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PREFACE TO REVISED EDITION 
(OF VOLUMED 

There are a multitude of minor corrections. In addition there are a 
few substantial changes in and supplements to the exposition, including some 
proofs. (Such is the case, for example, with Sections 7.1-7.3.) 

Professor Katznelson's book [Kz] is recommended as a companion text. 
Many references to Mathematical Review8 have been inserted. None of these 

is essential to an understanding of the main text, and all may be ignored on a 
first reading. There is an already very large and rapidly increasing literature, 
and a preliminary glance at a review (often more rapidly accessible than the 
corresponding original paper) may help more ambitious readers to decide 
which research papers they wish to study. The list of such references is not 
claimed to be complete. 

I am grateful to Professor Goes for correspondence which has led to a 
number of additions and improvements. My warmest thanks go to my friend 
and colleague Dr. Jeff Sanders for his help with the revision. 

Finally, my wife earns my gratitude for her help in preparing the revised 
typescript. 

R.E.E. 
CANBERRA., January 1979 
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PREFACE 

The principal aim in writing this book has been to provide an intro
duction, barely more, to some aspects of Fourier series and related topics 
in which a liberal use is made of modem techniques and which guides the 
reader toward some of the problems of current interest in harmonic analysis 
generally. The use of modem concepts and techniques is, in fact, as wide
spread as is deemed to be compatible with the desire that the book shall 
be useful to senior undergraduates and beginning graduate students, for 
whom it may perhaps serve as preparation for Rudin's Harmonic Analysis 
on Groups and the promised second volume of Hewitt and Ross's Abstract 
Harmonic Analysis. 

The emphasis on modem techniques and outlook has affected not only 
the type of arguments favored, but also to a considerable extent the choice 
of material. Above all, it has led to a minimal treatment of pointwise con
vergence and summability: as is argued in Chapter 1, Fourier series are not 
necessarily seen in their best or most natural role through pointwise-tinted 
spectacles. Moreover, the famous treatises by Zygmund and by Baryon 
trigonometric series cover these aspects in great detail, wl:tile leaving some 
gaps in the presentation of the modern viewpoint; the same is true of the 
more elementary account given by Tolstov. Likewise, and again for reasons 
discussed in Chapter 1, trigonometric series in general form no part of the 
program attempted. 

A considerable amount of space has been devoted to matters that cannot 
in a book of this size and scope receive detailed treatment. Among such 
material, much of which appears in small print, appear comments on diverse 
specialized topics (capacity, spectral synthesis sets, Helson sets, and 80 

forth), as well as remarks on extensions of results to more general groups. 
The object in including such material is, in the first case, to say enough for 
the reader to gain some idea of the meaning and significance of the problems 
involved, and to provide a guide to further reading; and in the second case, 
to provide some sort of "cultural" background stressing a unity that 
underlies apparently diverse fields. It cannot be over-emphasized that the 
book is perforce introductory in all such matters. 

The demands made in terms of the reader's active cooperation increase 

vii 



viii PREFACE 

fairly steadily with the chapter numbers, and although the book is surely 
best regarded as a whole, Volume I is self-contained, is easier than Volume II, 
and might be used as the basis of a short course. In such a short course, it 
would be feasible to omit Chapter 9 and Section 10.6. 

As to specific requirements made of the reader, the primary and essential 
item is a fair degree of familiarity with Lebesgue integration to at least 
the extent described in Williamson's introductory book Lebesgue Integration. 
Occasionally somewhat more is needed, in which case reference is made to 
Appendix C, to Hewitt and Stromberg's Real and Abstract Analysis, or to 
Asplund and Bungart's A First Course in Integration. In addition, the 
reader needs to know what metric spaces and normed linear spaces are, and 
to have some knowledge of the rudiments of point-set topology. The remain
ing results in functional analysis (category arguments, uniform boundedness 
principles, the closed graph, open mapping, and Hahn-Banach theorems) 
are dealt with in Appendixes A and B. The basic terminology of linear 
algebra is used, but no result of any depth is assumed. 

Exercises appear at the end of each chapter, the more difficult ones being 
provided with hints to their solutions. 

The bibliography, which refers to both book and periodical literature, 
contains many suggestions for further reading in almost all relevant directions 
and also a sample of relevant research papers that have appeared since the 
publication of the works by Zygmund, Bary, and Rudin already cited. 
Occasionally, the text contains references to reviews of periodical literature. 

My first acknowledgment is to thank Professors Hanna Neumann and 
Edwin Hewitt for encouragement to begin the book, the former also for the 
opportunity to tryout early drafts of Volume I on undergraduate students 
in the School of General Studies of the Australian National University, and 
the latter also for continued encouragement and advice. My thanks are due 
also to the aforesaid students for corrections to the early drafts. 

In respect to the technical side of composition, I am extremely grateful 
to my colleague, Dr. Garth Gaudry, who read the entire typescript (apart 
from last-minute changes) with meticulous care, made innumerable valuable 
suggestions and vital corrections, and frequently dragged me from the 
brink of disaster. Beside this, the compilation of Sections 13.7 and 13.8 
and Subsection 13.9.1 is due entirely to him. Since, however, we did not 
always agree on minor points of presentation, I alone must take the blame 
for shortcomings of this nature. To him I extend my warmest thanks. 

My thanks are offered to Mrs. Avis Debnam, Mrs. K. Sumeghy, and Mrs. 
Gail Liddell for their joint labors on the typescript. 

Finally, I am deeply in debt to my wife for all her help with the proof
reading and her unfailing encouragement. 

R.E.E. 
CA.NBERRA, 1967 



CONTENTS 

Chapter 1 TRIGONOMETRIC SERIES 

AND FOURIER SERIES 1 

1.1 The Genesis of Trigonometric Series and Fourier Series 1 

1.2 Pointwise Representation of Functions by Trigonometric 
Series 3 

1.3 New Ideas about Representation 7 

Exercises 10 

Chapter 2 GROUP ST.RUCTURE 

A.·lIm FOURIER SERIES 14 

2.1 Periodic Functions 14 

2.2 Translates of Functions. Characters and Exponentials. 
The Invariant Integral 16 

2.3 Fourier Coefficients and Their Elementary Properties 30 

2.4 The Uniqueness Theorem and the Density 
of Trigonometric Polynomials 40 

2.5 Remarks on the Dual Problems 43 

Exercises 46 

Chapter 3 CONVOLUTIONS OF FUNCTIONS 

3.1 Definition and First Properties of Convolution 

3.2 Approximate Identities for Convolution 

3.3 The Group Algebra Concept 

3.4 The Dual Concepts 

Exercises 
ix 



x CONTENTS 

Chapter 4 HOMOMORPHISMS OF CONVOLUTION 

ALGEBRAS 69 

4.1 Complex Homomorphisms and Fourier Coefficients 69 

4.2 Homomorphisms of the Group Algebra 72 

Exercises 76 

Chapter 5 THE DIRICHLET AND FEJER KERNELS. 

CESARO SUMMABILITY 78 

5.1 The Dirichlet and Fejer Kernels 78 

5.2 The Localization Principle 81 

5.3 Remarks concerning Summability 82 

Exercises 85 

Chapter 6 CEsARO SUMMABILITY OF FOURIER SERIES 

AND ITS CONSEQUENCES 87 

6.1 Uniform and Mean Summability 87 

6.2 Applications and Corollaries of 6.1.1 90 

6.3 More about Pointwise Summability 94 

6.4 Pointwise Summability Almost Everywhere 95 

6.5 Approximation by Trigonometric Polynomials 99 

6.6 General Comments on Summability of Fourier Series 102 

6.7 Remarks on the Dual Aspects 103 

Exercises 104 

Chapter 7 SOME SPECIAL SERIES AND THEIR 

APPLICATIONS 109 

7.1 Some Preliminaries 109 

7.2 Pointwise Convergence of the Series (C) and (S) 114 

7.3 The Series (C) and (S) as Fourier Series 117 

7.4 Application to A(Z) 124 

7.5 Application to Factorization Problems 124 

Exercises 128 



CONTENTS xi 

Chapter 8 FOURIER SERIES IN L2 130 

8.1 A Minimal Property 131 

8.2 Mean Convergence of Fourier Series in V. Parseval's 
Formula 131 

8.3 The Riesz-Fischer Theorem 

8.4 Factorization Problems Again 

8.5 More about Mean Moduli of Continuity 

8.6 Concerning Subsequences of 8N! 
8.7 A(Z) Once Again 

Exercises 

Chapter 9 POSITIVE DEFINITE FUNCTIONS 

AND BOCHNER'S THEOREM 

9.1 Mise-en-Scene 

9.2 Toward the Bochner Theorem 

9.3 An Alternative Proof of the Parseval Formula 

9.4 Other Versions of the Bochner Theorem 

Exercises 

Chapter 10 POINTWISE CONVERGENCE 

OF FOURIER SERIES 

132 

134 

135 

137 

139 

142 

148 

148 

149 

152 

152 

153 

155 

10.1 Functions of Bounded Variation and Jordan's Test 156 

10.2 Remarks on Other Criteria for Convergence; Dini's Test 159 

10.3 The Divergence of Fourier Series 160 

10.4 The Order of Magnitude of 8N!. Pointwise Convergence 
Almost Everywhere 166 

10.5 More about the Parseval Formula 171 

10.6 Functions with Absolutely Convergent Fourier Series 173 

Exercises 180 



xii CONTENTS 

Appendix A METRIC SPACES AND BAIRE'S THEOREM 

A.I Some Definitions 

A.2 Baire's Category Theorem 

A.3 Corollary 

A.4 Lower Semicontinuous Functions 

A.5 A Lemma 

187 

187 

187 

188 

188 

189 

Appendix B CONCERNING TOPOLOGICAL LINEAR SPACES 191 

B.I Preliminary Definitions 

B.2 Uniform Boundedness Principles 

B.3 Open Mapping and Closed Graph Theorems 

B.4 The Weak Compacity Principle 

B.5 The Hahn-Banach Theorem 

Appendix C THE DUAL OF LP (1 ~ P < co); WEAK 

SEQUENTIAL COMPLETENESS OF Ll 

C.I The Dual ofLP (I ~ P < (0) 

C.2 Weak Sequential Completeness of Ll 

Appendix D A WEAK FORM OF RUNGE'S THEOREM 

Bibliography 

Research Publications 

Symbols 

Index 

191 

194 

195 

197 

199 

201 

201 

202 

205 

207 

213 

21a 
221 



CHAPTER 1 

Trigonometric Series and Fourier Series 

1.1 The Genesis of Tri~onometric Series and Fourier Series 

1.1.1. The Be~innin~s. D. Bernoulli, D'Alembert, Lagrange, and Euler, 
from about 1740 onward, were led by problems in mathematical physics to 
consider and discuss heatedly the possibility of representing a more or less 
arbitrary function f with period 21T as the sum of a trigonometric series of the 
form 

IX> 

Y2ao + 2: (a" cos nx + b" sin nx), (1.1.1) 
,,=1 

or of the formally equivalent series in its so-called "complex" form 

(1.1.1*) 

in which, on writing bo = 0, the coefficients c" are given by the formulae 

(n = 0, 1,2, ... ). 

This discussion sparked off one of the crises in the development of analysis. 
Fourier announced his belief in the possibility of such a representation in 

1811. His book Theorie Analytique de la Chaleur, which was published in 
1822, contains many particulaJ," instances of such representations and makes 
widespread heuristic use of trigonometric expansions. As a result, Fourier's 
name is customarily attached to the following prescription for the coefficients 
a", b", and c,,: 

1 f" a" = - f(x) cos nx dx, 
1T _" 

1 fn b" = - f(x)osin nx dx, 
1T -n 

(1.1.2) 

c" = ~ fn f(x)e-'''X dx, 
21T _II 

(1.1.2*) 

the a" and b" being now universally known as the "real," and the ell as the 
"complex," Fourier coefficients of the function f (which is tacitly assumed to 
be integrable over (-1T, 1T». The formulae (1.1.2) were, however, known 
earlier to Euler and Lagrange. 

1 



2 TRIGONOMETRIC SERIES AND FOURIER SERIES 

The grounds for adopting Fourier's prescription, which assigns a definite 
trigonometric series to each function j that is integrable over (-1T, 1T), will 
be scrutinized more closely in 1.2.3. The series (l.l.I) and (1.1.1 *), with the 
coefficients prescribed by (1.l.2) and (1.1.2*), respectively, thereby assigned 
to j are termed the "real" and "complex" Fourier series of j, respectively. 

During the period 1823-1827, both Poisson and Cauchy constructed proofs 
of the representation of restricted types of functions j by their Fourier series, 
but they imposed conditions which were soon shown to be unnecessarily 
stringent. 

It seems fair to credit Dirichlet with the beginning of the rigorous study of 
Fourier series in 1829, and with the closely related concept of function in 
1837. Both topics have been pursued with great vigor ever since, in spite of 
more than one crisis no less serious than that which engaged the attentions 
of Bernoulli, Euler, d' Alembert, and others and which related to the pre
vailing concept of functions and their representation by trigonometric series. 
(Cantor's work in set theory, which led ultimately to another major crisis, 
had its origins in the study of trigonometric series.) 

1.1.2. The rigorous developments just mentioned showed in due course 
that there are subtle differences between trigonometric series which converge 
at all points and Fourier series of functions which are integrable over (-1T, 1T), 
even though there may be no obvious clue to this difference. For example, the 
trigonometric series 

converges everywhere; but, as will be seen in Exercise 7.7 and again in 10.1.6, 
it is not the Fourier series of any function that is (Lebesgue-)integrable over 
( -1T, 1T). 

The theory of trigonometric series in general has come to involve itself 
with many questions that simply do not arise for Fourier series. For the 
express purpose of attacking such questions, many techniques have been 
evolved which are largely irrelevant to the study of Fourier series. It thus 
comes about that Fourier series may in fact be studied quite effectively 
without reference to general trigonometric series, and this is the course to be 
adopted in this book. 

The remaining sections of this chapter are devoted to showing that, while 
Fourier series have their limitations, general trigonometric series have others 
no less serious; and that there a.re well-defined senses a.nd contexts in which 
Fourier series are the natural and distinguished tools for representing functions 
in useful ways. Any reader who is prepared to accept without question the 
restriction of attention to Fourier series can pass from 1.1.3 to the exercises 
at the end of this chapter. 



[1.2] POINTWISE REPRESENTATION OF FUNCTIONS 3 

1.1.3. The Orthogonality Relations. Before embarking upon the 
discussion promised in the last paragraph, it is necessary to record some 'facts 
that provide the heuristic basis for the Fourier formulae (1.1.2) and (1.1.2*) 
and for whatever grounds there are for according a special role to Fourier 
series. 

These facts, which result from straightforward and elementary calcula
tions, are expressed in the following so-called orthogonality relations satisfied 
by the circular and complex exponential functions: 

2~ L 00' = 00' nx dx ~ {~ 

L L 'in = ,in nx dx ~ {r. 
1 I" -2 cos mx sin nx dx = 0, 
1T _" 

- e1m% e -1,,% dx = 1 I" {O 
21T _" 1 

(m # n, m ~ 0, n ~ 0) 
(m = n > 0), 

(m = n = 0) 

(m # n, m ~ 0, n ~ 0) 
(m=n>O), 
(m = n = 0) 

(m # n) 

(m = n); 

(1.1.3) 

in these relations m and n denote integers, and the interval [ -1T, 1T] may be 
replaced by any other interval of length 21T. 

1.2 Pointwise Representation of Functions by Tri~onometric 
Series 

1.2.1. Pointwise Representation. The general theory of trigonometric 
series was inaugurated by Riemann in 1854, since when it has been pursued 
with vigor and to the great enrichment of analysis as a whole. For modern 
accounts of the general theory, see [Zl]' Chapter IX and [Ba1•2], Chapters 
XII-XV. 

From the beginning a basic problem was that of representing a more or 
less arbitrary given function! defined on a period-interval I (say the interval 
[ -1T, 1T]) as the sum of at least one trigonometric series (1.1.1), together with a 
discussion of the uniqueness of this representation. 

A moment's thought will make it clear that the content of this problem 
depends on the interpretation assigned to the verb "to represent" or, what 
comes to much the same thing, to the term "sum" as applied to an infinite 
series. Initially, the verb was taken to mean the pointwise convergence ofthe 
series at all points of the period interval to the given function f. With the 
passage of time this interpretation underwent modification in at least two 
ways. In the first place, the demand for convergence of the series to! at aU 
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points of the period-interval I was relaxed to convergence at almost all 
points of that interval. In the second place, convergence of the series to f at 
all or almost all points was weakened to the demand that the series be 
summable to f by one of several possible methods, again at all or almost all 
points. For the purposes of the present discussion it will suffice to speak of 
just one such summability method, that known after Cesaro, which consists 
of replacing the partial dums 

so(x) = 12 ao, 
N 

SN(X) = 12ao + L (a" cos nx + b" sin nx) (N = 1,2,· .. ) (1.2.1) 
,,=1 

of the series (1.1.1) by their arithmetic means 

So + ... + SN 
aN = N + I (N = 0, I, 2, ... ). (1.2.2) 

Thus we shall say that the series (1.1.1) is summable at a point x to the 
function f if and only if 

lim aN(x) = f(x). 
N_oo 

It will be convenient to group all these interpretations of the verb "to 
represent" under the heading of pointwise representation (everywhere or 
almost everywhere, by convergence or by summability, as the case may be) 
of the functionf by the series (1.1.1). 

In terms of these admittedly rather crude definitions we can essay a 
bird's-eye view of the state of affairs in the realm of pointwise representation, 
and in particular we can attempt to describe the place occupied by Fourier 
series in the general picture. 

1.2.2. Limitations of Pointwise Representation. Although it is 
undeniably of great intrinsic interest to know that a certain function, or 
each member ·of a given class of functions, admits a pointwise representation 
by some trigonometric series, it must be pointed out without delay that this 
type of representation leaves much to be desired on the grounds of utility. A 
mode of representation can be judged to be successful or otherwise useful as 
a tool in subsequent investigations by estimating what standard analytical 
operations applied to the represented function can, via the representation, 
be expressed with reasonable simplicity in terms of the expansion coefficients 
a" and b". This is, after all, one of the main reasons for seeking a representation 
in series form. Now it is a sad fact that pointwise representations are in 
themselves not very useful in this sense; they are simply too weak to justify 
the termwise application of standard analytical procedures. 

Another inherent defect is that a pointwise representation at almost a.ll 
points of I is never unique. This is 80 because, a.s was established by Men'shov 
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in 1916, there exist trigonometric series which converge to zero almost every
where and which nevertheless have at least one nonvanishing coefficient; 
see 12.12.8. (That this can happen came as a considerable surprise to the 
mathematical community.) 

1.2.3. The Role of the Ortho~onality Relations. The a priori grounds 
for expecting the Fourier series of an integrable function f to effect a point
wise representation off (or, indeed, to effect a representation in any reasonable 
sense) rest on the orthogonality relations (1.1.3). It is indeed a simple 
consequence of these relations that, if there exists any trigonometric series 
(1.1.1) which representsfin the pointwise sense, and iffurthermore the 8N (or 
the aN) converge dominatedly (see [W], p. 60) to f, then the series (1.1.1) 
must be the Fourier series of f. However, the second conditional clause 
prevents any very wide-sweeping conclusions being drawn at the outset. 

As will be seen in due course, the requirements expressed by the second 
conditional clause are fulfilled by the Fourier series of sufficiently smooth 
functions f (for instance, for those functions f that are continuous and of 
bounded variation). But, alas, the desired extra condition simply does not 
obtain for more general functions of types we wish to consider in this book. 
True, a greater degree of success results if convergence is replaced by summa
bility (see 1.2.4). But in either case the investigation of this extra condition 
itself carries one well into Fourier-series lore. This means that this would-be 
simple and satisfying explanation for according a dominating role to Fourier 
series can scarcely be maintained at the out8et for functions of the type we 
aim to study. 

1.2.4. Fourier Series and Pointwise Representations. What has been 
said in 1.2.3 indicates that Fourier series can be expected to have but 
limited success in the pointwise representation problem. Let us tabulate a 
little specific evidence. 

The Fourier series of a periodic function f which is continuous and of 
bounded variation converges boundedly at all points to that function. The 
Fourier series of a periodic continuous function may, on the contrary, 
diverge at infinitely many points; even the pointwise convergence almost 
everywhere of the Fourier series of a general continuous function remained 
in doubt until 1966 (see 10.4.5), although it had been established much 
earlier and much more simply that certain fixed subsequences of the sequence 
of partial sums of the Fourier series of any such function is almost everywhere 
convergent to that function (the details will appear in Section 8.6). The 
Fourier series of an integrable function may diverge at all points. 

If ordinary convergence be replaced by summability, the situation 
improves. The Fourier series of a periodic continuous function is uniformly 
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summable to that function. The Fourier series of any periodic integrable 
function is sum mabIe at almost all points to that function, but in this case 
neither the 8 N nor the UN need be dominated. 

1.2.5. Trigonometric Series and Pointwise Representations. Having 
reviewed a few of the limitations of Fourier series vis· a.-vis the problem of 
pointwise representation, we should indicate what success is attainable by 
using trigonometric series in general. 

In 1915 both Lusin and Privalov established the existence of a pointwise 
representation almost everywhere by summability methods of any functionf 
which is measurable and finite almost everywhere. For 25 years doubts 
lingered as to whether summability could here be replaced by ordinary 
convergence, the question being resolved affirmatively by Men'shov in 1940. 
This result was sharpened in 1952 by Bary, who showed that, if the function 
f is measurable and finite almost everywhere on the interval I, there exists a 
continuous function F such that F'(x) = f(x) at almost all points of I, and 
such that the series obtained by termwise differentiation of the Fourier 
series of F converges at almost all points x of I to f(x). Meanwhile Men'shov 
had in 1950 shown also that to any measurablef (which may be infinite on a 
set of positive measure) corresponds at least one trigonometric series (1.1.1) 
whose partial sums SN have the property that limN _ oo SN = / in measure on 
I. This means that one can write 8N = UN + VN' where UN and VN are finite
valued almost everywhere, limN _ '" uN(x) = f(x) at almost all points x of I, 
and where, for any fixed e > 0, the set of points x of I for which IVN(X)l > e 
has a measure which tends to zero as N -00. (The stated condition on the 
VN is equivalent to the demand that 

lim J" IVNI dx = 0; 
N-", _" 1 + IVNI 

and the circuitous phrasing is necessary because f may take infinite values 
on a set of positive measure.) This sense of representation is weaker than 
pointwise representation. For more details see [Ba2]' Chapter XV. 

These theorems of Men'shov and Bary lie very deep and represent enormous 
achievements. However, as has been indicated at the end of 1.2.2, the 
representations whose existence they postulate are by no means unique. 

Cantor succeeded in showing that a representation at all points by a 
convergent trigonometric series is necessarily unique, if it exists at all. 
Unfortunately, only relatively few functions f admit such a representation: 
for instance, there are continuous periodic functions f that admit no such 
representation. (This follows on combining a theorem due to du Bois-Reymond 
and Lebesgue, which appears on p. 202 of [Bad, with results about Fourier 
series dealt with in Chapter 10 of this book.) It is indeed the case that, in a 
sense, "most" continuous functions admit no representation of this sort. 
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1.2.6. Summary. It can thus be said in summary that pointwise repre
sentations are subject to inherent limitations as analytical tools, and that 
Fourier series can be accorded a distinguished role in respect of this type of 
representation only for functions of a type more restricted than one might 
hope to handle. 

This being so, it is natural to experiment by varying the meaning assigned 
to the verb "to represent" in the hope of finding a more operationally effective 
meaning and of installing Fourier series in a more dominating role. 

RJore embarking on this program, it is perhaps of interest to add that a 
similar choice prevails in the interpretation of differentiation (which in fact 
has connections with the representation problem). The pointwise everywhere 
or almost everywhere interpretation of the derivative, if deprived of any 
further qualification, is also not entirely effective operationally. A new 
interpntation is possible and leads to distributional concepts; Chapter 12 is 
devoted to this topic. 

1.3 New Ideas about Representation 

1.3.1. Plan of Action. In the preceding section we have recounted some 
of the difficulties in the way of according a unique position to Fourier series 
on the grounds of their behavior in relation to the traditionally phrased 
problem of representing functions by trigonometric series. We have also 
indicated the shortcomings of this type of representation. 

To this it may be added that in cases where the mathematical model of a 
physical problem suggests the use of expansions in trigonometric series, 
pointwise representations frequently do not correspond very closely to the 
physical realities. 

Faced with all this, we propose to consider new meanings for the verb "to 
represent" that are in complete accord with modern trends, and which will in 
due course be seen to justify fully a concentration on Fourier series as a 
representational device. 

1.3.2. Different Senses of Convergence and Representation. In 
recent times analysts have become accustomed to, and adept at working in 
diverse fields with, other meanings for the verb "to represent," most of 
which (and all of which we shall have occasion to consider) are tantamount 
to novel ways in which a series of functions may be said to converge. Such 
ideas are indeed the concrete beginnings of general topology and the theory 
of topological linear spaces. 

Thus encouraged, we contemplate some possible relationships between an 
integrable function! on ( -TT, TT) and a trigonometric series (1.1.1) or (1.1.1*) 
expressed by each of equations (A) to (D) below. 
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For this purpose we write again 

so that 

and also 

N 

SO(X) = Y2ao, s,v(x) = Y2ao + L (an cos nx + bn sin nx), 
n=l 

s,v(x) = L cne1n:r, 
Inl .. N 

(1.3.1) 

The relationships referred to are (compare 6.1.1, 6.2.6, 12.5.3, and 12.10.1): 

(A) 

(B) 

(C) 

(D) 

~~~ f" If(x) - uN(x)1 dx = 0; 

lim J" If(x) - SN(X)jP dx = 0; 
N-CX) -n: 

lim sUP:r If(x) - UN(X) I = 0; 
N-a> 

~~~ i:" u(x)s,v(x) dx = i:" u(x)f(x) dx 

for each indefinitely differentiable periodic function u. 
If anyone of these relations holds for a given f and a given trigonometric 

series, one may say that the trigonometric series represents f in the corre
sponding sense: in case (A) it would be usual to say that the trigonometric 
series is·Cesaro-summable in mean with exponent (or index) 1 to f; in case (B) 
that the trigonometric series is convergent in mean with exponent (or index) p 
to f; in case (0) that the trigonometric series is uniformly Cesaro-summable to 
f; and in case (D) that the trigonometric series is distributionally convergent 
to f. 

1.3.3. The Role of Fourier Series. It is genuinely simple to verify that, 
given f, there is at most one trigonometric series for which anyone of relations 
(A) to (D) is true, and that this only contender is the Fourier series of f (see 
the argument in 6.1.3). Moreover, it is true that the relations do hold if the 
trigonometric series is the Fourier series off, provided in case (B) that either 
1 < p < 00 and f E V' or p = 1 and f log+ If I E L1 (see 8.2.1, 12.10.1, and 
12.10.2); and in case (0) that f is continuous and periodic. (The symbols 
L1 and V' here denote the sets of measurable functions f on (-TT, TT) such 
that If I and IfI P, respectively, are Lebesgue-integrable over (-TT, TT). A 
tiny modification to this definition is explained in detail in 2.2.4 and will be 
adopted thereafter in this book.} 
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Each of the relations (A) to (D) can, therefore, be used to characterize the 
Fourier series of f under the stated conditions, and each provides some 
justification for singling out the Fourier series for study. (There are, by the 
way, numerous other relationships that might be added to the list.) 

It turns out that the weakest relationship (D) is suggestive of fruitful 
generalizations of the concept of Fourier series of such a type that the 
distinction between Fourier series and trigonometric series largely disap
pears. It suggests in fact the introduction of so-called distributions or 
generalized functions in the manner first done by L. Schwartz [Sl.2]' It will 
then appear that any trigonometric series in which Cn = O(lnl") for some 
k may be regarded as the Fourier series of a distribution, to which this 
series is distributionally convergent. These matters will be dealt with in 
Chapter 12. 

1.3.4. Summary. The substance of Section 1.2 and 1.3.3 summarizes the 
justification for subsequent concentration of attention on Fourier series in 
particular, at least insofar as reference is restricted to harmonic analysis in 
its classical setting. We shall soon em bark on a program that will include at 
appropriate points a verification of each of the unproved statements upon 
which this justification is based. As for trigonometric series in general, we 
shall do no more than pause occasionally to mention a few of the simpler 
results that demand no special techniques. 

A bird's-eye view of-many of the topics to be discussed at some length in 
this book is provided by the survey article G. Weiss [1]. 

1.3.5. Fourier Series and General Groups. There are still other reasons 
in favor of the chosen policy which are based upon recent trends in analysis. 
Harmonic analysis has not remained tied to the study of Fourier series of 
periodic functions of a real variable; in particular it is now quite clear tha.t 
Fourier-series theory has its analogue for functions defined on compact Abelian 
groups (and even, to some extent, on still more genera.l groups); see, for 
example, [HR], [Re], [E l ]. While the level at which this book is written 
precludes a detailed treatment of such extensions, we shall make frequent 
reference to modern developments. However regrettable it may seem, it is a 
fact that these developments cluster arOlind the extension of precisely those 
portions of the cla.ssical theory which do not depend upon the deeper properties 
of p~intwise convergence and summability, and that a detailed treatment of 
the analogue for compact groups of the theory of general trigonometric series 
appears to lie in the future. Moreover, the portions of the classical theory that 
have so far been extended appear to be those most natural for handling those 
problems which are currently the center of attention in general harmonic 
analysis. Of course, these prevailing features may well change with the pa.ssa.ge 
of time. While they prevail, however, they add support to the view that it is 
reasonable to accord some autonomy to a theory in which the modes of 
representation mentioned in 1.3.2 take precedence over that of pointwise 
representation. 
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EXERCISES 

1.1. Establish the formulae 

D ( ) _ "" 170% _ sin (N + %)x 
NX - ~ e - . u ' 

1701.; N SIn /2X 

FN(x) = (N + 1)-1 [Do(x) + ... + DN(x)] 

= (N + 1)-1 [Sin ~(N + 1)x]2 
sm%x 

for N ~ 0 an integer and x ~ 0 modulo 217, where the equality signs im
mediately following DN(x) and F N(X) are intended as definitions for all real x. 

1.2. Prove that if p and q are integers and p < q, and if x ~ 0 modulo 217, 
then 

I L: eln:rl ~ Icosec %xl· 
P.; .. .;q 

By using partial summation (see 7.1.2 and [HJ, p. 97 if.) deduce that if 
cp ~ CP+l ~ ••• ~ Cq ~ 0, then, for x ~ 0 modulo 217, 

L: cneln%1 ~ cp Icosec %xl· 
p.;n.;q 

1.3. Assume that Cn ~ Cn + 1 and lim .. _<Xl Cn = O. Show that the series 

is convergent for x ~ 0 modulo 217', and that the convergence is uniform on 
any compact set of real numbers x which contains no number =0 modulo 217'. 

1.4. Assume that Cn ~ C"+ 1 ~ 0 and nc .. ~ A. Show that 

N 

1 L: Cn sin nxl ~ A(lT + 1). 
70=1 

Hints: One may assume 0 < x < 17. Put m = min (N, [IT/XJ) and split 
the sum into 2:i' + 2:~ + 1> an empty sum being counted zero. Estimate the 
partial sums separately, using Exercise 1.2 for 2~+l' 

1.5. Assume that the Cn are as in Exercise 1.4. Show that the series 
2::'= 1 c .. sin nx is boundedly convergent, and that the sum function is con
tinuous, except perhaps at the points x = 0 modulo 217'. (More general 
results will appear in Chapter 7.) 
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1.6. Compute the complex Fourier coefficients of the following functions, 
each defined by the prescribed formula over [ -71',71') and defined elsewhere 
so as to have period 271': 

(1) f(x) = x; 
(2) f(x) = Isin xl ; 
(3) f(x) = x for -71' ~ X ~ 0, f(x) = 0 for 0 < x < 71'. 
1.7. By a trigonometric polynomial is meant a function f admitting at 

least one expression of the form 

f(x) = 2: cneilll:, 
Inl .. N 

where the Cn are f-dependent complex numbers. 
(1) Use the orthogonality relations to show that, if f is a trigonometric 

polynomial, then 

j(n) == - f(x)e-inl: dx 1 J" 271' _II 

vanishes for all but a finite number of integers nand thatf(x) = Lnezj(n)einl:. 
Show also that 

1 J" . 271' _II If(x)i2 dx = nfz If(nW 

whenever f is a trigonometric polynomial. (This is a special case of Parseval's 
formula, to which we shall return in Chapter 8 and Section 10.5; see also 
Remark 6.2.7.) 

A trigonometric polynomial f such that j(n) = 0 for Inl > N is said to be 
of degree at most N. 

(2) Verify that the set TN of trigonometric polynomials of degree at most 
N forms a complex linear space of dimension 2N + 1 with respect to point
wise operations, and that if f E TN' then also Re f E TN and 1m f E TN' 

(3) Show that if f E TN' f =ft 0, then f admits at most 2N zeros (counted 
according to multiplicity) in the interval [0,271') (or in any interval congruent 
modulo 271' to this one). 

1.8. (Steckin's lemma) Suppose f E TN is real-valued, and that 

Ilfll", == sup If(x)1 = M = f(xo)· 
% 

Prove that 

f(xo + y) ~ M cos Ny for Iyl ~ ;. 

Hints: Put g(y) = f(xo + y) - M cos Ny. Assuming the assertion false, 
we choose Yo so that IYol < 71'/N and g(yo) < O. We assume 0 < YO<71'/N; 
otherwise the subsequent argument proceeds with the interval [-271',0) in 
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place of [0,211-)' By examining closely the signs of g at the points k.,,/N 
(k = 0, 1,2, .. " 2N), show that g admits at least 2N + I zeros in [0, 2.,,). A 
contradiction results from Exercise 1.7. 

1. 9. (Bernstein's inequality) Prove that if I E TN, then 11f' II '" ~ N 11/11", 
(the notation being as in the preceding exercise). 

Hints: It suffices, by Exercises 1.7 and 1.10, to prove the inequality for 
real-valued I E TN' Iff'(xo) = m == 11f'11", (which can be arranged by changing 
I into -I if necessary) and 111 = 11/11"" Exercise 1.8 givesf'(xo + y) ~ m C08 

Ny for Iyl ~ ."IN. Integrate this inequality. 

Notes: Many other proofs are known; the above, due to Steckin, is perhaps 
the simplest. For a proof based upon interpolation methods, see [Z2]' p. 11. 
More general results, also due to Bernstein, apply to entire functions of order 
one and exponential type; see [Z2], p. 277. 

See also the approach in [Kz], p. 17; W. R. Bloom [1], [2]; MR 51 # 1239; 
52 ## 6288, 11446; 53 # 11289; 54 # 829. 

The inequality has also been extended in an entirely different way by 
Privalov, who showed that if J = (a', b') and J = (a, b) are any two sub
intervals of [-11,11] satisfying a < a' < b' < b, then there exists a number 
c(I, J) such that 

sup II'(x) 1 ~ c(J, J)N . sup 11(x)1 
.%61 xeJ 

for any 1 E TN' It is furthermore established that similarly (but perhaps with a 
different value for c(I, J)) one has 

for any 1 E TN and any p satisfying 1 ~ P < 00. Both inequalities are also valid 
when I = J = [ -11,11] and c(J, J) = 1, the first reducing to that of Bernstein 
and the second being in this case due to Zygmund. For more details, see [B~], 
pp. 458-462. See also [L2]' Chapter 3. 

1.10. Suppose that E is a complex linear space of complex-valued 
functions on a given set (pointwise operations), that E = Eo + iEo where 
Eo is the set of real-valued functions in E, that l is a complex-linear functional 
on E which is real-valued on Eo, and that p is a seminorm on E (see Appendix 
B.1.2). Suppose finally that p(x) ~ p(y) whenever x, y E E and Ixl ~ Iyl, 
and that Il(x)1 ~ p(x) for x E Eo. Prove that Il(x)1 ~ p(x) for x E E. 

Hints: Write x = a + ib with a, b E Eo and l(x) = r(a + ifJ) with r ~ 0, 
a and fJ real, and a2 + fJ2 = 1. Then 

Il(x)1 = r = (a - ifJ)l(x) = l[(a - ifJ)(a + ib)]; 

expanding and taking real parts: Il(x)1 = l(aa + fJb) ~p(aa + fJb), and 80 

forth. 
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1.11. Prove that, if a trigonometric polynomial f is real-valued and 
nonnegative, then f = Igl2 for some trigonometric polynomial g (Fejer 
and F. Riesz). 

Hints: Suppose f(x) == Llnl .. NCne1nz and consider first the case in which 
f(x) > 0 for all x. Assume (without loss of generality) that c_ N i' 0 and 
examine the polynomial P(z) = ZN Llnl .. NCnZn. Observe that P(z) = Z2N P(Z-I) 
andf(x) = e- 1Nz P(eIZ ). Verify that the zeros of P are of the form aI' a2,· •• , 

and all, ail, ... , where 0 < larl < I, and factorize P accordingly. 
In case one knows merely thatf ~ 0, apply the above to thefk = f + Ilk 

(k = I, 2, ... ) and use a limiting argument. 

Remarks. The theorem does not extend in the expected way to other 
groups; see [R], 8.4.5. 



CHAPTER 2 

Group Structure and Fourier Series 

The aim of the first two sections of this chapter is to show how and to 
what extent the topological group structure of the set R of real numbers, 
and of some of its subgroups and quotient groups, lead to the study of 
periodic functions, the complex exponential functions, and the problem of 
expansions in trigonometric series in general and Fourier expansions in 
particular. In the remaining sections of this chapter we shall begin the study 
of Fourier coefficients in some detail. 

In pursuing the aims of Sections 2.1 and 2.2 we are led to refer to fairly 
general topological groups and to constructs related to them. It is hoped 
thus to convey a very rough idea of how the classical theory of Fourier series 
fits into contemporary developments in parts of analysis, and to prepare the 
reader for a later perception of genuine structural unity underlying obvious 
similarities. It is of course not expected, nor is it necessary for an under
standing of subsequent developments in this book, that the reader should 
at this stage stop to gather the details concerning topological groups and the 
related concepts to be spoken of (duality, invariant integrals, and so on); 
this writer will indeed venture the opinion that the return to a detailed study 
of generalizations is best made after some familiarity with special cases has 
been attained. On the other hand the reader will, it is hoped, gain from the 
realization that the classical theory is tributary to a broader stream, and will 
in due course want to try his hand at exploring the latter with the help of the 
references cited in this chapter. 

2.1 Periodic Functions 

For any reasonable interpretation of the term "represent" (see Chapter 1), 
any function of a real variable which is to be globally representable by a 
trigonometric series must admit 21T as a period, or must do this after suitable 
correction on a null set. Insofar as such correction does not alter the Fourier 
series of the function, we may and will assume that all functions of a real 
variable have period 21T. (Representation over a restricted range by so-called 
"half-ra.nge series" does not in any way conflict with this convention.) 

14 
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2.1.1. The Groups Rand T. The set R of real numbers, taken with 
addition as its law of composition and with its usual metric topology, is an 
example of an Abelian topological group. This means that it is first an 
Abelian group, and second a topological space, and that moreover the 
algebra and the topology are so related that the mapping (x, y) - x - y is 
continuous from R x R into R. If one drops the demand that the group 
structure be Abelian, one has here the concept of a topological group in 
general; see [B], pp. 98 ff., and/or [HR], Chapter II. Hereinafter the term 
"group" will always mean "locally compact group whose topology satisfies 
the Hausdorff separation axiom." This particular topological group R is 
locally compact but noncompact. We wish to focus attention, not so much on 
R, as on quotient groups thereof. 

It is a simple matter to show that the only closed subgroups of R, other 
than {O} and R itself, are those consisting of all integer multiples of some 
nonzero positive number (see Exercise 2.1). Which of these is selected is 
largely immaterial: we choose that one which is formed of all integer multiples 
of 21T and which is hereinafter denoted by 21TZ (Z denoting the additive 
group of integers). 

Let us form the quotient group Rj21TZ = T and denote by p the natural 
projection of R onto T, which assigns to x E R the coset x = x + 21TZ 
containing x. The group T is made into a topological group by endowing it 
with the so-called quotient topology. In concrete terms, this means that the 
open sets in T are precisely the sets p( U) where U is open in R. Even more 
concretely put, the quotient topology on T is that defined by the metric 
d(x, iI) = inf {Ix - y + 2n1Tl: n E Z}. 

Another way of looking at T is to recognize that the mapping x _ exp(ix) 

is an isomorphism of T onto the multiplicative group of complex numbers 
having unit absolute value. In this isomorphism, the quotient topology 
corresponds to that induced on the unit circumference in the complex plane 
by the usual metric topology on the latter. In view of this, the group T is 
often referred to as the circle group or the one-dimensional torus group. 

Perhaps the most essential difference between Rand T is that the latter is 
compact. Were we to attempt to apply to R the subsequent considerations 
concerning T, we should be led to Fourier integrals in place of Fourier series; 
almost a.ll the additional difficulties thereby encountered would stem from 
the fact that R is noncompact. 

2.1.2. Periodic Functions. Iff is a periodic function on R (by "periodic" 
we shall always mean "with period 21T "), there is just one function j on T 
such that f = j 0 p. (Notice that we shall never speak of so-called "many
valued functions.") Conversely, every periodic functionf on R is expressible 
in this way. Moreover, in this one-to-one correspondence f ~ j, continuous 
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!'S correspond to continuous j's. It will in fact be the case that this corre. 
spondence preserves every structure relevant to our purpose, and we shall 
before long ask the reader to make a mental identification of / and f. 

It is also perfectly legitimate to regard functions on the circle group as 
functions of the complex variable z = el:r having unit absolute value, but we 
shall make no systematic use of this notation. 

2.1.3. Role of the Group Structure. As we shall see in Section 2.2, the 
topological group structure of T is inextricably bound up with the genesis 
and study of Fourier series. Indeed, it will slowly emerge that many of the 
most fundamental aspects of this study depend almost exclusively on the 
fact that T is a compact Abelian group. It will be seen, too, that the Lebesgue 
integral itself is determined (up to a nonzero constant factor of proportionality) 
by the topological group structure. 

To this basic ingredient may be added, for the sake of richness and 
refinement, more specialized structures and concepts-the concepts of 
bounded variation and differentiability for functions, for example. In line 
with the remarks in 2.1.2, we say that a function / on T is of class Ck (=k 
times continuously differentiable, or indefinitely differentiable if k = CX), 

or is of bounded variation, if and only if the function / 0 p on R has the 
corresponding property on some one (and therefore every) interval in R of 
length 27T. 

2.2 Translates of Functions. Characters and Exponentials. The 
Invariant Integral 

2.2.1. Translates and Characters. We pose the question: What are the 
fundamental reasons for considering expansions in terms of cosines and sines 
cos AX and sin Ax, or, equivalently, in terms of the complex exponentials eIA:r? 

The historical answer, which is also the one based on applications, might 
be that these functions are the eigenfunctions of particularly simple linear 
differential operators. The restriction of the continuous parameter A to the 
discrete range 27TZ reflects periodic boundary conditions. 

There is, however, another and even more fundamental explanation, 
which hinges only on the topological group structure of Rand T. Let us look 
into this. 

The simplest and most obvious way in which the group structure can be 
used in handling functions is via the translation operators T" (a = a group 
element) acting on functions according to the rule 

T"f(x) =/(x - a). 

Attention paid to the T a is justified in retrospect, because most of the linear 
operators featuring in harmonic analysis prove to be limits in some sense of 
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linear combinations of translation operators (see, for example, 3.1.9 and 
Chapter 16). 

To fix ideas, we visualize the Ta as acting on the linear space C = C(R) or 
C(T) of continuous, complex-valued functions on R or T as the case may be. 
(Almost all we have to say would remain true on replacing C = C(R) or C(T) 
by various other function spaces over R or T.) 

If f E C, then Taf E C. Each T a is indeed an automorphism of the linear 
space C. To this we add for future reference the relations 

To = I, (2.2.1) 

where I denotes the identity automorphism of C. 
In general, and certainly for the groups Rand T here considered, the space 

C is infinite-dimensional and the problem of analyzing the behavior of the 
operators T a on C is a complicated one. However, elementary linear algebra 
(and, even more so, suitable forms of the simultaneous spectral resolution 
theorem) encourage one to hope for simplification if one can "reduce" the 
problem by finding linear subspaces V of C which are invariant in the sense 
that T a(V) c V for all group elements a. For brevity we term such a V an 
invariant 8ub8pace. The hope would lie in decomposing C into some sort of 
(possibly infinite) direct sum of invariant subspaces V1 , V2,· ", each VI 
being as small as possible. The T a could then be examined on each VI 
separately. 

In this way one is led to consider the existence of minimal invariant sub
spaces V of C, "minimal" meaning that V contains properly no invariant sub
space other than {O}. Now it is evident that a one·dimensional invariant 
subspace V (if any such there be) is certainly minimal; and that such a 
subspace V is generated or spanned by a function f which is a simultaneous 
eigenvector of the Ta (if any such functions exist). So, without more ado, we 
seek such functions. (For non·Abelian groups in general there would not 
exist anyone-dimensional invariant subspaces-one would have to be content 
with seeking finite-dimensional ones, which in fact exist in abundance for 
compact groups; for noncompact, non-Abelian groups, the situation is even 
more complicated.) 

Given fEe, denote by V, the smallest invariant subspace containing f, 
that is, the set of all finite linear combinations of translates Taf of f. We 
seek functions f such that dim V, = l. Clearly, therefore, f "# 0 and to each 
group element a corresponds a complex scalar x( -a) such that 

Taf = x( -a)f. 
This signifies that 

f(x - a) = x( -a) f(x) (2.2.2) 

for all pairs (a, x). If x = 0, f( -a) = f(O) x( -a), which shows in particular 
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that X is continuous and that X -# O. On the other hand, (2.2.1) and (2.2.2) 
yield the functional equation 

X(a + b) = X(a) X(b). (2.2.3) 

As a matter of definition, a complex-valued function X -# 0 that satisfies 
(2.2.3) is termed a character of the group in question. It follows at once that X 
is nonvanishing, X(O) = 1, and X( -a) = X(a) -1. We shall have occasion to 
consider only characters that are continuous. If a character X is bounded, 
then (2.2.3) shows that Ix(a)1 = 1 for all group elements a, so that X defines a 
homomorphism of the group into the multiplicative group of complex 
numbers of absolute value 1. 

Returning to (2.2.2), we may say that the function X appearing there is a 
continuous character. Moreover, since (2.2.2) gives f( -a) = X( -a)f(O) for 
all a, it follows that e = f(O) is nonzero, and f = ex is thus a nonzero scalar 
multiple of the character x. 

Let us next determine explicitly all the continuous characters of R and of 
T. Concerning characters that are not assumed to be continuous, see Exercise 
3.19. 

Supposing that X is a continuous character of R, we integrate the relation 
(2.2.3) with respect to b, over an interval (0, h), to get 

f x(a + b) db = X(a)' f X(b) db. 

Since X is continuous and X(O) = 1, h may be chosen and fixed so that the 
factor 

J: X(b) db 

is nonzero. Moreover, 

rll ra+ll Jo x(a + b) db = Ja X(e) de. 

Again since X is continuous, this last expression is a differentiable function 
of a. It follows that X is differentiable. Knowing this, we find that (2.2.3) 
yields 

'() l' x(a + h) - x(a) Xa=lm L 
1l .... 0 I. 
1· x(h) - x(O) () 

=lm h 'x a , 
1l .... 0 

so that X satisfies the differential equation 

X' = ik X, (2.2.4) 
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where k = -iX'(O). The only solution of (2.2.4) taking the value 1 at the 
origin is 

x(x) = etkx • (2.2.5) 

Evidently, whatever the complex number k, (2.2.5) defines a continuous 
character of R. This character is bounded, if and onJy if k is real. 

To determine the continuous characters of T, it is merely necessary to add 
the demand that X have period 27T. This signifies that k E Z. 

To sum up, we find that 
(1) The continuous (and so necessarily bounded) characters of T are in 

one-to-one correspondence with Z, the character corresponding to 11, E Z 
being (derived by passage to the quotient from) the function 

(2.2.6) 

Corresponding to 11, = 0 is the character eo, which is the constant function 1; 
this is usually termed the principal character. 

(2) The one-dimensional invariant subspaces of CrT) are precisely the 
subspaces V" = {"e,,: " a scalar}, where n ranges over Z. 

(3) The problem of harmonic analysis in respect to CrT) (and similarly in 
respect of other function spaces) may be suggestively but perhaps oversimply 
described as that of expressing C( T) as some sort of direct sum of the 
subspaces V" (11, E Z). This task falls into two parts: 

(a) GivenfE CrT), it is required to determine the corresponding "com
ponents " off lying in the various subspaces V". This is, strictly speaking, the 
problem of harmonic (or spectral) analysis and is, in the case of compact 
Abelian groups anyway, relatively simple. The said components are just the 

functions J(n)e", where 

1(11,) = 2~ ff(x)en(x) dx. 

It will appear in Chapter 11 that the component j(n)en is nonzero, if and only 
if V n n V of: {O}, where V is the closed invariant subspace generated by f. 

(b) The study of the formula 

f = L J(n)en , 
nEZ 

which it is hoped will reconstitute f from its harmonic components. This may 
be described as the problem of the harmonic (or spectral) synthesis of f. It 
presents what is by far the more difficult part of the program and embraces, 
of course, the question of representing f by a trigonometric series. It must 
be stressed that such a series representation is indeed generally impossible in 
C, if one dema.nds pointwise convergence. The study of the sense in which 
the synthesis is valid (which will vary from one function space to another) 
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is an essential part of the problem before us; see the remarks in 10.3.6 and 
Section 16.8. 

In connection with (1) above, it is interesting to obscrve that the group 
structure of Z corresponds, when Z is used to label the characters en, to point
wise multiplication of characters. Moreover, thc corresponding "dual topology" 
on Z is that for which the relation n -- no signifies that 

en(x) ->- eno (x) 

uniformly for x E T, and turns out to be just the discrete topology on Z (having 
a base of neighborhoods of 0 E Z comprising the one set {O}). This is a general 
feature: the bounded continuous characters of any given group may them
selves be formed into a group under pointwise multiplication, termed the dual 
or character group of the given group, and topologized in such a way that 
(speaking informally) a sequence or net (xtl of characters converges to the 
character X if and only if lim, X,(x) = X(x) uniformly for x E K, and this for 
each compact subset K of the original group. Up to this point, everything is 
largely a matter of observation and definition. The interesting and decidedly 
nontrivial fact is that, by way of justification of the term "duality," the 
character group of the character group turns out to be (isomorphic with) the 
original group. This duality is profound and is fundamental in general harmonic 
analysis, but to develop the ideas in any generality would take us much too 
far afield. Suffice it to say that locally compact Abelian groups run around in 
mutually dual pairs-such as (R, R) and (T, Z)-either member of such 'l pair 
being isomorphic with the dual of the other: this is the so-called Pontryagin 
duality law, for more details of which the reader is referred to [B), Chapter 11, 
and [RR], Chapter VI. Our main concern will always be harmonic analysis on 
the group T, but we shall from time to time cast fleeting glances at the dual 
problems concerning harmonic analysis on the group Z, which is always to be 
thought of as being endowed with its discrete topology. To the reader we issue 
a standing invitation to reflect on the possible analogues for Z of results 
established in the text for T. As a start, he might verify that, in conformity 
with the Pontryagin duality law, the character group of Z can be identified 
with T in the manner suggested by (2.2.6); that is, to each bounded (necessarily 
continuous) character ~ of Z corresponds exactly one x E T such that ~(n) = 
en (x) for n E Z and that the initial topology on T corresponds exactly to its 
dual topology under the association x ~ ~:r (see Exercise 2.3). 

Studies of harmonic analysis on each of the groups T and Z form, when 
taken together, a useful forerunner to that of general harmonic analysis. This 
is partly because they illustrate separately a number of the difficulties that 
one encounters in an intermingled state when one moves along to harmonic 
analysis on general groups. Actually, the next degree of complexity is repre
sented by the group R (the additive group of real numbers with its usual 
topology). In T, R, and Z one has, so to speak, the natural building bricks 
from which quite general locally compact Abelian groups may be built up_ It 
is known, for example, that any such compactly generated group is isomorphic 
with a product Ra x Zb X F, where a and b are nonnegative integers and F is 
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a compact Abelian group (see [RR], Theorem (9.8)); moreover, F is isomorphic 
to a closed subgroup of a possibly infinite product of copies of T; and there 
exist arbitrarily small closed subgroups H of F such that FIH is isomorphic 
with Tc x Fo, where c is a nonnegative integer and Fo is a finite group (see 
[RR], Theorem (24.7)). These facts are quoted merely in order that the reader 
may get some idea of how the limited program attempted by this book fits 
into the scheme of general harmonic analysis; they will never be used hereafter 
in this book. 

The reader would do well to peruse the survey article G. Weiss [1], which 
deals with both classical and modern aspects of the subject. 

Before temporarily leaving the present topics we should indicate that in 
Chapter 11 the theory of Fourier series obtained up to that point will be 
used to classify all the closed in variant subspaces of C( T) (and of certain other 
function spaces). The theory will also show to what extent C(T) (and these 
other function spaces) can be decomposed into a direct sum of one-dimensional 
(and therefore minimal) invariant subspaces. 

2.2.2. The Invariant Inte~ral. Let us momentarily broaden the outlook 
by considering a locally compact topological group G (see 2.1.1); for the 
moment we do not assume that G is Abelian. Owing to this we must be careful 
to specify that our concern will lie with the left translation operators T .. 
defined by TaJ(x) = f( -a + x). If G is Abelian, this agrees with the notation 
introduced in 2.2.1; in the contrary case one must distinguish these T .. from 
the right translation operators f(x) - f(x - a). 

Denote by Cc(G) the linear space of complex-valued continuous functions 
f on G, each of which vanishes outside some f-dependent compact subset of 
G. Evidently, Cc(G) is a linear subspace of C(G). If G is compact (for example, 
if G = Rj27TZ), Cc(G) and C(G) are identical. 

A fundamental and cardinal fact underlying all general harmonic analysis 
is the existence of a linear functional 1 on Cc(G) which is 

(I) positive, in the sense that l(f) > 0 if f '" 0 is a nonnegative real
valued function in Cc(G); and 

(2) left (translation) invariant, in the sense that 

I(T..J) = l(f) 

for all f E Cc(G) and all a E G. 
It is also a fact that, apart from a positive factor of proportionality, there 

is only one such functional. Any such functional 1 is called a left invariant 
(or left Haar) integral on G. (Similar remarks apply to right Haar integra18.) 

It is known that the left invariant integral can in all cases be extended to 
more general functions in such a way as to preserve the basic, crucial, and 
pleasant properties of the Lebesgue integral of functions of one real variable. 
The details of this extension are to be found in a.ny one of several references, 
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for example: [HR], Chapters III and IV; [HS], Chapter 3; [B], Chapters 
8-10; [E], Chapter 4. However, an intelligent reading of the present book 
will demand no more than a knowledge of the results of this extension for 
functions of one real variable; it is of little importance which of several 
possible approaches to the Lebesgue integral has been followed. More details 
about what we shall need to assume appear in 2.2.4. 

The choice of Cc(G) in place of C(G) as the initial domain of definition of I 
comes about in the following way. It is quite easy to see at the outset that, 
whenever Gis noncompact, there cannot be any invariant integral I for which 
IU) is finite-valued for all nonnegative real-valued 1 E C(G) (or even for all 
nonnegative real-valued 1 E C(G) which tend to zero at infinity). In other 
words, the "integrability" of a function will demand quite severe restrictions 
on the "average smallness" of the function at infinity. One v~ry simple and, 
as it turns out, entirely effective way of imposing a priori such a restriction 
on 1 is to demand that it shall vanish outside some compact subset of G. 
(Of course, it turns out ultimately that this condition is not necessary for 
integrability.) 

It is not too much to say that the inauguration of modern harmonic 
analysis on groups had to await the discovery, by Haar in 1933, of the 
existence of a left invariant integral on any locally com pact group G satisfying 
the second countability axiom. Subsequent developments, including the 
removal of all countaobility restrictions on G, have been due to Weil, Kakutani, 
H. Cartan, von Neumann, and many others. The interested reader may also 
wish to consult a recent note by Bredon [1]. See also MR 39 # 7066. 

On considering some familiar groups, old friends appear in a new light. 
For example, if G = Rn, the characteristic properties (1) and (2) show that an 
invariant integral is 

I(f) = J -.. J l(xl'" " x,,) dXl ... dx,,, 

a Lebesgue (or Riemann) integral extended over any hypercube outside 
which 1 vanishes. 

Again, if G is R/27TZ, an invariant integral is 

IU) = L J 1 0 p(x) dx, (2.2.7) 

a Lebesgue (or Riemann) integral extended over any interval of R of length 
27T. Here we have chosen the disposable proportionality factor so as to 
arrange that 1(1) = 1 (a choice that is possible for compact groups and for 
those only). 

The essential uniqueness of the invariant integral for the circle group 
T (and likewise for R") can be established by quite simple and down-to-earth 
arguments, as follows. We handle functions on T as if they were periodic 
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functions on R (see 2.1.2). Let us first note that any invariant integral I has 
the property that 

II(!)I ~ I(l} . sup If I ; (2.2.8) 

this follows from property (1) and the linearity of I. Now, iffis continuously 
differentiable, 

lim Taf - f = -1' 
a-O a 

holds uniformly. Consequently (2.2.8) and property (2) combine to show that 
l(j') = 0 for any continuously differentiable f. Next, if g is continuous and 
periodic and satisfies 

[2" Jo g(x) dx = 0, 

then g = 1', where 

f(x) = 50" g(t) dt 

is continuously differentiable and periodic. Thus I(g) = 0 for such g. Finally, 
choose any nonnegative continuous periodic ho such that 

fIt ho(x) dx = 1. 

Given any continuous periodic h, we apply what precedes to the function g 
defined by 

[2" 
g(x) = h(x) - ho(x) Jo h(t) dt, 

which is continuous and periodic, and satisfies 

f" g(x) dx = O. 

The result of this application, namely, the conclusion I(g) = 0, signifies 
exactly that 

[2" 
I(h) = I(ho) • Jo h(x) dx, 

showing that I differs from the expression appearing on the right-hand side 
of (2.2.7) by the oonstant faotor 217I(ho) > O. This oompletes the verification 
of the essential uniqueness of the invariant integral on T. 

Armed with this uniqueness property, it is simple to deduce other invariance 
properties of the integral. The elementary properties of the Riemann integral 
show that, if f is a oontinuous periodic funotion on R, and if k E Z and 
k =1= O,then 

1 [211 1 [2" 
217 Jo f(kx) dx = 217 Jo f(x) dx. (2.2.9) 
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This can be established by using the identification afforded by (2.2.7) and 
invoking the uniqueness property of the invariant integral. In doing this, we 
may replace T by any compact group G and the mapping x -+ kx by any 
continuous group homomorphism t of G onto itself. Let I be the invariant 
integral on G, normalized so that 1(1) = 1. We will show that 

I(f 0 t) = I(f) (2.2.10) 

for all continuous functions I on G, from which (2.2.9) will follow by special
ization. It is to be observed that, since k E Z and k =F 0, the mapping 
t: x -+ (kxy is a continuous homomorphism of T onto itself. 

To prove (2.2.10), we consider the new functional l' defined by 

1'(j) = I(j 0 t); (2.2.11) 

this definition is effective since, owing to the continuity of t, lot is con
tinuous whenever I is continuous. Since t maps G onto G, it is clear that I' 
enjoys property (1) of invariant integrals. Since also 

T ",(1 0 t)(x) = 1 0 t(x - a) = I[t(x - a» = I[t(x) - t(a» 
= Tc(a,j[t(x)] = (Tt(a,j) 0 t(x) , 

owing to the fact that t is a group homomorphism, we have Ta(lo t) 
= (TI(al/) 0 t. We again use the assumption that t maps G onto G; then the 
translation invariance of I shows that l' is also translation-invariant. By 
uniqueness, therefore, there is a number c such that 1'(j) = C • I(j) for all 
continuous functions I. Choosing 1= 1, we find that (2.2.11) gives 1'(1) 
= 1(1 0 t) = 1(1) = 1. Hence c = 1 and l' is identical with I. This is just 
what (2.2.10) asserts. 

The dual situation. Let us turn momentarily from the circle group T 
to the dual group Z. There is no lasting mystery about the invariant integral 
on Z; apart from a disposable constant of proportionality, it must be ex
pressed by summation: 

I(t/» = 2 t/>(n), (2.2.7·) 
nsZ 

at least for those functions t/> on Z whose support {n E Z : t/>(n) =F O} is 
finite. (The compact subsets of a discrete space, such as Z, are exactly the 
finite subsets thereof.) 

The linear space offunctions t/> on Z having finite support is, however, too 
narrow to accommodate fully effective operation, and it is desirable that the 
invariant integral be extended to other functions. No problem arises for 
those functions t/> for which the series in (2.2.7·) is absolutely convergent: 
this is the space usually denoted by tl(Z) and is the exact analogue, for the 
group Z, of the space Ll of Lebesgue integrable functions on T. 
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To go still further, it will be necessary to interpret the right-hand side of 
(2.2.7*) according to one of a number of conventions. For example, the 
conditional convergence of the series will by convention always mean the 
existence of a finite limit for the sequence of symmetric partial sums 

L cp(n) 
Inl .. N 

when N _ 00. A yet more general interpretation which will playa funda
mental role in the sequel lies in interpreting the right. hand side of (2.2.7*) as 
the limit as N -00, when it exists, of the arithmetic means of the first N + 1 
symmetric partial sums. This arithmetic mean is expressible in the form 

L (1 - ).n+1 1) ¢>(n), 
Inl .. N 

and this process of attaching a generalized sum to the series in (2.2.7*) is 
known as summation by Cesaro means of the first order. As applied to Fourier 
series, the method will be studied in some detail in Chapters 5 and 6. Yet 
other summability methods are known to be useful and effective, though 
we shall not dwell on them to any length in this book (see Section 6.6). 

2.2.3. The Ortho~onality Relations. It is interesting to note at this 
point that the orthogonality relations (1.1.3), which have been seen to be at 
the basis of the formation of Fourier series, flow inevitably from the defining 
properties of the invariant integral. 

Suppose here that G is any compact topological group and that I is that 
left invariant integral on G for which 1(1) = 1. Consider any nonprincipal 
continuous (and therefore bounded) character X of G and choose any a E G 
suoh that X( -a) # 1. Then, by (2.2.3) and property (2) of 2.2.2, 

I(X) = I(TaX) = I[X( -a) • X] = X( -a) . l(x) 

showing that I(X) = O. Applying this to the product X = Xl • X2 of two con
tinuous characters Xl and Xll, we obtain the orthogonality relations 

if Xl = X2 
otherwise. 

(2.2.12) 

In view of (2.2.6) and (2.2.7), these relations reduce, when G = T, to the 
relations (1.1.3), which are now seen in their true relationship to the group 
structure of T. 

There are other orthogonality relations pertaining to irreducible unitary 
representations of compact topological groups that reduce to (2.2.12) when 
the representations are one-dimensional (see 2.2.1); to discuss these would 
take us too far afield, and is in any case irrelevant to our main theme. 
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The dual orthogonality relations. In view of (2.2.7*), any would-be 
orthogonality relations for the discrete group Z would read somewhat as follows: 

L elnx • eln~ = 1 or 0 
nEZ 

according as the real numbers x and yare, or are not, congruent modulo 21T. 
There is, however, no way of making sense of this relation which is based upon 
applying a summability method to the series on the left for individual values 
of x and y. On using concepts to be introduced in Chapter 12, it is nevertheless 
the case that, for a fixed y, the series converges distributionally to a certain 
distribution (or generalized function) known as the Dirac measure placed at the 
point y. This latter entity does, in a sense, vanish on the open set of points 
x ;f:. y modulo 21T, but there is no reasonable way of attaching to it a numerical 
value at points x == y modulo 21T. 

There is therefore a residual and irreducible asymmetry separating the 
mutually dual situations; this is, in the last analysis, because of the profound 
topological differences between the "smooth" compact group G and the 
discrete noncompact group Z. 

2.2.4. V' and Other Function Spaces. It has been remarked in 2.2.2 
that the invariant integral can in all cases be extended to functions more 
general than those in Cc(G). For G = T, in which case the invariant integral 
has been identified in (2.2.7), the extension involved is that from the Riemann 
to the Lebesgue integral; for the dual group Z, several stages in the extension 
have already been mentioned at the end of 2.2.2. It is essential for a smooth 
and satisfactory development of Fourier theory that advantage be taken of 
this extension. Broadly and figuratively speaking, the Lebesgue theory of 
integration is that which is necessary and sufficient for the major portion of 
contemporary analysis; integration theories for functions on more general 
sets and spaces almost invariably share the characteristic basic properties of 
the Lebesgue theory. However, in certain special connections involving 
functions of a real variable, more elaborate theories have proved useful. We 
shall have neither occasion nor space for more than a passing reference in 
12.8.2(3) to some such theories. (Others, mainly designed to handle integration 
strictly as an antiderivation process, will receive no mention at all in this 
book.) 

We shall therefore assume that the reader is familiar with the definition 
and basic properties of the Lebesgue integral of a function of one real 
variable. With but relatively few exceptions, some of which are dealt with in 
Appendix C, all the results we shall need will be found in the brief account in 
[W]. For the exceptional points the reader is referred to [HS], [AB], or [E], 
Chapter 4, or to anyone of the several excellent accounts of integration 
theory now available. In making use of these sources of results about the 
Lebesgue integral of functions of one real variable, it will be agreed that a 
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functionf on T is measurable (or integrable) if the associated periodic function 
fop is Lebesgue measurable (or integrable) over some one-and hence 
every-interval of length 21T. 

Having reached this stage we shall drop the notational distinction between 
f and fop-in other words, we shall not distinguish between a periodic 
function on R and the corresponding function on the circle group. 

It will be convenient to introduce some notations for the function spaces 
that will appear constantly in the following pages. 

If k is an integer,k ~ 0, CIc = Ck(T) will denote the set of complex-valued 
functions with period 21T and with k continuous derivatives, and C'" = 

C"'(T) = n {Ck: k = 1,2, ... }. For brevity, C is written in place of Co. 
For any real number p > 0 we denote by LP = LP( T) the set of periodic 

complex-valued measurable functions f such that 

(2.2.13) 

is finite, the integral being extended over any interval of length 21T; compare 
[W], p. 68, [AB], p. 215, or [HS], p. 188. In addition, L'" = L"'(T) denotes the 
set of essentially bounded periodic complex-valued measurable functions, 
that is, of periodic complex-valued measurable functions f for which 

IIfll", == ess. sup If(x)1 (2.2.14) 

is finite, the essential supremum being taken relative to any interval of x
values of length 21T. 

To be perfectly accurate, we shall frequently use V' (0 < p ~ 00) to 
denote the set of equivalence cla8se8 of the appropriate type, two functions 
going into the same class if and only if they agree almost everywhere (a.e.). 
Since we shall not always signal which viewpoint is being adopted, the reader 
is warned to be on his guard and to be prepared to devote a little thought to 
deciding which interpretation is appropriate. The Fourier series of a function 
depends only on the class determined by that function. 

Each of Ck (k an integer ~O, or 00) and V' (0 < p ~ 00) is a linear space; 
in view of preceding remarks, the reader should check the truth of this when 
LP is regarded as a set of equivalence classes. 

When 1 ~ p ~ 00, II • lip is a norm on LP if the latter is considered as a. set 
of equivalence classes of functions (but only a seminorm if LP is viewed as a 
set of individual functions); see Appendix B.1.2 for an explanation of the 
terminology. This statement is virtually the content of Minkowski 's inequality, 
which asserts that f + g E LP and 

(2.2.15) 

whenever 1 ~ p ~ 00 and f, g E LP. For a proof of Minkowski's inequality, 
see p. 68 of[W], or p. 146 of [HLP], or Section 4.11 of [E], or [AB], p. 218, or 



28 GROUP STRUCTURE AND FOURIER SERIES 

[HS], pp. 191-192. The assertion is false if 0 < p < 1 (see [HLP], loco cit.), 
but it is then true that Ilf - gil: is a metric on Lp qua set of equivalence 
classes (or a semimetric if 1P is considered as a set of individual functions). 

For 0 < p ~ 00, 1P is complete for the metric Ilf - gllp if p ~ 1, or for the 
metric Ilf - gil: if 0 < p < 1; the former case is dealt with in [W], Theorem 
4.5a, and the same argument adapts readily to the case 0 < p < 1; alterna
tively, see [HS], p. 192, or [AB], p. 220. 

To complete the picture, on C" (k an integer ~ 0) we introduce the norm 

Ilfll(,,) = sup II DhJll", , 
O"i h"i " 

(2.2.16) 

here and subsequently D is the symbol of derivation. 
On C'" we introduce the metric Ilf - gll(",), where 

<Xi 2-"llfll(k). 
Ilfll(",) = ,,~o 1 + IIfll(,,)' (2.2.17) 

Despite the notation, Ilfll(",) is not a norm. Then Ck is complete for the metric 
Ilf - gll(k) whenever k = 0,1,2,· . ',00 (the reader should supply a proof of 
this). 

With their appropriate metric topologies, all these spaces are topological 
linear spaces (see Appendix B.l.1), that is (compare 2.l.1 in relation to 
topological groups), the linear space operations (j, g) -+ f - g and (A, f) 
-+ A • f (A a complex scalar) are continuous. Further details concerning C'" 
appear in Section 12.l. 

There will be constant use for one or more links in the chain of inclusion 
relations 

C'" c ... C C"+l C C" c ... c Co = C c L'" c LP C Lq, (2.2.18) 

where k is an integer ~O and where 00 > p > q > O. What is more, each 
inclusion map of one term of this sequence into any other lying to its right 
is continuous. The only nontrivial portion of this last assertion depends on 
the inequality 

O<q<p~oo, (2.2.19) 

The estimate (2.2.19) is itself a consequence of Holder's inequality, which 
asserts that if 1 ~ p ~ 00, and if p' denotes the conjugate exponent (or index) 
defined by IIp + IIp' = 1 (supplemented by the convention that p' = 00 

if p = 1 and p' = 1 if P = 00), then f . g E Ll and 

(2.2.20) 

whenever f E Lp and g E Lp·. A proof of Holder's inequality will be found on 
pp. 72-73 of [Ka], the assumption there made concerning continuity of f 
and g being unnecessary; see also Section 4.11 of [E], or [HS], pp. 190-191, or 
[AB], p. 217. An extended discussion of both the Minkowski and Holder 
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inequalities is undertaken in Chapter VI of [HLP], but this is unnecessarily 
elaborate for our purposes. 

Each of the spaces V' (0 < p ::;; 00) and Ck (k = 0,1,2", ',00) is trans
lation-invariant, as also are the appropriate metrics or norms. If E denotes 
anyone of these topological linear spaces other than L"", and if 1 E E, the 
mapping a ~ Tal is continuous from R (or from R/2rr Z) into E. (For the 
case E = Ll a proof appears on p. 67 of [WJ; this proof is readily adaptable 
to the case E = LP whenever 0 < p < 00. In the remaining admissible 
cases the result is almost evident in view of the well-known result that a 
continuous complex-valued function on a compact metric space is uniformly 
continuous. Regarding the excluded case p = 00, see Exercise 3.5.) In all 
cases the mapping 1 ~ Tal is, for any fixed a E R, a continuous endomorphism 
of E; moreover 

if 1 E V' and 0 < p ::;; 00, and 

IITaIIICk) = IIJllck) 
if 1 E C" and k = 0, 1,2,· . " 00. 

Convergence in the sense of the metric on LP (0 < p ::;; 00) will be termed 
convergence in V' or convergence in mean with index (or exponent) p. We note 
also that convergence in C in the sense of the norm II • II"" is equivalent to 
uniform convergence. 

2.2.5. The Dual Concepts. In view of (2.2.7*), the natural analogues, 
for the group Z, of the spaces LP introduced above, are the spaces IP = I"(Z) 
of complex-valued functions", on Z such that 

11"'111' == { 2: 1",(n)JPp'" ifO<p<oo, 
neZ 

or 
11"'11", == sup ''''(n)1 

nFZ 
if p = 00, 

is finite. 
In addition to these, we occasionally wish to refer to the subspace Co = co(Z) 

of I""(Z) formed of those", for which 

lim "'(n) = O. 
Inl-"" 

Each of Co and II' (1 ::;; p ::;; 00) is a Banach space; if 0 < p < 1, II' is a 
complete metric space. 

In lieu of (2.2.18) and (2.2.19) one has the relations 

and 
(2.2.18*) 

(2.2.19*) 

for 0 < q < p < 00. (Notice that 11"'llq ::;; 1 implies 1",(n)1 ::;; 1 for all nEZ, 
hence 1"'(n)IP ::;; 1",(n)lq for all nEZ, hence L 1""1' ::;; L ''''Iq ::;; 1.) 
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The Holder and Minkowski inequalities suffer no change in form other than 
the obvious replacement of integrals by the appropriate sums. Proofs for 
the case of finite sums appear on pp. 67-72 of [Ka]; for our purposes, which 
involve infinite sums, transparent limiting processes constitute the final step; 
see [HS], p. 194. A much more elaborate account appears in Chapter II of 
[HLP]. 

Concerning notation, we shall sometimes denote a function cP on Z in the 
sequential form: (CPn)nez; this is sometimes a convenience and is in any case 
in accord with tradition. There is, however, a nonvanishing chance of con
fusion with the convention according to which (CPn)"e z might also denote a 
two-way infinite sequence of functions on Z. The context will in all cases 
dispel initial doubts on this score. 

2.3 Fourier Coefficients and Their Elementary Properties 

Except in the discussion of certain specific examples, we shall use 
systematically the so-called "complex" Fourier coefficients. Indeed, the 
substance of Sections 2.1 and 2.2 constitutes ample indication that the 
exponentials elnX playa much more fundamental role than do their real and 
imaginary parts separately. Not until Chapter 12 is reached shall we consider 
the Fourier coefficients and Fourier series of anything more general than 
integrable functions. 

For JELl we adopt in general work the systematic notation 

j(n) = ..!..JJ(x)e- lnX dx 
21T 

for all n E Z (2.3.1) 

for the (complex) Fourier coefficients ofJ. The integral in (2.3.1) extends over 
any interval of length 21T. The symbol j naturally denotes the function 
n-'»o j(n) defined on Z; it is a two-way infinite sequence. Throughout this 
section we shall establish some of the simplest properties of the Fourier 
transformation J -'»0 j. In order to a void confusion with the Fourier series of 
measures and distributions introduced in Chapter 12, a series of the type 
L.nez j(n)e1nX with JELl will be termed a Fourier-Lebesgue series. 

The reader will notice that (2.3.1) makes no sense for a general J E V', if 
o < p < 1. At no time shall we contemplate in detail any such extension, 
though the methods of Chapter 12 would permit us to make one sort of 
extension to restricted nonintegrable functions; see the example in 12.5.8. 

Before beginning to display the elementary properties of the Fourier 
transformation, we introduce the following notations: 

The symbol D will be that of derivation, as applied to functions of a real 
variable. There will be no occasion, until we reach Chapter 12, to apply D to 
any functions that are not absolutely continuous; for absolutely continuous 
functions, the new interpretation of D introduced in Chapter 12 is in agree-
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ment with the traditional one referred to here. For any complex-valued 
function I, J denotes the complex-conjugate function. For any function I 
defined on any group (on R, T, or Z in particular), j denotes the function 
t---+/(-t), andf* the function t---+/(-t); thusf* = (J)~ = (j)-. Accord
ingly D and I ---+ I are linear, whereas I ---+ J and I ---+ f* are conjugate-linear. 

2.3.1. Themappingj---+jislinear.Moreover, (J),,' = (/)*and(f*),,' = (/)-. 
Proof. The first statement is clear, integration being a linear process on 

the integrand. Of the remaining two assertions it will suffice to indicate the 
proof of the first, thus 

for all n E Z. 
Note: In 3.1.1 and 4.1.2 we shall add some most important complements 

to the first assertion in 2.3.1. 

2.3.2. For each I ELI and nEZ, 1/(n)1 ~ 11/111' 
Proof. By [W], Theorem 3Ac, we have 

. 1 f 1 f I/(n)1 ~ 21T I/(x)e-I""'1 dx = 21T I/(x)1 dx 

== Illk 
Note: If we write II/II", = sup {1/(n)1 : nEZ}, 2.3.2 is equivalent to the 

inequality II/II", ~ 1IIIk This estimate, although well-nigh trivial, is the best 
possible in the sense that /(0) = IIIIII whenever I is real and nonnegative. 
On the other hand, for general real- or complex-valued functions I the 
relationship between II/II", and 11/111 is complicated; see Exercise 8.8 and 
Subsections 11.3.1 and 11.4.14. In particular, there exist functions IE LI 
for which IIIIII > 0 and the ratio 11/11",/11/111 is arbitrarily small. Hosts of 
examples of this phenomenon can be constructed by using the results of 
Chapter 15. A simpler example is provided by the so-called Dirichlet kernel 

D ( ) _ '" I"" _ sin (N + 1/2)x. 
NX - L e -. , 

I"I"N smx/2 

if I = D N , llill", = 1 and yet 11/111 is (as will be seen in 5.1.1) asymptotic to 
(4/1T2 ) log N as N ---+00, so that the said ratio is in this case 1T2J(410g N) and 
can be made as small as we wish by choosing N sufficiently large. Moreover, 
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it has been shown (D. J. Newman [2]) that for each positive integer N there 
exists a trigonometric polynomial 

N 

f(x) = 2: elle1nz 

II~O 

such that lenl = 1 (n = 0, 1, ... , N) (and therefore II/II., = 1) and IIflll 
> Nl/2 - e, where e is a suitable absolute constant. 

Were this type of phenomenon absent, the theory of Fourier series would 
be much simpler and much less intriguing than it in fact is. 

2.3.3. (To.f)"'(n) = e-Ina/(n) for n E Z andf ELl. 

Proof. It is easy to verify that, if g(x) = f(x)e- 'n%, then 

T aU(x) = elno. • To.f(x) • e- In%. 

Integrating this relation and using translation-invariance of the integral, we 
obtain 

. 1 f 1 f f(n) = 217 g(x) dx = 217 T aU(x) dx 

= elno. • 2~ f To.f(x) • e- In % dx 

= elno. • (To.ft'(n) , 

which is equivalent to the stated result. 
Note: On being asked for a proof of 2.3.3, the reader's first reaction might 

be to apply the usual formula for change of variable in the integrals involved: 
this procedure is, of course, perfectly legitimate. But we prefer to phrase the 
device in terms of the characteristic in variance property of the integral 
(see 2.2.2). 

2.3.4. Suppose that f is absolutely continuous, and let Df denote any 
integrable function equal almost everywhere to the derivative of f. Then 

(Df)"(n) = in· /(n) for all n E Z. 

Proof. That the derivative off exists almost everywhere and is integrable 
follows from [W], Section 6.3, Exercises 15 and 16 on p. 111, and Theorem 
5.2g. The formula for partial integration ([W], Theorem 5.4a) then yields 

(Df)"(n) = ~ (211 Df(x). e- In% dx 
217 Jo 
1 1 1211 = - [f(x) • e-In%]~" + - f(x) • e- In% • in • dx 

217 217 0 

= /(n) • in, 

which completes the proof. 
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Remarks. All that is required ofDj is that the partial integration formula 

f" Dj' U • dx = - f" j • Du • dx 

shall hold for all periodic, indefinitely differentiable functions u. This means 
that the preceding interpretation of Dj for absolutely continuous functions f 
will accord with the generalized concept of derivation introduced in Chapter 
12. The reader is reminded, however, that the result is not generally true for 
functions j possessing almost everywhere an integrable derivative: it is in 
addition necessary that j be equal to the indefinite integral of this derivatwe, 
which is ensured by (and indeed equivalent to) absolute continuity. 

2.3.5. Suppose that I is absolutely continuous, and that its derivative Df 
is equal almost everywhere to an absolutely continuous function. Then 
j(n) = O(I/n2) as Inl-oo, so that the Fo~rier series of I is absolutely and 
uniformly convergent. 

Proof. The result expressed in 2.3.4 may now be applied to DI in place 
of I, showing that 

for n i= o. The desired majorization follows upon using 2.3.2. 
Remarks. (1) Much stronger results will be noted in Section 10.6. 
(2) On using 2.3.8 (which could quite well be established immediately 

following 2.3.4), the 0 appearing in 2.3.5 could be replaced by o. Notice that 
the hypotheses of 2.3.5 are amply fulfilled whenever I E C2. 

(3) The hypotheses of 2.3.5 ensure that the Fourier series of I is indeed 
convergent to I(x) at all points, though we are not in a position to prove this 
just yet; see 2.4.3. 

(4) In a similar way, 2.3.4 shows that (n) j = O(I/lnl) (and, with 2.3.8, that 
j(n) = o(l/Inl)) whenever I is absolutely continuous. The next result asserts 
that the former majorization is in fact true for any I of bounded variation. 

For a periodic function I we define the total variation V(f) to be the 
supremum of all sums 

m 

L I/(xk ) -/(Xk-lli 
k-l 

withrespecttoallsequences(xk)~aosuchthatxo < Xl < ... < xm ~ Xo +271. 
Then I is of bounded variation if and only if V(f) < 00 in which case we 
shall write IE BV; compare [W), p. 105; [HS), p. 266; and [AB), p. 256. 
Evidently, in taking the supremum above one may assume that the X k fall 
into any preassigned interval of length 21T. 

2.3.6. If I is of bounded variation, then 

. 1 
In'/(n) I ~ 271 V(f) for all n E Z. 
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Proof. Granted a knowledge of Riemann-Stieltjes integrals ([HSJ, 
Section 8; [ABJ, Chapter 8), one may write 

/(n) = L fn I(x) d [t~~:] 
for n :F 0, and apply partial integration for such integrals. Since we do not 
wish to make explicit use of properties of Riemann-Stieltjes integrals, we 
shall adopt a more pedestrian approach. 

Suppose first that I is continuous. Put, for n :F 0, Il(x) = rln:r/( -in). It is 
then easy to verify that, given e > 0, one has for n :F ° 

1 m 

I/(n) - -2 L I(x/c)[u(x/c) - ll(x/C-l)JI ~ e 
7T /c= 1 

for all sufficiently fine partitions ° = Xo < Xl < ... < Xm = 27T of the interval 
[0, 27TJ. Denoting by L: the sum appearing above, and applying partial 
summation, we obtain 

m-l 

L = [f(27T) - l(xl)JIl(O) - L [f(X/C+l) - l(x/c)JIl(x/c). 
/C=l 

By continuity (and periodicity) of I, the first summand on the right will not 
exceed e in absolute value, provided the partition is sufficiently fine. Thus 

1 m-l 

1/(n)1 ~ e + 2: + 27T /C~l II(x/C+l) - I(x/c) I • IIl(x/c) I 

( 1) 1 1 
~ 1 + 27T e + 27T • V(f) • Tni' 

since IIl(x)1 ~ l/Inl. Letting e ~ 0, we obtain 

1/(n)1 ~ V(f) 
27Tlnl 

for n :F 0, which is equivalent to the stated result. 
Suppose finally that I is merely of bounded variation. We shall obtain the 

desired result in this case by approximating! by a suitable sequence of 
continuous functions Ir of bounded variation. Perhaps the simplest choice is 

f:r+(1/') (lir 
I,(x) = r:r I(t) dt = r Jo I(x + t) dt. 

Whatever the increasing finite sequence (x/c) of points of [0, 27T], one has 

ill, 
L I!r(X/c) - Ir(x/C-l)1 ~ r L I!(x/c + t) - !(X/C-l + t)1 dt, 

/c 0 /c 

which, since the integrand never exceeds V(f), is majorized by V(f). Thus 
V(f,) ~ V(f) for all r. By what is already established, therefore, we have 

Ii, (n)1 ~ V(fr) ~ V(f) 
r 27Tl n l '" 27Tl n l 

(2.3.2) 

for n :F 0 and all r. 
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Beside this, a simple computation shows that 

J,A ( ) (in) fA( ) sin (n/2r) n = exp - . n' 
r 2r n/2r 

so that 

lim Ilr(n)! = Il(n)!. 
r-oo 

Combining this with (2.3.2), we are led to 

A V(f) 
If(n)1 ~ 21Tlnl 

for n #- 0, and the proof is complete. 
Remarks. (1) The converse of 2.3.6 is false: there exist continuous 

functions f for which len) = o(I/lnj) as Inl- 00 and yet f ¢ BV. 
(2) The estimate in 2.3.6, namely, thatl(n) = O(I/In!) as Inl-oo, cannot 

be improved, even if it be assumed that I is continuous as well as being of 
bounded variation. In other words, there exist continuous functions f of 
bounded variation such that len) #- o(I/ln!) as Inl-oo. For a proof, see 
[Ba1], pp. 210-211; or Exercise 12.44. In view of 2.3.4 and 2.3.8, any such 
function I fails to be absolutely continuous. 

Incidentally, it is known (after Wiener) that a function I of bounded 
variation is continuous if and only if 

l", A 

lim N ~ Inf(n)! = 0; 
N_oo I"I"N 

see Exercise 8.13. 
(3) At the expense of replacing the factor (21T) -1 by 1 in 2.3.6,. there is a 

very neat proof due to Taibleson [1]. Thus, if n E Z and n #- 0, write ak = 
2k1T1 nl- 1 for k E {O, 1,2, .. " Inl}. Denote by g the step function which is 
equal to I(ak) on (ak- 1 , ak) for k E {l, ... , In!}. Then, since 

it follows that 

i 2l1(k+llll1l- 1 

e-I":t dx = 0, 
2kl1l"l-l 

21Tll(n)I = I f" (I(x) - g(x» e-I":t dx I 
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where V" is the total variation off on the interval [ak _ 1> akJ. Since V 1 + ... 
+ V" ~ V(f) and a" - ak-l = 27Tlnl-1, 

27Tlj(nli ~ V(f).27Tl nl- 1 

and hence 

Inj(nli ~ V(f). 

See also M. and S.·I. Izumi [1]. 

2.3.7. Define the mean modulus of continuity of f with exponent (or index) 
1 by 

Then, if fELl, 

. 1 (TT) If(n)1 ~ 2 wd n (n E Z, n ¥- 0). 

Proof. By definition 

. 1 I f(n) = 2TT f(x)e-1,,;r dx, 

and by 2.3.3 

Subtracting and dividing by two, we obtain 

j(n) = %(f - T -nlnf)"'(n) , 

whence the result follows on applying 2.3.2. 

2.3.8. (Riemann-Lebesgue lemma) For any integrable f one has 

lim j(n) = O. 
1"1_ 00 

Proof. This follows immediately from 2.3.7 and the fact ([W], Theorem 
4.3c) that wd(a) -+ 0 as a -+ O. 

Remarks. (1) The Riemann-Lebesgue lemma is so fundamental that it 
is worth pointing out another method of proof (which indeed lies behind the 
proof of Williamson's Theorem 4.3c just cited and used). Suppose we denote 
by E the set of integrable functions f for which the statement of the lemma 
holds. Then 2.3.2 shows that E is a closed subset ofLl (relative to the topology 
defined by the norm II • Ill)' It is otherwise evident that E is a linear subspace 
of Ll. To prove the lemma it therefor~ suffices to show that E contains a. 
set of functions, say S, the finite linear combinations of which are dense in U. 
There are many such sets S which may be indicated. Examples are: (i) the 
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set of characteristic functions of intervals [a, b] (0 < a < b < 271"), extended 
by periodicity. The finite linear combinations of these are dense in Ll (as is 
shown in [W], Theorem 4.3a); and each such function is directly verifiable 
to have a Fourier transform satisfying the lemma (assurance on this point 
also comes from 2.3.6). (ii) the set C"'; see [W], Theorem 4.3b and 2.3.4. 

(2) It is worth pointing out that 2.3.4 to 2.3.8 are all essentially concerned 
with restrictions on the rate of decay ofi(n) as Inl ~OO. The indications are 
clearly that the smoother the function j, the more rapid this decay. This 
conclusion will receive further reinforcement as we progress; some extreme 
instances are covered by Exercises 2.7 and 2.8. 

2.3.9. Introduction of A(Z). The preceding results and remarks might raise 
hopes that the membership ofjto various function spaces (such as C or V' for 
various values of p) might be decidable solely by inspection of the rate of 
decay ofi, or at any rate by examining Iii. However, while there are many 
criteria of this sort that are either sufficient or necessary, with the sole 
exception of the case of L2 (dealt with in Chapter 8), there are no known 
necessary and sufficient conditions of this type. Moreover, it will appear in 
Chapters 12 and 14 that there definitely cannot be any such complete 
characterization involving only the values of I il. The few necessary and 
sufficient conditions that are known are of a much more complicated sort 
and are unfortunately extremely difficult to apply in specific instances; see 
2.3.10. Much remains to be discovered in this direction. 

To make things more specific, let us consider Ll itself. If we denote by 
co( Z) the linear space of complex-valued functions (two-way infinite sequences) 
<fo on Z for which lim,n, ... ",<fo(n) = 0 and equip it with the norm 

11<fo11", = sup {I<fo(n)1 : n E Z} (2.3.3) 

(see 2.2.5), we have learned so far that j ~ i is a continuous linear mapping 
of Ll into co(Z). Denote by A(Z) the range of this mapping. The question 
is: Given in advance a <fo E co(Z), how ca'n one determine whether or not 
<fo E A(Z)? No effective and general method is known for doing this. 

Although we know that i tends to zero at infinity for each JELl, the rate 
of decay can be arbitrarily slow. For example, given any <fo E co(Z), one may 
choose positive integers Nl < N2 < ... so that 

for 
Then 

00 

j(x) = 2: 2<fo(Nk) cos Nkx 
k=l 

is a continuous function for which 
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for n = ±N" (k = 1,2,·· .). Furthermore we shall see in Section 7.4 that 
(again for any assigned q, E co(Z» a function IE Ll can be chosen so 
that 

l(n) ~ Iq,(n)l 
for all n E Z. 

Again, although the sequence q, defined by 

for Inl ~ 2 

otherwise 

belongs to A(Z), the sequence q,l defined by 

for Inl ~ 2 

otherwise 

has not this property (see Exercise 7.7 and 10.1.6). This shows that an orderly, 
and therefore seemingly harmless, change of sign can destroy membership 
of A(Z). 

This (or any other similar) example shows incidentally that A(Z) is a 
proper subset of co(Z); it also shows that 1<p1 may belong to A(Z) while <p fails 
to do so. There is an entirely different, and tYPically modern, approach to 
the proper inclusion relation A( Z) ~ co( Z) which shows a little more, 
namely, that A(Z) is in fact a meager (that is, first category; see Appendix 
A.l) subset of co(Z). 

To see this, we must observe that Ll and co(Z) are Banach spaces when 
endowed with the norms defined in (2.2.13) and (2.3.3), respectively, and 
that T: 1-1 is a continuous linear operator mapping Ll into co(Z) whose 
range is A(Z) (see 2.3.1 and 2.3.2). If, contrary to our assertion, A(Z) were 
nonmeager in co(Z), the open mapping theorem (Appendix B.3.2) would 
entail that T is an open map of Ll onto co(Z). Assuming for the moment the 
uniqueness theorem (2.4.1), this would imply the existence of a number 
B > 0 such that 

11/111 ~ B' 11111.., (2.3.4) 

for eachl ELl. However, (2.3.4) can be negatived, the resulting contradiction 
thus establishing our assertion. For example, if I = D N , as in Exercise 1.1, a 
direct computation, which will be carried out in detail in 5.1.1, shows that 

11/111 == IIDNlll "" 42 log N 
.". 

for large N. Since in this case 11111.., = 1, it is plain that a contradiction of 
(2.3.4) results whenever N is sufficiently large. 
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At this point see also Exercise 9.8. 
In addition to the linear space structure of co(Z), one may consider its 

structure as an algebra under pointwise operations. It is then natural to ask 
whether A(Z) is a subalgebra (as well as a linear subspace) of co(Z). This 
leads us to seek a way of combining integrable functions-a sort of multiplica
tion-which corresponds to pointwise multiplication of their Fourier trans
forms. We shall consider this question and its ramifications in Chapter 3, 
returning in Chapter 4 to the consideration of A(Z) and the Fourier trans
formation in this enriched setting. Further results will appear in 11.4.13 and 
11.4.16. 

2.3.10. Criteria for Membership of A(Z). Simply as a matter of interest 
(for we shall make no subsequent use of these results), we sample a few of the 
known criteria for a given sequence 4> = (4)n)nez to be the sequence of Fourier 
coefficients of a function belonging to certain prescribed function spaces. 
Further results of this sort will appear in Section 8.7, 10.6.3(1), and (2), 
12.7.5, 12.7.6, 12.7.9(2), and Exercise 12.50. If the reader will ponder these 
conditions, he will soon be convinced of the difficulty of applying them in 
specific instances. 

(1) In order that rP shall belong to A(Z), it is necessary and sufficient that, 
having chosen any p satisfying 0 < p < 00, one has 

lim 2: 4>nUT(n) = 0 
r-+oo nez 

for any sequence (u T );"., 1 of trigonometric polynomials satisfying 

lim IluTllp = o. 
T- '" 

An equivalent condition is that to each e > 0 shall correspond a number 
k(e) ;;il: 0 such that 

I 2: rPnu(n)1 ~ e' Iluil", + k(e)' [Iullp (2.3.5) 
nez 

for all trigonometric polynomials u; see R. E. Edwards [1] and Ryan [1]. 
The case p = 2 of this result is due to Sall'm; sec [Bad, pp; 239-240. 
(2) In order that 4> shall be the sequence of Fourier coefficients of a con

tinuous function, it is necessary and sufficient that to each e > 0 shall corre
spond a number k(e) ;;il: 0 and a finite subset F. of Z such that 

I L rPnu(n) I ~ e' Ilulll + k(e)' sup lu(n)1 (2.3.6) 
nez neF£ 

for all trigonometric polynomials u; see R. E. Edwards [1]. 
(3) It will appear in 13.5.1 that, if rP = j for some f E LP, where 1 < P ~ 2, 

then 4> E t P', that is, 

(2.3.7) 
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p' being defined by lip + lip' = 1. It is known (Rooney [1]) that if cfo satisfies 
(2.3.7), then it is the sequence of Fourier coefficients of some function in 
V(l < p E> 2) if and only if 

• 
suP. (v + l)P-1 2: IM •. m(4)W < 00, 

maO 
(2.3.8) 

the supremum being taken as 1/ ranges over all nonnegative integers, where 

and 

a = C i1 tm(l- t)·-m en1nl dt n,Y.m Y m 
o 

for nEZ, II E Z, m E Z, v ;l!: 0, and 0 E> m E> v. 
(4) A further sufficient condition for membership of A(Z) will be discussed 

at some length in Section 8.7. 
(5) The behavior of A(Z) wider permutations of Z is discussed by Kahane 

[4]. 

2.4 The Uniqueness Theorem and the Density of Trigonometric 
Polynomials 

In this section we shall establish the uniqueness theorem, which asserts 
that a function is determined almost everywhere by its Fourier transform, 
and certain consequences thereof concerning approximation by trigonometric 
polynomials. 

2.4.1. {I} HfE e and/ = 0, thenf = O. 
{2} HfE Ll and/ = 0, thenf = 0 a.e. 
Proof. Statement (I) is, of course, a special case of (2). We shall prove it 

first and deduce statement (2) from it. 
By 2.3.1, we may in all cases assume that f is real· valued. Moreover, since 

/ = 0 entails (Taf}"" = 0 for all a {by 2.3.3}, it will suffice to show that if 
fEe and 

then 

~fftdX=O 271. 
for all trigonometric polynomials t, (2.4.1) 

f(O) = O. (2.4.2) 

We will in fact show that the negation of {2.4.2} implies the negation of(2.4.1}. 
H (2.4.2) is false, we may (by changing f into - f if necessary) assume that 

f(O} = c > 0 and then choose 8 > 0 so that 

f(x} ~ Yzc for Ixl ~ 8 (2.4.3) 
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To construct a trigonometric polynomial t violating (2.4.1), write 

to(x) = 1 + cos x - cos 8 

and then t = toN, where the large positive integer N will be chosen later. It 
is plain that t is indeed a trigonometric polynomial. It is also clear that 

It(x)1 ~ 1 for 8 ~ Ixl ~ 17, t(x) ~ 0 

t(x) ~ qN for Ixl ~ %8, 
(2.4.4) 

where q = 1 + cos %8 - cos 8 > 1. By (2.4.3) and (2.4.4) we have 

21 fit dx ~ 21 r It dx - 21 11/11«> (217 - 28) 
17 17 J Ixl-' 6 17 

~ 12Yzc r t dx - 11111«> 
17 Jlxl-.6 

~ 4c r t dx - 11/11«> 
17 Jlxl-. %6 
C 

~ 4TT. 8· qN - 11/11«>, 

which is positive provided we choose Nlarger than log (417 11/11",/c8)/log q, thus 
negating (2.4.1). This proves statement (1). 

Now assume that I is as in statement (2). Define 

F(x) = c + LX I(y) dy, 

where the number c is chosen so as to make .1'(0) vanish. Since 1(0) = 0, F is 
periodic. Now F is absolutely continuous and DF = I a.e. ([W], Theorem 
5.2g). By 2.3.4, the choice of c, and the main hypothesis on I, it follows that 
.1' = O. Thus statement (1) shows that F = 0, and so 1= 0 a.e., as alleged. 

Remark. The uniqueness theorem for trigonometric polynomialB is a 
direct consequence of the orthogonality relations (1.1.3) and is covered by 
Exercise 1.7 (1). 

We proceed to deduce from 2.4.1 two rather special and purely provisional 
results concerning the recapture of a function from its Fourier series; more 
satisfactory results of this nature will appear in Chapters 6 and 10. As was 
pointed out in 2.2.1, these results concern harmonic synthesis on the circle 
group. 

2.4.2. If IE Ll has a Fourier series that is dominatedly convergent almost 
everywhere, then 

I(x) = L: j(n)e1nX a.e. 
neZ 

Proof. Let g be defined almost everywhere to be the sum of the Fourier 
series of I wherever the latter converges, and to be, say, 0 elsewhere. By 
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dominated convergence, g ELl. By the same token, one has for any m E Z, 

. If "". If g(m) = - g(x)e- lmx dx = L. f(n)· - e1nx • e- lmx dx 
217 n"Z 217 

=j(m), 

the last step by the orthogonality relations. By the uniqueness theorem 
(2.4.1), f = g a.e. 

2.4.3. If f is a continuous function with a uniformly convergent Fourier 
series, then 

f(x) = 2: j(n)e1n% 

n"Z 
everywhere. 

Proof. Using the notation of the proof of 2.4.2, the sum function g is 
now everywhere defined and is continuous thanks to uniform convergence of 
the series. Also, since the range of integration involved is a bounded interval, 
uniform convergence entails dominated convergence. So 2.4.2 entails that f 
and g agree almost everywhere. But, since both are continuous, this in tum 
implies agreement everywhere. 

A further and very important deduction from 2.4.1 is the following density 
theorem; it too will be refined later. 

2.4.4. The set T of all trigonometric polynomials is everywhere dense in 
each ofthe Banach spaces C, V' (1 ::;; p < (0), that is, givenf E C (respectively 
f E LP) and e > 0, there exists t E T such that 

IIf - til"" ::;; e (respectively Ilf - tll p ::;; e). (2.4.5) 

Proof. (1) First take the case of C. Given e > 0, first choose g E C2 such 
that 

Ilf - gil"" ::;; Y2e. (2.4.6) 

This may be done by choosing a sufficiently small positive a and setting 

gl(X) = a- 1 r+ 1l f(y) dy, 

By 2.3.5 and 2.4.3, 

(%+11 
g(x)=a-1J% gl(y)dy. 

the series being convergent in C (that is, uniformly convergent). One may 
therefore choose N so large that 

IIg - 2: g(n)enll", ::;; Y2e. (2.4.7) 
Inl .. N 
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Then (2.4.6) and (2.4.7) combine to yield (2.4.5) with 

t = L g(n)e". 
l"I<iN 

(2) This case follows from (I), the fact that C is everywhere dense in V' 
(compare [W], Theorem 4.4e), and the inequality Ilk II" ~ Ilkllco. Thus, given 
! E V' and e > 0, first choose gEe so that II! - gil" ~ Y2e, and then [by (I)] a 
t E T so that Ilg - tll co ~ Y2e. Then, a fortiori, Ilg - til" ~ Y2e and so 

Remarks. (I) The assertion in 2.4.4 is false for p = 00. (Why?) 
(2) It is possible to deduce 2.4.4 from 2.4.1 via the Hahn-Banach theorem 

(see Appendix B.5) and results about the topological duals of the spaces C 
and L" given in Chapter 12 and Appendix C, respectively. One of the con
sequences of the Hahn-Banach theorem is, in fact, that uniqueness theorems 
and density theorems consort in "dual pairs," so to speak. 

(3) When combined with 2.3.2, 2.4.4 leads to an independent proof of 
2.3.8; see Exercise 2.9. 

(4) Assuming that part of 2.4.4 which refers to the space C, one can derive 
2.4.1; see Exercise 2.10. Thus, 2.4.1 and 2.4.4 are equivalent, a fact which 
illustrates the substance of Remark (2) immediately above. 

(5) Other proofs of2.4.1 and 2.4.4 will appear in 5.1.2 and6.I.I, where more 
refined versions of 2.4.4 are considered; see also Section 6.2, where some 
applications are mentioned. 

2.5 Remarks on the Dual Problems 

2.5.1. Definition of the Fourier Transform. If we are given a function 
<pon Z, it is naturalto attempt to define its Fourier transform ~ as the function 
on T given by 

(2.5.1) 

in comparing this with (2.3.1), the reader will observe a change from e- inx to 
ei"x, which is made purely on the grounds of subsequent convenience. 
Although (2.5.1) makes excellent sense whenever <p E (l(Z), in which case ~ is 
evidently a continuous function on T satisfying 

(2.5.2) 

(compare 2.3.2), it is plain that complications arise if, for example, <p is 
known merely to belong to t"( Z) for some p > 1. (In the case of the group T 
no analogous complications appeared, because of the compactness of T.) 
One has in fact to contemplate conditional convergence and summability, 
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perhaps merely for almost all x, as was heralded by the remarks at the end of 
2.2.2 concerning the interpretation of the invariant integral on Z. 

As a matter of fact, and as will appear in the course of Chapters 8, 12, and 
13, it is often more effective to replace considerations of pointwise convergence 
(everywhere or almost everywhere) of the series on the right of (2.5.1) by 
that of convergence, either in one of the spaces Lq or distributionally, of the 
symmetric partial sums 

~N(X) == L .p(n)e1n%. 

Inl"N 

On the other hand, for functions .p which are structurally special, the results 
of Chapter 7 yield pointwise convergence (at least almost everywhere) of the 
series defining ~, although even here there is no assurance that the function ~ 
so defined almost everywhere will belong to Ll. Further very special results 
of this sort, applying to cases in which .p is known to be of the form J for 
some fELl, are contained in Chapters 5, 6, and 10. 

2.5.2. The Uniqueness Theorem. Related difficulties arise in connection 
with the appropriate uniqueness theorem, at least if pointwise convergence or 
summabiIity is envisaged and unless severe a priori restrictions are imposed 
upon .p. [For instance, there are no difficulties if we assume that the series 
on the right of (2.5.1) is dominatedly convergent almost everywhere; but 
this can only be the case if.p belongs to A(Z), a criterion extremely difficult 
to verify at the outset.] If convergence is meant in the distributional sense, 
the uniqueness theorem presents no difficulties and is implicit in results to 
be obtained in Chapter 12. Dogged insistence on the pointwise interpretation 
of convergence leads right to the heart of the Riemann-inspired theory of 
general trigonometric series, including a number of problems (such as those 
concerning the characterization of the so· called sets of multiplicity and sets of 
uniqueness) of great difficulty and whose delicacy is such that they "fall 
through the mesh" imposed by requirements of distributional convergence or 
convergence in some space Lq. Two relatively very simple results concerning 
pointwise convergence appear in Exercises 2.13 and 2.14. 

2.5.3. The Space A. Dual to A(Z) is A = A(T): this is the linear space of 
functions on T of the form ~ obtained when .p ranges over {l(Z). Equiva
lently, A consists precisely of those continuous functions f on T such that 
J E {l. As in the case of A(Z), so with A: there is no complete solution to the 
problem of characterizing directly in terms of their functional values the 
elements of A. We shall return to the consideration of A in Sections 10.6 and 
12.11, where partial results will be obtained and used. 
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2.5.4. The Dual of 2.4.4: Almost Periodicity. In view of the closing 
remarks in 2.2.1 and Exercise 2.3, it is natural to attach the label trigonometric 
polynomial on Z to each function on Z which is a finite linear combination of 
characters ea : n ~ elan of Z, the parameter a ranging over T (or, equivalently, 
over R). 

This being so, the dual of 2.4.4 is concerned with the characterization of 
those complex· valued functions on Z that are uniform limits of trigonometric 
polynomials on Z. The investigation of this problem cannot be undertaken 
here. The functions which are approximable in the stated fashion are precisely 
the so·called almost periodic functions on Z. 

Almost periodicity is a concept applying to functions on arbitrary groups 
and has behind it a vast literature. For the case of the group R, see [Bes]; for 
more general groups, see [Mk]; [HR], Section 18; [We], Chapitre VII; [Lo], 
Chapter VIII. 

On a compact group, such as T, all continuous functions are almost periodic; 
this fact explains the form taken by 2.4.4. 

On the noncompact group Z, the only member of co(Z) that is almost periodic 
is the zero element. 

EXERCISES 

2.1. Let S be a closed subgroup of R distinct from {OJ and R. Show that 
there exists a number d > 0 such that S consists precisely of all integer 
multiples of d. 

Hint: Consider the infimum of all positive members of S. 
2.2. Let x be a real number such that X/7T is irrational. Show that the set 

{elnz : n E Z} is everywhere dense in the unit circumference in the complex 
plane. 

Remarks. A stronger result will appear in Exercise 2.15. The stated result is 
a special case of Kronecker's theorem, for which see [HW], 'Chapter XXIII, 
especially p. 370. There is a general group·theoretic formulation of this theorem 
which is discussed in [HR], pp. 431-432, 435-436, and which asserts in particular 
that any character X of R/21TZ, continuous or not, can be approximated 
arbitrarily closely on any preassigned finite subset of R/21TZ by a suitably 
chosen continuous character en' 

Hint: Show tha.t el .,,: =1= elu if m, n E Z and m =1= n. Deduce that the said 
set has I as a limiting point. 

2.3. Let, be a bounded character of the group Z. Show that there exists 

exactly one x E T such that {{n) = elnz == {z{n) for all n E Z. 
Assume that Z is endowed with its discrete topology; verify that the dual 

topology on T (when it is regarded as the dual of Z) is identical with its initial 
topology (as defined in 2.1.1). 
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2.4. Determine the continuous linear functionals I on C = C( T) which are 
"relatively invariant" in t,he sense that there exists a function il on T such 
that 

I(Taf) = il(a)"I(f) 

for all a E T and aIl/E C. 
Hint: Show first that, if I '# 0, then il(a) = elY,,· for some n E Z. Then 

consider the functional J defined by J(f) = I(Ln "I). 
2.5. Consider the finite group Z'" = ZjmZ, where m is a positive integer, 

taken with the discrete topology. What are the invariant integrals on Z",? 
What are the characters of Z",? Discuss the Fourier theory for this group. 

2.6. Let t be a continuous homomorphism of R/2TTZ onto itself. Show that 
there exists k E Z such that t maps the coset x + 2TTZ into the coset kx + 2TTZ. 

Hint: Consider the character of T which carries x + 2TTZ into efn %, 

so getting a homomorphism s of Z into itself for which e1nl(%+211Z) = els(n)(%+211Z). 

Then examine s. 
2.7. Suppose that I ELl. Show that 

j(n) = O(e-Blnl) 

for some B > 0 if and only if I is equal almost everywhere to a function which 
is analytic in a horizontal strip 11m zl < 8 for some 8 > O. 

Hint: For the "if" part, apply Cauchy's theorem for a suitable rectangle 
to the integral defining j(n). 

2.8. Suppose I E Coo and pt.~ 

(k = 1,2, ... ). 

Show that for n '# 0 

Show also that if 

Mk ~ const Rkr(ak + 1) (k = 1,2,· .. ) 

for some R > 0, a > 0, then 

Ij(n)1 ~ const In11/2a" exp [ _ ('~I) 1/a] 

and that if (2) holds, then 

Mk ~ const Rlcr(ak + 1)(1 + ka - 1/2) 

(n E Z, n '# 0); 

(k = 1,2,· .. ). 

(1) 

(2) 

(3) 

Hint: Make use of Stirling's formula describing the behavior of r(z) for 
large positive values of z. 

Remarks. Functions f for which an inequality of the type (1) holds 
(the constant possibly depending uponj) form the simplest types of what are 
termed q'Ua8i·analytic cla8se8 of functions; the case a = 1 corresponds to the 
analytic functions. The relationships between such classes and those defined by 
means of inequalities involving the Fourier coefficients-like (2). for example---
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have been studied in great detail. See, for example, [M], especially pp. 78-79, 
138-139. 

2.9. Give a proof of 2.3.8 based solely on 2.4.4 and 2.3.2. 
2.10. Derive 2.4.1 directly from that part of 2.4.4 which refers to the 

space C. 
2.11. Deduce from 2.4.1 the following uniqueness theorem: If! is defined 

and integrable over (-7T, 7T), and if 

f" !{X)XN dx = 0 (N = 0, 1, 2, ... ), 

then! = 0 a.e. on (-7T, 7T). 

Note: On the basis of the Hahn·Banach theorem (see Appendix B.5), this 
assertion implies results about approximation by ordinary polynomials akin to 
Weierstrass' theorem (see 6.2.2). 

2.12. Show that if! is defined and integrable over ( -7T, 7T), and if 

f" !{x)e1aNo: dx = 0 (N = 1,2,· .. ), 

where (aN)N'=l is a sequence of complex numbers having at least one (finite) 
limiting point, then! = 0 a.e. on (-7T, 7T). 

Hint: We may assume without loss of generality that aN =F 0, aN -r O. 
Consider J~,,!{x)eIZX dx as a function of the complex variable z. 

2.13. (Lusin.Denjoy theorem) Write the trigonometric series Lne z cne1no: 

in its real form Y2ao + L:~l (an cos nx + bn sin nx), and suppose that 
~ ~ 

L Icneinx + c_ne-inxi == laol + L Ian cos nx + bn sin nxl 
n=O n=l 

converges for x E E, where E is measurable and the Lebesgue measure m{E) 
of E is positive. Prove that 

that is, that 
~ 

2: (Ianl + IbnD < ex). 
nal 

Hints: Assume without loss of generality that the an and bn are rea1-
valued and put an = Tn cos 8n, bn = Tn sin 8n, where r n ~ 0 and 8n is real. 
Use Egorov's theorem to justify termwise integration of the series 

~ 

2: Tn ICOS (nx - 8n)1 
n=l 

over some set Eo with m{Eo) > 0, and observe that 

f Icos {nx - 8n )1 dx ~ f cos2 (nx - 8n) dx 
JEo JEo 

= Y2m{Eo) + o{l). 
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Note: For a simple generalization of this result, see [KS], p. 84, TMoreme II. 
The Lusin-Denjoy theorem has prompted numerous more elaborate investiga
tions of the absolute convergence of trigonometric series: see [Zl], Chapter VI; 
[Ba:!], Chapter IX; [KS], Chapitre VII. 

2.14. (Cantor-Lebesgue theorem) As indicated at the end of 2.2.2, a 
trigonometric series L:"e z e"e'"'' is said to converge for a particular value of x 
if and only if 

exists finitely for that value of x. Show that if this is true for each point x 
belonging to a measurable set E having positive Lebesgue measure, then 

liml"I_'" e" = O. 
Hints: As in the hints for the preceding exercise, reduce the problem to 

the case in which L:r" cos (nx - 8,,) is uniformly convergent for x E Eo, where 
m(Eo) > O. Were the assertion to be false, there would exist integers 
n l < n2 < . . . so that 

cos (n,.x - 8"k) - 0 

uniformly for x E Eo. Consider the integrals 

f cos2 (n,.x - 8"k) dx. JEo 
Notea: Cantor considered the case in which E is a nondegenerate interval. 
Steinhaus produced examples of series L neZ Cn elnx for which Cn ~ 0 and yet 

the series diverges everywhere. One such example is 
00 L (logn)-l.cosn(x -loglogn); 

.. -3 

see [Bal]' p. 176. 

2.15. (Equidistributed sequences) Let Xo be real and such that xO/fT is 
irrational. Suppose g is a periodic function with the property that to ea.ch 
e > 0 correspond continuous periodic functions'll. and v such that 'II. ~ g ~ v 
and 

2~ f (v - '11.) dx < e. 

Show that 
N 

lim N-1 L g(nxo) = g(O). 
N ... ca ,,-1 

(I) 

Deduce that if I is a subinterval of [0, 2fT), then N-l times the number of 
points xo, 2xo, ... , Nxo which belong modulo 2fT to I converges, as N _ 00, 

to (2fT) -1 times the length of I, that is, that the points nxo (n = I, 2, ... ) 
are equidistributed modulo 2fT. Observe that this result implies that of 
Exercise 2.2. See also [Ba2], p. 473. 

Hints: First prove (I) for continuous periodic g by using 2.4.4. 
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Note8: The idea of equidistributed sequences is due to Wey!. Several results 
will be found in [PS], Band I, pp. 70-74. 

For extensions to general groups, see [HR], pp. 432, 437-438 and Rubel [1]. 

2.16. (Fejer's lemma) Suppose that 1 ~ P ~ 00, that IEV', and that 
g E V", where lip + lip' = 1. Prove that 

2Irr f I(x)g(nx) dx -* !(O)g(O) 

for n E Z and.lnl-*oo. 
Hints: Assume first that p > 1 and use 2.4.4 to approximate g in Lp' by 

trigonometric polynomials; then use 2.3.8. If p = 1, so that p' = 00, approxi
mate I in L1 by continuous functions. 

Note: The result actually remains true if the restriction n E Z is replaced 
by n E R. 

2.17. Let (e);:'z1 be any sequence of positive numbers converging to zero. 
By extracting a suitable subsequence (E nk ) and considering the series 

co 

2: Enk exp (in "x) , 
k=1 

show that there exist continuous functions I such that 

lim sup wd(rr/n) > O. 
n- co en 

Hint: Use 2.3.7. 
2.18. Prove that any nonnegative continuous function I is the uniform 

limit of functions Ig12, where g denotes a trigonometric polynomial. 
Formulate and prove an analogous result for functions I in LP (1 ~ P < (0). 
Hint: See Exercise l.ll. 
2.19. Prove that, for any finite set FeZ and any e > 0, a trigonometric 

polynomial I exists such that 

o ~ !(n) ~ 1 for all n E Z, !(n) = 1 for all n E F, 

111111 ~ 1 + e. 

For which sets F does the result remain true when e = 01 
Hints: Suppose r is a positive integer such that F c [-r, r] and choose a 

large positive integer N. Consider 

I(x) = [(2N + 1)-1 L e1nx]. [ L e1nx] 
Inl .. N Inl"N+r 

= u(x) • v(x) 

and use Exercise 1.7(1) and the Cauchy. Schwarz inequality. 
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Convolutions of Functions 

3.1 Definition and First Properties of Convolution 

At the end of 2.3.9 we posed the problem of finding a binary o]?eration on 
integrable functions that would correspond to pointwise multiplication of 
their Fourier transforms. To attempt directness by trying to define the result, 
say I * g, of applying this operation to functions I, g E Ll by requiring that 
(f * gt' = j. g is not very effective, because we do not know how to charac
terize A(Z) in such a way that it is clear that it is closed under pointwise 
multiplication. A more useful clue is provided by the orthogonality relations 
combined with the special properties of characters. 

Suppose that we write en for the function x --+ etnx (n E Z). For m and n in 
Z, the orthogonality relations (1.1.3) show that 

1 f {en(X) 21'1' em(x - y)en(y) dy = 0 
ifm = n 
otherwise. 

Accordingly, if we define 1* g by 

1* g(x) = 211'1' f I(x - y)g(y) dy, (3.1.1) 

then it appears that em * en has as its Fourier transform the pointwise product 
of the Fourier transforms em and ~n' Since each of 1* g and J. g is evidently 
bilinear in the pair (j, g), the desired relation will obtain for functions I and g 
which are trigonometric polynomials, that is, finite linear combinations of 
the en' It thus appears that (3.1.1) constitutes a hopeful starting point. We 
proceed to the details forthwith. 

Suppose that I and· g belong to Ll. Then the Fubini· Tonelli theorem is 
applicable (see [W], Theorems 4.2b, 4.2c, .and 4.2d; [HS], pp. 384-386, 396; 
[AB], pp. 154-155) and shows that the integrand appearing on the right of 
(3.1.1) is, for almost all x, an integrable function of y, so that (3.1.1) effectively 
defines 1* g(x) for almost all x; moreover the function so defined almost 
everywhere is measurable and 

(3.1.2) 
In particular, I * g ELI. 

50 
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From these arguments it also appears that 

If * g(x)i ~ If I * Igi (x) a.e. (3.1.3) 

As a consequence of invariance of the integral it appears that at any point 
x for which f * g(x) exists, g * f(x) exists and has the same value. Thus 

(3.1.4) 

Let us now compute the Fourier coefficients of f * g, using en route the 
Fubini-Tonelli theorem and the relation e - in;r = e - in(;r - II) • e - inll: 

(J * g)"'(n) = 2~ I f * g(x)e-1n;r dx 

= 2~ I e- 1nz {211T I f(X - y)g(y) dY} dx 

= (2~r II e-1n;r f(x - y)g(y) d(x, y) 

= (2~ r I {I f(x - y)e- 1n(Z-1I) g(y)e- 1nll dX} dy 

by two appeals to the Fubini-Tonelli theorem 

= !1T I g(y)e- 1nll {2~ I f(x - y)e- 1n(Z-II) dX} dy 

I I . = 21T g(y)e- 1nll {f(n)} dy 

by translation invariance of the inner integral 

= j(n)g(n). 

Thus we have the desired relationship: 

(J * g)"'(n) = j(n) • g(n) for all n E Z. (3.1.5) 

Convolution is associative, that is, (J * g) * h = f * (g * h) for f, g, hELl. A 
direct verification is possible, using the Fubini-Tonelli theorem. Alt.ernatively, 
one may appeal to (3.1.5), to the uniqueness theorem of 2.4.1, and to the 
evident associativity of pointwise multiplication of the transformsj, g, and Ii. 

Remarks. The definition and the above properties of convolution may 
be formulated and established in another way, thereby making appeal to no 
more than the most primitive form of the Fubini theorem applying to 
continuous integrands (which somebody aptly christened "Fubinito"). 

One begins by defining f * g for f, gEe by (3.1.1). Fubinito then yields 
(3.1.2) to (3.1.5) for such! and g. It is furthermore evident that (J, g) ~ f * g 
is bilinear from C x C into CeLl. 

The inequality (3.1.2), which expresses the continuity of the bilinear map 
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(J, g) ~ 1* g from C x C (with the topology induced by that on V x Ll) 
into V, ensures that this mapping can be uniquely extended continuously 
into a bilinear mapping from Ll x Ll into Ll. Specifically, if I, g E Ll, 1* g 
will be the Ll-limit of (Jt * gil, where (Jt) and (gt) are sequences extracted 
from C and converging tol and g in Ll, respectively. [The inequality (3.1.2) 
ensures that (Jt * gil is Cauchy, and therefore convergent, in Ll; and that the 
limit does not depend on the chosen sequences but only on I and g.] This 
mode of extension ensures that (3.1.2), (3.1.4), and (3.1.5) continue to hold, 
the last by virtue of 2.3.2. 

It remains to verify that (3.1.1) holds almost everywhere for general I and 
g in Ll. Since both sides of this inequality are bilinear in (J, g), and since (as 
the reader should pause to prove) any real-valued hELl is equal a.e. to the 
difference of two nonnegative integrable functions hl and h2' each equal to 
the limit of a monotone increasing sequence of nonnegative continuous 
functions, it may and will be assumed that sequences (Jt) and (gt) may be 
chosen from C so that ° ~ II t I a.e. and ° ~ gt t g a.e. Then the monotone 
convergence theorem shows that 

II * gi(X) t 21rr f I(x - y)g(y) dy. 

Since (Ji * gil converges in Ll to 1* g, it follows that (3.1.1) holds for almost 
all x. This shows in particular that y -+ f(x - y)g(y) is integrable for almost 
all x whenever I and g are nonnegative functions in Ll. If I and g are replaced 
by If I and Igl, it is seen that the same is true whenever f and g belong to Ll. 
Once (3.1.1) is established for general I, g E Ll, (3.1.3) results immediately. 

[The reader should note that it is not the case that every nonnegative 
integrable function h is equal a.e. to the limit of an t sequence (hn) of 
continuous nonnegative functions. As a counterexample, take h to be defined 
on [0, 2rr] as the characteristic function of the complement, relative to [0, 2rr], 
of a closed, nowhere dense set K £; [0, 2rr] having positive measure.] 

Similar techniques are applicable in connection with 3.1.4 to 3.1.6. 
At this point it is convenient to summarize what little we do know so far 

about convolution and to mention a few questions that arise, which will 
guide some of the subsequent developments. 

3.1.1. Some Problems. The convolution I * g of two functions I and g 
chosen from Ll being defined by (3.1.1), the mapping (J, g) ~ 1* g is an 
associative and commutative bilinear mapping of Ll x Ll into Ll; this 
mapping is continuous by virtue of (3.1.2). In current terminology (which 
will be explained at greater length in Section 11.4), Ll forms a commutative 
complex Banach algebra under convolution. As will be seen subsequently in 
(c), however, Ll possesses no identity (or unit) element relative to convolution. 

By 2.3.1, 2.3.2, and (3.1.5), the Fourier transformation I ~ J is a con
tinuous homomorphism of the convolution algebra Ll into the algebra co(Z), 
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the latter being taken with pointwise operations as in 2.3.9. In particular, 
for each n E Z the mapping 

(3.l.6) 

is a continuous homomorphism of L1 onto the complex field (the latter being 
regarded as an algebra over itself). 

A few questions with an algebraic flavor arise quite naturally at this point. 
The following selection is typical and significant. 

(a) Is the mapping 1-+ j actually an isomorphism of L1 into co(Z)? This is 
equivalent to asking whether the relationsj(n) = 0 (n E Z) entail that I = 0 
a.e., and has thus been answered affirmatively in 2.4.l. 

(b) Are there any continuous homomorphisms of L1 onto the complex 
numbers distinct from the Yn (n E Z)? In 4.1.2 we shall see that the response is 
negative, thereby providing a very satisfactory explanation of the funda
mental nature of the Fourier transformation. 

(c) From 2.3.8 and (3.1.5) it appears at once that L1 contains no identity 
for convolution, that is, no element e such that e * I = I for all I E L1. [Were 
such an element e to exist, one would infer from (3.1.5) that e(n) = I for all 
nEZ, a possibility which is ruled out by 2.3.8.] In view of this, one is 
prompted to ask whether every IE L1 can be factored into a convolution 
product 11 * 12 with 11 and 12 in L1. An affirmative answer was published 
relatively recently (Walter Rudin and P. J. Cohen), though the result was 
known to Salem and Zygmund somewhat earlier; see [Z1]' p. 378. Cohen's 
method is a most elegant one, applying to a general class of Banach algebras. 
We shall return to this and similar problems in Section 7.5; see also 11.4.18(6). 

(d) Which elements e of L1 are idempotent, that is, satisfy e * e = e? 
Plainly, every trigonometric polynomial of the form 

(a finite sum) 

is idempotent. From 2.3.8 and 2.4.1 it appears that these are indeed the only 
idempotents in L1. 

(e) Since em * en = 0 if m i: n, it is clear that L1 is not an integral domain 
(that is, that it possesses an abundance of zero divisors). Which subalgebras 
of L1 possess no zero divisors? Some light will be shed upon this in 11.3.9. 

(f) Can one classify or describe the closed subalgebras of V? This appears 
to be an extremely difficult problem. It is easy to see that, if one takes a 
sequence (Sk)k': 1 of pairwise disjoint and finite subsets of Z, then the set of 
IE Ll, such that j takes an (f-dependent) constant value on Sk (k = 1,2,···) 
and j = 0 on Z\Uk'= 1 Sk> is a closed subalgebra of Ll. It was natural to 
hope that all closed subalgebras of L1 would prove to be of this type. How
ever, J.-P. Kahane has recently disproved this conjecture. His results, as 
well as some of the simpler aspects of the study of closed subalgebras, will be 
discussed in Section 11.3. 
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(g) Conforming with normal algebraic terminology, an ideal in L1 will 
mean a linear subspace I of L1 having the property that I * gEl whenever 
I E I and g ELI; a closed ideal will mean a subset that is both an ideal and a 
closed subset of L1. 

This being so, can one effectively describe all the closed ideals in L11 
In Section 11.2 we shall uncover an affirmative answer to this and a number 

of similar questions for the case in which the underlying group is T, noticing 
at the same time, however, that for many groups of interest the analogous 
questions have no known answer that is completely satisfactory. Meanwhile, 
see Exercises 3.2 to 3.5. 

The reader may be struck by the fact that the questions in (f) and (g) are 
not phrased in purely algebraic terms, inasmuch as we speak of Clo8ed sub· 
algebras and ideals. This topological restriction is customary when one is 
dealing with infinite dimensional algebras. To seek to classify all (not 
necessarily closed) subalgebras or ideals is both rather unnatural and over· 
ambitious. Topological restrictions compensate in some measure for the 
infinite dimensionality and are natural just because of this feature. 

As has been indicated, problem (f) is not yet solved completely. Beside this 
we shall in 12.7.4 encounter problems (b), (d), and (g) in a new setting, the 
algebra L1 being replaced by a larger one; and in Section 16.8 problem (d) will 
appear for still larger convolution algebras. The analogues of (b) and (g) for 
some of these enlarged algebras have not yet received complete solutions.· It 
may also be added that, for underlying groups of types markedly different 
from T, the L1 version of problem. (d) is a good deal more difficult; see 
Chapter 3 of [R] and also Rudin [3], Rudin and Schneider [1], Rider [1]. 

With these traces of ignorance left showing, we turn to some simple analyt· 
ical properties of the convolution process that will playa fundamental role 
in subsequent developments. 

A start is made with two properties that stem directly from the invariance 
of the integral; the proofs are left for the reader to provide. 

3.1.2. 

3.1.3. 

Ta(f*g) = Tal*g =1* Tag· 

Tal * Tbg r= Ta+bl * g. 
3.1.4. Suppose that I ~ P ~ 00 and that p' is the conjugate exponent (or 
index), defined by lip + lip' = I (p' = I if P = 00 and p' = 00 if P = 1); 
If IE LP and g E LP', then I * g is defined everywhere, is continuous, and 

111* glloo ~ 11111,,' Ilgll,,·· 
Proof. Holder's inequality shows that the function y -+ I (x - y) g( y) is 

in this case integrable for each x, so that 1* g(x) is defined for all x, and that 

11* g(x}1 = I L J I(x - y)g(y) dYI 

~ 111(x - y)ll" '1Igll,,·, 
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where in the first factor I(x - y) is regarded as a function of y. By translation
invariance, 11/(x - y)llp = 11/11p; whence the stated inequality. To show that 
1* g is continuous, we may by symmetry suppose that p < 00 and then use 
3.1.1, 3.1.2, and the inequality just established to obtain 

II Ta(J * g) -I*gll", = IITa/*g -I*gll", 
= II(Tal - J) * gil", 
~ IITa/-fllp'lIglip" 

Finally, II Taf - Ilip - 0 as a - 0 whenever I E LP and p < 00 (see 2.2.4). 
Remarks. (1) The preceding result contains the first hint that convolu

tion is a smoothing process. The next two results develop this theme by 
showing that, if 1 ELl, then 1* g shares with g a number of smoothness 
properties. Further developments along these lines must be deferred until 
Chapter 12; see especially 12.6.2, 12.7.2, and 12.7.3. 

(2) There are valid converses of 3.1.4 which are in essence contained in 
12.8.4 and 16.3.5. 

3.1.5. (1) If 1 E V and if g E CIc, or is of bounded variation, or is absolutely 
continuous, then 1 * g has the same property. Moreover, in the first case 
one has 

(3.1.7) 

for any integer m ~ 0 not exceeding k. 
(2) The formula (3.1.7) holds for m = 1 whenever 1 E V and g is absolutely 

continuous. 
Proof. (1) We shall deal with the assertion involving CIc, leaving the 

remaining (similar) arguments to be provided by the reader. In dealing with 
this selected case, it will suffice to show that f * g E Cl if g E Cl and that 
D(J * g) = f * Dg; the rest will follow by induction on m. 

Now if a -=1= 0 

a-1[f* g(x + a) - 1* g(x)] = ~ fl(Y) g(x + a - y) - g(x - y) dy. 
2" a 

Since g E Cl, the cofactor of f( y) in the integrand tends, as a _ 0, to 
Dg(x - y); and, as the mean value theorem shows, the convergence is 
uniform with respect to y (and to x). It follows from general convergence 
theorems ([W], Theorem 4.1 b, for example) that f * g has a derivative equal to 
1* Dg, this last function being continuous by virtue of the case p = lof3.1.4. 

(2) Suppose that IE Ll and that g is absolutely continuous. We will first 
show that f * g is absolutely continuous. 

For any two real numbers a and b we have 

11 * g(b) - 1 * g(a)1 ~ L f 11(y)llg(b - y) - g(a - y)1 dy. (3.1.8) 
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Since g is absolutely continuous, to any e > 0 corresponds a number 
o = O(e) > 0 such that 

r 

L Ig(bk) - g(ak)1 ~ e 
k=l 

for any sequence ([ak> bkm=l of nonoverlapping intervals [a k , bk ] for which 
2:L 1 (b k - ak ) ~ o. But then, under the same conditions on these intervals, 

r L Ig(bk - y) - g(ak - y)1 ~ e 
k=l 

for all y and so (3.1.8) shows that 
r 

L II*g(bk) -I*g(ak)1 ~ IIIlIloe 
k=l 

This shows that 1 * g is absolutely continuous. 
That (3.1.7) holds with m = 1 is now most easily seen by applying 2.3.4 

to each side and referring to (3.1.5). 

3.1.6. HIELlandgEV(I ~p ~CX)),thenI*gEV'and 

III*gllp ~ IIIlIlolIglip 

Proofo For any h E U· the Fubini-Tonelli theorem gives 

12~ J 1 * g(x)h(x) dxl ~ L J Ih(x)1 {L J If(y)g(x - y)1 dY} dx 

= LJII(Y)I {LJlh(x)g(x - y)1 dX}dY. 

By Holder's inequality the inner integral is majorized by IIhllp IIglip Hence 

12~JI*g(X)h(x)dxl ~ 111111° IIhll p·o IIgllp· 

The converse of Holder's inequality (see Exercise 3.6) now goes to show that 
1 * g E LP and 111 * gllp ~ Ilflll ° Ilgllp, as alleged. 

Remarkso (1) The argument can be made less sophisticated by assuming 
first that 1 and g are continuous. One may then assume that h, too, is con
tinuous. The required versions of the Fubini-Tonelli theorem and the Holder 
inequality and its converse then become simpler. This leads to the stated 
result for 1 and g continuous. In general, we may assume that p < co, since 
otherwise the result is contained in 3.1.4, and then approximate 1 and g in Ll 
and in LP, respectively, by continuous functions I .. and g" (n = 1,2,· .. ). 
By (3.1.2), I .. * g" -+ 1 * g in LI, and so a subsequence converges almost 
everywhere. By applying the result already established for continuous 1 and 
g to the terms of such a subsequence, and making use of Fatou's lemma ([W], 
Theorem 4.Id) on the way, the desired result appears. 
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(2) The assertion in 3.1.6 can be improved in several ways; see 12.7.3 and 
Exercise 13.5. A result that combines and extends 3.1.4 and 3.1.6 will be 
obtained in Section 13.6. 

3.1.7. Other Convolution Algebras. From 3.1.5 it appears in particular 
that each C" is an associative and commutative complex algebra under *, and 
that the same is true of the set of functions of bounded variation, and the 
set of absolutely continuous functions. Each of these, save Coo, can in fact be 
made into a commutative complex Banach algebra under *. (COO is not 
normable, but it is a good complete, metrisable, associative, and commutative 
complex topological algebra under *.) Similarly, by 3.1.6, V' (1 ~ P ~ (0) is 
an associative and commutative complex Banach algebra. Being subalgebras 
of Ll (in the purely algebraic sense) which contain all trigonometric poly
nomials, none of these algebras possess an identity element; se~ 3.1.1(c). 

Beside this, 3.1.6 shows that LP (1 ~ P ~ (0) can be regarded as a module 
over the ring Ll (* being both the ring product in Ll and the module product 
between elements of Ll and elements of LP). 

3.1.8. Convolution and Translation. Both 3.1.2 and 3.1.3 hint at close 
connections between translation operators T a and convolution. This will be 
borne out as we progress (see especially Sections 16.2 and 16.3). Meanwhile 
here is a basic result in this direction. 

3.1.9. Let JELl and let E denote anyone of the normed spaces C or LP 
(1 ~ P < (0). If gEE, thenJ * g is the limit in E of finite linear combinations 
of translates of g. 

Proof. Let gEE be given. Denote by V g the closed linear subspace of E 
generated by the translates TaU of g, that is, the closure in E of the set of all 
finite linear combinations of elements TaU. Denote also by 8 the set of JELl 
such that J * g E VII' It has to be shown that 8 = Ll. Now it is evident that 
8 is a linear subspace of Ll; and from 3.1.6 it follows that 8 is closed in Ll. It 
will therefore suffice to show that 8 contains a subset 80 such that the finite 
linear combinations of elements of 80 are dense in Ll. 

If E = C, a convenient choice of 80 is C (see [W], Theorem 4.3b). We will 
leave to the reader the task of showing that in fact J * g is the uniform 
limit of finite linear combinations of translates of g, whenever J .and g are 
continuous. (Hint: Approximate the integral definingJ * g by Riemann sums, 
using uniform continuity of the functions involved.) 

We pass on to the remaining cases. 
Suppose, then, that E = L" (1 ~ P < (0). In this case a convenient choice 

of 80 is the set of functions J which coincide on [0, 21T] with the characteristic 
function of an interval I = [a, b], where 0 < a < b < 21T, and which are 
defined elsewhere by periodicity (compare [W], Theorem 4.3a). In this case 
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we partition I by a finite number of subintervals lie whose lengths Illel are 
majorized by a number 3 to be chosen shortly. Choose and fix a point ale in 
each lie' We then have 

say, and so Minkowski's inequality yields 

1 1 
II!* y - -2 L: Illel' T"kyllp ~ 2- L: IIhlell p • (3.1.9) 

'TT1e 'TT 

Next, using Holder's inequality and the Fubini-Tonelli theorem, 

IIhlell: = 2~f{lL [g(x - y) - g(x - ale)]dyIP}dx 

~ 2~ f {I lie I pip' , L Ig(x - y) - g(x - ale)jP dy} dx 

= IlleI PIP' ik {(2~) flg(x - y) - g(x - ale)jPdx}dy 

= IlleIP'P', f IITlig - T"kgll: dy. (3.1.10) Jl k 

Now, given e > 0, we can choose 3 > 0 so small that 

IITlig - T"4gll: ~ eP 

for all YElle (see 2.2.4). Then (3.1.10) shows that 

IIhlell: ~ IlleIP'P', Illel ' eP = IllelP' eP, 

since pIp' + 1 = p, and therefore 

Ilhlell p ~ Illel' e. 

Combining (3~1.9) with (3.1.11), we obtain 

Since 

(3.1.11) 
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is a finite linear combination of translates of g, this shows that f. g E Vg and 
the proof is complete. 

Remarks. For a complement to 3.1.9, see 3.2.3. See also Exercise 3.7. 
An alternative proof of3.1.9 will appear in part (2)'ofthe proof of 11.1.2. 

3.1.W. Characterization of Convolution. Several of the results 
appearing in this section, taken singly or in combination, have converses 
which are interesting in that they virtually characterize convolution as a 
linear or bilinear process in terms of such basic concepts as the invariant 
integral, the standard function spaces, and the translation operators. 

For example, 3.1.2 and 3.1.4 combine to show that, if f E LP' is given, then 
the mapping U: g ~ f • g is a continuous linear operator from LP into C 
which commutes with translations (that is, TaU = UTa for all a E Rj21TZ). 
As will be seen in 16.3.5, the converse is also true. 

Again, in Subsection 16.3.11 we shall comment on converses of the result 
appearing in Subsection 3.1.9. 

To take a third example, it has appeared that the mapping B: (f, g) ~ f • g 
is bilinear, has various continuity and positivity properties, and is related to 
translation in such a way that 

It will appear in Subsection 16.3.12 that these properties go a long way 
toward characterizing convolution as a bilinear operator. 

3.2 Approximate Identities for Convolution 

In 3.1.1(c) it has been remarked that Ll contains no identity element for •. 
The same is true of the smaller .-algebras, Ck and LP (1 ~ p ~ co). This 
being so, we are going to consider and seek the next best thing, namely, a 
so-called "approximate identity." 

3.2.1. By an approximate identity (for convolution) we shall mean a sequence 
(Kn):= 1 of elements of Ll such that 

(3.2.1) 

lim 21 JKn(X) dx = 1, 
R- co 'It' 

(3.2.2) 

and 

lim r \Kn(x)\ dx = 0 
n_CXl )6<1%1<" 

(3.2.3) 

for any fixed 8 satisfying 0 < 8 < 1T. 
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It will be seen in Chapter 5, and it is fundamental to our work, that there 
exist approximate identities (Xn );:'= 1 in which each X" is a trigonometric 
polynomial. 

More immediate examples stem from the observation that any sequence 
(X,,) of nonnegative integrable functions satisfying (3.2.2) and 

lim r X,,(x) dx = 0 
" ... "" J6 "Ixl"" 

for each fixed 8 satisfying 0 < 8 < 1T, constitutes an approximate identity. 
Thus, we might take for Xn (n = 1,2,· .. ) the function which is defined on 
[ -1T, 1T) to be ?Tn times the characteristic function ofthe interval [ -lin, lin], 
and defined elsewhere by periodicity. 

The name "approximate identity" is justified by the following result. 

3.2.2. Let (Xn );:'= 1 be an approximate identity. 
Then 

lim IIX" *f - !II"" = 0 
" ... 00 

lim IIDm(Xn *f) - D"'fll"" = 0 

(f E C); 

(f E Ck) 

provided m is an integer ~ 0 not exceeding k; and 

lim IIXn *f - flip = 0 (f ELp), 
" ... "" 

provided I ~ P < 00. 

Proof. Inasmuch as Dm(x ... * f) = X" * Dmf whenever Xn E V and f E Cm 
(see 3.1.5), the second statement will follow from the first. The first follows 
from the uniform continuity of f in the following way. 

We have 

Kn *f(x) - f(x) L f Kn(Y) dy = 2~ f K,,(y)[f(x - y) - f(x)] dy. 

Putting 

gives 

(3.2.4) 

say. Being assigned any e > 0, choose and fix 8 satisfying 0 < 8 ~ ?T, so 
that IIT],.j-fll", ~ dar Iyl ~ 8. 

Then 

(3.2.5) 
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The first integral is, by virtue of (3.2.1), majorized by 

eO 2~ IIK"I dy ~ Me, (3.2.6) 

where M is independent of n. Since also IITlIf - fll .. ~ 211fll .. for all y, the 
second integral is majorized by 

211fll .. ° 21 f IK,,(y)\ dy. 
11' J6o;; 1111 .. " 

Keeping e and 8 fixed, we find that (3.2.3) to (3.2.7) show that 

lim sup IIKn.f - anlll .. ~ Me. 
" ..... 

(3.2.7) 

Since 8 is an arbitrary positive number, and since lim a" = 1 by (3.2.2), it 
follows that 

lim IIKn.f - III .. = 0 
" ..... 

whenever f is continuous. 
To prove the third statement, given f E V' and e > 0, first choose pee 

such that Ilf - PilI' ~ e. By 3.1.6 and (3.2.1), 

IIK".f - K" .ftll p ~ IIK"lll ° 8 ~ Me, (3.2.8) 

where M is independent of n. By what has been established, there exists 
no = no (e) so that 

A fortiori, then, 

and therefore 

11 K " .ft - fill' ~ 28 

Hence, by (3.2.8) and (3.2.9), 

IIK".f - fill' ~ Me + 28 

for n > no. 

for n > no, 

for n > no. 

forn > no, 

which proves the third statement and completes the proof. 

(3.2.9) 

3.2.3. Let E denote anyone of the normed spaces C or Lp (1 ~ p < (0). 
Since each T" is a continuous endomorphism of E, 3.2.2 shows that T "(K,,. f) 
- T"ffor eachfe E. Also, by 3.1.2, T"(K,, .f) = T"K" .f. It thus appears 
that T "f is the limit in E of convolutions k • f with k eLl. This complements 
3.1.9. 

The two results taken together show that, given feE, the closed linear 
subspace of E generated by all translates of f is identical with the closure in 
E of the set of all convolutions k • f with k ranging over Ll; if E is regarded 
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as a *-module over Ll, this latter set is just the closed submodule of E 
generated by I. Further results of this type will appear in Section 11.1. 

3.2.4. Approximate Identities and the Dirac &-Function. The first 
part of 3.2.2 shows in particular that 

lim KII */(0) = 1(0), 
""'" 

or, what is equivalent after replacing I by], 

lim 21 fKII(x)/(x) dx = 1(0) 
A_CD 'Ir 

for each continuous I. (Actually, scrutiny of the proof would show that this 
holds for any IE L'" such that I is continuous at 0.) This means that the 
sequence (Kn) is of the type which is often said to converge (in some un
specified sense) to the so-called Dirac S-Iunction. Complete precision will be 
attained in terms of the ideas to be studied in Chapter 12; see especially 
12.2.3 and 12.3.2(3). 

3.2.5. Approximate Identities and Summation Factors. Insofar as 
the study of Fourier series is concerned, one of the main effects of using 
a.pproximate identities is the insertion of "summation factors" into series 
which, in their unadorned state, will in general diverge. The summation 
factors are, indeed, just the Fourier transforms J(n, which, as the results of 
3.2.4 show, have the property that 

lim J(n(m) = 1 (m E Z). 

Specific examples appear in Sections 5.1 and 6.6. 

3.3 The Group Algebra Concept 

3.3.1. The Classical Concept. In the classical and purely algebraic 
theory of a finite group G, additional flexibility was sought by introduc
ing the so-called group algebra (or group ring) " of G. This was defined, 
after choosing a field K of scalars, as the set of all formal (finite) linear 
combinations 

1= L I(x)'x 
:reG 

of group elements x E G with coefficients I(x) E K. The algebraic operations 
are as follows: 

al = L [al(x)) • x a E K, 
:reG 

I + g = L [f(x) + g(x)] • x, 
:reG 

Ig = L [ L I(x - y)g(y)] • x. 
:reG lIeG 
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Taking stock of the fact that 

I(f) = L: /(x) 
;rliia 

is an invariant integral on G (see 2.2.2 and Exercise 2.5), a little thought will 
show that the group algebra may very well be pictured as the algebra of 
K-valued functions on G, the linear space operations being point-wise and 
the product being convolution; the sum 

L: /(x - y)g(y) 
Ilea 

corresponds exactly to the integral 

2~ J f(x - y)g(y) dy 

used in Section 3.1 to define the convolution of two functions on the group 
T. 
It is no part of our purpose to carry forward the study of the group algebra 

of a finite group (see, for example, [Bo] and [vW]): the concept is mentioned 
merely because it is the forerunner of one that holds an important place in 
the modern .developments in harmonic analysis (see 3.3.2). For purposes of 
subsequent comparison it is to be noted that the study of the group algebra 
of a finite group leads ultimately to a good deal of information about the 
structure of the underlying group, albeit only when combined with the study 
of representations of the group. 

3.3.2. The Modern Concept. On turning to infinite groups, and 
specifically to locally compact topological groups G, there are various ways in 
which the group algebra concept can be extended. It is customary in these 
conditions to assume that the ground field K is the complex field. Nonetheless, 
considerable freedom of choice remains, especially when G is compact. For 
G = T, for instance, one might attach the term ... group algebra" to any 
one of I? (1 ~ P ~ 00), or Ck (0 ~ Ie ~ 00), or again the measure algebra 
M introduced in Chapter 12. The favorite contender for the title is Ll, mainly 
perhaps because L1 remains a convolution algebra even when the underlying 
group is noncompact. (This last property is shared by M, but M is generally 
far more mysterious than is Ll; see 12.7.4.) 

There are, of course, important differences between the group algebra" of 
a finite group and anyone of Lp or Ck. Thus (1) " possesses an identity 
element (to wit, the function taking the value 1 at x = 0 and the value 0 
elsewhere; compare 3.1.1(c»; (2) " is a finite-dimensional linear space, which 
is evidently not the case with I? or Ck. The difference pointed out in (2) means 
that the study of the group algebra in its modern guise is as much one of 
analysis as of algebra. 



64 CONVOLUTIONS OF FUNCTIONS 

Again because of these differences, it is much more difficult to establish 
clear-cut relations between the properties of a group algebra and those of the 
underlying group; see the remarks in 4.2.7. The fact is that the modern 
approach lays more emphasis on the structure of function spaces carried by a 
group, and less on the underlying group itself. 

3.4 The Dual Concepts 

There is no trouble involved in framing the definition of the convolution 
t/J * rp of two functions on Z, provided that these functions are suitably 
restricted in their behavior at infinity; see Exercise 3.15. 

The same is not true ofthe analogue of (3.1.5), however. The analogue reads 

(3.4.1) 

and the remarks in Section 2.5 suffice to point up some of the difficulties 
encountered in establishing (3.4.1). The only simple case is that in which both 
t/J and rp belong to 11, in which case cP * rp belongs to f1, too [compare (3.1.2)]. 

Our more immediate concern in the sequel will lie with cases of (3.4.1) in 
which cP and rp have the forms j and g, respectively, where i and g are suitably 
restricted functions on G = T: in this case the formula (3.4.1) appears 
essentially in the disguise of versions of the Parseval formula to be discussed 
in Chapters 8 and 10. See also 12.6.9 and 12.11.3. 

EXERCISES 

3.1. For i ELl let 

SNi = 2: j(n)en , 
Inl"N 

and suppose that DN is defined as in Exercise 1.1. Verify that sNi = DN *i 
and that 

8Ni * g = 8N(i * g) = i *SNg 

for i, g ELl. Deduce that sNi is the limit in Ll of linear combinations of 
transla tes of f. 

3.2. Suppose that 1 ~ P ~ 00 and define 

I = {f E V' : IlsNillp = 0(1) as N ~ oo}, 
J = {fEV: lim Iii - sNillp = O}. 

N-"" 
Verify that I and J are submodules of V (considered as a *-module over Ll) 
and that J c I. Show that I and J are everywhere dense in LP if P < 00. If 
p = 00, is J dense in L""? Give reasons for your answer. 
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3.3. Take p = 1 in the preceding exercise. Show that I and ,J are non
closed in Ll. 

Hint: Assume the result of the computations in 5.1.1 and use the uniform 
boundedness principle as stated in Appendix B.2.1 or in B.2.2. 

3.4. (1) Let E be the set off ELl such thatf(x) = f( -x) a.e. Is E an ideal 
in L1? Is it a subalgebra of L1? Is E closed in L1? Give reasons for your 
answers. 

(2) Prove that W1 (f * g) ~ II! III . w1g for f, g E Ll. Deduce that the set 

1= {fE Ll: wd(a) = O(laI112) as a~ O} 

is an ideal in Ll. Is I closed in Ll? Give reasons. 
Hint for (2): Observe that I is everywhere dense in L1. 
3.5. Suppose that f E La> is such that the function a ~ Taf is continuous 

from R into L'" for the normed topology on the latter space (that is, that 
IITaf-fII",~O as a~O). Prove thatfis equal almost everywhere to a. 
continuous function. (The converse is true and almost trivial.) 

Hints: Take an approximate identity (Kn );:'=l in Ll and consider the 
functions fn = Kn *f. Show that the fn are equicontinuous and uniformly 
bounded. Let (xdt": 1 be a sequence that is everywhere dense in (0, 21T) and 
pick strictly increasing sequences of natural numbers (nk(i))k'=l so that 
(nk (1+ 1»)k'= 1 is a subsequence of (nk(f))k'= 1 and limk~ <Xl fn<(O(x,) exists finitely 
for each i. Deduce that there exists g E C such that, if nk = nk(k) (the 
"diagonal subsequence"), then fnk ~ g uniformly. Use 3.2.2 to compare / 
and g. 

Remarks. This is the special case, for the group R/21fZ, of a result due to 
D. A. Edwards [1] for general groups. An analogous and older result for Radon 
measures (see Chapter 12) is the work of Plessner and Raikov. Both types of 
result are treated in R. E. Edwards [2]. See also Exercises 11.22 and 12.23. The 
existence of a uniformly convergent subsequence of (in) is a special case of 
Ascoli's theorem; see [E], Section 0.4. 

3.6. (Converse of Holder's inequality) Suppose that 1 ~ P ~ 00 and that 
/ E Ll is such that 

(1) 

for each g E C, m being a number independent of g. Prove that/ E V", where 
lip + lip' = 1, and that 

II/lip. ~ m. 
Hint: Show that (1) continues to hold for g E Leo. 
Remark. It is even enough to assume that (1) holds for g E Coo. For 

another variant, see 13.1.5. 
3.7. Does 3.1.9 remain valid if therein one takes E = Ck? Justify your 

answer. 
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3.8. Let (K,,);'ml be any approximate identity. Show that, if p > 1, then 

compare Exercise 7.5. 

3.9. Let H" denote the set of 1 E L" such that j(n) = 0 for n < 0 (here 
1 ~ P ~ (0). Show that H" is a closed ideal in L". 

Remarks. The study of the so-called Hardy spaces H" is an elaborate 
procedure having close conncctions with complex analytic function theory, the 
connection being explained by the remark that each f E H" may be regarded as 
the boundary values (for Izl = 1 and in a sense that can, and must" be made 
precise) of the functionf# defined for complex z satisfying Izl < 1 by the power 
series Ln>oi(n)zn. (In terms of the functions f#, the definition of H" can be 
extended to cases where 0 < p < 1.) This book contains no attempt to discuss 
the subject systematically, although sidelong glances are thrown in that 
direction in Exercises 6.15, 8.15, 11.8, 11.10 and in Section 12,9 and 12.10.3. 
For detailed accounts of the subject, sec [Ho]; [Hel]; [dBR]; [R], Chapter 8; 

[Zd, Chapter VII; [Kz], pp. 81 ff.; and [Ba2], pp. 70-93. For a survey of the 
abstract theory, see Srinivasan and Wang [1] and the references cited there and 
also MR 37 # 1982; 55 ## 989, 990. 

3.10. Let (KN)N=l be a sequence of nonnegative integrable functions 
such that limN_",KN(n) = 1 (n E Z). Show that 

lim KN *1 = 1 
N-", 

uniformly for each continuous J. Deduce that (KN)N= 1 is an approximate 
identity (see 3.2.1). 

3.11. Assume that a is a real number such that a/TT is irrational and that 
f is a measurable complex-valued function such that Tal = f a.e. Show 
that I = const a.e. (Recall that all functions considered have period 211'.) 

3.12. Suppose 1 ~ P ~ 00. Show that the convolution algebra L" has no 
nonzero generalized (or topological) nilpotents, that is, elements 1 such that 

inf" 111*"11/'" = 0, 

where 1*1 = 1 and 1*(1<+ 1) = 1 * 1*" (k = 1,2,· .. ). See 11.4.18(1). 
3.13. Assume that K E Ll and IIKlll < 1. Given gEL" (where 1 ~ P ~ (0), 

show that the equation 

has the unique solution 

'" 
f = g + L K*" * g, 

,,=1 
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and that this solution satisfies 

Remarks. An obvious necessary condition in order that the given equation 
be soluble for each g E V' is that Jt(n) :f. 1 (n E Z). That this condition is 
sufficient lies somewhat deeper. It is a corollary of 11.4.13. 

\Ve remark in passing that convolution inequalities of the formJ - K • J ~ 0 
have come to play a role in certain parts of morlern potential theory and 
harmonic analysis. In this connection K, which has hitherto denoted an 
integrable function, frequently denotes a measure (see 12.2.3). Such inequalities 
will play no role in this book, but the interested reader should consult Essen [IJ 
and the references cited there. 

3.14. Suppose that (cn)nez is a sequence such that 

2: Ic,.j(n)i < 00 
neZ 

for each fELl. Show that Lnezlcnl < 00. 

Hint: Use the uniform boundedness principle in Appendix B.2.1. 
Note: The hypothesis should not be confused with the demand that 

LcJ(n) be merely convergent for each fELl; see 10.5.1. 

Similar arguments will establish a more general lemma of Bosanquet and 
Kestelman, which asserts that if the functions Uk (k = 1,2, ... ) are such that 

JUk E L1 and '2.:=1 If JUk dxl < a) whenever JELl, then '2.:=1 IUkl E L"'. 

3.15. Consider sequences (= complex-valued functions on Z) 4>,.p, .. '. 
Frame a definition of the convolution 4> * .p which will be such that (fg)'" = 
j * g for trigonometric polynomials f and g. 

Using the notations introduced in 2.2.5, discuss the dual aspects of the 
results in Section 3.1. 

Note: Further discussion of the relation (fg)'" = j. g appears later in 
the guise of the Parseval formula; see Chapters 8 [especially (8.2.5)] and 10. 
The change of the underlying group from T to Z has led to some interesting 
problems concerning convolution over noncompact groups, which have been 
studied in a sequence of papers by Rajagopalan and Zelazko, a useful sum
mary of which appears in Math. Rev. 32 # 2506. See also Exercise 4.6 below; 
[HR], (38.26) and (38.27); MR 34 # 1868, 8213; 35 # 7136; 37 # 4509; Gaudet 
and Gamlen [1). 

3.16. Let S be a set of real numbers whose interior measure 

m.(S) == sup {m(F) : F closed, F c S} 

is positive. Show that the set of differences St == S - S == {x - y : XES, 
YES} contains a neighborhood of O. 

Hints: By taking a suitable closed subset of some translate of S, it may 
be assumed that S is measurable, is contained in (0, Y27T), and that m(S) > O. 
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LetJbe the periodic function that coincides on [-17', 17'} with the characteristic 

function of S. Apply 3.1.4 to J * j. . 
Notes: The result is due to Steinhaus (Sur les distances des points des 

ensembles de mesure positive. Fund. Math. 1 (1920), 93-104). It could be for
mulated entirely in terms of the group T; in fact, the result is valid for any 
locally compact group whatsoever, the proof being a simple adaptation of tha.t 
which is proposed above. A corollary is that a subgroup is either open or has 
zero interior measure. 

For some generalizations, see Ray and Lahiri [I], Mueller [I], and the 
references cited there. 

There is an analogous result due to Banach, Kuratowski, and Pettis applying 
to topological groups that are not necessarily locally compact, measure
theoretic concepts being repla.ced by category; see [K], p. 211 and (for special 
cases) [Zd, p. 250, Example 2. For a converse, see MR 51 # 6286. 

3.17. Let (an}:'=l be a sequence of real numbers and suppose that 
lim n _ '" exp (ianx) exists for each x belonging to a set of real numbers having 
positive interior measure (see the preceding exercise). Prove that limn_ co an 

exists finitely. 
Hints: The set S of points of convergence of the sequence (exp (ianx)) is 

evidently a subgroup of R. Use Exercise 3.16 to conclude that S = R, so that 
g(x) = limn _ '" exp (ianx) exists for all real x. By integration theory, therefore, 

lim r J(x} exp (ianx) dx = r J(x}g(x} dx 
n-aJ JB JR 

for every function J which is Lebesgue-integrable over R. Deduce first that 
(an):'= 1 is bounded (an adaptation of 2.3.8 will be needed here), and then (by 
choosing J suitably, or by a compactness argument) that this sequence is 
convergent. 

3.18. Let (Cn}:'=l be a sequence of complex numbers and (an):'=l a 
sequence of real numbers. Suppose that limn_ co Cn • exp (ianx) exists for each 
x belonging to a set of real numbers having positive interior measure (see 
Exercise 3.16). Show that (i) (cn ) is convergent to some complex number and 
(ii) if limn _ '" Cn i= 0, then (exn ) is convergent in R. 

3.19. Let X be a measurable character of T. Prove that X is continuous. 
Hints: Use Exercise 3.16 to show that X is bounded. Then establish 

continuity of X by adapting the reasoning' used in 2.2.1 to show that a 
continuous character is differentiable. 

Alternatively, see [HR), p. 346, where the result is stated and proved in a 
more general form. 

Remark. Despite the stated result, there exist characters of T which are 
both hounded and nonmeasurahle. 



CHAPTER 4 

Homomorphisms of Convolution 
Algebras 

In this brief chapter we introduce the reader to two problems typical of the 
current outlook on harmonic analysis. The first problem, which will be solved 
in detail in Section 4.1, arises on choosing anyone of the convolution algebras 
E mentioned in Subsection 3.3.2 and seeking to determine all the homo
morphisms I' of E into the complex field. The answer highlights the funda
mental im portance of the Fourier transformation in relation to group structure. 

The second problem is concerned with the (self-) homomorphisms of E 
(that is, the homomorphisms of E into itself). Of the available choices of E, 
only the cases L2 and L1 are fully solved. The former case is easy and of 
relatively little interest (compare Exercise 8.1). The case E = L1 is, on the 
contrary, comparatively very complex, and we shall be able only to indicate 
how the solution of the complex homomorphism problem allows a useful 
reduction to be made, and to indicate the solution for this case. 

An incomplete account of the homomorphism problem is inserted at this 
early stage because it has been learned in 3.1.9 and 3.1.10 that convolution 
is related in a very basic way to the group structure, and because, granted 
the ensuing fundamental role of convolution, the homomorphism problem 
begs for recognition without delay. This problem has, in fact, proved to be 
one focus of interest in contemporary work. 

4.1 Complex Homomorphisms and Fourier Coefficients 

4.1.1. We have to consider nontrivial complex homomorphisms I' of the 
convolution algebra L1 into the complex field. In other words, y is a linear 
functional on the complex linear space L1 which is not the zero functional 
and which satisfies 

1'(/ * g) = 1'(/) • y(g) (4.1.1) 
for f, g ELl. 

lt will appear in 11.4.9 and 11.4.12 that such a homomorphism I' is 
necessarily continuous on L1, that is, that 

11'(/)1 ~ const II fill' 
but we shall temporarily assume explicitly that I' is continuous. 

69 

(4.1.2) 
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4.1.2. Let Y be any nontrivial continuous complex homomorphism of Ll. 
Then there exists a unique It E Z such that Y = Yn' where [see (3.1.6)] 

Yn(J) = j(n) 
for fE Ll. 

Proof. The uniqueness of It is clear. 
We shall offer two proofs of the existence of n, the relative merits of which 

will be weighed in 4.1.3. 
First Proof. Define Cn = y(en ) for n E Z. Since y is continuous and 

nontrivial, the density theorem of 2.4.4 entails that Cn i: 0 for at least one 
integer n. Since also en * en' = en or 0 according as n' is, or is not, equal to n, 
an application of Y shows that Cn • Cn' = Cn or 0 according as n' is, or is not, 
equal to n. Thus Cn, is equal to 1 or to 0 according as n' is, or is not, equal 
to n. Linearity of Y shows then that y(J) = j(n) for all trigonometric 
polynomialsf. Continuity of y, together with the density theorem, accordingly 
show that y(f) = j(n) for allfE Ll. 

Second Proof. In view of the continuity of y and the fact that C is 
everywhere dense in V, it will suffice to show that, for some nEZ, the 
formula 

y(J) = j(n) 

holds for each continuous f. 
Now, again since y is continuous, we can choose and fix a continuous fo 

such that y(Jo) is nonzero. Consider the function X defined on Rj21TZ by 

( ) _ y(T xfo}. 
X x - y(Jo) (4.1.3) 

Evidently, X(O) = 1. By (4.1.2) and the fact that 

which tends to zero with x - y, we see that X is continuous. Moreover, 3.1.3 
and (4.1.3) combine to show that 

x(x + y) = X(x)X( y) . 

Consequently (see 2.2.1) there exists n E Z such that 

(4.1.4) 

Now take any continuousf. Then (compare the proof of 3.1.9), given any 
B > 0, fo * f is uniformly approximated to within B by any sum of the form 
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where 0 = Xo < Xl < ... < xm = 271 is any partition of[O, 271] whose "mesh" 
max"(x,, - X"-l) is sufficiently small (depending upon £'/0' and/). A fortiori, 

for any such partition. Therefore, if we apply y and use (4.1.2), we conclude 
that 

Using (4.1.1), dividing through by y(/o). and using (4.1.3) and (4.1.4), we 
find that 

(4.1.5) 

for all partitions of sufficiently small mesh. But, as the mesh of the partition 
tends to zero, the sum appearing on the left of (4.1.5) converges (since / is 
continuous) to the integral 

1 f -271 /(x)e-1n:r dx = /(n). 

It follows that y(/) = j(n), and the proof is finished. 

4.1.3. Comments on the Precedin~ Proofs. (1) It is very easy to see 
that the first proof of 4.1.2 adapts readily to the case in which V is replaced 
by any subset E ofLl fulfilling the following four conditions: 

(a) E is an algebra under convolution; 
(b) E is a topological space; 
(c) a set S of integers exists such that en E E for n E S, while the linear 

combinations of these en are everywhere dense in E; 
(d) for each n E S, the function/ _ j(n) is continuous on E. 

The conclusion is then that each nontrivial continuous complex homo
morphism y ofE is ofthe form y(/) = j(n) for all/ E E and some 'Y-dependent 
neS. 

Moreover, when the substance of Chapter 12 has been absorbed the reader 
will see that in the above it is unnecessary to assume that the elements of E 
are integrable functions: they may be permitted to be distributions. Use 
will be made of this remark in Section 16.6. 

(2) If the reader scrutinizes carefully the second proof, he will see that it 
also stands with only verbal changes when Ll is replaced by Ck or by 
LP (1 ~ P < 00). 
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In the case of LOO, one change is necessary owing to the fact that C is not 
dense in LOO. However, (4.1.1) and the fact thatf*gEC whenever fEL"" 
and gEL"', ensures that Y, being by hypothesis not identically zero on L"", 
cannot vanish identically on C. Hence fo can be chosen as before. The 
preceding argument shows that y{f) = j(n) = Yn{f) for all f E C. But then, 
if gEL"', we have (since fo * g E C) 

y{fo * g) = Yn{fo * g), 
that is, 

y{fo)y(g) = Yn{fo)Yn(g)· 

Since y{fo) = Yn{fo) # 0, so y(g) = Yn(g) for all gEL"'. The conclusion is thus 
valid for LOO also. 

The second proof is clearly more complicated and laborious than the first. 
It has been included, because it can be adapted to cases in which the under
lying group is noncompact (the groups Z and R, for example). In such cases 
the first proof breaks down completely because V then contains no con
tinuous characters at all. Moreover, the second proof bypasses the density 
theorem and relies on fewer facts concerning harmonic analysis. 

4.1.4. An analogous and much more difficult problem arises when Ll is 
replaced by the measure algebra M introduced in Chapter 12; see especially 
the remarks in 12.7.4. 

4.1.5. A full exploitation of the results obtained in 4.1.2 and 4.1.3 depends 
on the Gelfand theory of complex commutative Banach algebras. Were we 
seeking to develop harmonic analysis on a general group, it would at this 
point be advantageous to embark on the Gelfand theory and reap the fruits 
of its application. As it is, however, we shall defer this sowing and harvesting 
until Section 11.4. 

4.2 Homomorphisms of the Group Al~ebra 

4.2.1. Statement of the Problem. In Section 3.3 we have remarked that 
each of V' (1 ::;; p :::; (0) and Ck (0 ::;; k < 00) is a possible analogue of the 
group algebra of a finite group, and that Ll is the favored contender for this 
title. Exhibiting no prejudice for the moment, we let E denote any Qne of 
these group algebras. 

A problem exerting a natural appeal and depending for its solution (as far 
as this is known at present) on harmonic analysis, is that of determining as 
explicitly as possible the homomorphisms of E (into itself). By such a 
homomorphism we shall mean a continuous linear mapping T of E into 
itself with the property that 

T{f* g) = Tf* Tg (4.2.1) 
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for f, gEE. (By using the closed graph theorem as indicated in 4.2.3, together 
with the necessary continuity of complex homomorphisms of E, one could 
show that any homomorphism of E into itself is necessarily continuous.) 

In Exercises 4.2, 4.3, and 4.8, the reader's attention is directed to the 
simplest and most obvious such homomorphisms, namely those of the type 

Tf (x) = e'n", f (kx) , 

where n, k E Z and k i: O. Each of these particular mappings T defines a 
homomorphism of each of the group algebras E envisaged. This feature is 
nontypical inasmuch as there are homomorphisms T of Coo (or of L2) which 
are not extendible into homomorphisms of Ll; see Exercise 8.l. 

This homomorphism problem has been posed for general groups. For the 
case in which E is either Ll or the measure algebra M (see Chapter 12), most 
of what is currently known is presented in detail in (R), Chapter 4. All the 
results of this nature are relatively recent. 

Our aim is confined to indicating how a knowledge of the complex homo
morphisms ofE, discussed in Section 4.1, permits a small step forward in the 
shape of representing the problem in a different and more tractable form, 
and to stating the solution. 

4.2.2. Reformulation of the Problem. Let T be a homomorphism of 
E. For each n E Z the mapping 

f -* (Tf('(n) (4.2.2) 

is a continuous complex homomorphism of E. So, in accordance with 4.1.2 
and 4.1.3, this mapping (4.2.2) is either trivial (that is, identically zero) or is 
of the type Yn' for some n' E Z. 

Denote by Y the set of n E Z for which the mapping (4.2.2) is nontrivial on 
E. We then have 

(Tf('(n) = j(n') 

for n E Y and fEE. This' relationship entails that n' is uniquely determined 
by n E Y, so that a mapping 

a: Y -* Z 

is obtained for which a(n) = n'. Thus 

(Tf)"'(n) = j 0 a(n) (4.2.3) 
for n E Y and fEE. 

For n E Z\ Y, (Tf)"'(n) = 0 for all fEE. The Riemann-Lebesgue lemma 
2.3.8 suggests that we write accordingly a(n) = 00 for n E Z\Y, interpreting 
j( (0) as O. If this be done, a may be regarded as a mapping of Z into Z u {oo} 
and (4.2.3) holds for n E Z andf E E. 
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The mapping a must have the property that 

"L/(a(n»e" = "L I(a(n))e" E E (4.2.4) 
"eZ fteY 

whenever fEE. The reader will notice that (4.2.4) is intended to mean simply 
that there exists gEE (unique by 2.4.1) such that g = loa; no statement is 
intended concerning the convergence of the series in (4.2.4). (The series do in 
fact converge distributionally, as will appear in Chapter 12; no use is made of 
this fact.) 

4.2.3. The next step is to show that, if a is a mapping of Z into Z v {<Xl} 
having the property expressed in (4.2.4), then the mapping T of E into itself 
defined by 

Tf = "L I(a(n»e" (4.2.5) 
"eZ 

is a continuous homomorphism of E into itself. The uniqueness theorem 2.4.1 
is being invoked once again in order to reach assurance that there is precisely 
one gEE for which g = loa, this g being Tf. 

To begin with, this same uniqueness theorem shows at once that T is 
linear and satisfies (4.2.1) as a consequence ofthe relations (>.J) 0 a = >..(1 0 a), 
(/1 + /2) 0 a = (/1 0 a) + (/2 0 a), and (/d2) 0 a = (/1 0 a) • (/2 0 a) holding 
for any scalar>.. and any fl' f2 E E. It therefore remains to show that T is 
continuous, to achieve which end we shall invoke the closed graph theorem 
(see Appendix B.3.3). This invocation is permissible, since E is in all cases 
either a Banach space or a Frechet space (see 2.2.4). 

In order to prove continuity of T it is sufficient (according to the said 
closed graph theorem) to show that the assumptions . 

lim lie = 0 in E, 
Ie ...... 

lim Tile = g in E 
Ie ...... 

(4.2.6) 

imply the conclusion 
g = O. (4.2.7) 

But, in all cases here envisaged, limle .... 00 lie = 0 in E entails that limle .... 00 A = 0 
pointwise on Z. Similarly the second clause of (4.2.6) entails thatlim/c ..... (TI/c)" 
= g pointwise on Z. Since (Tltr' = l/c 0 a, a(Z) c Z v {<Xl}, andA(<Xl) = 0, it 
follows that g = 0 and so (by the uniqueness theorem once again) the 
conclusion (4.2.7) is obtained. This completes the proof that T is continuous. 

4.2.4. To sum up, we find that the homomorphisms T of E into itself 
correspond to the mappings a : Z - Z v {<Xl} having the property expressed 
in (4.2.4), the correspondence T +-+ a being specified by (4.2.5). 

At this point the reader may care to try Exercises 4.4 and 4.5. 
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4.2.5. The determination of the mappings a of Z into Z u {co} which have 
the property expressed in (4.2.4) is (except when E = L2; compare Exercise 
8.1) lengthy and difficult. For the case in which E = Ll, the solution was 
given by Rudin in 1956 and is described in 4.2.6; the solution of the dual 
problem, in which the group R/27TZ is replaced by Z, will be mentioned in 
10.6.3(3). The analogous problem for general groups (hence, in particular, the 
dual problem for the group' Z) and homomorphisms of V into the measure 
algebra M was solved in generality by P. J. Cohen [2] in 1960, although 
partial solutions had been discovered earlier bi various writers (see the 
remarks in 12.7.4). Details and more references appear in [R], Chapter 4, 
and [Kah], Capitulos IV-VII. See also Exercises 12.49 and 13.6. 

4.2.6. Statement of the Solution. Rudin's solution of the problem of 
homomorphisms of L1 into itself (for the group R/27TZ) is expressed in terms 
of the associated mappings a and is as follows. 

In order that a mapping a of Z into Z u {co} shall yield a homomorphism T 
of L1 into itself via the formula (4.2.5), it is necessary and sufficient that 
there exist an integer q > 0 and a niapping f3 of Z into itself with the following 
properties: 

(1) If A l' ... , Aq denote the residue classes of Z modulo q, then Y = a -1( Z) 
is of the form S1 U· .. U S" where each Sf is either finite or is contained in 
some A J from which it differs by a finite set, and where the Sf are pairwise 
disjoint; 

(2) f3(n + q) ¥- f3(n) (n E Z); 
(3) f3(n + q) + f3(n - q) = 2f3(n) (n E Z); 
(4) a(n) = f3(n) for all save at most a finite number of n E Y. 
The conditions (1), (3), and (4) are necessary and sufficient in order that a; 

shall yield a homomorphism of L1 into the measure algebra M introduced in 
Chapter 12. 

The reader will experience no difficulty in verifying that condition (3) 
signifies the existence of integers Uh and Vh (h = 0, 1" . " q - 1) such that 

f3(kq + h) = uhk + vh (4.2.8) 

for (k, h) E Z x {O,-l, .. " q - I}; and that the conjunction of conditions (2) 
and (3) signifies that (4.2.8) holds and that in addition U h ¥- 0 for h = 

0,1,·· .,q - 1. 

4.2.7. Other Problems; Multipliers. A specialized question which has 
received a good deal of attention is this: To what extent does the existence of 
an automorphism T of L1 entail the existence of an automorphism of the 
underlying group Rj21TZ? Or, in a more general form: To what extent does the 
existence of an isomorphism T of L1(G1) onto L1(G2 ) entail the existence of an 
isomorphism of G1 onto G2 1 Partial solutions of these problems are known; 
see [R], Theorems 4.7.1, 4.7.2, and Section 4.7.7, and 16.7.1 below. 
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Analogous problems concerning homomorphisms and isomorphisms of 
V(G 1 ) onto V'(G2 ) have been posed. The Rudin·Cohen method does not appear 
to extend to values of p i= 1. Another method of attack on the isomorphism 
problem rests upon a preliminary study of the so·called multipliers of an algebra 
LP(G), that is, the continuous endomorph isms U of LP(G) which commute with 
translations (so that UTa = TaU for all a E G). The connection between the 
two problems stems from the fact that, if T is an isomorphism of V(G1 ) onto 
LP(G2 ), thenrthe formula U 1 = T-IU2 T sets up a one·to·one correspondence 
between the multipliers of V(Gd and those of LP(G2 ). From there on the hope 
is that connections between the multiplier algebras can be translated into ones 
between the underlying groups. 

In Chapter 16 we shall study multipliers per se, turning aside in 16.7.1 in 
order to sununarize how information about multipliers of special types bears 
upon isomorphism problems. 

Regarding homomorpbisms of LP, where 1 < P < 00, see also 15.3.6. 
For a guide to further reading, see MR 41 # 4141; 53 # 8781; 54 ## 3296, 

5746. 

EXERCISES 

4.1. Without using 4.1.2, show that if y is a nontrivial complex homo
morphism of Ll, and if 

M = y-l({O}) == {JELl: y{f) = O}, 

then M is an ideal in V such that 
(1) M =F Ll; 
(2) M is maximal, that is, there exists no ideal I in Ll, distinct from M 

and from Ll, such that Mel; 
(3) There is an identity modulo M, that is, an element e of Ll such that 

e * f - f E M for every fELl (M is accordingly termed regular or modular). 
Remark. It follows from 11.4.9 that the above relation between modular 

maximal ideals and complex homomorphisms is reversible and remains in 
force in a more general setting. 

4.2. Let mE Z, k E Z, k =F O. Define 

Tf(x) = e'm::: • f(kx). 

Verify that T defines a continuous homomorphism of E (= LP or C) into 
itself. When is T(E) = E? 

Hint: See 2.2.2. 
4.3. T being as in the preceding exercise, what is the corresponding map 

IX (as introduced in 4.2.2)1 
4.4. Suppose that T and IX are as in 4.2.1 and 4.2.2. Show that T is 

one-to-one and T(E) contains all trigonometric polynomials if and only if 
y = Z and IX maps Z one-to·one onto itself. 
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4.5. Suppose that T is a continuous homomorphism of Lt' (1 ~ P ~ 00) 

into itself and that a is the corresponding map of Z into Z u {oo} (see 4.2.2). 
Show that 

(1) For any m E Z, a-1({m}) is finite; 
(2) A number k ~ 0 exists such that for all m E Z 

L: e .. ll" ~ k. 
"Ea- 1({m» 

Hint: Consider the T-image of em' 

4.6. /"(Z) is defined for 1 ~ P ~ 00 as in 2.2.5. Verify that /l(Z) is an 
algebra under convolution. Has the algebra /l(Z) an identity element1 

Is t"(Z) an algebra under convolution, if p > 11 (See the Note attached to 
Exercise 3.15.) 

4.7. Find all the continuous complex homomorphisms of the algebra 
11(Z). (See 11.4.17.) 

4.8. Determine all complex-valued functions h on R/21TZ having the 
property that the operator T: f -- hf is a homomorphism of T into Ll, each 
of the latter being considered as a convolution algebra. 

4.9. In the general theory developed in Chapter 4 of [R], affine maps play 
a prominent role. 

Let a be a map of Z into itself which is affine in the sense that 

a(n + n' - nW) = a(n) + a(n') - a(nW) 

whenever n, n', nW E Z. Show that a defines, via formula (4.2.3), a homo
morphism T of Ll into itself, and find an explicit closed formula expressing 
Tf in terms off. 



CHAPTER 5 

The Dirichlet and Fejer Kernels. Cesaro 
Summability 

In this chapter we introduce the so-called Dirichlet and Fejer kernels and 
their elementary properties. These kernels are basic in the study of pointwise 
convergence and summability, respectively, of Fourier series. From their 
properties we shall derive the localization principle, together with alternative 
proofs of the uniqueness and approximation theorems of 2.4.1 and 2.4.4. 

Included in the text and in some of the attached exercises are a few 
properties of Cesaro summability as applied to general series, most of which 
will later be applied in the case of Fourier series. 

5.1 The Dirichlet and Fejer Kernels 

In this section we define these kernels and state a few of their basic 
properties that are crucial in the study of pointwise convergence and Cesaro 
summability of Fourier series. 

A few words about terminology and notation are required. The functions 
DN and FN introduced in (5.1.2) and (5.1.7), and herein called the Dirichlet 
and Fejer kernels, respectively, are precisely twice the functions to which 
these names are customarily attached; compare, for example, [Ba l ], pp. 85 
and 133-134 and [Zd, pp. 49 and 88, where KN is written in place of % F N' 

This choice of nomenclature has been made in order that the convolution 
expressions in (5.1.1) and (5.1.6) shall be valid. 

If N is a nonnegative integer, the Nth symmetric partial sum of the 
Fourier series of! is 

8N!(X) = L j(n)e1nz • 
Inl';;N 

When we speak of the convergence of the Fourier series of! we shall always 
mean the convergence of these symmetric partial sums; see the end of 2.2.2. 

Inserting the integral expression for j(n) we find that 

8N!(X) = 2~ f!(y)D.v(X - y) dy = DN *!(x), 

78 

(5.1.1) 



[5.1] THE DIRICHLET A...~D FEJER KERNELS 79 

where (see Exercise 1.1) one has for x¢O (mod 21T) 

DN(x) = 2: e1nx = sin (l! -:- Yz)x; 
Inl';N sm Y2x 

(5.1.2) 

if x is congruent to 0 (mod 21T), DN(X) has the value 2N + I, which is the 
value obtained by continuous extension of the expression on the extreme 
right in (5.1.2). The function DN , or sometimes the sequence (DN)'N=o, will be 
spokm of as the Dirichlet kernel. 

It is to be observed that DN is a trigonometric polynomial of degree N 
which is even in x and satisfies 

(5.1.3) 

Furthermore, 
(0 < 8 ~ Ixl ~ 1T). (5.1.4) 

The Nth Cesaro sum (see the end of 2.2.2) of the Fourier series of f is 
the arithmetic mean of the first N + 1 terms of the sequence of symmetric 
partial sums thereof, namely, 

(5.1.5) 

These are also spoken of as the (C, I)-means of the Fourier series off' .. "c" 
for Cesaro and the" 1" indicating first order arithmetic means. Using (5.1.1) 
and some elementary calculations, we find that 

UN!(X) = L f!(Y)FN(X - y) dy = FN *!(x) 

= 2: (1 - _In_I )J(n)e1nX , 

Inl';N N + 1 

where the functions (see Exercise 1.1) 

F ( ) = Do(x) + ... + D.v(x) 
N X N + 1 

= 2: (1 - _In_I )e1nX 

Inl.;N N + 1 
_ [sin Yz(N + I)x/sin YzX]2 
- N + 1 

(5.1.6) 

(5.1. 7) 

constitute the so-called Fejer kernel (because Fejer was the first to consider 
systematically the Cesaro summability of Fourier series); when x == 0 (mod 
21T), the final expression (5.1.7) is to be interpreted as N + 1 by continuous 
extension. 

Notice that F N is an even trigonometric polynomial of degree N and that 

(5.1.8) 
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Moreover, 

(0 < 8 ~ Ixl ~ rr). (5.1.9) 

5.1.1. Concerning IIDNIIt- Since FN ~ 0, the relations (5.1.8) and (5.1.9) 
suffice to show that (FN)NzO is an approximate identity (see 3.2.1). This is 
not true of the D N , for which (3.2.1) fails (as will be seen forthwith). This 
failure is the root cause of most troubles concerning the convergence of 
Fourier series, and also the reason why summability is often effective when 
convergence is not. 

We shall show now that (3.2.1) fails for (DN)N=O, since in fact 

(5.1.10) 

as N -00. Indeed, (5.1.2) gives 

IIDNl11 = ~ I" ISin (~ + %)Xl dx 
2rr -11 sm %x 
2 i,,/2lsin (2N + l)YI d (tt· 11 ) = - . y pu mg y = 72 X 
rr 0 smy 

= ~ f/2lsin(2Ny + l)YI dy + 0(1), 

since (siny)-l - y-1 is bounded on (0, rr/2). Putting t =(2N + l)y, the 
remaining integral becomes 

~ rYo(2N+1)1I Isin tl dt = ~ ~ (Yo(k+1)11 Isin tl dt 
rrJo t rrkm OJYok1l t 

= ~ ~ (Yon Uk(S) ds 
rr k~O Jo %krr + s 

on putting t = % krr + sand uk(s) = sin s or cos s according as k is even or 
odd. Now, for k = 1,2, ... and 0 ~ s ~ rr, 

1 1 rr 4 o ~ -- - ~ =-, 
"""" %krr %krr + s (%krr)2 rrk2 

and L.k= 1 liP is convergent. So 

2 2N 5" /2 II DNl11 = - L 1/( %krr) uk(s) ds + 0(1) 
rr k= 1 0 

2 2N 2 
= - L - + 0(1). 

rr 1t=1 krr 

Since L.~~1 11k = log N + 0(1), (5.1.10) is established. 
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5.1.2. New Proofs of 2.4.1 and 2.4.4. It is worth noting that 3.2.2 and 
the opening sentence of 5.1.1 combine to yield independent proofs of 2.4.1 
and 2.4.4. 

Consider, for example, 2.4.1. If j = 0, then (5.1.6) shows that FN *f = 0 
for all N. Since, as has been remarked in 5.1.1, the FN form an approximate 
identity in V, 3.2.2 shows thatf, the mean limit in V (and, iff is continuous, 
the uniform limit) of F N * f as N -+ 00, is zero almost everywhere (or 
everywhere). 

The deduction of 2.4.4 follows similarly from (5.1.6) and 3.2.2, the former 
showing that FN * f is a trigonometric polynomial for all N and all fELl. 

The same arguments and sources yield results that may be interpreted in 
terms of the Cesaro summability of Fourier series, but we defer this develop
ment until Chapter 6. 

5.2 The Localization Principle 

The formulae collected in 5.1 can be used to show that the convergence or 
summability at a point x of the Fourier series of a function f depends solely 
on the behavior of f in the immediate neighborhood of x. A generalized 
version of this so-called localization principle reads as follows. 

5.2.1. If f and g are integrable functions and if, for a given point x, the 
function 

y-+f(Y) - g(y) 
y-x 

is integrable over some neighborhood of the point x, then 

and 

(5.2.1) 

(5.2.2) 

Proof. Since both h -+ SNh and h -+ uNh are linear operators, we may 
assume without loss of generality that g = 0 throughout. Again, since 
(5.1.1), (5.1.6), and 3.1.2 show that 

we may take x = O. 
Now, by (5.1.1), 

1 I" SNf(O) = 217 -ll f( y)DN( y) dy 

= ~I" {!(y) }'Sin(N + Y2)ydy. 
217 -ll sm Y2y 

(5.2.3) 
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If f (y)/y is integrable over some neighborhood of 0, it is easily seen that 
f(y)/sin YzY is integrable over [-77, 77], since for any small IX > 0 the 
ratio y/sin 'l2Y is bounded for 0 < I yl :::;; IX and cosec Yzy is bounded for 
IX :::;; I yl :::;; 77. Equation (5.2.1) [with IJ = x = 0] then follows from the 
Riemann-Lebesgue lemma 2.3.8 applied to the right-hand side of (5.2.3). 

The least laborious way of arriving at (5.2.2) is to infer it from (5.2.1) on 
the basis of the simple and general result in 5.3.1. 

5.2.2. Evidently, the hypotheses of 5.2.1 hold whenever f and g agree 
throughout some neighborhood of x, which is the situation to which the 
localization principle refers. 

5.2.3. Taking g to be a constant function 8, in which case 

(N = 0, 1,2, ... ), 

we see that 5.2.1 already implies that 

lim 8Nf(x) = lim uNf(x) = 8 (5.2.4) 
N N 

whenever [f( y) - 8]/( y - x) is integrable over some neighborhood of y = x. 
This is notably the case whenever f'(x) exists and 8 = f(x). 

This, the first of our results on pointwise convergence and summability of 
Fourier series, will be supplemented by numerous other criteria in Chapters 
6 and 10; it should be compared with Dini's test in 10.2.3. Crude though it is, 
it suffices to cover many specific instances. It shows that the Fourier series 
of most functions which arise in problems of applied mathematics converge 
to these functions at most points. 

5.2.4. Remarks_ (i) One cannot in 5.2.2 replace "some neighborhood of 
x" by "some set of positive measure containing x"; see [Bad, p. 465. 

(ii) The localization principle (5.2.1) breaks down badly for groups Tm 
(m > 1), even for continuous functions f and g. The weaker principle (5.2.2) 
retains validity, at least for bounded functions f and g. See [Z2]' pp. 304-305. 
For certain other groups, see MR 37 ## 1527, 5330. 

5.3 Remarks concerning Summability 

Although summability theory is a highly developed field of activity, our 
concern rests almost entirely and solely in the use of Cesaro's method in 
connection with Fourier series. Even here, moreover, its principal merit is 
simply that it succeeds, in situations where ordinary convergence fails, in 
recapturing at almost all points a function from its Fourier series. Our 
remarks about summability are therefore very few. 
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Consider a two-way infinite series Lnez Cn and define the partial sums 

and the Cesaro (or arithmetic) means 

So + ... + SN 

UN = N + 1 
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We recall (see the end of 2.2.2) that the given series is said to be Cesaro (or 
(C, 1 i-) summable to sum s if and only if 

[There is a Cesaro method (C, a) for every a i= -1, - 2, .. " but we shall 
make n,) use of this concept; see, for example [Zl]' p. 76.] 

Consider as an example the series Lneze1nx. Equation (5.1.2) shows that 
this series converges (to a finite sum) for no real values of x. On the other 
hand, (5.1.7) shows that this same series is Cesaro-sum mabie to 0 for all real 
x tc. 0 (mod 211"). It will appear in Chapters 6 and 10 that this very special 
example is surprisingly significant in relation to the behavior of Fourier 
series in general. 

Turning to generalities, we shall first verify that the Cesaro method of 
summability is stronger than, and consistent with, ordinary convergence. 

5.3.1. If SN~ s, then also UN~ a (as N ~oo in each case). 
Proof. Since one would expect the arithmetic means aN to behave more 

regularly than the SN' this statement should occasion no surprise. In view of 
the identity 

(so - s) + ... + (SN - s) 
N + 1 = UN - S, 

we may in the proof assume that S = O. Then, given e > 0, determine 
No = No(e) so that ISNI ~ e for N > No. For N > No one has accordingly 

So + ... + SNo SNo + 1 + ... + aN 

UN = N + 1 + N + 1 ' 

so that 

where}J = SUPN ISNI < 00. Letting N ~oo, we infer that 

lim sup IUNI ~ e. 

Since e is arbitrarily small, the result follows. 
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5.3.2. W~ have in 5.3.1 tacitly assumed that the limit s is finite. However, 
if we look at real-valued sequences SN' the result extends to properly divergent 
ones. For example, the reader will verify easily that the preceding proof 
adapts easily to show that, if lim SN = 00, then also lim aN = 00. More 
generally, indeed, one has in all cases 

5.3.3. Converse Results. The unrestricted converse of 5.3.1 is false. 
Thus (5.1.2) shows that the series 

2: eln% 

neZ 

diverges properly to 00 if x == O(moo 217), and is boundedly divergent for all 
other values of x. On the other hand (5.1.7) shows that. the series is Cesaro
summable to 0 for any x not congruent to 0 mod 217; if x == O(mod 217), 
aN ~OO, in accord with the remarks in 5.3.2. 

An easy partial converse is contained in the next result. 

5.3.4. If the SN are real and increasing (for example, if en ~ 0), then Cesaro 
summability implies convergence. 

Proof. There is no loss of generality in assuming that SN ~ O. Then 

Hence the. SN are bounded above and convergence follows. 
The result also follows from 5.3.2. 

5.3.5. Tauberian Theorems. There are more subtle partial converses of 
5.3.1, both for Cesaro and for other summability methods of importance. In 
these the positivity of the Cn (assumed in 5.3.4) is replaced by other conditions. 
Since the first results of this type (applying to Abel summability) were 
established by Tauber, such theorems have come to be known as Tauberian 
theorems. A little more about one source of such theorems will be found in 
11.2.4. 

A simple such theorem (due to Hardy; see Exercise 5.8) states that if 
Cn = O(I/lnJ), then Cesaro summability implies convergence. This is worth 
mentioning here because it could be used in conjunction with 2.3.6 to infer 
the convergence of the Fourier series of functions of bounded variation from 
the Cesaro summability thereof (yet to be established in Chapter 6). Not much 
economy would result from this approach, however, and we shall give a 
direct proof of convergence in due course (see 10.1.4). 
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EXERCISES 

5.1. Suppose that fELl satisfies 

wd(a) = o(lai) asa_O, 
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the notation being as in 2.3.7. Prove that f is equal ",lmost everywhere to a. 
constant. 

Hint: Consider first the case wheref is a trigonometric polynomial. Then 
reduce the general case to this by using a suitable approximate identity. 

5.2. Suppose that fELl satisfies 

asa_O 

for some a > O. Let N be any integer such that N a > 1. Prove that f*N is 
equal almost everywhere to a continuous function, where f*N = f * ... * f 
(N factors). (Compare with Exercise 8.4.) 

Note: In the following exercises the notation is as in Section 5.3. 
5.3. Show that if limN ... ",aN exists finitely, then 8N = o(N) as N _00. 
5.4. . Give detailed proofs of the statements in 5.3.2. 
5.5. Show that tlN == 8N - aN is expressible as 

tlN = (N + 1)-1 L Inlc". 
I"I",N 

Show that if 

M == L InIP-1 Ic"IP < 00 
neZ 

for some p ~ 1, and if limN'" ",uN = 8, then limN ... ..,8N = 8. 

Hint: Use Holder's inequality for series to show that 

where A is an absolute constant. Notice that lim supN ... ..,I~NI is unaffected if, 
for any k, en is redefined to be 0 for Inl :s;; k. 

5.6. (I) Suppose that en _ 0 as Inl-oo, and that e" = 0, except perha.ps 
for n = 0, ±n" (k = 1,2,·· .), where I :s;; n 1 < n2 < ... and inf" nk+ljn" 
== q > 1. Show that if lim.v",,,,uN = 8, then limN ... ..,8N = 8. 

(2) Show also that the same conclusion is valid whenever en = o(Ijn). 
Hint: Define tlN as in Exercise 5.5, and write 

u" = sup (IC"kl, ILn/.l)j 

then show that for n" :s;; N < n" + 1 

Ie 

I~NI :s;; 2· L u,qr-". 
ral 

Show that this last expression tends to zero as k _ 00. 
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Remark. The result (1) allows a slight generalization to the case in 
which the hypotheses inf nl<+ l/n/c > 1 is replaced by 

2:-=0- . 1 ( 1) 
/c>m n/c nm ' 

see [Bad, pp. 178-181. 
5.7. Define, for N, k = 1,2,· . " 

UN./C == k-l(SN + SN+l + ... + SN+k-l)' 

Verify that 

and that 

"" ( Inl - N) UN./C = SN + L... 1 - k cn · 
N<)n) .. N+/C 

Deduce from the former relation that if k = kN ~oo with N in such a way 
that NlkN remains bounded, and if limN_",uN = s, then limN_",uN./C = s. 

5.8. Suppose that Cn = O(l/lnl) as Inl ~oo and that limN_",uN = s. 

Show that limN_",sN = s. (This is Hardy's theorem referred to in 5.3.5.) 
Hint: Use the second relation established in the preceding exercise to 

show that 

for a suitable constant A. Choose k = kN suitably and employ the final 
assertion in the preceding exercise. 

5.9. Suppose that 1 ELl satisfies 

as Z ~ zo, for some e > O. Prove that 

2: J(n)e1nZo = 1(zo)' 
nEZ 

Hint: Use 5.2.3. 



CHAPTER 6 

Cesaro Summability of Fourier Series 

and Its Consequences 

6.1 Uniform and Mean Summability 

From 3.2.2 and the fact that the Fejer kernels F N form an approximate 
identity (see 5.1.1), we infer at once the following basic results about uniform 
and mean summability of Fourier series. 

6.1.1. If I E C", and if m is a nonnegative integer not exceeding k, then 

lim IIDm(f - aNf)II", = o. 
N-oo 

If I E V, where 1 ~ p < 00, then 

6.1.2. The case k = 0 of 6.1.1~s especially significant. It asserts that the 
Fourier series of any continuous function is uniformly Cesaro-summable to 
that function. This, together with several other results of a similar nature 
dealt with in this chapter, were given by Fejer in 1904. Since it was already 
known by then that the Fourier series of a continuous function may diverge 
at certain points, Fejer's result can be expected to have helped analysts to 
breathe more freely once again. If the Cesaro method did nothing more than 
this, it would amply justify its existence; as we shall see, it actually does a 
good deal more. 

The proof of 6.1.1 works equally well for many function spaces H other than 
C" and V' (1 ~ P < (0), including at least all so-called homogeneous Banach 
spaces over T. These are by definition the linear subspaces ofL1(T) which are 
endowed with a norm II· liB under which it is a Banach space and such that: 

(i) 11/111 ~ 11/1lBforall/EH; 

(ii) if IE H and a E T, then TalE Hand IITalllB = II/IIB; 

(iii) lima_ o II Tal - IIIB = 0 for aU/E H. 

(See [Kz], Chapter I, 2.10 and 2.11.) 
87 
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It follows from Exercises 3.1 and 3.2 that the second part of 6.1.1 is not 
true, if uNf is replaced by 8Nf; the first part also fails. In both cases the 
failure is a consequence of the fact that 

itself a corollary of (5.1.10). (For the case k = 0 of 6.U, see also 10.3 below.) 
For a homogeneous Banach space B over T satisfying IlenfllB = IIfllB for 

all n E Z and all fEB, it is known (see [Kz], p. 49) that 

lim IIf - 8NfJIB = 0 for all fEB 
N-«J 

if and only ifB admits conjugation; that is to say, if and only iff E B implies 
J E B, where the conjugate function J is defined as in 12.8.1. [This last is· 
equivalent to demanding that, for every fEB, there is a function J E B such 
that 

j(n) = -i.sgn n.j(n) for all n E Z.] 

The space LP (I < P < co) admits conjugation (see 12.9.3), but neither C 
nor Ll admits conjugation (see 12.8.3-12.8.5). 

6.1.3. Characterization of Fourier Series. At this point we can charac
terize the Fourier series of a given fELl among all trigonometric series, 
thereby fulfilling a prediction made in 1.3. Thus the case p = 1 of 6.1.1 shows 
that the uNf, the Cesaro means of the Fourier series of f, converge in mean 
in Ll to f. On the other hand, the Fourier series of f is the only trigonometric 
series with this property. 

Suppose indeed that LCnefn:& is a trigonometric series whose Cesaro means 

converge in mean in Ll to f. Then, by 2.3.2, one has 

lim uN(n) = j(n). 
N- 00 

However, 

UN(n) = (1 - )~ l)cn 

if InJ ~ N and is zero otherwise, so that lim",_oou",(n) = Cn' Thus Cn = j(n) 
for all nEZ, and the trigonometric series in question is the Fourier series off· 

6.1.4. Behavior of IIf - uNf lip as N ~co. Although we know from 6.1.1 
that, as N ~CO, 
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if 1 E V and 1 :::; P < 00, and that 

111 - aNfiI.., = 0(1) 

if 1 E C, these assertions cannot be improved to the extent of replacing 0(1) 

by O(eN) for any fixed sequence eN -+ O. 
More precisely, it is impossible to find a sequence (KN )N=1 of integrable 

functions and a sequence (e.V)N=1 of positive numbers such that 

(1) lim inf eN = 0 
N-oo 

and either 
(2) 111 - KN *Illp = O(eN) for some p satisfying 1 :::; p < 00 and each 

lEV, 
or 

(2a) 111 - KN *11100 = O(eN) for eachiE C. 

On the other hand, it will be seen in Section 6.5 and Exercises 6.6 to 6.9 
that integrable functions K N and positive numbers eN -+ 0 can be chosen so 
that (2a) is valid for functions 1 satisfying additional smoothness conditions. 

We will exhibit a proof of the impossibility of satisfying (1) and (2); an 
exactly similar argument may be used to establish the impossibility of 
satisfying (1) and (2a). This proof shows, by using functional analytic 
techniques, that the assumption that (1) and (2) can be fulfilled leads to a 
contradiction of 2.3.8. Before reading the following proof, the reader is urged 
to look at Appendices A and B.1. 

Suppose then that (1) and (2) are satisfied by some choice of (KN)N=1 and 
(eN)N=1' We shall study the function q defined on V by the formula 

q(n = sup {e;1 111 - KN*Illp: N = 1,2,.·.}. 

According to (2), q is finite-valued on V, and from this it is almost evident 
that q is a seminorm on V (see Appendix B.I.l). For each N, an application 
of 3.1.6 shows that the function 

I-+e;1 111 - KN *Illp 

is continuous on LP. Hence (see Appendix A.4) q is a lower semicontinuous 
sl'minorm on V. The crucial step is to apply Appendix B.2.1(1), using 
therein E = V and Pk = q for k = 1,2" .. ; since LP is complete (see 2.2.4), 
this application is justified and leads to the conclusion that q is continuous on 
Lp. This signifies the existence of a constant c such that q(f) :::; c· 111 lip for 
all 1 E v'. In other words, we have 

(6.1.1) 

for 1 E V and N = 1,2" . '. If herein we choose to take 1 = en, we shall 
obtain thereby the relation 

(6.1.2) 



90 CEsARO SUMMABILITY OF FOURIER SERIES 

for all n E Z and N = 1,2,· . '. Therefore, in view of (1), it will appear from 
(6.1.2) that 

I)(N(n) - 11 ~ % 
for all n E Z and infinitely many N. For any such N, it thus appears that 

lim inf IKN(n)i ~ % > 0, 
Inl-'" 

which contradicts 2.3.8. This contradiction terminates the proof. 
Further illustrations of this type of proof will be discussed in detail in 

Section 10.3. 

6.2 Applications and Corollaries of 6.1.1 

6.2.1. Comments on 6.1.1. Before pressing on to some refinements of6.1.1 
contained in Sections 6.3 and 6.4, we shall make a number of deductions 
from 6.1.1, each of which is of considerable importance. 

Since it is evident that 6.1.1 refines the trigonometric polynomial approxi
mation theorem of 2.4.4 to the extent of specifying an algorithm for the 
construction of trigonometric polynomials approximating a given function, 
it may well suggest two lines of thought, namely: 

(1) Real analysis contains another famous approximation theorem, to wit, 
that of Weierstrass. This refers to the approximation, uniformly on a compact 
real interval I, of continuous functions on I by ordinary polynomials. In 
6.2.2 and 6.2.4 we shall show how this theorem is deducible from 6.1.1 and 
indicate a common source of both theorems. 

(2) What can be said in general about approximation by trigonometric 
polynomials~ For a givenj, how good an approximation is afforded by UNj in 
comparison with other trigonometric polynomials of degree at most N? We 
shall come round to a brief discussion of these matters in Section 6.5. 

Meanwhile, 6.2.5 to 6.2.8 will be concerned with some deductions from 6.1.1 
more directly concerned with Fourier series. 

6.2.2. The Weierstrass Polynomial Approximation Theorem. This 
asserts that. iff is a (not necessarily periodic) continuolls function on a compact 
interval [a, b] of the line, then f is uniformly approximable on [a, bJ by 
(ordinary) polynomial functions. 

In proving this on the basis of 6.1.1, we may without loss of generality 
assume that [a. b] is [ - 1T, 1T]' Then a constant c may be chosen so that f - ex 

takes the same value at -1T as at 1T, and can therefore be extended into a 
periodic continuous function. It is evidently sufficient to show that this 
modified function is uniformly approximable on [-1T, 1T] by polynomials. Thus 
we may assume from the outset that f is periodic and continuous. 

Given any e > 0 we choose N so large that 
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The trigonometric polynomial 

uNf(x) = L en e1n%, 

Inl';'" 
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can in turn be uniformly approximated on [ - 1T, 1T] to within % e by ordinary 
polynomials, to do which it suffices to replace each exponential e1n% by a 
sufficiently large number of terms of its Taylor expansion about the origin. 
the latter series converging uniformly on any compact set. The result is a 
polynomial function P such that 

uniformly for Ixl ~ 1T. But then 

I(J - P)(x) I ~ e 

uniformly for Ixl ~ 1T, and Weierstrass' theorem is established. 

6.2.3. Other Proofs of Weierstrass' Theorem. There are many other 
proofs of Weierstrass' theorem, both "classical" and "abstract-modern" in 
flavor; the latter are certainly the more enlightening. 

It was M. H. Stone who, in 1937, first undertook an abstract analysis of the 
status of Weierstrass' theorem and its close relatives. His work and subsequent 
developments laid bare the anatomy of the situation and have resulted in very 
general approximation theorems concerning closed subalgebras of the Banach 
algebra (with pointwise operations) of continuous functions on any compact 
Hausdorff space; these algebras will be encountered again in 11.4.1. Both 2.4.4 
and \Veierstrass' theorem are contained as very special cases within this 
scheme. For a recent survey, see Stone's article "A generalization of Weier
strass' approximation theorem" appearing on pp. 30-87 of [SMA]; see also [E], 
Section 4.10, [HS], pp. 94-98, and [L2], Chapter 1. 

6.2.4. Bernstein Polynomials. In just the same way that 6.1.1 includes 
and refines 2.4.4, a famous theorem of Bernstein includes and refines the 
Weierstrass theorem in 6:2.2. Bernstein's theorem asserts that, if f is a con
tinuous function on [0, 1], then the associated so-called Bermtein polynomial8 

.., 
B..,f(x) = 2: f(nfN) ·..,Cnxn(l - x)N-n 

n=O 
(N = 0, 1, 2, ... ) 

conv('rgc to f uniformly on [0, 1]. 
Th('rc is a very ('xt('nsivc literature dealing with Bernstein polynomials; for 

a start, the interested reader should consult [Ka], pp. 52-59, [Ld, and [L2], 

Chapter 1. 

We now turn to some deductions from 6.l.1 more closely connected with 
Fourier series. 
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6.2.5. Suppose that f, g E L1 and that the Fourier series of g is essentially 
boundedly convergent almost everywhere, that is, that SUPN IlsNgl[., < 00 

and that limN_",sNg(x) exists for almost all x. Then 

II "'. A 2 f(x)g(x)dx= Lf(n)"g(-n), 
7T neZ 

the series being convergent. 
Proof. By hypothesis we have 

[SNg(X)[ ~ M a.e., 

M being a number independent of N and of x, and limN_oosNg(x) exists almost 
everywhere. By 5.3.1 and 6.1.1, limN_oosNg(x) = g(x) almost everywhere. 
Consequently, 

2~ I f(x)g(x) dx = lim 21 If(X)SNg(X) dx 
N-aJ 11' 

lim 2: j( -n) • g(n), 
N-oo Inl",N 

passage to the limit under the integral sign being justified by Lebesgue's 
theorem ([W], Theorem 4.lb). From this the stated results follow. 

6.2.6. Remarks. (1) By 2.3.5, the hypotheses on g are certainly fulfilled 
whenever g E C2. Consequently, 6.2.5 justifies the characterization of the 
Fourier series of f E L1 among all trigonometric series mentioned in (D) of 
1.3.2. 

(2) The conclusion of 6.2.5 may be derived from the mere assumption that 
SUPN [[sNgl[ '" < 00. Thus, Appendix B.4.1 may be used to show that there is 
at least one subsequence (SNJ]) which converges weakly jn LOO. Moreover, if 
(SNJ]) is any subsequence converging to h weakly in 1''', and if U E T, then 

2~ I U(X)SN,p(X) dx = L f u(x)g(x) dx 

for all large k; hence 

2~ f u(x)h(x) dx = 2~ f u(x)g(x) dx 

and so h = g a.e. It follows that SNg _ g weakly in Loo. In view of Appendix 
C.I, this is equivalent to the desired conclusion. 

6.2.7. Remark. The formula appearing in 6.2.5 is one variant of the 
so-called Parse val formula, a prototype version of which has appeared in 
Exercise 1.7, and to which we shall return in Sections 8.2 and 10.5 with 
different hypotheses onf and g. 

It is to be observed that the series appearing in 6.2.5 is not convergent for 
allf E L1 and all continuous g; see Exercise 10.7. On the other hand, 6.1.1 is 
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easily seen to imply that the series .is Cesaro-summable to (lj21T) f fg dx 

whenever J E V and gEL"'; see Exercise 6.2. 
One very special but important case of 6.2.5 demands closer examination, 

since it leads to the conclusion that, no matter how badly the Fourier series 
of JELl may behave in respect of pointwise convergence (see 10.3.4), yet 
nevertheless one may always legitimately integrate term wise this Fourier 
series. 

6.2.8. If J E L\ then 

fb elnb e1na 

J(x) dx = 2: j(n) :- , 
a neZ ~n 

the term corresponding to n = 0 being understood to meanj(O)(b - a). 
Proof. Owing to the meaning assigned to the term corresponding to 

n = 0, it is sufficient to establish the formula for the case in which a = 0 
and 0 < b < 21T. Let y be the function equal to 1 on the interval [0, b), zero 
elsewhere on [0, 21T), and extended so as to have period 21T. A direct computa
tion shows that 

• e -Inb - 1 e - Vzibn sin % bn 
g(n) = . = , 

-21T~n Tm 
(6.2.1) 

the right-hand side being understood to mean bJ21T when n = O. Consequently 
one finds after some reduction that 

() b ~ sin n(x - b) - sin nx 
8 NY x = - + L.. . 

21T n=l Tm 

Reference to Exercise 1.5 confirms that this series is boundedly convergent 
for all x. Also, by 5.2.3, the limit of 8NY(X) is g(x) provided 0 < x < 21T and 
x i= b, since g is constant on some neighborhood of each such point x. Hence 
([W]. Theorem 4.lb) 

Jb J211 
J(x) dx = J(x)g(x) dx = lim 

o 0 N-oo 

[211 
Jo J(X)' 8NY(X) dx 

2: g(n)· [1l1l J(x)e1n:z: dx 
Inl .. N Jo 
2: g(n)' 21Tj( -n) 

Inl .. N 

2: j(n)' 21Tg( -n). 
Inl .. N 

Using (6.2.1), the desired result appears. 
Remark. This result (and even a little more) will be obtained on the 

basis of more general theorems in 10.1.5. 
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6.3 More about Pointwise Summability 

We shall here deal with some refinements of the first half of 6.1.1. 
It is convenient to introduce some notation. Given a point x and a number 

8, we write 

f~( y) == f~( y, x) = Y2[f(x + y) + f(x - y) - 28], 

in terms of which (5.1.6) and (5.1.8) lead to 

(6.3.1) 

(6.3.2) 

It is our aim to give simple conditions sufficient to ensure that the expression 
(6.3.2) tends to zero as N -,)000. In studying this we shall not assume from the 
outset that 8 is the" right" value, namely f (x). Indeed, it is the behavior of 
n in the neighborhood of y = 0 (that is, of f in the neighborhood of x) which 
is significant, and the prime feature is not the value ofn at o (that is, of f 
at x) but rather the limiting behavior of f~ near 0 (that is, of f near x). In 
this section we consider the simplest case, in which we assume outright the 
existence of the limit off~(y) as y-,)o +0. 

6.3.1. Suppose that fELl and that 

f(x + 0) +f(x - 0) == lim [f(x + y) +f(x - y)] (6.3.3) 
]1- +0 

exists finitely. Then 

lim uNf(x) = Y2[f(x + 0) + f(x - 0)). (6.3.4) 
N-", 

The limit in (6.3.4) is attained uniformly on any set on which the limit in 
(6.3.3) is attained uniformly. 

Proof. The formula (6.3.2) will be applied, taking therein 

8 = Y2[f(x + 0) + f(x - 0)). 

The hypotheses signify that n( y) -,)0 0 as y -,)0 + O. Given any e > 0, there 
exists therefore a number 0 > 0 such that If~(y)1 ~ e for 0 ~ y ~ o. 
This number 0 will depend upon x and e, but can be chosen uniformly with 
respect to x when the latter varies in any set on which the limit in (6.3.3) is 
attained uniformly. The integral in (6.3.2) is then expressed as a sum 

say. Then 
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by (5.1.8). (Notice that we are here using positivity of F 1'1: this is not available 
for DN and the substitution of IDNI for DN would vitiate the argument 
irreparably.) On the other hand, the use of (5.1.9) leads to 

If t: and S are held fixed while N is allowed to tend to infinity, it is seen that 

lim sup IUNf(x) - 81 :s;; t: + lim sup 1121 = t:. 
N-oo N-~ 

Since t: is a freely chosen positive number, the desired conclusion now follows. 

6.4 Pointwise Summability Almost Everywhere 

So far we have depended solely on the fact that the Fejer kernels form an 
approximate identity. By using somewhat more special properties, combined 
with a fundamental theorem of Lebesgue related to the differentiability of 
indefinite integrals, we can establish the pointwise summability almost 
everywhere of the Fourier series of any integrable function. Before proving 
this result, we shall review the auxiliary requirements. 

6.4.1. Auxiliary Inequalities. Concerning F 1'1 we observe two inequalities. 
Temporarily using A, B to denote absolute constants, the first inequality 
reads 

(6.4.1) 

which is easily established by examining separately the ranges 0 :s;; Y :s;; TT/ N 
and TT/N :s;; Y :s;; TT; in the first interval, F N( y) is majorized by a multiple of 
N, and in the second by a multiple of N-ly-2. This inequality shows in 
turn that 

o :s;; FN(y) :s;; F~(yl :s;; ~ (0 < y :s;; TTl. (6.4.2) 

We shall also need the following consequence of (6.4.1): 

(6.4.3) 



96 CEsARO SUMMABILITY OF FOURIER SERIES 

6.4.2. Regarding the theorem of Lebesgue it suffices to recall that for any 
integrable f, periodic or not, and almost all x it is true that 

f If(x + y) - f(x)1 dy = o(h) 

f If(x - y) - f(x)1 dy = o(h) 

as h ~ + o. For a proof, see [HS], p. 276. 
Using the notation introduced in Section 6.3, it follows that for almost 

all values of x one has 

f In( y)1 dy = o(h) (h~ +0), (6.4.4) 

when s is taken to be f (x). Such points x are usually termed Lebesgue points 
of f and the set of such points the Lebesgue set of f. 

Now we can state and prove the main theorems of this section. 

6.4.3. Iff E Ll, and if for a given x and s one has 

50" If~(y)1 dy = o(h) (h~ +0), (6.4.4) 

then 
lim uNf(x) = s. (6.4.5) 

N-«J 

Proof. We start again from the formula (6.3.2), namely, 

Assuming that (6.4.4) is satisfied, we suppose that e > 0 is given and choose 
8 > 0 so that 

o ~ J(h) == f In(y)1 dy ~ eh (0 ~ h ~ 8). 

By (6.4.1), 

1 J6 I J6 1- n(y)FN(y) dYI ~ - If!(y)IF~(y) dy. 
~ 0 ~ 0 

Partial integration and (6.4.6) show that this is majorized by 

~-lJ(8)F~(8) _ ~-1 [6 J(y)Fr(Y) dy 

(6.4.6) 

Jo 6 

~ ~-le8· F~(8) + ~-le 50 yIFt'(y)1 dy 

~ YzA~-le + B~-le 



[6.4] POINTWISE SUMMABILITY ALMOST EVERYWHERE 97 

by (6.4.2) and (6.4.3). Thus 

and therefore 

I.! (6 f~(y)FN(Y) dyl ~ %A7T- le + B7T- l e, 
7T Jo 

laNf(x) - 81 ~ 7T- l(%A + B)e + 1- f~(y)FN(y)dyl· 1 fn 
7T 6 

(6.4.7) 

Now, for any S > 0, the inequality (5.1.9) shows that the integral appearing 
in (6.4.7) tends to zero as N ---+00. So, keeping e and S fixed, we infer from 
(6.4.7) that 

lim sup laNf(x) - 81 ~ 7T- l (%A + B)e. 
N-«> 

Finally, letting e ---+ 0, (6.4.5) follows. 

6.4.4. If f E L1, then 

lim aNf(x) = f(x) (6.4.8) 
N-co 

holds for almost all x. 
Proof. This is immediate on combining the closing remark in 6.4.2 

with 6.4.3. 

6.4.5. If a trigonometric series 2:cnefn% is Cesaro·summable almost every
where to a sum f(x), and if this series is a Fourier-Lebesgue series, then 
f E L1 and the series is the Fourier series of f. 

Proof. By hypothesis the series is the Fourier series of a function 
g ELl. By 6.4.4, the Cesaro means aN of the given series converge almost 
everywhere to g. Hence g = f a.e., .and the stated results follow. 

6.4.6. Remark. In connection with 6.4.5,it must be remarked that a 
trigonometric series 2:cne1n:r may well be CesiLro-summable almost everywhere 
to an integrable sum and yet fail to be a Fourier-Lebesgue series. Thus the 
series 1 + 22::'=1 cos nx is Cesaro-summable to 0 for every x :t: 0 (mod 211) 
[as appears from (7.1.1) and (7.1.2)], but 2.3.8 shows that it is not a Fourier
Lebesgue series. (It is, however, the Fourier-Stieltjes series of the Dirac 
measure e; see 12.2.3 and 12.5.10.) 

6.4.7. The Majorant Function a*f. It is worth observing that, if g E Lao, 
then (5.1.8) gives at once for all x the inequality 

(6.4.9) 

In view of (6.4.9) it is interesting to consider the majorant function 

a*f(x) == sup la.vf(x)1 
N 

(~ 00). (6.4.10) 
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Naturally, u*J is a nonnegative measurable (in fact, lower semi continuous) 
function. By using special properties of the F N it may be shown (see [Zd, pp. 
154-156; Edwards and Hewitt [1], Theorem 3.1) that this majorant satisfies 
the following integral inequalities: 

Ilu*J lip ~ ApllJ lip if J E LP and p > 1, . 
Ilu*Jllp ~ ApllJIIl if JELl and 0 <p < 1, 

Ilu*J III ~ ~ f IJllog+ IJI dx + B 

if J • log + I J I E Ll . 

(6.4.11) 

(6.4.12) 

(6.4.13) 

In these inequalities A and B denote absolute constants, Ap depends upon p 
only, and log+t = log (max (1, t)). 

Concerning the analogous assertions applying to the majorant 

s*J(x) == sup ISNJ(x)1 
N 

(6.4.14) 

of the ordinary partial sums of the Fourier series of J, see 10.3.5 and 10.4.5. 

6.4.S. The Estimate (6.4.9). The relation (6.4.9), valid for g E V", is close 
to being the best possible. Indeed, if we are given any set E of measure zero, 
there exists a nonnegative function f belonging to LP for every p < 00 and 
such that 

(x E E). (6.4.15) 

To verify this we may assume that E lies in (0,21T) and choose numbers 
a" > 0 and c" ~ 0 (k = I, 2, ... ) so that 

(6.4.16) 

for every p < 00; for example, c" = log k, a" = k - 2. Since E has measure 
zero, we may choose open sets E" such that E c E" c (0, 21T) and having 
measure m(E,,) E; ale' Let fIe denote the characteristic function of E,,, extended 
by periodicity, and put 

Then f ELP for every p < 00, as follows from the second clause of (6.4.16) and 
Beppo Levi's theorem ([W], Theorem 4.1e). Observe also thatf is nonnegative 
and lower semicontinuous. According to 6.3.1, 

lim uNf,,(x) = 1 
N~" 

for all x E E" and, a fortiori, for x E E. Since FN is nonnegative, one has for all 
x and all k 
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and so for aU x E E and all k 

lim inf ClNf(x} ~ c". 
N~'" 

This, together with the first clause of (6.4.16), yields (6.4.15). 
See also Exercise 6.18. 

6.4.9. Remarks on Conver~ence. By combining Exercises 5.5 and 5.6 
with 6.4.4 one can specify some simple conditions onf e Ll sufficient to ensure 
that 

a.e.; (6.4.17) 

see Exercises 6.12 and 6.13, and also 10.1.1, 10.1.4, 10.2.1, and 10.2.3. As will 
appear in 10.3.4, the relation (6.4.17) is hopelessly over-optimistic for general 
feLl. 

6.5 Approximation by Tri~onometric Polynomials 

In this section we shall take a look at the issues enumerated in 6.2.1(2). 
This involves an excursion around the fringes of the general question of 
approximation by trigonometric polynomials; for major inroads into the 
general theory the reader must turn to the relevant portions of [L2], [Z], 
[Ba], [Ti], and [BK]. 

6.5.1. The Functionals PN and EN' For definiteness we shall work within 
the Banach space C of continuous functions, but the reader will scarcely 
need to be told that each question posed in this setting has some sort of 
analogue for the case in which C is replaced by V' (or, indeed, by anyone 
of a number of other quite natural function spaces). 

In order to examine the questions raised in vague terms in 6.2.1(2), we 
introduce two sequences of functionals PN and EN (N = 0,1,2,· .. ) defined 
on C in the following way: 

(6.5.1) 

where TN denotes the set of trigonometric polynomials of degree at most N. 
Plainly, the relative magnitude of PHf and EHf provides a sensible measure 
of just how good UHf is as an approximant to f, when compared with other 
elements of T H' 

It is evident that 

EN+d:!O; EHf " PH!. 

and that PN! = 0 if and only if! is a constant function. Moreover (see 
Exercise 6.5), the infimum EH! is actually an a.ssumed minimum; as a 
consequence it follows that E Hf = 0 if and only if! e T H' 

According to 6.1.1, PH! = 0(1) as N -00 for each f e C; yet, by 6.1.4, the 
rela.tion PNf = O(eN) is false for some f e C (in fact. for a nonmeager set of 
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IE C) whenever E,y = 0(1) is given. It is also easily shown (see Exercise 6.10) 
that the relation p,yl = o(ljN) holds if and only if I is a constant. This 
simple result is noteworthy when it is compared with Exercises 6.8 and 6.9; 
it then shows conclusively that, for sufficiently smooth nonconstant con
tinuous functions I, aNf is far from being the optimal approximant to f 
among all elements of TN. If f is very smooth, sNf is a decidedly better 
approximant to I than is aNf. Crudely speaking, the great advantage of aNf 
is to be seen for general.continuous functions f. 

After these preliminary remarks we now proceed to establish some 
improved estimates for PNI in case I satisfies certain Lipschitz (or Holder) 
conditions. This latter type of condition is for our immediate purposes best 
expressed in terms of a modified modulus of continuity, namely, 

compare with (8.5.1) and the definition of wd in 2.3.7. Applying (6.3.1) and 
choosing s = I(x), we see that 

so that (6;3.2) yields 

Since (6.4.1) shows that 

A 
FN(y) ~ Ny2 

for a suitable absolute constant A, (6.5.2) entails that 

f AN IllN r\ I( ) d ~ I" O",/(y) dy PN ~ Ua: Y Y + N 2 
7T 0 7T lIN Y 

(6.5.2) 

(6.5.3) 

Further progress will be facilitated by appeal to the following simple result, 
the proof of which will be left to the reader. 

6.5.2. Suppose that a and fJ are nonnegative functions defined on some 
interval (0, c), where c > 0, and integrable over (c', c) for each c' satisfying 
o < c' < c. Suppose further that a( y) = o[.B( y)] as y -. +0, and that 

f fJ(y) dy-.oo as t-. +0. 

Then also 

f a( y) dy = O[f fJ( y) dy] as t-. +0. 

Here now is the main result of this section. 
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6.5.3. Suppose that the function w is defined, nonnegative, and increasing 
on some interval (0, e), where e > 0, while y-aw(y) is decreasing on the same 
interval for some choice of a satisfying ° < a < 1. Suppose further that f is 
continuous and satisfies 

Then 
D.",f(y) = O[w(y)] (respectively,o[w(y)]) as y~ +0. (6.5.4) 

as N ~ ct) • (6.5.5) 

Proof. If e < 1T, and if we extend w by setting w( y) = w(e) for e < y ~ 1T, 
this extended function satisfies the required conditions on the interval 
(0, 1T]. Thus, we may as well assume from the outset that c = 1T. 

Now, without appeal to 6.5.2. it follows from (6.5.4) that 

{liN (liN 

N· Jo D.",f( y) dy = 0 (respectively, 0) (N . Jo w( y) dy) 

= 0 (respectively, 0) (N'N-l.w(~)) 

= 0 (respectively, 0) (w(~)), (6.5.6) 

the second step being justified since w is increasing. 
To handle the second term on the right of (6.5.3), we apply 6.5.2, taking 

a( y) = D.",f( y)/y2 and f3( y) = w( y)/y2. Unless w is identically vanishing 
(in which case f is constant and nothing remains to be proved), the decreasing 
character of w( y)/ya for some a satisfying ° < a < 1 ensures that f3 satisfies 
the hypotheses of 6.5.2. We thus obtain 

N-l. fit D.",f(Y,} dy = N-l. 0 (respectively, 0) (fit w(y)2dy ) 
liN y liN Y 

= 0 (respectively,o)[N-l·flt y-aw (y)·ya- 2 dy] 
liN 

= 0 (respectively,o) [N-l. (N-l)-a w(~) 

• (" ya - 2 dY] ; 
JIIH 

the last step is justified since y-aw ( y) is decreasing. Evaluating the remaining 
integral and simplifying, one obtains 

N-l. L~H D.«Jf~) dy = 0 (respectively, 0) [w(~)]. (6.5.7) 

It now remains but to combine (6.5.3), (6.5.6), and (6.5.7) in order to derive 
(6.5.5). 

6.5.4. Remarks (1). The majorization given in 6.5.3 is. at least for certain 
natural choices of w, the best poBBible (see [Bad. p. 206). Somewhat similar 
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results are known for functions! which satisfy a mean Lipschitz condition of 
the type IITJ - flit = O(iala) as lal->- 0; see [Zd, p. 117. See also MR 53 
# 6203. 

(2) Inasmuch as EN! "" PN!, Subsection 6.5.3 and its analogues yield majorants 
for EN! for restricted functions!. Superior results are obtainable by estimating, 
not 

PN! = Ilf - UN! II "', 

but rather II! - 'TN!II"" where 

'TN! = 2U2N-d - uN-deT2N - l ; 

some calculations of this nature are proposed in Exercises 6.6 to 6.9. More 
elaborate results appear in Timan [1]. One might also use to the same end 
the so·called Jackson polynomials J N * f, where 

(sin %N'X)' 
J N(X) = eN . 1; , 

sm ZX 

where N' = [%N] + 1 and where the number eN is chosen to make IIJNlll = 1; 
see [L2], pp. 55-56. See also W. R. Bloom [3], [4]. 

6.5.5. Converse Results. It should also be mentioned that many results 
in the reverse direction are known: given the possibility of approximating f 
with a given degree of accuracy by trigonometric polynomials of degree at 
most N, one can infer smoothness properties of f. The earliest such results 
appear to be the work of Bernstein (1912) and of de la Vallee Poussin (1919); 
since then the subject has been studied vigorously (see [L2], Chapter 4, and 
[BK], pp. 45-59 and the references cited there). A very special instance of this 
type of result appears in Exercise 6.10. A crucial role in these investigations is 
Bernstein's inequality (see Exercise 1.9). the basic reason being that this 
inequality combines with the fir.st mean value theorem to yield an estimate for 
the modulus of continuity, IITat - til",. of a trigonometric polynomial t in 
terms of Iltll", and the degree Nof t. 

A sample result asserts that if fee is such that ENf = O(N-a), where 

o < IX "" 1, then 

{
O(lala ) 

IIT"j-jll",= O(lalloglal- l ) 

ifa < 1, 

if a = 1; 

this is very close to being a converse to a special case of 6.5.3. Other results 
infer the existence of several continuous derivatives off. together with estimates 
of their iterated differences; see [L2], loco cit., and [BK], pp. 45-57. 72-88. See 
also MR 54 ## 832, 13433; 55 # 960; and Zamansky [1]. [2]. 

6.6 General Comments on Summability of Fourier Series 

Cesaro summability has so far received all our attention, but we should 
mention in passing the Abel (or Abel.Poisson) method, which is an equal 
favorite. See also Exercise 6.14 for yet another method of great importance 
in the theory of trigonometric aeries. 
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The Abel means of the Fourier series of! are the functions 

Arf(x) = L r lnl j(n)etnx 

neZ 

= PT *!(x), 

103 

(6.6.1) 

where the continuous parameter r satisfies 0 ~ r < 1 and where P T is the 
so-called Poisson kernel 

1 - r2 
PT(x) = 1 _ 2r cos x + r2 

encountered in the Poisson representation formula for harmonic functions. 
Abel summab·ility of the Fourier series of! refers to the limiting behavior of 
the means AT! as r --+ 1 (from below). 

All thlJ results proved in this chapter about Cesaro summability of Fourier 
series remain true in respect of their Abel summability. (The reader is urged 
to verify this statement as an extended exercise.) In a few regards (which 
will nowhere concern us), the Abel method is slightly to be preferred, partly 
because of its evidently closer connections with complex variable theory; 
for details, see [ZtJ, Chapters III and VII; [Z2], Chapter XIV. See also 
Exercise 6.16. 

Even for quite general (locally compact Abelian or compact) groups, there is 
indeed an unlimited number of summability methods, each expressible in terms 
of a limiting process lim K, * j, and each just as effective as the Cesaro or Abel 
methods in respect of norm·convergence in C or in LP( 1 ~ P < co). In each 
case, (K,) is a sequence or net of kernels, usually forming an approximate 
identity in Ll and composed of very well·behaved functions. The fun begins 
when. one wishes to examine the associated problem of pointwise almost every
where summability for discontinuous functions, concerning which surprisingly 
little is yet known (except for the circle group T, R, and their finite products). 
Some progress is reported by Stein [1] for the case of compact groups and 
spaces V' with 1 ~ P ~ !; lIomewhat weaker results with a wider range of 
applicability are discussed by Edwards and Hewitt [1]. These results apply in 
fact to sequences of m-operators of type (LP, V) (1 ~ P < co); see 16.2.7 and 
16.2.8. 

6.7 Remarks on the Dual Aspects 

The results in this chapter and in Chapter lO to follow can both be regarded 
as investigations bearing upon how one may interpret, in a pointwise sense, 
the" inversion formula" 

! = (jr" (6.7.1) 

where! is a given integrable function on G = T. In this chapter we have 
concentrated on the case in which the second Fourier transformation in 
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(6.7.1) is interpreted via pointwise summability methods; in Chapter 10 the 
interpretation is via pointwise convergence (see the discussion at the end 
of 2.2.2). 

In Chapters 8, 12, and 13 it will appear that the same inversion formula 
can be interpreted by using mean and distributional convergence. 

There remains still the dual inversion formula, to wit, 

(6.7.2) 

where now 4> is a given function on Z. Here again, the difficulties concentrate 
around the definition of ~; see Section 2.5. As usual, the adoption of point
wise convergence or summability as the means of defining ~ raises problems 
(except in the transparent case in which 4> Ell). These thorny features largely 
evaporate if mean or distributional convergence is used, as will be done in 
8.3.3. 12.5.4, and 13.5.1(2). 

EXERCISES 

6.1. Suppose that f E LP (1 ~ P ~ 00) and that 2:c"el"x is a trigonometric 
series with partial sums 8N whose Cesaro means are aN. Prove that if 

then 

This is an analogue, for mean convergence, of 5.3.1. 
6.2. Suppose that fELl and gEL"'. Show that 

-.!..ffg dX = lim L (1 - N 1n1 l)i{n)y(-n). 
21T N_oo l"I<iN + 

6.3. Write, for f E L1, 

Prove that 

6.4. Is 

m(S) = ess. sup If(x)l. 
Ixl .. 6 

m = lim m{S). 
610 

( _1)"e1nx 

~ (1 + Ini)log (2 + n2 ) 
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the Fourier series of a bounded (measurable) function? Give reasons for 
your answer. 

Note: The next five exercises form a sequence concerned with approxima
tion by trigonometric polynomials; they should be attempted in order of 
enumeration. 

6.5. For IE C write, as in (6.5.1), 

ENI = inf III - til <Xl , 

the infimum being taken with respect to all trigonometric polynomials t of 
order at most N. Prove that this infimum is assumed. 

6.6. Assuming the formula 

I fOO d uN-d(x) = - I(x + y) • 2 sin2 YzNy' N Y2 
~ -<Xl Y 

for lEe (see [Zl]' p. 92), verify that for N ~ I 

TNI == 2U2N-d - uN-d 
is given by 

2f<Xl [ ( y) ( Y)] k(y) dy TNI(x) =:;;: 0 f x + N + f x - N ~. 

where 
h(y) = sin2 y - sin2 Yzy = Y2(cOS y - cos 2y). 

6.7. The notation being as in Exercise 6.6, define 

(i = 1,2,· .. ; y > 0). 

Verify that 

(I) fa<Xl IHt(y)i dy < 00 (i = 0, 1,2,···), 

(2) Hi(O) = 0 if i > 1 is odd. 
Hints: For (I), check that Ht(y) = O(y-2) as y-+oo. For (2), apply 

the results of Exercise 6.6 taking in turn f (x) = 1 and I (x) = cos x. Taking 
x = 0 yields 

- H o( y) dy = 1, 4f<Xl ~ fa<Xl cos (1)' Ho(Y) dy = 1. 
1T 0 

Integrate the second relation by parts and use the first to obtain 

fa<Xl cos (1) . H 2(y) dy = O. 

Now let N -+00 to conclude that H 3 (0) = O. Similarly, 

H5(0) = f" H 4(y) dy = 0, 

and so forth. 
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6.8. Suppose thatl E C" (k an integer;?; 0) and that N is a positive integer. 
Show that 

and deduce that 
Ihd - III", ~ A,,' IID"III",' N-", 

ENI ~ A~' IID"III", . N-", 

where A" and A~ depend only on k. 
Hints: From Exercise 6.6, 

TNI(x) - I(x) = ~ Jo<O [f( x + ;) + I( x - ;) - 2/(X)]'~(~2dY. 
Apply partial integration k times and use the results of Exercise 6.7. 

6.9. Suppose that I E C" (k an integer ~ 0) and show that 

IITNI - III", ~ B,,' Qoo(D"J)(~)' N-'''. 

Deduce that 
ENI ~ B~' Q<o(DkJ)(~) • N-". 

Here Bk and B~ depend only upon k, and 

Qpg(S) = sup IITa!1- gllp 
lal" 6 

(1 ~ p ~ 00). 

Hints: Consider 16(x) = (2S) -1 f~61(x + y) dy where S > O. Show that 

and 
IID1<+ 11611", ~ (2S)-1 Q",(DkJ)(20) ~ 0- 1 Q",(D"J)(o) , 

IIDk(f - 16)11", ~ Q",(DkJ)(O). 

Since Tid = TNI6 + TN(f - 16)' the desired results follow on using Exercise 
6.8 and taking 0 = 27T/N. 

6.10. Suppose that IE Ll and 11/ - uN/Ill = O(N-l) as N _00. Show 
that I is equal almost everywhere to a constant. 

Show also that if IE Ll and 

EN(1)j = inf {III - till: t E TN}' 
then 

Ij(n)i ~ El!l-l / (n = ± 1, ± 2, ... ). 

Remark. The first part of this exercise asserts that the sequence of 
operators / _ uNI (N = 1,2,· .. ) on C is "saturated by the function 
~(N) = N-l"; for this concept, see [L2], pp. 98-~02. See also MR 36 # 5605. 

6.11. Let Lnezcne1n.r be a trigonometric series and 

UN = L (1 - Inl/N + 1)cne1n.r 
Inl"N 

its Nth Cesaro mean. Show that the given series is a Fourier-Lebesgue series 
if and only if 

lim IluN - UN' III = O. 
N.N'-.:o 

(Compare the results in 12.7.5 and 12.7.6.) 
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6.12. (Fatou's theorem) Show that if fELl and 

N-l 2: Inj(n)I = 0(1) as N --+00, 
Inl<iN 

then limN_.,sNf(x) = f(x) for almost all x; and that if, furthermore, f is 
continuous, then limN_",sNf = f uniformly. 

H?:nt: Use Exercise 5.5 and the results appea~ing in 6.1.1 and 6.4.4. 
Note: One can show, by using the same method in combination with 

8.3.1, that if Cn = o( I/Ini) as I nl --+ co, then the trigonometric series Lnezcnelnr 

is convergent for almost all x. 
6.13. Suppose that fE Ll and that j(n) = 0 save perhaps for n = 0, 

± nt, ± n2 ,' • " where 0 < nl < n2 < ... and inf nk+1/nk > I. Prove that 
limN_",sNf(x) = f(x) for almost all x; and that if, in addition,J is continuous, 
then limN_",sNf = f uniformly. 

Hint: Use Exercise 5.6, and Subsections 6.1.1 and 6.4.4. 
Note: These so-called lacunary series will receive further attention in 

Chapter 15; see especially the remarks in Section 15.6. The result, like that in 
Exercise 5.6, admits some generalization. 

6.14. Let the function rN (N = 1, 2, ... ) be defined to be equal to l7N in 
[ -liN, liN), to 0 in [-17, -liN) and in (liN, 17), and be defined elsewhere so 
as to be periodic. Put RN = rN * rN. Verify that (RN);=l is an approximate 
identity. Compute flN and deduce that 

uniformly for each continuous f, provided sin 0/0 is interpreted as L 
Note: This is a case of Riemann's method of summability, which is of 

fundamental importance in the general theory of trigonometric series; see 
[Zl]' Chapter IX and [Bal), p. 192. 

6.15. Show that a necessary and sufficient condition that a continuous 
functionf be of the form} = F 0 el , where ei(x) = elr and F is defined and 
continuous on the closed unit disk in the cOD:lplex plane and holomorphic in 
the interior of this disk, is that j(n) = 0 for n E Z and n < 0 (compare 
Exercise 3.9). 

6.16. Suppose that fELl and define 

F(x) = f:/(y) dy. 

Prove that, if x is a point for which the symmetric derivative 

D F( ) = l' F(x + e) - F(x - e) 
• X_1m 2 

.. 0 e 
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exists finitely, then 
lim Arf(x) = DsF(x) , 

T-1-0 

Arf being defined as in Section 6.6. 
Remark. The relation D.F(x) = 1(x) holds at all points x of the Lebesgue 

set of 1 (see 6.4.2), but it may well hold at other points as well. Compare the 
result with 6.4.3. 

Hints: Assume, without loss of generality, that F(l7) = 0. Integrate by 
parts in the formula (6.6.1) to obtain 

Ar1(x) = Lf" (2siny)-1{F(x + y) - F(x - y)}Qr(y)dy, 

where Qr( y) = - sin y • P~( y). Verify that Qr ~ 0, IIQr !Il = r, and that 

lim sup Qr( y) = ° 
r-1 - 0 6" Iyl"" 

for any 8 E (0, 17]. Mimic the proof of 6.4.3. 
6.17. Sometimes (see 6.4.7, 12.9.9, 13.8.3, and 13.10, Exercises 13.21 to 

13.23; [Zd, pp. 170-175; [Z21, pp. 116-119, 158) one wishes to consider the 
set L ~ of measurable functions 1 such that <1>( I 1 I) E 11, <1> being a fixed non
negative function of a suitable type, and one wants to know that the set T 
of trigonometric polynomials is contained and everywhere dense in L~ in 
the sense that, given any 1 E L~ and e > 0, there exists t E T such that 

N(1f - til == 2~ f <1>(11 - til dx < e. (*) 

Suppose that <1> is a nonnegative real-valued function defined on [0, (0) 
having the following properties: 

(1) <1> is increasing and <1>(s) _ ° as s - + 0; 
(2) <1>(s) ~ As for large s > 0; 
(3) <1>(s + s') ~ B{s + s' + <1>(s) + ~(s')} for s, s' ~ 0. 
Here A and B denote positive numbers. Prove that L~ is a linear subspace 

ofLl, that L~ => Lee, and that the approximation (*) above is always possible. 
6.18. Let (YN);=1 be any sequence of positive numbers such that "YN 

= o(N) as N _00. Use the uniform boundedness principle (Appendix B.2.1) 
in order to prove the existence of a nonnegative function 1 E Ll such that 

lim sup ClNf(O) = 00. 
N-ee YN 

(1) 

Is there any sense in which this result is the best possible? 
Can you construct explicitly nonnegative functions 1 E L1 that satisfy (1), 

for certain specific choices of (YN) ... for example, when YN = N/{log (N + 2W 
and e > 01 



CHAPTER 7 

Some Special Series 
and Their Applications 

In this chapter we assemble a few results about two special types of series, 
namely, 

"" Yz ao + 2: an cos nx = 2: cne'n:r , (0) 
n = 1 neZ 

"" 2: an sin nx = 2: cne'n:r, (8) 
n= 1 neZ 

where Cn = (1/2i) sgn n • alnl' We shall assume throughout that the an are 
real-valued, and write SN and aN for the Nth partial sum and the Nth Cesaro 
mean, respectively, of whichever series happens to be under discussion. 

The series (C) and (8) are examples of so· called conjugate series, a topic to 
which we return in Section 12.8. 

A primary concern will be the determination of conditions under which 
these series are Fourier-Lebesgue series. While the results are rather special, 
inasmuch as they assume heavy restrictions on the sequence (an), they 
frequently play an important role in handling questions of general significance 
(as, for example, in Section 7.5). 

For an extended study of more special series, see [Zd, Chapter V. 
The results we shall obtain can be easily recast into statements about the 

definition and nature of ~ (see Section 2.5) for rather special functions cp on Z. 

7.1 Some Preliminaries 

7.1.1. Modified Kernels. It will be helpful to list a few formulae, some 
of which have been encountered in Section 5.1. 

N 

Yz + 2: cos nx = Yz 2: e'n% = Yz DN(x) 
na 1 Inl" N 

sin (N + Yz)x 
= 2sinYzx ' 

109 

(7.1.1) 
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F ( ) = Do(x) + ... + DN(x) 
N x N + 1 

= (N + l)_l[Sin ~(N + l)x]2. 
sm Y2x 

(7.1.2) 

Running parallel to (7.1.1) is a formula serving to introduce the so-called 
Dirichlet conjugate kernel: 

11 D ( ) _ ~. _ cos y:! x - cos (N + y:!)x. 
72 N x - L. sm nx - 2 . 11 ' 

n= 1 sIn 72 x 
(7.1.3) 

the symbol - marks the passage to the so-called conjugate series, a topic 
dealt with in Section 12.8 in some generality. 

The modified kernels defined by 

and 

D D . 1 - cos Nx Y:! N#(X) = Y:! N(X) - Y:! sm N x = 2 t Yl 
an 2X 

(7.1.4) 

(7.1.5) 

play useful, if transient, roles. Notice that DN# is even, and that DN# is odd. 
Moreover, 

(0 < x < 1T), (7.1.6) 
and 

(0 < x < 1T). (7.1.7) 

From 5.1.1 and the defining formulae above we infer that 

(7.1.8) 

(7.1.9) 

as N -HO. It may be shown similarly that 

(7.1.10) 

(7.1.11) 

as N ---+ 00; see Exercise 12.20 and [Zd, pp. 49, 67. 

7.1.2. Convex Sequences. In the remainder of this section we deal with 
some matters concerning sequences (an) to play the role of coefficients in the 
series (0) and (8). We shall assume that the sequence is indexed from n = 0 
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[as is the case with (e)]; only minor changes are needed to take care of 
sequences indexed from n = 1 [as is the case with (8)]. 

For any real-valued sequence (an):'=o we define the sequence of differences 
~an = an - an+ 1 • In particular, then, (an) is decreasing (in the wide sense), 
if and only if ~a" ~ O. The sequence of second differences is defined by 

~ 2a" = ~a" - ~an + 1 . 

The sequence (an) is said to be convex, if and only if ~2an ~ 0 ~ 0; quasi
convex, if and only if 

<Xl 

2: (n + 1)1 ~2a,,1 < 00; 
,,=0 

of bounded variation (BV) if and only if 

<Xl 

2: l~a,,1 < 00. 
,,=0 

It is worth explaining at once that the intervention of the difference 
sequences is explained by frequent use of the technique of partial summation, 
which has already been used without special comment in earlier chapters; 
see also [H], pp. 97 ff. Given two sequences (a,,) and (b,,), the formula for 
partial summation reads 

2: a"b" = aqBq - apBp_l + L ~a,,' B,,; 
p~,,~q p~,,~q-l 

(7.1.12) 

in this formula it is understood that p ~ q, and that 

where r is any fixed integer satisfying r ~ p and such that a" and btl are 
defined for n ~ r; an empty sum (that is, a sum extending over a range that 
is empty) is always understood to have the value zero. Repetition of the 
technique introduces the second differences ~2an' 

The following simple result about convex sequences helps to illuminate 
7.3.1 to follow. 

7.1.3. (1) If (a,,):'=o is convex and bounded, then it is decreasing, 

lim n' ~a" = 0, 

and 

'" L (n + 1) .~2a" = ao - lim a". 
,,=0 n-co 

(7.1.13) 

(7.1.14) 

(2) If (a,,) is quasiconvex and bounded, then (a,,) is BV and (n.~a,,) is 
bounded. 
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(3) If (an) is quasiconvex and convergent (to a finite limit), then (an) is 
BVand (7.1.13) is true. 

Proof. (1) Convexity signifies that (&In ) is decreasing. If &J", = C < 0, 
then ~an ~ c for n ~ m, in which case an __ 00 as n -- 00, contrary to the 
assumed boundedness of (an). So ~an ~ 0, (an) is decreasing, and therefore 
boundedness implies that a = lim an exists finitely. Now 

(7.1.15) 

which we now know to be a series of nonnegative terms converging to 
ao - a. Since also ~(~an) ~ 0, it follows easily that n.~an __ 0, which is 
(7.1.13). Finally, (7.1.14) follows on applying partial summation to (7.1.15) 
and using (7.1.13). 

(2) We have 

(7.1.16) 

[This may be proved by induction on n, thus: It is trivially true for n = o. 
If it is true for n, then 

= (am - a",+n+l) + ~a"'+n+1 
= ~2am + 2~2a"'+1 + ... + n~2a"'+n_l 

+ (n + l)~a"'+n + ~a"'+n+l 
= ~2am + 2~2am+l + ... + n~2am+n_l 

+ (n + l){~am+n+1 + ~2am+n} + ~am+n+1 
= (~2am + 2~2am+l + ... + (n + 1)~2am+n) 

+ (n + 2)~am+n+l; 

that is, the equality holds with n replaced throughout by n + 1. Induction 
does the rest.] 

Taking m = 0 in (7.1.16), we infer that 

I(n + l)~anl ~ lao - an+11 + 1~2aol + 21~2all + ... + nl6.2an_ll, 
(7.1.17) 

which is bounded whenever (an) is bounded and quasiconvex. 
Next, interchanging (an) and (bn) in (7.1.12) and then taking an = sgn bn, 

it-appears that 

q q 

2: Ibnl ~ (q + l)/bq l + 2: nl6.bn l· 
n=O n~O 
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In this, take b" = aa", to conclude that 

q q 

2: laa,,1 ~ (q + 1)laaql + 2: nla2a"l, 
,,=0 n=O 

which is bounded with respect to q [by (7.1.17)] whenever (a,,) is quasiconvex 
and bounded. 

This completes the proof of (2). 
(3) In view of (2), it remains only to show that (7.1.13) is true. But this 

follows in taking in turn m = nand m = n + 1 in (7.1.16), leading to 

I(n + l)aa2 ,,1 ~ la" - a2"+ll + I a 2a" I + 2\a2a1l+ll + ... + nla2a2"_ll 
2,,-1 

~ la" - a2"+ll + 2: I(k + l)a2a/c1 
/cal 

and similarly 
2" 

I(n + 2)aa2"u1 ~ la"+l - a211+21 + 2: (k + 1)la2a/cl· 
/czn+l 

In Section 7.4 we shall need to know that there exist sequences (an) which 
are positive and convex, and which tend to zero arbitrarily slowly. How 
such sequences may be constructed will appear from the next two results. 

7.1.4. Let a > 1 and suppose that (Nk)r=l is a strictly increasing sequence 
of positive integers such that 

N2 ~ [1 + Yz(a - 1)-l]Nl' 
(7.1.18) 

(k + I)Nl<+l ~ 2kN/c - (k - I)N/C-l (k = 2,3, ... ). 

If (an) is the sequence defined so that ao == a, an = 11k for n = N /c (k 
= 1,2,· .. ), and so as to be linear for values of n satisfying 0 < n < Nl or 
Nk < n < N/c+l(k = 1,2, ... ),then(an)ispositive,decreasestozero,andis 
convex. 

Proof. It is evident that (an) is positive and decreases to zero. Conditions 
(7.1.18) express the convexity of (an), :which amounts to saying that the 
negatives of the slopes of the line segments, obtained by joining neighbors 
in the sequence of points of the plane having coordinates 

(0, a), (Nl' I},··., (N/c, D,· ", 
form a decreasing sequence. 

7.1.5. Let (cn):'=o be any complex sequence such that 

lim c" = o. 
n-oo 
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There exists a sequence (a,,):'.o which is positive, convex, decreasing to zero, 
and such that 

Ic,,1 ~ a" (n = 0, 1, 2, ... ). (7.1.19) 

Proof. First choose NI > 0 so that Ic,,1 ~ Y2 for n ~ N 1, and then 
a > 1 so la.rge that the line segment in the pla.ne joining the points (0, a) and 
(NI' 1) lies above all the points 

(0, ICol),···, (NI - 1, IcN1 - 1 1). 

Then, as is easily seen, the integers N 2, N 3, ••. may be chosen inductively so 
as to increase strictly, to sa.tisfy (7.1.18), and to be such that 

1 
Ic,,1 ~ k + 1 for n ~ N". 

The sequence (a,,) constructed in 7.1.4 will then sa.tisfy all requirements. 

7.2 Pointwise Convergence of the Series (0) and (S) 

7.2.1. Suppose that a" = 0(1) and ~:'-o l~a,,1 < co. Then 
(1) (8) is convergent every where; 
(2) (0) and (8) are uniformly convergent for 8 ~ Ixl ~ 'tT for any 8 > O. 
Proof. Consider (8). By (7.1.12) and (7.1.3), 

L: a"sin na: = aQ • Y2DQ(x) - ap ' Y2Dp _ I (x) + L: ~a". Y2D,,(x) 
P~"~Q P~"~Q 

and so, if 0 < Ixl ~ 'tT, 

I L: a" sin na:1 ~ 1aQIllsin Y2xl + lapl/lsin Y~I + L: l~a"l/lsin Y2xl· 
P~"~Q P~"~Q 

The statements concerning (S) follow from this and the hypotheses. Those 
about (0) are proved simila.rly, using (7.1.1) in pla.ce of (7.1.3). 

Conditions for the uniform convergence of (8) are not so superficial. 

7 .2.~. Suppose that a" t o. Then 
(1) the series (S) is uniformly convergent, if and only if M" = 0(1); 
(2) the series (8) is bounded1y convergent if and only if nan = 0(1); 
(3) the series (8) is the Fourier series' of a continuous function if and only 

if nall _ 0; 

(4) the series (8) is the Fourier series of a function in La> if and only if 
M" = 0(1). 

Proof. (1) Suppose first that (8) is uniformly convergent. Putting 
x = 'tT/2N we have 

i all sin nx ~ sin (i) . aN' iI, 
[YsN)+ I (YoN] + I 

whence uniform convergence is seen to imply that nan _ O. 
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Next suppose that, conversely, naIl _ O. Write b" = sup">"na,,, so that 
b,,_O aslc_oo. Let 0 < x ~ 'IT and define N = N% to be that integer for 
which 

_'IT_ < X ~~. 
N+ 1 N 

Decompose the remainder: 

L a" sin nx = L + L = R + R'. 
,,>m m .. ,,<m+N ">,,,+N 

Then 

IRI = I L a"sinnxl ~ X' L naIl 
m",,<m+N "'''"<,,,+N 

~ xN • bIll ~ 'lTb",. (7.2.1) 

On the other hand, using partial summation in conjunction with (7.1.7), we 
find that 

IR'I = I L da,,' Y2 1),,(x) - am+NY21)",+N-l(x)1 
n>",+N 

~ 2a",+N'IT ~ 2(N + l)a"'+N ~ 2b",. 
x 

The combination of (7.2.1) and (7.2.2) yields 

I L an sin nxl ~ ('IT + 2}b"" 
n>'" 

and uniform convergence is seen to obtain. 

(7.2.2) 

(2) The proof is an obvious adaptation of that of (1), the sole difference 
being that now b" = O(l). 

(3) If nan _ 0, (1) asserts that the series (8) is uniformly convergent and 
is, therefore, the Fourier series of its continuous sum function. 

Conversely suppose that (8) is the Fourier series of a continuous functionf. 
Then, by 6.1.1, aN - f uniformly. This shows that f(O) = O. So, by uniform 
convergence, 

Since sin t ~ 2t/'IT for 0 < t < Y2 'IT, we have 

aN (;) ~ L a (I __ n ). ~ • 7Tn. 
n .. YoN" N + 1 'IT N 

So (7.2.3) entails 

hence 

and so finally NaN _ O. 

N-l 2: na,,_O, 
" .. YoN 

N-1al'/.NJ L n_ 0, 
" .. YoN 

(7.2.3) 
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(4) The proof is entirely similar to that of (3), using (2) and the fact that 
IluNII", = 0(1), if 2::' .. 1 an sin nx is the Fourier series of the bounded 
(measurable) function/; see (6.4.9). 

Remark. In cases (3) and (4) the proofs show that any function, of 
which (8) is the Fourier series, is equal almost everywhere to the sum 
function of the series (8). This also follows from 6.4.5. 

7.2.3. Define 

a,,_ = sup {k- 1 L miami: k E {I, 2,· .. }}. 
n~m<"+k 

~n = n L I~aml· 
m~" 

Then 
(1) if an = 0(1) and ~" = 0(1), (8) is boundedly convergent; 
(2) if an = 0(1) and ~n = 0(1), (8) is uniformly convergent. 
Proof. We may and will suppose that 0 < x ~ 'TT. Denote by N = N:z; 

the positive integer such that 

'TT 'TT 
-- <x~-' N+ 1 N 

Then, if mE {I, 2, ... }, 

L an sin nx = L + L 
n~m m~n<m+N m~m+N 

= R+ R'. 

Here, 

IRI ~ L la"lonx 
m~"<m+" 

~ x L nlanl = Nx·N-l L nlanl 
m~n<m+N m~"<m+N 

~ Nxoam ~ 'TTam (7.2.4) 

and [using partial summation and noting that necessarily an = 0(1)) 

IR'I = I L ~n° Y2l>,,(x) - am+No Y2l>m+N-1(X) I 
"~m+" 

~ L l~anl°'TTX-1 + lam+Nl o'TTX- 1 
n~m+N 

~ (lam+NI + L l~a"I)(N + 1). 
n~m+N 

Since 

a" ~ nlanl for all n E {I, 2,·· .}, 



[7.3] THE SERIES (C) AND (8) AS FOURIER SERIES 117 

therefore 

Hence 

IR'I ~ IXm+N + (m + N) 2: I~anl 
n;om+N 

~ IXm+N + {JUN. (7.2.5) 

Both statements (1) and (2) follow on combining (7.2.4) and (7.2.5). 

7.3 The Series (0) and (S) as Fourier Series 

The aim is to establish analogues of cases (3) and (4) of 7.2.2 under weaker 
hypotheses on the coefficients an. We begin with the series (0). 

7.3.1. Assume that 

ao 

2: (n + 1)1~2anl < 00. 
n=O 

Then, for the series (0), 

co 

8N(X) - !(x) = 2: (n + 1)~2an' Y2F n(x) 
n=O 

(7.3.1) 

(7.3.2) 

(7.3.3) 

pointwise for x t=. 0 (mod 27T),! E L1 and {OJ is the FS ofJ. The hypotheses are 
satisfied if an t 0 and (an) is convex (see 7.1.3) in which case I ~ o. 

Proof. Two applications of partial summation yield, via the formulas in 
7.1.1, the equality 

N-2 
8N(X) = 2: (n + 1)~2an'Y2Fn(x) + Y2N~aN_l·FN_l(X) + Y~NDN(X). 

n=O 
(7.3.4) 

By 7.1.3(3), n~an - 0, and so pointwise convergence for x t=. 0 (mod 27T) is 
clear from (7.1.1), (7.1.2) and (7.3.4). Since also IIFnill = 1, the series 

co 

2: (n + 1)~2an' Y2Fn 
n=O 

(7.3.5) 

converges in L1 to J. [We are not here asserting that 8NI in L1; see 7.3.2(1).] 
It remains to show that (0) is the FS off. We may and will assume without 

loss of generality that ao == o. Consider 

ao co 

g{x) = 2: n -1an sin nx = 2: a~ sin na. 
n=1 n-1 

(7.3.6) 
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By 7.2.3, this series is uniformly convergent, since 

1 ~ 1 ~ a: = sup L £ mla:1 = sup L £ laml 
k ~"<m<"+k k ~"<m<"+k 

~ sup laml-O, 
m;lo" 

aa" (I I) aa* = - + n. 1 - - -- , " n -..+ n n + 1 

and so 

recall that maam _ 0 and am - O. 
Now, if 

we have DUN = 8N and so, by (7.3.4), 

f.ZN-~ f.z 
= Z (n + l)a~a"o%F,,(y)ay + %NaaN_l o F N _ 1(y)ay 

o ,,-0 0 

+ Y~N LZ 
DN(y) ay. 

By convergence in Ll of (7.3.5), the first term converges to J: f(y) ay; since 
naa" _ 0, the second term tends to 0; since a" _ 0, the third term tends to O. 
So 

g(z) = f: f(y) ay. 

Hence, by 2.3.4,/(n) = ing(n) for all n E Z. Also, by uniform convergence of 
the series in (7.3.6), g(n) = (2in)-la,,,, for all nonzero n E Z. So /(n) = Y~,,,, 
for nonzero n E Z and/(O) = 0, showing that the Fourier series off is indeed 
the series (0). 
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7.3.2. Supplements to 7.3.1. 
(1) If (all) is quasiconvex, then SN - J in L1 if and only if 

all·logn = 0(1). (7.3.7) 

Proof. Since (all) is quasiconvex, the series (7.3.5) is convergent in V. 
Hence, by (7.3.4), SN _ J in L1 if and only if 

(7.3.7') 

in Ll. 
If (7.3.7) is true, then all = 0(1). Then 7.1.3(3) shows that n.dall = 0(1). 

Hence (7.3.7') follows from (7.1.8) and the equation IIFN~l = 1, valid for 
Ne{O,I,2, ... }. 

Conversely, if (7.3.7') is true, then 

YzN.AaN_l·1'N(n) + Y~N·DN(n)-O asN_oo, 

uniformly for n e Z. Taking first n = 0 and then n = YzN or Yz(N - 1) 
according as N is even or odd, it is easy to conclude that 

N.AaN_1-O as N -00. 

Then, since IIFN- 1 ~l = 1 for all N e {I, 2,· .. }, (7.3.7') entails aN·DN - 0 in 
L' and so, by (7.1.8), that (7.3.7) is true. 

(2) If (all) is quasiconvex and 

all·log n = 0(1) (7.3.8) 

then (7.3.4), 7.1.3(3) and (7.1.8) combine to show that 

IlsNlb = 0(1). 

From this one may conclude (see 12.5.2 and 12.7.5) that (0) is the Fourier 
(-Stieltjes) series of a measure. 

See also Teljakowski [2]; MR 48 # 794; 52 # 1480Sa,b; 54 # 13436. 
(3) It is easily shown (see Exercise 7.5) that, if p > 1, 

(7.3.9) 

where (lIp) + (lIp') = 1. From this and (7.3.4) it appears that the con
ditions 

.. 
n1-<l/p)all = 0(1), 

n2 -(1/p) Aall = 0(1) 

Ln2-(1/p)IA2alll < 00 

11'"0 

(7.3.10) 

(7.3.11) 

(7.3.12) 

together suffice to ensure that IlsNllp is bounded with respect to N, in which 
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case it may be shown (see 12.7.6) that (O) is the Fourier series of a function 
inll'. 

For the case in which an t 0, a sharper result appears in 7.3.5(2}. 
(4) If (an) is quasiconvex and an = 0(1}, (O) is the Fourier series of the 

function I ELl; it converges in Ll to I, if and only if (7.3;7) holds; and 

if and only if (7.3.8) holds. 
The first assertion here is included in 7.3.1; the second is covered by (I) 

above; and the third is proved almost exactly as was (I) above. 
These results are due essentially to W. H. Young and A. N. Kolmogorov; 

see [Ball, Chapter I, §30; [Ba2]' Chapter X, §2; [Z], Chapter V, Theorem (1.12). 
(5) If an t 0, 7.2.1 shows that each of (O) and (8) is convergent for x ¢ 0 

(mod 217-). In either case, the series is a Fo~rier series, if and only if its sum 
function belongs to Ll. (This requires proof; see, for example, [Ba2], p. 199.) 

(6) If an t 0, the proof of7.3:1 can be modified in the following way (kindly 
suggested to me by Professor G. Goes). By 7.2.1(2}, the series (O) converges 

. uniformly for 8 ~ Ixl ~ 'IT, for any 8 > O. The sum function f is thus con
tinuous except perhaps at points x == 0 (mod 2'IT). The equation (7.3.4) and 
the estimates [see (7.1.1) and (7.1.2)] 

I %N ~aN_l·F N-l(x)1 ~ %1 ~aN_11·(sin %x} -2, 

I %aNDN(x) I ~ %aNlsin %xl- l 

combine with the assumption an tOto show that (7.3.13) holds for 0 < Ixl ~ 
'IT. Defining 

N 

gN(X) = L: n -lan sin nx, 
n=l 

one has for 0 < a ~ x ~ 'IT 

and, by uniformity of the convergence of 8N to Ion [8, 'IT], it follows that 

g(x) - g( 8) = i% I(y) dy 

for 0 < 8 ~ x ~ 'IT. By (7.3.3) and (7.3.2),feLl. Since also g is continuous 
and g(O) = 0, it follows that 

g(x) = 1% I(y) dy 
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for O:s;; x :s;; 17. A similar argument yields the same equation for 
-17 :s;; X :s;; O. From this point on, the argument proceeds as before. 

Moreover, if an t 0, one can even dispense to some extent with (7.3.2), 
though one cannot now conclude that f ELI. However, it will still be true 
that 

g(x) - g(xo) = I'" f(y) dy 
"'0 

for -17 :s;; Xo :s;; x < 0 and for 0 < Xo :s;; x :s;; 17. Because of this one may 
integrate by parts in the formula 

n -Ian = 2/17 fa" g(x) sin nx dx 

lim 2/17i" g(x) sin nx dx 
6-0 6 

to conclude that 

an = lim2/TTi" f(x) cos nxdx; 
6-0 6 

recall that g is continuous and g(O) = 0, and that we are assuming (as before) 
that ao = o. In other words, (0) is the series 

L /(n)e ln"" 
neZ 

where now 

/(n) = lim 1/217 r I(x)e -In'" dx 
6-0 J6",,,,,,,,, 

is a Cauchy principal value. Thus (0) is, in this wider sense, still the Fourier 
series of f. 

We next turn to a few analogous results for the sine series (8). 

7.3.3. Suppose that an t 0 a.nd write 

co 

f(x) = L a"sinnx, 
n=1 

the series being everywhere convergent by 7.2.1. Then IE Ll if and only if 

co a L 2 <00, 
n=1 n 

(7.3.13) 

in which case (8) is the Fourier series of I and 

lim Ils.v -/111 = O. 
N-oo 

(7.3.14) 
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Proof. The reader will verify easily that, under the stated conditions on 
(a,,), (7.3.13) is equivalent to 

'" L: Aa" • log n < 00. 
,,=1 

By partial summation, 
N-1 

8 .... (X) = L: Aa" • % D,,(x) + % aN • DN(x) 
,,=1 

co 

~ L: Aan ' % D,,(x) = f(x}. 
,,=1 

If we replace herein D" by D,.# we obtain a function 

co 

f#(x} = L: Aa" • % D,,#(x} 
n=l 

which differs from f by 
'" L: Aa,,' % sin nx, 

,,=1 

which is continuous since, by virtue of the relation a" t 0, one has 

CD 

L: IAa,,1 < 00. 
,,=1 

Thus fELl if and only if f# ELl. 

(7.3.13') 

(7.3.15) 

(7.3.16) 

On the other hand, since D,,# is odd and is nonnegative on (0,11) [see 
(7.1.5)], f# E Ll if and only if 

ao 

L Aa,,' IID"#IIl < 00. 
,,=1 

This requirement is equivalent to (7.3.13'), in view of (7.1.11). 
Finally, assuming (7.3.13') to hold, we have 

a" log n·= log n' L: Aak ~ L: Aak • log k, 
rc .. " rc .. " 

which tends to zero as n~oo. Hence (7.1.10) and (7.3.15) show that 8N-f 
in mean in Ll as N ~oo. 

7.3.4. Suppose that a" + 0 and that 

(7.3.17) 

Then 2:'=1 a" sin nx, although everywhere convergent, is not a Fourier
Lebesgue series. 

Proof. This follows immediately on combining 5.3.1,6.4.5, and 7.3.3. 
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7.3.5 Supplements. 
(i) 7.3.3 can be generalized .. For example, Teljakowskii [1] has proved that, 

if (an) is quasiconvex and an ~ 0, then (8) is a Fourier series, if and only if 

Also, Kano and Uchiyama [1] have proved that, if (an) is quasiconvex and 
bounded, then (8) converges in Ll, if and only if 

II) 

L: n-Ilanl < 00 and an·logn~O, 
n=1 

while 

if and only if 

II) 

L: n-Ilanl < 00 and an·log n = 0(1). 
n=1 

These writers show also that there exists a nonnegative quasiconvex sequence 
(an) such that an ~ 0, both (0) and (8) are Fourier series, and yet both (0) 

and (8) diverge in LI. 
See also TeljakowskIi [2] MR 52 ## 14805, 14819; MR 55 #8673. 
(ii) In 7.3.2(3) we have indicated conditions sufficient to ensure that the 

sum function! ofthe cosine series (0) shall belong to IJ'. For the case in which 
an + 0, a sharper necessary and sufficient condition is known. Denoting by g 
the sum function of the sine series (8), and assuming that 1 < P < 00, it is 
known that the following conditions are equivalent: 

(1) f E IJ'; 
(2) g E IJ'; 
(3) the sequence (an):=I' assumed to decrease monotonelyto zero, satisfies 

the condition 

Despite appearances, this result is considerably deeper than that men
tioned in 7.3.2(3). Its proof depends on Theorem 12.9.1 and an inequality of 
Hardy; see [Z2], p. 129 or [Ba2]' p. 207. 

For further results, see Aljancic [1] and the references cited there. 
Hardy [1] proved that, if (8) is the Fourier series of some f E IJ' (p ~ 1), 

then so too is the series 

II) 

L: (Ta)n sin nx, (7.3.18) 
n=1 
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where 

(Ta)" = n-1(a1 + ... + an) for n E {I, 2, ... }. 

On the other hand, G. and S. Goes [1] proved that if (an) is BV and an ~ 0, 
then (7.3.18) is a Fourier series, if and only if 

co 

L: n-1lanl < 00; 
,,=1 

See also MR 55 # 8673. 
(iii) See also [Boa] and Boas [2]. 

7.4 Application to A(Z) 

We can now substantiate a statement made in 2.3.9 concerning the 
existence of integrable functions whose Fourier coefficients tend to zero 
arbitrarily slowly. 

Let c/> E co(Z) be given and define 

A" = max [I c/>(n) I , Ic/>( -n)1l (n = 0, 1,2, ... ). 

Then A,,~O as n~co and we may, as in 7.1.5, construct a sequence (a,,) 
which is convex and satisfies an t 0 and 

(n = 0, 1,2, ... ). 

Consider the functionf figuring in the proof of 7.3.1. Since (a,,) is convex, f is 
nonnegative and integrable. The Fourier series off is Y2 ao + 'L.;'= 1 an COS nx, 
SO that j(n) = Y2alnl for all n E Z. Hence 

/(n) ~ Ic/>(n) I 
See also [HR], (32.47). 

for all n E Z. 

7.5 Application to Factorization Problems 

In this section it will be shown how 7.3.1 aids in the solution of a number 
of problems concerning the possibility of factorizations f = g * h with f, g, 
and h in specified function spaces. Included in the discussion will be the 
Salem-Zygmund-Rudin-Cohen result mentioned in 3.1.1(c). The approach 
will be "classical" (as opposed to the Banach algebra-based technique 
introduced by Cohen [4] for certain such problems; see 11.4.18(6)), being a 
modified form of the arguments published by Rudin [1]. 

7.5.1. Let E denote anyone of LP (1 ~ P < co) or Ck (0 ~ k < co). Then 
E = Ll * E. 
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Proof. Since, by 3.1.5 and 3.1.6, Ll * E c E, it suffices to show that 
E c Ll * E. In doing this we shall use the simplest results about Cesaro 
summability; numerous other summability methods would serve equally 
well, however. 

Suppose that / E E. The aim is to prove the existence of gEE a.nd hELl 
such that 

(7.5.1) 

The starting point in the construction of g and h is the remark that, by 
6.1.1, 

(7.5.2) 

where 11'11 denotes the appropriate norm (II-I\p or 11'II(k» in E. As a consequence 
of (7.5.2) one may, as it is easy to verify, choose nonnegative numbers aN 
(N = 1, 2, ... ) so that 

(7.5.3) 

'" L aNII! - FN *!II < 00, (7.5.4) 
Nal 

and 

(7.5.5) 

Now (7.5.4) and the completeness of E together ensure that 

'" 
g =/+ L aN(j- FN*f) (7.5.6) 

N=l 

belongs to E, the series being convergent in E. This in tum entails that 

'" g = J. [1 + L aN(1 - PN)); (7.5.7) 
N=l 

the reader will observe that, for a fixed nEZ, 1 - P N(n) = O(ljN) for 
large N, so that (7.5.5) ensures the pointwise convergence on Z of the series 
appearing in (7.5.7). 

In view of 2.4.1, (3.1.5), and (7.5.7), to establish (7.5.1) for some hE Lt, it 
suffices to show that the sequence (a")"EZ defined by 

(7.5.8) 

is a Fourier-Lebesgue sequence. It is at this point that 7.3.1 comes to our aid. 
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Noting that a" = a\II\' 7.3.1 shows that we have only to verify the following 
two points: 

(1) all t 0 as n too; 
(2) (a"),, .. o is convex. 
As to (1), we have 

{
1 __ n 

PN(n) = 0 N + 1 
ifO~n..;;N, 

ifn > N, 

so that 0 ~ PN(n) ~ 1 and PN(n) = 0 for n > N. Therefore, by (7.5.3), 

asn~oo. 

Moreover b"+1 ~ b", since aN ~ 0, and PN(n + 1) ~ PN(n). Thus (1) is 
satisfied. 

Turning to (2), the convexity of (a"),, .. 0 is equivalent to the condition 

(7.5.9) 

Now it turns out that 

a.nd so, since aN ~ 0 and bll ..;; bn+ 1 ~ bn+ 2' it is clear that (7.5.9) holds. 
Thus (2) is satisfied a.nd the proof is complete. 

7.5.2. Remarks. (1) The excluded case k = 00 of 7.5.1 is easily dealt 
with separately: indeed, on using 12.1.1 it is easily seen that Coo = Coo * Coo. 
On the other hand, the excluded case p = 00 is 3 false assertion (as follows 
from 3.1.4). 

As with 6.1.1, the method of proof may be adapted to apply to homo· 
geneous Banach spaces over T; see [KzJ, p. 61, Exercise 1. 

(2) Extensions of parts of 7.5.1 (other than the case E = Ll) to more 
general groups have been examined by Hewitt [IJ and by Curtis and Figs.
Talamanca [1] jointly. (Rudin's original argument applies to locally 
Euclidean groups.) Hewitt exploits Cohen's method, working within a 
general Banach algebra setting; see 11.4.18(6). 

7.5.3. Having now shown that V = Ll * Ll, it is natural to ask whether 
LP = LP * LP for p > 1. That the answer is negative will be established for 
p = 2 in Section 8.4, and for general p > 1 in Exercise 13.20 and again in 
15.3.4. 
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7.5.4. Supplements to 7.5.1. (1) Concerning the functions g and h appearing 
in (7.5.1) and constructed in the proof of 7.5.1, two comments deserve to be 
recorded. 

In the first place, the sum appearing in (7.5.4) may plainly be made inferior 
to any preassigned I) > 0, in which case (7.5.6) shows that 

Ilg -111 < I). (7.5.10) 

In the second place, having arranged that the sequence (a,,),,>o decreases to 
zero and is convex, equation (7.3.4) shows that the function h is nonnegative, 
so that Ilhlll = ao and therefore 

(7.5.11) 

(2) With but little further effort 7.5.1 may be sharpened to the following 
extent. 

Suppose that El is a a·compact subset of E (by which it is meant that El is 
contained in the union of a countable sequence AI (i = 1, 2, ... ) of compact 
subsets of E). Then there exists an hE V, which is nonnegative and satisfies 
(7.5.11), with the property that to each. 1 EEl CJorresponds agE E such that 
(7.5.1) holds. (The choice of h may be made the same for all 1 E Ed 

The basis of the proof of this extension is the remark that, since AI is a 
compact subset of E, the numbers 

tend to zero as N ---+ 00 for each fixed i. (This in turn depends on the fact that. 
in any metric space, any compact set can be covered by a finite number of 
balls of arbitrarily small radius; this remark is used in conjunction with the 
observation that 111 - F N .111 ~ 2111 II for all N and all 1 E E.) This being so, 
the numbers aN ;;. 0 are chosen to satisfy (7.5.3) and (7.5.5), while in place of 
(7.5.4) we impose (as we may) the demand that 

( 7.5.4') 

for each i = 1,2,···. The proof then proceeds exactly as before. 
(3) Other factorization theorems may be derived from 7.5.1. For example, 

starting from the relation C = C • Ll, one may infer that 

Cl = C. AC, (7.5.12) 

where AC denotes the space of (periodic) absolutely continuous functions; see 
Exercise 7.10. 

7.5.5 For further reading, see 11.4.18(6) below; [HR], (32.14) ff.; [DW]; 
MR 34 ## 4817, 4818; MR 46 # 2355; MR 52 # 6327; MR 53 ## 8782,8789; 
MR 54 ## 843, 8151. 
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EXERCISES 

7.1. Show that if '2:'=0 e" is convergent, and if '2:'=0 IDaA,,1 < 00, then 
'2:'=0 A"e" is convergent. 

7.2. Prove the converse of the result in Exercise 7.1, that is, that if 
'2:'=0 A"e" converges whenever '2:'=0 e" converges, then '2:'=0 IDaA,,1 < 00. 

Hint: Show that the hypothesis means that '2:'=0 DaA" • 8" is convergent 
for any sequence 8" _ O. 

7,3. Prove that, if '2:'= 0 e,,/log (2 + n) is convergent, then '2:'=0 e,,/(l + n)'" 
is convergent for any a > O. 

7.4. Write 8" = '2~=0 ele and ale = (n + 1)-1(80 + 81 + ... + 8,,). If we 
are given that (a,,) is a bounded sequence and that 8" = o(log n) as n-oo, 
prove that '2:'=0 e,,/log (2 + n) and '2:'=0 e,,/(l + n)'" are convergent for 
a > O. 

Hint: Write A" = 1/log (2 + n) and apply partial summation twice in 
succession to the series '2:'= 0 A"e" 

7.5. Verify that, if p > 1, 

as N _00, where l/p + l/p' = 1 and where A,. and B,. are positive and 
independent of N. [Compare (7.3.9).] 

7.6. Suppose that a(x) is defined and continuous for x ~ 0, and that the 
second derivative a"(x) exists and is nonnegative for x > O. Show that the 
sequence (a(n»:'=o is convex. 

7.7. Show that '2:'=2 cos nx/log n is the Fourier series of an integrable 
function! ~ 0, but that '2:'=2 sin nx/log n is not a Fourier-Lebesgue series at 
all. (This example will gain in significance in 12.8.3.) 

7.S. Using 7.3.2(3), show that if 0 < IX ~ 1, then '2:'=1 cos nx/n'" is the 
Fourier series of a nonnegative function! E V' provided 1 ~ P < (1 - a)-l, 
and that then 

lim II! - i: cos ,"nxll = O. N..... "=1 n ,. 

What can be said if a > 11 
7.9. Using Exercise 7.8, show that, if 0 < a ~ 1, then '2"ez,,, .. oU(n)/lnl'" 

is convergent for each g E Lq with q > a-1. 
For further results in this direction, see 10.4.3, Exercises 10.4 to 10.6, 

and Exercise 13.1. 
7.10. Construct a. proof of (7.5.12), and deduce that 

for m = 1,2,···. 

Cm = cm -1 * AC = C * AC * . .. * AC 
~ 

m (acton 
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7.11. Prove that [with the notation used in Remark (4) following 2.3.5 and 
7.5.4(3)] 

(1) AC = Ll * AC; 
(2) AC = L1 * BV. 

Note: From (2) we see that Ll * BV is a proper subset ofBV. In proving 
that L1 * BV c AC, it is useful to note that V (J) = II Df III for each trigono
metrio polynomial f. (Actually, V(J) = IIDflll is true for each absolutely 
continuous f; see [Na], p. 259.) 



CHAPTER 8 

Fourier Series in L 2 

It will be shown in this chapter that the problem of mean convergence of 
Fourier series in L2 has a complete and simple solution. The abstract 
foundation for this situation lies in the fact that L2 is a Hilbert space with 
the inner (or scalar) product 

(j, g) = 211T f jg dx, (S.l) 

and that moreover the functions en defined by 

(n E Z) (S.2) 

form an orthonormal base in V. This last means that the family (en) is 
orthonormal, in the sense that 

(m,nEZ), (S.3) 

and that 

a.e. (S.4) 

Indeed, (S.3) is simply a restatement of the orthogonality relations, and 
the implication (S.4) is a special case of the uniqueness theorem 2.4.1. As 
Hilbert space theory shows, these two facts imply that each f E V has a 
convergent expansion 

f = 2: (j, ell)e,.; (S.5) 
neZ 

see, for example, [E], Corollary 1.12.5, or [HS], pp. 245-246, or [AB], pp. 
239-240. 

Despite this ready-made solution to the problem before us, we shall not 
assume a knowledge of Hilbert space and will give all the necessary details 
pertaining to the present situation. For general orthogonal expansions, see 
[KSt], Kapitel III. 

With the exception of Section S.6, what little we have to say about point
wise convergence is included in Chapter 10. 
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8.1 A Minimal Property 

We make a start by showing that, for a given function! E L2, the sequence 
of partial sums SN! of the Fourier series of I possesses a minimal property 
which already serves to distinguish the Fourier series of! among all trigono
met.ric series (see the discussion in Section 1.2). 

Denote by TN the linear space of all trigonometric polynomials of degree 
at most N, that is, all linear combinations 

(8.Ll) 

of the functions en for which Inl ~ N; see Exercise 1.7. 

8.1.1. For a given I E L2 one has 

for every t E TN different from SN!' 
Proof. A perfectly straightforward calculation, based upon the ortho

gonality relations (8.3), leads to the identity 

II! - tl122 = 1111122 + L: Ian - i(n)J2 - L: li(n)12 
l"I<iN l"I<iN 

(8.1.2) 

for an arbitrary t E TN, given by (8.1.1). The right-hand side of (8.1.2) 
plainly has a strict minimum which is attained for the choice an = i(n) 
(Inl ~ N) and for no other, and this minimum value is III - sN!112', 

8.2 Mean Conver~ence of Fourier Series in L2. Parseval's 
Formula 

Using 8.1.1 and the results in Chapter 6, it is a simple matter to establish 
mean convergence of Fourier series in L2. 

8.2.1. If! E L2, then 

lim II! - 8N! 112 = lim II! - UN!112 = 0 
N-QI) N_co 

(8.2.1) 

and 

(8.2.2) 

Furthermore, given any e > 0 there exists a finite subset Fo = Fo(e) of Z 
such that for every finite subset F of Z satisfying F :::> F 0 one has 

II! - L: i(n)e,,112 ~ e. (8.2.3) 
neF 
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Proof. Since aNl E TN' 8.1.1 entails that 

111 - 8 .... 1112 ~ 111 - aNl112· 
On the other hand, the case p = 2 of 6.1.1 shows that 

lim 111 - aNl112 = 0, 
N-«> 

and (8.2.1) is thereby established. Taking t = 8Nl in (8.1.2) yields 

111 - 8 Nl1122 = 1111122 - L jj(n)j2; 
Inl"N 

if we let N _00, (8.2.2) follows. 
Finally, putting SF = LneF/(n)enforanyfinitesetF c Z,andg =1- 8 F , 

we have g E L2 and 

g(n) = 0 (n E F), 

An application of (8.2.2) to g yields 

g(n) = j(n) (n E Z\F). 

111 - sJ·1122 = L Ij(n)i2. 
neZIF 

Since L Ij(n)12 is a convergent series of nonnegative terms, (8.2.3) follows 
at once. 

Remarks. Equation (8.2.2) is one form of the Parsevallormula. Valid 
extensions of (8.2.2) will appear in Sections 13.5 and 13.11. If one takes 
1, g E L2, replaces 1 by 1 + Ag in (8.2.2), and varies the scalar A, one infers 
directly the so-called polarized version of the formula, which reads as follows. 

8.2.2. If 1, g E L2, then 

(j, g) == 21 jl(x)g(x) dx = L j(n)g(n) , 
7r neZ 

(8.2.4) 

the series being absolutely convergent. In view of 2.3.1, it is equivalent to 
assert that 

21 jl{x)g(x) dx = L j(n)g(-n), 
7r neZ 

the series being absolutely convergent, for 1, g E L2. 

8.3 The Riesz-Fischer Theorem 

In view of the fact that 

L Ij(n)i2 < 00 
neZ 

(8.2.5) 

for each 1 E L2, it is especially satisfying to be able to state and prove an 
unqualified converse. 
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8.3.1. (Riesz-Fischer theorem) Let (cn)nez be any sequence of complex 
numbers such that 

(8.3.1 ) 

Then there exists an f E L2, uniquely determined almost everywhere. such 
that j(n) = Cn (n E Z). 

Proof. If we define 

the orthogonality relations (8.3) yield for 111 < N the equality 

11 8M - 8.'111122 = L Icn l2 

M<lnl<;!V 

which, by (8.3.1), tends to zero as 111, N -+00. By completeness of L2 ([W), 
Theorem 4.5a), there exists an essentially unique f E L2 such that 

lim IIf - 8N !12 = O. 
lV-X) 

(8.3.2) 

Moreover (8.3.2) entails (Cauchy-Schwarz inequality) that j(n) = limN _ oo 

sN{n) for each n E Z. Since sN(n) is cn or 0 according as Inl ~ N or Inl > N, 
it follows that j(n) = Cn for all n E Z. 

8.3.2. Remarks. The result 8.3.1 is known to be the best possible in the 
following sense: given any sequence (cn)nez for which 

it is possible to choose the ± signs in such a way that the series L ± cnetnx is 
not the Fourier series of- any integrable function (nor even the Fourier
Stieltjes series of any measure, as defined in 12.5.2). Such questions will 
receive more attention in Chapter 14; see especially 14.3.5 and 14.3.6. 

It can also be shown that the relation Lnez Ij(n)j2 < 00, valid for fE L2, 
cannot be much improved even for continuous fun.ctions f. For example (see 
Exercise 8.9), given any positive function w on Z such that lim1nl _ oo w(n) 
= 00, there exist continuous functions f such that 

lim sup Iw(n)j(n)1 = 00 
n-oo 

and 

L w(n)jj(nW = 00. 
neZ 

Moreover, there exist (Carleman) continuous functions f such that 

) Ij(n)1 2 -S = 00 for any given e > 0, 
,{ez 

(8.3.3) 

(8.3.4) 

(8.3.5) 
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and even (Banach) such that 

L IJ(n)12-e. = 00 
neZ 

for suitable sequences en ~ 0 (see Exercise 15.13). A specific example of 
(8.3.5) is 

~ eicnlolrn 
l(x) = L. ein% 

n=2 nYz(log n)B ' 

where,B > 1 and c > 0; see [Zl]' p. 200, Theorem (4.11); this example is quite 
different in nature from those indicated in Exercise 15.13. See also [Ba l ], 

p.337. 
For some valid extensions of 8.3.1, see Sections 13.5 and 13.11. Regarding 

extensions of 8.2.1 and 8.3.1 to general groups, see 13.5.2. 

8.3.3. Dual Version of 8.3.1. As has been hinted at in Section 2.5, 8.3.1 
can be recast into the form of a dual result. It says in effect that, if t/J E 12, 

then the trigonometric polynomials 

converge in mean in L2 to a function 1 = ~ on T such that J = t/J. This 
includes a possible interpretation of the inversion formula spoken ofin Section 
6.7, and in particular attaches a good meaning to the Fourier transform ~ 
whenever t/J E t2 (see Section 2.5). 

See also Sections 13.5 and 13.11. 

8.4 Factorization Problems Again 

It has been stated in 3.1.1(c) and proved in 7.5.1 that there are no prime 
elements in the *-algebra L1, that is, that every 1 E Ll can be factorized in at 
least one way as 1 = 11 * 12 with 11,12 ELl. In 7.5.3 we alleged that the 
analogous assertion for V (p > 1) is false; see also Exercise 13.20. We can 
now verify this when p = 2. 

Indeed, if p = 2 the Parseval formula (8.2.2) and the Riesz-Fischer 
theorem 8.3.1 combine to show that any 1 E L2 for which ~nez IJ(n>l = 00 

is a prime element of L2 and (see Exercise 8.2) that these are the only primes 
in L2. 

In view of this it is natural to ask whether it is true that any nonprime 
element of V (p > 1) is expressible as a finite convolution product of prime 
elements of LP. An affirmative answer for p = 2 is given in Exercise 8.3. 
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8.5 More about Mean Moduli of Continuity 

Extending the notation introduced in 2.3.7, we define the mean modulus 
oJ continuity oJ J with exponent p > 0 by 

(8.5.1) 

This may be regarded as defined for any measurable f, setting wpf(a) = 00 

if TaJ - J does not belong to LP. Translation invariance of the integral 
shows that 

(8.5.2) 

For p ~ lone has also by Minkowski's inequality 

WpJ(a + b) = II Tauf - flip ~ IITa+d - Tbfllp + IITbf - flip 
= wpf(a) + wl,j(b) , (8.5.3) 

again by invariance of the integral. Also, by (2.2.19), 

(0 < p < q). (8.5.4) 

It has been seen in Exercises 5.1 and 5.2 that restrictions on the rate of 
decrease of wd(a) as a -+ 0 bear upon smoothness properties ofJ. It will now 
be seen, by using the results of 8.3, that further results of this nature may be 
expressed in terms of wd and w2f. Similar and much more elaborate results 
will be mentioned at the end of 10.4.6.; see also 10.6.2. 

8.5.1. If JELl and 

then f E L2 and 

(8.5.5) 

Proof. By 2.3.7 and (8.5.2) we have· 

,j(n), ~ Yzwd (,:,) 

for nEZ, n oF O. So (8.2.2) gives 

which is equivalent to (8.5.5). 
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8.5.2. Suppose that f E L2 and that a > O. Then 

\ 2: Inj(n)12 ~ [w2f (a)]2 
'TT Inl""la a 

~ 2: Inj(n)12. (8.5.6) 
nez 

Proof. By 2.3.3 and (8.2.2), 

[wd(a))2 = 2:lelna - 112 !j(n)i2. (8.5.7) 
Furthermore, 

lelna - 11 = 21sin 72nal; 
and 

21sin 72 nal ~ 2 ~ 172 nal 
'TT 

while 

21sin 72nal ~ 2172 nal = lnal 

for all n and all a. Insert these estimates into (8.5.7): (8.5.6) emerges after 
division bya2 • 

8.5.3. Concernin~ Absolute Continuity. On the basis of 8.5.2 we can 
establish a number of interesting conditions, each necessary and sufficient in 
order that a given L2 function shall be equal almost everywhere to an 
absolutely continuous function whose derivative (existing pointwise almost 
everywhere) belongs to L2. 

8.5.4. Suppose thatf E L2. Then the following four conditions are equivalent: 
(1) after correction on a null set, f is absolutely continuous and Df E L2; 
(2) Lnez Inj(n)J2 < 00; 

(3) lima.:.oa-1(T -af - f) exists in mean in 12; 
(4) w2f(a)/a = 0(1) as a-+O. 

If anyone of these conditions is fulfilled, the limit mentioned in (3) is DJ. 
Proof. That (1) implies (2) follows directly from 2.3.4 and (8.2.2). 
Assuming (2), 8.3.1 ensures that there exist g E L2 such that g(n) = inj(n) 

for all n E Z. Then 6.2.8 shows that 

L j(n)(elnb - elna ) = [b g(x) dx (8.5.8) 
nez Ja 

for all a and b. Moreover (2) entails that Lnez Ij(n)1 < 00, and 2.4.2 shows 
that, after correcting f on a null set, 

f(x) = 2: j(n)eln:r: 
neZ 

for all x. So (8.5.8) and Lebesgue's theorem on the derivation of integrals 
([W), Theorem 5.2g) combine to show that f is absolutely continuous and 
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Df = g almost everywhere. Thus (1) is satisfied and the equivalence of (1) 
and (2) is established. 

Again assuming (2), and using the above notation, Parseval's formula 
(8.2.2) gives 

Ila-1(T -af - f) - gl122 = L: la-1(eIM - I)J(n) - inJ(n)i2 
neZ 

= L: la-1(e'na - 1) - inI211(n)i2. (8.5.9) 
neZ 

Now 
lim a-1(e1na - 1) - in = 0 (n E Z), 
a-O 

and (see the proof of 8.5.2) 

la-1(e'na - 1)1 ~ const Inl. 
These facts, combined with (2) and (8.5.9), show that 

Iia -l(T -af - f) - ul122 ~ 0 
as a ~ O. Thus (2) implies (3). 

Since w2f(a) = liT -af - fl12' it is evident that (3) implies (4). 
The first inequality in 8.5.2 shows that (4) implies (2). 
We now know that 

(1) .;:> (2) => (3) => (4) => (2), 

so that the proof is complete. 

8.5.5. Remarks. (1) By using the uniform boundedness principles 
(Appendix B.2.1 and B.2.2) it could be shown that a fifth equivalent condition 
is obtained on apparently weakening (3) to the demand that the said limit 
exists weakly in L2, that is, (see Appendix C.l), that 

lim fa-1(T -af - f)' h dx 
a-O 

exists finitely for each hE L2. 
(2) Yet another equivalent condition is the existence of U E L2 such that 

lim fa-1(T -af - f)' u dx = fuu dx 
a-O 

for each u E C«>; see Exercise 12.24. 

8.6 Concerning Subsequences of 8Nf 
As will be described in 10.4.5, Carleson announced in 1966 a proof of the 

almost everywhere pointwise convergence of 8Nf for each f E L2. Despite this, 
we shall here illustrate in detail the use of the Parseval formula in proving a 
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much earlier result due to Kolmogorov (1925). This theorem of Kolmogorov, 
which asserts the existence of specifiable, rapidly increasing sequences 
(N /C);'-l of positive integers having the property that lim/c ... ",8N,.! = f point
wise almost everywhere for each f E L2, prompted a number of similar investi
gations which are not superseded by Carleson's theorems; see lO.4.6. 

We begin with a definition. A sequence (N/C);'=l of positive integers is 
termed a Hadamard 8equence if 

q == infN/C+l > l' 
Ic NIc ' 

such sequences have appeared already in Exercises 5.6 and 6.13, and they 
will be encountered again in Chapter 15. 

8.6.1. (Kolmogorov) Let (N/C);'_l be a Hadamard sequence of positive 
integers. If f E L2, we have 8N,.!(X) -+ f(x) for almost all x. 

Proof. Recall from 6.4.4 that aNf""f a.lmost everywhere. Observe also 
tha.t if (gr):"-l is any sequence of nonnegative integrable functions, and if 

i fgr < 00, 
r=1 

then ([W), Theorem 4.1e) ~;o..1 gr is integrable, hence finite. valued almost 
everywhere, and so gr -+ 0 almost everywhere. In view of these two remarks, 
it will be sufficient to show that 

... 
S = L IlaNJ - BN"JII22 < 00. 

"'-1 
Now, by (8.2.2), 

80 that 

~aNJ - BN"fll!!2 = (N", + 1)-2 L n2IJ(n)12, 
I"I<ION" 

L IlaN,.! - BN,.!!!2!! ~ L Nji2 L n2Ij(n)12 
/C<lOP /C<lOP 1"1 <10 N" 

== Sp, 

say. Putting U" = n Il IJ(n)12, we may write 

(8.6.1) 

(8.6.2) 

with the understanding that No be read &8 O. On the other hand, since (N /c) is a 
Hadamard sequence, it is easily seen that 

L N m -2 ~ O'Nj-lI, 
m;.j 
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where C is a number depending only upon q. Hence 

Moreover, 

So, by (8.6.3) and (8.2.2), 

8 p EO C' L li(k)l:! EO C' Ilf1122. 
Ilel",N" 

From this estimate and the obvious relation 

8 = sup8p , 
p 
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(8.6.3) 

(8.6.1) follows and the proof is complete. More general results of similar nature 
are proved in [Z2], Chapter XV; see especially p. 231. 

8.7 A(Z) Once Again 

In this section we shall use 8.2.1 and 8.3.1 in a manner due to Hirschman 
so as to obtain a sufficient condition for a complex. valued function", on 
Z to belong to A(Z); see 2.3.10(4). The result actually given by Hirschman 
([1], Lemma 3a) appears as 8.7.3 and will be used in Section 16.4. 

For leE Z, TIe~ will denote the translated function n_~(n - Ie) on Z 
(compare the notation introduced in 2.2.1 for functions defined on groups). 

8.7.1. Suppose that", E co(Z) and that 

aD 

8 == L: 2-YamIIT(2")~ - ~112 < 00. 
01=0 

Then there exists a function 1 E Ll such that j = ~ and 

111111 ~ %8. 

(8.7.1) 

(8.7.2) 

Proof. Let m be a nonnegative integer and define k = 2m• According to 

8.3.1, (8.7.1) shows first that there exists a function fie E L2 such that jle = 
Tie" - " and 

in V 3, where 
BU = L {,,(n - k) - "(n)}e,,. 

1"lsN 

So (see the proof of Theorem 4.58 of [WJ) one can choose sequences (N,(Ie');"..1 
(k = 2,4, ... ) of integers such that (N~Ic+1»::'1 is 8 subsequence of (N,(Ie'):"_1 
and 
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pointwise almost everywhere. On taking the "diagonal subsequence" (Nr );o..l 
= (Nr(rl):"al' one will have 

for almost all x and all k = 1,2,·.·. Since; is known to belong to co(Z), this 
last relation may be written 

for almost all x and all k = 2, 4, .... This relation makes it plain that there 
exists a measurable periodic function I such that 

a.e., 

and 8.2.1 shows that 

Let 1m denote the interval defined by the inequalities 

so that U:=o 1m = (-.", .,,). For x Elm' 

so that (8.7.4) entails that 

r I/(x)12 dx =EO ."IIT/c; - ;1122. J, .. 

(8.7.3) 

(8.7.5) 

From the Cauchy-Schwarz inequality and (8.7.5) it may be inferred that 

r I/(x)1 dx =EO .,,2-%mIIT/c; - ;112, J, .. 

and, summing over m, (8.7.1) yields 

1111It =EO %8, 
which is (8.7.2). In particular, I ELl as a consequence of (8.7.1). 

Finally, for all nEZ, 

;(n - k) - ;(n) = 2~ fl/c(X)e-1nz dx, 

which, by (8.7.3), is equal toJ(n - k) - J(n). If we let m_oo and use 2.3.8 

and the hypothesis that; e co(Z), it appears that; = J. The proof is complete. 
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8.7.2. The statement of Hirschman's lemma is made in terms of the 
expression 

,-1 

V/I(4)) = sup { 2: 14>(nle +l) - 4>(nIeWPI/I, 
Ie-O 

where f3 is a positive real number and the supremum is taken with respect to 
all strictly increasing finite sequences (nle)~ ~ 0 of integers. The supremum 
may, of course, be 00. 

It is evident that V1(4)) = Ila4> II 1, where the difference operator a is 
defined as in 7.1.2. Also, if 4> is bounded, 

for any f3 > 1. 
Less evident is Hirschman's estimate which follows. 

8.7.3. Suppose that 

14>(n) I ~ K(1 + InD-21a (ne Z) (8.7.6) 

for some IX > 2, and that V8(4)) < 00 for some f3 satisfying 1 ~ f3 < 2. Then, 
for k = 1, 2, 3, .. " 

\I T 1e4> - 4>1\2 ~. A a•8 V 8(4))BCa-2l12Ca-8lKaC2-8)12(a-/llkCa - 2)(2Ca-Bl. (8.7.7) 

In particular, there exists an 1 e L1 such that I = 4> and 

111111 ~ A~.8V8(4))B(a-2l12(a-BlKa(2-B)J2(a-B). 

Proof. Holder's inequa.lity for sums gives 

II TIe~ - ~1122 :s;; { L: 1<I>(n) - ~(n + k)I,,}<a-2)/(a-B). 
"EZ 

{ L: 1<I>(n) - <I>(n + k)laf~-8)/<a-B). (8.7.8) 
"EZ 

Beside this, 

Ie-I 

L: 1<I>(n) - 4>(n + kW = 2 L: I~(mk + j) -4> (mk + j - k)I' 
"eZ 1-0 mEZ 

(8.7.9) 

and, by (8.7.6), 

L: 14>(n) - 4>(n + kW:s;; L: A,,{I,(n)la + 14>(n + k)I"} 
"ez "eZ 

:s;; 2A"K"· L: (1 + In l>-2. (8.7.10) 
"EZ 

The estimate (8.7.7) follows at once on combining (8.7.8), (8.7.9), and (8.7.10). 
The final statement is a consequence of (8.7.7) and 8.7.1. 
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EXERCISES 

8.1. Let a be any permutation of Z. Define Tf for f E L2 by 

Tf = 2: /(a(n))e". 
"EZ 

Verify that T is an isometric isomorphism of the convolution algebra L2 onto 
itself. 

Construct permutations a of Z such that T is not the restriction to V~ of 
any homomorphism of the convolution algebra Ll into itself. 

Hint: For the second part refer to conditions (3) and (4) of 4.2.6, and 
show how to construct permutations a of Z with the property that, for any 
integer q > 0, the relation, 

a(n + q) + a(n - q) = 2a(n) 

is false for infinitely many n E Z. 
8.1. Show that an element f of L2 is a prime element of L2 if and only if 

~"EZ 1/(n)1 = 00. (See 8.4.) 
8.3. Show that any nonprime element of L2, say f, is e:1.press:ible as the 

product of two prime elements of L2. 
Hint: Reduce the problem to showing that, if 2: Ic,,1 < 00, then one can 

write c" = a"b", where 2: la,J~ < 00, 2: Ib,,1 2 < 00, 2: la,,1 = 2: Ib,,1 = 00. 

8.4. Suppose that fELl and that wd(a) = O(lala) as a_O for some 
a > O. Show that f*N E L~ for any integer N for which Na. > %. (Compare 
this result with that of Exercise 5.2.) 

8.5. Let k E Ll and let Tf = k * f. Show that T is a continuous endo
morphism of L~ such that 

IIfll", is defined as in 2.2.5, f being a function on Z. 
What are the eigenvalues anl eigenvectors of T? Can it ever happen that 

T(L2) = L21 (give reasons for your answer). Under what conditions is T(L2) 
everywhere dense in L21 

8.6. The notation being as in Exercise 8.5, consider the same questions 
when T - AI replaces T, ,\ being a complex number and 1 the identity 
endomorphism of L2. 

8.7. Let a = (a.")"EZ be a sequence such that a. E 11' for some p > 0 (the 
notation being as in 2.2.5). Prove that 

lim lIakllll/k = lIa II "" 
k~'" 

where ak is the pointwise product of k sequences each identical with a.. 
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8.8. The spectral radiU8 formula for L2 (see Exercise 3.12 and Subsection 
11.4.14). Show that, iff E VI', then 

lim IIf*k1121/k = Ilill",. 
k-oo 

Hint: Use Exercise 8.7 in conjunction with the Parseval formula. 
8.9. Let w be a positive function on Z such that limlnl_""w(n) = 00. 

Prove the existence of continuous functions f satisfying (8.3.3) and (8.3.4). 
Hint: Consider L.k=l w(nk)-Yzelnk %, where the integers nk increase 

sufficiently rapidly. 
8.10. The wave equation 

with boundary conditions u(O, t) = U(21T, t) and initial conditions 

u(X, 0) = f(x), 
au at (x, 0) = g(x) , 

is to be considered in the following interpretation: 
(1) for each t > 0, UI E Cl, ul(O) = ul(21T) = 0; 
(2) Du, is absolutely continuous and D 2u I E L2 for each t > 0; 
(3) 'ILl == L2 - lim._oe-l(ut+t - u l ) and 

iii == L2 - lim ... oe-l(ul+B - UI) exist for each t > 0; 
(4) iiI = D2Ut as elements of L2 for each t > 0; 
(5) L2 - limt _ +out = f and L2 - limt _ + OUt = g, f and g being given 

elements of V. 
Give a rigorous discussion of (a) conditions under which a solution exists, 

and (b) the uniqueness of this solution. 
8.11. WritingsN(x) = L.lnl"wne1nx, show that ifc n = O(lnl-l)as Inl~oo, 

then (SN(X»N=l converges almost everywhere and that the limit function 
belongs to L2. 

8.11. Let (Pn)nez be a sequence of nonnegative numbers such that 

2: Pn = 00 (1) 
"eZ 

and 

2: p,,2 < 00. (2) 
"eZ 

Show that there exists a function f E V such that 
(i) li(n)1 = o(p,,) for nEZ, Inl ~oo; 
(ii) f is essentially unbounded on every nondegenerate interval. 
Hints: Write N = {n E Z : p" oF OJ. Consider the linear space E of 

functions f E V such that i(Z\N) = {OJ and i(n) = o(Pn) as Inl ~oo. 
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Introduce into E the norm 

IlfilE = sup Pn -llj(n)1 
neN 

and verify that E is thereby made into a Banach space. 
Assuming the assertion to be false, apply Appendix B.2.1 to show that 

Ilfll", ~ const IlfilE. (3) 

Take any g E V and consider the linear functional defined Qn E by 

A(f) = LJf(-x)g(X)dX. 

Use (3) and Appendix B.5.1 to show that there exists ex E tl(Z) such that 

A(f) = L ex(n)Pn-1!(n) (fEE); (4) 
neN 

in doing this you will need to verify that each continuous linear functional on 
co(Z) (see 2.2.5) is expressible as 

q, --+ L ex(n)q,(n) 
neZ 

for some ex E tl(Z). Deduce a contradiction of (1) from (4), using Exercise 
3.14 on the way. 

Remarks. The condition (2) is not essential: it is included merely to 
shorten the proof somewhat. One can in any case show that f may be chosen 
to satisfy (i) and (ii) and to belong to V for every p < <Xl; for details, see 
Edwards [3]. 

8.13. Suppose that f E L2. By applying. the Parseval formula to the 
function 

show that 

8r n~ 1!(n)12 Sin2(;;) = LJ k~ljI(X + kr1T) -f(X + (k ~ 1)17)12 dx 

~ o.",f (~) . V(f), (1) 

whereo.",f(S) =sup{IITaf-fll",: lal ~ S}.Deducethatiffisofbolmded 
variation, then it is continuous if and only if 

lim r L 1!(n)j2 sin2 (n217) = O. (2) 
r- co neZ r 

Hint: Observe that if If(~ + 0) - f(~ - 0)1 = d > 0, then, for all 
large r and almost all x, at least one term in the sum appearing on the right
hand side of (1) contributes an amount not less than (d/3)2, 
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Remarks. It can be shown without too much difficulty that (2) is 
equivalent to 

lim N-l L Inj(n)1 = 0; 
N-'" Inl .. N 

(3) 

see, for example, [Bad, pp. 214-215. In this final form the criterion of 
continuity for functions of bounded variation is due to Wiener. It follows in 
particular tha t any function f of bounded variation, for which j (n) = o( I / I nil, 
is continuous. Compare with the remarks following 2.3.6. See also MR 38 
# 487; 44 # 7220. 

S.14. (I) Suppose that f, g, k e L2. Prove the following extension of 
Appolonius' identity: 

Ilk - fl12 + Ilk - gl12 = %llf - gl12 + 211k - %U + g)112, (1) 

where we have written 11'11 in place of 11'112' 
(2) Let M be a closed convex subset of L2. (Convexity of M means that 

exf + (I - ex)g e M whenever f, geM and 0 < ex < 1.) Show that there 
exists a unique fo eM such that 

Ilfoll = inf {Ilf II : f eM}. 

Hints: The proof of (I) rests on direct calculation. 
For (2), choose fn e M (n = 1, 2, ... ) so that 

Ilfnll == Sn ~ S == inf{llfll :feM}. 

Apply (1) to conclude that the sequence Un) is Cauchy in L2. Consider the 
limit fo of this sequence. Prove uniqueness by another application of (1). 

Remark. The result in (2) may be termed the "projection principle"; it 
has numerous interesting applications to problems in concrete analysis, for a 
discussion of some of which see Exercise 8.15 and [E], pp. 99 fr. 

S.lS. Suppose that f e H2 (see Exercise 3.9) does not vanish almost 
everywhere (that is, that Ilfll == IIfl12 > 0). Prove thatf(x):I= 0 for almost 
all x. 

Hints: Assume (without loss of generality) that itO) :1= o. Let M be the· 
smallest closed convex set in L2 containing all functionsf' t, where t denotes a 
trigonometric polynomial belonging to H2 and i(O) = 1. Take geM, mini
mizing the distance from 0 of elements of M; see Exercise 8.14. By comparing 
Ilgll with Ilg + Ae"o;"gll, where A is any scalar and n = 1,2,···, deduce that 
Igl is equal almost everywhere to some constant, c. Check that c cannot be O. 
Observe finally that, if f vanished on a set S of positive measure, then the 
same would be true of g. 

Remark. It can be shown that in fact 

2~ flOg Ifldx > -00. 
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For this, as well as many other related results, see [Hel] and [Ho]. Compare 
also Exercise 15.17. 

8.16. The so-called isoperimetric problem is that of determining, among all 
closed plane curves with given perimeter (here conveniently chosen to have 
the value 27T), that (or those) enclosing the greatest possible area. 

Assuming sufficient smoothness on the part of the admissible curves, and 
expressing these curves in terms of arc length s as parameter, the problem 
can be formulated analytically as follows: among all pairs (j, g) of real-valued, 
absolutely continuous periodic functions I and g such that DI, Dg E L2 and 

(Df)2 + (Dg)2 = 1 a.e., 

determine those for which 

(2" 
A = Yz Jo (jDg - gDf) ds 

is a maximum. 
Use the Parseval formula to solve this version of the problem. 

Notes: For a discussion of the isoperimetric problem for plane polygons, 
see [Ka], pp. 27-34. Chapter VII of [HLP] contains a brief account of the 
classical approach to this and some similar problems by the methods of the 
calculus of variations. Two other problems of this sort that have had a pro
found influence on mathematics are the Dirichlet problem and the Plateau 
problem; see [CH] and the references cited there, [E], Section 5.13, and [Am]. 
Variational methods are applicable to the study of many linear functional 
equations, in which connection they often suffice to yield useful information 
about the eigenvalue distributions in cases where the equation is not con
veniently soluble explicitly; see, for example, [So], Chapter II. The existence 
theorems appropriate to many variational problems are crucial and difficult: 
they represent the concrete origins of, and the initial motivation for, the modern 
study of compactness in function spaces and of numerous other functional 
analytic techniques. Exercise 8.14 above includes a simple variational principle, 
and Exercise 8.15 illustrates a concrete application of this. 

8.17. The reader is reminded that f F dx is defined (possibly 00) for any 

nonnegative measurable function F on T to be limk ... ", f inf (F, k) dx; and 
that 2"&#,, is defined (possibly 00) for any nonnegative function (c,,),,&Z 

on Z to be limk ... ", 21"I<kC", 

Verify that, with these definitions, the Parseval formula 

21 JIII2 dx = L li(n)!2 
7T "eZ 

holds for any I E Ll. 
8.18. Suppose that IE Ll and that S denotes the set of real numbers a 

such that T 41 - IE L2. Show that S is a subgroup of R. 
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Define 

for a E R, where (compare Exercise 8.17) 00 112 is taken to mean 00. Prove 
that N is lower semi continuous (see Appendix A.4). 

By using Exercise 3.16 and Appendix A.5 show that, if S either has positive 
interior measure or is nonmeager, then there exist positive numbers 8 and A 
such that 

2: 1/(nW sin2 Y2na ~ A 
neZ 

whenever lal ~ 8. Conclude that f E L2. 
Note: It is possible to reformulate the result so as to apply when f is 

assumed merely to be a distribution (see Chapter 12). Also, it is possible to 
replace L2 throughout by other spaces V'; the proof then becomes somewhat 
more complicated. The first consideration of this type of result appears to be 
due to de Bruijn [1], [2]. See also the work of Kemperman (Math. Rev. 20, 
1123), Carroll (Math. Rev. 28 #5137, 30 #1126, 2101), and a paper by the 
present writer entitled "Differences of functions and measures" (to appear 
J. Austr. Math. Soc.). 



CHAPTER 9 

Positive Definite Functions 
and Bochner's Theorem 

9.1 Mise-en-Scene 

Continuous (and not necessarily periodic) positive definite functions of a 
real variable were seemingly first studied by Bochner who, by using the 
existing theory of Fourier integrals, established for them a fundamental 
representation theorem now known by his name and which is the analogue 
for the group R. of 9.2.8. These positive definite functions were not 
seen in their true perspective until some ten or fifteen years had elapsed. 
Then, as a result of the birth and growth of the theory of commutative 
Banach algebras and the applications of this theory to harmonic analysis on 
locally compact Abelian groups (see 11.4.18(3)), the central position of the 
Bochner theorem came to be appreciated. The developments in this direction 
were due largely to the Russian mathematicians Gelfand and Raikov, who 
enlarged still more the role played by positive definite functions by noticing 
their intimate relationship with the theory of representations of (not 
necessarily Abelian) locally compact groups. A similar path was hewn, 
independently, almost simultaneously, and from a slightly different point of 
view, by the French mathematicians H. Cartan and Godement; see [B], pp. 
220 ff. It is now true to say that a considerable portion of our function
theoretical knowledge of locally compact groups rests upon a study of 
positive definite functions on such groups. 

It turns out that continuity plus positive definiteness of an integrable 
functionf is one of the very few known conditions which (a) ensures that the 
transform j is integrable, and (b) is expressible solely in terms of the 
topological group structure. For the group T, the result is contained in 
9.2.8; for the group Z, see 12.13.3. Because of this, the positive definite 
concept is useful as a primitive tool in the development of harmonic analysis, 
rather than as an afterthought to the latter (which is how it appeared 
initially). 

It is also true to say that positive definiteness of an integrable function f 
is equivalent to the demand that its transform j be nonnegative. (For the 
group T, see 9.2.4; the case of the group Z is covered by 12.13.2.) Granted 
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the importance ofthe Fourier transformation, this fact adds to the significance 
of the positive definite concept. 

In this brief chapter we shall deal rapidly with a part of the theory of 
positive definite functions on the group T, and observe how it might be 
used as an alternative approach to the 12 theory and the Parse val formula. 
(see Chapter 8). The present situation, dealing as it does with a compact 
Abelian group, is technically much simpler than that involving a general 
locally compact group. 

Another special case of the general setting is the dual one, in which the 
underlying group is Z rather than T. There is a perfect Bochner theorem 
applying to his case, but its discussion must be deferred until Section 12.13. 

For remarks concerning the theory in a more general setting, see Section 
9.4. 

9.2 Toward the Bochner Theorem 

We begin by framing our definition of positive definite functions. (Bochner'S 
original definition was different; see 9.2.7.) 

9.2.1. A function fELl is said to be positive definite if and only if 

f * u * u*(O) = 4~2 f f f(x - y)u(x)u( y) dx dy ;:.: 0 (9.2.1) 

for each continuous function u. (The reader is reminded that u* denotes the 

function x-+ u( -x); see the start of Section 2.3.) 

9.2.2. The set of positive definite functions does not, of course, f.arm a 
linear space. It is true, however, that any linear combination with real 
nonnegative coefficients of positive definite functions is again positive 
definite. 

It is easily verified that any continuous character is positive definite; the 
same is therefore true of any trigonometric polynomial with nonnegative 
coefficients. 

Further examples appear in 9.2.5. 

9.2.3. A function fELl is positive definite if and only if (9.2.1) holds for 
each trigonometric polynomial u. 

Proof. The necessity is plain. Suppose, conversely, that (9.2.1) holds for 
each trigonometric polynomial u. If u is any continuous function, choose (as 
is possible by 6.1.1) a sequence (Un);'=l of trigonometric polynomials con
verging uniformly tou. Then, by 3.1.4 and 3.1.6, f * Un * u! -+ f * u * u* 
uniformly. Since, by hypothesis, f * un * u~(O) ;:.: 0, it follows that 
f * u * u*(O) ;:.: 0, showing that the hypothesis of 9.2.1 is fulfilled. 
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9.2.4. A function IE L1 is positive definite if and only if j ~ 0, so that in 
particular I = 1* almost everywhere. 

Proof. If I is positive definite, and jf in (9.2.1) we take u = en, where 
en(x) = elnx, we obtain exactly the inequality j(n) ~ O. If, on the other hand, 
j ~ 0, and if 

is a trigonometric polynomial (the range of summation being thus a finite 
subset of Z), then 

1* u * u*(O) = 2: cmc" • I * em * en *(0) 
m.n 

= 2: cmcn ' SmJ(n) 
m.Il 

= 2:lcn I2j(n) ~ 0, 
n 

and 9.2.3 shows that I is positive definite. 

9.2.5. By using the criterion 9.2.4 it is very simple to verify that for any 
g E L2 the continuous function 

If -I (x) = g * g*(x) = 27T g(x + y)g( y) dy 

is positive definite. The same conclusion also follows readily from 9.2.6 to 
follow. For the converse, see 9.2.10. 

9.2.6. A continuous function I is positive definite if and only if 

k 

2: I (xm - xn)imz" ~ 0 (9.2.2) 
m.n=l 

holds for any finite sequence (x!J)~ = 1 of real numbers and any finite sequence 
(zn)~ = 1 of complex numbers. 

Proof. We leave it to the reader to show that (9.2.2) implies (9.2.1), 
remarking merely that it suffices to approximate the integral appearing in 
(9.2.1) by Riemann sums 

k 

2: I(xm - xn)u(xm)u(xn)(xm - xm- 1)(xn - xn- 1 )· 
m.n=l 

It will thus be seen that (9.2.2) implies that I is positive definite. 
Conversely suppose that I is continuous and positive definite. By 9.2.4, 

j ~ O. Hence uN/is a trigonometric polynomial with nonnegative coefficients, 
and it is immediately verifiable that (9.2.2) holds when! is replaced by UNf. 
It now suffices to let N -HI) and use 6.1.1, in order to be led to (9.2.2) itself. 
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9.2.7. In 9.2.6 we have the exact analogue of Bochner's original definition 
of continuous positive definite functions on the additive group R of real 
numbers. It is not suitable for the study of discontinuous functions, which is 
why we have substituted 9.2.l. 

W,' can now establish the form of Bochner's theorem appropriate to the 
group T. 

9.2.8. (Bochner) Suppose that / ELl is positive definite, and that / is 
essentially bounded on some neighborhood of the origin. Then Lnezj(n) < 00 

and 

/(x) = 2: j(n)e1nX a.e., (9.2.3) 
neZ 

so that/is equal almost everywhere to a continuous positive definite function. 
If / is continuous, equality holds everywhere in (9.2.3). 

Proof. In the first place we have 

UN/tO) = 2~ fJ(X)FN(X) dx. 

Now, if we suppose that I/(x)j ~ m «00) for almost all x satisfying Ixl ~ a 
for some a > 0, it follows that 

m fa I f IUN/(O)I ~ -2 FN(X) dx + -2 1/(x)1 dx' (N + 1)-1 cosec2 Y2a. 
7T _ a 7T a.;; Ixl ';;1t 

This shows that 
sup IUN/(O)I < 00. 

N 
(9.2.4) 

On the other hand, 

UN/tO) = 2: j(n) (I - )nl I)' 
Inl .. N + 

(9.2.5) 

This, together with (9.2.4) and the fact thatj ~ 0, shows that LnEzj(n) < 00. 
The equality (9.2.3) is now a consequence of 2.4.2. Further, if/ is known to be 
continuous, we may appeal to 2.4.3 to infer that (9.2.3) holds everywhere. 

9.2.9. We notice two corollaries of 9.2.8 and its proof. 
(I) If / ELl is positive definite, and if I/(x)i ~ m almost everywhere on 

some neighborhood of 0, then the same inequality holds almost everywhere. 
Proof. The inequality preceding (9.2.4) shows indeed that 

lim sup IUN/(O)I ~ m. 
N-<Xl 

This, combined with 9.2.4 and (9.2.5), leads at once to 

2: j(n) = lim 2: j(n) (I - Nlnll) ~ m; 
neZ N-<Xl Inl.;;N + 

then (9.2.3) and 9.2.4 show that 1/(x)1 ~ m for almost all x. 
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(2) If I is a continuous positive definite function, then I/(x)1 ~ 1(0) for 
all x. 

Proof. This follows from (9.2.3), which now holds for all x, and 9.2.4. 
(It is also easily deducible from 9.2.6.) 

9.2.10. The converse of 9.2.5 can now be established with ease: any 
continuous positive definite function I is expressible in the form I = g * g* 
for some g E V. 

In fact, by 9.2.4 and 9.2.8, j ~ 0 and 

2: j(n) < 00. 
neZ 

From 8.3.1 it therefore follows that a function g E L2 exists such that g = j1l2, 
in which case 2.3.1, (3.1.5), and 2.4.1 combine to show that I = g * g*. 

The reader should compare the conjunction of 9.2.5 and its converse (just 
established) with the criterion of M. Riesz mentioned in 10.6.2(4), and 
applying to functions with absolutely convergent Fourier series. 

9.3 An Alternative Proof of the Parseval Formula 

One can combine 9.2.5 and 9.2.8 so as to yield very rapidly a proof of the 
Parseval formula, on which all the L2 theory of Chapter 8 may then be 
founded. 

Thus, if g E L2, and if we apply to the continuous positive definite function 
I = g * g* the formula (9.2.3) and take x = 0, it appears that 

1(0)= 2:j(n). (9.3.1) 
neZ 

Since 

1(0) = L flg(x)j2 dx 

and 
j(n) = Ig(n)12, 

(9.3.1) reads 

21 flg(x)12 dx = 2: Ig(n)j2, 
n neZ 

which is the Parseval formula. 
In many developments of harmonic analysis on locally compact Abelian 

groups, the above procedure is precisely that by which the Parseval formula 
and the L2-theory are approached. See [B], p. 235 ff. 

9.4 Other Versions of the Bochner Theorem 

We have mentioned in Section 9.1 that the concept of positive definite 
function extends altogether naturally to quite general groups ,and that a great 
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deal of work has been done in this direction. Here we insert a few biblio
graphical indications for the benefit of the interested reader with an ample 
supply of ambition and energy. 

What would appear to be perhaps the "natural" extension of the Bochner 
theorem is the perfect version applying to any locally compact Abelian group. 
For the details, see [B], pp. 220 ff: [R], p. 19; [N], pp. 404 ff.; [We], Chapitre VI; 
[E], Sections 10.3 and 10.4; Bucy a.nd Maltese [1]; [Ph]. The third reference 
displays the use of Banach-algebra techniques; see the remarks in 11.4.18(1). 
Infinitesimal fragments of such extensions of the Bochner theorem appear in 
Section 12.13 and in Exercises 12.34 and 12.35. 

Slightly less complete versions of the theorem have been worked out for 
non-Abelian locally compact groups; see [N], pp. 394 ff. and Godement [1], 
especially pp. 50-53. 

In pursuit of still more generality, Ito and M. G. Krein have devised formula
tions of the theorem applying to functions on sets and spaces that are not 
groups. For an example, see [N], pp. 427-428; for a brief survey, see [Hew], 
pp. 145-149 and the references cited there. 

Owing in part to impulses transmitted by mathematical physicists with 
interests in the quantum theory of fields, special attention has been paid to 
forms of the Bochner. theorem and of harmonic analysis in general applying 
to Abelian nonlocally compact topological groups. A special, but particularly 
relevant, such group is the underlying additive group of an infinite-dimensional 
Hilbert space, for which case the reader should consult [G] and the references 
there, and [GV] , Chapter IV. Possibly the Hilbert space example, although 
especially significant, is too special to be genuinely typical-a state of affairs 
due perhaps to the existing variety of possible methods of approach tending to 
obscure the underlying essentials. Be that as it may, more general cases have 
been examined with some success. For a nonlocally compact Abelian group 
there may exist no genuine invariant (=Haa.r) integral having all the customary 
properties (as described in, for example, Section 15 of[HR]). However Shah [1] 
has shown that considerable progress can be made if there exists a suitable 
stand-in for the missing invariant integral. Such a stand-in does exist for 
Hilbert space and this is probably the underlying reason for success in this case. 

For further developments, see MR 37 ## 1893, 5610, 5611; 40 # 6224; 
51 # 13582; 52 # 14870; 55 ## 3678, 3679. 

EXERCISES 

9.1. Suppose that fELl and that (fn):= 1 is a sequence of integrable 
functions such that limn_oo!n = J on Z. Given that each fn is positive 
definite, show that f is positive definite. 

9.2. Suppose that f is continuous and positive definite and that 

,\ == liminfa- 2[2f(O) -f(a) -f(-a)] <00. 
a-O 
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Prove that 

L (1 + n2)j(n) ~ /(0) + A. 
neZ 

9.3. Given that / is positive definite and that / E COO(U) (or is analytic 
on U), for some open neighborhood U of 0, show that / is Coo (or analytic) 
everywhere. 

Hint: Use Exercise 9.2 to majorize the sums Lnez InI2kJ(n) for k 
= 0,1,2,···. 

9.4. Prove that the (pointwise) product of two positive definite functions 
in Leo is again positive definite. 

9.5. A positive definite function/ E Leo is said to be minimal if, whenever 
gEL'" is positive definite and such that / - g is positive definite, g is equal 
almost everywhere to a scalar multiple of /. Verify that the only minimal 
functions are the nonnegative scalar multiples of the continuous characters 
e1nx• 

Note: This characterization of the continuous characters is important in 
the Cp..:tan·Godement account mentioned in Section 9.!. 

9.6. Suppose that/ E Lao is positive definite. Show that If/is equal almost 
everywhere to a positive definite function in LOO, if and only if / is equal 
almost everywhere to a positive multiple of a continuous character e1nx• 

9.7. Show that the linear subspace of C generated by the set of continuous 
positive definite functions is precisely the set A of continuous functions / 
such that 

L IJ(n)1 < 00. 
neZ 

(The space A will be encountered again in Section 10.6,11.4.17, and Section 
12.11.) 

9.S. It is known (see 10.6.3) that there exist functions g E Ll such that 
1!l1 is not the Fourier transform of any Ll·function. Give examples of this 
phenomenon for the case in which Ll is replaced throughout by C and by Lao. 



CHAPTER 10 

Po}ntwise Convergence 

of Fourier Series 

In this chapter we shall deal rather summarily with some positive and 
negative results about the pointwise convergence of Fourier series. The 
reasons lor not according this topic a fuller treatment are discussed in 
Chapter 1. The reader who is particularly attracted by these aspects may 
consult [Z], especially Chapters II, VIII, and XIII; [Ba], especially Chapters 
I, III-V, VII, IX; [HaR], especially Chapter IV; [I], pp. 23 If., pp. 103 If.; 
[A]; and the work of Carleson mentioned in 10.4.5. 

Our account is particularly terse in relation to the many known sufficient 
conditions for convergence at a particular point. Out of a veritable multitude 
of such results, increasing almost daily, we shall in fact prove only the very 
familiar criteria associated with the names of Jordan and Dini, respectively. 
These are perhaps the most useful aids to handling the functions that occur 
naturally and with appreciable frequency. 

On the other hand, partly in order to reinforce the remarks in Chapter 1 
that bear upon the difficulties of characterizing Fourier series directly in 
terms of pointwise convergence, and partly to exhibit some of the chara
teristic functional analytic techniques of modern analysis, we shall devote 
quite a large fraction of the chapter to telling part of the story of the mis
behavior of Fourier series in relation to pointwise convergence. 

Although our main concern throughout this book is with Fourier series of 
functions on T, it is worth noting at this point that, rather late in the his
torical development of harmonic analysis, it came to be recognized that the 
classically natural groups T and its finite powers are" difficult" in respect of 
questions about pointwise convergence of Fourier series. More precisely, 
there are compact Abelian groups which are, from a classical viewpoint, 
rather bizarre, and yet relative to which Fourier series behave in a fashion 
simpler and more civilized than they do when the underlying group is T. The 
simplest (infinite) instance of such a group is the so-called Cantor group rc, 
which will be discussed in Chapter 14 as an aid in the study of Fourier series 
of functions on T. It turns out that, if f is any continuous complex-valued 
function on rc, then the Fourier series of f converges uniformly to f. 

Concerning the dual aspect of the problems handled in this chapter, see 
the remarks in Section 6.7. 
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The reader is again reminded that, in the absence of any statement to the 
contrary, the convergence of a numerical series L:nezcn is defined to signify 
the existence of a finite limit 

A similar convention applies if the cn are elements of anyone of the topological 
linear spaces of functions, measures, or distributions to be encountered in 
due course. If the Cn denote arbitrary nonnegative real numbers, the above 
definition of the sum L:nezCn makes it equal to 

sup L Cn' 
F neF 

where the supremum is taken with respect to all finite subsets F of Z. In 
this case, if the series is not convergent, the set of such finite partial sums is 
unbounded above and, by universal convention, one then writes 

L cn = 00. 
neZ 

The sum of a series of nonnegative real numbers is thus assigned a finite 
value if and only if it is convergent. 

10.1 Functions of Bounded Variation and Jordan's Test 

10.1.1. (Jordan's test) If fE Ll is of bounded variation on some neighbor
hood of a point x, then 

lim 8N f(x) = %[f(x + 0)·+ f(x - 0)]. 
N-«> 

Proof. Since ([W], Lemma 6.4b) the real and imaginary parts of fare 
each expressible, throughout some neighborhood of x, as the difference of 
two monotone functions, both limits f(x + 0) == lim" + of (x + a) and 
f(x - 0) == lim" + of (x - a) exist finitely. 

It is in any case enough to handle the case in which f is real-valued, which 
we assume henceforth. Now 

8 N f(x) = ;1T f f(x - y)DN ( y) dy 

1 (" 
= 21T Jo [f(x + y) + f(x - y)]DN(Y) dy, 

and it will therefore suffice to show that 

1 i" lim -2 g( y)DN( y) dy = % g( + 0) 
N-«> 1T 0 

(10.1.1) 

for any real-valued function 9 which is integrable over (0, 1T) and of bounded 
variation on some right-hand neighborhood [0, S] of 0, where 0 < [j < 1T. In 
doing this we may, without loss of generality, assume that 9 is increasing on 
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[0, S] and that g( +0) = O. [The latter reduction is possible in view of the 
obvious fact that (10.1.1) holds when g is a constant; see (5.1.3).] This being 
so, the second mean value theorem of the integral calculus gives 

~ (" g(y)DN(Y) dy = ~ r + ~ (" 
21T Jo 21T Jo 217 J6 

= 2~ g(S - 0) 5: DN( y) dy + 2~ r g( y)DN( y) dy 

for some ~ satisfying 0 ~ ~ ~ S. This ~ may depend upon N. Thus 

12~f: g(Y)DN(Y)dyl ~ 2~g(S - 0)15: DN(Y)dyl+ 12~r g(Y)DN(Y)dyl· 

(10.1.2) 

Now 

I~ (6 DN( y) dyl = I! (6 sin (N .+ %)y dYI ~ I! r6 sin (N + %)y dyl 
21T J ~ 1T J ~ 2 sm % y 1T J ~ Y 

+ - ly-1 - % cosec %yl dy ~ - --1 f" 11 i(N+%J6 sintdtl 
1T ~ 1T (N + %)~ t 

1 J" + - I y -1 - % cosec % yl dy. 
1T 0 

Since y-l - % cosec %y is integrable over (0, 1T), 10.1.2 to follow shows that 

(10.1.3) 

where A is independent of e, S, and N. 
Reverting to (10.1.2), and assuming that e > 0 is assigned, we first fix 

S > 0 so small that Ag(S) ~ e [which is possible since fl( +0) = 0], so 
obtaining 

(10.1.4) 

Since g(y) cosec %y is integrable over (S, 1T), we may allow N to tend to 
infinity and apply 2.3.8 to the second term. on the right in (10.1.4) and 80 

conClude that· 

lim sup r 21 r" g( y)DN( y) dyl ~ e. 
N-aJ ..". Jo 

Since e is freely chosen, (lO.l.1) is thus established. See also Izumi [1]. 

10.1.2. The integral f: t- 1 sin t de is bounded for all real values of a and b, 
that is, 

sup lIb t-1sintdt\ < 00. 
4. bell 4 
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Proof. This is left as Exercise 10.1 for the reader. 

10.1.3. As has been indicated in 5.3.5, by using 2.3.6, 5.2.1 and a Tauberian 
theorem of Hardy (see Exercise 5.8), 10.1.1 could be inferred directly from 
6.3.1. 

An examination of the proof of 10.1.1 leads to the following global version 
thereof. 

10.1.4. If I is of bounded variation, then 

lim sNI(x) = Y2[f(x + 0) + I(x - 0)] 
N .... '" 

for all x, and the convergence is bounded: 

ISNI(x)1 ~ const (11111"" + VU», (10.1.5) 

where VU) denotes the total variation of lover any interval of length 217. 
Proof. Only the inequality has to be proved. A perusal of the proof of 

10.1.1, and a glance at the way in which a function of bounded variation can 
be expressed as the difference of two increasing functions ([W], p. 105), show 
that it will suffice to prove that 

12~ s: g(y)DN(Y) dy I ~ const sup {Ig(y)i : 0 ~ y ~ 17} (10.1.6) 

for any increasing function g on [0,17] such that g( +0) = O. Now the second 
mean value theorem of the integral calculus gives for such g the relation 

for some a in [0, 17], so that (10.1.6) is an immediate consequence of (10.1.3). 
Remarks. (1) A different proof is easily derived from Exercise 10.12. 
(2) For functions f which are both continuous and of bounded variation, 

it is true that limN .... ""sNI = I unIformly. See Exercises 10.13 and 10.14. 

10.1.5. If IE Lt, then L .... o J(n)ei"%/n is uniformly convergent for all x. 
Proof. The function g defined by 

g(x) = r I(y) dy - J(O)x 

is periodic and absolutely continuous, and its Fourier series is 

L (in)-lJ(n)e inX ; 

" .. 0 

see 2.3.4. The result follows on applying Remark (2) following 10.1.4. 
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10.1.6. Remarks. (1) The proof of 10.1.5 can be extended to show that 
L.n .. o{l.(n)/n is convergent for any measure fL (see Sections 12.2 and 12.5). 

(2) From 10.1.5 it follows that L.:'=2 sin nx/log n is not a Fourier-Lebesgue 
series. (Nor, by Remark (1) immediately above, is it even a so-called 
Fourier-Stieltjes series; see 12.5.2.) See also 7.3.4 and Exercise 7.7. 

10.2 Remarks on Other Criteria for Conver~ence; Dini's Test 

We adopt the notation introduced in Section 6.3, writing in particular 

f~(y) == f~(y, x) = %[f(x + y) + f(x - y) - 28]. (10.2.1) 

Then, parallel to (6.3.2), we have 

(10.2.2) 

Sincef!( y) cosec %y is integrable over (8, 17") for any 8 satisfying 0 < 8 ~ 17", 
2.3.8 .shows that 

(0 < 8 ~ 17"). (10.2.3) 

An immediate corollary of this is the following statement. 

10.2.1. Iff ELl, in order that 

lim 8N f(x) = 8, (10.2.4) 

it is necessary and sufficient that for some 8 satisfying 0 < 8 ~ 17" it is true 
that 

1 f6 lim - n(y)DN(y) dy = O. 
N- 00 '1T 0 

(10.2.5) 

Beside this we may infer 

10.2.2. In order that (10.2.4) be true, it is sufficient that to any e > 0 shall 
correspond a number 8(e) satisfying 0 < 8(e) ~ 17" and a positive integer 
N(e) such that 

1
1 (6(£) I ;. Jo f~( y)DN( y) dy ~ e for N ~ N(e). (10.2.6) 

Proof. In this case 
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for a.ll N ~ N(e), whence: us~ of 2.3.8 yields from (10.2.2) 

lim sup Is~f(x) -sl ~ e. 
N .. .., 

On letting e_ 0, we obtain '(10.2.4). 

10.2.3. (Dini's test) In order that (10.2.4) be true, it is sufficient that for 
same 8 satisfying 0 < 8'~:1rdne has , I: In(~)1 dy < 00. (10.2.7) 

(Compare this with 5.2.3.) 
Proof. Since y - 1 - y:! cosec y:! y is bounded over (0, 8), (10.2.7) and 

2.3.8 combine to yield (10.2.5). The result therefore follows from 10.2.1. 

10.2.4. Remarks. (1) If (1.0.2.7) holds for any value of sat all,and iff 
has at x at \vorst a 'jump;discontinuity, tl~e'value ?f s must be Y:!U(x + 0) 
+ f(x - 0». . 

(2) It is evident that (10.2.7) is fulfilled, with 8 = f(x), if, for example, 
l(x + y) - f(x) = 0(1 ylti) for some ex > o. 

10.3 The Divergence of Fourier Series 

In this section we shall assemble a few results concerning the: pointwise 
4.ivergence of the Fourier series, of fun9ti9I),S of various types. For many 
more details the reader is referred to[Z~], Chapter VIII and [Bad, Chapters 
~&nc~ Y. Concerning,mean c9nverg~nre in.L\ seeEx~,ci~e,IP.2 and 12.10.2. 
, On~ niay seek to s~pport ~ state~ent of the type: "The Fourier series of a 

continuous function may diverge" in one of at least two ways. Either one 
may try to construct in as' explicit a:manri.:eraspossible a specific continuous 
function with the desired property; or one may use, a reductio ad absurdum 
argument by showing that the hypothesis, that no such functions exist, l~ads 
to a contradiction of what is already known. In the former case one has (if the 
alleged construction is su,cc~sful) II; cOll,structive proofof tile,statement; in 
the latter case one '~as (as!'luming 'that no euofs are ,made on the way) an 
exi~tential proof of ' the statement, so-called because one 'has shown that 
functions of the specified type must exist without prescribing any way of 
finding one. In 6.1,4, we h,ave already encountereda:nexample of the second 
type of argument. Both types of proof have their appeal. A constructive 
proof is usually more satisfying, but it is often ruled out by h,lCk of,enough 
detailed information about certain elements of the proposed construction. 
This is frequently the case in' ~bstract an~lysis, and this is where the existential 
type of proof often comes to the rescue. 
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A further illustration is provided by the assertion: "There exist integrable 
functions whose Fourier transforms tend to zero arbitrarily slowly at 
infinity." For the group T, a constructive proof of a strong form of this 
assertion is included in Section 7.4 and depends on many considerations 
peculiar to this group. There is a meaningful analogous assertion for any 
nondiscrete locally compact Abelian group. This analogue can be painlessly 
established (see Exercise 10.22) by an existential proof using abstract 
arguments; by expending more effort and using the properties of Sidon sets 
(see the introductory remarks to Chapter 15), more or less constructive 
proofs may also be furnished. 

We now proceed to illustrate both types of proof in connection with state
ments about the divergence of Fourier series. 

10.3.1. Fejer's Example. We begin with a construction due to Fejer 
leading to continuous functions whose Fourier series diverge at a given 
point, which may without loss of generality be taken to be the origin. 

If p and q are integers satisfying p ~ q ~ 1, let tp,q denote the trigono
metric polynomial defined by 

t (x) = cos (p - q)x + ... + cos (p - l)x _ cos (p + l)x _ ... 
p,q q 1 1 

q 

= 2 sinpx L k- 1 sin kx. 
k=l 

In view of Exercise 1.4, the tp •q are uniformly bounded. 

cos (p + q)x 
q 

(10.3.1) 

Suppose now that (Pk)k'= 1 and (q,Jk'= 1 are sequences of integers satisfying 

(10.3.2) 

Suppose further that (ee,,)k'= 1 is any sequence of complex numbers such that 

(10.3.3) 

liminfleekllogqk > O. 
k-oo 

(10.3.4) 

One might take, for example, 

Consider the function 

'" 
f(x) = L Ct.k· tpk,qk(X). (10.3.5) 

/(=1 

Because of (10.3.3) the series converges uniformly, so that f is continuous. 
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Due to uniform convergence, the Fourier coefficients of f may be calculated 
by termwise integration of the series appearing in (10.3.5). One finds in this 
way that 

\SPk +qJ(O) - spJ(O}i 
= \ak\ll- 1 cos (Pk + 1)0 + ... + q;;l cos (Pk + qk)O\ 

qk 

= lak\ L: r- 1 

r=1 

"'" \ak\log qk. (10.3.6) 

In the course of this calculation, the relations (10.3.2) are used in ensuring 
that the various trigonometric polynomials lpk.qk have no "overlapping" 
harmonics. The relations (10.3.6) and (10.3.4) shows that the sequence 
(sNf(O)); = 1 is not convergent, that is, that the Fourier series of f is not 
convergent at the origin. Indeed, if we choose the Ctk so that 

lim sup lakllog qk = 00, 
k~«l 

it follows from (10.3.6) that the partial sums of the Fourier series of fare 
unbounded at the origin. 

Numerous variations may be played on the preceding construction; see 
[Z1]' pp. 299-300; [Bad, §45; [Kz], p. 51, Proof B; Edwards and Price [1]. 

10.3.2. Existential Proofs. In this and the following subsection we shall 
use the uniform boundedness principle as the basis of existential proofs of 
the statement asserting the possible divergence of the Fourier series of 
continuous functions. 

The aim of this subsection is as follows. Let (xk)k'= 1 be any sequence of real 
numbers and (PN); = 1 any sequence of positive real numbers such that 

(10.3.7) 

C denotes the Banach space of continuous (periodic) functions; see 2.2.4. 
Our claim is that for each fEe, save perhaps those of a meager (= first 
category; see Appendix A.l) subset of C, it is the case that 

lim sup \sNf(Xk)1 = 00 

N~'" PN log (N + 1) 
(k = 1,2,···). (10.3.8) 

Since C is not a meager subset of itself (Appendix A.3), this shows that 
continuous functions f certainly exist for which (10.3.8) is true. 

Proof. We shall apply the result stated in Appendix B.2.1, taking for the 
Frechet space featuring therein the Banach space C, and defining 

ISNf(xk)1 
Pk(f) = !~~ PN log (N + 1) 
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This Pk has all the properties demanded, lower semicontinuity being a 
consequence of the fact that 

is evidently a continuous linear functional on C. The set of f E C satisfying 
(10.3.8) is exactly the complement, relative to C, of the set 

S = {fE C : infpk(f) < oJ}. 
k 

It therefore suffices to show that S is meager. 
Now, if S were nonmeager, Appendix B.2.1 would entail that for some k 

there is a constant c such that 

for all f E C. This would signify that 

(10.3.9) 

Appealing to transI'ation invariance of the integral, combined with the 
converse of Holder's inequality (see Exercise 3.6), it would appear from 
(10.3.9) that 

or, by translation invariance of the integral once again, that 

(10.3.10) 

But (10.3.7) and (10.3.10) flatly contradict (5.1.10), which says that 

4 IIDNlll '" "2 log N TT 
(N -00). 

TtJ.is contradiction establishes the desired result. See also [Kz], p. 51, Proof A. 

10.3.3. Let (Xk):'= 1 and (PN)'; = 1 be as in 10.3.2. There exists a meagre 
subset S of C with the following property: iff E C\S, one has 

(xEE), (10.3.11) 

where E is a (possibly j-dependent), set which is everywhere dense and whose 
complement is meager (so that E is nonmeager and therefore uncountable), 
and such that X k E E for all k. 

Proof. We may suppose from the outset that the points Xk are every
where dense in [ -TT, TT] and that all values of x considered lie in this same 
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interval. For S we choose the set specified in the proof if 10.3.2, where it is 
shown that S is meager. Take f E C\S and define 

w(x) = sup ISNf(x)1 
N;'l PN log (N + 1)' 

so that w(XI<) = 00 for k = 1,2,· . '. If E is defined to be the set of points 
x E [ -TT, TT] for which w(x) = 00, then E contains every xI< and is therefore 
everywhere dense in [-TT, TT]. Moreover, if 

Er = {x E [-TT, TT] : w(x) > r} (r = 1,2,···), 

then Er is open relative to [-TT, TT] (since w is evidently lower semicontinuous), 
Er contains all the XI<, and is thus everywhere dense in [-TT, TT], and 

E = n:,= 1 E r • Taking complements relative to [ -TT, TT], the complement of 
E is the union of the complements of the E r • Each of the latter is closed and 
nowhere dense, so that the complement of E is meager. By the category 
theorem (Appendix A.3), E must therefore be nonmeager; and since [ -TT, TT] 
is nondiscrete, this entails that E is uncountable. 

10.304. Further Results. Evidently, 10.3.3 entails the existence of 
continuous functions f whose Fourier series diverge on sets E that are un
countable, nonmeager, and everywhere dense. (The existence of continuous 
functions whose Fourier series diverge at a specified point was known to du 
Bois-Reymond in 1872.) 

The examples in 10.3.2 and 10.3.3 are aU such that ISNf(x) I is unbounded 
with respect to N for certain values of x. It can, however, happen that (sNf(x))';= 1 

is boundedly divergent for each point x in a set with the power of the continuum, 
and this for suitable continuous functions f; for an example, sec [Bad, p. 348. 

It results from the work of Carleson, described in 1004.5, that the Fourier 
series of any continuous function converges pointwise almost everywhere to 
that function. 

Men'shov showed in 1947 that there exists a continuous functionf such that 
any subsequence of (8Nfl: = 1 diverges at some point. He also established the 
curious fact that any fEe can be decomposed into a sum f 1 + f 2' where fl E C 
and some subsequence of (sNfl):=l is uniformly convergent (i = 1,2). 

There are very few simple operations on (say) continuous functions that 
preserve convergence of the Fourier series. Thus, for example, there exists at 
least one fEe having a uniformly convergent Fourier series, while the Fourier 
series of f2 diverges on a set having the power of the continuum; and also a 
similar f such that the Fourier series of If I diverges at some points ([Bad, p. 
350; p. 360, Problem 14). For further results of this type, see Kahane and 
Katznelson [1]. 

In 1926 Kolmogorov showed that there exist integrable functions f whose 
Fourier series diverge everywhere. The proof, which is more or less con
structive but complicated and difficult, is given in [Zd, pp. 310-314 and 
[Bad, pp. 455-464; [HaR], Theorem 79, is an earlier construction of Kolmogorov 
designed to produce integrable functions whose Fourier series diverge almost 
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everywhere. That such functions exist has been established by Stein ([1], 
Theorem 6) on the basis of a general theorem which is cited in 16.2.8 and which 
provides a powerful general approach to many existence theorems of this type. 
Granted the existence of one such function, it is relatively simple to deduce 
that they exist in abundance; see Exercise 10.21. See also Chen [1] and M. and 
S.-1. Izumi [2]. 

Regarding similar results when the operators 8N are replaced by something 
similar but more general, see Exercises 10.23 and 10.24. 

For Kolmogorov's functionj, as for those in 10.3.2 and 10.3.3, it is the case 
that 8Nj(X) is unbounded. In 1936 Marcinkiewicz showed that integrable 
functions j exist for which 8Nj(X) is boundedly divergent for almost all x (see 
[Zd, p. 308, and [Bad, pp. 430-443), but it is apparently still unknown whether 
"almost all" can here be replaced by "all." 

There is an elegant discussion of divergence for homogeneous Banach spaces 
(including the Kolmogorov example cited above) in [Kz], pp. 55-61; see also 
[Moz], Appendix C. 

See also MR 33 # 6266; 35 # 3349; 39 # 7342; 41 # 8906; 51 # 13578. 

10.3.5. Majorants for the sNf. The example given by Kolmogorov and 

mentioned in 10.3.4 shows that, if we write 

s*f(x) == sup ISNf(x)1 (~oo), 
N 

theri there exist integrable functions f such that 

s*f(x) = 00 

for all x. The readel' should compare this with the results quoted in 6.4.7 
and relating to the majorant a*f of the Cesaro means aNf. See also 10.4.5 
and Exercise 10.2, and 13.10 below. 

In spite of this disconcerting situation, there are some remarkable assertions 
of a type which say that, iff is real-valued and if the sNf are bounded below 
in a suitable sense, then they are also bounded above in a corresponding 
sense. A typical statement of this type affirms that if fEll is real-valued 

and such that infN8.vf Ell, then SUPNSNf E LP for any p satisfying 0 < p < 1. 
For other similar results and the relevant details, see [Z2]' pp. 173-175. 

10.3.6. Topolo~ical Bases of Tri~onometric Polynomials. Consider a 
Banach space E and a sequence (an)nez of elements of E. This sequence is said 
to form a topological base for E if to each j E E corresponds precisely one 
sequence (an)nez of scalars such that 

(10.3.12) 

the limit being taken with respect to the norm on E. A similar definition applies 
to sequences (an):=l' (The reader will recall that a not necessarily countable 
family (an) of elemcnts of E forms an algebraic, or Hamel, base for E if each 
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J e E is expressible uniquely as a finite sum of terms a"a", the coefficients a .. 
beingf-dependent scalars.) For more details about topological bases in general, 
see, for example, [E], Section 6.S. The existence of topological bases has been 
settled only for a number of particular (albeit especially important) Banach 
spaces; but see MR 35 # 700. 

Let us now specialize by 8.S8uming that E is one of the spaces LP, where 
1 E; p E; co, or C, and a" = 6 .. , the function :l:- 61'''':. It will appear in 12.10.1 
that (6"),,ez is a topological base for LP whenever 1 < P < co. On the contrary, 
however, this sequence is not a topological base for anyone of the spaces Ll, 
L"', or C; see Exercise 10.15. 

Taking the case of C, the question arises as to whether there exists any 
topological base (tn):'=l for C in which each t .. is a trigonometric polynomial; 
and, if so, what can be said about the degree dn of tn. It has emerged (see 
[Ball, p. 360, Problem 16) that one cannot have dn E; n for all n; and yet 
(loc:. cit., Problem 17) that there exists a topological base (tn ):'= 1 for C comprised 
of trigonometric polynomials for which dn = o(n2+1) for every II > O. As yet 
no conditions are known concerning the degrees d" which are necessary and 
sufficient to ensure the existence of a topological base for C formed by 
trigonometric polynomials tn of degree dn' 

In 2.2.1 we mentioned the question of the possibility of decomposing C into a 
direct sum of minimal translation-invariant subspaces. In view of 2.2.1(2), such 
a decomposition is p088ible if and only if (6n )"ez is a topological base for C. 
Accordingly, by Exercise 10.15, no such decomposition is possible for C. By the 
sam€' token, the analogous proc€'dure is impossible for Ll and Lx;, too. On t.he 
ot,her hand. t.hE' fact that, thl' en do form a topolo~ical base in LP (1 < P < co), 
ensures t.hat, t.he analogous (lecomposition is possibll' in ('ach of the'se spaces. 

lOA The Order of Magnitude of SNj. Pointwise Convergence 
Almost Everywhere 

This section begins with a result to the effect that the misbehavior of 
Fourier series shown in 10.3.2 and 10.3.3 to occur for certain continuous 
functions is, in a sense, the worst that can happen even for arbitrary 
integrable functio~s. Knowing'this, it is possible to infer the convergence 
everywhere or almost everywhere of certain series simply related to Fourier
Lebesgue series (see 10.4.3 and 10.4.4). This in turn leads to the consideration 
of conditions on a sequence (cn)nez sufficient to ensure the convergence almost 
everywhere of the trigonometric series 

Within the circle of ideas thus suggested appear certain problems concerning 
the pointwise convergence of Fourier series which, while remaining intrac
table for a very long while, provided the incentive for a great deal of 
fruitful research; see 10.4.2 and 10.4.4 to 10.4.6. 
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10.4.1. Iff ELl, then the relation 

8N f(x) = o(log N) (10.4.1) 
holds 

(1) whenever f(x + 0) + f(x - 0) == limlll o[f(x + y) + f(x - y)] exists 
finitely, and 

(2) for almost all x in any case. 
Proof. (1) Suppose that the said limit exists, and let 8 denote its value. 

By (10.2.2), 

18Nf(x) - 81 = I ~ f n(y)DN(y) dyl 

~1~fl+I~JJ' 
where S > 0 will be chosen in a moment. 

By hypothesis, n( y) --* 0 as y t O. So, given e > 0, we may choose and 
fix S > 0 so small that In(y)1 ~ e for 0 ~ y ~ S. Then 

I~fl ~ e'~fIDN(Y)ldy ~ AelogN, 

by 5.1.1. A denoting an absolute constant. Having fixed S, 2.3.8 shows that 

(1/1T) J~ = 0(1) as N --*00. One thus obtains 

18Nf(x) - 81 ~ Ae log N + e 

for all sufficiently large N, which implies (10.4.1). 
(2) In the general case, we proceed as before save that the range of 

integration (0, 1T) is divided into (0, 1T/N) and (1T/N, 1T). Using the estimates 
IDN(y)\ ~ AN, \ D",(y) 1 ~ A/y, where A is again a positive absolute 
constant, we find that 

A -118",f(x) - 81 ~ ~ ("IN In(y)IN dy + ~ f" In(y)\ dy 
1T Jo 1T nlN Y 

(10.4.2) 

The choice of the number 8 is so far immaterial. Defining, as in (6.4.6), 

J(h) = f In(y)1 dy, 

we have 

Jl~~NJ(;). 
Moreover, by partial integration, 
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Thus, by (10.4.2), 

A-II f() I 1 Nl(7T) 1(7T) If" l(y)dy SN x - S ::;; - - + -2 + - --2-' 
7T N 7T 7T "IN Y 

(10.4.3) 

According to 6.4.2, if we take S =f(x), then l(y) = o(y) as y t 0 for 
almost all x. For any such x, (10.4.3) shows that 

as required. 

ISNf(x) - f(x)1 = 0(1) + o( r" dy) = o(log N), 
J1IIN y 

10.4.2. Remarks. It is apparently unknown whether 10.4.1 is the best
possible result of its kind. However, it is known (Stein [1], Theorem 6; 
Carleson [1]) that, if EN t 0 as N t 00, then there exists at least one fELl 
for which the relation 

sNf(x) - sN'f(x) = O{EN_N' log (N - N')} (N > N' + 1, N'-H:O) 

is false for almost all x; and that there exists at least one f E V for which the 
relation 

sNf(x) = O(eN log log N) (N -+(0) 

is false for almost all x. 

10.4.3. Iff ELI and ex > 0, each of the series 

2: j(n)e inZ , 

neZ log (2 + In!) 
is convergent 

2: j{n)e inX 

neZ (I + InW 

(1) wherever f(x + 0) + f(x - 0) exists finitely, and 
(2) for almost all x, in any case. 
Proof. This follows from 6.3.1,6.4.4, 10.4.1, and Exercise 7.4. 

10.4.4. The Case p > l. With somewhat more effort it is possible to 
improve (10.4.1) for the case in which f E LP for some p > l. For example, it 
was proved long ago by Littlewood and Paley that 

if f E LP, 1 ~ P ~ 2 (10.4.4) 

for almost all x. Yet, for an equally long time, no success attended attempts to 
establish (10.4.4) for the case where p > 2, or even to show that (10.4.4) holds 
for fEe and p > 2; see [Z2]' pp. 161-162, 166-167. The present position will be 
outlined in Subsection 10.4.5. 

It is relatively simple to show on the basis of 10.4.3 that the trigonometric 
series 

(10.4.5) 
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converges almost everywhere whenever 

2: Icn l2 log2 (1 + In/) < 00; (10.4.6) 
neZ 

this result, due to Hardy, is the forerunner of more elaborate investigations 
mentioned immediately below and in the next two subsections. 

On the basis of (10.4.4) it can be shown ([Z2], p. 170) that 

2: !(n)e1nX 

neZ [log (2 + Inl )]l/P 

converges almost everywhere whenever f E LP and 1 ~ P ~ 2; and that 
(10.4.5) converges almost everywhere provided 

2: Icn l2 log (1 + In/) < 00. (10.4.7) 
neZ 

This last result is due to Kolmogorov, and Seliverstov, and Plessner; see [Z2], 
p. 163 or [Bad, p. 363. 

On the other hand, it is known (see [Bad, p. 483, Problem 1) that there exist 
functions fEe such that 

2: 1/(n)1 2 Iog (1 + In/) < 00 
neZ 

and yet the Fourier series off diverges at infinitely many points. 

10.4.5. Lusin's Problem and Carleson's Theorems. The results 
mentioned in Subsections 10.4.1 to 10.4.4 were by-products of a prolonged 
and arduous study of a problem posed by Lusin in 1915, namely: does the 
condition 

(10.4.8) 

suffice to ensure the convergence almost everywhere of the series (10.4.5)? 
In other words, does the Fourier series of any function in L2 converge almost 
everywhere? It is natural to ask more generally: does the Fourier series 
of any function belonging to V' for some p > 1 converge almost everywhere? 

Over a period of fifty years, an enormous amount of effort was expended 
on efforts to solve these problems. Some description of the situation prevailing 
until 1966 appears in [Z2]' pp. 165-166 and in the relevant portions of [Li). 

In 1966 Carleson [1] announced an affirmative answer to Lusin's question, 
together with major improvements on (10.4.4). His results, the proofs of 
which are far too long and complicated to be given here, are as follows: 

(1) ifJ(log+ IJ1l1+6 ELI for some S > 0, then 

8 ... J(X) = o(log log N) 
for almost all x; 
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(2) if 1 E V' for some p > 1, then 

8NI(x) = o(log log log N) 
for almost all x; 

(3) if 1 e L2, then 
lim 8 NI(x) = I(x) 

N ..... 

for almost all x. 
Subsequently, R. A. Hunt proved that in (3) the exponent 2 may be re

placed by any exponent p > 1. For proofs, see (Ga] and/or (Moz], MR 49 
# 5676. See also MR 52 # 6300 for an illuminating discussion. 

We here remark merely that, granted the convergence almost everywhere 
of the Fourier series of each 1 E V' for any fixed p satisfying 1 < P ~ 2, a 
theorem of Stein stated in Subsection 16.2.8 entails that the maximal 
opera.tor 

8*:/-+8*1 

defined in Subsection 10.3.5 is of weak type (p, p) on V', that is, there exists a 
number AI' such that 

m({xe[0,211): 8*/(x) > A}) ~ ApA-Pll/ilpP (10.4.9) 

for each A > 0 a.nd eachl E LP; and that to each numberq satisfying 0 < q <p 
corresponds a number Ap,q such that 

(10.4.10) 

for each 1 E V', The numbers Ap and Ap•Q are independent off. In (10.4.9), m 
denotes Lebesgue measure. Concerning these matters, see Subsection 
13.10.2. 

Beside t.his, if 1 < P ~ <Xl and 0 < q ~ <Xl, and if 8* is known to be of 
weak type (p, q) on LP, that is, 

m({x E [0,211) : s*/(x) > A}) ~ (const 1I/IIp/A)Q 

for each number A > 0 and each 1 E LP, it is a relatively easy task to deduce 
that limN ..... SNI(x) = I(x) for almost all x whenever 1 e LPj see Exercise 
13.26. 

10.4.6. Sets of Dlver.tence. What has been said about consequences of 
conditions like (10.4.6) and (10.4.7) will explain the intense interest that has 
been shown in the following type of problem. Take a weight 8equence W defined 
on the nonnegative integers and such that WeN) increases to infinity with N. 
H we suppose that 

~ Ic"I!3W(lnj) < 00, (10.4.11) 
"EZ 

what can be said regarding the size of the set E of points of divergence of the 
aeries 
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It has turned out that, at least when W(N) increases more rapidly than log N 
(compare (10.4.7)), new concepts of the thinness of sets, more refined than, that 
provided by vanishing of the Lebesgue measure, come into play. Owing to a 
strong formal similarity with definitions in potential theory, the appropriate 
refined set functions are called capacities; see Section 12.12. The general type of 
conclusion to be drawn from (10.4.11) is that E is a set of zero capacity, where 
the particular type of capacity referred to depends on the weight function W. 
Several results of this sort are known and due to Beurling, Salem, and Zygmund 
and Temko (1940 onward). For details, see [Bad, pp. 398-414; [KS], Chapitre IV. 

As has been seen in Section 8.6, if (10.4.5) is the Fourier series of some 
function f E L2, then BNJ --+ f almost everywhere for any Hadamard sequence 
(N Ie);: = 1 of positive integers (that is, any sequence of positive integers for 
which inf N1<+l/N" > 1). Also, by the Kolmogorov-Seliverstov-Plessner 
theorem, if (10.4.7) holds, then BNf--+f almost everywhere. To Salem we owe 
a general investigation of such assertions, based upon hypotheses of the type 
(10.4.11). This study produced further conditions on the sequence (N");:=l 
sufficient to ensure that (10.4.11) entails that BNkf --+ f almost everywhere. One 
such condition is that 

for some A > 0; the case W(N) = log N includes the Kolmogorov.Seliverstov
Plessner result. Perhaps even more remarkable is the fact that Salem obtained 
conditions on the N" sufficient to ensure that BN.! --+ f almost everywhere for 
any preassigned fELl: the condition reads 

where wdis defined as in 2.3.7. The details are presented in [Bad, pp. 389-397. 

10.5 More about the Parseval Formula 

Certain cases of the Parseval formula have already been discussed in 6.2.5 
and Section 8.2 and we now extend the discussion a little. In all the cases we 
have to consider it is immaterial whether we take the (polarized) formula 
to be (8.2.4) or (8.2.5). For definiteness, we choose the latter. Thus we shall 
be concerned with the formula 

1 f ". . 2 j(x)g(x) dx = L.., j(n)g( -n). 
~ neZ 

(10.5.1) 

10.5.1. Ifj ELI and g E BV, then (10.5.1) holds, the series being convergent. 
Proof. We have seen in 10.1.4 that 

SNg(X) - Y2{g(x + 0) + g(x - O)} 
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boundedly. Moreover, the right-hand side here is equal to y(x) save perhaps 
for a countable (and therefore null) set of x. So ([W], Theorem 4.lb) we have 

21 flY dx = lim 21 JI' 8NY • dx 
1r N~CIO T1' 

= lim 2: i( -n)g(n) , 
N Inl .. N 

which is equivalent to (10.5.1). 
Remark. As was remarked to me by Professor Goes (private corre

spondence) (10.5.1) holds for all I e Ll, if and only if 

sup ~8NUII '" < 00; 
N 

cf. Remark 6.2.6(2) above. 

10.5.2. If Ie Ll and Y e Leo, the series 'i.nEzi(n)g( -n) is Cesaro-summable 
to (1/27T) J Iy dx. 

Proof. This proof is similar to that of 10.5.1, the sole difference being 
that 8NY is replaced by aNY and that appeal is made to 6.4.4 and 6.4.7 in place 
of 10.1.4. More simply, an appeal to 6.1.1 suffices; see 10.5.3. 

10.5.3. If 1 < P < 00 andieV', yeV", then the series 'i.nEzi(n)g(-n) is 
Cesaro-summable to (1/27T) J Iy dx. 

Proof. Once again the same method is used, but now we appeal to the 
fact that aNY _ Y in mean in V" (see 6.1.1) coupled with Holder's inequality, 
which shows that 

10.5.4. Remark. It is actually the case that, under the hypotheses of 
10.5.3, the series 'i.nEzi(n)g( -n) is convergent. This is so because, if leV' 
and 1 < p < 00, then 8NI converges in mean in LP to I (which assertion is 
false if p = 1 or (0). The proof of this result will be given later, in Section 
12.10. 

10.5.5. Neaative Results. (1) It is not true that the series 'i.1Iezi(n)g( -n) 
is convergent whenever I eLl and ye C; see Exercise 10.7. 

(2) By 10.5.4 we know that 'i.nEzi(n)g( -n) is convergent whenever 
1 < P < ooandleLP,yeLP';andifp = p' = 2,theseriesisevenabsolutely 
convergent (see 8.2.2). It can be shown that for no value of p :f: 2 does 
'i.nEzi(n)g( -n) converge absolutely for alII e LP and all yeLP'. [Notice that 
(1) immediately above rules out the possibility that absolute convergence 
might obtain for all Ie Ll and all y e L"'.] 
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10.6 Functions with Absolutely Convergent Fourier Series 

10.6.1. The Space A. As has been noted in 2.5.3, the entity associated 
with the group T which is analogous and dual to the space A(Z) introduced 
in 2.3.9 is the space A = A(R/2-rrZ) offunctions on T of the form ~, where tP 
ranges over (l(Z). It is trivial to assert that A consists exactly of those con
tinuous functions I on T such that 

IIIIIA == 2: V(n)1 < 00; (10.6.1) 
neZ 

see also the characterization afforded by Exercise 9.7. 
(1) It is left as a simple exercise for the reader to verify that A is a Banach 

space under pointwise linear operations and the norm defined in (10.6.1); 
that A is also an algebra under pointwise multiplication; and that 

(10.6.2) 

see Exercise 10.16. This means that A, taken with pointwise operations and 
the norm (10.6.1), forms a commutative complex Banach algebra with the 
constant function 1 as its identity element. To this aspect we shall return in 
11.4.1 and 11.4.17. 

(2) That A i.s a proper subset of C is seen from 10.3.1, or by applying 7.2.2(1) 
to the sum function of the series 

IX) • 

'" sm nx 
n~2 (n • log n)' 

the sum function of this series is even absolutely continuous (see 12.8.3(2)) 
and does not belong to A. See also Exercise 10.18. 

Incidentally, since the sum function I is absolutely continuous (hence of 
bounded variation), it ensues from the Remark following 10.6.2(1) below that 
I satisfies no Lipschitz condition of order a > O. 

(3) It will appear in 12.11.3 that the problem of determining all the 
continuous linear functionals on A leads to a significant class of distributions. 

10.6.2. The Classical Approach. The classical approach to A (for which 
the reader is referred to [Zl]' Chapter VI; [Ba2], Chapter IX; [KS], Chapitre X; 
[Kah2], especially Chapters I, II; and [I], pp. 66 if.) has in the main concen
trated attention on seeking conditions on an individual function I which are 
sufficient or necessary to ensure that lEA. Problems concerning the algebraic
topological structure of A belong to the modern approach mentioned in 
10.6.3. For both aspects [Kah2] is the most recent and perhaps the most 
incisive account. 

Of the classical results, we shall handle in detail only two, contenting our
selves with brief references to the many others. 
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We begin with some calculations. By (8.5.7), if f E L2, 

[w2f(a)J2 = .2 4 sin2 %na'IJ(n)12 
neZ 

and so 
[w2f(2a)]2 = 4 .2 sin2 na·IJ(n)l2. 

neZ 

Integrating with respect to a over [0, 71'/N], where N E {I, 2, ... }, 

4 .2 (J,"IN sin2 na 00) li(n)\2 :!":; 71'N-1[02f(271'N-1)]2. 
neZ 0 

Now, if 1 :!":; 8 :!":; N-11nl < s + 1, then 

Hence 

Moreover 

J, "IN (,,,'N-l,, 
o sin2 na 00 = Inl-1 10 sin2 t dt 

~ (s + l)-lN-l f" sin2 tdt 

= (s + I)-lN-1S I" sin2 t dt 

= (8 + 1)-lN-1S • 7T/2 
~ (4N)-171'. 

y~ == .2 IJ(n)[2:!":; [02f(27TN-1)]2. 
Inl;oN 

00 

IIil11 == .2 li(n)1 = li(O)1 + .2 (IJ(n)1 + li( -n)\) 
neZ ,,= 1 

ao n 

= li(O)1 + .2 2: n- 1<1J(n)1 + IJ( -n)l) 
n= 1 N= 1 

'" 
= li(O)\ + 2: .2 n -l(!i(n)1 + li( -n)j) 

N=ln;oN 

00 

:!":; li(O)1 + .2 .2 n- 12V'<IJ(n)1 2 + li(-n)1 2)V2 
n=ln;oN 

:!":; li(O)1 + ~l C&N 2n -2 r"(,~ (V(n)12 + V( _n)12) r 
= li(O)1 + i 2N- y.( L !1(X)1 2 ) 

N=l \n\;oN 

<Xl 

= li(O)1 + 2 L N-%r,v. 
N=l 

(10.6.3) 
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By (10.6.3), therefore 

"" Ilnl ~ 1i(0) I + 2 2: N-Y.D.d(2TTN-l). (10.6.4) 
N=l 

Next, supposing J to be of bounded variation and a to satisfy 0 < a ~ 
2TT/il, one has 

4N 2: IJ(x + lea) - J(x + (k - l)a)12 ~ D.",J(2TTN-l). V(f). 
k=l 

Integrating with respect to x and using translation invariance of the integral, 

and so 
D.d(2TTN-l)2 ~ (8TTN)-1D.",J(2TTN-l). V(f). 

Hence, (10.6.4) yields 

"" IIJlll ~ IJ(O)I + 2(8TT)-Y.V(f) 2: N-ID.",J(2TTN-l)y'. (10.6.5) 
N=l 

From (10.6.4) and (10.6.5) one can read off as corollaries a number of 
results. 

(I) If J is of bounded variation and 

"" 2: (D.",J(2- kTT))Y. < 00, (10.6.6) 
k=l 

then j E (1; in particular, if f is also continuous, then f E A. Notice that 
(10.6.6) holds whenever D.",J(a) = O(lala) as a _ 0 for some a > O. 

This result is due to Zygmund; see [Kah2], p. 13. See also Exercise 10.17. 
Proof. Apply (10.6.5), noticing that 

'" "" 2: N-1D.""f(2TTN-1)y' = 2: 2: N-1D.",f(2TTN-1)y' 
N=2 k=22k-l"N<2k 

"" ~ L 2k-1.(2k-l)-1D.""J(TT2-k+2)Y. 
k=2 

'" = L D.",J(2- k+2TT)Yz 
k=2 

(2) IfJE L2 and 

'" L N- YzD.2J(2TTN-l) < 00, 
N=l 

(10.6.7) 

thenJE (1. Notice that (10.6.7) holds whenever 

"" L 2k/2D.d(2 -kTT ) < 00, 

k=l 
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and that both criteria are fulfilled whenever 

D.2f(a) = O(jala) as a -- 0 for some IX > Y2. 

These results are due to Bernstein and Szasz; see [Ba2], pp. 154-155 and 
[Kah2], pp. 13-14. See also Exercises 10.25 and 13.2. 

Proof. This follows from (10.6.4), just as (1) followed from (10.6.5). 

Remarks and further results. 
The example cited in 10.6.1(2) shows that conditions like (10.6.6), bearing 

upon moduli of continuity off, cannot be entirely suppressed in the hypotheses 
of (1). For somewhat similar results, see Hirschman [1], Lemmas 2d and 3c 
(the latter applying to the dual situation) and also Boas [1]. 

There is a converse to (2): it is known that there exist continuous functions 
f such that D.2f(a) = O( lal Yo) as a -- 0 and which nonetheless do not belong to 
A. See [Zd, pp. 240-243; [KS], p. 129; [Kah2], pp. 14-45. See also Mitjagin 
[1], Yadov and Goyal [1J. 

There is also a similar converse to (1); see [Kah2], p. 16. 
It is known that no condition involving only D. oof can be at once necessary 

and sufficient in order that f be equal a.e. to a member of A. 
Further reading: MR 34 ## 2790,3197,4797; 35 # 7081; 39 ## 1912, 6015; 

40 # 7729. 
(3) Other sufficient conditions for membership of f to A involve the 

numbers 

cf. Section 6.5, where E~oolJ is written as ENf, and Exercise 6.10. Among such 
results we note that of Steckin, which asserts that, if f E L2, then i E tl 
whenever 

00 2: N- YoE<J1 < <Xl; 
N=l 

see [Ba2], p. 155. Some of Steckin's results apply to general orthogonal 
expansions and thus yield criteria in order that 

00 

2: li(n)1 < <Xl 
neS 

for preassigned subsets S of Z. See also Yadov [1] and Zuk [1J. 
(4) It follows easily from 8.2.1 and 8.3.1 that f E A if and only if it can be 

expressed in the form f = u * v with u, v E L2. This criterion was first noted 
by M. Riesz; unfortunately, it is difficult to apply in specific cases which are 
not already decidable in more evident ways. 

Somewhat similar results have been given by M. and S.-I. Izumi [4] and 
others. 
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(5) Another necessary and sufficient condition, discovered by Steckin in 
1951, asserts that, if! E L2, then! E {l if and only if 

<Xl 2: N-Y.,.EN! < 00, 
N=l 

where 

the infimum being taken as S ranges over all (not necessarily harmonic) 
trigonometric polynomials of the form 

N 

S(x) = 2: cn,exp (iAnx) , 
n=l 

where the Cn are complex numbers and the An are distinct real numbers; see 
[Ba2]' p. 186; [Kah2], p. 10. Compare this with the sufficient condition given 
in (3), noting that evidently 

.E2N +2! ~ .E2N +d ~ E<J>J. 

(6) Wiener showed that a function on T, which agrees ona neighborhood 
of each point x with some (possibly x dependent) element of A, itself belongs 
to A: in brief, a function which belongs locally to A belongs globally to A. 
We shall not give the original proof of this (for which see [Zd, p. 245; [Ba2], 

p. 188; (Kah2], p. 11) but rather a proof based upon Banach algebra theory; 
see Exercise 11.19. 

A simple sufficient condition for local membership of A maybe derived 
from Exercise 13.3. 

(7) If one introduces prematurely the conjugate function J, defined in 
Section 12.8, one can state the remarkable result of Hardy and Littlewood 
asserting that, if both! and J are of bounded variation, then 

L Jj(n)1 < 00. 
neZ 

Fora proof, see (Zl], pp. 242 and 287. Compare this with F. and M. Riesz' 
theorem mentioned in 12.8.5(4). See also Exercise 12.19. 

(8) Let E denote a closed subset of T. Almost every question so far posed 
in relation to A can also be posed in relation to A(E), the set of restrictions 
to E of elements of A. For such variants we must refer the reader to [KS], 
Chapitre X, especially pp. 130 ff and [Kah2], p. 19. 

It is of course evident that in all cases A(E) is a subset of C(E), the space 
of all continuous complex. valued functions on E. Much less evident is the 
fact that there are infinite closed sets E such that A(E) exhausts C(E): such 
sets E are termed" Helson sets," concerning which a little more will be said 
in Section 15.7; see especially Subsection 15.7.3. See also [Kah2], Chapitres 
III, IV, IX; MR 40 ## 630,7731; 43 # 6660; 55 ## 966,970. 
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10.6.3. The Modern Approach. (1) In more recent times emphasis has 
been placed on structural properties of A as a whole. Thus, one of the problems 
on which attention has been centered is the following: under what conditions 
upon the function F, defined on some subset D of the complex plane, is it 
true that Fo/EAwhenever/EAand/(R) =/(T) c D? 

As a matter of fact, some aspects of this problem were first considered by 
Levy as long ago as 1934; and even prior t.o this Wiener had obtained a 
special case of Levy's result. Wiener showed that 1- 1 E A whenever I E A 
and I is nonvanishing, while Levy showed that a function F has the property 
mentioned in the preceding paragraph whenever D is open and F is analytic 
at each point of D. The modern approach to these problems differs from the 
original (for which see [Zl], pp. 245-247; [Ba2], pp. 186-194; [Kah2], pp. 57, 
58) in the methods utilized, namely, the theory of Banach algebras. We shall 
deal with these theorems by use of this technique in 11.4.17; the dual results 
appear in 11.4.13 and 11.4.16. 

In 1958 Katznelson discussed the necessity of Levy'S sufficient condition, 
and variants and analogues of t.he Levy-Katznelson results have been 
examined for cases in which the underlying group T is replaced by a more 
general group. Katznelson, Helson, Rudin, and Kahane have all contributed 
to these problems; see Herz [1], Rudin [2], [5], [R], Chapter 6; [Kah], Capitulos 
IV to VI; [Kah2], Chapitre VI; [Kz], Chapter VIII. Here we mention merely 
the versions ofthe Levy-Katznelson results appropriate to the groups T and 
Z, namely: 

(a) If F is defined on [-1, 1] and F 0 I E A whenever I E A and I(T) 
c [-1,1], then F is analytic on [-1,1]. 

(b) If F is defined on [ -1, 1] and F 0 4> E A(Z) whenever 4> E A(Z) and 
4>(Z) c [ -1, 1], then F is analytic at 0 and F(O) = O. 

Of these statements, (a) is due to Kat.znelson and (b) to Helson and Kahane 
jointly. The assertion that F is analytic on [-1, 1] (respectively at 0) 
signifies that F is extendible into a function analytic on some open subset of 
the complex plane containing [-1, 1] (respectively 0). 

From (a) it follows as a corollary that there exist functions I E A such that 
III does not belong to A; the analogous assertion with A{Z) in place of A 
follows likewise from (b). (Both of these corollaries were established a little 
earlier by Kahane [2], [3].) On the other hand, Beurling has shown that if 
I E A is such that 1/( ± n)1 ~ Cn (n = 0,1,2" .. ), where Cn .j. 0 anrl 
"2.:'=0 Cn < 00, then Ifl E A; see [I], p. 78. 

(2) There are analogous problems in which A(Z) is replaced by AP(Z) 
== {/ : IE LP}. The case in which 2 ~ p ~ 00 is solved by Rider 12], who 
shows (among other things) that a complex-valued function F on the complex 
plane has the property that F 0 4> E AP(Z) whenever 4> E AP(Z) if and only if 
it has the form 

F(z) = az + bE + IzI2!P'c(z) , 
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where a and b are complex numbers and the function c is bounded on a 
neighborhood of the origin. (For the "if" assertion, see Exercise 13.24.) See 
also Rudin [4]. 

The same problem has been studied for yet other important algebras; see 
the o;\nd of 11.4.17 below. 

(3) This is a convenient place to comment further on the dual form of the 
problem stated in 4.2.5, namely: which maps 41) of T into itself have the 
property that f 0 41) E A whenever f E A? By dualizing the substance of Chapter 
4, it may be seen that these maps 41) correspond to the homomorphisms of the 
convolution algebra tl(Z). Insofar as this can be and has been subsumed under 
the study of the L1 homomorphism problem for general groups, the appropriate 
reference is again [R]. Chapter 4. For the particular group we have in mind, an 
independent and more direct solution is due in part to Leibenson and in part 
to Kahane (1954-56); an account of Kahane's approach will be found in 
Capitulo III of [Kah]; see also [Kahll], p. 86 and Chapitre IX. A mapping 41) 

having the stated property may be said to define a permi88ibk change of 
variable (relative to A), and the Leibenson-Kahane result asserts that the 
permissible changes of variable are precisely those defined by maps 41) having 
the form 41): i -.. (nz + a)', where n E Z and a E R. 

In Kahane's approach to this problem one first thinks of 41), which must 
obviously be continuous, as a (periodic) map from R into T. For each x E H, 
41)(x) E T and el~") is uniquely defined. In x -+ el~") one has a continuous map 
of H into the multiplicative group of complex numbers having unit absolute 
value. A simple argument (using local branches of the logarithm) shows that 
there exists a continuous real-valued function", on H such that 81~") = el~"), 
80 that 41)(x) = ("'(x))', the coset modulo T containing the real number "'(x). 
Since 41) is periodic, '" must have the property that 

identically in x, n being some integer. The crucial point of this transformation 
is that", is a complex- (actually real-) valued function on H, which 41) is not. 
However, '" is not necessarily periodic and we make one further change of 
focus to take care of this. namely, we look at the periodic real-valued function 

"'0 defined by 

By using the fact that f 0 '" = f 0 41) E A whenever j E A, it is relatively easy 
to deduce that 

(c) SIIPkEZ!le1k'-o\\A = SIIPkEZ!!e1k'-\\A < (Xl 

and t.hat 
(Ii) "'0 E A; 

for (c), sec j.~x(·rcisc 10.19; thc proof of (d) dcpends upon and is an easy corollary 
of the reRlllt. stat.('<i in 10.fI.2(6). 

Thc crllx of Kahanc's ar~lIment. is the difficult deduction from (c) and (d) 

t.hat "'0 is a constant. 
(4) j.'or a stllliy of isomorphisms and homomorphisms of the algebras A(E) 
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defined in Subsection 10.6.2(8), see de Leeuw and Katznelson [1], McGehee [1], 
and [Kah2], Chapitre IX. (In the terminology introduced in Chapter 11, 
A(E) is isomorphic to the quotient algebra of f1(Z) modulo the ideal IB 
composed of those .p E (l(Z) such that $ vanishes on E.) 

For further reading, consult MR 34 ## 3226, 3365, 3366, 4793, 4796; 35 
## 670, 3373; 36 ## 1924,6880; 37 ## 6672, 6690; 41 # 744; 49 ## 5723, 7700; 
50 ## 895, 5338; 51 ## 1289, 6627; 52 ## 8777, 8798, 8805, 14816; 53 ## 8791, 
8792; 54 ## 856, 858, 8160, 8163. 

EXERCISES 

10.1. Prove the statement in 10.1.2, namely 

sup {lIb t -1 sin t dt I : a E R, b E R} < 00. 

10.2. Let (fl,v)'; = 1 be a sequence of positive numbers converging to zero. 
Show that there exists an 1 E Ll such that 

Verify that nonetheless 

Ils,vll1l = o(log N) as N ---;. 00 

for any 1 ELl. 

Hints: For the first part, adapt the type of proof used in 10.3.2. For the 
second part, use the Fubini·Tonelli theorem to show that 

and use the fact that II T -J - fill ---;. 0 with y. 
10.3. By examining the proof of 10.4.1, show that the relation (10.4.1) 

holds uniformly with respect to x when f is continuous. 
10.4. Show that if f is continuous, then the series 

L j(n)e tnx 

neZ log (2 + InJ) 

is uniformly convergent. 
Hints: Use the preceding exercise and examine the proof of 10.4.3. 

Alternatively, put S(f) = Lnezj(n)/log (2 + In!> and S,v(f) = L'n, ... ,vj(n)/ 
log (2 + In!). Verify that SN (f) ---;. S(f) for each fEe and use the uniform 
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boundedness principle (Appendix B.2.1(2)) to deduce that the SN are equi
continuous on C. Conclude that SN(J) ~ S(J) uniformly whenfranges over a 
relatively compact subset of C, and hence that SN(T xf) ~ S(Txf) uniformly 
in x for a givenfE C. 

10.5. Prove that Lnezj(n)g(n)/iog (2 + In!) is convergent whenever 
f E C and g ELI. Deduce that there exists a number c such that 

" g(e)en 
II L log (2 + In!) III ~ c· IIgl11 

Inl"N 

for all N and all g E Ll (c being independent of N and g), and that the series 
Lnezg(n)en/iog (2 + In!) is convergent in mean in Ll for each g E L1. 

Conclude finally that the series Lnezj(n)g(n)/Iog (2 + In!) is convergent 
whenever fE Loo and g ELI. 

Hints: For the first statement use the uniform boundedness principle 
(Appendix B.2.1(2)) and Exercise 3.6. Deduce from this that the set of g E L1, 
for which Lnezg(n)en/iog (2 + In!) is convergent in mean in L1, is closed in L1. 

10.6. Prove that if (An);'=o is a sequence such that L;'=o I~Anl < 00, then 
the series LnezAlnlg(n)en/log (2 + In!) is convergent in mean in L1 whenever 
gEV. 

Hints: Use the preceding exercise, together with an adaptation of 
Exercise 7.l. 

10.7. Show that the series Lnez j(n)g( -n) diverges for suitably chosen 
f E L1 and all g E C. (Compare with 10.5.5(1).) 

Hint: Argue by contradiction, using the uniform boundedness principle 
and Exercise 10.2. 

10.8. Let j be the periodic function such that j(x) = Y2(17' - x) for 
o ~ x < 27T. Show that the Fourier series ofj is L;'= 1 sin nxjn·. Verify that for 
o ~ x ~ 17', 

and deduce that 

l IN + Y.'x sin t dt 
(1) lim {SNj(X) + Y2x - --} = o uniformly forO ~ x ~ 17'; 

N-oo 0 t 
(2) lim SNj (x) = j (x) for 0 < x < 17'; 

N-oo 

(3) I· . (a) la sintdt 1m SNJ N = --
N-oo ~ 0 t 

(4) I· . () 1" sintdt 1m sup SNJ x ~ --
N-oo,x-+O 0 t 

for a > 0; 

>Y217'=j(+O). 

Notes: Conclusion (4) shows that the sequence (SNj) offunctions exhibits 
the so-called Gibbs phenomenon on right-hand neighborhoods of zero. A 
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similar situation prevails on left-hand neighborhoods of zero. This exhibition 
is typical of the sequence (SN!) whenever f is of bounded variation and has 
jump discontinuities; see [Zl]' pp. 61-62. The Gibbs phenomenon at a point 
Xo of the sequence (SN!) is a feature of the nonuniformity of the convergence 
on neighborhoods of a point of discontinuity. 

For many more details, plus a most interesting survey of the history of the 
Gibbs phenomenon, see Hewitt and Hewitt [1]. 

10.9. Discuss the following suggested procedure, and in particular frame 
hypotheses sufficient to justify the steps: take a function F on R and form 
the periodic function 

f(x) = L F(x + 217k). 
lceZ 

Then 

. 1 f'" f(n) = - F(y)e- lnll dy 
217 _ a> (n E Z), 

and so, sincef(O) = 2.nezi(n}, we obtain Poisson's summation formula: 

1 fa> L F(2kl7)" = 2" L F(y)e-lnlldy. 
lceZ 17 neZ - a> 

See also [Kz], p. 129; MR 36 # 4265; 54 # 5734. 
10.10. Justify the use of Poisson's summation formula (Exercise 10.9) 

in case F( y) = (a2 + y2) -1 (a real and nonzero) and so deduce that 

for such values of a. Conclude that 

a> 2 L k- 2 =~. 
1c=1 6 

10.11. Justify the use of Pois,'!on's summation formula (Exercise 10.9) in 
case F( y).= exp (_a2y2) (a real and nonzero), and so deduce that 

for real s > O. 
Note: This is a famous transformation formula for one of the so-called 

theta functions; see [Be], p. 11. 
10.12. Denote by CBV the linear space of (periodic) functions that are 

continuous and of bounded variation. Show that CBV is a Banach space 
when endowed with the norm 

II! II IlfII", + V(f). 
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Using the uniform boundedness principle (Appendix B.2.1) and the result 
(included in 10.1.4) that SUPN ISNI(O)I < 00 for IE CBV, deduce inequality 
(10.1.5), that is, the existence of a number m ~ 0, independent of I, such 
that 

for IE CBV. 

Remark. I am grateful to Professor G. Goes for the remark that, by 
7.2.2(2), the series h(x) = 2 2;:'= 1 n -1 sin nx is boundedly convergent. Iff is of 
bounded variation, integration by parts yields 

and so 

10.13. Prove that limN~",sNI = I uniformly for each IE CBV. 
Hint: Re·examine the proof of 10.1.1. 
Alternatively, use Exercises 5.5 and 8.13 and Theorem 6.1.1. See also 

MR 50 #lO657. 
10.14. Is it true to assert that limN~",sNI = j, in the sense of the norm on 

CBV defined in Exercise 10.12. whenever I E CBV? 
Is it true to assert that the trigonometric polynomials are everywhere 

dense in the space CBV (relative to the norm defined in Exercise 10.12)? 
Full justification is required for your answers. You may assume and use 

the fact that there exist continuous functions of bounded variation which are 
not absolutely continuous; see Remark (2) following 2.3.6. 

10.15. Prove that the sequence (en)nEz is not a topological base for any 
one of the spaces Ll, L"', and C. 

Hint: Assuming the contrary, determine the form of the coefficients an in 
the associated expansion (lO.3.12). 

10.16. Verify in detail the statements made in 10.6.1(1) concerning A. 
10.17. Prove that, if I is of bounded variation and 

O",I(a) = O((log lal-1)-P) 

as a -'>' 0 for some f3 < 2, then j E (1. 

Hint: Use (10.6.5). 
10.18. (1) Suppose that LnEZlcnl < 00 and that nCn f= 0(1) as Inl-'>'oo. 

Show that I(x) = LnEZCneinx belongs to A and is not absolutely continuous. 
(2) Use Exercise 3.14 to prove that there exist absolutely continuous 

functions which do not belong to A (compare 10.6.1(2) and Exercise 10.25). 
10.19. Suppose </> is as in 10.6.3(3), namely, a real-valued function on R 

such that 
</>(x + 211) - </>(x) = 2M 



184 POINTWISE CONVERGENCE OF FOURIER SERIES 

for some integer n and all x E R, and having the property that f 0 .p E A 
whenever f E A. Prove that 

sup Ilell<<bII A < 00. 
keZ 

Hint: Consider the linear mapping T of A into itself defined by Tf = f 0 .p. 
Show that T has a closed graph and apply Appendix B.3.3. 

10.20. (S. Saks) Let E be a Banach space and (SN)~=l a sequence of 
continuous linear operators from E into V', where 0 < p ~ 00. Suppose 
further that F is a nonmeager subset of E, that a is a positive number, and 
that to eachfEF corresponds a set A/ with Lebesgue measure m(A/) > a 
such that lim sUPN~",ISNf(x)i < <X) for almost all x E A/. 

Prove the following two statements: 
(I) if 0 < e < a, there exists a set A .such that m(A) > a - e and 

lim sup N~ '" IS Nf (x)1 < <X) for almost all x E A for each fEE; 
(2) there exists a set A and a meager subset Eo of E such that 

lim sup ISNf(x)1 < <X) for almost all x E A 
N~'" 

whenever fEE, and 

lim sup lSNf(x)1 = 00 for almost all x f/:A 
N-<Xl 

whenever f E E\Eo· 
Hint8: See [KSt], p. 25 or [GP], p. 153. 
Remark. The results are true if E is a Frechet space; and Lp can be 

replaced by more general spaces of functions. 
10.21. Assuming Kolmogorov's theorem (asserting the existence of at 

least one integrable function whose Fourier series diverges almost every
where), deduce that the set of functions fELl, whose Fourier srrirs diverge 
almost everywhrre, is a comeagrr subset of V (that is, is a subset of Ll whose 
complement is meager and which is therefore itself nonmeager). 

Hint: Use the preceding exercise .. 
10.22. Employ the uniform boundedness principle (see Appendix B.2.1) 

to prove the following statement: if 4> is a nonnegative function on Z such 
that the set N = {n E Z : 4>(n) > O} is infinite and 

lim inf 4>(n) = 0, 
neN.lnl- GO 

then there exist functions fELl such that 

lim sup 1/(n)1 = 00. 
neN.lnl- <Xl 4>(n) 

(See the opening remarks in Section 10.3.) 
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10.23. Let U be a linear operator from T onto TN such that UI = I for 
I E TN (so that U is a linear projection of T onto TN)' Prove that 

217T J UTal(x + a) da = sNI(x) 

for IE T. 
Defining 

and similarly for IlsNIIp,p, deduce that 

IIUlll.l ~ IlsNI11.1' IIUII",.", ~ IlsNII",.",· 

10.24. Let E denote C or L\ and let (N ,,)';= 1 be a sequence of positive 
integers such that sup" N" = 00. Suppose that U" is a linear projection from 
E onto TNk which is continuous from E into E. Prove that there exists an 

lEE such that 
lim sup IJU "I liE = 00. 

k-'" 
(I) 

Remarks. In case E = C, it is not known whether in all cases lEe and 
x E T exist such that lim sup"_,,, I U"I{x)J = 00, but this is easily deduced 
from (1) if each U" commutes with translations. In case E = L1, it is likewise 
in doubt whether IE L1 exists such that lim suP,,_oo I U d(x)1 = <X) for almost 
all x (or even for those x in some set of positive measure). See 10.3.4 for the 
case in which N" = k and Uk = SIC' 

Hints: Use the preceding exercise and (5.1.10) in combination with the 
uniform boundedness principle (Appendix B.2.2). 

10.25. Suppose that I is absolutely continuous and that DI E L2. Prove 
that I E A and that 

II/IIA ~ Ij(O)1 + B!IDlk 
where B is an absolute constant. 

Remark. Stronger results appear in Exercises 13.2 and 13.3; compare 
also Exercise 10.18. 

Hint: Examine the proof of 8.5.4 and use a similar method. 
10.26. Suppose that 0 < e < 7Tj2 and let Ve be the continuous nonnegative 

even periodic function that vanishes outside [- e, e] (mod 27T), is linear on 
[0, e], and satisfies Ilvel11 = Ij21T. Verify that v. E A and IIveilA = e- 1. 

Define Ue = 4ev2e - eVe and verify that Ue = 1 on [- e, e], that U. 

vanishes outside [-2e, 2e] (mod 27T), and that IluellA ~ 3. 
Suppose thatlE A satisfies 1(0) = O. Show that lime_ollu./IIA = O. 
Remark. This construction will find a use in connection with spectral 

synthesis sets; see Exercise 12.52 and compare [R], Theorem 2.6.4. 
Hints: For the second part, show first that it is enough to deal with the 

case in which lET. In this case, estimate the V-norm of usl and the 
L<Xl- norm of D{uef), and then use the preceding exercise. 



APPENDIX A 

Metric Spaces and Baire's Theorem 

It is assumed that the reader is familiar with the definition and simple 
properties of a metric space and its metric topology. The aim of this appendix 
is to introduce the concepts of meager and nonmeager sets, to prove Baire's 
"category theorem," and to give some corollaries thereof (some of which 
form the basis of results given in Appendix B). See also [K], pp. 200-203, or 
[HS], p. 68. 

A.l Some Definitions 

Let E be a metric space (or any topological space). A subset A of E is said 
to be: 

(1) nowhere dense (or nondense) if the closure A contains no interior points; 
(2) everywhere dense if A = E; 
(3) meager (or of jir8t category) it is expressible as the union of countably 

many nowhere dense sets; 
(4) nonmeager (or of 8econd category) if it is not meager; 
(5) comeager if its complement is meager. 
The reader will notice that a set A is nowhere dense if and only if the open 

set E\A is everywhere dense. 

A.2 Baire's Category Theorem 

If E is a complete metric space, then 
(1) the intersection U = n:=l Un of a sequence of everywhere dense 

open subsets Un of E is everywhere dense; 
(2) a meager subset ofE has no interior points (or, equivalently, a comeager 

subset is everywhere dense). 
Proof. (1) Let us first show that U is nonvoid. For any x E E and any 

number e > 0 we write 

and 
B(x, e) = {y E E : d( y, x) < e} 

B(x, e) = {y E E : d( y, x) ~ e} 
187 
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where d denotes the metric on E. (To allay possible confusion resulting from 
the notation, we point out that E{x, e), although closed in the topology 
defined by d, is in general not the closure of B(x, e).) 

We may assume that E is nonvoid. The same is therefore true of U1 (since 
Ul is everywhere dense). Choose freely Xl E Ul and then el > 0 so that 

Since U 2 is everywhere dense, U 2 meets B(X1' ell· Choose X2 E U 2 n B(Xl> el) 

and then e2 > 0 so that 

e:a < Yz, 

which is possible since B{Xl' el) n U 2 is open. Proceeding thus, we obtain 
numbers en satisfying 0 < en < lin and points Xn E E such that 

(A.2.1) 

If n > m we have Xn E B(xn' en) c B{xm' em), by (A.2.I), so that d(xn' xm) 
< em < 11m. The sequence (xn) is thus Cauchy and so, E being complete by 
hypothesis, X = lim Xn exists in E. Since Xn E B(xm' em) for n > m ~ 1, so 
X E ..8(xm' em) for all m, and (A.2.1) shows then that x E U. Thus U is nonvoid. 

Take now any closed ball E = B(xo, S) in E. It is easy to verify that 
Un n E is everywhere dense in the complete metric space B (a subspace of E). 
So, by what we have proved, n:=1 (B nUn) isnonvoid, that is, n:=lUn = U 
meets E. This being so for any B, U is everywhere dense in E. This proves (1). 

(2) Let M be any meager subset of E. Then we can write M = U.7'= lAn, 
where An is nowhere dense. So Un = E\An is everywhere dense and open. 
By (1), n:=lUn is everywhere dense. That is, E\U:=lAn is everywhere 
dense, so that U:= IAn has no interior points. The same is therefore true of 
Me U::lAn. 

A.3 Corollary 

If E is a complete metric space, it is nonmeager in itself. 

A.4 Lower Semicontinuous Functions 

Let E be a metric space (or a topological space). A function f on E with 
values in (-00, 00] is said to be lower semicontinuous if and only if for each 
real number ex the set {x E E : f(x) > ex} is an open subset of E. 

The reader will verify that the upper envelope of an arbitrary family of 
lower semicontinuous functions is again lower semicontinuous. 
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A.5 A Lemma 

Let E be a metric space (or a topological space) and (f1)leI an arbitrary 
family of lower semi continuous functions on E. If 

sup fl(x) < 00 
leI 

holds for each x in some nonmeager subset 8 of E, then there exists a number 
m < 00 and a nonvoid open subset U of E such that 

SUpft(X) ~ m (x E U). 
leI 

Proof. For each natural number m let 

8m = {x E E : f(x) ~ m}, 

where f is the upper envelope of the k Since f is lower semicontinuous, 8 m is 
closed in E. Also, 8 = U~=18m. Since 8 is nonmeager, 8m must fail to be 
nowhere dense for some m. For this m, 8 m contains a nonvoid open set U. 



APPENDIX B 

Concerning Topological Linear Spaces 

B.I Preliminary Definitions 

B.I.1. All linear spaces involved are over the real or complex field of 
scalars, the scalar field being denoted by <1>. 

By a topological linear space we mean a linear space E, together with a 
designated topology on E relative to which the functions (x, y) ~ x + y and 
(A, x) ~ Ax are continuous from E x E into E and from <1> x E into E, 
respectively. See [E], Chapter I. 

The specific results about topological linear spaces needed in the main text 
refer solely to a particular type of such space, namely, those classified as 
Frechet spaces (see [E], Chapter 6). Our definition of these will be made in 
terms of seminorms. 

B.1.2. By a seminorm (or prenorm) on a linear space E is meant a function p 
from E into [0, co) having the following properties: 

p(x + y) ~ p(x) + p( y), p(Ax) = IAlp(x) 

for x, y E E and A E <1>. 

A norm is a seminorm p for which p(x) > 0 whenever x # O. Norms will 
usually be denoted by 11'11. 

B.1.3. Frechet Spaces. A Frechet space is a topological linear space E 
satisfying the following conditions: 

(a) There is a finite or denumerably infinite family (Pk) of seminorms on E 
which define the topology of E in the sense that the sets 

{x E E : Pk{X) < e for all k E J} , (B.Ll) 

obtained when e ranges over all positive numbers and J over all finite sets of 
indices k, constitute a base (or fundamental system) of neighborhoods of 0 for 
the topology of E. 

(b) The topology of E is Hausdorff, that is (what is easily seen to be 
equivalent), x = 0 is the only element of E for which Pk{X) = 0 for all 
indices k. 

191 
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(c) E is complete in the sense that to any sequence (x,,):'= 1 of points of E 
for which 

lim Pk(Xm - x,,) = 0 
min_IX) 

for each index k, corresponds an x E E to which the sequence (x,,) converges, 
that is, for which 

for each index k. 
We then speak of (Pk) as a defining family of seminorms for the Frechet 

space E. 

B.l.4. Remarks. (1) For a given Frechet space there are many different 
defining families of seminorms. 

(2) Given a linear space E and a countable family (Pk) of seminorms on E 
such that (b) and (c) are fulfilled, we can topologize E in just one way as a 
Frechet space for which (Pk) is a defining family of seminorms. Namely, we 
agree (as a matter of definition) that the sets (B.l.I) shall constitute a base of 
neighborhoods of 0; and that, for any Xo E E, the images of these sets under 
the translation x -+ x + Xo shall constitute a base of neighborhoods of Xo. 

The properties of seminorms ensure that in this way one does indeed obtain a 
topological linear space which satisfies conditions (a) to (c). 

(3) If E is a Frechet space, it can be made into a complete metric space 
whose topology is identical with the initial topology on E, and this in several 
ways. One way is to define the metric 

d(x, y) = "" k- 2 Pk(X - Y) f 1 + Pk(X - Y) 

(4) In a Frechet space one can always choose the defining family (Pk) so 
that the index set is the set of positive integers and so that Pl ~ P2 ~ .... 
(By repeating seminorms we may suppose that the original set of indices is 
the set of natural numbers, define new seminorms q" = sup {Pk : 1 ~ k ~ h}, 
and take the (q,.) as the desired defining family.] If this be done, a neighbor
hood base at 0 is comprised of the sets {x E E : Pk(X) < E} when k and E > 0 
vary; a neighborhood base at 0 is also obtained if E is restricted to range over 
any sequence of positive numbers tending to 0; or again, if the strict 
inequalities Pk(X) < E are replaced throughout by Pk(X) ~ E. 

(5) The product of two Frechet spaces, or a closed linear subspace of a 
Frechet space, is a Frechet space. If (Pk) and (qh) are defining families for 
Frechet spaces E and F, respectively, the semi norms rkh(x, y) = Pk(X) + q,,( y) 
constitute a defining family for E x F. 

B.l.5. Banach Spaces. A Banach space is a Fnlchet space possessing a 
defining family comprising just one element, which must of necessity be a 
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norm. Expressed in another way, a Banach space is a normed linear space 
that is complete for it,s norm. 

The reader will note that the scalar field <1> is itself a Banach space, the 
norm being equal to the absolute value. 

B.1.6. Bounded Sets. Let E be a topological linear space and A a subset 
of E. A is said to be bounded if and only if to each neighborhood U of 0 
in E corresponds a positive scalar A such that A c AU (the set of multiples 
by A of all elements of U). Except when E is a Banach space, this concept of 
boundedness is different from metric boundedness (which is equivalent to 
finiteness of the diameter). 

If E is a Frechet space and (Pk) a defining family of seminorms for E, the 
set AcE is bounded if and only if sup {Pk(X) : x E A} < 00 for each index k; 
if E is a Banach space, the condition is merely that sup {llxll : x E A} < 00. 

B.1.7. The Dual Space. If E is a topological linear space we denote by 
E' the linear space of all continuous linear functionals on E (the algebraic 
operations in E' being "pointwise"). E' is termed the (topological) dual of E; 
some authors use the terms" adjoint" or "conjugate" where we use the term 
"dual." 

A sequence Un);: = 1 of elements of E' is said to converge weakly in E' to 
fEE' if and only if limn~.,fn(x) = f(x) for each x E E. 

If E is a Banach space, E' is also a Banach space for the so-called dual norm 

Ilf II = sup {If(x)1 : x E E, Ilxll ~ I}; 

the proof of completeness of E' is exactly like that in the special case dealt 
with in 12.7.1. 

B.1.8. Quotient Spaces and Quotient Norms. Let E be a linear space 
and L a linear subspace of E. The quotient space Ej L, whose elements are 
cosets x + L, is defined in purely algebraic terms and is turned into a linear 
space by defining 

(x + L) + (y + L) = (x + y) + L, 
A(x + L) = (Ax) + L 

for x, y E E and A E <1>. Denote by 4> the quotient map x ~ x + L of E onto 
Ej L; 4> is linear. 

If E is a topological linear space, one can make Ej L into a topological 
linear space (again spoken of as the quotient space) by taking a base of 
neighborhoods of zero in Ej L to be formed on the sets 4>( U), where U ranges 
over a base of neighborhoods of zero in E. The quotient space Ej L is Hausdorff 
if and only if L is closed in E. 
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A special case of importance is that in which E is normed, in which case the 
aforesaid quotient topology of Ej L is derivable from the quotient seminorm 

Ilx + LII = inf IIx + yll· 
lIeL 

If L is closed in E, this quotient seminorm is actually a norm on Ej L and is 
termed the quotient norm on EjL. 

If E is a Banach space and L is closed in E, Ej L is a Banach space (for its 
quotient norm); compare Subsection 11.4.7. 

For more details see, for example, [E], Sections 1.8.5 and 1.10.5. 

B.2 Uniform Boundedness Principles 

We require two such principles stemming from Baire's theorem (see 
Section A.2) as a common source. The first concerns seminorms and linear 
functionals, and the second refers to linear operators. 

B.2.1. (I) Let E be a Frechet space and Pk (k = 1,2,· .. ) a lower semi
continuous function on E with values in [0, 00] such that 

for x, y E E and A E <I> (these conditions on Pk being fulfilled whenever Pk is a 
lower semi continuous seminorm on E). If infk Pk{X) < 00 for each x in a 
nonmeager subset S of E (in particular, if infk Pk{X) < 00 for each x E E), then 
there exists an index k such that Pk is finite valued and continuous on E. 

{2} Let E be a Frechet space and (f)leI an arbitrary family of continuous 
linear functionals on E. If 

sup ~1/1{x)l : i E J} < 00 (B.2.1) 

for each x in a nonmeager subset S of E (in particular, if (B.2.I) holds for 
each x E E), then the II are equicontinuous on E, that is, to each e > ° 
corresponds a neighborhood U ofO in E such that x E U entails supd/l{x)l < e. 
IfE is a Banach space, the conclusion reads simply suplerll/,1I < 00. 

Proof. (I) In interpreting the hypotheses on Pk we agree that a + 00 

= 00 + 00 = 00 for any real a ~ 0, that 0'00 = 0, and that a'OO = 00 for 
any real a > 0. For k, r = 1,2" . " let Sk.r denote the set of x E E such that 
Pk{X) ~ r. Since Pk is lower semicontinuous, each Sk.r is closed in E. Plainly, 
S c U:'r=ISk,r so that, since S is nonmeager by hypothesis (see A.3 for the 
particular case in which S = E), some Sk.r has interior points. Thus there exists 
Xo E E and a neighborhood U of ° in E such that Pk{X) ~ r for x E Xo + U. 
Then the identity x = % (xo + x) - % (xo - x) combines with the prop
erties. of Pk to show that Pk{X) ~ r for x E U. Consequently, given e > 0, 
we have Pk{X) ~ e provided that x E U1 == {r- 1 e)U. Now U1 is again a 
neighborhood of ° in E, because the function x -* (re -1)X is continuous from 
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E into E (see the axioms of a topological linear space in B.l.l). This shows 
that PIc is finite and continuous on E and so completes the proof of (1). 

(2) This follows immediately from (1) on defining PIc = p for all k, where 

pix) = sup {ift(x)i : iEI}. 

An important corollary of B.2.l is the following statement about families 
of continuous linear operators. 

B.2.2. Banach-Steinhaus Theorem. Let E and F be Frechet spaces 
and (Tt)tel an arbitrary family of continuous linear operators from E into F. 
Suppose that, for each x in a nonmeager subset S of E (for example, for each 
x E E), the set {Ttx : i E I} is a bounded subset of F. Then the T t are 
equicontinuous on E, that is, to each neighborhood V of 0 in F corresponds a 
neighborhood U of 0 in E such that TtU c V for all i E 1. 

Proof. We may assume that the given neighborhood V is of the form 
V = {y E F : q( y) ~ e}, where q is some continuous seminorm on F (being, 
for example, a member of some defining family for F; see B.l.4(4)). Now 
apply B.2.l(l) to the situation in which 

PIc = sup iqi 0 T t 
tel 

(k=I,2,··.). 

Remark. In the proof of B.2.2 no essential use is made of the fact that 
F is a Frechet space: all that is necessary is that F be a topological linear space 
whose topology can be defined in terms of continuous seminorms. In other 
words, B.2.2 extends to the case in which F belongs to the category of so
called "locally convex" topological linear spaces. For further developments, 
see [Jj:], Chapter 7. 

B.3 Open Mapping and Closed Graph Theorems 

B.3.l. Some Definitions. Let E and F be Frechet spaces and T a linear 
operator from E into F. The graph of T is the subset of E x F comprising 
those pairs (x, y) in which y = Tx. The operator T is said to be closed (or to 
have a closed graph) if and only if its graph is a closed subset of the product 
space E x F. This signifies that, if limn _ <XlXn = 0 in E and limn_ <Xl TXn = y in 
F, then necessarily y = O. 

Evidently, if T is continuous, then it is closed. One of the two theorems 
we aim to prove asserts the converse of this. This will be deduced from 
another rather surprising result involving the concept of an open mapping. 

If, as before, T is a linear operator from E into F, we shall say that T is 
open if TU is an open subset ofF whenever U is an open subset ofE. Because 
of linearity, this signifies exactly that T U is a neighborhood of 0 in F when
ever U is a neighborhood of 0 in E. 
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B.3.2. Open Mapping Theorem. Let E and F be Frechet spaces and T 
a closed linear operator from E into F such that TE is nonmeagcr in F. Then 
T is open; in particular, TE = F. (Notice that the hypotheses are fulfilled 
whenever T is continuous and TE = F; see Section A.3.) 

Proof. It has to be shown that, U being any neighborhood of 0 in E. TU 
is a neighborhood of 0 in F. Now [see B.1.4(4)] we can choose an increasing 
defining family (Pk);'= 1 for E so that U contains the set {x E E : Pl(X) ~ I}. 
Let (q")h=l be a defining family for F, also increasing. We will show that there 
exists an index h1 and numbers r > 0 and £1 > 0 such that each Y E F 
satisfying q"l (y) ~ £1 is expressible as y = Tx for some x E E satisfying 
Pl(X) ~ r. This is clearly enough to establish the required result. 

To do this, write Uk = {x E E : Pk(X) ~ k- 2 } for k = 1,2,· . '. Since 
E = U;'= l(nU k)' TE c U;'= IT(nU k)' Then. TE being nonmeager by hy
pothesis, an n exists such that the closure of T(nUk) = n' TUk contains 

interior points. This entails, as is easily verified, that T Uk is a neighborhood 

of 0 in F. Thus ~here exist an index hk and a number £k > 0 such that T Uk 
contains the set V k = {y E F : q"k (y) ~ £k}' One may assume without loss of 
generality that hk ;;: k and that limk _ "'£k = O. 

Suppose now that y E V1 • Since TU 1 :::> V1 , Xl E U1 may be chosen so that 

q"2(Y - Tx1) ~ £2' Then y - TX1 E V2 and, accordingly, since 1'U2 :::> V2 , 

x 2 E U 2 may be chosen so that Q"3'( y - TX1 - Tx2) ~ Ea. Proceeding in this 
way, we obtain points Xn of E so that 

The completeness of E entails that 

x = lim (Xl + X 2 + ... + xn) 
n-'" 

exists in E, since the first relation in (B.3'!) ensures that 2n Pk(Xn ) < 00 and 
therefore that the sequence (Xl + ... + xn );'= 1 is a Cauchy sequence in E. 
The second inequality in (B.3.I) shows that for n ;;: h 

so that TX1 + ... + TX n = T(X1 + ... + xn) __ yin F. Since T is closed, it 
follows that y = Tx. Finally, 

n 

P1(X) = lim P1(X1 + ... + xn) ~ lim inf L P1(Xk) 
n-CJJ n-CXl k=l 

n '" 

~ lim inf L Pk(Xk) ~ L k- 2 = r, 
n_co k=l k=l 

say, by (B.3.I) again. The proof is thus complete. 
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B.3.3. Closed Graph Theorem. Let E and F be Frechet spaces. Any 
closed linear operator from E into F is continuous. 

Proof. Let G be the graph of T. Then G is a closed linear subspace of 
E x F and is therefore (see B.1.4(5)) itself a Frechet space. Define the linear 
operator S from G into E by S(x, Tx) = x for x E E. It is clear that S is 
continuous and SG = E. So, by B.3.2, S is open. This entails that T is 
continuous from E into F: indeed, if V is any neighborhood of 0 in F, the set 
W of pairs (x, Tx) for which x E E and Tx E V, is a neighborhood of 0 in G, 
so that SW must be a neighborhood V of 0 in E; but x E V entails that 
Tx E V, so that TV c V and T is thereby seen to be continuous. 

B.4 The Weak Compacity Principle 

B.4.1. Let E be a separable Frechet space (that is, a Frechet space in which 
there exists a countable, everywhere dense subset) and (j,,)~= 1 a sequence of 
continuous linear functionals on E such that 

lim sup if,,(x)i < 00 ,,_<Xl 

for each x in a nonmeager subset S of E. Then there exists a subsequence 
(j,,);:'=l which converges weakly in E' to somefEE'. (See B.1.7.) 

Proof. From B.2.1 it follows that the f" are equicontinuous, and in 
particular that sUPnifn(x)i < 00 for each x E E. 

Now choose and enumerate as (x!c);:'= 1 a countable everywhere dense subset 
of E. The numerical sequence (jn(Xd)~=l being bounded, a subsequence 
(j",(n»)~= 1 may be extracted so that limn_",f",(n)(x1 ) exists finitely. (Here, CLl 

is a strictly increasing map of the set N of natural numbers into itself.) 
Again, the numerical sequence (f",(n)(X2))~= 1 being bounded, a subsequence 

(f"'''2(n»)~= 1 may be extracted so that (j"'''2(n)(x2);:'= 1 is convergent to a finite 
limit. (We are writing CL1CL2 for the composite map CLl 0 CL2') Proceeding in 
this way, we obtain iterated subsequences CLV CLICL2' ••• so that 

exists finitely for 1 ~ j ~ i andi = 1,2,·· '. We now take the "diagonal 
subsequence" {3 defined by 

This has the crucial property that ({3(n»:'= 1 is a subsequence of (CLl ••• CLj(n»:'= 1 

so that 
lim f8(n)(XI) (B.4.1) ,,_<Xl 

exists finitely for each i. 
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Take now any x E E and any e > O. By equicontinuity, there is a neighbor
hood U of 0 such that I/n( y)1 ~ e/4 for all n and all Y E U. Next choose i so 
that x - XI e U (possible since the x, are everywhere dense in E). We 
then have 

!18(n)(X) - 18(n')(X)/ ~ Ifu(n)(x) - IU(n)(x,ll + IIU(n·)(xl - lucn·)(x,)1 

+ 1/',(n)(xI ) - IU(n·)(x,>I 

= 1f8Cn)(X - XI)! + 1f8(n')(X - x,)1 + 1f8cn)(XI) - I/lCn,)(XI)! 

uniformly in nand n'. The existence of the limit (B.4.1) then shows that 

provided n, n' > note). We thus infer that 

I(x) = lim 16(n)(x) (B.4.2) 
n_ac 

exists finitely for each x E E. It is plain that I is a linear functional on E. 
That lEE' (that is, is continuous) follows from the fact that (with the above 
notation) I I ( y) I ~ e/4 for Y E U. Thus lEE' and the definition (B.4.2) 
ensures that limn _ ac I8(n) = I weakly in E'. So (/8(n»:31 is a subsequence of 
the type whose existence is asserted. 

B.4.2. We remark that there is an analogue of B.4.1 which is valid for any 
(not necessarily separable) Frechet space E, and indeed in a still wider 
context. 

Suppose that E is any topological linear space and that (/n):.1 is any 
equicontinuous sequence of linear functionals on E. Although it may not be 
possible to extract a subsequence of (/n) which converges weakly in E', the 
following statement is true. 

There exists a continuous linear functional Ion E with the property that, 
corresponding to any given e > 0, any finite subset {Xl" .. , x r } ofE, and any 
integer no, there is an integer n > no for which 

(i = 1,2,· .. ,r). 

(Such an I is nothing other than a limiting point of the given sequence in 
relation to the so-called weak topology on E' generated by E; see [E), pp. 
88-89.) 
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B.5 The Hahn-Banach Theorem 

The only aspects of this many-headed theorem that are used in this book 
are stated in B.5.l to B.5.3. For further discussion of the theorem and its 
applications, see [E], Chapter 2. 

B.5.l. Let E be a linear space, p a seminorm on E, L a linear subspace of 
E, and fo a linear functional defined on L and satisfying 

(x E L). 

Then there exists a linear functional f on E such that 

f(x) = fo(x) 

If(x)1 ~ p(x) 

(x E L), 

(x E E). 

(B.5.I) 

(B.5.2) 

(B.5.3) 

Proof. This may be taken verbatim from pp. 53-55 of [E], but note the 
misprint on the last line of p. 54, where "~ " should read "~." 

B.5.2. Let E be a Frechet space (or, indeed, any locally convex topological 
linear space; see the Remark following Subsection B.2.2), A any nonvoid 
subset of E, and Xo an element of E. Then Xo is the limit in E of finite linear 
combinations of elements of A if and only if the following condition is 
fulfilled: iff is any continuous linear functional E (that is, iff EE') such that 
f(A) = {O}, thenf(xo) = O. 

Proof. The" only if" assertion is trivial in view of the linearity and 
continuity of J. 

Suppose, conversely, that the condition is fulfilled. Let Lo denote the 
closed linear subspace of E generated by A and suppose, if possible, that 
Xo ~ Lo· Since Lo is closed, and since the topology of E is defined by a family 
of continuous semi norms , there is a continuous seminorm p on E such that 
p(.y - xo) > I for all Y E Lo, and hence also 

p( y + xo) = p( - y - xo) > 1 (B.5.4) 

Let L = Lo + <IIxo and define the linear functional fo on L by the formula 
fo( Y + ,\xo) = A (y E L o, A E <II). The~, for x = y + ,\xo E L, (B.5.4) gives 
for A =F 0 

Ifo(x)1 = IAI ~ IAI'p(~ + xo) =p(y + Axo) =p(x); 

and the same inequality is trivially valid for A = O. Appeal to B.5.1 shows 
that fo can be extended into a linear functional f on E such that (B.5.3) is 
true, which, since p is continuous, entails that f is continuous. On the other 
hand, it is evident that fo, and therefore f too, vanishes on Lo, a fortiori 
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vanishes on A, while f(xo} = fo(xo} = 1 =f O. This contradicts the main 
hypothesis. 

B.5.3. Let E be a normed linear space and E' its dual (see B.1.7). If Xo E E, 
there exists fEE' such that 

Ilfll ~ 1 
and 

f(xo} = Ilxoll· 
Proof. Let L be the linear subspace of E generated by Xo. Define fa on 

L by foU'.xo} = "llxoll (" E <1>). It now suffices to apply B.5.l, taking p(x} = 
Ilxll: any extension f of fo of the type specified in B.5.l satisfies all 
requirements. 



APPENDIX C 

The Dual of LP (I ~ P <(0); 

Weak Sequential Completeness of Ll 

The aim of this appendix is to give a proof of two results used in the 
main text. 

C.l The Dual of LP (1 ~ P < 00 ) 

Theorem. Let 1 ~ p < 00 and let F be any continuous linear functional 
on LP. Then there exists an essentially unique function g E·Lp· (lip + lip' = 1) 
such that 

(C.1) 

for all f E V'. For any such function fI one has 

Ilgllp· = II FII == sup {I F(f)1 : f E LP, Ilf lip ~ I}. (C.2) 

Proof. T~at any g E LP' satisfying (C.l) also satisfies (C.2), follows at 
once from Holder's inequality and its converse (see Exercise 3.6). So we 
confine our attention to the proof of the existence of g [its essential uniqueness 
being a corollary of (C.2)]. This proof will be based upon use of the Radon
Nikodym theorem (see [W], Chapter 6; [HS], Section 19; [AB], p. 406). 

For this purpose we consider Borel subsets E of the interval X = (0,21T) 
(compare [W], p. 93). The characteristic function of E may be extended by 
periodicity, the result being denoted by XE and being a member of LP. The 
number 

(C.3) 

is thus well-defined. Since F is linear, if is (finitely) additive. If we can show 
that if is countably additive, it will follow that if is a complex Borel measure 
on X ([W], p. 95; [HS], p. 329). Now, if E is the union of disjoint Borel sets 
En (n = 1,2,·· .), then 

co 

XE = 2: XEn , 
nal 
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the series being convergent in V' since p < 00. (Here is the major reason for 
breakdown of the theorem for p = 00.) The continuity of F, together with its 
linearity, shows that therefore 

"" 
v(E) = 2: v(En) , 

n=l 

that is, that v is indeed countably additive. 
Again since p < 00, the continuity of F shows that v is absolutely con

tinuous relative to the restriction p. of Lebesgue measure to X (see [W], p. 98; 
[HS], p. 312). 

At this stage the Radon-Nikodym theorem ([W], Theorem 6.3d; [HS], p. 
315) may be invoked to ensure the existence of an integrable function g on 
X (which may be extended by periodicity) such that 

v(E) = F(XE) = 2~ Is gdx = 2~ f XEUdx 

for all Borel sets E c X. The linearity of F then shows that 

F(f) = L ffg dX 

holds for allf which are finite linear combinations of functions XE' Knowing 
this, it is easy to conclude that g E V" and that 

compare Exercise 3.6. Holder's inequality shows then that the difference 

Fo(f) = F(f) - L fh dx 

is a continuous linear functional on V, which vanishes for all f in the every
where dense subset of V' formed of the finite linear 'Combinations of charac
teristic functions of Borel sets. Fo must therefore vanish identically, that is, 
(C. 1) holds for all f E V'. 

Note: For 1 < P < 00 a different proof is possible; see [HS], pp. 222 ff., 
[AB]. p. 246. The proof given above is that used ([HS]. p. 351), to deal 
with the case p = 1. 

C.2 Weak Sequential Completeness of Ll 

Although 12.3.10(2) is false whenp = 1, there is a sort of partial substitute 
that sometimes will save the day. 
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Theorem. Suppose that (fili"'= 1 is a sequence of integrable functions 
forming a weak Cauchy sequence in Ll, that is, for which 

li~ L fkl dX 

exists finitely for each I] E L"'. Then there exists a function i ELI to which 
(f;) is weakly convergent, that is, which is such that 

li~ L fiil] dx = L fil] dx 

for earh I] E L''' . 
The proof of this result is rather lengthy and the reader is referred to [E), 

p.275. 



APPENDIX D 

A Weak Form of Runge's Theorem 

We aim to employ the Hahn-Banach theorem (Appendix B.5.2) to prove a 
simplified version of Runge's theorem adequate for the purposes of 12.9.8(3). 

In what follows we denote by A the complex plane, by Ll the compactified 
complex plane (that is, the Riemann sphere), by n a nonvoid open subset of 
A, and by K a nonvoid compact subset of n. It will be assumed that 

(1) A\K is connected (or, equivalently, that K is simply connected), and 
tha.t 

(2) there lies in n\K a smooth closed path r such that the Cauchy integral 
formula 

I(z) = ~ r I(t) dt 
2m Jr t - z 

holds for each z E K and each function I which is holomorphic on n. 

(D.1) 

We do not intend discussing in detail conditions that guarantee (2) (see 
the Remarks below); suffice it to say here that the condition is evidently 
fulfilled in the conditions prevailing in 12.9.8. 

Theorem. With the above notations and hypotheses, each function I 
which is holomorphic on n is the limit, uniformly on K, of polynomials in z. 
(As is customary, the symbol "z" is used to denote a complex number and 
also the natural complex coordinate function on A.) 

Proof. Denote by C(K) the complex linear space of continuous, complex
valued functions on K, into which we introduce the norm 

IIIII = sup {1/(z)1 : zeK}. 

Also, let H denote the subspace of C(K) formed of those I e C(K) which are 
restrictions to K of functions holomorphic on n. According to B.5.1 and 
B.5.2, our task will be finished as soon as it is shown that any continuous 
linear funotional F on C(K) with the property that 

F(u,,) = 0 (n = 0,.1, 2, ... ), 
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(D.2) 
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where u" is the restriction to K of the function z ~ z", satisfies also 

FU) = 0 (D.3) 
for any feB. 

For any t e 4\K, let ft denote that element of C(K) obtained by restricting 
to K the function z ~ (t - Z)-I. If fe B, the formula (D.l) may be applied 
to show thatfis the limit in C(K) (that is, uniformly on K) of linear combina· 
tions of functions It with t e r; for this it suffices to approximate the integral 
appearing in (D.I) by Riemann sums. Thus (D.3) is implied by (and is actually 
equivalent to) the assertion 

(t e r). (D.4) 

In order to show, finally, that (D.2) implies (D.4), we examine the function 

4>(t) = FU,) , (D.5) 

defined for t e 4\K. Using the continuity of F on C(K), it is easy to verify 
that 4> is holomorphic at all points of 4\K: we leave this as a simple exercise 
for the reader. Moreover, if It I is sufficiently large, 

ao z" 
(t - Z)-1 = ~ -, L, t,,+1 

,,~O 

the series converging uniformly for z e K, 80 that continuity of F shows that 

ao 

4>(t) = L: F(u,,)t-"-I, (D.6) 
n-O 

again for sufficiently large Itl. Now (D.6) shows first that 4> can be extended 
to 3:\K in such a way as to be holomorphic on a neighborhood of 00 (simply by 
setting 4>(00) = 0); and second, in conjunction with (D.2), that 4> vanishes 
on a neighborhood of 00. Since, by (1), 4\K is connected, the same is true of 
a\K = (4\K) U {oo}, and it follows that 4> must vanish throughout the whole 
of 4\K. In particular, (D.4) is true. This completes the proof. 

Remarks. For a different approach to Runge'S theorem and related 
questions, see [He], pp. 149-153, and the references cited there. The theorem 
has ramifications and analogues extending to Riemann surfaces (see, for 
example, the relevant portions of Behnke and Stein's "Theorie der analy. 
tischen Funktionen einer komplexen Veranderlichen") and to functions of 
several complex variables or on complex analytic manifolds (see Gunning 
and Rossi's "Analytic Functions of Several Complex Variables," Chapter I, 
Section F, and Chapter VII). 

There are also real· variable analogues of Runge's theorem, applicable to 
solutions of linear partial differential equations; see [E], p. 396, and the 
references cited there. 
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Uniqueness theorem, 40 

Variation, 
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Wave equation, 8.10 
Weak compacity principle, 197 
·Weak convergence in dual space, 193 
Weak sequential completeness, 202 
Weierstrass' approximation theorem, 

90 
Weierstrass-Stone theorem, 91 
Wiener's theorem, 8.13, 177 

Zero divisors, 53 
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