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Preface to the Second Edition

We have inserted, in this edition, an extra chapter (Chapter X) entitled
“Some Applications and Recent Developments.” The first section of this
chapter describes how homological algebra arose by abstraction from
algebraic topology and how it has contributed to the knowledge of
topology. The other four sections describe applications of the methods
and results of homological algebra to other parts of algebra. Most of the
material presented in these four sections was not available when this text
was first published. Naturally, the treatments in these five sections are
somewhat cursory, the intention being to give the flavor of the homo-
logical methods rather than the details of the arguments and results.

We would like to express our appreciation of help received in writing
Chapter X; in particular, to Ross Geoghegan and Peter Kropholler
(Section 3), and to Jacques Thévenaz (Sections 4 and 5).

The only other changes consist of the correction of small errors and,
of course, the enlargement of the Index.

Binghamton, New York, USA Peter Hilton
Zirich, Switzerland Urs Stammbach
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Introduction*

This book arose out of a course of lectures given at the Swiss Federal
Institute of Technology (ETH), Ziirich, in 1966—67. The course was
first set down as a set of lecture notes, and, in 1968, Professor Eckmann
persuaded the authors to build a graduate text out of the notes, taking
account, where appropriate, of recent developments in the subject.

The level and duration of the original course corresponded essentially
to that of a year-long, first-year graduate course at an American university.
The background assumed of the student consisted of little more than the
algebraic theories of finitely-generated abelian groups and of vector
spaces over a field. In particular, he was not supposed to have had any
formal instruction in categorical notions beyond simply some under-
standing of the basic terms employed (category, functor, natural trans-
formation). On the other hand, the student was expected to have some
sophistication and some preparation for rather abstract ideas. Further,
no knowledge of algebraic topology was assumed, so that such notions
as chain-complex, chain-map, chain-homotopy, homology were not
already available and had to be introduced as purely algebraic constructs.
Although references to relevant ideas in algebraic topology do feature in
this text, as they did in the course, they are in the nature of (two-way)
motivational enrichment, and the student is not left to depend on any
understanding of topology to provide a justification for presenting a given
topic.

The level and knowledge assumed of the student explains the order
of events in the opening chapters. Thus, Chapter I is devoted to the theory
of modules over a unitary ring A. In this chapter, we do little more than
introduce the category of modules and the basic functors on modules
and the notions of projective and injective modules, together with their
most easily accessible properties. However, on completion of Chapter I,
the student is ready with a set of examples to illumine his understanding
ofthe abstract notions of category theory which are presented in Chapter IL

* Sections of this Introduction in small type are intended to give amplified
motivation and background for the more experienced algebraist. They may be
ignored, at least on first reading, by the beginning graduate student.



2 Introduction

In this chapter we are largely influenced in our choice of material by the
demands of the rest of the book. However, we take the view that this is
an opportunity for the student to grasp basic categorical notions which
permeate so much of mathematics today, including, of course, algebraic
topology, so that we do not allow ourselves to be rigidly restricted by our
immediate objectives. A reader totally unfamiliar with category theory
may find it easiest to restrict his first reading of Chapter II to Sections 1
to 6;large parts ofthe book are understandable with the material presented
in these sections. Another reader, who had already met many examples
of categorical formulations and concepts might, in fact, prefer to look at
Chapter II before reading Chapter 1. Of course the reader thoroughly
familiar with category theory could, in principal, omit Chapter II,
except perhaps to familiarize himself with the notations employed.

In Chapter III we begin the proper study of homological algebra
by looking in particular at the group Ext,(A, B), where 4 and B are
A-modules. It is shown how this group can be calculated by means of a
projective presentation of A, or an injective presentation of B; and how
itmay also beidentified with the group of equivalence classes of extensions
of the quotient module 4 by the submodule B. These facets of the Ext
functor are prototypes for the more general theorems to be presented
later in the book. Exact sequences are obtained connecting Ext and Hom,
again preparing the way for the more general results of Chapter IV.
In the final sections of Chapter II1, attention is turned from the Ext
functor to the Tor functor, Tor?(A4, B), which is related to the tensor
product of a right A-module 4 and a left A-module B rather in the same
way as Ext is related to Hom.

With the special cases of Chapter III mastered, the reader should be
ready at the outset of Chapter IV for the general idea of a derived functor
of an additive functor which we regard as the main motif of homological
algebra. Thus, one may say that the material prior to Chapter IV con-
stitutes a build-up, in terms of mathematical knowledge and the study
of special cases, for the central ideas of homological algebra which are
presented in Chapter IV. We introduce, quite explicitly, left and right
derived functors of both covariant and contravariant additive functors,
and we draw attention to the special cases of right-exact and left-exact
functors. We obtain the basic exact sequences and prove the balance of
Extj(4, B), Tor;!(4, B) as bifunctors. It would be reasonable to regard
the first four chapters as constituting the first part of the book, as they did,
in fact, of the course.

Chapter V is concerned with a very special situation of great im-
portance in algebraic topology where we are concerned with tensor
products of free abelian chain-complexes. There it is known that there
is a formula expressing the homology groups of the tensor product of the
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free abelian chain-complexes C and D in terms of the homology groups
of C and D. We generalize this Kiinneth formula and we also give a
corresponding formula in which the tensor product is replaced by Hom.
This corresponding formula is not of such immediate application to
topology (where the Kiinneth formula for the tensor product yields a
significant result in the homology of topological products), but it is

valuable in homological algebra and leads to certain important identities
relating Hom, Ext, tensor and Tor.

Chapters VI and VII may, in a sense, be regarded as individual
monographs. In Chapter VI we discuss the homology theory of abstract
groups. This is the most classical topic in homological algebra and really
provided the original impetus for the entire development of the subject.
[t has seemed to us important to go in some detail into this theory in
order to provide strong motivation for the abstract ideas introduced.
Thus, we have been concerned in particular to show how homological
ideas may yield proofs of results in group theory which do not require
any homology theory for their formulation — and indeed, which were
enunciated and proved in some cases before or without the use of homo-
logical ideas. Such an example is Maschke’s theorem which we state
and prove in Section 16.

The relation of the homology theory of groups to algebraic topology is ex-
plained in the introductory remarks in Chapter VI itself. It would perhaps be
appropriate here to give some indication of the scope and application of the
homology theory of groups in group theory. Eilenberg and MacLane [15] showed
that the second cohomology group, H*(G, A), of the group G with coefficients in
the G-module A, may be used to formalize the extension theory of groups due to
Schreier, Baer, and Fitting. They also gave an interpretation of H*(G, A) in terms of
group extensions with non-abelian kernel, in which 4 plays the role of the center of
the kernel. For a contemporary account of these theories, see Gruenberg [20]. In
subsequent developments, the theory has been applied extensively to finite groups
and to class field theory by Hochschild, Tate, Artin, etc.; see Weiss [49]. A separate
branch of cohomology, the so-called Galois cohomology, has grown out of this
connection and has been extensively studied by many algebraists (see Serre [41]).

The natural ring structure in the cohomology of groups, which is clearly in
evidence in the relation of the cohomology of a group to that of a space, has also
been studied, though not so extensively. However, we should mention here the deep
result of L. Evens [ 17] that the cohomology ring of a finite group is finitely generated.

It would also be appropriate to mention the connection which has been
established between the homology theory of groups and algebraic K-theory,
a very active area of mathematical research today, which seems to offer hope
of providing us with an effective set of invariants of unitary rings. Given a unitary
ring A4 we may form the general linear group, GL,(A), of invertible (n x n) matrices
over A, and then the group G L(A) is defined to be the union of the groups G L,(A)
under the natural inclusions. If E(A) is the commutator subgroup of GL(A), then a
definition given by Milnor for K,(A), in terms of the Steinberg group, amounts to
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saying that K,(A)= H,(E(A)). Moreover, the group E(A) is perfect, that is to say,
H, (E(A))=0, so that the study of the K-groups of A leads to the study of the second
homology group of perfect groups. The second homology group of the group G
actually has an extremely long history, being effectively the Schur multiplicator
of G, as introduced by Schur [40] in 1904.

Finally, to indicate the extent of activity in this area of algebra, without in any
way trying to be comprehensive, we should refer to the proof by Stallings [45]
and Swan [48], that a group G is free if and only if H*(G, A) =0 for all G-modules A
and all n= 2. That the cochomology vanishes in dimensions =2 when G is free is
quite trivial (and is, of course, proved in this book); the opposite implication,
however, is deep and difficult to establish. The result has particularly interesting
consequences for torsion-free groups.

In Chapter VII we discuss the cohomology theory of Lie algebras.
Here the spirit and treatment are very much the same as in Chapter VI,
but we do not treat Lie algebras so extensively, principally because so
much of the development is formally analogous to that for the cohomology
of groups. As explained in the introductory remarks to the chapter,
the cohomology theory of Lie algebras, like the homology theory of
groups, arose originally from considerations of algebraic topology,
namely, the cohomology of the underlying spaces of Lie groups. However,
the theory of Lie algebra cohomology has developed independently
of its topological origins.

This development has been largely due to the work of Koszul [31]. The co-
homological proofs of two main theorems of Lie algebra theory which we give
in Sections 5 and 6 of Chapter VII are basically due to Chevaliey-Eilenberg [8].
Hochschild [24] showed that, as for groups, the three-dimensional cohomology
group H3( g, A) of the Lie algebra g with coefficients in the g-module A classifies
obstructions to extensions with non-abelian kernel.

Cartan and Eilenberg [7] realized that group cohomology and Lie
algebra cohomology (as well as the cohomology of associative algebras
over a field) may all be obtained by a general procedure, namely, as
derived functors in a suitable module-category. It is, of course, this
procedure which is adopted in this book, so that we have presented the
theory of derived functors in Chapter IV as the core of homological
algebra, and Chapters VI and VII are then treated as important special
cases.

Chapters VIITand IX constitute the third partofthe book. Chapter VIII
consists of an extensive treatment of the theory of spectral sequences.
Here, as in Chapter II, we have gone beyond the strict requirements of
the applications which we make in the text. Since the theory of spectral
sequences is so ubiquitous in homological algebra and its applications,
it appeared to us to be sensible to give the reader a thorough grounding
in the topic. However, we indicate in the introductory remarks to
Chapter VIII, and in the course of the text itself, those parts of the
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chapter which may be omitted by the reader who simply wishes to be
able to understand those applications which are explicitly presented.
Our own treatment gives prominence to the idea of an exact couple and
emphasizes the notion of the spectral sequence functor on the category
of exact couples. This is by no means the unique way of presenting
spectral sequences and the reader should, in particular, consult the book
of Cartan-Eilenberg [7] to see an alternative approach. However, we
dobelieve that the approach adopted isa reasonable one and a natural one.
In fact, we have presented an elaboration of the notion of an exact
couple, namely, that of a Rees system, since within the Rees system is
contained all the information necessary to deduce the crucial convergence
properties of the spectral sequence. Our treatment owes much to the
study by Eckmann-Hilton [10] of exact couples in an abelian category.
We take from them the point of view that the grading on the objects
should only be introduced at such time as it is crucial for the study of
convergence; that is to say, the purely algebraic constructions are carried
out without any reference to grading. This, we believe, simplifies the
presentation and facilitates the understanding.

We should point out that we depart in Chapter VIII from the standard con-
ventions with regard to spectral sequences in one important and one less important
respect. We index the original exact couple by the symbol 0 so that the first derived
couple is indexed by the symbol 1 and, in general, the nth derived couple by the
symbol n. This has the effect that what is called by most authorities the E,-term
appears with us as the E,-term. We do not believe that this difference of convention,
once it has been drawn to the attention of the reader, should cause any difficulties.
On the other hand, we claim that the convention we adopt has many advantages.
Principal among them, perhaps, is the fact that in the exact couple

D—-D
v\ /B
E

the nth differential in the associated spectral sequence d,, is, by our convention,
induced by fa~"y. With the more habitual convention d, would be induced by
Bo~"*'y. It is our experience that where a difference of unity enters gratuitously
into a formula like this, there is a great danger that the sign is misremembered — or
that the difference is simply forgotten. A minor departure from the more usual
convention is that the second index, or g index, in the spectral sequence term,
EP4_signifies the total degree and not the complementary degree. As a result, we
have the situation that if C is a filtered chain-complex, then H,(C) is filtered by
subgroups whose associated graded group is { E%?}. Our convention is the one usually
adopted for the generalized Atiyah-Hirzebruch spectral sequence, but it is not the
one introduced by Serre in his seminal paper on the homology of fiber spaces,
which has influenced the adoption of the alternative convention to which we referred
above. However, since the translation from one convention to another is, in this
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case, absolutely trivial (with our convention, the term EP? has complementary
degree g — p), we do not think it necessary to lay further stress on this distinction.

Chapter IX is somewhat different from the other chapters in that it
represents a further development of many of the ideas of the rest of the
text, in particular, those of Chapters IV and VIIL This chapter did not
appear in its present form in the course, which concluded with applica-
tions of spectral sequences available through the material already
familiar to the students. In the text we have permitted ourselves further
theoretical developments and generalizations. In particular, we present
the theory of satellites, some relative homological algebra, and the theory
of the homology of small categories. Since this chapter does constitute
further development of the subject, one might regard its contents as more
arbitrary than those of the other chapters and, in the same way, the
chapter itself is far more open-ended than its predecessors. In particular,
ideas are presented in the expectation that the student will be encouraged
to make a further study of them beyond the scope of this book.

Each chapter is furnished with some introductory remarks describing
the content of the chapter and providing some motivation and back-
ground. These introductory remarks are particularly extensive in the
case of Chapters VI and VII in view of their special nature. The chapters
are divided into sections and each section closes with a set of exercises.*
These exercises are of many different kinds; some are purely computa-
tional, some are of a theoretical nature, and some ask the student to fill
in gaps in the text where we have been content to omit proofs. Sometimes
we suggest exercises which take the reader beyond the scope of the text.
In some cases, exercises appearing at the end of a given section may
reappear as text material in a later section or later chapter; in fact, the
results stated in an exercise may even be quoted subsequently with
appropriate reference, but this procedure is adopted only if their de-
monstration is incontestably elementary.

Although this text is primarily intended to accompany a course
at the graduate level, we have also had in mind the obligation to write
abook which can be used asa work of reference. Thus, we have endeavored,
by giving very precise references, by making self-contained statements,
and in other ways, to ensure that the reader interested in a particular
aspect of the theory covered by the text may dip into the book at any
point and find the material intelligible — always assuming, of course,
that he is prepared to follow up the references given. This applies in
particular to Chapters VI and VII, but the same principles have been
adopted in designing the presentation in all the chapters.

The enumeration of items in the text follows the following con-
ventions. The chapters are enumerated with Roman numerals and the

* Of course, Chapter X is different.
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sections with Arabic numerals. Within a given chapter, we have two series
of enumerations, one for theorems, lemmas, propositions, and corollaries,
the other for displayed formulas. The system of enumeration in each of
these series consists of a pair of numbers, the first referring to the section
and the second to the particular item. Thus, in Section 5 of Chapter VI,
we have Theorem 5.1 in which a formula is displayed which is labeled (5.2).
On the subsequent page there appears Corollary 5.2 which is a corollary
to Theorem 5.1. When we wish to refer to a theorem, etc., or a displayed
formula, we simply use the same system of enumeration, provided the
item to be cited occurs in the same chapter. If it occurs in a different
chapter, we will then precede the pair of numbers specifying the item with
the Roman numeral specifying the chapter. The exercises are enumerated
according to the same principle. Thus, Exercise 1.2 of Chapter VIII
refers to the second exercise at the end of the first section of Chapter VIIL
A reference to Exercise 1.2, occurring in Chapter VIII, means Exercise 1.2
of that chapter. If we wish to refer to that exercise in the course of a
different chapter, we would refer to Exercise VIII.1.2.

This text arose from a course and is designed, itself, to constitute a
graduate course, at the first-year level at an American university. Thus,
there is no attempt at complete coverage of all areas of homological
algebra. This should explain the omission of such important topics
as Hopf algebras, derived categories, triple cohomology, Galois co-
homology, and others, from the content of the text. Since, in planning
a course, it is necessary to be selective in choosing applications of the
basic ideas of homological algebra, we simply claim that we have made
one possible selection in the second and third parts of the text. We hope
that the reader interested in applications of homological algebra not
given in the text will be able to consult the appropriate authorities.

We have not provided a bibliography beyond a list of references
to works cited in the text. The comprehensive listing by Steenrod of
articles and books in homological algebra* should, we believe, serve as a
more than adequate bibliography. Of course it is to be expected that the
instructor in a course in homological algebra will, himself, draw the
students’ attention to further developments of the subject and will thus
himself choose what further reading he wishes to advise. As a single
exception to our intention not to provide an explicit bibliography, we
should mention the work by Saunders MacLane, Homology, published
by Springer-Verlag, which we would like to view as a companion volume
to the present text.

Some remarks are in order about notational conventions. First, we
use the left-handed convention, whereby the composite of the morphism ¢

* Reviews of Papers in Algebraic and Differential Topology, .Topological
Groups and Homological Algebra, Part 11 (American Mathematical Society).
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followed by the morphism  is written as ¢ or, where the morphism
symbols may themselves be complicated, peo¢. We allow ourselves
to simplify notation once the strict notation has been introduced and
established. Thus, for example, f(x) may appear later simply as fx and
F(A) may appear later as F 4. We also adapt notation to local needs in
the sense that we may very well modify a notation already introduced
in order to make it more appropriate to a particular context. Thus, for
instance, although our general rule is that the dimension symbol in
cohomology appears as a superscript (while in homology it appears as a
subscript), we may sometimes find it convenient to write the dimension
index as a subscript in cohomology; for example, in discussing certain
right-derived functors. We use the symbol [] to indicate the end of a
proof even if the proof is incomplete; as a special case we may very
well place the symbol at the end of the statement of a theorem (or pro-
position, lemma, corollary) to indicate that no proof is being offered or
that the remarks preceding the statement constitute a sufficient de-
monstration. In diagrams, the firm arrows represent the data of the dia-
gram, and dotted arrows represent new morphisms whose existence is
attested by arguments given in the text. We generally use MacLane’s
netation -, —» to represent monomorphisms and epimorphisms
respectively. We distinguish between the symbols ~ and =>. In the
first case we would write X =~ Y simply to indicate that X and Y are
isomorphic objects in the given category, whereas the symbol ¢: XY
indicates that the morphism ¢ is itself an isomorphism.

It is a pleasure to make many acknowledgments. First, we would
like to express our appreciation to our good friend Beno Eckmann for
inviting one of us (P.H.) to Ziirich in 1966—67 as Visiting Professor at
the ETH, and further inviting him to deliver the course of lectures which
constitutes the origin of this text. Our indebtedness to Beno Eckmann
goes much further than this and we would be happy to regard him as
having provided us with both the intellectual stimulus and the encourage-
ment necessary to bring this book into being. In particular, we would
also like to mention that it was through his advocacy that Springer-
Verlag was led to commission this text from us. We would also like to
thank Professor Paul Halmos for accepting this book into the series
Graduate Texts in Mathematics. Our grateful thanks go to Frau Marina
von Wildemann for her many invaluable services throughout the evolu-
tion of the manuscript from original lecture notes to final typescript.
Our thanks are also due to Frau Eva Minzloff, Frau Hildegard Mourad,
Mirs. Lorraine Pritchett, and Mrs. Marlys Williams for typing the manu-
script and helping in so many ways in the preparation of the final text.
Their combination of cheerful good will and quiet efficiency has left us
forever in their debt. We are also grateful to Mr. Rudolf Beyl for his
careful reading of the text and exercises of Chapters VI and VII.
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We would also like to thank our friend Klaus Peters of Springer-
Verlag for his encouragement to us and his ready accessibility for the dis-
cussion of all technical problems associated with the final production of
the book. We have been very fortunate indeed to enjoy such pleasant
informal relations with Dr. Peters and other members of the staff of
Springer-Verlag, as a result of which the process of transforming this book
from a rather rough set of lecture notes to a final publishable document
has proved unexpectedly pleasant.

Peter Hilton
Urs Stammbach
Cornell University, Ithaca, New York
Battelle Seattle Research Center, Seattle, Washington
Eidgendssische Technische Hochschule, Ziirich, Switzerland

April, 1971



I. Modules

The algebraic categories with which we shall be principally concerned
in this book are categories of modules over a fixed (unitary) ring A and
module-homomorphisms. Thus we devote this chapter to a preliminary
discussion of A-modules.

The notion of A-module may be regarded as providing a common
generalization of the notions of vector space and abelian group. Thus
if A is a field K then a K-module is simply a vector space over K and a
K-module homomorphism is a linear transformation; while if A=7Z
then a Z-module is simply an abelian group and a Z-module homo-
morphism is a homomorphism of abelian groups. However, the facets
of module theory which are of interest in homological algebra tend to be
trivial in vector space theory; whereas the case A =7 will often yield
interesting specializations of our results, or motivations for our construc-
tions.

Thus, for example, in the theory of vector spaces, there is no interest
in the following question: given vector spaces A, B over the field K,
find all vector spaces E over K having B as subspace with A4 as associated
quotient space. For any such E is isomorphic to 4@ B. However, the
question is interesting if A, B, E are now abelian groups; and it turns
out to be a very basic question in homological algebra (see Chapter III).

Again it is trivial that, given a diagram of linear transformations of
K-vector spaces

P

l , (0.1)
B—C

where ¢ is surjective, there is a linear transformation f:P— B with
ef=7. However, it is a very special feature of an abelian group P that,
for all diagrams of the form (0.1) of abelian groups and homomorphisms,
with ¢ surjective, such a homomorphism f exists. Indeed, for abelian
groups, this characterizes the free abelian groups (thus one might say
that all vector spaces are free). Actually, in this case, the example A =7Z
is somewhat misleading. For if we define a A-module P to be projective if,
given any diagram (0.1) with ¢ surjective, we may find B with ¢ =,
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then it is always the case that free A-modules are projective but, for some
rings A, there are projective A-modules which are not free. The relation
between those two concepts is elucidated in Sections 4 and 5, where we
see that the concepts coincide if A is a principal ideal domain (p.i.d.) —
this explains the phenomenon in the case of abelian groups.

In fact, the matters of concern in homological algebra tend very much
to become simplified — but not trivial — if A is a p.i.d., so that this special
case recurs frequently in the text. It is thus an important special case, but
nevertheless atypicalin certain respects. In fact, there is a precise numerical
index (the so-called global dimension of A) whereby the case A a field
appears as case 0 and A a p.i.d. as case 1.

The categorical notion of duality (see Chapter II) may be applied to
the study of A-modules and leads to the concept of an injective module,
dual to that of a projective module. In this case, the theory for A =7,
or,indeed, for A any p.i.d., is surely not as familiar as that of free modules;
nevertheless, itis again the case that the theory is, for modules over a p.i.d.,
much simpler than for general rings A - and it is again trivial for vector
spaces!

We should repeat (from the main Introduction) our rationale for
placing this preparatory chapter on modules before the chapter introduc-
ing the basic categorical concepts which will be used throughout the
rest of the book. Our justification is that we wish, in Chapter II, to have
some mathematics available from which we may make meaningful
abstractions. This chapter provides that mathematics; had we reversed
the order of these chapters, the reader would have been faced with a
battery of “abstract” ideas lacking in motivation. Although it is, of course,
true that motivation, or at least exemplification, could in many cases
be provided by concepts drawn from other parts of mathematics familiar
to the reader, we prefer that the motivation come from concrete instances
of the abstract ideas germane to homological algebra.

1. Modules

We start with some introductory remarks on the notion of a ring. In
this book a ring A will always have a unity element 1,+0. A homo-
morphism of rings w: A—T will always carry the unity element of the
first ring A into the unity element of the second ring I'. Recall that the
endomorphisms of an abelian group A form a ring End(4, A4).
Definition. A left module over the ring A or a left A-module is an
abelian group A together with a ring homomorphism «: A—End(4, 4).
We write Aa for (w(4)) (a),a € A, A € A. We may then talk of A operating
(on the left) on A4, in the sense that we associate with the pair (4, ) the
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element Aa. Clearly the following rules are satisfied for all a, a,, a, € 4,
A A A A

M1: (4, +A)a=2a+i,a
M2: (4, A)a=4,(4,0)
M3: l,a=a

M4: A(a, +a,)=4a,+ La,.

On the other hand, if an operation of A on the abelian group A
satisfies M 1, ..., M 4, then it obviously defines a ring homomorphism

w:A—End(4, 4), bytherule (w(d)(@)=A1a.

Denote by A°PP the opposite ring of A. The elements A°PP € A°PP are
in one-to-one correspondence with the elements 4 € 4. As abelian groups
A and A°PP are isomorphic under this correspondence. The product in
A°PP is given by AJPPA9PP = (1, 4,)°PP. We naturally identify the underlying
sets of A and A°FP,

A right module over A or right A-module is simply a left A°PP-module,
thatis, an abelian group A together with a ring map ' : A°°*— End(4, A).
We leave it to the reader to state the axioms M1, M2, M3, M4 for a
right module over A. Clearly, if A is commutative, the notions of a left
and a right module over A coincide. For convenience, we shall use the
term “module” always to mean “left module”.

Let us give a few examples:

(@) The left-multiplication in A defines an operation of A on the
underlying abelian group of A, satisfying M 1, ..., M 4. Thus A4 is a left
module over A. Similarly, using right multiplication, A is a right module
over A. Analogously, any left-ideal of A becomes a left module over A,
any right-ideal of A becomes a right module over A.

(b) Let A=7Z, the ring of integers. Every abelian group 4 possesses
the structure of a Z-module; for ac A, ne Z define na=0, if n=0,
na=a+---+a(ntimes), if n>0, and na= —(—na), if n<O0.

(c) Let A=K, a field. A K-module is a vector space over K.

(d) Let V be a vector space over the field K, and T a linear trans-
formation from V into V. Let A=K[T], the polynomial ring in T
over K. Then V becomes a K[T]-module, with the obvious operation
of K[T]on V.

(e) Let G be a group and let K be a ficld. Consider the K-vector-
space of all linear combinations ) k,x, k,e€ K. One checks quite

easily that the definition xe6

(Z kxx)(z k;y) = Y (kk)xy,

xeG yeG x,yeG

where xy denotes the product in G, makes this vector space into a K-
algebra KG, called the group algebra of G over K. Let V be a vector space



1. Modules 13

over K. A K-representation of G in V is a group homomorphism
0. G—Autg(V, V). The map o gives rise to a ring homomorphism
o' : KG— Endg(V, V) by setting

a’( Y kxx> = > koo(x).
<G xeG

Since every K-linear endomorphism of Vis also a homomorphism of the
underlying abelian group, we obtain from ¢’ a ring homomorphism
¢: KG—Endz(V, V), making V into a KG-module. Conversely, let V
be a K G-module. Clearly V has a K-vector-space structure, and the struc-
ture map ¢ : KG— Endz(V, V) factors through Endg(V, V). Its restriction
to the elements of G defines a K-representation of G. We see that the
K-representations of G are in one-to-one correspondence with the KG-
modules. (We leave to the reader to check the assertions in this example.)

Definition. Let A, B two A-modules. A homomorphism (or map)
¢ : A— B of A-modules is a homomorphism of abelian groups such that
o(la)=Alpa) for all ae 4, Le A.

Clearly the identity map of A is a homomorphism of A-modules;
we denote it by 1,: 4— A.

If ¢ is surjective, we use the symbol ¢ : A—» B. If ¢ is injective, we
use the symbol ¢ : A— B. We call ¢ : A— B isomorphic or an isomorphism,
and write ¢ : A= B, if there exists a homomorphism 1 : B— A such that
pwo=1, and @y =1, Plainly, if it exists, y is uniquely determined;
it is denoted by ¢ ! and called the inverse of ¢. If ¢ : A— B is isomorphic,
it is clearly injective and surjective. Conversely, if the module homo-
morphism ¢ : A— B is both injective and surjective, it is isomorphic.
We shall call 4 and B isomorphic, A= B, if there exists an isomorphism
¢:A>SB.

If A" is a subgroup of A with Aa’e A’ for all Ale A and all a'e 4,
then A’ together with the induced operation of A is called a submodule
of A. Let A’ be a submodule of 4. Then the quotient group 4/4’ may be
given the structure of a A-module by defining AMa+ A)=(Aa+ 4)
forall A e A,a e A. Clearly, we have an injective homomorphism p: A'— A
and a surjective homomorphism n: A— A/4".

For an arbitrary homomorphism ¢ : A— B, we shall use the nota-
tion kerp ={ae A | pa =0} for the kernel of ¢ and

imp=@pA={beB|b=¢a forsome ae A}

for the image of . Obviously ker¢ is a submodule of A and im¢ is
a submodule of B. One easily checks that the canonical isomorphism
of abelian groups A/ker ¢=>im ¢ is actually an isomorphism of A-modules.
We also introduce the notation coker ¢ = B/im ¢ for the cokernel of ¢.
Just as ker ¢ measures how far ¢ differs from being injective, so coker ¢
measures how far ¢ differs from being surjective. If u : A~ A is injective,
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we can identify A’ with the submodule u A’ of 4. Similarly, if e: 4—» A"
is surjective, we can identify A” with A/kere.

Definition. Let ¢: A—B and y: B—C be homomorphisms of A-
modules. The sequence 4-%B-% C is called exact (at B) if kerpy =im¢.
If a sequence Ag—A,—---—A,—A,,, is exact at 4, ..., 4,, then the
sequence is simply called exact.

As examples we mention

(a) 0— A% B is exact (at A) if and only if ¢ is injective.

(b) A5 B—0 is exact (at B) if and only if ¢ is surjective.

(c) The sequence 0—A'* 45 A4"—0 is exact (at 4', A, A”) if and
only if y induces an isomorphism A= u A’ and ¢ induces an isomorphism
A/kere=A/uA’'~ A" Essentially A’ is then a submodule of 4 and A” the
corresponding quotient module. Such an exact sequence is called short
exact, and often written A'>~»>A4—»A4".

The proofs of these assertions are left to the reader. Let A, B, C, D
be A-modules and let «, f, y,  be A-module homomorphisms. We say
that the diagram

A—2>B

o
C—2-D

is commutative if o =97y : A— D. This notion generalizes in an obvious
way to more complicated diagrams. Among the many propositions and
lemmas about diagrams we shall need the following:

Lemma 1.1. Let A'>»A-—» A" and B'—B-—»B" be two short exact
sequences. Suppose that in the commutative diagram

A/ 13 A & A"

Jal l l (1.2

B~% B £, pB"

any two of the three homomorphisms «, a, o are isomorphisms. Then the
third is an isomorphism, too.

Proof. We only prove one of the possible three cases, leaving the
other two as exercises. Suppose o', o are isomorphisms; we have to
show that « is an isomorphism.

First we show that kera=0. Let aeckera, then 0=¢aa=uo"¢caq.
Since a” is an isomorphism, it follows that ea =0. Hence there exists
aeA with pa'=a by the exactness of the upper sequence. Then
O=oapd =yp'o’'a’. Since p'o’ is injective, it follows that @' =0. Hence
a=ua =0.
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Secondly, we show that « is surjective. Let be B; we have to show
that b=oa for some ae A. Since o” is an isomorphism, there exists
a’e A” with a"a"=¢'b. Since ¢ is surjective, there exists Ze A such
that ¢a=a". We obtain ¢(b—ad)=¢b—caad=¢b—a"cd=0. Hence
by the exactness of the lower sequence thereexists b’ € B with ' b’ = b —oa.
Since o' is isomorphic there exists a’e A’ such that o'a =»". Now

a(ua’ +a)=opd +ad=po'd +aa=ub +oa=>.
So setting a=pa’ +a, we have aa=5b. []

Notice that Lemma 1.1 does not imply that, given exact sequences
A>—>A—»A", B>>B—»B", with A'>~B, A"~B", then A=~B. It is
crucial to the proof of Lemma 1.1 that there is a map 4— B compatible
with the isomorphisms 4’ ~ B, A” = B’, in the sense that (1.2) commutes.

Exercises:

1.1. Complete the proof of Lemma 1.1. Show moreover that, in (1.2), « is surjective
(injective) if o', &" are surjective (injective).
1.2. (Five Lemma) Show that, given a commutative diagram

— A A — Ay — A —— A —

—B—B,—B;—B,—— B;—

with exact rows, in which ¢,, ¢,, @, @5 are isomorphisms, then ¢, is also an
isomorphism. Can we weaken the hypotheses in a reasonable way?
1.3. Give examples of short exact sequences of abelian groups

0—-A'"—-A4A—>A4"—-0, 0—-B—-B—>B"—0
such that

(1) A/gB/, A;B, A”*B”;
(i) A=B, AxB, A"=~B";
(i) A'%B, A~B, A'~B".

1.4. Show that the abelian group 4 admits the structure of a Z,-module if and
only if mA=0.

1.5. Define the group algebra K G for K an arbitrary commutative ring. What are
the KG-modules?

1.6. Let V be a non-trivial (left) K G-module. Show how to give V the structure of
a non-trivial right K G-module. (Use the group inverse.)

1.7. Let 0— A% A5 A”—0 be a short exact sequence of abelian groups. We say
that the sequence is pure if, whenever u(a’)=ma, a’' € A’, ae A, m a positive
integer, there exists b’ € A" with a’ =mb’. Show that the following statements
are equivalent:

(i) the sequence is pure;



16 I. Modules

(ii) the induced sequence (reduction mod m) 0— AL A, AL — O s
exact for all m; (4,,= A/mA, etc))

(iii) given a”e€ A" with ma” =0, there exists ae A with &(@)=a", ma=0
(for all m).

2. The Group of Homomorphisms

Let Hom,(A, B) denote the set of all A-module homomorphisms from
A to B. Clearly, this set has the structure of an abelian group;if ¢ : 4—B
and p:A— B are A-module homomorphisms, then ¢ +y:4—B is
defined as (¢ + p)a=@a+ypa for all ae A. The reader should check
that ¢ + ypisa A-module homomorphism. Note, however, that Hom,, (4, B)
is not, in general, a A-module in any obvious way (see Exercise 2.3).

Let f: B,— B, be a homomorphism of A-modules. We can assign
to a homomorphism ¢ : A— B,, the homomorphism B¢ : A— B,, thus
defining a map f,, = Hom,(4, B): Hom,(4, B,)— Hom (4, B,). It is left
to the reader to verify that §, is actually a homomorphism of abelian
groups. Evidently the following two rules hold:

(i) If p: B,—B, and B’ : B,— B, then

(B'B)y = By By : Hom,(4, B))—Hom,(4, By).

(i) If B: B;— B, is the identity, then f, : Hom,(4, B,)— Hom,(A, B,)
is the identity, also.

In short, the symbol Hom,(A, —) assigns to every A-module B an
abelian group Hom,(A4, B), and to every homomorphism of A-modules
B: B;— B, a homomorphism of abelian groups

B4 = Hom,(4, f): Hom,(A4, B;)—Hom,(4, B,)

such that the above two rules hold. In Chapter II, we shall see that this
means that Hom,(4, —) is a (covariant) functor from the category of
A-modules to the category of abelian groups.

On the other hand, if «: 4,— 4, is a A-module homomorphism,
then we assign to every homorhorphism ¢ : 4,— B the homomorphism
@o: A,— B, thus defining a map

o* = Hom(a, B): Hom,(A,, B)— Hom,(A4,, B) .

Again weleaveitto the reader to verify that a* isactuallya homomorphism
of abelian groups. Evidently, we have:
(i Ha:A,—>A,and o’ : A3— A,, then (xa'y* =o' *o* (inverse order 1.
(i) If o: A;— A, is the identity, then o* is the identity.
Hom,(—, B)isan instance of a contravariant functor (from A-modules
to abelian groups).
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Theorem 2.1. Let B'*5B-5B” be an exact sequence of A-modules.
For every A-module A the induced sequence

0—Hom,(4, B')-£- Hom,(4, B)-%>Hom (A4, B")
is exact.

Proof. First we show that u, is injective.
Assume that py¢ in the diagram

A

|

B~t->B—~ B"

is the zero map. Since u: BB is injective this implies that ¢ : 4—B'
is the zero map, so p, is injective.

Next we show that kere, Dimp,. Consider the above diagram.
A map in im p, is of the form pu¢. Plainly ep@ is the zero map, since e
already is. Finally we show that impu, Dkere,. Consider the diagram

A

|

B m B 13 B”.

We have to show that if ey is the zero map, then p is of the form p¢
forsome ¢ : A— B'. But,ifsyp = Otheimage of piscontained inker e = imy.
Since p is injective, y gives rise to a (unique) map ¢ : A— B’ such that
ro=y. []

We remark that even in case ¢ is surjective the induced map ¢, is not
surjective in general (see Exercise 2.1).

Theorem 2.2. Let A’ A-%» A" be an exact sequence of A-modules.
For every A-module B the induced sequence

0— Hom, (A", B)5>Hom,(A4, B)*>Hom,(4’, B)
is exact.

The proof is left to the reader. []

Notice that even in case u is injective u* is not surjective in general
(see Exercise 2.2).

We finally remark that Theorem 2.1 provides a universal characteri-
zation of kere (in the sense of Sections I1.5 and IL.6): To every homo-
morphism ¢ : A— B with ¢,(¢p) =¢¢: A— B" the zero map there exists
a unique homomorphism ¢': A—B' with p,(¢')=pu¢ =¢. Similarly
Theorem 2.2 provides a universal characterization of coker p.
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Exercises:

2.1. Show that in the setting of Theorem 2.1 ¢, = Hom(4, ¢) is not, in general,
surjective even if ¢ is. (Take A =7, A=7Z,, the integers modn, and the short
exact sequence Z-*>Z—Z, where p is multiplication by n.)

2.2. Prove Theorem 2.2. Show that p* = Hom,{u, B) is not, in general, surjective
even if p is injective. (Take A =7, B=1Z,, the integers modn, and the short
exact sequence Z-Z—Z,, where u is multiplication by n.)

2.3. Suppose A commutative, and A and B two A-modules. Define for a A-module
homomorphism ¢ : A— B, (1¢)(a)=¢(ia), ae A. Show that this definition
makes Hom (4, B) into a A-module. Also show that this definition does not
work in case A is not commutative.

2.4. Let A be a A-module and B be an abelian group. Show how to give
Homy(A, B) the structure of a right A-module.

2.5. Interpret and prove the assertions 0, =0, 0* =0.

2.6. Compute Hom(Z, Z,), Hom(Z,,, Z,), Hom(Z,,, Z), Hom(Q, Z), Hom(Q, Q).
[Here “Hom” means “Homgz” and @ is the group of rationals.]

2.7. Show (see Exercise 1.7) that the sequence 0— A'— A— A"—0 is pure if and
only if Hom(Z,,, —) preserves exactness, for all m> 0.

2.8. If Aisa left A-module and a right I'-module such that the A-action commutes
with the I'-action, then A is called a left A-right I'-bimodule. Show that if 4
isaleft A-right Z-bimodule and B is a left A-right I'-bimodule then Hom ,(A, B)
is naturally a left XZ-right I'-bimodule.

3. Sums and Products

Let 4 and B be A-modules. We construct the direct sum A@® B of A and B
as the set of pairs (a, b) with a e 4 and b € B together with componentwise
addition (a, b) + (@', ') =(a + a’, b + b') and componentwise A-operation
Ma, b)=(4a, Ab). Clearly, we have injective homomorphisms of A-modules
14: A—~ADB defined by 1,(a)=(a, 0) and 15: B—~ADB defined by 15(b) =
(0, b).

Proposition 3.1. Let M be a A-module, v,: A—M and yg:B—>M
A-module homomorphisms. Then there exists a unique map

v={Y4yp: A®B—-M
such that w1, =1y, and piz=p,.

We can express Proposition 3.1 in the following way: For any A-
module M and any maps y,, pj the diagram

P
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can be completed by a unique homomorphism : A@®B—M such
that the two triangles are commutative.

In situations like this where the existence of a map is claimed which
makes a diagram commutative, we shall use a dotted arrow to denote
this map. Thus the above assertion will be summarized by the diagram

and the remark that y is uniquely determined.

Proof. Define (a, b)=1,(a) + wg(b). This obviously is the only
homomorphism y: A®B— M satisfying p1, =1, and pig=yg. [

We can easily expand this construction to more than two modules:
Let {4;}, je J be a family of A-modules indexed by J. We define the
direct sum (P A; of the modules 4; as follows: An element of () 4,

jeld jed
is a family (a));;, with a;€ 4; and a;+0 for only a finite number of sub-
scripts. The addition is defined by (@)jes +(b))jes =(a;+b));., and the
A-operation by 4(a));; = (%4a));.,. For each k e J we can define injections
B Ae— @ A; by nla)=(b));c, with b;=0 for j+k and b, =a,, a,€ A,.
jeJ

Proposition 3.2. Let M be a A-module and let {y;: A— M3}, jeJ,
be a family of A-module homomorphisms. Then there exists a unique homo-
morphism yp = (y;> : @ A;— M, such that p1;=1v;, for all je J.

jedJ

Proof. We define y((a));c;) = . y;(a;). This is possible because a,=0
jeJ '

J
except for a finite number of indices. The map p so defined is obviously
the only homomorphism v : ) A4;,— M such that i, =y, forallje J. []
jeJ
We remark the important fact that the property stated in Pro-
position 3.2 characterizes the direct sum together with the injections up to
a unique isomorphism. To see this, let the A-module S together with
injections 1;: A;—S also have the property ¢ claimed for (@ Aj; zj)
jeJ
in Proposition 3.2. Write (temporarily) T for (—B A;. First choose M =T
jeJ
and y;=1;, jeJ. Since (S;1) has property 2, there exists a unique
homomorphism y: S— T such that the diagram

S ey T
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is commutative for every je J. Choosing M = S and y; =1} and invoking
property 2 for (T; 1;) we obtain a map ' : T— S such that the diagram

A,

J
i
4

is commutative for every je J. In order to show that yp '’ is the identity,
we remark that the diagram

is commutative for both 1’ and the identity. By the uniqueness part of
property 2 we conclude that wy' = 1. Similarly we prove that ¢ yp = 1.
Thus both y and y’ are isomorphisms.

A property like the one stated in Proposition 3.2 for the direct sum
of modules is called universal. We shall treat these universal properties
in detail in Chapter II. Here we are content to remark that the construction
of the direct sum yields an existence proof for a module having property 2.

Next we define the direct product | | Ajofafamily of modules {4;},jeJ.

jedJ
An element of ] A4;is a family (a;);c; of elements g; € 4;. No restrictions
jeJ
are placed on the elements g;; in particular, the elements a; may be non-
zero for an infinite number of subscripts. The addition is defined by
(@)jes +(b))jey =(a;+b));c; and the A-operation by Aa));.;= (Aa))jey-

For each ke J we can define projections m: [ [ A;— A, by m,(a;)

jes = Cg-

jeJ
For a finite family of modules Aj,j=1,...,n, it is readily seen that the

modules || A; and (P A; are identical; however in considering the
j=1 j=1

direct sum we put emphasis on the injections t; and in considering the

direct product we put emphasis on the projections ;.

Proposition 3.3. Let M be a A-module and let {@;: M— A}, jeJ,
be a family of A-module homomorphisms. Then there exists a unique homo-

morphism (p={(pj}:M—>l—[ A; such that for every jeJ the diagram
jeJ

M(p, l_[ A,-
Jjed
is commutative, i.e. m;p = @;. ]
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The proofis left to the reader; also the reader will see that the universal

property of the direct product [] A; and the projections n; characterizes
jeJ
it up to a unique isomorphism. Finally we prove

Proposition 3.4. Let B be a A-module and {A;}, je J be a family of A-
modules. Then there is an isomorphism

n:Hom, (@ A;, B) = || Homy(4;, B) .

Jjed jed

Proof. The proof reveals that this theorem is merely a restatement of

the universal property of the direct sum. For y: P A;— B, define
jed
n(y) =(yp1;: A—> B); ;. Conversely a family {y;: 4,— B}, je J, gives rise
to a unique map y: @ A;—B. The projections 7;: 11 Hom,(4;, B)
jeJ jedJ

—Hom,(4;, B) are given by n;n = Hom,(1;, B). []

Analogously one proves:

Proposition 3.5. Let A be a A-module and {B}}, je J be a family of
A-modules. Then there is an isomorphism

{:Hom, (A, I1 Bj) =] Homy(4, B)).

jeJ jelJ

The proof is left to the reader. []

Exercises:

3.1. Show that there is a canonical map ¢: (P 4,— |1 4;.
i j

3.2. Show how a map from (P 4, to P B; may be represented by a matrix

i=1 j=1
(pz((ﬂu)’

where ¢;;: A;— B;. Show that, if we write the composite of ¢ :A—B and
p:B—C as oy (not pe), then the composite of

‘D=(‘Pij)3 @ A— (‘B Bj
i=1 j=t

and
n q
¥ =(p): @ B,— @ Ci
j=1 k=1

is the matrix product ®P.
3.3. Show that if, in (1.2). &’ is an isomorphism, then the sequence

0— A {&.a} A”@B {a”,—¢&') B"—0

is exact. State and prove the converse.
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3.4. Carry out a similar exercise to the one above, assuming «” is an isomorphism.
3.5. Use the universal property of the direct sum to show that

(A DA)DA;= A, D(A,D 43).

3.6. Show that Z,,®Z,=1Z,, if and only if m and n are mutually prime.
3.7. Show that the following statements about the exact sequence

0— 4545 470
of A-modules are equivalent:
(i) there exists u: A"—A witha"u=1o0n A”;
(ii) there exists ¢: 4 — A’ with gx’ =1 0n A’;
(iiiy 0—Hom,(B, A} Hom, (B, A)-**»Hom,(B, A")—0 is exact for all B;
(iv) 0— Hom,(4", C)*5 Hom, (A, C)> Hom,(4’, C)—0 is exact for all C;
(v) there exists u: A"— A such that (o', u): A/ @A A.

3.8. Show that if 0—A4'% 425 4“—0 is pure and if A" is a direct sum of cyclic
groups then statement (i) above holds (see Exercise 2.7).

4. Free and Projective Modules

Let A be a A-module and let S be a subset of 4. We consider the set 4,

of all elements ae A of the form a= Y A ;s where i;e A and A, + 0 for
seS§
only a finite number of elements se S. It is trivially seen that A4, is a

submodule of A; hence it is the smallest submodule of 4 containing §.

If for the set S the submodule A, is the whole of 4, we shall say that S
is a set of generators of A. If A admits a finite set of generators it is said
to be finitely generated. A set S of generators of A is called a basis of A
if every element a € A may be expressed uniquely in the form a = Y Ags

seS
with A;e A and A;+0 for only a finite number of elements se S. It is

readily seen that a set S of generators is a basis if and only if it is linearly

independent, that is, if ) A.s=0 implies A,=0 for all se S. The reader
seS

should note that not every module possesses a basis.
Definition. If S is a basis of the A-module P, then P is called free on the
set §. We shall call P free if it is free on some subset.

Proposition 4.1. Suppose the A-module P is free on the set S. Then
P A, where A;=A as a left module for seS. Conversely, @D 4,

seS seS§

is free on the set {1, ,seS}.

Proof. We define ¢ : P— P A, as follows: Every element ae P is

seS

expressed uniquely in the form a=z Ass; set @(a)=1(4s)ses. Conversely,
seS
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for s e S define y, : A,— P by (1) = A,s. By the universal property of the
direct sum the family {1}, s€ S, gives rise to a map y ={y,» : P A,—P.

seS
It is readily seen that ¢ and y are inverse to each other. The remaining

assertion immediately follows from the construction of the direct sum. ]

The next proposition yields a universal characterization of the free
module on the set S.

Proposition 4.2. Let P be free on the set S. To every A-module M and
to every function f from S into the set underlying M, there is a unique
A-module homomorphism ¢ : P— M extending f.

Proof. Let f(s)=m,. Set ¢(a) =<p<z Jss) =Y Aymy. This obviously

seS seS

is the only homomorphism having the required property. [
Proposition 4.3. Every A-module A is a quotient of a free module P.

Proof. Let S be a set of generators of A. Let P = A, with A;=4
seS
and define ¢: P—A to be the extension of the function f given by

f(1,)=s. Trivially ¢ is surjective. []

Proposition 4.4. Let P be a free A-module. To every surjective homo-
morphism ¢: B—» C of A-modules and to every homomorphism y: P—C
there exists a homomorphism §: P— B such that ¢ f =7.

Proof. Let P be free on S. Since ¢ is surjective we can find elements
b,e B, se S with ¢(b))=7(s), se S. Define f§ as the extension of the func-
tion f:S— B given by f(s)=b,, se S. By the uniqueness part of Pro-
position 4.2 we conclude that ef=y. []

To emphasize the importance of the property proved in Proposition 4.4
we make the following remark : Let 4% B<» C be a short exact sequence
of A-modules. If P is a free A-module Proposition 4.4 asserts that every
homomorphism y:P—C is induced by a homomorphism f:P—B.
Hence using Theorem 2.1 we can conclude that the induced sequence

0— Hom, (P, A)-£> Hom, (P, B)-2> Hom,(P, C)—0 4.1)

isexact, i.e. that ¢ is surjective. Conversely, it is readily seen that exactness
of (4.1) for all short exact sequences A~ B—» C implies for the module
P the property asserted in Proposition 4.4 for P a free module. Therefore
there is considerable interest in the class of modules having this property.
These are by definition the projective modules:

Definition. A A-module P is projective if to every surjective homo-
morphism ¢ : B— C of A-modules and to every homomorphismy: P—C
there exists a homomorphism f§ : P— B with ¢ § =y. Equivalently, to any
homomorphisms ¢, y with ¢ surjective in the diagram below there exists
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B such that the triangle ~P

is commutative.

As mentioned above, every free module is projective. We shall give
some more examples of projective modules at the end of this section.

Proposition 4.5. 4 direct sum (P P, is projective if and only if each P, is.

iel

Proof. We prove the proposition only for A = P@® Q. The proofin the
general case is analogous. First assume P and Q projective. Letc: B—C
be surjective and y : P @ Q— C a homomorphism. Define y, =y1,: P—C
and yg =719 : Q— C. Since P, Q are projective there exist §5, f, such that
€fp="7p, ¢fo=7¢- By the universal property of the direct sum there
exists f: P@Q— B such that fi1,=f, and Biy=p,. It follows that
(eB)ip=¢ePp=yp=71p and (¢f) 1g=¢Bo=79=7y1p. By the uniqueness
part of the universal property we conclude that ¢ =7. Of course, this
could be proved using the explicit construction of P® Q, but we prefer
to emphasize the universal property of the direct sum.

Next assume that P@Q is projective. Let ¢ : B—C be a surjection
and yp: P—C a homomorphism. Choose Yo : @—C to be the zero map.
We obtain y : P@® Q— C such that y1, =y, and Vig=70=0. Since P@Q
Is projective there exists 8 : P @ Q— B such that ¢ = . Finally we obtain
&(B1p) =v1p = yp. Hence fi1p : P— B is the desired homomorphism. Thus P
is projective; similarly Q is projective. []

In Theorem 4.7 below we shall give a number of different characteriza-
tions of projective modules. As a preparation we define:

Definition. A short exact sequence A-%>B-» C of A-modules splits if
there exists a right inverse to ¢, i.e. a homomorphism ¢:C—>B such that
¢o=1¢. The map o is then called a splitting.

We remark that the sequence A% A® C*S C is exact, and splits
by the homomorphism .. The following lemma shows that all split short
exact sequences of modules are of this form (see Exercise 3.7).

Lemma 4.6. Suppose that 6: C—B is a splitting for the short exact
sequence A-*>B—»C. Then B is isomorphic to the direct sum A®C.
Under this isomorphism, u corresponds to 1, and ¢ to Ic.

In this case we shall say that C (like A) is a direct summand in B.

Proof. By the universal property of the direct sum we define a map
as follows
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Then the diagram

A, 4@ CC

A C
e

is commutative; the left-hand square trivially is; the right-hand square
is by ey(a, c)=¢e(ua+oc)=0+¢cac=c, and nc(a, c)=c, ac A, ce C. By
Lemma 1.1 y is an isomorphism. []

Theorem 4.7. Fora A-module P the following statements are equivalent :

(1) P is projective;

(2) for every short exact sequence A-£>B-2»C of A-modules the
induced sequence

0— Hom(P, A)-**>Hom,(P, B)-% Hom ,(P, C)—0
is exact;
(3) if e: B—» Pissurjective, then there exists a homomorphism 3 : P— B
such that e =1p;
(4) P is a direct summand in every module of which it is a quotient;
(5) P is a direct summand in a free module.

Proof. (1)=(2). By Theorem 2.1 we only have to show exactness at
Hom, (P, C), i.e. that ¢ is surjective. But since ¢: B— C is surjective this
is asserted by the fact that P is projective.

(2)=(3). Choose as exact sequence kere—B-»P. The induced
sequence

0— Hom,(P, ker¢)— Hom,(P, B)*>Hom/,(P, P)—0

is exact. Therefore there exists ff: P— B such that ¢f=1,.

(3)=(4). Let P~ B/A, then we have an exact sequence A~ B-<»P.
By (3) there exists § : P— B such that ¢ § = 1,. By Lemma 4.6 we conclude
that P is a direct summand in B.

(4)=(5). By Proposition 4.3 P is a quotient of a free module P'.
By (4) P is a direct summand in P'.

(5)=(1). By (5) PP~ P®Q, where P’ is a free module. Since free
modules are projective, it follows from Proposition 4.5 that P is
projective. []

Next we list some examples:

(@) If A=K, a field, then every K-module is free, hence projective.

(b) By Exercise 2.1 and (2) of Theorem 4.7, Z, is not projective as a
module over the integers. Hence a finitely generated abelian group is
projective if and only if it is free.

(c) Let A=1Zg, the ring of integers modulo 6. Since Zs =Z;DZ,
as a Zg-module, Proposition 4.5 shows that Z, as well as Z; are projective
Z¢-modules. However, they are plainly not free Zs-modules.
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Exercises:

4.1. Let V be a vector space of countable dimension over the field K. Let
A=Homg(V, V). Show that, as K-vector spaces V, is isomorphic to V@ V.
We therefore obtain

A=Homg(V, V)= Homg(V@®V, V)=~ Homg(V, V)@Homg(V, V) =ADA.

Conclude that, in general, the free module on a set of n elements may be iso-
morphic to the free module on a set of m elements, with n4m.

4.2. Given two projective A-modules P, Q, show that there exists a free A-module R
such that P@R = Q@R is free. (Hint: Let P@ P’ and Q@ Q' be free. Define
R=POQ®Q)®POP)® =0 @POP)DQDQ)® )

4.3. Show that @ is not a free Z-module.

4.4. Need a direct product of projective modules be projective?

4.5. Show that f 0-N—-P—A—0, 0-M—Q—A—0 are exact with P,Q
projective, then P@® M =~ Q@ N. (Hint: Use Exercise 3.4)

4.6. We say that A has a finite presentation if there is a short exact sequence
0—->N—>P—4—0 with P finitely-generated projective and N finitely-
generated. Show that

(1) if A has a finite presentation, then, for every exact sequence

0—>R—->8S—>A4—-0

with § finitely-generated, R is also finitely-generated;

(i1) if Ahas a finite presentation, it has a finite presentation with P free;

(iii) if 4 has a finite presentation every presentation 0—N—P—A—0
with P projective, N finitely-generated is finite, and every presentation
0— N—P— A—0 with P finitely-generated projective is finite;

(iv) if A has a presentation 0— N,— P,— 4—0 with P, finitely-generated
projective, and a presentation 0— N,— P,—A4—0 with P, projective, N,
finitely-generated, then A has a finite presentation (indeed, both the given
presentations are finite).

4.7. Let A=K({xy,...,x,,...) be the polynomial ring in countably many in-
determinates x,, ..., X,, ... over the field K. Show that the ideal I generated
by xy, ..., X,, ... is not finitely generated. Hence we may have a presentation

0—N—P—A-->0 with P finitely generated projective and N not finitely-
generated.

5. Projective Modules over a Principal Ideal Domain

Here we shall prove a rather difficult theorem about principal ideal
domains. We remark that a very simple proof is available if one is content
to consider only finitely generated A-modules; then the theorem forms
a part of the fundamental classical theorem on the structure of finitely
generated modules over principal ideal domains.

Recall that a principal ideal domain A is a commutative ring with-
out divisors of zero in which every ideal is principal, i.. generated by
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one element. It follows that as a module every ideal in A is isomorphic
to A itself.

Theorem 5.1. Over a principal ideal domain A every submodule of
a free A-module is free.

Since projective modules are direct summands in free modules,
this implies

Corollary 5.2. Qver a principal ideal domain, every projective module
is free.

Corollary 5.3. Over a principal ideal domain, every submodule of a
projective module is projective.

Proof of Theorem 5.1. Let P = () A;, where A;= A, be a free module

jeJ
and let R be a submodule of P. We shall show that R has a basis. Assume J
well-ordered and define for every j e J modules

F(j):@/lw Pm:@Ai-

i<j igj

Then every element a € P;; "R may be written uniquely in the form (b, 4)
where be P, and 1€ A;. We define a homomorphism f;: PynR—4
by fi(a) = 4. Since the kernel of f; is P;, "R we obtain an exact sequence

PjnR—PjnR—imf;.

Clearly im f;is an ideal in A. Since A is a principal ideal domain, this ideal
is generated by one element, say ;. For 4;+0 we choose c;e P;)NR,
such that fi(c;))=4;. Let J'CJ consist of those j such that 4;40. We
claim that the family {c;}, je J', is a basis of R.

First we show that {c;},j € J',is linearly independent. Let Y ey, =0
k=1

and let j, <j, <--- <j,. Then applying the homomorphism f; , we get
t [3.(¢;,) = paA;, = 0. Since 4; =0 this implies u, =0. The assertion then
follows by induction on n.

Finally, we show that {c}, je J', generates R. Assume the contrary.
Then there is a least i € J such that there exists ae P ;N R which cannot
be written as a linear combination of {c;},jeJ". If i¢ J', then ae P "R;
but then there exists k <i such that a € P,,nR, contradicting the mini-
mality of i. Thus ie J'".

Consider f;(a)=pu/; and form b =a — uc;. Clearly

fib) = fila) = filpe) =0.

Hence be P;NR, and b cannot be written as a linear combination of
{c;},jeJ'. But there exists k <i with be Py,NR, thus contradicting the
minimality of i. Hence {c;},j € J',is a basis of R. []
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Exercises:

5.1. Prove the following proposition, due to Kaplansky: Let A be a ring in which
every left ideal is projective. Then every submodule of a free A-module is
isomorphic to a direct sum of modules each of which is isomorphic to a left
ideal in A. Hence every submodule of a projective module is projective.
(Hint: Proceed as in the proof of Theorem 5.1.)

5.2. Prove that a submodule of a finitely-generated module over a principal ideal
domain is finitely-generated. State the fundamental theorem for finitely-
generated modules over principal ideal domains.

5.3. Let A, B, C be finitely generated modules over the principal ideal domain A.
Show that if A@C=B®C, then A= B. Give counterexamples if one drops
(a) the condition that the modules be finitely generated, (b) the condition that A
is a principal ideal domain.

5.4. Show that submodules of projective modules need not be projective. (4 =7,
where p is a prime. Z,~—7Z,.—»Z, is short exact but does not split!)

5.5. Develop a theory of linear transformations T :V—V of finite-dimensional
vector spaces over a field K by utilizing the fundamental theorem in the
integral domain K[ T1].

6. Dualization, Injective Modules

We introduce here the process of dualization only as a heuristic
procedure. However, we shall see in Chapter II that it is a special case of
a more general and canonical procedure. Suppose given a statement
involving only modules and homomorphisms of modules; for example,
the characterization of the direct sum of modules by its universal property
given in Proposition 3.2:

“The system consisting of the direct sum S of modules {4}, jed,
together with the homomorphisms i TA—S, is characterlzed by
the following property. To any module M and homomorphisms

{w;: Aj—> M}, je J, there is a unique homomorphism y : S— M such that
for every je J the diagram

i

A
S

vy M
1s commutative.”

The dual of such a statement is obtained by “reversing the arrows”;
more precisely, whenever in the original statement a homomorphism
occurs we replace it by a homomorphism in the opposite direction.
In our example the dual statement reads therefore as follows:

“Given a module T and homomorphisms {n;:T—Ay}, jeJ. To

any module M and homomorphisms {p;:M—A } j€J, there exists a
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unique homomorphism ¢ : M — T such that for every je J the diagram

1s commutative.”

It is readily seen that this is the universal property characterizing
the direct product of modules {4}, je J, the n; being the canonical
projections (Proposition 3.3). We therefore say that the notion of the
direct product is dual to the notion of the direct sum.

Clearly to dualize a given statement we have to express it entirely
in terms of modules and homomorphisms (not elements etc.). This can be
done for a great many — though not all — of the basic notions introduced
in Sections 1, ..., 5. In the remainder of this section we shall deal with a
very important special case in greater detail: We define the class of
injective modules by a property dual to the defining property of projective
modules. Since in our original definition of projective modules the term
“surjective” occurs, we first have to find a characterization of surjective
homomorphisms in terms of modules and homomorphisms only. This
is achieved by the foliowing definition and Proposition 6.1.

Definition. A module homomorphism ¢: B— C is epimorphic or an
epimorphism if o, e=a,¢ implies a; =, for any two homomorphisms
o0,:C—>M,i=1,2.

Proposition 6.1. ¢: B— C is epimorphic if and only if it is surjective.

Proof. Let BLCZ:}’M. If ¢ is surjective then clearly o, eb=0,¢eb
for all be B, implies a, ¢ =a, ¢ for all ce C. Conversely, suppose ¢ epi-
morphic and consider BﬁC%ﬁC/sB, where 7 is the canonical projec-
tion and O is the zero map. Since 0 =0=rn¢, we obtain O =7 and there-
fore C/eB=0or C=¢B. []

Dualizing the above definition in the obvious way we have

Definition. The module homomorphism u: A— B is monomorphic
or a monomorphism if po, =pa, implies o, =, for any two homo-
morphisms o;: M—A,i=1, 2.

Of course one expects that “monomorphic” means the same thing
as “injective”. For modules this is indeed the case; thus we have

Proposition 6.2. i : A— B is monomorphic if and only if it is injective.

Proof. If u is injective, then poyx=pa,x for all xe M implies
a;x=o,x for all xe M. Conversely, suppose yu monomorphic and
a,,a, € A such that pa, = pa,. Choose M =A and «;: A— A such that
a,(1)=a,, i =1,2. Then clearly po; = po,; hence ay =, and a; =a,. ]
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It should be remarked here that from the categorical point of view
(Chapter II) definitions should whenever possible be worded in terms of
maps only. The basic notions therefore are “epimorphism” and “mono-
morphism”, both of which are defined entirely in terms of maps. It is
a fortunate coincidence that, for modules, “monomorphic” and “injective”
on the one hand and “epimorphic” and “surjective” on the other hand
mean the same thing. We shall see in Chapter II that in other categories
monomorphisms do not have to be injective and epimorphisms do not
have to be surjective. Notice that, to test whether a homomorphism is
injective (surjective) one simply has to look at the homomorphism
itself, whereas to test whether a homomorphism is monomorphic
(epimorphic) one has, in principle, to consult all A-module homo-
morphisms.

We are now prepared to dualize the notion of a projective module.

Definition. A A-module I is called injective if for every homomorphism
o:A—1 and every monomorphism u:A>—B there exists a homo-
morphism f: B—1 such that fu=aq, i.e. such that the diagram

>—M——> ‘-

is commutative. Since x4 may be regarded as an embedding, it is natural
simply to say that I is injective if homomorphisms into I may be extended
(from a given domain A to a larger domain B).

Clearly, one will expect that propositions about projective modules
will dualize to propositions about injective modules. The reader must
be warned, however, that even if the statement of a proposition is dualiz-
able, the proof may not be. Thus it may happen that the dual of a true
proposition turns out to be false. One must therefore give a proof of the
dual proposition. One of the main objectives of Section 8 will, in fact,
be to formulate and prove the dual of Theorem 4.7 (see Theorem 8.4).

However, we shall need some preparation: first we state the dual of
Proposition 4.5.

Proposition 6.3. A direct product of modules I1 I; is injective if and
only if each I, is injective. [] eJ

The reader may check that in this particular instance the proof of
Proposition 4.5 is dualizable. We therefore leave the details to the reader.

Exercises:

6.1. (a) Show that the zero module 0 is characterized by the property: To any
module M there exists precisely one homomorphism ¢:0—>M.
(b) Show that the dual property also characterizes the zero module.
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6.2. Give a universal characterization of kernel and cokernel, and show that kernel
and cokernel are dual notions.

6.3. Dualize the assertions of Lemma 1.1, the Five Lemma (Exercise 1.2) and those
of Exercises 3.4 and 3.5.

6.4. Let ¢ : A— B. Characterize im¢, ¢! B, for B, C B, without using elements.
What are their duals? Hence (or otherwise) characterize exactness.

6.5. What is the dual of the canonical homomorphism ¢ : ) 4,— [] 4,? What is

ieJ ieJ
the dual of the assertion that ¢ is an injection? Is the dual true?

7. Injective Modules over a Principal Ideal Domain

Recall that by Corollary 5.2 every projective module over a principal
ideal domain is free. It is reasonable to expect that the injective modules

over a principal ideal domain also have a simple structure. We first
define:

Definition. Let A be an integral domain. A A-module D is divisible
if for every de D and every 0= 4 ¢ A there exists ce D such that Ac=d.
Note that we do not require the uniqueness of c.

We list a few examples:

(a) As Z-module the additive group of the rationals @ is divisible.
In this example ¢ is uniquely determined.

(b) As Z-module Q/Z is divisible. Here ¢ is not uniquely determined.

{c) The additive group of the reals R, as well as R/Z, are divisible.

(d) A non-trivial finitely generated abelian group 4 is never divisible.
Indeed, 4 is a direct sum of cyclic groups, which clearly are not divisible.

Theorem 7.1. Let A be a principal ideal domain. A A-module is in-
jective if and only if it is divisible.

Proof. First suppose D is injective. Let de D and 0+ 1e 4. We
have to show that there exists ce D such that Ac=d. Define a: A—D
by a(l)=d and u: A—A by u(1)= A Since A is an integral domain,
w(é)=¢2=0 if and only if £ =0. Hence u is monomorphic. Since D is
injective, there exists §: A— D such that fu=o. We obtain

d=a(l)=pu(l)=pA)=1p01).

Hence by setting ¢ = (1) we obtain d = Ac. (Notice that so far no use is
made of the fact that A is a principal ideal domain.)
Now suppose D is divisible. Consider the following diagram

A—*>B

|

D
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We have to show the existence of f: B—D such that fu=a. To
simplify the notation we consider u as an embedding of a submodule A
into B. We look at pairs (4;,a;) with AC A;CB, a;: A;7— D such that
a;| 4, =a. Let @ be the set of all such pairs. Clearly @ is nonempty, since
(A,2) is in @. The relation (4;, o) (A, o) if A;€ A4, and o], =q;
defines an ordering in &. With this ordering @ is inductive. Indeed,
every chain (A4;,a;), jeJ has an upper bound, namely ({J4;, ()
where ( ) 4; is simply the union, and | )« is defined as follows: If ae ( ) 4,,
then a € A, for some k € J. We define Ulozj(a) = oy (a). Plainly ( Jo; is well-
defined and is a homomorphism, and

(A, e)=() Aj, U a;)
By Zorn’s Lemma there exists a maximal element (4, %) in @. We shall
show that A = B, thus proving the theorem. Suppose 4 #+ B; then there
exists be B with b ¢ A. The set of A€ A such that Abe 4 is readily seen
tobeanideal of 4. Since A isa principalideal domain, thisideal is generated
by one element, say A,. If A, # 0, then we use the fact that D is divisible
to find ce D such that a(l,b) = 1qc¢. If 1, =0, we choose an arbitrary c.
The homomorphism @ may now be extended to the module A generated
by 4 and b, by setting &(a+ Ab) =u(a@) + Ac. We have to check that this

definition is consistent. If 1b € A, we have &(1h) = Ac. But A = & Ao for some
£ e A and therefore 1b=¢1,b. Hence

AAb) =0l Agb) = ET(Agb)=ENgec=Ac.

Since (4,%) < (A, d), this contradicts the maximality of (4,%), so that
A =B as desired. ]

Proposition 7.2. Every quotient of a divisible module is divisible.

Proof. Let e:D—E be an epimorphism and let D be divisible.
For ec E and 0+ A€ A there exists d e D with g(d)=e and d' e D with
Ad'=d. Setting ¢ =¢(d) we have re'=le(d)=e(Ad)=¢ed)=e. ]

As a corollary we obtain the dual of Corollary 5.3.

Corollary 7.3. Let A be a principal ideal domain. Every quotient of an
injective A-module is injective. []

Next we restrict ourselves temporarily to abelian groups and prove
in that special case

Proposition 7.4. Every abelian group may be embedded in a divisible
(hence injective) abelian group.

The reader may compare this Proposition to Proposition 4.3, which
says that every A-module is a quotient of a free, hence projective, A-
module.

Proof. We shall define a monomorphism of the abelian group A
into a direct product of copies of Q/Z. By Proposition 6.3 this will
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suffice. Let 0 &= a € 4 and let (a) denote the subgroup of 4 generated by a.
Define a: (a)— Q/Z as follows: If the order of ae A is infinite choose
0 #+ a(a) arbitrary. If the order of ae A4 is finite, say #, choose 0= a(a)
to have order dividing n. Since Q/Z is injective, there exists a map
f.: A— @Q/Z such that the diagram

(@p—A
a l 5.:
Q/Z

is commutative. By the universal property of the product, the 8, define
auniquehomomorphism : A— || (Q/Z),.Clearly fisamonomorphism

acA
a*¥0

since S (a)*£0if a+0. []

For abelian groups, the additive group of the integers Z is projective
and has the property that to any abelian group G = 0 there exists a non-
zero homomorphism ¢ : Z— G. The group Q/Z has the dual properties;
it is injective and to any abelian group G #0 there is a nonzero homo-
morphism p: G— Q/Z. Since a direct sum of copies of Z is called free,
we shall term a direct product of copies of Q/Z cofree. Note that the two
properties of Z mentioned above do not characterize Z entirely. Therefore
“cofree” is not the exact dual of “free”, it is dual only in certain respects.
In Section 8 the generalization of this concept to arbitrary rings is
carried through.

Exercises:

7.1. Prove the following proposition: The A-module I is injective if and only if
for every left ideal J C A and for every A-module homomorphism o : J— I the

diagram J——a

I
may be completed by a homomorphism 8 : A— I such that the resulting triangle
is commutative. (Hint: Proceed as in the proof of Theorem 7.1.)

7.2. Let 0—R— F— A—0 be a short exact sequence of abelian groups, with F
free. By embedding F in a direct sum of copies of @Q, show how to embed 4
in a divisible group.

7.3. Show that every abelian group admits a unique maximal divisible subgroup.

7.4. Show that if 4 is a finite abelian group, then Homz(4, Q/Z)== A. Deduce
that if there is a short exact sequence 0— A'— A— A"—0 of abelian groups
with A finite, then there is a short exact sequence 0—A"— A—A'—0.

7.5. Show that a torsion-free divisible group D is a @Q-vector space. Show that
Homy(A, D) is then also divisible. Is this true for any divisible group D?

7.6. Show that @ is a direct summand in a direct product of copies of Q/Z.
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8. Cofree Modules

Let A be a right A-module and let G be an abelian group. Regarding 4
as an abelian group we can form the abelian group Homgy(4, G) of
homomorphisms from A4 into G. Using the right A-module structure
of A we define in Homy(4, G) a left A-module structure as follows:

Ap)(a)=¢(al), aeA, AeA, pe Homz(4,G).
We leave it to the reader to verify the axioms. Similarly if 4 is a left
A-module, Homgz(A4, G) acquires the structure of a right A-module.

Proposition 8.1. Let A be a left A-module and let G be an abelian group.
Regard Homg(A, G) as a left A-module via the right A-module structure
of A. Then there is an isomorphism of abelian groups

n=n4: Hom,(4, Hom,(4, G))=Homg(4, G).
Moreover, for every A-module homomorphism o:A— B the diagram
Hom,(B, Homg(A, G))-2»Hom,(B, G)
a* o 8.1)
Hom (A4, Homg(A, G))—4»Hom,(4, G)
is commutative. (In this situation we shall say that 7 is natural.)

Proof. Let ¢: A—Hom,(A,G) be a A-module homomorphism.
We define a homomorphism of abelian groups ¢': 4—G by

P@=(p@)(1), aecd.

Conversely, a homomorphism of abelian groups y: A—G gives rise to
y': A—Homg(4, G) by (y'(a)) () =y(la), ac A, Ae A. Clearly ¢’ is a
homomorphism of abelian groups. We have to show that y' is a homo-
morphism of A-modules. Indeed, let { e A, then W a) (D) =y(la);
on the other hand ({(y'(a)) (4) = (v'(@)) (A0) = p(Ala). Clearly, ¢p— o’
and yr— 1y’ are homomorphisms of abelian groups. Finally, we claim
(@) = ¢ and (py =y. Indeed, (') (a) = (v'(@)) (1) = p(a), and

(@) (@) (M) =¢'(Aa)=(p(Aa)) (1),
but

(¢(1a)) (1) = (Ao @) (1) = (p(@) (1) = (p(@) (A),

since ¢ is a A-module homomorphism. Thus we define n by setting
n(¢)=¢’, and 7 is an isomorphism. The naturality of #, i.e. the com-
mutativity of the diagram (8.1), is evident. Notice that a* on the right
of the diagram (8.1) is a homomorphism of right A-modules. []
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We now look at A* = Homy(A, @/Z), which is made into a left
A-module using the right A-module structure of A. We claim that A*
has the property that to any nonzero A-module 4 there is a nonzero
homomorphism ¢ : A— A*. Indeed, any nonzero homomorphism of
abelian groups y: A—@Q/Z will correspond by Proposition 8.1 to a
nonzero ¢ : A—A*. Also, it will follow from Theorem 8.2 below that
A* is injective (set G = Q/Z). We therefore define

Definition. A A-module is cofree if it is the direct product of modules
A* = Homgz(A, Q/Z). Note that this is consistent with the description
of Q/Z as a cofree group, since Homz(Z, Q/Z) =~ Q/Z.

Theorem 8.2. Let G be a divisible abelian group. Then A = Homg(A, G)
is an injective A-module.

Proof. Let u: A—B be a monomorphism of A-modules, and let
a: A— A a homomorphism of A-modules. We have to show that there
exists §: B— A such that fu =a. To prove this, we remark thata: A— A
corresponds by Proposition 8.1 to a homomorphism of abelian groups
o' : A—G. Since G is injective, there exists f': B— G such that f'u=a'’.
Under the inverse of  in Proposition 8.1 we obtain a homomorphism of
A-modules §: B— A. Finally by the naturality of #, the diagram

A—L B

sl 8

'S

A
is commutative. []

We are now prepared to prove the dual of Proposition 4.3.

Proposition 8.3. Every A-module A is a submodule of a cofree, hence
injective, A-module.

Proof. Let 0+ ae A and let (a) denote the submodule of A generated
by a. By the remarks preceeding Theorem 8.2 there exists a nonzero
A-homomorphisma : (@)— A*. Since A* isinjective thereexists f, : A— A*
such that the diagram

A o

iscommutative. By the universal property of the direct product thg B, define
a homomorphism f: A— [] (4%), where A% = A*. Clearly § is mono-

acA
a0

morphic. []
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We conclude this section by dualizing Theorem 4.7.

Theorem 8.4. For a A-module I the following statements are equivalent :

(1) I is injective;

(2) for every exact sequence A->B-“»C of A-modules the induced
sequence . .

0—Hom,(C, I)— Hom4(B, I)*~>Hom (4, )—0

is exact;

(3) if u:I— B is a monomorphism, then there exists f : B— I such that
ﬂ”= 11;

4) I is a direct summand in every module which contains I as sub-
module;

(5) I is a direct summand in a cofree module.

The proof is dual to the proof of Theorem 4.7. For the step (3)=(4)
one needs the dual of Lemma 4.6. The details are left to the reader. ]

Note that, to preserve duality, one should really speak of “direct
Jactor” in (4) and (5), rather than “direct summand”. However, the two
notions coincide!

Exercises:

8.1. Complete the proof of Theorem 8.4.

8.2. Let A be a A-module and let G be a divisible abelian group containing A.
Show that we may embed A in an injective module by the scheme

A= Hom,(A, A)C Homyz(A, A) € Homg(A, G).
(You should check that we obtain an embedding of A-modules.)

8.3. For any A-module 4, let A* be the right A-module Homg(A4, Q/Z). Show
that A is naturally embedded in A**. Use this embedding and a free presenta-
tion of A* to embed 4 in a cofree module.

8.4. Suppose given 0—A4— 1 —J,—0, 0—A4—1,—J,—0, with I,, I, injective.
Show that I, ®J, ~ I, ®J,. To what statement is this dual?

8.5. State a property of injective modules which you suspect may not hold for
arbitrary divisible modules.

9. Essential Extensions

In this section we shall show that to a given A-module A there exists
an injective module E containing A such that every injective module
containing A also contains an isomorphic copy of E. This property
will define E up to isomorphism. E is called the injective envelope of A.
We remark (see Exercise 9.5) that the dual of the injective envelope
(“projective cover™) does not exist in general.

Definition. A monomorphism u: A~ B is called essential if for any
submodule H of B, H+ 0 implies HApA=+0. If A is regarded as a sub-
module of B then B is called an essential extension of A {see [127).
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Examples. (a) As abelian group @) is an essential extension of Z.

(b) The module B=A@® C can never be an essential extension of 4,
unless C=0. For CnA4=0.

Note that if B is an essential extension of 4, and C is an essential
extension of B, then C is an essential extension of 4.

Proposition 9.1. B is an essential extension of A if and only if, for every
0=b e B, there exists Ae A such that Abe A and b +0.

Proof. Let B be an essential extension of A, and let H be the submodule
generated by be B. Since H+0 it follows that HnA %0, i.e. there
exists A€ 4 such that 0 & Abe A. Conversely, let H be a nontrivial
submodule of B. For 0%+he H there exists 1€ A such that 0% ihe A.
Therefore HN A +0, and B is an essential extension of 4. []

Let A be a submodule of a A-module M. Consider the set & of essential
extensions of A, contained in M. Since A is an essential extension of itself,
& is not empty. Under inclusion, @ is inductive. Indeed, if {E;}, jelJ,
is a chain of essential extensions of 4 contained in M, then it follows
easily from Proposition 9.1 that their union | ) E ; 1s again an essential

jeJ
extension of 4 contained in M. By Zorn’s Lemma there exists a maximal
essential extension E of A which is contained in M.

Theorem 9.2. Let A be a submodule of the injective module I. Let E
be a maximal essential extension of A contained in I. Then E is injective.

Proof. First we show that E does not admit any nontrivial essential
monomorphism.

Let u: E— X be an essential monomorphism. Since I is injective,
there exists a homomorphism & : X — I completing the diagram

E—t X

K

I

We show that & is monomorphic. Let H be the kernel of £&. We then
have HC X and HnuE=0. Hence keré =H =0, for u is essential. It
follows that ¢X is an essential extension of A contained in I. Since E is
maximal, it follows that X =E.

Now consider the set ¥ of submodules H €I such that HNE=0.
Since 0 € ¥, ¥ is nonempty, it is ordered by inclusion and inductive.
Hence by Zorn’s Lemma there exists a maximal submodule H of I
such that HNE=0. The canonical projection n:[—I/H induces a
monomorphism ¢=n|.: E—I/H. We shall show that ¢ is essential.
Let H/H be a nontrivial submodule of I/H, ie. let H = H < I where the
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first inclusion is strict. By the maximality of H the intersection HNE
is nontrivial, hence H/H n oE is nontrivial. It follows that ¢ is essential.
By the first part of the proof E admits no proper essential monomorphism,
whence it follows that ¢: E=I/H is an isomorphism. The sequence
H—I1--""»E now splits by the embedding of E in I. Therefore E is
a direct summand in I and is injective by Proposition 6.3. [

Corollary 9.3. Let E,, E, be two maximal essential extensions of A
contained in injective modules I, I,. Then E, =~ E, and every injective
module I containing A also contains a submodule isomorphic to E,.

Definition. E, is called the injective envelope of A.

Proof. Consider the diagram

A——E,

|

E,

Since E, is injective there exists ¢: E; —E, completing the diagram.
As in the proof of Theorem 9.2 one shows that ¢ is monomorphic. But
then E,, as an essential extension of A4, is also an essential extension of E,
which shows, again as in the proof of Theorem 9.2, that ¢: E, > E,.
The proof of the second part is now trivial. []

Exercises:

9.1. Compute the injective envelope of Z, Z,, p prime, Z,.

9.2. Show that if B; is an essential extension of A;, i=1,2, then B,®B, is an
essential extension of 4, @ A4,. Extend this to direct sums over any index set J.

9.3. Given any abelian group 4, let T(4) be its torsion subgroup and F(4) = A/T(A).
Show that ¢ : A— B induces T(¢) : T(4)— T(B), F(¢): F(A)— F(B), and that @
is a monomorphism if and only if T(¢) and F(¢p) are monomorphisms. Show

that the monomorphism ¢ is essential, if and only if T{(¢) and F (@) are essential.
Now suppose given

0— T(A)— A——F(4A)—0

Ll

0——T(B)— B——F(B)—0

Ll

00— T(C)— C——F(C)—0

where AL C is to be regarded as fixed, and B is an essential extension of A.
Show that if T(B) and F(B) are maximal, so is B. Show that if B is maximal,
so is T(B), but that F(B) may fail to be maximal.
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9.5.
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Show that if C is divisible, so are T{C) and F(C). What does this tell us
about the injective envelope of T(A), A and F(A4)?

Give a procedure for calculating the maximal essential extension of 4 in B,
where B is a finitely generated abelian group.

Show that the dual of an injective envelope does not always exist. That is, given
a A-module A, we cannot in general find P-%» A4, P projective, such that, given
0-» A, Q projective, we may factor # as Q-<» P »A. (Hint: Take A=1Z,
A=1Zs) Where does the dual argument fail?



II. Categories and Functors

In Chapter I we discussed various algebraic structures (rings, abelian
groups, modules) and their appropriate transformations (homomor-
phisms). We also saw how certain constructions (for example, the forma-
tion of Hom 4(A, B) for given A-modules A4, B) produced new structures
out of given structures. Over and above this we introduced certain
“universal” constructions (direct sum, direct product) and suggested
that they constituted special cases of a general, and important, procedure.
Our objective in this chapter is to establish the appropriate mathematical
language for the general description of mathematical systems and of
mappings of systems, insofar as that language is applicable to homo-
logical algebra.

The language of categories and functors was first introduced by
Eilenberg and MacLane [13] to provide a precise description of the
processes involved in algebraic topology. Since then an independent
mathematical theory has grown up around the basic concepts of the
language and today the development, elaboration and application of this
theory constitute an extremely active area of mathematical research. It is
not our intention to give a treatment of this developing theory; the reader
who wishes to pursue the topic of categorical algebra is referred to the
texts [6, 18, 35, 37-39] for further reading. Indeed, the reader familiar
with the elements of categorical algebra may use this chapter simply as
a source of relevant facts, terminology and notation.

1. Categories

To define a category € we must give three pieces of data:
(1) a class of objects A, B, C, ...,

(2) to each pair of objects 4, B of €, a set €(A4, B) of morphisms from
Ato B,

(3) to each triple of objects A4, B, C of €, a law of composition
€(4,B) x €(B,C)—€(4, C).

Before giving the axioms which a category must satisfy we introduce
some auxiliary notation: this should also serve to relate our terminology
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and notation with ideas which are already very familiar. If fe (4, B)
we may think of the morphism f as a generalized “function” from 4 to
B and write

f:A—>B or A—f—>B;

we call f a morphism from the domain A to the codomain (or range) B.
The set €(A, B) x (B, C) consists, of course, of pairs ( f, g) where f: A— B,
g : B— Cand we will write the composition of fand gas g f or, simply, g f.
The rationale for this notation (see the Introduction) lies in the fact that

if A, B, C are sets and f, g are functions then the composite function from
A to C is the function h given by

h@)=g(f(@), aed.

Thus if the function symbol is written to the left of the argument
symbol one is naturally led to write h= fg. (Of course it will turn out
that sets, functions and function-composition do constitute a category.)

We are now ready to state the axioms. The first is really more of
a convention, the latter two being much more substantial.

A 1: Thesets €(A4,, B,), €(4,, B,) are disjoint unless 4, = 4,, B, = B,.
A2 Given f:A—B, g: B—C, h: C— D, then

higf)=(hg)f (Associative law of composition).

A 3: To each object 4 there is a morphism 1,: A— A4 such that, for
any f:A—B,g:C— A4,

fl,=f, 1,9=g (Existence of identities).

It is easy to see that the morphism 1, is uniquely determined by
Axiom A 3. We call 1, the identity morphism of A, and we will often
suppress the suffix A, writing simply

f1=f, 1lg=g.

As remarked, and readily verified, the category & of sets, functions and
function-composition satisfies the axioms. We often refer to the category
of sets S; indeed, more generally, in describing a category we omit
reference to the law of composition when the morphisms are functions
and composition is ordinary function-composition (or when, for some
other reason, the law of composition is evident), and we even omit
reference to the nature of the morphisms if the context, or custom, makes
their nature obvious.

A word is necessary about the significance of Axiom A 1l. Let us
consider this axiom in &. It is standard practice today to distinguish
two functions if their domains are distinct, even if they take the same
values whenever they are both defined. Thus the sine function sin : R—IR



42 I1. Categories and Functors

is distinguished from its extension sin:C—C to the complex field.
However, the two functions

sin:R—R, sin:R—[—1,1]

would normally be regarded as the same function, although we have
assigned to them different codomains. However we will see that it is useful
— indeed, essential — in homological algebra to distinguish morphisms
unless their (explicitly specified) domains and codomains coincide.

It is also crucial in topology. Suppose f; : X— Y,, f,: X— Y, are two
continuous functions which in fact take the same values, i.e., f;(x) = f,(x),
x € X. Then it may well happen that one of those functions is contractible
whereas the other is not. Take, as an example, X = S!, the unit circle in
IR?, f, the embedding of X in IR? and f, the embedding of X in R?—(0).
Then f, is contractible, while f, is not, so that certainly f; and f, should
be distinguished.

Notice also that the composition g f is only defined if the codomain
of f coincides with the domain of g.

We say that a morphism f: A— B in € is isomorphic (or invertible)
if there exists a morphism g: B— 4 in € such that

gf=14, fg=1;.

It is plain that g is then itself invertible and is uniquely determined by f;
we write g = f !, so that

(fH =1

It is also plain that the composite of two invertible morphisms is again
invertible and thus the relation

A=B if there exists an invertible f:A—B

(4 is isomorphic to B) is an equivalence relation on the objects of the
category €. This relation has special names in different categories (one-
one correspondence of sets, isomorphism of groups, homeomorphism of
spaces), but it is important to observe that it is a categorical concept.

We now list several examples of categories.

(a) The category & of sets and functions;

(b) the category T of topological spaces and continuous functions;

(c) the category G of groups and homomorphisms;

(d) the category Ub of abelian groups and homomorphisms;

(¢) the category B of vector spaces over the field F and linear trans-
formations;

(f) the category G, of topological groups and continuous homo-
morphisms;

(g) the category R of rings and ring-homomorphisms;



1. Categories 43

(h) the category R, of rings-with-unity-element and ring-homo-
morphisms preserving unity-element;

(i) the category M, of left A-modules, where A is an object of R,
and module-homomorphisms;

(j) the category IM’, of right A-modules.

Plainly the list could be continued indefinitely. Plainly also each
category carries its appropriate notion of invertible morphisms and iso-
morphic objects. In all the examples given the morphisms are structure-
preserving functions; however, it is important to emphasize that the
morphisms of a category need not be functions, even when the objects
of the category are sets perhaps with additional structure. To give one
example, consider the category I, of spaces and homotopy classes of
continuous functions. Since the homotopy class of a composite function
depends only on the homotopy classes of its factors it is evident that T,
is a category — but the morphisms are not themselves functions. Other
examples will be found in Exercises 1.1, 1.2.

Returning to our list of examples, we remark that in examples c, d,
e,f, g,1,j the category € in question possesses an object 0 with the property
that, for any object X in €, the sets €(X, 0) and €(0, X) both consist of
precisely one element.

Thus in ® and Ab we may take for 0 any one-element group. It is
easy to prove that, if € possesses such an object 0, called a zero object,
then any two such objects are isomorphic and €(X, Y) then possesses
a distinguished morphism,

X—0-Y,

called the zero morphism and written Oyy. For any f: W— X, g: Y—Z
in € we have

Oxyf=0wy, gO0xy=0x;.

As with the identity morphism, so with the zero morphism 0y, we will
usually suppress the indices and simply write 0. If € possesses zero objects
it is called a category with zero objects. :

If we turn to example (a) of the category & then we notice that, given
any set X, ©(d, X) consists of just one element (where # is the empty set)
and S(X, (p)) consists of just one element (where (p) is a one-element set).
Thus in & there is an initial object @ and a terminal (or coinitial)
object (p), but no zero object. The reader should have no difficulty in
providing precise definitions of initial and terminal objects in a cate-
gory €, and will readily prove that all initial objects in a category € are
isomorphic and so, too, are all terminal objects.

The final notion we introduce in this section is that of a subcategory €
of a given category €. The reader will readily provide the explicit defini-
tion; of particular importance among the subcategories of € are the full
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subcategories, that is, those subcategories €, of € such that
€,(4,B)=C(A4, B)

for any objects A, B of €,. For example, b is a full subcategory of G,
but R, is a subcategory of R which is not full.

Exercises:

1.1. Show how to represent an ordered set as a category. (Hint: Regard the
elements a, b, ... of the set as objects in the category, and the instances a<b
of the ordering relation as morphisms a—b.) Express in categorical language
the fact that the ordered set is directed [16]. Show that a subset of an ordered
set, with its natural ordering, is a full subcategory.

1.2. Show how to represent a group as a category with a single object, all mor-
phisms being invertible. Show that a subcategory is then precisely a sub-
monoid. When is the subcategory full?

1.3. Show that the category of groups has a generator. (A generator U of a category
@ is an object such that if f,g: X— Y in &, f +¢, then there exists u: U — X
with fu=gu.)

1.4. Show that, in the category of groups, there is a one-one correspondence between
elements of G and morphisms Z— G.

1.5. Carry out exercises analogous to Exercises 1.3, 1.4 for the category of sets,
the category of spaces, the category of pointed spaces (i.e. each space has
a base-point and morphisms are to preserve base-points, see [21]).

1.6. Set out in detail the natural definition of the Cartesian product €, x €, of two
categories €, €.

1.7. Show that if a category has a zero object, then every initial object, and every

terminal object, is isomorphic to that zero object. Deduce that the category
of sets has no zero object.

2. Functors

Within a category € we have the morphism sets €(X, Y) which serve
to establish connections between different objects of the category. Now
the language of categories has been developed to delineate the various
areas of mathematical theory; thus it is natural that we should wish to
be able to describe connections between different categories. We now
formulate the notion of a transformation from one category to another.
Such a transformation is called a functor; thus, precisely, a functor
F:€—Disarule which associates with every object X of € an object F X
of D and with every morphism fin €(X, Y)amorphism F f in D(F X, FY),
subject to the rules

F(fg)=(Ff)(Fg), F(l)=1g,. 2.1)



2. Functors 45

The reader should be reminded, in studying (2.1), of rules governing
homomorphisms of familiar algebraic systems. He should also observe
that we have evidently the notion of an identity functor and of the com-
position of functors. Composition is associative and we may thus pass
to invertible functors and isomorphic categories.

We now list several examples of functors. The reader will need to
establish the necessary facts and complete the descriptions of the functors.

(a) The embedding of a subcategory €, in a category € is a functor.

(b) Let G be any group and let G/G’ be its abelianized group, i.c. the
quotient of G by its commutator subgroup G'. Then G— G/G’ induces
the abelianizing functor Abel: ®— G. Of course this functor may also
be regarded as a functor & —2b. This example enables us to exhibit,
once more, the importance of being precise about specifying the codomain
of a morphism. Consider the groups G = Cj, the cyclic group of order 3
generated by ¢, say, and H = S, the symmetric group on three symbols.
Let ¢ : G—H be given by ¢(t) =(123), the cyclic permutation. Let H,
be the subgroup of H generated by (123) and let ¢,: G— H, be given
by ¢o(t)=(123). It may well appear pedantic to distinguish ¢, from ¢
but we justify the distinction when we apply the abelianizing functor
Abel: ®— . For plainly Abel(G)=G, Abel(H,)= H,, Abel(p,) = @,,
which is an isomorphism. On the other hand, H, is the commutator
subgroup of H, so that Abel(H) = H/H, and so Abel(¢) =0, the constant
homomorphism (or zero morphism) G— H/H,, (= C,). Thus Abel(¢p) and
Abel(p,) are utterly different!

(c) Let S be a set and let F(S) be the free abelian group on S as basis.
This construction yields the fiee functor F: @—b. Similarly there are
free functors G— 6, € — B, S—M,, S—>M’,, etc.

(d) Underlying every topological space there is a set. Thus we get an
underlying functor U :¥—&. Similarly there are underlying functors
from all the examples (a) to (j) of categories (in Section 1) to &. There
are also underlying functors M, — Ab, P, — Ab, R— Ab, etc., in which
some structure is “forgotten” or “thrown away”.

(e) The fundamental group may be regarded as a functor 7 : RARE U
where T° is the category of spaces-with-base-point (see [21]). It may
also be regarded as a functor 7 : I) — ®, where the subscript h indicates
that the morphisms are to be regarded as (based) homotopy classes of
(based) continuous functions. Indeed there is an evident classifying
functor Q: T°— I} and then = factors as n =T7Q.

(fy Similarly the (singular) homology groups are functors T— b
(or T,—UADb).

(g) We saw in Chapter I how the set 9%, (4, B) = Hom (A4, B) may be
given the structure of an abelian group. If we hold A4 fixed and define
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ML (A4, —): M, —ADb by
M, (4, —) (B)=D(A, B),

then M, (4, —) is a functor. More generally, for any category € and
object 4 of €, €(A4, —) is a functor from € to S. We say that this functor
is represented by A. It is an important question whether a given functor
(usually to &) may be represented in this sense by an object of the
category.

In viewing the last example the reader will have noted an asym-
metry. We have recognized M4(4, —) as a functor MM,—ADb, but if
we look at the corresponding construct 94 (—, B): MM, —ADb, we see
that this is not a functor. For, writing F for 9, (—, B), then F sends
f:A,— A, to Ff:FA,—FA,. This “reversal of arrows” turns up fre-
quently in applications of categorical ideas and we now formalize the
description.

Given any category €, we may form a new category €°PP, the category
opposite to €. The objects of €°P? are precisely those of €, but

Crr(X, V) =C(Y, X). (2.2)

Then the composition in €°? is simply that which follows naturally
from (2.2) and the law of composition in €. It is trivial to verify that €°PP
is a category with the same identity morphisms as €, and that if € has
zero objects, then the same objects are zero objects of €°P°. Moreover,

(€PP)rP = ¢ (2.3)

Of course the construction of €°P? is merely a formal device. However
it does enable us to express precisely the contravariant nature of M(—,B)
or, more generally, €(—, B), and to formulate the concept of categorical
duality (see Section 3).

Thus, given two categories € and D a contravariant Sfunctor from €
to D is a functor from €°PP to D. The reader should note that the effective
difference between a functor as originally defined (often referred to as
a covariant functor) and a contravariant functor is that, for a contra-
variant functor F from € to D, F maps C(X, Y) to D(FY,FX) and
(compare (2.1)) F(fg) =F(g) F(f). We give the following examples of
contravariant functors.

(@) €(—, B), for B an object in €, is a contravariant functor from €
to &. Similarly, 9Y,(—, B), 9,(—, B) are contravariant functors from
M, M’ respectively to Ab. We say that these functors are represented
by B.

(b) The (singular) cohomology groups are contravariant functors
T —UD (or T,—AD).

(c) Let 4 be an object of MM", and let G be an abelian group. We saw
in Section 1. 8 how to give Homgz(4, G) the structure of a left A-module.
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Homg(—, G) thus appears as a contravariant functor from 9", to M.
Further examples will appear as exercises.

Finally we make the following definitions. Recall from Section 1 the
notion of a full subcategory. Consistent with that definition, we now
define a functor F:E€—D as full if F maps €(A4, B) onto D(FA, FB) for
all objects A4, B in €, and as faithful if F maps €(A, B) injectively to
D(FA, FB). Finally F is a full embedding if F is full and faithful and
one-to-one on objects. Notice that then F(€) is a full subcategory of D
(in general, F(€) is not a category at all).

Exercises:

2.1. Regarding ordered sets as categories, identify functors from ordered sets to

ordered sets, and to an arbitrary category €. Also interpret the opposite
category. (See Exercise 1.1.)

2.2. Regarding groups as categories, identify functors from groups to groups. Show
that the opposite of a group is isomorphic to the group.

2.3. Show that the center is not a functor — ® in any obvious way. Let G,; be
the subcategory of ® in which the morphisms are the surjections. Show that
the center is a functor G, ,;— ®. Is it a functor 6., — G.;?

2.4. Give examples of underlying functors.

2.5. Show that the composite of two functors is again a functor. (Discuss both
covariant and contravariant functors.)

2.6. Let @ associate with each commutative unitary ring R the set of its prime
ideals. Show that @ is a contravariant functor from the category of commu-
tative unitary rings to the category of sets. Assign to the set of prime ideals
of R the topology in which the closed sets are defined to be the sets of
prime ideals containing a given ideal J, as J runs through the ideals of R.
Show that @ is then a contravariant functor to I.

2.7. Let F: €, x €,—D be a functor from the Cartesian product €, x €, to the
category D (see Exercise 1.6). F is then also called a bifunctor from (€, €,)
to D. Show that, for each C, € €,, F determines a functor F¢,:€,—D and,
similarly, for each C, € €,, a functor F,: €, —D, such that, if ¢, : C;—Cj,
@, : C,—C,, then the diagram

F(Cy, C)—= L F(Cy, Cy)

Fcl(lﬂz)l lFCi(w) (*)
F(C,, Cp) —22 F(Cy, C)

commutes. What is the diagonal of this diagram? Show conversely that if we
have functors F¢,:€,—D, F¢,:€,—D, indexed by the objects of €;,&,
respectively, such that F (C,) = F,(C,) and (x) commutes, then these families
of functors determine a bifunctor G : €, x €,— Dsuchthat G¢, = F¢,, G, =Fc,

2.8. Show that €(—, —):€°"® x €— & is a bifunctor.
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3. Duality

Our object in this section is to explain informally the duality principle
in category theory. We first give an example taken from Section I.6.
We saw there that the injective homomorphisms in M, are precisely the
monomorphisms, i.e. those morphisms p such that for all «,

pe=pp=a=p. Ry

(The reader familiar with ring theory will notice the formal similarity
with right-regularity.) Similarly the surjective homomorphisms in M, are
precisely the epimorphisms in M ,, i.e. those morphisms ¢ such that for
all a, B

ae=Pfe=>a=4. 3.2

(The reader will notice that the corresponding concept in ring theory is
left-regularity.) Now given any category, we define a monomorphism u
by (3.1)and an epimorphism ¢ by (3.2). It is then plain that, if ¢ isa morphism
in @, then ¢ is a monomorphism in € if and only if it is an epimorphism
as a morphism of €°PP. It then follows from (2.3) that a statement about
epimorphisms and monomorphisms which is true in any category must
remain true if the prefixes “epi-” and “mono-" are interchanged and
“arrows are reversed”. Let us take a trivial example. An easy argument
establishes the fact that if @y is monomorphic then v is monomorphic.
We may thus apply the “duality principle” to infer immediately that if
Y is epimorphic then v is epimorphic. Indeed, the two italicized state-
ments are logically equivalent — either stated for € implies the other for
€°rP. 1t is superfluous to write down a proof of the second, once the
first has been proved.

It is very likely that the reader will come better to appreciate the
duality principle after meeting several examples of its applications.
Nevertheless we will give a general statement of the principle; this state-
ment will not be sufficiently formal to satisfy the canons of mathematical
logic but will, we hope, be intelligible and helpful.

Let us consider a concept € (like monomorphism) which is mean-
ingful in any category. Since the objects and morphisms of €°PP are those
of €, it makes sense to apply the concept ¥ to €°PP and then to interpret
the resulting statement in €. This procedure leads to a new concept €°PP

which is related to € by the rule (writing % (€) for the concept ¥ applied
to the category €)

€°PP(€) = 6(€°*?) for any category € .

Thus if € is the concept of monomorphism, #°°* is the concept of epi-
morphism (compare (3.1), (3.2)). We may also say that €°°® is obtained
from % by “reversing arrows”. This “arrow-reversing” procedure may
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thus be applied to definitions, axioms, statements, theorems ..., and hence
also to proofs. Thus if one shows that a certain theorem . holds in any
category € satisfying certain additional axioms A4, B, ..., then theorem
 °PP holds in any category € satisfying axioms A°P?, B°°? .. . In par-
ticular if 7 holds in any category so does .7 °PP.

This automatic process of dualizing is clearly extremely useful and
convenient and will be much used in the sequel. However, the reader
should be clear about the limitations in the scope of the duality principle.
Suppose given a statement %, about a particular category €, involving
concepts €y, ..., €ox €xpressed in terms of the objects and morphisms
of §,. For example, €, may be the category of groups and ., may be the
statement “A finite group of odd order is solvable”. Now it may be pos-
sible to formulate a statement & about a general category €, and concepts
€156 s0 that L(€,),%,(€y),...,%,(€,) are equivalent to %, %, ,,...,€ox
respectively. We may then dualize &,%,,...,%,, and interpret the
resulting statement in the category €,. Informally we may describe
F°PP(C,) as the dual of ¥, but two warnings are in order:

(i) The passage from %, to & is not single-valued; that is, there
may well be several statements about a general category which specialize
to the given statement %, about the category €,. Likewise of course, the
concepts €oy, €2 ---» o may generalize in many different ways.

(i) Even if %, is provable in €,, #°°?(€,) may well be false in €,

However, if & is provable, then this constitutes a proof of %, and of
F°PP(Q,). (This does not prevent & °PP(E,) from being vacuous, of course;
we cannot guarantee that the dual in this informal sense is always
interesting!)

As an example, consider the statement &, “Every A-module is the
quotient of a projective module”. This is a statement about the category
€, =M, Now there is a perfectly good concept of a projective object
in any category €, based on the notion of an epimorphism. Thus (see
Section 10) a projective object is an object P with the property that,

given ¢ and &, P
0 J o
AL—E——>B

with ¢ epimorphic, there exists 8 such that ¢80 = ¢. We may formulate the
statement %, for any category €, whieh states that, given any object X
in € there is an epimorphism ¢: P— X with P projective. Then ¥ (€)
is our original statement %,. We may now formulate &°°® which asserts
that, given any object X in € there is a monomorphism gz : X —1I with |
injective (here “injective” is the evident concept dual to “projective”; the
reader may easily formulate it explicitly). Then &°P?(€,) is the statement
“Every A-module may be embedded in an injective module”. Now it
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happens (as we proved in Chapter I) that both #(€,) and FOPP(E,) are
true, but we cannot infer one from the other. For the right to do so would
depend on our having a proof of ¥ — and, in general, & is false.

We have said that, if & is provable then, of course, & (€,) and #°P*(€,)
are deducible. Clearly, though, this is usually too stringent a criterion;
in other words, this principle does not permit us to deduce any but the
most superficial of propositions about €,, since it requires some state-
ment to be true in any category. However, as suggested earlier, there is
a refinement of the principle that does lead to practical results. Suppose
we confine attention to categories satisfying certain conditions Q. Sup-
pose moreover that these conditions are self-dual in the sense that, if any
category € satisfies Q, so does €°PP, and suppose further that €, satisfies
conditions Q. Suppose & is a statement meaningful for any category
satisfying Q and suppose that & may be proved. Then we may infer
both #(€,) and F#°PP(€,). This principle indicates the utility of proving &
for the entire class of categories satisfying Q instead of merely for €,.
We will meet this situation in Section 9 when we come to discuss abelian
categories.

Exercises:

3.1. Show that “epimorphic” means “surjective” and that “monomorphic” means
“injective”
() in S, (i) in T, (i) in G.

3.2. Show that the inclusion Z £ @) is an epimorphism in the category of integral
domains. Generalize to other epimorphic non-surjections in this category.

3.3. Consider the underlying functor U:I-&. Show that j: X,—X in T is
a homeomorphism of X, into X if and only if it is a monomorphism and, for
any f: Y—X in I, a factorization U(j)g,=U(f) in & implies jfo=fin I
with g, = U( f,). Dualize this categorical property of j and obtain a topological
characterization of the dual categorical property.

3.4. Define the kernel of a morphism ¢ : A— B in a category with zero morphisms €
as a morphism p: K— A such that (i) ¢u =0, (ii) if o =0, then y =y’ and
' is unique. Identify the kernel, so defined, in Ab and G. Dualize to obtain
a definition of cokernel in €. Identify the cokernel in b and G. Let €° be
the category of sets with base points. Identify kernels and cokernels in G°.

3.5. Generalize the definitions of kernel (and cokernel) above to equalizers (and
coequalizers) of two morphisms ¢, ¢, : A—B. A morphism u: E— A4 is the
equalizer of ¢, ¢, if (i) @, =g, u, (ii) if ¢, 1p =@,y then v =py and Y is
unique. Exhibit the kernel as an equalizer. Dualize.

4. Natural Transformations

We come now to the idea which deserves to be considered the original
source of category theory, since it was in the (successful!) attempt to
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make precise the notion of a natural transformation that Eilenberg and
MacLane were led to introduce the language of categories and functors
(see [13]).

Let F, G be two functors from the category € to the category D. Then
a natural transformation t from F to G is a rule assigning to each object X
in € a morphism ty:FX—GX in D such that, for any morphism
f:X—Y in €, the diagram

FX-2%GX

Ffl le
FY-".Gy

commutes. If ty is isomorphic for each X then ¢ is called a natural equiv-
alence and we write F~ G. It is plain that then t™!: G~ F, where ¢!
is given by (t ')y =(ty)"'. If t: F—G, u: G— H are natural transforma-
tions then we may form the composition ut: F— H, given by (ut)y
= (uy) (tx); and the composition of natural transformations is plainly
associative. Let F: €—D, G : D— € be functors such that GF ~ [:€—¢,
FG~1:D—D, where I stands for the identity functor in any category.
We then say that € and D are equivalent categories. Of course, isomorphic
categories are equivalent, but equivalent categories need not be iso-
morphic (see Exercise 4.1). We now give some examples of natural trans-
formations; we draw particular attention to the first example which
refers to the first explicitly observed example of a natural transformation.

(@) Let V be a vector space over the field F, let V* be the dual vector
space and V** the double dual. There is a linear map 1, : V— V** given
by vi— 3 where 5(¢)=@(v), ve V, ¢ € V*, § e V**, The reader will verify
that 1 is a natural transformation from the identity functor I: 8B,— B,
to the double dual functor **: B,— B,. Now let B be the full sub-
category of By consisting of finite-dimensional vector spaces. It is then,
of course, a basic theorem of linear algebra that 1, restricted to B, is
a natural equivalence. (More accurately, the classical theorem says that 1,,
is an isomorphism for each V in BL.) The proof proceeds by observing
that V> V* if V is finite-dimensional. However, this last isomorphism
is not natural — to define it one needs to choose a basis for V and then
to associate with this basis the dual basis of V'*, That is, the isomorphism
between V and V* depends on the choice of basis and lacks the canonical
nature of the isomorphism 1, between V and V**,

(b) Let G be a group and let G/G’ be its commutator factor group.
There is an evident surjection xg: G—G/G’ and « is a natural trans-
formation from the identity functor &— ® to the abelianizing functor
Abel : 66— 6.
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(c) Let 4 be an abelian group and let A, be the free abelian group
on the set A as basis. There is an evident surjection 7, : Ap— A, which
maps the basis elements of Ay identically, and t is a natural transforma-
tion from FU to I, where U:Ab— & is the underlying functor and
F: &—Ab is the free functor.

(d) The Hurewicz homomorphism from homotopy groups to homol-
ogy groups (see e.g. [21]) may be interpreted as a natural transformation
of functors T°— Ab (or T) —AD).

We continue with the following important remark. Given two cate-
gories €, D, the reader is certainly tempted to regard the functors € —D
as the objects of a new category with the natural transformations as
morphisms. The one difficulty about this point of view is that it is not
clear from a foundational viewpoint that the natural transformations
of functors €— D form a set. This objection may be circumvented by
adopting a set-theoretical foundation different from ours (see [32]) or
simply by insisting that the collection of objects of € form a set; such
a category @ is called a small category. Thus if € is small we may speak
of the category of functors (or functor category) from € to © which we
denote by D¢ or [€, D]. In keeping with this last notation we will denote
the collection of natural transformations from the functor F to the
functor G by [F, G].

We illustrate the notion of the category of functors with the follow-
ing example. Let € be the category with two objects and identity mor-
phisms only. A functor F:€— D is then simply a pair of objects in D,
and a natural transformation ¢ : F— G is a pair of morphisms in D. Thus
it is seen that D*=[C, D] is the Cartesian product of the category D
with itself, that is the category D x D in the notation of Exercise 1.6.

We close this section with an important proposition. We have seen
that, if A, B are objects of a category €, then €(4, —) is a (covariant)
functor € — & and €(—, B)is a contravariant functor §—&.1f0: B,— B,
let us write 0, for €(4, 0): €(4, B,)—C(4, B,), so that

0(@)=060p, ¢@:A4—B,
and if y : A,— A, let us write p* for €(yp, B): €(A4,, B)—CE(4,, B) so that
v*@)=9y, ¢:4,>B.

These notational simplifications should help the reader to understand
the proof of the following proposition.

Proposition 4.1. Let © be a natural transformation from the functor
€(A4, —) to the functor F from € to S. Then t+—1,(l,) sets up a one-one
correspondence between the set [€(A, —), F] of natural transformations
from €(A, —) to F and the set F(A).
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Proof. We show first that 7 is entirely determined by the element
74(1,) € F(A). Let ¢ : A— B and consider the commutative diagram

€(A, A)-*E(4, B)

FA—Ff» ,FrpB

Then () = (1) (p,) (1,) = (F9) (z,,) (1,,), proving the assertion. The pro-
position is therefore established if we show that, for any k € F A, the rule

(@) =(Fp)(x), ¢e€(4,B), (4.1
does define a natural transformation from €(4, —) to F. Let 0: B,—B,
and consider the diagram (
€(4, B)—>€(4, B,)
FB,—f% L,FB,

We must show that this diagram commutes if 7, 7, are defined as in
(4.1). Now (t,) 0,(¢) =(t,) (B9) = F(09) () = F() F(¢) () = F(6) 15,(¢p)
for ¢ : A— B,. Thus the proposition is completely proved. []

By choosing F =E€(A4’, —) we obtain

Corollary 4.2. The set of morphisms €(A4', A) and the set of natural
transformations [€(A, —), €(A', —)] are in one-to-one correspondence, the
correspondence being given by proyp* p: A'— A.

Proof. If = is such a natural transformation, let v =1,(1,), so that
yp:A'— A. Then, by (4.1) 7 is given by

7(0) = 0, (W) = oy =y*(9).

Thus 153 =y™* Of course y is uniquely determined by 7 and every y
does induce a natural transformation €(4, —)—€(4’, —). Thus the rule
t—14(1,) sets up a one-one correspondence, which we write T+,
between the set of natural transformations €(4, —)—E(A4’ —) and the
set €(4',4). [

With respect to the correspondence t+— 1 we easily prove

Proposition 4.3. Let 1:€(4, —)—>C(A',—), 7 : 4, —)>EA4", —).
Then if Ty, T'— ', where p: A'— A, ' : A”— A’, we have

Ty’ .

In particular 7 is a natural equivalence if and only if v is an isomorphism.

Proof. (t'1)p=(tp) (tg) =9 *y* = (wy)*. []
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Proposition 4.1 is often called the Yoneda lemma; it has many applica-
tions in algebraic topology and, as we shall see, in homological algebra.

If € is a small category we may formulate the assertion of Corollary 4.2
in an elegant way in the functor category &€ Then A—E(4, —) is seen
to be an embedding (called the Yoneda embedding) of €°°? in &%; and
Corollary 4.2 asserts further that it is a full embedding.

Exercises:

4.1. A full subcategory €, of € is said to be a skeleton of € if, given any object A
of €, there exists exactly one object 4, of €, with A, A. Show that every
skeleton of € is equivalent to €, and give an example to show that a skeleton
of € need not be isomorphic to €. Are all skeletons of € isomorphic?

4.2. Represent the embedding of the commutator subgroup of G in G as a natural
transformation.

43. Let F,G:€—D, E:B—C¢, H: D—( be functors, and let t: F— G be a natural
transformation. Show how to define natural transformations tE: FE—GE,
and Ht: HF — HG, and show that H(tE)= (Ht) E. Show that tE and Ht are
natural equivalences if t is a natural equivalence.

4.4. Let € be a category with zero object and kernels. Let f: A— B in € with kernel
k:K—A. Then f, : €(—,4)—CE(—, B) is a natural transformation of contra-
variant functors from € to &,, the category of pointed sets. Show that
X ker(f,)yis a contravariant functor from € to &, which is represented by
K, and explain the sense in which k, is the kernel of f,.

4.5. Carry out an exercise similar to Exercise 4.4 replacing kernels in € by co-
kernels in €.

4.6. Let A be a small category and let Y: U — [A°PP, S] be the Yoneda embedding
Y(4)=U(—, A). Let J: U—B be a functor. Define R:B—[ A &] on
objects by R(B)=B(J—, B). Show how to extend this definition to yield
a functor R, and give reasonable conditions under which Y=RJ.

4.7. Let I be any set; regard [ as a category with identity morphisms only. Describe
G’ What is €' if I is a set with 2 elements?

5. Products and Coproducts; Universal Constructions

The reader was introduced in Section 1. 3 to the universal property of the
direct product of modules. We can now state this property for a general
category G.

Definition. Let {X;}, ieI, be a family of objects of the category €
indexed by the set I. Then a product (X;p;) of the objects X, is an
object X, together with morphisms p;: X — X, called projections, with
the universal property: given any object ¥ and morphisms f;: Y— X,
there exists a unique morphism f={f;}: Y—X with p,f = f..

As we have said, in the category M, of (left) A-modules, we may
take for X the direct product of the modules X; (Section I.3). In the
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category © we have the ordinary Cartesian product, in the category I
we have the topological product (see [21]).

We cannot guarantee, of course, that the product always exists in €.
However, we can guarantee that it is essentially unique — again the reader
should recall the argument in Section I. 3.

Theorem 5.1. Let (X ; p,),(X'; p;) both be products of the family {X },i€l,
in &. Then there exists a unique isomorphism & : X— X' such that p;é =p,,
iel

Proof. By the universal property for X there exists a (unique) mor-
phism n:X'— X such that p=p. Similarly there exists a (unique)
morphism £ : X— X’ such that p;¢é = p,. Then

piné=p,=p;1 forall iel.

But by the uniqueness property of (X;p,), this implies that n¢=1.
Similarly én=1. [J

Of course, the uniqueness of (X; p;) expressed by Theorem 5.1 is as
much as we can possibly expect. For if (X; p;) is a product and 7 : X' X,
then (X'; p;n) is plainly also a product. Thus we allow ourselves to talk
of the product of the X;. We may write X = | | X, f = {f;}. By abuse we
may even refer to X itself as the product of the X,. If the indexing set is
I=(1,2,...,nywemaywrite X=X, x X, x --- x X,and f = {f|,fa, -, fu}-

As we have said, such a product may not exist in a given category.
Moreover, it is important to notice that the universal property of the
product makes reference to the entire category. Thus it may well happen
that not only the question of existence of a product of the objects X, but
even the nature of that product may depend on the category in question.
However, before giving examples, let us state a few elementary pro-
positions.

Proposition 5.2. Let € be a category in which €(X, Y) is non-empty
for all X, Y (eg., a category with zero object). Then if [] X exists it

admits each X; as a retract. Thus, in particular, each p, is an epimorphism.
Proof. In the definition of [ [ X, take Y =X, for a fixed je I, and

fj=1:X;— X, Fori=*jlet f; be arbitrary. Then p; f = 1: X;— X so that
[ 1 X; retracts through p; onto X;. [}

Proposition 5.3. Given two families {X}, {Y;} of objects of €, indexed
by the same indexing set I, then if the products [| X, [ | Y; exist, and if

fi: X,— Y, iel, there is a uniquely determined morphism

(11X
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such that

pi(Ufi) = fip:-

Moreover, if € admits products for all families indexed by I, then [] is
a functor f

H:Q:I_’Q:-

Proof. The first assertion is merely an application of the universal
property of [ | Y. The proof of the second is left to the reader. (It should

be clear what we understand by the category €, see Exercise 4.7.) []
If I=(1,2,...,n) we naturally write f; x f, x --- x f, for [] .

Proposition 5.4. Let f,: Z—X,, g:W—Z, g;: Xi—Y;, i€l Then, if
the products in question exist,

W {flg={fig}, () (Hgi){fi}:{gifi}'

Proof. We leave the proof to the reader, with the hint that it is suf-
ficient to prove that each side projects properly onto the i-component
under the projection p;. []

Proposition 5.5. Let € be a category in which any two objects admit
a product. Thus given objects X, Y, Z in € we have projections

P XxY—>X, g (XxY)xZ—o>XxY,
P2: XXY>Y, g, (XxY)xZ—Z.

Then (X x Y)X Z; p,qy, p24;, q,) is the product of X, Y, Z.

Proof Given fi : W—X, f,: W—Y, f;: W—Z, weformg: W— X x Y
such that p,g=f,, p,g=f,. We then form h: W—(X x Y) x Z such
that g, h=g, g,h= f;. Then p,q,h= f,, p,q,h = f,. It remains to prove
the uniqueness of 4, so we suppose that p,q,h =p,q, k', p,q,h =p,q,l,
g2h=q,h'. One application of uniqueness (to X x Y) yields g h=q.l;
and a second application yields h=h". []

Proposition 5.6. If any two objects in € admit a product, so does any
finite collection of objects.

Proof. We argue by induction, using an obvious generalization of
the proof of Proposition 5.5. []

Proposition 5.5 may be said also to exhibit the associativity of the
product. Thus, there are canonical equivalences

(XxY)XZxXxYxZ=Xx(YxZ).

In an even stronger sense the product is commutative for the very defini-
tion of X x Y is symmetric in X and Y.
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The reader has already met many examples of products (in &, I, I,,
®, M, for example). There are, of course, many other examples familiar
in mathematics. We now give a few examples to show what care must
be taken in studying products in arbitrary categories.

Examples. (a) In the category & (2) of two-clement sets, no two
objects admit a product. For let B=(b,, b,), C =(c,, ¢,) be two such sets
and let us conjecture that (D; p,, p,) is their product, D =(d,, d,). This
means that, given 4=(a,, a,), f: A— B, g: A— C, there exists (a unique)
h: A—D with p,h= f, p,h=g. Now p, must be surjective since we may
choose f surjective; similarly p, must be surjective. Without real loss of
generality we may suppose p,(d;) = b;, p,(d)) = ¢;,i =1,2. Now if f(4) = (b,),
g(4) = (c,), we have a contradiction since h must miss d, and d,. Notice
that the assertion of this example is not established merely by remarking
that the Cartesian product of B and C is a 4-element set and hence not
in S(2).

(b) Consider the family of cyclic groups Z ., of order p*, k=1,2, ...,
where p is a fixed prime. Then

(i) in the category of cyclic groups no two groups of this family have
a product;

(i) in the category of finite abelian groups the family does not have
a product;

(iii) in the category of torsion abelian groups, the family has a product
which is not the direct product;

(iv) in the category of abelian groups, and in the category of groups,
the direct product is the product.

We now prove these assertions.

() If(Z,; 41, q2) is the product of Z ., Z, then, as in the previous
example, one immediately shows that g,, g, are surjective. Suppose k =1,
then m = p*n and we may choose generators a, f, f, of Z,,, Zx, Z,: s0
that g(0)=p;, i=1,2. Given f,=1: Z,—Zy, f,=0:Z,—Z, sup-
pose f(B,) = sa, where f = { f1,f,}. Then s = 1 mod p*, s = 0mod p', which
is absurd.

(i) If (4; g, k=1,2,...) were the product of the entire family, then,
again, each g, would be surjective. Thus the order of A would be divisible
by p* for every k, which is absurd. (This argument shows, of course, that
the family has no product even in the category of finite groups.)

(iii) Let T be the torsion subgroup of the direct product P of the
groups Z . By virtue of the role of P in & it is plain that (T; g;) is the
product in the category of torsion abelian groups, where g, is just the
restriction to T of the projection P—Z ..

(iv) Well-known.
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We now turn briefly to coproducts. The duality principle enables us
to make the following succinct definition:

Definition. Let {X,}, ie I, be a family of objects of the category €
indexed by the set I. Then (X g;) is a coproduct of the objects X; in €
if and only if it is a product of the objects X; in €°PP,

This definition means, then, thatin €, ¢, : X;— X and given morphisms
fi: X;— Y there exists a unique f: X — Y with fg, = f,. The morphisms
g;: X;— X are called injections. We write X =[[X,, f=<f>, and if

I=(1,2,...,n), then X=X, L X, Il --- U X,, f={ 1-f2--sfup- We
need not state the duals of Proposition 5.2 through 5.6, leaving their
enunciation as an exercise for the reader. We mention, however, a few
examples.

Examples. (a) In & the coproduct is the disjoint union with the evident
injections g;.

(b) In X the coproduct is the disjoint union with the natural topology.

(¢) In I the coproduct is the disjoint union with base points
identified.

(d) In ® the coproduct is the free product with the evident injections
g;, see [36].

(e) In 9%, the coproduct is the direct sum. In this case we shall write
@ instead of 1. We leave it to the reader to verify these assertions.

Exercises:

5.1. Let €, D be categories admitting (finite) products. A functor F:€— D is said
to be product-preserving if for any objects A,, A, of €, (F(A, x A,); Fp,, Fp,)
is the product of FA, and FA4, in ®. Show that in the list of functors given
in Section 2, b), d, ¢), g) are product-preserving, while c), f) are coproduct-
preserving.

5.2. Show that a terminal (initial) object may be regarded as a (co-) product over
an empty indexing set.

5.3. Show that 4 is the product of 4, and 4, in € if and only if €(X, A) is the
product of (X, 4;) and €(X, 4,) in & for all X in €. (To make this statement
precise, one should, of course, mention the morphisms p, and p,.) Give a
similar characterization of the coproduct.

S.4. Let € be a category with zero object and finite products. A group in € is a pair
(A, m), where A is an object of € and m: A x A— A in @, subject to the axioms:

G 1: (Associativity) m(m x 1) =m(1 x m);
G2: (Two-sided unity) m{1,0} = 1=m{0, 1};
G 3: (Two-sided inverse) There exists ¢ : A~ A such that

m{l,6} =0=m{a, 1}.
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In other words the following diagrams are commutative

AXAx A" A% A Ax ALY 400 4y

Ax AL g 0D, 450 4
‘A
Let &' be the category of sets with specified basepoints. Show that a group
in €' is just a group in the usual sense. Show that (4, m) is a group in € if and
only if €(X, 4) is a group (in &) for all X in € under the obvious induced
operation m,. Show that, if B is an object of € such that €(X, B) is a group
for all X in € and if f: X — Y in € induces a homomorphism f* : (Y, B)—
C(X, B), then B admits a unique group structure m in € such that m, is the
given group structure in €(X, B).

5.5. Show that if (4, m) satisfies G1 and the one-sided axioms

G2R: m{1,0}=1;

G3R: There exists 6 : 4— A4 such that m{1,6} =1,

then (4, m) is a group in €. Show also that ¢ is unique. (Hint : Use the argument
of Exercise 5.4.)

5.6. Formulate the condition that the group (4, m) is commutative. Show that
a product-preserving functor sends (commutative) groups to (commutative)
groups.

5.7. Define the concept of a cogroup, the dual of a group. Show that in Wb (W)
every object is a cogroup.

5.8. Let € be a category with products and coproducts. Let f;;: X;— Y;in €, iel,
jeJ. Show that {{f;};esVicr={{fiDierljes: 11 Xi—[] ¥;. Hence, if € has

iel jeld
a zero object, establish a natural transformation from [ ] to [].

iel iel
6. Universal Constructions (Continued); Pull-backs and Push-outs

We are not yet ready to say precisely what is to be understood by
a universal construction. Such a formulation will only become possible
when we are armed with the language of adjoint functors (Section 7).
However, we now propose to introduce a very important example of
a universal construction and the reader should surely acquire an under-
standing of the essential nature of such constructions from this example
(together with the examples of the kernel, and its dual, the cokernel; see
final remark in Section I. 1).

It must already have been apparent that a basic concept in homo-
logical algebra, and, more generally, in category theory, is that of a com-



60 II. Categories and Functors

mutative diagram, and that the most fundamental of all commutative
diagrams is the commutative square

"j j"’ pa=ypp. (6.1)

There thus arises the natural question. Given ¢,y in (6.1), is there
a universal procedure for providing morphisms «, f to yield a com-
mutative square? Of course, the dual question arises just as naturally, and
may be regarded as being treated implicitly in what follows by the applica-
tion of the duality principle. Explicitly we will only consider the question
as posed and we immediately provide a precise definition.

Definition. Given ¢ : A— X, y:B—X in €, a pull-back of (¢, ) is
a pair of morphisms «: Y—A, f: Y— B such that pa=yp, and (6.1)
has the following universal property: given y:Z—A, é:Z—B with
@y = o, there exists a unique {: Z—Y with y=af, 6=pL

6.2)

B> X

Just as for the product, it follows readily that, if a pull-back exists, then
it is essentially unique. Precisely, if («, #') is also a pull-back of (¢, ),
oY —A, B’ Y'— B, then there exists a unique equivalence w: Y—Y’
such that o'w =a, f’w = f. Thus we may permit ourselves to speak of the
pull-back of ¢ and .

We write (Y; a, f§) for the pull-back of ¢ and . Where convenient we
may abbreviate this to (, ) or to Y. We may also say that the square
in (6.2) is a pull-back square.

Notice that the uniqueness of { in (6.2) may be expressed by saying
that {a, B} : Y—A x B is a monomorphism, provided that 4 x B exists
in €. In fact, there is a very close connection between pull-backs and
products of two objects. On the one hand, if € has a terminal object T
andif ¢ : A— T, yp: B— T are the unique morphisms then the pull-back
of ¢ and y consists of the projections p,; : A x B— A4, p,: Ax B—B. On
the other hand we may actually regard the pull-back as a product in
a suitable category. Thus we fix the object X and introduce the category
C/X of €-objects over X. An object of €/X is a morphism k: K— X in €
and a morphism ¢ :x— A2 in §/X is a morphism ¢: K— L in € making
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the diagram
K—>L

V,

commutative, Ag = k. Now let 4 = po = y 8 be the diagonal of the square
(6.2). Then the reader may easily prove

Proposition 6.1. (4; «, f) is the product of ¢ and v in €/X. []

This means that a, § play the roles of p,, p, in the definition of
a product, when interpreted as morphisms o: 4—¢, f: 4—yp in €/X.

From this proposition we may readily deduce, from the propositions
of Section 5, propositions about the pull-back and its evident generaliza-
tion to a family, instead of a pair, of morphisms in € with codomains X.
We will prove one theorem about pull-backs in categories with zero
objects which applies to the categories of interest in homological algebra.
We recall first (Exercise 3.4) how we define the kernel of a morphism
o : K— Lin acategory with zero objects by means of a universal property.
We say that u: J—>K is a kernel of ¢ if (i) op=0 and (ii) if o6t=0 then z
factorizes as = ut,, with 7, unique. As usual, the kernel is essentially
unique; we (sometimes) call J the kernel object. Notice that u is monic,
by virtue of the uniqueness of t,,.

Theorem 6.2. Let (6.1) be a pull-back diagram in a category € with zero
object. Then
() if (J, p) is the kernel of B, (J, ap) is the kernel of ¢
(i) if (J, v) is the kernel of @, v may be factored as v=au where (J, p)
is the kernel of B.

Note that (ii) is superfluous if we know that every morphism in € has
a kernel. We show here, in particular, that § has a kernel if and only if ¢
has a kernel, and the kernel objects coincide.

Proof. (1)

Set v=au. We first show that v is monomorphic; for y and {«, 8} are
monomorphic, so {a, 8} u ={v,0}: J— 4 x B is monomorphic and hence,
plainly, v is monomorphic. Next we observe that pv=g@au=yBu=0.
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Finally we take 7: Z— A4 and show that if ¢t =0 then t=v1, for some
7o. Since 0 =0, the pull-back property shows that there exists 6: Z—Y
such that ag =1, fo=0. Since (J, u) is the kernel of §, 6 = ut,, so that
T=0UTy=VT,.

(ii) Since @v=0 we argue as in (i) that there exists u:J—Y with
ap=v, fu=0. Since v is a monomorphism, so is u and we show that
(J, ) is the kernel of B. Let f1=0, 1: Z—Y. Then pat=ypfr=0, so
AT =VTy=0uty. But Br=fur,=0, so that, {a, f} being a mono-
morphism, t= 1. [

In Chapter VIII we will refer back to this theorem as a very special
case of a general result on commuting limits. We remark that the intro-
duction of 4 x B in the proof was for convenience only. The argument
is easily reformulated without invoking 4 x B.

As examples of pull-backs, let us consider the categories S, I, ®.
In &, let @, p be embeddings of 4, B as subsets of X ; then Y=An B and
o, B are also embeddings. In T we could cite an example similar to that
given for S; however there is also an interesting example when ¢, say,
is a fiber-map. Then f is also a fiber-map and is often called the fiber-map
induced by Yy from ¢. (Indeed, in general, the pull-back is sometimes
called the fiber-product.) In ® we again have an example similar to that
given for &; however there is a nice general description of Y as the sub-
group of A x B consisting of those elements (a, b) such that ¢(a) = yp(b).

The dual notion to that of a pull-back is that of a push-out. Thus, in
(6.1), (@, y) is the push-out of («, f) in € if and only if it is the pull-back
of (a, B) in €°PP. The reader should have no difficulty in formulating an
explicit universal property characterizing the push-out and dualizing the
statements of this section. If &, § are embeddings (in S or T)of Y=4ANB
in A and B, then X = AUB. In ® we are led to the notion of free product
with amalgamations [36].

We adopt for the push-out notational and terminological conventions
analogous to those introduced for the pull-back.

Exercises:

6.1. Prove Proposition 6.1.
6.2. Given the commutative diagram in @

A4, 4,
l‘l’l jv(l’z l P3
Bl—/T)BZT)B3
show that if both squares are pull-backs, so is the composite square. Show

also that if the composite square is a pull-back and «, is monomorphic, then
the left-hand square is a pull-back. Dualize these statements.
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6.3. Recall the notion of equalizer of two morphisms ¢, ¢,:A—B in € (see
Exercise 3.5). Show that if € admits finite products then € admits pull-backs
if and only if € admits equalizers.

6.4. Show that the pull-back of
A

E

0——B

in the category € with zero object 0 is essentially just the kernel of ¢. Generalize
this to 4

@
C—%B

where p is to be regarded as an embedding.

6.5. Identify the push-out in &, ® and Mt ,.

6.6. Show that the free module functor @—I, preserves push-outs. Argue
similarly for the free group functor.

6.7. Show that, in the category M ,, the pull-back square

A —>4,

BI—B-)BZ

is also a push-out if and only if {¢,, 8> : A, @ B,— B, is surjective.
6.8. Formulate a “dual” of the statement above — and prove it. Why is the word
“dual” in inverted commas?

7. Adjoint Functors

One of the most basic notions of category theory, that of adjoint functors,
was introduced by D. M. Kan [30]. We will illustrate it first by an
example with which the reader is familiar from Chapter I. Let F : S— I,
be the free functor, which associates with every set the free A-module
on that set as basis; and let G : I ,— S be the underlying functor which
associates with every module its underlying set. We now define a trans-
formation, natural in both S and 4,

n=ns4: M4(FS, A)—S(S, GA)

associating with a A-module homomorphism ¢ : FS— A the restriction
of ¢ to the basis S of FS. The reader immediately sees that the universal
property of free modules (Proposition 1.4.2) is expressed by saying that
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5 is an equivalence. Abstracting from this situation we make the fol-
lowing definition:

Definition. Let F:€—D, G: D— € be functors such that there is a
natural equivalence

n=nxy: DFX, Y)>C(X,GY)

of functors €°FF x D— S. We then say that F is left adjoint to G, G is
right adjoint to F, and write i : F = G. We call 5 the adjugant equivalence
or, simply, adjugant.

In the example above we have seen that the free functor F: S— I,
is left adjoint to the underlying functor G:9,— &. The reader will
readily verify that the concept of a free group (free object in the category
of groups) and the concept of a polynomial algebra over the field K
(free object in the category of commutative K-algebras) may also be
formulated in terms of a free functor left adjoint to an underlying functor.
From this, one is naturally led to a generalization of the concept of a
free module (free group, polynomial algebra) to the notion of an object in
a category which is free with respect to an “underlying” functor.

The theory of adjoint functors will find very frequent application in
the sequel; various facts of homological algebra which were originally
proved in an ad hoc fashion may be systematically explained by the use
of adjoint functors. We now give some further examples of adjoint
functors.

(@) In Proposition 1.8.1 we have considered the functor G : Ab— I,
defined by

GC=Homyz(4,C), C in Ub,

where the (left) 4-module structure in GC is given by the right A-module
structure of A. We denote by F:Ik,—Ab the underlying functor,
which forgets the A-module structure. Proposition 1.8.1 then asserts
that there is a natural equivalence

1 : Hom ,(4, GC)=>Homy(F A, C)

for Ain M, and C in Ab. Thus F is left adjoint to G and ™! : F—G is
the adjugant.

(b) Given a topological Hausdorff space X, we may give X a new
topology by declaring F C X to be closed if F~ K is closed in the original
topology for every compact subset K of X. Write X for the set X
furnished with this topology. Plainly X, is a Hausdorff space and
the obvious map X, — X is continuous. Also, given f : X — Y, a continuous
map of Hausdorff spaces, then f: Xz— Y is also continuous. For if
F is closed in Yy and if L is compact in X, then

fTYFaL=f"YWFnfL)nL
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is closed in X, so that f ' F is closed in X;. We call a Hausdorff space
a Kelley space if its closed sets are precisely those sets F such that FNnK
is closed for every compact K. If X is a Kelley space then X = Xi; and
X, is a Kelley space for every Hausdorff space X. Summing up, we have
the category $ of Hausdorff spaces, the category & of Kelley spaces, the
functor K:$H— K, given by K(X)= X, and the embedding functor
E: ! —$%. The facts adduced show that E-K.

We will give later a theorem (Theorem 7.7) which provides additional
motivation for studying adjoint functors. However, we now state some
important propositions about adjoint functors.

Proposition 7.1. Let F:€—D, F': D—-€, G:D—-C¢, ¢:€—-D be
functors and let n: F—G, n': F'G' be adjugants. Then n" : FFF1GG/,
where n" =n-y'.

We leave the proof as an exercise. []
Next we draw attention to the relation which makes explicit the

naturality of #. We again refer to the situation #:F—G. Then this
relation is

npe@eoFa)=GBn(@)-a, (7.1)
forall a:X'—>X, @:FX—>Y, f:Y->Y.

In particular, take Y=FX, ¢ =1;4, and set ex=n(lpx): X —>GFX.
Then (7.1) shows that ¢ is a natural transformation, ¢: 1—GF. We call ¢
the front adjunction or unit. Similarly take X=GY, and set

Sy=n"1(lgy): FGY—>Y.

Again (7.1) shows that § is a natural transformation, 6 : FG— 1, which we
call the rear adjunction or counit. Further, (7.1) implies that

FE&FGF2E, F, G-5HGFGELG
are identity transformations,
0F-Fe=1, GboeG=1. (7.2

For #(Spx° Fex) =n(0rx)° ex =¢x =1(1px); and the second relation in
(7.2)is proved similarly. Notice aiso that (7.1) implies that  is determined
by ¢, and that £=#5"" is determined by 9, by the rules

n@)=Gp-ex, for @ FX—Y,
Ep)=n"Yw)=dy°Fyp, for yp:X—GY.

We now prove the converse of these results.

(7.3)

Proposition 7.2. LetF:€—D,G: D— Ebe functorsandlete: 1—GF,
§:FG—1 be natural transformations such that FcFe=1,Gd°sG = L
Theny: D(FX, Y)—C(X, GY), defined by n@)=Geeey, foro: FX —Y,
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is a natural equivalence, so that v : F—G. Moreover, g, 6 are the unit and
counit of the adjugant n.

Proof. First, n is natural. For

HBe@eoFa)=G(Bqe°Fo)oey.
=GPoGooGFuc ey
=GPoGyogyoa, since ¢ is natural

=Gen(@)ea.

Define ¢ by &(p) =0y Fy, for v : X —GY. Again, ¢ is natural and we
will have established that #: F— G if we show that ¢ is inverse to #.
Now if ¢ : FX —Y, then

En(p) =6y Fn(p)
=0y°FGp-Fey
=@odpx°Fey, since d is natural
=¢, by(72).

Thus 7 =1 and similarly #¢ = 1. Finally we see that if ¢/, & are the unit
and counit of #, then

& =n(lpx)=lgryoex=¢tyx,
and

ly=f(lcy):5Y° lpgy=96y. 0

Proposition 7.3. Suppose F—G. Then F determines G up to natural
equivalence and G determines F up to natural equivalence.

Proof. 1t is plainly sufficient to establish the first assertion. Suppose
then that n:F—G,n : F1G. Consider the natural equivalence of
functors

-1

€(—, GY) = D(F =, ¥)— (=, G Y).

By the dual of Corollary 4.2 and Proposition 4.3 such an equivalence
is induced by an isomorphism 6, : GY—G'Y. Since n'on~! is natural
in Y, it readily follows that 6 is a natural equivalence. d

We remark that if ¢, 8, ¢, §' are unit and counit for 1,1, then

Oy = ’7,’7‘1(16}') =n'(dy) = G'(dy)° gy
or, briefly,
0=Gd6-¢G. (7.4)

It then immediately follows that the inverse & of 0 is given by

0=GS<¢G' . (7.5)
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_Proposition 7.4. Under the same hypotheses as in Proposition 7.3, with
0.0 defined as in (7.4), (7.5), we have

(i) OFce=¢; 6o FO=¢';

(i) Oy°n(@)=n'(p), for any ¢ : FX—Y.

Conversely, let y: F <G and let 8: G— G’ be a natural equivalence.
Then n': F A G', where ' (®) =0y o n(¢p). Moreover, if ¢ and & are the unit
and counit for n, then ¢ and o', the unit and counit for n', are given by (i)
ubove.

Proof. (i) OF°e=G0F-¢GFo¢
=G oOF-G'Feg-¢, by the naturality of ¢,
=g
3°FO0=3°FGd' < FeG'
=0'-0FG' -FeG', Dby the naturality of 9,

=4,
(i) Oy-n(p)=0y>Gopoey
=G @obpx°oey, by the naturality of 6
=G'ooe, by (1),
=1'(e).

The proof of the converse is left as an exercise to the reader. []
Proposition 7.5. If F:C€—D is full and faithful and if F G, then the
unit ¢: 1— GF is a natural equivalence.
Proof. Let 6: FG—1 be the counit. Then 6F: FGF—F. Since F
is full and faithful we may define a transformation ¢: GF—1 by
Fox=0px
and it is plain that ¢ is natural. We show that ¢ is inverse to e. First,
FooFe¢=0F-Fe=1, so that gc¢=1, since F is faithful. Second, if
is the adjugant, then

n '(ex°ox)=Fox, by(72)and(73),
=0rx
=1 Ylgrx)-
Thus ¢° ¢ = 1 and the proposition is proved. []

Proposition 7.6. If F:C—D is a full embedding and if F—G, then
there exists G' with F— G’ where the unit ¢ : 1> G'F is the identity.
Proof. We construct the functor G’ as follows

G(Y)=G(Y) if Yé¢ImF,
GFX)=X.
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Forp:Y,—Y,
G'B=GP) if  Y,Y,¢ImF,
=F Y if Y,,Y,elmF,
=G(B)ee if Y,elmF, Y,¢ImF,
=gcGP) if Y, ¢ImF, Y,elmF,
where gisinverse to ¢ asin Proposition 7.5. A straightforward computation

shows that G’ is a functor. _
We now define transformations 8: G—G’, 8: G'—G by

Oy =15y if Y¢ImF,

=0y if Y=FX;

Oy=1gy if Y¢ImF,

=¢x if Y=FX.
Again it is easy to show that 0,0 are natural and they are obviously
mutual inverses. Thus, by Proposition 7.4, F— G’ and the counit for this

adjunction is given by
ex=0pxoex=9xcex=15, sothat ¢&=1. []

The reader should notice that where F—G with GF=1 and ¢=1,
then the adjointness is simply given by a counit §: FG— 1, satisfying

o0F=1, Gé=1.

We close this section by relating adjoint functors to the universal
constructions given in previous sections. The theorem below will be
generalized in the next section.

Theorem 7.7. If G: D—Q has a left adjoint then G preserves products,
pull-backs and kernels.

Proof. We must show that if {¥; p;} is the product of objects Y,
in D, then {GY; G(p,)} is the product of the objects G(Y;) in €. Suppose
given f;:X—GY,. Let n: FG with inverse &. Then ESf): FX —Y,
so that there exists a unique g: FX — Y with p,g = &(f,). Then

G(p)onlg) =n(pg9)=f;.

Moreover #(g) is the unique morphism f such that G(p)e f =1, for
every f': X—GY is of the form f'=x(g') and g is uniquely determined
by pig =<(f)).

Next we look at pull-backs. Given a pull-back

Y—=-4
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in D, we assert that GY-S%,GA

GB—~>GX

is a pull-back in €. So suppose given y:Z - GA, 6: Z - GB in € with
Gpoy=Gy-45. Applying & we have ¢@o&(y)=ye£E&(0). Thus there
exists a unique g¢: FZ—Y such that aecg=£&(y), foo=E(0). Applying
1, G() o (o) =y, G(B) > n(e) = 4, and, as for products, #(g) is the unique
morphism satisfying these equations

We leave the proof that G preserves kernels to the reader. []

Exercises:

7.1. Prove Proposition 7.1.
7.2. Establish that G’ in Proposition 7.6 is a functor.

7.3. Show that if G: D— € has a left adjoint, then G preserves equalizers. Deduce
that G then preserves kernels.

7.4. Let ,,Ab be the full subcategory of A consisting of those abelian groups 4
such that mA = 0. Show that , b admits kernels, cokernels, arbitrary products
and arbitrary coproducts. Let E:, Ab—Ab be the embedding and let
F:Ab— ,ADb be given by F(4)=A/mA. Show that FE.

7.5. Show that it is possible to choose, for each A-module M, a surjection
P(M)-2%» M, where P(M) is a free A-module, in such a way that P is a functor
from M, to the category &, of free A-modules and ¢, is a natural transfor-
mation. If E : & ,— M, is the embedding functor, is there an adjugant n: E—P
such that ¢ is the counit?

7.6. Let € bea category with products and let D : €— € be the functor D(4) = 4 x A.
Discuss the question of the existence of a left adjoint to D, and identify it,
where it exists, in the cases € =S, € =3, €=3° € =6, € =IN,. What can
we say in general?

8. Adjoint Functors and Universal Constructions

Theorem 7.7 established a connection between adjoint functors and
universal constructions. We now establish a far closer connection which
will enable us finally to give a definition of the notion of universal con-
struction! At the same time it will allow us to place Theorem 7.7 in a
far more general context.

As our first example of a universal construction we considered the
case of a product. We recall that we mentioned in Proposition 5.3 that
the construction of a product over the indexing set I could be regarded
as a functor €/ —&. Now there is a constant functor (or diagonal functor)
P:C— @’ given by P(B)={B;},iel, where B;=B for all ie I. Suppose
PG and let : PG—1 be the counit of the adjunction. Then if {X i}
is an object of €7, § determines a family of morphisms p; : G{X;})— X
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Proposition 8.1. The product of the objects X; is (X;p;) where
X =G({Xi})'

Proof. Given f;: Y—X,, we have a morphism f = {f;} : P(Y)—{X}.
Then #(f) is a morphism Y+ X such that, by (7.3),

8P(f)=11.

But this simply means that p; > 5(f) = f; for all i. Moreover the equations
0 ° P(g) = f determines g, since then, again by (7.3), g=#n(f). [

Thus we see that the product is given by a right adjoint to the constant
functor P:@— €', and the projections are given by the counit of the
adjunction. Plainly the coproduct is given by a left adjoint to the constant
functor P, the injections arising from the unit of the adjunction. We
leave it to the reader to work out the details.

Generalizing the above facts, we define a universal construction
(corresponding to a functor F) as a left adjoint (to F) together with the
counit of the adjunction, or as a right adjoint (to F) together with the
unit of the adjunction. Quite clearly we should really speak of universal
and couniversal constructions. However, we will adopt the usual con-
vention of using the term “universal construction” in both senses.

We now give a couple of examples, to show just how universal
constructions, already familiar to the reader, turn up as left or right
adjoints. We first turn to the example of a pull-back.

Let £ be the category represented by the schema

_
that is, £ consists of three objects and two morphisms in addition to

the identity morphisms. We may write a functor 8—@ as a pair (@, p)
in € and represent it as

There is a constant functor F from € to the functor category €° which
associates with Z the diagram
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Notice that a morphism (y, 8) : F(Z)— (¢, v) in € is really nothing but
a pair of morphisms y:Z— A4, é : Z— B in € such that the square

Z—r4

commutes. Now let FG and let 7: FG—1 be the counit of the
adjunction.

Proposition 8.2. 7: FG(p, p)— (@, v) is the pull-back of (¢, y).

Proof. Let G(p,y)=Y. Then n: F(Y)— (¢, y) is a pair of morphisms
o:Y—A,B:Y— B such that g =1 . Moreover, if (y, ) : F(Z)— (o, v),
then y =n(y, §): Z— Y satisfies, by (7.3)

o F(n)=(y,0),

thatis,aon =7, fon=056.Moreover theequationz © F({) = (y, §)determines
Casn(y,d). [

We remark that in this case (unlike that of Proposition 8.1) F is a
full embedding. Thus we may suppose that the unit ¢ for the adjunction
F—1G is the identity. This means that the pull-back of F(Z) consists of
(1;,1,). To see that F is a full embedding, it is best to invoke a general
theorem which will be used later. We call a category ‘B connected if,
given any two objects A4, B in ‘P there exists a (finite) sequence of objects
Ay, A,, ..., A, in P such that 4, = A4, A, =B and, for any i, 1 Sign—1,
B(A4;, 4;41)VB(A4; 1, A;) £0. This means that we can connect A to B
by a chain of arrows, thus:

A—se—s i -—B

Theorem 8.3. Let B be a small connected category and let F: €—@*
be the constant functor. Then F is a full embedding.

Proof. The point at issue is that F is full. Let f: X — Y in € and let
P, O be objects of PB. We have a chain in P

P-).(-.-)...(_._)Q
and hence must show that, given a commutative diagram
X—1oXt-Xx-1s. L x1oX

TR

Y15Vl v 1. L YV 1Y

in €, then [’ = f; but this is obvious. []
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Notice that an indexing set I, regarded as a category, is not connected
(on the contrary, it is discrete) unless it is a singleton. On the other hand,
directed sets are connected, so that our remarks are related to the
classical theory of inverse limits (and by duality, direct limits). The reader
is referred to Chapter VIII, Section 5, for details.

It is clear that the push-out is a universal construction which turns
up as a left adjoint to the constant functor F : €— €**"". Plainly also the
formation of a free A-module on a given set is a universal construction
corresponding to the underlying functor U : M ,— &, which turns up
as left adjoint to U.

We now discuss in greater detail another example of a universal
construction which turns up as a left adjoint and which is of considerable
independent interest: the Grothendieck group. Let S be an abelian
semigroup. Then S x § is also, in an obvious way, an abelian semigroup.
Introduce into S x S the homomorphic relation (a, b) ~ (¢, d) if and only
if there exists ue S with a+d+u=b+c+u.

This is plainly an equivalence relation; moreover, (S x S)/ ~ = Gr(S)
is clearly an abelian group since

la,b] +[b,a]=[a+b,a+b]=[0,0]=0,

where square brackets denote equivalence classes. Further there is a
homomorphism 1: §— Gr(S), given by 1(a)=[a, 0], and 1 is injective if
and only if S is a cancellation semigroup.

[t is then easy to show that 1 has the following universal property.
Let A be an abelian group and let : S— A4 be a homomorphism. Then
there exists a unique homomorphism &: Gr(S)— A4 such that ol1=o0,

S——Gr(S)

o 8.1)
A

Finally, one readily shows that this universal property determines
Gr(S) up to canonical isomorphism; we call Gr(S) the Grothendieck
group of §.

We now show how to express the construction of the Grothendieck
group in terms of adjoint functors. Let b be the category of abelian
groups, let Abs be the category of abelian semigroupsandlet E : Ab—Abs
be the embedding (which is, of course, full). Suppose that F—E and let
1:1—>EF be the unit of the adjunction. Then the reader may readily
show that F(S) is the Grothendieck group of S, that 15 coincides with :
in (8.1), and that g =#""(6) — note that ¢ in (8.1) is strictly a morphism
S—E(A) in Abs.

The precise formulation of the notion of a universal construction
serves to provide a general explanation of the facts asserted in Theorem
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7.7. Given a functor F : €— D and a small category ‘B there is an obvious

induced functor F*: €®*— D®, The reader will readily prove the following
lemmas.

Lemma 8.4. If FG, then F*—G*. []

Lemma 8.5. If P: €—G® is the constant functor (for any €), then
the diagram

(AN (g

l Pm

DD
commutes. []

We infer from Propositions 7.1, 7.3 and Lemmas 8.4, 8.5 the following
basic theorem.

Theorem 8.6. Let F:€—D and F—G. Further let P—R (for
P:C—C®and P: D— D®). Then there is a natural equivalence GR— RG®
uniquely determined by the given adjugants. []

This theorem may be described by saying that R commutes with
right adjoints. In Chapter 8 we will use the terminology “limit” for such
functors R right adjoint to constant functors. Its proof may be summed
up in the vivid but slightly inaccurate phrase: if two functors commute
so do their (left, right) adjoints. The percipient reader may note that
Theorem 8.6 doesnot quite give the full force of Theorem 7.7. For Theorem
7.7 asserts for example that if a particular family {Y;} of objects of ®
possess a product, so does the family {G Y} of objects of €; Theorem 8.10,
on the other hand, addresses itself to the case where the appropriate
universal constructions are known to exist over the whole of both cate-
gories. The reader is strongly advised to write out the proof of Theorem
8.6 in detail.

Exercises:

8.1. Write out in detail the proofs of Lemma 8.4, Lemma 8.5 and Theorem 8.6.

8.2. Express the kernel and the equalizer as a universal construction in the precise
sense of this section.

8.3. Give examples of Theorem 8.6 in the categories &, ® and M,,.

8.4. Let S be an abelian semigroup. Let F(S) be the free abelian group freely
generated by the elements of S and let R(S) be the subgroup of F(S) generated
by the elements

atb—(a+b),abeSs;

here we write 4 for the addition in F(S) and + for the addition in S. Establish
a natural equivalence
Gr(S)= F(S)/R(S) .
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8.5. Show that if S is a (commutative) semiring (i.c., S satisfies all the ring axioms
except for the existence of additive inverses), then Gr(S) acquires, in a natural
way, the structure of a (commutative) ring.

8.6. Show how the construction of the Grothendieck group of a semigroup S,
given in Exercise 8.4 above, generalizes to yield the Grothendieck group of
any small category with finite coproducts.

8.7. The Birkhoff-Witt Theorem asserts that every Lie algebra g over the field K
may be embedded in an associative K-algebra Ug in such a way that the
Lie bracket [x, y] coincides with xy—yx in Ug, x,y€g, and such that to
every associative K-algebra A and every K-linear map f: g— A with

1= fM-f0fx), xyeq,

there exists a unique K-algebra homomorphism f*:Ug— A extending f.
Express this theorem in the language of this section.
8.8. Consider in the category € (for example, S, Ab, M, ®) the situation

o Co B 5 Cop 2 C -2 Cys -+, C; in €.
Set lim C;= () C; and lim C; = |J C;, regarding the y, as embeddings. What

] i
are the universal properties satisfied by lim C; and limC;? Describe lim as a
right adjoint, and lim as a left adjoint, to a constant functor. Use this description
to suggest appropriate meanings for limC; and limC; if €=%, and each
y; is epimorphic.

9. Abelian Categories

Certain of the categories we introduced in Section 1 possess significant
additional structure. Thus in the categories b, MY, M, the morphism
sets all have abelian group structure and we have the notion of exact
sequences. We proceed in this section to extract certain essential features
of such categories and define the important notion of an abelian category:
much of what we do in later chapters really consists of a study of the
formal properties of abelian categories. It is a very important fact
about such categories that the axioms which characterize them are
self-dual, so that any theorem proved about abelian categories yields
two dual theorems when applied to a particular abelian category such
as I,

In fact, in a very precise sense, module categories are not so special
in the totality of abelian categories. A result, called the full embedding
theorem [37,p. 151] asserts that every small abelian category may be
fully embedded in a category of modules over an appropriate ring, in
such a way that exactness relations are preserved. This means, in effect,
that, in any argument involving only a finite diagram, and such notions
as kernel, cokernel, image, it is legitimate to suppose that we are operating
in a category of modules. Usually, the point of such an assumption is to
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permit us to suppose that our objects are sets of elements, and to prove
statements by “diagram-chases” with elements. The full embedding
theorem does not permit us, however, to “argue with elements” if an
infinite diagram (e.g., a countable product) is involved.

We begin by defining a notion more general than that of an abelian
category.

Definition. An additive category U is a category with zero object
in which any two objects have a product and in which the morphism
sets A (A4, B) are abelian groups such that the composition

A(A4, B) x A(B, C)—A(4, C)
is bilinear.
Apart from the examples quoted there are, of course, very many
examples of additive categories. We mention two which will be of
particular importance to us.

Examples. (a) A graded A-module A (graded by the integers) is a
family of A-modules A ={A4,},necZ. If A, B are graded A-modules, a
morphism ¢ : A— B of degree k is a family of A-module homomorphisms
{¢,: A,— B, ., },neZ. The category so defined is denoted by IMZ. We
obtain an additive category if we restrict ourselves to morphisms of
degree 0. (The reader should note a slight abuse of notation: If Z is
regarded as the discrete category consisting of the integers, then % is
the proper notation for the category with morphisms of degree 0.)

(b) We may replace the grading set Z in Example (a) by some other
set. In particular we will be much concerned in Chapter VIII with
modules graded by Z x Z; such modules are said to be bigraded. If A
and B are bigraded modules, a morphism ¢ : A— B of bidegree (k,1)
is a family of module homomorphisms {¢, ,: 4y m—Busim+1}- The
category so defined is denoted by 9Mi%*%. If we restrict the morphisms
to be of bidegree (0, 0) we obtain an additive category.

Notice that, although 9%, M5 % are not additive, they do admit
kernels and cokernels. We will adopt the convention that kernels and
cokernels always have degree O (bidegree (0,0)). If we define the image
of a morphism as the kernel of the cokernel, then, of course, these
categories also admit images (and coimages!).

Abelian categories are additive categories with extra structure.
Before proceeding to describe that extra structure, we prove some
results about additive categories. We write 4, ® A4, for the product of
A, and 4, in the additive category U. Before stating the first proposition
we point out that the zero morphism of (A4, B), in the sense of Section 1,
is the zero element of the abelian group (A4, B), so there is no confusion
of terminology.

Our first concern is to make good our claim that the axioms are,
in fact, self-dual. Apparently there is a failure of self-duality in that
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we have demanded (finite) products but not coproducts. We show that
actually we can also guarantee the existence of coproducts. We prove
the even stronger statement:

Proposition 9.1. Let i, ={1,0}: A, > A, DA,,i,={0,1}:A,— A, B A,.
Then (A, ® A,; iy, i,) is the coproduct of A, and A, in the additive cat-
egory .

We first need a basic lemma.

Lemma 9.2, ijp, +i,p,=1: 4, ®A,— A, DA,.

Proof. Now p(i;p, +ip;) = pyiypy + pyiap; =py, since pyiy =1,
p1i, =0. Similarly p,(i; p, +i,p,) = p,. Thus, by the uniqueness property
of the product, i, p; +i,p,=1. []

Proof of Proposition 9.1. Given ¢,: A;— B, i =1, 2, define

@1, 920 =¢p1 +@;p,: A, ®A,—B.

Then {@y, 927 iy =(@1p1 + Q2p3) iy = @1 py iy + @2 P21 = @, and §imilgrly
@1, 92> i, =@,. We establish the uniqueness of {(¢,, ¢,> by invoking
Lemma 9.2. For if 0i; = ¢,, 0i, = ¢,, then

0=0(i,p, +i,p,)= iy p; +0ip, =@, p; + ©202=X01,0>. [

We use the term sum instead of coproduct in the case of an additive
category. Of course, sums only coincide with products in an additive
category if a finite number of objects is involved. We know from the
example of b that they do not coincide for infinite collections of objects.

Proposition 9.3. Given

A (q,'w‘rB('BC {y.8> 7D,

we have
P> {o,w=y0 +dy
Proof.

<1, 05 {@: w} = (vpy +0p2) {99} = vp, {0, w} +3p, {0, v}
=yp+oy. []
This proposition has the following interesting corollary.

Corollary 9.4. The addition in the set W(A, B) is determined by the
category .
Proof. If ¢, 9, : A— B then ¢, + ¢, =<o, 0, {1,1}. []

We may express this corollary as follows. Given a category with zero
object and finite products, the defining property of an additive category
asserts that the “morphism sets” functor A°P? x A — S may be lifted
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to A b, LT Ab
QLor 5 A7) &

where U is the “underlying set” functor. Then Corollary 9.4 asserts

that the lifting is unique. We next discuss functors between additive
categories. We prove

Proposition 9.5. Let F : W — B be a functor from the additive category

U to the additive category B. Then the following conditions are equivalent :
(1) F preserves sums (of two objects) ;

(i) F preserves products (of two objects) ;

(i) foreach A, A"in W, F:W(A, A')— B(F A, F A’y is a homomorphism.

Proof. (i)=(ii). This is not quite trivial since we are required to show
that F{1,0> ={1,0> and F(0,1)>=<0,1>. Thus we must show that
F(0)=0 and for this it is plainly sufficient to show that F maps zero
objects to zero objects. Let 0 be a zero object of A. Then plainly, for any
A in A, A is the sum of 4 and 0 with 1, and 0 as canonical injections.
Thus if B=F(0), then F A is the sum of FA and B, with injections 1,
and = F(0). Consider 0: FA— B and 1: B— B. There is then a (unique)
morphism 6: FA— B such that 61=0, 6f=1. Thus 1=0:B—B so
that B is a zero object.

That (ii) = (i) now follows by duality.
(i) = (iii) If @y, 9, : A—> A’ then @, + @, =@y, ¢, {1, 1}, so that

F(p, +¢@,)={Fo,, Fp,> {1,1}, since F preserves sums and products,
=Fp,+Fo,.
(iii) = (ii) To show that F preserves products we must show that
{Fp,,Fp,}:F(A,®A,)—>FA, ®FA,
is an isomorphism. We show that
F(i,))p, + Fli,))p,: FA{®FA,—F(4,®A4,)

is inverse to {Fp,, Fp,}. For
{Fpy, Fps} (F(i)) py + Fliz) p2) = {Fpy, Fps} F(iy) py + {Fpy, Fpa} F(i2)p,

= {F(p,iy),F(p,i)} p1 + {F(p,i,), F(p2i5)} P2
={1,0} p, +{0,1} p,, since F(0)=0,

=iipy +izps
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and

(F(i,) p; + F(i5) p) {Fpy, Fpy} = F(iy) py {Fpy, Fpa} + F(iy) p2 {Fpy, Fp,}
=Fi,Fp,+Fi,Fp,
=F(i,p, +i,p,), since F satisfies (iii),
=1. []

We call a functor satisfying any of the three conditions of Proposition
9.5 an additive functor. Such functors will play a crucial role in the
sequel. However in order to be able to do effective homological algebra
we need to introduce a richer structure into our additive categories;
we want to have kernels, cokernels and images. Recall that kernels, if
they exist, are always monomorphisms and (by duality) cokernels are
always epimorphisms. In an additive category a monomorphism is
characterized as having zero kernel, an epimorphism as having zero
cokernel.

Definition. An abelian category is an additive category in which

(1) every morphism has a kernel and a cokernel;

(ii) every monomorphism is the kernel of its cokernel; every epi-
morphism is the cokernel of its kernel;

(iii) every morphismisexpressible as the composite of an epimorphism
and a monomorphism.

The reader will verify that all the examples given of additive categories
are, in fact, examples of abelian categories. The category of finite abelian
groups is abelian; the category of free abelian groups is additive but
not abelian. We will be content in this section to prove a few fundamental
properties of abelian categories and to define exact sequences. Notice
however that the concept of an abelian category is certainly self-dual.

Proposition 9.6. Given ¢ : A— B in the abelian category N, we may
develop from ¢ the sequence

(S,) [ COYENEN XN}

where @ =vn, i is the kernel of @, ¢ is the cokernel of ¢, n is the cokernel
of pu, and v is the kernel of &. Moreover, the decomposition of @ as a composite
of an epimorphism and a monomorphism is essentially unique.

We first prove a lemma.

Lemma 9.7. Suppose vi and n have the same kernel and n is an epi-
morphism. Then v is a monomorphism.

Proof. Use property (iii) of an abelian category to write v = 00,
with ¢ epimorphic, ¢ monomorphic. Then vy = oon and if u is the kernel
of g, then p is the kernel of gon = v and hence also of #. Thus u is the
kernel of o1 and of 5 so that, by property (ii), o and  are both cokernels
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of u. This means that there exists an isomorphism in 2, say w, such
that on = w#n, so that ¢ =w. Thus ¢ is an isomorphism so that v is a
monomorphism. []

Proof of Proposition 9.6. Let u be the kernel of ¢ and let  be the
cokernel of u. Since o u =0, ¢ = vn. Since u is the kernel of #, Lemma 9.7
assures us that v is a monomorphism. If ¢ is the cokernel of ¢, then ¢
is the cokernel of v (since # is an epimorphism), so v is the kernel of ¢
and the existence of S, is proved.

Finally if ¢ =vn=v;n;, with 5,5, epimorphic, v, v, monomorphic,
then kero =kery=Xkern, so that n, =wn for some isomorphism w
and then v=v,w. [J

We leave to the reader the proof of the following important corollary.

Corollary 9.8. If the morphism o in the abelian category U is a
monomorphism and an epimorphism, then it is an isomorphism. []

We have shown that the sequence S, is, essentially, uniquely
determined by the morphism ¢. It is, of course, easy to show that the
association is functorial in the sense that, given the commutative diagram

A—2-B
[a JB
A/ w' B/

there is a commutative diagram

K'r——A'——>1
p=vn, @'=vy.
For since we construct y, u' as kernels and then #,%’; &, ¢ as cokernels,

we automatically obtain morphisms k, 1, 4 such that p'x =oau, n'a =17,
¢ B = J¢e, and the only point at issue is to show that v'1 = fv. But

vin=viny'a=¢a=po=pvn,

and so, since # is epimorphic, v'1 = fv. . .
Definition. A short exact sequence in the abelian category U is
simply a sequence

&

in which u is the kernel of ¢, and ¢ is the cokernel of p.
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A long exact sequence in the abelian category U is a sequence

Pn+1
LN L L N ,

@n = Uans U, monomorphic, g, epimorphic, where, for each n, y, is the
kernel of ¢, , (and ¢, , is the cokernel of u,).
Exercises:
9.1. Consider the commutative diagram
A—25B—*5C
A—>B—-C
@ v
in the abelian category . Show, that if A-£%B'*5(C' is exact and Bis a
monomorphism, then 4—2—-B-¥£,C’ is exact. What is the dual of this?

9.2. Show that the square
A—-2%>B

j'a lp
A——B
@

in the abelian category U is commutative if and only if the

A {o. 0} A®B (—¢"8> B

is differential, i.e., { —¢’, B> {«, @} =0. Show further that
(i) the square is a pull-back if and only if {«, ¢} is the kernel of {—¢, B,
(ii) the square is a push-out if and only if {— ¢, 8 is the cokernel of {o, @}.
9.3. Call the square in Exercise 9.2 above exact if the corresponding sequence
is exact. Show that if the two squares in the diagram

A—*->B-¥,C
Al_wl_’B!T Cl
are exact, so is the composite square.
9.4. In the abelian category U the square
A-*>B
) l lﬁ
A!TBI
is a pull-back and the square
A-—*>B

J Jpl

A'—— B;

1 1
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is a push-out. Show (i) that there exists w: B{>— B’ such that wf, = ,we| = ¢/,
and (ii) that the second square above is also a pull-back.

9.5. Let U be an abelian category with arbitrary products and coproducts. Define
the canonical sum-to-product morphism w: @ A; —>H A;, and prove that it

is not true in general that w is a monomorphlsm

9.6. Let A be an abelian category and € a small category. Show that the functor
category U® is also abelian. (Hint: Define kernels and cokernels component-
wise).

9.7. Give examples of additive categories in which (i) not every morphism has a
kernel, (ii) not every morphism has a cokernel.

9.8. Prove Corollary 9.8. Give a counterexample in a nonabelian category.

10. Projective, Injective, and Free Objects

Although our interest in projective and injective objects is confined,
in this book, to abelian categories, we will define them in an arbitrary
category since the elementary results we adduce in this section will
have nothing to do with abelian, or even additive, categories. Our
principal purpose in including this short section is to clarify the cat-
egorical connection between freeness and projectivity. However,
Proposition 10.2 will be applied in Section IV.12, and again later in
the book.

The reader will recall the notion of projective and injective modules
in Chapter I. Abstracting these notions to an arbitrary category, we are
led to the following definitions.

Definition. An object P of a category € is said to be projective if

given the diagram P
w j [

in € with ¢ epimorphic, there exists yp with ey = ¢@. An object J of € is
said to be injective if it is projective in E°PP,

Much attention was given in Chapter I to the relation of projective
modules to free modules. We now introduce the notion of a free object in
an arbitrary category.

Definition. Let the category € be equipped with an underlying
functor to sets, that is, a functor U : €— & which isinjective on morphisms,
and let Fr—U. Then, for any set S, Fr(S) is called the free object on S
(relative to U).

After the introduction to adjoint functors of Sections 7 and 8, the
reader should have no difficulty in seeing that Fr(S) has precisely the
universal property we would demand of the free object on S. We will
be concerned with two questions: (a) are free objects projective, (b) is
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every object the image of a free (or projective) object? We first note the
following property of the category of sets.
Proposition 10.1. In & every object is both projective and injective. []
We now prove

Proposition 10.2. Let F:€—D and FG. If G maps epimorphisms
to epimorphisms, then F maps projectives to projectives.

Proof. Let P be a projective object of € and consider the diagram,

jw
A—-»B

Applying the adjugant, this gives rise to a diagram
P

n(e)

GA-%»GB

in €, where, by hypothesis, Ge¢ remains epimorphic. There thus exists
Y :P>GAin € with Geoy' =n(¢p),so thateo p =@, wheren(y)=vy'. [J

Corollary 10.3. If the underlying functor U : € — & sends epimorphisms
to surjections then every free object in € is projective. []

This is the case, for example, for Ab, M ,, ®; the hypothesis is false,
however, for the category of integral domains, where, as the reader may
show, the inclusion Z € @ is an epimorphism (see Exercise 3.2).

We now proceed to the second question and show

Proposition 10.4. Let Fr—U, where U:C@—G is the underlying
Jfunctor. Then the counit 6 : FrU(A)— A is an epimorphism.

Proof. Suppose o, o’ : A—B and o> § = = 5. Applying the adjugant
we find U(x)=U(a). But U is injective on morphisms so a = 0

Thus every object admits a free presentation by means of the free
object on its underlying set and this free presentation is a projective
presentation if U sends epimorphisms to surjections.

Proposition 10.5. (i) Every retract of a projective object is projective.
(i) If U sends epimorphisms to surjections, then every projective
object is a retract of a free (projective) object.

Proof. (i) Given Pri_*Q, g¢o =1, P projective, and
Y

l"’

A—-»B,
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choose y': P— A4 so that ey’ = @g and set p = v'o. Then
ep=¢ypo=0eo=0¢.

(ii) Since ¢ is an epimorphism it follows that if 4 is projective there
exists 0 : A— FrU(A) with ¢ = 1. Note that, even without the hypothesis
on U, a projective P is a retract of FrU(P); the force of the hypothesis
is that then FrU(P) is itself projective. []

Proposition 10.6. (i) A coproduct of free objects is free.
(i) A coproduct of projective objects is projective.

Proof. (i) Since Fr has a right adjoint, it maps coproducts to co-
products. (Coproducts in & are disjoint unions.)

(i) Let P= ]_[ P,, P; projective, and consider the diagram
' P
®
A——»B

Then ¢ =<¢,>, ¢;: P,—B and, for each i, we have v;: P.— A with
ey; = @;. Then if y = (y,;>, we have ey = ¢. Notice that, if the morphism
sets of € are nonempty then if P is projective so is each P, by Proposition
105@0). 0O

We shall have nothing to say here about injective objects beyond
those remarks which simply follow by dualization.

Exercises:

10.1. Use Proposition . 8.1 to prove that if A is free as an abelian group, then
every free A-module is a free abelian group. (Of course, there are other
proofs!).

10.2. Verify in detail that Fr(S) has the universal property we would demand of
the free object on S in the case € = .

10.3. Deduce by a categorical argument that if € = &, then Fr(SuT) is the free
product of Fr(S) and Fr(T) if SAnT =4.

10.4. Dualize Proposition 10.5.

10.5. Show that Z € @ is an epimorphism (i) in the category of integral domains,
(ii) in the category of commutative rings. Are there free objects in these
categories which are not projective?

10.6. Let A be a ring not necessarily having a unity element. A (left) A-module
is defined in the obvious way, simply suppressing the axiom la=a. Show
that 4, as a (left) A-module, need not be free!



II1. Extensions of Modules

In studying modules, as in studying any algebraic structures, the standard
procedure is to look at submodules and associated quotient modules.
The extension problem then appears quite naturally: given modules 4, B
(over a fixed ring A) what modules E may be constructed with submodule
B and associated quotient module A? The set of equivalence classes of
such modules E, written E(A, B), may then be given an abelian group
structure in a way first described by Baer [3]. It turns out that this group
E(A, B) is naturally isomorphic to a group Ext,(4, B) obtained from A
and B by the characteristic, indeed prototypical, methods of homological
algebra. To be precise, Ext,(A, B) is the value of the first right derived
functor of Hom,(—, B) on the module A, in the sense of Chapter IV.

In this chapter we study the homological and functorial properties of
Ext, (A4, B). We show, in particular, that Ext,(—, —) is balanced in the
sense that Ext (A, B) is also the value of the first right derived functor
of Hom,(A, —) on the module B. Also, when A=7Z, so that A, B are
abelian groups, we indicate how to compute the Ext groups; and prove a
theorem of Stein-Serre showing how, for abelian groups of countable
rank, the vanishing of Ext(4,Z) characterizes the free abelian groups A.

In view of the adjointness relation between the tensor product and
Hom (see Theorem 7.2), it is natural to expect a similar theory for the
tensor product and its first derived functors. This is given in the last
two sections of the chapter.

1. Extensions

Let 4, B be two A-modules. We want to consider all possible A-modules E
such that B is a submodule of E and E/B~ A. We then have a short
exact sequence

B E-2» A
of A-modules; such a sequence is called an extension of A by B. We shall

say that the extension B~—E,—»A is equivalent to the extension
B-—E,—» A if there is a homomorphism ¢:E,—E, such that the
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diagram B—E,—A4

| |

B—E,—A

is commutative. This relation plainly is transitive and reflexive. Since ¢
is necessarily an isomorphism by Lemma I.1.1, it is symmetric, also.

The reader will notice that it would be possible to define an equiv-
alence relation other than the one defined above: for example two
extensions E;, E, may be called equivalent if the modules E,, E, are
isomorphic, or they may be called equivalent if there exists a homo-
morphism ¢ : E; — E, inducing automorphisms in both 4 and B. In our
definition of equivalence we insist that the homomorphism ¢: E, »E,
induces the identity in both A and B. We refer the reader to Exercise 1.1
which shows that the different definitions of equivalence are indeed
different notions. The reason we choose our definition will become clear
with Theorem 1.4 and Corollary 2.5.

We denote the set of equivalence classes of extensions of 4 by B by
E(A, B). Obviously E(A, B) contains at least one element: The A-module
A® B, together with the maps 1, 74, yields an extension

BB A®BM A . (1.1)

The map 1,: A— A @ B satisfies the equation n,1,=1, and the map
ng: A@® B— B the equation nz1; =15 Because of the existence of such
maps we call any extension equivalent to (1.1) a split extension of A by B.

Our aim is now to make E(—, —) into a functor; we therefore have
to define induced maps. The main part of the work is achieved by the
following lemmas.

Lemma 1.1. The square Y—2-54

Jﬁ Jw (12)

B> X
is a pull-back diagram if and only if the sequence
0— Y28 4@Bi2=v2, x
is exact.

Proof. We have to show that the universal property of the pull-back
of (¢, y)is the same as the universal property of the kernel of (¢, —v).
But it is plain that two maps y: Z— A and ¢ : Z— B make the square

Z—1-5A4

Lo
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commutative if and only if they induce a map {y,d}:Z—A® B such
that (@, —y) ~ {y, 6} =0. The universal property of the kernel asserts the
existence of a unique map {: Z— Y with {«, 8} - { = {y, 6}. The universal
property of the pull-back asserts the existence of a unique map {: Z—Y
withao{=yand f-{=45. []

Lemma 1.2. If the square (1.2) is a pull-back diagram, then
(i) pinduces kera=>keryp;
(i) if y is an epimorphism, then so is a.

Proof. Part (i) has been proved in complete generality in Theorem
11.6.2. For part (ii) we consider the sequence 0—> Y-%&5 42—V, x,
which is exact by Lemma 1.1. Suppose a € A4. Since y is epimorphic there
exists be B with pa=yb, whence it follows that (g, b) € ker{p, —y)
= im {«, #} by exactness. Thus there exists y € Y with a=ay (and b = By).
Hence « is epimorphic. []

We now prove a partial converse of Lemma 1.2 (i).
Lemma 1.3. Let

B~ S F— Y A’
| [k
B—E —»4

be a commutative diagram with exact rows. Then the right-hand square is
a pull-back diagram.

Proof. Let

E—»A

be a pull-back diagram. By Lemma 1.2 ¢ is epimorphic and ¢ induces
an isomorphism kere >~ B. Hence we obtain an extension

B-&P-E» 4",

By the universal property of P there exists a map { : E'— P, such that
o{=¢, e{ =V Since { induces the identity in both A’ and B, { is an
isomorphism by Lemma 1.1.1. []

We leave it to the reader to prove the duals of Lemmas 1.1,1.2, 1.3.
In the sequel we shall feel free to refer to these lemmas when we require
either their statements or the dual statements.
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Let o: A'—> A be a homomorphism and let B-*E-2» 4 be a repre-
sentative of an element in E(A4, B). Consider the diagram

B—X>E —Y»4q

where (E*; v, £) is the pull-back of («, v). By Lemma 1.2 we obtain an
extension B~ E**» A’. Thus we can define our induced map

oa* : E(4, B)—E(A', B)

by assigning to the class of B~ E—» A4 the class of B— E*~» A4’. Plainly
this definition is independent of the chosen representative B~ E—» A.

We claim that this definition of E(x, B)=oa* makes E(—, B) into a
contravariant functor. Indeed it is plain that for« = 1 , : A— A the induced
map is the identity in E(A, B). Let o': A”— A’ and a: A'— A. In order
to show that E(x- o, B)= E(«, B) > E(a, B), we have to prove that in the
diagram

(E“)“' ............ > A"
E“ ................. > A’

where each square is a pull-back, the composite square is the pull-back
of (v, - o). But this follows readily from the universal property of the
pull-back.

Now let 8: B— B’ be a homomorphism, and let B~ E-*» A4 again
be a representative of an element in E(A4. B). We consider the diagram

B—*>E—Y»A4

K’ M

where (Eg; «', £) is the push-out of (8, k). The dual of Lemma 1.2 shows
that we obtain an extension B'~— E;,—» 4. We then can define

B.:E(4, B)—E(4, B)
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by assigning to the class of B—»E—»A the class of B>—E;—» 4. As
above one easily proves that this definition of E(4, f)=f, makes E(4, —)
into a covariant functor. Indeed, we even assert:

Theorem 1.4. E(—, —) is a bifunctor from the category of A-modules
to the category of sets. It is contravariant in the first and covariant in the
second variable.

Proof. It remains to check that f,a*=o*f,:E(4, B)—~E(A4A', B').
We can construct the following (3-dimensional) commutative diagram,
using pull-backs and push-outs.

We have to show the existence of (E*);—(Ej)* such that the diagram
remains commutative. We first construct E*—(Ey)" satisfying the
necessary commutativity relations. Since E*—E—E;— A coincides
with E*— A4'— A, we do indeed find E*—(Ej)* such that E*—(Esf—E,
coincides with E*—E—E,; and E*—(E;)*— A’ coincides with E*—A4’,
It remains to check that B— E*—(E)* coincides with B— B'—(Ey)".
By the uniqueness of the map into the pull-back it suffices to check that
B—E*—(E))"—E,; coincides with B— B —(E;)*—E; and B—E"
—(Ez)"— A’ coincides with B— B —(E;)*—A’, and these facts follow
from the known commutativity relations. Since B— E*—(E,)* coincides
with B—B'—(E)* we find (E*);—(E)* such that B'—(E*);—(Ep)*
coincides with B'—(E;)* and E*—(E*);—(Ep)® coincides with E*—(Ep)".
It only remains to show that (E*);— (Ez)*— A4’ coincides with (E*)y— A
Again, uniqueness considerations allow us merely to prove that B'—(E%),
—(Ez)*— A’ coincides with B'—(E%);— 4’, and E*—(E*)y—(Ep)*— A’
coincides with E*—(E*);— A'. Since these facts, too, follow from the
known commutativity relations, the theorem is proved. []

Exercises:

1.1. Show that the following two extensions are nonequivalent
LT —>L;, ZTL—>T,

where u = p’ is multiplication by 3, £(1) = 1(mod 3) and £(1) = 2(mod 3).
1.2. Compute E(Z,,Z), p prime.
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1.3. Prove the duals of Lemmas 1.1, 1.2, 1.3.

1.4. Show that the class of the split extension in E(4, B) is preserved under the
induced maps.

LS. Prove: If P is projective, E(P, B) contains only one element.
1.6. Prove: If I is injective, E(A, I) contains only one element.

1.7. Show that E(A, B, ®B,)~E(A, B;)xE(A,B,). Is there a corresponding
formula with respect to the first variable?

1.8. Prove Theorem 1.4 using explicit constructions of pull-back and push-out.

2. The Functor Ext

In the previous section we have defined a bifunctor E(—, —) from the
category of A-modules to the categories of sets. In this section we shall
define another bifunctor Ext,(—, —) to the category of abelian groups,
and eventually compare the two.

A short exact sequence R-%P-£» 4 of A-modules with P projective
is called a projective presentation of A. By Theorem 1.2.2 such a presenta-
tion induces for a A-module B an exact sequence

Hom 4 (4, B)—£-Hom ,(P, B)—>Hom (R, B). 2.1

To the modules 4 and B, and to the chosen projective presentation of A
we therefore can associate the abelian group

Ext% (4, B) = coker(u* : Hom (P, B)—Hom,(R, B)).

The superscript ¢ is to remind the reader that the group is defined
via a particular projective presentation of A. An element in Ext%(4, B)
may be represented by a homomorphism ¢ : R— B. The element rep-
resented by ¢:R—B will be denoted by [¢] e Ext5(A4, B). Then
[¢,]=[¢,]if and only if ¢, — ¢, extends to P.

Clearly a homomorphism f : B— B’ will map the sequence (2.1) into
the corresponding sequence for B’. We thus get an induced map
B, : Ext% (A4, B)—Ext5 (4, B'), which is easily seen to make Ext}(4, —)
into a functor.

Next we will show that for two different projective presentations of A
we obtain the “same” functor. Let R'>%>P'£» 4’ and R4 P-%» A be
projective presentations of A’, A respectively. Let «: 4'— A be a homo-
morphism. Since P’ is projective, there is a homomorphism n: P'—P,
inducing ¢ : R"— R such that the following diagram is commutative:

R—£5P —£ 5 4
R—E£5P —»A

We sometimes say that = lifts a.
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Clearly =, together with ¢, will induce a map
n* : Ext%, (4, B)— Ext%(4’, B)

which plainly is natural in B. Thus every = gives rise to a natural trans-
formation from Ext% (4, —) into Ext%(4’, —). In the following lemma we
prove that this natural transformation depends only on «: 4'— 4 and
not on the chosen 7 : P'— P lifting a.

Lemma 2.1. 7n* does not depend on the chosen n: P'— P but only on
oa:A'—A.

Proof. Let n;: P'— P, i=1,2, be two homomorphisms lifting « and
inducing 6;: R"— R, so that the following diagram is commutative for
i=1,2

R”—L)P,"L»A/

RSP —£t.54

Consider n, —m,; since =, @, induce the same map o: A'— A4, n, — 7,
factors through a map t: P'—R, such that z, — n, = ut. It follows that
o, —og,=1ty'. Thus, if ¢: R—B is a representative of the element
[o] € Ext}(4, B), we have nf[¢]=[po]=[p0,+otu]=[¢a,]
=nilel. 0

To stress the independence from the choice of = we shall call the
natural transformation (a; P’, P): Ext’ (4, —)— Ext(4’, —),instead of n*.
Leta': A"—A"and a: A’— A be two homomorphisms and R">— P"—» 4",
R'—»P'—»A4', R—P— A projective presentations of A", A, A re-
spectively. Let n': P"— P’ lift o’ and n: P’— P lift a. Then non’: P"—P
lifts o o’; whence it follows that

@ P", P)o(a; P, P)=(aeo'; P", P). 22
Also, we have
(1,;P,P)=1. (2.3)
This yields a proof of

Corollary 2.2. Let R~—»P-%»4 and R'>—P' <E»A be two projective
presentations of A. Then

(1A; P’a P) : EthA(A, _)_>EXt£A’(A= _)
is a natural equivalence.

Proof. Letn: P— P’ and n’': P'— P both lift 1,,: A— A. By formulas
(2.2)and (2.3) we obtain (1 4; P, P')o(1,,; P, P)=(1,; P, P)=1: Ext% (4, —)
—Ext (4, —). Analogously, (1,; P’, P)< (1 ,; P, P') =1, whence the asser-
tion. []
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By this natural equivalence we are allowed to drop the superscript ¢
and to write, simply, Ext,(A4, B).

Of course, we want to make Ext,(—, B) into a functor. It is obvious
by now that given a : A'— A we can define an induced map o* as follows:
Choose projective presentations R'>»P'£» A’ and R~—P-=2»A4 of A', A
respectively, and let o* = («; P’, P): Ext (4, B)— Ext% (4, B). Formulas
(2.2), (2.3) establish the facts that this definition is compatible with the
natural equivalences of Corollary 2.2 and that Ext,(—, B) becomes a
(contravariant) functor. We leave it to the reader to prove the bi-
functoriality part in the following theorem.

Theorem 2.3. Ext,(—, —) is a bifunctor from the category of A-
modules to the category of abelian groups. It is contravariant in the first,
and covariant in the second variable. []

Instead of regarding Ext,(A4, B) as an abelian group, we clearly can
regard it just as a set. We thus obtain a set-valued bifunctor which —
for convenience — we shall still call Ext,(—, —).

Theorem 2.4. There is a natural equivalence of set-valued bifunctors
n:E(—, —)5Exty(—, —-).

Proof. We first define an isomorphism of sets
n: E(A, B)>Extt,(4, B),

natural in B, where R-£P-%» A4 is a fixed projective presentation of 4.
We will then show that 5 is natural in A.

Given an element in E(A, B), represented by the extension B> E-*» 4,
we form the diagram

R>—L>P—£—»A

v v

B~~*>E—»A

The homomorphism p:R— B defines an element [y]e Ext}(4, B)
= coker(u* : Hom, (P, B)—Hom4(R, B)). We claim that this element
does not depend on the particular ¢ : P—E chosen. Thus let ¢;: P—E,
i=1,2 be two maps inducing ;: R—B, i=1,2. Then ¢, —¢, factors
through t: P—B, i.e., ¢, — ¢, =k7. It follows that y, —y, = Ty, whence
[w]=[y, +ul=[y] _

Since two representatives of the same element in E(A4, B) obviously
induce the same element in Ext’ (A4, B), we have defined a map n : E(4, B)
—Ext5 (A4, B). We leave it to the reader to prove the naturality of # with
respect to B.

Conversely, given an element in Extf(4, B), we represent this element
by a homomorphism y : R— B. Taking the push-out of (p, ) we obtain
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the diagram R—t>P—2»A4

By the dual of Lemma 1.2 the bottom row B-*»E-» 4 is an extension.
We claim that the equivalence class of this extension is independent of
the particular representative i : R— B chosen. Indeed another repre-
sentative ¢’ : R— B has the form y’ =1y + 7y where 7: P— B. The reader
may check that the diagram

R—£-P—-»A4

N

B—X*>E—Y»A4

with ¢' = ¢ + k7 is commutative. By the dual of Lemma 1.3 the left hand
square is a push-out diagram, whence it follows that the extension we
arrive at does not depend on the representative. We thus have defined
a map

&: Ext’, (A, B)— E(4, B)

which is easily seen to be natural in B.
Using Lemma 1.3 it is easily proved that 5, ¢ are inverse to each other.
We thus have an equivalence

n: E(A, By Ext% (A, B)
which is natural in B.
Note that n might conceivably depend upon the projective presenta-

tion of A. However we show that this cannot be the case by the following
(3-dimensional) diagram, which shows also the naturality of # in A.

R

P—t 54
I\ :
\R, ‘\P, |\A,

—» A4

B—— L F°

Ar

E? is the pull-back of E—» 4 and A~ A. We have to show the existence
of homomorphisms ¢ : P’—E®, y: R'— B such that all faces are com-
mutative. Since the maps P'—E— A4 and P'— A’'— A agree they define
a homomorphism ¢:P'—E? into the pull-back. Then ¢ induces
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v : R'— B, and trivially all faces are commutative. (To see that R*—>R—B
coincides with y, compose each with B~ E.) We therefore arrive at a
commutative diagram

E(A, B—* S E(4', B)

Jo

Ext% (A, B)—=— Ext% (4, B)

For A'= A, a =1, this shows that # is independent of the chosen pro-
jective presentation. In general it shows that n and & are natural in 4. []

Corollary 2.5. The set E(A, B) of equivalence classes of extensions has
a natural abelian group structure.

Proof. This is obvious, since Ext, (4, B) carries a natural abelian
group structure and since #:E(—, —)>Ext,(—, —) is a natural
equivalence. [}

We leave as exercises (see Exercises 2.5 to 2.7) the direct description
of the group structure in E(A, B). However we shall exhibit here the
neutral element of this group. Consider the diagram

R—£-P—~»A4

Lo

B—X>E—Y»A

The extension B—E—» 4 represents the neutral element in E(A4, B)
if and only if y: R— B is the restriction of a homomorphism 7: P— B,
ie., if py=1pn. The map (¢ —k1)u: R—E therefore is the zero map, so
that ¢ — k1 factors through A, defining a map 0 : A— E with ¢ — k7 =ge.
Since v(¢p — k1) = ¢, o is a right inverse to v. Thus the extension B— E—» A
splits. Conversely if B-*» E-» 4 splits, the left inverse of k is a map E— B
which if composed with ¢ : P—E yields 1.

We finally note

Proposition 2.6. If P is projective and I injective, then Ext,(P, B)=0
=Ext,(4, I) for all A-modules A, B.

Proof. By Theorem 2.4 Ext,(P, B) is in one-to-one correspondence
with the set E(P, B), consisting of classes of extensions of the form
B>>E-»P. By Theorem 1.4.7 short exact sequences of this form split.
Hence E(P, B) contains only one element, the zero element. For the other
assertion one proceeds dually. []

Of course, we could prove this proposition directly, without involving
Theorem 2.4.
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Exercises:

2.1. Prove that Ext,(—, —) is a bifunctor.

2.2. Suppose A4 is a right I'-left A-bimodule. Show that Ext,(A, B) has a left-I'-
module structure which is natural in B.

2.3. Suppose B is a right I'-left A-bimodule. Show that Ext,(A4, B) has a right
I'-module structure, which is natural in A.

2.4. Suppose A commutative. Show that Ext,(4, B) has a natural (in 4 and B)
A-module structure.

2.5. Show that one can define an addition in E(4, B) as follows: Let B~ E, —» A,
B E,—» A be representatives of two elements &,, &, in E(A4, B). Let
4, A—~AD A be the map defined by d.(a)=(a, a), ac A4, and let
Vs : B®B— B be the map defined by (b, b)) =b( + b1, by, b, € B. Define
the sum ¢, 4 ¢, by

&1+£€2=E(d4, V) (BOB>E DE;»ADA).
2.6. Show thatifa,,a,:A'— A, then

(@ +a5)* =af +of: E(4, B—E(4), B),

using the addition given in Exercise 2.5. Deduce that E(A4, B) admits additive
inverses (without using Theorem 2.4).

2.7. Show that the addition defined in Exercise 2.5 is commutative and associative
(without using Theorem 2.4). [Thus E(A, B) is an abelian group.]

28. Let Z,—Z,,—Z, be the evident exact sequence. Construct its inverse in
E@Z,,Z,).

2.9. Show the group table of E(Zg,Z,,).

3. Ext Using Injectives

Given two A-modules A, B, we defined in Section 2 a group Ext,(4, B)
by using a projective presentation R-%P-<» A4 of A:

Ext (A, B) = coker(u* : Hom , (P, B)— Hom (R, B)).

Here we consider the dual procedure: Choose an injective presentation
ﬁ, i.e.an exact sequence B-% I -1» S with | injective, and define the group
Ext} (A, B) as the cokernel of the map 7, : Hom (4, I)>Hom (A4, S).
Dualizing the proofs of Lemma 2.1, Corollary 2.2, and Theorem 2.3 one
could show that Ext}, (4, B) does not depend upon the chosen injective
presentation, and that m,,(—, —) can be made into a bifunctor, co-
variant in the second, contravariant in the first variable. Also, by
dualizing the proof of Theorem 2.4 one proves that there is a natural

equivalence of set-valued bifunctors between E(—, —) and Ext,(—, -).
Here we want to give a different proof of the facts mentioned above
which has the advantage of yielding yet another description of E(—, —).

In contrast to Ext,(—, —) and Ext,(—, —), the new description will
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be symmetric in 4 and B. Also, this proof establishes immediately that
Ext,(A, B) and Ext,(A, B) are isomorphic as abelian groups. First let
us state the following lemma, due to J. Lambek (see [32]).

Lemma 3.1. Let
A/ ay A x2 AII

lv £ l{p £ lo (3.1)

B’ B1 B B2 Blr
be a commutative diagram with exact rows. Then ¢ induces an isomorphism
@ :kerOa, /(kera, + ker )= (imp nim f,)/impq, .

Proof. First we show that ¢ induces a homomorphism of this kind.
Let xekerfo,; plainly ¢ xeime. Since 0=0a,x=pf,¢x, pxeimf,.
If xekera,, then xeima,, and px e imea,. If xekerp, px =0. Thus @
is well-defined. Clearly @ is a homomorphism. To show it is epimorphic,
let yeim¢ nim f,. There exists x € A with ¢x = y. Since

Oa,x=B,px=p,y=0,

x € ker0a,. Finally we show that @ is monomorphic. Suppose x € ker fa,,
such that px e im@a,, i.e. px = o, z for some ze A". Then x =,z +1,
where t € ker. It follows that x e kera, + kerp. []

To facilitate the notation we introduce some terminology.

Definition. Let X be a commutative square of A-modules

A2 A
ot
B—£.B
We then write
ImX =im@nimf/imeoa,

Ker 2 = ker po/(ker o + ker ).

With this notation Lemma 3.1 may be stated in the following form:
If the diagram (3.1) has exact rows, then ¢ induces an isomorphism
@:Ker2,>ImZX,.

Proposition 3.2. For any projective presentation R~ P-E» A of A and
any injective presentation B->1-1»S of B, there is an isomorphism

o :Ext§(4, B)">Ext}(4, B).
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Proof. Consider the following commutative diagram with exact rows
and columns

Hom 4,(A4, B)>—»Hom 4(4, )—Hom 4(4, S)— Ext};(4, B)
2> 21
Hom ,(P, B)>-»Hom 4,(P, I)—>Hom ,(P, S)——0
24 23 3.2)
Hom (R, B)— Hom (R, I)— Hom,, (R, S)

Zs

Ext,(4, B)——0

The reader easily checks that Ker X, = Ext%(4, B)and Ker X5 = Ext (4, B).
Applying Lemma 3.1 repeatedly we obtain

Ext)(4, B)=KerX, ~ImZ2, = Ker>,~ImZ, ~ Ker X, = Ext}(4, B). []

Thus for any injective presentation of B, Ext};(A4, B) is isomorphic to
Ext5 (4, B). We thus are allowed to drop the superscript v and to write
Ext,(A4, B). Let f: B—B' be a homomorphism and let B'>Y>I'—S’ be
an injective presentation. It is easily seen that if 7 : I— I’ is a map inducing
B the diagram (3.2) is mapped into the corresponding diagram for
B'>*5I'—»S'. Therefore we obtain an induced homomorphism

B, : Ext,(4, B)—Ext (4, B)

which agrees via the isomorphism defined above with the induced
homomorphism g, : Ext (4, B)—Ext (4, B).

Analogously one defines an induced homomorphism in the first
variable. With these definitions of induced maps Ext,(—, —) becomes
a bifunctor, and ¢ becomes a natural equivalence. We thus have

Corollary 3.3. Ext,(—, —) is a bifunctor, contravariant in the first,
covariant in the second variable. It is naturally equivalent to Ext al—, =)
and therefore to E(—, —). []

Wisometimes express the natural equivalence between Ext ,(—, -)
and Ext,(—, —) by saying that Ext is balanced.

Finally the above proof also yields a symmetric description of Ext
from (3.2), namely:

Corollary 3.4. Ext (4, B)~KerX,. [J

In view of the above results we shall use only one notation, namely
Ext,(—, —)for the equivalent functors E(—, —), Ext ,(—, —), Ext ((—, —)
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Exercises:

3.1. Show that, if A is a principal ideal domain (p.id.), then an epimorphism
p:B—» B’ induces an epimorphism g, : Ext,(4, B)—Ext (4, B). State and
prove the dual.

3.2. Prove that Extz(A,7Z) =0 if A has elements of finite order.
3.3. Compute Extz(Z,,, Z), using an injective presentation of Z.

3.4. Show that Extz(A, Extz(B, C)) = Extz(B, Extz(4, C)) when 4, B, C are finitely-
generated abelian groups.

3.5. Let the natlLal equivalences # : E(—, —)— Ext,(—, —) be defined by Theo-
rem 24, o : Ext,(—, —)—Ext,(—, —) by Proposition 3.2, and
i :E(—, —)—Ext,(—, —)

by dualizing the proof of Theorem 2.4. Show that 6oy =7.

4. Computation of some Ext-Groups

We start with the following
Lemma 4.1. (i) Ext, (@ A, B) =~ [] Ext,(4;, B),

(i) Ext, (A, [1B ,.) ~ [] Ext4(4, B).

Proof. We only prove assertion (i), leaving the other to the reader.
For each i in the index set we choose a projective presentation
R;»—P,—» A; of A;. Then @ R,— @ P,— @ A, is a projective presenta-

i i i

tion of @ A;. Using Proposition 1.3.4 we obtain the following com-

mutative diagram with exact rows

Hom,, (6—) A, B)»—»Hom,,(@ P, B)aHomA(C—B R;, B)—»ExtA@ A;, B)

12 13 t 13

4
2 14

[1 Hom,(4;, B) — [ Hom,(P;, B)— [] Hom ,(R,, B)— [ | Ext4(4; B)

whence the result. [

The reader may prefer to prove assertion (i) by using an injective
presentation of B. Indeed in doing so it becomes clear that the two
assertions of Lemma 4.1 are dual to each other.

In the remainder of this section we shall compute Ext;(4, B) for 4, B
finitely-generated abelian groups. In view of Lemma 4.1 it is enough to
consider the case where A4, B are cyclic.
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To facilitate the notation we shall write Ext(A4, B) (fgr Extz(A, B))
and Hom(4, B) (for Homgz(4, B)), whenever the ground ring is the ring
of integers.

Since Z is projective, one has

Ext(Z,Z)=0=Ext(Z,Z,)

by Proposition 2.6. To compute Ext(Z,,Z) and Ext(Z,,Z,) we use the
projective presentation
LT T,

where u is multiplication by r. We obtain the exact sequence

Hom(Z,,Z)—— Hom(Z, Z)—~~Hom (Z, Z)—» Ext(Z,, Z)

14 13 14

0 —7Z .7

Since p* is again multiplication by r we obtain
Ext(Z,,Z)~Z,.
Also the exact sequence
Hom(Z,,Z,)— Hom (Z,Z,)—*-Hom(Z, Z)—»Ext(Z, Z,)

2 4 R

Y u*
Z(r.q) 7 Zq ﬁlq

yields, since p* is multiplication by r,
Ext(Z,,Z)=Z, ,

where (r, ) denotes the greatest common divisor of r and q.

Exercises:

4.1. Show that there are p nonequivalent extensions Z,—~E —»Z,for p a prime,

but only two nonisomorphic groups E, namely Z,®Z,and Z,.. How does
this come about?

4.2. Classify the extension classes [E], given by
Z,—E—~TZ,

under automorphisms of Z,, and Z,.

4.3. Show that if 4 is a finitely-generated abelian group such that Ext(4,Z) =0,
Hom(A4,Z)=0, then 4 =0.

4.4. Show that Ext(4,Z)= A if 4 is a finite abelian group.

4.5. Show that there is a natural equivalence of functors Hom(—, Q/Z) ~ Ext(—,Z)
if both functors are restricted to the category of torsion abelian groups.

4.6. Show that extensions of finite abelian groups of relatively prime order split.
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5. Two Exact Sequences
Here we shall deduce two exact sequences connecting Hom and Ext.
We start with the following very useful lemma.
Lemma 5.1. Let the following commutative diagram have exact rows.
A—-425B—-:5,C—0
Lok
00— A L ,p-2, ¢

Then there is a “connecting homomorphism” w : kery— cokera such that
the following sequence is exact:

ker a~**—ker f—*—kery—2-cokera—» coker f—=—cokery . (5.1)
If p is monomorphic, so is p, ; if € is epimorphic, so is €.

Proof. It is very easy to see — and we leave the verification to the
reader — that the final sentence holds and that we have exact sequences

kera—— kerf —Z-kery,
cokera~coker B——cokery .

It therefore remains to show that there exists a homomorphism
o : kery—cokera “connecting” these two sequences. In fact, w is defined
as follows.

Let cekery, choose be B with eb=c. Since &Bb=yeb=7c=0
there exists a’e€ A’ with fb=yu'a’. Define w(c)=[a'], the coset of @' in
cokera.

We show that w is well defined, that is, that w(c) is independent of the
choice of b. Indeed, let b € B with ¢b =c, then b =b + pa and

Bb+pay=pb+poa.

Hence @ =d’ +aa, thus [@'] = [a']. Clearly w is a homomorphism.

Next we show exactness at kery. If cekery is of the form eb for
bekerp, then 0=Bb=y'a’, hence @’ =0 and w(c)=0. Conversely, let
c e kery with w(c)=0. Then ¢ =¢b, fb = u'a’ and there exists ae A with
axa=d'. Consider b =b — pa. Clearly ¢b = c, but

pb=pb—pua=pb—pa =0,

hence c € kery is of the form &b with b e ker 8.

Finally we prove exactness at cokera . Let w(c) = [a'] € cokera. Thus
c=¢b, Bb=y'd, and y,[ad]=[p'a]=[Bb]=0. Conversely, let
[@] ecokera with u,[a’]=0. Then p'a’=pb for some beB and
c=c¢bekery. Thus [@]=w(c). []



100 III. Extensions of Modules

For an elegant proof of Lemma 5.1 using Lemma 3.1, see Exercise 5.1.
We remark that the sequence (5.1) is natural in the obvious sense:
If we are given a commutative diagram with exact rows

f\f\gf\
NS

\i E\ i F\i (52)

0 A B’ '

C 0

we obtain a mapping from the sequence stemming from the front diagram
to the sequence stemming from the back diagram.
We use Lemma 5.1 to prove

Theorem 5.2. Let A be a A-module and let B'~2> B-%» B” be an exact
sequence of A-modules. There exists a “connecting homomorphism”
o : Hom 4(A, B")—Ext (A, B') such that the following sequence is exact
and natural

0—Hom,(4, B)—2->Hom (A, B)—2»>Hom (A, B")

5.3
—© , Bxt,(A, B)—2>Ext (A4, B)—¥">Ext (4, B"). -3

This sequence is called the Hom-Ext-sequence (in the second variable).

Proof. Choose any projective presentation R~ P-£»4 of A and
consider the following diagram with exact rows and columns

0—— Hom,(P, B')— Hom 4(P, B)— Hom (P, B")——0

(5.4)
0——> Hom,(R, B)— Hom, (R, B)— Hom ,(R, B")

Ext,(4, B)) %> Ext,(A, B) - Ext,(4, B")

The second and third rows are exact by Theorem I.2.1. In the second
row y, : Hom,(P, B)—Hom (P, B") is epimorphic since P is projective
(Theorem 1.4.7). Applying Lemma 5.1 to the two middle rows of the

diagram we obtain the homomorphism w and the exactness of the
resulting sequence.
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Let a: A'— A be a homomorphism and let R'>~—»P'— A’ be a pro-
jective presentation of A’. Choose n: P'—P and o¢:R'—R such that
the diagram

R,>_>P,_»A/

R

R—P —»4

is commutative. Then «,7, ¢ induce a mapping from diagram (5.4)
associated with R~—»P— A to the corresponding diagram associated
with R’>—»P'—» A’. The two middle rows of these diagrams form a
diagram of the kind (5.2). Hence the Hom-Ext sequence corresponding
to A is mapped into the Hom-Ext sequence corresponding to A’. In
particular — choosing « =1, : A— A — this shows that w is independent
of the chosen projective presentation.

Analogously one proves that homomorphisms f', 8, f” which make
the diagram

B”—>B—‘»B”

lﬂl Jﬂ lﬂ”

C/)_____’C—»C//
commutative induce a mapping from the Hom-Ext sequence associated
with the short exact sequence B'>—B—»B” to the Hom-Ext sequence

associated with the short exact sequence C'~—C—»C”. In particular the
following square is commutative.

Hom (A4, B")—2—Ext (A, B')
¥ B

Hom, (4, C")—2—Ext (4, C')

This completes the proof of Theorem 5.2. {

We make the following remark with respect to the connecting homo-
morphism « : Hom (4, B")—Ext,(4, B) as constructed in the proof of
Theorem 5.2. Given o : A— B” we define maps =, o such that the diagram

BI)_L) B_y)_» B//

is commutative. The construction of w in diagram (5.4) shows that
w(®)=[o7] € Ext,(4, B'). Now let E be the pull-back of (i, a). We then
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have a map n': P— E such that the diagram
R—P—»A

col

B—E—»A4

| ||

Bl —— B__-)) B/l
is commutative. By the definition of the equivalence
¢:Ext (4, By E(A, B)

in Theorem 2.4 the element £[o] is represented by the extension
B'>—E—A.
We now introduce a Hom-Ext-sequence in the first variable.

Theorem 5.3. Let B be a A-module and let A'~% A¥» A" be a short
exact sequence. Then there exists a connecting homomorphism

®:Hom,(A', B)—Ext (4", B)
such that the following sequence is exact and natural
0——Hom (4", B)—~>Hom (4, B)—2->Hom ,(4’, B)

5.5
—2 Ext 4(A", B)—> Ext ,(4, B)—>Ext , (4, B). ©-3)

The reader notes that, if Ext is identified with Ext, Theorem 5.3
becomes the dual of Theorem 5.2 and that it may be proved by proceeding
dually to Theorem 5.2 (see Exercises 5.4, 5.5). We prefer, however, to give
a further proof using only projectives and thus avoiding the use of
injectives. For our proof we need the following lemma, which will be
invoked again in Chapter IV.

Lemma 5.4. To a short exact sequence A'~2> A-%» A" and to projective
presentations & :P'—A' and ¢ :P"—» A" there exists a projective
presentation ¢: P—» A and homomorphisms 1: P'—>P and n: P—P" such
that the following diagram is commutative with exact rows

P’ i P .4 P//

A2 4-¥ 5 47

Proof. Let P=P'®P", let 1: PP’ @ P” be the canonical injection,
n:P’"@P"—P" the canonical projection. We define ¢ by giving the
components. The first component is ¢¢' : P'— A4 for the second we use
the fact that P” is projective to construct a map y : P”— A which makes
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the triangle P’

/1

AT»AN

commutative, and take y as the second component of ¢. It is plain that
with this definition the above diagram commutes. By Lemma L.1.1 ¢ is
epimorphic. []

Proof of Theorem 5.3. Using Lemma 5.4 projective presentations
may be chosen such that the following diagram is commutative with short
exact middle row R— sR—0>R"

P/ 1 P n P//
A/)_L) A _lb} AI/

By Lemma 5.1 applied to the second and third row the top row is short
exact, also. Applying Hom 4(—, B) we obtain the following diagram

Hom 4(4", B)--*">Hom (A4, B)-#"»>Hom (4, B)

L | |

0— Hom 4,(P", B)— Hom , (P, B)—*-Hom ,(P', B)—0

l l (5.6)

0— Hom 4,(R", B)— Hom 4(R, B)— Hom ,(R’, B)

l l

Ext (A", B)--¥"» Ext (A, B)-—%"» Ext,(4’, B)

By Theorem 1.2.2 the second and third rows are exact. In the second row
1*:Hom,(P, B—Hom,(P’, B) is epimorphic since P=P @P", so
Hom (P’ @® P”, B)=~ Hom ,(P’, By®Hom 4(P", B). Lemma 5.1 now yields
the Hom-Ext sequence claimed. As in the proof of Theorem 5.2 one shows
that w is independent of the chosen projective presentations. Also, one
proves that the Hom-Ext sequence in the first variable is natural with
respect to homomorphisms : B— B’ and with respect to maps 7', 7, 7"

making the diagram A A 4"

lv’ ly lv”
Cr—sC—(C"