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Preface

Polynomials pervade mathematics, and much that is beautiful in mathe­
matics is related to polynomials. Virtually every branch of mathematics,
from algebraic number theory and algebraic geometry to applied analy­
sis, Fourier analysis, and computer science, has its corpus of theory arising
from the study of polynomials. Historically, questions relating to polyno­
mials, for example, the solution of polynomial equations, gave rise to some
of the most important problems of the day. The subject is now much too
large to attempt an encyclopedic coverage.

The body of material we choose to explore concerns primarily polyno­
mials as they arise in analysis, and the techniques of the book are primarily
analytic. While the connecting thread is the polynomial, this is an analysis
book. The polynomials and rational functions we are concerned with are
almost exclusively of a single variable.

We assume at most a senior undergraduate familiarity with real and
complex analysis (indeed in most places much less is required). However,
the material is often tersely presented, with much mathematics explored
in the exercises, some of which are quite hard, many of which are supplied
with copious hints, some with complete proofs. Well over half the material
in the book is presented in the exercises. The reader is encouraged to at
least browse through these. We have been much influenced by P6lya and
Szego's classic "Problems and Theorems in Analysis" in our approach to
the exercises. (Though unlike P6lya and Szego we chose to incorporate the
hints with the exercises.)
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The book is mostly self-contained. The text, without the exercises, pro­
vides an introduction to the material, but much of the richness is reserved
for the exercises. We have attempted to highlight the parts of the theory
and the techniques we find most attractive. So, for example, Muntz's lovely
characterization of when the span of a set of monomials is dense is explored
in some detail. This result epitomizes the best of the subject: an attractive
and nontrivial result with several attractive and nontrivial proofs.

There are excellent books on orthogonal polynomials, Chebyshev poly­
nomials, Chebyshev systems, and the geometry of polynomials, to name but
a few of the topics we cover, and it is not our intent to rewrite any of these.
Of necessity and taste, some of this material is presented, and we have at­
tempted to provide some access to these bodies of mathematics. Much of
the material in the later chapters is recent and cannot be found in book
form elsewhere.

Students who wish to study from this book are encouraged to sample
widely from the exercises. This is definitely "hands on" material. There
is too much material for a single semester graduate course, though such
a course may be based on Sections 1.1 through 5.1, plus a selection from
later sections and appendices. Most of the material after Section 5.1 may
be read independently.

Not all objects labeled with "E" are exercises. Some are examples.
Sometimes no question is asked because none is intended. Occasionally
exercises include a statement like, "for a proof see . .. "; this is usually an
indication that the reader is not expected to provide a proof.

Some of the exercises are long because they present a body of mat~'ri::';:(.
Examples of this include E.n of Section 2.1 on the transfinite diameter of
a set and E.n of Section 2.3 on the solvability of the moment problem.
Some of the exercises are quite technical. Some of the technical exercises,
like E.4 of Section 2.4, are included, in detail, because they present results
that are hard to access elsewhere.
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1

Introduction and Basic Properties

Overview

The most basic and important theorem concerning polynomials is the Fun­
damental Theorem of Algebra. This theorem, which tells us that every
polynomial factors completely over the complex numbers, is the starting
point for this book. Some of the intricate relationships between the loca­
tion of the zeros of a polynomial and its coefficients are explored in Section
2. The equally intricate relationships between the zeros of a polynomial and
the zeros of its derivative or integral are the subject of Section 1.3. This
chapter serves as a general introduction to the body of theory known as the
geometry of polynomials. Highlights of this chapter include the Fundamen­
tal Theorem of Algebra, the Enestrom-Kakeya theorem, Lucas' theorem,
and Walsh's two-circle theorem.

1.1 Polynomials and Rational Functions

The focus for this book is the polynomial of a single variable. This is an
extended notion of the polynomial, as we will see later, but the most im­
portant examples are the algebraic and trigonometric polynomials, which
we now define. The complex (n + 1)-dimensional vector space of algebraic
polynomials of degree at most n with complex coefficients is denoted by
P~.



2 1. Introduction and Basic Properties

If C denotes the set of complex numbers, then

(1.1.1)

When we restrict our attention to polynomials with real coefficients we will
use the notation

(1.1.2)

where IR is the set of real numbers. Rational functions of type (m, n) with
complex coefficients are then defined by

(1.1.3) R~,n := {~ : p E p~, q E p~} ,
while their real cousins are denoted by

(1.1.4)

The distinction between the real and complex cases is particularly impor­
tant for rational functions (see E.4).

The set of trigonometric polynomials T/: is defined by

(1.1.5)

A real trigonometric polynomial of degree at most n is an element of T/:
taking only real values on the real line. We denote by Tn the set of all real
trigonometric polynomials of degree at most n. Other characterizations of
Tn are given in E.g. Note that if z := eiO , then an arbitrary element of T/:
is of the form

(1.1.6)

and so many properties of trigonometric polynomials reduce to the study
of algebraic polynomials of twice the degree on the unit circle in iC.

The most basic theorem of this book, and arguably the most basic
nonelementary theorem of mathematics, is the FUndamental Theorem of
Algebra. It says that a polynomial of exact degree n (that is, an element
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of P~\P~-l) has exactly n complex zeros counted according to their mul­
tiplicities.

Theorem 1.1.1 (Fundamental Theorem of Algebra). If
n

p(z) := Laizi,
i=O

then there exist aI, a2," . ,an E <C such that
n

p(z) = an II (z - ai)'
i=l

Here the multiplicity of the zero at ai is the number of times it is
repeated. So, for example,

(z - 1)3(z + i)2

is a polynomial of degree 5 with a zero of multiplicity 3 at 1 and with a
zero of multiplicity 2 at -i. The polynomial

n

p(z) := L ai zi ,
i=O

is called monic if its leading coefficient an equals 1. There are many proofs
of the Fundamental Theorem of Algebra based on elementary properties
of complex functions (see Theorem 1.2.1 and E.4 of Section 1.2). We will
explore this theorem more substantially in the next section of this chapter.

Comments, Exercises, and Examples.

The importance of the solution of polynomial equations in the history of
mathematics is hard to overestimate. The Greeks of the classical period un­
derstood quadratic equations (at least when both roots were positive) but
could not solve cubics. The explicit solutions of the cubic and quartic equa­
tions in the sixteenth century were due to Niccolo Tartaglia (ca 1500-1557),
Ludovico Ferrari (1522-1565), and Scipione del Ferro (ca 1465-1526) and
were popularized by the publication in 1545 of the "Ars Magna" of Giro­
lamo Cardano (1501-1576). The exact priorities are not entirely clear, but
del Ferro probably has the strongest claim on the solution of the cubic.
These discoveries gave western mathematics an enormous boost in part
because they represented one of the first really major improvements on
Greek mathematics. The impossibility of finding the zeros of a polynomial
of degree at least 5, in general, by a formula containing additions, subtrac­
tions, multiplications, divisions, and radicals would await Niels Henrik Abel
(1802-1829) and his 1824 publication of "On the Algebraic Resolution of
Equations." Indeed, so much algebra, including Galois theory, analysis, and
particularly complex analysis, is born out of these ideas that it is hard to
imagine how the flow of mathematics might have proceeded without these
issues being raised. For further history, see Boyer [68].
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E.1 Explicit Solutions.

a] Quadratic Equations. Verify that the quadratic polynomial x 2+ bx + e
has zeros at

-b - VIJ2=4C
2

-b + VIJ2=4C
2

b] Cubic Equations. Verify that the cubic polynomial x 3 + bx + e has
zeros at

where

and

~ = 3 ~e - J~ + ~; .

c] Show that an arbitrary cubic polynomial, x 3 + ax2 + bx + e, can be
transformed into a cubic polynomial as in part b] by a transformation x t---7

ex+ f.

d] Observe that if the polynomial x 3+ bx + e has three distinct real zeros,
then Ct and ~ are necessarily nonreal and hence 4b3 + 27e2 is negative. So,
in this simplest of cases one is forced to deal with complex numbers (which
was a serious technical problem in the sixteenth century).

e] Quartic Equations. The quartic polynomial x4 + ax3 + bx2 + ex + d
has zeros at

where

a R Ct-- + - ±­
4 2 2'

a R ~-- + - ±­
4 2 2'

R= J: -b+y,

y is any root of the resolvent cubic

y3 _ by2 + (ae + 4d)y - a2d + 4bd - e2 ,

and

while

t< = J3a
2
_ R2 _ 2b 4ab - 8c - a

3
Ct, fJ 4 ± 4R ' R-j.O,

. /3a2

Ct'~=V4-2b±2vy2_4d, R=O.

These unwieldy equations are quite useful in conjunction with any symbolic
manipulation package.
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E.2 Newton's Identities. Write

The coefficients Ck are, by definition, the elementary symmetric functions
in the variables aI, ... , an'

a] For positive integers k, let

Prove that

k-1
k+l k""Sk = (-1) kCk + (-1) L.J (-l)1ck-jsj,

j=l

and
k-1

Sk = (_1)k+1 L (-l) jck_jSj,

j=k-n

k > n.

Here, and in what follows, an empty sum is understood to be O.

A polynomial of n variables is a function that is a polynomial in each
of its variables. A symmetric polynomial of n variables is a polynomial of
n variables that is invariant under any permutation of the variables.

b] Show by induction that any symmetric polynomial in n variables (with
integer coefficients) may be written uniquely as a polynomial (with integer
coefficients) in the elementary symmetric functions II, h, .. . ,f n'

Hint: For a symmetric polynomial f in n variables, let

if

VI V2

f(x1,X2,'" ,xn ) = L L
0'1=00<2=0

and CV1 ,V2, ... ,Vn f= O. If

V n

L Ca1 ,O:2,' . lanxrlx~2 ... x~n
Qn=O

then let aU) < a(g) if Vj :S Vj for each j with a strict inequality for at least
one index. This gives a (partial) well ordering of symmetric polynomials in
n variables, that is, every set of symmetric polynomials in n variables has
a minimal element. Now use induction on aU). 0
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c] Show that

(
1+2V5)k ~ 0~ (mod 1).

(By convergence to zero (mod 1) we mean that the quantity approaches
integral values.)

Hint: Consider the integers

where al := ~(1 + V5) and a2 := ~(1 - V5).

d] Find another algebraic integer a with the property that

a k
--> 0 (mod 1) .

o

Such numbers are called Salem numbers (see Salem [63]). It is an open
problem whether any nonalgebraic numbers a > 1 satisfy a k --> 0 (mod 1).

E.3 Norms on Pno Pn is a vector space of dimension n + lover R Hence
Pn equipped with any norm is isomorphic to the Euclidean vector space
lRn +l , and these norms are equivalent to each other. Similarly, P~ is a
vector space of dimension n + lover C. Hence P~ equipped with any norm
is isomorphic to the Euclidean vector space en +!, so these norms are also
equivalent to each other. Let

n

Pn(x) := L::akxk ,
k=O

Some common norms on Pn and P~ are

IlpiiA := sup Ip(x)1
xEA

:=llpIILoo(A)

IlpIILp(A) :=(lIP(tWdt) lip

Ilpllloo :=m~x{lakl}

supremum norm

L oo norm

L p norm, P:::: 1

loo norm

lp norm, p :::: 1 .

In the first case A must contain n + 1 distinct points. In the second case A
must have positive measure.
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a] Conclude that there exist constants C I , C2 , and C3 depending only on
n so that

n

L [ail:::; C21Ipll[-I,I] ,
i=O

for every p E P~, and, in particular, for every p E Pn .

These inequalities will be revisited in detail in later chapters, where
precise estimates are given in terms of n.

b] Show that there exist extremal polynomials for each of the above in­
equalities. That is, for example,

IIp'III-I,I]
sup

O#pEPn Ilpll[-I,I]

is achieved.

E.4 On Rn,m.

a] Rn,m is not a vector space because it is not closed under addition.

b] Partial Fraction Decomposition. Let Tn,m E R~,m be of the form

p(x)
P E P~ , Ok distinct, p(Ok) f:. 0 .

Then there is a unique representation of the form

Im mk

'""' '""' ak'Tn,m(X) = q(x) + LJ LJ ( ,J). ,
x - Ok J

k=lj=l

q E P~-m , ak,j E <C

(if m > n, then P~-m is meant to be {O}).

Hint: Consider the type and dimension of expressions of the above form. 0

cJ Show that if
Tn,m E R~,m'

then
Re(Tn,mO) E R n+m,2m.

This is an important observation because in some problems a rational func­
tion in R~,n can behave more like an element of R 2n ,2n than Rn,n'
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E.5 Horner's Rule.

a] We have

n

L ai xi = (- .. ((anx + an-l)x + an-2)x + ... + adx + ao·
i=O

So every polynomial of degree n can be evaluated by using at most n ad­
ditions and n multiplications. (The converse is clearly not true; consider

2
n

)X .

b] Show that every rational function of type (n - 1, n) can be put in a
form so that it can be evaluated by using n divisions and n additions.

E.6 Lagrange Interpolation. Let Zi and Yi be arbitrary complex numbers
except that the Zi must be distinct (Zi i- Zj, for i i- j). Let

TIn ( )Z - z·
l ( ) '= i=O,i#k ,
k z. TIn ( ,

i=O,#k Zk - Zi)
k = 0,1, ... ,n.

a] Show that there exists a unique p E P~ that takes n + 1 specified values
at n + 1 specified points, that is,

i = 0,1, ... ,n.

This p E P~ is of the form

n

p(z) = LYklk(z)
k=O

and is called the Lagrange interpolation polynomial.

If all the Zi and Yi are real, then this unique interpolation polynomial
is in Pn .

b] Let
n

w(Z) := II (z - Zi)'
i=O

Show that lk is of the form

and
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c] An Error Estimate. Assume that the points Zi E [a, b], i = 0,1, ... ,n,
are distinct and f E en+l [a, b] (that is, f is an n + 1 times continuously
differentiable real-valued function on [a, b]). Let p E Pn be the Lagrange
interpolation polynomial satisfying

p(Zi) = f(Zi) , i = 0,1, ... ,n.

Show that for every x E [a, b] there is a point ~ E (a, b) so that

f(x) - p(x) = 1 f(n+l)(~) w(x).
(n + I)!

Hence

Ilf - PII[a,bJ :::; (n ~ I)! Ilf(n+l)II[a,bJ Ilwll[a,b)'

Hint: Choose A so that <p := f - P - AW vanishes at x, that is,

A := (f(x) - p(x))jw(x) .

Then repeated applications of Rolle's theorem yield that

<p(n+l) = f(n+l) - A(n + I)!

has a zero ~ in (a, b). o

E.7 Hermite Interpolation.

a] Let Zi E C, i = 1,2, ... k, be distinct. Let mi, i = 1,2, ... ,k, be positive
integers with n + 1 := 2:~=1mi, and let

Yi,j E C, i = 1,2, ... ,k, j = 0,1, ... ,mi - 1

be fixed. Show that there is a unique p E P~, called the Hermite interpola­
tion polynomial, so that

p(j)(Zi) = Yi,j, i = 1,2, ... ,k, j = 0,1, ... ,mi - 1.

If all the Zi and Yi,j are real, then this unique interpolation polynomial is
in Pn - 1 .

Hint: Use induction on n. 0

b] Assume that the points Zi E [a, b] are distinct and f E en[a, b]. Let
pEPn-l be the Hermite interpolation polynomial satisfying

P(Zi) = f(j)(Zi) , i=1,2, ... ,k, j=O,l, ... ,mi-l.

Show that for every x E [a, b] there is a point ~ E (a, b) so that
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1
f(x) - p(x) = --, f(n)(o w(x)

n.

with
k

w(x) := IT (x - Xi)m i -1 .

i=l

Hence

Ilf - PII[a,b] :; ~ IIf(n)ll[a,bj Ilwll[a,bj.n.

Hint: Follow the hint given for E.6 c]. 0

Polynomial interpolation and related topics are studied thoroughly in
Davis [75]; Lorentz, Jetter, and Riemenschneider [83]; and Szabados and
Vertesi [92].

E.8 On the Zeros of apE Pn • Show that if p E Pn , then the nonreal
zeros of p form conjugate pairs (that is, if z is a zero of p, then so is z).

E.9 Factorization of Trigonometric Polynomials.

a] Show that t E Tn (or t E T/:) if and only if t is of the form

n

t(z) = ao + l)ak cos kz + bksin kz),
k=l

b] Show that ift E Tn \'T,..-l, then there are numbers Zl,Z2, ... ,Z2n and
o i- c E C such that

2n

IT
z - z·

t(z)=c sinT.
j=l

Show also that the nonreal zeros Zj of t form conjugate pairs.

E.I0 Newton Interpolation and Integer-Valued Polynomials. Let Llk f(x)
be defined inductively by

,10 f(x) := f(x) , Llf(x) = ,11 f(x) := f(x + 1) - f(x)

and
Llk+1 f(x) := Ll(Ll k f(x)), k = 1,2, ....

Let

(
x) '= x(x - 1) ... (x - k + 1)
k . k! .

a] Show that (%) is a polynomial of degree k that takes integer values at
all integers.
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b] Let f be an m times differentiable function on [a, a + m]. Show that
there is a ~ E (a, a +m) such that

c] Show that if p E p~, then

d] Suppose p E p~ is integer-valued at all integers. Show that

for some integers ao, al, ... ,an' Note that this characterizes such polyno­
mials.

e] Show that if p E p~ takes integer values at n + 1 consecutive integers,
then p takes integer values at every integer.

f] Suppose c E lR. and nC is an integer for every n E N. Use part b] to show
that c is a nonnegative integer.

1.2 The Fundamental Theorem of Algebra

The following theorem is a quantitative version of the Fundamental Theo­
rem of Algebra due to Cauchy [1829]. We offer a proof that does not assume
the Fundamental Theorem of Algebra, but does require some elementary
complex analysis.

Theorem 1.2.1. The polynomial

( ) ._ n + n-l + + pcp Z .- anz an-lz .. . ao En'

has exactly n zeros. These all lie in the open disk of radius r centered at
the origin, where

r := 1 + max lakl
O$kSn-l lanl

Proof. We may suppose that ao =I- 0, or we may first divide by zk for some
k. Now observe that
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g(x) := laol + lallx + ... + lan_lIXn- 1
- lanlxn

satisfies g(O) > 0 and lim g(x) = -00. So by the intermediate value the-
x->oo

orem, g has a zero in (0,00) (which is, on considering (g(x)/xn)', in fact
unique). Let s be this zero. Then for Izi > s,

(1.2.1)

This, by RoucM's theorem (see Kl), shows that p(z) and anzn have exactly
the same number of zeros, namely, n, in any disk of radius greater than s.

It remains to observe that if x 2:: r, then g(x) < 0 so s < r. Indeed,

g(x) S lanlxn (-1 + ( _max _ Ilakl
l
) ~ x k- n)

k-O, ... ,n 1 an k=O

n(( lakl) 1 )< lanlx -1 + max - --
k=O, ... ,n-l lanl x-I

sO
for

laklx> 1+ max -.
- k=O, ... ,n-l lanl

o

The exact relationship between the coefficients of a polynomial and the
location of its zeros is very complicated. Of course, the more information
we have about the coefficients, the better the results we can hope for. The
following pretty theorem emphasizes this:

Theorem 1.2.2 (Enestrom-Kakeya). If

p(z) := anzn + an_lZn- 1 + ... + ao

with
aO 2:: al 2:: ... 2:: an > 0,

then all the zeros of p lie outside the open unit disk.

Proof. Consider

(1 - z)p(z) = ao + (al - ao)z + ... + (an - an_dzn - anzn+l .

Then

1(1 - z)p(z)1 2:: ao - [(aD - al)lzl + ... + (an-l - an)lzln + anlzl n+1
].

Since ak - ak+l 2:: 0, the right-hand expression above decreases as Izi in­
creases. Thus, for Izi < 1,

1(1 - z)p(z)1 > ao - [(aD - ad + ... + (an-l - an) + an] = 0,

and the result follows. o
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Corollary 1.2.3. Suppose

with ak > 0 for each k. Then all the zeros of p lie in the annulus

ak ak
rl := min --:S Izl:s max -- =: r2 .

k=O, ... ,n-l ak+l k=O, ... ,n-l ak+l

Proof. Apply Theorem 1.2.2 to p(rlz) and znp(r2/z). o

This is a theme with many variations, some of which are explored in
the exercises.

Theorem 1.2.4. Suppose p > 1, q > 1, and p-l + q-l = 1. Then the poly­
nomial h E p~ of the form

has all its zeros in the disk {z E <C : Iz I :S r}, where

._ { (n-l laj,IP) q/P} l/q
r.- 1+ L I Ian Pj=O

Proof. See E.6. o

Comments, Exercises, and Examples.

The Fundamental Theorem of Algebra appears to have been given its name
by Gauss, although the result was familiar long before; it resisted rigorous
proof by d'Alembert (1740), Euler (1749), and Lagrange (1772). It was more
commonly formulated as a real theorem, namely: every real polynomial fac­
tors completely into real linear or quadratic factors. (This is an essential
result for the integration of rational functions.) Girard has a claim to pri­
ority of formulation. In his "Invention Nouvelle en L'Algebra" of 1629 he
wrote "every equation of degree n has as many solutions as the exponent
of the highest term." Gauss gave the first satisfactory proof in 1799 in his
doctoral dissertation, and he gave three more proofs during his lifetime. His
first proof, while titled "A new proof that every rational integral function of
one variable can be resolved into real factors of the first or second degree,"
was in fact the first more-or-less satisfactory proof. Gauss' first proof is a
geometric argument that the real and imaginary parts of a polynomial, u
and v, have the property that the curves u = 0 and v = 0 intersect, and by
modern standards has some topological problems. His third proof of 1816
amounts to showing that
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1 p'(z) d
Izl=r p(z) z

must vanish if p has no roots, which leads to a contradiction and is a
genuinely analytic proof (see Boyer [68], Burton [85], and Gauss [1866]).

An almost purely algebraic proof using Galois theory, but based on
ideas of Legendre, may be found in Stewart [73].

The "geometry of polynomials" is extensively studied in Marden [66]
and Walsh [50], where most of the results of the section and much more
may be accessed. See also Barbeau [89] and P6lya and Szego [76].

Theorem 1.2.2 is due to Kakeya [12]. It is a special case of Corollary
1.2.3, due to Enestr6m [1893]. The Enestr6m-Kakeya theorem and related
matters are studied thoroughly in Anderson, Saff, and Varga [79] and [81]
and in Varga and Wu Wen-da [85], and a number of interesting properties
are explored. For example, it is shown in the first of the above papers that
the zeros of all p satisfying the assumption of Corollary 1.2.3 are dense in
the annulus {z E C : rl ::; Izl ::; rz}.

E.! Basic Theorems in Complex Analysis. We collect a few of the basic
theorems of complex analysis that we need. (Proofs may be found in any
complex variables text such as Ahlfors [53] or Ash [71].)

a] Cauchy's Integral Formula. Let Dr := {z E C : Izi < r}. Suppose f
is analytic on Dr and continuous on the closure Dr of Dr. Let 8Dr denote
the boundary of Dr. Then

and

0= r f(t) dt ,
JaD r

f (z) = ~ r f (t) dt,
27r~ JaD

r
t - z z E Dr'

z E Dr.f(nl(z) = ~ r f(t) dt
27ri JaD

r
(t - z)n+l '

Unless otherwise specified, integration on a simple closed curve is taken
anticlockwise. (We may replace 8Dr and Dr by any simple closed curve
and its interior, respectively, though for most of our applications circles
suffice. )

b] Rouche's Theorem. Suppose f and 9 are analytic inside and on a
simple closed path '"Y (for most purposes we may use '"Y a circle). If

If(z) - g(z)1 < If(z)1

for every z E '"Y, then f and 9 have the same number of zeros inside '"Y

(counting multiplicities).
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A function analytic on C is called entire.

c] Liouville's Theorem. A bounded entire function is constant.

d] Maximum Principle. An analytic function on an open set U C C
assumes its maximum modulus on the boundary. Moreover, if f is analytic
and takes at least two distinct values on an open connected set U c C, then

If(z)1 < sup If(z)l,
zEU

z E U.

e] Unicity Theorem. Suppose f and g are analytic on an open connected
set U. Suppose f and g agree on S, where S is an infinite compact subset
of U, then f and g agree everywhere on U.

E.2 Division.

al Suppose p is a polynomial of degree nand p(a) = O. Then there exists
a polynomial q of degree n - 1 such that

p(x) = (x - a)q(x).

Hint: Consider the usual division algorithm for polynomials. 0

b] A polynomial of degree n has at most n roots.

This is the easier part of the Fundamental Theorem of Algebra. The remain­
ing content is that every nonconstant polynomial has at least one complex
root.

The next exercise develops the basic complex analysis tools mostly for
polynomials on circles. The point of this exercise is to note that the proofs
in this case are particularly straightforward.

E.3 Polynomial Complex Analysis.

a] Deduce Cauchy's integral formula for polynomials on circles.
Hint: Integrate zn on 8Dr . 0

b] If p(z) = an ll~=l (Z-ai), then the number of indices ifor which lail < r
is

_1_ f p'(z) dz
27Ti laD

r
p(z) ,

provided no ai lies on 8Dr .

Hint: We have
p'(z) _ ~_1_
p(z) - ~ z - ai

and

o
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c] Deduce Rouche's theorem from part b] for polynomials 1 and g given
by their factorizations, and for circles "f.

Hint: Let h := 1+ (g - f) /1. So 1h = g and

_1_ r g'(z) dz = _1_ r l'(z) dz + _1_ r h'(z) dz.
21l"i laDr g(z) 21l"i laDr l(z) 21l"i laDr h(z)

Show that the last integral is zero by expanding h- 1 and applying b]. D

d] Deduce E.1 c] and E.1 d] from E.1 al.
e] Observe that the unicity theorem can be sharpened for polynomials as
follows. If p, q E p~ and p(z) = q( z) for n + 1 distinct values of z E C, then
p and q are identical, that is, p(z) = q(z) for every z E <C. Equivalently, a
polynomial p E p~ is either identically 0 or has at most n zeros. (This is
trivial from the Fundamental Theorem of Algebra, but as in E.2, it does
not require it.)

E.4 The Fundamental Theorem of Algebra. Every nonconstant polyno­
mial has at least one complex zero.

Prove this directly from Liouville's theorem.

E.5 Pellet '8 Theorem. Suppose ap i- 0, 1ap+11 + ... + Ian I > 0, and

has exactly two positive zeros SI < S2. Then

has exactly p zeros in the disk {z E C : Izl ::; sd and no zeros in the annulus
{z E C : SI < Izi < sd·

Proof. Let SI < t < S2. Then g(t) < 0, that is,

n

L: lajlt
j < laplt

p
.

j=O
j#p

Now apply Rouche's theorem to the functions

and
n

G(z) := L:ajz j
.

j=O

D
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E.6 Proof of Theorem 1.2.4.

a] Holder's inequality (see E.7 of Section 2.2) asserts that

where p-l + q-l = 1 and p 2:: 1. So if

then

~Iakllzl''; (~,ak"r(~IZI'r'
b] Thus, for Izi > 1,

n-l
Ip(z)1 2:: lanllzln - L lakllzl k

k=O

n{ (n-l Iak IP) lip (n-l IZlkq) l/q}
2:: lanllzl 1 - L - L ---;:qan Izik=O k=O

{ (n-lIIP)l/P 1 }
2:: lanllzl

n
1 - t;:: (Izlq - l)llq

c] When is the last expression positive?

E.7 The Number of Positive Zeros of a Polynomial. Suppose

n

p(z) := Lajzj

j=O

has m positive real roots. Then

This result is due to Schur though the proof more or less follows Erdos and
Thran [50]. It requires using Muntz's theorem from Chapter 4.

a] Suppose
n

p(z) = an II (z - Tkei(}k)

k=l
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and
n

q(z);= II(z-e iek
).

k=l

Note that for Izl = 1,
I ;&2
z-re I I ielIrl 2': z - e .

Use this to deduce that

Iq(z)1 2 ::; Ip(z)1
2
::; (Iaol + lall + ... + lanl)2

laoanl jlaoanl

whenever Izi = 1.
b] Since p has m positive real roots q has m roots at 1. Use the change of
variables x ;= z + Z-l applied to znq(z-l )q(z) to show that

IlqIIZlzl=l}
2': 0~} II(z - 1)m(zn-m + bn_m_lZn-m-l + ... + bIZ + bo)IIZlz1=1}

2': min Ilxm(xn- m + Cn_m_lXn-m-l + ... + ClX + co)ll[o,4]
{cd

= 4nmin Ilxm(xn- m + dn_m_lXn-m-l + ... + dlx + do)ll[o 1]
{dk} ,

4n

> -----=-----=-----=-----=".--
- v/2n + 1( 2n ) ,n+m

where the last inequality follows by E.2 c] of Section 4.2.

c] Show that

log (~(n~:J) 2': m
2
jn

and finish the proof of the main result.

1.3 Zeros of the Derivative

The most basic and important theorem linking the zeros of the derivative of
a polynomial to the zeros of the polynomial is variously attributed to Gauss,
Lucas, Grace, and others, but is usually called Lucas' theorem [1874].

Theorem 1.3.1 (Lucas' Theorem). Let p E P~. All the zeros of p' are con­
tained in the closed convex hull of the set of zeros of p.

The proof of this theorem follows immediately from the following
lemma by considering the intersection of the halfplanes containing the con­
vex hull of the zeros of p.
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Lemma 1.3.2. Let p E P~. If p has all its zeros in a closed halfplane, then
p~ also has all its zeros in the same closed halfplane.

Proof. On consideration of the effect of the transformation z f---+ az + (3, by
which any closed halfplane may be mapped to Hi := {z : Re(z) ::; O}, it
suffices to prove the lemma under the assumption that p has all its zeros in
Hi. If p has all its zeros in Hi, then

p'(z) _ ~_1_
p(z) - ~ Z-ak'

k=l

But if z E H r := {z E iC : Re(z) > O}, then

1
--- E H r for each ak E Hi ,
Z - ak

and it follows that
n 1
"'-- EHr .
~z-ak
k=l

In particular,
n 1
"'-~O
~ Z-ak '
k=l

which finishes the proof. o

There is a sharpening of Lucas' theorem for real polynomials formu­
lated by Jensen. We need to introduce the notion of Jensen circles for a
polynomial p E Pn . For p E P n the nonreal roots of p come in conjugate
pairs. For each such pair, a + i(3, a - i(3, form the circle centered at a with
radius 1(31. So this circle centered on the x-axis at a has a+i(3 and a-i(3 on
the opposite ends of its perpendicular diameter. The collection of all such
circles are called the Jensen circles for p.

Theorem 1.3.3 (Jensen's Theorem). Let p E Pn- Each nonreal zero of p'
lies in or on some Jensen circle for p.

The proof, which is similar to the proof of Lucas' theorem, is left for
the reader as E.3.

We state the following pretty generalization of Lucas' theorem due to
Walsh [21]. The proof is left as EA. Proofs can also be found in Marden
[66J and P61ya and Szego [76].
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Theorem 1.3.4 (Walsh's Two-Circle Theorem). Suppose p E P~ has all its
n zeros in the disk D l with center Cl and radius 1'1. Suppose q E P:;" has
all its m zeros in the disk D 2 with center C2 and radius 1'2. Then

a] All the zeros of (pq)' lie in D l U D2 U D3 , where D 3 is the disk with
center C3 and radius 1'3 given by

nC2 + mCl
C3:=---­

n+m

b] Suppose (n =1= m). Then all the zeros of (pjq)' lie in D l UD2UD3 , where
D 3 is the disk with center C3 and radius 1'3 given by

nC2 - mCl nr2 + mrl
~:= ~:=

n-m In-mi'

Comments, Exercises, and Examples.

Lucas proved his theorem in 1874, although it is an easy and obvious con­
sequence of an earlier result of Gauss. Jensen's theorem is formulated in
Jensen [13] and proved in Walsh [20]. Much more concerning the geometry
of zeros of the derivative can be found in Marden [66].

E.! A Remark on Lucas' Theorem. Show that pi E P~ has a zero a on
the boundary of the convex hull of the zeros of p if and only if a is a multiple
zero of p.

E.2 Laguerre's Theorem. Suppose p E P~ has all its zeros in a disk D.
Let ( E C. Let w be any zero of

q(z) := np(z) + (( - z)p'(z)

(q is called the polar derivative of p with respect to (J.

a] If ( ¢. D, then w lies in D.

Hint: Consider r(z) := p(z)(z - ()-n, where p has all its zeros in D and
((j. D. Then

r'(z) p'(z) n
--=--+--
r(z) p(z) (- z

and if q(w) = 0 with w ¢. D, then r/(w) = O. Now observe that l' is of the
form

r(z)=s(z~()' SEP~,
where s'((w - ()-l) = O. Note that (¢. D implies that

D:= {(z - ()-l: zED}

is a disk. Then s has all its zeros in D and so does s' by Lucas' theorem.
However, w (j. D implies (w - ()-l (j. D, so S/((W - ()-l) =1= 0, a contradic­
tion. 0

b] If p(w) =1= 0, then any circle through wand ( either passes through all
the zeros of Pn or separates them.
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E.3 Proof of Jensen's Theorem. Prove Theorem 1.3.3.

Hint: Suppose p E Pn \ Pn- 1 and denote the zeros of p by Z1, Z2,' .. ,Zn'
Then

p'(Z) _ ~_1_
p(z) - ~ Z-Zk'

k=1

If Zk = Ok + i(3k with Ok, (3k E IR, and Z = x + iy with x, y E IR, then

and so outside all the Jensen circles and off the x-axis,

sign (1m (:~~~J)= -sign(y) # o.

o

E.4 Proof of Walsh's Theorem. Prove Theorem 1.3.4.

a] Prove Theorem 1.3.4 a].

Hint: Let Zo be a zero of p'q + q'p outside D 1 and D 2. Let

np(zo) mq(zo)
(1 := Zo - -'(-) and (2:= Zo - -(-)

p Zo q' Zo

(p'(zo) # 0 and q'(zo) # 0 by Lucas' theorem). Observe that (1 E D 1 and
(2 E D 2 by E.2, and

o
b] Prove Theorem 1.3.4 b].

Hint: Proceed as in the hint to part a], starting from a zero Zo of p'q - q'p
outside D 1 and D 2 • 0

c] If in Theorem 1.3.4 a] D 1 , D2 , and D 3 are disjoint, then D 1 contains
n - 1 zeros, D 2 contains m - 1 zeros, and D 3 contains 1 zero of (pq)'.

Hint: By a continuity argument we may reduce the general case to the case
where p(z) = (z - cI)n and q(z) = (z - C2)m. 0

d] If in Theorem 1.3.4 b] n = m and D 1 and D2 are disjoint, then D1 UD2

contains all the zeros of (p / q)' .
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E.5 Real Zeros and Poles.

a] If all the zeros of p E Pn are real, then all the zeros of p~ are also real.

b] Suppose all the zeros of both p E Pn and q E Pm are real, and all the
zeros of Pn are smaller than any of the zeros of qn' Show that all the zeros
of (p/q)' are real.

Hint: Consider the graph of

(p/q), p' q'
(p/q) p q

D

Define W(p), the Wronskian of p, by

W(p)(z) = p(z)p"(z) - (p'(Z))2

_I p(z) p'(z) I
- p'(z) p"(z)

= p2(z) (p'(Z))'
p(z)

c] Prove that if p E Pn has only distinct real zeros, then W(p) has no real
zeros.

In Craven, Csordas, and Smith [87] it is conjectured that, for p E Pn ,

the number of real zeros ofW (p) / p2 does not exceed the number of nonreal
zeros of p (a question they attribute to Gauss).

d] Let p E Pn . Show that any real zero of W(p) lies in or on a Jensen
circle of p.

Proof. See Dilcher [91]. D

e] Show that Lucas' theorem does not hold for rational functions.
Hint: Consider r(x) = x/(a2

- x 2
). D

The next exercise is a weak form of Descartes' rule of signs.

E.6 Positive Zeros of Muntz Polynomials. Suppose 60 < 61 < ... < 6n

and

Show that either f = 0 or f has at most n zeros in (0, 00).

Hint: Proceed by induction on n. D
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E.7 Apolar Polynomials and Szego's Theorem. Two polynomials

and

are called apolar if

a] A Theorem of Grace [02]. Suppose that f and g are apolar polynomials.
If f has all its zeros in a (closed or open) disk D, then g has at least one
zero in D.

Hint: Let (l1,(l2, ... ,(In and 131,132,." ,13n denote the zeros of f and g,
respectively. Suppose that the zeros of g are all outside D. Let

h(x) := nf(x) + (131 - x)J'(x)

and for k = 2,3, ... ,n, let

fk(X) := (n - k + 1)!k-1(X) + (13k - x)f~(x).

Then, by E.2, each !k has all its zeros in D. Now compute

fn-1(13n) = ~ ((~)aobn- (~)a1bn-1+ ... +(-l)n(~)anbo)=0,

where the vanishing follows by apolarity. This is a contradiction. D

b] If f and g are apolar, then the closed convex hull of the zeros of f
intersects the closed convex hull of the zeros of g.

c] A Theorem of Szego [22]. Suppose

f(x) := t ak (~)Xk,
k=O

g(x):= i)k(~)xk,
k=O

and

h(x) := t akbk (~)xk .
k=O

Suppose f has all its zeros in a closed disk D, and g has zeros 131,'" ,13n'
Then all the zeros of h are of the form 13iTi with "Yi E D.
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Hint: Suppose 8 is a zero of h. Then

So the polynomial

is apolar to f, and thus has a zero (l' in D. But then (l' = -8 j (Ji for some i
since r(x) = xng( -8jx). 0

E.8 Zeros of the Integral. Suppose p E Pn \ Pn - 1 has all its zeros in
D1 := {z E C : Izi ::::; I}.
a] Show that the polynomial q defined by q(x) := J; p(t) dt has all its
zeros in D 2 := {z E C : Izi ::::; 2}.
Hint: Apply E.7 c]. Take

f(x) := p(x), g(x):=~ (~) k X; 1 .

Then

11X

h(x) = - p(t) dt.
x 0

Note that g(x) = (n + 1)- l X- 1 ((1 + x)n+l - 1) has all its zeros in D2 . 0

b] Show that

r rt"'-l t"'-2 t 1

q(x):= io io io ... io p(t) dt dtl ... dtm-2 dtm-l

has all its zeros in Drm,n := {z E C : Izi ::::; rm,n}, where rm,n ::::; m + 1 is
the zero of

t (m+n)x km+k
k=O

with the largest modulus. Note that q is the mth integral of p normalized
so that the constants of integration are all zero.

Proof. See Borwein, Chen, and Dilcher [95]. 0
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E.9 Grace's Complex Version of Rolle's Theorem. Suppose a and (3 are
zeros of p E Pn \ Pn- 1 . Then p' has at least one zero in the disk

D(c,r):= {z E C: Iz - cl:S r},

where
a+(3

c'--­.- 2 and
la - (31 1r

r := --- cot - .
2 n

Hint: Assume, without loss of generality, that a = -1 and (3 = 1. Let

n-l

p'(x) = L ak xk ,
k=O

n-l k+l

that is , p(x) = c + L ak : + 1 .
k=O

Apply E.7 a]. Note that

0= p(l) - p( -1) = ao + a2 + a4 + ....
2 3 5

So
f(z) := (z - l)n - (z + l)n

E.I0 Corollaries of Szego's Theorem. Suppose

f(z) := (~)ao+ (7)a1 z + + (:)anzn,

g(z) := (~)bo + (7)b1Z + + (:)bnz
n

,

and

h(z):= (~)aobo+ (7)a 1b1z+",+ (:)anbnZ
n

with anbn I- O.
a] If f has all its zeros in a convex set S containing 0 and 9 has all its
zeros in [-1,0], then h has all its roots in S.

bJ If f and 9 have all their zeros in [-1,0], then so does h.

n

E.n Another Corollary of Szego's Theorem. If L akzk has all its zeros
k=O

_ n a zk n zk
in D 1 := {z E C : Izi :S I}, then so does L (kn) . In particular, L (n)

k=O k k=O k
has all its zeros in D 1 .

The results of the next exercise were first proved by M. Riesz (see, for
example, Mignotte [92]) and were rediscovered by Walker [93].
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E.12 Consecutive Zeros of p' for p E Pn with Real Zeros. For a polyno­
mial

n

p(x) := II (x - ai), al < a2 < ... < an, n?: 2
i=l

with only real zeros, let

L1(p):= min (ai+l - ai)'
l:$t:$n-l

By Rolle's theorem

n-l

p'(x) = n II (x - (3i), al < {31 < a2 < {32 < ... < (3n-1 < an·
i=l

a) Suppose n ?: 3. Prove that L1(p) < L1(p').

Outline. It is required to show that {3j - (3j-1 > L1(p) for each j ?: 2. Let
2 :::; j :::; n be fixed. Since

we have
n 1
"" =0~ ({3j-1 - ai)({3j - ai) .

Now let Uj := aj - {3j-l, Vj:= {3j - aj. Also for each i, let di := aj - aj-i,
ei := aj+i - aj. Then the above can be rewritten as

j-l 1 1 n-j 1

"" + +"" =0L- (d - u)(d + v) (-u·v·) L- (e· + u·)(e· - v·) .
i=l ' J 'J J J i=l ' J ' J

Define

j-l n-j
"" uv "" uv

F(u, v) :=~ (di _ u)(di + v) +~ (ei + u)(ei - v) .

Note that F is increasing in each variable (0 :::; u < dl , 0:::; V < el) and
observe that

To prove the result, it suffices to show that if u and v are nonnegative
numbers satisfying u + v = L1(p), then F(u,v) < 1.
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Now show that

(

j-1 1 n-j 1 )
F(u, v) <uv +- f; (di - U)(dH1 - u) f; (ei+l - v)(ei - v)

UV (j-1 (1 1) n-j (1 1))
:S L1(p) f; di - U - di+l - u + f; ei - v - ei+l - v

uv (1 1) uv ( 1 1)<-- ---+-- <-- -+- <1
L1(p) d1 -u e1-V - L1(p) v u -

whenever u and v are nonnegative numbers satisfying u + v = L1(p). 0

h] Suppose n 2: 3 and, E JR. Show that L1(p' - ,p) has only real zeros
and L1(p' -,p) > L1(p).

c] What happens when p has only real zeros but they are not necessarily
distinct?

E.13 Fejer's Theorem on the Zeros of Miintz Polynomials. The following
pretty results of Fejer may also be found in P6lya and Szego [76]:

Suppose that (Ak)~O is an increasing sequence of nonnegative integers
with AO = O.
a] Let

n

p(z) := L akz).,k ,
k=O

Then p has at least one zero Zo E C so that

Outline. We say that Zl E C is not less than Z2 E C if IZ21 :S IZ11. Studying
q(z) := z)"np(z-l), we need to show that the largest zero of

n

q(z) = aox).,n + LakX).,n-).,k
k=l

is not less than

(
(A2 - A1)(A3 - AI)··· (An - AI)) 1/).,1 Ia111/).,1

A2),3 ... An ao

We prove this statement by induction on n. The statement is obviously true
for n = 1. Now assume that the statement is true for n - 1. It follows from
Lucas' theorem that if q is a polynomial with complex coefficients, then the
largest zero of q' is not greater than the largest zero of q.



28 1. Introduction and Basic Properties

By the above corollary of Lucas' theorem, it is sufficient to prove that
the largest zero of

n-1

Z.\n-I-.\n+ 1q'(Z) = AnaOZ.\n-1 + I)An - Ak)akZ'\n-I-'\k
k=l

is not less than

However, this is true by the inductive hypothesis.

h] Suppose
00

o

fez) = L akz.\k ,
k=O

is an entire function so that 2:%"=1 1/Ak < 00, that is, the entire function
f satisfies the Fejer gap condition. Show that there is a Zo E C so that
f(zo) = O.

Hint: Use part a]. 0
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Some Special Polynomials

Overview

Chebyshev polynomials are introduced and their central role in problems in
the uniform norm on [-1,1] is explored. Sequences of orthogonal functions
are then examined in some generality, although our primary interest is in
orthogonal polynomials (and rational functions). The third section of this
chapter is concerned with orthogonal polynomials; it introduces the most
classical of these. These polynomials satisfy many extremal properties, sim­
ilar to those of the Chebyshev polynomials, but with respect to (weighted)
L 2 norms. The final section of the chapter deals with polynomials with
positive coefficients in various bases.

2.1 Chebyshev Polynomials

The ubiquitous Chebyshev polynomials lie at the heart of many analytic
problems, particularly problems in Ora, b], the space of real-valued con­
tinuous functions equipped with the uniform (supremum) norm, II ·11[a,bj'

Throughout this book, for any real- or complex-valued function f defined
on [a, b],

Ilfll[a,bJ:= sup If(x)l·
xE[a,bj
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The Chebyshev polynomials are defined by

Tn(x) : = cos(narccosx) ,

(2.1.1) = ~ ((x +~)n + (x _ ~)n) ,

Ln/2J (k)1
= ~ L (_l)k n - - 1 . (2x)n-2k
2 k=O k!(n - 2k)! '

x E [-1,1],

x E C,

x E C.

These elementary equivalences are left for the reader (see E.1). The nth
Chebyshev polynomial has the following equioscillation property on [-1,1].
There exist n + 1 points (i E [-l,lJ with -1 = (n < (n-1 < ... < (0 = 1
so that

(2.1.2) j = 0,1, ... ,no

In other words Tn E Pn takes the values ±IITn ll[-l,l] with alternating sign
the maximum possible number of times on [-1,1]. (These extreme points
are just the points cos(k1r / n), k = 0, 1, ... ,n.) The Chebyshev polynomial
Tn satisfies the following extremal property:

Theorem 2.1.1. We have

min Ilxn - p(x)II[-l 1J = 1121- nTn ll[_1 1J = 21
-

n ,
pEP~_l ' ,

where the minimum is uniquely attained by p(x) = xn - 21- nTn(x).

Proof. Observe that, while the minimum is taken over P~-l' we need only
consider pEPn-1, since taking the real part of apE P~-l can only improve
the estimate. From the above formulas for Tn we have

s E Pn - 1 .

Now suppose there exists q E P n - 1 with

(2.1.3)

Then

Ilxn
- q(x)II[-l,l] < 21

-
n .

21
-

nTn(x) - (xn - q(x)) = s(x) + q(x) E Pn-1

changes sign between any two consecutive extrema of Tn' hence it has at
least n zeros in (-1,1), and thus it must vanish identically. This contradicts
(2.1.3), and we are done up to proving uniqueness (this is left as E.2). 0
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Comments, Exercises, and Examples.

The Chebyshev polynomials Tn are named after the versatile Russian math­
ematician, P. L. Chebyshev (1821-1894). The T comes from the spelling
Tchebychef (or some such variant; there are many in the literature). A
wealth of information on these polynomials may be found in Rivlin [90].
Throughout later sections of this book the Chebyshev polynomials will
keep recurring. The initial exercises explore elementary properties of the
Chebyshev polynomials.

Erdos [39] proved that for t E Tn with IItlllR. :::; 1, the length of the graph
of t on [0, 21f] is the longest if and only if t is of the form t(B) = cos(nB +a)
with some a E JR (see E.6). He conjectured that for any p E Pn with
Ilpll[-I,I] :::; 1, the maximum arc length is attained by the nth Chebyshev
polynomial Tn. This is proved in Bojanov [82b]. Kristiansen [79] also claims
a proof. In E.9 the reducibility of Tn is considered, and in E.ll the basic
properties of the transfinite diameter are established.

E.1 Basic Properties.

a] Establish the equivalence of the three representations of Tn given in
equation (2.1.1).

Hint: cosnB = ~[(cosB + i sin B)n + ((cosB - isinB)n]. To get the third
representation, use E.3 b]. 0

b] The zeros of Tn are precisely the points

Xk = cos (2k-I)1r
2n '

k = 1,2, ... ,n.

c] The extrema of Tn(x) in [-1,1] are precisely the points

k = 0, 1, ... ,n.

d] Observe that the zeros of Tn and Tn+! interlace, as do the extrema.

E.2 Uniqueness of the Minimum in Theorem 2.1.1. Prove the uniqueness
of the minimum in Theorem 2.1.1.

Hint: Assume that q E P~-l and

Ilxn
- q(x)II[-I,I] :::; 21

-
n

.

Then

defines a polynomial from Pn-l on JR having at least n zeros (counted
according to their multiplicities). Thus

x E JR,
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which, together with the previous inequality, implies that q(x) is real when­
ever Tn(x) = ±1. Now E.6 of Section 1.1 (Lagrange interpolation) yields
that q has real coefficients. Hence

x E JR.

D

E.3 Further Properties of Tn-

a] Composition. Show that Tnm(x) = Tn(Tm(x)).

b] Three-Term Recursion. Show that

n= 2,3, ....

c] Verify that

To(x) = 1

T1(x) = X

T2 (x) = 2x2
- 1

T3 (x) = 4x3
- 3x

T4 (x) = 8x4
- 8x2 + 1

T5 (x) = 16x5
- 20x3 + 5x.

Note that Tn is even for n even and odd for n odd.

d] Another Formula for Tn. Show that Tn(x) = cosh(ncosh- 1 (x)) for
every x E JR \ [-1, 1].

e] Differential Equation. Show that

(1 - x 2 )T;:(x) - xT~(x) + n 2Tn(x) = O.

f] An Identity. Show that

Tn(x) = T~+l(x) _ T~_I(X) .
2n + 2 2n - 2

g] Orthogonality. Show that

3. /1 Tn(x)Tm(x)dx = On m := {O, n =I m
1r -1 ~ , 1, n=m>O.

h] Generating Function. Show that

1-yx ~ n
1 - 2 x + 2 = L...J Tn(x)y ,

y y n=O

Hint: Set x = cos () and sum.

x E [-1,1], Iyl < 1.

D
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i] Another Representation of Tn. Show that

j] Another Identity. Show that

E.4 Approximation to x k on [0,1].

a] Let T~(x) = Tn (2x - 1) be the nth Chebyshev polynomial shifted to
the interval [0,1]. Suppose

n

T~(x) = L bkxk .
k=O

Show that for each k = 0, 1, ... , n,

min
Cj EIR

n

Ilxk
- L cjxjll[o,lj = IlbklT~II[o,lj.

j=O
j#

Hint: Proceed as in the proof of Theorem 2.1.1 and use E.6 of Section 1.3.
o

b] Why does this not hold for Tn on [-1,1]?

E.5 A Composition Characterization. Suppose (Pn)~=l is a sequence of
polynomials of degree n and for all positive integers nand m

Pn 0 Pm = Pn·m .

Then there exists a linear transformation w(x) = ax + {3 so that

or

w 0 Pn 0 w- 1 = Tn,

n = 1,2, ...

n = 1,2, ....

This result is due to Block and Thielman [51]. The proof outlined in this
exercise follows Rivlin [90].
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a] Let

x al
and v(x):= - - - .

a2 2a2

Then

v-1(q(v(x))) = x2+ c with c:= aOa2 + (ad2) - (aU4).

b] Let q(x) = ao + alX + a2x2, a2 i- O. Then there is at most one
polynomial Pn of degree exactly n so that

Pn(q(x)) = q(Pn(x)).

Hint: By a] we may assume q(x) = x2 + c. Now suppose r, s E P~\P~-l'

and

Then u := r - s E P~-l satisfies

u(x2 + c) = u(x)(r(x) + s(x))

from which we deduce, by comparing degrees on both sides, that n = O.
(Note that the above conditions imply rand s monic.) 0

c] Finish the proof of the initial statement of this exercise.

This is a special case of a more general theorem of Ritt [23] that classifies
all rational functions rand s that commute in the sense that r 0 s = s 0 r.

d] Another Composition Characterization. Suppose P E Pn has the prop­
erty that the closure of the set

Ip := {z E C: p[k](Z) = 0 for some k = 1,2, ... }

is the interval [-1, 1]' where p[k] is the kth iterate of P, that is,

p[l] := p and p[k]:= po p[k-l] for k = 2,3, ....

Then p(x) = ±Tn(x).

e] Let

Show that rn is a rational function in Rn,n, and observe that
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E.6 Trigonometric Polynomials of Longest Arc Length. Theorem 5.1.3
(Bernstein-Szego inequality) asserts that

for every t E Tn and 8 E R Use this to prove the following result of Erdos.
For t E Tn with IltlllR ::::; 1, the length of the graph of t on [0,27l"] is the
longest if and only if it is of the form t(8) = cos(n8 + a) for some a E R

Hint: Suppose t E Tn with IltlllR = 1. Let 8(8) := cosn8. If

holds, then by the Bernstein-Szego inequality (see also E.5 of Section 5.1)

and if equality holds for one pair of 81 , 82 , then it holds for all pairs, and
t(8) = cos(n8+a) for some a E R Suppose tn (8) ¢ cos(n8+a). Let 7 and
a be monotone arcs of the graphs of y = t(8) and y = 8(8), respectively,
with endpoints of each having the same ordinates Y1 and Y2. Let 171 and 10'1
be the length of 7 and a, respectively, and let 17x l and laxl be the length of
the projection of 7 and a, respectively, on the x-axis. Show that

by approximating 7 and a by a polygonal line corresponding to a subdivi­
sion of the interval with endpoints, Yl and Y2 on the y-axis. 0

E.7 Monic Polynomials with Minimal Norm on an Interval.

a] The unique monic polynomial p E p~ minimizing Ilpll [a,b] is given by

b] Let 0 < a < b. Find all monic polynomials p E p~ minimizing

Ilpll[-b,-a]U[a,bj'

(For two intervals of different lengths this is a much harder problem. The
problem was originally due to Zolotarev and is solved in terms of elliptic
functions. See Todd [88], Fischer [92], and Peherstorfer [87].)
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E.8 Lower Bound for the Norm of Polynomials on the Unit Disk. Let D
be the open unit disk of C. Show that

for arbitrary complex numbers ao, aI, ... ,an' Thus zn plays the role of the
nth Chebyshev polynomial on the unit disk.

Hint: If p(z) := ao + a1Z + ... + anzn , then

o

The next exercise supposes some familiarity with the rudiments of
reducibility over Q and basic properties, such as irreducibility of cyclotomic
polynomials over Q (see Clark [71]). Details of the following observation of
Schur's are in Rivlin [90].

E.9 On the Reducibility of Tn over Q. Let n E N be fixed.

a] The zeros of Tn(x/2) are all of the form

Xj := e(2j-1)i'71"/(2n) + e-(2j-1)i7r/(2n) , j = 1,2, ... ,no

b] If n ~ 3 and ( is a primitive nth root of unity, then ( + (-1 is of degree
'P(n) /2. (Here 'P is the Euler 'P function.)

c] Thus if Tn is irreducible over Q, then n must be a power of 2.

d] For a positive integer h, let

n

II
j=l

gcd(2j-1,2n)=h

(Here gcd(m, n) denotes the greatest common divisor of m and n.) Show
that if h is odd, then Fh is irreducible over Q.

e] The Factorization of Tn.

2Tn(x/2) = II Fh(x).
hln, hodd

So if n is odd, Tn has 'P(n) factors, while if n is even, then Tn has 'P(m)
factors, where m is the largest odd divisor of n.

f] Let n ~ 3 be odd. Then Tn(x)/x is irreducible over Q if and only if n
is prime.
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E.I0 Chebyshev Polynomials of the Second Kind. Let the Chebyshev poly­
nomials of the second kind be defined by

1 I sin nO
Un- 1(x) := -Tn(x) = -.-0 '

n sm
x=cosO.

a) Un(x) = 2Tn(x) + Un- 2(x).

b) Tn(x) = Un(x) - xUn- 1(x).
n

c) Un(x) = L: xkTn_k(X).
k=O

(x + vx2 - 1(+1 - (x - vx2 _ 1(+1
d) U (x) - ~-_--'._===-----'--n - 2vx2 _ 1

e) Orthogonality. Show that

1

2J ()~ _ ._ {0,- Un(x)Um X VI - x~ dx - 8n m .-
n ' 1,

-1

f) Three-Term Recursion. Show that

UO(x) =1, U1(x)=2x,

n:f: m

n = m > O.

Un(x) = 2xUn- 1(x) - Un- 2(x), n = 2,3, ....

(Note that this is the same recursion as for Tn.)

g) The Coefficients of Un. Show that

h) Another Form of Uno Show that

Ln/2J
U (x) = ,,(_l)k (n + 1 )xn- 2k (x2 _ l)k.

n LJ 2k + 1
k=O

The concepts of transfinite diameter and capacity playa central role
in potential theory, harmonic analysis, and other areas of mathematics.
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E.n Transfinite Diameter. Let E be a compact subset of C. Let

The points Zi at which the above maximum are obtained are called nth
Fekete points for E. If the points Zi are the nth Fekete points for E, then
the polynomial

n

qn(z) := II (z - Zi)
i=1

is called an nth (monic) Fekete polynomial for E. The transfinite diameter
or logarithmic capacity of E is defined by

1

cap(E):= lim (.~1n(E)) n(n-l) ,
n--->oo

where the limit exists by part c] (below).

a] Let Z1, Z2," . ,Zn be nth Fekete points for E. Then

1 n-1Z1 Z1
1 n-1

(.<1 n(E))1/2 = abs
Z2 Z2

1 Zn z~-1

Hint: See E.2 b] (Vandermonde determinant) of Section 3.2. 0

b] Let qn(z) := TI~=1 (z - Zi) be an nth Fekete polynomial for E. Let

ffin := . min Iq~(Zi)1 and M n := IlqnllE'
~=ll'" ,n

Then

Outline. We have
n

Iqn(z)1 2.<1n(E) = II Iz - Zi!2 II IZi - zjl :=; .<1n+l(E)
i=1 1:C;i,j:C;n

i#j

and

II
1:C;i,j:C;n+1
i#,j#k,i#j

:=;.<1n(E) II IZk - zil 2 .
1<i<n+1
-i#k
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From the first line above,

From the second line above,

o
1

c] Show that (Lln(E)) n(n-l) is decreasing, so the limit exists in the defini-
tion of cap(E).

d] The Fekete points lie on the boundary of E. So cap(E) = cap(8(E) ).

Hint: Use the maximum principle (see E.l d] of Section 1.2). 0

e] If E c F, where Fee is also compact, then cap(E) :::; cap(F).

f] Chebyshev Constants. Let

and

Let
Mn(E) := inf{llpllE : P E M n}

and
fin(E) := inf{llpllE : P E M n}.

Show that the infimum in the definition of Mn(E) and fin(E) is actually
minimum. Show also that

and

for any two nonnegative integers nand m. Finally show that the above
inequalities imply that

M(E):= lim (Mn(E))l/n and fi(E):= lim (fin(E))l/n
n~oo n-oo

exist.
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The numbers /.L(E) and /iCE) are called the Chebyshev constant and
modified Chebyshev constant, respectively, associated with E. Obviously
/.L(E) :::; /iCE).

g] Transfinite Diameter and Chebyshev Constants Are the Same:

cap(E) = /.L(E) = /iCE) .

Proof. Without loss of generality we may assume that E contains infinitely
many points. Part b] yields /iCE) :::; cap(E). Therefore, since /.L(E) :::; /iCE),
it is sufficient to prove that cap(E) :::; /.L(E). Note that if P E M n and
Z1, Z2,'" ,Zn+1 E E are the (n + l)th Fekete points for E, then

1 Z1 n-1 p(zdZ1
1 n-1 p(Z2)

(Lln+l(E))1/2 = abs
Z2 Z2

1 n-1 p(zn+dZn+1 zn+1

Expanding the above determinant with respect to its last column, we obtain

n+1
(Lln+l(E))1/2 :::; (Lln(E))1/2 L Ip(zj)1

j=1

:::; (n + 1)(Lln(E))1/21IpIIE'

so

For the sake of brevity let

Then
dn+l < c dn- 1

n+1 - n n .

Since E contains infinitely many points, Cn > 0 and dn > 0 hold for each
n = 2,3, .... Multiplying the above inequalities for n = 1,2, ... ,k, we
obtain after simplification that

Since lim dk = cap(E) and lim Ck = (/.L(E))2, we conclude
k---+(X) k-HX)

which finishes the proof. D
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h] Show that cap([a, b]) = i(b - a).

i] Show that cap(Dp ) = p, where

D p := {z E C : Izi ::; p} .

j] Show that cap(AoJ = sin(aj4), where An is an arc of the unit circle C
of length a, 0 ::; a ::; 27T.

Hint: Without loss of generality we may assume that the arc An is sym­
metric with respect to the x-axis and 1 E An. Now use part h] and the
transformation x = ~ (z + Z-1 ). D

2.2 Orthogonal Functions

The most basic properties of orthogonal functions are explored in this sec­
tion. The following section specializes the discussion to polynomials.

In this section the functions are complex-valued and the vector spaces
are over the complex numbers. All the results have obvious real analogs
and in many later applications we will restrict to these corresponding real
cases.

An inner product on a vector space V is a function (".) from V x V
to C that satisfies, for all i, g, h E V and a, (3 E C,

(2.2.1) (j,1) > 0 unless i = 0 (positivity)

(2.2.2) (j, g) = (g,1) (conjugate symmetry)

(2.2.3) (ai + (3g, h) = a(j, h) + (3(g, h) (linearity).

A vector space V equipped with an inner product is called an inner
product space. It is a normed linear space with the norm 11.11 := (', Y/2.

The canonical example for us will be the space C[a, b] of all complex­
valued continuous functions on [a, b] with the inner product

(2.2.4) (j, g) := lb

i(x)g(x)w(x) dx,

where w(x) is a nonnegative integrable function on [a, b] that is positive
except possibly on a set of measure zero. It is a normed linear space with
the norm

(2.2.5) (
b)1/2

IliIIL2(W) := (j, 1)1/2 = l li (xWw(x) dx



parallelogram law.

Cauchy-Schwarz inequality

triangle inequality
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More generally, if (X,J-l) is a measure space (with J-l nonnegative), then

(2.2.6) (I, g) := 1f(x)g(x) dJ-l(x)

is an inner product on the space L2(J-l) of square integrable functions. More
precisely, L 2(J-l) denotes the space of equivalence classes of measurable func­
tions for which

1IfIIL2 (/L) := (I, j)1/2 = {llf(x)12 dJ-l(X)} 1/2

is finite. The equivalence classes are defined by the equivalence relation
f rv 9 if f = 9 J-l-almost everywhere on X.

If V is a vector space equipped with an inner product C,), then a
metric p can be defined on V by p(l,g) := (I - g,f - g)1/2. The fact
that this p is a metric on V is an immediate consequence of (2.2.1) and
Theorem 2.2.1 b]. If this metric space (V, p) is complete (that is, if every
Cauchy sequence in (V, p) converges to some x E V), then V is called a
Hilbert space.

It can be shown that L 2(J-l) is a Hilbert space for every measure space
(X, J-l) (see Rudin [87]), while C[a, b] equipped with the inner product
(2.2.4), where w(x) == 1, is not a Hilbert space (see E.1).
When we write L 2[a, b] we always mean L 2(J-l) where J-l is the Lebesgue

measure on X = [a, b]. The fact that the inner product gives a norm is part
of the next theorem.

Theorem 2.2.1. If (V, (', .)) is an inner product space equipped with the norm
II . II := (-, y/2, then for all f, 9 E V,

a] 1(I,g)l::; Ilfllllgll
b] Ilf + gil::; Ilfll + Ilgll
c] Ilf + gl12 + Ilf - gl12 = 211fl12+ 211g11 2

Proof. Let f, 9 E V be arbitrary. To prove the Cauchy-Schwarz inequality,
without loss of generality we may assume (g, g) = 1 and we may assume
(I,g) is real (why?). Let (:= (I,g) and note that by (2.2.1) and (2.2.3),

0::; (I - (g, f - (g) = (I, j) - 2((1, g) + (2(g, g)

= IIfl12- (I, g)2 ,

which finishes the proof of part a].

Using the Cauchy-Schwarz inequality, we obtain

Ilf + gl12 = (I + g, f + g) = (I,j) + 2Re((I,g)) + (g,g)

::; IIfl1 2 + 211fllllgil + IIgl1 2

::; (lIfll + Ilgll)2 ,
which is the triangle inequality.
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The parallelogram law follows from

Ilf + gl12 + Ilf _ gl12
= (f,1) + 2 Re( (f, g)) + (g, g) + (f,1) - 2 Re( (f, g)) + (g, g) .

o

For the space L 2 (f..t) of all square integrable functions, the Cauchy­
Schwarz inequality becomes

Applying this with f and g replaced by If I and Igl, we obtain

(2.2.7)
b ( b ) 1/2 (b ) 1/2

11fgl df..t:'::: 11fl2 df..t(X) 11g12 df..t

A collection of vectors {fa: a E A} in an inner product space (V, (-, .))
is said to be orthogonal if

(2.2.8) a,,6 E A, a i= ,6 .

If (fa, f(3) = 0, then we write f aJ..f{3. The collection is called orthonormal
if, in addition to being orthogonal,

(2.2.9) a EA.

An orthogonal collection {fa: a E A} of nonzero vectors in an inner
product space can always be orthonormalized as {lifall- 1 fa : a E A}. The
vector space over C generated by {fa: a E A} is denoted by

span{fa : a E A} .

So span{fa : a E A} is just the set of all finite linear combinations

Any linearly independent collection of vectors can be orthonormalized, as
the next theorem shows.
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Theorem 2.2.2 (Gram-Schmidt). Let (V, (-, ./) be an inner product space
with norm 11·11 := (-, ./1/2. Suppose {fd~l is a linearly independent collec­
tion of vectors in V. Let

h
91:= Ilhll

and (inductively) let

n-1
Un := fn - L Un, 9k/9k

k=l
and

Then {9n}~1 is an orthonormal collection, and for each n,

Proof. This can be proved easily by induction where the inductive step is:
for m < n,

n-1

(Un,9m/ = Un,9m/ - LUn,9k/(9k,9m/
k=l
n-1

= Un,9m/ - L Un' 9k/ 8k,m = O.
k=l

D

The key approximation theoretic property orthonormal sets have is
encapsulated in the following result:

Theorem 2.2.3 (Best Approximation by Linear Combinations). Let (V, (-,./)
be an inner product space with norm II . II := (-, ./1/2. Suppose {h, ... , f n}
is an orthonormal collection of vectors in V. Let f E V. Then

is attained if and only if

i = 1,2, ... ,no

In other words, the sum L~lU, fi/ fi is the best approximation to f from
span{h, ... , fn} in the norm (., -)1/2.
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Proof. Fix f E V, and let Ci be as above. Let
n

g:= Lcdi
i=1

and let h E span{II, ... ,fn}. Note that

(g - f).J.-Ji ,

since by orthonormality
n

i = 1,2, ... ,n

(g - f, Ii) = L Cj (iJ, Ji) - Ci = O.
j=1

Thus
(g - f)J..(h - g)

and so

Ilh - fl12= II(h - g) + (g - f)1I 2

= Ilh - gl12 + 2Re((h - g,g - I)) + Ilg - fl12

= Ilh - gl12 + Ilg - fl12

2: Ilg - fl1 2

with strict inequality unless h = g. This finishes the proof.

Note that the above theorem gives the following corollary:

Corollary 2.2.4. If {II, ... ,fn} is an orthonormal collection, then every

9 E span{II,··· ,fn}

can be written as
n

9 = L(g, Ji)fi.
i=1

o

Comments, Exercises, and Examples.

The theory of orthogonal functions, and in particular orthogonal polyno­
mials, is old and far-reaching. As we will see in the next section, the names
associated with the classical orthogonal polynomials including Chebyshev,
Laguerre, Legendre, Hermite, Jacobi, and Stieltjes, are the "who's who"
of nineteenth century analysis. Various aspects of this beautiful body of
theory are explored in the exercises of this and the next section.

Much of this material is available in G. Szego's [75] classical trea­
tise "Orthogonal Polynomials." Of course, orthogonal polynomials are in­
timately connected to Fourier series and parts of harmonic and functional
analysis generally. The standard functional analysis in the following exer­
cises is available in many sources. See, for example, Rudin [73, 87].
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E.! C[O, 1] Is Not a Hilbert Space. Construct a sequence of continuous
functions (fn)'::'=l on [0,1] for which

Ilfn - fll£2[0,1] -> a
with somef (j. C[O,I] (in the sense that f cannot be modified on a set of
measure zero to be in C[O, 1]).

So C[O, 1] equipped with the inner product (2.2.4), where [a, b] = [0,1]
and w(x) is identically 1, is not a Hilbert space. It can be shown that there
is no way of putting a norm on C[O, 1] that preserves the uniform topology
and makes C[O, 1] into a Hilbert space, essentially because C[O,I] is not
reflexive (see Rudin [73], Chapter 4). This, in fact, shows that C[O, 1] is not
isomorphic to Lp[O, 1] for any p E (1, (0). For the definition of Lp[O, 1], see
E.7.

E.2 On L 2 (w). Consider

(f,g) = l b
f(x)g(x)w(x)dx.

What conditions on w guarantee that U, g) is an inner product on C[a, b] ?

E.3 Cauchy-Schwarz Inequality for Sequences. Show that

for all 0'1, ... ,an, (31, ... ,(3n E C. Equality holds if and only if there exists
a"f E e so that either ai = "fIJi for each i or (3i = "fai for each i.

Hint: en is a Hilbert space with inner product
n

((0'1,0'2, ... ,an ),((31,(32,'" ,(3n)) = LaiIJi'
i=l

o

E.4 Bessel's Inequality. Let (V, (-, .)) be an inner product space with
norm 11·11 := (-, .)1/2. Suppose {jd~l is a countable collection of orthonor­
mal vectors in V.

a] Show that
00

L lUi, 1)12 ::; Ilf11 2 .
i=l

Hint: With h := a in the last expression of the proof of Theorem 2.2.3

o
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b] Suppose
00

i=l

in the sense that the partial sums of the right-hand side converge to j in
the norm II . II. Show that

E.5 The Kernel Function. Let {Pi} i=o be a collection of orthonormal
functions in Lz[a, b] with respect to the inner product defined by (2.2.6),
where X := [a, b]. Define the kernel junction by

Kn(xo, x) := Po(xo)Po(x) + P1(XO)PI(x) + ... + Pn(XO)Pn(x).

a] lleproducing Property. If q E span{Po, . .. ,Pn}, then

lb

Kn(t, x)q(t) dJ-l(t) = q(x) .

Hint: Expand q in terms of Po, ... ,Pn as in Corollary 2.2.4. D

b] (Kn(xo,xo))-1/2Kn(xo,x) solves the following maximization problem:

max {lq(xo)1 : qEspan{pO,p1,'" ,Pn} and lb

Iq(xW dJ-l(x) = I} .
Outline. Write q = L~=o CiPi. Then, as in E.4 b],

IlqIlL(p,) = Icolz+ 1c11z+ ... + Icnlz= 1.

The Cauchy-Schwarz inequality of E.3 yields that

Iq(xoW ::; (~ICiIZ) (~IPi(XOW) = Kn(xo, xo).

However, if

so
( ) Kn(xo,x)

q x = (Kn(xo,xo))l/z '
then equality holds in the above inequality. D

c] Show, as in a], that if q E span{Po, ... ,Pn} and Po, ... ,Pn are m times
differentiable at Xo, then

(

m ) l/Z

Iq(m)(xo)l::; ~ Ip~m)(xo)IZ IlqIIL
2
(p,).

When does equality hold?
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E.6 Completeness. Let {fa: 0: E A} be an orthonormal collection in a
Hilbert space H. The collection {fa: 0: E A} is called a maximal orthonor­
mal set in H if there is no f =I- 0 so that (I, fa) = 0 for every 0: E A.

The following statements are equivalent:

(1) The set of all finite linear combinations of fa, 0: E A, is dense in H.

(2) IIfl12= I:aEA 1(10., f)lZ for all f E H.

(3) (I,g) = I:aEA(la,J) (la, g) for all f,g E H.

(4) {fa: 0: E A} is a maximal orthonormal set in H.

If any of the above holds, then the orthonormal collection is called a com­
plete orthonormal system. (See, for example, Rudin [87].)

a] Deduce (1) '* (2) from Theorem 2.2.3.
b] Deduce (2) '* (3) from the simple identity

4(1, g) = Ilf + gl12 - Ilf - gl12 + illf + igl12- illf - igl12.

The above identity is called polarization.

c] Prove (3) '* (4).

d] Prove (4) '* (1) by contradiction.
Equality (3) is called Parseval's identity.

The remaining exercises assumes some familiarity with measure theory.

E.7 Basic Theory of L p Spaces. Let (X, f.1) be a measure space (f.1 is
nonnegative) and p E (0,00]. The space L p (f.1) is defined as the collection of
equivalence classes of measurable functions for which IlfIILp(J.L) < 00, where

P E (0,00)

and

IlfIILoo(J.L) := sup{o: E lR: f.1({x EX: If(x)1 > o:}) > O} < 00.

In any of the cases the equivalence classes are defined by the equiv­
alence relation f rv 9 if f = 9 f.1-almost everywhere on X. When we
write Lp[a, b] we always mean Lp(f.1) , where f.1 is the Lebesgue measure
on X = [a, b]. The notations Lp(a, b), Lp[a, b), and Lp(a, b] are also used
analogously to Lp[a, b].
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a] Holder's Inequality. Suppose 1 :::; p < q :::; 00 and p-l + q-l = 1. Show
that

for every f E Lp (f.1) and 9 E Lq (f.1).

If 1 < p, q < 00, then equality holds if and only if alflP = ,8lglq f.1­
almost everywhere on X for some a,,8 E ~ with a 2 + ,82 > 0, and there is
acE C with Icl = 1 so that cfg is nonnegative f.1-almost everywhere on X.

Holder's inequality was proved by Rogers [1888] before Holder [1889J
proved it independently.

Hint: If the right-hand side is 0, then the inequality is obvious. If it is
different from 0, then let

If x E X is such that 0 < F(x) < 00 and 0 < G(x) < 00, then there are
real numbers sand t such that

F(x) = eS
/

p and G(x) = et / q .

Use the convexity of the exponential function to show that

Apply this with the above choices of sand t, and integrate both sides on
X with respect to f.1. 0

bJ Minkowski's Inequality for p E [1,00]. Let p E [1,00]. Show that

for every f,g E L p (f.1).

If 1 < p, q < 00, then equality holds if and only if af = ,8g f.1-almost
everywhere on X for some a,,8 E ~ with a2 + ,82 > O.

Hint: The cases p = 1 and p = 00 are straightforward. Let p E (1,00). Then

If + glP :S If I I! + glP-l + Igllf + glP-l

and apply Holder's inequality (part a]) to each term separately. 0
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By part b], Lp(p,) is a vector space and II . IILp(J.L) is a norm on Lp(p,)
whenever p E [1,00]. If p E (0,1), then 11·IILp(J.L) is still called a norm in the
literature, however, for p E (0,1) the subadditive property, in general, fails.
In fact, if p E (0,1), then 11·IILp[a,bj is superadditive for Riemann integrable
functions in Lp[a, b]; see P6lya and Szeg6 [76].

c] Assume p,(X) < 00. Show that Lq(p,) C Lp(p,) for every °< p < q :::; 00.
If p,(X) :::; 1, then prove that

for every measurable function f.

d] Assume f E Lq(p,) for some q > 0. Show that

e] Riesz-Fischer Theorem. Show that if 1:::; p:::; 00, then (Lp(p,),p) is a
complete metric space, where

Hint: Use the monotone convergence theorem and Minkowski's inequality
(part b]); see Rudin [87] for details. 0

If p E [1,00], then q E [1,00] defined by p-l + q-l = 1 is called
conjugate to p.

f] Bounded Linear Functionals on Lp(p,). Let 1 :::; p < 00 and g E Lq(p,),
where q is the conjugate exponent to p. Show that

<I>g(f);= Lfgdp,

is a bounded linear functional on Lp(p,).

Hint: Use Holder's inequality (part a]). 0

g] Riesz Representation Theorem. Suppose 1 :::; p < 00, P, is (CY-) finite
and <I> is a bounded linear functional on Lp(p,). Then there is a unique
g E Lq(p,), where q is the conjugate exponent to p, so that

<I>(f) =Lfg dp"

Moreover, if <I> and g are related as above, then

Proof. See, for example, Rudin [87] or Royden [88]. o
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If X is a locally compact Hausdorff space, then the characterization
of bounded linear functionals on the space Cc(X) of continuous functions
with compact support equipped with the uniform norm is also known as the
Riesz representation theorem, and its proof may be found in, for example,
Rudin [87J.

hJ Orthogonality in Lp(p,). Suppose 1 :::; p < OO,J..L is (u-)finite, Y is a
finite-dimensional subspace of Lp(J..L). The function f E Lp(J..L) is said to be
orthogonal to Y in Lp(J..L), written f 1.. Y, if

for every hEY. Show that an element f E L p(J..L) is orthogonal to Y if and
only if LIfIP-1sign(j)h dJ..L = 0

for every hEY, where

{

f(x)

sign(j(x)) := If~X)1
if f(x) '10

if f(x) = O.

Outline. Suppose that the integral vanishes for every hEY. Let q be the
conjugate exponent to p. defined by p-l + q-l = 1. Observe that

and LIglqdJ..L =LIflP dJ..L.

Without loss of generality we may assume that IlfIILp(/-L)
every hEY, Holder's inequality yields that

1. Then for

IlfIILp(/-L) = 1 = LfgdJ..L = L(j + h)gdJ..L

:::; Ilf + hIILp(/-L)lIgIILq(/-L) = Ilf + hIILp(/-L)'

proving that f 1.. Y. (Observe that this argument is also valid for p = 1.)

Suppose now f 1.. Y. Without loss of generality we may assume that
f ~ Y. By a standard corollary to the Hahn-Banach theorem (see, for
example, Rudin [87]), there exists a linear functional M on Lp(J..L) such that
M(j) = 1, M(h) = 0 for every hEY, and IIMII = Ilfll£:(/-L)" This M is
then representable by some element 9 E Lq(J..L), that is,
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(see part g]). Therefore

and by the conditions for equality to hold in Holder's inequality,

g(x)f(x) 2:: °
and

Ig(xW = Alf(x)IP

for a suitable constant A > 0. Hence

a.e. [f-l] on X

a.e. [f-l] on X

g(x) = Alf(x)IP-l sign(f(x)),

and so M(h) = 0, hEY, implies

~~myhEY 0

The statement of part h] remains valid for closed subspaces Y instead
of finite-dimensional subspaces, see, for example, Shapiro [71].

i] Minkowski's Inequality for p E (0,1). Show that

for every f,g E Lp(f-l) and p E (0,1).

Hint: Verify that

whenever f,g E Lp(f-l) and p E (0,1). 0

Further properties of Lp(f-l) spaces may be found in Rudin [87].
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E.8 Fourier Series.

a] Show that

{~:nEZ}

is a maximal orthonormal collection in L2 [-7r, 7r].

Hint: The orthonormality is obvious. In order to show the maximality, first
note that L2 [-7r,7r] is a Hilbert space by the Riesz-Fischer theorem (E.7
eD. Hence, by E.6, it is sufficient to show that the set TC of all complex
trigonometric polynomials is dense in L 2 [-7r, 7rJ. By the Stone-Weierstrass
theorem (E.2 of Section 4.1) TC is dense in C*[-7r,7r], where C*[-7r,7r]
is the space of all complex-valued 27r-periodic continuous functions on lR.
equipped with the uniform norm on R Finally, it is a standard measure
theoretic argument to show that C*[-7r,7r] is dense in L2 [-7r,7r]; see, for
example, Rudin [87]. 0

The kth Fourier coefficient f(k) of a function 1 E L1 [-7r,7r] is defined
by

7f

f(k) := ~ JI(B)e- iko dB.
27r

The (formal) Fourier series of a function 1 E LIf-7r,7r] is defined by

ex:>

1 r-.J L f(k)e ikO
.

k=-ex:>

The functions
n

Sn(B):= L f(k)e ikO

k=-n

are called the nth partial sums of the Fourier series of 1.
b] Show that if 1 E L 2 [-7r, 7r]' then

ex:>

'"'" ~ 2 2LJ 11(k)1 = IIIIIL2 [-7f,7f] < 00.
k=-ex:>

Hint: Use part a], E.6, and E.7 e].

c] Show that if 1 E Ld-7r,7r], then

lim 111 - SnIIL 2 [-7f 7f] = 0,
n-+cx::> '

o

so 1 is the L 2 [-7r, 7r] limit of the partial sums of its formal Fourier series.

Hint: Use part bJ. 0
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Carleson, in 1966, solved Luzin's problem by showing that Sn -> f
almost everywhere on [-7r,7r] for every f E LZ[-7r, 7r]. Earlier, Kolmogorov
showed that there is a function fELl [-7r, 7r] so that Sn diverges every­
where on [-7r,7r].

d] Isometry of LZ[-7r, 7r] and £2' Let

£~ := {x = (Xk)~_oo : Xk E C, k%;oo IXklz< 00 }
and

Ilxll" ,~ C~= Ix. I') 'I',

Show that the function I : LZ[-7r, 7r] -> £2 defined by

1(1) := i:= (f(k)):'::oo

is one-to-one and onto, and

Hint: Use part a] to show that I is one-to-one. Use the Riesz-Fischer the­
orem (E.7 e]) to show that I is onto. The norm-preserving property is the
content of part b]. 0

Part d] shows that the structure of LZ[-7r, 7r] is the same as that of
£2' Hence L z[-7r, 7r] is a separable Hilbert space, that is, it has a countable
dense subset. So if f > 0 is fixed, then any collection {f", : a E A} from
L2 [-7r,7r] for which

llf", - f,13 11£2 [-,.'7rJ 2:: f, a,,6 E A, a i- ,6

must be countable.

e] The Riemann-Lebesgue Lemma. If f E L1 [-7r,7r], then i(k) -> 0 as
k -> 00.

Hint: First prove it for step functions, then extend the result to every
fELl [-7r, 7r] by using the fact that step functions form a dense set in
L1[-7r,7r]. 0

f] Show that

00 1 7r2 00 1 7r4 ~ 1 ZkL n2 = 6' L n4 = 90' and L..t n Zk = rk
7r

n=l n=l n=l

for every k = 3,4, ... , where rk is a rational number.

Hint: Let f be the 27r periodic function defined by

Apply part b].

f(B):= (7r~B)k, BE [0, 27r) .

o
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E.9 Denseness of Polynomials in L 2 (p,) on R

a] Let p, be a finite Borel measure on [a, b] and fELl (p,). Show that if

lb

f(x)eitx dp,(x) = 0,
27rk

t = -- , k = 0, ±l, ±2, ... ,
b-a

then f(x) = 0 a.e. [p,] on [a, b].

Outline. Use the fact that the set yc of all complex trigonometric poly­
nomials is dense in C*[-7r,7r] (see the hint given for E.8 aD and standard
measure theoretic arguments to show that the assumption of part a] implies

lb

f(x)g(x) dp,(x) = 0

for every bounded measurable function 9 defined on [a, b]. Now, choosing

we obtain

{

f(x)

g(x) := sign(J(x)) := If~X)1

i: If(x)t dp,(x) = 0,

if f(x) -10

if f(x) = 0,

t E lR,

and the result follows.

b] Let p, be a finite Borel measure on lR and fELl (fJ,). Show that if

1f(x)eitx dp,(x) = 0,

then f(x) = 0 a.e. [p,] on R

Hint: Use part a] to show that the assumption of part b] implies

1f(x)g(x) dp,(x) = 0

o

for every bounded measurable function defined on lR (first assume that 9
has compact support, then eliminate this assumption). Finish the proof as
in part a]. 0

c] Let p, be a Borel measure on lR satisfying

1erlx ' dp,(x) < 00

with some r > O. Show that the set pc of all complex algebraic polynomials
is dense in L 2 (p,).
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Outline. First observe that the assumption on J.L implies pc C L 2 (J.L). The
fact that L 2 (J.L) is a Hilbert space (see E.7 eD, Theorem 2.2.2 (Gram­
Schmidt), and E.6 imply that it is sufficient to prove that if f E L 2 (J.L)
and

~ f(x)x k dJ.L(x) = 0, k = 0,1,2, ... ,

then f(x) = °a.e. [J.L] on JR. Assume that f E L 2 (J.L) satisfies the above
orthogonality relation. Use Theorem 2.2.1 a] (Cauchy-Schwarz inequality)
to show that

F(t):= ~ f(x)e- itx dJ.L(x)

is well-defined on JR. For every to E ~, we have

f(x)e- itx = f(x)e-itoxe-i(t-to)x

00 (t _ t )k .
= L (_i)k k! 0 f(x)e-2toxxk.

k=O

Note that if It - tol :s: r /2, then the integral of the right-hand side with
respect to J.L(x) on ~ can be calculated by integrating term by term since

Therefore, if It - tol :s: r/2, then

This means that F has a Taylor series expansion about every to E ~ with
radius of convergence at least r /2. Also, with the choice to = 0, by the
assumed orthogonality relations, we have F(t) = 0 whenever It I :s: r/2. We
can now deduce that F(t) = °for every t E lR.. Hence it follows from part
b] that f(x) = 0 a.e. [J.L] on JR. 0
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2.3 Orthogonal Polynomials

The classical orthogonal polynomials arise on orthogonalizing the sequence

(1,x,x 2
, ... )

with respect to various particularly nice weights, w(x), on an interval,
which, after a linear transformation, may be taken to be one of [-1, 1]'
[0,00), or (-00,00). The main examples we consider are the Jacobi polyno­
mials

(2.3.1) P~Q,(3)(x), where w(x) := (l-x)Q(l+x)f3 on [-1,1], ex,{3 > -1.

When ex = (3 = -1/2 the Jacobi polynomials are the Chebyshev polynomials
of the first kind,

(2.3.2) Tn(x), where w(x) := (1 - x2)-1/2 on [-1,1].

When ex = (3 = 1/2 they are the Chebyshev polynomials of the second kind,

(2.3.3) Un(x), where w(x) := (1 - X 2 )1/2 on [-1,1].

Another special case of importance is ex = (3 = 0, which gives the Legendre
polynomials,

(2.3.4) Pn(x), where w(x) = 1 on [-1,1].

The Laguerre polynomials are

(2.3.5) Ln(x), where w(x) := e- x on [0,00).

The Hermite polynomials are

(2.3.6)
2

Hn(x), where w(x) := e- x on (-00,00).

The above notation is traditionally used to denote orthogonal polynomials
with a standard normalization; see the exercises. It is not usually the case
that this normalization gives orthonormality. All of these much studied
polynomials arise naturally, as do all the special functions, in the study of
differential equations. We catalog some of the special properties of these
classical orthogonal polynomials in the exercises.

In general, a nondecreasing bounded function ex (typically the distribu­
tion function of a finite measure) defined on IR is called an m-distribution
if it takes infinitely many distinct values, and its moments, that is, the
improper Stieltjes integrals
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00 W2

JX
n

da(x) = Wl~~OO JX
n

da(x) ,
-00 W2--++(X) WI

exist and are finite for n = 0, 1, ....

Theorem 2.3.1 (Existence and Uniqueness of Orthonormal Polynomials).
For every m-distribution a there is a unique sequence of polynomials
(Pn)~=o with the following properties:

(i) 'Yn > 0, rn-1 E Pn-1 ,

(ii)
forn = m
for n =I- m.

PTOOf. The result follows from Theorem 2.2.2 (Gram-Schmidt). Note that
the defining property of an m-distribution a ensures that

(p,q):= lpqda

is an inner product on P~. o

The sequence (Pn)~=o defined by Theorem 2.3.1 is called the sequence
of orthonormal polynomials associated with an m-distribution a. The se­
quence (qn)~=o is called a sequence of orthogonal polynomials associated
with an m-distribution a if

qn = CnPn, 0 =I- Cn E C, n = 0,1, ... ,

where (Pn)~o is the sequence of orthonormal polynomials associated with
a. The support supp(a) of an m-distribution a is defined as the closure of
the set

{x E lR : a is increasing at x} .

If a is absolutely continuous on lR, then

da(x) = w(x) dx with some O:s: w E L 1(00, 00)

in which case a may be identified as a nonnegative weight function w E

L1 (-00,00) whose integral takes infinitely many distinct values. If (a, b)
is an interval and wELl [a, b] has an integral that takes infinitely many
distinct values, then the sequence of orthogonal (orthonormal) polynomials
associated with

w(x) = {w(ox) if x E (a, b)
if x tf- (a,b)

is said to be orthogonal (orthonormal) with respect to the weight w.

One thing distinguishing orthogonal polynomials from general orthog­
onal systems is the existence of a three-term recursion.
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Theorem 2.3.2 (Three-Term Recursion). Suppose (Pn);;='=o is a sequence of
orthonormal polynomials with respect to an m-distribution a. Then

n = 0,1, ... ,

where

P-I := 0, a-I = 0, an = ~ > 0, bn E lR, n = 0,1, ...
/'n+1

hn is the leading coefficient of Pn).

This theorem has a converse due to Favard [35]; see E.12.

Proof. Since xPn(x) E Pn+l, we may write

(2.3.7)
n+1

XPn(X) = L dkPk(X) ,
k=O

For notational convenience, let

(p,q):= l p(x)q(x)da(x)

for any two polynomials P and q. Since (Pn, q) = 0 for every q E Pn- I, we
have

(XPn(X), q(x)) = (Pn(x), xq(x)) = 0

for every q E Pn - 2 . In particular,

k = 0,1, ... ,n - 2.

On the other hand, using (2.3.7) and the orthonormality of (Pn);;='=o, we
obtain

Hence dk = 0 for each k = 0, 1, ... ,n - 2 and

(2.3.8)

Here the lead coefficient of the left-hand side polynomial is /'n, while the
lead coefficient of the right-hand side polynomial is dn+l /'n+l, so

In order to show that an-I := dn- I = /'n-d/'n, note that (2.3.8) and the
orthonormality of (Pn);;='=o imply
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0= (Pn+l,Pn-l)

= ~(XPn(X)'Pn-l(X)) - dd
n

(Pn,Pn-l) - dd
n

-
1

(Pn-l,Pn-l)
n+l n+l n+l

1 ( () n) dn- 1
= -d- Pn x ,l'n-lX - -d-
n+l n+l

1 I'n-l dn - 1-------
dn+1 I'n dn+1 .

Hence
I'n-l

an-l := dn- 1 = -- .
I'n

D

Theorem 2.3.3 (Christoffel-DarbollX Formula). With the notation of the
previous theorem,

~ () () _ I'n (Pn+l(X)Pn(Y) - Pn(X)Pn+l(Y))L... Pk X Pk Y ---
k=O I'n+l x - Y

for all x f= Y E C.

Proof. Theorem 2.3.2 (three-term recursion) yields that

.dk : = Pk+l(X)Pk(Y) - Pk(X)Pk+l(Y)
1 ak-l

= -(x - Y)Pk(X)Pk(Y) + -(Pk(X)Pk-l(Y) - Pk-l(X)Pk(Y))·
ak ak

So
.dk .dk - 1

ak-- = Pk(X)Pk(Y) + ak-l--,
X-Y X-Y

and we sum the above from 0 to n to get the desired formula.

Corollary 2.3.4. In the notation of Theorem 2.3.2

n

LPk(x) =~ (P~+l(X)Pn(X) - P~(X)Pn+l(X))
k=O I'n+l

Proof. Let Y -+ x in Theorem 2.3.3.

D

D

We can deduce quite easily from this that orthogonal polynomials as­
sociated with an m-distribution 0: have real interlacing zeros lying in the
interior of the smallest interval containing supp(o:); see E.l and E.2.
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Comments, Exercises, and Examples.

Askey, in comments following an outline of the history of orthogonal poly­
nomials by Szego [82, vol. III], writes:

"The classical orthogonal polynomials are mostly attributed to someone
other than the person who introduced them. Szego refers to Abel and
Lagrange and Tschebyscheff in [75, chapter 5] for work on the Laguerre
polynomials L~(x). Abel's work was published posthumously in 1881. Prob­
ably the first published work on these polynomials that uses their orthonor­
mality was by Murphy (1833). Hermite polynomials were studied exten­
sively by Laplace in connection with work on probability theory. Hermite's
real contribution to these polynomials was to introduce Hermite polynomi­
als in several variables. Lagrange came across the recurrence relation for
Legendre polynomials."

Perhaps this is not very surprising given the many diverse ways in which
these polynomials can arise.

There are many sources for the basic properties of orthogonal polyno­
mials. In particular, Askey and Ismail [84], Chihara [78], Erdelyi et al. [53],
Freud [71], Nevai [7gb], [86], Szego [75], and, in tabular form, Abramowitz
and Stegun [65] are such sources. Exercises include a treatment of the ele­
mentary properties of the most familiar orthogonal polynomials. The con­
nections linking orthogonal polynomials, the moment problem, and Favard's
converse theorem to the three-term recursion are also examined in the ex­
ercises.

E.! Simple Real Zeros. Let (Pn)~=o be the sequence of orthonormal poly­
nomials associated with an m-distribution n. Show that each Pn has exactly
n simple real zeros lying in the interior of the smallest interval containing
supp(n).

Hint: Suppose the statement is false. Then Pn has at most n-l sign changes
on [a, b], hence there exists 0 =1= q E Pn - 1 so that

Pn(x)q(x) ::::: 0, x E [a,b].

Show that this contradicts the orthogonality relation

0= l Pn(x)q(x) dn(x) = l b

Pn(x)q(x) dn(x).

o

E.2 Interlacing of Zeros. Let (Pn);:O=o be the sequence of orthonormal
polynomials associated with an m-distribution n. Then the zeros of Pn
and Pn+! strictly interlace. That is, there is exactly one zero of Pn strictly
between any two consecutive zeros of Pn+!'
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Hint: From Corollary 2.3.4,

is positive on lR. Since Pn+l has n + 1 simple real zeros (see E.1), we see
that if "( and 8 are two consecutive zeros of Pn+1, then

and hence
sign(Pn("()) = -sign(Pn(8)) .

o

E.3 Orthogonality of (Kn(xo,x))~=o' Let (Pn)~=o be the sequence of
orthonormal polynomials associated with an m-distribution a. Let

Xo < min supp(a) or Xo > max supp(a) .

Let (Kn(xo,x))~=o be the sequence of associated kernel functions (as in
E.5 of Section 2.2). Show that

for any two nonnegative integers n =I m.

E.4 Hypergeometric Functions. We introduce the following standard no­
tation: the rising factorial (or Pochammer symbol)

(a)n := a(a + 1)··· (a + n - 1), (a)o := 1

for a E iC and n = 1,2, ... ; the binomial coefficient

(
a).= a(a-1)···(a-n+1)

. , 'n n. (~) := 1

for a E iC and n = 1,2, ... ; and the Gaussian hypergeometric series

~ (a)n(b)n zn
2Fl(a,b;c;z):= F(a,b;c;z):= ~ () ,

n=O C n n.

for a, b, c E iC.

a] For Re(c) > Re(b) > 0,

F(ab'C"z)= r(c) r1

t b- 1 (1_t)C-b-l(1_tZ)-adt
, " r(b)r(c - b) io '
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where r is, as usual, the gamma function defined by

r(z) :=100

tz-le- t dt, Re(z) > o.

Proof. See, for example, Szeg6 [75]. 0

b] Hypergeometric Differential Equation. The function y = F(a, b; c; z)
satisfies

d2 y dy
z(1 - z) dz 2 + [c - (a + b+ 1)z] dz - aby = O.

Proof. See, for example, Szeg6 [75]. 0

In E.5, E.6, and E.7 we catalog some of the basic properties of some
of the classical orthogonal polynomials. Proofs are available in Szeg6 [75],
for example.

E.5 Jacobi Polynomials.

a] Rodrigues' Formula. Let

Then (P~G:,I3))'::::=o is a sequence of orthogonal polynomials on [-1,1] asso­
ciated with the weight function

That is,

w(x) := (1 - x)G:(l + x)13 , -l<ex,j3<oo.

for any two nonnegative integers n i- m.
In the rest of the exercise, the polynomials p~G:,I3) are as in part a].

b] Normalization. We have

p(G:,I3)(l) = (n + ex) = (ex + l)n
n n n!

and

III (P~G:,I3)(x))2(1 - x)G:(1 + xl dx

2G:+13+1 r(n + ex + l)r(n + j3 + 1)
2n + ex + j3 + 1 r(n + l)r(n + ex + j3 + 1) .
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c] Explicit Form.

= to (:~:)(a+~:n+m) (X;I)m

= (n: a) 2F l ( -n, n + a + ~ + 1; a + 1; 1; x)

d] Differential Equation. The function y = PAOt ,(3) (x) satisfies

2 d2 y dy
(1 - x ) dx2 + [~- a - (a + ~ + 2)x] dx + n(n + a + ~ + l)y = 0.

e] Recurrence Relation. The sequence (PAOt,{3)(x»~=o satisfies

D p(Ot,{3)(x) = (A + B x)p(Ot,{3)(x) - C p(Ot,{3)(x)
n n+l n n n n n-l ,

where

and

and p}Ot,(3)(x) = ~[a - ~ + (a + ~ + 2)x]

D n = 2(n + 1)(n + a + ~ + 1)(2n + a +~)

An = (2n + a + ~ + 1)(a 2
_ ~2)

Bn = (2n + a + ~ + 2)(2n + a + ~ + 1)(2n + a +~)

Cn = 2(n + a)(n + ~)(2n + a + ~ + 2).

f] Generating Function.

where R = )1- 2xz + Z2.

There are various special cases, some of which we have previously de­
fined. The Legendre polynomials Pn are defined by

n '= p(O,O)
Tn' n , n = 0,1, ....
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n = 0,1, ....
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The Chebyshev polynomials Tn defined in Section 2.1 satisfy

T = ~p(-1/2,-1/2)
n (2:) n ,

The ultraspherical (or Gegenbauer) polynomials C~a) are defined by

c(a) ._ T(2a + n)T(a + ~) p(a-1/2,a-1/2)

n .- T(2a)T(a+n+~) n ,

In terms of C~a), the Chebyshev polynomials of the first and second kind
are given by

T = ~C(O)
n 2 n and U =C(l)

n n' n = 0,1, ....

E.6 Hermite Polynomials.

a] Rodrigues' Formula. Let

Then (Hn) ':=0 is a sequence of orthogonal polynomials on (-00, (0) asso­
ciated with the weight function

w(x) := exp(_x2
).

That is,

for any two nonnegative integers n -I- m.
In the rest of the exercise, the polynomials H n are as in part a].

b] Normalization. We have

and

H 2n+l (0) = °,
c] Explicit Form.

Ln/2J (-1)m(2x )n-2m
Hn(x) = n! '" 1( )L m. n-2m!

m=O
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d] Differential Equation. The function y = Hn(x) satisfies

d2 y dy
- - 2x - + 2ny = O.
dx2 dx

e] Recurrence Relation. The sequence (Hn(x)):;:::=o satisfies

with
Ho(x) = 1

f] Generating Function.

and

E.7 Laguel re Polynomials. Let a E (-1, (X)).

a] Rodrigues' Formula. Let

LnC"')(x) := 1 d
n

(e-xx",+n).
n!e-xx'" dxn

Then (L~"')):;:::=o is a sequenc~ of orthogonal polynomials on [0, (X)) associated
with the weight function

w(x) := x'" exp(-x).

That is,

for any two nonnegative integers n i= m.
In the rest of the exercise, the polynomials L~"') are defined as in part al.

b] Normalization. We have

roo (L~"')(x))2x"'e-x dx = rea + ~ + 1)
Jo n.

and

c] Explicit Form.
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d] Differential Equation. The function y = L~a)(x) satisfies

d2 y dy
X dx2 + (a + 1 - x) dx + ny = O.

e] Recurrence Relation. The sequence (L~a)(x))~=o satisfies

with
and

f] Generating Function.

~L~a)(x)zn = exp (z~1) (1- z)-a-l.

E.8 Christoffel Numbers and Gauss-Jacobi Quadrature. Let (Pn)~o be
the sequence of orthonormal polynomials associated with an m-distribution
a. Let xv,n, v = 1,2, ... ,n, denote the zeros of Pn. Let

1 1 Pn(X)
Av,n:= I () da(x),

Pn Xv,n IR X - Xv,n
V= 1,2, ... ,no

The numbers Av,n are called the Christoffel or Cotes numbers.

a] Show that, for any q E P2n- 1 ,

Hint: First show the equality for every q E Pn - 1 by using the Lagrange
interpolation formula (E.6 of Section 1.1). If q E P2n- 1 , then q = SPn + r
with some s, rEPn-l, where s is orthogonal to Pn. 0

b] Show that Av,n > 0 for every v = 1,2, ... ,n.

Hint: Use part a] to show that

1 1( Pn(x) )2Av,n = ( I ())2 _ da(x).
Pn Xv,n IR X Xv,n

o
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c] Suppose [a, b] is a finite interval containing supp(a). Let f E C[a, b].
Show that

lib f(x) da(x) - ~ Av,nf(xv,n) I

::; 2(a(b+) - a(a-)) min Ilf - Pllla,b]'
pEP2n-l

Hint: Use parts a] and b] together with the observation

tAv,n= l b

da(x)=a(b+)-a(a-).
v=1 a

o

d] Suppose supp(a) c [a, b], where a, bE R Show that

t Av,nf(xv,n) n~ l b

f(x)da(x)
v=1 a

for every Riemann-Stieltjes integrable function on [a, b] with respect to a.

Hint: First show that f is Riemann-Stieltjes integrable on [a, b] with respect
to a if and only if for every E > 0 there are g1, g2 E C[a, b] so that

x E [a,b]

and ib
(g2(X) - g1 (x)) da(x) < E.

Finish the proof by part c] and the Weierstrass approximation theorem (see
E.1 of Section 4.1). 0

e] Suppose supp(a) is compact. Let

Z:={xv,n:v=1,2, ... ,n, n=1,2, ... }.

Show that supp(a) C Z, where Z denotes the closure of Z.
Hint: Use part d].

f] Show by an example that supp(a) i- Z is possible.
o

E.9 Characterization of Compact Support. Using the notation of Theo­
rem 2.3.2 and E.8, show that the following statements are equivalent:

(1) supp(a) is compact.

(2) sup{lanl + Ibnl} < 00.
nEN

(3) The set Z := {xv,n : v = 1,2, ... ,n, n = 1,2, ... } is bounded.
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Outline. (1) =} (2). Note that the orthogonality of {Pn};:"=o implies

and bn = l xp~(x) da(x) .

So supp(a) C [-K, K], the Cauchy-Schwarz inequality, and the orthonor­
mality of (Pn);:"=o yield

and

Ibnl ::; K i: p~(x)da(x) = K.

(2) =} (3). Use Theorem 2.3.2 (three-term recursion) to show that

n-1 n-1 n-1
XI/,n LP%(XI/,n) ::; 2 L ak+1Pk(XI/,n)Pk+1(XI/,n) + L bkp%(xl/,n).

k=O k=O k=O

Hence

(3) :::} (1). If Z c [-K, K], then by E.8 a]

rX2n- 2da(x) = ~.A X2n- 2 < K 2n- 2 rda(x)1m L....J v,n v,n - 1m '
R 1/=1 R

which implies supp(a) C [-K, K]. o

E.I0 A Condition for supp(a) C [0,00). Let (Pn);:"=o be the sequence
of orthonormal polynomials associated with an m-distribution a. Suppose
supp(a) is compact and

n = 0,1, ....

Show that supp(a) C [0,00).

Hint: Use the interlacing property of the zeros of Pn (E.2) to show that

Z:= {XI/,n: v = 1,2, ... ,n, n = 1,2, ... } c [0,00).

Now use E.8 e] to obtain supp(a) C [0,00). o
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E.ll The Solvability of the Moment Problem. Let (/-Ln);':'=o be a sequence
of real numbers. We would like to characterize those sequences (/-Ln);':'=o for
which there exists an m-distribution a so that

Let

~ xn da(x) = /-Ln,

n

n = 0, 1, ...

/-L(p) := L ak/-Lk
k=O

for every pEPn of the form p(x) = L~=o akxk .

A polynomial p is called nonnegative if it takes nonnegative values on
the real line. The sequence (/-Ln);':'=o is called positive definite if

n

/-L(p) := L ak/-Lk > 0,
k=O

n = 0, 1, ...

holds for every nonnegative polynomial p E Pn of the form

n

p(x) = L akxk .
k=O

The aim of this exercise is to outline the proof of Hamburger's characteri­
zation of the solvability of the moment problem by the positive definiteness
of the sequence of moments. See part 0].

a) Show that if there exists an m-distribution a so that

~ xn da(x) = /-Ln, n = 0,1, ... ,

then (/-Ln);':'=o is positive definite.

Hint: An m-distribution a is increasing at infinitely many points. 0

b) Show that (/-Ln);':'=o is positive definite if and only if /-L(p2) > °holds for
every °i= p E Pn , n = 0,1, ....
Hint: Use E.3 of Section 2.4. 0

c) Show that (/-Ln);':'=o is positive definite if and only if

/-Lo /-Ll /-Ln
/-Ll /-L2 /-Ln+l

n = 0, 1, ....> 0,

/-Ln /-Ln+l /-L2n
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Hint: Use part b] and the law of inertia of Sylvester. See, for example, van
der Waerden [50J. 0

dJ Helly's Selection Theorem. Suppose the functions fn, n = 1,2, ... ,
are nondecreasing on JR, and

sup IlfnlllR < 00.
nEN

Then there exists a subsequence of (fn)':'=l that converges for every x E JR.
That is, we can select a pointwise convergent subsequence.

Hint: See, for example, Freud [71J. 0

eJ Helly's Convergence Theorem. Let [a, bJ be a finite interval. Suppose
the functions an, n = 1,2, ... , are nondecreasing on [a, bJ and

sup Ilan II [a,b] < 00 .
nEN

Suppose also that (an(X))~=l converges to a(x) for every x E [a, bJ. Then

nl~~I b

f(x) dan (x) = I b

f(x) da(x)

for every f E era, b].

Hint: See, for example, Freud [71J. 0

In the rest of the exercise (except for the last part) we assume that
(J.Ln)~=o is positive definite. Our goal is to prove the converse of part aJ.
Let

J.Lo J.Ll J.Ln-l 1

J.Ll J.L2 J.Ln x
p~(x) :=

J.Ln J.Ln+l J.L2n-l x n

f) Show that
J.L(p~q) = 0, q E Pn - 1 .

gJ Show that each P~ has n simple real zeros.

Hint: Use part fl.

Let Xl,n > X2,n > ... > xn,n be the zeros of p~. Let

o

l (x):= p~(x)
v,n "()( )'Pn xv,n X - xv,n

(see E.6 of Section 1.1), and let

v = 1,2, ... ,n, n = 1,2, ...
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h] Show that
n

f.J,(q) = L Av,nq(xv,n)
v=l

for every q E P2n-l.

Hint: Use part fl.

i] Show that
o

Hint: Use part h].

For x E R, let

v=1,2, ... ,n, n=1,2, ....

o

an(x) := L Av,n,
{v: xv,n:C;x}

n = 1,2, ....

j] Show that 0::; an(x) ::; f.J,o on R for each n, and there is a subsequence of
(an);:::'=l that converges pointwise to a nondecreasing real-valued function
aonR

Hint: Use parts h], i], and d].

k] Show that for every finite interval [a, b],

lim Ib xm dank (x) = Ib xm da(x),
k---+oo a a

m = 0, 1,2, ... ,

o

where a is defined in part j].

Hint: Use part e]. 0

1] Let m be a fixed nonnegative integer and let r := Lm/2J+ 1. Show that
if nk ::::: r + 1, a::; -1 and b::::: 1, then

II~ xmdank(x) +100

xmdank(X)1

::; C~I + I~I) i x
2r

dank (x) = C~I + I~I) f.J,2r·

Hint: Use part h].

m] Show that

ixmda(x)=f.J,m,

where a is defined in part j].

Hint: Use parts k] and I].

m=0,1,2, ...

o

o
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n] Show that a defined in part j] is an m-distribution.

0] There exists an m-distribution a so that

if and only if (fLn)~=o is posItive definite, that is, if and only if

fLo fLI fLn
fLI fL2 fLn+1

> 0, n = O,.;!., ....

fLn fLn+l fL2n

Hint: Combine parts a], c], m], and n]. D

Necessary and sufficient conditions for the uniqueness of the solution
of the moment problem are given in Freud [71], for example.

E.12 Favard's Theorem. Given (an)~=o C (0,00) and (bn)~=o c JR, the
polynomials Pn E Pn are defined by

XPn(X) = anPn-I(X) + bnPn(x) + an+lPn+l(X),

P-l = 0, Po = 10> 0.

Then there exists an m-distribution a such that

for any two distinct nonnegative integers nand m. In other words, the
converse of Theorem 2.3.2 is true.

In order to prove Favard's theorem, proceed as follows:

a] Show that the polynomials Pn are of the form

Pn(X) = ,nXn + r(x) , In > 0, r E Pn- l .

h] Let fin := I;;lpn, n = 0,1, .... The sequence (fLn)~=o is defined as
follows. Let

fLo:=I, fL(q):=C if q=c, cEJR.

If fLo, fLI, ... ,fLn have already been defined, then let

n

fL(q) := L CkfLk
k=O

n

whenever q(x) = L Ck xk ,
k=O
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and let

Show that

m = 0,1, ... ,n - 1, n = 0,1, ...

and
tL(~) > 0,

Hint: It is sufficient to prove that

n = 0, 1, ....

m = 0,1, ... ,n - 1, n = 0,1, ...

and
n = 0,1, ....

These can be obtained from the definition of tL and from Theorem 2.3.2
(three-term recursion) by induction on n. 0

c] Show that every q E Pn is of the form

and if q i= 0, then
n

tL(q2) = L C~tL(P%) > O.
k=O

d] Show that (tLn)~=o is positive definite in the sense of KI!.

Hint: Use the previous part and KIl b]. 0

e] Prove Favard's theorem.

Hint: Use part 0] of KIl, parts d] and b] of this exercise, and the definition
of JL. 0

E.13 Christoffel Function. Let a be an m-distribution. For a fixed n E N,
the function

An(Z) = inf{l q2(X) da(x) : q E Pn- 1 , Iq(z)1 = I} ,

is called the nth Christoffel function associated with a.

a] Show that

zEC

An(Z) ,~ (~IP'(Z)I') ~, ,
where (Pn)~=o is the sequence of orthonormal polynomials associated with
a.
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Show also that the infimum in the definition of An(z) is actually a
minimum, and it is attained if and only if

Hint: Write
n-l

q = LCkPk,
k=O

and observe that the orthonormality of (Pn)~=o implies

Now use the Cauchy-Schwarz inequality (E.3 of Section 2.2) to find the
maximum of Iq(z)1 for polynomials q E P~-l satisfying

ll(x) da(x) ::::; 1

where z E C is fixed.

b] Let Av,n, v = 1,2, ... ,n, be the Christoffel numbers associated with an
m-distribution a, that is, the coefficients in the Gauss-Jacobi quadrature
formula, as in E.8. Show that

v = 1,2, ... ,n,

that is, the Christoffel numbers are the values of the Christoffel function at
the zeros of the nth orthonormal polynomial Pn.

Hint: Use parts E.8 a] and E.8 b]. D

c] Let x E lR be fixed. Show that

if and only if x is a mass point of a, that is, a(x-) < a(x+), in which case

00

LP;'(x) = (a(x+) - a(x-))-l.
n=O

Hint: Use part a] and the Weierstrass approximation theorem. See E.1 of
Section 4.1. D
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E.14 The Markov-Stieltjes Inequality. Let a be an m-distribution with
associated orthonormal polynomials (Pn)~=o' Let XI,n > X2,n > ... > xn,n
denote the zeros of Pn. Let XO,n := 00 and xn+l,n := -00. As in E.8 let
Av,n, l/ = 1,2, ... , n, be the Christoffel numbers associated with a . Show
that

and

Av,n ::; lxv-I,n da(x) ,
Xv+l,n

lxv-I,n da(x) ::; Av,n + AV-I,n,
Xv,n

l/= 1,2, ... ,n

l/ = 2,3, ... , n .

Hint: Let 1 ::; k ::; n be fixed. Use E.7 of Section 1.1 (Hermite interpola­
tion) to find polynomials P E P2n-1 and Q E P2n- 1 with the following
properties:

(1) P(Xj,n) = Q(Xj,n) = 1, j = 1,2, ... , k - 1,

(2) P(Xk,n) = 0, Q(Xk,n) = 1,

(3) P(Xj,n) = Q(Xj,n) = 0, j = k + 1, k + 2, ... ,n,
(4) P(x)::; X(-OO,Xk,n](x)::; Q(x) , x E JR,

where

{
I if

X(-OO,Xk,n](x):= ° if
- 00 < x ::; Xk,n

Xk,n < X < 00.

Now apply E.8 (Gauss-Jacobi quadrature formula) to P and Q. 0

E.15 Orthonormal Polynomials as Determinants. Suppose a is an m­
distribution with moments

n = 0,1, ....

Let
J.Lo J.LI J.Ln
J.LI J.L2 J.Ln+1

Ll .- n = 0,1, ....n .-

J.Ln J.Ln+1 J.L2n

aJ Show that Lln > 0, n = 0,1,2, ....
hJ Show that the orthonormal polynomials Pn associated with a are of the
form

J.Lo J.LI J.Ln-1 1

J.LI J.L2 J.Ln x
Pn(x) = (LlnLln_d- I/ 2

J.Ln J.Ln+1 J.L2n-1 x n
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c] Let (an);:O=o C (0,00) and (bn);:O=o c lEt be the coefficients in the three­
term recursion for the sequence (Pn);:O=o of orthonormal polynomials asso­
ciated with a as in Theorem 2.3.2. Show that the monic orthogonal poly­
nomials Pn := ')';;lpn are of the form

where I n is the tridiagonal n by n Jacobi matrix

(
~~ ~~ a2 )

I n := a2 b2 as

an bn

and In is the n by n unit matrix.

E.16 The Support of a. Let (an);:O=o C (0,00) and (bn);:O=o C lEt be the
coefficient sequences in the three-term recursion for the sequence of (Pn);:O=o
of orthonormal polynomials associated with an m-distribution a as in The­
orem 2.3.2.

a] Show that if supp(a) C [b - a, b+ a] with some a > 0 and bE lEt, then

n = 0,1, ....

Hint: Use the orthonormality of (Pn);:O=o to show that

and

l
b+a

bn - b= (x - b)p;,(x) da(x).
b-a

Now apply the Cauchy-Schwarz inequality, and use the orthonormality of
(Pn);:O=o again. 0

b] Show that
supp(a) C [-K, K]

where
K := 2sup{an : n E !"if} + sup{lbnl : n E !"if}

(the suprema are taken over all nonnegative integers).

Hint: Suppose K < 00; otherwise there is nothing to prove. Combine E.g,
the inequality in the hint to the direction (2) ~ (3) of E.g, and E.8 e]. 0
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c] Blumenthal's Theorem. Assume that

Then

1
. a
1m an =: - > a

n--->oo 2
and lim bn =: b E IR.

n--->oo

supp(a) = [b - a, b+ a] UF

where F C IR \ [b - a, b + a] is a countable bounded set for which

F \ (b - a - E, b+ a + E)

is finite for every E > O.

Proof. See Nevai [79b] or Mate, Nevai, and Van Assche [91]. D

d] Rakhmanov's Theorem. Suppose supp(a) C [b - a, b + a] with some
a> a and b E IR. Suppose also that a'(x) > a a.e. in [b - a, b + a]. Then

I
. a
1m an = -

n--->oo 2
and lim bn = b.

n~oo

Proof. See, for example, Mate, Nevai, and Totik [85], or Nevai [91]. D

There is an analogous theory of orthogonal polynomials on the unit
circle initiated by Geronimus, Shohat, and Achiezer. An important contri­
bution, called Szego theory, may be found in Freud [71].

E.17 A Theorem of Stieltjes [14]. Let w be a positive continuous weight
function on [-a, a]. Denote the nth moment by

J-ln :=1: xnw(x) dx.

Let Pn E Pn denote the nth monic orthogonal polynomial on [-a, a] asso­
ciated with the weight w. Then (Pn);;!=o satisfies a three-term recursion

Pn(x) = (x - An)Pn-l(X) - BnPn-dx)

with Po(x) = 1 and PI (X) := x - AI; see Theorem 2.3.2.

Suppose the sequence of polynomials (qn);;!=o satisfies the same recur­
sion commencing with qo(x) := a and ql(X) := B l . Stieltjes' theorem (see,
for example, Cheney [66]) states the following.

Theorem. For any x tJ- [-a, a],

j a w(t) dt = J-lo + J-ll + ...
-a X - t X x 2

B2
X - Al - ---------­

B3
X - A2 - -----­

X - A3 - •..
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Furthermore, the nth convergent qn/Pn satisfies

E.18 Completeness of Orthogonal Polynomials. Let (Pn)~=o be the se­
quence of orthonormal polynomials associated with an m-distribution a. If
supp(a) c [a, b], where [a, b] is a finite interval, then (Pn)~=o is a maximal
orthogonal collection in L2 [a, b].

Hint: Use the Weierstrass approximation theorem (E.1 of Section 4.1) on
~,~. 0

E.19 Bounds for Jacobi Polynomials. For all Jacobi weight functions
w(x) = (1 - x)"'(1 + x)t3 with a ~ -1/2 and f3 ~ -1/2, the inequalities

and
2e (2 + via 2 + f32 )

max ~w(x)p;(x)::;---'----------'---
xE[-l,l] 7r

hold, where (Pn)~=o is the sequence of orthonormal Jacobi polynomials
associated with the weight function w.

Proof. See Erdelyi, Magnus, and Nevai [94]. 0

2.4 Polynomials with Nonnegative Coefficients

A quadratic polynomial x2 + ax + f3 with real coefficients has both roots
in the halfplane {z E C : Re(z) ::; O} if and only if f3 ~ 0 and a ~ O. This
easy consequence of the quadratic formula gives the following lemma:

Lemma 2.4.1. If pEPn has all its zeros in {z E C : Re( z) ::; O}, then either
P or -P has all nonnegative coefficients.

The converse of this is far from true. Indeed, the following result of
Meissner holds (see P6lya and Szego [76]). We denote by P;t the set of
polynomials in Pn , that have all nonnegative coefficients.
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Theorem 2.4.2. If p E P~ and p(x) > °for x > 0, then p = sit, where s
and t are both polynomials with all nonnegative coefficients.

Since a polynomial p that is real-valued on the positive real axis has
real coefficients, and since p(x) > °for all x > 0 implies that the leading
coefficient of p is positive, Theorem 2.4.2 will follow immediately from the
next lemma.

Lemma 2.4.3. Suppose a, (3 E lR. and suppose x2 - ax + (3 has no non­
negative root. Then x2 - ax + (3 = p(x)lq(x), where p, q E Pm both have all
nonnegative coefficients, and where

(
2)-1/2

m:::;l0 4-~

Proof. The quadratic polynomial x2 - ax + (3 has no positive root if and
only if a 2 < 4(3. We set c := a 21(3 and note that c < 4. Consider

(x2 - ax + (3)(x2 + ax + (3) = x4 + (2(3 - ( 2)x2 + (32
= x 4 + (3(2 - c)x2 + (32 .

If c :::; 2 we have the desired factorization. If c > 2, consider

(x4 + (3(2 - c)x2 + (32)(x4
- (3(2 - c)x2 + (32)
= XS + (32(2 - (2 - C)2)X4 + (34.

If 2 - (2 - c)2 > 0 we are finished. In general, we proceed as follows:

Let

Pn(.'r) : = x2n+
1 + (32n

-
1
(2 _ (2 _ (2 _ ···2 _ (2 _ C)2)2 ... )2)x2n + (32

n

2n +1 2n - 1 2n 2n

= X + (3 cnx + (3 ,

where Cn has n nested terms. Let

Note that, since Cn +1 = 2 - c;,

Pn(x)Qn(x) = x2(n+l)+1 _ (32nC;'X2n+1 + 2/32nX2n+1 + /32
n
+
1

2 n +2 2 n 2n +1 (32n +1
= X + (3 cn+lx +
= Pn +1(x).
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Consider the smallest n (if it exists) such that Cn is nonnegative. Then

(x 2 - ax + {3) (x 2 + ax + {3) = PI (x)

and
PlQlQ2'" Qn-l = Pn ,

where QlQ2'" Qn-l E P~+1_4 since each Ck < 0 for k < n, and where
Pn E P~+l since Cn :::= O. Thus, we have the desired representation

x 2 -ax+{3= Pn(x) ,
(x2 + ax + {3)(QlQ2" ·Qn-d(x)

where n is the smallest integer such that Cn > O.

Now suppose Cl, ... ,Cn-l, Cn are all nonpositive. Then

ck=-j2- Ck+l,

and Cl = 2 - C imply

k = 1,2, ... ,n - 1

(2.4.1)

where the above formula contains n iterations. Since, by assumption, C < 4,
and since 8n -> 4 as n -> 00, it is clear that (2.4.1) is not sat~"fied for some
n, and eventually some Cn is greater than zero.

The estimate on the degree requires analyzing the rate of convergence
of (8n)~=0. Since 8n = 2 + j8n- l , we have

_ 8 - 2 _ ~ _ 4 - 8n - l 4 - 8n - l
4 n - yUn-l - ~::;

2+ y 8n - l 2

By repeated applications of the above,

4 _ 8 < 4 - 80 = _1_ .
n - 2n 2n- l

Now we can improve the above estimate as follows: We have

4 - 8n - l

2 + j8n- l

4 - 8n - 2

(2 + j8n-d(2 + j8n- 2)
4 - 80

(2 + j8n- l )(2 + j8n- 2)··· (2 +~)
2

::; -;-:(2~+----:V;=4=_=:2:;;=2-=n=:-)(:-=2-+-V/4=-==2~3-=n::-) -.. -.(:-::-2-+-v'4=-===2(;=n::;=+1:=<=)-=n=:-)

< 2
- (2 + 2 - 2l - n )(2 + 2 - 22- n ) ... (2 + 2 - 2n- n)

n+l 1 n+l
::;2· 4-n II 1 _ 2-j ::; 2 . 4-n II (1 + 2· Tj) ::; 2e4-n .

j=2 j=2
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So if

'= 2n +1 > 2y2em. _~,
y4 - c

then
4 - I5n :::; 2e4-n :::; 4 - c,

that is, I5n 2: c. o

We note that in the above proof a little additional effort yields a slightly
better constant than 10.

Let kEN and f E (0,71"). It follows easily from Lemma 2.3.4 that if
p E Pk has no zeros in the cone

{z E <C: Iarg(z) I < f} ,

then there are s, t E P;;; with m :::; ~71"kC1 so that p = sit; see E.1 d]. The
essential sharpness of this upper bound is shown by E.1 e]. An easier proof
of Theorem 2.4.2 that gives a weaker bound for the degree of the numerator
and denominator in the representation is given by E.1 f].

A similar sort of representation theorem due to Bernstein [15] is the
following:

Theorem 2.4.4. If p E Pn and p(x) > °for x E (-1,1), then there is a
representation

d

p(x) = L aj(1- x)j (1 + x)d- j

j=O

with each aj 2: 0. (The smallest d := d(p) for which such a representation
exists is called the Lorentz degree of p.)

It suffices to prove this result for quadratic polynomials; this is left as
an exercise; see E.1 f].

The proof of the following interesting result of Barnard et al. [91] is
surprisingly complicated, and we do not reproduce it here.

Theorem 2.4.5. Suppose that p E Pn has all nonnegative coefficients. Sup­
pose that the zeros of pare Zl, Zl, ... ,Zn E <C. For T 2: 0, let

j=l
larg(zj)l>r

where arg(z) is defined so that arg(z) E [-71",71"). Then Pr(z) has all non­
negative coefficients.

n

II

It follows from this result that if p E Pn has all nonnegative coefficients
and if q(x) = x 2 + ax + f3 is a quadratic polynomial with zeros forming
a pair of conjugate zeros of p that have least angular distance from the
positive x-axis, then piq also has all nonnegative coefficients.
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Comments, Exercises, and Examples.

Polynomials with all nonnegative coefficients have a number of distinguish­
ing properties that are explored in the exercises. For example, only analytic
functions with all nonnegative coefficients can be approximated uniformly
on [0,1] by such polynomials; see E.2. So a Weierstrass-type theorem does
not hold for these polynomials. This is quite different from approximation
by polynomials of the form

(2.4.2) ai,j 2: O.

Since every polynomial that is strictly positive on (-1, 1) has such a repre­
sentation (E.l b]), it follows from the Weierstrass approximation theorem
that all nonnegative functions from C[-I, 1] are in the uniform closure.

It follows from Theorem 2.4.2 and the Weierstrass approximation the­
orem (see E.l of Section 4.1) that fractions of polynomials with all non­
negative coefficients form a dense set in the uniform norm on [0,1] in the
set of nonnegative continuous functions on a finite closed interval [0,1].
Hence they have a much larger uniform closure on [0, 1] than that of the
polynomials with all nonnegative coefficients.

Various inequalities for polynomials of the form (2.4.2) aie considered
in Appendix 5.

E.! Remarks on Theorem 2.4.2.

a] Suppose a,{3 E ffi.,E E (0,1f), and suppose x 2 + ax + {3 has no zeros in
the cone

{z E C: Iarg(z) I < E} .

Show that there are p, q E P:};, with m :s: ~1fCl such that

x 2 + ax + (3 = p(x) .
q(x)

Hint: This is a reformulation of Theorem 2.4.3 by introducing the angle
between the positive x-axis and the zero of the quadratic polynomial. D

h] Let n E N. Show that if p E P;{, then p has no zeros in the cone

{z E C: larg(z)1 < 1fj(2n)}.

This is sharp, as the example p(x) := xn + 1 shows.

cJ Show that the result of part a] is sharp up to the constant ~.

Hint: Let n EN. Consider

x 2 + ax + {3 = (x - exp (~~)) (x - exp ( -i:i )) .
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Show that if there are p, q E P;;' so that x 2 + ax + (3 = p(x)lq(x), then
m2:n-l. D

d] Let E E (0,1f) and kEN. Suppose p E Pk has no zeros in the cone

{z E C: Iarg(z) I < E} .

Show that there are s, t E P;;' with m ::::: ~1fkCI so that p = sit.

e] Let E E (0,1f) and kEN. Let

h(x) := ((x - zo)(x - zO))k ,

where arg(zo) = E. Assume that fk = sit, where s, t E P;;'. Show that

m 2: (log 2)kE- I .

Hint: First observe that

s(y) ::::: s(y + yom-I) ::::: elis(y)

for every s E P;;', y E (0, (0), and 0 E (0, (0). Therefore

h(y + yom-I) ::::: eli h(y)

for every y E (0,00) and 0 E (0,00). Now let y 2: Izol be chosen so that
Iy - zol = E. Applying the above inequality with this y and 0 := ma, we
obtain

fk(y + EY) ::::: emfh(y),

hence 2k ::::: emf, that is, k log 2 ::::: mE. D

f] Prove that if r E Pn and r(x) > 0 for all x> 0, then there is an integer
d 2: n such that

q(x)
r (x) - --,---~--,-­

-(I+x)d-n'

where q E pt.
Hint: Let a, (3 E JR( and a 2 < 4(3. Consider

d+2

(x 2
- ax + (3)(1 + x)d = L CjXj

j=O

and compute Cj explicitly. D

g] If p E Pn and p(x) > 0 for all x E (-1,1), then it is of the form

d

p(x) = L aj(l- x)j(1 + X)d- j ,
j=O

for some d 2: n.

Hint: Apply a] to

r(u):= (1 +u)np (1- u)
l+u

I-x
u·=--. l+x'

D
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E.2 Polynomials with Nonnegative Coefficients.

a] If p E P;t', then for x > °
n

0::; p'(x) < - p(x).
x

b] If (Pn)~=l is a sequence of polynomials with Pn E p+ := Uk=oP: and
(Pn)~=l converges to f uniformly on [0,1], then f is the restriction to [0,1]
of a function analytic in D := {z E <C : Iz I < I} of the form

f(z) = L anzn ,
n=O

Hint: Since (Pn(1))~=l converges and each Pn has nonnegative coefficients,
there is a constant C such that

n = 1,2, ....

Now Montel's theorem (see, for example, Ash [71]) implies that (Pn)~=l

has a locally uniformly convergent subsequence on D. Deduce that this
subsequence converges to an f with nonnegative coefficients. 0

E.3 Nonnegative-Valued Polynomials and Sums of Squares.

a] Suppose P E P2n is nonnegative on R Then there exist s, t E Pn such
that

Hint: If P E P2 and P is nonnegative, then for some real numbers ex and (3,

p(x) = (x - ex)2 + (32.

Now use the identity

o
b] If P E P2n is nonnegative for x ~ 0, then there exist s, t, u, v E Pn such
that

c] Suppose t E Tn is nonnegative on R Show that there exists a q E P~

such that
(j E JR. .

Show also that if, in addition, t E Tn is even, then there exists a q E Pn
such that the above holds.
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d] If p E Pn is nonnegative on [-'-1,1], then there exist s, t E Pn such that

p(x) = S2(X) + (1 - x2)t2(x).

Hint: Write, by c],

p(cos 8) = Is(cos 8) + it(cos 8) sin 81 2 .

D

The above exercise follows P6lya and Szego [76]; see also E.1 of Section
7.2 where this result is extended.

The following two exercises discuss results proved in Erdelyi and
Szabados [88], [89b] , and Erdelyi [91c].

E.4 Lorentz Degree of Polynomials. Given a polynomial p E Pn , let
d = d(p) be the minimal nonnegative integer for which the polynomial p is
of the form

d

p(x) = ± I>j(l- x)j(x + l)d- j , aj 2: 0.
j=O

If there is no such d, then let d(p) := 00. We call d := d(p) the Lorentz
degree of the polynomial p.

a] Let p E Pn \ Pn - I be of the form

n

p(x) = 'L bj (1- x)j (x + l)n- .1 ,
.1=0

For m 2: n, let the numbers bj,m, j = 0,1, ... ,m, be defined by

(~ , ,) (1- x x + l)m-n
p(x) = ~bj(l- x)J(x + 1)n-J -2- + -2-

m

= 'Lb.1,m(1- x)J(x + l)m- j .
j=O

Show that if d(p) is finite, then it is the smallest value of m for which each
bj,m is nonnegative or each bj,m is nonpositive.

b] Show that if p E PI \ Po has no zeros in (-1,1), then d(p) = l.

c] Show that if p E P2\PI has no zeros in the open unit disk, then d(p) = 2.
d] Show that if the zeros of a polynomial p E P2 \ PI lie on the ellipse

B£:={z=x+iy: y2=c2(1_x2), XE(-l,l)}

with c E (0,1]' then
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e] Let E E (0,1) be such that C 2 is an integer. Let

3E2 - 1 8E4 - 5E2+ 1
Pi(X) :=x2 +2--2 x+ 2'

l-E l-E

Show that Pi has its zeros on BE defined in d], and d(pd = c 2
.

f] Let E E (0, 1) be such that 2c 2 is an integer. Let

2 - 3E2 -E8 - 5E6+ E4 - 8E2+ 4
P2(X) := x

2
- 2 (1 _ E2)(2 _ E2) x + (1 _ E2)(2 _ E2)2

Show that P2 has its zeros on BE defined in part d], and d(P2) = 2c2.

g] Show that d(pq) ~ d(p) + d(q) for any two polynomials P and q.

h] Let E E (0,1]. Show that if P E Pn has no zeros in

then
d(p) < 2nE- 2 + n < 3nE- 2

.

i] Let p be a polynomial. Show that d(p) < CXJ if and only if p = °or p has
no zeros in (-1, 1).

j] Show that

for every p E Bd ( -1,1), 1 ~ n ~ d, and y E [0,1) (i is the imaginary unit).

Hint: Modify the proof of Lemma A.5.4. D

k] Let bE [0,1]. Show that

p'(b) ~ dp(b)

for every p E Bd ( -1,1), positive in (-1,1).

Hint: If qj,d(X) := (1- x)j(x + l)d- j , then

qj,d(b) = qj,d(b) (~ ~ ~ - 1 ~ b) ~ d qj,d(b) ,

for every bE [0,1].

1] Show that d(p) :::: i17nc2 whenever

j = 0,1, ... ,d

D

p(x) = ((x - zo)(x - zo))n, Zo E BE, E E (0,1],

where BE is defined in part d].
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Proof. Let Zo = Y + ic(l- y2)l/2, Y E (-1,1). Without loss of generality it
may be assumed that °:S y < 1. Distinguish two cases.

Case 1: 1 - 2c2 ~ Y < 1. By part k],

d > p'(l) _ 2n(1 - y)
(p) - p(l) - (1 - y)2 + c2 (1 - y2)

2n n
= >-.

(1-y)+c2(1+y) 2c2

Case 2: O:S y < 1 - 2c2 . Applying part k] with

b := y + c(1- y2)1/2 E [0,1]

deduce that

(2.4.3) d p > p'(b) = 2n(b - y)
()- p(b) (b-y)2+c2(1- y2)

n

(2.4.4)

Use part j] to obtain

1(1- y2)c2 - (1 ~~2)n In :S 2n ((1 _y2)c2+ 1~:2 ) n ,

where d := d(p) and n = ~ deg(p). If

(1 _ y2)c2 > (1 - y2)n
- 8d '

then there is nothing to prove. Therefore assume that

(2.4.5)

and so

Now (2.4.3) to (2.4.5) yield

((1-8~2)n) n ~ 2n ((1 _ y2)c2 + 1~:2) n

(1 - y2)n < 2 ((1 _ 2)c2 ~).
8d - Y + 16d2

Since, by (2.4.3), n2d- 2 :S (1 - y2)c2, the above inequality implies

(1- y2 )n<2 17 (1_ 2)2
8d - 16 Y c

and so d 2': 117nc2
. o
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m] Show that p E Pn \ Pn - 1 and d(p) = n imply that the zeros
Zl,Z2,'" ,Zn ofpsatisfy IZIZ2",znl:::: 1.

n] Show that d(pq) < max{d(p),d(q)} can happen.

Hint: Let

p(x) := (1 - xf - 2(1- x 2
) + 4(x + 1)2 and q(x):= (x + 1) + ~(1 - x).

Show that d(p) = 4, d(q) = 1, and d(pq) = 3. 0

0] Show that if p E Pk \ Pk-l has no zeros in (-1,1), Z E C, Izi > 1, and

p(x) = ((x - z)(x - z))mq(x) ,

then d(p) = deg(p) = k + 2m if m is sufficiently large. This shows that
polynomials p with the property d(p) = deg(p) can have arbitrary many
prescribed zeros in C \ (-1,1).

E.5 Lorentz Degree of 'frigonometric Polynomials. Given w E (0,7l"]
and a real trigonometric polynomial t E Tn, let d = dw (t) be the minimal
nonnegative integer for which t is of the form

2d . W - B . B+ w
t(B) = ± "'"' a· sin) -- sin2d-) --

~ ) 2 2 '
j=O

If there is no such d, then let dw(t) := 00. We call d = dw(t) the Lorentz
degree of t.

a] Let t E Tn \ Tn- 1 be of the form

2n .W - B . B+w
t(B) = L bj sin) -2- sin

2n
-) -2- .

j=O

For m :::: n let the numbers bj,m, j = 0, 1, ... ,2m, be defined by

(~ w - B 2 B+W)t(B) = ~ bj sin) -2- sin n-) -2-
)=0

(
1 (. 2 W - B 2 . w - B . B+ w . 2 B+ w)) m-n

X -.-2- sm -- + cos w sm-- sm -2- + sm --
sm w 2 2 2

2m
"'"' b . j w - B . 2m-j B+ w= ~ j,m sin -2- sm -2- .
j=O

Show that if dw(t) is finite, then it is the smallest value of m for which each
bj,m is nonnegative or each bj,m is nonpositive.



90 2. Some Special Polynomials

Hint: The second factor in the representation of t is identically 1. 0

We introduce the notation

G:= {z = x + iy: -1f::; X < 1f, Y E IR}

and

Gw := {z = x + iy: coswcoshy::::: cosx, -1f::; x < 1f, Y E IR}.

b] Let t E ~ \ To. Show that dw(t) = 1 if and only if t has its zeros in Gw.

c] Assume 0 < w < 1f/2, t E~, and t(z) = 0 for some

Z := X + iy E G \ (Gw U (-w,w)).

Show that

d ()
4sin(w±x)(sinwcoshY=Fsinx) 1

w t < max . 2 - ,
coswsmh y

where the maximum is to be taken over both sets of signs.

d] Suppose 1f/2 ::; w ::; 1f, and t E ~, t(z) = 0 for some z E G \ Gw. Show
that dw(t) = 00.

e] Show that dw(t1t2) ::; dw(td + dw(t2) for any two trigonometric poly­
nomials tl and t2·

f] Let 0 < w < 1f/2 and 0 < 10 < 00. Show that if t E Tn has no zeros in

then

dw(t) ::; n (_4_ 10 -
2 + 2tanw + 1) .

cosw

g] Let p be a trigonometric polynomial and 0 < w < 1f/2. Show that
dw(t) < 00 if and only if t = 0 or t has no zeros in (-w, w). (Note that part
d] shows that this conclusion fails to hold when 1f/2 ::; w ::; 1f.)

h] Show that there is an absolute constant c > 0 (independent of n, wand
zo) so that dw(t) ::::: cnC2 whenever

(
B - Zo B - Eo ) n

t(B) = sin -2- sin -2-

with Zo E 8Ew ,€ \ {-w, w}, 0 < 10 < 00, where 8Ew ,€ denotes the boundary
of E w ,€ defined in part fl.



3
Chebyshev and Descartes Systems

Overview

A Chebyshev space is a finite-dimensional subspace of C(A) of dimension
n + 1 that has the property that any element that vanishes at n + 1 points
vanishes identically. Such spaces, whose prototype is the space Pn of real
algebraic polynomials of degree at most n, share with the polynomials
many basic properties. The first section is an introduction to these Cheby­
shev spaces. A basis for a Chebyshev space is called a Chebyshev system.
Two special families of Chebyshev systems, namely, Markov systems and
Descartes systems, are examined in the second section. The third section
examines the Chebyshev "polynomials" associated with Chebyshev spaces.
These associated Chebyshev polynomials, which equioscillate like the usual
Chebyshev polynomials, are extremal for various problems in the supremum
norm. The fourth section studies particular Descartes systems

(
AO Al )X ,x , ... ,

on (0,00) in detail. These systems, which we call Muntz systems, can be
very explicitly orthonormalized on [0, 1], and this orthogonalization is also
examined. The final section constructs Chebyshev "polynomials" associated
with the Chebyshev spaces

span {I, _1_ , ... , _1_} ,
x - al x - an

on [-1, 1] and explores their various properties.

ai EIR\[-l,l]
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3.1 Chebyshev Systems

From an approximation theoretic point of view an essential property that
polynomials of degree at most n have is that they can uniquely interpolate
at n + 1 points. This is equivalent to the fact that a polynomial of degree
at most n that vanishes at n + 1 points vanishes identically. Any (n + 1)­
dimensional vector space of continuous functions with this property is called
a Chebyshev space or sometimes a Haar space. Many basic approximation
properties extend to these spaces. The precise definition is the following.

Definition 3.1.1 (Chebyshev System). Let A be a Hausdorff space. The
sequence (fo, ... ,fn) is called a real (or complex) Chebyshev system or
Haar system of dimension n + 1 on A if fo, ,fn are real- (or complex-)
valued continuous functions on A, span{fo, ,fn} over JR. (or C) is an
(n+ I)-dimensional subspace of C(A), and any element of span{fo, ... ,fn}
that has n + 1 distinct zeros in A is identically zero.

If (fo, .. . ,fn) is a Chebyshev system on A, then span{fo, ... ,fn} is
called a Chebyshev space or Haar space on A.

Chebyshev systems and spaces will be assumed to be real, unless we
explicitly specify otherwise. If A c JR., then the topology on A is always
meant to be the usual metric topology.

Implicit in the definition is that A contains at least n +1 points. Being
a Chebyshev system is a property of the space spanned by the elements of
the system, so every basis of a Chebyshev space is a Chebyshev system.

A point Xo E (a, b) is called a double zero of an f E C[a, b] if f(xo) = 0
and f(xo - E)f(xo + E) > 0 for all sufficiently small E> 0 (in other words, if
f vanishes without changing sign at xo)· It is easy to see that if (fo, ,fn)
is a Chebyshev system on [a, b] C JR., then every 0 =I- f E span{fo, ,fn}
has at most n zeros even if each double zero is counted twice; see E.I0.
Chebyshev spaces are defined via zero counting, and many of the theorems
in the theory of Chebyshev spaces are proved by zero counting arguments.
So it is important to make the agreement that, unless it is stated explicitly
otherwise, we count the zeros of an element f from a Chebyshev space on
[a, b] so that each double zero of f is counted twice.
The following simple equivalences hold:

Proposition 3.1.2 (Equivalences). Let fo, ... ,fn be real- (or complex-) val­
ued continuous functions on a Hausdorff space A (containing at least n + 1
points). Then the following are equivalent:

a] Every 0 =I- p E span{fo, ... ,fn} has at most n distinct zeros in A.
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b] If xo, ... ,Xn are distinct elements of A and Yo, . .. ,Yn are real (or
complex) numbers, then there exists a unique p E span{fo, ... ,fn} such
that

i = 1,2, ... ,no

c] If xo, ... ,Xn are distinct points of A, then

fo(xo)

D(xo, ... ,xn) := #0.

Proof. These equivalences are all elementary facts in linear algebra. 0

On an interval there is a sign regularity to the determinants in c].

Proposition 3.1.3. Suppose (fo, ... ,In) is a (real) Chebyshev system on
[a, b] C R Then there exists a 8 := -1 or 8 := 1 such that

8

for any a ::; Xo < Xl < ... < X n ::; b.

>0

Proof. This follows immediately from part c] of the previous proposi­
tion and continuity considerations. That is, if D(xo, ... ,xn) < 0 while
D(yo, ... ,Yn) > 0, then for some A E (0,1)

D(>..xo + (1 - A)Yo, ... ,>"xn + (1 - >")Yn) = 0,

which is impossible. o

The intimate relationship between Chebyshev systems and best ap­
proximation in the uniform norm is indicated by the next result. In order
to state it we need to introduce the notion of an alternation sequence.

Definition 3.1.4 (Alternation Sequence). Let A C IR and let

Xo < Xl < ... < X n

be n + 1 points of A. Then (xo, Xl, ... ,xn) is said to be an alternation
sequence of length n + 1 for a real valued I E C(A) if

i = 0,1, ... ,n

and
i = 0,1, ... ,n - 1.
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Definition 3.1.5 (Best Approximation). Suppose that U is a (finite­
dimensional) subspace of a normed space (V, II . II). If g E V and p E U
satisfy

Ilg - pll = inf Ilg - hll ,
hEU

then p is said to be a best approximation to g from U.

As a result of the finite dimensionality of the subspace U, at least one
best approximation to any g E V from U exists. This is straightforward
since

T := {p E U : Ilpll ~ Ilgll + I}

is a compact subset of U, so any sequence (Pj) of approximations to g from
U satisfying

Ilg - pjll ~ r l + inf Ilg - hll
hEU

has a convergent subsequence with limit in U. This limit is then a best
approximation to g from U.

Theorem 3.1.6 (Alternation ofBest Approximations). Suppose (fo, . .. ,fn)
is a Chebyshev system on [a, b] C R Let A be a closed subset of [a, b]
containing at least n + 2 distinct points. Then p E Hn := span{fo, ... ,fn}
is a best approximation to g E C(A) from H n in the uniform norm on A if
and only if there exists an alternation sequence of length n + 2 for g - p on
A.

Proof. The proof of the only if part of the theorem is mostly an example
of a standard type of perturbation argument that will recur later.

The perturbation argument goes as follows. Suppose p is a best approx­
imation of required type and suppose a alternation sequence of maximal
length for g - p is

(xo < Xl, < ... < x m )

where Xi E A and where m is strictly less than n + 1. Suppose, without loss
of generality, that

g(xo) - p(xo) > 0

(otherwise multiply by -1). Now let

Y := {x E A : Ig(x) - p(x)1 = Ilg - pIIA}.

Note that Y is compact. Since (xo < Xl < ... < x m ) is an alternation
sequence of maximal length, we can divide Y into m + 1 disjoint compact
subsets YO,YI , ... ,Ym with

Xo E Yo, Xl E YI ,···, X m E Ym
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so that

sign(g(x) - p(x)) = -sign(g(y) - p(y)) =1= 0,

Now choose a p* E span{fo, ... ,fn} satisfying

x E Yi, y E Yi+l .

signxEYi(P*(x)) = (_l)i, i = 0,1, ... ,m.

This can be done by choosing points Zi with

maxYi-1 < Zi < min Yi , i = 1,2, ... ,m

and then applying E.11. We now claim that, for 0 > 0 sufficiently small,

(3.1.1) Ilg - (p + op*)IIA < Ilg - plIA'

which contradicts the fact that p is a best approximation, and so there must
exist an alternation set of length n + 2 for g - p on A. To verify (3.1.1) we
proceed as follows:

For each i = 0,1, ... ,m choose an open set Oi C [a, b] (in the usual
metric topology relative to [a, b]) containing Yi so that for every x E Oi,

(3.1.2)

and

(3.1.3)

sign(g(x) - p(x)) = sign(p*(x))

Ig(x) - p(x)\ ~ ~llg - piIA.

Now pick a 01 > 0 such that for every x E B := A \ U::'o Oi and 0 E (0,01),

Ig(x) - (p(x) + Op*(x))1 < Ilg - plIA'

which can be done since B is compact and by construction

Ilg - pilB < Ilg - piiA .

Note that (3.1.2) and (3.1.3) allow us to pick a 02 > 0 such that for x E

U::'o Oi and 0 E (0,02),

Ig(x) - (p(x) + Op*(x))1 < Ig(x) - p(x)l·

This verifies (3.1.1) and finishes the direct half of the theorem.

The proof of the converse is simple. Suppose there is an alternation
sequence of length n + 2 for g - p on A, and suppose there exists a p* with

Then p* -p has at least n+1 zeros on [a, b], one between any two consecutive
alternation points for g - p on A, and hence it vanishes identically. This
contradiction finishes the proof. 0

In the setting of Theorem 3.1.6 the best approximation is unique; see
E.5.
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Comments, Exercises, and Examples.

The terminology is not entirely standard in the literature with Chebyshev
systems often referred to as Haar systems on intervals of R There are vari­
ous proofs of Theorem 3.1.6, of which ours is by no means the most elegant
(see Cheney [66], for example). The point of this proof is that it easily mod­
ifies to deal with characterizations of extremal functions for various other
extremal problems. Many good books cover this standard material. See, for
example, Cheney [66], Lorentz [86a], or Pinkus [89J; see also Appendix 3.
An extensive treatment of Chebyshev systems is available in Karlin and
Studden [66J or Nurnberger [89], where E.3 can be found. E.4 shows that
real Chebyshev systems are intrinsically one-dimensional.

E.! Examples of Chebyshev systems.

a] Suppose °= Ao < Al < ... < An. Show that

is a Chebyshev system on [0, (0).

b] Suppose Ao < Al < ... < An. Show that

is a Chebyshev system on (0,00).

c] Suppose Ao < Al < ... < An. Show that

is a Chebyshev system on (0,00).

d] Suppose Ao < Al < ... < An. Show that

( x ~ Ao ' x ~ Al ' ... , x ~ An)

is a Chebyshev system on (-00, (0) \ {Ao, AI, . .. ,An}'

e] Suppose Ao < Al < ... < An. Show that

(e AOX eAIX eAnX), , ... ,

is a Chebyshev system on (-00,00).

f] Show that

(1, cos (), sin (), cos 2(), sin 2(), . .. , cos n(), sin n())

is a Chebyshev system on [0,27T}

g] Show that
(1, cos(), cos2(), ... , cosn())

is a Chebyshev system on [0, 7T).
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E.2 More Examples.

a] If (10, ... , in) is a Chebyshev system on A, then it is also a Chebyshev
system on any subset B of A containing at least n + 1 points.
b] If (10, ... , in) is a Chebyshev system on A and g E C(A) is strictly
positive on A, then (gio, ... ,gin) is also a Chebyshev system on A.

c] If (10, ... ,in) is a Chebyshev system on [0,1], then

is also a Chebyshev system on [0,1].

See E.8 of Section 3.2, which treats the effect of differentiation on a
Chebyshev system.

E.3 Extended Complete Chebyshev Systems. Let (go, ... ,gn) be a se­
quence of functions in Cn[a, b]. Define the Wronskian determinant

go(t) gl (t) gm(t)

W(go, ... ,gm)(t) :=
gb(t) g~ (t) g:.n(t)

g6m)(t) gim)(t) g~m)(t)

We say that (go, . .. ,gn) is an extended complete Chebyshev system (ECT
system) on [a, b] if

W(go, ... ,gm)(t) >0, m=O,I, ... ,n, tE [a,b].

a] Let span{go, ... ,gn} be an (n + I)-dimensional subspace of Cn[a, b].
Show that the following statements are equivalent:

(i) For every m = 0,1, ... ,n, 0 =I- i E span{go, ... ,gm} has at most
m zeros in [a, b] counting multiplicities (xo E [a, b] is a zero of i with
multiplicity k if i(xo) = f'(xo) = ... iCk-1)(xo) = 0 and iCk)(xo) =I- 0).

(ii) For each i = 0,1, ... , n, there ,exists a choice of 8i := 1 or 8i := -1
such that

is an ECT system on [a, b].

In particular, every ECT system on [a, b] is a Chebyshev system on
[a,b].

Proof. For details see Karlin and Studden [66]. D
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b] Characterization Theorem. The following statements are equivalent:

(i) (go, ... , gn) is an ECT system on [a, b].

(ii) There exist Wi E cn-i[a, b], i = 0,1, ... ,n, with Wi strictly positive
such that

go(t) = wo(t) ,

gl(t) = wo(t) it wl(td dtl,

Proof. This is proved by induction on n. See Karlin and Studden [66]. 0

c] Suppose Ao < Al < ... < An. Show that (x.\o, ... ,x.\n) is an ECT
system on [a, b] provided a > O.

E.4 Railway Track Theorem. Real Chebyshev systems exist only on very
special subsets of JR.m. Indeed, real Chebyshev systems intrinsically live on
one-dimensional subsets.

a] Suppose A c JR.m contains three distinct arcs that join at a point Xo.
Then, for n 2: 2, there exists no real Chebyshev system (fa, ... ,fn) on A.

Proof· Suppose there exists a real Chebyshev system (fa, . .. ,fn) on such
a set A. Let

V(X,y) := D(x,y,XZ,X3,'" ,xn)

(D is defined in Proposition 3.1.2) which is never zero for distinct points
x, y, Xz, X3, ... ,Xn. Choose distinct points Xo, Xl, ... ,Xn on one of the three
distinct arcs so that Xo is adjacent to Xl. Pick the points Zl =1= Xo and Zz =1= Xo
so that Zl, Zz, and Xl are on different arcs. Now consider interchanging
X := Xo and y := Xl by moving X from Xo to Zl, y from Xl to Zz, X from Zl
to Xl, and y from Zz to Xo. Since x, y, Xz, X3," . ,Xn remain distinct, V(x, y)
does not vanish in this process. This contradicts the fact that V(x, y) is
continuous and V(xo,xd = -V(Xl'XO)' 0

The following more general result of Mairhuber [56] also holds:

b] Mairhuber's Theorem. If (fa, ... ,fn) is a real Chebyshev space on A,
then A is homeomorphic to a subset of the unit circle.

E.5 Uniqueness of Best Approximations. Prove that a best approxima­
tion from a Chebyshev space satisfying the conditions of Theorem 3.1.6 is
unique.
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Hint: Suppose f has two best approximations PI E H n and P2 E H n . Then,
by the alternation characterization, PI - P2 E H n has at least n + 1 zeros
on [a, b] (we count each internal zero without sign change twice). Now E.lO
implies that PI - P2 = O. 0

E.6 De la Vallee Poussin Theorem. Suppose H n is a Chebyshev space of
dimension (n + 1) on [a, b]. If p E Hn and there exist n + 2 points

a ::; Xo < Xl < ... < Xn+l ::; b

so that

then
inf Ilf - pll[a,bj 2:. min If(xi) - p(xi)l·

pEHn '=0, ... ,n+l

E.7 Haar's Characterization of Chebyshev Spaces. The following pretty
theorem is due to Haar (for a proof, see E.3 of Appendix 3):

Theorem. Let fo, ... ,fn E C(A) where A is a compact Hausdorff space
containing at least n + 1 points. Then (fo, ... ,fn) is a Chebyshev system
on A if and only if every g E C(A) has a unique best approximation from
span{fo, ... ,fn} in the uniform norm on A.

E.8 Best Approximation to xn • Reprove Theorem 2.1.1 by using the al­
ternation characterization of best approximations.

E.9 Best Rational Approximations. Let f E C[a, b]. Then p/q E Rn,m is
a best approximation to f from Rn,m in C[a, b] if and only if f - p/q has
an alternation set of length at least

2+max{n + deg(q), m + deg(p)}
[a, b]. (Here we must assume p/q is written in a reduced form.)

The proof of this is a fairly complicated variant of the proof of Theorem
3.1.6 (see, for example, Cheney [66]).

E.I0 Zeros of Functions in Chebyshev Spaces. As before, we call the
point Xo E (a, b) a double zero of f E C[a, b] if f(xo) = 0 and

f(xo - f.)f(xo + f.) > 0

for all sufficiently small f. > 0 (in other words, if f vanishes without changing
sign at xo). Let (fo, ... ,fn) be a Chebyshev system on [a, b] C lR. Show
that every 0 i- f E span{fo, ... ,fn} has at most n zeros even if each double
zero is counted twice.

Hint: Use Proposition 3.1.2 b]. o
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E.n Functions in a Chebyshev Space with Prescribed Sign Changes. Let
(fa, ... ,In) be a Chebyshev system on [a, b], and let

a < Zl < Z2 < ... < Zm < b,

Show that there is a function p* E span{fa , ... ,In} such that

(i) p*(x) = 0 if and only if x = Zi for some i = 1,2, ... ,m,

(ii) p*(x) changes sign at each Zi, i = 1,2, ... ,m.

Hint: If m = n, then use Proposition 3.1.3 and a continuity argument to
show that

h (x)
h(zd

satisfies the requirements.

If m < n, then use the already proved case, a limiting argument, and
E.1O to show that there are Pj E span{lo, ... ,In}, j = 1,2, such that
(1) Pj(x) changes sign at x if and only if x = Zi, i = 1,2, ... ,m,

(2) PI(X) =1= 0 for every x E [a, zml \ {Zl' Z2,'" ,zm},

(3) P2(X) =1= 0 for every x E [Zl' b] \ {Zl' Z2,'" ,zm}.

Now show that either p* := PI + P2 or p* := PI - P2 satisfies the require­
ments. 0

E.12 The Dimension of a Chebyshev Space on a Circle. Let (fa, ... ,In)
be a Chebyshev system on a circle C. Show that n must be even. Observe
that such Chebyshev systems exist.

Hint: Show that for every set of n distinct points Xl, X2, ... ,Xn on the
circle there is apE span{fa , ... ,In} such that p(x) 0 if and only if
x E {XI,X2,'" ,xn } and p(x) changes sign at each Xi. 0

3.2 Descartes Systems

Chebyshev systems capture some of the essential properties of polynomials.
There are two additional types of systems that capture some additional
properties.

Definition 3.2.1 (Markov System). We say that (fa, ... ,In) is a Markov
system on a Hausdorff space A if each Ii E C(A), and {fa, ... ,1m} is a
Chebyshev system for each m = 0,1, ... ,n. (We allow n to tend to +00, in
which case we call the system an infinite Markov system on A.)
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A Markov system is just a Chebyshev system with each initial segment
also a Chebyshev system. Being a Chebyshev system is a property of the
space not of the basis. However, the Markov system depends on the basis.
For example,

( AO Al )X ,x , ... ,

is a Markov system on any A C (0,00) containing infinitely many points,
but not every basis of span{xAO , X A1 , •.. } is a Markov system on A (see
E.1).

Proposition 3.2.2. (fo, ... ,fn) is a Markov system on an interval [a, b] if
and only if for each i = 0,1, ... ,n, there exists a choice of Oi := 1 or
Oi := -1 such that with gi := Odi,

D (gO
Xo

gm)
X m

>0

for every a :::; Xo < Xl < ... < X m :::; band m = 0,1, ... ,n.

Proof. This is an easy consequence of Proposition 3.1.3 by induction on
n. 0

A stronger property that a system on an interval can have is the fol­
lowing:

Definition 3.2.3 (Descartes System). The system (fo, . .. ,fn) is said to be
a Descartes system (or order complete Chebyshev system) on an interval I
if each fi E e(l) and

D (fio

Xo

for any 0 :::; i o < i l < ... < i m :::; nand Xo < Xl < ... < X m from I. (Once
again we allow n to tend to 00.)

This again is a property of the basis. It implies that any finite­
dimensional subspace generated by some basis elements is a Chebyshev
space on I. The canonical example of a Descartes system on [a, b], a > 0, is

( AO Al )X ,X , ... ,

(see E.2). A Descartes system on I is obviously a Descartes system on any
subinterval of I.
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The following version of Descartes' rule of signs holds for Descartes
systems.

Theorem 3.2.4 (Descartes' Rule of Signs). If (fo, ... ,fn) is a Descartes
system on [a, b], then the number of distinct zeros of any

n

°i' f = Ladi,
i=O

is not greater than the number of sign changes in (ao, . .. ,an),

A sign change occurs between ai and ai+k exactly when aiai+k < 0 and
ai+l = ai+2 = ... = ai+k-l = O.

Proof. Suppose (ao, ... ,an) has p sign changes. Then we can partition
{ao, . . . ,an} into exactly p + 1 blocks so that each block is of the form

m=O,I, ... ,p

(no := -1, np+l := n), where all of the coefficients in each of the blocks are
of the same sign and not all the coefficients in a block vanish. Now let

n m +l

gm:= L lailJi,
i=nm+l

Then, for a ::; Xo < Xl < ... < x p ::; b,

m=O,I, ... ,po

D (gO
Xo

since each of the determinants in the sum is positive. Thus {go, ....gp} is
a (p + I)-dimensional Chebyshev system on [a, b], and hence

p

f:= L8i gi ,

i=O

has at most p zeros. This finishes the proof. D

A refined version of Descartes' rule of signs for ordinary polynomials is
presented in the exercises. The following comparison theorem due to Pinkus
and, independently, Smith [78] will be of use later.
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Theorem 3.2.5. Suppose (fo, ... ,fn) is a Descartes system on [a, b]. Sup­
pose

k

P= f ex + 'L adA, ,
i=1

and
k

q=fex+ 'Lbdl'"
i=1

where a:::; Al < A2 < ... < Ak :::; n, 0:::; 11 < 12 < ... < 1k :::; n,

i=1,2, ... ,m,

and
i = m + 1, m + 2, ... ,k

with strict inequality for at least one index i = 1,2, ... ,k. If

i = 1,2, ... ,k,

where Xi E [a, b] are distinct, then

Ip(x)l:::; Iq(x)1

for all x E [a, b] with strict inequality for x =1= Xi·

The proof is left as a guided exercise (see E.4) with some interesting
consequences presented in E.5.

Comments, Exercises, and Examples.

Theorem 3.2.4 characterizes Descartes systems; see Karlin and Studden [66,
p. 25]. Some caution must be exercised since, as in the previous section, def­
initions are not entirely standard. We will explore two particular Descartes
systems in greater detail later; see E.2 and E.3. For further material, the
reader is referred to Karlin and Studden [66], Karlin [68], and Nurnberger
[89].

E.1 Distinctions.

a] Given AD < Al < ... and A c (0,00) with infinitely many points,
show that (x AO , X A1 , •.. ) is a Markov system on A, but there is a basis for
span{x AO , X A1 , ... }, which is not a Markov system on A.

b] Find a Markov system that is not a Descartes system.

E.2 Examples of Descartes Systems.

a] Suppose AD < Al < .... Show that the Muntz system

( AO A1 )X ,x , ...

is a Descartes system on (0, 00).
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Hint: For every 0 :; io < i l < ... < im , the determinant

AiO Ai'm

D (XAiO XAil
XAim) =

X o X o

Xo Xl X m ;\io Aim
X m X m

is nonzero for any °< Xo < Xl < ... < X m < 00 by Proposition 3.1.2 and
E.1 a] of Section 3.1. It only remains to prove that it is positive whenever°< Xo < Xl < ... < X m < 00. Observe that the exponents Aij can be varied
continuously (for fixed Xi) without changing the sign of the determinant
provided no two ever become equal. Now perturb (Aio ' Ail' ... ,Aim) into
(0,1, ... ,m) and observe that the determinant becomes a Vandermonde
determinant, as in part b], which in this case is positive. 0

b] Vandermonde Determinant. Show that

Hint: The determinant is a polynomial in Xo, Xl, ... ,Xm of degree m in
each variable that vanishes whenever Xi = X j' 0

c] Suppose AO < Al < .... Show that the exponential system

is a Descartes system on (-00, 00).

Hint: Use part a].

d] Suppose 0 < AO < Al < .. '. Show that

(sinh Aot, sinh Alt, ... )

is a Descartes system on (0, 00) .

Outline. Let 0 :; io < i l < ... < im be fixed integers. First we show that

is a Chebyshev system on (0,00). Indeed, let

°1= f E span{sinhAiot, sinh Ailt, ... ,sinhAimt}.

Then

o

01= f E span{e±Aiot , e±>'i lt , ... , e±>'im t }

and by E.1 e] of Section 3.1, f has at most 2m zeros in (-00,00). Since f
is odd, it has at most m zeros in (0,00).
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Since for every 0 :::; i o < i l < ... < i m, (sinh Aio t, ... , sinh Aim t) is a
Chebyshev system on (0,00), the determinant

D ( sinh Aio t sinh Ail t sinh Aimt)
Xo Xl xm

sinh AioXO sinh Ail Xo sinh AimXO
sinh AioXI sinh Ail Xl sinh AimXl

sinh AioXm sinh Ail Xm sinh AimXm

is nonzero for any 0 < Xo < Xl < ... < Xm < 00 Proposition 3.1.2. So it only
remains to prove that it is positive whenever 0 < Xo < Xl < ... < Xm < 00.
Now let

and

D(a) := D (sinh Aiot
axo

sinh Aio axo
sinh Aioax I

sinh Ail axo
sinh Ail aXI

sinh Aim axo
sinh Aim aXI

(

leAiot
D*(a) := D 2

axo

where 0 < Xo < Xl < ... < Xm < 00 are fixed. Since

and

are Chebyshev systems on (0,00), D(a) and D*(a) are continuous non­
vanishing functions of a on (0,00). Now, observe that

lim ID(a)1 = lim ID*(a)1 = 00
a-+(X) 0---+00

and
. D(a)
lIm -D( ) = 1.

0----+00 * a

By part c],
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is a Descartes system on (-00,00), hence D*(a) > a for every a> o. So
the above limit relations imply that D(a) > a for every large enough a,
hence for every a > O. In particular,

D (1) = D (sinh Aio t
Xo

sinh Ai>n t) > a
Xm '

which finishes the proof.

e] Suppose a< Ao < Al < .... Show that

(cosh Aot, cosh Al t, ... )

is a Descartes system on (0,00).

Hint: Proceed as in the outline for part d].

E.3 Rational Systems.

a] Cauchy Determinants. Show that

o

o

1
'-",+13,

1
'-">n +13,

1
cq +13m

1
'-">n +13>n

IT (aj - ai) ((3j - (3i)
l:<;i<j:<;m

Hint: Multiply both sides above by IT (ai + (3j) and observe that both
l:<;i,j:<;m

sides are polynomials of the same degree, m -1, in each variable ai, (3i. Also
both sides vanish exactly when ai = aj or (3i = (3j. So up to a constant
both sides are the same. Now show that the constant is 1. 0

b] Let a1 > a2 > ... > b. Show that

(a1 ~ x' a2 ~ x'... )
is a Descartes system on [a, b].

Let a1 < a2 < ... < a. Show that

is a Descartes system on [a, b] (see also E.6 e]).

E.4 Proof of Theorem 3.2.5. Assume the notation of this Theorem 3.2.5.

a] Let a :::; 80 < 81 < ... < 81-' :::; n and a < Xl < X2 < ... < XI-' < b. Show
that there exists a unique P = fti,. + I:r:i adti, such that
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(1) P(Xi) = 0, i = 1,2, ... ,/-l.

Show also that the above P has the following properties:

(2) p(x) changes sign at each Xi,

(3) p(x)=/=Oifxt/:-{x1,X2,""X",},

(4) aiai+1<0, i=O,l, ... ,/-l-l, a,.,:=l,

(5) p(x) > 0, x E (x,."b].

Hint: Since (i80 '··· ,f8,J and (18o"" ,18,,-,) are Chebyshev systems, E.ll
of Section 3.1 shows that there exists a p of the desired form satisfying (1).
Since (i8

0
' ••• ,f8,,_,) is a Chebyshev system, this p is unique. Now E.ll of

Section 3.1 yields that p satisfies (2) and (3). By Theorem 3.2.4, p satisfies
(4). The fact that (5) holds for p follows from expanding the determinant

D (~:~; f~;, f;)
by Cramer's rule. This determinant is just cp(x) with some c > 0 since it
vanishes at each Xi, and the coefficient of f8," is positive; see Definition 3.2.3.
Also, the above determinant is positive for all X E (x,." b]; see Definition
3.2.3 again. 0

b] Prove Theorem 3.2.5.

Outline. For notational simplicity assume that a = n (hence m = k); the
general case is analogous. Further, we may assume that there is an index j
such that

'Yj < Aj and 'Yi = Ai whenever i =/= j

since the result follows from this by a finite number of pairwise comparisons.
So we assume

k

P = fn + ajf>.j + L adA,
i=l
i#j

and
k

q = fn + bjf'"'!j + L bdAi ,
i=l
i#j

where 0 ::; A1 < A2 < ... < Ak < nand 0 ::; Aj-1 < 'Yj < Aj for some
1 ::; j ::; k (of course, the inequality Aj-1 < 'Yj holds only if Aj-1 is defined,
that is, only if j 2': 2). Then

k

P - q = ajf>.j - bjf'"'!j + L (ai - bi)f>.i
i=li#j

has exactly k zeros on [a, b] at Xl, X2,' .. ,Xk because p - q is in a (k + 1)­
dimensional Chebyshev subspace.
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By property (5) in part a] applied to p and q, respectively,

p(x) > °and q(x) > 0, x E (xk,b].

Now by property (4) in part a] applied to c(p - q), where c is chosen so that
the lead coefficient of c(p - q) is 1, and by the fact that p and p - q have
the same coefficient for f>..j' the lead coefficient of p - q (ak - bk provided
Ak > Aj) is negative. So property (5) in part a] implies that

p(x) - q(x) < 0, x E (Xk, b] .

Hence °< p(x) < q(x), x E (Xk' b].

Now use property (3) in part a] and the fact that all of p, q, and p - q
change sign only at Xi to finish the proof. D

The following extension of part a] will be used later:

cJ Suppose
°S bo < b1 < ... < bJl S n, a S Xl S X2 S ... S xJl S b,

a < X2, XJl-1 < b, and Xi < Xi+2, i = 1,2, ... , fJ - 2. Show that there
exists a unique p = hI" + 'Lr:01adoi (with ai E lit) such that

(1) P(Xi) =0, i=1,2"",fJ,

(2) p(x) changes sign at Xi if and only if Xi ~ {a,b,xi-1,Xi+d.

Show also that

(3) p(x) -=1= °if X 1. {X1,X2,'" ,XJl } ,

(4) aiai+1S0, i=0,1, ... ,fJ-1, aJl :=l,

(5) p(x) > 0, X E (xJl,b) ,

(6) (-l)Jlp(x) > 0, X E (a,x1),

(7) (-l)Jl-ip(x) > 0, X E (Xi, Xi+1), i = 1,2, ... ,fJ - 1.

Hint: Use part a] and a limiting argument. The uniqueness follows from
E.10 of Section 3.1. D

The next exercise provides a solution to a problem of Lorentz, which
is settled in Borosh, Chui, and Smith [77J.

E.5 A Problem of Lorentz on Best Approximation to x A• Suppose that
[a, b] C [0,00), n E N, and p E (0,00] are fixed. Let fJ be a finite Borel
measure on [a, b].

aJ Suppose AI, A2' ... ,An are arbitrary fixed real numbers if a > 0, or
fixed real numbers greater than -lip if a = 0. Let f E Lp(fJ) be fixed.
Show that

n

E p ,Jl(A1,A2,'" ,An;!):= min Ilf(x) - L:aixAill
aiEIR i=l Lp(Jl)

exists and is finite.
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Outline. Use a standard compactness argument. 0

b) Suppose 1 < p < 00, the support of J.l contains at least n + 1 points,
)\1, A2, ... ,An, A are arbitrary fixed distinct real numbers if a > 0, or fixed
real numbers greater than -lip if a = O. Show that if (ai)i=l c IR satisfies

n

E p ,p.(A1' A2,'" , An; x
A

) = IlxA
- LaixAi IILp(P.) ,
i=l

then
n

f(x) := x A - LaixAi

i=l

has exactly n sign changes on (a, b).

Hint: Since (XA1 , ... ,xAn , x A ) is a Chebyshev system, it is sufficient to prove
that f has at least n sign changes on (a, b). Suppose f has at most n - 1
sign changes on [a, b]. Then, since (XA1 , ... ,xAn ) is a Chebyshev system,
by E.11 of Section 3.1 there exists an element

such that
If(x)IP-1 sign(f(x))h(x) 2: 0

on [a, b] with strict inequality at all but n points (at every point where f
does not vanish). Using that the support of J.l contains at least n+ 1 distinct
points, this implies

lb

Ifl p
-

1 sign(f)h dJ.l > 0,

which contradicts E.7 h] of Section 2.2. 0

c) Suppose p = 00, supp(J.l) = [a, b], AI, A2,." ,An, A are arbitrary fixed
distinct real numbers if a > 0, or fixed distinct nonnegative real numbers if
a = O. Show that if (ai)i=l c IR satisfies

then
n

f(x) := x A - LaixAi

i=l

has exactly n sign changes on (a, b).

Hint: Use Theorem 3.1.6. o
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d] Best Approximation to x A from Certain Classes of Muntz Polynomials.
Let 1 < p :s: 00. Suppose the support of f1 contains at least n + 1 distinct
points if 1 < p < 00 or supp(f1) = [a, b] if p = 00. Let A > /1 > /2 > ... be
arbitrary fixed real numbers if a > 0, or fixed nonnegative real numbers if
a = O. Suppose we wish to minimize

for all sets of n distinct real numbers Al > A2 > ... > An satisfying

Show that the minimum occurs if and only if

Hint: Let

where {AI, A2, ... ,An} is a set of n distinct real numbers for which the
minimum is taken; see part a]. By parts b] and c]

n

f(x) := x A - LaixAi

i=l

has exactly n sign changes Xl, X2,' .. ,Xn on (a, b). Let

g E span{xI'1,xI'2, ... ,xl'n}

interpolate x A at the points Xl, X2,' .. ,xn . Now use Theorem 3.2.5 to finish
the proof. D

E.6 Strictly Totally Positive Kernels (Karlin [68]). A (continuous) func­
tion K(s, t) is an STP kernel on [a, b] x [e, d] if

K(so, to)

>0

for all a :s: So < ... < Sn :s: b, e:S: to < ... < tn :s: d, and for all n > O.



i = 0, 1, ... ,n,

3.2 Descartes Systems III

a] Observe that E.3 b] implies that

1 .
K(s,t) = -- IS STP on [a,b] x [a,b] , a> O.

s+t

Observe also that E.2 b] implies that

K(s, t) = est is STP on (-00, (0) x (-00, (0).

b] Suppose K is STP on [a, b] x [e, d], and (fa, ... ,fn) is a Chebyshev
system on [a, b]. Show that if

Vi(X) = lb
K(t, x)li(t) dt,

then (va, ... ,vn ) is a Chebyshev system on [e, d].

c] Variation Diminishing Property. Suppose K is STP on [a, b] x [e, d]
and suppose f E C[a, b]. Let

g(x) := lb

K(t, x)f(t) dt.

Then g has no more sign changes on [e, d] than f has on [a, b].

d] The Laplace transform of a function f E C[O, (0) n L 1 [0, vo)

L(f)(x) :=100 f(t)e- tx dt

has no more sign changes on [0,(0) than f does.

Proof. This follows from parts a] and c]. It may also be proved directly by
induction as follows. Suppose f has exactly n sign changes on [0, (0), one
at xo. Then g(x) := (xo - x)f(x) has exactly n - 1 sign changes on [0, (0).
Now observe that

d
e- xox dx (e XOX L(f)(x)) = L(g)(x) ,

so L(f) has at most one more sign change on [0,(0) than L(g) does. 0

e] Use part d] and E.2 a] to reprove that

( _1_ _1_ ) -a < al < a2 < ...
x + al ' x + a2 ' .. . ,

satisfies Descartes' rule of signs on [a, b]. 0

Proof. Observe that

for every x E (-ai, (0). o
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E.7 Descartes' Rule of Signs for Polynomials.

a] Prove by induction that L~=o akxk E Pn has no more zeros in (0,00)
(repeated zeros are counted according to their multiplicities) than the num­
ber of sign changes in (ao, al,' .. ,an)'

b] Let a> O. Let p(x) = L~=o akxk and q(x) := (x-a)p(x) = L~~~ bkXk.
Show that if the number of sign changes in {ao, al,'" ,an} is m, then the
number of sign changes in {bo, bl , ... ,bn+d is at least m + 1.

c] Give another proof of a] based on b].

dJ In part a] the number of sign changes in (aO,al,'" ,an) exceeds the
number of positive zeros by an even integer.

Hint: See P6lya and Szeg6 [76]. 0

Refinements of the above exercise are presented in E.6 of Appendix 1,
where Cauchy indices are discussed.

The first part of the following exercise is a version of a result from
Zielke [79]:

E.8 The Effect of Differentiation on Weak Markov Systems. The system
(fa, ... ,In) is called a weak Chebyshev system on [a, b] if Ii E C[a, b] for
each i and every I E spanUo, ... ,In} has at most n sign changes on [a, b]
(so the only difference between a Chebyshev system and a weak Chebyshev
system is that in the definition of the latter, zeros without sign change are
not counted).

Analogously, the system (90, ... ,9n) is called a weak Markov system
on [a, b] if 9i E C[a, b] for each i and (90, ... ,9m) is a weak Chebyshev
system on [a, b] for every m = 0,1, ... ,n (so the only difference between a
Markov system and a weak Markov system is that in the definition of the
latter, zeros without sign change are not counted).

a] Suppose (1, iI, ,In) is a weak Markov system of C l functions on
[a, b]. Show that (fL ,I~) is a weak Markov system on [a, b].

Outline. Proceed by induction on n. If n = 0, then the statement is obvious.
Suppose that the statement is true for n - 1. By the inductive hypothesis
(fL ... ,I~-l) is a weak Markov system on [a, b], hence Rolle's theorem
implies that (1, iI, ... ,In-d is a Markov system on [a, b].

Suppose that 9 E span{IL ... ,I~-l} is of the form

n

9:= Lad:,
i=l

ai E R

and 9 has at least n sign changes on [a, b]. Then there exist n + 2 distinct
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points

a < Xl < X2 < ... < X n +2 < b

and E = ±1 such that
n

F:=ELadi
i=l

satisfies

i = 1,2, ... ,n + 1.

Since (l,h, ... ,In-d is a Markov system on [a,b], by Proposition 3.1.2,
there exist functions

CD E span{l, h,··· ,In-d

such that

i = 2,3, ... ,n + :!.

for every {j > O. Then by the inductive hypothesis, C~ has at most n - 2
sign changes on [a, b]. It follows that if {j > 0 is sufficiently small, then

and

otherwise C~ would have at least n sign changes on [a,b]. Now show that
for sufficiently small {j > 0

F - CD E span{1, h,··· ,In}

has at least n + 1 sign changes, which is a contradiction. D

b] Suppose that (1, h, ... ,In) is an ECT system on [a, b] and suppose
that each Ii E en[a, b] (see E.3 of Section 3.1). Show that (J{, ... ,I~) is
also an ECT system on [a, b] with each fi E en-l[a, b].

Hint: Use the definition given in E.3 of Section 3.1. D

c] Suppose (1, h, ... ,In) is a weak Markov system on [a, b] with each
Ii E ella, b]. Show that (1, h, ... , In) is a Markov system on [a, b].

Hint: Use Rolle's theorem and part a]. D
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3.3 Chebyshev Polynomials in Chebyshev Spaces

Suppose

H n := span{fo, il,··· ,in}

is a Chebyshev space on [a, b], and A is a compact subset of [a, b] with at
least n + 1 points. We can define the generalized Chebyshev polynomial

for H n on A by the following three properties:

(3.3.1)

there exists an alternation sequence (xo < Xl < ... < xn) for Tn on A, that
is,

(3.3.2)

for i = 0, 1, ... ,n - 1, and

(3.3.3) IITnll A = 1 with Tn(maxA) > O.

Of course the existence and uniqueness of such a Tn has to be proved.
Note that if together with span{fo, ... ,in}, span{fo, ... ,in-d is also a
Chebyshev space, then Theorem 3.1.6 implies that

where the numbers ao, al, ... ,an-l E lR are chosen to minimize

(3.3.4)
n-l

Ilin - L akikt,
k=O

satisfies properties (3.3.1) and (3.3.2), and the normalization constant c E lR
can be chosen so that Tn satisfies property (3.3.3) as well. In E.1 we outline
the proof of the existence and uniqueness of a Tn satisfying properties
(3.3.1) to (3.3.3) without assuming that span{fo, ... ,in-d is a Chebyshev
space.

Note that if (fo, ... ,in) is a Descartes system on [a, b], then the nor­
malization constant (that is, the lead coefficient) c in Tn is positive. This
follows from E.4 of Section 3.2.
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On intervals, with ii(X) := Xi, the definition (3.3.1) to (3.3.3) gives the
usual Chebyshev polynomials; see E.7 of Section 2.1.

The Chebyshev polynomials Tn for Hn on A encode much of the in­
formation of how the space H n behaves with respect to the uniform norm
on A. Many extremal problems are solved by the Chebyshev polynomials.

When (fa, h,···) is a Markov system on [a, b] we can introduce the
sequence (Tn)~=o of associated Chebyshev polynomials

Tn :=Tn{fo,h,··· ,in; [a,b]}

for H n on [a, b]. Then (To, T1 , ... ) is a Markov system on [a, b] again with
the same span. (One reason for not always choosing this as a canonical basis
is that it is never a Descartes system.)

The denseness of Markov spaces in era, b] is intimately tied to the
location of the zeros of the associated Chebyshev polynomials; see Section
4.1.

An example of an extremal problem solved by the Chebyshev polyno­
mials is the following:

Theorem 3.3.1. Suppose H n := span{fa , ... ,in} is a Chebyshev space on
[a, b] with associated Chebyshev polynomial

Tn := Tn {fa ,h,··· ,in; [a, b]}

and each ii is differentiable at b. Then

max{lp'(b) I :p E H n , Ilpll[a,bJ:S; 1, p(b) = Tn(b)}

is attained by Tn.

Proof. Suppose p E H n, Ilpll[a,bj :s; 1, and p(b) = Tn(b). We need to show
that Ip'(b)1 :s; IT~(b)l· Let a :s; (0 < (1 < ... < (n :s; b be the points of
alternation for Tn, that is,

i = 0, 1, ... ,n.

Note that Tn - p has at least n zeros in [(0, (n], one in each [(i-I, (i],
i = 1,2, ... ,n (we count each internal zero without sign change twice, as
in E.10 of Section 3.1). So if b i- (n, then Tn - p has n + 1 zeros on [a, b]
including the zero at b, hence p = Tn' and the proof is finished. We may
thus assume that Tn(b) = 1. Assume that Ip'(b)1 > IT~(b)l. Since T~(b) ~ 0,
without loss of generality we may assume that p'(b) > T~(b), otherwise we
study -po Then Tn - p has two zeros on [en, b], and hence has n + 1 zeros in
[a, b] (again, we count each internal zero without sign change twice). Thus
by E.1O of Section 3.1 we have p = Tn' which contradicts the assumption
p'(b) > T~(b). 0

An extension of the above theorem to interior points is considered in
E.3.



116 3. Chebyshev and Descartes Systems

Theorem 3.3.2. Suppose (fa, ... , f n-l, g) and (fa, ... , f n-l, h) are both
Chebyshev systems on [a, b] with associated Chebyshev polynomials

Tn :=Tn{fo,II,··· ,fn-l,g;[a,b]}

and
Sn :=Tn{fo,II,··· ,fn-l,h;[a,b]},

respectively. Suppose (fa, II,··. , fn-l, g, h) is also a Chebyshev system.
Then the zeros of Tn and Sn interlace (there is exactly one zero of Sn
between any two consecutive zeros of Tn).

Proof. Since (fa, ... ,fn-l,g,h) is a Chebyshev system on [a,b]' Tn ± Sn
has at most n + 1 zeros. However, between any two consecutive alternation
points of Tn, of which there are n + 1, there is a zero of Tn ± Sn (which may
be at an internal alternation point of Tn only if it is a zero without sign
change, which is then counted twice). Likewise, there is a zero of Tn ± Sn
between any two consecutive alternation points of Sn' Thus between any
three successive alternation points of say Tn there can be at most three zeros
of Tn ± Sn' However, if Sn had two zeros between two consecutive zeros of
Tn' then there would be three consecutive alternation points of either Tn
or Sn with at least four zeros of either Tn + Sn or Tn - Sn between them,
which is impossible. 0

Theorem 3.3.3. Suppose (fa, II, ... ) is a Markov system on [a, b] with as­
sociated Chebyshev polynomials

Tn := Tn {fa, II,··· , fn; [a, b]}.

Then the zeros of Tn and Tn- 1 strictly interlace (there is exactly one zero
of Tn- 1 strictly between any two consecutive zeros of Tn).

Proof. The proof is analogous to that of Theorem 3.3.2. 0

Theorem 3.3.4 (Lexicographic Property). Let (fa, II, ... ) be a Descartes
system on [a, b]. Suppose Ao < Al < ... < An and 'Yo < 'Yl < ... < 'Yn are
nonnegative integers satisfying

i = 0, 1, ... ,n.

Let

and

denote the associated Chebyshev polynomials.
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Let
al < a2 < ... < an and (31 < (32 < ... < (3n

denote the zeros of Tn and Sn, respectively. Then

i = 1,2, ... , n

with strict inequality if Ai =1= Ii for at least one index i. (In other words, the
zeros of Tn lie to the left of the zeros of Sn.)

Proof. It is clearly sufficient to prove the theorem in the case that Ai = Ii

for each i =1= m, and Am < 1m < Am+l for a fixed index m, and then to
proceed by a sequence of pairwise comparisons (if m = n, then Am+! is
meant to be replaced by (0). So suppose

n

Tn :=Tn{J>"a,'" ,I>-.m.'''' ,I>-.n;[a,b]} = Lcd>"i
i=O

and

n

Sn := Tn {I>-.a' ... , f'Ym.' ... ,I>-.n; [a, b]} = dmf'Ym. + L dd>"i
i=O
i#m

with Am < 1m < Am+l' Then by Theorem 3.3.2 the zeros of Sn and Tn
interlace and all that remains to prove is that the largest zero of Sn is larger
than the largest zero of Tn. That is, we must show that an < (3n' For this
we argue as follows. It follows from Theorem 3.2.5 that the lead coefficient
of Tn is less than the lead coefficient of Sn (cn < dn provided m < n). Since
both Tn and Sn have an alternation sequence of length n + 1 on [a, b], and
since

IITnll[a,bj = IISnll[a,bJ = 1,

it follows from E.1 b] that

has n+ 1 zeros Xl :::; X2 :::; ... :::; Xn+! on [a, b]. Therefore, it follows from E.4
c] of Section 3.2 that (Sn -Tn)(x) > 0 on (Xn+l' b) and (Sn -Tn)(.T) < 0 on
(xn , xn+d· Hence the assumption (3n :::; an would imply that Sn -Tn has at
least n + 2 zeros on [a, b] (counting each internal zero without sign change
twice), which is a contradiction. (Draw a picture and use the alternation
characterization of the Chebyshev polynomials Tn and Sn to make the proof
of the above statement transparent.) So (3n > an, indeed, and the proof is
finished. 0
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Comments, Exercises, and Examples.

If H n := span(Jo, ... ,fn) is a Chebyshev space on [a, b], A is a compact
subset of [a,b], andp E (0,00), then

with ao, al, ... ,an-l E lR minimizing

is called an Lp Chebyshev polynomial for Hn on A. When A = [a, b] and
p E (1,00], the properties of the zeros of these L p Chebyshev polynomials
are explored in Pinkus and Ziegler [79], where much of the material of this
section may be found. For example, an L p analog of Theorem 3.3.2 still
holds.

E.! Existence and Uniqueness of Chebyshev Polynomials. Let A c [a, b]
be a compact set containing at least n + 1 points. Let (Jo, ... ,fn) be a
Chebyshev system on [a, b].

a] Existence of Chebyshev Polynomials. Show that there exists a Tn sat­
isfying properties (3.3.1) to (3.3.3).

Hint: If A contains exactly n + 1 points, then the existence of Tn is just
the interpolation property of a Chebyshev space formulated in Proposition
3.1.2 b]. So assume that A contains at least n + 2 points. Then there is a
0> 0 so that A n [a, c] contains at least n + 1 points for every C E (b - 0, b).
Show that for every C E (b- 0, b), there is a gc E span{fo, ... ,fn} for which

sup{f(b) : f E span{fo, iI,··· ,fn}, Ilfll[a,c] = I}

is attained. Use a variational method to show that gc satisfies properties
(3.3.1) to (3.3.3) with A replaced by A n [a, c].

Now let (cdk=l be a sequence of numbers from (b - 0, b) that converges
to b. Let gCk E span{fo, ... ,fn} satisfy properties (3.3.1) to (3.3.3) with A
replaced by A n [a, Ck]' Show that there is a subsequence of (gck )k=l that
converges to agE span{fo, ... ,fn} uniformly on [a, b]. Show that Tn := 9
satisfies properties (3.3.1) to (3.3.3). 0

bl A Lemma for Part cl. Suppose f,g E C[a,b] with IlfilA = IlgiiA > 0
and there are alternation sequences

(Xl < X2 < ... < xn+d and (YI < Y2 < ... < Yn+d

for f and g, respectively, on A.
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Suppose also that

sign(f(xd) = sign(g(yd)·

Show that f - 9 has at least n + 1 zeros on [a, b].

c] Uniqueness of Chebyshev Polynomials. Show that the Chebyshev poly­
nomials

Tn{fo,h,··· ,fn;A}

satisfying properties (3.3.1) to (3.3.3) are unique.

Hint: Use part a] and E.lO of Section 3.1. o

E.2 More on Chebyshev Polynomials. Let Hn := span{fo, ... ,fn} be a
Chebyshev space on [a, b] with associated Chebyshev polynomial denoted
by Tn := Tn{fo, ... , fn; [a, b]}. Show the following statements.

a] If 1 E H n , then ITn(a)1 = ITn(b)1 = 1.

b] If 1 E H n , then Tn is monotone between two successive points of its
alternation sequence.

Note that the conclusions of parts a] and b] do not necessarily hold in
general.

c] If Tn =: I:~=o adi, ai E lR, then the coefficient sequence of Tn/am
solves

min Ilfm + t bdillbi EIR i=O [a,b]
iepm

uniquely, provided that {fo, ... fm-I, fm+I,··· fn} is also a Chebyshev sys­
tem on [a, b]. (So this applies to ordinary polynomials on [0,1] but not on
[-1,1].)

d] Suppose (fo, ... ,fn) is a Descartes system on [a, b] with associated
Chebyshev polynomial Tn := Tn{fo,··· , fn; [a, b]} =: I:~o adi, ai E lR.
Show that an > 0 and aiai+l < 0 for each i = 0, 1, ... , n - 1.
Hint: Use E.4 a] of Section 3.2. 0

E.3 Extension of Theorem 3.3.1. Let Hn := span{fo, ... , fn} be a Cheby­
shev space on [a, b] with associated Chebyshev polynomial

and suppose each fi is differentiable at Xo E [a, b].

a] IfT~(xo) > 0, then

max{p'(xo) : p E Hn , Ilpll[a,bJ::; 1, p(xo) = Tn(xo)}

is attained only by Tn.
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b) IfT~(xo) < 0, then

min{p'(xo) : p E Hn , IIPII[a,b]:::; 1, p(xo) = Tn(xo)}

is attained and only by Tn.

Hint: Consider the number of zeros of Tn - p. 0

E.4 More Lexicographic Properties of Muntz Spaces. Let [a, b) C [0,(0).
Suppose

Ao < Al < ... < An and 'Yo < 'Yl < ... < 'Yn

are arbitrary real numbers if a > 0, or arbitrary nonnegative numbers if
a = 0. Suppose Ai :::; 'Yi for each i with strict inequality for at least one
index i. Let

H .- {AD Al An}n .- span x , x ,..., x and Gn :=span{x"lO,x"ll, ... ,x"ln}.

Denote the associated Chebyshev polynomials for Hn and Gn on [a, b] by

and

respectively.

a) Show that An :2: °implies Tn,A(b) = 1.

Hint: Tn,A (b) i- 1 would imply that T~,A has at least n + 1 distinct zeros in
[a, (0) if Ao > °and at least n distinct zeros if Ao = 0. 0

b) Let Xo = a or Xo = b. If Xo = a = 0, then assume that Ao = °and
Al = 1. Show that

max{lp'(xo)1 : p E Hn , IIPII[a,bJ:::; I}

is attained uniquely by ±Tn,A'

c) Let Xo E [0,(0) \ [a, b). If Xo = 0, then assume that Ao = 0. Show that

max{lp(xo)1 : p E H n , IIPII[a,b]:::; I}

is attained uniquely by ±Tn,A'

Hint faT bJ and c): First prove that an extremal p* E Hn exists. Then show,
by a variational method, that p* equioscillates n + 1 times between ±1 on
[a, b). 0

d) Let An :2: 0, 'Yn :2: 0, and a > 0. Show that
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Show also that if a > 0 and there exists an index k, 0 ::::; k ::::; n, such that
Ak = 'Yk = 0, then

e] Let An :::: 0, 'Yn :::: 0, and a > O. Show that

Xo E (b,oo).

Show also that if Ao :::: 0, 'Yo :::: 0, and a > 0, then

Xo E [O,a)

(when Xo = 0, we need the assumption Ao = 'Yo = 0).
Hint for dj and e}: Suppose to the contrary that one of the inequalities
of parts d] and e] fails. Assume, without loss of generality, that there is
an index m such that Ai = 'Yi whenever i i- m, and Am < 'Ym. Note that
by a], An :::: 0 and 'Yn :::: 0 imply Tn,A(b) = Tn,,(b) = 1. Also, by E.l a],
Ak = 'Yk = 0 implies Tn,A(a) = Tn,,(a) = (_l)n. Now use Theorem 3.3.4 to
show that

T T E S a { Ao Al An '=}n,A - n" P n X ,X , ... ,X ,X

has at least n + 2 zeros in (0,00) (in the cases when An :::: 0 and 'Yn :::: 0 are
assumed) or in [0, (0) (in the cases when Ak = 'Yk = 0 is assumed). This
contradiction finishes the proof. 0

f] Let 0 < a < b. Show that if An :::: 0 and 'Yn :::: 0, then

Ip'(b)1 Iq'(b)1
max --- < max --
pEHn Ilpll [a,b] qEGn Ilqll [a,b] .

Show also that if there exists an index k, 0 ::::; k ::::; n, such that Ak = 'Yk = 0,
then

max Ip'(a)1 > max Iq'(a)1
pEHn IIPII[a,b] qEGn Ilqll[a,b] .

Hint: Combine parts b] and d].

g] Let 0 < a < b. Let An :::: 0 and 'Yn :::: O. Show that

o

max Ip(xo)1 < max Iq(xo)1
pEHn IIPII[a,b] qEGn IIqll[a,b] ,

Show also that

max Ip(xo)1 > max Iq(xo)1
pEHn Ilpll [a,b] qEGn Ilqll [a,b] ,

Xo E (b,oo).

Xo E [0, a)

(when Xo = 0, we need the assumption Ao = 'Yo = 0).
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Hint: Combine parts c] and e]. 0

h] Extend the validity, with < and> replaced by :::; and 2::, respectively, of
the inequalities of parts f] and g] to the case when the interval [a, b] C (0, =)
is replaced by [0, b].

i] Suppose there exists an index k, °:::; k :::; n, such that Ak = 1k = 0. Let
Xo E (0, a). Show that the second inequalities of parts e] and g] hold true.

Hint: Modify the arguments given in the hints to parts d], e], f], and g].
Note that 1 E Hn n en ensures, as in E.l a], that

Tn,)..(b) = Tn,,(b) = 1 and Tn,)..(a) = Tn,,(a) = (_I)n .

o

E.5 Lexicographic Properties of (sinh Aot, ... , sinh Ant). Let

°< AO < Al < ... < An and °< 10 < 11 < ... < 1n .

Suppose Ai :::; 1i for each i. Let

H n := span{sinhAot, sinhAlt, '" ,sinhAnt}

and
en := span{sinh10t, sinh11t, ... , sinh1nt}.

Denote the associated Chebyshev polynomials for Hn and en on [0,1] by

and
Tn,,:= Tn{sinh10t, sinh11t, ... ,sinh1nt; [0, I]},

respectively.

a] Let
al < a2 < ... < an and 131 < 132 < ... < 13n

denote the zeros of Tn,).. and Tn", respectively. Show that

i = 1,2, ... ,n

(in other words, the zeros of Tn,).. lie to the left of the zeros of Tn,,).

Outline. By E.2 d] of Section 3.2, (sinh Aot, ... , sinh Ant) is a Descartes
system on (0, =). Hence, by Theorem 3.3.3, the zeros of

on [8,1] lie to the left of the zeros of
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on [0,1] for every 0 E (0,1). Show that

lim IITn A - Tn A {j II = lim IITn ~ - Tn ~ {j II = °:0---+0' , I 0--+0 ' 1 1 r I '

hence the desired result follows by a continuity argument.

b] Show that
max{lp'(O)1 : p E H n , Ilpll[o,l]::; 1}

is attained uniquely by ±Tn,A'

c] Show that
Tn,A(l) = Tn,-y(l) = 1.

Hint: Tn,A(l) =1= 1 would imply that

o

T~,A E span{coshAot, cosh Alt, ... ,cosh Ant}

has at least n + 1 distinct zeros in (0,00). This is impossible, since by E.2
e] of Section 3.2, (cosh Aot, ... , cosh Ant) is a Descartes (hence Chebyshev)
system on (0,00). 0

d] Show that

Hint: Suppose to the contrary that the above inequality fails to hold. As­
sume, without loss of generality, that there is an index m such that Ai = Ii
whenever i =1= m, and Am < 1m' Obviously

Part c] implies that Tn,A(l) = Tn,-y(l) = 1. Now use part a] and the above
observation to show that

Tn,A - Tn,'Y E span{sinhAot, sinh A1t, ... ,sinhAnt, sinh,mt}

has at least n + 2 zeros in (0,00). This contradicts E.2 d] of Section 3.2. 0

e] Show that
Ip' (0) I Iq' (0) I

max --- > max ---.
OhEHn Ilpll[o,l] - O#qEGn Ilqll[o,l]

Hint: Combine parts b] and d]. 0

The result of the following exercise has been observed independently by
Lubinsky and Ziegler [90] and Kroo and Szabados [94]. Various coefficient
estimates for polynomials are discussed in Milovanovic, Mitrinovic, and
Rassias [94]. An estimate for the coefficients of polynomials having a given
number of terms is obtained in Baishanski and Bojanic [80]. Approximation
by such polynomials is studied in Baishanski [83].
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E.6 Coefficient Bounds for Polynomials in a Special Basis. Show that

for every polynomial p of the form

m = O,I, ... ,n

n

p(x) = L cm (1- x)m(x + l)n-m ,
m=O

Outline. By E.5 a] and b] of Section 2.3

n

Cm E lR.

Tn(x) = L dm,n(1- x)m(x + 1)n-m ,
m=O

where
(n-l/2) (n-l/2) ()

d = (_I)m2- n m n-m = 2-n 2n .
m,n (n-~/2) 2m

If Icml > dm,nllpll[-I,IJ for some index m, then the polynomial

q(x) = Tn(x) _ p(x)
dm,n Cm

has at least n distinct zeros in (-1, 1). However,

can have at most n - 1 distinct zeros in (-1, 1) since

(U
O ul un- m- 1 un- m+1 un- m+2 un), ,... , , , ... ,

is a Chebyshev system on (0,00) by E.l a] of Section 3.1. o

E.7 On the Zeros of the Chebyshev Polynomials for Muntz Spaces. Let
o=: Ao < Al < ... < An, and let

H .- {AO A1 An}n .- span x , x ,..., x .

Denote the associated Chebyshev polynomials for H n on [0,1] by

'T' ._ 'T' {Ao A1 An. [0 I]}
.1. n .-.1. n X ,x , ... ,x " .
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a] Let E E (0, ~). Suppose a < (3 are two consecutive zeros of Tn lying in
[E,l - Ej. Show that

Hint: It is clear that Qn(x) := x(l - x)Tn(x) has two consecutive zeros
, < {j in [a,l] such that

E
{j-,?:.-.

n

Show that if
E2

(3-a<-,
n

then
Rn(x) := Tn(x) - Tn (:") E Hn

has at least n + 1 zeros on [0, a/,], which is a contradiction. D

b] Denote the zeros of Tn in (0,1) by Xl < X2 < ... < Xn. Show that

k = 2,3, ... ,n - 1 .

Hint: Use a zero counting argument, as in the hint to part a].

3.4 Muntz-Legendre Polynomials

We examine in some detail the system

( AD Al )X ,X , ...

D

on [0,1] which we call a Muntz system. In particular, we explicitly construct
orthogonal "polynomials" for this system. This allows us to derive various
extremal properties of these systems and leads to a very simple proof of the
classical Miintz-Szasz theorem in Section 4.2.

We adopt the following definition for xA;

(3.4.1)

with value at °defined to be the limit of x A as X -+ °from (0,00) whenever
the limit exists.

Given a sequence A := (Ai)~O of complex numbers, an element of
span{x Ao , X A1 , •.. ,xAn } is called a Muntz polynomial or a A-polynomial.
We denote the set of all such polynomials by Mn(A), that is,

(3.4.2)
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where the linear span is over IR or C according to context. Let

00

(3.4.3) M(A) := U Mn(A) = span{xAO , X
A1

, ..• }.

n=O

For the L2 [O, 1] theory of Muntz systems, we consider

(3.4.4)

where Re(A) denotes the real part of A. This ensures that the A-polynomials

n

p(x) = L ak xAk ,
k=O

are in L2 [O, 1]. We can then define the orthogonal A-polynomials with re­
spect to Lebesgue measure. We call these Muntz-Legendre polynomials. Al­
though we often assume (3.4.4), the following definition requires neither the
distinctness of the numbers Ai nor the assumption Re(Ai) > -1/2.

Definition 3.4.1 (Muntz-Legendre Polynomials). Let A := (Ai)~O be a se­
quence of complex numbers. We define the nth Muntz-Legendre polynomial
on (0,00) by

(3.4.5)

where the positively oriented, simple closed contour r surrounds the zeros
of the denominator in the integrand, and "Xk denotes the conjugate of Ak.

The orthogonality of the above functions with respect to the Lebesgue
measure is proved in Theorem 3.4.3. However, first we give a simple explicit
representation of L n in the case that the numbers Ai are distinct. This is
deduced immediately from evaluating the above integral by the residue
theorem.

Proposition 3.4.2. Let A := (Ai)~O be a sequence of distinct complex num­
bers. Then

(3.4.6)

with

n

Ln{Ao, ... ,An}(X) = LCk,nXAk ,
k=O

x E (0,00)

TI7~~(Ak+"Xj + 1)
Ck,n ;= TIn ( ) ,

j=O,j# Ak - Aj

where Ln{>.o, ... , An}(X) is defined by (3.4.5).
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So L n {Ao, . . . ,An} is indeed a il polynomial provided the numbers Ai
are distinct. Its value at x = 0 is defined if for all i either Re(Ai) > 0 or
Ai = O.

From either Definition 3.4.1 or the above proposition it is obvious that
the order of AO, ... ,An-l in L n {Ao, ... ,An} does not make any difference,
as long as An is kept last. For example,

while both, in general, are different from LdAO' A2' Ad. For a fixed sequence
il, we let Ln(il), or simply L n , denote the nth Muntz-Legendre polynomial
L n {AO' ... ,An}, whenever there is no ambiguity.

An analog of Proposition 3.4.2 can be established even if the numbers
Ai are not distinct, however, in the nondistinct case, Ln(il) does not belong
to the space Mn(il); see E.7 b]. In the very special case that all the indices
are the same we recover the Laguerre polynomials; see E.l.

The orthogonality of {Ln } ~=o is the content of the main theorem of
this section.

Theorem 3.4.3 (Orthogonality). Let il = (Ai)~O be a sequence of complex
numbers with Re(Ai) > -1/2 for i = 0,1, .... The functions L n defined by
(3.4.5) satisfy

r1

Ln(x)Lm(x) dx = 8n,m
Jo 1 + An + An

for all nonnegative integers nand m. (Here 8n,m is the Kronecker symbol.)

Proof. We may assume that the numbers Ai are distinct. Note that

is uniformly continuous in AO, ... ,An for x in closed subintervals of (0, 1],
and the nondistinct Ai case can be handled by a limiting argument. We may
further suppose that m :s: n. Since Re(Ai) > -1/2, we can pick a simple
closed contour r such that r lies completely to the right of the vertical
line Re(t) = -1/2 and r surrounds all zeros of the denominator of the
integrand in (3.4.5). When t E r, we have Re(t + Xm ) > -1, and

t xt+Xm dx = _-=-1__
Jo t + Am + 1

for every m = 0,1, .... Hence Fubini's theorem yields
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Notice that for m < n, the new factor, t + :\m + 1, in the denominator
can be cancelled, and for m = n the new pole -(:\n + 1) is outside r
since Re( -:\n - 1) < -1/2. Changing the contour from r to ItI = R with
R> max{Aol + 1, ... ,IAnl + I}, gives

I n-I -r Ln(x)x>:'m dx = _1_ r IT t + Ak + 1 dt
Jo 27ri J1tl=R k=O t - Ak (t - An)(t + Am + 1)

n-I - -
15m,n IT -An + Ak .

- An - 1 - An k=O - An - 1 - Ak

On letting R -; 00, we see that the integral on the right-hand side is actually
0, which gives

and the proof is finished.

An alternative proof of orthogonality is suggested in E.3. If we let

* - 1/2(3.4.8) Ln := (1 + An + An) Ln ,

o

then we get an orthonormal system, that is,

11

L~(x)L;"(x) dx = 15m,n, m,n= 0,1, ....

We call these L~ the orthonormal Muntz-Legendre polynomials.

There is also a Rodrigues-type formula for the Muntz-Legendre poly­
nomials (see E.2). Let

n Ak

Pn (x) = L n x ( _ .)'
k=O OJ=o,j# Ak AJ

Then
Ln(x) = (DAODA1 ... DAn_1)(Pn)(x) ,

where the differential operators D A are defined by

- d -
DA(f)(x) := X-A dx (XI+A f(x)).

The following is a differential recurrence formula for (Ln);:"=o:
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Theorem 3.4.4. For a fixed sequence A := (Ai)~O of complex numbers, let
L n be defined by (3.4.5). The identity

(3.4.9)

holds for every x E (0,00) and n = 1,2, ....

Proof. From (3.4.5) we get

(x-An Ln(x))' = ~ r IT~:1~~ + >:k + 1) (t + >:n-1 + 1)x i - An - 1dt.
27rI ir ITk=O(t - Ak)

On multiplying both sides by x An+\n-l+1, we obtain

xAn+\n-l+l(x- An Ln(x))'

=_1_ JIT~:5(t + >:k + 1) (t + >: _ + l)xt+\n-l dt
2 · IT n 1 ) n 1 ,
7rI r k=O(t - Ak

and again by the definition of L n - 1 ,

xAn+\n-'+l(x-AnLn(x))' = (x\n-l+ 1Ln_1(x))'.

We finish the proof by simplifying by the product rule and dividing both
sides by x\n-l. D

Corollary 3.4.5. For a fixed sequence A := (Ai)~o of complex numbers, let
L n and L~ be defined by (3.4.5) and (3.4.8), respectively. Then for every
x E (0,00) and for every n = 0,1, ... ,

n-1
a) xL~(x) = AnLn(x) + L (Ak + >:k + l)Lk(x) ,

k=O
~ n-1

b) xL;:(x) = AnL~(x) +VAn + >:n + 1L VAk + >:k + 1 Lk(x) ,
k=O

and
n-1

c) xL~(x) = (An - l)L~(x) + L (Ak + >:k + l)L~(x) .
k=O

Proof. The first identity follows from Theorem 3.4.4 on expressing

xL~(x) - xL~(x)

as a telescoping sum. From this and the relation

- 1/2Lk=(Ak+Ak+1) Lk

we get part b]. Differentiating the identity of part a] gives part c]. D

The values and derivative values of the Muntz-Legendre polynomials
at 1 can now all be calculated.
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Corollary 3.4.6. For a fixed sequence A := (Ai)~o of complex numbers, let
L n be defined by (3.4.5). Then

a] Ln (1) = 1,
n-l

b] L~(1) = An + :L>Ak +):k + 1),
k=O

and
n-l

c] L~(1) = (An - 1)L~(1) + L (Ak +):k + l)L~(1).
k=O

Proof. It suffices to show that L n (1) = 1; the rest follows from Corollary
3.4.5. Notice that

n-l -
L

n
(1) = _1 rII t + Ak + 1 dt .

211'i } [' t - Ak t - Ank=O

Now, since r surrounds all zeros of the denominator, and the degree of the
denominator is one higher than that of the numerator, we can evaluate the
integral on circles of radius R --> 00 to get the result. 0

Comments, Exercises, and Examples.

Muntz polynomials are just exponential polynomials L ake-Akt under
the change of variables x = e- t and have received considerable scrutiny
(Schwartz [59] is a monograph on this topic). The orthogonalizations of
Muntz systems exist in the Russian literature (see, for example, Badalyan
[55] and Taslakyan [84]; it has been further explored in McCarthy, Sayre,
and Shawyer [93]). Borwein, Erdelyi, and Zhang [94b] contains most of the
content of this section.

Various properties of the Muntz-Legendre polynomials are examined
in the exercises. Note that if Ao < Ai < A2 < ... , then the Muntz system
(x AO , xA

', ... ) is a Descartes system on [a, b], a > 0, and so we can apply
Theorem 3.3.4 to the associated Chebyshev polynomials on [a, b] to deduce
how the zeros shift when the exponents are varied lexicographically. Similar
results are given for the Muntz-Legendre polynomials in E.7.

E.1 Laguerre Polynomials.

a] Let Ln{Ao, ... ,An}(x) be defined by (3.4.5). If Ao = .,. = An = A, then

where .en is the nth Laguerre polynomial orthonormal with respect to the
weight e- X on [0, (0) with .en(O) = 1 (see E.7 of Section 2.3, where .en is
denoted by L n as is standard).
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Proof. Since Ak = A, (3.4.5) yields

where the contour r can be taken to be any circle centered at A. By the
residue theorem,

See also part b].

b] Let

o

Then (.cn)~=o is an orthonormal sequence of polynomials on [0,(0) with
respect to the inner product

(I,g) =100 f(x)g(x)e-Xdx.

Deduce the orthonormality from a] and Theorem 3.4.3 by substituting

y = - (1 + A+ 3:) log x .

E.2 Rodrigues-Type Formula. Let A = (Ai)~O be a sequence of distinct
complex numbers. Let L n be defined by (3.4.5).

a] Let

Show that
1 1 x

t
dt

Pn (x) = -2· rr (t - A) ,
7T2 r j=O J

where r is any contour surrounding AO, AI, ... ,An. Use this to show that

k = 0,1, ... ,n - 1 .
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bJ Show that

where

c] If °= Ao < Al < ... , then
n

Pn(O) = (_l)n II Aj1
j=l

and (-1)npn is strictly decreasing on [0, 1].

E.3 Another Proof of Orthogonality. Deduce the orthogonality of the
sequence (Ln)~o on [0,1] from Theorem 3.4.4 by using integration by
parts and induction.

E.4 Integral Recursion. For a given sequence A := (A;)~o of complex
numbers satisfying (3.4.4), let L n be defined by (3.4.5). Show that

Ln(x) = Ln- 1(x) - (An + );n-1 + l)x.\n 11

c.\n-1Ln- 1(t) dt, X E (0,1].

Hint: Use Theorem 3.4.4. 0

E.5 On the Maximum of L n on [O,lJ. If A = (Ai)~o is a sequence of
nonnegative numbers satisfying

(3.4.10)
n-1

An ~ L (1 + 2Ak) ,
k=O

n = 1,2, ...

and L n is defined by (3.4.5), then

ILn(x)1 < Ln(l) = 1, X E [0,1), n = 2,3, ....

Hint: Use Theorem 3.4.4.

If Ak = pk, then (3.4.10) holds if and only if p ~ 2 + V3.
o

E.6 The Reproducing Kernel. Let A = (Ai)~o be as in (3.4.4), and let
L n and L~ be defined by (3.4.5) and (3.4.8), respectively. Then for every
P E Mn(A), we have

p(x) = 11

Kn(x, t)p(t) dt,

where
n

Kn(x, t) := L L'k(x)L'k(t)
k=O

is the nth reproducing kernel (see also E.5 of Section 2.2).
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E.7 On the Zeros of Muntz-Legendre Polynomials. Assume that

a] For a function f E C(0, 1) let S- (I) and Z (I) denote the number of
sign changes and the number of zeros, respectively, of fin (0,1) (we count
each zero without sign change twice). Let IjJ and Ijt E C(O, 1). Show that if

for every real a and {3 with a 2+ {32 > 0, then the zeros of IjJ and Ijt strictly
interlace.

Proof: This result is due to Pinkus and Ziegler [79].

b] Assume that

o

where the numbers AD, AI,'" ,Am are distinct, and let mj, j _= 0, 1, ... ,m,

be the number of indices i = 0, 1, ... , n for which Ai = Aj. Show that
Ln{AD, . .. ,An} is in the space

H n :=span{xAj (logx)i:j=O,l, ... ,m, i=O,l, ... ,mj-1},

which is a Chebyshev space on (0,00).

Hint: Use the definition and the residue theorem. o

c] Show that {LdAo, ... ,Ad }k=O is a basis for the Chebyshev space Hn
defined in part b].

Hint: Use Theorem 3.4.3 (orthogonality). 0

d] Show that Ln := Ln{AD, .. . ,An} has exactly n distinct zeros in (0,1)
and L n changes sign at each of these zeros.

Hint: Assume to the contrary that the number of sign changes of Ln is less
than n. Use part c] to find a function p E span{Ld~:6 that changes sign

exactly at those points in (0,1) where L n changes sign. Then f01LnP -I- 0,
which contradicts Theorem 3.4.3. 0

e] Suppose An < A~. Show that the zeros of

and
Ijt := Ln{Ao, AI,··· ,An-I, A~}

in (0,1) strictly interlace.
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Hint: Note that Theorem 3.4.3 (orthogonality) implies

for every p E H n - I , where H n - I is defined by part b] with respect to the
sequence (AD, AI, ... ,An-d. Use the hint given to part d] to show that
o.tP + (3lf/ has at least n sign changes in (0,1) whenever a. and (3 are real
with 0.2 + (32 > 0. Use part b] to obtain that o.tP + (3lf/ cannot have more
than n + 1 zeros in (0,1) whenever a. and (3 are real with 0.2 + (32 > 0.
Finish the proof by part a]. 0

f) Let AD, ... ,Ak-I, Ak+ 1, ... ,An be fixed distinct numbers. Suppose

is a sequence with lim Ak,i = 00. Show that the largest zero of
'1--+00

in (0, 1) tends to 1.

Outline. Assume, without loss, that Ak,i is greater than each of the numbers
Aj, j = 0, 1, ... ,n, j i= k. Let

( ) ._ \ (L () (i) Ak,i)gi X .- /\k,i n,k,i X - Ck,n X ,

where

(') nj:~(Ak,i + Aj + 1)
c' --==~'---;-:----'----,--,-

k,n - n7=0,Nk(Ak,i - Aj)

is the coefficients of X Ak .i in Ln,k,i' Use (3.4.6) to show that the functions
gi converge uniformly on [<5,1], <5 E (0,1), to a function

0 -1- E H '- {AO Ak-l Ak+l An}r 9 n-I .- span x , ... , x ,x , ... ,x .

Use Ln,k,i(l) = 1 (see Corollary 3.4.6) and the explicit formula for C~i,~ to
show that g(l) :s; °and that the functions

converge to g(x), as i ----+ 00, for every x E (0,1).

Now assume that the statement of part f] is false. Then there is an
E E (0,1) and a subsequence (Ak,ij)~1 of (Ak,;)~1 such that the Miintz­
Legendre polynomials Ln,k,ij have no zeros in [1- E, 1]. Deduce from this and
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L1
k '. (1) > 0, An i· > °(see Corollary 3.4.6 a]), that gi· is nondecreasingn, ,t) , J J

on [1 - E, 1] whenever An,ij > 0.
Therefore g is nondecreasing on [1 - E,I], which, together with °i­

g E Hn- l and g(l) :::; 0, implies that g(1 - E) < 0. Hence Ln,k,i(1 - E) < °
if i is large enough. Since Ln,k,i(l) = 1 (see Corollary 3.4.6), each Ln,k,i
has a zero in (1 - E, 1), provided i is large enough, which contradicts our
assumption. D

g] Let if> and tJr be as in part e]. Let

Xl < X2 < ... < X n and xr < x; < ... < x~

be the zeros of if> and tJr, respectively, in (0,1). Show that An < A~ implies
that

Xj < x; , j=I,2, ... ,n.

Hint: Combine parts e] and f].

h] Let Ak i- An. Show that the zeros of

and

D

tJr:=Ln{AO"" ,Ak-I,An,Ak+I'" ,An-I,Ad

in (0,1) strictly interlace.

Hint: Use part a] and arguments similar to those given in the hints to part
e]. Note that

if>(I) = tJr(l) = 1 and

(see Corollary 3.4.6 a]) imply that aif> + (3tJr is not identically °whenever a
and (3 are real with 0'.2 + (32 > 0. D

iJ Let if> and tJr be as in part h]. Let

Xl < X2 < ... < X n and xr < x; < ... < x~

be the zeros of if> and tJr, respectively, in (0,1). Show that Ak < An implies
that

Xj < x; , j = 1,2, ... ,n.

Hint: By part h] it is sufficient to prove that X n ::; x~. Let Hn be the
Chebyshev space defined in part b]. Corollary 3.4.6 implies that

if>(I) = tJr(l) = 1 and tJrl(l) - tJrl(l) = An - Ak > o.

Deduce from this and part i] that x~ < X n would imply that 0 i- tJr -if> E Hn
has at least n + 1 distinct zeros in (0,1], which is a contradiction. D
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j] Lexicographic Property. Suppose

and Ai < f-Lj for some indices i and j. Let

Xl < X2 < ... < Xn and x~ < x; < ... < x~

be the zeros of

respectively, in (0,1). Show that

Xj < x; , j = 1,2, ... ,no

Hint: Repeated applications of parts g] and i] give the desired result. 0

k] Let Ao < An. Let

Xl < X2 < ... < Xn and x~ < x; < ... < x~

be the zeros of

respectively, in (0,1). Show that (Xj)j=l and (xj)j=l strictly interlace and

Xj < x; , j = 1,2, ... ,no

Hint: Use parts h] and i] and the comment given after Proposition 3.4.2. 0

I] Show that the zeros of

in (0, 1) strictly interlace.

Hint: Use part a] and arguments similar to those given in the hints for part
~. 0

E.8 A Global Estimate for the Zeros. Let (Ai)i=l C (-1/2,00). Assume
that Xl < X2 < ... < Xn are the zeros of L n{Ao, ... , An} in (0, 1). Then

(
4n+2) ( -jr )

exp -1+2A* <XI<X2<···<xn <exp (1 + 2A*)(4n+ 2) ,
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where A* := min{AO, .. , ,An}, A* := max{.\o, ... ,An} and j1 > 31r j 4 is the
smallest positive zero of the Bessel function

Proof. Let .en be the nth Laguerre polynomial with respect to the weight
e- x on [0,00), and let the zeros of .en be Zl < Z2 < ... < Zn. Then by
[Szego [75], pp. 127-131])

'2

_J_1_ < Zl < Z2 < ... < Z < 4n + 2
4n + 2 n,

where the upper estimate is asymptotically sharp, and the lower estimate
is sharp up to a multiplicative constant (not exceeding 44j(91r2 )). Now use
E.1 and E.7 j]. 0

E.9 The Order of the Zero at 1 of Certain Polynomials. This exercise, due
in part to K6s, gives precise estimates on the maximum order of the zero at
1 of a polynomial whose coefficients are bounded in modulus by the leading
coefficient.

a) Suppose ao, a1,." ,an -1 are complex numbers with modulus at most
1, and suppose an = 1. Then the multiplicity of the zero of

at 1 is at most 5yn.

Proof. If p has a zero at 1 of multiplicity m, then for every polynomial f
of degree less than m, we have

(3.4.11) aof(O) + ad(1) + ... + anf(n) = O.

We construct a polynomial f of degree at most 5yn, for which

f(n) > 1f(0) I+ If(l)1 + ... + If(n - 1)1·

Equality (3.4.11) cannot hold with this f, so the multiplicity of the zero of
p at 1 is at most the degree of f.

Let Tv be the vth Chebyshev polynomial defined by (2.1.1). Let kEN,
and let

g := To + T1 + ... + Tk E Pk .

Note that g(l) = k + 1. Also, for 0 < y :::; 1r,
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sin(k + l)y + sin ly
g(cosy) = 1 + cosy + cos2y + ... + cosky = 2. 1 2

2sm'iY

Hence, for -1 ::; x < 1,
v0.

Ig(x)1 ::; vr=x .
I-x

Let f(x) := g4e: - 1). Then f(n) = g4(1) = (k + 1)4 and
n 4 <Xl 1 2 2

11(0)1 + 11(1)1 + ... + If(n - 1)1::; L~ < n2L ~ = n 6
n

.
j=l (~) j=l J

If k:= l(n2 j6)1/4y'nJ, then

f(n) > 11(0)1 + 11(1)1 + ... + If(n - 1)/.
In this case the degree of f is 4k ::; 5y'n. 0

The result of part a] is essentially sharp.

b] For every n E N, there exists a polynomial

Pn(x) = ao + a1x + ... + a2n2X2n2

such that a2n2 = 1, laol,la11, ... ,la2nL11 are real numbers with modulus
at most 1, and Pn has a zero at 1 with multiplicity at least n.

Proof. Define

(n!)2 j x t dt
Ln(x):= 2ni r TI~=o (t _ k2) , n = 0,1, ... ,

where the simple closed contour r surrounds the zeros of the denominator
of the integrand. Then L n is a polynomial of degree n 2 with a zero of mul­
tiplicity at least n at 1. (This can easily be seen by repeated differentiation
and then evaluation of the above contour integral by expanding the contour
to infinity.)

Also, by the residue theorem,

where

Ck,n = TIn (k2 _ '2)
j=O,j¥k J

It follows that

(-I)k2(n!)2
(n - k)!(n + k)! .

k = 1,2, ... ,n.

Hence,

Pn(x) := Ln(x) + Ln(x
2
)

2
is a polynomial of degree 2n2 with a zero of order n at 1. Also Pn has
constant coefficient 1 and each of its other coefficients is a real number of
modulus less than 1. Now let Pn(x) := x2n2 Pn(ljx). 0
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cJ For every n E N, there exists a polynomial

such that an = 1, ao, aI, ... ,an-l are real numbers of modulus less than
1, and p has a zero at 1 with multiplicity at least l jn/2J.

3.5 Chebyshev Polynomials in Rational Spaces

There are very few situations where Chebyshev polynomials can be explic­
itly computed. Indeed, only the classical case of Section 2.1 is well known.

However, the explicit formulas for the Chebyshev polynomials for the
trigonometric rational system

(3.5.1) (
1 ± sin e 1 ± sine 1 ± sin e )

1, , , ... , ,
cose - al cose - a2 cose - an

eE [0,27f)

and therefore also for the rational system

(3.5.2) (
1 1 1 )1,---,---, ... ,--- ,

x - al x - a2 x - an
x E [-1, 1J

with distinct real poles outside [-1, 1] are implicitly contained in Achiezer
[56].

The case (3.5.1) does not perfectly fit our discussion of Section 3.3
because of the periodicity or because [0,27f) is not a compact subset of
lR. This leads to nonuniqueness of the Chebyshev polynomials. Note that
ordinary polynomials arise as a limiting case of the span of system (3.5.2)
on letting all the poles tend to ±oo.

We are primarily interested in the linear span of (3.5.2) and its trigono­
metric counterpart obtained with the substitution x = cos e. Let

(3.5.3)

and

(3.5.4)

where (ak)k=l C <C\[-1, 1] is a fixed sequence of poles.
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When the poles aI, a2,'" ,an are distinct and real, (3.5.3) and (3.5.4)
are simply the real spans of the systems

(3.5.5)

and

(3.5.6)

(
1 1 1 )1,--,--, ... ,--

x - al x - a2 x - an

(
1 ± sin e 1 ± sine 1 ± sine )

1, e' , ... ,,--,---
cos - al cose - a2 cose - an

on [-1,1]

on [0, 2Jr),

respectively.

We can construct Chebyshev polynomials of the first and second
kinds, which are analogous to Tn and Un of Section 2.1, for the spaces
Pn(al,a2, ... ,an) and Tn(al,a2, ... ,an) as follows. Given a sequence
(ak)k=l C C\[-l, 1]' we define the sequence (Ck)k=l by

(3.5.7)

that is,

(3.5.8)

Note that

In what follows, via% - 1 is always defined by (3.5.8) (this specifies the
choice of root). Let D := {z E C : Izi < I}, let

(3.5.9)

where the square root is defined so that M~(z) := zn Mn(Z-I) is an analytic
function in a neighborhood of the closed unit disk D, and let

(3.5.10)

Note that f~ is actually a finite Blaschke product (see E.12 of Section 4.2).
Also, fn(z-l) = fn(Z)-1 whenever Izi = 1.
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The Chebyshev polynomials of the first kind for the spaces

Pn (a1,a2, ... ,an) and 7;,(a1,a2, ... ,an)

are now defined by

(3.5.11) Tn(x):= ~(fn(Z) + fn(z)-1), where x:= ~(z + Z-1), Izi = 1

and

(3.5.12) 8 E JR,

respectively.

The Chebyshev polynomials of the second kind for these two spaces are
defined by

( ) ( ) ._ fn(z) - fn(z)-1 h ._ 1( -1) Izi = 13.5.13 Un X .- l' were x .- -2 Z + z ,z - z-
and

(3.5.14) 8 E JR,

respectively.

As we will see, these Chebyshev polynomials preserve many of the ele­
mentary properties of the classical trigonometric and algebraic Chebyshev
polynomials. This is the content of the next three results.

Theorem 3.5.1 (Chebyshev Polynomials of the First and Second Kinds in
Trigonometric Rational Spaces). Given (ak)k=1 C C\[-I,I], let Tn and

Un be defined by {3.5.12} and (3.5.14), respectively. Then the following
statements hold:

a] Tn E Tn (a1,a2,'" ,an) and Un E Tn (a1,a2, ... ,an).

b] IITnll1R = 1 and IIUnll 1R = 1.

c] There exist °= 80 < 81 < ... < 8n = 7T such that

Tn (8j ) = Tn(-8j ) =(-I)j, j=O,I, ... ,n.

d] There exist °< 71 < 72 < ... < 7n < 7T such that

Un (7j) = -Un(-7j) = (_I)j-1, j = 1,2, ... ,no

e] For every 8 E JR,
T~(8) + U~(8) = 1.

Proof. Observe that there are polynomials P1 E Pn and P2 E Pn- 1 such
that

(3.5.15)
~ e- inOM~(eiO) + einOM~(e-iO)

Tn (8) = Tn (cos 8) = 2Mn(eiO)Mn(e-iO)

P1 (cos 8)



142 3. Chebyshev and Descartes Systems

and

(3.5.16)
~ . e-ineM~(eie) _ eineM~(e-ie)
Un(B)=Un(cosB)smB= . (e) (-e)2zMn e" Mn e '

P2(cosB) sinB

n~=l Icos B- akl .

Thus a] is proved.

Since ICk I < 1 and f~ is a finite Blaschke product, we have

(3.5.17) Ifn(Z)1 = 1 whenever Izi = 1.

Now b] follows immediately from (3.5.10) to (3.5.14).

Note that Tn(B) is the real part, and Un(B) is the imaginary part of
fn(e ie ), that is,

BE IR,

which together with (3.5.17) implies e].

To prove parts c] and d], we note that Tn(B) = ±1 if and only if
fn(e ie ) = ±1, and Un(B) = ±1 if and only if fn(e ie ) = ±i. Since ICkl < 1
for k = 1,2, ... ,n, f~ has exactly 2n zeros in the open unit disk D. Since
f~ is analytic in a region containing the closed unit disk D, c] and d] follow
by the argument principle (see, for example, Ash [71]). 0

With the transformation x = cosB = ~(z+z-l) and z = eie , Theorem
3.5.1 can be reformulated as follows:

Theorem 3.5.2 (Chebyshev Polynomials in Algebraic Rational Spaces).
Given (ak)k=l C C \ [-1,1], let Tn and Un be defined by (3.5.11) and
(3.5.13), respectively. Then

aJ Tn E Pn(al,a2,'" ,an) and Un E Pn(al,a2,'" ,an).

bJ IITnll[-I,I] = 1 and 11vT=X"2Un(x)II[-I,I] = 1.

c] There exist 1 = Xo > Xl > ... > Xn = -1 such that

d) There exist 1 > YI > Y2 > ... > Yn > -1 such that

eJ For every x E [-1,1],

(Tn(x))2 + (~Un(X))2 = 1.
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Parts c] and d] of Theorems 3.5.1 and 3.5.2 establish the equioscilla­
tion property of the Chebyshev polynomials, which also extends to certain
linear combinations of Chebyshev polynomials. In the trigonometric poly­
nomial case this is the fact that cos a cos n8+sin a sin n8 = cos(n8-a) equi­
oscillates 2n times on the unit circle [0, 27f]. Our next theorem characterizes
the Chebyshev polynomials for Tn(a1' a2, ... ,an) and records a monotonic­
ity property that we require later.

Theorem 3.5.3 (Chebyshev Polynomials in Trigonometric Rational Spaces).
Let (ak)k=l C C \ [-1,1]. Then (i) and (ii) below are equivalent:

(i) There is an a E JR such that

V = (cos a) Tn + (sin a ) Un ,

- -where Tn and Un are defined by (3.5.12) and (3.5.14).

(ii) V E Tn (aI, a2, ... , an) has uniform norm 1 on JR, and it equioscillates
2n times on JR (mod 27f). That is, there exist

°::; 80 < 81 < ... < 82n- 1 < 27f

so that
V(8j ) = ±(-I)j, j = 0,1, ... ,2n-1.

Furthermore, if V is of the form in (i) (or characterized by (ii)) , then

Vi = (cosa) T~ + (sin a) U~

does not vanish between any two consecutive alternation points of V (that
is, between 8j - 1 and 8j for j = 1,2, ... ,2n - 1 and between 82n- 1 and
27f + (0),

Proof. (i) '* (ii). By Theorem 3.5.1 e] and Cauchy's inequality, we have

(3.5.18)

on the real line. From Theorem 3.5.1 c], d], and e], we obtain that Tn/Un
oscillates between +00 and -00 exactly 2n times on JR (mod 27f), and
hence it takes the value cot a exactly 2n times. At each such point, (3.5.18)

becomes an equality, namely, (cos a) Tn + (sin a ) Un = ±1 with different
signs for every two consecutive such points.

(ii) '* (i). Let V be as specified in part (ii) of the theorem. Let 80 be
a point where V achieves its maximum on JR, so V(80 ) = 1. We want to
show that V is equal to p := Tn (80 )Tn +Un(80 )Un. Since V(80 ) = p(80 ) = 1
and V'(80 ) = p'(80 ) = 0, V - p has a zero at 80 with multiplicity at least
2. There are at least 2n - 1 more zeros (we count multiplicities) of V - p
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in ~ (mod 211"), with one between any two consecutive alternation points of
p if the first zero of p to the right of 80 is greater than the first zero of V
to the right of 80 . If the first zero of V to the right of 80 is greater than or
equal to the first zero of p to the right of 80 , then there is one zero of p - V
between any two consecutive alternation points of V. In any case V - p has
at least 2n + 1 zeros in ~ (mod 211"). Hence V - p is identically O.

To prove the final part of the theorem let V E Tn(al, az, ... ,an) be
such that IIVIIIR = 1 and V equioscillates 2n times on ~ (mod 211") between
±l. Assume there is a 80 E [0,211") such that IV(80 )1 < 1 and V'(80 ) = O.
Then V (80 ) =1= 0; otherwise the numerator of V would have at least 2n + 1
zeros in ~ (mod 211"), which is a contradiction. Observe that there is a
trigonometric polynomial t E T2n such that

This t has at least 4n + 1 zeros in ~ (mod 211"), which is a contradiction
again. Therefore V' (8) =1= 0 if IV(8) I < 1, which means that V is strictly
monotone between any two of its consecutive alternation points. D

Under some assumptions on (ak)k=1 it is easy to write down the explicit
partial fraction decompositions for Tn and Un'

Theorem 3.5.4. Let (ak)k=1 C <C \ [-1, 1] be a sequence of distinct numbers
such that its nonreal elements are paired by complex conjugation. Let Tn
and Un be the Chebyshev polynomials of the first and second kinds defined
by (3.5.11) and (3.5.13), respectively. Then

(3.5.19)

and

(3.5.20)

where

Al n An n
Tn(x) = Ao,n + --'- + ... + --'-

X - al X - an

A (_I)n( -1 -1 -1 )
O = -- c c ... C + CICZ ... C,n 2 1 Z n n ,

and

( -1)Zn 1_ Ck - Ck II - CkCjAkn - --~,
, 2 Ck - c·j=1 J

j#

k = 1,2, ... ,n,

k = 1,2, ... ,no
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Proof. It follows from Theorems 3.5.1 a] and 3.5.2 a] that Tn and Un can be
written as the partial fraction forms above. Now it is quite easy to calculate
the coefficients Ak,n and Bk,n' For example,

. . 1 (Mn(z) zn M n(Z-l))
Ao,n = lIm Tn(x) = lIm -2 M ( -1) + M ( )x-co Z-70 zn n Z n Z

(_1)n( -1 -1 -1 )= -- C C ... C + C1 C2 ... C2 1 2 n n

and for k = 1,2, ... ,n,

k = 1,2, ... ,no

The coefficients Bk,n can be calculated in the same fashion. o

Comments, Exercises, and Examples.

The explicit formulas of this section are tremendously useful. They al­
low, for example, derivation of sharp Bernstein-type inequalities for ra­
tional functions; see Section 7.1. Various further properties of these Cheby­
shev polynomials for rational function spaces are explored in the exercises,
which follow, Borwein, Erdelyi, and Zhang [94b]. In particular, the orthog­
onalization of such rational systems on [-1, 1] with respect to the weight
w(x) = (1 - x2)-1/2 can be made explicit in terms of the Chebyshev poly­
nomials. Various other aspects of these orthogonalizations may be found in
Achiezer [56], Bultheel et al. [91], and Van Assche and Vanherwegen [92].

E.! Further Properties of Tn and Tn- Given (ak)k=l C C \ [-1,1], let
(Ck)k=l be defined by

Ck := ak - Ja% - 1 , ICk I < 1,

as before. We introduce the Bernstein factors

and
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where the choice of vaf=l is determined by the restriction ICkl < 1. Note
that for x E [-1,1]' we have

The following result generalizes the trigonometric identities

and

(cos nt)' = -n sin nt, (sin nt)' = n cos nt,

((cos nt)')2 + ((sin nt)')2 = n 2 ,

which are limiting cases (if n E Nand t E IR are fixed, then lim Bn(t) = n
as all ak ----> ±oo).

a] Show that, on the real line,

and

Hint: For example,

o

b] If V:= (cos a) Tn + (sin a) Un for some a E IR, then

(V')2 + B~V2 = B~

holds on the real line.

c] The Derivative of Tn at ±l. Let Tn be defined by (3.5.11). Then

and
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d] Contour Integral for Tn- Show that

( )

1/2

1 n (t - c) (t - c) t - x
T x =- J J dt
n() 2-rri1 II (1- ct)(l - ct) t 2 - 2tx + 1

'Y J=l J J

for every x E [-1,1], where, is a circle centered at the origin with radius
1 < r < min{lcj 1 1 : 1 ::; j ::; n}, and the square root in the integrand is an
analytic function of t in a neighborhood of ,.

Hint: Cauchy's integral formula and the map x = ~(z + Z-l) give

where M n is defined by (3.5.9). D

E.2 Orthogonality. Given (ak)~l C lR\[-l, 1], let (Ck)~l be defined by

Ck = ak - y'a% - 1, Ck E (-1,1)

and let (Tn)~=o be defined by (3.5.11).

a] Show that

for all integers 0 ::; m ::; n. (The empty product is understood to be 1.)

b] Given a E lR \ [-1,1], let c E (-1,1) be defined by

c=a-va2 -1, CE(-l,l).

Show that

1 n

1Tn(X)_l- dx = 2-rr II C - Cj .

-1 X - a.Jf=X2 C- c- 1 . 1 - CC
J=l J
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c] Show that

and

11 1 dx
Tn(x)-- =0,

-1 X-ak~
k = 1,2, ... ,n.

and

Given a sequence (ak)k=l C lR\[-1, 1]' we define

Ro := 1, Rn := Tn + cnTn- 1

m = 0, 1, ... ,n - 1.

R; := ~, R~ := J71"(1 ~ c;) (Tn + cnTn- 1 ).

The following part of this exercise indicates that these simple linear com­
binations of Tn and Tn- 1 give the orthogonalization of the rational system

( 1,_1,_1 , ... )
x - a1 x - a2

whenever (ak)k=l c lR \ [-1,1] is a sequence of distinct real numbers.

d] Show that, for all nonnegative integers nand m,

11 R~(x)R;"(x)h = bm,n,
-1 1- x

where bm,n is the Kronecker symbol.

This implies that

11 dx
Rn(x)Rm(x)~ = 0,

-1 y1-x2

Finally, it follows from part a] that

11 R~(X)2 dx = 1.
-1 V1- x 2

D

e] Assume (ak)k=l c lR \ [-1, 1]. Then Tn and Rn have exactly n zeros in
[-1, 1], and the zeros of Tn- 1 and Tn strictly interlace.
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E.3 Extension of Theorems 3.5.1 and 3.5.3. Given (ak)%~l C C \ ffi., let

Without loss of generality we may assume that

k = 1,2, ... ,2n.

a] Show that there is a polynomial q2n E P2n of the form

2n
Q2n(Z) = I II (z - Ck),

k=l

such that
2n

IQ2n(eio )1 = II Isin((8 - ak)/2)1,
k=l

8 E ffi..

Hint: Use the fact that Iz - ci = 11 - czl whenever Izi = 1 and C E C. D

Associated with Q2n E P2n defined in part a], let

and

M~(z) := ("1 IT (1 _ CZ)) 1/2 ,
k=l

where the square roots are defined so that M~ is analytic in a neighbor­
hood of the closed unit disk, and M n is analytic in a neighborhood of the
complement of the open unit disk. Let

For 8 E ffi., we define

and
fJ (8) '= I (j ( iO)) = ~ (Mn(e

iO
) _ M~(eiO))

n . m n e 2i M;,(eiO) Mn(eiO )

Using the new (extended) definitions, show the following:
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b] Tn E Tn(a1,a2, ... ,a2n) and Un E T",(a1,a2, ... ,a2n)'

c] IITn ll1R = 1 and IIUn ll1R = 1.
d] There are numbers 81 < 82 < ... < 82n in [-7l', 7l') such that

j = 1,2, ... ,2n.

e] There are numbers T1 < T2 < ... < T2n in [-7l',7l') such that

j=1,2, ... ,2n.

f] T(8)2 + U(8)2 = 1 for every 8 E JR.

g] Both Tn and Un have exactly 2n simple zeros in the period [-7l', 7l'), and
the zeros of Tn and Un strictly interlace.

h] The statements of Theorem 3.5.3 remain valid.

E.4 Extension of the Bernstein Factor Bn- Let

With the notation of the previous exercise we define

8 E JR.

a] Show that for every 8 E JR,

b] Show that, on the real line,

and

c] Show that
(V')2 + B~V2 = B~

holds on the real line for every V of the form

a E JR.
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E.5 Chebyshev Polynomials for Pn(al, a2, ... ,an) on IR. Let

Let

with k = 1,2, ... ,no

and

(

n ) 1/2

M~(z):= II (z - ad ,
k=l

where the square roots are defined so that M r: is analytic in a neighborhood
of the closed upper half-plane, and M n is analytic in a neighborhood of the
closed lower half-plane. Let

Mn(z)
fn(z) := -(-) .

M;,z

For x E lR, we define

and

Show the following:

a] Tn E Pn(al,a2,'" ,an) and Un E Pn(al,a2,'" ,an)'

b] IITnll 1R = 1 and IIUnll1R = 1.

e] There are real numbers Xl > X2 > ... > Xn-l such that

lim Tn(x) = 1,
X----tOO

and lim Tn(x) = (_I)n.
x~-oo

d] There are real numbers Yl > Y2 > ... > Yn-l such that

lim Un(x) = O.
x-±oo

e] Tn(x)2 + Un(X)2 = 1 for every X E lR.

f] Both Tn and Un have exactly n simple zeros on lR, and the zeros of Tn
and Un strictly interlace.
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g] The following statements are equivalent:

(i) There exists an a E JR such that

v = (cos a) Tn + (sin a) Un'

(ii) V E Pn(a1, a2,'" , an) has uniform norm 1 on JR, and it equioscillates
n times on the extended real line. That is, there are extended real numbers
00 2': Z1 > Z2 > ... > Zn > -00 such that

j=1,2, ... ,n,

where
V(oo) := lim V(x).

x~oo

h] With the notation of part g], V is strictly monotone on each of the
intervals

E.6 Bernstein Factor on IR. Let (ak)k=1 C <C \ JR with

k = 1,2, ... ,no

With the notation of E.5 let

f~(x)
Bn(x) := fn(x) ,

a] Show that

B ( ) = 2:n
2Im(ak)

n x I 12 'X - ak
k=1

b] Show that, on the real line,

x E JR.

x E JR.

and

c] Show that
(V')2 + B~V 2 = B~

holds on the real line for every V of the form

V = (cos a) Tn + (sin a) Un'
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E.7 Coefficient Bounds in Nondense Rational Function Spaces. Suppose
(ak)k=l C JR. \ [-1, 1] is a sequence of distinct numbers satisfying

00

L V1-lajl-2 < 00.
j=l

Show that there are numbers K j > °such that
j = 0, 1, ... ,n, n E N

)
Dl n Dn n

p(x = Do,n + --'- + ... + --'-,
x - al x - an

Hint: Use E.2 c] of Section 3.3 and Theorem 3.5.4.

Dj,n E JR..

o



4

Denseness Questions

Overview

We give an extended treatment of when various Markov spaces are dense.
In particular, we show that denseness, in many situations, is equivalent to
denseness of the zeros of the associated Chebyshev polynomials. This is
the principal theorem of the first section. Various versions of Weierstrass'
classical approximation theorem are then considered. The most impor­
tant is in Section 4.2 where Muntz's theorem concerning the denseness of
span{1, X A1 , X A2 , ... } is analyzed in detail. The third section concerns the
equivalence of denseness of Markov spaces and the existence of unbounded
Bernstein inequalities. In the final section we consider when rational func­
tions derived from Markov systems are dense. Included is the surprising
result that rational functions from a fixed infinite Muntz system are always
dense.

4.1 Variations on the Weierstrass Theorem

Much of the utility of polynomials stems from the fact that all continuous
functions on a finite closed interval are uniform limits of them. This is the
well-known Weierstrass approximation theorem. There are numerous proofs
of this; several are presented in the exercises. Another proof follows from
the main theorem of this section.
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Associated with a Markov system M := (fo, iI, ... ) on [a, b] we define,
as in Section 3.3, the Chebyshev polynomials

Tn := Tn {fo , iI,··· , fn; [a, b]}.

Denote the zeros of Tn by (a :::::)Xl < X2 < ... < xn (::::: b). Let Xo := a
and Xn+l := b. The mesh of Tn is defined by

(4.1.1)

This is a measure of the maximal gap between two consecutive zeros of Tn
with respect to the interval [a, b].

For a sequence (Tn);:"=o of Chebyshev polynomials associated with a
fixed Markov system on [a, b], we have

lim M n = 0n--->oo
if and only if liminfM n = o.

n--->oo

This follows from the fact that if m < n, then Tm cannot have more than
one zero between any two consecutive zeros of Tn.

Our main result shows the strong connection between the denseness of
the real span of an infinite Markov system M of C 1 functions on [a, b] in
C[a, b] and the density of the zeros of the associated Chebyshev polynomials.

Theorem 4.1.1. Suppose M := (1, iI, 12, ... ) is an infinite Markov system
on [a, b] with each Ii E C 1 [a, b]. Then span M is dense in C[a, b] if and
only if

lim M n = 0,
n--->oo

where M n is the mesh of the associated Chebyshev polynomials.

Proof. The only if part of this result is the easier part and we offer the
following proof. Suppose span M is dense in C[a, b], while lim infM n > O.

n--->oo
Then there exists an interval [c, d] C [a, b] that contains no zero of Tn for
infinitely many n, say, for nl < n2 < .... Consider the piecewise linear
function F defined as follows. Let c < Yl < Y2 < Y3 < Y4 < d, and let

{

0 , x E {a, c, d, b}
F(x) := 2, x E {Yl, Y3}

-2, x E {Y2, Y4}

and be linear elsewhere. Since span M is dense in C[a, b], there exists a
kEN and apE span{l, iI,···, fnk} with

(4.1.2) lip - FII[a,bj < 1.
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Now p - Tnk has at least nk - 2 zeros on [a, c] U [d, b] because Tnk has at
least nk extrema on these intervals. The four extrema of F on (c, d) together
with (4.1.2) guarantee at least three more zeros ofp-Tnk on (c,d). Hence
p - Tnk has at least nk + 1 zeros and vanishes identically. This contradicts
(4.1.2).

The if part of the theorem follows from the next theorem and E.8 a] of
Section 3.2. This exercise shows that UL f~, ... ) is a weak Markov system
on [a, b]. 0

The phenomenon formulated in Theorem 4.1.1 is quite general, and we
prove a rather more general result than is needed for the preceding theorem.
The modulus of continuity wf of a function f : [a, b] f--+ IR is defined by

(4.1.3) Wf(8):= sup If(x) - f(y)l·
Ix-yl<b
x,yE[a,b]

Theorem 4.1.2. Suppose that

is a Chebyshev space on [a, b] with associated Chebyshev polynomial Tn.
Suppose each gi E C1 [a, b] and (gi, ... ,g~) is a weak Chebyshev system
on [a, b] (weak Chebyshev systems are defined in E.8 of Section 3.2). Let
H~:= span{gi, ... ,g~}. If f E C[a,b], then there exists an hn E H n such
that

where

Here C is a constant depending only on a and b.

Proof. Suppose a < c < d < band Sn E Hn is the best uniform approxi­
mation from Hn to F on [a, c] U [d, b], where

( {
0, x E [a, c]

F x):=
1, x E [d, b].

We claim the following:

(4.1.4)

and

(4.1.5)

Sn is monotone on [c, d]

58n
IISn - FII[a,cjU!d,bJ :::; (d - c) .
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Let 7] := n + 1 be the dimension of the Chebyshev space H n· Since Sn
is a best approximation to F on [a, c] U [d, b], there exist 7] + 1 points in this
set where the maximum error

(4.1.6) En := IIF - Snll[a,c]U[d,bj

occurs with alternating sign (see Theorem 3.1.6). Suppose m + 1 of these
points Yo < ... < Ym lie in [a, e], and 7] - m of these points Ym+l < ... < YTf
lie in [d, b]. Then S~ has at least m - 1 sign changes in (a, c) (one at
each alternation point in [a, e] except possibly at the endpoints a and c).
Likewise, S~ has at least 7] - m - 2 sign changes in (d, b). So S~ has at
least 7] - 3 sign changes in (a, c) U (d, b). Note that this count excludes Ym
and Ym+l' Thus S~ has at most one more sign change in (a,b) unless S~
vanishes identically (which is not possible for 7] 2: 2). Now suppose S~ has
a sign change on (e, d). Then, since there is at most one sign change of S~
in (e, d), it cannot be the case that both Ym = e and Ym+l = d and S~

changes sign at neither e nor d, otherwise

sign(Sn(e) - f(e)) = sign(Sn(d) - f(d))

as a consideration of the two cases shows. But if Ym i= e or Ym+! i= d or
S~ changes sign at either e or d, then we have accounted for all the sign
changes of S~ by accounting for the (possible) one additional sign change
(either S~ vanishes with sign change at e or d or one of Ym or Ym+! is an
interior alternation point of Sn where S~ vanishes). Thus S~ has no zeros
with sign change in (e, d) and (4.1.4) is proved.

To prove (4.1.5) we proceed as follows. With En defined by (4.1.6),

has at least m zeros on [a, c] and

has at least 7] - m - 1 zeros on [d, b] (counting each internal zero without
sign change twice). Thus D~ has at least 7] - 3 sign changes on [a, e] U [d, b].
Suppose Tn has at least four alternation points on an interval [-y,o] C (e, d),
and suppose that

Sn(O) - SnCY) < 2En ·

Then, because of (4.1.4) and the oscillation of Tn on [-Y,o],

has at least three zeros on [-Y, 0] and hence
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D' = (D Sn('y) + Sn(6))'
n n + 2

has at least two sign changes on [--y,6J. This, however, gives that D~ E H~

has a total of at least ry - 1 = n sign changes, which is impossible. In
particular,

Sn(6) - Sn('y) 2: 2En

on any interval [--y,6J c (e, d) where Tn has at least 4 alternation points.
Thus,

(d - e)
Sn(d) - Sn(e) 2:~ 2En ·

However, since Sn is a best approximation to F on [a, eJ U [d, b],

Sn(d) - Sn(e) :s 1 + 2En

and we can deduce (4.1.5) on comparing these last two inequalities and
noting that En :S ~.

The proof is now a routine argument, which for simplicity, is presented
on the interval [a, bJ := [0,1]. Let

m-l

V(x) := f(O) + L (J (i;;n - f (-/n)) Sn,i(X) ,
i=O

x E [0, i;;n

x E [i;;/, 1]

where, for i = 0,1, ... ,m -1, Sn,i E H n is the best uniform approximation
to

{
a,

Fn,i(X):= 1,

on [0, -/n] U [i;;,l, 1]. Let
m-l

J(x) := f(O) + L (J (i;;,l) - f (-/n)) Fn,i(X).
i=O

Then repeated applications of (4.1.5) with the intervals [a,e] := [0, -/n] and
[d, b] := [i;;,l, 1] yield for every x E [0,1] that

lV(x) - f(x)1 :S lV(x) -j(x)1 + lJ(x) - f(x)1
m-l

:S L (J C;;,I) - f (~d) (Sn,i(X) - Fn,i(X)) + wf (~)
i=O

:S (m - l)(56n m) wf (~) + 2wf (~) + wf (~) .

Hence, with m:= l6;:;:1/2J,

IIV - fll[o,I):S CWf(y'8;,)·

o

An immediate corollary to Theorem 4.1.1 is the Weierstrass theorem.
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Corollary 4.1.3. The polynomials are dense in C[-I, 1].

Proof. M = (1, X, x 2 , ... ) is an infinite Markov system of C1 functions on
[-1,1]. The associated Chebyshev polynomials are just the usual Chebyshev
polynomials Tn (see Section 2.1) and

is obvious from E.l of Section 2.1.

n = 1,2, ...

D

Also from the last part of the proof of Theorem 4.1.2 we have the
following corollary.

Corollary 4.1.4. Suppose M := (1, fr, 12, ... ) is an infinite Markov system
on [a, b] with each fi E C 1 [a, b]. Then for each n E N, there exists a

Pn E span{l, fr, 12,··· ,fn}

such that
IIPn - fll[a,bJ ::; C(1 + m2Mn)WI (~)

for every mEN, where C is a constant depending only on a and b.

Comments, Exercises, and Examples.

The Weierstrass approximation theorem of 1885 (see Weierstrass [15]) is one
of the very basic theorems of approximation theory. It, of course, requires
that clear distinctions be made about the nature of convergence (pointwise
versus uniform) and the region of convergence (intervals versus complex
domains). Weierstrass, the preeminent analyst of the last third of the nine­
teenth century, was principal in insisting that such distinctions be clearly
made. His famous and profoundly surprising example of a nowhere differ­
entiable continuous function dates from 1872. A number of proofs of his
approximation theorem and its many generalizations are explored in the
exercises. Theorem 4.1.1 was proved by Borwein [90]. The only if part of
this theorem can be found in Kroo and Peherstorfer [92].

Applications of the methods and results of this section can be found in
Borwein [91b], Borwein and Saff [92], and Lorentz, Golitschek, and Makovoz
[92]. The last two papers give an application to weighted incomplete poly­
nomials, where the zeros of the Chebyshev polynomials are often dense in
a subinterval (see also Mhaskar and Saff [85]).

E.! The Weierstrass Approximation Theorem. Every real-valued contin­
uous function on a finite closed interval [a, b] can be uniformly approximated
by polynomials with real coefficients.

Every complex-valued continuous function on a finite closed interval
[a, b] can be uniformly approximated by polynomials with complex coeffi­
cients.
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More precisely, in the real case, let

En := EnU : [a, b]):= inf Ilf - pll[a,bJ .
pEPn

The Weierstrass approximation theorem asserts that

lim EnU : [a, b]) = 0,n--->oo f E C[a,b].

The following steps outline an elementary proof basically due to
Lebesgue [1898]. Parts a] to d] deal with the real version (first statement) of
the theorem. The complex version (second statement) of the theorem can
easily be reduced to the real version; see part e].

a] Every continuous function on [a, b] can be uniformly approximated by
piecewise linear functions.

Hint: Consider the piecewise linear function that interpolates f at n equally
spaced points and use the uniform continuity of f. 0

b] It suffices to prove that Ixl can be uniformly approximated by polyno­
mials on [-1,1].

Hint: Use part a]. 0

c] Approximation to Ixl. Show that

lin! En(lxl : [-1,1]) = O.n--->oo

Hint: The Taylor series expansion of f(z) := vr=z yields
~ 1 1 2 1·3 3y1-z=1--z+--z ----z + ...

2 2·4 2·4·6

and the convergence is uniform for 0 :::; z :::; 1. (By Abel's theorem, a power
series converges uniformly on every closed subinterval of the set of points
in IR where it converges; see, for example, Stromberg [81]). Thus,

Ixj = H = J1 - (1 - x 2 )

1 2 1 2 2 1 . 3 2)3= 1- -(1- x ) + -(1- x) - --(1- x + ...
2 2·4 2·4·6

and the convergence is uniform for -1 :::; x :::; 1.

d] An Alternative to c]. Let

o

Qo(x) := 1

Show that

and

n=O,l, ... , xE [-1,1]

and Qn(x) --> 1 - Ixl uniformly on [-1,1] as n --> 00.
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Hint: First show the pointwise convergence and then use Dini's theorem
(see, for example, Royden [88]). 0

e] Complex Version of the Weierstrass Approximation Theorem. Every
complex-valued continuous function on a finite closed interval [a, b] can be
uniformly approximated by polynomials with complex coefficients.

It can be shown that

c
En(lxl : [-1,1]) r-v -,

n

where 0.280168 < c < 0.280174. Bernstein [13] established the above
asymptotic with weaker bounds on c, namely, 0.278 < C < 0.286, and
observed that ~1T"-1/2 = 0.282 is roughly the average of these bounds. The
stronger bounds on c, due to Varga and Carpenter, show that C i- ~1T"-1/2,

but it is open whether or not c is some familiar constant; see Varga [90].

E.2 The Stone-Weierstrass Theorem. If X is a compact Hausdorff space,
then a subalgebra A of C(X), which contains f = 1 and separates points,
is dense in C(X).

A subalgebra A of C(X) is a vector space of functions that is closed
under multiplication (here, addition and multiplication are pointwise). Sep­
arating points means that for any two distinct x, y EX, there exists an
f E A such that f(x) i- f(y)·

a] Observe that the set P := U~=oPn of all polynomials with real coeffi­
cients is a subalgebra of C[a, b] that separates points, and hence the Stone­
Weierstrass theorem implies the Weierstrass approximation theorem.

b] Observe that the real polynomials in x 2 form a subalgebra of C[-I, 1]
that does not separate points.

We outline a standard proof of the Stone-Weierstrass theorem. Let A
denote the closure of a subalgebra A C C(X) in the uniform norm.

c] If f E A, then If I E A.

Proof. If f E A, then p(J) E A for any polynomial p. Now choose Pn such
that Pn(x) --> Ixl on the interval [-llfll, Ilfll]. 0

d] Let

(J V g)(x) := max{f(x),g(x)} and (J 1\ g)(x) := min{f(x),g(x)}.

Show that if f, 9 E A, then so are f V 9 and f 1\ g.
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Hint:

1
f V g = "2(1 + g + If - gl), and

1
f 1\ g = "2(1 + g - If - gl) .

o
e] If p, q E X are distinct and A, p, E lR, then there exists f E A with

f(p) = A and f(q)=p,·

Hint: Let g E A be such that g(p) =1= g(q) and consider

f.= A-p, .g+p,g(p)-Ag(q).l
. g(p) - g(q) g(p) - g(q) .

o

f] Completion of Proof. Let f E C(X). For each p, q E X, let fpq be an
element of .4 with fpq(p) = f(p) and fpq(q) = f(q). Fix E > 0 and define
open sets

Vpq := {x EX: fpq(x) < f(x) + t}.
Now {Vpq : p E X} is an open cover of the compact Hausdorff space X, so
for each q E X we can pick a finite subcover

of X. We let
fq := min{fPlq, f p2q,··· ,fPnq}·

Observe that fq E A by part e]' and

gJ Continued. Let

fq(x) < f(x) + E, x EX.

Vq := {x EX: fq(x) > f(x) - E},

where fq is defined in part f] for every q E X. Then {Vq : q E X} is an open
cover of the compact Hausdorff space X, so we can extract a finite subcover

of X. Now let
g := max{fq" f q2'··· , fqm}·

Note that g E A by part e]' and

f(x) = E < g(x) < f(x) + E,

which finishes the proof.

x EX,

o
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The next exercise presents pretty theorems due to Bohman [52] and
Korovkin [53J on the convergence of sequences of positive linear operators.
The exercise after that gives some applications that include different proofs
of the Weierstrass theorem via convergence of special polynomials, such as
the Bernstein polynomials.

An operator L on C(X) is called monotone if

f ::; 9 implies L(J)::; L(g)

(here f ::; 9 means f(x) ::; g(x) for all x EX).

E.3 Monotone Operator Theorems.

Korovkin's First Theorem. Let (Ln)~=l be a sequence of monotone linear
operators on C(K) (the set of continuous, 271" periodic, real-valued functions
on lR). Let

fo(x):=l, h(x):=sinx, h(x):=cosx.

Then
lim IILn (J) - filK = 0
n--oo

for all f E C(K) if and only if

i=0,1,2.

Korovkin's Second Theorem. Let (Ln)~=l be a sequence of monotone lin­
ear operators on C[a, b]. Let

fo(x):=l, h(x):=x, h(x):=x2
.

Then
n~moo IILn(J) - fll[a,bJ = 0

for all f E C[a, b] if and only if

i = 0,1,2.

Korovkin's theorem in a more general setting can be found in Lorentz
[86a].

aJ Proof of Korovkin's Second Theorem. The only if part of the theorem
is trivial. For the ifpart, observe that the pointwise convergence of (Ln)~=l
can be easily proved since, for any preassigned t > 0 at any fixed xo, one can
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find parabolas y = pdx) := alx2+blX+Cl and y = P2(X) := a2x2+b2X+C2
such that

with

Pl(X) < f(x) < P2(X) , x E [a,b]

and If(xo) - P2(xo)1 < E.

Now use the continuity of f and the compactness of [a, b] to make the
above argument uniform on the interval [a, b]. 0

b] Proof of Korovkin's First Theorem.

Hint: Modify the proof of Korovkin's second theorem. 0

E.4 Bernstein Polynomials. The nth Bernstein polynomial for a function
f E C[O, 1] is defined by

n = 1,2, ....

a] Let
fo(x):= 1, h(x) :=x, h(x) :=x2 .

Show that

for every n = 0, 1,2, ....

b] Use Korovkin's second theorem and part a] to show that

lim IIBn(f) - fll[o,IJ = °
n--->oo

for every f E C[O, 1].

For more on Bernstein polynomials, see Lorentz [86b].

E.5 The Fourier and Fejer Operators. For f E C(K), let

1 f7r (sin (n + 1) t)Sn(f)(x) := -2 f(t + x) . 1
2 dt,

1r -7r 2sm'it

and

1 f7r (Sin Int)2Fn(f)(x) := -2- f(t + x) -._21- dt,
1rn -7r sm'it

n = 0, 1, ...

n = 0, 1, ....

The operator Sn is called the Fourier operator, while the operator Fn is
called the Fejer operator.



4.1 Variations on the Weierstrass Theorem 165

a] Show that Sn(J) is the nth partial sum of the Fourier series of f, that
is,

n

Sn(J)(x) = ~o + L(akcoskx+bksinkx) ,
k=1

where

111r

ak = - f(t)cosktdt
7r -1r

and

111r

bk =- f(t)sinktdt.
7r -1r

Hint:
sin (n + ~) t 1 ~
--'----,1~- = - + L...J cos kt
2 sin 2t 2 k=1

and 111r (1 n )Sn(J)(x) = -; -1r f(t+x) "2 + (;COSkt dt.

o

b] Fn(J) is the Cesaro mean of So, SI,'" Sn-l, that is,

Fn(J) = So(J) + SI(J) + ... + Sn-l(J) .
n

Hint:

~ sin (k + ~) t = (Sin ~nt)2
L...J . It . It
k=O sm 2 sm 2

o

c] Fejer's Theorem. For every f E C(K), Fn(J) ........ f uniformly on R

Hint: Each Fn is obviously a monotone operator on C(K), so it suffices to
prove the uniform convergence of (Fn );:;"=1 on JR only for fi, i = 0,1,2, as
defined in Korovkin's first theorem. However, this is obvious, since

for every n = 1,2, .... o

d] The set T := U;:;"=oTn of all real trigonometric polynomials is dense in
C(K), the set of all continuous, 27r periodic, real-valued functions. The set
T e := u;:;"=oT~ of all complex trigonometric polynomials is dense in C(K),
the set of all continuous, 27r periodic, complex-valued functions.
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Hint: This follows from Fejer's theorem. This is also a corollary of the Stone­
Weierstrass theorem (see E.2). 0

The remaining parts of the exercise follow Lorentz [86a]. Suppose that
L n : C(K) f--+ Tn is a linear operator. We say that L n preserves the elements
of Tn if Ln(t) = t for every t E Tn. A canonical example for such a linear
operator Ln is the Fourier operator Sn. The purpose of the remaining part
of the exercise is to show that the Fourier operator Sn is extremal among
linear operators preserving the elements of Tn in the sense that it has the
smallest norm. This leads to the result of Faber, Nikolaev, and Lozinskii
(see part gJ) that for arbitrary linear operators L n preserving the elements
of Tn, n = 1,2, ... , the sequence (Ln(f))~=l cannot converge for every
f E C(K).

e] Berman's Generalization of a Formula of Faber and Marcinkiewicz.
Let fa denote the a-translation of a function f E C(K), that is, fa(x) :=

f(x + a). Suppose Ln is a linear operator preserving Tn. Show that

for every f E C(K) and x E K.

Hint: Let
1 j7rAn(x) := - Ln(ft)(x - t) dt.
21l' -7r

Show that An(f) = Sn(f) for every f E Tn. Prove that An(f) = Sn(f) for
every f of the form f (x) = cosmx or f (x) = sinmx, where m is an integer
greater than n. Conclude that An(f) = Sn(f) for every f E T := u~=o1;,.

Note that T is dense in C(K). This means that to complete the proof,
it is sufficient to show that An : C(K) ----7 Tn and Sn : C(K) ----7 1;, are
continuous. Observe that IIAnl1 ::; IILnl1 and IISnl1 ::; clogn for some c > 0;
~~~~. 0

f] The Norm of the Fourier Operator Sno Show that

IISnl1 := sup {IISn(f)IIK: f E C(K)} = ~ j7r Isin (~+ ~) t I dt.
IlfilK 21l' -7r 2sm~t

Use this to prove that there exist two constants Cl > 0 and C2 > 0 indepen­
dent of n such that

Cl log n ::; II Sn II ::; c2log n ,

Actually, it can be proved that

4IISnl1 = 2" logn + 0(1),
1l'

See, for example, Lorentz [86a].

n = 2,3, ....

n = 2,3, ....
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g] The Norm of Operators that Preserve Trigonometric Polynomials. Let
L n : C(K) --+ Tn be a linear operator preserving the elements of Tn. Show
that

where Cl > °is a constant independent of n.

Hint: Use parts e] and fl. 0

E.6 Polynomials in x An • Given n E 1'1 and .An E JR., let

Suppose 8 E (0,1) and .An ;:::: 1 for all n E 1'1. Then U~=lPn(.An ) is dense in
C[8,1] if and only if

logn 1 1
lim sup -- > -log -.

n->oo .An - 2 8

To prove the above statement, proceed as follows (see also Borwein
[91b]). Denote the Chebyshev polynomial for Pn(.An ) on [8,1] by Tn,b' De­
note the zeros of Tn,b in [8, 1] by

X(b) < X(b) < ... < X(b)
l,n 2,n n,n

Let X~b~ := 8 and x;:+) 1 n := 1. Let, ,

a] Show that

xE[8,1],

where Tn is the Chebyshev polynomial of degree n as defined by (2.1.1).

b] Let 8:= liminfxio~. Show that if
n----t(X) J

1· . f ( ((0) (0)))Imlll max Xi n - X i _ 1 n
n-+ex> 2$tS;n+l' ,

then lim infM n (8) = 0.
n->oo

= 0,

Hint: Count the zeros of Tn,b - Tn,o E Pn(.An ) in [8,1]. o
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c) Let 8 := liminf x~o~, as in part bJ. Show that
n~oo '

1 1 logn
-log - = limsup--
2 8 n->oo An

whenever the right-hand side is finite.

Hint: Use the explicit formula for Tn,o given in part a].

d) Let 8 be defined by

1 1. logn
- log - = hm sup -- .
2 8 n->oo An

Suppose 8 > O. Show that

lim inf(x(O) - x(O)) = 0 .
n-+oo 2,n 1,n

o

Hint: Use parts a] and cJ. 0

eJ Let 8:= liminfx~o~, as in parts bJ and c]. Suppose 8 > O. Show that
n-+oo '

(0) _ (0) < ~ ( (0) _ (0) )
xi,n x i- 1,n - 8 x 2 ,n x 1,n

for every sufficiently large n E N and for every i = 2,3, ... ,n + 1.
Hint: Count the zeros of

Tn,o(x) - Tn,O(D:i,n X ) E Pn(>'n) ,

where
(0)

X i _ 1 n 2
D:i,n := (0) < 7J

x 1,n

for every sufficiently large n E N and for every i = 2, 3, ... ,n + 1. 0

fJ Let 8 be defined by

1 1. logn
- log - = hm sup -- .
2 8 n An

Suppose 8 > O. Show that U~=lPn(An) is dense in C[8, 1].

Hint: By parts a] to e], liminfM n (8) = O. Now apply Theorem 4.1.2. 0
n->oo

g) Let 0 :::; y < 8, where 8 is as in part fl. Show that U~=lPn(An) is not
dense in Cry, 1J.

Hint: Show that there exists a constant c depending only on 8 (and not on
n or y) such that

Ip(y) I :::; cllpll [8,lJ
for every p E U~=lPn(>'n) and y E [0,8]. Now use E.4 c] of Section 3.3 and
part a]. 0

E.1O of Section 6.2 extends part g) of the above exercise. Namely, if
o :::; 8 < 8, where 8 is the same as in part fJ and A c [0, 1) is a set of
Lebesgue measure at least 1 -8, then U~=lPn(An) is not dense in C(A).
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E.7 The Weierstrass Theorem in L p. Let [a, b] be a finite interval and
p E (0, (0). Show that both C[a, b] n Lp[a, b] and the set P := U~=oPn of all
real algebraic polynomials are dense in Lp[a, b].

Hint: The proof of the first statement is a routine measure theoretic argu­
ment; see Rudin [87]. The second statement follows from the first and the
Weierstrass approximation theorem; see E.1. 0

E.8 Density of Polynomials with Integer Coefficients.

a] Suppose f E C[O, 1] and f(O) and f(l) are integers. Show that for every
E > 0 there is a polynomial p with integer coefficients such that

Ilf - pll[o,l] < E.

Outline. By E.4, there is an integer n > 2/E so that

E
Ilf - Bn(f)II[o,l] < 2.

Let

Show that if x E [0,1], then

n-1

0::::; Bn(f)(x) - Bn(f)(x) ::::; L xk(l - x)n-k
k=l

n ( )1 n k n-k 1 E::::; - L x (1- x) = - < -.
n k n 2k=O

Note that Bn(f) is a polynomial with integer coefficients, and

Ilf - Bn(f) 11[0,1] ::::; Ilf - Bn(f)II[o,l] + IIBn(f) - B(f)II[o,lJ
E E
<-+-=E.
2 2

o
bl Suppose the interval [a, b] does not contain an integer. Show that poly­
nomials with integer coefficients form a dense set in C[a, b].

Proof 1. This is an immediate consequence of part a]. 0

Proof 2. Assume, without loss of generality, that [a, b] C (0,1). By the
Weierstrass approximation theorem, it is sufficient to prove that for every
E > 0 there is a polynomial p with integer coefficients such that
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II~ - pllla,b] < E,

since then all real numbers, and hence all p E Pn, can be approximated by
polynomials with integer coefficients.

The existence of such a polynomial p follows from the identity

1 I-x ~
"2 = 1-(1-2(I-x)) = LJ(I-x)(1-2(I-x))k,

k=O

where the infinite sum converges uniformly on [a, b] C (0,1). o

E.9 Weierstrass Theorem on Arcs. Let aD denote the unit circle of the
complex plane.

a] Show that the set pc := u~=oP~ of all polynomials with complex coef­
ficients is not dense in C(aD).

Hint: Use the orthonormality of the system ((27T)-1/2einO)~=_ooon [-7T,7T]
to show that if k is a positive integer and p E pc, then

27Tllz-k - p(z)llc(8D) 2:: lle-iko - p(eiO )IIL2 [_1r,1r] 2:: 27T.

So none of the functions Z-1, z-2, ... is in the uniform closure of pc on
aD. 0

b] Let A c aD be an arc of length less than 27T. Then the set pc of all
polynomials with complex coefficients is dense in C(A).

This is a special case of Mergelyan's theorem (see, for example, Rudin [87]).

Proof. Without loss of generality, we may assume that A is symmetric with
respect to the real line. By E.5 d], it is sufficient to prove that j(z) := Z-1
is in the uniform closure pc of pc on aD (this already implies that each
zk, k E Z, is in pc). By E.11 j] of Section 2.1, cap(A) < 1. By E.11 g] of
Section 2.1, fL(A) = cap(A), where fL(A) denotes the Chebyshev constant
of A. Hence

o:::; fL(A) < a < 1
with some a. Recalling the definition of fL(A), we can deduce that there are
monic polynomials Pn E p~ such that

n = 1,2, ....

For n = 1,2, ... , let

qn(z) := zn-1 pn (1/z) = z-1 + rn-1(z) ,

where rn -1 E P~-1' Since A is symmetric with respect to the real line,

Hence j(z) = Z-1 is in pc, which finishes the proof. o
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4.2 Muntz's Theorem

A very attractive variant of the Weierstrass theorem characterizes exactly
when the linear span of a system of monomials

M '- (AQ Al ).- x ,x , ...

is dense in C[O, 1] or £2[0,1].

Theorem 4.2.1 (Full Miintz Theorem in C[O, 1]). Suppose (Ai)~l is a se­
quence of distinct positive numbers. Then

{I Al A2 }span ,x ,x , ...

is dense in C[O, 1] if and only if

Note that when infi Ai > 0,

OC AiL A2 + 1 = 00 if and only if
i=l 1

00 1
L~=oo.
i=l 1

Muntz studied only this case, and his theorem is usually given in terms of
the second condition.

When Ai 2: 1 for each i = 1,2, ... , the above theorem follows by
a simple trick from the £2 version of Muntz's theorem. The proof of the
general case is left as a guided exercise. The difficult case to deal with is
the one where °and 00 are both cluster points of the sequence (Ai)~o; see
E.18.

Theorem 4.2.2 (Full Muntz Theorem in £2[0,1]). Suppose (Ai)~o is a
sequence of distinct real numbers greater than -1/2. Then

{ AQ Al }span x ,x , ...

is dense in £2 [0, 1] if and only if

The proof of the following full £1 version of Muntz's theorem is pre­
sented as E.19.
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Theorem 4.2.3 (Full Muntz Theorem in LIlO,l]). Suppose (,\'i)~O is a
sequence of distinct real numbers greater than -1. Then

{ AD A, }span x ,x , ...

is dense in LI[O, 1] if and only if

= 00.

Now we formulate a general Muntz-type theorem in Lp[O, 1]' that contains
the above C[O,l], L 2 [0,1], and L I [O,l] results as special cases. The proof
of this theorem is outlined in E.20.

Theorem 4.2.4 (Full Muntz Theorem in Lp[O, 1]). Let p E [1,00). Suppose
(Ad~o is a sequence of distinct real numbers greater than -lip. Then

{ AD A, }span x ,x , ...

is dense in Lp[O, 1] if and only if

00 ,\.+!
L '~ =00.
i=O (Ai + ~) + 1

The full version of Muntz's theorem for arbitrary distinct real exponents
on an interval [a, b], °< a < b, is given in E.7 and E.g.

Proof of Theorem 4.2.1 assuming Theorem 4.2.2 and each Ai :::: 1. We need
the following two inequalities:

(4.2.1) Ix m
- ~aixAil = 11x (mtm - I

- ~aiAitAi-l) dtl

::; rIlmtm-1 _taiAitAi-11 dt
Jo ,=0

~ ({ Imtm
-, - ~ a,A,t" -'I' di ) 'I'

for every x E [0,1] and m = 1,2, ... , and

(4.2.2)
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for every m = 0,1,2, .... The assumption that Ai ;::: 1 for each i implies
that

and

f ~ = 00 if and only if
A + 1

i=O '

f \2
Ai
= 00 if and only if

i=O Ai + 1

~ 2(Ai - 1) + 1
£:0" (2(Ai - 1) + 1)2 + 1 = 00

00 2Ai + 1
~ (2Ai + 1)2 + 1 = 00.

If I:~o Ad(A; + 1) = 00, then (4.2.1), together with Theorem 4.2.2
and the Weierstrass approximation theorem (see E.l of Section 4.1), shows
that

{I A1 A2 }span ,x ,x , ...

is dense in C[O, 1].

If the above span is dense in C[O,I], then (4.2.2), together with E.7
of Section 4.1, shows that it is also dense in L 2 [0, 1]. Hence Theorem 4.2.2
implies I:~1 Ai/(A; + 1) = 00. 0

Proof of Theorem 4.2.2. We consider the approximation to x m by elements
of span{xAO , •.. ,XAn- 1

} in L2 [0, 1], and we assume m > -~ and m =I- Ai
for any i. In the notation of Section 3.4 we define

and study L~, the nth orthonormal Muntz-Legendre polynomial associated
with A. By (3.4.8) and (3.4.6) we have (with An := m)

n-l

L~(x) = anxm + L aixA; ,
i=O

where

It follows from IIL~IIL2[O,I] = 1 and orthogonality that L~/an is the error
term in the best L 2 [0, 1] approximation to x m from span{xAO , .•• , X An- 1 }

(why?). Therefore

II
n-l II n-l I I. mbA. 11m - Ai

~g X - L
o

i
X
' = lanl = )1 + 2m ITo m + Ai + 1 .

t= L2[O,I] ,=
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So, for a nonnegative integer m different from any of the exponents Ai,

(4.2.3)

(where span denotes the L 2 [0, 1] closure of the span) if and only if

n-11 I1· m - Ai 0
1m =n->oo}] m + Ai + 1 .

That is, (4.2.3) holds if and only if

n-l I Ir 1 2m + 1
n':'~}] - m + Ai + 1

'\i>m

n-l

IT
i=Q

-1/2<,\i:'Om

'

1 _ 2Ai + 1 I= 0
m + Ai + 1 .

Hence (4.2.3) holds if and only if either

00 1
""' - CXJ oriSi' 2Ai + 1

'\i>m

which is the case if and only if

00

L (2A i + 1) = CXJ ,

i=O
-1/2<'\i:'Om

and the proof can be finished by the Weierstrass approximation theorem
(see E.l of Section 4.1). 0

Comments, Exercises, and Examples.

Theorem 4.2.1 (in the case when inf{Ai : i E N} > 0) and Theorem 4.2.2
were proved independently by Miintz [14] and Szasz [16]. Szasz [16] proved
the full version of Theorem 4.2.2. Theorem 4.2.1 is to be found in Borwein
and Erdelyi [to appear 5]. Much of Theorem 4.2.4 is stated in Schwartz
[59] without proof and may be deduced by his methods. Indeed, Schwartz's
method appears to give Theorem 4.2.4 for p E [1,2]. Johnson (private com­
munication) and Operstein [to appear] show how to derive the full Theorem
4.2.4 from Theorem 4.2.1 as does E.20; see also E.7 of the next section.

Less complete versions of the results presented in this section are often
called the Miintz-Szasz Theorems. A 1912 version due to Bernstein can be
found in his collected works.

A variant on our proof of Miintz's theorem is presented in E.2. A
distinct proof based on possible zero sets of analytic functions may be
found in Feinerman and Newman [76]; see also E.I0, where this method
is explored for denseness questions for {cos AkB}.
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Extensions of Muntz's theorem abound. For example, generalizations
to complex exponents are considered in Luxemburg and Korevaar [71], to
angular regions in Anderson [72] and with an exponential weight on [0,(0)
in Fuchs [46]. It is a nontrivial problem to establish a Muntz-type theorem
on an interval [a, b], a > 0, in which case the elements of the sequence
A = (Ai)~o are allowed to be arbitrary distinct real numbers. This is the
content of E.7; it is due to Clarkson and Erdos [43] (in the case when
each Ai is a nonnegative integer) and Schwartz [59] (in the general case).
It is shown in Section 6.2 that if A = (Ai)~o is an increasing sequence
of nonnegative real numbers, then the interval [0,1] in Muntz's theorem
(Theorem 4.2.1) can be replaced by an arbitrary compact set A C [0,(0)
of positive Lebesgue measure.

The exercises also explore in detail the closure of Muntz spaces in
the nondense cases. This study was initiated by Clarkson and Erdos [43],
who treated the case when the exponents are nonnegative integers. The
considerably harder general case is due to Schwartz [59].

Denseness questions about quotients and products of Muntz polyno­
mials from a given Muntz space are discussed in Sections 4.4 and 6.2, re­
spectively.

Some of the literature on the multivariate versions of ;1untz's theo­
rem can be found in Ogawa and Kitahara [87], Bloom [90], and Kroo and
Szabados [94].

E.! Another Proof of Some Cases of Muntz's Theorem.

a] Golitsckek's Proof of Muntz's Theorem when 2::11/Ai = 00. Sup­
pose that (Ai)~l is a sequence of distinct, positive real numbers satisfying
2::1 1/Ai = 00. Golitschek [83] gives the following simple argument to
show that span{l,xA1 ,xA2 , ... } is dense in e[O, 1].

Proof. Assume that m =I- Ak, k = 0,1, ... , and define the functions Qn
inductively: Qo(x) := x m and

Qn(x) := (An - m)xAn 11

Qn_1(t)C 1- An dt, n = 1,2, ....

Show, by induction on n, that each Qn is of the form
n

Qn(x) = x m
- L an,ixAi ,
i=O

an,i E lR.

Show also that

IIQollro,lJ = 1 and IIQnllro,l] ::; 11 - : ,. IIQn-111[0,lJ '

so

IIQnll[o,l] ::; }]11 - : 1-+ 0 as n -+ 00.
D
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hI Another Proof of Miintz's Theorem when Ai --> C > O. Suppose that
(Ai)~l is a sequence of distinct positive real numbers that converges to
C > O. Show, without using the arguments given in the proof of Muntz's
theorem, that span{1,x),',x),2, ... } is dense in C[a,b], a > O.

Hint: Let k be a nonnegative integer. Use divided differences to approxi­
mate XC logk x uniformly on [a, b]. Finish the proof by using the Weierstrass
approximation theorem (see E.1 of Section 4.1). 0

E.2 Another Proof of Muntz's Theorem in L2 [0, 1].

al Gram's Lemma. Let (V, (.,.)) be an inner product space, and let g E V.
Suppose {fI, ... ,fn} is a basis for an n-dimensional subspace P of V. Then
the distance dn from g to P is given by

( )

1/2
._. __ 1/2. _ C(fI,12,···,fn,g)

dn .- mf{ (g p, g p) . pEP} - C(fI, 12, ... , fn) ,

where C is the Gram determinant

Proof. As in Theorem 2.2.3, the best approximation to g from P is given
by

n

1* = Lci!i,
i=l

where the Ci are uniquely determined by the orthogonality conditions

(1*-g,h)=O, k=1,2, ... ,n.

Since
d;, = (g - 1*, g - 1*) ,

we are led to a system of n + 1 equations
n

and

L Ci(Ji, fk) = (g, h),
i=l

n

k = 1,2, ... , n

L Ci(Ji, g) + d;, = (g, g) .
i=l

Solving this system by using Cramer's rule, we get the desired result. 0
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b] As in E.3 of Section 3.2,

1
cq +13,

1
a n +131

1
0'1 +l3n

1
an +l3n

TI (CYj - CYi) ((3j - (3i)
l~i<j~m

for arbitrary complex numbers CYi and (3j with CYi + (3j i- 0.

c] Let 'Y, AO,'" ,An be distinct real numbers greater than -1/2. Then the
L 2 [0, 1] distance dn from x'Y to span{x.\o, ... ,x.\n} is given by

1 IT I 'Y - Ai I
d

n = y'2'Y + 1 i=O 'Y + Ai + 1 .

Hint: In L 2 [0, 1]'

a,b E (-1/2,00).(xa xb) = r1
xaxbdx = __1__

'Jo a + b + 1 '

Now apply parts a] and b].

d] Complete the proof of Muntz's theorem in L2 [0, 1].

D

E.3 More on Muntz's Theorem in the Nondense Case. We assume
throughout this exercise that (Ai)~O is a sequence of nonnegative real num­
bers satisfying

ClO 1
"'-<00L.. A
i=l 1

and the gap condition

inf{Ai - Ai-I: i EN} > °
holds. Some of the results of this exercise hold even if the above gap con­
dition is removed (see the later exercises).

a] Show that

II
ClO

I Ai + Am I ( )°< A' _ A = exp 'YmAm ,
i=O ' m
i#m

where 'Ym -7 °as m -7 00.

Hint: First show that the above infinite product exists. Write the above
product as

ClO

II
i=O

.\iE(.\""2.\,,,)

and estimate the three factors above separately. D
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b] Deduce that if Ai i- Am for each i, then

II A II 1 n°O I(Ai+~)-(Arn+~)1
x '" - p(x) L2 [0,1] 2': V2Arn + 1 i=O (Ai +~) + (Am +~)

= exp( -l'm(Am ))

for every p E span{x AO , ... , x An }, where I'm ----+ °as m ----+ 00.

c] Show that for every f > °there is a constant c€ depending only on f

and (Ai)~o (but not on the number of terms in p) such that

lail :s; c€(1 + f)Ai IlpIIL2 [0,1]

for every p E span{x AO , XA1 , ... } of the form p(x) = L~=o aixAi .

Hint: Use part b]. 0

d] Bounded Bernstein-Type Inequality. Let Ao = °and Al 2': 1. Show
that for every f E (0,1) there is a constant c€ depending only on f and
(Ai)~o (but not on the number of terms in p) such that

IIp'll[o,l-€] :s; c€llpIIL,fO,l]

and hence

IIp'll[o,l-€] :s; c€llpll[o,lJ
for every p E span{x AO , XA1 , ... }.

Hint: Use part c]. 0

The result of the next part is due to Clarkson and Erdos [43].

e] The Closure of a Nondense Muntz Space. Suppose 1 E C[0,1] and
there exist Pn E span{x AO , XA1 , ... } of the form

k n

Pn(x) = I>i,n XAi ,
i=O

ai,n E IR, n = 1,2, ...

such that J~~ IIPn - 111[0,1] = 0. Show that 1 is of the form
00

f(x) = L ai xAi ,
i=O

ai,n E IR , x E [0, 1) .

Show also that f can be extended analytically throughout the region

{z E C\(-00,0] : Izi < I}

and
lim ai,n = ai ,
n~oo

i=O,l, ....

If (Ai)~o is a sequence of distinct nonnegative integers, then f can be
extended analytically throughout the open unit disk.

Hint: Use part c]. 0
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If (Ai)~O is lacunary (that is, inf{>.i+dAi : i E N} > 1), then the
uniform closure of span{x AO , X AI , •.. } on [0,1] is exactly

{f E e[o, 1] : f(x) = ~aixAi, x E [0,1]} .

If (Ai)~O is not lacunary, then this fails, namely, there exists a function f
of the form

00

f(x) = I>i XAi ,
i=O

XE[0,1)

in the uniform closure of span{x AO , X AI , ... } on [0, 1] such that the right­
hand side does not converge at the endpoint 1; see Clarkson and Erdos
[43].

£1 Bounded Chebyshev-Type Inequality. Show that for every E E (0,1)
there exists a constant CEdepending only on £ and (Ai)~O (but not on the
number of terms in p) such that

Ilpll [0,1] :s; CEIlpll [l-E,l]

" E {AO A }lor every P span x , x ',... .

Outline. Using the scaling x ----> xliAI, without loss of generality we may
assume that Al = 1. Suppose there exists a sequence

m= 1,2, ...

such that
0< Am := IIPmll[o,l] ----> 00

while
IIPmll[1-E,l] = 1, m = 1,2, ....

Let qm := Pm/Am. Note that Ilqmll[o,l] = 1 for each m, and IIqmll[l-E,l] ----> 0
as m ----> 00. Then, by part d],

Ilq~ II [0,1-8] :s; C8
for every 15 E (0,1). Hence (qm);;;=o is a sequence of uniformly bounded
and equicontinuous functions on closed subintervals of [0,1), and by the
Arzela-Ascoli theorem (see, for example, Rudin [87]) we may extract a
uniformly convergent subsequence on [0, 1-E/2]. This subsequence, by part
e], converges uniformly to a function F analytic on (0,1 - £/2), but since
Ilqm II [l-E,l] ----> 0, F must be identically zero. This is a contradiction since
Ilqmll[o,l] = 1 and Ilqmll[o,l-E] = IIqmll[o,l] for every sufficiently large m. 0

g] Suppose (qm);;;=l c span{x.\O,xAI , ... } and Ilqmll[a,b] :s; 1 for each
m, where 0 :s; a < b. Show that there is a subsequence of (qm);;;=l that
converges uniformly on every closed subinterval of [0, b).

Hint: Use parts f] and d] and the Arzela-Ascoli theorem. 0
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E.4 Miintz's Theorem with Real Exponents on [a, b], a > O. Suppose
(Ai)~_oo is a set of distinct real numbers satisfying

00 1

.L fXJ <00
'l=-(X)

Ai#O

with Ai < 0 for i < 0 and Ai :::: 0 for i :::: O. Suppose that the gap condition

inf{>.i - Ai-I: i E Z} > 0

holds. Associated with

n

p(x) := L ai xAi ,
i=-n

n = 0, 1, ...

let
-1

p-(x) := L ai xAi

i=-n

and
n

p+(x) := LaixAi.
i=O

Let 0 < a < b.

a] Show that there exists a constant c depending only on a, b, and (Ai)~_oo
(but not on the number of terms in p) such that

and

for every p E span{xAi }~-oo'

Outline. It is sufficient to prove only the first inequality; the second inequal­
ity follows from the first by the substitution y = X-I. If the first inequality
fails to hold, then there exists a sequence (Pn);::O=1 C span{xAi}~_oo such
that

Ilp~ II [a,b] = 1 , n = 1,2, ... , and lim IIPn II [a,bl = 0 .
n->oo

Since P = p+ +P- , the above relations imply that

IIp;:;-ll[a,bJ :::; K < 00, n = 1,2, ....

By E.3 g] and E.3 e], there exists a subsequence (ni)~1 such that (P:'-J~1
converges uniformly on every closed subinterval of [0, b) to a function f
analytic on

Db := {z E C\(-00,0] : Izi < b}

of the form
00

fez) = L ai zAi ,
i=O
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while (P;:;J~l converges uniformly on every closed subinterval of (a, 00) to
a function 9 analytic on

E a := {z E <C \ (-00,0] : Izi > a}

of the form

-1

g(z) = L ai zA',
i=-oo

z E Ea , limg(x)=O.
x~oo

xEll'l

Rez < 10gb
Rez > log a

Now lim IIPn, II [a,b] = °and Pni = P;t, + P;:;i imply that 1+ 9 =°on (a, b).
t~oo

Show that

is a well-defined bounded entire function, and hence h = °on <C by Liou­
ville's theorem. From this, deduce that

1=0 on [0, b)

Hence, for every y E (a, b),

and g=Oon(a,oo).

lim IIp;t II [a,y] = °
't-H)Q t

and
lim IIp;t II[y b] = lim !Ipni - P;:; II[y b] = 0.
1,---+00 t J t--+oo t'

Therefore
lim IIp;t,lI[a,b] = 0,
t~oo

which contradicts IIp;t II [a,b} = 1, n = 1, 2, . . . . D

bl The Closure ofMiintz Polynomials. Let I E e[O, 1]' and suppose there
exist Muntz polynomials Pn E span{X Ai }~-oo of the form

k n

Pn(x) = L ai,nXAi ,
i=-k n

n = 1,2, ...

such that nl~ IIPn - 111[a,b] = 0. Show that I is of the form

where

00

I(x) = L ai xAi ,
i=-CXJ

x E (a, b),
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00

f+(x) := L aixAi ,
i=l

-1

f-(x):= L aixAi ,
i=-(X)

x E [0, b),

x E (a, 00), lim r(x) = 0,
x-oo

f can be extended analytically throughout the region
{z E C \ (-00, OJ : a < Izi < b},

and
lim ai n = ai,

n---+<x> '

Hint: Use part a] and E.3 eJ.

i E Z.

o

i = 0,1, ... ,m
i=m+1,m+2, ....

E.5 Removing the Gap Conditions. Assume throughout this exercise that
0::; Ao < Al < ... and I::l1/Ai < 00.
a) Bounded Chebyshev-Type Inequality. Show that for every E E (0,1)
there is a constant CE depending only on E and (Ai)~o (but not on the
number of terms in p) such that

Ilpll[o,lj ::; cEllpll[I-E,I]

for every p E span{x AO , XA1 , ... }. (This is the inequality of E.3 f] without
the gap condition inf{Ai - Ai-I: i E N} > 0.)
Hint: Assume, without loss of generality, that Ao = O. Observe that
lim Ai/i = 00. Choose mEN such that Ai > 2i whenever i > m. De-
1-00

fine r := (li)~1 by

.. _ {min{Ai, i} ,
/1'- l A.+i

2 1 ,

Then

0=10 < 11 < ... ,
00 1L - < 00,
i=1 Ii

i = 0,1, ...

and infhi - Ii-I: i E N} > O. Now use E.3 gJ of Section 3.3 with [a, bJ =
[1 - E, 1] and E.3 f] of this section. 0

bl Bounded Bernstein-Type Inequality. Suppose Ao = 0 and Al 2: l.
Prove that for every E E (0,1) there is a constant CE depending only on E

and (Ai)~o (but not on the number of terms in p) such that

IIp'll[o,l-E] ::; cEllplllO,l)

for every p E span{x AO , XA1 , ... }. (This is the second inequality of E.3 dJ
without the gap condition inf{Ai - Ai-l : i E N} > 0.)

Hint: Define the sequence r as in the hint given to part a]. Now use E.3 f]
of Section 3.3 with [a, b], a E (0,1 - E], E.3 g] of this section, and part aJ
of this exercise. 0
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c] Let 0 :::; a < b. Show that span{x AO , X A1 , ... } is not dense in C[a, b].

Hint: Use part a] and Theorem 4.2.1 (full Muntz's theorem in C[O, 1]). 0

d] Let

2 _k 2

A2k := k + 2 , k = 1,2, ... ,
k 2

a2k := -2, k = 1,2, ....

Show that the function f(x) := 2::1 (a2i_1xA2i-l + a2ixA2i) is a well­
defined continuous function on [0,1]. Show also that 2::1aixAi does not
converge for any x E (0,00) (hence the conclusions of E.3 e] are not valid
without a gap condition).

E.6 A Comparison Theorem. Let 0:::; k :::; n be fixed integers. Assume

Ao < Al < < Ak < 0 < Ak+1 < Ak+2 < < An,

1'0 < 1'1 < < I'k < 0 < I'k+1 < I'k+2 < < I'n ,

and
i = 0, 1, ... ,n

with strict inequality for at least one index i. Let

and let 0 < a < b. Then

min 111- Pllla,b] < min 111 - PII[a,b] .
pEGn pEHn

Hint: Let q* E H n be the best approximation to Xo == 1 on [a, b]. Let

n

r(x) = (-I)xo+ Lx')'i Espan{x')'o, ... ,X')'k,XO,X,),k+" ... ,x')'n}
i=O

interpolate

* 1 E {AO Ak ° Ak+l An}q - span x ,..., x ,X, x , . . . , x

at the n + 1 distinct zeros, Xl, X2, . . . ,xn +1, of q* - 1 on [a, b] (see Theorem
3.1.6). Use Theorem 3.2.5 to show that

Ir(x)1 :::; Iq(x)l, x E [a,b]

with strict inequality for x =1= Xi. Finally show that if p* := r + 1, then

min 111 - pll[a b] :::; 111- p*ll[a b] < 111- q*II[a b] = min 111 - pll[a b]'
PEGn 1 . , 'pEHn 1

o
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E.7 Full Muntz Theorem on [a, b], a > O. Let (Ai)~o be a sequence of
distinct real numbers, and let 0 < a < b. Show that span{x AO , X AI , ... } is
dense in C[a, bJ if and only if

00 1

L -'A'I =00.
i=O '
AdO

Hint: Distinguish the following cases.

Case 1: The sequence (Ai)~o has a cluster point 0 =I- AE JR. Use Theorem
4.2.1 to show that span{xAO , X AI , ... } is dense in C[a, bJ.

Case 2: The point 0 is a cluster point of (Ad~I' Use Case 1 to show first
that span{x Ao+1, XAI +1, ... } is dense in C[a, b], and recall that a > O.

Case 3: The sequence (Ai)~o does not have any (finite) cluster points, and
either

00 1
L:\.=oo
i=O '

A,>O

or
00 1

L -IAI =00.
i=O '

A,<O

Use Theorem 4.2.1 to show that span{xAO,xAI , ... } is dense in C[a,bJ.

Case 4:
00 1

~~<OO.
A,#O

Without loss of generality we may assume that 0 rt. {A;}~o (why?). By a
change of scaling, we may also assume that [a, b] = [1 - E, 1J. Let

(\d~-oo = {Ad~o, where ... < >--2 < A-I < 0 < Ao < Al < ....

Show that there is a sequence hi)~-oo satisfying

... < 1-2 < 1-1 < 0 < 10 < 11 < ... ,

and the gap condition

i E Z,
00 1
L -I.1 <00,
i=-oo 1,

infhi -1i-l : i E Z} > O.

Use E.4 a], E.5 a], and E.2 cJ to show that

1 d -{ 'Y'}OO'F span x i=-oo ,

where span{x'Yi}~_oo denotes the uniform closure of the span on [a,bJ.
Finally use E.6 to show that

1 d -{ \i}OO _ -{ Ai}OO'F span x i=-oo - span x i=O .

D
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E.8 Further Results for Nonnegative Sequences with No Gap Condition.
Assume throughout this exercise that 0 :::; Ao < Al < .", L~l 1/Ai < =,
and 0:::; a < b.

a) Show that for every E E (0, b) there is a constant Cf depending only on
E, a, b, and (Ai)~o (but not on the number of terms in p) such that

for every p E span{x>'o, X>'l, ... }.

Hint: Assume that b = 1; the general case can be reduced to this by scaling.
Use parts a) and b) of E.5 with

p(x) := lX

pet) dt E span{x>'o+l, X>'l+ I , ... } .

D

b) Assume
(Pn)~=1 C span{x>'o, X>'l, ... }

converges to an f E era, b) uniformly on [a, b]. Show that f can be extended
analytically throughout the region

Db := {z E C \ (-=,0] : 0 < Izl < b}

and the convergence is uniform on every closed subset of Db.

Hint: This part of the exercise is difficult. A proof of a more general state­
ment can be found in Schwartz [59, pp. 38-48]. D

c) Suppose (Pn)~=1 C span{x>'O,x>'l, ... } and IIPnll[a,bJ :::; 1 for each n.
Show that there is a subsequence of (Pn)~l that converges uniformly on
every closed subinterval of [0, b). (So the conclusion of E.3 g] holds without
the gap condition infPi - Ai-I: i E N} > 0.)
Hint: Use parts a] and b] of E.5 and the Arzela-Ascoli theorem. D

d) Let K be a closed subset of Db defined in part b]. Show that there is a
constant CK depending only on K, a, b, and (Ai)~o (but not on the number
of terms in p) such that

for every P E span{x>'O,x>'l, ... }.

Hint: Use parts c] and b]. (If the gap condition infPi - Ai-I: i E N} > 0
holds, then the simpler result of E.3 e] can be used instead of part b] of this
exercise. ) D



186 4. Denseness Questions

E.9 Full Muntz Theorem on [a, b], a > 0, in L q Norm. Schwartz [59]
gives the following results: Suppose (,\)~-oo is a sequence of distinct real
numbers. For a finite set r of integers and

p(x) = LaixAi,
iEr

let
p-(x) := L ai xAi

iEr
Ai<O

Let 0 < a < band 1 ::; q ::; 00.

Theorem 4.2.5. Suppose

and p+(x):= L aixAi .
iEr
Ai2:0

00 1
L f\J<00.

2=-cx)

Ado

Then there exists a constant c depending only on a, b, q, and (.\i)~-oo (but
not on the number of terms in p) such that

IIp+ II Lq[a,b] ::; cllpIILq[a,b] and IIp-IILq[a,b] ::; cllpll Lq[a,b]

for every p E span{xAi}~_oo'

Theorem 4.2.6. Suppose that 0 < a < b. Then span{x AO , x A' , ... } is dense
in L q [a, b] if and only if

(4.2.4)
00 1

L -1.\1 = 00.
i=O '
Ai¥O

a] Prove the two above results under the gap condition

inf{.\i - '\i-1 : i E Z} > O.

Hint to Theorem 4.2.5: When q = 00 see E.4 a]. If 1 ::; q < 00, then modify
the proof suggested in the hints to E.4 a], by using E.8 a]. 0

Hint to Theorem 4.2.6: If (4.2.4) holds, then the fact that span{x AO , X A1 , ... }
is dense in Lq[a, b] follows from E.7 and the obvious inequality

IIPIILq[a,b] ::; (b - a)1/
q

IIPII[a,b] .

Now suppose (4.2.4) does not hold. Use Theorem 4.2.5 and E.8 a] to
show that for every E E (0, ~(b - a)) there exists a constant CE depending
only on a, b, q, and (.\i)~-oo (but not on the number of terms in p) such
that

Ilpll [a+E,b-E] ::; CEIlpll L q[a,b]

for every p E span{X
Ai }~-oo' Now show that the above inequality implies

that span{x AO , X A1 , ... } is not dense in L q [a, b]. 0
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E.I0 Denseness of span{cos AkB} and span{zAk}. Throughout this exer­
cise the span is assumed to be over <C. Let

DR := {z E <C : Izi < R} and CR := {z E <C : Izi = R}.

a] Show that (cos nB)~=o is a complete orthogonal system in L2 [0,71"]. So
no term, cos nB, can be removed if we wish to preserve denseness of the
span in LdO,71"].

b] Let A := {e iO
: B E [0,8]}. Suppose (Ak)~o is a sequence of distinct

complex numbers satisfying

IA I < ke 1- O
k _ , k = 1,2, ....

If 8 E [1,271"], then span{ zAo, ZAl, ... } is dense in L 2(A).

The proof of part b] is outlined in parts c], d], and e].

c] Jensen's Formula. Suppose h is a nonnegative integer and

00

1(z) = 2:>kzk ,
k=h

is analytic on a disk of radius greater than R, and suppose that the zeros
of 1 in DR \ {O} are a1 , a2, . . . ,an, where each zero is listed as many times
as its multiplicity. Then

n R 1 12
11"

10glchl+hlogR+ Llog-I-I = - log 11(Rei o)1 dB.
ak 271" 0

k=l

Proof. This is a simple consequence of Poisson's formula (see, for example,
Ahlfors [53]), which states that

1 1211"log IF(O)I = - log IF(Reio)1 dB
271" 0

whenever the function F is analytic and zero-free in an open region con­
taining the closed disk DR. Now, in the above notation, if we let

and apply Poisson's formula to F, we get the required result by noting that
IF(z)1 = 11(z)1 whenever Izl = R. (The case where 1 has zeros on the
boundary of D requires an additional limiting argument.) D
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d] Let -00 ::; a < b ::; 00. Suppose (h)~o is a sequence in L2 (a, b)
and span{fa, h, ... } is not dense in L2 (a, b). Then there exists a nonzero
g E L2 (a, b) such that

l b

h(x)g(x)dx=O, k = 0,1, ....

This is an immediate consequence of the Riesz representation theorem (see
E.7 g] of Section 2.2) and the Hahn-Banach theorem. The second theorem
says that if span{fa, h, ... } is not dense in a Banach space, then there exists
a nonzero continuous linear functional vanishing on {fa, h, ... }. The first
theorem gives the form of the functional; see Rudin [73].

e] Prove b] as follows: Suppose span{zAO,zA
l, ... } is not dense in L 2 (A).

Then by d] there exists agE L 2 [0, 8] such that

f(z) :=16 exp(i(z + l)e)g(e) de

vanishes at z = Ak, k = 0,1, .... Also observe that f is an entire function,
and there is an absolute constant a > °such that

If(z)1 ::; a exp(8I z l).

Use E.8 a] of Section 2.2 to show that f =f. 0. Let R > IAol be an integer.
Applying c] on DR and exponentiating, we obtain

where Ch is the first nonvanishing coefficient of the Taylor series expansion
of f around 0. However,

RR+l
lim R' R = 00,
R~oo . e

which is a contradiction and finishes the proof. o

f] Let A := [0,8]. Suppose (Ak)k=O is a sequence of distinct complex num­
bers satisfying

k = 1,2, ....

Show that if 8 E [1,1T], then span{cosAoe, COSAle, ... } is dense in L2(A).

Hint: Proceed as in the proof of part b]. 0
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g) Suppose (Ak)k=O is a sequence of distinct real numbers satisfying

k = 0, 1, ....

Then span{COSAoe, cos Ale, ... } is dense in L 2 [0,7l' - E] for any E> 0.

Proof. This is harder; see Boas [54, p. 235]. o

h) Suppose (Ak)k=O is a sequence of distinct complex numbers satisfying°::; IAk 1 ::; k. Suppose f is an entire function such that IlfllDR ::; aeR for
all R > °with an absolute constant a > 0, and span{f(;3z) : ;3 E C} is
dense in L 2 (Cl ). Then span{f(AOz), f()'lz), ... } is dense in L 2 (Cl ).

E.n On the Hardy Space H oo • We denote by H oo the class of functions
that are analytic and bounded on D := {z E C : Izi < I}. We let

IlfllHoo := IlfilD = sup If(u)l·
uED

a) If f E H oo ' then

00

f(z) = L anzn ,
n=O

where

Hint: By Cauchy's integral formula

ZED,

holds for every R E (0,1).

b) If f E Hoo ' then
o

1J'(z)1 ::; (1 ~ Izl) 211fliHoo ,
and

If(n)(z)1 ::; n! C~ Izl) n+l IlfllHoo ,

c) H oo is a Banach algebra.

Hint: See Rudin [73].

Izi < 1

Izi < 1.

o
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E.12 Blaschke Products. A product of the form

B(z) := zk II= ( ai - z) lail ,
1 - a·z a·i=l 1.. t

ai E C \ {O}

with k E Z is called a Blaschke product. Let D:= {z E C: Izi < I}.
a] Let

a-z
<Pa(z) := -1-,-az

Show that l<Pa(z)1 = 1 whenever Izi = 1 and

a E C.

b] Show that if lal < 1, then <Pa(z) maps the closed unit disk D one-to-one
onto itself.

c] A Minimization Property. Let f31, f32, ... , f3n be fixed complex numbers
with lf3il > 1, i = 1, ... n. Show that

and that the minimum is attained by the normalized finite Blaschke product

n (n) -1 n (--1 )
1 - L z :: = II f3i II f3~ =1

z
.

i=1 f3. i=1 i=1 1 f3i Z

Hint: Suppose that the statement is false. Then there are some ai E C such
that

1
1- t Z:i .1 < (IT lf3i l) -1 = 11 - t z:: .1

i=1 f3. i=1 i=1 f3.

for all z E C with Izl = 1. Now Rouche's theorem implies that

n *
~ ai - ai

LJ z - f3.
i=1 •

has n zeros in the disk D, which is a contradiction.

d] Suppose (f3n)~=1 is a sequence in D satisfying

D

f31 = f32 = ... = f3k = 0 , f3n ~ 0, n = k + 1, k + 2, ...
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and
00

L(1-I13nl) < 00.
n=l

Then

B(z) := Zk IT (13n - Z ) l13nl
n=k+l 1 - 13nz 13n

defines a bounded analytic function on D (that is, BE 'H.oo ), which vanishes
at z if and only if z = 13j for some j = 1,2, ... ,in which case the multiplicity
of Zo in B(z) is the same as the multiplicity of 13j in (13n)~=l'

e] Suppose (13n)~=l is a sequence in D satisfying

00

L (1- l13nl) = 00.
n=l

Denote the multiplicity of 13j in (13n)~=l by mj' Suppose f E 'H.oo has a
zero at each 13j with multiplicity mj' Then f = O.
Hint: Suppose IlfilD > O. Without loss of generality we may assume that
f(O) =1= O. By Jensen's formula (see E.lO cD,

00 R 1 r21r

~ log l13nl + log If(O)1 = 21T io log If(ReiOl dB ~ log IlfilD
lt3nl<R

for every R E (0,1). Letting R tend to 1, we obtain

00 1
~ log l13nl < log IlfilD -log If(O)1 < 00.

Hence
00

L(l - l13nl) < 00,
n=l

which contradicts the assumption. 0

Note that the conclusion of part e] holds for the larger Nevanlinna
class N, which is defined as the set of those analytic functions f on D for
which

1 121r

sup - log+ If(Reio)ldB < 00,
RE(O,l) 21T 0

where log+ x:= max{logx,O}.



192 4. Denseness Questions

f] Let

B(z):= zkn
n (a i -=-z) ~,

1 - a·z a·i=l t t

be a finite Blaschke product. Show that

IB'(z)1 = k +~ 1-lail
2
,

~lz-a'12i=l t

ai E C \ {o}

Izi = 1.

Hint: Consider B' / B, where IB(z)1 = 1 whenever Izi = 1.

g] Suppose
00

o

I:(l-lail) < 00,
i=l

ai E (0,1)

and

Show that

B(z) := n°O (a i -=- z ) lad.
1 - a·z a·

i=l 1. 'L

Hint: Use f]. o

E.13 Yet Another Proof of Miintz's Theorem when inf{Ai : i E N} > 0.
As in E.lO, this proof requires a consequence of the Hahn-Banach theorem
and the Riesz representation theorem which we state in a]. For details,
the reader is referred to Feinerman and Newman [76] and Rudin [87]. We
assume throughout the exercise that AO := °and that (Ak)~l is a sequence
of distinct positive numbers satisfying inf{Ak : kEN} > 0.
a] span{ 1, X A1 , X A2 , .•• } is not dense if and only if there exists a nonzero
finite Borel measure f-1 on [0,1] with

k = 0,1,2 ....

h] Show that 2:%:1 1/Ak = 00 implies that span{l, X A1 , X A2 , ... } is dense
in C[O,l].
Outline. Suppose there is a nonzero finite Borel measure f-1 on [0,1] such
that

k = 0,1, ....
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Let

f(z) = 11

e dJk(t) , Re(z) > a.

Show that

and

(
1 +z)g(z) := f 1 _ z E Hoo

(~)=a9 Ak + 1 with 1 ~1<1Ak + 1 '
k = 1,2, ....

Note that I:~1 1/Ak = 00 and inf{Ak : kEN} > aimply

Hence E.12 e] yields that 9 = a on the open unit disk. Therefore f(z) = a
whenever Re(z) > a, so

n = 1,2, ....

Note that 11 to dJk(t) = a

also holds because of the choice of Jk. Now the Weierstrass approximation
theorem yields that

11

f(t) dJk(t) = a

for every f E C[a, 1], which contradicts the fact that the Borel measure Jk
is nonzero. So part a] implies that span{l, X>'l, X>'2, . .. } is dense in C[a, 1].

o

c] Show that I:~1 1/Ak < 00 implies that span{l, X>'l, X>'2 ... } is not
dense in C[a, 1].

Outline. Show under the above assumption that

f(z) =11

t Z {2~ i: f( -1 + is)e-iSIOgt dS} dt,

if f is defined by

Re(z) > -1
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Show that

dJ1(t) = {2~ i: f( -1 + is)e- is
logt dS} dt

defines a nonzero finite Borel measure, J1, on [0,1] such that

11

t Ak dJ1(t) = 0,

as is required by part aJ. For the above, show that

f(z) = -~100 f(is - 1) ds,
21r -00 ZS - 1 - z

Re(z) > -1

and use that
__1__ = r1

e-is dt .
1 + z- is Jo

D

E.14 Another Proof ofDenseness ofMuntz Spaces when Ai --t 0. Suppose
A ;= (A.i)~l is a sequence of distinct positive numbers with lim Ai = 0.

z~oo

Show that
M(A) ;= span{l, x A

\, X A2 , ... }

is dense in C[O, 1] if and only if L~l Ai = 00.

Hint: If L~l Ai = 00, then lim Ai = °implies that
'~oo

~ ( 1 -I ~: ~ ~ I) = 00 .

So the outline of the proof of E.13 b] yields that M(A) is dense in C[O, 1].

If TJ := L~l Ai < 00, then, by Theorem 6.1.1, the inequality

Ilxp'(x)IIIO,l] ~ 9TJ \lplllO,l]

holds for every p E M(A). Use this inequality to show that M(A) fails to
be dense in C[O, IJ. D

E.15 Denseness of Muntz Spaces with Complex Exponents. Suppose
A := (Ai)~l is a sequence of complex numbers satisfying

i=I,2, ....

Show that if

00 ( IAn - 11)?; 1 - An + 1 = 00 ,

then span{l,xA\,xA2 , ... } is dense in C[O, 1]. (In this exercise the span is
taken over C, and C[O, 1J denotes the set of all complex-valued continuous
functions on [0, 1J.)
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E.16 Christoffel Functions for Nondense Muntz Spaces. Let A = (Ai)~O

be a sequence of distinct complex numbers with Re(Ai) > - ~ for each i. As
in Section 3.4, let L'k := Lk{ Ao, ... ,Ad denote the associated orthonormal
Muntz-Legendre polynomials on [O,IJ.

aJ Let K n be defined by

Kn\Y) :=inf{11Ip(t)12dt: pE span{xAO ,xA1 , .•• ,xAn
}, P(Y)=I}.

Show that
n

Kn(y) = 2: IL'k(y)1 2 .
k=O

The function 1/K n is called the nth Christoffel function associated with A.

Hint: Proceed as in the hint to E.13 of Section 2.3. 0

In the rest of the exercise we assume that (Ai)~O is a sequence of non­
negative integers. We use this assumption for treating (higher) derivatives,
although some weaker assumptions would lead to the same conclusions.

bJ Suppose 2:::11/Ai < 00. Show that for every E E (0,1) and mEN,
there exists a constant c.,m depending only on A, E, and m such that

for every p E span{x AO , X A1 , ... }.

Hint: Use E.3 cJ. 0

c) Show that the following statements are equivalent:

(1) span{xAO , X A1 , ... } is not dense in e[O, IJ.

(2) 2:::1 1/Ai < 00 .
(3) 2::~0 (L7.:)2 converges uniformly on [0,1 - EJ for all EE (0,1) .

(4) There exists an x E [0,1) so that 2::~=0 (L'k(X))2 < 00.
Outline. The equivalence of (1) and (2) is the content of Muntz's theorem
(Theorem 4.2.1). To see that (2) implies (3), first observe that

00

2:1 (Lk)(m) (Y)1 2

k=O

which can be proved similarly to part a]. Hence by part b), for every E E
(0,1), there exists a constant c. depending only on Esuch that
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00

L (Lk(x))2 ::; CE

k=O
and

00

L (Lk' (X) )
2
::; CE ,

k=O
x E [0,1 - E].

Since (2:~=0 (Lk?)' 2 2:~=0 LkLk' on [0, (0), applying the Cauchy-
Schwarz inequality, we obtain that

x E [0,1 - E].

Therefore the functions 2:~=0 (L;:,)2, n = 1,2, ... , are uniformly bounded
and equicontinuous on [0, 1 - E], which implies the uniform convergence
of the functions K n on [0,1 - E] by the Arzela-Ascoli theorem. Since (3)
obviously implies (4), what remains to be proven is that (4) implies (1).
This can be easily done by part a]. 0

d] Let EE (0,1) and mEN be fixed. Show that if 2::0 1/Ai < 00, then
2:~=0 ((L;:,)(m))2 converges uniformly on [0,1 - E].

Hint: Modify the argument given in the hints to part c]. 0

e] Show that if 2::0 1/Ai < 00, then

for every E E (0,1) and mEN.

E.17 Chebyshev-Type Inequality with Explicit Bound via the Paley­
Wiener Theorem. The method outlined in this exercise was suggested
by Halasz. A function f is called entire if it is analytic on the complex
plane. An entire function f is called a function of exponential type 15 if there
exists a constant C depending only on f such that

If(z)1 ::; C exp(l5lzl), z E C.

The collection of all such entire functions of exponential type 15 is denoted
be EO. The Paley-Wiener theorem characterizes the functions F that can
be written as the Fourier transform of some function f E L 2 [-15,15].

Theorem (Paley-Wiener). Let 15 E (0, (0). Then F E E 6 n L 2 (lR) if and
only if there exists an F E L 2 [-15,15] such that

F(z) =16 f(t)e itz dt.
-0

For a proof see, for example, Rudin [87].

In the rest of the exercise let A = (Ak)~O be an increasing sequence
with AO = 0 and 2:~=1 1/Ak < 00.
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E.5 says that

G(c, A) ..=sup{ IIpll[o,lJ {AO A1 }}'- II II : p E span x , x ,... < 00
P [l-E,lJ

holds for every E E (0,1). In this exercise we establish an explicit bound for
G(E, A).

a] Show that

G(E,A)=sUP{III~(O)1 : PEspan{xAO,xA1, ... }}
p [l-E,lJ

for every E E (0,1).

Hint: Use Ao = 0, E.4 c] of Section 3.3, and the monotonicity of the
Chebyshev polynomial

on [0,1 - E].

b] Assume that

(1) FE E 6 rl L 2 (ffi.);

(2) F(iAk) = 0, k = 1,2,... (i is the imaginary unit); and

(3) F(O) = l.

Show that
\P(oo)l::; 1IFIIL2(JR) 1IPIIL2[-6,6j

for every P E span{e- Aot , e-A1t , ... }.

Outline. By the Paley-Wiener theorem

F(z) =16 j(t)eitz dt
-6

for some j E L2 [-0, 0]. Now if

n

pet) = ao + L ake- Akt ,
k=l

then

n

= aoF(O) + L ak F (iAk) = ao = P(00) .
k=l

o
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Hence by the Cauchy-Schwarz inequality and the L 2 inversion theorem of
Fourier transforms, we obtain that

IP(oo)l::::; IIII1L2[-0,oJ 1IFIIL2[-0,Oj ::::; 1IFIIL2(R) 1IFIIL2[-0,0] .

o

Given 8 E (0,1), let N E N be chosen so that

Let

Let

with
b

A·=-. 3N'

where i is the imaginary unit.

e] Show that FE EO.

d] Observe that F(O) = 1, F(iAk) = 0, k = 1,2, ... , and

IF( )1 < sin(bt/3) rrN (2 ~)
t - 8t/3 + U '

k=l k

t E IR.

e] Show that

3 N ( 1 )
IP(oo)l::::; b

C 11 2 + Uk IIFII[-c,c]

for every P E span{e-Aot , e- A1t , ... } with c:= lIe l sin tIIL2(1R)'
Hint: Use parts b], c], and d]. 0

f] Let Ak := kO
, a > 1. Show that there exists a constant Co depending

only on a such that

for every p E span{xAO,xA1 , ... } and for every f E (0,1/2].
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Proof. Let

1
(4.2.5) 8:= -"2log(l - E).

Observe that N in part e] can be chosen so that

(4.2.6) l(D(a _l))I/(I-<>l]
N:= +1.

3

3N
- <1.
k<>8 -that is,

Also, IJk in part d] is of the form IJk = 8k<>(3N)-I. Let M +1 be the smallest
value of kEN for which

1
- < 1
IJk '

Note that

M:= l(3;) 1/<>] .
If 0 < M < N, then

N ( 1 ) N ( 3N)g 2 + IJk = g 2 + Dk<>

~ (g ;;) C=U+l 3) ~ (9;) M (~) -<>M 3N-M

= (ge;N) M M-<>M3N- M

~ C';N) M (~en 'i
O

) -oM 3N-M

~ (3(2e)<»M3N-M ~ (3(2e )<»N ,

and the theorem follows by (4.2.5), (4.2.6), and part e].

If N ~ M, then
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If M = 0, then

and the theorem follows by (4.2.5), (4.2.6), and part e]. D

The next part of the exercise shows that the result of part f] is close
to sharp.

g] Let Ak := kO:, a> 1. Let EE (0,1/2]. Show that there exists a constant
Co: depending only on a > °so that

Proof. Let n E N be a fixed. We define '"Yk := kn O:-l, k = 0,1, .... Let
Tn(x) := ((x - 1)/2)n and

x '= T. ( 2Xn
"-1 _ 1 + (1 - E)n"-')

Qn( ) . n 1 _ (1 _ E)n"-' 1 - (1 _ E)n"-'

Then Qn E span{xl'O, ... Xl'n}, and by E.3 g] of Section 3.3 we obtain that

sup { Ip(O)1 .
Ilpll[I-E,l] .

{ Ao Al }} IQn(O)/ _ IQ ( )1
p E span x , x ,... ~ IIQ II - n °

n [l-E,l}

= C_(1 ~ E)n<> 1) n

Now let n be the smallest integer satisfying no:- l ~ C l . Since (1 - E)l/E is
bounded away from °on (0,1/2]' the result follows. D

E.18 Completion of the Proof of Theorem 4.2.1. The case when Ai ~ 1
for each i has already been proved. The only real remaining difficulty is
part d].

a] Prove Theorem 4.2.1 in the case when inf{)..i : i E N} > 0.
Hint: Use the scaling x -t x l / 8 and the already proved case. D

bJ Show that if (Ai)~l c (0, (0) has a cluster point A E (0, (0), then
span{l, X A1 , X A2 , ... } is dense in C[O, 1].

Hint: Use part a]. D

c] Suppose (Ai)~l C (0,00) and Ai -t 0. Then span{1,xA1 ,xA2 , ..• } is
dense in C[O, 1] if and only if L~l Ai = 00.

Hint: This is the content of E.14. D
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d] Suppose
{Ai: i E N} = {ai : i E N} U {Pi: i E N}

with
lim ai = a

i----+oo
and lim Pi = 00.

i----+oo

Show that span{l, X A1 , x A\ .. . } is dense in C[O, 1] if and only if

(4.2.7)
(X) (X) 1
L ai +L -:- = 00 .
i=l i=l ,13,

Outline. If (4.2.7) holds, then the denseness of span{1,xA1 ,xA2 , ... } in
C[O, 1] follows from parts a] and c]. Now assume that (4.2.7) does not hold,
so

(X)

Lai < 00
i=l

For notational convenience, let

and
(X) 1
L-<oo.
i=l Pi

Tn,a := Tn {I, x a1 , , x an : [0, I]},

Tn,(3 := Tn {I, X(3" , x(3n : [0, I]} ,

rr ._ rr {I x a, x an X(3, x(3n . [0 1]112n,o.,{3 ·-J.2n, , ... , , , ... , ., J

(we use the notation introduced in Section 3.3).

It follows from Theorem 6.1.1 (Newman's inequality) and the Mean
Value Theorem that for every E > a there exists a k1 (E) E N depending
only on (ai)~l and E (and not on n) such that Tn,a has at most k1(E) zeros
in [E,l) and at least n - k1(E) zeros in (0, E).

Similarly, E.5 b] and the Mean Value Theorem imply that for every
E> a there exists a k2(E) EN depending only on (pi)~l and E (and not on
n) so that Tn ,(3 has at most k2(E) zeros in (0,1 - E] and at least n - k2(E)
zeros (1 - E, 1).

Now, on counting the zeros of Tn,a - T2n ,a,(3 and Tn,(3 - T2n,a,(3, we
can deduce that for every E > a there exists a k(E) E N depending only
on (Ai)~l and E (and not on n) so that T2n ,a,(3 has at most k(E) zeros in
[E,l - f].

Let f:= i and k:= k (i). Pick k + 4 points

i < Tlo < TIl < ... < Tlk+3 < ~

and a function f E C[O,l] such that f(x) = a for all x E [O,i] U [~,1],

while
f (Tli) := 2 . (-1) i , i = 0, 1, ....
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Assume that there exists apE span{1, x)'1 , X>'2 , ... } such that

Ilf - pll[o,l] < 1.

Then p - T2n.0',{3 has at least 2n + 1 zeros in (0,1). However, for sufficiently
large n,

p - T2n ,0',{3 E span{l, x>'J, ... , x>'2n}

so it can have at most 2n zeros in [0,00). This contradiction shows that
span{1,x>'J,x>'2, ... } is not dense in C[O, 1]. 0

e] Prove Theorem 4.2.1 in full generality.

Outline. Combine parts a] to d]. 0

E.19 Proof of Theorem 4.2.3. Prove Theorem 4.2.3.

Proof. Assume that
{ >'0 >'1 }span x ,x , ...

is dense in £1 [0,1]. Let m be a fixed nonnegative integer. Let E > O. Choose
a

E { >.o >'1 }P span x ,x , ...

such that

Now let

Then

II
xm+1 - q(x)/I < E-

m + 1 [0,1]

So the Weierstrass approximation theorem yields that

is dense in C[O, 1], and Theorem 2.1 implies that

00 Ai + 1
~ (Ai + 1)2 + 1 = 00.

Now assume that

(4.2.8)
00 Ai + 1
~(Ai+1)2+1 =00.

By the Hahn-Banach theorem and the Riesz representation theorem
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{ AO Al }span x ,x , ...

is not dense in L 1 [0,1] if and only if there exists a°i= h E L= [0,1] satisfying

i = 0,1, ....

Suppose there exists a °i= h E L= [0, 1] such that

Let

f(z) := fal e h(t) dt,

i = 0,1, ....

Re(z) > -1.

Then

(
1+z )g(z):=f --1
1-z

is a bounded analytic function on the open unit disk that satisfies

Note that (4.2.8) implies

with i = 0,], ....

Hence Blaschke's theorem (E.12 e]) yields that g = °on the open unit disk.
Therefore f(z) = °whenever Re(z) > -1, so

n = 0,1, ....

Now the Weierstrass approximation theorem yields

fal u(t)h(t) dt = °
for every u E e[O, 1]' which contradicts the fact that °i= h. So

{ AO Al }span x ,x , ...

is dense in L1 [0, 1]. o
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E.20 Proof of Theorem 4.2.4.

a] Show that if

(4.2.9)
00 ,\_+!L t p

i=O (Ai + ~) 2 + 1 = 00 ,

then span{xAO,xAI , ... } is dense in Lp[O, 1].

Outline. By the Hahn-Banach theorem and the Riesz representation theo­
rem

{ Ao Al }span x ,x , ...

is not dense in Lp[O, 1] if and only if there exists a 0 i- h E Lq[O, 1] satisfying

i = 0, 1, ... ,

where q is the conjugate exponent of p defined by p-1 + q-1 = 1.

Suppose there exists a 0 i- h E Lq[O, 1] such that

Let

f(z) :=11

eh(t) dt,

Use Holder's inequality to show that

i = 0, 1, ....

Re(z) > _1.
p

(
I+Z 1)g(z) := f ----- - -
1- z P

is a bounded analytic function on the open unit disk that satisfies

(
A+ 1 -1)1 p _ 0

9 A+ 1 +1 -
t p

Note that (4.2.9) implies

with I-~-:-:......!~::-:-~I< 1 , i = 0,1, ....

00 (1 _I Ai + ~ - 11) = 00.
~ Ai + ~ + 1

Hence Blaschke's theorem (E.12 e]) yields that 9 = 0 on the open unit disk.
Therefore f(z) = 0 whenever Re(z) > -~, so



4.2 Muntz's Theorem 205

n = 0,1, ....

Now the Weierstrass approximation theorem yields

II u(t)h(t) dt = 0

for every u E C[O, 1], which contradicts the fact that 0 # h. So

span{xAO, X A1 , ... }

is dense in Lp[O, 1].

bl Show that if
00 A+1L __t_""""i"--_ < 00 ,
i=O (Ai + ~) + 1

then span{xAO , X A1 , ... } is not dense in L p [0, 1].

Outline. This follows from E.7 of Section 4.3.

o

o
cl Suppose (Ai)~O is a sequence of distinct positive numbers. Let p E
[1,00). Show that span{e-Aot ,e- At , ... } is dense in Lp[O, 00) if and only if

00 Ai
L A2 + 1 = 00.
i=O t

Outline. Use parts a] and b] and the substitution x = e-t . o

E.21 Muntz Theorem on [a, b] with a < 0 < b. Suppose A := (Ai)~l is
a sequence of distinct nonnegative integers, and suppose a < 0 < b. Then
span{1, X A1 , X A2 , .•• } is dense in C[a, b] if and only if

00
1

00
1

L - =00 and L - =00.
i=l Ai i=l Ai

Ai is even Ai is odd

E.22 The Zeros ofthe Chebyshev Polynomials in Nondense Muntz Spaces.
Let (Ai)~O be a sequence of distinct nonnegative real numbers with Ao := 0
and 2::1 1/Ai < 00. Let

Tn := Tn{Ao, A1,'" , An; [0, I]}

be the Chebyshev polynomials for span{xAO , ... , x An } on [0,1]. Let

Z := {x E [0,1] : Tn(x) = 0 for some n E N}.

Let Z' be the set of all limit points of Z and ZII be the set of all limit points
of Z'. Show that ZII = {I}.
Hint: Use the bounded Bernstein-type inequality of E.5 b] and the inter­
lacing property of the zeros of the Chebyshev polynomials Tn. 0
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4.3 Unbounded Bernstein Inequalities

In Section 4.1 we characterized the denseness of C 1 Markov spaces by the
behavior of the zeros of their associated Chebyshev polynomials. The princi­
pal result of this section is a characterization of denseness of Markov spaces
by whether or not they have an unbounded Bernstein inequality.

Definition 4.3.1 (Unbounded Bernstein Inequality). Let A be a subset of
C1 [a, b]. We say that A has an everywhere unbounded Bernstein inequality
if

{ IIp'll [<>,/3J . °--L. E A} =
sup II II . -; p 00

P [a,bJ

for every [a,;3] C [a, b], a -I- ;3.

The subset

04:= {x2p(x) : p E Pn , n = 0, I, ... }

has an everywhere unbounded Bernstein inequality despite the fact that
1'(0) = °for every f E .4-

The next result shows that in most instances the Chebyshev polynomial
is close to extremal for Bernstein-type inequalities. This is a theme that will
be explored further in later chapters.

Theorem 4.3.2 (A Bernstein-Type Inequality for Chebyshev Spaces). Let
(1, fl, ... ,fn) be a Chebyshev system on [a, b] such that each Ii is differen­
tiable at Xo E [a, b]. Let

be the associated Chebyshev polynomial. Then

for every °-I- p E span{l, fl,··· ,fn}, provided ITn(xo)1 -I- 1.

Proof. Let a = Yo < Yl < ... < Yn = b denote the extreme points of Tn,
that is,

i = 0, 1, ... ,n

(see the definition and E.1 a] in Section 3.3). Let Yk ::; Xo ::; Yk+l and

°-I- p E H n := span{l, fl,··· ,fn}'
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If p'(xo) = 0, then there is nothing to prove. Assume that p'(xo) =I- O. Then
we may normalize p so that

Ilpll [a,b] = 1 and

Let 8 := ITn(xo)l. Let E E (0,1) be fixed. Then there exists a constant TJ
with ITJI :::; 8 + ~ (1 - 8) such that

Now let
q(x) := TJ + ~(1 - 8)(1 - E)p(X).

Then

Ilqll [a,b] < 1 ,

and
sign(q'(xo)) = sign(Tn(Yk+l) - Tn(Yk)).

If the desired inequality did not hold for p, then for a sufficiently small
E>O

so
h(x) := q(x) - Tn(x)

would have at least three zeros in (Yk' Yk+d. But h has at least one zero in
each of (Yi, Yi+l). Hence h E Hn has at least n + 2 zeros in [a, b], which is
a contradiction. 0

We now state the main result.

Theorem 4.3.3 (Characterization of Denseness by Unbounded Bernstein
Inequality). Suppose M := (fa, h, ... ) is an infinite Markov system on
[a, b] with each fi E C 2 [a, b], and suppose that (fI/ fa)' does not vanish
on (a, b). Then span M is dense in C[a, b] if and only if span M has an
everywhere unbounded Bernstein inequality.

Proof. The only if part of this Theorem is obvious. A good uniform ap­
proximation on [a, b] to a function with uniformly large derivative on a
subinterval [a,13] C [a, b] must have large derivative at some points in
[a,l3].

In the other direction we use Theorems 4.3.2 and 4.1.1 in the follow­
ing way. Without loss of generality we may assume that fa = 1 (why?). If
span M is not dense in C[a, b], then, by Theorem 4.1.1, there exists a subin­
terval [a,13] C [a, b]' where all elements of a subsequence of the sequence
of associated Chebyshev polynomials,
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have no zeros. It remains to show that from this subsequence we can pick
another subsequence (Tni ) and a subinterval [c, d] c [a,;3] with

(4.3.1)

and

(4.3.2)

IITni II[c,d] < 1 - 8

IIT~i II [c,d] < "(

for some absolute constants 8 > 0 and "( > O. The result will now follow
from Theorem 4.3.2. A proof that the above choice of (Tni ) is possible is
outlined in E.1. D

Theorem 4.3.3 has the following interesting corollary.

Corollary 4.3.4. Suppose (adbl C 1R \ [-1, IJ is a sequence of distinct real
numbers. Then

span{l, _1_, _1_, ... }
x - al x - a2

is dense in C[-I, 1] if and only if

00

LVa%-1 =00.

k=l

(Here, unlike in Section 3.5, var=:t denotes the principal square root of
a% - 1. )
Proof. A combination of Theorem 4.3.3 and Corollary 7.1.3 yields the only
if part of the corollary.

The Chebyshev polynomials Tn (of the first kind) and Un (of the second
kind) for the Chebyshev space

span{l, _1_, ... , _1_}
x - al x - an

on [-1, 1] were introduced in Section 3.5. The properties of

and

established in Section 3.5, include

(4.3.3)
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(4.3.4)

(4.3.5)

(4.3.6)

and

(4.3.7)

where
- ~ }a%-I
Bn(O) := L.. I 01 ' 0 E IR

k=l ak - cos

() a% - 1 denotes the principal square root of a% - 1) and the identities
hold on the real line. Suppose

00

L Ja% -1 = 00.
k=l

Then

(4.3.8) lim min Bn(O) = 00, 0 < a < (3 < 1r.
n->oo BE [0,11]

Assume that there is an interval [a, b] C (-1,1) such that

sup IIT~II[a,bJ < 00.
nEI\!

Let a := arccos band (3 := arccos a. Then

sup IIT~ II [0,11] < 00 .
nEI\!

It follows from properties (4.3.6) and (4.3.8) that

nl2...~ II Un II [0,f1] = 0,

and hence, by property (4.3.4),
-2

lim IITn - 111[0 (1) = O.
n-+oo I

Thus, by properties (4.3.7) and (4.3.8),

lim min IU~(O)I = 00,
n->oo BE [0,11]

that is,

which contradicts property (4.3.3). Hence

IIT~II[a,b) II 'IIsup 11'7"' II = sup Tn [a,b) = 00
nEI\! .In [-1,1) nEI\!

for every [a,b] C (-1,1), which, together with Theorem 4.3.3 shows the if
part of the corollary. D
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Comments, Exercises, and Examples.

We followed Borwein and Erdelyi [g5a] in this section. Corollary 4.3.4, to
be found in Achiezer [56], is proved by using entirely different methods.

E.! The Crucial Detail in the Proof of Theorem 4.3.3. Suppose that
M:= (l,h,h, ... ) is an infinite Markov system ofC2 functions on [a,b]
and f{ does not vanish on (a, b). Suppose that the sequence of associated
Chebyshev polynomials (Tn) has a subsequence (Tn;) with no zeros on some
subinterval [a,;3J of [a, b]. Show that there exists another subinterval [c, d]
and another infinite subsequence (Tni ) such that for some {j > 0 and "( > 0,
and for each ni,

IITni II [c,d] < 1 - {j and IIT~i II [c,d] < "( .

Outline. For both inequalities first choose a subinterval [Cl, d l ] c [a,,6] and
a subsequence (ni,d of (ni) such that each alternation point of each Tni.'
is outside [Cl, dl ]. Then choose a subsequence (ni,2) of (ni,d so that either
each Tni •2 is increasing or each Tni •2 is decreasing on [cl,dd. Study the first
case; the second is analogous. Let h,d2 ] be the middle third of [cl,dl ].
If the first inequality fails to hold with [C2, d2] and (ni,2), then there is a
subsequence (ni,S) of (ni,2) such that IITni ,311[c2,d2] -? 1 as ni,S -? 00. Hence,
there is a subsequence (ni,4) of (ni,s) such that either

or

Once again, study the first case; the second is analogous. Since each Tni ,3

is increasing on [Cl, d l ],

Now choose g := ao + alil + a2h so that g has two distinct zeros
al and a2 in [d2, dd, Ilgll[a''o<2] < 1, and g is positive on (al, a2)' Let
,6:= max g(x) and g:= g+ 1-,6. Show that Tni ,4 - ghas at least n+ 1

a, :Sx:Sa2
distinct zeros in [a, b] if ni,4 is large enough, which is a contradiction,

For the second inequality, note that E.4 of Section 3.2 implies that
(j{, ... ,f~) is a weak Chebyshev system on [a, b], and so is

((T')' (T')' (T' )')T{ , T{ ,,,., T{ , n = 2,3", ..

From this deduce that each (T~ lTD' has at most one sign change in
',2

[C2' d2]. Choose a subinterval res, dsl C [C2' d2] and a subsequence (ni,5) of
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(ni,2) so that none of (T~i,5/T{)' changes sign in [C3, d3]. Choose a sub­
sequence (ni,6) of (ni,5) so that either each T~i 6/T{ is increasing or each
T~i.6/T{ is decreasing on [C3, d3]. Again, conside~ the first case; the second
is analogous. Let [C4, d4] be the middle third of [C3, d3]. If the second in­
equality fails to hold with [C4, d4 ] and (ni,6), then there is a subsequence
(ni,7) of (ni,6) such that either

1
. T~i 7(X)
1m max ; = 00

ni, 7--->00 C4 ::;x~d4 T I (X)
or

1
. , T~i 7 (x)
1m mill ;() = -00 .ni,7--->00 c4::;x::;d4 T I x

Once again we just treat the first case; the second is analogous. In this case,
for every K > 0 there is an N E N such that for every ni,7 ;::: N we have

T~i)X) > K, x E [d4, d3].

Hence

K(d3 - d4) s:; rds
T~i)X) dx = Tni ,7(d3) - Tni ,7(d4) s:; 2,Jd4

which is a contradiction. o

E.2 On the Uniform Closure of Nondense Markov Spaces. Suppose
that M = (fo, h, ... ) is an infinite Markov system on [a, b] with each
fi E C2 [a, b], and suppose that UI! fo)' does not vanish on (a, b). Suppose
that span M fails to be dense in CIa, b].

Show that there exists a subinterval [a,,8] C [a, b], a < ,8, such that
every g E CIa, b] in the uniform closure of span M on [a, b] is differentiable
on [a,,8].

Hint: By Theorem 4.3.3 there exists an interval [a,,6] C [a, b] and a constant
TJ E IR so that

Il h'll[a,,6] s:; TJllhll[a,bJ
for every h E span M. Suppose g E CIa, b] and

lim Ilhn - gll[a b] = O.
n--loOO '

Choose ni E N such that

IIg - hni II [a,b] s:; T i
,

Then

i = 0,1, ....

00

g = hno + L (hni - hni_1 )·

i=1

Since
II(hni - hni _,)'II[a,,6) :S TJ2 1- i

,

it follows that g is differentiable on [a,,8]. o
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E.3 An Analog of Theorem 4.3.3 with Applications. Suppose that
M = (fo, iI,···) is an extended complete Chebyshev (ECT) system of
Coo functions on [a, b], as in E.3 of Section 3.1. Note that E.3 a] of Section
3.1 implies that fo does not vanish on [a, b].

a] Show that the differential operator D defined by

D(f) := (~)' ,

maps M to MD' where

and MD is once again an ECT system of Coo functions on [a, b].

Hint: Use E.8 b] of Section 3.2. 0

b] The differential operators D(n) (f) are defined for every f E Cn[a,b] as
follows. Let

Let

Fi,o := fi' i = 0,1,2, ... ,

P. '= (FH1 ,n-l)', n . ,i = 0,1,2, ... ,
, FO,n-l

D(O)(f) := f, D(n)(f);= (D(n-l)(f))',
FO,n-l

n = 1,2, ... ,

n = 1,2, ....

MD(l) :=MD and MD(n) := (MD(n-l»)D' n = 2,3, ....

Show that if span MD(n) is dense in C[a, b], then so is span M.

c] Suppose that span M fails to be dense in C[e, d] for every subinterval
[e, d] c [a, b]' e < d. Show that for each n E N, there exists an interval
[an, ,sn] C [a, b]' an < ,sn, such that

{
IID(n) (f) II [C<n ,,3nJ °-/- f M}

sup Ilfll[a,b] : r E span < 00.

Hint: Use Theorem 4.3.1 and induction on n. o

d] Suppose that span M fails to be dense in C[e, d] for every subinterval
[e, d] C [a, b] e < d. Show that for each n E N, there exists an interval
[an, ,snl C [a, b], an < ,sn, where every 9 E C[a, b] in the uniform closure
of span M on [a, b] is n times continuously differentiable.



4.3 Unbounded Bernstein Inequalities 213

Hint: Use part c]. The argument is similar to the one given in the hint to
E.2. 0

e] Suppose that span M fails to be dense in e[e, d] for every subinterval
[e,d] c [a,b], e < d.

Show that every function in the uniform closure of span M on [a, b] is
e= on a dense subset of [a, b].

(This is the case for Muntz systems

M '- (AD Al ).- x ,x , ... , .\ E JR,

on [a, b], 0:::; a < b; see E.7 of Section 4.2.)

E.4 Bounded Bernstein-Type Inequality for Nondense Muntz Spaces.
Suppose (Ai)~1 is a sequence of distinct positive numbers satisfying

Then for every f > 0, there is a constant ec such that

for every

Ip'(x)1 :::; ~ Ilpll[o,l] , x E (0,1 - f]

To prove this proceed as follows. Let AD := 0, and let

be the Chebyshev polynomial for span{l, X A1 , ... ,xAn } on [0,1]. Let

M(A) := span{l, X A1 , X A2 , ... }.

a] Observe that for every f > °there exists a k c E N depending only on
(Ai)~1 and f (and not on n) such that Tn has at most kc zeros in [f, 1- fl.

Hint: This is proved in the outline of the proof of E.18 d] of Section 4.2. 0

h] Show that every nonempty (a, b) c (0,1) contains a nonempty sub­
interval (0:,13) for which there are integers °< nl < n2 < such that
none of the Chebyshev polynomials Tn; vanishes on (0:,;3).

Hint: Use part a]. 0
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c] Show that every nonempty (a, b) C (0,1) contains a nonempty sub­
interval (0:, j3) such that

{
IIp'll[a,PI }

sup IlplllO,I]: °=1= p E M(A) < 00.

Hint: Modify the proof of Theorem 4.3.3.

d] Finish the proof of the initial statement of the exercise.

Hint: Use part c] and a linear scaling.

o

o

E.5 The Closure of Nondense Muntz Spaces in C[O, 1]. Suppose (.\i)~1

is a sequence of distinct positive numbers satisfying

00 .\

L~<oo.
i=1 ,+

Show that
span{l, xAJ , X

A2
, . .. } C COO (0, 1) ,

that is, if f is the uniform limit of a sequence from span{I, xAJ , X
A2

, ... },

then f is infinitely many times differentiable on (0,1).
Hint: Use E.4 with the substitution x = e-t . 0

E.6 A Nondense Markov Space with Unbounded Bernstein Inequality on a
Subinterval. One may incorrectly suspect that nondense Markov spaces on
[a, b] can be characterized by an everywhere bounded Bernstein inequality
on (a, b), at least under the assumptions of Theorem 4.3.3. The purpose of
this exercise is to show that this is far from true, and in a sense, Theorem
4.3.3 is the best possible result.

The same construction can be used to give a nondense Markov space
on [a, b] such that the set

Z:= {x E [a,b]: Tn(x) = °for some n E N}

is neither dense nor nowhere dense in [a, b]. Here (Tn);::O=o is the sequence
of associated Chebyshev polynomials on [a, b].

We construct an infinite Markov system on (-00,00) as follows. Sup­
pose A := (.\i)~O is a sequence of even integers satisfying

00 1
""-<00.L.\
i=l '

Suppose m > 0. Let <{!k E C(-00,00), k = 0,1, ... , be defined by
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{
X2k+m X> 0

'P2k(X):= c x A2k ' X:< 02k , _

and

{
X2k+m+1 X> 0

'P2k+I(X):= -c x A2k+1 ' X:< 02k+1 , _,

where (Ci)~O is a sequence of positive numbers associated with a fixed
sequence of integers 0 := no < nl < n2 < ... and a constant 8 > 0, and it
is chosen as follows. Let

j = 0,1, ....

Let
n

Tn(x) := cos(narccos(2x - 1)) =: L ai,n xi

i=O

be the nth Chebyshev polynomial on [0,2]. Now choose the constants Ci > 0
such that

00 nj+l- 1

L L Ci 8Ai lai-nj ,mj I :; 1 .
j=O i=nj

a] Show that ('Po, 'PI, ... ) is a Markov system on (-00, (0).

Hint: If
n

p(x) = L ai'Pi(x),
i=O

then

while

n

p(x) = L aixAi ,
i=O

n

p(x) = L(-1)iaixAi ,
i=O

x E [0,(0),

x E (-00,0].

Now apply Theorem 3.2.4 (Descartes' rule of signs). 0

b] Show that span{'Po,'PI, ... } is not qense in 0[-8,2].

c] Show that there is a sequence of integers 0 := no < nl < n2 < ... such
that

sup {
IIp'll[a,13]. O...J. { }}
I II

. r P E span 'Po, 'PI,·· . = 00Ip [-8,2)

for every nonempty interval [a,,6] C [0,2], while

{
Ip'(x)1

sup
Ilpll[-8,2j

for every x E (-8,0).

o# p E span{'Po, 'P I, ... }} < 00
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d] Suppose the sequence (<Pi)~O is defined associated with a fixed sequence
of integers 0 := no < n1 < n2 < ... and /j := -2. Let

be the Chebyshev polynomial for span{<po,<P1, ... ,<Pn} on [-2,2]. Let

Z := {x E [-2,2] : Tn(x) = 0 for some n E N}

and let Z' be the set of all limit points of Z, and let Z" be the set of all limit
points of Z'. Show that the sequence of integers 0 := no < n1 < n2 < ...
in the definition of (<Pi)~O can be chosen so that

z" n (-2,0) = (/) and [0,2] U{-2} C Z".

E.7 Nikolskii-Type Inequalities for Nondense Muntz Spaces. Suppose
that P E [1,00]. Suppose (Ai)~O is a sequence of distinct real numbers
greater than -1/p satisfying

00 .-\. + !
'""' t P~ ------'C2.----- < 00 .
i=O (Ai + ~) + 1

Show that for every E > 0, there exists a constant c€ > 0 depending only
on E and p so that

Iq(x)1 :s; c€x- 1
/ P llqIIL p [O,l)

for every q E span{x AO , X A1 , ... } and for every x E [0,1 - E].

In particular, for every E > 0, there exists a constant c€ > 0 depending
only on E so that

IIqll [€,l-€J :s; c€ Ilqll L p [O,l]

for every q E span{x AO , X A1 , ... }.

Thus, span{x AO , X A1 , ... } is not dense in L p [0, 1].

Hint: Use Holder's inequality to show, as in Operstein [to appear], that the
operator

defined by

J(<p)(O) := 0, J(<p)(x) := x 1
/

p
-

1 l x

<pet) dt, x> 0

is a bounded linear operator. That is, there is a constant c:2': 0 such that
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for every <p E Lp[O, 1]. Now observe that q E span{x AO , XA1 , • .• } implies
that J(q) E span{xI-'O,xl-'l, ... }, where J-Li := Ai +~, and so (J-Li)~O is a
sequence of positive numbers satisfying

00

"'"' J-LiL..i -2--1 < 00 .
i=O J-Li +

Therefore, by EA, for every E > 0, there exists a constant c€ > °such that
( )' () c€ c€I J(q) x I ~ - IIJ(q)ll[o,l] ~ - c IlqIILp[O,l]x x

for every q E span{xAO ,x.\I, ... } and for every x E (0,1- Ej. Note that for
XE(O,l),

(J(q))'(x) = X1/p-1q(x) - (1- ~) x1/p- 21x

q(t) dt,

where

Therefore

for every q E span{x.\o, X.\I, ... } and for every x E (0,1 - Ej. D

E.8 The Closure of Nondense Muntz Spaces in Lp[O, 1]. Let p E [1,00].
Suppose (Ai)~O is a sequence of distinct real numbers greater than -lip
satisfying

00 A'+.!L 1 ~ <00.
i=O (Ai + ~) + 1

Show that if f is a function in the Lp[O, 1] closure of

{ .\0.\1 }span x ,x , ... ,

then f E coo (0, 1), that is, f is infinitely many times differentiable on (0,1).
Hint: Combine E.5 and E.7. D
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4.4 Muntz Rationals

A surprising and beautiful theorem, conjectured by Newman and proved by
Somorjai [76], states that rational functions derived from any infinite Muntz
system are always dense in C[a, b], a 2': O. More specifically, we have the
following result.

Theorem 4.4.1 (Denseness ofMiintz Rationals). Let ()'i)~O be any sequence
of distinct real numbers. Suppose a > O. Then

is dense in C[a, b].

The same result holds when a = 0, however, the proof in this case
requires a few more technical details; see E.1 b].

The proof of this theorem, primarily due to Somorjai, rests on the
next theorem. We introduce the following notation. A function Z defined
on (a, b) is called an E-zoomer (E > 0) at ( E (a, b) if

(4.4.1)

Z(x) > 0,
Z(X):::;E,

Z(x) 2': E-
1

,

x E [a,b] ,
X«-E,

x>(+c

While (approximate) 0-functions are the building blocks for polynomial
approximations, the existence of E-zoomers is all that is needed for rational
approximations. More precisely, we have the following result.

Theorem 4.4.2 (Existence of Zoomers and Denseness). Let S be a linear
subspace of C[a, b]. Suppose that S contains an E-zoomer for every E > 0 at
every ( E (a, b). Then

R(S) := {~ : p, q E S}

is dense in C[a, b].

Proof. It suffices to consider the case [a, b] = [0,1]. Let n E Nand E> lin
be fixed. We construct a partition of unity inductively as follows. Let Zo be
any positive function in S and choose functions Zl, Zz, ... ,Zn E S positive
on [0, 1] so that

k
x < - - E

n
and

k-1
X> -- +E

n
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(which the existence of E-zoomers allows for). Let

(4.4.2) k = 0,1, ... ,no

So

and

x E [0,1]

Since for every x E [0,1],

n

L Zk(X) +
k=O

{i--E > X

we also know that

n n

L Zk(X) < 2E L Zk(X) ,
k=O k=O

*+€<x

n

L Llk(x):s: 2E,
k=O

I*-xl>€

x E [0,1].

Now let f E C[O, 1], and consider the approximation

n

L f (~) Llk(x) E R(S).
k=O

Then

If(X) - to f (~) Llk(X)1

:s: I to (J(X)-f(~))Llk(X)I+1 to (J(X)-f(~))Llk(X)1
I*-xl~€ I*-xl>€

:s: Wf(E) + 2Ewf(1) ,

which finishes the proof.

We can now finish the proof of Theorem 4.4.1:

o

Proof of Theorem 4.4.1. We may suppose, on passing to a subsequence
if necessary, that (>'i)~O is a convergent sequence (possibly converging to
infinity). We may also assume that a := l/b with b > 1. Since C[l/b, b] is
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invariant under x --+ l/x, we may assume that (Ai)~O has a nonnegative
(possibly infinite) limit.

Case I: The sequence (Ai)~O has a finite nonnegative limit. Then Muntz's
theorem on [a, b], a > °(see E.7 of Section 4.2), yields that the Muntz poly­
nomials themselves associated with (Ai)~O are already dense in C[l/b, b].

Case 2: The sequence (Ai)~O tends to infinity. In this case (X/(f'i is an
E-zoomer at ( E (a, b) for sufficiently large Ai, and the result follows from
Theorem 4.4.2. 0

Comments, Exercises, and Examples.

A comparison between Muntz's theorem and the main result of this sec­
tion shows the power of a single division in approximation. In what other
contexts does allowing a division create a spectacularly different result?
Newman [78, p. 12] conjectures that ifM is any infinite Markov system on
[0,1], then the set

{~ : P, q E span M }

of rational functions is dense in C[O, 1].

Newman calls this a "wild conjecture in search of a counterexample."
It does, however, hold for both

M - (AO A, )- X ,x , ... ,

(see E.1 b]) and

Ai ~ °are distinct

ai E lR \ [0, 1] are distinct(
1 1 )M= ---, ---, ... ,

x - al x - a2

(see E.2). A counterexample to the full generality of this conjecture is pre­
sented in E.6. However, the characterization of the class of Markov systems
for which it holds remains as an interesting question. In particular, it is
open if Newman's conjecture holds for Descartes systems.

The reader is referred to Newman [78] for an extensive treatment of
these matters; see also Zhou [92a]. In [78, p. 50] Newman asks about the
denseness of the products (2: aixi2)(2: bix

i2 ) in C[O, 1] (see E.3). He specu­
lates that this "extra" multiplication of Muntz polynomials should not carry
the utility of the "extra" division. This is proved in Section 6.2, where it is
shown that products pq of Muntz polynomials from nondense Muntz spaces
never form a dense set in C[O, 1].

E.I Denseness of Miintz Rationals on [0,1]. A function C defined on [a, b]
is called an E-crasher, E> 0, at ( E (a, b) if

C(x) > 0,
C(x) S E,
C(x) ~ c l

,

x E [a,b] ,
X>(+E,
XS(-E.
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a] Let S be a linear subspace of C[a, b]. Suppose that S contains an E­
crasher for every E> 0 at every ( E (a, b). Show that

R(S) := {~ : p, q E S}
is dense in C[a, b].

Hint: The argument is a trivial modification of the proof of Theorem 4.4.2.
D

Let (Ai)~O be a sequence of distinct real numbers. Let R(A) be the
space of functions f E C[O, 1] of the form

,,",n A

f(x) = ~~=O~tXA:' ai,bi E JR, n EN, x E (0,1].
i=O t X

h] Show that if (Ai)~O is a sequence of distinct nonnegative real numbers
with Ao := 0, then R(A) is dense in C[O, 1].

Hint: As in the proof of Theorem 4.4.1, we may suppose, on passing to a
subsequence if necessary, that (Ai)~1 is a convergent sequence (possibly
converging to 00). Distinguish the following two cases.

Case 1: lim Ai = 00. Given E> 0 and ( E (0,1), show that
t->oo

E (X)Ai
Z(x) := "2 + "(

is an E-zoomer at ( on [0,1] if Ai is large enough. Use Theorem 4.4.2 to
finish the proof.

Case 2: (Ai)~1 is a sequence with finite limit. Given E> 0 and ( E (0,1),
show that

C(X) := ~ + (_1)n ~ Tn {AO, AI, ... ,An;[(' 1]}(x)

is an E-crasher at ( on [0,1] if n is large enough. This can be proved by
using Muntz's theorem (E.7 of Section 4.2) on [( - E, 1] with EE (0, (), E.3
c] of Section 3.3, and the monotonicity of C on [0, (]. Finish the proof by
part~. D

The result of E.1 b] is due to Bak and Newman [78]. Zhou [92b] extends
this result to sequences of arbitrary distinct real numbers.

E.2 Another Markov-System with Dense Rationals. Let (,Bi)~1 be any
sequence of distinct numbers in JR \ [0,1]. Show that

is dense in C[O, 1].
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E.3 Products of Muntz Spaces. Associated with a sequence A := (Ai)~O

of real numbers, let

a] Show that if (Ak)~O = (k"')~o, ex > 2, then M 2 (A) is not dense in
C[O,l].

h] Show that with (Ak)k'=o = (k2)~0 the nondenseness ofM 2(A) does not
follow from Muntz's theorem since 2:kEr l/k = 00, where r is the set of
natural numbers k of the form k = n 2 + m2 with nonnegative integers n
and m.

It is shown in Section 6.2 that M 2 (A) is not dense in C[O, I] whenever
A is a sequence of nonnegative real numbers satisfying 2:~1 1/Ak < 00, so
the "extra multiplication" is of no spectacular utility.

It is not always possible to extend Theorem 4.4.2 to the case when the
numerators and the denominators are coming from different infinite Muntz
spaces. Somorjai [76] shows that

is not dense in C[O, I] when, for example,

"7
2

Ak < "70k+l < Ak+1 ,

for some "7 > 1.

k = 0,1, ...

E.4 Nondense Ratios of Miintz Spaces. Suppose °::; AO < Al < .... Let
a > 0. Show that

{

",n A· }LJi=O ai x '
2:7=0 bix-Ai : ai, bi E JR, n E N

is dense in C[a, b] if and only if 2::1 1/Ai = 00.
Hint: For one direction use Muntz's theorem. For the other direction use
E.5 a] and b] and E.8 b] and c] of Section 4.2. 0

E.5 On the Rate of Approximation by Muntz Rationals. Let (Ai)~O

be a fixed sequence of nonnegative real numbers. We wish to estimate
the error of the best uniform approximation to f E C[O, 1] on [0, I] from
span{xAO , ... ,xAn }. We let

R~(f) := inf {llf(X) - ~~=O ~,x;: II : ai, bi E JR} ,
i=O ,x [O,lJ

where the infimum is taken for all ai, bi E JR, i = 0, 1, ... ,n.
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In the case when An+! - An 2: 1, n = 0,1, ... , Newman [78] claims
(without proof) that there exists a constant C independent of n such that

R~(f) = CWf (~)

and that this is the best possible. He conjectures, in Newman [78], that
this estimate holds for every sequence (Ai)~O of distinct nonnegative real
numbers.

a] Observe in the last line of the proof of Theorem 4.4.2, with E = ~, we
have

If(X) - ~ f (~) Llk(X)1 ~ 6wf (~)

since wf(l) ~ nWf (~) .

b] What growth conditions on the sequence (Ai)~O guarantees that

R~(f) = 0 (wf (~))?

Hint: Estimate the "degree" of the zoomers Zk defined in Theorem 4.4.2.
Use the zoomers defined in Case 1 of the hint for E.l bJ. 0

c] Let

f(x) := { xsin(l/x), x ~ lR \ {O}
0, x - o.

Show that
R~(f) 2: cln- 1 2: C2 wf (~)

for every sequence (Ai)~O of nonnegative real numbers, where Cl and C2
are positive constants independent of (Ai)~O'

Hint: (L~=o aixAi) / (L~=o bixAi ) has at most n zeros on [0, 1]. 0

E.6 A Markov System with Nondense Rationals. This example outlines
a construction of Markov systems on [-1, 1J whose rationals are not dense
in C[-I, 1]. It follows and corrects Borwein and Shekhtman [93].

We construct an infinite Markov system on (-00,00) as follows. Sup­
pose that A := (Ai)~O' where 2Ai + 1 = 72i . Then A is a sequence of even
integers satisfying

Let 'Pk E C[-I, 1], k = 0, 1, ... , be defined by

'P2k(X) := XA2k

and
x2:0
x ~ o.
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a) Show that (CPo, CPI, ... ) is a Markov system on (-00,00).

Hint: If
n

p(x) = L aiCPi(x),
i=O

then

while

n

p(x) = L aixAi ,
i=O

n

p(x) = L(-l)iaixAi ,
i=O

x E [0,00),

x E (-00,0].

Now apply Theorem 3.2.4 (Descartes' rule of signs). D

b] There exists an absolute constant c > °(independent of n) such that

for all choices of ai E R

Hint: Use E.8 a] of Section 4.2 and Holder's inequality.

c) The inequalities

hold for all choices of ai E R

Proof. We have

D

Here

so on applying the Cauchy-Schwarz inequality n times, we get
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and the result follows.

d] The inequality

holds for all choices of ai E R

Hint: Use part c].

e] The rational functions of the form

o

o

L~=oaiif!i

L~=o biif!i '

are not dense in C[-I, 1].

ai, bi E lR,

Proof. Consider f E C[-1, 1] defined by

{

I if x E [-1, -1/2]

f(x):= 0 if x E [0,1]

-2x if x E [-1/2,0].

We show that f is not uniformly approximable on [-1,1] by the above
rational functions. Suppose that

This implies

(4.4.3)

and

II
L~=o aiif!i - fll < E < 1,
Li=O biif!i [-1,1]

II
",n A'IILJi=O ai X '

n A' < E
Li=O bix' [O,lJ

ai, bi E lR.

(4.4.4)
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Without loss of generality we may assume that

(4.4.5)

From (4.4.3) and (4.4.5) it follows that

(4.4.6)

Part d], together with (4.4.3) and (4.4.5), implies that

(4.4.7)
Il
t(-l)iaiXAill < V5€.
2=0 £2[0,1]

Part d], together with (4.4.5), also implies that

(4.4.8)

Combining part b] and (4.4.8), we obtain that

(4.4.9)

Now (4.4.7) and (4.4.9) yield the right-hand side of

while (4.4.4) yields the left-hand side of it. This shows that E > 0 cannot
be arbitrarily small. 0



5
Basic Inequalities

Overview

The classical inequalities for algebraic and trigonometric polynomials are
treated in the first section. These include the inequalities of Remez, Bern­
stein, Markov, and Schur. The second section deals with Markov's and
Bernstein's inequalities for higher derivatives. The final section is concerned
with the size of factors of polynomials.

5.1 Classical Polynomial Inequalities

We start with the classical inequalities of Remez, Bernstein, Markov, and
Schur. The most basic and general of these is probably due to Remez. How
large can Ilpll[-l,l] be if p E Pn and

m({x E [-1,1] : Ip(x)1 ::; 1}) ;:::: 2 - s

holds? The inequality of Remez [36] answers this question. His inequality
and its trigonometric analog can be extended to generalized nonnegative
polynomials (discussed in Appendix 4) by a simple density argument. These
extensions also play a central role in the proof of various other Bernstein,
Markov, Nikolskii, and Schur type inequalities for generalized nonnegative
polynomials, where simple density arguments do not work.
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Theorem 5.1.1 (Remez Inequality). The inequality

(
2 + s)Ilpll[-I,I) :::; Tn 2 _ s

holds for every p E Pn and s E (0,2) satisfying

m({x E [-1, 1] : Ip(x) I :::; I}) 2 2 - s .

Here Tn is the Chebyshev polynomial of degree n defined by (2.1.1). Equality
holds if and only if

( ) _ T (±2X+S)PX-±n 2 .-s

Proof. The proof is essentially a perturbation argument that establishes
that an extremal polynomial is of the required form. Let II . II denote the
uniform nOLU on [-1, 1], and let

(5.1.1) Pn(S) := {p E Pn :m({x E [-1,1] : Ip(x)1 :::; I}) 22 - s} .

The set Pn(s) is compact, say, in the uniform norm on [-1,1], by E.1, and
the function p --+ IIpll is continuous. Hence there is a p* E Pn(s) such that

IIp* II = sup IIpll·
pEPn(s)

First assume that p* (1) = IIp* II. We claim that all the zeros of p*
are real and lie in [-1, 1). Indeed, if p* vanishes at a nonreal z, then for
sufficiently small 7) > °and E > 0,

* ( E(X - 1)2 )
q(x) := (1 + 7))p (x) 1- (x _ z)(x _ z)

is in Pn(s) and contradicts the maximality of p*. If p* has a real zero z
outside [-1,1], then, in similar fashion,

(
1- x)q(x) := (1 + 7))P*(x) 1 - E sign(z)--
z-x

contradicts the maximality of p* .

Now we show that Ip*()1 = IIp*11 cannot occur with ( E (-1,1). To
see this, assume, without loss of generality, that p* (() = IIp* II. Then the
polynomials

* ((-1 (+1)ql(X) := P -2- + -2-x (
(+1 (-1)and q2(X):= p* -2- + -2-x
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satisfy qj(l) = Ilqjll = IIp*ll, j = 1,2. Since p* E Pn(s) is extremal, the
Lebesgue measure m(stj ) of

stj := {x E [-1, 1J : Iqj(x)1 > I}

is at least s, otherwise qj + f with sufficiently small f > 0 contradicts the
maximality of p*. On the other hand,

1+( 1-(
-2- m(stI ) + -2- m(st2) = m ({x E [-1, IJ : p*(x) > I}) ~ s.

Hence m(stI) = m(st2 ) = s, which means that qj E Pn(s), j = 1,2,
are extremal polynomials attaining their uniform norm on [-1, 1] at 1.
It now follows from the first part of the proof that qI and q2 have all
their zeros in [-1,1]' which is impossible since the number of zeros of
qj, j = 1,2, in [-1,1] is equal to the number of zeros ofp* in [-1, () and in
«(, 1], respectively. This contradiction proves that Ip* «() I < IIp* II for every
(E (-1,1). Hence either p*(1) = ±llp*11 or p*(-I) = ±llp*ll·
Without loss of generality we may assume that p* (1) = IIp* II, otherwise

we consider ±p*(-x) E Pn(s). We now have

(5.1.2) p*(I) = IIp*11 > Ip*(x)l, -1 < x < 1,

and each zero of p* lies in [-1,1).

Next we prove that

(5.1.3) Ip*(x)1 ~ 1, -1 ~ x ~ 1 - s.

Assume to the contrary that for some -1 ~ (3 < (2 < (1 < 1,

{

Ip*(x)I>I, xEh:=«(I,I]
Ip*(x)1 ~ 1, x E 12 := [(2, (1]

Ip*(x)1 > 1, x E 13 := «(3, (2).

Let Xl, X2,··· , Xm be the zeros of p* in «(2, (1). Since all zeros of p* are in
[-1,1), we have m 2: 1, otherwise p*' would vanish at an x larger than the
largest zero of p*, which is a contradiction. The remaining n - m zeros of
p* lie in [-1, (3). We set

m

PI(X):= Il(x-Xj),
j=I

p*
P2:= -.

PI

The polynomial q(x) := PI(X + h)P2(X) with 0 < h < (2 - (3 has the
following properties:



230 5. Basic Inequalities

(1) If Ip*(x)/ ::; 1 for some x E [-1,(3], then Iq(x)1 ::; 1.

(2) For each x E 12 we have Iq(x - h)1 ::; Ip*(x)1 ::; 1.

(3) q(l) = Pl(1 + h)P2(1) > Pl(I)P2(1) = p*(I) = IIp*ll.
These properties show that q E Pn (s) contradicts the maximality of p* .

By E.2, among all polynomials P E Pn with Ilpll ::; 1, the Chebyshev
polynomial Tn increases fastest for x > 1. Hence, by a linear transformation,
we see that the four polynomials

p*(x) = ±Tn (±2X+ s)
2-s

are the only extremal polynomials. In particular,

IIp* II = Tn (~ ~ :) .

D

The next theorem establishes a Remez-type inequality for trigonomet­
ric polynomials. Throughout this section, as before, K := lR (mod 21r).

Theorem 5.1.2. The inequality

IltilK ::; exp(4ns)

holds for every t E Tn and s E (0, 1r/2] satisfying

(5.1.4)

The inequality

m({8 E [-1r,1r): It(8)1::; I}) 2 21r - S.

0- = 1 - cos(s/2), °< s < 21r,

also holds for every even t E Tn and s E (0,21r) satisfying (5.1.4), and
equality holds if and only if

t(8) = ±Tn (±2 cos 8 + 0-) ,
2-0- 0- = 1 - cos(s/2) .

Proof. We prove the second part first. Suppose t E Tn is even and satisfies
It(8)1 ::; 1 on K \ il with m(il) ::; s. Then the polynomial p E Pn defined
by t(8) := p(cos8) satisfies Ip(x)1 ::; 1 on [-1,1] \ il', where

il' := {x E [-1,1] : x = cos 8, 8 E il n [0, 1r]}.
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It is easy to see that m(Q/) ::; 1 - cos(s/2) =: (J, where equality holds if
and only if Q := [-s/2, s/2]. Hence, Theorem 5.1.1 implies that

where equality holds if and only if p is of the form given in the theorem.

The first part of the theorem can be easily obtained from the second
part as follows. Let t E Tn satisfy (5.1.4). Without loss of generality we
may assume that t(O) = IltilK. The polynomial

t(B) := ~(t(B) + t( -0)) E Tn

is even and
m( {B E [-1T, 1T) : It(B) I ::; I}) ;::: 21T - 2s .

Hence, the second part of the theorem yields that

where (J:= 1- coss = 2sin2(s/2) ::; 1 for every s E (0,1T/2]. Since

we have

T. (2+(J) < (1+,J2(;+(J/2)n < (1 "fE; z)nn 2-(J - 1-(J/2 - + (J+2(J
::; exp (n ("fE; + i(J)) ::; exp (n (s + is2))
::; exp(4ns)

for every s E (0, 1T /2J. Therefore

- (2+(J) 7IltilK = t(O) = t(O) ::; Tn 2 _ (J ::; exp (n (s + 4S2)) ::; exp(4ns)

for every s E (0, 1T /2]' and the theorem is proved. Note that we have proved
slightly more than we claimed in the statement of the theorem. That is,

for every t E Tn satisfying (5.1.4). o

We now prove the basic inequality that bounds the derivative of a
trigonometric polynomial in terms of its maximum modulus on the period
K.
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Theorem 5.1.3 (Bernstein-Szego Inequality). The inequality

() E K

holds for every t E Tn. Equality holds if and only if It(())1 = IltilK or t is of
the form t(T) = (3cos(m - ex) with ex, (3 E R

Proof. Assume that there are t E Tn and () E K such that IltllK < 1 and

(5.1.5)

For the sake of brevity let Tn,cr.(T) := cos(nT - ex). It is easy to see that
there exists an ex E K such that

(5.1.6) Tn ,cr. (()) = t(()) and sign(T~,cr.(())) = sign(t' (())) .

Since T~ cr.(())2 + n2T~ cr.(()) = n 2, (5.1.5) and (5.1.6) imply that, ,

It' (()) I > IT~,cr. (()) I and sign(T~,cr.(()) = sign(t' (())) .

Hence E.4 yields that 0 i- t - Tn,cr. E Tn has at least 2n + 2 distinct zeros in
K, which is a contradiction. To find all the extremal polynomials, see the
hint to E.5. 0

As a corollary of Theorem 5.1.3 we have 1Jt'IIK ::; nlltllK for every
t E Tn, and by induction on m we obtain the following theorem:

Theorem 5.1.4 (Bernstein's Inequality). The inequality

holds for every t E Tn.

Corollary 5.1.5. The inequality of Theorem 5.1.4 remains true for all
t E T';.

Proof. Choose ex E IR such that eicr.t(m) attains the value Ilt(m)IIK, say,
at () = T. Now t(()) := Re(eicr.t(())) E Tn and II~IK ::; IItIIK. On applying
Theorem 5.1.4 to t E Tn, we obtain

o

The above corollary implies the following algebraic polynomial version
of Bernstein's inequality on the unit disk.
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Corollary 5.1.6. The inequality

IIp'IID ::; n IlpliD

holds for every p E p~, where D := {z E C : Izi < I}.

Proof. If p E p~ then t(O) :~ p(eiT ) E T,~ and by Corollary 5.1.5 we have

Ip'(z)1 = 1- ie-iTt'(T)! ::; nlltllK = nllpllD'

The maximum principle (see E.l d] of Section 1.2) finishes the proof. 0

From Corollary 5.1.5, by the substitution x = COST, we get the alge­
braic polynomial case of Bernstein's inequality on [-1,1].

Theorem 5.1.7 (Bernstein's Inequality). The inequality

jp'(x)1 ::;~ Ilpll[-I,I] ,

holds for every p E P~.

-1 < x < 1

The next theorem improves the previous result if x is cl08e to ±1.

Theorem 5.1.8 (Markov's Inequality). The inequality

IIp'I/r-I,lJ ::; n 2 /lpll[_1,1]

holds for every pEPn'

A proof can be given as a simple combination of Theorem 5.1.7 and the
next theorem.

Theorem 5.1.9 (Schur's Inequality). The inequality

holds for every pEPn-l'

Proof. Let
Xk := cos (2k:;,.,I)7r , k = 1,2, ... ,n,

so the numbers Xk are the zeros of the Chebyshev polynomial

Tn(x) = cos(n arccos x) .
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Assume that p E Pn - l and IIp(x)v1 - x211[_1,1] ::; 1. If Iyl ::; X n , then

Now let Iyl E (Xn , 1]. Without loss of generality we may assume that
y E (xn ,I]. The Lagrange interpolation polynomial of apE Pn - l with
nodes Xl, X2, ... , X n is just p itself, hence E.6 of Section 1.1 yields

where we use the facts that

k = 1,2, ... ,n,

T~ is increasing on (xn,oo), and T~(I) = n 2
. o

Proof of Theorem 5.1.8. Let p E Pn . Then pI E Pn - l and Theorems 5.1.4
and 5.1.9 yield

and the theorem is proved. o

Comments, Exercises, and Examples.

Every result of this section was proved by the person it is named after; see
Remez [36], Bernstein [12]' Szego [28] or [82], A. A. Markov [1889]' Schur
[19], and M. Riesz [14]. However, earlier less complete versions of these basic
polynomial inequalities also appear in the literature. Some of the proofs
were simplified later. For example, in the proof of Theorem 5.1.1 we followed
the method given in Erdelyi [89b], while in the proof of Theorem 5.1.8 a
method of P6lya and Szego [76] is used. Theorem 5.1.3 is also obtained in
Corput and Schaake [35], however, it follows from an earlier result of Szego
[28]. Theorem 5.1.2 was established in Erdelyi [92a] in a slightly weaker
form. Various extensions of the inequalities of this section are discussed in
Sections 5.2 to 7.2 and in the appendices. Rahman and Schmeisser [83] also



5.1 Classical Polynomial Inequalities 235

offers a collection of Markov- and Bernstein-type inequalities. Some further
classical inequalities are in E.5 of Appendix 3.

An interesting extension of Markov's inequality is due to Bojanov [82a].
It states that

IIp'liLq[-l,l] :::; IIT~ljLq[-l,lJllpll[-l,lJ

for every p E Pn and q E [1. 00], where Tn is the Chebyshev polynomial of
degree n as in (2.1.1).

The following result is due to Szego [25]. The inequality

Ip'(O)1 :::; cnz"llpllDa
holds for every p E P~, where c is an absolute constant and

D" := {z E C : Izi :::; 1, Iarg(z)1 :::; 1r(1 - an, aE(O,I].

Throughout the exercises Tn denotes the Chebyshev polynomial of
degree n as defined by (2.1.1).

E.1 A Detail in the Proof of Theorem 5.1.1. Show that the sets Pn(s)
defined by (5.1.1) are compact in the uniform norm on [-1,1] for every
fixed n E Nand S E (0,2).

E.2 Chebyshev's Inequality. Prove that

jp(Y)I:::; ITn(y)\·lIpll[-l,l], Y E IR \ [-1,1]

for every p E Pn , and equality holds if and only if p = cTn for some c E R

Extend the above inequality to every p E P~ and find all p E P~ for
which equality holds.

Hint: If p E Pn , Ilpll[-l,l] = 1, and Ip(y)1 > ITn(y)1 for some y E IR \ [-1, 1],
then with A:= Tn(y)p(y)-l E [-1,1]' the polynomial AP - Tn E Pn has at
least n + 1 zeros (counting multiplicities). D

E.3 Trigonometric Chebyshev Polynomials on Subintervals of K.

a] For n E Nand w E (0, 1r), let

Qn,w(B) := Tzn (:::~j~D .
Show that Qn,w E Tn attains the values ±IIQn,wll[-w,w] = ±1 with alternat­
ing sign 2n + 1 times on [-w,w].

b] Prove that

\t(B)I:::; Qn,w(B)lltll[-w,wj, BE K\ [-w,w]
for every t E Tn, and for every fixed B E K \ [-w,w]. Equality holds if and
only if p = cQn,w for some c E R

c] Show that there exist absolute constants Cl > 0 and Cz > 0 such that
~ exp(cln(1r - w)) :::; IIQn,wIIK = Qn,w(1r) :::; exp(c2n(1r - w)).
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E.4 A Zero Counting Lemma. Let 0 E K be fixed. Suppose j and g are
continuous junctions on K := JR (mod 211'), differentiable at a fixed 0 E K,
and suppose j and g have the properties

(1) IljilK = 1, IlgliK < 1,
(2) there are -11' S Xl < X2 < ... < X2n < 11' so that j(Xj) = (-l)j,

(3) j(O)) = g(O), Ig'(O)1 > 1f'(O)I, and sign(g'(O) = sign(j'(O)).

Then j - g has at least 2n + 2 distinct zeros on K.

E.5 Sharpness of Theorem 5.1.3. Let 0 E K be fixed. Suppose t E Tn and

t'(0)2 + n 2t2(0) = n211tll~.

Show that either It(O)1 = IltilK or t is of the form

t(T) = (3cos(m - a), 00,(3 E JR.

Hint: Suppose IItllK = 1 and It(O)1 < 1. Choose a E K such that (5.1.6)
is satisfied and show that t - Tn,a. E Tn has at least 2n + 2 zeros on K
(counting multiplicities). D

E.6 Sharpness of Theorem 5.1.4. Show that Theorem 5.1.4 is sharp and
equality holds if and only if t is of the form

t(T) = (3cos(m - a), a, (3 E JR.

E.7 Sharpness of Corollary 5.1.6. Show that Corollary 5.1.5 is sharp and
equality holds if and only if p is of the form p(z) = czn , c E C.

E.8 Sharpness of Theorem 5.1.7. Show that for a fixed integer n 2: 1,
Theorem 5.1.7 is sharp if and only if x is a zero of the Chebyshev polynomial
Tn' that is,

(2k-I)7r
x=cos~,

and p = cTn for some c E R

k = 1,2, ... ,n,

E.9 Sharpness of Theorem 5.1.9. Show that Theorem 5.1.9 is sharp and
equality holds if and only if p = cUn for some c E JR, where Un is the
Chebyshev polynomial of the second kind defined in E.10 of Section 2.1.

E.I0 Sharpness of Theorem 5.1.8. Show that Theorem 5.1.8 is sharp and
equality holds if and only if p = cTn for some c E R

E.l1 A Property of the Zeros of t E Tn" Let 0 E K be fixed. Show that
every t E Tn has at most

zeros (counting multiplicities) in the interval [0 - r, 0 + rJ, r > O.
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Proof. Assume that t E Tn has m > M zeros in [8 - r, 8 + r]. Interpolate t
at these m zeros by a Hermite interpolation polynomial of degree at most
m - 1 (see E.7 of Section 1.1). This gives the identically zero polynomial.
The formula for the remainder term of the Hermite interpolation polyno­
mial and Theorem 5.1.4 (Bernstein's inequality) yield that there exists a
( E (8 - r, 8 + r) such that

which is impossible. o

E.12 A Property of the Zeros of apE Pn • Show that every p E Pn has
at most

M:= ~nvrlp(1)I-lllplll-I,I]

zeros (counting multiplicities) in [1- r, 1], r > O.
Hint: Use the substitution x = cos 7, E.n, and the inequality

cosr < 1- 1r 2
4 '

O<r::;2.

o

E.13 Riesz's Lemma.

a] Suppose t E Tn and t(a) = IltilK = 1 for some a E K. Then

t(8) 2: cos(n(8 - a)), 8 E [a- 2:,a+ 2
71J '

and equality holds for a fixed e E [a - ;,." a + 271"n] if and only if t is
of the form t(7) = cos(n(7 - a)). In particular, t does not vanish in
(a- 2:,a+ 2:)·

Hint: If this were false, then

q(7) := t(r) - cos(n(r - a))

would have more than 2n zeros on K (counting multiplicities). 0

b] Suppose p E Pn and p(l) = IlpIIl-I,I] = 1. Then that

p(x) 2: Tn(x), x E [cos 271"n' 1] ,

and equality holds for a fixed x E [cos 2: '1] if and only if p = Tn, where Tn
is the Chebyshev polynomial of degree n as defined by (2.1.1). In particular,
p does not vanish in (cos 2:' 1] .
The next two exercises follows Erdelyi [88] and Erdelyi and Szabados

[8gb].
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E.14 A Markov-Type Inequality for Trigonometric Polynomials on [-w,wJ.
Show that there exists a constant °< c :::; 161T such that

for every s E Tn and wE (0,1T].

Proof. If 1T - W > (2n)-1, then

(3tan2(w/2) + 1)1/2 < 8n,

and E.19 c] gives the result. If 1T - W :::; (2n)-1, then Theorem 5.1.4 (Bern­
stein's inequality) combined with the Mean Value Theorem yields

Ilsll[-71",71"1 :::; Ilsll[-w,wJ + (1T - w)n IIsll[-71",71"J,

and hence

Ilsll[-w,wJ 2: (1 - n(1T - w)) Ilsll[-71",71"J

for every s E Tn. Therefore, using Theorem 5.1.4 (Bernstein's inequality)
and 1T - W :::; (2n)-1, we get

Ils'II[-w,wJ :::; Ils'II[-71",71"J :::; n Il s ll[-71",71"J

:::; 1 _ n~ _ w) II s ll[-w,wJ :::; (n + 2(1T - w)n
2
)ll s ll[_w,wj

for every s E Tn. o

E.15 Schur-Type Inequality for Tn on [-w, w]. Let wE (0, 21T]. Show that

2n + 1 II 1 1/211
Ilsll[-w,wJ :::; sin(w/2) SeT) (2"(COST - cosw)) [-w,wJ

for every s E Tn, and equality holds if and only if s is of the form

. [(2 1) sin(T/2)]sm n + arccos sin(w/2)
SeT) = C ,

(COST - cosw)l/2
c E JR.

Note that the right-hand side of the above is an element of Tn·

Hint: Define 2n + 1 distinct points in (-w, w) by

(
W k1T)

Tk := 2 arcsin sin "2 sin 2n + 1 ' k=O,±I, ... ,±n.

Distinguish two cases in estimating ISn(B)1 for B E [-w,w].
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Case 1: 181:'::: ITnl. Use the inequality

1 sin2 (w/2)
"2 (cos 8 - cosw) > (2n + 1)2

to get the desired result.

Case 2: Tn < 181 :'::: w. Let

Let n EN, w E (0,7T], and 8 E [-W, -Tn) U (Tn, w] be fixed. Show that there
is an Sn E Tn such that

Show by a variational method that sn is of the form

. [(2 1) Sill(T/2)]sm n + arccos --,---(/2)
_ ( ) sm w
Sn T = C /'

(COST - cosw)l 2
C E lR..

D

E.16 Another Proof of Schur's Inequality.

a] Prove Theorem 5.1.9 (Schur's inequality) by using the method given in
the hint to E.15.

b] Prove the result of E.15 by using interpolation, as in the proof of The­
orem 5.1.9.

Proof. See Erdelyi and Szabados [89b].

E.17 Growth of Polynomials in the Complex Plane. Let

D

D := {z E C : Izi < I}

a] Show that

and De := {z E C : Izi < o}·

Ip(z)1 :'::: Izln IlpiiD
for every p E p~ and z E C \ D.

Find all p E p~ for which equality holds.

Hint: Apply the maximum principle (see E.l d] of Section 1.2) with D and

q(z) := znp(z-l) E P~.

D
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h] Show that the transformation z = M(w) := ~(w+w- l ) can be written
as

wherez=x+iy, x,yE~ and w=oei8 , 0>0, BEK.

c] For 0 > 0, let EI] be the image of the circle oDI] under M. Show that
EI] is the ellipse

Furthermore, EI] = EI]-l, and E I is the interval [-1,1] covered twice.

d] Show that
jp(z)1 :::; On Ilplll-I,I]

for every PEP;", z EEl], 0> 1.

Proof. Applying the maximum principle (see E.l d] of Section 1.2) with
D = D I and

we obtain
IQ(w)1 :::; IIQIID1 = Ilplll-I,I]'

This, together with part c], yields

o

e] Show that there exists an absolute constant c such that

Ip(z)1 :::; c Ilpll-I,I]'

whenever

P E P~

z = x + iy, x, Y E ~,

(11- x 2 1+:= max{l- x 2 ,0}).

Hint: Use part d]. 0

f] Prove the following Markov-Bernstein inequality. There is a constant
c(m) depending only on m such that

IpCml(x)1 :::; c(m) (min {n2
,~})mIlpll[-I,I]

for every PEP;" and x E [-1,1].
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Hint: Use part e] and Cauchy's integral formula (see E.l a] of Section 1.2).
o

Bernstein established Theorem 5.1.4 in order to prove inverse theorems
of approximation. Bernstein's method is presented in the proof of the next
exercise, which is one of the simplest cases. However, several other inverse
theorems of approximation can be proved by straightforward modifications
of the proof of this exercise. That is why Bernstein- and Markov-type in­
equalities playa significant role in approximation theory. Direct and inverse
theorems of approximation and related matters may be found in many
books on approximation theory, ihcluding Cheney [66], Lorentz [86a], and
DeVore and Lorentz [93].

E.18 An Inverse Theorem of Approximation. Let Lipe" 0: E (0,1], denote
the family of all real-valued functions g defined on K satisfying

sup {Ig(x) - g(y)1 : x =!= y E K} < 00.
Ix - yle>

For f E C(K), let

En(f) := inf{llt - filK : t E Tn}.

An example for a direct theorem of approximation is stated in part a]. Part
b] deals with its inverse result.

al Suppose f is m times differentiable on K and f(m) E Lipe> for some
0: E (0,1]. Then there is a constant C depending only on f so that

n = 1,2, ....

Proof. See, for example, Lorentz [86a]. 0

hI Suppose m is a nonnegative integer, 0: E (0,1), and f E C(K). Suppose
there is a constant C > °depending only on f such that

n = 1,2, ....

Then f is m times continuously differentiable on K and f(m) E Lipe>'

Outline. We show only that f is m times continuously differentiable on
K. The rest can be proved similarly, but its proof requires more technical
details. See, for example, Lorentz [86a].

For each kEN, let Q2k E yZk be chosen so that
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Then

Now
00

f(B) = Q2o(B) + L(Q2k+1 - Q2k)(B),
k=l

and by Theorem 5.1.4 (Bernstein's inequality)

BE K,

IQWI + 1~(Q2k+l - Q2k)(j)(B)1

00

< IIQIIIK +L(2k+1nIQ2k+1 - Q2 k liK
k=l
00

< IIQIIIK + L(2k + 1 )j2C2- k (m+a)

k=l
00

< IIQIIIK + 2J+1CL(2j- m
-

a )k < 00
k=l

for every B E K and j = 0,1, ... ,m, since a > O. Now we can conclude
that f(j) (B) exists and

00

f(j)(B) = Q~j)(B) + L(Q2k+1 - Q2k)(j)(B)
k=l

for every B E K and j = 0,1, ... ,m. The fact that f(m) E C(K) can be
seen by the Weierstrass M-test. 0

The next exercise follows Videnskii [60].

E.19 Videnskii's Inequalities. The main results of this exercise are the
Bernstein- (part bJ) and Markov-type (part cJ) inequalities for trigonometric
polynomials on an interval shorter than the period.

Let W E (0,7r),

( (
sin(B/2)))tn(B) := Qn,w(B) = cos 2narccos sin(w/2) ,

and
. ( (sin(B/2)))un(B) :=sm 2narccos sin(w/2)

a] Recall that tn E Tn by E.3 a].
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b] Show that

Is~(B)1 ::; It~(B) + iu~(B)lllsnll[-w,wl

(
COS2(W/2))-1/2

= n 1 - cos2 (B/2) Ilsnll[-w,w]

for every Sn E Tn and B E (-w, w). Equality holds if and only if Sn = ctn
for some c E lR and sn(B) = 0.

Hint: First show that for every n EN, w E (0, 7l'], and B E [-w, w], there
exists an s E Tn such that

Is'(B)1 Is~(B)1
~,---'---'--'- = max -::-,-~---'--'--

Ilsll[-w,w] snETn Ilsnll[-w,w]

Use a variational method to show that either

Ilsnll[-w,w] = Ilsnll[-n,n]

or there exist a E (-7l', -w] and fJ E [w,7l') such that sn = cTn for some
c E lR, where, as in Section 3.3,

Tn := Tn{l, cosr, sinr, ... ,cosnr, sinnr; [a,fJ]}

is the Chebyshev polynomial for Tn on [a, fJ]. In the first case use Theorem
5.1.4 (Bernstein's inequality). In the second case observe that

T ( ) = (sin((r -,)/2))
n r tn sin(w/2)

with
and w:=~(fJ-a).

o
c] Show that if 2n > (3tan2 (w/2) + 1)1/ 2, then

Ils~II[-w,w] ::; t~(w)llsnll[-w,w] = 2n2 cot(w/2)ll snll[_w,w]

for every Sn E 7,,, and equality holds if and only if Sn = ctn, c E R

Outline. Let -w = ~o < 6 < ... < 6n = w be the points where

j = 0,1, ... ,2n

and
j = 1,2, ... ,2n - 1,
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and let 01 < O2 < ... < 02n be the zeros oftn (which lie in (-w,w)). Note
that

j = 1,2, ... ,2n.

Step 1. Show that 2n > (3tan2(w/2) + 1)1/2 implies t~(O) > 0 for every
oE [6n-1,W], so t~ is increasing on [6n-1'W].

Step 2. Use part b] to show that if 0 E [01 , 02n], then

Step 3. Deduce from Steps 1 and 2 that

oE (-w,w).

Step 4. Show that there is an S E Tn such that

Ils~II[-w,w] Ils/II[-w,w]=.:..::...c.----'---'- = max .
IISnll[-w,w] sETn Ilsll[-w,w)

For the rest of the proof let sn be normalized by Iisil [-w,w]

0* E [-w,w] be chosen so that

Is~(O*)1 = Ils~(O)II[-w.w].

1 and let

Let (a1 < a2 < ... < am) be an alternation sequence of maximal length for
sn E C[-w,w] on [-w,w]. We would like to show that m = 2n+ 1. Clearly
m < 2n+2.

Step 5. Use a variational method to show that 2n ::; m.

Step 6. Use a variational method to show that 0* = ±w implies m = 2n+ 1,
so m = 2n implies 0* E (-w, w).

Step 7. Show by a variational method that

for every Sn E Tn, and equality holds if and only if 8 n = ctn , c E lR. In
particular, if m = 2n, then

Is~(±w)1 < It~(±w)l·

Step 8. Use part b] and Step 3 to show that

Step 9. Use part b] to show that m = 2n implies
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j = 1,2, ... ,2n.

Step 10. Suppose m = 2n. Use Steps 6 and 8 to show that

0* E (-w, 0d U (02n, w) .

Step 11. Suppose m = 2n. Use the defining property of sn and Steps 1
and 10 to show that

Is~(O*)1 = Ils~II[-w,wJ ~ It~(±w)1 > It~(O*)I·

Step 12. Suppose m = 2n and s~(O*) ~ O. Use Steps 7 to 11 to show that
t~ - sin has at least 2n + 1 distinct zeros in (-w,w), a contradiction.

Step 13. Show that m = 2n + 1 and sn = ±tn. 0

E.20 Inequalities for Entire Functions of Exponential Type. Entire func­
tions of (exponential) type T are defined in E.17 of Section 4.2. Denote by
Er the set of all entire functions of exponential type at most T. This exercise
collects some of the interesting inequalities known for Er . Since a trigono­
metric polynomial of degree n belongs to En, these results can be viewed as
extensions of the corresponding inequalities for trigonometric polynomials.
More on various inequalities for entire functions of exponential type may
be found in Rahman and Schmeisser [83].

a] Bernstein's Inequality. The inequality

11f'IIIR :S T IlfiIIR, xEJR

holds for every f E E r .

Proof. See Bernstein [23] or Rahman and Schmeisser [83]. 0

b] Extension of the Bernstein-Szego Inequality. The inequality

xEJR

holds for every f E E r taking real values on the real line.

Proof. See Duffin and Schaeffer [37].

c] The Growth of f E E r • The inequality

o

If(x + iy)1 :::; eT1Y111f11IR,

holds for every f E E r .

Proof. See Rahman and Schmeisser [83].

x, Y E JR

o
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d] The Growth of f E E r Taking Real Values on JR. The inequality

If(x + iy)1 :::; (cosh TY) 11f111R, x, Y E IR

holds for every f E E r taking real v~lues on the real line.

Proof. See Schaeffer and Duffin [38]. 0

e] Bernstein-Type Inequality in L p • Let p E (0,00). The inequality

holds for every f E E r .

Proof. See Rahman and Schmeisser [90]. o

E.21 Markov-Type Inequality on Connected Subsets of the Complex
Plane. Let E be a connected compact set of the complex plane. Then

for every p E P~.

Proof. See Pommerenke [59c]. 0

Erdos conjectured that the constant ~ in the above inequality can be
replaced by ~. This result would contain Theorem 5.1.8 (Markov's inequal­
ity) as a special case. However, Rassias, Rassias, and Rassias [77] disproved
the conjecture. Erdos still speculates that ~ in Pommerenke's inequality
may be replaced by ~(1 + 0(1)).

The result of the next exercise is formulated so that its proof is ele­
mentary at the expense of precision and generality.

E.22 The Interval where the Sup Norm of a Weighted Polynomial Lives.
Suppose w = exp( -Q), where

(1) Q: IR ~ IR is continuous and even,

(2) Q' is continuous and positive in (0,00),

(3) tQ'(t) is increasing in (0,00), and

(4) lim tQ'(t) = 0 and lim tQ'(t) = 00.
t->O+ t->oo

Let an > 0 be chosen so that

a] Show that

and
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b] Show that

for every p E P~.

Proof. Using Chebyshev's inequality (see E.2 of Section 5.1) and the explicit
form (2.1.1) of the Chebyshev polynomial Tn, we can deduce that

for every p E p~, x E JR \ [-a, a], and a > 0. Choosing a := an, and using
the fact that w is decreasing on [0,(0), we obtain

for every p E p~ and x E JR \ [-an, an]. Now if x E JR \ [-2a2n, 2a2n], then

Ixlnw(x) (1 1X1
d )n ( ):::; exp -d log(tnw(t)) dt

anwan an t

(lIX' n - tQ'(t) )= exp dt
an t

(1
2a2n

n - 2n )
:::; exp a2n --t- dt = 2-

n
,

where we used a2n ~ an, tQ'(t) ~ 2n for t ~ a2n, and tQ'(t) ~ n for t ~ an'
Combining the above inequality with the previous one, we obtain that

for every p E p~, from which the result follows. o

c] Let Q(x) := Ixle>, a> O. Show that Q satisfies the assumptions of the
exercise, and

_(!!:) l/e>an - .
a

The idea of infinite-finite range inequalities, of which E.22 b] is an
example, goes back to Freud (an is the Freud number); see Nevai's survey
paper [86]. The sharp form of these is due to Mhaskar and Saff [85]; see
also Lubinsky and Saff [88] and Saff and Totik [to appear]. They are not
that difficult to prove, but need the maximum principle for subharmonic
functions.
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E.23 A Theorem of Markov. Let Tn be the Chebyshev polynomial of
degree n defined by (2.1.1). Then

n

Tn(x) = L Ck,n Xk .
k=O

The Markov numbers Mk,n, 0:::; k :::; n, are defined by

M
k

:= { ICk,nl if k == n (mod 2)
,n ICk,n-11 if k == n - 1 (mod 2).

These can be explicitly computed from (2.1.1).

a] The inequalities
lak,nl :::; Mk,n IIpll[-I,I]

hold for every pEPn of the form

n

p(x) = Lak,nXk,
k=O

Proof. See, for example, Natanson [64J.

h] Show that

ak,n E JR.

D

Ip'(O)1 :::; (2n - 1) IIpll[-I,I]

for every p E P2n .

Hint: Use part aJ.

e] Show that

D

2n -1
Ip'(x)1 :::; 1 _lxiI/pilI-I,ll

for every p E P2n and x E (-1,1).

Hint: Use part b] and a linear transformation. D

Of course, part c] gives a better result than Theorem 5.1.7 (Bernstein's
Inequality) only if x is very close to O. This is exactly the case we need in
our application of part cJ in E.4 cJ of Section 6.1.

5.2 Markov's Inequality for Higher Derivatives

From Theorem 5.1.8 (Markov's Inequality), by induction on m it follows
that

IIp(m)II[-I,11 :::; (n(n - 1)··· (n - m + 1))21Ipll[_I,lj

for every p E Pn .
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However, this is not the best possible result. The main result of this
section is the following inequality of Duffin and Schaeffer [41], which gives
a sharp improvement of the above. E.2 d] extends the following result to
polynomials with complex coefficients:

Theorem 5.2.1. If p E Pn satisfies

j = 0, 1, ... ,n,

then for every m = 1,2, .. . ,n,

XE[-I,I], YEIR,

where Tn is the Chebyshev polynomial of degree n defined by (2.1.1). Equal­
ity can occur only if p = ±Tn .

To prove this inequality we need three lemmas, which are of some
interest in their own right.

Lemma 5.2.2. Suppose AI, A2, ... , An are distinct real numbers,

n

q(z):= c II(z - Aj),
j=1

and PEP:;' satisfies

Then, for every mEN,

O:j=CEIR,

j = 1,2, ... ,n.

(5.2.1)

whenever x is a zero of q(m-1).

Proof. For m = 1, inequality (5.2.1) is simply a restatement of the assump­
tion of the lemma, so consider the case m = 2. The Lagrange interpolation
formula (see E.6 of Section 1.1) gives

(5.2.2) p'(z) _ ~p'(Aj)_I_ _~~
q(z) - L..J q'(A) z - A - L..J z - A '

J=l J J J=l J

where, by the hypotheses of the lemma, 18j I :::; 1. There is a similar expres­
sion for q'(z)jq(z) in which each 8j is equal to 1. On differentiating (5.2.2),
we obtain

p"(Z)q(Z) - p'(z)q'(z) __~ 8j
q(z)2 - ~ (z - Aj)2 .
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Thus at the points x where q'(x) = 0 we have

and it follows that the lemma is true for m = 2.
The proof for m > 2 is by induction. Let IpCm)(x)1 :S IqCm)(x)1 at

the zeros of qCm-1) (which are real and distinct). Applying the previous
argument to pCm) and qCm) instead of p' and q', we obtain

at the zeros of qCm). This completes the induction. D

Lemma 5.2.3. Let q E Pn have n distinct zeros in (-00, b), and suppose
that in a strip of the complex plane it satisfies the inequality

(5.2.3) Iq(x+iy)l:S Iq(b+iy)l, x E [a, b], y E lR.

Suppose also that p' E Pn - 1 satisfies

(5.2.4) Ip'(x)1 :S Iq'(x)1

whenever x is a zero of q. Then the derivatives of p and q satisfy

(5.2.5) x E [a, b] , y E lR.

Proof. First we show that at every point Xo + iyo in the strip

Let
n

q(z):=cII(z-Aj),
j=1

oy!o c E lR, Aj E (-oo,b).

Let h(z) be another polynomial with the same leading coefficient as q and
whose zeros are obtained by reflecting about Xo those zeros of q that lie to
the right of xo. Thus

n

h(z) := c II (z - (3j),
j=1

where

(5.2.6)
if Aj > Xo

if Aj :S Xo .
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Then on the line z = Xo + iy, y E JR., we have Iz - ,6jl = Iz - Ajl, so

(5.2.7)

We now show that

(5.2.8)

Note that

(5.2.9)

Ih(xo + iy)1 = Iq(xo + iy)l·

Ip'(xo + iYo)1 :s: Ih'(xo + iYo)l·

h'(z) _ n _1_
h(z) - L z-,6·'

J=l J

and recalling (5.2.2), we have

(5.2.10)
p'(z) _~~
q(z) - ~ z - A

J=l J

with 8j E [-1,1] for each j. Comparing the right-hand sides of (5.2.9) and
(5.2.10), respectively, at z = Xo + iyo, we obtain

< ~ Xo - ,6j .~ Yo
~ (xo - ,6.)2 + y2 - Z~ (xo _ ,6)2 + y2
J=l J a J=l J a

n 1

= L Xo - ,6. + iyo
J=l J

since by construction Ixo - Ajl = Xo - ,6j. Therefore

I
p'(XO + iyo) I < Ih'(xo + iyo) I
q(xo + iyo) - h(xo + iyo) ,

and (5.2.7) yields (5.2.8).

Let a E <C, lal < 1, be an arbitrary constant and let

<p(z) := q(z) - ah(z + Xo - b).

Let T be the simple closed curve consisting of a segment of the line
z = b + iy, y E JR., and the portion of a circle with center at b and ra­
dius {} that lies to the right of this line. Relations (5.2.3) and (5.2.7) show
that on the line segment of T,
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Iq(z)1 > lah(z+xo-b)l·

If (J is sufficiently large, the same inequality is true for the circular portion
of r since q and h have the same leading coefficient. Thus Rouche's theorem
gives that <p and h have the same number of zeros inside r. We conclude
that <p has no zeros on or to the right of the line z = b + iy, y E JR. The
last statement, together with Theorem 1.3.1, implies that <p' has no zeros
on the line z = b+ iy, y E R Thus for lal < 1,

q'(b + iyo) - ah'(xo + iyo) =1= 0,

which, together with (5.2.8), yields

Ip'(xo + iYo)1 ::::: Ih'(xo + iYo)1 ::::: Iq'(b + iYo)l·

This proves the lemma for m = 1.
We turn now to the case m > 1. Applying the lemma with m = 1 when

p = q, we have

Iq'(x + iy)1 ::::: Iq'(b + iy)l, x E [a, b] , y E JR.

Thus q' satisfies all the requirements that are imposed on the interpolating
polynomial q (with n replaced by n - 1) in the lemma, and by Lemma
5.2.2, Ip"(x)1 ::::: Iq"(x)1 at the n-l zeros of q'. Applying the lemma to p'(x)
instead of p in the case m = 1, for which it has already been proved, we
have

Ip"(x + iy)1 ::::: Iq"(b + iy)l, x E [a, b], y E JR,

which proves that inequality (5.2.5) is true for m = 2. Repetition of this
argument completes the proof for larger values of m. 0

Lemma 5.2.4. Suppose PEP:'; and Ip(Aj ) I ::::: 1 for

Then

Aj := cos t;f , j = 0,1, ... ,no

for Xk:= cos (2k:;n1)7r, k = 0, 1, ... ,n.

For every fixed k, equality holds if and only if p = eTn for some e E C with

lei = 1.

Proof. Let
n

f(x) = (1 - x2)T~(x) = a II (x - cos t;f) .
j=O
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Then by the differential equation for Tn (see E.3 e] of Section 2.1), we have

J'(x) = -xT~(x) - n2Tn(x) .

Differentiating the Lagrange interpolation formula for P (see E.6 of Section
1.1) gives

'( ) = ~ p()..j) (x - )..j)f'(x) - f(x)
P x L f'()".) (x _ ).. .)2 .

J=O J J

For the zeros of Tn, this reduces to

(5.2.11) '( ) = -T'( )~ p()..j) (1- x)..j)
P x n X L f'()..) (x _ ).. .)2

J=O J J

(5.2.12)

since at these points

(x - )"j)J'(x) - f(x) = -x(x - )..j)T~(x) - (1 - x2)T~(x)

= -(1 - x)..j)T~(x).

In the same way, we obtain for the zeros of Tn,

T'( )=-T'( )~Tn()..j)(I-x)..j)
n X n X L f'()..) (x _ )..)2

J=O J J

and since Tn()..j) and f'()..j) are of opposite sign (f'()..j) = -n2Tn()..j)), this
gives

,() ,( )~ I 1 I (1 - x)..j)
Tn X = Tn X f::o f'()..j) (x _ )..j)2 .

Since Ip()..j)j :::::: 1 in (5.2.11), on comparing (5.2.11) and (5.2.12), we obtain
for every zero x of Tn that

n
Ip'(x)1 :::::: IT~(x)1 = Vf=X2'

1- x 2

For a fixed zero of Tn, the equality occurs if and only if

p()..j) = eTn()..j) , j=O,I, ... ,n

for some eE C, lei = 1, that is, if and only if P = eTn for some eE C with
lei = 1. 0

Proof of Theorem 5.2.1. Suppose P i= Tn satisfies the assumption of the
theorem. Then by Lemma 5.2.4 there exists a constant 0: > 1 such that
100p'(x)1 :::::: IT~(x)1 at the zeros of Tn. Applying Lemma 5.2.3 with p and q
replaced by o:p and Tn (assumption (5.2.3) is satisfied with [a, b] := [-1, 1J
by E.l bJ), we obtain

IpCm) (x + iy)1 :::::: o:-IIT~m)(1 + iY)I, x E [-1, IJ, y E lR

for every m = 1,2, ... ,n. If p = Tn, then we have the same inequality with
0:- 1 replaced by 1. 0
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Comments, Exercises, and Examples.

The inequality

was first proved by V. A. Markov [16]. He was the brother of the more
famous A. A. Markov who proved the above inequality for m = 1 in [1889]
(see Theorem 5.1.8). However, their ingenious proofs are rather compli­
cated. Bernstein presented a shorter variational proof of V. A. Markov's
inequality in 1938 (see Bernstein [58], which includes a complete list of
Bernstein's publications). Our discussion in this section follows Duffin and
Schaeffer [41].

E.1 A Property of Chebyshev Polynomials.

a] Let (ai)T~l be a sequence of 2n nonnegative numbers, and let (aD be
a rearrangement of this sequence according to magnitude,

Show that for every y 2: 0,

(5.2.13)

is not greater than

Proof. If al and a3 are at least as large as any of the remaining numbers
ai, then

This shows that the numbers ai in (5.2.13) can be rearranged so that the
two largest occur in the same factor without decreasing (5.2.13). Then the
two largest of the remaining numbers ai may be brought into the same
factor without decreasing (5.2.13), and so on. 0

hI Show that the Chebyshev polynomials Tn defined by (2.1.1) satisfy the
inequality

XE[-I,I], yElR.

Proof. We have

n

ITn(x + iyW = c2 II ((x - cos (}j)2 + y2),
j=l
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where ej = C2 j :;nl )7r and c = 2n- l . With x = cos ewe write
n

ITn(x + iy)12 = c2II0leiO - e-
iOj

1
2
1eiO _ e

iOj 1
2+ y2).

j=l

Geometrically, e±iOj, j = 1,2, ... ,n, represent 2n points equally dis­
tributed on the unit circle. Connect these points by chords to the point
e iO . Then the lengths of these 2n chords are given by leiO - e±iOj I. If e is
increased or decreased by any multiple of ~, we obtain a new set of chords,
but the aggregate of their lengths is unchanged. Choose 'P such that

If x* = cos 'P, then

n

Tn(x* + iy) = c2II (~ lei'P - e- iOj 121ei'P _ e iOj
1
2+ y2) ,

j=l

where the numbers lei'P - e±iOj 1
2 are simply a rearrangement of the numbers

leiO - e±iOj 12 . Use part a] to show that

Note that cose l :::; x* :::; 1, where cosel is the right most zero of Tn. Hence

and the proof is finished. D

E.2 Markov's Inequality for Higher Derivatives for p:,;.
a] Show that if p and q satisfy the conditions of Lemma 5.2.3 with p E Pn

replaced by PEP:';, then

x E [a,b]

for every mEN.

Hint: After differentiating (5.2.2) m - 1 times, we obtain

pCm) (x) =~ o. d
m

-
l
(~),

L.J J dxm - l x _ A·
j=l J

where 10j 1 = Ip' (Aj) / q' (Aj) 1 :::; 1. It is evident that if x E (a, b) is fixed, then
IpCm)(x)1 attains its maximum when OJ = ±1 for each j, in which case pi
has real coefficients. Now use Lemma 5.2.3. D
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b] Show that if p satisfies the assumption of Theorem 5.2.1 with p E Pn

replaced by p E P~, then

for every mEN. The equality can hold only if p = eTn for some e E C,
lei = 1.

Hint: Modify the proof of Theorem 5.2.1 by using part a].

e] Show that

(m) _ n2 (n2 - 1)(n2 - 22) ... (n2 - (m - 1)2)
Tn (1)- 1.3.5 ... (2m-l) .

o

Hint: Differentiating the second-order differential equation for Tn (see E.3
e] of Section 2.1) m - 1 times gives

from which
(2m + 1) T~m+I)(l) = (n2 - m 2 ) T~m)(l)

follows. Use induction and Tn (1) = 1 to finish the proof.
d] The Main Inequality. Suppose p E P~ satisfies

Ip(cos~)I::; 1, j = 1,2, ... ,no

Show that for m = 1,2, ... ,n,

o

and the equality can occur only if p = eTn for some eE C, lei = 1.
Hint: Combine parts c] and b]. 0

A slightly weaker version of Markov's inequality for higher derivatives
is much easier to prove.

E.3 A Weaker Version of Markov's Inequality. Show that

for every p E Pn .

Hint: First show by a variational method that the extremal problem

Ip'(±I)1
max

O'!-pEPn Ilpll [-I,IJ
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is solved by the Chebyshev polynomial Tn, hence

Ip'(±I)1 :::; n21Ipll[_1,1] .

Then, by using a linear transformation, show that

-1:::; y:::; 0

and

Hence the inequality of the exercise is proved when m = 1. For larger values
of m use induction. D

E.4 Weighted Bernstein and Markov Inequalities. Let w E C[-I, IJ be
strictly positive on [-1, 1J.

aJ Show that for every E> 0 there exists an no depending on Eand w such
that .

IIp'(x)w(x)~II[_l,l] :::; n(1 + E)llpwll[-l,l]

for every p E Pn , n 2: no·

Proof. By the Weierstrass approximation theorem, for every ry > 0 there is
a q E Pk such that

w(x) :::; q(x) :::; (1 + ry)w(x) , XE[-I,IJ.

L'et m := min{w(x) : x E [-1, I]}. Applying Theorem 5.1.7 (Bernstein's
inequality) to pq E Pn+k and then to q E Pk, we obtain

Ip'(x)w(x)~1 :::; Ip'(x)q(xhh - x21
:::; l(pq)'(x)~1 + Ip(x)q'(x)~1

:::; (n + k)llpqll[-l,l] + Ilpll[-l,l]kllqll[-l,l]
1

:::; (n + k)(1 + ry)llpwl!r-l,l] + -llpwll[-l,l]k(1 + ry)llwll[-l,l]
m

:::; n(1 + E)llpwll[-l,l]

for every p E Pn , provided ry > 0 is sufficiently small and n 2: no. D
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b] Show that for every f > 0 there exists an no depending on f and w such
that

IIp'wllr-I,I] ~ n 2 (1 + f)llpwll[-I,I]
for every p E Pn , n 2: no·

Hint: Use the idea given in the previous proof. 0

Schaeffer and Duffin [38] prove an extension of Theorem 5.1.7 (Bern­
stein's inequality) to higher derivatives. They show that

Id~:P(X)1 ~ Id~: eXP(inarccosx)l, XE(-I,I)

for every p E Pn . The following exercise gives a slightly weaker version of
this, which is much simpler to prove. Some of this follows Lachance [84].

E.5 Bernstein's Inequality for Higher Derivatives.

a] Show th'1t there exists a constant c(m) depending only on m such that

Ip(m)(x)1 ::; c(m)(~)m Ilpllr-I,I] , XE(-I,I)

for every p E P~. (That we can choose c(m) ~ 2m is shown in parts c], d],
and e].)

Hint: For j = 1,2, ... ,m, let

(m-j)(I+x)
aj ;= x-

m
and b

.- (m-j)(I-x)
J'- x+ .

m

Use Corollary 5.1.5 to show that there are constants cj(m) depending only
on m such that

II (j)11 < c·(m) n II (j-I)11p [aj,b j ] - J vI _x 2 P [aj_l,bj _ 1 ]

for every p E P~ and j = 1,2, ... ,m. 0

b] Show that there exists a constant c(m) > 0 depending only on m such
that

sup Ip(m)(x)1 > c(m) (min {n2 , n })m
O¥-pEPn Ilpllr-I,I] - VI - x 2

for every x E [-1,1] and m = 1,2, ... ,n.

Hint: First show that

IIT~m)III(x) 2: c(m) (min {n 2
,~})m ,

where lex) ;= [x - ~(I-lxJ), x + ~(I-lxl)]' then use a shift and a scaling.
o
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In the rest of the exercise we show that c(m) = 2m is a suitable choice
for the constant in part a].

c] Let k be a positive integer. Then

for every p E Pn .

Hint: Let p E Pn be normalized so that IIp(x)(1 - x2)k/211[_1,1] = 1. Apply
Theorem 5.1.3 (Bernstein-Szego inequality) with

t(0) := p(cos 0) sink 0 E Tn+k .

If Xo = cos 00 denotes a relative extreme point for p on (-1, 1), then
p' (cos 00 ) = 0, and after simplification we obtain that

( ( 0)' k-10)2 (n+k)2 (n+k)2
pcos 0 sm 0::::: ((n+k)2-k2)sin200+k2::::: -k-

o
d] Let k be a positive integer. Then

for every p E Pn .

Proof. Let p E Pn be normalized so that IIp(x)(1 - X2)k/211[_1,1] = 1. Ap­
plying Theorem 5.1.4 (Bernstein's inequality) with m = 1 and

t(O) := p(cosO) sink 0 E Tn+k,

we obtain

Ip' (cos 0) sinH1 0 + p(cosO)k sink-lOcos 01 ::::: n + k.

Now the triangle inequality and part c] yield

Ip'(COSO) sink+101 ::::: (n + k) + k Ip(cosO) sink- 101
n+k

::::: (n+k)+k-k- :::::2(n+k).

o
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e] Show that

Ip(m)(x)1 ~ (h) m Ilpll[-l,l]

for every pEPn and x E (-1, 1).

Hint: Use induction on m, Theorem 5.1.7, and part d].

5.3 Inequalities for Norms of Factors

o

A typical result of this section is the following inequality due to Kneser
[34].

Theorem 5.3.1. Suppose p = qr, where q E P':n and r E P;'-m' Then

IIqll[-l,l] II r ll[-l,l] ~ ~Cn,mCn,n-mllpll[-l,lJ'

where
m

C .- 2m II (1 (2k-l)7r)n,m'- +cos~

k=l

Furthermore, for any nand m ~ n the inequality is sharp in the case that
p is the Chebyshev polynomial Tn of degree n defined by (2.1.1), and the
factor q E P':n is chosen so that q vanishes at the m zeros of p closest to
-1.

Before proving the above theorem, we establish an asymptotic formula
for Cn,m and formulate a corollary.

If f E C2 [a, b], then by the midpoint rule of numerical integration

i b
f(x) dx = (b - a)f (~(a+ b)) + (b ;4

a
)3 j"(~)

for some ~ E [a,b]. Let f(x) := log(2 + 2cos1fx). Then

/I _1f2

f (x) = (1 + cos 1fX)2

On applying the midpoint rule to the above f, we obtain

(min 1 m

in log(2 + 2 cos 1fX) dx = :; L log (2 + 2 cos (2k2-n l)7r)
a k=l

(
1 1 n

4
)

+0 m 24 n3 (n-m)4
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for all integers 0 :::: m :::: n. Thus

(5.3.1)

where

So

(5.3.2)

and

Cn,m = exp (lOg IT (2 +2cos (2k;n
l )tr) )

= (exp ( ~ ~ log (2 + 2cos (2k;nl )tr) ) ) n

= exp (0 ((n~n:)4 ) ) (exp(I(n, m)))n ,

rmln
I(n,m):= Jo log(2+2cos7rx)dx.

I ( rl/2
)(Cn,LnI2J)lnrvexp Jo log(2+2cos7rx)dx =1.7916 ...

I ( r2/3
)(5.3.3) (Cn,L2n/3J)ln",exp Jo log(2+2cos7rx)dx =1.9081 ....

We use the notation an rv bn and an ;S bn to mean lim an/bn = 1 and
n->oo

lim sup an/bn :::: 1, respectively.
n->oo

On estimating !Cn,mCn,n-m in Theorem 5.3.1 and using (5.3.2), we
obtain the following:

Corollary 5.3.2. Let p E p~ and suppose p = qr for some polynomials q
and r. Then

~/~ 2

Ilqll[-l,l]llrll[-l,l] :::: 2n -
l II (1 + COS (2k;n

l )tr) Ilpll[-l,l]
k=l

:::: !C~,LnI2J Ilpll[-l,ll

and equality holds when p is the Chebyshev polynomial Tn of degree n, and
the factor q E p::n is chosen so that m := Ln/2J and q vanishes at the m
zeros of Tn closest to -1. Here C~:~/2J rv 3.20991 ... , hence

(
IIqll[-l,l]llr ll [-l,l]) lin < 3 20991

Ilpll[-l,l] rv···· .
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The proof of Theorem 5.3.1 proceeds through a number of lemmas. For
the remainder of the proof we assume that 0 < m < n are fixed. Now

(5.3.4) sup{llqll[-l,lJ!lrll[-l,l] : Ilqrll[-l,l] = 1, q E P';,., r E P~-m}

is attained for some q E P:;" and r E P~-m' We proceed to show that there
are extremal polynomials q E P:;" and r E P~-m such that p ;= qr is the
Chebyshev polynomial Tn of degree of n, and that the factors q and rare
as advertised, that is,

p(x) = (qr)(x) = Tn(x) = ~ IT 2 (x - cos (2k~1)7l') ,
k=l

and the extremal factors, q and r, are given by

q(x) ;= ~ IT 2 (x - cos (2k~1)7l')
k=l

and

r(x) ;= ~ IT 2 (x - cos (2k;nl) 71' ) ,

k=m+l
respectively. Note that for the above q and r we have

1
IIqll[-l,l] = Iq( -1)1 = v'2 Cn,m

and
1

Ilrll[-l,l] = Ir(l)1 = v'2 Cn,n-m'

First we show that there exist extremal polynomials q E P:;" and
r E P~-m such that

(5.3.5) Iq( -1)1 = Ilqll[-l,l) and Ir(l)1 = Ilrli[-l,l] .

To see this, choose a, (3 E [-1,1] such that

Iq(a)1 = Ilqll[-l,l] and Ir«(3)1 = II r ll[-l,l] ,

where, considering q( -z) and r(-z) if necessary, we may assume that
a::; (3. Note that a = (3 cannot happen, so a < (3. We have

Ilqll[o:,,B] Ilrll[o:,,BJ > IIqll[-l,l] Ilrlll-l,l]
Ilqrll[o:,,BJ - Ilqrll[-l,l]

since the numerators are equal and

Ilqrll[o:,,B] ::; Ilqrll[-l,l] .

Let If E Pm be defined by shifting q from [a, (3] to [-1,1] linearly so that
a -+ -1. Let r E P~-m be defined by shifting r from [a, (3] to [-1,1] linearly
so that (3 -+ 1. Then If E P:;" and r E P~-m are extremal polynomials for
which (5.3.5) holds.
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Lemma 5.3.3. Suppose q E P~ and r E P~-m are extremal polynomials
for which (5.3.5) holds. Then there are extremal polynomials q E P~ and
r E P~-m having only real zeros for which (5.3.5) holds.

Proof. Let q(z) be defined by replacing every factor z - Q with nonreal Q
by z - (I Q + 11- 1) in the factorization of q. Let r( z) be defined by replacing
every factor z - Q with nonreal Q by z - (1 - IQ - 11) in the factorization
of r. Now it is elementary geometry to show that q E P~ and r E P~-m

are extremal polynomials for which (5.3.5) holds, and all the zeros of both
qand r are real. 0

Lemma 5.3.4. Suppose q E P~ and r E P~-m are extremal polynomials
having only real zeros for which (5.3.5) holds. Then there are extremal poly­
nomials q E P~ and r E P~-m having all their zeros in [-1, 1] for which
(5.3.5) holds.

Proof. Let q( z) be defined by replacing every factor z - Q by z - 1 if Q > 1,
and by 1 if Q < -1, in the factorization of q. Let r( z) be defined by replacing
every factor z - Q by z + 1 if Q < -1, and by 1 if Q > 1. Now it is again
elementary geometry to show that q E P~ and q E P~-m are extremal
polynomials having all their zeros in [-1,1] for which (5.3.5) holds. 0

So we now assume that q E P~ and r E P~-m are extremal polyno­
mials having all their zeros in [-1,1] for which (5.3.5) holds. We may also
assume that deg(q) = m and deg(r) = n - m, otherwise we would study

q(z) := zm-deg(q)q(z) E P~

and
r(z) := zn-m-deg(r)r(z) E P~-m'

which are also extremal polynomials having all their zeros in [-1,1] for
which (5.3.5) holds.

It is now clear that if q and r are extremal polynomials with the above
properties, then the smallest zero of q is not less than the largest zero of r.
Indeed, if there were numbers -1 :::; Q < (3 :::; 1 so that q(Q) = r((3) = 0,
then the polynomials

z-(3
q(z) := q(z)-- E P~

Z-Q

and
-() ()z-a cr z :=r z -(3 EPn - mz-

would contradict the extremality of q and r since
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Ililll[-I,I] 2: Iq(-I)1 > Iq(-I)1 = Ilqll[-I,I]'

II r ll[-I,I] 2: Ir(I)1 > Ir(I)1 = Ilrlll-I,I] ,

and

Ilqrlll-I,I] = Ilqrlll-I,I] .

So now we have extremal polynomials q E P;, and r E P~-m of the
form

m

q(z) = va IT (z - (3k)
k=l

satisfying

Iq( -1)1 = IIqlll-I,I]

where

and

and

n-rn

r(z) = va IT (z - Ctk)
k=l

Ir(I)1 = Ilrll[-I,I] ,

and the constant a > 0 is chosen so that for p:= qr we have Ilpll[-I,I] = 1.
Now we are ready to prove Theorem 5.3.1.

Proof of Theorem 5.3.1. We show three properties of p = qr:

(1) Ip( -1)1 = 1 and IIp(I)1 = 1.

(2) l\p(x)li[ai,ai+l1=1, i=I,2, ,n-m-l,

IIp(x) II ll1i,l1i+l] = 1, i = 1,2, ,m-1.

(3) Ilpll[an -=,111] = 1.
These three facts show that p is indeed the Chebyshev polynomial ±Tn

defined by (2.1.1) since ±Tn are the only polynomials of degree at most n
that equioscillate n + 1 times on [-1,1] with uniform norm 1.

To prove (1), assume to the contrary that Ip( -1)1 < 1. Then there is
a 8 < -1 such that

Ilpll[o,l] = Ilpll[-I,I] .

Since Iql is strictly decreasing on [8, -1],

Ilqll[8,1] 2: Iq(8)1 > Iq( -1)1 = Ilqll[-I,I]

and, of course,
Ilrli[o,l] 2: Ilrlll-I,I]'

Let q E P;, and r E P~-m be the polynomials q and r shifted linearly
from [8,1] to [-1,1] so that 1 f-+ 1. By the previous observations, these q
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and r contradict the extremality of q and r, hence Ip( -1)1 = 1, and we are
finished. A similar argument shows that Ip(l)1 = 1.

To prove (2) let

Given E > 0, we can find 0 <.. 81 ,82 < E such that

satisfies
t(l) = s(l),

and

lit - sll[-l,l] < E,

It(x)1 < Is(x)l,

Suppose Ilpll[ai,ai+d < 1. Let

Ii(z) := q(z) E P~

and
~( ) ( ) t(z) cr z := r z s(z) E Pn - m ·

If E > 0 is sufficiently small, then

Iliifll[-I,IJ :::; Ilqrll[-l,l] and I(qr)( -1)1 < 1.

The second inequality guarantees that there exists a 8 < -1 such that

Iliifll[<5,IJ = I/iifll[-I,l] .

Since 1ii1 is (strictly) decreasing on (-00,1],

11ii11<5,I] 2: 11i(8)I > 11i(-1)1 = Iq(-l)1 = IIqll[-l,IJ'

Also
11i11[<5,1] 2: llill[-I,l] 2: 1i(1)1= Ir(l)1 = Ilrll[-I,l]'

Now let qE p::r, and r E P;'-m be the polynomials p and Ii shifted linearly
from [8,lJ to [-1, 1J so that -1 --+ -1. By the previous observations, these
q and r contradict the extremality of q and r. Hence Ilplilai,ai+l] = 1, and
the proof is finished. The proof of I/pll[13i,13i+l] = 1 is identical.

To prove (3) assume that Ilpll[an -=,13d < 1. Let

m

q(z) := va(z - (f3I + E)) II (z - f3k)
k=2
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and
n-m-l

r(z) := y'a(z - (an- m - E)) II (z - ak)'
k=l

If E > 0 is sufficiently small, then

11l7l/[-I,I] ;:: Iq(-1)1> Iq( -1)1 = IIqll[-I,I] ,

II r ll[-I,ll ;:: Ir(I)1 > Ir(I)1 = Ilrl/[-I,I]'

and

Ilqrll[-I,I] :::; Ilqrll[-I,I] ,

which contradicts the extremality of q and r. Hence Ilpll[<>n-,-n,f11] = 1, in­
deed. 0

Theorem 5.3.5. Suppose p E P~ is monic and q E P;" is a monic factor of
p. Then

m

Iq( -,8)1 :::; ,8m-n2n- 1 II (1 + cos (2k;;,I)7r) Ilpll[-/3,f1]
k=l

for every ,8 > O. Equality holds if p is the Chebyshev polynomial Tn,f1 of
degree n on [-,8,,8] (normalized to be monic), and the monic factor q E P;"
is chosen so that q vanishes at the m zeros of Tn,f1 closest to ,8. Note that
Tn,f1(x) = ,8nTn (x/,8), where Tn is defined by (2.1.1).

The proof of Theorem 5.3.5 is outlined in E.1.

Corollary 5.3.6. Suppose p E P~ is monic and q E P;" is a monic factor of
p. Then

Iq( -2)1 :::; 2m
-
1 IT (1 + cos (2k;n

l )7r) Ilpll[-2,2] = ~Cn,m Ilpll[-2,2]
k=l

and the inequality is sharp for all m :::; n. Here, for all m :::; n,

C~;;:' :::; C~:~n/3J '"" 1.9081 ... ,

and hence

(
Iq(-2)1 )l/n

II II
.:S 1.9081 ....

P [-2,2]
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Proof. Take {3 = 2 in Theorem 5.3.5. Note that

m ,(n)

2m II (1 + cos (2k;n1)7r) ::::; 2,(n) II (1 + cos (2k;,.1)7r) ,

k=1 k=1

where 'Y(n)+1 := L~n+~J is the smallest kEN for which cos (2k;n1)7r ::::; -~.
So, for every m = 0, 1, ... ,n,

and by (5.3.3)
C;:::' ;S Cn ,L2n/3J ;S 1.9081 ....

D

Theorem 5.3.7. Suppose p E P~ is monic and has a monic factor of the
form qr, where q E P;"', and r E P;"'2. Then

Iq( -(3)llr({3)1 ::::; {3m,+m2- n2n- 1

ml m2

X II (1 + cos (2\-;,1)7r) II (1 + cos (2k;n1)7r) Ilpll [-I3,I3J .
k=1 k=1

Equality holds if p is the Chebyshev polynomial Tn,13 of degree n on [-{3, {3]
normalized to be monic, and the factors q E P;"', and r E P;"'2 are chosen
so that q vanishes at the m1 zeros of Tn,13 closest to {3, while r vanishes at
the m2 zeros ofTn ,13 closest to -{3.

The proof of Theorem 5.3.7 is analogous to the proof of Theorem 5.3.1
and is left as an exercise (see E.2) .

Theorem 5.3.8. Suppose p E P~ is monic and has a monic factor of the
form q1q2'" Qj, where qi E P;"'i and m:= m1 +m2 + ... + mj ::::; n. Then

j

II IIqi II [-I3,I3J ::::; {3m-n2n- 1

i=1

Lm/2J rm/21
x II (1 + cos (2k;,.1)7r) II (1 + cos (2k;;n1)7r) Ilpll [-13,13]

k=1 k=1

for every {3 > O. Equality holds if p is the Chebyshev polynomial Tn ,13
of degree n on [-{3, {3] normalized to be monic, j = 2, and the factors
q1 E PEm/2J and q2 E P rm/21 are chosen so that q1 vanishes at the Lm/2J
zeros of Tn,13 closest to {3, while q2 vanishes at the Im/2l zeros of Tn,13
closest to -{3.
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Proof. For each qi, write

where ri is the monic factor of qi composed of the roots of qi with negative
real part, while Si is the monic factor of qi composed of the roots of qi with
nonnegative real part. So

and

Thus
j j j

II Ilqill[-f1,f1] ::; III ri((3)!·III si(-(3)I·
i=l i=l i=l

We now apply Theorem 5.3.7 to the two factors TIi=l ri and TI{=l Si to
finish the proof. 0

As before, let D := {z E C : Izi < I}. We now derive inequalities on the
disk from those on the interval. A continuous function on D has the same
uniform norm on both D and D and it is notationally convenient to state
the remaining theorems over D. Suppose t E P;" S E P:'r" and v E P;'-m
are monic, and t = SV. By the maximum principle, t, s, and v achieve their
maximum on D somewhere on aD. Now consider

p(x) := t(z)t(z-l) ,

q(x) := s(Z)s(Z-l) , and r(x) := v(Z)V(Z-l)

with
x:= z + z-l.

The effect of this transformation on linear factors is

(z - O:)(Z-l - 0:) = -o:x + 1+ 0:2 ,

so PEP;', q E P:'r" r E P;'-m, and p = qr. Also

Ilpll[-2,2] ::; Iltllb·

If t(O) f= 0, then the modulus of the leading coefficient of pis It(O)I, while
the modulus of the leading coefficient of q is Is(O)I, and the modulus of the
leading coefficient of r is Iv(O)I.

From these transformations and the interval inequalities we can deduce
the next three theorems.
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Theorem 5.3.9. Let t E P~ be monic and suppose t = sv, where s E P:;"
and v E P~-m' Then

where Cn,m is the same as in Theorem 5.3.1. This bound is attained when
m ::; n are even, t(z) = zn + 1, and s E P:;" vanishes at m adjacent zeros
of t on the unit circle.

Proof. We may assume, by performing an initial rotation if necessary, that

IlsiiD = Is(-1)1·

So from Corollary 5.3.6 we deduce that

(5.3.6) IlslI~ = Is(-IW = Iq( -2)1
m

::; Is(O)/t(O)12m- 1 II (1 + cos (2k;n1)1r) Ilpll[-2,2]
k=l
m

::; Is(O)/t(O)12m- 1 II (1 + cos (2k;n1)1r) Iltll~,
k=l

where s(O)/t(O) = l/v(O).

Theorem 5.3.10. Suppose t = sv, where s E Pm and r E Pn- rr., Then

o

where Cn,m is the same as in Theorem 5.3.1 and

(Cn,mCn,n_m)1/(2n) ::; C~~Ln/2J rv 1.7916 ....

This bound is attained when m ::; n are even, t(z) = zn + 1, and s E P:;"
vanishes at the m zeros of t closest to 1 and v E Pn- m vanishes at the
n - m zeros of t closest to -1.

Proof. From Theorem 5.3.1 we can deduce that if a, bEaD, then

Is(aWlv(b)1 2 = Is(a)s(a-1)llv(b)v(b-1)1

= Iq(a+a-1)llr(b+b-1)1

::; ~Cn,mCn,n-m Ilpll [a+a -1 ,b+b- 1 ]

::; ~Cn,mCn,n-mllplh-2,2J

::; ~Cn,mCn,n-mlltll1:>,

where, without loss of generality, we may assume that a + a- 1 ::; b + b-1 .

The result now follows on choosing a and b to be points on aD where sand
v, respectively, achieve their uniform norm on D. 0

In the multifactor case we have the following theorem:
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Theorem 5.3.11. Suppose t E Pn is of the form t = VS1S2'" Sj, where
Si E Pm, and v E Pn- m with m:= m1 + m2 + ... + mj ~ n. Then

j

Iv(0)1 1/ 2 II IlsillD ~ 2(m-1)/2
i=l

(

Lm/2J rm/21 ) 1/2
X 11 (1 + cos (2k:;;,1)7r) 11 (1 + cos (2k:;;,1)7r) IltiID.

Equality holds if t(z) = zn + 1, j = 2, m1 = m2 := m/2 and n are even,
and the factors q1 E P m/2 and q2 E Pm/2 are chosen so that q1 vanishes at
the m/2 zeros of t closest to 1 and q2 vanishes at the m/2 zeros of t closest
to -1.

Proof. This follows from Theorem 5.3.8 in exactly the same way as Theorem
5.3.10 follows from Theorem 5.3.1. 0

Comments, Exercises, and Examples.

The first result of this section is due to Kneser [34] and in part to Aumann
[33]. The proof follows Borwein [94], as does most of the section. There are
many variations and generalizatiohs. See Boyd [92], [93a], [93b], [94a], and
[94b]; Beauzamy and Enflo [85]; Beauzamy, Bombieri, Enflo, and Mont­
gomery [90]; Gel'fond [60]; Glesser [90]; Granville [90]; Mahler [60], [62],
and [64]; and Mignotte [82]. Some of these are presented in the exercises.
In particular, E.6 reproduces a very pretty proof of Boyd [92] that

wherep E P~ and p = qr with some q E p::r, and r E P~-m' (Note that we
have not assumed real coefficients unlike in Theorem 5.3.10, and we have
~ instead of :s .)
E.! Proof of Theorerli 5.3.5.

Outline. Let m < nand (3 > 0 be fixed. The value

{
Iq(-(3)1 pc d pc . d d"d }sup II II : q E m an pEn are mOllIC an q 1V1 es p
p [-,6,,6)

is attained for some monic q E p::r, and p E P~. We can now argue, exactly
as in the proof of Lemma 5.3.3, that there are extremal polynomials p E P~
and q E p::r, such that all the zeros of p are real and lie in [-(3, 00). Arguing
as in Lemma 5.3.4 gives that p has all its roots in [-(3,(3]. Thus q must be
composed of the m roots of p closest to (3.
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The argument of the proof of Theorem 5.3.1 now applies essentially
verbatim and proves that an extremal PEP;;' can be chosen to be the
Chebyshev polynomial on [-,6,,6J normalized to be monic. Thus on [-1, 1J

n

p(x) = IT (x - cos (2k;n1)1I")
k=1

and
m

q(x) = IT (x - cos (2k:;;.1)1I")
k=1

from which the result follows (on considering ,6np(x/,6) and ,6mq(x/,6) on
[-,6, ,6]). 0

E.2 Proof of Theorem 5.3.7.

Hint: Proceed as in the proof of Theorem 5.3.1 (or E.1). o

E.3 A Version of Theorem 5.3.10 for Complex Polynomials. Suppose
t = sv, where s E P:'n and v E P~-m' Then

and if t is monic

Hint: The first inequality follows as in the proof of Theorem 5.3.10 with
a := -1 and b := 1. The second part is immediate from Theorem 5.3.9. 0

E.4 Mahler's Measure. Let F: C k
-t C, and let the Mahler measure of

F be defined by

Mk(F) := exp {1 1

...11

log jF(e211"it 1
, ..• ,e211"it k )1 dt1... dtk }

if the integral exist.

a] Show that if

n

p(z) = e IT(z - ai),
i=1

then

e, ai E C,

n

M 1(p) = lei IT max{l, lail}·
i=1

Hint: Use Jensen's formula (see E.10 cJ of Section 4.2). 0

b] Show that if F := F(Z1,'" ,Zk) and G := G(Z1,'" ,Zk), then
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c] Show that

M1 (ax + b) = max(lal, Ibl),

M 2 (1 + x + y) = M 1 (max{l, 11 + xl}),

M2 (1 + x + Y - xy) = M 1 (max{ll- xl, 11 + xl}).

d] One can numerically check that

M2 (1 + x + y) = 1.381356 ...

and
M2 (1 + x + Y - xy) = 1.791622 ....

E.5 The Norm of a Factor of apE P; on the Unit Disk. Suppose PEP;
is monic and has a monic factor q E P:;"'. Then

IlqllD ~ /rllpIID,

where /3 := M2 (1 + x + y) = 1.3813 ....

Outline. Let
n

p(x) := II(x - ai)
i=1

and
m

q(x) := II(x - a;),
i=1

ai EC.

Suppose IlqllD = Iq(u)l, where u E aD. Then

m n

IlqllD = Iq(u)1 = II lu - ad ~ IImax{lu - ail, I}
i=1 i=1

where the last equality holds by E.4 a], and the last inequality follows
because

(5.3.7)

holds for every PEP; and z E C by E.18 a] of Section 5.1. Now using E.4
b] and

M 1 (max{l, Ix + ul}) = M 1 (max{l, Ix + 11}) ,
we obtain

IlqllD ~ M 1 (max{l, Ix + ul n
}) IlpiiD

= M 1((max{l, Ix + ul} )n) IlpiiD

= M 1((max{l, Ix + II} )n) IlpiiD

= (M1 (max{1, Ix + 11}))n IlpiiD
= (M2 (1 + x + y))nllpII D = /3nllp IiD .

o
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E.6 Another Inequality for the Factors ofapE P~ on the Unit Disk. Let
p = qr, where q E P;" and r E P~-m. Then

where fj := M 2 (1 + x + y - xy) = 1.7916 ....

Outline. Without loss of generality we may assume that q and r are monic.
Let

m

q(x) := IT (x - ai)
i=l

and
n

r(x):= IT (x - ai),
i=m+l

Choose u E aD and v E aD such that Iq(u)1 = IIqllD and Ir(v)1 = IlriID.
Then, using E.4 b] and c], we obtain

m n

IIqllDllrllD = Iq(u)llr(v)1 = IT lu - ail IT Iv - ail
i=l i=m+l

n

:s; IT max{lu - ad, Iv - ail}
i=l

= Diu - ail max { 1, I~ =:: I}
= M 1 ((x _1)np (u:~IV)) .

Now, by (5.3.7),

hence

IlqllDllriiD :s; M1((max{lx -11, Ix - vjul})n)llpliD
= (M1(max{lx -11, Ix - vjul} ))nllpII D
:s; (M1 (max{ll - xl, 11 + xl})t IlpiiD

= (M2 (1 + x + Y - xy))nllpII D
= (1.7916 ... )n IlpiiD .

o
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E.7 Bombieri's Norm. For Q(z) := I:~=o akzk the Bombieri p norm is
defined by

Note that this is a norm on P~ for every p E [1, 00), but it varies with
varying n. The following remarkable inequality holds (see Beauzamy et al.
[90]). If Q = RS with Q E P~, REP:;", and S E P~-m' then

( )

1/2

[Rh[Sh::;: [Qh

and this is sharp.

One feature of this inequality is that it extends naturally to the multi­
variate case. See Beauzamy, Enflo, and Wang [94] and Reznick [93] for
further discussion.
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Inequalities in Muntz Spaces

Overview

Versions of Markov's inequality for Muntz spaces, both in era, b] and
Lp [O,l], are given in the first section of this chapter. Bernstein- and
Nikolskii-type inequalities are treated in the exercises, as are various other
inequalities for Muntz polynomials and exponential sums. The second sec­
tion provides inequalities, including most significantly a Remez-type in­
equality, for nondense Muntz spaces.

6.1 Inequalities in Muntz Spaces

We first present a simplified version of Newman's beautiful proof of an
essentially sharp Markov-type inequality for Muntz polynomials. This sim­
plification allows us to prove the L p analogs of Newman's inequality. Then,
using the results of Section 3.4 on orthonormal Muntz-Legendre polynomi­
als, we prove an L 2 version of Newman's inequality for Muntz polynomials
with complex exponents. Some Nikolskii-type inequalities for Muntz poly­
nomials are studied. The exercises treat a number of other inequalities for
Muntz polynomials and exponential sums. Throughout this section we use
the notation introduced in Section 3.4. Unless stated otherwise, the span
always denotes the linear span over lit



276 6. Inequalities in Muntz Spaces

Theorem 6.1.1 (Newman's Inequality). Let A := (Ai)i,;o be a sequence of
distinct nonnegative real numbers. Then

~ t A· < sup Ilxp'(x)ll[o,l] < 9t A
3 j=O J - O#pEMn(A) Ilpll[o,l] - j=O J

for every n E N, where Mn(A) := span{xAO , X A1 , ... , x An }.

Proof. It is equivalent to prove that

(6.1.1) ~ ~ A < su IIP'II[o,oo) < 9~ A
3 L.,.. J - p IIPII - L.,.. J'

j=O O#PEEn(A) [0,00) j=O

where En(A) := span{e-Aot,e-Alt, ... ,e-Ant }. Without loss of generality
we may assume that AO := O. By a change of scale we may also assume that
"E7=0 Aj = 1. We begin with the first inequality. We define the Blaschke
product

B(z) := rrn Z - Aj
Z+A

j=l J

and the function

(6.1.2)
1 r e-zt

T(t) := 27ri ir B(z) dz, r := {z E <C : Iz - 11 = I}.

By the residue theorem

n

T(t) := L(B'(Aj))-l e-A j t ,

j=l

(6.1.3)

and hence T E En(A). We claim that

1
IB(z)l2: "3' z E r.

Indeed, it is easy to see that a ::; Aj ::; 1 implies

z E r.

So, for z E r,
n

1 - ~ "E Aj 1
j=l 1 - "2 1

n =--1=-'
1+ ~ "E Aj 1+ "2 3

j=l
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Here the inequality

1 - x 1 - y 1 - (x + y) 2xy(x + y)
l+x l+y = 1+(x+y) + (l+x)(I+y)(I+(x+y))

> 1 - (x + y) x, y 2: 0
- 1+(x+y)'

is used. From (6.1.2) and (6.1.3) we can deduce that

(6.1.4) t 2: O.

Also
1 r-ze-zt

T'(t) = 21fi Jr B(z) dz

and

(6.1.5) , IJZ 11 zT(O) = -- -dz = -- -dz.
21fi r B(z) 21fi Izl=l B(z)

Now, for Izi > max1:5j:5n Aj, we have the Laurent series expe,1lsion

= z + 2 + 2z- 1 + ... ,

which, together with (6.1.5), yields that T'(O) = -2. Hence, by (6.1.4),

IT'(O)I > ~ _ ~ n A
IITII - 3 - 3L J'

[0,00) j=l

so the lower bound of the theorem is proved.

To prove the upper bound in (6.1.1), first we show that if

then

1 r e-zt

U(t) := 21fi Jr (1- z)B(z) dz, r := {z E C : Iz - 11 = I},

(6.1.7) 100

IU"(t)1 dt :::; 6.
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Indeed, observe that if z = 1 + eiB , then Izl2 = 2 + 2cosB, so (6.1.3) and
Fubini's theorem yield that

rOO roo 1 11 z2 e-zt Iio IU"(t)1 dt = io 27l' r (1 _ z)B(z) dz dt

1 100127l' Izl2 le- zt l< - dBdt
- 27l' 0 0 IB(z)1

3100127l'::; - (2+2cosB)e-(l+cosB)tdBdt
27l' 0 03127l' 1=-2 (2 + 2cosB) B dB =6.
7l' 0 l+cos

Now we show that

(6.1.8)

To see this we write the left-hand side as

where in the third equality Fubini's theorem is used again. Here, for Izi > 1,
we have the Laurent series expansions

z 1 \ -1 \ 2 -2--= -/\·z +/\·z + ...
z + Aj J J '

Z -1-2-- = -1- z - z -"',
l-z

and, as in (6.1.6),

1-- = 1 + 2z- 1 + 2z-2 + ....
B(z)

Now (6.1.8) follows from the residue theorem (see, for example, Ash [71]).
Let P E En(A) be of the form

n

P(t) = 2:::>je- Ajt
,

j=O

Cj E IR.
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Then

(= P(t + a)U"(t) dt = 1=t Cje-Ajae-AjtU"(t) dt
Jo 0 j=O

=t Cje- Aja1= e-AjtU"(t) dt = t Cj(>.'j - 3)e-Aja

j=O 0 j=O

= -P'(a) - 3P(a)

and so

(6.1.9) IP'(a)1 :::; 3IP(a)1 + 1= IP(t + a) U"(t)1 dt.

Combining this with (6.1.7) gives

IIP'llro,=) :::; 311P11[0,=) + 6 lIPII [0,=) = 911P11[0,=),

and the theorem is proved. o

The next theorem establishes an L p extension of Newman's inequality.

Theorem 6.1.2 (Newman's Inequality in Lp ). Let p E [l,oo}. If A := (Ai}~o

is a sequence of distinct real numbers greater than -lip, then

for every P E Mn(A) := span{xAO , X A1 , ... ,xAn }.

If r := ('Yi)~O is a sequence of distinct positive real numbers, then

Proof. First we show that the first statement of the theorem follows from
the second. Indeed, if (Ai)~o is a sequence of distinct real numbers greater
than -lip and 'Yi := Ai + i for each i, then (--yi}~l is a sequence of distinct
positive real numbers. Let Q E Mn(A). Applying the second inequality with

and using the substitution x = e- t , we obtain
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Now the product rule of differentiation and Minkowski's inequality yield

which is the first statement of the theorem.

We prove the second statement. Let P E En(r) and p E [1,00) be
fixed. As in the proof of Theorem 6.1.1, by a change of scale, without loss
of generality we may assume that 2:,7=01j = 1. It follows from (6.1.9) and
Holder's inequality (see E.7 a] of Section 2.2) that

Ipl(a)IP ::; 2P - 1 (3PI P(a)IP + (100 IP(t + a)IU"(t)1 dty)

::; 6PIP(a)IP

((
[00 )l/P([OO )l/q)P+ 2P- 1 J
o

IP(t + a)IPIU"(t)1 dt J
o

IU"(t)1 dt

for every a E [0,00), where q E (1,00] is the conjugate exponent to p defined
by p-l + q-l = 1. Combining the above inequality with (6.1.7), we obtain

for every a E [0,00). Integrating with respect to a, then using Fubini's
theorem and (6.1.7), we conclude that

IIP'IIP ::; 6PIIPIIP + 2P-16P/q [00 [00 IP(t + a)IPIU"(t)1 dtda
Lp[O,oo) Lp[O,oo) Jo Jo

::; 6PIIPIIP + 2P-16P/q [00 [00 IP(t + a)IPIU"(t)1 dadt
Lp[O,oo) Jo Jo

::; 6PIIPIIP + 2P-16P/qIIPIIP [00 IU"(t)1 dt
Lp[O,oo) Lp[O,oo) Jo

< 6P IIPIIP + 2P-16P/q+lIIPIIP
- Lp[O,oo) Lp[O,oo)

= (6P + 2P- 16P)llPllt[o,00) ::; 12PIIPllip [o,00)

and the proof is finished. o

The following Nikolskii-type inequality follows from Theorem 6.1.1
quite simply:
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Theorem 6.1.3 (Nikolskii-Type Inequality). Suppose 0 < q < p :s 00. If
A := (Ai)~O is a sequence of distinct real numbers greater than -1/q, then

for every P E Mn(A) := span{xAO,xA1 , ... ,xAn }.

If T := ('i)~O is a sequence of distinct positive real numbers, then

(6.1.10) (
n) l/q-l/p

IIPIILp[O,oo):S 18· 2
q f; Ij 1IFIILq[O,oo)

Proof. First we show that the first statement of the theorem follows from
the second. If (Ai)~O is a sequence of distinct real numbers greater than
-1/q and Ii := Ai + 1/q for each i, then (Ji)~l is a sequence of distinct
positive real numbers. Let Q E Mn(A). Applying (6.1.10) with

and using the substitution x = e- t , we obtain

which is the first statement of the theorem.

It is sufficient to prove (6.1.10) when p = 00, and then a simple ar­
gument gives the desired result for arbitrary 0 < q < p < 00. To see this,
assume that there is a constant C so that

for every P E En(r) and 0 < q < 00. Then

1IFIIip[O,oo) =100 1F(t)IP-q+q dt :s 1IFIIfo~~) IIPII1.[o,oo)

< cp/q-lIIFIIP-q IIPllq- Lq[O,ooJ Lq[O,oo)

and therefore
1IFIILp[O,oo) :s Cl/q-l/PIIFIILq[O,oo)

for every f E En(T) and 0 < q < p :s 00.
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When p = 00, (6.1.10) can be proven as follows. Let P E En(r), and
let y E [0, (0) be chosen so that IP(y)1 = 11P11[o,oo)' From Theorem 6.1.1
and the Mean Value Theorem, we can deduce that IP(t)1 > ~IIPII[o,oo) for
every

n

tEI:= [V, y + (181')-1], where 1':= L 1'j'

j=o

Thus

IIPIILlo,=1 ": jIP(t)I' dt ": (18t,1j) -, '-'11P1110,=1 '

and the result follows. o

Theorem 6.1.3 immediately implies the following result, which is a
special case of Theorem 4.2.4:

Theorem 6.1.4 (Miintz-Type Theorem in L p). Let p E [1,(0). Let (A;)~O

be a sequence of distinct real numbers greater than -lip satisfying

f (Aj +~) < 00.
j=O P

Then span{x AO , X A1 , ... } is not dense in Lp[O, 1].

The next theorem offers an L 2 analog of Theorem 6.1.1 even for com­
plex exponents. It also improves the multiplicative constant 12 in the L 2

inequality of Theorem 6.1.2 and shows that the L 2 inequality of Theorem
6.1.2 is essentially sharp.

Theorem 6.1.5. If A := (A;)~O is a sequence of distinct complex numbers
with Re(A;) > -1/2 for each i, then

Ilxp'(x) II L2[0,lJsup
OhEMn(A) IlpIlL 2 [0,1]

,; (t, IAj I' + t,(1 + 2Re(Aj» ,~y + 2Re(A'») 'I'

for every n E I'l, where M n (A) denotes the linear span of {x AO , X A1 , ..• ,xAn }

over C.

If A := (A;)~O is a sequence of distinct nonnegative real numbers, then

_1_ t A' < sup Ilxp'(x)IIL2 [0,1] < _1 t(1 + 2A)
2V30 j=O J - OhEMn(A) IlpIIL2 [0,1] - v'2 j=O J

for every n E I'l, where Mn(A) denotes the linear span of {x AO , X A1 , ... ,xAn }

overR
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Proof. Let p E Mn(A) with IlpIIL2 [O,1] = 1. Then

n

p(x) = L akLA,(x)
k=O

with

and
n

xp'(x) = L akxLA,'(X),
k=O

where LA, E Mk(A) denotes the kth orthonormal Muntz-Legendre polyno­
mials on [0,1]. Using the recurrence formula of Corollary 3.4.5 b] for the
terms xLA,'(x) in the above sum, we obtain

Hence

n n 2

Ilxp'(x)IIL[o,lj = LlajAj + VI + Aj + Xj L akV1 + Ak + Xkl .
j=O k=j+l

If we apply the Cauchy-Schwarz inequality to each term in the first sum
and recall that L~=o lakl 2 = 1, we see that

n n

Ilxp'(x)IIL[o,lj :::; L (IAjI2 + (1 + Aj + Xj )) L (1 + Ak + Xk)
j=O k=j+l

:s: Htu (1+ 21A; I)r'
which proves the first part and the upper bound in the second part of the
theorem.

Now we prove the lower estimate in the second part of the theorem.
With the sequence A := (Ai)~O of distinct nonnegative real numbers, we
associate

Since the system (LA,)~o is orthonormal on [0,1], we have

(6.1.11)
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Furthermore

xq'(x) = ~~ (~Aj) xL'k'(x) = to bmL;''(x) ,

where, by the recurrence formula of Corollary 3.4.5 b],

m n k

bm := Amv'A: L Aj + VI + 2Am L VAk(1 + 2Ak) L Aj

j=O k=m+I j=O

n k

:::: v'A: L Ak L Aj .
k=m j=O

Hence

Ilxq'(x)III,[o,,[ ~ j; b;;' 2: j; Am (~ ,I, ~,\j),
L L AmAkAjAk'Aj'

O;Sm;Sn O;Sj;Sk
m;Sk,k';Sn O;SJ' ;Sk'

>
(

n )51
A AkA Ak'A' > - ~ Am J J - 5! L J

O;Sm;Sj;Sj';Sk;Sk';Sn j=O

This, together with (6.1.11), yields the lower bound in the second part of
the theorem. 0

Comments, Exercises, and Examples.

Theorem 6.1.1 is due to Newman [76J. We presented a modified version
of Newman's original proof of Theorem 6.1.1. He worked with T instead
of U, and instead of (6.1.9) he established a more complicated identity
involving the second derivative of P. Therefore, he needed an application
of Kolmogorov's inequality (see E.l) to finish his proof. It can be proven
that if the exponents Aj are distinct nonnegative integers, then Ilxp'(x) II[o.IJ
in Theorem 6.1.1 can be replaced by IIp'lI[o,I] (see E.3). Theorems 6.1.2 to
6.1.4 were proved by Borwein and Erdelyi [to appear 6], while Theorem
6.1.5 is due to Borwein, Erdelyi, and J. Zhang [94bJ. It is shown in E.8 that
Theorem 6.1.2 is essentially sharp for every A with a gap condition, and for
everypE [2,00).

The interval [0,1] plays a special role in this section, analogs of the
results on [a, b], a > 0, cannot be obtained by a linear transformation.
E.1O deals with the nontrivial extension of Newman's inequality to intervals
[a, b], a> 0.

A conjecture of Lorentz about the "right" Bernstein-type inequality
for exponential sums with n terms is settled in E.4.
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E.! Kolmogorov's Inequality. Show that

111'11[0,00) ~ 41Ifll[0,oo) 111"1\[0,00)

for every f E C2[O, 00).

Hint: By Taylor's theorem

f(x + h) = f(x) + l'(x)h + ~f"(~)h2, h> 0

with some ~ E (x, x + h). Hence

111'11[0,00) ~ 2h- 1 1Ifll[0,oo) + (h/2) 111"11 [0,00) .

Now minimize the right-hand side by taking

(

/I -1 )1/2
h := 2 Ilfll[o,oo) Ilf 11[0,00)

o

The constant 4 in E.l is not the best possible. Kolmogorov [62] proved
that

for every f E Cn(lR) and 0 < k < n and found the best possible constants
K(n, k); see also DeVore and Lorentz [93]. This generalizes a result of Lan­
dau, who proved the above inequality for n = 2, k = 1, and showed that
K(2,1) = V2. Various multivariate extensions of Kolmogorov's inequality
have also been established; see, for example, Ditzian [89].

E.2 Nikolskii-Type Inequalities.

aJ Suppose (V, 11·11) is an (n+ I)-dimensional real or complex Hilbert space,
(Pk)k=O C V is an orthonormal system, and 'P f:- °is a linear functional on
V. Then

for every P E V. Equality holds if and only if

n

P = CL 'P(Pk)Pk,
j=O

C E lR or c E C.

Hint: Write P as a linear combination of the orthonormal elements Pk, use
the linearity of 'P, then apply the Cauchy-Schwarz inequality. 0
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b] Suppose A := (Ai)~O is a set of distinct complex numbers satisfying
Re(Ai) > -1/2 for each i, and y E [0,00) is fixed. Show that

for every p E Mn(A), where Mn(A) denotes the linear span of

over C, and L'k E Mk(A) is the kth orthonormal Muntz-Legendre polyno­
mial on [0, 1]. Show that if there exists a q E Mn (A) with q<m) (y) i- 0, then
equality holds if and only if

n _

P = c LL~<m)(y)L'k,
k=O

c E C.

c] Under the assumptions of part b] show that

1/2 ( n ) 1/2Iy p(y)1 ~ L(1 + 2Re(Aj))
IlpIIL2 [0,1] j=O

and

for every °i- P E Mn(A) and y E [0,1].

Hint: When y = 1, use part b] and substitute the explicit values of L'k(1)
and L'k'(1) (see Corollary 3.4.6 and formula (3.4.8)). If°< y < 1, then the
scaling x ---t yx reduces the inequality to the case y = 1. D

d] Show that if n 2': 1 and P i- 0, then equality holds in the inequalities of
part b] if and only if y = 1 and

n

P = c L L'k(1)L'k
k=O

respectively, with some °i- c E C.

or
n

P = c L L'k'(1)L'k,
k=O
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e] Show that
Ilpll[-I,I]

sup
O#-pEPn IlpIIL2[-I,I]

n+1
y'2'

Hint: Show that there is an extremal polynomial p for the above extremal
problem for which IIPlI[-l,l] is achieved at 1. Now use parts c] and d] to
show that

and the result follows. o

E.3 An Improvement of Newman's Inequality.

a] Suppose A := P'k)k'=o is a sequence with Ao = °and Ak+l - Ak 2: 1 for
each k. Show that

IIp'IIIO,l] S 18 (~Aj) Ilpll[o,l]

for every p E Mn(A) := span{xAO , X A1 , ... ,xAn }.

Hint: Let y E [0,1]. To estimate Ip'(y)1 distinguish two cases. If ~ S y S 1,
use Theorem 6.1.1 (Newman's inequality), and if°S y S ~, use E.3 f] of
Section 3.3 and Theorem 5.1.8 (Markov's inequality) transformed to [y,l]
to show that

2 2 (n)Ip'(y)1 S 1: Ilpll[y,l] S 8 l: Aj Ilpll[o,l)
Y j=l

for every p E Mn(A). 0

The next exercise is based on an example given by Bos.

h] Show that for every 0 E (0,1) there exists a sequence A := (Ak)k'=o with
Ao = 0, Al 2: 1, and

i = 0,1,2, ...

such that
lim sup Ip'(O)1 = 00.

n-><X>O;6pEMn (A) (2::7=0 Aj) Ilpli[o,l)

Outline. Let Qn be the Chebyshev polynomial Tn transformed linearly from
[-1,1] to [0,1], that is,

Qn(x) = cos(narccos(2x - 1)), x E [0,1].
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Choose natural numbers u and v so that {j < u/v < 1. Let A := (Ak)~o be
defined by AD := 0, Al := 1, and

ku
Ak:= 1+ -,

v

Let

Then

For the sake of brevity let

Use Theorem 5.1.8 (Markov's inequality) and the Mean Value Theorem to
show that

with

Thus, if n is odd, then

and

Ip~(O)1

(L;~~V (1 + j;)) (2n2 ) (u-l)v/u

(2n2) v/u (2n2)v/u-l
> > _ ......q)().

(1 + nu)nv ...... UV n->oo

o
In his book Nonlinear Approximation Theory, Braess [86] writes the

following: "The rational functions and exponential sums belong to those
concrete families of functions which are the most frequently used in non­
linear approximation theory. The starting point of consideration of expo­
nential sums is an approximation problem often encountered for the analysis
of decay processes in natural sciences. A given empirical function on a real
interval is to be approximated by sums of the form

where the parameters aj and Aj are to be determined, while n is fixed."

The next exercise treats inequalities for exponential sums of n + 1
terms.
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E.4 Nikolskii- and Bernstein-Type Inequalities for Exponential Sums.
Let

be a sequence of distinct nonzero real numbers. Let

and

En :=UEn(A) = {f : f(t) = ao +t aje
Ajt

, aj,}..j E IR} ,
A j=l

that is, En is the collection of all (n + I)-term exponential sums with con­
stant first term. Schmidt [70] proved that there is a constant c(n) depending
only on n such that

Ilf'll[aH,b-6j ::; c(n)8- 1 1Ifll[a,bj

for every pEEn and 8 E (O,~(b-a)). Lorentz [89] improved Schmidt's
result by showing that for every 0: > ~, there is a constant c(0:) depend­
ing only on 0: such that c(n) in the above inequality can be replaced by
c(o:)natogn, and he speculated that there may be an absolute constant c
such that Schmidt's inequality holds with c(n) replaced by en. Part d] of this
exercise shows that Schmidt's inequality holds with c(n) = 2n-1. A weaker
version of this showing that Schmidt's inequality holds with c(n) = 8(n+1)2
is obtained in part b] and uses a Nikolskii-type inequality for exponential
sums established in part a]. Part e] shows that the result of part d] is sharp
up to a multiplicative absolute constant.

a] Let p E (0,2]. Show that

2 2 (n + I) l/p
Ilfl\[aH,b-6j ::; 2 /p -8- IlfIILp[a,bJ

for every f E En and 8 E (0, ~(b - a)) .

Proof. Take the orthonormal sequence (Lk)'k=o on [-~,~], that is,

(1) LkEspan{l,eAlt,eA2t, ... ,eAkt }, k=O,I, ... ,n,
and

(2) 11/ 2 LiL j = 8i,j , °::; i ::; j ::; n,
-1/2

where 8i ,j is the Kronecker symbol. On writing f E En(A) as a linear
combination of Lo, L 1, .. . , L n , and using the Cauchy-Schwarz inequality
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and the orthonormality of (Lk)k=O on [-~, ~], we obtain in a standard
fashion that

(

n ) 1/2
max If(to)1 - L (t )2

O#fEEn(A) 1IfIIL2[-1/2,1/2] - ~ k 0 ,

Since

/

1/2
L:~=OL~(x) dx = n + 1,

-1/2

there exists a to E [- ~, ~] such that

to E lR.

(

n ) 1/2
max II(to)j = L%(to) < In+l.

OhEEn(A) 1IIIIL2[-1/2,1/2J ~ -

Observe th&,t if 1 E En(A), then g(t) := I(t - to) E En(A), so

max 11(0)1 < yin + 1.
O#fEEn(A) 1IIIIL2 [-1,l) -

Let
C := max 11(0)1

O#fEEn(A) 1IIIILp[-2,2]

Then

max II(y)1 < C (_2_)1/
P

< 21/PC
Of-fEEn(A) 1IIIILp[-2,2j - 2 - Iyl - ,

Therefore, for every 1 E En(A),

Y E [-1, IJ.

11(0)1 ::; yin + lIIIIIL21-1,lJ

(
2 ) 1/2

::; In+l 11111~p[-l,lJIIIII[-=-i,lJ

::; yin + 1 (1IIIIt[-1,11 (21/PC)2-Pllllltf_2,2J) 1/2

::; yin + 1 (21/PC)1-p/2111I1Lpl_2,2]

= 21/ p -
1/ 2 y1n + 1C1-p/21111ILp[_2,2J .

Hence
C = max 11(0)1 < 21/P- 1/2y1n + 1C 1-p/2

Of-fEEn(A) 1IIIILp[-2,2J -

and we conclude that C::; 22/p2-1/p(n + l)l/p. So
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for every 1 E En(A). Now let 1 E En(A) and to E [a + 8, b - 8]. If we apply
the above inequality to

g(t) := 1 (~8t + to) E En(A) ,

we obtain

and the result follows. D

The following Bernstein-type inequality can be obtained as a simple
corollary of part a]:

b] Show that
1I1'II[aH,b-8j::; 8(n+ 1)28-1 11111[a,bj

for every 1 E En and 8 E (0, ~(b - a)).

Proof. Note that 1 E En(A) implies l' E En(A). Applying part a] to l'
with p = 1, we obtain

11'(0)1::; 2(n + 1)II1'IILd-2,2J = 2(n + I)Vaq_2,2j(J) ::; 4(n + 1)211111[-2,2J

for every 1 E En(A). If 1 E En(A) and to E [a + 8, b - 8], then on applying
the above inequality to

g(t) := 1 (~8t + to) E En(A) ,

we obtain the desired result.

c) Lorentz's Conjecture. Show that

sup 11'(0)1 = 2n - 1,
O#!EE2n 11111[-1,lJ

where

Prool. First we prove that

11'(0)1 ::; (2n - 1) 1I11I[-1,lJ

D
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for every f E E2n . So let

with some nonzero real numbers )'1, A2' ... ,An, where, without loss of gen­
erality, we may assume that

Let
g(t) := ~U(t) - f( -t)).

Observe that

9 E span{sinh Alt, sinh A2t, ... , sinh Ant} .

It is also straightforward that

9' (0) = f' (0)

For a given E > 0, let

and Ilgll[o,lJ ~ 11f11[-l,lJ .

H n,€ : =; span{sinh ft , sinh 2ft, . .. , sinh nEt}

and
K n ,€ := sup {lh'(O)1 : h E H n ,€, Ilhll[o,lJ = I} .

The inequality of E.5 'e] in Section 3.3 is the key to the proof. It shows that
it is sufficient to prove that

inf{Kn ,€ : E > O} ~ 2n - 1.

Observe that every h E H n ,€ is of the form

P E P2n'

Therefore, usingE.23 c] of Section 5.1, we obtain for every hE H n ,€ that

Ih'(O)1 = IEP'(I) - nEP(1)!
E(2n - 1)

~ 11P11[e-< e<l + nEIIPII[e-< e<l1 - e-€' ,

(
E(2n - 1) ) n€ Ilhll

~ 1 _ e-€ + nE e [-1,1] .

It follows that

(
E(2n - 1) )

K n ,€ ~ 1 _ e-€ + nE e
n

€.

So inf{Kn ,€ : E > O} ~ 2n - 1, and the upper bound follows.
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Now we prove that

sup 11'(0)1 2:: 2n - 1.
O#!EE2n Ilfll[-l,lJ

Let E> 0 be fixed. We define

where T2n- l denotes the Chebyshev polynomial of degree 2n - 1 defined
by

T2n- l (X) = cos((2n - 1) arccos x), x E [-1,1].

It is simple to check that Q2n,E E E2n ,

and
IQ;n,E(O)! 2:: 2n - 1 - nE.

Now the result follows by letting E decrease to O.

d] Show that

o

11f'II[aH,b-6j ::; (2n -1)8- l llfll[a,bJ

for every f E En and 8 E (0, ~(b - a)).

Proof. Observe that En C E2n . Hence the result follows from part c] by a
linear substitution. 0

e] Let a < band y E (a, b). Suppose that n E .N is odd. Let Tn be the
Chebyshev polynomial of degree n defined by (2.1.1). Let

(
e (t-b) 1)Qn(t) := Qn,y(t) := Tn - exp -b- --

e-l -y e-l

and

(
e (t-a) 1)Rn(t) := Rn,y(t) := Tn -- exp -- ---
e-l a-y e-l

Show that Qn, Rn E En and

IQ~(y)1

IIQnll[a,bJ

for every y E (a, b).

1 n----
e-lb-y

and
IR~(y)1

IIRnl/[a,bJ
1 n----

e-ly-a
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f) Let a < band y E (a, b). Conclude that

1 n-1 1f'(y)1 2n-1
-- } < sup I < .
e - 1 min{y - a, b - y - O#fEEn IIII[a,b] - min{y - a, b - y}

In the rest of the exercise let

g) Extend the inequalities of parts a], c], and f] to E~.

h) Let [a, b] be a finite interval. Let g E era, b]. Show that the value

inf{llg - Ilha,b] : I E E~}

is attained loy an I E E~.

Hint: Use Schmidt's inequality (or its improved form given by part cD. For
the nontrivial details, see Braess [86]. 0

i) Let [a, b] be a finite interval. Let p E [1,00) and g E Lp[a, b]. Show that
the value

inf{llg - IIILp[a,bJ ; I E E~}

is attained by an I E E~.

Hint: Use part a] with p = 1 and Holder's inequality. Once again, for the
details, see Braess [86]. 0

The following result is from Borwein and Erdelyi [95c]:

E.5 Upper Bound for the Derivative of Exponential Sums with Nonnega­
tive Exponents. The equality

Ip'(a)1 2n2

sup---=--
p Ilpll [a,b] b - a

holds for every a < b, where the supremum is taken over all exponential
sums 0 1= pEEn with nonnegative exponents. The equality

jp'(a)1 2n2

sup--- =
p IIpll [a,b] a(log b - log a)

also holds for every 0 < a < b, where the supremum is taken over all Muntz
polynomials 0 1= p of the form

n

p(x) = ao + L ajx>'j ,
j=1

aj E lR, Aj > 0 .



6.1 Inequalities in Miintz Spaces 295

Outline. It is sufficient to prove only the second statement, the first can
be obtained from it by the change of variable x = et

. For f > 0, define
AE := (jf)~O' Let

be the Chebyshev polynomip.l for Mn(AE ) on [a, b]. Use E.3 b] and E.3 f] of
Section 3.3 to show that

Ip'(a)1 < lim IT~,E(a)1 = lim IT~ E(a)1
Ilpll [a,b] - E-->O+ II Tn,E II [a,b] E-->O+ '

for every p of the form

n

p(x) = ao +L ajx,\j ,
j=l

From the definition and uniqueness of Tn,E it follows that

T (x) - T (_2_XE _ bE + a
E
)

n,E - n bE _ aE bE _ aE

where Tn(y) = cos(n arccos y), y E [-1,1]. Therefore

IT~,E(a)1 = IT~( -1)1 bE ~ aEw
E
-

1

2nZ 2nZ
_::-:-::-_----:__----:-:-__7aE- 1 ---+

c1(bE- 1) - c1(aE- 1) E-->O+ a(logb -loga)

and the proof is finished.

The next exercise follows Tunin [84].

E.6 Thran's Inequalities for Exponential Sums.

a] Let
n

g(~) := L bjz'j ,
j=l

Suppose

D

j = 1,2, ... ,no

Then

_ max Ig(v)l~ (2 (n ))Zlbl+bz+ ... +bnl
v-m+l, ... ,m+n e m + n

for every nonnegative integer m.
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Proof. Let

(6.1.12) f(z):= IT (1- :.) =: tovZv .
j=l J 1.'=0

Since f(z) has all its zeros outside the open unit disk, g := 1/ f is of the
form

(6.1.13)

Let

g(z) = L fJv zv ,
1.'=0

m

Izi < 1.

(6.1.14)

and

(6.1.15)

Note that

(6.1.16)

so h is of the form

(6.1.17)

gm(z) := L fJv zv
1.'=0

h(z) = 1 - f(z) (g(Z) - v,&fJvzv)

00

= f(z) L fJv zv
v=m+1

m+n
h(z) = L 'Yv zv .

v=m+1

Observe that f(zj) = 0 and (6.1.13) imply h(zj) = 1, that is,

m+n
L 'Yvzj = 1,

v=m+1
j=I,2, ... ,n.

Multiplication with bj and summation over j yield the fundamental identity

(6.1.18)

This immediately gives

m+n n
L 'Yvg(v) = L bj .

v=m+1 j=l
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(6.1.19)

It follows from (6.1.15), (6.1.17), (6.1.12), and (6.1.14) that

(6.1.20)

Since each Zj is of modulus at least 1, (6.1.12) yields that

(6.1.21)

Also, (6.1.13) implies that

Again using that each Zj is of modulus at least 1, we obtain

Hence

(6.1.22)

By (6.1.20) to (6.1.22) we conclude that

m+n (+ )nL I'Yv I:::; 2e m n n ,
v=m+1

which, together with (6.1.19), finishes the proof.

b] Let
n

f(t) := L bjeAjt
,

j=l

Suppose

D

j=1,2, ... ,n.

Show that

(
2e(a + d))n

If(O)1 :::; d Ilfll[a,a+dj

for every a > 0 and d > O.
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Hint: First observe that the result of part a] can be formulated as

max Ig(v)l2: (2 (n ))nlbl+b2+"'+bnl,
m:'Ov:'Om+n e m + n

vEN

where m is an arbitrary positive (not necessarily integer) number. Now
apply the above inequality with

an
m:=d' (dA)

Zj := exp -;; j = 1,2, ... ,no

o

c] Let
n

p(z) := I)jZAj ,

j=l

Show that

max Ip(z)/ :::; (4~7f)n max
Izl=l u Izl=l

a:'Oarg(z):'Oa+8

Ip(z)1

for every 0 :::; a < a + 15 :::; 27f.

Hint: Use part b]. o
The inequalities of the above exercise and their variants playa central

role in the book of Turan [83], where many applications are also presented.
The main point in these inequalities is that the exponent on the right-hand
side is only the number of terms n, and so it is independent of the numbers
Aj. An inequality, say in part c], of type

max Ip(z)1 :::; C(I5)An

Izl=l
max /p(z)/,
Izl=l

a:'Oarg(z):'Oa+8

where 0 :::; Ai < A2 < ... < An are integers and c(l5) depends only on 15,
could be obtained by a simple direct argument, but it is much less useful
than the inequality of E.6 c].

E.7 Nikolskii-Type Inequality for Muntz Polynomials. Suppose that
A := (Ai)~O is a sequence with Ao 0 and ..\i+l - Ai > 1 for each i.
Show that

for every P E Mn(A) := span{xAO , X A1 , . .. , x An } and 0 < q < p :::; 00.
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Proof. It is sufficient to study the case when p = 00 (see the comment in
the proof of Theorem 6.1.3). Let P E Mn(A) and let Xo E [0,1] be chosen
so that IP(xo)! = IIPII[o,I]' Combining E.3 a] and the Mean Value Theorem,
we obtain

where

1
IP(x)1 2: 2IIPII[0,1] , x E I,

So

n

1:= [xo - (36A)-I, Xo + (36A)-I] with A:= LAj.
j=O

(

1 )1/
q
( )1/

q
( (1 )q)l/

q
l1P(xW dx 2: jIP(XWdx 2: (18A)-1 "2I1PII[o,l]

and the result follows. o

E.8 Sharpness of Theorem 6.1.2. Suppose A := (Ai)~O is a sequence with
AO := 0 and Ai+l - Ai 2: 1 for each i. Show that there exists an absolute
constant c> 0 (independent of A and p) such that

IlxP'(x)IIL p [O,I] > ~ \
sup P c L...J /lk

PEMn(A) II IILp [O,I] - k=O

for every p E [2,00), where Mn(A):= span{xAO,xA1 , ... ,xAn }.

Proof. Let Lk E Mk(A) be the kth orthonormal Muntz-Legendre polyno­
mialon [0,1]. LetpE [2,00) and

n

P:= LLk'(I)Lk.
k=O

For the sake of brevity let
n

A:= LAj.
j=O

Using Theorem 3.4.3 (orthogonality), (3.4.8), and Corollary 3.4.6, we obtain

(6.1.23)
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and

(6.1.24)

A combination of E.7 and (6.1.24) yields

(6.1.25) IIPIILp [o,lj :::; (72..\)1/2-1/
P IIPIIL2[o,1]

:::; 721/2-1/pJ32 ..\2-1/p :::; 48 ..\2-1/p .

From E.3 a], E.7, and (6.1.24) we can deduce that

(6.1.26) IIP'II[o,l] :::; 18..\ 11P11[o,l]

:::; 18..\(72..\)1/211PIIL2[o,lj

:::; 18..\(72 ..\//2J32 ..\3/2

:::; 18·48..\3.

Applying E.3 a] with P', we get

(6.1.27) IIP"llro,l] :::; 18..\ IIP'II[o,l] :::; 182 .48..\4.

Now (6.1.23), (6.1.27), and the Mean Value Theorem give

IP'(x)1 ~ 1~..\3, x E I,

where

So

(6.1.28) IlxP'(x)IIL p [o,l] 2': (ll xp,(xWdX) l/p

~ ((182 .48. 16..\)-1 U2..\3)P)1/
P

~ (182.48.16) -l/p 32-1/ 2..\3-1/p

2': (128, 9V3) -1..\3-1/p .

Combining (6.1.25) and (6.1.28), we obtain the required result with a con­
stant c = (128·9\1'3)-1. 0
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E.9 On the Interval Where the Sup Norm of a Muntz Polynomial Lives.
Let A := (Aj)~o be an increasing sequence of nonnegative real numbers.
Let °-1= p E Mn(A) := span{xAO,xAl, ... xAn}, and let q(x) := xkop(x),
where a > °and k is a nonnegative integer. Let ~ E [0,1] be chosen so that
Iq(OI = IIqll[o,lj'
a] Suppose a = 1 and each Aj is an integer. Then

Proof. See Saff and Varga [81]. o

The above result is sharp in a certain limiting sense, which is described in
detail in Saff and Varga [78].

b] Suppose Aj = aj for each j. Use part a] to show that

(
k )2/0

-k- <~.+n

c] Suppose Aj = aj for each j. Use E.ll of Section 5.1 to show, without
using part a], that there exists an absolute constant c > °such that

(
ck )2/0

-k- <~.+n

d] Suppose Aj 2: aj for each j. Use part b] and E.3 g] of Section 3.3 to
show that the conclusion of part b] remains valid.

e] Suppose Aj 2: aj for each j. Use part c] and E.3 g] of Section 3.3 to
show that the conclusion of part c] remains valid.

The following extension of Newman's inequality is in Borwein and
Erdelyi [to appear 3].

E.I0 Newman's Inequality on [a, b] C (0,00).

a] Let A := (Aj)~o be an increasing sequence of nonnegative real numbers.
Assume that there exists an a > 0 such that Aj 2: aj for each j. Suppose
that [a,b] C (0,00). Show that there exists a constant c(a,b,a) depending
only on a, b, and a such that

lip' II [a,b] ::; c(a, b, a) (~Aj) Ilpll [a,b]
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Proof. We base the proof on E.g d], however; it may also be based on E.g
eJ. Let p E Mn(A). We want to estimate p'(y) for every y E [a, b]. First
let y E [~(a + b), b] . We define q(x) := xmnap(x), where m is the smallest
positive integer satisfying

a+b ( m )2/01.a<-- ---
- 2 m+l

Scaling Newman's inequality from [0, IJ to [0, y], then using E.g d], we obtain

g n

Iq'(y)1 :::; - L (Aj + mna)llqll[o,y]
y j=O
g n

= - L(Aj+mna)llqll[ (---!!!..-)2/o< ]Y . y m+l ,y
)=0

:::; Cl (a, b, a) (~Aj) Ilqll [a,yj

with a constant cl(a, b, a) depending only on a, b, and a. Hence

Ip'(y)/ :::; Iq,(y)y-mnal + mna Ip(y)1
y

:::; y-mnOl.cda, b, a) (t Aj) Ilqll[a,y] + mn IIPII[a,y]
j=O y

:::; c2(a, b, a) (~Aj) IIPII[a,y]

:::; c2(a, b, a) (~Aj) Ilpll[a,bj

with a constant c2(a, b, a) depending only on a, b, and a.

Now let y E [a, ~(a + b)] . Then, by E.3 b] and f] of Section 3.3, we
can deduce that

Ip'(y) I :::; IT~{xO,xOl.,X201., ... ,xna ; [y,b]}(y)lllplI[y,bJ
2ayOl.-l

= bOl. 01. n21Ipll[y,b] :::; c3(a, b, a)n2 1Ipll[y,bj
-y

:::; c4(a, b, a) (~Aj) Ilpll[y,bj

with constants c3(a, b, a) and c4(a, b, a) depending only on a, b, and a. This
finishes the proof. 0
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b] Show that if the gap condition Aj ~ ja in part a] is dropped, then
the conclusion of part a] fails to hold with c(a, b, a) replaced by a constant
c(a, b) depending only on a and b.

Hint: Study
T ' {O 0< 20< no<. [1 I]}n x,x ,x , ... ,x '2'

and let a ----; 0 + .

6.2 Nondense Muntz Spaces

o

Throughout this section we assume that A := (Ai)~O is a sequence
of distinct nonnegative real numbers, Mn(A) denotes the linear span of
{x.\o, X.\l , ... ,x.\n} over JR., and

00

M(A) := U Mn(A) = span{x.\O,x.\l, ... }.
n=O

If A C [0,1] is compact, then a combination of Tietze's and Muntz's theo­
rems yields that M(A) is dense in C(A) whenever 2::1 1/Ai = 00. (Recall
that Tietze's theorem guarantees that if A C [0,1] is compact, then for
every f E C(A) there exists an ! E C[O,I] such that !(x) = f(x) for all
x E A.) If the Lebesgue measure m(A) of A is positive, then the converse
is also true. More precisely, we have the following.

Theorem 6.2.1 (Miintz Theorem on Compact Sets of Positive Measure).
Suppose Ao := 0 and 2::11/Ai < 00. Let A C [0,1] be a compact set with
positive Lebesgue measure. Then M(A) is not dense in C(A). Moreover, if
the gap condition

inf{Ai - Ai-1 : i EN} > 0
holds and

rA:= sup{x E [0,00): m(An (x, 00)) > O},

then every function f E C(A) from the uniform closure of M(A) on A is
of the form

00

f(x) = L ajx.\j,
j=O

If the above gap condition does not hold, then every function f E C(A)
from the uniform closure of M(A) on A can still be extended analytically
throughout the region

{z E C \ (-00,0] : Izi < rA}.

The proof of the above theorem rests on the following bounded Remez­
type inequality:
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Theorem 6.2.2 (Remez-Type Inequality for Nondense Muntz Spaces). Let
Ao := 0 and 2::0 1/Ai < 00. Then there exists a constant c depending only
on A and s (and not on (2, A, or the number of terms in p) such that

IIPII[O,eJ :::; cIlpiiA

for every p E span{x AO , X A1 , ... } and for every compact set A C [(2, 1] of
Lebesgue measure at least s > O.

To prove Theorem 6.2.2 we need a few lemmas. We use the notation
introduced in Section 3.3. However, for notational convenience, we let

for compact sets A C [0,00).

By the unique interpolation property of Chebyshev spaces (see Propo­
sition 3.1.2), associated with

o< Xo < Xl < ... < X n ,

we can define

k = 0,1, ... ,n

such that

Lemma 6.2.3. Let

o< Xo < Xl < ... < X n

Suppose 0 :::; k :::; nand

and o< XO < Xl < ... < xn .

Xj :::; Xj

Xj = Xj

Xj ;::: Xj

if j = 0, 1, ... ,k - 1 ;
ifj=k;
if j = k + 1, k + 2, ... ,n.

For notational convenience, let

and

Then



6.2 Nondense Muntz Spaces 305

Proof. It is sufficient to prove the lemma in the case where there is an index
m such that 1 s:: m s:: n, m # k, and

Xj = Xj

X m <xm

X m >xm

if j = 0,1, ... ,n, j # m;
if m < k;
ifm> k.

The general case of the lemma then follows from repeated applications of
the above special cases. Note that in the above special cases

has a zero at each of the points

Xj, j = 0,1, ... ,n, j # m;

hence it changes sign at each of these points, and it has no other zero in
[0,(0) (see E.10 of Section 3.1). It is also obvious that

x E (0, xo) ,

which, together with the previous observation and the inequality Xo s:: xo,
yields that

which finishes the proof. o

By a simple scaling we can extend Lemma 6.2.3 as follows. We use the
notation introduced in Lemma 6.2.3.

Lemma 6.2.4. Let

°< Xo < Xl < ... < X n

Suppose °s:: k s:: n, '"Y ~ 0, and

and °< Xo < Xl < ... < xn .

Xj s:: Xj - '"Y

Xj = Xj - '"Y

Xj ~ Xj - '"Y

Then

if j = 0,1, ... ,k - 1 ;
if j = k;
if j = k + 1, k + 2, ... ,n.
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Proof. If "y = 0, then Lemma 6.2.3 yields the lemma. So we may assume
that "Y > 0. Let

and

Obviously

k = 0,1, ... ,n.

x E [0,00)

and
Xj ::; xi if j = 0,1, ... ,k - 1,
Xj = xi if j = k,
Xj ;::: x.i if j = k + 1, k + 2, ... ,n.

Hence Lemma 6.2.3 implies that

which finishes the proof. D

Lemma 6.2.5. Let A be a closed subset of [0, 1] with Lebesgue measure at
least s E (0,1). Then

for eVery p E M(A).

Proof. If °E A, then the statement is trivial. So assume that °tI- A. Let

denote the extreme points of

in [1 - s, 1]' that is,

j = 0,1, ... ,n.

Let Xj E A, j = 0,1, ... ,n, be defined so that

Since A is a closed subset of [0, 1] with m(A) ;::: s, such points Xj E A exist.
Let p E Mn(A). Then, by Lemma 6.2.4, we can deduce that
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Ip(O)j = I~P(Xk)£k(O)1

:::; (~\£k(O)I) Ilpl\A

:::; (~lek(O)I) IIpllA

= (~(_1)n-kek(O)) IlpllA

= (~Tn(Xk)ek(O)) IlpiiA

= ITn(O)1 . IlpiiA
which proves the lemma. o

Lemma 6.2.6. Suppose AD := O. Let A be a closed subset of [O,lJ with
Lebesgue measure at least s E (0,1). Then

Ip(y)l:::; ITn{Ao, AI,'" ,An; [1 - s, l]}(O)I·lIp/IA
for every p E Mn(A) and y E [0, inf AJ.

Proof. For notational convenience, let

Tn,A :=Tn{Ao,Al, ... ,An;A}.

Note that AD = 0 implies that ITn,A! is decreasing on [O,inf A], otherwise

T~,A E span{x>.,-1,x>'2- l , ... ,x>'n- l }

would have at least n + 1 zeros in (0,1]' which is impossible. Hence, it
follows from E.3 and Lemma 6.2.5 that

Ip(y)1 < ITn,A(y)1 = IT. (y)1 < IT. (0)1
IlpiiA - IITn,A IIA n,A - n,A

:::; ITn{Ao, AI, ... , An; [1- s, 1]}(0)1

for every 0 i= p E Mn(A). This finishes the proof. o

Proof of Theorem 6.2.2. Lemma 6.2.6 and E.5 a] of Section 4.2 yield the
theorem. 0

Proof of Theorem 6.2.1. The theorem follows from E.5 of this section and
E.3 eJ and E.8 bJ of Section 4.2. 0

Our next theorem is an interesting characterization of lacunary se­
quences.
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Theorem 6.2.7 (Characterization of Lacunary Muntz Spaces). Suppose
A := (Ai)~o with 0 :s: Ao < Al < .. '. There exists a constant c depending
only on A such that

j = 0,1, ... ,n, n E N

for every p E M(A) of the form

n

p(x) = L aj,nxAj

.1=0

if and only if A is lacunary, that is, if and only if the elements Ai of A
satisfy

To prove Theorem 6.2.7 we need the following result of Hardy and
Littlewood [26] whose proof we do not reproduce:

Theorem 6.2.8. Suppose 0 = ')'0 < ')'1 < ... is a lacunary sequence, that is,

Suppose the function f is of the form

00

f(x) = L aix'i ,
i=O

ai E lR , x E [0, 1)

and A:= lim f(x) exists and is finite. Then 2::::0 ai = A.
x--+l-

Proof of Theorem 6.2.7. Suppose A is lacunary and suppose there exists a
sequence (Pk)k=1 C M(A) such that if Pk is of the form

nk
Pk(X) = L aj,nk xAj ,

j=O

then

(6.2.1) IIPk ll[o,l] = 1 and k = 1,2, ....

We may assume, without loss of generality, that Ao = O. Choose a sequence
(ak)~1 of positive integers such that

k= 1,2, ....

Now let the function f be defined by
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(6.2.2)
00 00

f(x) = Lk-2Pk(XOk):::; Lk-2 < 00,
k=l k=l

Note that f E C[O, 1J by the Weierstrass M-test. For notational convenience,
let

mO :=0,

Further, let

k

mk:= Lni'
i=l

k = 1,2, ....

aO := L k- 2ao,nk = L k-2Pk(O)
k=l k=l

"YO:= °
and

and
00 00

Observe that ao E IR. is well-defined since IPk (0) I :::; 1 for each kENo Also

infbiHhi : i E N} 2: min{2, inf{Ai+dAi : i E N}} > 1.

Let r := bi)~O' Then f E C[O, 1] defined by (6.2.2) is ill the uniform
closure of M(r) on [0,1]; hence, by the Clarkson-Erdos theorem (see E.3
e] of Section 4.2), f is of the form

00

f(x) = Laix'Yi, x E [0,1).
i=O

Since f E C[O, 1], Theorem 6.2.8 implies that A := 2::0ai exists and is
finite. Recalling (6.2.2) and the choice of D:k, and using E.3 eJ of Section
4.2, we can deduce that each

j = 1,2, ... ,nk , k = 1,2, ...

is equal to one of the coefficients al,a2'" . Since laO,nkl = IPk(O)! :::; 1
for each kEN, from (6.2.1) and (6.2.2) we see that lail 2: 1 holds for
infinitely many i E N, which contradicts the fact that 2::0 ai converges.
This finishes the if part of the theorem.

Now assume that A is not lacunary. Then for every E > °there is an
n E N such that An-dAn> 1 - E. Observe that Pn(x) := x.\n - x.\n-l
achieves its maximum modulus on [0, 1J at

and hence
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which shows that the lead coefficient an,n of

is at least liE, otherwise a;;-;Tn - Pn E M n- 1(A) would have at least n
zeros on (0, 1), which is a co~tradiction. The proof of the only if part of the
theorem is now finished. 0

From the above proof it also follows that under the assumptions of
Theorem 6,2.7, the Chebyshev polynomials

have uniformly bounded coefficients if and only if A is lacunary.

As an application of Theorem 6.2.7 we derive the following Bernstein­
type inequality.

Theorem 6.2.9 (Bernstein-Type Inequality). Suppose Aa := 0, Al 2': 1, and
suppose A := (Ai)~a is lacunary, that is,

Then there exists a constant c depending only on A (and not on y or the
number of terms in p) such that

Ip'(y)1 :s; -1c IIpll[a,l]
-y

for every p E M(A) = span{x.\o, X.\" ... } and for every y E [0,1).

Proof. Let p E M(A) be of the form

n

p(x) = aa,n + L aj,nx.\j ,
j=l

Ilpll [a,l] = 1 .

Theorem 6.2.7 and the assumptions on A yield

where C1 and C2 depend only on A, and the theorem is proved. 0
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Comments, Exercises, aqd Examples.

The results of this section have been obtained by Borwein and Erdelyi [91,
93, 95b, to appear 1]. In E.l we present some of the several important
consequences of our central result, Theorem 6.2.2. In E.6 we offer another
proof of the first part of Theorem 6.2.1 when A is lacunary, while E.9 shows
that the Bernstein-type inequality of Theorem 6.2.9 "almost" characterizes
the lacunary Muntz spaces. Note that if A c [0,1] contains an interval, then
the first part of Theorem 6.2.1 follows immediately from E.3 of Section 4.2.
A typical case that does not follow from that exercise js when A C [0,1] is
a "fat" Cantor-type set of positive measure.

E.1 Some Consequences of Theorem 6.2.2. Let A C [0,(0) be a set
of positive Lebesgue measure, lj,nd let rA be the essential supremum of
A as defined in Theorem 6.2.1. Suppose q E (0,00) and suppose W is a
nonnegative-valued, integrable weight function on A with fA W> O. Let
Lq(w) := Lq(IJ), where dIJ = wdt, and where Lq(IJ) is defined in E.7 of
Section 2.2. Let A := (Ai)~O be a sequence of distinct nonnegative real
numbers with Ai =1= 0 for each i = 1,2, ....

a] Suppose L:11/Ai < 00. Then M(A) is not dense in Lq(w). Moreover,
if the gap condition

inf{Ai - Ai-1 : i E N} > 0

holds, then every function f E Lq(w) belonging to the Lq(w) closure of
M (A) can be represented as

00

f(x) = L aixAi
,

i=O

where

rw := sup {Y E [0,(0): { w(x)dx > O}
JAn(y,oo)

If the above gap condition does not hold, then every function f E L q (w)
belonging to the Lq(w) closure of M(A) can still be represented as an
analytic function on

{z E C\ (-00,0]: Izi < rw }

restricted to A.

Proof. Suppose f E Lq(w) and suppose there is a sequence (Pi)~1 C M(A)
such that

lim Ilf - PillL (w) = O.
~-(X) q

Minkowski's inequality (see E.7 b] and E.7 i] of Section 2.2.) yields that
(Pi)~1 is a Cauchy sequence in Lq(w). The assumptions on w imply that
for every {j E (0, r w ) there exists an a > 0 such that
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B:= {x E An (8,00): w(x) > a}

is of positive Lebesgue measure. Let s := m(B) > O. Observe that if
IlpllLq(w) < c, then

so

m ( { x E B : Ip(x) I ~ (~:) 1/q} )

m ({ x E B: Ip(x)1 < (~:) l/

q

})

s
<­- 2'

Hence, by Theorem 6.2.2, (Pi)~1 is uniformly Cauchy on [0,8]. The proof
can now be finished as that of Theorem 6.2.1. 0

b] Miintz-Type Theorem in Lq(w). M(A) is dense in Lq(w) if and only
if L~1 1/Ai = 00.

Proof· Suppose L~11/Ai = 00. Let f E Lq(w). It is standard measure
theory to show that for every c > 0 there exists agE C[O,IJ such that
g(O) = 0 and

c
Ilf - gllLq(w) < '2'

Now Theorem 4.2.1 (full Mi.intz theorem in C[O, 1]) implies that there exists
apE M(A) such that

Ilg - pllLq(w) ::; IIg - piiA (1 W ) l/q ::; Ilg - pll[o,l] (1 w) l/q < ; .

Therefore M(A) is dense in Lq(w).

Suppose now that L~1 1/Ai < 00. Then part a] yields that M(A) is
not dense in Lq(w). 0

cJ Convergence in M(A). Suppose L~11/Ai < 00, (Pi)~1 c M(A), and

Pi(X) ----> f(x) , x E A.

Then (Pi)~1 converges uniformly on every closed subinterval of [0, rA).

Proof. Let 8 E (0, rA) be fixed. Egoroff's theorem (see, for example, Royden
[88]) and the definition of rA imply the existence of a set B cAn (8,00)
of positive Lebesgue measure so that (Pi)~1 converges uniformly on Band
hence is uniformly Cauchy on B. Now Theorem 6.2.2 yields that (Pi)~1 is
uniformly Cauchy on [0,8], and the result follows. 0



6.2 Nondense Muntz Spaces 313

d] Suppose I:~l 1/Ai = 00. Show that there is a sequence (Pi)~l C M(A)
that converges pointwise on [0,00) but does not converge uniformly on
An [0, a] for some a E (0, rA)'

Hint: Use Theorem 4.2.1 (Muntz's theorem). 0

e] Suppose I:~l 1/Ai < 00 and

inf{Ai - Ai-l : i E N} > 0 .
Let P(A) denote the collection of all real-valued functions f defined on
[0,1) by a power series

00

f(x) = L ai xAi ,
i=O

ai E IR, x E [0,1) .

Suppose that A C [0, I] with rA = 1. Show that if (Ji)~l C P(A) and

fi(X) --+ f(x), x E A,

then
x E [0,1),

where 1E P(A).

Hint: Use part c] and E.3 e] of Section 4.2. o

Ip* (y) I
IIp*IIA

E.2 On the Smallest Zero of Chebyshev Polynomials in Nondense Mootz
Spaces. Suppose AO := 0 and I:~l 1/Ai < 00. Show that there exists a
constant c > 0 depending only on A := (Ai)~O (and not on n) such that
the smallest positive zero of

Tn {O, AI, A2,'" , An; [0, I]}, n = 1,2, ...

is greater than c.

Hint: If Al 2 1, then use the Mean Value Theorem, E.l a] of Section 3.3,
and E.5 b] of Section 4.2. If 0 < Al < 1, then the scaling x --+ Xl/A, reduces
the problem to the case Al = 1. 0

E.3 Extremal Functions for the Remez-Type Inequality of Theorem 6.2.2.
Suppose 0 :S: AO < Al < ... < An, 0 < g, A c [g,oo) is a compact set
containing at least n + 1 points, and y E (0, g) is fixed. Let

Mn(A) :=span{xAO,xA" ... ,xAn }.

a] Show that there is a 0 =I- p* E Mn(A) such that

Ip(y)1
sup --

OofpEMn(A) IlpiiA .

Hint: Use a compactness argument.

b] Showthatp* =CTn{>.o,Al, ... ,An;A} forsomecER

Hint: Use a perturbation argument.

o

o
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EA A Lexicographic Property of Chebyshev Polynomials in Different
Muntz Spaces. Let 0 := Ao < Al < ... < An, 0:= 1'0 < 1'1 < ... < I'n,
and

j = 0, 1, ... ,no

Let e> 0 and let A c fe, 00) be compact containing at least n + 1 points,
and let

a] Show that ITn,r(y) I :::; ITn,A (y) I for every y E [0, e)·

Hint: Suppose, without loss of generality, that there is an index m,
1 :::; m :::; n, such that Am < I'm and Aj = I'j if j =J m. We choose
an Rn,A E Mn(A) that interpolates Tn,r at the n zeros of Tn,r and is
normalized so that Rn,A(O) = Tn,r(O). Use Theorem 3.2.5 to show that
IRn,A(X)1 :::; ITn,r(x) I for every x E [0,00), in particular for every x E A.
Now use E.3 to show that ITn,r(O) I = IRn,A(O)1 :::; ITn,A(O)I, which gives the
desired result for y = O. Using this, we can deduce that ITn,r(y) I :::; ITn,A (y) I
for every y E [0, e), otherwise

T T E { AO Al An "I=}n,A - n,r span x , x , ... , x , x

would have at least (n + 2) zeros in (0,00), which is a contradiction. 0

b] Show that

for every y E [0, e), where

and

M (A) .- {AO Al An}n .- span x , x ,..., x .

Hint: Combine part a] and EA. o

E.5 Theorem 6.2.1 Follows from Theorem 6.2.2. Under the assumptions
of Theorem 6.2.1 show that if (Pj)~1 C M(A) is uniformly Cauchy in
C(A), then it is uniformly Cauchy in C[O, y] for every y E (0, rA), where rA
is defined as in Theorem 6.2.1.

Hint: Use Theorem 6.2.2. o
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E.6 Some Corollaries of Theorem 6.2.9 in the Lacunary Case. Suppose
AO := 0, Al ::::: 1, and A := (Ai)f;o is lacunary.

a] Show that the Chebyshev polynomials

Tn :=Tn{Ao,Al, ... ,An :[O,l]}, n=1,2, ...

have the following property: There is a constant Cl E (0,1) depending only
on A (and not on n) such that if y E [0,1) and ITn(y)1 = 1, then ITn(x)1 ::::: ~
for every x E [y, Y + CI (1 - y)].

Hint: Use the Mean Value Theorem and the Bernstein-type inequality of
Theorem 6.2.9. D

b] Show that there is a constant C2 E (0,1) depending only on A (and not
on n) so that if a < b are two consecutive zeros of Tn' then 1- b < c2(1- a).

c] Let f E (0,1). Show that there is an no E N depending only on f (and
not on n) so that every Tn has at most no zeros in [0,1 - fl.
d] Give a new proof of the first part of Theorem 6.2.1 based on parts a]
and c].

Outline. By Lebesgue's density theorem (see Royden [88]), it may be sup­
posed, without loss of generality, that the left-hand side Lebesgue density
of A at 1 is 1. Choose f E (0,1) so that An [0,1 - f) contains infinitely
many points and

m(A n [y,l])
(6.2.5) > Cl

1-y

for every y E [1 - f, 1], where Cl E (0,1) is the same as in part a]. For this
f, choose no according to part c]. Now define g E C(A) so that g alternates
no + 3 times in An [0,1 - f) between 2 and -2 and is identically zero on
[1 - f, 1]. Assume that there exists apE Mn(A) such that lip - gilA :::; ~.

Use part a] and (6.2.5) to show that p - Tn E Mn(A) has more than n
distinct zeros in [0,1], which is a contradiction. D

The following simple application of Theorem 6.2.9 was pointed out by
Wojcieszyk:

e] Suppose A C [0,1] is a measurable set and the left-hand side Lebesgue
density of A at 1 is 1. Show that there is a constant C> °depending only
on A and A so that

Ilpll[o,I) :::; CIlpiiA
for every p E M(A) = span{x>'o, X>'l, ... }.

Hint: Use the Mean Value Theorem, the Bernstein-type inequality of The­
orem 6.2.9, and the Chebyshev-type inequality of E.3 f] of Section 4.2. D

f] Use part e] to give another proof of Theorem 6.2.1.

The following exercise constructs quasi-Chebyshev polynomials Pn for
Mn(A) if the lacunarity constant of A is large:
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E.7 Quasi-Chebyshev Polynomials in Very Lacunary Muntz Spaces. Let
Ao = 0, Al = 2, and Ai+I/Ai ~ 16 for i = 1,2, .... Let

n

Pn(x):= 1+2L(-I)jxAj ,

j=1

n = 1,2, ....

and 1::; 2k ::; n

Let Yi := (4Ai)-I. Prove the following statements:

a] IIPn ll[o,I) = 1 and Pn(1) = (_1)n.

b] Pn has exactly n zeros, Xl,n < XZ,n < ... < xn,n, in (0,1).

c] IP~(~)I::; 2An for every' E [xn,n, 1].

d] We have

Pn(x) ::; -~ if 1 - YZk ::; X ::; 1 _ Y~k

and

l'f 1 < < 1 YZk+I- YZk+I - X - - -2- and 1::; 2k + 1 ::; n .

Hint: Part a] is obvious. Prove the rest together, by induction on n. D

The next exercise follows Borwein and Erdelyi [95b].

E.8 Products of Miintz Spaces. Associated with A := (Aj )~o, let

Mk(A) := {p = ITPj : Pj E M(A)} ,
J=1

k = 1,2, ....

Is MZ(A) dense in C[O, 1] for A := (jZ)~o?

Note that Mk(A), k ~ 2 is not the linear span of monomials, and
Miintz's theorem does not give the answer. This exercise establishes Remez-,
Bernstein-, and Nikolskii-type inequalities for Mk(A). From any of these it
follows immediately that if L;:1 1/Aj < 00 and A C [0,1] is a set of
positive Lebesgue measure, then Mk(A) is not dense in C(A).

Throughout parts a] to d] of the exercise we assume 0= Ao < Al < ... ,
L;:1 1/Aj < 00, and S E (0,1).

a] Remez-Type Inequality for Mk(A). There exists a constant c depend­
ing only on A, S, and k (and not on (! or A) such that

for every P E Mk(A) and for every compact set A C [(!,1] of Lebesgue
measure at least S > 0.
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Proof. Theorem 6.2.2 implies that there exists a constant a > adepending
only on A, s, and k such that

s
m({x E [y, 1] : Ip(x)1 > a-llp(y)I}) 2: 1- Y - 2k

for every p E M(A) and y E [0,1 - s]. Now let p E Mk(A), that is,

Pj E M(A).

Then, for every y E [0,1 - s],

m({x E [y,l]: Ip(x)1 > a-klp(y)I})

2: m COl{x E [y,l] : Ipj(x)1 > a-lIPj(y)l})

s s
2: 1 - Y - k 2k = 1 - Y - "2 .

Hence y E [0, inf A] and meA) 2: s imply that

and the inequality follows with c = a k . o

bl Solution to Newman's Problem. Let A c [0,1] be a set of positive
Lebesgue measure. Then Mk(A) is not dense in C(A).

Proof. This follows from part a]. o

c] Bernstein-Type Inequality for Mk(A). Suppose Al 2: 1. There exists a
constant c depending only on A, s, and k (and not on (l and A) such that

for every P E Mk(A) and for every compact set A C [(l,1] of Lebesgue
measure at least s > O.

Hint: Use the product rule of differentiation, and estimate each term sep­
arately. Proceed as in the proof of part a]. Use Theorem 6.2.2 and E.5 a]
and b] of Section 4.2. 0

dl Nikolskii-Type Inequality for Mk(A). There exists a constant c de­
pending only on A, s, k, q, and w (and not on (l and A) such that
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for every p E Mk(A), for every compact set A c [0,1] of Lebesgue measure
at least s > 0, for every function w measurable and positive a.e. on [0,1],
and for every q E (0, (0).

Hint: Use part a]. D

e] Associated with

let

j=I,2, ... ,k,

Formulate and prove the analogs of parts a] to d] for M (A I, Az, . .. ,Ak).

E.9 A Weak Converse of Theorem 6.2.9. Suppose A := (Ai)~o is a
(strictly) increasing sequence of nonnegative real numbers with Ao := °
and Al 2: 1. Suppose also that there exists a constant c depending only on
A (and not on y or the number of terms in p) such that

Ip'(y)1 :::; -1c Ilpli[o,l]
-y

for every p E M(A) = span{xAO,xA" ... } and for every y E [0,1). Show
that there is a constant A > 1 depending only on A such that An 2: An.

Outline. Let
Tn := Tn{Ao, AI,··· , An; [0, I]}

and denote its zeros in (0,1) by XI,n > XZ,n > ... > xn,n. Use the Mean
Value Theorem and the assumed Bernstein-type inequality to show that
there is a constant "( E (0,1) depending only on A such that

1 - Xj,n :::; "((1 - Xj+l,n) , j = 1,2, ... , n - 1, n EN;

hence 1 - XI,n :::; "(n. On the other hand, use the Mean Value Theorem and
Theorem 6.1.1 (Newman's inequality) to show that

Finally, combine the lower and upper bounds for 1 - XI,n to conclude that

A > "(-n

n - 9(n+l)·

D
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E.I0 Polynomials in x>'n. Given n E N and An E JR, let

(as in E.6 of Section 4.1). Suppose An ~ 1 for all n E N. Let {j E JR be
defined by

. logn 1 1
hmsup-- = -log-.

n An 2 {j

Suppose {j > O.

a] Bounded Remez-Type Inequality. Suppose 0< b< {j. Show that there
exists a constant c depending only on b (and not on n, y, or A) such that

Ip(y)1 ::::; c IlpliA

for every p E U~lPn(An), for every A C [0,1] of Lebesgue measure at least
1 - b, and for every y E [0, inf A].

Hint: Use Lemma 6.2.6 and E.6 a] of Section 4.1. 0

b] Muntz-Type Theorem. If a ::::; b< (j and A C [0,1] is a set of Lebesgue

measure at least 1 - b, then U~=1Pn(An) is not dense in C (A) .

Hint: Use part a]. 0
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Inequalities for
Rational Function Spaces

Overview

Precise Markov- and Bernstein-type inequalities are given for various classes
of rational functions in the first section of this chapter. Extensions of the
inequalities of Lax, Schur, and Russak are also presented, as are inequal­
ities for self-reciprocal polynomials. The second section of the chapter is
concerned with metric inequalities for polynomials and rational functions.

7.1 Inequalities for Rational Function Spaces

Sharp extensions of most of the polynomial inequalities of Section 5.1 are
established for rational function spaces on K := IR (mod 271"), on the interval
[-1, 1]' on the unit circle of C, and on the real line. The classical inequalities
of Section 5.1 are then recovered as limiting cases. A sharp extension of
Lax's inequality is also given. Essentially sharp Markov- and Bernstein­
type inequalities for self-reciprocal and antiself-reciprocal polynomials are
presented in the exercises.

Let D := {z E C : Izl < 1} and aD := {z E C : Izj = 1}, as before.
We study the rational function spaces:
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and

and

on [-1,1] with aI, az, ... , an E C \ [-1,1];

on aD with aI, az, ... ,an E C \ aD; and

and

The Chebyshev polynomials Tn' Un, and

V := (cos a)Tn + (sin a)Un , aEK

for the rational function space Tn(al, az, ... ,azn;K) are defined in E.3 of
Section 3.5, and they playa central role in this section.
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Theorem 7.1.1 (Bernstein-Szeg6-Type Inequality on K). Given

(ak)%~l C iC \ JR, Im(ak) > 0,

let

Then
8E K

for every f E Tn(al,a2,'" ,a2n;K).

Equality holds if and only if either 8 is a maximum point of If I (that

is, f(8) = ±llfIIK) or f is a linear combination of Tn and Un (with real
coefficients) as defined in E.3 of Section 3.5.

Corollary 7.1.2 (Bernstein-Type Inequality on K, Real Case). Given

(ak)%~l C iC \ JR, Im(ak) > 0,

let the Bernstein factor B n be defined as in Theorem 7.1.1. Then

8E K

- -
Equality holds if and cnly if f is a linear combination of Tn and Un

(with real coefficients) as defined in E.3 of Section 3.5, and f(8) = O.

Theorem 7.1.1 and Corollary 7.1.2 can be easily obtained from the extension
of Theorem 3.5.3 given by E.3 of Section 3.5, which gives explicit formulas
for the Chebyshev polynomials for these classes Tn (ai, a2, ... ,a2n; K). The
arguments are outlined in E.1.

The following two results can be obtained from Theorem 7.1.1 and
Corollary 7.1.2 by the substitution x = cos 8; see E.2.

Corollary 7.1.3 (Bernstein-Szego-Type Inequality on [-1,1]). Associated
with (ak)k=l C iC \ [-1,1], let the Bernstein factor B n be defined by

Bn(x):= tRe (vaf=l) ,
k=l ak - x

where the choice of vaf=l is determined by lak - vaf=ll < 1. Then

(1 - x 2)f'(X)2 + B~(x)f2(x) ::::: B~(x)llfllf-l,lJ ' x E [-1,1]

for every f E Pn(al, a2, ... ,an; [-1, 1]).

Equality holds if and only if either x is a maximum point of IfI (that
is, f(x) = ±Ilfll[-l,lj) or f = cTn with c E JR, where Tn is defined as in
Section 3.5.
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Corollary 7.1.4 (Bernstein-Type Inequality on [-1,1], Real Case). Given
(ak)k=l C C \ [-1, 1], let the Bernstein factor B n be defined as in Corollary
7.1.3. Then

1j'(x)1 :::; ~llfll[-l'lJ' XE(-l,l)

for every f E Pn(al' a2, ... ,an; [-1, 1]).

Equality holds if and only if f = cTn with c E 1R, where Tn is defined as
in Section 3.5, and f(x) = O. (Note that Bn(x) > 0 for every x E (-1,1).)

Our next result follows from Theorem 7.1.1; see the hints to E.3.

Corollary 7.1.5 (Bernstein-Szego-Type Inequality on 1R). Given

let the Bernstein factor B n be defined by

Then
xEIR

for every f E Pn(al,a2, ... ,an;IR).

Equality holds if and only if either x is a maximum point of If I (that
is, If(x)1 = ±llfIIIR) or f is a linear combination of Tn and Un (with real
coefficients) defined in E.5 of Section 3.5.

Corollary 7.1.6 (Bernstein-Type Inequality on 1R, Real Case). Associated
with (ak)k=l C C \ 1R, let the Bernstein factor B n be defined as in Corollary
7.1.5. Then

1.f'(x)1 :::; Bn(x)llfIIIR' xEIR

for every f E Pn(al,a2,'" ,an;IR).

Equality holds if and only if f is a linear combination of Tn and Un
(with real coefficients) defined in E.5 of Section 3.5, and f(x) = o.

To formulate our next theorem we introduce some notation. For a
polynomial

n

q(z) := II (z - ak),
k=l

we define
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n

q*(z) := II (1 - 7hz) =: znqn(z-l).
k=l

Then

(7.1.1)

The function

Iq(z)1 = Iq*(z)l, z E aD.

Sn(z) := q*(z) = IT 1 - ak z

q(z) k=l Z - ak

is the Blaschke product associated with (ak)k=l'

Theorem 7.1.7 (Bernstein-Type Inequality on aD, Complex Case). Given
(ak)k=l C C \ aD, let the Bernstein factor Bn be defined by

with

n

B;;(z):= z=
k=l

lakl>l

and
n

B;; (z):= z=
k=l

lakl<l

Then
11'(z)1 ::; Bn (z)IIfllaD, z E aD

for every f E P;(al,a2, ... ,an;aD).

If the first sum is not less than the second sum for a fixed z E aD, then
equality holds for f = cS;; with c E C, where S;; is the Blaschke product
associated with those ak for which lakl > 1. If the second sum is not less
than the first sum for a fixed z E aD, then equality holds for f = cS;; with
c E C, where S;; is the Blaschke product associated with those ak for which
lakl < 1.

Proof. For reasons of symmetry it is sufficient to prove the theorem only
for z = 1. Without loss of generality we may assume that

(7.1.2)
(

n 1 ) n
Re z= 1 _ ak i="2 ;

k=l

the remaining cases follow from this by a limiting argument. Let Q := aD
(equipped with the usual metric topology), V:= P;(al,a2"" ,an;aD),
and L(f) := /,(1) for f E V. We show in this situation that n + 1 ::; l' in
Theorem A.3.3 (interpolation oflinear functionals). Suppose to the contrary
that l' ::; n. By Theorem A.3.3, there are distinct points Xl, X2, ... ,Xr on
aD, and there are constants CI, C2, . .. , Cr E C such that
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(7.1.3)

where

(7.1.4)

p'(1)q(l) - q'(I)p(l) _ t Ck P(Xk)
q(I)2 - k=l q(Xk) ,

n

q(z) := II (z - ak)'
k=l

P E p~,

We claim that Xk =1= 1 for each k = 1,2, ... , r. Indeed, if there is index k
such that Xk = 1, then Theorem A.3.3 implies that

r

p(z) := (z + l)n-r II (z - Xk) E p~
k=l

has a zero at 1 with multiplicity at least two, which is a contradiction.
Applying (7.1.3) with the above p, we obtain

p'(I)q(l) - q'(I)p(l) = °
and since p(l) =1= °and q(l) =1= 0, this is equivalent to

q'(I) p'(I)
=q(l) p(l) ,

that is, in terms of the zeros of Pn and qn,

(7.1.5)
~ 1 n-r ~ 1
L..J 1 - ak = -2- + L..J 1 - Xk .
k=l k=l

Since Xk E aD and Xk =1= 1, we have

(7.1.6) (
1 ) 1Re -- --
I- Xk - 2' k = 1,2, ... ,r.

It follows from (7.1.5) and (7.1.6) that

(

n 1 ) nRe ----L 1- ak - 2'
k=l

which contradicts assumption (7.1.2). So n + 1 :S r, indeed.

A compactness argument shows that there is a function i E V such
that

IlillaD = 1 and - IL(f)1
L(f) = IILII:= max -llfll .

O¥-!EV aD
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Theorem A.3.3 implies l1(xk)1 = 1 for every k = 1,2, ... , r. Hence, if

then

- pf = -,q fiE p~,

n
q(z) = II (z - ak),

k=l

(7.1.7)

and

h(z) := Ifi(zW - Iq(z)1 2
:::; 0, z E 3D

(7.1.8) k = 1,2, ... ,r.

Note that t(O) .- h(eiO ) E Tn vanishes at each Ok, where the numbers
Ok E [-7l",7l") are defined by Xk = eiOk , k = 1,2, ... ,r. Because of (7.1.7),
each of these zeros is of even multiplicity. Hence, n + 1 :::; r implies that
t E Tn has at least 2n + 2 zeros and therefore t = O. From this we can
deduce that h(z) = 0 for every z E 3D, so

(7.1.9)

We now have

lfi(z) I = Iq(z)l, z E 3D.

z E 3D,

so by the unicity theorem for analytic functions (see E.l e] of Section 1.2)

fiP' = qq*.

From this, it follows that there exists a constant 0 =1= c E C such that

with some m:::; nand

z E C , q(z) =1= 0

k = 1,2, ... ,m, 1 :::; j1 < 12 < ... < jm :::; n.

A straightforward calculation gives that

I 11'(1) I Im (1 1)IIf (1)1 = 1(1) = {; 1- D;l - 1- ak

I
~ lak 12 - 11 +-= ~lak-112 :::;max{Bn(z),Bn(z)},

which finishes the proof. o
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Corollary 7.1.8 (Bernstein-Type Inequality on K, Complex Case). Given
(ak)~~l C C \ JR, let the Bernstein factor B n be defined by

13n(O):= max{13;t(O),13;;-(O)}

with

2n

13;t(O):= L
k=l

Im(ak)<O

leiak
1
2
- 1

leiak _ eiB I2
and

2n

13;;-(0):= L
k=l

Im(ak»O

1 - le iak 12
leiak _ eiB 12 .

Then
11'(0)1:::; Bn(O)llfIIK, OE K

for every f E T~(a1,a2,'" ,a2n;K).

If the first sum is not less than the second sum for a fixed 0 E K, then
equality holds for f(O) = cSin(eiB ) with c E C, where sin is the Blaschke
product associated with those eiak for which Im(ak) < O. If the second sum
is not less than the first sum for a fixed 0 E K, then equality holds for
f(8) = cSin(eiB) with c E C, where Sin is the Blaschke product associated
with those eiak for which Im(ak) > O. Note that

Proof. Observe that if

2n

h(O) := II sin((O - aj)/2) E T~
j=l

and t n E T~, then there are pEPin and q E Pin such that

t(O)

h(O)

p(eiB)e-inB

q(eiB)e-inB

where q is of the form
2n

q(z) = c II (z - eiaj
)

j=1

with some c E C. So the corollary follows from Theorem 7.1. 7. o

Corollary 7.1.9 (Bernstein-Type Inequality on [-1,1], Complex Case).
Given {adk=1 C C \ [-1,1], let the Bernstein factor Bn(x) be defined
by
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where Ck and z are determined by

ICkl < 1;

Im(z) > O.

Then

XE(-I,I)

for every f E P~(al, a2,'" ,an; [-1, 1]). Note that

x E [-1,1],

where the choice of vaf=l is determined by jak - J a% - 11 < 1.

Proof. The corollary follows from Theorem 7.1.7 by the substitution
x=~(Z+Z-l). 0

Bernstein's classical polynomial inequalities discussed in Section 5.1
are contained in Theorem 7.1.7 and Corollaries 7.1.8 and 7.1.9 as limiting
cases. In Theorem 7.1.7 and Corollary 7.1.9 we take

( (m) (m) (m)) tr' \ Da 1 , a2 , ... , an C 'L-

so that
k=I,2, ... ,n.

In Corollary 7.1.8 we take

( (m) (m) (m)) tr' \ ltJ)a 1 ,a2 , ... ,a2n C 'L- ~

so that

(m) _(m)
an +k = a k and lim IIm(a(m))1 = 00,

m~oo k
k = 1,2, ... ,n.

To formulate our next result we introduce the Blaschke product

associated with (al,a2, ... ,an) C <C\R Obviously IQn(z)1 = 1 for every
zER
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Corollary 7.1.10 (Bernstein-Type Inequality on JR, Complex Case). Given
(ak)k=l C C \ JR, let the Bernstein factor Bn(x) be defined by

Bn(x) := max{B;:;(x), B;;(x)}

with

B;:;(x) :=

n

L 2IIm(ak)1

Ix - akl 2
and B;;(x) :=

n
2IIm(ak)1

Ix - akl 2

for every x E lR. Then

1!,(x)1 ~ Bn(x)llfIIJR, xEJR

for every f E P~(al, a2,··· ,an; JR).

If the first sum is not less than the second sum for a fixed x E JR, then
equality holds for f = cQ;; with c E C, where Q;; is the Blaschke product
associated with the poles ak lying in the open upper half-plane

H+ := {z E C : Im(z) > O}.

If the second sum is not less than the first sum for a fixed x E JR, then
equality holds for f = cQ:;; with c E C, where Q:;; is the Blaschke product
associated with the poles ak lying in the open lower half-plane

H- := {z E C : Im(z) < O}.

Corollary 7.1.10 follows from Theorem 7.1.7; see EA.

The next theorem improves the Bernstein-type inequality of Theorem
7.1.7 in the case when {adk=l C C \ D and f has all its zeros in C \ D. It
extends Lax [44J.

Theorem 7.1.11 (Lax-Type Inequality). Given (ak)k=l C C \ D, let the
Bernstein factor B n be, as in Theorem 7.1.7, defined by

Then
z E aD

for every h E P~(aI, a2, ... ,an; aD) having all its zeros in C \ D.

Equality holds for h = c(Sn + 1) with c E C, where Sn is the Blaschke
product associated with (ak)k=l.
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Note that Bn(z) = IS:,(z)l. Note also that

has all its zeros on aD.

Proof. First assume that each zero of h is on aD, the general case can be
reduced to this (see E.5). Thus let h := p/q, where p E p~ has all its zeros
on aD and where

n

q(z) := II (z - ak),
k=l

Let
n

q*(z) := II (1 - Clk Z ).

k=l

We study

for () E ffi., where the square roots are taken so that y'q is analytic in a
neighborhood of the closed unit disk, and R is analytic in a neighborhood
of the complement of the open unit disk. Since p E p~ has all its zeros on
aD, there exists a 0 :f. f3 E C such that

is a real trigonometric polynomial of degree at most n (see E.5 a]). Also

n

Iq(e2iO)I= Iq*(e2iO)1 = II 11 - Clk e2iO ,
k=l

2n

= 'Y II Isin((B - ck)/2)! ,
k=l

where'Y > 0,

iCk _-1/2e = ak ,

and

iCk _ _-1/2e - -ak ,

Applying Theorem 7.1.1 to

Im(ck) > 0, k = 1,2, ... , n

Im(ck) >0, k=n+l,n+2, ... ,2n.



7.1 Inequalities for Rational Function Spaces 331

we obtain

(7.1.10)

where

OEK,

(7.1.11)

Observe that

(7.1.12)

where

(7.1.13)

A simple calculation (see E.4. of Section 3.5) shows that

(7.1.14) OEK.

Also, since Ifn(eiO)1 = 1 for every 0 E K, we have

(7.1.15) IluliK = 11~llaD = IlhllaD .
Now (7.1.10) to (7.1.15) yield

I
d (p(e

2iO
) iO) . iO f~(eiO) p(e2iO ) iO I -

dO q(e2io / n(e ) - ze fn(e iO ) q(e2io/n(e ) ::; Bn(O)llhll aD ·

So

12ie2iOh'(e2iO)fn(e2iO) + ieiO f~(eiO)h(e2iO)

- ieiO f~(eiO)h(e2iO)1 ::; Bn(O)llhllaD.

Thus
2Ih'(e2iO )1 ::; Bn(O)llhll aD ,

which, together with (7.1.11), finishes the proof. o
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Comments, Exercises, and Examples.

Most of the results in this section have been proved in Borwein and Erdelyi
[to appear 4] and in Borwein, Erdelyi, and Zhang [94a]. A weaker version
of Corollary 7.1.9 has been obtained by Russak (see Petrushev and Popov
[87]). Theorem 7.1.11 contains, as a limiting case, an inequality of Lax [44]
conjectured by Erdos. Lax's inequality establishes the sharp Bernstein-type
inequality on the unit disk for polynomials PEP;" having no zeros in the
open unit disk. That is,

for such polynomials. Various extensions of this inequality are given by
Ankeny and Rivlin [55], Govil [73], Malik [69], and others. We discuss some
of these in E.16 of Appendix 5.

E.l Proof of Theorem 7.1.1 and Corollary 7.1.2. Given (ak)%~l C iC \ JR,
let

a] Show that Tn,a is a Hermite interpolation space. That is, if the points
X1,X2,'" ,Xk E K are distinct, and m1,m2,'" ,mk are positive integers
with 2::7=1 mi ::::; 2n + 1, then for any choice of real numbers Yi,j, there is a
function f E Tn,a such that

f (j)(x·) = y ..
1, t,) , i = 1,2, ... , k, j = 0,1, ... ,mi - 1.

Hint: See the hint to E.7 of Section 1.1.

b] Show that for every fixed () E K, the value

D

max
Oi'!ETn,a

f'(())2 + B';,(())f2(())

Ilfllk

is attained by an f E Tn,a'

Hint: Use a compactness argument. D

c] Show that J= cV, where c E JR and V is one of the Chebyshev polyno­
mials for Tn,a defined in Theorem 3.5.3 and E.3 of Section 3.5.

Hint: Use a variational method with the help of part a]. D

d] Prove Theorem 7.1.1.

Hint: Use part c] and E.4 of Section 3.5. D

e] Prove Corollary 7.1.2.

E.2 Proof of Corollaries 7.1.3 and 7.1.4.

a] Prove the inequality of Corollary 7.1.3.
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Hint: Use Theorem 7.1.1 with the substitution x = cosB. Note that
IE Pn(al' a2,··· ,an; [-1, 1]) implies

where the numbers Ck E C are defined by

eiCk = ak - va~ - 1 ,

BE K,

Verify that if B n is the Bernstein factor given in Theorem 7.1.1 associated
with

then

Bn(B) = tRe (var=t
B

) ,
k=l ak - cos

where the choice of via~ - 1 is determined by lak - var=tl < 1. 0

hI Given x E [-1,1], prove that equality holds in the inequality of Corol­
lary 7.1.3 if and only if either x is a maximum point of III (that is,
I(x) = ±IIIII[-l,lj) or I = cTn with c E JR, where Tn is defined in Sec­
tion 3.5.

Hint: Observe that
v = (cos a)Tn + (sin a)Un

is even if and only if V = ±Tn and use Theorem 7.1.1.

c] Prove Corollary 7.1.4.

o

E.3 Proof of Corollaries 7.1.5 and 7.1.6.

a] Prove Corollary 7.1.5.
·0

Hint: Use Theorem 7.1.1 and the substitution x = ie'o + 1 , which maps K
e' - 1

onto JR U {00}. 0

hI Prove Corollary 7.1.6.

E.4 Proof of Corollary 7.1.10. Prove Corollary 7.1.10.

Hint: Use Theorem 7.1.7 and the substitution x = i
Z + 1 , which maps aD
z-1

onto JR U {(X)} . 0

E.5 Completion of the Proof of Theorem 7.1.11.

a] Show that if p E P~ has all its zeros on the unit circle, then there
is a 0 i= ;3 E C such that g(B) .- ;3e-inOp(e2iO) is a real trigonometric
polynomial of degree at most n.
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For f = p/q with

n

q(z) := IT (z - ak),

k=l

and
m

p(z) := 'Y IT (z - bk ),

k=l

we define f* := p* /q, where

bk E C , 'Y E C , m::; n,

m

p*(z) := 'Y IT (1 - zbk ).

k=l

Let D := {z E C : IzI < I}.
b] Show that 1f*(z)1 = If(z)1 for every z E aD.

In each of the remaining parts of the exercise suppose that lak I > 1 for
each k.

c] Show that if E E aD and Ibkl 2: 1 for each k, then f + Ef* has all its
zeros on the unit circle.

d] Show that if Ibkl 2: 1 for each k, then

1f'(z)1 ::; 1f*'(z)l, z E aD.

Hint: First observe that it is sufficient to study the case z = 1. We have

IRe (jg1) I = IRe (~ 1 ~ bk) - Re (~ 1 ! ak ) I

::; IRe(t _1) - !21 + 1!2 - Re (t _1) I1 - bk 2 2 1- ak
k=l k=l

n (n 1) n (n 1)=--Re 2:-- +--Re 2:--
2 1 - bk 2 1- ak

k=l' k=l

=n-Re(~_l)_Re(~_1)
L 1- bk L 1- ak
k=l k=l

=Re(t _1_1)-Re(t~)
k=l 1 bk k=l k

( n 1) (n 1)=Re 2: -Re 2:--
k=l 1 - bk-

1
k=l 1 - ak

= IRe (f*'(I)) I
f*(I)
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and

1
1m (jg;) I = 1

1m (~ 1 ~ bk) - 1m (~ 1 ~ak) I

= 1
1m
( n - ~ 1 ~ bk) - 1m (~ 1 ~ ak ) I

= I-1m (t 1_ -1) + 1m (t~) I
k=1 1 - bk k=1 k

= 11m (1*'(1)) I.
1*(1)

The result now follows from the combination of part b] and the above two
inequalities. 0

e] Prove that if Ibkl ~ 1 for each k, then

211'(z)1 ::; II'(z)1 + 1I*'(z)1 ::; Bn(z)IIIIIBD, z E aD,

where Bn(z) is the Bernstein factor defined in Theorem 7.1.~1.

Hint: Use parts c] and d] and the already proved part of Theorem 7.1.11
(when I has all its zeros on the unit circle). 0

f] Show that if Ibkl ~ 1 for each k, then

II'(z)1 ::; -2
1

Bn(z) (max II(z)l- min II(Z)I) ,zEBD zEBD
z E aD,

where Bn(z) is the Bernstein factor defined in Theorem 7.1.7. This extends
a result of Aziz and Dawood [88].

Hint: Assume that IIIIIBD = 1. Let m := minzEBD II(z)l. Let a be a con­
stant of modulus less than 1. Let g(z) := I(z) - am. Observe that the
argument of a can be chosen so that

Ig*'(z)1 = 1I*'(z)I-lalmBn(z).

By Rouche's theorem, g has no zeros in D. So parts d] and e] imply that

21I*'(z)l- 2101 mBn(z) = 2Ig*'(z)1 ::; jg'(z)1 + Ig*'(z)1
= II'(z)1 + 1I*'(z)l- lalmBn(z)
::; Bn(z) - lalmBn(z).

Since \al can be chosen arbitrarily close to 1, the result follows. 0
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E.6 Extensions of Russak's Inequalities.

a] Given (ak)%~1 C C \ JR., show that

II!'IIL,(K) :::; 21rn II/IIK

for every I E T~(al, a2,'" ,a2n; K).

b] Given (ak)k=1 C C \ JR., show that

II!'IIL,(IR) :::; 21rn II/IIIR

for every I E P~(al,a2,'" ,an;JR.).

Hint: Use Corollaries 7.1.2, 7.1.8, 7.1.6, and 7.1.10. Write the Bernstein
factors in a form so that the integral (of each term in the maximum if the
Bernstein factor is defined by a maximum) can be evaluated by the residue
theorem (in part a]) and by finding the antiderivative (in part b]). 0

c] Are any of the inequalities of parts a] and b] sharp? If so, in which
cases?

E.7 Markov-Type Inequality. Given (ak)k=l C JR. \ [-1,1], show that

(

n )2I n l+lckl
III 11[-1,1) :::; n _ 1 ~ 1 _ ICkl 11/11[-1,1)

for every I E P~(al, a2, ... ,an; [-1, 1]), where the numbers Ck are defined
by

Ck := ak - Ja% - 1,

Proceed as follows:

a] Given (ak)k=l C JR. \ [-1,1], let

{

2ak + 1- y
l+y l+y

ak(Y) := 2ak 1+ Y
--+-­
l-y 1-y

and let Ck (y) be defined by

if 0:::; y :::; 1

if -l:::;y:::;O
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Show that

(

n )2I 2 l+Ck(Y)
If (y)1 :s; 1+ Iyl {; 1 _ Ck(Y) Ilfll[-l,lJ

for every f E P~(al, a2, .. · ,an; [-1, 1]).

Hint: Show by a variational method that

1f'(±1)1 I

max Ilfll = ITn (±l)l,
f [-1,1] .

where the maximum is taken for all 0 =f. f E Pn(al' a2,'" ,an; [-1,1]),
and Tn is the Chebyshev polynomial for Pn(al' a2, ... ,an; [-1, 1]) defined
in Section 3.5. Now the result follows from E.1 c] of Section 3.5 by a linear
shift from [-1, 1J to [-1, y] if 0 :s; y :s; 1, or to [y,lJ if -1 :s; Y :s; O. 0

h] Given (ak)k=l C IR \ [-1,1], show that

1J'(y)1 :s; 1 :ly!lIflh-l ,ll ' Y E (-1,1)

for every f E Pn(al' a2,." ,an; [-1, 1]).

Hint: When y = 0, this follows from Corollary 7.1.3. When y E (-1, 1) is
arbitrary, use a linear shift from [-1, 1] to [2y - 1, 1J if 0 :s; y :s; 1, or to
[-1,2y+1]if-1<y:S;0. 0

c] Prove the Markov-type inequality of the exercise.

Hint: Combine parts a] and bJ. Note that

and k = 1,2, ... ,n

holds for every y E [-1,1].

E.8 Schur-Type Inequality. Given {adk=l C IR \ [-1,1]' show that

Ilfll[-l,l) :s; max{IUn(l)I, IUn(-1)1} '1If(x)~II[_l,l]

o

for every f E Pn(al,a2, ... ,an;[-l,l]), where Un is the Chebyshev poly­
nomial (of the second kind) for Pn(aI, a2, .. , ,an; [-1, 1]) defined in Section
3.5, and

with the choice of y'af=1 determined by lak - y'af=11 < 1. Show that
equality holds if and only if f = cUn, C E JR.
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Hint: First show that if 1E Pn(al, a2, ... , an; [-1, 1]) is extremal for

If(±l)1

mr Ilf(x»)l - x211[_1,l) ,

where the maximum is taken for all 0 =1= f E Pn(al,a2, ... ,an;[-l,l]),
then f = cUn with some c E R Observe that Un(±l) can be evaluated by
L'Hospital's rule since

u ( )2 = 1 - Tn (x)2 .
n X 1 _ x 2 '

hence IUn(±lW = IT~(±l)1 = IBn(±l)1 . IUn(±l)1 with the notation of
Section 3.5. Thus IUn(±l)1 = IBn(±l)l.

Ify E [-1,1] is arbitrary, then use a linear shift from [-1, 1J to [-y,y]
(some caution must be exercised about the change of poles). 0

E.9 Extension of Lax's Inequality on the Half-Plane. Associated with
(ak)k=l c H+ := {z E C : Im(z) > O}, let the Bernstein factor Bn be, as
in Corollary 7.1.10, defined by

B ( ) .=~ 2Im(ak)
n x. LI 12 '

k=l X - ak

Show that
XE~

for every h E P~(al, a2, ... ,an; iR) having all its zeros in H+.

Equality holds for h = C(Sn + 1) with c E C, where Sn is the Blaschke
product associated with (ak)k=l' Note that Bn(z) = IS~(z)l. Note also that

h=c(S+l) EP~(al,a2,'" ,an;~), c=l=O

has all its zeros on R

Hint: Use Theorem 7.1.11 with the substitution x = i
Z + 11 .
z-

o

E.10 Remarks on Theorem 7.1.7 and Corollary 7.1.10.

aJ Given (ak)k=l C D and z E aD, show that equality holds in the in­
equality of Theorem 7.1.7 if and only if f = cSn with c E C, where Sn is
the Blaschke product associated with (ak)k=l'

Hint: Analyze the proof of Theorem 7.1.7. 0

hJ Given (ak)k=l C H+ = {z E C : Im(z) > O} and x E ~, show that
equality holds in the inequality of Corollary 7.1.10 if and only if f = cQn
with c E C, where Qn is the Blaschke product associated with (ak)k=l'

Note that the only ifparts of E.10 aJ and E.10 bJ above are not claimed
in the general case of Theorem 7.1.7 and Corollary 7.1.10 (why?).
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E.ll Markov-Bernstein-Type Inequality for SR~ and ASR~. Let SR~
denote the set of all self-reciprocal polynomials P E P~ satisfying

Let SRn denote the set of all real self-reciprocal polynomials of degree at
most n, that is, SRn := SR~ n Pn . For a polynomial P E P~ of the form

(7.1.16)

P E SR~ if and only if

n

p(z) = I>jzj ,
j=O

Cj E C,

Cj = Cn-j, j = 0,1, ... ,no

Let ASR~ denote the set of all antiself-reciprocal polynomials P E P~

satisfying

Let ASRn denote the set of all real antiself-reciprocal polynor.."ials of degree
at most n, that is, ASRn := ASR~ n Pn . Let ASRn := ASR~ n Pn . For a
polynomial P E P~ of the form (7.1.16) P E ASR~ if and only if

Cj = -Cn-j, j = 0, 1, ... ,n.

a] There exists an absolute constant C such that

Ip'(x)1 :s cnmin {(1 + logn), log (1 ~ x 2 ) } Ilplll-l,l]

holds for every x E [-1, 1] and for every p E P~ satisfying

(7.1.17) Ip(x)1 :s (1 + Ixln)llpll[_I,l] , x E 1R,

in particular, for every P E SR~ and for every P E ASR~.

The inequality

Ip'(x)1 :s cn(1 + logn) IIpll[-I,I]

for all p E SRn and for all p E ASRn was first obtained by Kroo and
Szabados [94a]. They also showed that up to the constant c> °the above
inequality is sharp for both SRn and ASRn . Here we present a distinct
proof. The sharpness is studied in E.12 fl.
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Outline. Suppose p E p~ satisfies (7.1.17). Then

(7.1.18)

satisfies

(7.1.19)

Let

f(x):= p(x)
1 +x2n

IlflllR :::; 21Ipll[-1,1] .

(7.1.20) ak := ei (2k-l)11'/(2n) , k= 1,2, ... ,2n

be the zeros of the equation z2n + 1 = O. Now Corollary 7.1.10, together
with (7.1.18) to (7.1.20), yields that

(7.1.21) 1j'(x)1 :::; 2(t Im(ak) ) IlflllR
k=l Ix - akl 2

:::; 4 (~ [~~(::i2)I/PI/[-I,lJ, x E R.

Show that if n E N and x E [-1,1], then

(7.1.22)

where here the rv symbol means that there are absolute constants Cl > 0
and C2 > 0 (independent of n E N and x E [-1, 1]) such that the left-hand
side is between Cl times the right-hand side and C2 times the right-hand
side for every n E N and x E [-I,IJ. Combining (7.1.18), (7.1.21), and
(7.1.22), we conclude that there is an absolute constant C2 such that

I
p'(x) _ 2nx2n

-
1 p(x) I

1+ x 2n 1+ x 2n 1+ x 2n

:::; c2nmin {(I + logn), logC~ x 2 ) } Ilpllr-I,I], x E R.

So if x E [-1,1]' then

Ip'(x)1 :::; (2C2nmin {(I + log n), logC~ x 2 ) } + 2n) IlpIII-I,I]

and the proof is finished.

b] There exists an absolute constant C> 0 such that

for every p E P2n'

o
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Proof. Associated with pEPin' let

f(x):= p(x) .
1 + x2n

Let
k = 1,2, ... ,2n

be the zeros of the equation z2n + 1 = O. Using Corollary 7.1.10, we can
deduce that there are absolute constants C1 and C2 such that

11f'IIR ~ (~2IIm(ak)I-1) IIfllR ~ C1 (~(~) -1) IlfliR

~ C2n(1 +10gn)llfIIR.

Therefore

I
p'(x) 2nx

2n
-

1
p(x) I II p(x) II

1+ x2n - 1+ x2n 1+ x2n ~ C2n (1 + log n) 1+ x2n R

for every x E JR, which implies

and the result follows. o

c] For every mEN, there exists a constant c(m) depending only on m so
that

IIp(m)llr-1,lJ ~ c(m)(n(l + 10gn))mllpll[_1,1]
for every p E P~ satisfying

(7.1.23)

Proof. Using part b] and induction on m, we see that there exists a constant
C1 (m) depending only on m such that

for every pEPin- Note that if p E P~ satisfies (7.1.23), then

II p(x) II < 211 p(x) II < 21+ x 2n R- 1+ Ixl n R- Ilplh-1,1]'

and the result follows. o
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E.12 Quasi-Chebyshev Polynomials for SR2n and ASR2n • Let

ak := ei (2k-1)7l'/(2n) , k = 1,2, ... n

be the zeros of the equation z2n + 1 = 0 in the upper half-plane. Let
n

M 2n (z):= rr (z - ak)2, z E C,
k=l

P2n(X) :=Re(M2n (x)), x E JR,

and

x E JR.

a] Show that if n is even, then P 2n E SR2n and Q2n E ASR2n , while if n
is odd, then Q2n E SR2n and P 2n E ASR2n .

b] Show that
xEJR

and

in particular

x E JR,

Proof. Note that

and IIQ2nll[-1,1] ::; 2.

(7.1.24)
M 2n (x) = rrn x - ak

1+ x 2n X - 1h '
k=l

which implies the first equality. The rest is straightforward from the defi­
nitions. 0

c] Show that there are extended real numbers

00 = Zo > Zl > ... > Z2n = -00

such that

j = 0,1, ... ,2n

(the value of the left-hand side at ±oo is defined by taking the limit when
x ---. ±oo).

Hint: Use (7.1.24) and the argument principle (see, for example, Ash [71]).
o
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d] Let n E N be even. Show that there exist

1 = Xo > Yl > Xl > Y2 > ... > Xn-l > Yn > Xn = -1

such that

and

Formulate the analog statement when n E N is odd.

e] Show that there exists an absolute constant e > 0 such that

IP~n(x)1 + IQ~n(x)1 2 en min {(I + logn), logC~ x2 ) }

for every n E N and X E [-1,1].

Proof. If X E [-1,1]' then

IP~n(x)1 + IQ;n(x)1 2 IM~n(x)1 = IM~n(X)11 ~:n~:~ I

> IM~n(X)1 = It-2-1 > 2t Im(ak)
- M 2n (x) k=l X - ak - k=l Ix - akl 2

2enmin{(1+l0gn), 109(1~X2)}

with an absolute constant e > 0, where the last inequality follows from
(7.1.22). 0

The next part shows the sharpness of the inequality of E.ll a].

f] Let e > 0 be the same absolute constant as in part e]. For the sake of
brevity let

8n (x) := ( cnmin {(I + logn), log (1 ~ x2 ) } ) -1

Show that for every interval
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there exist Yl E In,x and yz E In,x such that

and

Proof. Suppose that
IP~n(y)1 < !on(X)-l

for every Y E In,x. Then, from part e] we can deduce that

for every y E In,x. Therefore

which contradicts the last inequality of part bJ. This finishes the proof of
the first inequality. The second inequality can be proven in the same way.

o

gJ Show that
p'(l) = !np(I)

for every p E SR;.

By using the quasi Chebyshev polynomials for SRzn and ASRzn , it can
be shown that the inequality of E.ll cJ is essentially sharp for the classes
SRn and ASRzn for every m. This has been pointed out to us by Szabados.
The argument requires some more technical details than the proof in the
m = 1 case discussed in the above exercise.

7.2 Inequalities for Logarithmic Derivatives

We derive a series of metric inequalities of the form

a> 0,

where r is a rational function of type (n, n) and c is a constant independent
of n. Here m is the Lebesgue measure, although, since the sets in question
are usually just finite unions of intervals, this is mostly a notational con­
venience. One of the interesting features of these inequalities is their easy
extension from the polynomial case to the rational case.

The basic inequality is due to Loomis [46J. Note the invariance of the
measure of the set in this case.
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Theorem 7.2.1. If p E Pn has n real roots, then

({
pl(X)}) n

m x E JR: p(x) ?: a = -; , a> O.

Proof. By considering a-lp instead of p, it is sufficient to prove the theorem
for a = 1. We first consider the case where p has distinct roots, which are
denoted by al < a2 < ... < an' Then

p'(X) _ ~_1_
p(x) - ~ x - ai .

Let f3l < f32 < ... < f3n be the roots of p - pi, which must all be real. Note
that these are the points where pi (x) / p(x) = 1. It is now easy to see from
the graph that

and

({
pl(X)}) n n

m x E JR : -(x) ?: 1 = L f3i - L ai .

p .=1 .=1

However, if p(x) := x n + an_lxn- l + ... + ao, then

n

Lai = -an-I,
i=l

while
n

Lf3i = -(an-l - n)
i=l

is -1 times the second coefficient of p - p'.

This gives the result for distinct roots. The case when some of the roots
of p are repeated can be handled by an easy limiting argument. 0

Corollary 7.2.2. If ai E JR, Ci > 0, i = 1,2, ... ,n, and L~=l Ci 1,
then

a> O.

Proof. For Ci rational this follows immediately from Theorem 7.2.1 on clear­
ing the denominators of Ci by multiplying by an integer. The real case is
an obvious limiting argument. 0

In order to extend Theorem 7.2.1 to arbitrary polynomials we need
the following generalization of E.3 of Section 2.4 due to Videnskii [51]. The
proof is indicated in the exercises.
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Lemma 7.2.3. If P E Pn is positive on [a, b], then there exists q, s E Pn

nonnegative on [a, b] with all real roots (in [a, b]) so that

p(x) = q(x) + s(x).

We now prove the unrestricted case of Theorem 7.2.1.

Theorem 7.2.4. Let p E Pn . Then

({
p'(x)}) 2n

m x E JR: p(x) ~ a ::; -;- , a> O.

Proof. Let a > 0 and let Pn E Pn . Choose a and b such that

{x E JR : ~g} ~ a} C [a, b].

By Lemma 7.2.3 we can find polynomials q E P2n and s E P2n such that

p2(X) = q(x) + s(x)

where, for x E [a, b],

0::; q(x) ::; p2(x) and

and both q and s have only real roots. Now

{
p'(x)} { (p2)'(X) }

x E JR: p(x) ~ a = x E JR: p2(x) ~ 2a .

Also,

holds exactly when

q'(x) + s'(x) ~ 2a(q(x) + s(x)).

By Theorem 7.2.1

Since q and s are nonnegative on [a, b], it follows that

m({x E [a,b] : q'(x) + s'(x) ~ 2a(q(x) + s(x))}) ::; 2n,
a

and the proof is finished. o

It can be shown that this inequality is asymptotically sharp to the
extent that the constant 2 cannot be replaced by any smaller constant for
large n; see Kristiansen [82].

Theorem 7.2.4 extends easily to rational functions.
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Theorem 7.2.5. If r = p/q, where p, q E Pn , then

Q > O.

Proof. We have
r' p' q'

r p q

and for Q > 0,

{XE IR : r'(x) > Q} C {X E IR : p'(x) > ~} U {X E IR : q'(x) < -~} .
r(x) - p(x) - 2 q(x) - 2

By Theorem 7.2.4

({
p'(x) Q}) 4nm xEIR:-->- <-
p(x) - 2 - Q '

and with s(x) := q( -x),

({
q'(x) Q}) ({ s'(x) Q}) 4n

m x E IR: q(x) :::; -'2 = m x E IR: s(x) 2: '2 :::; -;- .

It follows that

for every Q > O. o

This inequality probably does not have the exact constant. It can be
shown (see Borwein, Rakhmanov, and Saff [to appear]) that the constant 8
cannot be replaced by any constant less than or equal to 27r.

Comments, Exercises, and Examples.

Many variants on the inequalities of this section are presented in E.2, E.3,
E.4, and E.5. Some of these are in Borwein [82].

E.5 explores some metric properties of the lemniscate

E(p) := {z E C : Ip(z)1 :::; I}

of a monic polynomial p E P~ of the form

n

p(z) = II (z - Zi) ,
i=l
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The reader is referred to Erdos, Herzog, and Piranian [58] for many results
and open problems concerning the lemniscate of monic polynomials. One
in particular, which is still open, conjectures that for monic polynomials
p E P~, the length of the boundary of E(p) is maximal for p(z) := zn - 1
and so is O(n). Pommerenke [61] has shown that this length is O(n2 ).

Borwein [95J improves this to O(n); see E.7. E.9 solves another problem
of Erdos, namely, the diameter of E(p) for a monic polynomial p E P~ is
always at least 2.

Erdos [76] contains several other related open problems.

E.1 Polynomials as Sums of Polynomials with Real Roots.

aJ Suppose p E P2n \ P2n-l, and suppose that p > 0 on [a, bJ. Then

p(x) = (x - a)(b - x)u2(x) + v2(x)

for some u E Pn - 1 and v E Pn , which have all their zeros in [a, b].

bJ Suppose p E P2n+1 \ P2n and suppose that p > 0 on [a, bJ. Then

p(x) = (b - x)u2(x) + (x - a)v2(x)

for some u, v E Pn , which have all their zeros in [a, b].

Hint: Let p be a polynomial of degree 2n that is strictly positive on [a, bJ.
Let Tn be the Chebyshev polynomial for the Chebyshev system

{
Ix x

n
}

Jp(x) , Jp(x) , ... 'Jp(x) .

Then Tn(x) = v(x)/ Jp(x) with some v E Pn. Show that, for part a], v and
u defined by

(x - a)(b - x)u2(x) = p(x) - v2(x)

are the required polynomials. Use a similar construction for part bJ. 0

E.2 Various Specializations. For the next exercises we use the notation
P:/: to denote the polynomial of degree at most n with nonnegative coeffi­
cients, and pJ to denote those elements of Pn that are nondecreasing on
[0,00).

a] If r = p/q, where p,q EPn and both p and q have only real roots, then

Q> O.



7.2 Inequalities for Logarithmic Derivatives 349

h] Let r(x) := xn/(4n - x)n. Then

m ({ x E~: ~g? ~ I}) = 4n.

c] If r = p/q, where p E Pn and q E pJ, then

m({ x ~ 0: ~g? ~ o}) ~ 2: '
d] If r = p/q, where p E P:j; and q E pJ, then

m({ x > 0 : r' (x) > o}) < !!:.
- r(x) - - 0'

e] Let r(x) := xn. Then

m({x~o: ~g? ~o}) =;,

0> o.

0> o.

0> o.

E.3 Another Metric Inequality. If pEPn has n real roots lying in the
interval (a, b), then

m ({ x E ~ : Ip' (x) I < 0 }) = 2n ,
p(x) - I(x - a)(b - x)1 0

0> o.

Outline. Prove that

m({x E ~ : 0 ~ (x - a)(b - x)p'(x) ~ a}) = ::
p(x) n

and

({

lll> • 0 (x - a)(b - x)p'(x) _}) _ ::
m X Ell"-. ~ () ~ 0 - .

p x n

First consider the case when p has distinct zeros. Let Yo < YI < < Yn
denote the n + 1 roots of (x - a)(b - x)p'(x), and let Xo < Xl < < Xn-l
denote the n roots of p(x). Then

Yo < Xo ~ YI < ... Xn-l < Yn < Xn := 00 .

Since
. p'(x)
hm (x - a)(b - x)-- = -00,

X--->Xi- p(x)

we can deduce that for each interval (Yi, Xi) there exists a point 8i E (Yi, Xi)
such that

(8i - a)(b - 8i )p'(8i ) = -op(8i ).

Since the above equation can have at most n + 1 solutions, we have

m({ x E ~: 0 ~ (x - a)~:) x)p'(x) ~ -o}) = ~(8i - Yi)'

Now proceed as in the proof of Theorem 7.2.1. o
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E.4 Extensions to P~.

a] If p E p~ , then

SV2n<--- ,
a

a> O.

Hint: Write p as the sum of its real and imaginary parts.

b] If r = plq with p, q E p~, then

o

({

1!J) .1 r'(x) 1 }) 32V2nm xEm... () ~a:::; ,r x a

E.5 On the Lemniscate E(p). Let

n

p(z) := IT (z - zd ,
i=1

and let
E(p) := {z E C : Ip(z)1 :::; I}.

a] Show that
m(E(p) n lR)) :::; 4· T 1

/
n

a> O.

with equality only for the Chebyshev polynomial of degree n normalized to
have lead coefficient 1; see P6lya [28].

Hint: Analogously to the proof of the Remez inequality of Section 5.1, show
that the Chebyshev polynomial transformed to an interval of length 4 is
extremal for this problem. 0

b] Let m2(-) denote the planar Lebesgue measure. Show that

(In fact, m2(E(p)) :::; 11", which is exact for zn; this is due to P6lya [28].)

E.6 Cartan's Lemma. Let

n

p(z) := IT (z - Zj),

j=1

Zj E C

and (3 > 0 be fixed. Then there exist at most n open disks, the sum of whose
radii is at most 2(3, so that if Z E C is outside the union of these open disks
then

Ip(z)1 > (~) n
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Prove Cartan's Lemma as follows:

a] Let (Xl,(X2, ... ,(Xv be fixed complex numbers. Let f3 > O. Show that
there exists a positive integer J-t less than or equal to v for which there
exists an open disk with radius J-tf3/n containing (Xj for exactly J-t distinct
values of j = 1,2, ... , v.

Hint: Suppose to the contrary that there is no such positive integer J-t.
Show that this would imply the existence of an open disk with radius vf3/n
containing (Xj for at least v + 1 distinct values of j = 1,2, ... , v, which is a
contradiction. 0

b] Show that there exist open disks D1 , D2 , .. . , Dk and positive integers
ml, m2, ... , mk with the following properties:

(1) L~=l mj = n, ml ~ m2 ~ ... ~ m,,;

(2)

(3)

mf3
D j has radius _J_ ;

n
D j n E j contains exactly mj zeros of p, where

(4) for every integer m > mj, no open disk of radius m! contains exactly
m zeros of pin E j .

Hint: Use part a]. 0

c] Let D1 , D2 , . .. , Dk be the open disks specified in part b]. For
j = 1,2, ... , k, let D; be the disk with the same center as Dj and with
twice its radius. Show that for every

Z E E* := C \ (D~ u D~ u ... U DZ)

there is a permutation Zl, Z2, ... , zn of the zeros Zl, Z2, ... , Zn such that

, -, jf3z-z >-
J - n ' j = 1,2, ... ,n.

o

Hint: Let Z E E* be fixed. Show, by induction on i, that for every i =
0,1, ... , n - 1, there are at least i + 1 zeros of p outside the open disk with
center Z and radius (n-;,i){3. Distinguish the cases

(1) n-i>ml;

(2) mj ~n-i>mj+l, j=I,2, ... ,k-l;

(3) mk ~ n - i > °.
d] Finish the proof of Cartan's lemma.
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E.7 The Length of the Boundary of E(p). Let

and let

n

p(z) := II (z - Zj),

j=l

Zj E C

E:= E(p):= {z E C: Ip(z)l:::; I}.

Show that the boundary BE of E is of length at most 4enn. (In fact, with
E.1O a], the estimate can be improved to (5.2) nn.)

Outline. Proceed as follows:

a] Let L be an arbitrary line in the complex plane. Show that the set
BE n L contains at most 2n distinct points.

Hint: By performing a translation and a rotation, if necessary, we may
assume that L = R Now observe that there is a polynomial P(x, y) of
degree at most 2n, in two real variables x and y, with complex coefficients,
such that

BE = {z E C : Ip(zW= I}

= {z E C : p(z)p(z) = I}

={z=x+iy:x,YElR, P(x,y)=l}.

Hence
EnlR = {x E lR: P(x,O) = I}

and since P(x,O) E Pin' the result follows.

b] For a E C and r > 0, let Q be the square

Q:= {z E C; IRe(z - a)1 < r, IIm(z - a)1 < r}.

o

Show that Qn BE is of length at most 8rn.

Hint: Divide Q n BE into subcurves C 1 , C2 , ... , Cm so that every vertical
and horizontal line contains at most one point of each Cj . Let llj) and LV)
denote the length of the interval obtained by projecting Cj to the x axes
and y axes, respectively. Let

m

lx:= Lllj)
j=l

and
m

l '= '"' l(j)y' LJ y •

j=l

Use part a] to show that lx :::; 4nr and ly :::; 4rn. Hence, if l denotes the
length of Qn BEn, then

l :::; lx + ly :::; 8rn.

o
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c] Show that the boundary &E of E is of length at most 16en.

Hint: Combine Cartan's lemma (see E.7) and part b]. 0

The rest of the exercise is about improving 16en to 47ren.

d] Let B be the open disk with center a E C and radius r > O. Show that
B n &E is of length at most 27rrn.

Outline. Let Q be the square

Q:={zEC:IRe(z)l<r,IIm(z)l<r}.

For a E [0,27r) let Qa be the square

Qa := {a + eia(z - a) : z E Q}.

Let I(a) denote the length ofQa n &E. Let Ix (a) and ly (a) denote the total
length of the intervals obtained by projecting Qa n &E to the lines

{z = reia : r E JR.} and {z = re i (a+7f/2) : r E JR.},

respectively (counting multiplicities). The precise definition of Ix (a) and
ly(a) can be formulated in the same way as in the hint to part b], which is
left to the reader. Use part a] to show that

a E [0, 27r).

Hence

4 1 127f

-1(0) = -2 1(0)(1 sinal + 1 cosal) da
7r 7r 0

1 r27f

= 27r Jo (Ix (a) + ly(a» da ::s: 8rn,

and 1(0) ::s: 27rrn follows.

e] Prove the initial statement of the exercise.

Hint: Combine Cartan's lemma (see E.6) and part d].

o

o

E.8 On the Length of Another Lemniscate. Suppose p E P~. Show that
the length of the lemniscate

F = F(p) := {z E C: I~g; 1= n}
is at most 16n(1 + logn) (actually at most 47rn(1 + logn».
Hint: The arguments are very similar to those given in the outline to E.7.
First show that if L is an arbitrary line in the complex plane, then F n L
contains at most 2n distinct points. Next prove that if Dr is an open disk
of radius r in the complex plane, then Dr n F is of length at most 8rn
(actually at most 27rrn). Now use E.6 c] with (3 = 1+ logn. 0

The proof of the following exercise requires some familiarity with har­
monic functions.
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E.9 On the Diameter of E(p). The diameter diam(A) of a nonempty set
A c C is defined by

Let p E p~ be an arbitrary monic polynomial of degree n, that is,

n

p(z) := II (z - Zj),
j=l

Then the diameter of the set

Zj E C.

E(p) := {z E C : Ip(z)1 :::; I}

is at least 2.

Proceerl as follows:

a] Let
C:= Cu {oo} and .1 := {z EC: Izi > I}.

Let p E p~ be monic. Let E := co(E(p)), that is, the convex hull of E(p).
Use the Riemann mapping theorem (see Ahlfors [53]) to show that there
exists a function g of the form

00

g(z) = bz +L bjz-j ,
j=O

z E .1 , b, bj E C

such that g is analytic and one-to-one on .1, and

Hint: Note that C\ E is simply connected.

b] Let b be the same as in part a]. Show that jbl ::::: 1.

D

Outline. Because of the definition of E, for every 10 > 0 there exists a {j > 0
such that

-10 :::; log Iz-np(g(z))I, Izl = 1 + (j.

Since G(z) := log Iz-np(g(z))/ is harmonic on .1, we have

for every 10 > 0, so G(00) ::::: O. On the other hand, since p E p~ is a monic
polynomial of degree n,
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G(oo) = log Ibl n = nlog Ibl,

from which Ibl 2: 1 follows.

c] Show that diam(E) 2: 2.

o

Outline. Assume to the contrary that diam(E) < 2. Then there exists a
8 > 0 such that

Since

Iz-1(g(z) - g( -z))1 < 2, Izi = 1+ 8.

is analytic on L1, the maximum principle (E.1 d] of Section 1.2) yields

21bl = IF(oo)l:::; max fF(z)1 = max Iz-1(g(z) - g( -z))1 < 2,
Izl=l+6 Izl=l+6

that is, Ibl < 1, which contradicts part b]. o

d] Note that diam(A) = diam(co(A)) for every nonempty A c C, in
particular, diam(E(p)) = diam(E).

The more general result that diam(A) 2: 2cap(A) for every nonempty
A c C is observed in Pommerenke [75].

E.I0 More on E(p). Suppose p is a monic polynomial with complex co­
efficients. As before, let

E := E(p) := {z E C : Ip(z)1 :::; 1}.

a] It follows from E.6 (Cartan's lemma) that the set E(p) can be covered
by disks the sum of whose radii is at most 2e. It is conjectured in Erdos,
Herzog, and Piranian [58] that the correct value in this problem is 2. (The
current best constant is less than 2.6.)

b] If E(p) is connected, then it is contained in a disk with radius 2 centered
at ~ L~=l Zk, where Zl, Z2, ... ,Zn are the zeros of p.

Proof. This is conjectured in Erdos, Herzog, and Piranian [58] and proved
in Pommerenke [5gb]. 0

c] If E(p) is connected, then its circumference is at least 27r.

Proof. This is also conjectured in Erdos, Herzog, and Piranian [58], and
proved in Pommerenke [5gb]. 0



Al
Algorithms and
Computational Concerns

Overview

Appendix 1 presents some of the basic algorithms for computing with poly­
nomials and rational functions and discusses some of the complexity issues.
Included is a discussion of root finding methods. It requires very little back­
ground and can essentially be read independently.

Algorithms and Computational Concerns

Polynomials lend themselves to computation perhaps more than any other
object of analysis. Algorithms that involve special functions, differential
equations, series, and the like usually must reduce at some point to a
finite polynomial or rational approximation or truncation. This often al­
lows analytic problems to be reduced to algebraic ones. This appendix will
present, as a series of exercises, some of the principal algorithmic concerns.
The reader is encouraged to experiment with the algorithms. With current
technology this is most comfortably done in any of the large symbolic ma­
nipulation packages available. Code, actual or schematic, is not presented.
Indeed, methods rather than algorithms are presented. Current "practical"
best methods date quickly in this rapidly evolving area. It is also the au­
thors' belief that today's theoretical curiosities may be vital for tomorrow's
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algorithms as larger instances are calculated on faster machines. Histori­
cally we have already seen this happen repeatedly with algorithms such as
the fast Fourier transform algorithm.

One of the most interesting lessons to be learned from the last few
decades of revitalized interest in computational mathematics is that many
of the most familiar mathematical algorithms, such as how to multiply
large numbers, were very poorly understood, and indeed, still are in­
completely analyzed. Very many of the familiar processes of mathemat­
ics, such as multiplication of large numbers or computation of determi­
nants, can be computed far more expeditiously than allowed by the usual
"school" algorithms. See, for example, Aho, Hopcroft, and Ullman [74]; Bini
and Pan [92]; Borodin and Munro [75]; Borwein and Borwein [87]; Brent
[74]; Knuth [81]; Pan [92]; Smale [85]; and Wilf [86] for the complexity side
of the following exercises.

E.! Complexity and Recursion. We are concerned with measuring the
size of an algorithm given an input of a certain length. Unfortunately, there
are many different ways of measuring this. (One could, for example, use the
length of the tapes of some well-defined instantiation of a Turing machine.)
We will settle for less. The measure of input size will usually be chosen to be
a natural one, so for polynomials of degree n, the measure will often be n.
The complexity measure then depends a bit on the problem. For example, it
might count the number of additions of coefficients (we do not distinguish
subtraction from addition) and multiplications of coefficients required to
evaluate the polynomial at a point. (So, for example, by Horner's rule D(n)
operations suffice.) Care is already required to count naturally. Note that
we have not specified the size of the coefficients (this mayor may not be
reasonable) and so we could cheat on addition of coefficients by doing two
additions as one addition of twice the length. (Since a + band c+ d can be
decoded from (lOm a + c) + (10mb+ d), where m is larger than the number
of digits in any of a, b, c, or d.) It is more reasonable in this context to
fix a precision (or to think of working to infinite precision or over some
polynomial ring). Our cases are fairly simple, and the measures should be
clear in context.

We adopt the following notations:

and

fen) = D(g(n)) means

fen) = D(g(n)) means

. fen)
hmsup -() < 00

n.....,oo g n

. g(n)
hmsup -f() < 00.

n---+(X) n

Parts of these exercises are reprinted from Borwein and Borwein [87], with permis­
sion from Wiley.
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So the first measure gives an upper bound, while the second gives a lower
bound.

Many algorithms are analyzed recursively. F'br example, addition of two
polynomials of degree at most 2n reduces to two additions of polynomials of
degree at most n, plus perhaps an "overhead" for reassembling the pieces.
In other words, for the complexity of addition, we have

A(2n) :::; 2A(n) + c,

from which one can deduce that

A(n) = O(n).

This general recursive strategy of breaking a problem in half is often called
"divide and conquer."

We introduce the following functions. Here n is the maximum degree
of the polyn')mials p and q. Additions, multiplications, and so on are per­
formed in the underlying field of coefficients (in our case C or lR) and are
all performed to some predetermined fixed precision (possibly infinite).

A(n) := the maximum number of ±, x, -;-, to compute p ± q;

M(n) ;= the maximum number of ±, x, -;-, to compute pq;

e(n) ;= the maximum number of ±, x, -;-, to evaluate
p(a) for an arbitrary fixed a E C;

E(n) :=the maximum number of ±, x, -;-, to evaluate
p(a1), ... ,p(an) for arbitrary fixed a1, ... ,an E C.

These are the complexity functions for polynomial addition, polynomial
multiplication, polynomial evaluation at a single point, and polynomial
evaluation at n points, respectively. The input for the computation is the
coefficients (and the evaluation points for e(n) and E(n)). So the input
may be considered to be in cn+ 1 (or more generally an (n +1)-dimensional
vector space over an infinite field). In the first two cases the output is the
sequence of coefficients. In the last two cases, respectively, the output is the
evaluation and the sequence of evaluations.

a) Show that usual algorithms give

A(n) :::; 2n + 2 = O(n) ,

M(n) = O(n2
) ,

e(n) = O(n) (Horner's rule),

E(n) = O(n2
).

E.2 and E.3 of this appendix provide better upper bounds for the last three
functions above.
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b] Show that

A(n);:::n+1,

M(n);:::n+1,

e(n);:::n+1,

E(n) ;::: n + 1.

Hint: In all cases this is a uniqueness argument. At least one operation
must be performed for each coefficient, otherwise the algorithm will not
distinguish various different sequences of input. D

c] Some Recursive Bounds. Let a, b > °and c, d > 1. Suppose that f is
monotone on (0,00).

If f(n) :::; af(njc) + bn, then

f(n) = O(n) if a < c,
f(n) = O(nlogn) if a = c,

f(n) = O(nlogca) if a> c.

If f(n) :::; df(njd) + bn(logn)c-l, then

f(n) = O(n(lognn·

Hint: Analyze the equality case. Then establish the general principle that
the equality solution is the maximal solution. D

E.2 The (Finite) Fast Fourier Transform (FFT). This is undoubtedly one
of the most widely used algorithms. It has, in its various forms, tremendous
practical and theoretical applications.

Let w be a primitive (n + 1)th root of unity in either C or a finite field
lFm , that is, wn+I = 1 and w k =I- 1 for k = 1,2, ... ,n. In the complex case
we may take w ;= e21ri /(n+I). Consider the following two problems.

Interpolation Problem. Given n + 1 numbers, ao, aI, ... ,an, find the co­
efficients of the unique polynomial

of degree n that satisfies

k=O,l, ... ,no

Evaluation Problem. Given the coefficients of a polynomial Pn of degree
at most n, calculate the n + 1 values

k = 0, 1, ... ,no
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These are the two directions of the (finite) Fourier transform. The
classical approaches to either part of the Fourier transform problem have
complexity at least cn2 . This is the complexity, for example, of evaluating
Pn at n + 1 points using Horner's rule. Both directions can, however, be
solved with complexity O(n log n).

a] If n + 1 = 2m
, then both the interpolation and the evaluation problem

have complexity O(n log n). (Here we are counting the number of additions
and multiplications in the underlying coefficient field, which for most of our
purposes is C.)

Outline. We treat the evaluation first. Suppose

Let

and
xr(x2) := x(al + a3x2 + ... + anXn- 1).

Then, with y := x 2
,

p(x) = xr(y) + q(y) ,

where rand q are both polynomials of degree at most 2m
- 1 - 1. The

observation that makes the proof work is that for w an (n + l)th root of
unity,

(Wk)2 = (w(n+ 1)/2+ k) 2.

Hence, evaluating p(x) at the n + 1 roots of unity reduces to evaluating r
and q each at the ~(n + 1) points (w2)1, (W 2)2, ... ,(w2)(n+l)/2 and amal­
gamating the results. Observe that w 2 is a primitive (2m - 1)th root of unity,
so we can iterate this process. Let F(2 m ) be the number of additions and
multiplications required to evaluate a polynomial of degree at most 2m - 1
at the 2m points wk , k = 1,2, ... ,2m , where w is a primitive (2m )th root
of unity. Then

F(l) = 1 and m= 1,2, ....

The second term comes from the single addition and multiplication required
to calculate each p(wk) from r(w2k ) and q(w2k ). This recursion solves as

and the bound for the evaluation problem is established.

The interpolation problem is equivalent to evaluation. This can be seen
as follows. Let w be a primitive (n + 1)th root of unity, and let
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W~ (!
1 1

, )W w 2 w n

w 2 w 4
w~n .

w n w 2n n 2
W

Then

W-
I

= -' (:

1 1

, )w- I w-2 -n

w-2 w-4 :::~,n
n+l .

1 w-n w-2n w-n2

and w- I is also a primitive (n+ 1)th root of unity. The interpolation problem
can be formulated as follows. Find (ao, ... , an) so that

However, this can be solved by

which is exactly the evaluation problem. o

See Borodin and Munro [75] and Borwein and Borwein [87]. Versions
of FFT exist in a plethora of shapes and sizes. We have just exposed the
tip of the iceberg.

As an application we construct a fast polynomial multiplication.

b] Fast Polynomial Multiplication. Suppose the polynomials p, q of degree
at most n-l are given. Compute the coefficients of the product pq as follows:

bI] Use an FFT to evaluate p and q at the primitive (2n)th roots of unity
WI, w 2 , ... , w 2n

h21 Form
k = 1,2, ... , 2n.

h31 Find the coefficients of the product pq by solving the interpolation
problem once again by using the FFT. Show that this algorithm requires

O(nlogn)

additions, multiplications, and divisions (of complex numbers) and there­
fore M(n) = O(nlogn).

This is the best-known upper bound on the serial complexity of poly­
nomial multiplication. The only known lower bound is the trivial one O(n).
In parallel (on a PRAM) polynomial multiplication can be done in O(log n)
time on O(N) processors; see Pan [92]. The same bounds apply for the FFT
in a].
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E.3 Other Elementary Operations.

a] Fast Polynomial Division. For polynomials p of degree nand q of degree
m :::; n, it is possible to find polynomials u and r with deg(r) < deg(q)
such that

p(x) = u(x)q(x) + r(x)

in O(n log n) additions and multiplications (of complex numbers).

Outline. Simplify by observing that it suffices to calculate u since r may
then be computed by E.2 b]. If we replace x by l/x then

and so, for some h 2: 1,

p*(x) = u*(x) + xn - m +h r*(x)
q*(x) q*(x) ,

where

To calculate u* (and hence to calculate u) it suffices to calculate the first
n - m (= deg(u)) Taylor coefficients of 1/ q*. This can be done by Newton's
method (see the next exercise) as follows: Suppose deg Si = j - 1 and

1 .
-- - Si(X) = O(xJ ).
q* (x)

Establish that

Note that we may assume q*(O) :f. O. Now the computation of

can be performed by using an FFT-based polynomial multiplication and it
needs only be performed by using the first 2j - 1 coefficients of q* and Si.

By starting with an appropriate first estimate of So (say, so(x) := 1jq*(O)),
and proceeding inductively as above (doubling the number of coefficients
used at each stage) we can show that the required number of terms of the
expansion can be calculated in O(n log n) additions and multiplications (of
complex numbers).

b] Fast Reversion of Power Series. Let

00

f(x) = L ak xk ,
k=O

ao :f. 0
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be a formal power series with given coefficients. Show that the first n coeffi­
cients of the formal Taylor expansion of 1/f can be computed in O(n log n)
additions, multiplications, and divisions (of complex numbers).

c] Fast Polynomial Expansion. Given aI, a2, ... , an show that the co­
efficients of TI~=l(X - ai) can all be calculated in O(n(logn)2) additions,
multiplications, and divisions (of complex numbers).

Hint: Proceed recursively by dividing the problem into two parts of roughly
half the size. Recombine the pieces using part b] of the previous exercise.

D

d] Fast Polynomial Expansion at Arbitrary Points. Given a polynomial
P of degree at most n, and n + 1 distinct points Xo, Xl, . .. ,Xn , show that
p(xo),p(xd, ... ,p(xn ) can all be evaluated in O(n(logn)2) multiplications
and additions.

Hint: Let
Ln/2J-1

q1(X):= II (X-Xi)
i=O

and let Tl be the remainder on dividing p by ql' Note that T1(Xi) = p(Xi)
for each i < n/2. Similarly, use

n

q2(X):= II (x - Xi)'
Ln/2J

Thus two divisions reduce the problem to two problems of half the size. D

e] Extend d] to rational functions.

f] Evaluation of xn • The S-and-X binary method for calculating x n is
the following algorithm. Suppose n has binary representation 000102 ... Ok
with 00 = 1. Given symbols S and X, define

{
SX if Oi = 1

S'-
t·- S if Oi = 0

and construct the rule

Now let 8 be the operation of squaring, and let X be the operation of
multiplying by x. Let 8 18 2 , .. 8 k operate from left to right beginning with
x. For example, for n = 27,

and
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The sequence of calculations of X 27 is then

fi] Prove that the above method computes x n and observe that it only
requires storing x, n, and one partial product.

£2] Show that the number of multiplications in the S-and-X method is less
than 2llog2 n J.
f3] Show that the S-and-X method is optimal for computation of x2m

(considering only multiplications).

£4] Show that the S-and-X method is not optimal for computing x 15 .

An extended discussion of this interesting and old problem is presented
in Knuth [81].

Much further material on the complexity of polynomial operations
and complexity generally may be found in Aho, Hopcroft, and Ulman [74];
Borodin and Munro [75]; Pan [92]; and Wilf [86].

E.4 Newton's Method. One of the very useful algorithms, both in theory
and practice, for zero finding is Newton's method.

a] Suppose f is analytic in a (complex) neighborhood of Zo, and suppose
f(zo) = 0 and f'(zo) =1= O. Show that the iteration

f(xn)
Xn+l := Xn - f'(xn)

converges locally uniformly quadratically, that is, with a constant c inde­
pendent of n,

for initial values Xo in some neighborhood of ZO° As before, we call this
locally quadratic convergence.

Hint: Note that

which implies

[
f'(xn) - f'(zo)] 2

Xn+l - Zo = (Xn - ZO) f'(x
n

) + O((Xn - ZO) ).

o



Algorithms and Computational Concerns 365

b] Show that the iteration

f(x n )
Xn+l := Xn + f'(xn)

converges locally quadratically to the simple poles of a meromorphic func­
tion f. Note that this is Newton's method with the sign changed.

c] The iteration

converges locally quadratically to a zero of an analytic f independent of its
multiplicity; see Henrici [74].

d] Let 9 := f-l. The iteration

converges locally uniformly to a zero of an analytic function f with
(n + 2)th order. Newton's method is n := 0; Halley's method is n := 1
(see Householder [70]).

Newton's method and its variants work tremendously well provided
that a good starting value can be found. This is a problem. On a real
interval a bisection method can be used initially to localize the zeros. In
the plane, life is more complicated as is seen in the next exercise. Another
drawback to Newton's method is the need to compute the derivative. Of
course, this is not a problem for polynomials, but in a general setting it is
usually replaced by an approximation such as

X n - X n -l

(which yields the so-called secant method).

e] Consider Newton's method for computing yiX starting with Xo 1.
This gives

Xn+l := ~ (xn + :n) .

Show that Tn(X) := xnH is a rational function in x with numerator of
degree 2n and denominator of degree 2n - 1. Show that Tn (X) - yiX has a
zero of order 2n+1 at 1. So Tn is in fact the (2n , 2n - 1) Pade approximant
to yiX. (This implies, though not obviously, that Tn has all real negative
roots and poles.)
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An attractive feature of Newton's method is that it is "self-correcting."
So, for example, to compute a root to a large precision, one can start at
a small precision and double the precision at each iteration. This is a sub­
stantial savings both practically and theoretically. The same feature applies
to Newton's method solutions over formal power series, as in E.3 a]. This
allows for doubling the number of terms used at each stage. Much addi­
tional material on Newton's method is available in Borwein and Borwein
[87], Henrici [74], Householder [70], and Traub [82J.

E.5 Newton's Method in Many Variables.

aJ Let I: en ----> en, and suppose I has Jacobian

where I := (h, 12,··· ,In) with Ii : en ----> C. Let

The function J(x) is the Jacobian evaluated at x. Then Newton's method
becomes

where Sk solves J(Xk)Sk = I(xk)' This iteration converges locally uniformly
quadratically to a zero Zo of I, that is, with a constant c independent of n,

for initial values Xo in some neighborhood of zo, provided in a neighbor­
hood of zo, I is continuously differentiable, J- 1 exists and is bounded in
norm, and J satisfies a Lipschitz condition. We call this locally quadratic
convergence. For a polynomial I, we require only that J-1 exists in a neigh­
borhood of the zero Zoo (For examples and detail, see Dennis and Schnabel
[83].)

b] Finding All Zeros of a Polynomial. Let

Let Ii(xl,'" ,xn ) be the ith coefficient of

an := 1.

n n

g(x) := II(x - Xi) - L aixi

i=1 i=O

and let
I(x) := (h, 12, .. · ,In)'
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Then the iteration of part a] applied to f converges locally quadratically to
Zo:= (ZI,Z2,'" ,zn), where ZI,Z2, ... ,Zn are the zeros ofp, provided the
zeros of P are distinct.

c] Another Approach to Finding All Zeros. Let xj(k) denote the kth
approximation to the jth root of P, where P is a polynomial of degree n
with n distinct roots. Let

x j (k + 1) = xj ( k) - k p(Xj ( k)) , j = 1, 2, . . . ,n.
TIi#j(xj(k) - Xi(X))

Show that for sufficiently good choice of (xo(l), ... ,xo(k)), the above iter­
ation converges locally quadratically to a sequence of the n distinct zeros
ofp.

Hint: This is really just the single variable version of Newton's method for
each root, where the derivative is approximated by the derivative of the kth
estimate. 0

d] Observe that the iteration of part c] fails to converge for p(x) := xn -1,
n > 2, if the starting values are all taken to be real.

In practice, the iteration of part c] works rather well for reasonably
chosen starting values. One can use the techniques of the next exercise to
localize the zeros first. With care, an algorithm can be given that computes
a zero of a polynomial with an error < 2-b in O(n log b log n) time and all
zeros in O(n2 log b log n) time; see Pan [92]. On a parallel machine (PRAM)
an algorithm requiring O(10g3(nb)) time and O(nb)O(I) processors can be
given for computing all zeros.

e) Modify the iteration of EA c] as given in the previous exercise tq get a
method that computes all roots even in the presence of repeated roots.

For further discussion, see Aberth [73], Durand [60], Kerner [66], and
Werner [82].

E.6 Localizing Zeros.

a) Cauchy Indices. Let r be a real rational function with a real pole a.
The Cauchy index of r at a is

{ O
~l if limx->a_ r(x) = -00 and limx->a+ r(x) = 00

if limx->a- r(x) = 00 and limx->a+ r(x) = -00

otherwise.

The Cauchy index of r on an interval [a, b) is the sum of the Cauchy indices
of the poles of r in (a, b). (We demand that neither a nor b be poles of r.)
We denote this by I~(r).

b) The Euclidean Algorithm. Let Po and PI be nonzero polynomials.
Define polynomials Po, PI, ... ,Pm and ql, q2, ... ,qm (by the usual division
algorithm) so that
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Po(z) = PI(Z)ql(Z) - P2(Z) ,

PI(Z) = P2(Z)q2(Z) - P3(Z) ,

deg(p2) < deg(pd ;
deg(P3) < deg(p2);

the algorithm stops the first time that the remainder is zero. This is called
the Euclidean algorithm. Show that Pm is the greatest common factor of Po
and Pl.

c] Let Po,PI,··· ,Pm be the polynomials generated by the Euclidean algo­
rithm in part b]. Let Pi := Pi/Pm, i = 0,1, ... ,m. Suppose po(a)po(b) =1= o.
Show that if Pk(-r) = a for some k and a ::; "( ::; (3, then

PI ("() =1= a if k = a
and

d] Show that for real polynomials Po and PI with po(a)po(b) =1= 0,

I~(pI/po) = v(a) - v(b) , a < b,

where v(a) is the number of sign changes in the sequence

and where the polynomials Pi are generated by the Euclidean algorithm as
in part b]. (As before, by a sign change we mean that Pi (a)Pi+k(a) < 0 and
pi+l(a) = pi+2(a) = ... = Pi+k-l(a) = 0.)

Hint: Without loss of generality, we may assume that Pm = 1 (why?), so
Pk = Pk for each k. First, note that v(x) may change magnitude only if
Pi(X) = 0 for some i. By continuity of the polynomials Pi, and by part c],
v(x) is constant on any subinterval of [a, b] that does not contain a zero of
Po·

We are now reduced to considering the behavior of v(x) at the zeros of
Po. Consider the various possibilities for the behavior of pI/po at the zeros
of Po by considering the four possible changes of signs of Po and PI at the
zeros of Po and the effect this has on the Cauchy index and the increase
and decrease of v(x). (Note that v(x) decreases by 1 if the Cauchy index is
1 while v(x) increases by 1 if the Cauchy index is -1.) 0

e] Zeros on an Interval. Suppose P is a real polynomial and p(a)p(b) =1= o.
Then I~(p'/p) equals the number of distinct zeros of P in [a, b]. This also
equals v(a) - v(b), where v(x) is as in d] with Po := P and PI := p'.
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p'(z) _ '"~
p(z) - LJ z - (k

and note that each distinct pole in (a, b) contributes +1 to the Cauchy
index. 0

f) Show that the number of zeros of a real polynomial on the real line
equals

lim (v( -a) - v(a)) ,
a->oo

where v(x) is computed as in part e]. (That is, v(x) is the number of sign
changes in the sequence (Po, PI , ... ,Pm) generated by the Euclidean algo­
rithm with Po := P and PI := p'.)

g) The Number of Zeros in H := {z E C : Im(z) > O}. Suppose that the
monic polynomial P E P~ has (exactly) k real zeros counting multiplicities.
Write

p(x) = r(x) + i s(x) ,

Then the number of zeros of P in H is

r, s E Pn .

and this can be computed as in part d] by using

Hint: First consider the case where k = O. Consider P on a counterclockwise
semicircular contour with base [-a, a) and radius a. Consider the argument
ofP as the contour is traversed. On the half-circle, for large a, the argument
increases by mr asymptotically; while on the axis the change is -7rI'.:.cJs/r),
from which the result follows. 0

hI Budan-Fourier Theorem. Let P E Pn . Let V(x) be the number of sign
changes in the sequence

(p(x),p'(x), ... ,p(n)(x)) .

Then the number of zeros of P in the interval [a, b], counting multiplicities,
is V(a) - V(b) - 2m for some nonnegative integer m.

We have followed Henrici [74) in this discussion.

E.7 Zeros in a Disk.

a) The transform z + .i maps the unit circle to the real axis and maps
1 + ~z

the open unit disk D to the upper half-plane {z E C : Im(z) > O}. So the
algorithms of the previous exercise apply after transformation.
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b] Zero Counting by Winding Number. Let Wrn := e27ri / rn , where m is a
positive integer. If p E P~ then

1 r p'(z) rn p'(wk )

zp := 21fi JaD p(z) dz rv L>~ p(w£)
k=1

counts the number of zeros of p in the open unit disk D (assuming no zeros
on the boundary aD). More precisely, we have

. rn k p'(w~)
zp= 11m l:wrn -(k).

rn->oo k=1 P wrn

(Note that this lends itself to rapid evaluation by FFT methods.)

c] Show that

1 1 1 rn w~
-. -- = k + Ern(a) ,
21ft aD z - a ~ Wrn - a

where

if lal < 1

and

if lal > 1.

Hint: Write
1 1 00 zk
----~­
z-a - a ~ a k

k=O

and use the fact that

0= r p(z)dz= fw~,p(w~)
JaD k=1

for every p E P;'-I. D

d] If p E P~ has no zeros in the annulus ( :S z :S 1/( and if m in part b]
is greater than

l
lOg~j
log ( + 1,

then the error in estimating zp by the sum is less than 1. So this provides
an algorithm.
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E.8 Computing General Chebyshev Polynomials. Given a Chebyshev
system M := (fo, ... , fn) of C 1 functions on, say, [0,1] how does one
compute the associated Chebyshev polynomial Tn? That is, how does one
find the unique equioscillating form T := L~=o adi of Section 3.3?

a] The Remez Algorithm

Step 1. Choose

Xo := (0 =: x~o) < x~o) < ... < x~o) := 1)

and find Po E span M such that

Po(x;O))=(-l)i, i=O,l, ,n.

Step 2. Inductively set X m := (0 =: x~m) < x~m) < < x~m) := 1), where

P,',.._l(X;m)) =0, i=1,2, ... ,n-1.

(That is, find the extrema of Pm-d

Step 3. Find Pm E span M with

Pm(x;m))=(-l)i, i=O,l, ... ,n.

Then, provided the initial estimate Xo is sufficiently good, Pm ~ Tn
quadratically (see Veidinger [60]).

This is reasonably easy to code. It involves solving an interpolation
problem in Steps 1 and 3. The zero finding at Step 2 can be done quite
easily since one can find very good starting values for Newton's method,

I ( (m-1))nname y xi i=O'

b] This algorithm modifies to solve the best approximation problem

min Ilwp - fll[a,bJ
pEspan M

for w, f E C[a, b], where w is positive on [a, b]. One uses the Remez agorithm
to find an equioscillating form

n

P(x) = f(x) - w(x) L Cdi(X)
i=O

at n + 2 points. To do this, one solves the system
n

f(Xk) - w(xd L Cdi(Xk) + (_l)kA,
i=O

k=O,l, ... ,n+l

for both the Ci and A. (This works reasonably well, provided that at each
stage II PII [a,b] occurs at one of the Xk. If not, an extra point must be inserted
where the maximum norm occurs and one of the original points must be
dropped. This is effected in such a way as to maintain the alternations in
sign of the error.) For details see Cody, Fraser, and Hart [68] and Veidinger
[60].
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Orthogonality and Irrationality

Overview

This appendix is an application of orthogonalization of particular Muntz
systems to the proof of the irrationality of ((3) and some other familiar
numbers. It reproduces Apery's remarkable proof of the irrationality of
((3) in the context of orthogonal systems.

Orthogonality and Irrationality

Apery's wonderful proof of the irrationality of ((3) amounts to showing
that

where bn is an integer,

n (n + k) 2 (n) 2
an := L k k'

k=O

and
dn := 1cm{l, 2, ... ,n}.

Here 1cm denotes the least common multiple; see van der Poorten [79J and
Beukers [79]. In [81J Beukers recast the proof using Pade approximations.
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Many, maybe most, irrationality proofs may be based on approxima­
tion by Pade approximants and related orthogonal polynomials; see, for
example, Borwein [91a], [92] or Chudnovsky and Chudnovsky [84]. It is the
intention of this appendix to try to put the proof of the irrationality of ((3)
into the framework of orthogonality. From the general orthogonalization of
the system

on [0,1]' where the numbers Aj are nonnegative and distinct, specializing
to the case when

and A2j+1 = j + E, j = 0,1, ...

k = 0,1, ... , n;

k = 0,1, ... , n - 1;

where E decreases to 0, is a very natural thing to do. This is how one
should interpret orthogonalizing the system (X O, X O, X l , x l , ... ). This leads
to orthogonal functions that generalize the Legendre polynomials and are
of the form

Pn(x) log x + qn(x)

with polynomials Pn, qn E Pn of degree n. Legendre polynomials are closely
tied to irrationality questions concerning log (see Borwein and Borwein
[87], Chapter 11), and higher-order analogs prove to be the basis of dealing
with the irrationality of the trilog (I:~1 x n /n3 ) for some values of x. We
think that the proof of the irrationality of ((3) flows quite naturally from
this point of view. Although in the end (Lemma A.2.3) we get back to
Beukers' integral approach to the irrationality of ((3) (as indeed we must).
What follows, up to one application of the prime number theorem, is a
self-contained proof of the irrationality of ((3).

The orthogonalization in question is the content of the first theorem.

Theorem A.2.1. Let

._ 1 rn~;:~ (t + k + 1)2 t

Gn(x) .- 27ri } r n~=o(t _ kF (t + n + l)x dt,

where r is any simple contour containing t = 0, 1, ... ,n. Then

where

n ( )2 ( + k)2Pn (x) = L ~ n k (n + k + 1) xk
.

k=O

Furthermore, we have the orthogonality relations

11

Gn(x)xk dx = 0,

11

Gn(x)(logx)xkdx = 0,
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and

11 1
G;(x)dx = -2--'

o n+ 1

Proof. As in Section 3.4, the representation of Gn is just the evaluation of
the integral at the poles, t = 0,1, ... , n, by the residue theorem. The proof
of the orthogonality conditions is a straightforward exercise on evaluating

11

xk(logx)jGn(x) dx

by interchanging the order of integration as in the proof of Theorem 3.4.3.
o

We need to modify these forms marginally to give a zero at 1, as in
the next result.

Theorem A.2.2. Let Gn and r be defined as in Theorem A.2.1. Then

where

and
n

Bn(x) := L Ck xk

k=O

with

(
n+k)2(n)2{n-l 2 n 2}

Ck := . k k ~ k + i + 1 - ~ k - i .
i#k

Furthermore,

r1
28n m { °J

o
Fn(x)Fm(x) dx = (2n +1)3 ' 8n,m:= 1

11

Fn(x)xk(logx)jdx=O, k=O,I, ... ,n-l,

and

if n =I- m
if n = m;

j =0,1;

F~(I) = 1, F:: (1) = 2n2 + 2n - 1 .
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Proof. This follows much as in Theorem A.2.1. The fact that Fn(l) = °is
just the statement that Gn is orthogonal to x n . 0

The fact that Fn (l) = °is critical in what follows. It immediately gives
that Bn(x) has a zero at 1, so Bn(x)/(1 - x) is a polynomial, as in part c]
of the following corollary. (This is the only part of the corollary we need,
but the corollary is of some interest in its own right.)

Corollary A.2.3. Let Fn be defined as in Theorem A.2.2. Then

a] Fn has 2n + 1 zeros on (0,1].

b] An(x) has all real negative zeros.

c] B n(x)/(1 - x) is a polynomial with all real negative zeros that interlace
the zeros of An(x).

Proof. The orthogonality conditions give 2n zeros of Fn on (0,1) in a stan­
dard fashion, and there is one zero at 1. The real negative zeros of An(x)
and Bn(x) and their interlacing follow from t):le fact that

has 2n + 1 zeros on (0,1], and known results on interpolating Stieltjes
transforms by rational functions (see, for example, Baker and Graves Morris
[81] or Borwein [83]). 0

One can, from the integral representation, deduce the next corollary,
which is also not actually needed in the proof of the irrationality of ((3).

Corollary A.2.4. Both Fn and An satisfy

From Theorem A.2.2 we obtain (see E.2 b]) the following:

Corollary A.2.5. Let dn := !em{1, 2, ... , n}. Then the polynomial dnBn(x)
has integer coefficients.

We get an approximation to ((3) by integration over the unit square.

Theorem A.2.6.

--21 {I (I F:1n (x y ) dx dy = An(1)((3) + R n ,
Jo Jo - xy

where 2d~Rn is an integer.
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Proof. Recall that

_~ r1 t log(xy) = «(3)
2 Jo Jo 1 - xy

since

111
1

2(xy)n log(xy) dxdy = ( - )3.
o 0 n+ 1

We have

Fn(xy) An(xy) - A n (1) I ( ) A n(l) I ( ) Bn(xy)
--- = og xy +-- og xy + .
1 - xy 1 - xy 1 - xy 1 - xy

The first term of the last expression is a polynomial multiple of log(xy),
and the last term is a polynomial. Both have degree n - 1 in xy. Here we
use part c] of Corollary A.2.3 in an essential way. Integrating the above
equation with respect to x on [0,1] and with respect to y on [0,1], we get
the identity of the theorem. The fact that d~Rn is an integer can be seen
as follows. One dn arises from each of the two integrations of a polynomial
of degree n - 1 with integer coefficients and one dn comes from Corollary
A.2.5. 0

Theorem A.2.7. The number «(3) is irrational.

Proof. It now suffices to show that there is an E> 0 for which

I
t r1

Fn(xy) I (1) (1)o< Jo Jo 1 _ xy dx dy = 0 eC3+f)n = a d~

since by the prime number theorem, lcm{1,2, ... ,n} = O(eCHf)n) for ev­
ery E > 0; see Borwein and Borwein [87, p. 377]. (We use the notation
bn = o(an ) if bn = Enan with limn--->oo En = 0.) This can be proven in a
number of ways, we chose to connect this proof via Pade approximants to
the integral estimate due to Beukers. This is the content of the following
results and, in particular, Lemma A.2.1O. From Lemma A.2.10, the above
estimates are easy since the integrand in the right-hand side in Lemma
A.2.1O satisfies

0< xyv(l - x)(l- y)(l - v) < (V2 _ 1)4
l-(l-xy)v -

on the open unit cube 0 < x, y, v < 1. o

The following lemma gives standard representations for the Pade ap­
proximants to log and can be checked by expanding the integrals; see E.3.
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Lemma A.2.8 (Pade Approximants). We have

(nl)2 r x t dt r1 vn(1 - v)n dv
2~i ir n~=o(t - k)2 = (x - 1)2n+l io (1 - (1 - x)v)n+l

= Pn(x) log x + qn(X) = O((x - 1)2n+l) ,

where r is a simple contour containing t = 0,1, ... ,n, and Pn and qn are
polynomials of degree n. (So Pn/qn is the (n, n) Pade approximant to log x
at 1.)

Lemma A.2.9 (Rodrigues-Type Formula). With r as in Theorem A.2.1,

Proof. This follows from differentiating the two representations derived
from Lemma A.2.8 coupled with Theorem A.2.2. 0

Lemma A.2.1O. We have

r1 t Fn(xy) dxdy
io io 1- xy

= _ r1 r1 r1 [xyv(1 - x)(1 - y)(1 - v)]n dx dy dv
io io io (1 - (1 - xy)v)n+l .

Proof. For k, n nonnegative integers

(Both sides equal

(
n!(n+k)! )2

(2n + k + I)! '

though this is not completely transparent; see EA.) So
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Hence, on expanding (1 - (1 - xy)v)-n-1 in the following integrands,

1 1111 1 dn dn xnyn(xy _ 1)2n+1
-- ------- dxd
(n!)2 0 0 1 - xy dyn dxn (1 - (1 - xy)vt+l Y

= _ r1 r1
[xy(l- x)(1- y)t dxdy

io io (1 - (1 - xy)v)n+1 '

and with Lemma A.2.9 we are done. o

Comments, Exercises, and Examples.

The approach of this appendix follows Borwein, Dykshoorn, Erdelyi,
and Zhang [to appearJ. Beukers' [79J very elegant recasting of Apery's proofs
of the irrationality of ((2) and ((3) is also presented in Borwein and Borwein
[87J. E.5 recasts the irrationality of ((2) = ~7l"2 into a form similar to the
proof of the irrationality of ((3). E.6 treats the irrationality of log 2. Mahler
[31J casts transcendence results for exp and log in terms of general systems
of Pade approximants.

E.! Proof of Corollaries A.2.4 and A.2.5.

aJ Prove Corollary A.2.4 from the explicit representations of Theorem
A.2.2.

hJ Prove Corollary A.2.5 from the formula for Ck in Theorem A.2.2.

Hint: Observe that if p is a prime and n < pC< :S n + k for some integer
ct, then p divides (nt k

). This is fairly straightforward from Euler's formula
for the largest power of a prime dividing a factorial. 0

E.2 Formulas for ((n).

a) Show that

1 1 1 00r ... r r dX1 dX2 dXn = ((n) .= '"' ~
io io io 1 - X1X2 Xn . ~ kn .

k=l

hJ Show that

r1
log x dx = _ 7l"2 .

io 1 - x 6

c] Find a closed formula for

11 1111
IOg(X1 X2 ... x n ) d d d... Xl X2··· Xn

o 0 0 1 - X1 X2 ... Xn

in terms of ((n + 1).

E.3 Proof of Lemma A.2.8. Give a proof of Lemma A.2.8.
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E.4 The Identity in the Proof of Lemma A.2.10. Prove the identity

where k and n are nonnegative integers. Follow parts a] to c].

Let k and n be nonnegative integers.

a] Show that

111
1 ( '( + k)1 )2._ n+k n n _ n. n .

An,k.- 0 0 (xy) (I-X) (l-y) dxdy- (2n+k+l)!

h] Let

._ 1 r1 t 1 d
n

d
n

n+k( )2n+1
Bn,k .- - (n!)2 Jo Jo (1 _ xy) dyn dxn X xy - 1 dx dy.

Show that

n2Bn,k =[(n + k)2 + (2n + 1)(2n + 2k + 1) + (2n + 1)(2n)]Bn- 1,k+2

- [2(n + k)2 + (2n + 1)(2n + 2k + 1)]Bn- 1,k+1

+ (n + k)2B n - 1,k.

c] Show that AO,k = BO,k. Show that the values

A _ ( n! (n + k)! ) 2
n,k - (2n + k + I)!

satisfy the recurrence relation established by part b] for the values Bn,k.

E.5 The Irrationality of 7r2 • Consider

where r is any simple contour containing the poles at 0,1, ... ,n.
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a) Show that

r1Fn(x) dx = t (n + k) (n)2 ((2) + Rn,
10 1- x k k

k=O

where d~Rn is an integer (dn := lcm{I, 2, ... ,n} as before).

Hint: Show that

where

and
n

Bn(x) := L Ck xk

k=O

with

(n+ k) (n) 2{n 1 n 2 }
Ck := k k L k + i - L k - i .

•=1 .=0
il-k

Write
Fn(x) = An(x) - An (1) log x + An(I) + Bn(x) .
I-x I-x I-x I-x

Show that Fn(I) = 0, hence B n (1) = O. Recall that

_r1
logx = ((2).

10 1- xdx

Now the conclusions follow, as in the proof of Theorem A.2.6.

b) Show that

Hint: Use Lemma A.2.8.

c] Show that there exists a constant C independent of n such that

0< Il ~n~X; ~I ,; c ( v'sZ-l) 'n
and deduce that ((2) = t7l'2 irrational. Hence 71' is irrational.

o

o
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E.6 The Irrationality of log 2. Let

be the nth Legendre polynomial on [0,1].

a] Show that

r1
Pn(x) dx = r1

Pn(x) - Pn(-1) dx + r1
Pn(-1) dx

i o 1+ x i o 1+ x io 1+ x
= Pn (-1) log 2+ Rn ,

where dnRn is an integer (dn := lcm{1,2, ... ,n} as before).

bJ Show that

II I Pn(X) I 11 xn(1- x)n--dx = dx.
o 1+x 0 (1+x)n+l

c] Use parts a] and b] to show that log 2 is irrational.
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An Interpolation Theorem

Overview

Appendix 3 presents an interpolation theorem for linear functions that is
used in Section 7.1. From this Haar's characterization of Chebyshev spaces
follows, as do alternate proofs of many of the basic inequalities.

An Interpolation Theorem

The main result of this section, Theorem A.3.3, is an interpolation theorem
that plays an important role in Section 7.1. Further applications are given
in the exercises.

Throughout this appendix we use the following notation. Let Q be a
compact Hausdorff space. Let C(Q) be the space of all real- or complex­
valued continuous functions defined on Q. Let P be a (usually finite­
dimensional) linear subspace of C(Q) over lR. if C(Q) is real or over C
if C(Q) is complex. The function I E C(Q) is said to be orthogonal to P,
written as I ..1 P, if

II/IIQ ::; III + pllQ for all pEP.

This is an L oo analog of the more usual L 2 notion of orthogonality, as in Sec­
tion 2.2. The following two lemmas give necessary and sufficient conditions
for the relation I ..1 P.



An Interpolation Theorem 383

Lemma A.3.1. Let 0 =i f E C(Q). The function f is orthogonal to P if and
only if there exists no pEP such that

(A.3.I)

holds on

(A.3.2)

Re(J(x)p(x)) > 0

E := E(f) := {x E Q : If(x)1 = IlfIlQ}·

Proof. Assuming there exists pEP satisfying (A.3.I) on E defined by
(A.3.2), we show that

for some E > O. Since the set E defined by (A.3.2) is compact, Re(J(x)p(x))
attains its positive minimum, say, 28 > 0, on E, and there exists an open
set C containing E such that

Re(J(x)p(x)) > 8 > 0, xE C.

Since CC := Q \ C is also compact, there exists an a > 0 such that

If(x)1 < (1 - a)lIfIlQ,

Thus, with a sufficiently small E > 0,

x E CC.

while

If(x) - Ep(x)1 ~ (1- a)llfllQ + EllpllQ < IIfIlQ,

Therefore

xE C,

x E CC.

xE E,

if E > 0 is small enough.
Conversely, if f is not orthogonal to P, then there exists pEP such

that Ilf - pll~ < IIfll~, so

2Re(J(x)p(x)) > IIpll~ ~ 0,

and the proof is finished. o
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Lemma A.3.2. Let a ::j= f E C(Q) and let P be an n-dimensional linear sub­
space ofC(Q) over lR if C(Q) is real or over e ifC(Q) is complex. Then the
function f is orthogonal to P if and only if there exist points Xl, X2, ... , Xr

in E(J) defined by (A.3.2) and positive real numbers Cl,C2,'" ,Cr, where
1 S r S n+1 when C(Q) is real, and 1 S r S 2n+1 when C(Q) is complex,
such that

r

(A.3.3) L Cif(Xi)P(Xi) = 0,
i=l

pEP.

Proof. Suppose (A.3.3) holds with some positive real Cl, C2, ... ,Cr satisfy­
ing L:~=1 Ci = 1. As If(Xi)1 = IIfIlQ, we have

r r

Ilfll~ = L c;f(x;)f(x;) = L C;f(Xi)(J(Xi) - p(x;»
i=l ;=1

r

for every PEP, so f ..1 P. (Note that r S n + 1 or r S 2n + 1, respectively,
was not needed for this part of the proof, so the sufficiency of (A.3.3) is
valid with no hypothesis about r.)

Conversely, suppose f ..1 P. Let {!Pl,!P2, ... ,!Pn} be a basis for P
over lR (or e, respectively), and consider the map T : Q --+ lRn (or en,
respectively) defined by

Observe that the origin is in the convex hull of

T(E) := {T(x) : x E E},

otherwise by the principle of separating hyperplanes (a corollary of the
Hahn-Banach theorem; see Rudin [73]), there would exist complex numbers
aI, a2,· .. ,an such that

Hence, with p := L:~=1 a;!Pi E P,

Re(J(x)p(x») > 0,

xE E.

xEE

and f is not orthogonal to P by Lemma A.3.1, which contradicts our as­
sumption.
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Now it follows from Caratheodory's lemma (see E.1) that there exist
points Xl, X2, ... ,Xr in E and positive real numbers CI, C2, ... ,Cr , where
1 ~ r ~ n+ 1 when C(Q) is real and 1 ~ r ~ 2n +1 when C(Q) is complex,
such that

r

I:Cd(Xi)'Pk(Xi) = 0,
i=l

Therefore
r

I:Cd(Xi)p(Xi) = 0,
i=l

and the lemma is proved.

k = 1,2, ... ,n.

pE P,

o

Theorem A.3.3 (Interpolation of Linear Functionals). Let C (Q) be the set
of real- (complex-) valued continuous functions on the compact Hausdorff
space Q. Let P be an n-dimensional linear subspace of C(Q) over ~ (C).
Let L i- 0 be a real- (complex-) valued linear functional on P. Then
there exist points Xl, X2, ... ,Xr in Q, and nonzero real (complex) num­
bers aI, a2, ... ,ar, where 1 ~ r ~ n in the real case and 1 ~ r ~ 2n - 1 in
the complex case, such that

r

(A.3.4)

and

(A.3.5)

L(p) = I: aip(xi),
i=l

r

IILII = I: lad,
i=l

pEP

where
IILII := sup{IL(p)1 : pEP, IlpllQ ~ I}.

Proof. Because of the finite dimensionality of P, there exists an element
p* E P (called an extremal element for L) such that IIp* IIQ = 1 and
L(P*) = IILII. Let Po denote the null-space of L, so

Po := {p E P : L(p) = O}.

Now p* is orthogonal to Po because if

for some Po E P, then 9 := p* + Po satisfies IIgllQ < 1 and L(g) = liLli,
which is impossible. Note that the dimension of Po over ~ is n - 1 in the
real case and 2n - 2 in the complex case. So by Lemma A.3.2 there exist
points Xl, X2, ... ,Xr in
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E := {x E Q : Ip*(x)/ = I}

and positive real numbers C1, C2, ... ,Cr , where 1 :::; r :::; n in the real case
and 1 :::; r :::; 2n - 1 in the complex case, such that

r

2:>iP*(Xi)PO(Xi) = 0,
i=l

Po E Po·

Since L(p)p* - L(p*)p E Po for all PEP, we have

r r

L(p) L.:>ilp*(Xi)j2 = L(p*) 2:::>iP*(Xi)p(Xi) '
i=l i=l

pE P.

Since L(p*) = IILII and Ip*(Xi)1 = 1 for each i, we obtain (A.3.4) by taking

ai = Ci~ IILII.
2:: j =l Cj

Using the fact that Ip*(xi)1 = 1 for each i in the above formula for ai, we
get (A.3.5). 0

Comments, Exercises, and ~xamples.

We have followed Shapiro [71], which gives a long discussion of questions
related to the best uniform approximation of a function f E C(Q) from
a (usually finite-dimensional) linear subspace P C C(Q). Some of these,
together with other applications, are discussed in the exercises.

E.l Caratheodory's Lemma. If A c IR;n, then every point from the convex
hull co(A) of A can be written as a convex linear combination of at most
n + 1 points of A.

Proof. Let x E A. After a translation if necessary, we may assume that
x = O. Suppose

(A.3.6)
r

o= 2::::: O!iXi ,
i=l

Xi E A, O!i > 0 , r > n + 1 .

Since r > n+ 1, the elements X2, X3,'" ,Xr are linearly dependent, so there
exist real numbers (3i, i = 2,3, ... ,r, not all zero, such that

r

2::::: (3i X i = O.
i=2

Let (31 := O. For all A E IR;, we have
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0= L aiXi + AL !3i Xi = L (ai + A!3i)Xi.
i=I i=l i=l

When A = 0, each term in the last sum is positive. We now define
c := min lad!3i I, where the minimum is taken for all indices i for which
!3i i= O. If the index j is chosen so that laj/!3jl = C, and if A := -aj/!3j,
then at least one of the numbers ai + A!3i is zero, and all are nonnegative.
Also a1 + A!31 = a1 > O. We have thus obtained a representation of the
same form as (A.3.6), but with s terms, where 1 :::; s :::; r - 1. If s > n + 1,
then the process can be repeated, and after a finite number of steps we
obtain the desired representation. 0

E.2 Reformation in Terms of Integrals. Lemma A.3.2 can be reformu­
lated as follows. Under the assumptions of Lemma A.3.2, 1 E C(Q) is
orthogonal to P if and only if there exists a nonzero nonnegative Borel
measure p on Q whose support consists of r points of E(j) defined by
(A.3.2), where 1 :::; r :::; n + 1 in the real case and 1 :::; r :::; 2n + 1 in the
complex case, such that 1(x) dp(x) annihilates P, that is,

(i1.3.7) hl(x)p(x) dp(x) = 0, pEP.

This reformation is not only a notational convenience, but it is essential
in generalizations where P is no longer finite-dimensional. Moreover, (A.3.7)
with any nonzero nonnegative Borel measure (not necessarily discrete) is
sufficient for 1 .1 P. This is often useful, even when P is finite-dimensional;
see Shapiro [71].

E.3 Haar's Characterization of Chebyshev Spaces.

a] Let 10, II, ... ,In be real- or complex-valued continuous functions
defined on a (not necessarily compact) Hausdorff space Q. Show that
P := span{fo, ... ,In}, where the span is taken over IR (or C), is a Cheby­
shev space if and only if there exists no real (or complex) measure on Q
annihilating P whose support consists of less than n + 1 points.
Hint: Use Proposition 3.1.2. 0

b] Let P be an n-dimensional linear subspace of C(Q), the space of real­
(or complex-) valued continuous functions defined on a compact Hausdorff
space Q containing at least n points. The space P is a Chebyshev space if
and only iffor each 1 E C(Q), there is a unique best uniform approximation
to 1 from P.

Proof. First suppose P is a Chebyshev space of dimension n, and PI and
P2 are best uniform approximations to some 1 E C(Q) from P. Then
P3 := ~ (PI + P2) is also a best uniform approximation to 1 from P. As
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f - P3 ..1 P, Lemma A.3.2 yields that If(x) - P3(x)1 attains its maximum
on Q at r points, Xl, X2, .•. 'XTl that support an annihilating measure for
P, where r 2: n + 1 by part a]. Note that

j = 1,2, ... ,n + 1,

and hence, since P is a Chebyshev space, PI - P2 = O.

Conversely, if P is not a Chebyshev space, then there exist n distinct
points Xl, X2, ... ,Xn in Q such that the system of homogeneous linear equa­
tions

where {gI, ... ,gn} is a basis for P, has a nontrivial solution. Then also the
homogeneous system formed with the transposed matrix has a nontrivial
solution, so there exist constants bi , not all zero, so that

n

L bigi (xj) = 0 ,
i=l

Thus, with 9 := I::~=l bigi , we have

j = 1,2, ... ,no

j = 1,2, ... ,no

We may assume, without loss, that IIgllQ = 1. Some of the constants
aI, a2,'" ,an may be zero; however, the set r of indices j for which aj =/: 0
is not empty. By Tietze's theorem there exists an f E C(Q) such that
IlfllQ = 1 and

a
f (xj) = Ia~ I ' j E r .

Setting h(x) := f(x)(l -lg(x)l), we have

We claim that Ilh - pIIQ 2: 1 for every pEP. Indeed, if Ilh - pIIQ < 1 for
some PEP, then

for every j E r; hence

j E r.
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Since aj = 0 if j (j. r, we have Re(ajp(xj)) = 0 for each j (j. r. Thus

Re (taiP(Xj)) > O.
)=1

However, if p := L~=l Ci9i, then

n n n n n

Lajp(xj) = Laj LCigi(Xj) = Lbi Lai9i(Xj) = 0,
j=l j=l i=l i=l j=l

which contradicts the previous inequality and shows that Ilh - pIIQ ~ 1 for
every pEP.

Finally, for all A E [0,1], A9 is a best uniform approximation to h from
P because

Ih(x) - Ag(x)1 :::; If(x)l(l -lg(x)I) + Alg(x)1

:::; 1+ (A - 1)19(X)1 :::; 1

for all x E Q, so the best uniform approximation to h E C(Q) from Pis
not unique. 0

E.4 Unicity of the Extremal Function. Assume the notation of Theorem
A.3.3. Show that if P c C(Q) is an n-dimensional real Chebyshev space
and r = n, then the extremal element p* E P satisfying [[p* IIQ = 1 and
L(p*) = IfLIl is unique.
The interesting relations of Theorem A.3.3 to the Riesz representation

theorem, the Krein-Milman theorem, and the Hahn-Banach theorem are
discussed in Shapiro [71].

E.5 Applications of the Interpolation Theorem. As before, let

D := {z E C : Izi < I} and K := JR (mod27r).

Prove the following statements. Each of them may be proven by charac­
terizing the extremal polynomial for the given inequality with the help of
Theorem A.3.3. A detailed hint is given only to part a].

a] Bernstein's Inequality.

It'(O)1 :::; nlltllK' tETn, OEJR.

Hint: Let 00 E JR be fixed, and study the linear functional L(t) := t'(Oo),
t E Tn. Observe that an extremal Pin Lemma A.3.3 must satisfy Ip(Xi)1 = 1
for each i = 1,2, ... ,r and r must equal 2n. Note that r :::; 2n holds by
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Theorem A.3.3, while the argument for r 2 2n is similar to the correspond­
ing step in the proof of Theorem 7.1.7. Finally, show that the extremal
element t satisfying L(t) = IILII is of the form

t(B) = cos(nB - a)

for some a E K.

b] Markov's Inequality.

Ip'(I)1 $ n21Ipll[_1,l}, pE Pn .

o

c] Chebyshev's Inequality.

Ip(x)1 $ ITn (x)lllpll[-l,l], pEPn , xElR\[-I,I],

where Tn is the Chebyshev polynomial of degree n defined by (2.1.1).

d] Bernstein's Inequality.

e] Bernstein's Inequality.

Ip'(z)1 $ nlzln- 11IpIID,

PEP~, ZEC\D.

P E P~ , z E C \ D .

Hint: Use Theorem 1.3.1 (Lucas' theorem). 0

f] Riesz' Identity. There are real numbers ai with 2:7:1 lail = n such
that

2n

t'(B) = I>it(B + Bi),
i=l

where
B. '= 2i-1 ~

't • 2n H, i = 1,2, ... , 2n.

(This is, apart from the explicit determination of the number ai, an identity
discovered by M. Riesz [14].)

g] Show that in part f],

a· - (_I)i+l 1 . 1 2 2
,- 4nsin2(Bd2)' Z = , , ... , n.

h] Bernstein's Inequality in L p•

{2~ {2~

Jo It' (B)IP dB $ nP Jo It( B) jP dB ,

Hint: Use part f] and Jensen's inequality (see E.20 of Appendix 4). 0

Arestov [81] shows that the inequality of part h] is valid for all p > O.
Golitschek and Lorentz [89] gives a simpler proof of this.

i] Find all extremal polynomials in parts a] to e] and hI.
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E.6 An Inequality of Szego. If p E p~ and Zl, Z2, ... ,Z2n are any equally
spaced points on the unit circle aD, then

Proof. See Frappier, Rahman, and Ruscheweyh [85]. o
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Inequalities for Generalized
Polynomials in Lp

Overview

Many inequalities for generalized polynomials are given in this appendix. Of
particular interest are the extensions of virtually all the basic inequalities to
L p spaces. The principal tool is a generalized version of Remez's inequality.

Inequalities for Generalized Polynomials in Lp

Generalized (nonnegative) polynomials are defined by (A.4.1) and (A.4.3).
The basic inequalities of Chapter 5 are extended to these functions by re­
placing the degree with the generalized degree. The crucial observation is
that Remez's inequality extends naturally to this setting. This Remez in­
equality then plays a central role in the extensions of the other inequalities.
These generalizations allow for a simple general treatment of L p inequali­
ties, which is one main feature of this appendix.

The function

m

(A.4.1) f(z) = Iwl II Iz - zjlr j

j=l

with 0 < rj E JR, Zj E C, and 0 i- w E C is called a generalized nonnegative
(algebraic) polynomial of (generalized) degree
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(AA.3)

(AAA)
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m

N:= 2.:rj.
j=l

The set of all generalized nonnegative algebraic polynomials of degree at
most N is denoted by GAPN.

The function
m

f(z) = Iwl II Isin((z - Zj)/2)ri
j=l

with 0< rj E ~, Zj E C, and °#- wEe is called a generalized nonnegative
trigonometric polynomial of degree

1 m

N:= 22:)j.
j=l

The set of all generalized nonnegative trigonometric polynomials of degree
at most N is denoted by GTPN. Throughout this section we will study
generalized nonnegative polynomials restricted to the real line. If the ex­
ponents rj in (AA.1) or (AA.3) are even integers, then f is a nonnegative
algebraic or trigonometric polynomial, respectively. Note that the classes
GAPNand GTPN are not linear spaces. Note also that if f E GAPN or
f E GTP N is of the form (A.4.1) or (A.4.3), respectively, with all rj ~ 1,
then the one-sided derivatives of f exist at every x E ~ with the same
modulus, hence 1f'(x)1 is well-defined for every x E R We use the notation
1f'(x)1 for f E GAPN or f E GTPN and x E ~ throughout this section
with this understanding. If f E GAPN is of the form (A.4.1) or f E GTPN
is of the form (A.4.3), where the zeros Zj E C, j = 1,2, ... ,m, are distinct,
then rj is called the multiplicity of Zj in f. Our intention in this section
is to extend most of the classical inequalities of Section 5.1 to generalized
nonnegative polynomials. In addition, we prove Nikolskii-type inequalities
for GAPN and GTP N.

Theorem A.4.1 (Remez-Type Inequality for GAP N ). The inequality

(
V2 + v's)N

Ilfll[-l,l] S V2 - v's

holds for every f E GAPNand s E (0,2) satisfying

m({x E [-l,lJ: f(x) S 1}) ~ 2 - s.

E.5 shows that this inequality is sharp. Note that if 0 < s S 1, then

(
V2 + v's) NV2 S exp(5Nv's).
2 - v's

Throughout this section, as before, K := ~ (mod 27l").
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Theorem A.4.2 (Remez-Type Inequality for GTPN). The inequality

1lfilK :::;exp(N(s+~sZ)) :::;exp(4Ns)

holds for every f E GTPNand s E (0, 1r/2] satisfying

(AA.5)

The inequality

m({x E [-1r, 1r) : f (x) :::; I}) 2: 21r - S .

( )

N

< v'2 + va:
IlfilK - v'2 - va: ' a = 1 - cos(s/2)

holds for every even f E GTPNand s E (0, 21r) satisfying (A. 4.5).

We do not discuss what happens when s E (1r/2, 21r) in the general case
because the case when s E (0, 1r/2J is satisfactory for our needs.

Proof of Theorem A.4.1. First assume that f E GAPN is of the form (A.4.1)
with rational exponents rj = qj/q, where qj, q E N. Let kEN be an integer.
Then (restricted to lR) p := Pkq E PZkqN and

m ({x E [-1, 1] : Ip(x) I :::; I}) 2: 2 - s .

Hence Theorem 5.1.1 yields

( ( ))

l/(Zkq)
l/(Zkq) 2 + sIlfllr-l,lJ = Ilpll[-l,l] :::; TZkqN 2 _ s

Since by EA,

(A.4.6) . ( (~)) l/(Zkq) _ (v'2 +0) N
hm TZkqN 2 - M ~ ,

k ..... oo - S v 2 - v s

the theorem is proved. The case when the exponents rj > 0 are arbitrary
real numbers can be easily reduced to the already proved rational case by
a straightforward density argument. 0

Theorem A.4.2 follows from Theorem 5.1.2 in exactly the same way
that Theorem A.4.1 follows from Theorem 5.1.1; see E.6.

Theorem A.4.3 (Nikolskii-Type Inequality for GTPN ). Let X be a non­
negative nondecreasing function defined on [0,(0) such that X( x) / x is non­
increasing on [0, (0). Then there is an absolute constant Cl > 0 such that

IIx(f)IIL p (K) :::; (Cl(1 + qN»l/q-l/Pllx(f)IILq (K)

for every f E GTPN and 0 < q < p:::; 00. Ifx(x) = x, then Cl :::; e(41r)-1.
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Theorem A.4.4 (Nikolskii-Type Inequality for GAP N). Let X be a non­
negative nondecreasing function defined on [0, (0) such that X(x)jx is non­
increasing on [0, (0). Then there is an absolute constant C2 > 0 such that

for every f E GAP N and 0 <: q < p:::; 00. Ifx(x) = x, then C2::; e2 (27l")-1.

In the proof of the second part of Theorem A.4.4 we will need the
following Schur-type inequality, which is interesting in its own right.

Theorem A.4.5 (Schur-Type Inequality for GAPN). The inequality

IIfllt-l ,lJ ::; e(l +qN)II~r(x)II[_l,l]

holds for every f E GAPNand q > O.

According to Theorem 5.1.9 (Schur's inequality), if N E N, f E PN, and
q E N, then the constant e in the above inequality can be replaced by 1.

It is sufficient to prove Theorems A.4.3 and A.4.4 when p = 00, and
then a simple argument gives the required results for arbitrary exponents
o < q < P < 00. To see this, say, in the trigonometric case, assume that
there is a constant eN such that

for every f E GTPNand 0 < q < 00. Then

Ilx(J)lltp(K) = lI(x(J))P-q+qIlL,(K)

::; Ilx(J)IIj<
q
llx(J)II1.(K)

:::; cJ1q-lllx(J)lIt~(K)llx(J)II1.(K)'

and therefore
IIx(J)IIL p (K) ::; C,Vq-l/Pllx(J)IIL q (K)

for every f E GTPN and 0 < q < p::; 00.

Proof of Theorem A.4.3 (when p = (0). Since X is nonnegative and nonde­
creasing and (X(x)jx)q is nonincreasing on [0, (0), we have

(X(J(B)))q ~ exp(-qNs)lIx(J)II'k

whenever
f(B) ~ exp(-Ns)llfIlK.

Hence, by E.7 b], we can deduce that
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s
m({B E [-7r,7r): (x(f(B)))q 2 exp(-qNs)llx(f)llk}) 2 4

for every f E CTPN and s E (0, 27r). Choosing s := (1 + qN)-l, we get

Hence, integrating only on the subset I of K where

we conclude that

Ilx(f)lIk ~ 4e(1 + qN)1(x(f(B)))q dB

~ 4e(1 + qN)llx(f)lItcK) '

and the first part of the theorem is proved.

Now we turn to the second statement. Let

D := {z E C : Izi < I} and aD := {z E C : Izi = I}.

If h is analytic in the open unit disk D and continuous on the closed unit
disk D, then by Cauchy's integral formula we have

1 i 1- rzu(1 - IrzI 2 )h(rz) = -. h(u) du
27rZ aD u - rz

whenever z E D and r E [0,1). Note that u E aD and z E aD imply
11- rzul = lu - rzl for all r E [0,1). Hence, if P E p~ and °< q < 00, then

whenever z E aD and r E [0,1], where P* is obtained from the factorization
of P by replacing each factor (z - a) of P with lal < 1 by (1 - QZ). Since

~(I+r)lz-al ~ Irz-a/,

we have

la/ > 1, z E aD, r E [0,1] ,

(1 - r 2 ) (~(1 + r))qdegCP) IP(z)lq ~ ~ r IP*(uW Idul
27r JaD

whenever z E aD and r E [0,1). Maximizing the left-hand side for r E [0,1]
and using the fact that IP*(z)1 = IP(z)1 for z E aD, we conclude that
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z E aD.

-7T

Hence, by E.8,
7T

IIRIIl< ~ (1 :~n)e JIR(BW dB
-7T

for every R E Tn. If f E GTPN is of the form (A.4.3) with rational expo­
nents rj = ajla, where aj,a E N, then on applying the above inequality
to R := POi E 7201N with q replaced by ql(2a), we conclude that

and the second statement of the theorem is proved. The case when the
exponents rj > 0, j = 1,2, ... ,m, are arbitrary real numbers can be
reduced to the already proved rational case by a straightforward density
argument. 0

Proof of Theorem A.4.5. Let P E Pn and

M:= 11~IP(xWII[-l,lJ'

By E.8 c], there exists an R E P2n such that IR(eiO ) I = IP(cos B) I, B E R
We define R* E P~n from the factorization of R by replacing all the factors
(z - a) of R with lal < 1 by (1 - QZ). Note that 11 - e2iol = 21 sinBI and
IR(eiO ) I = IR* (e iO ) I for all B E JR.. Hence the maximum principle yields that

11 - (rz)21IR*(rzW ~ max 11 - z21IR*(zW
zE8D

= max 2/sinBI/P(cosBW = 2M.
OEIR

By E.9 we have

IR*(z)1 ~ (1: rrn

IR*(rz)l,

Hence

zEaD, rE[O,I].

z E aD, r E [0,1],
22nq 1

IR*(z)lq < --2M
- (l+r)2nq l-r2 '

where the minimum on [0,1] of the right-hand side is taken at

qn
r'=--. 1+qn'
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Estimating the right-hand side at this value of r, we get

IlPll
q
[-llJ = max IR*(z)J1 :::; e(1 + qn)II~IP(x)J1I1[_llJ'

, zE8D '

If f E GAPN is of the form (A.4.1) with rational exponents rj = aj/a,
aj, a EN, then applying the above inequality to P = f20. E P20.N with q
replaced by q/(2a), we get

IIfllf-1,lJ :::; e(1 +qN)II~ r(x)ll l-1,11'

and the theorem is proved. The case when the exponents rj > °are ar­
bitrary real numbers can be easily reduced to the already proved rational
case once again by a standard approximation. 0

Proof of Theorem A.4.4 (when p = 00). Since X is nortnegative and nonde­
creasing and (X(x)/x)q is nonincreasing on [0,00), we have

(x(J(x)))q ~ exp(-qNvs)llx(J)llf-1,lJ

whenever
f(x) ~ exp(-Nvs)llfll[-l,lj'

So by E.7 aJ we can deduce that

m({xE [-I,IJ: (X(J(x)))1 ~exp(-qNvs)llx(J)lIf_1,lJ}) ~ ~

for all s E (0,2). Choosing s := (1 + qN)-2, we obtain

1
m({x E [-1,1]: (X(J(x)))q ~ e-

1
1Ix(J)II[_1,1]}) ~ 8(I+qN)2'

Integrating on the subset I of [-1,1] where

(x(J(x)))q ~ e-11Ix(J)II[_1,lj,

we conclude that

Ilx(J)lIf-l,lj :::; 8e(1 + qN)21(X(J(x)))q dx

:::; 8e(1 + qN)21Ix(J)IIi,q[_1,lJ .

Thus the first part of the theorem is proved.

To show that the given constant works in the case that X(x) = x we use
another method. Let hE GAPM. Then by E.IO, g(O) = h(cosO) E GTPM.
On using the substitution x = cos 0, from Theorem A.4.3 we get
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IIh ll[-l,lJ ::; e(21f)-1(1 + qM) [11 Ih(xW(1- X
2)-1/2 dx.

If f E GAPN, then h(x) = f(x)(l-x2)l/(2q ) E GAPM with M = N +q-l,
so an application of the above inequality yields

(A.4.7)

(Note that the weaker assumption h E GAPM instead of f E GAPN already
implies (A.4.7).)

Now a combination of Theorem A.4.5 and inequality (A.4.7) gives that
ifX(x) = x, then the inequality of Theorem A.4.4 holfls with C2 := e2(21f)-1.

o

Now we prove extensions (up to multiplicative absolute constants) of
Markov's and Bernstein's inequalities for generalized nonnegative polyno­
mials.

Theorem A.4.6 (Bernstein-Type Inequality for GTPN ). There exists an
absolute constant C3 > 0 such that

1I1'IIK ::; c3N llfilK

for every f E GTPN of the form (A.4.3) with each rj 2: 1.

Theorem A.4.7 (Bernstein-Type Inequality for GAPN). The inequality

11'(x)1 ::; ~lIfll[-l'll' XE(-I,I),

holds for every f E GAP N of the form (A.4.1) with each rj 2: 1, where C3

is as in Theorem A.4.6.

Theorem A.4.8 (Markov-Type Inequality for GAPN ). There exists an ab­
solute constant C4 > 0 such that

1I1'II[-l,lJ ::; c4N2 11f11[_1,1]

for every f E GAP N of the form (A.4·1) with each rj 2: 1.

To prove Theorem A.4.6 we need the following lemma.

Lemma A.4.9. Suppose g E GTPN is of the form (A.4.3) with each Zj E 1R,
and suppose at least one of any two adjacent (in K) zeros has multiplicity
at least 1. Then there exists an absolute constant C5 > 0 such that for every
such g there is an interval I C K of length at least C5N-l for which

ming(O) 2: e-lllgIlK.
(}El
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Proof. Take agE GTPN satisfying the hypothesis of the lemma. Because
of the periodicity of g we may assume that

(A.4.8)

Define

(A.4.9)

with

g(7r) = IIgIIK.

(
sin(B/2))

Qn,w(B) := T2n sin(w/2)

(A.4.10) n:= lNJ and w := 7r - (3N)-1 ,

where T2n is the Chebyshev polynomial of degree 2n defined by (2.1.1).
By E.ll there exists an absolute constant C6 > 1 such that Qn,w(7r) 2': C6.

Introduce the set

We study h := glQn,wl E GTP2N . The inequality Qn,w(7r) 2': C6 and as­
sumption (A.4.8) yield

for all BE [-w,w] = [-7r + (3N)-1, 7r - (3N)-1]. Further, the definition of
the set A, the fact that IIQn,wIIK = Qn,w(7r), and (A.4.8) imply that

for all BE [7r - (3N)-1, 7r + (3N)-1] \ A. From the last two inequalities we
conclude that

h(B):::: c7"lllhll[_l,lj for all BE [-7r,7r] \A,

where C7 := min{C6, e} > 1 is an absolute constant. Therefore, by E.7 b]

meA) 2': cS N- 1 with Cs := 117 log C7 > O.

Since g E GTPN is of the form (A.4.3) with each Zj E JR, and at least
one of any two adjacent zeros of g has multiplicity at least 1, E.12 and
assumption (8.1.8) imply that g cannot have two or more distinct zeros in
[7r - (3N) -1, 7r + (3N) -1]. Hence A is the union of at most two intervals.
Therefore there exists an interval I c A such that m(l) 2': cs(2N)-1, and
the lemma is proved. 0
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Proof of Theorem A.4.6. Let f E GTPN be of the form (A.4.3) with each
rj 2: 1. Without loss of generality we may assume that 1f'(1T)1 = 11f'IIK,
and it is sufficient to prove only that

By E.13 we may assume that each Zj is real in (A.4.3). Hence, by E.2,
g := 1f'1 satisfies the assumption of Lemma A.4.9. Denote the endpoints
of the interval I coming from Lemma A.4.9 by a < b. We can now deduce
that

1I1'IIK = 11'(1T)1 ::; b ~ a l b

11'(0)1 dO

::; eN rb

11'(0)1 dO = eN If(b) - f(a)1 ::; c3 N llfliK
C5 Ja C5

with C3 := ec51,and the proof is finished. o

Proof of Theorem A.4. 7. The theorem follows from Theorem A.4.6 by using
the substitution x = cos 0 and E.1O b]. 0

Proof of Theorem A.4.8. Let a := 1- (1 +N)-2. Using Theorem A.4.7 and
then E.14, we obtain

1I1'III-n,n] ::; C3 N (N + 1)lIfllt-1,1]
::; C3 N (N + ncgllfll[-n,n] ::; c4 N2 I1fll[_n,n] ,

and then the theorem follows by a linear transformation. o

Now we establish Remez-, Bernstein-, and Markov-type inequalities
for generalized nonnegative polynomials in L p . In the proofs we use the
inequalities proved in this appendix so far, and the methods illustrate how
one can combine the "basic" inequalities in the proofs of various other in­
equalities for generalized nonnegative polynomials. First we state the main
results.

Theorem A.4.10 (Lp Remez-Type Inequality for GAPN ). Let X be a non­
negative nondecreasing function defined on [0,00) such that X( x) / x is non­
increasing on [0,00). There exists an absolute constant c ::; 5v'2 such that

[11 (X(J(x)))P dx::; (1 + exp(cpNJS)) i (X(J(x)))P dx

for every f E GAPN, A C [-1,1] with m([-I, 1] \ A) ::; s ::; 1/2, and for
every p E (0,00).
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Theorem A.4.11 (Lp Remez-Type Inequality for GTPN)' Let X be a non­
negative nondecreasing function defined on [0, (0) such that X(x)/x is non­
increasing on [0, (0). There exists an absolute constant c :::; 8 such that

I: (X(J(())))pd():::; (1 +exp(cpNs)) i (x(J(())))Pd()

for every f E GTPN, A C [-7r,7r] with m([-7r, 7r] \ A) :::; s :::; 7r/2, and for
every p E (0, (0).

Theorem A.4.12 (Lq Bernstein-Type Inequality for GTPN). Let X be a
nonnegative, nondecreasing, convex function defined on [0,(0). There exists
an absolute constant c such that

for every f E GTPN of the form (A.4.3) with each rj ~ 1, and for every
qE(O,I].

Corollary A.4.13 (Lp Bernstein-Type Inequality for GTPN). The inequal­
ity I: If'(())lPd():::; cp+1NP I: If(())lPd()

holds for every f E GTPN of the form (A.4.3) with each rj ~ 1, and for
every p E (0, (0), where c is as in Theorem A.4.12.

Theorem A.4.14 (Lp Markov-Type Inequality for GAPN). There exists an
absolute constant c such that

111If'(X)IPdX::; cP+lN2p 111If(X)IPdX

for every f E GAPN of the form (A.4.1) with each rj ~ 1, and for every
pE(O,oo).

Theorems A.4.1 and A.4.2 can be easily obtained from their L oo

analogs, Theorems A.4.1 and A.4.2, respectively; see E.15 and E.16, where
hints are given.

Proof of Theorem A.4.12. For n := lNJ let

be the modulus of the nth Dirichlet kernel. Choose q E (0,1], and set
m := 2q-l ~ 2. Let g E GTPN be of the form (A.4.3) with each rj ~ 1.
On applying the Nikolskii-type inequality of Theorem A.4.3 to



Inequalities for Generalized Polynomials in L p 403

G := gD;;: E GTP N +2nq-l ,

we obtain

(A.4.11) IIgD;;: Ilk :S Cl (1 + q (N + 2nq-l)) IIgD;:' II'LcK)

:S cl(1 + 3N) i: (g(e)D;;:(e))q de

= Cl (1 + 3N) i: gq(e)D;,(e) d().

If 9 E GTPN is of the form (A.4.3) with each rj ::::: 1, then m ::::: 2 implies
that G E GTPN is of the form (A.4.3) with each rj ::::: 1 as well. If we apply
the Bernstein-type inequality of Theorem A.4.6 to G and use (A.4.11), we
can deduce that

jg'(())D;;:(e) + mD;;:-l(())D~(())g(e)l~

:S (C3 (N + 2nq-l))q IIgD;;:llk

:S cjNq (1 + 2q-l)q Cl (1 + 3N) i: gq(e)D;,(e) de

for every () E K (we take one-sided derivatives everywhere). By putting
() = 0, and noticing that

we get

(A.4.12)

with an absolute constant c. Now let f E GTPn be of the form (A.4.3) with
each rj ::::: 1. Let T E K be fixed. On applying (A.4.12) to g(()) := f(() + T),
we conclude that

Hence

(A.4.13)

Since

(A.4.14)



(A.4.15)
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Jensen's inequality (see E.7) and (A.4.3) imply that

If we integrate both sides with respect to T, Fubini's theorem and (A.4.14)
(on interchanging the role of f) and T) yield the inequality of the theorem.

o

Proof of Corollary A.4.13. If 0 < P ::::: 1, then Theorem A.4.12 yields the
corollary with q = p and x(x) = x. If 1 ::::: p < 00, then the corollary follows
from Theorem A.4.12 again with q = 1 and x(x) = xp. 0

Proof of Theorem A.4.14. We distinguish two cases.

Case 1: P:::: 1. Let f E GAPN be of the form (A.4.1) with each rj :::: 1.
Then by E,10 b], g(f)):= f(cosf)) E GTPN is of the form (A.4.3) with each
rj :::: 1. With the substitution x = cos f), Corollary A.4.13 and Theorem
A.4.11 imply that

[11 1!,(x)IP(1- X2)(p-l)/2 dx

::::: c!{NP [11 jP(x)(1- X2)-1/2 dx

::::: c!{ NP exp(c2pNN- l ) [00 jP(x)(1 - X2)-1/2 dx,

where 8 := max{1-N- 2 , cos(11"/16)} and Cl and C2 are appropriate absolute
constants. Since p - 1 ~ 0, it follows from (A.4.15) that

(A.4.16) [Ool!'(X)IP dx

::::: (1 - 82)(l-p)/2 [Ool!'(X)IP(1- X2)(p-l)/2 dx

o
::::: (1 - 82)(l-p)/2cfNP exp(C2P) (1 - 82)-1/2 [0 jP(x) dx

::::: c!;Np-lNPN [00 jP(x) dx

= c!;N2p[00 jp(x) dx,

where C3 is also an absolute constant. Since (A.4.16) is valid for every
f E GAPN of the form (A.4.1) with each rj ~ 1, the theorem follows by a
linear shift from [-8, 8J to [-1, 1J.



(A.4.17)

(A.4.19)
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Case 2: °< p S; 1. Let f E GAPN be of the form (A.4.1) with each rj 2: 1.
Using the inequality la +W S; lalP + IW for p E (0,1], we can deduce that

i (If' (cos B) II sin Bll/P+l)P dB

S; i I(J( cos B)I sin Bjl/P)r dB

+i (J(cos B)p-ll sin Bil/p-li cos BI)P dB

for every measurable subset A of [-;r,1T). Applying Theorem A.4.12 (with
x(x) = x) to

g(8):= f(cosB)lsinBll/p E GTPN+l/p ,

then using (A.4.17) with A:= [-8,8], 8:= 1- (N + 1)-2, we conclude, by
the substitution x = cos B, that

(A.4.18) [88
1
f'(X)IP(1 - x2)p/2 dx

S; cl(N + l/p)P [11 JP(x) dx + p-P [88 fP(x)(l - x2)-p/2 dx,

where Cl is an absolute constant. Note that Theorem A.4.10, °< p S; 1,
and the choice of 8 imply that

[11 JP(x) dx S; C2[88 JP(x) dx

with an absolute constant C2. A combination of (A.4.18) and (A.4.19) yields

(A.4.20) [88
1
f'(X)IP dx

S; (1 - 82)-P/2[88
1
f'(X)IP(1 - x2)p/2 dx

S; (1 - 82)-p/2(ClC2(N + l/p)P + p-P(l - 82)-p/2) [66 jP(x) dx

S; 2P/2(N + 1)P(ClC2(N + l/p)P + p-P2P/2(N + l)P) [66 fP(x) dx

S; C3N2p [66 jP(x) dx,

where C3 is an absolute constant. Since (A.4.20) is valid for every f E GAPN

of the form (A.4.1) with each rj 2: 1, the theorem follows by a linear shift
from [-8,8] to [-1,1]. 0
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Comments, Exercises, and Examples.

Most of the results of this section can be found in Erdelyi [91a] and [92a];
Erdelyi, Mate, and Nevai [92]; and Erdelyi, Li, and Saff [94]; however, the
proofs are somewhat simplified here. For polynomials f E Pn and for ar­
bitrary q E (0,00), Theorem A.4.5 was also proved by Kemperman and
Lorentz [79]. An early version ofMarkov's inequality in L p for ordinary poly­
nomials is proven in Hille, Szego, and Tamarkin [37]. Weighted Markov- and
Bernstein-type analogs of Theorems A.4.6 to A.4.8 are obtained in Erdelyi
[92b]. Applications of the inequalities of this section are given in Erdelyi,
Magnus, and Nevai [94] and in Erdelyi and Nevai [92], where bounds are
established for orthonormal polynomials and related functions associated
with (generalized) Jacobi weight functions. Further applications in the the­
ory of orthogonal polynomials may be found in Freud [71] and Erdelyi [91d].

L p extensions of Theorem 5.1.4 (Bernstein's inequality) and Theorem
5.1.8 (Markov's inequality) have been studied by a number of authors. The
sharp L p version of Bernstein's inequality for trigonometric polynomials
was first established by Zygmund [77] for p 2:: 1. Using an interpolation
formula of M. Riesz, he proved that

(A.4.21)

for every t E Tn (see E.5 h] of Appendix 4). For 0 < p < 1, first Klein [51]
and later Osval'd [76J proved (A.4.21) with a multiplicative constant c(p).
Nevai [79a] showed that c(p) :s 8p-l. Subsequently, Mate and Nevai [80]
showed the validity of (A.4.21) with a multiplicative absolute constant, and
then Arestov [81] proved (A.4.21) (with the best possible constant 1) for
every 0 < p < 1. Golitschek and Lorentz [89] gave a very elegant proof of
Arestov's theorem.

The Lp analog of Markov's inequality states that

(A.4.22)

for every Q E Pn and 0 < p < 00, where c is an absolute constant. This
can be obtained from Arestov's theorem similarly to the way that Theorem
A.4.14 is proven from Corollary A.4.13. To find the best possible constant
in (A.4.22) is still an open problem even for p = 2 or p = 1.
The magnitude of

(A.4.23)
IIf'wll[-l,l]
IIfw ll[-l,l] ,
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(A.4.24)
1f'(y)w(y)1
Ilfwll[-l,l] ,

-1 S y S 1,

and their corresponding Lp analogs for f E Pn and generalized Jacobi
weight functions

(A.4.25)
k

w(z) = II Iz - ZjlTj,

j=l
ZjE<C, rjE(-I,oo)

have been examined by several people. See, for example, Ditzian and Totik
[88], Khalilova [74], Konjagin [78], Lubinsky and Nevai [87], Nevai [79a]
and [79b], and Protapov [60], but a multiplicative constant depending on
the weight function appears in these estimates. The magnitude of (A.4.23),
(A.4.24), and their L p analogs are examined in Erdelyi [92b] and [93], when
both f and ware generalized nonnegative polynomials. In these inequalities
only the degree of f, the degree of w, and a multiplicative absolute constant
appear. The most general results are the following:

Theorem A.4.15. There exists an absolute constant c such that

and
IIf'wll[-7T,7T] S c(N + M)(M + 1)llfwll[-7T,7T]

for every f E GTP N of the form (A.4.3) with each rj ~ 1, for every
w E GTPM, and for every p E (0,00).

Theorem A.4.16. There exists an absolute constant c such that

and

IIf'wll[-l,l) S c(N +M?llfwlh-l,l]
for every f E GAPN of the form (A.4.1) with each rj ~ 1, for every
w E GAPM, and for every p E (0,00).

E.1 Another Representation of Generalized Nonnegative Polynomials.

a] Show that if f = IT~=l IQjlTj with each qj E Pnj and rj > 0, then
f E GAPN with N S I:~=l rjnj. Similarly, if f = IT~=lIQjITj with each

Qj E Tnj and rq > 0, then f E GTPN /yith N :s: I:~=l rjnj.

b] Show that if f E GAPN is of the form (A.4.1), then f = IT7=1 IQjITj/2
with each Qj E P2 and a :s: Qj on R Similarly, if f E GTPN is of the form
(A.4.3), then f = IT;:l IQjITj/2 with each Qj E Ti and a :s: Qj on R



408 A4. Inequalities for Generalized Polynomials in L p

E.2 The Derivative of an f E GTPN with Real Zeros. Show that if
f E GTPN is of the form (AA.3) with each rj :::': 1 and Zj E ~, then
1f'1 E GTPN is of the form (AA.3) with each rj > 0 and Zj E ~, and at
least one of any two adjacent (in K) zeros of 1f'1 has multiplicity exactly 1.

E.3 Generalized Nonnegative Polynomials with Rational Exponents. Show
that if f E GAPN is of the form (AA.l) with rational exponents rj = qj/q,
where qj, q E N, then Pq E P2qN, while if f E GTPN is of the form (AA.3)
with rational exponents rj of the above form then Pq E 'I2qN.

E.4 Proof of (A.4.6). Prove (AA.6) from the explicit formula (2.1.1) for
the Chebyshev polynomial Tn.

E.5 Sharpness of the Remez-Type Inequality for GAPN' Let

I ( 2X + s) I
N

/
n

fn(x) := Tn ~ E GAPN,

Show that

n = 1,2, ....

m({x E [-1,1] : fn(x) :::; I}) = m([-I,1- s]) = 2 - s

and

lim fn(1) = (v'2 + vs) N
n->oo v'2 - VS

The upper bound in Theorem AA.l is actually not achieved by an
element of GAPN; see Erdelyi, Li, and Saff [94].

E.6 Proof of Theorem A.4.2.

Hint: First assume that f E GTPN is of the form (AA.3) with rational
exponents rj = qj/q, where qj,q E N. Then p := Pq E 'I2qN, and the
desired inequality can be obtained from Theorem 5.1.2 as in the proof of
Theorem AA.1. 0

E.7 Corollaries of Theorems A.4.1 and A.4.2.

a] The inequality

s
m({x E [-1,1]: f(x):::,: exp(-Nvs)llflll-1,1j}):::,: '8

holds for every f E GAPNand 0 < s < 2. In particular,

m ({ x E [-1,1] : f(x) :::': e-11Ifll[_1,lj}) :::': (8N2 + 4)-1

holds for every f E GAPN·
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b] The inequality

s
m({B E [-11",11"): f(B) 2: exp(-Ns)llfIlK}) 2:"4

holds for every f E GTPNand °< s < 211". In particular,

m ({BE [-11",11") : f(B) 2: e-1IlfIIK}) 2: (4(N + 1))-1

holds for every f E GTPN·

E.8 Nonnegative Trigonometric Polynomials. Part a] restates E.3 c] of
Section 2.4. Parts b] and c] discuss simple related observations.

a] Let t E Tn be nonnegative on JR.. Show that there is apE P:;' such that
t(B) = Ip(eiOW for every BE R

b] Let PEP:;' and t(B) := Ip(eiOW for every B E R Then t E Tn and t is
nonnegative on JR..

c] Show that if t E T:;, then there is apE Pin such that It(B)1 = Ip(eiO )I
for every BE R

E.9 A Crucial Inequality in the Proof of Theorem A.4.5. Show that

IP(z)1 $ C: r) n IP(rz)l, z E aD, r E [0, I]

for every PEP:;' having all its zeros outside the open unit disk D.

Hint: Let P(z) = cIl;:l (z - Zj), where c E C, Zj E C \ D, and m $ n.
Show that

2
Iz- z'l < --Irz - z'lJ-l+r J'

j=I,2, ... ,m, rE[O,I].

o

E.I0 f E GAPN Implies f(cosB) E GTPN.

a] Show that if f E GAPN, then g(B) = f(cosB) E GTPN.

b] Show that if f E GAPN is of the form (8.1.1) with each rj 2: 1, then
g(B) = f(cosB) E GTPN is of the form (A.4.3) with each rj 2: 1.

E.n A Property of Qn,w. Let Qn,w be defined by (A.4.9) and (A.4.lO).
Show that there is an absolute constant C6 > 1 such that Qn,w(1I") 2: C6.

Hint: Use the explicit formula (2.1.1) for the Chebyshev polynomial Tn. 0
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E.12 A Property of the Zeros of agE GTPN. Assume that g E GTPN
is of the form (A.4.3) and let

m

M·-
j=1

zjE[7r-p;rr+p]

Show that M:::; 3Npllgllr::-\'l] .

Hint: First assume that each Tj is rational with common denominator q E N,
and apply E.12 of Section 5.1 to p:= g2q E TzqN. 0

E.13 Extremal Functions for the Bernstein-Type Inequality.

al Let Tj_?:. 1, j = 1,2, ... ,m, be fixed real numbers. Show that there
exists an f E GTPN of the form

m

(A.4.26)

such that

J(z) = IT Isin((z - ~)/2Wj ,
j=l

1J'(1r)1 1f'(1r)1-_- =sup--,
IlfilK f IlfilK

where the supremum in the right-hand side is taken for all f E GTPN of
the form

m

(A.4.27) f(z) = Iwi IT Isin((z - zj)/2Wj ,
j=1

Zj E C , 0 =1= wEe.

Hint: Write each f of the form (A.4.27) for which the supremum is taken
as

m

f(z) = Iwol IT IWj sin((z - zj)/2) sin((z - Zj)/2Wj/2,
j=l

where the numbers Wj > 0 are defined by

j=1,2, ... ,m,

and then use a compactness argument for each factor separately. 0

hI Let J be as in part a]. Show that each zero of J is real, that is, 0 E lR
for each j in (A.4.26).

Hint: Assume that there is an index 1 :::; j :::; m such that C,j E C \ lR. Then

(

. 2 ) rj1(z) := J(z) 1- ESlll ((z -1r)/2) E GTPN
€ sin((z - C,j)/2)sin((z - c'j)/2)

with sufficiently small E > 0 contradicts the maximality of f. o
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E.14 A Corollary ofthe Remez-Type Inequality for GAPN • Suppose that
a := 1 - (1 + N) -2. Show that there is an absolute constant Cg > 0 such
that

11111[-l,lJ ~ cglllll[-a,a]
lor every 1 E GAPN·

Hint: This is a corollary of Theorem AA.1.

E.15 Proof of Theorem A.4.10.

Outline. For 1 E GAPN, let

1(f) := {x E [-1,1] : (x(f(x)))P ~ exp( -5pNV2S)llx(f)llf_1,1]}.

o

From Theorem 5.1.1, 0 < 8 ~ 1/2, and the assumptions prescribed for X
it follows that m(I(f» ~ 28. Let 1 := An 1(f). Since m([-I, 1] \ A) ~ 8,
m(I) ~ 8. Therefore

1 (x(f(x)))Pdx ~1 Ilx(f)llf-1 1] dx
[-l,l]\A [-l,l]\A'

~ exp(5pNV2S) l(x(f(x)))Pdx

~ exp(5pNV2S) i (x(f(x)))P dx.

o

E.16 Proof of Theorem A.4.11.

Hint: For 1 E GTPN, let

1(f):= {e E [-n,n] : (x(f(e)))p ~ exp(-8pN8)llx(f)II~}.

From Theorem 5.2.2, 0 < 8 ~ n/4, and the assumptions for X, it follows
that m(I(f» ~ 28. Now finish the proof as in the hint for E.1. 0

E.17 Sharpness of Theorem A.4.10.

a] Show that there exists a sequence of polynomials Qn E Pn and an
absolute constant c > 0 such that

for every n E N, 8 E (0,1], and p E (0,00).

Hint: Study the Chebyshev polynomials Tn transformed linearly from
[-1,1] to [-1,1 - 8]. 0
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b] Show that there exist a sequence of trigonometric polynomials tn E T,.,
and an absolute constant c > 0 such that

for every pEN, S E (0,71"], and p E (0,00).

Hint: Study Qn,w defined by (A.4.9) with w := 71" - s/2.

E.18 Sharpness of Corollary A.4.13 and Theorem A.4.14.

a] Find a sequence of trigonometric polynomials tn E T,., that shows the
sharpness of Corollary A.4.13 up to the constant c > 0 for every p E (0,00)
simultaneously.

Hint: Take tn(B) := cosnB. 0

b] For every p E (0,00), find a sequence of polynomials Qn,p E Pn which
shows the sharpness of Theorem A.4.14 up to the constant c> O.

Outline. Let Lk E Pk be the kth orthonormal Legendre polynomial on
[-1,1] (see E.5 of Section 2.3), and let

m

Gm(x) := cL L~(l)Lk(x),
k=O

where c is chosen so that

(A.4.28) 11 G~(x) dx = 1.
-1

Show that there exist absolute constants Cl > 0 and C2 > 0 (independent
of m) such that

(A.4.29) and

For a fixed n EN, let u := l2/pJ+ 1 and m := ln / uJ. If m ~ 1, then let
Qn,p := G~ E Pn , otherwise let Qn,p(x) := x E Pn. If m = 0, then the
calculation is trivial, so let m ~ 1. Using (A.4.29) and the Nikolskii-type
inequality of Theorem A.4.4, show that there exists an absolute constant
C3 > 0 such that

(A.4.30)

Use the inequality



Inequalities for Generalized Polynomials in L p 413

the Nikolskii-type inequality of Theorem A.4.4, and (A.4.28) to show that
there is an absolute constant C4 > 0 such that

(A.4.31)

Finally, combine (A.4.30) and (A.4.31). Note that if p > 2, then m = LnJ,
while if p :::; 2, then ~p(n -1) :::; m :::; 2pn. Note also that pP is between two
positive bounds for p E (0,2]. D

E.19 Sharpness of Theorems A.4.3 and A.4.4.

a] Let q E (0,00) be fixed. Show that there exists a sequence of polynomials
Qn,q E Pn and an absolute constant c> 0 such that

for every n E N.

Hint: Study Qn,p with p = q in the hint to the previous exercise. D

b] Let Qn,q E Pn be the same as in part a]. Show that there exist absolute
constants Cl > 0 and C2 > 0 such that

for every n E Nand 0 < q < p :::; 00.

Hint: Combine part a] and the Nikolskii-type inequality of Theorem A.4.4.
D

c] Let q E (0,00) be fixed. Show that there exists a sequence of trigono­
metric polynomials tn,q E Tn and an absolute constant C > 0 such that

for every n E No

Hint: Let tn,q«(J):= Qn,q(COS(J), where Qn,q are the same as in part a]. Use
part a] and the Schur-type inequality of Theorem A.4.5. D

d] Let tn,q E Tn be the same as in part c]. Show that there exist absolute
constants Cl > 0 and C2 > 0 such that

for every n E Nand 0 < q < p :::; 00.

Hint: Combine part a] and the Nikolskii-type inequality of Theorem A.4.3.
o
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E.20 Jensen's Inequality. Let X be a real-valued convex function defined
on [0,00), and let j and w be nonnegative Riemann integrable functions

on the interval [a, b], where J: w = 1. Show that

X (l b

j(x)w(x) dX) :::; l b

xU(x))w(x) dx.

Hint: First assume that w is a step function. Use the fact that the convexity
of X implies its continuity, and hence the functions xU)w and jw are
Riemann integrable. 0

E.21 A Pointwise Remez-Type Inequality for GAPN •

a] Show that there exists an absolute constant c > °such that
Ip(y)1 :::; exp (cnmin {h' -IS}) ,

for every p E Pn and S E (0,1] satisfying

Y E [-1,1]

m( {x E [-1, 1] : Ip(x) I ~ I}) 2': 2 - S ,

that is, with the notation of Theorem 5.1.1, for every p E Pn(s) with
S E (0,1].

Proof. Assume, without loss of generality, that y E [0,1]. Let

a:=y+~(l-y), a := arccos a,

{3 := 2 arccos y - arccos a , W := 1f - ~ ({3 - a) ,

(
sin(O/2) )

Qn,w(O) := T2n sin(w/2) ,

where T2n is the Chebyshev polynomial of degree 2n defined by (2.1.1), and
let

Qn,o:,f3(O) := Qn,w (~(O - (21f - (a + (3)))) .
Associated with p E Pn(s), we introduce

g(O) := p(cosO)Qn,o:,f3(O) E l2n·

Obviously

and

IQn,o:,f3(O) I :::; 1, oE [0, 21f) \ (a, (3)
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The definition of w implies that there exist absolute constants Cl > °and
C2 > °such that

This, together with E.3 c], yields that there are absolute constants C3 > °
and C4 > °such that

whenever y E [0,1 - C4SJ. 1t follows now from Theorem 5.1.1 that

for every () E [0,211") \ (a, (3) and y E [0,1 - C4SJ. Furthermore

for every () E (a, (3) for which Ip(cos(})/::; 1. Note that

Icos(}1 ::; 1- ~(1- y), (}E(a,(3)

Y E [0,1 - C4SJ .

and hence P E Pn(s) with s E (O,IJ implies that there exists an absolute
constant C5 > °such that

C5 S
m({O E (a, (3) : Ip(cosO)I2: I})::; ~.

V 1- y-

Therefore

satisfies
mUO E [0,211"): 11(0)1 ::; I}) 2: 211" - S

with
~ C5 S
s·= ---===. J!=Y2'

Applying Theorem 5.1.2 with 1 and S, we conclude that

Ip(y)1 = Ip (cos (~(a + (3))) I = (Qn,w(1I"))-lg (~(a + (3))

=1 (~(a + (3)) ::; exp(4nS) ::; exp(n)
1- y2

whenever S E (0,11"/2J and Y E [0,1 - C4S]. If S E (0,1], but S > 11"/2 or
Y E [1 - C4S, 1], then Theorem 5.1.1 yields the required inequality. 0
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b] Show that the inequality of part a] is sharp up to the absolute constant
C> 0.
Hint: Assume, without loss, that y E [0, 1J. Show that there exists an abso­
lute constant Cl > °such that the polynomials

(
2x 8)

Wn,y,s(x) := Tn 2 _ X + 2 _ 8 E Pn(8) ,

where Tn is the Chebyshev polynomial of degree n defined by (2.1.1), satisfy

for every n E N, y E [1- 8/2,1]' and 8 E (0,1].

If y E [0,1 - 8/2]' then let

8
a:= y + -,

4
a := arccos a,

(3 := 2 arccos y - arccos a,
(3-a

W :=1r- -2-'

Q (8) := r. (sin((8 + 1r - (a + (3)/2)/2))
n,a,(3 2n sin(w/2) ,

Rn,a,(3(8) := ~(Qn,a,(3(8)+ Qn,a,(3( -8)),

and we define Wn,y,s for every n E N, y E [0,1 - 8/2), and 8 E (O,IJ by

Rn,a,(3(8) = Wn,y,s(cos8) , Wn,y,s E Pn ·

Show that Wn,y,s E Pn(8) and that there exists an absolute constant C> °
such that

IWn,y,s(y)1 ~ exp ( enh)
for every n E N, y E [0,1 - 8/2), and 8 E (o,IJ. D

c] Extend the validity of part aJ to the class GAPN; that is, prove that
there exists an absolute constant C> °such that

If(y)1 ::; exp (CNmin {h' VB}) ,
for every f E GAPN and 8 E (O,IJ satisfying

m( {x E [-1, 1J : f (x) ::; I}) ~ 2 - 8 .

Y E [-1,1]



A5
Inequalities for Polynomials
with Constraints

Overview

This appendix deals with inequalities for constrained polynomials. Typi­
cally the constraints are on the location of the zeros, though various coef­
ficient constraints are also considered.

Inequalities for Polynomials with Constraints

For integers 0 ::; k ::; n, let

Pn,k := {p E Pn : p has at most k zeros in D}

where, as before, D := {z E <C : Izi < 1}. For a < b, let

n

Bn(a,b) := {p E Pn : p(x) = ± L Q:j(b - x)j(x - a)n- j , Q:j;::: O}.
j=O

For integers 0 ::; k ::; n, let

Pn,k(a, b) := {p = hq : hE Bn-k(a, b), q E Pd.

Two useful relations, given in E.1, are

Pn,O c Bn(-1,1) and Pn,k c Pn,d -1,1).
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Theorem A.5.1 (Markov-Type Inequality for Pn,k). The inequality

IIp(m)lll-l,lJ ::; (18n(k + 2m + 1))m llp ll!_l,l]

holds for every p E Pn,k( -1,1). (When m = 1, the constant 18 can be
replaced by 9.)

Proof. First we study the case m = 1. Applying Theorem 6.1.1 (Newman's
inequality) with

(Ao, AI,'" ,Ak) = (n - k, n - k + 1, ... ,n)

and using a linear shift from [0, 1] to [-1, 1], we obtain that

(A.5.1) Ip'(I)1 ::; ~n(k + 1)llpll[-l,l]

for every P ~ Pn,k( -1,1) of the form

(A.5.2) p(x) = (x + 1)n-kq(x) ,

Now let p E Pn,k( -1,1) be of the form p = hq with q E Pk and

n-k
h(x) = L Qj(l- x)j(x + 1)n-k-j

j=O

with each Qj 2: °.

Without loss of generality, we may assume that n - k 2: 1, otherwise The­
orem 5.1.8 (Markov's inequality) gives the theorem. Using (A.5.1) and the
fact that each Qj 2: 0, we get

(A.5.3) Ip'(I)1

= I}; (Qj(1- x)l(x + 1)n-k-jq(x))' (1)1

= 1t,(Qj(1- x)j(x + 1)n-k-jq(X))'(I)1

::; ~n(k + 2) II(x + l)n-k-l(Qo(x + 1) + Ql(1 - x))q(x)lll_l,lJ

::; ~n(k + 2) 11'i' Qj(1 - x)j(x + 1)n-k-
jq(X)11

J=O [-l,l}

::; ~n(k + 2)llpll!-1,1] .

Now let y E [-I,IJ be arbitrary. To estimate Ip'(Y)1 we distinguish two
cases.
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If y E [0,1]' then by a linear shift from [-1,1] to [-1, y], we obtain
from (A.5.3) that

(A.5A) Ip'(y)1 ::; y: 1 n(k + 2)llpll[-1,yJ ::; 9n(k + 2)llpll[-1,lJ

for every P E Pn,k(-I,y). It follows from E.l d] that

Pn,d-1, 1) C Pn,k(-I,y).

So (A.5A) holds for every P E Pn,k(-1,1).

If y E [-1,0], then by a linear shift from [-1, 1] to [y, 1], we obtain
from (A.5.3) that

(A.5.5) Ip'(y)1 ::; -19 n(k + 2)lIpll[y,lJ ::; 9n(k + 2)llpll[-1,lJ
-y

for every p E Pn,k(y, 1). By E.l d] again,

Pn,k(-I, 1) C Pn,k(y, 1).

So (A.5.5) holds for every p E Pn,k( -1,1), which finishes the case when
m=l.

Now we turn to the case when m 2': 2. Note that an induction on m
does not work directly for an arbitrary p E Pn ,k(-I, 1). However, it follows
by induction on m that

(A.5.6) IIp(mlll[-l,lJ ::; (9n(k + m + l))mllpll[-l,lJ

for every p E Pn,k( -1,1) of the form (A.5.2). Now let p E Pn,k( -1,1) be
of the form p = hq, where q E Pk and

n-k
h(x) = L Ctj(l- x)j(x + 1)n-j with each Ctj 2': 0.

j=O

For notational convenience let s := min{n - k,m}. Using (A.5.6) and the
fact that each Ctj 2': 0, we get

(A.5.7) Ip(m)(I)1

= 1~(Ctj(l- x)j(1 + x)n-k- jq(x))(m)(I)1

= 1~(Ctj(l- x)j(1 + x)n-k- jq(x))(m l (I)1

::; (9n(k + s + m + l))m litCtj(1 - x)j (x + 1)n-k-jq(X)11
)=0 [-1,11

::; (9n(k + 2m + 1))m II~ Ctj(l- x)j(x + l)n-k- jq(X)11
)=0 [-1,11

= (9n(k + 2m + l))mllp ll[_l,l] .
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From (A.5.7), in a similar fashion to the case when m = 1, we conclude
that

IIp(mJlh_l,l] :S (18n(k + 2m + 1))mllpll[_l,l]

for every p E Pn,k(-I, 1), which finishes the proof. o

Theorem A.5.1 is essentially sharp as is shown in E.2 and E.4 fl. How­
ever, a better upper bound can be given for Ip(mJ(y)1 when y E (-1,1) is
away from the endpoints -1 and 1.

Theorem A.5.2 (Markov-Bernstein Type Inequality for Pn,k). There exists
a constant c(m) depending only on m such that

Ip(mJ(y)1 :S c(m) (min {n(k + 1), <~i~)})mIIplh-l,l]

for every p E Pn,k and y E [-1,1].

Theorem A.5.2 has been proved in Borwein and Erdelyi [94]. Its proof
is long, and we do not reproduce it here. However, the proof of a less sharp
version, where~ is replaced by 1 - y2, is outlined in E.4 and E.5.
The factor In(k + 1) in Theorem A.5.2 is essentially sharp in the case that
m = 1; see E.7.

Theorem A.5.3 (Markov-Bernstein Type Inequality for Bn ( -1,1». There
exists a constant c(m) depending only on m such that

Ip(mJ(y)1 :s c(m) (min {n, h })m lipII [-1,1]

for every p E Bn(-1,1) (hence for every p E Pn,o) and y E [-1,1].

Note that the uniform (Markov-type) upper bound of the above the­
orem is a special case (k = 0) of Theorem A.5.1. Our proof of Theorem
A.5.3 offers another way to prove the case of Theorem A.5.1 when k = O.
First we need a lemma.

Lemma A.5.4. For n E Nand y E lR, let

.1 ._! (J(1 - y2)+ ~)
n,Y .- 4 .;n + n '

where x+ := max{x,O}. Then

Ip(y + i-y.1n ,y)! :s V2e Ip (y ± 2~) I
for every p E Bn (-I, 1), Y E [-1- 8~' 1+ 8~]' and IE [0,1], where i is
the imaginary unit. The + sign is taken if y E [-1 - 8~' 0), and the ­
sign is taken if y E [0,1+ 8~] .
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Proof. It is sufficient to prove the lemma for the polynomials

n EN, j = 0, 1, ... ,n.

with each (Xj 2: a or each (Xj ::; a

The general case when

n

P = L(XjPn,j
j=O

can then be obtained by taking linear combinations. Without loss of gen­
erality, we may assume that y E [0,1+ 8~] . Then

A2 1 ((I_ y2 )+ 1) (l-y)+ 1
.w <- +- < +-n,y - 8 n n 2 - 4n 8n2

from which it follows that

IPn,j(y + hLln,y)1 ::; IPn,j(Y + iLln,y)1
= ((1- y)2 + Ll~,y)j/2 ((1 + y)2 + Ll~,y)(n-j)/2

::; ((1 - y) + 2~)j ((1 + y) + 2~r-j
I n-j

= (1- (y- 2~))j (1+ (y- 2~)r-j (~:~~~)

::; (~~ ~ ~) n Pn,j (y - 2~) ::; V2epn,j (y - 2~) ,

and the lemma is proved. o

Proof of Theorem A.5.3. For n E Nand y E [-1,1]' let Bn,y denote the
circle of the complex plane with center y and radius iLln,y. Using E.4,
Lemma A.5.4, and the maximum principle, we obtain

Ip(z)1 ::; V2e IlplI[-I,I]

for every P E Bn(-1,1), z E Bn,y, n E N, and y E [-1,1]. Hence, by
Cauchy's integral formula,

Ip(m)(y)1 = Im'. r p(O d~1
2nt is (~- y)m+l

n,y

m! r I p(~) I
::; 2n is (~_ y)m+l Id~1

n,y

m! I I -(m+l)
::; 2n 2n 4Lln ,y (4 Lln ,y) V2ellplll-I,IJ

::; c(m) (min {n, h }) m IlplIl-I,I]

for every P E Bn ( -1, 1) and y E [-1, 1], which proves the theorem. 0
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For r E (0,1], let

D;' := {z E C: Iz ± (1 - r)! < r}.

For n E I'l, k = 0,1, ... ,n, and r E (0,1], let P;:k r be the set of all
p E Pn that have at most k zeros (counting mUltipli~ities) in D;', and let
Pn,k,r := P:k,r np;;,k,r' The following result is proved in Erdelyi [89a]. The
proof in a special case is outlined in E.9.

Theorem A.5.5 (Markov-Type Inequality for Pn,k,r)' There exists a con­
stant c(m) depending only on m such that

m (n(k + 1)2)mI!p( )11[-1,11:::; c(m) vr Ilpll[-l,l]

for every p E Pn,k,r, mEN, and r E (O,lJ.

We state, without proof, the L q analogs of Theorem A.5.2 for m = 1,
established in Borwein and Erdelyi [to appear 2].

Theorem A.5.6 (Lq Markov-Type Inequality for Pn,d. There exists an ab­
solute constant c such that

ill Ip'(x)l q dx :::; cq+l(n(k + l»q ill Ip(xW dx

for every p E Pn,k and q E (0,00).

Theorem A.5.7 (Lq Bernstein-Type Inequality for Pn,k)' There exists an
absolute constant c such that

i: Ip/(cos t) sinWdt :::; cq+l(n(k + 1»q/2 i: Ip(cos tW dt

for every p E Pn,k and q E (0,00).

Both of the above inequalities are sharp up to the absolute constant c > 0.

A Markov-type inequality for polynomials having at most k zeros in
the disk

Dr:={zEC: Izl<r}
is given by the following theorem; see Erdelyi [gOaJ.

Theorem A.5.B (Markov-Type Inequality for Polynomials with At Most k
Zeros in Dr). Let kEN and r E (O,lJ. Then there exist constants cl(k) > °
and C2 (k) > °depending only on k so that

cl(k)(n + (1 - r)n2) :::; sup liriil-l,l] :::; c2(k)(n + (1 - r)n2) ,
p p [-1,1]

where the supremum is taken for all p E Pn that have at most k zeros in
Dr.
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Comments, Exercises, and Examples.

Erdos [40] proved that

for every P E Pn,o n ~ 2, having only real zeros. In this result, the assump­
tion that P has only real zeros can be dropped. In E.1l we outline the proof
of the above inequality for every p E Pn,o, n ~ 2. The polynomials

Pn(x) := (x + 1)n-I(1 - x), n = 1,2, ... ,

show that Erdos's result is the best possible for Pn,o, Erdos [40J also showed
that there exists an absolute constant c such that

Ip'(y)1 ::::; (1 ~V;;)2 IlplI[-l,l]

for every P E Pn,o having only real zeros. Markov- and Bernstein-type
inequalities for 13n(-1,1) were first established by Lorentz [63], who proved
Theorem A.5.3. Lorentz's approach is outlined for m = 1 in E.8. The proof
presented in the text follows Erdelyi [91cJ. Up to the constl1nt c(m) >°Theorem A.5.3 is sharp; see E.12. Scheick [72] found the best possible
asymptotic constant in Lorentz's Markov-type inequaiity for m = 1 and
m = 2. He proved the inequalities

IIp'lll-l,l] ::::; ~n Ilpll[-l,l] and IIp"II[-I,lJ::::; ~n(n - 1)llplI[-l,l]

for every p E 13n(-I,I) (and hence for every p E Pn,o), Note that with
Pn(x) := (x + l)n-l(l_ x),

Ilp~II[-l,l] e d--,,:-:-,:,:,,::,;..-'--"- ----; - an
nl!Pnll[-l,l] 2

Ilp~II[-l,ll e
--,---"--..:.::.c.,.-'c-~- ----; -
n(n - l)llpll[-l,l] 2

A slightly weaker version of Theorem A.5.1 was conjectured by Szabados
[81], who gave polynomials Pn.k E Pn,k with only real zeros so that

Ip~,k(l)1 ~ ~n(k + l)IIPn,kll[-l,l]

for all integers °::::; k ::::; n. After some results of Szabados and Varma
[80J and Mate [81], Szabados's conjecture has been settled in Borwein [85],
where it is shown that

IIp'II[-I,I] ::::; 9n(k + 1)llpll[-l,l]
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for every pEPn,k having n - k zeros in lR \ (-1, 1). The crucial part of this
proof is outlined in E.4 d] and e]. The above inequality is extended to all
P E Pn,k (and hence to all P E Pn,k) and to higher derivatives in Erdelyi
[91b], whose approach is followed in our proof of Theorem A.5.l.

After partial results of Erdelyi and Szabados [88, 89b] and Erdelyi
[91b], the "right" Markov-Bernstein-type analogs of Theorem A.5.2 for
the classes Pn,k has been proved in Borwein and Erdelyi [94]. Note that
Pn,n = Pn, and hence, up to the constant e(m), Theorem A.5.2 contains
the classical inequalities of Markov and Bernstein, and of course the case
k = 0 gives back Lorentz's inequalities for the classes Pn,o C Bn(-1,1).
The "right" Markov- and Bernstein-type inequalities of Theorems A.5.8
and A.5.9 for all classes Pn,k in Lq , 0 < q < 00, are established in Borwein
and Erdelyi [to appear 2].

The Markov-type inequality for the classes Pn,k,r given by Theorem
A.5.5 is proved in Erdelyi [89a]. A weaker version, when k = 0 and the
factor r- 1/ 2 is replaced by a constant e(r) depending on r, is established in
Rahman and Labelle [68]. When k = 0, Theorem A.5.5 is sharp up to the
constant e(m) depending only on m; see E.1O.

E.! Relation Between Classes of Constrained Polynomials.

a] Show that Pn,o( -1,1) C B( -1,1). (This is an observation of G. G.
Lorentz.)

Hint: Use the identities

(x - a)(x - a) = ~Il + aI2(1- X)2 + ~(laI2 - 1)(1- x2) + ~ 11- a12(1 + x)2

and
x - a = ~(1 - a)(x + 1) - ~(a + 1)(1 - x).

o

b] Show that Pn,k C Pn,k( -1,1).

c] Show that Bn(a, b) C Bn(e, d) whenever [e, d] C [a, b].

Hint: First show that

x - a = al(x - c) + a2(d - x) and b - x = a3(x - c) + a4(d - x)

with some nonnegative coefficients. 0

d) Show that Pn,k(a, b) C Pn,k(e, d) whenever [e, d] C [a, b].

E.2 Sharpness of Theorem A.5.l. Show that there exist polynomials
Pn,k E Pn,k of the form

Pn,k(X) = (x + l)n-k qn,k(x) , qn,k E Pk

such that
Ip~,k(I)1 ::::: in(k + 1)IIPn,kll[-l,lJ

for every n E N, k = 0,1, ... ,n.
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Hint: Use the lower bound in Theorem 6.1.1 (Newman's inequality) with

(>'0, >'1, ... , >'k) = (n - k, n - k + 1, ... ,n}.

o

E.3 A Technical Detail in the Proof of Lemma A.5.4. For n E Nand
y E [-1, 1], let

Fn:={z=a+ib: aE [-1-8~,1+8~]' bE (-4n,a,4n,a)} ,

and
Bn,y := {z E C : Iz - yl = ~4n,y} .

Show that Bn,y C Fn for every y E [-1,1].

E.4 Bernstein-Type Inequality for Pn,k. Prove that there exists an ab­
solute constant c such that

, cJn(k + 1)
Ip (y)1 ~ 1 2 Ilpll[-l,l]-y

for every p E Pn,k, and y E (-1,1). Proceed as follows:

a] Show that for every n E Nand k = 0, 1, ... ,n, there exists a polynomial
Q E Pn,k such that

IQ'(O)I Ip'(O) I
= sup .

IIQII[-l,l] pEPn,k IIpl!t-l,l)

Hint: Use a compactness argument. Use RoucM's theorem to show that the
uniform limit of a sequence of polynomials from Pn,k on [-1,1] is also in
Pn,k. 0

bl Show that Q has only real zeros, and at most k + 1 of them (counting
multiplicities) are different from ±1.

Hint: Use a variational method. For example, if Zo E C \ IR is a zero of Q,
then the polynomial

(
€X

2
)Q,(x) := Q(x) 1 - ( )( )

x - Zo x - Zo

with sufficiently small € > 0 is in Pn,k and contradicts the maximality of
Q. 0

cl Let b := (36n(k + 3))-1. Show that

Ilplll-h,l] ~ 2I1pl!to,1]

for every polynomial Pn,k having all its zeros in [0,00) with at most k of
them (counting multiplicities) in (0,1).
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Hint: Use the Mean Value Theorem and the result of Theorem A.5.1 trans­
formed linearly from [-1,1] to [0,1]. 0

d] Let Zo := h(36n(k+3)-1/2, where i is the imaginary unit and 'Y E [0,1].
Show that

Ip(zo)l:::; V2llpll[-l,lJ

for every polynomial p E Pn having only real zeros with at most k of them
(counting multiplicities) in (-1,1).

Outline. Let p(x) = n;=l(X - Uj) with some s:::; n. Applying part c] to

s

q(x) := II (x - u;),
j=l

we obtain

Iq( -(36n(k + 3))-1)1:::; 21Iqli[o,1] = 2I!q(x2 )II[o,lj = 21Ip(x)p( -x)II[-l,l)

:::; 21Ip\lf-1,lj .

Observe that

s

Ip(zo) 12 :::; Ip(i(36n(k + 3») -1/2W = II(u; + (36n(k + 3)) -1)
j=l

= Iq( -(36n(k + 3))-1)1,

which, together with the previous inequality, yields the desired result. 0

e] Let Q E Pn,k be the extremal polynomial of part a], and let

Fn,k := {z = a+ ib: lal:::; 1, Ibl:::; (36n(k + 3))-1/2(1_ la!)} .

Show that

IQ(z)1 :::; V2IIQIi[-l,lj

for every z E Fn,k.

Hint: Use parts b] and d] and a linear shift from the interval [-1, 1] to
[2 Re(z) -1,1] if Re(z) ~ 0, or to [-1, 2Re(z) + 1] if Re(z) < 0. 0
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f] Show that there exists an absolute constant c > 0 such that

Ip'(O)1 :5 cJn(k + 1) IIplI[-l,l]

for every pEPn,k.

Hint: By part a] it is sufficient to prove the inequality when p = Q, in which
case use part e] and Cauchy's integral formula. 0

g] Prove the main result stated in the beginning of the exercise.

Hint: In order to estimate Ip'(Y)1 when, for example, Y E [0,1] use a linear
shift from [-1, I] to [2y - 1, I] and apply part fl. 0

E.5 Bernstein-Type Inequality for Pn,k for Higher Derivatives. Prove
that there exists a constant c(m) depending only on m so that

Ip(m)(Y)1 :5 c(m) ( J~~; 1)) mIlplll-l,l]

for every p E Pn,k and Y E (-1,1).

Hint: First show that for every n,mEN, k = 0,1, ... ,n, and 8 E (0,1],
there exists a polynomial Qfj E Pn,k such that

IQ~m\O)1 Ip(m)(o)1
.".---'..,,-~--'---'-- = sup
!lQoli[-l,l]\[-fj,fj] pEPn,k !lpli[-l,l]\[-fj,o]

Show that Qfj has at most k+m zeros different from ±l. Show that there is a
polynomialQ E Pn,k having at most k+m zeros (by counting multiplicities)
different from ±1 such that

IQ(m)(o)1 Ip(m)(o)1

!lQIi[-l,l] = P:~~'k !lpli[-l,l] .

If Y = 0, then use E.5 and induction on m to prove the inequality of the
exercise for all p E Pn,k having at most k +m zeros different from ±l. For
an arbitrary Y E (-1,1) use a linear shift as is suggested in the hint to E.5
~. 0

E.6 Sharpness of Theorem A.5.2. Show that there exist polynomials
Pn,k E Pn,k and an absolute constant c> 0 such that

Ip~,k(O)1 2: cJn(k + 1)!lPn,kli[-l,l]

for every n EN and k = 0,1, ... ,n.
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Hint: If k = 0, then let m:= l!(n - I)J and

Pn,k(X) := (x - I)m(x + I)m+l+ LvmJ .

If 1::; k ::; !n, then let m:= l!nJ ' 8 := l!(k - I)J ' and

Pn,k(X) := (x
2
- I)m T2s+1 ( J28::' 1 X) .

If !n < k ::; n, then let m := l!nJ and Pn,k := Pn,m.

E.7 Some Inequalities of Lorentz. (See Lorentz [63J.)

a] Show that

o

for every P E Bn(--I,I) (hence for every P E Pn,o), n 2:: 2, and x E [-1,1],
where in x ± ~ the + sign is taken if x E [-1,0), while the - sign is taken
ifxE[O,IJ.

Hint: Observe that it is sufficient to prove the inequality only for

b] Let

Pn,j(X) := (1 - x)j(x + 1)n- j , n EN, j = 0,1, ... ,n.

nEN, XE[-I,I].

o

Show that there exists an absolute constant c > °such that

for every P E Bn(-1,1) (hence for every P E Pn,o) and x E [-1 + ~, 1 - ~] .

Hint: Note that it is sufficient to prove the inequality only for

Pn,j(X) := (1 - x)j(x + I)n- j ,

c] Show that

nEN, j=O,I, ... ,n.

o

for every P E Bn(-1,1) (hence for every P E Pn,o) and q E (0, (0).
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Hint: Use part a].

d] Show that there is an absolute constant c > °such that
[11 Ipl(x)~lq dx ::::; 5cQnQ

/
2[11 Ip(xW dx

for every p E Bn(-I, 1) (hence for every p E Pn,o) and q E (0,00).

Hint: Use parts b] and c]. 0

Analogs of parts a] and b] for higher derivatives are established by
Lorentz [63]. From these, analogs of parts c] and d] for higher derivatives
can be proven.

E.8 Theorem A.5.5 in a Special Case. Show that there is an absolute
constant Cl such that

Ip'(l)1 ::::; ~ Ilpll[-l,l]

for every p E Pn having all its zeros in (-00,1 - 2r], r E (0,1].

Proof. First assume that

(A.5.8) Ip(I)1 = Ilpll[-l,l) .

Without loss of generality, we may assume that p E Pn \ Pn - l . Denote the
zeros of p by (-00 <)Xl ::::; X2 ::::; ... ::::; x n (::::; 1 - 2r). Let

11':= (1 - 2(v + 1)4r , 1 - 2v4r] , v = 1,2, ....

Using E.12 of Section 5.1, we obtain

Ip'(I)1 n 1 00 1
Ip(I)1 = L 1- x· = L L 1- X

j=l J 1'=1 XjElv J

00 1
< '" ~nJ2(v+ 1)4r ­- L.J ..j2 2v4r
v=l

< 2:~ (v + 1)2 ~ < cln
- 2 L.J v4 ft - ft

v=l

with an absolute constant Cl.

Now we can drop assumption (A.5.8) as follows: Since p has all its
zeros in (-00,1 - 2r], Ipl and Ip'l are increasing on [1 - 2r, 00). Pick the
unique y E [1,00) satisfying Ip(y)1 = Ilpll[-l,l] = Ilpll[-l,y]' Using a linear
transformation, from the already proved case we easily obtain

Ip'(I)I::::; Ip'(y)1 ::::; Cl y~1(2r;:; 1) -1/21Ipl/r_l,y]

cln
::::; ft Ilpll[-l,l] .

o
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E.9 Sharpness of Theorem A.5.5. For n E Nand r E (0,00), let Sn,r be
the family of all P E Pn that have no zeros in the strip

{zEC:IIm(z)l<r}.

a] Show that there exist polynomials Pn,m,r E Sn,r and a constant c(m) > 0
depending only on m such that

Ip~~J"r(l)1 ?: c(m) (min { ::r, n 2
})m IIPn,m,rll[-l,l]

for every n E N, r E (0,1], and m = 1,2, ... ,n.

Outline. If 0 < r ~ 4:" then with
X· := (1 - i mr) cos (2j -1 7r)

J 11" 2n'

and

j = 1,2, ... ,n

Zj := Xj + ir, j = 1,2, ... ,n

let
n

Pn,m,T(X) := II (x - Zj)(x - Zj) E Sn,T'
j=l

By E.1 of Section 5.2, IPn,m,r(1)1 = IIPn,m,rll[-l,lj. Prove that

Ip~~J"r(l)1 Ip~~J"r(l)1
=

IIPn,rn,TIi[-l,l] IPn,m,r(l)1

> 2(1 + ~)-m ~ Iq~~J"r(l)1
- 4m v'2lqn,m,r(1)1

v'2( n l)rn
?:~ 2: 1 - x

J=m J

?: c(m) (min { ::r 'n2 }) m ,

where qn,m,r(X) := U7=1 (x - Xj) and c(m) > 0 depends only on m. If
4: < r ~ 1, then let Pn,m,r := Pn,rn,r, where r:= 4:. 0

b] Conclude from Theorem A.5.5 and part a] that there exist two constants
C1 (m) > 0 and C2 (m) > 0 depending only on m such that

( . {n 2})m IIp(m)II[-l,lj
c1(m) mm ..;r' n ~ sup Ilpli[-l,lj

~ C2 (m) (min { ::r 'n2 } ) m ,

where the supremum is taken either for all P E Sn,r or for all P E Pn,O,T'
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E.lO An Inequality of Erdos. (See Erdos [40].) Prove that

( )

n-l

IIp'lh-I,I] :::; ~ n: 1 Ilpll[-I,I]

for every p E Pn,o, n 2: 2. This extends a result of Erdos [40] where the
above inequality is proven under the additional assumption that p has only
real zeros.

a] Suppose p E Pn,o, all the zeros of p are real, p(l) = p(-I) = 0, and
Ilpll[-I,I] = 1. Show that

( )

n-l I +
p(x):::; _n_ __x_

n -1 1 + Xo

for every x E [-1,1], where Xo is the only point in (-1,1) with p'(xo) = O.

Proof. Without loss of generality, we may assume that deg(p) = nand
-1 < x < Xo. Let d := Xo - x, Let Xl := -1, X2," . ,Xn denote the zeros of
p. Then

p(X) = p(x) = l+x rr(l- d )
p(xo) 1 + Xo j=2 Xo - Xj ..

Since the geometric mean of n - 1 nonnegative numbers is not greater than
their arithmetic mean, we have '

rr (1 - Xo : X.) :::; (n ~1(n -1-t Xo : X)) n-l
]=2] ]=2]

(
1 ( d ))n-l (n) n-l< -- n-1+-- <--

- n - 1 . Xo + 1 - n - 1

o

h] Under the assumptions of part a] show that

( )

n-l

IIp'lll-I,I] :::; ~ n: 1 IlplI[-I,I] .

Proof. Note that

1
L x· -Xo
Xj~l ]

1 {k n k} n""" < min -- --- <-
L.J Xo - x· - . 1 - Xo ' Xo + 1 - 2 '

xjS;-1 ]

where k denotes the number of zeros of pin [1,00). Hence, by part a],
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n 1
P' (x) = p(x) L X _ X .

j=l J

~ (n: 1) n-l 11::0L X ~ X
Xj ::;-1 J

(
n ) n 1+ X 1+ Xo '"' 1

~ n - 1 1+ Xo 1+ X L Xo - X .
Xj ::;-1 J

< ?!: (_n )n-l
- 2 n-l

for every X E [-1, 1]. Similarly

p'(x) 2: _?!: (_n_)n-l
2 n-l

for every X E [-1,1]. D

c] Suppose p E Pn,o has only real zeros, p' does not vanish in [-1,1],
p(-I) = 0, and p(l) = 1. Show that

IIp'llr-I,I) ~ ~ Ilplll-I,I] .

Hint: Use the relation Pn,o C Bn(-1,1) to show that

(
+ l)np(x) ~ ;- , X E [-1,1].

Denote the zeros ofp by Xl = ~1, X2,X3, ... ,Xn. Then

, Ln 1 (X+l)n n n no~ p (x) = p(x) -- ~ -- -- ~ - = -llpIII-I 11
. x-xJ· 2 x+l 2 2 '
J=l

for every X E [-1,1]. D

d] Prove Erdos's inequality for every p E Pn,o having only real zeros.

Hint: Reduce the general case to either part b] or part c] by a linear trans­
formation. D

e] Prove Erdos's inequality for every p E Pn,o,

Hint: Show that for every n E Nand y E [-1, 1], there exists a polynomial
Q E Pn,O such that

IQ'(y)1 = sup Ip'(y)1
IIQIII-I,l] pEPn,o IIpll[-I,11

Show by a variational method that if y E (-1, 1), then Q has only real
zeros. Now part d] finishes the proof. D
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f] Show that

( )

n-l

IIp'lh-l,l] = ~ n: 1 IIplI[-l,l]

holds for apE Pn,o having only real zeros if and only if either

p(x) = c(x + l)n-l(1 - x)

with some °=1= c E R

or p(x) = c(1 - x)n-l(x + 1)

E.n Sharpness of Theorem A.5.3. For every n E N, m = 1,2, ... ,n, and
y E [-1, 1]' there are polynomials Pn,m,y E Bn(-1, 1) having zeros only in
IR \ (-1,1) such that

Ip~~,y(Y)1 ~ c(m) (min {n, h })m IIPn,m,YII[-l,l]
with a constant c(m) > °depending only on m.
Outline. If

Y E [-1, I] \ [-1 + 2: ' 1 _ 2:] ,
then let

Pn,m,y(x) := (x + l)n.

In what follows, assume that

y E [-1 + 2: ' 1 _ 2:] .
Let qn,j(x) := (1 - x)j(x + l)n- j , n E N, j = 0, 1, ... ,n. Show that

(m)( )qn,j X Qn,j,m(x)
qn,j(x) = (x2 - l)m '

m$.j$.n-m,

where Qn,j,m is a polynomial of degree m with only real zeros and with
leading coefficient (n~~)!' Let

{
I ~}Lln,y := max :;:;' vn ' nEN, YE[-I,I].

Use the Mean Value Theorem and Theorem A.5.3 to show that there exists
an absolute constant c E (0,1) such that

for every

m$.j$.n-m

x E I y := [y - cLln,y, y + cLln,y] n [-1,1], y=I-~.
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Let m ::; j ::; n - m and y = 1 - ¥ be fixed. Choose a point ~ E I y
such that

where the numbers Qi are the zeros of Qn,j,m' Now show that there exists
a constant CI (m) > 0 depending only on m such that

(A.5.9)

Next show that if

YE[_1+ 2m I_2m]
n ' n'

then there exists a point

~ E [y - ~(1 -Iyl), y + ~(1 -Iyl)]

and a value of j, m ::; j ::; n - m, such that (A.5.9) holds. Polynomials
Pn,m,y with the desired properties can now be easily defined by using linear
transformations. 0

E.12 An Inequality of Turan. (See Thnin [39].) Show that

IIp'III-I,I] 1 c
~.."...:----'-~ > - v n
IIpliI-I,I] 6

for every p E Pn \ Pn - l having all its zeros in [-1,1].

Outline. Assume that p E Pn has all its zeros in [-1,1], and Ilplll-I,I] = 1.
Choose an a E [-1,1] such that Ip(a)1 = 1. Without loss of generality,
assume that p(a) = 1.

a] Show that if a = ±1, then Ip'(I)1 ~ ~n > iy'n.
If a E (-1, 1), then p' (a) = O. Without loss of generality, assume that

a E [-1,0]. Let
I:= [a,a + 2n- I / 2] C [-1,1].

If n ::; 3, then the result follows by the Mean Value Theorem; let n ~ 4.

b] Use the Mean Value Theorem to show that if Ip'(x)1 ::; i.fii on I, then
p(x) ~ ~ on I.

e] Show that if Ip"(x) I > {2n on I, then Ip'(a + 2n- I / 2 )1 > iy'n·
d] The proof of Thran's inequality can now be finished as follows. Suppose
p(x) > ~ on I, and there exists a ~ E I such that p"(~) ::; Izn. Note that

n 1
p'(x)2 - p(x)p"(x) = p(X)2" ( )2 '

LJ x - Xk
k=l
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where Xl, X2,'" ,Xn denote the zeros of p. Since each Xk lies in [-1,1], the
inequality L~=l (x - Xk)-2 2: in holds for every X E I. Since p(x) 2: ~ on
I, this implies that

p'(X)2 - p(x)p"(x) 2: ~, x E I

and hence
p'(~f > :: -lp(Ollp"(~)1 > :: - .!!:. = .!!:..

- 9 9 12 36
o

An extension of Tunin's inequality to L p norms is given by Zhou [92b].

E.13 An Inequality of Erdos and Turan. Let p E Pn be of the form

n

p(x)=±II(x-Xj),
j=l

Suppose p is convex on [Xk-l,Xk] for some index k. Then

16
Xk - Xk-l :::; "fii'

Proceed as follows: Let a be the only point in [Xk-l, Xk] for which
p'(a) = O.

a] Show that there exist 6,6 E JR such that

a - 2n- l / 2 :::; 6 < a < 6 :::; a + 2n- l / 2 ,

and

Hint: Modify the outline of the proof of E.12.

hI Show that
o

and

Outline. To prove, say, the first inequality, we may assume that Xk-l < 6,
otherwise the inequality is trivial. Using the convexity of p on [Xk-l,Xk],
we get

Ip' (x )I 2: Ip'(6) I,
Hence

Ip(a)1 2: Ip(~dl = Ip(6) - P(Xk-l)1 = 11:~, p'(x) dxl = 1:~, Ip'(x)1 dx

2: (6 - Xk-l)lp'(6)1 2: (6 - xk-di"fii Ip(a)l,

and the result follows. o
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c] Conclude that

2 6 8
a - Xk-l S; (a - 6) + (6 - Xk-l) S; vn + vn = vn'

and similarly

2 6 8
Xk - a S; (6 - a) + (Xk - 6) S; - + - = - .vn vn vn

o

dJ Erod [39J establishes the sharp inequalities
2

Xk - Xk-l S; ~ if n is even,
v 2n -3

2 vn2 - 2n
Xk - Xk-l S; V2n=3 if n ? 3 is odd.

2n - 3 n - 1

E.14 Schur-Type Inequality for Bn ( -1,1). Let n be an arbitrary positive
real number. Show that

IIpll[-llJ (n + 2n)n+2<>sup ,
O#vEBn(-l,l) IIp(x)(l - x2)<>lh_l,1] (4n)<>(n + n)n+<>

< (4: (n + 2n»)'"

The supremum is attained if and only if p(x) = c(l ± x)n, 0 =I- c E R

Hint: Let Xl := n';2<>' If Iyl S; Xl, then

Ip(y)1 < 1 < 1
IIp(x)(l - X 2)<> 11[-1,1] - (1 - y2)<> - (1 - xV<>

(n + 2n)2<> (n + 2n)n+2<>
= < --'----'---,..---,--

(4n)<>(n + n)<> (4n)<>(n + n)n+<>

If Xl < Iyl S; 1, say Xl < y S; 1, then

whenever 0 S; j S; n~~<>'
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On the other hand, since the function (1- x)j(x + 1)n- j is monotone
decreasing in [1 - ~, 1] , the inequality

follows whenever n~~a < j :::; n. Finally, use the representation

n

p(x) = L:>j(l- x)j(x + l)n- j

j=O

with each aj 2 a or each aj :::; a to show that

for every p E Bn ( -1,1). o

E.15 Schur-Type Inequality for T,.(-w,w). For n E Nand w E (0,1T], let

where the Lorentz degree dw(t) is defined in E.5 of Section 2.4. Let a be an
arbitrary positive real number. Show that

0< w :::; 1T/2

1T/2 :::; w :::; 1T ,

IItlll-w,w]

O#tE~~r-W,w) Ilt(e) (!(cose - cosw))"'llr_w,w]

rv { (n(1T - 2w) + vw-nt ,
(2w - 1T + n-1/2 )-a ,

and the supremum is attained if and only if

. 2 w±etee) = csm n -2-' Oi=cElR.

Here the rv symbol means that the ratio of the two sides is between two
positive constants depending only on a (and independent of n E Nand
w E (0,1TJ).

E.16 Extensions and Variations of Lax's Inequality. Theorem 7.1.11 con­
tains, as a limiting case, an inequality of Lax [44] conjectured by Erdos;
see part a]. Various extensions of this inequality are given by Ankeny and
Rivlin [55], Covil [73], Malik [69], and others. Parts b] to e] discuss some of
these. As before, let

D := {z E <C : Izi < I} and aD := {z E <C : Izi = I}.
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a] Lax's Inequality. The inequality

lip/liD :S ~ IlpliD

holds for all P E p~ that have no zeros in the open unit disk.

Proof. This follows from Theorem 7.1.11 as a limiting case.

b] Malik's Extension. Associated with

o

n

p(z) = c II (z - Zj),

j=l

Zj E <C, 0 =1= c E <C ,

let

Then

n

p*(z) := CII(1- ZZj) = znp(l/z).
j=l

max (lp/(z)1 + Ip*/(z)l) = n
zE8D

for every 0 =1= p E P~.

Proof. See Malik [69]. 0

c] An Observation of Kroo. Suppose p E p~ satisfies that if p(z) = 0
for some ZED, then p(l/z) = 0 (there is no restriction for the zeros of p
outside D). Then

lip/IID :S ~ IlpllD.

Hint: Show that if pEP::' satisfies the assumption of the lemma, then
Ip/(z)1 :S Ip*/(z)1 for every Z E aD. Use part b] to finish the proof. 0

d] AnInequality of Ankeny and Rivlin. Let r :::: 1. The inequality

r n + 1
max Ip(z)1 :S -- max Ip(z)1
Izl==r 2 Izl=l

holds for all pEP::' that have no zeros in the open unit disk.

Proof. See Ankeny and Rivlin [55].

e] An Inequality of Govil. Let r :::: 1. The inequality

lip/liD :S 1: r IlpiiD

o

holds for all pEP::' that have no zeros in the disk {z E <C : IzI < r}.

Proof. See Govil [73]. 0
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f] Let
n

p(z) := c II (z - Zk),

k=l

O#cEC.

Show that

Proof. If Z E aD, then

Re (zp/(z)) = tRe (_Z) > t 1 ,
p(z) k=l Z - Zk - k=l 1 + IZkl

and the result follows.

g] Let r E (0,1]. The inequality

lip/liD ~ 1: r IIpllD

o

holds for all p E P~ that have all their zeros in the disk {z E C : IZ I :S r}.

Proof. Use part fl. 0

h] Another Inequality of Govil. Let r > 1. The inequality

lip/liD ~ 1;rn IIpllD

holds for all p E P~ which have no zeros in the disk {z E C: Izi < r}.

Proof. See Govil [73]. 0

E.17 Markov-Type Inequality for Nonnegative Polynomials. Show that

n 2

IIp'llr-I,I] :S 2I1pllr-I,I]

for every p E Pn positive on [-1, I].

Proof. Suppose p E Pn is positive on [-1, I] and IIplh-I,I] = 2. Apply
Theorem 5.1.8 (Markov's inequality) to q := p - 1. 0

E.18 Markov's Inequality for Monotone Polynomials. It has been ob­
served by Bernstein that Markov's inequality for monotone polynomials is
not essentially better than for arbitrary polynomials. He proved that if n
is odd, then

IIp'llr-I,I] (n +1)2
~~~ IIpll[-I,I] = -2- ,

where the supremum is taken for all p E Pn that are monotone on [-1, I].
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For even n, the inequality

IIp'II[-l,l] < (n + 1) 2sup --
O#p Ilpllr-l,l] - 2

still holds. Parts a] and b] of this exercise outline a proof.

a] Show that for every odd n, there is apE Pn monotone on IR for which

Ip' (1) I (n + 1) 2
Ilpll[-l,l] = -2-

Proof. Let m := ~(n - 1). Use E.2 e] of Section 6.1 to show that there is a
q E Pm for which

Now let

p(x):= fX q2(t) dt _ ~ fl q2(t) dt.
Jo 2 Jo

Obviously p E Pn , p is monotone on IR, and

Ip'(l)1

Ilpll[-l,l]

Now the proof can be finished by a linear transformation mapping [-1,1]
to [0,1]. 0

b] Let n be odd. Show that

sup IIp'II[-l,l] < (n + 1)2
o#p Ilplh-l,l] - 2 '

where the supremum is taken for all p E Pn that are monotone on [-1,1].

Hint: It is sufficient to prove that if n := 2m is even, then

1 (n+2)2 J
l

Ilpll :::;"2 -2- -1 p(t) dt

for every p E Pn nonnegative on [-1,1]. Show that there is an extremal
polynomial V for the above inequality for which Ilvlll-l,l] is achieved at l.
Show, by a variational method, that this V must have at least 2m zeros
(counting multiplicities) in [-1,1). Since V is nonnegative, it is of the form
V= q2 with a q E Pm- Now use E.2 e] of Section 6.1 to show that
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and the result follows. o

c] Let r = p/ q, where p, q E Pnand q is positive and monotone non­
decreasing on an interval [a, b]. Show that

4n2

Ilr'll[a+€,b] ~ -E-Ilrll[a,bl

for every EE (0, b - a).

Proof. The proof follows Borwein [80]. Let c E [a + E, b] be a point where
Ir'(c)1 = Ilr'll[a+€,b]' Let dE [a, c] be a point Ip(d)1 = IIPII[a,c]' Then

'( ) _ p'(c) _ q'(c) ()
r c - q(c) q(c) r c .

Theorem 5.1.8 (Markov's inequality) and the monotonicity of q imply that

Ip'(c)1 < 2n21Ipllra,c] = 2n2Ip(d)1 < 2n2 Ip(d)1 < 2n2
Ir(c)1

Iq(c)1 - (c - a)lq(c)1 (c - a)lq(c)1 - c - a Iq(d)1 - E

and

Iq'(c)11 ( )1 < 2n21Iqll[a,cj I ( )1 < 2n
2 I ( )1

Iq(c)1 r c - Iq(c)1 r c - Ere .

Thus

II r 'lha+€,b] = Ir'(c)1 ~ 4n
2

II r lha,b]'
E

o

d] Sharpness of Part c]. Let n be odd. By part a], there exists apE Pn

such that p is monotone increasing on JR., p(a) = -1, p(a + E) = 1, and

1 (n+l)2Ip'(a + E)I = 2E -2-

Let q := p + 2 and r := l/q. Show that

IIrlha,oo] = 1 and
( )

2
, 1 1 n+l
Ir (a + E)I = - . - --

9 2E 2
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Weighted polynomial inequalities and their applications are beyond
the scope of this book. A thorough discussion requires serious potential
theoretic background, and proofs are usually quite long. Some of the main
results in this area include von Golitschek, Lorentz, and Makovoz [92]; He
[91]; Ivanov and Totik [90]; Levin and Lubinsky [87a] and [87b]; Lubinsky
[S9], Lubinsky and Saff [S8a], [SSb], and [89]; Mhaskar and Saff [S5]; Nevai
and Totik [S6] and [S7]; Saff and Totik [to appear]; and Totik [94]. The
following exercise treats a weighted Markov-type inequality with respect
to the Laguerre weight on [0,00). The method presented below works in
more general cases; however, the technical details coming from the "right"
polynomial approximation of the weight function is typically far more com­
plicated.

E.19 A Weighted Markov-Type Inequality of Szego. Part a] presents a
simple weighted polynomial inequality of Szego [64].

a] Show that

for every P E Pn .

Proof. Let p E Pn . First prove the inequality

Ip'(O)1 ~ (Sn + 2)llp(x)e-x ll[o,oo)

as follows. Apply Theorem 5.1.S (Markov's inequality) on [0, n/2] (by a
linear transformation) to

q(x) := p(x) (1 _~) n

and note that

(1 - ~r ~ e- x and (1 _ ~) -1 ~ 2, x E [O,n/2].

The general case can be easily reduced to the case discussed above. If
y E [0,00) is fixed, then let q(x) := p(x - y) E Pn . On applying the already
proved inequality with q, we obtain

Ip'(y)e-YI = Iq'(O)e-YI
~ e-Y(Sn + 2) max Iq(x)e-XI

xE[O,oo)

~ (8n + 2) max Ip(x + y)e-(x+Y)1
xE[O,oo)

~ (Sn + 2) max Ip(x)e-XI,
xE[O,oo)

which finishes the proof. o
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b] There is an absolute constant c > °such that

holds for every p E Pn having no zeros in the disk with diameter [0,2].

Proof. See Erdelyi [89c], where this result is extended to various other gen­
eral classes of weight functions and constrained polynomials. 0

E.20 Inequalities for Generalized Polynomials with Constraints. For
S E (0,2), let

i\,k (s) := {p E 15n,k : m( {x E [-1, I] : Ip(x) I :s I}) ~ 2 - s} .

The polynomials Tn,k E Pn,k are defined by

Tn,k(X) :=Tn{n-k,n-k+l, ... ,n;[O,I]}(~(x+l)),

where °:S k :S n are integers. (Note that the notation introduced in Sec­
tion 3.3 defines Tn,k only on [-1,1], and, to be precise, Tn,k denotes the
polynomial defined above on [-1, I].)

a] Remez-Type Inequality for 15n,k. The inequality

(2+S)Ilpll[-I,I] :S Tn,k 2 _ s

holds for every p E 15n,k(S) and S E (0,2). Equality holds if and only if

(
±2x s)p(x) == ±Tn,k -- + -- .
2-s 2-s

Proof. The proof is quite similar to that of Theorem 5.1.1 (Remez Inequal­
ity); see Borwein and Erdelyi [92]. 0

b] A Numerical Version of Part a]. Show that

for every S E (0, I].

Proof. See Borwein and Erdelyi [92]. o
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Let GAPN,K, 0 :s; K :s; N, be the set of all 1 E GAPN of the form
(A.4.1) for which

n

L rj:S; K.
j=1

IZjl9

Note that if 0 :s; K :s; N are integers and p E PN,K, then Ipl E GAPN,K.

For 0 :s; K :s; Nand 0 < s < 2, let GAPN,K (s) denote the collection
of all 1 E GAPN,K for which

m( {x E [-1, 1] : 1(x) :s; I}) ;::: 2 - s .

The next part of the exercise extends a numerical version of part aJ to the
classes GAPN,K(S).

cJ Remez-Type Inequality for GAPN,K' There exists a constant Cl :s; 5
such that

11111[-1,1] :s; exp (Cl (v!NKs + NS))

for every 1 E GAPN,K(S) and S E (0,1].

Hint: Let q E fiT be the common denominator of the numbers rj. Apply part
a] with p := Pq E P2qN,2qK(S), and then use part b]. 0

dJ Nikolskii-Type Inequality for GAPN,K' Let X be a nonnegative non­
decreasing function defined:m [0,00) such that X(x)jx is nonincreasing on
[0,00). Then there exists an absolute constant C2 :s; 25e2 such that

Ilx(J) IILp [-I,I] :s; (C2 max{1 , q2 N K , qN} )1/
q-l/Pll x(J)IIL q [_I,IJ

for every 1 E GAPN,K and 0 < q < p :s; 00.
The case K = N (when there is no restriction on the zeros) of part dJ

is the content of Theorem A.4.4. If qK ;::: 1, then the Nikolskii factor in the
unrestricted case (K = N) is like (."fC2 qN)2/q-2/p , while in our restricted
cases it improves to (."fC2 qv!N K)2/q-2/p .

Proof. It is sufficient to prove the inequality when p = 00, and then a
similar argument, as in the proof of Theorems A.4.3 and A.4.4, gives the
result for arbitrary 0 < q < p :s; 00. Thus, in the sequel, let 0 < q < p = 00.

Using the inequality of part cJ with

s:= min{l, (ciq2NK)-I, (clqN)-I}

and recalling the conditions prescribed for X, we conclude that

m({x E [-1,1]: (x(J(x))F;::: e-21Ix(J)llf_l,IJ})

;::: m( {x E [-1,1] : I(x) ;::: e-2/ q lllllr_l,Ij})
;::: m({x E [-I,IJ: I(x);::: exp(-cl(v!NKs + Ns))l1ll1[-I,lj})
;:::s
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for every 1 E GAPN,K. Now integrating only on the subset E of [-1,1]
where

we obtain

Ilx(J)llf-1,lJ ~ m~~) 1(x(J(x)))q dx

~ C2 max{1, q2N K, qN}llx(J)llt[-l,lj

for every 1 E GAPN,K, where C2 := cie2 (assuming C1 :::: 1). Since C1 ~ 5,
we have C2 ~ 25e2 . 0

e] Remez-Type Inequality for Bn ( -1,1). Show that

Ilpll[-l,l] ~ (2: s) n

for every p E Bn ( -1,1) satisfying

m ({x E [-1, 1] : Ip(x )I ~ I}) :::: 2 - s .

Equality holds if and only if p is of the form

(
1 ± )n

p(x) = ± 2 _:

Proof. See Erdelyi [90b]. 0

f] Markov-Type Inequality for GAPN,K' There exists an absolute con­
stant c > a such that

111'11[-1,1] ~ cN(K + 1)11111[-1,1]

for every 1 E GAPN,K of the form (A.4.1) with each rj :::: 1.

Recall that 1f'(x)1 is well-defined for every 1 E GAPN,K and x E ~,

as the modulus of the one-sided derivative of 1 at x. The condition that
rj :::: 1 for each j in (A.4.1) is needed to ensure that 11'(zj)1 < 00 if Zj E R
The above result generalizes the corresponding polynomial inequality for
the classes Pn,k.

Proof. See Borwein and Erdelyi [92]. 0
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E.21 The Ilyeff-Sendov Conjecture. The following problem is known as
the Ilyeff-Sendov conjecture. As before, let D := {z E C : Izi < I}.

Suppose P E Pn has all its zeros in the closed unit disk D. Then each
closed disk centered at a zero of P contains a zero of of P'.

Although the problem in this generality is still unanswered, several
special cases have been settled. The case outlined in part a] was first proved
in Rubinstein [68]. Vajaitu and Zaharescu [93] contains stronger results; see
also Miller [90]. Milovanovic, Mitrinovic, and Rassias [94] has a discussion
about the recent status of the conjecture.

a] Suppose

n

P(z) = II (z - Zk),
k=l

Show that F' has at least one zero in the closed disk centered at Zl.

Proof. Without loss of generality, we may assume that Zl := 1. Then Pis
of the form P(z) = (z - I)Q(z), where

n

Q(z) := II (z - Zk),
k=2

Suppose the statement is false. Then R(z) := P'(z + 1) has no zero in the
closed unit disk D. Hence

I
R'(O) I
R(O) < n-1.

Observe that

R(O) = Q(I) and R' (0) = 2Q' (1) .

Hence

I
Q' (1) I= ~ IR' (0) I ~ .
Q(I) 2 R(O) < 2

However,

(
Q'(I)) ( n 1 )

Re Q(I) =Re f;1- Zk

n-l
>--.- 2

This contradiction finishes the proof. 0

b] The polynomial P(z) := zn - 1 shows the sharpness of part a].
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It follows from Theorem A.5.3 that there exists an absolute constant
c > 0 such that

IIp'III-I,I] :::; en IIplll-I,I]
for every pEPn with no zeros in the open unit disk. The polynomials
Pn(x) := (x+1)n show that up to the absolute constant c > 0 this inequality
is the best possible. The next exercise shows that the "right" Markov factor
on [-1, 1] for polynomials of degree at most n with complex coefficients and
with no zeros in the open unit disk is cn(l + logn) rather than en. This is
an observation of Halasz.

E.22 Markov Inequality for P~ with No Zeros in the Unit Disk. Show
that there exists an absolute constant CI > 0 so that

IIp'II[-I,ll :::; cln(l + 10gn)lIplll_I,I]
for every P E P~ with no zeros in the open unit disk.

Show also that there exist polynomials Pn E P~ with no zeros in the
open unit disk such that

Ilp~III-I,I] ~ czn(l + 10gn)IIPnlll_I,I] , n = 1,2, ...
with an absolute constant Cz > O.

Proceed as follows:

a] Show that if z E C is outside the open unit disk, then

Ix -zl
Ix-l _ zl :::; Ixl

for every x E ~ \ [-1, I].

b] Suppose P E P~ has no zeros in the open unit disk. Let x E ~ \ [-1, I].
Show that

c] Prove the upper bound of the exercise.

Hint: Use part b] and E.n a].
d] Let

Zk := eZik1r /(Zn+l) , k = 1,2, ... ,n

be the (2n + l)th roots of unity in the open upper half-plane. Let

o

n

PZn+l(Z) := PZn+Z(z) := (z + 1) II (z - Zk)z.
k=l

Show that IPZn+I(X)1 = IxZn+l - 11 for every x E R Note that this implies

!Pzn+I(-l)1 = IIPzn+IIlI-I,I] = 2.
Show also that

Ip2n+l(-1) I~ en(l + logn)
PZn+l(-l)

with an absolute constant c > o.
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Notation

Definitions of the more commonly used spaces are given. The equation
numbers here are the same as the equation numbers in the text.

Throughout the book, unless otherwise stated, spans should be as­
sumed to be real. Likewise, in function spaces, unless otherwise stated, the
functions should be assumed to be real valued.

The Basic Spaces.

(1.1.1)

(1.1.2)

(1.1.3)

(1.1.4)

R':,.,n := {~ : p E p~, q E p~ } .
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n

= {t: t(z) = aO + ~)akcoskz + bksinkz), ak,bk E C}.
k=l

n

Tn : = {t : t(Z) = ao + ~)ak cos kz + bk sin kz) , ak, bk E lR} .
k=l

Miintz Spaces.

(3.4.2)

(3.4.3)
00

M(A):= UMn(A) = span{xAO,xA1 , ... }.

n=O

Associated with a sequence (Ai)~O with Re(Ai) > -1/2 for each i, the nth
Muntz-Legendre polynomial is:

(3.4.5)

For distinct Ai,

(3.4.6)

with

Also,

(3.4.8)

n

LnPo, ... , An}(X) = L Ck,n XA\
k=O

x E (0,00)

is the nth orthonormal Muntz-Legendre polynomial.
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Rational Spaces.

K := ~ (mod 21r), D := {z E C : Izl < I}, aD:= {z E C : Izi = I}.

(3.5.3)

(3.5.4)

Also

{
t(B) }

:= TI~:1 Isin((B _ ak)/2)! : t E Tn

and

and

P~(al,a2,'" ,an;[-I,I]):= {TIn pt~ ):PEP~}
k=l X ak

on [-1,11 with aI, a2,'" ,an E C \ [-1,11;

P~(al, a2, .. ' ,an; aD) := {TIn p((z~ ): P E p~}
k=l Z ak

on aD with aI, a2,'" ,an E C \ aD; and

and
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Generalized Polynomials.

The function

m

(A.4.1) f(z) = Iwl II Iz - zjlrj

j=1

with 0 < rj E JR, Zj E C, and 0 =I wEe is called a generalized nonnegative
(algebraic) polynomial of (generalized) degree

m

(A.4.2) "N:= Lrj.
j=1

The set of all generalized nonnegative algebraic polynomials of degree at
most N is denoted by GAPN .

The function

m

(A.4.3) f(z) = Iwl II Isin((z - zj)/2Wj

j=1

with 0 < rj E JR, Zj E C, and 0 =I wEe is called a generalized nonnegative
trigonometric polynomial of degree

(A.4.4)
1 m

N:= "2Lrj.
j=1

The set of all generalized nonnegative trigonometric polynomials of degree
at most N is denoted by GTPN .

Constrained Polynomials.

The following classes of polynomials with constraints appear in Appendix
5:

Pn,k := {p E Pn : p has at most k zeros in D} , Os,ks,n,

n

Bn(a,b) := {p EPn : p(x) = ± LCl:j(b-x)j(x-a)n- j , Cl:j ~ O}, a < b,
j=O

Pn,k(a, b) := {p = hq : h E Bn-da, b), q E Pd,
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Function Spaces.

The uniform or supremum norm of acomplex-valued function f defined on
a set A is defined by

IlfilA := sup If(x)l·
xEA

The space of all real-valued continuous functions on a topological space
A equipped with the uniform norm is denoted by C(A). If A := [a, b] is
equipped with the usual metric topology, then the notation C[a, b] := C(A)
is used.

Let (X, /-l) be a measure space (/-l nonnegative) and p E (0,00]. The
space Lp(/-l) is defined as the collection of equivalence classes of real-valued
measurable functions for which IlfIILp(/-L) < 00, where

P E (0,00)

and

IlfIILoo(/-L) := sup{a E ~: /-l({x EX: If(x)1 > a}) > O} < 00.

The equivalence classes are defined by the equivalence relation f ,...., g if
f = g /-l-almost everywhere on X. When we write Lp[a, b] we always mean
Lp(/-l), where /-l is the Lebesgue measure on X = [a, b]. The notations
Lp(a, b), Lp[a, b), and Lp(a, b] are also used analogously to Lp[a, b]. Again,
it is always our understanding that the space Lp(/-l) is equipped with the
Lp(/-l) norm.

Sometimes C(A) denotes the space of all complex-valued continuous
functions defined on A equipped with the uniform norm. Similarly, Lp(/-l)
may denote the space all complex-valued continuous functions for which
IlfIILp(/-L) < 00. This should always be clear from the context; many times,
but not always, the reader is reminded if C[a, b] or Lp(/-l) is complex.
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Abel, Niels Henrik, 3, 61
Algorithms, 356-371

evaluation of x n
, 363

fast Fourier transform, 359
fast polynomial division, 362
fast polynomial expansion, 363
fast polynomial multiplication,

361
for Chebyshev polynomials, 371
for counting zeros, 364-370
for polynomial evaluations, 363
for reversion of power series, 362
interpolation, 360
Newton's method, 362, 364-367
Remez, 371
zero finding for polynomials,

366-370
Alternation set, 93
Alternation theorem, 94
Apolar polynomials, 23, 24, 25
Arc length of algebraic polynomials,

31
Arc length of trigonometric

polynomials, 35

Berman's formula, 166
Bernstein factor, 145, 150, 152,

322-328

Bernstein polynomials, 163-164

Bernstein-Szego inequality, 231, 245,
259, 321-323

for entire functions of exponential
type, 245

for rational functions on [-1, 1),
322

for rational functions on K, 322
for rational functions on JR, 323
for trigonometric polynomials, 232

Bernstein-type inequality
bounded, 178, 182, 213-214
for Chebyshev spaces, 206
for constrained polynomials,

420-447
for entire functions of exponential

type, 245
for exponential sums, 289
for generalized polynomials,

392-416
for generalized polynomials in Lp ,

401-417
for higher derivatives, 258
for nondense Miintz spaces, 213,

310
for polynomials, 232-233, 390
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for polynomials in L p , 235, 390,
401-417

for products of Muntz spaces, 317
for rational functions on [-1,1],
323,327

for rational functions on D, 324
for rational functions on K, 322,

327
for rational functions on JR., 323,

329
for self-reciprocal polynomials,

339
for trigonometric polynomials, 232
unbounded, 154,206-217
weighted, 257

Bessel's inequality, 46
Best approximation, 94

by rationals, 99
to x A

, a problem of Lorentz, 108
toxn

, 99
uniqueness, 98

Binomial coefficient, 62
Blaschke product, 190, 324
Blumenthal's theorem, 78
Bombieri's norm, 274
Bounded Bernstein-type inequality;

see Bernstein-type inequality
Bounded Chebyshev-type inequality;

see Chebyshev-type
inequality

Bounded linear functionals, 50
Budan-Fourier theorem, 369

Cardano, Girolamo, 3
Cartan's lemma, 350
Cauchy determinant, 106
Cauchy indices, 367
Cauchy's integral formula, 14
Cauchy-Schwarz inequality, 42

for sequences, 46
Cesaro means, 165
Chebyshev constants, 39
Chebyshev, P.L., 31
Chebyshev polynomials

algorithms for, 371
best approximation to x n

, 30
composition

characterization, 33
explicit formulas, 30, 32

in Chebyshev spaces, 114-125
in rational spaces; see Chebyshev

rationals
orthogonality, 32
reducibility, 36
second kind, 37
three-term recursion, 32
trigonometric on subintervals, 235
uniqueness, 118

Chebyshev rationals, 139-153
and orthogonality, 147
derivative formulas, 146
in algebraic rational spaces, 142
in trigonometric rational spaces,

143
of the first and second kind, 141
on the real line, 151
partial fraction representation,

144
Chebyshev space, 92

dimension on the circle, 100
functions with prescribed sign

changes, 100
Chebyshev system, 91-100
extended complete, 97

Chebyshev's inequality, 235, 390
Chebyshev-type inequality

bounded, 179, 182
explicit bounds via Paley-Weiner

theorem, 196
for entire functions of exponential

type, 245
Christoffel function, 74

for Muntz spaces, 195
Christoffel numbers, 67
Christoffel-Darboux formula, 60
Coefficient bounds

for polynomials in special bases,
124

in nondense rational spaces, 153
of Markov, 248

Comparison theorem, 103, 120, 122,
183

Completeness, 48, 79
Complexity concerns, 356-371
Consecutive zeros of p', 26
Constrained polynomials, 417-447

Bernstein-type inequality, 420,
425,427



L p inequalities, 422
Markov-type inequality, 417-447
Nikolskii-type, 444
Remez-type, 443-445
Schur-type, 436-437

Cotes numbers, 67
Cubic equations, 4

d'Alembert, Jean Ie Rond, 13
de la Vallee Poussin theorem, 99
Denseness, 154-226

of Markov spaces, 206-217
of Muntz polynomials, 171-205
of Muntz rationals, 218-226
of polynomials, 154-170

Derivatives of Markov systems, 112
Descartes' rule of signs, 22, 102
Descartes system, 100-113

examples, 103
lexicographic properties, 103

Divide and conquer, 358
Division of polynomials, 15, 362

Elementary symmetric function, 5
Enestrom-Kakeya theorem, 12
Erdos inequality, 431
Erdos-Thran inequality, 435
Euler, Leonhard, 13
Evaluation of x n

, 363
Exponential sums; see Muntz

polynomials
a problem of Lorentz, 291
Bernstein-type inequality, 291
Markov-type inequality, 294
Nikolskii-type inequality, 289
Thran's inequality, 295
with nonnegative exponents, 294

Exponential type, 196, 245
Extended complete Chebyshev system,

97

Factor inequalities, 260-274
via Mahler's measure, 271-273

Factorization, 10, 36
Fast Fourier transform, 359
Favards theorem, 73
Fejer gap, 27-28
Fejer operators, 164
Fejer's theorem, 165

Index 475

Fekete point, 38
Fekete polynomial, 38
Ferrari, Ludovico, 3
Ferro, Scipione del, 3
Fourier coefficient, 53
Fourier series, 53
Fundamental theorem of algebra, 3

Gamma function, 63
Gauss, Carl Friedrich, 13
Gaussian hypergeometric series, 62
Gauss-Jacobi quadrature, 67, 75
Gauss-Lucas theorem, 18
Gegenbauer polynomials, 65
Generalized polynomials

Bernstein-type inequality, 399,
407

L p inequalities, 401-407
Markov-type inequality, 399, 407
Nikolskii-type inequality, 394-395
Remez-type inequality, 393-394,

414
Schur-type inequality, 395
weighted inequalites, 407

Girard, Albert, 13
Grace's complex version of Rolle's

theorem, 25
Grace's theorem, 18
Gram's lemma, 176
Gram-Schmidt, 44

Haar space, 92
Haar system, 92
Halley's method, 365
Hardy space, 189
Helly's convergence theorem, 71
Helly's selection theorem, 71
Hermite interpolation, 9
Hermite polynomials, 57

explicit formulas, 65
Hilbert space, 42
Holder's inequality, 17, 49
Horner's rule, 8
Hypergeometric differential equation,

63
Hypergeometric functions, 62

Identity theorem, 15
Inequalities
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Bernstein-Szego inequality; see
Bernstein-Szego inequality

Bernstein-type; see Bernstein-type
inequality

Bessel's; see Bessel's inequality
bounded Bernstein-type; see

bounded Bernstein-type
inequality

bounded Chebyshev-type; see
bounded Chebyshev-type
inequality

Cauchy-Schwarz; see Cauchy­
Schwarz inequality

Chebyshev-type; see Chebyshev­
type inequality

for factors; see factor inequalities
for Miintz polynomials; see Miintz

polynomials
Holder's; see Holder's inequality
Lax-type; see Lax
Markov-type; see Markov-type

inequality
metric; see metric inequalities
Minkowski's; see Minkowski's

inequality
Nikolskii-type; see Nikolskii-type

inequality
Remez-type; see Remez-type

inequality
Russak's; see Russak
Schur-type; see Schur-type

inequality
Triangle; see Triangle inequality
unbounded Bernstein-type; see

unbounded Bernstein-type
inequality

Inner product, 41
Inner product space, 41
Integer-valued polynomials, 10
Interpolation

Hermite; see Hermite interpolation
Lagrange; see Lagrange

interpolation
Newton; see Newton interpolation

Jacobi polynomials, 57, 63
explicit formulas, 63

Jensen circles, 19
Jensen's formula, 187

Jensen's inequality, 414
Jensen's theorem, 19

Kernel function, 47, 132
Kolmogorov's inequality, 285
Korovkin's theorems, 163

Lacunary spaces, 308
quasi-Chebyshev polynomials, 316

Lagrange interpolation, 8
Laguerre polynomials, 57, 66, 130

explicit formulas, 66
Laguerre's theorem, 20
Lax-type inequality, 438

for rationals, 329
Malik's extension, 438
on a half-plane, 338

Legendre polynomials, 57
Lemniscates of constant modulus,

352-353
Lexicographic properties, 116

for Miintz polynomials, 120, 314
for Miintz-Legendre polynomials,

136
for sinh systems, 122

Liouville's theorem, 15
Logarithmic capacity, 38
Lorentz degree, 82

for polynomials, 86
for trigonometric polynomials, 89

Lorentz's problem, 108, 291
L p norm, 6, 48, 471
lp norm, 6, 471
Lucas' theorem, 18

Mahler's measure, 271
Mairhuber theorem, 98
Markov system, 100

closure of nondense, 211
derivative of, 112

Markov-Stieltjes inequality, 76
Markov-type inequality

for P n , 233
for P;" 255
for constrained polynomials,

417-447
for constrained polynomials in Lp ,

422, 428-429



for exponential sums, 276-280,
294-295

for generalized polynomials,
399-407, 445

for generalized polynomials in Lp ,

401-407
for higher derivatives, 248-260
for monotone polynomials, 439­

441
for Muntz polynomials, 276-279,

287-288
for Muntz polynomials in L p ,

279-280
for nonnegative polynomials, 420,

439
for rational functions, 336
for self-reciprocal polynomials,

339
for trigonometric polynomials on

subintervals, 242-245
in the complex plane, 235
weighted, 442-443

Maximum principal, 15
m-distribution, 57
Mergelyan's theorem, 170
Mesh of zeros, 155
Metric inequalities, 344-355

for polynomials, 345-346
for rational functions, 347-349

Minkowski's inequality
in Lp , p ~ 1, 49
in Lp , p :::; 1, 52

Moment, 57
Moment problem, 70
Monotone operator theorem, 163
Multiplication of polynomials, 361
Muntz polynomials

bounded Bernstein-type
inequality, 178, 182, 213,
310,317

bound for smallest zero, 313
lexicographic properties of zeros,

116, 120
Newman's inequality, 276, 301
Newman's inequality in L p , 279
Newman's problem, 317
Nikolskii-type inequality, 281, 298,

317
positive zeros, 22
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Remez-type inequality, 304, 307,
316

where the sup norm lives, 301
Muntz rationals, 218-226

denseness, 218
Muntz space, 125-126

lexicographic properties of zeros,
120

products of, 222, 316
quotients of, 218-226

Muntz system, 125-136
closure, 171-205
nondense, 303-319

Muntz-Legendre polynomials, 125-138
definition, 126
differential recursion, 129
global estimate of zeros, 136
integral recursion, 132
lexicographic properties of zeros,

133-136
orthogonality, 127, 132
orthonormality, 128
Rodrigues-type formula, 128, 131
zeros of, 133

Muntz's theorem, 171-205
another proof, 176, 192
closure of span in, 178, 181, 185
in C[O, 1], 171
in C[a, b], 180, 184
in L2[0, 1], 171
in Lp[O, 1], 172
in Lp[a, b], 186
in Lp(w), 311
on sets of positive measure, 303

Newmari's conjecture
on denseness of products, 316
on denseness of quotients, 220,

223
Newman's inequality; 275-279
an improvement, 287
for Muntz polynomials, 276
for Muntz polynomials in L p , 279
on positive intervals, 301

Newton's identities, 5
Newton Interpolation, 10
Newton's method, 362, 364-367

for X
1

/ 2 , 365
in many variables, 366
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Nikolskii-type inequality
for constrained polynomials, 444
for exponential sums, 289
for generalized polynomials, 394,

395
for Muntz polynomials, 281, 298,

317
for products of Muntz spaces, 317

Nondense Muntz spaces, 303-319
Nonnegative polynomials, 70, 85, 417,

420
Nonnegative trigonometric

polynomials, 85, 409
Norms, 471

L p ; see Lp norm
lp; see lp norm
supremum; see supremum norm

Orthogonal collection, 43
Orthogonal functions, 41-56
Orthogonal polynomials, 57-79

as continued fractions, 79
as determinants, 76
characterization of compact
support, 77

Gegenbauer; see Gegenbauer
polynomials

Hermite; see Hermite polynomials
interlacing of zeros, 61
Jacobi; see Jacobi polynomials
Laguerre; see Laguerre

polynomials
Legendre; see Legendre

polynomials
Muntz-Legendre; see Muntz­

Legendre polynomials
simple real zeros, 61
ultraspherical; see Ultraspherical

polynomials
Orthogonal rational functions, 147
Orthonormal set, 43

Paley-Weiner theorem, 196
Parallelogram law, 42
Parseval's identity, 48
Partial fraction decomposition, 7, 144
Pellet's theorem, 16
Polar derivative, 20
Polynomials

as sums of squares, 85, 348
Bernstein; see Bernstein

polynomials
Chebyshev; see Chebyshev

polynomials
Gegenbauer; see Gegenbauer

polynomials
generalized; see generalized

polynomials
growth in the complex plane, 239
Hermite; see Hermite polynomials
in x An

, 167
integer valued; see Integer valued

polynomials
Jacobi; see Jacobi polynomials
Laguerre; see Laguerre

polynomials
Legendre; see Legendre

polynomials
Muntz; see Muntz polynomial
Muntz-Legendre; see Muntz-

Legendre polynomials
number of real roots, 17, 137
symmetric, 5
trigonometric; see Trigonometric

polynomial
Ultraspherical; see Ultraspherical

polynomials
with integer coefficients, 169
with nonnegative coefficients,

79-90,417
with real roots, 345, 347-348

Products of Muntz spaces, 222, 316

Quadratic equations, 4
Quartic equations, 4
Quasi-Chebyshev polynomials, 316,

342

Railway track theorem, 98
Rakhmanov's theorem, 78
Rational functions

algebraic, 139
Chebyshev polynomials of, 139-

153
coefficient bounds, 153
inequalities; see inequalities
trigonometric, 139

Rational spaces



of algebraic rational functions,
139-153, 320-321

of trigonometric rational
functions, 139-153, 320­
321

Recursive bounds, 359
Remez's algorithm, 371
Remez-type inequality

for algebraic polynomials, 228
for constrained polynomials, 443,

445
for generalized polynomials, 393,

394
for generalized polynomials in L p ,

40l~402

for Muntz spaces, 307
for nondense Muntz spaces, 304
for products of Muntz spaces, 316
pointwise, 414
for trigonometric polynomials, 230

Reproducing kernel, 47, 132
Reversion of power series, 362
Riemann-Lebesgue lemma, 54
Riesz representation theorem, 50
Riesz's identity, 390
Riesz's lemma, 237
Riesz-Fischer theorem, 50
Rising factorial, 62
Rolle's theorem, 25
Rouche's theorem, 14, 16
Russak's inequalities, 336

Salem numbers, 6
Schur's theorem, 17
Schur-type inequality

for algebraic polynomials, 233
for constrained polynomials,

436-437
for generalized polynomials, 395
for rational functions, 337
for trigonometric polynomials, 238

Self-reciprocal polynomials, 339
quasi-Chebyshev polynomials, 342

Somorjai's theorem, 218
Space

Chebyshev; see Chebyshev space
Descartes; see Descartes space
Haar; see Haar space
Muntz; see Muntz space
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rational; see rational space
Stieltjes' theorem, 78
Stone-Weierstrass theorem, 161
Sums of squares of polynomials, 85,

348
Supremum norm, 6, 29, 471
Symmetric function, 5
Symmetric polynomial, 5
Szeg6's inequality, 391
Szeg6's theorem, 23, 235

Tartaglia, Niccolo, 3
Tchebychev; see Chebyshev
Three-term recursion, 59
Totally positive kernels, 110
Transfinite diameter, 38
Triangle inequality, 42
Trigonometric polynomial, 2
Trigonometric polynomials of longest

arc length, 35
Turan's inequality, 434
Turan's inequality for exponential

sums, 295

Ultraspherical polynomials, 65
Unbounded Bernstein-type inequality,

206-217
characterization of denseness, 207

Unicity theorem, 15

Variation diminishing property, 111
Vandermonde determinant, 38, 103
Videnskii's inequalities, 242-245

Walsh's two circle theorem, 20
Weierstrass' theorem, 154-170

for Markov systems, 155
for polynomials, 159
for polynomials in x A

, 167
for polynomials with integer

coefficieflts, 169
for trigonometric polynomials, 165
in L p , 169
on arcs, 170
Stone-Weierstrass theorem, 161

Wronskian, 22

Zeros, 11-18
algorithms for finding, 364-367
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complexity of, 367
counting by winding number, 370
in a disk, 369
in an interval, 368
in Chebyshev spaces, 99
localizing, 367
maximum number at one, 137
maximum number of positive, 17
of Chebyshev polynomials, 34,

116, 120, 122

of derivatives of polynomials,
18-28

of integrals of polynomials, 24
of Muntz polynomials, 120
of Muntz-Legendre polynomials,

133-136
of orthogonal polynomials, 61

Zolotarev, 35
Zoomers, 218
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