convergence a.e.
and uniform convergence.

Theorem A. If E is a measurable set of finite measure,
and if {f.} is a sequence of a.e. finite valued measurable func-
tions which converges a.e. on E to a finite valued measurable
Sfunction f, then, for every e > 0, there exists a measurable
subset F of E such that u(F) < e and such that the sequence
{fn} converges to f uniformly on E — F.

Proof. By omitting, if necessary, a set of measure zero from
E, we may assume that the sequence {f,} converges to f every-
where on E. If

E = (s 1A — 70 [ <]

then
Em"c E"c.--,

and, since the sequence {f,} converges to f on E,
lim, E,” D E

for every m = 1, 2, ---. Hence lim, u(E — E,™) = 0, so that
there exists a positive integer 7o = #no(m) such that

€
#(E - Eno(M)m) < 5,;
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(To be sure 1, depends also on €, but e remains fixed throughout
the entire proof.) If

F = U;-x (E - Eno(m)m))
then F'is a measurable set, ¥ < E, and

p(F) = W(Um-1(E — Eym™) £ 2Zma1 WE — Epym™) < &

Since E — F = E N =1 Enyom™, and since, therefore, for n =
no(m) and for x in E — F, we have x e E,™, it follows that

1
| fa(x) — )| < 7 which proves uniform convergence on
E—-F. 1]

Motivated by Egoroff’s theorem we introduce the concept of
almost uniform convergence. A sequence {f.} of a.e. finite
valued measurable functions will be said to converge to the meas-
urable function f almost uniformly if, for every e > 0, there
exists a measurable set F such that u(F) < € and such that the
sequence {f,} converges to f uniformly on F’. In this language
Egoroff’s theorem asserts that on a set of finite measure con-
vergence a.e. implies almost uniform convergence. The following
result goes in the converse direction.

Theorem B. If {f,} is a sequence of measurable functions
which converges to f almost uniformly, then { f.} converges to f
a.e.

1
Proof. Let F, be a measurable set such that wu(F,) < "
and such that the sequence {f,} converges to f uniformly on
FJ,n=12 . If F= ()51 Fn, then
1
F‘(F) = w(Fn) <7_1')

so that u(F) = 0, and it is clear that, for x in F, {f.(x)} con-
verges to f(x). |

We remark that the phrase “almost uniform convergence”
is a somewhat confusing (but unfortunately standard) misnomer,
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which conflicts with the “almost everywhere” terminology. Some
such phrase as “nearly uniform convergence” might come closer
to suggesting the true state of affairs; as it stands, some care
has to be exercised to distinguish between almost uniform con-
vergence and almost everywhere uniform convergence.

(1) If f is any real valued, Lebesgue measurable function on the real line,
then there exists a Borel measurable function g such that f(x) = g(x) a.e.
(Hint: write E, = {x: f(x) < r} for every rational number r, and use 13.B to
express E, in the form F, A N,, where F; is a Borel set and N, has measure zero.
Let N be a Borel set of measure zero containing |J, N, and define g by

0 if xeN,

£) { fG) if xe N,
Cf. 18.2)

(2) If E is a measurable set of positive finite measure, and if { f»} is a sequence
of a.e. finite valued measurable functions which is fundamental a.e., then there
exists a positive finite constant ¢ and a measurable subset F of E of positive
measure such that, for every # = 1,2, --- and for every x in F, | fa(¢) | < ¢

(3) If E is a measurable set of o-finite measure, and if {f.} is a sequence of
a.e. finite valued measurable functions which converges a.e. on £ to a finite
valued measurable function f, then there exists a sequence {E;} of measurable
sets such that u(E — U1 Ei) = 0 and such that the sequence {f.} converges
uniformly on each E;, i = 1,2, ---. (Hint: it is sufficient to prove the result
if u(E) < «. In this case apply Egoroff’s theorem to find E; so that

1
wE - Ul E) <~

and so that {f,} converges uniformly on E;.)

(4) Let X be the set of positive integers, let S be the class of all subsets of
X, and, for E in S, let u(E) be the number of points in E. If x, is the character-
istic function of the set {1, ---, n}, then the sequence {X.] converges to 1
everywhere but it is not almost uniformly fundamental. In other words,
Egoroff’s theorem is not true if £ is not of finite measure.

(5) For every essentially bounded function f, write || f|| = ess. sup. |f].
If {f.} is a sequence of essentially bounded measurable functions, then the
sequence { fn} converges to f uniformly a.e. if and only if lim, || f» — f{| = O.

(6) Is the set 91 of all essentially bounded measurable functions a Banach
space with respect to the norm described in (5)?

§22. CONVERGENCE IN MEASURE

In this section, as in the preceding one, we shall work through-
out with a fixed measure space (X,S,u).
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Theorem A. Suppose that f and fo, n = 1,2, - -, are real
valued measurable functions on a set E of finite measure, and
write, for every € > 0,

En(e) = {x:|falx) = f) [ Z ¢}, n=1,2,--.
The sequence { f»} converges to f a.e. on E if and only if
limg w(E N Unar En(e) =0
Sor every € > 0.

Proof. It follows from the definition of convergence that the
sequence {f.(x)} of real numbers fails to converge to the real
number f(x) if and only if there is a positive number e such that
x belongs to E,(e) for an infinite number of values of #. In
other words, if D is the set of those points x at which { f.(x)} does
not converge to f(x), then

D = U.solim supy En(e) = Ug1 lim sup, E, (%)
Consequently a necessary and sufficient condition that uw(E£ N D)
= 0 (i.e. that the sequence {f,} converge to f a.e. on E) is that
u(E N lim sup, E,(e)) = O for every ¢ > 0. The desired conclu-
sion follows from the relations

w(E N lim supn Ea(e)) = p(E N Ny Unnan En(e)) =
= lim, u(E N Unman En(e)). 1

The desire to investigate the result of an obvious weakening
of the condition of Theorem A motivates the definition of still
another method of convergence which has frequent application.
A sequence {f,} of a.e. finite valued, measurable functions con-
verges in measure to the measurable function f if, for every
e > 0, lim, p({x: | fu(x) —f(x) | = €}) = 0. In accordance with
our general comment on different kinds of convergence in the
preceding section, we shall say that a sequence {f.} of a.e.
finite valued measurable functions is fundamental in measure
if, for every ¢ > 0,

p({x: | fal) —fu(x) | Z €¢}) > 0 as mandm — o,
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It follows trivially from Theorem A that if a sequence of
finite valued measurable functions converges a.e. to a finite
limit [or is fundamental a.e.] on a set E of finite measure, then it
converges in measure [or is fundamental in measure] on E. The
following theorem is a slight strengthening of this assertion in
that it makes no assumptions of finiteness.

Theorem B. Almost uniform convergence implies conver-
gence in measure.

Proof. If {f.} converges to f almost uniformly, then, for
any two positive numbers e and 8, there exists a measurable set
F such that u(F) < 8 and such that | f,(¥) — f(x) | < ¢, whenever
x belongs to F' and 7 is sufficiently large. |

Theorem C. If {f.} converges in measure to f, then { f,}
is fundamental in measure. If also { f.} converges in measure
to g, then f = g a.e.

Proof. The first assertion of the theorem follows from the
relation

(21 /o) — ful) | 2 df
< fxi 10 =10 2 5] U fec 1 n — 19 | 2 2}
To prove the second assertion, we observe that, similarly,
(5:1/) — g | 2 df <
el 140 =701 2 3] Ul — 01 2 )

Since, by proper choice of #, the measure of both sets on the
right can be made arbitrarily small, we have

p({x: | fx) —g@) [z ¢}) =0

for every € > 0; this implies, as asserted, that f = ga.e. |

In addition to these comparatively elementary remarks, we
shall present two slightly deeper properties of convergence in
measure.
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Theorem D. If { f.} is a sequence of measurable functions
which is fundamental in measure, then some subsequence { fu;}
is almost uniformly fundamental.

Proof. For any positive integer £ we may find an integer 7 (k)
such that if » = 7(k) and m = 7(k), then

w100 =9 1 2 5] ) < 3
We write

ny=7n1), ng=(m+1)U#AQ), n3=(m+1)Un3), ---;

then 7, < 7, < n3 <---, so that the sequence {f,,} is indeed an
infinite subsequence of { f.}. If

Fe = { | fus®) = ) | 2 %}

and k £ 7 < j, then, for every x which does not belong to E; U
Ery1 UEg 2 U---, we have

lfns(x) _fn,-(x) I = E;ﬂ Ifnm(x) fm»+1(x) I <5 2,__1 ’

so that, in other words, the sequence {f,} is uniformly funda-
mental on X — (Ex U Egyy U---). Since

1
pE U Epyy U--2) £ 20 (En) < =
the proof of Theorem D is complete. |i

Theorem E. If {f.} is a sequence of measurable functions
which is fundamental in measure, then there exists a measurable
Sfunction f such that { f,} converges in measure to f.

Proof. By Theorem D we can find a subsequence {f,,} which
is almost uniformly fundamental and therefore fundamental a.e.;
we write f(x) = limy f,,(x) for every x for which the limit exists.
We observe that, for every € > 0,

{x: | fule) —f(0) | Z ¢} ©
C{m | falx) — fu@) | 2 5‘} u {xz | ) — f(x) | 2 5‘}.
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The measure of the first term on the right is by hypothesis arbi-
trarily small if #» and #y are sufficiently large, and the measure of
the second term also approaches 0 (as # — =), since almost
uniform convergence implies convergence in measure. |

(1) Suppose that the measure space (X,S,u) is totally finite, and let {fn}
and {g.} be sequences of finite valued measurable functions converging in meas-
ure to f and g respectively.

(1a) If & and B are real constants, then {af, + Bg.} converges in measure to
af + Bg; {| fn |} converges in measure to | f].

(1b) If f = 0 a.e., then {f.?} converges in measure to f2

(1c) The sequence {f.g} converges in measure to fg. (Hint: given a positive
number §, find a constant ¢ such that if £ = {x: | g(x) | £ ¢}, then u(X — E)
< 8, and consider the situation separately on E and X — E.)

{ (1d) ’}I‘he sequence {f»?} converges in measure to f2. (Hint: apply (I1b) to
fn '_f )

(le) The sequence {f.gs} converges in measure to fg. (Hint: apply the
identity which expresses a product in terms of sums and squares.)

(If) Are the statements (la)-(le) valid for measure spaces which are not
totally finite?

(2) Every subsequence of a sequence which is fundamental in measure is
fundamental in measure.

(3) If {f.} is a sequence of measurable functions which is fundamental in
measure, and if {fn} and {fm;} are subsequences which converge a.e. to the
limit functions f and g respectively, then f = g a.e.

(4) If X is the set of positive integers, S is the class of all subsets of X, and,
for every E in S, u(E) is the number of points in E, then, for the measure space
(X,S,u), convergence in measure is equivalent to uniform convergence every-
where.

(5) Is it necessarily true on a set of infinite measure that convergence a.e.
implies convergence in measure? (Cf. 21.4 and (4).)

(6) Let the measure space X be the closed unit interval with Lebesgue meas-
ure. If forn=1,2 ---,

i—1 i

Eni=[ 7 a;:l; i=1 - n

and if x»® is the characteristic function of E,% then the sequence {x11, x2!, x2?%,
x3Y, Xa% x3%, - -} converges in measure to 0, but fails to converge at any point
of X.

(7) Let {E,} be a sequence of measurable sets and let x» be the character-
istic function of En, 7 = 1,2, ---. The sequence {xx} is fundamental in measure
if and only if p(En,En) — Oasnand m — . (For the definition of p see 9.4.)



Chapter V

INTEGRATION

§ 23. INTEGRABLE SIMPLE FUNCTIONS

A simple function f = J 7., a:xz, on a measure space (X,S,u)
is integrable if u(E;) < « for every index 7 for which «; # 0.
The integral of f, in symbols

[rwaue or frau
is defined by f Sfdp = Dty au(E;). It follows easily from the ad-

ditivity of u that if f is also equal to D 7 Bjxr, then f Jdp =

> Bin(F)), i.e. that the value of the integral is independent
of the representation of f and is therefore unambiguously defined.
We observe that the absolute value of an integrable simple func-
tion, a finite, constant multiple of an integrable simple function,
and the sum of two integrable simple functions are integrable
simple functions.

If E is a measurable set and f is an integrable simple function,
then it is easy to see that the function xgf is an integrable simple
function also; we define the integral of f over E by

Lfdn =fXEfd#-

The simplest example of an integrable simple function is the
characteristic function of a measurable set E of finite measure;

we havefxgdu =Ld,u = u(E).
95
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In the sequel we shall define the notions of integrability and
integral on a wider domain than the class of integrable simple
functions. Some useful definitions and the statements of several
important results (but very few proofs) depend only on such
elementary properties of integration as we have already explicitly
mentioned. In order to avoid unnecessary duplication, we shall
therefore proceed as follows. Throughout this section we shall
use the word “function” as an abbreviation for “simple function.”
As a consequence of this policy all our definitions and theorems
will make sense not only for simple functions but also for the
wider class we shall subsequently consider. The proofs in this
section will, however, apply to simple functions only; we shall
complete the proofs, so that they will apply to the more general
case also, a little later.

The proofs of Theorem A and B below are omitted; these
results are immediate consequences of the definitions and, in the
case of Theorem A, an obvious and simple computation.

Theorem A. If f and g are integrable functions and o and
B are real numbers, then

[tor + b0du = o [7du + 8 [ g
Theorem B. If an integrable function f is non negative

a.e., tﬁenffdu = 0.

Theorem C. If f and g are integrable functions such that

f = gae., then
ffdu i—fgdu-

Proof. Apply Theorem B tof — gin place of f. |
Theorem D. If f and g are integrable functions, then

f1r+gldu = [1.71dn + [ ¢ 1w

Proof. Apply Theorem C to | f| + | g| and | f + g| in place
of f and g, respectively. |
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Theorem E. If f is an integrable function, then

|f7u | = [1£1du.

Proof. Apply Theorem C first to | f| and f and then to | f|
and —f. |

Theorem F. [Iff is an integrable function, a and B are real
numbers, and E is a measurable set such that, for x in E,
(2 éf(x) = B, then

w@é&%éM&

Proof. Since the principal assumption is equivalent to the
relation axz < xef < Bxz, the desired result follows from
Theorem C if u(E) < «; the case in which u(E) = « is easily
treated by direct application of the definition of integrability. ||

The indefinite integral of an integrable function f is the set

function », defined for every measurable set £ by »(E) = f fdu.
&

Theorem G. If an integrable function f is non negative a.e.,
then its indefinite integral is monotone.

Proof. If E and F are measurable sets such that E c F,
then xgf < xrf a.e., and the desired result follows from Theorem
C. 1

A finite valued set function » defined on the class of all measur-
able sets of a measure space (X,S,u) is absolutely continuous if
for every positive number € there exists a positive number § such
that | »(E) | < e for every measurable set E for which u(E) < .

Theorem H. The indefinite integral of an integrable function
is absolutely continuous.

Proof. If ¢ is any positive number greater than all the values
of | f|, then, for every measurable set E, we have

[&wmmm.l
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Theorem 1. The indefinite integral of an integrable func-
tion is countably additive.

Proof. If f is the characteristic function of a measurable set
E of finite measure, then the assertion of countable additivity for
the indefinite integral of f is just a restatement of the countable
additivity of u on measurable subsets of E. The assertion of the
theorem for arbitrary integrable simple functions is a consequence
of the fact that every such function is a finite linear combination
of characteristic functions. |i

If f and g are integrable functions, we define the distance,
p(f,g), between them by the equation

p(9) = [1£ = & ldu.

The function p deserves the name ““distance” in every respect but
one. It is true and trivial that

P(f)f) = 0, P(f;g) = p(gxf)) and p(f,g) P(g:h) + P(/l,f)

It is not true, however, that if p(f,g) = O, then f = g. The dis-
tance between two integrable functions can, for instance, vanish
if they are equal almost everywhere (but not necessarily every-
where). In a subsequent section we shall study this phenomenon
in some detail.

(1) If one of two simple functions is integrable, then so is their product.

(2) If E and F are measurable sets of finite measure, then p(xE,Xxr) =
w(EAF). Cf.9.4 and 22.7.

(3) Let (X,S,u) be the closed unit interval with Lebesgue measure, and, for
some fixed point xo in X, write »(E) = xg(xo). Is the set function » absolutely
continuous?

(4) If v is an absolutely continuous set function on the class of all measurable
sets of a measure space (X,S,u), then »(E) = 0 for every measurable set E for
which u(E) = 0.

(5) If a totally finite measure space X consists of a finite number of points,
then every real valued measurable function on X is an integrable simple func-
tion, and the theory of integration specializes to the theory of finite sums.

§24. SEQUENCES OF INTEGRABLE SIMPLE FUNCTIONS

We shall continue in this section to work with a fixed measure
space (X,S,u), and to use the device of abbreviating “simple
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function” to “function.” Since all the methods of this section
(with only one minor exception, occurring at the end of the proof
of Theorem D) are based on the general results of the preceding
section, it will turn out that not only the statements but even the
proofs of the following theorems will remain unaltered when we

turn to the general case.
A sequence {f.} of integrable functions is fundamental in the

mean, or mean fundamental, if
o(fnsfm) = 0 as n and m — .
Theorem A. A mean fundamental sequence { f,} of integra-
ble functions is fundamental in measure.

Proof. If, for any fixed positive number e,

Enm = {x: ‘fn(x) —fm(x>l = e}’

then

o fosf) = [\ fo = Sl 2 [ |fo = ol 2 cu(Bnm),

so that u(E,,) — Oasnzandm — . |

Theorem B. If {f.} is a mean fundamental sequence of
integrable functions, and if the indefinite integral of fn is va,
n=172 -, then

v(E) = lim, v, (E)
exists for every measurable set E, and the set function v is finite
valued and countably additive.

Proof. Since | v,(E) — vn(E) | éflf,. — fm|de — Oasnand

m — oo, the existence, finiteness, and uniformity of the limit are
clear, and it follows from the finite additivity of limits that » is
finitely additive. If {E,} is a disjoint sequence of measurable sets
whose union is E, then we have, for every pair of positive integers

n and k
[v(E) — Ziaiv(Ey)| =
= | v(E) — waE) | + | valE) — Ziarwa(E) |
+ l Vﬂ(U?-l Ei) - V(U?—l Ei) '
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The first and third terms of the right side of this inequality may
be made arbitrarily small by choosing # sufficiently large, and,
for fixed », the middle term may be made arbitrarily small by
choosing £ sufficiently large. This proves that

v(E) = limy i1 v(E) = 2 v(ED. |

If {v.} is a sequence of finite valued set functions defined for
all measurable sets, we say that the terms of the sequence are
uniformly absolutely continuous whenever for every positive num-
ber € there exists a positive number § such that | »,(E) | < € for
every measurable set £ for which u(E) < 3§, and for every positive
integer n.

Theorem C. If {f.} is a mean fundamental sequence of
integrable functions, and if the indefinite integral of fn is vn,
n=1,2, - then the set functions v, are uniformly absolutely
continuous.

Proof. If ¢ > 0, let #y be a positive integer such that, for
n = ny and m = ny,

€
f[fﬂ —Jfn ]dﬂ < ‘i;
and let & be a positive number such that
flf"ld/"'<f) n=1---,m
E 2

for every measurable set E for which u(E) < §; (cf. 23.H). If
E is a measurable set for which u(E) < 8§ and if # £ ny, then

| va(E) | §L|fn ldu < €

if, on the other hand, » > n,, then

|90 B) | 5 [1fo = Frolds - | fulde < e 1

Since the following theorem is of no particular importance in
the general case, we shall restrict its statement and proof to the
case of simple functions only.
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Theorem D. If {f.} and {g.} are mean fundamental
sequences of integrable simple functions which converge in meas-
ure to the same measurable function f, if the indefinite integrals

of fn and g, are v, and N\, respectively, and if, for every measur-
able set E,

v(E) = lim, va(E) and NE) = lim, M(E),

then the set functions v and \ are identical.

Proof. Since, for every ¢ > 0,
E, = {x:][falx) —ga(x) | 2 ¢} C

c sl —s0 12 5 U e 170 - 01 2 5],

it follows that lim, u(Z,) = 0. Hence, if E is a measurable set
of finite measure, then in the relation

Jife—gldus [ Vr—geltut [ 1fuldut [ lenldn

the first term on the right is dominated by eu(E), and the last
two terms can be made arbitrarily small by choosing # sufficiently
large, because of the uniform absolute continuity proved in
Theorem C. It follows that

limn | 7a(E) — M(E) | = 0,

and hence that »(E) = N(E). Since » and \ are both countably
additive, it follows that »(E) = N(E) for every measurable set
E of s—finite measure.

Since the f, and g, are simple functions, each of them is defined
in terms of a finite class of measurable sets of finite measure.
If E, is the union of all sets in all these finite classes, then E; is
a measurable set of o—finite measure, and we have, for every
measurable set E,

v(E — Eo) = M(E — Ey) =0

and therefore »(E — E;) = M(E — Ey) = 0. Since this implies
that »(E) = »(E N Ey) and NE) = NME N Ey), the proof of
Theorem D is complete. |1
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(1) Is the set of all integrable simple functions a complete metric space with
respect to the distance p?

(2) In the notation of Theorem B, if { E,} is a disjoint sequence of measurable
sets, then the series ) 5.1 ¥(En) converges absolutely. (Hint: the series con-
verges unconditionally.)

§ 25. INTEGRABLE FUNCTIONS

An a.e. finite valued, measurable function f on a measure
space (X,S,u) is integrable if there exists a mean fundamental
sequence { f,} of integrable simple functions which converges in
measure tof. The integral of /, in symbols

[redu or [ ran

is defined byffdu = limnffndu- It follows from 24.D (with E

= U.N(f»)) that the value of the integral of f is uniquely de-
termined by any particular such sequence. We emphasize the
fact that the value of the integral is always finite. We observe
that it follows from the known and obvious properties of mean
convergence and convergence in measure that the absolute value
of an integrable function, a finite constant multiple of an in-
tegrable function, and the sum of two integrable functions are
integrable functions. The relations

fr=3f1+f and fm=3(f] -/

show also that if f is integrable, then f* and f— are integrable.

If E is a measurable set and if {f,} is a mean fundamental
sequence of integrable simple functions converging in measure
to the integrable function f, then it is easy to see that the sequence
{xef~} is mean fundamental and converges in measure to xzf.
We define the integral of f over E by

fE fau = [xufdu.

We recall that the theorems of §§ 23 and 24 were stated for
general integrable functions but were proved for integrable simple
functions only. We are now in a position to complete their
proofs.
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The results 23.A and 23.B follow immediately from elementary
properties of limits; 23.C-23.G follow from 23.B verbatim as
before.

To prove the absolute continuity of an indefinite integral,
23.H, let {f.} be a mean fundamental sequence of integrable
simple functions which converges in measure to the integrable
function f. We have

| [l = | [ S| 4| [ S~ [ fiu,

for every measurable set E. Since the f, are simple functions,
the theorem 24.C on uniform absolute continuity may be applied
to prove that the first term on the right becomes arbitrarily
small if the measure of E is taken sufficiently small. The second
term on the right approaches 0 as # — «, by the definition of

f fdu; this completes the proof of 23.H.

EThe proof of the countable additivity of an indefinite integral
is even simpler. Indeed, using the notation of the preceding
paragraph, the fact that the f, are simple functions justifies the
application of 24.B, which then yields exactly the assertion of
23.1.

The proofs of 24.A-24.C were based on the statements, and
not on the proofs, of the results of § 23, and are therefore valid in
the general case. This remark completes the proofs of all the
theorems of the preceding two sections.

We shall say that a sequence {f.} of integrable functions
converges in the mean, or mean converges, to an integrable
function f if

p( fasf) =flfn—f|du->0 as n — o,

Our first result concerning this concept is extremely similar, in
statement and in proof, to 24.A.

Theorem A. If {f.} is a sequence of integrable functions
which converges in the mean to f, then {fn} converges to f in
measure.



104 INTEGRATION [Sgc. 23]

Proof. If, for any fixed positive number e,

En = {x:|fulx) = f() | 2 ¢},

then

Jire—flanz 17~ fldn 2 wiED,

so that u(E,) —» Oasn — «. |
Theorem B. If f is an a.e. non negative integrable function,
then a necessary and sufficient condition that f Jdu = 0 is that
f=0a.c.

Proof. If f =0 a.e., then the sequence each of whose terms
is identically zero is a mean fundamental sequence of integrable
simple functions which converges in measure to £, and it follows

that f Jfdu = 0. To prove the converse, we observe that if {f.}

is a mean fundamental sequence of integrable simple functions
which converges in measure to f, then we may assume that
fn» = 0, since we may replace each f, by its absolute value. The

assumptionffdu = 0 implies that lim, ffndu =0, ie. that

{f2} mean converges to 0. It follows from Theorem A that
{/a} converges to 0 in measure and hence the desired result is
implied by 22.C. |

Theorem C. If f is an integrable function and E is a set of

measure zero, then
f fdu = .
E

Proof. Sinceffd,u =ffod;u, and since the characteristic
E

function of a set of measure zero vanishes a.e., the desired result
follows from Theorem B. |

Theorem D. If f is an integrable function which is positive
a.e. on a measurable set E, and z'fffdy = 0, then u(E) = O.
B
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Proof. We write Fy = {x:f(x) > 0} and F, = {x:f(x) = 1} s
n

n=1,2, ---; since the assumption of positiveness implies that
E — F, is a set of measure zero, we have merely to prove that
E N F,is one also. Since

1
0= fduZ;u(EnFn)QO,

EnF,

and since Fy = Un-1 Fa, the desired result follows from the
relation w(E N Fy) £ D v w(E N FL). 1

Theorem E. If f is an integrable function such that
f fdu = O for every measurable set F, then f = 0 a.e.
F

Proof. If E = {x: f(x) > 0}, then, by hypothesis,f Jdu = 0,
E

and therefore, by Theorem D, E is a set of measure zero. Applying
the same reasoning to —f shows that {x: f(x) < 0} is a set of
measure zero. |

Theorem F. If f is an integrable function, then the set
N(f) = {x:f(x) #= O} has o—finite measure.

Proof. Let {f,} be a mean fundamental sequence of integrable
simple functions which converges in measure to f. For every
n=1,2, ---, N(fs) is a measurable set of finite measure. If
E = N(f) — Uy-1 N(/f»), and if F is any measurable subset of

E, then it follows from the relation

f fdu = lim,, f Fodu =0
F F

and Theorem E that f = 0 a.e. on E. In view of the definition
of N(f) this implies that u(E) = 0; we have

N(f) € Us-i N(f2) U E. 1

It is frequently useful to define the symbol f fdu for certain

non integrable functions f. If, for instance, f is an extended real
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valued, measurable function such that f = 0 a.e. and if f is nor
integrable, then we write
ffdn = .

The most general class of functions f for which it is convenient
to define f Jfdu 1s the class of all those extended real valued measur-

able functions f for which at least one of the two functions f*
and f~ is integrable; in that case we write

1 = [rau = [ran

Since at most one of the two numbers,ff+d;u andff"du, is

infinite, the value offfd;u is always o, —oo, or a finite real

number—it is never the indeterminate form o — «, We shall
make free use of this extended notion of integration, but we shall
continue to apply the adjective ““integrable” to such functions
only as are integrable in the sense of our former definitions.

(1) If X is the space of positive integers (described, for instance, in 22.4),
then a function f is integrable if and only if the series ) 5., | f(#) | is convergent,

and, if this condition is satisfied, thenffdu =y f(n).

(2) If f is a non negative integrable function, then its indefinite integral is a
finite measure on the class of all measurable sets.
(3) If fis integrable, then, for every positive number e,

p({w: () | 2 €) <o

(4) If g is a finite, increasing, and continuous function of a real variable, and
B¢ 1s the Lebesgue-Stieltjes measure induced by g (cf. 15.9), and if f is a function

which is integrable with respect to this measure, then the integralff(x)dﬁg(x)

is called the Lebesgue-Stieltjes integral of f with respect to g and is denoted by
40

f S(x)dg(x). If, in particular, g(x) = x, then we obtain the Lebesgue integral,

denoted byf_+ °°_f(:c')dx. If f is a continuous function such that N(f) is a bounded
set, then f is Lebesgue integrable.
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§ 26. SEQUENCES OF INTEGRABLE FUNCTIONS

Theorem A. If {f.} is a mean fundamental sequence of
integrable simple functions which converges in measure to the
integrable function f, then

pif) = [If = fuldu =0 as = w;

hence, to every integrable function f and to every positive num-
ber €, there corresponds an integrable simple function g such
that p(f,g) < e.

Proof. For any fixed positive integer m, {| fo — f |} is 2 mean
fundamental sequence of integrable simple functions which con-
verges in measure to | f — f,, |, and, therefore,

17 = ol = timn [1fo = fn .
The fact that the sequence {f,} is mean fundamental implies the
desired result. |

Theorem B. If {f.} is a mean fundamental sequence of
integrable functions, then there exists an integrable function f

such that p(fn,f) — O (and consequently f Sndu — f fdu) as

n — oo,
Proof. By Theorem A, for each positive integer # there is an
1
integrable simple function g, such that p(fn,g.) < - It follows

that {g.} is a mean fundamental sequence of integrable simple
functions; let f be a measurable (and therefore integrable) func-
tion such that {g,} converges in measure to f. Since

05 | [fudu ~ [fau] 5 [1 0 = Fld = oUf) 5

= P(fmgn) + p(gns 1),

the desired result follows from Theorem A. |
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In order to phrase our next result in a concise and intuitive
fashion, we recall first the definition of a certain kind of con-
tinuity for set functions. A finite valued set function » on a class
E of sets is continuous from above at 0 (cf. § 9) if, for every de-
creasing sequence {E,} of sets in E for which lim, E, = 0, we
have lim, »(E,) = 0. If {r,} is a sequence of such finite valued
set functions on E, we shall say that the terms of the sequence
are equicontinuous from above at 0 if, for every decreasing se-
quence {E,} of sets in E for which lim, E, = 0, and for every
positive number e, there exists a positive integer m such that if
m = mg, then | v,(En) | < g =1,2, ---.

Theorem C. A sequence {f.} of integrable functions con-
verges in the mean to the integrable function f if and only if
{fa} converges in measure to f and the indefinite integrals of
| fuly m =1, 2, -, are uniformly absolutely continuous and
equicontinuous from above at 0.

Proof. We prove first the necessity of the conditions. Since
convergence in measure and uniform absolute continuity follow
from 25.A and 24.C respectively, we have only to prove the as-
serted equicontinuity.

The mean convergence of { f.} to f implies that to every positive
number e there corresponds a positive integer 7, such that if

n = no, thenflfn — fldu < g Since the indefinite integral of

a non negative integrable function is a finite measure (23.I), it
follows from 9.E that such an indefinite integral is continuous
from above at 0. Consequently, if {£,,} is a decreasing sequence
of measurable sets with an empty intersection, then there exists
a positive integer mq such that, for m = my,

[1rlae <5 and [ fa=slds<s, n=1,-m
B 2 Enm 2

Hence, if m = m,, then we have

Lmlfrp |du éjl;mlfn — fldu +fE,,.|fId” <e
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for every positive integer 7, and this is exactly the desired equi-
continuity result.

We turn to the proof of sufficiency. Since a countable union of
measurable sets of g—finite measure is a measurable set of o—finite
measure, it follows from 25.F that

Eo = Un=1 {#: falx) %= 0}

is such a set. If {E,} is an increasing sequence of measurable
sets of finite measure such that lim, E, = E;, and if F, =
Ey— E,,n=1,2, -+, then {F,} is a decreasing sequence and
lim, F, = 0. The assumed equicontinuity implies that, for
every positive number §, there exists a positive integer £ such that

o
f | £+ |du < =, and consequently
Fy 2

j;,llfm —fa ldll éj;,,lfm ldu +ﬁ;‘f" ld”, < 8.

If for any fixed ¢ > 0 we write

Gmn = {x: ‘fm(x) — fa(x) l P ‘}’

then it follows that

j;klfm —/fa la'p. §.j;]k_0mﬂlfm —fa |du —i—j};knamlfm — fa ldi"’ <

< (B + [ ol =Sl

By convergence in measure and uniform absolute continuity, the
second term on the dominant side of this chain of inequalities
may be made arbitrarily small by choosing 7 and » sufficiently
large, so that

lim supn, [ | fn = foldu S cu(B).

Since e is arbitrary, it follows that

lim, . L [ = faldu = 0.
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Since

ﬂh—ﬁW=Lm—ﬂW=

= [ 1fn = ol [ | o = 1ol

we have

lim sup,, , f[ S = fuldu < 3,

and therefore, since § is arbitrary,

mmﬂh—ﬁW=Q

We have proved, in other words, that the sequence { f.} is funda-
mental in the mean; it follows from Theorem B that there exists
an integrable function g such that {f.} mean converges to g.
Since mean convergence implies convergence in measure, we must
have f = gae. |

The following result is known as Lebesgue’s bounded con-
vergence theorem.

Theorem D. If {f.} is a sequence of integrable functions
which converges in measure to f [or else converges to f a.e.], and
if g is an integrable function such that | f.(x) | < | g(x) | a.e.,
n=1,2, -+, then f is integrable and the sequence { f,} con-
verges to f in the mean.

Proof. In the case of convergence in measure, the theorem is
an immediate corollary of Theorem C—the uniformities required
in that theorem are all consequences of the inequality

J1£ldu s [ gl

The case of convergence a.e. may be reduced to that of conver-
gence in measure (even though the integrals are not necessarily
over a set of finite measure, cf. 22.4 and 22.5) by making use of
the existence of g. If we assume, as we may without any loss
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of generality, that |f.(x)| £ |g()| and |f(x)| < |g()| for
every x in X, then we have, for every fixed positive number e,

E, = U b 1/ =@ | 2 4 < [wi e | 23],

and therefore u(E,) < o,n = 1,2, ---. Since the assumption of
convergence a.e. implies that u((\ra1 E.) = 0, it follows from
9.E that

lim sup, p({x: [ fa(x) — f(x) | Z €}) = limg p(E,) =
' = p(lim, E,) = 0.

In other words, convergence a.e., together with being bounded
by an integrable function, implies convergence in measure, and
the proof of the theorem is complete. |

(1) Is the set of all integrable functions a Banach space with respect to the
norm defined by || f|| =I|f{dp.?

(2) If {f.} is a uniformly fundamental sequence of functions, integrable over
a measurable set E of finite measure, then the function f, defined by f(x) =

lim, fa(x), is integrable over E andf | fo—fldu — 0asn — o,
E
(3) If the measure space (X,S,u) is finite, then Theorem C remains true even
if the equicontinuity condition is omitted.
(4) Let (X,S,u) be the space of positive integers (cf. 22.4).
(4a) Write
1
Salk) = {n
0 if k>n

if 1Sk=Sn,

The sequence {f,} may be used to show that the equicontinuity condition may
not, in general, be omitted from Theorem C.

(4b) The sequence described in (4a) may be used to show also that if {fa}
is a uniformly convergent sequence of integrable functions whose limit function

f is also integrable, then we do not necessarily have lim, f Srdu = f Sdu; (cf. (2)

above).
(4c) Write )
= i <k=
Jak) = 17 if 1Sk=Sn,
0 if k>n

The sequence { f»} may be used to show that the limit of a uniformly convergent
sequence of integrable functions need not be integrable.
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(5) Let X be the closed unit interval with Lebesgue measure and let {E,}

. 1
be a decreasing sequence of open intervals such that u(E,) = oo n= 1,2, .-,

The sequence {nxz,} may be used to show that the boundedness condition cannot
be omitted from Theorem D.

(6) If {f.} is a sequence of integrable functions which converges in the mean
to the integrable function f, and if g is an essentially bounded measurable func-
tion, then { f.g} mean converges to fg.

(7) If {f.} is a sequence of non negative integrable functions which converges

a.e. to an integrable function f, and ifffndp =ffdu, n=1,2, -, then {fa}

converges to f in the mean. (Hint: write g, = f, — f and observe that the
trivial inequality | fn — f| £ fu +f implies that 0 < g,~ < f. The bounded
convergence theorem may therefore be applied to the sequence {g.~}; the de-

sired result follows from the fact thatfg,ﬁdu —fg,.“du =0,n=12---.)

§ 27. PROPERTIES OF INTEGRALS

Theorem A. If f is measurable, g is integrable, and | f| <
| g| a.e., then f is integrable.

Proof. Consideration of the positive and negative parts of f
shows that it is sufficient to prove the theorem for non negative
functions f. If f is a simple function, the result is clear. In the
general case there is an increasing sequence { f,} of non negative
simple functions such that lim,, f.(¥) = f(x) for all x in X. Since
0 < f. £ | g, each £, is integrable and the desired result follows

from the bounded convergence theorem. ||

Theorem B. If {f.} is an increasing sequence of extended
real valued non negative measurable functions and if lim, f,(x)

= f(x) a.e., then lim, f Fudu = f fdu.

Proof. If f is integrable, then the result follows from the
bounded convergence theorem and Theorem A. The only novel
feature of the present theorem is its application to the not neces-

sarily integrable case; we have to prove that if f fdu = o, then

lim, f Jfadu = o, or, in other words, that if lim, f [fndu < o, then
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fis integrable. From the finiteness of the limit we may conclude
that

lit | (s = [Fuds| = .

Since f» — fa is of constant sign for each fixed m and », we have

| [fuds = [Fodis| = [1 S = s

so that the sequence {f.} is mean convergent and therefore
(26.B) mean converges to an integrable function g. Since mean
convergence implies convergence in measure, and therefore a.e.
convergence for some subsequence, we have f = ga.e. |l

Theorem C. A measurable function is integrable if and only
if its absolute value is integrable.

Proof. The new part of this theorem is the assertion that the
integrability of | f | implies that of £, and this follows from Theorem
A with | f| in place of g. I

Theorem D. Iff is integrable and g is an essentially bounded
measurable function, then fg is integrable.

Proof. If |g| < ¢ a.e., then |fg| < ¢|f| a.e. and therefore
the result follows from Theorem C. |

Theorem E. If f is an essentially bounded measurable func-
tion and E is a measurable set of finite measure, then f is
integrable over E.

Proof. Since the characteristic function of a measurable set
of finite measure is an integrable function, the result follows
from Theorem D with xg and f in place of f and g. |

Our next and final result is known as Fatou’s lemma.

Theorem F. If { f.} is a sequence of non negative integrable
Sunctions for which

lim inf, f fdu < o,
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then the function f, defined by
f(x) = lim inf, f.(x),

is integrable and
f fdu < lim inf,, f fodu.

Proof. If g.(x) = inf{fi(x): » < i < »}, then g, < f, and
the sequence { g.} is increasing. Sincefgnd,u gffndu, it follows
that

lim, f £2du < lim inf, f Fud < oo,

Since lim, g.(¥) = lim inf, f.(x) = f(»), it follows from Theorem
B that f is integrable and

ffdu = lim, fgnd;u =< lim inf, ffndu. |

(1) If f is a measurable function, g is an integrable function, and @ and B
are real numbers such that & < f(x) < B a.e., then there exists a real number v,

a =v =B, such thatfflgld,u ='y-f|g[dp.. (Hint:
o [leldu = [£leldn < [lgldu)

This result is known as the mean value theorem for integrals.
(2) If { fa} is a sequence of integrable functions such that

ier [1fnldu < o,

then the series D51 fa(x) converges a.e. to an integrable function f and

Jrin = Sies [

(Hint: apply Theorem B to the sequence of partial sums of the series
2n=1|fa(x) | and recall that absolute convergence implies convergence.)

(3) If f and fu are integrable functions, n = 1, 2, ---, such that | f,(x) | <
| f(x) | a.e., then the functions f* and fx, defined by

Sf*(x) = lim sup, fa(x) and fi(x) = lim inf, f.(x),

are integrable and

ff*du = lim supnffndu Z lim infnffndﬂ ?:ff*dﬂ-
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(Hint: by considering separately the positive and negative parts, reduce the
general case to the case of non negative fu, and then apply Fatou’s lemma to

{f +/fa} and {f = fa}.)
(4) A measurable functlon f is integrable over a measurable set E of finite
measure if and only if the series

e wE N {x: | fx) | = n

converges. (Hint: use Abel’s method of partial summation.) What can be
said if u(E) = 0, or if the summation is extended from #» = 0?

(5) Suppose that {E,} is a sequence of measurable sets and m is any fixed
positive integer, and let G be the set of all those points which belong to E,
for at least m values of n. Then G is measurable and

ou(G) = 3 n-1u(Ey).

(Hint: consider D _ma1 f X, (*)du(x).)

(6) Suppose that f is a finite valued, measurable function on a totally finite
measure space (X,S,u), and write

Sn = "“'”2"“({ 2,.<f()5£i—1}), n=12---
Then

f fdu = limp $ny

in the sense that if f is integrable, then each series s, is absolutely convergent,
the limit exists, and is equal to the integral, and, conversely, if any one of the
series 5, converges absolutely, then all others do, the limit exists, f is integrable,
and the equality holds. (Hint: it is sufficient to prove the result for non nega-
tive functions. Write

k.. k& k+1
- lf 5;<f(x)§ o Y

0 if f(x)=0,

i) = k=0,1,2, -

and apply Theorem B. For the converse direction observe that

f(x) = zfn(x) + M(X)>

so that f is integrable and therefore the preceding reasoning applies.)

(7) The following considerations are at the basis of an alternative popular
approach to integration. Let f be a non negative integrable function on a meas-
ure space (X,S,u). For every measurable set E we write

a(E) = inf {f(x): x € E},

and for every finite, disjoint class C = {Ey, - - -, En} of measurable sets we write
5(C) = 2¢-1 a(EJu(E)).

We assert that the supremum of all numbers of the form s(C) is equal to [fdp.
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If f is a simple function, the result is clear. If g is a non negative simple function
such that g £ f, say g = D = ixg;, we write C = {E;, ---, E,}. Then

Jedu = Tt an(E) < Tty aEIu(E) = 5(©).

It follows that if {ga} is an increasing sequence of non negative simple functions
converging to f, then

]im,.fg,.du = sup $(C),

and thcreforeffdu = sup 5(C). On the other hand, for every C, 5(C) §ffdy,

since s(C) is, in fact, the integral of a function such as g.

(7a) Does the result of the preceding paragraph extend to non integrable,
non negative functions?

(7b) If f is an integrable function on a totally finite measure space (X,S,u),
and if its distribution function g is continuous, (cf. 18.11), then

Jran = [ edg

(cf. 25.4). (Hint: assume f = 0, and make use of (7) above by considering the
“approximating sums” s(C) of both integrals.)



Chapter V1

GENERAL SET FUNCTIONS

§ 28. SIGNED MEASURES

In this chapter we shall discuss a not too difficult but rather
useful generalization of the notion of measure; the principal dif-
ference between measures and the set functions we now propose
to treat is that the latter are not required to be non negative.

Suppose that u; and uy are two measures on a o—ring S of sub-
sets of a set X. If we define, for every set Ein S, p(E) = m(E) +
po(E), then it is clear that u is a measure, and this result, on the
possibility of adding two measures, extends immediately to any
finite sum. Another way of manufacturing new measures is to
multiply a given measure by an arbitrary non negative constant.
Combining these two methods, we see that if {us, -+, pa} is a
finite set of measures and {ay, - -+, @,} is a finite set of non nega-
tive real numbers, then the set function u, defined for every set
E in S by

w(E) = 2701 ai(E),
is a measure.

The situation is different if we allow negative coefficients. If,
for instance, u; and u, are two measures on S, and if we define
u by u(E) = u(E) — us(E), then we face two new possibilities.
The first of these, namely that u may be negative on some sets,
is not only not a serious objection but in fact an interesting
phenomenon worth investigating. The second possibility presents,

however, a difficulty that has to be overcome before the investiga-
17
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tion can begin. It can, namely, happen that p,(E) = po(E) = o
what sense, in this case, can we make of the expression for u(E)?

To avoid the difficulty of indeterminate forms, we shall agree
to subtract two measures only if at least one of them is finite.
This convention is analogous to the one we adopted in presenting

the most general definition of the symbol f Sfdp. (We recall that

ffdu is defined for a measurable function f if and only if at least

one of the two functions /™ and f~ is integrable, i.e. if and only
if at least one of the two set functions »* and »~, defined by

v H(E) = fE J*du and »—(E) = fE fdu,

is a finite measure.) The analogy can be carried further: if f is

a measurable function such thatffdu is defined, then the set func-

tion v, defined by »(E) = f Jfdp, is the difference of two measures.
E

The definition that we want to make is sufficiently motivated
by the preceding paragraphs. We define a signed measure as
an extended real valued, countably additive set function p on the
class of all measurable sets of a measurable space (X,S), such that
p(0) = 0, and such that u assumes at most one of the values
4+ and —oo.

We observe that implicit in the requirement of countable addi-
tivity is the requirement that if {£,} is a disjoint sequence of
measurable sets, then the series Y .., u(E,) is either convergent
or definitely divergent (to +w or —o)—in any case that the
symbol > v_, u(E,) makes sense.

The words “[totally] finite” and “[totally] o-finite” will be
used for signed measures just as for measures, except that u(E)
has to be replaced by | u(E) |, or, equivalently, u(E) < = has to
be replaced by —« < u(E) < «. For instance, a signed measure
u is totally finite if X is measurable and | u(X) | < .

One of our objectives in the following study is to prove that
every signed measure is the difference of two measures. If this
result is granted, it follows that we could have defined the concept
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of signed measure on a ring and then attempted to copy the ex-
tension procedure for measures; and it follows equally that it
would have been a waste of time to do so, since we may, instead,
reduce the discussion of signed measures to that of measures.

It follows from the definition of signed measures, just as for
measures, that a signed measure is finitely additive and, there-
fore, subtractive.

Theorem A. If E and F are measurable sets and p is a signed
measure such that

EcF and |ulF)| <,
then | w(E) | < .

Proof. We have p(F) = p(F — E) + p(E). If exactly one
of the summands is infinite, then so is u(F); if they are both
infinite, then (since u assumes at most one of the values 4+ and
—») they are equal and again u(F') is infinite. Only one possi-
bility remains, namely that both summands are finite, and this
proves that every measurable subset of a set of finite signed
measure has finite signed measure. ||

Theorem B. If u is a signed measure and { E.,.} is a disjoint
sequence of measurable sets such that | u(Une1 En) | < , then
the series ) mway W(E,) s absolutely convergent.

Proof. Write

E+ = {E,, if w(E, =0,
0 if w(E, <0,

and
oo {E if w(E) 50,
"o if w(E.) >0.

Then

#(U:=1 En+) = Z:=1 ﬂ(En+)

and

p(Ur=1 En7) = 2ovai w(Ea7).

Since the terms of both the last written series are of constant
sign, and since u takes on at most one of the values +w and —,
it follows that at least one of these series is convergent. Since
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the sum of the two series is the convergent series D oy u(E,),
it follows that they both converge, and, since the convergence of
the series of positive terms and the series of negative terms is
equivalent to absolute convergence, the proof of the theorem is
complete. |

Theorem C. If pis a signed measure, if {E,} is a monotone
sequence of measurable sets, and if, in case { E,} is a decreasing
sequence, | u(E,) | < o for at least one value of n, then

plimy E,) = limy p(E,).

Proof. The proof of the assertion concerning increasing se-
quences is the same as for measures (replacing { £,} by the disjoint
sequence {E; — E;_;} of differences, cf. 9.D); the same is true
for decreasing sequences (reduction to the preceding case by
complementation, cf. 9.E), except that Theorem A has to be used
to ensure the finiteness of the subtrahends that occur. |

(1) The sum of two [totally] o—finite measures is a [totally] o-finite measure.
Is this assertion valid for infinite sums?

(2) A complex measure on the class of all measurable sets of a measurable
space is a set function u such that, for every measurable set E, u(E) = ui(E) +
ius(F), where i = \/—l, and where uj and p2 are signed measures in the sense
of this section. Are Theorems A, B, and C true for complex measures?

(3) If a signed measure p is the difference of two measures in two ways,
4= g1 — ug and p = v; — e, then is it true that y; = »; and ug = »y?

(4) The fact that a signed measure assumes at most one of the values oo
and —o follows from the requirement of additivity. (Hint: if u(E) = 4o and
u(F) = —oo, then the right side of at least one of the relations

K(E) = w(E — F) + u(E N F),
w(F) = p(F — E) + p(E N F),

and
WEAF) =pE—F)+ u(F - E)

& indeterminate.)

§29. HAHN AND JORDAN DECOMPOSITIONS

If u is a signed measure on the class of all measurable sets of a
measurable space (X,S), we shall call a set E positive (with respect
to u) if, for every measurable set F, E N F is measurable and
w(E N F) = 0; similarly we shall call E negative if, for every
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measurable set F, E N F is measurable and pu(E N F) £ 0.
The empty set is both positive and negative in this sense; we do
not assert that any other, non trivial, positive sets or negative
sets necessarily exist.

Theorem A. If p is a signed measure, then there exist two
disjoint sets A and B whose union is X, such that 4 is positive
and B is negative with respect to p.

The sets 4 and B are said to form a Hahn decomposition of X
with respect to p.

Proof. Since u assumes at most one of the values +« and
— o, we may assume that, say

—o < uE) = »

for every measurable set E. Since the difference of two negative
sets, and a disjoint, countable union of negative sets are obviously
negative, it follows that every countable union of negative sets
is negative. We write 8 = inf u(B) for all measurable negative
sets B. Let {B;} be a sequence of measurable negative sets such
that lim; u(B;) = 8; if B = U=, B;, then B is a measurable
negative set for which u(B) is minimal.

We shall prove that the set 4 = X — B is a positive set.
Suppose that, on the contrary, E, is a measurable subset of 4
for which u(E;) < 0. The set E, cannot be a negative set, for
then B U E, would be a negative set with a smaller value of u
than u(B), which is impossible. Let k; be the smallest positive
integer with the property that E, contains a measurable set E;
for which u(E;) = /el (Observe that, since u(Ey) < 0, u(Ep)

1
and u(E;) are both finite.) Since

1
w(Eo — Ey) = p(Eo) — w(Er) = u(Eo) — 7 <0,
1
the argument just applied to E, is applicable to Ey — E; also.
Let k, be the smallest positive integer with the property that
Ey, — E; contains a measurable subset E; with u(E;) = 7 and

proceed so on ad infinitum. Since p is finite valued for measurable
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1
subsets of Ey (28.A), we must have lim, 7= 0. It follows that,

n

for every measurable subset F of
Fo = Eo — U;’=1 Ej)

we have u(F) £ 0, 1e. that F, is a measurable negative set.
Since Fj is disjoint from B, and since

p(Fo) = p(Eo) — 2721 w(Ey) = p(Eo) <0,

this contradicts the minimality of B, and we conclude that the
hypothesis u(E) < 0 is untenable. |

It is not difficult to construct examples to show that a Hahn
decomposition is zof unique. If, however,

X=41UBl and X=142UBz

are two Hahn decompositions of X, then we can prove that, for
every measurable set E,

w(E N A) = u(EN A) and p(E N By) = u(E N By).
To see this, we observe that
EN (4 — A) c EN A4,
so that u(E N (4; — 42)) = 0, and
EN (4, — 4;) < EN By,

so that u(E N (4, — A45)) = 0. Hence p(E N (4, — A42)) =0
and, by symmetry, u(E N (4; — 4,)) = 0, it follows that

pE N 4y) = p(EN (41U 42)) = p(E N A).
It follows from this result that the equations
pH(E) =wmENA) and p(E) = —u(E N B)

unambiguously define two set functions u* and p~ on the class
of all measurable sets, called, respectively, the upper variation
and the lower variation of u. The set function | u|, defined
for every measurable set E by | u |(E) = pt(E) + p—(E), is the
total variation of u. (Observe the important notational distinc-
tion between | p |(E) and | u(E) |.)
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Theorem B. The upper, lower, and total variations of a
signed measure u are measures and w(E) = ut(E) — p=(E)
for every measurable set E. If u is [totally] finite or o—finite,
then so also are pt and w=; at least one of the measures p+ and
u= is always finite.

Proof. The variations of u are clearly non negative; if every
measurable set is a countable union of measurable sets for which u
is finite, it follows from 28.A that the same is true for p* and p~.
The equation g = pt — u~ follows from the definitions of u™*
and p~; the fact that u takes on at most one of the values +o
and —o implies that at least one of the set functions p* and p~
is always finite. Since the countable additivity of p* and p~
is evident, the proof is complete. ||

It follows from Theorem B that every signed measure is the
difference of two measures (of which at least one is finite); the
representation of u as the difference of its upper and lower varia-
tions is called the Jordan decomposition of .

(1) If p is a finite signed measure and if {E,} is a sequence of measurable
sets such that lim, E, exists, (i.e. such that lim sups E, = lim inf, E,), then

w(limy, E,) = lim, u(E,).

(2) A finite signed measure, together with its variations, is bounded. For
this reason finite signed measures are often said to be of bounded variation.
(3) If u is a signed measure and if E is a measurable set, then

pH(E) = sup {u(F): ED FeS} and p~(E) = —inf {p(F): ED FeS}.

An alternative and frequently used proof of the validity of the Jordan decomposi-
tion may be given by treating these equations as the definitions of p* and p~.
(4) Does the set of all totally finite signed measures on a g—algebra form a
Banach space with respect to the norm defined by || u || = | [(X)?
(5) If (X,S,u) is a measure space and f is an integrable function on X, then

the set function v, defined by »(E) =f f(x)du(x), is a finite signed measure, and
E

y+(E) = fE frdu, v=(E) = fE fdu.

What is | v |(E) in terms of f?

(6) If u and » are totally finite measures on a g-algebra S and if E is a set in
8, then, corresponding to every real number #, there exists a set 4; in S such that
Ay C E and such that, for every set F in S for which F C 4, [or for which
F C E — 4] we have »(F) S tu(F), [or v(F) = tu(F)].
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(7) If p is a signed measure and f is a measurable function such that f is
integrable with respect to | 4 |, then we may write, by definition,

ffdp =ffdu+ —ffdu‘.

This integral has many of the essential properties of the “positive” integrals
discussed in Chapter V. If p is a finite signed measure, then, for every measur-
able set E,

|1 1(B) = sup| [ s,

where the supremum is extended over all measurable functions f such that

Ifl =L
(8) By the separate consideration of real and imaginary parts, integrals such

as f fdu may be defined for complex valued functions f and complex measures u;

(cf. 28.2). Motivated by (7) above, we define the total variation of a finite

complex measure u by | u |(E) = sup | f fdu |, where the supremum 1s extended
B

over all (possibly complex valued) measurable functions f such that | f| < 1.
What is the relation between | u | and the total variations of the real and imagi-
nary parts of u?

§30. ABSOLUTE CONTINUITY

Motivated by the properties of indefinite integrals, we intro-
duced the abstract concept of signed measure, and we showed that
the abstraction had several of the important properties of the
concrete concept which it generalized. Indefinite integrals have,
however, certain additional properties (or, rather, certain rela-
tions to the measures in terms of which they are defined) that are
not shared by general signed measures. In a special case we have
already discussed one such property of very great significance
(absolute continuity, § 23); we propose now to examine a more
general framework in which the discussion of absolute continuity
still makes sense.

If (X,S) is a measurable space and p and » are signed measures
on S, we say that v is absolutely continuous with respect to p,
in symbols » < u, if »(E) = 0 for every measurable set E for
which | #|(E) = 0. In a suggestively imprecise phrase, » < u
means that » is small whenever u is small. We call attention,
however, to the lack of symmetry in the precise form of the defini-
tion; the smallness of u is expressed by a condition on its total
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variation. Our first result concerning absolute continuity asserts
that this asymmetry is only apparent.

Theorem A. If u and v are signed measures, then the condi-
tions

(2) v <K iy
(b) vt <Ku and v~ <L,
(C) I v | < I M |>

are mutually equivalent.

Proof. If (a) is valid, then »(E) = 0 whenever | u [(E) = 0.
If X = 4 U B is a Hahn decomposition with respect to », then
we have, whenever | u [(E) = 0,

0 |p[(ENA) =S |p|(BE)=0
and

0= |n|(ENB)=|u|(E) =0,
and therefore
vHE)=vENA) =0 and » (E) =v»(E N B) = 0;

this proves the validity of (b).
The facts that (b) implies (c) and (c) implies (a) follow from
the relations

| v |(E) = »*(E) + »—(E) and 0= |w(E)]| < |v|(E)

respectively. |

The following theorem establishes the relation between our
present form of the definition of absolute continuity and the one
we used (for finite valued set functions) in § 23. The theorem
asserts essentially that another precise interpretation of “v is
small whenever u is small,” which is apparently quite different
from the definition of absolute continuity, is in the presence of a
finiteness condition equivalent to it.

Theorem B. If v is a finite signed measure and if p is a
sig