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Preface

This book is meant to be an introduction to Riemannian geometry. The reader is
assumed to have some knowledge of standard manifold theory, including basic
theory of tensors, forms, and Lie groups. At times we shall also assume familiarity
with algebraic topology and de Rham cohomology. Specifically, we recommend
that the reader is familiar with texts like [14] or {76, vol. 1]. For the readers who have
only learned something like the first two chapters of [65], we have an appendix
which covers Stokes’ theorem, Cech cohomology, and de Rham cohomology.
The reader should also have a nodding acquaintance with ordinary differential
equations. For this, a text like [59] is more than sufficient. Most of the material
usually taught in basic Riemannian geometry, as well as several more advanced
topics, is presented in this text. Many of the theorems from Chapters 7 to 11
appear for the first time in textbook form. This is particularly surprising as we
have included essentially only the material students of Riemannian geometry must
know.

The approach we have taken deviates in some ways from the standard path. First
and foremost, we do not discuss variational calculus, which is usually the sine qua
non of the subject. Instead, we have taken a more elementary approach that simply
uses standard calculus together with some techniques from differential equations.

We emphasize throughout the text the importance of using the correct type of
coordinates depending on the theoretical situation at hand. First, we develop our
substitute for the second variation formula by using adapted coordinates. These
are coordinates naturally associated to a distance function. If, for example, we use
the function that measures the distance to a point, then the adapted coordinates are
nothing but polar coordinates. Next, we have exponential coordinates, which are of
fundamental importance in showing that distance functions are smooth. Then dis-
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tance coordinates are used first to show that distance-preserving maps are smooth,
and then later to give good coordinate systems in which the metric is sufficiently
controlled so that one can prove, say, Cheeger’s finiteness theorem. Finally, we have
harmonic coordinates. These coordinates have some magic properties. One in par-
ticular is that in such coordinates the Ricci curvature is essentially the Laplacian
of the metric. Our motivation for this treatment has been that examples become
a natural and integral part of the text rather than a separate item that much too
often is forgotten. Another desirable by-product has been that one actually gets
the feeling that gradients, Hessians, Laplacians, curvatures, and many other things
are actually computable. Often these concepts are simply abstract notions that are
pushed around for fun.

From a more physical viewpoint, the reader will get the idea that we are simply
using the Hamilton-Jacobi equations rather than the Euler-Lagrange equations
to develop Riemannian geometry (see [4] for an explanation of these matters).
It is simply a matter of taste which path one wishes to follow, but surprisingly,
the Hamilton-Jacobi approach has never been tried systematically in Riemannian
geometry.

The book can be divided into five imaginary parts:

Part I: Tensor geometry, consisting of Chapters 1 to 4.

Part II: Classical geodesic geometry, consisting of Chapters 5 and 6.

Part III: Geometry a la Bochner and Cartan, consisting of Chapters 7 and 8.
Part I'V: Comparison geometry, consisting of Chapters 9 to 11.

Appendices: de Rham cohomology, principal bundles, and spinors.

Chapters 1 to 8 give a pretty complete picture of some of the most classical
results in Riemannian geometry, while Chapters 9 to 11 explain some of the more
recent developments in Riemannian geometry. The individual chapters contain the
following material:

Chapter 1: Riemannian manifolds, isometries, immersions, and submersions are
defined. Homogeneous spaces and covering maps are also briefly mentioned. We
have a discussion on various types of warped products, leading to an elementary
account of why the Hopf fibration is also a Riemannian submersion.

Chapter 2: Many of the tensor constructions one needs on Riemannian manifolds
are developed. First the Riemannian connection is defined, and it is shown how one
can use the connection to define the classical notions of Hessian, Laplacian, and
divergence on Riemannian manifolds. We proceed to define all of the important
curvature concepts and discuss a few simple properties. Aside from these important
tensor concepts, we also develop several important formulas that relate curvature
and the underlying metric. These formulas are to some extent our replacement for
the second variation formula. The chapter ends with a short section where such
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tensor operations as contractions, type changes, and inner products are briefly
discussed.

Chapter 3: First, we set up some general situations where it is possible to
compute the curvature tensor. The rest of the chapter is then devoted to carrying
out this program in several concrete situations. The curvature tensor of spheres,
product spheres, warped products, and doubly warped products is computed. This
is used to exhibit some interesting examples that are Ricci flat and scalar flat. In
particular, we explain how the Riemannian analogue of the Schwarzschild metric
can be constructed. Several different models of hyperbolic spaces are mentioned.
Finally, we compute the curvatures of the Berger spheres and use this information
as our basis for finding the curvatures of the complex projective plane.

Chapter 4: Here we concentrate on the special case where the Riemannian
manifold is a hypersurface in Euclidean space. In this situation, one gets some
special relations between the curvatures. We give examples of simple Riemannian
manifolds that cannot be represented as hypersurface metrics. Finally, we give a
brief introduction to the Gauss-Bonnet theorem and its generalization to higher
dimensions.

Chapter 5: The remaining foundational topics for Riemannian manifolds are
developed in this chapter. These include parallel translation, geodesics, Rieman-
nian manifolds as metric spaces, exponential maps, geodesic completeness versus
metric completeness, and maximal domains on which the exponential map is an
embedding.

Chapter 6: Some of the classical results we prove here are: classification of sim-
ply connected space forms, the Hadamard-Cartan theorem, Preissmann’s theorem,
Cartan’s center of mass construction in nonpositive curvature and why it shows that
the fundamental group of such spaces is torsion free, Bonnet’s diameter estimate,
and Synge’s theorem.

Chapter 7: Many of the classical and more recent results that arise from the
Bochner technique are explained. We look at Killing fields and harmonic 1-forms
as Bochner did, and finally, discuss some generalizations to harmonic p-forms.
For the more advanced audience, we have developed the language of Clifford
multiplication for the study of p-forms, as we feel that it is an important way of
treating this material. The last section contains some more exotic but also pro-
found situations where the Bochner technique is applied to the curvature tensor.
These last two sections can easily be skipped in a more elementary course. The
Bochner technique gives many nice bounds on the topology of closed manifolds
with nonnegative curvature. In the spirit of comparison geometry, we show how
Betti numbers of nonnegatively curved spaces are bounded by the prototypical
compact flat manifold: the torus.
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The importance of the Bochner technique in Riemannian geometry cannot be
sufficiently emphasized. It seems that time and again, when people least expect it,
new important developments come out of this simple philosophy.

Chapter 8: Part of the theory of symmetric spaces and holonomy is developed.
The standard representations of symmetric spaces as homogeneous spaces and via
Lie algebras are explained. We prove Cartan’s existence theorem for isometries.
We explain how one can compute curvatures in general and make some concrete
calculations on several of the Grassmann manifolds including complex projective
space. Having done this, we define holonomy for general manifolds, and discuss
the de Rham decomposition theorem and several corollaries of it. The above exam-
ples are used to give an idea of how one can classify symmetric spaces. Also, we
show in the same spirit why symmetric spaces of (non)compact type have (non-
positive) nonnegative curvature operator. Finally, we present a brief overview of
how holonomy and symmetric spaces are related with the classification of holon-
omy groups. This is used in a grand synthesis, with all that has been learned up
to this point, to give Gallot and Meyer’s classification of compact manifolds with
nonnegative curvature operator. A few things from Chapter 9 are used in Chap-
ter 8, namely Myers’ theorem and the splitting theorem. However, their use is
inessential, and they are there to tie this material together with some of the more
geometrical constructions that come later.

Chapter 9: Manifolds with lower Ricci curvature bounds are investigated in
further detail. First, we discuss volume comparison and its uses for Cheng’s maxi-
mal diameter theorem. Then we investigate some interesting relationships between
Ricci curvature and fundamental groups. The strong maximum principle for con-
tinuous functions is developed. This result is first used in a warm-up exercise to
give a simple proof of Cheng’s maximal diameter theorem. We then proceed to
prove the Cheeger-Gromoll splitting theorem and discuss its consequences for
manifolds with nonnegative Ricci curvature.

Chapter 10: Convergence theory is the main focus of this chapter. First, we in-
troduce the weakest form of convergence: Gromov-Hausdorff convergence. This
concept is often useful in many contexts as a way of getting a weak form of con-
vergence. The real object is then to figure out what weak convergence implies,
given some stronger side conditions. There is a section which breezes through
Holder spaces, Schauder’s elliptic estimates, and harmonic coordinates. To fa-
cilitate the treatment of the stronger convergence ideas, we have introduced a
norm concept for Riemannian manifolds. We hope that these norms will make
the subject a little more digestible. The main idea of this chapter is to prove the
Cheeger-Gromov convergence theorem, which is called the Convergence Theo-
rem of Riemannian Geometry, and Anderson’s generalizations of this theorem to
manifolds with bounded Ricci curvature.
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Chapter 11: In this chapter we prove some of the more general finiteness the-
orems that do not fall into the philosophy developed in Chapter 10. Initially, we
discuss critical point theory and Toponogov’s theorem. These two techniques are
used throughout the chapter to prove all of the important theorems. First, we probe
the mysteries of sphere theorems. These results, while often unappreciated by a
larger audience, have been instrumental in developing most of the new ideas in the
subject. Comparison theory, injectivity radius estimates, and Toponogov’s theorem
were first used in a highly nontrivial way to prove the classical quarter pinched
sphere theorem of Rauch, Berger, Toponogov, and Klingenberg. Critical point the-
ory was invented by Grove and Shiohama to prove the diameter sphere theorem.
After the sphere theorems, we go through some of the major results of compari-
son geometry: Gromov’s Betti number estimate, the Soul theorem of Cheeger and
Gromoll, and the Grove-Petersen homotopy finiteness theorem.

Appendix A: Here, some of the important facts about forms are collected.
Stokes’ theorem is proved, and we give a very short and streamlined introduction
to Cech and de Rham cohomology. The exposition starts with the assumption that
we only work with manifolds that can be covered by finitely many charts such that
all possible intersections are contractible. This makes it very easy to prove all of
the major results, as one can simply use the Poincaré and Meyer-Vietoris lemmas
together with induction on the number of charts in the covering.

Appendix B: Here, we develop Cartan formalism for the connection and curva-
ture on a Riemannian manifold. We then develop this in the indexfree work of the
frame bundle. Finally, we explain how principal bundles can be used to describe
all of this in a very compact and abstract manner.

Appendix C: Using the language of principal bundles developed in the previous
appendix, we define spin manifolds, and show why they have some new and in-
teresting bundles that are not tensor bundles. We prove the Lichnerowicz formula
for the Dirac Laplacian on spinors. This formula is used in two situations: first, to
conclude that the A-genus vanishes in positive scalar curvature, and secondly, in
the positive mass conjecture. In the last section, we also discuss how to square a
spinor. The entire treatment is self-contained but does not take the reader into the
world of index theory, even though this is where things start to get really interest-
ing. Our intention is simply to give a short and concise account of one of the most
important topics in mathematical physics and differential geometry.

At the end of each chapter, we give a list of books and papers that cover and
often expand on the material in the chapter. We have whenever possible attempted
to refer just to books and survey articles. The reader is then invited to go from those
sources back to the original papers. For more recent works, we also give journal
references if the corresponding books or surveys do not cover all aspects of the
original paper. One particularly exhaustive treatment of Riemannian geometry for
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the reader who is interested in learning more is [11]. Other valuable texts that
expand or complement much of the material covered here are [62], [76], and [79].
There is also a forthcoming historical survey by Berger (see [ 10]) that complements
this text very well.

A first course should definitely contain Chapters 2, 5, and 6 together with what-
ever one feels is necessary from Chapters 1, 3, and 4. Note that Chapter 4 is really a
world unto itself and is not used in a serious way later in the text. A more advanced
course could consist of going through either part III or IV as defined earlier. These
parts do not depend in a serious way on each other. One can probably not cover the
entire book in two semesters, but one can cover parts I, I, and III or alternatively
I, II, and IV depending on one’s inclination. It should also be noted that, if one
does not discuss the section on Killing fields in Chapter 7, then this material can
actually be covered without having been through Chapters 5 and 6. Each of the
chapters ends with a collection of exercises. These exercises are designed both to
reinforce the material covered and to establish some simple results that will be
needed later. The reader should at least read and think about all of the exercises,
if not actually solve all of them.

There are several people I would like to thank. First and foremost are those stu-
dents who suffered through my various pedagogical experiments with the teach-
ing of Riemannian geometry. Special thanks go to Marcel Berger, Hao Fang, Chad
Sprouse, Semion Shteingold, Marc Troyanov, Gerard Walschap, Nik Weaver, Fred
Wilhelm, and Hung-Hsi Wu for their constructive criticism of parts of the book. I
would especially like to thank Joseph Borzellino for his very careful reading of this
text, and Peter Blomgren for writing the programs that generated Figures 2.1 and
2.2.1would like to thank the New York office of Springer-Verlag for their excellent
copy-editing of my manuscript and renderings of my hand-drawn pictures. Their
efforts have made the book both more readable and much nicer to look at. Finally,
I would like to thank Robert Greene, Karsten Grove, and Gregory Kallo for all the
discussions on geometry we have had over the years.

Los Angeles, California Peter Petersen
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1

Riemannian Metrics

In this chapter we shall introduce the category (i.e., sets and maps) that we wish
to work with. Without discussing any theory we shall present many examples of
Riemannian manifolds and Riemannian maps. All of these examples will form the
foundation for future investigations into constructions of Riemannian manifolds
with various interesting properties.

The abstract definition of a Riemannian manifold used today dates back only
to the 1930s. It was not really until Whitney’s work in 1936 that mathematicians
obtained a clear understanding of what manifolds were, other than as submani-
folds of Euclidean space. Riemann himself defined Riemannian metrics only on
domains in Euclidean space. Before Riemann, Gauss and others really understood
only 2-dimensional geometry. The invention of Riemannian geometry is quite cu-
rious. The story goes that Gauss was on Riemann’s defense committee for his
Habilitation (super doctorate). In those days, the candidate was asked to submit
three topics in advance, with the implicit understanding that the committee would
ask to hear about the first topic (the actual thesis was on Fourier series and the
Riemann integral.) Riemann’s third topic was “On the hypotheses which lie at
the foundations of geometry.” Clearly he was hoping that the committee would
select from the first two topics, which were on material he had already worked on.
Gauss, however, always being in an inquisitive mood, decided he wanted to hear
whether Riemann had anything to say about the subject on which he, Gauss, was
the reigning expert. So, much to Riemann’s dismay he had to go home and invent
Riemannian geometry to satisfy Gauss’s curiosity. No doubt Gauss was suitably
impressed, a very rare occurrence for him indeed.

From Riemann’s work it appears that he worked with changing metrics mostly
by multiplying them by a function (conformal change). With this technique he
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was able to construct all three constant-curvature geometries in one fell swoop for
the first time ever. Soon after Riemann’s discoveries it was realized that in polar
coordinates one can change the metric in a different way, now referred to as a
warped product. This also yields in a unified way all constant curvature geometries.
Of course, Gauss already knew about polar coordinate representations on surfaces,
and rotationally symmetric metrics were studied even earlier. But these examples
are much simpler than the higher-dimensional analogues. Throughout this book
we shall emphasize the importance of these special warped products and polar
coordinates. It is not far to go from warped products to doubly warped products,
which will also be defined in this chapter, but they don’t seem to have attracted
much attention until Schwarzschild discovered a vacuum space-time that wasn’t
flat. Since then, doubly warped products have been at the heart of many examples
and counterexamples in Riemannian geometry.

Another important way of finding Riemannian metrics is by using left-invariant
metrics on Lie groups. This leads us to, among other things, the Hopf fibration and
Berger spheres. Both of these are of fundamental importance and are at the core of
a large number of examples in Riemannian geometry. These will also be defined
here and studied throughout the book.

1.1 Riemannian Manifolds and Maps

A Riemannian manifold (M, g) consists of a (C*) manifold M and a Euclidean
inner product g, on all of the tangent spaces T, M of M. We shall assume that
g, varies smoothly. This means that for any two smooth vector fields X, Y, the
inner product g,(X, Y) should be a smooth function of p. The subscript p will
be suppressed throughout the book. At several places we shall also need M to be
connected, and thus we make the assumption throughout the book that we work
only with connected manifolds.

All inner product spaces of the same dimension are isometric; therefore all tan-
gent spaces T, M ona Riemannian manifold (M, g) are isometric to n-dimensional
Euclidean space R" endowed with its canonical inner product. Hence, all Rieman-
nian manifolds have the same infinitesimal structure not only as manifolds but also
as manifolds with a Riemannian metric.

Example 1.1 By far the most important Riemannian manifold is Euclidean space
(R", can). The canonical Riemannian structure “can” is defined by identifying the
tangent bundle TR"~ R" xR" via the map (x, v) — [equivalence class of curves
through x represented by s > x + s - v]. Thus the standard inner product on R”
induces a Riemannian structure on R".

A Riemannian isometry between Riemannian manifolds (M, g) and (N, h) is
a diffeomorphism ¢ : M — N such that p*h = g, ie., A(Dp(v), Do(w)) =
g(v, w) for all tangent vectors v, w € T,M and all p € M. Clearly, ¢ 'isa
Riemannian isometry as well.
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Unit sphere

FIGURE 1.1.

Example 1.2 Whenever we have a finite-dimensional vector space E with
an inner product, we can construct a Riemannian manifold by declaring that
g((x,v), (x,w)) = v - w, where (x,v) - [s — x + s - v] is the usual trivi-
alization of T E. If we have two such Riemannian manifolds (E, g) and (F, h)
of the same dimension, then they are isometric. Recall that both spaces admit or-
thonormal bases (eq, ..., e,)and (f1, . .., f,) with respect to their respective inner
products. The Riemannian isometry ¢ : E — F isdefinedas o(Z a'e;) = T o' f;.
(You should check that this is an isometry.) Thus (R”, can) is not only the only
n-dimensional inner product space, but also the only Riemannian manifold of this

simple type.

Suppose that we have an immersion (or embedding) ¢ : M — N,andthat(N, k)
is a Riemannian manifold. We can then construct a Riemannian metric on M by
pulling back 4 to g = ¢*h on M, in other words, g(v, w) = h (D¢ (v), De (w)).
Notice that this gives an inner product because D¢ (v) is never zero unless v = 0.

A Riemannian immersion (or Riemannian embedding) is thus an immersion (or
embedding) ¢ : M — N such that g = ¢*h. Riemannian immersions are also
called isometric immersions.

Example 1.3 We now come to the second most important example. Define
S§"(r) = {x € R**! : |x| = r}. This is the Euclidean sphere of radius r. The
metric induced from the embedding $"(r) < R"*! is the canonical metric on
$"(r). The unit sphere, or standard sphere, is S = §"(1) C R"*! with the induced
metric. In Figure 1.1 is a picture of the unit sphere in R®> shown with latitudes and
longitudes.

Example 1.4 If k < n there are, of course, several linear isometric immersions
(R¥, can) — (R", can). Those are, however, not the only ones. Any curve y :
R — R? withunitspeed, i.e., |y(r)| = 1forallz € R, is anexample of an isometric
immersion. If the curve has no self-intersections then it will in fact become an
embedding. One could, for example, take r — (cos?, sin?) as an immersion,
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while ¢ — (log (r + 1+ t2) A1+ t2) gives an embedding. A map of the
form: ¢ : R¥— R where o(x', ..., x%) = (y(x"), 2, ..., x¥) (where y fills
up the first two entries) will then give an isometric immersion (or embedding) that
is not linear. This is counterintuitive in the beginning, but serves to illustrate the
difference between a Riemannian immersion and a distance-preserving map. In
Figure 1.2 there are two pictures, one of the cylinder, the other of the isometric
embedding of R? into R® just described.

There is of course also the concept of a Riemannian submersion ¢ : (M, g) —
(N, h). This is a submersion ¢ : M — N such that for each p € M,
Dy : ker*(Dg) — Ty(p)N is a linear isometry. In other words, if v, w € TpyM
are perpendicular to the kemnel of Dp : T,M — T,,)N, then g(v,w) =

h(Dg (v), D¢ (w)).
Example 1.5 Orthogonal projections (R", can) — (R¥, can) where k < n are

examples of Riemannian submersions.

Example 1.6 A much less trivial example is the Hopf fibration S*(1) — S*(3).
This map can be written as (z, w) — zw ™" if we think of $3(1) C C? and $%(3)
as being C with the right sort of description of the metric. Later we will examine
this example more closely.

1.2 Groups and Riemannian Manifolds

We shall look into groups of Riemannian isometries on Riemannian manifolds and
see how this can be useful in constructing new Riemannian manifolds.
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1.2.1 Isometry Groups

For a Riemannian manifold (M, g) let Iso(M) = Iso(M, g) denote the group
of Riemannian isometries ¢ : (M, g) — (M, g) and Iso,(M, g) the isotropy
(sub)group at p, i.e., those ¢ € Iso(M, g) with ¢(p) = p. A Riemannian manifold
is said to be homogeneous if its isometry group acts transitively, i.e., for each pair
of points p, g € M there is ¢ € Iso(M, g) such that ¢ (p) = q.

Example 2.1 Iso(R",can) =R"x O(n)={¢p :R"—> R" : p(x) = v+ O0x, v €
R" and O € O(n)}. (Here H x G is the semidirect product, with G acting on H
in some way.) The translational part v and rotational part O are uniquely deter-
mined. It is clear that these maps indeed are isometries. To see the converse first
observe that ¥ (x) = ¢(x) — ¢(0) is also a Riemannian isometry. Using that it is

a Riemannian isometry, we observe that at x = 0 we can find (Olf ) € O (n) such

that '
Dy (3,) = 0/ 9;.

Thus, we have two isometries on Euclidean space, both of which preserve the
origin and have the same differential there. It is then not hard to see that they must
be equal, by using that they must both map unit speed lines through the origin to
unit speed lines through the origin.

The isotropy group Iso, is apparently always isomorphic to O(n), so we see
that R" = Iso/Iso, for any p € R". This is in fact always true for homogeneous
spaces.

Example 2.2 Iso(S"(r), can) = O(n + 1) = Isop(R"*!, can). It is again clear
that O(n + 1) C Iso(S"(r), can). Conversely, if ¢ € Iso($"(r), can) extend it to
¢ : R R by ¢(x) = Ix| - r~! - ¢ (x - |x|™" - r) and @(0) = 0. Then check
that ¢ € Isog(R"*!, can) =O(n+ 1). This time the isotropy groups are isomorphic
to O(n), that is, those elements of O(n + 1) fixing a 1-dimensional linear subspace
of R"™*!. In particular, O(n + 1)/0(n) = S”.

1.2.2  Lie Groups

More generally, consider a Lie group G. The tangent space TG ~ G x T,G by
using left (or right) translations on G. Therefore, any inner product on 7, G induces
a left-invariant Riemannian metric on G i.e., left translations are Riemannian
isometries. It is obviously also true that any Riemannian metric on G for which
all left translations are Riemannian isometries is of this form. In contrast to R”,
not all of these Riemannian metrics are isometric if the identity component of G
is not R”. Lie groups therefore do not come with any canonical metrics.

If H is a closed subgroup of G, then we know that G/H is a manifold. If we
endow G with one of the left-invariant metrics, then H acts by isometries (on the
left) and one sees that there is a unique Riemannian metric on G/H making the
projection G — G/H into a Riemannian submersion. If in addition the metric is
also right invariant then G acts by isometries on G/H (on the right) thus making
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G/ H into a homogeneous space. It is, in fact, not too hard to prove that Iso(M, g)
is always a Lie group. Thus, all homogeneous spaces look like G/H.

Example 2.3 Consider $?*~!(1) ¢ C". S! = {A € C : |A| = 1} acts by complex
scalar multiplication on both §2"~! and C"; furthermore this action is by isometries.
We know that the quotient $%*~!/S' = CP”"~!, and since the action of S' is
by isometries, we induce a metric on CP"~! such that §>*~' — CP"!isa
Riemannian submersion. This metric is called the Fubini-Study metric. When
n = 2, this turns into the Hopf fibration $3(1) - CP! = Sz(%).

Example 2.4 One of the most important nontrivial Lie groups is SU (2), which
is defined as

SUQ@)={AeMyu(C):detA=1A*=A""}

- {( 5) —Zw ) 2P+ wl? = 1} = 53(1).

The Lie algebra su(2) of SU (2) is

su(2) = {( —,Bijl—iy ﬂ:éy ):cx,ﬂ,yeR}

andisspannedbe|=((i) 0.>,X2:(_0l ;),X3: ? ; - We

-1
can think of these matrices as left-invariant vector fields on SU (2). If we declare
them to be orthonormal, then we get a left-invariant metric on SU (2), which as we
shall later see is 3 (1). If instead we declare the vectors merely to be orthogonal,
X to have length ¢, and the other two to be unit vectors we get a very important
1-parameter family of metrics g, on SU (2) = S>. These distorted spheres are
called Berger spheres. Note that scalar multiplication on S* C C? corresponds

%) on SU(2). Thus X,

is exactly tangent to the orbits of the Hopf circle action. The Berger spheres are
therefore obtained from the canonical metric by multiplying the metric on the Hopf
fiber by ¢.

to multiplication on the left by the matrices

1.2.3  Covering Maps

Groups occur in other ways in geometry, namely, as deck transformations or cov-
ering groups. Suppose thatp : M — N is a covering map. Then ¢ is, in particular,
an immersion and a submersion as well. Thus, any Riemannian metric on N in-
duces a Riemannian metric on M, making ¢ into an isometric immersion, also
called a Riemannian covering. Since dim M = dim N, ¢ must, in fact, be a local
isometry, i.e., for every p € M there is a neighborhood U > p in M such that
@|U : U — ¢(U) is a Riemannian isometry. Notice that the pullback metric on M
has considerable symmetry. For if g € V C N is evenly covered by (U} ,e4-1(¢)
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then all the sets V and U, are isometric to each other. In fact, if ¢ is a normal
covering, i.e., there is a group I" of deck transformations acting on M such that:
M/T = N and ¢(gx) = ¢(x) for g € T, then I acts by isometries on the pullback
metric. This can be used in the opposite direction. Namely, if N = M/T" and
M is a Riemannian manifold, where I" acts by isometries, then there is a unique
Riemannian metric on N such that the quotient map is an isometric immersion.

Example 2.5 If we fix a basis vy, v; for R?, then Z? acts by isometries by
(n,m) - (x — x + nv; + mv;). The orbit of the origin looks like a lattice.
The quotient is a torus 72 with some metric on it. Note that T2 is itself an Abelian
Lie group and that these metrics are invariant with respect to the Lie group multi-
plication. However, these metrics are not all isometric to each other.

By adding a reflection to the action by Z? we get an action by Z?xZ,, and the
quotient is the Klein bottle with various Riemannian metrics. One can also use
orientation-reversing involutions on T to get these Klein bottles.

Example 2.6 The involution —id on $*(1) C R"*! is an isometry and induces a
Riemannian covering §* — RP”".

1.3 Local Representations of Metrics

1.3.1 FEinstein Summation Convention

We shall often use the index and summation convention that Einstein introduced.
Given a vector space V, such as the tangent space of a manifold, we shall always
use subscripts for vectors in V. Thus a basis of V is denoted by vy, ..., v,. Given
a vector v € V we can then write it as a linear combination of these basis vectors

as follows:
v = ZOZ’U,‘ = C(IU,'.
;

Here we use superscripts on the coefficients and then automatically sum over
indices that are repeated as both sub- and superscripts. If we define a dual basis v*
for the dual space V* = hom (V, R) as follows:

v (v) =85,
then the coefficients can also be computed via
o =0 (v).

It is therefore convenient to use superscripts for dual bases in V*. The matrix
representation (a,.’ )of alinear map L : V — V is usually found by solving

L{v) = al.jvj.
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In other words _ _
aij =v/ (L(vy)).

Another convenient convention is that subscripts should correspond to rows,
while superscripts correspond to columns. Thus, the components of a vector v are
arranged in a column, as is standard. But we can then also think of (L (v;)) and
(v;) as row vectors. With this in mind, the matrix representation of a linear map
can also be found as the matrix that satisfies

(L) = (v)) (a,.f') .

When the objects under consideration are defined on manifolds, the conventions
carry over as follows. Cartesian coordinates on R” and coordinates on a manifold
have superscripts (x'), as they are the coefficients of the vector corresponding to
this point. Coordinate vector fields therefore look like

a

=

and consequently they have subscripts. This is natural, as they form a basis for the
tangent space. The dual 1-forms
dx’
satisfy .
dx’ () =]
and therefore form the natural dual basis for the cotangent space.

Einstein notation is not only useful when one doesn’t want to write summation
symbols, it also shows when certain coordinate- (or basis-) dependent definitions
are invariant under change of coordinates. Examples occur throughout the book.
For now, let us just consider a very simple situation, namely, the velocity field of
acurve ¢ : I — R". In coordinates, the curve is written

c() = (c' (1)
=c (e,
if e; is the standard basis for R”. The velocity field is now defined as the vector
¢()=(c'(@).
Using the coordinate vector fields this can also be written as
¢(r)=é (1) 9.

In a coordinate system on a general manifold we could then try to use this as our
definition for the velocity field of a curve. But then we must show that indeed it
gives the same answer in different coordinates. This is simply because the chain

rule tells us that . ‘
¢ (1) =dx' (c()),



1.3 Local Representations of Metrics 9

and then observing that, we have simply used the above definition for finding the
components of a vector in a given basis.

Generally speaking, we shall, when it is convenient, use Einstein notation. When
giving coordinate-dependent definitions we shall be careful that they are given in
a form where they obviously conform to this philosophy and therefore can easily
be seen to be invariantly defined.

1.3.2 Coordinate Representations

On a manifold M we can multiply 1-forms to get bilinear forms: 6; - (v, w) =
61(v) - 62(w). Given coordinates x(p) = (x', ..., x") on an open set U of M, we
can thus construct bilinear forms dx’ - dx/. If in addition M has a Riemannian
metric g, then we can write

g = g8, 8;)dx’ - dx’
because

g(v, w) = g(dx'(v)3;, dx’(w)d;)
= g(3;, 9;)dx" (v) - dx’ (w).

The functions g(d;, 9;) are denoted by g;;. This gives us a representation of g in
local coordinates as a positive definite symmetric matrix with entries parametrized
over U. Initially one might think that this gives us a way of concretely describing
Riemannian metrics. That, however, is a mere illusion. Just think about how many
manifolds you know with a good covering of coordinate charts together with
corresponding transition functions. On the other hand, coordinate representations
are often a good theoretical tool for doing abstract calculations rather than concrete
ones.

Example 3.1 The canonical metric on R"” in the identity chart is g =

Bijdxidxj = Z:‘Z:I (dxi)z.

Example 3.2 On R? — {halfline} we also have polar coordinates (r, §). In these
coordinates the canonical metric looks like g = dr? + r?d6?. In other words,

gr =1, 80 =280 =0, 80 =r".

Recall that x' = r cos6, x2 = rsin@. Thus,

dx" = cosOdr — rsin6de,
dx? = sin@dr + r cos6d6,

which gives

g = (dx') + (dx?)?
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= (cosOdr — r sin8dB)* + (sinOdr + r cos Hd6)?

= (cos? 0 + sin’ 8)dr? 4 2(r cos 0 sin@ — r cos @ sin 0)drd6
+ (r% sin® 0)d6? + (r? cos® 0)d6?

= dr’ +r’d6’.

1.3.3 Frame Representations

A different but similar way of representing the metric is by choosing a frame
Xi,...X, on an open set U of M, i.e., n linearly independent vector fields on
U, where n = dim M. If o', ..., 0" is the coframe, i.e., the 1-forms such that
o' (X;) = &}, then the metric can be written as

gzgijUin,
where 8ij = 8 (X,‘, Xj) .

Example 3.3  Any left-invariant metric on a Lie group G can be writtenas (o' )> 4

.o 4 (0")? fora coframing dual to left-invariant vector fields X;, ..., X,, which
form an orthonormal basis for 7,G. If instead we just begin with a framing of
left-invariant vector fields X1, ..., X, and dual coframing ¢', ..., 0", then any

left-invariant metric g depends only on its value on 7,G and can therefore be
written g = g;;0'c/, where g;; is a positive definite symmetric matrix with real-
valued entries. The Berger sphere can, for example, be written g, = &*(c')? +
(0%)? + (o), where 0/(X ) = &',

Example 3.4 A surface of revolution consists of a curve y(t) = (x(¢), y(¢), 0) :
I — R3, where I C R is open and y(z) > 0 for all ¢. By rotating this curve
around the x-axis, we get a surface that can be represented as (¢, ) — f(¢,60) =
(x(2), y(¢) cos @, y(¢) sin 0). This is a cylindrical coordinate representation, and we
have a natural frame 9,, 99 on all of the surface with dual coframe dz, d6. We wish
to write down the induced metric dx? + dy? + dz* from R? in this frame. Observe
that

dx = xdt,
dy = ycos(8)dt — ysin(0)dé,
dz = ysin(0)dt + y cos(6)d8,

SO
dx? +dy* +dz* = (xdt)* + (y cos () dt — y sin () d6)*
+ (ysin(0)dt + y cos(8) dO)
= (x* 4+ y?) dr* + y*d6”.
Thus

g = (#2 + yHdr? + y2do*.
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If, therefore, the curve is parametrized by arc length, we have the simple formula:
g =dr* + y*de?,

which is reminiscent of our polar coordinate description of R2. In Figure 1.3 there
are two pictures of surfaces of revolution. The first shows that when y = 0 the
metric looks pinched and therefore destroys the manifold. In the second, y starts
out being zero, but this time the metric appears smooth, as y has vertical tangent

to begin with.

Example3.5 On/ x § ! we also have the frame 9,, 9 with coframe dt, d6.

Metrics of the form
g = n*(dt* + ¢*(1)do?

are called rotationally symmetric since n and ¢ do not depend on 6. We can,
by change of coordinates on /, generally assume that n = 1. Note that not all
rotationally symmetric metrics come from surfaces of revolution. Forif dt?+y*d#?

is a surface of revolution, then %2 4+ y? = 1. Whence |y| < 1.

Example 3.6 S*(r) C R’ is a surface of revolution. Just revolve ¢ —
(r cos(tr1), r sin(¢r "), 0) around the x-axis. The metric looks like

” t
dt* + r? sin’ (—) do?.
r

Note that r sin(tr~') — t asr — oo, so very large spheres look like Euclidean
space. By changing r to ir, we arrive at some interesting rotationally symmetric
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metrics: dt? + r? sinh?(rr~")d6?, which are not surfaces of revolution. If we let
sni(¢) denote the unique solution to

X@)+k-x(@) =0,

x(0) =0,

x(0) =1,
then we have a 1-parameter family dr> + sn}(¢)d6> of rotationally symmetric
metrics. (The notation sn; will be used throughout the text; it should not be confused
with Jacobi’s elliptic function sn(k, u).) When k = 0, this is R?; when k > 0, we

get S2(1/v/k); and when k < 0, we arrive at the hyperbolic (from sinh) metrics
from above.

1.3.4 Polar Versus Cartesian Coordinates

In these rotationally symmetric examples, we haven’t discussed what happens
when ¢(t) = 0. In the revolution case, the curve clearly needs to have a ver-
tical tangent in order to look smooth. To be specific, assume that we have
dr® + @*(t)d6?, ¢ : [0, b) — [0, 00), where ¢(0) = 0 and ¢(¢) > 0 fort > 0. All
other situations can be translated or reflected into this position. We assume that
@ is smooth, so we can rewrite it as ¢(t) = ty(¢) for some smooth ¥ (r) > 0 for
t > 0. Now introduce “Cartesian coordinates”

X =1tcosé,

y =tsinf

near r = 0. Then t?> = x> 4+ y? and
dr \ _ cos (6) sin (0) dx
do ) — \ —t71sin(@) t7'cos(d) dy

ot Ty dx
T\ =2y 7% dy |-
Thus,

dt? + X (1)d0? = dr* + 2y (1)d6?
= 72 (xdx + ydy)* + ()Y ()~ (—ydx + xdy)?
=172x%dx? + t“22xydxdy
+ t_2y2dy2 + t'lerz(t)(xdy — yd)c)2
= 172(x* + y2(1)yH)dx?
+172Q2xy = 2xyy P (O)dxdy + 120X + yP)dy?,

whence

(> + ¥2(0)y%) Y2 ()~ 1
Ty =0 -’

g XX ’
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1 —42(1)
8xy = 8yx = 12 * Xy,
2 2 2 2
x4y H—1
g, = O +y) YO
Ee x2+y2 t2

and we need to check for smoothness of the functions at (x, y) = 0 (orr = 0). For
this we must obviously check that the function

v -1

12

is smooth at ¢ = 0. First, it is clearly necessary that 1/(0) = 1; this is the vertical
tangent condition. Second, some calculus calculations show that we must further
assume that all odd derivatives 1/(0) = ¥®(0) = - - - = 0. If we translate back to
@, we get that the metric is smooth at # = 0 iff ¢(©*™(0) = 0 and ¢(0) = 1.

These conditions are all satisfied by the metrics dr? + sni(£)d6?, where t €
[0, 00) when k < 0 and ¢ € [0, %] fork > 0.

1.4 Doubly Warped Products

1.4.1 Doubly Warped Products in General
2

We can more generally consider metrics on / x $"~! of the type d* + (pz(t)dsn_] R
where a'sf_] is the canonical metric on $"~!(1) ¢ R". Even more general are
metrics of the type: dt? + <p2(t)ds12J + wz(t)dsg on [ x §” x §9. The first type are
again called rotationally symmetric, while those of the second type are a special
type of doubly warped product. As for smoothness, when ¢(z) = 0 we can easily
check that the situation for rotationally symmetric metrics is identical to what
happened in the previous section. For the doubly warped product observe that
nondegeneracy of the metric implies that ¢ and ¥ cannot both be zero at the same
time. However, we have the following lemmas:

Lemmad4.l If¢ : (0,b) — (0, 00) is smooth and ¢(0) = 0, then we get a
smooth metric att = 0 iff

(p(even)(o) —_ 0,

p(0) =1,

and
¥(0) > 0,
1p(()dd)(o) = 0.

The topology near t = 0 in this case is RP*! x §9.
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Lemmad4.2 If¢ : (0,b) — (0,00) is smooth and p(b) = 0, then we get a
smooth metric att = b iff

(p(even)(b) — 0’
o(b) = —1,
and
¥(b) > 0,

Y O(b) = 0.
The topology near t = b in this case is again RP*' x $49.

Depending on what happens with ¢ and v as ¢ increases, we can get three
different types of topologies.

e ¢, ¥ :[0,00) — [0, 00) are both positive on all of (0, 0c0). Then we have a
smooth metric on R”*! x §7 if ¢, ¥ satisfy Lemma 4.1.

e ¢,V : [0,b] — [0, 00) are both positive on (0, b) and satisfy Lemma 4.1
and 4.2. Then we get a smooth metric on S7*! x §9.

e ¢,V :[0,b] — [0, 00) as in the second type but the roles of ¥ and ¢ are
interchanged at ¢ = b. Then we get a smooth metric on §7+4+!1!

1.4.2  Spheres as Warped Products

First let us show how the standard sphere can be written as a rotationally symmetric
metric in all dimensions. The metrics dr? + snZ(r)ds>_, are analogous to the
surfaces from the last section. So when £ = 0 we get (R”, can), and when & = 1
we get (5"(1), can). To see the last statement observe that we have a map

f:0,7n)xR"—->RxR",
f(r,2) = (1, x) = (cos(r), sin(r) - 2),

which reduces to a map

g (0,r)x s - RxR",
g(r, 2) = (cos(r), sin(r) - z).

Thus, g really maps into the unit sphere in R"*!. To see that g is a Riemannian
isometry we just compute the canonical metric on R x R” using the coordinates
(cos(r), sin(r) - z):

can = dt* + (dx‘)2 +.+ (dx")2
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= (dcos() + (d (sin() "))’ + -+ (d (sin(r) 2"))*
= sin® (r)dr’® + 2sin(r)cos (r) (z'dz' + - - + "dz")
o5’ () dr? (&) +- -+ (1)) +sin? (1) (d2') + - + (d2)?)
= sin® (r)dr? + cos® (r)dr? + sin® (r) ((dzl)2 4+t (dz”)2>
= dr? +sin’ (1) (')’ +-- - + (d27)’).

Now observe that (a!zl)2 + -+ 4 (dz")? restricted to $”7! is exactly the
canonical metric ds?_, and also that (z‘)2 + - 4+ (" = 1 implies

2(z'dz' 4+ -+ + z"dz") = 0. Thus the claim follows.
The metricsdtz+sin2(z‘)dsf,+cosz(t)ds§, 1 € [0, 5], arealso (SP*471(1), can).

Namely, we have §? ¢ R?™! and $¢ ¢ R?*!, so we can map
(O z) x 87 x §9 > RPH xRI*!
9 2 ?
(t,x,y) — (x -sin(r), y - cos(?)),

where x € RP*1, ye R?*! have |x| = |y| = 1. These embeddings clearly map
into the unit sphere. The computations that the map is a Riemannian isometry are
similar to the above calculations.

1.4.3  The Hopf Fibration

With all this in mind, let us revisit the Hopf fibration §*(1) — §?(3) and show

that it is a Riemannian submersion between the spaces indicated. On S3(l), write

the metric as -
P + sin2(1)d6? + cos*(1)d62, 1 € [o, 5] :

and use complex coordinates
(t, €%, %) — (sin(r)e'®, cos(t)e®?)
to describe the isometric embedding
(o, %) x ' x §' > §3(1) ¢ C2.

Since the Hopf fibers come from complex scalar multiplication, we see that they
are of the form 6 — (z, /@9 ¢/@+6)) On $? (1) use the metric

12
2
dr’ + ————Sm; Do, r e [0.2].

[\

with coordinates

, 1 1 .
(r, €%y - (5 cos(2r), 3 sin(2r)e’9) .
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The Hopf fibration in these coordinates, therefore, looks like (¢, e®t, /%

(¢, '®=%)). Now, on S3(1) we have an orthogonal framing

) —

2(£)dg, — sin®(1)9,
|%+%ﬂf%0& sin’(03, |

cos(t) sin(r)
where the first vector is tangent to the Hopf fiber and the two other vectors have

unit length. On $? (3)
2
s ————0
{a sin(2r) 9]

is an orthonormal frame. The Hopf map clearly maps

af - 81‘9
cos?(t)dg, — Sin2(1)392 N cos2(r)dy + sin*(r)dp 2
cos(t) sin(r) cos (r) sin(r) "~ sin(2r)

6 s

thus showing that it is an isometry on vectors perpendicular to the fiber.
Notice also that the map

i - i
(z, €%, &%) — (cos(t)e'?, sin(t)e'”) — ( cos(t)e’”  —sin(r)e™ )

sin(t)e™%  cos(t)e™®

gives us the promised isometry from S3(1) to SU(2), where SU(2) has the left-
invariant metric described earlier.

The map (z, €9, €®) — (t,e/@%) from I x ST x ' to I x S! is actually
always a Riemannian submersion when the domain is endowed with the doubly
warped product metric

dr? + @*(1)d6} + v (r)d6;
and the target has the rotationally symmetric metric

5 o (e(0)- ‘l’(t))z 2
TR0 re®

This submersion can be generalized to higher dimensions as follows: On
I x §2*! x §' consider the doubly warped product metric dr* + @*(t)ds3, .| +
Y¥2(r)d6?. The unit circle acts by complex scalar multiplication on both $***! and
S' and consequently induces a free isometric action on this space (if » € S'
and (z, w) € S?**! x S, then A - (z,w) = (Az, Aw).) The quotient map
I x §2+1 5 ST — T x ((§2+! x §')/S') can be made into a Riemannian
submersion by choosing the right metric on the quotient space. To find the met-
ric, we split the canonical metric ds2, 41 = h + g, where h corresponds to
the metric along the Hopf fiber and g is the orthogonal component. In other
words, if pr : T,S?*! — T,S*"*! is the orthogonal projection (with respect
to ds%n +1) Whose image is the distribution generated by the Hopf action, then
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h(v, w) = dsgnﬂ(pr(v), pr(w)) and g(v, w) = ds%Hl(v — pr(v), w — pr(w)).
We can then define

di* + @*(t)ds? | + VP (0)d6* = di* + ¢*(1)g + 9> (O)h + ¥ (1)d”.

Now notice that (2! x §') /S' = §**! and that the S' only collapses the
Hopf fiber while leaving the orthogonal component to the Hopf fiber unchanged.
In analogy with the above example, we therefore get that the metricon / x § 2n+l
can be written

2
dr + o (1)g + (@) - ¥(1)

@A) + Y2
In the case where n = 0 we recapture the previous case, as g doesn’t ap-
pear. When n = 1, the decomposition: ds:% = h + g can also be written

ds? = (0'P + (027 + (03), where (¢') = h, (¢?)* + (¢7)* = g, and
{o!, 02,03} is the coframing coming from the identification S® ~ SU(2). The
Riemannian submersion in this case can therefore be written

(1 x 3 x S, di* + @? () [(0"Y + (02)? + (03)*] + Y(r)do?)

3 .2 2 2y2 3y2 OY @)  1y2
(1% 8, d + PO + @)1+ SO E'Y).

If we let ¢ = sin(r), ¥ = cos(r), and r € I = [0, %], then we get the
generalized Hopf fibration $2**3 — CP"*! defined by (0, %) x ($*"*' x §') —
(0, Z) x (($***' x 8') /S') as a Riemannian submersion, and the Fubini-Study
metric on CP"' can be represented as dt? + sin(t)(g + cos*(¢)h).

1.5 Exercises

1. On product manifolds M x N one has special product metrics g =
g1 + g, where g;, g are metrics on M, N respectively. Show that
(R",can) = (R,ds?) x --- x (R,dr?). Show that the flat square torus

17 =R/Z = (S, ()" d6?) x (S, ()" d6%). Show that ¢ (61, 6) =

% (cos 8y, sinf, cos 6, sin H,) is a Riemannian embedding: T? —» R*.

2. Suppose we have an isometric group action G on (M, g) such that the quo-
tient space M /G is a manifold and the quotient map a submersion. Show
that there is a unique Riemannian metric on the quotient making the quotient
map a Riemannian submersion.

3. Construct paper models of the nonsmooth Riemannian manifolds
(R%, df* + a®df?) . If a = 1, this is of course the Euclidean plane, and
when a < 1, they look like cones.
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4. Suppose ¢ and i are positive on (0, co) and consider the Riemannian sub-

mersion
((0,00) x 83 x S', di* + @* () [(¢')* + (02)* + ()] + ¥ (1)db?)
y

. 2
(0.00) x 82, dr? + P02 + (@*V) + YL (0.

Define f = ¢ and h = (p(t) - ¥(£))*/¢*(t) + ¥*(t) and assume that

f(0)>0,
£ =0,

and
h(0) =0,
K (0) = k,
h(even) (0) — 0,

where k is a positive integer. Show that the above construction yields a
smooth metric on the vector bundle over S? with Euler number +. Hint:
Away from the zero section this vector bundle is (0, c0) x S°/Z;, where
S3 /7, is the quotient of S3 by the cyclic group of order & acting on the Hopf
fiber. You should use the submersion description and then realize this vector
bundle as a submersion of S3 x R?. When k = 2, this becomes the tangent
bundle to S?. When k = 1, it looks like CP? — {point}.

. Show that any compact Lie group G admits a bi-invariant metric. Show

that the inner automorphism i, : g — h~'gh is a Riemannian isometry.
Conclude that the adjoint action

g— 8
ady (X) = [X, U]
is skew-symmetric, i.e.,
g([X,U]l,Y)=—g(X,[Y,U]).
Hint: use that Ad, = Dij is an isometry and that it satisfies
Adexpy = exp(ady).

Here the exponential map on the left-hand side, expU : g — G, is the
Lie group exponential map, defined by the property thatz — exp (¢Y) is the
unique homomorphism R — G whose differentialate € GisY € T.G = g.
The exponential map on the right-hand side is the usual exponential of a
linear map L : V — V on a finite-dimensional vector space defined by the
power series
(o] L[
exp(L) = Z R

i=0
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Curvature

With the comforting feeling that there is indeed a variety of Riemannian manifolds
out there, we shall now delve into the theory. Initially, we shall confine ourselves to
infinitesimal considerations. The most important and often also least understood
object of Riemannian geometry is that of the Riemannian connection. From this
concept it will be possible to define curvature and more familiar items like gradients
and Hessians of functions. Studying curvature is the central theme of Riemannian
geometry. The idea of a Riemannian metric having curvature, while intuitively
appealing and natural, is for most people the stumbling block for further progress
into the realm of geometry.

In the last section of the chapter we shall study what we call the fundamental
equations of Riemannian geometry. These equations relate curvature to the Hessian
of certain geometrically defined functions (Riemannian submersions onto inter-
vals). These formulae hold all the information that we shall need when computing
curvatures in new examples and also for studying Riemannian geometry in the
abstract.

Surprisingly, the idea of a connection postdates Riemann’s introduction of the
curvature tensor. Riemann discovered the Riemannian curvature tensor as a second-
order term in the Taylor expansion of a Riemannian metric at a point, where co-
ordinates are chosen such that the zeroth-order term is the Euclidean metric and
the first-order term is zero. Lipschitz, Killing, and Christoffel introduced the con-
nection in various ways as an intermediate step in computing the curvature. Also,
they found it was a natural invariant for what is called the invariance problem in
Riemannian geometry. This problem, which seems rather odd nowadays (although
it really is important), comes out of the problem one faces when writing the same
metric in two different coordinates. Namely, how is one to know that they are the
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same or equivalent. The idea is to find invariants of the metric that can be computed
in coordinates and then try to show that two metrics are equivalent if their invariant
expressions are equal. After this early work by the above-mentioned German math-
ematicians, an Italian school around Levi-Civita, Ricci, et al. began systematically
to study Riemannian metrics and tensor analysis. They eventually defined parallel
translation and through that clarified the use of the connection. Hence the name
Levi-Civita connection for the Riemannian connection. Most of their work was
still local in nature and mainly centered on developing tensor analysis as a tool for
describing many physical phenomena, such as stress, torque, and divergence. At
the beginning of the twentieth century, Minkowski started developing the geometry
of space-time with the hope of using it for Einstein’s new special relativity theory.
It was this work that eventually enabled Einstein to give a geometric formulation
of general relativity theory. Since then, tensor calculus, connections, and curvature
have become an indispensable language for many theoretical physicists.

We shall here take the approach to connections developed by Koszul. There is
another very efficient and elegant development using forms invented by Cartan,
called the Cartan formalism. (See Appendix B for more on this.)

2.1 Connections

2.1.1 Directional Differentiation

First we shall introduce some important notation. There are many ways of denoting
the directional derivative of a function on a manifold. Givena function f : M — R
and a vector field X on M we will use the following ways of writing the directional
derivative of f in the direction of X : Vx f = Dx f = df(X) = X(f).

If we have a function f : M — R on a manifold, then the differential
df : TM — R measures the change in the function. In local coordinates,
df = 8;(f)dx.If, in addition, M is equipped with a Riemannian metric g, then
we also have the gradient of f, denoted by grad f = V f, which is the vec-
tor field satisfying g(v, Vf) = df(v) for all v € TM. In local coordinates this
reads, Vf = g"9;(f)d;, where g" is the inverse of the matrix g;;. Defined in
this way, the gradient clearly depends on the metric. But is there a way of defin-
ing a gradient vector field of a function without using Riemannian metrics? The
answer is no and can be understood as follows. On R” the gradient is defined as
Vf =8Y8,(f)3; = Y1, 8:(f)9;. But this formula depends on the fact that we
used Cartesian coordinates. If instead we had used polar coordinates on R?, say,
then it is not true that V f = 8, ()9, + 95 (f)de, because after change of coordi-
nates, this does not equal 9, f)d. + 9,(f)d,. Now we do not wish to work with
concepts that do not have an invariant description (i.e., coordinate-independent
description). One rule of thumb for items that are invariantly defined is that they
should satisfy the Einstein summation convention, where one sums over iden-
tical super- and subscripts. Thus, df = 8,~( f )dxf is invariantly defined, while
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Vf = 8,-(f) d; is not. The metric g = g;;dx'dx/ and gradient V f = g/ 8,-(f)3_,-
are invariant expressions that also depend on our choice of metric.

2.1.2 Covariant Differentiation

Having decided that V f is a Riemannian notion, rather than a differential topolog-
ical one, we come to the question of attaching a meaning to the change of a vector
field. The change in V f should obviously be the Hessian V2 f of £. It turns out
that this concept also depends on the Riemannian metric we use. If X is a vector
field on R", then VX = Va'd; = d(a')9; defines the change in X by measuring
how the coefficients change. Thus, a vector field with constant coefficients does
not change. This formula again depends on the fact that we used Cartesian coordi-
nates (having constant coefficients with respect to Cartesian coordinates is clearly
not the same as having constant coefficients with respect to polar coordinates) and
is not invariant under change of coordinates (although it looks like we have used
Einstein convention?). But the assignment X — VX does have some important
properties that we can replicate on a Riemannian manifold. First, note that VX is
a (1,1)-tensor. The evaluation on a vector is denoted

VX (v) = V,X = (Dya') &,

where D,a' is the directional derivative. If, therefore, Y is a vector field, we get a
vector field Vy X by defining

(VrX) (p) = Vy(p)X.
With this is mind we can prove

Theorem 1.1 (The Fundamental Theorem of Riemannian Geometry) The as-
signment X — VX on R" is uniquely defined by the following properties:
(1) VX is a (1,1)-tensor

VavtpuX = aVy X + BV X.
(2) X — VX is a derivation

V(X +Y)=VX+ VY,
VUX)=d(f) X+ fVX

for functions f : R* - R.
(3) X — VX is torsion free

VyY - VyX =[X,Y].
4) X > VX is metric

d(g(X,Y)=g(VX.¥)+g(X,VY),
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or more precisely
Vzg(X,Y)=Dzg(X,Y)=g(VzX,Y)+ g(X, VzY)

where g is the canonical metric on R".

Proof. It is easily checked that VX = d(a')d; satisfies these properties. On the
other hand, if X — V X is any assignment satisfying these properties, then we can
show

2¢ (VxY,Z) = Dxg(Y,Z) + Dyg(Z, X) — Dzg(X,Y)
+g(X.Y],Z2)—g(IV.Z], X)+ 5 ([Z, X].Y).

This formula is called the Koszul formula and has the advantage that the right-
hand side depends only on the metric and differential-topological notions. We must
therefore have that g(VyY, Z) = g(VxY, Z) for all vector fields X, ¥, Z on R".

Whence VyY = VY. O

Any assignment on a manifold that satisfies (1) and (2) is called an affine con-
nection. If (M , g) is a Riemannian manifold and we have a connection which in
addition also satisfies (3) and (4), then we call it a Riemannian connection. The
fundamental theorem of Riemannian geometry asserts that on (R", can) there is
only one such connection. On a Riemannian manifold any Riemannian connec-
tion clearly must also satisfy the Koszul formula. Thus, the Riemannian connection
is uniquely determined by the metric. The Koszul formula also gives us a way of
defining a Riemannian connection. Namely, it can be used to compute Vy Y without
knowing V. Some tedious calculations show that this way of defining V actually
gives us a Riemannian connection. Thus we have

Theorem 1.2  On a Riemannian manifold (M , g) there is one and only one Rie-
mannian connection.

Before proceeding we need to discuss how VxY depends on X and Y. Since
VxY is tensorial in X, we see that the value of VxY at p € M depends only on
X(p); but in what way does it depend on Y? Since ¥ — VyY is a derivation, it
is definitely not tensorial in Y. We can therefore not expect that Vy Y (p) depends
only on X(p) and Y(p). The next two lemmas explore how VxY(p) depends on
Y.

Lemma 1.3 Let M be a manifold and V a connectionon M. Ifp e M,v € T,M,
and X, Y are vector fields on M such that X =Y in a neighborhood U > p, then
V,.X =V, Y.

Proof. Choose ¢ : M —> Rsuchthat g = Oon M —Uandgp = 1l ina
neighborhood of p. Then we clearly have that pX = @Y on M. Note that

VX = p(p)Vo X +de(v) - X(p) = V, X
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since dp(p) = 0 and p(p) = 1. Thus

Vo X = VypX
= V,poY
=V,Y. 0

For a Riemannian connection we could also have used the Koszul formula to
prove this since the right hand side of this formula can be localized. This lemma
tells us an important thing. Namely, if a vector field Y is defined only on an
open subset of M, then VY still makes sense on this subset. We could, therefore,
potentially use coordinate vector fields or more generally frames to compute V
locally.

Lemma 1.4 Let M be a manifold, V a connection on M. If'Y is a vector field
onM andy : I — M asmooth curve with y(0) = v € T,M, then VY depends
only on the values of Y along y, i.e.,if X oy =Y oy, thenV; X =V, Y.

Proof. Choose a framing {Z,, ..., Z,} in a neighborhood of p and write ¥ =
Y af-Z;, X =3 B'Z; on this neighborhood. From the assumption that X o y =
Y oy we getthata’ o y = B¢ o y. Thus,

V,Y = Vo' Z;
= ' (p)VyZi + Zi(p)do' (v)
= B (P)VoZi + Zi(p)dp' (v)
=V, X. O

Thus, V,Y makes sense as long as Y is prescribed along some curve (or sub-
manifold) that has v as a tangent.

It will occasionally be useful to use orthonormal frames with certain nice prop-
erties. We say that an orthonormal frame E; is normal at p € M if VE;(p) = 0
foralli = 1,...,n.Itis an easy exercise to show that such frames always exist.

2.1.3 Derivatives of Tensors

The connection is incredibly useful in generalizing many of the well-known con-
cepts (such as Hessian, Laplacian, divergence) from multivariable calculus to the
Riemannian setting.

If S is a (0, 7)- or (1, r)-tensor field then we can define a covariant derivative
VS that we interpret as a (0, r + 1)- or (1, r + 1)-tensor field. (Remember that a
vector field X is a (1,0)-tensor field and VX is a (1,1) tensor field.) The main idea
is to make sure that Leibniz rule holds. So if S is a (1,1) tensor then we want to
have

Vx (S(Y)) = (VxSIY) + S(VxY).
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Thus, it seems reasonable to define VS as

VS(X, Y) = (VxS)(Y)
= Vx (S(Y)) — S(VxY).

More generally, we define
VSX,Yy,....,Y, ) =(VxS(, ..., Y,)

= VxS, ... ) =D S, VxYi, ..., ¥,
i=1

where Vy is interpreted as the directional derivative when applied to a function,
while we use it as covariant differentiation on vector fields. It is easy to check that
this indeed defines a tensor as promised.

A tensor is said to be parallel if VS = 0. In (R”, can) one can easily see that
if a tensor is written in Cartesian coordinates, then it is parallel iff it has constant
coefficients. Thus VY = 0 for constant vector fields. On a Riemannian manifold
(M, g) we always have that Vg = 0 since
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