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Preface 

This book is meant to be an introduction to Riemannian geometry. The reader is 
assumed to have some knowledge of standard manifold theory, including basic 
theory of tensors, forms, and Lie groups. At times we shall also assume familiarity 
with algebraic topology and de Rham cohomology. Specifically, we recommend 
that the reader is familiar with texts like [14] or[76, vol. 1]. For the readers who have 
only learned something like the first two chapters of [65], we have an appendix 
which covers Stokes' theorem, Cech cohomology, and de Rham cohomology. 
The reader should also have a nodding acquaintance with ordinary differential 
equations. For this, a text like [59] is more than sufficient. Most of the material 
usually taught in basic Riemannian geometry, as well as several more advanced 
topics, is presented in this text. Many of the theorems from Chapters 7 to 11 
appear for the first time in textbook form. This is particularly surprising as we 
have included essentially only the material students ofRiemannian geometry must 
know. 

The approach we have taken deviates in some ways from the standard path. First 
and foremost, we do not discuss variational calculus, which is usually the sine qua 
non of the subject. Instead, we have taken a more elementary approach that simply 
uses standard calculus together with some techniques from differential equations. 

We emphasize throughout the text the importance of using the correct type of 
coordinates depending on the theoretical situation at hand. First, we develop our 
substitute for the second variation formula by using adapted coordinates. These 
are coordinates naturally associated to a distance function. If, for example, we use 
the function that measures the distance to a point, then the adapted coordinates are 
nothing but polar coordinates. Next, we have exponential coordinates, which are of 
fundamental importance in showing that distance functions are smooth. Then dis-



vm Preface 

tance coordinates are used first to show that distance-preserving maps are smooth, 
and then later to give good coordinate systems in which the metric is sufficiently 
controlled so that one can prove, say, Cheeger's finiteness theorem. Finally, we have 
harmonic coordinates. These coordinates have some magic properties. One in par­
ticular is that in such coordinates the Ricci curvature is essentially the Laplacian 
of the metric. Our motivation for this treatment has been that examples become 
a natural and integral part of the text rather than a separate item that much too 
often is forgotten. Another desirable by-product has been that one actually gets 
the feeling that gradients, Hessians, Laplacians, curvatures, and many other things 
are actually computable. Often these concepts are simply abstract notions that are 
pushed around for fun. 

From a more physical viewpoint, the reader will get the idea that we are simply 
using the Hamilton-Jacobi equations rather than the Euler-Lagrange equations 
to develop Riemannian geometry (see [4] for an explanation of these matters). 
It is simply a matter of taste which path one wishes to follow, but surprisingly, 
the Hamilton-Jacobi approach has never been tried systematically in Riemannian 
geometry. 

The book can be divided into five imaginary parts: 

Part 1: Tensor geometry, consisting of Chapters 1 to 4. 

Part II: Classical geodesic geometry, consisting of Chapters 5 and 6. 

Part III: Geometry ala Bochner and Cartan, consisting of Chapters 7 and 8. 

Part IV: Comparison geometry, consisting of Chapters 9 to 11. 

Appendices: de Rham cohomology, principal bundles, and spinors. 

Chapters 1 to 8 give a pretty complete picture of some of the most classical 
results in Riemannian geometry, while Chapters 9 to 11 explain some of the more 
recent developments in Riemannian geometry. The individual chapters contain the 
following material: 

Chapter 1: Riemannian manifolds, isometries, immersions, and submersions are 
defined. Homogeneous spaces and covering maps are also briefly mentioned. We 
have a discussion on various types of warped products, leading to an elementary 
account of why the Hopffibration is also a Riemannian submersion. 

Chapter 2: Many of the tensor constructions one needs on Riemannian manifolds 
are developed. First the Riemannian connection is defined, and it is shown how one 
can use the connection to define the classical notions of Hessian, Laplacian, and 
divergence on Riemannian manifolds. We proceed to define all of the important 
curvature concepts and discuss a few simple properties. Aside from these important 
tensor concepts, we also develop several important formulas that relate curvature 
and the underlying metric. These formulas are to some extent our replacement for 
the second variation formula. The chapter ends with a short section where such 
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tensor operations as contractions, type changes, and inner products are briefly 
discussed. 

Chapter 3: First, we set up some general situations where it is possible to 
compute the curvature tensor. The rest of the chapter is then devoted to carrying 
out this program in several concrete situations. The curvature tensor of spheres, 
product spheres, warped products, and doubly warped products is computed. This 
is used to exhibit some interesting examples that are Ricci fiat and scalar fiat. In 
particular, we explain how the Riemannian analogue of the Schwarzschild metric 
can be constructed. Several different models of hyperbolic spaces are mentioned. 
Finally, we compute the curvatures of the Berger spheres and use this information 
as our basis for finding the curvatures of the complex projective plane. 

Chapter 4: Here we concentrate on the special case where the Riemannian 
manifold is a hypersurface in Euclidean space. In this situation, one gets some 
special relations between the curvatures. We give examples of simple Riemannian 
manifolds that cannot be represented as hypersurface metrics. Finally, we give a 
brief introduction to the Gauss-Bonnet theorem and its generalization to higher 
dimensions. 

Chapter 5: The remaining foundational topics for Riemannian manifolds are 
developed in this chapter. These include parallel translation, geodesics, Rieman­
nian manifolds as metric spaces, exponential maps, geodesic completeness versus 
metric completeness, and maximal domains on which the exponential map is an 
embedding. 

Chapter 6: Some of the classical results we prove here are: classification of sim­
ply connected space forms, the Hadamard-Cartan theorem, Preissmann's theorem, 
Cartan's center of mass construction in nonpositive curvature and why it shows that 
the fundamental group of such spaces is torsion free, Bonnet's diameter estimate, 
and Synge's theorem. 

Chapter 7: Many of the classical and more recent results that arise from the 
Bochner technique are explained. We look at Killing fields and harmonic 1-forms 
as Bochner did, and finally, discuss some generalizations to harmonic p-forms. 
For the more advanced audience, we have developed the language of Clifford 
multiplication for the study of p-forms, as we feel that it is an important way of 
treating this material. The last section contains some more exotic but also pro­
found situations where the Bochner technique is applied to the curvature tensor. 
These last two sections can easily be skipped in a more elementary course. The 
Bochner technique gives many nice bounds on the topology of closed manifolds 
with nonnegative curvature. In the spirit of comparison geometry, we show how 
Betti numbers of nonnegatively curved spaces are bounded by the prototypical 
compact fiat manifold: the torus. 
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The importance of the Bochner technique in Riemannian geometry cannot be 
sufficiently emphasized. It seems that time and again, when people least expect it, 
new important developments come out of this simple philosophy. 

Chapter 8: Part ofthe theory of symmetric spaces and holonomy is developed. 
The standard representations of symmetric spaces as homogeneous spaces and via 
Lie algebras are explained. We prove Cartan's existence theorem for isometries. 
We explain how one can compute curvatures in general and make some concrete 
calculations on several of the Grassmann manifolds including complex projective 
space. Having done this, we define holonomy for general manifolds, and discuss 
the de Rham decomposition theorem and several corollaries of it. The above exam­
ples are used to give an idea of how one can classifY symmetric spaces. Also, we 
show in the same spirit why symmetric spaces of (non)compact type have (non­
positive) nonnegative curvature operator. Finally, we present a brief overview of 
how holonomy and symmetric spaces are related with the classification of holon­
omy groups. This is used in a grand synthesis, with all that has been learned up 
to this point, to give Gallot and Meyer's classification of compact manifolds with 
nonnegative curvature operator. A few things from Chapter 9 are used in Chap­
ter 8, namely Myers' theorem and the splitting theorem. However, their use is 
inessential, and they are there to tie this material together with some of the more 
geometrical constructions that come later. 

Chapter 9: Manifolds with lower Ricci curvature bounds are investigated in 
further detail. First, we discuss volume comparison and its uses for Cheng's maxi­
mal diameter theorem. Then we investigate some interesting relationships between 
Ricci curvature and fundamental groups. The strong maximum principle for con­
tinuous functions is developed. This result is first used in a warm-up exercise to 
give a simple proof of Cheng's maximal diameter theorem. We then proceed to 
prove the Cheeger-Gromoll splitting theorem and discuss its consequences for 
manifolds with nonnegative Ricci curvature. 

Chapter 10: Convergence theory is the main focus of this chapter. First, we in­
troduce the weakest form of convergence: Gromov-Hausdorff convergence. This 
concept is often useful in many contexts as a way of getting a weak form of con­
vergence. The real object is then to figure out what weak convergence implies, 
given some stronger side conditions. There is a section which breezes through 
Holder spaces, Schauder's elliptic estimates, and harmonic coordinates. To fa­
cilitate the treatment of the stronger convergence ideas, we have introduced a 
norm concept for Riemannian manifolds. We hope that these norms will make 
the subject a little more digestible. The main idea of this chapter is to prove the 
Cheeger-Gromov convergence theorem, which is called the Convergence Theo­
rem of Riemannian Geometry, and Anderson's generalizations of this theorem to 
manifolds with bounded Ricci curvature. 
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Chapter 11: In this chapter we prove some of the more general finiteness the­
orems that do not fall into the philosophy developed in Chapter 10. Initially, we 
discuss critical point theory and Toponogov's theorem. These two techniques are 
used throughout the chapter to prove all of the important theorems. First, we probe 
the mysteries of sphere theorems. These results, while often unappreciated by a 
larger audience, have been instrumental in developing most of the new ideas in the 
subject. Comparison theory, injectivity radius estimates, and Toponogov's theorem 
were first used in a highly nontrivial way to prove the classical quarter pinched 
sphere theorem of Rauch, Berger, Toponogov, and Klingenberg. Critical point the­
ory was invented by Grove and Shiohama to prove the diameter sphere theorem. 
After the sphere theorems, we go through some of the major results of compari­
son geometry: Gromov's Betti number estimate, the Soul theorem of Cheeger and 
Gromoll, and the Grove-Petersen homotopy finiteness theorem. 

Appendix A: Here, some of the important facts about forms are collected. 
Stokes' theorem is proved, and we give a very short and streamlined introduction 
to Cech and de Rham cohomology. The exposition starts with the assumption that 
we only work with manifolds that can be covered by finitely many charts such that 
all possible intersections are contractible. This makes it very easy to prove all of 
the major results, as one can simply use the Poincare and Meyer-Vietoris lemmas 
together with induction on the number of charts in the covering. 

Appendix B: Here, we develop Cartan formalism for the connection and curva­
ture on a Riemannian manifold. We then develop this in the indexfree work of the 
frame bundle. Finally, we explain how principal bundles can be used to describe 
all of this in a very compact and abstract manner. 

Appendix C: Using the language of principal bundles developed in the previous 
appendix, we define spin manifolds, and show why they have some new and in­
teresting bundles that are not tensor bundles. We prove the Lichnerowicz formula 
for the Dirac Laplacian on spinors. This formula is used in two situations: first, to 
conclude that the A-genus vanishes in positive scalar curvature, and secondly, in 
the positive mass conjecture. In the last section, we also discuss how to square a 
spinor. The entire treatment is self-contained but does not take the reader into the 
world of index theory, even though this is where things start to get really interest­
ing. Our intention is simply to give a short and concise account of one of the most 
important topics in mathematical physics and differential geometry. 

At the end of each chapter, we give a list of books and papers that cover and 
often expand on the material in the chapter. We have whenever possible attempted 
to refer just to books and survey articles. The reader is then invited to go from those 
sources back to the original papers. For more recent works, we also give journal 
references if the corresponding books or surveys do not cover all aspects of the 
original paper. One particularly exhaustive treatment of Riemannian geometry for 
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the reader who is interested in learning more is [11]. Other valuable texts that 
expand or complement much of the material covered here are [62], [76], and [79]. 
There is also a forthcoming historical survey by Berger (see [ 1 0]) that complements 
this text very well. 

A first course should definitely contain Chapters 2, 5, and 6 together with what­
ever one feels is necessary from Chapters 1, 3, and 4. Note that Chapter 4 is really a 
world unto itself and is not used in a serious way later in the text. A more advanced 
course could consist of going through either part III or IV as defined earlier. These 
parts do not depend in a serious way on each other. One can probably not cover the 
entire book in two semesters, but one can cover parts I, II, and III or alternatively 
I, II, and IV depending on one's inclination. It should also be noted that, if one 
does not discuss the section on Killing fields in Chapter 7, then this material can 
actually be covered without having been through Chapters 5 and 6. Each of the 
chapters ends with a collection of exercises. These exercises are designed both to 
reinforce the material covered and to establish some simple results that will be 
needed later. The reader should at least read and think about all of the exercises, 
if not actually solve all of them. 

There are several people I would like to thank. First and foremost are those stu­
dents who suffered through my various pedagogical experiments with the teach­
ing of Riemannian geometry. Special thanks go to Marcel Berger, Hao Fang, Chad 
Sprouse, Semion Shteingold, Marc Troyanov, Gerard Walschap, Nik Weaver, Fred 
Wilhelm, and Hung-Hsi Wu for their constructive criticism of parts of the book. I 
would especially like to thank Joseph Borzellino for his very careful reading of this 
text, and Peter Blomgren for writing the programs that generated Figures 2.1 and 
2.2. I would like to thank the New York office of Springer-Verlag for their excellent 
copy-editing of my manuscript and renderings of my hand-drawn pictures. Their 
efforts have made the book both more readable and much nicer to look at. Finally, 
I would like to thank Robert Greene, Karsten Grove, and Gregory Kallo for all the 
discussions on geometry we have had over the years. 

Los Angeles, California Peter Petersen 
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1 

Riemannian Metrics 

In this chapter we shall introduce the category (i.e., sets and maps) that we wish 
to work with. Without discussing any theory we shall present many examples of 
Riemannian manifolds and Riemannian maps. All of these examples will form the 
foundation for future investigations into constructions of Riemannian manifolds 
with various interesting properties. 

The abstract definition of a Riemannian manifold used today dates back only 
to the 1930s. It was not really until Whitney's work in 1936 that mathematicians 
obtained a clear understanding of what manifolds were, other than as submani­
folds of Euclidean space. Riemann himself defined Riemannian metrics only on 
domains in Euclidean space. Before Riemann, Gauss and others really understood 
only 2-dimensional geometry. The invention of Riemannian geometry is quite cu­
rious. The story goes that Gauss was on Riemann's defense committee for his 
Habilitation (super doctorate). In those days, the candidate was asked to submit 
three topics in advance, with the implicit understanding that the committee would 
ask to hear about the first topic (the actual thesis was on Fourier series and the 
Riemann integral.) Riemann's third topic was "On the hypotheses which lie at 
the foundations of geometry." Clearly he was hoping that the committee would 
select from the first two topics, which were on material he had already worked on. 
Gauss, however, always being in an inquisitive mood, decided he wanted to hear 
whether Riemann had anything to say about the subject on which he, Gauss, was 
the reigning expert. So, much to Riemann's dismay he had to go home and invent 
Riemannian geometry to satisfy Gauss's curiosity. No doubt Gauss was suitably 
impressed, a very rare occurrence for him indeed. 

From Riemann's work it appears that he worked with changing metrics mostly 
by multiplying them by a function (conformal change). With this technique he 
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was able to construct all three constant-curvature geometries in one fell swoop for 
the first time ever. Soon after Riemann's discoveries it was realized that in polar 
coordinates one can change the metric in a different way, now referred to as a 
warped product. This also yields in a unified way all constant curvature geometries. 
Of course, Gauss already knew about polar coordinate representations on surfaces, 
and rotationally symmetric metrics were studied even earlier. But these examples 
are much simpler than the higher-dimensional analogues. Throughout this book 
we shall emphasize the importance of these special warped products and polar 
coordinates. It is not far to go from warped products to doubly warped products, 
which will also be defined in this chapter, but they don't seem to have attracted 
much attention until Schwarzschild discovered a vacuum space-time that wasn't 
flat. Since then, doubly warped products have been at the heart of many examples 
and counterexamples in Riemannian geometry. 

Another important way of finding Riemannian metrics is by using left-invariant 
metrics on Lie groups. This leads us to, among other things, the Hopffibration and 
Berger spheres. Both of these are of fundamental importance and are at the core of 
a large number of examples in Riemannian geometry. These will also be defined 
here and studied throughout the book. 

1.1 Riemannian Manifolds and Maps 

A Riemannian manifold ( M, g) consists of a ( C00 ) manifold M and a Euclidean 
inner product g P on all of the tangent spaces Tp M of M. We shall assume that 
8p varies smoothly. This means that for any two smooth vector fields X, Y, the 
inner product gp(X, Y) should be a smooth function of p. The subscript p will 
be suppressed throughout the book. At several places we shall also need M to be 
connected, and thus we make the assumption throughout the book that we work 
only with connected manifolds. 

All inner product spaces of the same dimension are isometric; therefore all tan­
gent spaces Tp M on a Riemannian manifold ( M, g) are isometric ton-dimensional 
Euclidean space !Rn endowed with its canonical inner product. Hence, all Rieman­
nian manifolds have the same infinitesimal structure not only as manifolds but also 
as manifolds with a Riemannian metric. 

Example 1.1 By far the most important Riemannian manifold is Euclidean space 
(!Rn, can). The canonical Riemannian structure "can" is defined by identifying the 
tangent bundle T!Rn::::: !Rn x JRn via the map (x, v) ~ [equivalence class of curves 
through x represented by s 1-+ x + s · v]. Thus the standard inner product on JRn 
induces a Riemannian structure on !Rn. 

A Riemannian isometry between Riemannian manifolds (M, g) and (N, h) is 
a diffeomorphism cp : M ~ N such that cp*h = g, i.e., h(Dcp(v), Dcp(w)) = 
g(v, w) for all tangent vectors v, w E TpM and all p E M. Clearly, cp- 1 is a 
Riemannian isometry as well. 
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Unit sphere 

FIGURE 1.1. 

Example 1.2 Whenever we have a finite-dimensional vector space E with 
an inner product, we can construct a Riemannian manifold by declaring that 
g((x, v), (x, w)) = v · w, where (x, v) ---+ [s ---+ x + s · v] is the usual trivi­
alization ofT E. If we have two such Riemannian manifolds (E, g) and (F, h) 
of the same dimension, then they are isometric. Recall that both spaces admit or­
thonormal bases ( e1 , •.. , en) and (/1, ... , fn) with respect to their respective inner 
products. The Riemannian isometry <p : E ---+ F is defined as cp(L: ci ei) = I; ai fi. 
(You should check that this is an isometry.) Thus (JRn, can) is not only the only 
n-dimensional inner product space, but also the only Riemannian manifold of this 
simple type. 

Suppose that we have an immersion (or embedding) <p : M ---+ N, and that ( N, h) 
is a Riemannian manifold. We can then construct a Riemannian metric on M by 
pulling back h tog = cp*h on M, in other words, g(v, w) = h (D<p (v), D<p (w)). 
Notice that this gives an inner product because D<p (v) is never zero unless v = 0. 

A Riemannian immersion (or Riemannian embedding) is thus an immersion (or 
embedding) <p : M ---+ N such that g = cp*h. Riemannian immersions are also 
called isometric immersions. 

Example 1.3 We now come to the second most important example. Define 
S11 (r) = {x E JRn+I : lxl = r}. This is the Euclidean sphere of radius r. The 
metric induced from the embedding sn(r) "----* JRn+I is the canonical metric on 
sn(r). The unit sphere, or standard sphere, is sn = sn(l) c JRn+I with the induced 
metric. In Figure 1.1 is a picture of the unit sphere in JR3 shown with latitudes and 
longitudes. 

Example 1.4 If k < n there are, of course, several linear isometric immersions 
(JRk, can) ---+ (lRn, can). Those are, however, not the only ones. Any curve y : 

lR---+ JR2 withunitspeed,i.e., ly(t)l = 1 forallt E JR,isanexampleofanisometric 
immersion. If the curve has no self-intersections then it will in fact become an 
embedding. One could, for example, take t ---+ (cost, sin t) as an immersion, 
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Cylinder 

FIGURE 1.2. 

while t --+ (log (t + .JI+t2), .JI+t2) gives an embedding. A map of the 

form: ifJ : IRk-+ IRk+ I where ifJ(X 1, •.. , xk) = (y(x 1 ), x2 , ... , xk) (where y fills 
up the first two entries) will then give an isometric immersion (or embedding) that 
is not linear. This is counterintuitive in the beginning, but serves to illustrate the 
difference between a Riemannian immersion and a distance-preserving map. In 
Figure 1.2 there are two pictures, one of the cylinder, the other of the isometric 
embedding of IR2 into IR3 just described. 

There is of course also the concept of a Riemannian submersion ifJ : ( M, g) --+ 
(N, h). This is a submersion ifJ : M --+ N such that for each p E M, 
D({J : ker.l(DifJ) --+ Trp(p)N is a linear isometry. In other words, if v, w E T11 M 
are perpendicular to the kernel of D({J : T11 M --+ Trp(p)N, then g(v, w) = 
h (DifJ (v), D({J (w)). 

Example 1.5 Orthogonal projections (IRn, can) ---+ (IRk, can) where k < n are 
examples of Riemannian submersions. 

Example 1.6 A much less trivial example is the Hop/fibration S3(1)--+ S2(&). 

This map can be written as (z, w) --+ zw-1 if we think of S\1) c C2 and S2(1) 

as being C with the right sort of description of the metric. Later we will examine 
this example more closely. 

1.2 Groups and Riemannian Manifolds 

We shall look into groups of Riemannian isometries on Riemannian manifolds and 
see how this can be useful in constructing new Riemannian manifolds. 
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1.2.1 Isometry Groups 

For a Riemannian manifold (M, g) let Iso(M) = Iso(M, g) denote the group 
of Riemannian isometries <p : (M, g) ---+ (M, g) and Isop(M, g) the isotropy 
(sub)group at p, i.e., those <p E Iso(M, g) with rp(p) = p. A Riemannian manifold 
is said to be homogeneous if its isometry group acts transitively, i.e., for each pair 
ofpoints p, q EM there is rp E Iso(M, g) such thatrp(p) = q. 

Example 2.1 Iso(JRn, can) = JRn ><1 O(n )= { <p : JRn---+ JRn : rp(x) = v + 0 x, v E 
JRn and 0 E O(n)}. (Here H ><1 G is the semidirect product, with G acting on H 
in some way.) The translational part v and rotational part 0 are uniquely deter­
mined. It is clear that these maps indeed are isometries. To see the converse first 
observe that 1/J (x) = rp(x) - rp(O) is also a Riemannian isometry. Using that it is 

a Riemannian isometry, we observe that at x = 0 we can find ( 0/) E 0 ( n) such 

that 
Dl/f (ai) = o/ a;. 

Thus, we have two isometries on Euclidean space, both of which preserve the 
origin and have the same differential there. It is then not hard to see that they must 
be equal, by using that they must both map unit speed lines through the origin to 
unit speed lines through the origin. 

The isotropy group Isop is apparently always isomorphic to O(n), so we see 
that lR11 = IsoiisoP for any p E lR11 • This is in fact always true for homogeneous 
spaces. 

Example 2.2 Iso(Sn(r), can) = O(n + 1) = Iso0(JR11+1, can). It is again clear 
that O(n + 1) c Iso(S11 (r), can). Conversely, if <p E Iso(Sn(r), can) extend it to 
cp: JRn+ 1---+ JRn+1 by cp(x) = lxl· r-1 • <p (x · lxl- 1 • r) and cp(O) = 0. Then check 
that cp E Iso0(JRn+ 1, can) =O(n + 1). This time the isotropy groups are isomorphic 
to O(n ), that is, those elements of O(n + 1) fixing a 1-dimensionallinear subspace 
ofJRn+1• In particular, O(n + 1)10(n) = sn. 

1.2.2 Lie Groups 

More generally, consider a Lie group G. The tangent space T G ~ G x Te G by 
using left (or right) translations on G. Therefore, any inner product on Te G induces 
a left-invariant Riemannian metric on G i.e., left translations are Riemannian 
isometries. It is obviously also true that any Riemannian metric on G for which 
all left translations are Riemannian isometries is of this form. In contrast to JRll, 
not all of these Riemannian metrics are isometric if the identity component of G 
is not JRll. Lie groups therefore do not come with any canonical metrics. 

If H is a closed subgroup of G, then we know that G I H is a manifold. If we 
endow G with one ofthe left-invariant metrics, then H acts by isometries (on the 
left) and one sees that there is a unique Riemannian metric on G I H making the 
projection G ---+ G I H into a Riemannian submersion. If in addition the metric is 
also right invariant then G acts by isometries on G I H (on the right) thus making 
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G I H into a homogeneous space. It is, in fact, not too hard to prove that Iso(M, g) 
is always a Lie group. Thus, all homogeneous spaces look like G I H. 

Example2.3 Considersln-l(l) c en. S1 ={A. E e: IA.I = l}actsbycomplex 
scalar multiplication on both s 2n-l and en; furthermore this action is by isometries. 
We know that the quotient sZn-l I S1 = epn-l' and since the action of S 1 is 
by isometries, we induce a metric on epn-l such that s 2n-l --+ epn-l is a 
Riemannian submersion. This metric is called the Fubini-Study metric. When 
n = 2, this turns into the Hopffibration S\1)--+ eP 1 = S2(~). 

Example 2.4 One of the most important nontrivial Lie groups is SU (2), which 
is defined as 

SU(2) ={A E Mzxz(C): detA = 1, A*= A- 1} 

= { ( ~ -zw ) : lzl2 + lwl2 = 1} = S3 (1). 

The Lie algebra su (2) of S U (2) is 

f3+iy) } . : a, {3, y E JR. 
-za 

. (i 0) (0 ') (Oi) and IS spanned by x, = . 'x2 = 'x3 = . We 
0 -1 -1 0 0 

can think of these matrices as left-invariant vector fields on SU (2). If we declare 
them to be orthonormal, then we get a left-invariant metric on SU (2), which as we 
shall later see is S3 ( 1 ). If instead we declare the vectors merely to be orthogonal, 
X 1 to have length £, and the other two to be unit vectors we get a very important 
1-parameter family of metrics ge on SU (2) = S3 . These distorted spheres are 
called Berger spheres. Note that scalar multiplication on S3 c e2 corresponds 

to multiplication on the left by the matrices ( e~" e~i" ) on SU (2). Thus X 1 

is exactly tangent to the orbits of the Hopf circle action. The Berger spheres are 
therefore obtained from the canonical metric by multiplying the metric on the Hopf 
fiber by£. 

1. 2. 3 Covering Maps 

Groups occur in other ways in geometry, namely, as deck transformations or cov­
ering groups. Suppose that q; : M --+ N is a covering map. Then q; is, in particular, 
an immersion and a submersion as well. Thus, any Riemannian metric on N in­
duces a Riemannian metric on M, making q; into an isometric immersion, also 
called a Riemannian covering. Since dim M = dim N, q; must, in fact, be a local 
isometry, i.e., for every p E M there is a neighborhood U 3 p in M such that 
q; I U : U --+ q;( U) is a Riemannian isometry. Notice that the pullback metric on M 
has considerable symmetry. For if q E V c N is evenly covered by {Up}pE<p-l(ql• 
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then all the sets V and Up are isometric to each other. In fact, if rp is a normal 
covering, i.e., there is a group r of deck transformations acting on M such that: 
M I r = N and cp(g X) = cp(x) for g E r' then r acts by isometries on the pullback 
metric. This can be used in the opposite direction. Namely, if N = M I r and 
M is a Riemannian manifold, where r acts by isometries, then there is a unique 
Riemannian metric on N such that the quotient map is an isometric immersion. 

Example 2.5 If we fix a basis v1, v2 for IR2 , then 7!} acts by isometries by 
(n, m) ---+ (x ---+ x + nv1 + mv2). The orbit of the origin looks like a lattice. 
The quotient is a torus T 2 with some metric on it. Note that T 2 is itself an Abelian 
Lie group and that these metrics are invariant with respect to the Lie group multi­
plication. However, these metrics are not all isometric to each other. 

By adding a reflection to the action by Z2 we get an action by Z2 :xJ Z2 , and the 
quotient is the Klein bottle with various Riemannian metrics. One can also use 
orientation-reversing involutions on T2 to get these Klein bottles. 

Example 2.6 The involution -id on sn(l) c JR.n+l is an isometry and induces a 
Riemannian covering sn ---+ JR.pn. 

1.3 Local Representations of Metrics 

1.3.1 Einstein Summation Convention 

We shall often use the index and summation convention that Einstein introduced. 
Given a vector space V, such as the tangent space of a manifold, we shall always 
use subscripts for vectors in V. Thus a basis of Vis denoted by v1, ••• , vn. Given 
a vector v E V we can then write it as a linear combination of these basis vectors 
as follows: 

" i i v = ~ ot vi = ot vi. 
i 

Here we use superscripts on the coefficients and then automatically sum over 
indices that are repeated as both sub- and superscripts. If we define a dual basis vi 

for the dual space V* =hom (V, JR.) as follows: 

vi ( Vj) = 8~, 

then the coefficients can also be computed via 

It is therefore convenient to use superscripts for dual bases in V*. The matrix 

representation (a() of a linear map L : V ---+ V is usually found by solving 



8 I. Riemannian Metrics 

In other words 
a/= vj (L (v;)). 

Another convenient convention is that subscripts should correspond to rows, 
while superscripts correspond to columns. Thus, the components of a vector v are 
arranged in a column, as is standard. But we can then also think of (L (v;)) and 
( v;) as row vectors. With this in mind, the matrix representation of a linear map 
can also be found as the matrix that satisfies 

When the objects under consideration are defined on manifolds, the conventions 
carry over as follows. Cartesian coordinates on JR.n and coordinates on a manifold 
have superscripts (xi), as they are the coefficients of the vector corresponding to 
this point. Coordinate vector fields therefore look like 

a a;=-., 
ax' 

and consequently they have subscripts. This is natural, as they form a basis for the 
tangent space. The duall-forms 

satisfy 
dxj (a;)= o/ 

and therefore form the natural dual basis for the cotangent space. 
Einstein notation is not only useful when one doesn't want to write summation 

symbols, it also shows when certain coordinate- (or basis-) dependent definitions 
are invariant under change of coordinates. Examples occur throughout the book. 
For now, let us just consider a very simple situation, namely, the velocity field of 
a curve c : I -+ JR.n. In coordinates, the curve is written 

c (t) = (ci (t)) 
= c; (t)e;, 

if e; is the standard basis for JR.n. The velocity field is now defined as the vector 

c(t) = (ci (t)). 

Using the coordinate vector fields this can also be written as 

In a coordinate system on a general manifold we could then try to use this as our 
definition for the velocity field of a curve. But then we must show that indeed it 
gives the same answer in different coordinates. This is simply because the chain 
rule tells us that 

c; (t) = dx; (c (t)), 
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and then observing that, we have simply used the above definition for finding the 
components of a vector in a given basis. 

Generally speaking, we shall, when it is convenient, use Einstein notation. When 
giving coordinate-dependent definitions we shall be careful that they are given in 
a form where they obviously conform to this philosophy and therefore can easily 
be seen to be invariantly defined. 

1.3.2 Coordinate Representations 

On a manifold M we can multiply 1-forms to get bilinear forms: 01 · e2(v, w) = 
e1(v) · e2(w). Given coordinates x(p) = (x 1, .•. , x 11 ) on an open set U of M, we 
can thus construct bilinear forms dxi · dxi. If in addition M has a Riemannian 
metric g, then we can write 

because 

g(v, w) = g(dxi(v)ai, dx.i(w)a1) 

= g(ai, aj)dxi(v). dx.i(w). 

The functions g(ai, a .i) are denoted by gi.i. This gives us a representation of g in 
local coordinates as a positive definite symmetric matrix with entries parametrized 
over U. Initially one might think that this gives us a way of concretely describing 
Riemannian metrics. That, however, is a mere illusion. Just think about how many 
manifolds you know with a good covering of coordinate charts together with 
corresponding transition functions. On the other hand, coordinate representations 
are often a good theoretical tool for doing abstract calculations rather than concrete 
ones. 

Example 3.1 The canonical metric on IR.11 m the identity chart 1s g 
8i.idxidx.i = 2::7= 1 (dxi( 

Example 3.2 On IR.2 - {halfline} we also have polar coordinates (r, e). In these 
coordinates the canonical metric looks like g = dr2 + r2de2 . In other words, 

Recall that X 1 = r cos e, x 2 = r sin e. Thus, 

which gives 

dx 1 = cosedr- r sinede, 

dx 2 = sinOdr + r cosede, 
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= (cos edr - r sin ede)2 +(sin edr + r cos edei 

= ( cos2 e + sin2 e)dr2 + 2(r cos e sine - r cos e sin e)drde 

+ (r 2 sin2 e)de2 + (r 2 cos2 e)de 2 

= dr 2 + r 2de 2 . 

1.3.3 Frame Representations 

A different buJ similar way of representing the metric is by choosing a frame 
X 1, ••• X n on an open set U of M, i.e., n linearly independent vector fields on 
U, where n = dim M. If a 1, ••• , an is the coframe, i.e., the 1-forms such that 
ai (X 1) = 8~, then the metric can be written as 

g = giJaiai, 

where g;; = g (Xi, Xi). 

Example 3.3 Any left-invariant metric on a Lie group G can bewrittenas(a 1) 2+ 
· .. + (an)2 for a coframing dual to left-invariant vector fields X1, .•• , Xn, which 
form an orthonormal basis for Te G. If instead we just begin with a framing of 
left-invariant vector fields X 1 , ••• , X n and dual co framing a 1 , ••• , an, then any 
left-invariant metric g depends only on its value on TeG and can therefore be 
written g = g;;ai ai, where gil is a positive definite symmetric matrix with real­
valued entries. The Berger sphere can, for example, be written g8 = .s2(a 1 f + 
(a 2) 2 +(a 3) 2 , whereai(X1) = 8j. 

Example 3.4 A surface of revolution consists of a curve y(t) = (x(t), y(t), 0): 
I ---+ JR3 , where I c lR is open and y(t) > 0 for all t. By rotating this curve 
around the x-axis, we get a surface that can be represented as (t, e)---+ f(t, e)= 
(x(t), y(t) cos e, y(t) sin e). This is a cylindrical coordinate representation, and we 
have a natural frame a,, 38 on all of the surface with dual coframe dt, de. We wish 
to write down the induced metric dx 2 + dy2 + dz2 from JR3 in this frame. Observe 
that 

so 

Thus 

dx = xdt, 

dy = ycos(e)dt- ysin(e)de, 

dz = ysin(e)dt + ycos(e)de, 

dx 2 + di + dz2 = (xdti + (y cos (e) dt - y sin (e) dei 

+ (y sin (e) dt + y cos (e) de)2 

= (x 2 + l) dt2 + ide 2 . 
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FIGURE 1.3. 

If, therefore, the curve is parametrized by arc length, we have the simple formula: 

which is reminiscent of our polar coordinate description oflR.2 . In Figure 1.3 there 
are two pictures of surfaces of revolution. The first shows that when y = 0 the 
metric looks pinched and therefore destroys the manifold. In the second, y starts 
out being zero, but this time the metric appears smooth, as y has vertical tangent 
to begin with. 

Example 3.5 On I x S 1 we also have the frame 31, 3e with coframe dt, de. 
Metrics of the form 

are called rotationally symmetric since 17 and cp do not depend on e. We can, 
by change of coordinates on I, generally assume that 11 = 1. Note that not all 
rotationally symmetric metrics come from surfaces of revolution. For if dt2 + y2 d8 2 

is a surface of revolution, then x2 + y2 = 1. Whence I.Y I :::= 1. 

Example 3.6 S2(r) c JR.3 is a surface of revolution. Just revolve t -+ 

(r cos(tr- 1), r sin(tr- 1), 0) around the x-axis. The metric looks like 

Note that r sin(tr- 1)-+ t as r -+ oo, so very large spheres look like Euclidean 
space. By changing r to i r, we arrive at some interesting rotationally symmetric 



12 I. Riemannian Metrics 

metrics: dt2 + r 2 sinh2(tr- 1)de2, which are not surfaces of revolution. If we let 
snk(t) denote the unique solution to 

x(t) + k . x(t) = 0, 

x(O) = 0, 

i(O) = 1, 

then we have a !-parameter family dt2 + sn~(t)de 2 of rotationally symmetric 
metrics. (The notation snk will be used throughout the text; it should not be confused 
with Jacobi's elliptic function sn(k, u).) When k = 0, this is JR2 ; when k > 0, we 
get S2(1/../k); and when k < 0, we arrive at the hyperbolic (from sinh) metrics 
from above. 

1.3.4 Polar Versus Cartesian Coordinates 

In these rotationally symmetric examples, we haven't discussed what happens 
when r.p(t) = 0. In the revolution case, the curve clearly needs to have a ver­
tical tangent in order to look smooth. To be specific, assume that we have 
dt2 + r.p 2(t)de 2 , r.p: [0, b)--+ [0, oo), where r.p(O) = 0 and r.p(t) > 0 fort > 0. All 
other situations can be translated or reflected into this position. We assume that 
r.p is smooth, so we can rewrite it as r.p(t) = tl/f(t) for some smooth 1/f(t) > 0 for 
t > 0. Now introduce "Cartesian coordinates" 

x = tcose, 

y = t sine 

near t = 0. Then t 2 = x 2 + y2 and 

Thus, 

( :~ ) = ( 

=( 

cos (e) sin (e) 
-t-1 sin(e) t-1 cos(e) ) ( :~ ) 

dt 2 + r.p2(t)de 2 = dt2 + t2 1/f2(t)de 2 

whence 

= r 2 (xdx + ydy)2 + (t2)1/f2(t)t-4 ( -ydx + xdy)2 

= r 2x 2dx 2 + t-22xydxdy 

+ t-2idi + t-2 1/f 2(t)(xdy- ydxi 

= t-2(x2 + 1/f2(t)l)dx2 

+ t-2(2xy - 2xyljf2(t))dxdy + t-2( 1/f2(t)x 2 + l)di, 
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1 - 1j!2(t) 
·Xy, 

and we need to check for smoothness of the functions at (x, y) = 0 (or t = 0). For 
this we must obviously check that the function 

is smooth at t = 0. First, it is clearly necessary that 1/f(O) = 1; this is the vertical 
tangent condition. Second, some calculus calculations show that we must further 
assume that all odd derivatives ~(0) = 1j!<3l(O) = · · · = 0. If we translate back to 
cp, we get that the metric is smooth at t = 0 iff cp<evenl(O) = 0 and <jJ(O) = 1. 

These conditions are all satisfied by the metrics dt2 + sn~(t)dtJ 2 , where t E 

[0, oo) when k:::: 0 and t E [0, 5kJ fork > 0. 

1.4 Doubly Warped Products 

1.4.1 Doubly Warped Products in General 

We can more generally considermetrics on I x sn- 1 of the type dt2 + cp 2 (t)ds~_ 1 , 
where ds~_ 1 is the canonical metric on sn- 1(1) c JRn. Even more general are 
metrics of the type: dt2 + cp2 (t)ds~ + 1j! 2 (t)ds~ on I x SP x Sq. The first type are 
again called rotationally symmetric, while those of the second type are a special 
type of doubly warped product. As for smoothness, when cp(t) = 0 we can easily 
check that the situation for rotationally symmetric metrics is identical to what 
happened in the previous section. For the doubly warped product observe that 
nondegeneracy of the metric implies that cp and 1/J cannot both be zero at the same 
time. However, we have the following lemmas: 

Lemma 4.1 If cp : (0, b) --+ (0, oo) is smooth and cp(O) = 0, then we get a 
smooth metric at t = 0 iff 

and 

cp(even\O) = O, 

<j!(O) = 1, 

1/1(0) > 0, 
1/J(odd)(O) = 0. 

The topology near t = 0 in this case is JRP+1 x Sq. 
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Lemma 4.2 If cp : (0, b) ---)- (0, oo) is smooth and cp(b) 
smooth metric at t = b iff 

and 

cp(even)(b) = 0, 

¢(b)= -1, 

1/f(b) > 0, 
1/f(odd)(b) = 0. 

The topology near t =bin this case is again JRP+ 1 x Sq. 

0, then we get a 

Depending on what happens with cp and 1/f as t increases, we can get three 
different types of topologies. 

• cp, 1/f : [0, oo) ---)- [0, oo) are both positive on all of (0, oo ). Then we have a 
smooth metric on JRP+I x Sq if cp, 1/f satisfy Lemma 4.1. 

• cp, 1/f : [0, b] ---)- [0, oo) are both positive on (0, b) and satisfy Lemma 4.1 
and 4.2. Then we get a smooth metric on sp+I x Sq. 

• cp, 1/f : [0, b] ---)- [0, oo) as in the second type but the roles of 1/f and cp are 
interchanged at t =b. Then we get a smooth metric on SP+q+l!! 

1.4.2 Spheres as Warped Products 
First let us show how the standard sphere can be written as a rotationally symmetric 
metric in all dimensions. The metrics dr 2 + sn~(r)ds~_ 1 are analogous to the 
surfaces from the last section. So when k = 0 we get (!Rn, can), and when k = I 
we get (Sn(l), can). To see the last statement observe that we have a map 

f : (0, rr) X !Rn ---)- IR X !Rn' 

f(r, z) = (t, x) = (cos(r), sin(r) · z), 

which reduces to a map 

g : (0, rr) X sn-l ---)- IR X !Rn' 

g(r, z) = (cos(r), sin(r) · z). 

Thus, g really maps into the unit sphere in JRn+l. To see that g is a Riemannian 
isometry we just compute the canonical metric on IR x !Rn using the coordinates 
(cos(r), sin(r) · z): 

can= dt2 + (dx 1) 2 + ... + (dxn) 2 
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= (d cos(r))2 + (d (sin(r)z 1))2 + · · · + (d (sin(r) z11 ))
2 

= sin2 (r)dr2 + 2 sin (r) cos (r) (z 1dz 1 + · · · + Z11 dz11 ) 

+cos2 (r)dr2 ({z 1) 2 + .. · + (z11 )
2) + sin2 (r) ((dz 1) 2 + .. · + (dz11 )

2) 

= sin2 (r)dr 2 + cos2 (r) dr 2 + sin2 (r) ( (dz1 ) 2 + · · · + (dz11 )
2 ) 

= dr2 + sin2 (r) ( (dz 1 ) 2 + · · · + (dz11 )
2). 

Now observe that (dz 1) 2 + · · · + (dz11 ) 2 restricted to sn-I is exactly the 

canonical metric ds;_ 1 and also that (z1 ) 2 + · · · + (z 11 i = 1 implies 
2 (z 1dz 1 + · · · + z11 dz 11 ) = 0. Thus the claim follows. 

Themetricsdt2 +sin2(t)ds~+cos2(t)ds~. t E [0, }'], arealso(SP+q+I(l), can). 
Namely, we have SP c JR.P+I and Sq c JR.q+I, so we can map 

(0 ::.) X SP X sq ~ JR.P+I xJR.q+l 
'2 ' 

(t, x, y) ~ (x · sin(t), y · cos(t)), 

where x E JR.P+I, yE JR.q+l have lxl = IYI = 1. These embeddings clearly map 
into the unit sphere. The computations that the map is a Riemannian isometry are 
similar to the above calculations. 

1.4.3 The Hop/Fibration 
With all this in mind, let us revisit the Hopf:fibration S3(1) ~ S2 (~)and show 
that it is a Riemannian submersion between the spaces indicated. On S3(1), write 
the metric as 

and use complex coordinates 

(t, eifh, ei02 ) ~ (sin(t)ei01 , cos(t)ei02 ) 

to describe the isometric embedding 

(o. ~) x s1 x s1 "'-+ S3(I) c C2 • 

Since the Hopf fibers come from complex scalar multiplication, we see that they 
are of the form() ~ (t, ei(Ot +0), ei(Oz+O)). On S2 ( ~) use the metric 

2 sin2(2r) 2 [ n J dr + 4 d() , r E 0, Z , 

with coordinates 

(r, ei0 ) ~ (~ cos(2r), ~ sin(2r)e;o). 
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The Hopf fibration in these coordinates, therefore, looks like (t, ei01 , ei02 ) ---+ 

(t, ei(e1- 02 l). Now, on S3(1) we have an orthogonal framing 

where the first vector is tangent to the Hopf fiber and the two other vectors have 
unit length. On S2 ( 1) 

{ a,.' sin~2r) ae } 
is an orthonormal frame. The Hopf map clearly maps 

a, ---+ a,., 
cos2(t)a01 - sin2(t)a02 cos2(r)a0 + sin2(r)a0 2 
-------- ---+ = -- . ao 

cos(t)sin(t) cos(r)sin(r) sin(2r) ' 

thus showing that it is an isometry on vectors perpendicular to the fiber. 
Notice also that the map 

(t e1 1 e1 2) ---+ (cos(t)e 1 1 sin(t)e1 2 ) ---+ · ·o ·o ·o ·e ( cos(t)ei01 

' ' ' sin(t)e-102 

gives us the promised isometry from S3(1) to SU(2), where SU(2) has the left­
invariant metric described earlier. 

The map (t' ei01 ' ei02 ) ---+ (t' ei(01- 02 l) from I X S1 X S1 to I X S1 is actually 
always a Riemannian submersion when the domain is endowed with the doubly 
warped product metric 

and the target has the rotationally symmetric metric 

This submersion can be generalized to higher dimensions as follows: On 
I X sZn+l X S1 consider the doubly warped product metric dt2 + cp2(t)dsin+l + 
1/f2(t)d8 2 • The unit circle acts by complex scalar multiplication on both S211+ 1 and 
S1 and consequently induces a free isometric action on this space (if A E S1 

and (z, w) E sZn+l X S1' then A . (z. w) = (AZ, AW).) The quotient map 
I X s2n+l X S1 --+ I X ((s2n+l X S1) jS1) can be made into a Riemannian 
submersion by choosing the right metric on the quotient space. To find the met­
ric, we split the canonical metric dsin+l = h + g, where h corresponds to 
the metric along the Hopf fiber and g is the orthogonal component. In other 
words, if pr : Tpszn+l ---+ TpS211+1 is the orthogonal projection (with respect 
to dsin+ 1) whose image is the distribution generated by the Hopf action, then 
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h(v, w) = dsin+l(pr(v), pr(w)) and g(v, w) = dsin+ 1(v- pr(v), w- pr(w)). 
We can then define 

Now notice that ( s2n+l X S1) I S1 = s2n+l and that the S1 only collapses the 
Hopf fiber while leaving the orthogonal component to the Hopf fiber unchanged. 
In analogy with the above example, we therefore get that the metric on I x s2n+ 1 

can be written 

In the case where n = 0 we recapture the previous case, as g doesn't ap­
pear. When n = 1, the decomposition: dsj = h + g can also be written 
dsj = (a 1) 2 + (a2) 2 + (a 3) 2 , where (a 1) 2 = h, (a2 ) 2 + (a 3) 2 = g, and 
{ a 1 , a 2 , a 3} is the co framing coming from the identification S3 :::::: S U (2). The 
Riemannian submersion in this case can therefore be written 

(!X S3 X S1, dt 2 + cp2 (t) [(a 1) 2 + (a2 ) 2 + (a3) 2 ] + 1/f 2(t)d(} 2 ) 

,j, 

(1 x S3, dt2 + cp2(t)[(a2)2 + (a 3f] + ~~g~:;!'J1/:)(a 1 )2 ). 

If we let cp = sin(t), 1/1 = cos(t), and t E I = [0, I], then we get the 
generalized Hopffibration s2n+J ----+ c_pn+l defined by (0, I) X (s2n+l X S1) ----+ 

(0, I) x ((S2n+t x S1) IS1) as a Riemannian submersion, and the Fubini-Study 

metric on c_pn+l can be represented as dt2 + sin2(t)(g + cos2(t)h). 

1.5 Exercises 

1. On product manifolds M x N one has special product metrics g = 
g1 + g2 , where g1, g2 are metrics on M, N respectively. Show that 
(!Rn, can) = (JR., dt2 ) x ... x {IR, dt2 ). Show that the fiat square torus 

T 2 = JR2 IZ2 = ( S1' (2~ ) 2 de2 ) X ( S1' (2~ ) 2 d(}2 ). Show that cp ((}I' (}2) = 
}z (cos e,, sine,, cos ()z, sin (}2 ) is a Riemannian embedding: T2 ----+ JR4 . 

2. Suppose we have an isometric group action G on (M, g) such that the quo­
tient space MIG is a manifold and the quotient map a submersion. Show 
that there is a unique Riemannian metric on the quotient making the quotient 
map a Riemannian submersion. 

3. Construct paper models of the nonsmooth Riemannian manifolds 
(1R2 , dt2 + a2de 2) • If a = 1, this is of course the Euclidean plane, and 
when a < 1 , they look like cones. 
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4. Suppose cp and 1ft are positive on (0, oo) and consider the Riemannian sub­
merswn 

((0, oo) X S3 X S1' dt2 + cp 2 (t) [(a 1) 2 + (a2) 2 + (a 3) 2 ] + 1jt2(t)de 2 ) 

~ 

(co. oo) x S3 , dt2 + q/(t)[(a 2f + (a 3) 2] + ~~gitJ?/;/a'f). 

Define f = cp and h = (cp(t) · 1/t(t))2 /((J2(t) + 1jt2(t) and assume that 

f (0) > 0, 

and 

fodd) (0) = 0, 

h (0) = 0, 

h' (0) = k, 
h(even) (0) = 0, 

where k is a positive integer. Show that the above construction yields a 
smooth metric on the vector bundle over S2 with Euler number ±k. Hint: 
Away from the zero section this vector bundle is (0, oo) x S3 j7l.b where 
S3 f7l.k is the quotient of S3 by the cyclic group of order k acting on the Hopf 
fiber. You should use the submersion description and then realize this vector 
bundle as a submersion of S3 x JE.2 . When k = 2, this becomes the tangent 
bundle to S2 . When k = 1, it looks like CP2 - {point}. 

5. Show that any compact Lie group G admits a hi-invariant metric. Show 
that the inner automorphism ih : g --+ h-1 gh is a Riemannian isometry. 
Conclude that the adjoint action 

g--+ g, 

adu (X) = [X, U] 

is skew-symmetric, i.e., 

g ([X, U], Y) = -g (X, [Y, U]). 

Hint: use that Ad11 = Dih is an isometry and that it satisfies 

Adexp u = exp (adu). 

Here the exponential map on the left-hand side, exp U : g --+ G, is the 
Lie group exponential map, defined by the property that t --+ exp (t Y) is the 
unique homomorphism JR.--+ G whose differential ate E G is Y E TeG =g. 
The exponential map on the right-hand side is the usual exponential of a 
linear map L : V --+ V on a finite-dimensional vector space defined by the 
power series 

oo Li 
exp (L) = L---=--!. 

i=O l. 



2 
Curvature 

With the comforting feeling that there is indeed a variety of Riemannian manifolds 
out there, we shall now delve into the theory. Initially, we shall confine ourselves to 
infinitesimal considerations. The most important and often also least understood 
object of Riemannian geometry is that of the Riemannian connection. From this 
concept it will be possible to define curvature and more familiar items like gradients 
and Hessians of functions. Studying curvature is the central theme of Riemannian 
geometry. The idea of a Riemannian metric having curvature, while intuitively 
appealing and natural, is for most people the stumbling block for further progress 
into the realm of geometry. 

In the last section of the chapter we shall study what we call the fundamental 
equations of Riemannian geometry. These equations relate curvature to the Hessian 
of certain geometrically defined functions (Riemannian submersions onto inter­
vals). These formulae hold all the information that we shall need when computing 
curvatures in new examples and also for studying Riemannian geometry in the 
abstract. 

Surprisingly, the idea of a connection postdates Riemann's introduction of the 
curvature tensor. Riemann discovered the Riemannian curvature tensor as a second­
order term in the Taylor expansion of a Riemannian metric at a point, where co­
ordinates are chosen such that the zeroth-order term is the Euclidean metric and 
the first-order term is zero. Lipschitz, Killing, and Christoffel introduced the con­
nection in various ways as an intermediate step in computing the curvature. Also, 
they found it was a natural invariant for what is called the invariance problem in 
Riemannian geometry. This problem, which seems rather odd nowadays (although 
it really is important), comes out of the problem one faces when writing the same 
metric in two different coordinates. Namely, how is one to know that they are the 
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same or equivalent. The idea is to find invariants of the metric that can be computed 
in coordinates and then try to show that two metrics are equivalent if their invariant 
expressions are equal. After this early work by the above-mentioned German math­
ematicians, an Italian school around Levi-Civita, Ricci, et al. began systematically 
to study Riemannian metrics and tensor analysis. They eventually defined parallel 
translation and through that clarified the use of the connection. Hence the name 
Levi-Civita connection for the Riemannian connection. Most of their work was 
still local in nature and mainly centered on developing tensor analysis as a tool for 
describing many physical phenomena, such as stress, torque, and divergence. At 
the beginning of the twentieth century, Minkowski started developing the geometry 
of space-time with the hope of using it for Einstein's new special relativity theory. 
It was this work that eventually enabled Einstein to give a geometric formulation 
of general relativity theory. Since then, tensor calculus, connections, and curvature 
have become an indispensable language for many theoretical physicists. 

We shall here take the approach to connections developed by Koszul. There is 
another very efficient and elegant development using forms invented by Cartan, 
called the Cartan formalism. (See Appendix B for more on this.) 

2.1 Connections 

2.1.1 Directional Differentiation 

First we shall introduce some important notation. There are many ways of denoting 
the directional derivative of a function on a manifold. Given a function f : M ---+ lR 
and a vector field X on M we will use the following ways of writing the directional 
derivative off in the direction of X : Vx f = Dx f = df(X) = X (f). 

If we have a function f : M ---+ lR on a manifold, then the differential 
df : T M ---+ lR measures the change in the function. In local coordinates, 
df = ai(f)dxi. If, in addition, M is equipped with a Riemannian metric g, then 
we also have the gradient of f, denoted by grad f = V f, which is the vec­
tor field satisfying g(v, V f) = df(v) for all v E T M. In local coordinates this 
reads, V f = g(i ai (f) a 1, where gij is the inverse of the matrix gij. Defined in 
this way, the gradient clearly depends on the metric. But is there a way of defin­
ing a gradient vector field of a function without using Riemannian metrics? The 
answer is no and can be understood as follows. On IRn the gradient is defined as 
v f = 8ij ai(f)aj = L;'=l ai (J)ai. But this formula depends on the fact that we 
used Cartesian coordinates. If instead we had used polar coordinates on IR2 , say, 
then it is not true that v f = a, (!)a, + ae (!) ae, because after change of coordi­
nates, this does not equal ax (f) ax + oy (f) oy. Now we do not wish to work with 
concepts that do not have an invariant description (i.e., coordinate-independent 
description). One rule of thumb for items that are invariantly defined is that they 
should satisfY the Einstein summation convention, where one sums over iden­
tical super- and subscripts. Thus, df = ai (J)dxi is invariantly defined, while 
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V f = o;(f)o; is not. The metric g = gijdxidxj and gradient V f = gijo;(f)aj 
are invariant expressions that also depend on our choice of metric. 

2.1. 2 Covariant Differentiation 

Having decided that V f is a Riemannian notion, rather than a differential topolog­

ical one, we come to the question of attaching a meaning to the change of a vector 

field. The change in V f should obviously be the Hessian V2 f of f. It turns out 

that this concept also depends on the Riemannian metric we use. If X is a vector 

field on JRn, then V X = V ai o; = d (a i) o; defines the change in X by measuring 

how the coefficients change. Thus, a vector field with constant coefficients does 

not change. This formula again depends on the fact that we used Cartesian coordi­

nates (having constant coefficients with respect to Cartesian coordinates is clearly 

not the same as having constant coefficients with respect to polar coordinates) and 
is not invariant under change of coordinates (although it looks like we have used 

Einstein convention?). But the assignment X --+ V X does have some important 
properties that we can replicate on a Riemannian manifold. First, note that V X is 

a (1,1)-tensor. The evaluation on a vector is denoted 

where Dva; is the directional derivative. If, therefore, Y is a vector field, we get a 

vector field V y X by defining 

With this is mind we can prove 

Theorem 1.1 (The Fundamental Theorem ofRiemannian Geometry) The as­
signment X --+ V X on JRn is uniquely defined by the following properties: 

(1) VX is a (1,1)-tensor 

(2) X --+ V X is a derivation 

V(X + Y) = VX + VY, 

V (f X) = d (f) X + JV X 

for functions f : JRn --+ R 
(3) X --+ V X is torsion free 

VxY-VrX=[X,Y]. 

( 4) X --+ V X is metric 

d(g(X, Y)) = g(VX, Y)+g(X, VY), 
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or more precisely 

Vzg (X, Y) = Dzg (X, Y) = g (VzX, Y) + g (X, Vz Y) 

where g is the canonical metric on ]Rn. 

Proof. It is easily checked that V X = d ( ai) ai satisfies these properties. On the 
other hand, if X --+ V X is any assignment satisfying these properties, then we can 
show 

2g (VxY, Z) = Dxg (Y, Z) + Dvg (Z, X)- Dzg (X, Y) 

+ g ([X, Y] , Z) - g ([ Y, Z] , X) + g ([ Z, X] , Y) . 

This formula is called the Koszul formula and has the advantage that the right­
hand side depends only on the metric and differential-topological notions. We must 
therefore have that g(Vx Y, Z) = g(Vx Y, Z) for all vector fields X, Y, Z on JRn. 
Whence VxY = VxY. D 

Any assignment on a manifold that satisfies (1) and (2) is called an affine con­
nection. If ( M, g) is a Riemannian manifold and we have a connection which in 
addition also satisfies (3) and (4), then we call it a Riemannian connection. The 
fundamental theorem of Riemannian geometry asserts that on (lRn, can) there is 
only one such connection. On a Riemannian manifold any Riemannian connec­
tion clearly must also satisfy the Koszul formula. Thus, the Riemannian connection 
is uniquely determined by the metric. The Koszul formula also gives us a way of 
defining a Riemannian connection. Namely, it can be used to compute V x Y without 
knowing V. Some tedious calculations show that this way of defining V actually 
gives us a Riemannian connection. Thus we have 

Theorem 1.2 On a Riemannian manifold ( M, g) there is one and only one Rie­
mannian connection. 

Before proceeding we need to discuss how V x Y depends on X and Y. Since 
V x Y is tensorial in X, we see that the value of V x Y at p E M depends only on 
X (p ); but in what way does it depend on Y? Since Y --+ V x Y is a derivation, it 
is definitely not tensorial in Y. We can therefore not expect that Vx Y(p) depends 
only on X(p) and Y(p). The next two lemmas explore how Vx Y(p) depends on 
Y. 

Lemma 1.3 Let M beamanifoldandVaconnectionon M.lfp EM, v E TpM, 
and X, Y are vector fields on M such that X = Y in a neighborhood U 3 p, then 
VvX = VvY. 

Proof. Choose <p : M --+ lR such that <p = 0 on M - U and <p = m a 
neighborhood of p. Then we clearly have that <pX = <pY on M. Note that 

Vv<pX = <p(p)VvX + d<p(v) · X(p) = VvX 



since dcp(p) = 0 and cp(p) = 1. Thus 

VvX = VvcpX 

= VvcpY 

= VvY. 
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D 

For a Riemannian connection we could also have used the Koszul formula to 
prove this since the right hand side of this formula can be localized. This lemma 
tells us an important thing. Namely, if a vector field Y is defined only on an 
open subset of M, then V Y still makes sense on this subset. We could, therefore, 
potentially use coordinate vector fields or more generally frames to compute V 
locally. 

Lemma 1.4 Let M be a manifold, V a connection on M. If Y is a vector field 
on Mandy : I ---+ M a smooth curve with y(O) = v E TpM, then Vv Y depends 
only on the values ofY along y, i.e., if X o y =Yo y, then V.yX = V.yY. 

Proof. Choose a framing {Z1, ... , Zn} in a neighborhood of p and write Y = 
L a.i · Z;, X = L {3; Z; on this neighborhood. From the assumption that X o y = 
Y o y we get that ai o y = {3; o y. Thus, 

VvY = Vvaiz; 

= a;(p)VvZ; + Z;(p)da;(v) 

= {3;(p)VvZ; + Z;(p)df3;(v) 

=VvX. D 

Thus, V v Y makes sense as long as Y is prescribed along some curve (or sub­
manifold) that has v as a tangent. 

It will occasionally be useful to use orthonormal frames with certain nice prop­
erties. We say that an orthonormal frame E; is normal at p E M if V E;(p) = 0 
for all i = 1, ... , n. It is an easy exercise to show that such frames always exist. 

2.1.3 Derivatives of Tensors 

The connection is incredibly useful in generalizing many of the well-known con­
cepts (such as Hessian, Laplacian, divergence) from multivariable calculus to the 
Riemannian setting. 

If Sis a (0, r)- or (1, r)-tensor field then we can define a covariant derivative 
'\1 S that we interpret as a (0, r + 1)- or (1, r + I)-tensor field. (Remember that a 
vector field X is a (1,0)-tensor field and V X is a (1,1) tensor field.) The main idea 
is to make sure that Leibniz rule holds. So if S is a ( 1, 1) tensor then we want to 
have 

Vx(S(Y)) = (VxS)(Y)+ S(VxY). 
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Thus, it seems reasonable to define V S as 

V S(X, Y) = (Y'xS)(Y) 

= Y'x (S(Y))- S(Y'x Y). 

More generally, we define 

VS(X, Y1, ... , Yr) = (Y'xS)(YJ, ... , Yr) 
r 

= Y'x(S(YJ, ... , Yr))- LS(YJ, ... , Y'xYi, ... , Yr), 
i=l 

where V x is interpreted as the directional derivative when applied to a function, 
while we use it as covariant differentiation on vector fields. It is easy to check that 
this indeed defines a tensor as promised. 

A tensor is said to be parallel if V S = 0. In (1R11 , can) one can easily see that 
if a tensor is written in Cartesian coordinates, then it is parallel iff it has constant 
coefficients. Thus V Y = 0 for constant vector fields. On a Riemannian manifold 
( M, g) we always have that V g = 0 since 

from property ( 4) of the connection. 
If f : M ~ JR. is smooth, then we already have V f defined as the vector field 

satisfying g(V f, v) = Dvf = df(v). Thus, there is some confusion here, with 
V f now also being defined as df. In any given context it will generally be clear 
what we mean. The Hessian V2 f is defined as the ( 1, 1 )-tensor V (V f). This tensor 
is self-adjoint, or symmetric, since 

g(V2 f(X), Y) = g(Y'xY' f, Y) 

= Dxdf(Y)- df(Y'x Y) 

= X(Y(f))- df(Y'x Y) 

= X(Y(f))- df(Y'v X)- df([X, Y]) 

= X(Y(f))- X(Y(f)) + Y(X(f))- df(V'y X) 

= g(V2 f(Y), X). 

Thus, V2 f can also be interpreted as the symmetric (0, 2)-tensor V2 f(X, Y) = 
g(V2 f(X), Y), which might be a more familiar way of thinking about it. We shall, 
however, always use the ( 1, 1) interpretation. One easily checks that V f and V2 f 
coincide with our usual definitions on lR11 • 

Sometimes V2 f is actually used as a notation for the trace of V(V f). This is, 
of course, the Laplacian, and we will use the notation l::if = tr(V2 f). On 1R11 this 
is also written as l::if = divV f. The divergence of a vector field, div X, on ( M, g) 

is defined as 
II 

divX = tr(VX) = Lg (Y'e;X, ei) 
i=l 
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if{ei} is an orthonormal basis. Thus, also !).f = tr(V2 f)= tr(V(V f)) = div(V f). 
In analogy with our definition of div X we can also define the divergence of a 

(1, r)-tensor S to be the (0, r)-tensor 

(divS)(vJ, ... , v,) = tr(w--+ (VwS)(v1, ••• , v,)) 
n 

= L8 ((Ve;S) (vJ, ... , v,), ei). 
i=l 

For a(·, r )-tensorfield S we can now also define the second covariant derivative 
V2 S as the(-, r + 2)-tensorfield 

(VLx2 S) (Yt, ... , Y,) = (Vx 1 (V S)) (Xz, Yt, ... , Y,) 

= (Vx1 V'x2 S) (Yt, ... , Yr)- (Vvx 1x2 S) (Yt, ... , Y,). 

With this we get the (0, 2) version of the Hessian of a function defined as 

Vl.rf = VxVrf- Vvxrf 

= V'x8(Y, V f)- 8(\lxY, V f) 

= 8(Y, Vx\7 f) 

= 8 (V2 f (X), Y) . 

This second covariant derivative is symmetric in X and Y. In general, however 
this will not be the case. The defect in the second covariant derivative not being 
symmetric is a central feature in Riemannian geometry and is at the heart of the 
difference between Euclidean geometry and all other geometries. 

From the new formula for the Hessian we see that the Laplacian can be written 
as 

n 

/).f = L Vi;.EJ· 
i=l 

2.2 Curvature 

Having now developed the idea of covariant derivatives and explained their relation 
to the classical concepts of gradient, Hessian, and Laplacian, one might hope that 
somehow these concepts carry over to tensors. As we have seen, this is true with 
one important exception, namely, the most important tensor for us, the Riemannian 
metric 8. This tensor is parallel and therefore has no gradient, etc. Instead, we think 
of the connection itself as a sort of gradient of the metric. The next question then 
is, what should the Laplacian and Hessian be? The answer is, curvature. 

Any connection on a manifold gives rise to a curvature operator. This operator 
measures in some sense how far away the connection is from being our standard 
connection on JRn, which we assume is our canonical curvature-free, or flat, space. 
If we are on a Riemannian manifold, then it is possible to take traces of this 
curvature operator to obtain various averaged curvatures. 
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2.2.1 The Curvature Tensor 

We shall work exclusively in the Riemannian setting. So let ( M, g) be a Riemannian 
manifold and 'V the Riemannian connection. The curvature tensor is a ( 1 , 3 )-tensor 
defined as 

R(X, Y)Z ='Vi yZ- 'V~ xZ . . 

on vector fields X, Y, Z. Of course, it needs to be proved that this is indeed a tensor. 
Since both of the second covariant derivatives are tensorial in X and Y, we need 
only check that R is tensorial in Z. This is easily done: 

R (X, Y) fZ = 'Vi.r (JZ)- 'V~.x (JZ) 

= f'Vi.r (Z)- f'V~.x (Z) 

+ (vi.r f) z - (v~.x f) z 
+ ('Vy f) 'VxZ + ('Vx f) 'VyZ 

- ('Vxf) 'VyZ- ('Vy f) 'VxZ 

= f (Y'i.r (Z)- 'V~.x (Z)) 

= fR(X, Y)Z. 

Notice that X, Y appear antisymmetrically in R(X, Y)Z, while Z plays its own 
role on top of the line, hence the unusual notation. Using the metric g we can 
change this to a (0, 4)-tensor as follows: R(X, Y, Z, W) = g(R(X, Y)Z, W). The 
variables are now treated on a more equal footing, which is perhaps explained by 
the next proposition. 

Proposition 2.1 The Riemannian curvature tensor R(X, Y, Z, W) satisfies the 
following properties: 

(1) R is antisymmetric in the first two and last two entries: 

R(X, Y, Z, W) = -R(Y, X, Z, W) = R(Y, X, W, Z). 

(2) R is symmetric between the first two and last two entries: 

R(X, Y, Z, W) = R(Z, W, X, Y). 

(3) R satisfies a cyclic permutation property called Bianchi 'sfirst identity: 

R(X, Y)Z + R(Z, X)Y + R(Y, Z)X = 0. 

( 4) 'V R satisfies a cyclic permutation property called Bianchi's second identity: 

('V2 R)(X, Y) W + ('VxR)(Y, Z) W + ('VyR)(Z, X) W = 0. 
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Proof. The first part of (1) has already been established. For part two of (1) 
observe that [X, Y] is the unique vector field defined by DxDrf- DrDxf­
D[x.Y]! = 0. In other words, R(X, Y)f = 0. This is the idea behind the calcula­
tions that follow: 

g(R(X, Y)Z, Z) = g(Y'xV'yZ, Z)- g(Y'rY'xZ, Z)- g(Y'[x.Y)Z, Z) 

= Dxg(Y'rZ, Z)- g(V'yZ, Y'xZ) 
1 

- Dyg('VxZ, Z) + g(Y'xZ, V'yZ)- lD[x.rjg(Z, Z) 

1 1 1 
= lDxDrg(Z, Z)- lDrDxg(Z, Z)- lD[x.rjg(Z, Z) 

1 = lR(X, Y)g(Z, Z) = 0. 

Now (1) follows by polarizing the identity R(X, Y, Z, Z) = 0 in Z. Part (3) is 
most easily proved by assuming [X, Y] = [Y, Z] = [Z, X] = 0. This is actually 
sufficient for the proof since R is a tensor and any three vectors can be extended 
to vector fields that mutually commute: 

R(X, Y)Z + R(Z, X)Y + R(Y, Z)X = Y'xY'rZ- Y'rY'xZ 

+ Y'zY'xY- Y'x'VzY 

+ Y'rY'zX- Y'z'VrX 

= Y'x (Y'r Z- Y'z Y) 

+ V' z ('V X y - V' y X) 

+ Y'r (Y'zX- Y'xZ) 

= Y'x [Y, Z] + V'z [X, Y] + V'y [Z, X] 

=0. 

Part (2) is a purely algebraic consequence of (1) and (3): 

R(X, Y, Z, W) = -R(Z, X, Y, W)- R(Y, Z, X, W) 

= R(Z, X, W, Y) + R(Y, Z, W, X) 

= - R(W, Z, X, Y)- R(X, W, Z, Y) 

- R(W, Y, Z, X)- R(Z, W, Y, X) 

= 2R(Z, W, X, Y)+ R(X, W, Y, Z)+ R(W, Y, X, Z) 

= 2R(Z, W, X, Y)- R(Y, X, W, Z) 

= 2R(Z, W, X, Y)- R(X, Y, Z, W), 

which implies 2R(X, Y, Z, W) = 2R(Z, W, X, Y). 
Now for part (4). Assume again that all Lie brackets are 0. Then in particular, 

we have 
R (X, Y) Z = [Y'x, Y'r] Z- Y'[x.r]Z = [Y'x, V'y] Z. 
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Observe that 

So 

(Vz R)(X, Y) W = Vz (R (X, Y) W)- R (VzX, Y) W 

- R(X, \lzY) W- R(X, Y)VzW 

= [Vz, R (X, Y)] W- R (V2 X, Y) W- R (X, V2 Y) W. 

(V2 R)(X, Y) W + (VxR)(Y, Z) W + (VvR)(Z, X) W 

= [Vz, R(X, Y)] W + [Vx, R(Y, Z)] W + [Vy, R(Z, X)] W 

- R(\lzX, Y) W- R(X, \lzY) W 

- R(VxY, Z) W- R(Y, VxZ) W 

- R(VvZ, X) W- R(Z, VvX) W 

= [Vz, R(X, Y)] W + [Vx, R(Y, Z)] W + [Vy, R(Z, X)] W 

+ R ([X, Z], Y) W + R ([Z, Y], X) W + R ([Y, X], Z) W 

= [Vz, [Vx, "Vy ]] W + [Vx, [Vv, Vz]] W + [Vy, [Vz, Vx]] W 

= 0, 

by Jacobi's identity for commutators. D 

Notice that part ( 1) is related to the fact that V is metric (i.e., d (g( X, Y)) = 

g(V X, Y) + g(X, VY)), while part (3) follows from V being torsion free (i.e., 
VxY- VvX =[X, Y]). 

Example 2.2 (ffi.n, can) has R = 0 since Va, a.i = 0 for the standard connec­
tion. 

More generally for any tensor fieldS of type(·, r) we can define the curvature 
as the new ( ·, r) tensor field 

R (X, Y) s = v~.vs- v~.xs· 

Again one needs to check that this is indeed a tensor. This is done in the same 
way we checked that R (X, Y) Z was tensorial in Z. Clearly, R (X, Y) S is also 
tensorial and skew symmetric in X and Y. 

From the curvature tensor R we can derive several different curvature concepts. 

2.2.2 The Curvature Operator 

The curvature operator that we define first is our Hessian of g. First recall that 
we have the space A 2 M of bivectors. If ei is an orthonormal basis for Tp M, then 
the inner product on A f) M is such that the bivectors ei 1\ e .i, i < j will form an 

orthonormal basis. The inner product that A 2 M inherits in this way is also denoted 
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by g. Alternatively, we can define the inner product g on A71 M by the formula 

g(x 1\ y, v 1\ w) = g(x, v)g(y, w)- g(x, w)g(y, v) 

= det ( g (X, V) g (X, W) ) 
g (y' v) g (y' w) 

and then extend it by linearity to all of A~ M. 

From the antisymmetry properties from ( 1) of Proposition 2.1 we see 

that R actually defines a map R : A 2 M x A 2 M ~ JR. by declaring 

R (X 1\ Y, V 1\ W) = R (X, Y, W, V). Note the reversal of V and W! The re­

lation g (91: (X 1\ Y) , V 1\ W) = R (X 1\ Y, V 1\ W) therefore defines an operator 

9t : A 2 M ~ A 2 M, which by property (2) is symmetric. This operator is called 

the curvature operator. It is clearly just a different manifestation of the curva­

ture tensor. The switch between V and W is related to our definition of the next 

curvature concept. 

2.2.3 Sectional Curvature 

For any v E TpM let Rv(w) = R(w, v)v : TpM ~ TpM be the directional 

curvature operator. This operator is also known as the tidal force operator. The 

latter name accurately describes in physical terms the meaning of the tensor. The 

above conditions imply that this operator is selfadjoint and that v is always a zero 

eigenvector. The normalized quadratic form 

( ) g(Rv(w), w) 
sec v, w = -------------,-

g(v, v)g(w, w)- g(v, w)2 

g(R(w, v)v, w) 

(areaO(v, w))2 

g (91: ( v 1\ w) ' v 1\ w) 

(areaO(v, w))2 

is called the sectional curvature of(v, w). Since the denominator is the square of 

the area of the parallelogram {tv+ sw : 0:::: t, s :::: 1}, we can easily check that 

sec(v, w) depends only on the plane rr = span{v, w}. One of the important rela­

tionships between directional and sectional curvature is the following observation 

by Riemann. 

Proposition 2.3 (Riemann, 1854) The following properties are equivalent: 

(1) sec(rr) = kforall2-planes in TPM. 
(2) R(vl, V2)V3 = k · (g(v2, V3)V1- g(VJ, V3)v2)forall VJ, V2, V3 E TpM. 
(3) Rv(w) = k · (w- g(w, v)v) = k · prvj_(w)for all wE TpM and I vi = 1. 

(4) 9t(w) = k · wfor all wE AiJM. 

Proof. (2) :::::} (3) :::::} (1) are easy. For (1) :::::} (2) we introduce the multilinear 

maps: 
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The first observation is that this "tensor" behaves exactly like the curvature tensor 
in that it satisfies properties 1, 2, and 3 of Proposition 2.1. Thus, we have a "tensor" 

that satisfies those same properties, and we know from our assumption that sec = k 
that it satisfies 

T (v, w, w, v) = 0 

for all v, wE TpM. Using polarization w = w1 + w2 we then have 

0 = T (v, WJ + W2, WJ + W2, V) 

= T ( v, w I , W2, v) + T ( v, W2, w I , v) 

= 2 T ( V, W 1 , W2, V) 

= -2 T ( v, w 1 , v, wz) . 

Using properties 1 and 2 of the curvature tensor we now see that Tis alternating 
in all four variables. That, however, is in violation ofBianchi's first identity unless 
T = 0, which is exactly what we wish to prove. 

To see why (2):::} (4), choose an orthonormal basis ei for TpM; then ei 1\ ej, 
i < j, is a basis for A~M. Using (2) we see that 

g(9t(ei 1\ej) ,e, 1\es) = R(ei,ej,es,e1) 

But this implies that 

= k · (g(ej, es)g(ei, e,)- g(ei, es)g(ej, er)) 

= k · g ( ei 1\ e;, er 1\ es) . 

9t(ei 1\ ej) = k · (ei 1\ ej). 

For (4) :::} (1) just observe that if {v, w} are orthogonal unit vectors, then k = 
g (9t ( v 1\ w) , v 1\ w) = sec ( v, w) . D 

A Riemannian manifold (M, g) that satisfies either of the four conditions for 
all p E M and the same k E lR for all p E M is said to have constant curvature 
k. So far we only know that (JRn, can) has curvature zero. Soon we shall see that 
dr2 +sn~(r )ds~_ 1 has constant curvature k. Whenk > 0, recall that these represent 

(sn(l/.Jk), can), while when k < 0 we still don't have a good picture yet. Later 
we will devote a whole section to these constant negative curvature metrics. 

2.2.4 Ricci Curvature 

Our next curvature is the Ricci curvature, and this should be thought of as the 
Laplacian of g. 
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The Ricci curvature Ric is a trace of R. If e1, ... , en E TpM is an orthonormal 
basis, then 

n n 

Ric(v, w) = Lg(R(ei, v)w, ei) = Lg(R(v, ei)ei, w). 
i=l i=l 

Thus Ric is a symmetric bilinear form. It could also be defined as a symmetric 
( 1 ,1 )-tensor 

n 

Ric(v) = L R(v, ei)ei· 
i=l 

We can therefore adopt the language that Ric ::::: k (or ::: k) if all eigenvalues 
ofRic(v) are::::: k (or::: k). If(M,g) satisfies Ric(v) = k · v, or equivalently 
Ric(v, w) = k·g(v, w), then(M, g) is said to be anEinstein manifold with Einstein 
constant k. If ( M, g) has constant curvature k, then ( M, g) is also Einstein with 
Einstein constant ( n - 1 )k. 

We shall pretty soon be able to find interesting Einstein metrics that do not have 
constant curvature. Three basic types are 

(1) (Sn(l) X sn(l), ds?; + ds?;) with Einstein constant n- 1; 

(2) The Fubini-Study metric on cpn with Einstein constant 2n + 2; and 

(3) The Schwarzschild metric on JR2 x S2, which is a doubly warped product 
metric: dr2 + cp2(r )df:P + tj12(r )ds'} with Einstein constant 0. 

If v E Tp M is a unit vector and we complete it to an orthonormal basis 
{v, e2, ... , en} for TpM, then 

n n 

Ric ( v, v) = g ( R ( v, v) v, v) + L g ( R ( ei, v) v, ei) = L sec ( v, ei) . 
i=2 i=2 

Thus, when n = 2, there is no difference from an informational point of view 
in knowing R or Ric. This is actually also true in dimension n = 3, because if 
{e1, e2 , e3} is an orthonormal basis for TpM, we have 

In other words: 

sec (e1, e2) +sec (e1, e3) =Ric (e1, e1), 

sec (e1, e2) +sec (e2, e3) =Ric (e2, e2), 

sec (e1, e3) +sec (e2, e3) =Ric (e3, e3). 

Here, the matrix has det = 2, and we can therefore compute any sectional curvature 
from Ric. In particular, we see that ( M 3 , g) is Einstein iff ( M 3 , g) has constant 
sectional curvature. The search for Einstein metrics should therefore begin in 
dimension 4. 
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2. 2. 5 Scalar Curvature 

The last curvature quantity we wish to mention is the scalar curvature: seal 
trRic = 2 · trryt. Notice that seal depends only on p E M and is therefore a 
function, seal : M ~ JR. In an orthonormal basis e1, ••• , en for TpM we have 

seal= trRic 
n 

= L g (Ric ( e 1) , e 1) 
J=l 

n n 

= LLg(R(ei,eJ)eJ,ei) 
J=l i=l 

I! 

= L g (ryt (ei A ei), ei A ei) 
i,j=l 

i <j 

= 2trryt 

= 2 L sec ( ei, e 1) . 
i <j 

When n = 2 we see that scal(p) = 2 · sec(TpM). Thus, all curvature information 
is contained in seal. We shall see, however, that already when n = 3 there are 
metrics with constant scalar curvature that are not Einstein. When n ~ 3 there 
is also another interesting phenomenon occurring, which is related to the scalar 
curvature. 

Lemma 2.4 (Schur, 1886) Suppose that a Riemannian manifold ( M, g) of di­
mension n ~ 3 satisfies one of the following two conditions: 

(a) sec(rr) = f(p)for all2-planes rr C TpM, p E M; or 
(b) Ric(v) = (n- 1) · f(p) · v for all v E TpM, p E M. 
Then in either case f must be constant. In other words, the metric has constant 

curvature or is Einstein, respectively. 

Proof. It clearly suffices to show (b), as the conditions for (a) imply that (b) 
holds. To show (b) we need the important identity: 

dscal = 2divRic. 

Let us see how this implies (b). First we have 

dscal = dtrRic 

= d (n · (n - 1) · f) 

= n · (n - 1) · df. 
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Now, 

2divRic(v) = 2 L8 ((Ve,Ric) (v), e1) 

= 2 L g ( (Ve, ((n - 1) f · I)) ( v), e1) 

= 2 L8 ((n -1) (VeJ) v, et) + 2 L8 ((n- 1) f (VeJ) (v), et) 

= 2(n- I)g (v, L (VeJ) e1) 
= 2(n -I)g(v, Vf) 

=2(n-l)df(v). 

Thus, we have shown that n · df = 2 · df, but this is impossible unless n = 2 or 

df = 0 (i.e., f is constant). D 

Proposition 2.5 

dtrRic = 2divRic. 

Proof. The identity is proved by a long and uninspired calculation that uses the 

second Bianchi identity. Choose a normal orthonormal frame E1 at p E M and let 

W be a vector field near p with constant coefficients in the chosen frame; then 

(dtrRic) (W) (p) = Dw L g (Ric (Et), E1) 

= Dw L8 (R (Et, Ej) Ej. Et) 

= L g (Vw (R (Et, Ej) Ej), £ 1) 

= L8 ((VwR) (E1, Ej) Ej, E1) 

=- L g ((vEj R) (W, Et) E;, E;)- L 8 ((vE, R) (Ej. w) Ej. E;) 

=- L (vEjR) (w, E;, Ej, Et)- L (vE,R) (Ej. w, Ej. Et) 

= L (vEjR) (Ej. Et. Et, w) + L (vE,R) (E1, E;, E;, w) 

= 2 L (vEjR) (Ej, Et. Et, w) 

= 2 L vEj (R (Ej. Et, Et, w)) 

=2LVEjg(Ric(Ej), W) 

= 2 L VEj8 (Ric(W), Ej) 

= 2 L8 (vEj (Ric(W)), Ej) 

= 2 L8 ((vEjRic) (W), Ej) 
= 2divRic(W)(p). 

Here we used in several places that all covariant derivatives of the form V v E k = 0 

at p, and we used the second Bianchi identity in the fifth equality. D 
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Corollary 2.6 An n ( > 2)-dimensional Riemannian manifold ( M, g) is Einstein 

iff 
. seal 

Rtc=­
n 

2.3 The Fundamental Curvature Equations 

In this section we are going to study how curvature comes up "naturally" in the 
investigation of certain types of functions. This will lead us to various formulae 
that make it possible to calculate the curvature tensor on all of the rotationally 
symmetric and doubly warped product metrics from Chapter 1. With this informa­
tion we can then exhibit the above mentioned examples. This latter work will be 
done in the next chapter. 

2.3.1 Distance Functions 

The functions we wish to look into are the distance functions. Since we don't have 
a concept of distance yet, we will say that f : U ---+ IR, where U c ( M, g) is open, 
is a distance function if I Y' f I = 1 on U. Distance functions are therefore simply 
solutions to the Hamilton-Jacobi equation 

IY'ul = 1. 

This is a nonlinear first-order PDE. The theory for solving such equations can be 
found in [4]. For now we shall assume that solutions exist and investigate their 
properties. Later, when we have developed the theory of geodesics, we shall show 
the existence of such functions and also show that their name is appropriate. 

Example 3.1 On (IRn, can) define f(x) = lx - yl. Then f is smooth on 
IRn - {y} and has IV' fl = 1. If we have two different points {y, z}, then 
f(x) = d(x, {y, z}) = min{d(x, y), d(x, z)} is smooth and has IV' fl = 1 away 
from {y, z} and the hyperplane {x E IRn : lx- yl = lx- zl}, which is equidistant 
from y and z. 

Example 3.2 More generally if M c IRn is a submanifold, then it can be shown 
that f(x) = d(x, M) = inf{d(x, y) : y E M} is a "distance function" on 
some open set U c IRn. If M is an orientable hypersurface, then we can see 
this as follows. Since M is orientable, we can choose a unit normal vector field 
N on M. Now "coordinatize" IRn as x = tN + y, where t E IR, y E M. In 
some neighborhood U of M these "coordinates" are actually well-defined. In 
other words, there is some function t:(y) : M ---+ (0, oo) such that any point in 
U = {tN + y : y E M, ltl < t:(y)} has unique coordinates (t, y). We can now 
define f(x) = ton U or g(x) = d(x, M) = It I on U- M. Both functions will then 
define distance functions on their respective domains. Here f is usually referred 
to as the signed distance to M, while g is just the regular distance. Figure 2.1 
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FIGURE 2.1. 

shows some pictures of the level sets of a distance function together with the or­
thogonal trajectories that form the integral curves for the gradient of the distance 
function. 

Example 3.3 On I x M, where I c IR, is an interval we have metrics of the 
form dr 2 + gr, where dr 2 is the standard metric on I and 8r is a metric on {r} x M 
that depends on r. In this case the projection I x M --+ I is a distance function. 
Special cases of this situation are rotationally symmetric metrics, doubly warped 
products, and our submersion metrics on I X sodd. 

Lemma 3.4 Given f : U --+ I c JR., then f is a distance function iff f is a 
Riemannian submersion. 

Proof. In general, we have df (v) = g (V' f, v), so Df (v) = df (v) a, = 0 iff 
v ..L V f. Thus, v is perpendicular to the kernel of D f iff it is proportional to V f. 
For such v = a\7 f we therefore have that 

Df(v)=aDf(V'f)=ag(V'f, V'f)a,. 

Now a, has length 1 in I, so 

lv I = Ia II v !I , 
IDf (v)l = Ia I lV /1 2 . 

Thus, f is a Riemannian submersion iff IV f I = 1. D 

Before going on, let us introduce some simplifying notation. A distance function 
f : U --+ lR is fixed and U c ( M, g) is an open subset of a Riemannian manifold. 
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The gradient V f will usually be denoted by a, = N = V f. The a, notation 
comes from our warped product metrics dr 2 +···,while theN notation refers to 
the fact that V f is a unit normal vector field to the level sets f- 1 (r ), which are 
smooth hypersurfaces in U. These hypersurfaces are renamed Ur = f- 1(r), and 
the induced metric on Ur is gr. In this spirit vr, Ware the Riemannian connection 
and curvature on (U" g,-). The Hessian off is denoted by S = V2 f, where 
S stands for second derivative or shape operator or second fundamental form, 
depending on the point of view of the observer. The last two terms are more or less 
synonymous and refer to the shape of(Ur, gr) in (U, g) c (M, g). The idea is that 
S = V N measures how the induced metric on Ur changes by computing how the 
unit normal to Ur changes. 

Example 3.5 Let M c IP1.n be an orientable hypersurface and N the unit normal, 
S the shape operator. If S = 0 on M then N must be a constant vector field on 
M, and hence M must be an open subset of the hyperplane H = {x + p E IRn : 
x · N = 0 and p E M is a fixed point}. As an explicit example of this, recall 
our isometric immersion or embedding (JRn-l, can) -+ (IP1.n, can) from Chapter 1 
defined by (x 1, ••• , xn-l) -+ (y(x 1 ), x 2, ... , xn-l ), where y is a unit speed curve 
y : lP1.-+ IP1.2 . In this case, N = (n(x 1), 0, ... , 0) is a unit normal, where n(x 1) is 
the unit normal toy in IP1.2 . We can write this as N = ( -y 2(x 1), y 1(x 1), 0, ... , 0) 
in Cartesian coordinates. So 

S=VN 

= -d(y 2)a1 + d(y I )a2 

= -ji2dx 1a1 + ji 1dx 1a2 

= (-ji 2 a1 + ji 1a2)dx 1• 

Thus, S = 0 iff ji 1 = ji 2 = 0 iff y is a straight line iff M is an open subset 
of a hyperplane. The shape operator therefore really captures the idea that the 
hypersurface bends in JRI!, even though JRn-l of course cannot be seen to bend 
inside itself. 

We have seen here the difference between extrinsic and intrinsic geometry. 
Intrinsic geometry is everything we can do on a Riemannian manifold (M, g) that 
does not depend on how ( M, g) might be isometrically immersed in some other 
Riemannian manifold, while extrinsic geometry is the study of how an isometric 
immersion ( M, g) -+ ( Q, h) bends ( M, g) inside ( Q, h). Thus, the curvature tensor 
on (M, g) measures how the space bends intrinsically, while the shape operator 
measures extrinsic bending. 

2.3.2 Curvature Equations 

We are now ready to prove our first fundamental equation. 
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Theorem 3.6 (The Radial Curvature Equation) If U c (M, g) is an open set 
and f : U --+ JR. a distance function, then 

Proof. We proceed by straightforward computation. If X is a vector field on U, 
then 

(V'NS)(X) + S2(X) = V'N(S(X))- S(V'NX) + S(S(X)) 

= V'NV'xN- V'vNxN + V'vxNN 

= V'NV'xN- V'vNX-VxNN 

= V'NV'xN- Y'[N.x]N. 

In order for this to equal - R(X, N)N we only need to see what happened to 
- V x V' N N. However, since N = V' f is unit, we see that for any vector field Y on 
U: 

g(V'NN, Y) = g(S(N), Y) 

= g(N, S(Y)), by symmetry of S 

= g(N, V'yN) 
1 

= 2.Dyg(N, N) 

1 
= 2.Dy1 =0. 

In particular, V' N N = S( N) = 0 on all of U. D 

This result tells us two things: First, that N is always a zero eigenvector for 
Sand secondly how certain "radial curvatures" relate to the Hessian of f. The 
Hessian of a generic function cannot, of course, exhibit such predictable behavior 
(namely, being a solution to a PDE). It is only geometrically relevant functions 
that behave so nicely. 

Even on (IR.n, can) we have arrived at a "new" result, that is, one that is not part 
of standard multivariable calculus. The most interesting thing is that while we now 
know that there are many different-looking distance functions on (IR.n, can), they 
all satisfy this same equation. This will become an important point later on. 

The second and third fundamental equations are also known as the Gauss equa­
tions and Codazzi-Mainardi equations, respectively. They will be proved simulta­
neously but stated separately. 

Theorem 3.7 (The Tangential Curvature Equation) 

tan R(X, Y)Z = W(X, Y)Z- II(Y, Z)S(X) + II(X, Z)S(Y) 
= Rr(X, Y)Z- g(S(Y), Z)S(X) + g(S(X), Z)S(Y). 
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Here X and Y are vector fields which are tangent to the level sets Ur and Rr is 
the curvature tensor of(Ur, gr ), tan(W) = W- g(W, N)N is the projection ofW 
onto TUr. andll(U, V) = g(S(U), V). 

Theorem 3.8 (The Normal or Mixed Curvature Equation) 

norR(X, Y)Z = g( -(VxS)(Y) + (VrS)(X), Z) · N, 

where X, Y, Z are vector fields tangent to the level sets Ur, and nor(W) 
g(W, N) · N is the projection ofW onto N. 

Proof. The proof hinges on the important fact that if X, Y are vector fields that 
are tangent to the level sets Ur, then: 

V~Y = tan(Vx Y) 

= VxY- g(VxY, N)N 

= Vx Y + g(S(X), Y)N 

= VxY + II(X, Y)N. 

Here the first equality is a consequence of the uniqueness of the Riemannian 
connection on (Ur, gr ). One can check either that tan(V x Y) satisfies properties 
1 to 4 of a Riemannian connection or alternatively that it satisfies the Koszul 
formula. The latter task is almost immediate. The fourth equality is obvious. The 
third follows since Y j_ N implies 

0 = Vxg(Y, N) 

= g(Vx Y, N) + g(Y, S(X)), 

whence g(S(X), Y) = -g(Vx Y, N). 
Both of the curvature equations are now verified by calculating R(X, Y)Z using 

Vx Y = V~Y- g(S(X), Y) · N, and here is the calculation in all its glory: 

R(X, Y)Z = VxVrZ- VrVxZ- Vrx.r]Z 

= Vx(V~Z- g(S(Y), Z) · N)- Vr(V~Z- g(S(X), Z) · N) 

- V(x.r1Z + g(S([X, Y]), Z) · N 

= VxV~Z- VrV~Z- V[x.YJZ 

- Vx (g(S(Y), Z) · N) 

+ Vr (g(S(X), Z) · N) 

+ g(S([X, Y]), Z) · N 

= Rr(X, Y)Z 

- g(S(X), V~Z) · N + g(S(Y), V~Z) · N + g(S([X, Y]), Z) · N 

- g(VxS(Y), Z) · N- g(S(Y), VxZ) · N- g(S(Y), Z)S(X) 

+ g(VrS(X), Z) · N + g(S(X), VrZ) · N + g(S(X), Z)S(Y) 
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= Rr(X, Y)Z 

- g(S(Y), Z)S(X) + g(S(X), Z)S(Y) 

+ ( -g(VxS(Y), Z) + g(VvS(X), Z)) · N 

+ (g(S(V x Y), Z) - g(S(V'y X), Z)) · N 

= Rr(X, Y)Z- g(S(Y), Z)S(X) + g(S(X), Z)S(Y) 

+ g (-(VxS)(Y) + (V'yS)(X), Z) · N. 

Notice that the important step in the fifth equality is the observation 
g(S(Y), V~Z) = g(S(Y), VxZ) and g(S(X), Y'yZ) = g(S(X), V'yZ). These 
identities follow from the fact that S(Y) E T Ur, which is a consequence of 
g(S(Y),N) = g(V'yN,N) = tDvg(N,N) = 0. Inotherwords, Smaps TU 
into TUr. This can also be seen from our knowledge that Sis self adjoint and 
S(N)=V'NN=O. D 

The three fundamental equations give us a way of computing curvature tensors 
by induction on dimension, for the distance function f foliates U into hypersur­
faces Ur. If, therefore, for some reason we know how to do computations on Ur 
and we also know how to computeS, then we can compute anything on U. We 
shall clarify and exploit this philosophy in subsequent chapters. 

Before doing so, recall that the three curvature quantities sec, Ric, and seal had 
some special relationships between them in dimensions 2 and 3. Curiously enough 
this also manifests itself in our three fundamental equations. 

If M has dimension 1 then there aren't too many distance functions. Our equa­
tions don't even seem to apply here since the level sets are points. This is related 
to the fact that R = 0 on all !-dimensional spaces. 

If M has dimension 2 then any distance function f : U c M --+ JR. has 
!-dimensional level sets. Thus W = 0 and the three vectors X, Y, and Z are 
proportional. Our equations therefore reduce to the single equation: V N S + S2 = 
-RN. Actually, since S(N) = 0, we know that S depends only on its value on a 
unit vector v E T Ur thus S (v) = av, where a = trS = f),.j. The radial curvature 
equation can therefore be reduced to: DN(f),j) + (1:1!)2 = -(scal/2). To be even 
more concrete, we have that gr on Ur can be written: gr = cp 2(r, e)de2 ; so 

and since 

1 
f/JOrf/J = 2org (oe, oe) 

= g ( V a, oe , ol!) 

= g ( s ( 01)) , 01)) 

=a loel2 

2 = acp ' 
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we have 

which implies 

trS = Or(/}, 
qJ 

seal a'jq; 
-- =- sec(TpM) = -. 

2 qJ 

When M has dimension 3, the level sets of f are 2-dimensional. The ra­
dial curvature equation therefore doesn't reduce, but in the other two equations 
we have that one of the three vectors X, Y, Z is a linear combination of the 
other two. We might as well assume that X l_ Y and Z = X or Y. So, if 
{X, Y, N} represents an orthonormal framing, then the complete curvature tensor 
depends on the quantities: g(R(X, N)N, Y), g(R(X, N)N, X), g(R(Y, N)N, Y), 
g(R(X, Y)Y, X), g(R(X, Y)Y, N), g(R(Y, X)X, N). The first three quantities can 
be computed from the radial curvature equation, the fourth from the tangential 
curvature equation, and the last two from the mixed curvature equation. 

In the special case where M 3 = IR3 , R = 0, the only interesting equation is the 
tangential curvature equation: 

sec(TpUr) = Rr (X, Y, Y, X) 

= g(S(X), X)g(S(Y), Y)- g(S(X), Y)g(S(X), Y) 

= detS. 

This was Gauss s wonderful observation! namely, that the extrinsic quantity det S 
for Ur is actually the intrinsic quantity, sec(Tp Ur ). 

Finally, in dimension 4 everything reaches its most general level. We can start 
with an orthonormal framing {X, Y, Z, N}, and there will be twenty curvature 
quantities to compute. One must therefore incorporate some extra symmetry on 
Ur if one wants to compute anything. 

2.4 The Equations of Riemannian Geometry 

In this section we shall investigate the connection between the metric tensor and 
curvature. This is done by using the radial curvature equation together with some 
new formulae. Having established these fundamental equations, we shall introduce 
some useful coordinate systems that make it possible to see how the curvature 
influences the metric in some unexpected ways. 

Note from the end of the last section that have we arrived at a very nice formula 
for the relationship between the metric and curvature on a surface, namely, if 
g = dr2 + q;2(r, fJ)dEP, then a'jq; = -sec ·qJ. This formula can be used not only to 
compute curvatures from knowledge of the metric, but also in reverse to conclude 
things about the metric from the curvature. This relationship, which is classical for 
surfaces, will be generalized in this section to manifolds of any dimension and then 
extensively used throughout the entire text as a universal tool for understanding 
the relationship between the metric and curvature. 
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2.4.1 The Coordinate-Free Equations 

Proposition 4.1 If we have a smooth distance function f : ( U, g) ~ lR and 
denote \7 f = Or and S = \72 f, then 

(1) Y'a,S+S2 = -Ra,, 

(2) (La, g) (X, Y) = 2g (S (X), Y), and 

(3) Y'a, S =La, S. 

Proof. (I) is just the radial curvature equation. 

(2) We simply compute using the definition of the Lie derivative: 

(La, g) (X, Y) =Dr (g (X, Y))- g ([Dr, X], Y)- g (X, [8r, Y]) 

= g (Y'a, X, Y) + g (X, Y'a, Y) 

- g (Y'a,X- Y'xDr, Y)- g (X, Y'a,Y- V'yo,-) 

= g (Y'x8r, Y) + g (X, V'yOr) 

= g (S (X), Y) + g (X, S (Y)) 

= 2g (S (X), Y). 

(3) Again it is a simple calculation: 

(La,S) (X)= [8r, S(X)]- S([ar. X]) 

= Y'a, (S(X))- Y's(x)Dr- S (Y'a,X- Y'xa,) 

= Y'a, (S (X))- S (Y'a,X)- Y's(x)Or + S (Y'xDr) 

= (Y'a,S) (X)- S2 (X)+ S2 (X) 

= (Y'a,S) (X). 0 

The first equation shows how curvature influences S and the second that S 
influences g through a simple linear equation. The last equation is important be­
cause we don't have a good way of writing covariant derivatives in coordinates. 
Lie derivatives, on the other hand, are merely directional derivatives in the right 
coordinates. 

2.4.2 The Equations in the Correct Coordinates 

Given an integral curve y : (a, b) -+ U for \7 f, one can always find coordinates 
(x 1, x2 , .•. , xn) on some neighborhood V of y, where r = f = x 1 and the 
other coordinates are tangent to the level sets for f. First we should observe that 
\7 f = 8r = 81 . This is because 81 is characterized as the vector field with the 
property that 
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On the other hand, 

dxi (or)= g (Vxi, or) 

= { 0 if i :::: 2, 
1 if i = 1, 

since we assumed that 'V x 1 = 'V f = or and that the other coordinates are perpen­
dicular to ar. This calculation justifies our coordinate notation, or, for the gradient 
of f. We call such a coordinate system adapted coordinates with respect to f. 

Now write the important tensors in adapted coordinates: 

g;; = g (a;, a;), 

RA, (o;) = R(o;, or )Or= L R{o1, 

s (o;) = 'Va;Or = L sf OJ. 

Then we have, first of all, 

(g;;) = 

~')· 
sn 

n 

It therefore suffices to look at the components of the tensors for indices 2 ::=: i, j ::=: 
n. Moreover, all of these matrices are symmetric, and the metric is, in addition, 
positive definite. The coordinate-free equations from the previous subsection now 
yield the following two matrix equations, where summation is over k: 

ar ( s!) + ( sn · (sf) = - ( Rf) , 

Since the first columns and rows of these matrix equations are trivially satisfied, we 
can eliminate them and consider the systems as being decoupled in the sense that 
r = x 1 is an independent variable and the matrices are dependent variables that can 
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then be analyzed through the above equations. More precisely, the matrix (g;j) is 
a matrix of functions depending on ( x 1 , x 2 , ... , xn) , but we can fix ( x 2 , ••• , xn) 
and study how this matrix varies with respect to x 1, as that is the only derivative 
occurring. By relabeling x 1 as r, it then seems that we have systems of ODEs 
rather than PDEs. This method of reducing PDEs to ODEs is called the method of 
characteristics. It is often used to solve first-order PDEs of the form L x S = T. 

We can also get information about the volume form through the fundamental 
equations. In the exercises to this chapter it is shown that the volume form can be 
written in the form 

dvol = J det (gij )dx 1 1\ · · · 1\ dxn 

= J det (gij )dr 1\ dx2 1\ · · · 1\ dxn. 

The equation or (g;j) = 2(Sf} · (gkj), together with the fact that det (g;j) c~ 
be viewed as an alternating map in the rows of (g;j) , then yields 

j ( ) Or det (g;j) 
Ory det 8ij = -r======== 

2Jdet (g;j) 

2tr ( sn . det (gij) 

2Jdet (g;j) 

= tr (sf) Jdet (g;j) 

= D.f · Jdet (g;j) 

= m · Jdet (gij)· 

Thus, the volume density can be computed via 

Taking traces in the radial curvature equation yields 

tr (or (sf) + (Sf) · (sf)) = tror (sf) + tr ( (Sf) · (sf)) 
= orm + tr ((Sf}· ( s1)) 
= - tr ( Rl) = -Ric (or, or) . 

Using the Cauchy-Schwartz inequality for matrices with the standard inner product 

(A, B) = tr (AB'), we see that 
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with equality holding iff all the eigenvalues of S are equal. Thus we have 

m2 
a,.m + -- _s -Ric(a,., a,.). 

n-l 

If we denote the volume density by 

we see that 

a,.A. = mA., 
m2 

a,.m + -- _s -Ric(a,., a,.). 
n-l 

These two equations together imply 

a2 ,~ < _ Ric(a,., a,.). "~. 
r - n- 1 

Let us list the above results in a collection of formulae that we refer to as The 
Fundamental Equations of Riemannian Geometry: 

(I) a,.(sl)+(sn.(st)=-(Rf). 

(trl) a,m + ~~~ ::: -Ric(a,, a,.). 

(tr2) a,.J det (gij) = m . J det (gij). 

2.4.3 Rotationally Symmetric Metrics 

Before explaining what these equations might tell us, let us look at what happens 
on a rotationally symmetric metric 

Clearly, the metric is diagonalized and looks like 

~ )· 
cp2 
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Equations (I) and (2) then compute the shape operator and the directional curva-
ture: 

(sf)= ( 
0 0 0 

). 0 Or'P 0 
'P 

0 0 i}_re_ 
'P 

0 0 0 

0 -a;'+' 0 
(Rf) = 

'P 

0 0 - a;'P 
'P 

Note that as r ---+ 0 the metric degenerates in these coordinates if we assume that 
cp (0) = 0. We know from Chapter I that depending on the initial values of cp this 
can be resolved by changing the coordinates. It will be important to study such 
degenerations of the metric, as they actually tell us something. In this case note 
that even though the metric is smooth at r = 0, we can't in some sense go any 
further. We can only go back in the direction of increasing r. 

2.4.4 Conjugate Points 

In general, we might think of the curvatures (R() as being given in some sense. 
They could be constant or merely satisfy some inequality. We then wish to inves­
tigate how the curvature influences the metric. Equation (2) is linear. We therefore 
know that the metric can't blow up in finite time unless the shape operator also 
blows up. However, if we assume that the curvature is bounded, then equation (1) 
tells us that, if the shape operator blows up, then it must be decreasing in r, hence 
it can only go to -oo. Going back to (2), we then conclude that the only degener­
ation which can occur along an integral curve for a, is that the metric stops being 
positive definite. This is obviously equivalent to saying that the volume density 

j det (gij) goes to zero. We say that the distance function f develops a conjugate, 

or focal, point along this integral curve if this occurs. Below we have some pictures 
of how conjugate points can develop. Note that as the metric itself is Euclidean, 
these singularities exist only in the coordinates, not in the metric. 

It is worthwhile investigating equation (1) in its own right. If we rewrite it as 

then we can think of the curvatures as representing fixed external forces, while 
- ( sn · ( s£) describes an internal reaction (or interaction). The reaction term is 

always negative and, it will try to make ( s() go to - oo in finite time (an explosion, 
or perhaps implosion, better describes this as the metric shrinks). If, for instance, 



46 2. Curvature 

FIGURE 2.2. 

the curvature is zero (or more generally) nonnegative, then ar ( s/) is negative 

(see also the next section for clarification of this). Therefore, if (sf) is negative at 
some point, then it will in future time decrease to -oo in finite time. This can be 
counteracted by the curvature term if, for instance, it is zero (or nonpositive) and 
we assume that (sf) is positive. Then it might still be true that (sf) decreases, but 
it can never become negative, and thus focal points can never develop. 

2.4.5 Curvature and the Riemannian Metric 

Let us list some important properties that we can easily derive. These properties will 
form the basis for many of our developments in comparison geometry. Comparison 
geometry is the study of how curvature inequalities influence the geometry and 
topology of the underlying manifold. In all of these results we assume that a 
smooth distance function is given on some open subset of a Riemannian manifold. 
Moreover, we start at some point p in this domain and consider what happens to 
the metric or Hessian along the integral curve for the gradient through this point. 
The curvature inequalities are meant to hold either on all of the manifold or simply 
for the directional curvature in the direction of the gradient. 

( 1) (Prototype for the Hadamard-Cartan theorem, see Chapter 6) Suppose that 
sec .::: 0 and that (sf) is nonnegative at p, then it will remain nonnegative 
in future time. 

(2) (Prototype for Synge's lemma and the Soul theorem, see Chapters 6 and 
11) Suppose that sec ~ 0 and that (sf) is nonpositive at p, then it will 
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remain nonpositive in future time. Moreover if either ( s!) is negative at p 

or sec 2:: k2 > 0, then a focal point will develop in finite future time. 

(3) (Prototype for Myers' diameter bound, see Chapter 9) Suppose that Ric ::: 
(n - 1) k2 , then (trl) and (tr2) imply that the volume density can only stay 
positive on intervals of length :::=: 2n I k. Thus focal points must develop in 
both future and past finite time. 

( 4) (Prototype for the splitting theorem, see Chapter 9) Suppose sec ::: 0 and 
that no focal points develop in future and past infinite time; then the metric 
must be constant along this integral curve. 

In order to prove these results and others to come, it is necessary to discuss in 
more detail what matrix inequalities mean. 

2.4.6 Matrix Inequalities 

Suppose we have an inner product g on a vector space E and a linear map S 
E ~ E. We say that S is self adjoint with respect to g if 

g (S (v), w) = g (v, S (w)). 

In case S is self adjoint, we know from the spectral theorem that there exists 
an orthonormal basis of eigenvectors and that all eigenvalues are real. Thus, an 
inequality like: S 2:: A means that all eigenvalues of S are ::: A. This holds iff 

g ( S ( v) , v) 2:: Ag ( v, v) for all v E E, 

or g ((S- AI)(v), v) 2:: 0 for all v E E. 

We can then also say that two self adjoint operators satisfy S 2:: T iff S- T 2:: 0. 
In the above situations we can think of the vector space as being JRn-I, but the 

inner products change with respect to a parameter r and so do the operators. Let us 
fix families of(n - 1) x (n - 1) matrices that depend on r : (g;1 (r)) symmetric and 

positive definite with respect to the Euclidean metric, curvature ( R( (r)) and shape 

operator (sf (r)) matrices that are self adjoint with respect to the inner product 
(g;J (r)). 

Let us now assume that these matrices satisfy the fundamental equations (1) 
and (2) and hence also (trl) and (tr2). Suppose we have that (S/) 2:: 0 for all r in 
some interval (a, b). Then, we see immediately from equation (2) that or (g;1) 2:: 0 
with respect to the Euclidean metric on JRn-I, and hence we have that (g;1 (t)) 2:: 
(g;1 (s)) fort 2:: s with respect to the Euclidean metric. 

Suppose now that the curvature satisfies ( R() 2:: 0; then equation ( 1) shows that 

or (sf) = - ( R/) - ( sn · (sf) 
::::: 0. 
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Hence if ( S/) is nonpositive at some value for r, this will perpetuate for larger values 
of r. Using the above, we can then conclude that the metric will also decrease. This 
analysis establishes the spirit in which the above mentioned results can be proved. 
The analysis is slightly more complicated when the curvature is nonpositive or has 
a nonzero lower bound and will be deferred to Chapter 6. 

The last comment we have to make now is that a sectional curvature inequality 
like sec ::=: A implies that the directional curvatures satisfy ( R/) ::=: A. 

2.5 Some Tensor Concepts 

In this section we shall collect together some notational baggage that we shall 
occasionally need. 

2. 5.1 Type Change 

The inner product structure on the tangent spaces to a Riemannian manifold makes 
it possible to view tensors in different ways. We saw this with the Hessian and the 
Ricci tensor. This is nothing but the elementary observation that a bilinear map 
can be interpreted as a linear map when one has an inner product present. 

If, in general, we have an (s, t)-tensor T, we view it as a section in the bundle 

T M 0 · · · 0 T M 0 T* M 0 · · · 0 T* M . 

slimes ttimes 

Then given a Riemannian metric g on M, we can make it into an (s- k, t + k)­
tensorforany k E Z such thatboths -k andt+k are nonnegative. Abstractly, this is 
done as follows: On a Riemannian manifold T M is naturally isomorphic to T* M; 
the isomorphism is given by sending v E T M to the linear map ( w --+ g ( v, w)) E 

T* M. Using this isomorphism we can therefore replace T M by T* M or vice versa 
and thus change the type of the tensor. 

At a more concrete level what happens is this: We select a frame £ 1, •.• , En 
and construct the coframe a 1, .•• , an. The vectors and covectors (in T* M) can 
be written as 

v =viE;= ai (v)E;, 

w=ajaj =w(Ej)aj. 

The tensor T can now be written as 

T T ;I ... ; E E j 1 j = · ·' · 0 .. ·0 ·®a ® .. ·®a'. ]I"'.ft I] 1,, 

Now we need to know how we can change E; into a covector and aj into a vector. 
As before, the dual toE; is the covector w --+ g (E;, w), which can be written as 
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Conversely, we have to find the vector v corresponding to the covector al. The 
defining property is 

g (v, w) = al (w). 

Thus, we have 

If we write v = vk Eb this gives 

Letting gi.i denote the ijth entry in the inverse of (gij ), we therefore have 

;E iJE V=V ;=g i· 

Thus, 

£. ---+ g .. al 
I I) ' 

al ---+ gi.i E;. 

Note that using Einstein notation properly will help keep track of the correct 
way of doing things as long as the inverse of g is given with superscript indices. 
With this formula one can easily change types of tensors by replacing E's with a's 
and vice versa. Note that if we used coordinate vector fields in our frame, then one 
really needs to invert the metric, but if we had chosen an orthonormal frame, then 
one simply moves indices up and down as the metric coefficients satisfy g;1 = oij. 

Let us list some examples: 

The Ricci tensor: We write the Ricci tensor as a (1, I)-tensor: Ric (E;) = Ric{ £ 1; 
thus 

Ric= Ric~· E; ® al. 

As a (0, 2)-tensor it will look like 

. . j k ·i j k Ric = R1ckj · a ® a = 8ki Ric 1 · a ® a , 

while as a (2, 0)-tensor acting on covectors it will be 

Ric= Ricik · E; ® Ek = gklRic~ · E; ® Ek. 

The curvature tensor: We start with the ( 1, 3)-curvature tensor R (X, Y) Z, which 
we write as 

I i j k 
R = Rijk · E1 ®a ® a ®a . 

As a (0, 4)-tensor we get 

. . k I 
R = R;Jkl · a 1 ® a 1 ®a ®a 

Rs i KA j KA k KA I = ijk8sl · a '61 a '61 a '61 a , 



50 2. Curvature 

while as a (2, 2)-tensor we have: 

kl . . 
R = RiJ · Ek ® £ 1 ® a 1 ® al 

_ Rl sk . E 10.. E 10.. i 10.. i - ijs g k '6' 1 '6' a '6' a . 

Here, however, we must watch out, because there are several different ways of doing 
this. We choose to raise the last index, but we could also have chosen any other 
index, thus yielding different (2, 2)-tensors. The way we did it gives essentially 
the curvature operator. 

2.5.2 Contractions 

Contractions are simply traces of tensors. Thus, the contraction of a (1, 1 )-tensor 
T = Tj · Ei ® ai is simply its trace: 

C (T) = trT = T/. 

If instead we had a (0, 2)-tensor T, then we could, using the Riemannian structure, 
first change it to a ( 1 , 1 )-tensor and then take the trace 

C (T) = C (Til . ai ® al) 

= C (Tikgki · Ek ® a 1) 
ki = T;kg . 

In this way the Ricci tensor becomes a contraction: 

Ric = Ric~ . Ei ® ai 
kj . = Rik . E; ® al 

- Ri sk E tO.. i - iksg · i '6' a ' 

or 

Ric = RiciJ . ai ® ai 
kl . . 

= g RikiJ . at ® al' 

which after type change can be seen to give the same expressions. The scalar 
curvature can be expressed as: 

seal= trRic 
R . i = lC; 

_ Ri gsk 
- iks 

R. ki 
= lC;kg 

'k ., 
= RiJktg1 g 1 • 
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Again, it is necessary to be careful to specify over which indices one contracts in 
order to get the right answer. 

Note that the divergence of a (1, k )-tensor S is nothing but a contraction of the 
covariant derivative 'V S of the tensor. Here one contracts against the new variable 
introduced by the covariant differentiation. 

2.5.3 Norms ofTensors 

There are several conventions in Riemannian geometry for how one should measure 
the norm of a linear map. Essentially, there are two different norms in use, the 
operator norm and the Euclidean norm. The former is defined for a linear map 
L : V ---* W between inner product spaces as 

ILl= sup [Lv[. 
lvl=l 

The Euclidean norm, in contrast, is given by 

ILl= .../tr(L* o L) = .../tr(L o L*), 

where L * : W ---* V is the adjoint. Despite the fact that we use the same notation 
for these norms, they are almost never equal. If, for instance, L : V -~ V is self 
adjoint and A 1 _:s · · · _:s An the eigenvalues of L counted with multiplicities, then the 

operator norm is max {[AI[, [Ani}, while the Euclidean norm is .jAT +···+A~. 
The Euclidean norm also has the advantage of actually coming from an inner 
product: 

(LI, L2) = trL1 o L~ = trL2 o Lr. 
As a general rule we shall always use the Euclidean norm. 

It is worthwhile to see how the Euclidean norm of some simple tensors can 
be computed on a Riemannian manifold. Note that this computation uses type 
changes to compute adjoints and contractions to take traces. 

Let us start with a (1, I)-tensor T = Tj · Ei 0 aj. We think of this as a linear 
map T M ---* T M. Then the adjoint is first of all the dual map T* : T* M ---* T* M, 
which we then change toT* : T M---* T M. This means that 

T* = ~j · ai 0 Ej, 

which after type change becomes 

T* = T/gijgki · Ej 0ai. 

Finally, 
[T[2 = TjT/glJ gki· 

If the frame is orthonormal, this takes the simple form of 

[T[2 = TjT/. 
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For a (0, 2)-tensor T = TiJ · ai@ aj we first have to change type and then proceed 
as above. In the end one gets the nice formula 

2.5.4 Positional Notation 

A final remark is in order. Many of the above notations could be streamlined even 
further so as to rid ourselves of some of the notational problems we have introduced 
by the way in which we write tensors in frames. Namely, tensors T M ~ T M 
(section ofT M Ci9 T* M) and T* M ~ T* M (section ofT* M @ T M) seem to be 
written in the same way, and this causes some confusion when computing their 
Euclidean norms. That is, the only difference between the two objects a @ E and 
E Ci9 a is in the ordering, not in what they actually do. We simply interpret the first 
as a map T M ~ T M and then the second as T* M ~ T* M, but the roles could 
have been reversed, and both could be interpreted as maps T M ~ T M. This can 
indeed cause great confusion. 

One way to at least keep the ordering straight when writing tensors out in 
coordinates is to be even more careful with our indices and how they are written 
down. Thus, a tensor T that is a section of T* M Ci9 T M @ T* M should really be 
written as 

. . k 
T = T/k ·a1 ®Ej ®a. 

Our standard ( 1, 1 )-tensor (section ofT M @ T* M) could therefore be written 

while the adjoint (section ofT* M@ T M) before type change is 

T* = Tk 1 • ak Ci9 E1 
. I' k 

= T 1 j8ki8 1 ·a ®E1. 

Thus, we have the nice formula 

2 i . ITI =Tj1f1 . 

In the case of the curvature tensor one would normally write 

I i . k 
R = R ijk · E1 @a @ a 1 @a , 

and when changing to the (2, 2) version we have 

kl . . 
R = R ij · Ek Ci9 E1 Ci9 a 1 Ci9 al 

= R1 iJsg'·k · Ek Ci9 E1 Ci9 ai Ci9 aj. 

It is then clear how to keep track of the other (2, 2) versions by writing 

R-jk _ R· u 8jsgktg 
1 I - 1st lu · 
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Nice as this notation is, it is not used consistently in the literature, probably due 
to typesetting problems. It would be convenient to use it, but in most cases one 
can usually keep track of things anyway. Most of this notation can of course also 
be avoided by using invariant (coordinate-free) notation, but often it is necessary 
to do coordinate or frame computations both in abstract and concrete situations. 

To this we can add yet another piece of notation that is often seen. Namely, if S 
is a (1, k )-tensor written in a frame as: 

s = st. . . £. 0 aj1 0 ... 0 ajk 
}l"'}k l , 

then the covariant derivative is a (1, k + 1 )-tensor that can be written as 

Y' s = st . . . £. 0 aj1 0 ... 0 ajk 0 ajk+l. 
}l"'}k.}k+l l 

The coefficient Sj1 .. ._;dk+l can be computed via the formula 

'VE· S =DE· (st . . ) · £. 0aj1 0 · · · 0ajk 
lk+l lk+ I }I ···]k 1 

+St. · · 'VE. (£. 0 aj1 0 · · · 0 aA) 
}l'"}k lk+l I ' 

where one must find the expression for 

'VE· (£. 0 aj1 0 · · · 0 ajk) = (v£. £.) 0 aj1 0 · · · 0 aA lk+l l lk+l l 

+ £. 0 (v£. aj1) 0 · · · 0 ajk 
l lk+l 

by writing each of the terms (v E Et) , (v E a·h) , ... , (v E ajk) in terms 
lk+l lk+l lk+l 

of the frame and coframe and substitute back into the formula. 

2.6 Further Study 

It is still too early to give useful references. In the upcoming chapters we shall 
mention several other books on geometry that the reader might wish to consult. At 
this stage we shall only list the authoritative guide [53). Every differential geometer 
must have a copy of these tomes, but their effective usefulness has probably passed 
away. In a way, it is the Bourbaki of differential geometry and should be treated 
as such. 

2.7 Exercises 

1. Show that the connection on Euclidean space is the only connection such 
that Y' X = 0 for all constant vector fields X. 
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2. Let V be a connection on a manifold M. If f : M --+ M is a dif­
feomorphism, recall that the push-forward of a vector field is defined as 
f* X (p) = D f X {f-1 (p)). A diffeomorphism is said to affine with respect 
to V iff* (V x Y) = V 1.x f* Y for all vector fields. Show that the affine trans­
formations form a group. Show that the affine transformations on Euclidean 
space are ofthe form f (x) =Ax+ b, where A E Gl (n, IR) and bE !Rn. 

3. A manifold is said to be affinely fiat if it admits an atlas where the transition 
functions are affine, i.e., look like Ax + b, A E Gin, b E !Rn. Show that an 
affinely flat manifold inherits a natural connection. 

4. Let G be a Lie group. Show that there is a unique connection such that 
V X = 0 for all left-invariant vector fields. Show that this connection is 
torsion free iff the Lie algebra is Abelian. 

5. Show that if X is a vector field of constant length on a Riemannian manifold, 
then V v X is always perpendicular to X. 

6. For any p E (M, g) and orthonormal basis e1, ... , en for TpM, show that 
there is an orthonormal frame E 1, ... , En in a neighborhood of p such 
that E; = e; and V E; = 0 at p. Hint: Fix an orthonormal frame E; near 
p E M withE; (p) = v;. Then observe that if we define E; = a( E j, where 

(af (x)) E SO (n) and a( (p) = o(, then this will yield the desired frame 

provided that the Dvka/ are appropriately prescribed. 

7. (Riemann) As in the previous problem, but now show that there are coor­
dinates x 1 , .•• , xn such that a; = e; and V a; = 0 at p. These conditions 
imply that the metric coefficients satisfy g;j = Oij and akgij = 0 at p. Such 
coordinates are called normal coordinates at p. 

8. Let ( M, g) be oriented and define the Riemannian volume form was follows: 

where e1, ••• , en is a positively oriented orthonormal basis for Tp M. Show 
that if v1 , ... , Vn is positively oriented, then 

Show that the volume form is parallel. Show that in coordinates, 

If X is a vector field, show that 

Lxw = div(X)w. 
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9. Show that in coordinates, the Laplacian has the formula 

/).u = 1 ak (J det (gij )l' a,u) . 
Jdet (giJ) 

Given that the coordinates are normal at p, we then get as in Euclidean space 
that 

n 

Llf (p) =I:, aiaJ. 
i=l 

10. Using Stokes' theorem show that iff has compact support, 

L !lf = o. 

Here the integral is taken with respect to the Riemannian volume element 
constructed above. Show that 

Show that 

div(f ·X)= g (\1 f, X)+ f · divX. 

Show the integration by parts formula for functions with compact support: 

Conclude that iff is sub- or superharmonic (i.e., !lf :=:: 0 or !lf :=: 0) then 
f is constant. (Hint: first show !lf = 0; then use integration by parts on 
f · !1f .) This result is known as the weak maximum principle. More generally, 
one can show that any sub harmonic (respectively super harmonic) function 
that has a global maximum (respectively minimum) must be constant. For 
this one does not need f to have compact support. This result is usually 
referred to as the strong maximum principle. 

11. A Killing field is a vector field such that L x g = 0. Show that X is a Killing 
field iff the local flows it generates act by isometries. 

12. A vector field or flow is said to be incompressible if div X = 0. Show that 
X is incompressible iff the local flows it generates are volume preserving 
(i.e., leave the Riemannian volume form invariant). 

13. Find a unit vector field X on JR3 that is incompressible but where \1 X # 0. 
Show that this is not possible on JR2 . 
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14. In coordinates on (M, g) we have the metric coefficients g;1 = g (o;, a1 ), 
Christoffel symbols defined by V a; a 1 = rt ab and curvature components 

Rf;k defined by R (o;, oJ) ok = Rf1kaf. Using the Koszul formula compute 
the Christoffel symbols in terms of the metric coefficients, and then compute 
the curvatures. Next, do these computations at p using that the coordinates 
are normal at p. 

Observe that \l at p, in normal coordinates at p, looks like the Euclidean 
connection. The fact that curvature enters naturally at the second derivative 
level shows that one cannot find normal coordinates where also ak 81 g;1 = 0 
at p. Thus the curvatures in some way measure the second-order variation 
for the metric to be Euclidean at a point. 

15. Given an orthonormal frame E1, ••• , En on (M, g), define the structure 
constants c71 by [E;, E1] = ctEk. Then define the r's and R's as before 
and compute them in terms of the c's. Notice that on Lie groups with left­
invariant metrics the structure constants can be assumed to be constant. In 
this case, computations simplify considerably. 

16. We should mention at least one other effective method for computing the 
connection and curvatures, namely, the Cartanformalism. Let (M, g) be a 
Riemannian manifold. Given a frame E1, ••• , En, the connection can be 
written 

where w( are 1-forms. Thus, 

'Y'vEi = w( (v) EJ. 

Suppose now that the frame is orthonormal and let ()i be the dual coframe, 
i.e., ()i ( E 1) = 8~. Show that the connection forms satisfy 

j-- i 
W; - W j' 

de; = eJ !\ w~. 

These two equations can, conversely, be used to compute the connection 
forms given the orthonormal frame. Therefore, if the metric is given by 
declaring a certain frame to be orthonormal, then this method can be very 
effective in computing the connection. 

If we think of ( w/) as a matrix, then it represents a 1-form with values in 

the skew-symmetric n x n matrices, or in other words, with values in the 
Lie algebra 50 (n) for 0 (n). 

The curvature forms nf are 2-forms with values in 50 (n) . They are defined 
as 
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Show that they satisfy 

When reducing to Riemannian metrics on surfaces we obtain for an or­
thonormal frame E], £2 with coframe e I, e2 

de 1 = e2 1\ wi, 
2 I . de = -e 1\ w2 

dwi = ni. 
ni = sec ·dvol. 

17. Show that a Riemannian manifold with parallel Ricci tensor has constant 
scalar curvature. In Chapter 3 it will be shown that the converse is not 
true, and also that a metric with parallel curvature tensor doesn't have to be 
Einstein. 

18. Show that if we use for R the ( 1, 3)-tensor and for Ric the (0, 2)-tensor, then 

(divR) (X, Y, Z) = (Y'xRic) (Y, Z)- (Y'rRic) (X, Z). 

Use this to show that div R = 0 if V'Ric = 0. Then show that div R = 0 iff 
the ( 1, 1) Ricci tensor satisfies: 

(Y'xRic)(Y) = (Y'rRic)(X) for all X, Y. 

19. Suppose a Lie group G has a hi-invariant metric, and let V' be the associ­
ated Riemannian connection. Show using the properties established in the 
exercises to Chapter 1, that if X, Y, Z, W E g, then 

(a) Y'xY =~[X, Y]; 

(b) R (X, Y) Z = * [Z, [X, Y]]; and 

(c) g(R(X, Y)Z, W) = -* (g ([X, Y], [Z, W])). 

Conclude that the sectional curvatures are nonnegative. Show that the cur­
vature operator is also nonnegative by showing that: 

Show that Ric (X) = 0 iff X commutes with all other left-invariant vector 
fields. Thus G has positive Ricci curvature if the center of G is discrete. 

There is a linear map A2g-+ [g,g] that sends X 1\ Y to [X, Y]. Show that 
the sectional curvature is positive iff this map is an isomorphism. Conclude 
that this can only happen if n = 3 and g = su (2) . 
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20. It is illustrative to use the Cartan formalism in the above problem and com­
pute all quantities in terms of the structure constants for the Lie algebra. 
Given that the metric is hi-invariant, it follows that with respect to an or­
thonormal basis they satisfy 

The first equality is antisymmetry of the Lie bracket, and the second is 
bi-invariance of the metric. 

21. (O'Neill) Suppose we have a Riemannian submersion <p : M ___,.. N. If X 
is a vector field in N, show that it admits a unique basic lift X to M, i.e., 

D<p (X) = X and I X I = I X I (or X is perpendicular to the fibers). If v is a 

vector in T M let v-L denote the orthogonal projection onto ker <p. Show that 
A (X, Y) = ! ·[X, Y]-L is a tensor on M. 

ShowthatfortwovectorfieldsX, YonNwehaveV'xY+A (x, r) = 'Vx-Y. 

If X and Y are perpendicular unit vector fields in N, establish the O'Neill 
formula 

sec (X, Y) =sec (X, r) + 3 ·lA (X, r) 1
2 

Conclude that N has positive sectional curvature if M does. It is not true that 
Riemannian submersions increase the curvature operator. As an example we 
have S5 ___,.. CP2 . The above formula shows that all sectional curvatures on 
CP2 lie in the closed interval [1, 4], however, we shall see that the curvature 
operator on CP2 has a zero eigenvalue. 

One can find many examples of manifolds with nonnegative or positive 
curvature using this idea. They all come about by having ( M, g) with a free 
compact group action G by isometries and using N = MIG. Examples are: 
cpn = S211+1;s1, T sn =(so (n + 1) X lR11 } ;so (n)' su (3) /T2 . 

22. Suppose we have two Riemannian manifolds (M, g) and (N, h). Then the 
product has a natural product metric ( M x N, g + h) . If X is a vector field 
on M and Y one on N, show that if we regard these as vector fields on 
M x N, then V' x Y = 0. Conclude that sec (X, Y) = 0. This means that 
product metrics always have many curvatures that are zero. 

23. Suppose that we have two distributions E and F on (M, g), which are 
orthogonal complements of each other in T M. In addition, assume that 
the distributions are parallel, i.e., if two vector fields X and Y are tangent 
to, say, E, then V' x Y is also tangent to E. Show that the distributions are 
integrable. Show that around any point in M there is a product neighborhood 
U = VE x Vp such that (U, g) = (VE x Vp, giE + 81F}, where 81£ and 
g1F are the restrictions of g to the two distributions. In other words, M is 
locally a product metric. 
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24. Let X be a parallel vector field on (M, g). Show that X has constant length. 
Show that X generates parallel distributions, one that contains X and the 
other that is the orthogonal complement to X. Conclude that locally the 
metric is a product with an interval (U, g)= (V x /, g1rv + dt2). 

25. For 3-dimensional manifolds, show that if the curvature operator in diagonal 
form looks like 

( 
a 0 0 ) 
0 fJ 0 ' 
0 0 y 

then the Ricci curvature has a diagonal form like 

(
a+fJ 0 0 ) 
0 fJ+y 0 . 
0 0 a+y 

Moreover, the numbers a, fJ, y are actually sectional curvatures. 

26. The Einstein tensor on a Riemannian manifold is defined as 

. seal 
G =Ric-- ·I. 

2 

Show that G = 0 in dimension 2 and that divG = 0 in higher dimensions. 
This tensor is supposed to measure the mass/energy distribution. The fact 
that it is divergence free tells us that energy and angular momentum are 
conserved. In a vacuum, one therefore imagines that G = 0. Show that this 
happens in dimensions > 2 iff the metric is Ricci flat. 

27. This exercise will give you a way of finding the curvature tensor from the 
sectional curvatures. Using the Bianchi identity show that 

-6R(X, Y, Z, W) = 

az I - {R(X +sZ, Y +tW, Y +tW, X +sZ) 
asat s=t=O 

- R(X +sW, Y +tZ, Y +tZ, X +sW)}. 

28. Using polarization show thatthe norm of the curvature operator on A 2 Tp M 
is bounded by 

for some constant c (n) depending on dimension, and where lseclp denotes 
the largest absolute value for any sectional curvature of a plane in TpM. 
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29. We can artificially complexify the tangent bundle to a manifold: TcM = 
T M ® C. If we have a Riemannian structure, we can extend all the accom­
panying tensors to this realm. The metric tensor, in particular, gets extended 
as follows: 

8C (VJ + iv2, WJ + iw2) = g (VJ, WJ)- g (v2, W2) 

+ i (g (v1, w2) + g (v2, WJ)). 

This means that a vector can have "length" zero without being trivial. Such 
vectors are called isotropic. Clearly, they must have the form v1 + i v2 , 

where I vii = lv2l and g (vi, v2 ) = 0. More generally, we can have isotropic 
subspaces, i.e., those subspace on which gc vanishes. If, for instance, a 
plane is generated by two isotropic vectors v1 + iv2 and w1 + iw2, where 
v1, v2, WJ, w2 are orthogonal, then the plane is isotropic. Note that one must 
be in dimension ::?: 4 to have isotropic planes. We now say that the isotropic 
curvatures are positive, if "sectional" curvatures on isotropic planes are 
positive. This means that if VI + iv2 and w1 + iw2 span the plane and 
v1, v2, w1, w2 are orthogonal, then 

0 < R (vi+ iv2, WJ + iw2, WJ + iw2, VJ + iv2). 

(a) Show thatthe expression R (v1 + iv2, w1 + iw2, w1 + iw2, v1 + iv2) 
is always a real number. 

(b) Show that if the original metric is strictly quarter pinched, i.e., all 
sectional curvatures lie in an open interval of the form (£ k, k), then 
the isotropic curvatures are positive. 

(c) Show that if the sum of the two smallest eigenvalues of the original 
curvature operator is positive, then the isotropic curvatures are positive. 

30. Consider a Riemannian metric (M, g). Now scale the metric by multiplying 
it by a number A 2 . Then we get a new Riemannian manifold ( M, A 2 g) . 
Show that the new connection and (1,3)-curvature tensor remain the same, 
but that sec, Ric, seal, and 9t all get multiplied by A - 2 . 

31. Prove properties 1 through 4 from 2.4.5 for rotationally symmetric metrics. 

32. For a (1, I)-tensor Ton a Riemannian manifold, show that if E; is an or­
thonormal basis, then 

ITI2 =LIT (£;)12 • 

33. If we have two tensors S, T of the same type (r, s), r = 0, 1, define the inner 
product 

g(S,T) 

and show that 

Dxg (S, T) = g (\lxS, T) + g (S, \lxT). 

If Sis symmetric and T skewsymmetric show that g(S, T) = 0. 
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34. Recall that complex manifolds have complex tangent spaces. Thus we can 
multiply vectors by R. As a generalization of this we can define an almost 
complex structure. This is a (1,1)-tensor J such that 1 2 = -/.Show that 
the Nijenhuis tensor: 

N (X, Y) = [J (X), J (Y)] - J ([J (X), Y])- J ([X, J (Y)])- [X, Y] 

is indeed a tensor. If J comes from a complex structure then N = 0, con­
versely Newlander-Nirenberg have shown that J comes from a complex 
structure if N = 0. 

An Hermitian structure on a Riemannian manifold ( M, g) is an almost com­
plex structure J such that 

g (J (X), J (Y)) = g (X, Y). 

The Kahler form of a Hermitian structure is 

w (X, Y) = g (J (X), Y). 

Show that w is a 2-form. Show that dw = 0 iff \7 J = 0. If the Kahler from 
is closed, then we call the metric a Kahler metric. 



3 
Examples 

We are now ready to compute the covariant derivative and curvature tensors on the 
examples we constructed earlier. After computing these quantities in general, we 
will try to find examples of manifolds with constant sectional, Ricci, and scalar 
curvature. In particular, we shall look at the standard product metrics on spheres 
and also construct the Riemannian version of the Schwarzschild metric. 

The examples we present here, with the exception of the Berger spheres, were all 
understood by the early part of this century. Elementary as they are, they still form 
the foundation for many constructions in Riemannian geometry. There are two 
additional important constructions we do not cover in detail: left-invariant metrics 
and submersion metrics. We give some examples of both but do not develop the 
entire theory. 

3.1 Computational Simplifications 

Before we present the examples it will be useful to have some general results that 
deal with how one finds the range of the various curvatures. 

Proposition 1.1 Let ei be an orthonormal basis for TpM. If ei 1\ e 1 diagonalize 
the curvature operator 

then for any plane Jr in Tp M we have sec ( Jr) E [min AiJ, max AiJ J . 
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Proof. If v, w form an orthonormal basis for rr, then we have sec ( rr) 
g (!R ( v 1\ w) , ( v 1\ w)) , so the result is immediate. D 

Proposition 1.2 Let e; be an orthonormal basis for TPM and suppose that 
R ( e;, e J) ek = 0 if the indices are mutually distinct; then e; 1\ ei diagonalize 
the curvature operator. 

Proof. If we use 

g (!R (e; 1\ e1), (ek 1\ et)) = -g (R (e;, e1) ek. et) 

= g (R (e;, e1) e1, ek), 

then we see that this expression is 0 when i, j, k are mutually distinct or if i, j, l are 
mutually distinct. Thus, the expression can only be nonzero when {k, l} = {i, j} . 
This gives the result. D 

Combining these two results we get a very good criterion for when it is easy 
to find the range of the sectional curvatures. We shall see that in all rotationally 
symmetric and doubly warped products we can find e; such that R ( e;, e 1) ek = 0. 
In this case, the curvature operator can then be computed by finding the expressions 
R ( e;, e 1, e 1, e;) . In general, however, this will not happen. But there is still a way 
to find the range of the Ricci curvatures: 

Proposition 1.3 Let e; be an orthonormal basis for Tp M and suppose that 

if three of the indices are mutually distinct, then e; diagonalizes Ric. 

Proof. Recall that 

n 

g(Ric(e;),e1) = Lg(R(e;,ek)ek.e1), 
k=l 

so if we assume that i =I= j, then g ( R (e;, ek) ek. e1) = 0 unless k is either i or j. 
However, if k = i, j, then the expression is zero from the symmetry properties. 
Thus, e; must diagonalize Ric. D 

We shall at the very end of this section give an example where Proposition 1.2 
cannot be used, but where Proposition 1.3 can be used. 

The procedure for finding !R, Ric, and seal uses the fundamental equations. 
Since Ric and seal can be computed from the curvature tensor, we focus our 
energies on !R. The procedure uses the following guidelines: We have a fixed 
Riemannian manifold (M, g) and a smooth distance function f on some open 
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subset U. Note that if U is dense in M and we can compute the curvatures on 
U, then we know the curvatures on all of M using continuity. Given the distance 
function, we have the setup as in Section 2.4 from the previous chapter, with 
N = \7 f = Or' Ur = !-] (r ), gr = g I Ur' vr' w etc. Now choose an orthonormal 
frame {F,, ... , Fn} such that N = Fn, and consequently {F,, ... , Fn-d is an 
orthonormal frame on (Ur, gr). We shall in addition assume that the sets Ur are 
the same and that gr depends only on r in the sense that the frame { F1, ••• , Fn-l} 
can be written as {(<PI (r))-1 E,, ... , (<Pn-1 (r))-1 En-d where {E 1, ... , En-d are 
vector fields on Ur, i.e., they don't depend on r. Because of this we have in 
addition that [N, Et] = 0. This extra condition on the metric gr, while certainly 
not always satisfied, does hold in all of the warped product type of examples from 
Chapter 1. We could instead use the coordinates we introduced in the last section 
of the previous chapter. It is, however, not always possible to find coordinates that 
diagonalize the metric, and in such cases one would have to invert the metric tensor 
to compute the curvatures. So while this approach is much easier in some situations, 
it would make some more complicated situations even more complicated. Such a 
situation occurs in the last section of this chapter. 

To compute things on U we first need the Hessian S of f. This is found from 
the formula 

(LNg) (Fi, Fj) = 2g (S(Fi), Fj). 

If either i or j is n, then we know that 2g (S (Fi), Fj) = 0 since S (N) = 0. For 
other i, j we can use 

Thus, 

from which we see that 

We can then compute 

g ( S ( Fi) , Fj) = 0 when i -1- j, 

cpi 
g(S(Fi), Fi) = -, 

<Pi 
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using that [ N, E;] = 0. For the other connection terms V F, F;, where i, j < n, we 
first observe that to compute the curvature tensor it suffices to know V E, E;. We 
can now use 

VE,EJ = V~,E;- g (S(E;), E1) N. 

From the Koszul formula we observe that 

2gr (V~,EJ, Ek) = DE,8r (EJ, Ek) + DE18r (E;, Ek)- DEk8r (E;, E;) 

+gr ([E;, EJ], Ek)- 8r ([EJ, Ek], E;) +gr ([Ek. E;], E;) 

=DE, (cpJCfJkOJk) +DEi (cp;CfJkOik)- DEk (cpJCfJiOij) 

+gr ([E;, EJ], Ek)- 8r ([EJ, Ek], E;) + 8r ([Eb E;], EJ) 

= 8r ([E;, EJ], Ek)- 8r ([EJ, Ek], E;) + 8r ([Ek. E;], EJ), 

since the cp's only depend on r. Here it is easy to compute the last line when one 
knows the relevant Lie brackets. 

Now, for the curvature operator SJt we must compute 

For this we define En = N and actually compute R ( E;, E;) Ek and then use 
tensoriality to find R ( F;, F1) Fk. Finally, we use 

SJt ( F; 1\ Fj) = L g ( R ( F;' Fj) Fk. F,) F, 1\ Fk. 
l<k 

Using the radial curvature equation from Chapter 2 we can compute, fori < n, 

R (E;, En) En = R (E;, N) N 

=- (VNS)(E;)- S2 (E;) 

= -VN (S (E;)) + S (VNE;)- S2 (E;) 

= -VN (S(E;)) + S (VE,N)- S2 (E;) 

= -VN (S(E;)) 

( cp; ) = -VN cp; E; 

= _ (!!_ cPi) E; _ cP; VN (E;) 
dr cp; cp; 

= _ (/J;cp; ~ cP;cP; E; _ cP; V E, N 
CfJ; cp; 

cp; = --E;. 
cp; 

From the tangential curvature equation we get, fori, j, k, l < n, 
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+ g ( S ( F;) , Fk) g ( S ( F.i) , Fi) - g ( S ( F.i) , Fk) g ( S ( F;) , Fi) 
= g, (R' (F;, FJ) Fb F1) 

¢;¢j ¢;¢j + -g (F;, Fk) g (FJ. Ft)- -g (FJ. Fk) g (F;, Ft) 
~i~j ~i~j 

= gr (R' (F;, FJ) Fb F/) 
¢·¢· 

+ -~-1 (8;k8JL- 8.ik8u). 
~i~j 

We shall always be in a situation where R' ( F;, F.i) Fk = 0 if the indices are 
distinct. Using that we are only looking for terms with i < j and l < k, we see 
that the only nonzero term is: 

g (R (F;, F.i) F.i, Fi) = g, (Rr (F;, F.i) F.i, F;)- ¢;¢J. 
~i~.i 

Finally, the normal curvature equation from Chapter 2 together with our definition 
A; = ¢; N; yields, fori, j, k < n, 

g (R (E;, E1) Ek. En)= -g ((VE,S) (EJ), Ek) + g ((VE1 S) (E;), Ek) 

= -g (VE, (AJE;), Ek) + g (Y'E1 (A;E;), Ek) 

+ g (S (VE,EJ), Ek)- g (S (VE1E;), Ek) 

= -g (AJV'E,Ej, Ek) + g (A;Y'E1 E;, Ek) 

+ g (S ([E;, E.i]), Ek) 

= -AJ8r (VE,E.i, Ek) + A;gr (Y'E1 E;, Ek) 

+ g ([E;, E1], S(Ek)) 

= -Ajgr (VE,E.i, Ek) + A;gr (Y'E1 E;, Ek) 

+ Ak8r (VE;Ej, Ek)- Ak8r (Y'E1 E;, Ek) 

= (Ak- AJ) gr (V~,E.i, Ek) +(A;- Ak) g,(Y'~1 E;, Ek ). 

Observe that we can replace E's by F's, as both sides are tensorial in all vari­
ables. While things could definitely look better, we have achieved some serious 
simplifications. Namely, if i < n, then 

91:(F; 1\ Fn) = Lg(R(F;, Fn)Fk. Ft)FL 1\ Fk 
l<k 

= L g (R (F;, Fn) Fk. F1) F1 1\ Fk 
l<k<n 

l<n 

l<k<n 
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l<k<n 
fPi 

- -Fi A Fn. 
'Pi 

And when i < j < n, we have 

Vl (Fi A Fj) = Lg (R (Fi. FJ) Fk. Fl) Fl A Fk 
l<k 

= L g ( R ( Fi, Fj) Fk. Fl) Fl A Fk 
l<k<n 

+ Lg (R (Fi, Fj) Fn, F1) F1 A Fn 
l<n 

i<k<n 

l<n 

l<k<n 

- L((Ai-AJ)gr(V~;FJ,fi) 
l<n 

Proposition 1.4 Suppose M = I x Q and g = dt2 + gn where gr is a fam­
ily of metrics on 0. Suppose that gr admits an orthonormal frame of the form 
{FJ, ... , Fn-d = {(rp1)-1 Et. ... , ('Pn-d-1 En-d• where the rp's depend only on 
rand theE's are vector fields on 0, and in addition that the curvature Rr of gr 
satisfies Rr ( Fi, F1) Fk = 0 if the three indices are distinct. Then 

fPi 
Vl(Fi A Fn) = --Fi A Fn 

'Pi 

+ Li<k<n (Ai- Al)gr (V~kF1, Fi) F1 A Fk 

+ LL<k<n (Ak- Ai)gr (V~1 Fk. Fi) F1 A Fk. 
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9t ( Ft 1\ Fi) = (g,. ( Rr (Ft, Fi) Fi, Fi) - Af A.i) Fi 1\ F.i 

- LL<n (At- AJ) g,. (V~;Fi, F,) Ftl\ Fn 

-"' (At- A1)g,. (v~ Ft. Ft) F/A Fn, ~l<n 1 

where At = rfJi I CfJt. 

3.2 Warped Products 

So far, all we know about curvature is that (!Rn, can) has R = 0. Using this, let us 
figure out what Rison (sn- 1(r), can). 

3.2.1 Spheres 

On IRn we have the distance function r(x) = lxl. The level sets are U,. = sn-1(r) 
with the usual induced metric. The gradient a,. = \1 r = N = ~ x 1 81, and hence, 

S = \lN 

= d ( :
1

) ai 

= Udx;- (;: t,xidxi)) 0; 

which means that S(v) = ~ · v- ~g(v, N)N, or in other words, S(v) = ~v if 
v E TV,. = T sn-1(r) and S(N) = 0. The tangential curvature equation now tells 
us that 

R'(X, Y)Z = r-2 (g,.(Y, Z)X- g,.(X, Z)Y), 

since R, the curvature on !Rn, is zero. In particular, if e1 is any orthonormal basis, 
we see that R' ( e1, e .i) ek = 0 when the indices are mutually distinct. Therefore, 
(sn- 1(r), can) has constant curvature r-2, provided that n ::: 3. This, in particular, 
justifies our notations;: =the rotational symmetric metric dr2 + sn~(r )ds~_ 1 when 
k ::: 0, since these metrics have curvature k in this case. We shall see in a second 
that this is also true when k < 0. 

3.2.2 Product Spheres 

Let us next compute the curvatures on the product spheres s~ X s;,n = sn ( 1 I Ja) X 

sm( 1 I ,ffj ). First, notice that the metric g,. on sn (r) is the same as g,. = r 2 g1 , so we 
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can write s~ X s;,n = ( sn X sm, ~ds; + tds,;l) . We can therefore fix orthonormal 

framings {£1, ... , En} and {En+ I, ... , Em+n} on (sn, ds;) and (S111 , ds;1 ) to get an 

orthonormal framing { .JQEI, ... , .JGEn. -JbEn+l, ... , -JbEn+m} on s~ X s;;z. 
Since this is an orthonormal frame, we see that the Koszul formula reduces to 

2g (v .jQE;JbEj. V'?Ek) = g ([ .JQE;, JbEi J, V'?Ek) 

+ g ([ v0Eb .JQE;] JbEi,) 

- g ([ JbEj. V'?Ek], .JQE;). 

When i _::::nand j > n, we have that [ JaE;, -JbEj J = 0, and in the two other 

terms the Lie bracket is either zero or perpendicular to the other term, depending on 
whether k.::: nor k > n. Thus, V .jQE;-JbEj = V ./hE1 JaE; = 0. In particular, if 

we write {FI, ... , Fn+m} = { JaE1, ... , JaEn, -JbEn+l, ... , -JbEn+m}, then 

unless 1 _:::: i, j, k _:::: n or n + 1 _:::: i, j, k _:::: n + m. In the case 1 _:::: i, j, k _:::: n 
we reproduce the answer from S~, while if n + 1 _:::: i, j, k _:::: m + n, we recapture 
s;,n. Thus, R ( F; , Fj) Fk = 0 unless i = k or j = k. With this information we can 
compute 

!Jt( F; 1\ Fj) = 0 if i _:::: n, j ~ n + 1, 

!Jt(F; 1\ Fj) = aF; 1\ Fj if i, j _:::: n, 

!J\(F; 1\ Fj) = bF; 1\ Fj if i, j ~ n + 1. 

In particular, all sectional curvatures lie in the interval [0, max{a, b}]. From this 
we see 

Ric(F;) = (n- 1)aF;, i _:::: n, 

Ric (Fj) = (m- l)bFj. j ~ n + 1, 

seal= n(n- l)a + m(m- l)b. 

We therefore conclude that S~ x s;: always has constant scalar curvature, is an 
Einstein manifold exactly when (n - l)a = (m - l)b (which requires n, m ~ 2 
or n = m = 1), but never has constant sectional curvature. Note that the curvature 
tensor on s~ X s;;z is always parallel, but the metric doesn't have to be Einstein. 

3.2.3 Rotationally Symmetric Metrics 

We shall now compute the curvatures on (M, g) = (! x sn-l, dr 2 + <p2(r )ds;_ 1). 

We know that f(x) = f(r,y) = r is a distance function. On (s11 - 1,ds;_ 1) 
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choose an orthonormal frame {£,, ... ,En-d; then {F1, ... , Fn} 

{ ~£1 , ... , ~En_ 1 , N =a,= V f} will be an orthonormal frame on (M, g). We 

can therefore use the approach that we set up in Section 3.1, with the simplification 
that cp1 = · · · = CfJn-l. This implies first of all that all the mixed curvatures vanish. 
Thus only the radial and tangential curvatures are relevant. Using that g, is the 
metric of curvature cp-2 on the sphere, we see that 

From this we can conclude 

In particular, the F; 1\ F1 's diagonalize 9t, and hence all sectional curvatures lie 
between the two values -(ipjcp) and (1 - ¢ 2)cp-2 . Furthermore, 

n 

Ric(F;) = L R (F;, F1) F1 
}=1 

n-1 

= L R (F;, FJ) Fj + R (F;, Fn) Fn 
}=1 

( 1-¢2 ip) 
= (n - 2) -- - - F; 

cp2 cp 

Ric(Fn) = -(n -1)~Fn 
cp 

if i < n, 

ip ( 1- ¢2 ip) seal= -(n- 1)- + (n- 1) (n- 2)----
cp cp2 cp 

ip 1- ¢2 
= -2(n- 1)- + (n- 1)(n- 2)--. 

cp cp2 

Notice that when n = 2, we have sec= -(ipjcp), because there are no tangen­
tial curvatures. This makes for quite a difference between rotationally symmetric 
metrics in dimension 2 and those of higher dimension. 

Constant curvature: First, we should compute the curvature of: (SJ:, dr 2 + 
sn~(r)ds~_ 1 ). Since cp = snk solves ip + kcp = 0 we see that sec(E;, N) = k. 

To compute sec(E;, E 1·) = !.:#-,just recall that snk(r) = ~ sin(-Jk r) (even 
· ~ vk 

when k < 0), so¢ = cos(.J/( r) and 1 - ¢2 = sin2(.J/( r) = kcp2. Thus, all 
sectional curvatures are equal to k, just as promised. 

Next let us see if we can find any interesting Ricci flat or scalar flat examples. 
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Ricci flat metrics: A Ricci fiat metric must satisfy~ = 0 and(n -2) t-r- ~ = 0. 
~ ~ ~ 

Hence, if n > 2, we must have iP = 0 and cp2 = 1. Thus, cp (r) = a ± r. In case 
n = 2 we only need iP = 0. In any case, the only Ricci fiat rotationally symmetric 
metrics are, in fact, fiat. 

Scalar flat metrics: To find scalar fiat metrics we need to solve 

[ iP n - 2 1 - cp2 ] 
2(n- 1) -- + -- · -- = 0 

cp 2 cp2 

when n ~ 3. We rewrite this equation as 

.. n- 2(1 ·2) 0 -cpcp + -2- - cp = . 

This is an autonomous second-order equation, so the change of variables cp 
G(<p), iP = G'cp = G'G will yield a first-order equation: 

' n-2 2 
-<pG G + - 2-(1 - G ) = 0. 

Using separation of variables, we see that G must satisfy 

cp2 = G2 = 1 + C<p2-n, 

which after differentiation becomes: 

To analyze the solutions to this equation that are positive and therefore yield 
Riemannian metrics, we need to study the cases C > 0, C = 0, C < 0 separately. 
But first, notice that if C f. 0, then we cannot have that cp(a) = 0, as this would 
imply cp(a) = oo. 

• C = 0: In this case, we have iP = 0 and cp2(0) = 1. Thus, cp =a+ r is the 
only solution and the metric is the standard Euclidean metric. 

• C > 0: First, observe that from the equation 2cp = (2- n )C <pI-n we get that 
<p is concave. Thus, if <p is extended to its maximal interval, it must cross 
the "x-axis," but as pointed out above this means that iP becomes undefined, 
and therefore we don't get any metrics on the sphere this way. 

• C < 0: This time the solution is convex and doesn't cross the "x-axis" as 
before. Thus we can assume that it is positive wherever defined. We claim 
that in fact cp must exist for all time. Otherwise, we could find a E lR where 
<p (t) ---+ oo as t ---+ a from the left or right. But then cp2 (t) ---+ 1, which is 
clearly impossible. Next, observe that <p ---+ oo as t ---+ ±oo. Since cp2 (t) 
doesn't converge to 0, the only other possibility is that cp converges to some 
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Graph of rp when n = 3 and a = 1 

FIGURE 3.1. 

finite value. But then 0 will also converge to a finite nonzero value, which is 
impossible. Finally, we can then conclude that cp must have a unique positive 
minimum. Using translational invariance of the solutions, we can assume 
that this minimum is achieved at t = 0. 

So assume that cp(O) = a and in addition 0(0) = 0. We get the relation 
0 = 02(0) = 1 + C · a 2-n, which tells us that C = -an-2 . Let CfJa (r) denote 
this solution. Thus, we have a scalar flat rotationally symmetric metric on 
lR X sn-l. Notice that CfJa is also even, and so (r,x) __,. (-r, -x) is an 
isometry on (IR X sn-l' dr 2 + cp~(r)ds~-] ). We therefore get a Riemannian 
covering map lR x sn-l __,. r(JRpn-l) and a scalar flat metric on r(JRpn-l ), 
the tautological line bundle over JRpn-l. One can prove that CfJa(r) :=:: lrl 
for all r E lR and that CfJa(r) · lrl-1 __,. 1 as r __,. oo. Thus 02 = 1 -
an-I cp2-n ::::::: 1 - an-llrl 2-n and ip ::::::: (n- 2)a 11 - 2 lrl 1-" as r __,. 00. This 
means, in particular, that all sectional curvatures are ::: I r 1-n as r __,. oo. 
The rotationally symmetric metric dr 2 + cp~(r )ds~_ 1 therefore looks very 
much like dr2 + r2ds~_ 1 at oo. Figure 3.1 shows a picture of the warping 
function when a = 1 and n = 3. 

We shall in Chapter 6 be able to show that lR x sn-l, n :=:: 3, does not admit 
a constant curvature metric. Later in Chapter 9, we will see that iflR x sn-l has 
Ric = 0, then sn-l also has a metric with Ric= 0. When n = 3 or 4 this means 
that S2 and S3 have flat metrics, and we shall see in Chapter 6 that this is not 
possible. Thus we have found a manifold with a nice scalar flat metric that does 
not carry any Ricci flat or constant curvature metrics. 

3.2.4 Doubly Warped Products 

We wish to compute the curvatures on 
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To do this choose an orthonormal frame E 1, ••. , E p+q on the product sphere 
(SP x Sq, ds~ + ds~) as we did previously. Then F0 = N, F1 = 1/cp£1, ••• , 

Fp = 1/cpEP, Fp+I = 1/1/r Ep+I, ... , Fp+q = 1/1/r Ep+q is an orthonormal frame 
on our Riemannian manifold. In the notation of Section 3.1 we therefore have that: 

<fJi = cp for i :S p. 

<fJi = 1/r for p < i :s p + q. 

Thus, the mixed curvatures can be written 

g (R (Ei, Ej) Ek. N) = U·k- Aj) gr (V~iEj, Ek) + (Ai- Ak)gr (v~iEi, Ek) 

= (Ak- Ai)gr ([Ei, Ej], Ek) 

ifeitheri,j :s porp < i,j :s p+q.SoifO < i,j,k :s porp < i,j,k :s p+q, 
then the mixed curvatures vanish since Ai = A j = Ak. If 0 < i, j :s p and k > p 
or p < i, j :S p + q and k :S p, then gr ([Ei, Ej], Ek) = 0, and again the 
mixed curvatures vanish. Finally, if i :S p < j, we have from our product sphere 
calculations that V~; Ej = 0, so in this case as well the mixed curvatures vanish. 

Using our curvature calculations from the rotationally symmetric case and the 
product sphere case we then obtain 

-cp 
~(Fo 1\ F-)= -F0 1\ F- if 0 < j :s p, 

.I <p 1 

-{/I 
~(Fo 1\ F-)= -Fo 1\ F- if j > p, 

.I 1/r 1 

1 - ¢2 
~ ( Fi 1\ Fj) = --2 - Fi 1\ Fj if 0 < i < j :S p, 

<p 

1- ~2 
~ ( Fi 1\ F;) = 1/r2 F; 1\ Fj if p < i < j, 

-cp~ 
~ ( Fi 1\ Fj) = cplfr Fi 1\ Fj if i :S p < j. 

From this we can see that all sectional curvatures are convex linear combinations 
of -cpjcp, -{/1 /1/r, 1- ¢ 2 jcp2 , 1- ~2 jljr2 , and-¢~ jcpljr; and that 

( .. {f) 
Ric(Fo) = - p~- q 1/r Fo, 

. (-if; 1-¢2 ¢~) 
Ric(Fi) = q; + (p- 1)~- q · cplfr Fi, 0 < i .:::: p, 

. (-{(, 1-~2 ¢~) 
Ric(Fj) = T + (q- 1) 1/r2 - p · cplfr Fj, j > p. 
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3.2.5 The Schwarzschild Metric 

We wish to find a Ricci flat metric on 1Pl2 x S2, so let p = 1 and q = 2 in the 
above doubly warped product case. This means we have to solve the following 
three equations simultaneously: 

-cp 1/1 q;- 21/f = 0, 

-cp- 2¢~ = 0, 
<p <pl/f 

-1/1 1- ~2 ¢;~ -+ --=0. 
1/f 1/f 2 <p 1/f 

Subtracting the first two equations gives 1/1 /1/f = ¢;~ /<pl/f. This is equivalent to 
(~ /<p) =a, for some constant a. Thus,~ = acp and 1/1 =a¢. Inserting this into 
the three equations we get 

which reduces to 

which implies 

which implies 

_f£.- 2a¢ = 0 
<p 1/f , 

cp a¢ 
---2- =0, 

<p 1/f 
a¢ 1 - a 2 cp2 a¢ 

---;;; + 1fr2 - --;;; = 0, 

~ = acp, 

.. . 
_p_- 2a<p = 0, 

<p 1/f 
1 - a 2cp2 a¢ 

1fr2 - 2--;;; = 0, 

~ = a<p, 

1 - a2cp2 
2a¢ = 1/f, 

4a2¢;2 
---:::--::- = 0, 
1 - a2cp2 

~ = a<p, 

4a2¢;2 
---':::----7 = 0, 
1 - a2cp2 

v, = acp. 
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FIGURE 3.2. 

Now, lj.r = r solves the first equation. This means that <p = 1/a, which also 
"solves" the second equation. The metric, however, lives on S1 x JR3 rather than 
JR2 x S2, and it is the standard fiat metric on this space. To get more complicated 
solutions, assume ~2 = G(lj.r), 21/r = G'. Then the first equation becomes 

so 

Translating back we get 

lj.rG' + G = 1, 

~2 = 1 + c V-r -I , 

21/r = -cV-r-2 , 

V-r = a<p. 

Note that the equation -if; j<p- (4a2¢2)/(1 - a2<p 2) = 0 is redundant. Also, since 
we want a metric on JR2 x S2 , we may assume that <p(O) = 0, ¢(0) = 1, and 
lj.r(O) = {J > 0. This actually gives all the requirements for a smooth metric, since 
lj.r is automatically even if it solves the above equation, and hence <p is odd (see 
Chapter 1). The constants a, {J, and Care related through 0 = ~2(0) = 1 +C -{J- 1, 

soC = -{J and 2a = 2a¢(0) = 21/r(O) = -c{J-2 = {J-1• For given {J > 0, let 
the solutions be denoted by <fJ{3 and lf-rf3 . Since lj.r13 (0) = fJ > 0 and 1/r13 = fJ/21f.rj32 , 

we have that lf-rfJ is convex as long as it is positive. We can then prove as in the 
scalar fiat case that lj.r is defined for all rand that lj.r (r) ....._ lrl as r-+ ±oo. 

Thus, the metric looks like S1 x JR3 at infinity, where the metric on S1 is multiplied 
by (2 · fJi. Thus, the Schwarzschild metric is a Ricci fiat metric on IR2 x S2 that at 
infinity looks approximately like the fiat metric on S1 x JR3. Both warping functions 
are sketched in Figure 3.2 in the case where a = 1. 
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3.3 Hyperbolic Space 

We have a pretty good picture of spheres and Euclidean space as models for constant 
curvature spaces. We even know what the symmetry groups are. We don't have 
a similarly good picture for spaces of constant negative curvature. This is partly 
because these metrics are not hypersurface metrics in Euclidean space. There are, 
however, a couple of good pictorial models. To explain them we also need to 
expand our general knowledge a little. 

3.3.1 The Rotationally Symmetric Model 

We define Hn to be the rotationally symmetric metric dr 2 + sinh2(r )ds~_ 1 on JRil 
of constant curvature -1. As with all rotationally symmetric metrics, we see that 
0 ( n) acts by isometries in a natural way. But it is not clear that H n is homogeneous 
from this description because the origin seems to be singled out as being fixed by 
the O(n) action. 

3.3.2 The Upper Half Plane Model 

Let M = {(x 1, ... , xn) E lRn : xn > 0} and let ds 2 = g = 

(ljxn)2 ((dx 1) 2 + ... + (dxn)2 ). Thus 1jxndx 1, ... , ljxndxn is an orthonormal 
co framing on M. This can be used to check that the curvature is = -1. An­
other way is to notice that g = dr 2 + (e-r)2 ((dx 1) 2 + ... + (dxn-1) 2), where 
r = log(xn), and then to use the fundamental equations; but then the metric is on 
lRn= lR x lRn-l. In this case Iso (JRn-l) = lRn-l ><J O(n- 1) (this is a semi direct 
product) acts by isometries on M, so there is no fixed point for the action, and it 
acts transitively on the hypersurfaces r = constant. 

3.3.3 The Riemann Model 

If ( M, g) is a Riemannian manifold and q; is positive on M, then we can get a 
new Riemannian manifold (M, h = q;2g). Such a change in metric is called a 
conformal change, and q;2 is referred to as the conformal factor "f[i = h /g." The 
upper half plane model is a conformal change of the Euclidean metric on H. Here 
we wish to find q;2(x) on subsets of lRn such that q;2 · ((dx 1 ) 2 + · · · + (dxn)2) 

has constant curvature. Clearly, qJ • dx 1, .•• , q; · dxn is an orthonormal coframing, 
and 1. 81, ••• , 1. on is an orthonormal framing. We can use the Koszul formula to 
compute V a; a J and hence the curvature tensor. This tedious task is done in [7 6, 

vols. II and IV]. Using q; = (1 + kj4r2r 1 gives a metric of constant curvature k 
on lRn if k ::::: 0 and on B(O, -4 · k- 1) if k < 0. 
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FIGURE 3.3. 

3.3.4 The Imaginary Unit Sphere Model 

Our last model exhibits Hn as a hypersurface in Minkowski space by analogy 
with sn( 1) c ~n+ 1• A discussion of this model can also be found in Chapter 8. 
Minkowski space is the physicists' model for space-time. Topologically, the space 
is ~n+l, but we have a different sort of metric on it. If(x0, x 1, ... , xn) are Cartesian 
coordinates on ~n+i, then we have the indefinite metric: 

In other words, the framing o0 , 81, ••• , On consists of orthogonal vectors where 
lool 2 = -1 and lo; 12 = 1, i = 1, ... , n. The zeroth coordinate is singled out as 
having imaginary norm this is the physicists' time variable. One can more generally 
define Minkowski inner product spaces as vector spaces with an inner product of 
this type, and then develop a theory for Minkowski manifolds. This theory is in 
many ways analogous to what we have done for Riemannian manifolds. These 
types of spaces are exactly the ones used in general relativity. Here we'll confine 
ourselves to studying just the Minkowski space~ i,n = (~n+ 1, g) as defined above. 
The "spheres" in this space of radius i · r must satisfy the equation 

A picture of the hyperbolic plane inMinkowski 3-space is given in Figure 3.3. 
Thus, we should study the "distance'' function 

r(x) = 1-(xoi + (x1)2 + ... + (xnlli/2 

on U = {x E ~n+l : x 0 > 0 and -(x0f + (x 1f + · · · + (xnf < 0}. The level 
sets H (r) c U are diffeomorphic to ~n and look like hyperbolae of revolution. 
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Furthermore, if we restrict the Minkowski metric g to these level sets, they induce 
Riemannian metrics on H(r). This is because 

d 1 ( Od 0 I d I nd n) r=-X X -X X -···-X X, 
r 

so any tangent vector v E T H (r) satisfies 

0 = ( -x0v0 + x 1 v1 + · · · + X 11 V 11 ) = g(x, v); 

and therefore, for any such v, 

g(v, v) = -(vo)2 + (vi)2 + ... + (vni 
(xlvl + ... + xnv11)2 

=- +(v'i+···+(vll)2 
(x0)2 

((xlf + ... + (x11)2) ((vl)2 + ... + (vn)2) 
> _ +(vl)2 + ... +(vll)2 
- (x0)2 

= ( -1 + (::)2 ) ((v 1) 2 + · · · + (v 11i) + (v 1i + · · · + (v 11 i 

r2 
= (x0)2 ((v 1) 2 + · · · + (v11 i) :::_ 0 and= 0 only if v = 0. 

We have therefore shown that g is positive definite on H (r) . Our claim is that 
H(r) with the induced metric has constant curvature -r-2 . There are several ways 
to check this. One way is to observe that (t, x) --+ r( cosh(t), sinh(t) · x) defines a 
Riemannian isometry from d t2 + r2 sinh2 ( n ds~-I to H (r ), where X E sn-l c IR11 

is viewed as a vector in IR11 . This also shows that at least two of our models are 
equal. Finally, we can also compute gradients, etc., and use the tangential curvature 
equation as we did for the sphere. This works out as follows. The Minkowski 
gradient V r = ci ai must satisfy 

g(Vr, v) = dr(v), 
1 

-a0 v0 + a 1v1 + · · · + 0! 11 V11 = -(x0 v0 - x 1v1 - • • ·- X 11 V11 ), 
r 

or equivalently, Vr = gii ai (r )o j, so Vr = --;.1 xi ai. This is clearly not the same 
as the Euclidean gradient, but aside from the minus sign it corresponds exactly to 
the gradient for the distance function in JRII+l that has S11 (1) as level sets. Also, 
g(Vr, Vr) = ljr2 ( -(x0)2 + (x 1) 2 + · · · + (x11 )2) = -1, so we are working with 
an (imaginary) distance function, which aside from the sign should satisfy all of the 
fundamental equations we have already established. The Minkowski connection 
on lR 1 ·11 of course satisfies all of the same properties as the Riemannian connection 
and can in particular be found using the Koszul formula. But since g(ai, aj) is 
always constant and [oi, oj] = 0, we see that Va;Oj = 0. Hence, we getjust the 
standard Euclidean connection and therefore the curvature tensor R = 0 as well. 
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With all this information one can easily compute V2r = Sand check using the 
tangential curvature equation that H(r) indeed has constant curvature -r-2 . 

Finally, we should compute Iso( H (r )). On lR 1 ,n the linear isometries that pre­
serve the Minkowski metric are denoted by 

0(1, n) = {qJ: IR1·11 --+ IR1•11 : g(qJV, qJV) = g(v, v)}. 

One can, as in the case of the sphere, see that these are exactly the isometries on 
H(r). The isotropy group that preserves (r, 0, ... , 0) can be identified with O(n) 
(isometries we get from the metric being rotationally symmetric). One can easily 
check that 0(1, n) acts transitively on H(r). 

With all this we now have a fairly complete picture of all the space forms s;:, 
i.e., our models for constant curvature. We shall later prove that in a suitable sense 
these are the only simply connected Riemannian manifolds of constant curvature 
k ER 

3.4 More Left-Invariant Metrics 

We will give two examples ofleft-invariant metrics. The first represents H 2 , and 
the other is the Berger sphere. In the next section the Berger spheres will be used 
to make computations on CP2 . 

3.4.1 Hyperbolic Space as a Lie Group 

Let G be the 2-dimensional Lie group 

Notice that the first row can be identified with the upper half plane. The Lie algebra 
ofG is 

If we define X= ( ~ ~ ) andY= ( ~ ~ ) , then [X, Y] = XY- Y X= Y. 

Now declare {X, Y} to be an orthonormal frame on G. Then use the Koszul formula 
to compute 

'VxX = 0, 'VyY =X, 'VxY = 0, 'VyX = 'VxY- [X, Y] = -Y. 

Hence, 

R(X, Y) Y = 'Vx'VyY- 'Vy'VxY- 'V[x,YJY = 'VxX- 0- 'VvY =-X, 

which implies that G has constant curvature -1. 
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This example can be generalized to higher dimensions. Thus, the upper half 
plane is in a natural way a Lie group that has a left-invariant metric of constant 
curvature -1. This is in sharp contrast to the sphere, where only S3 = SU(2) and 
S1 =so (2) are Lie groups. 

3.4.2 Berger Spheres 

On SU(2) we have the left-invariant metric where {8-t X1, X2, X3} is an orthonor­
mal frame and [X;, X;+t] = 2X;+2 (indices are mod 3), as discussed in Chapter 1. 
Using the Koszul formula we can compute 

'Vx1X2 = (2- 82)X3, 'Vx2 X3 = Xt. 'Vx3 Xt = 82X2, 'Vx;X; = 0, 

and 

'Vx2 Xt = 'Vx1 X2 + [X2, Xt] = -82X3, Vx3 X2 = -Xt, 'Vx1X3 = (82 - 2)X2. 

Thus, 

and in a similar way, all curvatures between three distinct vectors are zero. Finally, 

so we get 

R(Xt, X2)X2 = 'Vx1 'Vx2X2- 'Vx2 'Vx1 X2- 'V[x1.X2JX2 

= 0- 'Vx2 Vx1X2- 2Vx3 X2 = 82 X 1, 

9l ({s-1 Xt) 1\ X2) = 8 2 (8-t Xt) 1\ X2. 

In a similar fashion one computes 

!.R(X2 A X3) = {4- 382) X2 A X3, 

!.R(X3 1\ (8- 1 Xt)) = 82 X3 1\ (8- 1 Xt). 

Thus, all sectional curvatures must lie in the interval [ 8 2 , 4 - 382]. Notice that as 
8 --+ 0 the sectional curvature perpendicular to the Hopf fiber --+ 4. Thus, as we 
collapse the Hopf fiber, the curvatures will converge to what they are on the base 
space S2 (t). 

3.5 Complex Projective Space 

Recall that CPn= (en+ I - {Ol) I c = s2n+l I S1' where S 1 and c act by complex 

scalar multiplication. If we write the metric dsin+l = dr2 + sin2(r)dsin-l + 
cos2(r)de2, then we can think ofthe S1 action on s2n+t as acting separately on 
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s2n-l and S1. Then cpn = [0, !f] X ( (s2n-l X S1)/ S1)' and the metric can be 
written as 

dr2 + sin2(r) (g + cos2(r )h) . 

We will restrict our attention to the case where n = 2. For a more general discussion 
see also Chapter 8. In this case the metric can be written as 

dr2 + sin2(r) (cos2(r)(a 1i + (a 2i + (a3)2). 

More generally, we can consider metrics on I x S3 of the form 

dr2 + q}(r) (1/12(r)(ati + (a2)2 + (a3)2). 

If we define f = projection onto the /-factor, then f is a distance function, 
and we can use the fundamental equations to compute curvatures. We have 
a natural orthogonal frame {X 1 , X 2, X 3, <q that yields an orthonormal frame 

{F1, F2 , F3 , F4 } = {--';;;x1, lX2, lx3, or}· From section 3.1 we have 
<p·y '{J '{J 

S ( Ft) = !!:. Ft = A.t Ft, p, = q; · 1/1, 
11. 
¢ 

S(F;) = -F; = A.;F;, i = 2, 3. 
({J 

The ( 1, 3 )-curvature tensor R' on S3 with the metric 

g, = p,2(al)2 + q;2(a2i + q;2(a3i = q;2(r)(1/12(r)(ali + (a2)2 + (a3)2) 

has already been computed in the case where q; = 1 and 1/f = t: (the Berger 
spheres), so all we need to observe is that multiplying a Riemannian metric by a 
number cannot change the connection or curvature tensor R(X, Y)Z. Thus, 

V~;Xi = 'Y'x;Xj, 

r 1/12 
R (Ft. F;) F; = 2 Ft. i = 2, 3, 

q; 
r 4- 31/12 

R (F2, F3) F3 = 2 F3, 
q; 

R' ( F;, Fi) Fk = 0 if the indices are distinct. 

We now have to compute the terms 

(A.;- A.1)g, (V~J'/, F;) + (A.k- A.;)gr (V~,Fk. F;), 

(A.1- A.i) g, (V~;Fi, Ft) +(A.;- A.t)8r (v~iF;, Ft), 

which for the first time will not all be zero. It is easier to compute this when the 
F's are replaced by X's and then use tensoriality to find the above terms. Having 
done this, the next important reduction is that 
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unless the indices are distinct. Using that A.2 = A.3 we can finally compute 

(A.3- A.2)8r {V~1 X2, X3) + (A.1- A.3)gr {V~2 XJ, X3) 

= (A.I- AJ)8r {V~2 XJ, X3) 

= -(A. I - A.3) 1/f2q}, 

(A.2 - A.3) 8r {V~1 X3, X2) +(A. I - A.2) 8r {V~3 X1, X2) 

= (A.I- A.2)gr {V~3 XJ, X2) 

= - (AJ - A2) 1/J2cp2' 

(A. I - A.3) 8r {V~2 X3, X1) + (A.2- A.1) 8r {V~3 X2, X1) 

= (A.J- A.z)gr ([Xz, X3], X1) 

= 2 (A. I - A.2) 1/J2cp2. 
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In particular, if cp = sin(r ), 1jf = cos(r ), J.l = sin(r) · cos(r) = ! sin(2r ), then 
we see that Ric(Fi) = 6 · Fi, i = 1, 2, 3, 4. Thus, CP2 is an Einstein metric with 
Einstein constant 6 = 2 · n + 2. 

For the curvatures we have 

9'-l:(F, 1\ F4) = 4F, 1\ F4 + 2F2 1\ F3, 

9t(F2 1\ F4) = F2 1\ F4- F, 1\ F3, 

9t(F3 1\ F4) = F3 1\ F4- Ft 1\ F2, 

9'-l:(Ft 1\ F2) = F, 1\ F2- F3 1\ F4, 

9'-l:(F, 1\ F3) = F, 1\ F3- F2 1\ F4, 

9t(F2 1\ F3) = 4F2 1\ F3 +2Ft 1\ F4. 

Some tedious algebraic manipulations will convince you that all sectional curva­
tures lie in the interval [ 1, 4] . On the other hand, if we use the basis 

for A 2M, we will diagonalize the curvature operator, and the eigenvalues will lie in 
[0, 6]. Thus, while all sectional curvatures are positive, there are zero eigenvalues 
for the curvature operator. Observe that since the eigenvalues of the curvature oper­
ator are constant, it must follow thatthe curvature tensor is parallel. Nevertheless, 
the metric does not have constant curvature. 

Spaces with parallel curvature tensor are called locally symmetric. One can show 
that such spaces have many isometries. They must therefore still be fairly nice. 

3.6 Further Study 

The book by O'Neill [65] gives an excellent account ofMinkowski geometry and 
also studies in detail the real Schwarzschild metric, which was the first nontrivial 
solution to the vacuum Einstein field equations. There is also a good introduction 
to locally symmetric spaces and their properties. This book is probably the most 
comprehensive elementary text and is good for a first encounter with most of the 
concepts in differential geometry. 

Another book, which contains more (actually almost all) advanced examples, is 
[ 11]. This is a tremendously good reference on Riemannian geometry in general. 

3. 7 Exercises 

1. Show that the Schwarzschild metric doesn't have parallel curvature tensor. 

2. Show that the Berger spheres (s I= 1) do not have parallel curvature tensor. 
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3. Show that CP2 has parallel curvature tensor. 

4. The Heisenberg group with its Lie algebra is 

A basis for the Lie algebra is: 

x~u ~ D· Y~u ~ D· z~u ~ D 
(a) Show that the only nonzero brackets are 

[X, Y] = - [Y, X]= Z. 

Now introduce a left-invariant metric on G such that X, Y, Z form an 
orthonormal frame. 

(b) Show that the Ricci tensor has both negative and positive eigenvalues. 

(c) Show that the scalar curvature is constant. 

(d) Show that the Ricci tensor is not parallel. 

5. (a) Show that there is a family of Ricci flat metrics on T S2 of the form 
dr2 + q}(r) (1/r2(r)(ai)2 + (a2i + (a3i), 

<P = 1/r, 
¢2 = 1-kcp-4, 

cp (0) = ki' <P (0) = 0, 

1ft (0) = 0, ~ (0) = 2. 

(b) Show that cp (r) "' r, ¢ (r) "' 1, ip (r) "' -4cp-5 as r ~ oo. Conclude 
that all curvatures are of order r-6 as r ~ oo and that the metric looks 
like (0, oo) x JRP3 = (0, oo) x SO (3) at infinity. Moreover, show 
that scaling one of these metrics corresponds to changing k. Thus, we 
really have only one Ricci flat metric; it is called the Eguchi-Hanson 
metric. 

6. Forthegeneralmetricdr2 +cp2(r)(1fr2(r)(a 1)2 +(a2)2 +(a3)2) showthat 
the ( 1, 1 )-tensor, which in the orthonormal frame looks like 

u I ~ ~I} 
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yields an Hermitian structure. Show that this structure is Kahler iff <P = 1/f. 
Find the scalar curvature for such metrics. Show that there are scalar flat 
metrics on all the 2-dimensional vector bundles over S2 . The one on T S2 

is the Eguchi-Hanson metric, and the one on S2 x IR.2 is the Schwarzschild 
metric. 

7. Show that r (IR_pn-t) admits rotationally symmetric metrics 

dr2 + q;2 (r) ds~_ 1 

such that q; (r) = r for r > 1 and the Ricci or scalar curvatures are non­
positive. Thus, the Euclidean metric can be topologically perturbed to have 
nonpositive Ricci curvature. It is not possible to perturb the Euclidean metric 
in this way to have nonnegative scalar curvature or nonpositive sectional cur­
vature. Try to convince yourself of that by looking at rotationally symmetric 
metrics on IR_n and r (IR_pn-t) . 

8. A Riemannian manifold (M, g) is said to be locally conformally flat if for 
every p E M there is a neighborhood U around and coordinates on U 

such that g = q;2 ( ( dx 1) 2 + · · · + ( dxn)2) . Show that the space forms are 

locally conformally flat. With some help from the literature, show that any 
2-dimensional Riemannian manifold is locally conformally flat. In fact, any 
metric on a closed surface is conformal to a metric of constant curvature. 
This is called the uniformization theorem. 

9. We say that (M, g) admits orthogonal coordinates around p E M if we have 
coordinates on some neighborhood of p, where 

g;j = 0 for i i= j, 

i.e., the coordinate vector fields are perpendicular. Show that such coordi­
nates always exist in dimension 2, while they may not exist in dimension 
> 3. For the latter counterexample, you may want to show that in such co­
ordinates the curvatures Rfjk = 0 if all indices are distinct. What about 3 
dimensions? 

10. There is a strange curvature quantity we have not yet mentioned. Its definition 
is somewhat cumbersome and unintuitive. First, for two symmetric (0, 2)­
tensors h, k define the Kulkarni-Nomizu product as the (0, 4)-tensor 

h o k (vt, Vz, v3, v4) = h (vi, v3) · k (vz, v4) + h (vz, v4) · k (v1, v3) 

- h (v1, v4) · k (vz, v3)- h (vz, V3) · k (vt, v4). 

Note that (M, g) has constant curvature c iff the (0, 4)-curvature tensor 
satisfies R = c · (go g). If we use the (0, 2) form of the Ricci tensor, 
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then we can decompose the (0, 4)-curvature tensor as follows in dimensions 
n :=:: 4: 

seal 1 ( seal ) 
R = gog+ -- Ric- - · g o g + W. 

2n (n - 1) n - 2 n 

When n = 3 we have instead 

seal ( . seal ) 
R = U g o g + Rtc - - 3- · g o g. 

The (0, 4)-tensor W defined for n > 3 is called the Weyl tensor. 

(a) Show that these decompositions are orthogonal, in particular: 

? I seal 1
2 

I 1 ( . seal ) 1
2 

IRI-= gog+-- Rtc--·g og +IWI2 . 
2n (n - 1) n - 2 n 

(b) Show that ifwe conformally change the metric g' = f · g, then W' = 
f·W. 
If (M, g) has constant curvature, then W = 0. If (M, g) is locally 
conformally equivalent to the Euclidean metric, i.e., locally we can 

always find coordinates where: g = f · ( (dx 1) 2 + · · · + (dxn)2), 

then W = 0. The converse is also true but much harder to prove. 

(c) Show that the Weyl tensors for the Schwarzschild metric and the 
Eguchi-Hanson metrics are not zero. 

(d) Show that ( M, g) has constant curvature iff W = 0 and Ric = s~al . 

11. In this problem we shall see that even in dimension 4 the curvature tensor has 
some very special properties. Throughout we let ( M, g) be a 4-dimensional 
oriented Riemannian manifold. The bi-vectors A 2 T M come with a natural 
endomorphism called the Hodge * operator. It is defined as follows: for any 
oriented orthonormal basis e1, e2, e3, e4 we define * ( e1 A e2) = e3 A e4. 

(a) Show that this gives a well-defined linear endomorphism which sat­
isfies: ** = I. (Extend the definition to a linear map: * : APT M --* 

AqTM, where p+q = n. Whenn = 2, we have:*: TM--* TM = 
A 1 T M satisfies: ** = -I, thus yielding an almost complex structure 
on any surface.) 

(b) Now decompose A 2 T M into + 1 and -1 eigenspaces A+ T M and 
A-T M for *· Show that if e1, e2, e3, e4 is an oriented orthonormal 
basis, then 

e1 A e2 ± e3 A e4 E A± T M, 

e1 A e3 ± e4 A e2 E A ±r M, 

e1 A e4 ± ez A e3 E A± T M. 
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Thus, any linear map L : A 2 T M ---+ A 2 T M has a block decomposition 

L=(~ ~)· 
A: A+TM---+ A+TM, 

D: A+TM---+ A-TM, 

B: A-TM---+ A+TM, 

C: A-TM---+ A-TM. 

In particular, we can decompose the curvature operator 9l : A 2 T M ---+ 

A2TM: 

91:=(~ ~)· 
(c) Since 9l is symmetric, we get that A, C are symmetric and that D = B * 

is the adjoint of B. One can furthermore show that 

seal 
A=W++-I 

12 ' 
seal c = w- + 12 I, 

where the Weyl tensor can be written 

( w+ w-- 0 

Find these decompositions for both of the doubly warped metrics: 

I X S1 X S2 , dr2 + cp2 (r)de 2 + 1/1'2 (r)dsi, 

I X s3' dr2 + cp2(r) ( 1fr2(r)(a 1)2 + (a2i + (a3)2) . 

Use as basis forT M the natural frames in which we computed the cur­
vature tensors. Now find the curvature operators for the Schwarzschild 
metric, the Eguchi-Hanson metric, S2 x S2 , S4 , and I.CP2 . 

(d) Show that ( M, g) is Einstein iff B = 0 iff for every plane n and its 
orthogonal complement nl. we have: sec (n) =sec (nl.). 



4 
Hypersurfaces 

In this chapter we shall explain some of the classical results for hypersurfaces 
in Euclidean space. First we introduce the Gauss map and show that convex im­
mersions are embeddings of spheres. We then establish a connection between 
convexity and positivity of the intrinsic curvatures. This connection will enable 
us to see that CP2 and the Berger spheres are not even locally hypersurfaces in 
Euclidean space. We give a brief description of some classical existence results for 
isometric embeddings. Finally, a description of the Gauss-Bonnet theorem and its 
generalizations is given. One thing one might hope to get out of this chapter is the 
feeling that positively curved objects somehow behave like convex hypersurfaces, 
and might therefore have a very restricted topological type. 

In this chapter we develop the theory of hypersurfaces in general as opposed 
to just presenting surfaces in 3-space. The reason is that there are some differ­
ences depending on the ambient dimension. Essentially, there are three different 
categories ofhypersurfaces that behave very differently from a geometric point of 
view: curves, surfaces, and hypersurfaces of dimension> 2. We shall see that as 
the dimension increases, the geometry becomes more and more rigid. Strangely 
enough, this is a phenomenon that is rarely discussed in books, even though people 
often use hypersurfaces as a starting point for more general investigations. 

The study ofhypersurfaces started as the study of surfaces in Euclidean 3 space. 
Even before Gauss, both Euler and Meusner made contributions to this area. It was 
with Gauss, however, that things really picked up speed. One of his most amazing 
discoveries was that one can detect curvature by measuring angels in polygons. 
This immediately sent him out to the Liineburg Heath to check whether the space 
we live in is flat. Much to its credit the German government has dedicated the 10 
mark bill to Gauss. On it one finds a picture of his triangulation of the heath and 
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FIGURE 4.1. 

also a graph of the normal distribution, two of his most important discoveries. The 
story of triangles will be studied in Chapter 11. 

4.1 The Gauss Map 

We shall suppose that we have a Riemannian manifold (M, g) with dim M = n, 
and in addition a Riemannian immersion cp : (M, g) <t-+ (JRn+1, can). Locally we 
therefore have a Riemannian embedding, whence we can find a smooth distance 
function on some open subset of JRn+I that has the image of M as a level set. 
Using this we can define the shape operatorS : T M --+ T Mas a locally defined 
( 1, 1 )-tensor, which is well-defined up to sign (we just restrict the Hessian of the 
distance function toT M). If there is a globally defined normal field forM in JRn+I, 

then we also get a globally defined shape operator. However, it still depends on 
our choice of normal and is therefore still only well-defined up to sign. Observe 
that such a global normal field exists exactly when M is orientable. By possibly 
passing to the orientation cover of M we can therefore assume that such a normal 
field exists globally (we can even assume that M is simply connected, although 
we won't do this). Let N : M --+ TJR.n+I be such a choice for a unit normal field. 
Using the trivialization TJR.n+I = JRn+I x JRn+I we then obtain the Gauss map 
M --+ sn ( 1) c JR.n+ I, G (x) = N (x) that to each point x E M assigns our choice 
of a normal toM at x in JRn+I. A picture of the Gauss map for curves and surfaces 
is presented in Figure 4.1. 

Our first important observation is that if we think ofT M as a subset of TJR.n+ I 
then 

DG(v) = S(v). 

This is because S ( v) = V' v N, and since V' here is the Euclidean connection we 
know that this corresponds to our usual notion of the differential of a map. Now, 
N is the map that we differentiate, and hence the desired formula holds. 
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With our first definition of the shape operator it becomes clear that the hypersur­
face is locally convex (i.e., it lies locally on one side of its tangent space) provided 
that the shape operator is positive. Below we shall see how positivity of Sis actually 
something that can be measured intrinsically by saying that some curvatures are 
positive. Before doing this let us use the above interpretation of the shape operator 
to show 

Theorem 1.1 (Hadamard) Let cp : (M, g) ct-+ (JR.n+l, can) be an isometric im­
mersion, where n > 1 and M is a closed manifold. If the shape operator is always 
positive, then M is diffeomorphic to a sphere via the Gauss map. Thus, local 
convexity implies global convexity. 

Proof. If the shape operator is positive, then it is in particular nonsingular. The 
Gauss map G : M --+ sn ( 1) is therefore a local diffeomorphism. When M is 
closed, it must therefore be a covering map. In case n = 1 the degree of this map is 
the winding number of the curve, while if n > 1, then sn ( 1) is simply connected, 
and hence G must be a diffeomorphism. D 

4.2 Existence ofHypersurfaces 

Let us recall the Tangential and Normal curvature equations. The curvature ofJR.n+ 1 

is simply zero everywhere, so if the curvature tensor of M is denoted R, then we 
have that R is related to S as follows: 

0 = R(X, Y)Z- g(S(Y), Z)S(X) + g(S(X), Z)S(Y), 

0 = g( -(Y'xS)(Y) + (Y'rS)(X), Z), 

where X, Y, Z are vector fields on M. We can rewrite these equations as 

R(X, Y)Z = g(S(Y), Z)S(X)- g(S(X), Z)S(Y), 

(Y'xS)(Y) = (Y'rS)(X). 

Here, the first equation is the Gauss equation, and the latter is the Codazzi-Mainardi 
equation. Thus, R can be computed ifwe knowS. In the Codazzi-Mainardi equa­
tions there is of course a question of which connection we use. However, we know 
that the Euclidean connection when projected down to M gives the Riemannian 
connection for (M, g), so it doesn't matter which connection is used. 

We are now ready to show that positive curvature is equivalent to positive shape 
operator, as mentioned above. 

Proposition 2.1 Suppose we have a Riemannian immersion cp : (M, g) 1--+ 

(JR.n+l, can), and we fix x E M. If {el, ... , en} is an orthonormal eigenbasis 
for S : TxM --+ T.rM with eigenvalues A.i, i = 1, ... , n, then {ei 1\ ej: i < j} 
is an eigenbasis for the curvature operator 9t : A 2 (Tx M) --+ A 2 (Tx M) with 
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eigenvalues A; A j. In particular, if all sectional curvatures are :=:: t:2 :=:: 0, then the 
curvature operator is also :=:: t:2 . 

Proof. Suppose we have an orthonormal eigenbasis { e;} for Tx M with respect to 
S. Then S (e;) = A;e;. Using the Gauss equations we obtain 

g (91: (e; 1\ ej), ek 1\ e,) = g (R (e;, ej) e,, ek) 

= g (S (ej), e1) g(S(e;), ek) 

-g(S(e;),e,)g(S(ej).ek) 

= A;Aj (g (ej. e,) g(e;, ek)- g(e;, e,)g (ej. ek)) 

= A;Ajg (e; 1\ ej. ek 1\ et). 

Thus we have diagonalized the curvature operator and shown that the eigenvalues 
are A;Aj, 1 _::: i < j _::: n. For the last statement we need only observe that the 
eigenvalues for the curvature operator satisfy 

D 

This proposition shows that hypersurfaces have positive curvature operator iff 
they have positive sectional curvatures. In particular, the standard metric on C P2 

cannot even locally be realized as a hypersurface metric. 
There is a more holistic way of stating the above proposition and with it the Gauss 

equation. Given a linear map L : V ~ W we can construct L 1\ L : A 2 V ~ A 2 W, 
by saying that: (L 1\ L) (v1 1\ v2) = L (v1) 1\ L (v2). The proposition can now be 
stated as 

91:=S/\S. 

The shape operator is therefore a "square root" of the curvature operator. From 
this interpretation it is tempting to believe that the shape operator can somehow be 
computed from curvatures. This is always false for surfaces (n = 2) , as we shall 
see below, but to some extent true when n :=:: 3. 

Example 2.2 Consider a surface dt 2 +(a sin (t))2 d() 2 • We know that this can be 
represented as a surface of revolution in JR3 when Ia I _::: 1. Such a surface certainly 
has constant curvature 1. Now it only remains to see how one can represent it 
as a surface of revolution. We know from Chapter 1 that such surfaces look like 
(.e + y2) dt 2 + ylde2• In our case we therefore have to solve 

. which implies: 

(.x 2 + _yl) = I, 
y =a sint, 

x = j J1- (a cost)2dt, 

y =a sint. 
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Two surfaces of constant curvature 

FIGURE4.2. 

The embedding is written as: 

where 

<p (t, 0) = (x (t), y (t)cose, y (t) sinO), 

D<p (a,)= (i (t), y (t)cose, y (t)sinO), 

D<p (~ae) = (0,- sinO, cosO) 

are unit vectors perpendicular to the surface. Then the normal can be computed as 

N = D<p(a,) x D<p (~ae) = (y(t), -i(t)cose, -i(t)sinO). 

Since the curvature is 1 = det S, either S = I or S has two eigenvalues A. > 1 and 
A. -I < 1. However, if we choose y = a sin t with 0 < a < 1 then, for example, 
S (a,) :j:. a,. Thus, we must be in the second case. The shape operator is therefore 
really an extrinsic invariant for surfaces. It is not hard to picture these surfaces 

together with the sphere, although one can't of course see that they actually have 
the same curvature. In Figure 4.2 we have a picture of the unit sphere together with 
one of these surfaces. 

It turns out that this phenomenon occurs only for surfaces. Having codimension 
1 for a surface leaves enough room to bend the surface without changing the metric 
intrinsically. In higher dimensions, however, we have 

Proposition 2.3 Suppose we have a Riemannian immersion <p : (M, g) CJ-+ 

(JRn+I, can), where n =:::: 3. Fix x E M and suppose the curvature operator 
9l : A2 (TxM) ---+ A2 (TxM) is positive. Then S : TxM ---+ TxM is intrinsic, 
i.e., we can computeS from information about (M, g) alone without knowledge of 
<p. 

Proof. We shall assume for simplicity that n = 3. If { e1, e2 , e3} is an orthonormal 

basis for TxM, then it suffices to compute the matrix (sii) = (g (S(ei), ei)). 
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We already know that S is invertible from the above proposition and that all the 
eigenvalues have the same sign which we can assume to be positive. Thus, it 
suffices to determine the cofactor matrix ( c;1) defined by: 

The Gauss equations tell us that 

g (m: (e; 1\ e1), ek 1\ et) = g (R (e;, e1) e1, ek) 
= g (S (eJ), et) g (S(e;), ek) 

- g(S(e;), e1)g (S (eJ), ek). 

Index manipulation will therefore enable one to find c iJ from the curvature operator. 
We also need to find the determinant of Sin order to compute s-1 from the cofactor 
matrix. But this can be done using 

det(ciJ) = (detst-1. D 

In case the curvature operator is only nonnegative we can still extract square 
roots, but they won't be unique. One can find more general conditions under which 
the shape operator is uniquely defined. As the cofactor matrices can always be 
found, the only important condition is that det S f:- 0. This will be taken care of 
below and used for some very interesting purposes. 

This information can be used to rule out even more candidates for hypersurfaces 
than did the previous result. Namely, when a space has positive curvature operator, 
then one can find the potential shape operator. However, this shape operator must 
also satisfy the Codazzi-Mainardi equations. It turns out that in dimensions > 3, 
the Codazzi equations are a consequence of the Gauss equations provided the shape 
operator has nonzero determinant. This was proved by T.Y. Thomas in [80] (see 
also the exercises to Chapter 7). For dimension 3, however, the following example 
shows that the Codazzi equations cannot follow from the Gauss equations: 

Example 2.4 Let (M, g) be the Berger sphere (S3 , e2al + af +a}) with 
{Y1, Y2, Y3 } = { e-1 X 1, X2, X3 } as an orthonormalleft-invariant frame on SU (2). 
We computed in Chapter 3 that the 2-frame {Y1 1\ Y2, Y2 1\ Y3, Y3 1\ Y1} diagonal­
izesthecurvatureoperatorwitheigenvaluese2, (4- 3e2), e2.Itnowfollowsfrom 
our calculations above that if this metric can be locally embedded in IR4 , then the 
shape operator can be computed using this information. If (siJ) = g ( S (Y;), YJ) , 
then it is easily seen that S must be diagonal, with 

6'2 
S(Yt)= Y1, 

J4- 3e2 

S(Yz) = J4- 3e2Y2, 
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We can now get a contradiction by showing that some of the Codazzi-Mainardi 
equations are not satisfied. For instance, we must have that (Y"r2 S) (Y3) = 
(v y3 s) (Y2) . However, these two quantities are not equal 

(Y"r2 S) (Y3) = J 4- 3t:2 'Vr2 Y3 - S (Y"r2 Y3) 
£2 

= J 4 - 3t:2 c yl - c yl 
J4- 3t:2 

= (J 4 - 3t:2 - £
2 

) c yl; 
J4- 3t:2 

('Vr3 S) (Y2) = J 4- 3t:2 'Vy3 Y2 - S (Y"r3 Y2) 
£2 

= -}4- 3c:2c:Y1 + c:Y1 
J4- 3t:2 

= (-J4- 3£2 + £
2 

) c:Y1• J4- 3£2 

Now for some positive results. 

Theorem 2.5 (Fundamental Theorem ofHypersurface Theory) Suppose we 
have a Riemannian manifold (M, g) and a symmetric (1,1)-tensor Son M that 
satisfies both the Gauss and the Codazzi-Mainardi Equations on M. Then for every 
x E M, we can .find an isometric embedding(/) : (U, g) ~ (JRn+l, can) on some 
neighborhood U 3 x with the property that S becomes the shape operator for this 
embedding. 

Proof. We shall give a short outline of the proof. Our first claim is that we can 
find a flat metric on ( -c:, c:) x U, where U c M is relatively compact and t: is 
smaller than I).:; 1 1 for any eigenvalue A.1 of Son U. It will then follow from material 
in Chapter 5 that any flat metric is locally isometric to a subset of (JRn+1, can). 
This will then finish the proof. 

To construct the metric h on ( -B, £) x U let us assume that it is of the type 
where f (r, x) = r is a distance function, or in other words that h = dr 2 +gr. 
Then if x = (x 2, ... , xn+l) are coordinates on U, we have that (r, x 2, ... , xn+1) 
are adapted coordinates. Now write down the metric g (r, x) and shape operator 
S(r, x) (we ignore indices and think of g and S as the whole matrix). At r = 0 
these are given as the metric on U and the potential shape operator S. In addition, 
we wish the curvature to be zero, so we must have 

ars (r, x) + S2 (r, x) = 0. 

For given x we can solve this, asS (0, x) is given to us. Specifically, 

S (r, x) = S (0, x) ·(I+ r. S (0, x))- 1 

= ar log(/+ r · S(O, x)) 
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solves this equation with the desired initial value. The equation 

drg (r, x) = 2S (r, x) g (r, x), 

together with the fact the the initial data g (0, x) is already specified, now com­
pletely determines the metric. 

We now need to prove that this metric is flat. As the metric is already flat in the 
direction of dr, we need to show that the tangential and mixed curvature equations 
reduce to 

Rr(X, Y)Z = h(S(Y), Z)S(X)- h(S(X), Z)S(Y), 

(VxS)(Y) = (VrS)(X), 

where W is the intrinsic curvature of gr on {r} xU, and X, Y, Z are tangent to 
U. At r = 0 this is certainly true, since we assumed that S was a solution to these 
equations. It suffices to check the above equations for coordinate vector fields. 
Both the metric and S are given to us explicitly in the chosen coordinates. A direct 
but nasty calculation will then show that equality holds for all r. D 

We have already seen that positively curved manifolds of dimension n > 2 
cannot necessarily be represented as hypersurfaces. When n = 2, the situation is 
drastically different. 

Theorem 2.6 Jf(M, g) is a 2-dimensional Riemannian manifold with positive 
curvature, then one can locally isometrically embed ( M, g) into JR.3 . Moreover if 
M is closed then a global embedding exists. 

The proof is beyond what we can cover here, but the previous theorem gives 
us an idea. Namely, one could simply try to find an appropriate shape operator. 
This would at least establish the local result. The global result is known as Weyl's 
problem and was established by Pogorelov and then later by Nirenberg. 

4.3 The Gauss-Bonnet Theorem 

To finish this chapter we give a description the Gauss-Bonnet Theorem and its 
generalizations. It was shown above that when a hypersurface has positive cur­
vature then the shape operator is determined by intrinsic data . It turns out that 
the determinant of the shape operator is always intrinsic. This determinant is also 
called the Gauss curvature. 

Lemma 3.1 Let (M, g) ct-+ (JR.n+l, can) be an isometric immersion. Ifn is even, 
then det Sis intrinsic, and ifn is odd, then ldet Sl is intrinsic. 

Proof. Use an eigenbasis for S : S (ei) = Aiei; then of course det S = AJ · · · ··An. 
In case n = 2 we therefore have det S = sec . Thus, det S is intrinsic. In higher 
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dimensions the curvature operator is diagonalized bye; 1\ e j with eigenvalues A; A j. 
Thus, 

This clearly proves the lemma. 

i<j 

= (AJ ·····Any- I 

= (det S)n-l . 

0 

The importance of this lemma lies in the fact that det Sis the Jacobian determi­
nant of the Gauss map G : M ---+ sn (1) c JRn+l. When M is a closed manifold 
we therefore have 

degG = - 1- f detS -dvol 
volsn 1M 

1 [ n-1~ 
= volsn 1M v det !.R . dvol. 

The degree of the Gauss map is therefore also intrinsic when n is even. This 
is perhaps less surprising, as H. Hopf has shown that closed even-dimensional 
hypersurfaces have the property that deg G is related to the Euler characteristic by 
the formula 

1 
deg G = 2_ X ( M) . 

For an even-dimensional hypersurface we have therefore arrived at the important 
formula 

) 2 i n-1~ X (M = -- vdet!.R · dvol. 
volsn M 

As both sides of the formula are intrinsic quantities one might expect this formula 
to hold for all orientable even-dimensional closed Riemannian manifolds. When 
n = 2, this is the Gauss-Bonnet formula: 

x (M) = -1 [ sec ·dvol. 
2rr 1M 

For higher dimensions, however, we run into trouble. First, observe that the above 
formula does not give the right answer for manifolds that are not hypersurfaces. A 
counterexample is CP2 , which has two zero eigenvalues for the curvature operator, 
but the Euler characteristic is 3. Thus, a more complicated integrand is necessary. 
The correct expression is actually a generalized determinant of the curvature op­
erator called the Pfaffian determinant. It is easiest to write it down in an oriented 
orthonormal frame E1, ••• , En using the curvature forms defined by 

R ( ·, ·) E; = Q{ E j. 
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If we assume that the dimension is n = 2m, then the formula looks like this: 

where K is defined as 

X ( M) = vo~sn L K 

2(2m- 1)! 1 - K 
- 22mrrm (m- 1)! M ' 

1 I:. . . . K = - sr~···r, . s-t~ 1\ ... 1\ s-i:•-1, 
n! rz r, 

si1···i, =sign ofthe permutation Ci1 ···in). 

The generalized theorem was first proven for manifolds that lie isometrically in 
some Euclidean space, not necessarily of one higher dimension, independently by 
Allendoerfer and Fenchel. Allendoerfer and Weil then established the general case, 
using some interesting tricks about local isometric embedability (see [1]). Finally, 
Chern found a completely intrinsic proof, which makes no mention of isometric 
embeddings. The theorem is now called the Chern-Gauss-Bonnet Theorem despite 
the fact that Allendoerfer and Weil were the first to prove it in complete generality 
in higher dimensions. 

Using more or less Chern's approach we can give a brief account of how the 
Gauss-Bonnet theorem can be proven for surfaces ( M2 , g) . First suppose that 
M is the toms, and pick your favorite nonzero vector field X. Using the metric, 
normalize it to have length 1, and then select another field such that we get an 
orientable orthonormal frame { E I' E2} . Let { e I' e2 } be the dual co frame and 
compute the connection form and curvature form as described in the exercises to 
Chapter 2: 

Then we have 

de 1 = e2 1\ w~. 

dw~ = Q~ = sec ·dvol. 

JM sec ·dvol = L Q~ 
= JM dwi 

= r wi = 0. laM 
On other surfaces we can choose a vector field X with isolated zeros at p 1, ••• , Pk E 

M. Then we choose the frame {£1, £ 2} as above on M- {p1, ... , pd. On a 
neighborhood Ui around each Pi introduce normal coordinates such that 
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Here, r is the Euclidean distance from p;. We can then consider the manifold with 
boundary Me = M - U~=l B (p;, t:), where B (p;, t:) is the Euclidean ball of 
radius t: around p; . As before we still have 

= t r wi. 
i=l las(p;,e) 

Let us now analyze each of the integrals fas(p; .<) w~ on U;. On U; we could instead 

find an orientable orthonormal frame { F1 = 1i 1 , F2 }, but this time with respect 

to the Euclidean metric on U;. If w~ is the connection form for this frame, we can 
construct the integral 

Using that the metric is Euclidean up to first order, we obtain that 

wi - wi = 0 (r) . 

In particular, we must have 

1. 1 -I 1' 1 I tm w2 = 1m w2 . 
<-->0 BB(p;.<) e-->O iJB(p;,e) 

This proves that the integral f M, sec ·dvol does not depend on the metric. 

Let us now relate the term lim<-->0 fas(p;,e) w~ to the vector field X. We can 
suppose that we are on a neighborhood U c JR2 around the origin and that we 
have a vector field X that vanishes only at the origin. If we normalize X to have 
unit length E = X I I X I , then we get for each t: > 0 a map 

a B (p;, t:) ---+ a B (p;, t:) , 

x ---+ t: · E (x) . 

The degree (see Appendix A) of this map is easily seen to be independent oft:. 
This degree is known as the index of the vector field at the origin and is denoted 
by ind0X. The degree ofthis map can now be computed as 

D(t: · E(x)) =- D(E(x)). 1 1 11 
(. (aB (p;, t:)) iJB(p;,<) 2rr aB(p;,<) 

One can now easily check that 

{ D(E(x))=lim{ wi. 
las(p;.<) <-->0 las(p;,e) 



100 4. Hypersurfaces 

""\\ \ ! 1// "'""'~--~~_..-'"/// l f //c--~"'-\ \ 1 
""'-"'\ \ \ I I 1// """"'"'"'-~//// \ l I / ~ ~ "' \ 1 ! 
"'"'"' \ \ I I /// \ \ " " - - / / I I \ \ I / ~ \ I I 
'"---- "- '- ' \ I / / / ___,. \ \ \ ' - - / I ! I ""'" \ I I I / / 

~-- - - - -~ \ \ \ I I I I 1 ~-- ' - / ~---

~~- ~ - -- ~ I I I J I \ \ \ _, ~ / / ' -- ~ 
...-- ..-' / / J I ' " ---. --... I I I / ~ - ' \ \ \ // I I I \ """' /// I I \ \ ""'~ I I / / - - '- "' \ \ I I \ ~ / I I \ \ 
//I I \ \""-.""' ///."~-"-'-<"'-\ ! 1 \ "' ~ ~ / I l \ 
/II I \ \"""' ///...-~~'"----"""'-"' 1 \ \"'-~.-// ! l 

Index 1 Index -1 Index 2 

FIGURE4.3. 

All in all, we have therefore shown that 

1 1 k - sec -dvol = L indp, (X). 
2rr M i=l 

The left-hand side is therefore independent of the metric, while the right-hand side 
must now be independent of the chosen vector field. Knowing that the right-hand 
side is independent of the vector field, one can easily compute it as the Euler 
characteristic by choosing a particular vector field on each surface. Figure 4.3 
shows a few pictures of vector fields in the plane. 

4.4 Further Study 

All of the results mentioned in this chapter and much more can be found in Spivak's 
[76, volume 5]. In fact we recommend all of his volumes as a good and thorough 
introduction to geometry. Spivak is also quite careful and complete with references 
to all the work mentioned here. The only fault Spivak's book has in reference to 
the generalized Gauss-Bonnet theorem is that he claims that Allendoerfer and 
Weil established this formula for analytic metrics. But of course if one knows the 
theorem for analytic metrics, then it is simple matter to prove it for all smooth 
metrics. For a very nice discussion of the Gauss-Bonnet theorem for surfaces see 
also [18]. 

We can also recommend Stoker's book [77]. This book goes from curves to 
surfaces and ends up with a discussion of general relativity. For the reader who 
likes the old-fashioned well-written book this is a must. 

One defect here is that we haven't developed submanifold theory in general. 
This is done in [76]. 
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4.5 Exercises 

1. Consider the hypersurface xn+l = (xn)2 . Show that the shape operator is 
not zero but that the hypersurface is isometric to JRn. 

2. For n :::: 3, show that it is not possible for a Riemannian n-manifold to have 
negative curvature, if it admits a Riemannian immersion into JRn+l. Give a 
counterexample when n = 2. 

3. Let (M, g) be a closed Riemannian n-manifold, and suppose that there is a 
Riemannian embedding into JRn+l. Show that there must be a point p E M 
where the curvature operator 9\ : A 2TpM ~ A 2TpM is positive. (Hint: 
consider a sphere that circumscribes the submanifold, and consider points 
where this sphere touches the submanifold.) 

4. Suppose (M, g) is immersed as a hypersurface in JRn+l, with shape opera­
torS. 

(a) Using the Codazzi-Mainardi equations, show that 

divS = d (trS). 

(b) Show that if S = f (x) · I for some function J, then f must be a 
constant and the hypersurface must have constant curvature. 

(c) Show that S = A. • Ric iff the metric has constant curvature. This 
problem is interesting because the Ricci flow (see [ 48]) 

Cltg = -2Ric 

resembles the equidistant hypersurface equation 

5. Let g be a metric on S2 with curvature :::;:: 1. Use the Gauss-Bonnet formula 
to show that vol (S2 , g) :::: volS2 (1) = 4n. 

Show that such a result cannot hold on S3 by considering the Berger metrics. 

6. Assume that we have an orientable Riemannian manifold with nonzero Euler 
characteristic and 19\1 :::;:: 1. Find a lower bound for vol(M, g). The one­
sided curvature bound that we used on surfaces does not suffice in higher 
dimensions, as one-sided curvature bounds do not necessarily imply one 
sided bounds on K. 

7. Show that in even dimensions, orientable manifolds with positive (or non­
negative) curvature operator have positive (nonnegative) Euler characteris­
tic. Conclude that if in addition, such manifolds have bounded curvature 
operator, then they have volume bounded from below. What happens when 
the curvature operator is nonpositive or negative? 
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8. In dimension 4 show using the exercises from Chapter 3 that 

( I 1
2) 1 2 . seal 1 2 * 2 - r ,R, - RIC- -g = - r tr (A - 2ss + c ) . 

8n2 JM 4 8n2 JM 

It was shown by Allendoerfer and Weil that in dimension 4 

1 { ( I . seal 1
2

) X (M) = Sn 2 JM IRI2 - Ric- 4 g . 

You can try to prove this using the above definition of K. If the metric is 
Einstein, show that 



5 
Geodesics and Distance 

We are now ready to introduce the important concepts of parallel transport and 
geodesics. This will help us to define and understand Riemannian manifolds as 
metric spaces. One is led to two types of completeness. The first is of standard 
metric completeness, and the other is what we call geodesic completeness, namely, 
when all geodesics exist for all time. We shall prove the Hopf-Rinow Theorem, 
which asserts that these types of completeness for a Riemannian manifold are 
equivalent. Using the metric structure we can define metric distance functions. 
We shall study when these distance functions are smooth and therefore show the 
existence of the kind of distance functions we worked with earlier. In the last section 
we give some metric characterizations of Riemannian isometries and submersions. 

Parallel translation was, as already mentioned, introduced by Levi-Civita. The 
idea of thinking of a Riemannian manifold as a metric space must be old, but 
still it wasn't until the early 1930s that Hopf and Rinow began to understand the 
relationship between extendability of geodesics and completeness of the metric. 
Nonetheless, both Gauss and Riemann had a pretty firm grasp on local geometry, as 
is evidenced by their contributions. Gauss worked with geodesic polar coordinates 
and also isothermal coordinates. Riemann was able to give a local characteriza­
tion of Euclidean space as the only manifold whose curvature tensor vanishes. 
Nevertheless, it wasn't until Klingenberg's work in the 1950s that one got a good 
understanding of the domain on which one has geodesic polar coordinates. This 
work led to the introduction of the two terms injectivity radius and conjugate ra­
dius. Many of our results will require a detailed analysis of these concepts. The 
metric characterization of Riemannian isometries strangely enough wasn't realized 
until the late 1930s with the work of Myers and Steenrod. Even more surprising 
is Berestovskii 's very recent metric characterization of submersions. It seems that 
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part of the lag effect for these two results is due to the fact that people have not 
paid much attention to distance coordinates but have instead been obsessed with 
doing everything in exponential coordinates. 

5.1 The Connection Along Curves 

Let y : I ---+ M be a curve in M. A vector field V along y is by definition a 
function V : I ---+ T M with V(t) E Ty(r)M for all t E I. We want to define the 
covariant derivative 

. d 
V(t) =- V(t) = Vy V 

dt 

of V along y when y and V have appropriate smoothness. Whenever y(t0 ) i= 0, 
there is a natural way to do this: In this case, y is locally (near to) an embedded 
curve, and every vector field V along y is locally the restriction to y of a vector 
field defined in a whole neighborhood ofy(t0 ), i.e., fort near t0 , V(t) = V(y(t)), 
for some vector field V defined in a neighborhood of y(t0). Then we could just put 
V(to) = Vy{to) V. 

On the other hand, when y(to) = 0, this approach may not work. Consider, for 
example, a constant curve y : I ---+ M, y(l) = {p}. A vector field along y is then 
merely a map V : I ---+ TpM. In this case, one would like V(to) to be the usual 
derivative of V as a curve in a vector space. 

To accommodate these two situations we do the following: Choose a neighbor­
hood U around y(t0), and vector fields E 1 , ... , En on M that form a basis for 
Tq M for all q E U. For instance, we could take the E; 's to be coordinate vector 
fields a I oxi with u a coordinate chart. Write 

V(t) = L c/(t) · E; o y(t) 

for t in some neighborhood of to. Then we define 

· dV '""' . . 
V(to) = dt lr=to= ~ ql(to) · E; o y(to) + Cfl(to) · Vy(to)E;. 

It is easily seen that V(to) is independent of the choice of E 1, ••• , En. Also, this 
definition generalizes the two special cases discussed above: it gives the "right" 
definition when y(to) i= 0 and also when y is a constant curve. In particular, if 
Z is a vector field defined in a neighborhood of y(t0), then you can see directly 
that 1ft Z(y(t)) lr=to• in this just introduced sense of differentiation along curves, is 
equal to Vy(lolz. (This is related to the fact that Vruolz in this case is determined 
by the values of Z along y .) Using this definition and the fact that the connection 
is Riemannian, it is easy to show that 

d . . 
dtg(V, W) = g (v, w) + g (v, w) 

for vector fields V, W along y. 
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FIGURE 5.1. 

A vector field V along y is said to be parallel along y provided that V = 0. If 
V, W are two parallel fields along y, then we clearly have that g ( V, W) is constant 
along y. Parallel fields along a curve therefore change neither their lengths nor 
their angles relative to each other, just as parallel fields in Euclidean space are of 
constant length and make constant angles. Parallel translation around a triangle on 
the sphere is pictorially described in Figure 5.1. The exercises to this chapter will 
cover some features of parallel translation for surfaces to aid the reader's geometric 
understanding. 

Theorem 1.1 (Existence and Uniqueness of Parallel Fields) If to E I and v E 

Ty(ro)M, then there is a unique parallel field V(t) defined on all of/ with V(to) = v. 

Proof. Choose vector fields E 1 (t), ... , En(t) along y forming a basis for Ty(f)M 

for all t E I. This is always possible. Any vector field V(t) along y can then be 
written V(t) = L. qi(t)E;(t) for qi E F(I). Thus, 

V = DyV = Lci/(t)E;(t)+q/(t)VyE; 

= L¢j(t)Ej(t)+ Lq/(t)·a/(t)Ej(t), whereVyE; = La/(t)E; 
i,j 

= L(¢j(t) + c/(t)aj(t))Ej(t). 
j 

Hence, V is parallel iff ( c:p 1 (t), ... , c:pn(t)) satisfies the first-orderlinear differential 
equation 

n 

<Pj (t) = - L c:pi (t)a/ (t) j = 1, ... , n. 
i=l 

Such differential equations, however, have the property that given an initial value 
(c:p 1(t0), ... , c:pn(to)), there is a unique solution defined on all of I with this 
value. 0 

The existence and uniqueness assertion that concluded this proof is a standard 
theorem in differential equations that we take for granted. The reader should recall 



106 5. Geodesics and Distance 

that linearity of the equations is a crucial ingredient. Nonlinear equations can fail to 
have solutions over a whole given interval. This failure will be observed explicitly 
in our discussion, in subsequent sections, of the existence of geodesics. 

Parallel translation can be used as a substitute for Cartesian coordinates. Namely, 
if we choose a parallel orthonormal fmming {E1(t), ... , En(t)} along the curve 
y(t) : I -+ (M, g), then we've seen that any vector field V(t) along y has the 
property that 

dV d . 
dt = dt a 1(t)E;(t) 

= c/(t)E;(t) + ai(t) · E;(t) 

= a; (t)E;(t). 

So df(dt)V, when represented in coordinates of the frame, is exactly what we 
would expect. We could more genemlly choose a tensor T along y(t) of type 
(0, p) or (1, p) and compute df(dt)T. For the sake of simplicity, choose a (1, 1) 
tensorS. Then write S(E;(t)) = af (t)Ej(t). Thus Sis represented by the matrix 

(a{ (t)) along the curve. As before, we see that df(dt)S is represented by (a/ (t)). 
This makes it possible to understand equations involving only one differenti­

ation of the type V x. Let cp' be the local flow near some point p E M and H 
a hypersurface in M through p that is perpendicular to X. Next choose vector 
fields E 1, ••• , En on H which form an orthonormal frame for the tangent space 
to M restricted to H. Finally, construct an orthonormal framing in a neighbor­
hood of p by parallel translating E 1, ••• , En along the integral curves for X. Thus, 
VxE; = 0, i = 1, ... , n. So if we have a vector field Y near p, we can write 
Y = ai. E; and VxY = Dx(ai) · E;. Similarly, if Sis a (1, 1)-tensor, we have 
S(E;) =a{ E;, and VxS is represented by (Dx(a{)). 

Thus, these parallel frames make covariant derivatives look like normal deriva­
tives in just the same way one can use coordinates that make Lie derivatives look 
like normal derivatives. 

5.2 Geodesics 

A C00 curve y : I --+ M is called a geodesic if y(t) is parallel along y, i.e., 
ji = df(dt)Y = 0 on I. If y is a geodesic, then lrl = Jg(y, y) is constant, 
since parallel vector fields along a curve have constant length. So a geodesic is a 
constant-speed curve, or phrased differently, it is parametrized proportional to arc 
length. If I y I = 1, one says that y is parametrized by arc length. 

If f : U -+ lR is a distance function, then we know that for N = V f we have 
V N N = 0. The integml curves for V f = N are therefore geodesics. We shall in 
the sequel develop a theory for geodesics independently of distance functions and 
then use this to show the existence of distance functions. 

Geodesics are fundamental in the study of the geometry of Riemannian mani­
folds in the same way that stmight lines are fundamental in Euclidean geometry. 
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But at first sight it is not even clear that there are going to be any nonconstant 
geodesics to study on a general Riemannian manifold. In this section we are go­
ing to establish that every Riemannian manifold has many nonconstant geodesics. 
Informally speaking, we can find a unique one at each point with a given tangent 
vector at that point. The question of how far it will extend from that point is subtle, 
however. To deal with the existence and uniqueness questions, we need to use some 
(more) information from differential equations. The first step toward applying this 
information is to figure out what the equation of geodesics d I ( d t )y = 0 looks like 
in local coordinates. 

For this, let rp : U ~ 1Rn be a coordinate chart with coordinate vector fields 
81, ••• , on, o; = o/(oxi). As before, we set 

n 

"Va; aj = L r~jak. 
k=l 

Now consider a curve y : I ~ U and write (rp o y)(t) = (rp 1(t), ... , rpn(t)). 
Then y(t) = L; cpi (t)o; lr{tl· From this and our definition of differentiation of 
vector fields along curves 

ji =Leilia; lr<rl + .L:ql(t)"Vyo; 
i i 

= L cpi o; ly{t) + L ci/ (t)"VLj gijdj o; 
i i 

= Lcii;o; lr<rl + I:ci/(t)¢j(t)rt lr<rl ak lrul 
i i,j,k 

"(··k ".; ·jrk I ) ~ I = L., (/) + ~ (/) (/) ij y(t) Uk y(t) · 
k l,j 

Thus, the curve y : I ~ U is a geodesic if and only if its coordinate representation 
(rp 1(t), ... , rpn(t)) satisfies the second-order differential equation 

.. k( ) _ " . ;( ) . j( )rk 1 (/) f - - L., (/) f (/) f ij <p-l(<pi(I), ... ,<p,{t)) 

i,j 

fork= 1, ... , n. Because this is a second-order system of differential equations, 
we expect an existence and a uniqueness result for the initial value problem of 
specifying value and first derivative, i.e., rp 1(0), ... , rpn(O) and ¢ 1(0), ... , <Pn(O). 
But because the system is nonlinear, we are not entitled to expect that solutions 
will exist for all t values. 

The precise statements obtained from differential equations theory are a bit of 
a mouthful, but we might as well go for the whole thing right off the bat, since we 
shall need it all eventually. Still working in our coordinate situation, we get the 
following facts from standard general theorems on ordinary differential equations: 

Theorem 2.1 (Existence and Uniqueness) For each a E rp(U) c 1Rn and f3 E 

1Rn, there is a neighborhood U, of a, U, c U; a neighborhood U2 off3; and an s > 
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0 such that for each a' E u, and fi' E U2, there is a geodesic Ya',fJ' : (-e, e)--+ U 
with 

y(O) = fP-'ca') 

and 

Moreover, the mapping 
(a', fi', t) --+ Ya'.{J'(t) 

is C00 on U1 X U2 X (-e, e). 

Theorem 2.2 (Uniqueness 2) If h and h are connected open subsets ojR with 
0 E h n h. and YI : h --+ U and Y2 : h --+ U are geodesics; and if YI (0) = Y2(0) 
andy,(O) = Y2(0); then YI I h n h = Y2 I h n h 

It is worthwhile to consider what these assertions become in informal terms. 
The existence statement includes not only "small-time" existence of a geodesic 
with given initial point and initial tangent, it also asserts a kind oflocal uniformity 
for the interval of existence. If you vary the initial conditions but don't vary them 
too much, then there is a fixed interval ( -e, e) on which all the geodesics with 
the various initial conditions are defined. Some or all may be defined on larger 
intervals, but all are defined at least on ( -e, e). 

The uniqueness assertion amounts to saying that geodesics cannot be tangent at 
one point without coinciding. Just as two straight lines that intersect and have the 
same tangent (at the point of intersection) must coincide, so two geodesics with a 
common point and equal tangent at that point must coincide. 

Both the differential equations statements are for geodesics with image in a fixed 
coordinate chart. By relatively easy covering arguments these statements can be 
extended to geodesics not necessarily contained in a coordinate chart. Let us begin 
with the uniqueness question: 

Lemma 2.3 If h and h are connected open subsets of lR with 0 E h n h 
and if Yl : h --+ M and Y2 : h --+ M are geodesics with Yl (0) = Y2(0) and 
y,(O) = i-2(0), then y, I (h n h)= Y2 I (h n h). 

Proof. Define A= {t E I, n h : y,(t) = Y2(t) and YI(t) = y(t)}. Then 0 EA. 

Also, A is closed in I 1 n h by continuity of YI, Y2, Yl , and Y2. Finally, A is open, by 
virtue of the uniqueness statement for geodesics in coordinate charts: if A. E A, then 
choose a coordinate chart U around y1(A.) = JI2(A.). Then (A.- e, A.+ e) c h n h 
and Y2 1 (A.- e, A.+ e) both have images contained in U. Then the coordinate 
uniqueness result shows that y1 I (A.- e, A.+ e) = y2 I (A.- e, A.+ e), so that 
(1..-e,A.+e)cA. D 

The coordinate-free existence picture is a little more subtle. The first, and easy, 
step is to notice that if we start with a geodesic, then we can enlarge its interval of 
definition to be maximal. This follows from the uniqueness assertions: If we look 
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at all geodesics y : I ---+ M, 0 E I, y(O) = p, y(O) = v, p and v fixed, then the 
union of all their domains of definition is a connected open subset of~ on which 
such a geodesic is defined. And clearly its domain of definition is maximal. 

The next observation, also straightforward, is that if K is a compact subset 
of T M, then there is an £ > 0 such that for each ( q, v) E K, there is a geodesic 
y : ( -£, £)---+ M with y(O) = q and y(O) = v. This is an immediate application of 
the local uniformity part of the differential equations existence statement together 
with the usual covering-of-compact-set argument. 

The next point to ponder is what happens when the maximal domain of definition 
is not all ofR For this, let I be a connected open subset of~ that is bounded above, 
i.e.,Ihastheform(-oo,A.1),A. 1 E ~or(A.2,A.J),A.2,A. 1 E JR.Supposey: I---+ M 
is a maximal geodesic. Then y(t) as t approaches A. 1 must have a specific kind of 
behavior: If K is a compact subset of M, then there must be a number tK < A. 1 

such that if t E I and t > tK then y(t) E M - K. We say that y leaves every 
compact set as t ---+ A. 1 . 

To see why y must leave every compact set, suppose K is a compact set it 
doesn't leave, i.e., suppose there is a sequence t1 , t2 , ... E I with lim tj = A. 1 

and y(t;) E K for each j. Now lr(tj)l is independent of j, since geodesics have 
constantspeed.So{y(tj): j = 1, ... }belongtoacompactsubsetofTM,namely, 

K = {(vq): q E K, v E TqM, I vi :S ly(ti)l}. 

So there is an£ > 0 such that for each ( Vq) E K, there is a geodesic y : ( -£, £) ---+ 
M with y(O) = q, y(O) = v. Now choose tj such that A. 1 - tj < £/2. Then Yq.v 
patches together withy to extend y: beginning at tj we can continue y by£, which 
takes us beyond A. 1, since tj is within £/2 of A. 1• This contradicts the maximality 
of I. 

One important consequence of these observations is what happens when M itself 
is compact: 

Lemma 2.4 If M is a compact Riemannian manifold, then for each p E M and 
v E TpM, there is a geodesic y : lR ---+ M with y(O) = p, y(O) = v. In other 
words, geodesics exist for all time. 

In other informal words, all geodesics on a compact manifold are infinitely 
extendable. A Riemannian manifold where all geodesics exist for all time is called 
geodesically complete. 

A slightly trickier point is the following: Suppose y : I ---+ M is a geodesic and 
0 E I, where I is a bounded connected open subset of R Then we would like to 
say that for q E M near enough to y(O) and v E TqM near enough to y(O) there 
is a geodesic Yq,v with q, v as initial position and tangent, respectively, and with 
Yq,v defined on an interval almost as big as I. This is true, and it is worth putting 
in formal language: 

Lemma 2.5 Suppose y : I ---+ M, I = (A.2, AJ), -oo < A.2 < 0 < AJ < oo, is 
a geodesic. Then, given £ > 0, there is a neighborhood U in T M of(y(O), y(O)) 
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(1, 0) 

FIGURE 5.2. 

such that if ( q, v) E U, then there is a geodesic 

Yq.v : ()~.2 + c, AJ -c)--+ M 

with Yq.v(O) = q and Yq,v(O) = v. 

The proof of this statement comes from the understanding we have already 
developed of how a geodesic can stop being defined, namely, only by leaving 
every compact set. If we choose a neighborhood V of y([A.2 + c/2, A. 1 - c/2]) 
with compact closure V, then altering the initial conditions of y only slightly to 
get y will by the continuity of dependence on initial conditions--make y stay in 
V, hence in V, essentially as long as y did. Since V is compact, y can be extended 
to be defined up to almost the same interval as y itself. Of course, in outline this 
argument sounds circular! But working with a covering of V by a finite set of 
coordinate patches will make it possible to fill in the details. 

All this seems a bit formal and pedantic and perhaps abstract as well, in the 
absence of explicitly computed examples. First, one can easily check that geodesics 
in Euclidean space are straight lines. Using this observation one can easily give 
examples of the above ideas by taking M's to be open subsets of!R2 with its usual 
metric. 

Example 2.6 In the plane IR2 minus one point, say IR2 - { (I, 0)} the geodesic from 
(0, 0) with tangent (1, 0) is defined on ( -oo, 1) only. But nearby geodesics from 
(0, 0) with tangents (1 + c1, c2), c1 , c2 small, c2 =J. 0, are defined on ( -oo, oo ). 
Thus maximal intervals of definition can jump up in size, but, as already noted, 
not down. See also Figure 5.2. 

Example 2. 7 On the other hand, for the region 

{(x, y): lxyl < 1}, 

the curve t --+ (t, 0) is a geodesic defined on all of lR that is a limit of geodesics 
t --+ (t, +c), c --+ 0, each which is definedonlyonafinite interval (-~,+D. Note 
that as required, the endpoints of these intervals go to infinity (in both directions). 
See also Figure 5.3. 

The reader should think through these examples and those in the exercises very 
carefully, since geodesic behavior is a fundamental topic in all that follows. 
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Equator 

FIGURE 5.4. 

Example 2.8 The spheres (Sn(r), can) = s;_2 we think of as being in JRn+l. 
Then the connection on sn(r) is just the connection ofJRn+l projected onto sn(r ). 
The acceleration of a curve y : I -+ sn (r) is therefore the Euclidean acceleration 
projected onto sn(r). Thus y is a geodesic iff ji is normal to sn(r). This means 
that ji and y should be proportional as vectors in JRn+I. Great circles y(t) = 
a cos( at)+ b sin( at), where a, b E JRn+l, Ia I = lbl = r, and a ...L b, clearly have 
this property. Furthermore, since y(O) = a E sn(r) and y(O) = ab E TaSn(r), 
we see that we have a geodesic for each initial value problem. 

We can easily picture great circles on spheres as depicted in Figure 5.4. Still, 
it is convenient to have a different way of understanding this. For this we project 
the sphere orthogonally onto the plane containing the equator. Thus the north and 
south poles are mapped to the origin. As all geodesics are great circles, they must 
project down to ellipses that have the origin as center and whose greater axis 
has length r. Of course, this simply describes exactly the way in which we draw 
three-dimensional pictures on paper. 

Example 2.9 We think of S~r-2 as the imaginary hypersurface in Minkowski 
space lR 1 ,n. The connection in lR 1 ,n is the same as the Euclidean connection, so 
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FIGURE 5.5. 

the acceleration concept doesn't change except we have to find the Minkowski 
projection onto the hypersurface. By analogy with the sphere, one might guess that 
the hyperbolae y(t) =a cosh( at)+ b sinh( at), a, b E JRI.n, JaJ 2 = -r2 , JbJ 2 = 
r 2 , and a ..L b all in the Minkowski sense, are our geodesics. And indeed this is 
true. 

This time the geodesics are hyperbolae. Drawing several of them on the space 
itself as seen in Minkowski space is not so easy. However, as with the sphere we 
can resort to the trick of projecting hyperbolic space onto the plane containing the 
last n coordinates. The geodesics there can then be seen to be hyperbolae whose 
asymptotes are straight lines through the origin. See also Figure 5.5. 

Example 2.10 On a Lie group G with a left-invariant metric one might suspect 
that the geodesics are the integral curves for the left-invariant vector fields. This in 
tum is equivalent to the assertion that V x X = 0 for all left-invariant vector fields. 
On the Berger spheres this is for instance the case, but our Lie group model for the 
upper half plane does not satisfy this. In general, one can show that hi-invariant 
metrics (left and right invariant) have this property. Furthermore, all compact Lie 
groups admit hi-invariant metrics. 

5.3 The Metric Structure of a Riemannian Manifold 

The positive definite inner product structures on the tangent space of a Riemannian 
manifold automatically give rise to a concept of lengths of tangent vectors. From 
this one can obtain an idea of the length of a curve as the integral of the length 
of its tangent vector. This is a direct extension of the usual calculus concept of 
the length of curves in Euclidean space. Indeed, the definition of Riemannian 
manifolds is motivated from the beginning by lengths of curves. The situation is 
turned around a bit from that of 1Rn, though: On Euclidean spaces, we have in 
advance a concept of distance between points. Thus, the definition of lengths of 
curves is justified by the fact that the length of a curve should be approximated 
by sums of distances for a fine subdivision (e.g., a fine polygonal approximation). 
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For Riemannian manifolds, there is no immediate idea of distance between points. 
Instead, we have a natural idea of (tangent) vector length, hence curve length, and 
we shall use the length-of-curve idea to define distance between points. The goal 
of this section is to carry out these constructions in detail. 

First, recall that a mapping y : [a, b] --* M defined on a closed interval is said 
to be C 00 if there is an open interval (c, d) with [a, b] c (c, d) and a C 00 curve 
y: (c,d)--* Msuchthaty = }l[a,b].Amappingy: [a,b]--* Misapiecewise 
C 00 curve if y is continuous and if there is a partition a = a 1 < a2 < ... < ak = b 
of [a, b] such that y I [ai, ai+Il is C 00 fori= 1, ... , k- 1. 

Suppose now y : [a, b] --* M is a piecewise C 00 curve in a Riemannian 
manifold. Then the length i(y) is defined as follows: 

i(y)= 1bly(t)ldt= 1b Jg(y(t),y(t))dt. 

It is clear from the definition of piecewise C 00 that the function t --* IJi(t)l is 
integrable in the Riemann integral sense, so i(y) is a well-defined finite, nonnega­
tive number. It is also easy to show that i(y) is invariant under reparametrization. 
A piecewise coo curve y : [a, b] --* M is said to be parametrized by arc length 
if i(y lra.;.J) =A- a for all A E [a, b], or equivalently, if IJi(t)l = 1 at all smooth 
points t E [a, b]. A piecewise C 00 curve y : [a, b] --* M with IJi(t)l > 0 for 
all t E (ai, ai+J), i = 1, ... , k- 1, can be reparametrized by arc length without 
changing the length of the curve, i.e., the function 

cp(s) = 1s ly(t)l dt 

is strictly increasing on [a, b], and the curve y ocp- 1 : [0, i(y)] --* M is piecewise 
coo and has tangent vectors of unit length at all its smooth points, as you can check 
by the chain rule. These considerations show that geometrically, we can concentrate 
on arc-length parametrized curves when it is convenient to do so, without any real 
loss of generality. 

We are now ready to introduce the idea of distance between points. First, for 
each pair of points p, q E M we define the path space 

n(p, q) = {y : [0, 1]--* M: y is piecewise C 00 and y(O) = p, y(1) = q}. 

We can then define the distance d(p, q) between points p, q E Mas 

d(p, q) = inf{i(y) : y E n(p, q)}. 

It follows immediately from this condition that d(p, q) = d(q, p) and d(p, q):::: 
d(p, r) + d(r, q). We leave it to the reader to verify that d(p, q) can be zero only 
when p = q. Thus, d( , ) satisfies all the properties of a metric. 

As for metric spaces, we have various metric balls defined via the metric 

B (p, r) = {x EM: d (p, x) < r}, 

iJ (p, r) = D (p, r) = {x EM: d (p, x):::;: r}. 
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More generally, we can define the distance between subsets A, B c M as 

d (A, B)= inf {d (p, q): p E A, q E B}. 

With this we then have 

B(A,r) = {x EM: d(A,x) < r}, 

B(A,r) = D(A,r) = {x EM: d(A,x)::::: r}. 

The infimum of curve lengths in the definition of d(p, q) can fail to be re­
alized. This is illustrated, for instance, by the "punctured plane" JR.2 - {(0, 0)} 
with the usual Riemannian metric oflR.2 restricted to JR.2 - {(0, 0)}. The distance 
d ( ( -1 , 0), ( 1, 0)) = 2, but this distance is not realized by any curve, since every 
curve of length 2 in JR.2 from ( -1, 0) to (1, 0) passes through (0, 0) (see Figure 
5.6). In a sense that we shall explore later, JR.2 - {(0, 0)} is incomplete. For the 
moment, we introduce some terminology for the cases where the infimum d(p, q) 
is realized. 

A curve a E Q(p, q) is a segment if .€( a) = d(p, q) and a is parametrized 
proportional to arc length, i.e., Ia I is constant. 

Example 3.1 In a Euclidean space JR.n, segments according to this definition are 
straight line segments parametrized proportional to arc length, i.e. curves of the 
formt ~ p1 +t · p2• InlR.n, eachpairofpoints p, q is joined by a unique segment 
t ~ p+t(q- p). 

Example 3.2 In S2(1) = {(x, y, z) E JR.3 : x 2 + y2 + z2 = 1} segments are 
portions of great circles with length ::::: n. (We assume for the moment some basic 
observations of spherical geometry: these will arise in detail later as special cases 
of more general results.) Every two points are joined by a segment, but there may 
be more than one segment joining a given pair if the pair are far enough apart, i.e., 
each pair of antipodal points is joined by infinitely many distinct segments. 

Example 3.3 In JR2 - {(0, 0)}, as already noted, not every pair of points is joined 
by a segment. 

Later we shall show that segments are always geodesics. Moreover, geodesics are 
segments if they are short enough; precisely, if y is a geodesic defined on an open 
interval containing 0, then yi[O, e] is a segment for all sufficiently small£ > 0. 
Furthermore, we shall show that each pair of points in a Riemannian manifold 
can be joined by at least one segment provided that the Riemannian manifold is 
complete as a metric space in the metric just defined. This result explains what 
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is "wrong" with the punctured plane. It also explains why spheres have to have 
segments between each pair of points: compact spaces are always complete in any 
metric compatible with the (compact) topology. 

Some work needs to be done before we can prove these general statements. To 
start with, let us dispose of the question of compatibility of topologies: 

Theorem 3.4 The metric topology obtained from the distance d(, ) on a Rie­
mannian manifold is the same as the manifold topology. 

Proof. Fix p E M. We need to show that each open ball B(p, 8 ), 8 > 0, contains 
a neighborhood of p in the manifold topology, and that each open set in the 
manifold topology that contains p contains some B(p, 8), 8 > 0. To check these 
points, choose a coordinate chart <p : U ~ JR.n, p E U. Choose also p > 0 such 
thattheEuclideanclosedball B(cp(p), p) = {cp(p)+v: v E JR.n, lvl _::: p} c cp(U). 
Since <pis a homeomorphism of U onto cp(U), the set V = cp- 1(B(cp(p), p)) is 
open in M with compact closure V = cp-1 B(<p(p), p)). Thus the set W = {v E 

Tx M : x E V, I vI = 1} is a compact subset of T M. Hence, we can find r and R 
with 0 < r < R < +oo such that 

r _::: IDcp (v)l .::: R 

for all v E W. By linearity, 

r ·lvl _::: IDcp(v)l _::: R ·lvl 

for all v E Tx M, x E V. (Here I vI is the norm in the Riemannian metric of 
M, IDcp(v)l is the Euclidean norm.) Thus, for each piecewise smooth curve y : 
[a, b] ~ V we have 

d~(y) _::: l(<p o y) _::: Rl(y). 

Set d'(p, x) = lcp(p)- cp(x)l, x E V, i.e., the Euclidean distance from cp(p) to 
cp(x). Fix q E V, and suppose y E Q(p, q), y : [a, b] ~ M. If y([a, b]) c V, 
then 

d'(p, q) _::: l(<p o y) _::: Rl(y). 

If y([a, b]) doesn't lie entirely in V, define t = max{s : y(.A.) c V, for all .A. _::: s }. 
Then t < b. Also, 

lcp(p)- cp(y(t))l = p 

and 

d'(p, q) .:S p = l((cp · y)lra.tJ) .:S Rl(Yira.tJ) _::: Rl(y). 

So in either case, d'(p, q) _::: Rl(y). On the other hand, the curve y(t) 
cp-1(cp(p) + t(<p(q)- cp(p))) has image in V and so has length l(y) satisfying 

rl(y) _::: l(<p o y) = lcp(q)- <p(p)l = d'(p, q). 
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Since d(p, q)::; £(y), rd(p, q)::; r£(y)::; d'(p, q), we obtain 

r · d(p, q)::; d'(p, q)::; R · d(p, q). 

From these inequalities and the fact that d' is the Euclidean distance on V, the 
comparability of the two kinds of neighborhoods of p follows. D 

This proof shows in effect also that d(p, q) # 0 if p # q. This theorem also 
yields a corollary about completeness. 

Corollary 3.5 If M is a compact manifold and if g is a Riemannian metric on 
M, then (M, d) is a complete metric space, where dis the Riemannian distance 
function determined by g. 

Let us relate these new concepts to our old distance functions: 

Lemma 3.6 Supposing f : U -+ lR is a smooth distance function and U C 

( M, g) is open, then the integral curves for V f are segments on ( U, g). 

Proof. Fix p, q E U and let y(t): [0, b]-+ U be a curve from p to q. Then 

ecr) =fob lrldt 

=fob I (V f) o rl ·lrldtsince IV /I= 1 

~ fobiD(foy)ldt 

= f(q)- f(p). 

Here the last inequality is the Cauchy-Schwartz inequality. In particular, if y = 
V f o y, equality holds in the Cauchy-Schwartz inequality and we have shown that 

d(p, q)::; £(y) = f(q)- f(p). 

On the other hand: f(q)- f(p)::; £(y) for any y, and d(p, q) = inU(y). Thus 
integral curves must be segments. Notice that we only considered curves in U, and 
therefore only established the result for (U, g) and not (M, g). D 

Example 3.7 LetM = S1 xlRandU = S1-{ei0}xR OnU letf(e, r) = e, e E 

(0, 2n). The previous discussion shows that any curve y(t) = (eir, r0), t E /, 

where I does not contain 0 is a segment in U. If, however, the length of I is > n, 
then such curves can clearly not be segments in M. 

The functional distance dF between points in a manifold is defined as 

dF(p, q) = sup{lf(p)- f(q)l : f : M-+ lR has IV /1 ::; 1 on M}. 



5.4 The Exponential Map 117 

FIGURE 5.7. 

This new distance is always smaller than the previously defined distance, and 
one can show as before that it generates the standard manifold topology. When we 
have established the existence of smooth distance functions, it will become clear 
that the two distances are equal if p and q are sufficiently close to each other. 

5.4 The Exponential Map 

For a tangent vector v E TpM, let Yv be the unique geodesic withy (0) = p and 
y(O) = v, and let [0, lv) be the nonnegative part of the maximal interval containing 
0 on which y is defined. Notice that Yav(t) = Yv(at) for all a > 0 and t < lav· In 
particular, lav = a- 1lv. Let Op C TpM be the set ofvectors v such that 1 < lv, 
so that Yv(t) is defined on [0, 1]. Then define the exponential map1 at p by 

So expP maps Op onto a subset of M. In Figure 5.7 we have shown how radial 
lines in the tangent space are mapped to radial geodesics in M via the exponential 
map. 

The individual exp P maps can of course be combined to form a map exp : 
U 0 P -+ M by setting exp I 0 P = exp P. This map exp is called just the exponential 
map. 

The standard theory of ordinary differential equations that we have already 
discussed tells us that the set 0 = U 0 P is open in T M and that exp : 0 -+ M is 
smooth (C00). Each of the sets Op is thus open, and expP : Op -+ M is also coo 
smooth. It is an important fact that exp P is in fact a local diffeomorphism around 
0 E Tp M. The details of this are given in the following: 

Proposition 4.1 If p E M and 0 denotes the zero vector in TpM, then 

1 The name "exponential map" comes from the fact that this mapping coincides with 
exponentiation of matrices when certain special metrics are assigned to Lie groups of 
matrices. This is, from our viewpoint at the moment, only of historical interest. See also the 
exercises to Chapters I and 5. 
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(1) D expP : To(TpM) -+ TpM is nonsingular. Consequently, there is an open 
neighborhood UP ofO in Tp M such that exp P : UP -+ M is a diffeomorphism ofU P 
onto expp(Up), which is an open subset of M, i.e., expP is a local diffeomorphism. 

(2) Define E : 0 -+ M x M by E(v) = (:rr(v), exp v), where :rr(v) is the unique 
point of M such that v E Tn(v)M, i.e. the base point ofv. Then for each p E M and 
withitthezerovector,Op E TpM,DE: T(p.O"J(TM) ::J T(p.O")O-+ T(p.pJ(MxM) 
is nons in gular. Consequently, E is a diffeomorphism of a neighborhood of the zero 
section ofT M onto an open neighborhood of the diagonal in M x M. 

Proof. The proofs of both statements are an immediate application of the inverse 
function theorem, once a crucial observation has been made. This observation is 
as follows: Let /0 : TpM -+ ToTpM be the canonical isomorphism, i.e., /0(v) = 
fr(tv)lr=O· Now we recall that if v E Op, then Yv(t) = Yrv(l) for all t E [0, 1]. 
Thus, 

d 
D expp(lo(v)) = dt expp(tv)lr=O 

d 
= dt Yrv(l)lr=O 

d 
= dt Yv(t)lr=O 

= Yv(O)It=O 

= v. 

So D expP o/0 = the identity map from TpM to TpM. In particular, D expP is 
nonsingular. 

This looks quite formal, almost like sleight of hand. One should think through 
it carefully. Underlying the reasoning here is the "homogeneity property" Yv(t) = 

Yrv(l). Given that, it is natural to think of expp(v) in a sort of polar coordinate 
representation: one goes from pin the "direction" vflvl, supposing v =1- 0, and 
goes a distance oflength I vi. This gives the point expp(v), since 

Yvflvt(lvl) = Yv(l). 

Note, however, that this polar idea makes obscure whether the resulting map is 
smooth at 0, whereas setting expP v = Yv(l) makes 0 no problem. 

Once it is clear that D exp P is nonsingular, and indeed is the identity up to the 
canonical identification of T0(TpM) with TpM, then the second statement of (1) 
follows from the inverse function theorem. 

The proof of (2) is again an exercise in unraveling tangent spaces and identifica­
tions. The tangent space Tr_p.pJ(M x M) is naturally identified with TpM x TPM. 
The tangent space 7(p.Ol(T M) is naturally identified to TpM x To/TpM) ::::: 
TpM X TpM. 

Now, the linear map DE : TpM x TpM -+ TpM x TpM acts as follows at 
(p, Op): it is the identity on the first factor to the first factor, and identically 0 from 
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the second factor to the first, since the first factor image is the base point, which 
by definition does not vary with the second domain factor. The second to second 
map is D expP, i.e., the "identity" (up to isomorphism). Schematically, the map 
DE looks like 

This map is clearly nonsingular. 
The notation here is a bit confusing, and it is worthwhile to pursue the matter 

intuitively. What is happening is that E takes (p, v), v E TpM, to (p, expP v). So 
varying p in the domain varies p in the image but does something unpredictable to 
exp P v. On the other hand, varying v in the domain does nothing to p and changes 
exp P v only. When we vary v at 0, the differential of that is what we have already 
observed to be the identity map, up to canonical identifications. So we get the 
schematic matrix picture already given. 

Now, the inverse function theorem gives (local) diffeomorphisms viaE of neigh­
borhoods of points in T M of the form (p, Op) onto neighborhoods of (p, p) in 
M x M. Since the map E is the identity on the first factor, it is easy to see that these 
local diffeomorphisms fit together to give a diffeomorphism of a neighborhood of 
the zero section in T M onto a neighborhood of the diagonal in M x M. D 

All this formalism yields some results with geometric meaning. First, we get a 
coordinate system around p; namely, by identifying TpM with JR.n via an isomor­
phism, we get 

exp;1 : expp(Up)---+ TpM:::: JR.n. 

Such a coordinate system is called normal (exponential) coordinates at p: they are 
unique up to how we choose to identify Tp M with JR.n. Requiring this identification 
to be a linear isometry gives uniqueness up to an orthogonal transformation oflR.n. 

The second item of geometric interest is the following idea: Thinking about S2 

and great circles (which we know are geodesics), it is clear that we cannot say that 
two points that are close together are joined by a unique geodesic. On S2 there 
will be a short geodesic connection, but there will be other, long ones, too. What 
might be hoped is that points that are close together would have only one geodesic 
connecting them that was short, and that all the others (if any) were a lot longer. 
This is exactly what (2) in the proposition says! As long as we keep q1 and q2 near 
p, there is only one way to go from q1 to qz via a geodesic that isn't very long, i.e., 
has the form expq1 tv, v E Tq 1 M, with I vi near 0. This will be made more useful 
and clear in the next section, where we show that such short geodesics in fact are 
segments. 

Suppose N is an embedded submanifold of M. Let 

TNl_ = {v E TpM: pEN, v E (TpN)l_ C TpM}. 

Here (TpN)l_ =the orthogonal complement of TpN in TpM. So for each p E N, 
TpM = TpN E9 (TpN)l_, an orthogonal direct sum. Define the normal exponential 
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map expj_ by restricting exp to 0 n TN j_ so expj_ : 0 n TN j_ --+ M. As in the 
previous proposition, you can show that D expj_ is nonsingular atOp, p E N. Then 
it follows that there is an open neighborhood U of the zero section in TN j_ on 
which exp_i is a diffeomorphism onto its image in M. Such an image expj_(U) is 
called a tubular neighborhood of N in M, because intuitively it looks like a solid 
tube around N, containing N. 

5.5 Why Short Geodesics Are Segments 

In the last section, we saw that points that are close together on a Riemannian 
manifold are connected by a short geodesic, and by exactly one short geodesic 
in fact. But so far, we don't have any real evidence that such short geodesics 
are segments (in the sense already defined, that their length equals the distance 
between their endpoints). In this section we shall prove that short geodesics are 
segments. Incidentally, several different ways of saying that a curve is a segment are 
in common use: "minimal geodesic," "minimizing curve," "minimizing geodesic," 
and even "minimizing geodesic segment." 

The precise result we want to prove in this section is this: 

Theorem 5.1 Suppose M is a Riemannian manifold, p E M, and£ > 0 is such 
that expP is defined on {v E TpM : I vi < s} and is a diffeomorphism of that set 
onto its image in M. Then 

( 1) For each v E Tp M with I vI < £, the geodesic Yv : [0, 1] --+ M defined by 

Yv(t) = expP(tv) 

is the unique segment from p to expP v. 
(2) Furthermore, if a piecewise smooth cun;e c : [0, 1] --+ M is a segment from 

p to expP v, i.e., ifc(O) = p and c(1) = expp(v), then cis a reparametrization of 
Yv· In other words, for some piecewise smooth, monotone nondecreasingfunction 
h : [0, 1] --+ [0, 1], C = Yv 0 h. 

On U = expp(B(O, £) c TpM) we have the function f(x) = I exp;1(x)l. That 
is, f is simply the Euclidean distance function from the origin on B(O, £) c TP Min 
exponential coordinates. This Euclidean distance is usually denoted by r( v) = I v 1. 
We know that 'Vr = Or = ~(xi oi) in Cartesian coordinates on TpM. The goal here 
is to establish: 

Lemma 5.2 (The Gauss Lemma) \1 f = Or, where Or = D expp(or). 

Let us see how this implies the theorem. First observe that in B(O, r) the integral 
curves for Or are the line segments y(s) = s · 1 ~ 1 of unit speed. The integral curves 

for Or on U are therefore the geodesics y(s) = exp (s · 1 ~ 1 ). These geodesics 

clearly also have unit speed. Thus the Lemma implies that f is a distance function 
on U. In particular we then know that among curves from p to q = exp(x) in 
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U, the geodesic from p to q is the shortest curve. To see that this geodesic is a 
segment in M, we must, however, in addition see that there is no shortcut from 
p to q that leads us outside U. Supposing we had such a curve y(t) : [0, b] with 
I y I = 1, define to < b to be the first value for which y(to) ~ U. Then 

to= C (Yiro,t0J) 

= 1to IJildt 

= 1to I v !I · I Ji I d t 

~ 1to IDf o Jildt 

= lim f (y (t)) - f (y (0)) t-Ho 
=£, 

since f(p) = 0 and the values off converge to£ as we approach oU. Now, we 
already have a curve from p to q oflength < £,soy cannot be a shortcut from p 
to q. 

For the second part of the theorem we first note that the curve c must lie in U. 
We then obtain that 

C(c) = 11
1C(t)ldt 

= 1' IV file (t)l dt 

~ 1' IDf o cl dt 

= f (c (1))- f (c (0)). 

As c was supposed to have length d (p, c (1)) = f (c (1)) - f (c (0)), it must 
follow that c and V f are proportional everywhere. This proves the assertion. Note 
that the discontinuity points of c do not affect this analysis as there are only finitely 
many of them. 

Now to the proof of the Gauss Lemma: We assume that Cartesian coordinates 
have been chosen on TpM, via choosing an orthonormal basis, and then transferred 
to U via expP. They are as usual denoted by (x 1, .•• , xn) with coordinate vector 

fields a,, ... , on. Then we have or= ~xio;, r2 = (x 1)2 + · · · + (xn)2. To show 

thatthis is the gradient for f(x) = J(x 1 ) 2 + · · · + (xn) on (M, g), we must prove 
that df(v) = g(or, v). We already have that df = ~(x 1 dx 1 + · · · + xndxn), but 
we have no knowledge of g, since it is just some abstract metric. First observe that 
the equality needs to be proven only for some convenient basis of vectors at each 
point. 

Guided by the fact that we seem to be working with polar coordinates implicitly, 
let us consider the "frame" {or, Xij} where Xij = -xio1 +xio;, i, j = 2, ... , n, 
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and i < j. Here Xi.i is analogous to 38 . Notice that there are too many vectors for 
them to be linearly independent. However, they always span the tangent space. 

The important feature about this frame is that [Or, X i.i] = 0 for i, j = 1, ... , n. 
Now notice that df(or) = 1, while df(Xij) = 0, so we must show g(or, or)= 1 
and g(or, XiJ) = 0. Since the integral curves to or are unit speed geodesics, we 
alreadyknowthatg(or, or)= 1, so we can concentrate ong(or, XiJ). Now compute 

org(o, Xij) = g('Va,ar. XiJ) + g(or, Y'a,Xi}) 

= 0 + g(or, Y'a,XiJ), since integral curves for or are geodesics, 

= -g(or, 'VxiJor). since [or, XiJ] = 0, 

1 = -2DxiJg(or, or)= 0, since g(or, or)= 1. 

Thus, g(or, XiJ) = 0 ifwe can show that lg(or. XiJ)I ::::: loriiXiJI = IXiJI --+ 0 
as r --+ 0. But we know that XiJ = -xi a 1 +xi ai. Here ai, a 1 are bounded on all 
of U by continuity of D expP and xi, xi --+ 0 as r --+ 0. 

There is an equivalent statement of the Gauss Lemma that asserts that exp P : 

TpM--+ M is a radial isometry g(D expp(or). D expp(v)) = gP (or, v) on TpM. 
A careful translation process of the previous proof shows that this is exactly what 
we have proved. 

Corollary 5.3 If x E M and£ > 0 is such that expx : { v E Tx M : I vI < £} --+ M 
is defined and is a diffeomorphism onto its image, then for each 'A ::::; £ such that 
B(x, 'A) c expp(B(O, t:)), 

expxCB(O, 'A))= B(x, 'A), 

and moreover, 
expxCB(O, 'A)) = B(x, 'A). 

The proof is straightforward and is left as an exercise for the reader. Note, 
however, that such 'A > 0 exist by the equivalence of the metric topology and 
manifold topology. Theorem 5.1 has another important corollary, but first we need 

Proposition 5.4 Suppose a : [a, b] --+ M is a segment. Then it must be true that 
a l[a, /3] is a segment for each [a, /3] C [a, b]. 

Proof. Otherwise, we could alter a by replacing a l[a, /3] with a shorter (piece­
wise smooth) curve from a( a) to a(/3). The result would be a piecewise smooth 
curve from a(a) to a( b) that was shorter than a. 0 

Theorem 5.1 can now be used to show 

Corollary 5.5 Suppose a is a piecewise smooth segment. Then a is a smooth 
geodesic. 
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Proof. The reasoning to see this is slightly delicate. First, we have to recall that 
given x E M, there is a neighborhood U of x and an e > 0 such that for each 
y E U, expy : {v E TyM : lvl < e} -+ M is defined and is a diffeomorphism 
onto its image. With this in mind let us consider the segment a : [a, b] -+ M 
around a value to E (a, b). Choose e and U as in the first part of the paragraph for 
x = a(t0 ). Then choose o > 0 so small that 

(to - o, to + o) c (a, b), 

a([to - o, to+ o]) c u, 
i (al[to- 0, to+ o]) <e. 

With these choices, it follows from Theorem 5.1 thatai[to- o, to +o] is a (C00 ) 

geodesic; here we need only note that al[to -o, t0 +o] is a segment(since a is) and 
that al[to- o, to+ o] is short enough that Theorem 5.1 indeed applies. So now we 
know that in a neighborhood of each to E (a, b) the segment a is a C00 geodesic. 
Thus, aJ(a, b) is a geodesic. The endpoint situation is established by similar (and 
easier) reasoning to complete the proof that al[a, b] is a (C00 ) geodesic. 0 

5.6 Local Geometry in Constant Curvature 

Let us restate what we have done in this chapter so far. Given p E (M, 8) we 
found coordinates near p using the exponential map such that the distance function 
f(x) = d(p, x) top has the formula 

f(x) = J(xl)2 + ... + (xn)2 

in these coordinates. Furthermore we showed that 
1 . 1 . v f = ar = -x1 a; = --x1 a; 
r f(x) 

and is a unit vector field. This was used to show that the integral curves for V f, 
which are exactly the geodesics emanating from p, are segments near p. Let us now 
see what happens when we use polar coordinates r = f and()= (02, ... , en) E 

sn-J on a neighborhood of p. Actually we shall throughout use frames rather than 
coordinates. Thus, we pick an orthonormal frame E.x. a = 2, ... , n, on the unit 
sphere in TpM and define E 1 = ar. Now as in Chapter 3 we extend these vector 
fields radially to all of Tp M. If we denote the dual co frame by oa, a = 2, ... , n, 
then the Euclidean metric on TpM can be written as 

a=2 

When we pull back the metric 8 on M to the tangent space via the exponential 
map, we can write it as 

8 = dr2 + 8af3oaef3, 

8af3 = 8(Ea, Ef3). 
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An important observation to make here is that the choice of polar coordinates (or 
frames) we make happens in Euclidean space and is therefore independent of the 
metric g. In Cartesian coordinates one can easily show that the metric coefficients 
satisfy 

8ii = OiJ + 0 (r2 ) . 

Here, the fact that 8ii (p) = oil simply follows from the fact that the exponential 
map is an isometry at the origin. To see that the first derivative Ok8i.i equals 0 at 
p it clearly suffices to show that 'V a; a .i equals 0 at p. First, note that 'V a; ai at p is 
simply the limit of 'V a, Or along a geodesic emanating from p in the direction of 
8;. Hence, that te1m is zero. For i =1= j we use that away from p we have 

0 = g (Va,8r, ok) 
xi 

=--;: ·g('Va;Or,ak) 

xi (xi) xi xi =-.a; - . 8 (ai, ak) +-.-. 8 (Va;ai, ak) 
r r r r 

xi xi . xi xi xi 
= --. -3-. g (ai, ak) +-.-. g (va;ai, ak). 

r r r r 
Here, the first term in the last line goes to zero as we approach p, thus forcing the 
last term also to converge to zero at p. However, this can happen only if in fact 
g ( 'V a; a i , ak) --+ 0 as x gets close to p. This establishes our claim. 

The equation 
ar (g;i) = 2 (sn (8ki) 

now implies that as r --+ 0 the shape operator goes to +oo. This can also be seen 
by computing the Hessian of t j 2 , and noting that as this function has a critical 
point at p the Hessian is defined independently of the metric and must therefore 
be the identity map at p. 

Theorem 6.1 (Riemann, 1854) If a Riemannian n-manifold (M, g) has con­
stant sectional curvature k, then every point in M has a neighborhood that is 
isometric to an open subset of the space form SJ:. 

Proof. Using polar coordinates, rather than Cartesian coordiantes, around p E 

M, we see that the metric and shape operator look like 

(g.~ (r, e)) = ( 

1 0 

~ ) + 0 (r2}, 
0 r2 

0 0 r2 

(Sap (r, e)) = ( 

0 0 0 

) + 0 (r) 
0 .! 0 r 

0 0 .! 
r 
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Guided by the fact that the rotationally symmetric model dr 2 + sn~ (r) dsL 1 has 
constant curvature k, we see that the matrices 

g,(r, 0) = (t 0 

f~ (r) ). 

sn~ (r) 

0 

0 0 0 

0 sn~(r) 0 
sk (r, ()) = 

snk(r) 

0 0 sn~(r) 
snk(r) 

satisfy the equations: 

a,g=2S·g, 

a,S+s' =-U 0 ... 0) 
k ... 0 
. . . . . . . . . . 
0 ... k 

As these solutions have the same initial values as (gap) and (Sap) when r ~ 0, 
and clearly satisfy the same equations, we can conclude that they must be equal. 
But then the metric in polar coordinates must look like 

g = dr 2 + sn~ (r)ds;_ 1• 

This is the same as the metric for the space form s;: in polar coordinates. So we 
have found a local isometry from a neighborhood around p E M to the desired 
space form using polar coordinates. 0 

5. 7 Completeness 

One of the foundational centerpieces for Riemannian geometry is the Hopf-Rinow 
theorem. This theorem states that all concepts of completeness are equivalent. 
This should not be an unexpected result for those who have played around with 

constant-curvature spaces. For it seems that in these examples, geodesic and metric 
completeness break down in exactly the same places. As with most foundational 
theorems, the proof is fairly nasty, for in these matters one should always watch 
every tum and be careful not to take anything for granted. 

Theorem 7.1 (H. Hopf-Rinow, 1931) The following statements are equiva­
lent: 
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(1) M is geodesically complete, i.e., all geodesics are defined for all time. 

(2) M is geodesically complete at p, i.e., all geodesics through pare defined 
for all time. 

(3) M satisfies the Heine-Bore! property, i.e., every closed bounded set is com­
pact. 

( 4) M is metrically complete. 

Proof. (1) => (2), (3) => (4) are trivial. 
(4) => (1) Recall that every geodesic c : [0, a) ~ M defined on a maximal 

interval must leave every compact set if a < oo. This violates metric completeness 
(c(tJ, t; ~ a is a Cauchy sequence). 

(2) => (3) ConsiderexpP : TpM ~ M. It suffices to show that expp(B(O, r)) = 

B(p, r) for all r (note that c always holds). Consider I = {r : exp(B(O, r)) = 
B(p, r)}. 

(i) We have already seen that I contains all r close to zero. 
(ii) Iisclosed:Ifr; E Iconvergetor,thenletq E B(p,r)andfindq; E B(p,r;) 
converging to q. We can find v; E B(O, r;) with q; = expp(v;). The v; will 

subconvergeto some v E B(O, r), andcontinuityofexpP implies thatexpp(v) = q. 
(You should think about why it is possible to choose the q; 's.) 
(iii) If R E I then R + s E I for all smalls. First, choose a compact set K that 
contains B(p, R) in its interior. Then fix s > 0 such that all points in K of distance 
~scan be joined by a unique geodesic segment. For q E B(p, R + s)- B(p, R) 
select for each~ > 0 a curve Y8 : [0, 1] ~ M with Y8(0) = q, Y8(1) = p, and 
L(y8) ~ d(p, q) + ~. Suppose t8 is the first value such that y8(t8) E oB(p, R). 

If x is an accumulation point for y8(t8), then we must have that R + d(x, q) = 
d(p, x) + d(x, q) = d(p, q). 

Now choose a segment from q to x and a segment from p to x of the form 
expp(tv); see also Figure 5.8. These two geodesics together form a curve from p 

to q of length d(p, q); hence, it is a segment. Consequently, it is smooth and by 
uniqueness of geodesics is the continuation ofexpp(tv) : 0::::: t ::::: 1 + s/IYI· This 

shows that q E expP (B (0, R + s)). 
Statements i through iii together imply that I = (0, oo ), which is what we 

wanted to prove. D 

From part ii of (2) => (3) we get the following result: 

Corollary 7.2 If M is complete in any of the above ways, then any two points in 
M can be joined by a segment. 

Corollary 7.3 Suppose M admits a proper (preimages of compact sets are com­
pact) Lipschitz function f : M ~ JR. Then M is complete. 
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q 

FIGURE 5.8. 

Proof. Establish the Reine-Borel property. 0 

This corollary makes it easy to check completeness for all of our examples. 
In these examples, the distance function can be extended to a proper continuous 
function on the entire space. 

From now on, all Riemannian manifolds will automatically be assumed to be 
connected and complete. 

5. 8 Characterization of Segments 

In this section we will try to determine when a geodesic is a segment and then 
use this to find a maximal domain in TpM on which the exponential map is an 
embedding. These issues can be understood through a systematic investigation of 
when distance functions to points are smooth. 

5.8.1 The Segment Domain 

Fix p E (M, g) and let r = f(x) = d(x, p). We know that f is smooth near p 
and that the integral curves for f are geodesics emanating from p. Since M is 
complete, these integral curves can be continued indefinitely beyond the places 
where f is smooth. These geodesics could easily intersect after some time, so they 
do not generate a flow on M, but just having them at places where f might not 
be smooth helps us understand why f is not smooth at these places. We know 
form Chapter 2 that another obstruction to f being smooth is the possibility of 
conjugate points (we use the notation conjugate points for distance functions to a 
point). 

Let us introduce some terminology: The segment domain is 

seg(p) = {v E TpM: expp(tv): [0, 1]---+ M is a segment}. 
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The Hopf-Rinow Theorem implies that M = expp(seg(p)). We see that seg(p) is 

a closed star-shaped subset of TpM. The interior of seg(p) is denoted by seg0(p) 
and is characterized as 

seg0 ={tv: t E [0, 1), v E seg(p)}. 

This actually tells us that expP is one-to-one on seg0(p) and that any x E 

exp pCseg0(p )) is joined to p by a unique segment. This is because such x have the 
propertythatthereisasegmenta: [0, 1)--'). Mwitha(O) = p, a(to) = x, to< 1. 
Therefore, if a : [0, to] --'). M is another segment from p to x, we could construct 
a nonsmooth segment 

y(s) = { a(s), s E [0, to], 
a(s), s E [to, 1], 

and we know that this is impossible. Let Up denote expp(seg0(p)). On this set 
we have the vector field or = D expp(or ), which is, we hope, the gradient for 

f(x) = d(x, p). Furthermore, f(x) =I exp;1(x)l. From our earlier observations 
we know that f would be smooth on UP with gradient or if we could show that 
expP : seg0(p)--'). Up is a diffeomorphism. We already know that expP is one-to­

one on seg0(p), so we need only to show 

Lemma 8.1 exp P : seg0(p) --'). UP is nonsingular everywhere, or, in other words, 
has no critical points. 

Proof. The set { v E seg0 (p) : D exp P is singular at v} is closed and does not 
containO E TpM.Sowecanfindv E TpMwiththepropertythatexpP: B(O, lvl)n 

seg0(p)--'). B(p, I vi) is a diffeomorphism and D expP is singular at v E TpM. Now 
use Cartesian coordinates on B(p, I vi) via the exponential map and use the same 
notation as before for the metric on B(p, I v 1). Now observe that if we take a tangent 
vector w E T B(O, I vi) n seg0(p), then we can write it as w = wi oi. The image 
of w under D exp P clearly has the same coordinate representation but its length in 
M is 

jDexpP (w)j 2 = 8ijWiwj. 

From this formula it follows in particular that D exp P is singular iff exp P ( v) is 
a conjugate point for f, i.e., the determinant of the Jacobian goes to zero as we 
approach expp(v). This characterization of course presupposes that f is smooth 
on a region that approaches expp(v). 

Now select w = wio; such that w _L v in TvTpM ~ TpM and Dexpp(w) = 
0. Then we know from the Gauss lemma that in M, w is perpendicular to or. 
Furthermore, if we switch to polar coordinates and use Greek indices we have 
(ignoring the spherical coordinate, as it is fixed) 

n 

L 8cxf3 (r) wcx wf> --'). 0 as r --'). I vI . 
cx,f3=2 
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Thus, also, 

But then 
logg (waaa, waaa)--+ -oo as r--+ I vi. 

There must therefore be a sequence of numbers rn --+ I vi such that 

Now use the identity 

2g (wava a waa ) 
a lo (wa a wa a ) = r a' a r gg a. a ( aa aa ) g W a• W a 

2g (wavaaar. waaa) 
g (waaa, waaa) 

2g(S(waaa), waaa) 
g (waaa, waaa) 

to conclude that there is a sequence rn --+ I vi such that the Hessian V2 f = Sr" 
satisfies 

g (Sr" (waaa), waaa) 
--''------_:_ --+ -oo as n --+ oo. 

g (waaa. waaa) 

Now for the contradiction. The curve y(t) = expP(tv) is a segment on some 

interval [0, 1 + e], e > 0. Choose e so small that ](x) = d(x, y(1 +e)) is 
smooth on a ball B (y ( 1 +e), 2e) (which contains y ( 1) ). Then consider the function 
h(x) = f(x) + j(x). From the triangle inequality, we know that h(x) 2:: 1 + e = 

d(p, y(l +e)) everywhere. Furthermore, h(x) = 1 + e whenever x = y(t), t E 

[0, 1 + e]. Thus, h has an absolute minimum along y(t) and must therefore have 
nonnegative Hessian at all the points y(t). However, 

g (V2h (waaa), waaa) 

g (waaa. waaa) 

g ( V2 f ( wa a a) ' wa a a) g ( V 2 j ( wa a a) ' wa a a) 
= + --+ -00 

g (waaa, waaa) g (waaa. waaa) rn---+lvl 

since V 2 j is bounded in a neighborhood of y (1) and the term involving V 2 f goes 
to -oo as rn --+ I vi. 0 

We have now shown that f (x) = d (x, p) is smooth on the open and dense subset 
UP - {p} c M. To complete our investigation, we'll show that f is not smooth 
on M- UP. 
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Lemma 8.2 If v E seg(p) - seg0(p ), then either 
(1) 3w (f v) E seg(p): expp{v) = expp(w), or 
(2) D expP is singular at v. 

Notice that in the first case the gradient or on M becomes undefined at x = 
expp(v), since it would be either D expp(v) or D expp(w), while in the second 
case the HessianS becomes undefined, since it will be forced to have -oo as an 
eigenvalue. 

Proof. Let y(t) = expp(tv). Fort > 1 choose segments a 1(s): [0, 1] ~ M with 
a 1(0) = p, a 1(1) = y(t). Since we have assumed that y : [0, t] is not a segment 
fort > 1 we see that o"t(O) is never proportional to y(O). Now choose tn ~ 1 such 
that 6-1,(0) ~ w E TpM. We have thaU(a1,) = 16-1,(0)1 ~ .£(y : [0, 1] ~ M) = 
IJi(O)I. So either w = y(O) or w is not proportional to y(O). In the latter case, we 
have found the promised w from (1). If the former happens, we must show that 
D expP is singular at v. But if D expP is nonsingular at v, then expP must be an 
embedding near v. Now, 6-1,(0) ~ v = y(O) and expp(G-1,(0)) = expp(tnJi(O)), 
so &1, (0) = tn · v, which implies that y must be a segment on some interval 
[0, tn], tn > 1. This, however, contradicts our choice of y. 0 

The set seg(p) - seg0 (p) is called the cut locus of p in T PM. Thus, being inside 
the cut locus means that we are on the region where f is smooth. Going back to 
our characterization of segments, we have 

Corollary 8.3 Let y : [0, oo) ~ M be a geodesic with y(O) = p. If cut(y(O)) = 
max{t : y I[O.t] is a segment}, then f is smooth at y(t), t < cut(y(O)), but not 
smooth at x = y( cut(y(O))), and the failure off to be smooth at x is because 
exp P : seg(p) ~ M either fails to be one-to-one at x or has singular differential 
there. 

5.8.2 The lnjectivity Radius 

The largest radius c for which expP : B(O, c) ~ B(p, c) is a diffeomorphism is 

called the infectivity radius inj(p) at p. Ifv E seg(p)- seg0(p) is the closest point 
to 0 in this set, then we have that inj(p) = I v 1. It turns out that such v can be 
characterized as: 

Lemma 8.4 (Klingenberg) Suppose v E seg(p) - seg0(v) and that I vi = 

inj(p ). Then either 

(1) There is only one other vector w with exp p( w) 

f,lt=l expp(tw) = -f,lt=I expp(tv), or 

(2) x = expP (v) is a critical value for expP : seg(p) ~ M. 

In the first case, we therefore have exactly two segments from p to x = exp p( v ), 
and they fit smoothly together at x to form a geodesic loop. 
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Proof. Suppose x is a regular value for exp P : seg(p) --+ M and that y1, y2 : 

[0, 1] --+ Mare segments from p to x = expp{v). If y1 (1) i= -y2(1), then we can 
find we TxM such that g(w, Yt(1)}, g(w, Y2(1)) < 0, i.e., w forms an angle> I 
with both y1(1) and y2(1), whence if we take a curve c (s) with c (0) = w we have 
d(p,c(s)) < d(p,x)fors > 0. 

To see this, note that since D expP is nonsingular at Yi(O), we can find vectors 
v; in TpM close to y; (0) such that exp P (Vi) = c (s) (see also Figure 5.9). But then 
the curves t --+ expP (tv;) have length 

lvil =d(p,c(s)) 

< d(p,x) 

= lvl. 

This implies that expP is not one-to-one on seg0(p), a contradiction. D 

5.9 Metric Characterization of Maps 

As promised we shall in this section give some metric characterizations of Rieman­
nian isometries and Riemannian submersions. For a Riemannian manifold (M, g) 
we let the corresponding metric space be denoted by (M, d8 ) or simply (M, d) if 
only one metric is in play. It is natural to ask whether one can somehow recapture 
the Riemannian metric g from the distance d8 • If for instance v, w e TpM, then 
we would somehow like to be able to compute g(v, w) form knowledge of d8 • One 
way of doing this is by taking two curves a, {3 such that a(O) = v and ~(0) = w 
and then observing that 

I vi =lim d (a(t), a(O)), 
t--+0 t 

lwl =lim d ({3(t), {J(O)), 
t--+0 t 

L (v, w) = g (v, w) =lim d (a(t), {3(t)). 
lvllwl r-+O t 
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Thus, g can really be found from d given that we use the differentiable structure 
of M. It is perhaps then not so surprising that many of the Riemannian maps we 
consider have synthetic characterizations, that is, characterizations that involve 
only knowledge of the metric space ( M, d) . 

Before proceeding with our investigations, let us introduce a new type of coordi­
nates. Using geodesics we have already introduced one set of geometric coordinates 
via the exponential map. We shall now use the distance functions to construct dis­
tance coordinates. For a point p E M fix a neighborhood U 3 p such that for each 
x E U we have that B (q, inj(q)) ::> U. Thus, foreachq E U the distance function 
/q(x) = d(x, q) is smooth on U- {q}. Now choose q1, ••• , qn E U- {p}, 
where n =dim M. If the vectors 'V /q1 (p), ... , 'V /q"(p) E TpM are linearly inde­
pendent, the inverse function theorem tells us that cp = (/q1 , ••• , /q") can be used 
as coordinates on some neighborhood V of p. The size of the neighborhood will 
depend on how these gradients vary. Thus, an explicit estimate for the size of V 
can be gotten from bounds on the Hessians of the distance functions. Clearly, one 
can arrange for the gradients to be linearly independent or even orthogonal at any 
given point. 

Theorem 9.1 (Myers-Steenrod, 1939) If (M, g) and (N, h) are Riemannian 
manifolds and cp : M ----+ N a bijection, then cp is a Riemannian isometry if cp is 
distance-preserving, i.e., dh (cp(p), cp(q)) = dg (p, q)for all p, q E M. 

Proof. Let cp be distance-preserving. First let us show that cp is differentiable. Fix 
p E M and let q = cp(p ). Near q introduce distance coordinates (fql' ... , /q") 
and find Pi such that cp (Pi) = qi. Now observe that 

/q, o cp(x) = d (cp(x), qi) 

= d (cp(x), cp(pi)) 

= d(x, Pi)· 

Since d (x, Pi) = d (q, qi), we can assume that the qi 's and Pi's are chosen such 
that gp, (x) = d (x, Pi) are smooth at p. Thus, (fq 1 , ••• , /q") o cp is smooth at p, 
showing that cp must be smooth at p. 

To show that cp is a Riemannian isometry it suffices to check that I Dcp( v) I = I vI 
for all tangent vectors v E T M. For a fixed v E TpM let y(t) = expp(tv). For 
small t we know that y is a constant speed segment. Thus, for small t, s we can 
conclude 

It- sl · lvl = dg (y(t), y(s)) = dh (cp o y(t), cp o y(s)). 

But since cp o y is smooth, we know that 

IDcp(v)l = I d (cp o y) I 
dt t=O 

= lim d11 (cp o y(t), cp o y(O)) 

t---+0 ltl 
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= lim dg (y(t), y(O)) 
HO ltl 

= IJi(O)I 
= lvl. D 

It is an exercise that Riemannian isometries are distance-preserving. Our next 
goal is to find a characterization of Riemannian submersions. Unfortunately, the 
description only gives us functions that are C 1, but there doesn't seem to be a better 
formulation. Let f : ( M, g) ~ ( N, h) be a function. We call f a submetry if for 
every p E M we can find r > 0 such that for each c :::=: r we have f (B (p, c))= 
B (f (p) , £) . Submetries are locally distance-nonincreasing and therefore also 
continuous. In addition, we have that the composition of submetries (or Riemannian 
submersions) are again submetries (or Riemannian submersions). We can now 
prove 

Theorem 9.2 (Berestovski, 1995) Iff: (M, g)~ (N, h) is a surjective sub­
metry, then f is a C 1 Riemannian submersion. 

Proof. Fix points q E N and p E M with f(p) = q. Then select distance 
coordinates (!1, ••• , fk) around q. Now observe that all of the fz· 's are Riemannian 
submersions and therefore also submetries. Then the compositions fi o f are also 
submetries. Thus, f is C 1 iff all the maps fi of are C 1• It therefore suffices to 
prove the result in the case where f: (U c M, g)~ ((a, b), can). 

Let x E M. By restricting f to a small convex neighborhood of x, we can assume 
that the fibers of f are closed and that any two points in the domain are joined 
by a unique geodesic. We now wish to show that f has a continuous unit gradient 
field V f. We know that the integral curves for V f should be exactly the unit 
speed geodesics that are mapped to unit speed geodesics by f. Since f is distance­
nonincreasing, it is clear that any piecewise smooth unit speed curve that is mapped 
to a unit speed geodesic must be a smooth unit speed geodesic. Thus, these integral 
curves are unique and vary continuously to the extent that they exist. To establish 
the existence of these curves we use the submetry property. First fix p E M and let 
c(t): [0, r] ~ (a, b) be the unit speed segment with c(O) = f(p). Let F1 denote 
the fiber off above c(t). Now select a unit speed segment y(t):[O, r] ~ M with 
y(O) = p and y(r) E Fr. This is possible since f(B(p, r)) = B(c(O), r). It is 
now easy to check, again using the submetry property, that c(t) = f o y(t), as 
desired. D 

5.10 Further Study 

There are many textbooks on Riemannian geometry that treat all of the basic 
material included in this chapter. Some of the better texts are [19], [21], [37], [50], 
and [65]. All of these books, as is usual, emphasize the variational approach as 
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being the basic technique used to prove every theorem. However, if one wishes 
to learn about variational calculus, one might as well see how it really should be 
used in connection with the loop space. For this we refer to the excellent text [60] 
on Morse theory by Milnor. 

5.11 Exercises 

1. A Riemannian manifold is said to be homogeneous if the isometry group acts 
transitively. Show that homogeneous manifolds are geodesically complete. 

2. Show that if we have a vector field X on a Riemannian manifold (M, g) 
that vanishes at p E M, then for any tensor T we have L x T = 'V x T at p. 
Conclude that the Hessian of a function is independent of the metric at a 
critical point. Can you find an interpretation of L x T at p? 

3. Suppose we have a rotationally symmetric metric dr 2 + cp2 (r) de 2 • We wish 
to understand parallel translation along a latitude, i.e., a curve with r = a. 
To do this we construct a cone that is tangent to this surface at the latitude 
r =a: dr 2 + (cp(a)+ cp(a)(r- a))2 de 2 . In case the surface really is a 
surface of revolution, this cone is a real cone that is tangent to the surface 
along the latitude r = a. 

(a) Show that in the standard coordinates a, and o8 on these surfaces, 
the covariant derivative 'V aH is the same along the curve r = a. Con­
clude that parallel translation is the same along this curve on these two 
surfaces. 

(b) Now take a piece of paper and try to figure out what parallel translations 
along a latitude on a cone look like. If you unfold the paper it is fiat; 
thus parallel translation is what it is in the plane. Now refold the paper 
and observe that parallel translation along a latitude does not generate 
a closed parallel field. 

(c) Show that in the above example the parallel field along r = a closes 
up iff cp (a) = 0. 

4. Find the Riemannian (pullback) metrics one obtains by projecting the sphere 
and hyperbolic space onto a hyperplane as described at end of the section 
on geodesics. 

5. Show that any Riemannian manifold admits a complete Riemannian metric. 

6. On an open subset U c IRn we have the induced Riemannian metric from 
the Riemannian metric, and also the Euclidean metric restricted to this set. 
Show that the two agree iff U is convex. 
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7. Let f : (M, g) ~ lR be a smooth function on a Riemannian manifold. If 
y : (a, b) ~ M is a geodesic, compute the first and second derivatives 
off o y. Use this to show that at a local maximum (or minimum) for f 
the gradient is zero and the Hessian nonpositive definite (or nonnegative 
definite). Show that f has everywhere nonnegative Hessian iff f o y is 
convex for all geodesics y in ( M, g) . 

8. Let N c M be a submanifold of a Riemannian manifold (M, g). 

(a) The distance from N to x E M is defined as 

d(x, N) = inf{d(x, p): pEN}. 

A unit speed curve (J : [a, b] ~ M with (J (a) E N, (J (b)= x, and 
.e ( (J) = d (x, N) is called a segment from x to N. Show that (J is also 
a segment from N to any (J (t), t < b. Show that (J is perpendicular to 
N. (Hint: find t close to a such that the distance function from (J (t) is 
smooth near (J (a) , then use that this distance function when restricted 
toN has a minimum at (J (a).) 

(b) Show that if N is a closed subspace of M and (M, g) is complete, then 
any point in M can be joined to x by a segment. 

(c) Show that in general there is an open neighborhood of N in M where 
all points are joined toN by segments. 

(d) Show that d ( ·, N) is smooth on a neighborhood of N and that the 
integral curves for its gradient are the geodesics that are perpendicular 
toN. 

9. Compute the cut locus on a square torus JR2 !71}. Compute the cut locus on 
a sphere and real projective space with the constant curvature metrics. 

10. In a metric space (X, d) one can measure the length of continuous curves 
y: [a,b] ~ Mby 

.f.(y) =sup {Ld(y (t;), y Cti+J)): a= t1:::; t2:::; · · ·:::: tk-I:::: tk = b}. 

(a) Show that a curve has finite length iff it is absolutely continuous. 

(b) Show that this definition gives back our previous definition for smooth 
curves on Riemannian manifolds. 

(c) Let y : [a, b] ~ M be an absolutely continuous curve whose length 
is d (y (a), y (b)). Show that y = (J o ({J for some segment (J and 
reparametrization ({J. 

11. Show that in a Riemannian manifold, 

d (expP (tv), expP (tw)) = It I· lv- wl + 0 (t2). 
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12. Show that for a complete manifold the functional distance is the same as the 
distance. What about incomplete manifolds? 

13. Show, using the exercises on Lie groups from Chapters 1 and 2, that on a 
Lie group G with a hi-invariant metric the geodesics through the identity 
are exactly the homomorphisms lR ~ G. Conclude that the Lie group 
exponential map coincides with the exponential map generated by the hi­
invariant Riemannian metric. 

14. Construct a Riemannian metric on the tangent bundle to a Riemannian man­
ifold (M, g) such that n : T M ~ M is a Riemannian submersion and the 
metric restricted to the tangent spaces is the given Euclidean metric. What 
do geodesics look like in this metric? 

15. For a Riemannian manifold ( M, g) let F M be the frame bundle of M. This 
is a fiber bundle n : F M ~ M whose fiber over p E M consists of 
orthonormal bases for TpM. Find a Riemannian metric on F M that makes 
n into a Riemannian submersion and such that the fibers are isometric to 
0 (n). 

16. Show that a bijective Riemannian isometry is distance-preserving. 

17. Show that a Riemannian submersion is a submetry. 

18. (Hermann) Let f: (M, g)~ (N, h) be a Riemannian submersion. 

(a) Show that (N, h) is complete if(M, g) is complete. 

(b) Show that f is a fibration if (M, g) is complete, i.e., for every p E N 
there is a neighborhood p E U such that f- 1 (U) is diffeomorphic to 
U x f- 1 (p). Give a counterexample when (M, g) is not complete. 

19. Show that on a complete manifold, d ( ·, p) is smooth at x iff d ( ·, x) is smooth 
at p. 

20. Take any book on Riemannian geometry, other than this one, and study the 
first and second variation formulae and how they are used. 



6 
Sectional Curvature Comparison I 

We shall first classify spaces with constant curvature. The real subject of this 
chapter is how one can compare manifolds to spaces with constant curvature. We 
shall for instance prove the Hadamard-Cartan theorem, which says that a simply 
connected manifold with sec ::; 0 is diffeomorphic to IRn. There are also some 
interesting restrictions on the topology in positive curvature that we shall inves­
tigate, notably, Synge's theorem, which says that an orientable even-dimensional 
manifold with positive curvature is simply connected. In Chapter 11 we shall deal 
with some more advanced topics in the theory of manifolds with lower sectional 
curvature bounds. 

The results we present here all belong to what people would call the classical 
results for Riemannian manifolds. Aside from work on submanifolds, this body of 
work essentially comprises all that was known prior to 1943. 

6.1 Constant Curvature Revisited 

First let us discuss some general facts about isometries between Riemannian man­
ifolds. 

Theorem 1.1 Suppose we have two isometries cp, 1/1 : (Mn, g) _,. (Nn, h). If 
Dcpp = Dl/1 p· Then cp = 1/1 provided that M is connected. In other words: an 
isometry is uniquely determined by its differential at just one point. 



13 8 6. Sectional Curvature Comparison I 

Proof. We use one of the standard closed-open arguments. Let A = {p E M : 
Dcpp = D'l/fp}. Continuity of Dcp and Do/ implies that A is closed, so we need to 

establish that A is open. Note that A =I= 0 by assumption. Fix q E A and choose 

c > 0 such that 

expq : B(O, c)--+ B(q, c), 

exprp(ql=lfr(q) : B(O, c)--+ B(cp(q), c) 

are diffeomorphisms. We will show that 

cp(x) = exprp(q) oDcpq o exp; 1 onB(q, c). 

Choose y(t) = expq(tv), v E B(O, c), t E [0, 1]. Then we know that y(t) is a 

geodesic and a segment. The curve a(t) = cp o y(t), t E [0, 1] must also be 

a segment. For otherwise, we could find a shorter curve a : [0, 1] --+ N with 

&(0) = a(O) and &(1) = a(1). But then 

l(cp- 1 o a)= t IDcp- 1 o ~&I= t 1~&1 = £(&), 
lo dt lo dt 

since Dcp- 1preserves length of vectors, and we will have found a curve from y(O) 
to y(t) of length£(&) < l(cp o y) = l(y). Now that cp o y is a segment, it must 

also be a geodesic and therefore have the form 

cp o y(t) = exprp(q) (t · :t (cp o y)lr=O) 

= exprp(q)(t · Dcpq · y(O)) 

= exprp(q)(Dcpq(t · y(O))) 

= exprp(q)(Dcpq(exp; 1(y(1))). 

Similar reasoning shows that 

1/f(x) = explfr(q) oD'I/fq o exp;1 onB(q, c). 

Thus, cp = 1/f on B(q, c), as we assumed that D1/fq = Dcpq. 0 

This theorem is clearly false for Riemannian immersions and submersions in 

general, but it remains valid as long as dim M = dim N and cp, 1/1 are Riemannian 

immersions. 
What about the inverse problem? Given any linear isometry L : TpM--+ TqN. 

is there an isometry cp : M --+ N such that Dcpp = L? If we let M = N, this would 

in particular mean that if n is a 2-plane in Tp M and ir a 2-plane in Tq M, then there 

should be an isometry cp : M --+ M such that cp(n) = ir. But this would imply 

that M has constant sectional curvature. The above problem can therefore not be 

solved in general. If we go back and inspect our knowledge oflso(sn. we see that 

these spaces have enough isometries so that any linear isometry L : Tp sz --+ Tq sz 
can be extended to a global isometry cp : Sk --+ sz with Dcpp = L. In some sense 

these are the only spaces with this property, as we shall see. 
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Theorem 1.2 Suppose (M, g) is a Riemannian manifold of dimension n and 
constant curvature k. If M is simply connected and L : TpM---+ TqS'j is a linear 
isometry, then there is a unique isometric immersion called the monodromy map 
cp: M---+ S'j with Dq;p = L. Furthermore, this map is a diffeomorphism if(M, g) 

is complete. 

Before giving the proof, let us look at some examples. 

Example 1.3 Suppose we have an immersion Mn ---+ S'j. Then q; will be one of 
the maps described in the theorem if we use the pullback metric on M. Such maps 
can be arbitrarily ugly when n ~ 2 and need not resemble covering maps in any 
way whatsoever. 

Example 1.4 If U c S'j is a contractible bounded open set with 'dU a nice 
hypersurface, then one can easily construct a diffeomorphism q; : M = S'j -
{pt} ---+ S'j - U. Near the missing point in M the metric will necessarily look 
pretty awful, although it has constant curvature. 

Example 1.5 If M = JR.pn or JR.n - {0}/antipodal map, then M is not simply 
connected and does not admit an immersion into S'j. 

Corollary 1.6 If M is a closed simply connected manifold with constant­
curvature k, then k > 0 and (M, g) = s;. Thus, SP X sq' cpn do not admit 
any constant curvature metrics. 

Corollary 1. 7 If M is geodesically complete and noncompact with constant cur­
vature k, then k ::S 0 and the universal covering is S'j. In particular, S2 x JR2 and 
sn x JR. do not admit any geodesically complete metrics of constant curvature. 

Now for the proof of the theorem. A different proof is developed in the exercises 
to this chapter. 

Proof. We know that M can be covered by sets U a such that each U a admits 
a Riemannian embedding (/)a : U a ---+ S'j. Furthermore, if p E U ao, then we 
can choose (/)a0 such that Dq;aoiP is any predetermined isometry. Also, each CfJa is 
well defined up to an element in Iso(Sk); in other words if CfJa, 1/Ja : Ua ---+ S'j are 
isometries then (/)a o 1/1;; 1 is the restriction of an element in Iso( S'j). The construction 
of cp now proceeds in the same way one does analytic continuation on simply 
connected domains. 

The geodesically complete situation is divided into two cases. 

Case k ::S 0: From the proof of the uniqueness theorem we get that q; maps geodesics 
to geodesics. Completeness tells us that any two points p, q E M can be joined 
by a geodesic y : [0, 1] ---+ M. Now q; o y is also a geodesic in S'j, k ::S 0. We 
know from earlier that geodesics in S'j never intersect themselves, so in particular 
we see that q;(p) -::j:. q;(q). To see that cp is onto, choose p E Im(q;) and q E S'j. 
Thenjoin p and q by a geodesic y : [0, 1]---+ S'j. In M, let y : [0, 1]---+ M be 
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the unique geodesic with y(O) = <p-1 (fi) and Dcp~p-I(J}) (y (0)) = 1,9 (0). This 
geodesic exists by geodesic completeness. Now observe that <p o y is a geodesic 
with the same initial values as 9. Thus, <p o y = 9 everywhere, and <p(y ( 1)) = q 
in particular. 

Case k > 0: Surjectivity is established by the same method, but since geodesics in 
S~ are closed curves, we can't use the same proof for injectivity. In the case where 
M is closed, <p must of course be a covering map. But then it is a diffeomorphism, 
since rr 1 ( s;:) = 0. In the case where M is not closed, we can still show that <p is a 
covering map using that M is geodesically complete. We have to show that each 
q E S~ has a neighborhood which is evenly covered. Let £ < rr j ,jk = diam( Sk), 
and B(q, £) = {x E Sf: : d(q, x) <£}.For p E cp-1(q) let Up= expp(B(O, £) C 

TpM). Arguing as above, we can prove that <p : Up ~ B(q, £)is surjective. 
To check injectivity, fix x, y E UP and join them to p by geodesics Y.t(t), yy(t), 
t E [0, 1], lyx(O)I < £, and IYy(O)I < £.Then <p o Yx and <p o Yy are geodesics 
emanating from q that stay in B(q, £). Since geodesics inS~ either completely 
overlap or only intersect in antipodal points, we see that <p(x) = <p(y) only when 
<p o Yx = <p o Yy. But then D<p (Yx (0)) = D<p (Yy (0)) which implies Yx (0) = Yy (0) 
andx = y. 0 

Corollary 1.8 (Classification of Constant Curvature Spaces, H. Hopf, 1926) 
If( M, g) is a connected, geodesic ally complete Riemannian manifold with constant 
curvature k, then the universal covering is isometric to s;:. 

This result shows how important the completeness of the metric is. A large 
number of open manifolds admit immersions into Euclidean space of the same 
dimension (e.g., sn x JRk) and therefore carry incomplete metrics with zero cur­
vature. Carrying a complete Riemannian metric of a certain type, therefore, often 
implies various topological properties of the underlying manifold. Riemannian ge­
ometry at its best tries to understand this interplay between metric and topological 
properties. 

6.2 Basic Comparison Estimates 

In this section we shall prove most of the comparison estimates that will be needed 
throughout the text. First we prove some abstract results on comparison of matrices. 
Then we extract a geometric corollary, which is used again and again in many 
different contexts. 

Theorem 2.1 (First Comparison Estimate) Suppose we have real numbers k s 
K and a Lipschitz (or absolutely) continuous function A : (0, b) ~ lR which 
satisfies 

. 2 
-K sA+ A s -k. 
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If the initial condition for A is A (0) = ~ + 0 (r), where a > 0, then we have 

for as long as snK (r) > 0. 

Proof. The two inequalities are proved in a similar manner, the only thing to 
watch for is that all functions in play should be defined. This is why we must 
assume that snK (r) > 0. In case K ::: 0, this is always true, while if K > 0, one 
must assume that r < n I v'K. The next thing to observe is that the functions we 
wish to compare with are the solutions to the initial value problems 

5.+A2=-k, 
1 

A (r) = - + 0 (r) , 
r 

0 2 
A+A =-K, 

1 
A (r) = - + 0 (r), 

r 

Thus, we are simply comparing a function satisfying a differential inequality to 
the solution for the corresponding differential equation. The result should there­
fore not come as any surprise, at least as long as we assume that we work with 
differentiable functions. Now, the calculus for absolutely continuous functions is 
virtually the same as for differentiable functions and does not cause any problems 
here. Nevertheless, there are several different ways of approaching this problem 
and we shall mention a few of them. For convenience, we shall concentrate on 
showing only A(r) :=: (sn~(r))/(snk(r)). One recurring problem with the proofs 
is that X(r) and (sn~(r))/(snk(r)) are not defined at r = 0. This can be partially 
averted by considering p, =A -I and (snk(r))/(sn~(r)) instead. Then we have: 

j.L-l~k·p,2 , 

11- (0) = 0. 

However, then we run into the problem that when k > 0 the function 
(snk(r))/(sn~(r)) becomes undefined at n /(2-Jk). This is not really a serious issue, 
but it means that some extra analysis is still necessary. 

Method 1: This is the most general method. We consider the function 

1/J(r)= _k __ A(r) exp _k_+A(t) dr. ( sn' (r) ) (1r (sn' (t) ) ) 
snk(r) 0 snk(t) 
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This function is absolutely continuous with derivative 

1/J' (r) = _k -- A.(r) exp _k- + A.(t) dr ( sn' (r) )' (1r (sn' (t) ) ) 
snk(r) 0 snk(t) 

+ (sn~ (r) -A. (r)) (sn~ (t) +A. (t)) exp ( r (sn~ (t) +A (t)) dr) 
snk(r) snk(t) }0 snk(t) 

= ((sn~ (r))' + (sn~ (t)) 2 

snk(r) snk(t) 

-(A.' (r) +A 2 (r))) exp ( r (sn~ (t) +A. (t)) dr) lo snk (t) 

= ( -k - (A.' (r) + A. 2 (r))) exp ( r ( sn~ (t) + A. (t)) dr) 
} 0 snk (t) 

::: 0, 

thus, showing that 1/J (r) ::: 1/J (0) = 0. The last equality follows from the initial 
values. There is one slight problem with this, namely, the integral is divergent at 
r = 0. This can be handled by integrating from c > 0 instead of integrating from 
0. Then we get that 1/18 (r)::: 1/18 (.s) for allc > 0 and r > c, where 

1/18 (r) = _k - -A (r) exp _k - +A (t) dr . ( sn' (r) ) (lr (sn' (t) ) ) 
snk (r) 8 snk(t) 

Using that J; ((sn~(t))/(snk(t)) + A.(t)) dr = -2log(c) + 0 (1) as c -+ 0, we 
can then conclude that 

which implies that 

1/18 (r) = (sn~ (r) -A (r)) (~ + 0 (1)) 
snk(r) c 

::: 1/!e (c) 

= (sn~ (c) _A (.s)) 
snk (8) 

= 0 (c), 

( ::: ~~ ~ - A (r)) ::: ( ~ + 0 ( 1)) -I 0 ( 8) . 

As the right-hand side goes to zero as£ -+ 0, we get the desired estimate. 

Method 2: This approach will also be used later in Chapter 9. The idea is simply 
that the inequality 

can be separated to yield 
). 

--<-1 
A_2 + k - ' 
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and then integrated to get an inequality for A.. This inequality will then yield the 
desired inequality after inverting the functions. There is some slight nastiness, 
again coming form the problem with A. (r) not being defined at r = 0. 

Method 3: This time we consider the function 

<P (r) = sn~ ((r) -A. (r). 
snk r) 

This function is again absolutely continuous and the derivative satisfies 

¢' (r) = (sn~ (r))' _A.' (r) 
snk (r) 

~ - ( sn~ (r)) 2 - k + A. 2 (r) + k 
snk (r) 

= - ( ::: ~~ ~ + A. (r)) <P (r) . 

Now, both A. and ( sn~ (r)) I ( snk(r)) start out being positive, so if <P becomes negative, 
then some derivative must be negative since 

</J(r) = ¢(0)+ for </J'(t)dt 

=for </J' (t)dt. 

But this contradicts the above inequality for ¢'. The only problem that can occur 

with this argument is that eventually A. + :~:~~i might become negative. By the 
time this happens we have already established that <P is positive, the above in­
equality for ¢' then says that the derivative will remain positive and thus force <P 
to increase. D 

Corollary 2.2 (First Comparison Estimate) Suppose we have a smooth func­
tion S (r) of symmetric matrices such that 

. 2 
-K ·I .:S S + S .:S -k ·I, 

1 
S (r) = - · I + 0 (r) . 

r 

Then 
sn~ (r) ( ) sn~ (r) ____.:.:..._...,... · I < S r < -- · I 
snK (r) - - snk (r) 

for as long as snK (r) > 0. 

Proof. We shall prove each of these inequalities for the smallest and largest 
eigenvalues of S (r). First note that the set of eigenvalues {f... I (r), ... , f...k (r)} 
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varies smoothly with respect to r. The largest and smallest eigenvalues which are 
defined by 

Amax (r) =max {A.J (r), ... , Ak (r)}, 

Amin (r) =min {AJ (r), ... , Ak (r)} 

must therefore be at least Lipschitz continuous. We now claim that 
. 2 
Amax (r) + A111ax (r) :S -k, 

1 
Amax (r) = - + 0 (r), 

r 
. 2 
Amin (r) + Amin (r):::: -K, 

1 
Amin (r) = - + 0 (r) . 

r 
The initial conditions are of course trivial from the initial condition on S (r) . To 
establish the first inequality at a point r0 where Amax (r) is differentiable, select a 
unit eigenvector v for Amax (r) . Then consider the function <P (r) = v1 S (r) v. This 
function is less than A max (r) everywhere, and equal to Amax (r) at r = ro. Thus 
they must have the same derivative at r = r0 . This implies 

).max (ro) + A~ax (ro) = <P' (ro) + </J 2 (ro) 

= v1 (S(ro) + S2 (ro)) v 
:S -v1 kv 

= -k. 

The analysis is similar for the smallest eigevalue. The above theorem now implies 
the desired matrix inequalities. 0 

Note that all of the above results can be adjusted to the situation where A is 
defined at r = 0. The comparison function is easy to find in this case, and the 
similar inequalities can be proved without much effort. The exact statement is as 
follows: 

Theorem 2.3 (Second Comparison Estimate) Suppose we have a smooth func­
tion S (r) of symmetric matrices such that 

Then 

-K ·I :S S + S2 :S -k ·I, 

S(O)=a·I. 

( cs~ (r + c1)) (cs~ (r + cz)) · I < S (r) < ·I 
CSK (r + CJ) - - CSk (r + Cz) ' 

cs~ (ci) cs~ (cz) _..:..::.____ - - a 
CSK (ci) - CSk (cz) -

for as long as (cs~(r + cJ))/(csK(r + CJ)) > 0. 
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Let us now apply these results to one of the most commonly occurring geometric 
situations. Suppose that on a Riemannian manifold (M, g) we have introduced 
polar coordinates (r, 13) around a point p E M. 

Corollary 2.4 Assume that (M, g) satisfies k ::::sec :::: K. Jf(gaf3) represents the 
metric in the polar coordinates and (St) the Hessian off, then we have 

where 

sni (r) :::: (gaf3 (r, 13)) 2~a,f3~n :::: sn~ (r), 

vi< ctK (r):::: (se (r, 13)) 2 ~a.f3~n :::: ~ctk{r), 

~ctk (r) = sn~ (r) = ~csk (r). 
snk (r) snk (r) 

Moreover, for the exponential map at p we have 

. { snK(r)} IDexp; 1 1:::: mm 1, -r- , 

{ snk(r)} 
IDexpP I:::: max 1, -r- , 

Proof. We first need to observe that ( Saf3 (r, 13)) has the initial values 

( 

0 0 
0 1. 

(seer, e))= : ; 

0 0 

Restricting the range of indices to 2 :::: a, fJ :::: n therefore gives us a family of 
matrices to which the previous corollary can be used. Thus, we obtain the desired 
estimate for the Hessian. For the metric itself we need to use the differential 
equation 

a, (gaf3 (r, e)) = 2 ( s~ (r, 13)) (gyf3 (r, 13)) . 

Since Saf3 is zero whenever one of the indices is 1, we can restrict this differential 
equation to the case where the indices are in the range 2 :::: a, fJ :::: n. Using the 
estimates for the Hessian, we then arrive at the differential inequalities 

Using the trick from earlier of considering the largest and smallest eigenvalues for 
(gaf3 (r, e))' we then arrive at the two differential inequalities 

it max ::=:: 2 ~ctk (r) J.L, 

/imin 2: 2vKctK (r)J.L. 
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Using that (gall (r, (}) ) 2~a.ll~n = 0 {r2) , we get that these eigenvalues are both 
zero at r = 0. Integrating these differential inequalities then yields 

iLmax ::S sn~ (r) , 
fLmin ~ sni- (r) . 

This, in turn, gives the desired estimates for (gall (r, 0)) 2~a.ll~n. 
Finally, 

IDexpp (w = waaa)l 2 = gallwawll. 

So using that I D exp p ( ar) I = 1 and that the Euclidean norm of L~=2 wa a a at 

distance r from the origin is given by I L~=2 wa aa I = r. JL~=2 (wa)2 ' we arrive 

at the estimate for IDexppl· The estimate for 1Dexp;1 I is obtained in a similar 
manner. D 

6.3 Riemannian Covering Maps 

In this section we shall use everything we have learned so far, and then some, to 
show that the exponential map exp P : Tp M -+ M is a covering map, provided that 
( M, g) has nonpositive sectional curvature everywhere. This implies, in particular, 
that no compact simply connected manifold admits such metrics. 

6.3.1 Manifolds Without Conjugate Points 

First some generalities: 

Theorem 3.1 If qJ : (M, g) -+ (N, h) is a Riemannian immersion between 
complete Riemannian manifolds of the same dimension, then qJ is a Riemannian 
covering map. 

Proof. The proof follows what we did for geodesically complete manifolds of 
constant positive curvature. First observe that qJ maps geodesics to geodesics and 
is therefore onto. Next fix q E Nand s = inj(p). Then qJ : B(p, s)-+ B(q, s) 
is a diffeomorphism if p E qJ- 1(q), since geodesics in B(p, s) emanating from 
pare mapped to segments in B(p, s) emanating from q, and we know that such 
segments can't intersect. Hence, B(q, s) is evenly covered. D 

Corollary 3.2 Suppose expP : TpM -+ M is nonsingular everywhere (i.e., has 
no critical points); then it is a covering map. 

Proof. By definition expP is an immersion, so on TpM choose the pullback 
metric to make it into a Riemannian immersion. To apply our theorem, we must 
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then check that this new metric on TpM is complete. To see this, observe that the 
metric is geodesically complete at the origin, since straight lines through the origin 
are still geodesics. D 

We can now prove our big result: 

Theorem 3.3 (von Mangoldt, 1881, Hadamard, 1898, Cartan, 1926) lf(M, g) 
is complete, connected, and has sec :S: 0, then the universal covering is diffeomor­
phic to JR.n. 

Proof. Let 0 c TpM be an open star-shaped set such that expP : 0 ---+ M has 
no critical values. We can then pull back the Riemannian metric g to 0 via the 
exponential map. We still have that the Euclidean distance function f (x) = lxl 
is the distance function to the origin with gradient a,.. Using the first comparison 
estimate with sec ::::: 0, we then conclude 

Thus, the pullback metric is always larger than the Euclidean metric on 0. In 
particular, there can't be any conjugate points for f, and 

It then follows that exp P has no critical points in the closure of 0. By continuity 
it can't have any critical point in a neighborhood of this closure either. From this 
we can conclude that expP : TpM ---+ M has no critical values. D 

No similar theorem is true for Riemannian manifolds with Ric ::::: 0, seal ::::: 0, 
since we have Ricciflatmetrics onlR2 x S2 and scalarflatmetrics on JR. x SP, p ~ 1. 
This is interesting to ponder. For we know that the existence of conjugate points is 
related only to the determinant of the Jacobian. And this determinant is governed 
by the Ricci curvature through the equations trl and tr2 from Section 2.4.2. Note 
however that we can only get a inequality for the volume form in one direction: 

So assuming upper Ricci curvature bounds doesn't give us any information on the 
volume form. 

Note that we can use the second comparison estimate to conclude that the Hes­
sian off is always nonnegative. In particular, f must be convex. In fact, on any 
Riemannian manifold a,. (gafJ (r, 8) )z::;a,fJ:::n is positive in a neighborhood of p. 

Thus, distance functions are always locally convex. Below we shall get a more 
exact estimate of the size of such neighborhoods. 
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6.3.2 The Conjugate Radius 

Example 3.4 ConsiderS~, K > 0. If we fix p E S~ and use polar coordinates, 
then the metric looks like dr2 +snids~_ 1 . At distance rr 1 -JK from p we therefore 
hit a conjugate point no matter what direction we go in. 

As a generalization of our result on no conjugate points from above, we can 
show 

Theorem 3.5 If(M, g) has sec~ K, K > 0, then expP: B ( 0, rri-JK) -+ M 
has no critical values. 

Proof. As before, pick an open star-shaped set 0 c B ( 0, rr I -JK) that con­

tains no critical points for exp P • The comparison estimate for the metric in polar 
coordinates with sec ~ K then yields 

Therefore if the closure of 0 is contained in B ( 0, JK) we can argue as 

above. D 

We can now show 

Theorem 3.6 Suppose r satisfies 

(1) r ~ i · inj(x), x E B(p, r), 

(2) r ~ i · JK• K = sup{sec(rr): lf C TxM, x E B(p, r)}. 

Then f(x) = d(x, p) is smooth and convex on B(p, r), and any two points in 
B(p, r) are joined by a unique segment that lies in B(p, r). 

Proof. The first condition tells us that any two points in B(p, r) are joined by 
a unique segment, and that f(x) is smooth on B(p, 2 · r). The second condition 
ensures us that V2 f ::=: 0 on B(p, r). It then remains to be shown that if x, y E 

B(p, r), and y : [0, 1] -+ M is the unique segment joining them, then y c 
B(p, r). For fixed x E B(p, r), define Cx to be the set of y's for which this 
holds. Then x E Cx and Cx is open. If y E B(p, r) n aCx, then the geodesic 
y : [0, 1] -+ M joining x toy must lie in B(p, r) by continuity. Now consider 
<p(t) = f(y(t)). By assumption cp(O), <p(l) < rand cp(t) = g(V2 f · y(t), y(t)) ::=: 
0. Thus, cp is convex, and consequentlymax<p(t) ~ max{cp(O), cp(r)} < r, showing 
that y c B(p, r). D 
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The largest r such that f(x) is convex on B(p, r) and any two points in B(p, r) 
are joined by unique segments in B(p, r) is called the convexity radius at p. 
Globally, conv.rad(M, g)= inf conv.rad.(p). The previous results tell us 

pEM 

{ inj(M,g) n} 
conv.rad.(M,g)2:min 2 , 2.JK ,K=supsec(M,g). 

In nonpositive curvature we simply have 

inj (M, g) 
conv.rad. (M, g)= 2 . 

Now that we can control conjugate points, we also get estimates for the injectivity 
radius. For Riemannian manifolds with sec _:::: 0 the injectivity radius satisfies 

1 
inj(p) = 2 · (length of shortest geodesic loop based at p) . 

This is, of course, because there are no conjugate points whatsoever. On a closed 
Riemannian manifold with sec _:::: 0 we get that 

1 
inj(M) = inf inj(p) = - ·(length of shortest closed geodesic). 

pEM 2 

Since M is closed, the infimum must be a minimum (this is not obvious, since we 
haven't shown that p --+ inj(p) is continuous, but you can prove this for yourself 
using that exp : T M --+ M x M is continuous). If p E M realizes this infimum, 
and y : [0, 1] --+ M is the geodesic loop realizing inj(p), then we can split y 
into two equal segments joining p andy (4). Thus, inj (y (4)) _:::: inj(p), but this 

means that y must also be a geodesic loop as seen from y (4). In particular, it is 
smooth at p and forms a closed geodesic. 

More generally, we have that if(M, g) has sec_:::: K, where K > 0, then 

inj (p) 2: min { ~, ~ · (length of shortest geodesic loop based at p)} , 

inj( M) = inf inj(p) 2: min { ~, ! · (length of shortest closed geodesic)} . 
pEM "'K 2 

These estimates will be used in the next section. 

6.3.3 The Fundamental Group in Nonpositive Curvature 

There are two key results that we can prove. One actually provides a rather complete 
picture of fundamental groups in nonpositive curvature. The interested reader is 
referred to the survey by Eberlein-Hammenstad-Schroeder in [ 41] for more details. 

First we need a little preparation. Let (M, g) be a complete simply connected 
Riemannian manifold of nonpositive curvature. The two key properties we shall use 
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are that any two points in M lie on a unique geodesic, and that distance functions 
are everywhere smooth and convex. 

If, as on Euclidean space, we consider the modified distance function 

1 2 
x ~ fo.p (x) = 2: (d(x, p)) , 

then the Hessian of this function must be bigger than I, which is the Hessian of 
this function on Euclidean space. Thus, the modified distance function is strictly 
convex. We can now generalize convexity slightly (see also Chapter 9) to mean that 
the function is convex or strictly convex when restricted to any geodesic. With this, 
one sees that the maximum of any number of convex functions is again convex (you 
only need to prove this in dimension 1, as we can restrict to geodesics). Given a 
finite collection of points PI, ... , Pk E M, we can then consider the strictly convex 
function 

x ~max {fo.p1 (x), ... fo.pk (x)}. 

In general, any nonnegative strictly convex proper function has a unique minimum. 
To see this, first observe that there must be a minimum. If there were two minima, 
then the function would be strictly convex when restricted to a geodesic joining 
these two minima. But the function would have smaller values on the interior of 
this segment than at the endpoints. The uniquely defined minimum for 

x ~ max {fo.p1 (x), ... fo.pk (x)} 

is denoted by cm{pi, ... , Pk} and called the center of mass of {PI, ... , pd . In 
Euclidean space we have the well-known formula 

The first theorem is concerned with fixed points of isometries. 

Theorem 3.7 (E. Cartan, 1926) lf(M, g) is a complete simply connected Rie­
mannian manifold of nonpositive curvature, then any isometry <p : M ~ M of 
finite order has a fixed point. 

Proof. The idea, which is borrowed from Euclidean space, is that the center of 
mass of any orbit must be a fixed point. So first find the period k of <p, i.e., the 
smallest integer such that <pk = i d. Second, for any p E M consider the orbit 
{ p, <p (p) , ... , <pk- 1 (p)} of p. Then construct the center of mass 

q = em { p, <p (p) , 00 • , <pk -I (p)} . 

We claim that <p (q) = q. This is because the function 

x ~ f (x) =max {fo.p (x), 00. fo.ql-i(p) (x)} 
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has not only q as a minimum, but also q; (q). To see this just observe that since q; 
is an isometry, we have 

f (q; (q)) =max {fo.p (q; (q)), ... fo. 10k-l(p) (q; (q))} 

=~(max {d (q;(q), p), ... , d (q; (q), q;k-i (p)) })2 

1 1 2 
= 2 (max {d (q; (q), q;k (p)), ... , d (q; (q), q;k- (p))}) 

=~(max {d (q, q;k-I (p))' ... ' d (q, q;k-2 (p)) })2 
= f(q). 

Therefore, the uniqueness of minima for strictly convex functions implies that 
q;(q)=q. 0 

Corollary 3.8 If(M, g) is a complete Riemannian manifold ofnonpositive cur­
vature, then the fundamental group is torsion free; i.e., all nontrivial elements have 
infinite order. 

The second theorem requires a little more preparation and more careful analysis 
of distance functions. Suppose again that (M, g) is complete, simply connected 
and of nonpositive curvature. Let us fix a modified distance function: x ----+ fo. P (x) 
and a unit speed geodesic y : lR ----+ M. The Hessian estimate from above implies 
that 

Integrating this twice yields 

(d (p, y (t)))2 :::: (d (p, y (0)))2 + 2g (v fo.p. y (O)) · t + t 2 

= (d (p, y (0)))2 + (d (y (0)' y (t)))2 

- 2d (p, y (O))d (y (O), y (t)) cos L (v fo.p, y (O)). 

Thus, if we have a triangle in M with sides lengths a, b, c and where the angle 
opposite a is a, then 

a2 :::: b2 + c2 - 2bc cos a. 

From this, one can conclude that the angle sum in any triangle is ~ n, and more 
generally that the angle sum in any quadrilateral is ~ 2n. See Figure 6.1. 

Now suppose that (M, g) has negative curvature. Then it must follow that all 
of the above inequalities are strict, unless p lies on the geodesic y. In particular, 
the angle sum in any (nondegenerate) quadrilateral is< 2n. With this we can now 
show 

Theorem 3.9 (Preissmann, 1943) If(M, g) is a compact manifold of negative 
curvature, then any Abelian subgroup of the fundamental group is cyclic. In partic­
ular, no compact product manifold M x N admits a metric with negative curvature. 
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FIGURE 6.1. 

Proof. We think of the fundamental group rrt ( M) as acting by isometries on the 
universal covering M, and fix a E 7ft (M). An axis for a is a geodesic y : lR ---+ M 
such that a (y) c y. Since isometries map geodesics to geodesics, it must follow 
that 

a o y (t) = y (t +a). 

Namely, a translates the geodesic either forward or backward. It is not possible 
for a to reverse the orientation of y so that 

a o y (t) = y ( -t +a), 

because then we would have a fixed point 

a (y (i)) = y (i) · 
The uniquely defined number a is called the period of a along y. 

We now claim two things: first, that axes exist for the given a, and second, that 
they are unique when the curvature is negative. 

To prove the first claim consider the displacement function 

x ---+ d (x, a (x)). 

Since M is compact and a has no fixed points, there must be a point p where 
this function attains its minimum. We now claim that the unique geodesic y going 
through panda (p) is an axis with period d (p, a (p)). Since geodesics on Mare 
uniquely determined by any two points on them, it suffices to check that a 2 (p) lies 
on y. If it doesn't, then take x = y (t), where t E (0, d (p, a (p))), and observe 
that the following triangle inequality must be strict: 

d(x,a(x)) < d(x,a(p))+d(a(p),a(x)) 

= d (x, a (p)) + d (p, y (t)) 

= d (p, a (p)) - t + t 
= d (p, a (p)) , 

thus showing that p is not a minimum for the displacement function. We have in 
Figure 6.2 a pictorial proof, where x is chosen as the midpoint on the segment 
joining p and a (p) . 
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a(p) 

Ill :S II+ II= d (p, a(p)) 

FIGURE6.2. 

FIGURE 6.3. 

To see that axes are unique in negative curvature, assume that we have two 
different axes YI and yz for a. If these intersect in one point, they must, by virtue 
of being invariant under a, intersect in at least two points. But then they must be 
equal. We can therefore assume that they do not intersect. Then pick PI E YI and 
pz E yz, and join these points by a segment a. Then a o a is a segment from a (PI) 
to a (p2 ). Since a is an isometry that preserves YI and y2 , we see that the adjacent 
angles along the two axes formed by the quadrilateral PI. p 2 , a (PI), a (p2) must 
add up torr (see also Figure 6.3). But then the angle sum is 2rr, which is not possible 
unless the quadrilateral is degenerate. That is, all points lie on one geodesic. 

Now pick an element {J E 7ri (M) that commutes with a. First, note that {J 
preserves the unique axis y for a, since 

fJ (y) = fJ (a (y)) 

=a ({J (y)) 

implies that {Joy is an axis for a, and must therefore bey itself. Then, consider 
the group H generated by a, {J. Any element in this group has y as an axis. Thus 
we get a map 
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that sends an isometry to its uniquely defined period. Clearly, this map is a homo­
morphism with no kernel. Now, it is easy to check that any subgroup of lR must 
either be cyclic or dense (like Q). In the present case H c lR must be discrete, 
since it acts discretely on M. D 

It should be noted that the above techniques are, in a way, simply adapted from 
Euclidean space to nonpositive curvature, using the crucial fact that any two points 
lie on a unique "line" and the convexity of distance functions. As already pointed 
out, one can refine these techniques to get much stronger results. 

6.4 Positive Sectional Curvature 

In this section we shall prove some of the classical results for manifolds with 
positive sectional curvature. In contrast with the previous section, it is not possible 
to carry Euclidean geometry over to this setting. So while we try to imitate the 
results, new techniques are necessary. 

6.4.1 The Diameter Estimate 

Our first restriction on the topology of positively curved manifolds is 

Theorem 4.1 Suppose (M, g) is complete and satisfies sec~ k > 0. Then M is 
compact and satisfies diam ( M, g) :::; :fk = diamSk- In particular, M has finite 

fundamental group. 

Proof. In polar coordinates the metric satisfies 

as long as we are inside the cutlocus. This implies that a conjugate point will 
always develop along any geodesic before r becomes n j .Jk. Thus, the diameter 
cannot exceed nj.Jk. Now use that the universal cover has the same curvature 
condition to conclude that it must also be compact. Thus, the fundamental group 
is finite. D 

The history of this result is quite complicated. Bonnet proved it for convex 
surfaces in 1855; Synge in 1925 found the above estimate for the conjugate points, 
but failed to make the diameter bound conclusion partly because the Hopf-Rinow 
theorem wasn't yet available. Myers without giving Synge any credit then in 1935 
established the above result using the Hopf-Rinow theorem. 
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6. 4. 2 Hypersurfaces in Riemannian Manifolds 

For our next applications some discussion on the existence of various hypersurfaces 
is necessary. 

Suppose we have an embedded hypersurface H <:....+ (M, g). We say that 
H <:....+ M is orientable if H has a normal field defined on all of H. Note that all 
hypersurfaces are locally orientable in this sense, regardless of whether Hand/or 
Mare orientable as manifolds. Given an orientable hypersurface H <:....+ (M, g), 
we can find an open subset U c M and a smooth distance function f : U ~ lR 
such that f- 1 (0) =H. This is done by coordinatizing a neighborhood of U using 
the normal exponential map. Namely, fix a unit normal field N to H in M (there 
are only two such fields). Then consider the exponential map 

exp : lR x H ~ M, 

exp(r, x) = expx (r · N (x)). 

We know that at points (0, x) the differential of this map is nonsingular and that 
exp1101 xH is a diffeomorphism. There are therefore neighborhoods V around H x 
{0} c H x lR and U around H c M such that exp: V ~ U is a diffeomorphism. 
On U we can therefore use coordinates (r, x) E V. As was done earlier in the Gauss 
lemma, we can now show that on U the function f (r, x) = r is a distance function 
with gradient ar. Observe that ar = N on H. The shape operator S for H is the 
Hessian of f restricted to T H. If we introduce coordinates x2 , ••. , xn on some 
part of H, then we have our usual coordinates ( x 1 , x2 , ••• , xn) = (r, x2 , ..• , xn). 

The hypersurface is said to be convex (respectively concave), with respect to our 
choice of normal N, if the shape operator is nonnegative (respectively nonpositive ). 
By changing the normal one can obviously change convexity to concavity. Our 
picture is this: If we stand on the surface of Earth and look up into space, then 
the surface of Earth is convex. Usually, the normal that makes H convex is called 
the outward pointing normal, and the opposite direction the downward, or inward 
pointing, normal. 

We know that the level sets of f are equidistant. They are therefore called the 
equidistant hypersurfaces to H. 

The difference between nonnegative and nonpositive curvature in this context 
can now be stated as follows: Suppose we have an orientable hypersurface H <:....+ 

(M, g). The following statements are completely dual: 

(1) If sec ~ 0 and H is concave, then the level sets H, = f- 1 (t) are concave 
fort 2: 0. 

(2) If sec :::; 0 and H is convex, then the level sets H, = f- 1 (t) are convex for 
t 2: 0. 

This does not mean that studying these two classes of Riemannian manifolds is 
dual in any way. Recall that distance functions to a point always have convex level 
sets near the point. This is clearly important in nonpositive curvature and was the 
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key point in the Hadamard-Cartan theorem. In nonnegative curvature, however, 
we gain no information. One of the challenges in nonnegative curvature is to find 
concave surfaces that can be used in a nontrivial way. 

It is, in general, very hard to find hypersurfaces that are everywhere concave. 
Instead, we shall be a little more modest and consider hypersurfaces H that are 
concave on some connected subset A C H. This just means that with our choice 
of normal N the shape operator for H is nonpositive on Tx H for all x E A. 

Suppose we have p E M and a unit vector e E Tp M. Then there is an orientable 
hypersurface H containing p such that the normal at p is e and the shape operator 
at p is identically zero. Let V c TpM denote the orthogonal complement toe, 
and consider the exponential map exp P : V --+ M. In a neighborhood of 0 E Tp M 
this is an embedding whose image will be the desired hypersurface H. Clearly, 
p E H, and e is normal to H. If we select a basis e1, ... , en for TpM, where 
e1 = e and e2, ... , en E V, then the exponential map introduces a coordinate 
system cp (x 1, ... , xn) = expP (I:xie;). The Gauss lemma tells us that the first 
coordinate vector field o1 is a vector field that is perpendicular to H everywhere 
( H consists of geodesics going through p that are tangent to V). Furthermore, 
V v o1 = 0 for all v. The unit normal field is, of course N = o1 I I o1 1. Using that 
okgij = 0 at p, we see also that V N = 0 at p, as desired. 

Suppose now we have a geodesic y : (a, b) --+ M. We shall assume that it is 
either an embedding or a closed geodesic, i.e., can be considered as an embedding 
y : S 1 --+ M. Suppose also we have a unit parallel field E that is perpendicular to y. 
Then we can find an orientable hypersurface H containing y such that the normal 
on y is E and such that the shape operator is identically zero on y. The construction 
is, of course, similar. Namely, let v (y) = { v E Ty(t)M : g (v, y (t)) = 0} be the 
normal bundle to y in M. Define 

exp : v (y)--+ M, 

exp(v) = expy(r) v. 

This is, as usual, a diffeomorphism on a neighborhood V of the zero section in 
v (y) , onto some neighborhood U of y in M. Now we have a section E of the 
normal bundle, so let El. denote the set of vectors in v (y) that are perpendicular 
to E. This is again a vector bundle over y. Then define the hypersurface H = 
exp (El. n V) c U. We can then extend E to a normal field N on H. We now 
have to show that VvN = 0 for all v E Ty(r)M that are perpendicular to E. First, 
note that as in the construction above, we have by the Gauss lemma that V v N = 0 
if v is also perpendicular to y (t). We then have to show that Vy(t)N = 0, but this 
is true by definition, since the restriction of N to y is the parallel field E. This 
finishes the construction. Note that it would not work if E were not parallel. 

In the case of an embedded geodesic, such a parallel field always exists, but 
for a closed geodesic this is not so clear. However, if we fix p = y (t) on y 
and consider parallel translation around y, then we get a linear isometry P : 
TpM --+ TpM. Since y is a closed geodesic, we have that P (y (t)) = y (t). 
Thus, P preserves the orthogonal complement to y (t) in TpM. Now recall that 
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FIGURE6.4. 

if L : JRk -+ JRk is a linear isometry with det L = (-1)k+1 , then L has 1 as 
an eigenvalue (L (v) = vforsomev E IRk). We can use this to construct a closed 
parallel field around y. Namely, 

( 1) If M is orientable and even-dimensional, then parallel translation around 
a closed geodesic preserves orientation and therefore has det = 1. Since the 
complement to y (t) in TpM is odd-dimensional we can therefore find a closed 
parallel field around y. 

(2) If M is not orientable, has odd dimension, and furthermore, y is a nonori­
entable loop (this means that the orientation changes as we go around this 
loop), then parallel translation around y is orientation reversing and therefore 
has det = -1. Now, the complement to y (t) in TpM is even-dimensional, and 
since P (y (t)) = y (t), we have that the restriction of P to this even-dimensional 
subspace still has det = -1. Thus, we get a closed parallel field in this case as 
well. 

In Figure 6.4 we have sketched what happens when the closed geodesic is the 
equator on the standard sphere. In this case there is only one choice for the parallel 
field, and the shorter curves are the latitudes close to the equator. 

6.4.3 The Fundamental Group in Even Dimensions 

Lemma 4.2 (Length comparison) Suppose H ~ (M, g) is an orientable hy­
persurface, with normal N, which is concave on A C H, and suppose sec M =:::: 0 
(respectively > 0 ). Then, for each x E A and sufficiently small 8 > 0 we have 

(g;j (8, x)) ~ (gij (0, x)), 

(gij (8, x)) < (g;j (0, x)). 

In particular, ify : [a, b]-+ A is a curve, then the nearby curves Ys = (8, y (t)) 
have shorter (or strictly shorter) length. 
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Proof. The metric satisfies 

or (gij (r, x)) = 2 · (sn · (gkj (0, x)) 
::::: 0 (or < 0) 

as the Hessian becomes negative (or strictly negative) by the hypothesis on sectional 
curvature. This implies our claim. 0 

We shall now prove an analogue to the Hadamard-Cartan theorem for positively 
curved manifolds. 

Lemma 4.3 (Synge, 1936) Let M be a compact manifold with sec> 0. 

( 1) If M is even-dimensional and orient able, then M is simply connected. 
(2) If M is odd-dimensional, then M is orientable. 

Proof. First let us show that any free homotopy class ofloops contains a shortest 
loop, and that this loop is a closed geodesic. We can consider all curves y : S 1 ~ M 
in a given homotopy class, which are parametrized proportionally to arclength and 
with length ::::: K for some large K. This family is then equicontinuous, and we 
can use the Arzela-Ascoli lemma to extract a sequence Yi ~ y that converges 
uniformly to some curve in this homotopy class, and such that .e (Yi) converges to 
the infimum e of the lengths of all curves in this class. First of all, this infimum 
is positive, because very short curves lie in coordinate charts and are therefore 
contractible. Secondly, the limit curve y is a closed geodesic. For if y is not smooth 
at tor ji (t) i= 0, then we can find a shorter curve from y (t- e) toy (t +e) for 
small e. Thus we could make y shorter within the same homotopy class. On the 
same interval (t - e, t + s) we could then also alter the Yi 's, and get a sequence of 
curves whose lengths are shorter by some fixed amount. This violates that e (Yi) 
converges to e. Finally, y has a well-defined length, which we claim is e. To see 
this, partition S1 into a union of intervals [si, ti] that overlap only on the end points, 
and such that e (YI[s;.t;]) = d (y (si), y (ti )) . We can now use that 

e (Yk) :::: L e (Ykl[s;.t;]) 

::=: L d (Yk (s;), Yk (ti)) 

~ "d (y (si), y (ti)) 
k-+oo L.J 

=l(y). 

Thus, we certainly have e (y) :::::e. The other inequality is trivial. 
The two parts of the proof are similar and go by contradiction. Namely, either 

take the shortest loop in some free homotopy class or find the shortest orientation­
reversing loop in some free homotopy class. In both cases our assumptions are such 
that these loops are closed geodesics, which have perpendicular parallel fields by 



6.4 Positive Sectional Curvature 159 

our discussion above. In positive curvature, however, we know from our length 
comparison result that such closed geodesics have nearby curves that are strictly 
shorter in length. As these nearby curves lie in the same homotopy class, we have 
arrived at a contradiction with the minimality of the length of the closed geodesic 
in this homotopy class. D 

The first important conclusion we get from this result is that while JRP 2 x JRP 2 

has positive Ricci curvature (its universal cover S2 x S2 has positive Ricci cur­
vature), it cannot support a metric of positive sectional curvature. It is, however, 
completely unknown whether S2 x S2 admits a metric of positive sectional cur­
vature. This is known as the Hopfproblem (there is also the other Hopfproblem 
from Chapter 4 about the Euler characteristic). In Chapter 7 we study these is­
sues in greater detail. Recall that above we showed, using fundamental group 
considerations, that no product manifold admits negative curvature. In this case, 
fundamental group considerations did not take us as far, since positively curved 
manifolds are often simply connected, something that never happens for compact 
negatively curved manifolds. 

6.4.4 The Injectivity Radius in Even Dimensions 

We get another interesting restriction on the geometry of positively curved mani­
folds. 

Lemma 4.4 (Klingenberg, 1959) Suppose ( M, g) is an orientable even-dimen­
sional manifold with 0 < sec :::: 1. Then inj (M, g) _:::: Jr. If M is not orientable, 
then inj (M, g) _:::: n /2. 

Proof. The nonorientable case follows from the orientable case, as the orientation 
cover has inj (M, g) ::: rr. From our previous discussion on the injectivity radius, 
we know that the upper curvature bound implies that if injM < n, then it must 
be realized by a closed geodesic. So let us assume that we have a closed geodesic 
y : [0, 2injM] --+ M parametrized by arclength, where 2injM < 2n. Since M 
is orientable and even-dimensional, we know that for all small c > 0 there are 
curves Yr : [0, 2injM] --+ M that converge to y as c --+ 0 and with i (Yr) < 
i (y) = 2injM. The latter condition implies that d = d (-, Yr (0)) is smooth when 
restricted to Yr, since Yr C B (Yr (0) , inj M) . Thus, if Yr Ctr) is the point at maximal 
distance from Yr (0) on Yr, we have that there is a unique segment aE from Ye (0) to 
Yr (tE), and this segment is perpendicular to Yr at y8 Ctr). As c --+ 0 we have that 
tr --+ injM, and thus the segments a< must subconverge to a segment from y (0) 
toy (injM), which is perpendicular toy at y (injM). However, as the conjugate 
radius is_:::: n > injM, andy is a geodesic loop realizing the injectivity radius at 
y (0) , we know that there can be only two segments from y (0) to y (inj M) . Thus, 
we have a contradiction with our assumption n > injM. D 
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FIGURE6.5. 

In Figure 6.5 we have pictured a fake situation, which still gives the correct idea 
of the proof. The closed geodesic is the equator on the standard sphere, and CTe 

converges to a segment going through the north pole. 
A similar result can clearly not hold for odd-dimensional manifolds. In dimen­

sion 3 we have the quotients of spheres S3 fZk for all positive integers k. Here the 
image of the Hopf fiber via the covering map S3 ---+ S3 /Zk is a closed geodesic of 
length (2rr)/ k which goes to 0 ask---+ oo. Also, the Berger spheres {S3 , 8s) give 
counterexamples, as the Hopf fiber is a closed geodesic of length 2rr e. In this case 
the curvatures lie in [ e2 , 4- 3e2 ] • So if we rescale the upper curvature bound to 

be 1, the length of the Hopf fiber becomes 2rr e J 4 - 3e2 and the curvatures will 
lie in the interval [e2 /(4- 3e2), 1]. When e < ,J3j3, the Hopffibers have length 
< 2rr. In this case the lower curvature bound becomes smaller than 1/9. 

A much deeper result by Klingenberg asserts that if a simply connected man­
ifold has all its sectional curvatures in the interval(~, 1], then the injectivity ra­
dius is still ::: rr. This result has been improved first by Klingenberg-Sakai and 
Cheeger-Gromoll to allow for the curvatures to be in [~, 1]. Recently, Abresch­
Meyer showed that the injectivity radius estimate still holds if the curvatures are 
in [ ~ - 1 o-6 , 1] . The Berger spheres show that such an estimate will not hold if 

the curvatures are allowed to be in[~- e, 1]. Notice that the simply connected 
hypothesis is necessary in order to eliminate all the constant-curvature spaces with 
small injectivity radius. 

6.5 Further Study 

Several textbooks treat the material mentioned in this chapter, and they all use vari­
ational calculus. We especially recommend [19] and [50]. The latter also discusses 
in more detail closed geodesics and, more generally, minimal maps and surfaces 
in Riemannian manifolds. 

As we won't have recourse to discuss manifolds of nonpositive curvature again 
some references for this subject should be mentioned here (see, however, the 
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holonomy discussion in Chapter 8). With the knowledge we have right now, it 
shouldn't be too hard to read the books [8] and [6]. For a more advanced account 
we recommend the survey by Eberlein-Hammenstad-Schroeder in [41]. 

6.6 Exercises 

1. Show that in even dimensions only the sphere and real projective space have 
constant positive curvature. 

2. Let ( M, g) be a complete n-manifold of constant curvature k. Select a linear 
isometry L : TpM ~ TvSk.. When k :::::: 0 show that expP oL -I o expfi 1 : 

Sk_ ~ M is a Riemannian covering map. Whenk > 0 showthatexpP oL-Io 

exp fi 1 : Sk_ - {- jj} ~ M extends to a Riemannian covering map Sk_ ~ M. 
(Hint: Use that the differential of the exponential maps is controlled by the 
metric, which in tum can be computed when the curvature is constant. You 
should also use the conjugate radius ideas presented in connection with the 
Hadamard-Cartan theorem.) 

3. A Riemannian manifold is said to be k-point homogeneous if for all pairs 
of points (PI, ... , Pk) and (qt, ... , qk) withd (Pi. Pj) = d (qi, qj) there is 
an isometry cp with cp (Pi) = qi. When k = 1 we simply say that the space 
is homogeneous. 

(a) Show that a homogenous space has constant scalar curvature. 

(b) Show that if k > 2 and (M, g) is k-point homogeneous, then M is also 
(k- I)-point homogeneous. 

(c) Show that if(M, g) is two-point homogeneous, then (M, g) is an Ein­
stein metric. 

(d) Show that if(M, g) is three-point homogeneous, then (M, g) has con­
stant curvature. Classify all three-point homogeneous spaces. 

4. Show that if G is an Abelian group that is the subgroup of the fundamental 
group of a manifold with constant curvature, then either the manifold is flat 
or G is cyclic. 

5. Let M ~ N be a Riemannian k-fold covering map. Show volM = k · volN. 

6. Starting with a geodesic on a two-dimensional space form, discuss how the 
equidistant curves change as they move away from the original geodesic. 

7. Introduce polar coordinates (r, e) E (0, oo) X sn-J on a neighborhood U 
around a point p E (M, g). If (M, g) has sec :::: 0 (sec:::::: 0), show that 
any curve y (t) = (r (t), e (t)) is shorter (longer) in the metric g than in the 
Euclidean metric on U. 
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8. Around an orientable hypersurface H ~ (M, g) introduce the normal co­
ordinates (r, x) E lR x H on some neighborhood U around H. On U we 
have aside from the given metric g, also the radially flat metric d t 2 + g0 , 

where g0 is the restriction of g to H. If M has sec ::=: 0 (sec :s 0) and 
y (t) = (r (t), x (t)) is a curve, where r ::=: 0 and the shape operator is :S 0 
(::=: 0) at x (t) for all t, show that y is shorter (longer) with respect tog than 
with respect to the radially flat metric dt2 + g0 . 

9. An isometric immersion (A, h) '1--> (M, g) is said to be totally geodesic iff 
the connection on(A, h) is the same as the restriction of the connection from 
M to A. Show that an immersion is totally geodesic iff all geodesics in A 
are mapped to geodesics in M. 

10. (Frankel) Let M be ann-dimensional Riemannian manifold of positive cur­
vature and A, B two totally geodesic submanifolds. Show that A and B 
must intersect if dim A + dim B ::=: n - 1. Hint: assume that A and B do 
not intersect. Then find a segment of shortest length from A to B. Show that 
this segment is perpendicular to each submanifold. Then use the dimension 
condition to find a parallel field along this geodesic that is tangent to A and 
B at the endpoints to the segments. Finally use the length comparison to get 
a shorter curve from A to B. 

11. Generalize Preissmann's theorem to show that any solvable subgroup of the 
fundamental group must be cyclic. 

12. Let ( M, g) be an oriented manifold of positive curvature and suppose we 
have an isometry cp : M --+ M of finite order without fixed points. Show 
that if dim M is even, then cp must be orientation reversing, while if dim M 
is odd, it must be orientation preserving. 

13. Use an analog ofCartan's result on isometries of finite order in nonpositive 
curvature to show that any closed manifold of constant curvature = 1 must 
either be the standard sphere or have diameter :s n /2. Generalize this to 
show that any closed manifold with sec ::=: 1 is either simply connected or 
has diameter :S n /2. In Chapter 11 we shall show the stronger statement 
that a closed manifold with sec ::=: 1 and diameter > n /2 must in fact be 
homeomorphic to a sphere. 



7 
The Bochner Technique 

One of the oldest and most important techniques in modem Riemannian geometry 
is that of the Bochner technique. In this chapter we shall prove some of the classical 
theorems Bochner proved about obstructions to the existence of Killing fields and 
harmonic 1-forms. We also explain how the Bochner technique extends to forms. 
This will in the next chapter lead us to a classification of compact manifolds with 
nonnegative curvature operator. To establish the relevant Bochner formula for 
forms, we have used the language of Clifford multiplication. It is, in our opinion, 
much easier to work consistently with Clifford multiplication, rather than trying 
to keep track of wedge products, interior products, Hodge star operators, exterior 
derivatives, and their dual counterparts. In addition, it has the effect of preparing 
one for the world of spinors, although we won't go into this here. In the last section 
we give a totally different application of the Bochner technique. In effect, we try 
to apply it to the curvature tensor itself. The outcome will be used in the next 
chapter, where manifolds with nonnegative curvature operator will be classified. 
The Bochner technique on spinors is only briefly mentioned in this chapter, but 
Appendix C is devoted to this subject. 

It should be noted that we have not used a unified approach to the Bochner 
technique. There are many equivalent approaches and we have tried to discuss a 
few of them here. It is important to learn how it is used in its various guises, as one 
otherwise could not prove some of the results we present. We have for pedagogical 
reasons used Stokes' theorem throughout rather than the maximum principle. The 
reason is that one can then cover the material without any knowledge of geodesic 
geometry (Killing fields being the only exception to this rule). The maximum 
principle in the strongest possible form is established and used in Chapter 9. The 
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interested reader is encouraged to learn about it there, and then go back and try it 
out in connection with the Bochner technique. 

The Bochner technique was, as the name indicates, invented by Bochner. How­
ever, Bernstein knew about it for harmonic functions on domains in Euclidean 
space. Specifically, he used 

~~ IY'ul2 = JV2uJ 2
, 

where u : Q c ffi.n -+ ffi. and Llu = 0. It was really Bochner's genius that realized 
that when the same trick is attempted on Riemannian manifolds, a curvature term 
also appears. Namely, for u : (M, g) -+ ffi. with Llgu = 0 one has 

~~ IY'ul2 = JV2uJ 2 + Ric('Vu, 'Vu). 

With this it is clear that curvature influences the behavior of harmonic functions. 
The next nontrivial step Bochner took was to realize that one could try to compute 
~! lwl2 for any harmonic form wand then try to get information about the topology 
of the manifold. The key ingredient here is of course Hodge's theorem, which states 
that any homology class can be represented by a harmonic form. Yano further 
refined the Bochner technique, but it seems to be Lichnerowitz who really put 
things into gear, when around 1960 he presented his formulae for the Laplacian on 
forms and spinors. After this work, Berger, D. Meyer, Gallot, Gromov-Lawson, 
Witten, and others have all made significant contributions to this tremendously 
important subject. 

7.1 Killing Fields 

We shall see how Killing fields interact with curvature in various settings. But first 
we need to establish some general properties. 

7.1.1 Killing Fields in General 

A vector field X on a Riemannian manifold (M, g) is called a Killing field if the 
local flows generated by X act by isometries. This obviously means that X leaves 
g invariant. In other words, X is a Killing field iff Lxg = 0. 

Proposition 1.1 X is a Killingfield iffv -+ Y'vX is a skew symmetric (1, I)­
tensor. 

Proof. Note that 

(Lxg)(Y, Z) = Lxg(Y, Z)- g(LxY, Z)- g(Y, LxZ) 

= ('Vxg)(Y, Z) + g('VyX, Z) + g(Y, 'VzX) 

= g('VrX, Z) + g(Y, Y'zX). 
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Thus, Lxg = 0 iff g("VyX, Z) = -g(Y, "VzX) for allY, Z. D 

Proposition 1.2 For a given p E M, a Killingfield X is uniquely determined by 
X (p) and ("V X)(p ). 

Proof. The equation L x g = 0 is linear in X, so the space of Killing fields is a 
vector space. It therefore suffices to show that if X (p) = 0 and (V X)(p) = 0, then 
X = 0 on M. Using an open-closed argument, we can reduce our considerations 
to a neighborhood of p. 

Let ({J1 be the local flow for X near p. The condition X (p) = 0 implies that 
({J1 (p) = p for all t. Thus D({J1 : Tp M --+ Tp M. We claim that also D({J1 = I. This 
follows from the fact that X commutes with any vector field at p: 

[X, Y] (p) = "Vx(p)Y- "Vr(p)X 

= "VoY- 0 = 0. 

As the flow diffeomorphisms act by isometries, we can conclude that they must 
be the identity map, and hence X = 0 in a neighborhood of p. D 

Proposition 1.3 The set of Killing fields iso(M, g) forms a Lie algebra of di­
mension ~ ((n + l)n)/2. Furthermore, if M is compact, then iso(M, g) is the Lie 
algebra oflso(M, g). 

Proof. Note that L[x,r] = [Lx, Lr ]. So if Lxg = Lyg = 0, we also have that 
L[x,r]g = 0. Thus, iso(M, g) does form a Lie algebra. We have just seen that the 
map X --+ (X(p), ("V X)(p)) is linear and has trivial kernel. So 

dim(iso(M, g)).::::; dim TpM 

+dim( skew-symmetric transformations of TpM) 
n(n - 1) (n + l)n 

=n+ = . 
2 2 

The last statement is not easy to prove. Observe, however, that since M is 
compact, each vector field generates a global flow on M. Each Killing field there­
fore generates a !-parameter subgroup oflso(M, g). If we take it for granted that 
Iso(M, g) is a Lie group, then the identity component is of course generated by 
the !-parameter subgroups, and each such group by definition generates a Killing 
field. 0 

With a little more work one can prove the previous theorem for complete man­
ifolds as well. 

Recall that dim(Iso(Sk')) = ((n + l)n)/2. Thus, all space forms have maximal 
dimension for their isometry groups. If we consider other complete spaces with 
constant curvature, then we know they look like srI r' where r c Iso( sr) acts 
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freely and discontinuously on Sf. The isometries on the quotient Sf I r can now be 
identified with those isometries oflso(Sf) that commute with all elements in r. At 
least when k -:f. 0, we know that all elements in lso(SJ:) are linear maps on a vector 
space. Now, two linear maps commute iff they are simultaneously diagonalizable. 
The dimension of lso( s;: I r) is therefore heavily reduced unless the elements of r 
are homotheties. Thus, r can essentially only be {I, -I}. But -I acts freely only 
on the sphere. Thus, only one other constant-curvature space form has maximal 
dimension for the isometry group, namely JRpn. 

More generally, one can prove that if (M, g) is complete and dim Iso(M, g) = 
(n(n + 1))12, then (M, g) has constant curvature. To see this, we need a new 
construction. The frame bundle F M of(M, g) is the set {(p, e1, ... , en) : p E M 
and e1, ••• , en forms an orthonormal basis for TpM}.Itis not hard to see thatthis is 
a manifold of dimension (n(n + l))/2. Any isometry cp : M---+ M induces a map 
ofF M by sending (p, e1, ... , en) to (cp(p), Dcpe1, ... , Dcpen). By the uniqueness 
theorem for isometries, we see that the induced action of Iso( M) on F M cannot 
have any fixed points. So Iso( M) can be thought of as a submanifold of F M. In 
the case where M is compact, we therefore see that Iso(M) acts transitively on 
FM ifdimlso(M) = (n(n + 1))12. (This is also true evenifwe only assume that 
(M, g) is complete.) Thus any two orthonormal frames on M can be mapped to 
each other by an isometry of M. This clearly shows that M has constant curvature. 

7.1.2 Killing Fields in Negative Ricci Curvature 

We shall use the language of norms of tensors on Riemannian manifolds. For a 
( 1, 1 )-tensor T the norm is 

IT1 2 = tr(T o T*), 

where T* is the adjoint. In case Tis skew-symmetric or skew-adjoint, we therefore 
have 

ITI 2 = -tr (T2). 

Recall also from Chapter 2 the second covariant derivative Y'~. wX = Y'v Y'w X -
Y'vvwX, whichistensorialin V and W. 

Proposition 1.4 Let X be a Killing field on (M, g) and consider the function 
f = ig(X, X) = t IXI2. If we define a skew-adjoint (1, I)-tensor by T (v) = 
Y'vX, then 

( 1) Y' f = - T (X) = - Y' x X. 
(2) V'2 f = -T2 - Y'xT- Rx. 
(3) !lf = -Ric(X, X)+ IT12 = -Ric(X, X)+ IY'XI2 . 

Proof. To see (1), observe that 

g (V, V' f)= Dv f 
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= g(VvX, X) 

= - g(V, VxX). 

For (2), we compute 

V2 f (V) = Vv (-VxX) 

= -R(V, X) X- VxVvX- V[V,x]X 

= -Rx (V)- VxVvX + VvxvX- VvvxX 

= -Rx (V)- ToT (V)- VxVvX + VvxvX 

= -Rx (V)- ToT (V)- Vi,vX. 

For (3) we just take traces of (2). The problem is that the last quantity should 
be traceless. Note, however, that it is simply (V x T) (V). As T itself is skew­
symmetric, the covariant derivative should of course also be skew-symmetric. A 
direct calculation shows this: 

g(-VxVvX+VvxvX. V) = -g(VxVvX, V)+g(VvxvX, V) 

= -g(VxVvX, V)-g(VvX, VxV) 

= -Vxg(VvX, V) 

= -VxO 

=0, 

where we used skew symmetry of V X for the second and penultimate equali-
ti~. D 

Theorem 1.5 (Bochner, 1946) Suppose ( M, g) is compact, oriented, and has 
Ric ::: 0. Then every Killing field is parallel. Furthermore, ifRic < 0, then there 
are no nontrivial Killingfields. 

Proof. If we define f = ~ IX 12 for a Killing field X, then using Stokes' theorem 
and the condition Ric ::: 0 gives us 

0 = L !:if · dvol 

= !M ( -Ric(X, X)+ IV X1 2) · dvol 

2: /MIVXI2 ·dvol 

::: 0. 

Thus IV X I = 0 and X must be parallel. 
If, in addition, Ric < 0, then Ric( X, X)= 0 iff X = 0. Since X is parallel, we 

have 0 =!:if::: Ric(X, X)::: 0, which shows that X= 0. D 



168 7. The Bochner Technique 

Corollary 1.6 With (M, g) as in the theorem, we have dim(iso(M, g)) 
dim(Iso(M, g)) ::S dim M, and lso(M, g) is .finite ifRic(M, g)< 0. 

Proof. Since any Killing field is parallel, the linear map: X --+ X (p) from i( M, g) 
to Tp M is injective. This gives the result. For the second part observe that Iso( M, g) 
is compact, since M is compact, and the identity component is trivial. 0 

Corollary 1.7 With (M, g) as before andy = dim(iso(M, g)), we have that the 
universal covering splits isometrically as M = JRP x N. 

Proof. On M there are p linearly inEependent parallel vector fields, which we 
can assume to be orthonormal. Since M is simply connected, each of these vector 
fields is the [!"adient field for a distance function. Thus we have a Riemannian 
submersion M --+ lR' with totally geodesic fibers (Hessian = 0 for the distance 
functions). This gives the desired splitting. 0 

The result about nonexistence of Killing fields can actually be slightly improved 
to yield 

Theorem 1.8 Suppose (M, g) is a compact manifold with quasi-negative Ricci 
curvature, i.e., Ric ::S 0 andRic(v, v) < Oforall v E TpM- {O}forsome p EM. 
Then (M, g) admits no nontrivial Killingjields. 

Proof. We already know that any Killing field is parallel. Thus a Killing field 
is always zero or never zero. If the latter holds, then Ric(X, X)(p) < 0, but this 
contradicts 0 = b.f(p) = -Ric(X, X)(p) > 0. D 

This theorem has been generalized by X. Rong to a more general statement, 
which states that a closed Riemannian manifold with negative Ricci curvature 
can't admit a pure F -structure of positive rank (see [74] for the definition ofF 
structure and proof of this). Given a closed Riemannian manifold, this essentially 
means that we have a finite covering of open sets Ui, and on each open set Ui there 
is a nowhere vanishing Killing field Xi. Furthermore, these Killing fields commute 
whenever they are defined at the same point, i.e., [Xi, X j] = 0 on Vi n Uj. The 
idea of the proof is then to consider the function 

If only one vector field is given on all of M, then this reduces to the function 

f = g(X, X) 

that we considered above. For the above expression one must show that it has a 
similar Bochner formula, and also that it isn't too discontinuous. 
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7.1.3 Killing Fields in Positive Curvature 

We can actually also say something about Killing fields in positive sectional cur­
vature. Recall that any vector field on an even-dimensional sphere has a zero, 
since the Euler characteristic is 2 ( f= 0). At some point H. Hopf conjectured that 
in fact any even-dimensional manifold with positive sectional curvature has pos­
itive Euler characteristic. If the curvature operator is positive, this is certainly 
true. Thus, the conjecture holds in dimension 2. From Chapter 6 we know that 
lnii < oo. In dim = 4, therefore, we have H1(M, JR.) = H3(M, JR.) = 0, and 
hence x(M) = 1 +dim H2(M, JR.)+ 1 ~ 2. In higher dimensions we have only 
the following partial justification for the Hopf conjecture: 

Theorem 1.9 (Berger, 1965) If(M, g) is a compact, even-dimensional mani­
fold of positive sectional curvature, then every Killing field has a zero. 

Proof. Consider as before f = ! I X 12• If X has no zeros, f will have a positive 
minimum at some point p EM. Then of course V2 f(p) ~ 0. We also know that 

g(V2 f(V), V) = -g (VvvxX, V)- g (R (V, X) X, V)- g (Vk,vX. V) 

=g(VvX, VvX)-g(R(V,X)X, V), 

and by assumption, g(R(V, X)X, V) > 0 if X and V are linearly independent. 
Using this, we shall find V such that g(V2 f(V), V) < 0 near p, thus arriving at 
a contradiction. 

Recall that the linear endomorphism v ~ VvX is skew-symmetric. Further­
more, (VxX)(p) = 0, since V f(p) =- (VxX)(p) = 0, and f had a minimum 
at p. Thus, we have a skew-symmetric map TpM ~ TpM with at least one zero 
eigenvalue. But then, even dimensionality of TpM ensures us that there must be 
at least one more zero eigenvector v E TpM linearly independent from X. Thus, 

g(V2 f(v), v) = g(VvX, VvX)- g(R(v, X)X, v) 

= -g(R(v, X)X, v) < 0. D 

In odd dimensions we get completely different information from the existence 
of a nontrivial Killing field. 

Theorem 1.10 (X. Rong, 1995) If a closed Riemannian n-manifold ( M, g) ad­
mits a nontrivial Killing field, then the fundamental group has a cyclic subgroup 
ofindex ::S c(n). 

The reader should consult [73] for a more general statement and the proof. 
Observe, however, that should such a manifold admit a free isometric action by 
S1, then the quotient M 1 S1 is a positively curved manifold as well (by the O'Neill 
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formula from the exercises of Chapter 2). Thus, we have a fibration, 

si ---+ M 

In case M is even-dimensional, we know that 7ri (M) is either trivial or Z2 . So in 
this case there is nothing to prove. Otherwise, the quotient is even-dimensional. 
The long exact sequence for the homotopy groups is thus 

Thus, rri (M) must either be a finite cyclic group or contain a finite cyclic subgroup 
of index 2. 

7.2 Hodge Theory 

The reader who is not familiar with de Rham cohomology might wish to consult 

Appendix A before proceeding. 
Recall that on a manifold M we have the de Rham complex 

do dl dn-l 
0 ---+ Q 0 (M) ---+ QI (M) --+ Q 2 (M) ---+ · • • ---+ gn (M) ---+ 0, 

where Qk(M) denotes the space of k-forms on M and dk : Qk(M) ---+ Qk+I (M) is 

exterior differentiation. The de Rham cohomology groups 

Hk(M) = ker(dk) 
Im(dk-I) 

compute the real cohomology of M. We know that H 0(M)::::: lR if M is connected, 
and Hn(M) = lR if M is orientable and compact. In this case we have a pairing, 

Qk(M) X gn-k(M) ---+ R 

( w 1 , wz) ---+ L w I 1\ wz . 

This pairing induces a nondegenerate pairing Hk(M) X nn-k(M) ---+ lR on the 
cohomology groups. The two vector spaces Hk(M) and nn-k(M) are therefore 

dual to each other and in particular have the same dimension. 
Now suppose M is endowed with a Riemannian metric g. Then each of the 

spaces Qk(M) is also endowed with a pointwise inner product structure: Qk(M) x 
Qk(M) ---+ Q 0(M). This structure is obtained by declaring that if EI, ... , En is 
an orthonormal frame, then the dual coframe a I, ... , an is also orthonormal, and 

furthermore that all the k-forms ai" 1\ . .. 1\ aik , i I < · · · < ik. are orthonormal. A 
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different way of introducing this inner product structure is by first observing that 

k-forms of the form /o · d/1 1\ ... A dfk. where fo, / 1, ... fk E Q0(M), actually 
span Qk(M). The product on Q0(M) is obviously just the normal multiplication 
of functions. On Q 1(M) we declare that 

gUo· d/1, hodh1) = /o · ho · g (d/1, dh1) 

= fo · ho · g (V /1, V hI), 

and on Qk(M) we define 

gUo · d/1 1\ ... 1\ dfk> hodh1 A ... A dhk) 

= fo ·hog (d/1 1\ ... 1\ dfk> dh1 1\ ... A dhk) 

= fo · ho det (g (df;, dhi)I~i.j:s_k) 

= fo. ho det (g (v /;, Vhi)I:s.i.j~k). 

By integrating this pointwise inner product we get a real inner product on Qk( M): 

Using this inner product we can define the Hodge star operator 

by the formula 

(*WJ, w2) = !M g(*WJ, W2)dvol = !M WI 1\ W2· 

The Hodge operator gives us an isomorphism* : Hk(M) ~ Hn-k(M), which de­

pends on the metric g. The fact that it is an isomorphism comes from the following 
result: 

Lemma 2.1 ThesquareoftheHodgestar*2 : Qk ~ Qk is simply multiplication 
by ( -ll(n-k). 

Proof. The simplest way of showing this is to prove that if 0' 1 , ••• , un is a 
positively oriented orthonormal coframe then 

( I k) k+l n * 0' f\ .. •f\0' =0' f\ .. ·f\0'' 

This follows easily from the above definition of *• the fact that the forms uik+l 1\ 

· · · 1\ ui•, ik+I < · · · < in are orthonormal, and that u 1 1\ · · · 1\ un represents the 
volume form on (M, g). D 
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Using the inner product structures on Qk(M), we can define the adjoint 8k 
Qk+ 1 ( M) -+ Qk ( M) to dk via the formula 

(8kWJ, Wz) = (WI, dkwz). 

Using the definition of the Hodge star operator, we see that 8 can be computed 
from d as follows: 

Lemma 2.2 8k = ( -1 )(n-k)(k+ I l * dn-k-1 *· 

Proof. If w1 E Qk+ 1(M), wz E Qk(M), then 

(8kw1, wz) = (wi, dkwz) 

= ( -1i(n-k) (**WI, dkwz) 

= ( -1 )k(n-k) L *WI 1\ dk Wz 

= (-l)n-k-l+k(n-k) JM dn-I(*WJI\Wz) 

-(-It-k-l+k(n-k) L(dn-k-1 *WJ)/\Wz 

= ( -lt-k-l+k(n-k) { *WI 1\ Wz 
laM 

+ ( -l)n-k+k(n-k) L (dn-k-1 * wJ) 1\ Wz 

= ( -l)(k+ l)(n-k)( *dn-k-1 * WJ, Wz). 

Thus, we have a diagram of complexes, 

0 -+ Q 0(M) ~ 
i* 

0 -+ Q 11 (M) ~ 

QI(M) ~ 
i* 

nn-I(M) ~ 

where each square commutes up to some sign. 

d 
-+ Q11 (M) -+ 0 

i* 
Q0(M) -+ o, 

0 

The Laplacian on forms, also called the Hodge Laplacian, can now be defined 
as 

6. : Qk(M) -+ Qk(M), 

6.w = (d8 + 8d)w. 

In the next section we shall see that on functions, the Hodge Laplacian is the 
negative of the previously defined Laplacian, whence the slightly different symbol 
6. instead of A 

Lemma 2.3 t:,.w = 0 iff dw = 0 and 8w = 0. 
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Proof. 

(D.w, w) =(dow, w) + (odw, w) 

=(ow, ow)+ (dw, dw). 

Thus, D.w = 0 implies (ow, ow) = (dw, dw) = 0, which shows that ow = 
0, dw = 0. The opposite direction is obvious. 0 

We can now introduce the Hodge cohomology: 

Hk(M) ={wE Qk(M): D.w = 0}. 

Since all harmonic forms are closed, we obviously have a natural map: 

1ik(M) --+ Hk(M). 

Theorem 2.4 (Hodge, 1935) This map is an isomorphism. 

Proof. The proof of this theorem actually requires a lot of work and can't really 
be proved here. A good reference for a rigorous treatment is [72]. We'll try to 
give the essential idea. The claim, in other words, is that for any closed form w 
we can find a unique exact form d() such that ~(w + d()) = 0. The uniqueness 
part is obviously equivalent to the statement that the harmonic exact forms are 
zero everywhere. Another way of getting at the result is by observing that since 
Hk(M) = (kerdk)/(lm(dk-I)), we would be done if we could only prove that 
Qk(M) = Imdk-I EB ker(ok-1). This statement is actually quite reasonable from 
the point of view oflinear algebra in finite dimensions. There we know that W = 
lm(L)EBker(L*), whereL: V--+ Wisalinearmapbetweeninnerproductspaces 
and L * : W --+ V is the adjoint. This theorem extends to infinite dimensions with 
some modifications. Notice that such a decomposition is necessarily orthogonal. 

Let us see how this implies the theorem. If w E Qk, then we can write w = 
d() + w, where ow = 0. Therefore if dw = 0, we get that dw = 0 as well. But 
then w must be harmonic, and we have obtained the desired decomposition. To 
check uniqueness, we must show that d() = 0 if ~d() = 0. The equation ~d() = 0 
reduces to od() = 0. This shows that d() = 0, since we have that 

7.3 Harmonic Forms 

0 = (od, (), ()) 

= (d(), d()) 

= L g(d(). d()) 

2: 0. 0 

We shall now see how Hodge theory can be used to get information about bi ( M) = 
dim Jii(M) given various curvature inequalities. 
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7.3.1 1-J?orr,ns 
Suppose that w is a harmonic 1-form on ( M, g). We shall consider f = 4 g( w, w) 
just as we did for Killing fields. One of the teclmical problems is that we don't have 
a really good feeling for what g(w, w) is. If X is the vector field dual tow, i.e., 
w(v) = g(X, v) for all v, then, of course, f = 4g(w, w) = hCX, X)= 4w(X). 
We now have to figure out what the harmonicity of w is good for. 

Proposition 3.1 If X is a vector field on (M, g) and w(v) = g(X, v) is the dual 
1-form, then 

divX = -8w. 

Proof. (See also Appendix A.) We shall prove this in the case where M is compact 
and oriented. If f E Q 0 ( M), then 8 is defined by the relationship f M g( d f, w) = 
f M f · 8w. So we need to show that 

L g(df, w) =-L f · divX. 

The left-hand side is by definition equal to JM df(X). On the other hand, recall 
that div X satisfies 

Lxdvol = divX · dvol. 

So we have to show that 

Now, 

L df(X)dvol = - L f · Lx(dvol). 

Lx(f · dvol) = (Lxf) · dvol + f · Lxdvol 

= df(X) · dvol + f · Lxdvol, 

so we are actually reduced to proving 

L Lx(f · dvol) = 0 

for all vector fields X and functions f. Stokes' theorem implies that this integral 
is zero, provided that Lx(f · dvol) is an exact form. To see this, we must use 
the formula Lxw = ixdw + dixw, where ixw(Xz, ... , Xn) = w(X, Xz, ... , Xn) 
and w is any k-form. Now, f · dvol is ann-form, so d(f · dvol) = 0, and hence 
Lx(f · dvol) = d(ix(f · dvol)). 0 

This result also shows that up to sign, at least, the Laplacian on functions is the 
same as our old definition, that is 

divV = -8d. 

The other result we need is 
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Proposition 3.2 Suppose X, w are as in the previous proposition. Then v ---+ 

"VvX is symmetric iff dw = 0. 

Proof. Recall that 

dw(V, W) = Dvw(W)- Dww(V)- w([V, W]). 

Using that w(Z) = g(X, Z), we then get 

dw(V, W) = Dvg(X, W)- Dwg(X, V)- g(X, "Vv W) + g(X, "Vw V) 

= g("VvX, W)- g("VwX, V) + g(X, "Vv W) 

-g(X, "Vw V)- g(X, "Vv W) + g(X, "Vw V) 

= g("VvX, W)- g("VwX, V). D 

Therefore if w is harmonic and X is the dual vector field, we have that div X = 0 
and \7 X is a symmetric ( 1, 1 )-tensor. Using this we can now prove 

Proposition 3.3 Let X be a vector field so that V X is symmetric (i.e. correspond­
ing 1-form is closed) and define f = ! I X 12. If we define a symmetric ( 1, 1 )-tensor 
by S (v) = "VvX. then 

(1) \7 f = Y'xX. 
(2) \72 f = Rx + Y'xS + S2 . 

(3) D.f = IV'Xf + g(X, VdivX) + Ric(X, X). 

Proof. For (1) just observe that 

1 
g(V f, V) = Dv 2 g(X, X) 

For (2) just note that 

\72 f(V) = "Vv'VxX 

= g('VvX, X) 

= g('VxX, V). 

= R(V, X)X + "Vx"VvX + "V[v.x]X 

= R(V, X)X + (Vx"VvX- "VvxvX) + "VvvxX 

= Rx (V) + Vi.vX + "VvvxX 

= Rx (V) + (VxS)(V) + S2 (V). 

Thus, \72 f is decomposed into three ( 1, 1 )-tensors. 
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For (3) we now have to compute the trace of each one of these. Clearly: tr(V --+ 

R(V, X)X) = Ric( X, X). Next, the tensor v --+ Y'vX = S (v) is assumed to be 
symmetric, so it follows that 

IY'XI2 = tr('VX o 'VX) 

= tr(S2). 

Now for the last tensor. We shall prove something slightly more general. Namely, 
that for any ( 1, 1 )-tensor S and vector field X we have 

tr('VxS) = Y'xtrS. 

This will establish the desired identity since 

Y'xtrS = Y'xdivX 

= g (X, 'VdivX). 

To prove the formula we just calculate 

tr (Y'xS) = L g (('VxS) (Ei), Ei) 

The fact that 

= Lg('Vx(S(Ei)),Ei)- Lg(S('VxEi),Ei) 

= L'Vxg(S(Ei), Ei)- Lg(S(Ei). 'VxEi) 

- Lg(S('VxEi), Ei) 

= L 'Vxg (Y'E;X, Ei) 

= Y'xtrS. 

L g (S (Ei), 'VxEi) + g (S('VxEi), Ei) = 0 

for any orthonormal frame might seem a little mysterious. There are several ways of 
establishing this. On one hand one could simply prove this pointwise and suppose 
that the frame was chosen to be normal at a point. Alternatively the fact that the 
frame is orthonormal means that 

0 = 'Vxg (Ei, EJ) 

= g (Y'xEi, EJ) + g (Ei, Y'xEJ). 

Thus, g (Y'xEi, E1) is a skew-symmetric matrix. Now, if S* denotes the adjoint 
to S, we have 

Lg(S(Ei), 'VxEi)+g(S('VxEi), Ei) 

= Lg(S(Ei). 'VxEi)+g('VxEi, S*(Ei)) 



7.3 Hannonic Fonns 177 

= L g ((S + S*) (Ei), VxEi) 

= L g (g {{S + S*) (Ei), Ej) Ej. VxEi) 
i,j 

i,j 

i<j 

i=j 

i>j 

i<j 

i<j 

i<j 

i<j 

= 0. 

We have simply observed that skew-symmetric and symmetric matrices are or­
thogonal to each other, and that the term we wish to show is zero is the inner 
product between a skew-symmetric and a symmetric matrix. 0 

Note that (2) and (3) in the above result generalize the radial curvature equation. 
We can now easily show the other Bochner theorem. 

Theorem 3.4 (Bochner, 1946) If(M, g) is compact, oriented, and has Ric:::: 
0, then every harmonic I -form is parallel. 

Proof. Suppose cv is a harmonic 1-form, X the dual vector field, and f 
~g(cv, cv) = ~IX( Then D..f = IVXjl + Ric(X, X), since divX = 0. Thus 
Stokes' theorem together with the condition Ric :::: 0 implies 

0 = JM D..f · dvol 

= !M {IVX12 + Ric(X, X))· dvol 

:::: L IV Xl 2 • dvol 

:::: 0. 
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We can therefore conclude that IV' XI = 0. D 

Corollary 3.5 If( M, g) is as before and furthermore has positive Ricci curvature 
at one point, then all harmonic 1 -forms vanish everywhere. 

Proof. Since we just proved Ric( X, X)= 0, we must have that X(p) = 0 if the 
Ricci tensor is positive on TpM. But then X = 0, since X is parallel. D 

Corollary 3.6 If (M, g) is compact, orientable, and satisfies Ric > 0, then 
b1(M) :S n =dim M, with equality holding iff(M, g) is afiat torus. 

Proof. We know from Hodge theory that b1(M) = dim 1i1(M). Now, all 
harmonic 1-forms are parallel, so the linear map: 1i1(M) ---+ TpM that maps 
w---+ X(p) is injective. In particular, dim 1{1 (M) :s n. 

If equality holds, we obviously have n linearly independent parallel fields Ei, 
i = 1, ... , n. This clearly implies that (M, g) is flat. Thus the universal covering 
is (!Rn, can) with r = rr1 (M) acting by isometries. Now pull the vector fields 
Ei, i = 1, ... , n, back to Ei, i = 1, ... , n, on !Rn. These vector fields are again 
parallel and are therefore constant vector fields. In addition, they are invariant 

under the action of r, i.e., for each y E r we have Dy ( Ei(p)) = Ei (y (p)), 

i = 1, ... , n. A basis of constant vector fields can, however, be invariant only 
under translations. Thus, r consists entirely of translations. This means that r is 
finitely generated, Abelian, and torsion free, and hence must be zq for some q. To 
see that M is a torus, we need only show that q = n. If q < n, then zq generates a 
subspace V of!Rn with dimension< n. Let W denote the orthogonal complement 
to V in !Rn. Then M = !Rn ;zq = (V $ W) ;zq = (V ;zq) E9 W, which is not 
compact. Thus, we must have that q = n and that r = zn generates !Rn. D 

7.3.2 The Bochner Technique in General 

The Bochner technique actually works in a much more general setting. Suppose 
we have a vector bundle E ---+ M that is endowed with an inner product structure 
(-, ·) and a connection that are compatible. To be more precise, let r(E) denote 
the sections s : M ---+ E. The connection on E is a map 

Y' : r(E)---+ r(Hom(TM, E)), 

s---+ Y's, 

and Y' s : T M ---+ E. We assume that it is linear ins, tensorial in X, and compatible 
with the metric 
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If we assume that ( M, g) is an oriented Riemannian manifold, then using the 
pointwise inner product structures on r( E), f(T M), and integration, we get inner 
product structures on r (E) and r (Hom ( T M, E)) via the formulae 

(SJ, S2) = JM (SJ, S2) , 

(SI, S2) = JM (SI, S2} 

= JM tr ( Sj S2) , 

where Sj E r(Hom(E, TM)) is the pointwise adjoint to S1. In case M is not 
compact we must of course use compactly supported sections. Since the con­
nection is a linear map V : f(E) ~ r (Hom(T M, E)), we get an adjoint 
V* : r(Hom(T M, E))~ r(E) defined implicitly by 

L ("'V S*, s} = JM (S, Vs). 

The connection Laplacian of a section is defined as V* V s. We do not call this 
D., since even for forms it does not equal our previous choice for the Laplacian. 
In fact, JM (V*Vs, s) = JM jVs\2 . Thus, the only sections which are "harmonic" 
with respect to this Laplacian are the parallel sections. 

There is a different way of defining the connection Laplacian. Namely, consider 
the second covariant derivative Vi ys and take the trace L:7=1 V~ E s with respect 
to some orthonormal frame. This is easily seen to be invariantly defined. We shall 
use the notation 

n 

tr (V2s) = L v~;.E;s, 
i=l 

n 

trV2 = ""v~ E· ~ ,,, 
i=l 

The two Laplacians are related as follows: 

Proposition 3. 7 Let ( M, g) be an oriented Riemannian manifold, and E ~ M 
a vector bundle with an inner product and compatible connection. Then 

for all compactly supported sections of E. 

Proof. Let s1 and s2 be two sections which are compactly supported in the domain 
for an orthonormal frame Ei on M. The left-hand side of the formula can be reduced 
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as follows: 

(V*\7 s1, s2) = L {V*\7 s1, s2} 

= L (Vs1, Vs2} 

= L tr ((Vs1)* Vs2) 

= t L g (E;, ((Vs1)* Vs2) (E;)) 

= t L g ((Vs1)(E;), (Vs2)(E;)) 

= t r g (vE,SJ, VE,s2). 
i=l JM 

The right-hand side reduces to something similar 

n n n 

L (v~;.E;si, s2) = L (v E, \7 E,sl, s2}- L {Vv£, E,sl, s2) 
i=l i=l i=l 

n n n 

= - L (v E,s1, \7 E,s2} + L \7 E, (v E,s1, s2}-L {Vv£, E,s,, s2) 
i=l i=l i=l 

n 

=-L (vE,si, vE,s2} + divX, 
i=l 

where X is defined by 
g (X, v) = (Y'vSI, sz}. 

We can then integrate and use Stokes' theorem to conclude 

Thus, we must have that \7*\7 s 1 = - tr\72 s1 for all such sections. It is now easy 
to establish the result for all compactly supported sections. D 

With this in mind we can, as above, try to compute .6.11s 12 . Initially this works 
as follows: 

1 2 Ln 2 1 
.6.- lsi = VE· E- (s, s} 2 . ,, '2 

l=l 
n 1 n 

= z=vE,vE, 2 (s,s}- L(Vv£,E,s,s) 
i=l i=l 
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n 

= L ((vE;s, VE;s) + (vE; VE;s, s)- (v'h;Eis, s)) 
i=l 

= (Vs, 'Vs) + (t; 'V~,,E,'• s) 
= (Vs, Vs)- (V*Vs, s). 

The problem now lies in getting to understand the new Laplacian V* V. This is 
not always possible and can only be handled on a case-by-case basis. Later, we 
shall try this out in the situation where s is the curvature tensor. In the exercises, 
various situations where s is a ( 1, 1 )-tensor are discussed. 

A general procedure for handling this term comes from understanding certain 
differential operators. Suppose we have a second-order operator D 2 : r(E) --+ 
r(E), such as the Hodge Laplacian. Then we can often get identities of the form 

D2 = V*V + C(Rv), 

where Rv : r(T M) ® r(T M) ® r(E)--+ r(E) is the curvature ofV defined by 

Rv(X, Y)s = Vi.rs- V~.xs 
= Y'xY'yS- V'yY'xs- Y'[X,Y]S. 

Such formulae are called WeitzenbOckformulae. Construct Hv2(E --+ M) as the 
sections with D2 s = 0. If we are lucky enough to have an operator D 2 with a 
WeitzenbOck formula, then this space will probably be some sort of topological 
invariant of E --+ M, or at least be related to topological invariants of M. Therefore, 
ifC(Rv)::: 0, then D 2s = 0 implies Vs = 0, which means that sis parallel. Thus 
we can conclude that dim Hv2(E --+ M) :s dim Ep = dimension of fiber of 
E--+ M. 

In general, the problem is to identify C( Rv ). Obviously, the X, Y variables in 
Rv have to be contracted in such a way that C(Rv): r(E)--+ r(E). 

7.3.3 p-Forms 

The first obvious case to try this philosophy on is that of the Hodge Laplacian 
on k-forms, as we already know that harmonic forms compute the topology of 
the underlying manifold. Thus we consider E = A k T* M with the usual inner 
product and Riemannian covariant derivative. It is not hard to see that we have a 
WeitzenbOck formula fork-forms of the form 

!'> = V*V + C(Rv ). 

Using this one can get a Bochner formula for harmonic forms. Actually, the term 
C(Rv) is a generalized version of the curvature operator. This was apparently 
observed by I. Singer long before D. Meyer published his different version of this 
fact in 1971. The general construction ofboth I. Singer and D. Meyer can be found 
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in [84, Theorem 3.3]. When p = 1 we know that C(Rv) is essentially the Ricci 
tensor after type change. We shall find a fonnula for C(Rv) that will establish 
the theorem below. The reason for delaying the proof is that it is a little long, 
as we need to introduce some new language. Also, the Bochner technique has 
the wonderful property that it can be used without an understanding of how one 
proves the fonnulae that are used. From the theorem we get some nice topological 
restrictions: 

Theorem 3.8 If the curvature operator ryt =:: 0, then C(Rv) =:: 0 on k-forms; 
and ijryt > 0, then C(Rv) > 0. 

Corollary 3.9 Suppose M is orientable. If ryt =:: 0, then bk(M) ~ G). with 
equality holding only for the flat torus; and ijryt > 0 somewhere, then bk( M) = 0 
fork= 1, 2, ... , n- 1. 

Proof. Evidently we have that hannonic forms must be parallel. In the case of 
positive curvature no such fonns can exist, and if the curvature is nonnegative, then 
the Betti number estimate follows from the fact that a parallel fonn is completely 
detennined by its value at a point. Thus 

bk = dimHk 

=dim 'Hk 

~ dimAk (T;M) 
n! 

- k!(n -k)! · 
D 

We now have a pretty good understanding of manifolds with nonnegative (or 
positive) curvature operator. From the generalized Gauss-Bonnet theorem we know 
that the Euler characteristic is =:: 0 ( = 2) . Thus, one of the Hopf problems is settled 
for this class of manifolds. 

H. Hopfis famous for another problem: Does S2 x S2 admit a metric with positive 
sectional curvature? We already know that this space has positive Ricci curvature 
and also that it doesn't admit a positive curvature operator, as x ( S2 x S2) = 4. It 
is also interesting to observe that CP2 has positive sectional curvature but doesn't 
admit a metric with poditive curvature operator either, as x ( C P 2) = 3. Thus, even 
among 4-manifolds, there seems to be a big difference between simply connected 
manifolds that admit Ric > 0, sec > 0, and ryt > 0. We shall in Chapter 11 
describe a simply connected manifold that has Ric > 0 but doesn't even admit a 
metric with sec =:: 0. 

Actually, manifolds with nonnegative curvature operator can be classified (see 
Chapter 8). From this classification it follows that there are many manifolds that 
have positive or nonnegative sectional curvature but admit no metric with nonneg­
ative curvature operator. 

Example 3.10 We can exhibit a metric with nonnegative sectional curvature on 
CP2UCP2 by observing that it is an S1 quotient of S2 X S3• Namely, let S1 act on 
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the three-sphere by the Hopf action and on the two-sphere by rotations. If the total 
rotation on the two-sphere is 2:rrk, then the quotient is S2 x 82 if k is even, and 
CP2UCP2 if k is odd. From the above-mentioned classification it follows, however, 
that the only simply connected spaces with nonnegative curvature operator are 
topologically equivalent to S2 X S2 ' s4, or CP2• 

The Bochner technique has found many generalizations. It has, for instance, 
proven very successful in the study of manifolds with nonnegative scalar curvature. 
This is explained in more detail in Appendix C. Briefly, what happens is that spin 
manifolds (this a condition similar to saying that a manifold is orientable) admit 
certain spinor bundles. These bundles come with a natural first-order operator 
called the Dirac operator, often denoted by ~ or//). The square of this operator 
has a Weitzenbock formula of the form 

1 
//)2 = V* V + 4 seal. 

This formula was discovered (again this was done earlier by I. Singer in unpub­
lished work, as pointed out in [84]) and used by Lichnerowicz to show that a 
sophisticated invariant called the A-genus vanishes for spin manifolds with posi­
tive scalar curvature. Using some simple generalizations of this formula, Gromov­
Lawson showed that any metric on a torus with seal ::: 0 is in fact flat. We just 
proved this for metrics with Ric ::: 0. Dirac operators and their Weitzenbock for­
mulae have also been of extreme importance in physics and 4-manifolds theory. 
Much of Witten's work (e.g., the positive mass conjecture) uses these ideas. Also, 
some of the recent work of Seiberg-Witten, which has had a revolutionary impact 
on 4-manifold geometry, is related to these ideas. 

In relation to our discussion above on positively curved manifolds, we should 
note that there are still no known examples of simply connected manifolds that 
admit positive scalar curvature but not positive Ricci curvature, this despite the 
fact that if (M, g) is any closed Riemannian manifold, then for small enough e the 
product (M x 82 , g + e2dsi) clearly has positive scalar curvature. This example 
shows that there are manifolds with positive scalar curvature that don't admit 
even nonnegative Ricci curvature. To see this, select your favorite surface M 2 with 
b1 > 4. Then b1 ( M 2 x S2) > 4 and therefore by Bochner's theorem can't support 
a metric with nonnegative Ricci curvature. 

7.4 Clifford Multiplication on Forms 

In order to give a little perspective on the proof of the WeitzenbOck formula for 
p-forms and also to give an indication of some of the basic ideas in spin geom­
etry, we shall develop some new structures on forms. Instead of first developing 
Clifford algebras in the linear algebra setting, we just go ahead and define the 
desired structure on a manifold. Appendix C covers some of the basic spin ge­
ometry constructions and also mentions briefly how Clifford algebras are defined. 
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This section, however, is a prerequisite for Appendix C. Throughout, we fix a 
Riemannian manifold ( M, g) of dimension n. 

We shall use the musical isomorphisms, U (sharp) and b (fiat), between 1-forms 
and vector fields. Thus, if X is a vector field, the dual 1-form is defined as Xb ( v) = 

g (X, v), and conversely, if w is a 1-form, then the vector field wU is defined by 
w ( v) = g ( wU, v) . 

Recall that Q* ( M) denotes the space of all forms on M, while QP ( M) is the 
space of p-forms. On Q* (M) we can define a product structure that is different 
from the wedge product. This product is called Clifford multiplication, and for 
0, w E Q* it is denoted 0 · w. If 0 E Q 1 (M) and w E QP (M), then 

0 · w = 0 1\ w - ieuw, 

w · 0 = (-1)P (0 1\ w + ieuw). 

By declaring the product to be bilinear and associative, we can use these prop­
erties to define the product of any two forms. Note that even when w is a p-form, 
the Clifford product with a 1-form gives a mixed form. The important property of 
this new product structure is that for 1-forms we have 

We can polarize this formula to get 

Thus, orthogonal!-forms anticommute. Also, we see that orthogonal forms satisfy 

WJ•CV2 =WJI\W2. 

Hence, we see that Clifford multiplication not only depends on the inner product, 
wedge product, and interior product, but actually reproduces these three items. This 
is the tremendous advantage of this new structure. Namely, after one gets used to 
Clifford multiplication, it becomes unnecessary to work with wedge products and 
interior products. 

There are a few more important properties, which are easily established. 

Proposition 4.1 For w1, w2 E Q* (M) we have 

g(O · WJ, w2) = -g(wJ, 0 · w2) for any Jform 0, 

g ([ 1fr, Wt], w2) = - g (w1, [ 1/r, C02]) for any 2form 1/r. 

Here, the commutator is defined by [WI , w2] = Wt · w2 - WI · w2. 

Proof. Evidently both formulae refer to the fact that the linear maps 

W ~ 0 · W, 

w ~ [1/r, w] 
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are skew-symmetric. To prove the identities, one therefore only needs to prove that 
for any p-form, 

g (8 · w, w) = 0, 

g ([1/r, w], w) = 0. 

Both of these identities follow directly from the definition of Clifford multiplica­
tion, and the fact that the two maps 

QP --+ QP+I, 

w--+ 8 1\ w, 

are adjoint to each other. Namely, Clifford multiplication is the difference between 
these two operations, and since they are adjoint to each other this must be a skew­
symmetric operation as desired. D 

Proposition 4.2 For WJ,W2 E Q* (M) and vector fields X, Y we have 

Vx (w1 · wz) = (Vxwi) · wz + w1 · (VxWz), 

R (X, Y)(w1 · wz) = (R(X, Y)wJ) · w2 + WJ · R(X, Y)wz. 

Proof. In case w1 = w2 = 8 is a 1-form, we have 

Vx (8 · 8) = -Vx 1812 

= -2g ('Vx8, 8) 

= (Vx8) · 8 + 8 · (Vx8). 

More generally, we must use the easily established Leibniz rules for interior and 
exterior products. In case w1 = 8 is a 1-form and w2 = w is a general form, we 
have that 

Vx (8 1\ w) = (Vx8) 1\ w + 8 1\ ('Vxw), 

Vx (ie#W) = ivxe#W + ie# (Vxw), 

from which we conclude, 

Vx (8 · w) = Vx (8 1\ w- ie#W) 

= (Vx8) 1\ w + 8 1\ (Vxw) 

- ivxe#W - ie# (V xw) 

= (Vx8) 1\ w- ivxe#W 

+ 8 1\ (Vxw)- ie# (Vxw) 

= (Vx8) · w + 8 · (Vxw). 
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One can then easily extend this to all forms. The second formula is almost imme­
diate from the first formula. 0 

We can now define the Dirac operator on forms: 

D : Q* (M)---+ Q* (M), 
n 

D(w) = L:e; · vE;w, 
i=l 

where E; is any frame and ei the dual coframe. The definition is clearly inde­
pendent of the frame field. We can now relate this Dirac operator to the standard 
exterior derivative and its adjoint. But first we need to know how to relate these 
two derivatives to covariant differentiation. This is done as follows: 

Proposition 4.3 Given a frame E; and its dual coframe gi, then we have the 
formulae 

dw = gi 1\ VE;w, 

8w = -i(e;yVE;W. 

Proof. First one sees, as usual, that the right-hand sides are invariantly defined 
and give operators with the usual properties. (Note, in particular, that d = gi 1\ V £; 

on functions and that 8 = -i(e;Y VE;w on 1-forms.) Thus, one can compute, say, 

e; 1\ V E; w from knowing how to compute this when w = eJ. Then we take an 

orthonormal frame such that (ei)~ = E;, and finally we assume that the frame is 
normal at p E M and establish the formulae at that point. However, the assumption 
that the frame is normal insures us that all the quantities vanish when we use 
w = gi. Thus, the formulae follow. 0 

From this proposition it is now immediate that 

D =d+8. 

Thus, we have 
D2 = (d + 8)2 = d8 + 8d = D.. 

With this we can now prove the following nice formula: 

Proposition 4.4 Given a frame E; and its dual coframe gi, we have: 

n 
2 I: .. 2 D w = ez . 81 • v E E w 

I' J 

i,j=l 
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Proof. First, recall that 

"V£2 E. = '\{ E '\{ E - "VvE E 
I • ) f } ., J 

is tensorial in both Ei and Ej, and thus the two expressions on the right-hand 
side are invariantly defined. Using invariance, we need only prove the formula at 
a point p E M, where the frame is assumed to be normal, i.e., (V Ei) (p) = 0 and 
consequently also (vei) (p) = 0. We can then compute at p, 

D 2w = ei. (vE; (ej. VEjw)) 

= ei. (vE;ej). vEjw + ei. ej. v£; vEjw 

= ei . ej . vE vE w + ei · ejvv E w 
I J E; J 

For the second formula the easiest thing to do is to observe that for a p-form w 
we have 

Thus also, 

This finishes the proof. 0 

We can now establish the relevant Weitzenbock formula. 

Theorem 4.5 Given a frame Ei and its dual coframe ei, we have 

2 1 ~ . . ( ) Dw="V*Vw+- ~e~.e1 ·R Ei,Ej w 
2 i,j=l 

Proof. Using the above identities for D2 , it clearly suffices to check 

1 n n 

"'. ( ) "'. 2 V*Vw +- ~ e1 • e1 · R Ei, Ej w = ~ ez · e1 · V E;,Ejw, 
2 i,j=l i,j=I 

1 ~ ( ) .. ~( 2 ) .. V*Vw+l ~R Ei,Ej w·e1 .e1 = ~ VE;.Eiw .e1 .e1 • 

i.j=l i,j=I 

These formulae are of course established in the same way, so let us concentrate on 
the first. As usual, note that everything is invariant. We can therefore pick a frame 



188 7. The Bochner Technique 

that is orthonormal and normal at p E M and compute at p E M, 

~2 "i '(2 2) =-~VE;,E;w+~() .()1. VE;,Eiw-VEj.E;w 
i=l i<j 

n 

=- L:vi;.E;w+ I:e1 ·01 · R(Et.E1)w 
i=l i<} 

n 1 n 

= - "v2 w + - " e1 • eJ . R (e. E ·) w ~ E;,E; 2.~ I• .I • 
1=1 !,J=l 

where we used the relations 

e1 . e1 = -1, 

e1 • eJ = -eJ . e1• 

Now use that we know 
n 

v*v =-"vi. E· ~ ,,, 
i=l 

to finish the proof. D 

We can now establish the desired Bochner formula for forms. 

Corollary 4.6 Given an orthonormal frame E; and its dual co frame ()1, we have 
for any harmonic form w, i.e., Dw = 0, that 

* 1~ [i j ( ) ] 0 = V Vw +- ~ g () · () , R E1, E1 w . 
4 .. 1 

1,]= 

Proof. First, we use that the frame is orthonormal to conclude that 

n n L R ( E;, E 1) w . eJ . fi = - L R ( E1, E 1) w . e1 • eJ. 
i,J=l i,j=l 

Thus, we have 

2 1 ~ . . ( ) 
D w = V*V +- ~ 0 1 • ()1 · R Ei, E1 w, 

2 .. 1 1,]= 

2 1 ~ ) . . 
D w = V*V-- ~ R (Ei. E1 w · 0 1 • 01 . 

2 i,j=l 
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Adding these equations and dividing by 2 then yields 

D2w='V*V+~ t [e; .ei,R(E;,Ei)w]. 
i,j=l 

Therefore, if Dw = 0 we get 

which yields the desired equation. D 

Having identified the curvature terms in the Weitzenbock and Bochner formulae, 
it now remains to be seen that this term is nonnegative when the curvature operator 
is nonnegative. Before doing this, let us deconstruct the curvature terms in the 
following way: 

Lemma 4. 7 For an orthonormal frame E; and dual co frame fi we have 

Proof. Needless to say, as the right-hand side is invariant, we can assume that the 
frame is orthonormal and normal at p E M. Moreover, both sides are derivations 
in w, so it suffices to check the identities for 1-forms. Finally, we can restrict 
attention to 1-forms of the type w = ek and then compute ei. ei. ek- ek. (]i. ei. 

This term depends on whether k = i or k = j or k =P i, j. We can also assume 
that i =P j, as those terms are zero in the above expression. We then get 

e . eJ . e - e . e . eJ = i . k k i . { 

Using this we can now compute 

k =P i, j, 
k =j, 
k = i. 

n n 

_L 8 (R(X, Y) E;, Ei) [ei. ei, ek] = -2 _Lg(R(X, Y) E;, Ek)ei 
i,j=l i=l 

n 

+2 _Lg (R(X, Y)Ek. Ej)ei 
j=l 

n 

= 4 _Lg(R(X, Y)Ek. E;)ei. 
i=l 

It is now easy to see that the lastterm is equivalentto the 1-form 4 R (X, Y) ek. D 
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With this last formula we can now relate the curvature term in the Bochner 
formula to the curvature operator. 

Lemma 4.8 For an orthonormal frame E; and its dual co frame ei we have that 

n 

L g([ei .e1,R(E;,EJ)w],w) = LA.al[8a,w]l2 , 

i,j=l 

where A.a are the eigenvalues for the curvature operator and 8a the duals of 
eigenvectors for the curvature operator. 

Proof. Using the skew symmetry of w ---+ [ei · eJ, w J and the definition of the 
curvature operator, we can compute 

n 

Lg([e; .e.i,R(E;,E1)w],w) 
i,j=l 

n 

=- Lg(R(E;,EJ)w,[ei.e.i,w]) 
i,j=l 
I n n 

=-- L Lg(R(E;,EJ)EbEJ)g([ek.e1,w],[ei.e.i,w]) 
4 i,j=l k,/=1 

n 

= L g (vt(E; 1\ EJ)' Ek 1\ El) g ([ek. e1, w]' [ei. e.i, w]). 
i <j,k<l 

Now observe that the E; 1\ E .i form an orthonormal basis for A 2 T M, and the ei · e.i 
are the dual basis for Q2 (M). The expression we have arrived at is obviously 
invariant under change of bases in A 2 T M. So select an orthonormal basis Sa for 
A 2 T M such that 9t (Sa) = A.a Sa. With 8a denoting the dual basis for Q 2 (M), 
we then get 

n 

L g ([ei · e.i, R (E;, E1) w], w) = LA.a l[8a, w]l2 

i,j=l 

as desired. 0 

Theorem 4.9 On a compact oriented Riemannian n-manifold with nonnegative 
curvature operator every harmonic form is parallel. Moreover, if the curvature 
operator is positive, then harmonic p-forms vanish, p = 1, ... , n - 1. 
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Proof. If w is harmonic, then we have from the previous section that 

As both terms are nonnegative, they both vanish. In particular, Vw = 0. 
We also have that Aa 1[8a, w]l2 = 0. The only way this can happen, if all 

Aa > 0, is if [8a, w] = 0 for all a. Since the 8a form a basis for the 2-forms, 
this means that [ 1/f, w] = 0 for all2-forms. To see that this makes w = 0, just pick 
1/f = ei . ej, w = eii ..... eip' and compute: 

~·! rt {~I·····~P}, 
l,j E {l1, ... ,lp}, 
otherwise. 

In general, we can write 

W= '""' a· . eit ..... eip L l[···zp • 

Therefore, [ ei · ej, w] can only vanish if a;1 ••• ip = 0 whenever i E { i 1, ... , i P} 

or j E { i 1, ... , i P} but not both i and j belong to { i 1, · · · , i P} . Using this in the 
situation where i < j shows that w must be zero unless pis 0 or n. 0 

7.5 The Curvature Tensor 

It is now time to apply the Bochner technique to the most natural tensor, the 
curvature tensor. It is by no means clear that this will yield anything. It seems 
to us both miraculous and profound that something comes out of this. We shall 
present results by Lichnerowicz (see [56, Chapter 1] and also [57] for an in-depth 
discussion on the meaning of these matters in physics), Berger, and Tachibana (see 
[78]) that combine to show that a compact Riemannian manifold with div R = 0 and 
nonnegative sectional curvature (or nonnegative curvature operator) has parallel 
Ricci tensor (parallel curvature tensor). 

Recall that ifwe consider the (1, 3) version of the curvature tensor R, then we 
can construct two (0, 4)-tensors: divV R and VdivR. If for our present purposes 
we use the notation R0 (X, Y, Z, W) = g (X, R (Y, Z) W), then we can take inner 
products of the three tensors R0, divV R, and Vdiv R. Note that R0 is not the usual 
(0, 4)-tensor. This will be very important in the proof below. 
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Theorem 5.1 (Lichnerowicz, 1958) The curvature tensor Ron a compact ori­
ented Riemannian manifold satisfies 

2 L ldivRI2 - 2 L K = L IV' Rl 2 , 

where K = g (R 0 , div'V R- 'VdivR). 

Proof. By far the most important ingredient in the proof is that we have the 
second Bianchi identity at our disposal. To establish the formula, we compute at a 
point p where we have an orthonormal frame Ei with ('V Ei) (p) = 0: 

n 

= L 'VE;8 (('VE;R)' R) 
i=l 
n 

= L g (('VE; ('VE;R))' R) 
i=l 

n 

+ L8 ((vE;R), (vE;R)) 
i=l 

n 

= L g (('VE; ('VE;R))' R) 
i=l 

We now claim that 

n 

L8 (('VE; ('VE;R)), R) = 2g (R 0, div'VR). 
i=l 

Using that 'V R has the same symmetry properties as R, we first compute 

n 

2div'VR (Ej. Ek. E,, Em)= 2 L8 ((VE; ('VR)) (Ej. Ek. E,, Em), Ei) 
i=l 

n 

= 2 L8 (VE; (('VR) (Ej, Ek. E,, Em)), Ei) 
i=l 

n 

= 2 L8 (Y'E; (('VE1 R)(Ek. E,)Em), Ei) 
i=l 
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n 

= 2 L VE;8 ((VEjR) (Eb Et) Em, E;) 
i=l 

n 

= 2 L VE;8 ((VEjR) (Em, E;)Eb Et) 

n 

= 2 L g (vE, (vEjR) (Em. Ei) Ek. Et) 
i=l 

and then observe that 

n 

=2 L g(VE,(VEjR)(Ek.Et)Em,E;)g(Ej,R(EbEt)Em) 
i,j,k,l,m=l 

n 

=2 L g(VE,(VEjR)(Ek.EJ)Em,E;)g(R(Ek.EJ)E111 ,Ej) 
i.j,k,l,m=l 

n 

= 2 L g (VE, (VEj R) (Ek. E,) Em, Ei) g (R (Ej. Em) E,, Ek). 
i,j,k,l,m=l 

On the other hand, we have using the second Bianchi identity, 

n n 

L8 (vE, (VE;R) (Ej. Ek) E,, Em)= L VE,g ((vE,R) (Ej. Ek) E,, Em) 
i=l i=l 

n 

=-L VE,g ((VEjR) (Ek. E;) E1, Em) 
i=l 

n 

- L VE,g ((VEkR) (E;, Ej) E,, Em) 
i=l 
n 

=- L VE,g ((VEj R) (Ek. E;) E,, Em) 
i=l 

n 

+ L VE,g ((vEkR) (Ej, E;) E1, Em), 
i=l 

and so, 

n 

L8 ((vE, (vE,R)), R) 
i=l 

n 

= L g (VE, (VE,R) (Ej, Ek) E,, Em) g (R (Ej, Ek) E,, Em) 
i,j,k,l.m=l 

n 

=- L VE,g((VEjR)(Ek.E;)E,,Em)g(R(Ej,Ek)E,,Em) 
i,j,k,l,m=l 
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n 

+ L VE;8 ((VEkR) (Ej, E;) E,, Em) 8 (R (Ej, Ek) Et, Em) 
i,j,k,l,m=I 
n 

L v£;8 ((vEjR) (Ek, E;) EJ, Em) 8 (R (Et. Ej) E,, Em) 
i,j,k,/,m=I 

n 

+ L VE;8 ((VEkR) (Ej. E;) Et. Em) 8 (R (Ej. Ek) E,, Em) 
i,j,k,l,m=I 

n 

= 2 L VE;8 ((VEiR) (Ek, E;) E,, Em) 8 (R (Et. Ej) Et, Em) 
i,j,k,l,m=I 

n 

=2 L VE;8((VEiR)(Em,Et)Et,E;)8(R(Ej,Ek)Et,Em) 
i,j,k,l,m=I 

n 

= 2 L v£;8 ((vEjR) (Et, E,) Em, E;) 8 (R (Ej. Em) Et. Ek) 
i,j,k,l,m=I 

Using the definition of K, we then arrive at 

.6.~ IRI2 = IV Rl2 + 28 (Rb, VdivR) + 2K. 

From Stokes' theorem (see also Appendix A) it follows that 

1 .6.~ IRI2 = 0, 
M 2 

L 8 (Rb, VdivR) =- JM ldivRI2 • 

This clearly gives us the desired formula. D 

We are now interested in understanding when K is nonnegative. In order to 
analyze this better we shall go through some generalities. 

For any tensor T we can consider the curvature 

R (X, Y) T = (Vx (VrT))- (Vr (VxT))- (V[x,r1T) 

= vi.rT- v~.xT 

as a new tensor of the same type. This new tensor is tensorial in X and Y. Moreover, 
it is also tensorial in T, so we have for any function f 

R(X, Y)(JT) = JR(X, Y)T. 

More importantly, one can easily show that 

(R (X, Y) T)(X1, ... , Xk) = R (X, Y)(T (XJ, ... , Xk)) 
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- T (R (X, Y) Xt, ... , Xk) 

- T(Xt, ... , R(X, Y)Xk). 

To understand this new curvature, we can simply break in down to the point where 
we need to worry only about how it acts on vector fields and 1-forms. And this we 
already know how to deal with. 

We are particularly interested in the case where T is of type ( 1, k) . In that case 
we can make a special contraction. Namely, if we choose an orthonormal frame 
E;, then 

n 

((divV- Vdiv) T)(Y, Xt, ... , Xk) = L g ((R (E;, Y) T)(Xt, ... , Xk), E;). 
i=l 

It therefore appears that (divV- Vdiv) T is something like the Ricci curva­
ture ofT. This is in line with our WeitzenbOck formulae, where the curvature 
term is some sort of contraction in the curvature. If we make the type change 
T 0 (Y, X 1, ••• , Xk) = g (Y, T (X1, ••• , Xk)), then we get the quadratic expres­
sion for this Ricci curvature 

K = g (T0 , (divV- Vdiv) T). 

The claim is that this quantity is nonnegative whenever the curvature operator is 
nonnegative and T = R. In order to make our argument a little more transparent, 
let us first show a similar but easier result. 

Lemma 5.2 (Berger) Suppose T is a symmetric ( 1, 1 )-tensor on a Riemannian 
manifold (M, g) with sec=::::: 0, then 

K = g (Tb, (divV- Vdiv) T):::::: 0. 

Proof. We shall calculate at a point p, where an orthonormal frame has been 
chosen such that T ( E;) = A.; E; : 

n 

g (Tb, (divV- Vdiv) T) = L g (Ej, T (Ed) g ((R (E;, Ej) T) (Ek), E;) 
i,j,k=1 

n 

== L g(Ej.T(Ek))g(R(E;,Ej)T(Ek),E;) 
i,j,k=l 

n 

- L g(Ej.T(Ek))g(T(R(E;,Ej)Ek),E;) 
i,j,k=1 

n 

L g (R (E;, g (Ej. T (Ek)) Ej) T (Ek), E;) 
i,j,k=l 
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n 

- L g (T (R (E;, g (Ej, T (Ek)) Ej) Ek)' E;) 

This finishes the proof. 

i,j,k=l 
n 

= L g (R (E;, T (Ek)) T (Ek)' E;) 
i,k=l 

n 

- L g (R (E;, T (Ek)) Eb T (E;)) 
i,k=l 

n 

=LA~. g(R(E;, Ek)Eb E;) 
i,k=l 

n 

- L AkAi. g(R(E;, Ek) Eb E;) 
i,k=l 

n 

= L (A~- AkA;) sec(E;, Ek) 
i,k=l 

= L (A~- AkAi) sec(E;, Ek) 
i<k 

i>k 

i<k 

i<k 

= L (Ak - A;i sec (E;, Ek) 
i<k 

?: 0. 

D 

Given this, one might suspect that we should be able to do something for the Ricci 
tensor, given that the sectional curvature is nonnegative. This is only partially true, 
as we don't have a Bochner formula for the Ricci tensor. Given that the manifold 
has divergence-free curvature tensor, one can find a Bochner formula and then get 
that the Ricci tensor must be parallel. The proofs are not hard and are deferred 
to the exercises. Note that we can't more generally hope that the Ricci tensor is 
parallel if it is divergence free, as all of the Berger spheres have divergence-free 
Ricci tensor, but only the standard sphere has parallel Ricci tensor. 

We can now go over to the more complicated result we are interested in. It was 
first established in [78], and then a "new" proof appeared in [38]. After that, the 
result seems to have fallen into oblivion. We shall present a more general version 
that is analogous to the above lemma, but the proof is essentially the one proposed 
by Tachibana. 
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Theorem 5.3 (Tachibana, 1974) If'Jt :::=:: 0, then g (T 0 , (divV- Vdiv) T) :::=:: 0 
for any ( 1, 3)-tensor T that induces a self-adjoint map 'I : A 2 T M ---+ A 2 T M. 

Proof. The fact that 'I : A 2 T M ---+ A 2 T M is self-adjoint means that T enjoys 
the properties 

g(T(X, Y, Z), W) = -g(T(X, Y, W), Z) = g(T(Y, X, W), Z), 

g(T(X, Y, Z), W) = g(T(Z, W, X), Y). 

Thus, we have a tensor with the same properties as the curvature tensor, with the 
exception of Bianchi's identities. Let us first divide K into four terms: 

K = g (T 0 , (divV- Vdiv) T) 
n 

L g (Ej, T (Ek. E1, Em)) g ((R (Ei, Ej) T) (Ek. E,, Em), Ei) 
i,j,k,l,m=l 

n 

L g (Ej, T (Ek. E,, Em)) g (R (Ei, Ej) (T (Ek. E,, Em)), Ei) 
i,j,k,l,m=l 

n 

+ L -g (Ej, T (Ek. E,, Em)) g (T (R (Ei, Ej) Ek. E,, Em), Ei) 
i,j,k,/,m=l 

n 

+ L -g (Ej, T (Ek. E,, Em)) g (T (Ek. R (Ei, Ej) E,, Em), Ei) 
i,j,k,/,m=l 

n 

+ L -g (Ej, T (Ek. E,, Em)) g (T (Ek. Ez, R (Ei, Ej) Em), Ei) 
i,j,k,l,m=l 

=A+ B +C+ D. 

We now compute each of the terms A, B, C, and D: 

n 

A= L g (Ej, T (Ek. E,, Em)) g (R (Ei, Ej) (T (Ek. E,, Em)), Ei) 
i,j,k,l,m=l 

n 

L g (R (Ei, g (Ej, T (Ek. E,, Em)) Ej) (T (Ek. E,, Em)), Ei) 
i,j,k,l,m=l 

n 

= L g(R(E;, T(Ek. E,, Em))(T(Ek. E,, Em)), Ei) 
i,k,/,m=l 

n 

= L g('Jt(Ei 1\ T(Ek. E,, Em)), Ei 1\ T(Ek, E,, Em)); 
i,k,l,m=l 

n 

B = L -g (Ej, T (Ek. Ez, Em)) g (T (R (Ei, Ej) Ek. E" Em), Ei) 
i,j,k,/,m=l 
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n 

= L -g (EJ, T (Eb Et, Em)) g (T (Em, Ei, R (Ei, EJ) Ek), Et) 
i,j,k.l,m=i 

n 

L g (EJ, T (Eb E[, Em)) g (T (Em, Ei, Et), R (Ei, Ej) Ek) 
i,j,k,/,m=i 

n 

= L g(T(Em, Ei, Et), R(Ei, T(Ek. Et, Em))Ek) 
i,k./,m=i 

n 

= L g (R (Ei, T (Eb Et, Em)) Eb T (Em, Ei, Et)) 
i,k,/,m=i 

n 

=- L g (R(Ei, T (Eb Et, Em)) T (Em, Ei, Et), Ek) 
i,k,/,m=i 

n 

=- L g(!Jt(Ei 1\ T(Eb Et, Em)), Ek !\ T(Em, Ei, Et)). 
i,k,l,m=i 

Similarly, 

n 

C = L g (9t(Ei !\ T (Eb Et, Em)), Et !\ T (Em, Ei, Ek)). 
i,k,l,m=i 

Finally, we have 

n 

D = L -g (EJ, T (Eb Et, Em)) g (T (Eko Et, R (Ei, EJ) Em), Ei) 
i,j,k,l,m=i 

n 

L g (EJ, T (Eb Et, Em)) g (R (Ei, EJ) Em, T (Eb Et, Ei)) 
i,j,k,l,m=i 

n 

=- L g(R(Ei, T(Eb Et, Em))T(Eb Et, Ei), Em) 
i,k,l,m=i 

n 

=- L g (9t(Ei !\ T (Eb Et, Em)), Em!\ T (Eb Et, Ei)) 
i,k,l,m=i 

n 

= L g(!Jt(Ei !\ T(Eb Et, Em)), Em!\ T(Et, Eb Ei)). 
i,k,l,m=i 

Therefore, if we define elements eiktm E A 2T M by 

eiktm = Ei !\ T (Eko Et, Em) 

+ Ek !\ T (Ei, Em, Et) 

+ Et !\ T (Em, Ei, Ek) 

+Em!\ T (Et, Eko Ei), 
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then one easily checks that 

n 

L g (Dl(Oiktm)' eiklm) = 4K 
i,k,l,m=! 

by observing that after multiplying out, there are 16 terms on the left-hand side, 

which can be collected in groups of four. After reindexing some of the sums, each 
of these groups consists of four equal terms that correspond to one of A, B, C, 
or D. Since the left-hand side is assumed to be nonnegative, we have proven the 

desired result. 0 

Corollary 5.4 (Tachibana, 1974) If(M, g) is a compact oriented Riemannian 
manifold with div R = 0 and Dl 2: 0, then V R = 0. If in addition, Dl > 0, then 
( M, g) has constant curvature. 

Proof. The first part is immediate from the above theorems. For the second part 
we have again that K = 0. Since Dl is assumed to be positive, we must therefore 
have that 

eiktm = Ei 1\ R (Et. Et) Em 

+ Ek 1\ R(Ei, Em)Et 

+ Et 1\ R (Em. Ei) Ek 
+Em 1\ R (Et, Ek) Ei 

=0. 

From this one can see that the curvature must be constant. A different proof of this 
can be found using the material from Chapter 8. 0 

7.6 Further Study 

For more general and complete accounts of the Bochner technique and spin geom­

etry we recommend the two texts [84] and [54]. The latter book also has a complete 
proof of the Hodge theorem. Other sources for this particular result are [50], [72], 
and [82]. For more information about Killing fields and related matters we refer 
the reader to [52, Chapter II]. There is also a good elementary account of Killing 
fields in O'Neill's book [65, Chapter 9]. 

For other generalizations to manifolds with integral curvature bounds the reader 
should consult [36]. In there the reader will find a complete discussion on gener­
alizations of the above mentioned results about Betti numbers. 
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7. 7 Exercises 

1. Let f : ( M, g) ~ (JR.k, can) be a Riemannian submersion and let ( M, g) 
be complete. If \72 f = 0 (each of the components has zero Hessian), then 
(M,g)=(N,h)x (JR.k,can). 

2. Suppose we have a frame of Killing fields X 1 , ... , Xn on a Riemannian 
manifold ( M, g) . Show that the structure constants c71 defined by 

are constant. Thus, a Killing frame is always a finite-dimensional Lie algebra. 
Recall that we used a Killing frame to compute the curvatures of the Berger 
spheres. What can you say about manifolds with globally defined Killing 
frames? 

3. Given two Killing fields X and Y on a Riemannian manifold, develop a 
formula for t1g (X, Y) . Use this to give a formula for the Ricci curvature in 
a Killing frame. 

4. For a vector field X define the Lie derivative of the connection as follows: 

(Lx'V)(U, V) = Lx ('Vu V)- 'VLxU V- 'VuLx V 

= [X, 'Vu V]- 'Vrx.u] V- 'Vu [X, V]. 

(a) Show that Lx 'Vis a (1, 2)-tensor. 

(b) We say that X is an affine vector field if L x 'V = 0. Show that for such 
a field we have 

'V~,vX = -R (X, U) V. 

(Hint: Show that: R (W, U) V + 'V~.v W = (Lw'V)(U, V) .) 

(c) Show that Killing fields are affine. Give an example of an affine field 
on JR.n which is not a Killing field. 

5. Let K be a Killing field on a Riemannian manifold. 

(a) ShowthatdK0 (X, Y) = 2g('VxK, Y). 

(b) For any vector field X, show more generally that 

1 
g ('VvX, w) = 2 ((Lxg) (v, w) + (dX 0) (v, w)). 

Use this to conclude that 
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(c) Establish the following integral formulae on a closed oriented Rieman­
nian manifold: 

L (Ric(X, X)+ tr('VX)2 - (divX)2) = O, 

!M ( Ric(X, X)+ g (tr\72 X, X)+~ fLxgf 2 - (divX)2) = 0. 

(d) Finally, show that X is a Killing field iff 

divX = 0, 

trV2X = -Ric(X}. 

6. (Yano) If X is an affine vector field show that tr\72 X = -Ric( X) and 
that divX is constant. Use this together with the above characterizations of 
Killing fields to show that on closed manifolds affine fields are Killing fields. 

7. If K is a Killing field show that L K and D. commute as operators on forms. 
Conversely show that X is a Killing field if L x and D. commute on functions. 

8. Suppose (M, g) is compact and has b1 = k. If Ric 2: 0, then the universal 

covering splits: ( M, g)= (N, h) x (JRk, can). 

9. Let (M, g) be ann-dimensional Riemannian manifold that is isometric to 
Euclidean space outside some compact subset K c M, i.e., M - K is 
isometric to JR.n - C for some compact set C c IR.n. If Ric8 2: 0, show 
that M = JR.n. (Hint: (1) Find a metric on then-torus that is isometric to a 
neighborhood of K c M somewhere and otherwise flat. (2) Alternatively, 
show that any parallel1-form on IR.n - C extends to a harmonic 1-form on 
M. Then apply Bochner's formula to show that it must in fact be parallel 
when Ric8 2: 0, and use this to conclude that the manifold is flat.) 

10. Given two vector fields X and Y on (M, g) such that 'V X and 'VY are 
symmetric, develop Bochner formulae for \721 g (X, Y) and D.1 g (X, Y) . 

11. For general sections s 1 and s2 of an appropriate bundle show in analogy with 
the formula D.1fs 12 = I 'V s 12 + {tr\72 s, s} that: 

D.. (sJ, s2) = 2 ('Vs1, 'Vsz) + (tr'V2s1, s2) + (s1, tr'V2s2). 

Use this on forms and spinors to develop Bochner formulae from the 
Weitzenbock formulae for inner products of such sections. 

More generally we can consider the 1-form defined by w(v) = ('Vvs 1, s2} 
which represents half of the differential of (s 1, s2 ) . Show that 

-ow = ('V s1, 'V s2} + {tr'V2 s1, s2} 

= {(V*'V + tr'V2) s1, s2}, 

dw(X, Y) = (R(X, Y)s1, s2)- ('VxsJ, 'Yrs2) + ('VrsJ, 'Vxs2). 
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12. Show that in dimension 2, 

K = g (Rb, (divY'- Y'div) R) = 0. 

13. (Berger) Let (M, g) be a Riemannian manifold with a (1, 1)-tensor field T 
that is symmetric and whose covariant derivative is symmetric (Y' x T) ( Y) = 
(Y' y T) (X) . Show that 

~~ IT1 2 = IY'TI 2 + g (Tb, Y'divT) + g (Tb, (divY'- Y'div) T). 
2 

And when M is compact and oriented conclude that if sec ::: 0 and divT = 0, 
then Y'T = 0. Moreover, if sec > 0, then T = c · I for some constant c. 
In case S is not symmetric establish a Bochner formula that can be used to 
arrive at the above results. 

14. (Berger) On a closed Riemannian manifold (M, g) show that if divR = 0 
and sec ::: 0, then Y'Ric = 0. (Hint: use an exercise from Chapter 2 to get 
the symmetry for Y'Ric and also the formula 2divRic = d (seal) to conclude 
that divRic = 0.) 

15. Let (M, g) <t--+ JRn+I be an isometric immersion of an oriented manifold. 

(a) Using the Codazzi equations, show that 

~~ ISI 2 = IY'SI 2 + g (Sb, Y'divS) + K, 

where S is the shape operator and K is as usual defined by 

K = g (Sb, (divY'- Y'div)S). 

(b) Assuming that M is compact, show that 

I IY'SI 2 =I ld(trS)I2 - I K. 

(Recall that we proved in the exercises to Chapter 4 that div S 
d (trS).) 

(c) Show Liebmann's theorem: If (M, g) has constant mean curvature 
(trS = constant) and nonnegative shape operator, then (M, g) is a 
constant-curvature sphere. (Hint: using Chapter 4, find out some­
thing about the curvature from the positivity of S; then use K 

Li<j (A.j- A.i) 2 ·sec (Ei, Ej) .) 

In case M = S2 , H. Hopf showed that one can prove this theorem without 
using the nonnegativity of the shape operator. This is not too hard to believe, 
as we know that 

K (p) = (A.z- A.1i · sec(p), 

I sec(p)dvol = 4rr, 
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indicating that J K should be nonnegative. On the other hand, Wente has 
exhibited immersed tori with constant mean curvature (see Wente's article 
in [41]). 

16. Show that if one defines the divergence of a p-form by 

n 

divw (X2, ... ' Xp) = L (VE;w) (Ei, x2 •... ' Xp) 
i=l 

n 

=LiE; (vE;w) (X2, ... , Xp), 
i=l 

where Ei is an orthonormal frame, then 8 = -div. 

17. Suppose we have a Killing field K on a closed oriented Riemannian manifold 
( M, g) . Assume that w is a harmonic form. 

(a) Show that LKw = 0. (Hint: Show that LKw is also harmonic.) 

(b) Show that iKw is closed, but not necessarily harmonic. 

18. Let (M, g) be a Kahler manifold with Kahler form w. Show using the exer­
cises from Chapter 2 that 

wk =w 1\ · · · 1\ w ...___,_., 
ktimes 

is closed but not exact by showing that w(dimM)/2 is proportional to the 

volume form. Conclude that none of the even homology groups vanish. 

19. Let E ---+ M be a vector bundle with connection V. 

(a) Show that V induces a natural connection on Hom(E, E) that we also 
denote by V. 

(b) Let QP (M, E) denote the alternating p-linear maps from T M to E 
(note that Q0 (M, E)= r (E).) ShowthatQ* (M)actsinanatural way 
from both left and right on Q* ( M, E) by wedge product. Show also that 
there is a natural wedge product QP ( M, Hom ( E, E)) x gq ( M, E) ---+ 
QP+q (M, E). 

(c) Show that there is a connection-dependent exterior derivative dv : 
QP (M, E) ---+ QP+1 (M, E) with the property that it satisfies the ex­
terior derivative version ofLeibniz's rule with respect to the above de­
fined wedge products, and such that for s E r (E) we have: dv s = V s. 

(d) If we think of the curvature R (X, Y) s as an element of 
Q 2 (M,Hom(E,E)), show that: (dv odv)(s) = R 1\ s for any 
s E QP (M, E) and that Bianchi's second identity can be stated as 
dv R = 0. 



204 7. The Bochner Technique 

20. If we let E = T M in the previous exercise, then Q 1 (M, T M) 
Hom(T M, T M) will just consist of all ( 1, 1 )-tensors. 

(a) Show that in this case dv s = 0 iff s is a Codazzi tensor. 

(b) The entire chapter seems to indicate that whenever we have a tensor 
bundle E (= lR, TM, A 2M, etc.) and an elements E QP(M, E) with 
d" s = 0, then there is a Bochner-type formula for s. Moreover, when 
in addition s is "divergence free" and some sort of curvature is non­
negative, then s should be parallel. Can you develop a theory in this 
generality? 

(c) Show that if X is a vector field, then \7 X is a Codazzi tensor iff 
R (-, ·) X = 0. Give an example of a vector field such that \7 X is Co­
dazzi but X itself is not parallel. Is it possible to establish a Bochner 
type formula for exact tensors like \7 X = d" X even if they are not 
closed? 

21. (Thomas) Show that in dimensions n > 3 the Gauss equations (91: = S 1\ S) 
imply the Codazzi equations (dv S = 0) provided detS =!= 0. (Hint: use 
the second Bianchi identity and be very careful with how things are de­
fined. It will also be useful to study the linear map Hom(A2 V, V) -+ 
Hom( A 3 V, A 2 V) defined by T -+ T 1\ S for a linear mapS : V -+ V. In 
particular, one can see that this map is injective only when the rank of S is 
:::: 4.) 

22. Aside from the Euler characteristic, there are other topological invariants. 
In dimensions 4n we have that the Hodge* : H 2n (M) -+ H 2n (M) satisfies 
** = I. The difference in the dimensions of the eigenspaces for ± 1 is called 
the signature of M : 

r ( M) = a ( M) = dim (ker ( * - I) - ker ( * + /)) . 
One can show that this does not depend on the metric used to define*· by 
observing that it is the index of the symmetric bilinear map 

H 2n (M) X H 2n (M) -+ lR, 

(WI, W2)-+ I WI 1\ W2. 

Recall that the index of a symmetric bilinear map is the difference between 
positive and negative diagonal elements when it has been put into diagonal 
form. In dimension 4 one can show that 

a (M) = ~ { (lw+l2 -IW_12). 
12.rr 1M 

Using the exercises from Chapter 4, show that for an Einstein metric in 
dimension 4 we have 

3 
X (M) ;::: 2a (M), 
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with equality holding iff the metric is Ricci flat and w- = 0. Conclude that 
not all four manifolds admit Einstein metrics. (Hint: consider connected 
sums of<CP2 with itself k times.) In higher dimensions there are no known 
obstructions to the existence of Einstein metrics. 

23. Recall the curvature forms defined using an orthonormal frame Ei: 

n{ (X, Y) Ej = R (X, Y) Ei. 

They yield a skew-symmetric matrix of2-forms: 

From linear algebra we know that there are various invariant polynomials 
that depend on the entries of matrices, e.g., the trace and determinant. We 
can define similar objects in this case as follows: 

P21 (n) = L n~~ 1\ n;~ 1\ · · · 1\ n;; . 

These are known as the Pontryagin forms. Show that they yield globally 
defined forms that are closed (you need to look at the exercises in Chapter 
2 and also understand what the second Bianchi identity has to do with dQ). 
Show that they are zero when l is odd. Thus, they generate homology classes 
p1 E H 41 , which are known as the Pontryagin classes of the manifold. It can 
be shown that these classes do not depend on the metric. 

Show that the Pontryagin classes are zero on a manifold with constant cur­
vature. (Hint: use that we know what the curvature tensor looks like.) Thus 
even in the case where 41 = n = dim M, we do not necessarily have that p1 

is the Euler class. 

Try to compute p 1 E H 4 for some of the standard 4-manifolds. 

24. In case the manifold has even dimension n = 2m, we can construct the 
Euler form: 

si1···i. = sign of the permutation (i1 ···in), 

which modulo a factor generates the Euler class, or characteristic, of the 
manifold. Show that this form also yields a globally defined closed form. 
Note that this is essentially the square root of the determinant ofQ. However, 
as this determinant is a 2n form, it is always zero and therefore doesn't yield 
anything interesting. The cohomology class of e (Q) can also be seen to 
be independent of the metric. Moreover, as discussed in Chapter 4, it is 
proportional to the Euler characteristic. 



8 
Symmetric Spaces and Holonomy 

In this chapter we shall give a brief overview of (locally) symmetric spaces and 
holonomy. Only the simplest proofs will be presented. Thus, we will have to be 
sketchy in places. Still, most of the standard results are proved or at least mentioned. 
We give some explicit examples, including the complex projective space, in order 
to show how one can compute curvatures on symmetric spaces relatively easily. 
There is a brief introduction to holonomy and the de Rham decomposition theorem. 
We give a few interesting consequences of this theorem and then proceed to discuss 
how holonomy and symmetric spaces are related. Finally, we classify all compact 
manifolds with nonnegative curvature operator. We shall in a few places use results 
from Chapter 9. They will therefore have to be taken for granted at this point. 

As we have already seen, Riemann showed that locally there is only one constant­
curvature geometry. After Lie's work on "continuous" groups it became clear that 
one had many more interesting models for geometries. Next to constant curvature 
spaces, the most natural type of geometry to try to understand is that of (locally) 
symmetric spaces. At the end of the nineteenth century it became a well-defined 
problem to classify all such geometries. The history of symmetric spaces parallels 
that of the Lebesgue integral. Namely, one person managed to take all the glory, Elie 
Cartan. He started out in his thesis with classifying all simple complex Lie algebras. 
Using this he later classified all the simple real Lie algebras. With the help of this 
and many of his different characterizations of symmetric spaces, Cartan, by the 
mid 1920s had managed to give a complete (local) classification of all symmetric 
spaces. This was an astonishing achievement even by today's deconstructionist 
standards, not least because Cartan also had to classify the simple Lie algebras. 
This in itself takes so much work that most courses on Lie algebras these days give 
up after having settled the complex case. 
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After Cartan's work, a few people worked on getting a better understanding 
of some of these new geometries and also on giving a more global classification. 
Still, not much happened until the 1950s, when people realized a serious con­
nection between symmetric spaces and holonomy. Here we are thinking of the 
de Rham decomposition theorem and Berger's classification ofholonomy groups. 
With this work it became clear that almost all holonomy groups occurred for sym­
metric spaces and therefore gave good approximating geometries to most holon­
omy groups. An even more interesting question also came out of this, namely, 
What about those few holonomy groups that do not occur for symmetric spaces? 
This is related to the study of Kahler manifolds and then some exotic geometries 
in dimensions 7 and 8. The Kahler case seems to be quite well understood by now, 
not least because of Yau's work on the Calabi conjecture. The exotic geometries 
have only very recently become better understood with D. Joyce's work. 

8.1 Symmetric Spaces 

There are many ways of representing symmetric spaces. Below we shall see how 
they can be described via homogeneous spaces, Lie algebras, and finally, by their 
curvature tensor. 

8.1.1 The Homogeneous Description 

We say that aRiemannianmanifold(M, g) is asymmetric space if for each p E M 
the isotropy group Isop contains an isometry lp such that Dip : TpM ~ TpM is 
the antipodal map -I. Since isometries preserve geodesics, we immediately see 
that for any geodesic y (t) such that y (0) = p we have that lp o y (t) = y ( -t). 
Using this, it is easy to show that symmetric spaces are homogeneous and complete. 
Namely, if two points are joined by a geodesic, then the symmetry in the midpoint 
between these points on the geodesic is an isometry that maps these points to each 
other. Thus, any two points that can be joined by a broken sequence of geodesics can 
be mapped to each other by an isometry. This shows that the space is homogeneous. 
It is then easy to show that the space is complete. In conclusion, we see that any 
symmetric space looks like 

GjH = Isojlsop. 

Given a homogeneous space G I H = I so /Iso P, we see that it is symmetric provided 
that the symmetry I P exists for just one p. The symmetry I q can then be constructed 
by selecting an isometry g that takes p to q and then observing that 

has the correct differential at q. This means, in particular, that any Lie group 
G with hi-invariant metric is a symmetric space, since g ~ g-1 is the desired 



I Iso 

8.1 Symmetric Spaces 209 

symmetry around the identity element. Let us list some of the important families 
of homogeneous spaces that are symmetric. They come in pairs of compact and 
noncompact spaces. Below we list just a few families of examples. There are many 
more families and several exceptional examples as well. 

Lie groups with hi-invariant metrics 

1 group 1 rank 1 dim 1 

SU (n + 1) n n (n + 2) 
SO (2n + 1) n n(2n + 1) 
Sp(n) n n(2n+1) 
SO (2n) n n (2n- 1) 

Noncompact analogues ofbi-invariant metrics 

I (complexified group)/group I rank I dim I 
SL(n + 1, C)/SU(n + 1) n n (n + 2) 
SO (2n + 1, C) /SO (2n + 1) n n(2n + 1) 
Sp(n, C) /Sp(n) n n(2n+1) 
S0(2n, C)/S0(2n) n n (2n- 1) 

Compact homogeneous examples 
I Iso I Iso P I dim I rank I description 

SO(n+1) SO (n) n 1 Sphere 
0 (n + 1) 0 (n) x {1, -1} n 1 )Rpn 

U(n + 1) U(n)xU(l) 2n 1 cpn 

Sp(n + 1) Sp (n) x Sp (1) 4n 1 JH[pn 

F4 Spin (9) 16 1 Cayley plane 
SO(p+q) SO (p) X SO (q) pq min(p, q) real Grassmannian 

SU(p+q) S(U (p) Xu (q)) 2pq min(p, q) complex Grassmannian 

Noncompact homogeneous examples 

I ISOp I dim I rank I description 

SO (n, 1) SO(n) n 1 Hyperbolic space 
0 (n, 1) 0 (n) x {1, -1} n 1 Hyperbolic JRpn 
U (n, 1) U(n)xU(1) 2n 1 Hyperbolic cpn 
Sp (n, 1) Sp(n) x Sp(1) 4n 1 Hyperbolic JH[pn 
F4-:.w Spin (9) 16 1 Hyperbolic Cayley plane 
so (p, q) SO (p) X SO (q) pq min(p, q) Hyperbolic Grassmannian 
su (p, q) S(U (p) Xu (q)) 2pq min(p, q) Complex hyperbolic Grassmannian 

Recall that Spin (n) is the universal double covering of SO (n) for n > 1. We 
also have the following special identities for low dimensions: 

Spin (3) = SU (2) = Sp (1), 
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Spin (4) =Spin (3) x Spin (3). 

Note that all of the compact examples have sec :::: 0, by O'Neill's formula. It 
also follows from this formula that all the projective spaces (compact and non­
compact) have quarter pinched metrics, i.e., the ratio between the smallest and 
largest curvatures is t. Below we shall do some concrete calculations to justify 
these remarks. 

In the above list of examples we have a column called rank. The rank of a 
geodesic y : lR ~ M is simply the dimension of parallel fields E along y such 
that g (R (E (t), y (t)) y (t), E (t)) = 0 for all t. The rankofa geodesic is therefore 
always :::: 1. The rank of a Riemannian manifold is now defined as the minimum 
rank over all of the geodesics in M. The concept of rank for symmetric spaces has 
to do with maximal tori in Lie groups and is therefore more or less algebraic. For a 
general manifold there might of course be metrics with different ranks, but this is 
actually not so obvious. Is it, for example, possible to find a metric on the sphere 
of rank > 1? A general remark is that of course any Cartesian product has rank 
:::: 2, and also many symmetric spaces have rank:::: 2. In general it is unclear to 
what extent other manifolds can also have rank :::: 2. However, see below for the 
case ofnonpositive curvature and nonnegative curvature operators. Note that there 
are five compact rank one symmetric spaces (CROSS) in the above lists. These are 
the only simply connected compact rank 1 symmetric spaces. 

To get back to the rank for symmetric spaces, let us start with a Lie group G of 
dimension n :::: 3 endowed with a hi-invariant metric. Now, rank has to do with 
having lots of zero curvature. On G we know from the exercises from Chapter 2 that 
sec (x, y) = 0 iff [ x, y] = 0, where x, y E Te G = g. It is therefore not surprising 
that the rank can be computed knowing only the group structure. Namely, it must 
be the dimension of the largest Abelian subalgebra a c g. Recall the linear map 
L : A2g ~ g defined by x 1\ y ~ [x, y]. The kernel ofthis map is exactly A2 a, 
and thus a is uniquely defined and satisfies 

(dima)(dima- 1):::: n (n- 3). 

Therefore, the rank is always> 1 when the dimension is> 3. Using this, one can 
see that most quotients of Lie groups also have rank > 1. 

8.1.2 Isometries and Parallel Curvature 

Another interesting property for symmetric spaces is that they have parallel cur­
vature tensor. This is because the symmetries I P leave the curvature tensor and its 
covariant derivative invariant. In particular, we have 

Dip ((VxR)(Y, Z, W)) = (VvipxR) (DipY. DlpZ. Dip W), 

which at p implies 

- (VxR)(Y, Z, W) = (V-xR)(-Y, -Z, -W) 

= (VxR)(Y, Z, W). 
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Thus, \1 R = 0. This almost characterizes symmetric spaces. 

Theorem 1.1 (E. Cartan) If (M, g) is a Riemannian manifold with parallel 
curvature tensor, then for each p E M there is an isometry Ip defined in a neigh­
borhood of p with Dip = -I on TpM. Moreover, if(M, g) is simply connected 
and complete, then the symmetry is defined on all of M, and in particular, the 
space is symmetric. 

Proof. The global statement follows from the local one using an analytic con­
tinuation argument and Theorem 1.2, which proved below. Note that for the lo­
cal statement we already have a candidate for a map. Namely, if c: is so small 
that expP : B (0, c:) --* B (p, c:) is a diffeomorphism, then we can just define 
Ip (x) = - x in these coordinates. It now remains to see why this is an isometry 
when we have parallel curvature tensor. To this effect, we must show that in these 
coordinates the metric is the same at x and - x. Switching to polar coordinates, 
we have the usual equations relating curvature and the metric. So the claim fol­
lows if we can prove that the curvature tensor is the same when we go in opposite 
directions. To check this, first observe 

R(·, v)v = R(·, -v)(-v). 

So the curvatures start out being the same. If or is the radial field, we also have 

Thus, the curvature tensors not only start out being equal, but also satisfy the same 
simple first-order equation. Thus, they must remain the same as we go in opposite 
directions. D 

A Riemannian manifold with parallel curvature tensor is called a locally sym­
metric space. 

We should also mention at this point that there are left-invariant metrics that 
are not even locally symmetric. Namely, in the exercises to Chapter 3 it is shown 
that the Berger spheres ( c: =j:. 1) and the Heisenberg group do not have parallel 
curvature tensor. In fact, they don't even have parallel Ricci tensor, but this comes 
as no surprise, as they are 3-dimensional. 

With very little extra work we can generalize the above theorem on the existence 
of local symmetries. Recall that in our discussion about existence of isometries 
with a given differential in Chapter 6 we decided that they could exist only when 
the spaces had the same constant curvature. However, there is a generalization to 
symmetric spaces. Namely, we know that any isometry preserves the curvature 
tensor. Thus, if we start with a linear isometry that preserves the curvatures at a 
point, then we should be able to extend this map in the situation where curvatures 
are everywhere the same. This is the content of the next theorem. 
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Theorem 1.2 (E. Cartan) Suppose we have a simply connected symmetric 
space (M, g) and a complete locally symmetric space (N, h) of the same dimen­
sion. Given a linear isometry L : TpM --+ TqN such that 

L (Rg (x, y)z) = Rh (Lx, Ly) Lz 

for all x, y, z E Tp M, there is a unique Riemannian isometry M --+ N such that 
Dpcp = L. 

Proof. The proof of this is, as usual, by analytic continuation, given that we can 
find these isometries locally. Given that there is an isometry defined locally, we 
know that it must look like 

L -1 cp = expq o o expP . 

To see that this indeed defines an isometry, we have to show that the metrics in 
exponential coordinates are the same via the identification ofthe tangent spaces by 
L. As usual the radial curvatures from the centers determine the metrics. In addi­
tion, the curvatures are parallel and therefore satisfy the same first-order equation. 
Now initially, we assume that the curvatures are the same at p and q via the linear 
isometry. But then they must be the same in frames that are radially parallel around 
these points. Consequently, the spaces are locally isometric. D 

This result shows that the curvature tensor completely characterizes the sym­
metric space. We shall study this further below. 

8.1. 3 Algebraic Descriptions of Symmetric Spaces 

It is worthwhile to get a more algebraic description of symmetric spaces. Note that 
there are many ways of writing homogeneous spaces as quotients G I H, e.g., 

S3 = SU(2) = S0(4)jS0(3) = U(2)/(U(1) x U(l)). 

But only one of these, S 0 ( 4) 1 S 0 (3) , tells us that S3 is a symmetric space. 
However, there are also several ways of writing it as a symmetric space: 

so (4) ;so (3) = o (4) ;o (3) =Spin (4) /Spin (3). 

Note, however, that at the Lie algebra level those three descriptions look the same. 
To get a more complete picture, we also have to understand how the involution 
acts, not just on the space M, but as a map in Iso(M, g), and then in the Lie 
algebra iso (M, g) of Killing fields. We shall here give the isometry description of 
a symmetric space. 

Let us fix a symmetric space ( M, g) and a point p E M. Recall from Chapter 7 
that the map 

iso--+ TpM x so (TpM), 

X--+ (X (p), (VX)(p)) 
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is a linear isomorphism. Since ( M, g) is homogeneous, this linear map will be onto 
the first factor. Thus, i.so can be identified with TpM x i.sop. This then induces a 
Lie algebra structure on TpM x i.so P from that on wo. To understand this structure 
a little better, let us first observe that the decomposition TpM x i.soP at the level 
of Killing fields looks like 

X E TpM iff (VX)(p) = 0, 

X E i.sop iff X (p) = 0. 

So as not to confuse Killing fields with vectors, let us introduce the terminology 

tP ={X E i.so: (VX)(p) = 0}. 

Let us check where the Lie brackets of various combinations of Killing fields X, Y 
lie. 

(a) If X, Y E tp or X, Y E WOp, then 

[X, Y] (p) = Y'x(p)Y- Y'r(p)X = 0. 

So we conclude that [X, Y] E i.so P in these cases. In the case where X, Y E woP, 
we even have that the Lie bracket coincides, up to sign, with the Lie bracket coming 
from .so (TpM). Namely, the map 

is tensorial in V and W. Therefore, ifv E TpM and X (p) = 0, we see that 

But this implies, in the case where X, Y E i.sop and v E TpM, that 

[V X (p), VY (p)](v) = (V X o VY- VY o V X)(v) 

= Y'vvrX- Y'vvxY 

= Y'v (Y'rX- Y'xY) 

= -Y'v [X, Y]. 

Hence, the element [X, Y] E wo is identified with- [VX (p), VY (p)] inside 
.so (TpM). 

(b) If X E tp andY E WOp, then 

[X, Y] (p) = Y'x(p)Y = (VY) (X (p)), 

which is simply the way the elements Y E .so (TpM) act on TpM. 
In conclusion, we see that the Lie algebra wo can be represented as a direct 

sum: i.so = tp EB i.so P, where tp is a vector space with a Euclidean metric, and i.so P 
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is a subalgebra of the skew-symmetric transformations on tp. Moreover, the Lie 
algebra structure on i.so = tp E9 i.so P is given by 

[h1,h2] = -(h, oh2 -h2 oh,) if hiE i.sop, 

[h,x]=-[x,h]=h(x) if hEi.sop and xEtp, 

[x,y] E i.sop for x,y E tp. 

Thus, the only Lie brackets that are not given canonically are [ x, y] , where x, y E 
tp. 

All of this, of course, works for homogeneous spaces, so what about the invo­
lution? It can actually be seen as acting on both Iso and i.so. In the latter case, we 
can guess that it should be the identity on i.so P, but multiplication by -1 on tp. At 
the Lie group level, it is defined as the map a : Iso ~ Iso such that 

a (g) = I P o g o I P. 

Then we have found an automorphism that is characterized by 

a (g) = g iff g E Iso P, 

a o a= id. 

If we take the differential of a, then we get a linear map Da : i.so ~ i.so, which 
is a Lie algebra automorphism such that 

Da (h)= h for all h E i.sop. 

Da (x) = -x for all x E tp. 

Thus, Da acts in the desired way on TpM. Since a also fixes Isop, it clearly 
induces a map on Iso/Isop whose differential on Tlsop (Isojlsop) is -id. But then 
we have found a completely algebraic description of a symmetric space. 

Conversely, suppose we have a Lie algebra g and a Lie algebra automorphism 
L : g ~ g that is an involution. Then we can construct a symmetric space as 
follows: First decompose g = t E9 t where t is the -1 eigenspace for L and t is 
the 1 eigenspace for L. Then observe that t is a Lie subalgebra, since 

L [h,, h2] = [Lh,, Lh2] 

= [h,, h2]. 

Note also that for similar reasons, 

[t, t] c t, 

[t, t] c t. 

Suppose now that there is a compact Lie group K such that its Lie algebra is t. 
Then we can choose a Euclidean metric on t making the adjoint action of K on 
t isometric. Then we see that the decomposition g = t E9 t is exactly of the type 
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described for iso. Now pick a hi-invariant metric on K such that g gets a Euclidean 
metric. Therefore, if we can also choose a Lie group G ::J K whose Lie algebra is 
g, then we have constructed a Riemannian manifold G I K. To make it symmetric 
we need to be able to find an involution a on G such that Da = L. Note that if 
K is simply connected then we can take G to be the unique simply connected Lie 
group whose Lie algebra is g. Then a can also easily be constructed. 

Note that the isometry approach and curvature approach give different ways of 
representing a given symmetric space in an algebraic way. For Euclidean space we 
can, aside from the standard way using g = iso, also simply use g = ~n and let 
the involution be multiplication by -1 on all of g. 

It is important to realize that a Lie algebra g, in itself, does not give rise to a 
symmetric space. The involution is really an integral part of the construction and 
does not necessarily exist on a given Lie algebra. The map -id can, for instance, 
not be used, as it does not preserve the bracket. Rather, it is an antiautomorphism. 
This is particularly interesting if g comes from a Lie group G with hi-invariant 
metric. Then the involution on G, which shows that G is symmetric, is the anti­
automorphism: g ---+ g-1, whose differential ate is -id. This just shows that the 
Lie algebra involution and the differential of the symmetry are not related in this 
simple fashion on Lie groups. 

8.1.4 Curvature Description of Symmetric Spaces 

Given the algebraic nature of symmetric spaces, there must of course be a purely 
algebraic way of computing the curvatures. This is the content of our next lemma. 
Note that the formula is similar to the one that was developed for hi-invariant 
metrics in the exercises to Chapter 2. 

Lemma 1.3 On a symmetric space we have that if X, Y, Z E tp, then 

R (X, Y) Z = [Z, [X, Y]] 

at p. 

Proof. By assumption, we suppose that the Killing fields are globally defined 
and satisfy V X = VY = V Z = 0 at p. The right-hand side does lie in TpM rather 
than isop, so we are on the right track. The proof follows from the fact, proved 
below, that if K is a Killing field on a Riemannian manifold, then 

Vi yK = -R(K, X) Y. 

Using this and V X= VY = VZ = 0 at p, we can calculate at p 

R (X, Y) Z = R (X, Z) Y- R (Y, Z) X 

= -VzVyX + VzVxY 

= Y'z [X, Y] 

= [Z, [X, Y]], 
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which is what we wanted to prove. 

Lemma 1.4 If K is a Killing.field on a Riemannian manifold (M, g), then 

Vi.rK = -R(K,X)Y. 

0 

Proof. The fact that K is a Killing field is used in the sense that Y --+ Vi y K is 
skew adjoint. This fact was established in the proof of Proposition 1.4 in chapter 
7. For any vector field Z we can now compute 

g (vi.rK, z) = -g (vi.zK, Y) 

Thus, 

= -g (vi.xK, Y)- g (R (X, Z) K, Y) 

= g (Vi.rK, X)- g (R (X, Z) K, Y) 

= g (Vf.zK, X)+ g (R (Z, Y) K, X)- g (R (X, Z) K, Y) 

= -g (V~.xK, Z) + g (R (Z, Y) K, X)- g(R(X, Z) K, Y) 

= -g (Vi,yK, z)- g(R(Y, X) K, Z) + g(R (Z, Y) K, X) 

- g (R (X, Z) K, Y). 

2g (Vi.rK, Z) = -g (R (Y, X) K, Z) + g (R (Z, Y) K, X)- g (R (X, Z) K, Y). 

Bianchi's first identity, together with the other symmetry properties of the curvature 
tensor, now tells us that 

g ( R ( Z, Y) K, X) - g ( R (X, Z) K, Y) 

= -g (R (K, X) Y, Z) + g (R (Y, K) X, Z) + g (R (X, Y) K, Z) 

= -2g(R(K, X)Y, Z). 

Hence 
2g (Vi.rK, Z) = -2g (R (K, X) Y, Z), 

which yields the desired property. 0 

Note that the curvatures therefore contain all the information about the Lie 
algebra structure that is needed for defining the brackets of vectors in tp. This can 
be used to give a more efficient description of a symmetric space than the one 
using lso. This description is called the curvature description. Suppose (M, g) is 
a symmetric space and fix p E M. Suppose tp c .so (TpM) is the Lie algebra 
generated by the skew-symmetric endomorphisms R (x, y): TpM--+ TpM. Then 
we get a bracket operation on Cp = TpM EB tp by defining 

[x,y] = R(x,y) E tp for x,y E TpM, 

[r,x] = -[x,r] = r(x) E TpM for x E TpM and r E tp, 

[r,s]=-(ros-sor)Etp for r,sEtp. 
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Using Bianchi's first identity for the curvature tensor, one can show that the Jacobi 
identity holds. Thus, this bracket operation defines a Lie algebra. Also, the linear 
involution L, which is the identity on t P and multiplication by -1 on Tp M, is 
a Lie algebra automorphism. Since this construction works on any manifold, we 
still have to worry about why it reconstructs the symmetric space we started with. 
We shall show below that R (x, y) E iso P' using a holonomy argument. From this 
it follows that (cp, tp) c (iso, isop), iso n cp = tp, and that Lis merely the 
restriction of Da onto c P. From this it is easy to see that this new description gives 
a possibly different way of representing the symmetric space. 

Note also that given any Lie algebra description (g, L) for a symmetric space, 
we can use this description to compute the curvature tensor. This is because any 
such description yields a homomorphism h : g---+ iso such that h o L = Da o h. 
Thus, we can divide out by the kernel and get a smaller description that actually 
is contained in (iso, Da). 

8.2 Examples of Symmetric Spaces 

We shall here try to explain how some of the above constructions work in the 
concrete case of the Grassmannian manifold and its hyperbolic counterpart. We 
shall also look at complex Grassmannians, but there we restrict attention to the 
complex projective space. After these examples we give a formula for the curvature 
tensor on a compact Lie group with hi-invariant metric. Finally, we briefly discuss 
the symmetric space structure of Sf (n) j S 0 (n) . The moral of all ofthese examples 
and the above Lie algebra descriptions is that one can compute the curvature tensor 
algebraically without knowing the connection. Based on some general features of 
these examples, we shall see in the next section that the simplest symmetric spaces 
have either nonnegative or nonpositive curvature operator. 

8.2.1 The Compact Grassmannian 

First consider the Grassmannian of oriented k-planes in ~k+l, denoted by M = 
Ch (JRk+1) • Thus, each element in M is a k-dimensional subspace ofJRk+i together 

with an orientation; in particular, G1 (~n+l) = sn. We shall assume that we have 
the orthogonal splitting ~k+J = ~k EB JR1, where the distinguished element p = JRk 

takes up the first k coordinates in JRk+1 and is endowed with its natural positive 
orientation. 

Let us first identify M as a homogeneous space. Observe that 0 (k + l) acts on 
JRk+1• As such, it maps k-dimensional subspaces to k-dimensional subspaces, and 
does something uncertain to the orientations of these subspaces. We therefore get 
that 0 (k + l) acts transitively on M. This is, however, not the isometry group, 
which is really what we wish to find, as the matrix-/ E SO (k + l) acts trivially 
if k and I are even. 
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The isotropy group consists of those elements that keep JRk fixed as well as 
preserving the orientation. Clearly, the correct isotropy group is then SO (k) x 
0 (1) c 0 (k + 1) . 

The tangent space at p = JRk is naturally identified with the space of k x 1 
matrices Matkxl• or equivalently, with JRk ® JR1• To see this, just observe that any 
k-dimensional subspace ofJRk+1 can be represented as a linear graph over JRk with 
values in the orthogonal complement JR1• The isotropy action of SO (k) x 0 (1) on 
M atkxt now acts as follows: 

SO (k) X 0 (1) X Matkxl ~ Matkxt. 

(A, B, X)~ AXB-1 = AXB1 • 

If we define X to be the matrix that is 1 in the ( 1, 1) entry and otherwise zero, then 
AX B 1 = A1 (BI)1 , where A1 is the first column of A and B1 is the first column of 
B. Thus, the orbit of X, under the isotropy action, generates a basis forM atk xt but 
does not cover all of the space. Thus, we have an example of an irreducible action 
on Euclidean space that is not transitive on the unit sphere. This representation, 
when seen as acting on JRk ® JR1, is denoted by S 0 (k) ® 0 (I) . 

To see that M is a symmetric space, we have to show that the isotropy group con­
tains the required involution. On the tangent space TpM = Matkxt it is supposed 
to act by multiplication by -1. Thus, we have to find (A, B) E SO (k) x 0 (1) 
such that for all X, 

AXB1 =-X. 

Clearly, we can just set 

Depending on k and 1, other choices are possible, but they will act in the same 
way. 

We have now exhibited M as a symmetric space, although we didn't use the 
isometry group of the space. Instead, we used a finite covering of the isometry 
group and then had some extra elements that acted trivially. 

Let us now give the Lie algebra description and compute the curvature tensor. 
Since we actually found the isometry group modulo a finite covering, we see that 

iso = so (k + 1) , 

isop =so (k) x so (1). 

We shall use the block decomposition of matrices in so (k + 1): 

X= ( XIt B ) 
-B x2 · 

X1 E so (k), X2 E so (1), BE Matkxt· 
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Ifwe set 

~ ) : B E M atkxl} , 

then we have an orthogonal decomposition: 

.so (k + l) = tP E9 .so (k) E9 .so (I), 

where we can identify tp = Tp M. The inner product on tp is the standard Euclidean 
metric defined by 

(( -~' ~ ).( -~' ~ ))=tr(( 
0 ~) ( 0 B )) -A' -B' 0 

= tr ( ( 
0 ~) ( 0 -B )) -At B' 0 

( AB1 0 ) 
=tr 0 A'B 

= tr (AB') + tr (A' B) 
= 2tr (AB'). 

Thus, it is twice the usual Euclidean metric on JRk·l that we used above. But that, 
of course, does not change matters much. 

We now have to compute Lie brackets of elements in tp and then see how 
.so (k) E9 .so (l) acts on tp. in order to find the curvature tensor. For A, B E tp we 
have 

[A, B] = ( -~' ~ ) ( -~' ~ ) - ( -~' ~ ) ( -~' ~ ) 

= ( -AB1 0 ) _ ( -BA' 0 ) 
0 -A' B 0 -B'A 

( BA'- AB' 0 ) 
= O 8 , A _ A' B E .so (k) E9 .so (l). 

Observe that there is a basis for .so (k) E9 .so (l) that can be written in this way, so 
there will be no difference between the curvature and isometry descriptions. Now 
take C E tp and compute 

)] 

)-
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This does not seem very illuminating, so let us find the sectional curvatures by 
considering the directional curvature transformation 

BB1A-2BNB+AB1B) 
0 . 

We now have to take the inner product with A, which gives us 

(R(A,B)B,A) =tr(BB1 AA' -2BA1BA1 +AB'BN) 

+ tr (A 1 BB' A- 2B' AB' A+ B 1 BA' A) 

= tr (BB 1 AA')- 2tr (BN BA1) + tr (AB 1 BA') 

+ tr (A' BBt A)- 2tr (B' AB1 A)+ tr (B' BA' A) 

= tr (BAt ABt)- 2tr (BAt BAt)+ tr (ABt BAt) 

+ tr (At BB' A)+ tr (Bt AAt B)- 2tr (B 1 ABt A) 

= (BA', BA')- 2(BAr, AB') + (AB', ABt) 

+(At B, At B)- 2(At B, B1 A)+ (Bt A, Bt A) 

= IBAt- ABtl2 + IAt B- B' Al2 ~ 0. 

Here we recklessly used Euclidean norms for matrices in various different spaces. 
The conclusion is that the sectional curvatures are all ~ 0. 

When k = 1 or l = 1 , it is easy to see that one gets a metric of constant positive 
curvature. Otherwise, the metric will have some zero sectional curvatures. 

8.2.2 The Hyperbolic Grassmannian 

Let us now tum to the hyperbolic analogue. In the Euclidean space JRk+1 we use, 
instead of the positive definite inner product vt · w, the quadratic form: 

t t ( h V fk.[W = V O 

With this form we usually write JRk.L to indicate both the dimension k+l and the type 
of quadratic form used on the Euclidean space. The group linear transformations 
that preserve this form is denoted by 0 (k, l). These transformationsare defined 
by the relation 

X . h.L . xr = h.L· 

Note that if k, l > 0, then 0 (k, l) is not compact. But it clearly contains the 
(maximal) compact subgroup 0 (k) x 0 (l). 

The Lie algebra so (k, l) of 0 (k, l) consists of the matrices satisfying 

y . h.l + h.l . yt = 0. 



8.2 Examples of Symmetric Spaces 221 

If we use the same block decomposition for Y as we did for h.1 above, then we 
have that it looks like 

y = ( :, ~ ) ' 

A E .so(k), 

C E .50 (l), 

B E Matkxl· 

We now consider only those (oriented) k-dimensional subspaces of JR.k,l on 
which this quadratic form generates a positive definite inner product. This space 
is the hyperbolic Grassmannian M = Gk (JR.k.l). Our selected point is as before 

p = JR.k. One can easily see that topologically: G k (JR.k.l) is an open subset of 

Gk (JR.k+1). The metric on this space is another story, however. Clearly, 0 (k, l) 
acts transitively on M, and those elements that fix pare of the form SO (k) x 0 (l). 
One can, as before, find the desired involution, and thus exhibit M as a symmetric 
space. Again some of these elements act trivially, but at the Lie algebra level this 
makes no difference. Thus, we have 

iso =so (k, l), 

i5op =50 (k) x 50 (l), 

tp = { ( 1, ~ ) : B E Matkxl}. 

On tp we use the Euclidean metric 

( AB' 0 ) 
=tr 0 NB 

= tr (AB') + tr (A' B) 
= 2tr (AB'). 

So while tp looks different, we seem to use the same metric. 
On tp we have the Lie bracket 

~ )') 
~ )) 
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=( 
E .50 (k) E9 .50 (l). 

This is the negative of what we had before. We can now compute the curvature 
tensor: 

R(A, B)C = [C, [A, B]] 

= [ ( ~t ~ ) ' ( 

=( 
0 

C' (AB'- BA') 
-(A'B-B'A)C' 

If we let C = B and compute the sectional curvature as before, we arrive at 

(R (A, B) B, A) 

= tr ( ( 
0 

2BA'B ) ( -BB'A-AB'B 0 A 
2B' AB' 

0 
A' 0 

-B' BA'- A' BB' 

=tr( 
2BA' BA' 

0 ) -BB' AA'- AB1 BA' 

0 
2B' AB' A 

-B1 BA' A- A' BB' A 

)) 

This is exactly the negative of the expression we got in the compact case. Hence, 
the hyperbolic Grassmannians have nonpositive curvature. When k = 1 , we have 
reconstructed the hyperbolic space together with its isometry group. 

8.2.3 Complex Projective Space Revisited 

We shall view complex projective space as a complex Grassmannian. Namely, let 
M = epn = Gt (en+ I), i.e., the complex lines in en+t. More generally we can 
consider Gk (ek+1) and of course the hyperbolic counterparts Gk (ek,t), but we 
leave this to the reader. 

The group U (n + 1) c SO (2n + 2) consists of those orthogonal transforma­
tions that also preserve the complex structure. If we use complex coordinates, then 
the Hermitian metric on en+ 1 can be written as 

where as usual, A* 
U (n + 1) satisfy 

* '"'-Z W = L...- ZiW;, 

A1 is the conjugate transpose. Thus, the elements of 
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As with the Grassmannian, U (n + 1) acts on M, but this time, all of the transfor­
mations of the form a I, where a a = 1, act trivially. Thus, we restrict attention to 
SU (n + 1), which still acts transitively, but now also almost effectively. 

If we let p = e be the first coordinate axis, then the isotropy group is 
S(U(l) x U(n)), i.e., those matrices in U(l) x U(n) of determinant 1. This 

group is, of course, naturally isomorphic to U (n) via the map 

A ---+ ( det0A-1 o ) 
A . 

The involution that makes M symmetric is then given by 

Let us now pass to the Lie algebra level in order to compute the curvature tensor. 
From the above, we have 

iso = su (n + 1) = {A : A = -A*, tr A = 0} , 

isop = u(n) = { B: B = -B*}. 

The inclusion looks like 

B---+ ( -~B ~ ) . 

Thus we should write elements of su (n + 1) in the form 

( -trB -z* ) 
z B ' 

and then identify tp = { ( ~ -~* ) : z E en} and use the inner product 

-w* 
0 

= !tr ( z*w 0 ) 
2 0 zw* 

= ~ (z*w + trzw*) 

1 
=- (z*w + w*z) 

2 
= Re (z, w). 

Here (z, w) is the usual Hermitian inner product on en, which is conjugate linear 

in the w variable. 
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For the curvature tensor we first compute the Lie bracket on tp: 

[ ( ~ -z* 
0 ) ' ( ~ -w* 

0 

=( 
=( w*z- z*w 

0 

Then, we get 

R (z, w) w = [ ( ~ 

=(~ 
( 

-w*) ( w*z-z*w 
0 ' 0 

-w* ) ( w*z- z*w 0 ) 
0 0 wz*- zw* 

w*z - z*w 0 ) ( 0 -w* 
0 wz*- zw* w 0 

0 
w* (zw* - wz*) 

+(w*z- z*w)w* 
w (w*z- z*w) 

+ (zw* - wz*) w 
0 

Now identify tp with en and observe that 

R(z, w) w = w (w*z- z*w) + (zw*- wz*) w. 

) 

) 

To compute the sectional curvatures we need to pick an orthonormal basis z, w 
for a plane. This means that lzl2 = lwl2 = 1 andRe (z, w} = 0. The sectional 
curvature of the plane spanned by z, w is therefore 

sec(z, w) = Re(w (w*z- z*w) + (zw*- wz*) w, z) 

= Rez*w (w*z- z*w) + Rez* (zw*- wz*) w 

= l(w, z}l 2 - 2Re ((w, z} 2) + 1 

= 1+31Im(w,z}l2 • 

Thus, if z, ware orthogonal with respect to the Hermitian metric, i.e., (z, w} = 0, 
then sec (z, w) = 1, while if, e.g., w = iz, then we get that the sectional curvature 
ofacomplexlineissec(z,iz) = 4. Since llm(w,z}l.::; lzllwl = 1, all other 
curvatures lie between these two values. Thus we have shown that the complex 
projective space is quarter pinched. 
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8.2.4 Lie Groups with Bi-Invariant Metrics 

In a more abstract vein, let us see how Lie groups with hi-invariant metrics behave 
when considered as symmetric spaces. To this end, suppose we have a compact Lie 
group G with a hi-invariant metric. As usual, the Lie algebra g of G is identified 
with Tp M and is also the set ofleft-invariant vector fields on G. The object is then 
to find an appropriate Lie algebra description. 

The claim is that a Lie algebra description is (g $ g, L), where L (X, Y) = 
(Y, X). Clearly, the diagonal gil = {(X, X): X E g} is the !-eigenspace, while 
the complement g.l ={(X, -X): X E g} is the -!-eigenspace. Thus, we should 
identify 

We already know that g corresponds to the compact Lie group G, so we are simply 
saying that 

G = (G x G)/Gil. 

On t, the Lie bracket looks like 

[(X, -X), (Y, -Y)] =([X, Y], [-X, -Y]) 

=([X, Y], [X, Y]) E t 

Thus, the curvature tensor can be computed as follows: 

R (X, Y) Z = R ((X, -X), (Y, -Y))(Z, -Z) 

= [(Z, -Z), ([X, Y], [X, Y])] 

= ([Z, [X, Y]],- [Z, [X, Y]]) E t. 

Hence, we arrive at that the formula 

R (X, Y) Z = [Z, [X, Y]] 

for the curvature tensor on a compact Lie group with hi-invariant metric. This 
formula looks exactly like the one for the curvature of a symmetric space, but 
it is interpreted differently. Another curious feature is that if one computes the 
curvature tensor in the standard way using a hi-invariant metric, then the formula 
has a factor ~ on it (see the exercises to Chapter 2). The reason for this discrepancy 
is that left- or right-invariant vector fields do not lie in t unless they are parallel. 
And conversely, a Killing field from tis left- or right-invariant only when it is 
parallel. 

8.2.5 Sl(n)jSO(n) 

The manifold is the quotient space of then x n matrices with determinant 1 by the or­
thogonal matrices. The Lie algebra of Sl (n) is .s((n) = {X E Matnxn : trX = 0}. 
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This Lie algebra is naturally divided up into symmetric and skew-symmetric ma­
trices 

s((n) = t$so(n), 

where t consists of the symmetric matrices. On t we can use the usual Euclidean 
metric. The involution is obviously given by -id on tandid on so (n). Holistically, 
this is the map 

Let us now grind out the curvature tensor: 

This yields 

R (X, Y) Z = [Z, [X, Y]] 

= Z [X, Y]- [X, Y] Z 

= ZXY- ZYX- XYZ + YXZ. 

g (R (X, Y) Z, W) = tr ([z, [X, Y]] W1) 

= tr ([Z, [X, Y]] W) 

= tr(Z [X, Y] W- [X, Y] ZW) 

= tr(WZ [X, Y]- [X, Y] ZW) 

= tr([X, Y] [W, Z]) 

= -tr ([X, Y] [W, ZY) 

= -g([X, Y], [W, Z]). 

In particular, the sectional curvatures must be nonpositive. 

8.3 Holonomy 

First we discuss holonomy for general manifolds and the de Rham decomposition 
theorem. We then use holonomy to give a brief discussion ofhow symmetric spaces 
can be classified according to whether they are compact or not. 

8.3.1 The Holonomy Group 

Let (M, g) be a Riemanniann-manifold. If c : [a, b] --+ M is a smooth curve, then 

denotes the effect of parallel translating a vector in Tc(a)M along c to Tc(b)M. This 
property will in general depend not only on the endpoints of the curve, but also on 
the actual curve. We can generalize this to work for piecewise smooth curves by 
breaking up the process at the breakpoints in the curve. 
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Supposenowthecurveisaloop,i.e.,c(a) = c(b) = p. Thenparalleltranslation 
gives an isometry on TpM. The set of all such isometries is called the holonomy 
group at p and is denoted by Holp = Holp (M, g). One can easily see that this 
formsasubgroupofO (TpM) = 0 (n). Moreover, itisactuallyaLiegroup, which 
is usually a closed subgroup of 0 (n) . We also have the restricted holonomy group 
Hol~ = Hol~ (M, g), which is the connected normal subgroup that comes from 
using only contractible loops. It can be shown that the restricted holonomy group 
is always compact. Here are some elementary properties that are easy to establish: 

(a) Holp (IRn) = {1}. 

(b) Holp (Sn (r)) = SO (n). 

(c) Holp (Hn) =SO (n). 

(d) Holp (M, g) c SO (n) iff M is orientable. 

(e) Holp ( M, g) = Hol~ ( M, g) = Hol~ (M, g), where M is the universal 

covering of M. 

(f) Hol(p.q) (M1 x M2. g1 + g 2) = Holp (M1, g 1) x Holq (M2, g 2). 

(g) Holp (M, g) is conjugate to Holq (M, g) via parallel translation along any 
curve from p to q. 

(h) A tensor on (M, g) is parallel iff it is invariant under the (restricted) holon­
omy group; e.g., if w is a 2-form, then Vw = 0 iff w (Pv, Pw) = w (v, w) 
for all P E Hol~ (M, g) and v, w E TpM. 

We are now ready to study how the Riemannian manifold decomposes according 
to the holonomy. Guided by (e) we see that Cartesian products are reflected in a 
product structure at the level of the holonomy. Furthermore, (g) shows that if the 
holonomy decomposes at just one point, then it decomposes everywhere. 

To make things more precise, let us consider the action ofHol~ on TpM. If 

E c Tp M is an invariant subspace, i.e., Hol~ (E) c E, then the orthogonal 

complement is also preserved, i.e., Hol~ (E.l) c E.L. Thus, TpM decomposes 
into irreducible invariant subspaces: 

Here, irreducible means that there are no invariant subspaces. Since parallel transla­
tion around loops at p preserves this decomposition, we see that parallel translation 
along any curve from p to q preserves this decomposition. Thus, we get a global 
decomposition of the tangent bundle into distributions each of which is invariant 
under parallel translation: 

T M = TJI EB • • • EB TJk· 

With this we can prove de Rham's decomposition theorem. 
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Theorem 3.1 (de Rham, 1952) If we decompose the tangent bundle of a Rie­
mannian manifold ( M, g) into irreducible components according to the holonomy 

T M = 171 EB · · · E9 17k. 

then around each point p E M there is a neighborhood U that has a product 
structure of the form 

(U, g) = (UI X · · · X Uk. gi + · · · + gk), 

TU; = 17iiU;· 

Moreover, if(M, g) is simply connected and complete, then there is a global split­
ting 

(M, g)= (MI X .•. X Mko g! + ... + 8k)' 

TM; = rJ;. 

Proof. Given the decomposition into parallel distributions, we first observe 
that each of the distributions must be integrable. Thus, we do get a local 
splitting into submanifolds at the manifold level. To see that the metric splits 
as well, just observe that the submanifolds are totally geodesic, as their tan­
gent spaces are invariant under parallel translation. This gives the local split­
ting. The global result is not just a trivial analytic continuation argument. Ap­
parently, one must understand what simple connectivity has to do with the 
maximal integral submanifolds being embedded submanifolds. Instead of do­
ing that, let M; be the maximal integral submanifolds, and define abstractly 
the Riemannian manifold (M1 x · · · x Mk. g1 + · · · + gk). Locally, (M, g) and 
(M1 x · · · x Mk. g1 + · · · + gk) are isometric to each other. Given that (M, g) is 
complete, it is not hard to see that also (M1 x · · · x Mk. g1 + · · · + gk) is com­
plete. Therefore, if M is also simply connected, we can find an isometric embedding 
(M, g)-+ (M1 x · · · x Mk. g1 + · · · + gk). Completenessinsuresusthatthemap 
is onto. To see that it is also one to one requires a little more work. D 

It is therefore reasonable when studying classification problems for Riemannian 
manifolds to study only those Riemannian manifolds that are irreducible, i.e., those 
where the holonomy has no invariant subspaces. Guided by this we have some nice 
characterizations of Einstein manifolds. 

Theorem 3.2 If( M, g) is an irreducible Riemannian manifold with parallel Ricci 
tensor, then (M, g) is Einstein. In particular, irreducible symmetric spaces are 
Einstein. 

Proof. The fact that VRic = 0 means that the Ricci tensor is invariant under 
parallel translation. Now decompose 

TpM = Et E9 · · · E9 Ek 
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into the eigenspaces for Ric : TpM -+ TpM with respect to distinct eigenvalues 
AJ < · · · < Ak. As above, we can now parallel translate these eigenspaces to get 
a global decomposition 

T M = 111 EB · • · EB 1Jk 

into parallel distributions, with the property that 

Ric11Ji =A; ·I. 

But then the decomposition theorem tells us that ( M, g) is reducible unless there 
is only one eigenvalue, which means that the metric is Einstein. 0 

8.3.2 A Different Curvature Characterization 
of Symmetric Spaces 

There is a very interesting result by Tricerri and Vanhecke in [81] that shows that 
only symmetric spaces have curvature tensors that look like the curvature tensor for 
a symmetric space. Recall that a locally symmetric space is completely determined 
by its curvature tensor at a point. If we identify the tangent space with JRn, then 
a curvature tensor is simply a special type of 4-linear map on JRn. Suppose we 
have specified such a potential curvature tensor R : JRn x JRn x JRn x JRn -+ 

R Throughout this short subsection, suppose we have a Riemannian n-manifold 
(M, g) with algebraically constant curvature tensor R, in the sense that for each 
p E M, there is an isometry Lp : TpM-+ JRn and a number A (p) such that 

g (R (x, y)z, w) =A (p) · R (Lpx, Lpy, Lpz, Lpw). 

Such a condition is purely algebraic and certainly doesn't necessarily imply that 
the space is locally symmetric. Still, one does get a certain amount of information. 
First, we note that since L P is an isometry, it doesn't matter whether we are using 
the Euclidean metric or the Riemannian metric. Next, observe that we have 

which implies that A is a smooth function on M, as I R.i 2 is constant. 
Suppose now R has the form 

R (x, y, z, w) = k · ((y, z) (x, w)- (x, z) (y, w)) 

for some number k and where ( ·, ·) is the usual Euclidean inner product. Then it 
must follow that (M, g) has constant sectional curvature A (p) ·kat each p E M. 
It will then follow from Schur's lemma (Chapter 2) that the space has constant 
curvature provided that n > 2. Similarly, if R is Einstein, in the sense that for 
some orthonormal basis e; for JRn we have 

n 

L R (x, ei, ei, w) = k · (x, w) , 
i=l 
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then it will also be true that (M, g) is Einstein, again provided that n > 2. 
From the holonomy section we know that any irreducible symmetric space is 

Einstein. So what happens if R is the curvature tensor for such a space? Certainly 
it is Einstein, but in fact, it is locally symmetric. To see this we must use Lich­
nerowicz's Bochner formula for the curvature tensor from Chapter 7 in a different 
way. From the proof of the Lichnerowicz identity we get the relationship 

where K is some quantity that depends on R in a purely algebraic way. We already 
know that the metric is Einstein, so it must follow that 'A (and consequently IRI2) 

is constant and divR = 0. The formula therefore reduces to 

For a symmetric space, we know that V R = 0, so also K = 0 for such a space. As 
K is purely algebraic in the curvature tensor, we can therefore compute K ( R) and 

conclude that it is zero. Since R = 'AR, it will then also follow that K (R) = 0, 
which finally implies that IV Rl2 = 0. Thus, (M, g) is locally symmetric. 

There are other possibilities for applying this technique. Using Tachibana's 
result that K is nonnegative when the curvature operator is nonnegative, we see that 
( M, g) must be locally symmetric, provided that R is Einstein and has nonnegative 
curvature operator. 

8.3.3 Rough Classification of Symmetric Spaces 

Guided by our examples and the results on holonomy, we can now try to classify 
irreducible symmetric spaces. They seem to come in three groups. 

Compact Type: If the Einstein constant is positive, then it follows from Myers' 
diameter bound (Chapter 9) that the space is compact. In this case one can show 
that the curvature operator is nonnegative. 

Flat Type: If the space is Ricci flat, then it follows that it must be flat. In case 
the space is compact, this is immediate from Bochner's theorem, while if the space 
is noncompact and complete a little more work is needed. Thus, the only Ricci flat 
irreducible examples are S1 and ~ 1• 

Noncompact Type: If the Einstein constant is negative, then it follows from 
Bochner's theorem that the space is noncompact. In this case, one can show that 
the curvature operator is nonpositive. 

We won't give a complete list of all irreducible symmetric spaces, but one inter­
esting feature is that they come in compact/noncompact dual pairs, as described 
in the above lists. Also, there is a further subdivision. Among the compact types 



8.3 Holonomy 231 

there are Lie groups with hi-invariant metrics and then all the others. Similarly, in 
the noncompact regime there are the duals to the hi-invariant metrics and then the 
rest. This gives us the following division: 

Type 1: Compact irreducible symmetric spaces of the form G I K where G is 
a compact simple real Lie group and K a maximal compact subgroup. Example: 
SO(k+l)I(SO(k) x SO(l)). 

Type II: Compact irreducible symmetric spaces G, where G is a compact simple 
real Lie group with a hi-invariant metric. Example: SO (n). 

Type III: Noncompact symmetric spaces G I K, where G is a noncom­
pact simple real Lie group and K a maximal compact subgroup. Example: 
SO(k,l)I(SO(k) x SO(l))orSl(n)ISO(n). 

Type IV: Noncompact symmetric spaces G I K, where K is a compact simple 
real Lie group and G its complexi:fication. Example: SO (n, C) I SO (n). 

The difference algebraically between compact and noncompact can be seen by 
looking at the examples above. There we saw that in the compact case t consists of 
skew-symmetric matrices, while in the noncompact case t consists of symmetric 
matrices. Thus, the metric looks like 

g (X, Y) = =t=tr (XY), 

where the minus is for the compact case and the plus for the noncompact case. It 
is this difference that ultimately gave us the different sign for the curvatures. But 
even before this, we see that for X, Y E t and K E e, 

g([X, K], Y) = :r=tr((XK- KX)Y) 

= =f (trX KY- trK XY) 

= =t= (trKY X- trK XY) 

= ±tr ( K (X Y - Y X)) 

= ±tr(K [X, Y]) 

= =f (K, [X, Y]), 

where for elements of ewe use that they are always skew-symmetric, and therefore 
their inner product is given by 

Using this, one can see that 

g (R (X, Y) Z, W) = g ([Z, [X, Y]], W) 

= =f ([X, Y], [Z, W]). 
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With this information we can compute the diagonal terms for the curvature operator 

g ( 9t ( L Xi 1\ yi) ' ( L Xi 1\ yi)) = L g ( R (Xi' yi) Yj' X j) 

= =f L ([Xi. Yi]' [YJ. XJ]} 

=±II: [Xi, Yi]l2 

and conclude that it is either nonnegative or nonpositive according to type. This 
seems to have been noticed for the first time in the literature in [38]. This also 
means that Tachibana's results from the last section are not vacuous. In fact, they 
give a characterization of symmetric spaces of compact type. 

Note that as compact type symmetric spaces have nonnegative curvature op­
erator, it becomes relatively easy to compute their cohomology. The Bochner 
technique tells us that all harmonic forms are parallel. Now, a parallel form is 
necessarily invariant under the holonomy. Thus, we are left with a classical invari­
ance problem. Namely, determine all forms on a Euclidean space that are invariant 
under a given group action on the space. It is particularly important to know the 
cohomology of the real and complex Grassmannians, as one can use that informa­
tion to define Pontryagin and Chern classes for vector bundles. We refer the reader 
to [76, vol. 5] and [61] for more on this. 

8.3.4 The Golden Triangle 

We take here a short detour to explain what some call the Golden Triangle of 
Riemannian geometry. It looks like this: 

Parallel Transport Covariant Derivatives 

" / 
Curvature 

The meaning is that any of these concepts can de derived from any of the others. 
Curvature was defined using the connection and therefore covariant differentiation. 
We saw above that curvature generates [J o (, thus parallel transport can be recaptured 
from knowledge of curvature. Finally, the connection, and therefore all covariant 
differentiation operations, can be recaptured from knowledge of parallel transport. 
This can be seen as follows: Suppose we wish to compute V x Y at p E M. Select 
a curve c : I --* M with c (0) = X (p). Now along c we select a parallel frame 
Ei (t) and write Y o c (t) = ai (t) Ei (t). Then we have 

The philosophy of this triangle seems to have been noticed first by Levi-Civita and 
Ricci. 
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P(z) 

FIGURE 8.1. 

8.4 Curvature and Holonomy 

To get a better understanding ofholonomy and how it relates to symmetric spaces, 
we need to figure out how it can be computed from the curvature tensor. 

We let the Lie algebra ofHol~ c SO (n) be denoted by l)olP c so (n). This 
Lie algebra is therefore an algebra of skew-symmetric transformations of TpM. 
We have on Tp M several other skew-symmetric transformations. Namely, for each 
pair ofvectors v, wE TpM there is the curvature tensor R (v, w): TpM---+ TpM 
that maps x to R ( v, w) x. In fact, if we let V, W be two commuting vector fields 
such that V (p) = v, W (p) = w, then we can for each t > 0 consider the loop c, 
at p obtained by first following the flow of V for time t, then the flow of W for 
time t, then the flow of- V for timet, and finally the flow of- W for time t. Since 
the vector fields commute, this is indeed a loop. Now let P, be parallel translation 
along this loop (see Figure 8.1). Then one can easily prove (first done by Cartan) 

. P1 - I 
R(v, w) = hm--. 

t---+0 t 

To completely determine I) o ( P, it is of course necessary to look at all contractible 
loops, not just the short ones. However, each contractible loop can be decomposed 
into lassos, that is, loops that consist of a curve emanating from p and ending 
at some q, and then at q we have a very small loop (see Figure 8.2). Thus, any 
element of l)o[P is the composition of elements of the form 

p-I oR (P (v), P (w)) o P: TpM---+ TpM, 

where P : TpM---+ TqM denotes parallel translation along some curve from p to 
q. This characterization ofholonomy was first proved by Amrose and Singer; the 
proof we have indicated is due to Nijenhuis. For the complete proofs the reader is 
referred to [ 11]. 

It is therefore possible in principle to compute holonomy from knowledge of 
the curvature tensor at all points. In reality this is not so useful, but for locally 
symmetric spaces we know that the curvature tensor is invariant under parallel 
translation, so we have 
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Theorem 4.1 For a locally symmetric space the holonomy Lie algebra ~o(P is 
generated by curvature transformations R (v, w), where v, wE TpM. Moreover, 
~o lP c i.so p· 

Proof. We have already indicated the first part. For the second we could use our 
curvature description of the symmetric space. Instead, we give a more geometric 
proof, which also establishes that R (x, y) E i.so P as a by-product. 

Observe that not only do isometries map geodesics to geodesics, but also parallel 
fields to parallel fields. Therefm:e, if we have a geodesic y : [0, 1] ~ M and 
a parallel field E along y, then we could apply the involution ly(l/2) to E (this 
involution exists ifthe geodesic is sufficiently short). This involution reverses y and 
at the same time changes the sign of E. Thus we have Dlr(D (E (0)) = -E (1), 
or in other words (see also Figure 8.3) 

y(l) 
pr<O> = -DlrO)· 

Now use that any curve can be approximated by a broken geodesic to conclude 
that parallel translation along any curve can be approximated by a successive 
composition of differentials of isometries . For a loop that is also a broken geodesic, 
we see that the composition of these isometries must belong to Isop. Hence, we 
have shown the stronger statement that 

Holp c lsop. 
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FIGURE 8.4. 

In Figure 8.4 we have sketched how one can parallel translate along a broken 
geodesic from p to q in a symmetric space. This finishes the proof. 0 

Armed with this information, it is possible for us to determine the holonomy of 
irreducible symmetric spaces. 

Corollary 4.2 For an irreducible symmetric space 

~olP = isop. 

Proof. We know that ~olP c isop and that isop acts effectively on TpM. By 
assumption we have that ~olP acts irreducibly on TpM. It is now a question of 
using that an irreducible symetric space has a unique Lie algebra description to 
finish this proof. Proving this uniqueness result is a little beyond what we wish to 
do here. 0 

Note that irreducibility is important for this theorem since Euclidean space has 
trivial holonomy. Also, Iso P might contain orientation-reversing elements, so we 
cannot show equality at the Lie group level. 

We shall now mention, without any indication of proof whatsoever, the 
classification of connected irreducible holonomy groups. 

Theorem 4.3 (Berger, 1955) Given a simply connected irreducible Rieman­
nian n-manifold (M, g), then either the holonomy Holp acts transitively on the 
unit sphere in TpM or (M, g) is a symmetric space of rank::: 2. Moreover, in the 
first case the holonomy is one of the following groups: 

I dim= n I Holp I Properties 

n SO (n) Generic case 
n=2m U(m) Kahler metric 
n =2m SU(m) Kabler metric and Ric = 0 
n =4m Sp (1) · Sp (m) Quatemionic-Kabler and Einstein 
n =4m Sp(m) Hyper-Kabler and Ric = 0 
n = 16 Spin (9) Symmetric and Einstein 
n=8 Spin (7) Ric= 0 
n=7 G2 Ric= 0 
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It is curious that all but the two largest irreducible holonomy groups, S 0 (n) and 
U (m), force the metric to be Einstein and in some cases even Ricci flat. Looking 
at the relationship between curvature and holonomy, it is clear that having small 
holonomy forces the curvature tensor to have some special properties. One can 
then in a case-by-case check see that various traces of the curvature tensor must 
be zero, thus forcing the metric to be either Einstein or Ricci flat (see [ 11] for 
details.) Note that Kahler metrics do not have to be Einstein (see the exercises 
to Chapter 3), and quatemionic Kahler manifolds are not necessarily Kahler, as 
Sp (1) · Sp (m) is not contained in U (2m). Using a little bit of the theory ofKahler 
manifolds, it is not hard to see that metrics with holonomy SU (n) are Ricci flat. 
Since S p ( m) c S U (2m) , we then get that also hyper-Kahler manifolds are Ricci 
flat. One can see that the last two holonomies occur only for Ricci flat manifolds. 
In particular, they never occur as the holonomy of a symmetric space. That all 
other holonomies do occur for symmetric spaces follows from Berger's result 
and the fact that the rank one symmetric spaces have holonomy SO (n), U (m), 
Sp (1) · Sp (m), or Spin (9). 

This leads to another profound question. Are there compact simply connected 
Ricci flat spaces with holonomy SU (m), Sp (m), G2 , or Spin (7)? The answer is 
yes. But it is a highly nontrivial yes. Yau got the Fields medal for establishing the 
S U (m) case. Actually, he solved the Calabi conjecture, and the holonomy question 
was a by-product (see, e.g., [11] for more information on the Calabi conjecture). 
Note that we have the Eguchi-Hanson metric which is a complete Ricci flat Kahler 
metric and therefore has SU (2) as holonomy group. Recently, D. Joyce solved 
the cases of Spin (7) and G2 by methods similar to those employed by Yau. An 
even more interesting question is whether there are compact simply connected 
manifolds that are Ricci flat but have SO (n) as a holonomy group. Note that the 
Schwarzschild metric is complete Ricci flat and has S 0 ( 4) as holonomy group. 
For more in-depth information on these issues we refer the reader to [11]. 

A general remark about how special (# SO (n)) holonomies occur: It seems 
that they are all related to the existence of parallel forms. In the Kahler case, for 
example, the Kahler form is a parallel nondegenerate 2-form. Correspondingly, 
one has a parallel 4-form for quatemionic-Kahler manifolds and a parallel 8-
form for Cayley-Kahler manifolds (which are all known to be locally symmetric). 
This is studied in more detail in the proof of the classification of manifolds with 
nonnegative curvature operator below. For the last two exceptional holonomies 
there are also some special4-forms that do the job. 

From the classification of holonomy groups we immediately get an interesting 
corollary. 

Corollary 4.4 If a Riemannian manifold has the property that the holonomy 
doesn 't act transitively on the unit sphere, then it is either reducible or a locally 
symmetric space of rank~ 2. In particular, the rank must be ~ 2. 
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It is unclear to what extent the converse fails for general manifolds. For non­
positive curvature, however, there is the famous higher-rank rigidity result proved 
independently by W. BaUmann and K. Bums-R. Spatzier (see [5] and [16]). 

Theorem 4.5 A compact Riemannian manifold of nonpositive curvature of rank 
> 1 does not have transitive holonomy. In particular it must be either reducible 
or locally symmetric. 

It is worthwhile mentioning that in [7] it was shown that the rank of a compact 
non-positively curved manifold can be computed from the fundamental group. 
Thus, a good deal of geometric information is automatically encoded into the 
topology. The rank rigidity theorem is proved by dynamical systems methods. The 
idea is to look at the geodesic flow on the unit sphere bundle, i.e., the flow that takes 
a unit vector and moves it time t along the unit speed geodesic in the direction of 
the unit vector. This flow has particularly nice properties on non-positively curved 
manifolds, which we won't go into. The idea is to use the flat parallel fields to 
show that the holonomy can't be transitive. Berger's result then gives us that the 
manifold has to be locally symmetric. Nice as this method of proof is, it would 
be very pleasing to have a proof that goes more along the lines of the Bochner 
technique. In nonpositive curvature this method is different. It usually centers on 
studying harmonic maps into the space rather than harmonic forms on the space 
(for more on this see [84]). 

In nonnegative curvature, however, it is possible to find irreducible spaces that 
are not symmetric and have rank:::=: 2. On S2 x S2 we have a product metric that 
is reducible and has rank 3. But if we take another metric on this space that comes 
as a quotient of S2 x S3 by an action of S1 (acting by rotations on the first factor 
and the Hopf action on the second), then we get a metric which has rank 2. The 
only way in which a rank 2 metric can split off a de Rham factor is if it splits off 
something !-dimensional, but that is topologically impossible in this case. So in 
conclusion, the holonomy must be transitive and irreducible. 

By assuming the stronger condition that the curvature operator is nonnegative, 
one can almost classify all such manifolds. This was first done in [38] and in more 
generality in Chen's article in [ 41 ]. This classification allows us to conclude that 
higher rank gives rigidity. The theorem and proof are a nice synthesis of everything 
we have learned in this and the previous chapter. In particular, the proof uses the 
Bochner technique in the two most nontrivial cases we have covered: for forms 
and the curvature tensor. 

Theorem 4.6 (S. Gallot and D. Meyer, 1975) If(M, g) is a compact Rieman­
nian n-manifold with nonnegative curvature operator, then one of the following 
cases must occur: 

( 1) ( M, g) has rank > 1 and is either reducible or locally symmetric. 

(2) Ho1° (M, g) = SO (n) and the universal covering is homeomorphic to a 
sphere. 
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(3) Hol0 ( M, g) = U ( ~) and the universal covering is biholomorphic to C P ~ . 

(4) Hol0 (M, g) = Sp (1) Sp (~) and the universal covering is up to scaling 
isometric to lHIP ~. 

(5) Hol0 (M, g)= Spin (9) and the universal covering is up to scaling isometric 
to CaP 2 • 

Proof. First observe that by the splitting theorem (see Chapter 9), a finite covering 
of M is isometric to a product N x rn. So if we assume that ( M, g) is irreducible, 
then the fundamental group is finite, and we can therefore assume that we work with 
a simply connected manifold M. Now we observe that either all of the homology 
groups HP(M,JR) = 0 for p = I, ... ,n- I, in which case the space is a 
homology sphere, or some homology group HP (M, JR) f. 0 for some p f. 0, n. 
In the latter case, we then have a harmonic p-form by the Hodge theorem. The 
Bochner technique now tells us that this form must be parallel, since the curvature 
operator is nonnegative. 

The proof is now based on the following observation: A Riemannian n-manifold 
with holonomy SO (n) cannot admit any nontrivial p-forms for 0 < p < n. Note 
that the volume form is always parallel, so it is clearly necessary to use the condition 
p f. 0, n. We are also allowed to assume that p ~ ~, since the Hodge star *W of w 
is parallel iff w is parallel. The observation is proved by contradiction, so suppose 
that w is a parallel p-form, where 0 < p < n. 

First suppose p = 1. Then the dual of the 1-form is a parallel vector field. This 
means that the manifold splits locally. In particular, it must be reducible and have 
special holonomy. 

More generally, when p ~ n- 2 is odd, we can for v1, ••• , Vp E TpM find 
an element of P E SO (n) such that P (v;) = -v;. Therefore, if the holonomy is 
S 0 ( n) and w is invariant under parallel translation, we must have 

w(v1, ••• , vp) = w(Pv1, ••• , Pvp) 
=w(-vJ, ...• -vp) 
= -w ( v1 , ... , v P) . 

This shows that w = 0. In case n is odd, we can then conclude using the Hodge 
star operator that no parallel forms exist when the holonomy is S 0 ( n) . 

We can then assume that we have an even dimensional manifold and that w 
is a parallel p-form with p ~ ~ even. We claim again that if the holonomy is 
SO (n), then w = 0. First select vectors v1, ... , Vp E TpM; then find orthonormal 
vectors e1 , ... , ep E TpM such that span{ v1, ... , vp} =span{ e1, ... , ep}. Then 
we know that w (e1, ... , er) is zero iff w ( v1, ... , vp) is zero. Now use that p ~ ~ 
to find P E SO (n) such that 

P (ei) = e2, 

P (e2) = e1, 

P (e;) = e; for i = 3, ... , p. 
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Using invariance of w under P then yields 

w (e1, ... , ep) = w (Pe,, ... , Pep) 

= w ( ez, e,, e3, ... , e P) 
= -w (e 1, ••• , ep). 

In summary, we have thus shown that any Riemannian manifold with nonnega­
tive curvature operator has holonomy S 0 (n) only if all homology groups vanish. 
Supposing that the manifold is irreducible and has transitive holonomy, we can then 
use the above classification to see what holonomy groups are potentially allowed. 
The Ricci flat cases are, however, not allowed, as the nonnegative curvature would 
then make the manifold flat. Thus, we have only the three possibilities U ( ~) , 
Sp (1) Sp (~), or Spin (9). In the latter two cases one can show from holonomy 
considerations that the manifold must be Einstein. Thus, Tachibana's result from 
Chapter 7 shows that the metric must be locally symmetric. From the classification 
of symmetric spaces it then follows that the space is isometric to either IHIP~ or 
C a P 2 . This leaves us with the Kahler case. In this situation we can show that the 
cohomology ring must be the same as that of CP 'f , i.e., there is a homology class 
w E H 2 (M, JR) such that any homology class is proportional to some power of 
w : wk = w 1\ ... 1\ w. This can be seen as follows. If the holonomy is U ( ~) , 
first observe that there must be an almost complex structure on the tangent spaces 
that is invariant under parallel translation. Then we get a Kahler form w from this 
structure by type change. This 2-form is necessarily parallel and cannot be exact, 
as the ~th power w'f must be proportional to the volume form. Thus, we have 
H 2 (M, JR) f:. 0. If wk doesn't generate H 2k, then each form not proportional to 
wk will by the above arguments reduce the holonomy to a proper subgroup of 
u (~). 

To get the stronger conclusions on the topological type one must use results 
from [58] and [63]. D 

There are two questions left over in this classification. Namely, for the sphere 
and complex projective space we get only topological rigidity. For the sphere one 
can clearly perturb the standard metric and still have positive curvature operator, so 
one couldn't expect more there. On CP2, say, we know that the curvature operator 
has exactly two zero eigenvalues. These two zero eigenvalues and eigenvectors are 
actually forced on us by the fact that the metric is Kahler. Therefore, if we perturb 
the standard metric, while keeping the same Kahler structure, then these two zero 
eigenvalues will persist and the positive eigenvalues will stay positive. Thus, the 
curvature operator stays nonnegative. 

Given that there is such a big difference between the classes of manifolds with 
nonnegative curvature operator and nonnegative sectional curvature, one might 
think the same is true for nonpositive curvature. However, the above rank rigidity 
theorem tells us that in fact nonpositive sectional curvature is much more rigid 
than nonnegative sectional curvature. So the question is, Are there any compact 
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rank 1 manifolds of nonpositive sectional curvature that do not admit a metric with 
nonpositive curvature operator? 

8.5 Further Study 

We have eliminated many important topics about symmetric spaces. For more in­
depth information we recommend the texts by Besse, Helgason, and Jost (see [11, 
Chapters 7,10], [12, Chapter 3], [49], and [50, Chapter 6]). O'Neill's book [65, 
Chapter 8] also has a nice elementary account of symmetric spaces. 

8. 6 Exercises 

1. Here are two problems on the connection between holonomy and Kahler 
manifolds. 

(a) Show that the holonomy ofcpn is U (n). 

(b) Show that the holonomy of a Riemannian manifold is U (m) iff it has 
a Kahler structure. 

2. Show that SO (n, q /SO (n) and Sl (n, q jSU (n) are symmetric spaces 
with nonpositive curvature operator. 

3. The quaternionic projective space is defined as being the quatemionic lines 
in JHl11+ 1 . Here the quatemions lHI are the complex matrices 

If we identify lHI withffi.4 , then we usually write elements asx1 +ix2 + jx3 + 
kx4 . Multiplication is done using 

·2 ·2 k2 1 
l =] = =-' 

ij = k =- ji, 

jk = i = -kj, 

ki = j = -ik. 

(a) Show that if we define 

. ( i 0 ) 
l = 0 -i ' 

j == ( ~1 ~)' 
k=(o ~)· 
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then these two descriptions are equivalent. 

(b) The symplectic group Sp (n) c SU (2n) c SO (4n) consists of those 
orthogonal matrices that commute with the three complex structures 
generated by i, j, k on JR4n. A better way of looking at this group is by 
considering n x n matrices A with quatemionic entries such that 

A-1 =A*. 

Here the conjugate of a quatemion is 

so we have as usual that 

Now show that 

JH[pn = Sp (n + 1) / (Sp (1) X Sp (n)). 

Use this to exhibit JH[pn as a symmetric space. Show that the holonomy 
is Sp (1) x Sp (n) and that the space is quarter pinched. 

4. Construct the hyperbolic analogues of the complex and quatemionic projec­
tive spaces. Show that they have negative curvature and are quarter pinched. 

5. Show that any locally symmetric space (not necessarily complete) is locally 
isometric to a symmetric space. Conclude that a simply connected locally 
symmetric space admits a monodromy map into a unique symmetric space. 
Show that if the locally symmetric space is complete, then the monodromy 
map is bijective. 

6. Let ( M, g) be a compact Riemannian n-manifold that is irreducible and with 
91: ~ 0. Show that the following are equivalent: 

(a) X (M) > 0. 

(b) The odd Betti numbers are zero. 

(c) -/ E Hol~. 

(d) The dimension n is even. 

Use this to show that any compact manifold with 91: ~ 0 has x (M) ~ 0. 

7. Show that if an irreducible symmetric space has strictly positive or negative 
curvature operator, then it has constant curvature. 

8. Using the skew-symmetric linear maps 

X 1\ y: TpM--+ TpM, 

X 1\ y ( V) = g (x, V) y - g (y, V) X, 
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show that A 2TpM = .so (TpM). Using this identification, show that the 
image of the curvature operator ryt (A2 TpM) c l)o[P' with equality for 
symmetric spaces. Use this to conclude that the holonomy is SO (n) if the 
curvature operator is positive or negative. 



9 
Ricci Curvature Comparison 

In this chapter we shall introduce some of the fundamental theorems for manifolds 
with lower Ricci curvature bounds. Two important techniques will be developed: 
relative volume comparison and weak upper bounds for the Laplacian of distance 
functions. With these techniques we shall show numerous results on restrictions 
of fundamental groups of such spaces and also present a different proof of the 
estimate for the first Betti number by Bochner. The proof of the splitting theorem 
is self-contained. It uses the generalized maximum principle, but we show how 
one can get around the regularity issue for harmonic distance functions using some 
of our previous work on distance functions. 

Until around 1970, when Cheeger and Gromoll proved their splitting theorem, 
one had only the Bochner technique and Myers' diameter estimate as part of the 
theory of Ricci curvature. In the mid 1970s, Cheng proved his maximal diameter 
result, which shows that only the sphere has maximal diameter. Around 1980, 
Gromov exposed the world to his view of how volume comparison can be used. 
The relative volume comparison theorem was actually first proved by Bishop in 
[13]. At the time, however, one only considered balls of radius less than the in­
jectivity radius. Later, Gromov observed that the result holds for all balls and 
immediately put it to use in many situations. In particular, he showed how one 
could generalize the Betti number estimate from Bochner's theorem using only 
topological methods and volume comparison. Anderson then refined this to get 
information about fundamental groups. One's intuition about Ricci curvature has 
generally been borrowed from experience with sectional curvature. This has led 
to many naive conjectures that haven proven to be false by constructing several 
interesting examples of manifolds with nonnegative Ricci curvature. On the other 
hand, much good work has also come out of this, as we shall see. The reason for 
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treating Ricci curvature before the more advanced results on sectional curvature 
is that we want to break the link between the two. The techniques for dealing with 
these two subjects, while similar, are not the same. In a way, it is even easier to 
get into the theory of Ricci curvature, as one doesn't have to struggle through the 
proof of Toponogov 's theorem. 

9.1 Volume Comparison 

9.1.1 The Basic Comparison Estimates 
Throughout this section, assume that we have a complete Riemannian manifold 
( M, g) of dimension n. Furthermore, we are given a point p E M and with that the 
distance function f (x) = d (x, p) . We know that this distance function is smooth 
on the image of the segment domain. Using polar coordinates, we can write the 

metric as (ga.B (r, e)). Moreover, if we let m = l:!.f and A = Jdet (ga.B (r, e)), 
then we have three fundamental relationships between these quantities: 

(tr1) arm+ m2 /(n- 1) ~ arm+ IV2 !1 2 = -Ric (ar. ar)' 
(tr2) arA = m · A, 
(tr3) a; "-.;fi ~ -(Ric(ar. ar)/(n- 1)) · "-.;fi, 

where the initial conditions for A are 

~~~ (r, e) = r + 0 (r 2 ) ' 

ar ·~ (r, e) = 1 + 0 (r) . 

Consequently, (tr2) gives us that 

n-1 
m(r,e),....., -- as r ~ 0. 

r 

With this information we can prove 

Lemma 1.1 (Ricci Comparison Result) Suppose that (M, g) has Ric > 
(n- 1) · kfor some k E JR. Then 

and 

·~ (r, e) ~ sndr) 

sn' (r) 
m (r, e)~ (n- 1) _k __ 

snk (r) 

Proof. Notice that the right-hand sides of the inequalities correspond exactly to 
what one would get in constant curvature k. 
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The first inequality follows from the fact that 

a2 ·--.y)_ < -k . ·--.y)_ 
r - ' 

•--.y)_ (r, 8) = r + 0 (r2} , 

a, ·--.y)_ (r, 8) = 1 + 0 (r). 

For the second, we use that 

m2 
a m + -- < - (n - 1) . k. 

r n- 1 -

This can be solved by separation of variables: 

1·b a m 
rn=J <(a- b). 

a k + (n~l }2 -

The integral can be computed explicitly, and depending on the sign of k, we get 
something with either arccot, lim, or arccoth. Inverting this and using the initial 
condition m (r, 8) "' (n- l)lr then gives the desired inequality. One could also 
use the substitution u = (n- l)lm, together with the initial condition u (0) = 0, 
to avoid infinities. D 

9.1.2 The Diameter Estimate 

With these simple preliminary observations we can now generalize Bonnet's 
diameter estimate from Chapter 6. 

Theorem 1.2 (Myers, 1941) Suppose (M, g) is a complete Riemannian man­
ifold with Ric?:: (n -l)k > 0. Thendiam(M,g) ~ rri,Jk.Furthermore, (M,g) 
has finite fundamental group. 

Proof. To see that diam(M, g) ~ rri,Jk, we show that the segment domain 

for any point p is contained in the closed ball B ( 0, rr I ,Jk) . This shows that no 

distance function can take values that are larger than rr I ,Jk. It was just shown that 
the volume density in polar coordinates satisfies 

sin ( ,Jk · r) 
•--.y)_ (r, 8) < snk (r) = ,.fk - k 

This quantity goes to zero as r ---+ rr I ,Jk. Thus, no matter what direction we go 
in from a point, we must develop a conjugate before we reach rr I ,Jk. 

This implies, in particular, that M is compact. Thus, the universal covering 
(which also has Ric ?:: (n - l)k) must also be compact, showing that rr1 (M) is 
~~- 0 
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Example 1.3 The universal covering of the incomplete Riemannian manifold 
S2 - {p, - p} clearly has constant curvature 1 but is not compact. 

Example 1.4 S1 x JR3 admits a complete doubly warped product metric dr2 + 
q;2(r)dfJ2 + 1/r2(r)dsi, which has Ric > 0 everywhere. Fort ~ 1 just let q;(t) = 
t-114 and 1/r(t) = t 314 and then adjust q; and 1/r near t = 0 to make things work 
out. 

9.1.3 Volume Estimation 

Our next applications are to volume comparison. To define volume, first recall that 
if u 1, ..• , un is an orthonormal coframing on U c M, then w = u 1 A ••. A un 
is the Riemannian volume form on (U, g). Therefore, if A c U, then volA = 
I fA u 1 A •.• A un 1. Strictly speaking, (M, g) only has a volume form if it is 
orientable. To compute volumes of subsets, however, we always take absolute 
values afterwards, so we don't need to worry about signs. Another convenient 
observation is that any Riemannian manifold admits U c M such that M - U 
has measure zero (zero measure is independent of the Riemannian metric) and a 
coordinate chart q; : U --+ lRn. Thus, any open set 0 c M satisfies vol( 0) = 
vol( 0 n U), where the latter quantity can be computed. The volume form on U 
must, of course, be of the form A(x) · dx 1 A ..• A dxn, and it is not hard to check 
thatA(x) = Jdetg(a;, aj) = Jdetgij. 

Our first volume comparison gives the obvious upper volume bound, which 
comes from our upper bound on the volume density. 

Lemma 1.5 If(M, g) has Ric ~ (n - 1) · k, then 

volB (p, r) ::::: v (n, k, r), 

where v (n, k, r) denotes the volume of a ball of radius r in the constant-curvature 
space form s;:. 

Proof. Above, we showed that in polar coordinates around p we have 

A (r, 0) ::::: sn~- 1 (r). 

In s;: the volume density in polar coordinates is exactly sn~- 1 (r ). If the volume 
form on sn-1 (1) is denoted by dO, then we have 

volB (p, r) = 1 A (r, O)dr A d(J 
segPnB(O,r) 

::::: f sn~- 1 (r)drAd9 
JB(O,r) 

= v(k, n, r). D 
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With a little more technical work, the above absolute volume comparison result 
can be improved in a rather interesting direction. The result one obtains is referred 
to as the relative volume comparison estimate. It will prove invaluable in many 
situations throughout the rest of the text. 

Lemma 1.6 (Relative Volume Comparison, Bishop-Cheeger-Gromov, 1964-
1980) Suppose (M, g) is a complete Riemannian manifold with Ric 2: (n -1) ·k. 
Then 

volB(p, r) 
r---+ ---­

v(n, k, r) 

is a nonincreasing function whose limit as r ---+ 0 is 1. 

Proof. We will use exponential polar coordinates. The volume form A(r, O)dr A 

dO for (M, g) is initially defined only on some star-shaped subset of TpM = JRn = 
(0, oo) x sn-1, but we can just set A(x) = 0 outside this set. The volume form 

Ak(r, O)dr A dO is defined on all of JRn when k :::; 0, but only on B ( 0, HI .Jk) for 

k > 0. We can likewise extend Ak = 0 outside B ( 0, HI .Jk). Myers' theorem says 

that A = 0 on JRn - B ( 0, HI .Jk) in this case. So we might as well just consider 

r < HI.Jk when k > 0. 
We now have 

volB(p, R) foR fsn-1 Adr A dO 

v(n, k, R) foR fsn-l Akdr 1\ d()' 

where Wn-1 = fsn-1 d() = vol {sn-l (1)), and we know that 0 < A(r, 0) < 
}..k(r, 0) = sn~- 1 (r) everywhere. 

Differentiation of this quotient with respect to R yields 

_:!_ (volB(p, R)) 
dR v(n, k, R) 

Usn-1 A (R, ())dO) (foR fsn-1 Ak (r, O)dr 1\ dO) 

(v(n, k, R))2 

Usn-1 }..k(R, O)dO) (foR fsn-1 A (r, O)dr 1\ dO) 

(v(n, k, R))2 

= (v(n, k, R))-2 · {R [( { A (R, O)d()) · ( { Ak (r, O)d()) 
1o 1 sn-1 1 sn-1 

So to see that 

(1n-l Ak (R, ())dO) (in- I A (r, ())dO) J dr. 

volB(p, R) 
R--+ ---­

v(n, k, R) 
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is nonincreasing, it therefore suffices to check that 

fs•-• >.. (r, 0) d() 1 1 >.. (r, 0) 
...:::-::'----- = -- d() 
fs·-• Ak (r, 0) d() CVn-1 s•-• Ak (r, ()) 

is nonincreasing. This follows from 

or>.. or>..k ----
>.. >..k 

D 

9.1.4 Maximal Diameter Rigidity 

Given Myers' diameter estimate, it is natural to ask what happens if the diameter 
obtains its maximal value. The next result shows that only the sphere has this 

property. 

Theorem 1.7 (S.Y. Cheng, 1975) If(M, g)isacompleteRiemannianmanifold 
with Ric ~ (n - 1)k > 0 and diam = 7r I~. then (M' g) is isometric to s;:. 

Proof. Fixp, q E Msuchthatd(p, q) = ni~.Definef(x) = d(x, p), h(x) = 
d(x, q). We will show that 

(1) f + h = d(p, x) + d(x, q) = d(p, q) = 1r1~. X EM. 
(2) f, hare smooth on M- {p, q}. 
(3) V2 f = (sn~lsnk) (1- or· dr) on M- {p, q}. 
(4) g = dr2 + sn~ds;_ 1 . 

We know that (3) implies ( 4) and that ( 4) implies M must be Si:. 
Proof of ( 1 ): The triangle inequality shows that d(p, x) + d(x, q) ~ 1r I~. so 

if (1) does not hold, we can find e > 0 such that (see Figure 9.1) 

7r 
d(p, x) + d(x, q) = 2 · e + ~ = 2 · e + d(p, q). 

Then the metric balls B(p, r1), B(q, r2), and B(x, e) are pairwise disjoint, when 

r1 = d(p, x)- e, r2 = d(q, x)- e (note thatr1 + r2 = nl~). Thus, 

volM volB(x, e)+ volB(p, r1) + volB(q, r2) 
1 = -- > -------------

volM- volM 
v(n, k, e) v(n, k, rt) v(n, k, r2) 

> + +---,--~ 

-v(n,k.Jr) v(n,k,Jr) v(n,k,Jr) 
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FIGURE 9.1. 

which is a contradiction. 

Proof of (2 ): If x E M- { q, p}, then x can be joined to both p and q by segments 
a 1, a2 • The previous statement says that if we put these two segments together, 
then we get a segment from p to q through x. Such a segment must be smooth, 
and thus a 1 and a2 are both subsegments of a larger segment. This implies from 
our characterization of when distance functions are smooth that both f and h are 
smooth atx EM- {p, q}. 

Proof of(3): We have f(x) + h(x) = rrj,.fk, thus !lf = -!lh. On the other 
hand, 

Thus, 

(n - 1) sn~(f(x)) > !lf(x) 
snk(f(x)) -

= -!lh(x) 
sn~(h(x)) 

> -(n -1)-..:..:.-­
- snk(h(x)) 

sn~ (~- f(x)) 
= -(n - 1) ---:--------:-

snk (~- f(x)) 

= (n _ 1) sn~(f(x)). 
snk(f(x)) 

sn' 
!lf = (n- 1)-k 

snk 
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and 

(/1!)2 
-(n - 1) . k = a,(!if) + n - 1 

:::: a,(!if) + IV2 /12 

:::: -Ric(a,, a,) 

:::; -(n- 1)k. 

Hence, all inequalities are equalities, and in particular (/1!)2 = (n - 1)1V2 fl2. 
This can, however, happen only when 

2 !if sn~ v J = --(I - a, . d,) = -(I - a, . d, ). 
n- 1 snk 

To see this, just think of V2 f as being diagonalized with eigenvalues 0 -
.A.t. .A.2, ... , An then the equality says 

(.A.2 + · · · + An)2 = (n - 1) (.A.~+··· +.A.~). 

This can be true only provided that .A.2 = · · · = .A.n. D 

We have now proved that any complete manifold with Ric ?: (n- 1) · k > 0 
has diameter :::: 1r I Jk, where equality holds only when the space is Sf:. A natural 
perturbation question is therefore, If (M, g) has Ric ?: (n - 1) · k > 0 and 
diam Rl 1r I Jk, must M be homeomorphic or diffeomorphic to a sphere? 

For n = 2, 3 this is true when n ?: 4, however, there are counterexamples. The 
case n = 2 will be settled later, while n = 3 goes beyond the scope of this book 
(see [75]). The examples for n?: 4 are divided into two cases: n = 4 and n ?: 5. 

Example 1.8 (Anderson, see [3]) For n = 4 consider metrics on I x S3 of the 
form dr2 + q;2u[ + 1/f2(uf + u}). If we define 

{ 
sin(ar) r < ,., 

q; (r) = c1 sin(r + ~) r ~ r~: 

{ br2 + c r :::5 ro, 
1/1 = c2 sin(r + ~) r ?: ro, 

and then reflect these function in r = 1r 12- ~. we get a metric on CP2UCP2 • For 
any small r0 > 0 we can now adjust the parameters so that q; and 1/1 become C 1 

and generate a metric with Ric ?: (n- 1). For smaller and smaller choices of r 0 

we see that ~ -+ 0, so the interval I -+ [0, 1r] as r0 -+ 0. This means that the 
diameters converge to 1r. 

Example 1.9 (Otsu, see [66]) For n ?: 5 we only need to consider standard 
doubly warped products: dr2 + q;2 . dsi + 1/f2ds;_3 on I X S2 X sn-J. Similar 
choices for q; and 1/1 will yield metrics on S2 X sn-2 with Ric ?: n- 1 and diameter 
-+ 7r. 
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In both of the above examples, we actually only constructed C 1 functions qJ, 1/f 
and therefore only C 1 metrics. So one also needs to smooth out these functions to 
make them C00 • This is not hard to accomplish but is still a fairly technical and 
nasty task to perform. 

9.2 Fundamental Groups and Ricci Curvature 

We shall now attempt to generalize the estimate on the first Betti number we 
obtained using the Bochner technique to the situation where one has more general 
Ricci curvature bounds. This requires some knowledge about how fundamental 
groups are tied in with the geometry. 

9.2.1 The First Betti Number 
We now wish to use the relative volume comparison estimate to re-prove and 
extend Bochner's Betti number bound. 

Suppose M is a compact Riemannian manifold of dimension n and M its univer­
sal covering space. The fundamental group n 1 (M) acts by isometries on M. Re­
call from algebraic topology that H 1 (M, Z) = rr1 (M) I [n1 (M), n 1 (M)], where 
[n1 (M), n 1 (M)] is the commutator subgroup. Thus, H 1 (M, Z) acts by deck trans­
formations on the covering space M I [n1 (M), rr1 (M)] with quotient M. Since 
H 1 (M, Z) is a finitely generated Abelian group, we know that the set of torsion 
elements T is a finite normal subgroup. We can then consider r = H1 (M, Z) IT 
as acting by deck transformations on M = M I [ .7r 1 (M) , Jr 1 (M)] IT. Thus, we 
have a covering Jr : M ---+ M with torsion-free and Abelian Galois group of 
deck transformations. The rank of the torsion-free group r is clearly equal to 
b1 (M) =dim H 1 (M, IR). Now recall that any finite-index subgroup of r has the 
same rank as r. So if we can find a finite-index subgroup that is generated by 
elements that can be geometrically controlled, then we might be able to bound b1• 

To this end we have a very interesting result. 

Lemma 2.1 (M. Gromov, 1980) For fixed x E M there exists a finite-index 
subgroup r' c r that is generated by elements Y1, ... , Ym such that 

d (x, Yi (x)) ::: 2 · diam (M). 

Furthermore, for all y E r' - { 1} we have 

d (x, y (x)) > diam (M). 

Proof. First we find a finite-index subgroup that can be generated by elements 
satisfying the first condition. Then we modify this group so that it also satisfies the 
second condition. 
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For each e > 0 let r e be the group generated by 

{y E r: d (x, y (x)) < 2diam (M) + e}, 
- -

and let rr e : M --+ M 1 r e denote the covering projection. We claim that for each 
z E M we have d (rre (z), 1re (x)) < diam (M) + e; in particular, re will then 
have finite index, as M I r e is compact. Otherwise, we could find z E M such that 
d (x, z) = d (rr8 (z), rr8 (x)) = diam (M) +e. Now, we can find y E r such that 
d (y (x), z) ~ diam (M), but then we would have 

d (7r8 (y (x)), 1re (x)) ::=::: d (rre (z), 1re (x))- d (rre (z), rre (y (x))) ::=::: e, 

d (x, y (x)) ~ d (x, z) + d (z, y (x)) ~ 2diam (M) +e. 

Here we have a contradiction, as the first line says that y ¢. r 8 , while the second line 
says y E r e. Now observe that there are at most finitely many elements in the set 
{ y E r : d (x, y (x)) < 3diam ( M)} , as r acts discretely on M. Hence, there must 
be a sufficiently smalls > 0 such that {y E r : d (x, y (x)) < 2diam (M) + e} = 
{y E r: d (x, y (x)) ~ 2diam (M)}. Then we have a finite-index subgroup f 8 of 
r generated by {y E r : d (x, y (x)) ~ 2diam (M)} = {YJ. ... , Ym}. We shall 
now modify these generators until we get the desired group r'. 

First, observe that as the rank of r e is b1, we can assume that { y1 , ••• , Yb1 } 

are linearly independent and generate a subgroup r" c r e of finite in­
dex. Next, we recall that only finitely many elements y in r" lie in 
{y E r : d (x' y (x)) ~ 2diam (M)} . We can therefore choose { YI' ... ' Ybl } c 
{y E r: d(x, y (x)) ~ 2diam(M)}withthefollowingproperties(weuseadditive 
notation here, as it is easier to read): 

(1) span {jiJ. ... , Yk} C span {YI, ... , yd has finite index for all k = 1, ... , b1• 

(2) Yk = l1k · YI + · · · + lkk · Yk is chosen such that hk is maximal in absolute 
value among all elements in f" n {y E r : d (x, y (x)) ~ 2diam (M)}. 

The group r' generated by { YI' ... ' Ybl } clearly has finite index in r" and hence 
also in r. The generators lie in {y E r : d (x, y (x)) ~ 2diam (M)}, as demanded 
by the first property. It only remains to show that the second property is also 
satisfied. The see this, let y = m 1 • ji1 + · · · + mk · Yk be chosen such that mk =f. 0. 
If d (x, y (x)) ~ diam (M) , then we also have that 

d (x, y 2 (x)) ~ d (x, y (x)) + d (y (x), y 2 (x)) 

= 2d (x, y (x)) 

~ 2diam(M). 

Thus, y 2 E f" n {y E f : d (x, y (x)) ~ 2diam (M)}, and also, 

y 2 = 2m! · Yl + · · · + 2mk · Yk 
k-1 

= L n; · Yi + 2mk ·lkk · Yk· 
i=l 
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But this violates the maximality of lkk, as we assumed mk -:j:. 0. 0 

With this lemma we can now give Gromov's proof of 

Theorem 2.2 (S. Gallot and M. Gromov, 1980) If M is a Riemannian mani­
fold of dimension n such that Ric :::: (n - 1) k and diam (M) ~ D, then there is a 
function C (n, k · D2), with the property that limx--.o C (n, x) = n, such that 

b1 (M) ~ C (n, k · D2) • 

In particular, there is e (n) > 0 such that ifk · D2 :::: -e (n), then b1 (M) ~ n. 

Proof. First observe that for k > 0 there is nothing to prove, as we know that 
b1 = 0 from Myers' theorem. 

Suppose we have chosen a covering M of M with torsion-free Abelian Galois 
group of deck transformations r = (y1, ... , Yb1) such that for some x E M we 
have 

d (x, Yi (x)) ~ 2diam (M), 

d (x, y (x)) > diam (M), y -:j:. 1. 

Then we clearly have that all of the balls B (y (x), (diam(M))/2) are disjoint. Now 
set 

Ir = {y E r: y = l1 · Yl + · · · + h1 • Ybp 1111 + · · · + llb1 1 ~ r}. 

If b1 (M) :::: b, then we must have that the cardinality of Ir is larger than 

(~)b. On the other hand, for y E Ir we have B (y (x), (diam(M))/2) C 

B (x, r · 2diam (M) + (diam(M))/2). All of these balls are disjoint and have the 
same volume, as y acts isometrically. We can therefore use the relative volume 
comparison theorem to conclude that the cardinality of Ir is bounded from above 
by 

volB (x, r · 2diam(M) + ~) v (n, k, r · 2diam(M) + ~) 
volB (x, di~(M>) ~ v (n,k, di~(M)) • 

Hence, we have 

(!:.)b < v ( n, k, r · 2diam (M) + ~) 
b - v (n, k, di~(M>) 

for all r > 0. If we set r = 2b, we clearly get a bound for b. Thus, b1 is bounded 
from above in terms of k and diam (M) . To get better information, observe that 

v (n, k, r · 2diam(M) + di~(M)) v (n, k, (r. 2 + 4) D) 
~~--~------~----~< ~--~~~~~~ 

v ( n, k, di~(M)) v (n, k, ~) 



254 9. Ricci Curvature Comparison 

where in the last step we assume that DH is very small relative to r. We now 
get the desired bound for b1 by using r = bb and b = b1• If we assume that 
b1 ~ b = n + 1 and we fix r = 1 + 5n · (n + 1)n+l, then for small DH, 
depending on this choice for r, we get 

_r_ < sn ·rn ( )
n+l 

n+ 1 - ' 

which is impossible. D 

Gallot's proof of the above theorem uses techniques that are sophisticated 
generalizations of the Bochner technique. 

9.2.2 Finiteness of Fundamental Groups 

One can get even more information from these volume comparison techniques. 
Instead of considering just the first homology group, we can actually get some 
information about fundamental groups as well. 

For our next result we need a different kind of understanding of how fundamental 
groups can be represented. 

Lemma 2.3 (M. Gromov, 1980) For a Riemannian manifold M and x E M, 
we can always .find generators {yJ, ... Ym}for the fundamental group r = 1t1 (M) 
such that d (x, Yi (x)) ::: 2diam (M) and such that all relations for r in these 
generators are oftheform Yi · Yj · Yk-! = 1. 

Proof. For any 8 E (0, inj (M)) choose a triangulation of M such that adja­
cent vertices in this triangulation are joined by a curve of length less that 8. Let 
{x1 , ••• , Xk} denote the set of vertices and { eij} the edges joining adjacent vertices 
(thus, eij is not necessarily defined for all i, j). If x is the projection of x E M, 
then join x and Xi by a segment O'i for all i = 1, ... , k and construct the loops 
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for adjacent vertices. Now, any loop in M based at x is homotopic to a loop in 
the 1-skeleton of the triangulation. Furthermore, any loop in this triangulation is 
homotopic to a product of loops of the form O'ij. Thus, these loops generate r. 

Now observe that if three vertices Xi, xi, Xk are adjacent to each other, then 
they span a 2-simplex fl.;ik· Thus, we have that the loop aiiaikaki = a;jO'jkO';// is 
homotopically trivial. We claim that these are the only relations needed to describe 
r. To see this, let a be any loop in the 1-skeleton that is homotopically trivial. Now 
use that a in fact contracts in the 2-skeleton. Thus, a homotopy corresponds to a 
collection of 2-simplices ~iik· In this way we can represent the relation a = 1 as 
a product of elementary relations of the form a;iaikU;// = 1. 

Finally, use discreteness of r to get rid of e as in the above case. 0 

A simple example might be instructive here. 

Example 2.4 Consider Mk = S3 /Zk = the constant-curvature 3-sphere divided 
out by the cyclic group of order k. As k ~ oo the volume of these manifolds goes 
to zero, while the curvature is 1 and the diameter ~. Thus, the fundamental groups 
can only get bigger at the expense of having small volume. If we insist on writing 
the cyclic group Zk in the above manner, then the number of generators needed 
goes to infinity ask~ oo. 

For numbers n EN, k E R, v, D E (0, oo), let V.Jl(n, k, v, D) denote the class 
of compact Riemannian n-manifolds with 

We can now prove: 

Ric:;:: (n- 1)k, 

vol:;:: v, 

diam::: D. 

Theorem 2.5 (M. Anderson, 1990) There are only finitely many fundamental 
groups among the manifolds in rot (n, k, v, D) for fixed n, k, v, D. 

Proof. Choose generators {y1, ••• , Yml as in the lemma. Since the number 
of possible relations is bounded by 2m3

, we have reduced the problem to 
showing that m is bounded. We have that d (x, y; (x)) ::: 2D. Fix a fun­
damental domain F c M that contains x, i.e., a closed set such that n : 
F ~ M is onto and volF = volM. One could, for example, choose F = 

{ z E M: d (x, z)::: d (y (x), z) for ally E n 1 (M)}. Then we have that the sets 

y; (F) are disjoint up to sets of measure 0, all have the same volume, and all lie in 
the ball B (x, 4D). Thus, 

volB (x, 4D) v (n, k, 4D) 
m< < . 

- volF - v 
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In other words, we have bounded the number of generators in terms of n, D, v, k 
~~ 0 

Another related result shows that groups generated by short loops must in fact 
be finite. 

Lemma 2.6 (M. Anderson, 1990) For fixed numbers n E N, k E R v, D E 

(0, oo) we can .find L = L (n, k, v, D) and N = N (n, k, v, D) such that if M E 

9Jt (n, k, v, D), then any subgroup of rr1 (M) that is generated by loops of length 
~ L must have order ~ N. 

Proof. Let r C Jr1 (M) be a group generated by loops {YI, ... , Yk} of length 
~ L. Consider the universal covering Jr : M ---+ M and let x E M 
be chosen such that the loops are based at 7r (x) . Then select a fundamen­
tal domain F c M such that x E F. One could, for example, choose 

F = { z E M: d (x, z) ~ d (y (x), z) for ally E rr1 (M)} . We have that for any 

Y1, Y2 E 7ri (M), either YI = Y2 or Y1 (F) n Y2 (F) has measure 0. 
Now define U (r) as the set of y E r such that y can be written as a product 

of at most r elements from { y1 , ••• , Yk} . We assumed that d (x, Yi (x)) ~ L for 
all i, and thus d (x, y (x)) ~ r · L for ~I y E U (r). This means that y (F) c 
B (x, r · L + D). As the sets y (F) are disjoint up to sets of measure zero, we then 
obtain 

IU (r)J ~ volE (x, r · L +D) 
volF 

v (n, k, r · L + D) 
< . - v 

If we assume that r has order larger than N and we suppose that L < DIN, then 
forr = N, 

v (n, k, 2D) 
N< . 

v 
In other words, if we set 

volB (x, 2D) 
N= +1, 

v 
D 

L=-, 
2N 

then we get the desired conclusion. 0 

9.3 Manifolds of Nonnegative Ricci Curvature 

In this section we shall prove the splitting theorem of Cheeger-Gromoll. This the­
orem is analogous to the maximal diameter theorem in many ways. It also has 
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far-reaching consequences for compact manifolds with nonnegative Ricci curva­
ture. For instance, we shall see that S3 x ~ does not admit any complete metrics 
with zero Ricci curvature. One of the critical ingredients in the proof of the split­
ting theorem is the maximum principle for continuous functions. These analytical 
matters will be taken care of in the first subsection. 

9.3.1 The Maximum Principle 

We shall now try to understand how one can assign second derivatives to (distance) 
functions at points where the function is not smooth. Later, we shall also discuss 
generalized gradients, but this theory is completely different and works only for 
Lipschitz functions. 

The key observation for our development of generalized Hessians and 
Laplacians is 

Lemma 3.1 Iff, h : (M, g)--+ lR are C2 functions such that f(p) = h(p) and 
f(x) :::: h(x)for all x near p, then 

Vf(p) = Vh(p), 

vz f(p):::: vzh(p), 

!J.f(p):::: !J.h(p). 

Proof. If (M, g) c (JR, can), then the theorem is simple calculus. In general, 
We can take y : ( -s, s) --+ M to be a geodesic with y (0) = p, then use this 
observation on f o y, h o y to see that 

df(y(O)) = dh(y(O)), 

g (V2 f(y(O)), y(O)) :::: g (V2h(y(O)), y(O)). 

This clearly implies the lemma if we let v = y(O) run over all v E TpM. D 

This lemma implies that a C2 function f : M --+ ~ has V 2 f (p) :::: S, where S 
is a symmetric linear map on TpM (or !:!..f(p) ::::a E ~),iff for every s > 0 there 
exists a function j 8 (x) defined in a neighborhood of p such that 

(1) fs(P) = f(p). 
(2) f(x):::: j 8 (x) in some neighborhood of p. 
(3) V 2 fe(P) :::: S - s · I (or !J.fe(P) :::: a -e). 

Such functions fe are called support functions from below. One can analogously 
use support functions from above to find upper bounds for V2 f or !J.f. 

For a continuous function f : (M, g) --+ lR we say that: V2 f(p) :::: S (or 
!J.f(p) :::: a) iff there exist smooth support functions fe satisfying (1) to (3). 
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One can easily check that if (M, g) c (JR, can), then f has V2 f ::: 0 everywhere 
iff f is convex. Thus, f: (M, g)~ lRhas V2 f::: Oeverywhereiff Joy is convex 
for all geodesics y. Using this, one can easily prove 

Theorem 3.2 Iff: (M, g)~ lR is continuous with V 2 f::: 0 everywhere, then 
f is constant near any local maximum. In particular, f cannot have a global 
maximum unless f is constant. 

We shall need a more general version of this theorem called the maximum 
principle. As stated below, it was first proved for smooth functions by E. Hopf in 
1927 and then later for continuous functions by Calabi in 1958. 

Theorem 3.3 (The Strong Maximum Principle) Iff: (M, g)~ lR is contin­
uous and has 6./ ::: 0 everywhere, then f is constant in a neighborhood of every 
local maximum. In particular, f can have a global maximum only iff is constant. 

Proof. First, suppose that 6./ > 0 everywhere. Then f can't have any local 
maxima at all. For if f has a local maximum at p e M, then there would exist a 
smooth support function fe (x) with 

(1) fe(P) = f(p), 
(2) fe(x) ~ f(x) for all x near p, 
(3) 6./e(P) > 0. 

Here (1) and (2) imply that fe must also have a local maximum at p. But this 
implies that V2 fe(P) ~ 0, which contradicts (3). 

Next just assume that 6./ ::: 0 and let p e M be a local maximum for f. For 
sufficiently small r < inj(p) we therefore have a function f : (B(p, r), g) ~ lR 
with 6./ ::: 0 and a global maximum at p. Iff is constant on B(p, r), then we 
are done; otherwise, we can assume (by possibly decreasing r) that f is not equal 
to f(p) on S(p, r) = {x e M : d(p, x) = r}. Then define V = {x e S(p, r) : 
f(x) = f(p)}. Now construct a smooth function h =earp- 1 such that 

h < 0 on V, 

h(p)=O, 

6.h > 0 on B (p, r). 

This function is found by first selecting an open disc U c S (p, r) that contains 
V. We can then find rp such that 

(/) (p) = 0, 

rp < 0 on U, 

Vq; =F 0 on iJ (p, r). 
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rp>O 

FIGURE9.2. 

In an appropriate coordinate system (x 1, ••• , xn) we can simply assume that U 
looks like the lower half-plane: x 1 < 0 and then define <p = x 1 (see also Figure 
9.2). Then choose a so big that t::..h = aea'P(ai'V<pl 2 + ll<p) > 0 on B(p, r). 

Now consider the function fD = f + 8h on B(p, r). Provided that 8 is very 
small, this function has a local maximum in the interior B(p, r), since 

JD(p) = f(p) 

>max{/ (x) + 8h (x) = f 8(x): x E aB(p, r)}. 

On the other hand, we can also show that f 8 has positive Laplacian, thus giving a 
contradiction with the first part of the proof. To see that the Laplacian is positive, 
select fe a support function from below for fat q E B (p, r). Then fe + 8h is a 
support function from below for f 8 at q. The Laplacian of this support function is 
estimated by 

!::.. Us+ 8h) (q) =:: -e + 8llh (q), 

which for given 8 must become positive as e -+ 0. 0 

A continuous function f : (M, g) -+ IRis said to be linear if V2 f = 0 (i.e., 
both of the inequalities V2 f =:: 0, V2 f :::: 0 hold everywhere). One can easily 
prove that this implies that f o y really is linear for each geodesic y. This implies 
that f o expP(x) = f(p) + g(vp, x) for each p E M and some Vp E TpM. This 
shows in particular that f is C 00 with V /p = vp. 

More generally, we have the concept of a harmonic function. This is a continuous 
function f : (M, g) -+ IR with llf = 0. The maximum principle shows that if 
M is closed, then all harmonic functions are constant. On incomplete or complete 
open manifolds, however, there are often many harmonic functions. This is in 
contrast to the existence of linear functions, where V f is necessary parallel and 
therefore splits the manifold locally into a product where one factor is an interval. 
It is a fairly subtle fact that any harmonic function is C00 if the metric is C00 • 

We finish this subsection with a new piece of notation. A continuous function 
f : (M, g) -+ IR with llf =:: 0 everywhere is said to be subharmonic. If instead, 
D.f :::: 0, then f is superharmonic. 
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FIGURE9.3. 

FIGURE9.4. 

9.3.2 Rays and Lines 

We will work only with complete manifolds in this section. A ray r(t) : [0, oo) --+ 
(M, g) is a unit speed geodesic such thatd(r(t), r(s)) = it-s I for all t, s 2:: 0. One 
can think of a ray as a semi-infinite segment or as a segment from r(O) to infinity. 
A line i(t) : lR--+ (M, g) is a unit speed geodesic such that d(y(t), y(s)) = it- si 
for all t, s E R 

Lemma 3.4 If p E (M, g), then there is always a ray emanating from p. If M is 
disconnected at infinity then (M, g) contains a line. 

Proof. Let p E M and consider a sequence qi --+ oo. Find unit vectors Vi E TpM 
such that: ai(t) = expp(tvi), t E [0, d(p, qi)l is a segment from p to qi. By 
possibly passing to a subsequence, we can assume that vi --+ v E TpM (see 
Figure 9.3). Now a(t) = expp(tv), t E [0, oo), becomes a segment. This is 
because O'i converges pointwise to a by continuity of expP, and thus 

d(a(s), a(t)) = limd(ai(s), ai(t)) =is- ti. 

A complete manifold is connected at infinity if for every compact set K C M 
there is a compact set C :J K such that any two points in M - C can be joined by 
a curve in M - K. If M is not connected at infinity, we say that M is disconnected 
at infinity. 

If M is disconnected at infinity, we can obviously find a compact set K and 
sequences of points Pi --+ oo, qi --+ oo such that any curve from Pi to qi must 
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pass through K. If we join these points by segments u; : (-a;, b;) --+ M such that 
a;, b; --+ oo, u;(O) E K, then the sequence will subconverge to a line (see Figure 
9.4). [] 

Example 3.5 Surfaces of revolution dr2 + q>2(r)ds;_ 1, where q> : [0, oo) --+ 
[0, oo) and fiJ(t) < 1, ip(t) < 0, t > 0, cannot contain any lines. These manifolds 
look like paraboloids .. 

Example 3.6 Any complete metric on sn-l x lR must contain a line, since the 
manifold is disconnected at infinity. 

Example 3.7 The Schwarzschild metric on S2 x JR2 does not contain any lines. 
This will also follow from our main result in this section. 

Theorem 3.8 (The Splitting Theorem, Cheeger-Gromoll, 1971) If (M, g) 
contains a line and has Ric 2: 0, then (M, g) is isometric to a product 
(H X JR, g0 + dt2). 

The proof is quite involved and will require several constructions. The main 
idea is to find a distance function f : M --+ lR (i.e., IV fl = 1) that is linear (i.e., 
V2 f = 0). Having found such a function, one can easily see that M = U0 x JR, 
where U0 = f- 1(0) and g = dt2 + g0 • The maximum principle will play a key 
role in showing that f, when it has been constructed, is both smooth and linear. 
Recall that in the proof of the maximal diameter theorem we used two distance 
functions f, h placed at maximal distance from each other and then proceeded to 
show that f + h = constant. This implied that f, h were smooth, except at the 
two chosen points, and that !:if is exactly what it is in constant curvature. We 
then used the rigidity part of the Cauchy-Schwartz inequality to compute V2 f. 
In the construction of our linear distance function we shall do something similar. 
In this situation the two ends of the line play the role of the points at maximal 
distance. We will then construct two distance functions b± from infinity, using this 
line, that are continuous and satisfy b+ + b_ 2: 0 (from the triangle inequality), 
!:ib± ::::; 0, and b+ + b_ = 0 on the line. Thus, b+ + b_ is superharmonic and has 
a global minimum. The minimum principle will therefore show that b+ + b_ = 0. 
Thus, b+ = -b_ and 0 2: !:ib+ = -/:ib_ 2: 0, which shows that both of b± are 
harmonic and therefore coo. We then show that they are actually distance functions 
(i.e., IVb±l = 1). Then we can conclude that 

(!:ib )2 
0 = Vb±(!:ib±) + ± 

n-1 
:::: Vb±(!:ib±) + IV2b±l2 

= IV2b±l2 

::::; -Ric(Vb±, Vb±) ::::; 0. 

This establishes that IV2b±l2 = 0, so that we have two linear distance functions 
b± as desired. 
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The proof proceeds through several results, which we will need later and which 
are also of some interest in their own right. 

9.3.3 Laplacian Comparison 

Lemma 3.9 (E. Calabi, 1958) Let f(x) 
Ric(M, g):::: 0, then 

d(x, p), p E (M, g). If 

n-1 
!::..f(x) < -- for all x EM. 

- f(x) 

Proof. We know that the result is true whenever f is smooth. For any other 
q E M, choose a unit speed segment a : [0, £]---* M with a(O) = p, a(£)= q. 
Then the triangle inequality implies that f 8 (x) = B + d(a(B), x) is a support 
function from above for f at q. If all these functions are smooth at q, then 

n-1 
!::..fs(q) :S fs(q)- B 

n-1 
f(q)- B 

n- 1 2(n- 1) 
:S f(q) +B. (f(q))2 

for small B, and hence !::..f(q) :::: /(\ in the support sense. 
Now for the smoothness. Fix B ..; 0 and suppose fs is not smooth at q. Then we 

know that either 

(1) there are two segments from a (B) to q, or 
(2) q is a critical value for expa(s) : seg (a (B)) ---* M. 

Case ( 1) would gives us a nonsmooth curve of length e from p to q, which we know 
is impossible. Thus, case (2) must hold. To get a contradiction out of this, we show 
that this implies that h (x) = d (x, q) can't be smooth at a (B), which we know to 
be an incorrect conclusion. For convenience, assume that a is reparametrized so 
that I& I = d(p, q)- B =£-Band a(b) = q. 

Using that q is critical for expa(e)• we find w E Tseg (a (B)) such that 
D expa(s) w = 0. If we consider the curves ---* sw + & (B), then we have that 

.!!_ (expa(s) (sw + & (B))) (0) = 0. 
ds 

Now consider the triangle (s, t) ---* t · (sw + & (B)) and with it the mapping: 
(s, t)---* expa(s) (t · (sw + & (s))). Then we get a vector field J (t) along a by 

J (t) = .!!_ [ expa(s) (t · (sw + & (B)))] (0). 
ds 



This vector field satisfies 

9.3 Manifolds of Nonnegative Ricci Curvature 263 

J (0) = 0, 

J (1) = 0, 

j (0) = w, 

i (t) = -Ra (J (t)). 

The equation J (t) = -Ra (J (t)) is very easy to establish, as J has constant coef­
ficients in polar coordinates around a (e) and therefore satisfies j = (V2 fs) (J). 

Thus, J is a solution to a second-order linear ODE. In particular, J is uniquely 
determined by J (0) = 0 and j (0) . Since j (0) -=/= 0, it must follow that 
j (1) -=/= 0, for otherwise J must be everywhere zero. Now consider the trian­
gle (s, t) ~ (1 - t) (si (1)- a (l)). This generates a vector field K along a that 
satisfies 

K (t) = ! [expq ((1- t) (si (1)- a (l)))] (0), 

K (1) = 0 = J (1), 

K (1) = i (1), 

K = -Ra (K). 

Thus, we conclude that J = K and in particular, J (0) = K (0) = 0. This, 
however, implies that expq is critical at a (e) . D 

By a similar analysis, we can prove 

Lemma 3.10 If(M, g)iscompleteandRic(M, g):=:: (n-l)·k, then any distance 
function f(x) = d(x, p) satisfies: 

1:1f(x) < (n- 1) sn~(f(x)). 
- snk(f(x)) 

This lemma can be used to give a different proof of Cheng's diameter theorem that 
does not use relative volume comparison. 

As before, consider h(x) = d(x, q), f(x) = d(x, p), where d(p, q) = rri.Jk. 
Then we have f + h :=:: rr I ,Jk, and equality will hold for any x e M- {p, q} that 
lies on a segment joining p and q. On the other hand, the above lemma tells us that 

1:1(/+h) ~ 1:1f+l1h 

~ (n- 1)../kcot(.../kf(x)) + (n- 1).../k · cot(.../kh(x)) 

~ (n -1).../kcot(.../kf(x)) + (n -1).../kcot ( ...fk (~- f(x))) 

= (n- 1).../k(cot(.../kf(x)) + cot(rr - .../kf(x))) = 0. 

So f +his superharmonic on M- {p, q} and has a global minimum on this set. 
Thus, the minimum principle tells us that f + h = rr I .Jk on M. The proof can 
now be completed as before. 
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y(t) = y(-by(x)) 
I 

• 
y(O) y 

X 

FIGURE9.5. 

9.3.4 Busemann Functions 

Nowlety: [0, oo)-+ (M, g)beaunitspeedray,anddefineb1(x) = d(x, y(t))-t. 

Proposition 3.11 (1) For fixed x, the function t -+ b1(x) is decreasing and 
bounded in absolute value by d(x, y(O)). 

(2) lbr(X)- br(Y)I :=: d(x, y). 
(3) Llb1(x) :=: Z,~~ everywhere. 

Proof. (2) and (3) are obvious, since b1(x) + t is a distance function from y(t). 
For ( 1 ), first observe that the triangle inequality implies 

lbr(x)l = ld(x, y(t))l- ti = ld(x, y(t))- d(y(O), y(t))l :=: d(x, y(O)). 

Second, if s < t then 

b1(x)- bs(X) = d(x, y(t))- t- d(x, y(s)) + s 

= d(x, y(t))- d(x, y(s))- d(y(t), y(s)) 

:=: d(y(t), y(s))- d(y(t), y(s)) = 0. D 

Thus, the family of functions { b1 lr>o forms a pointwise bounded equicontinuous 
family that is also pointwise decreasing. Thus, b1 must converge to a distance­
decreasing function by satisfying 

and 

iby(x)- by(Y)i ::: d(x, y), 

lby(x)l :=: d(x, y(O)), 

by(y(r)) = Iimb1(y(r)) = Iim(d(y(r), y(t))- t) = -r. 
This function by is called the Busemann function for y and should be interpreted 
as a distance function from "y(oo)." 

Example 3.12 If M = (lRn, can), then all Busemann functions are of the form 
by(x) = y(O) · y(O) · x (see Figure 9.5). 
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y 

y(O) y 

FIGURE9.6. 

The level sets b;1(t) are called horospheres. In (lRn, can) these are obviously 
hyperplanes. 

Given our ray y, as before, and p E M, consider a family of unit speed segments 
a1 : [0, l 1 ] -+ (M, g) from p to y(t). As when we constructed rays, this family 
must subconverge to some ray ji : [0, oo) -+ M, with ji(O) = p. A ray coming 
from such a construction is called an asymptote for y from p (see Figure 9.6). 
Such asymptotes from p need not be unique. 

Proposition 3.13 (1) by (x) ~ by (p) + by (x ). 

(2) by(ji(t)) = by(p) + by(ji(t)) = by(p)- t. 

Proof. Let ai : [0, lil -+ (M, g) be the segments converging to ji. To check (1), 
observe that 

d(x, y(s))- s ~ d(x, ji(t)) + d(ji(t), y(s))- s 

= d(x, ji(t))- t + d(p, ji(t)) + d(ji(t), y(s))- s 

-+ d(x, ji(t))- t + d(p, ji(t)) + by(ji(t)) as s-+ oo. 

Thus, we see that (1) is true provided that (2) is true. To establish (2), we notice 
that 

d(p, y(ti)) = d(p, ai(s)) + d(ai(s), y(ti)) 

for some sequence ti -+ oo. Now, ai(s)-+ ji(s), so we obtain 

by(p) = Iim(d(p, y(ti))- ti) 

= Iim(d(p, ji(s)) + d(ji(s), y(ti))- ti) 

= d(p, ji(s)) + lim(d(ji(s), y(ti))- ti) 

= s + by(ji(s)) 

= -by(ji(s)) + by(ji(s)). 

Thus, by has by (p) + by as support function from above at p E M. 

Lemma 3.14 /fRic(M, g)~ 0, then !}.by ~ 0 everywhere. 

D 
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X 

FIGURE9.7. 

Proof. Since by(p) + b.y is a support function from above at p, we only need 
to check that D.b.y(p) ::::: 0. To see this, observe that the functions b1(x) = 
d (x, ji (t)) - t are actually support functions from above for b.y at p. Furthermore, 
these functions are smooth at p with D.b1(p) ::::: (n- 1)/t ---+ 0 as t ---+ oo. D 

Now suppose (M, g) has Ric::::: 0 and contains a line y(t): lR---+ M. Let b+ be 
the Busemann function for y : [0, oo) ---+ M, and b- the Busemann function for 
y : ( -oo, 0] ---+ M. Thus, 

b+(x) = lim (d(x, y(t))- t), 
t~+oo 

b-(x)= lim (d(x,y(-t))-t). 
t~+oo 

Clearly, 

b+(x) + b-(x) = lim (d(x, y(t)) + d(x, y(-t))- 2t), 
t~+oo 

so(b++b-)(x)::::: Oforallx, bythetriangleinequality,and(b++b-)(y(t)) = 0, 
since y is a line (see Figure 9.7). 

Thus we have a function b+ + b- with D.(b+ +b-) ::::: 0 and a global minimum 
at y(t). The minimum principle then shows that b+ + b- = 0 everywhere. In 
particular, b+ = -b-, and thus D.b+ = D.b- = 0 everywhere. 

To finish the proof of the splitting theorem, we still need to show that b± are 
distance functions, i.e., IV b± I = 1. To see this, let p E M and construct asymptotes 
ji± for y± from p. Then consider b~(x) = d(x, ji±(t))- t, and observe: 

bi(x) :::=: b+(x) = -b-(x) :::=: -b;(x) 

with equality holding for x = p. Since both b~ are smooth at p with unit gradient, 
we must therefore have that Vb((p) = - Vb;(p). Then also, b± must be differen­
tiable at p with unit gradient. We have therefore shown (without using that b± are 
smooth from D.b± = 0) that b± are everywhere differentiable with unit gradient. 
We are therefore finished if we believe that D.b± = 0 ::::} b± is C00 • Even without 
this regularity result we can still prove that V 2b± = 0 in the support sense. The 
argument is due to Eschenburg and Heintze. 

First we prove that the asymptotes ji±(t) fit together to form a line. We already 
know that 
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As b+ = -b-, we therefore have that the two asymptotes fit together to form 
a smooth geodesic y. This means in particular that the asymptotes are uniquely 
defined at p. Now fix some q = y±(s), say q = y+(s), and form the asymptote 
9 for y+ at q. We know that the support functions b1 (x) = d (x, 9 (t))- tare 

smooth at q with Vb1 (q) = -djdt9 (0). However, b+ is also differentiable at 
q, and since bi(x) ( t > s ) is also a support function at q = y(s), we have 
that -djdt9 (0) = Vb1 (q) = Vb+ (q) = Vbi(y+(s)) = -djdty+(s). Thus 
9 and y + must coincide up to a shift in parameter. This, however, means that 
the asymptote for y- at q must also coincide with the geodesic formed by y. In 
particular, we have that the asymptote is a ray as seen form any point on it and 
must therefore be a line. 

Putting this together, we have that the Busemann functions for this line are equal 
up to sign. But this implies that the support functions b~(x) = d(x, y±(t))- tare 
in fact equal to each other for all x = y (s), -t < s < t. To show that V2b± = 0, 
it therefore suffices to show that V2b~ (y (s)) -+ 0 as t -+ oo. As the functions 
b~(x) are equal to each other at x = y (s) and otherwise decreasing in t, we have 
that V2b:j (y (s)) ~ V2b~ (y (s)) forT < t. Thus these Hessians are uniformly 
bounded as t -+ oo and converge to some operators s± (s) . In fact they converge 
uniformly to s± (s) , since we have the equation 

V f,y(s) V2b~ (y (s)) + {V2b~ (y (s)))2 = -Rf,y<s>· 

Here the two terms {V2b~ (y (s)))2 and -Rdfdsy(s) are bounded operators on any 
fixed compact interval [ -e, e), and thus the derivatives Vdfdsy(s) V2b~ (y (s)) re­
main bounded as t -+ oo. This insures us that the convergence is uniform on 
compact intervals and that the limit operators s± (s) are continuous in s. 

We now need to show that s± (s) = 0. To see this, first use that 

:s lib~ (y (s)) + IV2b~ (y (s))l 2 .::; O, 

which implies 

lib~ (y (e))- lib~ (y (-e))+/_: IV2b~ (y (s))l 2 ds.::; 0. 

The firsttwotermsgo to zero as t -+ oo, so we must have that f~e Is± (s)l 2 ds = 0 

for all e > 0. As Is± (s)l 2 is continuous, we therefore conclude that s± (s) = 0 
on [-e, e) for all e > 0. 

9.3.5 Structure Results in Nonnegative Ricci Curvature 

Corollary 3.15 S3 x R does not admit any Ricci flat me tries. 

Proof. Any complete metric on SP x R with nonnegative Ricci curvature must 
split, since SP x R has two ends. If the original metric is Ricci flat, then after the 
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splitting, we will get a Ricci flat metric on SP. If p :::: 3, such a metric must also 
be fiat. But we know that SP, p = 2, 3 does not admit any flat metrics. 0 

When p :::: 4 it is not known whether SP admits a Ricci flat metric. 

Theorem 3.16 (Structure Theorem for Nonnegative Ricci Curvature, Cheeger­
Gromoll, 1971) Suppose(M, g)isacompactRiemannianmanifoldwithRic:::: 0. 
Then the universal cover (M, g) splits isometrically as a product N x ]RP, where 
N is a compact manifold. 

Proof. By the splitting theorem, we can write M = N x ]RP, where N does not 
contain any lines. Observe that if y(t) = (YI (t), y2(t)) E N x ]RP is a geodesic, 
then both YI,J are geodesics, and if y is a line, then both YI.2 are also lines. Thus, 
all lines in M must be of the form y(t) = (x, a(t)), where x EN and a is a line 
in ]RP. 

~ 

If N is not compact, then it must contain a ray y(t) : [0, oo) --+ N. If rr : M --+ 
M is the covering map, then we can consider c(t) = rr o (y(t), 0) in M. This is 
of course a geodesic in M, and since M is compact, there must be a sequen<z 
ti --+ oo such that c(ti)--+ v E TxM for some x E M, v E !jM. Choose x E M 
such that rr(x) = x, and consider lifts Yi(t): [-ti, oo)--+ M of c(t + ti). where 
Drr(yi(O)) = i:(ti) and Yi(O) --+ x. On the one hand, these geodesics converge 
to a geodesic 9 : (-oo, oo) --+ M with y(O) = x. On the other hand, since 
Drr(y(ti)) = i:(ti). there must be deck transformations gi E rri(M) such that 
gi o y(t + ti) = Yi(t). Thus, the Yi are rays and must converge to a line. From our 
earlier observations, this line must be in ]RP. The deck transformations gi therefore 
map y(t + ti), which are tangent toN, to vectors that are almost perpendicular to 
N. 

NowletqJ: M--+ A!.beanisometry,e.g.0D = gi.Ifl(t)isalineinM, thenqJol 
must also be a line in M. Since all lines in M lie in ]RP and every vector faEgent to 
]RP is the velocity of some line, we see that DqJ ~ust preserve TIRP c T M. Since 
TN is the orthogonal complement to TIRP in T M and DqJ is a linear isometry, we 
see that DqJ also maps TN to TN. This, of course, implies that IP must be of the 
form qJ = ('PI, qJ2), where 'PI is an isometry of ]RP and qJ2 an isometry of N. 0 

This theorem also shows that rri (M) looks almost like the fundamental group 
of a flat manifold, i.e., it contains a finite normal subgroup of 7ri (M) such that the 
quotient group is the fundamental group of a flat manifold. 

Another interesting piece of information is the following: 

Corollary 3.17 Suppose (M, g) is a complete, compact Riemannian manifold 
with Ric =:::: 0. If M is K(rr, 1), i.e., the universal cover is contractible, then the 
universal covering is Euclidean space and (M, g) is a .flat manifold. 
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-Proof. We know that M = JiP x C, where C is compact. The only way in which 
this space can be contractible is if C is contractible. But the only compact manifold 
that is contractible is the one-point space. D 

We can also use the splitting theorem to get different proofs of some of the 
theorems we proved using the Bochner technique. 

Corollary 3.18 If (M, g) is compact with Ric ::: 0 and has Ric > 0 on some 
tangent space TpM, then .7TJ (M) is finite. 

Proof. Since Ric > 0 on an entire tangent space, the universal cover cannot split 
into a product JRP x C, where p ::: 1. Thus, the universal covering is compact. D 

Corollary 3.19 If (M, g) is compact and has Ric ::: 0, then b1 (M) ::::: dim M = 
n, with equality holding ijf(M, g) is a flat torus. 

Proof. If M ---1>- M is a finite cover, then we have a map H 1 (M) ---1>- H 1 (M) 
between the de Rh~ cohomologies that is injective. (You should prove this.) 
Thus, b1 (,M) ::::: b1 (M). 

Now, M = JRP x C. If we let H be the subgroue__ of .rr~M) that acts by translations 
on JiP, then one can check that H ::::::: 7f..P. Thus M = M I H has b1 = p ::::: n and is 
a finite covering of M. In the case where b1(M) = n, we must then have p = n, 
so M is clearly flat. To see that M is a torus, we must prove that H = .rr1 (M). 

First observe that all elements of .rr1 (M) are torsion free, since any isometry of 
JRn of finite order must have a fixed point. Second, His normal in .rr1 (M) with finite 
index. Thus, the sequence 1 ---1>- H ---1>- .rr1 (M) ---1>- G ---1>- 1 cannot split, as .rr1 (M) is 
torsion free. Finally, H 1(M) = Ab(.rri (M)) ® JR, where Ab(r) = r /[r : r] is the 
Abelianized group of r. Now, the previous remarks show that Ab(.rr1 (M)) has rank 
::::: nand that the rank can ben only if .rr1 (M) is Abelian. Hence, .rr1 (M) = H. D 

9.4 Further Study 

The adventurous reader could consult [43] for further discussions. While this is 
probably one of the most interesting books in geometry, it has the defect of having 
many mistakes. An English translation is forthcoming, and it is hoped that it might 
be more user-friendly. Anderson's article [2] contains the finiteness results for 
fundamental groups mentioned here and also some interesting examples of man­
ifolds with nonnegative Ricci curvature. For the examples with almost maximal 
diameter we refer the reader to [3] and [66]. It is also worthwhile to consult the 
original paper on the splitting theorem [26] and the elementary proof of it in [33]. 
We already mentioned in Chapter 7 Gallot's contributions to Betti number bounds, 
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and reference [36] works here as well. The reader should also consult the articles 
by Colding, Perel 'man, and Zhu in [ 46] to get an idea of how rapidly this subject 
has grown in the past few years. 

9.5 Exercises 

1. Assume the distance function f = d (·, p) is smooth on B (p, r). Suppose 
that on vectors w perpendicular to the gradient, the Hessian is being given 
by 

V2 f (w) = sn~ (f) w, 
snk (f) 

then all sectional curvatures on B (p, r) are equal to k. 

2. Show that if (M, g) has Ric =:: (n - 1) k and for some p E M we have 
volB (p, r) = v (n, k, r), then the metric has constant curvature k on 
B (p, r). 

3. Show that a complete manifold (M, g) with the property that 

Ric ::: 0, 
. volB (p, r) 

hm = 1, 
r~oo Wnrn 

for some p E M, must be isometric to Euclidean space. 

4. (Cheeger) The relative volume comparison estimate can be generalized as 
follows: Suppose (M, g) has Ric=:: (n- 1) k anddimensionn. Select points 
Pl, ... , Pk E M. Then the function 

vol (U~=l B (pi, r)) 
r -+ ---'-------'-

v(n,k,r) 

is nonincreasing and converges to k as r -+ 0. 

If A c M, then 

vol ( UpeA B (p, r)) 
r -+ ---'-------'-

v (n, k, r) 

is nonincreasing. To prove this, use the above with the finite collection of 
points taken to be very dense in A. 

5. The absolute volume comparison can also be slightly generalized. Namely, 
for p E M and a subset r c Tp M of unit vectors, consider the cones defined 
in polar coordinates: 

Br (p, r) = {(t, 0) EM: t :'5: r and 0 E r}. 
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If RicM 2: (n - 1) k, show that 

volBr (p, r)::::: voir ·for (snk (t))n-i dt. 

6. Let G be a compact Lie group with a hi-invariant metric. Use the previous 
exercises on Lie groups from Chapters 1, 2, and 5 and the results from this 
chapter to prove 

(a) If G has finite center, then G has finite fundamental group. 

(b) A finite covering of G looks like G' x Tk, where G' is compact simply 
connected, and Tk is a torus. 

(c) If G has finite fundamental group, then the center is finite. 

7. Show that a compact Riemannian manifold with irreducible holonomy and 
Ric 2: 0 has finite fundamental group. 

8. Let (M, g) be ann-dimensional Riemannian manifold that is isometric to 
Euclidean space outside some compact subset K c M, i.e., M - K is 
isometric to IRn - C for some compact set C c IRn. If Ric8 2: 0, show that 
M = IR.n. (In Chapter 7 we gave two different hints for this problem; here 
is a third. Use the splitting theorem.) 



10 

Convergence 

In this chapter we will give an introduction to several of the convergence ideas for 
Riemannian manifolds. The goal is to understand what it means for a sequence of 
Riemannian manifolds, or more generally metric spaces, to converge to a space. In 
the first section we develop the weakest convergence concept: Gromov-Hausdorff 
convergence. We then go on to explain some of the elliptic regularity theory we 
need for some of the later developments. We have confined ourselves to the sim­
pler Holder and Schauder theories. In Section 3 we develop the idea of norms of 
Riemannian manifolds. This is a concept developed by the author in the hope that 
it will make it easier to understand convergence theory as a parallel to the easier 
Holder theory for functions (as is explained in Section 2). At the same time, we 
also feel that it has made some parts of the theory more concise. In this section 
we examine some stronger convergence ideas that were developed by Cheeger 
and Gromov and study their relation to the norms of manifolds. These prelimi­
nary discussions will enable us in subsequent sections to establish the convergence 
theorem of Riemannian geometry and its generalizations by Anderson and oth­
ers. These convergence theorems contain the Cheeger finiteness theorem, which 
states that certain classes of Riemannian manifolds contain only finitely many 
diffeomorphism types. 

The idea of measuring the distance between subspaces of a given space goes 
back to Hausdorff and was extensively studied in the Polish and Russian schools 
of topology. The more abstract versions we use here seem to begin with Shikata's 
proof of the differentiable sphere theorem. In Cheeger's thesis, the idea that ab­
stract manifolds can converge to each other is also evident. In fact, as we shall 
see below, he proved his finiteness theorem by showing that certain classes of 
manifolds are precompact in various topologies. Mter these two early forays into 
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convergence theory, not much appears until Gromov bombarded the mathematical 
community with his highly original approaches. He introduced a very weak kind 
of convergence that is simply an abstract version of Hausdorff's early work. The 
first use of this new idea was to prove a group-theoretic question about the nilpo­
tency of groups with polynomial growth. Soon after the introduction of this weak 
convergence, the earlier ideas on strong convergence by Cheeger resurfaced. There 
are various conflicting accounts on who did what and when. Certainly, the Russian 
school, notably Nikolaev and Berestovskii, deserve a lot of credit for their work 
on synthetic geometry, which could have been used in the convergence context. 
However, it appears that they were concerned mostly with studying generalized 
metrics rather than convergence. By contrast, the western school studied conver­
gence and thereby developed an appreciation for studying Riemannian manifolds 
with little regularity, and even metric spaces. 

10.1 Gromov-Hausdorff Convergence 

10.1.1 Hausdorf!Versus Gromov Convergence 

At the beginning of the twentieth century, Hausdorff introduced what we call the 
Hausdorff distance between subsets of a metric space. If (X, d) is the metric space 
and A, B c X, then we define 

d(A, B)= inf{d(a, b): a E A,b E B}, 

B (A, s) = {x EX: d (x, A)< s}, 

dH (A, B)= inf {s: A C B (B, s), B C B (A, s)}. 

Thus, d (A, B) is small if some points in these sets are close, while the Hausdorff 
distance dH (A, B) is small iff every point of A is close to a point in B and vice 
versa. One can easily see that the Hausdorff distance defines a metric on the closed 
subsets of X and that this collection is compact when X is compact. 

We shall concern ourselves only with compact metric spaces and proper metric 
spaces. The latter have by definition proper distance functions, i.e., all closed balls 
are compact. This implies, in particular, that the spaces are separable, complete, 
and locally compact. 

Around 1980, Gromov extended this concept to that of a distance between two 
abstract metric spaces. If X and Y are metric spaces, then an admissible metric on 
the disjoint union XU Y is a metric that extends the given metrics on X andY. 
With this we can define the Gromov-Hausdorff distance as 

da-H (X, Y) = inf {dH (X, Y) : admissible metrics on XU Y}. 

Thus, we try to put a metric on X U Y such that X and Y are as close as possible 
in the Hausdorff distance, with the constraint that the extended metric equals the 
given metrics on X and Y. In other words, we are trying to define distances between 
points in X and Y without violating the triangle inequality. 
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Example 1.1 If Y is the one-point space, then 

dc-H (X, Y) = radX 

= inf supd (x, y) 
yEX XEX 

=radius of smallest ball covering X. 

Example 1.2 By defining d (x, y) = D/2, where diamX, diamY :::=: D, we see 
that 

dc-H (X, Y) ::5: D/2. 

Let (M, dc-H) denote the collection of compact metric spaces. We shall study 
this class as a metric space in its own right. To justify this we must show that only 
isometric spaces are within distance zero of each other. 

Lemma 1.3 Suppose X andY are complete metric spaces with dc-H (X, Y) = 
0. Then X and Y are isometric. 

Proof. Choose a sequence of metrics d; on XU Y such that the Hausdorff distance 
between X and Y in this metric is < i - 1• Then we can find (possibly discontinuous) 
maps 

I; :X---+ Y, where d; (x, I; (x)) :::=: i- 1, 

J; : Y---+ X, where d; (y, J; (y)) :::=: i-1• 

Using the triangle inequality and that d; restricted to either X or Y is the given 
metric d on these spaces yields 

d (I; (x), Ii (x)) :::=: 2i-1, 

d (J; (y)' lj (y)) ::::::: 2i-1' 

d (I; (x1), I; (x2)) :::=: 2i-1 + d (x,, x2), 

d (J; (y,), J; (y2)) ::5: 2i-1 + d (y,, Y2), 

d(x, J; o I; (x)) :::=: 2i-1, 

d (y, I; o J; (y)) ::5: 2i-1• 

The first two inequalities show that I; : X ---+ Y and J; : Y ---+ X converge to maps 
I : X ---+ Y and J : Y ---+ X. The next two inequalities state that these two maps 
are distance nonincreasing. The last two inequalities imply that the two maps are 
inverses to each other. It then easily follows that both maps are isometries that are 
inverses of each other. 0 

Both symmetry and the triangle inequality are easily established for dc-H. Thus, 
(M, dc-H) is a pseudometric space, and if we divide out by isometric spaces, we 
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get a metric space. We shall show that this metric space is both complete and 
separable. But first we show how spaces can be approximated by finite metric 
spaces. 

Example 1.4 Let X be compact and suppose we have a finite subset A c X such 
thateverypointin X is within distance e of some element in A, i.e.,dn (A, X)::::: e. 
Such sets A are called e-dense in X. It is then clear that if we use the metric on A 
induced by X, then also dc-H (X, A) ::::: e. The importance of this remark is that 
for any e > 0 we can in fact find such finite subsets of X, since X is compact. 

Example 1.5 Suppose we have e-dense subsets 

A= {Xt, ... ,xk} C X, 

B = {Yt, ... , Yk} C Y, 

with the further property that 

Then dc-H (X, Y) ::::: 3e. We already have that the finite subsets are e-close to the 
spaces, so by the triangle inequality it suffices to show that de-n (A, B) ::::: e. For 
this we must exhibit a metric don AU B that makes A and Be-Hausdorff close. 
Define 

d (x;, y;) = e, 
d(x;,y1) =min{d(x;,Xk)+e+d(yJ,Yk)}. 

k 

Thus, we have extended the given metrics on A and B in such a way that no points 
from A and B get identified, and in addition the potential metric is symmetric. It 
then remains to check the triangle inequality. Here we must show 

d (x;, y1)::::: d (x;, z) + d (y1, z), 

d (x;, x1) :S: d (yt, X;)+ d (Yt. x1), 

d (y;, YJ) :S: d (xt. YJ) + d (xt. YJ). 

It suffices to check the first two cases. In the first one we can assume that z = Xk. 
Then we can find 1 such that 

Hence, 

d (x;, xk) + d (YJ· xk) = d (x;, xk) + e + d (YJ· Yt) + d (xt, xk) 

~ d (x;, Xt) + e + d (y 1, Yt) 

~d(x;,YJ)· 
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For the second case select l, m with 

d (Yko X;)= d (Yko Yl) + 8 + d (X[, X;)' 

d (Yk• Xj) = d (yk, Ym) + 8 + d (xm, Xj). 

Then, using our assumption about the comparability of the metrics on A and B, 
we have 

d (yko X;)+ d (Yko Xj) = d (Yko Yl) + 8 + d (XI, X;)+ d (yko Ym) + 8 + d (xm, Xj) 

~ d (Xko Xi)+ d (X[, X;)+ d (Xko Xm) + d (xm, Xj) 

~ d(x;,xi)· 

Example 1.6 Suppose Mk = S3 /Zk with the usual metric induced from S3 (1). 
Then we have a Riemannian submersion Mk ~ S2 ( i) whose fibers have diameter 
2; ~ 0 ask~ oo. Using the previous example, we can therefore easily check 

that Mk ~ S2 (4) in the Gromov-Hausdorfftopology. 

One can similarly see that the Berger metrics (S3, g8 ) ~ S2 H) as 8 ~ 0. 
Notice that in both cases the volume goes to zero, but the curvatures and diameters 
are uniformly bounded. In the second case the manifolds are even simply con­
nected. It should also be noted that the topology changes rather drastically from 
the sequence to the limit, and in the first case the elements of the sequence even 
have mutually different fundamental groups. 

Proposition 1.7 The "metric space" (M, do-H) is separable and complete. 

Proof. To see that it is separable, first observe that the collection of all finite 
metric spaces is dense in this collection. Now take the "countable" collection of 
all finite metric spaces that in addition have the property that all distances are 
rational. Clearly, this collection is dense as well. 

To show completeness, select a Cauchy sequence {Xn}. To show convergence 
of this sequence, it suffices to check that some subsequence is convergent. Select 
a subsequence {X;} such that do-H (X;, X; +I) < 2-i for all i. Then selectmetrics 
d;,i+I on X; ll X;+I making these spaces 2-i -Hausdorff close. Now define a metric 

d;,i+ion X; u xi+i by 

We have then defined a metric don Y = ll; X; with the property that in this metric 
dH (X;, Xi+i) ~ 2-i+I. This metric space is not complete, but the "boundary" of 
the completion is exactly our desired limit space. To define it, first consider 

X= {tx;}: x; EX; andd(x;,xi) ~ Oas i, j ~ oo}. 

This space has a pseudometric defined by 

d ({x;}, {y;}) = _lim d (x;, y;). 
1-400 
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Given that we are only considering Cauchy sequences {xi} , this must yield a metric 
on the quotient space X, obtained by the equivalence relation 

{xd "' {y;} iff d ({xd, {Yi}) = 0. 

Now we can extend the metric on Y to one on X I1 Y by declaring 

d (Xk. {Xi}) = lim d (Xk. Xi) . 
i-HXJ 

Using that dn (x1, x1+1) :::: z-1, we can for any Xi E Xi find a sequence 
{xi+J} such that Xi+O = Xi and d (xi+i• Xi+J+I) :::: z-i. Then we must have 
d (xi, {xi+J }) :::: z-i+t. Thus, every Xi is z-i+l_close to the limit space X. Con­
versely, for any given sequence {xi} we can find an equivalent sequence {yi} with 
the property that d (Yk. {Yi}) :::: z-k+t for all k. Thus, X is z-i+1-close to Xi. 0 

From the proof of this theorem we get the useful information that Gromov­
Hausdorff convergence can always be thought of as Hausdorff convergence. In 
other words, if we know that Xi --+ X in the Gromov-Hausdorff sense, then 
after possibly passing to a subsequence, we can assume that there is a metric on 
X I1 (Ili Xi) in which the Xi Hausdorff converge to X. With such a selection of a 
metric, it then makes sense to say that Xi --+ x, where Xi E Xi and x E X. We shall 
often use this without explicitly mentioning the ambient metric on X I1 (Ili X;) . 

Before going any further, we should mention an equivalent way of picturing 
convergence. For a metric space X, let C (X) denote the continuous functions 
on X, and L 00 (X) the bounded measurable functions with the sup-norm (not the 
essential sup-norm). We know that L 00 (X) is a Banach space. When X is bounded, 
we construct a map X --+ L 00 (X) , by sending x to the continuous function 
d (x, ·) . This is usually called the Kuratowski embedding when we consider it as 
a map into C (X) . From the triangle inequality, we can easily see that this is in 
fact a distance-preserving map. Thus, any compact metric space is isometric to a 
subset of some Banach space L 00 (X) . The important observation now is that two 
such spaces L 00 (X) and L 00 (Y) are isometric if the spaces X and Y are Borel 
equivalent (there exists a measurable bijection). Also, if X c Y, then L 00 (X) sits 
isometrically as a linear subspace of L 00 (Y) . Now recall that any compact space 
is Borel equivalent to some subset of [0, 1]. Thus all compact metric spaces X are 
isometric to some subset of L 00 ([0, 1]). We can then define 

dc-H (X, Y) = inf dn (i (X), j (Y)), 

where i : X --+ L 00 ([0, 1]) and j : Y --+ L00 ([0, 1]) are distance-preserving 
maps. The completeness issue then becomes a little less abstract to deal with. 

1 0.1.2 Pointed Convergence 

So far, we haven't really dealt with noncom pact spaces in a serious way. There is, 
of course, nothing wrong with defining the Gromov-Hausdorff distance between 
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unbounded spaces, but it will almost never be finite. In order to change this, we 
should have in mind what is done for convergence of functions on unbounded 
domains. There, one usually speaks about convergence on compact subsets. To do 
something similar, we first define the pointed Gromov-Hausdorff distance 

dc-H ((X, x), (Y, y)) = inf {dH (X, Y) + d (x, y)}. 

Here we take as usual the infimum over all Hausdorff distances and in addition 
require the selected points to be close. The above results are still true for this 
modified distance. We can then introduce the Gromov-Hausdorfftopology on the 
collection of proper pointed metric spaces M * = {(X, x, d)} in the following way: 
We say that (Xi, Xi, di) ~ (X, x, d) in the pointed Gromov-Hausdorfftopology if 
for all R, the closed metric balls (B (xi, R), Xi, di) ~ (B (x, R), x, d) converge 
with respect to the pointed Gromov-Hausdorff metric. 

1 0.1.3 Convergence of Maps 

We shall also have recourse to speak about convergence of maps. Suppose we have 

!k : xk ~ Yk. 

xk~x. 

Yk ~ Y. 

Then we say that fk converges to f : X ~ Y if for every sequence Xk E Xx 
converging to x E X we have that fk (xk) ~ f (x). This definition obviously 
depends in some sort of way on having the spaces converge in the Hausdorff 
sense, but we shall ignore this. It is really a very strong kind of convergence for if 
we assume that Xk = X, Yk = Y, and fk = f, then f can converge to itself only 
if it is continuous. 

Note also that convergence of functions preserves such properties as being 
distance preserving or submetries. 

Another useful observation is that we can regard the sequence of maps fk as 
one continuous map F: (UiXi) ~ Y U (UiYi). The sequence converges iff this 
map has an extension X U (Ui Xi) ~ Y U (Ui Yi) , in which case the limit map 
is the restriction to X. Thus, a sequence is convergent iff the map F : (Ui Xi) ~ 
Y U (Ui Yi) is uniformly continuous. 

A sequence of functions as above is called equicontinuous, if for every s > 0 
there is an 8 > 0 such that fk (B (xk. 8)) c B Uk (xk), s) for all k and Xk E Xk. A 
sequence is therefore equicontinuous if, for example, all the functions are Lipschitz 
continuous with the same constant. As for standard equicontinuous sequences, we 
have the Arzela-Ascoli lemma: 

Lemma 1.8 An equicontinuous family fk : Xk ~ Yko where Xk ~ X, and 
Yk ~ Y in the (pointed) Gromov-Hausdorff topology, has a convergent subse­
quence. When the spaces are not compact, we also assume that fk preserves the 
base point. 
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Proof. The standard proof carries over without much change. Namely, first 

choose dense subsets A; = {a~, a~, ... } c X; such that the sequences {a~} ---+ 

a 1 E X. Then also, A = {a 1} c X is dense. Next, use a diagonal argument to find 
a subsequence of functions that converge on the above sequences. Finally, show 
that this sequence converges as promised. 0 

10.1.4 Compactness of Classes of Metric Spaces 

We now tum our attention to convergence of spaces. Namely, we need some good 
criteria for when a collection of (pointed) spaces is precompact (i.e., closure is 
compact). 

For a compact metric space X, define 

Cap (e)= Capx (e)= maximum number of disjoint~ -balls in X, 

Cov (e)= Covx (e)= minimum number of e- balls it takes to cover X. 

First, we should observe that Cov (e) ~ Cap (e). For if the balls B (x;, e /2) are 
disjoint, then the collection B (x;, e) must cover. Otherwise, there would be some 
x E X - UB (x;, e), but this would imply that B (x, ej2) is disjoint from all of 
the balls B (x;, e j2) , thus violating maximality. 

Another important observation is that if two compact metric spaces X and Y 
satisfy da-H (X, Y) < 8, then it follows from the triangle inequality that: 

Covx (e + 28) ~ Covr (e), 

Capx (e)~ Capy (e + 28). 

With this information we can now characterize precompact classes of compact 
metric spaces. 

Lemma 1.9 (M. Gromov, 1980) For a class C c (M, da-H), the following 
statements are equivalent: 

(1) C is precompact, i.e., every sequence in C has a subsequence that is 
convergent in (M, da-H). 

(2) There is a function N (e): (0, a)---+ (0, oo) such that Capx (e) ~ N (e)for 
all X E C. 

(3) There is a function N (e): (0, a)---+ (0, oo) such that Covx (e) ~ N (e)for 
all X E C. 

Proof. (1) ::::} (2): If C is precompact, then for every e > 0 we can find 
X1, ... , Xk E C such that for any X E C we have that da-H (X, X;) < ej4 

for some i. Then, of course, Capx (e) ~ Capx; (e/2) ~max; Capx; (e/2). Thus 
we find a bound for Capx (e) for each e > 0. 
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(2) => (3) is obvious. 
(3) => (1): It suffices to show that for each s > 0 we can find finitely many 

metric spaces X 1, .•. , Xk E M such that any metric space inC is within s of some 
Xi in the Gromov-Hausdorffmetric. Since Covx (s/2)::::: N (s/2), we know that 
any X E Cis within s /2 of some finite metric space, with at most N (s /2) elements 
in it. Next, observe that diamX ::::: 28Covx (8) for any fixed 8, so we can assume 
that these finite metric spaces have no distances that are bigger than s N (s /2) . The 
metric on such a finite metric space then consists of a matrix (dij), 1 ::::: i, j ::::: 
N (s/2), where each entry satisfies dij E [0, sN (s/2)]. From among all such 
finite metric spaces it is then possible to select a finite number of them such that 
any of the matrices ( dij) is within s /2 of one matrix from the finite selection of 
matrices. This means that the spaces are within ~ of each other. We have then 
found the desired finite collection of metric spaces. 0 

As a corollary we can also get a precompactness theorem in the pointed category. 

Corollary 1.10 A collection C C M* is precompact iff for each R > 0 the 
collection {B (x, R) : B (x, R) c (X, x) E C} C (M, da-H) is precompact. 

Using the relative volume comparison theorem we can then show 

Corollary 1.11 For any integer n ::=: 2, k E ~. and D > 0 we have that the 
following classes are precompact: 

(1) The collection of closed Riemannian n-manifolds with Ric::=: (n- 1) k and 
diam::::: D. 

(2) The collection of pointed complete Riemannian n-manifolds with Ric > 
(n- 1)k. 

Proof. It suffices to prove (2). So fix R > 0. Then we have to show that there 
can't be too many disjoint balls inside B (x, R) c M. To see this, suppose 
B (xi. s), ... , B (x~, s) c B (x, R) are disjoint. If B (xi, s) is the ball with the 
smallest volume, we have 

volB (x, R) volB (x;, 2R) v (n, k, 2R) 
l < < < . 

- volB(x;,s)- vol(x;,e) - v(n,k,s) 

This gives the desired bound. 0 

It seems intuitively clear that ann-dimensional space should have Cov(s) "' s-n 
ass --+ 0. In fact, one could define the Hausdorff dimension of a metric space as 

. . logCov(s) 
dtmX = hmsup . 

e--+0 -logs 
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This definition will then give the right answer for Riemannian manifolds. Some 
fractal spaces might, however, have nonintegral dimension. Now observe that 

V (n, k, 2R) -n 
---- "'c . 
v(n,k,e) 

Therefore, if we can show that covering functions carry over to limit spaces, then 
we will have shown that manifolds with lower curvature bounds can only collapse 
in dimension. To this end we have 

Lemma 1.12 Let C (N (e)) be the collection of metric spaces with Cov(e) < 
N (e). Suppose N is continuous. Then C (N (e)) is compact. 

Proof. We already know that this class is precompact. So we only have to show 
that if X; ~ X and Covx; (e) :::: N (e), then also Covx (e):::: N (e). This follows 
easily from 

Covx (e):::: Covx; (e- 2dG-H (X, X;)):::: N (e- 2dG-H (X, Xi)), 

since N (e- 2dG-H (X, X;))~ N (e) as i ~ oo. 0 

10.2 Holder Spaces and Schauder Estimates 

First, we shall define the Holder norms and Holder spaces. We will then briefly 
discuss the necessary estimates we need for elliptic operators for later applications. 
The standard reference for all the material here is the classic by Courant and Hilbert 
[28], especially Chapter IV, and the thorough text [40], especially Chapters 1 
through 6. A more modem text that also explains how PDE's are used in geometry, 
including some of the facts we need, is [79], especially val. III. 

10.2.1 Holder Spaces 

Let us fix a bounded domain Q c .!Rn. The continuous functions from Q to JRk are 
denoted by C0 (n, JRk), and we use the sup-norm, denoted by 

llu II co = sup lu (x)l, 
xen 

on this space. This makes C0 (n, JRk) into a Banach space. We wish to generalize 
this so that we still have a Banach space, but in addition also take into account 
derivatives of the functions. The first natural thing to do is to define em (n, JRk) 
as the functions with m continuous partial derivatives. Using multi-index notation, 
we define 
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where i = (i1o ... , in) and l =Iii= i1 +···+in. Then the em-norm is 

llullcm =sup lu (x)l + L sup la;ul. 
xeO lil:sm 0 

This norm does result in a Banach space, but the inclusions em (0, ll~k) c 
em- I (0, JRk) do not yield closed subspaces. For instance, f (x) = lxl is in the 
closureofC1 ([-1, 1],1R) c C0 ([-1, 1],1R). 

To accommodate this problem, we define for each a e (0, 1] theca -pseudonorm 
of u : 0 --+ JRk as 

II II _ lu (x)- u (y)l 
u a- sup I Ia . 

x,yeO X- Y 

When a = 1, this gives the best Lipschitz constant for u. The important in­
formation about this norm is that any family of functions with llulla ~ K is 
equicontinuous and therefore precompact by the Arzela-Ascoli lemma. 

Define the Holder space cm,a (0, JRk) as being the functions in em (0, JRk) 
such that all mth-order partial derivatives have finite ca-pseudonorm. On this 
space we use the norm 

llullcm.a = llullcm + L llaiulla · 
lil=m 

If we wish to be specific about the domain on which we take these norms, then we 
write 

We can now show 

Lemma 2.1 cm,a ( 0, JRk) is a Banach space with the cm,a -norm. Furthermore, 
the inclusion cm,a (o, JRk) c cm,{J (o, JRk)' where fJ < a is always compact, 
i.e., it maps closed bounded sets to compact sets. 

Proof. We only need to show this in the case where m = 0; the more general 
case is then a fairly immediate consequence. 

First, we must show that any Cauchy sequence {u;} inca (0, JRk) converges. 
From the Arzela-Ascoli lemma we get that some sequence is convergent in the 
C0 -norm. Thus, we have that u; --+ u e C0 in the C0 -norm. Now observe that 

lu; (x)- u; (y)l lu (x)- u (y)l 
--------+ . 

lx - Y Ia lx - Y Ia 

As the left-hand side is uniformly bounded, we also get that the right-hand side is 
bounded, thus showing that u E ca. 

Now for the last statement. We know that the inclusion ca ( 0, JRk) c C ( 0, JRk) 
is compact. We then use 

lu(x)-u(y)l = (1u(x)-u~y)l)f3fa ·lu(x)-u(y)II-{3/a 
lx - yl 13 lx - Yl 
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to conclude that 
lluii,B :5 (llulla)fifa · (2 · llullco) 1-,Bfa. 

If a sequence converges in C0 and is bounded in ca, we therefore also have that 
it converges in c.B, as long as {3 < a :=::: 1. D 

10.2.2 Elliptic Estimates 

We now tum our attention to elliptic operators. We shall consider equations of the 
form 

Lu = aii aia1u + bi aiu = f, 

where aii aii. The operator is called elliptic if the matrix (aii) is posi­
tive definite. We shall throughout assume that all eigenvalues for (aii) lie in 
[A,A-'],A > 0, 

llaijlla :5 A-1, 
lbi I a :5 A -I. 

Let us state without proof the a priori estimates, usually called the Schauder 
estimates, or elliptic estimates, that we shall need. 

Theorem 2.2 Let Q C JRn be an open domain of diameter ::; D and K C Q a 
subdomain such that d (K, !JQ) :=:: 8. Moreover assume a E (0, 1); then there is a 
constant C = C (n, a, A, 8, D) such that 

llullc2.a,K :5 C (IILullca,n + llullc".n), 
llullcl.a,K :5 C (IILullco,n + llullc".n). 

Furthermore, ijQ has smooth boundary and u = ({Jon !JQ, then there is a constant 
C = C (n, a, A, D) such that on all ojQ we have 

One way of proving these results is to establish them first for the simplest 
operator: Lu = !:iu = 8iJ ai a 1 u. Then observe that a linear change of coordinates 
shows that we can handle operators with constant coefficients: Lu = !:iu = 
aiiaia1u. Finally, Schauder's trick is that the assumptions about the functions aii 
imply that they are almost constant locally. A partition of unity argument then 
finishes the analysis. 

The first-order term doesn't cause much trouble and can even be swept under 
the rug in the case where the operator is in divergence form: 

Such operators are particularly nice when one wishes to use integration by parts, 
as we have 
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when h = 0 on a Q. This is interesting in the context of geometric operators, for 
if we use the Laplacian on manifolds, then in local coordinates it will look like 

Lu = ll.gu 

= 1 a; (Jdetg;j. gii. aju). 
Jdetg;i 

The above theorem has an almost immediate corollary. 

Corollary 2.3 If in addition we assume that llaii llcm.a, IW llcm.a ~ A -I, then 
there is a constant C = C (n, m, a, A, l3, D) such that 

llullcm+2.a,K ~ C (IILullcm.a,o + llullca,o). 

And on a domain with smooth boundary, 

llullcm+2.a,o ~ C (IILullcm.a,o + llqJIIcm+2,a,o). 

The Schauder estimates can be used to show that the Dirichlet problem always 
has a unique solution. 

Theorem 2.4 Suppose Q c !Rn is a bounded domain with smooth boundary; 
then the Dirichlet problem 

Lu = f, 
u = qJ on an 

always has a unique solution u E C2·a (Q) iff E Ca (Q) and qJ E C2·a (aQ). 

Observe that uniqueness is an immediate consequence of the maximum 
principle. Existence can be established using the Perron method. 

10.2.3 Harmonic Coordinates 

The above theorem makes it possible to introduce harmonic coordinates on 
Riemannian manifolds. 

Lemma 2.5 lf(M, g) is ann-dimensional Riemannian manifold and p E M, 
then there is a neighborhood U 3 p on which we can find a harmonic coordinate 
system x = (x 1, ••• , xn) : U ~ !Rn, i.e., a coordinate system such that the 
functions xi are harmonic with respect to the Laplacian on (M, g). 

Proof. First select a coordinate system y = (y 1, ••• , yn) on a neighborhood 
around p such that y (p) = 0. We can then think of M as being an open subset of 
!Rn and p = 0. The metric g is then written 
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in the standard Cartesian coordinates (y 1, .•• , yn) . We must then find a coordinate 
transformation y -+ x such that 

To find these coordinates, fix a small ball B (0, e) and solve the Dirichlet problem 

!!.xk = 0, 

xk = l on aB (0, s). 

We have then found n harmonic functions that should be close to the original co­
ordinates. The only problem is that we don't know if they actually are coordinates. 
The Schauder estimates tell us that 

llx- Yllc2·",B(O,e) ::S:: C (ll!!.(x- y)llc",B(O,e) + ll<x- Y)lilB(O,e)llc2.a,aB(O,e)) 

= c II !!.y Ilea ,B(O,B) • 

If matters were arranged such that ll!!.yllc",B(O,e)-+ 0 as e-+ 0, then we could 
conclude that Dx and Dy are close for small e. Since y does form a coordinates 
system, we would then also be able to conclude that x formed a coordinate system. 

Now we just observe that if y were chosen as exponential Cartesian coordinates, 
then we would have that akgiJ = 0 at p. The formula for !!.y then shows that 
!!.y = 0 at p. Hence, we have II !!.ylb,B{O,e) -+ 0 as e -+ 0. Finally recall that the 
constant C depends only on an upper bound for the diameter of the domain aside 
from a, n, A.. Thus, llx- Yllc2.",B(O,e)-+ 0 ass-+ 0. D 

One reason for using harmonic coordinates on Riemannian manifolds is that 
both the Laplacian and Ricci curvature tensor have particularly nice formulae in 
such coordinates. 

Lemma 2.6 Let (M, g) be an n-dimensional Riemannian manifold and suppose 
we have a harmonic coordinate system x : U -+ JRn. Then 

(1) /).u = <Jdetgij)-lai (Jdetgij. giJ. aJu) = giJaiaju. 

(2) &!!.giJ+Q (g, 8g) = -RiciJ = -g (Ric (8i), aJ) .Here Q is some universal 
analytic expression that is polynomial in the matrix g, quadratic in ag, and 
has a denominator term depending on J det giJ. 

Proof. (1) By definition, we have that 

0 = !!.xk 

= 1 ai(Jdetgij'giJ.ajxk) 
JdetgiJ 
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i. k 1 (;ctetg;j i ") k =g 1 a·a·x + a· detg···gl ·a·x 
I} ~I I} } 

-yuetg;j 

. . k 1 (;ctetg;j .. ) k = g11 a·8. + a· det g· · . g11 • 8. 
IJ ~~ I} J 

-yuetg;j 

= 0 +~a; (Jdetg;i ·lk) 
detg;k 

1 ( ~ ik) = ~a; -ydetg;j · g . 
-v det 8ik 

Thus, it follows that 

flu= 1 a; (Jdetg;j. gii. aju) 
Jdetg;i 

=giia·a·u+ 1 a·(Jdetg···gii)·a·u 
I J ~I I} } 

-yuetg;j 

(2) Recall that if u is harmonic, then the Bochner formula for V u is 

.6. (~ 1Vul2) = ~.tlg (Vu, Vu) 

= IV2ul 2 +Ric(Vu, Vu) 

= tr (V2u o V2u) +Ric (Vu, Vu). 

Here the term I V2 u 12 can be computed explicitly and depends only on the met­

ric and its first derivatives. Namely, Vu = liaiua;, and consequently V (Vu) 
depends in the desired way upon the metric. 

Thus, we have the formula 

Polarizing this quadratic expression gives us an identity of the form 

Now use that Vxk = gii aixka; = gika; to see that g (Vxi, Vxi) = gii. We then 

have 

~.tlgii -tr(V2xi oV2xi) =Ric(Vxi, Vxi), 
2 

which in matrix form looks like 
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This is, of course, not the promised formula. Instead, it is a similar formula for the 
inverse of g. One can now use the matrix equation (giJ) ·(gil) =I to conclude 
that 

0 = ~ ((gij). (gii)) 
= ( ~ (gil)) . (gii) + 2g (v (gil) , v (gil)) + (gil) . ( ~ (gil)) . 

Inserting this in the above equation yields 

~ (giJ) =- (giJ). 2g (v (giJ), v (gii))- (giJ). (giJ). (~ (il)) 
= -2 (g;J) · g (V (g;J), V (gil)) 

-2 (giJ) · (g;1) · (tr (V2xi o V2x1)) 
-2 (g;1) · (g;1) ·(gil)· (gii) ·(Ric (ai. a1)) 

= -2 (g;1) · g (v (g;1), v (gii)) 
-2 (g;J) · (g;J) · (tr (V2xi o V2x1))- 2 (Ric (a;, a1)). 

At the entry level, we therefore have an equation of the form 

1 
l,~giJ + Q (g, ag) =- Ricil. 

Here, the Q term is computed from the matrix product 

One can easily see that this is a polynomial in the two matrices (giJ ),(gii) , and 
their first derivatives. Also, all the derivative terms are quadratic. D 

It is interesting to apply this formula to the case of an Einstein metric, where 
Ricij = (n - 1) kgiJ. In this case, it reads 

1 
2~gij = -(n -1)kgij- Q(g, ag). 

This formula makes sense even when g;1 is only C 1·"". Namely, multiply by some 
test function, integrate, and use integration by parts to obtain a formula that uses 
only first derivatives of g;1. If now g;1 is C1·(X, then the left-hand side lies in C""; 
but then our elliptic estimates show that g;1 must be in C2·"". This can be continued 
until we have that the metric is C00 • In fact, one can even show that it is analytic. 
We can therefore conclude that any metric that in harmonic coordinates is a weak 
solution to the Einstein equation must in fact be smooth. We have obviously left 
out a few details about weak solutions, but they can easily be filled in if you consult 
[79, vol. III]. 
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10.3 Norms and Convergence of Manifolds 

We shall now explain how the cm,cx norm and convergence concepts for functions 
generalize to Riemannian manifolds. We shall also see how these ideas can be used 
to prove various compactness and finiteness theorems for classes of Riemannian 
manifolds. 

10.3 .1 Norms of Riemannian Manifolds 

Before defining norms for manifolds, let us discuss which spaces should have 
norm zero. Clearly Euclidean space is a candidate. But what about open subsets 
of Euclidean space and other flat manifolds? If we agree that all open subsets of 
Euclidean space also have norm zero, then any flat manifold becomes a union of 
manifolds with norm zero and should therefore also have norm zero. In order to 
create a useful theory, it is of course best to have only one space with zero norm. 
Thus we must agree that subsets of Euclidean space cannot have norm zero. To 
accommodate this problem, we define the norm of a Riemannian manifold as a 
function N : (0, oo) ~ (0, oo). The number N (r) then measures the degree of 
flatness on the scale of r, where the standard measure of flatness on the scale of r is 
the Euclidean ball B (0, r) . For small r, all flat manifolds then have norm zero; but 
as r increases we see that the space looks less and less like B (0, r), and therefore 
the norm will become positive unless the space is Euclidean space. 

For the precise definition, suppose A is a subset of a Riemannian n-manifold 
(M, g). We say that the cm,a_norm on the scale of r of A C (M, g), 

IIA C (M, g)llcm.a,r is less than Q, 

if we can find charts (/)s : B (0, r) C lRn ~ Us C M such that 

(nl) Every ball B (p, 1~e-Qr}, pEA is contained on some Us. 

(n2) IDcpsl :::; eQ on B (0, r) and 1Dcp;11 :::; eQ on Us. 

(n3) rUI+cx II Dj gs·· llcx :::; Q for all multi indices j with 0 :::; lj I :::; m. Here gs .. is 
the matrix of functions of metric coefficients in the ({Js coordinates regarded 
as a matrix on B (0, r). 

(n4) llcp; 1 O(/Jrllcm+I.a:::; (IO+r)eQ, 

First, observe that we think of the charts as maps from the fixed space B (0, r) into 
the manifold. This is in order to have domains for the functions which do not refer 
to M itself. This simplifies some technical issues and makes it more clear that we 
are trying to measure how different the manifolds are from the standard objects, 
namely, Euclidean balls. The first condition says that we have a Lebesgue number 
for the covering of A. The second condition tells us that in the chosen coordinates 
the metric coefficients are bounded from below and above (in particular, we have 
uniform ellipticity). The third condition, then, in addition gives us bounds on 



290 10. Convergence 

the derivatives of the metric. The fourth condition is just there to ensure that the 
bounds for the metric in individual coordinates don't vary drastically in places 
where coordinates overlap. This last condition can be eliminated in many cases. 
We shall give another norm concept below that does this. 

One of the first simple properties one should note is that if we scale the metric, 
then we have 

min {I log I.. I' 1..} IIA c (M, g)llcm.a,r :::: IIA c (M, l..2g) llcm.a,r 

::::max {I log I.. I, 1..} IIA c (M, g)llcm.a,r. 

At a given scale r, it is therefore always possible to make norms large or small by 
scaling the metric. 

It will be necessary on occasion to work with Riemannian manifolds that are 
not smooth. The above definition clearly only requires that the metric be cm,a in 
the coordinates we use, and so there is no reason to assume more about the metric. 
Some of the basic constructions, like exponential maps, then come into question, 
and indeed, if m :::: 1 these items might not be well-defined. We shall therefore 
have to be a little careful in some situations. 

When it is clear from the context where A is, we shall merely write IIAIIcm.a,r, 
or for the whole space, II(M, g)llcm·",r or IIMIIcm.a,r. If A is precompactin M, then 
it is clear that the norm is bounded for all r. For unbounded domains or manifolds 
it might, however, not be finite. 

Example 3.1 Suppose (M, g) is a complete flat manifold. Then II (M, g) II cm.a ,r = 
0 for all r :S inj (M, g). In particular, ll(lRn, can)llcm·",r = 0 for all r. We shall 
later see that these properties characterize flat manifolds and Euclidean space. 

1 0.3.2 Convergence of Riemannian Manifolds 

Now for the convergence concept that relates to this new norm. As we can't subtract 
manifolds, we have to resort to a different method for defining this. If we fix a 
closed manifold M, or more generally a precompact subset A c M, then we 
say that a sequence of functions converges in cm,a, on A, if they converge in 
the charts for some fixed finite covering of coordinate patches. This definition is 
clearly independent of the finite covering we choose. We can then more generally 
say that a sequence of tensors converges in cm,a if the components of the tensors 
converge in these patches. This then makes it possible to speak about convergence 
of Riemannian metrics on compact subsets of a fixed manifold. 

A sequence of pointed complete Riemannian manifolds is said to converge in 
thepointedcm,a topology(M;, p;, g;)-+ (M, p, g)ifforevery R > Owecanfind 
a domain Q :J B (p, R) c M and embeddings rp; : Q-+ M; for large i such that 
rp; (Q) :J B (p;, R) and rp;* g; -+ g on n in the cm,a topology. When all manifolds 
in question are closed, then we have that the maps rp; are diffeomorphisms. This 
means that for closed manifolds we can speak about unpainted convergence. In 
this case, convergence can therefore only happen if all the manifolds in the tail end 
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of the sequence are diffeomorphic. In particular, we have that classes of closed 
Riemannian manifolds that are precompact in some cm,a topology contain at most 
finitely many diffeomorphism types. 

A warning about this kind of convergence is in order here. Suppose we have 
a sequence of metrics g; on a fixed manifold M. It is possible that these metrics 
might converge in the sense just defined, without converging in the traditional 
sense of converging in some fixed coordinate systems. To be more specific, let g 

be the standard metric on M = S2 • Now define diffeomorphisms cp1 as being the 
dynamical system corresponding to the vector field that is 0 at the north and south 
poles and otherwise points in the direction of the south pole. As t increases, the 
diffeomorphisms will try to map the whole sphere down to a small neighborhood of 
the south pole. The metrics cp7 g will therefore in some fixed coordinates converge 
to 0 (except at the poles). They can therefore not converge in the classical sense. 
If, however, we pull these metrics back by the diffeomorphisms f/J-r, then we just 
get back to g. Thus the sequence (M, g1), from the new point of view we are 
considering, is a constant sequence. This is really the right way to think about this, 
for the spaces ( S2 , cp7 g) are all isometric as abstract metric spaces. 

10.3.3 Properties of the Norm 

Let us now consider some of the elementary properties of norms and their relation 
to convergence. 

Proposition 3.2 If A c (M, g) is precompact, then 

(1) IIA C (M, g)llcm.a,r = IIA C (M, >.?g) llcm.a,>.rfor all A> 0. 

(2) The function r-+ IIA C (M, g)llcm.a,r is continuous and converges to 0 as 
r-+ 0. 

(3) Suppose (M;, p;, g;) -+ (M, p, g) in cm,a. Then for A c M we can find 
precompact domains A; C M; such that 

II A; llcm.a,, -+ IIAIIcm.a,, for all r > 0. 

When all the manifolds are closed, we can let A = M and A; = M;. 

Proof. ( 1) If we change the metric g to A 2 g, then we can change the charts 
f/Js : B (0, r)-+ M to cp; (x) = f/Js (A- 1x) : B (0, Ar)-+ M. Since we scale the 
metric at the same time, the conditions nl to n4 will still hold with the same Q. 

(2) Suppose, as above, we change the charts f/Js : B (0, r) -+ M to cp; (x) = 
f/Js (A -I x) : B (0, Ar) -+ M, without changing the metric g. If we assume that 

IIA C (M, g)llcm.a,r < Q, then 

IIA C (M, g)llcm.a,>.r ::S max {Q +!log AI, Q · A2}. 
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Denoting N (r) = IIA C (M, g)llcm.",r, we therefore obtain 

N ('A.r) ~max {N (r) + llogA.I, N (r) · A.2}. 

By letting A. = 9:, where r; ~ r, we see that this implies 

lim sup N (r;) ~ N (r). 

Conversely, we have that 

N (r) = N ( ~ r;) 

:s max { N(r;)+ llo< I, N(r;) · (~)'}. 
So 

N (r) ~lim inf N (r;) 

=lim infmax { N (r;)+ llo< I, N (r;) · (~ )'} · 

This shows that N (r) is continuous. To see that N (r) ~ 0 as r ~ 0, just observe 
that any coordinate system around a point p E M can, after a linear change, be 
assumed to have the property that the metric 8ii = lJ;i at p. Using these coordinates 
on sufficiently small balls will then give the desired charts. 

(3) We fix r > 0 in the definition of II A c (M, g) II em·" ,r. For the given A c M, 
pick a domain f.l ::J A such that for large i we have embeddings fi : Q ~ M; 
with the property that: f;*g; ~gin cm,a on Q. Then let A; = /i (A). 

For Q > IIA C (M, g)llcm.",r, choose appropriate charts ({Js : B (0, r) ~ M 
covering A, with the properties nl-n4. Then define charts in M; by q;;,s = fi o ({Js : 

B (0, r) ~ M;. Condition nl will hold just because we have Gromov-Hausdorff 
convergence and condition n4 is trivial. Conditions n2 and n3 will hold for constants 
Q; ~ Q, since Jtg; --+gin cm,a. We can therefore conclude that 

lim sup II A; llcm·",r ~ IIAIIcm.",r. 

On the other hand, for large i and Q > II A; llcm.",r, we can take charts (/)i,s 

B (0, r) ~ M; and then pull them back to M by defining (/)s = fi- 1 o (/)i,s· As 
before, we then have 

where Q; ~ Q. This implies 

liminf IIAillcm.a,r 2: IIAIIcm,a,r, 

and hence the desired result. D 
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10.3.4 Compact Classes of Riemannian Manifolds 

We are now ready to prove the result that is our manifold equivalent of the Arzela­
Ascoli lemma. This theorem is essentially due to J. Cheeger, although our use of 
norms makes the statement look different. 

Theorem 3.3 (Fundamental Theorem of Convergence Theory) For given Q > 
0, n 2: 2, m 2: 0, a E (0, 1], and r > 0 consider the class Mm·a(n, Q, r) of 
complete, pointed Riemannian n-manifolds (M, p, g) with II(M, g)llcm.a,, :::= Q. 
Mm·a(n, Q, r) is compact in the pointed cm,f3 topology for all fJ <a. 

Proof. We proceed in stages. First, we make some general comments about the 
charts we use. We then show that M = Mm·a(n, Q, r) is precompact in the 
pointed Gromov-Hausdorff topology. Next we prove that M is compact in the 
Gromov-Hausdorff topology. The last part is then devoted to the compactness 
statement. 

Setup: First fix K > Q. Whenever we select an M E M, we shall assume that 
it comes equipped with an atlas of charts satisfying nl to n4 with K in place of 
Q. Thus we implicitly assume that all charts under consideration belong to these 
atlases. We will, in consequence, prove only that limit spaces (M, p, g) satisfy 
II(M, g)llcm.a,, :::= K, but asK was arbitrary, we still get that (M, p, g) EM. 

(1) Every chart cp: B(O, r)---+ U c ME M satisfies 

(a) d(cp(xJ), cp(xz)) ::::: eK lxi - Xzl 

(b) d(cp(xi), cp(xz)) 2: min{e-K lx1 - xzl, e-K (2r- lxii - lxzl)} 

Here, d is distance measured in M, and I · I is the usual Euclidean 
norm. 

The condition I Dcp I :::= eK, together with convexity of B(O, r ), immediately implies 
the first inequality. For the other, first observe that if any segment from xi to Xz 
lies in U, then IDcp-II::::: eK implies thatd(cp(x,), cp(xz)) 2: e-Kixi- xzl. So we 
may assume that cp(xi) and cp(x2) are joined by a segment a : [0, 1] ---+ M that 
leaves U. Split a into a : [0, ti)---+ U and a : (tz, 1)---+ U such that a([j) ¢. U. 
Then we clearly have 

d(cp(xi), cp(xz)) = L(a) 2: L(a I[O,rt)) + L(a 1(12 ,1]) 

2: e-K (L(cp-I o a I[O,rJ)) + L(cp-I o a l(t2,!])) 
2: e-K (2r - lxtl - lxzl). 

The last inequality follows from the factthat cp-1 oa(O) =XI and cp-1 oa(l) = x2 , 

and that cp-1 o a(t) approaches the boundary of B(O, r) as t / t1 or t '\i t2 • 

(2) Every chart cp: B(O, r)---+ U c ME M, and hence any 8-ba118 = I~e-K r 
in M can be covered by at most N 8/4-balls. Here, N depends only on n, K, r. 
Clearly, there exists an N(n, K, r) such that B(O, r) can be covered by at most 
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N (e-K · tS/~-balls. Since q> : B(O, r) --+ U is a Lipschitz map with Lipschitz 
constant :5 e , we get the desired covering property. 

(3) Every ball B(x, t · tS/2) c M can be covered by :5 Nt tS/4-balls. For 
t = 1 we just proved this. Suppose we know that B(x, t · 8/2) is covered by 
B(x1, tS/4), ... , B(xNe, 8/4). Then B(x, t · tS/2 + 8/2) C UB(xi, 8). Now each 
B(xi, 8) can be covered by :5 N tS/4-balls, and hence B(x, (t + 1)t5/2) can be 
covered by :5 N · Nt = Nt+l 8/4-balls. 

( 4) M is precompact in the pointed Gromov-Hausdorff topology. This is equiv­
alent to asserting, that for each R > 0 the family of metric balls B(p, R) c 
(M, p, g) E M is precompact in the Gromov-Hausdorff topology. This claim is 
equivalent to showing that we can find a function N(B) = N(B, R, K, r, n) such 
that each B(p, R) can contain at most N(B) disjoint B-balls. To check this, let 
B(x1, e), ... , B(x5 , B) be a collection of disjoint balls in B(p, R). Suppose that 
t · 8/2 < R :5 (f.+ 1)8/2. Then 

. 8 
volB(p, R) :5 (N(HI)) · (maxtmal volume of 4-ball) 

:5 (N<HI)) . (maximal volume of chart) 

:5 N(f+l) · enK · volB(O, r) 

:5 F(R) = F(R, n, K, r). 

Conversely, each B(xi, B) lies in some chart q> : B(O, r) --+ U c M whose 
preimage in B(O, r) contains an e-K ·e-ball. Thus volB(pi, e):::: e-2nKvolB(O, e). 
All in all, we get 

F(R) :::: volB(p, R) 

:::: I:volB(pi,B) 

:::: s · e-2nK · volB(O, B). 

Thus, s :5 N(B) = F(R) · e2nK . (volB(O, B))-1• 

Now select a sequence (Mi, gi, Pi) in M. From the previous considerations we 
can assume that (Mi, gi, Pi) --+ (X, d, p) converge to some metric space in the 
Gromov-Hausdorfftopology. It will be necessary in many places to pass to subse­
quences of (Mi, gi, Pi) using various diagonal processes. Whenever this happens, 
we shall not reindex the family, but merely assume that the sequence was chosen to 
have the desired properties from the beginning. For each (Mi, Pi, gi) choose charts 
(/>is: B(O, r)--+ Uis c Mi satisfyingn1 ton4. Wecanfurthermoreassumethatthe 
index set {s} = {1, 2, 3, 4, ···}is the same for all M;, that Pi E Un, and that the 
balls B (pi, t. 8/2) are covered by the first Nt charts. Note that these Nf. charts 
will then be contained in iJ (Pi• t · 8j2t · 8/2 + [eK + 1]8). Finally, for each t 

the sequence iJ (p;, t · tS/2) converges to iJ (p, t · tS/2) c X, so we can choose a 
metric on the disjoint union Y~_ = (iJ (p, t · 8/2) U (U;':1 iJ (pi, t · tS/2))) such 

that p; --+ p and iJ (p;, t · tS /2) --+ iJ (p, t · 8 /2) in the Hausdorff distance inside 
this metric space. 
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(5) (X, d, p) isaRiemannianmanifoldofclass cm,a with norm::; K. Obviously, 
we need to find bijections IPs : B(O, r) 4 Us c X satisfying n1 to n4. For each s, 

consider the maps Cflis : B(O, r) 4 U;s C YH2[eK +11· From 1 we have that this is 
a family of equicontinuous maps into the compact space Yu2[eK +IJ· The Arzela­
Ascoli lemma shows that this sequence must subconverge (in the C0 topology) to 
a map IPs : B(O, r) c Yl+2 [eK +11 that also has Lipschitz constant eK. Furthermore, 
the inequality 

will also hold for this map, as it holds for all the IPis maps. In partic­
ular, IPs is one-to-one. Finally, since U;s c iJ (p;, i · 8/2 + [eK + 11) and 

iJ (p;, i · 8/2 + [eK + 11} Hausdorff converges to iJ (p, i · 8/2 + [eK + 11} c 
X, we see that Cfls(B(O, r)) = Us c X. A simple diagonal argument yields that we 
can pass to a subsequence of (M;, 8i, Pi) that has the property that IPis --+ IPs for all 
s. In this way, we have constructed (topological) charts IPs : B(O, r)--+ U c X, 

and we can easily check that they satisfy nl. Since the IPs also satisfy 1(a) and 
1(b), they would also satisfy n2 if they were differentiable (equivalent to saying 
that the transition functions are C 1 ). Now the transition functions IP;~ 1 ocp;1 approach 
cp;1 o cp1 , because IPis --+ IPs· Note that these transition functions are not defined 
on the same domains, but we do know that the domain for cp; 1 o cp1 is the limit of 
the domains for cpj;/ o Cflit, so the convergence makes sense on all compact subsets 
of the domain of cp;1 o cp1 • Now, llcpi~ 1 o Cflit llcm+l.a ::; (10 + r) eK, so a further 
application (and subsequent passage to subsequences) of Arzela-Ascoli tells us 
that II cp; 1 o cp1 II cm+I.a ::; ( 10 + r) eK, and that we can assume ~Pis 1 o (/lit --+ cp; 1 o ({)1 

in the cm+1.f3 topology. This then establishes n4. We now construct a compatible 
Riemannian metric on X that satisfies n2 and n3. For each s, consider the metric 
8is = 8is·· written out in its components on B(O, r) with respect to the chart Cflis· 
Since all of the 8is .. satisfy n2 and n3, we can again use Arzela-Ascoli to insure that 
also 8is .. --+ 8s .. on B(O, r) in the cm,f3 topology to functions 8s .. that also satisfy 
n2 and n3. The local "tensors" 8s .. satisfy the right change of variables formulae 
to make them into a global tensor on X. This is because all the 8is·· satisfy these 
properties, and everything we want to converge, to carry these properties through 
to the limit, also converges. Recall that the rephrasing of n2 gives the necessary 
C0 bounds and also shows that 8s·· is positive definite. We have now exhibited a 
Riemannian structure on X such that the lfJs : B(O, r)--+ Us c X satisfy n1 to n4 
with respect to this structure. This, however, does not guarantee that the metric gen­
erated by this structure is identical to the metric we got from X being the pointed 
Gromov-Hausdorff limit of (Mi, Pi, g; ). However, since Gromov-Hausdorff con­
vergence implies that distances converge, and we know at the same time that the 
Riemannian metric converges locally in coordinates, it follows that the limit Rie­
mannian structure must generate the "correct" metric, at least locally, and therefore 
also globally. 

(6) (Mi, Pi• 8i) --+ (X, p, d) = (X, p, g) in the pointed cm,f3 topology. We 
assume that the setup is as in (5), where charts IPis• transitions cpis 1 o IPir. and 
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metrics g;s·· converge to the same items in the limit space. First, let us agree that 
two maps f, g between subsets in M; and X are cm+l.fJ close if all the coordinate 
compositions qJ; 1 o g o (/)it, ({); 1 o f o (/)it are cm+l.fJ close. Thus, we have a 
well-defined cm+l./J topology on maps from M; to X. Our first observation is 
that lis = ({J;s o ({); 1 : Us ~ U;s and .fir = ({Jit o ({J;- 1 : Ur ~ Uit "converge 
to each other" in the cm+l./J topology. Furthermore, (.fis)*giluis ~ giu, in the 
cm,fJ topology. These are just restatements of what we already know. In order to 
finish the proof, we therefore only need to construct diffeomorphisms Fu : S'2e = 
U!=l Us ~ nu = u~=l U;s that are closer and closer to the lis' s = 1' ... ' f. 
maps (and therefore all .fis) as i ~ oo. We will construct Fu by induction on f. 
and large i depending on f.. For this purpose we shall need a partition of unity {As} 
on X subordinate to {Us}. We can find such a partition, since the covering {Us} is 
locally finite by choice, and we can furthermore assume that As is cm+l,fJ . 

For f. = 1 simply define Fil = fil· 
Suppose we have Fu : S'2e ~ S'2u for large i that are arbitrarily close to 

lis. s = 1, ... 'f. as i ~ 00. If UHI nne = 0, then we just define Fu+! = Fie 
on nu, and Fu+I = fie+ I on UHI· In case UHI c S'2e, we simply let F;e+J = Fie. 
Otherwise, we know that Fa and .fie+ 1 are as close as we like in the em+ l,fJ topology 
as i ~ oo. So the natural thing to do is to average them on UHI· Define Fa+ I on 
ul+i as 

F;e+I (x) = ({J;e+I o ( f: As(x) · ({Ju~ 1 o he+ I (x) + t As(x) · ({J;t~ 1 o Fu(x)) 
s=l+l s=l 

= (/Jil+l 0 (J.LJ(X) · (/J;t~l 0 Jie+J(X) + J.l2(X) · (/J;t~l 0 F/e(X)). 

This map is clearly well-defined on UH~> since J.L2(x) = 0 on Ue+ 1 - ne and since 
JLI (x) = 0 on S'2e is a smooth cm+l.fJ extension of Fu. Now consider this map in 
coordinates 

({);(~ 1 o F;e+I o {j)£+J(Y) = J.ll o !pe+I(Y) · cp£}_1 o hHl o (/Jl+!(Y) 

Then 

+ JL2 o {j)£+1 (y) · {j)£+1 (y) · ({);(~ 1 o Fu o ({)£+! (y) 

= fii(Y) · F1(y) + fi2(y) · F2(y). 

llfi1 · F1 + fi2F2- F1 llcm+I..B = iliLI(F! - FJ) + iL2(F2- FI)ilcm+• . .B 

::::: llii2llk+I+tJ · IIF2- Fdlcm+l.,8. 

This inequality is valid on all of B(O, r), despite the fact that F2 is not defined 
on all of B(O, r), because i11 · F1 + i12 · F2 = F1 on the region where F2 is 
undefined. By assumption IIF2 - F1 11cm+I.Jl ~ 0 as i ~ oo, so F;£+1 is cm+l,fJ_ 
close to f;s, s = 1, ... , t + 1 as i ~ oo. It remains to be seen that F;e+J is a 
diffeomorphism. But we know that ji1 F1 + jL2F2 is an embedding, since F1 is, and 
the space of embeddings is open in the C 1 topology. Also, the map is one-to-one, 
as the images fie+I(Ue+l - S"2e) and Fu:(S'2e) don't intersect. D 
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Corollary 3.4 The subclasses of Mm,a(n, Q, r), where the elements in addition 
satisfy diam :::; D, respectively vol :::; V, are compact in the cm,fJ topology. In 
particular, they contain only finitely many diffeomorphism types. 

Proof. We use notation as in the fundamental theorem. If diam(M, g, p) :::; 
D, then clearly M c B (p, k · l3f2) fork > D · 2jl3. Hence, each element in 
Mm,a(n, Q, r) can be covered by:::; Nk charts. Thus, cm,fJ_convergence is actually 
in the unpointed topology, as desired. 

If instead, volM :::; V, then we can use part 4 in the proof to see that we can 
never have more thank = V · e2nK • (volB(O, e))- 1 disjoint e-balls. In particular, 
diam :::; 2e · k, and we can use the above argument. 

Clearly, compactness in any cm,fJ topology implies that the class cannot contain 
infinitely many diffeomorphism types. 0 

Corollary 3.5 The norm IIA C (M, g)llcm·",r for compact A is always realized 
by some charts (/Js : B(O, r) ~ Us satisfying nl-n4, with II (M, g) II cm.a ,r in place 
ofQ. 

Proof. Choose appropriate charts q;f! : B(O, r) ~ up c M for each Q > 
II(M, g)llcm·",r• and let Q ~ II(M, g)llcm·",r· If the charts are chosen to conform 
with the proof of the fundamental theorem, we will obviously get some limit charts 
with the desired properties. 0 

Corollary 3.6 M is a flat manifold ifii(M, g)llcm·",r = Ofor some r, and M is 
Euclidean space with the canonical metric if II (M, g) II cm.a ,r = 0 for all r > 0. 

Proof. Using the previous corollary, M can be covered by charts (/Js : B(O, r) ~ 
Us C M satisfying I Dq;s I = 1. This clearly makes M locally Euclidean and 
hence flat. If M is not Euclidean space, then the same reasoning clearly shows that 
II(M, g)llcm·",r > 0 for r > inj(M, g). 0 

10.3.5 Other Norms 

Finally, we should mention that all properties of this norm concept would not 
change if we changed nl to n4 to say 

(nl') Us has Lebesgue number f 1(n, Q, r). 

(n2') IDq;sl:::; fz(n, Q), and lq;; 11:::; fz(n, Q). 

(n3') rUI+a . II aj gS··IIa :::; /3(n, Q), 0 :::; lj I :::; m. 

(n4') llq;; 1 oq;1 llcm+I.a:::; f4(n, Q,r). 
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As long as the /; are all continuous, f 1 (n, 0, r) = 0, and fz(n, 0) = 1. The key 
properties we want to preserve are continuity of JI(M, g)JI with respect tor, the 
fundamental theorem, and the characterization of flat manifolds and Euclidean 
space. 

Another interesting thing happens if in the definition of II(M, g)Jicm.a,r we let 
k = a = 0. Then n3 no longer makes sense, because a = 0, but aside from that, 
we still have a C0-norm concept. Note also that n4 is an immediate consequence 
of n2 in this case. The class M 0(n, Q, r) is now only precompact in the pointed 
Gromov -Hausdorff topology, but the characterization of flat manifolds is still valid. 
The subclasses with bounded diameter, or volume, are also only precompact with 
respect to the Gromov-Hausdorff topology, and the finiteness of diffeomorphism 
types apparently fails. It is, however, possible to say more. If we investigate the 
proof of the fundamental theorem, we see that the problem lies in constructing 
the maps F;k : Qk ~ rl;ko because we now have convergence of the coordinates 
only in the C0 (actually ca, a < 1) topology, and so the averaging process fails 
as it is described. We can, however, use a deep theorem from topology about local 
contractibility of homeomorphism groups (see [31]) to conclude that two C0 -close 
topological embeddings can be "glued" together in some way without altering 
them too much in the C0 topology. This makes it possible to exhibit topological 
embeddings F;k : Q L+ M; such that the pullback metrics (not Riemannian 
metrics) converge. As a consequence, we see that the classes with bounded diameter 
or volume contain only finitely many homeomorphism types. This is exactly the 
content of the original version of Cheeger's finiteness theorem, including the proof 
as we have outlined it. But, as we have pointed out earlier, Cheeger also considered 
the easier to prove finiteness theorem for diffeomorphism types given better bounds 
on the coordinates. 

Notice that we cannot use the fact that the charts converge in ca(a < 1), 
because there is no theory of ca(a < 1) manifolds. In fact, such a theory is 
probably meaningless, as the composition oftwo ca(a < 1) maps is in general 
only ca2 • But some more can be done; namely, we can develop a norm that is 
more natural in this context called the Lipschitz norm and denoted by II· · ·II L,r . It 
is defined for complete metric spaces X that have the property that any two points 
are joined by a curve whose length is the distance between the points. In addition, 
we assume that X has a compatible manifold structure, where the charts are locally 
hi-Lipschitz (the transition functions are therefore also locally hi-Lipschitz). Such 
spaces are called Lipschitz manifolds. We now say that JI(X, d)IIL,r ::::: Q if there 
are homeomorphisms (/Js : B (0, r) C Rn ~ Us C X such that 

(Ln1) 8 = 1~reQ is a Lebesgue number for the covering Us. 

(Ln2) d (({Js (x), (/Js (y))::::: eQ lx- yl forx, y E B (0, r)and I({J;1 (x)- ({J;1 (y)l::::: 
eQ d (x, y) for all x, y E Us sufficiently close to each other. 

One can now easily show that the class of spaces with JI(X, d)IIL,r ::::: Q, for 
fixed rand Q, is compact (not just precompact) in the pointed Gromov-Hausdorff 
topology, and that II(X, d)IIL,r = 0 iff (X, d) is a flat manifold. Moreover, if we 
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bound the diameter, then the class will contain only finitely many homeomorphism 
types. With Sullivan's work (see papers by L. Siebenmann and D. Sullivan in [17]) 
one can improve this to finitely many Lipschitz homeomorphism types. 

10.4 Geometric Applications 

We shall now study the relationship between volume, injectivity radius, sectional 
curvature, and the norm. 

First let us see what exponential coordinates can do for us. Let (M, g) be a 
Riemannian manifold with I sec Ml ~ K and injM ~ i0 • Now, on B (0, io) we 
have from Chapter 6 that 

max { IDexpPI, 1Dexp;11} ~ exp{f (n, K, io)) 

for some function f (n, K, io) that depends only on the dimension, K, and i0 • 

Moreover, asK~ 0 we have that f (n, K, i0) ~ 0. This implies 

Theorem 4.1 For every Q > 0 there exists r > 0 depending only on io and K 
such that any complete (M, g) with I sec Ml ~ K, injM ~ io has II(M, g)llco,r ~ 
Q. Furthermore, if(M;, p;, g;) satisfy injM; ~ i0 and I sec Md ~ K; ~ 0, then 
a subsequence will converge in the pointed Gromov-Hausdorff topology to a flat 
manifold with inj ~ io. 

The proof follows immediately from our previous constructions. 
This theorem does not seem very satisfactory, because even though we have 

assumed a C2 bound on the Riemannian metric, locally we get only a C0 bound. 
To get better bounds under the same circumstances, we must look for different 
coordinates. Our first choice for alternative coordinates is distance coordinates. 

Lemma 4.2 Given a Riemannian manifold (M, g) with inj ~ io, I sec I ~ K, 
and p e M, then the distance function d(x) = d(x, p) is smooth on B (p, io) , and 
the Hessian is bounded in absolute value on the annulus B (p, io)- B (p, io/2) 
by a function F (n, K, io). 

Proof. We know that the Hessian is always zero when evaluated on the gradient, 
perpendicular to the gradient, we know from Chapter 6 that 

../Kcot ( ../Kr) ·I~ (V2d) ~ ../Kcoth ( ...r-:Kr) ·I. 
Thus, we get the desired estimate as long as r e (io/2, io) . D 

Now fix (M, g), p e M, as in the lemma, and choose an orthonormal basis 
e1, ••• , en for TpM. Then consider the geodesics y;(t) with y;(O) = p, y;(O) = e;, 

and together with those, the distance functions d;(x) = d(x, y;(io · (4JK}-1)). 
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These distance functions will then have uniformly bounded Hessians on B(p, 8), 

8 = io · (s.JK}-1. Define rp(x) == (d1(x), ... , dn(x)) and recall that gij = 
g (Vd;, 'Vdj)· 

Theorem 4.3 (The Convergence Theorem of Riemannian Geometry) 
io, K > 0, there exist Q, r > 0 such that any (M, g) with 

inj:;:: io, 

I sec I~ K 

Given 

has II(M, g)llct,r ~ Q. In particular, this class is compact in the pointed ca 
topology for all a < 1. 

Proof. The inverse of rp is our potential chart. First, observe that g;j (p) = 8ij, so 
the uniformHessianestimateshows that IDrppl ~ eQ on B (p, s)and IDrp;11 ~ eQ 

on B (0, s) , where Q, s depend only on i0 , K. The proof of the inverse function 
theorem then tells us that there is £ > 0 depending only on Q, n such that rp : 
B(O, £)--+ JRn is one-to-one. We can then easily find r such that rp-1 : B(O, r)--+ 
UP c B (p, s) satisfies n2. The conditions n3 and n4 now immediately follow from 
the Hessian estimates, except we might have to increase Q somewhat. Finally, n1 
holds since we have coordinates centered at every p E M. D 

Notice that Q cannot be chosen arbitrarily small, as our Hessian estimates cannot 
be improved by going to smaller balls. This will be taken care of in the next 
section by using even better coordinates. This convergence result, as stated, was 
first proven by M. Gromov. The reader should be aware that what Gromov refers 
to as a C1·1-manifold is in our terminology a manifold with II(M, h)llco.t,r < oo, 
i.e., C0•1-bounds on the Riemannian metric. 

Using Bonnet's diameter bound and Klingenberg's estimate for the injectivity 
radius from Chapter 6 we get 

Corollary 4.4 (J. Cheeger, 1967) For given n :;:: 1 and k > 0, the class of 
Riemannian 2n-manifolds with k ~ sec ~ 1 is compact in theca topology and 
consequently contains only finitely many diffeomorphism types. 

Our next result shows that one can bound the injectivity radius provided that one 
has lower volume bounds and bounded curvature. This result is usually referred to 
as Cheeger's lemma. With a little extra work one can actually prove this lemma for 
complete manifolds. This requires that one work with pointed spaces and also to 
some extent incomplete manifolds, as one does not know from the beginning that 
the complete manifolds in question have lower bounds for the injectivity radius. 

Lemma 4.5 (J. Cheeger, 1967) Givenn :;:: 2andv, K E (0, oo)andacompact 
n-manifold (M, g) with 

lsecl ~ K, 

volB (p, 1) :::: v, 



10.4 Geometric Applications 301 

for all p EM, then injM ~ io, where io depends only on n, K, and v. 

Proof. The proof goes by contradiction using the previous theorem. So assume 
we have (M;, g;) with injM; ---+ 0 and satisfying the assumptions of the lemma. 
Find p; E M; such that injp; = inj (M;, gi), and consider the pointed sequence 

(Mi, Pi, hi), where hi = (injM; )-2 gi is rescaled so that 

inj(Mi, hi)= 1, 

I sec(M;, h;)l:::; (inj(M;, g;))2 • K = K;---+ 0. 

The previous theorem, together with the fundamental theorem, then implies that 
some subsequence of (Mi, Pi, hi) will converge in the pointed ca, a < 1, topology 
to a flat manifold (M, p, g). 

The first observation about (M, p, g) is that inj(p) :::; 1. This follows because the 
conjugate radius for (Mi, hi) ~ rr f ../Ki ---+ oo, so Klingenberg's estimate for the 
injectivity radius implies that there must be a geodesic loop of length 2 at p; E Mi. 
Since (Mi, Pi, hi) ---+ (M, p, g) in the pointed ca topology, the geodesic loops 
must converge to a geodesic loop in M based at p of length 2. Hence, inj(M) :::; 1. 

The other contradictory observation is that (M, g) = (!Rn, can). Recall that 
volB(p;, 1) ~ v in (Mi, gi), so relative volume comparison shows that there is a 
v'(n, K, v) such thatvolB(p;, r) ~ v'·rn, forr :::; 1. The rescaled manifold (M;, hi) 
therefore satisfies volB(pi, r) ~ v' · rn, for r :::; (inj(M;, g;))-1• Using again that 
(Mi, Pi• hi)---+ (M, p, g) in the pointed ca topology, we get volB(p, r) ~ v' · rn 
for all r. Since ( M, g) is flat, this shows that it must be Euclidean space. 

This last statement requires some justification. Let M be a complete flat man­
ifold. As the elements of the fundamental group act by isometries on Euclidean 
space, we know that they must have infinite order (any isometry of finite order is 
a rotation around a point and therefore has a fixed point). Therefore, if M is not 
simply connected, then there is an intermediate covering M: 

!Rn ---+ M ---+ M, 

where rr1 ( M) = .Z. This means that M looks like a cylinder. Hence, for any 

p E M we must have 
. volB (p, r) 

hm 1 < oo. 
r--+00 rn-

The same must then also hold for M itself, contradicting our volume growth 
assumption. 0 

This lemma was proved by a more direct method by Cheeger, but we have in­
cluded this, perhaps more convoluted, proof in order to show how our convergence 
theory can be used. The lemma also shows that the convergence theorem of Rie­
mannian geometry remains true if the injectivity radius bound is replaced by a 
lower bound on the volume of 1-balls. The following result is now immediate. 
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Corollary 4.6 (J. Cheeger, 1967) Let n ::: 2, A, D, v E (0, oo) be given. The 
class of closed Riemannian n-manifolds with 

lsecl:::: A, 

diam:::: D, 

vol ::: v 

is precompact in theCa topology for any a E (0, 1) and in particular, contains 
only finitely many diffeomorphism types. 

This convergence theorem of Riemannian geometry can be generalized in 
another interesting direction, as observed by S.-h. Zhu. 

Theorem 4.7 Given io, k > 0, there exist Q, r depending on io, k such that any 
manifold (M, g) with 

satisfies II(M, g)llct,r :::: Q. 

sec::: -k2, 

inj ::: i0 

Proof. It suffices to get some Hessian estimate for distance functions d(x) = 
d(x, p). We have, as before, that V 2d(x) has eigenvalues:::: k · coth(k · d(x)). Con­
versely, if r(xo) < io, then r(x) is supported from below by f(x) = io- d(x, y0 ), 

where Yo = y(io) and y is the unique unit speed geodesic that minimizes the 
distance from p to Xo. Thus, V 2d(x) ::: V2 f(x) at Xo. But V2 f(x) has eigenval­
ues ::: -k · coth(d(xo, Yo) · k) = -k · coth(k(io - r(xo))) at xo. Hence, we have 
two-sided bounds for V 2d(x) on appropriate sets. The proof can then be finished 
as before. 0 

This theorem is, interestingly enough, optimal. Consider rotationally symmetric 
metricsdr2+ f 6

2(r)d0 2 , where fe is concave and satisfies f 6 (r) = r, 0:::: r :::: 1-e, 
and fe(r) = ~r, 1 + e :::: r. These metrics have sec ::: 0 and inj = oo. As 
e ~ 0, we getaCl,l manifold withaC0•1 Riemannian metric (M, g). In particular, 
II(M, g)llco.t,r < oo for all r. Limit spaces of sequences with inj ::: i0 , sec ::: k 
can therefore not in general be assumed to be smoother than the above example. 

With a more careful construction, we can also find g6 with g6 (r) = sin(r), 0:::: 
r :::: I- e, and g6 (r) = 1, r ::: 1 +e. Then the metric dr2 + g;(r)d02 satisfies 

I sec I :::: 4 and inj ::: ~·As e ~ 0, we get a limit metric that is cl.l. So while 
we may suspect (this is still unknown) that limit metrics from the convergence 
theorem are C 1•1, we prove only that they are C0• 1 • In the next section we shall 
show that they are in fact C 1·a for all a < 1. 
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10.5 Harmonic Norms and Ricci Curvature 

To get better estimates on the norms, we must use some more analysis. The idea 
of using harmonic coordinates for similar purposes goes back to [30]. In [51] it 
was shown that manifolds with bounded sectional curvature and lower bounds 
for the injectivity radius admit harmonic coordinates on balls of an a priori size. 
This result was immediately seized by the geometry community and put to use 
in improving the theorems from the previous section. At the same time, Nikolaev 
developed a different, more synthetic approach to these ideas. For the whole story 
we refer the reader toR. Greene's survey in [ 41]. Here we shall develop these ideas 
from a different point of view initiated by Anderson. 

10.5.1 The Harmonic Norm 

We shall now define another norm, called the harmonic norm and denoted 

IIA c (M, g)ll~~:\. 

The only change in our previous definition is that condition n4 is replaced by the 
requirement that <p; 1 : Us ---+ ~n be harmonic with respect to the Riemannian 
metric g on M. We can use the elliptic estimates to compare this norm with our 
old norm. Namely, recall that in harmonic coordinates 1:::. = gil ai a j, conditions n2 
and n3 insure that these coefficients are bounded in the required way. Therefore, 
if u : U ---+ R is any harmonic function, then we get that on compact subsets 
K c UnUs, 

llullcm+l.a,K ~ C llullca,u. 
Using a coordinate function <p;- 1 as u then shows that we can get bounds for 
the transition functions on compact subsets of their domains. Changing the scale 
will then allow us to conclude that for each r 1 < r2 , there is a constant C = 
C (n, m, a, r1, rz) such that 

IIA c (M, g)llcm.a,r1 ~ C IIA c (M, g)ll~~~r2 • 

We can then show the harmonic analogue to the fundamental theorem. 

Corollary 5.1 For given Q > 0, n ~ 2, m ~ 0, a E (0, 1], and r > 0 
consider the class of complete, pointed Riemannian n-manifolds (M, p, g) with 
II(M, g)ll~~~r ~ Q. ThisclassisclosedinthepointedCm,a topologyandcompact 
in the pointed cm,{J topology for all {J <a. 

The only issue to worry about is whether it is really true that limit spaces have 
II(M, g)ll~~~r ~ Q. But one can easily see that harmonic charts converge to 
harmonic charts. 

We shall also need to use the corresponding properties for the harmonic norm. 

Proposition 5.2 (M. Anderson, 1990) If A c (M, g) is precompact, then: 



304 10. Convergence 

(2) The function r -+ IIA C (M, g)ll~~~r is continuous. Moreover, when m 2: 
1, it converges to 0 as r -+ 0. 

(3) Suppose(M;,p;,g;)-+ (M,p,g)incm,aandinadditionthatm 2: l.Then 
for A c M we can find precompact domains A; c M; such that 

IIA;II~~~r-+ IIAII~~~r 

for all r > 0. When all the manifolds are closed, we can let A = M and 
A;= M;. 

(4) IIA C (M, g)ll~m':~r = SUPpeA ll{p} C (M, g)ll~~~r · 

Proof. Properties (1) and (2) are proved as before. For the statement that the 
norm goes to zero as the scale decreases, just solve the Dirichlet problem as we 
did when existence of harmonic coordinates was established. Here it was necessary 
to have coordinates around every point p E M such that in these coordinates the 
metric satisfies g;1 = 8iJ and chg;1 = 0 at p. If m 2: 1, then it is easy to show that 
any coordinate system around p can be changed in such a way that the metric has 
the desired properties. 

(3) The proof of this statement is necessarily somewhat different, as we must 
use and produce harmonic coordinates. Let the setup be as before. First we show 
the easy part: 

liminf IIA;II~~~r:::: IIAII~~~r. 

To this end, select Q > lim inf II A; ~~~~~r. For large i we can then select charts 
fPi,s : (0, r) -+ M; with the requisite properties. After passing to a subsequence, 
we can make these charts converge to charts fPs =lim !;-1 o fPi,s : B (0, r) -+ M. 
Since the metrics converge in cm,a, the Laplacians of the inverse functions must 
also converge. Hence, the limit charts are harmonic as well. We can then conclude 
that II All~~~ r ~ Q. 

For the reverse inequality 

lim sup IIA;II~~~r ~ IIAII~~~r, 

select Q > IIAII~m':~r. Then, from the continuity of the norm we can find 
s > 0 such that also IIAII~~~r+e < Q. For this scale, select charts fPs : 
B (0, r +e) -+ Us c M satisfying the usual conditions. Now define U;,s = 
fi (fPs (B (0, r+))) c M;. This is clearly a closed disc with smooth boundary 
8U;,s = fi (({Js (8B (0, r + s/2))). On each U;,s solve the Dirichlet problem 

t1gi 1/J'i,s = 0, 

1/l';,s = fPs 0 ~;-!on aui,s· 
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The inverse of 1/li,s, if it exists, will then be a coordinate map B (0, r) ~ Ui,s· 
On the set B (0, r + s/2) we can now compare 1/li,s o fi o (/Js with the identity 
map I. Note that these maps agree on the boundary of B (0, r + s/2). We know 
that h* gi ~ g in the fixed coordinate system (/Js. Now pull these metrics back 
to B (0, r + ~) and refer to them as g (= q;;g) and gi (= q;; f;*gi). In this way 
the harmonicity conditions read !:J..8 I = 0 and !:J.. 8, 1/li,s o fi o (/Js = 0. In these 
coordinates we have the correct bounds for the operator 

t:J..8, = gf1akai + ~ak (Jdetgi · gf1) a1 
detgi 

to use the elliptic estimates for domains with smooth boundary. Note that this is 
where the condition m =:: 1 becomes important, so that we can bound 

~ak (Jdetgi ·gf1) 

in crx. The estimates then imply 

III - 1/li,s 0 Ji 0 (/Js II cm+!,a :5 c II !:J..g, (I - 1/li,s 0 Ji 0 (/Js) II cm-l,a 

= c II !:J..g, Ill cm-!,a • 

However, we have that 

In particular, we must have 

III - 1/li,s 0 Ji 0 (/Js II cm+!.a ~ 0. 

It is now evident that 1/li,s must become coordinates for large i. Also, these 
coordinates will show that IIAi 11~'!.':~, < Q for large i. 

( 4) Since there is no transition function condition to be satisfied in the definition 
of IIAII~m':~,, it is obvious that 

IIA u Ell~'!::~,= max {IIAII~'!.':~,, liB II~'!::~,}. 

This shows that the norm is always realized locally. 0 

10.5.2 Ricci Curvature and the Harmonic Norm 

The most important feature about harmonic coordinates is that when one uses 
them, it looks as though the metric can be controlled by the Ricci curvature. This 
is exploited in the next lemma, where we show how one can bound the harmonic 
C 1·rx norm in terms of the C 1 norm and Ricci curvature. 
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Lemma 5.3 (M. Anderson, 1990) Suppose we have that a Riemannian man­
ifold (M, g) has bounded Ricci curvature IRicl ~ A. Then for any r1 < rz, 
K :::: IIA C (M, g) II~~~~, and a E (0, 1) we can find C (n, a, K, r1, rz, A) such 
that 

IIA C (M, g)ll~~~a~71 ~ C (n, a, K, r1, rz, A). 

Moreover, if g is an Einstein metric Ric= kg, then for each integer m we can find 
a constant C (n, a, K, rt. rz, k, m) such that 

Proof. We just need to bound the metric components g;1 in some fixed har­
monic coordinates. In these coordinates we have that !:!. = giJ a; a 1. Given that 
IIA c (M, g)ll~~~~ ~ K, we can conclude that we have the necessary conditions 
on the coefficients of !:!. = giJ a; a 1 to use the elliptic estimates 

Now use that 
l:!.g;1 = -2Ric + 2Q (g, a g) 

to conclude that 

Using this we then have 

llgij llct.a,B(O,rt) ~ C (n, a, K, r1, rz) (ll!:!.g;j llco,B(O,r2) + iigij llca,B(O,r2)) 

~ C (n, a, K, r1, rz) ( 2A + C + 1) llgij llc',B(O,r2 ) • 

For the Einstein case we can use a bootstrap method, as we get C 1·a bounds on 
the Ricci tensor from the Einstein equation Ric = kg. Thus, we have that l:!.g;1 is 
bounded in ca rather than just C0 • Hence, 

II g;j II C2,a,B(O,rt) ~ c (n, a, K' r!' rz) ( ll!:!.g;j II ca,B(O.r2) + II g;j II ca,B(O,r2)) 

~ C (n, a, K, r1, rz, k) · C ·llgi) llct.a,B(O,r2 ). 

This gives C2·a bounds on the metric. Then, of course, l:!.g;1 is bounded C 1·a, and 
thus the metric will be bounded in C3·a. Clearly, one can iterate this until one gets 
cm+I,a bounds on the metric. D 

This result combined with the fundamental theorem gives a very interesting 
compactness result. 
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Corollary 5.4 For given n ::: 2, Q, r, A E (0, oo) consider the class of 
Riemannian n-manifolds with 

II(M, g)ll~~:~ :'5 Q, 

!Riel :'5 A. 

This class is precompact in the C 1·a topology for any a E (0, 1). Moreover, if 
we take the subclass of Einstein manifolds, then this class is compact in the cm,a 

topology for any m ::: 0 and a E (0, 1). 

We can now prove our generalizations of the convergence theorems from the 
last section. 

Theorem 5.5 (M. Anderson, 1990) Given n::: 2 and a E (0, 1), A E (0, oo), 
io > 0, one can for each Q > 0 find r (n, a, A, io) > 0 such any complete 
Riemannian n-manifold (M, g) with 

satisfies II(M, g)ll~~:~r :'5 Q. 

!Riel :'5 A, 

inj ::: i0 

Proof. The proof goes by contradiction. So suppose that there is a Q > 0 such 
that for each i ::: 1 there is a Riemannian manifold (Mi, gi) with 

!Riel :'5 A, 

inj ::: io, 

II(Mi, gi)ll~~:~i-t > Q. 

Using that the norm goes to zero as the scale goes to zero, and that it is contin­
uous as a function of the scale, we can for each i find ri E (0, i-1) such that 

II(Mi, gi)ll~~:~r; = Q. Now rescale these manifolds: hi = ri-2gi. Then we have 
that (Mi, hi) satisfies 

!Riel :'5 ri-2 A, 
. . -1· IDJ ::: ri zo, 

II(Mi, hi)ll~~~a~1 = Q. 

We can then select Pi E Mi such that II Pi E (Mi, hi)ll~~~a~1 E [ ~. Q]. 
The first important step is now to use the bounded Ricci curvature of (Mi, hi) to 

conclude that in fact the C 1·Y norm must be bounded for any y E (a, 1). Then we 

can assume by the fundamental theorem that the sequence (Mi, Pi, hi) converges 
in the pointed C 1·a topology, to a Riemannian manifold (M, p, g) of class cl.r. 

Since the C1·a norm is continuous in the C 1·a topology we can conclude that 

lip E (M, g)ll~~a~1 E (~, Q] · 
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The second thing we can prove is that (M, g) = (JRn, can). This clearly violates 
what we just established about the norm of the limit space. To see that the limit 
space is Euclidean space, recall that the manifolds in the sequence (M;, h;) are 
covered by harmonic coordinates that converge to harmonic coordinates in the 
limit space. In these harmonic coordinates the metric components satisfy 

1 . 
2/}.hkl + Q (h, oh) = -Rlckl· 

But we know that 

and that the hkl converge in the C 1·a topology to the metric coefficients gk1 for 
the limit metric. We can therefore conclude that the limit manifold is covered by 
harmonic coordinates and that in these coordinates the metric satisfies: 

The limit metric is therefore a weak solution to the Einstein equation Ric = 0 and 
must therefore be a smooth Ricci flat Riemannian manifold. It is now time to use 
that: inj (M;, h;) ~ oo. In the limit space we have that any geodesic is a limit of 
geodesics from the sequence (M;, h;), since the Riemannian metrics converge in 
the C 1·a topology. If a geodesic in the limit is a limit of segments, then it must 
itself be a segment. We can then conclude that since inj (M;, h;) ~ oo, any finite 
length geodesic must be a segment. This, however, implies that inj (M, g) = oo. 
The splitting theorem then shows that the limit space is Euclidean space. D 

From this theorem we immediately get 

Corollary 5.6 (M. Anderson, 1990) Let n ~ 2 and A, D, i E (0, oo) be given. 
The class of closed Riemannian n-manifolds satisfying 

IRicl ::: A, 

diam::: D, 

inj ~ i 

is precompact in the cl.a topology for any a E (0, 1) and in particular contains 
only finitely many diffeomorphism types. 

Notice how the above theorem depended on the characterization of Euclidean 
space we obtained from the splitting theorem. There are, however, several other 
similar characterizations of Euclidean space. One of the most interesting ones uses 
volume pinching. 
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10.5.3 Volume Pinching 

The idea is to use the relative volume comparison theorem rather than the splitting 
theorem. We know form the exercises to Chapter 9 that Euclidean space is the only 
space with 

Ric ~ 0, 
volB (p, r) 

lim = 1, 
r-.oo Wnrn 

where wnrn is the volume of a Euclidean ball of radius r. This result has a very 
interesting gap phenomenon associated with it, when one assumes the stronger 
hypothesis that the space is Ricci flat. 

Lemma 5.7 (M. Anderson, 1990) For each n ~ 2 there is an 8 (n) > 0 such 
that any complete Ricci flat manifold (M, g) that satisfies 

volB (p, r) ~ (wn- 8)rn 

for some p E M is isometric to Euclidean space. 

Proof. First observe that on any complete Riemannian manifold with Ric ~ 0, 
relative volume comparison can be used to show that 

as long as 

1. volB (p, r) (1 ) 
tm > -8. 

r-.oo Wnrn -

It is then easy to see that if this holds for one p, then it must hold for all p. 
Moreover, if we scale the metric to ( M, A. 2 g) , then the same volume comparison 
still holds, as the lower curvature bound Ric ~ 0 can't be changed by scaling. 

If our assertion were not true, then we could for each integer i find Ricci flat 
manifolds (Mi, gi) with 

. volB (pi, r) ( ·-1) hm >1-z, 
r-.oo Wnrn -

II(Mi, 8i)ll~~~a~r # 0 for all r > 0. 

By scaling these metrics suitably, it is then possible to arrange it so that we have 
a sequence of Ricci flat manifolds (Mi, qi, hi) with 

1. volB (qi, r) ( ._1} 
tm > 1- z , 

r-.oo Wnrn -

II(Mi, 8i)ll~~~a~1 :5 1, 

Jlqi E (Mi, 8i)IJ~~~am1 E [0.5, 1]. 
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From what we already know, we can then extract a subsequence that converges in 
the cm,a topology to a Ricci flat manifold (M, q, g). In particular, we must have 

that metric balls of a given radius converge and that the volume forms converge. 
Thus, the limit space must satisfy 

lim volB (q, r) = 1. 
r-+oo Wnrn 

This means that we have maximal possible volume for all metric balls, and thus the 
manifold must be Euclidean. This, however, violates the continuity of the norm in 
the C1·a topology, as the norm for the limit space would then have to be zero. D 

Corollary 5.8 Let n ~ 2, -oo < A ~ A < oo, and D, i0 E (0, oo) be given. 
There is a o = o (n, A· i5) such that the class of closed Riemannian n-manifolds 
satisfying 

(n -1)A ~Ric~ (n -1)A, 

diam ~ D, 

volB (p, io) ~ (1 - 8) v (n, A, io) 

is precompact in the C 1·a topology for any a E (0, 1) and in particular contains 
only finitely many diffeomorphism types. 

Proof. We use the same techniques as when we had an injectivity radius bound. 
Instead, we observe that if we have a sequence (M;, p;, h;) where h; = kfg;, 
k; -+ oo, and the (M;, g;) lie in the above class, then the volume condition now 
reads 

volBhi (p;, io · k;) = kfvolBgi (p;, io) 

~ kf (1 - 8) v (n, A, io) 

= (1 - o) v (n, A· kj2, io · k;). 

From relative volume comparison we can then conclude that for r ~ i0 • k; and 
very large i, 

In the limit space we must therefore have 

volB (p, r) ~ (1 - 8) Wnrn for all r. 

This limit space is also Ricci flat and is therefore Euclidean space. The rest of 
the proof goes as before, by getting a contradiction with the continuity of the 
norms. D 
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10.5.4 Curvature Pinching 

Let us now turn our attention to some applications of these compactness theorems. 
One natural subject to explore is that of pinching results. Recall that we showed 
earlier that complete constant curvature manifolds have a uniquely defined uni­
versal covering. It is natural to ask whether one can in some topological sense 
still expect this to be true when one has close to constant curvature. Now, any 
Riemannian manifold (M, g) has curvature close to zero if we multiply the metric 
by a large scalar. Thus, some additional assumptions must come into play. 

We start out with the simpler problem of considering Ricci pinching and then 
use this in the context of curvature pinching below. The results are very simple 
consequences of the convergence theorem we have already presented. 

Theorem 5.9 Given n :::: 2, i, D E (0, oo), and A E JR, there is an 8 

8 (n, A, D, i) > 0 such that any closed Riemannian n-manifold (M, g) with 

diam ::=:: D, 

inj :::: i, 

IRic- Agl:::: 8 

is C 1·a close to an Einstein metric with Einstein constant A. 

Proof. We already know that this class is precompact in the C 1·a topology no 
matter what 8 we choose. If the result were not true, we could therefore find 
a sequence (M;, g;) --* (M, g) that converges in the C 1·a topology to a closed 
Riemannian manifold of class C 1·a' where in addition, IRicgi - Ag; I --* 0. Using 
harmonic coordinates as usual we can therefore conclude that the metric on the 
limit space must be a weak solution to 

1 
2~g + Q (g, iJg) = -Ag. 

But this means that the limit space is actually Einstein, with Einstein constant 
A, thus, contradicting that the spaces (M;, g;) were not close to such Einstein 
metrics. D 

Using the compactness theorem for manifolds with almost maximal volumes we 
see that the injectivity radius condition could have been replaced with an almost 
maximal volume condition. 

Theorem 5.10 Given n :::: 2, v, D E (0, oo), and A E JR, there is an 8 

8 (n, A, D, i) > 0 such that any closed Riemannian n-manifold (M, g) with 

diam ::=:: D, 

vol:::: v, 

I sec -AI::=:: 8 

is C 1·a close to a metric of constant curvature A. 
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Proof. In this case we first observe that Cheeger's lemma gives us a lower bound 
for the injectivity radius. The previous theorem then shows that such metrics must 
be close to Einstein metrics. We now have to check that if (Mi, gi) ---+ (M, g), 
where isecg; -AI ---+ 0 and Ricg = (n- l)Ag, then in fact (M, g) has constant 
curvature A. To see this, it is perhaps easiest to observe that if Mi 3 Pi ---+ p E M, 
then we can use polar coordinates around these points, and write out the metric 
(gi,atJ) around Pi and (gal3) around p. Since the metrics converge in C 1·a, we 
certainly have that the matrices (gi,al3) converge to (gall) . Using the curvature 
pinching, we conclude from Chapter 6 that 

sn2 (r) · (6 13) < (g· 13 (r 0)) < sn2 (r) · (6 13) ).+e; a 2~a.l3~n - l,a ' 2~a.l3~n - }.-e; a 2~a.l3~n ' 

where 8i ---+ 0. In the limit we therefore have 

sni (r). (6al3)2~a.l3~n ~ (gal3 (r, 0))2~a.l3~n ~ sni (r). (6al3)2~a.l3~n. 

This implies that the limit metric has constant curvature k. D 

It is interesting that we had to go back and use the more geometric estimates for 
distance functions in order to prove the curvature pinching, while the Ricci pinching 
could be handled more easily with analytic techniques using harmonic coordinates. 
One can actually prove the curvature result with purely analytic techniques, but 
this requires that we study convergence in a more general setting where one uses 
LP norms and estimates. This has been developed rigorously and can be used to 
improve the above results to situations were one has only LP curvature pinching 
rather than the L 00 pinching we use here (see [70] and [71]). 

When the curvature A is positive, some of the assumptions in the above theorems 
are in fact not necessary. For instance, Myers' estimate for the diameter makes the 
diameter hypothesis superfluous. For the Einstein case this seems to be as far as we 
can go. In the positive curvature case we can do much better. In even dimensions, 
we already know from Chapter 6, that manifolds with positive curvature have both 
bounded diameter and lower bounds for the injectivity radius, provided that there 
is an upper curvature bound. We can therefore show 

Corollary 5.11 Given 2n ~ 2, and A > 0, there is an 8 = 8 (n, A) > 0 such 
that any closed Riemannian 2n-manifold (M, g) with 

lsec-AI ~ 8 

is C 1·a close to a metric of constant curvature A. 

This corollary is, in fact, also true in odd dimensions. This was proved by Grove­
Karcher-Ruh in [45]. Notice that convergence techniques are not immediately 
applicable because there are no lower bounds for the injectivity radius. Their 
pinching constant is also independent of the dimension. 

There is a very nice result of Micallef-Moore in [?] that says that any manifold 
with positive isotropic curvature has the property that the universal cover is home­
omorphic to the sphere. However, this doesn't generalize the above theorem, for it 
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is not necessarily true that two manifolds with identical fundamental groups and 
universal covers are homotopy equivalent. 

In negative curvature some special things also happen. Namely, Heintze has 
proved that any complete manifold with -1 ~ sec < 0 has a lower volume 
bound when the dimension 2: 4 (see also [ 42] for a more general statement). The 
lower volume bound is therefore an extraneous condition when doing pinching in 
negative curvature. Unlike the situation in positive curvature, the upper diameter 
bound is, however, crucial. See, e.g., [ 44] and [34] for counterexamples. 

This leaves us with pinching around 0. As any compact Riemannian manifold 
can be scaled to have curvature in [ -e, e] for any e, we do need that the diameter 
is bounded. The volume condition is also necessary, as the Heisenberg group from 
the exercises to Chapter 3 has a quotient, where there are metrics with bounded 
diameter and arbitrarily pinched curvature. This quotient, however, does not admit 
a flat metric. Gromov was nevertheless able to classify all n-manifolds with 

lsecl ~ e (n), 

diam ~ 1 

for some very smalls (n) > 0. More specifically, they all have a finite cover that 
is a quotient of a nilpotent Lie group by a discrete subgroup. For more on this and 
collapsing in general, the reader can start by reading [35]. 

10.6 Further Study 

Cheeger first proved his finiteness theorem and put down the ideas of Ck conver­
gence for manifolds in [22]. They later appeared in journal form [23], but not all 
ideas from the thesis were presented in this paper. Also the idea of general pinch­
ing theorems as described here are due to Cheeger [24]. For more generalities 
on convergence and their uses we recommend the surveys by Anderson, Fukaya, 
Petersen, and Yamaguchi in [41]. Also for more on norms and convergence theo­
rems the survey by Petersen in [ 46] might prove useful. We must also of necessity 
mention the enigmatic text [ 43] again. It was probably this book that really spread 
the ideas of Gromov-Hausdorff distance and the stronger convergence theorems 
to a wider audience. Also, the convergence theorem of Riemannian geometry, as 
stated here, appeared for the first time in this book. 

We should also mention that S. Peters in [69] obtained an explicit estimate for 
the number of diffeomorphism classes in Cheeger's finiteness theorem. This also 
seems to be the first place where the modem statement of Cheeger's finiteness 
theorem is proved. 
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10.7 Exercises 

1. Find a sequence of 1-dimensional metric spaces that Hausdorff converge to 
the unit cube [0, 1]3 endowed with the metric coming from the maximum 
norm on JR3 • Then find surfaces Gungle gyms) converging to the same space. 

2. C. Croke has shown that there is a universal constant c (n) such that any 
n-manifold with inj ~ io satisfies volB (p, r) ~ c(n) · rn for r ~ io/2. Use 
this to show that the class of n-dimensional manifolds satisfying inj ~ io 
and vol ~ Vis precompact in the Gromov-Hausdorfftopology. 

3. Develop a Bochner formula for V2 (~g (X, Y)) and d~g (X, Y), where X 
andY are vector fields with symmetric VX and VY. Discuss whether it is 
possible to devise coordinates where V2 (g;i) are bounded in terms of the 
full curvature tensor. How could this be used to show C 1•1 regularity of limit 
spaces from the convergence theorem of Riemannian geometry? 

4. Show that in contrast with the elliptic estimates, it is not possible to find ca 

bounds for a vector field X in terms of C0 bounds on X and div X. 

5. Define cm,a convergence for incomplete manifolds. On such manifolds de­
fine the boundary a as the set of points that lie in the completion but not in the 
manifold itself. Show that the class of incomplete spaces with !Ric I ~ A and 
inj (p) ~min {io, io. d (p, ())}' io < 1, is precompact in the C1·a topology. 

6. Define a weighted norm concept. That is, fix a positive function p (R), and 
assume that in a pointed manifold (M, p, g) the distance spheres S (p, R) 
have norm ::::: p ( R) . Prove the corresponding fundamental theorem. 

7. Suppose we have a class that is compact in the cm,a topology. Show that there 
is a function f (r) depending on the class such that II(M, g)llcm·",r ~ f (r) 
for all elements in this class, and also, f (r) ~ 0 as r ~ 0. 

8. The local models for a class of Riemannian manifolds are the types of spaces 
one obtains by scaling the elements of the class by a constant~ oo. For 
example, if we consider the class of manifolds with I sec I ::::: K for some 
K, then upon rescaling the metrics by a factor of J.. 2, we have the condition 
I sec I ::::: J.. - 2 K, as J.. ~ oo, we therefore arrive at the condition I sec I = 0. 
This means that the local models are all the flat manifolds. Notice that we 
don't worry about any type of convergence here. If, in this example, we 
additionally assume that the manifolds have inj ~ i0 , then upon rescaling 
and letting J.. ~ oo we get the extra condition inj = oo. Thus, the local 
model is Euclidean space. It is natural to suppose that any class that has 
Euclidean space as it only local model must be compact in some topology. 

Show that a class of spaces is compact in the cm,a topology if when we 
rescale a sequence in this class by constants that ~ oo, the sequence 
subconverges in the cm,a topology to Euclidean space. 
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9. Consider the singular Riemannian metric dt2 + a2d() 2 , a > 1, on JR2 • Show 
that there is a sequence of rotationally symmetric metrics on lR 2 with sec ::::: 0 
and inj = oo that converge to this metric in the Gromov-Hausdorfftopology. 

10. Showthattheclassofspaces withinj ::=: i and IV'kRicl ::::: A fork= 0, ... , m 
is compact in the cm+i,a topology. 

11. (S.-h. Zhu) Consider the class of complete or compact n-dimensional 
Riemannian manifolds with 

conj rad ::=: ro, 
!Riel::::: A, 

volB (p, 1) ::=: v. 

Using the techniques from Cheeger's lemma, show that this class has a 
lower bound for the injectivity radius. Conclude that it is compact in the 
C 1 ·~~' topology. 

12. Using the Eguchi-Hanson metrics from the exercises to Chapter 3, show that 
one cannot in general expect a compactness result for the class 

!Riel::::: A, 

volB (p, 1) ::=: v. 

Thus, one must assume either that v is large as we did before or that there a 
lower bound for the conjugate radius. 

13. The weak (harmonic) norm II (M, g) llc!~"~r is defined in almostthe same way 
as the norms we have already worked with, except that we only insist that 
the charts 'Ps : B (0, r)-+ Us are immersions. The inverse is therefore only 
locally defined, but it still makes sense to say that it is harmonic. 

(a) Showthatif(M, g) has bounded sectional curvature, then for all Q > 0 
there is an r > 0 such that II(M, g)ll~f.~~r ::::: Q. Thus, the weak norm 
can be thought of as a generalized curvature quantity. 

(b) Show that the class of manifolds with bounded weak norm is 
precompact in the Gromov-Hausdorff topology. 

(c) Show that (M, g) is flat iff the weak norm is zero at all scales. 
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Sectional Curvature Comparison II 

In the first section we explain how one can find generalized gradients for distance 
functions in situations where the function might not be smooth. This critical point 
technique is used in the proofs of all the big theorems in this chapter. The other 
important technique comes from Toponogov 's theorem, which we prove in the 
next section. The first applications of these new ideas are to sphere theorems. We 
then prove the soul theorem of Cheeger and Gromoll. Next, we discuss Gromov's 
finiteness theorem for bounds on Betti numbers and generators for the fundamental 
group. Finally, we show that these techniques can be adapted to prove the Grove­
Petersen homotopy finiteness theorem. 

Toponogov's theorem is a very useful refinement of Gauss's early realization 
that curvature and angle excess of triangles are related. The fact that Toponogov's 
theorem can be used to get information about the topology of a space seems to orig­
inate with Berger's and Toponogov 's proofs of the quarter pinched sphere theorem. 
Toponogov himself proved these theorems in order to establish the splitting theo­
rem for manifolds with nonnegative sectional curvature and the maximal diameter 
theorem for manifolds with a positive lower bound for the sectional curvature. 
As we saw in Chapter 9, these results can now be obtained in the Ricci curvature 
setting. The next use ofToponogov was to the soul theorem ofCheeger-Gromoll­
Meyer. However, Toponogov's theorem is not truly needed for any of the results 
mentioned so far. With little effort one can actually establish these theorems with 
simpler comparison techniques. Still, it is convenient to have and use a workhorse 
theorem of universal use. It wasn't until Grove and Shiohama developed critical 
point theory to prove their diameter sphere theorem that Toponogov's theorem was 
put to serious use. Shortly after that, Gromov 's Betti number estimate put these two 
ideas to even more nontrivial use, with his Betti number estimate for manifolds with 
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nonnegative sectional curvature. After that, it became clear that in working with 
manifolds that have lower sectional curvature bounds, the two key techniques are 
Toponogov 's theorem and the critical point theory of Grove-Shiohama. These two 
very geometric techniques are still used to prove many interesting and nontrivial 
results. 

11.1 Critical Point Theory 

In this generalized critical point theory, the object is to define generalized gradients 
of continuous functions and then use these gradients to conclude that certain regions 
of a manifold have no topology. The motivating basic lemma is the following: 

Lemma 1.1 Let (M, g) be a Riemannian manifold and f : M -+ lR a proper 
function that is C1• Iff has no critical values in the closed interval [a, b], then 
the preimages f- 1 ([-oo, b])and f- 1 ([-oo, a])arediffeomorphic. Furthermore, 
there is a deformation retraction of f- 1 ([ -oo, b]) onto f- 1 ([ -oo, a]) , so the 
inclusion f- 1 ([ -oo, a])"'--* f- 1 ([ -oo, b]) is a homotopy equivalence. 

Proof. The idea is simply to move the level sets via the gradient off. Since there 
are no critical points of f, we have that the gradient V f is nonzero everywhere 
on f- 1 ([a, b]). We then construct a bump function 1/f : M -+ [0, 1] that is 1 
on the compact set f- 1 ([a, b]) and zero outside some compact neighborhood of 
f- 1 ([a, b]). Finally consider the vector field 

This vector field has compact support and must therefore be complete (integral 
curves are defined for all time). Let rp1 denote the flow for this vector field (see 
Figure 11.1). 

For fixed q E M consider the function t -+ f (cp1 (q)). The derivative of this 
function is g (X, V f), so as long as the integral curve t -+ cp1 (q) remains in 
f- 1 ([a, b]), the function t -+ f (cp1 (q)) is linear with derivative 1. In particular, 
the diffeomorphism cpb-a : M -+ M must carry f- 1 ([ -oo, a]) diffeomorphically 
onto f- 1 ([-oo, b]). 

Moreover, by flowing backwards we can define the desired retraction: 

{ p if f (p) ~ a, 
rr(p) = cpt(a-f(p))(p) if a~ f(p) ~b. 

Thenr0 = id, andr1 maps f- 1 ([-oo, b])diffeomorphicallyonto f- 1 ([-oo, a]). 
D 
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FIGURE 11.1. 

Notice that we used in an essential way that the function is proper to conclude 
that the vector field is complete. In fact, if we delete a single point from the region 
f- 1 ([a, b]), then the function still won't have any critical values, but clearly the 
conclusion of the lemma is false. 

We shall now try to generalize this lemma to functions that are not necessarily 
C 1• To minimize technicalities we shall work exclusively with distance functions. 
Suppose (M, g) is complete and K c M a compact subset. Then the distance func­
tion f (x) = d (x, K) = min { d (x, p) : p E K} is proper. Wherever this function 
is smooth, we know that it has unit gradient and must therefore be noncritical at 
such points. However, it might also have local maxima, and at such points we 
certainly wouldn't want the function to be noncritical. To define the generalized 
gradient for such functions, let us list all the possible values it could have. Define 
r (x, K), or simply r (x), as the set of unit vectors in TxM that are tangent to 
a segment from K to x. That is, v E r (x, K) c TxM if there is a unit speed 
segment a : [0, d (x, K)] ---+ M such that a (0) E K, a (d (x, K)) = x, and 
v = i:r (d (x, K)). Note that a is chosen such that no shorter curve from x to K 
exists. There might, however, be several such segments. In the case where f is 
smooth at x, we clearly have that {V f} = r (x, K). At other points, r (x, K) 
might contain more vectors. We say that f is regular, or noncritical, at x if the 
set r (x, K) is contained in an open hemisphere of the unit sphere in TxM. The 
center of such a hemisphere is then a possible direction for the gradient of f at 
x. Stated differently, we have that f is regular at x iff there is a vector v E Tx M 
such that the angles L ( v, w) < 1r /2 for all w E r (x, K) . If v is a unit vector, then 
it will be the center of the desired hemisphere. We can quantify being regular by 
saying that f is a-regular at x if there exists v E Tx M such that L ( v, w) < a for 
all w E r (x, K) . Thus, f is regular at x iff it is 1r /2-regular. The set of vectors v 
that can be used in the definition of a -regularity is denoted by G a f (x) , where G 
stands for generalized gradient. 
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FIGURE 11.2. 

Evidently, a point x is critical ford ( ·, p) if the segments from p to x spread out 
at x, while it is regular if they more or less point in the same direction (see Figure 
11.2). 

Proposition 1.2 Suppose (M, g) and f = d (·, K) are as above. Then: 

(1) r (x, K) is closed and therefore compact for all x. 

(2) The set of a -regular points is open in M. 

(3) G a f (x) is convex for all a ::5 1r f2. 

(4) IfU is an open set of a-regular points for f, then there is a unit vector field 
X on U such that X (x) E Gaf (x)for all x E U. Furthermore, ify is an 
integral curve for X and s < t, then 

f (y (t))- f (y (s)) > cos (a) (t- s). 

Proof. (1) Let a; : [0, d (x, K)] --* M be a sequence of unit speed segments 
with if; (d (x, K)) converging to some unit vector v E TxM. Clearly, a (t) = 

expx ((d (x, K)- t) v) is the limit of the segments a; and must therefore be a 
segment itself. Furthermore, since K is closed a (0) E K. 

(2) Suppose x; --* x, and x; is not a-regular. We shall show that x is not a­
regular. This means that for each v E Tx M, we can find w E r (x, K) such that 
L (v, w) 2: a. Now, for some fixed v E TxM, choose a sequence v; E Tx;M 
converging to v. For each i we can, by assumption, find w; E r (x;, K) with 
L ( v;, w;) 2: a. The sequence of unit vectors w; must now subconverge to a vector 
w E Tx M. Furthermore, the sequence of segments a; that generate w; must also 
subconverge to a segment that is tangent to w. Thus, w E r (x, K) . 

(3) First observe that if a ::5 n /2, then for each w E Tx M, the open cone 
Ca (w) = {v E TxM: L (v, w) <a} is convex. Then observe that Gaf (x) is the 
intersection of the cones Ca ( w) , w E r (x, K) , and is therefore itself convex. 

(4) For each p E U we can find Vp E Gaf (p). For each p, extend Vp to a 
vector field Vp. It now follows from the proof of (2) that Vp (x) E Gaf (x) for x 
near p. We can then assume that Vp is defined on a neighborhood Up on which 
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it is a generalized gradient. We can now select a locally finite collection { Ui} of 
UP's and a corresponding partition of unity (/)i. Then property (3) tells us that the 
vector field V = L (/)i V; E G 8 f. In particular, it is nonzero and can therefore be 
normalized to a unit vector field. 

The last property is clearly true at points where f is smooth, because in that 
case the derivative oft ---+ f o y is g (X, V f) = cos L (X, V f) > cos a. Now 
observe that since f is Lipschitz continuous, this function is at least absolutely 
continuous. This implies that f o y is differentiable a.e. and is the integral of its 
derivative. Whenever f o y is differentiable, we still have that its derivative is 
g (X, V f) > cos a. Thus, the desired property holds. 0 

We can now generalize the above lemma. 

Lemma 1.3 Let (M, g) and f = d (·, K) be as above. Suppose that all 
points in f- 1 ([a, b]) ares-regular. Then f- 1 ([-oo, a]) is homeomorphic to 
f- 1 ([ -oo, b]), and f- 1 ([ -oo, b]) deformation retracts onto f- 1 ([ -oo, a]). 

Proof. The construction is similar but a little more involved. We can construct a 
compactly supported vector field X such that the flow cp 1 for X satisfies 

f (cp1 (p))- f (p) > t ·cos (e), t ~ 0 if p, cp1 (p) E f- 1 ([a, b]). 

For each p E f- 1 (b) we can therefore find a first time tp ::; (b- a)jcos s for 
which cp1P (p) E f- 1 (a). The function p ---+ tp is continuous and thus we get the 
desired retraction 

rt: f- 1 ((-oo,b])---+f-1 ([-oo,b]), 

{ p if f(p)::; a, 
rr (p) = cp-t·tp (p) if a::; f(p)::; b. 0 

Note that as the level sets for fare not smooth, we can't expect to get diffeo­
morphic sublevels. So we essentially have the best possible situation. It is now a 
question of how this can be used. As a very simple result let us mention 

Corollary 1.4 Suppose K is a compact submanifold of a complete Riemannian 
manifold (M, g) and suppose the distance function f = d (·, K) is regular every­
where on M - K. Then M is diffeomorphic to the normal bundle of K in M. In 
particular, if K = {p} , then M is diffeomorphic to !Rn. 

Proof. We know that M - K admits a vector field X, such that f is strictly 
increasing along the integral curves for X. Moreover, near K the distance function 
is smooth, and therefore X can be assumed to be equal to V f near K. 
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If v (K) = { v E TpM : p E K and v ..L TpK} , then we have the normal 
exponential map 

exp: v(K)-+ M. 

On a neighborhood of the zero section in v (K) we know that this gives a dif­
feomorphism onto a neighborhood of K. Also, the curves t -+ exp (tv) are, for 
small t, integral curves for X. In particular, we have for each v E v ( K) a unique 
integral curve Yv (t) : (0, oo) -+ M such that lim~--+0 Yv (t) = v. Now define our 
diffeomorphism F: v (K)-+ M by 

F (Op} = p for the origin in vp(K), 

F (tv) = Yv (t) where I vi = 1. 

This clearly defines a differentiable map. For small t this is just the exponential 
map. The map is one-to-one since integral curves for X can't intersect. It is onto, 
since f is proper, and therefore integral curves for X are defined for all time and 
must leave every compact set (since f is increasing along integral curves). Finally, 
one can see that its differential is nonsingular, since the flow of a vector field always 
acts by local diffeomorphisms. D 

11.2 Distance Comparison 

In this section we shall introduce the main results that will make it possible to 
conclude that various distance functions are noncritical. This obviously requires 
some sort of angle comparison. The most important step in this direction is supplied 
by the Toponogov theorem (or the hinge version ofToponogov's theorem; there are 
triangle and angle versions as well). The proof we present is probably the simplest 
available; and is based upon an idea by H. Karcher (see [27]). 

Some preparations are necessary. Let (M, g) be a Riemannian manifold. We 
define two very natural geometric objects: 

Hinge: A hinge consists of two segments cr1 and cr2 emanating from a common 
point p and forming an angle a. We shall always parametrize the geodesics by arc 
length and assume that cr1 (l (cr1)) = p = cr2 (0). The angle a is then defined as 
a = rr- L (c11 (f, (cr1 )) , c12 (0)). Thus, the first segment ends at p, while the second 
begins there. The angle is the interior angle. See also Figure 11.3. 

Triangle: A triangle consists of three segments that meet pairwise at three 
different points. In both definitions one could just use geodesics. It is then possible 
to have degenerate triangles where some vertices coincide without the joining 
geodesics being trivial. We shall not need to use such general objects here, so 
we confine ourselves to just using segments. In Figure 11.4 we have depicted a 
triangle consisting of segments, and a degenerate triangle where one of the sides 
is a geodesic loop and two of the vertices coincide. 

Given a hinge (or a triangle), we can construct comparison hinges (or triangles) 
in the constant-curvature spaces Sf. 
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Lemma 2.1 Suppose (M, g) is complete and has sec:=: k. Then for each hinge 
(or triangle) in M we can find a comparison hinge (or triangle) in s; where 
the corresponding segments have the same length and the angle is the same (all 
corresponding segments have the same length). 

Proof. Suppose we have three points p, q, r E M. First, we know that in case 
k > 0, Myers' theorem implies diamM ~ 7r I v'k = diam s;. Thus, any segments 
between these three points have length ~ rr I v'k. 

First the hinge case. Here we have segments from p to q and from q to r 
forming an angle a at q. In the space form we can first choose p and ij such that 
d (p, ij) = d (p, q) and then join them by a segment. This is possible because 
d (p, q) ~ rr I v'k. At ij we can then choose a direction that forms an angle a with 
the chosen segment. Then we take the unique geodesic going in this direction, and 
using the arc length parameter we go out distance d ( q, r) along this geodesic. This 
will now be a segment, as d (q, r) ~ rr I v'k. We have then found the desired hinge. 

The triangle case is similar. First, pick p and ij as above. Then, consider the two 
distance spheres iJB (p, d (p, r)) and iJB (ij, d (q, r)). Since all possible triangle 
inequalities between p, q, r hold and d (q, r), d (p, r) ~ rrlv'k, these distance 
spheres are nonempty and they intersect. Then, let r be any point in the intersection. 

To be honest here, we must use Cheng's diameter theorem in case any of the 
distances is rrlv'k. In this case there is nothing to prove as (M, g)= s;. D 

We can now state the Toponogov comparison theorem. 

Theorem 2.2 (Toponogov, 1959) Let (M, g) be a complete Riemannian man­
ifold with sec :=: k. 
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Hinge Version: Given any hinge with vertices p, q, r E M forming an angle a 
at q, it follows that for any comparison hinge in s;: with vertices p, ij, r we have: 
d (p, r) ~ d (p,f). 

Triangle Version: Given any triangle with vertices p, q, r E M, it follows 
that for any comparison triangle the interior angles are larger in M than in the 
comparison triangle in Sf. See also Figure 11.5. 

The proof requires a little preparation. First, we claim that the hinge version 
implies the triangle version. This follows from the law of cosines in constant 
curvature. This law implies that if we have p, q, r E Sf and increase the distance 
d (p, r) while keeping d (p, q) and d (q, r) fixed, then the angle at q increases as 
well. For simplicity, we shall only look at the cases where k = 1, 0, -1. 

Proposition 2.3 (Law of Cosines) Let a triangle be given in Sf with side 
lengths a, b, c. If a denotes the angle opposite to a, then 

k=O a2 =b2 +c2 -2bccosa. 
k = -1 cosha = coshbcoshc- sinhbsinhccosa. 
k = 1 cos a = cos b cos c + sin b sin c cos a. 

Proof. The general setup is the same in all cases. Namely, we suppose that a point 
p E s;: and a unit speed segment a : [0, c] --+ s;: are given. We then investigate 
the restriction of the distance function from p to a. See also Figure 11.6. 

Case k = 0: Note that t --+ d (p, a (t)) is not a very nice function, as 
it is the square root of a quadratic polynomial. This, however, indicates that 
the function will become more manageable if we square it. Thus, we consider 
q; (t) =! (d (p, a (t)))2 =! IP- a (t)l 2 • Wewishtocomputethefirstandsecond 
derivatives of this function. This requires that we know V !d2 and also V2 !d2: 

1 2 1 (( 1)2 ( n)2) V 2_d = V 2 X + .. · + X 

= xiai 

=dVd; 
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FIGURE 11.6. 

V2 ~d2 = v (xiai) 
2 

= d (xi) ai 
=I. 

Then, since u is a geodesic, we get 

So if we define b = d (p, u (0)) and let a be the interior angle between u and the 
line joining p with (j (0) ' then we have cos (rr - a) = - cos a = g (a (0) ' v d). 
After integration of qJ 11 , we then get 

1 
({J (t) = ({J (0) + (/)1 (0). t + 2t2 

1 2 1 2 = - b - b · cos a · t + - t . 
2 2 

Now set t = c and define a = d (p, u (c)). Then we get: 

1 2 1 2 1 2 -a = -b + b · c · cos a + -c 
2 2 2 ' 

from which the law of cosines follows. 
Case k = -1: This time we must modify the distance function in a different 

way. Namely, consider qJ (t) =cosh (d (p, u (t))) - 1. Then 

({) 1 (t) = sinh(d (p, u (t)))g (Vd, a), 

({) 11 (t) = cosh (d (p, u (t))) = ({J (t) + 1. 
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As before, we have b = d (p, cr (0)), and the interior angle satisfies cos (rr -a)= 
- cos a = g ( c1 (0) , V d) . Thus, we must solve the initial value problem 

q;"- (/) = 1, 

q; (0) = cosh(b)- 1, 

q;' (0) = -sinh (b) cos a. 

The general solution is 

q;(t) = C1 cosht + Czsinht- 1 

= (q; (0) + 1) cosh t + q;' (0) sinh t - 1. 

So if we lett= c and a= d (p, cr (c)) as before, we arrive at 

cosh a - 1 = cosh b cosh c - sinh b sinh c cos a - 1, 

which implies the law of cosines again. 
Case k = 1: This case is completely analogous to the case k = -1. We set 

q; = 1 -cos (d (p, cr (t))) and arrive at the initial value problem 

Then, 

and consequently 

q;" + (/) = 1, 

(/) (0) = 1 - cos (b) ' 

q;' (0) = -sin b cos a. 

q; (t) = C1 cost+ C2 sint + 1 

= (q; (0) - 1) cost + q;' (0) sin t + 1, 

1 - cos a = - cos b cos c - sin b sin c cos a + 1, 

which implies the law of cosines for the last time. 0 

This proof of the law of cosines suggests that in working in space forms it is 
easier to work with a modified distance function, the main advantage being that 
the Hessian is much simpler. Something similar can be done in variable curvature. 

Lemma 2.4 Let (M, g) be a complete Riemannian manifold p E M and f (x) = 
d (x, p). If sec M 2:: k, then the Hessian off satisfies 

k = 0: The function fo = 1 f 2 satisfies V2 fo ::: 1 in the support sense everywhere. 
k = -1: The function f -! = cosh f - 1 satisfies 'V2 f -! ::: cosh f = f -! + 1 in 

the support sense everywhere. 
k = 1: The function f 1 = 1 - cos f satisfies 'V2 /1 ::: cos f = -/1 + 1 in the 

support sense everywhere. 
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Proof. All three proofs are, of course, similar so let us concentrate just on the 
first case. The first comparison estimate from Chapter 6 implies that whenever f 
is smooth and w is perpendicular to V f, then 

1 
g(V2 f(w),w}::s fg(w,w). 

For such w one can therefore immediately see that 

g (V2 fo (w), w) ::S g (w, w). 

If instead, w = V f, then it is trivial that this holds, whence we have established 
the Hessian estimate at points where f is smooth. At all other points we just use 
the same trick by which we obtained the Laplacian estimates with lower Ricci 
curvature bounds in Chapter 9. 0 

We are now ready to prove the hinge version ofToponogov 's theorem. The proof 
is divided into the three cases: k = 0, -1, 1. But the setup is the same in all cases. 
We shall assume that a point p E Manda geodesic a : [0, c] ---+ Mare given. 
Correspondingly, we assume that a point p E s;: and segment a : [0, c] ---+ s;: are 
given. Given the appropriate initial conditions, we claim that 

d (p, (J (t)) ::s d (p, (j (t)). 

We shall for simplicity assume that d (x, p) is smooth at a (0) . Then the initial 
conditions are 

d (p, (J (0)) ::s d (p, (j (0))' 

g (Vd, & (0)) ~ gk (Vd, a (0)). 

In case d is not smooth at a (0) , we can just slide a down along a segment joining 
p with a (0) and use a continuity argument. This also shows that we can use the 
stronger initial condition 

d (p, (J (0)) < d (p, (j (0)). 

In Figure 11.7 we have shown how a can be changed by moving it down along 
a segment joining p and a (0) . We have also shown how the angles can be slightly 
decreased. This will be important in the last part of the proof. 

Case k = 0: We consider the modified functions 

1 
(/) (t) = 2 (d (p, (J (t)))2 ' 

1 
ijJ (t) = 2 (d (p, (j (t)))2 • 

For small t these functions are smooth and satisfy 

(/) (0) < ijJ (0) ' 

(/)1 (0) ::s ijJ' (0) . 
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FIGURE 11.7. 

Moreover, for the second derivatives we have 

rp" ~ 1 in the support sense, 

if;" = 1' 

whence the difference 1/J (t) = (jJ (t) - rp (t) satisfies 

1/J (0) > 0, 

1/J' (0) 2: 0, 

1/J" (t) 2: 0 in the support sense. 

This shows that 1/J is a convex function that is positive and increasing for small 
t, and hence increasing, and in particular positive, for all t. This proves the hinge 
version. 

Case k = -1: Consider 

Then 

rp (t) = cosh d (p, a (t)) - 1, 

(jJ (t) = cosh d (p, a (t)) - 1. 

rp (0) < (jJ (0) ' 

rp' (0) ~ if;' (0) ' 

rp" ~ rp + 1 in the support sense, 

if;" = (jJ + 1. 

Then the difference 1/J = (jJ - rp satisfies 

l/1 (0) > 0, 

l/1' (0) 2: 0, 

1/J" (t) 2: 1/J (t) in the support sense. 
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The first condition again implies that 1/1 is positive for small t. The last condition 
shows that as long as 1/1 is positive, it is also convex. The second condition then 
shows that 1/1 is increasing to begin with. It must now follow that 1/1 keeps increas­
ing. Otherwise, there would be a positive maximum, and that violates convexity 
at points where 1/1 is positive. 

Case k = 1: This case is considerably harder. We begin as before by defining 

(/) (t) = 1 - cos (d (p, (}' (t)))' 

ijJ (t) = 1 - cos (d (p, a- (t))) 

and then observing that the difference 1/1 = ijJ - q; satisfies 

1/1 (0) > 0, 

1/1' (0) 2: 0, 

1/1" (t) 2: -1/1 (t) in the support sense. 

That, however, doesn't look very promising. Even though the function starts out 
being positive, the last condition gives just a negative lower bound for the second 
derivative. At this point we might then recall that perhaps Sturm-Liouville theory 
could save us. But for that to work well it is necessary as well to have 1/1' (0) > 0. 
Thus, another little continuity argument is necessary as we need to perturb u again 
to decrease the interior angle. If the interior angle is positive, this can clearly be 
done, and in the case where this angle is zero the hinge version is trivially true 
anyway. As long as 1/1 is smooth, Sturm-Liouville theory then ensures us that 

1/1 (t) ::: nr) 

for as long as~ (t) remains positive, where~ (t) is defined as 

(' = -(1 + 11H. 
~ (0) = 1/1 (0) = e > 0, 

( (0) = 1/1' (0) = 8 > 0 

(the 1J will be used later in the proof). This means that 

C82 ( (e. v'1+17)) ~ (t) = V ~::- -r ~ · sin ~ · t +arctan 8 . 

Now, ~ (t) actually remains positive for 

rr- arctan ( ~) 
t< ~ ' 

-v1+1J 

so we should be able to extend the inequality 1/1 (t) 2: ~ (t) that far. To see this, 
consider the quotient 

1/1 h= -. 
~ 
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So far, we know that this function satisfies 

h (0) = 1, 

h (t) 2: 1 for small t. 

Should it therefore go below 1 before rr - arcsin s, then h would have a positive 
maximum at some t0 E (0, rr - arcsin s) . At this point we can use support func­
tions 1/JE for 1/1 from below, and conclude that also ~· has a maximum at to. Thus, 
we have 

0 >- _E (to) d2 (1/1:) 
- dt2 ~ 

= 1/1;' (to) _ 2 ((to) . !!_ ( 1/IE) _ 1/IE (to)(' (to) 
~ (to) ~ (to) dt ~ t=to ~2 (to) 

> -1/IE (to) - E + 1/IE (to) (1 + ) 
- ~ (to) ~ (to) rJ 

1'/ • 1/JE (to) - E 

~(to) 

But this becomes positive as E -+ 0, since we assumed 1/IE (to) > 0, and so we 
have a contradiction. Next, we can let 11 -+ 0 and finally, let s -+ 0 to get the 
desired estimate for all t :::: rr using continuity. 

Note that we never really use in the proof that we work with segments. The 
only thing that must hold is that the geodesics in the space form are segments. For 
k :::: 0 this is of course always true, but when k = 1 this means that the geodesic 
must have length :::: rr. This was precisely the important condition in the last part 
of the proof. 

11.3 Sphere Theorems 

Our first applications of the Toponogov theorem are to the case of positively curved 
manifolds. Using scaling, we shall assume throughout this section that we work 
with a closed Riemannian n-manifold (M, g) with sec 2: 1. For such spaces we 
have proved 

(1) diam (M, g):::: rr, with equality holding only if M = sn (1). 

(2) If n is odd, then M is orientable. 

(3) If n is even and M is orientable, then M is simply connected and inj (M) 2: 
rr I .Jmax sec. 

(4) If n is even and max sec is close to 1, then (M, g) is close to a constant 
curvature metric. In particular, M must be a sphere when it is simply 
connected. 
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(5) It has also been mentioned that Klingenberg has shown that if M is simply 
connected and max sec < 4, then inj (M) =::: rr I ,Jmax sec. 

This last result is quite subtle and is beyond what we can prove here. Gromov (see 
[32]) has a proof of this that in spirit goes as follows: One considers p E M. If the 
upper curvature bound is 4- 8, then we know that if we pull the metric back to the 
tangent bundle, then there are no conjugate points on the disc B (0, rr I .J4=1). 
Now recall our Hessian estimates for the distance function when sec :::: 1. We 
use the modified distance !I to the origin in TpM. This function is smooth on 
B (0, rri.J4=1) and satisfies 

"\12 fi :::; 1 - fi = COS f. 

On the region B (0, rr I .J4=1} - B (0, 2f - s) this function will therefore have 
strictly negative Hessian. In particular, the level sets for f or !I that lie in that 
region are strictly concave. Now map these level sets down into M via the expo­
nential map. As this map is nonsingular they will be mapped to strictly concave, 
possibly immersed, hypersurfaces in M. In the case M is simply connected, one 
can prove an analogue to the Hadamard theorem for immersed convex hypersur­
faces, namely, that they must be embedded spheres (this also uses that M has 
nonnegative curvature). However, if these hypersurfaces are embedded, then the 
exponential map must be an embedding on B (0, rr I .J4=1}, and in particular, 
we obtain the desired injectivity radius estimate. 

We can now prove the celebrated Rauch-Berger-Toponogov-Klingenberg sphere 
theorem, also known as the quarter pinched sphere theorem. 

Theorem 3.1 (1951-1961) If M is a simply connected closed Riemannian 
manifold with 1 :::; sec:::; 4-8, then M is homeomorphic to a sphere. 

Proof. We have shown that the injectivity radius is =::: rr I v' 4 - 8. Thus, we have 
large discs around every point in M. Now select two points p, q E M such that 
d (p, q) = diamM. Note that diamM :::: injM > rr 12. We now claim that every 
point x E M lies in one of the two balls B (p, rr I .J4=1} , orB (q, rr I .J4=1} , 
and thus M is covered by two discs. From this one can check using Meyer-Vietoris 
that all homology groups up to n vanish. This will imply that any degree 1 map 
M -+ sn is an isomorphism in homology. As M is simply connected Whitehead's 
theorem then tells us that this map is a homotopy equivalence. Actually, an explicit 
homeomorphism can be constructed. This will be done below in a more general 
setting. 

Now take x E M. Let d = diamM = d (p, q), a = d (p, x), and b = d (x, q). 
If, for instance, b > rr 12, then we claim that a < rr 12. First, observe that since 
q is at maximal distance from p, it must follow that q cannot be a regular point 
for the distance function top. Therefore, if we select any segment ai from x to 
q, then we can find a segment a2 from p to q that forms an angle a :::; rr 12 with 
a I at q. Then we can consider the hinge a I, a2 with angle a. The hinge version of 
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Toponogov's theorem now implies 

cos a ::::: cos b cos d + sin b sin d cos a 
::::: cos b cos d. 

Now, both b, d > n /2, so the left hand side is positive. This implies that a < n j2, 
as desired. D 

Note that the theorem says nothing about nonsimply connected manifolds other 
than that their universal covering must a sphere. We also know that Micallef and 
Moore proved a better theorem for manifolds that merely have positive isotropic 
curvature. The above proof suggests, perhaps, that the conclusion of the theorem 
should hold as long as the manifold has large diameter. This is the content of the 
next theorem. This theorem was first proved by Berger in 1962 with a different 
proof; however, he only concluded that the manifold was a homotopy sphere. The 
present version is known as the Grove-Shiohama diameter sphere theorem. It was 
for the purpose of proving this theorem that Grove and Shiohama invented critical 
point theory. 

Theorem 3.2 (Grove-Shiohama, 1977) If(M, g) is a closed Riemannian man­
ifold with sec ::::: 1 and diam > n /2, then M is homeomorphic to a 
sphere. 

Proof. Fix p, q E M with d (p, q) = diamM = d > nj2. We claim that the 
distancefunctionfromp hasonlyq as a critical point. Toseethis,letx E M -{p, q} 
and let a be the angle between any two geodesics from x to p and q. If we suppose 
that a ::::: n /2 and set a = d (p, x) and b = d (x, q) , then the hinge version of 
Toponogov's theorem implies 

0 > cos d ::::: cos a cos b + sin a sin b cos a 

::::: cos a cos b. 

But then cos a and cos b have opposite signs. If, for example, cos a E (0, 1) , then 
we have cosd >cosh, which implies b > d = diamM. Thus we have arrived at 
a contradiction, and hence we must have a > n j2. See also Figure 11.8. 

We can now construct a vector field X such that X is the gradient field for 
x ~ d (x, p) near p and the negative of the gradient field for x ~ d (x, q) near 
q. Furthermore, the distance to p increases along integral curves for X. For each 
x E M - {p, q} there is a unique integral curve for X through x. Suppose that x 
varies over a small distance sphere aB (p, e) that is diffeomorphic to sn-1• Then 
the length of this integral curve varies continuously with x. We can then multiply 
X by a function such that all integral curves have length n. Then M- {p, q} 
is parametrized as (t, x) E (0, n) x aB (p, e). Using polar coordinates (r, 0) E 

(0, n) X sn-1 on sn' we can then construct a homeomorphism M ~ sn. Note 
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FIGURE 11.8. 

that while this map could be differentiable, we have no way of knowing whether 
it is a diffeomorphism, as we can't compute its differential. D 

Aside from the fact that the conclusions in the above theorems could possibly 
be strengthened to diffeomorphism, we have optimal results. For the first case, 
complex projective space has curvatures in [1, 4], and for the second theorem, 
we can use real projective space in all dimensions as a space with sec = 1 and 
diam = n 12. If one relaxes the conditions slightly, it is, however, still possible to 
say something. 

Theorem 3.3 Suppose (M, g) is simply connected of dimension n with 1 :::; sec :::; 
4+e. 

(1) (Berger, 1983) If n is even, then there is e (n) > 0 such that M must 
be homeomorphic to a sphere or diffeomorphic to one of the spaces 
cpn/2' JH[pn/4, CaP2. 

(2) (Abresch-Meyer, 1994) Ifn is odd, then there is a universals > 0 such that 
M is homeomorphic to a sphere. 

The spaces cpn/2, JH[pn/4 , or CaP2 are known as the compact rank 1 symmetric 
spaces (CROSS). We already know the complex projective space. The quaternionic 
projective space is JH[pn = s4n+3 I S3 ' and the Cayley plane comes form a Rie­
mannian submersion: S23 -+ CaP2 (see also Chapter 8 for more on these spaces). 
The proof of (1) uses convergence theory. First, it is shown that if e = 0, then M is 
either homeomorphic to a sphere or isometric to one of the CROSSs. Then using 
the injectivity radius estimate in even dimensions, we can apply the convergence 
machinery. 

Theorem 3.4 (Gromoll-Grove, 1987) Suppose (M, g) is closed and satisfies 
sec :::: 1, diam :::: % Then one of the following cases holds: 

(1) M is homeomorphic to a sphere. 

(2) M is isometric to a finite quotient sn (1) I r, where the action of r is 
reducible (has an invariant subspace). 
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(3) M is isometric to one ofCpnf2, JHipnf4 , cpn/2 /'ll.2for n = 2mod4. 

(4) M has the cohomology ring ofCaP2. 

It is conjectured, but still unproved, that ( 4) can be improved to say that M is 
isometric to the Cayley plane. 

11.4 The Soul Theorem 

Let us commence by stating the theorem we are aiming to prove and then slowly 
work our way through the proof. 

Theorem 4.1 (Cheeger-Gromoll-Meyer, 1969, 1972) If (M, g) is a complete 
Riemannian manifold with sec :::: 0, then M contains a soul S C M, which is 
a closed totally convex submanifold, such that M is diffeomorphic to the normal 
bundle over S. Moreover, when sec > 0, the soulis a point and M is diffeomorphic 
to lRn. 

The history is briefly that Gromoll-Meyer first showed that sec > 0 implies 
that M is diffeomorphic to lRn. Soon after Cheeger-Gromoll established the full 
theorem. The Gromoll-Meyer theorem is in itself rather remarkable. 

We shall use critical point theory to establish this theorem. The problem lies in 
finding the soul. When this is done, it will be easy to see that the distance function 
to the soul has only regular points, and then we can use the results from the first 
section. 

Before embarking on the proof, it might be instructive to show the following 
much easier result, whose proof will be used in the next section. 

Lemma 4.2 (Critical Point Estimate) If (M, g) is a complete open manifold 
of nonnegative sectional curvature, then for every p E M the distance function 
d (·, p) has no critical points outside some ball B (p, R). In particular, M must 
have the topology of a compact manifold with boundary. 

Proof. We shall use a contradiction argument. So suppose we have a sequence 
Pk of critical points ford(·, p), where d (Pk. p) ---+ oo. We can without loss of 
generality assume that 

d (Pk+t• p):::: 2d (pko p). 

Now select segments lh from p to Pk· The above inequality implies that the angle 
at p between any two segments is:::: 1/6. To see this, suppose lh and ak+I form 
an angle< 1/6 at p. The hinge version ofToponogov's theorem then implies 

2 2 2 1 (d (pko Pk+I)) < (d (p, Pk+I)) + (d (Pko p)) - 2d (p, Pk+I)d (Pko p)cos (, 

~ (d (p, Pk+I)- ~d (Pk. p)) 
2 
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Now use that Pk is critical for p to conclude that there are segments from p to Pk 

and Pk+I to Pk that from an angle ::=: :rr /2 at Pk· Then use the hinge version again 
to conclude 

(d (p, Pk+l))2 ::S (d (Pk. p))2 + (d (Pk. Pk+l))2 

::S (d (pk. p))2 + ( d (p, Pk+l)- ~d (Pk. p) y 
25 2 2 3 = 16 (d (pk. p)) + (d (p, Pk+l)) - zd (p, Pk+l) d (pk. p), 

which implies 
25 

d (p, Pk+l) ::S 24 d (pk. p). 

But this contradicts our assumption that 

d (p, Pk+l):::: d (Pk+I, p):::: 2d (Pk. p). 

Now that all the unit vectors irk (0) form angles of at least 1/6 with each other, we 
can conclude there can't be infinitely many such vectors. Hence, there cannot be 
critical points infinitely far away from p. 

Observe that the vectors ih (0) lie on the unit sphere in Tp M and are distance 
1/6 away form each other. Thus, the balls B (irk (0), 1/12) are disjoint in the unit 
sphere and hence there are at most 

such points. 

v (n - 1, 1, :rr) ----.,-----;--:-- ::::: won 
v (n- 1, 1, 1~) 

D 

We now have to explain what it means for a submanifold, or more generally a 
subset, to be totally convex. A subset C c M of a Riemannian manifold is said to 
be totally convex if any geodesic in M joining two points in A actually lies in A. 
There are actually several different kinds of convexity, but as they are not important 
for any other developments, we shall confine ourselves to total convexity. The first 
observation is that this definition agrees with the usual definition for convexity in 
Euclidean space. Other than that, it is not clear that any totally convex sets exist 
at all. For example, if A = {p} , then A is totally convex only if there are no 
geodesic loops based at p. This means that points will almost never be totally 
convex. In fact, if M is closed, then M is the only totally convex subset as there 
must be a geodesic loop based at every point (to establish this requires something 
like the curve shortening process as explained in [50]). On complete manifolds it 
is possible to find totally convex sets. 

Example 4.3 Let (M, g) be the flat cylinder lR X S 1• All of the circles {p} X S 1 

are geodesics and actually totally convex. This also means that no point in M can 
be totally convex. In fact, all of those circles are souls. See also Figure 11.9. 
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FIGURE 11.9. 

s 

FIGURE 11.10. 

Example 4.4 Let (M, g) be a smooth rotationally symmetric metric on ~2 of 
the form dr2 + rp2 (r) d0 2 , where rp" < 0. Thus, (M, g) looks like a parabola of 
revolution. The radial symmetry implies that all geodesics emanating from the 
origin r = 0 are rays going to infinity. Thus the origin is a soul and totally convex. 
Most other points, however, will have geodesic loops based there. See also Figure 
11.10. 

The way to find totally convex sets is via 

Lemma 4.5 Iff: (M, g)---+ ~isconcave,inthesensethattheHessianisweakly 
nonpositive everywhere, then every superlevel set A = {x E M : f (x) 2: a} is 
totally convex. 

Proof. Given any geodesic y in M, we have that the function f o y has non­
positive weak second derivative. Thus, f o y is concave as a function on R In 
particular, the minimum of this function on any compact interval is obtained at 
one of the endpoints. This finishes the proof. D 

Now the important discovery we must make is that of the existence of proper 
concave functions on any complete manifold of nonnegative sectional curvature. 
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Lemma 4.6 Suppose (M, g) is as in the theorem and that p EM. If we take all 
rays Ya emanating from p and construct 

f = inf bYa• 
a 

where by denotes the Busemannfunction, then f is both proper and concave. 

Proof. First we show that in nonnegative sectional curvature all Busemann func­
tions are concave. Using that, we can then show that the given function is concave 
and proper. 

Recall that in nonnegative Ricci curvature Busemann functions are superhar­
monic. The proof of concavity is almost identical. But instead of the Laplacian esti­
mate for distance functions, we must use a similar Hessian estimate. If h = d ( ·, p) , 
then we know 

Thus, we always have that 

w =aVh 

g(w, Vh) = 0 

V 2h <.!... -h 
We can now proceed as in the Ricci curvature case to show that Busemann functions 
have nonpositive Hessians in the weak sense and are therefore concave. 

The infimum of a collection of concave functions is clearly concave. So we must 
now show that the superlevel sets for f are compact. Suppose, on the contrary, 
that some superlevel set A = {x E M: f (x) :::a} is noncompact. As all of the 
Busemann functions bya are zero at p, also f (p) = 0. So p E A. Now, using 
noncompactness, select a sequence Pn E A that goes to infinity. Then join Pn 
to p by a segment, and as in the construction of rays, choose a subsequence of 
these segments converging to a ray emanating from p. As A is convex, all of these 
segments lie in A. Then, since A is also closed, the ray must lie in A as well and 
therefore be one of the rays Ya· But f (Ya (t))::: bya (Ya (t)) = -t ---+ -oo, so we 
have a contradiction. D 

We now need to establish a few properties of totally convex sets. 

Lemma 4.7 If A C (M, g) is totally convex, then A has an interior, denoted by 
int A, and a boundary a A. The interior is a totally convex submanifold of M, and 
the boundary has the property that for each x E a A there is a vector v E Tx M 
such that if y (t) : [0, a] ---+ A is a geodesic with y (0) = x andy (a) E int A, 
then L (v, y (0)) < rr /2. 

Some comments are in order before the proof. The words interior and bound­
ary, while describing fairly accurately what the sets look like, are not meant in 
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FIGURE 11.11. 

the topological sense. Most convex sets will, of course, not have any topological 
interior at all. The property about the boundary is what is often called the support­
ing hyperplane property. Namely, the interior of the convex set is supposed to lie 
strictly on one side of a hyperplane at any of the boundary points. The vector v is 
the normal to this hyperplane and can be taken to be tangent to some geodesic that 
goes into the interior. It is important to note that the supporting hyperplane prop­
erty shows that the distance function to a subset of intA cannot have any critical 
points on a A. See also Figure 11.11. 

Proof. We can without loss of generality assume that A is closed. The convexity 
radius estimate from Chapter 6 will also be used in many places. Namely, we shall 
use that there is a positive function e (p) : M --+ (0, oo) such that the distance 
function d P (x) = d (x, p) is smooth and strictly convex on B (p, e (p)) . 

First, let us identify points in the interior and on the boundary. Find the maximal 
integer k such that A contains a k-dimensional submanifold of M. If k = 0, then 
A must be a point. For if A contains two points, then A also contains a segment 
joining these points and therefore a !-dimensional manifold. Now define N c A 
as being the union of all k-dimensional submanifolds in M that are contained in A. 
We claim that N is a k-dimensional totally geodesic submanifold whose closure 
is A. We shall thus identify intA with N and a A with A - N. 

To see that it is a submanifold, pick p E N and let N P c A be a k-dimensional 
submanifold of M containing p. Since N P is a submanifold, we can assume that 
for some small8 E (0, e (p)) we have B (p, 8)nNp = NP. We now claim that also 
B(p,8)nA = Np.Ifthiswerenottrue,thenwecouldfindq E AnB(p,8)-Np. 
Now assume that 8 is so small that also 8 < injP. Then we can join each point 
in N P to q by a unique segment. The union of these segments will, away from 
q, form a cone that is a k + !-dimensional submanifold which is contained in A 
(see Figure 11.12), thus contradicting maximality of k. In particular, N must be a 
submanifold as we have B (p, 8) n N = Np. 

What we have just proved can easily be modified to show that for points p E 

N and q E A with the property that d (p, q) < injq there is a k-dimensional 
submanifold N P c N such that q E N P, namely, just take a (k - 1 )-dimensional 
submanifold through p in N perpendicular to the segment from p to q and consider 
the cone over this submanifold with vertex q. From this statement we get the 
property that if y : [0, a] --+ A is a geodesic, then y (0, a) c N provided that, 
say, y (0) E N. In particular, N is dense in A. 
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p 

Having identified the interior and boundary, we now have to establish the sup­
porting hyperplane property. Define Ae = {x E A: d (x, aA):::: B}. For p E aA 

select q E Ae such that d (q, p) = B. Then x -+ d (q, x) has a local minimum at p 
when restricted to aA. Therefore, if y : [0, a] -+ A is a geodesic withy (0) = p, 
then we must have that d (q, y (t)) ~ B for small t. But then, g (Vd, y (0)) ~ 0, 
or in other words, L (Vd, y (0)) :::: 1r /2. This almost gives us the supporting plane 
property, but a little more work is needed. 

For p E aA let Cp be the cone of vectors v E TpM such that the geodesic 
expP (tv) E N for some t > 0, and hence all small t > 0. Using that N is a 
submanifold, it is easy to show that C P is an open subset of spanC P and that 
dim spanC P = k. For B > 0 small, suppose we can select q E Ae such that 
d (q, p) =B. The set of such points is clearly 2B-dense in a A. So the set of points 
p E aA for which we can find an B > 0 and q E Ae such that d (q, p) = B is 
dense in a A. As the supporting plane property is an open property, it suffices to 
prove it for such p (this follows from critical point theory). We can also suppose 
Bisso small that dq = d (·, q) is smooth and convex on a neighborhood contain­
ing p. We claim that L (-V dq, v} < 1r /2 for all v E C P. To see this, observe 
that we have a convex set An B (q, B) c N, and p E aA n iJ (q, B). Then Cp 
containsthesetofvectors{v E TpM: expp (tv) E An B(q, B) forsmallt > 0}. 
This set is clearly also open in spanC P and furthermore can be identified 
with the set of vectors {v E spanCp: L (v, -Vdq} < rr/2}. If now Cp =/= 
{ v E spanC P : L ( v, - V dq) < 1r /2} , then openness of C P in spanC P implies that 
there must be a v E C P such that also - v E C P (because the weaker inequality ~ 
already holds). But this implies that p E N, as it becomes a point on a geodesic 
whose endpoints lie in N. (See Figure 11.13.) D 

The last lemma we need is 

Lemma 4.8 Let (M, g) have sec:::: 0. If A C M is totally convex, then distance 
function d : A -+ R defined by d (x) = d (x, aA) is concave on A, and strictly 
concave if sec > 0. 
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FIGURE 11.14. 

Proof. We shall show that the Hessian is nonpositive in the support sense. So fix 
q E intA, and find p E aA so that d (p, q) = d (q, aA). Then select v E TpM 
as in the above lemma. We can now find a small hypersurface H, as in Chapter 6, 
such that v is normal to H, the shape operator for H at p is zero and H n intA = 0. 
(See Figure 11.14.) 

Then d ( ·, H) is a support function from above ford ( ·, a A) near q. Thus, we only 
need to show that it has nonpositive Hessian in the support sense. If a : [0, a] ~ A 
is a segment from p to q, then it is also an integral curve for V d ( ·, H) as long 
as d (·,H) is smooth. As V2d (·,H) = 0 initially along a, the radial curvature 
equation 

La V2d (·,H)= -R&- (V2d (·, H))2 

:5 - (V2d (·, H))2 

tells us that V2d (·, H) :5 0 along a (and< 0 if sec > 0). Thus, we are finished if 
d ( ·, H) is smooth at q. Otherwise, we can find t < a and a hypersurface H1 with 
normal a (t) at a (t) and zero shape operator at a (t) such thatd (·, H1 ) is smooth at 
q and therefore also has nonpositive (negative) Hessian at q. In this case we claim 
that t + d ( ·, H1 ) is a support function ford ( ·, a A) . Clearly, the functions are equal 
at q. As the hypersurfaces H and H1 can be supposed to be of the form where they 
contain the geodesics perpendicular to a, we have that the length comparison from 
Chapter 6 implies 

t 2: d (x, H) 2: d (x, aA) for all x E H1 • 
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FIGURE 11.15. 

This shows the support property. D 

We are now ready to prove the soul theorem. Start with the proper concave 
function f constructed from the Busemann functions. The maximum level set 
C1 = {x EM: f (x) =max f} is nonempty and convex since f is proper and 
concave. Moreover, it follows from the previous lemma that C 1 is a point if sec > 0. 
This is because the super level sets A = {x E M : f (x) :::: a} are convex with 
a A= f- 1 (a), so f = d (·,a A) on A. Now, a strictly concave function (Hessian 
in support sense is negative) must have a unique maximum or no maximum, thus 
showing that C 1 is a point. If C 1 is a submanifold, then we are also done, ford ( ·, C 1) 

has no critical points, as any point lies on the boundary of a convex superlevel 
set. Otherwise, C 1 is a convex set with nonempty boundary. But then d (·, aC1) is 
concave. The maximum set C2 is again nonempty, since C 1 is compact and convex. 
If it is a submanifold, then we again claim that we are done. For the distance function 
d (·, C2) has no critical points, as any point lies on the boundary for a superlevel 
set for either ford(·, aC1). We can now iterate to get a sequence of convex sets 
C1 ::J C2 ::J · · · ::J Ck. We claim that in at most n = dim M steps we arrive at a 
point or submanifold, which we write as Sand call the soul (see Figure 11.15). 
This is because dim Ci > dim Ci +I· To see this suppose dim Ci = dim Ci + 1; then 
intC+1 will be an open subset ofintCi. So if p EintCi+l, then we can find 15 such 
that B (p, 15) nintCi+l = B (p, 15) nintCi. Now choose a segment a from p to aci. 
Clearly d (·, aci) is strictly increasing along this curve. This curve, however, runs 
through B (p, 15) nintCi, thus showing that d ( ·, aci) must be constant on the part 
of the curve close to p. 

Much more can be said about complete manifolds with nonnegative sectional 
curvature. A rather complete account can be found in Greene's survey in [46]. We 
briefly mention two important results: 

Theorem 4.9 Let S be a soul of a complete Riemannian manifold with sec :::: 0, 
arriving from the above construction. 

(I) (Sharafudtinov, 1978) There is a distance-nonincreasing map sh : M-+ S 
such that sh1s = id. In particular, all souls must be isometric to each other. 

(2) (Perel'man, 1993) The map sh : M-+ Sis a submetry. From this it follows 
that S must be a point if all sectional curvatures based at just one point are 
positive. 
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Having reduced all complete nonnegatively curved manifolds to bundles over 
closed nonnegatively curved manifolds, it is natural to ask the converse question: 
Given a closed manifold S with nonnegative curvature, which bundles over S admit 
complete metrics with sec 2: 0? Clearly, the trivial bundles do. When S = T 2 

Ozaydm-Walschap in [67] have shown that this is the only 2-dimensional vector 
bundle that admits such a metric. Still, there doesn't seem to be a satisfactory 
general answer. If, for instance, we let S = S2, then any 2-dimensional bundle is 
of the form ( S3 x C) IS 1 , where S 1 is the Hopf action on S3 and acts by rotations 
on C in the following way: w x z = wk z for some integer k. This integer is the Euler 
number of the bundle. As we have a complete metric of nonnegative curvature on 
S3 x C, the O'Neill formula from the exercises to Chapter 2 shows that these 
bundles admit metrics with sec 2: 0. 

There are some interesting examples of manifolds with positive and zero Ricci 
curvature that show how badly the soul theorem fails for such manifolds. In 1978, 
Gibbons-Hawking in [39] constructed Ricci flat metrics on quotients of C2 blown 
up at any finite number of points. Thus, one gets a Ricci flat manifold with ar­
bitrarily large second Betti number. About ten years later Sha-Yang showed that 
the infinite COnnected SUm ( S2 X S2) U ( S2 X S2 ) U · · · U ( S2 X S2 ) U · · · admits a 
metric with positive Ricci curvature, thus putting to rest any hopes for general 
theorems in this direction. Sha-Yang have a very nice survey in [41] describing 
these and other examples. The construction uses doubly warped product metrics 
on I x S2 x S1 as described in Chapter 3, and then some topology. 

11.5 Finiteness of Betti Numbers 

The theorem we wish to prove is 

Theorem 5.1 (Gromov, 1978, 1981) There is a constant C (n) such that any 
complete manifold (M, g) with sec 2: 0 satisfies 

(1) :rr1 (M) can be generated by::: C (n) generators. 

(2) For any field F of coefficients the Betti numbers are bounded: 

n n Lb; (M, F)= LdimH; (M, F)::: C(n). 
i=O i=O 

Part (2) of this result is considered one of the deepest and most beautiful results 
in Riemannian geometry. Before embarking on the proof, let us put it in context. 
First, we should note that the Gibbons-Hawking and Sha-Yang examples show 
that a similar result cannot hold for manifolds with nonnegative Ricci curvature. 
Sha-Yang also exhibited metrics with positive Ricci curvature on the connected 
sums 

k times 
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FIGURE 11.16. 

For large k, the Betti number bound shows that these connected sums cannot have 
a metric with nonnegative sectional curvature. Thus, we have simply connected 
manifolds that admit positive Ricci curvature but not nonnegative sectional curva­
ture. The reader should also consult our discussion of manifolds with nonnegative 
curvature operator at the end of Chapters 7 and 8. Let us list the open problems that 
were posed there and settled for manifolds with nonnegative curvature operator: 

(1) (H. Hopf) Does S2 x S2 admit a metric with positive sectional curvature? 

(2) (H. Hopf) If M is even-dimensional, does sec ~ 0 (> 0) imply x (M) ~ 0 
(> 0)? 

(3) (Gromov) If sec~ 0, is L:7=o b; (M, F) ~ 2n? 

First we establish part ( 1) of the above theorem: 

Proof of (1). We shall construct what is called a short set of generators for rr1 (M) . 
We consider rr1 (M) as acting by deck transformations on the universal covering 
M and fix p E M. We then inductively select a generating set {g1, g2 , •• • } such 
that 

(a) d (p, g1 (p)) ~ d (p, g (p)) for all g E rr1 (M). 

(b) d (p, gk (p))::::; d (p, g (p)) for all g E rr1 (M)- (g1, ••• , gk-J). 

Now join p and gk (p) by segments (Jk (see Figure 11.16). We claim that the 
angle between any two such segments is ~ rr /3. 

Otherwise, the hinge version of Toponogov's theorem would imply 

(d (gk+l (p)' gk (p)))2 < (d (p, gk (p)))2 

+ (d (p, gk+l (p)))2 - d (p, gk (p))d (p, gk+l (p)) 

~ (d (p, gk+l (p)))2 . 
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FIGURE 11.17. 

But then 
d (gk~l 0 gk (p)' p) < d (p, gk+l (p))' 

which contradicts our choice of gk+l· 
It now follows that there can be at most 

v (n - 1, 1, n) 

v(n-1,1,~) 

elements in the set {g1, g2, •• • } • We have therefore produced a generating set with 
a bounded number of elements. 

Observe how closely this proof resembles that of the critical point estimate 
lemma from the previous section. D 

The proof of the Betti number estimate is established through several lemmas. 
First, we need to make three definitions for metric balls. Throughout, we fix a 
Riemannian n-manifold M with sec 2: 0 and a field F of coefficients for our 
homology theory H* (·,F)= Ho (·,F) E9 · · · E9 Hn (·,F). 

Content: The content of a metric ball B (p, r) c M is 

contB (p, r) =rank ( H* ( B (p, ~r), F) ---+ H* (B (p, r), F)). 
The reason for working with content, rather that just the rank of H* (B (p, r), F) 
itself, is that metric balls might not have finitely generated homology. However, if 
OJ c M is any bounded subset of a manifold and OJ c 0 2 c M, then the image 
of H* ( 0 1, F) in H* ( 0 2 , F) is finitely generated. In Figure 11.17 we have taken 
a plane domain and extracted infinitely many discs of smaller and smaller size. 
This yields a compact set with infinite topology. Nevertheless, this set has finitely 
generated topology when mapped into any neighborhood of itself, as that has the 
effect of canceling all of the smallest holes. 

Corank: The corank of a set A c M is defined as the largest integer k such that 
we can find k metric balls B (p1 , r1) , ••• , B (Pk, rk) with the properties 

(a) There is a critical point Xi for Pi with d (Pi, xi) = lOri. 
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Xz 

FIGURE 11.18. 

(b) r; =:: 3r;-t fori = 2, ... , k. 
(c) A C n~=t B (p;, r;). 

In Figure 11.18 we have a picture of how the set A and the larger circles might 
be situated relative to each other. 

Compressibility: We say that a ball B (p, r) is compressible if it contains a ball 
B (q, r'} c B (p, r) such that 

(a) r' :::= ~. 
(b) contB (q, r'}::: contB (p, r). 

If a ball is not compressible we call it incompressible. Note that any ball with 
content > 1, can be successively compressed to an incompressible ball. Figure 
11.19 gives a scematic picture of a ball that can be compressed into a smaller ball. 

We shall now tie these three concepts together through some lemmas that will 
ultimately lead us to the proof of the Betti number estimate. Observe that for larger, 
the ball B (p, r) contains all the topology of M, so contB (p, r) = L; b; (M, F). 
Also, the corank of such a ball must be zero, as there can't be any critical points 
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FIGURE 11.19. 

outside this ball. The idea is now to compress this ball until it becomes incom­
pressible and then estimate its content in terms of balls that have corank 1. We shall 
in this way successively be able to estimate the content of balls of fixed corank in 
terms of the content of balls with one higher corank. The proof is then finished 
first, by showing that the corank of a ball is uniformly bounded by won, and sec­
ond, by observing that balls of maximal corank must be contractible and therefore 
have content 1 (otherwise they would contain critical points for the center, and the 
center would have larger corank). 

Lemma 5.2 The co rank of any set A c M is bounded by 1 oon. 

Proof. Suppose that A has corank larger than 1 oon. Select balls B (Pi, ri) , ... , 
B (pk. rk) with corresponding critical points Xi' .•. 'Xk, where k > won. Now 
choose z E A and join z to xi by segments ui. As in the critical point estimate 
lemma, we can then find two of these segments ui and u i that form an angle < 1 I 6 
at z. 

For simplicity, suppose i < j and define 

and observe that 

ai = l (ui) = d (z, Xi), 

ai =l(ui) =d(z,xi), 

l=d(xi,xi), 

bi = d (z, Pi).::; ri, 

bj = d (z, Pi)_:::; Tj. 

Figure 11.20 gives pictures explaining the notation in the proof. 
The triangle inequality implies 

ai .::; Wri + bi .::; lln, 

ai 2: Wri- ri 2: 9ri. 
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FIGURE 11.20. 

Also, r i :::: 3r;, so we see that a i > a;. As in the critical point estimate lemma, 
we can conclude that 

3 
l <a·- -a·. 

- J 4 I 

Now use the triangle inequality to conclude 

c = d (Pi, X j) :::: a j - b; 

:::: lOri- bi-b; 

::::Sri 

:::: 24r; 

:::: 20r; = 2d (p;, x;). 

Yet another application of the triangle inequality will then imply 

Since X; is critical for p;, we can now use the hinge version ofToponogov 's theorem 
to conclude 

c2 ::::: (d (p;, X; ))2 + 12 

::::: (z + ~d (p;, x;)) 2 

Thus, 

1 
c < l + -d (p· x·) - 2 I• I 

::::: l + Sr;. 
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The triangle inequality then implies 

a j ~ c + b; ~ c + r; ~ 1 + 6r;. 

However, we also have 

a; ~ lOr;- b; ~ 9r;, 

which together with 
3 

1 <a·- -a· - J 4 I 

implies 
27 

1 <a·- -r·. 
- J 4 I 

Thus, we have a contradiction: 

27 
1 + -r· <a·< 1 + 6r·. 4 I- J- I 

D 

Having bounded the corank, let us see how the topology changes when we pass 
from balls of lower corank to balls of higher corank. Let C (k) denote the set of 
balls in M of corank ~ k, and l3 (k) the largest content of any ball inC (k). 

Lemma 5.3 There is a constant C (n) depending only on dimension such that 

l3 (k) ~ C (n) l3 (k + 1). 

Proof. The number l3 (k) is, of course, realized by some incompressible ball 
B (p, R). Now consider a ball B (x, r) where x E B (p, R/4) and r ~ R/10. We 
claim that this ball lies inC (k + 1). To see this, consider the ball B (x, R/2) c 
B (p, R) c B (x, 5R). Since B (p, R) is assumed to be incompressible, there 
must be a critical point for x in the annulus B (x, 5 R) - B (x, R /2) . For otherwise 
we could deform B (p, R) to B (x, R/2) inside B (x, 5R). This would imply that 
contB (p, R) ~ contB (x, R /2) and thus contradict incompressibility of B (p, R) . 
We can now show that B (x, r) E C (k + 1). Using that B (p, R) E C (k), select 
B (p1 , r 1) , ••• , B (p1, rt), 1 ~ k, as in the definition of corank. Then pick a critical 
pointy for x in B (x, 5R)- B (x, R/2) and consider the ball B (x, d (x, y) flO). 
Then the balls B (p1, r 1), ••• , B (p1, r1), B (x, d (x, y) /10) can be used to show 
that B (x, r) has corank ~ 1 + 1 > k. 

Now cover B (p, R/5) by balls B (p;, R/50), i = 1, ... , m. If we suppose that 
the balls B (p;, R/100) are pairwise disjoint, then we must have: 
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Now consider the sets B (Pi, ~ R} c B (p, R). First, we claim that 

contB (p, R) 00 rank (H. (Q B (p,, 5
1
0 R), F) 

~H. (QB (p,, ~R), F)). 
This follows from the simple observation that if A c B c C c D, then 

To estimate the right-hand side of the above inequality, it is natural to suppose that 
we can use a Meyer-Vietoris argument, together with induction on m, to show 

rank (H. (Q B (Pt, 5~ R) . F) ~ H. (Q B (P•. H • F)) 
oo ,,~,,rank (H. (QB (p,,, 5~R), F)~ H. (QB (p,, ~R), F)). 

I:S;s~m 

We then observe that if n:=I B (Pi,, 510 R) f. 0, then the triangle inequality implies 

0 B (Pi,, 5
1
0 R) C B (Pip 5~R) C B (Pip 1~R) C 0 B (Pi,, ~R). 

As each of the balls B (Pi, R f 1 0) E C (k + 1) , and there can be at most 2m 
nonempty intersections, we then arrive at the estimate 

contB (p, R) = B (k) ::::; 2200" · B (k + 1). 

This is the desired inequality. 

We now claim that 
contM < 220000" - ' 

which will, of course, prove the theorem. The above lemma clearly yields that 

contM = B(O) 

::::; B (k) · (2200")k 

= B (k) · 2k·200" 

:::: B (k) · 220ooon, 

D 

where k ::::; lOOn is the largest possible corank in M. It then remains to check that 
B (k) = 1. However, it follows from the above that if C (k) contains an incom­
pressible ball, then C (k + 1) f. 0. Thus, all balls inC (k) are compressible, but 
then they must have minimal content = 1. 
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The above estimate on the rank of the inclusion 

in terms of the ranks of all the intersections, is in fact not quite right. One really 

needstoconsiderthedoublyindexedfamily B(pi, 1(5-1oir1-R), j = 1, ... , n+ 
2, where we assume that for each fixed j the family covers B (p, ~R). The correct 
estimate is then that the rank of the inclusion 

is bounded by the rank of all of the possible intersections 

Whenever such an intersection n:=l B (Pi,, ·R) #- 0, we still have the inclusions 

0 B (Pi,, 5 . ~Oi · R) C B (Pil' 5 . ~Oi · R) 

c B (Pi I ' 1 ~j . R) 
c flB (Pi,, 1 ~i · R). 

t=I 

So we can still estimate those ranks by the content of balls in C (k + 1) . We 
have, however, more intersections and also more balls, as this time the smaller 
balls B (Pi, 1 o-n-l · R) have to cover. One can easily compute the correct Betti 
number estimate with these modifications. The reader should consult the survey 
by Cheeger in [25] for the complete story. 

The Betti number theorem can easily be proved in the more general context 
of manifolds with lower sectional curvature bounds, but one must then also as­
sume an upper diameter bound. Otherwise, the ball covering arguments, and also 
the estimates using Toponogov's theorem, won't work. Thus, there is a constant 
C (n, D, k) such that any closed Riemannian n-manifold (M, g) with sec::=: k and 
diam ::: D has 

(1) n 1 (M) can be generated by::: C (n, k, D) elements. 
(2) L7=o bi (M, F) ::: C (n, D, k). 
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11.6 Homotopy Finiteness 

We shall prove in this section a result that interpolates between Cheeger's finiteness 
theorem and Gromov's Betti number estimate. We know that in Gromov's theorem 
the class under investigation contains infinitely many homotopy types, while if we 
have a lower volume bound and an upper curvature bound as well, Cheeger's result 
says that we have finiteness of diffeomorphism types. 

Theorem 6.1 (Grove-Petersen, 1988) Given an integer n > 1 and numbers 
v, D, k E (0, oo), the class of Riemannian n-manifolds with 

diam:::; D, 

vol:::: v, 

sec:::: -k2 

contains only finitely many homotopy types. 

As with the other proofs in this chapter, we need to proceed in stages. First, we 
present the main technical result. 

Lemma 6.2 For a manifold as in the above theorem, we can find a = 
a (n, D, v, k) E (0, ~)and 8 = 8 (n, D, v, k) > 0 such that if p, q E M satisfy 
d (p, q) :::; 8, then either pis a-regular for q or q is a-regular for p. 

Proof. The proof is by contradiction. So assume we have a pair of points p, q E 

M that are not a-regular with respect to each other, and set l = d (p, q) :::; 8. Let 
r (p, q) denote the set of unit speed segments from p to q, and define 

r pq = { v E Tp M : v = a (0) , a E r (p, q)} , 

rqp = { -v E TqM: v =a (r), a E r (p, q)}. 

Then the two sets r pq and r qp of unit vectors are by assumption (rr - a )-dense 
in the unit sphere. Now recall from the exercises to Chapter 9 that if A c sn-1, 
then the function 

volB (A, t) 
t~----­

v(n -1, 1,t) 

is decreasing. In particular, we must have for any (rr - a )-dense set A c sn-l that 

vol (sn- 1 - B (A, a))= volsn-l - volB (A, a) 

lsn-1 lsn-1 v (n- 1, 1, a) 
< vo - vo . -------
- v (n - 1, 1, rr - a) 

n-l v(n -1, 1, 1f -a)- v(n -1, 1,a) 
= volS · . 

v (n- 1, 1, 1r -a) 
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' ' ' ' ' ' ' 

FIGURE 11.21. 

Now choose a < rr /2 such that 

' ' ' ' ' ' ' ' ' ' ' ' 

n- 1 v (n- 1, 1, rr- a)- v (n- 1, 1, a) 1D n- 1 v 
volS · · (snk (t)) dt = -. 

v(n-1,1,rr-a) 0 6 

Thus, the two cones (see exercises to Chapter 9) satisfy 

volBs•-1-B(tpq.a) (p D)< ~ 
' - 6' 

volBs•-1-B(tqp.a) (q, D)::=; ~· 

We now use Toponogov's theorem to choose i3 such that any point in M that 
does not lie in one of these two cones must be close to either p or q (Figure 11.21 
shows how a small i3 will force the other leg in the triangle to be smaller than r ). 
To this end, pick r > 0 such that 

We now claim that if i3 is sufficiently small, then 

M = B (p, r) U B (q, r) U Bs•-1-B(tpq.a) (p, D) U Bs•-1-B(tqp.a) (q, D). 

This will, of course, lead to a contradiction, as we would then have 

v:::; volM 

::=; vol ( B (p, r) U B (q, r) U Bs•-1-B(tpq.a) (p, D) U Bs•-I-B(tqp.a) (q, D)) 

v 
< 4·- < v. - 6 

To see that these sets cover M, observe that if x ¢. volBs•-I-B(tpq.a) (p, D), 
then there is a segment form x to p and a segment form p to q that form an angle 
:::; a. (See Figure 11.22.) 

Thus, we have from Toponogov's theorem that 

cosh d (x, q) :::; cosh l cosh d (x, p) - sinh l sinh d (x, p) cos (a) . 
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FIGURE 11.22. 

If also x fj. vo1Bs•-l-B(tqp.a) (p, D), we have in addition, 

coshd (x, p):::: cosh[ coshd (x, q)- sinhl sinhd (x, q)cos (a). 

If in addition d (x, p) > rand d (x, q) > r, we get 

cosh d (x, q) :::: cosh l cosh d (x, p) - sinh l sinh d (x, p) cos (a) 

:::: coshd (x, p) +(cosh[- 1) cosh D- sinhl sinhr cos (a) 

and 

coshd (x, p):::: coshd (x, q) + (coshl- 1) cosh D- sinhl sinhr cos (a). 

However, as l ~ 0, we see that the quantity 

f (l) = (coshl- 1) cosh D- sinhl sinh r cos (a) 

= (- sinhr cosa)l + 0 (P) 

becomes negative. Thus, we can find~ (D, r, a) > 0 such that for l ::::~we have 

(cosh l - 1) cosh D - sinh l sinh r cos (a) < 0. 

We have then arrived at another contradiction, as this would imply 

coshd (x, q) < coshd (x, p) 

and 
coshd (x, p) < coshd (x, q) 

at the same time. Thus, the sets cover as we claimed. As this covering is also 
impossible, we are lead to the conclusion that under the assumption that d (p, q) :::: 

~.we must have that either pis a-regular for q or q is a-regular for p. 0 

As it stands, this lemma seems rather strange and unmotivated. A little analysis 
will, however, enable us to draw some very useful conclusions from it. 
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FIGURE 11.23. 

Consider the product M x M with the product metric. Geodesics in this space 
are of the form (y1, y2) , where both y1 , y2 are geodesics in M. In M x M we have 
the diagonal 11 = {(x, x): x EM}, which is a compact submanifold. Note that 
Tc.p,p)11 = { (v, v): v E TpM}, and consequently, the normal bundle is v (11) = 
{ (v, -v): v E TpM}. Therefore, if(u1, u2): [a, b] --+ M x M is a segment from 
(p, q) to 11, then we must have that &1 (b) = -&2 (b). Thus these two segments 
can be joined at the common point O'I (b) = u2 (b) to form a geodesic from p to q in 
M. This geodesic is, in fact, a segment, for otherwise, we could find a shorter curve 
from p to q. Dividing this curve in half would then produce a shorter curve from 
(p, q) to 11. Thus, we have a bijective correspondence between segments from p 
to q and segments from (p, q) t~ 11. Moreover, ,Ji · d ((p, q), 11) = d (p, q ). The 
above lemma now implies 

Corollary 6.3 Any point within distance aj,Jl of 11 is a-regular for 11. 

Figure 11.23 shows how the contraction onto the diagonal works and also how 
segments to the diagonal are related to segments in M. 

Thus, we can find a curve of length ~ 1 j cos a · d ( (p, q) , 11) from any point in 
this neighborhood to 11. Moreover, this curve depends continuously on (p, q) . We 
can translate this back into M. Namely, if d (p, q) < 8, then p and q are joined 
by a curvet --+ H (p, q, t), 0 ~ t ~ 1, whose length is ~ 1jcosa · d (p, q). 
Furthermore, the map (p, q, t) --+ H (p, q, t) is continuous. For simplicity, we let 
C = 1jcosa in the constructions below. 

We now have the first ingredient of our proof. 

Corollary 6.4 If f 0 , !I : X --+ M are two continuous maps such that 
d Uo (x) , !I (x)) < 8 for all x E X, then fo and /J are homotopy equivalent. 
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Po 

FIGURE 11.24. 

For the next construction, recall that a k-simplex !':!.. k can be thought of as the 
set of affine linear combinations of all the basis vectors in JRk+', i.e., 

!':!.. k = { (x0 , ••• , xk) : x 0 + · · · + xk = 1 and x 0 , ••• , xk E [0, 1]} . 

The basis vectors ei = ( ~l, ... , 8?) are called the vertices of the simplex. 

Lemma 6.5 Suppose we have k + 1 points po, ... , Pk E B (p, r) C M. If 

ck -1 
2r < 8, c -1 

then we can find a continuous map 

f: l:!..k--+ B p, r + 2r · C · - , ( ck 1) 
c -1 

where f (ei) =Pi· 

Proof. Figure 11.24 gives the essential idea of the proof. The proof goes by 
induction on k. Fork= 0 there is nothing to show. 

Suppose now that the statement holds for k and that we have k + 2 points 
po, ... , Pk+t E B (p, r). First, we find a map 

f : !':!.. k --+ B p, 2r · C · - + r ( ck 1 ) 
c -1 

with f (ei) =Pi fori= po, ... , Pk· We then define 

( ck+1 - 1) j : l:!..k+l --+ B p, r + 2r · C · C _ 1 , 

( ( 
0 k ) ) - 0 k k+! X X k+! f (x , ... , x , x ) = H f k . , ... , k . , Pk+t, x . 

Li=l XI Li=l XI 

This clearly gives a well-defined continuous map as long as 
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<5:_d(t( :0 i, ... , :k i).p)+d(p,pk+l) 
Li=l X Li=l X 

< (2r . c . ck 1 + r) + r - c -1 

with the property that 

ck+1 - 1 
=2r·---

C -1 
<l3 

d (p, j 0) <5:. d (p, Pk+I) + d (Pk+l• f 0) 
ck+1 - 1 

<5:_r+2r·C·---
C -1 

This concludes the induction step. D 

Note that if we select a face spanned by, say, (e1, ••• , ek) of the simplex !).k, 

then we could, of course, construct a map in the above way by mapping ei to Pi. 
The resulting map will, however, be the same as if we constructed the map on the 
entire simplex and restricted it to the selected face. 

We can now prove finiteness of homotopy types. First, observe that the class we 
work with is precompact in the Gromov-Hausdorff distance, as we have an upper 
diameter bound and a lower bound for the Ricci curvature. It therefore suffices to 
prove 

Lemma 6.6 There is an s = s (n, k, v, D) > 0 such that if two Riemannian 
n-manifolds (M, g1) and (N, g2) satisfy 

and 

diam <5:. D, 

vol ~ v, 

sec~ -k2 , 

dG-H (M, N) < B, 

then they are homotopy equivalent. 

Proof. Suppose M and N are given as in the lemma, together with a metric d on 
M U N, inside which the two spaces are s Hausdorff close. The size of s will be 
found through the construction. 

First, triangulate both manifolds in such a way that any simplex of the triangula­
tion lies in a ball of radius s. Using the triangulation on M, we can now construct a 
continuous map f : M ~ N as follows. First we use the Hausdorff approximation 
to map all the vertices {Pa} C M of the triangulation to points {qa} C N such 
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that d (Pa, qa) < e. If now (Pao, ... , Pa.) forms a simplex in the triangulation of 
M, then we constructed the triangulation such that (Pao, ... , Pa.) c B (x, s) for 
some x EM. Thus (qa0 , ••• , qa.) C B (qa0 , 4e). Therefore, if 

en -1 
8s < 8, 

e-1 

then we can use the above lemma to define f on the simplex spanned by 
(Pao, ... , Pa.) . In this way we get a map f : M ~ N by constructing it on 
each simplex as just described. To see that it is continuous, we must check that 
the construction agrees on common faces of simplices. But this follows, as the 
construction is natural with respect to restriction to faces of simplices. We now 
need to estimate how good a Hausdorff approximation f is. To this end, select 
x E M and suppose that it lies in the face spanned by the vertices (Pao, ... , Pa.) . 
Then we have 

d (x, f (x)) ~ d (x, Pao) + d (Pao• f (x)) 

~ 2e + 8 + d (qa0 , f (x)) 
en -1 

< 3s + 4e + 8s · e · --- e-1 
en -1 

= 7s+8s .e · -­
e-1 

We can now construct g : N ~ M in the same manner. This map will, of course, 
also satisfy en -1 

d (y, g (y)) ~ 7s + 8s · e · e _ 1 . 

It is now possible to estimate how close the compositions f o g and g o f are to 
the identity maps on N and M, respectively, as follows: 

As long as 

d (y, f 0 g (y)) ~ d (y, g (y)) + d (g (y)' f 0 g (y)) 
en -1 

< 14e + 16e . e. . 
- e-1' 

en -1 
d (x, g o f (x)) ~ 14e + 16s · e · e _ 1 . 

en -1 
14e + 16s · e · e _ 1 < 8, 

we can then conclude that these compositions are homotopy equivalent to 
the respective identity maps. In particular, the two spaces are homotopy 
equivalent. D 

Note that as long as 
en+l- 1 

16s · < 8, 
e-1 



358 11. Sectional Curvature Comparison 1L 

the two spaces are homotopy equivalent. Thus, s depends in an explicit way on 
C = ljcosa and 8. It is possible, in tum, to estimate a and 8 from n, k, v, and 
D. We can therefore get an explicit estimate for how close spaces must be to 
ensure that they are homotopy equivalent. Given this explicit s, it is then possible, 
using our work from the section on Gromov-Hausdorff distance, to find an explicit 
estimate for the number of homotopy types. 

To conclude, let us compare the three finiteness theorems by Cheeger, Gro­
mov, and Grove-Petersen. We have inclusions of classes of closed Riemannian 
n-manifolds 

{ diam 
sec 

< 
> 

} { 
diam 

::::> vol 
sec 

< 
> 
> 

D 
} { 

diam 
::::> vol 

I sec I 

with strengthenings of conclusions from bounded Betti numbers to finitely many 
homotopy types to compactness in the C 1·a topology. In the special case of non­
negative curvature Gromov's estimate actually doesn't depend on the diameter, 
thus yielding obstructions to the existence of such metrics on manifolds with com­
plicated topology. For the other two results the diameter bound is still necessary. 
Consider for instance the family of lens spaces { S3 /Zp} with curvature= 1. Now 
rescale these metrics so that they all have the same volume. Then we get a class 
which contains infinitely many homotopy types and also satisfies 

vol = v, 
1 ~sec> 0. 

The family of lens spaces { S3 /Zp} with curvature= 1 also shows that the lower 
volume bound is necessary in two of the theorems. 

Some further improvements are possible in the conclusion of the homotopy 
finiteness result. Namely, one can strengthen the conclusion to state that the class 
contains finitely many homeomorphism types. This was proved for n i= 3 in [ 47] 
and in a more general case in [68]. One can also prove many of the above results 
for manifolds with certain types of integral curvature bounds, see for instance [70] 
and [71]. The volume [ 46] also contains complete discussions of generalizations 
to the case where one has merely Ricci curvature bounds. 

11.7 Further Study 

There are many texts that partially cover or expand the material in this chapter. 
We wish to attract attention to the surveys by Grove in [41], by Abresch-Meyer, 
Colding, Greene, and Zhu in [ 46], by Cheeger in [25], and by Karcher in [27]. The 
most glaring omission from this chapter is probably that of the Abresch-Gromoll 
theorem and other uses of the excess function. The above-mentioned articles by 
Zhu and Cheeger cover this material quite well. 
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11.8 Exercises 

1. Let (M, g) be a closed positively curved manifold. Show that if M contains 
a totally geodesic closed hypersurface (i.e., the shape operator is zero), then 
M is homeomorphic to a sphere. (Hint: first show that the hypersurface is ori­
entable, and then show that the signed distance function to this hypersurface 
has only two critical points-a maximum and a minimum.) 

2. Show that the converse ofToponogov's theorem is also true. In other words, 
iffor some k the conclusion to Toponogov's theorem holds when hinges (or 
triangles) are compared to the same objects in S'f, then sec:::: k. 

3. (Heintze-Karcher) Let y c (M, g) be a geodesic in a Riemannian n­
manifold with sec :::: -k2• Let T (y, R) be the normal tube around y of 
radius R, i.e., the set of points in M that can be joined to y by a segment of 
length :::: R that is perpendicular to y. The last condition is superfluous when 
y is a closed geodesic, but if it is a loop or a segment, then not all points in 
M within distance R of y will belong to this tube. On this tube introduce 
coordinates (r, s, 0) , where r denotes the distance to y, s is the arc-length 
parameter on y, and 0 = (0 1, ••• , on-2) are spherical coordinates normal 
to y. These give adapted coordinates for the distance r to y. Show that as 
r -+ 0 the metric looks like 

g (r) = 

1 0 0 
0 1 0 
0 0 0 

0 0 0 

0 
0 
0 

0 

+ 

0 0 0 
0 0 0 
0 0 1 

0 0 0 

0 
0 
0 

1 

Using the lower sectional curvature bound, find an upper bound for the 
volume density on this tube. Conclude that 

volT (y, R) :::: f (n, k, R, t (y)), 

for some continuous function f depending on dimension, lower curvature 
bound, radius, and length of y. Moreover, as t (y)-+ 0, f-+ 0. Use this 
estimate to prove Cheeger's lemma from Chapter 10 and the main lemma on 
mutually critical points from the homotopy finiteness theorem. This shows 
that Toponogov's theorem is not needed for the latter result. 

4. Show that any vector bundle over a 2-sphere admits a complete metric of 
nonnegative sectional curvature. Hint: You need to know something about 
the classification of vector bundles over spheres. In this case k-dimensional 
vector bundles are classified by homotopy classes of maps from S1, the equa­
tor of the 2-sphere, into S 0 ( k) . This is the same as rr 1 ( S 0 ( k)) , so there is 
only one !-dimensional bundle, the 2-dimensional bundles are parametrized 
by Z, and two higher-dimensional bundles. 



Appendix A 
de Rham Cohomology 

We shall explain in this appendix the main ideas surrounding de Rham cohomol­
ogy. This is done as a service to the reader who has learned about tensors and 
algebraic topology but had only sporadic contact with Stokes' theorem. First we 
give a digest of forms and important operators on forms. Then we explain how 
one integrates forms and prove Stokes' theorem for manifolds without boundary. 
Finally, we define de Rham cohomology and show how the Poincare lemma and 
the Meyer-Vietoris lemma together imply that de Rham cohomology is simply 
standard cohomology. The cohomology theory that comes closest to de Rham co­
homology is Cech cohomology. As this cohomology theory often is not covered 
in standard courses on algebraic topology, we define it here and point out that it is 
easily seen to satisfy the same properties as de Rham cohomology. 

A.l Elementary Properties 

On a manifold M we let QP (M) denote the collection of p-forms. On forms we 
have the wedge product operation 

QP (M) x nq (M) --+ np+q (M) , 

( (l) ' t/1) --+ (l) 1\ t/J. 

This operation is bilinear and antisymmetric in the sense that: 
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This product is defined as follows. The wedge product of a function and a form is 
simply standard multiplication. Given two 1-forms w, 1/1 E Q1, we define 

(w A 1/f)(v, w) = w (v) 1/1 (w) -1/1 (v) w (w) 

and then extend this to all forms using associativity and linearity. 
There are three other important operations defined on forms: the exterior deriva­

tive d: QP (M)-+ QP+I (M), the Lie derivative Lx : QP (M)-+ QP (M), and 
the interior product ix : QP (M)-+ QP- 1 (M). 

The exterior derivative of a function is simply its usual differential, while if we 
are given a form w = fodft A··· A dfp, then we declare that dw = dfo A d/1 A 

··· Adfp· 
The Lie derivative is defined by 

p 

(Lxw) (Yt •... , Yp) = Lx (w (Yt, ... , Yp)}- Lw (Yt, ... , [X, Yd, ... , Yp) 
i=l 

and the interior product 

These operators satisfy the following properties: 

dod= 0, 

d (w A 1/f) = (dw) A 1/f + (-l)P W A (d1/f), 

ix o ix = 0, 

ix (w A 1/1) = (ixw) A 1/1 + ( -l)P w A (ixl/1), 

Lx (w A 1/1) = (Lxw) A 1/1 + w A (Lxl/1), 

(dw) (Yo, Y1, ••• , Yp) 
p 

= L(-l)i Lri (w (Yo, ... , Yi, ... , Yp )) 
i=O 

+ I:<-ti+j w([Yi, Yj], Yo, ... , Yi, ••• , Yj, ..• , Yp), 
i<j 

Lx=doix+ixod, 

Lx od = doLx, 

ix o Lx = Lx o ix. 

A.2 Integration of Forms 

We shall assume that M is an oriented n-manifold. Thus, M comes with a cov­
ering of charts (/)a = (x~, ... , x:) : Ua +--+ B (0, 1) C .!Rn such that the tran­

sition functions (/)a o ({J i 1 preserve the usual orientation on Euclidean space, i.e., 



A.2 Integration of Forms 363 

det ( D ( (/Ja o ({J -p 1)) > 0. In addition, we shall also assume that a partition of unity 

with respect to this covering is given. In other words, we have smooth functions 
l/Ja : M -+ [0, 1] such that l/Ja = 0 on M - Ua and La l/Ja = 1. For the last 
condition to make sense, it is obviously necessary that the covering be also locally 
finite. 

Given ann-form won M we wish to define: 

When M is not compact, it might be necessary to assume that the form has compact 
support, i.e., it vanishes outside some compact subset of M. 

In each chart we can write 

w = fad X~ 1\ · · · 1\ dx~. 

Using the partition of unity, we then obtain 

a 

= L l/Ja fad X~ 1\ .. · 1\ dx~, 
a 

where each of the forms l/Jafadx~ 1\ · · · 1\ dx~ has compact support in Ua. Since 
Ua is identified with B (0, 1), we simply declare that 

f l/Ja fad X~ 1\ · · · 1\ dx~ = { l/Ja fadX 1 • • • dxn. 
Ua J B(O,I} 

Here the right-hand side is simply the integral of the function l/Ja fa viewed as a 
function on B (0, 1). Then we define 

{ w = L f l/Jafadx~ 1\ · · · 1\ dx~ 
JM a Ua 

whenever this sum converges. Using the standard change of variables formula for 
integration on Euclidean space, we see that indeed this definition is independent 
of the choice of coordinates. 

With these definitions behind us, we can now state and prove Stokes' theorem 
for manifolds without boundary. 

Theorem 2.1 For any wE gn-l (M) with compact support we have 

L dw = 0. 

Proof. If we use the trick 

a 
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then we see that it suffices to prove the theorem in the case M = B (0, 1) and w 
has compact support on B (0, 1). Then write 

n 

w = L .fidx1 1\ · · · 1\ -;J;i 1\ · · · 1\ dxn, 
i=l 

where the functions .fi are zero near the boundary of B (0, 1). The differential of 
w is now easily computed: 

Thus, 

n 

dw = L (d.fi) 1\ dx 1 1\ · · · 1\ -;J;i 1\ · · · 1\ dxn 
i=l 

~ ( a.fi ) ; d 1 ..-, n = ~ -i dx 1\ x 1\ · · · 1\ dx' 1\ ... 1\ dx 
i=l ax 

~ ( 1)i-l ( aj;) d I d i d n =~- -i X/\···/\ X/\···/\ X. 
i=l ax 

1 1 ~ ( 1)i-l ( a.fi ) d 1 d n W= ~- -. X···X 
B(O,I) B(O,I) i=l axz 

= t<-1i-1 f (a.fii)dx 1 •• ·dxn 
i=l 1 B(O,I) ax 

~ i 1 J (J ( a.fi ) d i) d 1 d..-, d n = 8 (-1)- axi X X • • • X 1 • • • X • 

The fundamental theorem of calculus tells us that 

as .fi is zero near the boundary of the range of xi. In particular, the entire integral 
must be zero. 0 

Stokes' theorem leads to some important formulae on Riemannian manifolds. 

Corollary 2.2 (The Divergence Theorem) If X is a vector field on (M, g) with 
compact support, then L divX · dvol = 0. 

Proof. Just observe 

divX · dvol = Lxdvol 

= i xd (dvol) + d (i xdvol) 

= d (ixdvol) 



A.2 Integration of Forms 365 

and use Stokes' theorem. 0 

Corollary 2.3 (Green's Formulae) If / 1 , fz are two compactly supported 
functions on (M, g), then 

L (J}.ji) · fz · dvol =-L g (V /J, V fz) = L /1 • (J}.fz) · dvol. 

Proof. Just use that 

div (/I · V' /z) = g (V /1, V' /z) + /1 · ,1}./z, 

and apply the divergence theorem to get the desired result. 0 

Corollary 2.4 (Integration by Parts) If S, Tare two (1, p) tensors with com­
pact support on (M, g) , then 

L g (so, VdivT) · dvol = - L g (divS, divT). dvol, 

where so denotes the (0, p +I)-tensor defined by 

S 0 (X, Y, Z, ... ) = g (X, S (Y, Z, ... )) . 

Proof. For simplicity, first assume that S and T are vector fields X and Y. Then 
the formula can be interpreted as 

L g (X, VdivY) · dvol =-L divX · divY · dvol. 

We can then use that 

div (f · X) = g (V f, X) + f · div X. 

Therefore, if we define f = div Y and use the divergence theorem, we get the 
desired formula. 

In general, choose an orthonormal frame E;, and observe that we can define a 
vector field by 

X= L S (E;" ... , E;p) divT (E;" ... , E;p). 
it , ... ,ip 

In other words, if we think of g ( V, S (X 1, ... , X P)) as a (0, p )-tensor, then X is 
implicitly defined by 

g (X, V) = g (g (V, S), divT). 
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Then we have 
divX = g (divS, divT)- g (S0, VdivT), 

and the formula is established as before. 

It is worthwhile pointing out that it is NOT in general true that 

L g (S0 , divVT) =-£ g (VS, VT), 

D 

even when the tensors are vector fields. On Euclidean space, for example, simply 
defineS= T = x 1a1• Then 

v (x 1at) = dx 1ch, 

ldx 1atl = I, 

div (dx 1at) = 0. 

Of course, the tensors in this example do not have compact support, but that can 
easily be fixed by multiplying with a compactly supported function. 

A.3 Cech Cohomology 

Before defining de Rham cohomology, we shall briefly mention how Cech coho­
mology is defined. This is the cohomology theory that seems most natural from a 
geometric point of view. Also, it is the cohomology that is most naturally associated 
with de Rham cohomology. 

For a manifold M, suppose that we have a covering of contractible open sets U a 

such that all possible nonempty intersections Ua 1 n · · · n Uak are also contractible. 
Such a covering is called a good cover. Now let Jk be the set of ordered indices 
that create nontrivial intersections 

Ik = { (cxo, ... , ak) : Uao n · · · n Uak =I 0} . 

Cech cycles with values in a ring R are defined as a space of alternating maps 

zk = {f : Ik --* R : f o T = - f where 'l' is a transposition of two indices}. 

The differential, or coboundary operator, is now defined by 

zk --* zk+l, 
k 

df (ao, ... , ak+t) = L (-1); f (ao, ... , &;, ... , cxk+t). 
i=O 

Cech cohomology is then defined as 

k ker (d: zk ~ zk+t) 
H (M, R) = ( ) . 

im d : zk-1 ~ zk+t 
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The standard arguments with refinements of covers can be used to show that this co­
homology theory is independent of the choice of good cover. Below, we shall define 
de Rham cohomology for forms and prove several properties for that cohomology 
theory. At each stage one can easily see that Cech cohomology satisfies those same 
properties. Note that Cech cohomology seems almost purely combinatorial. This 
feature makes it very natural to work with in many situations. 

A.4 de Rham Cohomology 

Throughout we let M be ann-manifold. Using that dod = 0, we trivially get 
that the exact forms BP (M) = d (sv-1 (M)) are a subset of the closed forms 
ZP (M) ={co E QP (M): dw = 0}. The de Rham cohomology is then defined as 

HP(M) = ZP(M). 
BP(M) 

Given a closed form 1/1, we let [ 1/1] denote the corresponding cohomology class. 
The first simple property comes form the fact that any function with zero 

differential must be locally constant. On a connected manifold we therefore have 

Given a smooth map f : M --+ N, we get an induced map in cohomology: 

HP (N)--+ HP (M)' 

!* ([ 1/1]) = [!*1/1] . 

This definition is independent of the choice of 1/f, since the pullback f* commutes 
with d. 

The two key results that are needed for a deeper understanding of de Rham 
cohomology are the Meyer-Vietoris sequence and the Poincare lemma. 

Lemma 4.1 (The Meyer-Vietoris Sequence) If M = A U B for open sets 
A, B C M, then there is a long exact sequence 

... --+ HP (M)--+ HP (A) EB HP (B)--+ HP (An B)--+ HP+1 (M)--+ .... 

Proof. The proof is given in outline, as it is exactly the same as the corresponding 
proof in algebraic topology. 

First, we need to define the maps. We clearly have inclusions 

HP (M)--+ HP (A)' 

HP (M) --+ HP (B)' 

HP (A) --+ HP (An B), 

HP (B)--+ HP (An B). 
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By adding the first two, we get 

HP (M) ~ HP (A) E9 HP (B)' 

(lfr] ~ ([lf!IA], [lfr/B]) · 

Subtraction of the last two, yields 

HP (A) EB HP (B)~ HP (An B), 

([w] , ( l/1]) ~ [ W/AnB] - [ lfr/AnB] · 

With these definitions it is not hard to see that the sequence is exact at HP (A) E9 
HP (B). 

The coboundary operator HP (An B) ~ HP+ 1 (M) is as usual defined by 
considering the exact diagram 

0 ~ QP+t (M) 

td 
0 ~ QP(M) 

~ gp+t (A) E9 gp+t (B) ~ 

td 
~ QP (A) E9 QP (B) ~ 

QP+t (An B) ~ 0 
td 

QP (An B) ~ 0. 

If we take a closed form w E ZP (A n B), then we have lfr E QP (A) E9 QP (B), 
which is mapped to w. Then dlfr is zero when mapped to QP+ 1 (A n B), as we 
assumed that dw = 0. But then exactness tells us that dlfr must come from an 
element in QP+l (M). It is now easy to see that in cohomology, this element is 
well defined and gives us a linear map 

HP (An B)~ Hp+t (M) 

that makes the Meyer-Vietoris sequence exact. D 

Lemma 4.2 (The Poincare Lemma) The cohomology of the open unit disk 
B (0, 1) C ffi.n is 

H 0 (B (0, 1)) = ffi., 

HP (B (0, 1)) = {0} for p > 0. 

Proof. Evidently, the proof hinges on showing that any closed p-form w is exact 
when p > 0. Using that the form is closed, we see that for any vector field 

Lxw = dixw. 

We shall use the radial field X = L xi ai to construct a map 

H: QP ~ QP 

that satisfies 

H o Lx = id, 

doH= Had. 
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This is clearly enough, as we would then have 

w = d(H(ixw)). 

Since L x is differentiation in the direction of the radial field, the map H should 
be integration in the same direction. Motivated by this, define 

and extend it to all forms using linearity. We now need to check the two desired 
properties. This is done by direct calculations: 

HoLx(fdxi1 1\···l\dxip) = H(xia;Jdxi1 1\···l\dxip 

+ fLx (dxi 1 1\ · ··1\dxip)) 

= H (xi a; f dxi 1 1\ · · · 1\ dxip 

+ pfdxi1 1\ · · · 1\ dxip) 

= ( (1 1 
tP-I (txi) a;J(tx)dt) 

+ p (1 1 ptP-1f(tx)dt)) ·dxi1 1\ ... 1\dxip 

= (11 
:t (tP · f (tx)) dt) dxi 1 1\ ... 1\ dxip 

= f (x)dxi1 1\ · · · 1\ dxip; 

Hod (fdx; 1 1\ .. · 1\ dxip) = H (ad· dx; 1\ dx; 1 1\ .. · 1\ dxip) 

= ( (11 
tPa;J (tx)dt) dx;) 1\ dxi1 1\ ... 1\ dxip 

This finishes the proof. 

= d (1 1 tP-I f (tx)dt) 1\ dxi1 1\ .. · 1\ dxip 

= d ( (11 
tp-l f (tx)dt) 1\ dxi 1 1\ · · · 1\ dxip) 

=doH (fdxi 1 1\ ... 1\ dxip). 

We can now prove de Rham 's theorem. 

D 

Theorem 4.3 (de Rham, 1931) If M is a closed manifold, then the de Rham 
cohomology groups HP (M) are the same as the Cech, or singular, cohomology 
groups HP (M, IR) with real coefficients. In particular, all the cohomology groups 
are finitely generated. 
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Proof. We first observe that both theories have natural Meyer-Vietoris sequences. 
Therefore, if M has a finite covering by open sets Ua with the property that 

HP (Ual n ... n Uak) = HP (Ual n ... n Uak' IR) 

for all p and intersections Ua 1 n · · · n Uak' then using induction on the number of 
elements in the covering, we see that the two cohomologies of M are the same. 

To find such a covering, take a Riemannian metric on M. Then find a covering of 
convex balls B (Pa, r) . The intersections of convex balls are clearly diffeomorphic 
to the unit ball. Thus, the Poincare lemma ensures that the two cohomology theories 
are the same on all intersections. 

It also follows from this proof that the cohomology groups are finitely 
generated. D 

Note that the proof hinges on the fact that we have good coverings, which were 
also at the heart of the definition of Cech cohomology. 

Suppose now we have two manifolds M and N with good coverings { Ua} and 
{ Vp}. A map f : M ~ N is said to preserve these coverings if for each a we can 
find f3 (a) such that 

f (Ua) C Vp(a)• 

Given a good cover of N and a map f : M ~ N, we can clearly always find 
a good covering of M such that f preserves these covers. The induced map: 
f* : H P (N) ~ H P (M) is now completely determined by the combinatorics of 
the map a ~ f3 (a). This makes it possible to define f* for all continuous maps. 
Moreover, since the set of maps that satisfy 

is open, we see that any map close to f induces the same map in cohomology. 
Consequently, homotopic maps must induce the same map in cohomology. This 
gives a very important result. 

Theorem 4.4 If two manifolds, possibly of different dimension, M and N are 
homotopy equivalent, then they have the same cohomology. 

A.5 Poincare Duality 

The last piece of information we need to understand is how the wedge product acts 
on cohomology. It is easy to see that we have a map 

HP (M) X Hq (M) ~ Hp+q (M)' 

([1fr], [w]) ~ [1fr 1\ w]. 

We are interested in understanding what happens in case p + q = n. This requires 
a surprising amount of preparatory work. First we have 
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Theorem 5.1 If M is an oriented closed n-manifold, then we have a well-defined 
isomorphism 

Hn (M)--+ JR, 

[w]--+ L w. 

Proof. That the map is well-defined follows from Stokes' theorem. It is also onto, 
since any form with the property that it is positive when evaluated on a positively 
oriented frame is integrated to a positive number. Thus, we must show that any 
form with J M w = 0 is exact. This is not easy to show, and in fact, it is more natural 
to show this in a more general context: If M is an oriented n-manifold that can 
be covered by finitely many charts, then any compactly supported n-form w with 

JM w = 0 is exact. 
The proof of this result is by induction on the number of charts it takes to cover 

M. But before we can start the inductive procedure, we must establish the result 
for the n-sphere. 

Case 1: M = sn. Cover M by two open discs whose intersection is homotopy 
equivalent to sn-1• Then use induction on n together with the Meyer-Vietoris 
sequence to show that for each n > 0, 

p ~O,n, 
p=O,n. 

The induction apparently starts at n = 0 and S0 consists of two points and therefore 
has H 0 (S0) = lR Ea JR. Having shown that Hn (Sn) = JR, it is then clear that the 
map J: Hn (Sn)--+ lR is an isomorphism. 

Case 2: M = B (0, 1). We can think of M as being an open hemisphere of sn. 
Any compactly supported form w on M therefore yields a form on sn. Given that 
J M w = 0, we therefore also get that fs· w = 0. Thus, w must be exact on sn. 
Let 1/1 e gn-1 (Sn) be chosen such that dl/1 = w. Use again that w is compactly 
supported to find an open disc N such that w vanishes on N and N U M = sn. 
Then 1/1 is clearly closed on N and must by the Poincare lemma be exact. Thus, we 
can find() e gn-2 (N) with d() = 1/1 on N. Now observe that 1/1- dO is actually 
defined on all of sn, as it vanishes on N. But then we have found a form 1/1 - dO 
with support in M whose differential is w. 

Case 3: M = AU B where the result holds on A, B, and An B. Select a 
partition of unity t/JA + cp8 subordinate to the cover {A, B}. Given ann-form w 
with JM w = 0, we get two forms cfJA ·wand cp8 · w with support in A and B, 
respectively. Using our assumptions, we see that 

0= Lw 
= i cfJA • w + L t/JB . w. 
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On An B we can by assumption (orientability is used here) select ann-form t/f 
with compact support inside A n B such that 

1 W = 1 t/JA · W. 
AnB A 

Using w we can create two forms, 

l/JA • W- W, 

l/JB • W + W, 

with support in A and B, respectively. From our assumptions it follows that they 
both have integral zero. Thus, we can by assumption find t/f A and tf/8 with support 
in A and B, respectively, such that 

dt/fA =¢A ·w-w, 
dt/fB = t/JB · W + W. 

Then we get a globally defined form t/f = t/f A + tf/8 with 

dt/f =¢A · W- W + if>B · W + W 
= (t/JA +¢B)' W 

= (1), 

The theorem now follows by using induction on the number of charts it takes to 
cover M. 0 

The above proof indicates that it is really more convenient to work with com­
pactly supported forms. This leads us to compactly supported cohomology, which 
is defined as follows: Let Qf (M) denote the compactly supported p-forms. With 
this we have the compactly supported exact and closed forms B[ (M) c zf (M) 
(note that d : Qf (M) -+ Qf+l (M)). Then define 

zP(M) 
HP(M) = c • 

c Bf (M) 

Needless to say, for closed manifolds the two cohomology theories are identical. 
For open manifolds, on the other hand, we have that the closed 0-forms must be 
zero, as they also have to have compact support. Thus H~ (M) = {0} if M is not 
closed. 

Note that only proper maps f : M -+ N have the property that they map 
f* : Qf (N) -+ Qf (M). In particular, if A c M is open, we do not have a 
map H! (M) -+ H! (A). Instead we observe that there is a natural inclusion 
Qf (A)-+ Qf (M), which induces 

H{ (A) -+ H{ (M). 
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The above proof, stated in our new terminology, states that 

n;(M) ~ ~. 

[m] ~ L m 

is an isomorphism for oriented n-manifolds. Moreover, using that B (0, 1) c sn, 
we can easily prove the following version of the Poincare lemma: 

Hf (B (0, 1)) = { ~. pi-n, 
p=n. 

In order to carry out induction proofs effectively with this cohomology theory, 
we also need a Meyer-Vietoris sequence: 

· · · ~ Hf (M) ~ Hf (A) E9 Hf (B) ~ Hf (An B) ~ Hf+ 1 (M) ~ · · ·. 

This is established in the same way using the diagram 

o ~ nf+1 (M) 

td 
0 ~ Qf(M) 

~ nf+1 (A) EB nf+1 (B) 

td 
~ nf (A) EB nf (B) 

~ nf+1 (An B) 

td 
~ nf(A nB) 

~ 0 

~ 0. 

Theorem 5.2 Let M be an oriented n-manifold that can be covered by finitely 
many charts. The pairing 

HP (M) x n;-p (M) ~ ~. 

([w], [1ft])~ L m 1\ 1ft 

is well-defined and nondegenerate. In particular, the two cohomology groups 
HP (M) and n;-p (M) are dual to each other and therefore have the same 
dimension as finite-dimensional vector spaces. 

Proof. We proceed by induction on the number of charts it takes to cover M. For 
the case M = B (0, 1) , this theorem follows from the two versions of the Poincare 
lemma. In general suppose M = A U B, where the theorem is true for A, B, and 
A n B. Note that the pairing gives a natural map 

for any manifold N. We apparently assume that this map is an isomorphism for 
N =A, B, An B. Using that taking duals reverses arrows, we obtain a diagram 
where the left- and rightmost columns have been eliminated 

~ HP(AnB) ~ HP+l (M) ~ HP+l (A)$ HP (B) 

~ ~ ~ 
~ (Hf (An B)}* ~ (n:+l(M))* ~ (HP+l (A))*$ (HP (B))* ~-
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Each square in this diagram is either commutative or anticornrnutative (i.e., corn­
mutes with a minus sign.) As all vertical arrows, except for the middle one, are 
assumed to be isomorphisms, we see by a simple diagram chase (the five lemma) 
that the middle arrow is also an isomorphism. D 

Corollary 5.3 On a closed oriented n-manifold M we have that HP (M) and 
nn-p (M) are isomorphic. 

A.6 Degree Theory 

Given the simple nature of the top cohomology class of a manifold, we see that 
maps between manifolds of the same dimension can act only by multiplication on 
the top cohomology class. We shall see that this multiplicative factor is in fact an 
integer, called the degree of the map. 

To be precise, suppose we have two oriented n-rnanifolds M and N and also a 
proper map f : M --* N. Then we get a diagram 

Since the vertical arrows are isomorphisms, the induced map f* yields a unique 
map d : R --* JR. This map must be multiplication by some number, which we call 
the degree of f, denoted by deg f. Clearly, the degree is defined by the property 

jMf*w=degf· L w. 

Lemma 6.1 Iff : M --* N is a diffeomorphism between oriented n-manifolds, 
then deg f = ± 1, depending on whether f preserves or reverses orientation. 

Proof. Note that our definition of integration of forms is independent of coordi­
nate changes. It relies only on a choice of orientation, and if this choice is changed 
then the integral changes by a sign. This clearly establishes the lemma. D 

Theorem 6.2 Iff : M --* N is a proper map between oriented n-manifolds, 
then deg f is an integer. 

Proof. The proof will also give a recipe for computing the degree. First, we must 
appeal to Sard's theorem. This theorem ensures that we can find y E N such that 
for each x E f- 1 (y) the differential Df : TxM --* TyN is an isomorphism. 
The inverse function theorem then tells us that f must be a diffeomorphism in a 
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neighborhood of each such x. In particular, the preimage f- 1 (y) must be a discrete 
set. As we also assumed the map to be proper, we can conclude that the preimage 
is finite: {x~o ... , xd = f- 1 (y). We can then find a neighborhood U of yin N, 
and neighborhoods Ui of Xi in M, such that f : Ui -+ U is a diffeomorphism for 
each i. Now select w E Q~ (U) with f w = 1. Then we can write 

k 

f*w = L f*wru;o 
i=l 

where each f*w 1u; has support in Ui. The above lemma now tells us that 

Hence, 

is an integer. 

1 f*wru; = ±1. 
U; 

deg f = deg f · L w 

= degf · i w 

= L f*w 

k 

= 8 ii f*wru; 

D 

Note that f U; f* wru; is± 1, depending simply on whether f preserves or reverses 
the orientations at Xi. Thus, the degree simply counts the number of preimages for 
regular values with sign. In particular, a finite covering map has degree equal to 
the number of sheets in the covering. 

On an oriented Riemannian manifold (M, g) we always have a canonical volume 
form denoted by dvol8 • Using this form, we see that the degree of a map between 
closed Riemannian manifolds f: (M, g)-+ (N, h) can be computed as 

f M f* (dvolh) 
degf = . 

vol (N) 

In case f is locally a Riemannian isometry, we must have that 

Hence, 
volM 

degf = ±--. 
volN 

This gives the well-known formula for the relationship between the volumes of 
Riemannian manifolds that are related by a finite covering map. 
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A.7 Further Study 

There are several texts that expand on the material covered here. The book by 
Warner [82] is more than sufficient for most purposes. There is also a very nice 
book by Bott and Tu [15] that in addition covers characteristic classes. This book 
only has the small defect that it doesn't mention how one can compute characteristic 
classes using curvature forms. This can, however, be found in [76, vol. V]. 



Appendix B 
Principal Bundles 

We shall here give a more sophisticated version of parts of Riemannian geometry. 
The goal is to understand, in a unified way, how all tensor bundles are constructed 
and then see how the covariant derivative acts on tensors. The story begins with 
Cartan formalism. This is simply a different way of keeping track of covariant 
derivatives and the curvature tensor using the language of differential forms. Car­
tan formalism is at first defined only in terms of frames. In order to make the theory 
invariant, we need to work on the frame bundle. After the theory has been trans­
formed to the frame bundle, we then observe that all tensors are 0 (n) invariant 
maps on this frame bundle. This enables us to define covariant differentiation, in 
one fell swoop, on all tensors at the same time. 

This new point of view easily generalizes to a formalism of principal bundles 
with a given Lie group as structure group. One can define connections on such 
bundles, and then covariant differentiation on sections of vector bundles, that are 
associated to the given principal bundle. At first, this all just seems like general­
ization for the sake of generalization. There are, however, some very important 
bundles that can really only be understood in this general context. This will be 
further investigated in the next appendix. 

B .1 Cartan Formalism 

The original form of Cartan formalism has indeed caused many headaches over 
the years. We shall here try to explain it as best we can. The central idea is to 
develop expressions for the connection and curvature using orthonormal frames. 
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Thus, the entire approach is frame dependent rather than invariant. The advantage 
is that many calculations become simpler and also that the usual properties for the 
curvature tensor simply become consequences of this new setup. 

An infinitesimal movement on a manifold is simply a tangent vector. Thus, the 
notation d p or p + d p denotes an element of Tp M, i.e., an infinitesimal movement 
of p EM. Given a frame E; and dual coframe Oi, we can then write 

v = Oi (v) E;, 

dp = 0 · E, 

where 

Thus, 0 · E is nothing but the identity map on Tp M. Note that frames are consistently 
written as row vectors, while coframes are column vectors. The idea is that 0 carries 
metric information in case the frame is assumed to be orthonormal. Conversely, 
any choice of frame, at least locally, induces a Riemannian metric by declaring it 
to be orthonormal. 

The connection form is now defined as follows: 

Proposition 1.1 (E. Cartan) If we define dO = (d0 1, ••• , don), then there is 

a unique matrix of I -forms w = ( w~) such that 

and 

dO = -(l) 1\ 0' 

dOi = -(l)i. 1\ oJ' 
J 

wt = -w, 
i - j 

(l)j - -(l)i. 

Proof. Observe that since w is a matrix and 0 is a column, we put 0 on the right. 
By assuming that we start out with an orthonormal frame, we can generate the 
connections forms by declaring 

''lx E J = w~ (X) E;. 

This certainly defines some 1-forms ( w~). The skew-symmetry property comes 

from the connection being metric: 

0 = Vxg (E;, E1) 

= g (''lxE;, EJ) + g (E;, VxEJ) 
j i = W; (X)+ (l)j (X). 
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The proof of the formula dO = -w 1\ (} uses that the connection is torsion free. 
Apparently, we must show 

d(}i (Ek. E1) =- (w~ 1\ 01) (Ek. Et). 

The left-hand side is by definition 

d(}i (Ek. Et) = DEk(}i (Et)- DEt(}i (Ek)- (}i ([Ek, Et]) 

= -Oi ([Ek. Et]). 

The right-hand side, on the other hand, is 

- (w~ 1\ Oi) (Ek. E1) = w~ (E1)0i (Ek)- w~ (Ek)(}i (E1) 

= w~ (EL)- w! (Ek) 

= (}i (Y'E1Ek}- (}i (VEkEt} 

= -(}i ([Ek. EL]). 

Thus, they must be equal to each other. 

The equations 

d(} = -w 1\0, 

w= -w1 

0 

are called the first structural equations. Apparently, they define a unique connection 
that is torsion free and metric. The frame version of the first structural equations 
can also be written in a more compact matrix version just as for forms: 

VE = E·w, 

VE; = E1w{. 

We now come to the curvature tensor. 

Proposition 1.2 (E. Cartan) The equations 

Q =dw+w/\w, 
i i i k n1 =dw1 +wk/\w1 

define a skew-symmetric matrix of2-forms that also gives us the curvature tensor 
via 

R(X, Y)EJ = Q~ (X, Y) · E;. 

Proof. To see why this is true, we simply compute both sides using how they are 
defined: 
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( i i k) ( i i k ) dwj + wk 1\ wj (X, Y) · Ei = dwj (X, Y) + wk 1\ wj (X, Y) · Ei 

= (Vxw~ (Y)) · Ei (Vrw~ (X))· Ei 

- (w~ ([X, Y])) · Ei + wi (X)· Ei · w~ (Y) 
. k 

- wk (Y) · Ei · wj (X) 

= Vx (VrEj}- w~ (Y) VxEi- Vr (VxEj} 
. k + wj (X) VrEi- Vlx.YJEj + wj (Y) VxEk 

- w~ (X) Vr Ek 
i k = R (X, Y) Ei + wj (X) VrEi- wj (X) VrEk 

k . + wj (Y) Vx Ek - wj (Y) Vx Ei 

= R(X, Y)Ei. 0 

These new equations 
Q = dw + w 1\ w 

are called the second structural equations, and the skew-symmetric matrix Q of 
2-forms is called the curvature form. 

At this point it, would probably be useful to see how this works in action. 

Example 1.3 Let M = Rn. The usual Cartesian coordinate frame (81, ••• , 8n) 
can then be used as an orthonormal frame. The structural equations will now look 
like 

dp = dxiaj, 

() = (dx 1, ••• , dxn), 

d() = 0, 

{I)= 0, 

0=0. 

For an arbitrary orthonormal frame Ei with dual coframe ()i, we have 

dp = () · E, 

() = (()I, ... , ()n) , 
d() = -{I) 1\ ()' 

0 = dw + w 1\ w. 

Here, w must be computed from the first structural equation, but since we know 
from above that the curvature is zero, we get for free the special form of the second 
structural equation. 

These last structure equations can be used to derive the various fundamental 
equations for a submanifold or hypersurface in Euclidean space. Namely, for a k­
dimensional submanifold M c Rn, suppose that the frame Ei is chosen such that 
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on M the first k vector fields are tangent to M, while the others are perpendicular 
to M. One can then both compute connection and curvature on M and also see 
how they relate to Euclidean space through the structural equations there. For more 
details see also [76, vol. V]. 

Example 1.4 Let M = S3 and take as usual the left invariant frame {X 1, X 2 , X 3} 

with ~Xi, Xi+l] = 2Xi+2 , where indices are mod3. For the dual frame () 
(e 1' () 'e3) we have 

d()l = -2(}2 1\ ()3, 

de2 = -2e3 1\ el, 

d()3 = -2(}1 1\ ()2. 

To find the connection forms, we must in addition to simply computing d() also 
make sure that the skew-symmetry condition holds. Therefore, if 

then we have to solve 

Thus, we have 

W= ( 

wJ 
0 

-w~ 

2()2 1\ ()3 = wJ 1\ ()2 + w~ 1\ ()3, 

2()3 1\ () 1 = -wJ 1\ () 1 + w~ 1\ () 3' 

2()1 1\ ()2 = -w~ 1\ ()I- w~ 1\ ()2. 

w= ( ~3 
-{}2 

To find the curvature, we first compute 

dw= ( 
0 -d(}3 

d92 
) d()3 0 -d()l 

-d()2 d()l 0 

=( 
0 2() I 1\ ()2 -2e3 1\ el 

-2()1 1\ ()2 0 2()2 1\ ()3 

2()3 1\ ()I -2()2 1\ ()3 0 

wAw= ( 
0 -{}3 !il) A ( 

0 -(}3 

()3 0 ()3 0 
-()2 ()I -{}2 ()I 

=( 
0 ()21\()1 ()31\()1 ) -()2 1\ ()I 0 ()3 1\ ()2 

-()3 1\ ()I -(}3 1\ ()2 0 

)· 
()2 

) -(}I 

0 
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Hence, 

( 0 0 I 1\ 02 -03 1\ 0 I ) Q= -0 I 1\ 02 0 02 1\ 03 
03/\01 -02 1\ 03 0 

Since we know that 

it follows immediately that the curvature operator is the identity map. 
One can also compute the curvatures for the Berger spheres in a similar fashion. 

From these two simple examples, it is certainly clear that in many contexts the 
formalism we have developed for computing the connection and curvature tensor 
is quite convenient. 

The last equations we have for the curvature tensor, namely, the Bianchi 
identities, can also be expressed via this formalism. 

Proposition 1.5 The curvature forms satisfy 

or more precisely, 

0=01\Q, 

dQ = Q 1\ (t) - (t) 1\ Q' 

oi 1\ Qi. = 0, 
J 
i i k i k 

dni = nk "wi- wk "ni. 

Moreover, these two equations are exactly the first and second Bianchi identities. 

Proof. Note that the usual anticommutation laws don't hold for these wedge 
matrix products. To see the first identity, simply apply d to the first structural 
equation: 

0 = ddOi 

= d (oi A wD 

= dOi 1\ wi. _ oi 1\ dwi. 
J J 

= Ok 1\ Wk 1\ w~ - ()i 1\ ( Q~ - w~ 1\ wD 

= _0i " nl + oi " wki " wk + ok " wki " wi. J J J 

= -Oj 1\ Qi. + ()i 1\ (t)ki 1\ (t)~ - (}k 1\ (t)i. 1\ (t)kj 
J J J 

= -oi "n~. 

For the second identity, we use the second structural equation: 
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i k i k = dwk A w 1 - wk A dw1 

( i i I) k i ( k k I) = Qk - Wt A Wk A Wj - Wk A Q j -WI A Wj 

i k i k i I k i k I 
=~A~-~A~-~A~A~+~A~A~ 

i k i k = Qk A Wj- Wk A Qj. 

We leave it as an exercise to check that these two equations are indeed equivalent 
to the first and second Bianchi identities. D 

We shall also at times have use for the transformation formulae for the connection 
and curvature forms between different frames. A little notational comment is in 
order before we proceed. Given a map F : M "'"""* G from a manifold to a Lie 
group, we have two different differentials: D F : T M "'"""* T G and d F : T M "'"""* g. 
The latter is related to the former by the trivialization TG = G x g. Unless we are 
in the case where G = Rn, this trivialization is, however, not uniquely defined, 
as one can use either right- or left-invariant vector fields to trivialize the tangent 
bundle on G. One usually decides from the context which of the two trivializations 
should be used. 

Assume that we have two frames E and E with corresponding coframes () and 
iJ. Assuming that both frames are orthonormal, we can find a function g, defined 
on the intersection of the domains of the frames with values in 0 (n) , such that 

g~ ) . 

g~ 

Conversely, the coframes are related through 

O=l·e. 
Proposition 1.6 The connection and curvature forms satisfy the transformation 
rules 

Proof. First, we compute 

iiJ = g' . (J) • g - dg' . g' 

fi=l·O·g. 

dO = dl · e + l · de 
= dl · () -l · ltJ A () 

= (dl-g' ·w) A() 

( t t ) -= dg - g · ltJ A g · () 

= ( d g1 • g - g1 • ltJ • g) A 0, 
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which shows that the formula for the connection forms is correct. 
For the curvature forms, we need to use that 8 · gf = I and 0 = d (8 · 8') = 

8 · d8' + d8 · gf. Also, recall how one takes d of products, using the skew Leibnitz 
rule for forms. With this in mind we can compute 

Q = dii> + iiJ 1\ iiJ 

= d (8' . w . 8 - dg' . 8) + (8' . w . 8 - dg' . 8) 1\ (81 • w . 8 - dg' . 8) 

= dg'l\ w · 8 + l · dw · 8 -g' · w 1\ d8 - ddg' · 8 + dg'l\ d8 
+ l . w . 8 1\ l . w . 8 - l . w . 8 1\ dg' . 8 

- dg' . 8 1\ l . w . 8 + dg' . 8 1\ d8' . 8 

= 8' · (dw + w 1\ w) · 8 

+ dg' 1\ w . 8 - 81 • w 1\ d8 + d81 1\ d8 - g' . w 1\ 8 . dg' . 8 

- dg' 1\ 8 . 81 • w . 8 + dg' . 8 1\ d81 • 8 

= l · n · 8 + d8' 1\ w · 8 - 8' · w 1\ d8 - dg' 1\ d8 
+ l . w 1\ d8 - d81 1\ w . 8 - d81 1\ d8 

=l·n·8· 

B.2 The Frame Bundle 

0 

The idea of the frame bundle is to find a more invariant approach to the above 
described Cartan formalism. This is done in the usual fashion adopted by mathe­
maticians. Namely, one makes the problem into the solution. Let us first give some 
general instances of this: 

( 1) The problem is to find roots of real polynomials. One realizes quickly that 
X2 + 1 = 0 cannot be solved over the real numbers. The solution is to 
consider the ring IR [X] and divide out by ideal ( X2 + 1). This gives us the 
complex numbers C. Thus, the unsolvable equation X2 + 1 = 0 can be 
solved over the field IR [X] 1 (X2 + 1). 

(2) The problem is to define the rational numbers from the integers. Again, one 
cannot solve integer equations of the form: ax = b. Two such equations 
ax = b and ex = d are equivalent if ad = be. Thus, let Q denote the set 
of such equations modulo this equivalence. Over this new field the above 
equations are again the solutions to themselves. 

(3) The problem is to compute limits of sequences of rational numbers. Define 
Cauchy sequences and then construct the real numbers as the set of all 
Cauchy sequences of rational numbers modulo sequences whose difference 
converges to zero. Then one gets a complete space. 

So guess how one makes a frame-dependent approach to geometry frame inde­
pendent. Yes, you take the space of all frames and then start translating Cartan 
formalism to this setting. 
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B.3 Construction of the Frame Bundle 

As already discussed in Chapter 7, we define the frame bundle F M as the set of 
ordered orthonormal bases of the tangent space: 

FM= UFpM, 
peM 

FpM = { e : e = (eJ. ... , en) is an orthonormal basis for TpM} . 

With the frame bundle we have the projection 

rr: FM---+ M 

that takes the fibers FpM top. 
The orthogonal group 0 (n) acts from the right on each of the fibers and therefore 

also on all of F M in the following simple way: 

( 
gf 

e · g = (e1, ... , en) · : 

g~ 

= (eigL ... , eig!). 

g~ ) 

g~ 

Via this action we see that each fiber can by identified with 0 (n), as the corre­
spondence g ---+ e · g is bijective for each fixed choice of basis. We can use this to 
give F M the structure of a locally trivial bundle. Namely, if E is an orthonormal 
frame over the open set U c M, then we have a bijection 

U x 0 (n) ---+ FU, 

(p, g) ---+ E (p). g 

that clearly commutes with the actions of 0 (n) on both U x 0 (n) and FU. 
This local trivialization can be used in reverse to define the frame bundle in the 

following way. On M pick a covering Ua such that we have orthonormal frames 
Ea on each Ua. On the intersections Ua n Up we can now find maps 

These maps satisfy 

r:ap : Ua n Up ---+ 0 (n), 

Ep = Ea . T:ap· 

T:ap · T:py = T:ay · 

Thus, we have an equivalence relation by identifying 

(p, 8a) E Ua X 0 (n), 

(p, gp) E Up x 0 (n) 
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if 

8a = "CafJ • 8 fJ • 

This identification clearly respects the natural right actions of 0 (n) on the trivial 
bundles. Thus, we get a locally trivial bundle with a natural right action of 0 (n) . 
It is clear that this reconstructs the frame bundle. 

B.4 Construction of Tensor Bundles 

Having now constructed the frame bundle from the Riemannian metric and the 
tangent bundle, we wish to reverse this process and construct the tangent bundle, 
and also all of the other tensor bundles, from the frame bundle. 

First, let us attack the tangent bundle. The orthogonal group acts by isometries 
from the left on JRn. Thus, we have an action 

(FM x lRn) x 0 (n)---+ (FM X lRn), 
(e, v) · g = (e · g, g-1 • v). 

The orbit space of this action is denoted by F M x O(n) JRn. This indicates that 
we start with a product and then divide out by an action of 0 (n) on each of the 
spaces. Observe that the projection rr : F M ---+ M clearly induces a projection 
rr : F M x O(n) JRn ---+ M, and that the preimage of a point under this projection 
can be identified with lRn. Thus, F M x O(n) JRn looks like a vector bundle with a 
Euclidean metric on each of its fibers. We contend that this is the tangent bundle 
with the given Riemannian metric. This is seen by trivializing both bundles. First, 
select an open set U c M on which we have an orthonormal frame E. Then 

U X lRn---+ FU Xo(n) lRn, 

(p, v) ---+ { ( E (p) · g, g -! · v) : g E 0 (n)} 

defines a bijection, which generates the commutative diagram 

U X lRn ---+ FU Xo(n) lRn 

~ / 
u 

The top horizontal arrow in this diagram is also a fiberwise isometry. This actually 
gives us the desired vector bundle structure on F M x O(n) JRn, together with the 
inner product on the fibers. The key is now to observe that we have a similar 
diagram for the tangent bundle: 

U X JRn---+ TU 
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where 

U X JRn --+ TU, 

(p, v) --+ E (p) · v 

= E1v1 + · · · + Envn. 

This is again a natural trivialization of the tangent bundle that also preserves the 
inner products on the fibers. Thus, we have a locally defined fiber-preserving and 
inner-product-preserving isomorphism: 

It is now a simple matter to see that this defines an inner-product-preserving 
isomorphism: 

FM Xo(n) lRn # T M 

'\t / 
M 

We now tum our attention to tensor bundles. Abstractly, they all come by having 
a Euclidean space V and a homomorphism p : 0 (n) --+ 0 (V), where 0 (V) 
denotes the linear maps that preserve the Euclidean structure on V. In this way 
we have that 0 (n) acts by isometries from the left on V. We can then, as before, 
construct a vector bundle 

FM Xo(n) V--+ M 

with inner products on the fibers. The local trivialization is defined by 

U x V--+ FU Xo(n) V, 

(p, v)--+ { (E (p) · g, g-1 · v} : g E 0 (n)}. 

It is perhaps not entirely obvious why this recreates all tensor bundles. To see 
how this works, let us construct A 2 T M. We start with the vector space of Eu­
clidean bivectors A 21Rn. Given an orthonormal basis (e1, ••• , en) for lRn, we get 
an orthonormal basis ei A e j, i < j, for A 21Rn. This makes A 21Rn into a vector 
space with an inner product, as we already know. But how does 0 (n) act on A 21Rn? 
In fact, any linear map L : lRn --+ lRn induces a linear map A 2 L : A 2JRn --+ A 2JRn 
by the rule 

A 2 L (v A w) = Lv A Lw. 

In particular, we see that if Lis an isometry, then the orthonormal basis (e1 , ••• , en) 
ismappedtoanorthonormalbasis(Le1, ••• , Len), andconsequently,theorthonor­
mal basis ei A ej, i < j, is mapped to an orthonormal basis Lei A Lej, i < j. 
Hence, A 2 L is really an isometry. Thus, we have the desired homomorphism: 

One can now in the usual manner see that A 2 T M = F M x O(n) A 2JRn. 
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B.5 Tensors 

Having found a new description of tensor bundles, including the tangent bundle 
itself, it is natural to see how we can interpret sections of these bundles. Sections 
of tensor bundles are, of course, called tensors. 

We fix a tensor bundle F M x O(n l V coming from a homomorphism p : 0 (n) --+ 
0 (V) . A section of a tensor bundle rr : F M x O(n) V --+ M is simply a map 
T : M--+ FM Xo(n) V such that rr o T = id. Let us use the notation[·, ·1 : 
F M x V --+ F M x O(n) V for the quotient map and rr : F M --+ M for the 
projection. Then we claim that for any e E F M, there must be a unique v E V 
such that [e, v] = Torr (e). If [e, v] = [e, w], then we know thatthere must exist 
an orthogonal transformation g E 0 (n) such that e · g = e and p (g-1) v = w, 
but this implies that g = I and hence v = w. Thus, we have constructed a 
map T : F M --+ V. This map also commutes with the actions of 0 (n), as 
w = p (g-1) v must be the unique vector corresponding to e · g. Conversely we 
see that any map T : F M --+ V which commutes with the 0 (n) actions yields a 
tensor T: M--+ FM Xo(n) V by sending p EM to [e, T (e)] E FM Xo(n) V, 
where rr (e)= p. Note that this is well-defined exactly because T : F M --+ Vis 
invariant under the 0 (n) actions. Thus, we have shown 

Proposition 5.1 Sections of rr : F M x O(n) V --+ M are in one-to-one 
correspondence with 0 (n)-equivariant maps F M --+ V. 

The differential of a tensor T : F M --+ Vis a map dT : T F M --+ V. Note that 
so (n) acts on both of these spaces by the differential of the 0 (n) actions, so dT 
will be an so (n )-equivariant map. 

This new way of viewing tensors enables us to give a new description of the 
components of a tensor in a given orthonormal frame E. Since such a frame is 
simply a section E : U c M --+ F M, we see that any tensor T : M --+ 
F M x O(n) V, when viewed as a map T : F M --+ V, can be composed withE to 
yield a map 

ToE: U--+ V. 

Let us see how all of this works for vector fields. Fix a vector field X : M --+ T M 
and a frame E : U --+ F M. First, we have the trivialization 

U X ~n--+ TU, 

(p, v) --+ E (p) · v. 

The vector field X yields a section X : U--+ U x ~n by sending p to (p, x (p)), 
where E (p) · x (p) = X (p) . This gives us X as a section of the alternative 
definition F M x O(n l JRn for T M. To get the map F M --+ JRn we simply map 
E (p) · g tog· x (p). In this way, we see that X o E (p) = x (p), thus giving us 
the components of the vector field in the locally given frame E. The differential 
of X under the identifications T FU = T U x so (n) is given by 

dX (E · v, s) = s · dx (E · v), 
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where dx: TU ~ lRn. 

B.6 The Connection on the Frame Bundle 

We have seen that the frame bundle with its 0 (n) action reconstructs the tangent 
bundle and the Riemannian metric. Thus, all information about the Riemannian 
manifold ( M, g) should somehow be encoded into the frame bundle. We shall now 
see how the connection and curvature live on this bundle. The Cartan formalism we 
developed above will be a help, as it was intimately connected with orthonormal 
frames and at the same time contained the information we are seeking. 

First, let try to decide what a connection on F M should be. From Cartan 
formalism we have the equation 

'VE=E·w 

for a given frame field. The meaning of this is that an infinitesimal rotation of a 
frame is given by a skew-symmetric matrix w. This is quite natural, for any two 
frames are related by a function of orthogonal transformations. An infinitesimal 
change therefore corresponds to a function into the Lie algebra over the orthogonal 
transformations. But this Lie algebra o (n) = so (n) is simply the set of n x n skew­
symmetric matrices. Guided by this, we imagine that the connection on F M is an 
so (n) valued 1-form 

w: T(FM) ~ so(n), 

with the condition that it becomes the identity map on the fibers of F M. The 
meaning of this is simply, any element X E so (n) generates a vector field a (X) 
on F M that is tangent to the fibers. It is defined by assuming X = i: (0) for some 
curve c : I ~ 0 (n) with c (0) = I, and then declaring its value at e E F M to be 
a (X) (e)= dfdt 1r=O (e · c (t)). Thus the connection form must satisfy 

w (a (X))= X. 

This means that w accurately measures how frames with the same base point are 
moved. The question is then how it acts on tangent vectors that are not tangent to 
the fibers. This is where we need our connection forms from above. Namely, we 
also want to make sure that the connection w on F M gives us back the connection 
forms. There is a natural way for this to happen. For an orthonormal frame field E 
let the corresponding connection forms be denoted by wE. Note that E : U ~ F M 
is a section. So if we pull back a form on F M by this section, we get a form on 
M. The desired condition we require should then be 

WE = E* (J). 

Note that pulling back via a choice of frame has the effect of ignoring the fiber 
directions, thus, the need for separately explaining the action of w on those vectors. 
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On the other hand, this pullback action is an isomorphism on a complement of the 
fiber, so the two conditions together uniquely define w. The only problem is that 
we haven't shown that it gives a well-defined mapping. For that, we have to use 
how WE transforms under change of frame. We established that if E = E · g on U 
for some function g : U ~ 0 (n) , then 

t d t W£ = g ·WE · g - g · g 

=8' ·WE ·g+g' ·dg. 

For the pullback of a form, we have on the other hand 

E*w (X)= w (DE (X)) 

= w(D(E · g)(X)). 

We view E · g as a composition of the two functions 

E: u~ FM, 

R8 :FM~FM. 

As g is also a function, we need to be careful when computing the derivative of 

(p, g)~ R8 o E. 

The chain rule yields for v E TpM, 

D (E ·g) (v) = D (R8<P>) (DE (v)) +a (g' · dg (v)) (E (p) · g (p)) 

= g' ·DE (v) · g +a (g' · dg (v)) (E ·g), 

implying that 

E*w(X) = g' · E*w(X) · g + g' · dg (DE (X)). 

Hence, we get a unique and well-defined connection form won F M. Note that 
the last term in this formula actually comes from the fact that w o a = id, so one 
really only needs to check the transformation formula in case g : U ~ S 0 (n) is 
constant. This leads us to a very nice and abstract characterization of the connection 
on the frame bundle. 

Proposition 6.1 There is one and only one 1-form w : T F M ~ .so (n) such that 

(J) 0 (J' = id, 

woDR8 =8' ·w·g 

=Ad (g 1 ) ow, 

where Ad(g) : g ~ g is the differential of the inner automorphism x ~ g · x · g -l. 
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The connection on the frame bundle is also often called the Ehresmann con­
nection. The 1-form, as we have seen, is never zero on nonzero tangent vectors to 
fibers. Since it maps T (F M) to .so (n) , it must therefore haven-dimensional kernel 
at each e E F M. The distribution generated by this construction is called the hori­
zontal distribution. It is denoted 1t and the fibers 1te = ker (w : Te F M --+ .so (n)) . 
Evidently this distribution completely determines the connection form w. As 
1te n Te (FpM) = {0}, where p = JT (e), we must have that Dn : 1te --+ TpM 
is an isomorphism. The inverse of this isomorphism TpM --+ 1te is called the 
horizontal lift ofv E TpM to vh E 1te C TeFM. 

B.7 Covariant Differentiation of Tensors 

Let us now see how the connection on the frame bundle can give us back covariant 
differentiation of tensors. Let a tensor bundle F M x O(n) V --+ M coming from a 
representation p : 0 (n) --+ 0 (V) be given. The differential of p is represented 
by a linear map dp : .so (n) --+ .so (V). If we think of a tensor as a map T : F M --+ 

V, then we have the differential dT : T F M --+ V, which commutes with the 
actions of .so (n) on T F M and of .so (n) on V via dp. The covariant derivative 
'VT is supposed to be a new tensor with one extra vector variable. This means 
that it should be a section of F M x O(n) End (!Rn, V), or in other words, a map 
F M --+ End (!Rn, V) . The definition is 

'VT : F M --+ End (!Rn, V) , 
e--+ (x--+ dT ((e · x)h)). 

In other words, we think of 'V T as the restriction of dT to the horizontal distribution. 
Since dn : T F M --+ T M is an isomorphism when restricted to the horizontal 
distribution, we can reinterpret this as follows. Think of T : F M --+ V and 
'VT: TM--+ FM xo(n) V. Then 

'VvT = [e, dT (vh)], Vh E 1te C TeFM. 

Therefore, if we take a frame E : U --+ F M, then we arrive at 

'VvT = [E, d (To E) (v)- dp (wE (v)) (To E)] 

= [E, d (To E)(v)- WE (v) ·(To E)] 

= [E, dT (DE (v))- w(DE (v)) ·(To E)]. 

It is perhaps not immediately clear why this is the same as the invariant definition. 
Using that D (JT o E)(v) = v, we can write DE (v) = vh +a (s) E 1t Ea.so (n) = 
T F M. With this we obtain 

dT (DE (v))- w(DE (v)) ·(To E)= dT (vh)- w (vh). (To E) 

+ dT (a (s))- w (a (s)) ·(To E) 

= dT (vh) + dT (a (s))- s ·(To E) 

=dT(vh). 
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Here, the term dT (a (s))- s ·(To E) = 0, since we assumed that Tis invariant 
with respect to the 0 (n) actions. 

In the special case of X = E · x, x : U ---+ llln, being a vector field, we already 
know from Cartan formalism that 

VX = V(E ·X) 

= (V E) · x + E · dx 

= - E ·WE · x + E · dx 

= E ·(-wE ·x +dx). 

Since this agrees with the local formula we derived from the invariant definition, 
we see that the above definition of covariant differentiation gives us back the old 
definition. 

We now have to see how the curvature enters the picture. The curvature form is 
defined as: 

Q : A 2TM---+ so(n), 

Q (X, Y) = Q (X 1\ Y) = -w ([Xh, yh]). 

Thus, the curvature vanishes iff [Xh, yh] is horizontal. This implies that the curva­
ture is zero iff the horizontal distribution is integrable. Thus, the curvature somehow 
measures how close the horizontal distribution is to being integrable. 

It still remains to be seen what this has to do with our curvature forms from 
above. For that we must show 

Q (X, Y) = (dw + w 1\ w) (xh, yh). 

But w vanishes on horizontal vectors, and thus the only term left on the right-hand 
side is 

dw (Xh' yh) = -w ([xh' yh]) 
= Q(X, Y). 

We now wish to connect this version of the curvature tensor with our alternative 
definition R (X, Y) T = Vi_yT- Vi.xT for the curvature of a tensor T: FM---+ 
V. It is natural to guess that the relationship should be 

R (X, Y) T = dp (Q (X 1\ Y)) (T) 

= Q (X 1\ Y) · T. 

It follows from our definition of Q and V that this is true for vector fields. Thus, 
it must also be true for all tensors. 

B.8 Principal Bundles in General 

In the previous section we saw how the principal bundle, together with its con­
nection, contains all information about the underlying Riemannian metric, the 
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associated tensor bundles and covariant derivatives. At the same time, it also gave 
us an invariant approach to the Cartan formalism. While this approach might at first 
seem unnecessarily abstract and useless, it really gives us a very general method 
for dealing with many different subjects. In this section we shall describe how this 
theory can be further axiomatized and generalized. 

A principal G-bundle over a manifold M consists of a submersion f : P --+ M 
such that each fiber is isomorphic to G. We shall further assume that G is a compact 
Lie group that acts from the right on P, with the property that orbits are exactly 
the fibers of the bundle. We shall also assume that there are local trivializations 

f- 1 (U) --+ u X G 

'\t / 
u 

that commute with the right actions of G on both f- 1 (U) and U x G. Clearly, 
we can construct for each X E g a vector field u (X) tangent to the fibers of the 
fibration. 

A connection on a principal G-bundle consists of a g-valued 1-form co : T P --+ g 
with the properties that 

coou=id, 
coo DR8 =Ad (g-1) o co. 

Again, we have a horizontal distribution 1t with fibers 1te = ker (co : TeP --+ g). 
This leads, as before, to horizontal lifts from T M. The curvature form is also 
defined as above: 

A2TM-+g, 

Q (X A Y) = -co ([xh, yh]). 

Given a vector space E and a representation of G on E, i.e., a homomorphism 
p: G--+ End (E), we can construct a vector bundle P xa E--+ M with fibers 
isomorphic to E. Given a connection co on P, we have a natural connection on 
sections of this fiber bundle defined by the formula 

Vvs = ds (vh). 

Moreover, we have the important curvature identity 

R (X, Y)s = dp (Q (X 1\ Y))(s) 

= Q(X 1\ Y) · s 

for all sections s : F M --+ E of this bundle. 
Suppose now that the vector space E comes with an inner product structure 

{ ·, ·} . We then get an inner product on each of the fibers in the vector bundle 
P xa E --+ M. However, we don't necessarily have that Leibniz's rule holds: 

Dv {si, sz} = {V vSJ. Sz} + {SJ, V vSz} , 
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where s1, s2 : M ~ P x a E. For this to be true, we must assume that the inner 
product is invariant under the action of G on V. This is not hard to check. Note also 
that for all the tensor bundles it was assumed that the inner products were invariant, 
as we always insisted on having a representation of the form 0 (n) ~ 0 (V). 

B.9 Further Study 

For more on principal bundles the reader can consult [76, vol. II] and the compre­
hensive account in [53, vol. I]. The reader should be aware that we have developed 
everything in the framework of Riemannian manifolds. One can on any manifold 
construct the principal Gln bundle of frames (not just orthonormal frames) and 
with this develop tensor bundles. 

Cartan formalism is very useful in submanifold theory, where one can use 
adapted frames for a submanifold together with the structural equations to de­
velop all of the fundamental equations of submanifold geometry. A good place to 
learn about all this is in [76, vol. IV]. 
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Spinors 

Spinors have for decades been useful in physics, and many proofs in geometry 
can be considerably simplified using spin geometry. Without writing a new book 
on this, we cannot explain these ideas in any detail. The point here is to give as 
quick and elementary an account of spin geometry as possible. Hopefully, this 
will make it much easier to get into this subject, without getting bogged down 
in the rather massive preliminary work that authors usually go through before 
mentioning spinors. We shall give a very quick, but detailed, introduction to the 
idea of spin manifolds and why they have special spinor bundles. With that behind 
us, it will become clear that these bundles naturally come with connections induced 
from a Riemannian connection on the underlying manifold. After this preliminary 
material, we define the Dirac operator on spinors in the same way as we defined it 
for forms. The corresponding WeitzenbOck formula is then established and used 
to prove various rigidity results for manifolds with nonnegative scalar curvature. 

One of the magic uses of the Dirac operator on both forms and spinors is that its 
square is a natural Laplace operator. In both cases, Clifford multiplication gives us 
the algebra that is needed in order to take a sum of squares and make it the square 
of a sum: 

2 2 { I n )2 -a! - ... -an = e . a!+ ... + e . an ' 

-a?- ... - a;= (e1 . a!+ ... + en. an)2 ' 

where the ei generate an algebra over lR subject to the relations 

ei . ei + ei . ei = 0 if i =/= j, 

ei·ei=-1. 
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Even though Clifford studied these algebras in the nineteenth century and Cartan 
shortly afterwards discovered the spin representations, it wasn't until Dirac and 
Pauli saw a use for these matters in the description of the electron that spinors 
became interesting to mathematicians and physicists alike. The physicists were, 
and still are, mostly interested in spinors when the underlying space is either 3-
or 4-dimensional, and in the latter situation they of course use Minkowski space 
rather than Euclidean space as the infinitesimal model. This has the effect of 
making things a little more concrete. In dimension 3, for instance, one can use the 
following choices for e1, e2, e3: 

Quarternion model: e1 = i, 2 . e = J, 

su(2)model: e 1 =(~ ~i ). e2 =(~1 ~)· e3 =(~ ~)· 
It is also remarkable that even for many mathematical theorems that mathemati­
cians have proven by "traditional" methods, physicists have found very simple 
proofs using spinors. This is particularly interesting, as it was in fact Atiyah and 
Singer who introduced spinor bundles as they appear in our account here. A great 
example of this is the positive mass conjecture, which was first established by 
Schoen and Yau using very delicate analytical techniques about minimal surfaces. 
Witten then found a very simple proof using spinors. We shall give an indication 
of how this works below. In order to understand this result, it is also necessary 
to get a clear picture of what the square of a spinor is. This is a very interesting 
concept that links forms and spinors in a very concrete way. Unfortunately, there 
doesn't seem to be any broad agreement on what exactly this square should be. 
We present several possible definitions and use some of these to prove a couple of 
important theorems. 

C.l Spin Structures 

First we shall explain how orientability and spin structures are related to coho­
mology and the frame bundle. We assume that we have a Riemannian manifold 
(M, g), and suppose in addition that we have a good covering {Ua}. On each Ua 

select an orthonormal frame Ea = ( Ea,I, .•. , Ea,n) . On nonempty intersections 
we then have the transition matrix functions T:af3 : Ua n U13 --+ 0 (n) defined by 
E 13 = Ea · T:af3. The important property of these transition matrices is that 

The maps T:afJ : U a n U fJ --+ 0 (n) can be reduced to maps 

det T:afJ : Ua n Up --+ 0 (n) I SO (n) = {1, -1} = Z2, 

by taking the the determinant of T:afJ. In the language of Cech cohomology, we have 

then constructed a map f : / 2 --+ Z2 . This map is alternating, since (-ca13f 1 = 
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(Ta,B)' = T,Ba· We can compute the differential as 

df (ao, at, a2) = f (at, a2) · (f (ao, a2))-t · f (ao, at) 

= det Ta1a 2 (det Ta0a 2}-t det Ta0a 1 

= det ( Ta1a2 • ( t'aoa2} -t · t'aoat) 

= det ( Ta1a 2 • t'a2a0 • t'a0aJ 

=det/ 

=1. 

Thus, we get a cohomology class denoted by Wt (M) E H t (M, Z2) • It is very easy 
to see that for the fixed good covering given, this class is independent of the metric 
we used, since we reduce mod S 0 (n ). In fact, the mod S 0 (n) reduction of T is 
-1 or 1, depending on whether the coordinate transitions reverse or preserve the 
standard orientation on Euclidean space. The cohomology class Wt (M) is called 
the first Stiefel-Whitney class. It obviously measures whether or not the manifold 
is orientable. 

Now assume that the manifold is orientable, i.e., w1 (M) = 0. Then we can 
suppose that the coordinates are chosen such that Ta,B E S 0 (n) . If n > 2, we know 
that 1rt (SO (n)) = ~. so there is a Lie group called Spin (n) and a nontrivial 
2-fold covering map 1r : Spin (n) ~ SO (n). We shall give a more concrete 
description of this group below. For now, we just need the abstract setup. Each of 
the maps Ta,B : Ua n U.B ~ SO (n) has two lifts to Spin (n), as the intersection 
is assumed to be simply connected. Let ia,B : Ua n U,B ~ Spin (n) denote one of 

these lifts. We can certainly assume that these choices at least satisfy ( ia,B) -t = 
i,Ba· But it might happen that the relation ia,B • ipy = iay doesn't hold on the 
intersection Ua n U.B n Uy. However, as iapi,By and iay differ by an element in 
~ = ker (Spin (n) ~ SO (n)), we can define a map by 

f : / 3 ~ z2 = {1, -1}, 

f (a, {J, y) = ia,Bi,By (iay rt 
= Ta,BT,Byiya 

E ker(Spin (n) ~SO (n)). 

It is easily verified that this map is alternating, thus it defines a cocycle. To make 
it onto a cohomology class we must check that it is also coclosed. Using that 
f (a, {J, y) is always central (this will become clear below when we give an ex­
plicit description of Spin (n)) and does not change under cyclic permutations of 
(a, {J, y), we can compute: 

df (ao, a1, a2, a3) = f (at, a2, a3) · (f (ao, a2, a3))-1 

· f (ao, a,, a3) · (f (ao, a,, a 2))-t 

= (ia1a2 ia2a3 ia3aJ (iaoa2 ia2a3 TaJao} -t 
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· {faoal fa1a3 fa3ao) {faoal fa1a2 Tazao)-l 

= (fa I az Taza3 fa3a1) ( faoaJ fa3a2 Tazao) 

· {faoaJ fa1a3 fa3ao) (faoaz Tazal falao) 

= (fa1a2 Taza3 fa3a1) {faoaJ fa3a2 Tazao) 

· (faoaz faza1 falao) {faoaJ fa1a3 fa3ao) 

= (fa I az faza3 fa3a1) faoa3 ( fa3a2 fa2a1 fa I a3) faJao 

= (fa1a2 faza3 fa3a1) (fa3a2 faza1 fa1a3) 

= (fa3a1 fa1a2 Taza3) (fa3a2 Tazal fala3) 
=1. 

Thus, we have found a cohomology class w2 (M) E H 2 (M, Z2) called the second 
Stiefel-Whitney class. This class is zero iff one can choose the lifts to Spin (n) such 
that the conditions fap · fpy = fay hold whenever it makes sense. It is again easy 
to show that w2 (M) is invariant of the metric and therefore a manifold invariant. 
One can also show that w2 is the image of the first Chern class under the map 
H 2 (M, Z)--+ H 2 (M, Z2). A manifold such that w1 (M) = 0 and w2 (M) = 0 is 
called a spin manifold. 

On a spin manifold it is now possible to lift the frame bundle to a principal 
Spin (n) bundle. The construction imitates our local construction of the frame 
bundle. Thus, we assume that a good covering is given, where 'Cap E SO (n), and 
thatthe lifts fap E Spin (n) satisfy the compatibility condition fap·fpy = fay· Over 
Ua we declare the bundle to be trivial: Ua x Spin (n). On the intersections Ua n Up 

we then identify points (Pa• a) E Ua x Spin (n) and (Pa• a · fap) E Up xSpin (n). 
This gives a well-defined equivalence relation, because we have assumed that 

(- )-l -
'Cap = 'Cpa • 

Tap • fpy = fay• 

This bundle is denoted by SM or SpinM and is called the spin bundle over M. 
Over a given coordinate chart, we have the commutative diagram: 

Ua x Spin (n) --+ 
,!, 

--+ 

where the vertical arrows are projections to the first factor and the upper horizontal 
arrow is simply the covering map rr : Spin (n) --+ SO (n). If in this F+ M 
denotes the S 0 (n) principal bundle of positively oriented frames, then we get a 
fiber-preserving covering map: rr : SM --+ F+ M, such that for all a E SM and 
g E Spin (n) 

rr (cr ·g)= rr (cr) · rr (g), 

and when restricted to the fibers, it is simply the covering map rr : Spin (n) --+ 
SO (n). 
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Since 0 (n), SO (n), and Spin (n) all have .so (n) as a Lie algebra, we see that 
F+ M has a natural connection induced from F M. By pulling back this 1-form to 
S M, we also get a natural connection form on SM. 

The hope now is that this new principal bundle contains more information than 
the frame bundle. This is by no means clear, but it turns out that Spin (n) does 
have some new representations that are not just induced from an S 0 (n) action. 
This is the subject of the next section. First, we should mention some examples of 
spin manifolds. 

Example 1.1 We have kept 2-manifolds in the background in the above discus­
sion, as S 0 (2) has infinite fundamental group. In that case, one can define Spin (2) 
to be the unique 2-fold covering of SO (2). Thus, everything goes through without 
change. Using the classification of2-manifolds one can, by inspection, check that 
all the orientable ones are in fact also spin. For the 2-sphere, for instance, the frame 
bundle is isomorphic to the unit sphere bundle, which in tum is JRP3 ---+ S2. Thus, 
it is not hard to guess that SS2 = S3 ---+ S2 is the Hopf fibration. 

Example 1.2 Any parallelizable manifold must be spin, as the frames on the 
individual sets of the covering can be chosen to agree on intersections. 

Example 1.3 One can show that any orientable 3-manifold has w2 = 0 and is 
therefore spin (see [61]). In fact, all orientable 3-manifolds are parallelizable. In 
particular, 1RP3 is a spin manifold. 

Example 1.4 For a manifold M we can construct the class w (M) = 1 +w1 (M)+ 
w2 (M) e H 0 (M, ~)EBH1 (M, ~)EBH2 (M, Z2).(Normally,onewouldcontinue 
this series with the higher Stiefel-Whitney classes. Also, we are being a little loose, 
as w2 was only defined when w1 = 0.) Using the above characterizations, we note 
that 

w (M X N) = w (M) w (N) 

= 1 + Wt (M) + Wt (N) 

+w2 (M) + Wt (M) Wt (N) + w2 (N). 

In particular, the product of two spin manifolds is again a spin manifold. This is 
also easily checked directly from the definition. 

Example 1.5 One can also show, using a Meyer-Vietoris argument, that the 
connected sum M~N is spin, provided that both M and N are spin. 

Example 1.6 In dimension 4 we have that S4 and S2 X S2 are spin. On the other 
hand, in analogy with dimension 2, CP2 is not spin. 

C.2 Spinor Bundles 

In analogy with our construction of tensor bundles from the frame bundle, we shall 
now construct some spin bundles. In order to construct these bundles, we need to 
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recall Clifford multiplication. On Rn we construct the space (A PJRn )* of alternating 
p-linearmaps fromiRn to IR and the space (A *Rn)* = (A 0Rn)* EB · · · EB(AniRn)*of 

all alternating multilinear maps. Note that (A 0Rn) * = IR and (A 1 Rn) * = (Rn )* . 
Given an orthonormal basis ei for Rn and dual basis ei for (Rn)*, we declare 
ei 1 1\ · · · 1\ eip, i1 < · · · < ip, p = 0, ... , n, an orthonormal basis for (A *Rn)*. 
On this space we have, as already mentioned, defined Clifford multiplication. 
Aside from being associative and distributive with respect to addition, it satisfies 
the important relation 

forall01, 02 E (Rn)*, where (01, 02) denotes the innerproduct.Itwill be convenient 
to use the notation Cln for the space (A *Rn)* when thought of as an algebra with 
respecttoCliffordmultiplication.Againweseethatei1 ..... eiP,i1 < ··· < ip,p = 
0, ... , n, forms an orthonormal basis for Cln. We shall call Cln then-dimensional 
Clifford algebra. 

We have the multiplicative group Cl: consisting of all invertible elements of 
Cln. Note that all nonzero 0 E (Rn)* have -0 · 101-2 as a multiplicative inverse. 
Thus, (Rn)* - {0} c Cl x (E), and in particular, it follows that Cl: is an open 
dense subset of Cln and therefore also a Lie group. 

The important observation, for our purposes here, is that Spin (n) is a subgroup 
ofCI:. 

Theorem 2.1 The spin group Spin (n) is the group G generated by elements of 
the form lh · Oz, where OJ, Oz E (Rn)* have unit length. 

Proof. The proof of this is actually quite nice and geometric. First, we realize 
that each 0 E (Rn )* of unit length generates a reflection on Rn by the formula 

</J (O)(v) = v - 20 (v) 0°. 

In other words, f/J (0) is the reflection in the hyperplane orthogonal to the dual 
0° E Rn of 0. From this we see that </J (OJ) = </J (02) iff OJ = ±02• Also, </J generates 
a homomorphism from the group generated by all elements 0 of unit length. In 
particular, </J (OJ) o cp (02) is an orientation-preserving isometry and therefore an 
element of S 0 (n) . Thus, we have a homomorphism: cp : G ---+ S 0 (n) . 

It is a classic theorem of Cartan that any element of the orthogonal group is a 
composition of reflections. Since all reflections are orientation reversing, we see 
that each element of S 0 (n) is the composition of an even number of reflections. 
This means that cp is onto. The maps is two-to-one because only elements that are 
the negative of each other are identified. To make G into Spin (n) , it only remains 
to be seen that it is connected. Since SO (n) is connected and the kernel of cp is 
{ 1, -1} , it suffices to find a path connecting these two points. This is given by 
choosing two perpendicular unit elements OJ, 02 E (Rn)* and then considering the 



path 

C.2 Spinor Bundles 401 

[o.~]~a. 
y (t) = (Ot cost+ 02 sint) · (-81 cost+ fh sint) 

= cos2 t - sin2 t + (01 • (h) (2 cost sin t) 

= cos (2t) + 01 • 02 sin (2t). 

A twofold covering map G ~ S 0 (n) having been constructed and G shown to 
be connected, it must follow that G =Spin (n). D 

From this we see that Spin (n) acts on Cln from the left by Clifford multipli­
cation. This action is not just an action that comes from an action of S 0 (n) , as 
±1 clearly act differently on Cln. The representation theory of Spin (n) is there­
fore richer than that of S 0 (n) . This obviously has the consequence that we can 
construct some natural spin bundles over spin manifolds that are not just tensor 
bundles. 

Note that S 0 (n) also acts on Cln from the left in the following way: 

g · (Ot · .. · · Op) = Ot o g-1 · .. • · Op o g-1 

= Ot o l· · · · · Op o g1• 

This action is clearly very different from the spin action. 
On any Riemannian manifold (M, g) we can now construct the Clifford bundle 

Clo (M) = FM xo<n> Cln. 

In case M is oriented, this bundle is the same as 

Clso (M) = p+ M Xso(n) Cln. 

This bundle is easily seen to be the same as the bundle Q* (M) of forms with the 
Clifford multiplication induced from the Riemannian metric. Still, it is convenient 
to have two different notations for the these spaces depending on how we view 
them. 

On a Riemannian spin manifold we can now construct a spinor bundle 

Clspin (M) = SM Xspin(n) Cln. 

Sections of this bundle are called spinors. Due to the different representation we 
use, these sections cannot be thought of as tensors. In this definition one must, 
of course, watch out that the correct action of Spin (n) on Cln is chosen, as we 
have the spin action and then the trivial one induced from the S 0 (n) action. In 
the latter case we merely reproduce the Clifford bundle, so we shall always think 
of Spin (n) as acting by Clifford multiplication on Cln. This spinor bundle has a 
very important module structure. Starting with the fact that Cln acts on itself from 
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the left by Clifford multiplication, we see that the Clifford bundle must act on the 
spinor bundle from the left as well. Thus, we can form the Clifford product w · a 
for sections w of Clso (M) and a of Clspin (M). 

Given a left Cln module V (i.e., a vector space V and a ring homomorphism 
Cln ~ End (V)), we can more generally construct a spinor bundle 

S (V) = SM X spin V 

using that Spin (n) acts on V via the action ofCln on V. On this bundle we clearly 
also have an action of the Clifford bundle from the left. Thus, there is probably no 
shortage of spinor bundles on a spin manifold. Again, sections of this bundle are 
called spinors. 

It would be nice to a have a canonical spinor bundle just as the tangent bundle 
is the canonical tensor bundle. Using the Wedderburn theorem, one can show 
that any Cln module is a direct sum of irreducible Cln modules. One can then 
show that when n =¢ 3 (mod4) there is only one such irreducible module, while if 
n = 3 (mod4) there are two distinct irreducible modules. In the former case we 
therefore get a canonical spinor bundle. In the latter situation it turns out that the 
two inequivalent Cln modules have the same actions by Spin (n), so even in this 
case one gets a unique spinor bundle. While all of this is quite important, if one 
goes more deeply into the theory, one can still get around these subtleties. Namely, 
we know that there always is a spinor bundle on a spin manifold, and the theory 
for all of the spinor bundles is virtually the same. So at a more superficial level 
there is no reason to separate out the analysis for different spinor bundles. Still, it 
might be instructive to see what happens in low dimensions. 

One can easily check that the first two Clifford algebras look like 

Ch =C, 

Ch =!HI. 

The irreducible representations are then just the action of the Clifford algebras on 
themselves. The corresponding spin actions are, however, not irreducible. This is 
because Spin (1) is simply defined to be the trivial group, and Spin (2) = S 1• This 
is a phenomenon that happens in many dimensions and yields some very important 
information. 

The first time something really interesting happens is in dimension 3. The Clif­
ford algebra Ch has the orthonormal basis { 1 , e 1 , e2 , e3 , e 1 • e2 , e2 • e3 , e3 • e 1 , 

e 1 · e2 • e3 }. We claim that Ch has two inequivalent actions on the quaternions !HI. 
If we think of !HI = span{ 1, i, j, k} , then the first action can be described as 

1· v = v, 

e1 • v = iv, 

e2 • v = jv, 

e3 • v = kv. 

This gives a well-defined action, as Clifford multiplication and quaternion multi­
plication with { i, j, k} have similar relations. The other action is defined the same 
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way, except multiplication is from the right. Clearly, both of these actions are 
irreducible, and it is not hard to see that these two actions are inequivalent. 

Now for the spin representations. Recall that Sp (1) = SU (2) =Spin (3) = S3 

and S 0 (3) = R.P3• It is therefore natural to assume that the action of Sp (1) = S3 

by multiplication of unit quatemions on lHl is the desired representation. This is 
indeed true. Just note that any element of Spin (3) looks like 

(a + be1 + ce2 + de3) (a' + b' e1 + c' e2 + d' e3) 

= (a+ {Je1 • e2 + ye2 • e3 + !Je3 • e1) 

when acting on lHl. Using the action just described, such an element will act like 

(a+ {Jij + y jk + !Jki) = (a+ {Jk + yi + !Jj). 

One then only needs to check that this is an element of unit length. This comes 
from the fact that both (a + be1 + ce2 + de3) and (a' + b' e1 + c' e2 + d' e3) have 
unit length. Finally, one can use the commutation rules ij = - ji, etc., to see that 
the right action by unit quatemions is equivalent to the left action. 

All in all, we have then found a natural spinor bundle: 

SM Xsp(l) lHl 

for all orientable 3-manifolds. It comes equipped with a metric and a quatemion 
structure. In general, one almost always gets a natural complex or quatemion 
structure on spinor bundles. Note that without knowledge of the Clifford algebra, 
we could have guessed that the bundle should look like 

SMxsp(l)lH[ or SMxsu(2)C2, 

but then we would have had to reconstruct the action of the Clifford bundle. It is 
usually better to begin with that action and then restrict to the spin action. 

In dimension 4 we see that Spin (4) = Spin (3) x Spin (3) = Sp (1) x Sp (1). 
This group clearly acts irreducibly on lHl x lHl. So it is certainly a good guess that 
the irreducible action of Cl4 in this case is on lHl x lHl. Again this is indeed true. 
The details are left to the reader. 

It is still not clear what these bundles are good for. Hopefully some justification 
can be found in the next sections. 

Before proceeding, we wish to mention briefly something about the local theory 
of spinors. Recall that for a tensor T : F M --+ V the coefficients in a local frame 
E : U --+ F M are found simply by taking the composition T a E : U --+ V. A 
similar thing can be done for spinors, as long as the domain U is simply connected. 
Suppose we a have a positively oriented frame E : U --+ F+ M. Then there are 
two lifts: 

SU = Spin(n) xU 
E± 

? + + 
u _.;. F+u - so (n) x u. 
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The local coordinates for a spin or a : S M ---+ V are therefore given by the 
compositions a o E±. Note that if the spinor has constant coefficients in one of 
the lifts, then they will also be constant in the other. Thus, we have a well-defined 
notion of a spinor having constant coefficients with respect to a given frame. This 
local theory of spinors is not nearly as well understood as the similar local theory 
for tensors, at least by mathematicians. Physicists seem generally to have a much 
better feel for spinors. A perfect example of this is Witten's proof of the positive 
mass conjecture, see e.g., [9] and [55]. A key ingredient in this proof is the use of 
spinors that have constant coefficients in a given frame. Another key ingredient is 
the Bochner technique for spinors. The next two sections will be devoted to these 
matters. 

C.3 The Weitzenbock Formula for Spinors 

Our approach here is exactly the same as we took in Chapter 7, when we de­
veloped Clifford multiplication to take care of the Bochner technique for forms. 
Here the theory is similar, but also different, as we have used a different type of 
representation to define spinors. 

We shall throughout work with a spinor bundle 

S (V) = SM Xspin(n) V 

on a closed oriented Riemannian spin n-manifold (M, g). As already described, 
sections of such a bundle can be multiplied by sections on the Clifford bundle 
Clso (M). 

On both of these bundles we have natural connections, which are both denoted 
by V, and on the spinor bundle we have the curvature transformation 

RSpin (X, Y) a = Vi ya - V~ xa. 
' ' 

The important property is that we have Leibniz's rule: 

Vx (w ·a)= (Vxw) ·a+ w · Vxa, 

R (X, Y)(w ·a)= R (X, Y) (w) ·a+ w · R (X, Y)(a). 

The Dirac operator is a first-order operator that acts on sections of S (V) , i.e., 
it acts on spinors. It is defined exactly as we defined the Dirac operator on forms. 
Namely, for any (not necessarily orthonormal) frame Ei and dual frame ei we 
declare 

Da = (}i · VE;a 

for any section a of the spinor bundleS (V). Note that this formula is independent 
of the chosen frame and therefore defines an invariant operator. The square of D 
is the natural Laplacian on spinors. As with forms, we have 
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Proposition 3.1 For any frame E; and dual coframe (Ji we have for any spinor 
u the formulae 

Proof. As the right-hand side is invariant of the chosen frame, we can as usual 
assume that it is orthonormal and compute 

D2u = (}i · ('VEi (Oi · VEiu)} 

= o; · (vEi (oi) · vEju + oi · vEi vEju) 

= oj · oi · vEi vEp + oj · vEi (oi) · vEju 

= Oi · (Ji · VEi VEiu + (}i • (}k · g (Ek. VEiEi) VEiu 

= oj. oi. vEi vEp- oj. ok · g (vEiEk. Ej) vEp 
i . i k 

= (} · (}J • V Ei V EiU - (} · (} · Vg(VEi Et.Ei )EP 
. . . k 

= (}' · 01 • V e. V E. u - (}' · 0 · Vv E u 
I J E; k 

= (}i · (Ji · VE. VE.u - (}i · oi · Vv E·u 
I J E; 1 

i j 2 = (} . (} . VE· E. u 
I' J 

n 

L j i 2 Lj j 2 = (} .(} ·VE·E-u+ (} .(} ·VE·E·U 
I' J I' J 

i=l i#j 

Ln 2 Li '(2 2) =- VE· gU + (} · 01 • VE· E·u- VE· E·u 
I' I I' J J' I 

i=l i<j 

= V*Vu + L (}i • (Ji · RSpin (E;, Ej) u 
i<j 

1~ .. S'( ) = V*Vu +- L.., O' · 01 • R pm E;, Ei u. 
2 .. I I,J= 

0 

Finally, we must deconstruct the curvature term. This was first done by Lich­
nerowicz. He arrived at the surprising result that the curvature term in the above 
Weitzenbock formula acts simply by multiplication of the scalar curvature on 
spinors. 

Theorem 3.2 (Lichnerowicz, 1963) For any frame E; and dual coframe (Ji we 
have 

1 1 ~ · · s· ( ) 4scal = '2 .~ (}' · (}J ·Rpm E;, Ei . 
I,J=l 
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Proof. First, we must show that the curvature RSpin (X, Y) on spinors can be 
rewritten in terms of the curvature tensor R on M: 

s· ~~( ) .. R pzn (X, Y)a =- ~g R(X, Y)Ei, E1 (jl. (} 1 • a. 
4 .. 

1,] 

This formula is clearly invariant of the frame, so we shall assume that we work 
with an orthonormal frame. We already know that the curvature form n,Spin 
A 2 T M 4> .spin (n) satisfies 

RSpin (X, Y) a = gSpin (X 1\ Y) . a. 

Note that as the full Clifford algebra Cln has itself as tangent space and Spin (n) c 
Cln, we also have that .spin (n) c Cln. As the spinor bundle is constructed using a 
Cln module, we therefore have that n,Spin (X 1\ Y) ·a represents Clifford multipli­
cation of the element gSpin (X 1\ Y) E .spin (n) c Cln on a. At the same time, we 
also have that the connection form wSpin : T S M 4> .spin (n) simply comes from 
pulling back the connection form w on p+ M, via the covering map S M 4> p+ M, 

and then lifting .so (n) to .spin (n) via the isomorphism d¢ : .spin (n) 4> .so (n) com­
ing from the covering map(/> : Spin (n) 4> SO (n). Thus, the curvature form is 
simply obtained by the formula 

gSpin = (d(/>)-1 0.. 

To compute d¢ we need a concrete description of .spin (n) as a subset of Cln. To 
this end, we use that we have a curve in Spin (n) with the properties 

y (t) =cos (2t) + 01 • 02 sin (2t), 

y(O)=l, 

y (0) = 2(}1 . (}2· 

Thus, we see that the forms ()i · ()i E .spin(n). It is now a simple matter to check 
that 

{ 
2Ei, k = i, 

d¢ (oi. oi) (Ed= -2Ej, k = j, 
0, otherwise, 

or in other words, d¢ (Oi · Oi) = 2Aii, where Aii is the skew-symmetric matrix 
with only two nonzero entries, at positions ij and ji, and those entries are ±1. As 
any skew-symmetric matrix A = (a;) is a linear combination of the matrices Aii, 
we see that 

We know that the curvature form n. acts like the skew-symmetric matrix ( n/) 
defined by 
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Thus, we have the curvature identity 

= ~~g(R(X,Y)E;,Ej)Oi ·Oj 
l<J 

1 ~ ( ) . . = - ~ g R (X, Y) E;, Ej 0' . 01. 
4 i,j=l 

We can now reduce the curvature expression, using again that the frame is 
orthonormal, as follows: 

1 Ln . . S . ( } - 0' · 01 • R pm £. E · 2. . ,, J 
l,j=l 

1 "' i · ( ( ) ) k I = - ~ 0 · 01 • g R E;, E j Eb E1 0 · 0 
8 .. k I l,J, ' 

=!I: ( I: g(R(E;,Ej)EbEI)oi ·Oj .ok) ·01 
8 I .. k l,J, 

distinct 

+~LLg(R(E;,Ej)Ej,E1)oi ·Oj .oj ·01 
I i,j 

+ ~ L L 8 ( R ( E;, E j) E;, E1) oi . oj . oi . o1 

I i,j 

=! L ( I: g(R(E;,Ej)Ek.El)oi .oj .ok) .o1 
8 I .. k l,J, 

distinct 

-~I: Lg (R (E;, Ej) Ej. E1) oi. 01 
I i,j 

- ~ L L 8 ( R ( E j, E;) E;, E1) oj . o1 
I i,j 
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Finally, we can make the extra term disappear by using Bianchi's first identity and 
the fact that a cyclic permutation of the indices in (}i • (}j • ok does not change the 
expression since the indices are all distinct, as follows: 

L g (R (Ei, Ej) Ek. El) (}i. (}j. (/ 
i.j,k 

distinct 

=0. 

Thus, we have the Lichnerowicz formula for the Dirac operator on spinors: 

1 
D 2 = V*V + 4scal. 

From this formula we can deduce 

D 

Theorem 3.3 (Lichnerowicz, 1963) On a compact Riemannian spin manifold 
with seal ::=: 0 any harmonic spinor is parallel, and if in addition seal > 0 
somewhere, then there are no nontrivial harmonic spinors. 

It is a consequence of this and the Atiyah-Singer index theorem that the A genus 
of such manifolds vanishes in dimensions n = 0 (mod4). The full story can be 
found in [54] and [79, vol. II]. 

We get a very interesting and strong rigidity result from the above theorem: 

Corollary 3.4 Any compact spin manifold with seal ::=: 0 and nonvanishing A 
genus must be Ricci flat. 

Proof. The hypotheses guarantee that there are nontrivial harmonic spinors. 
These harmonic spinors must be parallel as the scalar curvature is nonnegative. The 
result now follows from a simple calculation similar to the one done for the curva­
ture term in the Bochner formula for spinors. The claim is, in fact, that whenever 
there is a nontrivial parallel spinor the metric must be Ricci flat. 
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In analogy with the calculation showing that 

1 1 Ln . . S . ( ) -seal= - 01 • 01 • Rpm £. E. 
4 2.. I> j ' 

1,)=! 

one can easily see that 

n n 

Lei . RSpin (X, E;) = -2 L g (Ric (X)' E;)Oi. 
i=l i=l 

Thus, the action of I:7=1 ei · RSpin (X, E;) on a spinor is like the action of the 
dual of Ric( X) on the spinor. If the spinor a is parallel, then we must have that 
Rspin (X, Y) a = 0. Thus, the dual of Ric(X) always acts trivially on a. This 
implies that Ric(X) = 0 in case the spinor is nontrivial. D 

It is a very curious and almost unbelievable fact that the scalar curvature is the 
natural curvature for the Bochner formula on spinors. In all other cases we had 
to use Ricci curvature or the curvature operator to get control of this term. The 
reason for this lies in how spinors are defined. Namely, they come from a Clifford 
module together with the natural inclusion of Spin (n) in Cln. This gives a very rich 
structure to spinors, but at the same time also makes it very hard to give expressions 
that are invariant, as the structure group is bigger. Thus, one can essentially only 
come up with scalar curvature as the only natural invariant curvature on spinors. 

Another strange thing about spinors is that it doesn't seem to be necessary to 
distinguish between different types of spinors. This is in sharp contrast to tensors, 
where we must worry about the exact type of tensor we work with each time. In 
more advanced treatments of spinors one actually introduces a little more structure, 
but not nearly as much as we have available for tensors or even just forms. The 
reason again comes from having a Clifford module structure, together with the fact 
that the bundle is constructed using this structure. The Clifford module structure 
in itself is not sufficient information, as the space of all forms is the prototypical 
example of a Clifford module. But in this case, as we know, the structure group 
does not act by Clifford multiplication on the forms themselves, but rather by 
pullbacks. Thus, the key fact about spinors is that the structure group acts by 
Clifford multiplication, rather than by pushforwards or pullbacks, as in the case of 
tensor bundles. 

C.4 The Square of a Spinor 

Aside from the topological implications on the A genus, it would be nice to have 
a more geometric feeling for spinors. Even though· they are not tensors, one can 
construct tensors out of spinors by squaring them. As we don't have a way of 
multiplying spinors, this at first seems meaningless. There are two different ways 
of squaring spinors. The first uses tensor products, the other inner products. 
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Suppose we have a spinor bundle S M x Spin(n) V coming from a Cln module V. 
We shall in addition assume that Spin (n) acts by isometries on V. This is not a 
severe restriction, as Spin (n) acts by isometries on Cln. In fact, we shall assume 
the seemingly stronger condition 

(() · a1, az} =- (ah e · az} for all e E Q 1 (M). 

Again, we know this to be true on Cln. Since () · () = - \() \2 , this is equivalent to 
the condition 

Hence, unit 1-forms act by isometries. In particular, Spin (n) must also act by 
isometries. 

The key observation is that any action Spin (n) ~ 0 (V) comes from an S 0 (n) 
action exactly when -1 E Spin (n) acts trivially on V. In case V = Cln, the action 
of -1 is simply multiplication by -1, and thus this is not a tensor bundle. In general, 
however, we have made no particular assumption about how -1 E Spin (n) c Cln 
acts on V. The fact that V is a Cln module only implies that -1 acts like an 
involution. Suppose that -1 E Spin (n) c Cln really acts by multiplication by -1 
on V. This will always be the case when V = Cln and also for any ideal V C Cln. 
This, as we mentioned above, comprises all irreducible Cln modules, so we haven't 
restricted our scope too much. On the tensor product V ® V taken over lR we have 
a tensor-product action of Spin (n) defined by 

s · (v ® w) = s · v ® s · w. 

In particular, -1 E Spin (n) must act trivially as 

-1 · (v ® w) = (-v) ® (-w) = v ® w. 

Hence, this action really comes from an S 0 (n) action. Consequently, the vector 
bundle 

SM Xspin(n) (V ® V) 

is also a tensor bundle 
p+ Xso(n) (V ® V). 

Thus, we see that any spinor a that is a section of the spinor bundle S M x Spin(n) V, 
when "squared" in SM Xspin(n) (V ® V), yields a tensor a ®a, as it must also 
be a section of p+ Xso(n) (V ® V). 

In order to get any specific information about the tensor-product bundle, we 
must start with a special spinor bundle. In many cases it turns out that the square of 
a spinor is actually a form or even a vector field. It is therefore natural to conjecture 
that having nontrivial parallel spinors reduces the holonomy. This will be proved 
below using another way of squaring spinors. 

Suppose we have an inner product(·,·} on V that is preserved by the Spin (n) 
action on V. Given a spinor a : M ~ SM Xspin(n) V, we can consider the linear 
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map 

Clso(n) (M) --+ IR, 

qJ --+ (qJ · u, cr). 

Using this, we can construct a mixed form t/lu eClso(n) (M) = 0 (M) by the 
relation 

g (1/lu. (/}) = ((/} · u, cr). 

In the situation where the spinor is parallel, we note that 

As we also have 

it follows that 

Vv (g (1/lu. qJ)) = (Vv ((fJ • cr), cr) + ((fJ • u, Vvcr) 

= ((Vv(/J) · u, cr). 

Vv (g (1/lu, qJ)) = g (Vvt/fu, (/}) + g (1/lu, Vv(/J) 

= g (Vvt/fu, (/}) + ((Vv(/J) · U, cr), 

g (Vvt/lu. (/}) = 0 for all (/} E Clso(n) (M), 

whence t/1 u is parallel. This is a little less exciting than one would hope, as the mixed 
form t/lu could be just a constant function. In fact, if we assume the relationship 

(0 · u, cr) = - (cr, 0 · cr) for all 0 e 0 1 (M), 

then one can easily check that (this is also proved below) 

((fJ • u, cr) = 0 for qJ e QP (M) when p = 1, 2mod4. 

In particular, t/lu is never interesting when the dimension is 3. 
If instead, we assume that the module V comes with an antisymmetric 2-form ~, 

then we can extend this 2-form to the spinor bundle and define t/fu by the relation 

g (1/lu. (/}) = ~ ((/} · u, cr). 

The anti symmetry of~ then shows that the zeroth-order term in t/1 u vanishes, while 
on the other hand, the first-order term is not forced to vanish. In order to make 
sure that this form induces a parallel structure on the spinor bundle, we have to 
assume that it is invariant under the Spin (n) action. We shall, as above, insist on 
the stronger condition 

or in other words, that multiplication with 1-forms is skew-symmetric. This 
condition is again equivalent to 

no· CTJ, 0 · CT2) = 1012 ~(crt. cr2) for all 0 E (JRn)*. 
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Hence, the Spin (n) action preserves the 2-form. Thus, we can conclude that the 
mixed form 1/J a is parallel if the spinor 0' is parallel. Note that with this condition 
we have instead that (this is also proved below) 

~ (q; · 0', 0') = 0 for q; E QP (M) when p = 3, 4mod4. 

The two constructions therefore give mixed forms that live in different degrees. 
We can develop both of them simultaneously by using an Hermitian structure on 
V. In that case, the real part gives a Euclidean inner product and the imaginary 
part a 2-form. It is convenient to have a name for this type of structure. We call 
( V, n an Hermitian Cln module if V is a Cln module and (-, ·} an Hermitian inner 
product on V such that 

Our first concern is whether such structures exist. 

Proposition 4.1 Any Cln module V admits an Hermitian structure ( ·, ·} such that 
( V, ( ·, ·}) becomes an Hermitian Cln module. 

Proof. First we must exhibit a complex structure on V in order for our search 
to make sense. For that, simply pick a 1-form 0 E Cln of unit length. Then the 
mapping 

(J' -+ (;) . (J' 

gives a complex structure, as 0 · 0 = -1. We now have to construct a Hermitian 
metric ( ·, ·} with respect to this complex structure such that 

In fact, it suffices to check that 

((;)·a,() ·0'} = (0',0'} forall (;) E (IRn)* with 1(;)1 = 1. 

Now the unit 1-forms on IRn generate a subgroup Pin (n) c CI; that via the 
reflectionmapdefinedaboveyieldsadoublecover¢: Pin (n)-+ 0 (n)extending 
the cover¢ : Spin (n) -+ S 0 (n) . The group Pin (n) is therefore a (disconnected) 
compact Lie group. The condition for the Hermitian metric is that it be invariant 
under the action of Pin (n) on V. Since the group is a compact Lie group, we can 
simply take any Hermitian structure on V and then average it with respect to some 
left-invariant volume form on Pin (n). 0 

As already mentioned, such an Hermitian structure always yields two mixed 
forms 1/J:e and 1/J!m for a given spinor 0'. The formula is 
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Depending on the dimension of the underlying manifold, one or the other form 
can be useful. In many physical applications one takes the degree 1 term from the 
imaginary part. This is a 1-form that can be thought of as a vector field, hence 
the phrase, the square of a spinor is a vector field. In dimensions 3 and 4 this is 
essentially the only nontrivial part of these mixed forms. This is why one usually 
defines only the vector field part of the square of the spinor. 

To clarify matters a little, let us see what happens in dimension 3. As we wish 
to have a Hermitian structure on the spinors, we shall use that Spin (3) = SU (2) 
and then consider the spinors as lying in C2• The Clifford algebra Ch is generated 
by three 1-forms e1, e2 , e3 , which act as follows: 

e1 • (z, w) = (iz, -iw), 

e2 • (z, w) = ( -w, z), 

e3 · (z, w) = (-iw, -iz). 

This action comes from defining 

and letting them act on IC2 in the standard way. We then use matrix multiplication 
to define the action by the Clifford algebra. Using the standard Hermitian metric 
on C2, we then get 

{(z, w), (z, w)} = lzl2 + lwl2 , 

(e 1 • (z, w), (z, w)} = i (lzl2 -lwl2), 

(e2 • (z, w), (z, w)} = -2ilm (zw), 

{e3 · (z, w), (z, w)} = -2iRe (zw), 

(e1 • e2 . (z, w), (z, w)} = -2iRe (zw), 

(e2 · e3 • (z, w), (z, w)} = i (lzl2 -lwl2), 

(e3 • e1 • (z, w), (z, w)} = -2ilm (zw), 

(e 1 · e2 • e3 • (z, w), (z, w)} =- (lzl2 + lwl2). 

The squares of the spinor (z, w) are therefore given by 

1/t~~w> = lzl2 + lwl2 - (lzl2 + lwl2) e1 1\ e2 1\ e3 , 

1/t[~w> = (lzl2 - lwl 2) e1 -21m (zw) e2 - 2Re (zw) e3 

- 2Re (zw) e1 1\ e2 + (lzl2 - lwl2) e2 1\ e3 - 2Im (zw) e3 1\ e1• 

Thus, the real part of the square carries information only about the norm of the 
spinor. The imaginary part is certainly more interesting. However, all information 
is carried by the degree 1 term: 

(lzl 2 -lwl2) e1 - 2Im(zw)e2 - 2Re(zw)e3 • 
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This term is usually what is referred to as the square of the spinor. In fact, the norm 
of the spinor can be computed as 

(lzl2 + lwl2) 2 = (lzl2 - lwl2) 2 + 4lzl2 1wl2 

= (lzl2 - lwl 2) 2 + 4lzwl2 • 

From this it follows that the degree 1 term contains all information about the 
square. To say that the square of a spinor in dimension 3 is a 1-form or vector is 
therefore an accurate picture of what is happening. In fact, Cartan in [20] uses this 
particular squaring operation in dimension 3 as the starting point for his discussion 
of spinors. 

We note some further interesting properties: The two spinors (z, w) and 
eia (z, w) have the same squares. Not every mixed form is the sum of the two 
squares. And finally, any 1-form can be expressed as a square, in the sense that it 
can be written as 

(lzl 2 - lwl 2) e1 -21m (zw) e2 - 2Re (zw) e3 

for some (z, w). This last property is quite important and can be shown to hold in 
the abstract setting as well. 

The fact that the holonomy is reduced in the presence of parallel spinors is 
settled by the next result. 

Theorem 4.2 Let (M, g) be a Riemannian n-manifold that is also spin, and 
(V, (·,·))an irreducible Hermitian Cln module. If the vector bundle SM Xspin(n) V 
has a nontrivial parallel section or spinor, then (M, g) has reduced holonomy. 

Proof. We already know from Chapter 8 that a Riemannian manifold that admits 
a nontrivial parallel p-form, for p = 1, ... , n- 1, has reduced holonomy. Thus, 
our goal is to construct such a form. Given a nontrivial parallel spinor field a : 
M ~ SM Xspin(n) V, we construct the mixed forms v/:e and t!m defined by 

g (1/J~e. q1) + ig (1/J!m, q1) = (qJ· a, a). 

We then expand these forms as follows: 

1/J~e = 1/f2 + 1/f~ + ... E gO EEl g3 EEl ••. ' 

1/J!m = 1/J~ + 1/J; + ... E gl EEl g2 E9 •••• 

We should check the above claim that these forms live in the degrees indicated. 
This comes about as follows. Pick p orthogonal 1-forms () 1, ••• , ()P and compute 

(q1. a, a)= (() 1 •••.• ()P. a, a) 

= (-1 )P (a, ( () P • • • • • () I) . a) 
= (-1)P (-1)e<e2-tJ (a, (() 1 .•..• ()P). a) 

= (-1/etJ (a, (() 1 •••.• ()P). a) 
.PlP±!2 ..,.-----:-

=(-1) 2 (qJ·a,a). 
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Therefore, if p = 3, 4 (mod4), we see that {rp ·a, a) must be real. On the other 
hand, when p = 1, 2 (mod4), the term {rp ·a, a) is imaginary. 

In order to show that the holonomy is reduced, we must show that at least one of 
the forms 1/f;, ¢;, ... , 1/f~-I is nontrivial. If they are all trivial, then it must follow 
that 

{rp ·a, a) = 0 for all rp E Q 1 E9 Q2 EB ... E9 gn-1. 

Recall from the three-dimensional case that this would definitely imply that the 
spinor itself is zero. A similar argument can be devised in higher dimensions. 0 

Harvey and Lawson have a more elegant proof that gives a different kind of 
information about the holonomy group (see, e.g., [54]). The idea is simply that the 
holonomy group keeps a parallel spinor fixed and must therefore be a subgroup 
of the elements of Spin (n) that also keep the spinor fixed. As Spin (n) is never 
contained in SO (n), it must follow that the holonomy is reduced. The advantage 
of our proof here is that it exhibits a parallel form. This is something that works 
nicely only for certain spinor bundles and then only in some dimensions according 
to the theory set forth in [54]. In fact, it seems that the squaring operation using 
Hermitian structures, while working in more general contexts, doesn't give any 
less information. 

Combining the results of this section we now have: 

Corollary 4.3 Let (M, g) be a closed Riemannian 4k-manifold that is spin and 
has scalg ,:::: 0. If the holonomy is general, i.e., ~o[P =so (4k), then A = 0. 

Corollary 4.4 Let (M, g) be a closed Riemannian 4k-manifold that is irre­
ducible, spin, and has scalg ,:::: 0. If the A genus is nonzero, then the holonomy 
must be SU (2k), Sp (k), or Spin (7). 

Proof. Given that the manifold is irreducible, we can just look at the list of 
possibilities. Recall that the metric is Ricci flat by the results from the previous 
section. General holonomy is ruled out by the above corollary. Otherwise, we note 
that all but the above listed holonomies force the metric to have positive scalar 
curvature. This is impossible if A is nontrivial. 0 

The A genus is defined independently of the spin structure, but it is not always 
an integer invariant. In dimension 4 one has the nice formula 

A 1 
A= -a 

16 ' 

where a (M) is the signature of M, i.e., the index of the intersection form on the 
middle cohomology class. One can compute 

a (s4) = o, 
a (s2 x s2) = o, 
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a (CP2) = 1, 

a (K3 surface) = -16. 

A K3 surface is a complex hypersurface in CP3 given by the quartic equation 

(z1) 4 + ... + (z4) 4 = 0 in homogeneous complex coordinates. Of these four 
manifolds all but CP2 are spin. The first three admit metrics with positive scalar 
curvature, while the K3 surface cannot admit a metric with positive scalar curvature 
from the above results. This manifold, however, does admit a scalar flat metric that 
must then have SU (2) as a holonomy group. Thus, all scalar flat metrics on K3 
surfaces are Kiihler-Einstein and Ricci flat. Such metrics are known to exist only 
due to Yau's solution to the Calabi conjecture (see, e.g., [11]). 

We should also point out that Hitchin has shown that Milnor's a genus (defined 
for manifolds of dimension 1, 2 modS) vanishes for spin manifolds with positive 
scalar curvature. The proof again consists in using index theory, to show that this 
invariant must vanish if there are no harmonic spinors. 

Another great use of squaring spinors is in the positive mass conjecture. We 
can here give an indication of how this works in a much simpler setting (which 
generalizes an exercise from Chapter 7). 

Theorem 4.5 Let (M, g) be a complete spin manifold that is isometric to Eu­
clidean space outside some compact set. lfscal8 ::: 0, then (M, g) is isometric to 
Euclidean space. 

Proof. We assume that there are compact sets K c M and C c .!Rn such that 
M - K is isometric to .!Rn - C. On M - K we therefore have an orthonormal frame 
E of parallel vector fields. Suppose now SM Xspin(n) Vis a spin bundle over M. 
Given any vector a0 E V, we can find a unique section a : F (M- K)---* V of 
this bundle such that a o E = a0 • We must now use some analytic facts. The square 
D 2 of the Dirac operator is elliptic so it is possible to solve Dirichlet boundary 
value problems. Now observe that since E is parallel, the section a must also be 
parallel on M - K. In particular, it is harmonic. By solving the boundary value 
problem 

D 2a = 0, 

a= ao on aK, 

we therefore get a global harmonic section a that is constant in the frame E. The 
Weitzenbock formula now tells us that 

1 
0 = D2a = "V*"Va + 4scala. 

Using the Hermitian inner product on the spinor bundle, integrating over a domain 
Q with smooth boundary, and using Stokes' theorem yields 

0 = l (v*"Va +~scala, a )dvol 
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= LIVcrl 2 dvol-1n {VE;cr, cr} · iE;dvol + ~ l scallcrl2 dvol 

2: -1 {VE;cr, cr} · iE;dvol. 
an 

Therefore, if an C M- K, then the boundary term must vanish, as Vcr = 0. In 
particular, the spinor cr is globally parallel. By choosing cr0 judiciously, we can 
now extend the frame E to a global parallel frame, thus showing that M must be 
lRn. To see how this is done, let (Ji be the coframe dual to E. We can for each i 
pick cr0 such that 

g (Oi, oi) = Im(oi · cr0 , cr0} for all j. 

That this is possible was established above for the 3-dimensional case and is easy 
to handle in general. It follows that the degree 1 term in 1/J!m is a parallel 1-form 
on all of M that extends (Ji. Thus, we get a globally parallel set of 1-forms that 
extend the given parallel orthonormal1-forms on M- K. The fact that they are 
parallel then shows that they must be orthonormal everywhere. D 

Note that we didn't assume M to be diffeomorphic to Euclidean space, and thus 
M could look like the tautological bundle over one of the projective spaces. In 
Chapter 3 we constructed scalar flat metrics on all of the manifolds r (JRpn-l) 
with the property that the metric is asymptotically Euclidean. The above result 
tells us that there can't be any such metrics that are flat outside a compact set, at 
least when n is even. In the positive mass conjecture, one studies manifolds of 
this type that are asymptotically Euclidean of a certain order and have nonnegative 
scalar curvature. It is then shown that a certain quantity, called the mass, is always 
positive, and can be zero only when the space is Euclidean. The mass is a quantity 
that can be computed from the geometry at infinity. In fact, given a spinor that 
is asymptotically constant at infinity (in an appropriate frame of course) and a 
sequence of domains s:l; that exhaust M, we have that the mass is proportional to 

If we use a harmonic spinor in this formula, then as Witten observed, this term is 
the same as L 1Vul2 + ~ L scallul2 • 

Hence, the mass is positive when seal 2: 0 and can be zero only when the space is 
Euclidean. 

There are several interesting rigidity phenomena related to the positive mass 
conjecture that we have ignored here. First, it should be observed that if instead 
one assumes nonpositive Ricci curvature, then there are warped product examples 
on r (JRpn-l) that are isometric to Euclidean space outside a compact set. On the 
other hand, if the metric has nonpositive sectional curvature, then it must be flat if 
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it is flat outside a compact set. One can then refine these results to situations where 
one has certain types of curvature decay and various other topological conditions 
at infinity. The interested reader can consult Greene's article in [46] for more on 
this story. 

The idea behind the positive mass conjecture is that gravity cannot be isolated, 
i.e., the gravitational effects of a massive body can be measured everywhere in 
the universe. While we haven't developed the machinery for accurately defining 
and describing this here (see [62] for the most readable account of the physics 
behind this), we have presented some Riemannian analogues that are very similar 
in nature. The idea that gravity always attracts is translated into seal 2: 0, and 
the isolation phenomenon is that the space becomes flat outside a compact set, 
thus making it impossible to tell what happens in the compact region. The further 
generalizations we mentioned give even stronger results along the line that scalar 
curvature (gravity) cannot decay too fast, depending on the dimension. 

There is one more result that is easy to state, but whose proof unfortunately 
is not nearly so accessible. The theorem was established by Schoen-Yau in low 
dimensions using complicated analytical machinery and by Gromov-Lawson using 
spin geometry. 

Theorem 4.6 Any metric on the n-torus Tn with nonnegative scalar curvature 
is flat. 

From the Bochner technique we know that this is true for any metric with 
nonnegative Ricci curvature. Unfortunately, a similar argument using harmonic 
spinors doesn't seem to work. Even though there are plenty of harmonic forms, 
there doesn't seem to be a way of extracting harmonic spinors. Note that we need 
only one nontrivial spinor in order to conclude that the metric is Ricci flat. Instead, 
one must resort to completely different techniques. The reader can find a treatment 
in [54], but even then it is necessary to consult other papers to get the complete 
proof. This theorem actually holds for a large class of manifolds, including all 
closed manifolds that admit metrics with nonpositive sectional curvature. 

C.5 Further Study 

We have already mentioned the books [54] and [84] as sources for more in-depth 
discussions of spinors. The first is a very exhaustive guide, while the latter gives 
a very nice, quick overview of the irreducible Clifford representations and the 
Bochner technique for spinors. Both of these books use a slightly different notation 
than ours. Namely, they think of the Clifford algebra as being the alternating algebra 
of multi vectors rather than the algebra of forms. It is our feeling that the approach 
used here is preferable in many ways. First and foremost, all our formulae are 
invariant under general frames rather than just orthonormal frames, thus opening up 
the way for representing the theory in coordinates. For the reader who is interested 



C.5 Further Study 419 

in learning about spinors and index theory, the text [79, vol. II] might be the best 
place to start. 

The above-mentioned references [9] and [55] for the positive mass conjecture 
are also good for further study. The reader might also wish to look at the very 
readable account of spin representations in [83]. The reader who wishes to get a 
feeling for how spinors are used in physics can start with the comprehensive text 
[62]. For some of the exciting new developments in 4-manifold theory that use spin 
geometry, we refer to [64]. This book gives a basic account of spin geometry and 
how it is used to construct the Seiberg-Witten invariants. Some of the important 
developments in this subject are intimately related to the things we have discussed 
above. 
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Angle comparison in negative curvature, 
151 

Arzela-Ascoli lemma, 279 
Axis for an isometry, 152 

Berger spheres, 6, 94, 101, 160, 277 
computation of curvatures, 81 

Betti number estimate 
by Bochner, 178 
by Gallot-Meyer, 182 
by Gromov, 342 
by Gromov-Gallot, 253 

Bianchi identities for the curvature 
form, 382 

Bianchi's first identity, 26 
Bianchi's second identity, 26 
Bochner formula, 314 

for forms, 188 
for the curvature tensor, 191 

Bochner technique 
for 1-forms, 173 
for Killing fields, 166 
for p-forms, 181 
for spinors, 404 
in general, 178 

Bonnet's diameter estimate, 154 
Bundles 

of frames, 136 
over 2-sphere, 18, 85, 342, 359 

Busemann function, 264 

Cartan formalism, 56, 377 
Cartan's theorem, 150 
Center of mass, 150 
Cheeger's lemma, 300 
Cheng's maximal diameter theorem, 

248,263 
Clifford algebra, 401 
Clifford bundle, 401 
Clifford multiplication, 184 
Codazzi equation, see Normal curvature 

equation 
Cohomology 

Cech, 366 
de Rham, 170, 367 

compactly supported, 372 
Hodge, 173 

Compact embedding, 283 
Comparison estimates 

for Ricci curvature, 244 
for sectional curvature, 140 

Comparison geometry, 46 
Completeness, 125 

geodesic, 109 
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Completeness (cont.) 
metric, 114 
of closed manifolds, 116 
of Gromov-Hausdorff topology, 277 

Conjugate point, 45, 127, 148 
Conjugate radius estimate, 148 
Connection 

affine, 22, 54 
along curves, 104 
form, 56, 98, 378 
in local coordinates, 56 
of hi-invariant metric, see metric 
on Euclidean space, 21 
on Lie group, 54 
on vector bundle, 178 
representation in a frame, 56 
Riemannian, 22 

Constant curvature, 29 
global classification, 137 
local characterization, 123 

Contractions, 50 
Convergence 

of maps, Gromov-Hausdorff, 279 
of pointed spaces, Gromov-Hausdorff, 

279 
of spaces 

Gromov-Hausdorff, 274 
Hausdorff, 27 4 
in Holder topology, 290 

Convergence theorem 
of Anderson, 308 
of Cheeger-Gromov, 300 

Convexity radius, 148 
Coordinates 

adapted, 42 
Cartesian 

in Euclidean space, 21 
on Riemannian manifold, 121 

distance, 132, 299 
exponential, 119 
harmonic, 285 
normal at a point, 54 
polar 

in the plane, 9 
on Riemannian manifold, 121 , 123 

representation of metric in, 9 
Covariant derivative, 23 

in parallel frame, 106 
of a tensor, 391 

Covering space, see Riemannian 
Critical point estimate, 334 
Critical point theory, 318 
Curvature 

constant, see Constant curvature 
directional, 29, 37, 48 
form, 56, 98, 380 
Gauss, 96 
in dimension 2, 31 
in dimension 3, 31, 59 
in local coordinates, 56 
Isotropic, 60, 312 
of a tensor, 28 
of hi-invariant metric, 57 
of product metric, see Product 
oftensors, 194,392 
operator, 29, 59, 182, 190, 196, 343 

classification of 2: 0, 237 
on symmetric spaces, 232 

representation in a frame, 56 
Ricci, 30, 243, 305 

in harmonic coordinates, 286 
Riemannian, 26 
scalar, 32, 183 
sectional, 29, 48, 59, 137, 195, 317 

Cut locus, 130 

Degree of a map, 374 
Dirac operator, 183 

on forms, 186 
on spinors, 404 

Directional derivative, 20 
Dirichlet problem, 285 
Displacement function, 152 
Distance function, 34, 41, 116, 120, 123 
Divergence, 24, 54 
Doubly warped products, see Products 

Eguchi-Hanson metric, 85 
Einstein 

constant, 31 
metric, 31, 228 
notation, 7 

Elliptic estimates, 284 
Elliptic operators, 284 
Euclidean space, 2 

curvature of, 28 
Euler characteristic, 97 
Exponential map, 117 



Lie group, 18 
Exponential map comparison, 145 
Extrinsic geometry, 36, 89 

Fibration, 136 
Finiteness theorem 

for diffeomorphism types, 297, 302 
in positive curvature, 300 

for fundamental groups, 255 
for homotopy types, 351 

Focal point, 45 
Frame 

left invariant, 10 
normal at a point, 23, 54 
representation of metric in, 10 

Frame bundle, 166,384 
Framing, see Frame 
Frankel's theorem, 162 
Functional distance, see Metric 
Fundamental equations 

for curvature, 34 
of Riemannian geometry, 40 

Fundamental theorem 
of convergence theory, 293 
of hypersurface theory, 95 
of Riemannian geometry, 21, 22 

Gauss equation, see Tangential 
curvature equation 

Gauss lemma, 120 
Gauss map, 90 
Gauss-Bonnet theorem, 96 
Geodesic, 106, 117, 120 
Gradient, 20 
Grassmannian 

compact 
as a symmetric space, 217 
computation of curvatures, 219 

hyperbolic 
as a symmetric space, 220 
computation of curvatures, 222 

Holder norms, 281 
Hadamard theorem, 91 
Hadamard-Cartan theorem, 46, 147 
Harmonic function, 259 
Hessian, 24 
Hessian comparison, 143, 326 
Hinge, 322 

Hodge star operator, 171 
Hodge theorem, 173 
Holonomy, 226,414 
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of symmetric spaces, 235 
Holonomy classification, 235 
Homogeneousspace,5 

completeness of, 134 
k-point, 161 

Hopf fibration, 4, 6, 15 
Hopfproblem, 101, 169, 182,343 
Hopf theorem, 97 
Hopf-Rinow theorem, 125 
Hyperbolic space, 77 

as left-invariant metric, 80 
as rotationally symmetric surface, 12 
geodesics in, 111 
isometry group of, 80 
Minkowski space model, 78 
Riemann's model, 77 
Rotationally symmetric model, 77 
upper half plane model, 77 

Hypersurface 
in Euclidean space, 34, 89 
in Riemannian manifold, 155 

Index notation, 52 
Injectivity radius, 130 
lnjectivity radius estimate 

by Cheeger, 300 
generalization of Cheeger's lemma, 

315 
in general, 149 
in positive curvature, 159 

Intrinsic geometry, 36, 89, 96 
Invariant Cartan formalism, 389 
Isometric immersion, see Riemannian 
Isometry 

distance-preserving, 132 
Riemannian, see Riemannian 

Isometry group, 5, 165 
of Euclidean space, 5 
of Hyperbolic space, 80 
of the sphere, 5 

Isotropy group, 5 

Jacobi equation, 263 
Jacobi field, 262 

Killing field, 55, 164, 216 
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Killing frame, 200 
Klein bottle, 7 
Koszul formula, 22 
Kuratowski embedding, 278 

Laplacian 
connection, 179 
coordiante representation, 55 
in harmonic coordinates, 286 
on forms, 172 
on functions, 24 
on spinors, 404 

Law of cosines, 324 
Left invariant 

frame, 10 
metric, see Metric 

Length comparison, 157, 161, 162 
Length of curve 

in metric space, 135 
in Riemannian manifold, 113 

Lichnerowicz formula, 183, 408 
Lie group, 5 

hi-invariant metric, see Metric 
geodesics of hi-invariant metric, 136 
geodesics on, 112 

Line,260 
Lipschitz norm, see norm 
Local models, 314 

Matrix inequalities, 47, 140 
Maximum principle, 55,257 
Metric 

ball, 113 
hi-invariant, 18, 57, 112, 136, 271 

as a symmetric space, 208, 225 
distance, 112 
Einstein, 31 
functional, 116, 136 
homogeneous, see Homogeneous 

space 
Kahler, 61, 203, 239, 240 
left-invariant, 5 
local representation of, 9 
on frame bundle, 136 
on tangent bundle, 136 
rotationally symmetric, 12 

computation of curvatures, 70 
scalar flat, 72 

Meyer-Vietoris sequence 

for de Rham cohomology, 367 
Mixed curvature equation, see normal 

curvature equation 
Musical isomorphisms, 184 
Myers' diameter estimate, 47, 245 

Norm 
cm,a 

for functions, 283 
for manifolds, 289 

harmonic 
for manifolds, 303 

Lipschitz 
for manifolds, 298 

of tensors, 51 
weak 

for manifolds, 315 
weighted 

for manifolds, 314 
Norm estimate 

using distance functions, 299, 302 
using exponential maps, 299 
using harmonic coordinates, 306 

Normal curvature equation, 38, 67 
in Euclidean space, 91 

O'Neill's formula, 58 
Obstructions 

for constant sectional curvature, 140 
for negative curvature operator, 101 
for negative sectional curvature, 147 
for nonnegative sectional curvature, 

342,343 
for positive curvature operator, 101 , 

182 
for positive Ricci curvature, 183 
for positive scalar curvature, 183 
for positive sectional curvature, 159 
for Ricci flatness, 267 

Poincare duality, 370 
Parallel 

along curve, 105 
on manifold, 24 
vector field, 59 

Parallel curvature, 210 
Pinching theorem 

for Ricci curvature, 311 
for sectional curvature, 311 



Poincare lemma 
for de Rham cohomology, 368 

Positive mass conjecture, 416 
Precompactness theorem 

for lower Ricci curvature bounds, 281 
for spaces with bounded norm, 294 
in Gromov-Hausdorff topology, 280 

Preissmann's Theorem, 151 
Principal bundles, 392 
Product 

Cartesian, 17, 58 
doubly warped, 13 

computation of curvatures, 73 
warped, 69 

Product spheres 
computations of curvatures, 69 

Projective space 
complex, 6, 17, 92 

as a symmetric space, 222 
computation of curvatures, 81, 223 
holonomy of, 240 

quatemionic, 240 
real, 7 

Quarter pinching, 60, 331 

Radial curvature equation, 37, 66 
Rank,210,236 

rigidity in nonpositive curvature, 237 
Ray,260 
de Rham's decomposition theorem, 228 
de Rham's theorem, 369 
Riemannian 

covering, 6, 146 
embedding, 3 
immersion, 3 

in Euclidean space, 91 
isometry, 2 

uniqueness of, 137 
manifold, 2 
submersion, 4, 58, 133, 136 

Scaling, 60 
Schur's lemma, 32 
Schwarzschild metric, 75 
Second covariant derivative, 25 
Second fundamental form, see Shape 

operator 
Segment, 114, 120, 122 

characterization, 127 
Segment domain, 127 
Shape operator, 36 
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for hypersurface in Euclidean space, 
91 

for hypersurface in Riemannian 
manifold, 155 

Soul theorem, 334 
Sphere, 3 

as doubly warped product, 15 
as rotationally symmetric metric, 14 
as surface of revolution, 11 
computation of curvatures, 69 
geodesics on, 110 
isometry group of, 5 

Sphere theorem 
Grove-Shiohama, 332 
Rauch-Berger-Klingenberg, 331 

Spin manifolds, 183 
Spin structures, 396 
Spinor bundles, 399 
Spinors, 395 

local representaion of, 403 
parallel, 414 
square of, 41 0 

in dimension 3, 413 
tensor square of, 409 

Splitting theorem, 47, 261 
Structural equations 

First, 379 
Second,380 

S U (2), see Berger spheres 
Subharmonic function, 259 
Submetry, 133 
Superharmonic function, 259 
Surface 

of revolution, 10, 92 
rotationally symmetric, 11 

Symmetric space, 208, 212 
computation of curvatures, 215 
existence of isometries, 211 

Synge's lemma, 46, 158 

Tangential curvature equation, 37, 66 
in Euclidean space, 91 

Tensor bundles, 386 
Topology 

manifold, 115 
metric, 115 
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Toponogov comparison theorem, 323 
Torus, 7, 17 
Totally geodesic, 162 
Triangle, 322 
Type change, 48 

Volume comparison 
absolute, 246 
for cones, 270 

relative, 247, 270 
Volume form, 54, 246 

Weak second derivatives, 257 
Weitzenbock formula, 181 

forforms, 187 
for spinors, 404 

Weyl tensor, 86 
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